
AXPvme
Single-Board Computer
Technical Description
Order Number: EK–EBV1X–TD. B01

Digital Equipment Corporation
Maynard, Massachusetts



July 1995
Printed in U.S.A.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1995. All Rights Reserved.

The prepaid Reader’s Comments form at the end of this document requests your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, DECnet, Digital,
DECchip, OpenVMS, ULTRIX, VAX, VAX DOCUMENT, VxWorks, and the DIGITAL logo.

The following are third-party trademarks:

DALLAS is a registered trademark of Dallas Systems Corporation.
Futurebus/Plus is a registered trademark of Force Computers GMBH, Germany.
Intel is a trademark of Intel Corporation.
NCR is a registered trademark of National Cash Register Company.
OSF and OSF/1 are registered trademarks of Open Software Foundation, Inc.
UNIX is a registered trademark licensed exclusively by X/Open Company Ltd.
VIC64 is a trademark of Cypress Semiconductor Corporation.

VxWORKS is a registered trademark of Wind River Systems, Inc..

All other trademarks and registered trademarks are the property of their respective holders.

S2923

This document was prepared using VAX DOCUMENT Version 2.1.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Technical Hardware Specifications

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1.1.1 Related Hardware Specification Documents . . . . . . . . . . . . . . . . . . . . . 1–2
1.1.2 Conventions and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.1.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.1.3.1 LCA Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.1.3.2 Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.1.3.3 I/O Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.1.3.4 VME Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.1.3.5 Network Interface (IEEE 802.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3.6 SCSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3.7 ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3.8 Console UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3.9 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3.10 Interval Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3.11 TOY Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3.12 Nonvolatile RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.1.3.13 Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1.1.3.14 PCI Mezzanine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1.1.3.15 DIP Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1.2 LCA Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
1.3 Memory Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
1.3.1 Main Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
1.3.2 Backup Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
1.3.3 Memory Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
1.3.4 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
1.4 I/O Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.4.1 PCI Addressing and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.4.2 PCI Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12
1.4.3 PCI Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–14
1.4.3.1 Masked Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–15
1.4.3.2 Unmasked Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–16
1.4.4 Main Memory as PCI Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–16
1.4.5 PCI Address Space Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17
1.4.5.1 PCI Memory Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17
1.4.5.2 PCI I/O Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
1.5 VME Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20

iii



1.5.1 PCI Access to VME Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20
1.5.1.1 VME_CSR_BASE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20
1.5.1.2 VME_WINDOW_1_BASE Register . . . . . . . . . . . . . . . . . . . . . . . . . 1–21
1.5.1.3 VME_SG_BASE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21
1.5.1.4 VME_WINDOW_2_BASE Register . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1.5.1.5 VME_WINDOW_2_SIZE Register . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1.5.2 Master Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–23
1.5.2.1 Outbound S/G Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–24
1.5.2.2 Programmed I/O - Single VME Accesses . . . . . . . . . . . . . . . . . . . . 1–26
1.5.2.3 Master Block Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–26
1.5.3 VMEbus Requester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–28
1.5.3.1 VMEbus Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–28
1.5.3.2 VMEbus Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–28
1.5.4 Slave Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29
1.5.4.1 A32, A24 VMEbus Address Decode . . . . . . . . . . . . . . . . . . . . . . . . 1–30
1.5.4.2 Inbound S/G Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–30
1.5.4.3 Inbound S/G Page Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31
1.5.5 Programming S/G RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–32
1.5.6 Byte Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–33
1.5.7 System Controller Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–37
1.5.7.1 VMEbus Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–37
1.5.7.2 VMEbus Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–37
1.5.7.3 SYSCLK Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–37
1.5.7.4 Timeout Timers for Arbitration and Transfers . . . . . . . . . . . . . . . . 1–38
1.5.8 Interprocessor Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–38
1.5.8.1 Interprocessor Communication Registers (ICRs) . . . . . . . . . . . . . . 1–38
1.5.8.2 Interprocessor Communication Global Switches (ICGS) . . . . . . . . . 1–39
1.5.8.3 Interprocessor Communication Module Switches (ICMS) . . . . . . . . 1–39
1.5.9 AXPvme Generated VMEbus Interrupts . . . . . . . . . . . . . . . . . . . . . . . 1–40
1.6 VME Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–42
1.6.1 How AXPvme Uses the VIC64 Registers . . . . . . . . . . . . . . . . . . . . . . . 1–42
1.6.2 VME Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–46
1.6.3 VME Subsystem Restrictions (as of 22-Nov-94) . . . . . . . . . . . . . . . . . . 1–48
1.6.3.1 D64 Writes to Invalid Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–48
1.6.3.2 D64 Write/IACK Cycle Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . 1–48
1.6.3.3 Collision of VIC64 Master Write Posting with Master Block

Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–48
1.6.3.4 VIC64 Errata: A16 Master Cycles During Interleave . . . . . . . . . . 1–48
1.6.3.5 Module Reset Temporarily Disables IACK Chain . . . . . . . . . . . . . . 1–49
1.7 Network Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–50
1.7.1 DECchip 21040-AA PCI Configuration Registers . . . . . . . . . . . . . . . . . 1–50
1.7.2 DECchip 21040-AA CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–50
1.7.3 DECchip 21040-AA PCI Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–51
1.7.4 Ethernet Address ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–51
1.8 SCSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–52
1.8.1 SCSI ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–52
1.8.2 SCSI Connection and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–52
1.8.3 53C810 Configuration Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–52
1.8.4 SCSI Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–53
1.8.5 SCSI Control Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–53
1.8.6 Clocking Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–55
1.9 ISbus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–56
1.9.1 ISbus Adapter (SIO) Configuration Space . . . . . . . . . . . . . . . . . . . . . . 1–56
1.9.1.1 AXPvme Required Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–56

iv



1.9.2 ISbus Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–57
1.9.3 ISbus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–59
1.10 Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–59
1.10.1 Module Display Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–59
1.10.2 Module Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–60
1.10.2.1 Memory Card ID <2:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61
1.10.2.2 Module ID <4:3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61
1.10.2.3 Present Bits <7:5> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61
1.10.3 Module Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61
1.10.3.1 Park Device Select Bits <7:6> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–62
1.10.3.2 Watchdog Reset Enable Bit <5> . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–62
1.10.3.3 CPU IRQ Enable Bit <4> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–62
1.10.3.4 PCI Arbitration Selection Bits <3:2> . . . . . . . . . . . . . . . . . . . . . . . 1–62
1.10.3.5 Interrupt Select Bit <1> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–62
1.10.4 Module Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–63
1.10.4.1 Flash Select <1:0> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–63
1.10.4.2 Flash Write Enable <2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–63
1.10.4.3 Timer 0 Mode 1 Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–63
1.10.5 Reset Reason Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–64
1.10.6 Heartbeat ‘‘Clear-Interrupt’’ Register . . . . . . . . . . . . . . . . . . . . . . . . . . 1–64
1.10.7 Front Panel Status LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–65
1.10.7.1 The AMBER LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–65
1.10.7.2 The GREEN LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–65
1.11 ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–65
1.11.1 Serial ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–65
1.11.2 System ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–65
1.11.3 Flash ROM Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–66
1.11.4 Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–66
1.12 Console UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–67
1.12.1 UART Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–67
1.12.2 Data/Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–67
1.12.2.1 Serial Line Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–68
1.12.2.2 Internal Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–68
1.12.3 SCC Operation in Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . 1–70
1.12.3.1 RX Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–70
1.12.3.2 TX Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–70
1.12.3.3 Baud Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–71
1.12.3.4 Interrupt Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–72
1.12.3.5 Read Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–73
1.12.4 System Use and Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–74
1.12.5 Physical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–74
1.13 TOY Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–74
1.13.1 TOY Clock Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–75
1.13.2 Fixed Frequency ‘‘Heartbeat’’ Output . . . . . . . . . . . . . . . . . . . . . . . . . . 1–76
1.13.3 Standby Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–76
1.14 Interval Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–77
1.14.1 82C54 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–78
1.14.1.1 Control Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–78
1.14.1.2 Timer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–79
1.14.1.3 Status Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–81

v



1.14.2 Interval Timers in AXPvme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–81
1.14.2.1 Timer Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–82
1.14.2.2 Timer Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–82
1.14.2.3 Timer Interrupt/Expiration Control and Status Register . . . . . . . . 1–83
1.14.2.4 Timer #0 Restrictions (AXPvme 64, AXPvme 64LC, and AXPvme

160 modules only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–83
1.14.3 1024 Hz Heartbeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–84
1.15 Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–84
1.15.1 Watchdog Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–84
1.16 Nonvolatile RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–85
1.16.1 Note on Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–86
1.17 Interrupts and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–86
1.17.1 Interrupt Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–87
1.17.2 VIC64 System Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–88
1.17.2.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–88
1.17.3 VIC64 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–89
1.17.3.1 Device Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–89
1.17.3.2 VMEbus IRQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–91
1.17.3.3 Status/Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–92
1.17.4 SIO Programmable Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . 1–94
1.17.4.1 Auto-Vectored VMEbus IRQs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–94
1.17.4.2 PIC as Alternative System Interrupt Controller . . . . . . . . . . . . . . 1–95
1.17.4.3 Programming the SIO’s 8259 Cores . . . . . . . . . . . . . . . . . . . . . . . . 1–95
1.17.5 Nonmaskable System Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–95
1.17.5.1 NMI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 1–96
1.17.6 Module Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–96
1.18 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–96
1.18.1 LCA Chip Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–97
1.18.2 VME Interface Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–97
1.18.2.1 DC7407 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–97
1.18.2.2 VIC64 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–97
1.19 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–98
1.19.1 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–98
1.19.2 Storage Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–98
1.20 Physical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–99
1.21 AXPvme Breakout Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–100
1.21.1 Breakout Module Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–100
1.21.2 AXPvme Single-Slot Breakout Module . . . . . . . . . . . . . . . . . . . . . . . . . 1–102
1.21.3 AXPvme Single-Slot Breakout J2 Connector . . . . . . . . . . . . . . . . . . . . 1–104
1.21.4 AXPvme Dual-Slot Breakout Module . . . . . . . . . . . . . . . . . . . . . . . . . . 1–105
1.21.5 AXPvme Dual-Slot Breakout J2 Connector . . . . . . . . . . . . . . . . . . . . . 1–107
1.21.6 AXPvme P2 Connector Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–108
1.22 Power and Environmental Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 1–110

2 Console Primer

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.1 Console Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.2 Command Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2.1.3 Console Shell Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2.2 Getting Information About the System . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.3 Online Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.4 Examining and Depositing to Memory or System Registers . . . . . . . . . . 2–6
2.4.1 Accessing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7

vi



2.4.2 Examining Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.5 Using Pipes ( | ) and grep to Filter Output . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.6 Using I/O Redirection (>) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.7 Running Commands in the Background "&" . . . . . . . . . . . . . . . . . . . . . . 2–10
2.8 Monitoring Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.9 Killing a Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.10 Creating Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.11 Using Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13
2.12 Copying Scripts over the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15

3 Console Commands

3.1 Console Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.1 Special Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.2 Command Line Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.3 Radix Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.4 Console Command Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3
alloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11
cat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12
chmod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13
chown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15
clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16
clear_log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17
continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18
crc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–21
deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–23
dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–27
echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–29
edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–31
eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–34
examine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–36
exer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–40
exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–46
false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–47
free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–48
grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–49
hd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–51
help, man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–52
initialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–54
init_ev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–55
kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–56
line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–57
ls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–58
memexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–59
memtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–60

vii



net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–65
nettest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–68
ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–71
pwrup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–72
rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–73
sa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–74
semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–75
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–76
set led . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–78
set mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–79
set reboot srom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–80
set toy sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–81
sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–82
show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–83
show config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–85
show device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–86
show hwrpb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–88
show led . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–89
show map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–90
show mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–91
show_log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–92
sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–94
sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–95
sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–96
start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–97
stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–98
update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–99

4 Environment Variables

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1
4.2 Application-Independent Environment Variables . . . . . . . . . . . . . . . . . . . . 4–2
4.3 Diagnostic Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
4.4 Console-Specific Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
4.4.1 Ethernet Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
4.4.2 Storage Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6
4.4.3 Console Configuration Environment Variables . . . . . . . . . . . . . . . . . . . 4–7

5 Diagnostics

5.1 Power-up Self-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.2 Miscellaneous Diagnostic Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.3 Diagnostic Test Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.3.1 Available Console and SROM Diagnostics . . . . . . . . . . . . . . . . . . . . . . 5–1
5.3.2 SROM Diagnostic Test Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4

SROM System I/O Device Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
SROM Console UART Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6
SROM Internal Data Cache Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7
SROM Dynamic RAM Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8

viii



SROM External Backup Cache Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9
SROM Flash EPROM Unload Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–10

5.3.3 Console Power On Self Test Descriptions . . . . . . . . . . . . . . . . . . . . . . . 5–11
POST NVRAM Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–12
POST Memory Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–13

5.3.4 Console Diagnostic Test Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 5–15
Flash EPROM Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–16
Module Display Control Register/LED Tests . . . . . . . . . . . . . . . . . . . . . . . 5–18
Module Control Register Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–19
Heartbeat Timer Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–20
Interval Timer Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–21
DECchip 21040 Ethernet Controller Tests . . . . . . . . . . . . . . . . . . . . . . . . . 5–26
Memory ECC Detection Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–28
Backup Cache Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–29
8530 Serial Communication Controller Tests . . . . . . . . . . . . . . . . . . . . . . . 5–31
DALLAS DS1386 RAMified Watchdog Timekeeper Tests . . . . . . . . . . . . . . 5–33
LAN Address ROM Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–36
NCR 53C810 PCI-SCSI IO Processor Tests . . . . . . . . . . . . . . . . . . . . . . . . 5–38
Watchdog Timer Interrupt Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–40
VME Interface Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–41

5.4 Test Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–43

A Specifications

B AXPvme Connectors

B.1 Serial Line Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1
B.2 Ethernet AUI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2
B.3 SCSI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2
B.4 VMEbus P2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–4
B.5 PCI Option Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–6

Index

Figures

1–1 AXPvme Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1–2 Memory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
1–3 Cache Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
1–4 Generic Configuration Space Header . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
1–5 PCI Devices, Size, and Base Registers . . . . . . . . . . . . . . . . . . . . . . . . . 1–12
1–6 Module Control Register (PCI Park) . . . . . . . . . . . . . . . . . . . . . . . . . . 1–14
1–7 LCA I/O Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–14
1–8 PCI Memory Space Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
1–9 PCI I/O Space Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20
1–10 VME_CSR_BASE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21
1–11 VME_WINDOW_1_BASE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21
1–12 VME_SG_BASE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21

ix



1–13 VME_WINDOW_2_BASE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1–14 VME_WINDOW_2_SIZE Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1–15 Example PCI to VME Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–24
1–16 Outbound S/G Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25
1–17 VIC Block Transfer Control Register (VIC_BTCR) . . . . . . . . . . . . . . . . 1–27
1–18 VIC Arbiter/Requester Configuration Register (VIC_ARCR) . . . . . . . . 1–28
1–19 VIC Release Control Register (VIC_RCR) . . . . . . . . . . . . . . . . . . . . . . 1–29
1–20 Address Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–30
1–21 Inbound S/G Entry (With A32 Addressing Example) . . . . . . . . . . . . . . 1–31
1–22 Inbound S/G Page Monitor Control/Status Register . . . . . . . . . . . . . . . 1–32
1–23 DC7407 Swap Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–34
1–24 Big Endian VME Byte Lane Formats . . . . . . . . . . . . . . . . . . . . . . . . . 1–35
1–25 VMEbus Transfer Timeout Register (VIC_TTR) . . . . . . . . . . . . . . . . . . 1–38
1–26 Interprocessor Communication Register Map . . . . . . . . . . . . . . . . . . . . 1–40
1–27 VMEbus Interrupt Request/Status Register . . . . . . . . . . . . . . . . . . . . . 1–41
1–28 VMEbus Interrupt Vector Base Registers . . . . . . . . . . . . . . . . . . . . . . 1–41
1–29 VMEbus Interrupter Interrupt Control Register . . . . . . . . . . . . . . . . . 1–42
1–30 DECchip 21040-AA PCI Configuration Registers . . . . . . . . . . . . . . . . . 1–50
1–31 DECchip 21040-AA CSR9 (ENET ROM Register) . . . . . . . . . . . . . . . . 1–52
1–32 53C810 Configuration Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–53
1–33 SIO Configuration Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–56
1–34 ISbus I/O Address Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–58
1–35 Display Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–60
1–36 Module Display Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–60
1–37 Module Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–61
1–38 Module Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–62
1–39 Module Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–63
1–40 Reset Reason Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–64
1–41 Flash ROM Layout/Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–66
1–42 Typical Asynchronous Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–67
1–43 SCC Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–68
1–44 Write Register 0 (Channel A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–69
1–45 Read Register 0 (Channel A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–69
1–46 Write Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–70
1–47 Write Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–70
1–48 Write Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–71
1–49 Interrupt Control Register (Write Register 1) . . . . . . . . . . . . . . . . . . . 1–72
1–50 External/Status Interrupt Control (Write Register 15) . . . . . . . . . . . . . 1–73
1–51 Read Register 3 (Interrupt Pending Register) . . . . . . . . . . . . . . . . . . . 1–73
1–52 DEC423 MMJ Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–74
1–53 TOY Time Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–75
1–54 TOY Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–76
1–55 Timer Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–77
1–56 82C54 Control Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–78
1–57 82C54 Timer Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–79
1–58 Timer Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–82
1–59 Timer Interrupt/Expiration Status Register . . . . . . . . . . . . . . . . . . . . . 1–83

x



1–60 Watchdog Time Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–84
1–61 TOY Command Register (Watchdog) . . . . . . . . . . . . . . . . . . . . . . . . . . 1–85
1–62 Module Control Register (Watchdog) . . . . . . . . . . . . . . . . . . . . . . . . . . 1–85
1–63 NVRAM Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–86
1–64 Interrupt Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–87
1–65 Generic Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–88
1–66 Device Interrupt Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–90
1–67 VIC Local Interrupt Vector Base Register . . . . . . . . . . . . . . . . . . . . . . 1–91
1–68 VME IRQ* Interrupt Control Registers . . . . . . . . . . . . . . . . . . . . . . . . 1–91
1–69 VMEbus Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–92
1–70 DMA Status Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . 1–92
1–71 VIC Error Group Interrupt Control Register . . . . . . . . . . . . . . . . . . . . 1–93
1–72 VMEbus Interrupter Interrupt Control Register . . . . . . . . . . . . . . . . . 1–93
1–73 VIC Error Group Interrupt Vector Base Register . . . . . . . . . . . . . . . . . 1–94
1–74 VMEbus Auto-Vector Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . 1–95
1–75 Module and Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–99
1–76 AXPvme Single-Slot Breakout Module Installation . . . . . . . . . . . . . . . 1–102
1–77 AXPvme Single-Slot Breakout Module Detail . . . . . . . . . . . . . . . . . . . 1–103
1–78 AXPvme Single-Slot Breakout J2 Connector Pinout . . . . . . . . . . . . . . 1–104
1–79 AXPvme Dual-Slot Breakout Module Installation . . . . . . . . . . . . . . . . 1–105
1–80 AXPvme Dual-Slot Breakout Detail . . . . . . . . . . . . . . . . . . . . . . . . . . 1–106
1–81 AXPvme Dual-Slot Breakout J2 Connector Pinout . . . . . . . . . . . . . . . 1–107
1–82 AXPvme P2 Connector Pinout, Dual-Slot and Single-Slot . . . . . . . . . . 1–109
4–1 Storage Locations of Environment Variables . . . . . . . . . . . . . . . . . . . . 4–2
5–1 Memory Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–14
5–2 Loopback Descriptions for Interval Timer Test 3 and 4 . . . . . . . . . . . . 5–25
5–3 LAN Address ROM Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–37
5–4 SROM Test Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–43
5–5 Console Power-On/Self-Test Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–44
5–6 Console Power-On/Self-Test Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–45
B–1 Serial Line Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1
B–2 Ethernet AUI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2
B–3 SCSI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–3
B–4 VMEbus P2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–4
B–5 PCI Option Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–6

Tables

1–3 AXPvme Backup Cache Memory Size . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1–2 Dip Switch Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1–3 AXPvme Backup Cache Memory Size . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
1–4 Configuration Space Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
1–5 PCI Device Arbitration Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–13
1–6 CPU Address Window to PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–15
1–7 PCI Target Window Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–16
1–8 PCI to CPU Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17
1–9 Formation of AM Codes from S/G Entry . . . . . . . . . . . . . . . . . . . . . . . 1–25

xi



1–10 PCI BE# to Local A1,0 and SIZ1,0 Translation for Various Swap
Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–35

1–11 Local Bus A1,0 and SIZ1,0 to PCI BE# Translation . . . . . . . . . . . . . . . 1–36
1–12 DECchip 21040-AA CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–51
1–13 53C810 Register List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–54
1–14 SCC Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–72
1–15 Timer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–80
1–16 VIC64 Interrupt Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–89
1–17 Physical and Environmental Specifications . . . . . . . . . . . . . . . . . . . . . 1–110
1–18 Power and Heat Dissipation at Processor Frequencies . . . . . . . . . . . . . 1–110
2–1 Frequently Used Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2–2 Console Shell Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
4–1 ARM Defined Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
4–2 Console Diagnostic Environment Variables . . . . . . . . . . . . . . . . . . . . . 4–4
4–3 Ethernet Configuration Environment Variables . . . . . . . . . . . . . . . . . . 4–5
4–4 Storage Configuration Environment Variables . . . . . . . . . . . . . . . . . . . 4–6
4–5 Console Configuration Environment Variables . . . . . . . . . . . . . . . . . . . 4–7
5–1 Test Patterns in Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5–2 Console Diagnostic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
A–1 Physical and Environmental Specifications . . . . . . . . . . . . . . . . . . . . . A–1
A–2 Power Supply Current and Module Power Dissapation . . . . . . . . . . . . A–1
B–1 Serial Line Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–1
B–2 Ethernet AUI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2
B–3 SCSI Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–3
B–4 VMEbus P2 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–4
B–5 PCI Option J11 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–6
B–6 PCI Option J12 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–7

xii



Preface

Purpose
This guide describes the AXPvme module and its built-in features including the
console code and diagnostics.

Audience
This guide is intended for users who wish to have in-depth information about
the AXPvme module. This guide does not provide programming information.
For programming information, refer to the operating system calls section of your
operating system documentation.

Related Documents
Document Part Number

AXPvme Single-Board Computer Installation/User Guide EK-EBV1X-IN

VxWorks Digital AXPvme Single-Board Computers
Hardware Supplement

AA-QA5HA-TE

VxWorks Programmer’s Guide AA-Q3YLB-TE

DEC OSF/1 Installation Guide AA-PS2DD-TE

Conventions
This manual uses the following conventions:

Convention Meaning

Return Press the key that executes commands or terminates a
sequence. This key is labeled Return, Enter, or -, depending on
your keyboard.

Ctrl/x While you hold down the Ctrl key, press any other key.

OSF and VxWorks commands are case sensitive. You must
enter commands in the correct case, as printed in the text.

Monospace type Indicates examples of system output or user input.

italics In commands and examples, italics indicates a value that you
should supply.

U*X Is used in place of UNIX and ULTRIX in this document.

[ ] Square brackets in command descriptions enclose the optional
command qualifiers. Do not type the brackets when entering
information enclosed in the brackets.

xiii



Convention Meaning

| A vertical bar in command descriptions indicates that you have
a choice between two or more entries. Select one entry unless
the entries are optional.

{ } Braces indicate that you are required to specify one (and only
one) of the enclosed options. Do not type the braces when you
enter the command.

( ) Parentheses enclose a set of options that must be specified
together.

xiv



1
Technical Hardware Specifications

1.1 Overview
The AXPvme single-board computer is a 6U-sized Versa Module Eurocard bus
(VMEbus) device with the low-cost Alpha (21066A) processor chip, memory, and
peripheral device controllers on a single module. The AXPvme single-board
computer is for VME real-time and embedded systems, where high performance
with a Digital supported operating system is desirable. The supported operating
systems are OSF/1 and VxWorks. Figure 1–1 shows a block diagram of the
systems on the AXPvme module.

Figure 1–1 AXPvme Module Block Diagram

LCA
Alpha AXP
Processor Memory Bus (64 bits)

PCI Controller

256−KB/
512−KB
External

Memory
8 to 128 MB

I/O Bus
Interface

Serial
Lines

Interval & Clock &
ROM Watchdog NVRAM

Timers

PCI Bus (32 bits)

VMEbus SCSI Ethernet
Interface

PCI Option
Interface

Cache

Interface

I/O Bus (8 bits)

Module

Flash

Technical Hardware Specifications 1–1



1.1.1 Related Hardware Specification Documents
The following documents should be used with the hardware specifications
provided in this chapter:

• Alpha Architecture Reference Manual

• DECchip 21066-AA (Low-cost Alpha) Engineering Specification

• PCI Interface Specification 2.0

• DECchip 21040-AA Specification

• NCR 53C810 Documentation

• Intel 82378ZB Chip Specification

• Chip Specifications for 85C30, 8254, and VIC068/64

1.1.2 Conventions and Terms
The following conventions and terms are used in this chapter:

• All address numbering is in hexidecimal

• Other hexidecimal numbers are suffixed by ‘‘h,’’ for example, 4C00h

• RO = Read only

• W1C = Write one to clear

• MBZ = Must be zero, for example, must be written as zero and expected as
zero on reads

1.1.3 System Description
The AXPvme system is based on the LCA chip with the PCI as the onboard I/O
bus.

1.1.3.1 LCA Processor
The Low-Cost Alpha chip (LCA) is a dual-issue Alpha implementation with full
floating-point support, internal 8 Kbyte Instruction and Data caches, full memory,
and I/O bus controllers, as well as a PLL clock generator.

1.1.3.2 Memory Controller
The LCA’s integral memory controller handles all interface operations to the main
memory and external write-back backup cache.

The AXPvme will support 8/16/32/64/128 Mbytes of DRAM memory.

The external backup cache is a fixed 256 Kbytes or 512 Kbytes depending on the
module version. Table 1–3 shows the cache size of each AXPvme module.

1–2 Technical Hardware Specifications



Table 1–3 AXPvme Backup Cache Memory Size

AXPvme
Module Cache Size

64 256 Kbytes

64LC 256 Kbytes

160 256 Kbytes

100 512 Kbytes

166 512 Kbytes

230 512 Kbytes

1.1.3.3 I/O Controller
The LCA’s integral I/O controller implements the interface to the peripheral
component interconnect (PCI) bus. The PCI is used as the system I/O bus. All
I/O is mapped into the 32-bit PCI address space. Byte, Word, Longword, and
Quadword accesses over the PCI are support for CPU initiated cycles. The I/O
controller also acts as a PCI target and PCI to main memory bridge for I/O
initiated transfers and DMAs.

1.1.3.4 VME Interface
AXPvme supports a full master/slave VME interface to IEC 821, IEEE1014-1987
standards. The module can act as VME system controller (in slot 1), and as such,
handles bus arbitration, interrupt handling, and so forth.

The VME interface operates in A16, A24, and A32 addresses spaces with D08,
D16, D32, and D64 data transfers.

As a VME master, AXPvme can be programmed to any of the four bus request
levels. The system will be a fair requester and can be programmed to release-
on-request or when done. An outbound programmable scatter/gather (S/G) is
used to facilitate flexible VME access. This S/G allows access to 2048 256-Kbyte
pages of VME space and is used to specify address modifier and byte swapping
information, and so forth. Full outgoing DMA bursts are supported for fast
memory to VME target data transfer. Support for D64 transfers offer data rates
of up to >24 Mbytes/s.

As a slave, AXPvme responds to programmed addresses in the A24 and A32
VME address spaces. D08, D16, D32, and D64 transfers including block modes
(no D08 block mode) and read-modify-write cycles are supported (though not
atomic to main memory). An inbound S/G is employed to give flexibility in slave
addressing of the 8-128 Mbytes of AXPvme main memory. The S/G also allows
write-protection of designated pages and the implementation of interrupt-based
inbound S/G page monitoring.

Byte swapping (selectable via S/G entries) is provided to ease data interchange
between the little-endian Alpha AXP and other architectures without software
overhead.

Interprocessor communication registers in A16 space are provided for limited
message passing and signaling.

Technical Hardware Specifications 1–3



1.1.3.5 Network Interface (IEEE 802.3)
A PCI-based network interface is standard on the AXPvme system. Connection to
a network is via AUI at the front panel.

1.1.3.6 SCSI
A PCI-based SCSI interface is embedded on the AXPvme computer modules. This
interface will provide SCSI-2 support (hardware will support either target and/or
initiator). Connection to the SCSI interface is via a P2 breakout module using a
standard nonshielded 50-pin low-density connector.

1.1.3.7 ROM
4 Mbyte of flash ROM is provided on processors with 512 Kbyte of cache while
1 Mbyte of flash ROM is provided on processors with 256 Kbyte cache for
console, diagnostics, PAL code store, and user-specific applications. This ROM
is implemented in flash EPROM to allow in-place ROM updates. Updates are
enabled/disabled via software and a module DIP switch. For full details of the
ROM usage, see Section 1.11.

The 4 Mbyte of flash ROM is accessed in the bottom 1 Mbyte of PCI memory
space. Two bits in the MODULE CONTROL2 REGISTER select the current 1
Mbyte window mapped into PCI space. The systems with 1 Mbyte of flash ROM
directly access this ROM without mapping.

1.1.3.8 Console UART
The AXPvme console is driven by a serial line DUART port. This DEC423 port is
one of two asynchronous serial lines on the module.

1.1.3.9 Watchdog
A watchdog timer is included as a programmable fail-safe on system software. If
enabled and allowed to expire, the watchdog first halts the CPU (causing a jump
to console firmware) and then resets the entire AXPvme. On watchdog reset an
open-collector signal, accessible via P2, is asserted and the amber front panel
LED lights.

1.1.3.10 Interval Timers
AXPvme features three programmable 16-bit interval timer/counters. Two of
the timers are driven from a fixed 10 MHz clock, and can be used to generate
rate outputs (via P2 pins) or onboard interval interrupts. The third counter
/timer is clocked and gated by external inputs (via P2 pins) for event counting or
synchronization. The output of this final counter can be enabled to generate an
onboard interrupt request.

1.1.3.11 TOY Clock
A basic time-of-year function with battery backup is included on the AXPvme
module. This device keeps time and date information with a resolution of 0.01
seconds and an accuracy of +/- 1 minute per month, at 25°C.

1.1.3.12 Nonvolatile RAM
32 Kbytes of nonvolatile RAM are available on the AXPvme card. For full details
of the layout and use of the onboard NVRAM, refer to Section 1.16. An onboard
DIP switch allows the NVRAM to be supplied by the backplane 5 V standby (to
remove dependence on the internal battery). The device will retain data for 10
years in the absence of Vcc, at 25°C.

1–4 Technical Hardware Specifications



1.1.3.13 Display
There is a single alphanumeric display on the front panel of the AXPvme, which
is accessible in I/O space. The display is used for firmware status information.
When not running resident firmware, the display is available for use under user
software control.

1.1.3.14 PCI Mezzanine
A single PCI mezzanine connector is located on the system module to allow a PCI
option daughtercard to be plugged in. PCI bus arbitration logic in AXPvme fully
supports one optional PCI device with up to four PCI option interrupt request
lines. The PCI clock is driven from AXPvme at a frequency of 32 MHz with
processors with 256 Kbyte chache and 33 Mhz on processors with 512 Kbyte of
cache.

1.1.3.15 DIP Switches
AXPvme modules have a set of four DIP switches used to enable/disable various
functions. These switches are physically located behind the Network AUI
connector and are labeled 1 through 4. The switches and their functions are
listed in Table 1–2.

Table 1–2 Dip Switch Functions

Switch No. Open Closed

1 TOY clock has no connection to
VME 5 V standby suppy.

TOY 5 V line assisted by VME standby
power (extends battery life).

2 Flash ROM updates are disabled
(Vpp = 0 V).

Flash ROM updates are enabled (Vpp =
+12 V).

3 VME bus resets do not generate
a module reset.

VME bus resets will generate a module
reset.

4 Configures the VME corner
to not be the VME system
controller on powerup.

Configures the VME corner to be VME
system controller on powerup. This has
the same effect as connecting VMEP2
pin A23 (VME_MASTER_SWL) to
ground for the AXPvme 66, AXPvme
100, and the AXPvme 231.

The default configuration, as delivered from the factory, assumes the module will
be a VME system controller (will perform VME bus arbitration from slot 1).

Default Switch Settings:

1 - Closed (Allow VME 5 V standby power to assist TOY supply)

2 - Open (Flash updates disabled)

3 - Open (VMEbus resets do not reset module)

4 - Closed (Configured as VME system controller)

An alternate configuration assumes the module is not a VME system controller
(is not in slot 1 and does not perform VME bus arbitration).

Nonsystem Controller Switch Settings:

1 - Closed (Allow VME 5 V standby power to assist TOY supply)

2 - Open (Flash updates disabled)

3 - Closed (VMEbus resets do reset module)

4 - Open (Not configured as VME system controller)

Technical Hardware Specifications 1–5



Note that switches 3 and 4 must always be configured opposite (one open, one
closed) for normal system operation.

Note

The AXPvme 66, AXPvme 100, and AXPvme 231 may be configured as the
VME system controller by closing switch 4 or by grounding VMEP2 pin
A23. Switch 4 must be open and VMEP2 pin A23 must not be connected
to ground for the modules to operate as a non-controller.

1.2 LCA Processor
The DECchip 21066A microprocessor is the second in a family of chips to
implement the Alpha AXP architecture. The 21066A is a CMOS based
superscalar, superpipelined processor using dual-instruction issue. The DECchip
21066A incorporates a high level of system integration to provide the best-in-
class system performance for cost-focused applications. It integrates on-chip
fully pipelined integer and floating-point processors, a high bandwidth memory
controller, an industry standard I/O controller, an embedded graphics accelerator,
internal instruction and data caches, and external cache control.

Summary of the DECchip 21066A features �:

• Fully pipelined, 64-bit RISC architecture

• Supported by multiple operating systems:

OSF

VxWorks

• Best-in-class performance

231 MHz operation (AXPvme 230)

Superscalar, superpipelined (dual issue)

• Pipelined on-chip floating-point unit:

IEEE single- and double-precision, Digital F_floating and G_floating,
longword and quadword data types. Limited support for D_floating data
type.

• On-chip demand-paged memory management unit:

A 12-entry I-stream translation buffer with 8 entries for 8Kbyte pages
and 4 entries for 4 MB pages

A 32-entry D-stream translation buffer with each entry able to map a
single 8K, 64K, 512K, or 4 MB page.

Super page mapping

• On-chip high-bandwidth memory controller:

Full 64-bit memory datapath

Dynamic RAM (DRAM) controller

64-bit error correction code (ECC)

� Refers to utilization in AXPvme dual-slot

1–6 Technical Hardware Specifications



Supports up to 4 banks of memory

RAS/CAS memory bus

• PCI I/O controller

32-bit multiplexed address/data

Industry standard

Burst mode reads and writes

Asynchronous operation to CPU

Multimaster with peer-to-peer access

• On-chip 8-Kbyte direct mapped write-through data cache

• On-chip 8-Kbyte direct mapped instruction cache

• On-chip control for optional, external, write-back secondary cache:

Programmable cache size and speed

• Built-in phase-locked loop (PLL)

Frequency multiplier allows low-cost input clock

Programmable multiplier values

• Serial ROM interface:

Loads Icache after reset

Software controlled serial port after initialization

• 3.3 V supply voltage

Interfaces directly to 5 V logic

Please refer to the DECchip 21066-AA (Low Cost Alpha Microprocessor
Engineering Specification) for details of the LCA chip.

1.3 Memory Subsystem
The memory subsystem of the AXPvme system can be divided into two sections:

• Main memory

• External Bcache

The memory controller, internal to the DECchip 21066, handles the operation and
control of the external memories under the configuration control of various LCA
internal registers.

An 8-bit ECC is used on the 64-bit memory word for single-bit error correction
and double-bit/nibble error detection. The controller generates a CAS-before-RAS
cycle to refresh all banks simultaneously.

The AXPvme system will support 8/16/32/64/128 Mbytes of main memory.

The external backup cache of AXPvme is a fixed 256 Kbyte or 512 Kbyte SRAM
write-back configuration, depending on the module version.

Technical Hardware Specifications 1–7



1.3.1 Main Memory
The memory interface is of the form shown in Figure 1–2. The memory controller
attempts to maximize fast-page-mode operation. In this way the maximum
memory bandwidth for AXPvme is approximately 75 Mbytes/s with a sustainable
bandwidth of 64 Mbytes/s shared evenly between the CPU and the IOC.

Figure 1–2 Memory System

16/64Mbyte
72-bits Wide

(Bank2,3 optional)

(Bank0,1)

Buffers

MEM_RAS<0,1>

MEM_RAS<2,3>

MEM_ADDR<10:0>, MEM_CAS

MEM_DATA<63:0>, MEM_ECC<7:0>

1.3.2 Backup Cache
The external Bcache is an optional system component that increases overall
system performance by returning cached main-memory data faster than is
possible from the DRAMs. The cache is implemented as 512 Kbytes SRAM. The
cache tag size (see Figure 1–3) depends on the cache size. Table 1–3 shows the
cache size of each AXPvme module.

Table 1–3 AXPvme Backup Cache Memory Size

AXPvme
Module Cache Size

64 256 Kbytes

64LC 256 Kbytes

160 256 Kbytes

100 512 Kbytes

166 512 Kbytes

230 512 Kbytes

1–8 Technical Hardware Specifications



Figure 1–3 Cache Tag

2
8

Mem Addr Tag INDEXTAG
036

2
128Mbyte

512Mbyte

Byte in QW

Example: 512Kbyte Cache =>  64K-quadwords
                                                   16  Index bits
                                                   10  Tag bits  (for 512Mbytes max main memory)

The cache word size is a quadword.

To allow caching of any memory address in the 512-Mbyte range for a 512-Kbyte
Bcache requires 10 tag bits. In addition, the cache interface requires one parity
bit and one ‘‘dirty’’ bit associated with each tag entry. This gives a total of 12 tag
RAM storage bits required.

1.3.3 Memory Initialization
Each memory bank in the AXPvme system is controlled by the values in four
associated registers. The correct configuration is set at module power on and
should not be altered. There is a single Global Timing Register, which affects
all system banks. Each bank then has 3 bank-specific registers to configure to
individual bank needs.

The serial ROM configures memory as follows:

1. Global timing register (GTR)

2. Individual bank setup as required

a. Bank timing registers (BTRs)

b. Bank address mask register

c. Bank configuration register

The two types of timing registers allow the memory controller interface of the
LCA to be tailored to the type and speed of RAM chips used in the system.

The basic RAM configuration of the AXPvme system is banks of 4 Mbit DRAM
chips with an access time of 70 ns. The number of banks, 2 or 4, is a function of
the memory array installed.

For further details of these registers, see the LCA specification in Section 1.5.5.

1.3.4 Error Handling
There are two error registers associated with the memory interface of the LCA.
These are the error status register and the error address register.

The error status register gives syndrome information associated with a memory
interface error while the error address register freezes with the address of the
access that caused an error.

Technical Hardware Specifications 1–9



For bit definitions and more information, see Section 5.6 in the LCA Specification Rev 2.1.

1.4 I/O Subsystem
The AXPvme I/O subsystem is based on the PCI bus. For full details of the
PCI, refer to the PCI Specification V2.0. All of the module’s I/O components are
connected via the 32-bit, 5 V only, PCI implementation. The Low Cost Alpha has
an integral PCI bridge interface to which each of the other devices connect.

The main elements of the I/O subsystem are:

• LCA<–>PCI bridge

• PCI central arbiter1

• VME interface

• SIO interface (giving connectivity to TOY, UART, ROM, and so forth.)

• Ethernet interface

• SCSI interface

• System interrupt controller1

• Mezzanine (PCI) connector

The maximum number of PCI devices supported for direct connection to
AXPvme’s PCI bus is six. They are the LCA, NI, SCSI, ISbus, VME adapters,
and one other PCI option (which are supported via the mezzanine architecture).
However, hierarchical configuration is supported to allow additional PCI devices
connected over PCI-PCI bridges, and so forth.

1.4.1 PCI Addressing and Configuration
The base address of each PCI device, except the SIO, is programmable.

The individual base addresses are initialized by writing device configuration
registers. The PCI defines a set of configuration registers for PCI compliant
devices, which are accessible in PCI configuration space.

Within this special address space a fixed device select scheme is used to define
the location of each device’s configuration block.

The PCI defines a maximum size of 256 bytes for a configuration register block
for any one device. The byte within the configuration area is defined by PCI_
AD<7:0>, while PCI_AD<10:8> are reserved for configuration function codes.
Thus, only the lowest 11 bits of the LCA’s generated (and driven) 32-bit address
are needed to select any location in a device’s configuration region. In this way,
address bits 11 to 15 can be used for a ‘‘no-logic’’ device select decode in AXPvme.
In PCI configuration space, the seven supported devices can be accessed at the
locations shown in Table 1–4.

1 The PCI arbitration and system interrupt controller are not PCI devices but do have
registers that are accessed in PCI I/O space.

1–10 Technical Hardware Specifications



Table 1–4 Configuration Space Addressing

Device Configuration Address Notes

VME I/F 00000800 - 000008FF 4 base addresses

NI 00001000 - 000010FF –

SCSI 00002000 - 000020FF –

SIO I/F 00004000 - 000040FF –

PCI Opt 1 00008000- ? Option dependent

LCA N/A N/A

PCI configuration cycles can be driven from the LCA when the disable
configuration bit in the IOC control status register is cleared. When this bit
is cleared (for example, after reset), all accesses to normal PCI I/O addresses will
map to configuration space cycles. Figure 1–4 shows the generic configuration
space header.

Figure 1–4 Generic Configuration Space Header

: CONFIG_BASE + 00
:                            + 04

:                            + 08
:                            + 0C

:                            + 10

:                            + 24
:                            + 28

:                            + 2C
:                            + 30

:                            + 34

:                            + 38

:                            + 3C

:                            + 40 to +FC

Device ID Vendor ID

CommandStatus

Class Code Rev ID

BIST Hdr Type Latency
Timer

Cache Line
size

1 to 6 Base Address Registers

Reserved

Reserved

Reserved

Reserved

Expansion ROM Base Address

Max_Lat Min_Gnt Intr. Pin Intr. Line

(From the table above)

Device specific...

Configuration cycles with more than one of the address bits <11:15> set MUST
NOT be made. There is no hardware mechanism to protect the user from the
unpredictable results that this could cause.

Technical Hardware Specifications 1–11



Most of the devices that reside in PCI I/O in the AXPvme design have
programmable base address registers that are set up in configuration space.
Figure 1–5 shows each device and the layout of its base address registers.

Figure 1–5 PCI Devices, Size, and Base Registers

31

31

0

0

MBZ

MBZ

9

MBZ 0
29

0

9

1

31 0
MBZ

8

1

MBZ
17

MBZ
8

IOMem  Size  Device

VME - Registers

          - PCI->VME
          - S/G RAM

NI      - Registers

SCSI - Registers

          - Registers

512 bytes

512 Mbytes
 128 Kbytes

512 bytes

128 bytes

128 bytes

  Base Register

MBZ 064 Mbytes          - PCI->VME 26

For further information about individual configuration registers, see the
corresponding I/O device section.

1.4.2 PCI Arbitration
Arbitration for the PCI bus is centralized. A single bus arbiter monitors all
‘‘requests’’ for use of the bus and, based on some allocation scheme, decides on a
bus winner to which it gives a ‘‘grant’’. The bus is owned by the winning device
(once it takes up the grant by starting a cycle) until it finishes its cycle; that is,
bus ownership is access based.

AXPvme’s PCI arbitration logic is based on a fixed-priority allocation scheme.
There is a small amount of programmability to the arbitration priority allocation,
however, it is not intended as a general-purpose arbitration priority control
mechanism. Currently, three priority schemes are supported based on the value
written into the MOD_CNTRL_REG register bits <3:2>. These two bits will
allow limited control over the PCI arbitration priority assignment based on the
following scheme:

Priority <3:2>=00 <3:2>=01 <3:2>=10 <3:2>=11

1 LCA PCI VME Reserved

2 ENET LCA LCA Reserved

3 SCSI VME PCI Reserved

4 PCI ENET ENET Reserved

5 VME SCSI SCSI Reserved

1–12 Technical Hardware Specifications



Bus arbitration can also be tuned by modifying the way in which the various
devices use their bus grants.

If the PCI device is programmed with a maximum data burst length, the duration
for which the device will hold the bus is limited by a maximum data transfer.
After the defined amount of data is transferred, the bus owner will give up the
bus. Note that even with a programmed maximum bus burst length, there is no
guarantee how long the bus owner will hold the bus. However, good device design
should minimize holding of the bus when a master does not have data to transfer.

The second PCI mechanism for limiting the ability of one device to control the
bus is the latency timer scheme.

Table 1–5 PCI Device Arbitration Control

Priority Device
Programmable
Burst

Latency
Timeout Bandwidth

6 (highest) LCA Max=Quadword No ?

5 NI Yes Yes 2 Mbyte/s

4 SCSI Yes Yes 5 Mbyte/s

3 PCI Opt 1 ? ? ?

2 VME I/F Max=2
Quadwords

Yes >24 Mbyte/s

A latency timer value in the PCI configuration space of a device defines a
minimum guaranteed bus tenure (measured in PCI cycles following the assertion
of Frame#) beyond which the removal of the grant signal forces the device to end
its access after the current data transfer completes.

AXPvme’s fixed-priority arbiter understands the operation of the PCI latency
timer mechanism. The bus is granted to the highest priority requester but once
the winner starts its cycle, the arbiter will rearbitrate on the bus. The new
winner cannot and will not (PCI specification) use the bus until the current owner
concludes its cycle. This mechanism of reevaluating the bus winner during an
active PCI cycle allows for full and efficient use of a device-based latency timeout
scheme.

The arbiter will support ‘‘parking’’ the idle PCI bus with any one of the LCA, the
VME interface, the NI, or PCI option 1. Selecting the device with which to park
is programmed via two bits in the module control register (see Figure 1–6).

Technical Hardware Specifications 1–13



Figure 1–6 Module Control Register (PCI Park)

Don’t care : MOD_CNTRL_REG

00 Park with LCA (default)
01 Park with NI
10 Park with PCI Opt1
11 Park with VME

7                      0

1.4.3 PCI Transfer
The Alpha AXP architecture does not currently support transfers smaller than
longword quantities. The PCI devices often require transfers of bytes and words
rather than full 32-bit longword data. To this end, the LCA employs a mechanism
for reading and writing arbitrary bytes and words when accessing PCI space.
See DECchip 21066-AA Rev. 2.1 Section 6.2.6.1 for a better description of sparse
space addressing.

This mechanism allows I/O addresses to be formed with encoded information
pertaining to the number of bytes and byte offset. In particular, the LCA I/O
address has the form shown in Figure 1–7.

Figure 1–7 LCA I/O Addressing

PCI ’Byte’ Address LCA Address000

Size information
     00 - Byte
     01 - Word
     10 - Tri-byte
     11 - Long/Quadword (STL/Q, LDL/Q)

Addr Space Select
     See text

The LCA operates as a PCI master when the CPU executes a load or store
instruction that addresses a PCI peripheral space The LCA’s IOC provides
address windows to the CPU that allow access to the memory, I/O, and
configuration address spaces of PCI. The IOC also provides a register that,
when read, will generate a PCI interrupt acknowledge cycle, or when written, will
generate a PCI ‘‘special cycle’’.

The address ranges for the various PCI address spaces supported are listed in
Table 1–6.

1–14 Technical Hardware Specifications



Note

Throughout the text, I/O and memory addresses on the PCI are specified.
The addresses described are the physical addresses that would appear
on the PCI AD lines. If sparse space addressing is needed (less than
longword data size), these address values should be inserted into the ‘‘PCI
byte Address’’ field in the format above in order to form the CPU address.

Table 1–6 CPU Address Window to PCI

CPU Address <33:00> Access PCI Address Space

1 Axxx xxxx
1 Bxxx xxxx

Read Only Interrupt Acknowledge

1 Axxx xxxx
1 Bxxx xxxx

Write Only Special Cycle

1 Cxxx xxxx
1 Dxxx xxxx

R/W I/O

1 Exxx xxxx
1 Fxxx xxxx

R/W Configuration

2 xxxx xxxx R/W Sparse Memory

3 xxxx xxxx R/W Dense Memory

Due to the encoding of the CPU address used to generate PCI byte enables, only
27 physical address bits (CPU Addr<31:5>) can be used to generate the PCI
address (AD<26:0>). This gives an effective PCI address space of 128 Mbytes.
This 128 Mbytes is subdivided into a 16-Mbyte region and a 112-Mbyte region.
The top 5 address bits of the PCI address (AD<31:27>) are generated differently,
depending on which of these regions is referenced.

The bottom 16 Mbytes always map to the bottom 16 Mbytes of the PCI space,
while the remaining 112 Mbytes can be mapped to the top 112 Mbytes in any
naturally aligned 128-Mbyte window.

For this latter 112-Mbyte portion of the CPU to PCI window, the high-order 5
address bits are supplied from the Hardware Address Extension bits in the IOC_
CNTRL register in the LCA (at CPU address 180000000h); that is, bits <31:27>.
In other words, when addressing one of the PCI spaces described above,

if CPU Addr<31:29> = 000 then PCI AD<31:27> = 00000
else PCI AD<31:27> = HAE<31:27>.

1.4.3.1 Masked Transfers
Although the IOC supports arbitrary byte enables, only dual and tri-bytes that
are contiguous and do not straddle a longword boundary are allowed.

To generate a masked PCI write transfer, always use an STL. This will become a
single beat data burst on the PCI.

Either an LDQ or LDL instruction can be used to generate a masked PCI read.
Again, the PCI burst length will be one.

Technical Hardware Specifications 1–15



1.4.3.2 Unmasked Transfers
Unmasked PCI write transfers can be generated by either an STL or STQ, with
CPU address bits <4:3> = 11. The STL will produce a cycle of burst length 1
while an STQ will contain two data beats on the PCI.

Unmasked PCI read transfers can be generated by either an LDL or LDQ, with
CPU address bits <4:3> = 11. The LDL will produce a PCI transfer of burst
length 1 while an LDQ will produce a PCI transfer of burst length 2.

See Section 6.2, CPU Initiated PCI Cycles, in the LCA Specification for further
details.

1.4.4 Main Memory as PCI Target
The I/O controller of the LCA allows a window from the 32-bit PCI memory
address space to be mapped to a 34-bit address for system main memory.

PCI initiated masked reads are treated as unmasked reads by the LCA, while
arbitrary byte enable combinations for PCI initiated writes are implemented by a
read-modify-write operation in the 21066 memory controller.

Memory coherency is maintained for all PCI initiated transfers to cacheable
memory.

Registers internal to the LCA are not accessible by PCI devices.

In order to allow the window from PCI to memory to exist, it is necessary
to translate the PCI address to the CPU address. The IOC provides two
programmable address windows that control access by PCI peripherals to system
memory. These address windows are referred to as the PCI Target Windows.
There is a set of three registers associated with each PCI Target Window–Window
Base register, Window Mask register, and Translation Base register.

Bits <31:20> of the Window Base register specify a starting address in the PCI
memory address space for the target window. Bits <31:20> of the Window Mask
register provide a mask for base address matching between the PCI address
and the Window Base register. A one in the Window Mask register means the
corresponding address bit does not take part in the base address match. Thus,
the size of the window is controlled by the mask register as shown in Table 1–7.
Note also that a target window must always be naturally aligned.

Table 1–7 PCI Target Window Masking

WINDOW_MASK<31:20> Size of Window

0000 0000 0000 1 Mbyte

0000 0000 0001 2 Mbytes

0000 0000 0011 4 Mbytes

0000 0000 0111 8 Mbytes

0000 0000 1111 16 Mbytes

0000 0001 1111 32 Mbytes

0000 0011 1111 64 Mbytes

0000 0111 1111 128 Mbytes

All others Not supported by AXPvme

Note also that there are two control bits in <33:32> of the Window Base register.
Bit<33> is a window enable bit. When cleared, the corresponding PCI target

1–16 Technical Hardware Specifications



window is disabled. Bit<32> is a S/G enable bit. When cleared, there is a direct
mapping from the PCI memory address to the CPU system memory address.
The LCA supports PCI—memory S/Ging when this bit is set. Refer to the LCA
Specification for full details of this facility.

When direct translation is used, the high-order address bits of the CPU address
formed are supplied from the window’s Translation base register, while the lower
order bits are passed from the PCI unaltered. The number of Translation register
bits used depends on the window size.

For more information, refer to Section 6.3 of the LCA Specification.

1.4.5 PCI Address Space Layout
Using the PCI base address registers (see Section 1.4.1) in each of the PCI
devices, the layout of PCI address space can be defined. Table 1–8 shows the PCI
to CPU address translation.

Note that within a given PCI space (memory or I/O), devices must not be
configured to overlap.

Table 1–8 PCI to CPU Address Translation

Window Size CPU Address
Translation_Base Register
Unused Bits MBZ

1 Mbyte Trans_Base<33:20> : PCI_ADDR<19:0> Trans_Base<19:9>

2 Mbyte Trans_Base<33:21> : PCI_ADDR<20:0> Trans_Base<20:9>

4 Mbyte Trans_Base<33:22> : PCI_ADDR<21:0> Trans_Base<21:9>

8 Mbyte Trans_Base<33:23> : PCI_ADDR<22:0> Trans_Base<22:9>

16 Mbyte Trans_Base<33:24> : PCI_ADDR<23:0> Trans_Base<23:9>

32 Mbyte Trans_Base<33:25> : PCI_ADDR<24:0> Trans_Base<24:9>

64 Mbyte Trans_Base<33:26> : PCI_ADDR<25:0> Trans_Base<25:9>

128 Mbyte Trans_Base<33:27> : PCI_ADDR<26:0> Trans_Base<26:9>

All others Not supported by AXPvme

1.4.5.1 PCI Memory Space
The flash ROM is fixed in the PCI Memory space. It takes up the first 1 Mbyte of
the address map, from 00000000h to 000FFFFFh.

DC7407 Control and Status registers (including VIC64 registers) will be located
starting at address 00100000h.

VME interface S/G RAM is defined to reside in PCI memory. This should be
programmed to some convenient, naturally aligned 128-Kbyte block. This base
address will be initialized by firmware and should not be altered thereafter. The
recommended base address is 00200000h.

The 53C810 allows its register space to be accessed with PCI Memory space
cycles. This register region is 128 bytes in extent. This base address will be
initialized by firmware and should not be altered thereafter. The recommended
base address is 00300000h.

The DECchip 21040-AA Control and Status registers are accessible through both
PCI Memory and PCI I/O address space. The recommended base address in PCI
Memory space is 00400000h.

Technical Hardware Specifications 1–17



The address space between 00500000h and 03FFFFFFh is defined as Sparse
space available for PCI Mezzanine devices (approximately 59 Mbytes).

The remainder of LCA Sparse space, 04000000h through 07FFFFFFh, is defined
as the DC7407 Sparse space VME window (64 Mbytes).

Address 08000000h defines the start of 384 Mbytes of Dense Memory space
available for general use.

Address 20000000h defines the start of a 512 Mbyte DC7407 Dense Space VME
window.

Address 40000000h defines the start of the 1 Gbyte PCI-System Memory Direct
Mapped DMA window.

Address 80000000 defines the start of the 2 Gbytes of address space allocated to
‘‘other Mapped I/O space’’.

Figure 1–8 shows the system memory map for the PCI Memory space.

1–18 Technical Hardware Specifications



Figure 1–8 PCI Memory Space Address Map

Offset (hex)
0MB

1MB

2MB

3MB

4MB

5MB

64Mb

128MB

512MB

1GB

2GB

4GB

FLASH (1MB via SIO) 00000000

00100000

00200000

00300000

00400000

00500000

04000000

07FFFFFF End of Sparse Space.

08000000

20000000

40000000

80000000

VIP CSRs

NCR810 CSRs

CSRs

Sparse PCI Memory available
for Mezzanine devices

VIP Sparse space VME
window (64MBs)

Dense Memory Space
Available for general use

Direct Mapped DMA Window (1GB)

VIP Scatter Gather RAM

Tulip

Other Mapped IO space

VIP Dense space VME
window (512MBs)

PCI−System Memory

1.4.5.2 PCI I/O Space
In the standard AXPvme system, some of the PCI devices have their register
region accessible in the PCI I/O address space. These register blocks are small
(less than 1 Kbyte each). It is recommended that they all be grouped locally
within the lowest 16 Mbytes of PCI I/O space.

The SIO (82378) interface always occupies the lowest 64K of PCI I/O space from
00000000h to 0000FFFFh.

Technical Hardware Specifications 1–19



Firmware will initialize the base addresses of the various other PCI devices as
follows:

DECchip 21040-AA 00010000h

NCR53C810 00020000h

PCI Mezzanine 00030000h

Figure 1–9 shows the system memory map for the PCI I/O space.

Figure 1–9 PCI I/O Space Address Map

Offset (hex)
0MB

64KB

128KB

172KB

16MB

SIO CSRs 00000000

00010000

00020000

00030000

Tulip CSRs

NCR810 CSRs

PCI IO space available
for Mezzanine devices

End of LCA PCI IO Space.

1.5 VME Interface
The VME interface for AXPvme is designed to conform to the IEC 821, IEEE1014-
1987, and D64 sections of IEEE1014 Rev.D (draft) standards. A full master/slave
interface with bus arbitration and interrupt control is included. Addressing
modes A16, A24, and A32 are supported for master transactions, while as a
VMEbus slave, the interface responds to A24 and A32 modes and A16 for access
to a number of interprocessor communications registers. Transfers are supported
with D08, D16, D32, and block mode D64 data sizes. Flexible inbound and
outbound S/G mapping functions are supported.

1.5.1 PCI Access to VME Interface
The PCI interface to VME must be configured, at startup, by writing three base
address registers within the DC7407. A fourth register can be used to read the
hardware setting for the second VME window if required. These registers are
accessible only through PCI Configuration address space. Once these registers
are initialized, PCI Memory space can be used to set up the remainder of the
VME subsystem for access to VME devices. It is important to note that the
windows defined by these registers must not overlap with each other. A brief
description of these registers (and the region of address space they define) follows.

1.5.1.1 VME_CSR_BASE Register
PCI Configuration address space is used to write the VME_CSR_BASE register
with the base address (see Figure 1–10) of a 512 byte window, in PCI Memory
space, through which the DC7407, VIC64, and CY7C964 registers are accessed.
This register is located at 00000810 in PCI Configuration Space (see Section 1.4).

1–20 Technical Hardware Specifications



Figure 1–10 VME_CSR_BASE Register

1 0
3

9
: 00000810 (CNFG)MBZ

8

Only bits <31:9> of this register are writable as the register block aligns on a
512-byte boundary. Bits <3:0> are always read as 0, indicating that it is a PCI
Memory region base address.

The VME interface registers themselves are described throughout the text, and
in all cases, their locations will be specified as VME_CSR_BASE + xxxx. This
represents their address in PCI Memory space.

1.5.1.2 VME_WINDOW_1_BASE Register
PCI Configuration address space is used to write the VME_WINDOW_1_BASE
register with the base address (see Figure 1–11) of a 512-Mbyte window, in PCI
Memory space, through which VME address space can be accessed. This register
is located at 00000814 in PCI Configuration Space (see Section 1.4).

Figure 1–11 VME_WINDOW_1_BASE Register

1 0
3

: 00000814 (CNFG)MBZ

9
2

8
2

Only bits <31:29> are writable because the 512-Mbyte window must be aligned
on a natural boundary.

The size of the PCI - VME window is selected by the state of the DC7407
‘‘SPARE_5’’ pin. Driving this pin high selects a naturally aligned 512-Mbyte
window while driving this pin low selects a naturally aligned 256-Mbyte window.
AXPvme systems have this pin hardwired high.

1.5.1.3 VME_SG_BASE Register
PCI Configuration address space is used to write the VME_SG_BASE register
with the base address (see Figure 1–12) of a 128-Kbyte window, in PCI MEM
space, through which the S/G RAM can be accessed. This register is located at
00000818 in PCI Configuration Space (see Section 1.4).

Figure 1–12 VME_SG_BASE Register

1 0
3

: 00000818 (CNFG)MBZ

6
1

7
1

Technical Hardware Specifications 1–21



1.5.1.4 VME_WINDOW_2_BASE Register
PCI Configuration address space is used to write the VME_WINDOW_2_BASE
register with the base address (see Figure 1–13) of a second window, in PCI MEM
space, through which VME address space can be accessed. This register is located
at 0000081C in PCI Configuration Space (see Section 1.4).

The size of this window is determined by the state of the two DC7407 pins
(SPARE<4:3>). AXPvme systems have these pins hardwired to <11>, fixing this
window size at 64 Mbytes (naturally aligned).

Figure 1–13 VME_WINDOW_2_BASE Register

1 0
3

: 0000081C (CNFG)MBZ
5
2

6
2

Only bits <31:26> are writable because the 64-Mbyte window must be aligned on
a natural boundary.

1.5.1.5 VME_WINDOW_2_SIZE Register
PCI Configuration address space can be used to read the VME_WINDOW_2_SIZE
register (see Figure 1–14) to size the region mapped by the VME_WINDOW_2_
BASE register. Bits <2:0> indicate the hardwired size of the VME_WINDOW_2.
AXPvme systems will return <111> for bits <2:0>, indicating a 64-Mbyte window
size. This register is located at 00000840 in PCI Configuration Space and is
READ ONLY (see Section 1.4).

Figure 1–14 VME_WINDOW_2_SIZE Register

1 0
3

: 00000840 (CNFG)MBZ
23

Only bits <2:0> are readable. The bits will encode the size of the VME_
WINDOW_2 region as follows.

VME_WINDOW_2_SIZE <2:0> VME_WINDOW_2 Region Size

000 8 Mbytes

001 16 Mbytes

011 32 Mbytes

111 64 Mbytes

1–22 Technical Hardware Specifications



1.5.2 Master Operation
As a master, AXPvme has two windows onto the VME. The largest is a fixed size
(512-Mbyte) window positioned in PCI Memory space by the VME_WINDOW_2_
BASE register. This address window is divided into 2048 x 256 Kbyte blocks each
with its own programmable S/G entry.

The other is a 64-Mbyte window positioned in PCI Memory space by the VME_
WINDOW_2_BASE register. This corresponds to 256 x 256 Kbyte blocks each
with its own programmable S/G entry.

While each S/G entry maps a unique page within the VME_WINDOW_2 region, it
also maps an overlapped page from the VME_WINDOW_1 region. For example,
entry 5 of the outbound S/G RAM maps both page 5 of the VME_WINDOW_1
region and page 5 of the VME_WINDOW_2 region to exactly the same address on
VME. Depending on the size of the VME_WINDOW_2 region, up to 256 outbound
S/G entries will map ‘‘overlapped’’ PCI Memory address space. In the Alpha
AXP architecture, this allows both ‘‘dense’’ and ‘‘sparse’’ space access to the same
region of VME address space. The VME_WINDOW_2 region always maps to the
bottom entries of the outbound S/G mapping registers.

In addition, each 256K page can be mapped to any one of the three VMEbus
address spaces (A32/A24/A16). Numerous pages can be mapped to the same
VME address to allow access to the same location with different modes (see
Figure 1–15).

Access to A16, A24, and A32 spaces is supported in user and supervisor mode
(the AM code used is fully programmable for each page).

The VME master interface operates in two ways - single and block transfers.

Technical Hardware Specifications 1–23



Figure 1–15 Example PCI to VME Mapping

512MB

PCI

2048 x 256K
   Pages

S/G Mapping A32

A24

A16

VME

4Gigabytes Mem Space

1.5.2.1 Outbound S/G Mapping
The PCI to VME S/G entries, for both inbound and outbound accesses, must be
read/write accessible in order to configure the VME interface for operation. The
details on programming these S/G entries are described elsewhere in this chapter.
The S/G RAM is an 32K x longword block in memory space (although only the top
27 bits are read/writable, the remaining 5 bits are MBZ).

The outbound S/G entries control and map all master accesses from AXPvme onto
the VMEbus. Each entry defines the mapping for a 256-Kbyte page.

A PCI Memory access in either of the VME_WINDOW_1 or VME_WINDOW_2
regions (that is, PCI Mem address bits <31:29> match the VME_WINDOW_BASE
address register), will cause a S/G lookup.

Bits <28:18> of the PCI address will specify the 256-Kbyte page involved and so
identify the correct S/G entry, while PCI address <17:2>, along with PCI byte
enables, specifies the byte address within that page.

If the VALID bit (bit <5>) in the S/G entry is not set, indicating an invalid entry,
then no VMEbus transaction will take place. Instead, an error bit in the VIP_
BESR will be set. If a corresponding bit is set in the VIP_ICR register, this event
will cause a DC7407 interrupt assertion.

If the entry is Valid, the interface will proceed to make the VMEbus access.

Figure 1–16 shows an Outbound S/G entry and how the VMEbus address is
formed from the page information and the PCI address.

1–24 Technical Hardware Specifications



Figure 1–16 Outbound S/G Entry

1 6 5 0
PCI Addr<28:18>

 MBZ

1

Swap<2:0> Mode

1
89

1
2

11
8

o/b VME Page

3

PCI Addr<17:2>VME Addr<31:0>

RMW

Valid

X
3

1
0147

1

Address Size<1:0>
Function Code <2:1>

00o/b VME Page<31:18>
1
3 1

8 7
1

4

2 1 0

Address Modifier S/G Field

The address modifier used in the master VME transfer is derived from the
address size (ASIZ) and function code (FC) fields in the S/G entry. These ASIZ
and FC fields map directly to the VICs ‘‘ASIZ’’ and ‘‘FC’’ inputs. Table 1–9 shows
the use of these fields.

Table 1–9 Formation of AM Codes from S/G Entry

ASIZ1/0 FC2/1 Blk Mode Operation AM<5:0>

01 (A32) 00 No User Data 09h

01 No User Program 0Ah

10 No Supervisory Data 0Dh

11 No Supervisory Prog 0Eh

0x Yes User Block 0Bh (D64 08h)

1x Yes Supervisory Block 0Fh (D64 0Ch)

11 (A24) 00 No User Data 39h

01 No User Program 3Ah

10 No Supervisory Data 3Dh

11 No Supervisory Prog 3Eh

0x Yes User Block 3Bh (D64 38h)

1x Yes Supervisory Block 3Fh (D64 3Ch)

10 (A16) 0x No User Access 29h

1x No Supervisory Access 2Dh

00 –User– –Defined– –AM codes– VIC_AMSR

Byte Swapping

See Section 1.5.6 for a full description of the Swap field.

Technical Hardware Specifications 1–25



VMEbus Read-Modify-Write

When the RMW bit (read-modify-write bit) is set in a S/G entry, any master
access to that page will set up the VME interface to do the next two accesses
as a single indivisible sequence of VMEbus cycles (the access that involved the
S/G entry with RMW set and the next access). The VMEbus ownership will be
acquired for the current access and will be held until another master operation
is done by the processor. This is particularly aimed at doing atomic VMEbus
read-modify-write cycles.

For this RMW function to operate correctly, the VIC Interface Configuration
Register must be programmed with VIC_ICR<7:5> = 001. A value of VIC_
ICR<7:5> = 000 disables the RMW mode regardless of the setting in S/G, while
any other VIC_ICR<7:5> value will give UNPREDICTABLE results.

The VIC64 ‘‘Bus Capture and Hold’’ mechanism can be used to form indivisible
sequences of VMEbus cycles.

1.5.2.2 Programmed I/O - Single VME Accesses
Single D08, D16, and D32 VME transfers are executed by individual accesses to
either of the two VME window regions in PCI MEM space. The data size for the
VME transfers are derived from the byte enabling of the corresponding PCI cycle.

1.5.2.3 Master Block Mode
A block-mode DMA engine in the VME interface can be programmed to transfer
up to 64 Kbytes without processor intervention in D16, D32, or D64. The
interface fully handles the segmentation of the transfer so as not to violate
the VMEbus specification in relation to crossing VME 256-byte boundaries for
D16 and D32 or 2-Kbyte VME boundaries for D64.

Some minor restrictions will apply to master block-mode transfers.

• MBLT D64 transfers that do not start on naturally aligned 2K boundaries on
the VME require some special care. Essentially, if 2 Kbyte boundary crossing
is enabled (VIC_BTDR <7> = 1), the VME starting address MUST be aligned
to a 2 Kbyte boundary.

• The PCI address must not cross a 64 Kbyte aligned boundary. This must be
taken into consideration when working out the size of a block transfer (but is
handled by the O/S DMA interface, if you are using an O/S).

Because the VMEbus specification prohibits crossing any 256/2K byte boundaries,
any DMA must split into a number of bus transfers. At the interval between
these transfers, the VME interface can be programmed to wait a period before
rearbitrating for the VMEbus and proceeding. This delay gives slave access to
the AXPvme the opportunity to complete during a block-mode transfer. This
Interleave Period is programmable in the VIC Block Transfer Control Register
register (see Figure 1–17).

1–26 Technical Hardware Specifications



Figure 1–17 VIC Block Transfer Control Register (VIC_BTCR)

1 4 03
3

567 12

Interleave period

DMA direction   1=> Read

Don’t Care

       (250 x value)nS

                            0 => Write

00

Block-Mode Enable

: VME_IF_BASE + D4VIC_BTCR

The transfer burst length on the VMEbus can be programmed to be less than
the maximum 256/2K burst via the VIC_RCR register (see Figure 1–19). The
burst length field is the number of data transfers done in any given burst on
the VMEbus, that is, a value of 4 in this field means in D16 that 4 words are
transferred, while in D32 it would mean 4 longwords. For D64 block-mode
operation, the burst-length figure is multiplied by four to give the maximum
number of data transfers before giving up the bus. This means a maximum burst
length value of 64 allows 256 (64x4) transfers of D64 data, which is 2048 bytes.

The operation on the PCI bus during an MBLT transaction is much the same as
for a block mode slave operation, which is described in Section 1.5.5.

An MBLT transfer setup involves defining the data size, the transfer direction,
transfer length in bytes (must be even as D08 block mode is not supported), and
the source and destination addresses. PCI Memory to VMEbus address mapping
is handled as usual through the S/G, however, the address modifiers in the
mapping entry are automatically transformed to generate the block-mode version
of the AM code specified (except for user-defined address modifier codes).

The setup sequence for a master DMA is given in the list below.

1. Write DMA transfer length to the VME Byte Length Registers, VIC_BTLR0,
VIC_BTLR11. D64 BLT operations will be distinguished by a write to the
VIC64’s BTDR register bit 4.

2. Write the DMA direction bit (read/write) and DMA enable bit to the VIC_
BTCR.

3. Write to the desired PCI MEM address (that will map to the target VMEbus
address) with PCI start address as the write data.

4. Clear the DMA enable bit in the VIC_BTCR to allow normal master
operation.

5. Wait for completion notification (no other VME master operations allowed
during DMA).

As mentioned in step 5 above, notification of DMA completion is via a DMA
completion interrupt, which is enabled in the VIC_DMAICR and whose vector is
generated by the VIC_EGIVBR.

1 PCI Deferred Writes can be enabled to decouple the CPU from the holdups on the
‘‘local-bus’’ when setting up DMAs.

Technical Hardware Specifications 1–27



1.5.3 VMEbus Requester
When AXPvme wishes to act as the VMEbus master, the VME interface must
request ownership of the bus. Controlling the manner and level of the bus request
is achieved using the VIC Arbiter/Requester Configuration Register, shown in
Figure 1–18.

Figure 1–18 VIC Arbiter/Requester Configuration Register (VIC_ARCR)

VIC_ARCR Don't Care

3
1 7  6  5  4  3  2  1  0

0 :  VME_IF_BASE + B0

Fairness Timeout
   0000 - Fairness disabled
   xxxx - Timeout = 2uS x value
   1111 - Timeout disabled


VMEbus Request level (0-3)
PRI(1)/RRS(0)VMEbus Arbitration
           (see Section 1.5.7.1)

MR-6383-AI

1.5.3.1 VMEbus Request
Level

The level at which AXPvme requests the bus is set by writing the VMEbus
Request Level field. See Section 1.5.7.1 on VMEbus arbitration for details of how
bus request levels are used by a system controller.

Fair Request Timeout

Master grants at any given level are passed down the VME along a daisy-chain.
If there are multiple requesters on the bus, masters further down this grant
daisy-chain can experience bus starvation. To minimize this problem a Fair
Request scheme can be implemented by bus masters (note, if any one master does
not obey the fairness scheme, then it can starve the others).

When operating in fair request mode, AXPvme does not request the bus if anyone
else is requesting the bus. This fair approach to asserting the request line is
adhered to for the Fairness Timeout period, after which the request is asserted
regardless. In this way there is a standoff period, which allows everyone along
the grant chain the opportunity to win the VME.

This fairness request scheme is disabled in AXPvme by writing a value of 0 to the
Fairness Timeout field. Nonzero values will set the number of 2 µs intervals to be
used for the fairness timeout, while a value of F will disable the fairness timeout,
that is, AXPvme will only request the bus if nobody else wants the bus.

1.5.3.2 VMEbus Release
Once AXPvme has acquired bus mastership, it is important to control the manner
in which this ownership will be relinquished. Four bus release modes are
supported by AXPvme. The release mode is configured in the VIC Release
Control Register (VIC_RCR).

1–28 Technical Hardware Specifications



Release-On-Request (ROR)

In this release mode, AXPvme will retain bus ownership after completion of the
cycles for which it requested ownership, until another device requests the bus.
Then AXPvme will release the VMEbus.

Release-When-Done (RWD)

When set up for RWD, AXPvme will release the bus immediately after completion
of the cycles for which it requested ownership.

Release-On-Clear (ROC)

In this mode, AXPvme will retain the ownership of the bus after completion of
the cycles for which it requested ownership, until the system controller asserts
the Bus Clear signal.

VMEbus Capture and Hold (BCAP)

Putting AXPvme into this mode claims the VMEbus for itself for as long as the
BCAP mode is selected. The VMEbus is only released when the AXPvme release
mode field is reprogrammed to ROR, RWD, or ROC.

RMC

In addition to these four bus release modes, there is the use of the S/G Read-
Modify-Write bit, which forces AXPvme to hold ownership of the VMEbus for two
accesses before releasing in the programmed ROR, RWD, or ROC fashion. See
Section 1.5.2.1 for details.

Control over the release modes of AXPvme is via the VIC Release Control
Register (VIC_RCR, offset D0).

Figure 1–19 VIC Release Control Register (VIC_RCR)

1 4 03
3

567 12

VMEbus Release Protocol

Don’t Care

00 - ROR
01 - RWD
10 - ROC
11 - BCAP

DMA Burst Length
  (see Section 1.5.2.3)

: VME_IF_BASE + D0VIC_RCR

1.5.4 Slave Operation
As a VME slave, the AXPvme system will respond to A24 and A32 access. In
addition, a small number of bytewide interprocessor communications registers are
accessible in A16 space.

Incoming slave accesses are mapped and controlled by two incoming S/G maps.
In A32, AXPvme occupies up to 128 Mbytes mapped by 16384 S/G entries, each
mapping an 8-Kbyte page. In A24, AXPvme occupies up to 16 Mbytes mapped by
2048 S/G entries, each mapping an 8-Kbyte page.

Technical Hardware Specifications 1–29



1.5.4.1 A32, A24 VMEbus Address Decode
The VME address decode (see Figure 1–20) is implemented using the CY7C964
elements in the interface. Three CY7C964 elements are accessed together in the
longword of VIF_ABR. This register must be accessed as a longword even though
the individual bytes represent address match data for separate VME address
spaces.

Figure 1–20 Address Decode

1 0
3

VME A32 Addr

4
2

VME A24 Addr

6 8

VME A16 Addr

= Region of Address which can be compared to form AXPvme’s base address

Byte 3 Byte 1 Byte 2 Byte 0

Comparison for A32 Addr<31:24>
Comparison for A24 Addr<23:16> Comparisons for A16 Addr<15:8>

ICR : VME_IF_BASE + 184VIF_ABR

Associated with each of the top three comparison bytes is a bit mask to control
the number of bits that will be checked during a VMEbus address match. These
mask bits are contained in the VIF_MASK register, at VME_IF_BASE + 180. If
a bit is set, then the corresponding address to base register bit is not used in the
address comparison.

Note that for normal AXPvme operation, at least the top 5 bits of the A32 address
match byte must be used for matching.

Bytes 1–3 of the base register and mask register will be contained in CY7C964
elements. All 3 bytes of these registers must be written simultaneously. Note
that byte 0 is not used and will not affect address recognition. See CY7C964
specification for more detail on the comparison and mask registers.

1.5.4.2 Inbound S/G Mapping
The inbound S/G RAM format is shown in Figure 1–21.

1–30 Technical Hardware Specifications



Figure 1–21 Inbound S/G Entry (With A32 Addressing Example)

1 1 4 0

VME Addr<26:13>

MBZ

1

Swap

1
24
1

5
11

6

Memory Page

3

Supervisor Access Only

Valid

Memory Addr<31:0>

67890

Inbound S/G page Monitor
IO Select

Write Lock

1
5

1
3

000

00
3

1
3

VME Addr<12:2>Memory Page
2

1
3

1
12

Byte Swapping

As for outgoing data, a comprehensive set of hardware byte-swapping can be
programmed via the S/G RAM.

Page Protection

S/G control can limit slave accesses to read-only (page can be write-locked) and
can further restrict access to supervisory cycles only.

Memory or I/O Target

More often than not, VME slave accesses will be directed at main memory. To
facilitate this, the IOC in the LCA chip will be configured to map PCI memory
cycles to main memory (see Section 1.4). In these cases, when the VME interface
requests ownership of the PCI and gets a bus grant, it will transfer the VME
data to the mapped main memory address using a PCI memory cycle. It may be
desirable in some instances to allow a VME device access to the AXPvme as a
slave in order to use one of its I/O resources. To facilitate this function, setting
the I/O select bit in the incoming S/G map forces a PCI I/O cycle rather than a
Memory cycle.

Note that bit <31> of the incoming PCI address is always filled with ‘‘0’’ (forcing
access to the lower 2 Gbytes of PCI memory space) and bits <1:0> are padded
with ‘‘00’’ (PCI uses C/BE to specify which bytes are being accessed).

Configuration cycles are never initiated by the VME interface.

1.5.4.3 Inbound S/G Page Monitor
The Inbound S/G page monitor facility allows AXPvme to watch accesses to
selected Inbound S/G pages. When the Inbound S/G page Monitor field in the
incoming S/G is zero, no monitoring function is performed on that page.

There are three separate Inbound S/G page monitor counters implemented in the
AXPvme VME interface.

Technical Hardware Specifications 1–31



By setting the two-bit Inbound S/G page monitor field in a given S/G entry to one,
two, or three, an access to that page will cause the corresponding Inbound S/G
page monitor counter to increment. The Inbound S/G page monitor counters are
readable in a VME interface register (VIP_PMCSR), shown in Figure 1–22.

Figure 1–22 Inbound S/G Page Monitor Control/Status Register

1 4 03
3

67 2

Don’t Care
801

1 1

Inbound S/G Page Monitor 1
   (3-bit count field with overflow bit)

Inbound S/G Page Monitor 2
Inbound S/G Page Monitor 3

: VME_IF_BASE + 118VIP_PMCSR

An overflow of any Inbound S/G Page Monitor Counter will cause a corresponding
bit in the VIP_BESR to be set. If enabled (via the VIP_ICR), this condition
will cause the VIP_LIRQ <0> interrupt to be asserted at VIC LIRQ <2> (and
ultimately, the LCA) .

1.5.5 Programming S/G RAM
S/G RAM is not initialized by hardware and will come up in a random state.
Firmware should initialize this area to a reasonable default state before using
the VME subsystem. Operating system drivers should also initialize this area on
startup.

The 8K S/G longword entries are in three regions:

• 2048 A24 inbound entries at VME_SG_BASE + 10000h, each mapping an 8K
page of A24 VME address space to PCI address space

• 16384 A32 inbound entries at VME_SG_BASE, each mapping an 8K page of
A32 VME address space to PCI address space

• 2048 outbound entries at VME_SG_BASE + 1E000h, each mapping a 256K
page in PCI Memory space onto the VME

The index to the A24 inbound S/G entry for A24 accesses is formed by VME A24
address bits <23:13>.

The index to the A32 inbound S/G entry for A32 accesses is formed by VME A32
address bits <26:13>.

The index to the outbound S/G entry for master accesses is dependent upon which
region was used for the access (and the size of the VME_SUB_WINDOW region).

• VME_WINDOW region accesses generate an outbound S/G entry from PCI
address bits <28:18>.

• An access through a 64MB VME_SUB_WINDOW region uses PCI address
bits <25:18>.

• An access through a 32MB VME_SUB_WINDOW region uses PCI address
bits <24:18>.

1–32 Technical Hardware Specifications



• An access through a 16MB VME_SUB_WINDOW region uses PCI address
bits <23:18>.

• An access through an 8MB VME_SUB_WINDOW region uses PCI address
bits <22:18>.

The S/G RAM is fully programmable over the PCI. The mapping of the S/G RAM
takes up 128 Kbytes of PCI memory space,and has its own base address.

The S/G RAM can be programmed independently of master or slave VME activity.

1.5.6 Byte Swapping
The byte swapper function is programmed via the swap bits [SWP] in the S/G
entries. SWP[1:0] define the swap mode 0 through 3 and SWP[2] enables D64
swapping, which is only used in D64 BLT transfers.

Mode 0: No Swap. There is no byte swap, and in transferring bytes from the
little endian PCI to the big endian VMEbus, the address of any byte as seen on
the two buses will remain the same.

Mode 1: Byte Swap. The bytes within words are swapped.

Mode 2: Word Swap. The words within longwords are swapped.

Mode 3: Longword Swap. Basically, a combination of modes 1 and 2. The result
is that byte 11 in a longword becomes byte 00 when swapped, 10 becomes 01, 01
becomes 10, and 00 becomes 11.

The D64 swap enable bit is used only in D64 slave or master BLT transfers and
swaps the order that the longwords are taken from or put into memory over the
PCI. When enabled with mode 3 swap, this means that byte 000 in a quadword
becomes byte 111 (that is, the binary byte address is inverted). The 4 swap modes
are described in Figure 1–23 with the D64 swap cases illustrated for the mode 3
case.

Technical Hardware Specifications 1–33



Figure 1–23 DC7407 Swap Modes

Mode 0: No swap

D0

D32
11
10
01
00

00
01
10
11

Little
Endian
Byte Add.

Big
Endian
Byte Add.

Mode 1: Byte swap

D0

D32
11
10
01
00

00
01
10
11

Little
Endian
Byte Add.

Big
Endian
Byte Add.

Mode 3: Longword swap

D0

D32
11
10
01
00

00
01
10
11

Little
Endian
Byte Add.

Big
Endian
Byte Add.

Mode 2: Word swap

D0

D32
11
10
01
00

00
01
10
11

Little
Endian
Byte Add.

Big
Endian
Byte Add.

D0

D32
A0

A32

000

011

100

111

000

111a
b
c
d

e
f
g
h

a
b
c
d

e
f
g
h

PCI longword transfers D64 BLT transfer

Swapper
Mode 3,
D64 swap
disabled D0

D32
A0

A32

000

011

100

111

000

111a
b
c
d

e
f
g
h

a
b
c
d
e
f
g
h

PCI longword transfers D64 BLT transfer

Swapper
Mode 3,
D64 swap
 enabled

time time

Little Endian Big Endian Little Endian Big Endian

D64 swap illustrated in combination with mode 3 longword swap.

There is still another aspect of byte or lane swapping that is implemented
external to the DC7407 by the VIC64. When transfers less than complete
longwords are done onto or from the VMEbus, the data must be driven onto
certain VMEbus lanes depending on the data width. This is described in
Figure 1–24.

1–34 Technical Hardware Specifications



Figure 1–24 Big Endian VME Byte Lane Formats

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
byte 0 byte 1 byte 2 byte 3

byte 1 byte 2 byte 3
byte 0 byte 1 byte 2

byte 1 byte 2

byte 0
byte 1

byte 2
byte 3

D0D31A0A31

byte 2 byte 3
byte 0 byte 1

D64 transfers are a particular case here and are handled by the VIC64 and
the CY7C964 components. The DC7407 will transfer data only onto the VIC64
local data bus and, under the control of the VIC64, these are packed to form
quadwords in the CY7C964s and onto the VMEbus as shown. Only full quadword
transfers as BLTs are allowed in D64 mode.

The longword transfers, tri-byte transfers, and unaligned word transfers all use
the byte lanes in the same way. However, when the low word in a longword is
transferred, the data is switched to/from its usual lanes D[31:16] to/from D[15:0].
Byte transfers in the low word of a longword are swapped in a similar way. The
DC7407 internally implements this word swapping logic.

Table 1–10 shows the local bus address and size signals used for the various
swap modes when the DC7407 is master of the local bus. Those cycles where the
DC7407, on the basis of the A1,0 and SIZ1,0 lines, moves the data to or from the
D0-16 lane are marked with ‘‘L’’ in the adjacent column.

Those cycles which, because of the byte swapping, would result in a
noncontiguous arrangement of bytes on the VMEbus, are not allowed and are
target aborted on the PCI. PCI transfers with noncontiguous PCI byte enables
are included in Table 1–10, although at this point the DECchip 21066 cannot
generate cycles with noncontiguous PCI bytes enabled.

Table 1–10 PCI BE# to Local A1,0 and SIZ1,0 Translation for Various Swap Modes

PCI
BE#
<3:0>

Mode 0
No Swap
A1,0 SIZ1,0

Mode 1
Byte Swap
A1,0 SIZ1,0

Mode 2
Word
Swap
A1,0 SIZ1,0

Mode 3
Longword
Swap
A1,0 SIZ1,0

1111 No cycle No cycle No cycle No cycle

1110 00 01 L 01 01 L 10 01 11 01

1101 01 01 L 00 01 L 11 01 10 01

(continued on next page)

Technical Hardware Specifications 1–35



Table 1–10 (Cont.) PCI BE# to Local A1,0 and SIZ1,0 Translation for Various Swap Modes

PCI
BE#
<3:0>

Mode 0
No Swap
A1,0 SIZ1,0

Mode 1
Byte Swap
A1,0 SIZ1,0

Mode 2
Word
Swap
A1,0 SIZ1,0

Mode 3
Longword
Swap
A1,0 SIZ1,0

1011 10 01 11 01 00 01 L 01 01 L

0111 11 01 10 01 01 01 L 00 01 L

1100 00 10 L 00 10 L 10 10 10 10

1001 01 10 Noncontig Noncontig 01 10

0011 10 10 10 10 00 10 L 00 10 L

1000 00 11 Noncontig Noncontig 01 11

0001 01 11 Noncontig Noncontig 00 11

0000 00 00 00 00 00 00 00 00

0101 Noncontig Noncontig Noncontig Noncontig

1010 Noncontig Noncontig Noncontig Noncontig

0110 Noncontig 01 10 01 10 Noncontig

0010 Noncontig 01 11 00 11 Noncontig

0100 Noncontig 00 11 01 11 Noncontig

As a VME slave or during DMA driven BLTs, the VIC64 will drive the local bus
address lines and the DC7407 will generate the byte-enable combinations to drive
onto the PCI. As in the master case, some of these result in noncontiguous byte
arrangements enables on the PCI side of the bus. These will be passed to PCI
with the corresponding byte enables asserted. As can be seen in Table 1–11,
the VME data for byte and aligned words will always be received on the data
lines D[15:0]. The DC7407 will only support being set up as a D32 slave (VIC_
SS0CR0).

Table 1–11 Local Bus A1,0 and SIZ1,0 to PCI BE# Translation

Local Bus
A1,0 SIZ1,0 VME Data Mode 0 BE# Mode 1 BE# Mode 2 BE# Mode 3 BE#

00 00 D[31:0] 0000 0000 0000 0000

00 11 D[31:8] 1000 0100 0010 0001

01 11 D[23:0] 0001 0010 0100 1000

00 10 D[15:0] L 1100 1100 0011 0011

01 10 D[23:8] 1001 0110 0110 1001

10 10 D[15:0] 0011 0011 1100 1100

00 01 D[15:8] L 1110 1101 1011 0111

01 01 D[7:0] L 1101 1110 0111 1011

10 01 D[15:8] 1011 0111 1110 1101

11 01 D[7:0] 0111 1011 1101 1110

1–36 Technical Hardware Specifications



1.5.7 System Controller Operation
AXPvme can operate as a full VME system controller (in slot 1). As a system
controller, the AXPvme provides the following functions:

• VMEbus arbitration control (driving BGIOUT*)

Priority (PRI)

Round-Robin (RRS)

Single-level (SGL)

• VMEbus interrupt control (driving IACK*)

• Driving SYSCLK

• Timeout timers for data transfers and arbitration

The system controller functions are controlled via a number of registers in the
VME interface. Each of these byte registers is mapped into the lowest byte of an
aligned longword in PCI Memory space.

AXPvme is selected as a system controller at powerup (global reset to the VME
interface logic) by the state of a module DIP switch (E41 position 4 closed).

1.5.7.1 VMEbus Arbitration
The operation of AXPvme as a VMEbus arbiter is controlled by the VMEbus
Arbiter/Requester Configuration Register (VIC_ARCR, offset B0). Figure 1–18
shows the layout of the register. The three arbitration schemes supported by
AXPvme are achieved by setting the VME interface to arbitrate with a priority or
round–robin scheme via bit 7 of the VIC_ARCR, in conjunction with the setting of
request levels of the various VMEbus devices.

In PRI mode, BR3 requests have the highest priority while BR0 is the lowest.

In the RRS arbitration is assigned on a rotating basis—when the bus is granted
to a requester on bus request line BR[n]*, then the highest priority for the next
arbitration is assigned to bus request line BR[n-1]* (or BR3 if the previous level
was BR0).

SGL arbitration is obtained by programming the VME interface for PRI bus
arbitration and setting all requesters to the same bus request level.

1.5.7.2 VMEbus Interrupt Handling
For a complete description of the operation and handling of VMEbus interrupts,
refer to Section 1.17.

As system controller, AXPvme drives the IACK daisy-chain. In response to a
VMEbus IRQx* assertion, system software will normally initiate an IACK cycle
on the VMEbus by reading the VIP_IRR register. Exceptions to this flow are
made for the use of auto-vectored interrupts.

1.5.7.3 SYSCLK Output
AXPvme will drive SYSCLK from slot 1 as a system controller. The clock driven
will be fixed 16 MHz with a nominal 50% (+/- 10%) duty cycle. Note this 16 MHz
will have no fixed phase relationship with other bus timings.

Technical Hardware Specifications 1–37



1.5.7.4 Timeout Timers for Arbitration and Transfers
By default, as the VMEbus system controller, AXPvme will operate as an
arbitration watchdog. After issuing a bus grant to the winning requester, the
VME interface will monitor the bus and if it does not detect activity (BBSY*
asserting) within 8 µs, it will terminate the bus ownership (by itself asserting
BBSY*) to allow rearbitration on the VME.

This arbitration timeout on the VMEbus cannot be disabled, however, the
condition can be used to generate a local interrupt to the LCA processor. Control
of this interrupt is via the VIC_EGICR (see Section 1.17). Bit <1> in the VIC_
TTR, Figure 1–25, is set if the Arbitration timer expires.

When AXPvme is configured as the VMEbus system controller and the transfer
timeout timer is enabled, the VME interface starts this timer whenever the data
phase of a cycle is signaled (DSx* asserting). If the timer expires before the data
cycle is acknowledged or completed in error, the system controller will flag a bus
error (asserting BERR*). This condition sets a status bit in the VMEbus Error
Status Register (VIC_BESR).

The transfer timeout is configured in the VMEbus Transfer Timeout Register
(VIC_TTR, offset A0), shown in Figure 1–25.

Figure 1–25 VMEbus Transfer Timeout Register (VIC_TTR)

1 4 03
3

567 12

VMEbus Timeout

Don’t Care

Arb. Timeout StatusLocal bus Timeout
000 => 4uS
001 => 16uS
010 => 32uS
  :            :
110 => 512uS
111 => Disabled

: VME_IF_BASE + 120VIC_TTR

1.5.8 Interprocessor Communication
The VIC64 features five bytewide general-purpose interprocess communication
registers (ICRs) and six access ‘‘switches’’, which are accessible over the VMEbus.
These registers are also accessible in the normal VME interface register space
mapped in PCI MEM space. When accessed over the VMEbus, they are located in
A16 space by byte 1 of the VIF_ABR register.

1.5.8.1 Interprocessor Communication Registers (ICRs)
Five of these general-purpose registers are simply 8-bit read/write registers
accessible both over the VMEbus and in local PCI Memory space. Two others
allow VIC64 status and hardware revision information to be read over the
VMEbus.

Bits <4:0> in the final register are set when there is a write access to the
corresponding ICR. See the VIC64 specification for more complete details.

1–38 Technical Hardware Specifications



1.5.8.2 Interprocessor Communication Global Switches (ICGS)
The ICGSs are software switches that may be set over the VMEbus (not locally
accessible over the PCI) to interrupt a group of VMEbus modules that share an
A16 base address.

Because the global switches are meant to be issued to several modules, the slave
targets of a global switch access do not acknowledge the cycle, but rather the
master driving the write DTACKs the cycle itself (the VIF_ABR register should
be set to generate a self-access by the global-switch write).

A write to an even address clears the selected switch and a write to an odd
address sets the switch.

If Global-switch interrupts are enabled in the VIC64 ICGSICR, an interrupt is
generated to the local processor via the system interrupt controller. The vector
for the interrupt is generated from the VIC64 ICGSVBR.

Bits <4:0> in the final register are set when there is a write access to the
corresponding ICGPR. See the VIC64 specification for more complete details.

1.5.8.3 Interprocessor Communication Module Switches (ICMS)
The ICMSs are software writable switches that may be set over the VMEbus to
interrupt a processor. The module switches, however, are meant to be issued to a
specific module.

Because the module switches are meant for a specific module, the cycle is just like
a normal write on the bus (nothing special like the ICGS case).

If Interprocessor Communication Module-switch interrupts are enabled in the
VIC64 ICMSICR, an interrupt is generated. The vector for the interrupt is
generated from the VIC64 ICMSVBR.

Note

There are restrictions on the usage of the above registers sets. Only one
set can be used, as described, at a time.

The interprocessor communication register map is shown in Figure 1–26.

Technical Hardware Specifications 1–39



Figure 1–26 Interprocessor Communication Register Map

VIF_ABR<byte 1> + 01 8-bit General-purpose Register 0

VIF_ABR<byte 1> + 03 8-bit General-purpose Register 1

VIF_ABR<byte 1> + 05 8-bit General-purpose Register 2

VIF_ABR<byte 1> + 07 8-bit General-purpose Register 3

VIF_ABR<byte 1> + 09 8-bit General-purpose Register 4

VIF_ABR<byte 1> + 0B VIC Revision register (read only)

VIF_ABR<byte 1> + 0D VIC Status register (read only)

VIF_ABR<byte 1> + 0F Inter-communication register status

VIF_ABR<byte 1> + 10 Clear Global Switch 0 (write only)

VIF_ABR<byte 1> + 11 Set Global Switch 0 (write only)

VIF_ABR<byte 1> + 12 Clear Global Switch 1 (write only)

VIF_ABR<byte 1> + 13 Set Global Switch 1 (write only)

VIF_ABR<byte 1> + 14 Clear Global Switch 2 (write only)

VIF_ABR<byte 1> + 15 Set Global Switch 2 (write only)

VIF_ABR<byte 1> + 16 Clear Global Switch 3 (write only)

VIF_ABR<byte 1> + 17 Set Global Switch 3 (write only)

VIF_ABR<byte 1> + 20 Clear Module Switch 0 (write only)

VIF_ABR<byte 1> + 21 Set Module Switch 0 (write only)

VIF_ABR<byte 1> + 22 Clear Module Switch 1 (write only)

VIF_ABR<byte 1> + 23 Set Module Switch 1 (write only)

VIF_ABR<byte 1> + 24 Clear Module Switch 2 (write only)

VIF_ABR<byte 1> + 25 Set Module Switch 3 (write only)

VIF_ABR<byte 1> + 26 Clear Module Switch 3 (write only)

VIF_ABR<byte 1> + 27 Set Module Switch 3 (write only)

Note

General-purpose Registers 0–7 are also accessible from PCI Memory space
starting at address VME_IF_BASE + 60h.

1.5.9 AXPvme Generated VMEbus Interrupts
AXPvme can act as a VMEbus interrupter (as well as a VMEbus interrupt
servicing agent, see Section 1.17).

The VIC Interrupt Request/Status register (VME_IF_BASE + 80h) is used
to control the state of AXPvme’s IRQ1*-7* lines driven out onto the VME.
Figure 1–27 shows the form of this register. When read, this register shows the
current state of the IRQ lines driven out from AXPvme.

1–40 Technical Hardware Specifications



Figure 1–27 VMEbus Interrupt Request/Status Register

1 4 03
3

567 12

IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
IRQ2
IRQ1

Enable(1)/Disable(0)

A 1 to any of bit<7:1>, with a 1 in
bit<0> will reset the corresponding
IRQ*.
A 1 to any of bit<7:1>, with a 0 in
bit<0> will assert the corresponding
IRQ*.

Don’t care : VME_IF_BASE + 80

VIC_VIRSR

AXPvme employs the Release-On-Acknowledge mechanism for removal of its
interrupt requests. Alternatively, the interrupt requests can be deasserted by
writing to the same VMEbus Interrupt Request/Status register that is used to
assert the IRQ* lines. When AXPvme sees an IACK on the VMEbus to one of
its interrupt requests, it responds with a vector that is programmable in the
VMEbus Interrupt Vector Base Registers (see Figure 1–28) starting at PCI
Memory address VIF_ABR+84h.

Figure 1–28 VMEbus Interrupt Vector Base Registers

1 0
3

7

Don’t care

Status/ID vector

Address Register Line

:VME_IF_BASE +84 VIVBR1 IRQ1*

:VME_IF_BASE + 88 VIVBR2 IRQ2*

:VME_IF_BASE + 8C VIVBR3 IRQ3*

:VME_IF_BASE + 90 VIVBR4 IRQ4*

:VME_IF_BASE + 94 VIVBR5 IRQ5*

:VME_IF_BASE + 98 VIVBR6 IRQ6*

:VME_IF_BASE + 9c VIVBR7 IRQ7*

A local interrupt can be generated to the CPU, by the VME interface, when
it sees an interrupt acknowledge cycle to itself on the VMEbus. This interrupt
(which can be enabled or disabled) can be used to inform system software that the
VMEbus interrupt request has been serviced, for instance. The VIC Interrupter
Interrupt Control register (VME_IF_BASE + 00) is shown in Figure 1–29.

Technical Hardware Specifications 1–41



Figure 1–29 VMEbus Interrupter Interrupt Control Register

1 03
3

67 12

Don’t care 1 1 1 1

Encoded priority 1-7

Mask - when set, no interrupt generated.

: VME_IF_BASE + 00VIC_IICR

The vector that is returned when the processor locally IACKs this interrupt comes
from the VIC Error Group Interrupt Vector Register (VIC_EGIVBR) described in
Section 1.17.

1.6 VME Interface

1.6.1 How AXPvme Uses the VIC64 Registers
There are some registers in the VME interface (most notably those that live
in the VIC64) which, for the AXPvme implementation, must be set up to fixed
configuration values by software before normal, predicable operation can be
guaranteed. This section describes these registers and other recommended VME
interface initialization.

Note that with power-up defaults for the DC7407 registers, the only steps
required to operate the VME interface are:

1. Set up the three VME interface PCI base registers

2. Program S/G RAM as required

3. Configure the VIC64 as per VIC64 initialization (some timing control register
values will be defined)

4. Operate the VME interface as a normal VIC64 based system

The use of DC7407 registers with values other than defaults will enable a user to
take advantage of the various added features of the DC7407.

This should be a guide to required VIC64 register values in the AXPvme module.
This is not intended as a description of the register set in the VIC64 but to
recommend or mandate settings for operation in the AXPvme VME interface.

The address map in the VIC64 databook places the VIC registers in byte 3 of a
particular longword address; in AXPvme, the VIC registers accessed over the PCI
are seen at byte zero in each longword.

VIICR

Bits 2-0 Local IPL setting for VMEbus interrupter acknowledge received
interrupt

Bits 6-3 Reserved should read as 1s

Bit 7 Interrupt mask bit

VICR1-7

1–42 Technical Hardware Specifications



Bits 2-0 Local IPL setting for VMEbus interrupt

Bits 6-3 Reserved should read as 1s

Bit 7 Interrupt mask bit

DMASICR

Bits 2-0 Local IPL setting for end of DMA interrupt

Bits 6-3 Reserved should read as 1s

Bit 7 End of DMA interrupt mask bit

LICR1-7

Bits 2-0 Local IPL setting for LIRQ interrupt line

Bit 3 Indicates voltage level at LIRQ pin

Bit 4 Autovector enable (this bit must be set in AXPvme)

Bit 5 Edge/level enable (for LICR2 and LICR7, this bit must be clear in
AXPvme)

Bit 6 Polarity set (for LICR2 and LICR7, this bit must be clear in AXPvme)

Bit 7 Local interrupt mask bit

ICGSICR

Bits 2-0 Local IPL for global switch interrupts

Bit 3 Reserved should read as 1

Bits 7-4 Interrupt mask bit for ICGS [3:0]

ICMSICR

Bits 2-0 Local IPL for module switch interrupts

Bit 3 Reserved should read as 1

Bits 7-4 Interrupt mask bit for ICMS [3:0]

EGICR

Bits 2-0 Local IPL for error group interrupts

Bit 3 SYSFAIL asserted (read only)

Bit 4 SYSFAIL interrupt mask

Bit 5 Arbitration timeout interrupt mask

Bit 6 VIC/CY write post fail interrupt mask

Bit 7 AC fail interrupt mask

ICGSIVBR

Bits 1-0 Read only

Bits 7-2 User defined, combine with ICGS switch number to provide vector

ICMSIVBR

Bits 1-0 Read only

Bits 7-2 User defined, combine with ICMS switch number to provide vector

LIVBR

Bits 1-0 Read only

Bits 7-2 User defined, combine with LIRQ number to provide vector

EGIVBR

Bits 1-0 Read only

Bits 7-2 User defined, combine with fixed codes to provide vector

Technical Hardware Specifications 1–43



ICFSR

Bits 3-0 Module switches

Bits 7-4 Global switches

ICR0-4 General-purpose registers accessible over the VME or local bus

ICR5 Read-only register containing the VIC64 revision accessible over VME
or local bus

ICR6

Bits 1-0 Read only from the VMEbus. These bits should be cleared down by the
processor after reset.

Bits 5-2 Reserved should read as 1s

Bit 6 Should be cleared by the processor as soon as possible after reset.
If enabled via LICR7, this bit being set asserts SYSFAIL* on the
VMEbus.

Bit 7 Read only

ICR7

Bits 4-0 Read and write from the VME or locally. These bits are set if the
corresponding ICR is written.

Bit 5 Read only

Bit 6 HALT and RESET control

Bit 7 VME SYSFAIL* mask (must be set after reset if resets are not to be
translated into SYSFAIL* assertion)

VIRSR

Bit 0 Enable for VME interrupter

Bits 7-1 If bit 0 is set during the write that sets any given bit, the corresponding
VMEbus interrupt is asserted. These bits are cleared if bit 0 is cleared
during the write that sets a bit.

VIVBR1-7 Each register sets the vector returned on VME interrupt acknowledge
cycles at that interrupt level.

TTR

Bit 0 Set to include VMEbus acquisition time in local bus timeout

Bit 1 When system controller set to indicate arbitration timeout

Bits 4-2 Recommended Local bus timeout period is 64 µs (011)

Bits 7-5 Recommended VMEbus timeout period is 128 µs (100)

Note: The use of this depends largely on the VME environment.
However, if the AXPvme is a system controller and a cycle times
out on the Local bus after timing out on the VMEbus, then the
Local bus cycle will hang. Avoid this scenario by making the
Local bus time out first or not at all.

LBTR

Bits 3-0 Minimum PAS assertion time. Leave at zero.

Bit 4 Minimum DS deasserted time. Must be set in AXPvme.

Bits 7-5 Minimum PAS deasserted time. Must be binary 110 in AXPvme.

BTDR

Bit 0 Dual Path enable. Set this bit.

Bit 1 AMSR register. Used to set up user-defined AM codes for BLTs.

Bit 2 Local bus 256 bus byte boundary. Recommend this be set.

1–44 Technical Hardware Specifications



Bit 3 VME 256 bus crossing enabled. Recommend this be set.

Bit 4 Enables D64 Master Operation.

Bit 5 Enable enhanced Turbo mode. Must be clear.

Bit 6 Enables D64 Slave operation. Recommend that this be set.

Bit 7 Enable 2K byte boundary crossing for D64. If set, software must
check that the D64 BLT start address is 2 Kbyte aligned and that the
transfer does not cross a 64 Kbyte boundary.

ICR

Bit 0 Read-only system controller pin.

Bit 1 Turbo enable. Must be clear.

Bit 2 Metastability delay. Recommend this be clear.

Bits 4,3 Deadlock signaling. Must be clear.

Bits 5-7 RMC Control bits 1 to 3.

ARCR

Bits 3-0 VMEbus fairness timer enable.

Bit 4 DRAM refresh enable. Must be clear.

Bits 6,5 VMEbus request level.

Bit 7 Arbitration mode.

AMSR Used to define response top and generation of user-defined address
modifier codes.

BESR All 8 bits are flags set by the VIC after status conditions that must be
cleared by the processor.

DMASR

Bit 0 Block transfer in progress. Once set, must be cleared by processor.

Bit 1 LBERR during DMA transfer

Bit 2 BERR during DMA transfer

Bit 3 Local bus error

Bit 4 VMEbus BERR

Bits 5,6 Reserved read as 1s

Bit 7 Master write post information stored in CYs

SS0CR0

Bits 1-0 Accelerated transfer mode. Must be set to binary 10.

Bits 3,2 Must be binary 01 for A24 slave selection.

Bit 4 D32 enable. Must be set in AXPvme.

Bit 5 Supervisor access.

Bits 7,6 Periodic timer enable. Must be binary 00 in AXPvme.

SS0CR1 Local bus timing values. Must be ‘‘00’’ hex in AXPvme.

SS1CR0

Bits 1-0 Must be set to binary 10 (accelerated transfer mode).

Bits 3,2 Must be binary 00 for A32 slave selection.

Bit 4 D32 enable. Must be set in AXPvme.

Bit 5 Supervisor access.

Bit 6 VIC/CY master write posting enable. Recommend this be clear.

Technical Hardware Specifications 1–45



Bit 7 Slave write post enable. Must be clear in AXPvme.

SS1CR1 Local bus timing values. Must be ‘‘00’’ hex in AXPvme.

RCR

Bits 5-0 Block transfer burst length.

Bits 7,6 VMEbus release mode.

BTCR

Bits 3-0 Interleave period. A value of F hex is recommended.

Bit 4 Data direction bit (0=write, 1=read).

Bit 5 MOVEM enable. Recommend this be clear.

Bit 6 BLT with local DMA enable.

Bit 7 Module based DMA transfer enable.

BTLR1-0 These are the block transfer length registers for local DMA BLTs.

SRR System reset register

1.6.2 VME Register Summary

VME_IF_BASE +

00 VIC_IICR VMEbus Interrupter Interrupt Control Register

04-1C VIC_ICPR1-7 VMEbus Interrupt Control Registers 1-7

20 VIC_DMASICR DMA Status Register

24-3C VIC_LICR1-7 Local Interrupt Status Register

40 VIC_ICGISR ICGS Interrupt Control Register

44 VIC_ICMSICR ICMS Interrupt Control Register

48 VIC_EGICR Error Group Interrupt Control Register

4C VIC_ICGSIVBR ICGS Vector Base Register

50 VIC_ICMSVBR ICMS Vector Base Register

54 VIC_LIVBR Local Interrupt Vector Base Register

58 VIC_EGIVBR Error group Interrupt Vector Base Register

5C VIC_ICSR Interprocessor Communications Switch Register

60-70 VIC_ICR0-4 Interprocessor Communications Registers 0-4

74 VIC_ICR5 Interprocessor Communications Register 5

78 VIC_ICR6 Interprocessor Communications Register 6

7C VIC_ICR7 Interprocessor Communications Register 7

80 VIC_VIRSR VMEbus Interrupt Request/Status Register

84-9C VIC_VIVBR1-7 VMEbus Interrupt Vector Base Registers 1-7

A0 VIC_TTR Transfer Timeout Register

A4 VIC_LBTR Local Bus Timing Register

A8 VIC_BTDR Block Transfer Definition Register

AC VIC_ICR Interface Configuration Register

B0 VIC_ARCR Arbiter/Requester Configuration Register

B4 VIC_AMSR Address Modifier Source Register

B8 VIC_BESR Bus Error Status Register

1–46 Technical Hardware Specifications



BC VIC_DMASR DMA Status Register

C0 VIC_SS0CR0 Slave Select 0/Control Register 0

C4 VIC_SS0CR1 Slave Select 0/Control Register 1

C8 VIC_SS1CR0 Slave Select 1/Control Register 0

CC VIC_SS1CR1 Slave Select 1/Control Register 1

D0 VIC_RCR Release Control Register

D4 VIC_BTCR Block Transfer Control Register

D8 VIC_BTLR1 Block Transfer Length Register 1

DC VIC_BTLR0 Block Transfer Length Register 0

E0 VIC_SRR System Reset Register

E4 BTLR2 Block Transfer Length Register 2

E8-FC Reserved Locations

100 VIP_CR VME Interface Processor Control Register

104 VIP_BESR VME Interface Processor Bus Error/Status Register

108 VIP_ICR VME Interface Processor Interrupt Control Register

10C VIP_IRR VME Interface Processor Interrupt Reason Register

110 VIP_HWIPL VME Interface Processor Hardware IPL Mask Register

114 VIP_DIAG CSR VME Interface Processor Diagnostic Register

118 VIP_PMCSR VME Interface Processor Page Monitor CSR

11C VIP_OBISGABR VME Interface Processor Outbound Internal S/G Entry
ABR

120 VIP_OBISGMSK VME Interface Processor Outbound Internal S/G Entry
Mask

124 VIP_OBISGWORD VME Interface Processor Outbound Internal S/G Entry
Control Word

128 VIP_IBISGMSK VME Interface Processor Inbound Internal S/G Entry
Mask

12C VIP_IBISGWORD VME Interface Processor Inbound Internal S/G Entry
Control Word

130 VIP_SGCCHIX VME Interface Processor SG Cached Index

134 VIP_SGCWRD VME Interface Processor SG Cached Control Word

138 VIP_PCIERTADR VME Interface Processor PCI Error Target Address
Register

13C VIP_PCIERTCBE VME Interface Processor PCI Error Target Command
/Byte Enables Register

140 VIP_PCIERIADR VME Interface Processor PCI Error Initiator Address
Register

144 VIP_LERADR VME Interface Processor VME/Local Bus Error Address
Register

148-17C Reserved Locations

180 VIFMASK VMEbus i/f Address Base Mask Register

184 VIFABR VMEbus i/f Address Base Register

188-
3FC

Reserved

Technical Hardware Specifications 1–47



1.6.3 VME Subsystem Restrictions (as of 22-Nov-94)
This section describes limitations on the use of the VME subsystem due to
outstanding hardware constraints. The intention is that these will be eliminated
as new revision hardware components become available. This section will be
updated as restrictions change. Please contact your Field Application Engineer
for the latest status on these constraints.

1.6.3.1 D64 Writes to Invalid Pages
When developers perform illegal memory access operations using D64 transfers,
the module fails to recover according to specification causing the system to crash.
Developers and customers should not be using memory in this fashion. If they do,
the module crashes and a re-boot is required.

The illegal memory access operations are:

• D64 write to a page mapped to a nonexistent memory location

• User mode D64 write to a Supervisor page

• D64 write to a page with an invalid S/G map

• D64 write to a write protected page

1.6.3.2 D64 Write/IACK Cycle Collisions
An AXPvme can be used to generate interrupts on the VME, responding to IACK
cycles as the interrupts are serviced. The AXPvme can also be accessed as a
VME Slave using D64 data type. When an AXPvme has just finished receiving
an inbound D64 write, there is a small period of time when an IACK cycle will
not be acknowledged with the proper vector. There are several workarounds that
will prevent this situation from occuring. Which workaround depends upon your
application.

If an AXPvme is not posting interrupts to the VME, IACK cycles will not be run
against the AXPvme.

If the AXPvme is not being used as the target of D64 writes, the collision will not
occur.

If interrupts are posted to the VME only under conditions where there is no VME
Master targeting the AXPvme with D64 writes, the collision will not occur.

1.6.3.3 Collision of VIC64 Master Write Posting with Master Block Transfers
Write Posting at the VIC64 is not recommended. A collision of the following three
cycles will cause a bus timeout error:

• Posted Master Write in the VIC64/CY964

• AXPvme is being accessed as a VME Slave

• Master Block Transfer is being initiated by a ‘‘Pseudo write’’ to the VIC64
over the Local bus

1.6.3.4 VIC64 Errata: A16 Master Cycles During Interleave
The Cypress VIC64-00 Design Considerations document (dated 22 February 1994)
lists the following errata.

‘‘ A16 master cycles during an interleave period with dual path enabled will cause
BERR* and LBERR* to be asserted. ’’

1–48 Technical Hardware Specifications



Followup conversations with Cypress (and testing) has determined that a further
statement should be added. Apparently, the problem only occurs if the DMA
enable bit is set (BTCR<6>). The DMA drivers used with the AXPvme systems
always clear this bit immediately after the ‘‘pseudo-write’’ to avoid any PIO being
taken as another ‘‘pseudo-write’’. Therefore, BTCR<6> is always clear by the time
an A16 access could get through in an interleave gap.

While this is not a problem for customers using driver software supplied by
Digital, anyone writing their own interface to the VIC64s DMA engine should use
the same sequence to ensure this problem is not encountered.

1.6.3.5 Module Reset Temporarily Disables IACK Chain
If an AXPvme module is reset, the IACK path through the module being reset is
disabled for the duration of the reset (approximately 500 ms). If a VME module
further down the IACK chain has a VME interrupt posted and the IACK cycle is
attempted during the AXPvme reset, the IACK will not be received and the VME
IACK cycle will time out.

Technical Hardware Specifications 1–49



1.7 Network Interface
The AXPvme attaches to the network via an Ethernet AUI connector on the
front panel. This interface is based on the DECchip 21040-AA. This is a PCI
based Ethernet solution with which processor intervention in LAN control is
kept to a minimum. It behaves as a bus slave when communicating with the
host (that is, configuration register and CSR accesses) and as a bus master when
communicating with memory.

Refer to the DECchip 21040-AA specification for full details of programming and
use.

1.7.1 DECchip 21040-AA PCI Configuration Registers
The DECchip 21040-AA will respond to PCI configuration reads and writes to
its configuration registers (see Figure 1–30). For full bit definitions of these
registers, refer to the DECchip 21040-AA specification.

Figure 1–30 DECchip 21040-AA PCI Configuration Registers

: 00001000
: 00001004

: 0000100C

: 00001010

: 00001028

: 0000102C
: 00001030

: 00001034

: 00001038

: 0000103C

: 00001044 to 000010FC

Device ID = 0002h Vendor ID=1011h

CommandStatus

Class Code Rev ID

N/S Don’t Care Latency
Timer

I/O Base Address (CBIO)

Reserved

Reserved

Reserved

Reserved

N/S (=Not Supported)

N/S

: 00001014

       X    Int Pin   Int Line       X

Reserved

Reserved

: 00001008

Memory Base Address (CBMA)

: 00001018

: 00001040

Reserved

Driver Area (CFDA)

1.7.2 DECchip 21040-AA CSRs
The DECchip 21040-AA has 16 Command and Status Registers that may be
accessed by the host. The address field in Table 1–12 reflects the offset from
the CSR Base Address (CBIO,CBMA). The CSRs are located in the host I/O
or memory space. The CSRs are quadword aligned and can only be accessed

1–50 Technical Hardware Specifications



using longword instructions. See the DECchip 21040-AA specifications for more
details.

Table 1–12 DECchip 21040-AA CSRs

Register Meaning Address

CSR0 Bus Mode Register xxxx xx00H

CSR1 Transmit Poll Demand xxxx xx08H

CSR2 Receive Poll Demand xxxx xx10H

CSR3 Rx List Base Address xxxx xx18H

CSR4 Tx List Base Address xxxx xx20H

CSR5 Status Register xxxx xx28H

CSR6 Serial Command Register xxxx xx30H

CSR7 Interrupt Mask Register xxxx xx38H

CSR8 Missed Frame Register xxxx xx40H

CSR9 ENET ROM Register xxxx xx48H

CSR10 Reserved xxxx xx50H

CSR11 Full-Duplex Register xxxx xx58H

CSR12 SIA Status Register xxxx xx60H

CSR13 SIA Connectivity Register xxxx xx68H

CSR14 SIA Tx Rx Register xxxx xx70H

CSR15 SIA General Register xxxx xx78H

1.7.3 DECchip 21040-AA PCI Cycles
The DECchip 21040-AA responds as a slave to single longword accesses in I/O
space and configuration space. The DECchip 21040-AA acts as a master over the
PCI for memory reads and memory writes.

The DECchip 21040-AA’s tenure on the bus for DMA accesses to memory can be
controlled via the programmable burst length in the Bus Mode Register CSR0
and the PCI latency timer value in the Configuration Latency Timer Register.

The DECchip 21040-AA will handle target initiated retry, abort, and DEVSEL
abort cycle termination when it is a bus master. Target aborted terminations will
cause an interrupt.

As a slave, burst writes to its I/O space will cause target retry termination of the
cycle after the first longword access.

1.7.4 Ethernet Address ROM
AXPvme’s Ethernet ID address is stored in an on-board SROM. The SROM is
readable from the DECchip 21040-AA register CSR9 (see Figure 1–31). Each
read access causes 8-bit serial read cycles from the ENET ROM. Writing to the
register resets the pointer of the ENET ROM to its first location. The SROM is a
20-pin PLCC and is socketed.

Technical Hardware Specifications 1–51



Figure 1–31 DECchip 21040-AA CSR9 (ENET ROM Register)

Ignored DECchip 21040 CSR9 (48h)

DT - DataDN- Data Not Valid

1
3 7 0

1.8 SCSI
The SCSI interface used in the AXPvme is based on the NCR 53C810 chip. (The
PCI version of the NCR 53C720 SCSI controller chip, though only single-ended
8-bit plus parity operation, is supported).

For full operational programming details, see the 53C720 programming guide and
the most up-to-date 53C810 chip specification.

1.8.1 SCSI ID
The SCSI ID is set by writing the SCID register (offset 04h) in the 53C810. In
AXPvme this will be set up, from NVRAM, by firmware. The ID can be updated
from the console. The default SCSI ID is 7.

1.8.2 SCSI Connection and Termination
The SCSI bus is routed to the VMEbus P2 connector. The pinning for the user-
defined pins of the P2 connector is given in Section 1.21. An interface to a
standard SCSI cable is handled via a special P2 breakout module. This module
brings the SCSI bus to a standard 50-pin SCSI connector pinning for direct
connection to an unshielded SCSI A-cable. Note that AXPvme single-slot and
AXPvme dual-slot have different power needs and therefore require different
breakout module designs. Both, AXPvme single-slot and AXPvme dual-slot
breakout modules support the same 50-pin SCSI connector pinning.

SCSI termination is implemented on these special P2 breakout boards as well.
Active SCSI terminators are enabled/disabled through the use of a 6-pin jumper
block on the breakout module. Pins 1 and 3 should be jumpered to enable SCSI
termination at the AXPvme. Pins 3 and 5 should be jumpered to disable SCSI
termination at the AXPvme.

1.8.3 53C810 Configuration Block
The SCSI controller resides in PCI Configuration space between the addresses
00002000 to 000020FF (see Section 1.4.1).

The 53C810 has two base address registers, one for I/O and the other for Memory
space. This allows the 128 bytes of registers to be accessible in both PCI Memory
and I/O regions.

Figure 1–32 shows the supported fields in the 53C810’s PCI Configuration block.

1–52 Technical Hardware Specifications



Note that the 53C810 supports a Latency Timer, and via normal (not PCI
configuration) registers, has a programmable data burst size on the PCI (see
DMODE register. Offset 38h.).

Figure 1–32 53C810 Configuration Block

: 00002000
: 00002004

: 00002008
: 0000200C

: 00002010

: 00002028

: 0000202C
: 00002030

: 00002034

: 00002038

: 0000203C

: 00002040 to 000020FC

Device ID = 0001h Vendor ID=1000h

CommandStatus

Class Code Rev ID

N/S Don’t Care Latency
Timer

I/O Base Address (SCSI_IO_BASE)

Reserved

Reserved

Reserved

Reserved

N/S (=Not Supported)

Operating registers mapped to

N/S

Mem Base Address (SCSI_MEM_BASE) : 00002014

       X        X        X       X

bytes 80h to FFh.

1.8.4 SCSI Programming
The NCR 53C810 device allows a low-level register interface or programming
via NCR’s SCSI Scripts, which allow the controller to effect high-level SCSI
operations with very little intervention from the processor.

Once configured in PCI space, the programming of the 53C810 is compatible with
the 53C720.

1.8.5 SCSI Control Status Registers
The 53C810 has 128 accessible bytewide control and status registers (see
Table 1–13). These registers are accessible in PCI I/O space starting at address
SCSI_IO_BASE, in PCI Memory space starting at address SCSI_MEM_BASE,
and in Configuration space starting at 00002080h.

Technical Hardware Specifications 1–53



Table 1–13 53C810 Register List

Label R/W Description Offset Label R/W Description Offset

SCNTL0 R/W SCSI Control 0 00 DBC R/W DMA Byte Counter 24-26

SCNTL1 R/W SCSI Control 1 01 DCMD R/W DMA Command 27

SCNTL2 R/W SCSI Control 2 02 DNAD R/W DMA Next Add for
Data

28-2B

SCNTL3 R/W SCSI Control 3 03 DSP R/W DMA SCRIPTS
Pointer

2C-2F

SCID R/W SCSI Chip ID 04 30-33

SXFER R/W SCSI Transfer 05 ScratchA R/W Gen Purpose
Scratch Pad

34-37

SDID R/W SCSI Destination ID 06 DMODE R/W DMA Mode 38

GPREG R/W General Purpose 07 DIEN R/W DMA Interrupt
Enable

39

SFBR R/W 1st Byte Rx’ed 08 DWT R/W DMA Watchdog
Timer

3A

SOCL R/W Output Cntrl Latch 09 DCNTL R/W DMA Control 3B

SSID R Selector ID 0A ADDER R Sum o/p of internal
adder

3C-3F

SBCL R/W Bus Control Lines 0B SIEN0 R/W SCSI Interrupt
Enable 0

40

DSTST R DMA Status 0C SIEN1 R/W SCSI Interrupt
Enable 1

41

SSTAT0 R SCSI Status 0 0D SIST0 R SCSI Interrupt
Status 0

42

SSTAT1 R SCSI Status 1 0E SIST1 R SCSI Interrupt
Status 1

43

SSTAT2 R SCSI Status 2 0F SLPAR R/W SCSI Longitudinal
Parity

44

DSA R/W Data Structure Addr 10-13 SWIDE R SCSI Wide Residue
Data

45

ISTAT R/W Interrupt Status 14 46-47

RESERVED 15-17 STIME0 R/W SCSI Timer 0 48

CTEST0 R/W Chip Test 0 18 STIME1 R/W SCSI Timer 1 49

CTEST1 R Chip Test 1 19 STEST0 R SCSI Test 0 4C

CTEST2 R Chip Test 2 1A STEST1 R SCSI Test 1 4D

CTEST3 R Chip Test 3 1B STEST2 R/W SCSI Test 2 4E

TEMP R/W Temporary Stack 1C-1F STEST3 R/W SCSI Test 3 4F

20 SIDL R SCSI Input Data
Latch

50-51

CTEST4 R/W Chip Test 4 21 SODL R/W SCSI Output Data
Latch

54-55

22 SBDL R SCSI Bus Data
Lines

58-59

(continued on next page)

1–54 Technical Hardware Specifications



Table 1–13 (Cont.) 53C810 Register List

Label R/W Description Offset Label R/W Description Offset

CTEST6 R/W Chip Test 5 23 ScratchB R/W Gen Purpose
Scratch Pad

5C-5F

1.8.6 Clocking Information
The AXPvme implementation of the SCSI interface ties the SCLK pin to 32 MHz.
This has ramifications on the configuration of the SCNTL3 (03h) and SXFER
(05h) registers. The following settings yield peak SCSI-2/SCSI-1 transfer rates of
8/5.33 Mbytes/s, respectively.

SCNTL3 (03h) <7:0> = 12h
SXFER (05h) <7:4> = 0h

See NCR’s 53C810 documentation for further details.

Technical Hardware Specifications 1–55



1.9 ISbus
The ISbus is a simple 8-bit data, 16-bit address, non-multiplexed resource bus. It
is interfaced to the PCI via the SIO chip from Intel (the 82378IB). The interface
translates PCI I/O references to the ISbus into simple read and write cycles to
the resources hanging off the ISbus lines. In addition, PCI Memory read cycles to
system ROM locations are supported.

Many of the system functions and registers are interfaced over the ISbus.
Figure 1–34 shows the layout of the ISbus for AXPvme. The addresses shown are
both PCI I/O addresses and ISbus addresses.

1.9.1 ISbus Adapter (SIO) Configuration Space
The SIO does not have any base addresses registers (rather, it negatively decodes
fixed regions in both PCI I/O and memory space).

However, there are a number of registers of interest for the AXPvme system.
Figure 1–33 shows the layout of the SIO configuration space with the registers of
interest to AXPvme shown.

Figure 1–33 SIO Configuration Block

: 00004000
: 00004004

: 00004008
: 0000400C to 0000403F

: 00004040

: 00004044

: 00004048
: 0000404C

: 00004050

: 00004054

: 00004058 to 000040FF

Device ID = 0484h Vendor ID=8086h

CommandStatus

Class Code Rev ID

PCI Control

Reserved

ISA Addr Decode (not used)

Reserved

MEMCS# Attributes (not used)

ISA Bus Control

MEMCS# Control (not used)

Reserved

1.9.1.1 AXPvme Required Setup
Many of the reset defaults of the SIO for configuration registers suit the required
setup for AXPvme. Only registers that need to be changed from the defaults will
be discussed here.

PCI Control Register

This register is used to enable the SIO to respond to PCI IACK cycles and to
set the expected assertion speed of the DEVSEL# signal so that the subtractive
decode sample point can be set. PCI Posted Write Buffer should also be enabled.

1–56 Technical Hardware Specifications



Bit <5> must be set to a 1 (default), while bits <4:3> must be set to <00> to allow
slow sample point timing for negative decode. Bit <2> (PCI Posted Write Buffer
Enable) should be set to <1>. All other bits should be zero.

ISbus Control

The ISbus Control word is dealt with as two separate bytewide registers: the
ISA Controller Recovery Timer Register at offset +4Ch and the ISA Clock Divisor
Register at offset +4Dh.

The I/O recovery mechanism in the SIO is used to add additional recovery delay
between PCI originated I/O cycles to the ISbus. As only 8-bit cycles are supported
by AXPvme, only bits <6:3> of the register are significant.

Bits <6:3> define the number of system-clock ticks which are inserted between
back-to-back cycles. Note that there is a difference between version ‘‘IB’’ and
version ‘‘ZB’’ of the SIO. The table below applies ‘‘IB’’ of the SIO only. The ‘‘*’’ed
row shows the required AXPvme value, bits <7,2:0> MBZ for AXPvme.

Bits <6:3> I/O Recovery Cycles

0xxx +0

* 1001 +1

1010 +2

1011 +3

1100 +4

1101 Reserved

1110 Reserved

1111 Reserved

1000 Reserved

ISA Clock Divisor

The ISA Clock Divisor register controls the enabling of positive decode for BIOS
ROM and the PCI to ISA clock divisor.

For AXPvme, the BIOS ROM region must not be positively decoded so bit <6> of
this register must be cleared, while bits <2:0> should be 000 for a 32 MHz PCI
system. All other bits must be zero.

1.9.2 ISbus Address Space
In I/O space, the bottom 64K of PCI address space is picked up by the SIO and
mapped onto internal registers and out onto the ISbus.

In Memory space, the bottom 1 Mbyte (PCI memory address 00000 to 100000h) is
mapped straight-through to the ISbus.

It should be noted that other regions of I/O and Memory space could be passed on
to the ISbus by the SIO but none of these are of interest to the AXPvme system.
In particular, these address regions are negatively decoded, so will not upset any
other PCI device that is programmed to positively decode PCI addresses.

Technical Hardware Specifications 1–57



Figure 1–34 shows the ISbus I/O address layout.

Figure 1–34 ISbus I/O Address Layout

TOY

Internal registers

Interval Timers

UART

TMR_BASE_ADDR:

UART_BASE_ADDR:

SIO_BASE_ADDR: 0000

TOY_BASE_ADDR:

4000

MOD_xxx_REG: 20xx

6000

32K x 8-bit Reg/RAM
(Contiguous bytes)

6 x 8-bit Reg
(LS byte in Longwords)

(LS byte in Longwords)
6 x 8-bit Reg

(LS byte in Longwords)
4 x 8-bit Reg

8000

Misc. registers

NOTE: Addresses given are PCI/ISbus address values.
             e.g. access to PCI I/O address 00008023 becomes an ISA bus access at address 8023.

Each of these regions relate to separate resources on the ISbus and are dealt with
in individual sections in this specification.

The Internal Register section (0000 to 1FFF) contains registers internal to the
SIO. Most of these registers are concerned with SIO DMA functions that are not
supported by AXPvme.

The only internal registers of interest in this system are:

Address Function

0020 Programmable Interrupt Controller 1 - Control

0021 Programmable Interrupt Controller 1 - Mask

0061 NMI Status and Control

00A0 Programmable Interrupt Controller 2 - Control

00A1 Programmable Interrupt Controller 2 - Mask

These registers are described in Section 1.17.

1–58 Technical Hardware Specifications



1.9.3 ISbus Operation
The DECchip 21066 can access the ISbus devices in I/O space on a byte-by-byte
basis. AXPvme only supports single-byte accesses to all ISbus locations.

Most resources about the ISbus are accessed as the least-significant byte of
aligned longwords. The exception to this is the TOY and the ROM. Both of these
regions are contiguous bytes, but it must be remembered that accesses to the
ISbus must only have one PCI byte enable asserted.

For more information on the SIO and its operation, refer to the most recent
82378IB Chip Specification document.

1.10 Module Registers
There are 5 miscellaneous registers in the AXPvme system, implemented in
module logic for a variety of read/write functions.

• Module Display Control Register - 2400h

• Module Configuration Register - 2800h

• Module Control Register Number 1 - 2C00h

• Module Control Register Number 2 - 3400h

• Reset Reason Register - 3000h

• Clear Heartbeat Register - 2000h

1.10.1 Module Display Control Register
Base address = MOD_DISP_REG = 2400h.

The display is a 5x7 dot-matrix intelligent display device, with 96 characters.
The unit is read/writable via the Display Control Register (MOD_DISP_REG).

The display character is stored in bits <6:0>. The most significant bit (bit <7>)
can be set to increase the brightness of the display.

Figure 1–35 shows the character set of the display. The numbers along the left-
hand edge are the most-significant hex digit of the character number, while the
least-significant is along the top. For example, the character ‘‘W’’ is displayed by
writing a value of 57h to the display register. A value of D7h would display ‘‘W’’
full brightness.

Technical Hardware Specifications 1–59



Figure 1–35 Display Character Set

0 1 2 3 4 5 6 7 8 9 A B C D E F

0,1   B    L    A    N   K

2 ! " # $ % & ’ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ :::

After system reset, the display will default to character 7Fh (‘‘:::’’) at full
brightness. During system reset, all dots in the matrix will be lit.

Figure 1–36 shows the Module Display Control Register.

Figure 1–36 Module Display Control Register

Don’t care : MOD_DISP_REG

Display CharacterBrightness Control

1.10.2 Module Configuration Register
Base address = MOD_CONFIG_REG = 2800h.

This read-only register contains information relating to module revision, memory
module installed, cache/SCSI options, and so forth. The information read from
this register is hardwired on the module, so it is unaffected by resets. Figure 1–37
shows the Module Configuration Register.

1–60 Technical Hardware Specifications



Figure 1–37 Module Configuration Register

Don’t care : MOD_CONFIG_REG

Memory Card ID
Module ID
Termpwr present via P2 pin
Debug mode
PCI option present 

1.10.2.1 Memory Card ID <2:0>
This field gives a 3-bit signature associated with the memory card installed.

Memory Card ID <2:0> Memory Type

000 No Memory

010 8 Mbytes

110 16 Mbytes

111 32 Mbytes

100 64 Mbytes

101 128 Mbytes

1.10.2.2 Module ID <4:3>
These two bits reflect the hardware type of the module.

Module ID <4:3> Type

00 Reserved

01 AXPvme Single-slot

10 AXPvme Dual-slot

11 AXPvme with 512 Kbyte Cache

1.10.2.3 Present Bits <7:5>
A one in any of these bits indicates that the corresponding function is present. Bit
<5> set implies that Termpower is supplied to P2 from the SCSI breakout card.
Bit <6> set indicates that optional Bcache and SCSI interface are installed on the
module. Bit <7> set indicates that a PCI mezzanine option card is installed on
the module.

1.10.3 Module Control Register 1
Base address = MOD_CNTRL_REG = 2C00h

The module control register 1 is a read/write register for controlling miscellaneous
module functions. This register is reset to zero on ANY system reset. Figure 1–38
shows the Module Control Register.

Technical Hardware Specifications 1–61



Figure 1–38 Module Control Register 1

Don’t care : MOD_CNTRL_REG_1

   
00 Park with LCA (default)
01 Park with NI
10 Park with PCI Opt1
11 Park with VME

Watchdog Reset Enable

Interrupt select
PCI arb select<1:0>
CPU IRQ Enable

1.10.3.1 Park Device Select Bits <7:6>
These two bits select the device with which the idle PCI bus will be parked. Reset
default is the LCA. See Section 1.4.2 for more information.

1.10.3.2 Watchdog Reset Enable Bit <5>
When this bit is zero, watchdog expiration has no effect. If bit <5> is set and
the Diagnostic In Progress (DIP) bit of the Reset Reason register is cleared, a
watchdog expiration will generate a hardware reset of the module. Reset default
is disabled.

1.10.3.3 CPU IRQ Enable Bit <4>
This bit must be set to enable interrupts (from SIO, VIC, and Halts) to the
processor. Reset default is disabled.

1.10.3.4 PCI Arbitration Selection Bits <3:2>
These two bits will allow limited control over the PCI arbitration priority
assignment based on the following scheme:

Priority <3:2>=00 <3:2>=01 <3:2>=10 <3:2>>=11

1 LCA PCI VME Reserved

2 ENET LCA LCA Reserved

3 SCSI VME PCI Reserved

4 PCI ENET ENET Reserved

5 VME SCSI SCSI Reserved

1.10.3.5 Interrupt Select Bit <1>
This bit selects the source of SIO IRQ <11:9>. If clear (the default), VMEIRQ
<3:1> are selected. If set, PCI_OPT <D,C,B> are selected. See Figure 1–64 for
details.

1–62 Technical Hardware Specifications



1.10.4 Module Control Register 2
Base address = MOD_CNTRL_REG_2 = 3400h

The module control register 2 is a read/write register for controlling miscellaneous
module functions. This register is reset to zero on ANY system reset. Bits
<6:5:4:3> of this register are reserved.

Note

The module control register 2 is not implemented on the AXPvme 64,
AXPvme 64LC, and AXPvme 160 modules.

Figure 1–39 shows the Module Control Register 2.

Figure 1–39 Module Control Register 2

 7                2  1  0

:  MOD_CNTRL_REG_2

Flash Select


Flash Write Enable

MR-6384-AI

Timer0 Mode 1 Enable

1.10.4.1 Flash Select <1:0>
These two bits default to <00> at power up, selecting the device containing the
console image in the bottom 512 Kbyte. The upper 512 Kbyte of this device is
available as user flash. <01>, <10>, and <11> select the other three user flash
devices, for a total of 3. 5 Mbytes of user flash.

1.10.4.2 Flash Write Enable <2>
This bit defaults to 0 at power up. Setting this bit to 1 asserts ‘‘write enable’’
to the four flash ROMs, allowing them to be written. This bit should be left
cleared when not updating the flash ROMs to avoid corrupting the flash ROMs
accidentally.

1.10.4.3 Timer 0 Mode 1 Enable
This bit is cleared on power up. When cleared, timer 0 in the 82C54 can only
operate in modes 0 and 3. Setting this bit to a 1 inverts the polarity of the
TIMER0 gate input of the 8254 timer chip, allowing proper operation in modes 1
and 5. The default behavior of timer 0 is exactly like the AXPvme 160.

Technical Hardware Specifications 1–63



1.10.5 Reset Reason Register
Base address = 3000h.

The Reset Reason register is a read/pseudowritable register located at a fixed
address on ISbus in PCI I/O address space. It records the cause of a module
reset. The reason for a module reset can be any of Power-up, Front panel switch,
Watchdog, or VMEbus reset.

The register contains the four reset status bits and one read/writable bit,
designated DIP (Diagnostics In Progress).

The register is aliased in two adjacent longwords. At PCI I/O address 3000h, all
five bits are readable, but ANY WRITE will clear bits <3:0>. At this location, bit
<4> is read only.

At PCI I/O address 3004h, bits <3:0> are read only and DIP is fully read/writable.
Figure 1–40 shows the Reset Reason Register.

Figure 1–40 Reset Reason Register

1 0
3

5

Don’t care :     3000h

DIP bit
Watchdog
Front Panel Switch
VME reset
Power-up

Don’t care R/W

RO

Readable, Write to Clear

RO RO RO RO

RO   - Read only
R/W - Read/writable

:     3004h

It should be noted that if the ‘‘Power-up’’ bit is set, all other bits should be
ignored.

When a watchdog timeout occurs, the Watchdog bit is set immediately so it is
available to indicate the HALT reason before the system is actually reset. In
this case, the register forms part of the halt reason information in the system
(see Section 1.17). If the DIP bit is set, the system will not be reset. At PCI I/O
address 3024h, any write will set all bits <4:0>. This is for test ONLY.

1.10.6 Heartbeat ‘‘Clear-Interrupt’’ Register
Base address = HBEAT_CLR_REG = 2000h.

When the heartbeat clock is enabled in the TOY chip, each active (low to high, at
a frequency of 1024 Hz) transition causes the heartbeat status bit to be set. The
bit is not directly readable but directly drives the heartbeat interrupt line into
the SIOs IRQ1 pin.

Writing (data independent) to the Heartbeat ‘‘Clear-Interrupt’’ register clears the
heartbeat status bit and dismisses the interrupt request. See Section 1.17.

1–64 Technical Hardware Specifications



1.10.7 Front Panel Status LEDs
The front panel of the AXPvme has two discrete LEDs showing module status.

1.10.7.1 The AMBER LED
The left LED shows the status of the Watchdog bit in the reset reason register.
When the bit is set, by the expiration of the watchdog, the LED is lit. When the
bit is cleared by firmware or software writing to the reason register, the LED will
be extinguished.

This LED can also be used as a quick check on the slave selection of AXPvme.
It is lit during a valid slave select from the VMEbus. The LED will flash on for
350 ms each time AXPvme is accessed as a slave. Moderate to heavy VME slave
activity will result in the LED appearing continuously lit.

1.10.7.2 The GREEN LED
The second LED shows that onboard 5 V is within specification. If the sensed
voltage drops below 4.5 V, the LED will go out and the module will be reset. The
module will be held in reset until the 5 V supply returns to greater than 4.5 V.

1.11 ROM
The AXPvme has two ROM structures.

The first is the processor startup Serial ROM (SROM), which contains 8K of code
serially loaded into the LCA’s internal Icache on powerup.

The second is system ROM, which is accessible over the ISbus. This ROM is
implemented using Flash devices allowing in-place updating (module switch 2
allows updates to be disabled).

1.11.1 Serial ROM
This 8K of SROM is copied into the processor’s instruction cache on reset.
Execution control is passed to this code in PAL mode. The function of the SROM
code can be broadly described as:

• Verify the processor’s operation

• Identify the reset type

• Find 2 Mbytes of good memory

• Identify the ability to read system ROM (checksum)

• Decompress 512K of ROM (init code) into memory

• Transfer control to init code

This SROM is socketed to allow future firmware upgrades. See Firmware
documentation for more details.

1.11.2 System ROM
Base address (PCI memory space) = ROM_BASE_ADDR = 00000000h.

The flash ROM is accessible as a contiguous 1 Mbyte in PCI memory space. Only
BYTE accesses to the ROM are supported. For AXPvme systems with 4 Mbytes
of flash ROM, the ROM is bank switched in 1 Mbyte banks using bits <1:0> of
the module control register 2.

Technical Hardware Specifications 1–65



1.11.3 Flash ROM Updating
The flash ROM space can be rewritten. Switch 2 on the module enables flash
devices for update. The flows outlined below assume Vpp programming voltage
is applied (switch 2 closed). The first 512 Kbytes of flash ROM are reserved for
console use Figure 1–41). The remaining space in the flash ROM is reserved for
onboard User code. Refer to the update command in Chapter 3 for programming
these devices.

Note

If the processor has 1 Mbyte of flash ROM, it is divided as shown by
FEPROM 1 in Figure 1–41 and uses only that block. If the processor has
4 Mbyte of flash ROM, it uses all four blocks of user flash ROM.

Figure 1–41 Flash ROM Layout/Addressing

FEPROM 4

FEPROM 2

FEPROM 3

       512KB : ROM_BASE_ADDR

: ROM_BASE_ADDR + 3FFFFF

  FEPROM 1

1MB

1MB

1MB

Start  of  user flash

User flash continued

User flash continued

User flash continued

Start of Console
512 KB

1.11.4 Write Protect
Flash ROM is protected from unauthorized/accidental updates by a hardware
switch on the AXPvme module. E44 switch 2 must be closed to connect the
proper programming voltage to the flash ROM devices. Switch 2 should ALWAYS
be open when Flash is not being updated.

Flash ROM updates are also protected via an onboard software enable. The
UART channel A DTR bit must be asserted to allow writes to the flash ROM
devices.

1–66 Technical Hardware Specifications



1.12 Console UART
AXPvme provides two general-purpose asynchronous serial communication lines.
These lines are data-lead only DEC423 ports. One of the two ports is dedicated to
the system console.

The serial interface is based on the 85C30 serial communications controller (SCC)
chip. AXPvme has a single 85C30 with the required line drivers and receivers,
with onboard ESD/EOS protection.

The physical connection to the serial ports is via two front panel 6-pin MMJ
connectors. The MMJ pinning is the DEC STD 52 standard pin-out.

1.12.1 UART Operation
The 85C30 SCC provides two independent full-duplex channels, programmable
for use in any common asynchronous (or synchronous) data-communication
protocol. AXPvme will only support asynchronous use of the SCC, therefore only
asynchronous operation (see Figure 1–42) of the 85C30 will be presented in this
specification. For information on the other modes of SCC operation, refer to the
85C30 chip specification and application notes. But remember, only data leads
are directly accessible from the AXPvme front panel.

Figure 1–42 Typical Asynchronous Protocol

Start

Data Data Data

Parity                    Stop

The operation of each of the two SCC channels (referred to as channel A and
channel B) is completely independent. In effect, the SCC is two separate UART
controllers in a single package. For this reason, the operation of one channel is
described, from which the operation of the other can be inferred.

For each channel, transmit and receive blocks are independent (full-duplex) with
independently programmable character size (5 to 8 bits), parity (off, odd or even).
However, transmit baud rate must be the same as the receive baud rate.

The transmit block can supply one, one-and-a-half, or two stop bits per character
and can provide a ‘‘break’’ output at any time.

The receive channel has a three-character FIFO buffer. Framing and overrun
errors are detected and buffered together with the partial character on which
they occurred. The receiver can also be enabled to detect ‘‘break’’ characters. Any
of these conditions can be enabled to generate a CPU interrupt request.

1.12.2 Data/Register Access
Base address = UART_BASE_ADDR = 6000h.

A single channel of the SCC is accessed via the least significant byte of two
contiguous longwords in PCI I/O space. These two bytes allow access to the 15-
plus internal control and status registers of the device as well as to the transmit
and receiver buffers. The base of the UART is fixed in the SIO region of the PCI
I/O space. For the purposes of this discussion, everything will be referenced to
the UART_BASE_ADDR.

Technical Hardware Specifications 1–67



Accesses to the SCC can be divided into two broad types.

1.12.2.1 Serial Line Data
The first type of access is a serial line data operation. To write a character out,
the data is simply written to the TX data register. A character received from the
serial can be retrieved from the UART by reading the RX data register. These
two data registers are colocated in the first byte of the SCC interface and are
selected by the read or write operation. For example, to send a character, simply
doing a write to the channels data register while reading from the same address
will return a character from the receive buffer.

1.12.2.2 Internal Registers
The second type of access is used to get at SCC internal CSRs. Though there are
8 readable and 15 writable registers for a single channel, they are accessed via
a single byte in the SCC address space. Read registers will be selected for bus
read cycles and write registers are accessed when the cycle to the SCC are writes.
Figure 1–43 shows the SSC memory map.

Figure 1–43 SCC Memory Map

Rd Reg

Rx Data

Rd Reg

Rx Data

Wr Reg

Wr Reg

Tx Data

Read Cycle Write Cycle
: Uart_Base_Addr +00 :
:                             +04 :
:                             +08 :
:                             +0C :

0707

A

B Tx Data

Only Read Register 0 (RR0) and Write Register 0 (WR0) are directly accessible via
this single bytewide address location. In order to get at any of the other registers,
first a write to WR0 selects the target register, which can then be accessed by a
subsequent read or write.

Write Register 0 (WR0) is used to configure some global control state of the SCC
and/or to set the register number for the next read or write access. Figure 1–44
shows the format of WR0. Note that if bits <7:4> are zero, the lower 4 bits can be
used to set up for a subsequent access to read or write registers other than WR0
or RR0.

1–68 Technical Hardware Specifications



Figure 1–44 Write Register 0 (Channel A)

01 Reset Rx CRC checker
10 Reset Tx CRC generator

11 Reset Tx Underrun/EOM latch

Don’t care

000 Null Code
001 Null Code (Reg. No + 8)
010 Reset ext/status interrupts
011 Send Abort
100 Enable Int on next Rx char
101 Reset Tx Int Pending
110 Error Reset
111 Reset highest IUS

: UART_BASE_ADDR + 08

Register number.

In the same way that WR0 is directly accessible, normal SCC status can be read
by a simple read from the same address. Figure 1–45 shows the format of RR0.

Figure 1–45 Read Register 0 (Channel A)

Don’t care : UART_BASE_ADDR + 08

Rx Character Available
Zero Count (n/a)
Tx Buffer Empty
DCD (i/p pin status)
Sync/Hunt (n/a)
CTS (i/p pin status)
Tx Underrun/EOM
Break/Abort

The sequence to access any other register is a simple two-stage operation.

1. Write WR0 with the desired register number.

2. The next (one) access, read or write, will operate on the specified internal
register.

Technical Hardware Specifications 1–69



1.12.3 SCC Operation in Asynchronous Mode
The operation mode of the SCC is selected by writing the WR4 (see Figure 1–46).
As synchronous modes are not to be enabled for the AXPvme usage of the 85C30,
bits <7:4> should be 0100 to select the x16 clock mode.

Figure 1–46 Write Register 4

Don’t care

Parity Enable
1=Even, 0=Odd Parity
01 = One stop bit
10 = One-and-half stop bits
11 = Two stop bits

0 1 0 0

1.12.3.1 RX Operation
The SCC receiver block is configured by Write Register 3 (see Figure 1–47).
In particular, for asynchronous operation, bits <5:1> must be zero, while bit
<0> enables the RX circuit and bits <7:6> select the character size (bits per
character).

Figure 1–47 Write Register 3

Don’t care

Rx Enable
00 = 5bits/char
01 = 7bits/char
10 = 6bits/char
11 = 8bits/char

0 0 0 00

1.12.3.2 TX Operation
Write Register 5 allows the transmit data size to be set up. In addition, if a
‘‘break’’ character is to be transmitted by the SCC, it is accomplished by writing
bit <4> of WR5 (see Figure 1–48).

Finally, this register allows the RTS and DTR signal pins to be driven by
software, but these bits are write only (there is no way to read the state of
drive for RTS or DTR). AXPvme uses channel A DTR as a software controlled
flash ROM write enable. RTS is unused in either channel and channel B DTR is
unused.

1–70 Technical Hardware Specifications



Figure 1–48 Write Register 5

Don’t care

RTS o/p
Tx Enable
Send Break
00 = 5bits/char
01 = 7bits/char
10 = 6bits/char
11 = 8bits/char
DTR o/p

0 0

1.12.3.3 Baud Rate Control
The AXPvme 85C30 has a single external clock source to drive the internal Baud
Rate generator. Write Register 11 is used to select the clock source for the TX
and RX sections of the device. AXPvme’s only connected clock source is the 16
MHz oscillator connected to the RTxC inputs for both channel A and B. Thus for
correct operation of the SCC, the Baud Rate generator must be enabled in WR14
and selected as the clock source for both the RX and TX channels in WR11.

Simply write WR11 = 56H and WR14 = 03H to select and enable the BR generator
as the data clock for both the receiver and transmitter. Note that the bits
controlling the Internal Loopback and Auto-echo diagnostic features of the SCC
are also contained in WR14.

The output of the baud rate generator can be programmed to scale down the input
clock to attain the clock frequencies for desired data transfer rates. The divide is
set up via a 16-bit time constant register. This 16-bit register is programmed in
8-bit chunks. WR12 is the low 8 bits of the time-constant while WR13 holds the
top byte.

The formula relating baud rate to the programmed TC is given by:

1
Baud Rate = _______________________________________

2(Time Constant +2) (BR Clock period)

Where ‘‘BR Clock period’’ equals Clock mode/Clock Frequency. The fixed input
clock for AXPvme is 16 MHz. Table 1–14 gives the time constant value for
standard baud rates with a ‘‘x16’’ Clock mode selected in WR4 (bit <7:6> = 01).

Technical Hardware Specifications 1–71



Table 1–14 SCC Baud Rates

Baud Rate TC (dec) TC (hex)

19200 24 0018

9600 50 0032

4800 102 0066

2400 206 00CE

1200 415 019F

600 831 033F

1.12.3.4 Interrupt Generation
There are three types of events that can be enabled to cause an interrupt request.

• Transmit event
The only transmit event is that the TX buffer has become empty.

• Receive event
The receiver can be configured to interrupt on:

1st RX character or special condition

All RX characters or special condition

Special condition only (RX overrun, framing error, optionally parity error)

• External/Status events

Transitions on CTS, DCD, and SYNC (all n/c in AXPvme)

Break detect

TX underrun

Zero count in the baud rate generator

Each interrupt source has an interrupt enable bit associated with it. These bits
are write-only and are accessible in WR1 and WR15. Figure 1–49 shows the
Interrupt Control Register.

Figure 1–49 Interrupt Control Register (Write Register 1)

Don’t care

Ext/Status intr enable
Tx intr. enable
Parity err is Special Cond.
00 = RX interrupt disabled
01 = RX int  1st char or SC
10 = RX int all car or SC
11 = RX int  Special Cond.

0 0 0

1–72 Technical Hardware Specifications



Write register 15 (see Figure 1–50) controls the enabling of the external/status
interrupt sources.

Figure 1–50 External/Status Interrupt Control (Write Register 15)

Don’t care

BR Zero Count IE
Tx Underrun IE
Break detect IE

0 0 000

Read Register 3 (see Figure 1–51) in Channel A ONLY, gives a summary of
pending interrupts. This information, along with the status from RR0, allows
system software to determine the full state of the SCC.

Figure 1–51 Read Register 3 (Interrupt Pending Register)

Don’t care

Channel B ext/stat IP
Channel B Tx IP
Channel B Rx IP
Channel A ext/stat IP
Channel A Tx IP
Channel A Rx IP

0 0

The programmable vector in the 85C30 device is not used in the AXPvme system.
The interrupt request asserted by the SCC in the AXPvme system is asserted to,
and handled by, the defined system interrupt controller. See Section 1.17 for more
details.

In order for interrupt operation to be used in the SCC, the Master Interrupt
Enable bit <3> in WW9 must be set. This register also allows software to reset
either Channel of the SCC individually or to drive the entire device into reset.

1.12.3.5 Read Registers
In addition to RR0 and RR3 described above, there are six other readable
registers implemented in the SCC. RR10, RR12, RR13, RR15, and RR2 are
read-back registers for WR10, WR12, WR13, WR15, and WR2 (WR/RR2 is the
programmable interrupt vector not used in AXPvme), while RR1 contains the RX
overrun error status bit (<5>) and the parity error bit (<4>).

Technical Hardware Specifications 1–73



1.12.4 System Use and Firmware
Channel A will be used for the AXPvme user console. As such, it will be
configured by firmware as an asynchronous line with baud rate, parity, data
bits, and stop bits configuration definable by the user and stored in NVRAM.

In the absence of valid data in NVRAM on powerup, channel A will be
programmed with a default of 9600 baud, 8-bits, no parity, one stop bit.

Channel B is uncommitted and uninitialized by system firmware.

1.12.5 Physical Details
The physical connection to the two serial lines is by way of the standard DEC423
MMJ connector (see Figure 1–52) on the AXPvme front panel (see Section 1.20 for
the layout of the front panel).

The MMJ pinout is per DEC STD 52.

Pin No: Function Notes

1 Ready out Tied High

2 TX + –

3 TX - Tied Low

4 RX - –

5 RX + –

6 Ready in Not used

Figure 1–52 DEC423 MMJ Connector

Pin 1

1.13 TOY Clock
A Dallas Semiconductor DS1386 chip is used to implement the time-of-year (TOY)
clock function in AXPvme.

Timekeeping information includes 1/100ths of seconds, seconds, minutes, hours,
days, date, month, and year. The date at the end of the month is automatically
adjusted for months with less than 31 days, including corrections for leap years.
The stored time can be selected for 24 hour or 12 hour with AM/PM indication
formats.

Timekeeping functionality is maintained in the absence of Vcc by an internal
lithium energy cell, which has an active life of at least 10 years. In addition, the
device internally protects against spurious accesses during power transitions.

Timekeeping accuracy is better than +/-1 minute/month at 25°C.

1–74 Technical Hardware Specifications



Access to the TOY, to examine or set current time, is via 9 bytewide registers in
ISbus space. Note that the alarm features of the DS1386 are not supported in
AXPvme. The watchdog and SRAM functionality are supported and are described
in Section 1.15 and Section 1.16. The square wave output is used to generate a
fixed 1024 Hz interval interrupt.

This part will be socketed to allow:

• Physical removal of the NVRAM from one AXPvme module to another

• Replacement of a DS1386 in which the internal power source is no longer
functional

1.13.1 TOY Clock Operation
Base address = TOY_BASE_ADDR = 8000h.

The DS1386 is interfaced to the AXPvme system on the ISbus. Time information
is contained in 8x8-bit read/write registers offset from this base address (see
Figure 1–53).

Figure 1–53 TOY Time Registers

1/100 Sec 1/10 Sec : TOY_BASE_ADDR + 00
  Second : TOY_BASE_ADDR + 01
  Minute      : TOY_BASE_ADDR + 02

: TOY_BASE_ADDR + 03
   Hours 0 : TOY_BASE_ADDR + 04

: TOY_BASE_ADDR + 05
   Day : TOY_BASE_ADDR + 06

Don’t care : TOY_BASE_ADDR + 07

 0

 0

Don’t care

: TOY_BASE_ADDR + 08
 Month : TOY_BASE_ADDR + 09

: TOY_BASE_ADDR + 0A

0 0           Date

  Year  

  0

0=Enable SQW
1=12Hr

0=Enable OSC

The time is stored in BCD. For example, a time of 29 minutes is stored in location
(TOY_BASE_ADDR+02) as 29h.

The storage format of ‘‘hours’’ depends on the setting of the 12/24 hour mode bit
(bit <6> of TOY_BASE_ADDR+04). When this bit is clear, the TOY stores the
time hours as BCD from 00 to 23, however, in 12-hour mode (bit <6> = 1) the
hours are 01 to 12 with bit <5> indicating AM (0) or PM (1).

The final register of interest in the DS1386 in relation to timekeeping is the
Command register (see Figure 1–54), located at TOY_BASE_ADDR+0B.

Technical Hardware Specifications 1–75



Figure 1–54 TOY Command Register

Don’t care : TOY_BASE_ADDR + 0B

Watchdog Flag
Watchdog enable
Pulse/Level O/P
Watchdog assertion
Watchdog Select

Transfer Enable

X X

See
Section   
1.14

The TOY read/write registers are updated once every 0.01 seconds. This update
process is asynchronous to any access to the TOY so the register values may
change during the read or may get incorrectly updated during a write. To
overcome this problem, use the Transfer Enable in the TOY Command Register.
When this bit is clear, the current value in the readable registers is frozen (even
though the internal timing continues).

Thus, to read the TOY, disable register transfers by clearing bit <7>, read the
time registers, and reenable updating (bit <7> = 1). To reset current time, once
again disable the transfer mechanism by clearing bit <7>, write the new time
value into the registers, and reenable time transfers to execute the update.

The TOY chip internal oscillator can be disabled to conserve the lithium source
during transport, storage, or during any long period of non-use. The Oscillator
Enable Bit is bit <7> of the ‘‘month’’ register at TOY_BASE_ADDR+09. When
this bit is a zero, the TOY operates in full timekeeping mode. If set, the internal
oscillator is disabled (factory default).

1.13.2 Fixed Frequency ‘‘Heartbeat’’ Output
The fixed frequency square wave output is enabled by clearing bit <6> of the
‘‘month’’ register at TOY_BASE_ADDR+09. This bit must be cleared to use
this clock as the heartbeat interval timer interrupt delivered through the SIO’s
internal PIC.

1.13.3 Standby Power
Even though the DS1386 chip has an on-chip power source for operation of at
least 10 years in the absence of external power supply, some applications may
require the TOY (and SRAM) to operate from an external UPS. To this end,
an AXPvme onboard switch (E44 switch 1) is included to allow a selectable
connection of the TOY to the 5 V standby connection on the VMEbus (5VSTDBY).
When switch 1 is closed, VME 5VSTDBY is connected to the TOY supply through
isolation diodes.

1–76 Technical Hardware Specifications



1.14 Interval Timers
AXPvme’s timer/counters are based on the 82C54 device. This section briefly
outlines the 82C54 operation (for more detail, see the vendor/DEC chip
specification) and emphasizes the hook-up of each of three timer elements.

The 82C54 is made up of 3 independent but identical 16-bit counter/timers. These
timers are named Timer #0, #1, and #2.

Timer #0 must be externally clocked via P2 pin C17, optionally its gate input
can also be driven by an external source via P2 pin C18. The output of timer
#0 causes the assertion of an interrupt request when it makes a low-to-high
transition. The IRQ can be dismissed by an access to the timer interrupt status
register.

Timer #1 is configured to operate as a rate generator with its output being
driven off module via P2 pin C16. This timer is clocked by a fixed 10 MHz. Note
that the output of this timer is also routed directly to VIC local IRQ input <3>.

Timer #2 is configured to operate as a rate generator with the same 10 MHz
input clock and its output is connected to P2 pin C15. The output of timer #2,
however, can also be used on module to generate an interrupt request. Low-to-
high transitions of the timer output can be enabled to cause the timer interrupt
to assert. As with timer #0, the interrupt can be dismissed with an access to the
ISR.

The timers are implemented by a single 82C54-2 and some register/interrupt
logic. The programming interface is bytewide in the ISbus region of PCI I/O
space.

Base address = TMR_BASE_ADDR = 4000h.

The timer interface takes up the least significant byte of six adjacent longwords
in ISbus space (see Figure 1–55). The first four are the standard four bytewide
registers of the 82C54, while the other two bytes are an interrupt status register
(described later).

Figure 1–55 Timer Memory Map

TMR#0

TMR#1
TMR#2

Control

: TMR_BASE_ADDR + 00 
:                                    + 04
:                                    + 08
:                                    + 0C

07

Status

Status
:                                    + 10
:                                    + 14

82C54 Regs

ISR Regs

On powerup, the 82C54-2 is in an undefined state and must be initialized before
use.

Technical Hardware Specifications 1–77



1.14.1 82C54 Operation
To program the timer device for initialization or during normal operation, the
control byte (TMR_BASE_ADDR + 0C) is written. To access (read or write) the
individual timer count values, the separate timer data registers are used (TMR_
BASE_ADDR +00 to +08).

The three timers in the 82C54 are identical in function yet are fully independent.

Each timer element is a 16-bit presettable synchronous down counter. Typically,
the device will assert or pulse the corresponding output pin when a counter
reaches a zero count.

As mentioned above, the timer has only a single byte in the 82C54 address space
dedicated to it. This byte is used to access the full 16-bit counter value, thus two
accesses are required, in the form least-significant byte, most-significant byte, to
operate on the full 16 bits. Sometimes it may only be required to modify or read
only the LSB or MSB without affecting the other byte. This mode of operation is
also supported.

1.14.1.1 Control Byte
The control byte (see Figure 1–56) allows basic mode selection and access control
operations to be performed on individual timer elements.

Figure 1–56 82C54 Control Byte

Don’t care

Binary 0/BCD 1

011 Continuous
000 Single Shot

Timer #

Latch count for read-back 00
LSB only access mode 01

MSB only access mode 10
LSB,MSB access mode 11

: TMR_BASE_ADDR + 0C

Bits <7:6> define which timer (0, 1, or 2) is to be configured by this control byte.
Note that a ‘‘11’’ in this field signals the control byte as a Status Read command
(described in Section 1.14.1.3) rather than a Timer Control operation.

Bits <3:1> configure the operational mode for the timer referenced in bits <7:6>.
Only modes 0 and 3 are supported by the AXPvme 64, AXPvme 64LC and the
AXPvme 160. all other AXPvme modules support modes 1 and 5 by <7> of the
control module register 2.

Bit <0> sets the timer’s 16-bit counter to work in either binary or BCD.

Bits <5:4> configure the data interface to expect one or both of the bytes of the
16-bit counter to be accessed when a read or a write to that timer is executed.
Note that once the access mode is set, all operations to the data register of the
timer will be in the format set until a new mode is set with another control byte
to that timer.

1–78 Technical Hardware Specifications



Figure 1–57 shows a conceptual view of the operation of the timer bytewide data
interface. Note that the ‘‘signal done’’ action is important where the completion of
a data access becomes an implicit start/go command to the timer.

Figure 1–57 82C54 Timer Data Access

Data Rd/Wr (byte)

Mode 01 or 11 ?

Mode 11 ?

LSB

Data Rd/Wr (byte)

"Signal Done"

MSB

No

No

1.14.1.2 Timer Modes
Although the 82C54 itself supports 6 counting modes (modes 0–5), the AXPvme
implementation adds it own set of restrictions. Most of these arise from
the resolution of the synchronizing logic used after the 82C54. This logic
sets the minimum pulse width any output of the 82C54 can generate and
still be recognized by onboard status registers. Additional constraints are
required to allow for the hardwired ‘‘high’’ gates of timers 1 and 2. Table 1–15
outlines the various counting modes and restrictions relevant to the AXPvme
implementation.

Technical Hardware Specifications 1–79



Table 1–15 Timer Modes

Mode Description Restrictions Timers

0 Software retriggerable one-shot timer N>=3 1, 2

1 Hardware retriggerable one-shot timer N>=2,
CLK<3
MHz

0 only1

2 Periodic rate generator Do not use None

3 Periodic square wave generator N>=5 1, 2

4 Software triggered strobe Do not use None

5 Hardware triggered strobe CLK<3 MHz 0 only1

1See Section 1.14.2.4 for Timer 0 restrictions.

Note that for timers #0 and #2, which can cause timer interrupts through either
the SIO or VIC64 (reported through the timer interrupt status register), an
output low-to-high transition is considered to be the timer expiration causing
a status bit to be set and, if enabled, the interrupt request to be asserted.
This is important to remember when working with the pictures in the 82C54
specification.

Timer #1 can cause an interrupt through the VIC64 Local IRQ3 only. While the
VIC64 can be programmed to accept either assertion level at it’s Local IRQ input,
it is normally configured to generate an interrupt on the rising edge of timer #1
output.

Mode 0 - Software Retriggerable One-Shot

This mode allows a value to be written to the timer, which will then count down,
asserting the output (high) when it reaches zero. In this mode, it will take N+1
clock ticks from the end of the counter value write cycle until the output makes
its active transition.

The timer output is initially high. When the timer value is written, the output is
driven low. The counter decrements to zero where it drives the output high.

If a new count value is written during the counting sequence, it will be loaded on
the next clock pulse and counting will continue from the new value. This means
the count is software retriggerable.

Mode 1 - Hardware Retriggerable One-Shot

This mode allows a value to be written to the timer which will be used when a
hardware trigger has been received [TMR_MAJOR_IP L (P2 pin C18) transitions
from a high to a low].

The timer output is initially high. A trigger results in loading the Counter and
setting the output low on the next clock pulse, thus starting the one-shot. An
initial count of N will result in a one-shot pulse of N clock cycles in duration. The
output will be driven high when the counter reaches zero.

The one-shot is retriggerable, hence the output will remain low for N clocks after
any trigger. The one-shot pulse can be repeated without rewriting the same count
into the counter.

1–80 Technical Hardware Specifications



If a new count value is written to the counter during a one-shot pulse, the current
one-shot is not affected unless the counter is retriggered. In that case, the
counter is loaded with the new count and the one-shot pulse continues until the
new count expires.

Mode 3 - Continuous, Square Wave Output

This mode generates a square wave output of period N clock ticks. Typically this
is used to generate a rate output or a regular interrupt request to the CPU.

Note that for odd count values, the output will be high for (N+1)/2 and low for
(N-1)/2 counts. A count value of 1 is illegal.

For timer #0, the Gate input in this mode has a synchronizing or reset effect. If
the gate goes low, the counter is reloaded with its original value and the counting
restarts.

Mode 5 - Hardware Triggered Strobe

Placing timer #0 in this mode generates a single clock wide pulse delayed by
N+1 clocks. The output will initially be high. Counting is triggered by a high-
to-low transition of TMR_MAJOR_IP L (P2 pin C18). The output of timer #0
will go low for one clock period after N + 1 clock pulses. The counting sequence
is retriggerable. Timer #0’s output will not strobe low for N+1 clocks after any
strobe.

1.14.1.3 Status Read
The timer control byte can be used to freeze the state of the timers for read-
back. Information pertaining to the assertion state of the output pin, the mode of
operation, the read-write access mode, and so forth, is then available by reading
the timer data register.

See the 82C54 data sheet for full details.

1.14.2 Interval Timers in AXPvme
AXPvme allows for a number of configurations using the three independent 16-bit
timer units. The expiration of timers #0 and #2 are recorded in a timer status
register. The asserted state of either or both of these status bits can be enabled
to assert an interrupt request.

The active low outputs of timer #1 and #2 are routed to P2 connector pins. The
active low clock and gate inputs of timer #0 are also tied to P2 connector pins.

TMR1_EXT_OP L = P2 pin C16 (Timer #1 output)
TMR2_EXT_OP L = P2 pin C15 (Timer #2 output)
TMR_MINOR_IP L = P2 pin C17 (Timer #0 clock input)
TMR_MAJOR_IP L = P2 pin C18 (Timer #0 gate input)

Figure 1–58 shows the timer inputs and outputs.

Technical Hardware Specifications 1–81



Figure 1–58 Timer Clocking

10Mhz

Tmr_irq

Tmr2_ext_op L

Clk
Timer

Gat

Clk
Timer

Gat

Clk
Timer

Gat (P2 pin C15)

Tmr1_ext_op L

Tmr_minor_ip L

Tmr_major_ip L

(P2 pin C18)

(P2 pin C17)

(P2 pin C16)

+5

+5

+5

1.14.2.1 Timer Clocking
The clock inputs to timer #1 and #2 are a fixed 10 MHz source. The clock input
of timer #0 is from a P2 pin (TMR_MINOR_IP L) only.

The gate inputs for timers #1 and #2 are permanently asserted. This means that
82C54 modes 1 and 5 are disabled on timer #1 and timer #2.

The timer #0 gate input is driven from a P2 pin through some synchronization
and edge detect logic. This signal conditioning means that when the gate input
to the module makes a high-to-low transition, a synchronized single clock-tick
pulse is presented to the gate input of the 82C54 (see details of the 26V12 PAL
for exact timing information associated with this gate function).

1.14.2.2 Timer Outputs
The main timer interrupt request line from timers #0 and #2 through the timer
interrupt status register logic is routed to both the system interrupt controller in
the VIC chip (as local IRQ <4>) and to the SIO interrupt control (as IRQ <5>).

The TMR_IRQ interrupt line is asserted for a low-to-high transition of a timer’s
output pin when that timer is enabled in the control and status register to cause
an interrupt. The interrupt is held asserted until the timer status summary
register is read (clear on read). Note that the corresponding timer expiration
status bit is always set by a low-to-high on the timer output but this only causes
the IRQ line to be asserted if the corresponding interrupt enable bit is set.

In addition, the output of timer #1 is brought to the VIC IRQ <3>. As this
is the straight output from the 82C54, the VIC should be programmed for an
edge-sensitive input for this interrupt (all other interrupts in the system are
level). This interrupt mechanism will not be discussed further here; it should just
be noted that the hardware connection is made and it may be useful for some
applications in the future.

1–82 Technical Hardware Specifications



1.14.2.3 Timer Interrupt/Expiration Control and Status Register
The timer status register is aliased as the bottom byte in two contiguous
longwords (as shown in Figure 1–55). The action of the register is slightly
different, depending on the address at which it is accessed and whether the
access is a read or a write. Figure 1–59 shows the Timer Interrupt/Expiration
Status Register.

Figure 1–59 Timer Interrupt/Expiration Status Register

Don’t care : TMR_BASE_ADDR + 10/14

Timer #0 Status
Timer #2 Status

Timer #2 IRQ enable
Timer #0 IRQ enable

X XX X

When reading the register, bits <5:4> always reflect the status of the enable bits
for timer #2 and #0 respectively. The effect of the read on the output status bits
(register bits <1:0>) is different at the two addresses, however. When the timer
interrupt status register is read at TMR_BASE_ADDR+14, the read clears both
status bits at the end of the read cycle (read to clear). A read from TMR_BASE_
ADDR+10 does not affect any of the bits in the register.

Remember, the interrupt request line is given combinationally by:

IRQ = (BIT <0> and BIT <4>) or (BIT <1> and BIT <5>)

So it can be seen how the read to clear bits <1:0> dismiss the interrupt.

A status bit set shows that the corresponding timer output line has made an
active transition.

Unfortunately, bits <5:4> are not directly writable. Rather, a write to address
TMR_BASE_ADDR+10 toggles bit <4> only (all other bits in the register are
unaffected) and a write to TMR_BASE_ADDR+14 toggles bit <5> only.

1.14.2.4 Timer #0 Restrictions (AXPvme 64, AXPvme 64LC, and AXPvme 160 modules only)
This section describes the limitations on the use of timer #0 due to hardware
constraints. These limitations will be eliminated as new revision components
become available. Please contact your Field Application Engineer for the latest
status on this constraints.

Timer #0 Does Not Support Modes 1 and 5

Timer #0 does not function properly in modes 1 and 5. These modes are needed
to support the ‘‘Distributed Timer’’ functionality across the VME backplane. The
circuitry supporting timer #0 will be changing to enable modes 1 and 5. When
this change occurs, all modes other than 1 and 5, will be disabled. As a result,
this timer should not be used until this problem has been corrected.

Technical Hardware Specifications 1–83



1.14.3 1024 Hz Heartbeat
One additional interrupt generating timer exists in the standard AXPvme system.

The 1024 Hz square wave clock output of the TOY is fed through an edge-
detecting resettable register to IRQ1 of the SIO. Every time the clock makes
a low-to-high transition, the IRQ1 input is asserted and held asserted. The
interrupt request input is only deasserted by writing to the ‘‘Clear Heartbeat’’
register at address 2000h on the ISbus. This interrupt input is handled by the
PICs internal to the SIO.

1.15 Watchdog Timer
The watchdog timer is included to allow hardware to bring AXPvme back to some
known state when software fails to function correctly.

The operation of the timer is straightforward. The watchdog is initialized with
some time value (in the range 0.01 to 99.9 seconds). If left unaccessed, the
timer will decrement towards zero. If allowed to reach zero, the watchdog will
first halt the system (jump to Halt entry firmware) and then force the module
into hardware reset (some 300 ms later). The module can be ‘‘kept-alive’’ by
periodically accessing the watchdog registers. Any access to these registers will
reset the time back to the initialized value. Therefore, as long as the worst case
time between watchdog access is less than the programmed timeout value, the
module will function normally.

In addition to the hardware support for the watchdog operation, console firmware
can be configured to dispatch to user code or continue with its default reset action
on watchdog timeout. Firmware can detect the expiration of the watchdog during
reset code by examining the hardware Reset Reason Register in the module
register space of the ISbus (see Section 1.17.6 for further details). The jump to
Halt code just before causing a hardware reset enables firmware to snap-shot the
processor state (GPRs, and so forth) at the time of the watchdog before the full
hardware reset.

The watchdog functionality is located in the DS1386 TOY clock chip, which
resides on the ISbus.

1.15.1 Watchdog Operation
Watchdog operation is controlled by four registers - three in the DS1386 chip
itself and a single enable bit in the Module Control Register.

The watchdog timeout time is set in BCD in two bytewide registers in the TOY’s
address space, as shown in Figure 1–60.

Figure 1–60 Watchdog Time Registers

1/100 Sec 1/10 Sec : TOY_BASE_ADDR + 0C
  Second : TOY_BASE_ADDR + 0D

Operation of the watchdog must be configured in the TOY Command Register
(TOY_BASE_ADDR+0B) and enabled in the module control register (MOD_
CNTRL_REG).

1–84 Technical Hardware Specifications



Within the TOY chip, the interrupt line and the pulse/level assertion of that
interrupt line for the watchdog are selectable. The hardware design of AXPvme
dictates the setting for these parameters (watchdog must use INTA in pulse
mode). In addition, the watchdog function can be enabled or disabled via the TOY
command byte, bit <4>. Figure 1–61 shows the required setup for operation of
the watchdog in a AXPvme.

Figure 1–61 TOY Command Register (Watchdog)

Don’t care : TOY_BASE_ADDR + 0B

Watchdog Flag (RO)
Watchdog disable
Pulse(1)/Level O/P

Watchdog INT Select

Transfer Enable

   

X X

See
Section
1.12   

01X0

Because there exists the possibility to set up the watchdog in such a way that
it would constantly drive the module into reset (by setting the watchdog output
to level rather than pulse, for example), an external enable, which defaults to
disabled on powerup, is included. This bit is found in the Module Control Register
(see Figure 1–62), which is fully described in Section 1.10.3. When the watchdog
has been fully and correctly initialized, this bit should be set to allow normal
watchdog operation.

Figure 1–62 Module Control Register (Watchdog)

Don’t care : MOD_CNTRL_REG

Watchdog Enable

05

The reset generated by the watchdog timer is ‘‘one-shot’’ as the Module Control
Register is cleared, thus disabling the watchdog reset, when the hardware reset
is asserted.

1.16 Nonvolatile RAM
AXPvme offers just under 32 Kbytes of battery backed-up SRAM on-board. The
RAM is provided by the DS1386 chip and is held nonvolatile by the built-in
lithium battery source.

The memory is read/write accessible in ISbus space. In effect, the DS1386 chip
(TOY, Watchdog, and NVRAM) contains 32K read/write byte elements. The
lowest 14 of these bytes have special register functions for operation of the TOY

Technical Hardware Specifications 1–85



and watchdog. The remaining bytes, 32K-14, are usable as general-purpose
bytewide read/write RAM.

This RAM is organized as contiguous bytes starting at TOY_BASE_ADDR+0E
(see Figure 1–63).

Figure 1–63 NVRAM Access

: TOY_BASE_ADDR + 000E
Read/Write : TOY_BASE_ADDR + 000F
Read/Write

                                     :
                                     :

Read/Write : TOY_BASE_ADDR + 7FFF

As for the TOY clock operation, module switch 1 allows the VMEbus 5VSTDBY to
be connected to the DS1386 giving RAM backup that is independent of both the
normal 5 V supply and the internal lithium battery.

1.16.1 Note on Usage
The AXPvme firmware uses an amount of the NVRAM for module parameters
and settings, as well as for storage of error and failure information.

For the present, the lowest 16 Kbytes of the battery backed-up RAM should be
considered to be reserved for firmware usage. Thus, user and O/S code should not
access NVRAM below the address of TOY_BASE_ADDR+4000h.

1.17 Interrupts and Reset
This section describes the hardware of the interrupts only. See the firmware
/PALcode description for details of the interrupt handling and delivery. Some
suggestions are made here with respect to the use of the interrupts but these are
only suggestions for firmware/PALcode development.

There are numerous interrupt sources in the AXPvme system, however, they can
be broken down into three main categories.

• Device interrupts

UART

SCSI

NI

Interval timers

PCI option interrupts

• VMEbus interrupts

Standard VME IRQ*

Auto-vectored

• VMEbus interface status interrupts

1–86 Technical Hardware Specifications



The complete interrupt operation of AXPvme is made up of both hardware and
PALcode.

The DECchip 21066 supports three separate interrupt request inputs. If enabled
(in the HICR), the assertion of any of these lines will cause a jump to PALcode.
The status of these interrupt lines can be seen in PALcode via the HISR register.
AXPvme uses the three interrupt inputs for:

1. Nonmaskable systems events—HALT, SERR (IRQ0)

2. VIC64 system interrupt controller (IRQ2)

3. Programmable interrupt controller in SIO (IRQ1)

1.17.1 Interrupt Overview
Figure 1–64 shows a schematic overview of the interrupt structure in the AXPvme
system.

Notice that most local interrupts are routed to the VIC64 (which has an internal
interrupt controller) and to the 8259 PIC cores in the SIO. Each interrupt request
should only be enabled in one of these controllers at any one time. However, the
choice of two interrupt controllers with different characteristics within the design
affords the system more interrupt flexibility.

Figure 1–64 Interrupt Overview

VIC64
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
IRQ2
IRQ1

   SIO

IRQ8
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
IRQ1

IRQ<11:9>

L
C
A

VMEreset
SCSI

NI
Interval Tmr

UART
PCI Opt(A)

1mS Heartbeat

VME IRQ<7:4>

DC7407 Error Intr

IRQ<15:12>

PCI Opt (B,C,D)
VME IRQ<3:1>

Extra Interval Tmr
DC7407 Status Intr (IRQ2)

(IRQ1)

Note: The MUX on SIO IRQ<11:9> is controller by bit<1> of the Module Control Register.
          A zero (default) selects the VMEIRQ<3:1>, while a one selects the additional PCI Option interrupt lines.

INTR_SEL

D
C
7
4
0
7

Technical Hardware Specifications 1–87



1.17.2 VIC64 System Interrupt Controller
The VIC64 system interrupt controller operation is described in the VIC64
documentation.

AXPvme’s use of the VIC64 as an interrupt controller is modified slightly by
the operation of the DC7407. The IPL lines from the VIC are passed to the
DC7407 gate array, which then passes any valid interrupt request on to the LCA.
The DC7407, however, offers logic to mask out interrupts at IPLs lower than a
programmed level. This allows PALcode to work with the hardware to implement
a more flexible, lower overhead IPL interrupt delivery scheme.

It is also important to note that vectors returned from the VIC as system
interrupt controller will be ‘‘pre-pended’’ (using bits <10:8>) with the interrupting
IPL.

1.17.2.1 Basic Operation
The VIC64 handles 19 interrupt sources. Each one of these can be individually
programmed to any of the seven interrupt priority levels (IPLs) in the controller’s
Interrupt Control Registers (ICRs). The generic form of the ICR register is shown
in Figure 1–65.

Figure 1–65 Generic Interrupt Control Register

1 03
3

67 12

Don’t care

Encoded priority 1-7Disable

45

Pin State
Autovector EnableEdge/Level

High/Low

A fixed relative ranking for requests is defined. This ranking is shown in
Table 1–16, and will be used to decide which interrupt is reported if many
interrupts are pending.

Once there is at least one active (and enabled) interrupt request higher than
the current DC7407 IPL mask, the VIC64/VIP signals the presence of a valid
interrupt to the DECchip 21066 IRQ <2> interrupt pin.

The normal response to the assertion of this interrupt pin will be the initiation of
a VIP_IRR register read to retrieve the vector from the VIC/DC7407. The read of
the VIP_IRR generates a Local bus IACK cycle at the pins of the VIC64. When
the VIC64 detects the IACK cycle, it will respond with the vector and IPL of
the winning interrupter. The controller determines the highest ranking active
interrupt request to be the winning interrupt. The IPL mask, within the DC7407,
will update to the current IPL. The vector returned from the VIC64 and the
current IPL are concatenated and returned to the processor.

A typical VIC/DC7407 interrupt flow might be:

1–88 Technical Hardware Specifications



VIC/DC7407 sees an interrupt higher than current IPL mask and asserts IRQ to LCA
|
V

LCA responds by asking for a vector (VIP_IRR register read)
|
V

VIC64 returns vector which DC7407 hands on (with IPL) to LCA
|
V

Vector is used to dispatch to ISR

Note that the DC7407 can be programmed to respond to a PCI IACK cycle if
required (using bit VIP_CR <0>). Asking for a vector from the VIC/DC7407 when
there is no valid pending interrupt will result in a passive release vector (zero) to
be returned.

Table 1–16 VIC64 Interrupt Ranking

RANK Interrupt Description CSRs

19 DC7407 Error VIC_LICR7, VIC_LIVBR

18 VME Interface Status/Error VIC_EGICR, VIC_EGIVBR

17 PCI Option IRQA VIC_LICR6, VIC_LIVBR

16 UART VIC_LICR5, VIC_LIVBR

15 Interval Timer VIC_LICR4, VIC_LIVBR

14 Rate Generator (Timer #1 output) VIC_LICR3, VIC_LIVBR

13 DC7407 Status VIC_LICR2, VIC_LIVBR

12 SCSI VIC_LICR1, VIC_LIVBR

11 Interprocessor Comms Global
Switch

VIC_ICGSICR, VIC_ICGSIVBR

10 Interprocessor Comms Module
Switch

VIC_ICMSICR, VIC_ICMSIVBR

9 VMEbus IRQ7* VIC_IRQ7ICR

8 VMEbus IRQ6* VIC_IRQ6ICR

7 VMEbus IRQ5* VIC_IRQ6ICR

6 VMEbus IRQ4* VIC_IRQ6ICR

5 VMEbus IRQ3* VIC_IRQ6ICR

4 VMEbus IRQ2* VIC_IRQ6ICR

3 VMEbus IRQ1* VIC_IRQ6ICR

2 DMS status VIC_DSICR, VIC_EGIVBR

1 VME IACK VIC_IICR, VIC_EGIVBR

1.17.3 VIC64 Interrupt Sources
The following sections describe the VIC64 interrupt sources.

1.17.3.1 Device Interrupts
There are seven external/system interrupt sources controlled by the VIC64
interrupt controller.

• SCSI1
(12)

1 Subscript numbers in parenthesis show the ranking values of the various interrupts.

Technical Hardware Specifications 1–89



• DC7407 Status(13)

• Timer #1 rate generator(14)

• Interval Timer(15)

• UART(16)

• PCI IRQA (option card)(17)

• DC7407 Errors(19)

Each of the seven interrupt sources has an associated Interrupt Control Register
that allows the interrupt to be programmed with an individual IPL or to be
disabled. Figure 1–66 shows these ICRs.

Figure 1–66 Device Interrupt Control Registers

1 03
3

67 12

Don’t care

Encoded priority 1-7
Disable

Address Register Device

:VME_IF_BASE + 24 VIC_LICR1 SCSI

:VME_IF_BASE + 28 VIC_LICR2 DC7407
Status

:VME_IF_BASE + 2C VIC_LICR3 Timer#1

:VME_IF_BASE + 30 VIC_LICR4 Interval Tmr

:VME_IF_BASE + 34 VIC_LICR5 UART

:VME_IF_BASE + 38 VIC_LICR6 PCI IRQA

:VME_IF_BASE + 3c VIC_LICR7 DC7407
Error

The vectors associated with these seven interrupt inputs have a single common
root that is modified to give a unique vector for each device. Bits <7:3> of this
common 8-bit vector are programmable while bits <2:0> uniquely identify the
winning interrupt.

1–90 Technical Hardware Specifications



Figure 1–67 shows the local interrupt vector base register.

Figure 1–67 VIC Local Interrupt Vector Base Register

1 03
3

7 12

Don’t care

000 Not used

User Programmable Vector-Base

: VME_IF_BASE + 54

001 SCSI
010 DC7407 Status
011 Timer1
100 Interval Timer
101 UART
110 PCI IRQA
111 DC7407 Error

VIC_LIVBR

1.17.3.2 VMEbus IRQs
The VIC64, when configured as system controller, will handle the standard
seven-level prioritized interrupt scheme of the VMEbus.

As for the module-based interrupt sources described above, each of the seven
VMEbus IRQ’s lines has its own Interrupt Control Register to allow individual
disable and priority (IPL) assignment (see Figure 1–68).

Figure 1–68 VME IRQ* Interrupt Control Registers

1 03
3

67 12

Don’t care

Encoded priority 1-7
Disable

Address Register Line

:VME_IF_BASE +04 VIC_ICR1 IRQ1*

:VME_IF_BASE + 08 VIC_ICR2 IRQ2*

:VME_IF_BASE + 0C VIC_ICR3 IRQ3*

:VME_IF_BASE + 10 VIC_ICR4 IRQ4*

:VME_IF_BASE + 14 VIC_ICR5 IRQ5*

:VME_IF_BASE + 18 VIC_ICR6 IRQ6*

:VME_IF_BASE + 1c VIC_ICR7 IRQ7*

Within the AXPvme, VMEbus interrupts compete (based on IPL and ranking)
with other system interrupts. If, during a Local bus IACK, a VMEbus source is
deemed to be the IRQ winner, the VIC64 will initiate a VMEbus IACK cycle to
retrieve the bus interrupter’s vector. The VMEbus vector response is passed back
to the DECchip 21066 in response to the system read of the VIP_IRR register.

Note that it is assumed that the VMEbus interrupter will release the IRQ line
either on seeing the VME IACK or because of the action (register write, and so
forth) of the interrupt service routines.

Technical Hardware Specifications 1–91



Figure 1–69 shows the interrupt handling flow for a standard VMEbus interrupt.

Figure 1–69 VMEbus Interrupt Handling

System
Interrupt

Controller

VMEbus IRQ7*-1*

1. Incoming IRQ

2. 21066 IRQ

3. VIP_IRR read
4. VMEbus IACK

V
 M

P
C
 I

 E

5. Vector Response
6. Vector

1.17.3.3 Status/Error Interrupts
Internal to the VIC itself there are a number of conditions and errors that can be
reported via an interrupt request.

The conditions that can be enabled to cause system interrupts are:

• VMEbus SYSFAIL* assertion

• VMEbus ACFAIL* assertion

• VMEbus arbitration timeout

• VIC write post failure

• DMA completion

• VMEbus IACK cycle in response to a AXPvme generated VMEbus interrupt

These conditions are divided into three cases.

The first ‘‘case’’ is DMA completion. There is an Interrupt Control Register
associated with this event, VIC_DMASICR (see Figure 1–70), which allows
the signaling of DMA completion. If enabled, an interrupt is generated at the
programmed IPL upon DMA completion.

Figure 1–70 DMA Status Interrupt Control Register

1 03
3

67 12

Don’t care

Encoded priority 1-7

Disable

: VME_IF_BASE + 20VIC_DMASICR

The second case is a grouping that encompasses the SYSFAIL assertion,
arbitration timeout, write posting failure, and ACFAIL conditions. The interrupt
control register (VIC_EGICR) associated with this group (see Figure 1–71) is a
little different than the ICRs already discussed. Here, a single IPL is assigned

1–92 Technical Hardware Specifications



for all of the events, while the higher order register bits (<7:4>) allow individual
conditions to be selectively disabled.

Figure 1–71 VIC Error Group Interrupt Control Register

31 07 12

Don’t care

SYSFAIL* Interrupt Mask

: VME_IF_BASE + 48  

IPL For this group of Interrupts

Arb Timeout Interrupt Mask
Write Post Fail Interrupt Mask 
ACFAIL* Interrupt Mask

SYSFAIL* Asserted

VIC_EGICR

Finally, a local (on-board) interrupt is generated by the VIC64 when the VME
interface sees a VMEbus IACK cycle to itself. In other words, the VIC64
can notify the CPU when the VME interface, as a VMEbus interrupter, is
IACK’ed. Once again there is an associated interrupt control register, VIC_
VIICR (see Figure 1–72), to set the IPL and allow the condition to be disabled
from generating its local interrupt.

Figure 1–72 VMEbus Interrupter Interrupt Control Register

1 03
3

67 12

Don’t care

Encoded priority 1-7

Disable

: VME_IF_BASE + 00VIC_IICR

There is a single interrupt vector base register for the error-group DMA and
‘‘interrupter-sees-IACK’’ interrupts (see Figure 1–73). In a similar way to the
device interrupts outlined above, the vector root (vector bits <7:3>) is user
programmable while the least significant 3 bits are different for each condition.
In this way, there is a unique interrupt vector for each of these error/status
events.

Technical Hardware Specifications 1–93



Figure 1–73 VIC Error Group Interrupt Vector Base Register

1 03
3

7 12

Don’t care

000 ACFAIL

User Programmable Vector-Base

: VME_IF_BASE + 54

001 Write Post Fail
010 Arb. Timeout
011 SYSFAIL
100 VMEbus IACK Received

110 DMA Completion

VIC_EGIVBR

1.17.4 SIO Programmable Interrupt Controller
There is a second interrupt controller present on the AXPvme module. There are
two main reasons for this logic:

1. To support ‘‘auto-vectored’’ VMEbus IRQs

2. To provide a second system interrupt controller path that is less affected by
VMEbus block transfers

This Programmable Interrupt Controller (PIC) is implemented as two cascaded
8259 cores in the SIO. The resolved output of the PIC drives the DECchip 21066
IRQ <1> interrupt pin.

1.17.4.1 Auto-Vectored VMEbus IRQs
Auto-vectoring of VMEbus IRQ*s is not part of the VMEbus standard, but is an
enhancement offered by AXPvme.

Auto-vectoring allows VMEbus IRQs to be used to signal events without the need
for a VMEbus slave to be able to respond to an IACK cycle. The idea is to tie a
local (onboard) vector to the assertion of a given IRQ line.

The use of a VME IRQ as a local auto-vectored interrupt precludes its use for
any other system functions. Remember, no IACK cycle will be initiated on the
VMEbus and there will be no use of the IACK daisy chaining.

If the IRQ is asserted, the processor will simply use a local ‘‘auto-vector’’ to jump
to an ISR.

By programming the PIC device, selected VMEbus IRQ* lines can be used to
cause a PIC interrupt to the processor. When the PIC is ‘‘IACK-read,’’ it will
return the programmed vector associated with the winning (enabled) IRQ input.

The auto-vectored flow for a VMEbus IRQ* is shown in Figure 1–74 (refer back to
Figure 1–69 for comparison).

1–94 Technical Hardware Specifications



Figure 1–74 VMEbus Auto-Vector Interrupt Handling

    PIC
(SIO)

VMEbus IRQ7*-1*

1. Incoming IRQ

2. LCA IRQ

3. PCI IACK

P
C
 I

4. Vector

Note that VME IRQ <7:4> are always available for use as ‘‘auto-vectored’’ VME
interrupt requests, but VME IRQ <3:1> can only be used in this way when bit
<1> of the Module Control Register is clear, which selects the VME interrupt
sources instead of the additional PCI option interrupts.

1.17.4.2 PIC as Alternative System Interrupt Controller
The 82378’s PIC can also be used to handle interrupt requests from important
on-board interrupt sources. This allows interrupt delivery to be decoupled from
the VIC64 and its Local bus, which can be tied up during long and/or slow block
transfers.

1.17.4.3 Programming the SIO’s 8259 Cores
For programming details of the 8259, see the SIO (Intel 82378IB) and 8259 data
sheets. Also see the Digital purchase specifications.

1.17.5 Nonmaskable System Events
The final category of interrupts (the last of the three LCA interrupt pins) is the
nonmaskable interrupts.

The front panel HALT button, the watchdog HALT, and a PCI SERR are the only
such events.

These three system events are handled through the single remaining interrupt
pin of the LCA. Thus, when an NMI hits the processor, it must have some
mechanism to determine the source of the event. The two categories of AXPvme
nonmaskable events (halt and SERR) are handled through the SIO, which
contains a status register that can be polled to determine the NMI reason. This
register is the NMI Status and Control Register at PCI I/O Address 00000061h.

All NMI events should cause a jump to the console entry point without destroying
the software context, and SERR should report an error. If the interrupt reason is
a HALT, the firmware should also read the Reset Reason register (PCI I/O 3000h)
to see if the watchdog bit is set. If it is, then the HALT must be treated as a
‘‘save-software-context’’ watchdog HALT.

It should be noted that the nonmaskable description refers to the processors
operation. PALcode will never mask the NMI input pin and the events will be
considered highest priority. However the SIO by default disables the generation
of the interrupt to the processor so they must be enabled by init code. Also, if any
firmware wants to operate in ‘‘HALT-protected’’ space, it can do so by disabling
the NMI delivery either at the HIER or SIO level.

Technical Hardware Specifications 1–95



1.17.5.1 NMI Status and Control Register
Bit <7> SERR# Status: Bit <7> is set if a system SERR has occurred. The
interrupt in response to this event is enabled by clearing bit <2> of this register
to a 0. Bit <7> is READ ONLY, and can only be cleared by setting the SERR
Enable bit (bit <2>) to a 1 and then back to a 0. Always write this bit as a zero.

Bit <6> HALT Status: Bit <6> is set when either the watchdog expires (and is
enabled) or the HALT switch is toggled. This interrupt is enabled by clearing bit
<3> of this register to 0. Bit <6> is READ ONLY, and should always be written
as a zero. To clear this status bit, set bit <3> and then clear it again to reenable
this NMI event reporting.

Bit <5:4> = Ignore on read. Writes must be zero.

Bit <3> HALT Enable: When set to a one, HALTs are disabled and the halt status
bit in this register is cleared. When cleared (reset default), HALTs are enabled as
NMI events.

Bit <2> SERR Enable: When set to a one, SERR reporting is disabled and the
SERR status bit in this register is cleared. When cleared (reset default), SERRs
are enabled as NMI events.

Bit <1:0> = Ignore on read. Writes must be zero.

Note that when reading the SIO specification, the AXPvme HALT events are
reported via the SIO’s IOCHK# pin.

1.17.6 Module Reset
The AXPvme module can be reset by four distinct events:

1. Powerup

2. Front panel switch

3. Watchdog timeout

4. VMEbus SYSRESET* assertion (if enabled)

All on-board logic, except the module-level Reset Reason register, are hardware
reset by all of these reset events.

The VMEbus SYSRESET* assertion will generate a module reset only if E41
switch 3 is closed. This prevents a module configured as a VME System
Controller from locking itself into a reset state when it issues a VME SYSRESET*
under software control.

If E41 switch 3 is open, the VIC64 will still be reset (all internal registers will
return to their default state, current transactions will be aborted) but the module
reset will not be generated. In order to allow detection of this condition (VIC64
only reset), the VME SYSRESET* signal is tied to SIO IRQ <8>.

1.18 Error Handling
This section describes error handling registers and procedures. AXPvme error
conditions can be broken into three main areas:

• LCA chip—I/O errors, internal errors, memory controller errors

• VME interface errors

DC7407 errors—PCI, VIC/VME interface errors

VIC errors—VMEbus errors, DMA errors

1–96 Technical Hardware Specifications



• Miscellaneous system errors

1.18.1 LCA Chip Errors
See the 21066/68 Chip specification.

1.18.2 VME Interface Errors
The following sections describe the VME interface errors.

1.18.2.1 DC7407 Errors
The errors and events that are reported by the DC7407 are summarized in
Vme Interface Processor Bus Error/Status Register (VIP_BESR, at VME_IF_
BASE+104h). The conditions recorded in this register can be broken into two
categories.

• Status events

• Error events

Status Events

These signals are included to allow notification to the processor of accesses
targeted at AXPvme, which are inappropriate for VME transactions to the
module, such as write lock on page accessed. These events are indicated by
setting one or more bits in VIP_BESR <17:7>.

Access Errors

When the VME interface is acting as a master on either the PCI or the VMEbus
(as well as driving data on the PCI even as a target), there are a number of
conditions that must be reported and handled as errors. In these cases, the
appropriate bit will be set in VIP_BESR <6:0>. PCI address and the local-bus
addresses associated with the transaction in error will be frozen in Vme Interface
Processor error address registers (VIP_PCIERTADR, VIP_PCIERTCBE, VIP_
PCIERIADR, VIP_LERADR) as appropriate.

Typically, the PCI address will be used to work back to the S/G index used for the
transfer.

1.18.2.2 VIC64 Errors
Within the VIC64 error categories, there are two subdivisions.

• VMEbus Conditions

VME transaction/bus conditions

VME special conditions (ACFAIL, SYSFAIL, and so forth)

• DMA Conditions

VMEbus Conditions

Failure or error completion of VMEbus transactions are flagged by the VIC64
by assertion of BERR* on the VME and simultaneously LBERR on the local
bus (DC7407<->VIC64). This LBERR assertion will cause the DC7407 to detect
the error condition, which will cause a DC7407 status interrupt (if enabled) and
a PCI target abort. In this case, looking at the VME Interface Processor Bus
Error Status register (VIP_BESR) and the VIC64 Bus Error Status register (VIC_
BESR) should give a picture of the error condition.

Technical Hardware Specifications 1–97



The special VMEbus conditions like the assertion of ACFAIL, SYSFAIL, and so
forth, are covered by the VIC Error Group Interrupt facility (VIC_EGICR, VIC_
EGIVBR).

DMA Conditions

Completion of a DMA operation is flagged by an interrupt (see VIC_DMASICR,
and so forth). Looking at the DMA status register (VIC_DMASR) in the VIC64
will indicate the nature of any errors encountered.

1.19 Environment

1.19.1 Operating Conditions

Temperature: 0°C to 50°C with 200 lfm of air flow over the CPU heatsink

Humidity: 70% relative humidity

Altitude: 8000 feet above sea level

1.19.2 Storage Conditions

Temperature: -40°C to 66°C

Humidity: 10% to 95% (noncondensing)

1–98 Technical Hardware Specifications



1.20 Physical Specification
The AXPvme Single-slot is a single 6U VME card with P1 and P2 connectors and
a standard VME card handle/front panel. AXPvme dual-slot will occupy two 6U
VME slots (see Figure 1–75).

Figure 1–75 Module and Front Panel

HALT

RESET

AXPvme

DIGITAL

PCI
Option
Front 
Panel 
Conns.

C
O
N

A
U
X

A
U
I

/Slave Acc LED

Watchdog DC_OK LED 
(Green)

(Amber)

PCI

DIGITAL

The front panel has two MMJ connectors and an AUI connector, as well as a
status display, a reset and halt switch, and two LED indicators.

The module is double-side populated, but with passives only on side 2.

Two daughtercard buses are provided. One is for main memory and the other is
for PCI options.

Technical Hardware Specifications 1–99



1.21 AXPvme Breakout Modules
The AXPvme family of products have ‘‘companion’’ modules that enhance the
functionality, allow increased CPU speed, interconnect to SCSI, and provide
interconnect to various AXPvme specific signals. These modules are called
‘‘breakout’’ modules.

There are two versions of the breakout module. The single-slot version is required
for use with the single-slot modules. The double-slot version is required for use
with the dual-slot modules.

Caution

In order to function properly, each AXPvme module installed MUST
have its corresponding breakout module installed properly. AXPvme has
made numerous connections to the VME user-defined pins. Installing
a ‘‘non-AXPvme’’ VME module in a slot that has a AXPvme breakout
module installed may DAMAGE the VME module, the backplane, or both.

1.21.1 Breakout Module Functionality
The AXPvme breakout modules provide the following functions:

• Connection to SCSI signals

• SCSI termination and control

• External reset pin

• Connection to additional power and ground pins

• Connection to AXPvme specific external timing signals

• Connection and control of watchdog timeout signal

• Connection to manufacturing test port

• External VME Master Selector Pin (AXPvme 66, AXPvme 100, and AXPvme
231 modules only)

There are two functions controlled by jumpers on the AXPvme breakout modules.
These are SCSI Termination and Watch_Dog timeout.

SCSI Termination Jumper

Active SCSI termination is provided on all versions of the AXPvme breakout
modules. If the AXPvme module is configured at the end of a SCSI cable, the
terminators should be enabled. SCSI termination is enabled by placing a jumper
between pins 1 and 3. If the AXPvme module is not connected at the end of the
SCSI cable, SCSI termination should be disabled by placing a jumper between
pins 5 and 3.

1–100 Technical Hardware Specifications



SCSI Termination
      Enabled (default)

SCSI Termination
      Disabled

1
3
5

2
4

6

1
3
5

2
4

6

Watch_Dog Timeout Jumper

AXPvme indicates the status of the onboard Watch_Dog timer on a signal
called WD_STATUS_OC H. This signal is driven low whenever an onboard
watchdog timer is allowed to expire. The device driving this signal is a 74LS05
open-collector inverter. It is capable of sinking a ( IoL) 8 mA maximum.

This signal may be pulled up to the 5 V rail (by a 2K ohm resistor) by placing
a jumper between pins 4 and 6. Placing the jumper between pins 2 and 4
disconnects the 2K ohm resistor from the 5 V rail.

Wd_Status_Oc H
2k Ohm Pull-up connected to +5V

Wd_Status_Oc H
Pull-up Disconnected

1
3
5

2
4

6

1
3
5

2
4

6

 (default)

Technical Hardware Specifications 1–101



1.21.2 AXPvme Single-Slot Breakout Module
The AXPvme 64, AXPvme 64LC, AXPvme 66, and AXPvme 100 are single 6U slot
versions of the AXPvme product. They all use the same version of the single-slot
breakout module. Figure 1–76 diagrams the proper way to install the AXPvme
single-slot breakout module. It must be installed in the same slot as the AXPvme
single-slot but on the opposite side of the P2 connector.

Figure 1–76 AXPvme Single-Slot Breakout Module Installation

Memory

PCI Option

  AXPVME  Module
VME Backplane

P1

P2

SCSI Connector

AXPVME Single Slot
Breakout Module

(Single Slot)

J2

Jumpers

1–102 Technical Hardware Specifications



Figure 1–77 details the location of the AXPvme single-slot breakout module connectors and
jumpers. The female connector (P2) plugs onto the back of the VME backplane opposite the CPU
module. The 50-pin SCSI connector brings out SCSI signals to an industry standard form factor.
The male connector (J2) makes the remaining signals accessible for interconnect by the customer
and/or manufacturing. Jumpers are used to select SCSI termination scheme and watchdog signal
termination.

Figure 1–77 AXPvme Single-Slot Breakout Module Detail

SCSI

    AXPVME
Breakout Module Detail

J2

1 2

49 50

P2

Jumpers

J2

C B A
1

32

(Side View) (Back View)

6 4 2

5 3 1

Technical Hardware Specifications 1–103



1.21.3 AXPvme Single-Slot Breakout J2 Connector
Figure 1–78 details the pinning for rows A and C of the AXPvme single-slot
breakout J2 connector. Rows A and C make several AXPvme specific signals
available for external interconnect. Row B pin locations are unpopulated.

Figure 1–78 AXPvme Single-Slot Breakout J2 Connector Pinout

1

32

A

Wd_Status_Oc H

V

Gnd

C

Tmr2_Ext_Op L
Tmr1_Ext_Op L
Tmr_Minor_Ip L
Tmr_Major_Ip L

Gnd

5

10

15

20

25

30

Ext_Reset L

Note:  Row B has no pins inserted

B

1

32

5

10

15

20

25

30

Port_Enb H Rx_Data H
Srom_Dis HTx_Data H

VME_Master_Sw L

1–104 Technical Hardware Specifications



1.21.4 AXPvme Dual-Slot Breakout Module
The AXPvme dual-slot version of the product has increased power requirements
(over the AXPvme single-slot product), therefore a dual-slot version of the
breakout module is needed. Figure 1–79 shows the proper way to install the
AXPvme breakout module. It must be installed such that the female connector
whose tails form J2 is immediately opposite the CPU connector (in the same slot
as the dual-slot AXPvme but on the opposite side of the backplane). The female
connector, without the long tails, should line up and plug in to the second slot
occupied by the module.

Figure 1–79 AXPvme Dual-Slot Breakout Module Installation

Memory

PCI Option

AXPVME (Dual Slot)
VME Backplane

P1

P2

SCSI

AXPVME Dual Slot
Breakout Module

        Module

(Back View)

J2

Jumpers

Technical Hardware Specifications 1–105



Figure 1–80 shows the location of the AXPvme dual-slot breakout module connectors and
jumpers. The long-tailed female connector (P2/J2) plugs onto the back of the VME backplane
opposite the CPU module. The 50-pin SCSI connector brings out SCSI signals to an industry
standard form factor. The male connector (J2) makes the remaining signals accessible for
interconnect by the customer and/or manufacturing. The jumpers are used to select SCSI
termination scheme and watchdog signal termination.

Figure 1–80 AXPvme Dual-Slot Breakout Detail

SCSI

AXPVME Dual Slot
Breakout Module Detail

(Back View)

J2

Jumpers

C B A
1

32

1 2

5049

(Side View)

6
4
2

5
3
1

1–106 Technical Hardware Specifications



1.21.5 AXPvme Dual-Slot Breakout J2 Connector
Figure 1–81 shows the pinning for rows A and C of the AXPvme dual-slot J2
connector. Rows A and C make several AXPvme specific signals available for
external interconnect. Row B pin locations are populated and connected to VME
signals as defined in the VME specification. No connections should be made to
row B pins.

Figure 1–81 AXPvme Dual-Slot Breakout J2 Connector Pinout

1

32

A

DB0*
DB1*
DB2*
DB3*
DB4*
DB5*
DB6*
DB7*
DBP*
ATN*
BSY*
ACK*
RST*
MSG*
SEL*
D/C*
REQ*
I/O*

S
C
S
I

Wd_Status_Oc H

M_Sense H

V

Gnd

C

Tmr2_Ext_Op L
Tmr1_Ext_Op L
Tmr_Minor_Ip L
Tmr_Major_Ip L

5V

Gnd

5

10

15

20

25

30

Ext_Reset L

VME_Master_SW L

Note: All Row B pins are defined by VME specification (they are NOT no-connects)

B

1

32

5

10

15

20

25

30

5V

Port_Enb H Rx_Data H
Srom_Dis HTx_Data H

Technical Hardware Specifications 1–107



1.21.6 AXPvme P2 Connector Usage
Figure 1–82 gives the pinning for rows A and C of the AXPvme P2 connector.
Rows A and C are specified as ‘‘user-defined’’ pins by the VME specification.
AXPvme has used these pins to interconnect AXPvme specific signals and
to connect additional power/ground. All row B pins are defined by the VME
specification and are not included in this diagram.

Standard 96-pin VME backplane connectors are of the type known as ‘‘press
pin’’ connectors. These connectors have long pins that protrude through the
back of the backplane. Placing a protective shroud around these pins form male
connectors (P1 and P2). The P2 connector has many of the 96 pins left as ‘‘user-
defined’’ by the VME specification. Basically, rows A and C are ‘‘user-defined’’ and
row B is completely used/reserved by the VME.

1–108 Technical Hardware Specifications



Figure 1–82 AXPvme P2 Connector Pinout, Dual-Slot and Single-Slot

1

32

A

DB0*
DB1*
DB2*
DB3*
DB4*
DB5*
DB6*
DB7*
DBP*
ATN*
BSY*
ACK*
RST*
MSG*
SEL*
D/C*
REQ*
I/O*

S
C
S
I

Wd_Status_Oc H

M_Sense H

V

Gnd

C

1Tmr2_Ext_Op L
1Tmr1_Ext_Op L

Tmr_Minor_Ip L
Tmr_Major_Ip L

5V

Gnd

5

10

15

20

25

30

Ext_Reset L

VME_Master_SW L

Note: All Row B pins are defined by VME specification (they are not no-connects)

B

1

32

5

10

15

20

25

30

5V

Port_Enb H Rx_Data H
Srom_Dis HTx_Data H

1 Each of these signals can drive up to 10 other AXPVMExx Tmr_xxx_Ip inputs.

Technical Hardware Specifications 1–109



1.22 Power and Environmental Requirements
The following topics provide the power and environmental requirements for the
AXPvme module.

AXPvme Physical and Environmental Requirements

The AXPvme module requires a VME chassis with sufficient cooling. It requires
at least 200 linear feet/minute (lfm) of airflow at an ambient temperature of not
more than 50°C (122°F) across the processor (E38) heatsink at the center of the
module.

Table 1–17 shows the physical and environmental specifications for the AXPvme
module. Stresses beyond those specified may cause permanent damage to the
module.

Table 1–17 Physical and Environmental Specifications

Characteristic Specification

Industry Standard VME 6U module

Operating temperature 0°C to 50°C (32°F to 122°F)

Storage temperature -40°C to 66°C (-40°F to 151°F)

Temperature change 20°C/hour (36°F/hour)

Relative humidity 10% to 95% (noncondensing)

Airflow A minimum of 200 linear feet/minute over the large
processor heatsink at the center of the AXPvme
module

Table 1–18 shows the heat dissipation at specific processor frequencies.

Table 1–18 Power and Heat Dissipation at Processor Frequencies

Processor Clocks
Maximum Heat
Dissipation

Power Amps @ +5V , 5%
Regulation

230 MHz 48 W 9.6 A

160 MHz 38 W 7.6 A

100 MHz 30 W 6.0 A

66 MHz 25 W 5.0 A

1–110 Technical Hardware Specifications



2
Console Primer

2.1 Introduction
This chapter highlights some of the AXPvme console features and describes the
use of some basic commands for performing console tasks.

The AXPvme console achieves much of its power and flexibility because it
supports traditional U*X functionality, in that it looks and feels like U*X. If you
have a good working knowledge of OpenVMS, this primer will help you make a
smooth transition from OpenVMS to U*X. Unless you are already familiar with
U*X, read this chapter and practice some of the examples before attempting a
terminal session. This chapter describes the fundamental features of the console
and highlights the use of commands compared to OpenVMS. Reading this chapter
will give you an understanding of the basic functions of the U*X-like kernel,
various utilities and tools, the user interface, and how these compare with the
structure of OpenVMS.

2.1.1 Console Features
The AXPvme console firmware provides common services and functionality:
operator interface, operating system bootstrap, operating system restarts, self-
test diagnostics, and extended functional diagnostics. Although it may take a
while to get used to (unless you are already familiar with U*X), you will discover
that it is an extremely powerful, yet simple environment. This paradigm was
chosen for its simplicity: the console provides a platform of simple tools easily
combined to solve complex problems.

The AXPvme console is much more flexible than previous consoles because it
supports traditional U*X functions such as pipes, I/O redirection, command-level
scripting, and control functions. Built around a multitasking kernel, the console
provides an excellent environment for support of much more complex functions,
such as systems exercisers, MOP listener, and remote console.

Three separate, traditional VAX firmware components—console, diagnostics,
and virtual monitor boot (VMB)—have been integrated in the firmware to avoid
redundant functionality. All components of the firmware use the same kernel
services and I/O drivers. For example, you use the same drivers when performing
diagnostics as when you perform bootstrap or normal console operations.

Console Primer 2–1



2.1.2 Command Overview
The AXPvme console is a hybrid of a VAX console and U*X shell. Although the
command line parser expects U*X style commands, many commands are very
similar to VAX console commands. Some commands are unique to this console.
Table 2–1 lists frequently used commands from each of these groups. Chapter 3
is an alphabetized command reference section containing complete descriptions of
the each of the console commands.

By cloning certain U*X functions and carrying along some VAX console functions,
Digital has taken advantage of existing paradigms rather than reinventing or
renaming similar functions. Due to popular demand, however, the prompt has
remained the same as VAX consoles, the triple angle prompt, ‘‘>>>’’.

Instead of VAX like /qualifiers, the AXPvme console uses U*X like -options. For
example, a VAX console command, such as e/b 0, must be typed e -b 0. Note that
you must use a space to separate the option from the command. If you type e-b
0, the console issues an error message.

Table 2–1 Frequently Used Commands

VAX like Commands U*X like Commands
Unique
Commands

boot cat edit

examine echo exer

deposit eval memexer

help grep memtest

set hd nettest

show ls sa

test man

ps

sleep

2.1.3 Console Shell Operators
The AXPvme console is similar to a U*X shell. A shell is a command line
interpreter, an interface between the operator and the firmware. The lexical
analyzer and parser for the AXPvme console implement a subset of the Bourne
shell with some minor modifications.

An integral part of the console is its set of shell operators. These operators qualify
the operation of commands, permit redirection of I/O, and allow for sequencing of
operations. These operators are described in Table 2–2.

2–2 Console Primer



Table 2–2 Console Shell Operators

Operator Name Form Description

> Output creation >destination Write output to destination.

>> Output append >>destination Append output to destination.

< Input redirection <source Read input from source.

<< Here document <<string... Read input from standard input
until string is seen at the beginning
of a line.

| Pipe cmd1 | cmd2 Pipe output of first command to
input of second command.

; Sequence cmd1 ; cmd2 Run first command to completion
before running second command.

\ Line continuation cmd1 \
_> cmd2

Continue command on the next
line. The command line prompt
changes to ‘‘_>’’ until the command
is completed.

# Line comment # text The text following the number
sign is ignored. This is useful for
imbedding comments in command
scripts or logs.

& Background cmd & Run command in background, do
not wait for command to complete.

&a Affinity &a m Sets the processor affinity mask
to allow this process to run on the
CPUs defined by mask m. Multiple
processors may also be specified as
a list or range.

( ),{} Grouping Used to override precedence of
pipe, sequence, and background
operators.

*,?,[...] Pattern specifiers Characters used to form a regular
expression for pattern matching
where ‘‘*’’ matches any character or
characters or none, ‘‘?’’ matches any
single character, and ‘‘[...]’’ matches
any of the enclosed characters.

$string Environment
variable
substitution

The string is treated as a
legal environment variable and
translated.

‘‘xxx’’ String with no substitution The string is passed untouched.

‘‘String’’ String with substitution The string is passed after wildcards
and environment variables are
expanded.

‘‘cmd’’ Command substitution Treat the string as a command
string, execute it, and substitute in
the resulting output.

In addition to shell operators, the console uses the following reserved words:
if, then, else, elif, fi, case, in, esac, for, while, until, do, and done.

Console Primer 2–3



2.2 Getting Information About the System
The following commands may be used to provide information about resident
software and hardware in the system:

>>>show version
version V12.0-0 Oct 26 1994 12:58:38
>>>show pal
pal VMS PALcode X5.48-80, OSF PALcode X1.35-53
>>>show device
dkb0.0.0.1.0 DKB0 RZ57
mke0.0.0.4.0 MKE0 TZ85
eza0.0.0.6.0 EZA0 08-00-2B-19-60-31
ezb0.0.0.7.0 EZB0 08-00-2B-1A-2C-06
p_a0.7.0.0.0 Bus ID 7
p_c0.7.0.2.0 Bus ID 7
pkb0.7.0.1.0 PKB0 SCSI Bus ID 7
pke0.7.0.4.0 PKE0 SCSI Bus ID 7

2.3 Online Help
The AXPvme console also provides online help. In ROM-based images of the
console, brief help is supplied for each command. The brief help displays a
one-line description and the syntax for the command. The syntax line lists all
possible options and arguments for the command. For instance, in the following
example, the command requests help on help:

>>>help help
NAME

help or man
FUNCTION

Display information about console commands.
SYNOPSIS

help or man [<command>...]
Command synopsis conventions:
<item> Implies a placeholder for user specified item.
<item>... Implies an item or list of items.
[] Implies optional keyword or item.
{a,b,c} Implies any one of a, b, c.
{a|b|c} Implies any combination of a, b, c. )

>>>

The console also supports the U*X alias man for online help. If you do not
specify a help topic when invoking the help or man command, a complete list of
commands is displayed in addition to the help help brief text.

2–4 Console Primer



>>>help
NAME

help or man
FUNCTION

Display information about console commands.
SYNOPSIS

help or man [<command>...]
Command synopsis conventions:
<item> Implies a placeholder for user specified item.
<item>... Implies an item or list of items.
[] Implies optional keyword or item.
{a,b,c} Implies any one of a, b, c.
{a|b|c} Implies any combination of a, b, c. )

The following help topics are available:
alloc bcache_diag boot bpt break
cat chmod chown clear clear_log
continue crc date deposit display_diag
ds1386_diag dynamic echo edit enet_diag
eval examine exer exit false
flash_diag free grep hardware hbeat_diag
hd help or man i8254_diag init init_ev
kill line ls mblt_diag memecc_diag
memexer memtest or mem_ modcnfg_diag modctrl_diag ncr810_diag
net nettest nicsr_diag niil_diag ps
pwrup rm sa sblt_diag semaphore
set set led set mode set reboot srom set toy sleep
shell show show config show device show hwrpb
show led show map show mode show_iobq show_log
sleep sort sp start stop
true update vip_diag vme_rundown vme_setup
vmeslave_diag wdog_diag z8530_diag
>>>

You can specify multiple topics with the help command, as shown below. Type a
space between topics to keep them separate:

>>>help examine deposit
NAME

examine
FUNCTION

Display data at a specified address.
SYNOPSIS

examine [-{b,w,l,q,o,h,d}] [-{physical,virtual,gpr,fpr,ipr}]
[-n <count>] [-s <step>]
[<device>:]<address>

NAME
deposit

FUNCTION
Write data to a specified address.

SYNOPSIS
deposit [-{b,w,l,q,o,h}] [-{physical,virtual,gpr,fpr,ipr}]

[-n <count>] [-s <step>]
[<device>:]<address> <data>

>>>

The help command also supports a type of wildcarding. In the following example,
help on any command beginning with the letters da will be displayed:

Console Primer 2–5



>>>help da
NAME

date
FUNCTION

Set or display the current time and date.
SYNOPSIS

date [<yymmddhhmm.ss>]

>>>

To display help for all commands, type help *.

>>>help *

Full help is available in loadable versions of the console. With full help, all the
information provided in Chapter 3 is also available in the console. However, due
to space restrictions in the firmware ROMs, only brief help is available by default.

2.4 Examining and Depositing to Memory or System Registers
In the AXPvme console, many commands act on byte streams. A byte stream
is similar in concept to a VAX console address space and may represent an
extent of memory, a set of registers, a device, or a file. The console manipulates
these byte streams by performing typical device operations—open, read, write,
close. Therefore, throughout this document, the term device will be used to
refer to any such byte stream or address space regardless of its actual physical
implementation. Therefore, a traditional VAX address space, /P, can be accessed
as a device, PMEM.

Hence, the examine and deposit commands manipulate devices when accessing
data within the system. The default device is physical memory, which sticks (all
subsequent implicit references access that device) until explicitly changed. When
another device is specified, that device becomes the default.

Internally, the console uses drivers as the access mechanism for referencing
different devices. Specifically, the console provides drivers for the following Alpha
devices:

pmem: —physical memory
vmem: —virtual memory
gpr: —general-purpose registers
fpr: —floating-point registers
ipr: —internal processor registers

In this paradigm, the address argument of a VAX console command becomes a
byte offset within a device in a AXPvme console command. For example, pmem:0
explicitly refers to the location in physical memory at offset zero, that is, physical
address 0. If no device name is supplied, the offset implicitly applies to the last
device referenced (pmem by default). In the remaining discussions, however, the
terms address and offset will be used synonymously.

In the console, there is also the notion of a last referenced address. An examine
or deposit command without an explicit address will always reference the next
address (computed as the last referenced address plus the current data size). The
characters +, *, and - are symbolic addresses for the next, current, and previous
addresses, respectively.

Data width options are analogous to the corresponding VAX qualifiers. That is,
-b, -w, -l, -q,... options correspond to the size of the accessed data—byte, word,
longword, quadword, and so forth.

2–6 Console Primer



2.4.1 Accessing Memory
Before randomly experimenting with memory, it is important to find a "safe" area
in memory to alter. Since the console itself and other critical data structures
reside in memory, care should be taken not to alter them. The alloc command
may be used to allocate a 1000-byte block of memory, as shown in the following
example:

>>>alloc 1000
03FFF000
>>>

The alloc command returns the address of the allocated block, in this case,
03FFF000. Hence, in the following examples, this block will be used for
experimentation.

The next example shows the examine and deposit commands to the pmem:
device (physical memory) at the allocated address.

>>>deposit pmem:3fff000 1 # Deposit a 1 at address 3fff000.
>>>examine pmem:3fff000 # Examine the location.
pmem: 3FFF000 00000001
>>>

The next example shows the use of the abbreviated form of the commands, e and
d. Abbreviations for commands are permitted and typically, as in this case, the
device specifier is absent. Assuming the state left by the previous example, the
current device is still physical memory (or pmem:).

>>>d 3fff000 abcdef12 # Deposit new data there.
>>>e 3fff000 # Check it out.
pmem: 3FFF000 ABCDEF12

Below is an example using a console command option.

Note

Remember, the console uses U*X-like -options, not VAX-like /qualifiers.
Also notice the inconspicuous use of white space.

In this example, the -n option is used to specify a repeat count. Each command is
executed over "N+1" successive addresses.

>>>d 3fff000 aaaa5555 -n 3 # Write to 4 locations, yes 4!
>>>e 3fff000 -n 3 # Notice that -n 3 yields n+1 or 4!
pmem: 3FFF000 AAAA5555
pmem: 3FFF004 AAAA5555
pmem: 3FFF008 AAAA5555
pmem: 3FFF00C AAAA5555
>>>

The console provides a hex dump command, hd, as an alternate method for
dumping memory (or other devices or files). Here, the -l option specifies the
number of bytes to display. (Why -l for hd and -n for examine? Because
examine is a VMS like command and hd is a U*X cloned command.)

>>>hd pmem:3fff000 -l 10 # Dump the allocated memory.
00000000 55 55 aa aa 55 55 aa aa 55 55 aa aa 55 55 aa aa UUªªUUªªUUªªUUªª
>>>hd -l 20 show_status # Dump part of SHOW_STATUS script.
00000000 65 63 68 6f 20 27 64 2f 53 27 20 3e 24 24 73 73 echo ’d/S’ >$$ss
00000010 0a 65 63 68 6f 20 27 2d 2d 2d 27 20 3e 3e 24 24 .echo ’---’ >>$$
>>>

Console Primer 2–7



2.4.2 Examining Registers
The following examples show the examine and deposit commands used to
reference registers. Registers may be addressed:

• Symbolically, for instance, r0 or ksp

• Explicitly, as offsets within device address space; for instance, gpr:0 or ipr:0

• Implicitly, as offsets within the current device address space; for instance, 0

Also notice the usage of the symbolic relative addresses +, *, -, and the implied
address increment (no address specified):

>>>e r0 # Examine R0 symbolically,...
gpr: 0 ( R0) 0000000000000002
>>>e gpr:0 # explicitly as device offset,...
gpr: 0 ( R0) 0000000000000002
>>>e 0 # or implicitly as device offset.
gpr: 0 ( R0) 0000000000000002
>>>e 8 # R1,
gpr: 8 ( R1) 000000000000C408
>>>e # and the next R2.
gpr: 10 ( R2) 0000000000000000
>>>e ipr:0 # Try an IPR...
ipr: 0 ( ASN) 0000000000000000
>>>e # and the next...
ipr: 1 ( ASTEN) 0000000000000000
>>>e + # and the next...
ipr: 2 ( ASTSR) 0000000000000000
>>>e * # and the current...
ipr: 2 ( ASTSR) 0000000000000000
>>>e - # and the previous.
ipr: 1 ( ASTEN) 0000000000000000
>>>e ksp # One by name...
ipr: 12 ( KSP) 0000000000000F30
>>>e # and the next.
ipr: 13 ( ESP) 0000000000000000
>>>

The examine and deposit commands support symbolic representation of certain
processor registers. In the following example, pc, sp, and ps are abbreviations
for program counter, stack pointer, and process status longword:

>>>e pc # Program Counter
PC psr: 0 ( PC) 0000000000000D30
>>>e ps # Process Status
ipr: 17 ( PS) 0000000000001F00
>>>e sp # Stack Pointer
gpr: F0 ( R30) 0000000000000F30
>>>

2–8 Console Primer



2.5 Using Pipes ( | ) and grep to Filter Output
The grep command is a convenient means of searching for information by
filtering an input according to the expression argument supplied. A pipe ( | )
enables the output of one command to be the input to the next command
without creating an intermediate file. Because the grep command requires
input, a pipe is used to channel the output of the examine command into the
grep command.

In the following example, grep is used to search for a pattern in memory. In
this case, grep parses all the output lines from the examine command, but only
permits lines that contain abcdef12 to reach the display. The grep command also
can be used to search for patterns that do not match the model provided; that is,
it searches for every line that does not contain the input pattern.

>>>d pmem:3fff000 0 -n 8 # Clear some memory.
>>>d 3fff020 abcdef12 # Drop in a target.
>>>e 3fff000 -n 8 # Display memory.
pmem: 3FFF000 0000000000000000
pmem: 3FFF008 0000000000000000
pmem: 3FFF010 0000000000000000
pmem: 3FFF018 0000000000000000
pmem: 3FFF020 00000000ABCDEF12
pmem: 3FFF028 0000000000000000
pmem: 3FFF030 0000000000000000
pmem: 3FFF038 0000000000000000
pmem: 3FFF040 0000000000000000
>>>e 3fff000 -n 8 | grep ABCDEF12 # Display only lines with ABCDEF12.
pmem: 3FFF020 00000000ABCDEF12
>>>

2.6 Using I/O Redirection (>)
Although default output goes to the console, you can redirect output to other
devices or files by using the redirection operator, >. In the following example,
the output of an examine command is redirected to file foo, which is created
dynamically out of the console’s memory heap. The console cat command, similar
to the OpenVMS copy command, is used in this example to display the contents
of the created file foo. The rm command, similar to the OpenVMS delete
command, is used to delete foo.

>>>ls foo # Check to see if foo exists.
foo no such file
>>>e 3fff000 -n 1 > foo # Redirect examine output to file foo.
>>>ls foo # Does foo exist now?
foo
>>>cat foo # Yes! List foo.
pmem: 3FFF000 0000000000000000
pmem: 3FFF008 0000000000000000
>>>rm foo # Remove (delete) file foo.
>>>ls foo # Does foo exist now?
foo no such file
>>> # No.

Console Primer 2–9



2.7 Running Commands in the Background "&"
In a design verification testing (DVT) environment, the ability to run tasks in the
background is an especially helpful feature. You can execute any command in the
background by placing the background operator & at the end of the command.
This capability alone makes it extremely easy to generate random activity in a
system.

In the following example, three processes are started in the background. The first
process, invoked with the console exer command, performs reads to block 0 of
disk dub2 (which you determine by using the console show device command).
Next, two instantiations of the console memory test are created, using the
memtest command. In all three cases, the console immediately returns with the
console prompt and awaits further commands.

>>>show device # See what devices are available.
dka0.2.0.1.0 dka0 dka0
eza0.0.0.0.0 EZA0 08-00-2B-1D-02-91
ezb0.0.0.1.0 EZB0 08-00-2B-1D-02-92
pka0.7.0.2.0 PKA0 SCSI Bus ID 7
>>>exer dka0 -sb 0 -p 0 & # Read block 0 forever.
>>>memtest -p 0 & # Start up the memory test forever.
>>>memtest -p 0 & # Start up another memory test task.
>>>

2.8 Monitoring Status
The console monitors process status in several ways. The ps command is similar
to the OpenVMS show system command, as shown below. The grep command
can be used here to avoid unnecessary output.

>>>ps # Display complete process status.
ID PCB Pri CPU Time Affinity CPU Program State

-------- -------- --- -------- -------- --- ---------- ----------------------
0000006c 001423a0 3 2 00000001 0 ps running
0000005c 00144b40 2 19253 00000001 0 memtest ready
0000005b 00147a60 2 9 00000001 0 sh_bg waiting on 00144B40
00000059 0014c060 2 21750 00000001 0 memtest ready
00000058 0014edc0 2 5 00000001 0 sh_bg waiting on 0014C060
00000056 00152860 2 3 00000001 0 exer_kid waiting on mscp_rsp
00000055 00153ae0 2 2 00000001 0 exer waiting on exer_tqe
00000054 00181580 2 6 00000001 0 sh_bg waiting on 00153AE0
0000004f 00154d60 5 38 ffffffff 0 pke0_poll waiting on tqe
.
.
.
>>>ps | grep exer # Check exer.
00000056 00152860 2 6 00000001 0 exer_kid waiting on mscp_rsp
00000055 00153ae0 2 2 00000001 0 exer waiting on exer_tqe
>>>

2.9 Killing a Process
To stop a process, use the process id from a ps command as the argument of the
kill command.

2–10 Console Primer



>>>ps | grep memtest # Find a process to kill.
0000005c 00144b40 2 135733 00000001 0 memtest ready
00000059 0014c060 2 138258 00000001 0 memtest ready
>>>kill 59 # Kill one of the memtests.
>>>ps | grep memtest # Display our background tasks.
0000005c 00144b40 2 135733 00000001 0 memtest ready
>>>

Console Primer 2–11



2.10 Creating Scripts
A script is a file that contains console commands. The console contains many
built-in scripts that you may execute by simply typing the name of the script file.
The powerup script is an example of such a built-in script.

The console also provides a crude means of creating scripts. In the following
example, the echo command is used to write characters to file foo using the
output creation operator, >. The script foo is then displayed and executed.

>>>echo e pmem:3fff000 > foo # Write "e 0" to file foo.
>>>cat foo # List foo.
e pmem:3fff000
>>>foo # Execute script foo.
pmem: 3FFF000 0000000000000000
>>>

In the next example, addition characters are appended to foo. Note the usage of
the single quote ’ grouping character that encloses the desired text. The use of
single quotes in the command line prevents the command-separator character (;)
from prematurely terminating the echo command. Also notice that the output
append operator (>>) is used to extend foo.

>>>echo ’d 3fff000 5 ; e 3fff000’ >> foo # Append "d 0 5 ; e 0" to foo.
>>>cat foo # List foo.
e pmem:3fff000
d 3fff000 5 ; e 3fff000
>>>foo # Execute foo.
pmem: 3FFF000 0000000000000000
pmem: 3FFF000 0000000000000005
>>>

You may enter a much longer script by reordering the command. Open a string
with the single quote (’), enter the script (on several lines), then close the string
with a second single quote (’). For example:

>>>echo > foo ’ex 3fff000
_>d 3fff000 7
_>e 3fff000
_>d 3fff000 5
_>e 3fff000’
>>>cat foo
ex 3fff000
d 3fff000 7
e 3fff000
d 3fff000 5
e 3fff000
>>>foo
pmem: 3FFF000 0000000000000000
pmem: 3FFF000 0000000000000007
pmem: 3FFF000 0000000000000005
>>>

2–12 Console Primer



2.11 Using Flow Control
The console supports a limited number of flow control structures at the shell
command level. The syntax for these constructions is as follows:

• while command_sequence done

• while command_sequence do command_sequence done

• until command_sequence done

• until command_sequence do command_sequence done

• for name do command_sequence done

• for name in list do command_sequence done

• case word in case_part_list
pattern ) command_sequence ;;
[ pattern ) command_sequence ;; ]
esac

• if command_sequence
then command_sequence
[ elif command_sequence then command_sequence ]
[ else command_sequence ]
fi

Conditional Branching
Conditional branching in if, while, until loops is determined by the exit status
of the command sequence following the control structure. In general, an exit
status of zero indicates success and results in the execution of the true path.

In the following example, the eval command is used to extract an exit status
from variable junk. The variable is initialized with the console set command.

>>>set junk 0
>>>show junk
junk 0
>>>eval junk
0
>>>if (eval junk) then (echo true) else (echo false) fi
0
true
>>>set junk 1
>>>if (eval junk) then (echo true) else (echo false) fi
1
false
>>>set junk 2
>>>if (eval junk)
_>then (echo true)
_>else (echo false) fi
2
false
>>>

Console Primer 2–13



Byte Swapping
Byte swapping is a useful function when dealing with other bus architectures,
such as Futurebus/Plus. Byte swapping is the transposition of bytes in a bus
address. A simple script called bswap is created, which will transform a
longword value by swapping most significant bytes to least significant bytes.

The for..do..done construction is used in conjunction with arbitrary environment
variables aa and bb to pass arguments to the script. The for variable aa takes
on the values of all the arguments on the command line at the invocation of
bswap. The set command is used to create bb, which is simply aa with 0x
prepended to it. (This permits the user to enter hexadecimal numbers without
having to specify the radix prefix 0x.)

In following example, the eval command is used to perform the transformation.
The eval command uses:

• & operator for logical AND function

• | operator for logical OR function

• >> operator for logical shift-right function

• << operator for logical shift-left function

A close inspection of the postfix expression should reveal how it works.

>>>echo > bswap ’for aa; do
_>set bb 0x$aa
_>eval -x "$bb 0xff & 24 << $bb 0xff00 & 8 << $bb 0xff0000 & 8 >> $bb 0xff000000 & 24 >> | | |"
_>done’
>>>bswap 12345678
78563412
>>>bswap 12 1234 123456 12345678
12000000
34120000
56341200
78563412
>>>

In the following example, a simple for loop is used to create a more generic
process status command:

>>>echo > stat ’for i
_>do ps | grep $i
_>done’
>>>cat stat
for i
do ps | grep $i
done
>>>stat memtest
00000131 00114e80 2 0 00000001 0 memtest ready
>>>stat memtest ps
00000131 00114e80 2 0 00000001 0 memtest ready
00000167 00108ea0 3 0 00000001 0 ps running
>>>

2–14 Console Primer



2.12 Copying Scripts over the Network
The console provides a mechanism for transferring command scripts over the
network. You can create scripts on an OpenVMS system and then fetch them
from the console of a target AXPvme system.

The first step in this process is to create a script of console commands in the
familiar OpenVMS environment, using your favorite editor to create the script.
In this simple example, you use the OpenVMS create command to create a
command script called sample..

$ create sample.
show version
ls -l sample
(Control-Z exit)
$

The next step in the process is to take sample. (a generic text file) and make it
network loadable via the MOP load protocol. To accomplish this, you must run
a little fixup program, add_header.exe, which appends a one-block header to
the file to make it compatible with the MOP load server. For ease of access this
executable program is provided on the Firmware Update CD at [AXPVME]ADD_
HEADER.EXE. To simplify matters, it may be copied to the SYS$LOGIN area
and defined as a foreign command, in this instance, addhead. To run the
program, invoke addhead, supplying the desired script file as input and a name
for the resulting network loadable output file.

Note

The current MOP load protocol only supports 15-character file names.
Since the MOP server will assume a file extension of .sys whenever one is
not specified with a request, .sys is the recommended file extension. This
allows all fifteen characters to be used in the name.

In the following example, a directory of sample shows the difference in size of
the two files. In the example, the CD-ROM device is attached to the system at
dka2.

$ copy dka2:[axpvme]add_header.exe sys$login:*.*
$ addhead :== $sys$login:add_header.exe
$ addhead sample. sample.sys
$ dir /size sample

Directory USER:[SMITH]

SAMPLE.SYS;1 2
SAMPLE.;1 1

Total of 2 files, 3 blocks.
$

You must place the resulting output file, in this example sample.sys, in the
MOP server’s load file directory, MOM$LOAD. On our system, the logical
MOM$LOAD is a directory search list that points to one of the local directories,
wrk:[mopload]. So, sample.sys is copied there. Now, when the MOP server
sees a request for sample.sys, it can find it in its service area.

Console Primer 2–15



$ show logical mom$load
"MOM$LOAD" = "MOM$SYSTEM" (LNM$SYSTEM_TABLE)

= "WRK:[MOPLOAD]"
1 "MOM$SYSTEM" = "SYS$SYSROOT:[MOM$SYSTEM]" (LNM$SYSTEM_TABLE)
$ copy sample.sys wrk:[mopload]
$

At this point, the script file is available on the Ethernet segment of the MOP
server. If the target AXPvme system is on the same Ethernet segment as the
MOP server, the following console cat command will copy sample.sys over the
network:

>>>cat mopdl:sample.sys/eza0 # Be patient! The MOP protocol is slow.
show version
ls -l sample
>>>

The above string, mopdl:sample.sys/eza0, is the console’s way of specifying that
the file, sample.sys, may be accessed over the Ethernet device, eza0, using the
MOP download protocol driver, mopdl:.

In the next example, the file extension .sys has been omitted. The MOP server
will add the .sys to sample.

The > operator may be used to redirect the output of the cat command into a
local file, in this case sample.

>>>cat mopdl:sample/eza0 > sample # Remember be patient!
>>>

Once the >>> prompt returns, the file copy has completed. The resident script
file, sample may then be displayed and executed using the following sequence of
console commands:

>>>cat sample
show version
ls -l sample
>>>sample
version V12.0-0 Oct 26 1994 12:58:38

rwx- rd 512/2048 0 sample
>>>

2–16 Console Primer



3
Console Commands

Console mode provides the user interface that you enter when the power-up
self-test (POST) completes. Console mode provides the following prompt:

>>>

You can also enter console mode in the following ways:

• You press the Halt or Reset switches on the front panel. Depending on your
operating system and applications running at the time, this could damage
application files.

• The module receives a VMEbus reset signal and switch 3 of the configuration
switches on the AXPvme module is enabled. Depending on your operating
system and applications running at the time, this could damage application
files.

• You enter the operating system command to go to console mode.

• The operating system executes a HALT instruction.

• The operating system encounters a fatal error.

• The watchdog timer is enabled and the system software allows the timer to
time out.

You leave console mode by issuing the boot, start, or continue commands.

The code that supports console mode is built-in to the AXPvme module and stored
in the flash ROMs.

Console Commands 3–1



3.1 Console Commands
3.1.1 Special Keys

The following keys perform special functions:

• Ctrl/U—Ignores the current command line

• Backspace/Delete—Deletes a character within the command line

• Ctrl/S and Ctrl/Q—Ctrl/S suspends output to the console terminal; Ctrl/Q

resumes output to the console

• Ctrl/C—Aborts the current command, if possible. The console program has
no control over this once control has been passed to another program such as
an operating system or loadable diagnostic.

• Ctrl/R—Retypes the current command line

• Ctrl/O—Causes the console code to throw away output characters rather than
send them to the terminal; entering another Ctrl/O resumes sending output
characters

• Up and Down Arrow—Used for command-line recall

3.1.2 Command Line Characteristics
The character sequence used for the prompt (>>>) is 0Dh, 0Ah, 0Dh, 3Eh, 3Eh,
3Eh, 20h which is <CR>, <LF>, <CR>, <quote>(>>>)-, <SP>. Host software
executing a binary load on the console terminal port can look for this character
string to determine when it may respond.

Commands are limited to 80 characters. Characters entered after the 80th
character replace the last character in the buffer. Depending on your terminal,
these lost characters may be displayed but they are not included in the actual
command line.

The command interpreter is not case-sensitive. Lowercase ASCII characters a
through z are treated as uppercase characters.

Characters with codes greater than 7Fh are rejected by the parser. These
characters are acceptable in comments.

Type-ahead is not supported. Characters received before the console prompt are
checked for special characters (Ctrl/S, Ctrl/Q, Ctrl/C) but are otherwise discarded.

3.1.3 Radix Control
Numbers that you enter are, by default, interpreted as hexadecimal. You can
change the radix of input with the set radix command or by entering %x before a
number to specify hexadecimal or %d for decimal.

3.1.4 Console Command Dictionary
The following commands are supported by the AXPvme console program.

3–2 Console Commands



#

# — comment character

The pound sign (#), wherever it appears on the line, prefixes a comment. The
remainder of the line is ignored by the command interpreter.

Examples

1. >>> chmod +x script # makes file script executable

The text ‘‘makes file script executable’’ is a comment.

Console Commands 3–3



alloc

alloc — allocates a block of memory

Exports the ‘‘malloc’’ routine out to the shell, so that users may allocate a block of
memory from the heap. The resulting block may then be used simultaneously by
several test routines (there can be several readers but only one writer).

Syntax

alloc size [modulus ] [ remainder ] [-flood] [-z heap_address ]

Arguments

size
Specifies the size (hex) in bytes of the requested block.

modulus
Specifies the modulus (hex) for the beginning address of the requested block.

remainder
Specifies the remainder (hex) used in conjunction with the modulus for computing
the beginning address of the requested block.

Options

-flood
Flood memory with 0s. By default, alloc does not flood.

-z heap_address
Allocate from the memory zone starting at address heap_address. This address is
usually obtained from the output of a ‘‘dynamic’’ command.

Examples

1. >>> alloc 200
00FFFE00
>>> free fffe00
>>> set base ‘alloc 400‘
>>> show base
base 00FFFC00
>>> memtest $base
>>> free $base
>>> clear base

Related Commands

dynamic, free

3–4 Console Commands



boot

boot — bootstrap the system

Initializes the processor, loads a program image from the specified boot device,
and transfers control to that image. If you do not specify a boot device in
the command line, the default boot device is used. The default boot device is
determined by the value of the bootdef_dev environment variable.

If you specify a list of devices, a bootstrap is attempted from each device in order.
Then control passes to the first successfully booted image. In a list, always enter
network devices last, since network bootstraps only terminate if a fatal error
occurs or an image is successfully loaded.

The -flags option can pass additional information to the operating system about
the boot that you are requesting.

The -protocol option allows you to select either the DECNET MOP or the TCP/IP
BOOTP network bootstraps. The keywords mop or bootp are valid arguments for
this option.

You can set the default protocol for a port by setting the environment variable,
ewa0_protocols to the appropriate protocol. Explicitly stating the boot flags or the
boot device overrides the current default value for the current boot request, but
does not change the corresponding environment variable. TFTP and BOOTP

The following paragraphs give an overview of how the console implements TFTP
and BOOTP clients to support network bootstrapping and file transfers in an
Internet environment.

An important point to note is that Internet booting is a two-stage operation.
First, BOOTP provides the client with information needed to obtain an image.
Then, the client uses a second protocol: TFTP, to obtain the image. Both
BOOTP and TFTP use UDP (User Datagram Protocol) as the primary transport
mechanism to send datagrams to other application programs.

BOOTP is a standard protocol in the TCP/IP suite. It operates in the client-
server paradigm and requires only a single packet exchange. The machine that
sends the BOOTP request is the client and any machine that sends a reply is the
server. A 300 byte database in the same format as the BOOTP message is used
to store the received packet. Once a BOOTP packet is broadcast and received, the
database is marked as initialized, thus ending the first-stage of the Inet Booting
operation.

The second stage of Inet booting uses TFTP protocols to get the memory image.
This protocol simply takes the information in the bootp packet (or uses a filename
specified in the command string or boot_file) and gets the file from the server.

The first packet sent requests a file transfer and establishes the connection
between client and server. The packet specifies a file name and whether the file
will be read (transferred to the client) or written (not currently supported).

TFTP depends only on the unreliable, connectionless datagram delivery service
(UDP).

TFTP accepts one parameter: the host address concatenated to the file name of
the remote file to be read.

Internet Booting Hierarchy

The following prioritized list shows the different ways of Internet Booting from
an initialized system.

Console Commands 3–5



boot

1. Filename specified as named boot; e.g. boot -file ‘‘filename’’ ewa0.

If the filename includes a ‘‘/’’, it must be specified as ‘‘//’’. Here is an example:

>>> boot -file //var//adm//ris//ris0.alpha//vmunix ewa0

This format is only used when specifying the named boot via -file filename or
loading the filename into the environment variable, boot_file.

2. Filename placed in environment variable boot_file.

This really operates as a named boot, the only difference being that the file name
it has is taken from boot_file. For example:

>>> set boot_file //var//adm//ris//ris0.alpha//vmunix
>>> boot ewa0

3. Filename placed in ev ewa0_inetfile.

Only TFTP protocol is used in this case; the bootp packet must have been
initialized. When a file name has been placed in this environment variable,
only the second stage of an Inet boot will occur. All other fields of the bootp
packet should contain valid information; either from a previous Inet boot or via
manual loading.

4. Filename placed in ev ewa0_bootp_file.

The file name specified in this environment variable will become the filename
specified in the outgoing bootp request packet. For example:

>>> set ewa0_bootp_file /var/adm/ris/ris0.alpha/vmunix.old

5. Filename not specified - e.g boot ewa0.

None of the above environment variables are written, so a 2-stage boot occurs
(any server that receives the request will reply).

A complete description of the Internet protocols is beyond the scope of
this document. An excellent description may be found in Douglas Comer
Internetworking with TCP/IP, Vol I, Principles, Protocols and Architecture, second
edition, Prentice Hall.

Note that behavior of this firmware depends in part upon behavior of the software
running on the server host, which varies from server to server. For example, the
exact format of the file specification used with TFTP depends on the server: the
Ultrix TFTP server requires a partial path name, and the OSF server requires
a complete path name. Ultrix systems frequently name the TFTP server ‘‘tftpd’’
and the BOOTP server ‘‘bootpd’’; see the appropriate system documentation for
server details.

For bootp and tftp to operate reliably, several network parameters, contained in
environment variables, must be properly configured. The Internet protocols are
robust and thus may work intermittently if the parameters are misconfigured,
which can make debugging a misconfiguration difficult. So here is what you need
to know to get the Inet software working. Note that each network interface has a
complete set of variables to itself and so each variable is prefixed with the name
of the interface. The following discussion uses ‘‘ewa0’’ for specificity.

The variable ewa0_protocols should include the string ‘‘BOOTP’’ to enable BOOTP,
TFTP, etc. (The variable may also include ‘‘MOP’’ to enable MOP.) Leaving the
variable empty or including both strings will enable all protocols (currently
just Inet and decnet). In particular, if not enabled the inet software will not

3–6 Console Commands



boot

be invoked for booting. Also, the network driver may not enable reception of
broadcast packets, which breaks ARP.

Each interface has a small database of information required to operate the
inet software on that interface. Internally the database is kept in a 300 byte
structure having the same format as a BOOTP packet. This database can be
directly read and written in binary form through the BOOTP protocol driver;
described later. The four most important fields of the database can be accessed
in a friendlier fashion through the environment variables ewa0_inetaddr, ewa0_
sinetaddr, ewa0_ginetaddr, and ewa0_inetfile. The first three are the Internet
addresses for the interface (ewa0), the remote server host, and remote gateway
host, respectively. These variables use Internet standard dotted decimal notation;
e.g., ‘‘16.123.16.53’’. ewa0_inetfile contains a file to be booted and is formatted
simply as a string.

The most important of these four is the local address, ewa0_inetaddr. TFTP and
ARP will not operate properly without the correct address. ewa0_ginetaddr is the
address of an Internet gateway on the local network. TFTP cannot communicate
beyond the local network if this gateway address is not correct. ewa0_sinetaddr is
the address of a server, which may or may not be on the local network. Ordinarily
this is the server from which to boot. This is the default remote host contacted
by TFTP. ewa0_inetfile is ordinarily the file to be booted. This should be a fully
qualified file name, according to whatever rules are specified by the TFTP server
on the remote host. This is the default file name requested by TFTP.

The interface database must be initialized somehow before TFTP can be used.
The database can be initialized by manually setting the four database variables,
by explicitly invoking BOOTP, or automatically on the first invocation of TFTP.
Whether initialization occurs on the first TFTP depends on whether the database
has been marked as initialized. The database will be marked as initialized on the
first occurrence of any of three events: the invocation of TFTP, the invocation of
BOOTP, or the setting of any of the four database environment variables.

The most common case is the invocation of TFTP. When TFTP is invoked and the
database has not been marked initialized then the database will be automatically
initialized by one of two methods, as specified by the environment variable ewa0_
inet_init. If ewa0_inet_init is set to bootp (the default) the BOOTP protocol driver
will be invoked to initialize the database by broadcasting a BOOTP request and
storing the response in the database. If ewa0_inet_init is set to ‘‘nvram’’ then the
database will be initialized by copying the contents of four nonvolatile default
variables into the four database variables. The four nonvolatile default variables
are ewa0_def_inetaddr, ewa0_def_sinetaddr, ewa0_def_ginetaddr and ewa0_def_
inetfile. These variables obviously must be set in advance, for example:

>>>set ewa0_def_inetaddr 16.123.16.53
>>>set ewa0_def_sinetaddr 16.123.16.242
>>>set ewa0_def_ginetaddr 16.123.16.242
>>>set ewa0_def_inetfile bootfiles/vmunix
>>>set ewa0_inet_init nvram

When BOOTP is invoked (either explicitly or via the automatic initialization
discussed above) the database is marked as initialized. In the usual case where
BOOTP is successfully invoked without the bootp/ewa0 or bootp:broadcast/ewa0)
the received reply packet is copied into the database, thus initializing it. If the
‘‘nobroadcast’’ parameter is specified (that is, bootp:nobroadcast/ewa0) then no
request is broadcast and thus no reply is received to copy into the database.
However, the database is still marked initialized, so a following TFTP will not
automatically initialize the database.

Console Commands 3–7



boot

When one of the four database environment variables is set the database is
marked as initialized. Thus a following TFTP will not automatically initialize the
database, regardless of whether the environment variables were set to sensible
values.

TFTP, BOOTP, and ARP all use retransmission to improve robustness. If an
initial transmission is not answered appropriately, the protocol software will
retransmit. Each protocol has an environment variable which controls the
number of retries before giving up. The variables are named ewa0_arp_tries,
ewa0_bootp_tries, and ewa0_tftp_tries. The default value of these is 3, which
translates to an average of 12 seconds before failing (see the discussion of
retransmission timing below). If the value of one of these variables is less than
1, the protocol will fail immediately. Machines located on very busy networks or
associated with heavily loaded servers may need these variables set higher.

The retransmission algorithms use a randomized exponential backoff delay. If
the first try fails a second try will occur about 4 seconds later. A third try would
come after another 8 seconds, a fourth after 16 seconds, and so forth up to 64
seconds. These times are actually averages, however, since random jitter of about
+/- 50% is added to each delay. This implies that with ewa0_arp_tries set to 3
ARP will fail if it does not get a response within about 12 seconds on average, but
the actual timeout will be somewhere between 6 and 18 seconds.

The normal use of BOOTP and TFTP is for bootstrapping across a network.
However, they may be explicitly invoked as protocol drivers. The bootp and tftp
protocols must be followed by a network in the protocol tower.

When a BOOTP request is broadcast, the environment variable ewa0_bootp_
server is copied into the ‘‘sname’’ field of the request packet and the variable
ewa0_bootp_file is copied into the ‘‘file’’ field of the request packet. The exact
interpretation of these fields depends on the BOOTP server. The ‘‘sname’’ field
should be the name of a specific host which the local machine wants to boot from.
If it does not matter which server answers, then the variable ewa0_bootp_server
should be left empty. The server should use the ‘‘file’’ field in the request to decide
which boot file to specify in the response. For example, the client could supply
a generic name like ‘‘unix’’ or ‘‘lat’’, and the server would respond with the fully
qualified file path to be used with TFTP. If a machine will always be booting the
same file then ewa0_bootp_file can be left empty.

The tftp protocol driver is used to read files across the network. Tftp accepts one
parameter, the host address concatenated to the file name of the remote file to be
read. The host address is specified in dotted decimal notation and is separated
from the file name by ‘‘:’’. If the file name includes ‘‘/’’ they must be doubled to ‘‘//’’.
The following example displays the file ‘‘/usr/foo/bar’’ from the host whose address
is 16.123.16.242:

cat tftp:16.123.16.242://usr//foo//bar/ewa0

For convenience the address could be saved in an environment variable:

set ktrose 16.123.16.242
cat tftp:$ktrose://usr//foo//bar/ewa0

If no parameter is specified tftp uses the file name and server address from the
interface database (that is, ewa0_sinetaddr and ewa0_inetfile).

3–8 Console Commands



boot

Note that when booting with tftp, the boot command passes the contents of the
environment variable boot_file as the parameter to tftp. If boot_file does not
have the correct format tftp will fail. The most common use is probably to leave
boot_file empty in which case tftp will default to using ewa0_sinetaddr and ewa0_
inetfile, as above.

Syntax

boot [-file filename ] [-flags longword[,longword]] [-protocols enet_protocol] [-halt] [boot_device]

Arguments

boot_device
A device path or list of devices from which the firmware attempts to boot, or
a saved boot specification in the form of an environment variable. Use the set
bootdef_dev command to define the default boot device.

Options

-file filename
Specifies the name of a file to load into the system. Use the set boot_file command
to specify a default boot file.

-flags longword [,longword ]
Specifies additional information to the operating system.

-protocols enet_protocol
Specifies the Ethernet protocol(s) to to be used for the network boot. Either the
keyword mop or bootp may be specified. If both are specified, each protocol is
attempted to solicit a boot server.

-halt
Forces the bootstrap operation to halt and invoke the console program once the
image is loaded and page tables and other data structures are set up. Console
device drivers are not shut down when this qualifier is present. Transfer control
to the image by entering the continue command.

Examples

1. >>> boot

The system boots from the default boot device. The console program returns
an error message if a default boot device has not been set.

2. >>> boot ewa0

The system boots from the Ethernet port, ewa0.

3. >>> boot -file dec_4000.sys ewa0

The system boots the file named dec_4000.sys from Ethernet port ewa0.

4. >>> boot -fi //usr//local//bootfile//bl12 -protocol bootp ewa0

The system performs a TCP/IP BOOTP network boot from Ethernet port
ewa0.

Console Commands 3–9



boot

5. >>> boot -flags 0,1

The system boots from the default boot device using boot flag settings 0,1.

6. >>> boot -halt dka0

The system loads the operating system from the SCSI disk, dka0, but remains
in console mode. Subsequently, you can enter the continue command to
transfer control to the operating system.

Related Commands

set, show

3–10 Console Commands



break

break — break from a program loop

Break from a for, while, or until loop. Exit the current shell with a status or
return the status of the last command.

Syntax

break break_level

Arguments

break_level
Specifies the status code to be returned by the shell.

Options

None.

Examples

1. >>> for i in 1 2 3 4 5 ; do echo $i ; break ; done
1
>>>

Related Commands

None

Console Commands 3–11



cat

cat — copy files

Concatenates files that you specify to the standard output. If you do not specify
files on the command line, cat copies standard input to standard output.

You can also copy or append one file to another by specifying I/O redirection.

Syntax

cat [-l length ] file1 [file2 . . . ]

Arguments

file1 [file2 . . . ]
Specifies the name of the input file or files to be copied.

Options

-l length
Specifies the number of bytes (decimal) of each input file to copy.

Examples

1. >>> echo > foo ’this is a test.’
>>> cat foo
this is a test.
>>>

Creates the file foo with the echo command. Then uses the cat command
to send the contents of the file to the standard output, the console terminal
screen.

2. >>> cat -l 6 foo
this i
>>>

Sends the first 6 bytes of the file foo to the standard output, the console
terminal screen.

Related Commands

echo, ls, rm

3–12 Console Commands



chmod

chmod — change file attributes

Changes the specified attributes of a file. The chmod command is a subset of the
equivalent U*x command.

Syntax

chmod
� -

+
=

�
{r,w,x,b,z} file1 [file2 . . . ]

Arguments

file1 [file2 . . . ]
Specifies the file(s) or inode(s) to be modified.

Options

–
A minus sign indicates to remove the specified attribute(s).

+
A plus sign indicates to add the specified attribute(s).

=
An equals sign indicates to set the specified attribute(s) and clear all other
attributes not included in the command.

r
Set or clear the read attribute.

w
Set or clear the write attribute.

x
Set or clear the execute attribute.

b
Set or clear the binary attribute.

z
Set or clear the expand attribute.

Examples

1. >>> chmod +x script

Adds the executable attribute to the file, script.

2. >>> chmod =r errlog

Sets the file errlog to read only.

3. >>> chmod -w dk*

Makes all SCSI disks non writeable.

Console Commands 3–13



chmod

Related Commands

chown, ls -l

3–14 Console Commands



chown

chown — change ownership of memory block

Changes the ownership of a memory block to the specified process.

Syntax

chown pid address1 [address2 . . . ]

Arguments

pid
Specifies the process identifier (PID) (in hex) of the new owner. You can display
PIDs with the ps command.

address1 [address2 . . . ]
Specifies the address (hex) or list of addresses of allocated block(s) for which
ownership is to be changed.

Options

None.

Examples

1. >>> chown ‘ps | grep idle | find 0‘ ‘alloc 200‘

For the first argument to chown, the command uses the ps command to
display processes, pipes the output to grep to find the idle process . . .
The second argument to chown calls alloc 200 to return the starting address
of the first free block of 200 bytes.

Related Commands

alloc, dynamic, ps

Console Commands 3–15



clear

clear — delete environment variable

Deletes an environment variable from the name space.

Note that some environment variables, such as bootdef_dev, are permanent and
cannot be deleted.

Syntax

clear variable_name

Arguments

variable_name
Specifies the name of the environment variable to be deleted.

Options

None.

Examples

1. >>> clear foo
>>>

Deletes the environment variable foo.

Related Commands

set, show

3–16 Console Commands



clear_log

clear_log — clear error log in NVRAM

This command is used for clearing and initializing the area of NVRAM used for
console error logging. The entire area of NVRAM where fault information is
stored is cleared to zero. Miscellaneous pointers, counters and initialization flags
used in the error logging process are reset accordingly.

Note that the current contents of the NVRAM error log area is destroyed and
lost forever. Without the -nc command-line Option, the user is prompted before
actually clearing the log area.

Note that console error logging is completely independent of the OS error logging.

Syntax

clear_log

Arguments

None.

Options

-nc
No Confirmation, when specified; the user is not prompted before the NVRAM log
area is cleared.

Examples

1. >>> clear_log
Error Log data in NVRAM will be destroyed!!
Continue (y/n)?
y
Initializing NVRAM Error Log...

The user is prompted to continue, then the NVRAM Error Log is initialized.

Related Commands

show_log

Console Commands 3–17



continue

continue — resume program execution

Resumes program execution. The processor begins executing instructions at
the address currently contained in the program counter. The processor is not
initialized.

The continue command is only valid if an operator has halted the system by
pressing the Halt button on the control panel or by entering CTRL/P on the console
terminal.

Note that some console commands, such as test and boot, may alter the machine
state so that program mode cannot be successfully continued.

Syntax

continue

Arguments

None.

Options

None.

Examples

1. >>> continue

The processor leaves console mode and returns to operating system mode.

Related Commands

start, stop

3–18 Console Commands



crc

crc — generate CRC for a file

Calculates a cyclic redundancy check (CRC) value for a file.

Syntax

crc [-s start_offset ] [-e end_offset ] [-l bytes ] file

Arguments

file
Specifies the file on which to calculate the CRC.

Options

-s start_offset
Specifies the starting offset within the file.

-e end_offset
Specifies the ending offset within the file.

-l bytes
Specifies the length of the file. Specifies that the CRC be calculated on the first
bytes number of bytes of the file.

Examples

1. >>> cat foo
hello world

Creates a file, foo.

2. >>> crc foo
0x00000466

Generates a CRC for file, foo.

3. >>> hd foo
00000000 68 65 6c 6c 6f 20 77 6f 72 6c 64 0a hello world.

Dumps the contents of the file, foo, in hexadecimal.

4. >>> eval -x \
_>0x68 0x65 0x6c 0x6c 0x6f 0x20 0x77 0x6f 0x72 0x6c 0x64 0x0a \
_> + + + + + + + + + + +
00000466

5. >>> d -b -n 8 pmem:0 0

Deposits 8 bytes of 0’s into physical memory starting at address 0.

6. >>> hd -l 8 pmem
00000000 00 00 00 00 00 00 00 00 ........

Dumps the first 8 bytes of NVRAM.

Console Commands 3–19



crc

7. >>> crc -l 8 pmem
0x00000000

Generates a CRC for the first 8 bytes of NVRAM.

8. >>> d -b -n 8 pmem:0 1

Deposits 8 bytes of 1’s into NVRAM starting at address 0.

9. >>> hd -l 8 pmem
00000000 01 01 01 01 01 01 01 01 ........

Dumps the first 8 bytes of NVRAM.

10. >>> crc -l 8 pmem
0x00000008

Generates a CRC for the first 8 bytes of NVRAM.

11. >>> crc -s 4 -l 4 pmem
0x00000004

Skips the first 4 bytes and generates a CRC for the next 4 bytes (bytes 4-7) of
NVRAM.

3–20 Console Commands



date

date — display or change time

Displays or modifies the current date and time. If you include no arguments,
displays the current date and time. If you do include arguments, modifies the
current date and time stored in the time-of-year (TOY) clock.

Note

The date will not be preserved if the TOY battery has been disabled
with the set toy sleep command. On the next powerup of the module, the
battery will be reenabled and the date may need to be reinitialized.

The format of the date and time registers for the console is as described in the
DS1386 specification, except that the year register contains the number of years
1858. This is done to retain compatibility with the VMS and OSF/1 operating
systems.

Syntax

date [ [[[yyyy]mm]dd]hhmm[.ss] ]

Arguments

yyyymmddhhmm.ss
Specifies the new date and time, where:

• yyyy (0000-9999) is the year

• mm (01-12) is the two digit month

• dd (01-31) is the two digit day

• hh (00-23) is the two digit hour

• mm (00-59) is the two digit minute

• ss (00-59) is the two digit second

When you modify the date or time, you must specify at least the hour and minute
fields (4 digits). If you include 6 digits, that is interpreted as the day, hour, and
minute fields. Omitted fields are inherited.

Options

None.

Examples

1. >>> date 199208031029.00
>>> date
10:29:04 August 3, 1992
>>>

Console Commands 3–21



date

Related Commands

None

3–22 Console Commands



deposit

deposit — write memory data

Writes data to the specified address: a memory location, a register, a device, or a
file.

After initialization, if you have not specified a data address or size, the default
address space is physical memory, the default data size is a quadword, and the
default address is zero.

You specify an address or ‘‘device’’ by concatenating the device name with the
address, for example, PMEM:0 and by specifying the size of the space to be
written to.

If you do not specify an address, the data is written to the current address, in the
current data size (the last previously specified address and data size).

If you specify a conflicting device, address, or data size, the console ignores the
command and issues an error response.

Syntax

d[eposit]

2
666664

-b
-w
-l
-q
-o
-h

3
777775

2
6664

-physical
-virtual
-gpr
-fpr
-ipr

3
7775 [-n count ] [-s step ] [device :]address data

Arguments

[device :]
Selects the device name or address space to access. The following devices are
supported:

pmem: Physical memory.
vmem: Virtual memory. All access and protection checking occur. If the
access would not be allowed to a program running with the current PS, the
console issues an error message. If memory mapping is not enabled, virtual
addresses are equal to physical addresses.
gpr: General Purpose register. The data size defaults to quadword. The
following symbols for address are recognized: r0, r1, . . . r31, ai, ra, pv, fp, sp,
and rz.
fpr: Floating Point register set. The data size defaults to quadword. The
following symbols for address are recognized: f0, f1, . . . f31.
ipr: Internal Processor register set. The size defaults to quadword. The
following symbols for address are recognized: ps, asn, asten, astsr, at, fen,
ipir, ipl, mces, pcbb, prbr, ptbr, scbb, sirr, sisr, tbchk, tbia, tbiap, tbis, esp, ssp,
usp, and whami.
pt: PAL Temporary register set, PT:0-PT:31 or PT0:-PT31:. The data size
defaults to quadword.
pcicfg: PCI configuration space
pcidmem: PCI dense memory space
pcismem: PCI sparse memory space
pciio: PCI IO space
eerom: Environment variable and error log NVRAM
ferom: Intel 28F020 firmware FEPROM

Console Commands 3–23



deposit

toy: DS1386 registers, clock chip, and NVRAM

address
Specifies the address into which the data is deposited. The address may be any
valid hexadecimal offset in the device’s address space or it may be a symbolic
address.

For hexadecimal addresses that start with ‘‘f’’, you must add a leading zero (0)
to prevent recognition as a Floating-Point Register. For example, 0f0 is a valid
memory address while f0 is not.

You cannot use a symbolic address if you include the device: field. The following
are valid symbolic addresses:

• gpr General Purpose register 0

• fpr Floating Point register 1

• ipr Internal Processor register

• pt or pt0 through pt31 PALtemp registers 0-31. The data size defaults to
quadword; the address space defaults to pt.

• PC Names the Program Counter (execution address register). The last
address, size, and type are unchanged.

• + Names the location immediately following the last location referenced in an
examine or deposit. For references to physical or virtual memory, the location
is the last address plus the size of the last reference. For other address
spaces, the address is the last address referenced plus one.

• - Names the location immediately preceding the last location referenced in an
examine or deposit. For references to physical or virtual memory, the location
is the last address minus the size of the last reference. For other address
spaces, the address is the last address referenced minus one.

• * Names the location last referenced by an examine or deposit.

• @ Uses the data at the last location referenced by an examine or deposit as
the address.

data
The data to be deposited. If the specified data is larger than the deposit data
size, the console ignores the command and issues an error. If the specified data is
smaller than the deposit data size, it is padded with leading zeros before deposit.

Options

-b
The data type is byte.

-w
The data type is word.

-l
The data type is longword.

-q
The data type is quadword.

3–24 Console Commands



deposit

-o
The data type is octaword (8 words).

-h
The data type is hexaword (16 words).

-d
The data displayed is the decoded macro instruction. Alpha instruction decode
(-d) does not recognize machine-specific PAL instructions.

-physical
The address space is physical memory. Same as specifying the pmem: device.

-virtual
The address space is virtual memory. Same as specifying the vmem: device.

-gpr
The address space is general purpose registers. Same as specifying the gpr:
device.

-fpr
The address space is floating point registers. Same as specifying the fpr: device.

-ipr
The address space is internal processor registers. Same as specifying the ipr:
device.

-n count
Specifies the number (hex) of consecutive locations to modify. The console deposits
to the first address, then to the specified number of succeeding addresses.

-s step
Specifies the address increment size (hex). Normally this defaults to the data
size, but is overriden by the presence of this option. This option is not inherited.

Examples

1. >>> d -b -n 1FF pmem:0 0

Clears the first 512 bytes of physical memory.

2. >>> d -l -n 3 vmem:1234 5

Deposits 5 into four longwords starting at virtual memory address 1234.

3. >>> d -n 8 R0 FFFFFFFF

Loads GPRs R0 through R8 with -1.

4. >>> d -l -n 10 -s 200 pmem:0 8

Deposits 8 into the first longword of each of the first 17 pages in physical
memory.

Console Commands 3–25



deposit

Related Commands

examine

3–26 Console Commands



dynamic

dynamic — show memory

Show the state of dynamic memory. Dynamic memory is split into two main
heaps, the console’s private heap and the remaining memory heap.

Syntax

dynamic [-c [-r]] [-h] [-p] [-v] [-setsize] [-extend byte_count ] [-z heap_address ]

Arguments

None.

Options

-c
Perform a consistency check on the default heap or the heap specified with -z.

-r
Repair a broken heap by flooding free blocks with DYN$K_FLOOD_FREE if and
only if they have been corrupted. Repairing broken heaps is dangerous at best, as
it is masking underlying errors. This flag takes effect only if a consistency check
is being done.

-h
Display the headers of the blocks in the default heap or the heap specifies with
-z.

-p
Display dynamic memory statistics on a per process basis.

-v
Perform a validation test on the default heap or the heap specified with -z.

-setsize
Set the total memory in the system to this size. Add/subtract the memory to the
end of memzone.

-extend byte_count
Extend the default memory zone by the byte count at the expense of the main
memory zone. This command assumes that these two zones are physically
adjacent.

-z heap_address
Operate on the specified heap.

Examples

1. >>> dynamic
zone zone used used free free utili- high
address size blocks bytes blocks bytes zation water
-------- ---------- ------- ---------- ------- ---------- ------- ----------
00097740 1048576 389 358944 17 689664 34 % 371872
001D2B80 14805504 1 32 1 14805504 0 % 0

Console Commands 3–27



dynamic

2. >>> dynamic -cv -z 97740
zone zone used used free free utili- high
address size blocks bytes blocks bytes zation water
-------- ---------- ------- ---------- ------- ---------- ------- ----------
00097740 1048576 398 359520 17 689088 34 % 371872

3. >>> dynamic -h
zone zone used used free free utili- high
address size blocks bytes blocks bytes zation water
-------- ---------- ------- ---------- ------- ---------- ------- ----------
00097740 1048576 392 359136 17 689472 34 % 389280
a 00097740 000E1600_001E0600 000E1608_001BF628 00000000 00097740 32
f 000E1600 0017E600_00097740 00189E68_00097748 FFFFFFFF 000E1600 643072
a 0017E600 001823C0_000E1600 001BF448_001B0D6C 00000023 0017E600 15808

.

.

.
>>>

Related Commands

alloc, free

3–28 Console Commands



echo

echo — outputs text

Sends the text you enter on the command line to the current output device, your
screen by default. The echo command separates arguments (words) in the line by
blanks. Echo adds a newline character to the end of the line.

Whenever specifying pipes or I/O redirection, be explicit by enclosing the text
within single quotes.

Syntax

echo [-n] args ...

Arguments

args ...
Specifies any arbitrary set(s) of character strings.

Options

-n
Suppress newlines from output.

Examples

1. >>> echo this is a test.
this is a test.
>>>

Echo sends the character string to your screen.

2. >>> echo -n this is a test.
this is a test.>>>

Echo sends the character string to your screen but with no newline separating
the string from the next console prompt (>>>).

3. >>> echo ’this is a test’ > foo
>>> cat foo
this is a test
>>>

The string is piped to the file foo. Typing the contents of the file foo then
shows the string.

4. >>> echo > foo ’this is the simplest way
_>to create a long file. All characters will be echoed
_>to file foo until the closing single quote.’
>>> cat foo
this is the simplest way
to create a long file. All characters will be echoed
to file foo until the closing single quote.
>>>

Shows how echo can be used to create a file several lines long.

Console Commands 3–29



echo

Related Commands

cat

3–30 Console Commands



edit

edit — edit a file

Edit is a console text editor which behaves much like a BASIC line editor. With
edit, lines of a file may be added, inserted, or deleted. Note that the file must
already exist. If you need to create a new file, see the echo command.

The editor may be used to modify the user powerup script, nvram, or any other
user created file, such as foo in the examples below. Note that nvram is a special
script which is always invoked during the powerup sequence. Hence, any actions
you wish to execute on powerup can be saved in the non-volatile memory using
the script file, nvram.

The editor will handle arbitrarily large input streams, up to the size of the heap.

Syntax

edit file

edit subcommands: help, list, renumber, exit, CTRL/Z, quit, n, n text

Arguments

file
Specifies the name of the file to be edited. Note that the file must already exist.

Options

help
Displays a brief help file.

list
Displays all of the lines in the current file.

renumber
Renumbers the lines of the file by 10’s.

exit
Saves the file and then leaves the editor.

quit
Leaves the editor and closes the file without saving changes.

CTRL/Z
CTRL/Z is the same as EXIT.

n
Deletes line number n.

n text
Adds or replaces line n with text.

Console Commands 3–31



edit

Examples

1. >>> echo > foo ’this is a test’ # Create a sample file.
>>> cat foo
this is a test
>>> edit foo # Edit the newly created file.
editing ‘foo’
15 bytes read in

Creates the file foo with the echo command, displays the contents of the file
with the cat command, and then calls the file into the editor with the edit
command.

2. *help
Think "BASIC line editor", and see if that’ll do the trick

Shows the HELP command in the editor.

3. *list
10 this is a test

Displays the current contents of the file with the list command.

4. *20 of the console BASIC-like line editor
*30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.
*list

10 this is a test
20 of the console BASIC-like line editor
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

Adds new lines 20 and 30 and then lists the contents of the file.

5. *10 This is a test of the console BASIC-like line editor.
*20
*list

10 This is a test of the console BASIC-like line editor.
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

Replaces line 10, deletes line 20, and then lists the contents of the file.

6. *15 It may be used to create scripts files at the console.
*list

10 This is a test of the console BASIC-like line editor.
15 It may be used to create scripts files at the console.
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

Adds line 15 and then lists the contents of the file.

7. *renumber
*list

10 This is a test of the console BASIC-like line editor.
20 It may be used to create scripts files at the console.
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

Renumbers the lines and then lists the contents of the file.

8. *exit
168 bytes written out

Saves the file and exits from the editor.

3–32 Console Commands



edit

9. >>> edit foo
editing ‘foo’
168 bytes read in
*20
*list

10 This is a test of the console BASIC-like line editor.
30 This editor supports HELP, LIST, RENUMBER, EXIT, and QUIT.

*quit

Reads file foo into the editor, deletes line 20, then quits without saving the
changes to the file.

10. >>> edit nvram # Modify user powerup script, nvram.
editing ‘nvram’
0 bytes read in
*10 set boot_dev ewa0
*20 set boot_osflags 0,0
*exit
37 bytes written out
>>> nvram # Execute the silent script, nvram.
>>> edit nvram
editing ‘nvram’
37 bytes read in
*15 show boot_dev
*25 show boot_osflags
*list

10 set boot_dev ewa0
15 show boot_dev
20 set boot_osflags 0,0
25 show boot_osflags

*exit
69 bytes written out
>>> cat nvram # List the modified file.
set boot_dev ewa0
show boot_dev
set boot_osflags 0,0
show boot_osflags
>>> nvram # Execute nvram, note the SHOWs.
boot_dev ewa0
boot_osflags 0,0
>>>

#
# Reset system, note nvram execution.
#

Medulla powerup script start
boot_dev ewa0
boot_osflags 0,0
Medulla powerup script end

Medulla console V12.0-0, built on Oct 26 1994 at 12:58:38

Shows how to modify the non-volatile user-defined power-up script, nvram.

Related Commands

cat, echo

Console Commands 3–33



eval

eval — evaluate expression

Evaluates a postfix expression.

Syntax

eval

2
64

-ib
-io
-id
-ix

3
75
2
64

-b
-o
-d
-x

3
75 operand1 operand2 operator

Arguments

operand1
The first numeric value to be evaluated.

operand2
The second numeric value to be evaluated.

operator
One of the following:

• + Add the operands.

• - Subtract operand2 from operand1.

• * Multiply the operands.

• / Divide operand1 by operand2.

Options

-ib
The operands are entered in binary.

-io
The operands are entered in octal.

-id
The operands are entered in decimal.

-ix
The operands are entered in hexadecimal.

-b
Display the output in binary.

-o
Display the output in octal.

-d
Display the output in decimal.

-x
Display the output in hexadecimal.

3–34 Console Commands



eval

Examples

1. >>> eval 5 10 +
15

The sum of 5 plus 10 is 15.

2. >>> eval -ix -d 5 10 +
21

The sum of 5 plus 10 (hex) is 21 (decimal).

Console Commands 3–35



examine

examine — display memory data

Displays the contents of the specified address: a memory location, a register, a
device, or a file.

After initialization, if you have not specified a data address or size, the default
address space is physical memory, the default data size is a quadword, and the
default address is zero.

You specify an address or ‘‘device’’ by concatenating the device name with the
address, for example, PMEM:0, and by specifying the size of the data to be
displayed.

If you do not specify an address, the data at the current address is displayed, in
the current data size (the last previously specified address and data size).

If you specify a conflicting device, address, or data size, the console ignores the
command and issues an error response.

The display line consists of the device name, the hexadecimal address (or offset
within the device), and the examined data, also in hexadecimal.

EXAMINE uses the same options as DEPOSIT. Additionally, the EXAMINE
command supports instruction decoding, the -d option, which disassembles
instructions beginning at the current address.

Syntax

e[xamine]

2
66666664

-b
-w
-l
-q
-o
-h
-d

3
77777775

2
6664

-physical
-virtual
-gpr
-fpr
-ipr

3
7775 [-n count ] [-s step ] [device :]address data

Arguments

[device :]
Selects the device name or address space to access. The following devices are
supported:

pmem: Physical memory.
vmem: Virtual memory. All access and protection checking occur. If the
access would not be allowed to a program running with the current PS, the
console issues an error message. If memory mapping is not enabled, virtual
addresses are equal to physical addresses.
gpr: General Purpose register set, R0-R31. The data size defaults to -q.
fpr: Floating Point register set, F0-F31. The data size defaults to -q.
ipr: Internal Processor register set
pt: PAL Temporary register set, PT0-PT31. The data size defaults to -q.
pcicfg: PCI configuration space
pcidmem: PCI dense memory space
pcismem: PCI sparse memory space
pciio: PCI IO space
eerom: Environment variable and error log NVRAM
ferom: Intel 28F020 firmware FEPROM

3–36 Console Commands



examine

toy: DS1386 registers, clock chip, and NVRAM

address
Specifies the address into which the data is deposited. The address may be any
valid hexadecimal offset in the device’s address space or it may be a symbolic
address.

For hexadecimal addresses that start with ‘‘f’’, you must add a leading zero (0)
to prevent recognition as a Floating-Point Register. For example, 0f0 is a valid
memory address while f0 is not.

You cannot use a symbolic address if you include the device: field. The following
are valid symbolic addresses:

• gpr-name Names a General Purpose register. The size defaults to quadword;
the address space defaults to gpr. The following symbols for name are
recognized: r0, r1, . . . r31, ai, ra, pv, fp, sp, and rz.

• fpr-name Names a Floating Point register. The size defaults to quadword; the
address space defaults to fpr. The following symbols for name are recognized:
f0, f1, . . . f31.

• ipr-name Names an Internal Processor register. The size defaults to
quadword; the address space defaults to ipr. The following symbols for
name are recognized: ps, asn, asten, astsr, at, fen, ipir, ipl, mces, pcbb, prbr,
ptbr, scbb, sirr, sisr, tbchk, tbia, tbiap, tbis, esp, ssp, usp, and whami.

• pt-name Names a PALtemp register. The data size defaults to quadword; the
address space defaults to pt. The following symbols for name are recognized:
pt0, pt1, . . . pt31.

• PC Names the Program Counter (execution address register). The last
address, size, and type are unchanged.

• + Names the location immediately following the last location referenced in an
examine or deposit. For references to physical or virtual memory, the location
is the last address plus the size of the last reference. For other address
spaces, the address is the last address referenced plus one.

• - Names the location immediately preceding the last location referenced in an
examine or deposit. For references to physical or virtual memory, the location
is the last address minus the size of the last reference. For other address
spaces, the address is the last address referenced minus one.

• * Names the location last referenced by an examine or deposit.

• @ Uses the data at the last location referenced by an examine or deposit as
the address.

Options

-b
The data size is byte.

-w
The data size is word.

-l
The data size is longword.

Console Commands 3–37



examine

-q
The data size is quadword.

-o
The data size is octaword.

-h
The data size is hexaword.

-d
The data displayed is the decoded macro instruction. Alpha instruction decode
(-d) does not recognize machine-specific PAL instructions.

-physical
The address space is physical memory. Same as specifying the pmem: device.

-virtual
The address space is virtual memory. Same as specifying the vmem: device.

-gpr
The address space is general purpose registers. Same as specifying the gpr:
device.

-fpr
The address space is floating point registers. Same as specifying the fpr: device.

-ipr
The address space is internal processor registers. Same as specifying the ipr:
device.

-n count
Specifies the number of consecutive locations to examine.

-s step
Specifies the address increment size (hex). Normally this defaults to the data
size, but is overriden by the presence of this option. This option is not inherited.

Examples

1. >>> e r0
gpr: 0 ( R0) 0000000000000002

Examine General Purpose register R0 by symbolic address.

2. >>> e -g 0
gpr: 0 ( R0) 0000000000000002

Examine GPR register R0 by address space (-gpr option).

3. >>> e gpr:0
gpr: 0 ( R0) 0000000000000002

Examine R0 by device name.

4. >>> examine pc
gpr: 0000000F ( PC) FFFFFFFC

Examine the program counter (PC)

3–38 Console Commands



examine

5. >>> examine sp
gpr: 0000000E ( SP) 00000200

Examine the GPR SP register.

6. >>> examine -n 5 R7
gpr: 00000007 ( R7) 00000000
gpr: 00000008 ( R8) 00000000
gpr: 00000009 ( R9) 801D9000
gpr: 0000000A ( R10) 00000000
gpr: 0000000B ( R11) 00000000
gpr: 0000000C ( AP) 00000000

Examine R7 plus the 5 following GPR’s.)

7. >>> examine ipr:11
ipr: 00000011 ( SCBB) 2004A000

Examine the SCBB, Internal Processor register (IPR) 17 (decimal).)

8. >>> examine scbb
ipr: 00000011 ( SCBB) 2004A000

Examine the SCBB using the symbolic name.

9. >>> examine pmem:0
pmem: 00000000 00000000

Examine physical address 0.

10. >>> examine -d 40000
pmem: 00040000 11 BRB 20040019

Examine address 40000 with macro instruction decode.

11. >>> examine
pmem: 20040048 DB MFPR S^#2B,B^48(R1)

Look at the next instruction.

Related Commands

deposit, hd

Console Commands 3–39



exer

exer — exercise one or more devices.

Exercise one or more devices by performing read, write, and compare operations.
Optionally, report performance statistics.

A read operation reads from a device into a buffer. A write operation writes
from a buffer to a device. A compare operation compares the contents of the two
buffers.

The exer command uses two buffers, buffer1 and buffer2. A read or write
operation can be performed using either buffer. A compare operation uses both
buffers.

You can tailor the behavior of exer by using options to specify the following:

• An address range to test within the device(s)

• The packet size, also known as the IO size, which is the number of bytes read
or written in each IO operation

• The number of passes to run

• The number of seconds to run

• A sequence of individual operations performed on the test device(s). You
specify this with the action string qualifier.

Syntax

exer [-sb start_block ] [-eb end_block ] [-p pass_count ] [-l blocks ] [-bs block_size ]
[-bc block_per_io ] [-d1 buf1_string ] [-d2 buf2_string ] [-a action_string ] [-sec seconds ] [-m]
[-v] [-delay milliseconds ] device_name1 [device_name2 ]

Arguments

device_name1 [device_name2 ]
Specifies the name(s) of the device(s) or filestream(s) to be exercised.

Options

-sb start_block
Specifies the starting block number (hex) within the filestream. The default is 0.

-eb end_block
Specifies the ending block number (hex) within the filestream. The default is 0.

-p pass_count
Specifies the number of passes to run the exerciser. If 0, then run forever or until
CTRL/C. The default is 1.

-l blocks
Length specifies the number of blocks (hex) to exercise. Option l has precedence
over eb. If only reading, then specifying neither l nor eb defaults to read till
end-of-file (EOF). If writing, and neither l nor eb are specified then exer will write
for the size of device. The default is 1.

3–40 Console Commands



exer

-bs block_size
Specifies the block size (hex) in bytes. The default is 200 (hex) except for tape
drives which default to 800 (hex). The maximum block size allowed with variable
length block reads is 800 (hex) bytes.

-bc block_per_io
Specifies the number of blocks (hex) per I/O. The default is 1.

-d1 buf1_string
Character string that is run through eval and then loaded into buffer1 to initialize
the buffer. By default, the buffer is loaded with alternating 5’s and A’s (hex).

-d2 buf2_string
Character string that is run through eval and then loaded into buffer2 to initialize
the buffer. By default, the buffer is loaded with alternating 5’s and A’s (hex).

-a action_string
Specifies an exerciser ’action string’, which determines the sequence of reads,
writes, and compares to various buffers. The default action string is ’?r’. The
action string characters are:

• r Read into buffer1

• w Write from buffer1

• R Read into buffer2

• W Write from buffer2

• n Write without lock from buffer1

• N Write without lock from buffer2

• c Compare buffer1 with buffer2

• - Seek to file offset prior to last read or write

• ? First seek to a random block offset within the specified range of blocks.
Next exer calls the program, random, to ‘‘deal’’ each of a set of numbers once.
Then exer chooses a set which is a power of two and is greater than or equal
to the block range. Each call to random results in a number which is then
mapped to the set of numbers that are in the block range and exer seeks
to that location in the filestream. Since exer starts with the same random
number seed, the set of random numbers generated will always be over the
same set of block range numbers.

• s Sleep for the number of milliseconds specified by the delay qualifier. If no
delay qualifier is present, sleep for 1 millisecond. NOTE: times reported in
verbose mode will not necessarily be accurate when this action character is
used.

-sec seconds
Terminate the exercise after the specified number of seconds have elapsed. By
default the exerciser continues until the specified number of blocks or passcount
are processed.

-m
Specifies metrics mode, reports throughput at the end of the exercise.

Console Commands 3–41



exer

-v
Specifies verbose mode, data read is also written to stdout. This is not applicable
on writes or compares.

-delay millisecs
Specifies the number of milliseconds to delay when ‘‘s’’ appears in the action
string.

Description

Exercise one or more devices. As described in the preceding overview section,
exer uses two buffers, buffer1 and buffer2. Buffer1 and buffer2 are in main
memory in the ’memzone’ heap.

Both buffer1 and buffer2 are initialized to a data pattern before any IO operations
occur. These buffers are never reinitialized, even after completing one or more
passes. The data patterns that the buffers are initialized with are either a hex
5A in every byte of each buffer or it is specified via the string arguments to the
optional data pattern qualifiers, -d1, -d2

The d1, d2 qualifiers use a postfix string argument to initialize a buffer’s contents
as follows. For each byte in the specified buffer, starting with the first byte, this
postfix string is passed to the eval command which returns a byte value which is
then written to the specified buffer.

Several exer qualifiers are used to specify the amount of device data to be
processed. The qualifiers -sb, -eb, -l, -bs, and -bc specify, respectively: starting
block, ending block, number of blocks, block size in bytes, and the number of
blocks in a packet, where a packet is the amount of data transferred in one IO
operation.

Reading, writing, comparing buffers, and other operations can be specified to
occur in various combinations and sequences. These operations are specified by a
string of one-character command codes known as the ‘‘action string’’. The action
string is specified as an argument to the action string qualifier, -a.

Each command code character in the action string is processed in a sequence
from left to right. Each time that exer completes all of the operations specified
by the action string, exer will reduce the remaining amount of device data to be
processed by the size of the last packet processed by the action string. The action
string is repeatedly processed until the specified amount of device data has been
processed.

Lower-case action string characters, rwn, specify operations that involve buffer1.
Upper-case action string characters, RWN, specify operations that involve buffer2.
The action string character, c, involves both buffers. The action string characters,
-?, do not involve either buffer.

A random number generator can be used to seek to varying device locations
before performing either a read or write operation. Randomization is achieved by
calling the function, random, which uses a linear congruential generator (LCG) to
generate the numbers. This algorithm isn’t truly random, but it comes closest to
meeting the needs of exer. Each time that random is called, it returns a number
from a specified range. If the range of numbers is a power of two, then each
subsequent call to random, is guaranteed to return a different number from the
range until all possible numbers within the range have been chosen. If the range
of numbers is not a power of two, then random is used with an upper bound
that is greater than the actual range size but is a power of two. Then a modulus

3–42 Console Commands



exer

operation with the range size is done to the number that random returns, thereby
ensuring that a random number is generated within the random range size.

The total number of bytes read or written on each pass of the exerciser is specified
by the length in blocks or the starting/ending block address option arguments.
If neither the ending address nor the length options are specified, then on each
pass the number of bytes processed could vary depending on whether or not the
filestream is being written to or just being read. If the filestream is not being
written to by exer, then exer will read until EOF is reached. If exer will be
writing to the file (as specified in the action string), then the number of bytes
processed per pass is equal to the allocation size of the file which is usually larger
than the length of the file for RAM disk files, but equal to the length for disk
devices.

Note that disk device I/O will fail if the blocksize is not equal to 1 or a multiple
of 512. Partial block read/writes are not supported so a length which is not a
multiple of the blocksize will result in no errors, but the last partial block I/O of
data won’t occur.

Any combination of writing, reading, or comparing the buffer1 and buffer2 can
be executed in the sequence as specified in the action string. Depending on the
option arguments, one or two of these three operations (read/write/compare) may
be omitted without affecting the execution of the other operations.

The exer command will return an error code immediately after a read, write,
or compare error, if the d_harderr environment variable is set to ‘‘halt’’. When
an error occurs and continue or loop on error is specified, then subsequent
operations specified by the action string qualifier will occur except for compares.
For instance, if a read error occurs, a subsequent compare operation will be
skipped since a read failure preceding a compare operation guarantees that the
compare will fail. If subsequent block I/O’s succeed, then compares of those blocks
will occur. When exer terminates because of completing all passes or by operator
termination, the status returned will be that of the last failed write, read, or
compare operation, regardless of subsequent successful IO’s.

Examples

1. >>> exer dk*.* -p 0 -secs 36000

Read all SCSI type disks for the entire length of each disk. Repeat this until
36000 seconds, 10 hours, have elapsed. All disks will be read concurrently.
Each block read will occur at a random block number on each disk.

2. >>> exer -l 2 dka0

Read block numbers 0 and 1 from device dka0.

3. >>> exer -sb 1 -eb 3 -bc 4 -a ’w’ -d1 ’0x5a’ dka0

Write hex 5a’s to every byte of blocks 1, 2, and 3. The packet size is bc * bs, 4
* 512, 2048 for all writes.

Console Commands 3–43



exer

4. >>> ls -l du*.* dk*.*
d**.* no such file
r--- dk 0/0 0 dka0.0.0.0.0
>>> exer dk*.* -bc 10 -sec 20 -m -a ’r’
dka0.0.0.0.0 exer completed

packet IOs elapsed idle
size IOs bytes read bytes written /sec bytes/sec seconds secs
8192 3325 27238400 0 166 1360288 20 19

5. >>> exer -eb 64 -bc 4 -a ’?w-Rc’ dka0

A destructive write test over block numbers 0 through 100 on disk dka0. The
packet size is 2048 bytes. The action string specifies the following sequence of
operations:

1. Set the current block address to a random block number on the disk
between 0 and 97. A four block packet starting at block numbers 98, 99,
or 100 would access blocks beyond the end of the length to be processed
so 97 is the largest possible starting block address of a packet.

2. Write from buffer1 (contains the previously read data) to the current block
address.

3. Set the current block address to what it was just prior to the previous
write operation.

4. From the current block address read a packet into buffer2.

5. Compare buffer1 with buffer2 and report any discrepancies.

6. Repeat steps 1 through 5 until enough packets have been written to
satisfy the length requirement of 101 blocks.

6. >>> exer -a ’?r-w-Rc’ dka0

A non-destructive write test with packet sizes of 512 bytes. The action string
specifies the following sequence of operations:

1. Set the current block address to a random block number on the disk.

2. From the current block address on the disk, read a packet into buffer1.

3. Set the current block address to the device address where it was just
before the previous read operation occurred.

4. Write a packet of hex 5a’s from buffer1 to the current block address.

5. Set the current block address to what it was just prior to the previous
write operation.

6. From the current block address on the disk, read a packet into buffer2.

7. Compare buffer1 with buffer2 and report any discrepancies.

8. Repeat the above steps until each block on the disk has been written once
and read twice.

3–44 Console Commands



exer

7. >>> set myd 0
>>> exer -bs 1 -bc a -l a -a ’w’ -d1 ’myd myd ~ =’ foo
>>> clear myd
>>> hd foo -l a
00000000 ff 00 ff 00 ff 00 ff 00 ff 00 ..........

Use an environment variable, myd, as a counter. Write 10 bytes of the
pattern ff 00 ff 00... to RAM disk file foo. A packet size of 10 bytes is used.
Since the length specified is also 10 bytes then only one write occurs. Delete
the environment variable, myd. The hd, hex dump of foo shows the contents
of foo after exer is run.

8. >>> set myd 0
>>> exer -bs 1 -bc a -l a -a ’w’ -d1 ’myd myd 1 + =’ foo
>>> hd foo -l a
00000000 01 02 03 04 05 06 07 08 09 0a ..........

Write a pattern of 01 02 03 . . . 0a to file foo.

9. >>> set myd 0
>>> exer -bs 1 -bc 4 -l a -a ’w’ -d1 ’myd myd 1 + =’ foo -m
foo exer completed

packet IOs elapsed idle
size IOs bytes read bytes written /sec bytes/sec seconds secs
4 3 0 10 3001 10001 0 0
>>> hd foo
00000000 01 02 03 04 01 02 03 04 01 02 ..........
>>> show myd
myd 4

10. >>> echo ’0123456789abcdefghijklmnopqrstAB’ -n >foo3
>>> exer -bs 1 -v -m foo3
b2lkfmp8jatsnA1gri54B69o3qdc7eh0foo3 exer completed

packet IOs elapsed idle
size IOs bytes read bytes written /sec bytes/sec seconds secs
1 32 32 0 5333 5333 0 0

Related Commands

memexer

Console Commands 3–45



exit

exit — exit current shell

Exit the current shell with the specified status or return the status of the last
command executed.

Syntax

exit exit_value

Arguments

exit_value
Specifies the status code to be returned by the shell.

Options

None.

Examples

1. >>> exit

Exits returning the status of the previously executed command.

2. >>> exit 0

Exits with success status.

3. >>> test || exit

Runs test and exits if there is an error.

Related Commands

None

3–46 Console Commands



false

false — return failure status

Return a failure status.

Syntax

false

Arguments

None.

Options

None.

Examples

1. >>> while false ; do echo foo; done
>>>

Console Commands 3–47



free

free — deallocate memory

Frees a block of memory that has been allocated from a heap. The block is
returned to the appropriate heap.

Syntax

free address1 [address2 . . . ]

Arguments

address1 address2 . . .
Specifies an address (hex) or list of addresses of allocated block(s) to be returned
to the heap.

Options

None.

Examples

1. >>> alloc 200
00FFFE00
>>> free fffe00
>>> free ‘alloc 10‘ ‘alloc 20‘ ‘alloc 30‘
>>>

Related Commands

alloc, dynamic

3–48 Console Commands



grep

grep — search for regular expressions

Globally search for regular expressions and print any lines containing occurrences
of the regular expression. A regular expression is a shorthand way of specifying
a wildcard type of string comparison. Since grep is line oriented, it only works on
ASCII files.

Syntax

grep [-c] [-i] [-n] [-v] f expression -f file g [file1 ] [file2 . . . ]

Arguments

expression
Specifies the regular expression to search for. If you include metacharacters,
enclose the expression with quotes to avoid interpretation by the shell.

Grep supports the following metacharacters:

^ Matches the beginning of line
$ Matches end of line
. Matches any single character
[ ] Set of characters; [ABC] matches either A or B or C.

• A dash (other than first or last of the set) denotes a range of characters:
[A-Z] matches any upper case letter.

• If the first character of the set is ^, then the sense of match is reversed:
[^0-9] matches any non-digit.

• The following characters need to be preceded with backslash (\) if they
occur in a set: \, ], -, and ^.

* Repeated matching; when placed after a pattern, indicates that the pattern
should match any number of times. For example, [a-z][0-9]* matches a lower
case letter followed by zero or more digits.
+ Repeated matching; when placed after a pattern, indicates that the pattern
should match one or more times. For example, [0-9]+ matches any sequence
of one or more digits.
? Optional matching; indicates that the pattern can match zero or one times.
For example, [a-z][0-9]? matches a lower case letter alone or followed by a
single digit.
Quote character; prevents the character following the backslash from having

special meaning.

file ...
Specifies the file(s) to be searched. If omitted, then stdin is searched.

Options

-c
Prints only the number of lines that matched.

-i
Ignores case in the search. By default grep is case sensitive.

-n
Prints the line numbers of the matching lines.

Console Commands 3–49



grep

-v
Prints all lines that do not contain the expression.

-f file
Take the regular expression from a file instead of the command line.

Examples

1. >>> ps | grep ewa0
0000001f 0019e220 3 2 ffffffff 0 mopcn_ewa0 waiting on mop_ewa0_cnw
00000019 0018e220 2 1 ffffffff 0 mopid_ewa0 waiting on tqe
00000018 0018f900 3 3 ffffffff 0 mopdl_ewa0 waiting on mop_ewa0_dlw
00000015 0019c320 5 0 ffffffff 0 tx_ewa0 waiting on ewa0_isr_tx
00000013 001a2ce0 5 2 ffffffff 0 rx_ewa0 waiting on ewa0_isr_rx

The output of the ps command (stdin) is searched for lines containing ’ewa0’.

2. >>> alloc 20
00FFFFE0
>>> deposit -q pmem:fffff0 0
>>> e -n 3 ffffe0
pmem: FFFFE0 EFEFEFEFEFEFEFEF
pmem: FFFFE8 EFEFEFEFEFEFEFEF
pmem: FFFFF0 0000000000000000
pmem: FFFFF8 EFEFEFEFEFEFEFEF
>>> e -n 3 ffffe0 | grep -v 0000000000000000
pmem: FFFFE0 EFEFEFEFEFEFEFEF
pmem: FFFFE8 EFEFEFEFEFEFEFEF
pmem: FFFFF8 EFEFEFEFEFEFEFEF
>>> free ffffe0
>>>

In this example, grep is used to search for all quadwords in a range of
memory which are non-zero.

Related Commands

None

3–50 Console Commands



hd

hd — dump file

Dump the contents of a file in both hexadecimal and ASCII.

Syntax

hd [-s start_byte ] [-e end_byte ] [-l bytes ] file1 [file2 . . . ]

Arguments

file file2 . . .
Specifies the file or files to be displayed.

Options

-s start_byte
Specifies the starting offset within the file.

-e end_byte
Specifies the ending offset within the file.

-l bytes
Specifies length, the number of bytes to dump.

Examples

1. >>> cat fred
a script called fred.

Creates file, fred.

2. >>> hd fred
00000000 61 20 73 63 72 69 70 74 20 63 61 6C 6C 65 64 20 a script called
00000010 66 72 65 64 0A fred.

Dumps the contents of file, fred.

3. >>> hd -l 16 foo
00000000 72 2d 2d 2d 20 20 20 6e 6c 20 30 30 30 30 30 30 r--- nl 000000

Dumps the first 16 bytes of file, foo.

4. >>> hd -s 512 -e 522 foo
00000200 20 20 72 64 20 30 30 30 31 37 rd 00017

Dumps from bytes 512 to 522 in file foo.

5. >>> hd -s 512 -l 10 foo
00000200 20 20 72 64 20 30 30 30 31 37 rd 00017

Dumps file, foo, starting at byte 512 and dumping the next 10 bytes.

Related Commands

cat

Console Commands 3–51



help, man

help, man — help on commands

Defines and shows the syntax for each command that you specify on the command
line. If you do not specify a command, displays information about the help
command and lists the commands for which additional information is available.

For each argument (or command) on the command line, help tries to find all topics
that match that argument. For example, if there are topics on exit, examine, and
entry, the command ‘‘help ex’’ would display the help text for both exit and
examine.

Wildcards are supported, so that ‘‘help *’’ generates the expected behavior.
Topics are treated as regular expressions that have the same rules as regular
expressions for the shell. For more information on regular expressions, see the
grep command. Help topics are case sensitive.

When the help command describes command syntax, the following conventions
are used.

• <item> Angle brackets denote a variable for which you must specify a value.

• [<item>] Square brackets enclose optional parameters, qualifiers, or values.

• {a,b,c} Braces enclosing items separated by commas, indicate mutually
exclusive items. Choose only one of a, b, or c.

• {a | b | c} Braces enclosing items separated by vertical bars, indicate
combinatorial items. Choose any combination of a, b, c.

You can use the commands help and man interchangeably.

Syntax

help or man [ command1 ] [command2 . . . ]

Arguments

command1 command2 . . .
Specifies the command(s) or topic(s) for which you request help.

Options

None.

Examples

1. >>> help # List all topics.

Requests a list of topics for which help is available.

2. >>> help * # List all topics and associated text.

Requests help on all topics.

3. >>> help ex

Requests help on all commands that begin with ’ex’.

4. >>> help boot

Requests help on the boot command.

3–52 Console Commands



help, man

Related Commands

None

Console Commands 3–53



initialize

initialize — initializes console, a device, or the processor

Initializes the console, a device, or the processor.

Syntax

init[ialize] [-c] [-d device ]

Arguments

None

Options

-c
Specifies that the console be initialized.

-d device
Specifies the device to be initialized.

Examples

1. >>> init

Initializes the processor.

2. >>> initialize -d ewa0

Initializes device ewa0.

3–54 Console Commands



init_ev

init_ev — set all environment variables to their default values.

Sets all environment variables to their default values.

Once this command is issued, a system reset or the init command is required to
set the environment variables to their default values.

Syntax

init_ev

Arguments

None

Examples

1. >>> init_ev

Note: A System Reset or ’init’ command must be issued immediately
after this command to set all Environment Variables to their
default values!!

>>>

A system reset or the init command is now required.

Console Commands 3–55



kill

kill — delete process

Delete the process(es) listed on the command line. Processes are killed by making
a kernel call with the process id (PID) as the argument.

Syntax

kill pid1 [pid2 . . . ]

Arguments

pid1 pid2 . . .
Specifies the PID(s) of the process(es) to be killed. You can display PIDs with the
ps command.

Options

None.

Examples

1. >>> memtest -p 0 &
>>> ps | grep memtest
000000f1 00217920 2 9357 ffffffff 0 memtest ready
>>> kill f1
>>> ps | grep memtest

Runs memtest. Displays memtest’s PID (f1) with the ps and grep commands.
Deletes the process with the kill command. Displays the memtest process
again to show that it is now gone.

Related Commands

ps

3–56 Console Commands



line

line — read a line

Copies one line (up to a new-line) from the standard input channel of the current
process to the standard output channel of the current process. Always outputs at
least a new-line.

Often used in scripts to read from the user’s terminal, or to read lines from a
pipeline while in a for/while/until loop.

Syntax

line

Arguments

None.

Options

None.

Examples

1. >>> line
type a line of input followed by carriage return
type a line of input followed by carriage return

The line you typed is copied to your screen.

2. >>> line >foo
type a line of input followed by carriage return
>>> cat foo
type a line of input followed by carriage return

Shows line command used interactively.

3. >>> echo -n ’continue [Y, (N)]? ’
>>> line <tt >tee:foo/nl
>>> if grep <foo ’[yY]’ >nl; then echo yes; else echo no; fi
>>>

Shows line command used within a script.

Related Commands

None

Console Commands 3–57



ls

ls — list files

List files or inodes in the system. Inodes are RAM disk files, open channels, and
some drivers. RAM disk files include script files, diagnostics, and executable shell
commands.

Syntax

ls [-l] [ file1 ] [file2 . . . ]

Arguments

file1 file2 . . .
Specifies the file(s) or inode(s) to be listed. If omitted, lists all files and inodes on
the system.

Options

-l
Specifies to list in long format. Each file or inode is listed on a line with
additional information. By default just file names are listed.

Examples

1. >>> ls examine
examine

Lists the file, examine.

2. >>> ls d*
d date debug1 debug2 decode deposit
dg_pidlist dka0.0.0.0.0 dke100.1.0.4.0
dub0.0.0.1.0 dynamic

Lists files and inodes that start with d.

Related Commands

None

3–58 Console Commands



memexer

memexer — memory exerciser

Start the specified number of Gray code memory test processes running in the
background. Each test randomly allocates and tests blocks of memory twice the
size of the bcache using all available memory. The pass count is 0 to run the
started tests forever.

Nothing is displayed unless an error occurs.

Syntax

memexer [ number_of_tests ]

Arguments

number_of_tests
Specifies the number of memory test processes to start. The default is 1.

Options

None.

Examples

1. >>> memexer 2 &
>>>

Starts two memtests running in the background. Tests in blocks of 2 times
the backup cache size across all available memory.

Related Commands

memtest

Console Commands 3–59



memtest

memtest — memory test

This exerciser contains a graycode memory test, a march memory test, a random
memory test, and a victim block test. For the first test a graycode pattern and
inverse graycode pattern are written, read and verified for the specified address
range in test 1. For the second test, a marching pattern and inverse marching
pattern are written, read, and verified for the specified address range. The third
test will test random addresses within the specified range with random data of
random length. The fourth test will perform block writes of data, victimize the
data, and then read back the block and verify it. This will be performed for the
specified address.

Detailed Description
When a starting address is specified, the memory is malloc’d beginning at the
starting address - 32 bytes for the length specified. The extra 32 bytes that
are malloc’d are reserved for the malloc header information. Therefore, if a
starting address of 0xa00000 and a length of 0x100000 is requested, the area
from 0x9fffe0 through 0xb00000 is reserved. This is transparent to the user,
but may be confusing if the user attempts to begin two memtest processes
simultaneously with one beginning at 0xa00000 for a length of 0x100000 and
the other at 0xb00000 for a length of 0x100000. The second memtest process
will state to the user that it is "Unable to allocate memory of length 100000 at
starting address b00000". Instead, the second process should use the starting
address of 0xb00020.

Memtest Test 1 - Graycode Test This test uses a graycode algorithm to test a
specified section of memory. The graycode algorithm used is: data = (x>>1)^x.
Where x is an incrementing value.

Three passes are made of the memory under test. The first pass writes
alternating graycode inverse graycode to each longword. This will cause
all but one data bit to toggle between each longword write. For example
graycode(0)=0x00000000 while inverse graycode(1)=0xFFFFFFFE.

The second pass reads each location verifies the data and writes the inverse of
the data. The read-verify-write is done one longword at a time. This will cause:
all data bits to be written as a one and zero; all but one data bit toggle between
longword writes; and will identify address shorts.

The third pass reads and verifies each location.

The -f "fast" option can be specified so the verify sections of the second and third
loops is not performed. This will not catch address shorts but will stress memory
with a higher throughput. The ECC/EDC logic will be used to detect failures.

Memtest Test 2 - March Test This test uses a marching 1’s/0’s algorithm to test
a specified section of memory. The same range can be tested as in the graycode,
test 1. The default data patterns used by this test are 0x55555555 and its inverse
0xAAAAAAAA. The data pattern can be altered by using the -d qualifier. The
pattern entered and its compliment will then be used instead.

Three passes are also made of the memory under test. The first pass will write
the data pattern entered (or default) beginning at the starting address and
marching through for the entire length specified.

The next pass will begin again at the starting address and read the previously
written data pattern and write back its inverse. This is done a longword at a
time for the entire specified length.

3–60 Console Commands



memtest

The last pass will being at the end of the testing region and again read back the
previously written inverse pattern and write back 0’s. This will also be performed
a longword at a time decrementing up through memory until the starting address
is reached.

Memtest Test 3 - Random Test This test will perform writes with random data
to random addresses using random data size, lengths, and alignments. The run
time of the random test may be noticeably longer than that of the other tests
because it requires two calls to the console firmware’s random number generator
every time data is written.

The random test will access every memory location within the boundaries
specified by the -sa and -l qualifiers (as long as the length is less than 8MB—
with lengths greater than 8 MB a modulo function is required on the seed and
therefore some addresses may get repeated and some not tested at all). It first
will obtain an address index into the Linear Congruential Generator structure
dependent on the length specified. It will obtain the data index as a function of
the entered random data seed and the maximum 32 bit data pattern. Using the
address index and an initial address seed of 0, the random number generator
is called to obtain a random address. It is then called again, using the data
index and initial user entered data seed, (-rs qualifier), or default of 0, to get the
longword of data to use in testing. The lower bit of the random data returned will
also be used to determine whether to perform longword or quadword transactions.
(Using the lower bit merely saves another call to the random function to help
speed up the test). The data is then stored to the random address, and memory
barrier is performed to flush it out to the B-Cache and then a read is done to read
it back in. A compare is then done on the data written and the data read. In the
case of quadword writes and reads, the longword of random data is shifted left by
32 and or’d with the original’s compliment to form the quadword.

Memtest test 4 - Victim Eject Test The user must first set up a block of data to be
used in the test. The address of this block of data will be read as an input to the
test using the -ba qualifier. (default is block of data containing 4 longwords of
0xF’s, then 4 longwords of 0’s, then 4 longwords of 0xF’s and lastly 4 longwords of
0’s.)

First, the test will perform a write of the block of data to the specified starting
address. It will then add 4 MB to the starting address and perform another write
of arbitrary data. This will cause the original data to be ’victimized’ to memory.
A read will then be performed of the original starting address and verified that
it is correct. The starting address is then incremented by a block and the write
/write/read procedure repeated for the specified length of memory.

If MEMTEST is used to test large sections of memory, it may take a while
for testing to complete. If a ^c or kill <PID> is done in the middle of testing,
MEMTEST may not abort right away. For speed reasons, a check for a ^c or
kill is done outside of any test loops. If this is not satisfactory, the user may run
concurrent MEMTEST processes in the background with shorter lengths within
the target range.

Syntax

memtest [-sa start_address ] [-ea end_address ] [-l length ]
[-bs block_size ] [-i address_inc ] [-p pass_count ]
[-d data_pattern ] [-rs random_seed ] [-rb]
[-f] [-m] [-z] [-h] [-mb] [-t] [-g] [-se]

Console Commands 3–61



memtest

Arguments

None.

Options

-sa start_address
Specifies the starting address for the test. The default is the first free space in
memzone.

-ea end_address
Specifies the ending address for the test. The default is start_address plus length.

-l length
Specifies the length of the section to test in bytes. The default is block_size,
except with the -rb option which uses the zone size. The -l option has precedence
over -ea.

-bs block_size
Specifies the block size (hex) in bytes The default is 8192 bytes. This is only used
for the random block test. For all other tests the block size equals length.

-i address_inc
increment value; This value will be used to increment through the memory to
be tested. Default = 0 (no increment) This is only implemented for the graycode
test. The increment value is in quadwords(ie. increment of 1 tests every other
quadword). The -z flag must be set to test an unaligned start address. This
option will be useful for multiple CPUs testing the same physical memory.

-d data_pattern
> used only for march test (2)—will use this pattern as test pattern, default = 5’s

-p pass_count
Specifies the number of times to execute the test. If 0, then run forever or until
CTRL/C. The default is 1.

-rs random_seed
Specifies the random seed. Used only with -rb. The default is 0.

-rb
Specifies to randomly allocate and test all of the specified memory address range.
Allocations are done of block_size.

-f
Specifies fast mode. If -f is specified, the data compare is omitted. Only ECC/EDC
errors are detected.

-m
Specifies to time the memory test. At the end of the test the elapsed time is
displayed. By default the timer is off.

-z
Specifies the test will use the specified memory address without an allocation.
This bypasses all checking but will allow testing in addresses outside of the main
memory heap. It will also allow unaligned testing. Warning: This flag permits
testing and corrupting any memory!

3–62 Console Commands



memtest

-h
Allocate test memory from the firmware heap.

-mb
Use memory barriers after each memory access. This flag is only used in the
-f Gray code test. When set, an Alpha mb instruction will be done after every
memory access. This will guarantee serial access to memory.

-t
test mask; default = run all tests in selected group. The invidual tests are as
follows.

1. graycode test

2. march test

3. random test

4. victim eject test

-g
group name - [field, mfg, exception, dvt] only mfg specific tests are supported now.

-se
soft error threshold

Examples

1. >>> memtest -sa 200000 -l 1000

Tests memory starting at 0x200000 (-sa) for 0x1000 bytes (-l).

2. >>> memtest -sa 200000 -l 1000 -f

Tests memory from 0x200000 for 0x1000 bytes, but data is not verified (-f).

3. >>> memtest -sa 300000 -p 10

Writes a default block size of 8192 bytes from 0x300000 for 10 passes (-p).

4. >>> memtest -f -mb

Tests memory in arbitrary 8192 byte blocks without verification. After each
read and write to memory an MB (memory barrier) instruction is executed
(-mb).

5. >>> memtest -sa 200000 -ea 400000 -rb

Tests memory from 0x200000 to 0x3fffff. Every block within this range is
randomly allocated (-rb). With -rb memtest will not error if a block within the
range can’t be allocated.

6. >>> memtest -h -rb -bs 100

Tests the console heap (-h) by randomly mallocing 0x100 byte blocks (-bs).

7. >>> memtest -rb -p 0

Tests memory across all of memzone (all memory excluding the HWRPB, the
PAL area, the console, and the console heap). It is run in the foreground until
CTRL/C.

Console Commands 3–63



memtest

Related Commands

memexer

3–64 Console Commands



net

net — MOP function

Using the specified port, perform some maintenance operations protocol (MOP)
function.

The net command performs basic MOP operations, such as, loopback, request IDs,
and remote file loads. The net command also provides the means to observe the
status of a network port. Specifically, the ’net -s’ will display the current status of
a port including the contents of the MOP counters. This is useful for monitoring
port activities and trying to isolate network failures.

To display the Ethernet station address, enter ‘‘net -sa ewa0’’.

Syntax

net [-s] [-sa] [-ri] [-ic] [-id] [-l0] [-l1] [-rb] [-csr]
[-els] [-kls] [-cm mode_string ] [-da node_address ]
[-l file_name ] [-lw wait_in_secs ] [-sv mop_version ]
port_name

Arguments

port_name
Specifies the Ethernet port on which to operate. If you do not specify a port the
default port, ewa0, is used.

Options

-s
Display port status information including MOP counters.

-sa
Display the port’s Ethernet station address.

-ri
Reinitialize the port drivers.

-ic
Initialize the MOP counters.

-id
Send a MOP Request ID to the specified node. You specify the destination address
with -da.

-l0
Send an Ethernet loopback to the specified node. This command, l0, is ‘‘l’’ for
loopback and zero. You specify the destination address with -da.

-l1
Do a MOP loopback requester.

-rb
Request to be rebooted by sending a MOP V4 request boot message to a remote
boot node. You specify the destination address with -da.

-csr
Displays the values of the Ethernet port CSRs.

Console Commands 3–65



net

-els
Enable the extended design verification test (DVT) loop service.

-kls
Kill the extended DVT loop service.

-cm mode_string
Change the mode of the port device. The mode string may be one of the following
abbreviations.

• nm = Normal mode

• in = Internal loopback

• ex = External loopback

• nf = Normal filter

• pr = Promiscious

• mc = Multicast

• ip = Internal loopback and promiscious

• fc = Force collisions

• nofc = Do not force collisions

• df = Default

-da node_address
Specifies the destination address of a node to be used with the -l0, -id, or -rb
options.

-l file_name
Broadcast a MOP load request that requests the specified load file.

-lw wait_in_secs
Wait the specified number of seconds for the loop messages from the -l1 option
to return. If the messages do not return in the time period, an error message is
generated.

-sv mop_version
Set the preferred MOP version number for operations. Legitimate values are 3 or
4.

Examples

1. >>> net -sa
-ewa0: 08-00-2b-1d-02-91

Displays the local Ethernet port station address.

3–66 Console Commands



net

2. >>> net -s

DEVICE SPECIFIC:
TI: 203 RI: 42237 RU: 4 ME: 0 TW: 0 RW: 0 BO: 0
HF: 0 UF: 0 TN: 0 LE: 0 TO: 0 RWT: 39967 RHF: 39969 TC: 54

PORT INFO:
tx full: 0 tx index in: 10 tx index out: 10
rx index in: 11

MOP BLOCK:
Network list size: 0

MOP COUNTERS:
Time since zeroed (Secs): 2815

TX:
Bytes: 116588 Frames: 204
Deferred: 2 One collision: 52 Multi collisions: 14
TX Failures:
Excessive collisions: 0 Carrier check: 0 Short circuit: 0
Open circuit: 0 Long frame: 0 Remote defer: 0
Collision detect: 0

RX:
Bytes: 116564 Frames: 194
Multicast bytes: 13850637 Multicast frames: 42343
RX Failures:
Block check: 0 Framing error: 0 Long frame: 0
Unknown destination: 42343 Data overrun: 0 No system buffer: 22
No user buffers: 0
>>>

Displays the ewa0 port status, including the MOP counters.

Related Commands

nettest

Console Commands 3–67



nettest

nettest — MOP loopback test

This network test can test the Ethernet port in internal loopback, external
loopback, or live network loopback mode.

Nettest contains the basic options to allow you to run MOP loopback tests.
Nettest is designed to be run from a script file. Many environment variables can
be set to customize nettest. You may set these from the console before nettest is
started. Listed below are the environment variables, a brief description, and their
default values.

• ewa0_loop_count Specifies the number (hex) of loop requests to send. The
default is 0x3E8 loop packets.

• ewa0_loop_inc Specifies the number (hex) of bytes the message size is
increased on successive messages. The default is 0xA bytes.

• ewa0_loop_patt Specifies the data pattern (hex) for the loop messages. The
following are legitimate values.

0 All zeroes

1 All ones

2 All fives

3 All 0xAs

4 Incrementing data

5 Decrementing data

ffffffff All patterns (default)

• loop_size Specifies the size (hex) of the loop message. The default packet
size is 0x2E.

You can change other network driver characteristics by modifying the port mode.
Refer to the -mode option.

Syntax

nettest [-f file ] [-mode port_mode ] [-p pass_count ]
[-sv mop_version ] [-to loop_time ] [-w wait_time ]
[port ]

Arguments

port
Specifies the Ethernet port on which to run the test.

Options

-f file
Specifies the file containing the list of network station addresses to loop messages
to. The default file name is lp_nodes_ewa0. The files by default have their own
station address.

3–68 Console Commands



nettest

-mode port_mode
Specifies the mode to set the port adapter (TGEC). The default is ex (external
loopback). Allowed values are:

df Default, use environment variable values
ex External loopback
in Internal loopback
nm Normal mode
nf Normal filter
pr Promiscious
mc Multicast
ip Internal loopback and promiscious
fc Force collisions
nofc Do not force collisions
nc Do not change mode

-p pass_count
Specifies the number of times to run the test. If 0, then run forever. The default
is 1. Note that each pass of the test will send the number of loop messages set by
the environment variable, ewa0_loop_count.

-sv mop_version
Specifies which MOP version protocol to use.

3 Use MOP V3 (DECNET Phase IV) packet format
4 Use MOP V4 (DECNET Phase V IEEE 802.3) format

-to loop_time
Specifies the time in seconds allowed for the loop messages to be returned. The
default is 2 seconds.

-w wait_time
Specifies the time in seconds to wait between passes of the test. The default is
0 (no delay). The network device can be very CPU intensive. This option allows
other processes to run.

Examples

1. >>> nettest ewa0

Runs an internal loopback test on port ewa0.

2. >>> nettest -mode ex

Runs an external loopback test on port ewa0.

3. >>> nettest -mode ex -w 10

Runs an external loopback test on port ewa0, waiting 10 seconds between
tests.

4. >>> nettest -f foo -mode nm

Runs a normal mode loopback test on port ewa0 using the list of nodes
contained in file, foo.

Console Commands 3–69



nettest

Related Commands

net, netexer

3–70 Console Commands



ps

ps — show process

The ps command displays the system state in the form of process status and
statistics.

Syntax

ps

Arguments

None.

Options

None.

Examples

1. >>> ps
ID PCB Pri CPU Time Affinity CPU Program State
-------- -------- --- -------- -------- --- ---------- ------------------------
0000008f 0010e8a0 3 0 00000001 0 ps running
00000020 00110160 1 0 ffffffff 0 puc_poll waiting on tqe
0000001f 0013cb60 6 0 ffffffff 0 puc_receive waiting on puu_receive
0000001c 0013ed00 1 0 ffffffff 0 pub_poll waiting on tqe
0000001b 0014fc00 6 0 ffffffff 0 pub_receive waiting on puu_receive
0000001a 00111a20 3 0 00000001 0 sh ready
00000015 001176a0 2 0 ffffffff 0 mopcn_ewa0 waiting on mop_ewa0_cnw
00000014 00119140 2 0 ffffffff 0 mopid_ewa0 waiting on tqe
00000013 0011ac20 2 0 ffffffff 0 mopdl_ewa0 waiting on mop_ewa0_dlw
00000012 0011f6a0 6 0 ffffffff 0 tx_ewa0 waiting on ewa0_isr_tx
00000011 00121140 6 0 ffffffff 0 rx_ewa0 waiting on ewa0_isr_rx
00000010 00122ac0 1 0 ffffffff 0 pua_poll waiting on tqe
0000000f 001244e0 6 0 ffffffff 0 pua_receive waiting on pua_receive
00000009 00147460 5 0 ffffffff 0 lad_poll waiting on tqe
00000008 00148f00 5 0 ffffffff 0 dup_poll waiting on tqe
00000007 0014a9a0 5 0 ffffffff 0 mscp_poll waiting on tqe
00000006 0014e1a0 5 0 00000001 0 entry_00 waiting on entry_00
00000004 001516e0 2 0 ffffffff 0 dead_eater waiting on dead_pcb
00000003 00153140 7 11759330 ffffffff 0 timer waiting on timer
00000002 00158740 6 0 ffffffff 0 tt_control waiting on tt_control
00000001 0005cfd8 0 0 00000001 0 idle ready
>>>

Related Commands

sa, sp

Console Commands 3–71



pwrup

pwrup — run powerup diagnostics

This runs the powerup script. It initializes network environment variables, runs
memory tests, and executes the contents of the NVRAM script.

Syntax

pwrup

Arguments

None.

Options

None.

Examples

1. >>> pwrup

Runs the powerup script.

3–72 Console Commands



rm

rm — remove file

Remove the specified file or files from the file system. Any allocated memory is
returned to the heap.

Syntax

rm file1 [file2 . . . ]

Arguments

file1 file2 . . .
Specifies the file or files to be deleted.

Options

None.

Examples

1. >>> ls foo
foo
>>> rm foo
>>> ls foo
foo no such file
>>>

Lists file foo to show that it exists, removes file foo, lists file foo again to show
that it is gone.

Related Commands

cat, ls

Console Commands 3–73



sa

sa — set process affinity

Changes the affinity mask of a process. The affinity mask of a process specifies
on which processors the process may run.

Syntax

sa process_id affinity_mask

Arguments

process_id
Specifies the PID of the process to be modified.

affinity_mask
Specifies the new affinity mask which indicates which processors the process may
run on. Bits 0 and 1 of the mask correspond to processors 0 and 1, respectively.

Options

None.

Examples

1. >>> memtest -p 0 &
>>> ps | grep memtest
00000025 001a9700 2 23691 00000001 0 memtest ready
>>> sa 25 2
>>> ps | grep memtest
00000025 001a9700 2 125955 00000002 1 memtest running
>>>

Related Commands

ps, sp

3–74 Console Commands



semaphore

semaphore — show system semaphores

Show all the semaphores known to the system by traversing the semaphore
queue.

Syntax

semaphore

Arguments

None.

Options

None.

Examples

1. >>> semaphore
Name Value Address First Waiter

-------------------------------- -------- -------- ------------------------
dyn_sync 00000001 00050378

dyn_release 00000001 000503A0
shell_iolock 00000001 0015D684

exit_iolock 00000001 0015D770
grep_iolock 00000001 0015DB20
eval_iolock 00000001 0015DC0C

chmod_iolock 00000001 0015DCF8
^C
>>>

Related Commands

None

Console Commands 3–75



set

set — set environment variable

Sets or modifies the value of an environment variable (EV). Some of the EVs
are stored in non-volatile memory. Environment variables are used to pass
configuration information between the console and the operating system. See
Chapter 4 for more information about each of the EVs.

Syntax

set envar_name value [-default] [-integer] [-string]

Arguments

envar_name
The environment variable to be assigned a new value. Refer to the list of
commonly used environment variables below (or in Chapter 4).

value
The value that is assigned to the environment variable. Either a numeric value
or an ASCII string.

Options

-default
Restores an environment variable to its default value.

-integer
Creates an environment variable as an integer.

-string
Creates an environment variable as a string.

Some of the common environment variables are described in the following list:

Commonly Used Environment Variables

auto_action
Sets the console action following an error, halt, or power-up, to halt, boot, or
restart. The default setting is halt.

bootdef_dev
Sets the default device or device list from which the system attempts to boot. For
systems which ship with factory installed software (FIS), the default device is
preset at the factory to the device that contains FIS. For systems which do not
ship with FIS, the default setting is null.

boot_file
Sets the file name to be used when a bootstrap requires a file name. The default
setting is null.

boot_osflags
Sets additional parameters to be passed to system software. The default setting
is 0,0.

3–76 Console Commands



set

Examples

1. >>> set bootdef_dev ewa0

Sets the default device from which the system attempts to boot to ewa0.

2. >>> set auto_action boot

Sets the system’s default console action to boot after error, halt, or power-up.

3. >>> set boot_file vax_4000.sys

Sets the file name to be used when the system’s boot requires a file name to
vax_4000.sys.

4. >>> set boot_osflags 0,1

Sets the system’s default boot flags to 0,1.

5. >>> set foo 5

Creates environment variable foo and sets its value to 5.

Related Commands

clear, show

Console Commands 3–77



set led

set led — display char on LED

Displays a character on the front panel LED.

Syntax

set led char [-b]

Arguments

char
Specifies the character to display on the front panel LED. Metacharacters must
be prefixed with a backslash (\).

Options

-b
Specifies that the character be displayed in bright mode. The default is dim
mode.

Examples

1. >>> set led "W" -b

Displays an uppercase W on the LED panel at full brightness.

Related Commands

show led

3–78 Console Commands



set mode

set mode — set the current mode for diagnostics

This command sets the mode setting. The mode values fastboot and nofastboot
control the level of testing done at powerup or after console initialization. The
fastboot value is used when the user wants minimal console diagnostics executed
at powerup. Full diagnostics are run when the nofastboot value is set.

Note

When fastboot mode is enabled, hardware problems may not be detected
since the power-on/self testing done during fastboot is limited.

Syntax

set mode

Arguments

None.

Options

None.

Examples

1. >>> set mode nofastboot

Sets the mode to nofastboot which runs full diagnostics at poweron or after
init.

Related Commands

None

Console Commands 3–79



set reboot srom

set reboot srom — set reboot mode to Serial ROM Mini-Console

This command is used to enter the Serial ROM Mini-Console.

The only valid (and necessary) argument is srom, so that the complete command
is set reboot srom. Once this command is issued, the Serial ROM Mini-Console is
entered on the next system reset or powerup sequence.

Once issued, this command prevents further console boots until NVRAM bytes are
altered using the Serial ROM Mini-Console. This is done by using the wb Serial
ROM Mini-Console command to set either NVRAM location 0x8028 and/or 0x8029
to zero. Upon the next system reset or poweron, the console will be started.

Syntax

set reboot srom

Arguments

None.

Options

None.

Examples

1. >>> set reboot srom

Sets the reboot flag to enter Serial ROM Mini-Console on next reset or
poweron.

Related Commands

None

3–80 Console Commands



set toy sleep

set toy sleep — disable the TOY clock’s internal oscillator

This command disables the DS1386 TOY clock’s internal oscillator, lengthening
the shelf life of the device. When this command is executed bit 8 of the MONTH
register of the device is set to 1, disabling the TOY clock’s oscillator. The TOY
clock’s time registers will cease to advance and the life of the device’s internal
lithium battery will be lengthened. The next time the system is powered up the
oscillator will be automatically reenabled by the console and time will once again
be counted by the TOY device. This command is to be used by manufacturing at
final test or by users who wish to put the system into storage. Note that the time
and date will need to be reset once the module is powered up after disabling the
battery. See Section 1.13.3 for operating the oscillator on standby power through
the VME backplane.

Syntax

set toy sleep

Arguments

None.

Options

None.

Examples

1. >>> set toy sleep

Sets the TOY into storage mode. Automatically re-enabled on subsequent
initialisation.

Related Commands

None

Console Commands 3–81



sh

sh — create new shell

The shell command creates another shell process. Each shell process implements
most of the functionality of the Bourne shell.

Syntax

sh

" -x
-v
-d

#
[-l] [-r] [-p] [arg . . . ]

Arguments

arg
Any text string terminated with whitespace

Options

-v
Print lines as they are read in.

-x
Show commands just before they are executed.

-d
Delete stdin when shell is done.

-l
Trace lexical analyzer (show tokens as they are recognized).

-r
Trace parser (show rules as they fire).

-p
Trace execution engine (show routines called).

Examples

1. >>> sh # start a new shell
>>> # the new shell’s prompt

>>> sh -v <foo # execute command file "foo" and show lines as read in
>>> sh -x <foo # print out commands as they are executed and after
>>> # all substitutions have been performed.

3–82 Console Commands



show

show — display system information

Displays the current value of an environment variable or other system parameter.

Syntax

show [{config, device, hwrpb, led, map, mode, pal, version}] [ envar_name ]

Arguments

config
Displays the system configuration.

device
Displays devices and controllers in the system.

hwrpb
Displays the Alpha HWRPB.

led
Displays character illuminated on the led.

map
Displays system virtual memory map.

mode
Displays current mode, fastboot or nofastboot

pal
Displays the version of PALcode.

version
Displays the version of the console firmware.

envar
Displays the value of the environment variable specified. Refer to the list of
commonly used environment variables below (or in Chapter 4).

Options

None.

Commonly Used Environment Variables

auto_action
Displays the console action following an error halt or power-up. The action can be
halt, boot, or restart.

bootdef_dev
Displays the device or device list from which bootstrapping is attempted.

boot_file
Displays the file name to be used when a bootstrap requires a file name.

boot_osflags
Displays the additional parameters to be passed to system software.

Console Commands 3–83



show

language
Displays the language in which system software and layered products are
displayed.

Examples

1. >>> show version
version V12.0-0 Oct 26 1994 12:58:38
>>>

Displays the version of the firmware on a system. The firmware version is
V12.0-0.

2. >>> show auto_action
boot
>>>

Displays the default system powerup action.

3. >>> show bootdef_dev
ewa0
>>>

Displays a system’s default boot device, exa0 in this case.

Related Commands

set, show config, show device, show hwrpb, show led, show map, show mode

3–84 Console Commands



show config

show config — show system configuration

Shows the system configuration.

Syntax

show config

Arguments

None.

Options

None.

Examples

1. >>> show config

Digital Equipment Corporation
Digital AXPvme 64LC

SRM Console X3.7-9224 VMS PALcode X5.48-59, OSF PALcode X1.35-41

MEMORY: 32 Meg of system memory
System Controller: VIC64 Enabled

Hose 0, PCI
slot 0 DECchip 7407

slot 1 DECchip 21040-AA ewa0.0.0.1.0 08-00-2B-E2-48-35

slot 3 Intel SIO 82378

>>>

Displays the system’s configuration.

Related Commands

None

Console Commands 3–85



show device

show device — displays devices

Shows the devices and controllers in the system. By default all devices and
controllers which respond are shown.

The device naming convention is as follows.

dka0.0.0.0.0
| || | | | |
| || | | | +--- Hose # : Always zero for AXPvme
| || | | +---- Slot # : On PCI System = <PCI bus * 1000>+<PCI function * 100>+<PCI slot>
| || | +--- Channel # : Always zero.
| || +---- Bus Node # : Device’s bus ID (i.e. SCSI node ID plug #).
| |+----Device Unit # : Device’s unique system unit number.
| +---- Controller ID : One letter controller designator.
+---------- Driver ID : Two letter port or class driver designator.

PK - SCSI port, DK - SCSI class
EW - Ethernet Port

The output will display the device name, device ID, device type and device
internal firmware revision information (if available).

Syntax

show device [ device_name ]

Arguments

device_name
Specifies the device name or an abbreviation of a device name. When an
abbreviation or wildcard is used, all devices that match are shown.

Options

None.

Examples

1. >>> show device
dkc0.0.0.2.0 DKC0 RZ57
mke0.0.0.4.0 MKE0 TLZ04
ewa0.0.0.6.0 EWA0 08-00-2B-1D-27-AA
p_a0.7.0.0.0 Bus ID 7
p_b0.7.0.1.0 Bus ID 7
pkc0.7.0.2.0 PKC0 SCSI Bus ID 7
pke0.7.0.4.0 PKE0 SCSI Bus ID 7
pud0.7.0.3.0 PID0 DSSI Bus ID 7
>>>

Shows all devices and controllers in the system. Note that the controllers
p_a0 and p_b0 are indeterminant, that is, neither SCSI nor DSSI. This occurs
when no devices or terminators are present.

2. >>> show device e
ewa0.0.0.6.0 EWA0 08-00-2B-1D-27-AA

Show devices that start with e.

3–86 Console Commands



show device

3. >>> show device *k* # Show SCSI devices.
dkc0.0.0.2.0 DKC0 RZ57
mke0.0.0.4.0 MKE0 TLZ04

Show all devices with k in the device name.

4. >>> show device dk # Show SCSI disks.
dkc0.0.0.2.0 DKC0 RZ57

Show all devices starting with dk (all SCSI disks).

5. >>> show device mk # Show SCSI tape drives.
mke0.0.0.4.0 MKE0 TLZ04
>>>

Show all devices starting with mk (all SCSI tapes).

Related Commands

None

Console Commands 3–87



show hwrpb

show hwrpb — display HWRPB

Display the address of the Alpha HWRPB.

Syntax

show hwrpb

Arguments

None.

Options

None.

Examples

1. >>> show hwrpb
HWRPB is at 2000
>>>

3–88 Console Commands



show led

show led — show LED character

This command will show the current character being displayed by the front panel
LED.

Syntax

show led [-hex]

Arguments

None.

Options

-hex
Display the contents of the LED register. If you do not specify -hex, the character
being displayed is echoed to the console.

Examples

1. >>> show led

Show the current character being displayed.

2. >>> show led -hex

Show the contents of the LED register.

Related Commands

set led

Console Commands 3–89



show map

show map — display memory map

Display the current system virtual memory map.

Note

The map will be empty after all console initialization. By typing "boot
-halt" at the console prompt, the Page Table Entries will be filled in.

Syntax

show map

Arguments

None.

Options

None.

Examples

1. >>> show map
pte 00001020 v FFFFFC0902408000 p 00000000 V KR SR FR FW
pte 00001028 v FFFFFC090240A000 p 00000000 V KR SR FW
pte 00001020 v FFFFFC0902C08000 p 00000000 V KR SR FR FW
pte 00001028 v FFFFFC0902C0A000 p 00000000 V KR SR FW
pte 00001020 v FFFFFC0B02408000 p 00000000 V KR SR FR FW
pte 00001028 v FFFFFC0B0240A000 p 00000000 V KR SR FW
pte 00001020 v FFFFFC0B02C08000 p 00000000 V KR SR FR FW
pte 00001028 v FFFFFC0B02C0A000 p 00000000 V KR SR FW
>>>

3–90 Console Commands



show mode

show mode — display the current powerup mode for diagnostics

This command displays the mode setting. The mode values fastboot and
nofastboot control the level of testing done at powerup or console initialization.
The fastboot value is displayed when the console executes minimal diagnostics at
powerup. Full diagnostics are run when the nofastboot value is set.

Syntax

show mode

Arguments

None.

Options

None.

Examples

1. >>> show mode
Console is in fastboot mode
>>>

Displays the mode setting.

Related Commands

None

Console Commands 3–91



show_log

show_log — display error log information from NVRAM

This command is used to display console-detected fault information that was
previously stored in the Error Log area of NVRAM.

With no command-line qualifiers or options, the most-recent fault is displayed.

Note that console error logging is completely independent of the OS error logging.

Syntax

show_log

" -n [count]
-all
-new

#

Arguments

None.

Options

-n count
Displays count most-recent faults logged into the NVRAM Error Log area. Count
defaults to 1 if it is omitted.

-all
Displays all faults logged into the NVRAM Error Log area. All faults are marked
as seen so that new faults can be easily displayed using the -new Option. This
command always displays all logged faults.

-new
Displays all new faults logged into the NVRAM Error Log area; displays all faults
that have not been previously displayed by the show_log -all command.

Examples

1. >>> show_log

=============================== F A U L T #1 ================================

Time of Error: 13:08:39 9-AUG-1994
Diagnostic : Interval Timer
Pass Count : 1 Test Number: 4 Failing Point: 18
Error Message: Interrupt not invoked and should have been
>>>

By default, the most-recent fault is displayed.

2. >>> show_log -n 3

=============================== F A U L T #1 ================================

Time of Error: 13:10:06 9-AUG-1994
Machine Check: IOC Controller
SCB Vector : 67
IOC Status 0 : 0400031604000316
IOC Status 1 : 0400000004000000
PC : 0000000000064c40

=============================== F A U L T #2 ================================

3–92 Console Commands



show_log

Time of Error: 13:08:39 9-AUG-1994
Diagnostic : Interval Timer
Pass Count : 1 Test Number: 4 Failing Point: 18
Error Message: Interrupt not invoked and should have been

================================================================================

No more faults found

================================================================================

>>>

Displays the 2 most-recent faults since they are the only ones logged into
NVRAM.

Related Commands

clear_log

Console Commands 3–93



sleep

sleep — suspend execution

The sleep command suspends execution of a console process for a specified
number of seconds. It temporarily wakes up every second to check for and
kill pending bits.

Syntax

sleep [-v] time_in_secs

Arguments

time_in_secs
Specifies the number of seconds to sleep. The default is 1 second.

Options

-v
Specifies that the value supplied is in milliseconds. The default is 1000 (1
second).

Examples

1. >>> (sleep 10; echo hi there)&
>>>
(10 seconds expire...)
hi there

Sleep for 10 seconds then execute next command (echo).

2. >>> sleep -v 20

Sleep for 20 milliseconds.

Related Commands

None

3–94 Console Commands



sort

sort — sort a file

Sort the lines of a file in lexicographic order and write the results to stdout. The
size of the file that sort can handle is limited by the size of memory.

Syntax

sort file

Arguments

file
Specifies the file to be sorted.

Options

None.

Examples

1. >>> echo > foo ’banana
_>pear
_>apple
_>orange’

Create file, foo, with 4 lines.

2. >>> sort foo
apple
banana
orange
pear

Sort file, foo, and send output to the console.

Console Commands 3–95



sp

sp — set priority

Modifies the priority of a process. Changing the priority of process will impact
the behavior of the process and the rest of the system.

Syntax

sp process_id new_priority

Arguments

process_id
Specifies the PID of the process to be modified.

new_priority
Specifies the new priority for the process. Priority values range from 0 to 7 where
7 is the highest.

Options

None.

Examples

1. >>> memtest -p 0 &
>>> ps | grep memtest
00000025 001a9700 2 23691 00000001 0 memtest ready
>>> sp 25 3
>>> ps | grep memtest
00000025 001a9700 3 125955 00000001 0 memtest ready
>>>

Raises the priority of process 25 from 2 to 3.

Related Commands

ps, sa

3–96 Console Commands



start

start — start program

Starts program execution at the specified address or starts drivers.

Syntax

start [-drivers [ device_prefix ]] [ address ]

Arguments

address
Specifies the PC address at which to start execution.

Options

-drivers [ device_prefix ]
Specifies the name of the device or device class to stop. If no device prefix is
specified, then all drivers are started.

Examples

1. >>> start 400

Start program execution at address 400.

2. >>> start -drivers

Start all the drivers in the system.

Related Commands

continue, init, stop

Console Commands 3–97



stop

stop — stop CPU or device

Stops the processor or the specified device.

Syntax

stop [-drivers [ device_prefix ]] [ processor_num ]

Arguments

processor_num
Specifies the processor to stop. If included, must be 0.

Options

-drivers [ device_prefix ]
Specifies the name of the device or the device class to stop. If no device prefix is
specified, then all drivers are stopped.

Examples

1. >>> stop

Stops the processor.

Related Commands

continue, init, start

3–98 Console Commands



update

update — update flash ROMs on the system

Loads new firmware into the flash ROMs (FEPROMs). In order to modify the
flash ROMs, DIP switch #2 on the AXPvme module must be closed. Refer to the
Section 1.1.3.15 for the location of DIP switches.

The update process proceeds as follows:

1. The image is loaded from the specified device into system memory.

2. If the target specified is console, consistency checks are applied to the loaded
image to ensure a valid console has been loaded. If the target specified is
userflash, no checks are performed on the loaded image.

3. Once a valid image is loaded into memory, the user is prompted to confirm
continuation of the update.

4. The FEPROMS are then re-programmed.

There are three steps to the programming process:

1. All Flash ROM bytes are programmed to ’00’.

2. All Flash ROM bytes are then erased. The erased state is ’FF’.

3. All Flash ROM bytes are reprogrammed to the values in the image loaded
into memory.

Each byte of the FEPROM is verified in each of the three steps. Each step
provides for a certain number of re-tries to perform the operation successfully on
a particular byte of the FEPROM. If a failure occurs in any of the steps, an error
message is printed to the console.

If the programming operation is successful, a success message is printed on the
console.

Note that you must reset or cycle power on the system to run the new image in
the FEPROMs. Until so, the previous console image is executing out of memory.

Note

Be sure to disable the FEPROM writing after completing the update
process by setting switch 2 to the open position.

Syntax

update [-file filename ] [-protocol transport ] [-device source_device ] [-target target_name ]

Arguments

None.

Options

-file filename
Specifies the name of the new FEPROM update image.

Console Commands 3–99



update

-protocol transport
Specifies the source transport protocol Valid protocols are MOP and TFTP. See
the BOOT command for additional information on using the tftp protocol.

-device
Specifies the device from which to load the new FEPROM update image file from.
Currently, the only valid device is ewa0.

-target device
Specifies the device which contains the FEPROMs to be upgraded. Valid targets
are console and userflash.

Examples

1. >>> update -file bl12 -device ewa0 -protocol mop -target console
FEPROM UPDATE UTILITY
-----> CAUTION <-----

EXECUTING THIS PROGRAM WILL CHANGE YOUR CURRENT ROM!

Do you really want to continue [Y/N] ? : y

DO NOT ATTEMPT TO INTERRUPT PROGRAM EXECUTION!
DOING SO MAY RESULT IN LOSS OF OPERABLE STATE.

The program will take at most several minutes.

Programming flash device at pcimem:0, with image at pmem:f0020
...
Programming flash device at pcimem:40000, with image at pmem:130020
...
Verifying...

Update successful
>>>

The example above shows how to do an update using the MOP protocol.

2. >>> update -fi //usr//local//bootfiles//bl12 -dev ewa0 -tar console -pro tftp
update -path tftp://usr//local//bootfiles//bl12/ewa0 -target console

FEPROM UPDATE UTILITY
-----> CAUTION <-----

EXECUTING THIS PROGRAM WILL CHANGE YOUR CURRENT ROM!

Do you really want to continue [Y/N] ? : y

DO NOT ATTEMPT TO INTERRUPT PROGRAM EXECUTION!
DOING SO MAY RESULT IN LOSS OF OPERABLE STATE.

The program will take at most several minutes.

Programming flash device at pcimem:0, with image at pmem:f0020
...
Programming flash device at pcimem:40000, with image at pmem:130020
...
Verifying...

Update successful
>>>

The example above shows how to do an update using the TFTP protocol. Note
that the ewa0_bootp_server environment variable must be set to the Internet
address of the server.

3–100 Console Commands



4
Environment Variables

4.1 Overview
Environment variables provide a simple extensible mechanism for managing
complex states. Such states may be variable length, may change with system
software, may change as a result of console state changes, and may be established
by the console presentation layer. Environment variables may be read, written,
or saved.

Environment variables consist of an identifier (ID) and a byte stream value
maintained by the console. The Alpha Architecture Reference Manual (ARM)
defines three classes of environment variables:

• IDs 0-3F

Common to all implementations

• IDs 40-7F

Specific to a given console implementation

• IDs 80-FF

Specific to system software

The value, format, and size of environment variables is dependent upon the
environment variable and on the console implementation. The size is specified
in bytes and the value consists of an ASCII string or a hexadecimal value.
Operating system software uses console-provided callback routines to access
environment variables. Each environment variable ID is resolved and the value
of the associated environment variable is returned.

Environment variables can be in a number of locations as indicated by
Figure 4–1. Default values for the environment variables are stored in flash
EPROM. These default values are loaded when the console firmware is copied
into main memory during initialization. Values for nonvolatile environment
variables are stored in NVRAM, and will also be copied over during initialization.
An NVRAM copy of any particular environment variable takes precedence over
the flash EPROM copy.

Environment variables can be changed using the console set command (see
Chapter 3). This command will change the copies in main memory and in
NVRAM. Operating system software can manipulate environment variables by
using the GET_ENV and SET_ENV callback routines, which manipulate the
copies in main memory. SAVE_ENV will copy the current values in memory,
which will be copied to NVRAM. The environment variables in NVRAM are
protected by a checksum, which is recalculated every time a variable is changed.
If a problem is detected in the checksum, the console reverts to using default
values.

Environment Variables 4–1



Figure 4–1 Storage Locations of Environment Variables

FEPROM

Defaults
Main
Memory

Init

Current
Values

Nonvolatile

SAVE_ENV

NVRAM
Init

4.2 Application-Independent Environment Variables
The Alpha ARM defines a list of environment variables that are common to all
implementations and must be supported by the console (see Table 4–1). These
environment variables can be accessed from the console using the SET and
SHOW commands and can be accessed from system software using the SET_ENV
and GET_ENV callback routines. The ID for this class of environment variable is
between 0 and 3F (hexadecimal).

Table 4–1 ARM Defined Environment Variables

Name Meaning

auto_action Defines console action following an error, halt, or powerup. Defined
values are BOOT, HALT, and RESTART. The default value is HALT.

boot_dev Device list used by the last, or currently in progress, bootstrap
attempt. The console modifies boot_dev at console initialization and
when a bootstrap is initiated by a BOOT command. The value of
boot_dev is set from the device list specified by the BOOT command
or, if no device list is specified, bootdef_dev. The console uses boot_
dev without change on all bootstrap attempts that are not initiated
by a BOOT command.

bootdef_dev Device list from which bootstrapping is to be attempted when no
path is specified by a BOOT command.

booted_dev Devices used by the last or currently in-progress bootstrap attempt.
Value is one of the devices in the boot_dev list.

boot_file File name to be used when a bootstrap requires a file name and
when bootstrap is not the result of a BOOT command or when no
file name is specified on a BOOT command. The console passes the
value between the console presentation layer and system software
without interpretation.

booted_file File name used by the last or currently in-progress bootstrap
attempt. The value is derived from boot_file or the current BOOT
command. The console passes the value between the console
presentation layer and system software without interpretation.

(continued on next page)

4–2 Environment Variables



Table 4–1 (Cont.) ARM Defined Environment Variables

Name Meaning

boot_osflags Additional parameters to be passed to system software when the
bootstrap is not the result of a BOOT command or when none
is specified on a BOOT command. The console passes the value
between the console presentation layer and system software without
interpretation. The following parameters are used with the DEC
OSF/1 operating system (the default is NULL):

a Autoboot. Boots /vmunix from bootdef_dev, goes to
multiuser mode. Use this for a system that should come
up automatically after a power failure.

s Stop in single-user mode. Boots /vmunix to single-user mode
and stops at the #(root) prompt.

i Interactive boot. Request the name of the image to boot
from the specified boot device. Other flags such as -kdebug
(to enable the kernel debugger) may be entered using this
option.

D Full dump implies "s" as well. By default, if DEC OSF/1
V2.1 fails, it completes a partial memory dump. Specifying
"D" forces a full dump at system failure.

booted_osflags Additional parameters passed to system software during the last or
currently in-progress bootstrap attempt. The value is derived from
boot_osflags or the current BOOT command. The console passes the
value between the console presentation layer and system software
without interpretation.

boot_reset Indicates whether a full system reset is performed in response to
an error halt or boot. Defined values are ON and OFF. The default
value is OFF.

dump_dev Device to write operating system crash dumps.

enable_audit Indicates whether audit trail messages are to be generated during
bootstrap. Defined values are ON and OFF. The default value is
ON.

license Software license in effect. Define values are MU—multi-user system
and SU—single-user system.

char_set Current console terminal character-set encoding. The default value
is 0, ISO-LATIN_1. Other char_sets have yet to be defined in the
ARM.

(continued on next page)

Environment Variables 4–3



Table 4–1 (Cont.) ARM Defined Environment Variables

Name Meaning

language Current console terminal language (integer ID). The defined values
are:

00 none (cryptic)
30 Dansk
32 Deutsch
34 Deutsch (Schweiz)
36 English (American)
38 English (British/Irish)
3A Espanol
3C Francais
3E Francais (Canadian)
40 Francais (Suisse Romande)
42 Italiano
44 Nederlands
46 Norsk
48 Portugues
4A Suomi
4C Svenska
4E Vlaams
Other reserved

language_name ASCII string of the current console terminal language code defined
in the language environment variable.

tty_dev Current console terminal unit. Indicates which entry of the CTB
Table corresponds to the actual console terminal. The default value
is 0 (30 hex).

4.3 Diagnostic Environment Variables
Table 4–2 lists the diagnostic-related environment variables that are not required
by the Alpha ARM, but which are implemented on the AXPvme platform.

Note

These values are volatile in that they will not be preserved across a reset
of any kind.

Table 4–2 Console Diagnostic Environment Variables

Name Meaning

d_bell Bell on error. The default is OFF.

d_cleanup Cleanup code executed at diagnostic end. The default value is ON.

d_complete Display diagnostic completion message. The default value is OFF.

d_eop Display end-of-pass messages. The default is OFF (disable).

d_group Diagnostic group to be executed. Defined values are FIELD, MFG, or
other (up to 32 characters). The default value is FIELD.

(continued on next page)

4–4 Environment Variables



Table 4–2 (Cont.) Console Diagnostic Environment Variables

Name Meaning

d_harderr Action following a hard error detection. The defined values are
CONTINUE, HALT, and LOOP. The default value is HALT.

d_oper Operator present. The default is OFF (no operator).

d_passes Diagnostic pass count. The defined values are 0 (run indefinitely) or a
user-defined value. The default is 1 pass.

d_report Level of information provided by the diagnostic error reports. The
defined values are SUMMARY, FULL, and OFF. The default value is
FULL.

d_softerr Action taken following a soft error detection. The defined values are
CONTINUE, HALT, and LOOP. The default value is CONTINUE.

d_startup Display diagnostic startup message. The default value is OFF (disable).

d_trace Display trace messages. The default value is OFF (disable).

4.4 Console-Specific Environment Variables
The following environment variables are specific to the AXPvme console.

4.4.1 Ethernet Environment Variables

Table 4–3 Ethernet Configuration Environment Variables

Name Meaning

ewa0_arp_tries Number of transmissions that are attempted before the ARP
protocol fails. Values less than 1 cause the protocol to fail
immediately. The default value is 3, which translates to an
average of 12 seconds before failing. Interfaces on busy networks
may need higher values.

ewa0_bootp_file Generic file name to be included in a BOOTP request. The BOOTP
server will return a fully qualified file name for booting. There is
no specified default file name.

ewa0_bootp_server Server name to be included in a BOOTP request. This can be set
to the name of the server from which the machine is to be booted,
or left empty.

ewa0_bootp_tries Number of transmissions that are attempted before the BOOTP
protocol fails. Values less than 1 cause the protocol to fail
immediately. The default value is 3, which translates to an
average of 12 seconds before failing. Interfaces on busy networks
may need higher values.

ewa0_def_ginetaddr Initial value for ewa0_ginetaddr when the interface’s internal
internet database is initialized from BOOTP (that is, ewa0_inet_
init is set to "bootp").

ewa0_def_inetaddr Initial value for ewa0_inetaddr when the interface’s internal
internet database is initialized from BOOTP (that is, ewa0_inet_
init is set to "bootp").

ewa0_def_inetfile Initial value for ewa0_inetfile when the interface’s internal
internet database is initialized from BOOTP (that is, ewa0_
inet_init is set to "bootp").

(continued on next page)

Environment Variables 4–5



Table 4–3 (Cont.) Ethernet Configuration Environment Variables

Name Meaning

ewa0_def_sinetaddr Initial value for ewa0_sinetaddr when the interface’s internal
internet database is initialized from BOOTP (that is, ewa0_inet_
init is set to "bootp").

ewa0_inet_init Determines whether the interface’s internal internet database is
initialized from NVRAM or from a network server (via the BOOTP
protocol). Defined values are NVRAM and the default bootp.

ewa0_loop_count Number of times each message is looped. The default value is
"0x3e8".

ewa0_loop_inc Amount that the message size is increased from message to
message. The default value is "0xa".

ewa0_loop_patt Type of data pattern to be used when doing loopback. Current
patterns are accessed by the following:

0xffffffff = All the patterns (default)
0 = All zeros
1 = All ones
2 = All fives
3 = All As
4 = Incrementing
5 = Decrementing

ewa0_loop_size Size of the loop data to be used. The default value is "0x2e".

ewa0_lp_msg_node Number of messages originally sent to each node. The default
value is "7".

ewa0_protocols Network protocol enabled for booting and other functions. Defined
values are "bootp", "mop" (default), and "bootp,mop". A null value
is equivalent to "bootp,mop".

ewa0_tftp_tries Number of transmissions that are attempted before the TFTP
protocol fails. Values less than 1 cause the protocol to fail
immediately. The default value is 3, which translates to an
average of 12 seconds before failing. Interfaces on busy networks
may need higher values.

4.4.2 Storage Environment Variables

Table 4–4 Storage Configuration Environment Variables

Name Meaning

ncr*_setup Defined values for "*" are 0, 1, 2, 3, or 4, corresponding to the storage
bus adapters A, B, C, D, or E, respectively.

4–6 Environment Variables



4.4.3 Console Configuration Environment Variables

Table 4–5 Console Configuration Environment Variables

Name Meaning

pal Versions of OpenVMS and OSF PALcode in the firmware.

pci_arb_mode PCI arbitration mode. This environment variable sets the PCI
arbitration scheme for the module. The value set in this environment
variable is written to the Module Configuration Register when the
value is set and during console initialization. The values 0, 1, 2 and 3
are valid. The list below shows the PCI arbitration priority assignment.
The following acronyms are used in this list: LCA—LCA processor,
NI—Network Interface, OPT—PCI mezzanine option, VME—PCI to
VMEbus interface, and SCSI—Small Computer System Interface.

0 = LCA, NI, SCSI, OPT, VME
1 = OPT, LCA, VME, NI, SCSI
2 = VME, LCA, OPT, NI, SCSI
3 = VME, LCA, OPT, NI, SCSI

pci_park_dev PCI park device. This environment variable sets the PCI parking
scheme for the module. The value set in this environment variable is
written to the Module Configuration Register when the value is set and
during console initialization. The values 0, 1, 2, and 3 are valid. The
list below shows the park device selection.

0 = Park with LCA processor
1 = Park with Network Interface
2 = Park with PCI mezzanine option
3 = Park with VME

sys_serial_num The system serial number set by manufacturing.

tt_baud This environment variable is used to change the baud rate of the
UARTs; the console UART (channel A) and the auxiliary UART
(channel B) are set to the same value. The baud rate field of the
Console Terminal Block (CTB, a portion of the HWRPB) is updated,
too. Once the baud rate is changed using the set tt_baud command,
the console terminal’s baud rate must then be updated to the new baud
rate setting. Valid values for this environment variable are: 300, 600,
1200, 2400, 4800, 9600, and 19200.

version Version of the console code firmware.

vme_config VME setup mode. This environment variable is used by the operating
systems (VxWorks and OSF) for storing VME configuration information
for the initialization of the VME corner. Refer to the VxWorks and OSF
technical documentation for more information.

vme_a32_base Base address of VMEbus A32 space.

vme_a32_size Size of A32 VMEbus address space.

vme_a24_base Base address of VMEbus A24 space.

vme_a24_size Size of A24 VMEbus address space.

vme_a16_base Base address of VMEbus A16 space.

vx_bootline File name used for VxWorks bootstrap.

Environment Variables 4–7





5
Diagnostics

This chapter describes the built-in ROM-based diagnostics. These comprise both
power-up self-test diagnostics and extended diagnostics.

5.1 Power-up Self-Test
When you turn on the power or press the reset switch, the AXPvme module runs
its power-up self-test (POST). The module first runs a series of tests stored in the
serial ROM (SROM). This code is loaded directly into the instruction cache on the
processor chip over an internal serial line. The code is then executed from the
instruction cache. The SROM tests display their test number on the LED display.

The module then runs a series of console code tests that are stored in flash ROM.
The code for these tests is loaded into main memory and executed. These tests
display their test names and results on the console terminal.

5.2 Miscellaneous Diagnostic Hooks
A test pattern of 4 bytes is present at the end of the console image stored in the
flash devices. Table 5–1 details the address and corresponding byte contents.
Accessing these test patterns verifies many hardware items; including PCI bus,
Intel SIO setup, and the flash device.

Table 5–1 Test Patterns in Flash

PCI Memory Address Byte Value

0x7FFDC 0xFF

0x7FFDD 0x00

0x7FFDE 0xAA

0x7FFDF 0x55

5.3 Diagnostic Test Descriptions
5.3.1 Available Console and SROM Diagnostics

Table 5–2 shows all the Console and SROM diagnostic tests and the commands
used to invoke them. The majority of these tests can be user invoked at the
console prompt.

Diagnostics 5–1



Table 5–2 Console Diagnostic Tests

HW Under Test Command

Flash ROMs

- Flash ROM Test flash_diag -g mfg -t 1

- Flash ROM Test flash_diag -g mfg -t 2*

- Flash ROM Test flash_diag -g mfg -t 3*

- Flash ROM Test flash_diag -g mfg -t 4*

- Flash ROM Test flash_diag -g mfg -t 5*

* : Erases and Restores Flash

Memory and Cache

- Bcache Diagnostic Exerciser memecc_diag

- Memory ECC/DETECT Test bcache_diag

- Memory Exerciser Test memtest or mem_ex

- Memory POST Test memdiag

Network Interface

- DECchip 21040 NI Internal LPBCK niil_diag -t 1

- DECchip 21040 NI External LPBCK niil_diag -t 2

- DECchip 21040 NI CSR Test nicsr_diag -t 1

- DECchip 21040 NI CSR Test nicsr_diag -t 2

- DECchip 21040 NI CSR Test nicsr_diag -t 3

NVRAM + TOY

- NVRAM Testing ds1386_diag -t 1

- NVRAM Testing ds1386_diag -t 2

- NVRAM Testing ds1386_diag -t 3

- TOY Register Testing ds1386_diag -t 4

- TOY Register Testing ds1386_diag -t 5

PCI Bus

- Module CNFG Reg modcnfg_diag -t 1

- Module CTRL Reg modctrl_diag -t 1

- Module Display CTRL Reg display_diag -t 1

- Module Display CTRL Reg display_diag -t 2

- Module Reset Reason Reg wdog_diag -t 1

- PCI Option Sizer (Mezzanine) Test

SCSI

- SCSI Device Test ncr810 -t 1

- SCSI Device Test ncr810 -t 2

(continued on next page)

5–2 Diagnostics



Table 5–2 (Cont.) Console Diagnostic Tests

HW Under Test Command

- SCSI Device Test ncr810 -t 3

- SCSI Device Test ncr810 -t 4

- SCSI Device Test ncr810 -t 5

- SCSI Device Test ncr810 -t 6

- SCSI Device Test ncr810 -t 7

- SCSI Device Exer exer dk

Timers

- Heartbeat Timer hbeat_diag -t 1

- Interval Timer i8254 -t 1

- Interval Timer i8254 -t 2

- Interval Timer i8254 -t 3*

- Interval Timer i8254 -t 4*

- Interval Timer i8254 -t 5

- Interval Timer i8254 -t 6

- Watchdog Timer wdog_diag -t 1

* : Requires external loopback connector
configured as shown in Figure 5–2.

UART

- Internal Loopback Test z8530 -t 1

- External Loopback Test z8530 -t 2*

- Channel B Interrupt Test z8530 -t 3

* : Requires external loopback connector
(spoon)

VME Interface Tests

- VIP PCI Configuration Register Test vip_diag -t 1

- VIP Register Write/Read Test vip_diag -t 2

- VIC Register Write/Read Test vip_diag -t 3

- Scatter/Gather RAM Test vip_diag -t 4

- VIP/VIC Local Interrupt Test #1 vip_diag -t 5

- VIP/VIC Local Interrupt Test #2 vip_diag -t 6

- Miscellaneous VIP BESR bits Test vip_diag -t 10

SROM Tests

- Console UART Test

- Dynamic RAM Test

(continued on next page)

Diagnostics 5–3



Table 5–2 (Cont.) Console Diagnostic Tests

HW Under Test Command

- External Backup Cache Test

- Flash ROM Unload Test

- Internal Data Cache Test

- SIO I/O Bus Test

MISC

- Enet Hardware Addr Test enet_diag -t 1

- Enet Hardware Addr Test enet_diag -t 2

5.3.2 SROM Diagnostic Test Descriptions
This section details the tests that are executed by the SROM during the system
initialization testing.

5–4 Diagnostics



SROM System I/O Device Test

SROM System I/O Device Test

The Intel 82378 System I/O (SIO) device provides a bridge from the PCI bus
to the 8-bit ISA I/O bus. This diagnostic first confirms the presence of the SIO
device on the PCI bus. It initializes the SIO to allow PCI-to-I/O bus transactions.

Description

After the device’s PCI identification (0x0484) has been verified by reading it
from PCI configuration space, the I/O Clock Divisor register is initialized to
produce an 8.33 MHz I/O clock from the PCI clock frequency. The I/O Controller
Recovery Timer register is initialized to set the number of clock cycles between
back-to-back I/O bus cycles.

LED Display Test Number: 8

Diagnostics 5–5



SROM Console UART Test

SROM Console UART Test

This test checks the accessibility of the 8530 console Universal Asynchronous
Receive/Transmit (UART) chip by writing and reading an internal register.

Description

LED Display Test Number: 7

Miscellaneous Notes

1. It is assumed that PALcode will properly initialize the UART before the
console requires it.

5–6 Diagnostics



SROM Internal Data Cache Test

SROM Internal Data Cache Test

This test verifies the 8 KB internal data cache on the CPU chip by ‘‘forcing hits’’
to the cache.

Description

The Data Cache Force Hit bit in the Abox_Ctl internal CPU register is set,
forcing all data-stream references to hit in the data cache. Several data patterns
are written, read, and verified from the 8 KB data cache. The Data Cache Force
Hit bit is then disabled.

LED Display Test Number: 6

Miscellaneous Notes

All accesses to data cache are quadword operations.

Diagnostics 5–7



SROM Dynamic RAM Test

SROM Dynamic RAM Test

This diagnostic checks the operation of the first 8 MB of Dynamic RAM (DRAM)
memory into which the console code will be loaded.

Description

This test first writes the quadword address of each memory location to itself. The
address-on-address pattern is then verified. A test of pattern of all A’s is then
written and verified; followed by a test pattern of all 5’s. In all test cases, only
the first 8 MB’s of memory is tested.

This test covers stuck-at-bits, adjacent bit interactions, and address lines stuck at
0 or 1.

LED Display Test Number: 5

Miscellaneous Notes

1. All accesses to memory are quadword operations.

2. It is assumed that the internal data cache and the external backup cache
have been disabled prior to this test executing at power-on or reset.

3. Since 8 MB of memory is first written, followed by reads, the memory refresh
circuitry is implicitly tested.

5–8 Diagnostics



SROM External Backup Cache Test

SROM External Backup Cache Test

This test does minimal verification of the interaction of external backup cache and
system DRAM. The console test provides additional diagnostics and exercisers.

Description

Due to code size constraints of the SROM, this test verifies the operation of the
backup cache and system DRAM by doing only a minimum number of reads and
writes to memory.

The test writes a data pattern to the first 512 KB of memory through the external
backup cache. The same locations are then read and the data is compared.

Writing and reading 512 KB of memory provides some degree of confidence that
Backup Cache is functioning properly (that is, cache block allocation, victim data
writes to DRAM, and so forth are working).

LED Display Test Number: 3

Miscellaneous Notes

1. This test assumes that internal data cache has been enabled prior to invoking
this test.

2. This test is invoked only when backup cache is present.

Diagnostics 5–9



SROM Flash EPROM Unload Test

SROM Flash EPROM Unload Test

This diagnostic reads the console code from flash EPROMs and stores it in DRAM.
A checksum of the data read from flash EPROMs is computed. If the computed
checksum compares correctly, execution is transferred to the console code now
loaded in DRAM.

Description

LED Display Test Number: 1

Miscellaneous Notes

Since the flash EPROMs are on the 8-bit I/O bus, flash EPROM reads are byte
operations.

5–10 Diagnostics



5.3.3 Console Power On Self Test Descriptions
This section details the power on self tests (POST) which are run during system
initialization.

Diagnostics 5–11



POST NVRAM Diagnostic

POST NVRAM Diagnostic

This test verifies the module’s NVRAM. It performs a data integrity test, through
power cycles, and a write/read/compare of specific NVRAM locations used for
diagnostics. It also checks for uninitialized NVRAM by verifying the stored
checksum with the calculated.

Description

This test is executed at the beginning of console boot before the console drivers
and devices have been initialized.

Test Name: None; executes on powerup

5–12 Diagnostics



POST Memory Diagnostic

POST Memory Diagnostic

This test verifies the system memory. It runs with ECC enabled. If the test
detects a memory error that cannot be corrected with ECC, it logs the error in the
error logging area of NVRAM.

Description

See also memtest in Chapter 3.

Note

IMPORTANT: This test is dependent upon the console ‘‘mode’’ flag.
Setting mode to fastboot will evoke a quick verify test of the memory, and
nofastboot will evoke a full test of memory.

This test is executed at the beginning of console boot before the console drivers
and devices have been initialized.

The test also sets up a memory error bitmap in the Console area tested by SROM.
Each bit in the bitmap represents an 8 KB page of memory. A ‘‘1’’ bit means that
the page of memory has no errors. A ‘‘0’’ bit means that the page was not tested,
or had one or more ECC correctable errors, or had one or more non-correctable
errors.

This test provides the following coverage:

• Memory bits: Stuck bits, bit transition fault, or bit coupling fault

• Decoder logic: An address selects no memory, two or more addresses select
the same memory cell, or one address selects more than one cell.

• Sense amplifier logic: Stuck fault or coupling fault.

• Component and path coverage: The CPU memory control logic, etch from
the CPU to the daughter card connectors, etch from the CPU backup cache
control to the backup cache and from backup cache to the memory bus.
Note that the daughter card is assumed good since it is separately tested in
manufacturing.

Test Name: None; executes on powerup.

Miscellaneous Notes

1. ECC is verified in hardware and correctable faults raise an exception but are
dismissed by the PALcode ECC exception handler. The memory test will fail
on data miscompare, non-existent memory, uncorrected ECC to memory, or
backup cache.

2. Test prerequisite: The ECC must be properly initialized by the console.

3. Powerup test only. For additional memory tests see memtest in Chapter 3.

Diagnostics 5–13



POST Memory Diagnostic

Figure 5–1 Memory Regions

Console
Low Heap

−
−

Memory Bitmaps
representing tested
pages.

−
−

O/S Heap

Console
High Heap

5–14 Diagnostics



5.3.4 Console Diagnostic Test Descriptions
This section details the tests that are available to the console which might be run
during system initialization testing or could be run from the console.

Diagnostics 5–15



Flash EPROM Tests

Flash EPROM Tests

These diagnostics test the four flash EPROMs, decoders, the programmed console
image, and printed circuit board module etch.

Flash Console Image Verification Test

This diagnostic verifies the console image programmed into the first two flash
EPROMs. First, it verifies the flash signature in the second flash EPROM then it
computes the checksum and compares it to the stored checksum. Isolation of the
failing flash EPROM cannot be determined from this diagnostic.

Console Command: flash_diag -t 1

Command line parameters:

• -dd: print detailed test information on each pass.

Miscellaneous Notes

1. The flash EPROM programming power does not have to be enabled for this
test.

2. This test is intended for power-up self-test.

Individual Flash Device Tests

These diagnostics test all locations of a specified flash device (256 KB) for stuck
bits including a simple address line test pattern.

Command
Flash Device
Tested PCI Memory Address Space

flash_diag -t 2 0 0x00000 - 0x3ffff
flash_diag -t 3 1 0x40000 - 0x7ffff
flash_diag -t 4 2 0x80000 - 0xcffff
flash_diag -t 5 3 0xc0000 - 0xfffff

Note

If power is lost during testing or the test aborted the original contents
of the device will be lost. This may lead to loss of operable state of the
module if the console image in flash is compromised.

Console Command: flash_diag -t 2,3,4,5

Command line parameters:

• -dd: print detailed test information on each pass.

• -qv: quick verify, only test pattern of all 1’s is used on tests 2,3,4,5

Miscellaneous Notes

1. The flash EPROM programming power must be enabled for this test (DIP
switch #2 = Closed)

5–16 Diagnostics



Flash EPROM Tests

2. The flash parts are spec’ed for 10,000 writes of the device. Each pass of this
test writes the device 6 times, so extended use of this test may degrade the
reliability of these parts.

3. This is intended to be an extended diagnostic.

Diagnostics 5–17



Module Display Control Register/LED Tests

Module Display Control Register/LED Tests

These diagnostics test the integrity of the Module Display Control Register,
the LED display, decoders, and printed circuit board module etch. The Module
Display register is read/write.

Module Display Register Data Line Test

This diagnostic tests the data lines between the Module Display Control Register
and the LED. This test is a visual test and requires operator interaction. The
test displays certain characters chosen to use each of the data lines and LED
segments. The operator must type the character on the LED display. The test
finishes by illuminating all LED segments in normal luminescence, then bright.

The characters chosen are as follows:

This Display . . . Tests this Hardware . . .

U Data lines 6, 4, 2, and 0 for stuck low, and 5, 3, and 1 for
stuck high

* Data lines 6, 4, 2, and 0 for stuck high, 5, 3, and 1 for
stuck low

All segments normal,
bright, then blank

Data line 7 and LED segments.

Console Command: display_diag -t 1

Command line parameters:

• -dd: print detailed test information on each pass.

Miscellaneous Notes

1. This test is intended to be an extended test.

2. This test requires operator assistance.

Module Display Register Test

This diagnostic performs bit pattern tests on the Module Display Control register
to look for stuck bits.

Console Command: display_diag -t 2

Command line parameters:

• -dd: print detailed test information on each pass.

• -qv: quick verify, only test pattern of all 1’s is used on tests 2,3,4,5

Miscellaneous Notes

1. This test is intended to be a power-up self-test.

5–18 Diagnostics



Module Control Register Test

Module Control Register Test

This diagnostic tests the integrity of the Module Control Register, decoders and
printed circuit board module etch. This register is read/writable.

Module Control Register Test

This diagnostic writes, reads and verifies several bit patterns to/from the Module
Control Register in trying to determine stuck bits.

Console Command: modctrl_diag -t 1

Command line parameters:

• none

Miscellaneous Notes

1. This test is intended to be a power-up self-test.

Diagnostics 5–19



Heartbeat Timer Test

Heartbeat Timer Test

This diagnostic verifies that a heartbeat interrupt is generated at the correct
interval (1024 Hz) and is properly dismissed via the Module Clear Heartbeat
Register.

This test checks the following logic:

• Heartbeat timer and interrupt delivery mechanism

• Module Clear Heartbeat Register

Heartbeat Timer Test

Console Command: hbeat_diag -t 1

Command line parameters:

• -dd: print detailed test information on each pass.

Miscellaneous Notes

1. This is intended to be a power-up self-test diagnostic.

2. The test expects timer interrupts to be enabled. If they are not enabled an
interrupt count of zero will result.

3. This test can not be run concurrently with other tests.

5–20 Diagnostics



Interval Timer Tests

Interval Timer Tests

These diagnostics test the functionality of the 8254 Interval Timer chip and
surrounding external circuitry, including latches, programmable-array logic (PAL)
devices and printed circuit board module etch.

Since all three interval timers of the 8254 chip have different external
configurations, several tests are required for complete test coverage.

The intent of the tests is to verify that timers 0, 1 and 2 can generate a CPU
interrupt, if properly enabled, at the programmed frequency.

This test will require that both Timer 0 and 1 be properly programmed and
externally connected for successful operation.

Timer 2 Terminal Count Test

This test exercises Timer 2 with the timer interrupts enabled. In the AXPvme
design, the Gate input for Timer 2 is always enabled and the Clock input is
connected to a 10 MHz (100 ns period) clock source.

Timer 2 is programmed to Mode 0, Interrupt on Terminal Count. After the timer
is initially programmed to Mode 0 and loaded with a count value, the OUT output
is low and remains low until the internal count value reaches zero. When the
count value reaches zero, OUT output is asserted high and remains high until
Timer 2 is reprogrammed. The event of OUT transitioning from low to high
should generate a CPU interrupt, provided the Timer 2 Interrupt Enable bit is
set.

The interrupt service routine (ISR) invoked due to the timer generated interrupt
sets a global flag indicating the interrupt took place and that software was
dispatched to the correct point.

Console Command: i8254_diag -t 1

Command line parameters:

• none

Miscellaneous Notes

1. The Interrupt Enable bits for Timers 0 and 2 (bits 4 and 5 of the Interrupt
Status Register at address 0x4010) are not directly writable. Bit 4 is toggled
by writing to address 0x4010; bit 5 is toggled by writing to address 0x4014.
In both cases, the data written is Don’t Care.

2. A read of the Interrupt Status Register at address 0x4014 causes both
interrupt status bits (bits 0 and 1) to be cleared.

3. Due to hardware limitations on interrupt detection, the value programmed
into Timer 2 must be greater than 2.

4. See the Intel 8254 Interval Timer sheet for more details.

Diagnostics 5–21



Interval Timer Tests

Timer 2 Square Wave Test

This test exercises Timer 2. In the AXPvme design, the Gate input for Timer 2
is always enabled and the Clock input is connected to a 10 MHz (100 ns period)
clock source.

Timer 2 is programmed to Mode 3, Square Wave Mode. After the timer is initially
programmed for Mode 3 and then loaded with a count value, the OUT output
will produce a continuous, square wave output whose period is equal to the count
value multiplied by the period of the CLOCK input. The count values are chosen
such that they check stuck NDATA lines.

The event of OUT transitioning from low to high should generate a CPU
interrupt, provided the Timer 2 Interrupt Enable bit is set.

The interrupt service routine (ISR) invoked due to the timer generated interrupt
increments an interrupt counter and sets a global flag indicating the interrupt
took place and that software was dispatched to the correct point. The test verifies
that the interrupt count is within a certain range, based on the count value
the timer was programmed with and the duration of time that interrupts were
enabled.

Console Command: i8254_diag -t 2

Command line parameters:

• none

Miscellaneous Notes

1. The Interrupt Enable bits for Timers 0 and 2 (bits 4 and 5 of the Interrupt
Status Register at address 0x4010) are not directly writable. Bit 4 is toggled
by writing to address 0x4010; bit 5 is toggled by writing to address 0x4014.
In both cases, the data written is Don’t Care.

2. A read of the Interrupt Status Register at address 0x4014 causes both
interrupt status bits (bits 0 and 1) to be cleared.

3. Due to hardware limitations on interrupt detection, the value programmed
into Timer 2 must be greater than 2.

4. See the Intel 8254 Interval Timer sheet for more details.

3 Timers Loopback Test

This test exercises Timer 2, Timer 1, and Timer 0. In the AXPvme design, the
Gate input for Timer 2 and Timer 1 is always enabled and the Clock input is
connected to a 10 MHz (100 ns period) clock source. Timer 0 accepts its input
through a P2 loopback connector which the outputs of Timers 1 and 2 are tied to.
Timer 2 is the Gate input and Timer 1 provides the Clock.

This test essentially emulates the OSF Realtime Time Provider and Slave scheme
found in the Real Time Clock and Interval Device Driver functional specification.

Note

IMPORTANT: A VMEbus P2 loopback connector is required. See
Figure 5–2, for a description of the loopback connections.

5–22 Diagnostics



Interval Timer Tests

Note that using the -lp qualifier enables the timers indefinitely, making the
module the Master Time Provider for Test #4.

Timer 2 and Timer 1 are programmed to Mode 3, Square Wave Mode. Timer
0 is programmed to Mode 1. After the timers are initially programmed with
the appropriate mode and then loaded with a count value, the OUT output will
produce a continuous, square wave output whose period is equal to the count
value multiplied by the period of the CLOCK input. In this test Timer 2 provides
a Major Clock which basically provides the start time of Timer 0, and Timer 1
produces a much faster Clock called the Minor Clock, which will control the rate
that Timer 0 counts down.

Timer 0 is the only Interrupt that is enabled during this test. The event of OUT
transitioning from low to high should generate a CPU interrupt.

The interrupt service routine (ISR) invoked due to the timer generated interrupt
increments an interrupt counter and sets a global flag indicating the interrupt
took place and that software was dispatched to the correct point. The test verifies
that the interrupt occurs and that no more that one occurs per Major Clock cycle.

Console Command: i8254_diag -t 3

Command line parameters:

• -np: no print qualifier; if specified no P2 connector message is printed

• -lp: prevents timers from being stopped at the end of the test; required before
invoking Test #4.

Timer 0 Loopback Test

This test exercises only Timer 0. Timer 0 accepts its Clock and Gate input from
the P2 loopback connector from Test 3 set up in a ‘‘Y’’ jumper configuration. Timer
2 and Timer 1 from the Master Timer Provider, or the module that is executing
Test 3 with -lp specified on the command line.

This test essentially emulates the Slave system found in the Real Time Clock and
Interval Device Driver functional specification.

This test enables only Timer 0 as done in Test 3 but does not use Timer 1 or
Timer 2. The Clock and Gate will both come from the Timers on the Master
AXPvme module. Timer 0 will interrupt when the Gate is received and its count
is decremented to 0.

Note

IMPORTANT: A VMEbus P2 loopback connector is required. See
Figure 5–2, for a description of the loopback connections.

Console Command: i8254_diag -t 4

Command line parameters:

• -np: no print qualifier; if specified no P2 connector message is printed

Miscellaneous Notes

1. Test #3 must be invoked, with the -lp qualifier, on the master module prior to
invoking this test.

Diagnostics 5–23



Interval Timer Tests

Timer 2 Interrupt Test

This test exercises Timer 2 with the timer interrupt disabled. In the AXPvme
design, the Gate input for Timer 2 is always enabled and the Clock input is
connected to a 10 MHz (100 ns period) clock source.

Timer 2 is programmed to Mode 0, Interrupt on Terminal Count. After the timer
is initially programmed to Mode 0 and loaded with a count value, the OUT output
is low and remains low until the internal count value reaches zero. When the
count value reaches zero, OUT output is asserted high and remains high until
Timer 2 is reprogrammed. The event of OUT transitioning from low to high
should set the Timer 2 status bit and not generate a CPU interrupt.

The interrupt service routine global flag is checked verifying that the interrupt
service routine was not invoked. The Timer 2 status bit is checked to indicate the
interrupt took place.

Console Command: i8254_diag -t 5

Command line parameters:

• none

Miscellaneous Notes

1. The Interrupt Enable bits for Timers 0 and 2 (bits 4 and 5 of the Interrupt
Status Register at address 0x4010) are not directly writable. Bit 4 is toggled
by writing to address 0x4010; bit 5 is toggled by writing to address 0x4014.
In both cases, the data written is Don’t Care.

2. A read of the Interrupt Status Register at address 0x4014 causes both
interrupt status bits (bits 0 and 1) to be cleared.

3. Due to hardware limitations on interrupt detection, the value programmed
into Timer 2 must be greater than 2.

4. See the Intel 8254 Interval Timer sheet for more details.

VIC Timer Interrupt Test

This test verifies the interrupt path of Timer 1 (Periodic RT Timer) through
the VIC. First, the test verifies that Timer 1 will not interrupt through the VIC
with the local interrupt disabled. Secondly, the test verifies that Timer 1 will
successfully interrupt through the VIC with the local interrupt enabled.

Timer 1 is programmed to Mode 3, Square Wave Mode. After the timer is initially
programmed to Mode 3 and loaded with a count value, the OUT output is low
and remains low until the internal count value reaches zero. When the count
value reaches zero, OUT output is asserted high and remains high until Timer 1
is reprogrammed.

A global interrupt count flag is checked verifying whether the interrupt service
routine was invoked.

Console Command: i8254_diag -t 6

Command line parameters:

• none

5–24 Diagnostics



Interval Timer Tests

Figure 5–2 Loopback Descriptions for Interval Timer Test 3 and 4

Configuration for Interval Timer test 3

To make a loopback for test 3 connect pin C15 to C18.  With a second jumper,
connect C16 to C17.

(VMEbus P2 connector)

18 17 16 15
B
A

For test 4, the MASTER signals must be the input for the second AXPvme
module.  Connect pins C15 and C18 of the master to C18 of the SLAVE.
With a second jumper, connect C16 and C17 of the MASTER to C17 of the
SLAVE.

(VMEbus P2 connector, SLAVE) (VMEbus P2 connector, MASTER)

18 17 C
B
A

18 17 16 15

row C

B
A

Configuration for Interval Timer test 4 (MASTER/SLAVE AXPvmes)

row C

Miscellaneous Notes

1. The local interrupt at the VIC must be programmed to edge-sensitive.

Diagnostics 5–25



DECchip 21040 Ethernet Controller Tests

DECchip 21040 Ethernet Controller Tests

These diagnostics verify that the internal and external loopback mechanisms
are properly operating in the DECchip 21040 Ethernet controller chip as well as
performing writes and reads to all configuration registers.

Ethernet Internal Loopback Test

The NI internal loopback test transmits Ethernet packets from the transmit ring
in main memory, loops them back at the MAC layer and returns them to the
receive ring in main memory. No traffic is put on the network cable.

The NI external loopback test transmits Ethernet packets from the transmit
ring in main memory and places them on the network medium (AUI cable). It
concurrently listens to the line which carries its own transmissions and returns
them to the receive ring in main memory. Received packets not identified as test
packets are discarded for the duration of the test.

Note

The external loopback test should not be run for long periods of time on
an open network. It generates substantial amounts of traffic and can
cause network performance degradation. The test will work just as well
with a terminated cable or AUI termination.

These two tests check the following logic respectively:

• The device’s internal logic up to but not including the Ethernet transmission
logic.

• The on-chip transmit/receive circuitry and the passive external components
that connect to the AUI interface.

Console Command

• For internal loopback: niil_diag -t 1

• For external loopback: niil_diag -t 2

Command line parameters:

• -dd: print detailed test information on each pass.

DECchip 21040 PCI Configuration Register Dump

This test reads the PCI configuration registers of the DECchip 21040 and prints
them to the standard output.

Console Command: nicsr_diag -t 1

DECchip 21040 Control/Status Register Dump

This test reads the CSRs of the DECchip 21040 and prints them to the standard
output.

Console Command: nicsr_diag -t 2

5–26 Diagnostics



DECchip 21040 Ethernet Controller Tests

DECchip 21040 Configuration Register Test

This test performs writes and reads to the chip’s configurations registers with
data patterns of all 1’s, all 0’s, and alternating 1’s and 0’s. Upon exiting, the test
returns the configuration registers to their initial values.

Console Command: nicsr_diag -t 3

Command line parameters:

• -dd: print detailed test information on each pass.

Miscellaneous Notes

1. This test will be run only on power-up.

Diagnostics 5–27



Memory ECC Detection Test

Memory ECC Detection Test

These tests verify the DRAMs used to store the ECC checkbits, and checks that
the ECC detection logic is functional.

All drivers are stopped before executing any of these tests and restarted once the
testing has completed.

These tests check the following logic:

• ECC memory bits

• ECC logic

Single Bit ECC Test

This test verifies that the ECC detection logic is functional. Single bit errors are
forced on data writes. The corrupted locations are then read back and the ECC
error register is checked for the correct error type.

Console Command: memecc_diag -t 1

Command line parameters:

• -dd: print detailed test information on each pass.

• -np: suppress printing for options without external backup cache.

Double Bit ECC Test

This test verifies that the ECC detection logic is functional. Double bit errors are
forced on data writes. The corrupted locations are then read back and the ECC
error register is checked for the correct error type.

Console Command: memecc_diag -t 2

Command line parameters:

• -dd: print detailed test information on each pass.

• -np: suppress printing for options without external backup cache.

Miscellaneous Notes

1. Test prerequisite: The ECC must be properly initialized by SROM.

5–28 Diagnostics



Backup Cache Tests

Backup Cache Tests

These tests verify the operation of the SRAMs. These tests are only executed
if the optional Backup cache is present (determined by reading the Module
Configuration Register).

These tests check the following logic:

• Backup cache data RAMs

• Backup cache tag RAMs

• Backup cache ECC RAMs

Bcache Victim Eject Test

This test verifies bcache data integrity, checks that ‘‘victim ejects’’ occur, and
ensures that data is forced back on reads.

Console Command: bcache_diag -t 1

Command line parameters:

• -dd: print detailed test information on each pass.

• -np: suppress printing for options without external backup cache.

Bcache Tag Parity Test

Using the diagnostic features of the Alpha chip backup cache interface this test
will force bad tag parity. A set pattern is written to and read from the backup
cache data RAMs and the appropriate error settings are checked in the ESR or
Error Status Register.

Console Command: bcache_diag -t 2

Command line parameters:

• -dd: print detailed test information on each pass.

• -np: suppress printing for options without external backup cache.

Correctable Error Test

Using the diagnostic features of the Alpha chip backup cache interface this test
will force correctable errors. A set pattern is written to and read from the backup
cache data RAMs and the appropriate error settings are checked in the ESR or
Error Status Register.

Console Command: bcache_diag -t 3

Command line parameters:

• -dd: print detailed test information on each pass.

• -np: suppress printing for options without external backup cache.

Diagnostics 5–29



Backup Cache Tests

Uncorrectable Error Test

Using the diagnostic features of the Alpha chip backup cache interface this test
will force uncorrectable errors. A set pattern is written to and read from the
backup cache data RAMs and the appropriate error settings are checked in the
ESR or Error Status Register.

Console Command: bcache_diag -t 4

Command line parameters:

• -dd: print detailed test information on each pass.

• -np: suppress printing for options without external backup cache.

Miscellaneous Notes

1. Test prerequisite: Backup Cache (SRAM) must be enabled and initialized
(that is, ECC, Valid Tag, and Tag parity) by the SROM. Memory ECC
(DRAM) must also be initialized by the console.

5–30 Diagnostics



8530 Serial Communication Controller Tests

8530 Serial Communication Controller Tests

These diagnostics test the functionality of the 8530 Serial Communication
Controller chip and surrounding external circuitry, including decoders, line
drivers/receivers, and printed circuit board module etch.

The 8530 has two serial communication channels, A and B. Channel A is
dedicated to the console. This diagnostic does not test channel A, however, the
Serial ROM performs a minimal channel A register access test. This diagnostic
tests only channel B functionality.

8530 UAR/T Channel B Internal Loopback Test

This test exercises channel B of the 8530 serial communication controller in
internal loopback mode. The test will exercise various serial port control bits and
transmit and receive buffers.

First, the 8530 is configured to transmit and receive. Various data patterns are
then transmitted. The data received is subsequently compared with the data that
was sent.

Console Command: z8530_diag -t 1

Command line parameters:

• -dd: print detailed test information on each pass.

• -lp: Loop on diagnostic until failure or ^C.

Miscellaneous Notes

1. Some write-only registers are modifed; consequently, the registers cannot be
returned to their original state at the end of the diagnostic.

2. No loopback connector is required.

8530 UAR/T Channel B External Loopback Test

This test exercises channel B of the 8530 serial communication controller in
external loopback mode. The test will exercise various serial port control bits,
transmit and receive buffers, and external support circuitry.

First, the 8530 is configured to transmit and receive. The user is then asked
to install an external loopback connector. Upon confirmation that the loopback
connector is installed, various data patterns are transmitted. The data received
is compared with the data that was sent.

Console Command: z8530_diag -t 2

Command line parameters:

• -dd: print detailed test information on each pass.

• -lp: Loop on diagnostic until failure or ^C.

Miscellaneous Notes

1. Some write-only registers are modifed; consequently, the registers cannot be
returned to their original state at the end of the diagnostic.

2. This diagnostic is intended to be an extended test.

Diagnostics 5–31



8530 Serial Communication Controller Tests

3. This diagnostic will fail if no loopback connector is installed.

8530 UAR/T Channel B Interrupt Test

This test exercises the ability of channel B to interrupt the CPU on every
character it receives and when the transmit buffer is empty.

The 8530 is programmed to internal loopback mode. A character is loaded into
the transmit buffer. When the character is transmitted, the transmit buffer
becomes empty generating a transmit interrupt to the CPU. Additionally, upon
receipt of the character, a receive interrupt is generated.

The interrupt service routine (ISR) invoked will increment an interrupt counter
(separate counter for receive and transmit interrupts) and sets a global flag
indicating the interrupt took place and that software was dispatched to the
correct point. Lastly, the interrupt count is verified to have occurred once for each
interrupt.

Console Command: z8530_diag -t 3

Command line parameters:

• -dd: print detailed test information on each pass.

Miscellaneous Notes

1. Some write-only registers are modifed; consequently, the registers cannot be
returned to their original state at the end of the diagnostic.

5–32 Diagnostics



DALLAS DS1386 RAMified Watchdog Timekeeper Tests

DALLAS DS1386 RAMified Watchdog Timekeeper Tests

The DS1386 consists of 32 KB of NVRAM and a real time clock. This diagnostic
tests each of these features on an individual basis. The diagnostic tests the
DS1386, decoders, and printed circuit board module etch.

The functionality of the watchdog feature is to be tested in a separate diagnostic.
No alarm features are tested, since the alarms are not used.

Tests 1 through 3 exercise the NVRAM. Tests 4 and 5 exercise the real time clock.

The NVRAM is be tested on a page basis; there are 128 pages each containing
256 bytes. The NVRAM, therefore, contains 128 pages. However, the first page
has reserved addresses for the real time clock registers.

NVRAM March I Test

This test writes, reads, and compares all 32 KB of NVRAM with data patterns of
all 1’s, all 0’s, alternating 1’s and 0’s, and shifting 1’s and 0’s. If the quick verify
switch is set (default) only the first location of each page is tested. The no quick
verify switch tests every location (32 KB) of the NVRAM.

Note

The contents of the NVRAM are overwritten by this diagnostic and
restored on test completion. If the module is reset during this test the
NVRAM contents are undefined.

Console Command: ds1386_diag -t 1

Command line parameters:

• -dd: print detailed test information on each pass.

• -nqv: test every location in NVRAM, default is to test 1 location per 256 byte
page.

Miscellaneous Notes

1. This diagnostic is considered to be an extended test.

NVRAM Address-On-Address Test

The NVRAM locations in the DS1386 are byte wide. Therefore, you don’t have
enough room to write the unique address into each corresponding location.
However, this test will write the unique page offset to it’s corresponding location
in NVRAM.

This test writes, reads, and compares all 32 KB of NVRAM using this unique
page offset for test data. If the quick verify switch is set (default) only the first
location of each page is tested. The no quick verify switch tests every location (32
KB) of the NVRAM.

Diagnostics 5–33



DALLAS DS1386 RAMified Watchdog Timekeeper Tests

Note

The contents of the NVRAM are overwritten by this diagnostic and
restored on test completion. If the module is reset during this test the
NVRAM contents are undefined.

Console Command: ds1386_diag -t 2

Command line parameters:

• -dd: print detailed test information on each pass.

• -nqv: test every location in NVRAM, default is to test 1 location per 256 byte
page.

Miscellaneous Notes

1. This diagnostic is considered to be an extended test.

NVRAM March II Test

This test verifies NVRAM addressing by marching (write, read, and compare) a
0x00 byte value through a field of 0xFF. Each iteration will read the entire 32
Kbyte for background pattern of 0xFF. If the quick verify switch is set (default)
only the first location of each page is tested. The no quick verify, -nqv, switch
tests every location (32 KB) of the NVRAM.

Note

The contents of the NVRAM are overwritten by this diagnostic and
restored on test completion. If the module is reset during this test the
NVRAM contents are undefined.

Console Command: ds1386_diag -t 3

Command line parameters:

• -dd: print detailed test information on each pass.

• -nqv: test every location in NVRAM, default is to test 1 location per 256 byte
page.

Miscellaneous Notes

1. This diagnostic is considered to be an extended test.

TOY Bitwalk Test

This diagnostic does a walking 1, walking 0, and A5 register test on the Time
of Year (TOY) registers. It also tests the rollover cases associated with keeping
time.

The Watchdog Reset Enable bit in the Module Control register is set to zero to
ensure that a watchdog expiration does not cause a hardware reset to occur.
Secondly, the contents of the Command Register is saved and the Transfer
Enable bit is set to 0 to disable updates to the registers while the diagnostic is in
progress.

5–34 Diagnostics



DALLAS DS1386 RAMified Watchdog Timekeeper Tests

The diagnostic bit patterns are then walked through all 14 registers. Next the
seconds, minutes, hours, day, month, and year registers are programmed such
that the next clock tick will rollover for each of these parameters. The updates
to the registers are started and updated for a three second time period. After the
three second update period, the registers are then examined to verify that each
parameter did indeed rollover to the appropriate value.

The diagnostic cleans up by reenabling the Watchdog Reset bit in the Module
Control register and restoring the original contents of the TOY Command register.

Note

The current date and time will have to be reset after invoking this
diagnostic test since approximately 3 seconds of time will be lost for each
pass.

Console Command: ds1386_diag -t 4

Command line parameters:

• -dd: print detailed test information on each pass.

Miscellaneous Notes

1. This diagnostic is considered to be an extended test.

TOY Time Advancement Test

This diagnostic is intended to be used as a power-up diagnostic. It verifies that
the TOY registers are advancing with clock ticks.

The test reads the current value of the seconds register. Then the test sleeps for
1.2 seconds and reads the seconds register again expecting it to have incremented
with the exception of the rollover case. The rollover case is where the seconds
register advanced from 59 to 0. If the rollover case is encountered, the test sleeps
for another second and reads the register again. This is repeated for four times.

Console Command: ds1386_diag -t 5

Command line parameters:

• -dd: print detailed test information on each pass.

Miscellaneous Notes

1. This diagnostic is considered to be a power-up self-test diagnostic.

Diagnostics 5–35



LAN Address ROM Test

LAN Address ROM Test

This diagnostic tests the integrity of the LAN address ROM, decoders, and
printed circuit board module etch. The LAN address ROM contains the Ethernet
station address of the module.

LAN Address ROM Dump

This diagnostic dumps the contents of the 32 octets within the LAN address ROM
to the screen. No verification of the data is performed.

Console Command: enet_diag -t 1

Command line parameters:

• -dd: enables printing LAN ROM address to screen

• -np: no print, if specified, LAN ROM address is not printed to screen

Miscellaneous Notes

1. The LAN Address ROM octets must be read via longword aligned byte
accesses.

2. This diagnostic is considered to be an extended test.

LAN Address ROM Verification Test

This test verifies the format of the data in the LAN address ROM. It verifies
that the octets are ordered appropriately and that the checksums are correctly
calculated based on the LAN address.

Console Command: enet_diag -t 2

Command line parameters:

• -dd: enables printing LAN ROM address to screen

Miscellaneous Notes

1. The LAN Address ROM octets must be read via longword aligned byte
accesses.

2. This test is considered a power-up self-test diagnostic.

5–36 Diagnostics



LAN Address ROM Test

Figure 5–3 LAN Address ROM Format

Address Octet 0

Address Octet 1

Address Octet 2

Address Octet 3

Address Octet 4

Address Octet 5

Checksum Octet 1

Checksum Octet 2

Checksum Octet 2

Checksum Octet 1

Address Octet 5

Address Octet 4

Address Octet 3

Address Octet 2

Address Octet 1

Address Octet 0

Address Octet 0

Address Octet 1

Address Octet 2

Address Octet 3

Address Octet 4

Address Octet 5

Checksum Octet 1

Checksum Octet 2

Test Pattern = FF

Test Pattern = 00

Test Pattern = 55

Test Pattern = AA

Test Pattern = FF

Test Pattern = 00

Test Pattern = 55

Test Pattern = AA

Diagnostics 5–37



NCR 53C810 PCI-SCSI IO Processor Tests

NCR 53C810 PCI-SCSI IO Processor Tests

These tests check the NCR810 SCSI controller chip. The tests do not require a
drive to be attached to the SCSI port and are meant to be a power-up check of the
NCR810’s low-level modes through Programmed I/O issued from the CPU. There
are no NCR810 SCRIPTS executing during these tests.

All tests set up the diagnostic support environment, allocate memory, set up the
PCI configuration registers, and check for the default values in the Command
/Status registers as defined by the NCR810 53C810 chip specification. (SW Fail
point 1,2)

Important Note: If any of these tests fail the Console SCSI driver will not be
restarted after the test. This will cause SCSI devices connected to the system to
be removed from the device list (The command ‘‘show device’’ lists the currently
installed devices) and any attempts to run the disk exerciser or boot from a disk
will fail. The NCR810_diag routine also checks for the presence of the 53C810
option. A ‘‘no device present’’ message will be displayed to the screen. (SW Fail
point 1)

NCR810 PCI COnfiguration Register Test

This test prints the current setting of the NCR810 PCI Configuration registers to
the console screen using a formatted output.

Console Command: ncr810_diag -t 1

Command line parameters:

• Print the Config register if -np command qualifier is NOT specified.

NCR810 Command/Status Register Dump

This test displays the contents of all of the Command/Status registers on your
screen. No test of the contents is performed.

Console Command: ncr810_diag -t 2

Command line parameters:

• Print the Config register if -np command qualifier is NOT specified.

NCR810 Command/Status Register Test

This test writes, reads, and compares all of the NCR810 Command/Status
registers that are feasible to test. When the test finishes, it returns the registers
to their initialized values.

Console Command: ncr810_diag -t 3

Command line parameters:

• -lp: loop on write/read if -lp qual present.

NCR810 Command/Status Register Reset Value Test

This test checks that a reset of the NCR810 sets the Command/Status registers
to their default values as defined by the NCR810 53C810 chip specification.

Console Command: ncr810_diag -t 4

5–38 Diagnostics



NCR 53C810 PCI-SCSI IO Processor Tests

NCR810 Internal Loopback Test

This test performs a SCSI loopback internal to the NCR810 chip. The following
data patterns are used: all 1’s, all 0’s, alternating 1’s and 0’s. The test also
verifies parity checking and that the SCSI reset control lines can be toggled
internally.

Console Command: ncr810_diag -t 5

NCR810 Internal Live Bus Loopback Test

This test performs an internal SCSI loopback that also drives the signal lines on
the SCSI bus.

All devices must be removed from the SCSI bus before running this test. Devices
on the bus will interfere with the test and cause false error reports. Also, the test
data may produce illegal device instructions and cause the devices to hang.

First the SCSI bus is placed in a high impedance state by loading a data pattern
that causes the output drivers to draw no current. Then the output latches are
checked for the correct data. The test also verifies parity checking and that the
SCSI reset control lines can be toggled internally. The following data patterns are
used: all 1’s, all 0’s, alternating 1’s and 0’s.

Console Command: ncr810_diag -t 6

NCR810 Interrupt Test

This test verifies the interrupt connection between the NCR810 and the SIO
controller to the CPU. A general purpose timer is enabled which generates an
interrupt that is dispatched to the CPU through the SIO controller. The Console
PALcode will dispatch to the NCR810_diag interrupt service routine, which will
clear the interrupt.

Console Command: ncr810_diag -t 7

Miscellaneous Notes

1. These tests will not run in parallel with the SCSI exerciser tests.

2. No external Loopback connectors are needed for the loopback tests.

3. References - NCR 53C810 PCI-SCSI I/O Processor specification rev 2.1

Diagnostics 5–39



Watchdog Timer Interrupt Test

Watchdog Timer Interrupt Test

This test verifies the functionality of the watchdog timeout by its ability to handle
a user programmed watchdog reset.

This test checks the following logic:

• Watchdog timer

• Some Reset logic

• DS1386 Time-of-Year device

Watchdog Timer Interrupt Test

The Diagnostic In Progress (DIP) bit is set and a watchdog timeout is invoked
by loading a short time value into the watchdog timeout register. The user is
queried to be sure the watchdog LED is off. Upon expiration of the watchdog, a
HALT interrupt is expected. After the expected time, the Reset Reason Register
is evaluated. If the HALT interrupt did not occur, or the watchdog reason was not
set, an error callout is made. Also, the user is asked to verify the watchdog LED
is now on. At the end of the test, the Watchdog Timer and DIP bit are disabled.

Console Command: wdog_diag -t 1

Command line parameters:

• -dd: print detailed test information on each pass.

• -nc: No Confirmation; user is not prompted to verify state of LED

• -np: No Print; overrides the -nc qualifier, no user prompts

Miscellaneous Notes

1. The purpose of setting the DIP bit is to avoid an actual system reset when
the watchdog timer expires. The watchdog expiration first causes a HALT
interrupt. Approximately 300ms later an actual system reset will occur,
unless the DIP bit is set. The Reset Reason register will show a watchdog
reset reason whether or not the DIP bit is set. We use the HALT interrupt
and the reset reason for this diagnostic. User interaction can be suppressed
with the

5–40 Diagnostics



VME Interface Tests

VME Interface Tests

These tests verify the VME Interface logic on the AXPvme module including the
VME Interface Processor (VIP), the Cypress VIC064, the scatter/gather RAMs,
and some of the interrupts paths from the VME corner to the Alpha processor.
No VMEbus transactions are performed by these tests and therefore require no
additional VMEbus modules.

VIP PCI Configuration Register Test

This test reads the first 8 longwords of VIP PCI Configuration space. Only the
Device and Vendor ID, and Base Address 0, 1, 2, and 3 are compared to an
expected value. The remaining longwords are always read and displayed only if
the -dd command-line qualifier is present.

Console Command: vip_diag -t 1

Command line parameters:

• -dd: print detailed test information.

VIP Register Write/Read Test

This test ensures that the bits of a VIP register can be written and read correctly;
verifying the data path and internal access.

Console Command: vip_diag -t 2

Command line parameters:

• -dd: print detailed test information.

VIC Register Write/Read Test

This test ensures that the bits of a VIC register can be written and read correctly;
verifying the data path and internal access.

Console Command: vip_diag -t 3

Command line parameters:

• -dd: print detailed test information.

VME Scatter/Gather RAM Test

This test verifies the integrity of the Scatter/Gather RAM by performing write,
read, and verify of various patterns to the entire Scatter/Gather RAM.

Console Command: vip_diag -t 4

Command line parameters:

• -dd: print detailed test information on each pass.

Diagnostics 5–41



VME Interface Tests

VIP/VIC Local Interrupt Test #1

This test uses the VIC Local Interrupt #2 source to generate interrupts in which
the VIP detects and responds to. Since the VIC provides so much control of its
interrupts, it is relatively easy to generate a local interrupt.

This test verifies the following:

1. The 3 IPL lines between the VIC and VIP

2. The ability of the VIP to generate a PCI interrupt

3. The Interrupt Acknowledge cycle to the VIP/VIC

4. The IPL update functionality in the VIP HWIPL register

Console Command: vip_diag -t 5

Command line parameters:

• -dd: print detailed test information.

VIP/VIC Local Interrupt Test #2

By invalidating a Scatter/Gather entry and then attempting to access VME
through it, the following can be tested:

1. The VIP can detect an Outbound Error, indicated in the VIP_BESR

2. The VIP_ICR can properly enable/disable interrupt delivery

Console Command: vip_diag -t 6

Command line parameters:

• -dd: print detailed test information.

Miscellaneous VIP BESR Test

This test verifies bits in the VIP bus error/status register (BESR). The diagnostic
is divided into the following parts:

1. Part 1 - Configuration Overlap Error

2. Part 2 - Local Bus Error

Console Command: vip_diag -t 10

Command line parameters:

• -dd: print detailed test information.

5–42 Diagnostics



5.4 Test Sequence

5.4 Test Sequence

The diagnostic test sequence for a full power-up reset and initialization is shown
in Figure 5–4.

Figure 5–4 SROM Test Flows

LED Display
−−−−−−−−−−−

Poweron/Reset Notes
−−−−−

Serial ROM test

Serial ROM test

Serial ROM test

Serial ROM test

Serial ROM test

Serial ROM test

Serial ROM test

9

8

7

6

5

4
3
2

1

Initialize/test
LCA Chip

Channel A UART
Register Test

B

Internal 8KB Data

Initialize/test
SIO chip

Cache Test

8MB Dynamic RAM Test

If External Backup
Cache present, test
& initialize

Unload Flash devices
devices, compute/
verify checksum

Diagnostics 5–43



5.4 Test Sequence

Figure 5–5 Console Power-On/Self-Test Flows

LED Display
−−−−−−−−−−−

Notes
−−−−−

PO/ST test only

PO/ST test only

Console test

Console test

Console test

Console test

Console test

Console test

B

PO/ST NVRAM Tests

A

B

C

D

E

F

G

Heartbeat Test

C

PO/ST Memory Tests

P2 Connector Detect

Backup Cache Tests

Memory ECC Tests

Module Configuration
Register Test

NCR 810 SCSI Tests

Interval Timer Tests

5–44 Diagnostics



5.4 Test Sequence

Figure 5–6 Console Power-On/Self-Test Flows

LED Display
−−−−−−−−−−−

Notes
−−−−−

Console test

Console test

Console test

Console test

Console test

Console test

Console test

C

H

I

J

K

L

M

N

Flash ROM Test

Auxiliary UART Test

Ethernet ROM Test

WatchDog Test

TOY Device Test

VIP−VIC Tests

NI Loopback Test

Console Prompt

Diagnostics 5–45





A
Specifications

Table A–1 shows the physical and environmental specifications for the AXPvme module.
Table A–2 shows the power supply current and power for the AXPvme module. Stresses beyond
those specified may cause permanent damage to the module.

Table A–1 Physical and Environmental Specifications

Characteristic Specification

Industry standard VME 6U module

Operating temperature 0°C to 50°C (32°F to 122°F)

Storage temperature –40°C to 66°C (–40°F to 151°F)

Temperature change 20°C/hour (36°F/hour)

Relative humidity 10% to 95% (noncondensing)

Airflow 200 lfm minimum at 50°C abient inlet air temperature over the large square
processor heatsink at the center of the AXPvme module

Vibration: Operating in a suitable enclosure

0.5g Pk 22.1–260 Hz

0.25g Pk 200–500 Hz

Table A–2 Power Supply Current and Module Power Dissapation

CPU Modules
w/Memory

Amps
@ 5 V

Amps @ 12 V
(note 1)

Amps
@�12 V Module Heat Dissapation

AXPvme 230 9.9 A 0.5 A 0.1 A 57 W

AXPvme 166 8.0 A 0.5 A 0.1 A 47 W

AXPVME 100 6.2 A 0.5 A 0.1 A 38 W

AXPVME 160 9.4 A 0.5 A 0.1 A 54 W

AXPVME 64 6.5 A 0.5 A 0.1 A 40 W

AXPVME 64LC 6.0 A 0.5 A 0.1 A 37 W

Options Amps
@ 5 V

Amps
@ 12 V

Amps
@�12 V

Power
Dissapation

SCSI Termination 0.8 A Max 0.0 A N/A 4 W Max

PMC Option Slot
Budget (actual use)

2.0 A Max N/A N/A 10 W Max

Specifications A–1





B
AXPvme Connectors

B.1 Serial Line Connectors
The console and auxiliary serial line interfaces support data leads only. They do
not support modem control. Figure B–1 shows the pin numbers for the console
and auxiliary serial line connectors and Table B–1 shows the signal descriptions.

Figure B–1 Serial Line Connectors

L J - 0 3 7 5 6 - T I 0

1 6

Table B–1 Serial Line Connectors

Pin Signal

1 Ready Out (always asserted)

2 Transmit Data +

3 Transmit Data –

4 Receive Data –

5 Receive Data +

6 Ready In (not used)

AXPvme Connectors B–1



B.2 Ethernet AUI Connector
Figure B–2 shows the pin numbers for the Ethernet AUI connector and Table B–2
shows the signal descriptions.

Figure B–2 Ethernet AUI Connector

L J - 0 3 8 1 7 - T I 0

18

915

Table B–2 Ethernet AUI Connector

Pin Signal Description

1 GND Ground

2 COLL+ Collision Detect +

3 XMIT+ Data Out +

4 GND Ground

5 RCV+ Data In +

6 GND Ground

7 CTRL OUT
A

Not used, but it is terminated on the AXPvme module

8 GND Ground

9 COLL– Collision Detect –

10 XMIT– Data Out –

11 GND Ground

12 RCV– Data In –

13 +12V +12 V supply to transceiver

14 GND Ground

15 CTRL OUT
B

Not used, but it is terminated on the AXPvme module

B.3 SCSI Connector
Figure B–3 shows the pin numbers for the SCSI connector and Table B–3 shows
the signal descriptions.

B–2 AXPvme Connectors



Figure B–3 SCSI Connector

1 3 5

2 4 6

L J - 0 3 8 1 8 - T I 0

49 50 2 1

Connector Key

Table B–3 SCSI Connector

Pin Signal Pin Signal

1 GND (Ground) 26 TERMPWR2 (+5V Termination power)

2 –DB0 (Data 0) 27 GND

3 GND 28 GND

4 –DB1 (Data 1) 29 GND

5 GND 30 GND

6 –DB2 (Data 2) 31 GND

7 GND 32 –ATN (Attention)

8 –DB3 (Data 3) 33 GND

9 GND 34 GND

10 –DB4 (Data 4) 35 GND

11 GND 36 –BSY (Busy)

12 –DB5 (Data 5) 37 GND

13 GND 38 –ACK (Acknowledge)

14 –DB6 (Data 6) 39 GND

15 GND 40 –RST (Reset)

16 –DB7 (Data 7) 41 GND

17 GND 42 –MSG (Message)

18 –DBP (Data parity) 43 GND

19 GND 44 –SEL (Select)

20 GND 45 GND

21 GND 46 –C/D (Cmd/Data)

22 GND 47 Not used

23 GND 48 –REQ (Request)

24 GND 49 GND

25 Not used 50 –I/O (Input/Output)

AXPvme Connectors B–3



B.4 VMEbus P2 Connector
Figure B–4 shows the pin numbers for the VMEbus P2 connector on the breakout
module and Table B–4 shows the signal descriptions.

Figure B–4 VMEbus P2 Connector

1 3 5

2 4 6

L J - 0 3 8 1 9 - T I 0

1C1A32C 32A

Table B–4 VMEbus P2 Connector

Pin Row A Row C

1 SCSI_DATA<0> L +5V

2 SCSI_DATA<1> L +5V

3 SCSI_DATA<2> L GND

4 SCSI_DATA<3> L GND

5 SCSI_DATA<4> L +5V

6 SCSI_DATA<5> L +5V

7 SCSI_DATA<6> L GND

8 SCSI_DATA<7> L GND

9 SCSI_DP L WD_STATUS_OC H

10 SCSI_ATN L GND

11 SCSI_BSY L GND

12 SCSI_ACK L +5V

13 SCSI_RST L +5V

14 SCSI_MSG L EXT_RESET L

15 SCSI_SEL L TMR2_EXT_OP L

16 SCSI_CD L TMR1_EXT_OPL

17 SCSI_REQ L TMR_MINOR_IP L

18 SCSI_IO L TMR_MAJOR_IP L

19 Not used SCSI_TERMPWR H (AXPvme 64 only)

20 SROMD H SROMOE L

21 SROMDIS H SROMCLK H

22 GND GND

(continued on next page)

B–4 AXPvme Connectors



Table B–4 (Cont.) VMEbus P2 Connector

Pin Row A Row C

23 Not used SCSI_TERMPWR H (AXPvme 160 only)

24 +V5 GND

25 +V5 GND

26 +V5 GND

27 +V5 GND

28 GND +5V

29 GND +5V

30 GND GND

31 +V5 +5V

32 +V5 +5V

AXPvme Connectors B–5



B.5 PCI Option Connectors
Figure B–5 shows the pin numbers and Table B–5 and Table B–6 show the signal
descriptions for the PCI option connectors.

Figure B–5 PCI Option Connectors

L J - 0 3 8 2 0 - T I 0
51.5%

"MEMORY MODULE"

BUB is 1.5 %
J11

J12

1

2

63

64

1

2

63

64

Table B–5 PCI Option J11 Connector

Pin Signal Pin Signal

1 Not used 33 PCIFRAME L

2 –12V 34 GND

3 GND 35 GND

4 PCIOPT_IRQA L 36 PCIRDY L

5 PCIOPT_IRQB L 37 PCIDEVSEL L

6 PCIOPT_IRQC L 38 +5V

7 PCI_PRESENT1 L 39 GND

8 +5V 40 PCILOCK L

(continued on next page)

B–6 AXPvme Connectors



Table B–5 (Cont.) PCI Option J11 Connector

Pin Signal Pin Signal

9 PCIOPT_IRQD L 41 Not used

10 Not used 42 Not used

11 GND 43 PCIPAR H

12 Not used 44 GND

13 PCICLK_OPT H 45 Not used

14 GND 46 PCIAD<15> H

15 GND 47 PCIAD<12> H

16 PCIGNT_OPT1 L 48 PCIAD<11> H

17 PCIREQ_OPT1 L 49 PCIAD<9> H

18 +5V 50 +5V

19 Not used 51 GND

20 PCIAD<31> H 52 PCICBE<0> L

21 PCIAD<28> H 53 PCIAD<6> H

22 PCIAD<27> H 54 PCIAD<5> H

23 PCIAD<25> H 55 PCIAD<4> H

24 GND 56 GND

25 GND 57 Not used

26 PCICBE<3> L 58 PCIAD<3> H

27 PCIAD<22> H 59 PCIAD<2> H

28 PCIAD<21> H 60 PCIAD<1> H

29 PCIAD<19> H 61 PCIAD<0> H

30 +5V 62 +5V

31 Not used 63 GND

32 PCIAD<17> H 64 Not used

Table B–6 PCI Option J12 Connector

Pin Signal Pin Signal

1 +12V 33 GND

2 Not used 34 Not used

3 Not used 35 PCITRDY L

4 Not used 36 +3V

5 Not used 37 GND

6 GND 38 PCISTOP L

7 GND 39 PCIPERR L

8 Not used 40 GND

9 Not used 41 +3V

10 Not used 42 PCISERR L

(continued on next page)

AXPvme Connectors B–7



Table B–6 (Cont.) PCI Option J12 Connector

Pin Signal Pin Signal

11 PCI_PRESENT2 43 PCICBE<1> L

12 +3V 44 GND

13 PCIRST L 45 PCIAD<14> H

14 PCI_PRESENT3 46 PCIAD<13> H

15 +3V 47 GND

16 PCI_PRESENT4 48 PCIAD<10> H

17 Not used 49 PCIAD<8> H

18 GND 50 +3V

19 PCIAD<30> H 51 PCIAD<7> H

20 PCIAD<29> H 52 Not used

21 GND 53 +3V

22 PCIAD<26> H 54 Not used

23 PCIAD<24> H 55 Not used

24 +3V 56 GND

25 IDSEL L (PCIAD<15> H) 57 Not used

26 PCIAD<23> H 58 Not used

27 +3V 59 GND

28 PCIAD<20> H 60 Not used

29 PCIAD<18> H 61 Not used

30 GND 62 +3V

31 PCIAD<16> H 63 GND

32 PCICBE<2> L 64 Not used

B–8 AXPvme Connectors



Index

A
alloc command, 3–4
AUI connector pins, B–2
AXPvme breakout modules, 1–100
AXPvme command line differences, 2–2
AXPvme console features

list, 2–1

B
Backup cache, 1–8
boot command, 3–5
break command, 3–11
Byte offset

as address argument, 2–6
Byte stream, 2–6

See device
Byte swapping, 1–33

using the eval command (example), 2–14

C
cat command, 3–12
chmod command, 3–13
chown command, 3–15
clear command, 3–16
clear_log command, 3–17
# command, 3–3
Commands

#, 3–3
alloc, 3–4
boot, 3–5
break, 3–11
cat, 3–12
chmod, 3–13
chown, 3–15
clear, 3–16
clear_log, 3–17
continue, 3–18
crc, 3–19
date, 3–21
deposit, 3–23
dynamic, 3–27
echo, 3–29
edit, 3–31
eval, 3–34

Commands (cont’d)
examine, 3–36
exer, 3–40
exit, 3–46
false, 3–47
free, 3–48
grep, 3–49
hd, 3–51
help, 3–52
initialize, 3–54
init_ev, 3–55
kill, 3–56
line, 3–57
ls, 3–58
man, 3–52
memexer, 3–59
memtest, 3–60
net, 3–65
nettest, 3–68
ps, 3–71
pwrup, 3–72
rm, 3–73
sa, 3–74
semaphore, 3–75
set, 3–76
set led, 3–78
set mode, 3–79
set reboot srom, 3–80
set toy sleep, 3–81
sh, 3–82
show, 3–83
show config, 3–85
show device, 3–86
show hwrpb, 3–88
show led, 3–89
show map, 3–90
show mode, 3–91
show_log, 3–92
sleep, 3–94
sort, 3–95
sp, 3–96
start, 3–97
stop, 3–98
update, 3–99
used as abbreviations, 2–7

Index–1



Conditional branching
in if, while, until loops, 2–13

Connectors
Ethernet AUI, B–2
serial line, B–1

Console command option -n
specifying repeat count, 2–7

Console commands
frequently used (table), 2–2

Console mode, 3–1
command line characteristics, 3–2
entering and exiting, 3–1
radix control, 3–2
special keys, 3–2

Console shell operators (table), 2–3
Console tasks

examining and depositing stuff, 2–6
examining registers, 2–8

Console UART, 1–4, 1–67
continue command, 3–18
Copying scripts over the network, 2–15
crc command, 3–19
Creating scripts

using the output creation operator (>), 2–12

D
Data width options, 2–6
Data/Register access, 1–67
date command, 3–21
DECchip 21040-AA CSRs, 1–50
DECchip 21040-AA PCI configuration registers,

1–50
DECchip 21040-AA PCI cycles, 1–51
deposit command, 3–23

accessing physical memory (example), 2–7
Device, 2–6

See byte stream
DIP switches, 1–5
Display, 1–5
Drivers

as access mechanisms, 2–6
for Alpha devices (list), 2–6

dynamic command, 3–27

E
echo command, 3–29
edit command, 3–31
Environment, 1–98
Environment variables, 4–1

modifying, 3–76
Environmental requirements, 1–110
Error handling, 1–9, 1–96
Ethernet

connector pins, B–2

Ethernet address ROM, 1–51
eval command, 3–34
examine command, 3–36

accessing pmem device (example), 2–7
referencing registers, 2–8
used as abbreviation (example), 2–7
with address implied, 2–6
with explicit address, 2–6

exer command, 3–40
exit command, 3–46

F
false command, 3–47
Filtering output

using pipes and grep, 2–9
Firmware

integrated components, 2–1
Flash ROM updating, 1–66
Flow control

syntax for constructs, 2–13
free command, 3–48

G
grep command, 2–9, 3–49

See also pipe( | ) command

H
hd command, 3–51
Heartbeat Clear-Interrupt Register, 1–64
help command, 3–52
hex dump (example), 2–7
hex dump command

dumping memory, 2–7

I
I/O controller, 1–3
I/O redirection

to other devices, 2–9
I/O subsystem, 1–10
initialize, 3–54
init_ev, 3–55
Interprocessor communication, 1–38
Interrupts and reset, 1–86
Interval timers, 1–4, 1–77
ISbus, 1–56
ISbus adapter (SIO) configuration space, 1–56
ISbus address space, 1–57
ISbus operation, 1–59

Index–2



K
kill command, 3–56

L
LCA processor, 1–2, 1–6
line command, 3–57
ls command, 3–58

M
Main memory, 1–8
Main memory as PCI target, 1–16
man command, 3–52
memexer command, 3–59
Memory controller, 1–2
Memory initialization, 1–9
Memory subsystem, 1–7
memtest command, 3–60
Module Configuration Register, 1–60
Module Control Register 1, 1–61
Module Control Register 2, 1–63
Module Display Control Register, 1–59
Module registers, 1–59
Monitoring status

using ps command (example), 2–10
MOP

execute function, 3–65
loopback test, 3–68

N
net command, 3–65
nettest command, 3–68
Network interface, 1–4, 1–50
Nonvolatile RAM, 1–4, 1–85

O
On-line help

available topics, 2–4
brief, 2–4
| more, 2–6
multiple topics, 2–5
screen display, 2–4
wildcarding (example), 2–5

P
PCI

connector pins, B–6
PCI address space layout, 1–17
PCI addressing, 1–10
PCI arbitration, 1–12

PCI configuration, 1–10
PCI I/O space, 1–19
PCI memory space, 1–17
PCI mezzanine, 1–5
PCI transfer, 1–14
Physical specification, 1–99
Pipe ( | ) command, 2–9

See also grep command
pmem:

physical memory, 2–6
Power requirements, 1–110
Process registers

pc, sp, ps (example), 2–8
Processor registers

symbolic reference, 2–8
Programming S/G RAM, 1–32
ps command, 3–71
pwrup command, 3–72

R
Redirecting output, 2–9

using append operator (>>), 2–12
using redirection operator (>), 2–9

Redirecting output (example), 2–9
Registers

explicit reference, 2–8
implicit reference, 2–8
symbolic reference, 2–8

Relative addresses
symbolic reference (example), 2–8

Reset Reason Register, 1–64
rm command, 3–73
ROM, 1–4, 1–65
Running tasks

in background mode "&", 2–10
in background mode "&" (example), 2–10

S
sa command, 3–74
SCC operation in asynchronous mode, 1–70
SCSI, 1–4, 1–52

connector pins, B–2
SCSI connection and termination, 1–52
SCSI control status registers, 1–53
SCSI ID, 1–52
SCSI programming, 1–53
semaphore command, 3–75
Serial line connector pins, B–1
Serial ROM, 1–65
set command, 3–76
set mode command, 3–79
set reboot srom command, 3–80
set toy sleep command, 3–81
set_led, 3–78

Index–3



sh, 3–82
show command, 3–83
show config command, 3–85
show device command, 3–86
show hwrpb command, 3–88
show led command, 3–89
show map command, 3–90
show mode command, 3–91
show_log command, 3–92
sleep command, 3–94
sort command, 3–95
sp command, 3–96
start command, 3–97
Status LEDs, 1–65
stop command, 3–98
Stopping a process

using the kill command (example), 2–10
System controller operation, 1–37
System description, 1–2
System ROM, 1–65
System use and firmware, 1–74

T
Time-of-year clock, 1–4, 1–74
Time-of-year clock operation, 1–75

U
U*X supported functions, 2–1
UART operation, 1–67
update, 3–99
Using pipes ( | ) and grep

to filter output, 2–9
Using quotes

to write longer scripts, 2–12

V
VME interface, 1–3, 1–20, 1–42
VMEbus

connector pins, B–4
VMEbus interrupts, 1–40

W
Watchdog timer, 1–4, 1–84
Write protect, 1–66

Index–4



Reader’s Comments AXPvme
Single-Board Computer

Technical Description
EK-EBV1X-TD. B01

Your comments and suggestions help us improve the quality of our publications.

Thank you for your assistance.

I rate this manual’s: Excellent Good Fair Poor

Accuracy (product works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

For software manuals, please indicate which version of the software you are using:

Name/Title Dept.

Company Date

Mailing Address

Phone



Do Not Tear – Fold Here and Tape

d
TM

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

No Postage
Necessary
if Mailed

in the
United States

DIGITAL EQUIPMENT CORPORATION
Shared Engineering Services
MLO5–5/E76
2 THOMPSON STREET
MAYNARD, MA 01754-1716

Do Not Tear – Fold Here


