
Alpha AXP Firmware Porting Guide
Revision/Update Information: Version 1.0

Order Number: EK-AXFRM-PG. A01

November, 1994

Digital Equipment Corporation makes no representations that the use of its products in
the manner described in this publication will not infringe on existing or future patent
rights, nor do the descriptions contained in this publication imply the granting of
licenses to make, use, or sell equipment or software in accordance with the description.
Reproduction or duplication of this courseware in any form, in whole or in part, is
prohibited without the prior written permission of Digital Equipment Corporation.

Possession, use, or copying of the software described in this publication is authorized
only pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994. All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP,
Bookreader, DEC, DECchip, DEC OSF/1, DECwindows, Digital, OpenVMS, VAX, VMS,
VMScluster, the DIGITAL logo and the AXP mark.

MIPS is a trademark of MIPS Computer Systems, Inc.

NCR is a registered trademark of the NCR Corporation.

NetWare is a registered trademark of Novell, Inc.

OSF/1 is a registered trademark of the Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Ltd.

Windows NT is a registered trademark of the Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective
holders.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xiii

1 Porting Strategy

Overview . 1–3
Introduction . 1–3

Overall Process of Porting . 1–4
Overall Process . 1–4

Porting Scenarios . 1–5
Overview . 1–5
Hardware Under Development . 1–5
Hardware Functional . 1–5

Porting Strategy . 1–6
Reference Platform . 1–6
Cloning Files . 1–6
Building Multiple Console Images . 1–6
Summary of Porting Strategy . 1–7
Applying the Strategy . 1–7

Process of Porting . 1–9
Introduction . 1–9

Porting Process . 1–10
Process Steps . 1–10

Requirements and the Development Environment 1–12
Requirements . 1–12
Build Environment . 1–12
Code Management System . 1–12

Porting Factors . 1–13
Factors Affecting Effort . 1–13
Similar Platform . 1–13
Different DECchip . 1–13
Different Platform . 1–13
Operating System . 1–13
Using a Reference . 1–14

2 Console Overview

Overview . 2–3
Introduction . 2–3

Console Image . 2–4
Code Sections . 2–4
Loading the Image . 2–4

Console Interfaces . 2–6
Introduction . 2–6
Hardware Interface . 2–6

iii

Driver Model . 2–7
User Interface . 2–7
Configuring Commands . 2–8
Operating System Interface . 2–8

Functionality . 2–9
Introduction . 2–9

Console Functionality . 2–10
Introduction . 2–10
PALcode Functions . 2–10
Console Functionality and Porting . 2–10

Console Initialization . 2–11
Introduction . 2–11
Powerup Process . 2–11

3 Cloning, Building and Testing the Reference Image

Overview . 3–3
Introduction . 3–3
Reference . 3–3

Overview of Cloning Files . 3–4
Introduction . 3–4
Model Port . 3–4
DECchip 21066 . 3–4

Cloning and Modifying the Reference Source Code . 3–5
Introduction . 3–5

Development Environment . 3–6
Overview . 3–6
Major Components . 3–6
Save Sets . 3–7

Directory Tree Structure . 3–8
Working Directory . 3–8
Configuration Directories . 3–9
Platform Base . 3–10
Configurations . 3–10
Configuration Build Files . 3–11
Configuration Subdirectories . 3–11
Creating the Environment . 3–11

Engineering Environment . 3–13
Engineering VMScluster . 3–13
System Load . 3–13

Cloning Files . 3–14
Introduction . 3–14
Categories of Files to Clone . 3–14

Cloning and Modifying Platform-Specific Files . 3–15
Introduction . 3–15
Source Files to be Cloned . 3–15
Cloned Source Files Example . 3–15

Cloning and Modifying Code Fragments . 3–16
Overview . 3–16
Changing Conditional Statements . 3–16
List of Files . 3–17

Cloning Build Files . 3–18
Introduction . 3–18

iv

Build Files . 3–18
Modifying Build Files . 3–19

Configuration Build File . 3–19
Modifying the Configuration . 3–19

Building the Reference Image . 3–21
Introduction . 3–21

Building the Reference Console . 3–22
Three Phases . 3–22
Build Steps . 3–22
Configuration Log Files . 3–25

Testing the Reference Console . 3–27
Introduction . 3–27

Using the Console Interface . 3–28
Introduction . 3–28
Commands Description . 3–28
Introduction to Console Commands . 3–28
Console Prompt . 3–28
Console Shell . 3–28
Commands . 3–28
Syntax . 3–30

Running Diagnostics . 3–31
Scripts . 3–31
Generic Diagnostic Scripts . 3–31

Diagnostic Session . 3–32
Sample User Session . 3–32

Diagnostic Messages . 3–35
Types . 3–35
Error Messages . 3–35

Bootstrapping . 3–37
Introduction . 3–37
Bootstrap Procedure . 3–37
State Assumed by the Operating System . 3–37
Conditions for Bootstrapping . 3–37
Steps for Bootstrapping . 3–38
Boot Environment Variables . 3–38
Boot Environment Variables After Loading . 3–39
Boot Command Syntax . 3–39

Booting the OpenVMS Operating System . 3–40
Overview . 3–40
BOOT_OSFLAGS Variable . 3–40
Other Boot Options . 3–40

Recovering from Errors During System Booting . 3–41
Introduction . 3–41
Bootstrap Flags Description . 3–41
Bootstrap Flags List . 3–41
Bootstrap Flags Values . 3–41

Booting from the Ethernet . 3–42
Introduction . 3–42
Two Protocols Supported . 3–42
MOP Booting . 3–42
MOP Network "Listening" . 3–42
BOOTP Booting . 3–42
Environment Variables . 3–43

v

Ethernet Boot Example . 3–43
Booting DEC OSF/1 . 3–44

Boot Environment Variables . 3–44
Boot Flag Definitions . 3–44

4 Developing a Minimal Image for the Target

Overview . 4–3
Introduction . 4–3

Overview of Modifications Needed . 4–4
Memory Modification . 4–4
Chip-Dependent Modification . 4–4
Kernel Modification . 4–5

Defining Memory . 4–7
Introduction . 4–7

Defining the Memory Configuration . 4–8
Platform Memory Configuration . 4–8
SROM Memory Code . 4–8

Modifying PALcode . 4–11
Introduction . 4–11

PALcode Modification . 4–12
Introduction . 4–12
PALcode Functionality . 4–12
PALcode Modification Steps . 4–12

PALcode Changes . 4–14
Overview . 4–14
Supporting Interrupts . 4–14
Selecting Different Console . 4–14

Building PALcode . 4–15
MMS Description Files . 4–15
Platform MMS File . 4–15
Image File Description . 4–15
MMS Build Files . 4–16

PALcode MMS Description File . 4–17
pal_descrip.mms File . 4–17
pal_descrip.mms Example . 4–17

Modifying the Kernel Files . 4–19
Introduction . 4–19

Adding Console Terminal Support . 4–20
Introduction . 4–20
Modified Macros . 4–20
Console Terminal Address . 4–20
Platform Utility File Example . 4–21

Time of Year (TOY) . 4–23
TOY Files . 4–23
TOY Example . 4–23

NVRAM - Environmental Variables . 4–24
Overview . 4–24
Modifying NVRAM Files . 4–24
Address Changes Example . 4–25
Changing the NVRAM Driver . 4–26

Environmental Variable Debug . 4–27
Turning Off NVRAM Drivers . 4–27

vi

Tracing the Transition from PALcode to Kernel . 4–28
Overview . 4–28

Showing Progress During Initialization . 4–29
Terminal Echoing . 4–29
jputc Routine . 4–29
jputc Example . 4–29
printf Statements . 4–30

Modifying the Driver Files . 4–31
Introduction . 4–31

Configuring the Bus . 4–32
Defining Addresses . 4–32
platform_io.h Example . 4–32

Bus Windows for Device Controllers . 4–34
Bus Windows Description . 4–34

Sequencing Driver Startup . 4–35
Introduction . 4–35
Driver Startup Process . 4–35
Specifying Driver Startup . 4–35
Driver Startup Example . 4–35

Disabling Hardware Drivers from Loading . 4–36
Robust Mode . 4–36
Loading and Unloading Drivers . 4–36
Powerup Process . 4–36

Tracing Driver Initialization . 4–37
Using printf to Display Drivers . 4–37

Using Polled Mode for Drivers . 4–38
Polling Overview . 4–38
Setting Polled Mode . 4–38
Conditional Directive . 4–38
Hard Coding the Interrupt Mode . 4–39

Modifying the Build Files . 4–41
Introduction . 4–41

Modifying the Configuration Build File . 4–42
Adding Drivers, Files and Options . 4–42
Configuration Build File Example . 4–42
Default Options . 4–42
Hardware and Architecture Name . 4–42
Value Statements . 4–43
Option Statements . 4–43
Removing and Adding Kernel Files . 4–43
Groups . 4–43
Group Driver . 4–44

Default Build Options and Values . 4–45
options.bld File . 4–45
Options and Values . 4–45
Build Options Example . 4–45
Modifying for Nightly Builds . 4–47
Modifying build.com . 4–47

Debugging . 4–49
Introduction . 4–49

Using XDELTA . 4–50
XDELTA Overview . 4–50
Building with XDELTA . 4–50

vii

XDELTA Example . 4–50
Default Options . 4–50
Turning Off XDELTA . 4–51
Invoking XDELTA . 4–51
Invoking from OpenVMS . 4–51

XDELTA Commands . 4–52
Commands . 4–52

Extended XDELTA . 4–57
Overview . 4–57
Commands . 4–57
Debug Session Example . 4–58
Building with Extended XDELTA . 4–59
Command Summary . 4–60

5 Debugging the Hardware

Overview . 5–3
Introduction . 5–3

Hardware Debugging Techniques . 5–4
Overview . 5–4

Serial ROM . 5–5
Introduction . 5–5

Serial ROM (SROM) Functionality . 5–6
Introduction to Serial ROM . 5–6
Functions of Serial ROM Code . 5–6
Loading into Bcache . 5–6

SROM Mini-Console . 5–7
Introduction . 5–7

SROM Mini-Console . 5–8
Overview . 5–8
Mini-Console . 5–8
Features . 5–8
Hardware Required . 5–8

Setting Up the SROM Serial Port Connection . 5–9
Using a Workstation for the Connection . 5–9
Connecting the Workstation Procedure . 5–9
Starting and Running the Mini-Console . 5–10

SROM Mini-Console Command Set . 5–11
Command and User Interface Features . 5–11
Command Summary . 5–12

6 Adding Functionality

Overview . 6–3
Introduction . 6–3
After Adding Functionality . 6–3

Adding Functionality . 6–5
Introduction . 6–5

Selecting the Console Device . 6–6
VGA or Character Cell . 6–6
Forcing Output to the Serial ASCII Port . 6–6
Terminal/VGA Driver Sequence . 6–6
Console Selection Algorithm . 6–7

viii

Adding Drivers to the Build Files . 6–8
Adding Drivers Description . 6–8
Format . 6–8

Developing and Adding Scripts . 6–9
Encapsulating Commands . 6–9
Adding Scripts . 6–9
Invoking Scripts . 6–9
Inodes . 6–9

Adding ARC Support . 6–10
Adding ARC Support Description . 6–10

Adding and Modifying Console Commands . 6–11
Introduction . 6–11
Process Overview . 6–11
Existing Command Files . 6–11

Modifying for Bootstrapping . 6–12
Introduction . 6–12
Modifications . 6–12

Programming Diagnostics . 6–13
Introduction . 6–13
Diagnostic Service Routines . 6–13

Diagnostic Models . 6–14
Introduction . 6–14
Test-Directed Diagnostics . 6–14
Unstructured Diagnostics . 6–14

Describing Data Structures . 6–15
Introduction . 6–15
Process Control Block . 6–15

Diagnostic Restrictions . 6–16
Restrictions Description . 6–16

Related Console Services . 6–17
Introduction . 6–17
Routines . 6–17

7 Appendices: Helpful Commands, Tips and Routines

Appendix A: Logical Search String Definitions . 7–2
Building Environment Logicals . 7–2
CP$SRC Generic . 7–2
CP$SRC Specified Configuration . 7–3

Appendix B: Getting Started with CMS . 7–7
Overview . 7–7
Hierarchy . 7–7
Creating CMS Libraries . 7–7
Setting the Library . 7–7
Using CMS with DECwindows . 7–7
CMS Class Definition . 7–8
Show Classes . 7–8
CMS Groups . 7–9
CMS Elements . 7–9

Appendix C: Complete List of Modified Files . 7–10
Overview . 7–10
Files: CMS Generations . 7–11

Appendix D: Initialization, Kernel, and Diagnostic Routines 7–12
Introduction . 7–12

ix

Sequence of Kernel Modules . 7–12
System Initialization Routines and Data Structures 7–12
entry.c Module . 7–13
kernel.c Routines . 7–14
kernel_ alpha.mar Routines . 7–15
kernel_def.sdl Module . 7–15
kernel_vax.mar . 7–16
process.c Routines . 7–16
powerup.c Routines . 7–17
Diagnostic Services Routines . 7–18

Appendix E: SROM Mini-Console Command Summary 7–19
Commands . 7–19

Appendix F: XDELTA Commands . 7–20
Appendix G: Basic Console Commands . 7–22

Syntax . 7–22
Appendix H: Diagnostic Environment Variables . 7–23

Environment Variables . 7–23

Glossary
Overview . Glossary–1

Index

Examples

3–1 Modifying Preprocessor Directives . 3–16
3–2 Modifying a Cloned Build File . 3–19
3–3 Boot Command . 3–39
3–4 Booting from the Ethernet . 3–43
3–5 Setting the Boot Variables for DEC OSF/1 . 3–44
4–1 SROM Memory Configuration Registers . 4–9
4–2 pal_descrip.mms for a Sample Platform . 4–17
4–3 Defining the Address in the Platform Utility File 4–21
4–4 TOY Base Address - combo_def.h . 4–23
4–5 The nvram_def.h File . 4–25
4–6 The esc_nvram_driver.c File . 4–26
4–7 Tracing kernel_alpha.mar . 4–28
4–8 Tracing kernel.c with jputc . 4–29
4–9 Tracing kernel.c with printf . 4–30
4–10 PCI and EISA I/O Address . 4–33
4–11 Defining PCI Bus Windows . 4–34
4–12 Setting Robust Mode in powerup_platform.c . 4–36
4–13 Tracing Driver Startup in filesys.c . 4–37
4–14 Conditionally Defining Polled Mode in a Driver 4–38
4–15 Defining Polled Mode in a Driver Using Hard Coding 4–39
4–16 The options.bld File . 4–45
4–17 Modifying build.com . 4–47
4–18 Including XDELTA in the Build File . 4–50
4–19 Excluding XDELTA from the Configuration Build File 4–51

x

4–20 Invoking XDELTA at the Console Prompt . 4–51
4–21 Invoking XDELTA at the User Level . 4–51
4–22 Using Extended XDELTA to Debug . 4–58
4–23 Extended XDELTA Command Summary . 4–60
5–1 Connecting the Workstation . 5–9
7–1 CMS SHOW CLASS Output . 7–8
7–2 Common Console Code Groups . 7–9
7–3 Ported Files . 7–10
7–4 Build Files . 7–11
7–5 Kernel Source Files . 7–11
7–6 Drivers . 7–11

Figures

1–1 Porting Process . 1–4
2–1 Console Image . 2–5
2–2 Alpha AXP Firmware Interface . 2–6
2–3 Class, Port, and Bus Driver Model . 2–7
3–1 Major Components of the Development Environment 3–6
3–2 Directory Tree . 3–8
3–3 Directory Tree, Configurations . 3–9
7–1 CP$SRC Generic Environment . 7–2
7–2 CP$SRC for Specified Configuration Environment 7–4
7–3 XDELTA Command Reference . 7–21

Tables

1 Course Conventions . xvi
1–1 Porting Procedure . 1–10
3–1 cp_common_login.com Parameters . 3–12
3–2 Cloned Platform-Specific Source Files from Another PC Platform 3–15
3–3 Cloned Build Files from Another PC Platform 3–18
3–4 Building the Alpha AXP Firmware . 3–22
3–5 Console Commands . 3–29
3–6 Syntax of Common Console Commands . 3–30
3–7 Diagnostic Command Scripts . 3–31
3–8 Environment Variables . 3–38
3–9 OpenVMS Boot Options . 3–40
3–10 Other OpenVMS Boot Options . 3–40
3–11 Bootstrap Flags . 3–41
3–12 DEC OSF/1 Boot Flag Definitions . 3–44
4–1 Platform-Dependent Memory Functionality . 4–4
4–2 Platform-Dependent Chip Functionality . 4–4
4–3 Platform-Dependent Kernel Functionality . 4–5
4–4 PALcode Files for a Sample Platform . 4–15
4–5 XDELTA Functions and Commands . 4–52
4–6 Extended XDELTA Commands . 4–57

xi

5–1 Command Summary . 5–12
6–1 Driver Keywords within Build File . 6–8
6–2 Command Files . 6–11
6–3 Diagnostic Service Routines . 6–13
6–4 Diagnostic Programmer I/O Routines . 6–17
6–5 Environment Variable Manipulation . 6–18
6–6 Dynamic Memory Allocation . 6–18
6–7 Condition Handling . 6–18
6–8 Timer Services . 6–19
6–9 Semaphores . 6–19
6–10 Multiprocessor . 6–19
6–11 Ctrl/C /kill Checking . 6–19
7–1 Building Environment Logicals . 7–5
7–2 Creating a CMS Library . 7–7
7–3 Module entry.c Routines . 7–13
7–4 kernel.c Routines . 7–14
7–5 kernel_alpha.mar Routines . 7–15
7–6 kernel_def.sdl Data Structures . 7–15
7–7 kernel_vax.mar Routines . 7–16
7–8 process.c Routines . 7–16
7–9 powerup.c Routines . 7–17
7–10 Diagnostic Service Routines . 7–18
7–11 Command Summary . 7–19
7–12 Syntax of Common Console Commands . 7–22
7–13 Environment Variables . 7–23

xii

Preface

xiii

About This Document

About This Document

Document
Description

This document provides information on how to port the Common
Console. This document is designed to be used sequentially for
porting and as reference.

Intended
Audience

This document is written for system designers who are creating
the firmware for a new hardware platform using the Common
Console.

Goals of the
Document

Specifically, this document provides information to help the
system designer:

• Identify a porting strategy

• Clone, build and test the console on a reference platform

• Debug the hardware on the new target platform

• Develop a minimal image for the new target platform

• Add basic functionality to the new console

Nongoals This document does not cover the following:

• The architecture of the Common Console

• Instruction in C programming

Document
Organization

This document is presented in a task-oriented format. Appendices
are included to provide reference information, such as a listing of
commands for the Common Console and the SROM mini-console.

This document is divided into chapter, each covering a related
group of topics.

Each chapter consists of:

• An Overview to the subject matter of the chapter

• The text of the chapter, which includes outlines, text, tables,
figures and examples

• A Summary that highlights the main points presented in the
chapter

Chapter
Descriptions

Each chapter is as follows:

• Porting Strategy — Introduces the porting process.

• Console Overview — Introduces the interfaces and
functionality of the Common Console.

• Cloning, Building and Testing the Reference Image –
Provides information on how to clone, modify, build and test
the source code of a console that runs on an existing platform.
This platform is called the ‘‘reference’’ platform.

xiv

About This Document

• Developing a Minimal Image for the Target — Provides
information on how to get to the first console prompt by
defining memory, modifying PALcode, modifying the kernel
and driver files and implementing additional debugging
procedures.

• Debugging the Hardware — Provides an overview of
debugging the new hardware platform by setting up the Serial
ROM (SROM) serial port connection and using the Serial ROM
(SROM) mini-console.

• Adding Basic Functionality — Provides information on
functionality that can be incrementally added to the minimal
image to produce a fully functional console, including adding
console commands, device drivers and scripts.

• Appendices — Provides reference information on logical
search string definitions, the Code Management System
(CMS), files modified during porting, kernel modules and
routines, the SROM mini-console, XDELTA and Common
Console commands.

Resources For more information about topics discussed in this document, see
the following:

• DECchip 21064 Microprocessor Hardware Reference Manual

• Alpha AXP System Reference Manual V5.0

• Advanced RISC Computing Specification Version 1.2

• Device Driver Interface Guide for the Alpha AXP Firmware

• Alpha Firmware Design Document Version 0.10

• Software Engineering Manual, 1988, A-DG-ELEN571-00-0

• Specifications, such as, PCI, EISA, SCSI, X, and DSSI bus

For information on a specific chip, see the specification for that
chip.

xv

Document Conventions

Document Conventions

Table 1 describes the conventions used throughout this
document.

Table 1 Course Conventions

Convention Meaning

Ctrl/x Press and hold the key labeled CTRL while you
press another key (X). Many control keys have
special meanings.

UPPERCASE Commands used with the OpenVMS command
interpreter appear in uppercase characters,
preceded by a dollar sign prompt ($) and
indicate words you type exactly as they appear.
For example, you would type the following
commands as they appear:

$ DIRECTORY
$ TYPE LOGIN.COM

lowercase Lowercase characters represent commands
typed to the Alpha AXP Firmware command
interface. The commands are preceded by a
triple greater-than prompt (>>>) and are words
you type exactly as they appear. An example
follows.

>>>ps

Mixed case Mixed case characters represent elements that
you must replace according to the description in
the text, and typically appear with hyphenation
or an underscore. In the following example, you
must supply a file name in place of "File-spec"
in the following example:

$ TYPE File-spec

Note

Whenever possible, commands, file names, logicals, and
other system data, appear in a different font within a code
example to distinguish them from their text description.

xvi

Document Conventions

Ellipsis
(. . .)

Horizontal ellipses indicate that you can enter
additional parameters, values, or information.
For example, you can enter any number of file
specifications in the following example:

$ TYPE file-spec, . . .

Vertical series of periods or ellipses mean
that not all of the data that the system would
display in response to the particular command
is shown, or that not all the data a user would
enter is shown.

$ TYPE MYFILE.DAT
.
.
.

$

Square
Brackets
([])

Square brackets indicate that the enclosed
item is optional. (Square brackets are not
optional, however, in the syntax of some file
specifications.) For example, the logical name
is optional in the following command:

$ MOUNT/FOREIGN $TAPE1

Braces indicate that you must select from the
included items.

Quotation
Marks
and
Apostrophes

The term quotation marks refers to double
quotation marks ("). The term apostrophe
refers to a single quotation mark (’).

xvii

1
Porting Strategy

Porting Strategy 1–1

Overview

Introduction This chapter describes the strategy, the process, requirements and
various factors that influence porting the Alpha AXP Firmware to
an Alpha AXP hardware platform.

Porting Strategy 1–3

Overall Process of Porting

Overall Process of Porting

Overall
Process

Figure 1–1 shows the overall process of porting the Alpha AXP
Firmware. The details of each step are discussed sequentially in
the following chapters.

The hardware requirements of the platform are the input to
the analysis and design. Note that once the console is built and
tested, console development is an iterative process of adding
layers of functionality, rebuilding, debugging, and then replacing
code back into the library source pool.

Figure 1–1 Porting Process

Clone, Build,

Debug Hardware

Modify/Reuse

Add Functionality

Target Console

Hardware
Requirements

Build/Rebuild
(Minimal)

and Software

Code for Target

Replace Code

into Library

ZKO−000−002343−10−RGS

Requirements
Analysis and

Design

and Test
Reference Platform

Base Level

Update Requirements
and Design

Specifications

Develop

Release Console

1–4 Porting Strategy

Porting Scenarios

Porting Scenarios

Overview The current state of the hardware platform that the Alpha AXP
Firmware is being ported to influences the porting strategy used.

The hardware platform may be in one of the following states:

• Currently under hardware development

• Designed, tested and already functional

Hardware
Under
Development

Hardware is under development when it is a new hardware
implementation that has not previously run an operational
console. The time needed to port the Alpha AXP Firmware
to hardware under development is significant since both the
hardware and software must be tested because neither can be
assumed to be working properly.

The strategy for porting to hardware under development consists
of an iterative process. This process starts with developing a
minimal console image, then adding features and functionality
incrementally. An example of this follows:

• Ensure the basic hardware is working by using the SROM
mini-console to echo characters on the serial terminal and
access memory and I/O controllers.

• Build a skeletal image with minimal functionality by disabling
the time-of-year (TOY) clock, hardware interrupts, machine
checks, and drivers.

• Add functionality incrementally. For example, when adding
drivers, add one driver at a time. As each driver is added,
initialize the driver first in polled mode and, once it is
functional, switch the driver to interrupt mode.

Hardware
Functional

Hardware is functional when the basic system, bus, controllers,
and devices work properly. The target platform to be ported may
be hardware configuration or implementation variation of the
basic hardware design that is already operational.

Since a base level console image has already been built and
tested for the existing system implementation, the developer
can focus on making the changes necessary to support the
new requirements, for example, adding or modifying drivers,
commands, and test scripts.

Porting Strategy 1–5

Porting Strategy

Porting Strategy

Reference
Platform

The recommended porting strategy starts with the files used
to create the Alpha AXP Firmware for an existing system: the
reference platform. The reference platform and image is assumed
to be a known working system.

When selecting the reference platform, first identify the
requirements of the target platform. For example, if the target
platform is a large system, it is important for the reference
platform to support a comprehensive set of diagnostics. In
general, the reference platform should be selected for a hardware
implementation that is as similar as possible to the target
platform, using an image that has the required commands and
features. This is described later in the Porting Factors section of
this chapter.

Cloning Files Once a reference model is selected, files and code fragments are
cloned to create an image similar to the reference platform.

The cloned image can be tested using the reference platform,
and then modified as a series of progressive stages for the target
platform.

Building
Multiple
Console
Images

One factor that will influence your porting strategy is the method
you choose to configure the console image.

Currently, there are two console image configuration strategies:

• Create a minimal console image that is stored in the ROM,
placing additional functionality in images that can be
down-line loaded as appropriate.

For example, an image can be configured with full
diagnostics, appended with a MOP header, allowing it to
be loaded by field personnel.

This same image can have a complete set of console
commands that are not available with the ROM image.

• Create a full console image that is stored in the ROM and use
overlays for platform-specific functionality.

1–6 Porting Strategy

Porting Strategy

Summary
of Porting
Strategy

The following functions summarize the recommended porting
strategy:

• Build a minimal cloned image, lacking drivers, features, and
functionality.

• Make minimal modifications to the PALcode and console
kernel to allow debugging.

• Add features and functionality, such as drivers, commands,
diagnostics, and scripts.

Applying the
Strategy

The porting strategy is implemented by performing a specific set
of steps, as discussed in the following section.

Porting Strategy 1–7

Process of Porting

Introduction This section provides an overview of the steps to be followed when
porting the Alpha AXP Firmware to a new platform.

Porting Strategy 1–9

Porting Process

Porting Process

Process Steps The process of porting the Alpha AXP Firmware from a reference
platform to a target platform is shown in the table.

Table 1–1 Porting Procedure

Step Action Description

1. Decide on a reference
platform from which to
clone the PALcode and
console software.

Select a platform with a similar DECchip implementation and bus
structure.

2. Clone a new target console
image from the reference
platform.

Fetch existing platform-specific source files for the reference
platform from the CMS library or CP$REFdirectory.

Rename the reference platform-specific files to the new target
platform name.

Do not modify the platform-specific code within these directives
until after the image is successfully built and tested.

3. Build the new console image
for the reference platform.

Refer to Chapter 3.

4. Test the new image on the
reference platform.

The new target image should run on the reference platform. Testing
should include:

Network bootstrapping

Running diagnostics with command scripts (see the CMS Library:
Group TEST_CMD, and the .CMD files)

Booting the operating system

5. Modify the code for the
target platform.

Make minimal changes to PALcode and console kernel that will let
the image execute on the target platform.

Changes should include debug tracing of code by echoing characters
to show progression.

6. Build a small console image
by removing unnecessary
files from the configuration
build file.

Eliminate drivers that are unnecessary initially: Ethernet
er_driver.c, ew_drvier.c , Floppy ide_driver.c , SCSI
n810.c, pke_driver.c , and so on.

Eliminate building (compiling/linking) with XDELTA debugger.

Reducing the memory footprint will expedite X-load time and may
allow console execution from the backup cache.

7. Debug the hardware. Debugging the hardware should include a thorough visual
inspection, power and ground voltage checks, clock signal checks,
and use of the SROM mini-console to test deposit/examine functions
to memory, I/O control registers, checking bus data paths.

The SROM mini-console image is placed into an SROM using the
SROM$CONSOLE.MARsource file. The DECchip provides serial port
access using the same signal lines as to load the SROM, once the
SROM code is loaded. A level shifter is necessary to convert to EIA
voltage levels.

(continued on next page)

1–10 Porting Strategy

Porting Process

Table 1–1 (Cont.) Porting Procedure

Step Action Description

8. Build the image to compile
drivers to use the polling
method to handle device
interrupts.

This is used initially as each driver is added. After basic tests
are performed with the driver, hardware interrupts are enabled.
Hardware interrupts depend on PALcode and associated interrupt
handling routines.

9. Get the load path working
first.

Working with the minimal image, first establish a floppy load path
and then establish a network (NI) load path.

If no I/O subsystem exists, the SROM mini-console can be used to
downline load the console image using the SROM serial port.

The console can also be configured with the SROM_UART.MARdriver
for communication using the SROM serial port.

10. Add features and
functionality such as
commands, test scripts,
and bus or port drivers.

Run diagnostics with command scripts and create new test scripts
to test any new functions and drivers.

Porting Strategy 1–11

Requirements and the Development Environment

Requirements and the Development Environment

Requirements To effectively port the Alpha AXP Firmware to the target
platform, a developer should first have a working knowledge of
the following:

• Build environment

Directory structure (build tree)

Logicals used during the automated build process and
during development

Files used to create the target image, as defined in the
Configuration _files.bld configuration build file

• Code base

Code Management System (CMS) and its library of
routines are optionally used for internal development

A developer should become familiar with the build process and its
environment according to the stated strategy: a working model
of the Alpha AXP Firmware is built first, then modified for the
platform.

General knowledge of the CMS user interface is required to FETCH
a particular generation of source code from the CMS library.
Developers can also use the CP$REFdirectory to locate source files.

Build
Environment

Procedures used in the build environment will establish a working
directory structure (build tree), assigning logicals and build
definitions. Logicals can locate the platform-specific build files
that need to be modified. The CP$REFdirectory contains a copy of
the latest replaced elements in the CMS library.

Code
Management
System

CMS is a software management and maintenance tool that tracks
changes and acts as a repository. A developer can access source
routines, (called elements), make changes, create elements, group
them, insert specific generations into classes, and replace them
back into the software library.

Reference

For more information, refer to:

• Chapter 3, Cloning, Building and Testing the Reference
Image

• Appendix B: Getting Started with CMS

1–12 Porting Strategy

Porting Factors

Porting Factors

Factors
Affecting Effort

A number of factors can affect the extent of the effort needed to
port the Alpha AXP Firmware to a new platform. The following
list weights these factors in order of increasing effort:

• Similar hardware platform using the same DECchip
implementation

• Similar platform using a different DECchip implementation

• Different platform

Similar
Platform

A port to a similar hardware platform requires less effort because
there are fewer modifications to make to those files. For example,
if the new target platform has a similar I/O bus structure, the
existing drivers can be used, possibly some without modification.

Different
DECchip

Porting to a system that uses a different DECchip may require
additional effort. The Alpha AXP architecture is flexible enough
that different implementations of the DECchip may have
additional internal processor registers, additional circuitry,
such as secondary cache, or I/O control. There are five PALcode
instructions that are hardware implementation specific that may
change as well.

The DECchip 21066 has different internal processor registers
(IPRs) used for integrated memory/backup cache and I/O
controllers. PALcode must be modified since it writes and
reads these IPRs. Serial ROM (SROM) code must be modified
to initialize these registers. Other differences in the various
DECchip implementations can affect PALcode, for example, the
number of interrupts. However, a number of platforms use these
various DECchips and have ported the Alpha AXP Firmware.

Different
Platform

Porting to a different platform would involve modifications to
SROM, PALcode, and other source code routines, as well as
creating new drivers and new routines for the PALcode and
SROM. The SROM and PALcode must have knowledge of the
system buses, memory, cache, and I/O, to properly initialize and
test those buses and system.

Operating
System

The operating system and the console callback routines are
another consideration when porting. The Alpha AXP Firmware
bootstraps and supports the following operating systems:

• OpenVMS

• DEC OSF/1

Porting Strategy 1–13

Porting Factors

The Alpha AXP Firmware may provide testing and setting of
variables to allow loading of an Advanced RISC Computing (ARC)
compliant console, upon the next reset.

Using a
Reference

The amount of time to implement the port can be reduced by
using an existing platform as a reference. Locating existing code
routines and making the necessary modifications, minimizes the
amount of code that needs to be created, and is efficient code
reuse.

The model port discussed throughout this book begins with a
reference platform image that is built and tested. Modifications
are kept to a minimum at first to minimize debugging. Drivers
and much of the console functionality are disabled, being added
later in layers.

1–14 Porting Strategy

2
Console Overview

Console Overview 2–1

Overview

Introduction This chapter discusses the console image, its interfaces,
functionality, and how it initializes the system.

Console Overview 2–3

Console Image

Console Image

Code Sections The Alpha AXP Firmware consists of three separate pieces of
code:

• Decompression program

• PALcode

• Console kernel

The image is a combination of compressed PALcode and console
kernel, and the decompression program, which is uncompressed.

Loading the
Image

Figure 2–1 shows that the SROM loads the combined compressed
image and decompression program starting at address 800016.
Control is then passed to the decompression routine, which
relocates the entire image to upper memory, (approximately
20000016). The PALcode and kernel are decompressed and
relocated back to lower memory, beginning at address 800016.
The console kernel is typically linked with a starting address of
2400016.

2–4 Console Overview

Console Image

Figure 2–1 Console Image

ZKO−000−002343−05−RGS

8000

PALcode

Console Kernel

Compressed

and

Decompression Routine

Relocated
PALcode and

Console Kernel
Image

Uncompressed

8000

24000

PALcode

Console Kernel

Uncompressed

Compressed Image

After Decompression

200000

Console Overview 2–5

Console Interfaces

Console Interfaces

Introduction The Alpha AXP Firmware provides a uniform interface to
different operating systems, hardware platforms and console
terminal devices.

Figure 2–2 Alpha AXP Firmware Interface

ZKO−000−002343−09−RGS

Class Drivers

I/O Bus and
Port Drivers

OpenVMS PALcode

HWRPB

DEC OSF/1 PALcode

Clbks Interface

Alpha AXP
Architectural

Command Line
Interface

Alpha
AXP
Firmware

Kernel

Utilities

Diagnostics

Commands Scripts

Exercisers

CPU, Cache,
and Memory

Initialization

SROM Initialization

System Hardware Interface

Operating System
Interface

Console User
Interface

Hardware
Interface

The Alpha AXP Firmware provides an interface to the system
hardware. The SROM code is executed initially at powerup
(when the system is turned on) and when reset. The SROM is
responsible for initializing and testing enough of the system to
load and start the console image. The console provides a set of
drivers which are used by the console, diagnostics, bootstrap, and
operating system callbacks to access various devices.

2–6 Console Overview

Console Interfaces

Driver Model The driver model supported is based on the class, port, and bus
model. This separation of driver code simplifies maintenance, and
the addition of new device support.

Figure 2–3 Class, Port, and Bus Driver Model

ZKO−000−002343−08−RGS

ClassClass

PortPortPortPortPort PortPort

Class

Bus

A class driver functionally interfaces with an application’s request
for input/output, and with the port driver to fulfill that request
with the hardware. The bus driver has knowledge of the entire
system bus and path to uniquely identify the physical location of
a device for data access.

There is one class driver per device class, such as the SCSI class
driver, and the network protocol class driver. However, there may
be one or more port drivers and associated hardware controllers
for that device, for example, the NCR53C810 and Adaptec
1740 SCSI controllers, and the DECchip 21040 Ethernet LAN
controller for the PCI. There is only one bus driver per system.

Reference

For more information about drivers, refer to the Device
Driver Interface Guide for the Alpha AXP Firmware.

User Interface The second external interface is the console user interface. Users,
operators, and customer service representatives communicate
with the system through a system console device and the Alpha
AXP Firmware.

The console presents the user with a flexible command-line
interface (CLI). The CLI is a UNIX style shell of commands,
operators, and a scripting facility that can be fully configured. It
provides the ability to:

• Initialize and test the system

• Examine and alter system state

• Boot the operating system

Console Overview 2–7

Console Interfaces

Configuring
Commands

The console can be configured to provide a rich set of commands,
or a less extensive set when the image is built. This depends
on the preference of the developer and system requirements:
functionality and image size.

Reference

Refer to Appendix G: Basic Console Commands for a list of
the essential commands.

For debugging purposes, the console can be configured with the
SROM_UART.MARdriver for terminal communication using the SROM
serial port.

Operating
System
Interface

The third external interface is for the operating systems.

The console is compliant with the Alpha System Reference Manual
(SRM), providing callback support for the OpenVMS and DEC
OSF/1 operating systems.

2–8 Console Overview

Functionality

Introduction This section describes the functionality of the Alpha AXP
Firmware and its initialization process.

Console Overview 2–9

Console Functionality

Console Functionality

Introduction The Alpha AXP Firmware and PALcode provide functionality for
implementing and controlling hardware functions, such as:

• Initializing the hardware system

• Diagnostic testing of the system for proper operation and
report errors

• Bootstrapping the operating system

• A user interface for monitoring and controlling the system

• Callback services to the operating system, which simplify
operating system control of, and access to, system hardware

• Controlling and monitoring the state of each processor in a
multiprocessor configuration

PALcode
Functions

PALcode is the Privileged Architectural Library for the Alpha
AXP architecture that provides any operating system access
to low-level Alpha AXP chip functions, atomic operations and
primitives. In addition, PALcode can simulate complex hardware
instructions.

Console
Functionality
and Porting

For each area of functionality, there are components that are
specific to a hardware platform.

Subsystems that may have to be modified for a specific platform
and the corresponding portion of the console that must be
customized include:

• Chip Functionality - PALcode

• Cache and Memory - Serial ROM (SROM) code and PALcode;
SROM code initializes the DECchip during hardware reset

• Devices - Device Drivers, Boot Device Parameters

• Input/Output - Platform-Specific Powerup Process

• Interface to the Operating System - Hardware Restart
Parameter Block (HWRPB)

2–10 Console Overview

Console Initialization

Console Initialization

Introduction During console initialization, the console kernel:

1. Starts the console initialization process

2. Initializes all remaining registers to their default values

3. Builds and loads the Process Control Block (used by the
console for unexpected interrupt handling)

4. Starts the timer process

5. Starts the powerup process

A prompt is displayed on the console terminal device at the end of
console initialization.

Powerup
Process

The following functions describe the powerup process. However,
its sequence is platform specific:

• Initialize the file system.

• Configure memory with the memconfig routine, (this may
happen earlier in SROM code).

• Build the Hardware Restart Parameter Block (HWRPB) and
related data structures at the beginning of good memory.

• Set up its initial stack space and initial heap, which is a block
of memory used by the console routines. Stack space for the
console is set up there.

• Initialize drivers.

• Run self-tests.

• Start a kernel entry process.

• Start the shell.

• Run a specified platform-specific powerup script.

• Dispatch to the appropriate function based on console state.

Reference

For more information, refer to the kernel.c file.

Console Overview 2–11

3
Cloning, Building and Testing the Reference

Image

Cloning, Building and Testing the Reference Image 3–1

Overview

Introduction This chapter describes how to perform the first step in porting the
Alpha AXP Firmware to a new platform; cloning, building and
testing the reference image.

Reference The following notes conferences and documents provide additional
information about porting and building a console image:

• Common Console Development Environment User’s Guide, by
Peter H. Smith, July 29, 1993.

• Cobra Console Build Process, January, 1993.

Cloning, Building and Testing the Reference Image 3–3

Overview of Cloning Files

Overview of Cloning Files

Introduction A developer must modify files to build a cloned console image
from a reference platform. The majority of modifications are
related to name changes, not functionality changes.

This chapter summarizes the files to be modified when building
and testing a cloned console image.

Model Port The model represented in this chapter, along with examples of
files modified, were to port the console to an Alpha AXP PC target
platform. The model clones an image from a previous Alpha AXP
PC design. However, the model’s design incorporates a different
DECchip implementation for the microprocessor, the DECchip
21066, and an integrated Ethernet controller.

DECchip 21066 The DECchip 21066 is an implementation of the Alpha AXP
architecture that differs from the DECchip 21064. The DECchip
21066 memory and I/O bus structure are different than that of
the DECchip 21064. The DECchip 21066 has integrated DRAM
memory and PCI I/O bus controllers, and includes embedded
graphics accelerator support for connection to a video RAM
(VRAM) frame buffer.

These added features affect the port in the following way:

• PALcode. There are differences in internal processor registers.
PALcode is the privileged code that can read and write
internal registers.

• Bus, port, and class drivers. The system and I/O bus are
architecturally different, together with certain I/O controllers.

3–4 Cloning, Building and Testing the Reference Image

Cloning and Modifying the Reference Source
Code

Introduction This section describes the following:

• Development environment

• Directory tree structure

• Engineering environment

• Cloning files

• Cloning and modifying source files

• Cloning and modifying code fragments

• Cloning build files

• Modifying build file

Cloning, Building and Testing the Reference Image 3–5

Development Environment

Development Environment

Overview The development environment consists of tools and source
programs required to build an Alpha AXP Firmware image.
These tools and source code pool are mutually shared, existing
in a logically defined directory structure. Developers must
execute a command procedure that properly defines CP$xx logicals,
development directories, directory search lists, directories of tools
and sources and other information required to create the image.

The procedure CP_COMMON_LOGIN.COMconstructs this environment,
and is the first phase of the image build procedure. Parameters
are included on the command line to specify options for the build,
for example, the name of the top-level directory, under which a
directory tree is created for a work area and to support building
the image.

Figure 3–1 Major Components of the Development Environment

ZKO−000−002343−06−RGS

(Reference)

(Tools, Sources) (Source
Development)

COMMON USER

BACKING
TREES

 System Installed
 Tools

CP$KITS CP$REF

Major
Components

Figure 3–1 depicts the major components of the build
environment:

• System installed tools
The normal system utilities and editors installed on the
system would be used by developers, along with other
preferred tools, such as a C compiler.

• Common area - tools and sources

3–6 Cloning, Building and Testing the Reference Image

Development Environment

Tools not installed on the system can be found in the CP$KITS
directory. Some examples of tools that are shared are:
command procedures, AWK scripts, MACRO64 and PALcode
assembler, GEM C compiler, MMS description files, and
utilities.
The CP$REFlogical references the source code area where C and
Macro kernel routines, drivers, and other source files, such
as command procedures, can be found. The CP$REFdirectory
mirrors the latest source code elements placed into the CMS
library.

• User area - directory and source development
This is the developer’s working area, known as the directory
tree. It contains sources developed for the target port, the
final image, and other supporting or intermediate files.

• Optional backing trees - reference files
The backing trees are directories containing a snapshot
version of source code, object files, and configuration
information. They are optionally used as a secondary source,
(or backed against), during the image build process. By
default, files in the user’s working directory are backed
against files in the CP$REFdirectory.
Backing trees are helpful to establish a reference, provide
isolation from other development efforts, and reduce image
build time.

Save Sets The Alpha AXP Firmware development environment can be
replicated on a system that uses the OpenVMS operating system
by copying the following three backup save sets:

• Source module save set derived from CP$REF

• Tools and utilities derived from CP$KITS

• User working area derived from the directory tree, contains a
pre-built console image

Cloning, Building and Testing the Reference Image 3–7

Directory Tree Structure

Directory Tree Structure

Working
Directory

A developer specifies the top-level directory to be used with a
parameter to the CP_COMMON_LOGIN.COMprocedure, which creates
the development/build environment.

A directory tree is established under the top-level directory
specified, creating subdirectories if necessary, and is used as
a work area. The directory [USERNAME.CP.SRC] contains source
files modified for the target port. The rest of the directory tree
contains files to support building the target image, intermediate
files, executable files, and the final image.

A subdirectory of a user’s account should be specified for the
top-level directory to separate the directory tree and related files
from the user’s files. Figure 3–2 shows the top-level directory of
[USERNAME.CP]. If no top-level directory is specified, the directory
tree is created under the current (default) directory.

Figure 3–2 Directory Tree

ZKO−000−002343−03−RGS

[USERNAME.CP.SRC]

Top−Level Directory

[USERNAME] User’s Directory

[USERNAME.CP]

Directory Tree

Work Area

3–8 Cloning, Building and Testing the Reference Image

Directory Tree Structure

Configuration
Directories

The directory tree consists of a number of subdirectories,
created under the user-specified working directory, as shown in
Figure 3–3. These subdirectories are grouped into two distinct
sections in Figure 3–3:

• Platform base

• Configurations (or variants) of the platform base

Figure 3–3 Directory Tree, Configurations

User’s Working Directory

[.SRC]

User’s Source Subdirectory

ZKO−000−002343−04−RGS

[.AFW]

of Base Platform

[.SABLE]

[.LOG]

Configurations or Variants

[.INC]

Other Base Platforms

Base Platform

[.SABLE]

[.CFG] [.EXE] [.LIS] [.LOG] [.OBJ] [.SRC]

[.INC] [.LIS] [.LOG] [.OBJ][.EXE]

[.SBUPDATE][.SBLOAD]

[.INC] [.LIS] [.LOG] [.OBJ][.EXE]

Other
Configurations

Note that the user’s source (working) subdirectory is also shown
in Figure 3–3, and is located at the same directory level as the
platform base. This is used by the CP$SRClogical search list to
locate source modules.

Reference

Information about the logical search lists can be found in:
Appendix A: Logical Search String Definitions.

Cloning, Building and Testing the Reference Image 3–9

Directory Tree Structure

Platform Base The platform base directory is the first directory created, and is
named after the hardware platform to be ported. It contains files
used to create a base level image for the target platform.

These files are common to all other configurations (variations)
created for that same platform. For example, many source files
can be used for different image variations that are configured for
the application. An example variation is: a small, FEROM-based
image that contains a subset of commands and functionality.
This sharing of common build files eliminates redundancies and
reduces the total disk storage as configurations are added.

The platform’s base subdirectories and contents are:

• [.src] , source files for the platform

• [.obj] , object files

• [.lis] , listing files

• [.exe] , executable files

• [.log] , log files from various build procedures

• [.cfg] , contains the configurations and their subdirectories,
for example, [.SABLE] [.SBLOAD] , and [.SBUPDATE]

Configurations Configurations are variations of the hardware base platform
image. A developer can configure the image to vary in
functionality to requirements. Each configuration has its own
subdirectory under the base platform. These subdirectories
contain the configuration files generated during the second phase
of the build process: from the NEWBUILD.COMbuild procedure.
Three typical configurations are shown in Figure 3–3:

• [.SABLE]

A platform base configuration of Alpha AXP Firmware
for the Sable hardware platform. The base configuration
is the same name as the hardware platform and is the
FEROM-based image.

• [.SBLOAD]

A super-set of the Sable base image, containing an
extensive command set, diagnostics, and exercisers. This
image is typically loaded with MOP or BOOTP protocol
(not a FEROM-based image).

• [.SBUPDATE]

An image used to update the Flash EROMs (FEROM) in
the field.

3–10 Cloning, Building and Testing the Reference Image

Directory Tree Structure

Configuration
Build Files

Each configuration has its own build file: platform _files.bld . A
developer creates this file, customizing it to build a target image
for the particular configuration and hardware platform. The
configuration build file specifies source files, the driver startup
order, and compile options, for example:

SABLE_FILES.BLD

The SABLE_FILES.BLD file creates a configuration with the name of
Sable, and is the platform base (configuration).

Configuration
Subdirectories

All configurations have at least two subdirectories:

• [.INC] , included header files created during the build

• [.LOG] , log files for that configuration

Note that in Figure 3–3, configurations other than the base
platform have additional subdirectories created for that
configuration:

• [.EXE] , executable images

• [.LIS] , listing files

• [.OBJ] , object files

Logicals can locate files in the directory tree. For example, the
CP$LOGlogical can locate the log files:

"CP$LOG" = "CPUSER:[USERNAME.AFW.SABLE.LOG]"
= "CFW:[CONSOLE.FRIDAY.SABLE.LOG]")

Reference

For more information about logicals defined for the
development environment, refer to Appendix A: Logical
Search String Definitions.

Creating the
Environment

The configuration login procedure creates the development
environment. It is invoked manually or automatically by adding
the following command to the user login.com file:

$ @ALPHA_FW:[COBRA_FW.REF]CP_COMMON_LOGIN.COMConfiguration -
Directory -
Backing_tree

Cloning, Building and Testing the Reference Image 3–11

Directory Tree Structure

Table 3–1 cp_common_login.com Parameters

Parameter Description

Configuration Name of the configuration image. If this
parameter is omitted, only logicals are defined.

Top_dir Name of the top-level directory under which the
directory tree is constructed.

Backing_tree Name of the backing tree, or a list of backing
trees, that can be used to reference the
build against (using precompiled code to save
compilation time). Also, CP$REFcan be specified
to force a complete build. If this parameter is
omitted, the last backing tree specified is used.

Reference

The CP_COMMON_LOGIN.COMprocedure parameters and their
implementation details are discussed later in this chapter
in the Building the Reference Console section.

3–12 Cloning, Building and Testing the Reference Image

Engineering Environment

Engineering Environment

Engineering
VMScluster

Access to the compute server for the engineering software
VMScluster can be seen in the $ SHOW CLUSTERexample.

$ SHOW CLUSTER

+--------+----------+---------+
| NODE | SOFTWARE | STATUS |
+--------+----------+---------+
MAY21	VMS V5.5	MEMBER
MAY31	VMS V5.5	MEMBER
DUFFY	VMS V5.5	MEMBER
EGRESS	VMS V5.5	MEMBER
+--------+----------+---------+

System Load A $ LOADcommand can test system loading conditions for optimum
response from the compute server.

$ LOAD
Tot Free

Node Rating Load VUPs CPUs Idle Mem Mem CPU type
---- ------ ---- ---- ---- ---- --- ---- --------
DUFFY:: 2071 0.9 24.0 1 36% 96 45.2 VAX 4000-500
EGRESS:: 0 0.3 ? 1 74% 192 156.0 VAX 4000-700A
MAY21:: 2414 0.8 24.0 1 40% 96 54.2 VAX 4000-500
MAY30:: 0 1.0 ? 1 94% 128 83.9 VAX 4000-700A
Best node is MAY21
$

Cloning, Building and Testing the Reference Image 3–13

Cloning Files

Cloning Files

Introduction To begin a port, files can be cloned from existing files in the CMS
library or the CP$REFreference directory. The reference directory
contains a copy of the latest files replaced into CMS.

Categories of
Files to Clone

Files that need to be cloned can be categorized as follows:

• Platform-specific

• Build

• Kernel

• Driver

3–14 Cloning, Building and Testing the Reference Image

Cloning and Modifying Platform-Specific Files

Cloning and Modifying Platform-Specific Files

Introduction Table 3–2 and Table 3–3 show that platform-specific files can be
cloned from other platforms. Modifications needed to build the
reference console require replacing the old platform name in the
file name with the new platform name.

Source Files to
be Cloned

Specifically, the files that need to be cloned concern the following:

• Memory Configuration

• Initialization Routines

• Macro Utilities for Character I/O to the Combination Chip
Serial Port (COM1, COM2)

• Powerup Routines

Cloned Source
Files Example

Table 3–2 shows the source files that were cloned from another
PC platform.

Table 3–2 Cloned Platform-Specific Source Files from Another PC Platform

File Description

memconfig_platform.c Configures and tests memory, diagnostics; checks and marks bad pages

platform.c Platform-specific utilities: initialization, bus sizing, bus read/write
routines, halt, L.E.D., and dump routines

platform_util.mar Platform-specific MACRO routines: serial I/O, load/store, and CSR
read/write routines

powerup_platform.c Starts drivers at proper phase: memory, PCI, tt, builds HWRPB, tests
memory, creates null and shell process

Cloning, Building and Testing the Reference Image 3–15

Cloning and Modifying Code Fragments

Cloning and Modifying Code Fragments

Overview Some files are used for multiple platform builds. These files
should remain in a common source pool.

Any code contained in these common files that must be platform
specific is conditionalized so that it is used for a specific platform
build only.

Modifications must sometimes be made to these files to account
for the specifics of a given platform. To do this, the conditionalized
code must first be cloned within the file. The new platform name
must be placed in the condition statements and then, at some
later time, the code should be modified for the new platform.

Note

Modifications must be carefully made to avoid altering the
build and possibly keeping the code from executing for
other platforms.

Changing
Conditional
Statements

Preprocessor directives are changed in the platform-specific code
sections to reflect conditional compilation for the target. No
functional changes should be made to the code until a working
image is built and tested. Example 3–1 shows an example of this
as annotated by the callouts.

Example 3–1 Modifying Preprocessor Directives

/**
* Substitute reference platform directives *
**/

#if Reference_Platform_Name !
.
.
#endif

/***********************************
* With target platform directives *
***********************************/

#if Target_Platform_Name "
.
.
.
#endif

These files can be retrieved from the CMS library, or from the
CP$REFreference directory.

3–16 Cloning, Building and Testing the Reference Image

Cloning and Modifying Code Fragments

List of Files An example of a set of files that contained conditional code that
was cloned and modified is as follows:

• Build

build.com

options.bld

pal_descrip.mms

• Kernel

call_backs.c

callbacks_alpha.mar

entry.c

ev_action.c

filesys.c

hwrpb.c

kernel.c

kernel_alpha.mar

net.c

nvram_def.h

startstop.c

timer.c

• Driver

combo_driver.c

eisa_driver.c

eisa.h

er_driver.c

ide_driver.c

ipr_driver.c

kbd_driver.c

mop_driver.c

n810_driver.c

pke_driver.c

Reference

For more information, refer to Appendix C: Complete List
of Modified Files.

Cloning, Building and Testing the Reference Image 3–17

Cloning Build Files

Cloning Build Files

Introduction Table 3–3 shows the build files that were cloned from another PC
platform.

Table 3–3 Cloned Build Files from Another PC Platform

File Modification Notes

platform_files.bld Creates a new image for the target platform: PLATFORM

msload_files.bld Creates an image that can be downline MOP loaded

platform_platform.mms Combines and creates the compressed image from the following:

• Decompression routine

• PALcode

• Alpha AXP Firmware for the target platform

Build Files Configuration build files specify the source files and other
information necessary to build the target image, such as option
and value statements that are platform specific.

The platform-specific MMS file assembles, compiles, links, and
compresses the final image that will be written into the EE Flash
ROM.

In this case, the use of two configuration build files created
two different Alpha AXP Firmware images. One build
file (platform_files.bld) creates a ROM image, the other
(msload_files.bld) creates an image that can be downline loaded
using MOP protocol.

3–18 Cloning, Building and Testing the Reference Image

Modifying Build Files

Modifying Build Files

Configuration
Build File

The configuration build file platform _files.bld is one of the files
used to create the image for the target, along with other command
procedure and script files.

A developer would clone this build file.

Modifying the
Configuration

Example 3–2 shows how to change the option statement within
the platform’s configuration build file. Note that Example 3–2
clones platform_files.bld , changing the configuration for the
Platform platform !, to the XYZ platform ".

Example 3–2 Modifying a Cloned Build File

/***
* Substitute reference platform option statements *
***/

file: platform_files.bld -- small, ROM, build file for Platform.

platform PLATFORM !
architecture ALPHA

/**
* With target platform option statements *
**/

file: XYZ_files.bld -- build file for new XYZ target.
#
small image, ROM version

platform XYZ "
architecture ALPHA

Cloning, Building and Testing the Reference Image 3–19

Building the Reference Image

Introduction This section describes building the reference console image.

Cloning, Building and Testing the Reference Image 3–21

Building the Reference Console

Building the Reference Console

Three Phases There are three basic phases to building an Alpha AXP Firmware
image:

1. Create the build environment with
ALPHA_FW:[COBRA_FW.REF]CP_COMMON_LOGIN.COM

2. Build the intermediate files with CP$SRC:NEWBUILD.COM

3. Assemble, compile and link the final image with
CP$SRC:DESCRIP.MMS

Build Steps These phases consist of the steps shown in the table.

Table 3–4 Building the Alpha AXP Firmware

Step Action Description

1. Copy files that can be modified for the
target from the CP$SRCdirectory to
your working subdirectory [.SRC] . 1

Developers should use the working subdirectory to modify
and create files for the target platform.

2. Modify files for the target, ensuring
that any modified or newly created
source code files are in the working
subdirectory [.SRC] .

The user’s subdirectory is the first directory searched for
sources during the build.

Note

Do not modify files in the CP$REFdirectory, or in the backing
tree directories.

3. Add new dependent source files and
other definitions to the configuration
build file.

This file defines a particular configuration of a hardware
platform, (a target’s source files, build options). This file
should reflect the sources in the CMS library, CP$REF, or
files in the working subdirectory [.SRC] .

For example, SABLE_FILES.BLD builds the base
configuration for the Sable hardware platform. A template
can be found in the CMS directory.

1Alternatively, for a known stable environment, (for example during powerup/debug), fetch sources from CMS GROUP
CURRENT into your local working (source, [.SRC]) subdirectory. Another option is to fetch a specific source code
generation from a previously defined CMS CLASS into [.SRC].

(continued on next page)

3–22 Cloning, Building and Testing the Reference Image

Building the Reference Console

Table 3–4 (Cont.) Building the Alpha AXP Firmware

Step Action Description

4. Execute the DCL command
procedure:

$ @CP_COMMON_LOGIN.COM -
P1 -
P2 -
P3

This defines the build environment; logicals and directory
structure. Optional parameters define the following:

• P1 = configuration variant of base platform, or base
platform 2

• P2 = the top-level working directory (build area)

• P3 = a backing tree for an alternate source reference

Backing trees are used as a secondary reference source for
the build. Target dependency files may be sourced from
the backing tree, expediting the build, and or, built from
a known reliable source. Multiple backing trees can be
specified to ensure the search order.

For example:

$ @ALPHA_FW:[COBRA_FW.REF]CP_COMMON_LOGIN.COM -
Sable -
[USERNAME.AFW] -
Friday

5. Execute the DCL command procedure
for the target hardware platform:
$ @CP$SRC:NEWBUILD.COM
Platform

This scans all source files (described in
Configuration _files.bld), creating .H, .MAR, .C, and
other dependencies (needed by MMS in the next step), using
AWK script text filters.

A target of the base platform is specified. For example,
using SABLE as the target:
$ @CP$SRC:NEWBUILD.COM SABLE

2Note that a base platform must be the first configuration built before any other configurations. The base platform or
alternate configuration is specified in parameter P1.

(continued on next page)

Cloning, Building and Testing the Reference Image 3–23

Building the Reference Console

Table 3–4 (Cont.) Building the Alpha AXP Firmware

Step Action Description

6. Create and execute the MMS
description file for the target
hardware platform:
$ MMS/DESC=CP$SRC:DESCRIP.MMS
Platform

The MMS description file creates the executable Alpha AXP
Firmware image for the specified platform by assembling,
compiling, and linking the target image.

The developer creates the platform MMS file, for example,
platform_sable.mms .

The target images are defined within this platform
description file:

• PALcode, which has its own description file,
PAL_DESCRIP.MMS

The PALcode description file PAL_DESCRIP.MMS
is executed by the platform-specific description
file. It describes the target PALcode image and its
dependencies. The PALcode image EV4P3_SABLE.EXE
for the Sable platform can be found in the CP$EXE
directory.

• Console kernel and drivers

• Decompression image

To create the image CP$EXE:SABLE.EXE for the hardware
platform SABLE:
$ MMS/DESCRIPTION=CP$SRC:DESCRIP.MMS SABLE

7. Replace modified or newly created
source code files that have
successfully built and tested into
the CMS library group = CURRENT.

A copy is also placed in the source reference directory
CP$REF, the default build directory.

Note

New files must be created, then inserted into the CMS group
CURRENT. Modified files can be directly replaced.

(continued on next page)

3–24 Cloning, Building and Testing the Reference Image

Building the Reference Console

Table 3–4 (Cont.) Building the Alpha AXP Firmware

Step Action Description

8. Execute the DCL command
procedure:
hardware platform_make_rom.com

Creates compressed and other images in CP$EXE by
combining the PALcode and Alpha AXP Firmware
executable image:

• CFW_SBROM.EXE, compressed, checksummed image
padded to 512K bytes

• CFW_SBROM.SYSMOP 3 image that can be downline
loaded

• CP$EXE:CFW_SBROM_E32.HEXand
CP$EXE:CFW_SBROM_E34.HEX, files are used during
manufacturing and programming of the Flash EEROMs

This step is normally done only for a software release to
create the hex files.

The following example creates a compressed image for the
Sable hardware platform:
$ @CP$SRC:SABLE_MAKE_ROM.COM

3MOP = maintenance-oriented protocol for IEEE 802.3 communication and file loading.

Configuration
Log Files

The log files for various configurations can be found in the
backing tree directory under the platform’s [.LOG] directory, for
example:

$ DIR CP$LOG:

Directory CFW:[CONSOLE.FRIDAY.SABLE.LOG]

SABLE_BUILD.LOG;1 SBFSAFE_BUILD.LOG;1 SBLOAD_BUILD.LOG;1 SBMIN_BUILD.LOG;1
SBUPDATE_BUILD.LOG;1

Note

This applies only to the nightly builds that are done on
the engineering cluster; otherwise refer to the user default
directory and the appropriate batch log files.

Cloning, Building and Testing the Reference Image 3–25

Testing the Reference Console

Introduction Once the reference console is built and a console prompt is
displayed on the console terminal, the reference console should be
tested.

This section describes the following:

• Using the Console Interface

• Running Diagnostics

• Bootstrapping

• Recovering from Errors During Bootstrapping

• Identifying the Bootstrap Device

• Initializing the Boot Device

• Booting Over the Network

Cloning, Building and Testing the Reference Image 3–27

Using the Console Interface

Using the Console Interface

Introduction The console supports a set of common commands useful for
system configuration and operating system bootstrap.

Commands
Description

The default set of console commands for Alpha AXP platforms
include commands for:

• Booting the operating system

• Accessing or modifying information about the system

• Initializing programs and processors

• Testing the system

Introduction
to Console
Commands

The console interface consists of a console prompt, console shell
interface and console commands.

Console
Prompt

The system is by definition ‘‘halted’’ or in ‘‘console mode,’’
whenever the firmware is executing.

When halted, the firmware communicates with an operator
through the device designated as the system console.

The firmware delivers the following prompt on the console
terminal indicating that it is awaiting command input.

>>>

Console Shell The console shell is a command-line interpreter that is a subset of
the Bourne shell.

The console shell is very flexible because it supports traditional
UNIX functions such as pipes, I/O redirection, command-level
scripting and control functions.

Built around a multitasking kernel, the console provides an
excellent environment for support of much more complex
functions, such as system exercisers, MOP listener and remote
console.

Commands The following table contains a list of tasks you can perform using
the commands that are common to all Alpha AXP platforms.

3–28 Cloning, Building and Testing the Reference Image

Using the Console Interface

Table 3–5 Console Commands

To Use Function

Get
Information
About the
System

show Displays the current value for an environment variable and other system
information, for example, SHOW CONFIGdisplays information about the
system and devices.

Get Online
Help

help, man —

Access Data examine,
deposit

These commands act on byte streams. The console manipulates these byte
streams by performing typical device operations - open, read, write, close.
Device refers to any such byte stream or address space regardless of its
actual physical implementation.

The default device is physical memory.

The console provides the following device drivers for Alpha AXP devices:

• pmem: - physical memory

• vmem: - virtual memory

• gpr: - general-purpose registers

• fpr: - floating-point registers

• ipr: - internal-processor registers

Access
Memory

alloc Before randomly experimenting with memory, it is important to find a
‘‘safe’’ area in memory to alter. Since the console itself and other critical
data structures reside in memory, care should be taken not to alter them.
The alloc command can allocate a ‘‘safe’’ area in memory.

Boot the
Operating
System

boot The boot command initializes the processor, loads a program image from
the specified boot device and transfers control to that image. If you do not
specify a boot device in the command line, the default boot device is used.

Resume
Program
Execution

continue Continues execution on the specified processor, or the primary processor if
one is not specified. The continue command is valid only if an operator
has halted the system by one of two methods: either by pressing the Halt

button on the control panel or by entering Ctrl/P on the console terminal.

Initialize the
Console

initialize Initializes the console, a device, or the specified processor. If a processor is
not specified, the primary processor is initialized.

Set the
Value of an
Environment
Variable

set Sets or modifies the value of an environment variable. Environment
variables pass configuration information between the console and the
operating system. Environment variables that can be set or modified
include auto_action, bootdef_dev, boot_file and boot_osflags .
Additional environment variables control execution of diagnostics.

A default value is associated with any variables stored in NVRAM. This
default is used if the variable is not set, or if NVRAM is unreadable.

Start a
Program

start Starts program execution on a processor at the specified address or start
drivers.

(continued on next page)

Cloning, Building and Testing the Reference Image 3–29

Using the Console Interface

Table 3–5 (Cont.) Console Commands

To Use Function

Test the
System,
Subsystem or
Device

test Tests the entire system, a subsystem or a specific device, depending on
the device list argument. A list of the subsystems and devices that can
be tested can be obtained from the show config and show device
commands. Testing can be performed on disk drives, DSSI disks, SCSI
disks, memory, network subsystem, Future Bus devices (if present) or a
subset of the device system.

Syntax The table shows a summary of the basic common console
commands.

Table 3–6 Syntax of Common Console Commands

Command Options Parameters

boot [-file filename] [-flags root, bitmap]
[-halt]

[boot_device]

continue — —

deposit [-{b,w,l,q,o,h}] [-n val] [-s val] [device:]address data

examine [-{b,w,l,q,o,h,d}] [-n val] [-s val] [device:]address

help — [command]

man — [command]

initialize [-c] [-d device_path] [slot-id]

set — envar value

set host [-dup] [-task t] node

show — envar, config, device, error, fru,
hwrpb, memory

start — address

test — cpu, memory, ethernet, scsi

Reference

For more information about console commands, see:

• Common Console User Interface Functional
Specification, October 20, 1993, Bill Cummins

• Preliminary APS Firmware Specification, March 30,
1994, AVS Engineering

3–30 Cloning, Building and Testing the Reference Image

Running Diagnostics

Running Diagnostics

Scripts The reference console image should be tested on the reference
platform. Testing should include running diagnostics with
command scripts. A developer can create additional scripts for
the particular application.

Reference

Refer to the CMS library group: TEST_CMD, and the .CMD
files. These files are also available in the CP$REFdirectory.
More information can be found in: Alpha Diagnostic
Programmer/User Interface, Rev 2.2.

Generic
Diagnostic
Scripts

The following list of diagnostic command scripts are basic and
commonly used on all platforms. This is not an exhaustive list.
These scripts consist of console commands that exercise functional
areas of the system, such as memory or the CPU. Developers can
customize or create additional scripts for their platform.

Table 3–7 Diagnostic Command Scripts

Command
Script Syntax Description

test test [device_name]
test [disk] [dssi]...[scsi]
[memory]

Test the system,
a subsystem, or a
specific device.

exer exer [qualifiers] [device]
exer -p (pass_count)...
dk*.*
exer_read [qualifiers]
[device]
exer_write [qualifiers]
[device]

Functional read
and write from/to a
device(s).

memexer — Exercise memory.

memtest memtest [-sa start_
address] [-ea end_address]

Test a section of
memory.

nettest nettest [-f file] [-mode
port_mode] [-p pass_count]

Test the network
ports using MOP
loopback.

Cloning, Building and Testing the Reference Image 3–31

Diagnostic Session

Diagnostic Session

Sample User
Session

The following sample diagnostic session provides an example of
how various diagnostic commands can be used to run diagnostics
in an Alpha AXP console environment.

>>> set d_* -d !

>>> set d_harderr continue "

>>> cpu_tst #

ID Program Device Pass Hard/Soft Test Time
-------- -------- --------------- -------- --------- ---- --------
00000011 cpu_tst kn7aa0 0 0 0 10:32:55 $

*** Hard Error - Error #10 on FRU: kn7aa0
Data compare error

ID Program Device Pass Hard/Soft Test Time
-------- -------- --------------- -------- --------- ---- --------
00000011 cpu_tst kn7aa0 1 1 0 2 10:33:25

*** End of Error *** %

^C &

Testing Complete

ID Program Device Pass Hard/Soft Test Time
-------- -------- --------------- -------- --------- ---- --------
00000011 cpu_tst kn7aa0 1 1 0 10:34:00

* End of Run - Failed * '

>>> set d_harderr halt (

>>> set d_passes 0)

>>> set d_startup on +>

>>> set d_complete on +?

>>> set d_trace on +@

>>> set d_eop on +A

>>> set d_report full +B

>>> cpu_tst -t 1,2 +C

ID Program Device Pass Hard/Soft Test Time
-------- -------- --------------- -------- --------- ---- --------
00000014 cpu_tst kn7aa0 0 0 0 10:35:29 +D

00000014 cpu_tst kn7aa0 1 0 0 1 10:35:34 +E

00000014 cpu_tst kn7aa0 1 0 0 2 10:35:40 +F

00000014 cpu_tst kn7aa0 1 0 0 10:35:42 +G

00000014 cpu_tst kn7aa0 2 0 0 1 10:35:49 ,>

*** Hard Error - Error #10 on FRU: kn7aa0
Data compare error

ID Program Device Pass Hard/Soft Test Time
-------- -------- --------------- -------- --------- ---- --------
00000014 cpu_tst kn7aa0 2 1 0 2 10:36:12

Extended Error Information:

Address: 00400008
Expected: A5A5A5A5
Received: A5A5A5A6

3–32 Cloning, Building and Testing the Reference Image

Diagnostic Session

*** End of Error *** ,?

Testing Complete

ID Program Device Pass Hard/Soft Test Time
-------- -------- --------------- -------- --------- ---- --------
00000014 cpu_tst kn7aa0 2 1 0 10:36:36

* End of Run - Failed * ,@

>>>

! Set all global diagnostic environment variables to default
values.

" Continue-on-error is set for hard errors through the d_harderr
environment variable.

Use the cpu_tst command to test the first CPU.

$ The startup message is printed for the cpu_tst diagnostic that
is run.

% A hard error is reported by the cpu_tst diagnostic.

& Enter Ctrl/C to terminate further testing.

' The diagnostic completion message is printed after
terminating the testing.

(Halt-on-error is set for hard errors through the d_harderr
environment variable. (default)

) The pass count is set to 0, indicating test indefinitely, through
the d_passes environment variable.

+> The printing of the diagnostic startup message is enabled
through the d_startup environment variable.

+? The printing of the diagnostic completion message is enabled
through the d_complete environment variable.

+@ Test trace messages are enabled through the d_trace
environment variable.

+A End-of-pass messages are enabled through the d_eop
environment variable.

+B Reporting of extended error information is enabled by setting
the d_report environment variable to FULL.

+C The cpu_tst diagnostic is run again, but only to run tests 1
and 2.

+D The startup message is printed for the memory diagnostic that
is run.

+E The test trace message for test 1 is printed.

+F The test trace message for test 2 is printed.

+G The end-of-pass message is printed indicating that the first
pass of the memory diagnostic has completed.

,> The test trace message for test 1 is printed again for the
second pass.

Cloning, Building and Testing the Reference Image 3–33

Diagnostic Session

,? A hard error is reported by the cpu_tst diagnostic in the
second pass. This time the extended error information is
printed because the d_report environment variable is set to
FULL.

,@ The diagnostic completion report is printed and the diagnostic
is aborted since halt-on-error is set for hard errors.

3–34 Cloning, Building and Testing the Reference Image

Diagnostic Messages

Diagnostic Messages

Types Six types of diagnostic messages are displayed which all have the
same basic format:

• Startup

• Test Trace

• Status

• Error

• End of Pass

• Completion

Error
Messages

The D_REPORT environment variable can be set to SUMMARY
or to FULL, which provides two levels of error information.

There are three types of errors that signify the severity of the
error that occurred. They are:

• Soft
A soft error implies that a recoverable error has occurred. An
example of this may be an ECC Single Bit Error or an error
occurring in an operation that can be successfully retried. The
default action is to continue on soft errors.

• Fatal
A fatal error report also signifies that a nonrecoverable error
occurred. A proposed example of this error is an unrecoverable
systemwide error that may call for a system bugcheck or
something similar. The action on a fatal error is always to
halt and cannot be set differently.

• Hard
A hard error report implies that a nonrecoverable error has
occurred. Most errors encountered during testing, such as
data compare errors, checksum error, or failed write/read
operations are classified as hard errors. After detecting a
hard error, the error can be cleaned up and if continue on
hard error is set, the program should be able to continue. The
default action when a hard error is signaled is to halt.

Cloning, Building and Testing the Reference Image 3–35

Diagnostic Messages

The following example shows a hard error message.

*** Hard ! Error - Error #15 " on FRU: kn7aa0 #
Data compare error $

ID Program Device Pass Hard/Soft Test Time
-------- -------- --------------- -------- --------- ---- --------
00000011 % cpu_tst & kn7aa0 ' 5(1) 9+> 2+? 10:36:12 +@

Extended Error Information: +A

Address: 00400008
Expected: A5A5A5A5
Received: A5A5A5A6

*** End of Error *** +B

! Error Type. Possible values are:

• Hard - Hard Error

• Soft - Soft Error

• Fatal - Fatal Error

• None - No error type displayed

" Error Number

FRU Callout

$ Error Message

% PID

& Program/Module name

' Device Name

(Current Pass Count

) Current Hard Error Count (will also be set to 1 if a Fatal
Error occurred)

+> Current Soft Error Count

+? Current Test Number

+@ Timestamp

+A Extended Error Message

+B Error Message Delimiter

3–36 Cloning, Building and Testing the Reference Image

Bootstrapping

Bootstrapping

Introduction Bootstrapping is the process of locating, loading and transferring
control to the primary program image. The primary program
image may be a primary bootstrap program such as Alpha
Primary Boot (APB), ULTRIXboot, or any other applicable
program specified by the user or residing in the boot block.

Bootstrap
Procedure

The system firmware uses a bootstrap procedure defined by the
Alpha AXP architecture.

Usually, a bootstrap can be attempted only by the primary
processor, commonly referred to as the boot processor.

To bootstrap the operating system. The firmware uses device
and optional file name information specified either on the boot
command line or in appropriate environment variables.

To begin a bootstrap, the firmware writes boot device information
to the HWRPB and appropriate environment variables to be
used by the boot callbacks and secondary bootstrap programs.
The console locates a boot callback for the specified device. If a
suitable callback is found, control is transferred to it.

State Assumed
by the
Operating
System

The operating system assumes that the following is set up at boot
time:

• A valid and accurate HWRPB exists.

• Memory has been mapped appropriately.

• All memory is initialized to at least a valid error checking
state.

• Drivers have been initialized with a solid set of callbacks to
communicate with the operating system.

• A legal boot device is used to boot the operating system.

Conditions for
Bootstrapping

There are only three conditions where the boot processor attempts
to bootstrap the operating system:

• The boot command is typed on the console terminal.

• The system is reset and the auto_action environment variable
is set to boot .

• An operating system restart is attempted and fails.

Cloning, Building and Testing the Reference Image 3–37

Bootstrapping

Steps for
Bootstrapping

The steps the console performs for bootstrapping the system are
as follows:

1. Set the Boot In Process (BIP) flag. If the BIP flag is already
set, the boot fails.

2. Identify the boot device.

3. Search the device database for a callback that matches the
specified boot device. If none is found, the boot fails.

4. Load the boot parameters into the Hardware Restart
Parameter Block (HWRPB).

5. Initialize the boot device and begin loading the boot image.

6. Load the boot image from the boot device.

7. Transfer control to the boot device.

If the bootstrap fails, the console will display a message on the
console terminal and return to the console prompt. If bootstrap
succeeds, the operating system is responsible for clearing the
Bootstrap In Progress (BIP) flag.

Boot
Environment
Variables

Table 3–8 lists some boot environment variables that are not
platform specific and are implemented by all systems.

Table 3–8 Environment Variables

ID Variable Attributes Function

01 AUTO_ACTION NV,W The action the console should take following an error
halt or powerfail. Values are:

• BOOT - Attempt bootstrap

• HALT - Halt, enter console I/O mode

• RESTART - Attempt restart; if restart fails, try
boot

• Anything else - Halt, enter console I/O mode;
the default value when the system is shipped in
"HALT" (544C 414816)

Key to variable attributes:

NV - Nonvolatile. The last value saved by system software or set by console commands is preserved across system
initializations, cold bootstraps, and long power outages.
W - Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and restarts.

(continued on next page)

3–38 Cloning, Building and Testing the Reference Image

Bootstrapping

Table 3–8 (Cont.) Environment Variables

ID Variable Attributes Function

02 BOOT_DEV W The default device or device list from which booting
is attempted when no boot path is specified by the
boot command. This variable may be a boot search
list. The console derives the value from bootcmd_dev
at console initialization; the value is preserved across
warm bootstraps. The format of value is independent
of the console presentation layer.

03 BOOTDEF_
DEV

NV The device or device list from which booting is to be
attempted.

Key to variable attributes:

NV - Nonvolatile. The last value saved by system software or set by console commands is preserved across system
initializations, cold bootstraps, and long power outages.
W - Warm nonvolatile. The last value set by system software is preserved across warm bootstraps and restarts.

Reference

Environmental variables with an ID of 0016 to 3F16 are
common to all implementations of the Alpha AXP console.
For more information, refer to the Platforms section of the
Alpha AXP System Reference Manual V5.0.

Boot
Environment
Variables After
Loading

The console indicates the actual bootstrap path and device used
in the BOOTED_DEV environment variable. The console sets
BOOTED_DEV after loading the primary bootstrap image and
prior to transferring control to system software.

Boot Command
Syntax

Example 3–3 shows the syntax used to boot.

Example 3–3 Boot Command

>>> boot [-file filename] [-flags longword[,longword]]
[-protocols ethernet_protocol] [-halt]
[boot_device]

Options to the command are the file name to boot, operating
system flags, Ethernet protocols: TCP/IP or MOP, whether the
CPU should halt after loading in the file, and the device used to
boot from: DKA100, EZA0, ERAWA, and so on.

Cloning, Building and Testing the Reference Image 3–39

Booting the OpenVMS Operating System

Booting the OpenVMS Operating System

Overview The syntax for the booting OpenVMS and specifying boot flags is:
>>> boot device_name -flags system_root,option_flags

Table 3–9 shows booting OpenVMS with various options: system
disk drive zero, system root zero, including invoking the XDELTA
debugger.

Table 3–9 OpenVMS Boot Options

Option Function

>>> boot dka0 Normal, nonstop bootstrap (default)

>>> boot dka0 -fl 0,1 Conversational boot; stops in SYSBOOT

>>> boot dka0 -fl 0,2 Includes XDELTA with the system, but does not take the
initial breakpoint

>>> boot dka0 -fl 0,4 Stops the boot procedure at the initial breakpoint

>>> boot dka0 -fl 0,6 Includes XDELTA with the system, and take the initial
breakpoint

>>> boot dka0 -fl 0,7 Includes XDELTA with the system, stops in SYSBOOT,
and takes the initial breakpoint at system initialization

BOOT_OSFLAGS
Variable

The operating system boot flag options can also be set in the
console variable BOOT_OSFLAGSusing the console set command, for
example:

>>> SET BOOT_OSFLAGS 0,1

Other Boot
Options

Table 3–10 shows some other useful OpenVMS flags.

Table 3–10 Other OpenVMS Boot Options

Flag Value Function

BOOTBPT 10 Takes bootstrap breakpoint

HALT 100 Halts before transferring control to secondary bootstrap

CRDFAIL 2000 Marks pages containing CRDs (correctable read data
errors) as bad

DBG_INIT 10000 Displays extensive, detailed debug messages during boot
process

3–40 Cloning, Building and Testing the Reference Image

Recovering from Errors During System Booting

Recovering from Errors During System Booting

Introduction Error recovery during system booting is controlled by flags in the
primary CPU’s per-CPU slot in the HWRPB.

Bootstrap
Flags
Description

The bootstrap flags detect failed bootstraps and prevent repeated
attempts to automatically bootstrap a failed system.

Bootstrap
Flags List

The bootstrap flags are as follows:

• Bootstrap-in-progress (BIP) flag

• Restart-in-progress (RIP) flag

• Restart capable (RC) flag

Bootstrap
Flags Values

Based on the values of the bootstrap flags, the console takes
action as follows:

Table 3–11 Bootstrap Flags

BIP RC RIP Console Action

Set Clear NA Bootstrap fails

Set Set NA Restart processor, if permitted

Clear NA Clear Restart processor, if permitted

Clear NA Set Restart fails

The console sets the BIP flag and clears the RC flag prior to
transferring control to system software.

System software sets the RC flag to indicate that sufficient
context has been established to handle a restart attempt.

System software clears the BIP flag to indicate that the bootstrap
operation has been completed. The RC flag should be set prior to
clearing the BIP flag.

Reference

For more information about bootstrap error recovery, refer
to the Alpha AXP System Reference Manual V5.0.

Cloning, Building and Testing the Reference Image 3–41

Booting from the Ethernet

Booting from the Ethernet

Introduction Some platforms support up to two local Ethernet ports, referenced
by the firmware as devices, such as: eza0 and ezb0.

Whenever a network bootstrap is selected, the bootstrap routine
makes continuous attempts to boot from the network. The
network bootstrap continues, until either a successful boot occurs,
a fatal controller error occurs, or the boot is terminated by
pressing Ctrl/C .

Two Protocols
Supported

Two Ethernet protocols are supported for network bootstraps:

• DECnet MOP

• TCP/IP BOOTP

MOP Booting Whenever the environment variables contain the string mop,
bootstrap uses the DECnet MOP program load sequence for
bootstrapping the system and the MOP "dump/load" protocol type
for load-related message exchanges.

MOP Network
"Listening"

Whenever the console is running, it "listens" on each of its
ports for other maintenance messages directed to the node and
periodically identifies itself at the end of each 8-to-12 minute
interval, prior to a bootstrap retry. In particular, this "listener"
supplements the MOP functions of the console load requester
typically found in bootstrap firmware and supports.

BOOTP
Booting

Whenever the environment variables, eza0_protocols and
ezb0_protocols , are set to bootp ; the console attempts an Internet
boot.

The console implements Bootstrap Protocol (BOOTP) and Trivial
File Transfer Protocol (TFTP) client protocols for network
bootstrapping in an Internet environment. Supporting TFTP and
BOOTP requires pieces of UDP, IP and ARP.

It is important to note that Internet booting is a two-stage
operation. First, BOOTP provides the client with information
needed to obtain an image. The client then uses a second protocol,
TFTP, to obtain the image. Both BOOTP and TFTP use User
Datagram Protocol (UDP) as the primary transport mechanism to
send datagrams to other application programs.

All Internet drivers are located in the inet_driver.c module.

3–42 Cloning, Building and Testing the Reference Image

Booting from the Ethernet

Environment
Variables

Environment variables can define the default protocols to be
used for booting from each port, for example, eza0_protocols and
ezb0_protocols . These variables can be set to either mop or bootp .
By default, these variables are set to mop bootp , enabling both boot
protocols. Alternately, MOP and BOOTP attempts are made until
the boot succeeds, passing control to the loaded image.

Note

The volatile environment variable must be set for booting
with the TCP/IP protocol. There are other environmental
variables involved as well. For more information, refer
to the Device Driver Interface Guide for the Alpha AXP
Firmware.

Ethernet Boot
Example

The protocol can be specified in the command line, if an
environmental variable is not used, or to override the setting of
the variable.

Example 3–4 shows the syntax used to boot from the Ethernet.

Example 3–4 Booting from the Ethernet

>>> boot -file filename -protocols TCP/IP ERAWA

Cloning, Building and Testing the Reference Image 3–43

Booting DEC OSF/1

Booting DEC OSF/1

Boot
Environment
Variables

To boot the DEC OSF/1 operating system requires specifying
the correct flag and file with the boot command, or setting the
environment variable, as shown in Example 3–5.

Example 3–5 Setting the Boot Variables for DEC OSF/1

>>> set boot_osflags "A"

>>> set boot_file "/vmunix"

Boot Flag
Definitions

Table 3–12 describes the flags that can be specified when booting
the DEC OSF/1 operating system. The following flags can be set
in the environment variable boot_osflags , or specified with the
boot command.

Table 3–12 DEC OSF/1 Boot Flag Definitions

Flag Definition Description

A Auto reboot Automatic reboot to multiuser
mode

D Enable full dumps Partial system dumps are default

I Interactive boot Boot user-selected kernel

K Boot kdebug Allow kernel debugging

3–44 Cloning, Building and Testing the Reference Image

4
Developing a Minimal Image for the Target

Developing a Minimal Image for the Target 4–1

Overview

Introduction Once the basic hardware is proved to be working, developers can
build a skeletal image with minimal functionality: disabling the
time-of-year (TOY) clock, hardware interrupts, machine checks,
and most drivers.

This chapter describes how to develop the minimal image by:

• Defining memory

• Modifying PALcode

• Modifying the kernel and driver files

• Debugging to get to the first console prompt

• Modifying the build files to build the minimal image

• Booting the operating system during debugging

Developing a Minimal Image for the Target 4–3

Overview of Modifications Needed

Overview of Modifications Needed

Memory
Modification

For memory, the following may need to be modified:

Table 4–1 Platform-Dependent Memory Functionality

Functionality Description/Example Files

Memory, Backup
Cache

Serial ROM Code (SROM) - The functionality
that SROM implements may vary between
platforms. In some cases, SROM may need
to have knowledge about the system, such as
the memory structure and cache in order to
initialize the console. Memory configuration
registers may need to be set up for the new
platform.

Chip-Dependent
Modification

For functionality related to the chip, the following may need to be
modified:

Table 4–2 Platform-Dependent Chip Functionality

Functionality Description/Example Files

PALcode You must initialize character output hardware
(combo chip) and other chips for your particular
platform. You must disable the following in the
PALcode until after debugging:

• Machine checks

• CRD, correctable read error interrupts

• Performance counter interrupts

• Memory controller interrupts

4–4 Developing a Minimal Image for the Target

Overview of Modifications Needed

Kernel
Modification

For functionality related to the kernel, the following may need to
be modified:

Table 4–3 Platform-Dependent Kernel Functionality

Functionality Description/Example Files

I/O Account for the address ranges that vary
from platform to platform for I/O space (for
example, ISA/EISA, PCI).

Powerup Process Each platform should spawn its own powerup
script process. Some changes here are related
to ensuring that the device drivers will not
initialize automatically.
Character put calls and print calls should be
placed throughout the powerup script and
kernel.c so the progress of the process can be
monitored.

Drivers To get up and running, compile all drivers to
run in polled mode instead of interrupt mode.

When first trying to execute the console
image, it could be beneficial to disallow the
phase 5 drivers from loading. These drivers
directly control hardware such as the VGS,
keyboard and floppy and can cause the system
to hang. To do this, set Robust Mode.

Trace driver initialization and display a
message for every driver’s initialization start
and end.

Timer Identify and change any platform-specific code
and change it as appropriate.

Environment
Variables

Environment variables are a mechanism to
manage console state. They are typically
stored in EE Flash ROM or a suitable
nonvolatile device, such as NVRAM.

Developing a Minimal Image for the Target 4–5

Defining Memory

Introduction This section describes how to define the memory configuration.

Developing a Minimal Image for the Target 4–7

Defining the Memory Configuration

Defining the Memory Configuration

Platform
Memory
Configuration

Memory sizing and configuring includes the following activities:

• Initializing memory

• Sizing memory

• Configuring memory into the appropriate locations

• Setting interleaving (optional)

• Marking bad pages

• Creating bitmaps

Depending on the platform, either SROM or the console will
perform each of these functions. In addition, how the memory
board is set up is also platform specific.

Each platform has a specific memory configuration file that
contains routines that perform the memory sizing and configuring
for that particular platform. Specifically, the file is identified as
memconfig_platform.c , where platform is the name of the current
platform.

SROM Memory
Code

Example 4–1 shows part of the contents of the SROM_DEF.MARfile
that defines the memory registers. This file defines all control and
status registers (CSR) for a sample platform that are used by the
SROM during initialization.

4–8 Developing a Minimal Image for the Target

Defining the Memory Configuration

Example 4–1 SROM Memory Configuration Registers

; SROM_DEF.MAR
.
.

;;;;;
;;;;;Sable Memory CSRs
;;;;;
ERR_ADDR == ^x000 ; ERR Address
CTRAP1_ADDR == ^x020 ; CTRAP1 Address
CTRAP2_ADDR == ^x040 ; CTRAP2 Address
CONFIG_ADDR == ^x060 ; CONFIG Address
EDC1_ADDR == ^x080 ; EDC1 Address
EDC2_ADDR == ^x0a0 ; EDC2 Address
EDCCTL_ADDR == ^x0c0 ; EDCCTL Address
STRBUF_ADDR == ^x0e0 ; STRBUF Address
REFCTL_ADDR == ^x100 ; REFCTL Address
CRDCTL_ADDR == ^x120 ; CRDCTL Address
RES0_ADDR == ^x140 ; RES0 Address
RES1_ADDR == ^x160 ; RES1 Address
RES2_ADDR == ^x180 ; RES2 Address
RES3_ADDR == ^x1a0 ; RES3 Address
RES4_ADDR == ^x1c0 ; RES4 Address
FRCREF_ADDR == ^x1e0 ; FRCREF Address

.ENDM

Developing a Minimal Image for the Target 4–9

Modifying PALcode

Introduction The PALcode is dependent on the chip implementation and
sensitive to coding constraints imposed by that implementation.
Before modifying PALcode, it is important to be familiar with
PALcode and the chip specifications for a particular platform.

This section provides an overview of the following:

• PALcode Modification

• PALcode Changes

• Modifying the PALcode Reset Routine

• Building PALcode

• PALcode MMS Description File

Developing a Minimal Image for the Target 4–11

PALcode Modification

PALcode Modification

Introduction To enable the minimal image to execute on the target platform,
PALcode may need to be modified.

PALcode
Functionality

The PALcode executes in privileged mode, (interrupts disabled,
physical addressing, IPR read/write). The function of PALcode
is to initialize the IPRs, the system hardware, and handle
interrupts and address translation faults, and other exceptions.
It also provides certain operating system primitives and atomic
operations.

At powerup/reset, SROM code loads the PALcode, passing control
to the reset routine. After the reset routine initializes the
hardware, control is passed to the console firmware that will boot
the operating system.

PALcode
Modification
Steps

A PALcode modification strategy is recommended in order to
support the first powerup of the target platform and to support
troubleshooting by helping to distinguish between hardware and
software problems.

• Initialize the hardware that controls character I/O to the
console terminal and other hardware. For an example, refer
to the reset PALcode routine in PAL_EV4.MAR. This should
include:

Initialization of internal processor registers (IPR) that
control DECchip functions, interrupts and errors, system
logic, backup cache, for example, ABOX_CTL, ICCSR and
BIU_CTL IPRs

Initialization of interrupt, memory, cache, I/O bridge, and
I/O control logic

Note

Much of the same initialization occurs when the SROM
code is executed. This may or may not completely overlap
initialization done with the PALcode reset routine.

4–12 Developing a Minimal Image for the Target

PALcode Modification

• Turn off interrupts with a macro during the first powerup
attempt. For example, the genipltbl macro in PAL_EV4.MAR
disables the following interrupts:

Correctable read data errors (CRD)

Performance counters

Serial line

Memory and I/O controller errors

Reference

Refer to the chip-specific hardware documentation for
specifics on your platform.

Enable timer interrupts after the basic code is working
and reliable operation is required from floppy, disks, and
Ethernet hardware.

• Disable machine checks.

• Place character output (PUTC) traces in strategic code blocks,
informing the developer of progression through the PALcode.

• Prove that PALcode can transfer control by having it execute
an image loaded in another area of memory by doing the
following:

Build an uncompressed Alpha AXP Firmware image.

Load the image into another area of memory; the PALcode
is position-independent code (PIC).

Execute this PIC image by having the PALcode transfer
control. This should display the character O/P traces.

Developing a Minimal Image for the Target 4–13

PALcode Changes

PALcode Changes

Overview When porting to a different hardware platform, there are
several different areas of PALcode that may need to be modified.
Typically those areas involve:

• Supporting interrupts

• Selecting different console support

Supporting
Interrupts

Interrupt handling can vary with system design as well as
between different implementations of DECchips. For example,
one design might use a chip commonly used in the PC design:
the priority interrupt control chip. This chip must be initialized,
along with certain internal processor registers (IPRs) within the
DECchip, to enable proper interrupt decoding/encoding.

The number of hardware interrupt signals are different between
the DECchip 21064 and the DECchip 21066/21068, six as opposed
to three, respectively. This means that the hardware enable
registers (HIER) have to be initialized differently, and the
hardware interrupt request register (HIRR) has to be interpreted
differently.

Selecting
Different
Console

Various systems use different hardware to control input/output
to the console terminal. One may use the combination chip that
controls two serial ports (COM1 and COM2), for the character
I/O. Another system may incorporate a VGA control module or
both communication ports and VGA.

4–14 Developing a Minimal Image for the Target

Building PALcode

Building PALcode

MMS
Description
Files

The PALcode is just one of the three code sections of the Alpha
AXP Firmware image, (see Figure 2–1). PALcode is built from a
number of macro files using the MMS utility and description files
invoked when creating an Alpha AXP Firmware image, namely:

• descrip.mms , the main description file executed by the
developer to build an Alpha AXP Firmware image

• platform_ configuration .mms created by the developer, specific
target/dependency files for the platform configuration

• pal_descrip.mms , describes the PALcode target and
dependencies

Platform MMS
File

The following code fragment creates a PALcode image for a
sample platform, and is part of the platform_sample_platform.mms
build file, where sample_platform is the platform name.

.

.
cp$exe:pal_lca4_$(platform).exe : cp$src:lca4_sample.mar,

cp$src:pal_ev4.mar,
cp$src:osfpal_common.mar,
cp$src:osfpal_machine.mar

mms := mms
mms /descrip=cp$src:pal_descrip.mms lca4_$(platform)
.
.

Image File
Description

The PALcode image is comprised of a number of files, as can be
seen in Example 4–2, its MMS description file. The main files are
described in Table 4–4.

Table 4–4 PALcode Files for a Sample Platform

File Description

pal_ev4.mar The main body of PALcode containing most routines.

osfpal_common.mar PALcode that supports the DEC OSF/1 operating system,
for example:

• Privileged and unprivileged CALL PAL instructions

• Arithmetic, memory management and other exception
routines

(continued on next page)

Developing a Minimal Image for the Target 4–15

Building PALcode

Table 4–4 (Cont.) PALcode Files for a Sample Platform

File Description

osfpal_machine.mar Macro definitions, and console callback routines, for
example:

• Data cache flush (CFLUSH)

• Interprocessor interrupt request (WRIPIR)

• Console service routines (CSERVE), put character, get
byte stream, and so on

lca4_platform.mar Conditional definitions, for example:

• Platform

platform_system = 1
lca4 = 1

• Debug

.

.
; enable_debug_boot = 1
;disable_dcache = 1
disable_mchkcrd = 1
.
.

alphamac.mlb PALcode library of definitions and macros

MMS Build
Files

The final phase of the build process assembles, compiles, and links
the target image using the MMS utility and its description files
that specify the target and its dependencies. The file descrip.mms
is the main description file that calls the specific platform file, for
example platform_sample.mms , that the developer creates for the
target platform to be ported. It is within this platform description
file that the PALcode description file pal_descrip.mms is called.

Reference

Example 4–2 shows the target and dependencies within
pal_descrip.mms that creates the PALcode for the Platform
platform. Table 4–4 describes the PALcode files.

4–16 Developing a Minimal Image for the Target

PALcode MMS Description File

PALcode MMS Description File

pal_descrip.mms
File

The PALcode description file pal_descrip.mms is executed by the
platform-specific description file, for example, platform_sample.mms ,
during the last phase of the build process. The pal_descrip.mms
file describes the target PALcode image and its dependencies.

pal_descrip.mms
Example

Example 4–2 shows a section of pal_descrip.mms that creates the
PALcode for a specific sample platform.

Note that two object files are linked together.

pal_lca4_platform.obj
osfpal_lca4_platform.obj

Table 4–4 describes the files used to create the PALcode.

Example 4–2 pal_descrip.mms for a Sample Platform

.suffixes

.suffixes .exe .obj .c .h .b32 .req .mar .sdl

src = cp$src:
cfg = cp$cfg:

!
! We define the linker, librarian, macro assembler and
! C compiler to be MMS macros so that we may switch transparently
! between Alpha and VAX versions of these tools
!
.include $(cfg)macros.mms
.include $(src)setup.mms
!
first_target :

@ write sys$output "You have to explicitly specify a target"
.
.
lca4_platform : cp$exe:pal_lca4_platform.exe

@ continue
.
.
cp$exe:pal_lca4_platform.exe : cp$obj:pal_lca4_platform.obj,

cp$obj:osfpal_lca4_platform.obj
p_link cp$obj:pal_lca4_platform/map=cp$exe:/exe=cp$exe:

/full
/system=0+osfpal_lca4_platform

.

.

.sdl.mar
sdl/lang=mac=cp$src/vms $(mms$source)

!
! Macro libraries
!
cp$src:alphamac.mlb : cp$src:starlet.mar,-

cp$src:paldef.mar,-
cp$src:alpha_defs.mar,-
cp$src:osfalpha_defs.mar,-

(continued on next page)

Developing a Minimal Image for the Target 4–17

PALcode MMS Description File

Example 4–2 (Cont.) pal_descrip.mms for a Sample Platform
cp$src:impure.mar,-
cp$src:pal_macros.mar,-
cp$src:logout.mar,-
cp$src:pal_def.mar

library/create/macro cp$src:alphamac -
cp$src:starlet.mar,paldef,alpha_defs,osfalpha_defs,impure,

pal_macros,logout,pal_def

!
! Build procedure for PAL code
!
fp_dep = cp$src:entry_v4.mar,cp$src:gccmac.mar,cp$src:fp_v4.mar,

cp$src:long64.mar,cp$src:rtwdiv.mar
fp_asm = cp$src:entry_v4+gccmac+fp_v4+long64+rtwdiv

cp$obj:pal_lca4_platform.obj : cp$src:lca4_platform.mar,cp$src:pal_ev4.mar,
cp$src:alphamac.mlb

p_assemble cp$src:lca4_platform+pal_ev4+alphamac
/lib/lis=cp$lis:pal_lca4_platform
/obj=cp$obj:pal_lca4_platform/show=meb

.

.
cp$obj:osfpal_lca4_pjlatform.obj : cp$src:lca4_platform.mar,

cp$src:osfpal_common.mar,
cp$src:osfpal_machine.mar,cp$src:alphamac.mlb

p_assemble cp$src:lca4_platform+osfpal_common+osfpal_machine+alphamac
/lib/lis=cp$lis:osfpal_lca4_platform
/obj=cp$obj:osfpal_lca4_platform/show=meb

.

.

4–18 Developing a Minimal Image for the Target

Modifying the Kernel Files

Introduction This section describes the following:

• Adding Console Terminal Support

• Time of Year (TOY)

• NVRAM - Environment Variables

• Environmental Variable Debug

• Tracing the Transition from PALcode to Kernel

• Showing Progress During Initialization

Developing a Minimal Image for the Target 4–19

Adding Console Terminal Support

Adding Console Terminal Support

Introduction Macros are defined in kernel_alpha.mar to support character I/O
to the terminal.

Modified
Macros

The combott_putc macro can be modified to the address required
by the hardware. An example of this can be seen in Example 4–7.

The combott_putc macro must also be modified in the platform
utility file, for example platform_util.mar , for character I/O
debug support by XDELTA. Example 4–3 shows the combott_putc
macro definition. This macro is also used when the developer
strategically places jputc and jgetc in kernel.c for tracing code
progression. Example 4–8 shows how the kernel code can be
traced.

Console
Terminal
Address

Input/output addresses are specified in the following macro files:

• kernel_alpha.mar

The Alpha AXP kernel functions of the Alpha AXP Firmware
are contained in this file.

• platform_util.mar

The platform utility file defines macro routines that read and
write character data and registers to the serial communication
port. The address for this controller is also defined in this file.

Example 4–7 shows how kernel_alpha.mar is modified, and
Example 4–3 shows the combott_putc macro definition in
platform_util.mar .

4–20 Developing a Minimal Image for the Target

Adding Console Terminal Support

Platform Utility
File Example

Example 4–3 shows the I/O base address definitions and the
combott_putc macro in platform_util.mar that were used for a
specific platform. Note that the I/O address varied with the
revision of the hardware as defined by lca4_pass2 .

Example 4–3 Defining the Address in the Platform Utility File

; PLATFORM_UTIL.MAR
.
.

lca4_pass2 = 0

.if ne lca4_pass2
io_base = ^x1c
.endc

.if eq lca4_pass2
io_base = ^x30
.endc

;+
;
; This macro is used to put a character to the platform serial port.
;
; Inputs:
; ascchar = Character to be displayed
; rcom,rs = Scratch registers
;-

com1 = ^x3f8
com2 = ^x2f8
thr = 0
rbr = 0
dll = 0
ier = 1
iir = 2
lcr = 3
mcr = 4
lsr = 5
msr = 6
scr = 7
lsr$v_dr == 0
lsr$m_dr == 1
lsr$v_thre == 5 + 8
;;; lsr$m_thre == 1@lsr$v_thre
lcr$m_sbs == ^x04
lcr$m_dla == ^x80
mcr$m_dtr == ^x01
mcr$m_rts == ^x02
mcr$m_out1 == ^x04
mcr$m_out2 == ^x08
baud_9600 == ^x0c
char_8bit == ^x03

(continued on next page)

Developing a Minimal Image for the Target 4–21

Adding Console Terminal Support

Example 4–3 (Cont.) Defining the Address in the Platform Utility File

.macro combott_putc ascchar,rcom,rs,?lab1,?lab2
lda ’rcom’,io_base(r31) ; io and EISA bus address
sll ’rcom’,#28,’rcom’
lda ’rs’,com1+lsr(r31) ; line status register
sll ’rs’,#5,’rs’ ; shifted com1 address
bis ’rs’,’rcom’,’rcom’ ; tt port address in rcom

lab1:
ldl ’rs’,(’rcom’)
mb
srl ’rs’,#lsr$v_thre,’rs’ ; extract the bit
blbc ’rs’,lab1 ; if not ready to txmit, spin.
lda ’rcom’,io_base(r31) ; io and EISA bus address
sll ’rcom’,#28,’rcom’
lda ’rs’,com1+thr(r31) ; transmit holding register
sll ’rs’,#5,’rs’ ; shifted com1 address
bis ’rs’,’rcom’,’rcom’ ; tt port address in rcom
and ’ascchar’,#^xff,’rs’
stl ’rs’,(’rcom’) ; xmit the character
mb ; wait for the write

.endm combott_putc
.
.

4–22 Developing a Minimal Image for the Target

Time of Year (TOY)

Time of Year (TOY)

TOY Files A few files may need modification for controlling TOY clock
interrupts, depending on the type of hardware used for this real
time clock. They are:

• toy_driver.c

• Included header files, for example, combo_def.h

• timer.c

TOY Example If the VTI 82C106 Combo Chip is used for the TOY, a developer
may need to modify the address definitions in combo_def.h . Note
that for this platform, Example 4–4 shows that COM1 = 0x3F8
and the TOY = 0xC170.

Example 4–4 TOY Base Address - combo_def.h

/**************************** COMBO_DEF.H *********************************/
.
.

/* base addresses of various devices within combo chip */

#define COM1 1016
#define COM2 760
#define LPTD 956
#define LPTS 957
#define LPTC 958
#define KBD_MS 96
#define TOY_RAM 49520

.

.

Developing a Minimal Image for the Target 4–23

NVRAM - Environmental Variables

NVRAM - Environmental Variables

Overview Environmental variables are a mechanism to manage console
state. A certain number of these variables (I.D. 0 - 3F16) are
required by the Alpha AXP architecture. An example use of one
of these is boot_dev , the device used to boot the operating system
for the latest attempt.

Environment variables are typically stored in EE Flash ROM or a
suitable nonvolatile device, such as a NVRAM.

Reference

For more information, refer to Alpha AXP System Reference
Manual V5.0, Platform section.

Modifying
NVRAM Files

The files that may need to be modified are:

• esc_nvram_driver.c , Driver for ECS (Intel 82374EB) and SIO
(Intel 823781B) EEROM

• nvram_driver.c , protocol driver

• nvram_def.h , NVRAM base address and structure definitions

4–24 Developing a Minimal Image for the Target

NVRAM - Environmental Variables

Address
Changes
Example

Example 4–5 shows part of the nvram_def.h file. The base address
and other definitions might need to be modified to support the
target platform.

Example 4–5 The nvram_def.h File

/**************************** NVRAM_DEF.H **********************************/
.
.

/* for NVRAM accessed via the ESC and SIO chips */

#define NVRAM_BASE 0x800 /* base address */
#define NVRAM_PAGE_REG 0xC00 /* base address */

struct srm_nvram {
unsigned short int checksum;
unsigned short int version;
unsigned char text[NVRAM_EV_LEN-4];
} ;

#if PLATFORM

/* Defines for configuration tables.*/
#if PLATFORM
#define NUMBER_OF_ENTRIES 104
#define LENGTH_OF_IDENTIFIER 2000
#define LENGTH_OF_DATA 2048
#define LENGTH_OF_ENVIRONMENT 1500
#define LENGTH_OF_EISA_DATA 2500
#endif

.

.

Developing a Minimal Image for the Target 4–25

NVRAM - Environmental Variables

Changing the
NVRAM Driver

Example 4–6 shows part of the esc_nvram_driver.c file that
manipulates the address for a particular platform. This file is
responsible for reads and writes to the NVRAM or EE Flash
ROM.

Example 4–6 The esc_nvram_driver.c File

/******************** ESC_NVRAM_DRIVER.C ***********************/
.
.

#if PLATFORM

#define BankSet8 0x80000B00
#define BankValid 1

int irl (unsigned int p)
{

__int64 platform_address = 0x10000000;

platform_address <<= 4;
platform_address += (__int64)p;

return(*((int *)platform_address));

}
.
.

#endif

4–26 Developing a Minimal Image for the Target

Environmental Variable Debug

Environmental Variable Debug

Turning Off
NVRAM Drivers

If the NVRAM device is not accessed, the NVRAM environmental
variable device drivers can be loaded but not started automatically
for the first powerup.

To keep the NVRAM device drivers from starting automatically,
use keywords to specify them as files instead of drivers and place
the keywords in the platform-specific build file (for example,
platform_files.bld).

The NVRAM drivers are:

• nvram_driver.c

• esc_nvram_driver.c

Developing a Minimal Image for the Target 4–27

Tracing the Transition from PALcode to Kernel

Tracing the Transition from PALcode to Kernel

Overview A put character debug routine was placed in the kernel_alpha.mar
routine to echo a character to the terminal connected to COM1 at
the point where control is passed from PALcode to the Alpha AXP
Firmware.

Example 4–7 shows a modified combott_putc routine for a
target port that used an EISA-based I/O bus configuration and
combination communication chip.

Example 4–7 Tracing kernel_alpha.mar

.if ne PLATFORM_DEBUG ! AVANTI_DEBUG
;;; put a char to com1 for first platform poweron.
;;; remove this code after that.

io_base = ^x30
com1 = ^x3f8
thr = 0
lsr = 5
lsr$v_thre == 5 + 8

.macro combott_putc ascchar,rcom,rs,?lab1,?lab2
lda ’rcom’,io_base(r31) ; io and EISA bus address
sll ’rcom’,#28,’rcom’
lda ’rs’,com1+lsr(r31) ; line status register
sll ’rs’,#5,’rs’ ; shifted com1 address
bis ’rs’,’rcom’,’rcom’ ; tt port address in rcom

lab1:
ldl ’rs’,(’rcom’)
mb
srl ’rs’,#lsr$v_thre,’rs’ ; extract the bit
blbc ’rs’,lab1 ; if not ready to txmit, spin.
lda ’rcom’,io_base(r31) ; io and EISA bus address
sll ’rcom’,#28,’rcom’
lda ’rs’,com1+thr(r31) ; transmit holding register
sll ’rs’,#5,’rs’ ; shifted com1 address
bis ’rs’,’rcom’,’rcom’ ; tt port address in rcom
and ’ascchar’,#^xff,’rs’
stl ’rs’,(’rcom’) ; xmit the character
mb ; wait for the write

.endm combott_putc

_krn$_start_::

4–28 Developing a Minimal Image for the Target

Showing Progress During Initialization

Showing Progress During Initialization

Terminal
Echoing

The printf and jputc routines can be placed strategically
throughout the kernel module kernel.c to provide console
terminal echoing during powerup initialization.

jputc Routine The put character routines can be located within krn$_idle idle
process routine to display a character at the point where the
platform-specific initialization routine is called.

Note

Note that platform_util.mar defines the macro combott_putc
for the combination port put character operation used by
jputc .
The base address used for the EISA bus and the COM1
port address might have to be changed for the target
platform.

jputc Example Example 4–8 shows one example of placing the jputc routine.

For a more detailed example, see the current version of kernel.c
in CP$REF:.

Example 4–8 Tracing kernel.c with jputc
.
.
krn$_idle(char *p)
{

struct PCB *pcb;
struct SEMAPHORE *s;
int i;
char name[8];
int id;
struct LOCK *lock;
struct impure *IMPURE;
int hcode;
int delay_count;
int size;
int base;
int *adr;
char *free;

free = p;

/* Perform primary platform-specific initialization */

platform_init1();

(continued on next page)

Developing a Minimal Image for the Target 4–29

Showing Progress During Initialization

Example 4–8 (Cont.) Tracing kernel.c with jputc

#if PLATFORM
jputc(’\n’);
jputc(’Z’);

#endif
.
.

printf
Statements

After the platform has been initialized and drivers have been
loaded, printf statements can be used in kernel.c to echo
character strings to indicate results.

Example 4–9 shows how to use a printf statement to trace
progress as the Alpha AXP Firmware kernel starts. Note that
the Avanti platform indicates results to a LED display operator
control panel.

Example 4–9 Tracing kernel.c with printf
.
.
/* Set up the semaphore and process queue headers */
#if AVANTI

PowerUpProgress(0xfe);
#else

printf("initialized idle PCB\n");
#endif

if (primary()) {

primary_cpu = id;
timer_cpu = primary_cpu;

#if AVANTI
PowerUpProgress(0xfd);

#else
printf("initializing semaphores\n");

#endif
pcbq.flink = (void *) &pcbq.flink;
pcbq.blink = (void *) &pcbq.flink;
krn$_sem_startup();

.

.

4–30 Developing a Minimal Image for the Target

Modifying the Driver Files

Introduction This section describes the following:

• Configuring the Bus

• Bus Windows Device Configuration

• Sequencing Driver Startup

• Disabling Hardware Drivers from Loading

• Tracing Driver Initialization

• Using Polled Mode for Drivers

Developing a Minimal Image for the Target 4–31

Configuring the Bus

Configuring the Bus

Defining
Addresses

The implementation of I/O bus drivers may change with each
hardware system design.

Developers must consider how the bus driver and the devices on
the bus are sized and configured.

Developers define the I/O bus driver implementation in the
platform-specific I/O files, for example, platform_io.h and
platform_io.c .

platform_io.h
Example

Example 4–10 shows part of a sample platform_io.h file that
defines the Peripheral component interconnect (PCI) and
Extended Industry Standard Architecture (EISA) I/O bus
addresses.

4–32 Developing a Minimal Image for the Target

Configuring the Bus

Example 4–10 PCI and EISA I/O Address

/* PLATFORM_IO.H */
.
.

* Register offsets into PCI config space; only longword aligned regs shown */

#define VEND_DEV_ID 0x0
#define COM_STAT 0x4
#define REV_ID 0x8
#define CACHE_L_SIZ 0xC
#define BASE_ADDR0 0x10
#define BASE_ADDR1 0x14
#define BASE_ADDR2 0x18
#define BASE_ADDR3 0x1C
#define BASE_ADDR4 0x20
#define BASE_ADDR5 0x24

#define RESERVED0 0x28
#define RESERVED1 0x2C
#define EXP_ROM_BASE 0x30
#define RESERVED2 0x34
#define RESERVED3 0x38
#define INT_LINE 0x3C

.

.
/* *

* EISA BUS DEFINITIONS *
* */

#define CONFIG_ADDR_SEL 0x1e
#define Eisa_IO (BaseIO<<28)
#if lca4_pass2 /* pass 1 lca */

#define IO_ADDR_SEL 0x1c
#define DMEM_ADDR_SEL 0x30

#define DMEM_ADDR_SEL 0x20
#define SMEM_ADDR_SEL 0x20
#define MEM_ADDR_SEL 0x20
#endif

Developing a Minimal Image for the Target 4–33

Bus Windows for Device Controllers

Bus Windows for Device Controllers

Bus Windows
Description

Device controller bus windows can be specified in the port driver
for the particular device. For example, in the n810_driver.c file,
bus windows are defined for the NCR 53C810 SCSI device chip
that interfaces with the PCI.

Example 4–11 shows part of the n810_driver.c port driver that
defines the PCI window space for the NCR 53C810 SCSI device
chip.

Reference

For more information about class and port drivers and
their API, refer to the Device Driver Interface Guide for the
Alpha AXP Firmware.

Example 4–11 Defining PCI Bus Windows

/******************* N810_DRIVER.C **********************/
.
.

#if PLATFORM & (PLATFORM_PASS_NUMBER == 2)
#define window_base 0x40000000
#endif

#ifndef window_base
#define window_base 0
/* To make it work as it did before */
#define PCI_MEM_BASE 0x80000000
#endif

#define n810_phys(x) (x + window_base)
#define n810_virt(x) (pb->scripts+(int)(x)-(int)&n810_scripts)

.

4–34 Developing a Minimal Image for the Target

Sequencing Driver Startup

Sequencing Driver Startup

Introduction Developers can specify the phase, and the order in that phase, in
which a driver should start during the boot process.

Driver Startup
Process

The driver startup table identifies when a specific driver is
started. The driver startup table includes the initialize routine
name, the device driver name, and the phase in which the driver
is started.

The source routine DST.C defines the driver startup table
structure.

The DST.C routine is built by newbuild and should not be edited
directly.

Specifying
Driver Startup

To specify the phase in which a driver should start, modify the
appropriate information in the configuration build file.

Driver Startup
Example

An example driver startup table for phase 3 drivers is as follows:

.
kbd_driver MUST be started after graphics drivers & before serial port
driver tt_driver.c 3 group driver !

driver vgag_driver.c 3 group driver "

driver kbd_driver.c 3 group driver #

driver combo_driver.c 3 group driver $

In this example, the terminal class driver tt_driver.c ! must
start before the serial terminal port driver combo_driver.c $

(VLSI 82C106 PC/AT integrated combination I/O chip driver).

The graphic VGA driver vgag_driver.c " is started before the
serial terminal port driver. Starting the VGA driver first allows
the VGA monitor to be used as the console device (if present)
instead of the serial terminal port.

The keyboard driver kbd_driver.c # must be started after
graphics drivers, but before the serial terminal port.

Developing a Minimal Image for the Target 4–35

Disabling Hardware Drivers from Loading

Disabling Hardware Drivers from Loading

Robust Mode When first trying to execute the console image, it could be
beneficial to stop the phase 5 drivers from loading. The phase 5
drivers directly control hardware such as the VGA, keyboard, and
floppy, and can cause the system to hang.

To stop the phase 5 drivers from loading, set robust mode in the
powerup routine.

Example 4–12 shows an abstract of code from the powerup routine
that disables phase 5 drivers from loading.

Example 4–12 Setting Robust Mode in powerup_platform.c

int _align (LONGWORD) robust_mode = 1;
.
.
.

if (!robust_mode && !apu_start)
{

qprintf("Start driver phase 5\n");
ddb_startup (5);

}

Loading and
Unloading
Drivers

Later, after the console prompt is displayed, drivers can be loaded
manually with the console command:

>>> init device_name

For some platforms, drivers can be enabled for polling and testing
devices, or shut down with the console commands:

>>> configure -p device_name

>>> shutdown device_name

Powerup
Process

The powerup process controls the screen and finishes all the
initialization. This process is started by krn$_create in the
kernel.c module. At this point, the tt driver is running in the
initialization process.

4–36 Developing a Minimal Image for the Target

Tracing Driver Initialization

Tracing Driver Initialization

Using printf to
Display Drivers

The printf statements can be conditionally compiled to display
each driver at the start and end of its initialization. Two printf
statements can be placed in the ddb_startup routine in the
filesys.c file.

Example 4–13 shows the printf statements in ddb_startup routine
in the filesys.c file. The ddb_startup routine initializes the
drivers listed in the configuration build file in their respective
phase.

Example 4–13 Tracing Driver Startup in filesys.c

ddb_startup (int phase) {
struct DST *dstp;
int status;
int i;

for (dstp=dst, i=0; i<num_drivers; i++, dstp++) {
if (dstp->phase != phase) continue;

#if 0
qprintf ("calling module %s\n", dstp->name);

#endif
status = (*dstp->startup) (phase);
if (status != msg_success) {

qprintf ("%08X exit status for %s_init\n", status, dstp->name);
}

#if 0
qprintf ("exiting module %s\n", dstp->name);

#endif
}
return msg_success;

}
#endif

Note

There are printf statements also in the ddb_startup_driver
routine. This routine starts or restarts an individual driver
when given the driver’s name. Note that this can fill up
the event log if the driver is repeatedly started with a test
script. Refer to filesys.c for more information.

Developing a Minimal Image for the Target 4–37

Using Polled Mode for Drivers

Using Polled Mode for Drivers

Polling
Overview

When porting the Alpha AXP Firmware, first build an image with
the drivers set to use the polled mode for handling interrupts.
Using polled mode may help to eliminate unexpected hangs by
avoiding the use of hardware, PALcode, and interrupt service
routines (ISR).

Setting Polled
Mode

The driver database (DDB) structure has a ‘‘setmode’’ member
that defines the address of the class driver routine. The class
driver routine sets various driver modes:

• Start or stop a driver

• Hardware interrupt or polled method

A developer defines the interrupt handling mode to be
DDB$K_POLLEDor DDB$K_INTERRUPTin the port block (PB) for each
port driver. The interrupt handling mode definition can be
hard coded or defined by a conditional compilation directive and
compiled accordingly. Examples of each follow.

Conditional
Directive

Example 4–14 shows DRIVER_MODEbeing defined in the combination
port driver combo_driver.c as the value of DDB$K_POLLED!. The
port block permanent mode is set to this value " to indicate the
current status of the port for this instantiation. This value is
passed to the set mode routine in tt_driver.c class driver #.

Example 4–14 Conditionally Defining Polled Mode in a Driver

/* COMBO_DRIVER.C */
.
.
#if DEBUG
#define DRIVER_MODE DDB$K_POLLED!
#else
#define DRIVER_MODE DDB$K_INTERRUPT
#endif

/* connect the read/write routines to the port block */
ttpb->rxread = combott_rxread;

.

.
ttpb->perm_mode = DRIVER_MODE; "
ttpb->perm_poll = 0;
spinunlock(&spl_kernel);

.

.
/* set the polling/interrupt mode */
tt_setmode_pb (ttpb, DRIVER_MODE); #

4–38 Developing a Minimal Image for the Target

Using Polled Mode for Drivers

Hard Coding
the Interrupt
Mode

Example 4–15 shows the port block mode being hard coded to the
value of DDB$K_INTERRUPT" or DDB$K_POLLED#. If the vector has
not been set !, the software polled method is used.

Example 4–15 Defining Polled Mode in a Driver Using Hard Coding

/* DAC960_DRIVER.C */

if(pb->pb.vector) !
{

pb->pb.mode = DDB$K_INTERRUPT; "
pb->pb.desired_mode = DDB$K_INTERRUPT;
int_vector_set(pb->pb.vector,
dac960_interrupt, pb);
}

else
{
pb->pb.mode = DDB$K_POLLED; #
pb->pb.desired_mode = DDB$K_POLLED;
}

Reference

For more information regarding drivers and DDBs, refer to
Device Driver Interface Guide for the Alpha AXP Firmware
or the Alpha Firmware Design Document Version 0.10.
Note that the DDB and driver modes are defined in
KERNEL_DEF.SDL.
Also note that interrupt request lines (IRQx) are defined in
the genipltbl routine within pal_ev4.mar .

Developing a Minimal Image for the Target 4–39

Modifying the Build Files

Introduction This section describes how to modify the build files when building
the minimal image for the target platform.

Developing a Minimal Image for the Target 4–41

Modifying the Configuration Build File

Modifying the Configuration Build File

Adding Drivers,
Files and
Options

Once additional drivers and other files have been created, they
are added to the configuration build file. Other modifications
concerning the platform are also made to this file: for example,
preprocessor directives for conditional compilation, and constants
specific to the platform. These modifications are entered into the
file in a format that is slightly different than C programming:
they are called option and value statements.

Configuration
Build File
Example

An example of changes made to Configuration _files.bld follows.
These changes must be made when porting to a new platform or
adding a configuration to the same platform. Callouts label these
changes.

Default Options The file options.bld that is included in the configuration file !,
defines the default option and value statements used during a
build. By default, the definitions in options.bld are defined as
zero.

file: PLATFORM_FILES.BLD -- build file for platform.
#
small image, ROM version

include CP$SRC:OPTIONS.BLD !
.
.

The developer can enable individual options and values with
definitions placed in the Configuration _files.bld file. These
statements create individual header files in the CP$INC directory
by the next phase of the build process: the newbuild.com
procedure.

Hardware and
Architecture
Name

Every configuration file contains the name of the hardware
platform and its architecture, for example:

file: platform_files.bld -- build file for platform.
#
small image, ROM version

include CP$SRC:OPTIONS.BLD
platform SABLE !
architecture ALPHA "
.
.

! Platform is the hardware platform identifier.

" Alpha or VAX is the architecture name.

4–42 Developing a Minimal Image for the Target

Modifying the Configuration Build File

Value
Statements

Value statements define constants, for example, the number of
picoseconds per CPU clock cycle or the size of the heap.

value DEFAULT_PSEC_PER_CYCLE 5260!
value MIN_HEAP_SIZE 0x14000 # 80K "

! DEFAULT_PSEC_PER_CYCLE 5260

• Defines the number of picoseconds per CPU clock cycle
(approximately 190 MHz), used in the timer routine
TIMER.C

" MIN_HEAP_SIZE 0x14000

• Defines the size of the memory (8192010) heap used for
dynamic memory allocation

Option
Statements

Option statements are used like C preprocessor #def directives,
typically for conditional compilation, for example, adding
diagnostic support or for specifying a protocol/server.

.

.
option DIAG_SUPPORT
option MSCP
option BOOTP_SUPPORT
.
.

The DIAG_SUPPORToption conditionally enables the routine that
initializes the diagnostic environment variables in ev_driver.c
used by diagnostics.

Removing and
Adding Kernel
Files

Files are removed from the build by deleting them from the build
file.

Files are added to the kernel source routines with the keyword
file followed by the file name.

Screen Files

file allocfree.c group base
file alphamm.c group base
file ansi.c group base

The keyword file indicates a kernel source code file.

Add new source files names (if any) and specify a group.

Groups The keyword group compiles all related files into the same object
file, for example, base. This is useful image reduction, saving the
inter-module call frame linkage.

file kernel.c group base
file kernel_support.c group base

Group object compilation is typically implemented for a base-level
code release, otherwise there would be too much recompilation
when changes are made to a single file.

Developing a Minimal Image for the Target 4–43

Modifying the Configuration Build File

An MMS qualifier /MACRO=opt, used in the third phase of the build
process, takes advantage of this feature.

Group Driver The driver files are a separate group of platform-specific files
that are driver-assist routines. They contain hardware-specific
functions, such as bus control register read/write routines, and
other routines specific to the platform.

file hwrpbtt_driver.c group driver
file iic_platform_driver.c group driver

4–44 Developing a Minimal Image for the Target

Default Build Options and Values

Default Build Options and Values

options.bld File The options.bld file defines the default option and value
statements used during a build. This allows newbuild.com to
create individual header files in CP$INC directory during the build.

By default, all definitions in options.bld are defined as zero,
except for ALPHA_CONSOLE, value, and message statements.
The developer can enable individual options and values with
definitions placed in the Configuration _files.bld configuration
build file.

Options and
Values

The options.bld file defines the following options and values:

• Platform

• Architecture

• Miscellaneous

• Values

• Messages

Build Options
Example

Example 4–16 shows the contents of options.bld that contains the
default option and value definitions.

Example 4–16 The options.bld File

options.bld
#
This file defines the options which are used in the common console build
environment. An include file is created for each option in cp$inc. If
the option is defined but not invoked, the include file will set the option
to 0.
#

#
ALPHA_CONSOLE is always defined. Use for conditionalizing sources which are
built in environments other than the common console build environment.
#
define option ALPHA_CONSOLE # To prevent warning
option ALPHA_CONSOLE

#
Platform options
#
define option PLATFORM A # Platform A Rom based image
define option PLLOAD # Platform A loadable image
define option PLBUPDATE # Platform B update image
define option COMMON # Common to all platforms

#
Architecture options
#
define option ALPHA
define option VAX

(continued on next page)

Developing a Minimal Image for the Target 4–45

Default Build Options and Values

Example 4–16 (Cont.) The options.bld File

#
Miscellaneous options
#
define option ARC_SUPPORT #
define option CONSOLE_DRIVER #
define option DIAG_SUPPORT #
define option DE200 #
define option EXTRA # Include extra stuff.
define option INTERACTIVE_SCREEN #
define option MINIMAL_MORGAN #
define option MODE64 # Full 64 bit mode.
define option MODULAR # Modular console (requires OVERLAY)
define option MSCP # client MSCP support
define option MSCP_SERVER # server MSCP support
define option OVERLAY # overlays
define option RELEASE # This is a release version (?)
define option TGA #
define option TGA_VMS_BUILD #
define option UNIPROCESSOR # obsolete
define option VALIDATE # Build "checked" version of code.
define option XDELTA_ON # Turn XDELTA on.
define option XDELTA_INITIAL # Modular, take initial Bpt
define option RUNS_ON_EISA # EISA based system
define option BOOTP_SUPPORT # Turn on BOOTP, need to build inet driver
define option SYMBOLS # Turn on Symbols, need to build vlist

#
Values
#
define value MIN_HEAP_SIZE 0x18000 # 96K
define value HEAP_SIZE 0x100000 # 1024K
define value HEAP_BASE 0

define value DEFAULT_PSEC_PER_CYCLE 8000
define value DISCRETETIMER_BASE 0x4000
define value ENET_ID_BASE 0x3800
define value EEROM_LENGTH 8192
define value NVRAM_EV_LEN 2048
define value MAX_ELBUF 8192
define value MAX_RECALL 16
define value RTC_BASE 0x8000
define value RTC_OFFSET_REG 0x70
define value RTC_DATA_REG 0x71

define value MAX_PHYSMEM_MB (2*1024)
#
Regular expressions for suppressing undefined options during option
scanning (see OPT.MMS).
#
suppress option /DEBUG/
suppress option /TRACE/

#
Messages
#
message file generic_messages.c

message prefix msg_

(continued on next page)

4–46 Developing a Minimal Image for the Target

Default Build Options and Values

Example 4–16 (Cont.) The options.bld File

message value msg_success 0
message value msg_failure 1
message value msg_def 2
message value msg_halt 3
message value msg_loop 4
message value msg_error 5

Modifying for
Nightly Builds

The build file build.com creates a multitude of Alpha AXP
Firmware images for a number of platforms on a nightly basis.
build.com is submitted to a batch queue and invokes procedures
and utilities that a developer might invoke manually.

• cp_common_login.com

• newbuild.com

• mms/description=cp$src:descrip.mms

Modifying
build.com

To take advantage of the automated nightly build, the new
target configuration must be added to build.com as illustrated in
Example 4–17, (see the notes that follow the example).

Example 4–17 Modifying build.com
.
.
$ q$build_val == "SBMIN,SBFSAFE,SABLE,SBUPDATE,SBLOAD,JENSEN," + -

"JNLOAD,MEDULLA,TURBO," + -
"PLATFORM!,MSLOAD"," + -
"COBRA,CBLOAD"

.

.
$ BUILD_PLATFORM: subroutine #
$ on warning then exit $status
$ call checkspace 44000
$ call newbuild
$ call mms
$ exit 1
$ endsubroutine
$!
$ BUILD_MSLOAD: subroutine #
$ on warning then exit $status $
$ call checkspace 54000 %
$ call newbuild MSLOAD ALPHA "PLATFORM EXTRA"
$ call mms PLATFORM
$ exit 1
$ endsubroutine
.
.

Developing a Minimal Image for the Target 4–47

Default Build Options and Values

The following callouts describe the entries placed in the nightly
build file build.com , as shown in Example 4–17.

! Enter the name of the base platform configuration.

• Example: PLATFORM, the compressed, ROM-based Alpha
AXP Firmware image for the Platform platform

" Create the names of configuration variations of the base
platform.

• Example: MSLOAD, a variation that can be downline
loaded with MOP protocol

Enter the names of the subroutines called to build the
particular configuration.

$ Upon any warning, error, or severe error, exit this procedure
(for the current command level) with the condition code in
32-bit longword global symbol.

% Indicate the number of disk blocks required for the image
build to the Checkspace routine.

4–48 Developing a Minimal Image for the Target

Debugging

Introduction This section describes the following:

• Using XDELTA

• XDELTA Commands

• XDELTA Symbolic Extensions

Developing a Minimal Image for the Target 4–49

Using XDELTA

Using XDELTA

XDELTA
Overview

XDELTA is a debugger for system level, (elevated IPL interrupt
priority level) code. XDELTA (like DELTA, the user mode
debugger):

• Is nonsymbolic

• Uses the same command syntax

• Displays no visible prompt

• Prints short error messages, for example, "Eh?"

Building with
XDELTA

To use XDELTA to debug the Alpha AXP Firmware, add the
following to your Configuration _files.bld .

• Option XDELTA_ON

• XDELTA files xdelta_isrs.mar and xdelta.mar

XDELTA
Example

For example, the following code fragment was extracted from the
Sable platform configuration build file sbload_files.bld . It builds
an image that can be downline loaded using MOP protocol.

Example 4–18 Including XDELTA in the Build File
.
.
.
option XDELTA_ON 1
file xdelta_isrs.mar
file xdelta.mar
.
.
.

Note that in Example 4–18 the XDELTA_ON option is specifically
turned on with a one. However, the following statement is
equivalent:

option XDELTA_ON

Default Options There are default options defined within the build file
cp$src:config.bld . This file defines the XDELTA option as
zero. This remains as zero if not redefined in the build file for
the configuration. Definitions in the Configuration _files.bld
supersede definitions in the generic file.

4–50 Developing a Minimal Image for the Target

Using XDELTA

Turning Off
XDELTA

XDELTA can be disabled by commenting out its option with
a pound sign # option XDELTA_ON 1 or explicitly setting it to
zero option XDELTA_ON 0 as shown in Example 4–19. The files
xdelta_isrs.mar and xdelta.mar must also be commented out or
they are still part of the console image. Another alternative is to
remove all three lines from the build file.

Example 4–19 Excluding XDELTA from the Configuration Build File
.
.
.
option XDELTA_ON 0
#file xdelta_isrs.mar
#file xdelta.mar
.
.
.

Invoking
XDELTA

To invoke XDELTA, type bpt (breakpoint) from the console
prompt, for example:

Example 4–20 Invoking XDELTA at the Console Prompt

>>> bpt

Invoking from
OpenVMS

To gain experience with the XDELTA command set, a developer
can invoke XDELTA at the user level using a small sample
program. A logical must first be defined, as shown in the
following example.

Example 4–21 Invoking XDELTA at the User Level

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA

$ RUN/DEBUG Program_Name

Alpha/VMS DELTA Version 1.5

Brk 0 at 00020000

00020000! LDA SP,#XFFD0(SP)

Developing a Minimal Image for the Target 4–51

XDELTA Commands

XDELTA Commands

Commands Table 4–5 summarizes some of the typical commands used with
XDELTA. This is not intended to be an exhaustive list.

Table 4–5 XDELTA Functions and Commands

Function Command Syntax Example

BREAKPOINTS

Set
breakpoint

Address,N;B
(N is a breakpoint
number from 1 to 8)

2000C,1;B

Display
breakpoint

;B

;B
1 0002000C

Clear
breakpoint

0,N;B 0,1;B

Proceed from
breakpoint

;P ;P

(continued on next page)

4–52 Developing a Minimal Image for the Target

XDELTA Commands

Table 4–5 (Cont.) XDELTA Functions and Commands

Function Command Syntax Example

DISPLAYING MEMORY

Open
location
and display
contents

Address/ 200D0/ 47E03406

Open
location
and display
instruction

address!

200D0!
BIS R31,#X01,R6

Open
location
and display
contents in
ASCII mode

address" 200d0" .4àG

Replace
contents
of a given
address

Address/contents
new_contents

Replace 47E03406 with 12abcd78, then with an ASCII ’ab’.

200d0/ 47E03406 12abcd78

200d0/ 12ABCD78

200d0/ 12ABCD78 ’ab’

200d0/ 12AB4241

(continued on next page)

Developing a Minimal Image for the Target 4–53

XDELTA Commands

Table 4–5 (Cont.) XDELTA Functions and Commands

Function Command Syntax Example

DISPLAYING MEMORY

Set display
mode:
byte, word,
longword, or
quadword

[B, [W, [L, [Q

.

.

.
Brk 1 at 000200D0
000200D0! BIS R31,#X01,R6

200D0/ 47E03406 = Examine Loc. 200D0

[B = Set mode to byte
200D0/ 06 = Examine Loc. 200D0

[W = Set mode to word
200D0/ 3406 = Examine. Loc. 200D0

[L = Set mode to longword
200D0/ 47E03406 = Examine. Loc. 200D0

[Q = Set mode to quadword
200D0/ 5FFF041F 47E03406 = Examine. Loc. 200D0

[A = Set mode to address
200D0 s = Step from Loc. 200D0
00000000 000200D8! ADDL R3,#X01,R7

Display
contents of
previous
location

ESC

200d0/ 12ABCD78 ESC $
00000000 000200CC/6B5A6C41 ESC $
00000000 000200C8/22020030 ESC $
00000000 000200C4/47FF0405

Display
contents of
next location

Line Feed LF

200d0/ 12ABCD41 LF

000200D4/5FFF041F LF

000200D8/40603007 LF

000200DC/2007FFFA

Display
indirect

TAB or /

10000/ 00083089 TAB

00083089/8847FF04

Display
range of
locations

Address_1st,
address_last/

200d0,200e0/ 47E03406
000200D4/5FFF041F
000200D8/40603007
000200DC/2007FFFA
000200E0/F800000B

(continued on next page)

4–54 Developing a Minimal Image for the Target

XDELTA Commands

Table 4–5 (Cont.) XDELTA Functions and Commands

Function Command Syntax Example

SETTING/DISPLAYING REGISTERS

Set base
register

’value’,N;X 80000000,0;X

Display base
register

Xn Return
or
Xn=

X0
00000003
X0=00000003

Display GPR Rn/
(n is decimal)

r0/ 00000001

Display a
group of
GPRs

GPR_First,GPR_
Last/

r0,r3/ 00000001
R1/00000001
R2/00010000
R3/00000000

Deposit GPR Rn/xxxxxxxx new_
data

r1/ 00000001 2

r1/ 00000002

START and STOP

GO ;G 20000;G

Single
step into
subroutines

S

Brk 0 at 00020000

00020000! LDA SP,#XFFD0(SP) s
00020004! BIS R31,#X09,R25 s
00020008! STQ R27,(SP)

Single
step over
subroutines

O

00020040! STQ R0,#X0010(SP) s
00020044! JSR R26,(R26) s = Error, user trying

to step
Eh? into kernel system

space (R26 = 805717B0)

00020040! STQ R0,#X0010(SP) s
00020044! JSR R26,(R26) o = Rather step over.

00020048! LDA R27,#XFFA8(R2)

Exit from
XDELTA

EXIT EXIT

(continued on next page)

Developing a Minimal Image for the Target 4–55

XDELTA Commands

Table 4–5 (Cont.) XDELTA Functions and Commands

Function Command Syntax Example

EXPRESSIONS and MISCELLANEOUS

Show value +,-,*,%{divide}
expression=

1+2+3+4= 0000000A

Shift a value
+left -right

value@shift

2@2
00000008

2@-1
00000001

4–56 Developing a Minimal Image for the Target

Extended XDELTA

Extended XDELTA

Overview XDELTA has been enhanced to include features such as symbolic
lookup/substitution, and other useful features. The additional
debug support provided to Alpha AXP Firmware developers allows
improved usage for the debugger.

This extended support is not found in the standard version of
XDELTA. To use these new features, developers must build
the firmware with the supporting files and option symbols as
described in Building with Extended XDELTA.

Commands The following commands have been added to the basic commands
set of XDELTA.

Table 4–6 Extended XDELTA Commands

Command Description

;R Toggle register display mode.

If on, the instruction registers are displayed when the instruction is displayed. This also
displays the console symbol associated with the procedure address in R27.

;C Continue back to the instruction following a single step that called a routine, such as JSR
or BSR.

Install a breakpoint at R26, proceed, when the breakpoint is reached, remove the
breakpoint.

U Until.

Do step overs until a routine call or return instruction is found, such as, JSR, BSR, or RET.

T Trace.

Do step overs until a breakpoint is encountered. Routine call instructions are displayed
when encountered, but other instruction displays are inhibited.

| Symbol_
Name

Display symbol.

Start command input with a vertical bar followed by a symbol which will be looked up in
the console symbol table and its value substituted.

| symbol*
Return

Display matching symbols and their addresses.

If instruction display mode is set, display overlay and offset as well as actual address.

;O Display the current resident overlays and their base addresses.

;W Walk stack.

;S Display processes.

Developing a Minimal Image for the Target 4–57

Extended XDELTA

Debug Session
Example

Example 4–22 shows an example debug session using the new
features and commands of the extended XDELTA.

Example 4–22 Using Extended XDELTA to Debug

>>>
>>>set ovly_debug 3
>>>show dev
Load Overlay CIXCD - mem/feab2e0, off/fe576fc, buf/feb9b00

Brk 0 at 00081798

00081798! BPT U <- Until
0008179C! RET R31,(R26) U <- Until
0004C6F0! LDL R0,0050(R3)
... <- (display removed for clarity)
0004C70C! RET R31,(R26) ;R <- Enable registers
U
0004C64C! MOV R29,SP R29/ 00000000 0FEAAE70 SP/ 00000000 0FEAAE70
0004C650! LDQ R26,0150(R29) R26/ 00000000 0004C64C R29/ 00000000 0FEAAE70
...
00048628! BSR R26,0020CF R27/ 00000000 00074058 00050968 decc$gprintf U
...
00048634! BSR R26,-0000C4 R27/ 00000000 00071EB0 00048328 hose_ordinal S
00048328! LDA SP,-0050(SP) SP/ 00000000 0FEAAFE0 SP/ 00000000 0FEAAFE0 ;C

Continue --^
Brk 8 at 00048638

00048638! LDQ R1,-0048(R2) R1/ 00000000 00000000 R2/ 00000000 00071F18
|ovly_debug/00000003 <- Symbol examine
|get_pte;b <- Symbol breakpoint
;B

1 00065428
2 000380B0

|get_pte/00303089
0006E124/00000000
0006E128/000380B0

4–58 Developing a Minimal Image for the Target

Extended XDELTA

Building with
Extended
XDELTA

To use the new features of the extended XDELTA debugger, the
appropriate source files from the CP$SRCarea must be added, as
follows:

1. Change your build file where it refers to xdelta.bli xdelta.obj
files to use alpha_xdelta.bli and alpha_xdelta.obj files.

2. In your ’platform’.c file, add the con$checkchar routine.
This routine checks for a character available and if so, returns
it. If no character is available, it returns zero. This should be
patterned after the con$getchar routine, except that it does not
wait for a character to be available.

3. To get symbols, include the following in your build file:

• sym_driver.c

• vlist.c

• sym_include

• sym_exclude

• option SYMBOLS

Developing a Minimal Image for the Target 4–59

Extended XDELTA

Command
Summary

Example 4–23 depicts the most commonly used commands of
XDELTA, along with the additional commands of extended
XDELTA.

Example 4–23 Extended XDELTA Command Summary

Primary Commands Secondary Commands
================ ==================

NU = System Xdelta, Not used
0-9 numbers
a-f numbers ;b breakpoint
f fp_regs ;c NU bug check
. current loc ;x x regs
q last quantity ;l NU loadable images
r register ;e execute
x x register ;g go
g system space ;h crt/hardcopy
h p1 space ;i NU shareable
, end of current field ;m NU writes allowed
+ or sp add ;p proceed
@ shift ;q NU queue
* multiply ;w NU locate sys adr
% divide
- sub ;r toggle register display
cr close ;c bpt at (r26) ;p
lf next ;o display overlays
esc previous ;w walk stack
tab indirect ;s display processes
/ open
" ascii
! instruction Instruction Stepping
= current ====================
; secondary
[new display mode S single step
: pid O step over
p proc reg U step until
’ ascii deposit V step until (don’t print)
\ quote T trace

Symbols
=======

| symbol command (precedes symbol)
|sym(op) (op) maybe any other single char operator
|sym*(cr) display symbols
|sym;b set breakpoint at code adr of PD

Display Mode
============

b byte
w word
l longword
q quadword
i instruction
c char/ascii
a 64 bit address

4–60 Developing a Minimal Image for the Target

5
Debugging the Hardware

Debugging the Hardware 5–1

Overview

Introduction This chapter describes the following:

• Hardware Debug Techniques

• SROM and its Function

• SROM Mini-console

Debugging the Hardware 5–3

Hardware Debugging Techniques

Hardware Debugging Techniques

Overview Debugging the hardware should include the following:

• A thorough visual inspection of the system

• Power and ground voltage checks

• Clock signal frequency check

• Use of the SROM mini-console for simple deposit/examine
functions to memory and I/O control registers

5–4 Debugging the Hardware

Serial ROM

Introduction This section describes the functionality of the Serial ROM used to
load the Alpha AXP Firmware image.

Debugging the Hardware 5–5

Serial ROM (SROM) Functionality

Serial ROM (SROM) Functionality

Introduction to
Serial ROM

A processor loads Serial ROM (SROM) code into its instruction
cache and starts execution. The function of the SROM is to
test the path used to load the console and then pass control to
the console. If control cannot be passed to the console, SROM
identifies the area at fault and the Field Replaceable Unit (FRU)
that needs to be replaced.

Since much of the SROM code is specific to the hardware platform
and CPU configuration, such as memory size and cache timing,
the SROM code must be modified.

Functions of
Serial ROM
Code

Specifically, when testing the base system hardware, the SROM
code:

1. Initializes, accesses and tests the processor(s) and backup
cache (Bcache)

2. Initializes the path to the console stored in Flash EEPROM(S)

3. Identifies space in the backup cache or memory in which to
load the console

4. Loads the console image and transfers control

Note

Optionally, a data block may be set up to define the current
state of write-only processor registers (IPRs), as well as
other configuration information. This data block is passed
from SROM to the console, and later, to the operating
system.

Loading into
Bcache

When the console image is loaded, it may be loaded into backup
cache instead of memory. For example, when SROM is configuring
the system, it can turn on the backup cache, loading the console
into faster memory.

It is important to load the console image into backup cache for
purposes of accessing I/O devices using mailboxes and memory
interleaving.

Up to this point, only one memory module is enabled and a
portion of the memory has been briefly tested. Complex memory
testing is done later by the console.

5–6 Debugging the Hardware

SROM Mini-Console

Introduction This section describes the Serial ROM (SROM) mini-console.

Debugging the Hardware 5–7

SROM Mini-Console

SROM Mini-Console

Overview There are a number of ways to debug the basic hardware:
diagnostic bus, a dedicated microprocessor, or with the SROM
mini-console. This section explains the SROM mini-console and
simple connection to the serial port on the microprocessor.

Mini-Console The Alpha AXP SROM mini-console provides basic hardware
debugging capability through a serial connector interface to the
SROM serial port of the Alpha AXP microprocessor. Using a
minimum of hardware you can exercise cache, memory, and I/O
subsystems until the system is functional enough to support a
more fully featured console program.

The mini-console resides in the instruction cache (I-cache) and
is designed to be loaded at reset through the SROM interface
directly into the I-cache.

Features The mini-console provides:

• Commands to examine and deposit data in memory and
internal CPU registers

• A case-independent command language

• Support for variable baud rates and processor speeds

Hardware
Required

To use the SROM mini-console, you need the following:

• Alpha AXP DECchip

• An SROM containing the mini-console

• A clock source

• A level shifter to convert from TTL signal levels to EIA

• A connection from the DECchip SROM interface to a serial
terminal, any standard terminal or a workstation with a
terminal emulator utility, such as DTE or tip

5–8 Debugging the Hardware

Setting Up the SROM Serial Port Connection

Setting Up the SROM Serial Port Connection

Using a
Workstation for
the Connection

To use the mini-console, you must first establish a connection
from your Alpha AXP system SROM serial port to a suitable
terminal device or emulator. A workstation can be used for a
serial line connection to the SROM signal lines of the DECchip
21064 using a tip or SET HOST/DTE connection.

Connecting the
Workstation
Procedure Example 5–1 Connecting the Workstation

! $ SET PROTECTION=(S:RWLP,O:RWLP,G,W) /DEVICE/OWNER=Your_ACCNT_NAME TTA3:

" $ SET HOST/DTE TTA3:

%REM-I-TOQUIT, connection established

Press Ctrl/\ to quit, Ctrl/@ for command mode

U

SROM>

In Case of Problems

If problems occur, use CONTROL @ for DTE command
mode, and use the DTEPAD>SHOW DTEcommand to check port
settings.

The following notes clarify the commands used in Example 5–1,
when connecting a workstation to the SROM serial port with the
OpenVMS operating system.

! First ensure that the asynchronous device has the correct
device protection for user access. This allows you to assign
a channel to the specified terminal port. Setting device
protection requires (OPER) operator privilege.
Connect a DEC423 6 conductor serial cable to the modified
modular jacks (MMJ) between the workstation and the Alpha
AXP system.

" Establish a connection using the command:

$ SET HOST/DTE terminal_port#

Type the SROM mini-console ‘‘U’’ command to allow autobaud,
receiving the SROM mini-console prompt.

Debugging the Hardware 5–9

Setting Up the SROM Serial Port Connection

Reference

Refer to Alpha AXP SROM Mini-Debugger User’s Guide for
more information about the SROM mini-console, such as
command examples and connecting a UNIX workstation to
the SROM serial port.

Starting and
Running the
Mini-Console

After the SROM serial port connection has been made, you can
initialize the mini-console by typing an uppercase U. This returns
an SROM> prompt, which indicates that you are ready to begin
debugging hardware.

For example:

U
SROM>

The uppercase U automatically detects the baud rate. Baud rates
up to 19.8K are supported. Prior to the first command prompt,
synchronization is affected by typing an uppercase U at the
terminal whenever the Alpha AXP microprocessor is turned on.

5–10 Debugging the Hardware

SROM Mini-Console Command Set

SROM Mini-Console Command Set

Command and
User Interface
Features

The following list describes some features of the mini-console
command language.

• Uppercase or lowercase characters can be used.

• The delete key provides primitive command-line editing.

• Numbers are input and output in hexadecimal format.

• For commands that prompt for input, the default input value
is all zeros.

• Addresses are masked on an even longword boundary in lw
mode and on an even quadword boundary in qw mode.

• Data and address inputs are taken one longword at a time.

• The looping commands initiate an infinite loop. To exit, press
any key.

Debugging the Hardware 5–11

SROM Mini-Console Command Set

Command
Summary

Table 5–1 summarizes the command set for the Alpha AXP SROM
Mini-console.

Table 5–1 Command Summary

Command Function

dm Deposits data to one memory location

em Examines one memory location

qw Sets quadword data mode (64-bit data)

lw Sets longword data mode (32-bit data)

fm Fills a block of memory with a data pattern

bm Displays a range (block) of memory locations

hm Sets high-memory mode (64-bit address)

lm Sets low-memory mode (32-bit address)

ba Gets a base address and sets the base address mode
flag

sa Sets the base address mode flag

ca Clears the base address mode flag

wm Performs a looping write to one memory location

rm Performs a looping read from one memory location

!m Performs a looping write/read sequence at one
memory location

dc Deposits data to one CPU register

ec Examines contents of CPU registers

xm Loads an external image to memory

st Starts execution at an address

5–12 Debugging the Hardware

6
Adding Functionality

Adding Functionality 6–1

Overview

Introduction Once a minimal console is running and the console prompt is
displayed on the console terminal, functionality can be added to
create a fully operational console.

Functionality should be added incrementally. For example, when
adding drivers, each driver should be added one at a time. In
addition, each driver should first be brought up in polled mode
and, once operational, should be switched to interrupt mode for
ongoing use.

After Adding
Functionality

Once you have added the necessary functionality, stabilize the
code as follows:

• Powerup - Set robust mode on so drivers come up
automatically.

• Drivers - Run drivers in interrupt mode.

• Machine Check Routines - Machine check routines must be
modified to dump platform specific status and error registers.

• PALcode - Deal with any other disabled error interrupts and
exceptions such as CRDs.

• hwrpb.c - Modify for your platform.

• All Modules - Check all modules that you build with to ensure
they include the correct platform.h files.

Adding Functionality 6–3

Adding Functionality

Introduction This section describes the following:

• Selecting the Console Device

• Adding Drivers to Build Files

• Developing and Adding Scripts

• Adding ARC Support

• Modifying for Bootstrapping

• Adding and Modifying Console Commands

• Programming Diagnostics

Adding Functionality 6–5

Selecting the Console Device

Selecting the Console Device

VGA or
Character Cell

The Alpha AXP Firmware uses bus sniffing routines at startup to
identify whether a Video or a serial ASCII communication port
exists. The console will use the Video Graphics Adapter (VGA)
by default, unless it is at fault or is configured otherwise. The
Windows NT operating system requires a VGA, while OpenVMS
and DEC OSF/1 do not, (unless DECwindows or X windows are
installed and enabled).

It is suggested to initially use the serial communication port and
a character cell terminal to expedite getting to the console prompt
for the first time.

Developers should ensure that terminal device drivers are listed
in the proper order in the platform_files.bld build file.

Forcing Output
to the Serial
ASCII Port

To force the console to use the serial communication port (for
example, COM1), do one of the following:

• Set the CONSOLE environment variable to the value SERIAL.

• Unplug the keyboard of the graphic terminal from the
connector and then reinitialize the system. (Since the console
checks a flag to see if a keyboard is present and a VGA device
exists, unplugging the keyboard forces the serial terminal to
become the primary console communication device.)

Note

To return to using the graphic terminal, set the CONSOLE
environment variable to the value GRAPHIC.

There are various terminal/graphic configurations that could
exist, for example, both VGA and serial terminal, or multiple
VGA boards, possibly on different buses.

Terminal/VGA
Driver
Sequence

All terminal drivers are phase three drivers in which class drivers
should start before port drivers.

The sequence of driver startup should be defined in the
platform _files.bld build file as follows:

1. TT_DRIVER.C, terminal class driver

2. All PCI bus graphic drivers (in any sequence)

3. EISA/ISA bus graphic drivers

4. KBD_DRIVER.C, keyboard driver

6–6 Adding Functionality

Selecting the Console Device

5. COMBO_DRIVER.C(or other serial port driver)

Note

A graphic driver must locate the device it supports, then
call the primary_graphics_console_sel console selection
function. This function fills in the HWRPB and selects the
console device using the console selection algorithm.

Console
Selection
Algorithm

The console selection algorithm adheres to the following
guidelines when selecting the primary console device:

• The display controller in the lowest numbered PCI slot is
selected, unless that device exhibits faults.

• PCI graphics devices have precedence over ISA/EISA bus
graphics devices.

• Option cards and built-in (embedded) graphics controllers
are handled exactly alike, the console does not distinguish
between them.

• If no graphic device exists, is at fault, or the keyboard is not
present, the serial port is used.

• If the console has been forced to use the serial port, it will use
the serial port regardless of the graphics devices present.

• If there are multiple serial ports, the first one, COM1, is used.

Adding Functionality 6–7

Adding Drivers to the Build Files

Adding Drivers to the Build Files

Adding Drivers
Description

Drivers are added to the configuration build file with the keyword
driver , followed by the name of the driver source file, its phase to
be started when initialized, and its group name driver .

Drivers should be added in the order that they are to run when its
driver_init process is started. Phase zero drivers are initialized
very early in the startup process, the null driver being the first.
Phase five drivers are the hardware drivers that need to be
initialized last.

#
Lines that have a name in column 0 and a value as the second
field are entered into the Driver Startup Table (dst). The second
field indicates what phase the driver is started in.
#
driver nl_driver.c 0 group driver
driver rd_driver.c 0 group driver
driver toy_driver.c 0 group driver
driver eisa_driver.c 0 group driver
driver buf_driver.c 0 group driver

Format Use the following format to add new drivers:

driver source_filename startup_phase group name

Table 6–1 describes these fields.

Table 6–1 Driver Keywords within Build File

Field Description

The keyword driver Indicates a driver file

Source_filename The name of the driver source code to be
compiled

Startup_phase The phase number, (or order) in which the
driver should be started when booting the
console software

Group name The object file group name; all files in the
same group are created as one large object
file, if the MMS qualifier /???? is applied

6–8 Adding Functionality

Developing and Adding Scripts

Developing and Adding Scripts

Encapsulating
Commands

A developer creates a script file of various commands, assigning
a command name that will invoke the script when typed from
the console prompt. An example is the memexer_sable. file, which
could contain the following console commands:

#Memory
set d_report full
echo "Testing the memory"
memtest -bs 100000 -rb -p 0 &

Adding Scripts This memory exerciser test script is added to the configuration
file and is macro coded into the Alpha AXP Firmware image when
built. The script is added with the keyword encapsulate , the
name of the script file, its command name, its file attributes, and
-script , for example:

encapsulate cp$src:memexer_platform memexer ATTR$M_READ|ATTR$M_EXECUTE -script

Invoking
Scripts

To invoke this memory exerciser script memexer_platform , use the
console command:

>>> memexer

Inodes Encapsulated files do not have a file extension, for example, the
memexer_platform.;1 file. An inode is created in the in-memory file
system that describes the location, length, and attributes of the
encapsulated file.

Adding Functionality 6–9

Adding ARC Support

Adding ARC Support

Adding ARC
Support
Description

Two different mechanisms are used to boot the Advanced RISC
Computing (ARC) compliant console and Windows NT operating
system.

• Always boot the Alpha AXP architecture compliant console,
then boot ARC

• SROM code loads either Alpha AXP Firmware or ARC console
from different ROMs

Both mechanisms share NVRAM environmental variables. The
platform that uses the following example always boots the Alpha
AXP Firmware and checks the operating system type. For
example, the following command sets the operating system type
to nt :

>>>set os_type nt

This can also be set to OpenVMS or OSF.

Reference

A template for the Platform_files.bld file can be found in
the CMS library or in:

CP$SRC:*_FILES.BLD

6–10 Adding Functionality

Adding and Modifying Console Commands

Adding and Modifying Console Commands

Introduction You can add new commands or modify existing commands,
depending on the specific requirements of your platform. For
example, when porting the console to a target platform that has
a unique device configuration, you may want to add your devices
to the list of devices that can be accessed with the examine
command.

Process
Overview

An overview of the process that you must follow when adding or
modifying a console command is as follows:

1. Write the new routine or modify the command file associated
with the command you would like to change.

2. Insert new header information in specifically formatted
comments at the beginning of the command file that lists the
routine name, the access field, the stack size and the command
name.

3. Place the name of the command file in the build list, if it is
not already listed. The build process builds a new command
table that is then used by the file system initialize routine to
create inodes.

Existing
Command Files

The common commands that you can modify and their
corresponding command files are shown in the table.

Table 6–2 Command Files

Command File

boot boot.c

continue continue.c

deposit deposit.c

examine examine.c

help help.c

man man.c

initialize initialize.c

set set.c

start start.c

test test.c

Adding Functionality 6–11

Modifying for Bootstrapping

Modifying for Bootstrapping

Introduction Once the console is initialized and a console prompt is displayed
on the console terminal device, there should be little or no
additional changes needed to bootstrap the operating system.

Modifications Changes that may have to be made relate to areas that are
platform specific.

Specifically, changes may need to be made to the:

• HWRPB through the HWRPB setup routine to ensure that
the data structures fed into the HWRPB conform to the target
platform.

• List of legal boot devices in the boot command file when
adding a new boot device whose type is not listed.

• Device driver initialize routine for the new boot device to
ensure that the exact pathname to the physical location of
the device is created in the inode for that driver. (For boot
devices, it is critical to have the exact pathname listed.)
This information is later used by the operating system for
identifying the boot device.

6–12 Adding Functionality

Programming Diagnostics

Programming Diagnostics

Introduction Diagnostic services are available for developing new diagnostic
tests that can be run from the firmware.

Diagnostic services provide an environment for programming
diagnostics. Only a small subset of diagnostic services are
required to be used by any diagnostic.

Diagnostic
Service
Routines

The following table shows service routines that are provided.

Table 6–3 Diagnostic Service Routines

Routine Function

diag_init Initializes the diagnostic environment

diag_print_end_of_pass Prints the diagnostic end-of-pass
message

diag_print_status Prints a diagnostic status message

diag_print_test_trace Prints the diagnostic test trace
message diag_report_error_lock ()
and releases lock

diag_start Starts execution of the diagnostic tests

report_error Displays generic error reporting
routine

report_error_lock Displays generic error reporting
routine with write lock on the standard
error channel left taken out

report_error_release Provides complete error report started
by report_error_lock () and releases
lock

Adding Functionality 6–13

Diagnostic Models

Diagnostic Models

Introduction Depending on the type and purpose of the diagnostic, a diagnostic
can be written according to one of two models:

• Structured/test-directed (diagnostic with a test structure)

• Unstructured (diagnostic without a structure)

Test-Directed
Diagnostics

The test-directed model provides a structured test environment
with all control functions being performed by the diagnostic
services instead of the diagnostic program.

In the test-directed model, a diagnostic dispatch table is set up
to describe each test, and the diag_start routine performs test
dispatching.

The diag_start routine also prints test trace and end-of-pass
messages, if enabled, and provides for loop-on-error control when
returned from a test with the appropriate status message.

Unstructured
Diagnostics

The second model has no structure imposed on it and is used
mainly by exercisers and utilities. Since no structure is imposed
in this model, less control is performed by the diagnostic services,
and more must be performed by the diagnostic program itself.

A diagnostic dispatch table is not necessary, and diag_start is
not used for dispatching. If the diagnostic program wants to
print the test trace and end-of-pass message and does not call
diag_start , the program must call the diag_print_test_trace and
diag_print_end_of_pass routines directly.

6–14 Adding Functionality

Describing Data Structures

Describing Data Structures

Introduction The diagnostic services use the following data structures:

• Process Control Block (PCB)

• DIAG_EVS

• IO Block (IOB)

• Dispatch Table

Process
Control Block

The Process Control Block (PCB) is the primary data structure
used by diagnostics and any other process that may want to
report an error using the standard error reporting service
report_error .

The PCB contains a number of fields used to provide process
information.

The PCB also contains fields that contain diagnostic run-
time environment information, status information and error
information. Status information is either automatically updated
by the diagnostic services or by the diagnostic program. The
status information is used by the status monitoring program to
display the status of running processes.

Error fields must be updated by the diagnostic program before
reporting an error.

Adding Functionality 6–15

Diagnostic Restrictions

Diagnostic Restrictions

Restrictions
Description

The diagnostic routines have the following restrictions:

• Before calling diag_init :

Load pcb$a_dis_table with dispatch table

Load pcb$a_sup_dev with list of supported devices

• After calling diag_init :

Load pcb$a_rundown with local rundown (cleanup) routine
(can do before diag_init but results in unnecessary IOB
errors)

Load pcb$b_dev_name array if user did not specify a device
(if pcb$b_dev_name array is NULL after diag_init call, you
must load this with a device name)

If test does not use fopen , you must malloc space for IOB
and call create_iob

• In local rundown (cleanup) routine:

Call diag_rundown before removing the IOBs (diag_rundown
prints out a completion message and must print out some
fields contained in the IOBs)

6–16 Adding Functionality

Related Console Services

Related Console Services

Introduction The console routines most likely to be used by the diagnostic
programmer are grouped as follows:

• I/O

• Environment Variable Manipulation

• Dynamic Memory Allocation

• Condition Handling

• Timer Services

• Semaphores

• Multiprocessor

• Ctrl/C /kill Checking

Routines The specific routines most likely to be used by the diagnostic
programmer are shown in the table.

Table 6–4 Diagnostic Programmer I/O Routines

Routine Function

fopen Prepares a device for use by the other I/O
routines. In preparing the device, a file
descriptor is returned for future reference
to the device.

fclose Closes the device associated with the
designated file descriptor for further access.

fread Allows multiple bytes or blocks of data to be
read from the I/O device designated by the file
descriptor and written to a buffer in memory.

fwrite Allows multiple bytes or blocks of data to be
written to the I/O device designated by the file
descriptor and read from a buffer in memory.

fseek Allows the file offset to be positioned for
subsequent reads and writes.

ftell Returns the current file offset.

printf Allows the specified string to be printed.
Its arguments and effect is the same as the
standard C printf function.

read_with_prompt Allows the program to prompt the user for
input.

Adding Functionality 6–17

Related Console Services

Table 6–5 Environment Variable Manipulation

Routine Function

ev_write Causes the specified environment variable to have
the specified value. If the environment variable
does not already exist in the environment variable
namespace, it is created with the specified value.

ev_delete Clears the specified environment variable from
the environment variable namespace.

ev_read Returns the value of the specified environment
variable to the caller.

Table 6–6 Dynamic Memory Allocation

Routine Function

dyn$_malloc Causes the amount of memory specified to be
allocated to the caller. A pointer to the memory
block is returned to the caller. dyn$_malloc is
modeled after the standard C malloc function.

dyn$_realloc Trims or expands a block of memory that was
previously allocated with the dyn$_malloc routine.
A pointer to the trimmed or expanded memory
block is returned. dyn$_realloc is modeled after
the standard C realloc function.

dyn$_free Frees a block of memory previously allocated by
dyn$_malloc and returns the block to the memory
pool.

Table 6–7 Condition Handling

Routine Function

exc_vector_set Establishes an exception routine to be
associated with the specified exception type

exc_vector_clear Clears the exception routine established by
the last exc_vector_set

int_vector_set Establishes an interrupt routine to be
associated with the specified interrupt

int_vector_clear Clears the interrupt routine established by
the last int_vector_set

6–18 Adding Functionality

Related Console Services

Table 6–8 Timer Services

Routine Function

krn$_sleep Causes a delay of the specified number of
milliseconds

Table 6–9 Semaphores

Routine Function

krn$_seminit Initializes a semaphore

krn$_semrelease Releases a semaphore

krn$_wait Waits on the specified semaphore

krn$_post Posts (signals) the specified semaphore

Table 6–10 Multiprocessor

Routine Function

krn$_setaffinity Sets the affinity mask for the calling process

primary Returns a value to indicate whether the caller
is currently running on the primary processor
in a multiprocessor configuration

Table 6–11 Ctrl/C /kill Checking

Routine Function

killpending Checks if a Ctrl/C or kill command has been
entered, and if so, terminates the process

Adding Functionality 6–19

7
Appendices: Helpful Commands, Tips and

Routines

Appendices: Helpful Commands, Tips and Routines 7–1

Appendix A: Logical Search String Definitions

Appendix A:
Logical Search String Definitions

Building
Environment
Logicals

Logicals and subdirectories created by CP_COMMON_LOGIN.COMare
referred to throughout the build process by automated procedures.
Optionally, the developer can use these to check files, build
results, and log files.

CP$SRC
Generic

CP$SRCdefines the directories (search string) to find the
source code when building the Alpha AXP Firmware. For
the basic generic case, when no parameters are specified to
CP_COMMON_LOGIN.COM, the logical CP$SRCis defined as follows:

"CP$SRC" = "CPUSER:[USER.SRC]" = "CP$REF"

Source code is read from the user’s source subdirectory (.SRC),
having precedence over source code in CP$REF. CP$REFis the
latest reference copy of recently replaced source modules in the
CMS library. Figure 7–1 shows the search string of the source
directories in a generic environment.

Figure 7–1 CP$SRC Generic Environment

User’s Source Subdirectory

Reference Directory

CP$SRC:

CP$REF:

ALPHA_FW:[COBRA_FW.REF]

ZKO−000−002343−01

[USERNAME.SRC]

7–2 Appendices: Helpful Commands, Tips and Routines

Appendix A: Logical Search String Definitions

CP$SRC
Specified
Configuration

When the configuration (SABLE), working directory
([USER.AFW]), and backing tree (FRIDAY) are specified
with parameters to CP_COMMON_LOGIN.COM, the logical CP$SRCsearch
string is defined as follows:

"CP$SRC" = "CPUSER:[USER.AFW.SABLE.SRC]"
= "CPUSER:[USER.AFW.SRC]"
= "CP$CFG"
= "CFW:[CONSOLE.FRIDAY.SABLE.SRC]"
= "CFW:[CONSOLE.FRIDAY.SRC]"
= "CFW:[CONSOLE.FRIDAY.COMMON.SRC]"

Figure 7–2 illustrates how the source code can be located from
multiple directories, and in a top-down order. Development code
could exist in the user’s hardware platform source subdirectory
([.SABLE.SOURCE]), and/or in the user’s source subdirectory
([.SRC]). In the search string, each subdirectory has precedence
over the next one down. The build will use the first occurrence
of the source module located, and the search for that module is
discontinued. If the module is not located in the platform’s source
or user’s working directory, the search continues until finally the
backing tree’s directories are searched [CONSOLE.FRIDAY...] , and
the logical search string is exhausted.

Appendices: Helpful Commands, Tips and Routines 7–3

Appendix A: Logical Search String Definitions

Figure 7–2 CP$SRC for Specified Configuration Environment

[.SABLE.SOURCE]

[.SRC]

CP$CFG:

[.SABLE.CFG.SABLE]

[CONSOLE.FRIDAY.SABLE.CFG.SABLE]

User’s Source Subdirectory

Hardware Platform

for the

User’s Source Subdirectory

Hardware Platform

User’s Configuration

Hardware Platform

Backing Tree’s Subdirectory

Backing Tree’s Source

Subdirectory for the

for the [CONSOLE.FRIDAY.SABLE.SRC]

for the

[CONSOLE.FRIDAY.SRC]

Hardware Platform

[CONSOLE.FRIDAY.COMMON.SRC]

CP$SRC:

Backing Tree’s Source

for the

Day

Backing Tree’s

Common Source

Code Pool

ZKO−0000002343−02

7–4 Appendices: Helpful Commands, Tips and Routines

Appendix A: Logical Search String Definitions

Table 7–1 describes the logical assignments and files produced by
CP_COMMON_LOGIN.COMcommand procedure.

Table 7–1 Building Environment Logicals

Logical Description

CP$ Top level of user’s working directory

CP$CFG All hardware platform configuration data; includes backing tree

CP$CFGL ‡ User’s hardware platform configuration data

CP$CMD DCL command and GNU AWK build procedures

CP$CMS CMS Library of source files

CP$EXE Platform images (.EXE loadable/bootable kernel and PALcode), .MAP
(memory allocation listing), and .STB (symbol tables) files; includes
backing tree

CP$EXEL ‡ User’s platform images .EXE, .MAP. STB

CP$INC All included header files for platform and backing tree

CP$INCL ‡ User’s included header files for platform

CP$KITS All tools necessary for the build environment

CP$LIS All program listings for all routines; includes backing tree

CP$LISL ‡ User’s platform listings

CP$LOG Platform’s build log files, for example:

• SABLE_BUILD.LOG

• SABLE_MMS.LOG

• SABLE_NEWBUILD.LOG

CP$OBJ Compiled object code for platform and backing tree

CP$OBJL ‡ User’s platform compiled object code for platform

CP$REF Latest copy of all CMS replaced sources

CP$ROOT Top level user (build) working directory

CP$SDML Documentation extracted from routines automatically with awk
procedures during build

CP$SPECIFIC Same as CP$ROOT, top level user (build) working directory

‡Logicals appended with an ‘‘L’’ suffix, (CP$CFGL, CP$EXEL, CP$INCL, CP$LISL, CP$OBJL, CP$SRCL), specify the
user’s subdirectories created for the platform configuration specified. This does not include the reference and backing
trees, so cleanup is easily performed using these logicals.

(continued on next page)

Appendices: Helpful Commands, Tips and Routines 7–5

Appendix A: Logical Search String Definitions

Table 7–1 (Cont.) Building Environment Logicals

Logical Description

CP$SRC Source code search string for build. Note order of directories:

1. User’s platform

2. User’s source

3. User’s and backing tree’s hardware platform configuration

4. Backing tree’s platform source, source, and finally the common
source directory

CP$SRCL ‡ User’s platform source directory

CP$SYNC Source routines that create the software version. This can be seen in
the output from DESCRIP.MMS

CP$TMP Temporary scratch area

‡Logicals appended with an ‘‘L’’ suffix, (CP$CFGL, CP$EXEL, CP$INCL, CP$LISL, CP$OBJL, CP$SRCL), specify the
user’s subdirectories created for the platform configuration specified. This does not include the reference and backing
trees, so cleanup is easily performed using these logicals.

Caution

Use of logicals is encouraged, however, exercise care when
deleting files. For example, CP$SRC(and others) can equate
to the CMS reference and backing tree directories.
Use CP$SRCLand other logicals appended with an ‘‘L’’ suffix.
They specify only the user’s subdirectories. Use these to
delete files in your working directory.

7–6 Appendices: Helpful Commands, Tips and Routines

Appendix B: Getting Started with CMS

Appendix B:
Getting Started with CMS

Overview The Digital Code Management System (CMS) is a library system
for software development and maintenance that provides an
efficient method for storing project files and tracking all changes
to those files. CMS stores source files in a library, keeps track of
changes made to the files, and records user access to the files.

A CMS library is an OpenVMS directory containing specially
formatted files that CMS uses to operate. Once you have created
a library, it must be reserved exclusively for use by CMS.

Hierarchy The CMS library contains elements (or files), optionally arranged
in groups.

Creating CMS
Libraries

A CMS library can be created in two steps, as shown in the
table.

Table 7–2 Creating a CMS Library

Step Command Function

1. $ CREATE/DIR [.CMS] Executes the DCL command to
create the CMS directory

2. $ CMS CREATE LIBRARY_
Directory spec: [.CMS]
_Remark: CMS Library for
Common Console

Creates a CMS directory and
inputs a remark for the library
description

Setting the
Library

The command procedure CP_COMMON_LOGIN.COMsets the CMS
library for you. To use an alternate CMS library that you created,
execute the CMS set library command for the specified CMS
directory, for example:

$ CMS SET LIB [.CMS]

%CMS-I-LIBIS, library is USER$COM:[COMMON_CONSOLE.CMS]
%CMS-S-LIBSET, library set
-CMS-I-SUPERSEDE, library list superseded

Using
CMS with
DECwindows

If you have installed DECwindows on your system, you can also
use the CMS DECwindows interface (with CMS Version 3.2 and
higher). Use the /INTERFACE=DECWINDOWS qualifier to
invoke the CMS DECwindows interface.

Appendices: Helpful Commands, Tips and Routines 7–7

Appendix B: Getting Started with CMS

CMS Class
Definition

A class is a set of specific element generations. It can be used
to define a system version, such as a base level, consisting of
different generations of several elements. An element generation
can belong to zero, one, or several classes, but a class may contain
no more than one generation of a given element.

Show Classes The following classes can be found within the Alpha AXP
Firmware CMS library CP:[COBRA_FW.CMS] with the command:

$ CMS SHOW CLASS

Example 7–1 CMS SHOW CLASS Output

Classes in DEC/CMS Library CP:[COBRA_FW.CMS]

BUSCON "buscon snapshot"
CBPROTO_10_18 "CB proto initial build"
CFW_AUG12 "Cobra pre-ESP build."
.
.
V3.4 "Start for the v3.4 firmware release"
V9.9 ""
X1.1-23187 "Group 0-A Dec 20"
X1.2-24092 "Group 0-C Jan 08 - MP Support"
$

7–8 Appendices: Helpful Commands, Tips and Routines

Appendix B: Getting Started with CMS

CMS Groups Example 7–2 shows the groups within the CMS library. Groups
contain the elements of source code files.

Use the show command to list the CMS groups in the Alpha AXP
Firmware CMS library, for example:

$ CMS SHOW GROUP

Example 7–2 Common Console Code Groups

Your CMS library list consists of:

CP:[COBRA_FW.CMS]

Groups in DEC/CMS Library CP:[COBRA_FW.CMS]

BASE_LOGS "benchmark comparison log files"
CURRENT "Cobra split current list."
EV5_PAL "EV5 PALcode elements"
GAMMA_SROM "New group to contain all gamma SROM files"
MEDULLA_BFILES "medulla build files"
MEDULLA_SROM "Medulla Single Board Computer Serial ROM"
MICRO "new group for mini console code (87C652)"
SABLE_LOGS "base log files for sable regression scripts"
SABLE_SCRIPTS "sable regression test scripts"
SER_CON " new group for serial console code (87C654)"
SPORT "TURBO SPORT specific. Includes SPORT controller, GROM, and SROM."
SROM "Make a separate group for the srom files"
TEST_CMD ""
TGA "tga console driver"

CMS Elements Modify the show group command to list the elements within a
group, for example:

$ CMS SHOW GROUP/CONTENTS

Groups in DEC/CMS Library CP:[COBRA_FW.CMS]

TGA "tga console driver"
TGA.
TGAFONT.H
TGAX.
TGA_BL0.TXT
TGA_DRIVER.C
TGA_DRIVER_BT463.C
TGA_DRIVER_BT485.C

.

.
TGA_TEST_VERIFY.C
TGA_TEST_VRAM.C
TGA_VERSION.C

Appendices: Helpful Commands, Tips and Routines 7–9

Appendix C: Complete List of Modified Files

Appendix C:
Complete List of Modified Files

Overview The following list of 52 files were modified to port the Alpha AXP
Firmware to a particular platform: an Alpha AXP PC.

Example 7–3 Ported Files

aputchar.c;12 build.com;34 callbacks_alpha.mar;33

call_backs.c;28 combo_driver.c;31 dv_driver.c;6

eisa.h;16 eisa_driver.c;10 entry.c;23

er_driver.c;27 ev5_ipr_driver.c;3 ev_action.c;84

ew_driver.c;72 exer.c;15 filesys.c;12

hwrpb.c;45 ide_driver.c;21 ipr_driver.c;11

isacfg.c;5 isacfg.h;1 kbd_driver.c;36

kernel.c;113 kernel_alpha.mar;31 kernel_support.c;12

lca4_mustang.mar;4 memconfig_mustang.c;6 mop_driver.c;16

msload_files.bld;10 mustang.c;23 mustang.sdl;6

mustang_files.bld;18 mustang_io.h;8 mustang_util.mar;3

n810_driver.c;46 net.c;16 options.bld;28

osfpal_common.mar;31 osfpal_machine.mar;48 pal_descrip.mms;13

pal_ev4.mar;93 pke_driver.c;27 platform_mustang.mms;4

powerup_mustang.c;15 show_hwrpb.c;7 srom$21066.mar;1

tga_driver.c;48 tga_driver_copy.c;17 tga_driver_port.c;49

tga_test_vram.c;12 timer.c;30 toy_driver.c;10

vgag_driver.c;34

7–10 Appendices: Helpful Commands, Tips and Routines

Appendix C: Complete List of Modified Files

Files: CMS
Generations

The following examples show files modified by cloning code
sections. Current files are located in the CP$REF: directory.

Note

Example 7–3 shows the complete list of files modified to
port to an Alpha AXP PC.

Example 7–4 Build Files

build.com
options.bld
pal_descrip.mms

Example 7–5 Kernel Source Files

call_backs.c callbacks_alpha.mar entry.c

ev_action.c filesys.c filesys.c

hwrpb.c kernel.c kernel_alpha.mar

net.c nvram_def.h startstop.c

timer.c

Example 7–6 Drivers

combo_driver.c
eisa_driver.c
eisa.h
er_driver.c
ide_driver.c
ipr_driver.c
kbd_driver.c
mop_driver.c
n810_driver.c
pke_driver.c

Appendices: Helpful Commands, Tips and Routines 7–11

Appendix D: Initialization, Kernel, and Diagnostic Routines

Appendix D:
Initialization, Kernel, and Diagnostic Routines

Introduction After PALcode vectors to the console address in memory, the
console is initialized.

During console initialization, the file system is initialized and a
sequence of code modules and their corresponding routines are
run.

Sequence of
Kernel Modules

The modules that are run are as follows:

1. krn$_start code runs.

2. krn$_init code runs.

3. krn$_idle code runs and becomes the CPU’s idle process, this
process:

a. Builds and loads PCB, SCB, memory, and semaphores

b. Executes routine reschedule, which starts the following:

• Timer process, krn$_timer

• Dead eater process krn$_dead

• Powerup process krn$_powerup , which starts the
following:

Runs file system initialization

Runs memory configuration

Builds HWRPB

Files system init1,2,3, and driver init

Runs self-tests

Starts entry process krn$_entry

Starts shell process

System
Initialization
Routines and
Data Structures

Key modules in system initialization are:

• entry.c

• kernel.c

• kernel_alpha.mar

• kernel_def.sdl

• kernel_vax.mar

• powerup.c

• process.c

7–12 Appendices: Helpful Commands, Tips and Routines

Appendix D: Initialization, Kernel, and Diagnostic Routines

When running on an Alpha AXP platform, various PALcode
routines are also executed. See the Alpha System Reference
Manual (SRM) for information on the Privileged Architecture
Library (PAL).

entry.c Module Module entry.c contains the routines shown in the table.

Table 7–3 Module entry.c Routines

Routine Function

sec_init Initializes a secondary processors
HWRPB slot. The primary uses this
routine to ensure that all secondaries
initialize processor state.

init_cpu_state_all_cpus Initializes all secondaries. Initialize
various state on each processor before
beginning the boot sequence.

system_reset Resets the system.

node_halt Halts the given processor.

node_halt_primary Forces the primary processor into
console mode, so that it can request
that the primary reboot the system.

node_halt_secondaries Forces a secondary processor into
console mode when the primary boots.

restart_cpu Restarts a processor.

secondary_start Starts a secondary processor. Executed
as the result of a start command
(without parameters) issued by the
operating system via the HWRPB.

sec_boot_prep Updates secondaries NVRAM with
primary’s data. The primary uses this
routine to ensure that all secondaries
update their nonvolatile RAMs for NVR
([boot_spec] , NVR[expected_entry] ,
and so forth), to match the primary.
Executed only on cold boot.

boot_reset Performs a system reset to reboot
system.

boot_system Performs either a cold or warm
bootstrap. The boot_type determines
the nature of the bootstrap: default,
cold or warm boot.

(continued on next page)

Appendices: Helpful Commands, Tips and Routines 7–13

Appendix D: Initialization, Kernel, and Diagnostic Routines

Table 7–3 (Cont.) Module entry.c Routines

Routine Function

request_reboot Requests the primary processor to
reboot the system. The secondary
uses this routine to request that the
primary reboot the system.

system_reset_or_error Resets or error dispatch; only for a
system reset or error entry.

entry Starts console entry server routine.
Started as a new process at powerup;
executes forever. Provides a firmware
process context for executing callback
routines, boots and restarts.

kernel.c
Routines

Module kernel.c contains the routines shown in the table.

Table 7–4 kernel.c Routines

Routine Function

null_procedure Always returns success without side effects

krn$_unique Creates a systemwide unique identifier

krn$_idle Creates idle process for every CPU in the
system

krn$_remove_node Removes a processor from the system

krn$_replace_node Activates a processor

schedule Finds the next executable process

show_version Displays the current firmware version

reschedule Schedules the next process

establish_setjmp Saves a setjmp environment for the current
process

find_setjmp Finds a setjmp environment for the current
process

spinlock Gains ownership of a spinlock

spinunlock Releases a spinlock

7–14 Appendices: Helpful Commands, Tips and Routines

Appendix D: Initialization, Kernel, and Diagnostic Routines

kernel_ alpha.mar
Routines

Some key kernel routines from kernel_alpha.mar are shown in the
table.

Table 7–5 kernel_alpha.mar Routines

Routine Function

krn$_init Sets data structures for the kernel; idle task when
done

getpcb Returns address of current PCB

do_halt Halts, but save arguments

swap_context Saves current execution context; set up new
process context

setjmp Saves state information for use by longjmp

longjmp Restores previously information saved by most
recent call to setjmp

kernel_def.sdl
Module

Module kernel_def.sdl contains the following key data
structures.

Table 7–6 kernel_def.sdl Data Structures

Data Structure Description

QUEUE Standard console queue (double linked list)

SEMAPHORE Semaphore Queue (FIFO)

NI_GBL NI Global Data Definition

INODE File Entry Structure

RAB Read Ahead Buffer

IOB IO Block Structure

FILE File Descriptor Structure

DDB Driver Database

TIMERQ Queue of Sleeping Processes

POLLQ Queue of Poll Routines

PBQ Queue of Port Blocks

DIAG_DIS_TABLE Diagnostic Dispatch Table

DIAG_EVS Diagnostic Environment Variable States

VAX_HW_PCB VAX Hardware Context

VAX_EXC VAX Exception Context

PCB Process Control Block

(continued on next page)

Appendices: Helpful Commands, Tips and Routines 7–15

Appendix D: Initialization, Kernel, and Diagnostic Routines

Table 7–6 (Cont.) kernel_def.sdl Data Structures

Data Structure Description

LOCK Spinlock Data Structures

HQE Handler Queue Entry

VSJD VAX SetJmp Data

ASJD Alpha SetJmp Data

SJD_UNION SetJmp Data Union

SJQ SetJmp Queue

kernel_vax.mar Some key kernel routines from kernel_vax.mar are shown in the
table.

Table 7–7 kernel_vax.mar Routines

Routine Function

krn$_init Sets data structures for the kernel; idle
task when done

CONSOLE_DISPATCH —

Begin_Code —

dispatch_reentr —

getpcb Returns address of current PCB

console_exit Exits the console to the PC saved on
console entry

setjmp Saves state information for use by longjmp

longjmp Restores previous information saved by
most recent call to setjmp

process.c
Routines

Module process.c contains the key routines shown in the table.

Table 7–8 process.c Routines

Routine Function

krn$_process Performs process startup/rundown functions

krn$_findpcb Translates a PID into a PCB

krn$_setaffinity Sets a process’s affinity mask

krn$_setpriority Sets a process’s software priority

krn$_create Creates a process

(continued on next page)

7–16 Appendices: Helpful Commands, Tips and Routines

Appendix D: Initialization, Kernel, and Diagnostic Routines

Table 7–8 (Cont.) process.c Routines

Routine Function

krn$_delete Deletes a process

krn$_dead Deallocates resources from dead processes

krn$_walkpcb Finds the state of a given process

krn$_kill Kills a process

killpending Returns the "kill pending" state for a process

check_kill Terminates a process if the kill pending bit is
set

powerup.c
Routines

Module powerup.c contains the routines shown in the table.

Table 7–9 powerup.c Routines

Routine Function

powerup Powerup process; processor-specific startup;
controls the powerup screen

bp_determination Determines an eligible candidate for boot
processor

read_bp Reads the boot processor (BP) bit of the
specified processor

write_bp Writes the boot processor (BP) bit of the
specified processor

read_bpd Reads the boot processor disabled (BPD) bit
of the specified processor

write_bpd Writes the boot processor disabled (BPD)
bit of the specified processor

read_sync Reads the SYNC bit of the specified
processor

write_sync Writes the SYNC bit of the specified
processor

Appendices: Helpful Commands, Tips and Routines 7–17

Appendix D: Initialization, Kernel, and Diagnostic Routines

Diagnostic
Services
Routines Table 7–10 Diagnostic Service Routines

Routine Function

diag_init Initializes the diagnostic environment

diag_print_end_of_pass Prints the diagnostic end-of-pass
message

diag_print_status Prints a diagnostic status message

diag_print_test_trace Prints the diagnostic test trace
message diag_report_error_lock ()
and releases lock

diag_start Starts execution of the diagnostic tests

report_error Displays generic error reporting
routine

report_error_lock Displays generic error reporting
routine with write lock on the standard
error channel left taken out

report_error_release Provides complete error report started
by report_error_lock ()and releases lock

7–18 Appendices: Helpful Commands, Tips and Routines

Appendix E: SROM Mini-Console Command Summary

Appendix E:
SROM Mini-Console Command Summary

Commands Table 7–11 summarizes the command set for the Alpha AXP
SROM mini-console.

Table 7–11 Command Summary

Command Function

dm Deposits data to one memory location

em Examines one memory location

qw Sets quadword data mode (64-bit data)

lw Sets longword data mode (32-bit data)

fm Fills a block of memory with a data pattern

bm Displays a range (block) of memory locations

hm Sets high-memory mode (64-bit address)

lm Sets low-memory mode (32-bit address)

ba Gets a base address and sets the base address mode
flag

sa Sets the base address mode flag

ca Clears the base address mode flag

wm Performs a looping write to one memory location

rm Performs a looping read from one memory location

!m Performs a looping write/read sequence at one
memory location

dc Deposits data to one CPU register

ec Examines contents of CPU registers

xm Loads an external image to memory

st Starts execution at an address

Appendices: Helpful Commands, Tips and Routines 7–19

Appendix F: XDELTA Commands

Appendix F:
XDELTA Commands

The following figure shows an XDELTA Command Reference.

7–20 Appendices: Helpful Commands, Tips and Routines

Appendix F: XDELTA Commands

Figure 7–3 XDELTA Command Reference

 XDELTA Functions and Commands

Function Command Example/Description

 −−− BREAKPOINTS −−−

Set breakpoint addr,N;B 800055F6,2;B
 (N is a number 2−8)

Display breakpoint ;B ;B
 1 8000B17D
 2 800055F6

Clear breakpoint 0,N;B 0,2;B

 −−− DISPLAYING MEMORY −−−

Set display mode [B Byte
 [W Word
 [L Longword
 [| Instruction
 " ASCII

Open location and address/ GA88/00060034
display contents

Open location and
display instruction address! 2002!SUBL2 #04,SP

Open location and address" 40000"T
display contents in
ASCII mode

Replace contents
of given address addr/contents new GA88/00060034 GA88
 GA88/00060034 ’A’
 Replace as ASCII

Display contents ESC (Escape) 80000A88/80000BE4 ESC
of previous 80000A84/00000000
location

Display contents addr/contents LF 80000004/8FBC0FFC LF
of next location (Line Feed) 80000008/50E9002C

Display indirect TAB 80000A88/80000BE4 TAB
 80000BE4/80000078
 or
 / 80000A88/80000BE4/80000078

Display range of addr,addr/contents G4,GC/8FBC0FFC
locations 80000008/50E9002C
 8000000C/00000400

 −−− DISPLAYING REGISTERS −−−

Set base register ’value’,N;X 80000000,0;X

Display base Xn RETURN X0
register or 00000003
 Xn= X0=00000003

Display general Rn/ R0/00000003
register (n is hexadecimal)

 −−− START and STOP −−−

GO ;G G B17D;G

Proceed from ;P ;P
breakpoint

Single step S 1 brk at 8000B17D
into subroutines S
 8000B17E/9A0FBB05

Single step O 1 brk at 8000B17D
over S
subroutines 8000B17E/9A0FBB05

Exit from XDELTA

 EXIT 1 brk at 8000B17D
 EXIT
 0000201F/BICL3 AP,R3,−(SP)
 exit
 $

 −−− EXPRESSIONS and MISCELLANEOUS −−−

Show value expression= 1+2+3+4=0000000A
 (+, −, *, %{divide})

Shift a value value@shift n@2
+left
−right

Executing stored addr;E ret 80000E58;E
command strings

List names and ;L ;L
locations of
loaded executive
images

Appendices: Helpful Commands, Tips and Routines 7–21

Appendix G: Basic Console Commands

Appendix G:
Basic Console Commands

Syntax The table shows a console command summary.

Table 7–12 Syntax of Common Console Commands

Command Options Parameters

boot [-file filename] [-flags root, bitmap]
[-halt]

[boot_device]

continue — —

deposit [-{b,w,l,q,o,h}] [-n val] [-s val] [device:]address data

examine [-{b,w,l,q,o,h,d}] [-n val] [-s val] [device:]address

help — [command]

man [command]

initialize [-c] [-d device_path] [slot-id]

set — envar value

set host [-dup] [-task t] node

show — envar, config, device, error, fru,
hwrpb, memory

start — address

test — cpu, memory, ethernet, scsi

7–22 Appendices: Helpful Commands, Tips and Routines

Appendix H: Diagnostic Environment Variables

Appendix H: Diagnostic Environment Variables

Environment
Variables

The following global environment variables are available to the
user for control of diagnostics. These environment variables are
global to all diagnostic programs executing. These environment
variables can be overwritten by the user on the command line
using the SET command.

Table 7–13 Environment Variables

Variable Values Definition

D_BELL OFF (Default)
ON

Bell on error if error is detected

D_CLEANUP ON (Default)
OFF

Determines whether or not cleanup code
is executed at end of diagnostic execution

D_COMPLETE OFF (Default)
ON

Determines whether or not to display the
diagnostic completion message

D_EOP OFF (Default)
ON

Determines whether or not to display
end-of-pass messages

*D_GROUP FIELD (Default)
MFG
Arbitrary String

Determines diagnostic group to be
executed—maximum length of 32
characters

D_HARDERR HALT (Default)
CONTINUE
LOOP

Determines action taken following hard
error detection

D_LOGHARD ON (Default)
OFF

Determines whether or not hard errors
are logged to the module EEPROM

D_LOGSOFT OFF (Default)
ON

Determines whether or not soft errors
are logged to the module EEPROM

D_OPER ON (Default)
OFF

Set to whether or not an operator is
present

*D_PASSES 1 (Default)
0 - Forever
Arbitrary Value

Determines number of passes to run a
diagnostic module

D_QUICK OFF (Default)
ON

Determines mode of testing - normal or
quick verify

(continued on next page)

Appendices: Helpful Commands, Tips and Routines 7–23

Appendix H: Diagnostic Environment Variables

Table 7–13 (Cont.) Environment Variables

Variable Values Definition

D_REPORT SUMMARY (Default)
FULL
OFF

Determines level of information provided
by diagnostic error reports

D_SOFTERR CONTINUE (Default)
HALT
LOOP

Determines action taken following soft
error detection

D_STARTUP OFF (Default)
ON

Determines whether or not to display the
diagnostic startup message

D_STATUS OFF (Default)
ON

Determines whether or not to display
status messages

D_TRACE OFF (Default)
ON

Determines whether or not to display test
trace messages

7–24 Appendices: Helpful Commands, Tips and Routines

Glossary

Overview This glossary includes terms that are used in the development
of the Alpha AXP Firmware, its documentation and build
environment.

Alpha AXP Firmware
A common pool of console source code shared across multiple
Alpha AXP hardware platforms that can be custom built.

ARC
Advanced RISC Computing. A specification that defines the
architecture for industry-standard computing platform, based on
the MIPS family of microprocessors.

Build
The creation of the Alpha AXP Firmware by using the automated
procedures CP_COMMON_LOGIN.COMand NEWBUILD.COM.

Common Console
The name used to describe the Alpha AXP Firmware product;
used synonymously with console firmware.

Configuration
A name for a variant of a common console build for a
particular hardware platform that becomes part of the file
and directory structure naming convention. This can be defined
in CP_COMMON_LOGIN.COMwith the keyword ‘‘configuration’’ and
defaults to the platform name if not defined. For example, SBLOAD
builds an image for the Sable hardware platform that includes
the basic console firmware, XDELTA debugger, diagnostics, and
can be loaded with MOP.

DDB
Driver database. The DDB is a data structure that contains the
name of the class driver and addresses of its routines.

EISA
Extended Industry Standard Architecture. A parallel, I/O, 32-bit
data bus, that is an extension to its predecessor, the 16-bit ISA
bus. It provides 33.32 MB/second data throughput at 8.33 MHz.

Glossary–1

Encapsulated Files
Source files listed with the keyword ‘‘encapsulate’’ in the
HardwarePlatform_FILES.BLD file, for example, SABLE_FILES.BLD ,
are created in the file system table when the firmware is built.
These images are assigned a file name with attributes that can be
invoked by a console command.

FEROM
Flash EROM memory can be randomly accessed with fairly
fast access times (comparable to dynamic RAMs), yet provides
nonvolatile storage. FEROM can be erased electrically and
selectively in multiple sections (zones), and then rewritten in
seconds.

ISA
Industry Standard Architecture. A 16-bit parallel I/O data bus
that is an extension to its predecessor, the 8-bit data bus. It
provides approximately 8 MB/second data throughput.

MOP
Maintenance-oriented protocol that allows downline loading of
files from a host node over the Ethernet.

NVRAM
Nonvolatile, random-access memory. Contains environmental
variables used throughout the console, for example the default
boot device variable is DEF_BOOT_DEV.

PALcode
Privileged Architectural Library. A library of machine
instructions running in a privileged mode that isolates the
operating system from the Alpha AXP architecture and hardware
implementation.

PB
The port block is a data structure that maintains state and
carries specific information about a port driver on a per-instance
basis, for example, interrupt mode and physical locations of that
device. The PB is passed to the class driver to perform port
functions.

PCI
Peripheral component interconnect. This 32-bit (and 64-bit PCI
- 2) parallel multiplexed address and data bus was designed by
a consortium of vendors as a high-speed peripheral and general
interconnect. The 32-bit version operates at 132 Mbyte at 33
MHz.

Glossary–2

Platform
A name for a hardware platform that forms the base configuration
of an Alpha AXP Firmware build; files and directory structure.
Other build configurations for the same platform share its
common code base, but differ in some variation. This is defined in
CP_COMMON_LOGIN.COMwith the keyword ‘‘platform’’.

SROM
Serial read-only memory. A special ROM chip that is read serially
into the Instruction cache (Icache) DECchip 21064 upon powerup
or during reset. The SROM code initializes the DECchip, memory,
and optionally other hardware, such as external backup cache,
then loads the console firmware into memory.

TOY
Time-of-year interrupt clock. See toy_driver.c and timer.c for
supporting code.

Glossary–3

Index

A
Address

i/o, 4–20
i/o, defining, 4–32

ARC
adding support, build file, 6–10

Architecture
statement, build file, 4–42

AUTO_ACTION
default value on system ship, 3–38
variable, 3–38

B
Base

platform, directory, 3–10
Bcache

loading the image into, 5–6
Boot

auto_action, 3–38
Boot Flags

DEC OSF/1, 3–44
Boot Processor, 3–37
BOOTDEF_DEV, 3–39
Booting

boot flag options, 3–40
command syntax, 3–39
command syntax, Ethernet, 3–43
DEC OSF/1, 3–44
DEC OSF/1 boot flags, 3–44
environment variables, 3–38
ethernet, 3–42
OpenVMS, 3–40
process, 3–37
with bootp, 3–42
with mop, 3–42

BOOTP
booting, 3–42

BOOT_DEV, 3–39
BOOT_OSFLAGS

OpenVMS boot options, 3–40
Build

adding drivers, 6–8
adding files, 4–43
cpu resources, 3–13
directories, generic, 3–9

Build (cont’d)
environment, 1–12
environment, logicals, 7–2
file, configuration, 3–11
files, cloning, 3–18
files, modifications, 3–19
major components, 3–6
options.bld, 4–45
platform configuration file, 4–42
procedure, 3–22
reference documents, 3–3
with xdelta, 4–50
without xdelta, 4–51

build.com
modifying, 4–47

Building
a cloned image, 3–4

Bus
sniffing, console terminal, 6–6

Bus windows
i/o, defining, 4–34

C
Class

CMS definition, 7–8
Cloning

build files, 3–18
code sections, 3–16
files, 3–14

CMS
class definition, 7–8
classes, 7–8
code management system, 7–7
creating, 7–7
DECwindows qualifier, 7–7
elements, 7–9
groups, 7–9
hierarchy, 7–7
introduction, 7–7
using, 7–7

Code Management System
CMS, 7–7

COM1
output, 6–6

Commands
console, 3–28
console, basic, 7–22

Index–1

Commands (cont’d)
diagnostic environment variables, 7–23
diagnostic services routines, 7–18
Entry, 7–14
interface, configuring, 2–8
Powerup, 7–17
scripts, 3–31
srom mini-console, 5–11
to load drivers, 4–36
to unload drivers, 4–36

config.bld
options, 4–50

Configuration
build file, 3–11
directories, 3–9, 3–10
file, modifying, 4–42
subdirectories, 3–11

Configuring
memory, 4–8

Console
commands, basic, 7–22
device, PALcode, 4–14
functions, 2–10
initialization, 2–11
memory image, 2–4
terminal i/o, 4–20
terminal selection, 6–7

Conventions
document, xvi

CP$REF
directory, 7–2

CP$SRC
logical search string, 7–2, 7–3

D
Debug

code tracing, initialization, 4–29
hardware, 5–4
tracing drivers loaded, 4–37

DEC OSF/1
boot environment variables, 3–44
boot flags, 3–44

DECchip
21066, 3–4

Description
file, PALcode, 4–17

Development
creating the environment, 3–11
environment, 1–12, 3–6

Device
console terminal selection, 6–7
controller bus windows, defining, 4–34

Diagnostic
messages, 3–35
sample user session, 3–32

Diagnostic Services
routines, 7–18

Diagnostics
scripts, 3–31

Directories
configuration, 3–10
structure, build, 3–8

Disabling
hardware drivers, 4–36

Driver
adding to build, 6–8
model, 2–7
sequence, console device, 6–6
startup phase, build file, 4–35

Drivers
disabling, 4–36
loading, 4–36
unloading, 4–36

E
Encapsulation

scripts, build file, 6–9
scripts, inode, 6–9

Engineering
VMScluster, 3–13
VMScluster, load, 3–13

Entry, 7–14
Environment

creating, 3–11
development, 3–6

Environment variables
booting DEC OSF/1, 3–44
diagnostic, 7–23
D_BELL, 7–23
D_CLEANUP, 7–23
D_COMPLETE, 7–23
D_EOP, 7–23
D_GROUP, 7–23
D_HARDERR, 7–23
D_LOGHARD, 7–23
D_LOGSOFT, 7–23
D_OPER, 7–23
D_PASSES, 7–23
D_QUICK, 7–23
D_REPORT, 7–24
D_SOFTERR, 7–24
D_STARTUP, 7–24
D_STATUS, 7–24
D_TRACE, 7–24
ethernet, 3–43

Environmental
variables, 4–24

Error
messages, 3–35

esc_nvram_driver.c
environmental variables, 4–26

Index–2

Ethernet
booting, 3–42
environment variables, 3–43
protocols, 3–42

F
Files

build.com, modifying, 4–47
cloning, 3–14
environmental variables, 4–24
kernel_alpha.mar, 4–28
modified for port, list, 7–10
needing modification, 3–17
nvram_def.h, 4–25
options.bld, 4–45
platform_files.bld, modifying, 3–19
platform_io.h, i/o addresses, 4–32
ported, cms generation, 7–11

Flags
bootstrap in progress, 3–41
cold start, 3–41

Functions
of PALcode, 2–10
of the console, 2–10

G
Group

driver, build file, 4–44
keyword, build file, 4–43

H
Halt

auto_action, 3–38
Hardware

debug, 5–4
interface, 2–6

I
I/O

address, 4–20
address definition, 4–21
defining bus windows, 4–34
defining the address, 4–32
terminal, 4–20

Image
memory, 2–4

Initialization
code tracing, 4–29
console, 2–11

Interface
hardware, 2–6
operating system, 2–8
user, 2–7

Interrupt
mode, polled, 4–39

Interrupts
PALcode, 4–14
polled mode, drivers, 4–38

J
jputc

for debugging, 4–29

K
Kernel

adding files, 4–43
routines, modules, 7–12

Kits
developer, save sets, 3–7

L
Load

command, 3–13
Logical

build environment, 7–2
Logicals

build environment, 7–2

M
Memory

console image, 2–4
defining the configuration, 4–8

Messages
diagnostic, 3–35
error, 3–35

MMS
PALcode description file, 4–17
PALcode files, 4–16
platform description file, PALcode, 4–15

Mode
hardware interrupt mode, 4–38
polled interrupt mode, 4–38

MOP
booting, 3–42

N
Network

listening, 3–42
NVRAM

environmental variables, 4–24
nvram_def.h

environmental variables, 4–25

Index–3

O
OpenVMS

boot options, 3–40
Operating System

interface, 2–8
Option

statements, 4–43, 4–45
statements, build, 3–19
statements, build file, 4–42
statements, default, 4–42

Options
build file, 4–45
XDELTA, 4–50

options.bld
build file, 4–45

Output
changing from vga, 6–6
changing to com1, 6–6

P
PALcode

console device, 4–14
description of files, 4–15
functions, 2–10
image, 4–15
interrupts, 4–14
mms description file, 4–17
mms files, 4–15, 4–16
modification steps, 4–12
porting changes, 4–14
strategy of porting changes, 4–12

Platform
base directory, 3–10
statement, build file, 4–42

platform_files.bld
modifying, 3–19

PLATFORM_IO.H
i/o address definitions, 4–32

platform_util.mar
address definition, 4–21

Polled
interrupt mode, drivers, 4–38
interrupts, defining, 4–38

Porting
changing between COM1 from VGA, 6–6
cloning code, 3–16
cloning files, 3–14
environment, 1–12
environmental variables, 4–25
factors, 1–13
list of files modified, 7–10
modifying build files, 3–19
procedure, 1–10
process, overall, 1–4
requirements, 1–12

Porting (cont’d)
scenarios, 1–5
strategy, 1–6

Power-Up
process, 2–11

Powerup, 7–17
process, 4–36

printf
for debugging, 4–30

Process
powerup, 4–36

Protocols
mop, 3–42
tcp/ip, 3–42

R
Requirements

porting, 1–12
Restart

auto_action, 3–38
Robust

mode, 4–36
Routines

services, diagnostic, 7–18

S
sable_files.bld

modifying, 4–42
statements, 4–42

Save
sets, developer kits, 3–7

Scripts
adding, build file, 6–9
command, 3–31
encapsulation, inode, 6–9
generic, diagnostic, 3–31
invoking, 6–9

Search
strings, logicals, 7–2

SROM
memory configuration registers, 4–8
mini-console commands, 7–19
serial rom, introduction, 5–6

SROM Mini-Console
baud rate, 5–10
commands, 5–11
hardware required, 5–8
hardware setup, 5–9
introduction, 5–8
starting, 5–10
synchronization, 5–10
u command, 5–10

Statements
option, 4–43
value, 4–43

Index–4

Subdirectories
configuration, 3–11

T
Terminal

console i/o, 4–20
driver sequence, 6–6
selection, 6–7

TOY
debug, 4–27
files, 4–23
timer of year clock, 4–23

U
User

interface, 2–7

V
Value

statements, 4–43, 4–45
statements, build file, 4–42

statements, default, 4–42
Values

build file, 4–45
Variables

environment, diagnostic, 7–23
environmental, 4–24

VGA
driver sequence, 6–6
output, 6–6

X
XDELTA

building option, 4–50, 4–51
building with extensions, 4–59
commands, 4–52
extended command summary, 4–60
extended commands, 4–57
extended, debug example, 4–58
extensions and features, 4–57
invoking, 4–51
OpenVMS boot options, 3–40
overview, 4–50

Index–5

