

Oracle Rdb7 OpenVMS AlphaServer 8x00

DIGITAL HiTest Notes

Part Number: EK-HORVB-HN. A01

January 1998

Revision/Update Information: This is a new document.

January 1998

Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from DIGITAL or an authorized sublicensor.

© Digital Equipment Corporation 1998. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AlphaServer, DEC C, DECevent, DIGITAL, eXcursion, HSJ, OpenVMS, PATHWORKS, POLYCENTER, ServerWORKS, StorageWorks, VAX, VMScluster, and the DIGITAL logo.

The following are third-party trademarks:

Oracle is a registered trademark and Oracle Rdb7 is a trademark of Oracle Corporation. Windows 95 and Windows NT are trademarks of Microsoft Corporation.

All other trademarks are the property of their respective owners.

Table of Contents

1 Introduction	
DIGITAL HiTest Suite and Its Advantages Overview of This DIGITAL HiTest Suite	
2 Configuration Data	
Hardware and Software Components Special Configuration Rules	
3 System Installation and Setup	
Hardware Installation.	3–1
AlphaServer Systems	3–1
Operating System Installation	3–1
Layered Products	
Application	3–2
CPG Database	3–2
4 Interoperability Tests and Results	
	4 1
Overview of Results	
Test Environment	
SYSGEN Parameters	
SETPARAMS.DAT Values for the Maximum Configuration	
Storage Subsystem	
Storage Management	
Disk Setup	
Test Database Structure	
Test Data Distribution	
Global and Row Cache Buffers	
Test Database Creation	
Test Scenarios and Scripts	
VLM-Enabled Test Scenarios	
Test Scenario 1: Single-User Tests (Cold Cache)	
Test Scenario 2: Single-User Tests (Warm Cache)	
Test Scenario 3: Multi-User Tests	

Non-VLM Enabled Test Scenarios	4–16
Test Scenario 4: Distributed 10-User Load Tests	4–16
Test Scenario 5: Distributed 20-User Load Tests	4–16
RMU Backup and Restore and Fault Insertion/Error Recovery Test Scenarios	4–16
Test Scenario 6: RMU Backup and Restore Tests	4–16
Test Scenario 7: Fault Insertion/Error Recovery Tests	
Purpose of Query Scripts	4–17
Test Tools	
Test Configuration	
Test Process	
Query 1	
Query 2	
Query 3	
Query 4	
Query 5	
Test Results	
Test 1: Single-User Test (Cold Cache)	
Test 2: Single-User Test (Warm Cache)	
Test 3: Multi-User Load Tests	
Non-VLM Enabled Database Query Tests	
Test 4: Distributed 10-User Load Test	
Test 5: Distributed 20-User Load Test	
RMU Backup and Restore Tests	
Test 6: Error Recovery	
Disk Failure	
HSJ Failure	
System Power Failure	4–32
5 System Limits and Characterization Data	
Comparison of Run Times	5–1
Database Buffering Schemes	
Workload Characterizations	
RDB Account Quotas	
SYSTEM Account Quotas	
Accounting Statistics from a One-User Load Test	
CPG Database Build Times for the Maximum Configuration	
6 Problems and Resolutions	
	6 1
Handriana	
Hardware	
Operating System	
Operating SystemApplication	
Operating SystemApplication A Detailed Hardware Configuration	6–1
Operating System	6–1
Operating System Application A Detailed Hardware Configuration System Diagram AlphaServer 8400 System Bus	6-1 A-2 A-3
Operating System	A-2 A-3 A-3

B Operational Command and Supporting Files

Figures

Figure 4-1: Test Environment	4–2
Figure 4-2: Oracle Rdb7 OpenVMS Storage Layout	4–8
Figure A-1: System Diagram	
Tables	
Table 2-1: Oracle Rdb7 OpenVMS AlphaServer 8x00 DIGITAL HiTest Template	2–2
Table 2-2: System Management Station Template	
Table 2-3: Component Revision Levels	
Table 4-1: CPG Database	
Table 4-2: Data Distribution Across Channels	4–11
Table 4-3: Allocation of Row Cache Buffers	
Table 4-4: Test Conditions	4–26
Table 4-5: Single-User, Cold Cache Test Results	4–27
Table 4-6: Single-User, Warm Cache Test Results	4–27
Table 4-7: 5- and 10-User Load Test Results for the Minimum Configuration	4–28
Table 4-8: 5- and 10-User Load Test Results for the Maximum Configuration	4–28
Table 4-9: Non-VLM Enabled 10-User Load Test Results	4–29
Table 4-10: RMU Backup and Restore Test Results for the Maximum Configuration	4–30
Table 4-11: Actual Elapsed Query Times	4–31
Table 4-12: Actual Elapsed Query Times	4–31
Table 4-13: Actual Elapsed Query Times	
Table 5-1: Sample of RDB Account Quotas	5–5
Table 5-2: Sample of SYSTEM Account Quotas	5–5
Table 5-3: Accounting Statistics from a Cold Cache One-User Load Test	5–6
Table 5-4: Accounting Statistics from a Cold Cache One-User Load Test	
Table A-1: AlphaServer 8400 Centerplane Slot Usage	
Table A-2: AlphaServer 8400 I/O Shelf Usage	
Table A-3: Database Storage Map for HSJ001	
Table A-4: Database Storage Map for HSJ002	
Table A-5: Database Storage Map for HSJ003	A-6

Preface

This document provides an overview of DIGITAL HiTest Suites and detailed technical information about interoperability test results for the Oracle Rdb7 OpenVMS AlphaServer 8x00 HiTest Suite.

Audience

Primary users of this document are DIGITAL and Partners sales representatives and technical support personnel. Secondary audiences include product managers, customers, and the personnel responsible for installing, setting up, and operating a DIGITAL HiTest Suite.

Road Map

This document contains the following chapters:

- 1. Introduction Provides a brief summary of the benefits of DIGITAL HiTest Suites and an overview of the Suite covered in this document.
- 2. Configuration Data Includes tables of configuration data about the hardware and software components that define the Template, and special configuration rules if any.
- 3. System Installation and Setup Presents useful information for installing and setting up this DIGITAL HiTest Suite.
- **4.** Interoperability Tests and Results Describes how the tests were set up (including database organization), what data and programs were placed on what disks, and how the tests were run.
- 5. System Limits and Characterization Data Summarizes any system limitations or characterization data that were identified during testing.
- **6. Problems and Resolutions** Discusses any problems and resolutions that were discovered during testing.
- **Appendix A: Detailed Hardware Configuration** Contains more detailed information about the hardware and software components listed in the Configuration Data chapter.
- **Appendix B: Operational Command and Supporting Files** Describes the command procedures and SQL scripts that were used to set up, load, or run tests on the CPG database.

Feedback and Ordering Information

What our readers think of this or any other DIGITAL documentation is important to us. If you have any comments, we would appreciate hearing from you. Send your comments to: reader-comments@digital.com.

Please reference the document title and part number (EK-HORVB-HN. A01) in your correspondence about this document.

Copies of this and other DIGITAL documents can be ordered by calling 1-800-DIGITAL.

Introduction

DIGITAL HiTest Suite and Its Advantages

DIGITAL HiTest Suites are guidelines for configuring a set of prequalified computer systems. A HiTest Suite often contains all the hardware and software needed for a complete customer solution. DIGITAL HiTest Suites can be used as a basis for configuring systems that satisfy a wide set of customer requirements. Typically, Suites target specific markets such as Data Warehousing for customers with an existing VMScluster investment.

DIGITAL Product Management and Engineering select the components and design the configurations in each HiTest Suite to ensure high system reliability, application performance, and upgradability. A Suite's hardware and software components have been successfully tested for interoperability.

A HiTest Suite specifies allowed ranges of hardware and software components, as well as each component's part number, description, and revision information. These specifications are listed in the DIGITAL HiTest Template.

The components in a HiTest Suite are organized into two groups, the DIGITAL HiTest Foundation and the DIGITAL HiTest AppSet. The HiTest Foundation includes the hardware, operating system, middleware, and database software. The HiTest Foundation can be used as a base on which any customer-desired applications can be installed. The HiTest AppSet includes the software specific to one class of customer solutions.

Configuring a DIGITAL HiTest Suite is straightforward. Select components from the HiTest Template to configure a DIGITAL HiTest System. Any system configured as specified in the DIGITAL HiTest Template can be called a DIGITAL HiTest System.

The HiTest Suite is documented in the DIGITAL HiTest Notes. The HiTest Notes list the HiTest Foundation and HiTest AppSet components. HiTest Notes also describe the testing of the Suite and include configuration details, installation instructions, tuning parameters, problems encountered and their solutions, and system diagrams.

Some components listed in the HiTest Foundation or AppSet may be optional. If the minimum quantity is zero (0), then the component is optional. If the minimum quantity is one or more, then you must order at least the minimum quantity.

The maximum quantities represent the largest group of components that were tested for interoperability with all the other components in the Suite. Although it may be possible to place more than the specified maximum quantity of a component on a DIGITAL system, extensive interoperability testing was not done at that level and such a system would not be considered a DIGITAL HiTest System.

You can select any combination of components with quantities ranging from the minimum to the maximum specified. Occasionally, special configuration rules give further guidance or restrict configurations. These rules appear in the Configuration Data chapter of the HiTest Notes.

A customer can include the Suite-specified hardware and software they need and then layer on additional software. Other types of hardware, called add-on hardware, can also be added to a DIGITAL HiTest System. Further information is available through the following URLs:

```
http://cosmo.tay.dec.com
                                                          (Intranet)
http://www.partner.digital.com:9003/cgi-bin/comet
                                                          (Internet)
```

Even though the customer may install application software that is not specified in the Suite, the customer and DIGITAL still experience the advantages of knowing that all of the Suite-based hardware and software interoperates correctly. Of course, the full benefit of configuring a system from a HiTest Suite is obtained when the system includes only specified HiTest Foundation and AppSet components.

Overview of This DIGITAL HiTest Suite

The Oracle Rdb7 OpenVMS AlphaServer 8x00 HiTest Suite consists of the following software components:

- Oracle Rdb7, Version 7.0.1.0
- OpenVMS, Version 7.1

This Suite will meet the add-on Data Warehouse needs of customers with an existing VMScluster investment.

Configuration Data

This chapter describes the tested DIGITAL HiTest Configuration Suite including the hardware, software, and firmware components, and their revision levels. Special configuration rules are explained if required.

Hardware and Software Components

Table 2-1 identifies the range of hardware and software components that can be configured using the Oracle Rdb7 OpenVMS AlphaServer 8x00 HiTest Suite. This range includes both the AlphaServer 8200 and the AlphaServer 8400 systems with two to four central processing unit (CPU) options and 2 GB to 4 GB of memory.

Table 2-2 lists the System Management Station hardware and software.

Table 2-3 lists the revision levels of the components.

The HiTest Template (Table 2-1) consists of three categories:

- AppSet Software Includes software specific to one class of customer solutions, in this case add-on Data Warehousing for customers with an existing VMScluster investment.
- **Foundation Hardware** Includes the base system, storage, and other hardware options.
- Foundation Software Includes the operating system, middleware, and database software.

When ordering an item from a HiTest Template, select a quantity that is within the minimum/maximum range for the item. If the minimum quantity is zero (0), then the component is optional. If the minimum quantity is one or more, then order at least the minimum quantity, but not more than the maximum quantity. The maximum quantity represents the greatest number of components that were tested for interoperability with all the other components in the Suite.

For more details on the HiTest Suite hardware configuration, see Appendix A.

Table 2-1: Oracle Rdb7 OpenVMS AlphaServer 8x00 DIGITAL HiTest Template

Oracle Rdb7 HiTest AppSet OpenVMS AlphaServer 8x00 HiTest Foundation

For documentation and updates: http://cosmo.tay.dec.com and http://www.partner.digital.com:9003/cgi-bin/comet

	For hardcopy of this Suite's HiTest Notes, order EK-HORVB-HN.			
Line	Description	Part Number		Range
Item			Min	Max
	AppSet Software			
1	Oracle Rdb7	Oracle	1	1
	To order, call 1-800-ORACLE1 or send E-mail to: infodec@us.oracle.com			
	Foundation Hardware			
2	Select just one base system:		1	1
	AlphaServer 8200 5/440 Drawer, OpenVMS AlphaServer 8400 5/440 Drawer, OpenVMS	DY-282FF-D9 DY-292FF-DA		
	Hardware includes: • 5/440 MHz CPU with 4 MB cache • I/O module with four I/O channels (KFTHA-AA) • 2 GB of memory • 4.3 GB 3.5" SCSI disk • One BN21K-02 PCI FWD SCSI cable • One DWZZB-VW SCSI signal converter • 600 MB CD-ROM drive • One KZPSA-BB, PCI FWD SCSI controller • KZPAA-AA, PCI FNSE SCSI ctlr, for CD-ROM only • BN21H-02 2-meter SCSI cable • DE500-AA 10/100 Mbit Fast Ethernet 32-bit NIC • Shielded console cable 8200 Hardware includes: • BA656 Internal Storage Drawer & BA356-JB SCSI-2 16-bit wide StorageWorks shelf • One DWLPB-CA PCI Shelf Mount Box • Universal single-phase 48 VDC power supply 8400 Hardware includes: • BA660-AB StorageWorks Plug-in-unit • One DWLPB-AA, PCI 12 slot Plug-in-unit (8400) • Two H7263-Ax non-BBU capable 48 VDC power regulators; includes power cord Software includes: • Factory Installed Software			
	 OpenVMS base license DIGITAL Enterprise Integration Package consisting of the following services: Management 			
	 Network Transport and Connectivity File and Print Internet Database 			
	 Mail Application Development Presentation 			
3	Select the appropriate quantity of CPU upgrades:	756P1-AX		
	Additional dual 5/440 CPU module for 8200 Additional dual 5/440 CPU module for 8400		1	1 3

Oracle Rdb7 HiTest AppSet OpenVMS AlphaServer 8x00 HiTest Foundation

For documentation and updates: http://cosmo.tay.dec.com and http://www.partner.digital.com:9003/cgi-bin/comet
For hardcopy of this Suite's HiTest Notes, order EK-HORVB-HN.

	For hardcopy of this Suite's HiTest Notes, order		1 -	
Line Item	Description	Part Number	HiTes Min	Range Max
4	Select the appropriate quantity of memory upgrades:	MS7CC-FA		
	Additional 2 GB Memory Module for 8200 Additional 2 GB Memory Module for 8400		1 1	1 3
5	PCI to CI Adapter	CIPCA-AA	1	4
6	CI Bus cable	BNCIA-20	1	4
7	Power Cord (8200 only)	BN23H-4E	1	1
8	Console Terminal	VT510-KA	1	1
9	Console Keyboard	LK46W-A2	1	1
10	System Management Station	See Table 2-2	0	1
	Foundation Software			•
11	OpenVMS, V7.1	Included with item 2	_	_
12	DIGITAL Enterprise Integration Package	Included with item 2	-	_
13	OpenVMS Media and documentation on CD-ROM	QA-MTIAA-H8	0	1
	Note: Media and documentation are required for the first system at the site.			
14	OpenVMS Cluster Software License	QL-MUZAC-AA	1	1
15	OpenVMS Alpha Software Product Library Package	QA-03XAA-W8	0	1
	Note: The OpenVMS Alpha Software Product Library Package is required for the first system at the site. It includes items 18-21 on this table.			
16	Oracle SQL/Services	Oracle	1	1
	To order, call 1-800-ORACLE1 or send E-mail to: infodec@us.oracle.com			
17	Oracle Parallel Query & Distributed Option	Included with item 1	1	1
18	License for DEC C for OpenVMS Alpha V5.5	QL-015A*-**	0	1
	Note: The asterisk (*) in the part number for this line item denotes variant fields. For additional information about available licenses, services, and media, refer to the appropriate price book.			
19	License for DEC C++ for OpenVMS Alpha V 5.5	QL-MJ1A*-**	0	1
	Note: The asterisk (*) in the part number for this line item denotes variant fields. For additional information about available licenses, services, and media, refer to the appropriate price book.			
20	License for UCX V4.1 (for PCM use only)	QL-0LXA*-**	0	1
	Note: The asterisk (*) in the part number for this line item denotes variant fields. For additional information about available licenses, services, and media, refer to the appropriate price book.			
	Note: UCX, also known as DIGITAL TCP/IP Services for OpenVMS, is included with item 12.			

Oracle Rdb7 HiTest AppSet OpenVMS AlphaServer 8x00 HiTest Foundation For documentation and updates: http://cosmo.tay.dec.com and http://www.partner.digital.com:9003/cgi-bin/comet For hardcopy of this Suite's HiTest Notes, order EK-HORVB-HN. Line Description **Part Number HiTest Range** Item Min Max 21 **DECevent V2.3** Included with 0 item 2

Table 2-2: System Management Station Template

Oracle Rdb7 <i>HiTest AppSet</i> System Management Station					
Line	ne Description Part Number HiTest Rang				
Item			Min	Max	
	System Management Station Hard	ware			
included,	nis HiTest Suite supports the use of a system management station. this HiTest Template identifies the items required. When system n is option may be omitted without invalidating the HiTest Suite.			ther	
1	DIGITAL PWS 200i Personal Workstation for Windows NT	SN-B3KAP-EL	1	1	
	Hardware includes: • 200 MHz CPU with 256 KB cache • 64 MB memory • Matrox Millenium 3D graphics • 10BaseT/10Base2 Ethernet • 2.0 GB UW disk • EIDE CD-ROM • 1.44 MB floppy • PS/2 style keyboard • Two-button PS/2 compatible mouse				
	Software includes: • Windows NT 4.0				
	Note: A functionally equivalent X86 system may be substituted without invalidating this HiTest Template.				
2	Select one high-resolution color monitor (the 21" is recommended):		1	1	
	15-inch monitor 17-inch monitor 21-inch monitor	SN-VRCX5-WA SN-VRCX7-WA SN-VRCX1-WA			
System Management Station Software					
3	Windows NT Client, Version 4.0 media, documentation and license	Included with item 1	1	1	
4	Windows NT Service Pack 3	Microsoft	1	1	
5	DIGITAL PATHWORKS 32, Version 7.0A Media and Documentation	Included with item 12 in Table 2-1	1	1	

Oracle Rdb7 HiTest AppSet System Management Station				
Line Item	Description	Part Number	HiTest Min	Range Max
6	DIGITAL PATHWORKS 32, Version 7.0A system license Includes: • PATHWORKS 32 networking components • eXcursion for Windows 95 and Windows NT 4.0 • PowerTerm 525 terminal emulator	Included with item 12 in Table 2-1	1	1
7	OpenVMS Management Tools (OMT) V2.0	Included with base system	1	1

The following table lists the revision levels of the components.

Table 2-3: Component Revision Levels

Hardware Component	Hardware	Firmware	Software
SRM Console	_	V4.9-20	_
Fast/Wide SCSI Controller (KZPSA-AA)	_	2	_
CI Controller (HSJ50)	_	V3.1J	_
4.3 GB 7200 RPM UltraSCSI disk (DS-RZ1CB-VW)	A01	_	_
StorageWorks Shelf Power Supply (DS-BA35X-HH)	B01 or greater	_	_
466 MHz CPU OpenVMS SMP UPG (KN304-DC)	A02	_	_
System I/O module (KFTHA-AA)	D03	_	_
PCI-CI Host Bus Adapter (CIPCA-AA)	1	A315	_
Software Component		Version/Revision	Patch Level
Oracle Rdb7		7.0.1.0	-
OpenVMS		7.1	Alpcpuc02_071
DEC C for OpenVMS Alpha		5.5	_
DEC C++ for OpenVMS Alpha		5.5	_
DECevent		2.3	_
UCX		4.1	_

Special Configuration Rules

There are no special configuration rules for the Oracle Rdb7 OpenVMS AlphaServer 8x00 HiTest Suite.

System Installation and Setup

This chapter presents information that is useful when installing and setting up a DIGITAL HiTest System configured from this DIGITAL HiTest Suite. System preparation includes installation of the hardware, operating system, and applications.

Hardware Installation

The hardware was installed and interconnected as shown in Appendix A.

AlphaServer Systems

DIGITAL recommends the installation of the AlphaServer 8x00 system be performed by authorized DIGITAL Service personnel. Installation procedures are provided with the systems when shipped. Installation manuals are also provided with the optional components ordered, when appropriate.

Appendix A contains the detailed hardware configuration for the systems, beginning with a detailed graphical view of the test cluster configuration.

Operating System Installation

Install standard OpenVMS VAX Version 7.1 and OpenVMS Alpha 7.1 operating systems using all the default values. Refer to Chapter 4 for suggestions on system-specific tuning of account quotas and SYSGEN parameters.

Layered Products

Install the following versions of layered products in the order shown, using all the standard defaults:

- 1. DECevent 2.3
- 2. DEC C 5.5
- 3. DEC C++ 5.5
- 4. UCX 4.1
- 5. Oracle Rdb7 Release 7.0.1.0, Patch Level 10
- 6. Oracle SQL/Services
- 7. Oracle Parallel Query & Distributed Option

Application

Install Oracle Rdb7 as described in the installation guide that is supplied with the Oracle Rdb7 CD-ROM.

CPG Database

For the testing of this HiTest Suite, DIGITAL HiTest Engineering used the Consumer Packaged Goods (CPG) database from Oracle Corporation. During the testing of this HiTest Suite, parameters were modified as described in Chapter 4 of this document.

Interoperability Tests and Results

This chapter describes how the tests were set up (including database organization), what data and programs were placed on what disks, and how the tests were run.

This chapter describes:

- Test Environment
- **Test Tools**
- **Test Configuration**
- Test Process and Results

Overview of Results

Interoperability testing was performed successfully on the Oracle Rdb7 OpenVMS AlphaServer 8x00 HiTest Suite. The tests verified that the business processes functioned correctly.

Test Environment

Figure 4-1 shows the Oracle Rdb7 test environment. The test cluster consisted of either one or two AlphaServer 8400s connected to an existing CI-based VMScluster with a VAX 6620 systems.

Ethernet Depot8 Depot7 DepotX **AlphaServer AlphaServer VAX 6620** 8x00 8x00 512 GB Memory 5/440 MHz 5/440 MHz 2 CPUs 4-8 GB Memory 4-8 GB Memory 4-8 CPUs 4-8 CPUs **CIPCA CIPCA** CIPCA **CIPCA CIXCD** CI node #x CI node #x CI node #x Add-on **Systems** SC008-AC SC008-AD HSJ001 HSJ002 HSJ003 \$1\$DUAx \$1\$DUAx 128 MB Cache 128 MB Cache V3.1J (HSOF) V3.1J (HSOF) Write-back cache Write-back cache option installed option installed CI node address # CI node address # ML014194

Figure 4-1: Test Environment

SYSGEN Parameters

The following MODPARAMS.DAT file was used by AUTOGEN to set up system parameters for the initial testing of this HiTest Suite.

Note			
MOIE			

The initial testing of this suite included running a 10-user load every four hours for a 24-hour period. After the initial testing of this suite, AUTOGEN was run with feedback enabled on an 8400 system in the minimum configuration and an 8400 in the maximum configuration. This produced the output listed in the "SETPARAMS.DAT Values for the Minimum Configuration" and "SETPARAMS.DAT Values for the Maximum Configuration" sections.

MODPARAMS.DAT File for AlphaServer 8400

mobi Anamolba i ile idi Alphadei vei d	, -1 00
SCSSYSTEMID=64520	min_GBLPAGFIL=512000
SCSNODE="DEPOT8"	min_LOCKIDTBL=1100000
VAXCLUSTER=2	min_RESHASHTBL=1000000
EXPECTED_VOTES=1	min_PQL_DASTLM=16384
VOTES=1	min_PQL_MASTLM=16384
RECNXINTERVAL=20	min_PQL_DBIOLM=16384
DISK_QUORUM=" "	min_PQL_MBIOLM=16384
QDSKVOTES=1	min_PQL_DDIOLM=16384
QDSKINTERVAL=10	min_PQL_MDIOLM=16384
ALLOCLASS=1	min_PQL_DFILLM=16384
LOCKDIRWT=3	min_PQL_MFILLM=16384
NISCS_CONV_BOOT=0	min_PQL_DPRCLM=16384
NISCS_LOAD_PEA0=1	min_PQL_MPRCLM=16384
NISCS_PORT_SERV=0	min_PQL_DTQELM=16384
MSCP_LOAD=1	min_PQL_MTQELM=16384
MSCP_SERVE_ALL=1	min_PQL_DENQLM=16384
min_NPAGEDYN=5000000	min_PQL_MENQLM=16384
CHANNELCNT=16384	min_PQL_DPGFLQUOTA=5000000
VCC_FLAGS=1	min_PQL_MPGFLQUOTA=5000000
VCC_MAXSIZE=204800	min_S2_SIZE=1000
min_GBLPAGES=512000	

SETPARAMS.DAT Values for the Minimum Configuration

The following SETPARAMS.DAT file was generated as output from AUTOGEN when the 8400 system was run in the minimum configuration.

use current	set PQL_MBIOLM 16384
write sys\$system:alphavmssys.old	set PQL_MBYTLM 100000
use default	set PQL_DDIOLM 16384
set PFCDEFAULT 64	set PQL_MDIOLM 16384
set GBLSECTIONS 600	set PQL_DFILLM 16384
set GBLPAGES 8511085	set PQL_MFILLM 16384
set GBLPAGFIL 512000	set PQL_DPGFLQUOTA 5000000
set MAXPROCESSCNT 673	set PQL_MPGFLQUOTA 5000000
set MULTITHREAD 4	set PQL_DPRCLM 16384
set PROCSECTCNT 64	set PQL_MPRCLM 16384
set MINWSCNT 20	set PQL_DTQELM 16384
set PAGFILCNT 4	set PQL_MTQELM 16384
set SWPFILCNT 2	set PQL_DWSDEFAULT 10064
set SYSMWCNT 10271	set PQL_MWSDEFAULT 10064
set BALSETCNT 671	set PQL_DWSQUOTA 20128
set WSMAX 1091584	set PQL_MWSQUOTA 20128
set NPAGEDYN 75464704	set PQL_DWSEXTENT 1091584
set NPAGEVIR 305364992	set PQL_MWSEXTENT 1091584
set PAGEDYN 6373376	set PQL_DENQLM 16384
set QUANTUM 20	set PQL_MENQLM 16384
set MPW_WRTCLUSTER 64	set ACP_MAPCACHE 420
set MPW_HILIMIT 131072	set ACP_HDRCACHE 1680
set MPW_LOLIMIT 2013	set ACP_DIRCACHE 1680
set MPW_IOLIMIT 4	set ACP_DINDXCACHE 420
set MPW_THRESH 4026	set ACP_QUOCACHE 673
set MPW_WAITLIMIT 131328	set ACP_SYSACC 18
set MPW_LOWAITLIMIT 130816	set ACP_SWAPFLGS 14
set S2_SIZE 1000	set VAXCLUSTER 2
set PFRATL 0	set EXPECTED_VOTES 1
set PFRATH 8	set VOTES 1
set WSINC 2400	set RECNXINTERVAL 20
set WSDEC 4000	set DISK_QUORUM " "
set LONGWAIT 30	set ALLOCLASS 1
set ERRORLOGBUFFERS 10	set LOCKDIRWT 1
set DUMPSTYLE 9	set NISCS_LOAD_PEA0 1

Interoperability Tests and Results

set	MVTIMEOUT 3600	set	NISCS_PORT_SERV 0
set	FREELIM 691	set	MSCP_LOAD 1
set	FREEGOAL 2684	set	TMSCP_LOAD 0
set	GROWLIM 691	set	MSCP_SERVE_ALL 1
set	BORROWLIM 691	set	MSCP_BUFFER 128
set	CLISYMTBL 512	set	MMG_CTLFLAGS 3
set	LOCKIDTBL 1100000	set	ERLBUFFERPAGES 8
set	RESHASHTBL 1048576	set	SHADOWING 2
set	SCSBUFFCNT 512	set	SHADOW_MAX_COPY 4
set	SCSCONNCNT 24	set	ZERO_LIST_HI 8192
set	SCSRESPCNT 300	set	GH_EXEC_CODE 1024
set	SCSSYSTEMID 64524	set	GH_EXEC_DATA 104
set	SCSNODE "DEPO12"	set	GH_RES_CODE 1024
set	PRCPOLINTERVAL 30	set	GH_RES_DATA 0
set	PASTDGBUF 16	set	NISCS_MAX_PKTSZ 1498
set	LNMSHASHTBL 512	set	NPAG_BAP_MIN 565248
set	ACP_MULTIPLE 0	set	NPAG_BAP_MAX 8519680
set	RMS_DFMBC 16	set	NPAG_BAP_MAX_PA 1073741824
set	RMS_DFMBFSDK 0	set	PIXSCAN 20
set	RMS_DFMBC 16	set	VIRTUALPAGECNT 2147483647
set	RMS_DFMBFSDK 0	set	CHANNELCNT 16384
set	RMS_DFMBFSMT 0	set	PIOPAGES 336
set	RMS_DFMBFSUR 0	set	CTLPAGES 100
set	RMS_DFMBFREL 0	set	PHYSICAL_MEMORY %XFFFFFFF
set	RMS_DFMBFIDX 0	set	LOAD_SYS_IMAGES 7
set	RMS_DFMBFHSH 0	set	VCC_FLAGS 1
set	RMS_DFNBC 8	set	VCC_MAXSIZE 204800
set	PQL_DASTLM 16384	wri	te current
set	PQL_MASTLM 16384	wri	te sys\$system:autogen.par
set	PQL_DBIOLM 16384	exi	t

SETPARAMS.DAT Values for the Maximum Configuration

The following SETPARAMS.DAT file was generated as output from AUTOGEN when the 8400 system was run in the maximum configuration.

use current	set PQL_MBYTLM 100000
write sys\$system:alphavmssys.old	set PQL_DDIOLM 16384
use default	set PQL_MDIOLM 16384
set PFCDEFAULT 64	set PQL_DFILLM 16384
set GBLSECTIONS 600	set PQL_MFILLM 16384
set GBLPAGES 8511085	set PQL_DPGFLQUOTA 5000000
set GBLPAGFIL 512000	set PQL_MPGFLQUOTA 5000000
set MAXPROCESSCNT 673	set PQL_DPRCLM 16384
set MULTITHREAD 8	set PQL_MPRCLM 16384
set PROCSECTCNT 64	set PQL_DTQELM 16384
set MINWSCNT 20	set PQL_MTQELM 16384
set PAGFILCNT 4	set PQL_DWSDEFAULT 18608
set SWPFILCNT 2	set PQL_MWSDEFAULT 18608
set SYSMWCNT 10271	set PQL_DWSQUOTA 37216
set BALSETCNT 671	set PQL_MWSQUOTA 37216
set WSMAX 1421312	set PQL_DWSEXTENT 1421312
set NPAGEDYN 75677696	set PQL_MWSEXTENT 1421312
set NPAGEVIR 305364992	set PQL_DENQLM 16384
set PAGEDYN 6373376	set PQL_MENQLM 16384
set QUANTUM 20	set ACP_MAPCACHE 420
set MPW_WRTCLUSTER 64	set ACP_HDRCACHE 1680
set MPW_HILIMIT 262144	set ACP_DIRCACHE 1680
set MPW_LOLIMIT 2013	set ACP_DINDXCACHE 420
set MPW_IOLIMIT 4	set ACP_QUOCACHE 673
set MPW_THRESH 4026	set ACP_SYSACC 17
set MPW_WAITLIMIT 262400	set ACP_SWAPFLGS 14
set MPW_LOWAITLIMIT 261888	set VAXCLUSTER 2
set S2_SIZE 1000	set EXPECTED_VOTES 1
set PFRATL 0	set VOTES 1
set PFRATH 8	set RECNXINTERVAL 20
set WSINC 2400	set DISK_QUORUM " "
set WSDEC 4000	set ALLOCLASS 1
set LONGWAIT 30	set LOCKDIRWT 1
set ERRORLOGBUFFERS 18	set NISCS_LOAD_PEA0 1

Interoperability Tests and Results

set	DUMPSTYLE 9	set	NISCS_PORT_SERV 0
set	MVTIMEOUT 3600	set	MSCP_LOAD 1
set	FREELIM 691	set	TMSCP_LOAD 0
set	FREEGOAL 2684	set	MSCP_SERVE_ALL 1
set	GROWLIM 691	set	MSCP_BUFFER 128
set	BORROWLIM 691	set	MMG_CTLFLAGS 3
set	CLISYMTBL 512	set	ERLBUFFERPAGES 8
set	LOCKIDTBL 1100000	set	SHADOWING 2
set	RESHASHTBL 1048576	set	SHADOW_MAX_COPY 4
set	SCSBUFFCNT 512	set	ZERO_LIST_HI 16384
set	SCSCONNCNT 24	set	GH_EXEC_CODE 1024
set	SCSRESPCNT 300	set	GH_EXEC_DATA 104
set	SCSSYSTEMID 64520	set	GH_RES_CODE 1024
set	SCSNODE "DEPOT8"	set	GH_RES_DATA 0
set	PRCPOLINTERVAL 30	set	NISCS_MAX_PKTSZ 1498
set	PASTDGBUF 16	set	NPAG_BAP_MIN 565248
set	LNMSHASHTBL 512	set	NPAG_BAP_MAX 8519680
set	ACP_MULTIPLE 0	set	NPAG_BAP_MAX_PA 1073741824
set	RMS_DFMBC 16	set	PIXSCAN 40
set	RMS_DFMBFSDK 0	set	VIRTUALPAGECNT 2147483647
set	RMS_DFMBFSMT 0	set	CHANNELCNT 16384
set	RMS_DFMBFSUR 0	set	PIOPAGES 336
set	RMS_DFMBFREL 0	set	CTLPAGES 100
set	RMS_DFMBFIDX 0	set	PHYSICAL_MEMORY %XFFFFFFF
set	RMS_DFMBFHSH 0	set	LOAD_SYS_IMAGES 7
set	RMS_DFNBC 8	set	VCC_FLAGS 1
set	PQL_DASTLM 16384	set	VCC_MAXSIZE 204800
set	PQL_MASTLM 16384	writ	te current
set	PQL_DBIOLM 16384	writ	te sys\$system:autogen.par
set	PQL_MBIOLM 16384	exit	5

Storage Subsystem

Figure 4-2 provides a high-level view of the storage disk layout for the test cluster. The storage disk layout consisted of three Dual-Redundant HSJ50 Controllers and 108 4.3 GB disks in an SW800 cabinet and 18 shelves.

HSJ001 HSJ002 HSJ003 HSJ001 HSJ002 HSJ003 HSJ52-HSJ52 HSJ52-HSJ001B HSJ002B HSJ003B 1st ALPHA System Disk 2nd ALPHA System Disk VAX System Disk \$1\$DUA11 \$1\$DUA21 \$1\$DUA32 Storage Disk3d Disk3d \$1\$DUA12 \$1\$DUA22 \$1\$DUA31 Disk4d Disk4d Disk1d \$1\$DUA13 \$1\$DUA23 \$1\$DUA33 Disk2d Disk3i Disk3i \$1\$DUA14 \$1\$DUA24 \$1\$DUA34 Disk1i Disk4i Disk4i \$1\$DUA15 \$1\$DUA25 \$1\$DUA35 Sort5 Disk2i Sort3 \$1\$DUA16 \$1\$DUA26 \$1\$DUA36 Sort4 Sort6 Sort1 \$1\$DUA17 \$1\$DUA27 \$1\$DUA37 Sort2 Root0 \$1\$DUA18 \$1\$DUA38 ML014195

Figure 4-2: Oracle Rdb7 OpenVMS Storage Layout

For more details, see the database storage maps in Appendix A.

The storage subsystem consisted of the following components:

- Star Coupler, eight-node with cabinet
- Star Coupler, eight-node add on
- Three basic controller shelves for HSJ50 Controllers
- Six StorageWorks Array Controllers, 6 channel CI, 36–42 devices, 32 MB read cache
- 108 4.3 GB fixed wide disks
- 18-shelf expansion units
- One SW800 Data Center Cabinets
- 18 8-bit I/O modules for BA356 shelf
- 18 SCSI-2 hi-density "a" cables, 1.5 m
- Six CI bus cables, 20 m

Storage Management

It is understood that a customer's database and disk layout may already exist. The following information describes the layout of the test environment disk storage.

POLYCENTER Console Manager (PCM) was used in the test environment to perform the following functions:

- Shutting down systems
- Rebooting systems
- Running standalone diagnostics
- Installing layered products
- Configuring HSJ controllers
- Monitoring system and HSJ controller status

PCM was also used to manage the test HSJ configuration and capture failure messages, alerting the need to repair or replace faulty disk drives. Alarm conditions were reported to a single workstation using PCM. HSJ50 consoles were connected to terminal servers, which were reported as nodes to the PCM, simplifying the management of a large configuration of over 100 disk drives.

Disk Setup

PCM was used to set up disks as follows:

The test database data was stored on six five-member RAID 5 arrays.

Note
Write-back cache was enabled for all drives attached to the HSJ50 Controllers.

The Index drives consisted of six three-member RAID 5 arrays. The Storage and Root drives each consisted of a single four-member RAID 5 array and a single three-member RAID 5 array respectively.

- The OpenVMS VAX and OpenVMS Alpha operating systems were located on separate six-member RAID 5 RAIDsets.
- There were six sort drives made up of six four-member RAID 5 RAIDsets.
- The remaining spindles were used as sparesets for the RAID 5 arrays.

Refer to Appendix A for detailed storage maps. For more information, refer to StorageWorks Array Controllers: HS Family of Array Controllers User Guide (EK-HSFAM-UG).

Test Database Structure

The database was built using the Consumer Packaged Goods (CPG) Database Demo scripts provided by Oracle Corporation. The CPG Database represents typical marketing and sales data for a consumer products manufacturing firm. The data includes one year of sales data in a star schema data warehouse optimized for decision support.

The CPG database, constructed with Oracle Rdb7, consisted of six tables:

- SALES_FACTS table, which consists of the bulk of the database
- Five dimension tables: CHANNEL, DAILY PERIOD, MONTHLY PERIOD, MARKET, and PRODUCT.

Table 4-1 shows the five table spaces in the CPG database:

Table 4-1: CPG Database

Table Space	Contents	Size
FACTS	SALES_FACTS Table 41 data files (varying sizes)	147.2 GB 2,799,497,440 rows
FACTSINDEX	SF_KEY Index on SALES_FACTs Table 522 data files	137 GB
DIMENSION	1 Data File Dimension Tables: CHANNEL DAILY_PERIOD MONTHLY_PERIOD MARKET PRODUCT	316 KB 41 rows 2189 rows 72 rows 1002 rows 522 rows
DIMINDEX	1 Data File Index for Dimension Tables	138 KB
TEMPFILE	24 data files (5.5 MB each) required for SF_KEY index build	137.6 GB

Test Data Distribution

Originally, storage areas were created assuming a uniform distribution of data by channel. The initial database design was to partition by channel for data storage, but to partition indexes by product. This benefited the time, channel, and queries by product.

Initial database loading, however, showed that data distribution was not uniform across the 41 channels. There were eight instances each of five channel groups (Discount, Drug, Warehouse, Supermarket, Convenience) and one "Total" channel. Table 4-2 summarizes this distribution and the sizes of per-channel datasets as record count, storage page count, and MB size.

Table 4-2: Data Distribution Across Channels

Group	Records/Mo.	Pages/Mo.	MB/Mo.	Pages/Yr.	MB/Yr.
Warehouse	433,690	1,456	23	17,470	273
Discount	1,794,528	6,024	94	72,289	1,130
Drug	1,794,528	6,024	94	72,289	1,130
Convenience	2,661,908	8,936	140	107,230	1,675
Supermarket	7,951,376	26,692	417	320,307	5,005
"Total"	1,794,528	6,024	94	72,289	1,130
Total by group (41) assume 31 days	118,882,768	399,082	6,236	4,788,979	74,828
Data by year assume 31 days	1,426,593,216	4,788,979	74,828		
Index by year assume 31 days	1,426,593,216	4,788,979	74,828		
2-year small DBMS	2,853,186,432	9,577,957	299,311		

Global and Row Cache Buffers

The query scripts were run in different buffer configurations:

- Global buffers set to 20,000, 100 users, 200 buffers/user, and VLM row caches enabled on the AlphaServer systems
- Global buffers only, 2500 total, maximum of 7 users, 100 buffers/user, on the VAX system

The row cache buffers were designed to hold all small tables and all referenced data in the larger tables and indexes as shown in Table 4-3.

Table 4-3: Allocation of Row Cache Buffers

Name	Record Length	Cache	Rows	Used	Bytes Allocated	Bytes Used
SYSTEM_CACHE		1,000	500	484	500,000	484,000
CHANNEL*	226	226	41	40	9,266	9,040
C_CHANNEL	960	960	10	2	9,600	1,920
C_CHANNEL_ID	960	960	10	0	9,600	0
C_CHNLGRP	215	216	10	3	2,160	648
DAILY_PERIOD*	70	70	2,189	2,189	153,230	153,230
D_DAY	960	960	100	0	96,000	0
D_MONTH	215	216	100	17	21,600	3,672
D_QUARTER	215	216	100	0	21,600	0
MARKET*	161	164	1,002	140	164,328	22,960
MONTHLY_PERIOD*	52	52	72	0	3,744	0
M_DISTRICT	215	216	100	18	21,600	3,888
M_MARKET	960	960	100	2	96,000	1,920
M_MARKET_ID	960	960	100	0	96,000	0
M_REGION	215	216	100	2	21,600	432
PRODUCT	332	332	522	21	173,304	6,972
P_BRAND	215	216	100	0	21,600	0
P_MFR	215	216	100	0	21,600	0
P_PRODUCT	960	960	100	3	96,000	2,880
P_PRODUCT_ID	960	960	100	0	96,000	0
SALES_FACTS*	55	56	10,000,000	2,394,477	560,000,000	134,090,712
SF_KEY	960	960	1,000,000	38,512	960,000,000	36,971,520
				Totals	1,521,634,832	171,753,794

^{*} These are tables.

These numbers represent the size of row caches and should be compared to the "Bytes Allocated" column to gauge the actual memory utilization.

Test Database Creation

The Oracle Rdb7 OpenVMS HiTest System was designed so that a series of custom .COM, .SQL, and other supporting files could be used to set up and configure the test system. These files were created by Oracle Corporation. Descriptions of these files are provided in Appendix B.

The custom files performed the following sequential functions:

- 1. Allocating database storage
- Creating the database storage files
- Compiling and linking flat file builder program
- Generating 12, 24, or 72 input streams
- 5. Loading the database
- Creating indexes and journals (needed for VLM)
- 7. Executing queries

The rest of this section explains these functions in the order performed. Unless otherwise specified, the command files, SQL scripts, and supporting files shown on the following pages are located in the top-level [RDB] account directory. See also Appendix B.

Step 1: Allocating database storage

The database was not automatically brought on line at boot time. When bringing the system up for the first time, the following command files were executed from the RDB account:

```
$ @INIT DISKS.DAT
$ @LOGICALS DISKS.DAT
```

For use in initial creation of the database only, the following was executed:

```
$ @INIT DISKS.TMP
$ @LOGICALS DISKS.TMP
```

These commands created and initialized the TEMP space needed to hold the flat file data.

If the system needed to be rebooted after it was set up, the MOUNT.COM file was used in place of the INIT.COM previously shown.

To establish the search list logicals, the following was executed:

\$ @CPG.COM

Step 2: Creating the database storage files

For each AlphaServer system, the following command was used to create the files for an empty database:

(executed on maximum configured AlphaServer 8400) \$ SQL @CPG.SQL

Note

The preceding commands also created the small (empty) dimension tables in addition to the sales facts table. The schema design for the database was influenced by the queries because they performed query comparisons by year of an item (for example, a channel) to a group, and unioned the two result sets together. Data was partitioned by channel and the index was partitioned by product.

Step 3: Compiling and linking flat file builder

These files were located in the [.LOAD] subdirectory.

Two variants were used, the original and the binary version. The RMU load utility could read a binary or ASCII file. If ASCII was used, RMU would have to convert it to binary. The more efficient method is to use the binary loader. Using a binary input stream also resulted in a 25% space savings (55 bytes vs. 72 bytes input record length) and reduced use of CPU resources. These savings were needed to fit three months of data per each temp device. In all, eight temp devices were used to represent two years worth of data (24 months).

The ASCII and binary flat file builder programs were:

```
(ASCII)
FACT FILE BLD.C
FACT FILE BIN.C
                           (binary)
```

The following commands compiled and linked either program:

```
$ CC file name
$ LINK file name
```

Step 4: Generating the input streams

These files were located in the [.LOAD] subdirectory.

Just as with the flat file builders, there were two versions of the load programs. Either loader program was executed and used the FACT FILE Bxx.EXE generated in step 3. The loader programs were:

```
$ @LOADER
                      (ASCII loader)
$ @BINARY
                      (Binary loader)
```

BINARY.COM is recommended since it is an improved (faster) version of LOADER.COM and uses less storage space.

These command files called the appropriate FACT_FILE_Bxx file. If BINARY.COM was executed with no parameters, 24 load files (months) would be created by default.

The input to the previous command files was the DAILYnn.DAT files that were provided with the CPG database. The .COM files read the DAILYxx.DAT files (where xx = the month number) and created a DAILYxx.UNL file. The .DAT files were nearly identical to the .UNL files except that the date was in a different format than the original (Oracle7) format. The date format for the RMU Loader enforced a 4-digit year as in 'YYYYMMDD' format vs. 'DD-MMM-YY' format used by the Oracle7 SQL loader input files.

Step 5: Loading the database

These files were located in the [.LOAD] subdirectory.

The small dimension tables were loaded by executing:

```
$ @LOAD-DIM
```

There were two variants of command files that were used to load the sales facts table depending on whether binary or ASCII load files were created. These were:

```
$ @RMUBLD.COM (ASCII)
$ @RMUBIN.COM (binary)
```

Again, execute only one of these, not both. The recommended file is RMUBIN.COM. There are multiple variants of the RMUBIN.COM. These variants end in 4, 8, 17, and 41, and represent the number of parallel loader processes to use to load the flat files. The RMUBIN17.COM file was found to be the most efficient.

Step 6: Creating the indexes and journals

The indexes were created as follows:

```
$ SQL @INDEXES
```

The journals were created as follows:

\$ @JOURNALS

Step 7: Executing the queries

These files were located in the [.QUERIES] subdirectory.

Oueries could be executed on either the 1994 or 1995 portion of the database. They could be executed as an individual query (1-5) or as a single-user load (parallel execution of queries 1-5), using the following:

```
$ SQL @QUERY-9x-n.SQL
(where x = year and n = query number)
$ @QUERIES.COM 9x batch queue
$ @QUERY N USER n 9x batch queue
```

(where batch_queue is the queue of the system to run on, for example, DEPOT8_BATCH)

Test Scenarios and Scripts

This section describes the test scenarios that were used to generate test data. The test scenarios consisted of VLM-enabled tests, non-VLM enabled tests, RMU Backup and Restore tests, and Fault Insertion/Error Recovery tests.

The VLM-enabled test scenarios and the Non-VLM Enabled test scenarios used five query scripts during testing. The five query scripts are described in the Test Process section of this chapter.

VLM-Enabled Test Scenarios

Test Scenarios 1 through 3 were the VLM-enabled test scenarios. These test scenarios used the large memory system sharing row cache. This scheme is limited to a system's 64-bit address space or amount of physical memory available on the system.

Test Scenarios 1 through 3 were run on the HiTest System in both the minimum and maximum configurations.

Test Scenario 1: Single-User Tests (Cold Cache)

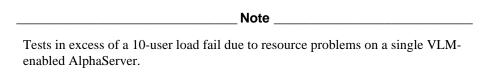
This test scenario involved the simultaneous, single-user execution of query scripts 1 through 5 in parallel with cold cache.

The purpose of this test was to determine the system performance of a basic load.

This test was also run on the VAX node DEPOTX.

When this test was run on the VAX node DEPOTX, it was run without VLM capabilities. This is because VLM capabilities do not exist on VAX systems.

Test Scenario 2: Single-User Tests (Warm Cache)


This test scenario involved the simultaneous, single-user execution of query scripts 1 through 5 in parallel with warm cache.

The purpose of this test was to determine the system performance of a basic load.

Test Scenario 3: Multi-User Tests

This test scenario involved five and ten users simultaneously executing query scripts 1 through 5.

The purpose of this test was to determine the system performance under an increased load.

Non-VLM Enabled Test Scenarios

Test Scenarios 4 and 5 were the Non-VLM Enabled Test Scenarios. These test scenarios involved turning off VLM to allow the same database to be opened and simultaneously queried from multiple nodes.

Test Scenarios 4 and 5 were run on the HiTest System in both the minimum and maximum configurations.

Test Scenario 4: Distributed 10-User Load Tests

This test scenario involved running two 5-user test loads from two separate AlphaServers.

The purpose of this test was to determine the difference in system performance that results when a 10-user load is split between two AlphaServers accessing a non-VLM enabled database rather than run on a single AlphaServer with a VLM-enabled database.

Test Scenario 5: Distributed 20-User Load Tests

This test scenario involved running two 10-user test loads from two separate AlphaServers.

The purpose of this test was to determine whether, by adding a second AlphaServer system, the total number of users accessing the database can be doubled.

RMU Backup and Restore and Fault Insertion/Error Recovery Test Scenarios

This section describes the RMU Backup and Restore Test Scenario and the Fault Insertion/Error Recovery Test Scenario.

Note
The Fault Insertion/Error Recovery Tests were run in VLM-enabled mode on the AlphaServer 8400.

Test Scenario 6: RMU Backup and Restore Tests

This test involves performing an RMU backup and restore of the one-year database.

The purpose of this test was to do the following:

- Determine the approximate backup and restore throughput times for a multifile/multidisk database.
- Verify the procedure for backing up and restoring a multifile/multidisk database.
- Identify potential problems in backing up and restoring a multifile/multidisk database.

Test Scenario 7: Fault Insertion/Error Recovery Tests

This test simulates potential hardware problems during an active query. The simulations of hardware problems include the following:

- Loss of a disk in a RAID 5 array
- Loss of an HSJ50
- Loss of system power

The purpose of this test was to determine the impact of each simulated problem on the database.

Purpose of Query Scripts

Functional verification of the ability to perform query operations was demonstrated using five SQL join scripts. These queries exercised functionality of the RDB7 server and SQL Utility components.

The scripts were designed to emulate typical decision support questions about the historical activity of a product sales environment. In most cases, the results of these types of queries were used to generate sales trends.

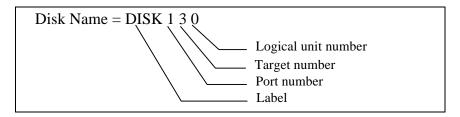
The typical question asked was:

"What percentage of product share in dollars and units did a particular product have in a particular area as compared to competitive products in the same area?"

The queries were designed to search the database in varying ways to exercise the database.

Test Tools

The tools used for interoperability testing include the test scenarios described in the Test Process section of this chapter. The purpose of the test scenarios was to test a demonstration database under various conditions. Query scripts were written to search the database for various types of historical data.


Each query script was submitted to a batch queue and each batch entry then generated a log file. The log file contained process statistics such as elapsed time, which is the run time shown in the Test Results section. The run time also included any batch process overhead time.

Test Configuration

The test load was generated by using the five query scripts. The same disk storage configuration of 108 4.3 GB RZ29B-VW disks was used for both the minimum and maximum configurations.

Data was distributed across three dual-redundant HSJ controllers located in a SW800 cabinet. The cabinet housed three HSJ52 controllers and 18 BA356 shelves such that each controller supported six shelves. The 108 RZ29B-VW disks were evenly distributed across the six ports of each HSJ50 Controller.

Each disk was given a disk name consisting of a label, port number, target number, and logical unit number (LUN). Note that, in the following example, the disk name is "DISK."

Disks were grouped into RAIDsets that spanned several ports of each controller. Each set was assigned a container name such R2 (RAIDset) that corresponded to an OpenVMS device name such as \$1\$DUA12 and an HSJ LUN such as D12.

OpenVMS Device Name		LUN		Container Name		Disks
						DISK 110
\$1\$DUA12	_	D12	_	R2	_	DISK 210
\$1\$DUA12	\Rightarrow	D12	⇒	K2	\Rightarrow	DISK 310
						DISK 410

For more information about data storage, see Appendix A.

Test Process

The test process consisted of five queries. Each query was supported by two scripts, one for a 1994 portion of the database (for example, QUERY-94-1.SQL) and one for a 1995 portion of the database (for example, QUERY-95-1.SQL). For this round of testing, only the 1995 database existed.

Query 1

Query 1 asked "What was the product share of a specific brand of cereal as compared to other cereals in the same product category, in a particular state in a particular type of store." The information was grouped by month to show market trends.

The business question asked was "How did 20 oz. Wheat Flakes do as compared to all types of wheat flakes in supermarkets in the state of Connecticut?"

Script for Query 1 (QUERY-9x-1.SQL)

```
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001;
set dialect 'oracle level1';
set line length 255;
set transaction read only;
/* 1. Star-Product Share of Brand
SELECT 'All Wheat Flakes' Product, AL2.MONTH,
sum(AL5.UNIT_SALES) UNITS, sum(AL5.DOLLAR_SALES) DOLLARS, count(*),
DISTRICT, CHANNEL_GROUP CHNL
FROM PRODUCT AL4,
SALES_FACT AL5,
CHANNEL AL1,
DAILY_PERIOD AL2,
MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY)
AND (district='Connecticut'
AND CHANNEL_GROUP in('Supermarket')
AND BRAND in ('Quellogs Wheat Flakes')
        AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
BY DISTRICT, CHANNEL_GROUP, AL2.MONTH
UNION
```

```
SELECT '20 Oz Wheat Flakes' Product, AL2.MONTH,
sum(AL5.UNIT_SALES) UNITS, sum(AL5.DOLLAR_SALES) DOLLARS, count(*),
DISTRICT, CHANNEL_GROUP CHNL
FROM PRODUCT AL4,
SALES_FACT AL5,
CHANNEL AL1,
DAILY_PERIOD AL2,
MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY)
AND (district = 'Connecticut'
AND CHANNEL_GROUP in('Supermarket')
AND PRODUCT='QLGS WHT FLK 20 OZ'
        AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
    BY DISTRICT, CHANNEL_GROUP, AL2.MONTH
```

Query 2 compared the sales of a specific product, in a particular outlet in a region, against the sales of the same product through all channel outlets. The information was grouped by month to show market trends.

The business question asked was "What percentage of sales of 15 oz. Wheat Flakes were made in the Safeway stores in NY and PA as compared to all outlets in the NY and PA areas?"

Script for Query 2 (QUERY-9x-2.SQL)

```
set default date format `SQL92';
set quoting rules `SQL92';
set date format DATE 001;
set dialect `oracle level1';
set line length 255;
set transaction read only;

/* 2. Star-Channel share of all channels */
SELECT `All Channels' CHNL, AL2.MONTH,
sum(AL5.UNIT_SALES) Units, sum(AL5.DOLLAR_SALES) Dollars, count(*),
`NY + PA' DISTRICT, PRODUCT
FROM PRODUCT AL4,
```

```
SALES_FACT AL5,
CHANNEL AL1,
DAILY_PERIOD AL2,
MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY
AND DISTRICT in ('New York', 'Pennsylvania')
AND CHANNEL_GROUP in ('Supermarket', 'Convenience',
'Warehouse','Drug','Discount')
AND PRODUCT= 'QLGS WHT FLK 15 OZ'
AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
BY
     PRODUCT, AL2.MONTH
UNION
SELECT CHANNEL CHNL, AL2.MONTH,
sum(AL5.UNIT_SALES) Units, sum(AL5.DOLLAR_SALES) Dollars, count(*),
'NY + PA' DISTRICT , PRODUCT
FROM PRODUCT AL4,
SALES_FACT AL5,
CHANNEL AL1,
DAILY_PERIOD AL2,
MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY
AND DISTRICT in ('New York' , 'Pennsylvania')
AND CHANNEL='Safeway'
AND PRODUCT='QLGS WHT FLK 15 OZ'
AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
BY
     CHANNEL, PRODUCT, AL2.MONTH
```

Query 3 compared the market share of a product in a particular type of store, in a particular market location, to sales of all types of outlets in the region. The information was grouped by month to show market trends.

The business question asked was "How are 10 oz. Wheat Flakes doing in convenience stores in Bridgeport Connecticut as compared to the entire northeast region?"

Script for Query 3 (QUERY-9x-3.SQL)

```
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001;
set dialect 'oracle level1';
set transaction read only;
   3. Star Market share of Region */
SELECT 'Northeast Total' MARKET, AL2.MONTH,
sum(AL5.UNIT_SALES) Units, sum(AL5.DOLLAR_SALES) Dollars, count(*),
CHANNEL_GROUP, PRODUCT
FROM PRODUCT AL4,
SALES_FACT AL5,
CHANNEL AL1,
DAILY_PERIOD AL2,
MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY
AND REGION='Northeast'
AND CHANNEL_GROUP in ('Convenience')
AND PRODUCT= 'QLGS WHT FLK 10 OZ'
AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
      CHANNEL_GROUP, PRODUCT, AL2.MONTH
BY
UNION
SELECT MARKET, AL2.MONTH,
sum(AL5.UNIT_SALES) Units, sum(AL5.DOLLAR_SALES) Dollars, count(*),
CHANNEL_GROUP, PRODUCT
FROM PRODUCT AL4, SALES_FACT AL5,
CHANNEL AL1, DAILY_PERIOD AL2, MARKET AL3
```

```
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY
AND MARKET='Bridgeport'
AND CHANNEL_GROUP in ('Convenience')
AND PRODUCT='QLGS WHT FLK 10 OZ'
AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
BY
      MARKET, CHANNEL GROUP, PRODUCT, AL2.MONTH
```

Query 4 compared the market share of a particular product, in a particular type of store, in a particular market location to all sales of competitive products in the same market location. The information was grouped by month to show market trends.

The business question asked was "What was the market share of 20 oz. Wheat Flakes in Connecticut supermarkets?"

Script for Query 4 (QUERY-9x-4.SQL)

```
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001;
set dialect 'oracle level1';
set transaction read only;
       Star-Product share of SubCategory -all competitive prods */
SELECT 'All Wheat Products' Product, AL2.MONTH,
sum(AL5.UNIT_SALES) Units, sum(AL5.DOLLAR_SALES) Dollars, count(*),
DISTRICT, CHANNEL_GROUP CHNL
FROM PRODUCT AL4,
SALES_FACT AL5,
CHANNEL AL1,
DAILY PERIOD AL2,
MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY
AND district='Connecticut'
```

Interoperability Tests and Results

```
AND CHANNEL_GROUP in('Supermarket')
AND BRAND IN ('Quellogs Wheat Flakes', 'Boast Weeties', 'Boast Oatey Rounds',
'Quellogs Wheaten Rye')
AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
BY
      DISTRICT, CHANNEL_GROUP, AL2.MONTH
UNION
SELECT '20 Oz Wheat Flakes' Product, AL2.MONTH,
sum(AL5.UNIT_SALES) Units, sum(AL5.DOLLAR_SALES) Dollars, count(*),
DISTRICT, CHANNEL_GROUP CHNL
FROM PRODUCT AL4,
SALES_FACT AL5,
CHANNEL AL1,
DAILY_PERIOD AL2,
MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY
AND district = 'Connecticut'
AND CHANNEL_GROUP in('Supermarket')
AND PRODUCT='QLGS WHT FLK 20 OZ'
AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
BY
      DISTRICT, CHANNEL_GROUP, AL2.MONTH
```

Query 5 compared the product share of a given product, combining several areas, to total sales across the same areas.

The business question asked was "What was the market share of 20 oz. Wheat Flakes across 10 test market areas?"

Script for Query 5 (QUERY-9x-5.SQL)

```
set default date format 'SQL92';
set quoting rules 'SQL92';
set date format DATE 001;
set dialect 'oracle level1';
set transaction read only;
/* 5. Star-Product share of brand in 10 test markets aggregated */
/* include the star hint - 1/29/97 JMM */
SELECT 'All Wheat Flakes' Product, AL2.MONTH,
sum(AL5.UNIT_SALES) Units, sum(AL5.DOLLAR_SALES) Dollars, count(*),
CHANNEL_GROUP CHNL, '10-States'
FROM PRODUCT AL4,
SALES_FACT AL5,
CHANNEL AL1,
DAILY_PERIOD AL2,
MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY
AND district in ('Connecticut', 'Delaware', 'Maine', 'Pennsylvania',
'New York', 'Oregon', 'Alaska', 'CA North', 'CA South', 'Washington')
AND CHANNEL_GROUP in ('Supermarket')
AND BRAND IN ('Quellogs Wheat Flakes')
AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
BY
      AL2.MONTH, CHANNEL_GROUP
UNION
SELECT '20 Oz Wheat Flakes' Product, AL2.MONTH,
sum(AL5.UNIT_SALES) Units, sum(AL5.DOLLAR_SALES) Dollars, count(*),
CHANNEL_GROUP CHNL, '10-States'
FROM PRODUCT AL4, SALES_FACT AL5,
```

Interoperability Tests and Results

```
CHANNEL AL1, DAILY_PERIOD AL2, MARKET AL3
WHERE (AL5.PRODUCT_ID=AL4.PRODUCT_ID
AND AL5.MARKET_ID=AL3.MARKET_ID
AND AL5.CHANNEL_ID=AL1.CHANNEL_ID
AND AL5.DAY=AL2.DAY
AND district in ('Connecticut', 'Delaware','Maine','Pennsylvania',
'New York', 'Oregon', 'Alaska', 'CA North', 'CA South', 'Washington')
AND CHANNEL_GROUP in ('Supermarket')
AND PRODUCT='QLGS WHT FLK 20 OZ'
AND AL2.DAY BETWEEN '01-JAN-199x' AND '31-DEC-199x')
                                                     (where x = 4 or 5)
GROUP
      AL2.MONTH, CHANNEL_GROUP
BY
```

Test Results

Initial tests on the maximum VLM platform verified the ability to process SQL queries, in which all query data resides on the local system in a single database. The set of five query scripts, previously described, was executed on each system and run times were derived from query log files.

The following table shows test conditions that were used for Tests 1, 2, and 3.

Table 4-4: Test Conditions

Condition	AlphaSer	AlphaServer 8400	
Configuration:	Minimum	Maximum	_
Database opened:	1 year	1 year	1 year
Global buffers:	20,000	20,000	2,500
Buffers per user:	200	200	100
User slots:	100	100	7
CPUs:	4	8	2
Memory:	4 GB	8 GB	512 MB

Test 1: Single-User Test (Cold Cache)

This test performed the five SQL queries in parallel using cold cache conditions on the AlphaServer 8400 in the minimum configuration, the maximum configuration, and on the VAX 6620. The following table summarizes the run-time results on the test systems.

Table 4-5: Single-User, Cold Cache Test Results

Query	AlphaServer 8400 (Min. Config.) Run Times (hr:min:sec)	. Config.) (Max. Config.) Times Run Times	
Query 1	00:20:30.83	00:20:37.31	01:47:31.40
Query 2	00:36:04.17	00:36:14.70	01:58:48.28
Query 3	00:04:56.13	00:04:53.33	00:40:12.18
Query 4	02:09:25.18	02:09:59.26	04:17:47.06
Query 5	00:43:40.42	00:44:14.86	04:26:27.35

The VAX run times show that the VAX system did not perform as well as the AlphaServer system. Among other things, this was due to the AlphaServer VLM capabilities.

Test 2: Single-User Test (Warm Cache)

This test performed the five SQL queries in parallel using warm cache conditions on the AlphaServer 8400 in the minimum configuration and the maximum configuration. The following tables summarize the run-time results on the test systems.

Note For the VAX 6620 platform, there is no substantial difference between the singleuser, cold-cache test results and the single-user, warm-cache test results. For this reason, there are no test results listed for the single-user warm cache test on the VAX 6620.

Table 4-6: Single-User, Warm Cache Test Results

Query	AlphaServer 8400 (Min. Config.) Run Times (hr:min:sec)	AlphaServer 8400 (Max. Config.) Run Times (hr:min:sec)	VAX 6620 Run Times (hr:min:sec)
Query 1	00:01:47.59	00:01:45.69	-
Query 2	00:02:03.79	00:02:02.40	-
Query 3	00:02:27.54	00:02:27.05	-
Query 4	00:04:48.50	00:04:48.48	-
Query 5	00:24:56.51	00:24:52.55	-

Test 3: Multi-User Load Tests

This test consisted of 5- and 10-user load tests. The 5-user test was comprised of a total of 25 queries issued simultaneously with 5 users each issuing 5 queries. The 10-user test was comprised of a total of 50 queries issued simultaneously with 10 users each issuing 5 queries.

Table 4-7 and Table 4-8 show the range of run times for each query in the 5- and 10-user load tests. Table 4-7 shows the range of multiuser load test run times for the minimum configuration of this HiTest Suite. Table 4-8 shows the range of multiuser load test run times for the maximum configuration of this HiTest Suite.

In the following tables, the columns labeled "Shortest Run Time" and "Longest Run Time" list the shortest and longest run times for each individual query in a multi-load user test. For example, Table 4-7 lists 6 minutes, 4.15 seconds as the shortest run time for Query 1 in the 5user load test run under the minimum configuration; Table 4-7 lists 7 minutes, 1.38 seconds as the *longest* run time for Query 1 in the 5-user load test run under the minimum configuration.

Table 4-7: 5- and 10-User Load Test Results for the Minimum Configuration

	Run Time for 5 Users (hr:min:sec)		Run Time for 10 Users (hr:min:see	
Query	Shortest Run Time	Longest Run Time	Shortest Run Time	Longest Run Time
Query 1	00:06:04.15	00:07:01.38	00:08:15.59	00:14:13.69
Query 2	00:07:00.42	00:07:44.98	00:12:09.43	00:14:51.96
Query 3	00:08:18.02	00:08:33.63	00:16:00.30	00:16:53.84
Query 4	00:14:12.11	00:15:01.74	00:26:00.04	00:29:06.02
Query 5	00:48:56.25	00:49:12.88	01:25:12.25	01:32:56.09

Table 4-8: 5- and 10-User Load Test Results for the Maximum Configuration

	Run Time for 5 Use	Run Time for 5 Users (hr:min:sec)		ers (hr:min:sec)
Query	Shortest Run Time	Longest Run Time	Shortest Run Time	Longest Run Time
Query 1	00:06:27.13	00:07:36.42	00:13:16.80	00:16:21.15
Query 2	00:07:16.91	00:07:47.41	00:11:56.89	00:15:34.71
Query 3	00:08:47.75	00:09:07.55	00:16:09.26	00:17:50.19
Query 4	00:13:54.32	00:13:57.06	00:26:49.80	00:27:10.56
Query 5	00:42:44.86	00:42:58.88	01:07:14.10	01:12:27.34

Non-VLM Enabled Database Query Tests

The following section provides the results of the non-VLM enabled database query tests.

Test 4: Distributed 10-User Load Test

This test involved splitting the 10-user load test across two AlphaServers; a 5-user load was run on each AlphaServer. The purpose of this test was to determine the difference in performance, if any, that results from running a 10-user load test across two AlphaServers in non-VLM enabled mode rather than on one VLM-enabled AlphaServer.

Table 4-9 shows the range of run times for each query in the non-VLM enabled 10-user load test. In Table 4-9, the columns labeled "Shortest Run Time" and "Longest Run Time" list the shortest and longest run times for each individual query in the non-VLM enabled 10-user load test. For example, Table 4-9 lists 1 hour, 49 minutes, 34.76 seconds as the shortest run time for Ouery 1 in the non-VLM enabled 10-user load test run under the minimum configuration; Table 4-9 lists 2 hours, 11 minutes, 18.55 seconds as the *longest* run time for Query 1 in the non-VLM enabled 10-user load test run under the minimum configuration.

Table 4-9: Non-VLM Enabled 10-User Load Test Results

	(Minimum Configuration)		Run Time on Alpha (Maximum Configui (hr:min:sec)	
Query	Shortest Run Longest Run Time Time		Shortest Run Time	Longest Run Time
Query 1	01:49:34.76	02:11:18.55	01:34:49.36	01:41:21.55
Query 2	02:43:36.82	02:47:45.69	02:10:48.19	02:18:25.95
Query 3	00:24:44.61	00:44:54.43	00:14:24.84	01:02:52.83
Query 4	05:06:58.04	05:13:10.18	04:14:12.59	04:15:51.78
Query 5	03:10:21.18	03:41:29.67	01:53:38.39	02:23:45.62

Test 5: Distributed 20-User Load Test

This test consisted of running two 10-user load tests across two AlphaServers. The purpose of this test was to verify that the number of users can be doubled by adding a second AlphaServer system.

The test completed successfully.

RMU Backup and Restore Tests

The RMU Backup and Restore tests consisted of an RMU backup and restore of the one-year database. These tests determined the approximate throughput times for RMU backup and restore operations on a multifile, multidisk database.

The one-year database is described in Table 4-1 and Table 4-2.

Table 4-10 lists the results of the RMU Backup and Restore tests for this HiTest Suite.

Table 4-10: RMU Backup and Restore Test Results for the Maximum Configuration

	Backup Statistics (hr:min:sec)	Restore Statistics (hr:min:sec)
Buffered I/O count	678	1605
Direct I/O count	10678172	10682407
Page faults	1657	3937
Charged CPU time	0 02:48:12.62	0 02:02:01.54
Peak working set size	17616	34912
Peak virtual size	204560	229312
Mounted volumes	3	3
Elapsed time	0 13:45:22.55	0 16:36:11.01

Test 6: Error Recovery

This test simulated various potential hardware problems during an active query. The following fault scenarios were tested with the AlphaServer 8400 system in the minimum configuration:

- Loss of a disk in a RAID 5 array
- Loss of an HSJ50
- Loss of system power

The following sections discuss each simulated failure.

Disk Failure

Test Description: DISK150 on HSJ002, which was part of the raidset known as sort4, was removed after a set of queries were started; this test was run under warm cache conditions.

Note
A disk was removed from the sort4 raidset because the sort4 raidset had a
relatively high amount of I/O in a single-user warm cache test.

Expected results: Queries would run to successful completion with little to no performance impact.

Actual results: Results were as expected. Queries ran to successful completion with no significant performance impact.

Table 4-11 shows the actual elapsed query times for the disk failure tests and the single-user, warm cache tests without disk failure on the AlphaServer 8400 in the minimum configuration.

Table 4-11: Actual Elapsed Query Times

Query	Disk Failure Tests Run Times (hr:min:sec)	Tests without Disk Failure Run Times (hr:min:sec)
Query 1	00:01:50.96	00:01:47.59
Query 2	00:02:07.47	00:02:03.79
Query 3	00:02:29.81	00:02:27.54
Query 4	00:04:49.57	00:04:48.50
Query 5	00:26:03.02	00:24:56.51

HSJ Failure

Test description: The flashram card on HSJ002B was removed after a set of queries were started.

Expected results: Queries would run to successful completion with little to no performance

Actual results: As expected, queries ran to successful completion with no overall significant performance impact.

Table 4-12 shows the actual elapsed query times for the HSJ failure tests and the single-user, warm cache tests without HSJ failure on the AlphaServer 8400 in the minimum configuration.

Table 4-12: Actual Elapsed Query Times

Query	HSJ Failure Tests Run Times (hr:min:sec)	Tests without HSJ Failure Run Times (hr:min:sec)
Query 1	00:01:44.68	00:01:47.59
Query 2	00:02:03.54	00:02:03.79
Query 3	00:02:25.38	00:02:27.54
Query 4	00:04:51.71	00:04:48.50
Query 5	00:25:18.38	00:24:56.51

Note
The HSJ failure test was run under warm cache conditions.

System Power Failure

Test description: The system was power failed (via key) after a set of queries had been started.

Expected results: Queries would not be completed, however, no database corruption should be experienced as a result. Reissuing the queries after the system was rebooted and the database was remounted should result in successful completion of all queries.

Actual results: The system was rebooted and the queries ran successfully but more slowly than they had run before the power failure occurred.

Note
Refer to Chapter 6 for information on preventing the degradation of query performance after a power failure.

Once the queries ran, the database was shut down and reopened and the queries ran as expected.

Table 4-13 shows the actual elapsed query times for the system power failure tests and the single-user, cold cache tests without system power failure on the AlphaServer 8400 in the minimum configuration.

Table 4-13: Actual Elapsed Query Times

Query	System Power Failure Tests Run Times (hr:min:sec)	Tests without System Power Failure Run Times (hr:min:sec)	
Query 1	00:20:37.39	00:20:30.83	
Query 2	00:36:01.60	00:36:04.17	
Query 3	00:04:57.21	00:04:56.13	
Query 4	02:09:58.56	02:09:25.18	
Query 5	00:43:47.19	00:43:40.42	

System Limits and Characterization Data

This chapter describes any system limits that may have been determined as a result of the testing, along with information about the system characterization during testing. Areas covered include:

- Comparison of run times
- Database buffering schemes
- Workload characterizations
- RDB account quotas
- System RDB account quotas
- Accounting information from a one-user load test

Comparison of Run Times

The tests demonstrated the interoperability of the AlphaServer systems in a VMScluster. The following comparisons were made of the AlphaServer and VAX systems:

- In the tests of SQL queries in parallel, the cold cache test times for the AlphaServer 8400 system ranged from about 4.19 minutes to 130.0 minutes while the VAX system ranged from about 40.2 minutes to 266.5 minutes.
- In the VLM-enabled 5- and 10-user load tests, the test times for the AlphaServer 8400 system ranged from about 6.0 minutes to 92.9 minutes. The VLM-enabled 5- and 10-user load tests were not run on the VAX systems because excessively long run times were expected.
- In the non-VLM enabled 10-user load tests, the test times for the AlphaServer 8400 system ranged from about 14.4 minutes to 313.15 minutes. The non-VLM enabled 10-user load tests were not run on the VAX systems because excessively long run times were expected.
- In the HSJ Failure Test, the elapsed query times for the AlphaServer 8400 system ranged from 2 minutes, 3.54 seconds to 25 minutes, 18.38 seconds.
- In the Disk Failure Test, the elapsed query times for the AlphaServer 8400 system ranged from 2 minutes, 29.81 seconds to 26 minutes, 3.02 seconds.
- In the System Power Failure Test, the elapsed query times for the AlphaServer 8400 system ranged from 4 minutes, 57.21 seconds to 2 hours, 9 minutes, 58.56 seconds.

- When comparing VAX and Alpha architectures, a query on the VAX node demonstrated that the comparison was so overwhelmingly in favor of the AlphaServer nodes that any further testing of the VAX nodes was deemed unnecessary. (See Table 4-5 for actual
- The test configuration was not fully optimized for performance. An extensive tuning effort would have obtained better run-time results. The 64-bit and VLM capabilities of the AlphaServer systems were clearly evident with the run times that were observed.

Database Buffering Schemes

In conducting the tests on the VAX and AlphaServer systems, certain architectural differences were uncovered, the primary one being the difference in memory addressing between a 32-bit system (VAX system) and a 64-bit system (AlphaServer system).

In designing the database buffering schemes for both platforms, these differences had to be considered. The Oracle Rdb7 database provided several different buffer management styles to support 32- and 64-bit systems.

These buffer styles included the following:

- Conventional process sharing local buffers (available on VAX and AlphaServer systems). This scheme is limited to a process' 32-bit address space and was not used in the testing of this HiTest Suite.
- Conventional process sharing global buffers (available on VAX and AlphaServer systems). This scheme is limited to a process' 32-bit address space (1 GB) and was used in the non-VLM enabled testing of this HiTest Suite.
- System sharing row cache (available on AlphaServer systems only). This scheme is limited to a system's 32-bit address space (1.8 GB) and was not used in the testing of this HiTest Suite.
- Large memory system sharing row cache (for example, Very Large Memory or VLM, available on AlphaServer systems only). This scheme is limited to a system's 64-bit address space or amount of physical memory available on the system and was used in the VLM-enabled testing of this HiTest Suite.

The first three buffering styles are additive and must all reside within the limits of conventional 32-bit addressing. The latter three styles are only available on 64-bit AlphaServer systems and account for a vast performance difference between the platforms.

Workload Characterizations

The following excerpt of accounting information from the query log files shows the consumption of resources on a single-user cold cache (worst case) test. In the following example, the platform was the AlphaServer 8400 in the maximum configuration.

The following example includes batch processing resource usage.

The following is the accounting information from a cold cache 1-user load test on an AlphaServer 8400 in the maximum configuration with VLM enabled:

Query 1:

Accounting information:

Buffered I/O count	: 854	Peak working set size	49536
Direct I/O count:	65217	Peak virtual size:	254800
Page faults:	4398	Mounted volumes:	0
Charged CPU time:	0 00:01:19.23	Elapsed time: 0	00:29:21.28

Query 2:

Accounting information:

Buffered I/O count:	922	Peak working set size	56448
Direct I/O count:	183020	Peak virtual size:	261712
Page faults:	4758	Mounted volumes:	0
Charged CPU time:	0 00:02:41.03	Elapsed time: 0	01:13:05.44

Query 3:

Accounting information:

Buffered I/O count:	951	Peak working set size:	67840
Direct I/O count:	9339	Peak virtual size:	273136
Page faults:	5011	Mounted volumes:	0
Charged CPU time:	0 00:02:08.82	Elapsed time: 0	00:05:14.80

Query 4:

Accounting information:

Buffered I/O count:	830	Peak working set size:	113728
Direct I/O count:	352339	Peak virtual size:	318992
Page faults:	8410	Mounted volumes:	0
Charged CPII time:	0 00:06:13 39	Elapsed time: 0	02:14:57 84

Query 5:

Accounting information:

Buffered I/O count:	850	Peak working set size:	384768
Direct I/O count:	58399	Peak virtual size:	590128
Page faults:	25410	Mounted volumes:	0
Charged CPU time:	0 00:24:35.23	Elapsed time: 0	00:47:26.43

The following is the accounting information from a warm cache 1-user load test on an AlphaServer 8400 in the maximum configuration with VLM enabled:

Query 1:

Accounting information:

Buffered I/O count:	853	Peak working set siz	e: 49152
Direct I/O count:	4039	Peak virtual size:	254672
Page faults:	4370	Mounted volumes:	0
Charged CPU time: 0	00:00:34.22	Elapsed time:	0 00:01:45.69

Query 2:

Accounting information:

Buffered I/O count:	930	Peak working set siz	ze: 56240
Direct I/O count:	4603	Peak virtual size:	261712
Page faults:	4738	Mounted volumes:	0
Charged CPU time:	0 00:00:41.89	Elapsed time:	0 00:02:02.40

Query 3:

Accounting information:

Buffered I/O count:	939	Peak working set size	e: 67792
Direct I/O count:	5686	Peak virtual size:	273136
Page faults:	5001	Mounted volumes:	0
Charged CPU time:	0 00:00:58.30	Elapsed time: (00:02:27.05

Query 4:

Accounting information:

Buffered I/O count	: 830	Peak working set size:	113504
Direct I/O count:	9713	Peak virtual size:	318992
Page faults:	8393	Mounted volumes:	0
Charged CPU time:	0 00:02:30.44	Elapsed time: 0 (00:04:48.48

Query 5:

Accounting information:

Buffered I/O count:	847	Peak working set size	384880
Direct I/O count:	30619	Peak virtual size:	590128
Page faults:	25407	Mounted volumes:	0
Charged CDII time:	0 00:18:18 31	Elanged time: 0	00:24:52 55

RDB Account Quotas

Table 5-1 contains a list of account quotas from the User Authorization file of this HiTest System. During testing, the account quotas in Table 5-1 were used to run this HiTest Suite from the RDB account.

Use the values in Table 5-1 as the initial account quotas when running this HiTest Suite from the RDB account.

Table 5-1: Sample of RDB Account Quotas

Account Quota	Value	Account Quota	Value	Account Quota	Value
Maxjobs:	0	Fillm:	8000	Bytlm:	512000
Maxacctjobs:	0	Shrfillm:	0	Pbytlm:	0
Maxdetach:	0	BIOlm:	8000	JTquota:	8192
Prclm:	20	DIOlm:	8000	WSdef:	4096
Prio:	4	ASTlm:	8000	WSquo:	8192
Queprio:	4	TQElm:	8000	WSextent:	16384
CPU:	(none)	Enqlm:	32767	Pgflquo:	1024000

SYSTEM Account Quotas

Table 5-2 contains a list of account quotas from the User Authorization file of this HiTest System. During testing, the account quotas in Table 5-2 were used to run this HiTest Suite from the SYSTEM account.

Use the values in Table 5-2 as the initial account quotas when running this HiTest Suite from the SYSTEM account.

Table 5-2: Sample of SYSTEM Account Quotas

Account Value Quota		Account Quota	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Value
Maxjobs:	0	Fillm:	1000	Bytlm:	65536
Maxacctjobs:	0	Shrfillm:	Shrfillm: 0 Pbytlm:		0
Maxdetach:	0	BIOlm:	200	JTquota:	8192
Prclm:	10	DIOlm:	200	WSdef:	1024
Prio:	4	ASTlm:	300	WSquo:	2048
Queprio:	0	TQElm:	200	WSextent:	16384
CPU:	(none)	Enqlm:	2000	Pgflquo:	300000

Accounting Statistics from a One-User Load Test

The following tables contain accounting statistics from one-user load tests on an AlphaServer 8400 in the maximum configuration with VLM enabled. Table 5-3 contains the accounting statistics from the cold cache one-user load test. Table 5-4 contains the accounting statistics from the warm cache one-user load test.

Table 5-3: Accounting Statistics from a Cold Cache One-User Load Test

	Query 1	Query 2	Query 3	Query 4	Query 5
Buffered I/O count	854	922	951	830	850
Direct I/O count	65217	183020	9339	352339	58399
Page faults	4398	4758	5011	8410	25410
Charged CPU time	0 00:01:19.23	0 00:02:41.03	0 00:02:08.82	0 00:06:13.39	0 00:24:35.23
Peak working set size	49536	56448	67840	113728	384768
Peak virtual size	254800	261712	273136	318992	590128
Mounted volumes	0	0	0	0	0
Elapsed time	0 00:29:21.28	0 01:13:05.44	0 00:05:14.80	0 02:14:57.84	0 00:47:26.43

Table 5-4: Accounting Statistics from a Cold Cache One-User Load Test

	Query 1	Query 2	Query 3	Query 4	Query 5
Buffered I/O count	853	930	939	830	847
Direct I/O count	4039	4603	5686	9713	30619
Page faults	4370	4738	5001	8393	25407
Charged CPU time	0 00:00:34.22	0 00:00:41.89	0 00:00:58.30	0 00:02:30.44	0 00:18:18.31
Peak working set size	49152	56240	67792	113504	384880
Peak virtual size	254672	261712	273136	318992	590128
Mounted volumes	0	0	0	0	0
Elapsed time	0 00:01:45.69	0 00:02:02.40	0 00:02:27.05	0 00:04:48.48	0 00:24:52.55

CPG Database Build Times for the Maximum Configuration

The following CPG Database Build Times were recorded for the AlphaServer 8400 in the maximum configuration:

- Build empty database 2 hours, 21 minutes
- Build flat files (one year's worth) 1 hour, 58 minutes (worst case)
- Load dimension tables approximately 5 minutes
- Load flat files into database 12 hours, 53 minutes
- Build index 25 hours, 24 minutes
- Build journal files approximately 1 minute

Problems and Resolutions

This chapter describes any problems that may have been encountered during the testing that have not been fixed and eliminated. A resolution for each problem is given. The resolution provides the system manager or user with a fix or workaround for the problem.

The following problems were identified during testing:

Hardware

There were no hardware problems discovered during testing.

Operating System

There were no operating system problems discovered during testing.

Application

Problem When the database was remounted after a power failure, query

performance decreased significantly. The decrease in query performance was due to a problem in the database recovery process: the deletion of row cache backing store files before the database recovery process completes.

Resolution To prevent this problem from occurring, upgrade to Version 7.0.1.1 of

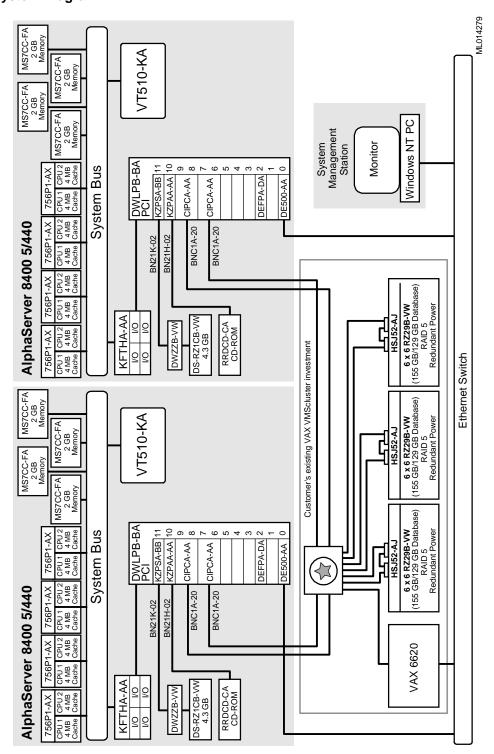
Oracle Rdb. To obtain Version 7.0.1.1 of Oracle Rdb, contact Oracle by calling 1-800-ORACLE1 or sending E-mail to

infodec@us.oracle.com.

Short of upgrading to Version 7.0.1.1 of Oracle Rdb, the workaround for this problem is to open, close, and reopen the database upon power failure.

This clears the row cache backing store files.

Detailed Hardware Configuration


This appendix describes the minimum and maximum hardware configuration for the following:

- System Diagram
- AlphaServer 8400 configurations, including:
 - AlphaServer 8400 System Bus
 - AlphaServer 8400 I/O Shelf Usage
- Database Storage Maps

System Diagram

Figure A-1 shows a diagram of the entire HiTest Suite.

Figure A-1: System Diagram

AlphaServer 8400 System Bus

Table A-1 describes system bus usage for the minimum and maximum configurations of the AlphaServer 8400.

Table A-1: AlphaServer 8400 Centerplane Slot Usage

Location	Minimum Configuration Options	Maximum Configuration Options	Description	
Slot 0	756P1-AX	756P1-AX	CPU module (dual CPU)	
Slot 1	open	756P1-AX	CPU module (dual CPU)	
Slot 2	open	756P1-AX	CPU module (dual CPU)	
Slot 3	open	756P1-AX	CPU module (dual CPU)	
Slot 4	MS7CC-FA	MS7CC-FA	2 GB memory module	
Slot 5	open	MS7CC-FA	2 GB memory module	
Slot 6	open	MS7CC-FA	2 GB memory module	
Slot 7	open	MS7CC-FA	2 GB memory module	
Slot 8	KFTHA	KFTHA	I/O module (4 ports)	

AlphaServer 8400 I/O Shelf Usage

The system contained three PCI backplanes connected to three I/O ports or hoses. Table A-2 lists the connections to each of the three PCI backplanes.

Table A-2: AlphaServer 8400 I/O Shelf Usage

PCI Number	Connections (I/O Ports)
1	CIPCA, KZPSA
2	CIPCA
3	DE500

Database Storage Maps

The following tables map each OpenVMS device name to the HSJ physical devices in each RAIDset (RAID 5).

In Table A-3, the HSJ Container Names that use the "Rn" naming scheme are RAIDset names. For example, "R1" is RAIDset 1, "R2" is RAIDset 2, and so on.

Table A-3: Database Storage Map for HSJ001

OpenVMS Device Name	Volume Label	Volume Description	HSJ LUN	HSJ Container Name	HSJ Physical Devices	Chunk Size (blocks)
\$1\$DUA11	VAXVMS0 71	VAX System Disk	D11	R1	DISK100 200 300	256
\$1\$DUA12	STORAGE	Storage for Kits and RBD Account	D12	R2	DISK110 210 310 410	256
\$1\$DUA13	disk1d	Data Disk	D13	R3	DISK120 220 320 420 520	256
\$1\$DUA14	disk2d	Data Disk	D14	R4	DISK130 230 330 430 530	256
\$1\$DUA15	disk1i	Index Disk	D15	R5	DISK400 500 600	256
\$1\$DUA16	disk2i	Index Disk	D16	R6	DISK150 510 610	256
\$1\$DUA17	sort1	Sort/Temp Disk	D17	R7	DISK140 240 340 630	256
\$1\$DUA18	sort2	Sort/Temp Disk	D18	R8	DISK250 440 540 640	256
_	_	_	_	SPARESET	DISK350 450 550 650	256

In Table A-4, the HSJ Container Names that use the "Rn" naming scheme are RAIDset names. For example, "R1" is RAIDset 1, "R2" is RAIDset 2, and so on.

Table A-4: Database Storage Map for HSJ002

OpenVMS Device Name	Volume Label	Volume Description	HSJ LUN	HSJ Container Name*	HSJ Physical Devices	Chunk Size (blocks)
\$1\$DUA21	AlphaSYS0 71	First Alpha System Disk	D21	R1	DISK100 200 300 400 500 600	256
\$1\$DUA22	disk3d	Data Disk	D22	R2	DISK120 220 320 420 520	256
\$1\$DUA23	disk4d	Data Disk	D23	R3	DISK130 230 330 430 530	256
\$1\$DUA24	disk3i	Index Disk	D24	R4	DISK110 210 310	256
\$1\$DUA25	disk4i	Index Disk	D25	R5	DISK410 510 610	256
\$1\$DUA26	sort3	Sort/Temp Disk	D26	R6	DISK140 240 340 640	256
\$1\$DUA27	sort4	Sort/Temp Disk	D27	R7	DISK150 250 440 540	256
_	_	_	_	SPARESET	DISK350 450 550 650	256

In Table A-5, the HSJ Container Names that use the "Rn" naming scheme are RAIDset names. For example, "R1" is RAIDset 1, "R2" is RAIDset 2, and so on.

Table A-5: Database Storage Map for HSJ003

OpenVMS Device Name	Volume Label	Volume Description	HSJ LUN	HSJ Container Name*	HSJ Physical Devices	Chunk Size (blocks)
\$1\$DUA32	AlphaSYS0 71	Second Alpha System Disk	D32	R1	DISK120 220 320 420 620	256
\$1\$DUA31	disk3d	Data Disk	D31	R2	DISK150 250 340 440 540	256
\$1\$DUA33	disk4d	Data Disk	D33	R3	DISK130 230 330 430 530	256
\$1\$DUA34	disk3i	Index Disk	D34	R4	DISK110 210 630	256
\$1\$DUA35	disk4i	Index Disk	D35	R5	DISK410 510 610	256
\$1\$DUA36	sort5	Sort/Temp Disk	D36	R6	DISK140 240 520 640	256
\$1\$DUA37	sort6	Sort/Temp Disk	D37	R7	DISK310 400 500 600	256
\$1\$DUA38	root0	Oracle RDB Root Disk	D38	R8	DISK100 200 300	256
-	-	-	_	SPARESET	DISK350 450 550 650	256

Operational Command and Supporting Files

The following command procedures and SQL scripts were used to set up, load, or run tests on the CPG database. Details about file contents are available upon request.

BINARY.COM

A DCL command procedure to create binary input load files. BINARY.COM created 12 files, each 5.5 GB per month, that constituted a year's worth of sales data.

CACHES.SQL

An SQL script to create VLM row caches. This script is included in the CPGxx.SQL script (where "xx" is the year number).

CPG.COM

A DCL command procedure to create RMS search list logicals for all keys directories (for example, CPG all database storage directories, TMP – all temporary files, SRT – all sort devices, AIJ ñ all after-image journal files).

CPG.SQL

An SQL script that builds the blank database.

DISKS.DAT

A device list file detailing the devices comprising the database.

DISMOUNT.COM

A DCL command procedure to dismount files.

INDEXES-94.SQL

Creates the indexes for the 1994 database on the AlphaServer 8400 system.

INDEXES-95.SQL

Creates the indexes for the 1995 database on the AlphaServer 8400 system.

INIT.COM

A command file that initializes the database after a system boot.

JOURNALS-94.COM

Creates the journals for the 1994 database on the AlphaServer 8400 system.

JOURNALS-95.COM

Creates the journals for the 1995 database on the AlphaServer 8400 system.

LOAD-DIM.COM

A command file that loads the small dimension tables.

LOADER.COM

A DCL command procedure to create ASCII input load files. LOADER.COM created 12 files, each 6.8 GB per month, that constituted a years worth of sales data.

LOGICALS.COM

A DCL command procedure to define device logical names.

LOGIN.COM

A login command procedure to establish the VMS\$MENU logical names.

MOUNT.COM

A DCL command procedure to mount disk devices.

RMU-COPY95.COM

A DCL command procedure to perform an RMU copy of the 1995 database.

RMUBIN.COM

A DCL command file that serially loads the sales facts table from binary load files.

RMUBIN17.COM

A DCL command file that loads the sales facts table in parallel using 17 threads.

RMUBLD.COM

A DCL command file that loads the sales facts table from ASCII load files.

SF KEY-94.SQL

An SQL script used for contingencies to build the index on the sales facts table for 1994.

SF_KEY-95.SQL

An SQL script used for contingencies to build the index on the sales facts table for 1995.