
Alpha Microprocessors
SROM Mini-Debugger
User’s Guide
Order Number: EK–AMSMD–UG. A01

Revision/Update Information: This is a new manual.

Digital Equipment Corporation
Maynard, Massachusetts

April 1996

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1994, 1995, 1996.

All Rights Reserved.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AlphaGeneration,
AXP, DEC, DECchip, Digital, ULTRIX, VMS, the AlphaGeneration design mark, and the
DIGITAL logo.

Digital Semiconductor is a Digital Equipment Corporation business.

Digital UNIX Version 3.2 for Alpha is a UNIX 93 branded product.

OSF/1 is a registered trademark of the Open Software Foundation, Inc.

Windows NT is a trademark of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

Preface . v

1 Introduction

1.1 Overview . 1–1
1.2 General Features . 1–1

2 Getting Started

2.1 Overview . 2–1
2.2 Hardware Required . 2–1
2.3 Hardware Debug Features . 2–2
2.4 Setting Up the SROM Serial Port Connection 2–2
2.4.1 Connecting the Board to a Terminal 2–2
2.4.2 Connecting to the Motherboard from a DEC 2000 Model 300

AXP System . 2–3
2.4.3 Connecting to the Motherboard from a DEC 3000 Model 500

AXP System . 2–3
2.4.3.1 Connecting to a Serial Port Under Digital UNIX 2–4
2.5 Starting and Running the Mini-Debugger 2–5
2.5.1 Default Conditions . 2–5
2.6 Sample Session on the Alpha PCI 64-275 2–6
2.6.1 Alpha PCI 64-275 Sample Log File . 2–7
2.7 Sample Session on the Alpha PCI 164-266/300 2–9
2.7.1 Alpha PCI 164-266/300 Sample Log File 2–11

iii

3 SROM Mini-Debugger Command Set

3.1 Overview . 3–1
3.2 Command and User Interface Features . 3–1
3.3 Command Summary . 3–2
3.3.1 Deposit and Examine Data at One Memory Location (dm,

em) . 3–2
3.3.2 Set Quadword or Longword Data Mode (qw, lw) 3–3
3.3.3 Fill and Block Read Memory Range (fm, bm) 3–4
3.3.4 Set High-Memory or Low-Memory Address Mode (hm,

lm) . 3–6
3.3.5 Get, Set, and Clear a Base Address (ba, sa, ca) 3–6
3.3.6 Looping Write to a Memory Location (wm) 3–8
3.3.7 Looping Read from a Memory Location (rm) 3–8
3.3.8 Looping Write/Read Sequence at a Memory Location (!m) . . . 3–8
3.3.9 Deposit Data to a CPU Register (dc) 3–9
3.3.10 Examine CPU Register (ec) . 3–9
3.3.11 Load an External Image to Memory (xm) 3–11
3.3.12 Start Execution at an Address (st) . 3–11
3.3.13 Begin Execution of Last Image Loaded (xb) 3–11
3.3.14 Return to Calling Program (rt) . 3–12
3.3.15 Print Register Contents (pr) . 3–12
3.4 Onboard Machine Check Handler . 3–12

Index

Tables

3–1 Command Summary . 3–2
3–2 Options for dc Command . 3–9

iv

Preface

Introduction
This document describes how to use the Alpha Microprocessors SROM Mini-
Debugger (also referred to as the mini-debugger) to debug hardware with one
of the following Alpha motherboards:

• The Alpha PCI 64-275

• The Alpha PCI 164-266/300

Audience
This document is intended for anyone who develops hardware or software to be
used with an Alpha microprocessor.

Content Overview
The information in this document is organized as follows:

• Chapter 1 is a general overview of the mini-debugger.

• Chapter 2 describes how to set up and start the mini-debugger.

• Chapter 3 describes the mini-debugger command set.

v

Conventions
The following conventions are used in this document:

Convention Meaning

A percent sign (%) Indicates a Digital UNIX operating system command
prompt.

SROM> Indicates an Alpha Microprocessors SROM Mini-Debugger
prompt.

Boldface type Indicates an Alpha Microprocessors SROM Mini-Debugger
command keyword.

Italic type Indicates special emphasis or the title of a manual.

Monospaced type Indicates an operating system command, a file name, or a
directory path name.

Note Provides general information.

vi

1
Introduction

1.1 Overview
The Alpha Microprocessors SROM Mini-Debugger provides basic hardware
debugging capability through the SROM serial port of the Alpha
microprocessor. Using only an SROM containing the mini-debugger, a clock
source, a CPU chip, and a few gates, you can exercise the device connected
to the CPU to debug cache, memory, and I/O subsystems until the board is
functional enough to support a more fully featured monitor.

1.2 General Features
The mini-debugger has the following features:

• Basic hardware debugging capability

• A monitor that can point to hardware addresses and exercise them

• The ability to examine and deposit memory

• A case-independent command language

• Support for variable baud rates and processor speeds

Introduction 1–1

2
Getting Started

2.1 Overview
The mini-debugger is available in the standard SROM provided with the Alpha
motherboards. It can be invoked after the standard SROM has completed CPU
and system initialization and before it begins execution of the image loaded
from ROM. Refer to the Design Guide for the Alpha PCI 64-275 or the Alpha
PCI 164-266/300 for more information about how to access the mini-debugger.
(It requires setting a jumper.)

2.2 Hardware Required
To run the mini-debugger, you need the following:

• An Alpha motherboard or a system based on the Alpha microprocessor
architecture with a connection from the microprocessor SROM interface to
the SROM serial port (for example, an RS232)

• A host system (a terminal or workstation)

Note

The recommended host system is an Alpha platform running the
Windows NT or Digital UNIX operating system.

Getting Started 2–1

2.3 Hardware Debug Features
The mini-debugger resides in the instruction cache and is designed to be loaded
at reset through the SROM interface. The mini-debugger provides commands
to

• Examine and deposit data in memory.

• Examine and deposit internal CPU registers.

• Transfer execution to any address in the board’s memory range.

The mini-debugger’s primary purpose is to debug hardware so that the memory
interface works, thus allowing a more complex debugger such as the Alpha
Microprocessors Debug Monitor or the full SRM test software to be loaded to
debug other parts of the system or software.

2.4 Setting Up the SROM Serial Port Connection
To use the mini-debugger, you must first establish a connection from your
Alpha microprocessor system or motherboard to the serial port on your host
system or terminal. This section describes how to connect the SROM serial
port of an motherboard to the following hardware:

• Terminal

• DEC 2000 Model 300 AXP system running the Windows NT operating
system

• DEC 3000 Model 500 AXP system running the OSF/1 operating system

2.4.1 Connecting the Board to a Terminal
To connect a board to a terminal, connect the SROM serial port of the board to
the terminal communication line. Auto baud detection is enabled by typing an
uppercase U. The recommended baud rate is 9600.

2–2 Getting Started

2.4.2 Connecting to the Motherboard from a DEC 2000 Model 300 AXP
System

The DEC 2000 Model 300 AXP system running the Windows NT operating
system supports an SROM serial port. To enable the SROM serial port for use
with the motherboard, follow these steps:

1. Select the Program Manager icon.

2. Select the Accessories icon.

3. Select the Terminal icon.

4. Set the following terminal characteristics:

Terminal Setting Value

Terminal mode VTnnn—7 bit

Transmit/receive speed 9600 baud

Character format No parity

Stop bits 1

2.4.3 Connecting to the Motherboard from a DEC 3000 Model 500 AXP
System

The DEC 3000 Model 500 AXP system supports serial communications and
Ethernet communications.

The DEC 3000 Model 500 AXP system running the Digital UNIX operating
system supports serial communication through two ports:

• /dev/tty00—Synchronous/asynchronous communication port (25-pin RS232
connector)

• /dev/tty01—Alternate console printer (modular jack)

Either port can be connected to the SROM serial port. For consistency, all
examples and command descriptions assume that serial port 1 is connected to
port /dev/tty00 .

Getting Started 2–3

To enable these ports for use with the motherboard, follow these steps:

1. Modify the following two files:

/etc/remote
/etc/inittab

a. Add the following two lines to the /etc/remote file. These lines define
a device to connect to when using the Digital UNIX tip command.

port_name0 :dv=/dev/tty00:br#9600:pa=none:
port_name1 :dv=/dev/tty01:br#9600:pa=none:

The port_name refers to the name that you assigned to the port on the
Digital UNIX host. For example, port_name0 could be tty00.

b. Modify the /etc/inittab file to disable logins on the two serial
communication ports by setting the third field to off . For example,
modify the tty00 and tty01 lines as follows:

tty00:23:off:/usr/sbin/getty /dev/tty00 9600
tty01:23:off:/usr/sbin/getty /dev/tty01 9600

2. Reboot the system, or issue the following command to ensure that the
modified files take effect:

% /sbin/init q

2.4.3.1 Connecting to a Serial Port Under Digital UNIX
After modifying the /etc/remote and /etc/inittab files, you can connect to
the serial port under the Digital UNIX operating system using the Digital
UNIX tip command.

For example, to connect to the host running the Digital UNIX operating
system, enter this command:

% tip tty00

2–4 Getting Started

2.5 Starting and Running the Mini-Debugger
After the SROM serial port connection has been made, you can initialize the
mini-debugger by typing an uppercase U. This returns an SROM> prompt,
which indicates that you are ready to begin debugging hardware and displays
the mini-debugger version number.

For example:

U
V00000801
SROM>

The uppercase U automatically detects the baud rate of the terminal connected
to the SROM serial port. Baud rates up to 19.2K are supported.

Note

Auto baud detection requires that the first character typed be an
uppercase U.

2.5.1 Default Conditions
The mini-debugger built into the Alpha board SROM contains the proper
initialization conditions.

The following sample sessions show you how to set up and run the standalone
version of the mini-debugger.

The following conditions apply:

• Machine checks are disabled. (This does not apply to designs based on the
Alpha 21164.)

• Data cache (Dcache) is off.

• The ABOX_CTL register is set to 0. (This does not apply to designs based
on the Alpha 21164.)

• The ICCSR register is set to 000005F800000000 for boards based on the
21064 and to 0x824E000000 for boards based on the Alpha 21164.

• The quadword data mode flag and the high-memory mode flag are cleared.

• The pal_base is set to where the code is loaded.

• In boards based on the Alpha 21164, all three sets of internal cache are
turned on and flushed. The block size has been set to 64 bytes.

Getting Started 2–5

Before you begin to debug hardware with the mini-debugger you need to
set several other registers depending on the microprocessor. See the sample
sessions for more information.

2.6 Sample Session on the Alpha PCI 64-275
To run the mini-debugger on the Alpha PCI 64-275, set up the BIU_CTL
register with the backup cache (Bcache) disabled. For example:

BIU_CTL : 0000004E 4001E644 /* for AlphaPCI 64-275

After main memory is initialized, the Bcache can be enabled as shown in the
Alpha PCI 64-275 sample log.

To initialize the memory controller for a 32-megabyte bank of memory in bank
0, the following values must be loaded into the DECchip 21071-CA memory
control registers:

Register Data

Global Timing Register 00000025

Refresh Timing Register 00000444

Bank 0 Timing Register A 00002684

Bank 0 Timing Register B 00000C01

Bank 0 Base Address Register 00000000

Bank 0 Configuration Register 000000EB

Finally, all of memory must be written to initialize data parity.

To initialize and enable the Bcache, follow these steps:

1. Initialize the cache tag RAMs.

This is done by enabling the cache in the DECchip 21071-CA and
configuring the DECchip 21071-CA to ignore the tag, and to allocate blocks
in the cache on writes.

2. Perform a memory write to every address from address 0 up to the size of
the cache.

This will load good data, tag, and tag control parity into the Bcache.

3. Configure the DECchip 21071-CA to use the Bcache tags, and set the
BIU_CTL register in the DECchip 21064 to enable the Bcache.

4. Enable the Dcache.

2–6 Getting Started

Before accessing the PCI bus on the Alpha PCI 64-275, several registers in the
DECchip 21071-DA must be initialized.

• The PCI Master Latency Timer must be set up before any PCI accesses are
attempted.

• The address extension registers (HAXRx) that are used for different types
of PCI accesses must also be initialized.

The Alpha PCI 64-275 sample log file initializes HAXR2 before attempting a
PCI configuration cycle.

2.6.1 Alpha PCI 64-275 Sample Log File

/* Sample Alpha PCI 64-275 initialization log file

SROM> dc /* Deposit to BIU_CTL Register
IPR> biu
LoD> 4001e664 /* Bcache off -- set to 4001e644 for

HiD> 4e /* the Alpha PCI 64-275

*biu

/* The Following commands init the memory
/* subsystem.

SROM> ba /* Set base address to base of DECchip 21071-CA
AL> 80000000 /* CSR register
AH> 1
BaseAddr ON: 00000001.80000000

SROM> dm /* Init Global Timing Register
A> 200
D> 25

SROM> dm /* Init Refresh Timing Register
A> 220
D> 444

SROM> dm /* Init Bank 0 Timing Register A
A> c00
D> 2684

SROM> dm /* Init Bank 0 timing Register B
A> e00
D> c01

SROM> dm /* Set Bank 0 Base Address Register to 0
A> 800
D> 0

Getting Started 2–7

SROM> dm /* Init Bank 0 Configuration Register
A> a00 /* 32MB of memory in bank 0
D> eb

SROM> ca /* Disable base address
BaseAddr OFF: 00000001.80000000

SROM> fm /* Write good data/parity to all of memory
A> 0
A> 2000000
D> 0

/* At this point the memory subsystem has been
/* initialized and configured for 32MB in
/* bank 0 using 2MBx36 SIMMs

/* The following commands init and
/* enable the Bcache.

SROM> sa /* Enable base address
BaseAddr ON: 00000001.80000000

SROM> dm /* Write General Control Register. Enable
A> 0 /* Bcache, ignore tag, allocate on writes
D> 1b4

SROM> dm /* Clear Tag Enable Register
A> 60
D> 0

SROM> ca /* Disable base address
BaseAddr OFF: 00000001.80000000

SROM> fm /* Write to entire cache to init cache Tags
A> 0 /* and data.
A> 200000
D> 0

SROM> sa /* Enable base address
BaseAddr ON: 00000001.80000000

SROM> dm /* Set Tag Enable Register to 2MB cache
A> 60
D> 3fe0

SROM> dm /* Clear ignore tag bit
A> 0
D> b4

SROM> ca /* Disable base address
BaseAddr OFF: 00000001.80000000

2–8 Getting Started

SROM> dc /* Enable cache in BIU_CTL
IPR> biu
LoD> 4001e665
HiD> 4e
*biu

/* At this point the cache has been
/* initialized and is enabled.

SROM> dc /* Enable Dcache and enable Machine Checks
IPR> abox
LoD> 42a
HiD> 0
*abx

/* The next section inits the PCI interface of
/* the DECchip 21071-DA chip

SROM> hm /* Enable high memory
Hi Mem

SROM> dm /* Init PCI Master Latency Timer
AL> a00001e0
AH> 1
D> ff

SROM> dm /* Init HAXR2
AL> a00001c0
AH> 1
D> 0

SROM> em /* Perform a configuration space read of the
AL> e0080000 /* SIO
AH> 1
00000001.e0080000: 04848086

SROM>

2.7 Sample Session on the Alpha PCI 164-266/300
To run the mini-debugger as a standalone program on the Alpha PCI 164-266
/300, the following setup needs to be performed. The mini-debugger initialized
the CPU when you typed uppercase U (see Section 2.5.1). You must also
initialize the rest of the board.

To set up the mini-debugger for the Alpha PCI 164-266/300, follow these steps
outlined below. The sample log in Section 2.7.1 illustrates this sequence:

1. Flush the secondary cache (L2) and turn on only one set. Flushing the
secondary cache prevents parity errors. Turning on only one set forces
reads to come from memory and not cache.

Getting Started 2–9

2. Turn off the Bcache to force reads to come from memory and not cache.
The Bcache Configuration register must have the Read and Write speeds
set to the ratio of the sysclock to CPU. Refer to the board’s design guide to
determine this ratio (see section on configuration jumpers).

3. Initialize the CIA control register.

4. Initialize the CIA acknowledge register to disable the Bcache Victim
Acknowledge signal.

5. Initialize the memory control register. This register controls the refresh
rate, and memory width.

6. Set the bank timing registers. The Alpha PCI 164-266/300 uses only one of
these three registers.

7. Set MBA0 which controls the only memory bank in the Alpha PCI 164-266
/300. The value is dependent on the amount of memory and type of SIMMs
used. Refer to the following table:

Memory Size SIMM Type MBA Value

32MB 1Mx36 (4MB) 10000011

64MB 2Mx36 (8MB) 10008011

128MB 4Mx36 (16MB) 10000073

256MB 8Mx36 (32MB) 10008073

512MB 16Mx36 (64MB) 100001F5

8. Wake up the memory by performing eight consecutive RAS cycles to each
SIMM side.

9. Turn on Dcache, Bcache, and all three sets in the secondary cache.

10. Initialize memory and the caches by writing to memory.

11. At this point, memory initialization is complete. If I/O tests are desired,
then you need to initialize that part of the system (see the following steps).

12. Reset ISA bus.

13. Configure SIO, enabling accesses to RTC, configuration RAM (configuration
jumpers), and flash ROM space.

2–10 Getting Started

2.7.1 Alpha PCI 164-266/300 Sample Log File
The following sample log file initializes the Alpha PCI 164-266/300.

/*Alpha PCI 164-266/300 Log.

(Shift-U)

V00000801
SROM> hm
Hi Mem

/* Flush secondary cache, set block size to 64 bytes */
/* and turn on set S0 only to facilitate memory */
/* memory accesses. Note that the secondary cache can’t */
/* be turned off completely. */
SROM> dm
AL> fff000a8
AH> ff
D> 3002

/* Check previous write operation. */
SROM> em
AL> fff000a8
AH> ff
000000ff.fff000a8: 00003002

/* Note that the Bcache has been disabled and */
/* error reporting has been turned off. */
SROM> dc
IPR> bctl
LoD> 8050
HiD> 0
*BCTL 00000000.00008050

/* The Read and Write speeds in the Bcache Cfg */
/* register must be set to the sysclock-to-cpu */
/* ratio. This examples shows a ratio of 8. */
SROM> dc
IPR> bcfg
LoD> 1e22880
HiD> 0
*BCFG 00000000.01e22880

/* Check previous write operations. */
SROM> ec
BCtl 00000000.00008050
BCfg 00000000.01e22880
.... /* The rest of the registers were omitted here */

/* Set the CIA_CTRL register */
SROM> dm
AL> 40000100
AH> 87
D> 2100c0f1

Getting Started 2–11

/* Check previous write operation. */
SROM> em
AL> 40000100
AH> 87
00000087.40000100: 2100c0f1

/* Set the PCI timer register */
SROM> dm
AL> 400000C0
AH> 87
D> ff00

/* Set the CIA_CACK_EN register. Note that the */
/* Bcache victim bit has been set to 0 since the */
/* Bcache has been disabled. */
SROM> dm
AL> 40000600
AH> 87
D> 0

/* Check previous write operation. */
SROM> em
AL> 40000600
AH> 87
00000087.40000600: 00000000

/* Initialize the memory control registers. */
SROM> ba
AL> 50000000
AH> 87
BaseAdr ON : 00000087.50000000

SROM> lm
Lo Mem

/* Set the refresh rate, Bcache size to 0 (disabled) */
/* and memory width to 256-bits. */
SROM> dm
A> 0
D> 1fe01

SROM> em
A> 0
00000087.50000000: 0001fe01

/* Set Bank Timing Register #1. */
SROM> dm
A> b40
D> 60208140

SROM> em
A> b40
00000087.50000b40: 60208140

2–12 Getting Started

/* Set MBA0 which controls the only memory bank on */
/* EB164. This example applies to all 8 SIMMs fully */
/* populated with 2Mbx36 SIMMs (8MBytes SIMMs) which */
/* gives a total of 64MBs. See table for other values. */
SROM> dm
A> 600
D> 10008011

SROM> em
A> 600
00000087.50000600: 10008011

SROM> ca
BaseAdr OFF: 00000087.50000000

/* Perform 8 consecutive RAS cycles to "wake up" memory. */
/* Because we can’t turn off the secondary cache completely, we must */
/* make sure that the reads are not cached. */
/* Do the following 2 reads 8 times */

/* Read from side 0 of SIMM */
SROM> em
A> 0
00000000.00000000: ffffffff

/* Read from size 1 of SIMM, ejecting previous read */
SROM> em
A> 2000000 /* Should be half your memory size */
00000000.02000000: ffffffff

/* Turn on the DCache */
SROM> dc
IPR> dcmd
LoD> 1
HiD> 0
*DCMD 00000000.00000001

/* Turn on the Bcache */
SROM> dc
IPR> bctl
LoD> 8051
HiD> 0
*BCTL 00000000.00008051

/* The BCFG value shown is for a 266MHz CPU, with 2MB, 10ns Bcache. */
SROM> dc
IPR> bcfg
LoD> 1e22772
HiD> 0
*BCFG 00000000.01e22772

Getting Started 2–13

SROM> ec
BCtl 00000000.00008051
BCfg 00000000.01e22772
.... /* The rest of the registers were omitted here */
DcMd 00000000.00000001
.... /* The rest of the registers were omitted here */

SROM> hm
Hi Mem

/* Tell memory controller the size of Bcache (2MB) */
SROM> dm
AL> 50000000
AH> 87
D> 1fe21

/* Enable CACK of Bcache Victims */
SROM> dm
AL> 40000600
AH> 87
D> 8

/* Enable all 3 sets in the secondary cache and leave at 64-byte blocks */
SROM> dm
AL> fff000a8
AH> ff
D> f000

SROM> em
AL> fff000a8
AH> ff
000000ff.fff000a8: 0000f000

/* Initialize memory and caches */
SROM> lm
Lo Mem

/* Fill memory to obtain good ECC */
SROM> fm
A> 0
A> 4000000 /* Total memory size in board */
D> 12345678

SROM> bm
A> 0
A> 20
00000000.00000000: 12345678
00000000.00000004: 12345678
00000000.00000008: 12345678
00000000.0000000c: 12345678
00000000.00000010: 12345678
00000000.00000014: 12345678
00000000.00000018: 12345678
00000000.0000001c: 12345678

2–14 Getting Started

SROM> bm
A> 200000
A> 200020
00000000.00200000: 12345678
00000000.00200004: 12345678
00000000.00200008: 12345678
00000000.0020000c: 12345678
00000000.00200010: 12345678
00000000.00200014: 12345678
00000000.00200018: 12345678
00000000.0020001c: 12345678

SROM> bm
A> 400000
A> 400020
00000000.00400000: 12345678
00000000.00400004: 12345678
00000000.00400008: 12345678
00000000.0040000c: 12345678
00000000.00400010: 12345678
00000000.00400014: 12345678
00000000.00400018: 12345678
00000000.0040001c: 12345678

/* Reset the ISA bus */
SROM> ba
AL> 0
AH> 87
BaseAdr ON : 00000087.00000000

/* Assert the reset signal */
SROM> dm
A> 809a0
D> 5800

/* Deassert the reset signal */
SROM> dm
A> 809a0
D> 5000

/* Set UBCSA register to allow access to RTC, keyboard, */
/* lbios and xbios */
SROM> dm
A> 809c0
D> c30000

/* Set UBCSB register to allow access to Confram (configuration */
/* jumpers) and to disable others */
SROM> dm
A> 809e0
D> ff000000

Getting Started 2–15

/* Read SIO identification registers */
SROM> em
A> 80000
00000087.00080000: 04848086

SROM> ca
BaseAdr OFF: 00000087.00000000

SROM> hm
Hi Mem

/* Write out to the leds post-card. You should see an "F0" */
/* printed on the LEDs. */
SROM> dm
AL> 80001000
AH> 85
D> f0

/* Read first byte of flash. If it has an image with the */
/* standard ROM header, you will see the following. */
SROM> em
AL> fff80000
AH> 86
00000086.fff80000: 5a5ac3c3

2–16 Getting Started

3
SROM Mini-Debugger Command Set

3.1 Overview
This chapter describes the Alpha Microprocessors SROM Mini-Debugger
command set.

3.2 Command and User Interface Features
The following list describes some of the features of the mini-debugger command
language:

• Uppercase or lowercase characters can be used.

• The delete key provides primitive command-line editing.

• Numbers are input and output in hexadecimal format.

• For commands that prompt for input, the default input value is all zeros.

• Addresses are masked on an even longword boundary in lw mode and on
an even quadword boundary in qw mode.

• Data and address inputs are taken one longword at a time.

• The looping commands initiate an infinite loop. To exit, press any key.

SROM Mini-Debugger Command Set 3–1

3.3 Command Summary
Table 3–1 summarizes the command set for the Alpha Microprocessors SROM
Mini-Debugger. These commands are described in the following sections.

Table 3–1 Command Summary

Command Description

dm Deposits data to one memory location.

em Examines one memory location.

qw Sets quadword data mode (64-bit data).

lw Sets longword data mode (32-bit data).

fm Fills a block of memory with a data pattern.

bm Displays a range (block) of memory locations.

hm Sets high-memory mode (64-bit address).

lm Sets low-memory mode (32-bit address).

ba Gets a base address and sets the base address mode flag.

sa Sets the base address mode flag.

ca Clears the base address mode flag.

wm Performs a looping write to one memory location.

rm Performs a looping read from one memory location.

!m Performs a looping write/read sequence at one memory location.

dc Deposits data to one CPU register.

ec Examines contents of CPU registers.

xm Loads an external image to memory.

st Starts execution at an address.

xb Begins execution of the last image loaded with xm.

rt Returns to the calling program.

pr Prints register contents.

3.3.1 Deposit and Examine Data at One Memory Location (dm, em)
The deposit memory (dm) command deposits a data pattern at one memory
location. The examine memory (em) command examines the data pattern at
one memory location and displays the value on the terminal screen.

3–2 SROM Mini-Debugger Command Set

This sequence deposits data and reads it back.

SROM>dm
A> 100000
D> deadbeef

SROM>em
A> 100000
00000000.00100000: deadbeef

Note

A memory barrier (MB) instruction is executed after the store in a dm
command to force the data to its destination.

3.3.2 Set Quadword or Longword Data Mode (qw, lw)
The quadword (qw) command sets the quadword data mode flag. All deposits
and examines then reflect 64-bit data. When doing a deposit you are prompted
first for the low longword of data, then for the high longword.

The longword (lw) command clears the quadword data mode flag (or sets
longword data mode). All deposits and examines then reflect 32-bit data. This
is the default.

Note

With the quadword data mode flag (qw) set, all reads and writes
are done with ldq/p and stq/p instructions, respectively. With this
flag cleared (lw), all reads and writes are done with ldl/p and stl/p
instructions, respectively.

SROM Mini-Debugger Command Set 3–3

The following example shows how the qw command affects the output of the
dm and em commands.

SROM>qw
QW Mode

SROM>dm
A> 100000
LoD> 12345678
HiD> 90abcdef

SROM>em
A> 100000
00000000.00100000: 90abcdef.12345678

The following example shows how the lw command affects the output of the
dm and em commands.

SROM>lw
LW Mode

SROM>dm
A> 100000
D> deadbeef

SROM>em
A> 100000
00000000.00100000: deadbeef

3.3.3 Fill and Block Read Memory Range (fm, bm)
The fill memory (fm) command writes over the specified range of memory
locations. The block read memory (bm) command displays the specified range
of memory locations. Both the fm and the bm commands prompt for a starting
and ending address. The block read or write is performed on the specified
address range, up to, but not including, the end address. For example, with
an ending address of 4000 in lw mode, the last longword location accessed is
3FFC. In qw mode, the last quadword location accessed is 3FF8.

In the following example of the fm command sequence, 100003 is the lower
boundary of the fill. Because the quadword data mode flag (qw) has been
set, the lower boundary is truncated to the nearest quadword (100000). The
upper boundary of the fill (10004F) is truncated to 100048. Therefore, the last
address written with the specified data pattern is 100040.

In the example bm command sequence, the lower boundary FFFF7 is
truncated to FFFF0, and the upper boundary is truncated to 100058.
Therefore, the last address read is 100050.

3–4 SROM Mini-Debugger Command Set

The following are examples of the fm and bm commands.

SROM>qw
QW Mode

SROM>fm
A> 100003
A> 10004f
LoD> deadbeef
HiD> 76543210

SROM>bm
A> ffff7
A> 10005f
00000000.000ffff0: 00000000.00000000
00000000.000ffff8: 00000000.00000000
00000000.00100000: 76543210.deadbeef
00000000.00100008: 76543210.deadbeef
00000000.00100010: 76543210.deadbeef
00000000.00100018: 76543210.deadbeef
00000000.00100020: 76543210.deadbeef
00000000.00100028: 76543210.deadbeef
00000000.00100030: 76543210.deadbeef
00000000.00100038: 76543210.deadbeef
00000000.00100040: 76543210.deadbeef
00000000.00100048: 00000000.00000000
00000000.00100050: 00000000.00000000

SROM>

Note

An MB instruction is done after the last store. Write-buffer merging
occurs unless it is disabled.

SROM Mini-Debugger Command Set 3–5

3.3.4 Set High-Memory or Low-Memory Address Mode (hm, lm)
The high-memory (hm) command sets the high-memory address mode flag that
allows the mini-debugger to accept 64-bit addresses. When hm is selected, any
command that requires an address prompts for the low longword of address,
then for the high longword of address.

The low-memory (lm) command clears the high-memory address mode flag so
that the mini-debugger accepts 32-bit addresses. When you enter a command
that requires an address, you are prompted only for the low longword of
address; this is the default.

In the following example, a blank input defaults to zero:

SROM>hm
Hi Mem

SROM>bm
AL> ffff0
AH>
AL> 100050
AH>
00000000.000ffff0: 00000000.00000000
00000000.000ffff8: 00000000.00000000
00000000.00100000: 76543210.deadbeef
00000000.00100008: 76543210.deadbeef
00000000.00100010: 76543210.deadbeef
00000000.00100018: 76543210.deadbeef
00000000.00100020: 76543210.deadbeef
00000000.00100028: 76543210.deadbeef
00000000.00100030: 76543210.deadbeef
00000000.00100038: 76543210.deadbeef
00000000.00100040: 76543210.deadbeef
00000000.00100048: 00000000.00000000

3.3.5 Get, Set, and Clear a Base Address (ba, sa, ca)
The base address flag is useful for reading and writing the same address
frame, particularly when the upper longword of memory address is required.
The base address is added to the address specified for any command in both
hm and lm modes. The base address (ba) command loads the base address
and sets the base address flag. The set address (sa) command sets the base
address flag and enables the previously loaded base address. The clear address
(ca) command clears the base address mode flag leaving the base address
untouched.

3–6 SROM Mini-Debugger Command Set

In the following example, the system has an I/O device mapped at 1.00000000
and a control and status register mapped at 1.F0000000. The test determines
if a timeout bit gets set in the control status register (CSR) when reading from
the unconnected I/O device. To get, set, and clear a base address, follow these
steps:

1. Set the base address to the CSR address, 1.F0000000.

2. Clear the base address mode flag, so that physical address 0 is used as the
reference for the next operation.

3. Set the high-memory address mode flag.

4. Read from the disconnected I/O device to cause a timeout.

5. Set the base address mode flag, so that the base address specified in step 1
is used as the reference for the next operation.

6. Read offset zero from the base address with the high-memory address mode
flag set. The timeout bit, bit 29, is set.

7. Clear the high-memory address mode flag.

8. Read offset zero from the base address with the high-memory address mode
flag cleared.

The following example demonstrates the previous steps:

SROM>ba
AL> f0000000
AH> 1
BaseAddr ON: 00000001.f0000000

SROM>ca
BaseAddr OFF: 00000001.f0000000

SROM>hm
Hi Mem

SROM>em
AL>
AH> 1
00000001.00000000: 00000000

SROM>sa
BaseAddr ON: 00000001.f0000000

SROM>em
AL>
AH>
00000001.f0000000: 20000000

SROM>lm
Lo Mem

SROM Mini-Debugger Command Set 3–7

SROM>em
A>
00000001.f0000000: 20000000

SROM>

3.3.6 Looping Write to a Memory Location (wm)
The write memory (wm) command performs a looping write to a single memory
location. The loop can be terminated by pressing any key.

In the following example, lm and lw modes are assumed:

SROM>wm
A> 80000
D> 55555555

In this example, the mini-debugger writes 5’s to location 80000 until you
terminate the loop by pressing another key.

3.3.7 Looping Read from a Memory Location (rm)
The read memory (rm) command performs a looping read to a single memory
location. The loop can be terminated by pressing any key.

In the following example, lm and lw modes are assumed:

SROM>rm
A> 80000

In this example, the mini-debugger reads location 80000 until you terminate
the loop by pressing any key.

3.3.8 Looping Write/Read Sequence at a Memory Location (!m)
The write/read sequence (!m) command performs a write followed by a read at
the specified address.

The following example performs a continuous write of all f ’s followed by a read
memory at 100000, until you press any key:

SROM>!m
A> 100000
D> ffffffff

3–8 SROM Mini-Debugger Command Set

3.3.9 Deposit Data to a CPU Register (dc)
The deposit CPU register (dc) command deposits data to the specified CPU
register. Table 3–2 lists the supported CPU registers and the command option
names.

Table 3–2 Options for dc Command

Option Register Name

biu BIU_CTL

abox ABOX_CTL

palb PAL_base

bctl1 Bcache control

bcfg1 Bcache configuration

icsr ICCSR or ICSR

dcmd1 Dcache mode

ipl1 IPL

1Implemented for the Alpha 21164 microprocessor only.

When you issue the dc command, you are prompted for the register, the low
longword of data, and the high longword of data.

In the following example, the ABOX_CTL register is written with data that
enables machine checks and enables the data cache (Dcache):

SROM>dc
IPR> abox
LoD> 402
HiD>
*abx

3.3.10 Examine CPU Register (ec)
The examine CPU register (ec) command displays a list of CPU registers,
including the registers that can be written to (as specified in the dc command)
and the registers dumped by a machine check.

SROM Mini-Debugger Command Set 3–9

Note

The BIU_CTL, and ABOX_CTL are write-only registers. The examine
is performed on the corresponding shadow register. The shadow
register reflects what you entered.

For example:

V00000801 /*SROM version number
SROM>ec
AboxCtl 00000000.00001428
Icsr 00000000.00ff0000 /* Read format */
PalBase 00000000.00000000
ExcAddr 00000000.00000a76
DcStat 00000000.00000003
DcAddr 00000007.ffffffff
BiuCtl 0000004e.2001c665
BiuStat 00000000.00003040
BiuAddr 00000000.00318940
FillSyn 00000000.00000000
FillAdr 00000000.00318944

SROM>

Note

The ec command output will vary depending on the CPU. The the
Alpha 21164 microprocessor does not contain the BIU_CTL register.
Consequently, the ec command does not display biu_ctl, biu_stat, fil_
addr, HiLw_syn, or LoLw_syn.

The following example was generated using the mini-debugger on an Alpha
PCI 164-266/300:

3–10 SROM Mini-Debugger Command Set

SROM>ec
BCtl 00000000.00028051 /* Bcache control register (BC_CONTROL) */
BCfg 00000000.01e21772 /* Bcache configuration register (BC_CONFIG) */
Icsr 000000c2.4e000000 /* IBox control and status (ICSR) register.*/
PalB 00000000.00000000 /* Palcode Base (PAL_BASE) */
ExAd 00000000.0031dcb1 /* Exception Address reg. (EXC_ADDR)*/
ExMk 00000000.00000000 /* Exception Mask. (EXC_MASK) */
ExSm 00000000.00000000 /* Exception Summary (EXC_SUM). */
Ipl 00000000.0000001f /* Interrupt Priority Level (IPL) reg. */
Int 00000000.00000015 /* Interrupt ID (INTID) */
Isr 00000000.00200000 /* Interrupt summary (ISR). */
IcPE 00000000.00000000 /* Icache Parity Error Status (ICPERR_STAT) */
DcMd 00000000.00000001 /* Dcache Mode (DC_MODE) */
DcPE 00000000.00000000 /* Dcache Parity Error Status (DC_PERR_STAT) */
MmSt 00000000.00016051 /* Memory management fault status (MM_STAT) */
VaFm 00000002.0000f000 /* Virtual Address (VA_FORM) */
Va 00000000.03c00000 /* Faulting Virtual Address (VA) */

SROM>

3.3.11 Load an External Image to Memory (xm)
The external memory (xm) command loads an external image into memory. To
do this, you need a workstation, with a corresponding version of XLOAD.EXE
(VMS) or uload (ULTRIX), connected to the motherboard or your Alpha
microprocessor board.

3.3.12 Start Execution at an Address (st)
The start (st) command begins executing the downloaded image at the specified
address. If the address does not contain executable code, then the machine
hangs. You must recycle the power to start again.

Note

The Alpha Microprocessors SROM Mini-Debugger is stored in the
instruction cache (Icache). An st command causes the Icache to be
overwritten.

3.3.13 Begin Execution of Last Image Loaded (xb)
The xb command performs a necessary instruction cache flush before it
transfers control to the image loaded using the xm command, and it begins
executing the image.

SROM Mini-Debugger Command Set 3–11

3.3.14 Return to Calling Program (rt)
The rt command allows you to place calls to the mini-debugger code from the
SROM code and then return to the SROM code after performing a desired
operation in the mini-debugger. For example, you could print the contents of
all general-purpose registers at the time the mini-debugger was called.
To call the mini-debugger from your program, use the JSR or BSR instructions.
The return address is expected to be in R0, and R19 must contain the standard
signature (0xDECB0000) to prevent the SROM from executing the CPU
initialization code. PALtemp registers will also be modified and thus should
not be used in the SROM code (to avoid overwriting data).

3.3.15 Print Register Contents (pr)
The pr command displays the contents of the general-purpose CPU registers.

Note

This command may not be available in all standard SROMs supplied
with the Alpha motherboards due to a lack of space. You may want to
recompile the mini-debugger source files supplied in the EBSDK with
the compile switch "FULL_MDBG" defined to enable this command.

3.4 Onboard Machine Check Handler
The onboard machine check handler is useful in debugging certain memory
faults. You must set bit 1 of the ABOX_CTL register to enable machine checks.
When a machine check is encountered, as it might be in a read, the machine
check handler prints the following message followed by the SROM> prompt:

MCHK
exc_addr 00000000.00004021
biu_stat 00000000.00002240
fil_addr 00000000.00004028
HiLw_syn 00000000.00000000
LoLw_syn 00000000.00000000
dc_stat 00000000.00000330
dc_addr 00000007.ffffffff

SROM>

3–12 SROM Mini-Debugger Command Set

Index

A
ABOX_CTL

default setting, 2–5
ABOX_CTL register, 3–10
Alpha PCI 164-266/300

sample session, 2–9
Alpha PCI 64-275

sample session, 2–6
Audience, v

B
ba, 3–6
Base address, 3–6
Baud rate, 2–2, 2–5
BIU_CTL register, 3–10
Block read memory, 3–4
bm, 3–4

C
ca, 3–6
Clear address, 3–6
Command features, 3–1
Command summary, 3–2
Commands, 3–1
Communication ports

serial, 2–3
Connecting to a DEC 2000 Model 300 AXP

system, 2–3

Connecting to a DEC 3000 Model 500 AXP
system, 2–3

Connecting to a dumb terminal, 2–2
Connecting to a serial port, 2–4
Conventions of document, vi

D
dc, 3–9
DEC 2000 Model 300 AXP system, 2–3
DEC 3000 Model 500 AXP system, 2–3
Default conditions, 2–5
Defining Digital UNIX port names, 2–4
Deposit CPU register, 3–9
Deposit memory, 3–2
Digital UNIX, 2–3
Digital UNIX tip command, 2–4
dm, 3–2
Document

audience, v
conventions, vi
purpose, v

Document structure, v
Dumb terminal, 2–2

E
ec, 3–9
em, 3–2
Examine memory, 3–2
External memory, 3–11

Index–1

F
Features, 1–1

command language, 3–1
hardware debug, 2–2

Fill memory, 3–4
fm, 3–4

G
Getting started, 2–1

H
Hardware debug features, 2–2
Hardware required, 2–1
High-memory address mode flag, 3–6
hm, 3–6
Host system, 2–1

I
ICCSR

default setting, 2–5
Introduction, 1–1

L
ldl/p, 3–3
ldq/p, 3–3
lm, 3–6
Longword data mode, 3–3
Low-memory address mode flag, 3–6
lw, 3–3

M
!m, 3–8
Machine check handler, 3–12
MCHK, 3–12

O
Operating system, 2–1

P
pr, 3–12
Purpose of document, v

Q
Quadword data mode flag, 3–3
qw, 3–3

R
Read memory, 3–4, 3–8
Required hardware, 2–1
rm, 3–8
rt, 3–12
Running the mini-debugger, 2–5

S
sa, 3–6
Sample session

Alpha PCI 164-266/300, 2–9
Alpha PCI 64-275, 2–6

Serial connection—Digital UNIX, 2–3
Serial port, 2–2

connecting to, 2–4
Serial port setup, 2–2
Set address, 3–6
Shadow registers, 3–10
SROM serial port, 2–2
st, 3–11
Start, 3–11
Starting the mini-debugger, 2–5
stl/p, 3–3
stq/p, 3–3
Structure of document, v
Synchronization, 2–5

Index–2

T
Table of commands, 3–2
Terminal

connecting to, 2–2
tip

Digital UNIX command, 2–4

U
U, 2–5
UNIX, 2–3
UNIX tip command, 2–4
User commands, 3–1

User interface, 3–1

W
Windows NT, 2–3
wm, 3–8
Write memory, 3–4, 3–8
Write-only registers, 3–10
Write/read sequence, 3–8

X
xb, 3–11
xm, 3–11

Index–3

