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Preface

Intended Audience

This manual is intended for developers of system software and for service
personnel.  It discusses the AlphaServer 8200/8400 systems that are de-
signed around the DECchip 21164 CPU and use the TLSB bus as the main
communication path between all the system modules.  The manual de-
scribes the operations of all components of the system:  the TLSB bus,
CPU modules, memory modules, and the I/O modules.  It discusses in de-
tail the functions of all registers in the system.  When necessary, the man-
ual refers the reader to other documents for more elaborate discussions or
for specific information.  Thus, the manual does not give the register files
of PCI bus devices but indicates sources where information can be found. 
The manual assumes programming knowledge at machine language level
and familiarity with the OpenVMS Alpha and Digital UNIX (formerly
DEC OSF/1) operating systems.

Document Structure

The material is presented in eight chapters.

Chapter 1, Overview, presents an overall introduction to the server sys-
tem.

Chapter 2, TLSB Bus, describes the main communication path of the sys-
tem.   It discusses the operations of the address bus and the data bus, CSR
addressing, and errors that can occur during bus transactions. 

Chapter 3, CPU Module, describes the major components and operations
of the CPU module.  It explains the CPU module’s memory and I/O address
spaces, and gives a summary of the errors detected by the CPU module.

Chapter 4, Memory Subsystem, describes the structure of the memory
hierarchy from the system perspective.  The memory hierarchy comprises
the DECchip 21164 internal cache, the second-level cache implemented on
the CPU chip, the backup cache implemented on the CPU module, and the
main memory that is implemented as a separate module and forms a node
on the TLSB bus.  The chapter provides a discussion of the various ways
main memory can be organized to optimize access time.

Chapter 5, Memory Interface, describes the various components of the
memory module, the memory data interface, and how the CSR interface
manages the transfer of information between the TLSB bus and the TLSB
accessible memory module registers.

Chapter 6, I/O Port, describes the configuration of the I/O port and the
main components of the I/O subsystem (KFTHA and KFTIA modules).  It
discusses addressing of memory and I/O devices and accessing of remote
I/O node CSRs through mailboxes and direct I/O window space.  The
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KFTIA and KFTHA support the PCI bus, XMI bus, and the Futurebus+,
depending on the system in which they are used.  The chapter describes
the transaction types on the TLSB interface and the hose interface.  It pre-
sents a brief survey of the integrated I/O port (KFTIA).  The survey focuses
mainly on the integrated I/O section of the module, which provides two PCI
buses that support ports for PCI devices such as Ethernet, SCSI, FDDI,
and NVRAM.  The chapter also discusses the types of errors that affect the
hoses and how the I/O port handles errors. 

Chapter 7, System Registers, describes in detail the functions of the sys-
tem registers, which include the TLSB bus registers, CPU module regis-
ters, memory module registers, and I/O port registers.  For KFTIA regis-
ters and device registers supported by the integrated I/O port, the reader is
referred to source material. This chapter is the only place where functions
of all registers are discussed fully at the bit level. 

Chapter 8, Interrupts, gives an overview of various interrupts within the
system.  It discusses vectored and nonvectored interrupts, interrupt rules,
mechanisms, and service. 

Terminology

Results of operations termed Unpredictable may vary from moment to
moment, implementation to implementation, and instruction to instruction
within implementations.  Software must never use Unpredictable results. 

Operations termed Undefined may vary from moment to moment, imple-
mentation to implementation, and instruction to instruction within imple-
mentations.  Undefined operations may halt the processor or cause it to
lose information.  However, they do not cause the processor to hang; that
is, reach a state from which there is no transition to a normal state of in-
struction execution.  Nonprivileged software cannot invoke Undefined op-
erations.

Documentation Titles

Table 1 lists the books in the Digital AlphaServer 8200 and 8400 documen-
tation set.
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Chapter 1

Overview

The computer system is an AlphaGeneration server very similar to but
with twice the performance of DEC 7000/10000 systems.  It is built around
the TLSB bus and supports the OpenVMS Alpha and Digital UNIX operat-
ing systems.  It is manufactured in two models: AlphaServer 8200 and Al-
phaServer 8400.  The AlphaServer 8400 features nine nodes, while Al-
phaServer 8200 supports only five nodes.  

The system uses three types of  modules:

• CPU modules, each containing one or two DECchip 21164 CPUs

• Memory modules

• I/O ports that interface to other I/O buses (XMI, Futurebus+,and PCI)

NOTE:  Unless otherwise specified, all discussions in this manual apply to both Al-
phaServer systems.

1.1  Configuration

The system provides a wide range of configuration flexibility:

• A 9-slot system centerplane bus that supports up to nine CPU, mem-
ory, or I/O nodes, and can operate at speeds ranging from 10 ns (100
MHz) to 30 ns (33.33 MHz). 

• The system supports from one to 12 DECchip 21164 CPUs.  Each CPU
has a 4-Mbyte backup cache. The CPU module design supports a range
of processor clocks from 7.0 ns (142.9 MHz) to 2.8 ns (357 MHz). 

• The system supports a range of memory sizes from 128 Mbytes to 14
Gbytes.  Memory is expandable using 128-Mbyte, 256-Mbyte, 512-
Mbyte, 1-Gbyte, and 2-Gbyte modules.

• The system supports up to three I/O ports, providing up to 12 I/O chan-
nels.  Each I/O channel connects to one of the following:

— XMI, for attaching legacy XMI I/O devices for high performance

— Futurebus+, for attaching high-performance third-party peripherals

— PCI, for attaching low-cost, industry-standard peripherals, and for
compatibility with other DECchip 21164 platforms offered by Digi-
tal

• The system supports an integrated I/O port providing direct access to
two twisted-pair (10BaseT) Ethernet ports, one FDDI port, and four
SCSI ports. The integrated I/O port can also connect to one XMI,
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Futurebus+, or PCI bus.  The local I/O options on the integrated I/O
port appear to software as a PCI bus connected to a hose.

Figure 1-1 shows a block diagram of the 8400 system.

 Figure 1-1 AlphaServer 8400 System Block Diagram

1.2  Bus Architecture

The system bus, the TLSB, is a limited length, nonpended, pipelined syn-
chronous bus with separate 40-bit address and 256-bit data buses.  The
TLSB supports a range of cycle times, from 10 to 30 ns.  At 10 ns, the
maximum bandwidth available is 2.1 Gbytes/sec.

The TLSB runs synchronously with the CPU clock, and its cycle time is an
integer multiple of the CPU clock.  Memory DRAM cycle time is not syn-
chronous with the TLSB clock.  This permits memory access times to be
adjusted as the CPU clock is adjusted.

The TLSB supports nine nodes.  One node (slot 8) is dedicated to I/O.  This
node has special arbitration request lines that permit the node to always
arbitrate as the highest priority or the lowest priority device.  This scheme
guarantees the node a maximum upper bound on memory latency.  Any of
the other eight nodes can be a CPU or memory node.  Four of these re-
maining nodes can be I/O ports.

Access to the address bus is controlled by a distributed arbitration scheme
implemented by all nodes on the bus.  Access to the data bus is governed
by the order in which address bus transactions occur.  Address and data
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bus transactions may be overlapped, and these transactions may be over-
lapped with bus arbitration.  Arbitration priority rotates in a round-robin
scheme among the nodes.  A node in the slot dedicated to I/O follows a spe-
cial arbitration algorithm so that it cannot consume more than a certain
fraction of the bus bandwidth.  

The TLSB supports a conditional write-update cache protocol.  This proto-
col allows a node to implement a write-back cache while also offering a
very efficient method for sharing writable data.  All bus data transfers are
naturally aligned, 64-byte blocks.

With this protocol, a CPU cache retains the only up-to-date copy of data.
When this data is requested, the CPU with the most recent copy returns it.
Memory ignores the transaction.  Special TLSB signal lines coordinate this
operation.

The TLSB uses parity protection on the address bus.  One parity bit pro-
tects the address, and one bit protects the command and other associated
fields.

The data bus is protected by ECC.  An 8-bit ECC check code protects each
64 bits of data.  The generator and ultimate user of the data calculate ECC
check codes, report, and correct any errors detected.  TLSB bus interfaces
check (but do not correct) ECC to aid in error isolation.  For example, an
I/O device calculates ECC when DMA data is written to memory.  When a
CPU reads this data, the TLSB interface on the CPU module checks and
notes any errors, but the DECchip 21164 actually corrects the data prior to
using it.

The ECC check code corrects single-bit errors.  It detects double-bit errors,
and some 4-bit errors, in each 64-bit unit of data.

1.3  CPU Module

The CPU module contains one or two DECchip 21164 microprocessors. In
dual-processor modules, each processor operates  independently and has
its own backup cache.  A single interface to the TLSB is shared by both
CPU chips.  The interface to console support hardware on the CPU module
is also shared by both microprocessors.  The main sections of the CPU
module are:

• DECchip 21164

• Backup cache

• TLSB interface

• Console support hardware

A simple block diagram of the CPU module is given in Chapter 3.  

1.3.1  DECchip 21164 

The DECchip 21164 microprocessor is a CMOS-5 (0.5 micron) superscalar,
superpipelined implementation of the Alpha architecture. A brief listing of
the DECchip 21164 features is given in Chapter 3.  DECchip 21164 imple-
ments the Alpha architecture together with its associated PALcode.  Refer
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to the DECchip 21164 Functional Specification for a complete description
of the DECchip 21164 and PALcode. 

1.3.2  Backup Cache

Each backup cache (B-cache) is four Mbytes in size.  In a dual-processor
module there are two independent backup caches, one for each CPU.  Each
B-cache is physically addressed, direct-mapped with a 64-byte block and
fill size.  The B-cache is under the direct control of the DECchip 21164. 
The B-cache conforms to the conditional write-update cache coherency pro-
tocol as defined in the TurboLaser System Bus Specification.  

The CPU module contains a duplicate copy of each B-cache tag store used
to maintain systemwide cache coherency.  The module checks the duplicate
tag store on every TLSB transaction and communicates any required
changes in B-cache state to the DECchip 21164.

The CPU module also maintains a victim buffer for each B-cache.  When
the DECchip 21164 evicts a cache block from the B-cache, the victim buffer
holds it.  The DECchip 21164 writes the block to memory as soon as possi-
ble.

1.3.3  TLSB Interface

The CPU module uses six gate arrays to interface to the TLSB.  The MMG
gate array orders requests from both DECchip 21164 processors. The ADG
gate array contains the TLSB interface control logic. It handles TLSB arbi-
tration and control, monitors TLSB transactions, and schedules data move-
ments with either processor as necessary to maintain cache coherency.  
Four identical DIGA gate arrays interface between the 256-bit TLSB data
bus and the 128-bit DECchip 21164 processors.   See Chapter 3 for brief
discussions of the gate arrays.

1.3.4  Console Support Hardware

The CPU module console support hardware consists of:

• Two Mbytes of flash EEPROM used to store console and diagnostics
software.  A portion of this EEPROM is used to store module and sys-
tem parameters and error log information.

• One UART used to communicate with the user and power supplies.

• Battery-powered time-of-year (TOY) clock.

• One green LED to indicate CPU module self-test status.

• A second console UART for each processor, for engineering and manu-
facturing debug use.

An 8-bit Gbus, controlled by the ADG gate array, is provided to access the
console support hardware.

1.4  Memory Module

Memory modules are available in the following sizes:  128 Mbytes, 256
Mbytes, 512 Mbytes, 1 Gbyte, and 2 Gbytes.   Sizes up to 1 Gbyte are sup-
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ported by a single motherboard design.  The 2-Gbyte memory option uses 
a different motherboard and SIMM design. 

A maximum of seven memory modules may be configured on the TLSB (in
a system with one CPU module and one I/O module).  Thus, the maximum
memory size is 14 Gbytes, using 2-Gbyte modules.

Memory operates within the 10–30 ns TLSB cycle time range.  To keep
memory latency low, the memory module supports three different DRAM
cycle times.  As TLSB cycle time is decreased (slowed down), the memory
module cycle time can be increased (sped up) to ensure that data latency
remains relatively constant, independent of TLSB cycle time.

Each memory module is organized into two banks of independently accessi-
ble random memory.  Bank interleaving occurs on 64-byte boundaries,
which is the TLSB data transfer size.

Different size memory modules can be interleaved together.  For example,
four 128-Mbyte modules can be combined to appear as a single 512-Mbyte
module, and this set can be interleaved with a 512-Mbyte module.  In this
case, the five modules are four-way interleaved.

Memory is protected by a 64-bit ECC algorithm. An 8-bit ECC check code
protects each 64 bits of data.  This algorithm allows correction of single-bit
failures and the detection of double-bit and some nibble failures.  The same
algorithm is used to protect data across the TLSB and within the CPU
module caches.  ECC is checked by the memory when data is read out of
memory.  It is also checked when data is received from the TLSB, prior to
writing data into the memory.  Memory is designed so that a single failing
DRAM cannot cause an uncorrectable memory error.

The memory module does not correct ECC errors.  If a data block contain-
ing a single-bit ECC error is written by a CPU or I/O device to memory, the
memory checks the ECC and signals a correctable error, but it does not
correct the data.  The data is written to the DRAMs with the bad ECC
code.  Only CPU and I/O port modules correct single-bit ECC errors.  

Refer to Chapters 4 and 5 for a thorough discussion of the memory module.

1.5  I/O Architecture

The I/O system components consist of:

• I/O port module (KFTHA) 

• Integrated I/O port module (KFTIA) 

• XMI bus adapter (DWLMA)

• Futurebus+ adapter (DWLAA)

• PCI bus adapter (DWLPA)

• Memory Channel interface (RM in register mnemonics) 

The KFTHA and KFTIA modules reside on the TLSB and provide the in-
terface between the TLSB and optional I/O subsystems. 

The KFTHA provides connections for up to four optional XMI, Futurebus+,
or PCI buses, in any combination, through a cable called a hose.

The KFTIA provides a connection to one optional XMI, Futurebus+, or PCI
bus through a hose.  It also contains an on-module PCI bus with connec-
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tion to two 10BaseT Ethernet ports, one FDDI port, and three FWD and
one single-ended SCSI ports.  

The DWLMA is the interface between a hose and a 14-slot XMI bus.  It
manages data transfer between XMI adapters and the I/O port. 

The DWLAA is the interface between a hose and a 10-slot Futurebus+ card
cage.  It manages data transfer between Futurebus+ adapters and the I/O
port.

The DWLPA is the interface between a hose and a 12-slot, 32-bit PCI bus. 
It manages data transfer between PCI adapters and the I/O port. The PCI
is physically implemented as three 4-slot PCI buses, but these appear logi-
cally to software as one 12-slot PCI bus.  The PCI also supports the EISA
bus. 

The Memory Channel interface connects a hose to a 100 MB/sec Memory
Channel bus.  This bus is a memory-to-memory computer system intercon-
nect, and supports up to 8 nodes.  With appropriate fiber optic bridges, this
can be expanded to 64 nodes.

The TLSB supports up to three I/O ports of either type.  The first (or only)
I/O port in the system is installed in the dedicated I/O TLSB slot (slot 8). 
Any latency-sensitive devices should be configured to this I/O port.  The
second I/O port, if present, should be installed in the highest number slot
accommodating an I/O port.

The I/O port uses mailbox operations to access CSR locations on the remote
I/O bus.  Mailbox operations are defined in the Alpha System Reference
Manual.  For PCI buses, direct-mapped I/O operations are also supported.

1.6  Software

The system software consists of the following components:

• Console

• OpenVMS Alpha operating system

• Digital UNIX operating system

• Diagnostics

The following subsections provide brief overviews of the system software
components.

1.6.1  Console

The console firmware supports the two operating systems as well as the
following system hardware: 

• DECchip 21164 processor

• One or two processors per CPU module and up to 12 processors per
system

• Multiple I/O ports per system

• PCI I/O bus and peripherals

• Memory Channel

The console supports boot devices on the following I/O port adapters:
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• KDM70 – XMI to SI disk/tape 

• KZMSA – XMI to SCSI disk/tape 

• KFMSB – XMI to DSSI disk/tape and OpenVMS clusters 

• CIXCD-AC – XMI to CI HSC disk/tape and OpenVMS clusters 

• DEMNA – XMI to Ethernet networks and OpenVMS clusters 

• DEMFA – XMI to FDDI networks and OpenVMS clusters

• DEFAA – Futurebus+ to FDDI networks and OpenVMS clusters 

Booting is suported from PCI SCSI disk, Ethernet, and FDDI devices.

1.6.2  OpenVMS Alpha

OpenVMS Alpha fully supports the system.  Symmetrical multiprocessing,
OpenVMS clusters, and all other OpenVMS Alpha features are available
on the system.  OpenVMS Alpha is released only on CD-ROM, which is
supported for initial system load through a SCSI device.

1.6.3  Digital UNIX

The system fully supports the Digital UNIX operating system, which is re-
leased only on CD-ROM.  CD-ROM is supported for initial system load
through a SCSI device.  

1.6.4  Diagnostics

 The system diagnostic software is composed of: 

• ROM-based diagnostics

• The loadable diagnostic execution environment

• Online exercisers

1.6.4.1 ROM-Based Diagnostics

CPU module ROMs contain a complete set of diagnostics for the base sys-
tem components.  These diagnostics include CPU, memory, I/O port, and
generic exercisers for multiprocessing, memory, and disks.

The following diagnostics are included in the CPU module ROMs:

• CPU module self-test 

• CPU/memory interaction tests 

• Multiprocessor tests 

• I/O port tests

• DWLMA tests 

• DWLAA tests 

• Futurebus+ bus exerciser (FBE) tests 

• System kernel and I/O exerciser script 

— Floating-point exerciser 
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— Cache/memory exerciser

— I/O port/DWLMA loopback exerciser 

— Disk/tape device exerciser 

— Network exerciser 

— FBE exerciser 

— XCT (XMI bus exerciser) exerciser 

• Manual tests 

A subset of these diagnostics is invoked at system power-up.  Optionally,
they may be invoked on every system boot.  The subset can also be invoked
by the user through console command.

Note that any of the diagnostics listed above can be individually invoked
by the user through console command.

1.6.4.2 Loadable Diagnostic Execution Environment 

The loadable diagnostic executive is essentially a loadable version of the
ROM-based diagnostic executive.  It supports loading from any device for
which a console boot driver exists.   Once loaded, diagnostics are run and
monitored using the same commands as for the ROM-based diagnostics.

The LFU firmware update utility is a loadable program. This utility up-
dates CPU console and diagnostic firmware, and firmware on I/O adapters.

1.6.4.3 Online Exercisers

The VET online exerciser tool is available for the systems.  This tool pro-
vides a unified exercising environment for the operating systems. This ex-
erciser is on each operating system kit.   It is invoked as a user-mode pro-
gram.

The following VET exercisers are available:

• Load

• File

• Raw disk 

• Tape 

• Memory

• Network
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Chapter 2

TLSB Bus

This chapter provides a brief overview of the TLSB bus.  For more detailed
discussions and timing diagrams for the various bus cycles, refer to the
TurboLaser System Bus Specification. 

2.1  Overview

The TLSB bus is a limited length, nonpended, synchronous bus with a
separate address and data path.  Ownership of the address bus is deter-
mined using a distributed arbitration protocol. The data bus does not re-
quire an arbitration scheme.  The data bus transfers data in the sequence
order in which command/addresses occur.  The combination of separate ad-
dress and data paths with an aggressive arbitration scheme permits a low
latency protocol to be implemented. 

Because the address and data buses are separate, there is maximum over-
lap between command issues and data return. The TLSB also assumes
that the CPU nodes run the module internal clock synchronous to the bus
clock, eliminating synchronizers in the bus interface and their associated
latency penalties.  The TLSB provides control signals to permit nodes to
control address and data flow and minimize buffering.  

The TLSB operates over a range of 10 to 30 ns clock cycles.  This corre-
sponds to a maximum bandwidth of 2.1 Gbytes/sec and a projected mini-
mum latency of 170 ns with a 10 ns clock cycle.  Memory latency is reduced
by improving the DRAM access time.  Because the address bus and data
bus are separate entities, the slot for passing data on the data bus is vari-
able and directly affected by the DRAM access time.  Therefore, any de-
crease in DRAM access time is reflected in a decrease in memory latency.  

The AlphaServer 8400 has nine physical nodes on the TLSB centerplane,
numbered 0–8. CPU and memory modules are restricted to nodes 0–7.   I/O
ports are restricted to nodes 4–8.  These five nodes are on the back side of
the centerplane.  AlphaServer 8200 supports the five backplane nodes
only.  I/O modules are restricted to nodes 6, 7, and 8.  Node 8 in both mod-
els is dedicated to the I/O module and has the special property of both high
and low priority arbitration request lines that are used to guarantee that
memory latency is no worse than 1.7 µs.  An I/O port in any other node
uses the standard arbitration scheme, and no maximum latency is speci-
fied.  
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2.1.1  Transactions

A transaction couples a commander node that issues the request and a
slave node that sequences the data bus to transfer data.  This rule applies
to all transactions except CSR broadcast space writes.  In these transac-
tions, the commander is responsible for sequencing the data bus.  CPUs
and I/O nodes are always the commander on memory transactions and can
be either the commander or the slave on CSR transactions.  Memory nodes
are slaves in all transactions. 

Address bus transactions take place in sequence as determined by the win-
ner of the address bus arbitration.  Data bus transactions take place in the
sequence in which the commands appear on the address bus. All nodes in-
ternally tag the command with a four-bit sequence number. The number
increments as each command is acknowledged. To return data, the slave
node sequences the bus to start the transfer. 

2.1.2  Arbitration

The address bus protocol allows aggressive arbitration where devices can
speculatively arbitrate for the bus and where the winner can no-op out the
command if the bus is not needed.  The bus provides eight request lines for
the nodes that permit normal arbitration.  Node 8 has high and low arbi-
tration request lines that permit an I/O port to limit maximum read la-
tency.

2.1.3  Cache Coherency Protocol

The TLSB supports a conditional write-update protocol that permits the
use of a write-back cache policy, while providing efficient handling of
shared data across the caches within the system. 

2.1.4  Error Handling

The TLSB implements error detection and, where possible, error correc-
tion.  Transaction retry is permitted as an implementation-specific option. 
Four classes of errors are handled:

• Soft errors, hardware corrected, transparent to software (for example,
single-bit ECC errors).

• Soft errors requiring PALcode/software support to correct (for example,
cache tag parity errors, which can be recovered by PALcode copying
the duplicate tag to the main tag).

• Hard errors restricted to the failing transaction (for example, a double-
bit error in a memory location in a user’s process.  This would result in
the process being aborted and the page being marked as bad).  The sys-
tem can continue operation. 

• System fatal hard errors.  The system integrity has been compromised
and continued system operation cannot be guaranteed (for example,
bus sequence error).  All outstanding transactions are aborted, and the
state of the system is unknown.  When a system fatal error occurs, the
bus attempts to reset to a known state to permit machine check han-
dling to save the system state.
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The TLSB implements parity checking on all address and command fields
on the address bus, ECC protection on the data field, and protocol se-
quence checking on the control signals across both buses.

2.1.5  TLSB Signal List

Table 2-1 lists the signals on the TLSB.  Signal name, function, and de-
fault state are given.  After initialization, the bus drives the default value
when idle.

  Table 2-1 TLSB Bus Signals

Signal Name
Default
State Function

TLSB_D<255:0>
TLSB_ECC<31:0>
TLSB_DATA_VALID<3:0>
TLSB_ADR<39:3>
TLSB_ADR_PAR
TLSB_CMD<2:0>
TLSB_CMD_PAR
TLSB_BANK_NUM<3:0>
TLSB_REQ8_HIGH
TLSB_REQ8_LOW
TLSB_REQ<7:0>
TLSB_HOLD
TLSB_DATA_ERROR
TLSB_FAULT
TLSB_SHARED
TLSB_DIRTY
TLSB_STATCHK
TLSB_CMD_ACK
TLSB_ARB_SUP
TLSB_SEND_DATA
TLSB_SEQ<3:0>
TLSB_BANK_AVL<15:0>
TLSB_LOCKOUT
TLSB_PH0
TLSB_NID<2:0>
TLSB_RSVD_NID<3>
TLSB_RESET
CCL_RESET L
TLSB_BAD L
TLSB_LOC_RX L
TLSB_LOC_TX L
TLSB_PS_RX L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
H
H
H
H
H

256-bit wide data bus
Quadword ECC protection bits
Data valid masks
Physical memory address
Address parity
Command field 
Command and bank number parity
Encoded bank number
Slot 8 high priority bus request
Slot 8 low priority bus request
Normal bus requests
Data bus stall
Data bus error detected
Bus fault detected
Cache block is shared
Cache block is dirty
Check bit for shared and dirty
Command acknowledge
Arbitration disable
Send data
Sequence number
Bank available lines
Lockout
Clock
Node identification
Spare node identification
Bus reset
CCL reset
Self-test not successful
Local console receive data
Local console transmit data
Power supply receive status
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Table 2-1   TLSB Bus Signals (Continued)

Signal Name 
Default 
State Function

TLSB_PS_TX L
TLSB_EXP_SEL<1:0> L
TLSB_SECURE L
LDC_PWR_OK L 
PIU_A_OK L
PIU_B_OK L
TLSB_RUN L
TLSB_CON_WIN L
ON_CMD  
SEQ_DCOK
TLSB_DCOK L    
EXT_VM_ENB    
VM3    
VM5   
V3_OUT
V5_OUT
GB2CCLSPA
MFG_MODE L
SER_NUM_CLK
SER_NUM_DAT

H
H

L
L
L

L
H
H
L

Power supply transmit status
Expander select
Secure console
Local disk converter
I/O unit A power OK
I/O unit B power OK
System run indicator
Console win status
DC-DC converter power on enable
Module power OK
Driver output enable
Voltage margin control
Voltage margin control
Voltage margin control
Voltage margin control
Voltage margin control
CCL spare
Manufacturing test
Serial number access
Serial number access
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2.2  Operation

This section offers an overview of the TLSB bus operations.  Topics in-
clude: 

• Physical node identification

• Virtual node identification

• Address bus concepts

• Address bus arbitration

• Address bus cycles

• Address bus commands

• Data bus concepts

• Data bus functions

• Miscellaneous bus signals

The reader is referred to the engineering specification for more detail on
the topics covered in this chapter.

2.2.1  Physical Node ID

The AlphaServer 8400 features nine nodes (corresponding to the nine
physical connectors) on the TLSB.  Each CPU, memory, or I/O port module
receives signals TLSB_NID<2:0> to identify its node number. The
TLSB_NID<2:0> signals are selectively grounded and are pulled up on the
module.  Node 0 and node 8 receive TLSB_NID<2:0> equal to zero.  Since
an I/O port module is not permitted in node 0 and is the only module type
permitted in node 8, an I/O adapter that receives TLSB_NID<2:0> equal to
zero knows it is in node 8.  Table 2-2 identifies the nodes on the TLSB. 

The AlphaServer 8200 has nodes 4 to 8 only.   Node 4 must be a CPU mod-
ule.  Node 8 is dedicated to an I/O module.

  Table 2-2 TLSB Physical Node Identification

TLSB_NID<2:0>
Node/Slot 
Number Description

000
001
010
011
100
101
110
111
000

0
1
2
3
4
5
6
7
8

CPU or memory module
CPU or memory module
CPU or memory module
CPU or memory module
CPU, memory or I/O module
CPU, memory, or I/O module
CPU, memory, or I/O module
CPU, memory, or I/O module
I/O module
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2.2.2  Virtual Node Identification

TLSB system operation requires that certain functional units can be iden-
tified uniquely, independent of their physical location. Specifically, individ-
ual memory banks and CPUs must be uniquely addressable entities at the
system level.  As multiple memory banks and CPUs are implemented on
single modules, a physical node ID is insufficient to uniquely address each
bank or each CPU.  The AlphaServer 8400/8200 systems, therefore, employ
virtual node IDs, software-generated, dynamically stored IDs, to identify
its functional units.  Note that CSR addresses are still managed on a node
basis within the system and are keyed off the physical node ID. 

Virtual node IDs are set by writing the TLVID register fields with the
value required.  The console is responsible for initializing the values at
power-up.  A module can have multiple virtual node IDs associated with it;
for example, dual CPUs or memory controllers with multiple memory
banks.  The maximum number of virtual IDs per TLSB module is eight. 
The unused ID fields are not implemented, and a CSR read must return 0
in the unused fields.  Virtual node IDs are identified by the type of module
they reside on.  They are:

• CPUID, range 0–15

• MEMID, range 0–15.  This corresponds to the memory bank number
MEM_BANKn (n = 0 to 15).

2.2.3  Address Bus Concepts

The TLSB implements separate address and data buses.  The purpose of
the address bus is to signal a bus node (usually memory) with an address
so that it can transfer data as soon as possible.  The TLSB uses the mem-
ory bank to control flow of addresses on the bus.  Once a bank has been
addressed and it is busy, no other commander can use that bank until it
becomes free.  An  analysis of memory latency showed that the following
actions in the address propagation path directly contribute to latency:

• Cache tag lookup and compare

• Check for bank busy

• Bus arbitration

• Address bank decode in the memory

The TLSB attempts to address these issues to create a low latency system. 
All memory is divided into banks.  A bank is addressed by a unique 4-bit
bank number transmitted on the TLSB address bus.  The CPU always has
to perform a bank decode to decide if it can issue the request.  Therefore,
the CPU transmits the bank number along with the address and command
on the address bus.  A compare of the bank’s virtual ID to the transmitted
bank number is performed in the memory bank controller.  This simplifies
the memory address decoding and permits fast memory addressing.

On a TLSB CPU module a tag lookup and compare is permitted to take
place in parallel with bus arbitration.  When the CPU performs a tag
probe, it passes a valid signal to the CPU memory interface to indicate
that the current address is being used in a cache lookup.  This valid signal
can be used to initiate a bus request and gain early access to the address
bus. This means that a cache tag lookup that hits in the cache can poten-
tially perform a request and win the bus.  By the time the CPU has to
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drive the address and command, the outcome of the tag lookup can be
evaluated by the bus interface.  If the lookup is a hit, then the CPU bus
interface nulls the TLSB command field and cancels the request.  Although
this consumes potentially needed address bus slots, the address bus re-
quires two cycles to initiate a command and the data bus requires three cy-
cles per transaction. This means that there are surplus address bus slots
beyond the number required to keep the data bus busy.  Therefore, the
penalty of a false arbitration on data bus bandwidth is minimized.  The
pipelined nature of the bus means that there are potential bank conflicts
that can only be resolved by nulling the address command.  The bank de-
code can also be hidden under the request and arbitration cycles.

Bus arbitration by the CPU under these aggressive conditions is called
"early arbitration."  When the request has to be nulled due to bank conflict
or a cache hit, it is called "false arbitration."   

All address bus commands (except nulled commands) require acknowledg-
ment two cycles after the issue of the bank address on the bus, or no data
is transferred.  This mechanism permits the commander node to determine
if a slave node will respond.  On a normal transaction when a commander
issues a request, the sequencing of the data bus is the responsibility of the
slave node.  All nodes must look for the acknowledgment; only acknowl-
edged commands sequence the data bus. 

The address bus permits flow control by use of the signal TLSB_ARB_SUP.
This signal permits commander nodes to stop address bus arbitration, thus 
preventing further addresses from propagating to the bus.

All TLSB memory transactions take place on a cache block boundary (64
bytes).  Memory is accessed with signals TLSB_ADR<39:5> on the address
bus.  TLSB_ADR<39:6> addresses one block.  TLSB_ADR<5> specifies the
first 32-byte subblock to be returned (wrapped).  Use of TLSB_ADR<4:3>
is implementation specific.  Figure 2-1 shows mapping of physical ad-
dresses to the address bus.

 Figure 2-1 TLSB Memory Address Bit Mapping

Two special address bus commands permit an I/O device to perform atomic
transactions on sizes under 64 bytes.  The first command permits a 64-byte
read to put a special lock on a bank, and the second command permits the
subsequent write to unlock the bank.  Because a busy bank cannot be ac-
cessed by another node, this command pair guarantees atomic access to
the cache block that needs to be modified. 
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2.2.3.1 Memory Bank Addressing Scheme

The TLSB supports one terabyte of physical memory.  The memory ad-
dress space is accessed by a 40-bit byte address. The granularity of ac-
cesses on the TLSB is a 64-byte cache block.  I/O adapters that need to ma-
nipulate data on boundaries less than 64 bytes require the commander
node to perform an atomic Read-Modify-Write transaction. 

Physical memory on the TLSB is broken into banks.  The commander de-
codes the 40-bit physical address into a memory bank number.  TLSB sup-
ports a maximum of 16 memory banks in the system.  Each commander
node contains eight memory mapping registers.  Each mapping register
can decode two bank numbers.

A memory module can have multiple physical banks.  Each bank is as-
signed a virtual bank number.  The bank number is written in the TLVID
register.  This register contains support for up to eight virtual IDs.  For a
memory module these fields are named virtual bank numbers
MEM_BANKn, where n is in the range 0–15.  This scheme, combined with
the address decoding scheme, permits flexible memory interleaving.  When
an address is transmitted on the TLSB, the bank controllers on memory
nodes only need to perform a four-bit compare with the virtual ID to deter-
mine if the bank is being addressed.  This decode is much quicker than a
full address decode.  The address is propagated before the DRAM bank is
determined and RAS is asserted to the proper bank.

2.2.3.2 CSR Addressing Scheme

CSRs are accessed using two special command codes on the address bus.
Both local and remote CSRs can be accessed.  Local CSRs exist on TLSB
nodes and can be directly accessed through the physical node ID.  Remote
CSRs exist on I/O devices connected to I/O buses on I/O adapter nodes, and
must be accessed through the I/O node using its physical node ID.    CSR
write commands can also be broadcast to all TLSB nodes in a single bus
transaction.

CSRs are accessed by the 37-bit address on the address bus.  CSR accesses
to nonexistent nodes are not acknowledged.  CSR accesses to a node that is
present in the system are always acknowledged on the address bus even if
the CSR does not exist.  The node that acknowledges the address is respon-
sible for sequencing the data bus where 64 bytes of data are transferred.  If
a read is performed to a valid node, but to a CSR that is not implemented,
the return data is Unpredictable.

CSR write commands addressing broadcast space are acknowledged by the
commander.  If the commander acknowledges the command, it also se-
quences the data bus and transmits data.  All receiving nodes optionally
implement the write command.  If the CSR does not exist, then the broad-
cast write is ignored.  Receiving nodes may take action based on the broad-
cast space address even if the command is not acknowledged, if no data is
needed (for example, a decrement counter operation).   A read in broadcast
space is illegal, and the commander should not issue such a command.  If a
broadcast space CSR read is detected on the bus, all nodes ignore the com-
mand.
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2.2.3.3 Memory Bank Address Decoding

The minimum bank size for the TLSB address decode scheme is 64
Mbytes. 

To address memory, a CPU or I/O node must perform a memory bank de-
code to test the status of the bank.  The memory modules transmit the
status of each bank on the 16 TLSB_BANK_AVL lines.  This permits a
node to sense the state of the bank from the bus.  The TLSB early arbitra-
tion scheme allows a node to request the bus before the bank decode takes
place. If the bank is busy, or the previous address bus command made the
bank busy, the command will be nulled if the address bus is granted.  If
the requester does not win the arbitration, the request is dropped. On the
TLSB the CPU or I/O node must decode the bank address prior to issuing
the command.

Each address bus commander (CPU or I/O) must implement the eight
memory mapping registers named TLMMRn, where n is in the range 0–7. 
Each register decodes the bank number n, and may optionally decode the
bank number n+8. A total of 16 bank numbers can be decoded using these
eight registers. The bank decode registers are loaded by the console at
power-up after the memory configuration has been determined.  See Chap-
ter 7 for the description of the TLMMRn registers. 

Since each memory module contains two banks, a single TLMMRn register
can be used for decoding bank numbers.  Table 2-3 shows the values for
SBANK, INTMASK, and INTLV fields of the TLMMRn register. 

  Table 2-3 Interleave Field Values for Two-Bank Memory Modules

Figure 2-2 shows the address decode process. 

Interleave
Level

Number of
Modules 
Interleaved

TLMMRn
<SBANK>

TLMMRn
<INT-
MASK>

TLMMRn
<INTLV> Bank n Bank n+8

2-way
4-way
8-way
16-way

1
2
4
8

0
0
0
0

0
1
2
3

Not applicable
<0:1>
<0:3>
<0:7>

ADR<6>=0
ADR<7>=0
ADR<8>=0
ADR<9>=0

ADR<6>=1
ADR<7>=1
ADR<8>=1
ADR<9>=1
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 Figure 2-2 Address Decode

When a physical address is presented to the bank decode logic, all valid ad-
dress bits, as determined by the ADRMASK field, are compared with their
corresponding physical address bits.  A match between all address bits and
their corresponding physical address bits indicates an address space hit.
All valid interleave bits, as determined by the INTMASK field, are com-
pared with their corresponding physical address bits.  A match between all
INTLV bits and their corresponding physical address bits indicates an in-
terleave hit.  If the compares of both address space and interleave result in
hits, and the Valid bit is set, then the bank associated with this register is
being addressed.  The resulting bank hit signal is encoded into a 4-bit
TLSB bank number from the register number, or register number + 8. 

For every physical memory bank, a memory bank number is set by  the
console in the corresponding virtual node ID field in a node’s Virtual ID
register (TLVID).  The console sets up the corresponding  memory mapping
register TLMMRn in the commander nodes.  If a bank number is gener-
ated for which no virtual memory ID exists, the operation will never com-
plete.

NOTE:  If two TLMMRn registers generate a bank hit while decoding an address,
the resulting bank number is Unpredictable.  This is the result of improp-
erly initialized registers and is considered a software error.  Unexpected or   
inconsistent behavior may result.

Physical Address ADRMASK ADDRESS

Decode and Mask

Compare

PHAdr INTMASK INTLV

Mask

Valid

Address Hit

Interleave Hit 

AND

Bank Hit

Decode and Mask

Mask

Compare

BXB0830.AI

39 26 25 12

8 6 1 0 10 8
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2.2.3.4 Bank Available Status

TLSB_BANK_AVL indicates that a bank is available for use.  When not
asserted, no requests except Write Bank Unlock can be issued to that
bank.

Each memory bank has one of the TLSB_BANK_AVL<15:0> signals as-
signed to it by the console. The number of the TLSB_BANK_AVL bit corre-
sponds to the bank number assigned to that bank.  TLSB_BANK_AVL is
deasserted two cycles after the command is driven on the  bus, and is as-
serted four cycles before the bank is available to accept new commands. 
The earliest the TLSB_BANK_AVL bit can be asserted is two cycles follow-
ing the time when the shared and dirty status is available on the bus (that
is, TLSB_HOLD is deasserted).  This is required so that CPUs have time
to update the tag status of the block before another command can be tar-
geted at that block.

I/O devices can use bus commands Read Bank Lock and Write Bank Un-
lock to guarantee atomic Read-Modify-Write access to a block.  The
TLSB_BANK_AVL bit is deasserted in response to a Read Bank Lock and
remains deasserted until a Write Bank Unlock is issued.  An I/O device can
arbitrate for a busy bank, but only when the bank is busy because of a
Read Bank Lock that it issued.  The I/O device must control the sequence
as follows:

• Read Bank Lock must be followed by a Write Bank Unlock as the next
operation to that bank.

• The earliest the I/O device can request the bus for the Write Bank Un-
lock command is two cycles following the time when the shared and
dirty status for the Read Bank Lock command is available on the bus
(that is, TLSB_HOLD is deasserted).

• The Write Bank Unlock must be issued as soon as possible after the
data from the Read Bank Lock command is received. 

• Intervening commands to other banks may be issued.

2.2.3.5 Address Bus Sequencing

For the data bus to return data in order, each valid bus command must be
tagged in the slave and commander TLSB interface with a sequence num-
ber.  A maximum of 16 outstanding transactions are allowed on the bus at
any one time.  This requires a wrapping 4-bit count. The first command fol-
lowing a reset sequence must be tagged with a sequence number of zero. 
When a command is acknowledged, the sequence number is held by the
slave and commander.  When the data bus sequence counter matches the
tagged sequence, the data transfer takes place.

All nodes increment their address bus sequence counters on the receipt of
a command acknowledge.  When a command is nulled (for example, due to
false arbitration or bank conflict), the sequence number is not incre-
mented.

All nodes watch the data bus sequence.  If a transaction is lost or incor-
rectly sequenced, the TLSB node interfaces will detect an illegal sequence.
Sequence errors are regarded as system fatal.
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2.2.4  Address Bus Arbitration

The TLSB bus has demultiplexed address and data buses.  These buses op-
erate independently and are related only in as much as a valid command
on the address bus will result in a data transfer on the data bus at some
later time. 

2.2.4.1 Initiating Transactions

To initiate a bus transaction, a module must request the bus and arbitrate
for access to the bus with other requesting modules.  Only when it wins ar-
bitration can a device drive the command, address, and memory bank
number onto the bus.  Only CPUs and I/O modules can initiate transac-
tions.

2.2.4.2 Distributed Arbitration

The TLSB uses a distributed arbitration scheme.  Ten request lines
TLSB_REQ8_HIGH, TLSB_REQ8_LOW, and TLSB_REQ<7:0> are driven
by the CPU or I/O modules that wish to use the bus.  All modules inde-
pendently monitor the request lines to determine whether a transaction
has been requested, and if so, which module wins the right to send a com-
mand cycle.  Request lines are assigned to each node.  Nodes 7–0 are as-
signed TLSB_REQ<7:0>, respectively.  Node 8, the dedicated I/O port
node, is assigned TLSB_REQ8_HIGH and TLSB_REQ8_LOW.  At power-
up, or following a reset sequence, the relative priority of each of the re-
quest lines TLSB_REQ<7:0> is initialized to the device’s node ID. Node 7
has the highest relative priority and node 0 the lowest.

2.2.4.3 Address Bus Transactions

CPU and I/O modules can only perform transfers to or from memory banks
that are not currently in use, plus one transfer to or from a CSR.  The
maximum number of memory banks in a system is 16.  Consequently, the
maximum number of outstanding transactions possible on the bus at one
time is 17.  However, due to the size of the sequence number tagged to
each transaction, a limit of 16 outstanding transactions must be enforced. 
All CPU and I/O modules are required to assert TLSB_ARB_SUP to pre-
vent arbitration for a 17th command. Individual modules may limit the
number of transactions on the bus to a lower number. 

2.2.4.4 Module Transactions

There is no limit to the number of transactions that can be issued by one
module as long as each of the transactions meets the requirements of tar-
geting a nonbusy bank and of requesting the bus separately for each trans-
action.

2.2.4.5 Address Bus Priority

Each commander node keeps track of the relative priorities of the request
lines TLSB_REQ<7:0>. When a device wins the bus and issues a data
transfer command, it becomes the lowest priority device. Any device whose
priority is below that of the winning device has its priority incremented.
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Consequently, the priority of any device will eventually bubble up to the
highest level.  The no-op command is the only non-data transfer command;
it does not affect priorities.

TLSB_REQ8_HIGH and TLSB_REQ8_LOW are assigned to the I/O mod-
ule in node 8.  These lines represent the highest and the lowest arbitration
priorities.  The I/O port uses the high-priority line to guarantee a worst-
case latency.  I/O ports residing in any node other than node 8 do not have
a guaranteed latency and arbitrate in the same manner as CPU modules,
using the request line assigned to that node.

2.2.4.6 Address Bus Request

A module may request the bus during any cycle.  The mechanism for
granting the bus is pipelined.  The request cycle is followed by an arbitra-
tion cycle and then by a cycle where the command, address, and bank
number are driven on the bus. A new command and address can be driven
in every second cycle.

Idle, request, and arbitration cycles differ as follows.  An idle cycle is one
in which no request line is asserted and no arbitration is taking place.  A
request cycle is the first one in which a request is asserted, and every sec-
ond bus cycle after that in which a request is asserted until the bus re-
turns to an idle state. An arbitration cycle is defined as the cycle following
a request cycle.

A device requests the bus by asserting its request line.  In the next cycle
all devices arbitrate to see which wins the bus. The winner drives its com-
mand type, address, and bank number onto the bus and deasserts the re-
quest. The targeted memory module responds by asserting TLSB_CMD_
ACK and by deasserting the TLSB_BANK_AVL line for the targeted bank.

When a module wins arbitration for the bus, whether for real arbitration
or as a result of a false arbitration, it deasserts its request line in the fol-
lowing cycle even if the module has another outstanding transaction.

2.2.4.7 Asserting Request

On a busy bus, every second cycle is considered a request cycle.  Request
lines asserted in  nonrequest cycles are not considered until the next re-
quest cycle (one bus cycle later).  Request lines asserted in nonrequest cy-
cles do not get any priority over lines asserted in the request cycle.

When more than one device requests the bus simultaneously, the device
with the highest priority wins the bus.  Note that a new address can be
driven only once every two bus cycles. 

2.2.4.8 Early Arbitration

CPU modules on the TLSB are allowed to arbitrate for the bus in anticipa-
tion of requiring it.  This mechanism is referred to as "early arbitration"
and is used to minimize memory latency.  The bus protocol provides a
mechanism for a CPU to request the bus, win it, and subsequently issue a
no-op command.  This mechanism is referred to as "false arbitration." 

A device that implements early arbitration can assert its request line be-
fore it requires the bus.  If it happens that the bus is not required, the de-
vice can deassert its request line at any time.  If a request line is asserted
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in a request cycle, that CPU must take part in the following arbitration cy-
cle even if the bus is no longer required. If the device wins the bus, it as-
serts a no-op on the bus command lines.  

I/O devices in the dedicated I/O port node cannot use early arbitration. 

2.2.4.9 False Arbitration Effect on Priority

Relative bus priorities are only updated when a data transfer command is
asserted on the bus.  If a device false arbitrates and drives a no-op on the
bus, the bus priorities are not updated.

2.2.4.10 Look-Back-Two

To avoid the possibility of a low-priority device being held off the bus by
high-priority devices false arbitrating, a mechanism is provided that as-
signs a higher priority to requests that have been continuously asserted for
more than two cycles.  This is referred to as the "look-back-two" mecha-
nism.

A request line continuously asserted for more than two cycles must be a
real request (that is, not early, not false).  Since bank decode and cache
miss are resolved after two cycles, real requests must be serviced before
newer, potentially false requests.  When one or more requests have been
asserted continuously for more than two cycles,  these requests have
higher priority than newer requests, and the arbiters consider only re-
quests falling into that category.  If the new requests are kept asserted for
longer than two cycles, they are included in the arbitration.  The effects of
early arbitration, therefore, are noticed only on buses that are not continu-
ously busy.  Busy buses tend to have a queue of outstanding requests wait-
ing to get the bus granted.  Requests due to early arbitration are at a lower
priority and are not granted the bus.

If two devices request the bus at the same time, the higher priority device
wins the bus.  If the losing device keeps its request line asserted, this is
understood to be a real request, and the device is assigned a higher prior-
ity than any newer (potentially false) requests.  Note that only a device
continuously asserting its request line for more than two bus cycles is
treated in this manner.  Devices must deassert their request line for at
least one cycle between consecutive requests.

NOTE:  The I/O port request line TLSB_REQ8_HIGH always has the highest prior-
ity, even in the look-back-two situation.

2.2.4.11 Bank Available Transition

A device can only arbitrate for a bank that is not currently in use.   The
TLSB_BANK_AVL<15:0> signals are used to indicate the busy state of the
16 memory banks.  TLSB_BANK_AVL lines will be assigned in the mem-
ory by the virtual ID loaded by console software at power-up or after sys-
tem reset.  When a bank becomes free, the TLSB_BANK_AVL line associ-
ated with it is asserted.  There is a window of time after the command is
asserted on the bus before the memory can respond by deasserting the
TLSB_BANK_AVL signal.  Consequently, devices must monitor the bus to
determine when a bank becomes busy.  
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CPUs can request the bus without first checking that the bank is busy.  If
the bank does turn out to be busy, this is considered a false arbitration,
and the command is a no-op.  The device can request the bus again when
the bank is free.  To prevent lockout of devices that might have been wait-
ing for the bank, CPUs early arbitrating for the bus cannot issue the com-
mand if they request in the cycle when <TLSB_BANK_AVL> asserts on
the bus, or in the subsequent cycle.  If a CPU requests a bank before
<TLSB_BANK_AVL> is asserted, it drives a no-op.

2.2.4.12 Bank Collision

If two CPUs request the bus for access to the same bank, the higher prior-
ity device is granted the bus and drives the command, address, and bank
number.  The lower priority device deasserts its request when it receives
the command and bank number.  But if the request cannot be withdrawn
before it gets granted the bus, it must drive a no-op and request again
when the bank becomes free.  This conflict is referred to as "bank colli-
sion."

Relative bus priorities are only updated when a valid data transfer com-
mand is asserted on the bus.  If a bank collision occurs, the bus priorities
are not updated as a result of the no-op cycle.

2.2.4.13 Bank Lock and Unlock

I/O ports must merge I/O data into full memory blocks.   Commands are
provided on the bus to allow the I/O port to read the block from memory,
merge the I/O data, and write the block back to memory as an atomic 
transaction.  These commands are the Read Bank Lock and Write Bank
Unlock.  In response to a Read Bank Lock, memory deasserts
TLSB_BANK_AVL for that bank and keeps it deasserted until the I/O port
issues a Write Bank Unlock.  This effectively denies any other device ac-
cess to the same block as the bank appears busy.

2.2.4.14 CSR Bank Contention

Nodes arbitrate for CSR accesses in the same manner as they do for mem-
ory accesses.  CSR accesses must follow the rules relating to early arbitra-
tion and look-back-two. 

The TLSB protocol allows only one CSR access at a time.  There is no ex-
plicit CSR bank busy line.  Modules must monitor all transactions on the
bus to set an internal CSR busy status and check sequence numbers on re-
turn data to clear the CSR busy status.  The duration of a CSR access is
from the assertion of the command on the bus to initiate the transaction
until two cycles following the time when the shared and dirty status is
available on the bus (that is, TLSB_HOLD is deasserted).  A new request
can be asserted one cycle later.  If the command is not acknowledged, the
CSR access ends two cycles after TLSB_CMD_ACK should have appeared
on the bus.  A new request can be asserted one cycle later.

If two devices arbitrate for the bus for CSR accesses, the winner drives the
bus.  If the second device cannot deassert its request line in time and wins
the bus, it drives a no-op and requests the bus again at a later time.

In the case of a write, a module may be busy writing the data into its CSR
registers after the data transaction on the bus.  If this module is involved
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in subsequent CSR accesses, and it is not ready to source or accept data, it
can delay asserting TLSB_SEND_DATA, or it can assert TLSB_HOLD on
the bus.

2.2.4.15 Command Acknowledge

When a device asserts an address, bank number, and a valid data transfer
command on the bus, the targeted device responds two cycles later by as-
serting TLSB_CMD_ACK.  This indicates that the command has been re-
ceived and that the targeted address is valid.  In the case of CSR broadcast
space writes, where there may be multiple targeted devices, the bus com-
mander asserts TLSB_CMD_ACK.

If an acknowledge is not received, the data bus is not cycled for this com-
mand (that is, treated as a no-op).  Two cases exist where no acknowledge
is not an error condition:  (1)  An I/O port does not respond to a CSR access
to a mailbox pointer register.  This indicates that the mailbox pointer reg-
ister is full and that the access should be retried later; (2)  A broadcast
space register write, where the act of writing an address is meaningful, but
no data needs to be transmitted.  

2.2.4.16 Arbitration Suppress

The commander module asserts TLSB_ARB_SUP to limit the number of
outstanding transactions on the bus to 16.   This signal must be asserted in
the cycle following an arbitration cycle, that is in the cycle in which a com-
mand, address, and bank number are driven.  TLSB_ARB_SUP is asserted
for one cycle, then deasserted for one cycle.  This two-cycle sequence is re-
peated until arbitration can be permitted again.  Multiple nodes may as-
sert TLSB_ARB_SUP the first time and the same or fewer nodes may as-
sert it every two cycles thereafter until finally it is not asserted.  The cycle
in which it is not asserted is the next request cycle if any device request
signals are asserted at that time; otherwise it is an idle cycle.

Nodes must disregard the value of TLSB_ARB_SUP received during the
second of each two-cycle sequence, as it is Unpredictable.  An assertion of
TLSB_ARB_SUP should be converted internally to look like a two-cycle as-
sertion and ignore the value received in the second cycle.  This entire se-
quence repeats every two cycles until it is received deasserted.

Modules may assert requests while TLSB_ARB_SUP is asserted, but no
arbitration is allowed.  Priority of devices does not change while
TLSB_ARB_SUP is inhibiting arbitration cycles. Arbitration, when it re-
sumes, follows the normal rules for priority levels and look-back-two. 
TLSB_ARB_SUP may also be asserted in response to TLSB_FAULT.  

2.2.5  Address Bus Cycles

A TLSB address bus cycle is the time occupied by two cycles of the TLSB
clocks.  During the first clock cycle the address, bank, and command bus
signals are driven by the commanding node.  The second clock cycle is used
for a dead cycle.  This leads to a simpler electrical interface design and the
lowest achievable clock cycle time.  There are two types of legal address
bus cycles:

• Data transfer command cycles
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• No-op command cycles

Two signals are used to provide parity protection on the address bus dur-
ing all command cycles.  TLSB_CMD_PAR is asserted to generate odd par-
ity for the signals TLSB_CMD<2:0>, TLSB_BANK_NUM<3:0>, 
TLSB_ADR<39:31>, and TLSB_ADR<4:3>.  TLSB_ADR_PAR is asserted
to generate odd parity for the signals TLSB_ADR<30:5>.

When not in use, idle address bus cycles have a predictable value, called
the default bus value.  The default value is given in Table 2-1.  

2.2.6  Address Bus Commands

Table 2-4 lists the commands used by the TLSB.

  Table 2-4 TLSB Address Bus Commands

No-op

The device that won arbitration has decided to null the command.  No ac-
tion is taken.  Priority is not updated.  The command is not acknowledged,
and the bus sequence number is not incremented.  TLSB_ADR<39:5> and
TLSB_BANK_NUM<3:0> are not used and their contents are Unpredict-
able. 

Victim

Write the block specified by the address and bank number into memory
only.  Nonmemory devices do not need to do coherency checks.

Read

Read the block specified by the address and bank number and return that
data over the bus.

Write

Write the block specified by the address and the bank number.  Any CPU
containing that block can take an update or an invalidate based on that
CPU’s update protocol.

Read Bank Lock

Used by an I/O port to do a Read-Modify-Write.  Locks access to the bank
until followed by a Write Bank Unlock.  This command reads the block
specified by the address and bank number, and locks the bank.

TLSB_CMD
<2:0> Command Description

000
001
010
011
100
101
110
111

No-op
Victim
Read
Write
Read Bank Lock
Write Bank Unlock
CSR Read
CSR Write

Nulled command
Victim eviction
Memory read
Memory write, or write update
Read memory bank, lock
Write memory bank, unlock
Read CSR data
Write CSR data
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Write Bank Unlock

Used by the I/O port to complete a Read-Modify-Write.  Writes the data
specified by the address and bank number and unlocks the bank.

CSR Read

Read the CSR location specified by the address.  Bank number specifies a
CPU virtual ID. 

CSR Write

Write the CSR location specified by the address.  Bank number specifies  a
CPU virtual ID. 

2.2.7  Data Bus Concepts

The TLSB transfers data in the sequence order that valid address bus com-
mands are issued.  The rule for gaining access to the data bus is as follows.
When the sequence count reaches the sequence number for which a slave
interface wishes to transfer data, the data bus belongs to the slave.  The
sequencing of the data bus is controlled by the slave node that was ad-
dressed in the address bus command.  The exception to this rule is the
CSR broadcast write, where the commander is responsible for data bus se-
quencing.

To cycle the bus through a data sequence,  the slave node drives the con-
trol signals and monitors the shared and dirty status lines.  The shared
and dirty status lines are driven by the CPU nodes.  Shared and dirty per-
mit all nodes to perceive the state of the cache block that is being trans-
ferred.  Section 2.2.8.9 and Section 2.2.8.10 describe the effects of shared
and dirty on data transfers.  Depending on the transaction type and the
status of dirty, either a CPU, the transaction commander, or the slave
drives data on the bus.  Table 4-3 describes the TLSB actions in detail.

Moving shared and dirty status to the data bus sequence decreases the
load on a critical timing path.  The path to look up the cache Duplicate Tag
Store (DTag) and have status ready still has conditions under which CPUs
might not be ready to return status when the slave node is ready for data
transfer.  In addition, once the data transaction starts it cannot be halted
and the receiving node must consume the data.  The protocol provides a
flow control mechanism to permit the bus to be held pending all nodes be-
ing ready to transmit valid cache block status and to drive or receive the
data.

2.2.7.1 Data Bus Sequencing

Data bus transfers take place in the sequence that the address bus com-
mands were issued.  When a valid data transfer command is issued, the
commander and slave nodes tag the current sequence count and pass the
sequence number to the data bus interface.  

2.2.7.2 Hold

If a device is not ready to respond to the assertion of TLSB_SEND_DATA,
either because it does not yet know the shared and dirty state of the block
in its cache, or because data buffers are not available to receive or send the
data, it drives TLSB_HOLD to stall the transaction.
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2.2.7.3 Back-to-Back Return Data

Two memory read transactions are returned back to back as follows.
TLSB_SEND_DATA for the first transaction is asserted, and the shared
and dirty state is driven to the bus.  Three cycles after the first
TLSB_SEND_DATA assertion, the second memory initiates its transfer.
The two transfers proceed normally, piped three cycles apart.

2.2.7.4 Back-to-Back Return with HOLD

TLSB_HOLD is asserted in response to the first TLSB_SEND_DATA.  The
timing of TLSB_HOLD is such that there is no time to prevent the second
TLSB_SEND_DATA from being sent.  The second device keeps asserting
TLSB_SEND_DATA through the no-Hold cycle.  TLSB_SEND_DATA is ig-
nored in any two-cycle period in which TLSB_HOLD is asserted and in the
no-Hold cycle. 

2.2.7.5 CSR Data Sequencing

CSR data sequencing is similar to memory data sequencing except the
TLSB_SHARED and TLSB_DIRTY status signals are ignored.  For normal
CSR transactions the slave node is responsible for data bus sequencing.
For CSR broadcast space writes the commanding node sequences the data
bus.

On CSR data transfers, the data bus transfers 32 bytes of CSR data in
each of two consecutive data cycles, beginning three cycles after the time
when TLSB_HOLD is not asserted.  The timing is identical to memory
data transfers.  

2.2.8  Data Bus Functions

The data bus consists of the returned data, the associated ECC bits, and
some control signals. 

A TLSB data bus cycle is the time occupied by three cycles of the TLSB
clock.  During the first two clock cycles the data bus signals are driven
with data.  The third clock cycle is used for a tristate dead cycle.  This
leads to a simpler electrical interface design and the lowest achievable
clock cycle time.  There is only one cycle type on the data bus and it is the
data cycle.

2.2.8.1 Data Return Format

When a slave node is ready to transfer data, and it is its turn to use the
data bus, the device drives TLSB_SEND_DATA on the bus.  Devices have
one cycle, or more than one cycle if TLSB_HOLD is asserted, to respond
with the shared and dirty state of the block. 

For read transactions, if a CPU indicates that the block is dirty in its
cache, that CPU drives the data to the bus.  In all other cases the slave
node drives the data.  If a CPU has not yet determined the shared or dirty 
state of the block in its cache, or if it knows that it is not ready to take part
in the data transfer, the CPU can drive TLSB_HOLD. TLSB_HOLD acts
as a transaction stall. 
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If one CPU drives TLSB_HOLD while another drives TLSB_SHARED or
TLSB_DIRTY, the second keeps driving TLSB_SHARED and
TLSB_DIRTY.  TLSB_HOLD, TLSB_SHARED, and TLSB_DIRTY are as-
serted for one cycle and deasserted in the next cycle.  This two-cycle se-
quence repeats until TLSB_HOLD is not reasserted (the no-Hold cycle). 
Receivers internally convert TLSB_HOLD to appear asserted in both cy-
cles.  The value received from the bus in the second cycle is Unpredictable.

Three cycles after the no-Hold cycle data is driven on the bus.  

Another slave device could drive its TLSB_SEND_DATA as TLSB_HOLD
is being asserted for the previous transaction. TLSB_SEND_DATA asser-
tions when TLSB_HOLD is asserted are ignored.  The slave device must
keep driving TLSB_SEND_DATA. 

2.2.8.2 Sequence Numbers

As TLSB_SEND_DATA is being driven, the slave device also drives
TLSB_SEQ<3:0> to indicate the sequence number of the request being
serviced.  All commanders check the sequence number against the se-
quence number they expect next.  A sequence number of zero is always ex-
pected with the first assertion of TLSB_SEND_DATA after a reset se-
quence.  The sequence number increments in a wrapping 16 count manner
for each subsequent assertion of TLSB_SEND_DATA. 

2.2.8.3 Sequence Number Errors

If the sequence numbers of data bus transactions do not match the ex-
pected sequence number, then an out-of-sequence-fault has occurred.  
<SEQE> sets in the TLBER register.  This is a system fatal error.  All out-
standing requests are aborted and the system attempts to crash. 

2.2.8.4 Data Field

The data field (data bus) is 256 bits wide.  A 64-byte block is returned from
memory in two bus cycles.  A third cycle is added during which no data is
driven to allow the bus to return to an idle state.

2.2.8.5 Data Wrapping

Data wrapping is supported for memory access commands.  The address
driven during the command/address cycle represents bits <39:5> of the 40-
bit physical byte address.  Address bits <4:3> appear on the bus but are
ignored.  TLSB_ADR<39:6> uniquely specify the 64-byte cache block to be
transferred.  TLSB_ADR<5> specifies the 32-byte wrapping as shown in
Table 2-5.  Data cycle 0 refers to the first  transfer;  data cycle 1 to the sec-
ond.  TLSB_ADR<5> is valid for all memory access transactions;  both
reads and writes are wrapped.
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  Table 2-5 TLSB Data Wrapping

2.2.8.6 ECC Coding

Data is protected using quadword ECC.  The 256-bit data bus is divided
into four quadwords.  Protection is allocated as follows:

• TLSB_D<63:0> is protected by TLSB_ECC<7:0> 

• TLSB_D<127:64> is protected by TLSB_ECC<15:8>

• TLSB_D<191:128> is protected by TLSB_ECC<23:16> 

• TLSB_D<255:192> is protected by TLSB_ECC<31:24>

Figure 2-3 shows the ECC coding scheme for TLSB_D<63:0> and
TLSB_ECC<7:0>.  The same coding scheme is used for each of the other
three quadwords, and again for the four quadwords in the second data cy-
cle.

 Figure 2-3 64-Bit ECC Coding Scheme

TLSB_ADR<5> Data Cycle Data Bytes

0 0  0–31

0 1 32–63

1 0 32–63

1 1  0–31
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Check bits are computed by XORing all data bits corresponding to columns
containing a one in the upper table and inverting bits <3:2>.  These check
bits are transmitted on the TLSB_ECC lines.

An error syndrome is computed by XORing all data and check bits corre-
sponding to columns containing a one in both tables and inverting bits
<3:2>.  A syndrome equal to zero means no error.  A syndrome equal to one
of the hex syndromes in the tables indicates the data or check bit in error.
Any other syndrome value indicates multiple bits in error and is
uncorrectable.

2.2.8.7 ECC Error Handling

Single-bit errors are detected by the transmitter and all receivers of data
and result in setting an error bit in the TLBER register.  <CWDE> sets
during memory write commands, and <CRDE> sets during memory read
commands.  The TLSB_DATA_ERROR signal is also asserted, informing
all nodes that an error has been detected.  The node that transmitted the
data sets <DTDE> in its TLBER register so the transmitter can be identi-
fied.  All participating nodes preserve the command code, bank number,
and syndrome.  The memory node preserves the address. 

Memory nodes do not correct single-bit errors.  So it is possible for data
containing single-bit errors to be written to the bus.  The source of the er-
ror can be determined by checking the nodes that detected the error, the
type of command, and the node type that transmitted the data. 

Double-bit errors and some multiple-bit data errors are detected by the
transmitter and all receivers of data, and result in setting <UDE> in the
TLBER register.  Double-bit errors are not correctable.

Some nodes are not able to correct single-bit errors in CSR data transfers.
If such a node receives CSR data with a single-bit error, it sets <UDE> in
its TLBER register.

2.2.8.8 TLSB_DATA_VALID

The TLSB_DATA_VALID<3:0> signals are additional data values trans-
mitted with data in each data cycle. The use of these signals is implemen-
tation specific.

2.2.8.9 TLSB_SHARED

The TLSB_SHARED signal is used by CPU nodes to indicate that the
block being accessed has significance to the CPU.  It must be asserted if
the block is valid and is to remain valid in a CPU’s cache.  A CPU does not
drive TLSB_SHARED in response to commands it initiates. 
TLSB_SHARED is asserted two cycles after TLSB_SEND_DATA.  If any
node asserts TLSB_HOLD at this time, TLSB_SHARED is asserted again
two cycles later.

Note that multiple nodes can drive the TLSB_SHARED wire at one time.
All nodes must assert the signal in the same cycle and deassert it in the
following cycle.

If the TLSB_SHARED state of the data is not available as a response to
TLSB_SEND_DATA, TLSB_HOLD must be asserted until the state is
available. 
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TLSB_SHARED is valid when driven in response to Read, Read Bank
Lock, Write, and Write Bank Unlock commands.  Nodes may, therefore,
drive TLSB_SHARED in response to any command; the value of
TLSB_SHARED is only guaranteed to be accurate when TLSB_SHARED
is asserted in response to the commands named above.

2.2.8.10 TLSB_DIRTY

The TLSB_DIRTY signal is used to indicate that the block being accessed
is valid in a CPU’s cache, and that the copy there is more recent than the
copy in memory.  TLSB_DIRTY is valid only when driven in response to
Read and Read Bank Lock commands.  Nodes may, therefore, drive
TLSB_DIRTY in response to any command; the value of TLSB_DIRTY is
only guaranteed to be accurate when TLSB_DIRTY is asserted in response
to Read and Read Bank Lock commands.  On the bus, TLSB_DIRTY indi-
cates that memory should not drive the data.  TLSB_DIRTY is asserted
two cycles after TLSB_SEND_DATA.  If any device asserts TLSB_HOLD
at this time, TLSB_DIRTY is asserted again two cycles later.

The cache protocol ensures that at most one node can drive TLSB_DIRTY
at a time in response to a Read or Read Bank Lock command.  Multiple
nodes may drive TLSB_DIRTY in response to other commands.  All nodes
must assert TLSB_DIRTY in the same cycle and deassert it in the follow-
ing cycle.

If the TLSB_DIRTY state of the data is not available as a response to
TLSB_SEND_DATA, then TLSB_HOLD must be asserted until the state is
available.

2.2.8.11 TLSB_STATCHK

TLSB_STATCHK is an assertion check signal for TLSB_SHARED and
TLSB_DIRTY.  These two signals present cache status to other nodes.
They are similar to data in that there is no way to predict their values or
otherwise verify they are functioning properly.  TLSB_SHARED is particu-
larly vulnerable because no bus-detected error results if a node receives a
wrong value of this signal (due to a hardware fault in a node).  Yet data
integrity may be lost if two nodes update that data block.  A failure of
TLSB_DIRTY leads to the wrong number of nodes driving data and error
bits are set indicating data errors.

TLSB_STATCHK is asserted by a node whenever the node is asserting
TLSB_SHARED or TLSB_DIRTY.  All nodes participating in a data trans-
fer compare the values received from TLSB_SHARED and TLSB_DIRTY
to TLSB_STATCHK.  This compare is performed whenever
TLSB_SHARED, TLSB_DIRTY, or TLSB_HOLD is asserted on the bus in
all data bus transactions, even if the values of TLSB_SHARED or
TLSB_DIRTY are not valid because of the command code.  Specifically, the
compare is performed two cycles after the assertion of TLSB_SEND_DATA
and every two cycles after TLSB_HOLD is asserted. If a node finds
TLSB_SHARED or TLSB_DIRTY asserted while TLSB_STATCHK is
deasserted, or finds TLSB_STATCHK asserted while both TLSB_SHARED
and TLSB_DIRTY are deasserted, <DSE> is set in the TLBER register and
TLSB_FAULT is asserted.  This is a system fatal error.  All outstanding
requests are aborted and the system attempts to crash.
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2.2.9  Miscellaneous Bus Signals

Several signals are required for correct system operation.  They are:

• TLSB_DATA_ERROR — A hard or soft data error has occurred on the
data bus.

• TLSB_FAULT — A system fatal event has occurred.

• TLSB_RESET — Reset the system and initialize.  

• TLSB_LOCKOUT — Lockout request to break deadlock.

TLSB_DATA_ERROR

The TLSB_DATA_ERROR signal is used to broadcast the detection of hard
and soft data errors on the data bus to other nodes.

In general, TLSB_DATA_ERROR is asserted for all data errors detected by
any node participating in the data transaction.  The assertion of
TLSB_DATA_ERROR on correctable data errors can be disabled by setting
the interrupt disable bits in the TLCNR register of all nodes.

All nodes participating in a data transfer monitor TLSB_DATA_ERROR.
The <DTDE> status bit in the TLBER register is set by the node that
transmitted the data that resulted in TLSB_DATA_ERROR being as-
serted.  These participating nodes must also latch the command and bank
number in the TLFADRn registers; the address should be latched if possi-
ble (required of memory nodes).

TLSB_FAULT 

The TLSB_FAULT signal is used to broadcast the detection of a system fa-
tal error condition that prevents continued reliable system operation. The
assumption is that the underlying protocol of the bus has failed and that
all nodes must reset to a known state to permit the operating software to
attempt to save state and save the memory image. 

All nodes monitor TLSB_FAULT and immediately abort all outstanding
transactions and reset to a known state.  All bus signals are deasserted. 
All interrupt and sequence counters are reset. Timeout counters are can-
celed.  All node priorities are reset. Status registers are not cleared. Also
not cleared are the contents of cache and memory.

TLSB_RESET

TLSB_RESET causes a systemwide reset.  All nodes begin self-test. All
state prior to the reset is lost.

TLSB_LOCKOUT

TLSB_LOCKOUT may be used by CPU nodes to avoid certain deadlock
scenarios that might otherwise occur.  The use of TLSB_LOCKOUT is im-
plementation dependent.

CPU and I/O nodes monitor the TLSB_LOCKOUT signal and delay new
outgoing requests until TLSB_LOCKOUT is deasserted.  I/O port nodes is-
suing a Read Bank Lock command must not delay the corresponding Write
Bank Unlock command.  The delay of new requests reduces bus activity
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and allows the CPUs asserting TLSB_LOCKOUT to complete their bus ac-
cess without interference.

TLSB_LOCKOUT is asserted for one cycle then deasserted for one cycle.
This two-cycle sequence may be repeated until the device is ready to
deassert TLSB_LOCKOUT.  Multiple devices may assert this signal in any
of these two-cycle sequences.

Devices must disregard the value of TLSB_LOCKOUT received during the
second of each two-cycle sequence, as it is Unpredictable.  An assertion of
TLSB_LOCKOUT should be converted internally to look like a two-cycle
assertion and ignore the actual value received in the second cycle.  This en-
tire sequence repeats every two cycles until it is received deasserted.

TLSB_LOCKOUT must be initially asserted in the cycle following an arbi-
tration cycle, that is, at the same time that a command and address are
valid.  Continued assertions must follow in successive two-cycle sequences,
independent of any additional arbitration cycles.  Before asserting
TLSB_LOCKOUT, a device must check whether the signal is already being
asserted by another node and synchronize with the existing two-cycle se-
quence.

2.3  CSR Addressing

Two types of control and status registers (CSRs) can be accessed on the 
TLSB.  Local CSRs are implemented in the TLSB nodes in the system.  Re-
mote CSRs exist on I/O devices connected to I/O buses.  They are accessed
through I/O nodes in the system.  

There are two ways to access remote CSRs:  

• Mailbox 

• Window space

Mailbox access allows full software control of the communication with the
remote I/O device.  Window space CSR access maps physical addresses to
registers in a remote I/O device.  Window space access eliminates the need
for software to manipulate mailboxes and allows a single I/O space refer-
ence to read or write a remote CSR.

Two command codes are used on the system for CSR accesses:  CSR write
and CSR read.  The use of these special command codes allows full use of
the address and bank number fields on the address bus.

Figure 2-4 shows the address bit mapping of the TLSB CSRs.
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 Figure 2-4 TLSB CSR Address Bit Mapping

2.3.1  CSR Address Space Regions

A total of 1 terabyte of physical address space can be mapped directly to
the TLSB.  Physical address bit <39> normally indicates an I/O space ref-
erence from the CPU, so the first 512 Gbytes are reserved, and all address
bits can be mapped directly to the TLSB address bus.  Physical address
bits <2:0> do not appear on the bus.

The CSR address space is divided into regions using address bits <39:36>
as shown in Table 2-6.

Regions 8 through C access an I/O node by the physical node ID 4 through
8, respectively.  The node must be occupied to acknowledge this address. 
The mapping within each region to individual remote CSRs is implementa-
tion specific.

  Table 2-6 CSR Address Space Regions

Local CSRs are accessed within region F of the CSR address space.  Local
CSRs are aligned on 64-byte boundaries.  Bits TLSB_ADR<35:6> of the ad-
dress field in a CSR read or write command are used to specify all local
CSR accesses.  TLSB_ADR<5:3> are zero during local CSR commands and
should be ignored by all nodes receiving this address.  Figure 2-5 shows
the TLSB CSR space map.

BXB0827.AI

02339

Processor Byte Address

CSR Address

339 Address
Bus 
Field

TLSB_ADR
<39:36> Address Range Access

0–7
8
9
A
B
C
D–E
F

Reserved
Remote CSR Window Space on Node 4
Remote CSR Window Space on Node 5
Remote CSR Window Space on Node 6
Remote CSR Window Space on Node 7
Remote CSR Window Space on Node 8
Reserved
Local TLSB Node CSRs

00 0000 0000 – 7F FFFF FFF8
80 0000 0000 – 8F FFFF FFF8
90 0000 0000 – 9F FFFF FFF8
A0 0000 0000 – AF FFFF FFF8
B0 0000 0000 – BF FFFF FFF8
C0 0000 0000 – CF FFFF FFF8
D0 0000 0000 – EF FFFF FFF8
F0 0000 0000 – FF FFFF FFF8
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 Figure 2-5 TLSB CSR Space Map

All TLSB node CSRs are 32 bits wide, except the TLMBPR and TLRDRD
registers, which are wider.  Data is always right justified on the data bus,
with bit <0> of the register transmitted on TLSB_D<0>  in the first data
cycle.  All bits above the defined register width must be considered Unpre-
dictable.

Node private space is reserved for local use on each module.  Nodes may
allocate additional reserved address space for local use.  References to re-
served addresses are serviced by resources local to a module.  

Broadcast space is for write-only registers that are written in all nodes by
a single bus transaction.  Broadcast space is used to implement vectored
and interprocessor interrupts.

Broadcast space register 0 (TLPRIVATE) is reserved for private transac-
tions.  Data written to this register is ignored by other nodes.  Any data
values may be written.  

Table 2-7 gives the TLSB node base addresses (BB) and shows what kind
of module can be in the slot.

Byte Address

F0 0000 0000


FF 87FF FFC0
FF 8800 0000


FF 883F FFC0
FF 8840 0000


FF 887F FFC0


.  .  .  


FF 8A00 0000


FF 8A3F FFC0
FF 8A40 0000


FF 8DFF FFC0
FF 8E00 0000


FF 8E3F FFC0
FF 8E40 0000


FF FFFF FFC0




Reserved

Node 0 CSRs: 64K CSR Locations

Reserved

Broadcast Space: 64K CSR Locations

Reserved

BXB-0780A-94

Node 1 CSRs: 64K CSR Locations

Node 8 CSRs: 64K CSR Locations

.  .  .
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  Table 2-7 TLSB Node Base Addresses

Table 2-8 shows the mapping of CSRs to node space and broadcast space
locations.  Locations are given as offsets to a node base address, and the
broadcast space base address (BSB), which is FF 8E00 0000.

Node Number BB Address <39:0> Module

0
1
2
3
4
5
6
7
8

FF 8800 0000
FF 8840 0000
FF 8880 0000
FF 88C0 0000
FF 8900 0000
FF 8940 0000
FF 8980 0000
FF 89C0 0000
FF 8A00 0000

CPU, Memory
CPU, Memory
CPU, Memory
CPU, Memory
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
I/O
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  Table 2-8 TLSB CSR Address Mapping

Address Name Mnemonic
Modules That
 Implement 

BB+000
BB+040
BB+080
BB+0C0
BB+200
BB+240
BB+280
BB+2C0
BB+300
BB+340
BB+380
BB+3C0
BB+600
BB+640
BB+680
BB+6C0
BB+700
BB+740
BB+A00
BB+A40
BB+A80
BB+AC0
BB+B00
BB+C001

BSB+000
BSB+040
BSB+100
BSB+140
BSB+180
BSB+1C0
BSB+200
BSB+400
BSB+440
BSB+480
BSB+4C0
BSB+500
BSB+600
BSB+640
BSB+800
BSB+840
BSB+1880

Device Register 
Bus Error Register
Configuration Register
Virtual ID Register
Memory Mapping Register
Memory Mapping Register
Memory Mapping Register 
Memory Mapping Register 
Memory Mapping Register 
Memory Mapping Register 
Memory Mapping Register 
Memory Mapping Register 
TLSB Failing Address Register 0
TLSB Failing Address Register 1
TLSB Error Syndrome Register 0
TLSB Error Syndrome Register 1
TLSB Error Syndrome Register 2
TLSB Error Syndrome Register 3
Interrupt Level0 IDENT Register
Interrupt Level1 IDENT Register
Interrupt Level2 IDENT Register
Interrupt Level3 IDENT Register
CPU Interrupt Mask Register
Mailbox Pointer Register
Reserved for private transactions
IP Interrupt Register
I/O Interrupt Register
I/O Interrupt Register
I/O Interrupt Register
I/O Interrupt Register
I/O Interrupt Register
Window Space Decr Queue Counter Reg 4
Window Space Decr Queue Counter Reg 5
Window Space Decr Queue Counter Reg 6
Window Space Decr Queue Counter Reg 7
Window Space Decr Queue Counter Reg 8
Reflective Mem Decr Queue Counter Reg X
Reflective Mem Decr Queue Counter Reg 8
CSR Read Data Return Data Register
CSR Read Data Return Error Register
Memory Control Register

TLDEV
TLBER
TLCNR
TLVID
TLMMR0
TLMMR1
TLMMR2
TLMMR3
TLMMR4
TLMMR5
TLMMR6
TLMMR7
TLFADR0 
TLFADR1
TLESR0
TLESR1 
TLESR2 
TLESR3 
TLILID0 
TLILID1 
TLILID2 
TLILID3 
TLCPUMASK 
TLMBPR 
TLPRIVATE 
TLIPINTR 
TLIOINTR4 
TLIOINTR5 
TLIOINTR6 
TLIOINTR7 
TLIOINTR8 
TLWSDQR4 
TLWSDQR5 
TLWSDQR6 
TLWSDQR7 
TLWSDQR8 
TLRMDQRX 
TLRMDQR8 
TLRDRD 
TLRDRE 
TLMCR

CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
I/O
I/O
I/O
I/O
I/O
I/O
None2

CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU, I/O
CPU, I/O
CPU
CPU
Memory

1 Virtual CPU ID asserted on TLSB_BANK_NUM<3:0> to select one of 16 registers.

2 Data not to be recorded by another node.
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2.3.2  TLSB Mailboxes

CSRs that exist on external I/O buses connected to an I/O port (or another
I/O module implementing mailbox register access) are accessed through
mailbox structures that exist in main memory.   Read requests are posted
in mailboxes, and data and status are returned in the mailbox. Mailboxes
are allocated and managed by operating system software (successive op-
erations must not overwrite data that is still in use).

The I/O module services mailbox requests through a mailbox pointer CSR
(TLMBPR) located in the I/O module’s node space.  When the CPU writes
this CSR, it must assert its virtual ID on TLSB_BANK_NUM<3:0>.  The
I/O module provides a separate register for each CPU.  

Software sees a single TLMBPR address with the CPU virtual ID selecting
one of the 16 registers.  If all 16 TLMBPRs are implemented, one register
is accessed for each address. If the eight optional registers are not imple-
mented, the I/O module must ignore TLSB_BANK_NUM<3> and access
one of the eight implemented registers.

Implementation of eight TLMBPRs implies that eight CPUs can uniquely
access remote CSRs.  This implementation is sufficient to handle up to four
CPU nodes on the TLSB bus where each CPU node may be a dual CPU. 
The way I/O modules map the 16 virtual IDs to the eight TLMBPRs allows
flexibility in CPU virtual ID assignments, that is, virtual IDs 8–15 can be
used provided each CPU maps to a unique TLMBPR.  With more than
eight CPUs, registers are shared, with up to two CPUs accessing one regis-
ter.

If a TLMBPR is in use when it is written to, the I/O module does not ac-
knowledge it (TLSB_CMD_ACK is not asserted).  Processors use the lack
of TLSB_CMD_ACK assertion on writes to the TLMBPR to indicate a busy
status.  The write must be reissued at a later point.  The mailbox pointer
CSR is described in Chapter 7.

TLMBPR points to a naturally aligned 64-byte data structure in memory
that is constructed by software as shown in Figure 2-6. 

 Figure 2-6 Mailbox Data Structure

63 48 47 40 39 32 31 012

MBZ MBZ CMD

BXB-0174 C-94

RBADR <63:0>

WDATA <63:0>

UNPREDICTABLE

RDATA <63:0>

STATUS
E
R
R

D
O
N

UNPREDICTABLE

UNPREDICTABLE

MASKQW 0

QW 1

QW 2

QW 3

QW 4

QW 5

QW 6

QW 7

56 55

HOSE BW

2930
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Table 2-9 describes the mailbox data structure.

  Table 2-9 Mailbox Data Structure

The mailbox address is a 64-byte aligned memory location.  The I/O mod-
ule is required to update only the RDATA and STATUS fields in this 

QW Bit(s) Name Description

0

1

2

3

4

5

6

7

<29:0>

<30>

<31>

<39:32>

<47:40>

<55:48>

<63:56>

<63:0>

<63:0>

<63:0>

<63:0>

<0>

<1>

<63:2>

<63:0>

<63:0>

CMD

B

W

MASK

MBZ

HOSE

MBZ

RBADR

WDATA

RDATA

DON

ERR

STATUS

Remote Bus Command.  Controls the remote bus opera-
tion and can include fields such as address only, address
width, and data width.  See Alpha SRM.

Remote Bridge Access.  If set, the command is a special
or diagnostic command directed to the remote side.  See Al-
pha SRM. 

Write Access.  If set, the remote bus operation is a write.

Disable Byte Mask.  Disables bytes within the remote bus
address.  Mask bit <i> set causes the byte to be disabled; 
for example, data byte <i> will NOT be written to the re-
mote address.  See Alpha SRM.

Must be zero.

Hose.  Specifies the remote bus to be accessed.  Bridges can
connect to a maximum of 256 remote buses.

Must be zero.

Remote Bus Address.  Contains the target address of the
device on the remote bus.  See Alpha SRM. 

Write Data.  For write commands, contains the data to be
written. For read commands, the field is not used by the 
bridge.

Unpredictable.

Read Data.  For read commands, contains the data re-
turned.  Unpredictable for write data commands.

Done.  For read commands, indicates that the <ERR>, 
<STATUS>, and <RDATA> fields are valid.  For all com-
mands, indicates that the mailbox structure may be safely
modified by host software.

Error.  If set on a read command, indicates that an error
was encountered. Valid only on read commands and when
<DON> is set.  This  field is Unpredictable on write com-
mands. See Alpha SRM.

Operation Completion Status.  Contains information
specific to the bridge implementation.  Valid only on read
commands and when <DON> is set.  This field is Unpredict-
able on write commands.  

Unpredictable.

Unpredictable.
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structure.  Software may choose to reuse mailboxes  (for example, multiple
reads from the same CSR), or it may maintain templates that are copied to
the mailbox.

Byte masks may be needed by some hardware devices for correct operation
of a CSR read as well as a CSR write.  A bit is set in the mailbox MASK
field to disable the corresponding byte location to be read or written.  See
the Alpha SRM for more details on the use of the mailbox. 

2.3.3  Window Space I/O

CSR read and write commands directed at addresses in regions 8 through
C of the TLSB CSR address space provide direct access to remote CSRs in
devices attached to I/O subsystems through the I/O nodes on the TLSB.
This is an alternate method of accessing remote CSRs.

Each I/O node determines if it should respond to a window space CSR ac-
cess by comparing the CSR address space region to its physical node ID.
The I/O node acknowledges all addresses within the region, whether or not
the remote register exists. A CSR write command is a request to write the
remote CSR.  A CSR read command is a request to read the remote CSR.

Mapping of the address to a remote CSR is implementation specific.

2.3.3.1 CSR Write Transactions to Remote I/O Window Space

A CSR write command to node 4 to 8 I/O window space causes the ad-
dressed I/O module to initiate a write to a remote CSR.  The CPU can con-
sider the write operation complete as soon as the write data is transferred
on the TLSB to the I/O node.

As soon as the I/O node consumes the address and data and can free the
buffer, it issues a CSR write command to a Window Space DECR Queue
Counter (TLWSDQRn) register in local CSR broadcast space, where n is
the physical node number of the I/O node.  The I/O node is then ready to
receive another window space request. If the I/O node acknowledges the
CSR write command, it must also cycle the data bus and provide data with
good ECC.  The data should be considered Unpredictable as the value has
no significance.  The I/O node may choose not to acknowledge the com-
mand and save data bus cycles. 

If the I/O node detects an error while writing the remote CSR, it sets a
node-specific error bit and generates an IPL17 interrupt to the TLSB.

2.3.3.2 CSR Read Transactions to Remote I/O Window Space

A CSR read command to node 4 to 8 I/O window space causes the ad-
dressed I/O module to initiate a read of a remote CSR.  The virtual ID of
the CPU initiating the read transaction must be asserted in the bank num-
ber field on the address bus.  Unpredictable data is returned by the I/O
node. 

As soon as the I/O node consumes the address and can free the buffer, it
issues a CSR write command to a TLWSDQRn register in local CSR broad-
cast space, where n is the physical node number of the I/O node.  The I/O
node is then ready to receive another window space request.  If the I/O
node acknowledges the CSR write command, it must also cycle the data
bus and provide data with good ECC.  The data should be considered Un-
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predictable as the value has no significance.  The I/O node may choose not
to acknowledge the command and save data bus cycles.

The I/O node proceeds to read the selected remote CSR.  When the data is
available and there are no errors reading the data, the I/O node issues a
CSR write command to a CSR Read Data Return Data (TLRDRD) Register
in local CSR broadcast space.  During this transaction it asserts the virtual
ID of the CPU that initiated the read transaction in the bank number field
and returns the read data.  The TLRDRD register format is shown in Fig-
ure 2-7.  The size and format of the data is implementation specific. 

 Figure 2-7 TLRDRD Register

If an error is detected reading the remote CSR, the I/O node issues a CSR
write command to a CSR Read Data Return Error (TLRDRE) Register in
local CSR broadcast space.  During this transaction it asserts the virtual
ID of the CPU that originated the read transaction in the bank number
field and returns Unpredictable data.

A single CPU may not have more than one outstanding window space CSR
read transaction pending at any given time.  The only identification that is
returned with the read data is the CPU virtual ID.  Data for outstanding
read commands may be returned in any order.

If the read transaction fails to complete after several seconds, the CPU
aborts the transaction through an implementation-specific timeout mecha-
nism.

2.4  TLSB Errors

The TLSB is designed to provide a high reliability electrical environment
for system bus operation.  Consequently, error handling is biased toward
detection rather than correction.  An attempt is made to retain state for
either PALcode or system software to determine the severity level and
recoverability of any error, and for hardware fault isolation to one module.
However, due to the deep pipelined nature of the protocol, the amount of
state saved is limited.

If there is any probability that the integrity of the system may have been
compromised, the bus interfaces immediately flag the processor to effect an
ordered crash, if possible. At any stage the bus error detection logic at-
tempts to identify any single failure event that would otherwise go unno-
ticed and result in erroneous continued system operation.

The system is not designed to detect multiple error occurrences.  The only
exception is the data bus ECC, which permits single-bit, double-bit, and
some multiple-bit error detection in the DRAM memory, data bus, and
cache subsystems.

511 0

BXB-0541h-94

READ_DATA (64 Bytes)



2-34   TLSB Bus

2.4.1  Error Categories

Error occurrences can be categorized into four groups: 

• Hardware recovered soft errors 

• Software recovered soft errors 

• Hard errors 

• System fatal errors

2.4.1.1 Hardware Recovered Soft Errors 

Soft errors of this class are recoverable and the system continues opera-
tion.  When an error occurs, a soft error interrupt is generated to inform
the operating system of the error.  An example of this class of error is a
single-bit error in a data field that is ECC protected.  The ECC correction
logic recovers the error without any software intervention. 

2.4.1.2 Software Recovered Soft Errors

Soft errors of this class are recoverable and the system continues opera-
tion.  When the error occurs, a soft error interrupt is generated to inform
the PALcode of the error.  Software determines the severity of the error
and, if recovery is possible, fixes the problem and dispatches a soft error
interrupt.  An example of this class of error is a tag store parity error that
required PALcode intervention to restore the tag field from the duplicate
tag store.

2.4.1.3 Hard Errors

A hard error occurs when the system detects a hard error that does not
compromise the integrity of the system bus or other transactions. An ex-
ample is an ECC double-bit error.  While this error results in a hard error
interrupt to the operating system, it does not impact other transactions
taking place on the bus.  The action taken on this error is determined by
the operating system.

2.4.1.4 System Fatal Errors

A system fatal error occurs when a hard error takes place that cannot be
fixed by the commanding node and would result in a hung bus or loss of
system integrity.  An example of this error is a node sequence error. In this
case one of the bus interfaces is out of sync with the other interfaces.  This
means that the system can no longer continue operation.  The bus will
hang at some point, and it is impossible for the failure to be circumvented
while not affecting other outstanding transactions.  When an error of this
type is encountered, the node detecting the error asserts TLSB_FAULT. 
This signal causes all bus interfaces to reset to a known state and abort all
outstanding transactions.  Because outstanding transactions are lost, the
system integrity has been compromised and state is unknown.  However,
all other hardware state including the error state within the interfaces is
preserved.  The intent following the deassertion of TLSB_FAULT is to per-
mit the operating software to save state in memory and crash, saving the
memory image.  
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2.4.2  Error Signals

The TLSB provides two signals for broadcasting the detection of an error to
other nodes.  All nodes monitor the error signals, TLSB_DATA_ERROR
and TLSB_FAULT (Section 2.2.9) , to latch status relative to the error. 
Except for system fatal errors, only the commander (CPU or I/O node)
checks whether a command completes with or without errors.  The com-
mander monitors the error signals to determine if any error was detected
by another node.  A commander node that cannot handle an error condition
alone (for example, an I/O node) is expected to use some other means of in-
forming the responder CPU node of the error condition.

Error status is latched to allow software to collect state information and
determine a response.  The CPU generates an appropriate interrupt to ac-
tivate the status collection software.  The software is responsible for clear-
ing the error status in each node before the next error if the system is to
continue operating. Should a second error occur before previous status is
cleared, some status from the previous error may be overwritten. Multiple
errors are not handled.  In such an occurrence, information may be lost.

2.4.3  Address Bus Errors

The TLSB address bus uses parity protection.  All drivers on the TLSB
check the data received from the bus against the expected data driven on
the bus.  This combination assures a high level of error detection.

All nodes monitor the address bus command fields during valid transac-
tions.  The state of the command fields during idle bus cycles is Undefined. 
Good parity is not guaranteed.

Proper operation of the address bus is critical for ensuring system integ-
rity.  Distributed arbitration relies on all nodes seeing the same control
signals and commands to update node priorities and associate the com-
mands with their respective data bus cycles.  Consequently, most errors
detected on the address bus are system fatal.

2.4.3.1 Transmit Check Errors

A node must check that its bus assertions get onto the bus properly by
reading from the bus and comparing it to what was driven.  A mismatch
can occur because of a hardware error on the bus, or if two nodes attempt
to drive the fields in the same cycle. A mismatch results in the setting of a
bit in the TLBER register and possibly the assertion of TLSB_FAULT.

There are two types of transmit checks:

• Level transmit checks are used when signals are driven by a single
node in specific cycles.  The assertion or deassertion of each signal is
compared to the level driven.  Any signal not matching the level driven
is in error.  Level transmit checks are performed in specific cycles.  For
example, TLSB_CMD<2:0> is level-checked when a node is transmit-
ting a command on the bus.  The value on all three signal wires should
be received exactly as transmitted.

• Assertion transmit checks are used on signals that may be driven by
multiple nodes or when the assertion of a signal is used to determine
timing.  An error is declared only when a node receives a deasserted
value and an asserted value was driven.  These checks are performed
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every cycle, enabled solely by the driven assertion value. For example,
TLSB_CMD_ACK is assertion checked to verify that if this node at-
tempts to assert it, the signal is received asserted.  If this node is not
asserting TLSB_CMD_ACK, possibly some other node is asserting it.

The following fields are level-checked only when the commander has won
the bus and is asserting a command and address:  

• TLSB_ADR<39:3>

• TLSB_ADR_PAR

• TLSB_CMD<2:0>

• TLSB_CMD_PAR

• TLSB_BANK_NUM<3:0>

A mismatch sets <ATCE> and asserts TLSB_FAULT six cycles after the
command and address.  Nodes must latch the address, command, and bank
number received in the TLFADRn registers upon setting this error.

The request signals driven by the node (as determined from
TLSB_NID<2:0>) are level-checked every bus cycle.  A mismatch sets
<RTCE> and asserts TLSB_FAULT four cycles after the incorrect asser-
tion. 

TLSB_CMD_ACK is checked only when it is being asserted by the node.  A
mismatch sets <ACKTCE> and asserts TLSB_FAULT four cycles after
TLSB_CMD_ACK should have asserted. 

TLSB_ARB_SUP and TLSB_LOCKOUT are checked only when being as-
serted by the node.  A mismatch sets <ABTCE> and asserts TLSB_FAULT
four cycles after the signal should have asserted. 

The TLSB_BANK_AVL<15:0> signals driven by a memory node (as deter-
mined by virtual ID) are level-checked every bus cycle. A mismatch sets
<ABTCE> and asserts TLSB_FAULT four cycles after the incorrect asser-
tion. 

2.4.3.2 Command Field Parity Errors

Command field parity errors result in a system fatal error and the asser-
tion of  TLSB_FAULT six cycles after the command.  Parity errors can re-
sult from a hardware error on the bus, a hardware error in the node send-
ing the command, from no node sending a command, or from two nodes
sending commands in the same cycle.  <APE> is set in the TLBER register
if even parity is detected on the TLSB_ADR<30:5> and TLSB_ADR_PAR
signals, or if even parity is detected on the TLSB_CMD<2:0>,
TLSB_BANK_NUM<3:0>, TLSB_ADR<39:31>, TLSB_ADR<4:3>, and
TLSB_CMD_PAR signals.

Nodes latch the address, command, and bank number in the TLFARn reg-
isters upon setting this error.

2.4.3.3 No Acknowledge Errors

A commander node normally expects to receive acknowledgment to all
commands it sends on the address bus.  The acknowledgment is the asser-
tion of TLSB_CMD_ACK by a slave node.  There are conditions, however,
where no acknowledgment must be handled.
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When a commander node issues a CSR access command but does not re-
ceive acknowledgment, it sets <NAE> in the TLBER register.  Only the
commander that issues the command detects this error and sets <NAE>. 
The error is not broadcast and handling is node specific. The exception to
this rule is a CSR write to a Mailbox Pointer Register; no acknowledgment
is not regarded as an error and handling is node specific.

When a commander node issues a memory access command but does not
receive acknowledgment, it sets <FNAE> in the TLBER register. Only the
commander that issues the command detects this error and sets <FNAE>. 
This is a system fatal error and results in TLSB_FAULT being asserted six
cycles after the command. 

The commander latches the address, command, and bank number in the
TLFADRn registers upon setting either <NAE> or <FNAE>.  <ATDE> is
also set.

All nodes must monitor TLSB_CMD_ACK.  A data bus transaction follows
every acknowledged command.  A node does not expect acknowledgment to
no-op commands.

2.4.3.4 Unexpected Acknowledge

Every node monitors TLSB_CMD_ACK every cycle and sets <UACKE> if
it detects TLSB_CMD_ACK asserted when it is not expected.  This error
causes TLSB_FAULT to be asserted four cycles after TLSB_CMD_ACK. 

A node expects TLSB_CMD_ACK only in a valid address bus sequence. 
TLSB_CMD_ACK is not expected:

• When not in a valid address bus sequence

• In response to a no-op command

2.4.3.5 Bank Lock Error

When a Read Bank Lock command is issued to a memory bank, the mem-
ory initiates a counter to timeout the bank lock condition.  The counter
starts when the read data is driven onto the bus, that is, after
TLSB_SEND_DATA is issued and TLSB_HOLD is deasserted.  Each clock
cycle is counted except for each two-cycle sequence where TLSB_ARB_SUP
asserts.  The count is 256 cycles.  If the timeout expires before a Write
Bank Unlock command is received, the bank unlocks and the node sets
<LKTO>.  The error is not broadcast.  It is assumed this condition is the
result of an error in the node that issued the Read Bank Lock command.

This timeout can be disabled by software. TLCNR<LKTOD>  prevents
<LKTO> from setting.  It will not clear <LKTO> if already set.

2.4.3.6 Bank Available Violation Error

If a  memory bank receives a memory access command while the bank is
not available, the memory node sets TLBER<BAE> and asserts
TLSB_FAULT six cycles after the command.  The memory node sets TL-
BER<BAE> if a new command appears on the bus while TLSB_BANK_
AVL is deasserted for the bank or during the first four cycles when
TLSB_BANK_AVL is asserted.  One exception is a Write Bank Unlock
command that can be issued while TLSB_BANK_AVL is deasserted; TL-
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BER<BAE> is set if the Write Bank Unlock command appears on the bus
before the second data cycle of the preceding Read Bank Lock command. 

If any node receives a CSR access command (to any address) while a CSR
command is in progress, the node sets TLBER<BAE> and asserts
TLSB_FAULT six cycles after the command. A node sets TLBER<BAE> if
a new CSR command appears on the bus in or prior to the second data cy-
cle of the preceding CSR command. A node also sets TLBER<BAE> if a
new CSR command appears on the bus sooner than seven cycles after a
previous CSR command that was not acknowledged. 

Nodes latch the address, command, and bank number in the TLFADRn
registers upon setting this error.

2.4.3.7 Memory Mapping Register Error

A commander node translates a memory address to a bank number before
issuing every command.  This translation is performed by examining the
contents of the TLMMRn registers in the node. The <MMRE> error bit is
set if no bank number can be determined from the memory address.

This error is not broadcast.  Handling of the error within the commander is
implementation specific. If the address is issued on the bus, the command
must be no-op.

2.4.3.8 Multiple Address Bus Errors

Address bus errors are cumulative.  Should a second error condition occur,
TLSB_FAULT may be asserted a second time.  If the error is of a different
type than the first, an additional error bit sets in the TLBER register.

Software must ensure that no error bits are set after the receipt of
TLSB_FAULT by resetting all logic immediately. 

2.4.3.9 Summary of Address Bus Errors

Table 2-10 shows all the address bus errors, which nodes are responsible
for detecting the errors, and what error signals are asserted.
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  Table 2-10 Address Bus Error Summary

2.4.4  Data Bus Errors

Data bus errors are either ECC-detected errors or control errors.  In addi-
tion, all drivers of the TLSB check the data received from the bus against
the expected data driven on the bus.

The TLSB_D<255:0>, TLSB_ECC<31:0>, and TLSB_DATA_VALID<3:0>
signals are sliced into four parts, each containing 64 bits of data, 8 bits of
ECC, and one valid bit.  Error detection on these signals is handled inde-
pendently in each slice, setting error bits in a corresponding TLESRn reg-
ister as shown in Table 2-11.

  Table 2-11 Signals Covered by TLESRn Registers

The contents of the four TLESRn registers is summarized in the TLBER
register.  The most significant error type can be determined from the TL-
BER register.  Broadcasting of the error and latching the TLFADRn regis-
ters are determined from the TLBER register.

Error Description Who Detects Signal

ATCE

APE

BBE

LKTO

NAE

FNAE

RTCE

ACKTCE

MMRE

UACKE

ABTCE

REQDE

Address Transmit Check Error

Address Parity Error

Bank Busy Violation Error

Bank Lock Timeout

No Acknowledge to CSR Access

No Acknowledge to Memory Access

Request Transmit Check Error

Acknowledge Transmit Check Error

Memory Mapping Register Error

Unexpected Acknowledge

Address Bus Transmit Check Error

Request Deassertion Error

Commander

All

All1

Memory

Commander

Commander

Commander

Slave

Commander

All

All

Commander

TLSB_FAULT

TLSB_FAULT

TLSB_FAULT

None

None

TLSB_FAULT

TLSB_FAULT

TLSB_FAULT

None

TLSB_FAULT

TLSB_FAULT

TLSB_FAULT

1 All nodes set BBE for a CSR busy violation; only memory nodes set BBE for memory bank busy violations.

Register TLSB_D TLSB_ECC TLSB_DATA_VALID

TLESR0

TLESR1

TLESR2

TLESR3

<63:0>

<127:64>

<191:128>

<255:192>

<7:0>

<15:8>

<23:16>

<31:24>

<0>

<1>

<2>

<3>
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2.4.4.1 Single-Bit ECC Errors

A single-bit error on a memory data transfer is detected by a node’s ECC
checking logic.  The decision to correct the data or not is implementation
specific.  If a node detects a single-bit ECC error, it logs the error in the
TLESRn register by setting either <CRECC> or <CWECC>, depending on
whether a read or write command failed. If a memory node detects an ECC
error in a memory lookup, the memory flags the error by also setting
<CRECC>.

A single-bit error on a CSR data transfer is treated the same way except
when the data is being written into a register and the node has no way to
correct the data. In this case, the <UECC> error bit is set.

A CRECC error sets <CRDE> in the TLBER register. A CWECC error sets
<CWDE> in the TLBER register.

When a node detects a single-bit data error, it asserts TLSB_DATA_ ER-
ROR to signal the other nodes of the error.  The signaling is disabled if the
interrupt disable bit is set in the TLCNR register.  Two interrupt disable
bits are used, allowing independent control of the signaling for read and
write commands.

2.4.4.2 Double-Bit ECC Errors

A double-bit error on a data transfer is detected by a node’s ECC checking
logic.  The error is logged in the TLESRn register by setting <UECC>.  If a
memory node detects a double-bit error in a memory lookup, the memory
passes the data and ECC directly to the bus. It sets its own <UECC> error
bit to reflect the error.  A UECC error sets TLBER<UDE> and the node
asserts TLSB_DATA_ERROR.

2.4.4.3 Illegal Sequence Errors

An illegal sequence error occurs when the bus sequence value that is re-
ceived with TLSB_SEND_DATA is different from the expected sequence
number.  The occurrence of this error is system fatal and the
TLSB_FAULT signal is asserted four cycles after TLSB_SEND_DATA. 
The <SEQE> bit is set in the TLBER register.

2.4.4.4 SEND_DATA Timeout Errors

When a data bus sequence slot is reached and a slave is expected to se-
quence the data bus, a timeout count begins.  If TLSB_SEND_DATA has
not been received for 256 cycles, then a DTO error is logged in the TLBER
of the commanding node.  This results in the assertion of TLSB_FAULT.

The commander node must activate the timer while waiting for
TLSB_SEND_DATA.  Other nodes are not required to activate a timer, but
may do so.

It is the responsibility of the slave node to assure that the data bus is se-
quenced before the 256 cycle timeout. A node may assert
TLSB_SEND_DATA and then assert TLSB_HOLD if a longer time is
needed.
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This timeout can be disabled by software.  The <DTOD> bit in the TLCNR
register prevents <DTO> from setting. It does not clear <DTO> if already
set.

2.4.4.5 Data Status Errors

The TLSB_STATCHK signal is used as a check on TLSB_SHARED and
TLSB_DIRTY.  When TLSB_SHARED and TLSB_DIRTY are expected to
be valid on the bus, TLSB_STATCHK is read and compared with them. If
either TLSB_SHARED or TLSB_DIRTY are received asserted while
TLSB_STATCHK is deasserted or if TLSB_STATCHK is asserted while
TLSB_SHARED and TLSB_DIRTY are both deasserted, <DSE> is set in
the TLBER register and TLSB_FAULT is asserted four cycles after the in-
correct signals.

2.4.4.6 Transmit Check Errors

All drivers on the TLSB check the data received from the bus against the
expected data driven on the bus. If there is a discrepancy between the
driven and received data, a transmit check error is logged in the TLBER. 
Two types of transmit checks are used.  They are described in Section
2.4.3.1.

The TLSB_D<255:0> and TLSB_ECC<31:0> fields are level-checked when
a node is driving data on the bus.  A mismatch results in setting <TCE> in
a TLESRn register.  Since ECC is checked on the data received from the
bus, a TCE error may also result in one of <UECC>, <CWECC>, or
<CRECC> bits being set.  If <TCE> should set without any other error bit
(a case where other nodes receive this data and assume it is good), <FD-
TCE> sets in the TLBER register and the node asserts TLSB_FAULT ten
cycles after the second of the two data cycles in error. 

TLSB_DATA_VALID<3:0> are level-checked when a node is driving data
on the bus.  A mismatch results in setting <DVTCE> in a TLESRn regis-
ter.  The use of these signals is implementation specific and the error is
considered a soft error, allowing the implementation to provide data cor-
rection. Setting <DVTCE> in a TLESRn register results in either <CRDE>
or <CWDE> (depending on command code) being set in the TLBER regis-
ter.

TLSB_SEND_DATA, TLSB_SHARED, TLSB_DIRTY, TLSB_HOLD,
TLSB_STATCHK, and TLSB_DATA_ERROR are checked only when each
is being asserted by the node.  A mismatch sets <DCTCE> in the TLBER
register and asserts TLSB_FAULT four cycles after the signal should have
asserted. 

TLSB_SEQ<3:0> are level-checked whenever a node asserts
TLSB_SEND_DATA.  A mismatch sets <DCTCE> and asserts
TLSB_FAULT four cycles after the incorrect assertion. 

2.4.4.7 Multiple Data Bus Errors

Hard and soft data bus errors are cumulative.  Should a second error oc-
cur, TLSB_DATA_ERROR is asserted a second time.  If the error is of a
different type than the first, an additional error bit is set in the TLBER
register.
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System fatal data bus errors are cumulative.  Should a second system fatal
error occur, TLSB_FAULT is asserted a second time.  If a fatal error is of a
different type than the first, an additional error is set in the TLBER regis-
ter.

2.4.4.8 Summary of Data Bus Errors

Table 2-12 shows all the data bus errors, which nodes are responsible for
detecting the errors, and what error signals are asserted.

  Table 2-12 Data Bus Error Summary

2.4.5  Additional Status

In addition to the error bits in the TLBER and TLESRn registers, addi-
tional status is preserved on detection of errors.

• The TLESRn registers record an error syndrome (SYNDn) and
whether the node transmitted the data that was read with errors
(TDE).

• The TLBER register records which TLESRn registers contain error
status corresponding to a specific error occurrence (DSn).

• The TLBER register records which nodes detected errors on commands
issued by that node (ATDE). 

• The TLBER register records which node transmitted the data that re-
sulted in assertion of TLSB_DATA_ERROR (DTDE). Software must
poll all nodes to find it. 

• The TLFADRn registers record the address, command, and bank num-
ber from the command. Software must poll all nodes to find the re-
corded data.

These registers can only hold information relative to one error.  It is, there-
fore, the responsibility of software to read and clear all error bits and
status.  Even when errors occur infrequently there is a chance that a sec-
ond error can occur before software clears all status from a previous error. 
The error register descriptions specify the behavior of a node when multi-
ple errors occur.

Error Description Who Detects Signal

UDE

CWDE

CRDE

FDTCE

DCTCE

SEQE

DSE

DTO

Uncorrectable Data Error

Correctable Write Data Error

Correctable Read Data Error

Fatal Data Transmit Check Error

Data Control Transmit Check Error

Sequence Error

Data Status Error

Data Timeout

All participants

All participants

All participants

Transmitter

All participants

All nodes

All participants

Commander

TLSB_DATA_ERROR

TLSB_DATA_ERROR

TLSB_DATA_ERROR

TLSB_FAULT

TLSB_FAULT

TLSB_FAULT

TLSB_FAULT

TLSB_FAULT
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Some errors are more important to software than others.  For example,
should two correctable data errors occur, one during a write to memory
and the other during a read from memory, the error during the write
would be more important.  The software can do no more than log the read
error as it should be corrected by hardware.  But the memory location is 
written with a single-bit data error.  Software may rewrite that memory
location so every read of that location will not report an error in the future.

The priority of errors follows:

• <FNAE>, <APE>, <ATCE>, or <BAE> error bits in TLBER register —
highest priority

• <UDE> or <NAE> error bits in TLBER register

• <CWDE> error bit in TLBER register

• <CRDE> error bit in TLBER register

• Node-specific conditions — lowest priority

Status registers are overwritten with data only if a higher priority data er-
ror occurs.  If software finds multiple data error bits set, the information in
the status registers reflects status for the highest priority error.  If multi-
ple errors of the same priority occur, the information is the status registers
reflects the first of the errors.  

The node-specific conditions include, but are not limited to, receipt of
TLSB_DATA_ERROR when the node participates in the data transfer (as
commander or a slave).

2.4.6  Error Recovery

The behavior of a module, in response to detection of bits set in the TLBER
register, is largely module specific.  Memory modules generally take no ac-
tion.  Processors take some appropriate action which may vary depending
on the type of processor and operating system, and so on. 

The following subsections describe possible node behaviors and should not
be construed as requirements.

2.4.6.1 Read Errors

Read data operations involve up to three nodes.  The commander issues
the command and receives the data.  A memory node acknowledges as the
slave and prepares to read the data from storage and drive it on the bus. 
The memory also provides the timing for the data transaction.  All other
nodes check to see if the data is dirty in their cache.  Only one node can
have dirty data.  That node becomes the third node involved in the data
transfer by asserting TLSB_DIRTY and driving the data.

The commander knows if the data arrives with errors because error bits
are set in its TLBER register. If the data can be corrected, it is passed to
the requester.  If the data cannot be corrected, the requester must be noti-
fied of the error.  The CPU can determine the appropriate action to
uncorrectable read data by the mode in which the read was requested:

• A read in kernel mode results in crashing the system.

• A read in user mode results in the user’s process being killed.
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The CSR registers contain information about the error.  The commander’s
TLBER register contains either correctable or uncorrectable error status,
and the TLFADRn registers contain the command code, bank number, and
possibly the address.  If TLSB_DATA_ERROR asserted, the node that
transmitted the data will have set the <DTDE>.  If <DTDE> is set in a
memory node, there were only two nodes involved in the data transfer.  If
<DTDE> is set in a node with cache, this is the third node that transmit-
ted dirty data.  In this case <DTDE> is not set in the memory node. Error
bits in the node that transmitted the data will provide information about
where the error originated. 

1. If the transmitting node has no error bits set, the data became cor-
rupted either in the commander’s receivers or on the bus between the
two nodes.  

2. If the transmitting node has CRDE (correctable read data error) or
UDE (uncorrectable data error) set in the TLBER register, the data
was corrupted at the transmitting node; but analysis of the TLESRn
registers is necessary to learn more.  Which of the four TLESRn regis-
ters to look at can be determined by which DSn bits are set in the TL-
BER register.  If <TCE> is set, the node failed while writing the data
to the bus.  This is most likely a hardware failure on the module, but
could also be the result of another node driving data at the same time
or a bus failure.

3. If the transmitting node has <CRDE> or <UDE> set in the TLBER
register but not <TCE> in the TLESRn register, the data is most likely
corrupted in storage (cache or memory). If the transmitting node is a
memory, the address is definitely latched in the node’s TLFADRn reg-
isters and that physical address could be tested and possibly mapped
as bad and not used again.

Correctable read data error interrupts may be disabled. This is usually
done after the system has logged a number of these errors and may discon-
tinue logging, but software prefers to continue collecting error information.
The system can continue to operate reliably while software polls for error
information because the data will be corrected and multiple-bit errors will
still cause interrupts. Excessive single-bit read data errors usually indi-
cates a failing memory, which should eventually be replaced.  The system
has probably already logged enough errors to identify the faulty memory
module.

Disabling correctable read data errors involves setting <CRDD> in the TL-
CNR register of all nodes in the system.  The <CRDD> bit tells all nodes to
disable asserting TLSB_DATA_ERROR on correctable read data errors.
Commander nodes must also provide a means to disable any other actions
they would normally take to inform the data requester of the error, which
is usually an interrupt to a CPU.

Error detection is not disabled. Error bits will still set in the CSR registers
of all nodes that detect a correctable read data error.  Memory nodes will
still latch the address of the first such error in the TLFADRn registers.  A
CPU may poll these CSR registers to see if the errors are still occurring.  If
a correctable data error occurs on a write, or any uncorrectable data error
occurs, the status registers are overwritten and the requester gets inter-
rupted.

Double-bit error interrupts cannot be disabled.
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2.4.6.2 Write Errors

Write data operations involve a minimum of two nodes.  The commander
issues the command and transmits the data.  A memory node acknowl-
edges as the slave, provides the timing for the data transaction, and re-
ceives the data.  All other nodes check to see if their cache is sharing the
data and may assert TLSB_SHARED.  Nodes that assert TLSB_SHARED
may also receive the data and check it for errors, or they may invalidate
the block in their cache.

Uncorrectable write errors are usually fatal to a CPU and result in a crash.
By the time the CPU learns of the write error, it has lost the context of
where the data came from.  When a CPU writes data, the data is written
into cache.  Sometime later the data gets evicted from the cache because
the cache block is needed for another address.

Correctable write errors should cause no harm to the system. But leaving a
memory location written with a single-bit error may result in an unknown
number of correctable read errors depending on how many times the loca-
tion is read before it is written again.  A CPU will most likely read and re-
write this data location to correct the data in memory. If write errors are
corrected, read errors from memory can be treated as memory failures.

A commander does not always set error bits due to a write error.  The com-
mander receives the TLSB_DATA_ERROR signal from one or more nodes
that received the data with errors.  The assertion of TLSB_DATA_ERROR
tells the commander to set <DTDE> in its TLBER register, indicating that
it transmitted the data, and takes any other appropriate action to inform
the requester (for example, CPU).  The error registers in all nodes must be
examined to determine the extent of the error. 

1. If the commander has <CWDE> or <UDE> set in the TLBER register,
analysis of the TLESRn registers is necessary to learn more. Which of
the four TLESRn registers to look at can be determined by which DSn
bits are set in the TLBER register.  If <TCE> is set, the commander
failed while writing the data to the bus.  This is most likely a failure
on the module, but could also be the result of another node driving
data at the same time or a bus failure.  If <TCE> is not set, the data
corruption happened in the commander node.

2. If no error bits are set in the commander, the transmit checks passed
on the data and check bits. This is a good indication that data corrup-
tion occurred somewhere on the bus or in a receiving node.

3. Each receiving node with <CWDE> set received the data with a single-
bit error.  A memory node wrote the data into storage and also latched
the address in the TLFADRn registers. The data can be rewritten. If
the commander has no error bits set, the receiving node most likely
has receiver problems.

4. Each receiving node with <UDE> set received the data with multiple
bit errors.  A memory node wrote the data into storage and also
latched the address in the TLFADRn registers. If the commander has
no error bits set, the receiving node most likely has receiver problems.

Correctable write data error interrupts may be disabled. This is usually
done after the system has logged a number of these errors and may discon-
tinue logging, but software prefers to continue collecting error information.
The system can continue to operate reliably while software polls for error
information because the data will be corrected and multiple bit errors will
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still cause interrupts. Interrupts for correctable read data errors should
also be disabled, as read errors will result from not correcting the single-
bit errors in data that gets written into memory.

Disabling correctable write data errors involves setting <CWDD> in the
TLCNR register of all nodes in the system.  The <CWDD> bit tells all
nodes to disable asserting TLSB_DATA_ERROR on correctable write data
errors.  Commander nodes must also provide a means to disable any other
actions they would normally take to inform the data requester of the error,
which is usually an interrupt to a CPU.

Error detection is not disabled. Error bits will still set in the CSR registers
of all nodes that detect correctable data errors.  A CPU may poll these CSR
registers to see if the errors are still occurring.  If an uncorrectable data
error occurs, the status registers are overwritten and the requester gets in-
terrupted.

Double-bit error interrupts cannot be disabled.
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Chapter 3

CPU Module

The CPU module is a DECchip 21164 based dual-processor CPU module.  
Each CPU chip has a dedicated 4-Mbyte module-level cache (B-cache) and
a shared interface to memory and I/O devices through the TLSB bus.  

3.1  Major Components

The major components of the CPU module are:

• DECchip 21164 — One or two per module

• MMG — Address multiplexing gate array

• ADG — Address gate array

• DIGA — Data interface gate array

• B-cache — Backup cache

• Gbus — General purpose bus shared by both CPUs on a module

• DTag — Duplicate tag store

Figure 3-1 shows a simple block diagram of the CPU module.
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 Figure 3-1 CPU Module Simple Block Diagram

3.1.1  DECchip 21164 Processor

The DECchip 21164 microprocessor is a CMOS-5 (0.5 micron) superscalar,
superpipelined implementation of the Alpha architecture. 

DECchip 21164 features:

• Alpha instructions to support byte, word, longword, quadword, DEC
F_floating, G_floating, and IEEE S_floating and T_floating data types. 
It provides limited support for DEC D_floating operations.

• Demand-paged memory mangement unit which, in conjunction with
PALcode, fully implements the Alpha memory management architec-
ture appropriate to the operating system running on the processor. 
The translation buffer can be used with alternative PALcode to imple-
ment a variety of page table structures and translation algorithms.

• On-chip 48-entry I-stream translation buffer and 64-entry D-stream
translation buffer in which each entry maps one 8-Kbyte page or a
group of 8, 64, or 512 8-Kbyte pages, with the size of each translation
buffer entry’s group specified by hint bits stored in the entry.

• Low average cycles per instruction (CPI).  The DECchip 21164 can is-
sue four Alpha instructions in a single cycle, thereby minimizing the
average CPI.  A number of low-latency and/or high-throughput fea-
tures in the instruction issue unit and the on-chip components of the
memory subsystem further reduce the average CPI.

• On-chip high-throughput floating-point units capable of executing both
Digital and IEEE floating-point data types.
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• On-chip 8-Kbyte virtual instruction cache with seven-bit ASNs
(MAX_ASN=127).

• On-chip dual-read-ported 8-Kbyte data cache (implemented as two 8-
Kbyte data caches containing identical data).

• On-chip write buffer with six 32-bit entries.

• On-chip 96-Kbyte 3-way set associative writeback second-level cache.

• Bus interface unit that contains logic to access an optional third-level
writeback cache without CPU module action.  The size and access time
of the third-level cache are programmable.

• On-chip performance counters to measure and analyze CPU and sys-
tem performance.

• An instruction cache diagnostic interface to support chip and module-
level testing.

At reset, the contents of a console FEPROM are loaded serially into the
DECchip 21164 I-cache to initiate module self-test and first-level boot-
strap.  The remaining boot and test code can be accessed from the Gbus.  

Refer to the DECchip 21164 Functional Specification for a detailed discus-
sion of the DECchip 21164 functions and the PALcode. 

3.1.2  MMG 

The MMG gate array time-multiplexes the addresses to and from both
DECchip 21164s to the interface control chip (ADG). Two half-width (18-
bit) bidirectional address paths connect the MMG to the ADG.  Two full-
width (36-bit) bidirectional paths connect the MMG to the DECchip
21164s.  In addition, the MMG supplies write data for the duplicate tag
store and is used to perform some Gbus addressing and sequencing func-
tions. 

3.1.3  ADG 

The ADG, together with the DIGA, interfaces the CPU module to the
TLSB bus.  The ADG gate array contains the interface control logic for
DECchip 21164, MMG, TLSB, and DIGA.  Addresses are passed by the
MMG to the ADG.  Commands are communicated directly between the
DECchip 21164s and the ADG.  The ADG also handles coherency checks
required by the cache coherency protocol and schedules data movement as
required to maintain coherency.   

3.1.4  DIGA 

The DIGA consists of four identical chips, DIGA0 to DIGA3.  The DIGA
chips,  together with the ADG, interface the CPU module to the TLSB bus. 
The TLSB data bus is 256 bits wide with 32 associated ECC bits calculated
on a quadword basis.  The DECchip 21164 interfaces support 128 bits of
data plus ECC.  The DIGA supplies the 128 bits required by the cache and
CPU from the 256-bit TLSB transfer.  On outgoing data moves, the DIGA
assembles the 256 bits of TLSB data.  The DIGA also provides buffering
for incoming and outgoing data transfers as well as victim storage.  
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To facilitate the multiplexing of the 256 bits of TLSB data to the 128 bits
required by the DECchip 21164 interface, longwords (0,4), (1,5), (2,6) and
(3,7) are paired together.  This pairing is achieved by "criss-crossing" the
signals coming from the TLSB connector to the DIGA pins.  

The DIGA transfers CSR data to/from the ADG and data path.  It contains
registers to support I/O and interprocessor interrupts, and diagnostic func-
tions.  The DIGA also provides an access path to the Gbus logic and the
MMG. 

3.1.5  B-Cache 

The B-cache is a 4-Mbyte nonpipelined cache using 256Kx4 SRAMs.  

Cache operations required to support bus activity are directed through the
DECchip 21164.  The B-cache block size is 64 bytes.  Each entry in the B-
cache has an associated tag entry that  contains the identification tag for
the block in the cache as well as the block’s status as required by the TLSB
cache coherency protocol. 

A duplicate copy of the tag store is maintained to allow for TLSB coherency
checks.  This is referred to as the DTag and is controlled by the ADG. 

The B-cache cycle time from the DECchip 21164 is 6 CPU cycles.  At a
clock rate of 3.3 ns, this translates to a 19.8 ns access time.

3.2  Console

The system console is the combined hardware/software subsystem that
controls the system at power-up or when a CPU is halted or reset.  The
system console consists of the following components: 

• The console program that resides and executes on each CPU module 

• Console terminal 

• A control panel with switches, indicators, and connectors 

• Cabinet control logic that resides on its own module 

• Console hardware that resides on each CPU module 

Users can access the console through the local console terminal.  

This section provides an overview of the console hardware that resides on
the CPU module.  The console software user interface is described in detail
in the CPU Module Console Specification.  The control panel and the cabi-
net control logic are described in detail in the CCL Specification. 

Each CPU module provides console hardware for use by the console pro-
gram.  Major components of the console hardware include:

• An area of FEPROM accessed as a serial ROM shared between both
DECchip 21164s 

• A shared set of FEPROMs for second-level console program storage
and miscellaneous parameter/log storage 

• A shared set of UARTs that allow the console program to communicate
serially with a console terminal and the system power supplies

• A watch chip that provides the time of year (TOY) and the interval
timer needed by the console program and operating system software
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• A set of module-level parallel I/O ports for functions such as LED 
status indicators and node identification 

• Two serial I/O ports connected to the serial ROM I/O of the DECchip
21164’s for manufacturing diagnostic use

• Support for serial number loading 

Communications to the UARTs, FEPROMs, watch chip, LED control regis-
ters, and other registers are accomplished over the 8-bit wide Gbus.  

3.2.1  Serial ROM Port

Each DECchip 21164 chip provides a serial interface that allows the inter-
nal I-cache to be loaded serially from FEPROM following a reset.  This al-
lows bootstrap code to execute before anything else on the module is tested
or required.  Both DECchip 21164s are loaded from a common area of
FEPROM in parallel.  The MMG sequences FEPROM accesses and per-
forms parallel to serial conversion of the FEPROM data.

Each DECchip 21164 has its I-cache loaded with a section of console code
that allows for DECchip 21164 testing and initialization and provides a
means to cause the balance of diagnostic and console code to be loaded
from the FEPROMs over the Gbus. 

The DECchip 21164 also provides bits in the internal processor registers
(IPRs) that allow this serial interface to be used as a general purpose 1-bit
wide I/O port.  A simple UART or more elaborate interface can be config-
ured, all under software control. 

3.2.2  Directly Addressable Console Hardware

Table 3-1 summarizes the implementation of the directly addressable
hardware in the processor’s Gbus space.  Refer to the TurboLaser EV5
Dual-Processor Module Specification for a detailed discussion of the con-
sole hardware and the operation of its various components. 
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  Table 3-1 Directly Addressable Console Hardware

3.3  CPU Module Address Space

DECchip 21164 supports one terabyte (40 bits) of address space divided
into two equal portions: memory space and I/O space. Figure 3-2 shows the
physical address space map of the CPU module. 

 Figure 3-2 Physical Address Space Map

DECchip 21164 drives a physical address over ADDR<39:4>.  Bit <5>
specifies the first 32-byte subblock to be returned to the DECchip 21164

Console Hardware Address

FEPROM
FEPROM
Reserved
Reserved
UART chip
Watch chip
GBUS$WHAMI
GBUS$LED0
GBUS$LED1
GBUS$LED2
GBUS$MISCR
GBUS$MISCW
GBUS$TLSBRST
GBUS$SERNUM
GBUS$TEST

FF 9000 0000 - FF 93FF FFC0
FF 9400 0000 - FF 97FF FFC0
FF 9800 0000 - FF 9BFF FFC0
FF 9C00 0000 - FF 9FFF FFC0
FF A000 0000 - FF A100 00C0
FF B000 0000 - FF B000 0FC0
FF C000 0000
FF C100 0000
FF C200 0000
FF C300 0000
FF C400 0000
FF C500 0000
FF C600 0000
FF C700 0000
FF C800 0000

Byte Address

00 0000 0000


7F FFFF FFC0
80 0000 0000


DF FFFF FFC0

E0 0000 0000


FF  7FFF FFC0
FF 8000 0000


FF 8FFF FFC0
FF 9000 0000


FF EFFF FFC0
FF F000 0000


FF FFEF FFC0
FF FFF0 0000


FF FFFF FFC0




Memory Space

I/O Window Space

Reserved

DECchip 21164A Private CSR Space

Reserved

BXB-0781A-94

TLSB CSR Space

CPU Module Gbus Space
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from cache or the TLSB as shown in Table 3-2.   Bit <4> specifies which
16-byte portion of the 32-byte subblock is returned first from the DIGA or
cache.  Bits <3:0> specify the byte being accessed.  

  Table 3-2 TLSB Wrapping 

  Table 3-3 CPU Module Wrapping 

3.3.1  Memory Space

Bit <39> differentiates between cacheable and noncacheable address
spaces.  If bit <39> is zero, the access is to memory space; if it is one, the
access is to I/O space. 

TLSB_ADR<5> Data Return Order

0

1

Data returned in order

Data Cycle 0 -> Hexword 0
Data Cycle 1 -> Hexword 1

Data returned out of order

Data Cycle 0 -> Hexword 1
Data Cycle 1 -> Hexword 0

DECchip 21164
ADDR<5:4> Data Return Order from Cache

00

01

10

11

Fill Cycle 0 -> Octaword 0
Fill Cycle 1 -> Octaword 1
Fill Cycle 2 -> Octaword 2
Fill Cycle 3 -> Octaword 3

Fill Cycle 0 -> Octaword 1
Fill Cycle 1 -> Octaword 0
Fill Cycle 2 -> Octaword 3
Fill Cycle 3 -> Octaword 2

Fill Cycle 0 -> Octaword 2
Fill Cycle 1 -> Octaword 3
Fill Cycle 2 -> Octaword 0
Fill Cycle 3 -> Octaword 1

Fill Cycle 0 -> Octaword 3
Fill Cycle 1 -> Octaword 2
Fill Cycle 2 -> Octaword 1
Fill Cycle 3 -> Octaword 0
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3.3.2  I/O Space

The I/O space contains the I/O window space, TLSB CSR space, module
Gbus space, and DECchip 21164 private CSR space.  It is selected when bit
<39> is one.

3.3.2.1 I/O Window Space

This space, defined by addresses in the range 80 0000 0000 to DF FFFF
FFC0 is used for PCI bus addressing.  I/O window space support is dis-
cussed in Section 3.4.  

3.3.2.2 TLSB CSR Space 

All TLSB CSR registers (except TLMBPRx) are 32 bits wide and aligned
on 64-byte boundaries. (TLMBPR registers are 38 bits wide.) System vis-
ible registers are accessed using CSR read and write commands on the
bus. 

Figure 3-3 shows how TLSB CSR space is divided.

 Figure 3-3 TLSB CSR Space Map

Each CPU module on the TLSB is assigned 64K CSR locations to imple-
ment the TLSB required registers (errors registers, configuration registers,
and so on).  In addition, a 64K broadcast region is defined, where all mod-
ules accept writes without regard to module number. 

Byte Address

FF 8000 0000


FF 87FF FFC0
FF 8800 0000


FF 883F FFC0
FF 8840 0000


FF 887F FFC0


  


FF 8A00 0000


FF 8A3F FFC0
FF 8A40 0000


FF 8DFF FFC0
FF 8E00 0000


FF 8E3F FFC0
FF 8E40 0000


FF 8FFF FFC0




Reserved

Node 0 CSRs: 64K CSR Locations

Reserved

Broadcast Space: 64K CSR Locations

Reserved

BXB-0780-94

Node 1 CSRs: 64K CSR Locations

Node 8 CSRs: 64K CSR Locations

.  .  .
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3.3.2.3 Gbus Space

The Gbus is the collective term for the FEPROMs, console UARTs, watch
chip, and module registers.  All Gbus registers are 1-byte wide, addressed
on 64-bytes boundaries. Figure 3-4 shows how local Gbus space registers
are assigned. 

 Figure 3-4 Gbus Map

NOTE:  Each DECchip 21164 uses a 1-Mbyte address range from FF FFF0 0000 to
FF FFFF FFFF to access internal CSRs.  These addresses are not used ex-
ternally to the DECchip 21164, so there is no address conflict between the
two DECchip 21164s. 

Byte Address

FF 9000 0000


FF 93FF FFC0
FF 9400 0000


FF 97FF FFC0
FF 9800 0000


FF 9BFF FFC0
FF 9C00 0000


FF 9FFF FFC0
FF A000 0000


FF A000 03C0
FF A100 0000


FF A100 03C0
FF B000 0000


FF B000 0FC0


FF C000 0000




FF C100 0000



FF C200 0000



FF C300 0000



FF C400 0000



FF C500 0000



FF C600 0000



FF C700 0000



FF C800 0000



FPROM0: 1 MB Locations

BXB-0778-94

FPROM1: 1 MB Locations

WATCH: 64 Locations

DUART0: 16 Locations

RSVD

DUART1: 16 Locations

GBUS$WHAMI: 1 Location

GBUS$MISCR: 1 Location

GBUS$TLSBRST: 1 Location

GBUS$MISCW: 1 Location

GBUS$LEDS2: 1 Location

GBUS$LEDS1: 1 Location

GBUS$LEDS0: 1 Location

GBUS$TEST: 1 Location

GBUS$SERNUM: 1 Location

RSVD
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3.4  CPU Module Window Space Support

CSRs that exist on some external I/O buses are accessed through window
space transactions.  Rather than issuing a read command and waiting for
data to be returned to the CPU module from an external I/O bus, the CPU
module and I/O port have a protocol to permit disconnected reads. This al-
lows a CPU module to access external I/O CSRs without holding the bus
for long periods of time. 

To read or write a window space location, a CPU issues a read or write
command to a CSR space address. 

3.4.1  Window Space Reads

When a CPU module issues a CSR read to window space, a CPU module
asserts the VID (virtual ID) value of the CPU involved in the transfer onto 
the TLSB_BANK_NUM lines. The targeted I/O port latches the address
and the VID value.  The I/O port cycles the data bus as if it were returning
data (the data returned at this stage is Unpredictable), allowing the data
bus to proceed.  The CPU module ignores this returned data and waits for
a write to the CSR Read Data Return Data Register by the I/O port. 

Upon receipt of a CSR read command to window space, the I/O port creates
a window read command packet and sends this down a hose to an external
I/O bus.  Sometime later, when  data is returned to the I/O port up the
hose, the I/O port issues a CSR write to the CSR Read Data Return Data
Register (BSB+800).  The I/O port asserts the VID of the initiating CPU on
the TLSB_BANK_NUM lines.  The write data associated with this CSR
write is the fill data that the CPU module requested.  The CPU module
recognizes its data return packet based on the VID issued by the I/O port. 
It then accepts the data as though it were CSR read data and completes
the fill to the CPU. 

3.4.2  Window Space Writes

CSR writes to window space function like nonwindow space CSR reads.
Each time the DECchip 21164 issues a CSR write, it transfers 32 bytes ac-
companied by INT4_DATA_VALID bits that indicate which of the eight
longwords have been modified.  The CPU module drives the 32 bytes of
data onto the TLSB in the first data cycle of its TLSB data transfer.  It
drives the data valid bits in the second data cycle.  The I/O port uses these
bits to assemble an appropriate Down Hose packet. 

3.4.3  Flow Control

The I/O port has sufficient buffering to store up to four I/O window trans-
actions.  Flow control is maintained using the I/O window space queue
counters in the CPU module.  Each CPU module increments its associated
I/O queue counter whenever it sees an I/O window space transaction on the
TLSB.  When the I/O port empties a window write command packet from
its buffers to the hose (in the event of a write), it issues a CSR write com-
mand to its assigned Window Space Decrement Queue Counter register, as
shown in Table 3-4. 
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  Table 3-4 Decrement Queue Counter Address Assignments

For window space reads, the I/O port issues the write to the Decrement
Queue Counter as soon as it has issued the window command read packet
down the hose. 

CSR writes to the Decrement Queue Counter registers cause all CPU mod-
ules to decrement the associated counter.  Note that the CSR write by the
I/O port to decrement its counters is not acknowledged and no data trans-
fer takes place.  No error is reported as a result of the unacknowledged
write. 

3.4.4  PCI Accesses

The PCI bus is accessed through window space.  Figure 3-5 shows the
physical address of a PCI device as seen by the programmer.  Table 3-5
gives the description of the physical address.

 Figure 3-5 PCI Programmer’s Address

I/O Port Slot Address Designation

4
5
6
7
8

BSB+400
BSB+440
BSB+480
BSB+4C0
BSB+500

TLWSDQR4 - Window Space DECR Queue Counter for slot 4
TLWSDQR5 - Window Space DECR Queue Counter for slot 5
TLWSDQR6 - Window Space DECR Queue Counter for slot 6
TLWSDQR7 - Window Space DECR Queue Counter for slot 7
TLWSDQR8 - Window Space DECR Queue Counter for slot 8

39 38 36 35 34 0

ADDRESS<31:0>

BXB-0783-94

HOSE
IOP_SEL
IO_SPACE

PCI_SPACE_TYP

313233
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  Table 3-5 PCI Address Bit Descriptions

3.4.4.1 Sparse Space Reads and Writes

In PCI sparse space, 128 bytes of address are mapped to one longword of
data.  Data is accessible as bytes, words, tribytes, longwords, or
quadwords. 

Bits <4:3> of the address do not appear on the DECchip 21164 address
bus.  They must be inferred from the state of the INT4 mask bits.  For
sparse reads the CPU module generates and transmits the appropriate
bits <4:3> on the TLSB_ADR bus.  For writes, the entire 32-byte block of

Name Bit(s) Function

IO_SPACE

IOP_SEL

HOSE

PCI_SPACE_TYP 

ADDRESS

ADDRESS

<39>

<38:36>

<35:34>

<33:32>

<31:05>

<4:3>

DECchip 21164 I/O space if set to 1.

 Selects address space as follows:

Selects hose number on that module

Selects PCI address space type as follows:

PCI address.

PCI address.  When bits <33:32> = 01 or 10, the length
decode is as follows:

Otherwise bits <4:3> are part of the longword address.

Bits <38:36> Selected Space

000
001
010
011
100

Node 4
Node 5
Node 6
Node 7
Node 8

Bits <33:32> PCI Address Space Selected 

00
01
10
11

Dense memory address space
Sparse I/O space address
Sparse I/O space address
Configuration space address

Bits <4:3> Length 

00
01
10
11

Byte
Word
Tribyte
Longword or quadword
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data issued by DECchip 21164 is transmitted on the TLSB, along with all
the INT4 mask bits.  The I/O port pulls the appropriate longword out of the
32-byte block and packages it, along with address bits <4:3>, into a Down
Hose packet. Note that on sparse writes, the I/O port generates the <4:3>
value.  These bits are driven as 00 by the CPU module. 

The appropriate longword is selected by the state of bits <4:3>.  If 00, the
first longword; if 01, the third longword; if 10, the fifth longword; if 11, the 
seventh longword (counting from 1).  This is a result of how DECchip
21164 merges the writes into its 32-byte merge buffer and of the address
bits chosen.  Note that if multiple writes are done to the same PCI byte
address but with different length encodings, the largest length encoding
will be used. 

For reads, the address is transmitted to the I/O port in the same way.  The
I/O port creates a read Down Hose packet, sending down bits <4:3> of the
address.  The PCI interface performs the transaction and returns the re-
quested data to the I/O port.  The I/O port aligns the data into the proper
longword using bits <4:3>.  The I/O port then does a CSR write to its data
return register and returns the data.  

Sparse addresses must be natually aligned according to TLSB_ADR<6:5>.
Valid values for address bits <6:5> and corresponding data lengths ac-
cessed are given in Table 3-6.

  Table 3-6 Valid Values for Address Bits <6:5>

3.4.4.2 Dense Space Reads and Writes

The entire 32-byte block is sent, along with the 32-byte aligned address, to
the I/O port.  The eight INT4 mask bits are also transmitted with the data. 
The I/O port converts this data into a Down Hose packet.  The eight INT4
mask bits are converted into 32-byte enable bits and are included in the
packet. When the I/O port has successfully transmitted the packet down
the hose, the I/O port does a broadcast space write to its TLWSDQRn reg-
ister.  This frees the CPU module to do another write. 

For reads, the 32-byte aligned address is transmitted to the I/O port, which
sends it down the hose.  There are no mask bits needed in this case.  The
PCI interface reads 32 bytes of data from the targeted device and sends it
back up the hose.  The I/O port does a broadcast space write to a special
address (the same as for the sparse space read case above).  The CPU mod-
ule retrieves the data from the TLSB and presents it to the DECchip
21164. Note that the DECchip 21164 may have merged more than one
read before emitting the read command, so all 32 bytes of data must be
presented to DECchip 21164.  DECchip 21164 sorts out which data to keep
and which to discard. 

TLSB_ADR<6:5> Value Accessed Data Length

0, 1, 2, 3
0, 2
0, 1
0
3

Byte
Word
Tribyte
Longword
Quadword



3-14   CPU Module

Dense PCI memory space is longword addressable only.  You cannot write
to individual bytes.  You must do longword writes.  You can do quadword
writes using the STQ instructions, if you want.  To get at individual bytes,
you must use the sparse space access method. 

Writes to dense PCI memory space will be merged up to 32 bytes and per-
formed in one PCI transaction to the extent that the PCI target device can
deal with writes of this size.  

Noncontiguous writes to longwords within the same 32-byte block will be
merged by DECchip 21164, and the longword valid bits issued by DECchip
21164 will be used to provide the corresponding PCI byte valid bits.  Note
that this merging can be avoided as necessary by use of the MB or WMB
instructions. 

Reads are done in 32-byte blocks and only the longword or quadword de-
sired by DECchip 21164 is used; the rest of the data is ignored.  No caching
of this extra data is done anywhere, either within DECchip 21164, the
CPU module, the I/O port, or the PCI interface.

3.5  CPU Module Errors 

The CPU module detects and reacts to both TLSB specified and CPU spe-
cific errors.  

3.5.1  Error Categories

CPU-detected errors fall into four categories:

• Soft errors

• Hard errors

• Faults 

• Nonacknowledged CSR reads

3.5.1.1 Soft Errors

This class of errors includes recoverable errors that allow for continued op-
eration of both the TLSB and CPU module.  Soft errors are reported to the
DECchip 21164 through a soft error interrupt (IPL 14 hex - IRQ0).  The
interrupt causes the DECchip 21164 to vector to the SCB system
correctable machine check entry point (offset 620 hex) when the DECchip
21164’s IPL drops below 14 hex.  

On the CPU module, all errors in this class are data related.  When a CPU
detects a soft error, it asserts TLSB_DATA_ERROR.  

Soft errors include:

• Correctable Write Data Error (CWDE)

• Correctable Read Data Error (CRDE) 

3.5.1.2 Hard Errors

This class of errors includes hard failures that compromise system results
or coherency, but allow for continued CPU/TLSB operation.  Hard errors
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are reported to DECchip 21164 through system machine check interrupts
(IPL 1F hex  - SYS_MCH_CHK_IRQ).  The interrupt causes the DECchip
21164 to vector to the SCB system machine check entry point (offset 660
hex) when DECchip 21164’s IPL drops below 1F hex and DECchip 21164 is
not in PAL mode.  

Hard errors may be either data or address related. The detection of data
related hard errors causes the CPU module to assert TLSB_DATA_ERR-
OR.  The detection of the other hard errors has no effect on TLSB_DATA_-
ERROR.

Hard errors include:

• Uncorrectable Data Error (UDE)

• No Acknowledge Error (NAE)

• System Address Error (SYSAERR) 

• System Data Error (SYSDERR) 

• Duplicate Tag Data Parity Error (DTDPE) 

• Duplicate Tag Status Parity Error (DTSPE) 

• ADG to DIGA CSR Parity Error (A2DCPE)

• DIGA to ADG CSR Parity Error (D2ACPE) 

• DIGA to DIGA CSR Parity Error #0 (D2DCPE0)

• DIGA to DIGA CSR Parity Error #1 (D2DCPE1) 

• DIGA to DIGA CSR Parity Error #2 (D2DCPE2)

• DIGA to DIGA CSR Parity Error #3 (D2DCPE3)

• DIGA to MMG CSR Parity Error (D2MCPE)

• ADG to MMG Address Parity Error (A2MAPE)

• Gbus Timeout (GBTO)

3.5.1.3 Faults

This class of errors includes hard failures that compromise the operation of
a CPU module or the TLSB and preclude either a CPU module or the
TLSB from continuing operation.  In the event of a fault class error, either
the DECchip 21164 or the TLSB may be incapable of completing com-
mands issued from DECchip 21164, causing DECchip 21164 and/or the
TLSB to hang.  The response to a fault must, therefore, reset all TLSB
nodes and CPU DECchip 21164s to an extent that allows the DECchip
21164s to attempt an error log and orderly crash.  

When a CPU module detects a fault class error, it asserts TLSB_FAULT.
In response to any assertion of TLSB_FAULT (including its own), the CPU
module reports an error to the DECchip 21164 through the CFAIL wire
(when CFAIL is asserted without CACK, DECchip 21164 interprets CFAIL
as an unmasked machine check flag). A CFAIL machine check causes the
DECchip 21164 to reset much of its cache subsystem and external inter-
face and vector to the SCB system machine check entry point (offset 660
hex) immediately, regardless of the DECchip 21164’s current IPL. 

Faults include:
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• Data Timeout Error (DTO)

• Data Status Error (DSE) 

• Sequence Error (SEQE)

• Data Control Transmit Check Error (DCTCE)

• Address Bus Transmit Check Error (ABTCE)

• Unexpected Acknowledge Error (UACKE)

• Memory Mapping Register Error (MMRE) 

• Bank Busy Error (BBE)

• Request Transmit Check Error (RTCE)

• Fatal No Acknowledge Error (FNAE)

• Address Bus Parity Error (APE) 

• Address Transmit Check Error (ATCE) 

• Fatal Data Transmit Check Error (FDTCE) 

• Acknowledge Transmit Check Error (ACKTCE)

• DECchip 21164 to MMG Address Parity Error (E2MAPE)

• MMG to ADG Address Parity Error (M2AAPE) 

3.5.1.4 Nonacknowledged CSR Reads

Nonacknowledged CSR read commands (NXM) are in a special class of er-
rors.  NXMs are used by the console and the operating system to size the
TLSB.  In such applications, it is important that the nonacknowledged
read error be reported to the DECchip 21164 synchronous to the issuance
of the offending DECchip 21164 Read_Block command and in an un-
masked fashion.  Further, it is important that the NXM not result in a
fault that would cause much of the system to reset. 

When a CPU module detects a nonacknowledged CSR read, it reports the
error to the DECchip 21164 through the FILL_ERROR signal.  Specifi-
cally, the CPU lets the DECchip 21164 finish the fill cycle, but asserts
FILL_ERROR. This causes the DECchip 21164 to vector to the SCB sys-
tem machine check entry point (offset 660 hex), regardless of the DECchip
21164’s current IPL.

3.5.2  Address Bus  Errors

The following errors detected by the CPU module are related to the ad-
dress bus:

• Transmit check errors

• Command field parity errors

• No acknowledge errors

• Unexpected Acknowledge Error (UACKE)

• Memory Mapping Register Error (MMRE)
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3.5.2.1 Transmit Check Errors

A node must check that its bus assertions get onto the bus properly by
reading from the bus and comparing it to what was driven. A mismatch
can occur because of a hardware error on the bus, or if two nodes attempt
to drive the fields in the same cycle. A  mismatch results in the setting of a
bit in the TLBER register and the assertion of TLSB_FAULT.

There are two types of transmit checks:

• Level transmit checks are used when signals are driven by a single
node in specific cycles. The assertion or deassertion of each signal is
compared to the level driven. Any signal not matching the level driven
is in error.  Level transmit checks are performed in cycles that are
clearly specified in the description. 

• Assertion transmit checks are used on signals that may be driven by
multiple nodes or when the assertion of a signal is used to determine
timing.  An error is declared only when a node receives a deasserted
value and an asserted value was driven.  These checks are performed
every cycle, enabled solely by the driven assertion value. 

The following fields are level-checked only when the commander has won
the bus and is asserting a command and address.  A mismatch sets
<ATCE> and asserts TLSB_FAULT. 

• TLSB_ADR<39:3> 

• TLSB_ADR_PAR 

• TLSB_CMD<2:0>

• TLSB_CMD_PAR

• TLSB_BANK_NUM<3:0> 

The request signals (TLSB_REQ<7:0>) driven by the node (as determined
from TLSB_NID<2:0>) are level-checked every bus cycle.  A mismatch sets
RTCE and causes TLSB_FAULT assertion.

TLSB_CMD_ACK is checked only when it is being asserted by the node.  A
mismatch sets <ACKTCE>.  This error is not broadcast.

TLSB_ARB_SUP is checked only when it is being asserted by the node.  A
mismatch sets <ABTCE> and asserts TLSB_FAULT.

The TLSB_BANK_AVL<15:0> signals driven by a memory node (as deter-
mined by virtual ID) are level-checked every bus cycle.  A mismatch sets
<ABTCE> and asserts TLSB_FAULT.

3.5.2.2 Command Field Parity Errors

Command field parity errors result in a hard error and the assertion of
TLSB_FAULT.  Parity errors can result from a hardware error on the bus,
a hardware error in the node sending the command, or from two nodes
sending commands in the same cycle.  <APE> is set in the TLBER register
if even parity is detected on the TLSB_ADR<30:5> and TLSB_ADR_PAR
signals, or if even parity is detected on the TLSB_ADR<39:31,4:3>,
TLSB_CMD<2:0>, TLSB_BANK_NUM<3:0>, and TLSB_CMD_PAR sig-
nals.
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3.5.2.3 No Acknowledge Errors

Whenever a commander node expects but does not receive an acknowledg-
ment of its address transmission as an assertion of TLSB_CMD_ACK, it
sets an error bit in its TLBER register.  For memory space accesses that
are not acknowledged, <FNAE> is set:  for CSR  accesses, <NAE> is set.
The exception to this rule is a CSR write to I/O mailbox registers; no ac-
knowledgment is not regarded as an error.  No acknowledgment of memory
space addresses is regarded as a fatal error and causes TLSB_FAULT to
be asserted.  No acknowledgment of CSR reads causes a dummy fill to be
performed with the FILL_ERROR signal set to the DECchip 21164, and in-
ititates the DECchip 21164 error handler.

I/O module generated broadcast writes to the counter decrement registers
for Memory Channel and window space accesses are not acknowledged. 
These writes should not cause errors.

All nodes monitor TLSB_CMD_ACK.  A data bus transaction follows every
acknowledged command.

3.5.2.4 Unexpected Acknowledge Error

Every node monitors TLSB_CMD_ACK every cycle and sets <UACKE> if
it detects an unexpected assertion of TLSB_CMD_ACK.  This error results
in the assertion of TLSB_FAULT.

A node expects TLSB_CMD_ACK only in a valid address bus sequence
with no errors.  TLSB_CMD_ACK is not expected:

• When not in a valid address bus sequence 

• In response to a no-op command 

3.5.2.5 Memory Mapping Register Error

A commander node translates a memory address to a bank number before
issuing every command.  This translation is performed by examining the
contents of the TLMMRn registers in the node.  The <MMRE> error bit is
set if no bank number can be determined from the memory address.

This error is not broadcast.  A machine check is generated by the ADG.  If
the address is issued on the bus, the command is a no-op.

3.5.3  Data Bus Errors

Data bus errors are either ECC-detected errors on data transfers or control
errors on the data bus.  In addition, all drivers of the TLSB check the data
received from the bus against the expected data driven on the bus.

The TLSB_D<255:0> and TLSB_ECC<31:0> signals are sliced into four
parts, each containing 64 bits of data and 8 bits of ECC. Error detection on
these signals is handled independently in each slice, setting error bits in a
corresponding TLESRn register.  The contents of the four TLESRn regis-
ters are summarized in the TLBER register.  The most significant error
type can be determined from the TLBER register. 
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3.5.4  Multiple Errors

The error registers can only hold information relative to one error.  It is
the responsibility of software to read and clear all error bits and status.
Even when errors occur infrequently there is a chance that a second error
can occur before software clears all status from a previous error.  The error
register descriptions specify the behavior of a node when multiple errors
occur.

Some errors are more important to software than others.  For example,
should two correctable data errors occur, one during a write to memory
and the other during a read from memory, the error during the write
would be more important.  The software can do no more than log the read
error as it should be corrected by hardware.  But the memory location is
written with a single-bit data error.  Software may rewrite that memory
location so every read of that location does not report an error in the fu-
ture.

The following priority rules apply to multiple errors:

1. <FNAE>, <APE>, <ATCE>, or <BAE> error bits in TLBER register —
highest priority

2. <UDE> and NAE error bits in TLBER register 

3. <CWDE> error bit in TLBER register

4. <CRDE> error bit in TLBER register

5. Node-specific conditions — lowest priority 

Status registers are overwritten with data only if a higher priority data er-
ror occurs.  If software finds multiple data error bits set, the information in
the status registers reflects status for the highest priority error.  If multi-
ple errors of the same priority occur, the information in the status regis-
ters reflects the first of the errors. 

The address bus interface sets hard error bits only for the first address bus
sequence in error.  Should a subsequent address bus sequence result in ad-
ditional errors, the <AE2> bit is set but other bits are unchanged.  This
should help to isolate the root cause of an error from propagating errors.
The error bits that are preserved in this case are <ATCE>, <APE>, TL-
BER<BAE>, <LKTO>, <FNAE>, <NAE>, <RTCE>, <ACKTCE>, and
<MMRE>.

System fatal address bus errors are cumulative.  Should a second system
fatal error condition occur, TLSB_FAULT is asserted a second time.  If the
fatal error is of a different type than the first, an additional error bit sets
in the TLBER register.
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Chapter 4

Memory Subsystem

The memory subsystem consists of hierarchically accessed levels that re-
side in different locations in the system.  The memory hierarchy consists of
three main parts:

• Internal Caches - These caches reside on the DECchip 21164.

• Backup Cache - This cache is external to the DECchip 21164 and re-
sides on the CPU module.

• Main Memory - Consists of one or more memory modules.

4.1  Internal Cache

The DECchip 21164 contains three on-chip caches:

• Instruction cache

• Data cache

• Second-level cache

4.1.1  Instruction Cache

The instruction cache (I-cache) is a virtually addressed direct-mapped
cache.  I-cache blocks contain 32 bytes of instruction stream data, associ-
ated predecode data, the corresponding tag, a 7-bit ASN (Address Space
Number) field (MAX_ASN=127), a 1-bit ASM (Address Space Match) field,
and a 1-bit PALcode instruction per block.  The virtual instruction cache is
kept coherent with memory through the IMB PAL call, as specified in the
Alpha SRM.

4.1.2  Data Cache

The data cache (D-cache) is a dual-ported cache implemented as two 8-
Kbyte banks.  It is a write through, read allocate direct-mapped physically
addressed cache with 32-byte blocks.  The two cache banks contain identi-
cal data.  The DECchip 21164 maintains the coherency of the D-cache and
keeps it a subset of the S-cache (second-level cache).

A load that misses the D-cache results in a D-cache fill.  The two banks are
filled simultaneously with the same data.
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4.1.3  Second-Level Cache

The second-level cache (S-cache) is a 96-Kbyte, 3-way set associative,
physically addressed, write-back, write-allocate cache with 32- or 64-byte
blocks (configured by SC_CTL<SC_BLK_SIZE>;  see DECchip 21164 Func-
tional Specification).  It is a mixed data and instruction cache.  The S-
cache is fully pipelined.  

If the S-cache block size is configured to 32 blocks, the S-cache is organized
as three sets of 512 blocks where each block consists of two 32-byte
subblocks.  Otherwise, the S-cache is three sets of 512 64-byte blocks.

The S-cache tags contain the following special bits for each 32-byte
subblock:  one dirty bit, one shared bit, two INT16 modified bits, and one
valid bit.  Dirty and shared are the coherence state of the subblock re-
quired for the cache coherence protocol.  The modified bits are used to pre-
vent unnecessary writebacks from the S-cache to the B-cache.  The valid
bit indicates that the subblock is valid.  In 64-byte block mode, the valid,
shared, and dirty bits in one subblock match the corresponding bits in the
other subblock.

The S-cache tag compare logic contains extra logic to check for blocks in
the S-cache that map to the same B-cache block as a new reference.  This
allows the S-cache block to be moved to the B-cache (if dirty) before the
block is evicted because of the new reference missing in the B-cache.

The S-cache supports write broadcast by merging write data with S-cache
data in preparation for a write broadcast as required by the coherence pro-
tocol.

4.2  Backup Cache

The baseline design of the system supports two 4-Mbyte physically ad-
dressed direct-mapped B-caches per CPU module, one for each processor. 
The B-cache is a superset of the DECchip 21164’s D-cache and S-cache. I-
cache coherency is handled by software.  

4.2.1  Cache Coherency

TLSB supports a conditional write update protocol.  If a block is resident in
more than one module’s cache (or in both caches on one module), the block
is said to be "shared."  If a block has been updated more recently than the
copy in memory, the block is said to be "dirty."  If a location in the direct-
mapped cache is currently occupied, the block is said to be "valid."  The
Shared, Dirty, and Valid bits are stored (together with odd parity) in the
tag status RAMs. 

The DECchip 21164 supports a write invalidate protocol that is a subset of
the conditional write update protocol.  A read to a block currently in an-
other CPU’s cache causes the block to be marked shared in both caches.  A
write to a block currently in the cache of two or more CPUs causes the data
to be written to memory and the block to be invalidated in all caches ex-
cept in the cache of the CPU issuing the write. 
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4.2.2  B-Cache Tags

Many locations in memory space can map onto one index in the cache. To
identify which of these memory locations is currently stored in the B-cache,
a tag for each block is stored in the tag address RAMs.  This tag together
with the  B-cache index uniquely identifies the stored block. The tag ad-
dress is stored in the tag RAMs with odd parity.  Figure 4-1 shows the
mapping of block address to B-cache index (used to address the cache
RAMs) and B-cache tag (stored to identify which block is valid at that ad-
dress). For comparison, Figure 4-2 and Figure 4-3 show the mapping for 1-
Mbyte and 16-Mbyte configurations. 

 Figure 4-1 Cache Index and Tag Mapping to Block Address (4MB)

 Figure 4-2 Cache Index and Tag Mapping to Block Address (1MB)
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 Figure 4-3 Cache Index and Tag Mapping to Block Address (16MB)

4.2.3  Updates and Invalidates

If a block is shared, and a CPU wants to write it, the write must be issued
on the TLSB.  Writes of a shared block cause the block to be invalidated in
the cache of all CPUs other than the one that issued the write. 

4.2.4  Duplicate Tags

To determine whether a block is resident in a CPU’s cache, each TLSB ad-
dress must be compared against the tag address of the block at that ad-
dress.  Checking the address in the B-cache tag stores would be inefficient
as it would interfere with DECchip 21164 access to the B-cache. To facili-
tate the check without penalizing DECchip 21164 cache access, a duplicate
tag store, called the DTag, is maintained.  

The DTag contains copies of both tag stores on the module.  Lookups in the
DTag are done over two successive cycles, the first for CPU0, the second
for CPU1.  The results of the two lookups can be different (and in general
will be) as the two B-caches are totally independent.

4.2.5  B-Cache States

The B-cache state is defined by the three status bits: Valid, Shared, and
Dirty.  Table 4-1 shows the legal combinations of the status bits.

From the perspective of the DECchip 21164, a tag probe for a read is suc-
cessful if the tag matches the address and the V bit is set.  A tag probe for
a write is successful if the tag matches the address, the V bit is set, and
the S bit is clear.
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  Table 4-1 B-Cache States

A block becomes valid when the block is allocated during a fill. A block be-
comes invalid when it is invalidated due to a write on the bus by some
other processor. 

A block becomes shared when a DTag lookup (due to a TLSB read)
matches.  The ADG informs the appropriate DECchip 21164 to set the B-
cache tag Shared bit. A block becomes unshared when a Write Block is is-
sued by the DECchip 21164.  TLSB writes always leave the block valid, not
shared, not dirty in the cache of the originator, and invalid in all other
caches. In the event of a write to Memory Channel space that gets re-
turned a shared status, the CPU module initiating the write causes the
block to transition back to the Shared state in the initiating CPU’s cache
and in the DTag. 

A block becomes dirty when DECchip 21164 writes an unshared block. A
block becomes clean when that data is written back to memory. TLSB
memory accepts updates on writes or victims, but not on reads, so reads do
not cause the dirty bit to be cleared.  

If a block is dirty, and is being evicted (because  another block is being
read in to the same B-cache index), the swapped out block is referred to as
a victim.  The CPU module allows for one victim at a time from each of the
two CPUs.

4.2.6  B-Cache State Changes 

The state of any given cache line in the B-cache is affected by both proces-
sor actions and actions of other nodes on the TLSB.

• State transition due to processor activity
Table 4-2 shows the processor and bus actions taken in response to a 
processor B-cache tag probe. Match indicates that the tag address com-
parison indicated a match.

    B-Stat
V S D State of Cache Line Assuming Tag Match

 0 X X

 1 0 0

 1 0 1

1 1 0

1 1 1

Cache miss.  The block is not present in the cache.

Valid for read or write.  This cache line contains the only cached copy of the
block.  The copy in memory is identical to this block.

Valid for read or write.  This cache line contains the only cached copy of the
block.  The contents of the block have been modified more recently than the
copy in memory. 

Valid block.  Writes must be broadcast on the bus.  This cache block may also
be present in the cache of another CPU.  The copy in memory is identical to
this block.

Valid block.  Writes must be broadcast on the bus.  This cache line may also be
present in the cache of another CPU.  The contents of the block have been
modified more recently than the copy in memory.
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• State transition due to TLSB activity
Table 4-3 shows how the cache state can change due to bus activity.
TLSB writes always clean (make nondirty) the cache line in both the
initiating node and all nodes that choose to take the update. They also
update the appropriate location in main memory.  TLSB reads do not
affect the state of the Dirty bit, because the block must still be written
to memory to ensure that memory has the correct version of the block. 

4.2.7  Victim Buffers

The B-cache is a direct-mapped cache.  This means that the block at a cer-
tain physical address can exist in only one location in the cache. On a read
miss, if the location is occupied by another block (with the same B-cache
index, but a different tag address) and the block is dirty (that is, the copy
in the B-cache is more up-to-date than the copy in memory), that block
must be written back to memory.  The block being written back is referred
to as a "victim."

When a dirty block is evicted from the B-cache, the block is stored in a vic-
tim buffer until it can be written to memory.  The victim buffer is a one-
block secondary set of the B-cache.  Bus activity directed at the block
stored in the victim buffer must give the correct results.  Reads hitting in
the victim buffer must be supplied with the victim data.  Writes targeted
at the victim buffer must force the buffer to be invalidated. 

Victims are retired from the buffer to memory at the earliest opportunity,
but always after the read miss that caused the victim.  One victim buffer is
supported per CPU.  If the victim buffer for the CPU is full, further reads
are not acknowledged until the buffer is free. 

4.2.8  Lock Registers

To provide processor visibility of a block locked for a LDxL/STxC (load
lock/store conditional),  a lock register is maintained in the CPU module. 
The lock register is loaded by an explicit command from the DECchip
21164. TLSB addresses are compared against this lock register address.  

One lock register is maintained for each CPU.  In the event of a lock regis-
ter match on a bus write, the lock bit for that CPU is cleared and the sub-
sequent STxC from the processor fails. 

If a TLSB address matches the address in the lock register, the module re-
sponds with its Shared bit set.  This ensures that even if the locked block
is evicted from the cache, write traffic to the block will be forced onto the
TLSB and, in the event of a match, will cause the lock register bit to be
cleared. 
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  Table 4-2 State Transition Due to Processor Activity

Processor
Request Tag Probe Result1 Action on TLSB

TLSB
Response

Next Cache
State

Read

Read

Write2

Write2

Read

Read

Write2

Write2

Read

Read

Write2

Write2

Read

Write

Write

Write

Invalid

Invalid

Invalid

Invalid

_____            _____
Match AND Dirty
_____            _____
Match AND Dirty
_____            _____
Match AND Dirty
_____            _____ 
Match AND Dirty

_____            
Match AND Dirty
_____            
Match AND Dirty
_____            
Match AND Dirty
_____            
Match AND Dirty

Match
                     ______
Match AND Shared
                    
Match AND Shared
                    
Match AND Shared

Read

Read

Read

Read

Read

Read

Read

Read

Read, Victim

Read, Victim

Read, Victim

Read, Victim

None

None

Write

Write

______
Shared

Shared
______
Shared

Shared

______
Shared

Shared
______
Shared

Shared

______
Shared

Shared
______
Shared

Shared

None

None
______
Shared

Shared3

______  _____
Shared, Dirty
              _____
Shared, Dirty
______  
Shared, Dirty
              _____
Shared, Dirty

______   _____
Shared, Dirty
              _____
Shared, Dirty
______ 
Shared, Dirty
              _____
Shared, Dirty

______   _____
Shared, Dirty
             _____
Shared, Dirty
______  
Shared, Dirty
              _____
Shared, Dirty

No change
______  
Shared, Dirty
______   _____
Shared, Dirty
              _____
Shared, Dirty

                                                                                                                                                                 ______
1  An overscore on a cache block status bit indicates the complement of  the state.  For example, Shared = Not Shared.

2  The cache is read-allocate.  Writes that miss in the cache are issued as read miss modifies or read miss STxC to the
system.

3  The DECchip 21164 presumes that writes invalidate the block in all caches in the system. For Memory Channel
writes, the CPU module forces the block back to the shared state.  The cache remaining in the shared state is a func-
tion of the fact that this was a Memory Channel operation (that is, the address fell in the space defined for Memory
Channel),  NOT due to the shared response on the bus.  A shared response on the bus to a  write to memory space not
within Memory Channel will not keep the block in the shared state.
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  Table 4-3 State Transition Due to TLSB Activity

Table 4-4 shows how the CPU module responds to bus activity directed at
these addresses that hit in the victim buffers or lock register.

  Table 4-4 CPU Module Response to Lock Register and Victim Buffer Address Hits

4.2.9  Cache Coherency on Processor Writes

The DTag is selected as the CPU module point of coherency.  This is done
because:

• The DTag is logically near to the TLSB. 

• Only one activity can be scheduled through the DTag at a time.

• The correct response sequence to bus and module requests can be guar-
anteed. 

When a DECchip 21164 wants to write a private, clean block in its S-
cache, it issues a Set Dirty request.  This request sets the Dirty bit for that
cache line in the DTag, unless a bus access is currently in the internal se-
quencers that will transition the block to the shared state.  In such a case

TLSB
Operation Tag Probe Result1

Module
Response

Next Cache
State Comment

Read

Write

Read

Read

Write

_____
Match OR Invalid
_____
Match OR Invalid
                     _____
Match AND Dirty

Match AND Dirty

Match 

______   _____
Shared, Dirty
______   _____
Shared, Dirty
              _____
Shared, Dirty

Shared, Dirty

______   _____
Shared, Dirty

No change

No change
              _____
Shared, Dirty

Shared, Dirty

Invalid

This module must
supply the data.

                                                                                                                                                                  ______1 An overscore on a cache block status bit indicates the complement of  the state.  For example, Shared = Not Shared.

TLSB
Operation Address Matched Module Response Action

Read

Write

Read

Write

Lock register

Lock register

Victim buffer

Victim buffer

Shared, Dirty 
______   _____
Shared, Dirty

Shared, Dirty
______   _____
Shared, Dirty

No action

Clear Lock bit, invalidate

Supply data from victim buffer

Invalidate victim buffer

                                                                                                                                                                  ______1 An overscore on a cache block status bit indicates the complement of  the state.  For example, Shared = Not Shared.
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the write must be reissued by the DECchip 21164 to the TLSB as a Write
Block. 

In the case that the Set Dirty bit is held off by an invalidate to the block,
the Set Dirty request is reissued as a Read-Miss-Modify. 

To perform a write to a shared block, DECchip 21164 issues a Write Block
request.  The CPU module arbitrates for and acquires the bus before ac-
knowledging the Write Block.  By acquiring the TLSB before acknowledg-
ing the Write Block command, the write is guaranteed to be completed in
order.

To do STxC to a shared location, the DECchip 21164 issues a Write Block
Lock request.  This command is not acknowledged until the CPU module
receives TLSB_CMD_ACK indicating that the write will be accepted.
Writes to TLMBPRx are not ACKed in the event that the I/O cannot accept
a new I/O request, and the lack of TLSB_CMD_ACK must cause the STxC
to fail and be retried again later.  The retry mechanism is under software
control. The failure is communicated to the DECchip 21164 through the
signal CFAIL. 

4.2.10  Memory Barriers

Memory barriers issued by the DECchip 21164 cause an entry in the CPU
module cache control queue of events to the DECchip 21164 to be tagged
with a memory barrier indicator.  The DECchip 21164 is not acknowledged
until this indicator has reached the top of the queue and indicates that all
events that occurred prior to the memory barrier have completed.

4.3  Main Memory

The TLSB memory module provides up to 2 Gbytes of dynamic random ac-
cess memory (DRAM) to the CPU.  A subsystem with seven memory mod-
ules provides a total of 14 Gbytes of memory.  The TLSB memory subsys-
tem features the following: 

• 128-Mbyte to 2-Gbyte memory capacity per module 

• Incremental configuration to a maximum of seven modules imple-
mented on extended-hex +1" size boards in a dual-processor Al-
phaServer 8400 system

• 2-, 4-, and 8-way interleaving

• 64-byte block transfers, executed in two 32-byte transfers over two con-
tiguous data cycles

• Memory modules with DRAM arrays of 1M x 4 or 4M x 4 components 

• Read and write data wrapping on 32-byte naturally aligned boundaries

• Quadword ECC protection that allows detection of single-bit, 2-bit, and
complete 4-bit DRAM failures. 

TLSB memory modules run synchronous with the TLSB.  Memory transac-
tions are initiated by commanders on the command/address bus.  Memory
data transfers are initiated over a separate 256-bit data bus.  All transac-
tions on the data bus are retired in the order in which they were received
on the command/address bus. 
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During memory writes, TLSB memory modules store write data and ECC
check bits as they are received off the TLSB.  A minor modification of the
ECC check bits is done before they are written to the DRAMs to allow for
the addition of a row parity bit and a column parity bit to provide addi-
tional data integrity protection.  During memory reads, memory modules
strip off the encoded Row/Col parity bits from the ECC check bits prior to
asserting the read data and check bits onto the TLSB. 

4.3.1  Major Sections

A TLSB memory module consists of three major sections:

• Control address interface (CTL)

• Memory data interface (MDI) 

• DRAM arrays

The major sections communicate with each other through internal buses. 
Figure 4-4 shows a simple block diagram of a memory module. 

 Figure 4-4 Memory Module Block Diagram

       Memory DRAM Bank 1
         (144 DRAMs/string)
                0 - 4 strings

      Memory DRAM Bank 0
         (144 DRAMs/string)
               1 - 4 strings

MDI
   3

MDI
   2

CTL
   

MDI
   1

MDI
   0

TLSB Bus


D<575:432> ADR

DRAM
Control



D<431:288>

D<287:144>

D<143:0>

Control/
Address
Buffers

BXB0798.AI
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4.3.1.1 Control Address Interface 

The control address interface (CTL) is a single gate array.  It provides the
interface to the TLSB, controls DRAM timing and refresh, runs memory
self-test, and contains some of the TLSB and memory-specific registers. 

CTL decodes the TLSB command and memory bank in the case of memory
reads and writes, or the TLSB address during CSR operations to deter-
mine if it is selected for this transaction.  In addition, command/address
parity is checked to determine if a command/address parity error has oc-
curred. 

CTL contains the TLSB control sequencers responsible for the TLSB proto-
col. 

CTL provides separate copies of Row/Column address, RAS, CAS, and WE
signals for each of the two DRAM banks. 

CTL controls the operation of the serial EEPROM on the memory module.
The EEPROM contains the following information: 

• The serial number of the module.  This is entered into the EEPROM by
manufacturing during module build. 

• The module revision.  This is entered into the EEPROM by manufac-
turing during module build.  It is updated, as  appropriate, anytime
the module’s revision changes. 

• Self-test failures.  If self-test fails, the console logs self-test failure data
in the EEPROM. 

• Memory module error logging data.  This information is used to help
diagnose and isolate failures on modules returned to a repair depot.

CTL interfaces to the TLSB command/address bus, which is independent
from the data bus. 

Internally, CTL consists of the following major functional areas: 

• TLSB interface logic—command/address decode 

• DRAM address generation logic, bank 0 

• DRAM address generation logic, bank 1 

• DRAM control signal timing logic, bank 0

• DRAM control signal timing logic, bank 1

• DRAM refresh control logic for both banks

• CSRs 

• Self-test address generation logic 

• TLSB state machine control logic 

• EEPROM control logic 

• Control interface to the four MDI ASICs 

4.3.1.2 Memory Data Interface 

Each memory module has four memory data interface (MDI) ASICs.  Each
MDI has a 72-bit interface to the TLSB and a 144-bit data interface to the
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DRAM arrays. The MDI includes data buffers, ECC checking logic, self-
test data generation and checking logic, and CSRs. 

MDI concatenates two 72-bit TLSB transfers into one 144-bit transfer to
the DRAMs during memory writes.  During memory reads, 144-bit reads
from the DRAMs are issued onto the TLSB via two 72-bit consecutive
transfers. 

During memory writes, each MDI contains two 144-bit write data buffers
that are used to: 

• Temporarily store the first data cycle (72 bits) from the TLSB until the 
second arrives and the write can be completed. 

• Store all 144 bits, so that write data can be accepted off the TLSB inde-
pendent of refresh or read operations to the other bank which may re-
sult in delaying the completion of the write from the memory’s perspec-
tive. 

• Unwrap wrapped write transactions before write data is written to the
DRAM array. 

During memory reads, each MDI contains a read buffer for DRAM bank0
and DRAM bank1.  Each read buffer can store 144 bits of read data.  The
read buffer performs several functions:

• Temporarily stores the second TLSB data cycle, while the first is being
output onto the TLSB bus. 

• Stores either one or two banks worth of read data, which is necessary if
TLSB_HOLD is asserted, or if TLSB is very busy.  Once RAS is as-
serted, the transaction MUST be completed. 

• Wraps read data when TLSB_ADR<5> is asserted on the TLSB during
a memory read command/address cycle. 

• Contains "data-muxing" used to select between memory "fast-path"
data, read buffer data, or CSR read data. 

MDI contains the ECC checking logic that is used to check memory write
data and memory read data to aid in system fault isolation.  The ECC
check bits are slightly modified before that data is written into the DRAMs
by the addition of a Row and a Col parity bit. The purpose is to boost sys-
tem data integrity in case of a single-bit Row or Col address failure. Dur-
ing memory reads, the modified ECC check bits are stripped of the
Row/Col parity bits before data and check bits are driven onto the TLSB. 

4.3.1.3 DRAM Arrays

The DRAM arrays consist of DRAMs, control signal, and address buffer
components.  The MS7CC memory modules can use DRAM sizes of 1M x 4
bits or 4M x 4 bits.  The DRAM arrays are organized into 2 to 8 strings. 
Each string requires 144 DRAMs (using DRAMs with quadword ECC), re-
gardless of the DRAM type.  The DRAM array on each memory module is
configured with two independently accessible banks.   To support two
banks, a minimum of two strings (128 Mbytes) is required. 

Interleaving of DRAM banks increases memory bandwith.  Each memory
module supports 2-way interleaving when configured with a minimum of
two strings. Interleaving occurs between the two independently accessible
banks within a module. A memory configuration on the TLSB consisting of
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four memory modules, with at least two strings each, supports a maximum
of 8-way interleaving.

4.3.2  Memory Organization

The physical memory composed of a single or multiple memory modules
can be organized in various ways to optimize memory access.  

Memory can be configured with MS7CC modules of various capacities, 
from 128 Mbytes to 2 Gbytes.  The DRAM arrays consist of DRAMs, con-
trol signals, and address buffer components.  The memory modules can use
DRAM sizes of 4 Mbits or 16 Mbits.  The DRAM arrays are organized into
1 to 8 strings.  Each string requires 144 DRAMs (using 1M x 4 or 4M x 4
DRAMs).   Table 4-5 lists array capacities that can be configured based
upon the number of strings on a module and the DRAM type.

  Table 4-5 Memory Array Capacity

DRAM arrays on all memory modules containing more than one string are
organized as two banks, Bank 0 and Bank 1.  A bank is a grouping of one
or more strings that share a common address path.  Each bank has its own
set of control, address, and timing signals and is accessible independently. 
This arrangement prevents memory idling by allowing access to the second
bank while the first bank is busy. 

Memory performance is improved by interleaving the physical memory. 
Interleaving can be done at two levels: module and system.  

Each memory module supports 2-way interleaving. Figure 4-5 shows a 2-
way interleaved, 2-string memory module.  

DRAM Type
   (Mbits)

Number of 
   Strings

Memory Capacity        
      (Mbytes)

  4
  4
  4
16
16

       2
       4
       8
       4
       8

          128
          256
          512
        1024
        2048
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 Figure 4-5 Two-Way Interleave of a 128-Mbyte DRAM Array

Memory modules of different capacities can be interleaved as a set with
modules of another capacity. For example, two 128-Mbyte modules can be
interleaved with a single 256-Mbyte module as one set that is 4-way inter-
leaved.  This type of configuration yields 2-way module interleaving and 4-
way system-level interleaving as shown in Figure  4-6.  This same set can
also be interleaved into a "pseudo 8-way" interleave set that will further
boost system performance.  

NOTE:  For such a memory module set, the console configures memory to the
"pseudo 8-way" interleave.

 Figure 4-6 Interleaving Different Size Memory Modules

Interleaving of memory modules is set up by initialization software
through mapping registers in TLSB commanders and in each memory
module.

When memory modules are interleaved, each interleaved set is addressed
on a 64-byte block boundary. In multiple interleaved modules, each con-
secutive 64-byte address targets the next memory module in the inter-
leaved set.  This is done because accessing multiple banks in one memory
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module can result in reduced system throughput due to common data path
contention between the two banks. 

At the module level, the DRAM arrays can be interleaved on 64-byte block
boundaries.  The DRAM array in a 2-string MS7CC memory module is al-
ways interleaved.

In multimodule memory subsystems,  three modes of interleave are possi-
ble at the system level: default, explicit, and none.  The interleave mode
selection parameters are stored in the console FEPROM and can be modi-
fied through the console program.  Initialization software uses registers in
TLSB commanders and each memory module to configure the memory in-
terleave as specified by the FEPROM parameters.  A memory configura-
tion consisting of four memory modules supports a maximum of 8-way in-
terleaving when each of the four modules is 2-way interleaved.  The three
additional modules (modules 5 to 7), if present, can be configured into the
system as two modules 4-way interleaved and 1 module 2-way interleaved. 
Figure 4-7 shows four memory modules in an 8-way interleaved organiza-
tion.

 Figure 4-7 Eight-Way System Interleave of Four 128-Mbyte Memory Modules

If  the FEPROM specifies default interleave, the console attempts to form
interleave sets so that the largest interleave factor is obtained for each
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group of DRAM arrays.  The default mode optimizes interleaving of mem-
ory in any arrangement of  memory modules.  

If the FEPROM specifies explicit interleave sets, the console then inter-
leaves the arrays as requested.  In a noninterleave mode, the console con-
figures arrays in order, by node number, with the lowest numbered array
at the lowest physical address. 

4.3.3  Refresh

Each module implements CBR (CAS Before Ras) DRAM refresh. All mem-
ory modules refresh at the same time providing that a module is not servic-
ing a TLSB memory transaction at the time when a refresh is requested. If
a refresh request is asserted after a TLSB transaction has begun in a given
memory bank, the TLSB transaction is completed and is followed immedi-
ately by the refresh operation. 

Module refresh is initiated under two different circumstances: power-up
and system reset. Upon the deassertion of TLSB_RESET, all array mod-
ules initiate a start-up procedure that consists of: 

• At least eight DRAM refresh cycles to initialize the DRAMS. 

• All CSRs and required internal logic are set to a known initialized 
state. 

• Self-test is initiated and run to completion. 

4.3.4  Transactions

Memory responds to but cannot initiate TLSB transactions. It responds to
accesses to the memory space and to its own TLSB node space.  

Memory modules run synchronously with the TLSB.  Memory transfers
consist of two contiguous, 32-byte data cycles, for a total of 64 bytes per
transaction. Read and write data wrapping is supported on 32-byte natu-
rally aligned boundaries. 

4.3.5  ECC Protection

During memory writes, memory modules store write data and ECC check
bits as they are received off the TLSB.  A minor modification of the ECC
check bits is done before they are written to the DRAMs to allow for the
addition of a Row parity bit and a Col parity bit to provide additional data
integrity protection.  During memory reads, memory modules strip off the
encoded Row/Col parity bits from the ECC check bits prior to asserting the
read data and check bits onto the TLSB.

Since x4 DRAMS are used, each of the 4 bits in a single DRAM is protected
by a different check bit field.  This structure ensures that a single failing
DRAM is incapable of generating an uncorrectable ECC error. 

4.3.6  Self-Test

Each module implements a built-in self-test to test the DRAM array and
initialize the DRAMs with good ECC.  Self-test’s objectives during system
operation are to initialize the array into a known state and, by flagging
bad segments of memory, reduce the amount of time necessary for the con-
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sole to locate and map out bad areas of physical address space.  Self-test is
invoked during  system power-up, when a TLSB reset occurs, or by writing
to the appropriate CSRs.  

Two versions of self-test are supported.  A normal self-test that runs upon
power-up/reset and tests the module rapidly and completely with "pseudo-
random" data and address patterns. The test ensures detection of failures
prior to booting an operating system.  In summary, pseudo-random self-
test leaves memory in the following states depending upon whether errors
were detected:

• No errors detected 

— Memory initializes all locations with proper ECC.

— The STF bit(s) are cleared and the LED is lit.

• Errors detected 

— Location(s) in error are written to an all ones pattern with
uncorrectable ECC errors in the check field bits. 

— Error isolation information is logged into specific error registers. 

— The STF bit(s) are cleared and the LED is lit. 

The second version of self-test, which is selected through diagnostic CSR
writes, uses the moving inversion algorithm to detect DRAM sensitivity
problems.  This test (normally run in manufacturing only) is used to isolate
DRAM sensitivity failures by using a test pattern (floating zeros) known to
detect this class of failures.  It executes 50 times slower than normal self-
test due to the massive number of patterns and iterations that must be
performed on each memory location. 

4.3.6.1 Self-Test Modes

Self-test can be executed in three modes selectable through the MDRA reg-
ister and the DDRn registers:

• Normal 

• Pause on error (POEM)

• Free run (FRUN)

In a system environment, normal mode, test address and data patterns are
generated in a pseudo-random fashion accessing all of memory space using
the same primitive polynomials.  TLSB self-test logic is partitioned into
five gate arrays and uses four 72-bit test pattern generators.

Within POEM and FRUN, address and data can be generated pseudo-
randomly, or with a moving inversion algorithm.  Self-test Data Error reg-
isters (STDERn) in the MDI chips are used together with the Self-Test Er-
ror Register (STER) in the CTL to isolate down to the failing data bit dur-
ing POEM mode testing.

Unlike normal mode, which stops after testing the entire array and clears
the execute self-test bit, POEM and FRUN automatically loop on self-test
until the operator clears MDRA<EXST>.  When this occurs, self-test con-
tinues until the current loop is complete. 



4-18   Memory Subsystem

To exercise the array at its maximum operating speed, banks 0 and 1  are
always interleaved during self-test if the module contains more than one
string of DRAMs.   

NOTE:  Bank 0 contains the even numbered strings;  Bank 1 contains the odd num-
bered strings. 

4.3.6.2 Self-Test Error Reporting

Self-test uses three registers to report errors.  Table 4-6 shows which regis-
ters function in each test mode.  

  Table 4-6 Self-Test Error Registers

During normal mode, errors are logged by flagging the segment of address
space that contains the error.  Any segment of memory that has one or
more bad locations is indicated as such in the STAIR register.  Errors are
accumulated in the STDER register simply as a convenience. 

During POEM mode, the STER and STDER registers are used to capture
the failing string, MDI chip, and data bit(s) to isolate down to the failing
chip during any DRAM failure.  Although not necessary for chip isolation,
the STAIR register operates as in normal mode.

During FRUN mode, the errors are accumulated in the STDER register.
The STAIR register operates as in normal mode. 

NOTE:  The STDER registers are useless during FRUN mode if the pseudo-random
pattern is selected. This is because if an error is detected in pass one of test-
ing, an incorrect data pattern is intentionally written back to that location,
which causes all bits to fail in pass two.  Therefore, all STDER registers in
that MDI will be saturated.  

4.3.6.3 Self-Test Operation

Self-test is initiated whenever MDR<EXST> is set or a TLSB reset occurs. 
The DRAM state machine ignores requests for access to array space from
the TLSB for the duration of testing.  However, I/O registers may be ac-
cessed.  

Self-test clears <EXST> upon completion.  It also clears MCR<STF> upon
successful completion. 

Register
                                  Test Mode
       Normal              Pause on Error           Free Run 

STAIR
STER
STDER

On1

Off2

On

On
On
On

On
Off
On

1 The register is on during this mode of operation and must be verified for proper opera-
tion. 

2 No activity during this mode of operation. 
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NOTE:  Successful execution is not a measure of the array integrity. It indicates that
every location in memory space has been tested and written with good or
bad ECC.

If node reset occurs during self-test, the array will be left in an unknown
state.  Unlike TLSB reset, node reset does not initiate self-test.  

4.3.6.4 Self-Test Performance

The memory module’s test time depends on the following parameters: 

• DRAM size

• DRAM speed

• Memory array capacity

• Memory array architecture

• Clock speed

The self-test time is determined largely by the memory module’s capacity.
Tables 4-7 and 4-8 list the expected self-test times of various memory ca-
pacities based on a 10 ns bus clock.  Test times during system power-up or
TLSB reset are directly proportional to bus clock speed, because the opti-
mum DRAM timing rate has not been loaded into the configuration regis-
ter yet.  Therefore, modules installed in a system with a 15 ns clock would
take approximately 50 percent longer to test.  If self-test is invoked with
CSR commands after the console has selected the timing rate, test times
should match the values given in Table 4-7 regardless of bus speed.

  Table 4-7 Self-Test Times: Normal Mode

    Module Capacity
          (Mbytes)

                    Test Time (seconds)
        4 Mbit DRAM                  16 Mbit DRAM

              128
              256
              512
              1024
              2048

               .8
             1.5
             2.9
             N/A
             N/A

              N/A1

              1.5
              2.9
              5.8
            11.5

1 NA = Not applicable
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  Table 4-8 Self-Test Times: Moving Inversion, No Errors Found

    Module Capacity
           (Mbytes)

                    Test Time (minutes)
        4 Mbit DRAM                  16 Mbit DRAM

               128
               256
               512
             1024
             2048

                 .7
               1.4
               2.7
               N/A
               N/A

                N/A1

                1.4
                2.7
                5.3
              10.6

1 NA = Not applicable
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Chapter 5

Memory Interface

The memory interface to the TLSB consists of three parts:

• Control address interface

• Memory data interface

• CSR interface 

5.1  Control Address Interface

The control address interface (CTL) is the primary controller chip for the
TLSB memory.  It  receives the address and control signals from the TLSB
and generates the DRAM address and control signals in response to them.
The CTL contains the major functions of: 

• TLSB control (through the TLSB state machines) 

• DRAM control (through the DRAM state machines)

• Command/address/RAS decode logic

• Self-test address and control logic 

This chapter discusses the first three items.  The self-test address and con-
trol logic is described in Chapter 4.

5.1.1  TLSB Control

The TLSB memory control structure consists of the following functional
blocks:

• Bank 0 state machine (TLSM)

• Bank 1 state machine (TLSM)

• CSR state machine (TLSM) 

• TLSB input latches 

• TLSB bus monitor 

• TLSB command decode 

• TLSB bank match logic 

• TLSB address, command, and bank number parity checkers 

• TLSB sequence control 

• TLSB bank available flags 
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5.1.1.1 Memory Bank State Machine

The CTL contains two TLSB control state machines, one for each memory
bank.  The state machines receive/generate information from/to the TLSB
bus as well as other TLSB support logic and DRAM control logic.  Each
state machine begins operation when a valid TLSB transaction request
destined for the particular memory bank that it supports is received. Each
state machine has two basic flows, one for memory reads and one for mem-
ory writes. The following sections list the major functions performed by the
TLSB memory bank state machine (TLSM).

5.1.1.2 CSR State Machine

The CSR TLSM is similar to the memory bank TLSM.  The major differ-
ence is that the CSR TLSM shares control of the transaction with the
memory address interface (MAI) CSR sequencer rather than the DRAM
control sequencer.  The CSR TLSM initiates either a CSR read or write op-
eration by starting the MAI CSR sequencer.  Similar to the memory bank
TLSM, the CSR TLSM handles proper sequencing to the TLSB bus.  It is-
sues TLSB_SEND_DATA and SEQ, and monitors for TLSB_HOLD
(TLSB_DIRTY is ignored for CSR read operations).  It also issues the nec-
essary control to the MDI chip for proper loading and unloading of CSR
data onto the TLSB. 

5.1.1.3 TLSB Input Latches

The CTL contains three sets of TLSB input latches, one for bank 0,  one for
bank 1, and one for CSR operations.  The input latches store the TLSB ad-
dress and command information necessary to process bus transaction re-
quests.  If a particular bank is not busy and a TLSB command/address cy-
cle is determined to be destined for that bank, then the address and
command information will be held in the bank latches until the transac-
tion is processed.

5.1.1.4 TLSB Bus Monitor

The TLSB bus monitor is a simple sequencer that monitors the TLSB re-
quest lines to detect the occurrence of a command cycle.  During a com-
mand cycle, the TLSB latches are opened and subsequently closed on the
following cycle.  This allows the command cycle as well as the following cy-
cle to perform the necessary decode on the TLSB transaction request.  If
the transaction was destined for that particular memory bank or CSR,
then the latches remain closed for the duration of the transaction.

The TLSB is in an idle state until a request is posted.  The following cycle
is an arbitration cycle in which the commander nodes (CPU, I/O port) arbi-
trate for the TLSB.  The command cycle follows the arbitration cycle.  This
is the cycle during which the memory adapter opens the input latches of
any nonbusy bank.  Note that the command cycle can also be a request cy-
cle if any requests are posted. 

5.1.1.5 TLSB Command Decode

The commands received from the TLSB are decoded to determine the type
of transaction being requested. Whether the command received is a valid
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command is one of the factors in determining if the command is acknowl-
edged (TLSB_CMD_ACK) by this node.  Table 5-1 shows the encoding of
TLSB commands.

  Table 5-1 TLSB Command Encoding

5.1.1.6 TLSB Bank Match Logic

The bank match logic compares the bank number received from the TLSB
to the virtual ID numbers located in the TLSB Virtual ID register (TL-
VID). Virtual ID A corresponds to bank 0 and Virtual ID B corresponds to
bank 1.  Having a match on one of the two banks is another factor that de-
termines if the TLSB command is to be acknowledged (TLSB_CMD_ ACK)
by this node.  

5.1.1.7 TLSB Parity Check

Parity is checked on the following TLSB signals:

• ADR<30:5>, covered by ADR_PAR, which is odd parity covering all 26
bits. 

• CMD<3:0>, BANK_NUM<3:0>, and ADR<39:31> are covered by
CMD_BANK_PAR, which is odd parity covering all 17 bits.

5.1.1.8 TLSB Sequence Control

TLSB data bus transactions take place in the order in which the com-
mands are posted on the TLSB bus.  Therefore, for every command/address
transaction there is an associated 4-bit sequence number that is main-
tained internally in the CTL.  The node that receives a command/address
destined for it tags that transaction with the appropriate sequence num-
ber.  When that tagged sequence is next on the data bus,  the node issues a
TLSB_SEND_DATA indication with the sequence number on the TLSB,
TLSB_SEQ<3:0>.

The CTL keeps two sets of counters, one for address bus sequencing (in-
coming commands) and one for data bus sequencing (data return). The ad-
dress bus counter is initialized to a value of zero; therefore, the first com-
mand/address request on the TLSB will have a sequence number of zero
associated with it. This count is incremented every time a command ac-
knowledge (TLSB_CMD_ACK) is received from the TLSB bus.  The data
bus sequence counter is incremented each time a TLSB_SEND_DATA is

Command Code Description

No-op
Victim
Read
Write
Read Bank Lock
Write Bank Unlock
CSR Read
CSR Write

000
001
010
011
100
101
110
111

No operation
Victim eviction (as memory write)
Memory read
Memory write
Read memory bank, lock
Write memory bank, unlock
Read CSR data
Write CSR data
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received from the TLSB bus.  TLSB_SEND_DATA is also used to check for
proper bus sequencing.  Note that the TLSB_CMD_ACK and TLSB_SEND
_DATA may be issued simultaneously for write transactions by the mem-
ory module on an idle TLSB bus. 

The CTL maintains sequence number registers for each memory bank as
well as for CSR transactions. Whenever a command/address request is re-
ceived, the corresponding address sequence number is stored in the regis-
ter allocated to the particular bank along with a valid bit. This tagged
value is used to identify the proper time slot for the return data to be is-
sued on the TLSB bus. Whenever the data bus sequencing register is equal
to a bank sequence register with the corresponding valid bit being set,
then the transaction requested of that bank is the next data to be returned
on the TLSB bus. 

5.1.1.9 TLSB Bank Available Flags

The CTL has two bank available flags, one for each memory bank.  De-
pending on the virtual ID of each bank, VID A and VID B in the TLVID
register, each of the bank available flags will correspond to one of the
TLSB BANK_AVL lines.  If either of the bank available flags is clear, all
TLSB commander nodes are blocked from requesting a transaction from
that particular bank.

The bank available flag becomes clear in the same cycle the command re-
questing the transaction of that bank is acknowledged (CMD_ACK).  The
bank available flag then remains clear until the memory module is able to
receive another command from the TLSB for that particular bank.  For
memory write operations the DRAM control sequencer sets the appropriate
bank available flag.  For memory read operations, excluding Read Bank
Lock, the state machine sets the appropriate bank available flag.  The
bank available flag remains clear after the completion of a Read Bank
Lock command until the completion of a Write Bank Unlock to the same
memory bank.   The Write Bank Unlock command may be requested on the
TLSB bus after the hold window for the return of read data for the Read
Lock command has passed.

5.1.2  DRAM Control

The DRAM array control and address generation is handled entirely
within the  CTL chip.  The only external components in the address/control
path to the DRAMs are buffers for fanout.

Then DRAM control structure consists of the following functional blocks:

• Bank 0 DRAM state machine (DSM0) 

• Bank 1 DRAM state machine (DSM1) 

• Address/RAS decode logic 

The DRAM state machine is the controlling element for a bank (a bank of
memory is a group of 144, 288, or 576 DRAMs that share a common set of 
row/column address resources from the CTL) of dynamic memory.  As a
controller for DRAMs, it has three classes of operations to perform and a 
unique control flow associated with each operation. These operations are:

• Read
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• Write 

• Refresh 

The TLSB memory is designed to operate within the following TLSB clock
cycle times:  

• 10.0 to 11.299 ns 

• 11.3 to 12.999 ns 

• 13.0 to 15.0 ns (Memory can operate at cycle times as slow as 30 ns us-
ing power-up default settings without violating the DRAM refresh re-
quirements.)

To support operating at multiple cycle times while maintaining low latency 
and high bandwidth, the DSMs are designed as variable-length state ma-
chines with multiple taps for controlling external events.  To keep DRAM
cycle times to a minimum, the primary DRAM control signal timing has
selectable timing edges that follow the selection of the TLSB clock cycle.
Another attribute of the CTL is that there are three copies of address and
control for each memory bank to keep delays and skews to a minimum. 

5.1.3  Address/RAS Decode Logic

The address/RAS decode logic determines the allocation of TLSB addresses
to DRAM row and column addresses.  It also handles the module selection
process when system-level interleaving is invoked. 

5.1.3.1 128MB/512MB Memory Module Addressing

Table 5-2 shows how the TLSB addresses are allocated for a two-string
memory module.  As shown, RAS_SEL<1:0> is not affected by addresses in
this case since there is only one string per bank (it is always 00). 
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  Table 5-2 Two Strings—128MB/512MB Row/Column Address Bit Swapping

5.1.3.2 256MB/1024MB Memory Module Addressing

Table 5-3 shows how the TLSB addresses are allocated for a four-string
memory module.  As shown, Ras_Sel<0> is now affected by addresses since
we need to select one of the two strings per bank (Ras_Sel<1> defaults to a
zero). 

DRAM Type
No. of Banks
Interleaved

DRAM Address

                      4 Mbit

    1             2           4            8    

                     16 Mbit

    1             2            4            8    

Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>

Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>

Mod_Sel<0>
Mod_Sel<0>
Mod_Sel<0>

Bank_Sel<0>

Ras_Sel<0>
Ras_Sel<1>

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

21
  2
  3   
  4
  5
  6
17
18
19
20

  x
  x
  x

  1  

 "0"
 "0"

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
  3   
  4
  5
  6
17
18
19
20

  1
  x
  x

  2  

 "0"
 "0"

  7 
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
 23   
  4
  5
  6
17
18
19
20

  1
  2
  x

  3  

 "0"
 "0"

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
 23   
 24
  5
  6
17
18
19
20

  1
  2
  3

  4  

 "0"
 "0"

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
  2
  3   
  4
  5
  6
17
18
19
20

  x
  x
  x

  1  

 "0"
 "0"

  7
  8
  9
10
11
12
13
14
15
16
21
22

23 
24
  3   
  4
  5
  6
17
18
19
20

  1
  x
  x

  2  

 "0"
 "0"

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
24
25
  4
  5
  6
17
18
19
20

  1
  2
  x

  3  

 "0"
 "0"

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
24
25
26
  5
  6
17
18
19
20

  1
  2
  3

  4  

 "0"
 "0"

Key to 4M DRAM Unused Row Addresses/Ras_Sel and Mod_Sel:

x(n) : Don’t Care.  (n) is the address bit driven even though it is not used by the DRAMs.
x : Don’t Care.  No address bits are involved in this decision.
"0" : Always 0.  This signal is always held deasserted.  
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  Table 5-3 Four Strings—256MB/1024MB Row/Column Address Bit Swapping

5.1.3.3 512MB/2048MB Memory Module Addressing

Table 5-4 shows how the TLSB addresses are allocated for an eight-string
memory module.  As shown, Ras_Sel<1:0> are now affected by addresses
since we need to select one of the four strings per bank.

DRAM Type
No. of Banks
Interleaved

DRAM Address

                      4 Mbit

    1             2           4            8    

                     16 Mbit

    1             2            4            8    

Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>

Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>

Mod_Sel<0>
Mod_Sel<0>
Mod_Sel<0>

Bank_Sel<0>

Ras_Sel<0>
Ras_Sel<1>

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

21
22
  3   
  4
  5
  6
17
18
19
20

  x
  x
  x

  1  

  2
 "0"

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
 23   
  4
  5
  6
17
18
19
20

  1
  x
  x

  2  

  3
 "0"

  7 
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
 23   
 24
  5
  6
17
18
19
20

  1
  2
  x

  3  

  4
 "0"

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
 23   
 24
 25
  6
17
18
19
20

  1
  2
  3

  4  

  5
 "0"

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
24
  3
  4
  5
  6
17
18
19
20

  x
  x
  x

  1  

  2
 "0"

  7
  8
  9
10
11
12
13
14
15
16
21
22

23 
24
25   
  4
  5
  6
17
18
19
20

  1
  x
  x

  2  

  3
 "0"

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
24
25
26
  5
  6
17
18
19
20

  1
  2
  x

  3  

  4
 "0"

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
24
25
26
27
  6
17
18
19
20

  1
  2
  3

  4  

  5
 "0"

Key to 4M DRAM Unused Row Addresses/Ras_Sel and Mod_Sel:

x(n) : Don’t Care.  (n) is the address bit driven even though it is not used by the DRAMs.
x : Don’t Care.  No address bits are involved in this decision.
"0" : Always 0.  This signal is always held deasserted.  
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  Table 5-4 Eight Strings—512MB/2048MB Row/Column Address Bit Swapping

DRAM Type
No. of Banks
Interleaved

DRAM Address

                      4 Mbit

    1             2           4            8    

                     16 Mbit

    1             2            4            8    

Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>
Row_Adr<0>

Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>
Col_Adr<0>

Mod_Sel<0>
Mod_Sel<0>
Mod_Sel<0>

Bank_Sel<0>

Ras_Sel<0>
Ras_Sel<1>

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

21
22
  3   
  4
  5
  6
17
18
19
20

  x
  x
  x

  1  

  2
  3

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
 23   
 24
  5
  6
17
18
19
20

  1
  x
  x

  2  

  3
  4

  7 
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
 23   
 24
 25
  6
17
18
19
20

  1
  2
  x

  3  

  4
  5

  7
  8
  9
10
11
12
13
14
15
16
x(21)
x(22)

 21
 22
 23   
 24
 25
 26
17
18
19
20

  1
  2
  3

  4  

  5
  6

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
24
25
  4
  5
  6
17
18
19
20

  x
  x
  x

  1  

  2
  3

  7
  8
  9
10
11
12
13
14
15
16
21
22

23 
24
25   
26
  5
  6
17
18
19
20

  1
  x
  x

  2  

  3
  4

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
24
25
26
27
  6
17
18
19
20

  1
  2
  x

  3  

  4
  5

  7
  8
  9
10
11
12
13
14
15
16
21
22

23
24
25
26
27
28
17
18
19
20

  1
  2
  3

  4  

  5
  6

Key to 4M DRAM Unused Row Addresses/Ras_Sel and Mod_Sel:

x(n) : Don’t Care.  (n) is the address bit driven even though it is not used by the DRAMs.
x : Don’t Care.  No address bits are involved in this decision.
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5.2  Memory Data Interface

The memory data interface (MDI) is comprised of four chips connected to
the DRAM array on one side and to the TLSB bus on the other.  The MDI
contains the following logic elements:

• Data path logic

• Write data input logic

• Read data output logic

• Error detection and correction logic

5.2.1  Data Path Logic

The MDI data path provides an interface between the TLSB data path and
the DRAM array tri-state bus.  Its primary parts are a write path that re-
ceives data from the TLSB data path and transmits it onto the DRAM ar-
ray bus, and a read path that receives data from the DRAM array bus and
then transmits the data onto the TLSB data path.  The integrity of the
data read from the DRAMs is checked by means of a single error correcting
double error detecting (SECDED) ECC code.  Any detected error is logged
in CSRs.  

The data path logic also provides a path to and from the CSRs.  The path
from the TLSB to the CSRs includes ECC checking on received data while
the path from the CSRs to the TLSB includes check bit generation.  The
error correcting code is the same as that used to protect memory data.

5.2.2  Write Data Input Logic

The write data input logic receives data from the TLSB and transmits it
onto the DRAM array bus at the appropriate time in the DRAM write cy-
cle.  Temporary storage is provided for the received data, so that it can be
held long enough to satisfy the DRAM write cycle timing requirements.  A
path is also provided to the CSR Merge Register.  

5.2.2.1 Write Data Buffer

The write data buffer in each MDI consists of four 72-bit data storage ele-
ments.  Each of these quadword data buffers consists of eight bytes of data
and eight associated ECC bits.  These buffers must receive data from the
TLSB and hold it long enough for it to be driven onto the DRAM array bus
and written into the DRAMs.  Since write data for the second memory
bank could be received as soon as three TLSB cycles after data for the first
bank, separate buffer latches must be provided for each bank.

5.2.2.2 Write Data Path ECC Algorithm

The data is stored in the DRAMS protected by the same ECC code that
was used to protect the data on the TLSB.  Thus, ECC bits do not have to
be generated on the received data.  However, address parity is incorpo-
rated into the ECC prior to the data being written.  The data and ECC bits
are latched as received from the TLSB, modified to include address parity
and then written to the DRAMS.  Figure 5-1 shows the details of the ECC
code. 
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 Figure 5-1 64-Bit ECC Coding Scheme

The received write data is checked for ECC errors.  Any detected error is
logged as appropriate in the TLESRn error register.  No correction is made
even though a single-bit error is detected.  The data is written to the
DRAMs such that each of the four bits stored in each DRAM is protected
by a different set of ECC bits.  Thus, when a whole chip DRAM failure oc-
curs, the failure results in single-bit errors in four different quadwords
rather than one or more uncorrectable error(s).

5.2.2.3 CSR Write Data ECC Check

CSR data transfers are protected by the same ECC code as memory data
transfers.  However, single-bit errors detected on CSR writes are not cor-
rected by the memory.  The detection of any data error on CSR writes to
memory causes the write to be aborted and the error to be logged in the
MDI TLESR as an uncorrectable ECC error.

5.2.2.4 Forcing Write Errors for Diagnostics

The write data path includes the means of inverting any one of the re-
ceived data bits and/or any one of the received check bits.  The inversion
takes place between the time the data is received from the TLSB and its
being written to memory.  Thus, good data can be received from the TLSB
and written to memory with a single- or double-bit error forced.  This cor-
ruption of write data occurs only when the TLSB write address matches
the address in the CTL MDRB register.  It is controlled by the MDI DDR
register.  

XOR S7
XOR S6
XOR S5
XOR S4






XNOR S3
XNOR S2
XOR S1
XOR S0

      HEX
SYNDROME

6666
3210

0000
1111
1111
1100

0011
1010
0001
1011

7766
50DB



5555
9876

0000
1111
1111
0000

1000
0110-
0101
0100

6666
8742



5555
5432

1111
0000
0000
1111

1110
1001
0101
1101

9999
DB87



5544
1098

1111
0000
0000
1100

0011
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4444
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0011
1001
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0001

5544
42AF
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0000
0000
0000
1100

0011
1001
0111
1110

1100
53BE



1111
5432

0000
0000
1111
1100

0011
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0001
0100

3322
41CA



11
1098
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0000
1111
0000
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0101
1011

2222
9653
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1111
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1111

1110
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DDDD
CA98
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0011
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DDCC
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5.2.2.5 Write Data Out Selection

A 2:1 multipexer and a tristate enable capability are provided for interfac-
ing the write data buffers to the DRAM array bus.  The multiplexer allows
the selection of data from either the bank 0 or the bank 1 buffers.  The tri-
state enable capability allows the write data output to the DRAM array
bus to be disabled so that it may be used for receiving read data.  

5.2.3  Read Data Output Logic

The read data output logic receives data from the DRAM array or the
CSRs and transmits it onto the TLSB at the appropriate time.  Temporary
storage is provided for the DRAM read data, so that the DRAM cycle may
complete even though the TLSB is not yet ready to receive the read data.  

5.2.3.1 Read Data Buffers

The read data buffer in each MDI consists of four 72-bit data storage ele-
ments, two dedicated to each bank.  Each of these quadword data buffers
consists of 8 bytes of data and the 8 ECC bits associated with them.  Each
MDI receives 144 bits of read data from the DRAM array each time a bank
is read.  The lower half of these is loaded into that bank’s quadword 0
buffer while the upper half is loaded into the quadword 1 buffer.  Each
buffer temporarily stores the data read until the TLSB is ready to return it
to the requesting node.  

5.2.3.2 Read Data Path ECC Algorithm

The read data and ECC bits are read from the DRAMs in the format to be
transmitted onto the TLSB except for the inclusion of address parity in the
stored ECC bits.  The effects of address parity are removed from the ECC
bits before the transmission of data onto the TLSB.  The integrity of the
data is also checked by verification of the ECC bits to aid in error isolation,
even though no corrective action is taken when an error is detected.  This
ECC check on read data is implemented after the data has been driven
onto the TLSB, so that the same ECC logic can be used that is used to
check for write ECC errors.  The implication of this implementation is that
there must be no transmit check error (TCE) for the logged correctable or
uncorrectable read ECC error to be attributed to the memory.  If a TCE is
logged by the memory along with a read ECC error, then the ECC error
must be assumed to be due to corruption of the data on the TLSB.  Syn-
dromes and error indicators are logged in their TLESRn register. 

Since address parity was encoded in the ECC bits prior to their storage in
the DRAMs, it must be removed before the ECC bits can be transmitted
onto the TLSB.  To facilitate the removal of address parity, row and col-
umn parity bits must be generated by the CTL for each received read com-
mand and transmitted to MDI.  MDI latches both row and column parity
bits for each bank as they are received with the assertion of
DSM_LD_DRAM_DATA.  

5.2.3.3 CSR Read Data ECC

CSR data is transmitted onto the TLSB protected by the same ECC code as
that for memory data transfers.  Zeros are transmitted on TLSB_D<63:32>
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on all CSR reads from memory.  The ECC bits are generated across bits
<63:0> and transmitted on TLSB_ECC<7:0>.

5.2.4  MDI Error Detection and Correction Logic

The four MDIs monitor the data received from the TLSB for write data er-
rors.  They also monitor read data for ECC errors after it has been trans-
mitted onto the TLSB.  Table 5-5 summarizes the errors detected by each
of the four MDIs.  

  Table 5-5 Error Conditions Monitored by the MDIs

• Correctable Read ECC Error
This bit is asserted when a correctable ECC error is detected during
memory read data cycles.

• Correctable Write ECC Error
This bit is asserted when a correctable ECC error is detected during
memory write data cycles.

• Uncorrectable ECC Error
This bit is asserted when an uncorrectable ECC error is detected dur-
ing any memory data cycle.  

• Transmit Check Error
Each TLSB node is required to compare the data that it transmitted
onto the TLSB when it is the selected transmitter with the data that
actually appeared on the bus.  This check is accomplished by storing
the data just prior to driving it onto the TLSB and comparing it with
the data received in the bus receiver latches on the next clock tick. 
Each MDI performs the comparison on its quadword of TLSB data.  If
the data in the receiver latches does not match that transmitted, the
Transmit Check Error bit in that MDI’s Bus Error Syndrome Register
is asserted.

• Transmitter During Error
This bit is asserted when an ECC error is detected during bus cycles
when this node was the source of the TLSB data.

• Syndrome1
When an ECC error is detected in data word 1, the syndrome is latched
in these bits.  This field is undefined when either CRECC, CWECC, or
UECC is zero.

• Syndrome0
When an ECC error is detected in data word 0, the syndrome is latched

Error CSR Description

CRECC
CWECC
UECC
TCE
TDE
SYND1
SYND0

TLESRn<21>
TLESRn<20>
TLESRn<19>
TLESRn<17>
TLESRn<16>
TLESRn<15:8>
TLESRn<7:0>

Correctable read ECC error
Correctable write ECC error
Uncorrectable ECC error
Data transmit check error
Data transmitter during error
Data 1 error syndromes
Data 0 error syndromes
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in these bits.  This field is undefined when either CRECC, CWECC, or
ECC is zero.

5.3  CSR Interface

The CSR interface, used to transfer the appropriate CSR information be-
tween the CTL and the four MDI chips consists of an 8-bit data bus with
parity and a command timing signal.  

The CSR interface manages the transfer of control and status information
between the TLSB bus and the TLSB accessible memory module registers.
On the memory module itself, the CSR Command/Address (CSRCA) bus is
the communications channel on which CSR information is passed between
the memory address interface chip (CTL) and the four memory data inter-
face chips (MDI). The CTL chip initiates all commands to transfer the ap-
propriate MDI or CTL CSR information through the CSRCA bus. The 8-
bit CSRCA bus is a multiplexed bus. For CSR writes the MDI0 chip re-
ceives the data from the TLSB and distributes the data to the appropriate
chip. For CSR reads, the chip that contains the register to be read drives
the data on the CSRCA bus.  The data is stored in the MDI0 chip for trans-
fer to the TLSB.  Figure 5-2 shows the CSR interface context. 

 Figure 5-2 CSR Interface Context

5.3.1  CTL CSR Functions

Internally, the CTL chip consists of the following functional blocks that
take part in TLSB CSR read or write operations of the memory module: 

• TLSB CSR control 

• CTL CSR sequencer 
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• Multiplexing of local CTL CSRs and the data bytes within them 

• Byte-wide parity generation and checking of the CSRCA bus 

5.3.1.1 TLSB CSR Control

The TLSB CSR control monitors the TLSB bus for either a CSR read or a
CSR write command destined for that particular node.  The TLSB CSR
TLSM sequences the TLSB bus by issuing the TLSB_CMD_ACK,
TLSB_SEND_DATA, and sequence number at the appropriate time.  It is
similar to the memory bank state machines.  There are two parallel decode
operations that take place during reception of a TLSB command cycle. 

• Command decode—Decode the TLSB command for either CSR read or
CSR write command. 

• Address decode—Decode the TLSB address to determine if the opera-
tion is for this particular node.  Refer to Table 2-7 for the TLSB node
number base address assignments. 

If a CSR read or CSR write command is decoded and the address decode
indicates that the request is for this TLSB node,  then a CMD_ACK is sent
to the TLSB.  At the same time the TLSB command and address informa-
tion is encoded into the CSRCA format for transmission to the MDI chips
and an indication is sent to the MAI CSR sequencer to start the operation. 
Figure 5-3 and Table 5-6 summarize the CSRCA encoding information.

 Figure 5-3 CSRCA Encoding

For a CSR write transaction, transmission of the TLSB_CMD_ACK to the
TLSB is followed by TLSB_SEND_DATA.  After the TLSB hold period has
passed, the MAI CSR sequencer starts a write process.  For a CSR read
transaction, the MAI CSR sequencer is started at the assertion of 
TLSB_CMD_ACK and some number of cycles later the
TLSB_SEND_DATA signal is issued on the TLSB. 

ADS   AD2   AD1   AD0   RD    CS2   CS1   CS0

7 4 3 2 0

<2:0> Chip Select
          1XX - MAI
           011 - MDI3
           010 - MDI2
           001 - MDI1
           000 - MDI0

<3>  Read/Write
        0 - Write
        1 - Read 

<7:4> Register Address

BXB0807.AI



       Memory Interface   5-15

The memory adapter supports TLSB broadcast writes to its MCR register
at address location BSB+1880 (byte address).  This allows for the DRAM
timing rates, accessed through the MCR register to be written simultane-
ously, thereby ensuring simultaneous refresh of all memory modules. 
Since the commander initiating the broadcast write issues both the
TLSB_CMD_ACK and TLSB_SEND_DATA for the transaction, this is the
only transaction for which the memory adapter may issue TLSB_HOLD. 

A TLSB CSR access to an existent node but nonexistent, nonbroadcast reg-
ister is followed by a TLSB_CMD_ACK and TLSB_SEND_DATA sequence,
but no data is written to any internal CSR for writes and Unpredictable
data is returned for reads.

5.3.1.2  MAI CSR Sequencer

The MAI CSR sequencer is the control mechanism that sequences the CTL
chip through a CSR read or a CSR write.  Upon receiving an indication
from the TLSM CSR control, the CSR sequencer issues the command cycle
onto the CSRCA bus for two cycles.  During the second cycle, the
CSR_CMD timing signal is asserted indicating to the MDI chips that a
valid command is present on the CSRCA bus.  The third cycle is a dead cy-
cle used for tristate overlap.

  Table 5-6 CSRCA Addressing

The following nine cycles are used to transfer the appropriate data from
chip to chip.  One of the chips drives the CSRCA bus, based on the com-
mand issued, and the other chips all receive.  The CTL only drives data

Chip Register CSRCA Address

CTL TLDEV
TLBER
TLCNR
TLVID
TLFADR0
TLFADR1

SECR
MIR
MCR
STAIR
STER
MER
MDRA
MDRB

0000
0001
0010
0011
0100
0101

1000
1001
1010
1011
1100
1101
1110
1111

MDIs TLESR

STDERA
STDERB
STDERC
STDERD
STDERE
DDR

0000

1000
1001
1010
1011
1100
1101
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onto the CSRCA bus during a read of one of its internal CSRs.  During a
write command to one of the CTL’s CSRs, a LD_EN signal from the se-
quencer is used to enable data from the CSRCA bus into the proper CSR.
Note that the LD_EN signal occurs on the last cycle of each of the four
data byte transfers. 

5.3.1.3 CSR Multiplexing

The CTL contains two MUXes used to multiplex the appropriate CSR data
onto the CSRCA bus during a CSR read of an internal register.  One MUX
is used to select the appropriate register currently being read.  The select
for this MUX is determined by the CSRCA address, shown in Table 5-6.
The second MUX is used to select the appropriate byte of the 32-bit regis-
ter to be selected.  This MUX is controlled by the MAI CSR sequencer.

5.3.1.4 CSRCA Parity

The CSRCA bus is protected by byte-wide odd parity.  All data transmitted
through this bus is accompanied by a valid parity bit (CSRCA<8>) to be
checked against the data by all chips.  Parity errors on the CSRCA bus
during CSR read transactions cause Unpredictable data to be returned to
the TLSB bus.  Receiving data with bad ECC from the TLSB on CSR write
transactions causes the CSRCA parity bit to be inverted, forcing bad par-
ity.  Any parity error that occurs on the CSRCA bus during a write dis-
ables that particular data byte from being written.  Note that other data
bytes of the same register may have already been written. 

5.3.2  MDI CSR Functions

Internally, each of the MDI chips consists of the following functional blocks
that take part in a TLSB CSR read or write operation of the memory mod-
ule:

• MDI CSR sequencer 

• Merge register 

• Multiplexing of local MDI CSRs and the data bytes within them 

• Byte-wide parity generation and checking of the CSRCA bus 

5.3.2.1 MDI CSR Sequencer

The MDI CSR sequencer is the control mechanism that sequences the MDI
chip through a CSR read or a CSR write.  Upon receiving a command from
the CTL, the MDI latches the command/address information into a regis-
ter.  The reception of a command is the trigger for the MDI CSR sequencer
to begin its operation.  Based on the command received on the CSRCA, one
of the chips drives the appropriate data onto the CSRCA bus.  All four MDI
chips sequence through the nine clock cycles necessary to transfer four
data bytes across the CSRCA bus.  Table 5-7 gives the criteria for which of
the chips drives the CSRCA bus during the nine data transfer cycles.
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  Table 5-7 CSRCA Data Bus Master

For a read command, the selected chip drives the appropriate data on the
CSRCA bus.  Each of the MDI chips receives the data and loads it into its
Merge register.  On a read, when the loading of the Merge register is com-
plete, MDI0 transfers the data onto the TLSB.  For a write command, the
data to be written is received by MDI0 from the TLSB and loaded into its
Merge register.  MDI0 then drives the data onto the CSRCA bus.  The data 
is received by all chips but only deposited into a register by the selected
chip at the selected address.  Note that this scenario is true also for a write
to MDI0 itself. As was the case with the CTL sequencer, the MDI se-
quencer issues a LD_EN timing signal used to qualify when the data is
valid on the CSRCA bus. 

5.3.2.2 Merge Register

The MDI Merge register temporarily stores CSR data to be either read or
written.  For a write command, the lower 32 bits of data from the TLSB
data transfer is written into the Merge register.  This  data is then posted
on the CSRCA bus by MDI0, one byte at a time.  For a read command, the
chip containing the register to be read drives the contents of that register
onto the CSRCA bus, one byte at a time.  Each of the four bytes is loaded
into the MDI Merge registers for transfer onto the TLSB bus by MDI0.

5.3.2.3 CSR Multiplexing

The MDI contains two MUXes used to multiplex the appropriate CSR data
onto the CSRCA bus during a CSR read of an internal register.  One MUX
is used to select the register currently being read.  The select for this MUX
is determined by the CSRCA address.  The second MUX is used to select
the appropriate byte of the 32-bit register to be selected. This MUX is con-
trolled by the MDI CSR sequencer.

The MDI also uses MUXes for selecting which data is to be written into the
Merge register.  For a write command, the lower data portion of the TLSB
data is to be written into the Merge register.  For a read command, each
data byte received from the CSRCA bus is loaded into the appropriate por-
tion of the Merge register.

Chip Select Read/Write CSRCA Driver

1XX - CTL
011 - MDI3
010 - MDI2
001 - MDI1
000 - MDI0
1XX - CTL
011 - MDI3
010 - MDI2
001 - MDI1
000 - MDI0

Read
Read
Read
Read
Read
Write
Write
Write
Write
Write

CTL
MD13
MD12
MD11
MD10
MD10
MD10
MD10
MD10
MD130



5-18   Memory Interface

5.3.2.4 CSRCA Parity

The CSRCA bus is protected by byte-wide odd parity.  All data transmitted
over this bus is accompanied by a valid parity bit (CSRCA<8>) to be
checked against the data by all chips.  Parity errors on the CSRCA bus
during CSR read transactions cause Unpredictable data to be returned to
the TLSB bus.  Receiving data with bad ECC from the TLSB on CSR write
transactions causes the CSRCA parity bit to be inverted, forcing bad par-
ity.  Any parity error that occurs on the CSRCA bus during a write dis-
ables that particular data byte from being written.  Note that other data
bytes of the same register may have already been written. 
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Chapter 6

I/O Port

The I/O port is the interface of the I/O subsystem to the TLSB bus. Two
modules can be used for I/O operations:  KFTHA and KFTIA (integrated
I/O port).  Figure 6-1 shows the I/O subsystem block diagram with a
KFTHA module.

NOTE:  The term "I/O port" applies to both modules, KFTHA and KFTIA.  A spe-
cific I/O module is referred to by its name.

 Figure 6-1 I/O Subsystem Block Diagram

The integrated I/O port (KFTIA) provides a PCI interface on the device
side.  An overview of the KFTIA module is given at the end of this chapter.

The system supports up to three I/O ports. The interface path between the
I/O port and an individual I/O bus adapter module is known as the hose.  A
single hose consists of two unidirectional cables, physically bundled to-
gether, up to 10 feet in length.  One half of the cable (Down Hose) trans-
mits data and control information from the I/O port to the I/O bus adapter
module.  The other half of the cable (Up Hose) transmits data and control
information from the I/O bus adapter module to the I/O port.  The hose
data path is 32 bits wide in each direction.  Transfers across the hose are
full duplex.

TLSB I/O Port
    Module
   (KFTHA)

Hose 1

Hose 0

Hose 2

Hose 3







I/O Bus
Adapter

I/O Bus
Adapter

XMI or FBUS+
      Adapter
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or PCI Adapter
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I/O Bus 1

I/O Bus 2

I/O Bus 3
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The I/O port interfaces the TLSB bus to up to four different I/O buses
through separate I/O bus adapter modules.   Digital provides three types of
I/O adapters:

• XMI bus adapter—DWLMA

• Futurebus+ adapter—DWLAA 

• PCI bus adapter—DWLPA (EISA bus through a bridge on the PCI bus)   

6.1  Configuration

Node 8 of the TLSB is dedicated to the I/O port.  Nodes 4, 5, 6, and 7 can
also be configured for I/O.  The I/O port at node 8 arbitrates for the TLSB
bus using a dedicated high/low priority protocol.  The I/O port usually arbi-
trates for the TLSB at the highest priority.  If the I/O port requests back-
to-back transactions to the same memory bank, however, it will arbitrate
the  second transaction on the lowest priority.  This guarantees that other
nodes will never be locked out from winning a specific memory bank.

I/O ports at nodes 4, 5, 6, or 7 arbitrate for the TLSB bus in the normal
distributed arbitration scheme as do all other nodes, except for node 8.   

The I/O port at node 8 has the highest priority and, thus, the lowest la-
tency.  Therefore, all latency-sensitive I/O devices should be connected to
the TLSB bus through this I/O port.

6.2  I/O Port Main Components

The I/O port contains nine gate arrays:  

• Four IDRs (I/O data path chip) 

• One ICR (I/O control chip)

• Four HDRs (hose to I/O data path chip)

The four IDRs are identical arrays.   IDR-0 interfaces the low-order
quadword of the 256-bit TLSB data path to the I/O port.   It also houses
some of the I/O port’s CSR registers.  IDR-1, IDR-2, and IDR-3 interface
the second, third, and fourth quadwords, respectively, of the data path to
the I/O port.  The IDR arrays also interface to the HDR arrays through the
internal Turbo Vortex bus (see Figure 6-2).  The sole purpose of this bus is
to function as an interconnect between the IDRs, ICR, and the HDRs.

The ICR array houses the primary control logic for the TLSB interface.  It
performs the following functions:

• Interface to the TLSB address and control signals 

• Interface to the HDR array control signals through the Turbo Vortex 
bus 

• Control of the clocking of data through the IDR gate arrays 

• Housing for many of the I/O port’s CSR registers

Although the four HDR arrays are identical, each array functions differ-
ently,  depending on where it is installed on the module.  Two HDR arrays
are required to interface to a hose.  One of the HDR arrays functions as an
Up Hose interface for two hoses, and the other functions as a Down Hose
interface for the same two hoses.
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The two Up Hose HDRs receive packets from the four Up Hoses (two 
hoses per HDR) and transmit them to the IDRs through the Turbo Vortex
bus.  The other two Down Hose HDRs receive packets from the IDRs
through the Turbo Vortex bus and transmit them to the four Down Hoses
(two hoses per HDR).

Figure 6-2 shows the major blocks of the KFTHA module. 

 Figure 6-2 I/O Port Block Diagram

6.3  I/O Port Transactions

The I/O port, together with the I/O adapter modules, provides the interface
path between the TLSB and the I/O devices.  The I/O port transfers infor-
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mation between the TLSB and I/O adapter modules by transmitting and
receiving  packets across the hose(s).  Mailbox, I/O window, device inter-
rupt, DMA read/IREAD, and NVRAM write transactions (see following
subsections) consist of packet pairs:  a command packet and a status re-
turn packet.  

• The mailbox transaction consists of a Mailbox Command packet and a 
Mailbox Status Return packet.

• Window read transactions are made up of window read command pack-
ets followed by window read data return packets.

• Window write transactions are made up of window write command
packets followed by window write status return packets.

• Device interrupt transactions consist of an INTR/IDENT command
packet followed by an INTR/IDENT status return packet.

• The DMA read/IREAD transactions are made up of a DMA
read/IREAD request packet followed by a DMA read data return
packet.

• DMA write/Wmask transactions are "disconnected" (that is,  write-and-
run) and therefore have no return status packet.

• An extended NVRAM write transaction consists of a Memory Channel
write packet followed by a window write status return packet.

Some transactions occur local to the I/O port and do not involve hose pack-
ets.  These transactions include CSR reads/writes and error interrupts. All
I/O port CSRs are accessible from the TLSB through the CSR read and
CSR write commands.  Error interrupts are generated to the CPU(s) if an
error is detected internal to the I/O port.  As a result, the interrupt trans-
action is generated and ended entirely within the I/O port.  No Interrupt
packet is received on the Up Hose, and no  INTR/IDENT status return
packet is sent back on the Down Hose. 

Table 6-1 summarizes the various transaction types supported by the I/O
port and indicates the hose packets required to implement each transac-
tion. 

The I/O port can pipeline up to two DMA transactions at a time. This al-
lows the I/O port to achieve a throughput of 500 Mbytes/sec of raw data. 

The CSR data size on the TLSB is a hexword (256 bits).  Valid bits on the
second data cycle of CSR writes define which longword(s) of the hexword
are valid.
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  Table 6-1 I/O Port Transaction Types

6.3.1  Mailbox Transactions

Some systems provide access to CSRs on external I/O buses (I/O devices)
indirectly, through a mailbox structure built by the CPU in main memory.  
The I/O port reads and writes to this data structure, which maps almost
directly to a hose packet.  Two such external I/O buses are: 

• XMI

• Futurebus+

When a CPU chip wants to read or write a CSR on one of the external I/O 
buses, it builds a mailbox structure and loads the Mailbox Pointer Register
(TLMBPR) in the I/O port.  This causes the I/O port to fetch the mailbox
structure from TLSB memory into the mailbox buffer and  build a Mailbox
Command packet for transmission across one of the four Down Hoses. 

There are four separate TLMBPR register pairs visible to the hardware.  
This allows up to eight CPU chips to each have its own private TLMBPR
register.  Each CPU chip can have up to two mailboxes pending at a given
time within its own TLMBPR register pair.  Thus, each I/O port can have
up to eight Mailbox Command packets pending at a time in its TLMBPR
register pairs.  However, the I/O port can process only one Mailbox Com-
mand packet at a time.

Transaction Initiator TLSB Commands Hose Packets

CSR read

CSR write

Window read

Window write

Mailbox

DMA read

DMA write

DMA IREAD1

DMA masked
write1 

Device interrupt

Error interrupt

Extended
NVRAM write

CPU

CPU

CPU

CPU

CPU

I/O device

I/O device

I/O device

I/O device

I/O device

I/O port

CPU 

CSR read

CSR write

CSR read, CSR write

CSR write

CSR write, read, write

Read

Write

Read Bank Lock,
Write Bank Unlock

Read Bank Lock,
Write Bank Unlock

CSR write, CSR read

CSR write, CSR read

CSR write 

None - local I/O port registers

None - local I/O port registers

Window read cmd, win rd data ret

Window wr cmd, win wr status ret

Mailbox cmd, Mailbox status ret

DMA read, DMA read data return

DMA unmasked write

DMA IREAD, DMA read data ret

DMA masked write cmd

INTR/IDENT cmd, INTR/IDENT
status return

None - local to I/O port

Memory Channel write, window
write status return

1 Since DMA IREADs and DMA masked writes are not defined TLSB commands, the I/O port implements their equiva-
lent functionality using TLSB Read Bank Lock and Write Bank Unlock commands to perform atomic Read-Modify-
Write sequences.  This allows the I/O port to emulate an IREAD or a masked write.
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The I/O port can support up to 16 CPU chips.  However, if more than four
CPU chips are present, any additional CPU chip must share a TLMBPR
register pair with another CPU chip.

CAUTION:  If two CPUs are sharing a common TLMBPR, there is a slight possibility
that one of the CPUs could continually win access to that TLMBPR, thus
causing the other CPU to be locked out of ever gaining access to it.

The Mailbox Command packet contains the I/O command, I/O target ad-
dress, and data/mask to be written if the command is a write.  If the com-
mand is not a write, the data/mask field is I/O adapter implementation de-
pendent (that is, XMI or Futurebus+). The actual command (for example,
CSR write, CSR read) is contained in the CMD<31:0> field of the packet.

After the Mailbox Command packet is sent down the hose, the I/O bus 
adapter module executes the decoded mailbox command over the target I/O 
bus (XMI or Futurebus+).  Status for the successful or unsuccessful
mailbox command is returned to the I/O port through a Mailbox Status Re-
turn packet. 

Upon receiving the Mailbox Status Return packet from the I/O adapter 
module, the I/O port executes a Read-Modify-Write operation on the TLSB
bus to fetch the mailbox structure, merge the information from the
Mailbox Status Return packet, and write the results back to main memory.

The Read-Modify-Write operation requires one TLSB bus Read Bank Lock
transaction followed by one TLSB bus Write Bank Unlock transaction.
First, the I/O port executes a Read Bank Lock to the mailbox structure in
TLSB memory.  When the mailbox data is returned, it is merged with the
information from the Mailbox Status Return packet and written back to
memory. 

The information from the Mailbox Status Return packet that is merged 
into the mailbox structure includes return data (if the mailbox transaction
was a read), a device specific field, an error bit if an error was detected,
and a done bit.  If the mailbox transaction was not  a read, the return data
field is Unpredictable.

If the I/O port is node 8, the data is written back immediately using the 
highest priority arbitration ID (TLSB_REQ8_HIGH) to minimize latency. 
If the I/O port is not node 8, it uses TLSB_REQ<n>, where n is the node
number. Atomicity is guaranteed by the Read Bank Lock/Write Bank Un-
lock TLSB commands.

If an error is detected by the I/O adapter module during a mailbox transac-
tion, the Mailbox Status Return packet on the Up Hose will have the error
bit set.  If the error occurred during a mailbox transaction that was a
write, the I/O adapter module may also send an INTR/IDENT packet over
the Up Hose to notify the appropriate CPU(s).  If the error occurred during
a mailbox transaction that was a  read, the I/O adapter module may return
an error code in the device specific field.  The I/O port merges this data
back into the mailbox structure in TLSB memory, and the CPU reads the 
mailbox structure to detect the error.  The read return data is Unpredict-
able.

NOTE:   The specific response of the I/O adapter is implementation dependent.

If the I/O port detects an error during a mailbox transaction, it logs the er-
ror and generates an error interrupt to the appropriate CPU(s).
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6.3.2  I/O Window Space Transactions

CSRs that exist on some external I/O buses are accessed through I/O win-
dow space transactions.  One such external I/O bus is the PCI.  

NOTE:  Refer to the DWLPA PCI Adapter Technical Manual for further discus-
sion of transactions on the PCI bus and addressing of PCI devices.

When a CPU chip wants to read or write a location on one of these external 
I/O buses, it issues a CSR read command or a CSR write command on the 
TLSB, along with the address of the target location.  The CPU chip also 
asserts the data on the TLSB if the transaction is a write.

There are two types of direct I/O window space transactions:  

• Sparse address space

• Dense address space

Sparse address space transactions are used for byte size to quadword size
data transfers.  The length of the transfer is controlled by a field in the
packet.  Dense address space transactions are used for hexword size data 
transfers only.  Dense reads must always transfer eight longwords
(hexwords).  Dense writes also transfer eight longwords, but include a
mask of valid longwords within the transfer.

The mapping between TLSB addresses and I/O bus addresses is dependent
on the I/O bus adapter.  The hose protocol provides a packet field that can
be used to target different address spaces on the remote bus.  This is used,
for example, on the PCI adapter to distinguish between PCI I/O, memory,
and configuration spaces.

Window space transactions need not be synchronous.  The hose protocol
provides a flow control mechanism that prevents the I/O port from initiat-
ing more CSR protocol exchanges on the hose than the I/O bus adapter can
buffer.  The I/O port has sufficient buffering to store up to four I/O window
transactions.

6.3.2.1 CSR Write Transactions to I/O Window Space

A CSR write command to node 4 through 8 I/O window space causes an 
I/O port installed in that node to assemble a window write command
packet (sparse or dense, depending on the type of transaction) and trans-
mit it on the Down Hose.  Flow control is maintained by Window Space
Decrement Queue Counter registers (TLWSDQRn) in each CPU node. 
Each CPU node increments its associated  I/O Queue Counter register
whenever it detects an I/O window transaction on the TLSB.

When the I/O port empties the window write command packet from its in-
ternal buffer, it issues a CSR write command to the TLWSDQR register in
CSR broadcast space.  This  causes each CPU node to decrement its associ-
ated TLWSDQR register.  The I/O port does not ACK the write broadcast
nor generate the associated data cycles.  The I/O port then transmits the
window write command packet on the Down Hose and increments its re-
mote adapter node buffer counters.

When the I/O port receives a window CSR Write Status Return packet on
the Up Hose, it decrements its remote adapter node buffer counters and
discards the packet.
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6.3.2.2 CSR Read Transactions to I/O Window Space

A CSR read command to node 4 through 8 I/O window space causes an  I/O
port installed in that node to assemble a window read command packet
(sparse or dense, depending on the type of transaction) and transmit it on
the Down Hose.  The I/O port returns Unpredictable data to the TLSB
commander node.

As soon as the I/O port empties the window read command packet from its 
internal buffer, it issues a CSR write command to the Window Space Dec-
rement Queue Counter Register (TLWSDQRn) in CSR broadcast space. 
The I/O port does not ACK the write broadcast transaction nor does it gen-
erate the associated data cycles.  The I/O port then transmits a window
read command packet on the Down Hose and decrements its remote
adapter node buffer counters.

When the I/O port receives an error-free window Read Data Return packet
(sparse or dense, depending on the type of transaction) on the Up Hose, it
issues a CSR write command to the CSR Read Return Data register in
CSR broadcast space.  During this transaction it asserts the VID of the
commander node onto the TLSB_BANK_NUM<3:0> field and returns the 
read data on the first data cycle of the CSR write to broadcast space.  It
also decrements the appropriate remote adapter node buffer counter.

If the window Read Data Return packet is in error, the I/O port issues a
CSR write command to the CSR Read Return Error register in broadcast
space.  During this transaction it asserts the VID of the commander node
onto the TLSB_BANK_NUM<3:0> field and returns Unpredictable data on
the first data cycle of the CSR write to broadcast space. 

If the read transaction fails to complete after n seconds, the CPU aborts
the transaction.

The CPUs keep track of the number of outstanding CSR transactions is-
sued and guarantee that no more than four uncompleted CSR transactions
to a single I/O port node are pending at a given time.  A transaction is con-
sidered complete only after the I/O port has issued its corresponding CSR
write to the WSDQRn register in broadcast space.

In addition, a single CPU may not have more than one outstanding CSR 
read transaction pending at a given time.

6.3.3  Interrupt Transactions

The I/O port generates two types of interrupts on the TLSB:

• Remote bus interrupts, which originate from a remote node and are 
received by the I/O port on the Up Hose

• I/O port generated error interrupts, which originate within the I/O port
as a result of an internally detected error condition 

6.3.3.1 Remote Bus Interrupts

When an I/O interrupt is posted to a CPU, the CPU reads the vector from
the appropriate I/O port.  This means that the INTR/IDENT packet gener-
ated by an I/O adapter module must already contain the vector so that the
I/O port can load it into one of its Interrupt Levelx IDENT registers (TLI-
LIDx) and have it ready to return to the CPU.
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Therefore, when an interrupt occurs on an I/O bus (that is, XMI, Future-
bus+, or PCI), the I/O bus adapter must first acquire the interrupt vector
for that interrupt.  On the Futurebus+ and the PCI, the vector is acquired
as part of the INTR transaction.  On the XMI bus, the vector is acquired
using an IDENT transaction.  If the interrupt was a WE (write error)
IVINTR, the XMI adapter module uses a predefined vector instead of exe-
cuting an IDENT.

Once the I/O bus adapter acquires the IDENT vector from the interrupting 
I/O device, it sends an INTR/IDENT packet to the I/O port over the Up
Hose.  The INTR/IDENT packet includes the vector and IPL of the inter-
rupt. 

Only one interrupt at a time may be posted by an I/O bus adapter at a 
given IPL from a single hose interconnect.

The I/O port loads the vector into the appropriate TLILIDx register and 
generates an interrupt to one or more CPUs by writing to the appropriate
I/O interrupt register (TLIOINTRx) in TLSB broadcast space.  The I/O port
selects the appropriate TLIOINTRx based on its node ID.  For  example an
I/O port as node 8 writes to TLIOINTR8, node 7 to TLIOINTR7, and so on.

The CPU(s) targeted for the interrupt are determined from the CPU Inter-
rupt Mask Register (TLCPUMASK) in the I/O port.  The IPL received 
from the hose interconnect and the 16-bit CPU mask field of the TLCPU-
MASK register are written to the CPU’s TLIOINTRx register. This allows
interrupts to be targeted to any or all of the CPUs.  

Upon receiving the interrupt request, one of the targeted CPUs reads the
appropriate I/O port’s Interrupt Levelx IDENT register (TLILIDx) corre-
sponding to the I/O port that requested the interrupt and the requested
IPL level, causing the appropriate I/O port to return the vector for the
posted interrupt.  Other targeted CPUs may either notice the relevant
read to that I/O port’s TLILIDx register and take a passive release or may
execute their own read of TLILIDx.  If another interrupt at the relevant
level is pending, the additional CPU read of TLILIDx returns that IDENT
vector.  If no other interrupts are pending at the given level, the I/O port
returns zeros, forcing the CPU to take a passive release. 

After one of the CPUs targeted by the interrupt reads the appropriate I/O
port’s TLILIDx register, that I/O port sends an INTR/IDENT Status Re-
turn packet to the I/O bus adapter module over the Down Hose.  The arri-
val  of the INTR/IDENT Status Return packet at the I/O bus adapter tells
it that it can service another interrupt at that IPL, thus providing inter-
rupt transaction flow control. 

6.3.3.2 I/O Port Generated Error Interrupts

The I/O port generates an interrupt when it detects an error condition. 
Possible errors include Up Hose parity, packet content, and packet length. 
The I/O port also detects and reports violations of the hose flow control
(that is, buffer count overflows or underflows).  The I/O port also reports
errors related to accessing the TLSB.

I/O port generated error interrupts work in the same manner as remote
bus interrupts with the following exceptions:

• I/O port generated error interrupts always interrupt on IPL 17.
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• I/O port generated error interrupts transmit a special vector on the 
TLSB, which must be preloaded by system software into the I/O port
Interrupt Vector Register (TIVR) at system initialization.

• The I/O port has a special I/O port interrupt mask bit, <INTR_NSES>,
that must be loaded by software at system initialization.
<INTR_NSES> causes all I/O port specific generated error interrupts
to be enabled/disabled (for example, TLSB ECC error, hose parity er-
ror, and so on).

• I/O port generated error interrupts do not return an interrupt status
packet to the Down Hose. 

It should also be noted that, due to the extra I/O port generated error in-
terrupt, as many as five interrupts could be pending on IPL 17 at any
given time, one I/O port generated error interrupt and four remote node in-
terrupts received by the I/O port from the Up Hose.

6.3.4  DMA Read Transactions

I/O modules transfer large blocks of data directly to and from memory us-
ing DMA transactions.  When an I/O device requests its local I/O bus for a
DMA read transaction, the I/O bus adapter acknowledges the read transac-
tion and, if the bus supports it, pends the transaction. This frees the I/O
bus for other bus traffic.  The I/O bus adapter then transmits a DMA read
request packet to the I/O port on the Up Hose.  Included in the DMA read
request packet is the target TLSB address, a tag field to allow the I/O bus
adapter to associate the DMA read request with the DMA return data
packet, and the length code indicating the amount of  data requested. 

Upon receiving the DMA read request packet, the I/O port generates a 
TLSB system bus read transaction.  If the read is successful, the I/O port
transmits a DMA read data return packet to the I/O bus adapter on the
Down Hose. The DMA read data return packet includes the tag from the
corresponding DMA read request packet, the length code, an error bit indi-
cating whether or not the DMA read request was successful, and the re-
quested data.  The I/O bus adapter then transmits the data across the I/O
bus to the appropriate I/O device. 

If the read is unsuccessful, the I/O port generates an error interrupt and 
transmits a DMA read data return packet with the error bit set to the I/O
bus adapter over the Down Hose.  The I/O bus adapter then takes the ap-
propriate action on the I/O bus for read errors. 

6.3.5  DMA Interlock Read Transactions

The TLSB memory system does not support XMI style hardware memory
locks;  that is, no IREAD/UWMASK instruction pair equivalence exists on
the TLSB.  VAX CI-port architecture devices, however, require this type of
hardware memory lock.  Therefore, to support these devices on the TLSB
platform, the I/O port utilizes TLSB memory bank lock commands to ac-
complish an atomic memory Read-Modify-Write function that closely re-
sembles an IREAD instruction. This function is implemented only for XMI-
based nodes. 

VAX CI-port architecture devices acquire hardware memory locks using 
DMA IREAD transactions. All DMA IREAD transactions are quadword in 
length and quadword-aligned.  When an I/O device on the XMI issues a 
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DMA IREAD command, the XMI I/O adapter acknowledges the IREAD
and  pends the transaction.  This frees the XMI for other bus traffic.  The
XMI I/O adapter then transmits a quadword-aligned DMA IREAD request
packet to the I/O port on the Up Hose.  Included in the DMA IREAD re-
quest packet is the target TLSB address, a tag field to allow the XMI I/O
adapter to associate the DMA IREAD request with the DMA return data
packet, and the length code indicating the amount of data requested. 

After receiving the quadword-aligned DMA IREAD request packet, the I/O
port executes a Read Bank Lock command to TLSB memory at the target 
address.  This causes the TLSB memory to deassert and hold its 
TLSB_BANK_AVL signal and return the requested data to the I/O port. 
After the I/O port receives the read data from TLSB memory, it sets the
low-order bit of the addressed quadword and writes it back to memory us-
ing a Write Bank Unlock command.  The Write Bank Unlock command
causes TLSB memory to assert its TLSB_BANK_AVL signal.  

If this I/O port is node 8, the data is written back immediately using the 
highest priority arbitration ID (TLSB_REQ8_HIGH) to minimize  latency. 
If not node 8, the I/O port uses TLSB_REQn, where n is the node number. 
Atomicity is guaranteed by the Read Bank Lock/Write Bank Unlock TLSB
commands. The low-order bit of the  addressed quadword indicates the
Lock status of the location.  One equals Locked, zero equals Unlocked.
During the Write Bank Unlock cycle, the I/O port forces the low-order bit
of the addressed quadword to a one regardless of its original value.

If the Read-Modify-Write executed without errors, the I/O port transmits a 
DMA read data return packet to the XMI adapter on the Down Hose. The 
DMA read data return packet includes the tag from the corresponding
DMA  IREAD request packet, the length code, an error bit indicating
whether or not the DMA IREAD request was successful, and the requested
data.  Note that the I/O port returns the read data to the XMI I/O adapter
unmodified, even though it wrote the data back to memory with the low-
order bit forced to a one.  That is, if the low-order bit was read as zero,
then it returns a zero.  If the low-order bit was read as one, then it returns
a one.  The XMI I/O adapter then transmits the data across the XMI to the
appropriate I/O device. 

If no errors were detected, the DMA IREAD request transaction is com-
plete.  If an error is detected on the Up Hose (for example, parity error or
sequence  error), or if the TLSB bus Read-Modify-Write operation is unsuc-
cessful, the I/O port logs the error and generates an error interrupt to the
CPU(s). 

Note that there is no special DMA write unlock request packet.  The XMI 
I/O device simply writes the low-order bit of the location to zero through a 
generic DMA masked write request packet when it is ready to release the 
lock.

6.3.6  DMA Write Transactions

When an I/O device requests a local I/O bus for a DMA write to memory,
the I/O bus adapter transmits a DMA write request packet to the I/O port
over the Up Hose.  There are two types of DMA write request packets:
masked write and unmasked write.  The main difference is that DMA
masked write packets require a Read-Modify-Write (one Read Bank Lock
and one Write Bank Unlock) operation on the TLSB bus and can be byte
masked by the I/O adapter, whereas a DMA unmasked write packet only
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requires a single TLSB bus write transaction and is always a double
hexword. 

A DMA write request packet is executed as a disconnected (write-and-run)
operation and therefore has no status return packet associated with it.
Once the I/O bus adapter transmits the DMA write request packet over the
Up Hose, the transaction is complete. 

6.3.6.1 DMA Unmasked Write

The DMA unmasked write packet is the most efficient DMA write that the
I/O port supports.  It has two major advantages over the DMA masked
write packet.  First, it only requires a single write on the TLSB bus,
whereas a DMA masked write packet requires a Read-Modify-Write opera-
tion on the TLSB bus.  Second, the data length of a DMA unmasked write
packet is a double hexword in length, whereas a DMA masked write
packet can be as small as a byte of valid data (but will usually match the
size of the DMA write on the I/O bus).  On the XMI this will probably
equate to octaword writes.  If so, it would require four Read-Modify-Write
operations  on the TLSB bus to match just one unmasked double hexword 
write.  The DMA write performance increases dramatically whenever a
DMA unmasked write packet is used in place of a DMA masked write
packet. 

Generally speaking, an I/O adapter module should be able to utilize the
speed of a DMA unmasked write packet by using a protocol that appends
the smaller size writes on the I/O bus into a double hexword and shipping
them across the Up Hose as a DMA unmasked write packet.  The XMI I/O
module uses the XMI MORE protocol to accomplish this task.

The DMA unmasked write packet includes the TLSB target address for the
data and a double hexword of write data. 

After receiving the DMA unmasked write packet, the I/O port executes the 
write to memory over the TLSB bus.  If no errors are detected, the DMA
write transaction is complete.  If an error is detected on the Up Hose (for
example, a parity error or sequence  error), or if the TLSB bus write is un-
successful, the I/O port logs the error and generates an error interrupt to
the CPU(s). 

6.3.6.2 DMA Masked Write Request to Memory

The DMA masked write packet includes the target address for the data, 
the length code to allow for sequence checking, mask bits in the UPCTL 
field, and the amount of data required for the DMA masked write.

After receiving the DMA masked write packet, the I/O port executes a
Read Bank Lock to TLSB memory at the target address.  This causes the 
TLSB memory to deassert and hold its TLSB_BANK_AVL signal until it
receives a Write Bank Unlock command.  When the data is returned from
TLSB memory, the I/O port merges the DMA write data (using the mask 
bits from the DMA write packet) and writes it back to memory using a 
Write Bank Unlock command.  If this I/O port is node 8, the data is written 
back immediately using the highest priority arbitration ID (TLSB_REQ8_
HIGH) to minimize latency.  If the I/O port is not node 8, the I/O port uses
TLSB_REQn, where n is the node number.  Atomicity is guaranteed by the
Read Bank Lock/Write Bank Unlock TLSB commands. If no errors were
detected, the DMA masked write transaction  is complete.  If an error is
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detected on the Up Hose (for example, a parity error or sequence  error), or
if the TLSB bus Read-Modify-Write operation is unsuccessful, the I/O port
logs the error and generates an error interrupt to the CPU(s). 

6.3.7  Extended NVRAM Write Transactions

The Memory Channel write transaction is used to deliver a block of data,
along with its TLSB physical address, to the remote I/O bus.  This transac-
tion is used to support Prestoserve NVRAM writes.

Prestoserve NVRAM writes operate in an enhanced performance mode.  A
section in TLSB memory may be designated as an extended NVRAM write
region.

The I/O port houses two Down Hose range register pairs.  These register
pairs must be configured at system initialization.  The I/O port compares
all extended NVRAM writes targeted to it against its Down Hose Range
registers.  If a match occurs, the I/O port assembles the Memory Channel
write packet and transmits it to a remote I/O adapter on the targeted
Down Hose.

The Memory Channel write packet contains up to a 40-bit TLSB address
plus either 32 bytes (hexword) or 64 bytes (double hexword) of data.  All
the data is written.  The mapping between the TLSB address in the packet
and an address on the remote I/O bus is dependent on the I/O bus adapter.

Flow control is maintained by a pair of Memory Channel queue counters in
each TLSB commander node.  Each commander node increments its associ-
ated queue counters whenever it detects a memory write on the TLSB with
TLSB_ADR<4:3> being a nonzero value.

The Memory Channel queue counters for each commander node are incre-
mented as follows:

For node 8: Increment for TLSB_ADR<3> = 1

For node 4,5,6 or 7: Increment for TLSB_ADR<4> = 1

When the I/O port empties the extended NVRAM write from its internal
buffer, it uses a CSR write command to the Memory Channel Decr Queue
Counter Register (TLRMDQRx) in the CSR broadcast space.  The I/O port
does not ACK the write broadcast nor does it generate the associated Mem-
ory Channel queue counter.

For I/O Port in node 8:          TLRMDQR8 = BSB + 640
For I/O Port in node 4,5,6 or 7: TLRMDQRx = BSB + 600

The I/O port then transmits a Memory Channel write packet on the associ-
ated Down Hose if the targeted remote I/O adapter has an available buffer
to receive the packet.

The threshold of the Memory Channel queue counters is set at five.  All
commander nodes must not transmit Memory Channel writes on the TLSB
if either Memory Channel queue counter exceeds a count of five.  (Note
that this is an OR condition of the two counters.)

The I/O bus adapter acknowledges each Down Hose write packet with a
window write status return packet.  This packet indicates the success or
failure of the write and provides flow control.
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When an I/O port receives a window write status return packet on the Up
Hose, it decrements its remote adapter node buffer counters and discards
the packet.

If the Memory Channel write address range does not fall within the range
of an associated valid outgoing Down Hose Range register, the I/O port dis-
cards the transaction and sets ICCNSE<3> (Memory Channel nonexistent
memory error).  The I/O port then generates an interrupt on IPL 17, if the
ICCNSE<31> (interrupt enable) is set and ICCMSR<5> is clear.

6.4  Addressing

The I/O port supports the full address space of the TLSB, that is, one ter-
abyte of memory. This memory space is accessed through a 40-bit memory
address on the TLSB address bus.

The TLSB address bus is byte aligned.  TLSB_ADR<39:5> on the TLSB ad-
dresses a specific hexword within the one terabyte of memory space.  This
permits access to the 40-bit processor byte address.

The I/O port accesses all of memory as 64-byte blocks, using bits
TLSB_ADR<39:5> of the address bus as the memory address. 

CSR registers on the I/O port module are aligned on 64-byte boundaries
and are accessed by other nodes through TLSB_ADR<27:6>.  

The I/O port accesses the I/O Interrupt and I/O Window Control registers
in broadcast space through TLSB_ADR<27:6> of  the address bus.

CSRs on remote I/O bus nodes are accessed by one of two methods:

• TLSB mailbox protocol -  to access nodes on the XMI I/O adapter and
the Futurebus+ adapter 

• TLSB I/O window space - to access nodes on the PCI adapter

If a nonexistent register within the I/O port’s node space is read, the  I/O
port ACKs the transaction and returns Unpredictable data to the request-
ing node.  

If a nonexistent register within the I/O port’s node space is written, the 
I/O port ACKs the transaction and ignores the data.  None of the I/O port’s 
internal registers are written. 

The first two Mbytes of CSR locations of TLSB CSR space are reserved for 
local use on each module.  References to this region are serviced by re-
sources local to a module and therefore are never asserted on the TLSB.
The I/O port does not implement any CSRs in the reserved portions of CSR
space.

Broadcast space is used for write-only registers that are written in all
nodes.  The I/O port uses this region to send interrupts to CPUs and to
control the flow of window space transactions. 

6.4.1  Accessing Remote I/O Node CSRs Through Mailboxes

CSR requests are posted in a mailbox through software.  The I/O port
reads the mailbox and passes it as a packet to the appropriate bus adapter.
When the bus adapter responds with a return status packet, the I/O port
returns the status and CSR read data to the mailbox in memory.  Software
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must  not overwrite a mailbox that is still in use (<DONE> not set by  the
I/O port).

The I/O system architecture requires that there be only a single software-
visible mailbox pointer CSR (TLMBPR) address.  Once the software has
built a mailbox structure in main memory, it loads the I/O port’s TLMBPR
register with the double hexword aligned address of the mailbox.

There are eight TLMBPR registers in the I/O port supporting four CPU
chips.  A CPU node inserts the least significant bits of its virtual ID into
TLSB_BANK_NUM<1:0> during a CSR write to the TLMBPR register so
the I/O port can determine which two of the eight TLMBPR registers form
the pair that it should use.  Table 6-2 shows the values inserted in 
TLSB_BANK_NUM<1:0> by the CPUs.  This allows a single CPU to have
up to two mailboxes pending within the I/O port at any given time.  If
there are four or less CPU chips in the system, each CPU chip can have its
own pair of dedicated TLMBPR registers.  Additional CPUs have to share
a TLMBPR register pair.  

  Table 6-2 TLMBPR Register Map

Mailbox pointers are managed by the I/O port hardware.  If one or more
CPUs write the TLMBPR register such that two mailbox transactions are
pending for the same CPU virtual ID, additional CSR write transactions to
the TLMBPR register using the same virtual ID result in the TLSB write
transaction not receiving acknowledgment (TLSB_CMD_ACK not as-
serted). Processors use the lack of TLSB_CMD_ACK assertion on writes to
the mailbox pointer CSR to indicate a busy status.  The write must be reis-
sued at a later point in time (through software).

The I/O port transmits the mailbox packets to the Down Hoses as though
all the TLMBPR registers constituted an eight-deep FIFO.

6.4.2  Accessing Remote I/O Node CSRs Through Direct I/O Window Space

There are two types of direct I/O window space structures:  sparse address
space and dense address space.

NOTE:  The TLSB address protocol is slightly different for sparse address space
reads and sparse address space writes.  Therefore, these transactions are
described under separate subsections.

6.4.2.1 Sparse Address Space Reads

Figure 6-3 illustrates the TLSB address bus protocol for sparse address
space reads.  Table 6-3 describes the sparse address space read protocol.

TLSB_BANK_NUM<1:0> CPU Virtual ID TLMBPR Register Pair

00 
01 
10 
11

0, 4, 8, or C 
1, 5, 9, or D 
2, 6, A, or E 
3, 7, B, or F

TLMBPR0
TLMBPR1
TLMBPR2
TLMBPR3
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 Figure 6-3 Sparse Address Space Reads

The returned quadword data for a sparse window read command is repli-
cated four times on the first data word of the CSR write to broadcast space. 
Figure 6-4 shows the positions within the TLSB data word in which the
sparse read data is returned. 

 Figure 6-4 Sparse Window Read Data as Presented on the TLSB

BXB0829.AI

0123456789101112131415161718192021222324252627282930313233343536373839

0

0123

Byte-Aligned I/O Address

<31:5> Byte-Aligned I/O Address <26:0>

<33:32> Space Select Field
               01 = Sparse memory space 
               10 = Sparse I/O space 
               11 = Sparse configuration space 

<35:34> Hose number in port being
                addressed (0 - 3) 

<38:36> TLSB Responder Node
          0 - 4  Nodes 4 - 8  I/O  window space, resp.

<39>  I/O Select (always 1 for CSR transaction)  
                

1



VID

TLSB
Virtual ID
(VID) of
Commander Node

TLSB_ADR<39:0>
TLSB_BANK_NUM 

     <3:0>                      

<4:3> Byte Length Field

0326496128160192224256

LW 1 LW 0 LW 1 LW 0 LW 1 LW 0 LW 1 LW 0

BXB0819.AI

CYC

1

2Second data cycle is undefined

: : : :
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  Table 6-3 Sparse Address Space Read Field Descriptions

6.4.2.2 Sparse Address Space Writes

Figure 6-5 illustrates the TLSB address bus protocol for  sparse address
space writes.  Table 6-4 describes the sparse address space write protocol.

The data appears on the first data cycle of the TLSB data bus.  Four Valid
bits appear on the second cycle of the TLSB data bus,  one for each
quadword, in the positions shown in Figure 6-6.

Field Description

TLSB_BANK_NUM<3:0>

TLSB_ADR<39>

TLSB_ADR<38:36>

TLSB_ADR<35:34>

TLSB_ADR<33:32>

TLSB_ADR<31:5>

TLSB_ADR<4:3>

TLSB_ADR<2:0>

Contains the TLSB commander virtual ID (VID). 

Indicates the address is an I/O address space reference.  It will al-
ways be a one if the reference is in I/O address space.

Defines the responder TLSB node as follows:

Defines the hose number within the I/O port that is being ad-
dressed. 

The Space Select field.  Defines the type of PCI I/O transaction. It
is transmitted on the hose as SPC<1:0>. 

This field is the byte-aligned 128-Mbyte target address.  It maps to
ADR<26:0> on the remote I/O target bus.   ADR<31:27> on the re-
mote I/O target bus is transmitted on the hose as zero.  

This field is the byte-length code that defines the size of the re-
quested block.  The byte-length code is transmitted on the hose as
LEN<1:0>.  Its decode is specific to the remote I/O bus adapter.

The three least significant bits of the address bus are always zero.

TLSB_ADR<38:36> Node Defined

0
1
2
3
4

Node 4 I/O window space 
Node 5 I/O window space 
Node 6 I/O window space 
Node 7 I/O window space 
Node 8 I/O window space 

TLSB_ADR<33:32> Node Defined

1
2
3

Sparse memory space 
Sparse I/O space 
Sparse configuration space 
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 Figure 6-5 Sparse Address Space Writes

 Figure 6-6 Sparse Address Space Write Data

BXB0797.AI

0123456789101112131415161718192021222324252627282930313233343536373839

0

0123

Byte-Aligned I/O Address

<31:5> Byte-Aligned I/O Address <26:0>

<33:32> Space Select Field
               01 = Sparse memory space 
               10 = Sparse I/O space 
               11 = Sparse configuration space 

<35:34> Hose number in port being
                addressed (0 - 3) 

<38:36> TLSB Responder Node
          0 - 4  Nodes 4 - 8  I/O  window space, resp.

<39>  I/O Select (always 1 for CSR transaction)  
                

1



VID

TLSB
Virtual ID
(VID) of
Commander Node

TLSB_ADR<39:0>
TLSB_BANK_NUM 

     <3:0>                      

0326496128160192224256

LW 7 LW 6 LW 5 LW 4 LW 3 LW 2 LW 1 LW 0

BXB0820.AI

CYC

1

2V 6 V 4 V 2 V 0

TLSB<192>

TLSB<128> TLSB<0>

TLSB<64>
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  Table 6-4 Sparse Address Space Write Field Descriptions

Note that the CSR data size on the TLSB is always a hexword.  Valid bits
on the second data cycle of CSR writes define which longwords of the
hexword are valid.

The I/O port transmits the correct quadword data and byte length code on
the hose to the remote I/O target node as shown in Table 6-5.

Field Description

TLSB_BANK_NUM<3:0>

TLSB_ADR<39>

TLSB_ADR<38:36>

TLSB_ADR<35:34>

TLSB_ADR<33:32>

TLSB_ADR<31:5>

TLSB_ADR<4:0>

Contains the TLSB commander virtual ID (VID). 

Indicates the address is an I/O address space reference.  It will al-
ways be one if the reference is in I/O address space.

Defines the responder TLSB node as follows:

Defines the hose number within the I/O port that is being ad-
dressed. 

The Space Select field.  Defines the type of PCI  I/O transaction. 
It is transmitted on the hose as SPC<1:0>. 

This field is the byte-aligned 128-Mbyte target address.  It maps
to ADR<26:0> on the remote I/O target bus.  ADR<31:27> on the
remote I/O target bus is transmitted on the hose as zero.  

The five least significant bits of the address bus are always zero.

TLSB_ADR<38:36> Node Defined

0
1
2
3
4

Node 4 I/O window space 
Node 5 I/O window space 
Node 6 I/O window space 
Node 7 I/O window space 
Node 8 I/O window space 

TLSB_ADR<33:32> Node Defined

1
2
3

Sparse memory space 
Sparse I/O space 
Sparse configuration space 
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  Table 6-5 Sparse Address Write Length Encoding

NOTE:  The byte-length code is transmitted on the hose as LEN<1:0>.  The  Length
field is equivalent to TLSB_ADR<4:3> for sparse address space reads.

6.4.3  Dense Address Space Transactions

The TLSB protocol is the same for dense address space reads and dense
address space writes.  Figure 6-7 illustrates the TLSB address bus protocol
for dense address space reads and writes.

 Figure 6-7 Dense Address Space Transactions

Table 6-6 describes the dense address space read/write protocol.

Valid Bits
 <6,4,2,0>

Length 
<1:0> TLSB Quadword Transmit on Hose

0001
001X
01XX
1XXX

00
01
10
11

  63–0 (QW 0)
127–64 (QW 1)
191–128 (QW 2)
192–255 (QW 3)

BXB0796.AI

0123456789101112131415161718192021222324252627282930313233343536373839

0

0123

Byte-Aligned I/O Address

<31:0> Byte-Aligned I/O Address 

<33:32> Space Select Field
               01 = Sparse memory space 
               10 = Sparse I/O space 
               11 = Sparse configuration space 

<35:34> Hose number in port being
                addressed (0 - 3) 

<38:36> TLSB Responder Node
          0 - 4  Nodes 4 - 8  I/O  window space, resp.

<39>  I/O Select (always 1 for CSR transaction)  
                

1



VID

TLSB
Virtual ID
(VID) of
Commander Node

TLSB_ADR<39:0>
TLSB_BANK_NUM 

     <3:0>                      
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  Table 6-6 Dense Address Space Transaction Field Descriptions

The data appears on the first data cycle of the TLSB data bus.  Eight Valid
bits appear on the second cycle of the TLSB data bus, one for each
longword, in the positions shown in Figure 6-8.  The I/O port transmits all
the data to the PCI adapter.

Field Description

TLSB_BANK_NUM<<3:0>

TLSB_ADR<39>

TLSB_ADR<38:36>

TLSB_ADR<35:34>

TLSB_ADR<33:32>

TLSB_ADR<31:0>

Contains the TLSB commander virtual  ID (VID). 

Indicates the address is an I/O address space reference.  It will
always be one if the reference is in I/O address space.

Defines the responder TLSB node as follows:

Defines the hose number within the I/O port that is being ad-
dressed. 

The Space Select field defines the type of PCI I/O transaction as
follows. It is transmitted on the hose as SPC<1:0>. 

This field is the byte remote I/O bus target address.  It maps to
ADR<31:0> on the remote I/O target bus.   TLSB_ADR<4:0> are
always transmitted as zero.  

TLSB_ADR<38:36> Node Defined

0
1
2
3
4

Node 4 I/O window space 
Node 5 I/O window space 
Node 6 I/O window space 
Node 7 I/O window space 
Node 8 I/O window space

TLSB_ADR<33:32> Node Defined

0 Dense memory space 
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 Figure 6-8 Dense Address Space Write Data

The returned hexword data for a dense window read command is asserted 
on the first data word of the CSR write to broadcast space.  Figure 6-9
shows the position within the TLSB data word in which the dense read
data is returned. 

 Figure 6-9 Dense Window Read Data as Presented on the TLSB
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6.5  TLSB Interface

All TLSB bus transactions consist of one command/address cycle on the ad-
dress bus and two data cycles on the data bus.  The TLSB bus implements
separate address and data buses to reduce memory latency, to allow the
TLSB to adapt to different speed memories, and a range of bus cycle times
(10 to 30 ns).   

To create a low latency system, memory is addressed by a unique 4-bit 
bank number transmitted on the TLSB address bus.  The I/O port per-
forms a bank decode to decide if it can issue the request.  Therefore, the
I/O port transmits the bank number along with the address and command
field on the address bus.  This simplifies the memory address decoding and
permits fast memory addressing.

The address bus allows flow control by the use of the TLSB_ARB_SUP sig-
nal. This tells the commander nodes to stop arbitrating for the bus and
prevents further addresses from going out on the address bus.

Data bus sequencing is controlled by the slave node, which waits until the
sequence count reaches the correct count for that transaction, then takes
control of the data bus and asserts TLSB_SEND_DATA and
TLSB_SEQ<3:0> five cycles  (assuming TLSB_HOLD is not asserted) be-
fore transferring data through the data bus.  The sequence count guaran-
tees that data is driven onto the data bus in the same order as com-
mand/addresses are driven onto the address bus.  For CSR broadcast
writes it is the commander’s responsibility to sequence the data bus.   

In an I/O port transaction, the request is asserted (for at least one cycle)
followed by the command/address/bank number.  Two cycles after the C/A
cycle, the TLSB_CMD_ACK is given.  When the slave node is ready to
transfer on the data bus, it asserts TLSB_SEND_DATA and TLSB_SEQ-
<3:0>.  Five cycles later (assuming TLSB_HOLD is not asserted), the data
bus transfer takes place.

TLSB_SEND_DATA must be handled in a special way if two memory read
transactions are retired back-to-back and TLSB_HOLD is asserted in re-
sponse to the first TLSB_SEND_DATA.  The timing of TLSB_HOLD is
such that there is no time to prevent the second TLSB_SEND_DATA being
sent.  The second TLSB_SEND_DATA must be held asserted until
TLSB_HOLD is released.  TLSB_SEND_DATA is ignored in any cycle in
which TLSB_HOLD is asserted and for the first cycle after TLSB_HOLD
deassertion. 

6.5.1  Transactions

Table 6-7 summarizes the TLSB transaction types that the I/O port initi-
ates and responds to.  
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  Table 6-7 Transaction Types Supported by the I/O Port

The I/O port performs three primary functions on the TLSB:  

• DMA  transactions 

• Interrupt transactions

• CSR transactions

The I/O port uses the mailbox structure to access the XMI I/O bus and the
Futurebus+.  It uses the I/O window space to access the PCI bus.  

The I/O port can pipeline up to two transactions at a time.  Transactions
are serviced on a first in, first out basis regardless of their source or desti-
nation.  This applies to both CPU-initiated transactions and I/O DMA or
interrupt traffic. 

6.5.1.1 DMA Transactions

DMA transactions transfer data between memory and an I/O device.   They
are of the following types:

• Read transactions

• Interlocked Read/Unlock Write transactions

• Unmasked Write transactions

• Masked Write transactions

DMA Read Transactions

The I/O port supports octaword, hexword, and double hexword reads from
memory.  However, reads of all lengths look like double hexword reads on
the TLSB. 

Wrapped reads on hexword boundaries are permitted on the TLSB.  The
I/O port uses wrapped reads on the TLSB when doing so will decrease the
latency perceived by the I/O device that is requesting the data.  Whenever
an I/O bus adapter requests an octaword or hexword of data from an ad-
dress with bit <5> asserted, the I/O port issues a wrapped read on the
TLSB.  Table 6-8 shows the hose transaction lengths and memory ad-
dresses for which the I/O port uses a wrapped read. 

TLSB_CMD<2:0> Initiates Responds to Command

0
1
2
3
4
5
6
7

Yes
No
Yes
Yes
Yes
Yes
No1

Yes2

No
No
No
No
No
No
Yes
Yes

No-op
Victim
Read
Write
Read Bank Lock
Write Bank Unlock
CSR Read
CSR Write

1 If the I/O port is in debug mode, it can initiate CSR reads and writes.

2 The I/O port initiates Write Broadcast CSR transactions only (unless in debug mode).
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  Table 6-8 Wrapped Reads

Interlocked Read/Unlock Write Transactions

VAX CI-port architecture (VAXport) devices require Interlocked Read 
(IREAD) and Unlock Write (UWMask) transactions to access shared soft-
ware data structures.  On the XMI, an I/O device initiates an IREAD 
transaction to request exclusive access to a hardware-controlled primary
lock variable which, when acquired, allows the I/O device to modify a sec-
ondary lock variable. This primary lock is a mechanism to ensure that only
one device has access to the secondary lock at any given time.  

There is no corresponding primary hardware lock in the system.  However,
the I/O port, in conjunction with the XMI I/O adapter, provides the support
necessary for these VAXport devices to function in the system.

To accomplish this, a hardware protocol has been defined to handle the 
locking and unlocking of a software data structure in memory.  These data
structures are typically headers of queues that are shared by multiple de-
vices. Bit <0> of a memory quadword is defined as the "lock bit."  An as-
serted state of the lock bit indicates that the quadword is currently owned
by some device.

When the I/O port receives an IREAD command from the XMI I/O adapter,
it performs an atomic Read-Modify-Write of the corresponding hexword ad-
dress (a wrapped read occurs if appropriate).  Since there can be multiple
I/O ports on the TLSB, and the second I/O port (not in slot 8) has only one
request level, a new method is required for Read-Modify-Write transac-
tions. First a Read Bank Lock command is issued (this prevents access to
the bank). When the read data is returned by the memory or CPU cache,
the I/O port sends the requested quadword to the XMI I/O adapter.  Note
that IREADs are naturally aligned on quadword boundaries.   The I/O port
also sets the lock bit (bit <0>) in the quadword of interest and completes
the atomic operation with a Write Bank Unlock back to memory (this frees
up the bank). 

The reason the I/O port can "blindly" set the lock bit is as follows:  if the 
bit was previously set by another device, then setting it again would have
no effect.  If the bit was not set previously, then the bit will now be set and
the I/O device that initiated this IREAD will own the quadword in mem-
ory.  In either case, the I/O device will see the previous state of the lock bit
and know whether it did or did not get ownership of the quadword.

The I/O port does not have to perform any special functions to support the 
relinquishing of the lock variable by the I/O device.  A generic quadword
masked write on the XMI is converted to a generic octaword masked write
packet by the XMI I/O adapter, and the I/O port executes a standard Read-

Transaction Length
Byte Address 
<5:0-> Wrapped

Octaword
Octaword
Hexword
Hexword
Double hexword

0XXXXX1

1XXXXX
0XXXXX
1XXXXX
XXXXXX

No
Yes
No
Yes
No

1 X = Don’t care.
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Modify-Write on the TLSB.  The quadword of data that the I/O device
sends in the masked write command contains the original data with the
correct state of the lock bit, that is, bit <0> is clear.

NOTE:  There is no support for interlocked commands on the Futurebus+. 

DMA Unmasked Write Transactions

The I/O port supports unmasked double hexword writes to memory.  Un-
masked writes map directly to block (64-byte) writes on the TLSB. 

DMA Masked Write Transactions

The I/O port supports masked octaword, masked hexword, and masked
double hexword writes to memory.  The Read-Modify-Write sequence exe-
cuted by the I/O port for DMA masked write transactions is an atomic op-
eration between the I/O port and TLSB memory.

This operation is guaranteed to be atomic due to the TLSB memory archi-
tecture and two new TLSB bus commands.  The Read Bank Lock command
prevents access to the memory bank until the Write Bank Unlock com-
mand is issued to put the modified data back in memory.  It is impossible
for another node (that is, a CPU or another I/O port) to access that memory
bank anytime between the I/O port’s Read Bank Lock of the memory loca-
tion and the completion of the Write Bank Unlock back to memory.  The
Read Bank Lock command locks the bank by causing the memory to keep 
TLSB_BANK_AVL<n> deasserted for that bank until the Write Bank Un-
lock command is completed. 

Table 6-9 summarizes the types of writes from the I/O bus adapters sup-
ported by the I/O port and the corresponding TLSB transaction(s) per-
formed in response to the hose write packet.

  Table 6-9 I/O Adapter to Memory Write Types

6.5.1.2  Interrupt Transactions

The I/O port uses CSR write transactions to perform the interrupt func-
tion. First,  the I/O port looks up the CPU interrupt mask bits stored in the
TLCPUMASK register.  By taking the CPU interrupt mask bits and the
IPL level of the interrupt to be posted, the data to be used for the CSR
write transaction is generated.  The I/O port arbitrates for access to the
TLSB, then drives the interrupt destination mask and IPL (CPU mask and
interrupt level) onto the data bus for the first data cycle of the CSR write
transaction in broadcast space.  This data is written into the TLIOINTRx
register.  Which TLIOINTRx register is written is determined by the node
number of the I/O port module.  A node 4 module writes to TLIOINTR4,

Transaction Length Type TLSB Transaction(s)

Octaword
Hexword
Double hexword
Double hexword

Masked
Masked
Masked
Unmasked

Read Bank Lock (modify) then Write Bank Unlock
Read Bank Lock (modify) then Write Bank Unlock
Read Bank Lock (modify) then Write Bank Unlock
Write
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and so on.  Figure 6-10 shows the format of the data used by the I/O port in
the CSR write (interrupt) transaction. 

 Figure 6-10 Write CSR (Interrupt) Data Format

Only one CSR transaction may be active at a time.  Note that there is no 
TLSB_BANK_AVL signal for CSRs, as it is implied and does not appear on
the TLSB bus.   

CPUs monitor CSR write transactions to the TLIOINTRx to detect when
they have been targeted by an interrupt.  The I/O port may send up to 4
interrupts at IPL 14-16 (one per hose) and 5 interrupts at IPL 17 (one from
each hose and one for I/O port internal errors) to a given CPU.  These in-
terrupts,  at the same IPL for one CPU, would occur over separate writes
to the TLIOINTR register.  When the CPU is ready to service the inter-
rupt, it performs a CSR read of the TLILIDx register in the I/O port.  The
I/O port returns the contents of the appropriate TLILIDx register.

NOTE:  The "x" in TLILIDx corresponds to the register number that serves a given
interrupt priority level (IPL).  TLILID0 holds the IDENT vectors for IPL 14
interrupts, TLILID1 holds the IDENT vectors for IPL 15 interrupts, and so
forth. 

The hose ID can be included in bits <14:15> of the interrupt vector if de-
sired.  This optional mode of operation is enabled by setting bit <4> of the
IDPMSR register to one.  

From the I/O port’s perspective, there are two classes of interrupts.  The 
first class consists of interrupts generated by devices external to the I/O
port, that is through I/O devices on the XMI bus, Futurebus+, or PCI bus. 
The second class consists of interrupts generated by the I/O port itself.   In-
terrupts of the latter class serve to indicate error conditions detected by
the I/O port. 

The TLILID0, TLILID1, and TLILID2 registers are each a queue of four
possible pending interrupts at IPL 14, IPL 15, and IPL 16, respectively
(one interrupt per hose per IPL).  The vectors are returned to the CPUs in
the order in which the interrupts have arrived.  The TLILID3 register
queue is five deep, one IPL 17 interrupt per hose plus one internally gener-
ated I/O port IPL 17 error interrupt.

The I/O port generates a high-level interrupt (IPL 17) when it detects an 
error condition.  This interrupt may be either enabled or disabled by set-
ting or clearing  ICCNSE<INTR_NSES>.  The I/O port’s interrupt is the
most important possible within the I/O system and therefore takes prece-
dence over other IPL 17 interrupts.  This is implemented by having the I/O
port always return its IDENT vector first when a CPU reads the TLILID3 
register, even though there may be IPL 17 pending interrupts. 

It should be noted that at IPL 14, IPL 15, and IPL 16 the I/O port will
never post more than four interrupts to the CPUs at a given IPL (one per

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 4 3 08 7 6 5 12

BXB0814.AI

RSVD     IPL
<17:14> CPU Mask
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hose).  The I/O port, however, could post up to five interrupts to the CPUs
at IPL 17  (one per hose plus one I/O port generated error interrupt).

When a CPU reads a specific TLILIDx register that contains a valid vector,
the I/O port builds an interrupt status return packet and returns it on the
appropriate Down Hose to the I/O adapter module.  The one exception to
this rule is an I/O port internally generated error interrupt for which no
interrupt status return packet is required.

When a CPU reads a specific TLILIDx register that does not contain a 
valid vector, the I/O port returns zero to the CPU and takes no further ac-
tion.

The I/O port drives TLSB_HOLD to handle interrupt status return buffer
overflows and certain error conditions.   TLSB_HOLD is asserted to stall
the data bus transaction (for example, when a CPU does not yet know the
shared and dirty state of a block in its cache).

The TLSB_HOLD signal is asserted for one cycle and deasserted for one
cycle.  This two-cycle sequence can be repeated until the device is ready to
proceed with the data transaction.  Devices must disregard the value of
TLSB_HOLD received during the second cycle of each two-cycle sequence,
as it is Unpredictable.  An assertion of TLSB_HOLD is converted inter-
nally to look like a two-cycle assertion.

Shared and Dirty are valid in the No_Hold cycle, which is the cycle where
Hold could not be asserted, but the bus is not held by any device.  Data is
driven three cycles later (assuming TLSB_HOLD is not reasserted).

6.5.1.3 CSR Transactions

CPUs can access the I/O port’s internal registers through CSR read and
write transactions.  The I/O port’s responder logic uses the transaction ad-
dress to select the appropriate register.  The TLSB command determines
whether data is written into the selected register or the register’s contents
are queued for return to the CPU that made the request.  

A special class of transactions is initiated when the CPU issues a CSR
write command with the I/O port’s Mailbox Pointer Register (TLMBPR) as
the destination.  This operation initiates a mailbox transaction with an I/O
device on the XMI bus or the Futurebus+.  I/O window space transactions
with a device on the PCI bus are initiated by TLSB CSR reads and writes
to I/O window space.  

Mailbox Transactions

When a CPU successfully writes to the I/O port’s TLMBPR register using a 
write CSR command, the I/O port begins a mailbox transaction.  The  first
32 bytes of data are written by the CPU to inform the I/O port which I/O
bus is to be the recipient of the mailbox command, and to tell the remote
bus adapter what transaction is to be performed and what the write data
is, if any.  The second 32 bytes of data are reserved for the completion
status of the mailbox transaction.  Read data, if any, is deposited back into
memory, as are an error indication, a "done" flag, and device dependent
completion codes.  The I/O port serves as  an intermediary and forwards
the request to the target I/O bus.

The I/O port implements the mailbox pointer as a set of eight registers,
two per CPU.  The registers that comprise the mailbox pointer are serviced
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in strict first-come, first-served order.  Any other writes to the TLMBPR
register by a CPU that already has two mailbox transactions pending is
NO ACKed.  A  further constraint is that only one mailbox transaction can
be processed by the I/O port at any time.  All further mailbox transactions
in the TLMBPR queue are put on hold until the previous mailbox transac-
tion completes.  Completion of a transaction is signaled by a mailbox
status packet returned to the I/O port by an I/O bus adapter.

When a CPU loads a TLMBPR register in the I/O port, the I/O port reads
the mailbox structure from memory, loads it into the read/merge buffer,
and transmits it on the Down Hose as a Mailbox Command packet. 

Note that the I/O port forces bits <13> and <12> of the mailbox command
field to 10 binary, which is the hose code for a Mailbox Command packet. 
Therefore, these bits have no meaning to software.  This is the only modifi-
cation the I/O port makes to the Mailbox Command packet before trans-
mitting it on the Down Hose.

Eventually, the I/O port should receive a Mailbox Status Return packet on
the targeted Up Hose, which indicates that the Mailbox Command packet
has completed.  Upon receiving the Mailbox Status Return packet, the I/O
port does a Read-Modify-Write operation to merge the Mailbox Status Re-
turn packet into the mailbox structure fetched from memory and writes
the results back to memory. 

I/O Window Space Write Transactions

TLSB CSR writes mapped into the I/O port’s I/O window space are trans-
lated into I/O window write command packets that are sent to the specified
Down Hose.  This allows CSR and memory writes to occur on a remote bus
(that is, the PCI bus).

Once the window write command packet is sent down Turbo Vortex A (or
B) bus, the I/O port does a TLSB CSR broadcast write to the Window
Space Decrement Queue Counter Register (WSDQRn) and deallocates the
I/O window buffer that was used.  This signals the other commanders on
the TLSB that an I/O window buffer has freed up and that the I/O port can
accept another I/O window space transaction command.

I/O Window Space Read Transactions

TLSB CSR reads mapped into the I/O port’s I/O window space are trans-
lated into I/O window read command packets that are sent to the specified
Down Hose.  This allows CSR and memory reads to occur on a remote bus
(that is, the PCI bus).

When the window read command packet is sent down the Turbo Vortex A
(or B) bus, the I/O port does a TLSB CSR broadcast write to the  Window
Space Decrement Queue Counter Register (WSDQRn) and deallocates the
I/O window buffer that was used.  This signals the other commanders on
the TLSB that an I/O window buffer has freed up and that the I/O port can
accept another I/O window space transaction command.

When the I/O port has been loaded with an error free window Read Data
Return packet from the Up Hose, the I/O port generates a TLSB CSR
(broadcast) write to the CSR Read Data Return Data Register in CSR
broadcast space.  This returns the data for the I/O window read transac-
tion.
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If the Error bit is set in the window Read Data Return packet, the I/O port
generates a TLSB CSR (broadcast) write to the CSR Read Data Return Er-
ror Register in CSR broadcast space.  Data written is Unpredictable.  The
flow is the same as in the normal case.

Extended NVRAM Write Transactions

The I/O port compares all extended NVRAM writes targeted to it against
its Down Hose Range registers.  If a match occurs, the I/O port assembles a
Memory Channel write packet and transmits it to a remote I/O adapter on
the targeted Down Hose.

The Memory Channel write transaction is used to deliver a block of data,
along with its TLSB physical address, to the remote I/O bus.  This transac-
tion is used to support Prestoserve NVRAM writes.

Flow control is maintained by a pair of Memory Channel queue counters in
each TLSB commander node.  Each commander node increments its associ-
ated Memory Channel queue counters whenever it detects a memory write
on the TLSB with TLSB_ADR<4:3> having a nonzero value.

When the I/O port empties the extended NVRAM write from its internal
buffer, it issues a CSR write command to the Memory Channel Decrement
Queue Counter Register (TLRMDQRn) in CSR broadcast space.  The I/O
port does not ACK the write broadcast nor does it generate the associated
data cycle.  This causes each commander node to decrement its associated
Memory Channel queue counter. The I/O bus adapter acknowledges each
Memory Channel write packet with a window write status return packet. 
The packet provides flow control.

When the I/O port receives a window Write Status Return packet on the
Up Hose, it decrements its remote adapter node buffer counters and dis-
cards the packet.

If the Memory Channel write address range does not fall within the range
of an associated valid outgoing Down Hose Range register, the I/O port dis-
cards the transaction and sets ICCNSE<3> (RMNXM).  The I/O port then
generates an interrupt on IPL 17, if ICCNSE<31> (INTR_NSES) is set and
ICCMSR<5> (RMNXM_DSBL) is clear.

6.5.2  TLSB Arbitration

TLSB arbitration is performed over a set of ten priority lines.  TLSB_ REQ
<7:0> are variable-priority lines that are assigned to nodes 7–0,  respec-
tively.  TLSB_REQ8_HIGH and TLSB_REQ8_LOW are fixed priority lines
that are assigned to node 8.  Fairness among the commanders in nodes 0–7
is achieved through dynamic reallocation of priority levels of each request
line.  At power-up, or following a reset sequence, the relative priority of 
TLSB_REQ<7:0> is initialized according to the device’s node ID.

Node 8 (I/O port specific) uses a different scheme from the other nodes. 
The node 8 I/O port has available to it both the lowest (TLSB_REQ8_LOW) 
and the highest (TLSB_REQ8_HIGH) priority levels.  The I/O port in node
8 has four arbitration modes.  These modes are described in the following
section. 
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6.5.2.1 Node 8 I/O Port Arbitration Mode Selection

Several mode-selectable lockout avoidance algorithms are implemented to
guarantee that the node 8 I/O port will eventually allow other nodes to ac-
cess a given memory bank on the TLSB while allowing software to fine-
tune I/O performance.  A commander node is deemed "locked out" if it can-
not access a given memory bank for a long period of time.  The default
"minimum latency" mode guarantees correct TLSB operation with optimal
node 8 I/O port performance.  Selection of the various arbitration modes is
made through the ICCMSR register. 

Minimum Latency Mode

This mode allows an I/O port in node 8 to gain access to the TLSB as
quickly as possible.  Minimum latency is obtained by normally using
TLSB_REQ8_HIGH to arbitrate for the TLSB bus and only toggling be-
tween TLSB_REQ8_HIGH and TLSB_REQ8_LOW when requesting back-
to-back transactions to the same bank. This guarantees that the I/O port
cannot cause a bank lockout while allowing the I/O port to arbitrate
mainly at TLSB_REQ8_HIGH. 

There are 16 flops, one for each bank, that are used to determine if the I/O
port should arbitrate for the target bank at TLSB_REQ8_HIGH or
TLSB_REQ8_LOW. When the I/O port wins the bus for a given bank, it
toggles the corresponding flop so that the next arbitration for that bank
will be performed at the alternate request level. 

If the I/O port loses arbitration, or if a potential request cycle for a given
bank is seen, the I/O port switches to TLSB_REQ8_HIGH.  A potential re-
quest cycle is any TLSB cycle in which TLSB_ARB_SUP and TLSB_REQ8
_HIGH are deasserted, and TLSB_BANK_AVL<n> is asserted.  Also, the
cycle is not an arbitration cycle.  There will be a minimum of four cycles
before the I/O port switches to TLSB_REQ8_HIGH to allow the look-back-
two logic to resolve any "false" arbitrations that may have delayed a "real"
arbitration from getting the bus. 

The I/O port always uses TLSB_REQ8_HIGH when arbitrating for the
Write Bank Unlock portion of a Read-Modify-Write operation.  Figure 6-11
shows the flow for this arbitration.  

The example timing diagram in Figure 6-12 shows the I/O port requesting
the TLSB for the second transaction of back-to-back transactions to the
same bank.  Since the first transaction (not shown in the diagram) was re-
quested using TLSB_REQ8_HIGH, the second transaction is requested in
cycles 3–6 using TLSB_REQ8_LOW.  If the I/O port has not won the bus
by cycle 7, it switches to TLSB_REQ8_HIGH.  
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 Figure 6-11 Minimum Latency Mode

Note that NEXT_REQ_HI<n> would have become asserted in cycle 6 even
if the I/O port did not request the bus in cycles 3–6.  This happens because
cycle 3 was considered a "potential request" cycle whether a TLSB node as-
serted its request in cycle 3 or not.  As a result, if the I/O port were not to
request the TLSB until cycle 7 or later, it would be done using
TLSB_REQ8_HIGH. 

 Figure 6-12 Minimum Latency Mode Timing Example

Toggle 50% High/50% Low Mode

This mode allows an I/O port in node 8 to toggle between TLSB_REQ8_
HIGH and TLSB_REQ8_LOW when arbitrating for the TLSB.  When the
I/O port wins the bus for a given bank, it toggles the corresponding flop so
that the next arbitration for that bank is performed at the alternate re-
quest level.  If the I/O port loses arbitration while using TLSB_REQ8_
LOW to vie for the TLSB bus,  the I/O port switches to TLSB_REQ8_
HIGH.  There is a minimum of four cycles before the I/O port switches to
TLSB_REQ8_HIGH to allow the look-back-two logic to resolve any "false"
arbitrations that may have delayed a "real" arbitration from getting the
bus.  The I/O port always uses TLSB_REQ8_ HIGH when arbitrating for
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the Write Bank Unlock portion of a Read-Modify-Write operation. Figure
6-13 shows the flow for this arbitration mode. 

 Figure 6-13 Toggle 50% High/50% Low Mode

Fixed Low Mode

This mode causes an I/O port in node 8 to use TLSB_REQ8_LOW when re-
questing the TLSB except when arbitrating for the Write Bank Unlock por-
tion of a Read-Modify-Write operation which is always done using
TLSB_REQ8_HIGH.  This mode is not recommended for normal operation
as other TLSB nodes could potentially lock out the I/O port from gaining
access to the TLSB. 

Fixed High Mode

This mode causes an I/O port in node 8 to always use TLSB_REQ8_HIGH
when arbitrating for the TLSB.  This mode is not recommended for normal
operation as the I/O port could potentially lock out other nodes from ac-
cessing memory. 

6.5.2.2 Read-Modify-Write

The Write Bank Unlock portion of a slot 8 I/O port Read-Modify-Write op-
eration is always performed at high priority to guarantee minimum la-
tency for the node 8 I/O port.  The Read Bank Lock/Write Bank Unlock
command pair is used to guarantee atomicity for Read-Modify-Write opera-
tions for I/O ports in any slot.  The other ICCMSR selectable arbitration
modes permit fine-tuning of the node 8 I/O port performance relative to
other bus traffic.  There is also a fixed high-priority mode.  The node 8 I/O
port does not normally operate in this fixed high-priority mode unless the
system software explicitly programs the node 8 I/O port to do so through
ICCMSR<0>.

NOTE:  The second I/O port, if present, always uses the single request line that is
associated with the slot it occupies (TLSB_REQ<7:4>).

In general, Read-Modify-Writes are costly operations to perform and re-
quire attention to be paid to cache coherency.  This is why the Bank Lock 
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commands are necessary to ensure an atomic operation and maintain
cache coherency.  

6.5.2.3 Bank Collision Effect on Priority

A bank collision occurs when two commanders request the same bank, the
first one wins, the second one gets the bus 2 cycles later and finds that it is
not allowed to access that bank.  Since it is too late to withdraw the re-
quest, a no-op command must be placed on the address bus.  Any time  a
no-op is put on the bus the arbitration is considered false.  Because relative
bus priorities are updated only when a real command is acknowledged on
the bus, the false arbitration does not cause that node to lose priority.

6.5.2.4 Look-Back-Two

The look-back-two mechanism is needed to prevent a low-priority device
from being held off by higher priority devices that are false (or early) arbi-
trating.  This is done by assigning a higher priority to requests that have
been continuously asserted for more than two cycles (real requests).

6.5.2.5 Arbitration Suppress

To limit the number of outstanding transactions on the bus, a module can
assert ARB_SUP.  This prevents devices from arbitrating for the address
bus until ARB_SUP is deasserted.  If ARB_SUP is asserted during an arbi-
tration cycle,  the arbitration is allowed to complete and any further arbi-
trations are suppressed.  This has an adverse impact on the minimum la-
tency requirement for the node 8 I/O port.

The number of outstanding transactions is selected by setting the ICC-
MSR<SUP_CTL> bits.  This causes the I/O port to assert TLSB_ARB_SUP
after 2, 4, 8, or 16 (default) outstanding transactions. 

6.5.3  Error Detection Schemes

The TLSB uses ECC protection for all memory and CSR data cycles, odd
parity protection on all command/address cycles, and transmit check logic 
by all nodes that are responsible for driving the bus.

All command/address cycles are protected by two odd parity bits.
TLSB_ADR<30:5> are protected by the first parity bit. 
TLSB_ADR<39:31>, TLSB_ADR<4:3>, TLSB_CMD<2:0>, and
TLSB_BANK_NUM<3:0> are protected by the second parity bit. 
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6.6  Hose Interface

The I/O port communicates with the I/O bus adapters over dual-cable
buses.   These buses are called hoses.  The I/O subsystem architecture sup-
ports four separate I/O bus adapters, as shown in Figure 6-1.

Each hose consists of two separate unidirectional interconnects:  a Down
Hose, which transmits command/address and data from the I/O port to the
I/O bus adapter module; and an Up Hose, which transmits command/ad-
dress and data from the I/O bus adapter module to the I/O port.

Both the Up Hose and the Down Hose use clock forwarding.  That is, the 
clock is transmitted on the hose at the data source end and is used to 
strobe the data into a receiving register at the receiving end.

The Down Hose implements a 32-bit parity protected data bus.  The Up
Hose implements a 36-bit parity protected data/control bus.

The I/O port supports three types of I/O bus adapter modules:

• XMI adapter (DWLMA) module – 32 ns clock cycle time

• Futurebus+ adapter (DWLAA) module –  25 ns clock cycle time 

• PCI bus adapter (DWLPA) module –  30 ns clock cycle time 

The I/O port derives the Down Hose clock from the Up Hose clock.  Thus,
both the Down Hose clock and the Up Hose clock run at the same fre-
quency (although they are asynchronously skewed). 

6.6.1  Hose Protocol 

The I/O port and the I/O bus adapter map transactions on their respective
buses into hose protocol packets.  The protocol includes operations for
mailbox I/O, window I/O (direct CSR access), device interrupts, and DMA.

Five packet types are transmitted on the Down Hose:

• Mailbox Command packets 

• Window Read/Write Command packets 

• DMA Read Data Return packets 

• INTR/IDENT Status Return packets 

• Memory Channel Write packets

Mailbox Command packets are generated as a result of a CPU action.  The
I/O port must assure that only one Mailbox Command packet is issued on
the Down Hose at a time.  The I/O port must receive a Mailbox Status Re-
turn packet on the Up Hose before it will issue another Mailbox Command
packet.  Therefore, as long as the I/O adapter reserves space in its Down
Hose FIFO to store at least one Mailbox Command packet, its Down Hose
mailbox FIFO will never overflow.

Window Read/Write Command packets result from CPU accesses.  The I/O 
bus adapter informs the I/O port of the number of outstanding Window
Read/Write Command packets it can accept without overflowing (up to 15).
This limit (that is, the total number of buffers) is passed in each window-
related Up Hose packet.  The I/O port maintains a counter for each hose. 
Each time the I/O port transmits a Window Read/Write Command packet
on the Down Hose, it  increments that hose’s counter.  Each time the I/O
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port receives a Window Status Return packet on the Up Hose, it decre-
ments that hose’s counter.  The I/O port does not transmit window
read/write command packets on the Down Hose when that hose’s counter
equals zero.  Thus, the I/O adapter’s Down Hose window FIFO never over-
flows.

DMA Read Data Return packets are a result of DMA read packets trans-
mitted by the I/O adapter on the Up Hose.  Therefore, if the I/O adapter
always reserves a Down Hose FIFO to receive the resulting DMA Read
Data Return packet for every DMA read packet it transmits on the Up
Hose, its Down Hose FIFO will never overflow. 

INTR/IDENT Status Return packets are a result of INTR/IDENT packets
transmitted by the I/O adapter on the Up Hose. Therefore, if  the I/O
adapter always reserves a Down Hose FIFO to receive the resulting INTR/
IDENT Status Return packet for every  INTR/IDENT packet it transmits
on the Up Hose, its Down Hose FIFO will never overflow. 

The advantage of this Down Hose protocol is that the I/O port can transmit 
packets on the Down Hose as fast as it is capable, thus maximizing the 
overall Down Hose performance.  

The Up Hose is flow controlled through the DECPKTCNT (Decrement
Packet Count) signal.  The I/O bus adapter module keeps count of how
many packets it has transmitted across the Up Hose at any given time. 
The I/O bus adapter must know how many packets it can send before the
I/O port’s buffers are filled.  All I/O bus adapters allow this limit to be pro-
grammable.  

Each time the I/O port removes an Up Hose packet from its  buffer, it as-
serts DECPKTCNT for one Down Hose cycle.  The I/O adapter module uses
this signal to decrement its packet counter so that it can keep a running
count of how many free buffers there are in the I/O port at any given time. 
As long as the count is less than the limit, the I/O bus adapter module can
transmit an Up Hose packet. 

The advantage of this Up Hose protocol is that it avoids the round trip de-
lay of acknowledeging each packet before the next one can be sent. 

On both the Up Hose and the Down Hose, once a packet transmission is 
started, longwords must be transmitted over the hose contiguously, until
the last longword of the packet has been transmitted.  Deassertion of the
Data Valid signal marks the end of the packet.  Idle cycles or any interrup-
tion of the data flow that occurs before the end of the packet results in a
sequence error for that packet. 

6.6.2  Window Space Mapping

The hose provides two sets of protocol packets to support direct CPU access
to I/O bus address space.  The concept of sparse and dense address
mappings is used in the hose protocol to accommodate the PCI bus, which
supports byte and word accesses, and multiple distinct address spaces. 
The additional protocol provides the CPU with multiple windows into the
PCI address spaces, using sparse and dense type protocol packets as ap-
propriate.

Three windows are defined for a sparse mapping, and one window for
dense mapping.
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6.6.2.1 Sparse Address Mapping

A sparse address space uses low-order TLSB address bits to encode the
size of the access and its byte offset.  The I/O port interprets an Alpha
physical address in the window space as:

• PA<xx:5> - byte-aligned remote I/O bus address

• PA<4:3> - length of the transaction

• PA<2:0> - ignored

The interpretation of the length field and the number of significant ad-
dress bits are I/O bus adapter and I/O port dependent.  However, the
sparse space packets provide only 27 bits to hold the remote I/O bus ad-
dress.  A sparse space packet can contain up to one quadword of data.

6.6.2.2 Dense Address Mapping

A dense address space supports access only to longword-aligned locations. 
Since low-order TLSB address bits are treated normally, addresses that
are contiguous on the remote I/O bus are contiguous in TLSB space.  This
allows CPU read and write merge buffers to accumulate multiple longword
accesses before passing them to the I/O port.  The dense space hose packets
can therefore accommodate up to eight longwords of data, with mask bits
to indicate which bytes are valid.  The dense space packets support up to
32 bits of remote I/O bus address.

6.6.3  Hose Signals

Tables 6-10 and 6-11 list the signals of the Up Hose and the Down Hose,
respectively.  The description of the hose signals follows the usual conven-
tion:

• High true signal
1=asserted=true=high= +5 V

• Low true signal
1=asserted=true=lo= 0 V
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  Table 6-10 Down Hose Signals

  Table 6-11 Up Hose Signals

Table 6-12 shows the UPCTL<3:0> L encoding.

Signal Description

DND<31:0> L   

DNP L

DNDATAVAL L  

DNCLK H 

DECPKTCNT L 

DNRST L 

ERROR L

Down Data Lines.  Asserted by the I/O port.  Carry command/address,
data, or transaction status information.  

Down Parity.  Carry odd parity across DND<31:0>.  

Down Data Valid.  This line is asserted by the I/O port for each valid 
cycle of a Down Hose packet.  

Down Clock.  The clock signal sent by the I/O port to the I/O bus
adapter.  

Decrement Packet Count.  Asserted by the I/O port to the I/O bus
adapter to indicate that an Up Hose packet has been removed from the
I/O port’s buffer. 

Down Reset.  Asserted by the I/O port for at least 128 nanoseconds to
reset the logic of the I/O bus adapter.  

Error.  Used with CBLOK and PWROK to indicate the status of the
hose (see Table 6-13). 

Signal Description

UPD<31:0> L 

UPCLK H 

UPCTL<3:0> L 

UPDATAVAL L

UPP L

UPRST L 

CBLOK L

PWROK H

Up  Data Lines.  Asserted by the I/O port.  Carry command/address,
data, or transaction status information.  

Up Clock.  The clock signal sent by the I/O bus adapter to the I/O port.  

Up Control Lines.  Indicate the packet type during the first hose cycle
of a packet and the mask bits during data cycles of a DMA masked write
packet.  The codes for the packet types and mask bits are given in Table
6-12.

Up Data Valid.  Asserted by the I/O adapter for each valid cycle of an
Up Hose packet.  

Up Parity.  Carries odd parity parity across UPD<31:0> and UP-
CTL<3:0>.  

Up Reset.  If asserted by the I/O bus adapter, causes CCL RESET to be
cycled, thus causing the entire system to be reset.  This allows remote
boot capability. 

Cable OK.  Used with ERROR and PWROK to indicate the status of the
hose (see Table 6-13).

I/O Adapter Power OK.  Used with CBLOK and ERROR to indicate
the status of the hose (see Table 6-13).
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  Table 6-12 UPCTL<3:0> Encoding

Table 6-13 shows the information given by the hose status signals.

6.6.4  Hose Packet Specifications

The packet types are different for each hose because the nature of  infor-
mation sent through the Up Hose (from I/O to CPU or memory) differs
from the one sent through the Down Hose (from CPU or memory to I/O). 
Most of the data transferred by I/O to and from memory is actual data
such as disk blocks and messages from terminals.  Most of the data  trans-
ferred by CPUs to and from I/O devices is control and status information.  

6.6.4.1 Down Hose Packet Specifications

During the first cycle of a Down Hose packet, a packet type command field
is encoded into DND<15:11> by the I/O port.  These bits indicate the type
of packet being transmitted across the Down Hose.  The codes for the
packet types are given in Table 6-14. 

UPCTL<3:0> Meaning 

0001
0010
0100
0101
0111
1000
1100
1101
1110

First Hose Cycle of a Packet

Packet Type1 

DMA Read
IREAD
Mailbox Status Return
DMA Unmasked Write W/Data
DMA Masked Write W/Data
INTR/IDENT
Window Write Status
Dense Window Read Return
Sparse Window Read Return

Data Cycles of a DMA Masked Write Packet

0001
0010
0100
1000
1111

Mask2

UPD<7:0> are valid
UPD<15:8> are valid
UPD<23:16> are valid
UPD<31:24> are valid
UPD<31:0> are valid

1 All other UPCTL<3:0> packet type codes are reserved and will cause an Illegal Packet
Error when detected by the I/O port.

2 Any combination of mask bits can be used.  The table simply attempts to show the rela-
tionship between UPCTL<3:0> lines and the bytes they mask.  
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  Table 6-13 Hose Status Signals

  Table 6-14 Down Hose Packet Type Codes

Signals                                                        Meaning

I/O port interrupts the CPU(s) on the indicated transitions, if interrupts are enabled

CBLOK L PWROK H ERROR L

X

X

L

L -> H

H -> L

H

X

X

H -> L

I/O adapter just finished powering up - Adapter ready
to receive and process packets.  I/O port generates in-
terrupt to CPU(s) on transition of PWROK.

I/O adapter detected power failure.  I/O port generates
interrupt to CPU(s) on transition of PWROK.

I/O adapter detected a fatal error.  I/O adapter enters
quiescent state and ignores further hose traffic.  I/O
port generates interrupt to CPU(s) on high-to-low tran-
sition of ERROR.

Meaning of hose signals when read through the I/O port’s status register

CBLOK L PWROK H ERROR L

L

H

L

L

H

X

L

H

H

X

X

L

I/O adapter ready - Adapter ready to receive and proc-
ess packets.

Hose cable is disconnected or bad, or I/O adapter is not
plugged in.

Hose cable OK - No power on I/O adapter module.

I/O adapter detected a fatal error or I/O port is in in-
ternal diagnostic loopback mode.

DND<15:11>1 DND<1:0>2 Packet Type

00000
00010
XX10X
00110
01110
00110
01110
11110

XX
XX
XX
00
00
01, 10, 11
01, 10, 11
XX

INTR/IDENT Status Return
DMA Read Data Return
Mailbox Command
Dense Window Read Command 
Dense Window Write Command 
Sparse Window Read Command 
Sparse Window Write Command 
Memory Channel Write

1 Encoding during first cycle of Down Hose packet.

2 The SPC<1:0> field ( DND<1:0> ) of the first cycle of a window command packet deter-
mine whether it is dense or sparse.  If this field is 00, then it is dense.  If this field is not
00, then it is sparse.  
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Mailbox Command Packet

The Mailbox Command packet is used by processors to access control and 
status registers in adapters on the XMI and Futurebus+.

Status for the Mailbox Command packet is returned in a separate packet 
on the Up Hose called a Mailbox Status Return packet.

Only one Mailbox Command packet can be issued at a time by the I/O port,
regardless of the Down Hose for which it is destined.  A Mailbox Status 
Return packet must be sent on the Up Hose (for the currently outstanding
Mailbox Command packet) before the I/O port can issue another Mailbox
Command packet down any hose. 

All Mailbox Command packets that are writes can be byte masked.  Any
combination of mask bits is allowed by the Down Hose.  However, the I/O
bus adapter may or may not support this capability.  The mask bits are
Mask Disable bits as defined in the Alpha SRM and, therefore, writing
them to a 1 disables the byte from being written. Refer to the Alpha SRM
for more information on the mailbox structure in memory. 

The Mailbox Command packet is supported by the Mailbox Only, I/O Win-
dow, Full, and Memory Channel variants of the hose protocol.

Figure 6-14 shows the Mailbox Command packet.

 Figure 6-14 Mailbox Command Packet

Table 6-15 gives the description of the Mailbox Command packet.
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DND<31:0>
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  Table 6-15 Mailbox Command Packet Description

DMA Read Data Return Packet

The DMA Read Data Return packet returns data previously requested by
an  Up Hose DMA read packet.  Figure 6-15 shows the DMA Read Data
Return packet.

 Figure 6-15 DMA Read Data Return Packet

Field Description

Clock 1, <31:14> Command <31:14> is specific to the remote bus  (for example, XMI or
Futurebus+) rather than the I/O port, and contains the remote  bus opera-
tion. It can include fields such as read/write, address only, address width,
data width, and so on. 

Clock 1, <13:12> Command <13:12> bits are forced by the I/O port to indicate a mailbox com-
mand packet (for example, 10 bin). 

Clock 1, <11:0> Command<11:0> is specific to the remote bus (for example, XMI or
Futurebus+), rather than the I/O port, and contains the remote  bus opera-
tion. It can include fields such as read/write, address only, address width,
data width, and so on.

Clock 2, <31:24> The hose number indicates to which Down Hose the Mailbox Command
packet is transmitted. 

Clock 2, <23:8> These bits are always zero. 

Clock 2, <7:0> MASK.  Provides the mask bits for the write data when the Mailbox Com-
mand packet is a write.  For Mailbox  Command packets that are reads, the
MASK and Write Data fields are Unpredictable. 

Clock 3 through
4, <63:0> 

Address <63:0> of the I/O target address field.  The I/O address to be writ-
ten is located in the I/O target address fields.  Sixty-four bits of address are
supported by the Down Hose.  However, the I/O bus adapter may or may not
support this address range.

Clock 5 through
6, <63:0>

Write Data <63:0> of the Write Data Field.  The Mailbox Command packet
supports a quadword data length write in the  Write Data field, but the I/O
bus adapter module might elect to use only the lower longword (Write Data
<31:0>) if it only supports longword access to CSR space. 

Clock 7 through
8, <63:0>

These bits are always zero. 

31 24 23 22 13 12 11 10 08 7

TAG <7:0> E 0 0 0 0 0 0 0 0 0 0 1 0 LEN 0 0 0 0 0 0 0 0

BXB-0641-93

DND <31:0>Clock cycle
14

LWDATA1 <31:0>

LWDATA2 <31:0>

LWDATA15 <31:0>

LWDATA16 <31:0>
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The DMA Read Data Return packet is supported by the Mailbox Only, I/O
Window, Full, and Memory Channel variants of the hose protocol.

Table 6-16 gives the description of the DMA Read Data Return packet. 

  Table 6-16 DMA Read Data Return Packet Description

DMA Read Data Return Packet with Error

If the I/O port detects an error while trying to process a DMA read packet, 
it logs the error and generates an error interrupt to the CPU(s), if inter-
rupts are enabled.  A DMA Read Data Return packet with the error bit set
is sent across the Down Hose if not prohibited by the error condition.  The
packet is one hose cycle long.  It is shown in Figure 6-16.  Any Up Hose or
Turbo Vortex errors detected by the I/O port prevent the I/O port from re-
turning a DMA Read Data Return packet.  If an error occurs after the
DMA Read packet has successfully made it to the IDR and ICR chips, a

Field Description

Clock 1, <31:24> Tag <7:0> associates the DMA read data return with the corresponding
DMA Read packet on the Up Hose.  The tag is generated by the I/O bus
adapter and sent to the I/O port as part of a DMA Read packet.

Clock 1, <23> The Error bit.  Set if an error has been detected on this packet.

Clock 1, <22:14> These bits are always zero. 

Clock 1, <13:12> DND<13:12> of the first cycle of a DMA Read Data Return packet is driven
with a 01 by the I/O port to indicate the packet type to the I/O adapter.

Clock 1, <11> Is always zero. 

Clock 1, <10:8> The length field indicates the length of this packet.  A DMA Read Data Re-
turn packet has three packet lengths:  octaword, hexword, and double
hexword.  However, the length code for the octaword packet may indicate
that only a longword or quadword of data is needed.  This length code is
looped back from the initiating DMA read packet and allows the I/O bus
adapter to use the length code to extract the correct amount of information
from the octaword DMA Read Data Return packet. 

Length
Code Packet Data Length

Data Valid in
Packet

Number of Down
Hose Cycles 
Required

001
010
011
000
100

Octaword1

Octaword1

Octaword
Hexword
Double hexword

Longword
Quadword
Octaword
Hexword
Double hexword

  5
  5
  5
  9
17

1 Even though the length code in an octaword packet may be for a  longword or quadword,
the parity across the hose must be good for all  cycles of the DMA Read Data Return packet. 

Clock 1, <7:0> Are always zero. 

Clock 2 through
17, <31:0> 

Return data longwords 0 through 15 (1 to 16), respectively. 
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DMA Read Data Return packet with the error bit set is returned across the
Down Hose. 

 Figure 6-16 DMA Read Data Return Packet with Error

Table 6-17 gives the description of the DMA Read Data Return packet with
error. 

  Table 6-17 DMA Read Data Return Packet with Error Description

INTR/IDENT Status Return Packet

The INTR/IDENT Status Return packet returns the status for an 
INTR/IDENT packet previously transmitted on the Up Hose.  The 
INTR/IDENT Status Return packet is a flow control message.  Receipt of 
an INTR/IDENT Status Return packet by an I/O bus adapter allows the
I/O  bus adapter to issue another INTR/IDENT packet to the I/O port at
the IPL returned in the INTR/IDENT Status Return packet. 

If the I/O port detects an error while trying to process an INTR/IDENT 
packet, it logs the error and generates an error interrupt to the CPU.  An
INTR/IDENT Status Return packet is sent across the Down Hose so the
I/O bus adapter can still clear its INTR pending bit, if not prohibited by
the error condition.  Any hose or Turbo Vortex errors detected by the I/O
port prevents the I/O port from returning an INTR/IDENT Status Return
packet.  If the CSR write to the TLIOINTR register in TLSB  broadcast
space (to post the interrupt to the CPU) fails, or if the C/A cycle of the CPU
read of the I/O port’s TLILID register has a  parity error, the I/O port does

31 24 23 22 13 12 11 10 08 7

TAG <7:0> E 0 0 0 0 0 0 0 0 0 0 1 0 LEN 0 0 0 0 0 0 0 0

BXB-0642-93

DND <31:0>

 1



 Clock cycle
14

Field Description

Clock 1, <31:24> The TAG<7:0> associates the DMA Read Data Return with the correspond-
ing DMA Read packet on the Up Hose.  The tag  is generated by the I/O bus
adapter and sent to the I/O port as part of a DMA Read packet.

Clock 1, <23> The Error bit.  Set if an error has been detected on this packet.

Clock 1, <22:14> Are always zero. 

Clock 1, <13:12> DND<13:12> of the first cycle of a DMA Read Data Return packet is driven
with a 01 binary by the I/O port to indicate the packet type to the I/O
adapter.

Clock 1, <11> Is always zero. 

Clock 1, <10:8> The length field indicates the length of an error free DMA Read Data Re-
turn packet.  It has no meaning for this packet.

Clock 1, <7:0> Are always zero. 
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not return an INTR/IDENT Status Return packet.  Figure 6-17 shows the
INTR/IDENT Status Return packet.

 Figure 6-17 INTR/IDENT Status Return Packet

Table 6-18 gives the description of the INTR/IDENT Status Return packet.

  Table 6-18 INTR/IDENT Status Return Packet Description

Sparse Window Read Command Packet

The Sparse Window Read Command packet is used by processors to read 
control and status registers in adapters on remote I/O buses that support
direct I/O window space.

The data for a Sparse Window Read Command packet is returned to the
I/O port on the Up Hose through a Sparse Window Read Data Return
packet. Figure 6-18 shows the Sparse Window Read Command packet.

 Figure 6-18 Sparse Window Read Command Packet

Table 6-19 gives the description of the Sparse Window Read Command
packet.  

31 20 19 15 0

0 0 0 0 0 0 0 0 0 0 0

BXB-0643-93

DND <31:0>

 1



 Clock cycle
16

0 0 0 0IPL 0 0 0 00 0 0 00 0 0 0

Field Description

Clock 1, <31:20> Are always zero. 

Clock 1, <19:16> Interrupt priority level of  the interrupt request.  Bits <19:16> correspond
to IPL17 to IPL14,  respectively.  Only one IPL bit will  be set per packet. 

Clock 1, <15:14> Are always zero. 

Clock 1, <13:12> The I/O port drives DND<13:12> of a INTR/IDENT Status Return packet
with 00 to indicate the packet type to the I/O adapter.

Clock 1, <11:0> Are always zero. 

31 30 29 26 25 0

0 0 VID Zero Zero SPC

BXB-0571-94

1


2


Clock cycle DND <31:0>

Byte Aligned Address <26:0>

15 14 13 12 11 12

1 10

34

LEN

27

Zero
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  Table 6-19 Sparse Window Read Command Packet Description

Sparse Window Write Command Packet

The Sparse Window Write command packet is used by processors to write 
control and status registers in adapters on remote I/O buses that support
direct I/O window space.

A Sparse Window Write command packet must be acknowledged by a Win-
dow  Write Status Return packet to the I/O port on the Up Hose.   This
packet is supported by the I/O Window, Full, and Memory Channel vari-
ants of the hose protocol. 

Figure 6-19 shows the Sparse Window Write Command packet.

Field Description

Clock 1, <31:30> Are always zero. 

Clock 1, <29:26> Virtual ID of the TLSB commanding node.  The VID indicates which CPU
is requesting the data.  The VID is returned on the Up Hose in all window
return data/status packets so that the I/O port can target the requesting
commanding node with the data or status of the transaction.

Clock 1, <25:15> Are always zero. 

Clock 1, <14> Indicates read/write:  0 is read, 1  is write.  For this packet bit <14> is al-
ways zero.

Clock 1, <13:12> Command field.  The field value is 11 for all window command packets. 

Clock 1, <11:4> Are always zero. 

Clock 1, <3:2> Byte length field, LEN<1:0>.  The Length field decode is specific to the tar-
geted remote I/O adapter.

Clock 1, <1:0>  SPC<1:0> field.  The space field indicates which PCI address space is in
use as follows:

SPC<1:0> PCI Address Space

00
01
10
11

Dense memory space (not used with this packet)
Sparse memory space 
Sparse I/O space 
Sparse configuration space 

Clock 2, <31:27> Byte-aligned address for the targeted remote I/O adapter.  Bits <31:27>
are always zero.

Clock 2, <26:0>  Byte-aligned address <26:0> for the targeted remote I/O adapter. 
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 Figure 6-19 Sparse Window Write Command Packet

Table 6-20 gives the description of the Sparse Window Write Command
packet.  

Dense Window Read Command Packet

The Dense Window Read Command packet is used by processors to read 
memory space in adapters on remote I/O buses that support direct I/O 
window space.

The data for a Dense Window Read Command packet is returned to the I/O
port on the Up Hose through a Dense Window Read Data Return packet. 
Figure 6-20 shows the Dense Window Read Command packet.

Dense Window Write Command Packet

The Dense Window Write Command packet is used by processors to write 
memory space in adapters on remote I/O buses that support direct I/O 
window space.

A Dense Window Write Command packet must be acknowledged by a Win-
dow Write Status Return packet to the I/O port on the Up Hose.  Figure
6-21 shows the Dense Window Write Command packet.

31 30 29 26 25 0

0 0 VID Zero Zero SPC

BXB-0570-94

1


2


3


4

Clock cycle



DND <31:0>

Byte Aligned Address <31:0>

15 14 13 12 11 12

1 11

34

LEN

Data Longword 0

Data Longword 1
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  Table 6-20 Sparse Window Write Command Packet Description

 Figure 6-20 Dense Window Read Command Packet

Table 6-21 gives the description of the Dense Window Read Command
packet.  

Field Description

Clock 1, <31:30> Are always zero. 

Clock 1, <29:26> Virtual ID of the TLSB commanding node.  The VID indicates which CPU
is requesting the data.  The VID indicates which CPU is requesting the
data. The VID is returned on the Up Hose in all window return
data/status packets so that the I/O port can target the requesting com-
manding node with the data or status of the transaction. 

Clock 1, <25:15> Are always zero. 

Clock 1, <14> Indicates read/write:  0 is read, 1 is write.  For this packet bit <14> is al-
ways one. 

Clock 1, <13:12> Command field.  The field value is 11 for all window command packets. 

Clock 1, <11:4> Are always zero. 

Clock 1, <3:2> Byte length field, LEN<1:0>.  The Length field decode is specific to the tar-
geted remote I/O adapter.

Clock 1, <1:0>  SPC<1:0> field.  The space field indicates which PCI address space is in
use as follows:

SPC<1:0> PCI Address Space

00
01
10
11

Dense memory space (not used with this packet)
Sparse memory space 
Sparse I/O space 
Sparse configuration space 

Clock 2, <31:27> Byte-aligned address for the targeted remote I/O adapter.  Bits <31:27>
are always zero.

Clock 2, <26:0> Byte-aligned address <26:0> for the targeted remote I/O adapter. 

Clock 3 and 4
<31:0>

Data longword 0 and 1, respectively, to be written to the targeted remote
I/O bus.

31 30 29 26 25 0

0 0 VID Zero Zero SPC

BXB-0569-94

1


2

Clock cycle DND <31:0>

Byte Aligned Address <31:0>

15 14 13 12 11 12

1 10
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  Table 6-21 Dense Window Read Command Packet Description

Field Description

Clock 1, <31:30> Are always zero. 

Clock 1, <29:26> Virtual ID of the TLSB commanding node.  The VID indicates which CPU
is requesting the data.  The VID is returned on the Up Hose in all window
return data/status packets so that the I/O port can target the requesting
commanding node with the data or status of the transaction.

Clock 1, <25:15> Are always zero. 

Clock 1, <14> Indicates read/write:  0 is read, 1 is write.  For this packet bit <14> is al-
ways zero.

Clock 1, <13:12> Command field.  The field value is 11 for all window command packets. 

Clock 1, <11:2> Are always zero. 

Clock 1, <1:0>  SPC<1:0> field.  The space field indicates which PCI address space is in
use as follows:

SPC<1:0> PCI Address Space

00
01
10
11

Dense memory space
Sparse memory space  (not used with this packet) 
Sparse I/O space  (not used with this packet)
Sparse configuration space  (not used with this packet)

Clock 2, <31:0> Byte-aligned address for the targeted remote I/O adapter.  
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 Figure 6-21 Dense Window Write Command Packet

Table 6-22 gives the description of the Dense Window Write Command
packet.  

31 30 29 26 25 0

0 0 VID Zero Zero SPC

BXB-0568-94

1


2


3


4


5


6


7


8


9


10


11

Clock cycle

Data Longword 0

Data Longword 1

Data Longword 2

Data Longword 3

Data Longword 4

Data Longword 5

Data Longword 6

Data Longword 7

DND <31:0>

Byte Aligned Address <31:0>

Byte Mask Bits <31:0>

15 14 13 12 11 12

1 11
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  Table 6-22 Dense Window Write Command Packet Description

 Figure 6-22 Byte Mask Field

 Memory Chanel Write Packet

The Memory Channel Write packet is used by the I/O port to reflect a
TLSB memory space write to the remote I/O bus.   When the hose is in nor-
mal mode, a Memory Channel Write packet must be acknowledged by a
Window Write Status Return packet (see Figure 6-22) to the I/O port on
the Up Hose.   The Memory Channel Write packet is shown in Figure 6-23.

Field Description

Clock 1, <31:30> Are always zero. 

Clock 1, <29:26> Virtual ID of the TLSB commanding node.  The VID indicates which CPU
is requesting the data.  The VID is  returned on the Up Hose in all window
return data/status packets so that the I/O port can target the requesting
commanding node with the data or status of the transaction.

Clock 1, <25:15> Are always zero. 

Clock 1, <14> Indicates read/write:  0 is read, 1  is write.  For this packet bit <14> is al-
ways one.

Clock 1, <13:12> Command field.  The field value is 11 for all window command packets. 

Clock 1, <11:2> Are always zero. 

Clock 1, <1:0>  SPC<1:0> field.  The space field indicates which PCI address space is in
use as follows:

SPC<1:0> PCI Address Space

00
01
10
11

Dense memory space
Sparse memory space  (not used with this packet) 
Sparse I/O space  (not used with this packet)
Sparse configuration space  (not used with this packet)

Clock 2, <31:0> Byte aligned address for the targeted  remote I/O adapter.  Bits <31:27>
are always zero.

Clock 3, <31:0> Data mask bits.  The I/O port generates the byte mask bits from the valid
bits received on the second TLSB data cycle.  The I/O port replicates each
longword valid bit it receives from the TLSB into 4-byte enables as shown
in Figure 6-22.  All bytes of each valid longword will always be one.

Clock 4 through
11, <31:0>

Data longword 0 through 7, respectively, to be written to the targeted re-
mote I/O bus. 

1111  1111  1111  1111  1111  1111  1111  1111

LW7   LW6   LW5   LW4  LW3  LW2   LW1   LW0

BXB0801.AI
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 Figure 6-23 Memory Channel Write Packet

Table 6-23 gives the description of the Memory Channel Write packet.  

6.6.4.2 Up Hose Packet Specifications

For Up Hose packets the command field is asserted on the UPCTL<3:0> 
lines (Table 6-12) instead of the first cycle of DATA<31:0> as it is with
Down Hose  packets.

Mailbox Status Return

The Mailbox Status Return packet returns the status for a previously is-
sued Down Hose Mailbox Command packet. 

The Mailbox Status Return packet is used by the I/O port to flow control 
Mailbox Command packets.  The I/O port must receive a Mailbox Status
Return packet across the Up Hose before it issues the next Mailbox Com-
mand packet across a Down Hose.

Figure 6-24 shows the Mailbox Status Return packet.

31 30 29 0

0 E Zero ADR<39:32>LEN

BXB-0831-94

1


2


3


4


5


6


7
.
.


16


17


18

Clock cycle

Data Longword 0

Data Longword 1

Data Longword 2

Data Longword 3

Data Longword 4

Data Longword 13

Data Longword 14

Data Longword 15

DND <31:0>

Byte Aligned Address <31:0>

15 14 13 12 11 10

11110

16 78

.

.
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  Table 6-23 Memory Channel Write Packet Description

 Figure 6-24 Mailbox Status Return Packet

Table 6-24 gives the description of the Mailbox Status Return packet.  

Field Description

Clock 1, <31> Always zero. 

Clock 1, <30> Error.  Always sent as zero by the I/O port.

Clock 1, <29:16> Are always zero. 

Clock 1, <15:11> Command field.  It is always set to a code of 11110 by the I/O port to indi-
cate a Memory Channel Write packet. For this packet bit <14> is always
one.

Clock 1, <10:8> Length field.  A Memory Channel Write packet can have two possible
lengths encoded as follows:

Bits <10:8> Length

000
100

Hexword (32 bytes) 
Double hexword (64 bytes) packet

Clock 1, <7:0> Upper portion (bits <39:32>) of the TLSB address.  

Clock 2, <31:0> Lower portion (bits <31:0>) of the TLSB address.  

Clock 3 through
10, <31:0>

Data longwords 0 through 7 to be written to the remote I/O bus.

Clock 11 through
18, <31:0>

Data longwords 8 through 15 to be written to the remote I/O bus.  Clocks
11 through 18 are only transmitted if the length field indicates a double
hexword packet.

31 0

Return Data <31:0>

BXB-0644-93

3 0

0 1 0 0

UPD <31:0> UPCTL

x x x x

1*

2

3

4

* = hose cycle

Device-Specific Status <29:0>

Return Data <63:32>

Device-Specific Status <61:30>

DE

12

x x x x

x x x x



6-54   I/O Port

  Table 6-24 Mailbox Status Return Packet Description

DMA Read

The DMA Read packet is a request on the Up Hose from the I/O bus 
adapter to the I/O port for a data read transaction on the  TLSB bus. 

The requested data for a DMA Read packet is returned on the Down Hose 
with a DMA Read Data Return packet.  Figure 6-25 shows the DMA Read
packet.

 Figure 6-25 DMA Read Packet

Table 6-24 gives the description of the DMA Read packet.  

Field Description

Clock 1 and 2,
<31:0>

The return data longword 0 and 1 fields, respectively.  The return data
fields contain read data in response to Mailbox Command packets that
were reads.  This data is Unpredictable when responding to Mailbox Com-
mand packets that were writes.

Clock 3, <31:2> Device specific field <29:0>.  The device specific field contains operation
completion status.  The interpretation of this field is defined by the I/O bus
adapter module. 

Clock 3, <1> The Error bit.  If an error was detected by the I/O adapter, the Error bit
will be set.

Clock 3, <0> The Done bit.  This bit is always set in a mailbox return packet.

Clock 4, <31:0> Device specific field <61:30>. The device specific field contains operation
completion status.  The interpretation of this field is defined by the I/O bus
adapter.

31 24 23 11 10 08 7

TAG<7:0> 0 LEN ADR <39:32>

BXB-0278-92

ADR <31:0>

3 0

0 0 0 1

UPD <31:0> UPCTL

x x x x

1*

2

* = hose cycle
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  Table 6-25 DMA Read Packet Description

 ADR<39:0> is the target address for the TLSB memory read.  It  must be
naturally aligned to length (LEN) code of the data being requested. 

  Table 6-26 DMA Read Packet Sizes

Interlock Read

The interlock read (IREAD) packet is a request on the Up Hose from the 
I/O bus adapter to the I/O port for a quadword data read transaction on 
the TLSB bus.  The transaction is similar to a normal DMA read except
the I/O port performs an atomic Read-Modify-Write operation to read the
data, set bit <0> of the target quadword, and write it back to TLSB  mem-
ory.  This hardware assist helps software obtain an interlock on the 
quadword location.  The unaltered read data is returned across the Down
Hose using a DMA Read Data Return packet as it would be for a normal 
read.  

This packet is supported by the Mailbox Only, I/O Window, Full, and Mem-
ory Channel variants of the hose protocol.  Figure 6-26 shows the IREAD
packet.

Field Description

Clock 1, <31:24> The TAG<7:0> field allows the subsequent DMA Read Data Return packet
on the Down Hose to be associated with a DMA Read Data packet on the
Up Hose.  The tag is generated by the I/O bus adapter.

Clock 1, <23:11> Are always zero.

Clock 1, <10:8> The length field indicates the length of the DMA read packet.  A DMA
read packet has three possible packet lengths:  octaword, hexword, and
double hexword.  However, the length code for the octaword packet may
indicate that only a longword or quadword of data is requested.  This
length code is looped back through the DMA Read Data Return packet and
allows the I/O bus adapter to use the length code to extract the correct
amount of information from the octaword DMA Read Data Return packet. 
See Table 6-26 for DMA read packet sizes.

Clock 1, <7:0> ADR<39:32> of the target address.  See definition below.

Clock 2, <31:0> ADR<31:0> of the target address.  See definition below. 

Length
Code

Packet Data
Length

Significant
Address Bits1

Wrapped TLSB
Read

Data 
Requested

001
010
011
000
100

Octaword
Octaword
Octaword
Hexword
Double hexword

ADR<39:4>
ADR<39:4>
ADR<39:4>
ADR<39:5>
ADR<39:6>

Yes, if ADR<5>=1
Yes, if ADR<5>=1
Yes, if ADR<5>=1
Yes, if ADR<5>=1
No

Longword
Quadword
Octaword
Hexword
Double hexword

1 ADR<3:0> are ignored by the I/O port.
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 Figure 6-26 Interlock Read Packet

Table 6-27 gives the description of the IREAD packet.  

  Table 6-27 Interlock Read Packet Description

 ADR<39:0> is the target address for the TLSB memory read.  It  must be
naturally aligned to length (LEN) code of the data being  requested. 

NOTE:  All IREADs must be naturally aligned quadwords.  Therefore, the I/O port
ignores the length field and treats it as a quadword whenever it receives an
IREAD command on the Up Hose.

  Table 6-28 Interlock Read Packet Size

31 24 23 11 10 08 7

TAG<7:0> 0 LEN ADR <39:32>

BXB-0640-93

ADR <31:0>

3 0

0 0 1 0

UPD <31:0> UPCTL

x x x x

1*

2

* = hose cycle

Field Description

Clock 1, <31:24> The TAG<7:0> field allows the subsequent DMA Read Data Return packet
on the Down Hose to be associated with an IREAD packet on the Up Hose.
The tag is generated by the I/O bus adapter. 

Clock 1, <23:11> Are always zero.

Clock 1, <10:8> The length field indicates the length of the DMA Read packet.  The packet
data length of an IREAD packet is always an octaword and the length code
for the octaword packet indicates that only a quadword of data is re-
quested.  This length code is looped back through the DMA Read Data Re-
turn packet and allows the I/O bus adapter to use the length code to ex-
tract the correct quadword from the octaword DMA Read Data Return
packet.  See Table 6-28 for the IREAD packet size.

NOTE:  All IREADs from the XMI must be naturally aligned quadwords. 
Therefore, the I/O port ignores the length field and assumes a quadword
length whenever it receives an IREAD command on the Up Hose.  

Clock 1, <7:0> ADR<39:32> of the target address.  See definition below.

Clock 2, <31:0> ADR<31:0> of the target address.  See definition below. 

Length
Code

Packet Data
Length

Significant
Address Bits1

Data 
Requested

010 Octaword ADR<39:3> Quadword

1 ADR<2:0> are ignored by the I/O port.
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DMA Masked Write with Data

The DMA Masked Write Packet is a request on the Up Hose from the I/O 
bus adapter to the I/O port for a TLSB data write  transaction. 

Any combination of mask bits is allowed.  However, the I/O bus adapter 
may or may not support this capability.  A mask bit is set to write the cor-
responding byte of data.  

This packet is supported by the Mailbox Only, I/O Window, Full, and Mem-
ory Channel variants of the hose protocol.  Figure 6-27 shows the DMA
Masked Write packet.

 Figure 6-27 DMA Masked Write Packet

Table 6-29 gives the description of the DMA Masked Write packet.  

31 24 23 11 10 08 7

xxxx 0 0 0 0 0 0 0 0 0 0 0 0 LEN ADR <39:32>

BXB-0645-93

DND <31:0>

1*


2


3


4



17


18

* = Clock cycle

LWDATA1 <31:0>

LWDATA2 <31:0>

LWDATA15 <31:0>

LWDATA16 <31:0>

0

ADDRESS <31:0>

3 0

0 1 1 1

UPCTL

x x x x

M<3:0>

M<3:0>

M<3:0>

M<3:0>
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  Table 6-29 DMA Masked Write Packet Description

ADR<39:0> is the target address for the DMA masked write and must be 
naturally aligned to length (LEN) of the DMA masked write.  

  Table 6-30 DMA Masked Write Packet Sizes

Field Description

Clock 1, <31:24> Don’t Care.  These bits, which normally form the TAG field, are don’t
care, since DMA Masked Write packets are disconnected and have no
corresponding return packet. 

Clock 1, <23:11> Are always zero.

Clock 1, <10:8> The length field indicates the length of the  packet.  A DMA Masked
Write packet has three possible packet lengths:  octaword, hexword, and
double hexword.  However, the length code for the octaword packet may
be a longword code (001) or a quadword code (010).  The length code is
defined this way to maintain consistency with the length code of the
DMA Read packet.  Even though the length code may indicate a
longword or quadword, the I/O port treats the packet as a normal
octaword masked write packet and performs a masked write using an
octaword of data.  The actual bytes of data in an octaword masked write 
packet that get written to memory are selected by the byte mask bits and
not by the quadword or longword length code.  

Therefore, when performing a longword or quadword transfer using an 
octaword masked write packet, the I/O bus adapter must set the proper 
mask bits to select the longword or quadword within the octaword that
will  be written to memory. The I/O bus adapter must clear the remain-
ing  mask bits of the octaword masked write packet to prevent the un-
used  bytes of the octaword packet from being written to memory.   See
Table 6-30 for DMA masked write packet sizes.

NOTE:  Even though the mask bits may "mask out" a particular longword 
of the packet, the parity across the hose must be good for all cycles of the
DMA Masked Write packet. 

Clock 1, <7:0> ADR<39:32> of the target address.  See definition below.

Clock 2, <31:0> ADR<31:0> of the target address.  See definition below. 

Clocks 3 through 18 Data.  One longword on each clock. 

Length
Code

Packet Data
Length

Data Valid in
Packet

Up Hose Cycles
Required

001
010
011
000
100

Octaword
Octaword
Octaword
Hexword
Double hexword

Longword
Quadword
Octaword
Hexword
Double hexword

  6
  6
  6
10
18
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DMA Unmasked Write with Data

The DMA Unmasked Write packet is a request on the Up Hose from the
I/O  bus adapter to the I/O port for a TLSB data write transaction.  The
data length of the unmasked write is  always a double hexword and the
LEN code must indicate a double hexword (100).  

This packet is supported by the Mailbox Only, I/O Window, Full, and Mem-
ory Channel variants of the hose protocol.  Figure 6-28 shows the DMA
Unmasked Write packet.

 Figure 6-28 DMA Unmasked Write Packet

Table 6-31 gives the description of the DMA Unmasked Write packet.  

31 24 23 11 10 08 7

xxxx 0 0 0 0 0 0 0 0 0 0 0 0 ADR <39:32>

BXB-0786-94

DND <31:0>

1*

2

3

4



17


18

* = Clock cycle

LWDATA1 <31:0>

LWDATA2 <31:0>

LWDATA15 <31:0>

LWDATA16 <31:0>

0

ADDRESS <31:0>

3 0

0 1 0 1

UPCTL

x x x x

1 0 0

x x x x

x x x x

x x x x

x x x x
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  Table 6-31 DMA Unmasked Write Packet Description

ADR<39:0> is the target address for the memory write and must be natu-
rally aligned to a double hexword boundary.  

INTR/IDENT

The INTR/IDENT packet is the combined IDENT vector and IPL for an in-
terrupt on the I/O bus.  The status of the interrupt transaction on the
TLSB bus is returned on the Down Hose with a INTR/IDENT Status Re-
turn packet.  

This packet is supported by the Mailbox Only, I/O Window, Full, and Mem-
ory Channel variants of the hose protocol.  Figure 6-29 shows the
INTR/IDENT Status Return packet.

 Figure 6-29 INTR/IDENT Status Return Packet

Table 6-32 gives the description of the INTR/IDENT Status Return packet.  

Field Description

Clock 1, <31:24> Don’t Care.  These bits, which normally form the TAG field, are don’t
care, since DMA Unmasked Write packets are disconnected and have no
corresponding return packet. 

Clock 1, <23:11> Are always zero.

Clock 1, <10:8> The length field indicates the length of the packet.  It must have the
value of 100 (double hexword).

Note:  The DMA Unmasked Write packet is the most efficient DMA write 
because it only requires a single write on the TLSB bus, whereas a DMA
Masked Write packet requires a Read-Modify-Write operation.  Generally
speaking, an I/O bus adapter should  be able to exploit the DMA Un-
masked Write packet whenever an I/O device is using a More type proto-
col. 

Clock 1, <7:0> ADR<39:32> of the target address.  See definition below.

Clock 2, <31:0> ADR<31:0> of the target address.  See definition below. 

Clocks 3 through 18 Data.  One longword on each clock. 

31 24 23 16 15 0

xxxx 0 0 0 IPL Vector <15  :0>

BXB-0647-93

UPD <31:0>

1*


2

* = Clock cycle

0

Don't Care

3 0

1 0 0 0

UPCTL

x x x x

20 19
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  Table 6-32 INTR/IDENT Status Return Packet Description

Sparse Window Read Data Return Packet

The Sparse Window Read Data return packet is used by adapters on re-
mote  buses that support I/O window space packets to return data re-
quested by a previous Sparse Window Read Command packet.   The com-
mand field of the Sparse Window Read Data Return packet is E (hex). 
Figure 6-30 shows the Sparse Window Read Data Return packet.

 Figure 6-30 Sparse Window Read Data Return Packet

Table 6-33 gives the description of the Sparse Window Read Data Return
packet.  

Field Description

Clock 1, <31:24> Don’t Care.  These bits, which normally form the TAG field, are don’t care,
since only one interrupt per IPL can be pending at a time and the corre-
sponding INTR/IDENT Status Return packet can be easily identified by
the IPL field. 

Clock 1, <23:20> Are always zero.

Clock 1, <19:16> The IPL field is the interrupt priority level of  the interrupt request.  Bits
<19:16> correspond to IPL 17 to IPL 14, respectively.  Only one IPL bit 
should be set per packet.  If more than one IPL bit is set, the I/O port con-
catenates the IPL bits with the TLCPUMASK and uses the result as the
data to be written to the TLIOINTR register in the CPUs.  This could
cause interrupts to be simultaneously posted at different levels for each
IPL bit that was set.  The vector that was in the packet will be returned
for each of  the interrupts that are serviced by the CPUs.  An
INTR/IDENT Status Return packet is returned across the Down Hose for
each interrupt serviced. 

If no IPL bits are set in the INTR/IDENT packet, the I/O port still  per-
forms a CSR write to the TLIOINTR register in the CPUs, but none of  the
IPL bits is set, so no interrupt is posted.  As a result,  no INTR/IDENT
Status Return packet is returned across the Down Hose.  

Clock 1, <15:0> VECTOR<15:0> is the vector of the interrupt  service routine.

Clock 2, <31:0> Don’t care.

31 30 29 28 27 26 25 10 9 05

0 E VID Zero Count Zero

BXB-0788-94

3 0

1 1 1 0

UPCTL

1*

2

3


* = clock cycle

6

x x x x

x x x x

Data Longword 0

Data Longword 1

UPD <31:0>
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  Table 6-33 Sparse Window Read Data Return Packet Description

Dense Window Read Data Return Packet

The Dense Window Read Data Return packet is used by adapters on re-
mote  buses that support I/O window space packets to return data re-
quested by a previous dense window read command packet.   The com-
mand field value of the Dense Window Read Data Return packet is D
(hex).  

This packet is supported by the Mailbox Only, I/O Window, Full, and Mem-
ory Channel variants of the hose protocol.  Figure 6-31 shows the Dense
Window Read Data Return packet.

Field Description

Clock 1, <31> Is always zero. 

Clock 1, <30> Error.  Set by the remote I/O bus adapter if any errors were detected on
the transfer.

Clock 1, <29:26> Virtual ID of the TLSB commander node.  This enables the I/O port to as-
sociate the packet with the originating commander node of the transac-
tion. This field is the same as the VID field in the Down Hose Sparse Win-
dow Read Command packet being acknowledged.

Clock 1, <25:10> Are always zero.

Clock 1, <9:6> Count field.  Used by the I/O port to obtain the maximum number of win-
dow transactions the remote I/O bus adapter is capable of queueing.  The
value in this field should always be the same for a specific remote bus I/O
adapter.  The I/O port keeps track of the number of buffers that have been
filled.

NOTE:  The I/O port sets the value of its remote adapter node buffer count
field to one at power-up or system initialization.  The I/O port sets its re-
mote adapter node buffer count field to the value in this count field upon
receiving a sparse window read data return packet.

Clock 1, <5:0> Are always zero.

Clocks 2 and 3,
<31:0>

Bits <31:0> are return data longword 0 and 1, respectively, of the sparse
read. 
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 Figure 6-31 Dense Window Read Data Return Packet

Table 6-34 gives the description of the dense window read data return
packet.  

  Table 6-34 Dense Window Read Data Return Packet Description

31 30 29 28 27 26 25 10 9 05

0 E VID Zero Count Zero

BXB-0787-94

3 0

1 1 0 1

UPCTL

1*

2

3

4

5

6

7

8

9

* = clock cycle

6

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

Data Longword 0

Data Longword 1

Data Longword 2

Data Longword 3

Data Longword 4

Data Longword 5

Data Longword 6

Data Longword 7

UPD <31:0>

Field Description

Clock 1, <31> Is always zero. 

Clock 1, <30> Error.  Set by the remote I/O bus adapter if any errors were detected on
the transfer.

Clock 1, <29:26> Virtual ID of the TLSB commander node.  This enables the I/O port to as-
sociate the packet with the originating commander node of the transac-
tion. This field is the same as the VID field in the Down Hose Dense Win-
dow Read Command packet being acknowledged.

Clock 1, <25:10> Are always zero.

Clock 1, <9:6> Count field.  Used by the I/O port to obtain the maximum number of win-
dow transactions the remote I/O bus adapter is capable of queueing.  The
value in this field should always be the same for a specific remote bus I/O
adapter.  The I/O port keeps track of the number of buffers that have been
filled.

NOTE:  The I/O port sets the value of its remote adapter node buffer count
field to one at power-up or system initialization.  The I/O port sets its re-
mote adapter node buffer count field to the value in this count field upon
receiving a Dense Window Read Data Return packet.

Clock 1, <5:0> Are always zero.

Clocks 2 through
9, <31:0>

Bits <31:0> are return data longword 0 through 7,  respectively, of the
dense read. 
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Window Write Status Return Packet

The Window Write Status Return packet is used by adapters on remote 
buses that support I/O window space packets to return the completion 
status of a previously issued dense/sparse window write command packet.
The command field value of the Window Write Status Return packet is C
(hex).   

This packet is supported by the Mailbox Only, I/O Window, Full, and Mem-
ory Channel variants of the hose protocol.  Figure 6-32 shows the Window
Write Status Return packet.

 Figure 6-32 Window Write Status Return Packet

Table 6-35 gives the description of the Window Write Status Return
packet.  

  Table 6-35 Window Write Status Return Packet Description

31 30 29 28 27 26 25 10 9 05

O E VID Zero Count Zero

BXB-0565-94

3 0

1 1 0 0

UPCTL

1*

* = clock cycle

6

UPD <31:0>

Field Description

Clock 1, <31> Is always zero. 

Clock 1, <30> Error.  Set by the remote I/O bus adapter if any errors were detected on
the transfer.

NOTE:  Bit <30> is ignored by the I/O port.

Clock 1, <29:26> Virtual ID of the TLSB commander node. 

NOTE:  This field is not used by the I/O port.

Clock 1, <25:10> Are always zero.

Clock 1, <9:6> Count field.  Used by the I/O port to obtain the maximum number of win-
dow transactions the remote I/O bus adapter is capable of queueing.  The
value in this field should always be the same for a specific remote bus I/O
adapter.  The I/O port keeps track of the number of buffers that have been
filled.

NOTE:  The I/O port sets the value of its remote adapter node buffer count
field to one at power-up or system initialization.  The I/O port sets its re-
mote adapter node buffer count field to the value in this count field upon
receiving a Window Write Status Return packet.

Clock 1, <5:0> Are always zero.
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6.6.5  Hose Errors

Four types of errors affect the hoses: 

• Parity errors on the transmitted data/control information

• Illegal packet errors 

• FIFO overflow errors 

• I/O port internal errors 

Parity errors are detected on all Up Hoses and have corresponding CSR er-
ror bits to indicate the failure to the system.  Parity errors cause the I/O
port to generate an error interrupt to the appropriate CPU(s) if interrupts
are enabled. 

Illegal packet errors indicate that the UPCTL<3:0> field or some other
field in the packet did not contain a valid code for that field even though
UPDATAVAL was asserted and there were no parity errors.  An illegal
packet error occurs under the following  conditions:

• UPCTL<3:0> contains an illegal packet type code 

• Incorrect number of hose cycles occurs for the packet type received. 
This is a sequence error.

• Length code for DMA read packets or DMA write packets is illegal.

Overflow errors occur if the I/O port receives a packet across the Up Hose
and the I/O port’s HDR buffers are already full. 

I/O port internal errors occur if the I/O port receives a valid packet across
the Up Hose, but the I/O port detects a failure when trying to process the
packet.  Internal errors include illegal I/O port controller states and
underflow/overflow of packet counters.
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6.7  I/O Port Error Handling

The I/O port provides a high reliability electrical environment.  Conse-
quently, error handling is biased toward detection rather than correction. 
The I/O port attempts to retain state for system software to determine the
severity level and recoverability of any error.  However, due to the deep
pipelined nature of the protocol, the amount of state saved is limited.

The I/O port does not detect errors due to multiple error occurrences. The
only exception is the data bus ECC.  The I/O port corrects single-bit errors,
and detects double-bit and some multiple-bit  errors.

For error handling, the I/O port divides errors into four categories:

• Soft TLSB errors (recovered by hardware)

• Hard TLSB errors

• System fatal errors 

• Hard internal I/O port errors 

6.7.1  Soft TLSB Errors Recovered by Hardware

The I/O port can recover from this class of errors.  The I/O port posts an
error interrupt to the processor(s) to inform the operating system of the er-
ror, if soft error reporting is enabled.  An example of this class of errors is a
single-bit error in a data field that is ECC protected.  The I/O port hard-
ware recovers from this type of error by ECC correction logic. 

6.7.2  Hard TLSB Errors

This class of errors occurs when the I/O port detects a hard TLSB error
and the error does not compromise the integrity of the system bus or other 
transactions.  An example is an ECC double-bit error.  This error does not
impact other transactions taking place on the bus.  The I/O port posts an
error interrupt to the processor(s) to inform the operating system of the er-
ror.  The action taken on this type of error is determined by the operating
system.

6.7.3  System Fatal Errors

This class of errors occurs when the I/O port detects a hard TLSB error
that cannot be fixed by the I/O port hardware and results in a hung bus or
loss of system bus integrity, such as a sequence error.  When the I/O port 
detects an error of this type it asserts TLSB_FAULT.  This signal causes
all bus interfaces to reset to a known state and abort all outstanding trans-
actions. Because outstanding transactions are lost, the system integrity
has been compromised.  However, the I/O port preserves all CSRs.

6.7.4  Hard Internal I/O Port Errors

This class of errors occurs when the I/O port detects a hard error internal
to the I/O port and the error does not compromise the integrity of the sys-
tem bus or other transactions.  An example is an up HDR internal error. 
This error does not impact transactions taking place on the TLSB bus. 
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If the I/O port detects a hard internal error. it sets the appropriate  error
bit in either the ICCNSE register or one of the IDPNSEn registers, which-
ever is applicable.  The I/O port then posts an IPL 17 error interrupt to the
processor(s) to inform the operating system of the error if interrupts are
enabled (ICCNSE<INTR_NSES> set).  The action taken on this type of er-
ror is determined by the operating system.

The following errors leave the I/O port in an Unpredictable state.  If any of
these errors occurs, the I/O port should be reset (node reset) to initialize it
to a predictable state.

ICCNSE<UP_HDR_IE> 
ICCNSE<ICR_UP_VRTX_ERROR>
ICCNSE<DN_VRTX_ERROR>
IDPNSE<IDR_UP_VRTX_ERROR> 

6.7.5  Error Reporting

The I/O port uses two methods to report errors to the system.

All nonfatal errors detected by the I/O port are reported to the system by
an IPL 17 interrupt, that is, by a CSR write to broadcast space.  Error re-
porting by this method can be enabled by software  writing to ICC-
NSE<INTR_NSES>.  Fatal errors are reported to the system by the asser-
tion of TLSB_FAULT.

Most TLSB-detected errors are also broadcast onto the TLSB through one
of  the two TLSB error signals, TLSB_DATA_ERROR and TLSB_FAULT. 
Reporting of soft TLSB  errors, CWECC and CRECC, can be disabled by
software writing to TLCNR<CWDD> and TLCNR<CRDD>, respectively. 
Broadcasting of hard and fatal TLSB errors cannot be disabled.

The I/O port monitors the error signals to latch status relative to the error
and to determine if any error was detected by another node.  If the I/O port
detects an error, it asserts the appropriate TLSB error signal to notify
other nodes monitoring the TLSB that it has detected an error. 

6.7.5.1 TLSB_DATA_ERROR

The I/O port uses the TLSB_DATA_ERROR signal to broadcast the detec-
tion of the following error conditions on the TLSB data bus.

• Correctable Read ECC Error 

• Correctable Write ECC Error 

• Uncorrectable ECC Error 

Details of these error conditions are given in the description of the
TLESRn registers. 

The assertion of TLSB_DATA_ERROR on correctable ECC errors, CRECC
and CWECC, can be disabled by setting TLCNR<CRDD> and TL-
CNR<CWDD>, respectively.  The assertion of TLSB_DATA_ERROR for
uncorrectable ECC errors cannot be disabled. 

The I/O port only checks the data bus for correctness when it is a partici-
pant in the transaction, either as a transmitter of data or a receiver of
data. 
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Each IDR on the I/O port receives 64 data bits and 8 ECC bits from the 
TLSB.  Error checking is performed and if a data error is detected, the 
IDR(s) set the appropriate error bit in the TLESRn register.  The IDR(s)
also informs the ICR that a data error, either hard or soft, has been de-
tected.  The ICR asserts TLSB_DATA_ERROR on the TLSB to inform
other nodes monitoring the bus that a data error was detected.  This asser-
tion of TLSB_DATA_ERROR occurs ten cycles after the first of the two
data cycles for the data transaction.  TLSB_DATA_ERROR is only as-
serted for one cycle, and it is always the tenth cycle after hexword zero
(HW0).  Therefore, the assertion of TLSB_DATA_ERROR itself cannot be
used to  determine which data cycle(s) were in error.  Nor can TLSB_
DATA_ERROR be used to determine the severity of the error.

The I/O port monitors the TLSB_DATA_ERROR signal and sets TL-
BER<DTDE> if it was the transmitter of the data for which TLSB_DATA_
ERROR was asserted.  Note that monitoring TLSB_DATA_ERROR signal
to set TLBER<DTDE> is independent of the error checking logic to assert
TLSB_DATA_ERROR.  In other words, if another node detects an error on
data supplied by the I/O port, but the I/O port does not detect an error, the
I/O port still sets <DTDE> in response to the assertion of TLSB_DATA_
ERROR. 

6.7.5.2 TLSB_FAULT

The I/O port drives the TLSB_FAULT signal to broadcast the detection of
the following fatal error conditions:

TLBER<DTO> - Data TimeOut
TLBER<DSE> - Data Status Error 
TLBER<SEQE> - Sequence Error 
TLBER<DCTCE> - Data Control Transmit Check Error
TLBER<ABTCE> - Address Bus Transmit Check Error 
TLBER<UACKE> - Unexpected Acknowledge Error 
TLBER<FDTCE> - Fatal Data Transmit Check Error 
TLBER<REQDE> - Request Deassertion Error
TLBER<FNAE> - Fatal No Acknowledge Error
TLBER<ACKTCE> - Acknowledge Transmit Check Error
TLBER<RTCE> - Request Transmit Check Error
TLBER<BAE> - Bank Busy Violation
TLBER<APE> - Address Parity Error
TLBER<ATCE> - Address Transmit Check Error
TLBER<BAE> - Bank Busy Violation
ICCNSE<TLSB_RM_OFLO> - TLSB Mem. Channel Buffer Overflow
ICCNSE<TLSB_WND_OFLO> - TLSB Window Overflow
ICCNSE<ICR_IE> - ICR Internal Error
IDPNSE<IDR_IE> - IDR Internal Error
IDPNSE<IDR_CMD_PE> - IDR Command Parity Error 

Details of these error conditions are given in the descriptions of the TL-
BER and IDPNSEn registers. 

Since the assertion of TLSB_FAULT signals a system fatal error, it  must
never be be disabled unless for diagnostics. 

Unlike TLSB_DATA_ERROR,  which is asserted for one cycle only,
TLSB_FAULT is required to be asserted for two cycles and only two cy-
cles.  Since TLSB_FAULT can  be asserted in any cycle, the I/O port, like
all nodes, must monitor the  TLSB_FAULT signal for prior assertion by
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another node and ensure that TLSB_FAULT is only asserted for two cy-
cles.

When the I/O port detects assertion of TLSB_FAULT on the TLSB, it im-
mediately aborts all outstanding transactions and resets to a known state.

The I/O port deasserts its REQUEST signal no later than two cycles from
the assertion of TLSB_FAULT.  All other TLSB bus signals that the I/O
port may have been driving are deasserted within 16 cycles from the asser-
tion of TLSB_FAULT.  The I/O port will be capable of responding to new
TLSB transactions 32 cycles after the assertion of TLSB_FAULT, and will
not request the bus sooner than 32 cycles after the assertion of
TLSB_FAULT. At this point the I/O port will be fully resynchronizeded to
the TLSB.

6.7.6  IPL 17 Error Interrupts

In addition to the capability of driving the TLSB error signals,  the I/O port
can also post an IPL 17 interrupt to let the CPUs know that the I/O port
has detected an error. 

Listed below are the I/O port error conditions that cause the I/O port to
post an IPL 17 error interrupt, if enabled by software. 

TLBER<CRDE> - Correctable Read Data Error (Does not interrupt if 
<CRDD>=1)
TLBER<CWDE> - Correctable Write Data Error (Does not interrupt if 
<CWDD>=1)
TLBER<UDE> - Uncorrectable Data Error
TLBER<MMRE> - Memory Mapping Register Error 
TLBER<NAE> - No Acknowledge Error 
ICCNSE<ICR_CSR_BUS_PE> - ICR CSR Bus Parity Error 
ICCNSE<ICR_UP_VRTX_ERROR> - ICR Up Turbo Vortex Error 
ICCNSE<DN_VRTX_ERROR> - Down Turbo Vortex Error
ICCNSE<MULT_INTR_ERROR - Multiple Interrupt Error
ICCNSE<UP_HDR_IE> - Up HDR Internal Error
ICCNSE<UP_HOSE_PAR_ERROR> - Up Hose Parity Error
ICCNSE<UP_HOSE_PKT_ERROR> - Up Hose Packet Error
ICCNSE<UP_HOSE_OFLO> - Up Hose FIFO Overflow
ICCNSE<UN_MBX_STAT> - Unexpected Mailbox Status Packet Rcvd
ICCNSE<RMNXM> - Memory Channel Nonexistent  Memory Error   
(Does not interrupt if <RMNXM_DSBL>=1)
ICCNSE<ACK_DROPPED> - RM Ack Packet Dropped (Does not 
interrupt if <ACKDROP_DSBL>=1)
IDPNSE<IDR_CSR_BUS_PE> - IDR CSR Bus Parity Error
IDPNSE<IDR_UP_VRTX_ERROR> - IDR Up Turbo Vortex Error
IDPNSE<RM_MASK_ERROR> - RM Mask Error (Does not interrupt if 
<RM_MASK_ERROR_DSBL>=1)
IDPNSE<HOSEn_SOFT_ERROR> - Hose Soft Error (<HOSEn_ 
SOFT_ERROR_EN> must be set)
IDPNSE<HOSEn_PWROK_TRAN> - Hose PWROK Transitioned
IDPNSE<HOSEn_ERROR> - Hose Error 

Details of these error conditions are given in the descriptions of the TL-
BER, ICCNSE, and IDPNSEn registers. 
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Hose PWROK Transitioned and Hose Error are technically hose errors, 
not internal I/O port errors.  However, they are handled by the I/O port in
the  same manner as internal errors. 

The posting of IPL 17 error interrupts are enabled by software by setting
ICCNSE<INTR_NSES> after a unique interrupt vector for the I/O port 
has been loaded into the IDR Vector Register.  Once enabled, the I/O port
posts an IPL 17 interrupt when one of the above error conditions is de-
tected. However, the I/O port does not issue any further IPL 17 error inter-
rupts until all the error bits listed above are clear.

It is important to note that reads to the TLILID3 register return the vector 
from the the IDPVR register ahead of any posted IPL 17 device interrupts
vectors,  regardless of the order in which the interrupts were posted.

6.7.7  Address Bus Errors

The TLSB address bus uses parity protection across the command, bank 
number, and address fields.  Additionally, all drivers on the TLSB check 
the data received from the bus against the expected data driven on the 
bus.  This combination of parity and transmit/receive checking ensures a
high level of error detection. 

6.7.7.1 TLSB Address Transmit Check Errors

The I/O port checks that its TLSB bus assertions get onto the bus properly 
by receiving a signal back from the bus and comparing it to what was
driven.  A  mismatch can occur because of a hardware error on the bus, or
if two nodes attempt to drive the fields in the same cycle.  If a mismatch 
occurs, the I/O port sets a bit in the TLBER register and asserts 
TLSB_FAULT.  

The I/O port supports two types of transmit checks:

• Level Transmit Checks are used when signals are driven  by a single
node in specific cycles.  The assertion or deassertion of each signal is
compared to the level driven.  Any signal not matching the level driven
is in error.

• Assertion Transmit Checks are used on signals that may be driven by
multiple nodes or when the assertion of a signal is used to determine
timing.  An error is declared only when a node receives a deasserted
value, and an asserted value was driven.  These checks are performed
whenever the I/O port is driving the signal with the asserted value.

The I/O port level checks the following address bus fields when it has won
the bus and has driven a command/address cycle.  If the I/O port detects a
mismatch, it sets <ATCE> and asserts TLSB_FAULT. 

• TLSB_ADR<39:5>

• TLSB_ADR_PAR<1:0>

• TLSB_CMD<2:0>

• TLSB_BANK_NUM<3:0>

The I/O port level checks the request signals (as determined  from
TLSB_NID<2:0>) every bus cycle.  If it detects a mismatch, it sets <RTCE>
and asserts TLSB_FAULT.
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The I/O port assertion checks TLSB_CMD_ACK only when it is being as-
serted by the the I/O port.  If the I/O port detects a mismatch, it sets
<ACKTCE> and asserts TLSB_FAULT. 

The I/O port assertion checks TLSB_ARB_SUP only when it is  being as-
serted by the I/O port.  If the I/O port detects a mismatch, it sets <AB-
TCE> and asserts TLSB_FAULT.

6.7.7.2 Address Bus Parity Errors

The I/O port monitors the address bus command, bank number, and ad-
dress  fields for correct parity during valid transactions.  If a parity error is
detected by the I/O port, the I/O port sets TLBER<APE>, latches the re-
ceived command, address and bank number information in the TLFADRn
registers, and asserts TLSB_FAULT.  If the I/O port was the  transmitter
during the error, <ATDE> is also set.

The state of the address bus fields during idle bus cycles is Undefined; par-
ity checking during those cycles is disabled.

6.7.7.3 No Acknowledge Errors

Two cycles after transmitting a regular command (not a no-op)  on the
TLSB, the I/O port expects TLSB_CMD_ACK.  If TLSB_CMD_ACK is not
received for a memory transaction, the I/O port sets TLBER<FNAE> and
asserts TLSB_FAULT. If TLSB_CMD_ACK is not received for a CSR
transaction, the I/O port sets TLBER<NAE> and posts an IPL 17 interrupt
to report the error.  In addition to setting <NAE>, the I/O port transmits a
TLSB hard error code across its internal command bus to each IDR, effec-
tively aborting the transaction.  

6.7.7.4 Unexpected Acknowledge

The I/O port monitors TLSB_CMD_ACK every cycle and sets <UACKE> if
it detects TLSB_CMD_ACK asserted when not expected.  The I/O port also
asserts TLSB_FAULT on this error.

The I/O port only expects TLSB_CMD_ACK two cycles after a nonno-op
command is driven onto the TLSB.  An unexpected acknowledge condition
is detected when TLSB_CMD_ACK is asserted and two cycles before was
either a no-op command or an idle cycle. 

6.7.7.5 Bank Busy Violation

If the I/O port decodes a CSR command (to any address) while a CSR com-
mand is in progress, it sets its TLBER<BAE> and asserts TLSB_FAULT.
Additionally, the I/O port latches the address, command, and bank number
in its TLFADRn registers.  If the I/O port was the transmitter during the
error, <ATDE> is also set.

6.7.7.6 Memory Mapping Register Error

The I/O port translates a memory address to a bank number before issuing
a  command.  This translation is performed by examining the contents of 
its TLMMRn registers.  The I/O port sets its TLBER<MMRE> if it cannot
determine a bank number from the memory address.  If this error is de-
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tected, the I/O port does not issue the transaction on the TLSB.  It simply
aborts that transaction by transmitting a UTV_ERROR_A (or B) code
across its internal TL_CMD bus to each IDR.  The I/O port then posts an
IPL 17 interrupt on the TLSB, if enabled by ICCNSE<INTR_NSES>.  

6.7.8  Data Bus Errors

Data bus errors are either ECC-detected errors on data transfers or control
errors on the data bus.  In addition, all I/O port transceivers on the TLSB
check the data received from the bus against the expected data driven on
the bus.

The I/O port slices the TLSB_D<255:0> and TLSB_ECC<31:0> signals into
four parts, each containing 64 bits of data and 8 bits of ECC as follows:

• TLSB_D<63:0> and TLSB_ECC<7:0> are handled by the IDR_0 gate
array 

• TLSB_D<127:64> and TLSB_ECC<15:8> are handled by the IDR_1
gate array 

• TLSB_D<191:128> and TLSB_ECC<23:16> are handled by the IDR_2
gate array 

• TSB_D<255:192> and TLSB_ECC<31:24> are handled by the IDR_3
gate array 

The I/O port handles error detection on these signals independently in
each slice, setting error bits in a corresponding TLESRn register. The  con-
tents of the four TLESRn registers is summarized in the TLBER register.
Broadcasting of the error is determined by the error type and whether or
not broadcasting of the error type is enabled.

6.7.8.1 Single-Bit ECC Errors

A single bit error on a memory data transfer is detected by the I/O port’s 
ECC checking logic.  The I/O port both checks and corrects the data.  If  the
I/O port detects a single-bit ECC error, it logs the error in its TLESRn reg-
ister by setting either <CRECC> or <CWECC>, depending on whether  a
read or write command failed.  If the error was detected on data that the
I/O port was writing to memory, then the TLESR<TDE> and TL-
BER<DTDE> bits are also set. 

A CRECC error sets <CRDE> in the I/O port’s TLBER register.  A CWECC 
error sets <CWDE> in the I/O port’s TLBER register.

When the I/O port detects a single-bit data error, it asserts TLSB_DATA_
ERROR to signal the other nodes of the error.  If correctable error inter-
rupts are not disabled by TLCNR<CWDD> and TLCNR<CRDD>, and ICC-
NSE<INTR_NSES> is set, an IPL 17 interrupt is posted to the proces-
sor(s).  

The I/O port also latches the failing syndrome in the TLESRn registers, in-
dicating which cycle(s) failed during the transaction. 

6.7.8.2 Double-Bit ECC Errors

A double-bit error on a data transfer is detected by the I/O port’s ECC 
checking logic.  The I/O port logs the error in its TLESRn register by set-
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ting <UECC>.  A UECC error causes the I/O port to set TLBER<UDE>
and assert TLSB_DATA_ERROR.  An IPL 17 is also posted, if enabled by
software.

If the error was detected on data that the I/O port was writing to memory,
then TLESR<TDE> and TLBER<DTDE> bits are also set. 

If the error is detected on a read type instruction, a down  Turbo Vortex
read return data packet is sent to the HDR.  However, each IDR that de-
tected an error asserts the down Turbo Vortex RER signal to the HDR for
the duration of the packet.  The down HDR detects the assertion of the
RER signal and creates a one cycle DMA read data with error packet to be
sent down the target hose.  The assertion of RER on the down Turbo Vor-
tex is valid for any DMA read data packets,  whether they result from a
DMA read or a DMA IREAD.

If the uncorrectable error is detected on read lock data, the failing 
quadword(s) are tagged as bad when loaded into the Memory Channel
buffers in  the IDRs.  The I/O port issues the Write Unlock command to
free the  memory bank.  However, because the integrity of the data has
been lost,  the data cannot be written back to memory.  Each IDR on the
I/O port has  the capability of not driving  (that is, defaulting) the TLSB 
data bus, in the event that the data had been tagged as bad.  Note that
while this action does result in a second uncorrectable ECC error being de-
tected, it has the desirable feature of unlocking the memory bank.

6.7.8.3 Illegal Sequence Errors

An illegal sequence error occurs when the bus sequence value that is trans-
mitted with TLSB_SEND_DATA is different from the expected sequence
number.  The I/O port sets TLBER<SEQE> and asserts the TLSB_FAULT
signal.  The I/O port also detects an illegal sequence error if TLSB_SEND_
DATA is received and there was no outstanding TLSB command. 

6.7.8.4 SEND_DATA Timeout Errors

The I/O port begins a timeout count when a data bus sequence slot is 
reached and the I/O port is expecting a slave to return data.  If the I/O port 
does not receive TLSB_SEND_DATA for 256 cycles, it logs a DTO error in 
its TLBER register and asserts TLSB_FAULT.  Note that if TLSB_HOLD
is asserted during this transaction, the timeout counter is not incremented. 
As a result the timeout count is effectively extended by the number of Hold
cycles (that is,  the timeout count equals 256 plus the number of Hold cy-
cles).

6.7.8.5 Data Status Errors

The TLSB_STATCHK signal is used as a check on the logical OR of
TLSB_SHARED and TLSB_DIRTY.  Two cycles after TLSB_SEND_DATA
is seen on the TLSB, and every two cycles thereafter if TLSB_HOLD is as-
serted, the I/O port checks these signals.  If, during this check, the I/O port
receives either TLSB_SHARED or TLSB_DIRTY asserted while TLSB_
STATCHK is deasserted, or if TLSB_STATCHK  is asserted while TLSB_
SHARED and TLSB_DIRTY are both deasserted, the I/O port sets its TL-
BER<DSE> and asserts TLSB_FAULT. 
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6.7.8.6 Transmit Check Errors

The I/O port level checks the TLSB_D<255:0> and TLSB_ECC<31:0>
fields when it is driving data on the TLSB bus.  The I/O port sets <TCE> in 
its TLESRn register if it detects a mismatch.  Since ECC is checked on the
data received from the bus, a TCE error usually causes the I/O port to set
one of <UECC>, <CWECC>, or <CRECC>.  If <TCE> should set without
any other error bit, a case where other nodes will receive this data and
think it is good, the I/O port sets <FDTCE> in its TLBER register and as-
serts TLSB_FAULT.

The I/O port level checks TLSB_SEQ<3:0> whenever it asserts 
TLSB_SEND_DATA.  If it detects a mismatch, it sets <DCTCE> and as-
serts  TLSB_FAULT.

The I/O port assertion checks TLSB_SEND_DATA only when it is being
asserted by the I/O port.  If the I/O port detects a mismatch, it sets <DC-
TCE> in its TLBER register and asserts TLSB_FAULT.

The I/O port assertion checks TLSB_HOLD only when it is  being asserted
by the I/O port.  If the I/O port detects a mismatch, it sets <DCTCE> in its
TLBER register and asserts TLSB_FAULT.

The I/O port assertion checks TLSB_DATA_ERROR only when it is  being
asserted by the I/O port.  If the I/O port detects a mismatch, it sets <DC-
TCE> in its TLBER register and asserts TLSB_FAULT.

The I/O port level checks TLSB_DATA_VALID when it is driving data on
the TLSB. If it detects a mismatch, it sets <DVTCE>, which results in
<CRDE> or <CWDE> (depending on the TLSB command) being set in its
TLBER register.  This causes the I/O port to issue an IPL 17 interrupt if
interrupts are enabled.

NOTE:  TLSB_SHARED, TLSB_DIRTY, and TLSB_STATCHK are never asserted
by the  I/O port; therefore, no transmit checking for these signals is imple-
mented on the I/O port.

6.7.8.7 Multiple Data Bus Errors

Hard and soft data bus errors are cumulative.  Should a second error con-
dition occur, the I/O port asserts TLSB_DATA_ERROR a second time.  If
the error is of a different type than the first, the I/O port sets an additional
error bit in its TLBER register.

System fatal data bus errors are cumulative.  Should a second system fatal
error condition occur, the I/O port asserts TLSB_FAULT a second time.  If
a fatal error is of a different type than the first, the I/O port sets an addi-
tional error bit in its TLBER register.

6.7.9  Additional TLSB Status

In addition to the error bits in the TLBER and TLESRn registers, the I/O
port preserves additional status on detection of errors.

• The TLESRn registers contain syndrome fields that are latched on the 
detection of ECC errors with the failing syndrome.

• The TLBER register (<DS0-3>) records which TLESRn register con-
tains error status corresponding to the most significant error condition 
detected for which additional error status has been saved.
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• The TLFADRn registers record the address, command, and bank num-
ber from the command.

These registers can only hold information relative to one error.  It is the
responsibility of software to read and clear all error bits and  status.  Even
when errors occur infrequently, there is a chance that a  second error can
occur before software clears all status from a previous error.  The error
register descriptions specify the behavior of the I/O port when multiple er-
rors occur.

The errors are prioritized as follows:

1. FNAE, APE, BBE, or ATCE in TLBER register 

2. NAE in TLBER register 

The I/O port overwrites status registers with data only if a higher priority
data error occurs.  If software finds multiple data error bits set, the infor-
mation in the status registers reflects status for the highest priority error. 
If multiple errors of the same priority occur, the information in the status
registers reflects the first error.

6.7.10  Hard I/O Port Errors

In addition to the error detection points already described, a number of
others have been implemented to provide a high degree of error detection
capability.  These detection points consist primarily of the Up Hose inter-
face, the up and down Turbo Vortex interfaces, and the I/O port’s internal
CSR data path bus between the gate arrays.  The following sections docu-
ment the action taken by the I/O port in the presence of each group of er-
rors.

6.7.10.1 Up Hose Errors

If one of the up HDRs detects an error on an Up Hose packet, it discards
the packet and notifies the ICR chip that an error was detected.  Addition-
ally, the up HDR toggles the hose decrement packet signal to indicate to
the I/O adapter that processing of the packet has been completed.

There is an error interface between the HDRs and the ICR.  This interface
is used to notify the ICR chip that one of the following errors has occurred:

• Parity error

• Packet error

• Overflow error

• Internal error

Reporting of Up Hose detected errors can be enabled by setting  ICC-
NSE<INTR_NSES>, which results in the I/O port posting an IPL 17 inter-
rupt.

6.7.10.2 Up Turbo Vortex Errors 

Error checking is implemented on the up Turbo Vortex interface in the 
ICR gate array as well as the IDR gate array.  Errors that are detected  by
the ICR gate array prevent the transaction from being issued on the TLSB. 
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The ICR up Turbo Vortex interface checks for the following types of  errors:

• Parity errors

• Sequence errors

• Buffer overflow errors

• Illegal command errors

Reporting of up Turbo Vortex detected errors can be enabled by setting 
ICCNSE<INTR_NSES>, which results in the I/O port posting an IPL 17
interrupt.  In addition to posting an interrupt, the ICR transmits a
UTV_ERROR_A (or B) command across the I/O port’s internal command
bus to each of the IDRs.  This causes the buffer pointers for the up Turbo
Vortex transaction buffers to be incremented to the next buffer.  Once the
processing of the transaction has been completed, a DECR_PKT  signal is
asserted from the ICR to the HDR, keeping the buffer counters in sync be-
tween the two chips.

The IDR up Turbo Vortex interface checks for the following types of  er-
rors:

• Parity errors 

• Overflow errors

• Sequence errors 

The detection of up Turbo Vortex errors by the IDRs is logged by setting
IDPNSE<IDR_UP_VRTX_ERROR>.  If the error is detected by IDR1 on
the first up Turbo Vortex cycle, then the transaction is not initiated.

If the up Turbo Vortex error is detected by IDR0, IPD2, or IDR3, or if the
error is detected on the second or subsequent cycle by IDR1, then the data
is tagged as bad and the transaction is initiated.  When the tagged data is
to be written to the TLSB, the bus is defaulted instead.  Note that this re-
sults in an uncorrectable ECC error on the TLSB, with the I/O port as the
transmitter during error.  This is in addition to the up Turbo Vortex error
indication in the IDPNSEn register. 

6.7.10.3 Down Turbo Vortex Errors

Error checking is implemented on the down Turbo Vortex interface in the 
HDR gate array.  Handling of errors by the down HDR is packet depend-
ent.  If the error is detected on a Mailbox Command packet, interrupt
status packet, or an unknown packet type, the packet is discarded.  If the
error is detected on a packet that is determined to be DMA read return
data, then a DMA read return with error packet is sent down the hose.

The following down Turbo Vortex errors can be detected by the HDR:

• Parity errors

• Sequence errors

• Buffer overflow errors

• Internal HDR errors 

Reporting of down Turbo Vortex errors is accomplished through the asser-
tion of a down Turbo Vortex error signal from the HDR to the ICR.   The
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assertion of this signal causes ICCNSE<DN_VRTX_ERRORn> to set.  An
IPL 17 interrupt will also be posted if ICCNSE<INTR_NSES> is set.

When the down HDR completes processing of the failing packet, it at-
tempts to assert DECR_PKT<n> to the ICR gate array. DECR_PKT<n> is
only asserted if a packet was sent down the hose (for example, DMA read
return with error packet).  This keeps the buffer counters in sync across
the two chips.

If the down Turbo Vortex packet contains an error that causes the down
HDR to discard the packet, then DECR_PKT<n> is not sent to the ICR.  In
this case, a node reset (TLCNR<NRST>) is needed to resynchronize the
ICR and down HDR chips.  

6.7.11  Miscellaneous I/O Port Errors

6.7.11.1 CSR Bus Parity Errors

The I/O port’s internal CSR data path bus between IDR0 and the other
IDR and ICR gate arrays is protected by parity. 

On CSR writes to I/O port registers, TLSB ECC is checked in IDR0.  IDR0 
also generates parity on the data to be transferred onto the I/O port’s CSR
data bus.  If the TLSB ECC check is without errors, then good parity is
generated for transmission onto the I/O port’s CSR data bus.  However, if
an uncorrectable ECC error is detected on the TLSB data, then bad parity
is transmitted onto the I/O port’s CSR data bus.  This results in one of the
IDPNSE<IDR_CSR_BUS_PE> or ICCNSE<ICR_CSR_BUS_PE> bits being
set, depending on whether the CSR to be written was in IDR1, IDR2,
IDR3, or ICR.  The  actual write of the CSR is blocked if an error is de-
tected on the write data. 

On CSR reads of I/O port registers that are resident in either the ICR or 
IDR1:3 parity is checked by IDR0.  If no error is detected, then ECC is gen-
erated, and the data and ECC are transmitted onto the TLSB.  However, if
a parity error is detected on the I/O port’s CSR data bus, the CSR data cy-
cle is defaulted on the TLSB.  This action results in TLBER-<DTDE>,
TLESR<PAR>, TLESR<TDE>, and  IDPNSE0<IDR_CSR_BUS_PE> being
set.

6.7.11.2 Unexpected Mailbox Status Packet

This error typically indicates that the ICCNSE<MBX_TIP> bits were
cleared prior to a mailbox transaction reaching its timeout limit. When
this error condition is detected, the I/O port sets ICCNSE <UN_MBX_
STATn> and posts an IPL 17 interrupt if ICCNSE<INTR_NSES> is set. 
Additionally, the ICR transmits a UTV_ERROR_A (or B) command across
the I/O port’s internal command bus, which causes the up Turbo Vortex
transaction buffer pointers to be incremented to the next buffer. 

6.7.11.3 ICR and IDR Internal Illogical Errors

If a catastrophic failure occurs within one of the gate arrays, an illogical
state may be encountered.  If possible, either ICCNSE<ICR_IE> or ID-
PNSE<IDR_IE> is set to indicate the error.  Additionally, the I/O port as-
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serts TLSB_FAULT.  The catastrophic failure requires a reset of the I/O
port to return the I/O port to a known state. 

6.7.11.4 Hose Status Change Errors

The IDPNSEn registers contain status information relating to the ability
of the I/O adapter to receive commands and data from the Down Hose.
These bits are <HOSEn_ERROR> and <HOSEn_PWROK>. 

Either a high-to-low or a low-to-high transition of HOSEn_PWROK causes
an IPL 17 interrupt to be posted, if  ICCNSE<INTR_NSES> is set.  The
same is true for the assertion of  HOSEn_ERROR.  The assertion of
HOEn_ERROR indicates that the I/O adapter cannot receive or process
commands and must be reset through a Down Hose reset.

6.8  KFTIA Overview

The KFTIA is an integrated I/O port module.  Up to three KFTIA/KFTHA
modules can be used in a system in any combination.  In a system of mixed
KFTIA/KFTHA modules, slot 8 is always occupied by a KFTIA.  Figure
6-33 shows the connections of the integrated I/O port.

 Figure 6-33 KFTIA Connections

The integrated I/O port connects directly or supports the following compo-
nents:

• One 8-bit single-ended SCSI port (ISP 1020)

• Three 16-bit fast differential SCSI ports (ISP 1020)
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• One external hose connection

• Optional multimode FDDI daughter card or UTP FDDI daughter card

• Optional 4-Mbyte NVRAM daughter card

• Onboard 128-Kbyte map RAM

The integrated I/O port is comprised of two sections, as shown in Figure
6-34.

• TLSB bus interface

• Integrated I/O section

 Figure 6-34 KFTIA Block Diagram
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supports one Turbo Vortex bus (Turbo Vortex Bus A) and two hose buses:
internal hose (Hose 0) and external hose (Hose 1).

The integrated I/O section contains all the hardware that connects from 
the internal hose, including the two HPC (hose to PCI) gate arrays, to all 
the SCSI, Ethernet, and FDDI and NVRAM daughter cards (Figure 6-35). 
The integrated I/O section is a logically separate I/O subsystem connected 
to the integrated I/O port interface through the internal hose. 

The KFTIA is compatible in architecture to other PCI I/O allowing soft-
ware drivers to run with no modifications. The KFTIA supports a 32K-
entry scatter/gather address map that is used to translate PCI memory ad-
dresses into main memory addresses. To improve the individual DMA
transaction performance, the KFTIA implements an on-chip scatter/gather
cache, and reads of a full host memory block. To improve overall DMA
throughput, the KFTIA implements two physically separate PCI buses and
allows a DMA operation to be pending simultaneously for each bus.  
KFTIA also supports the protocol required to receive Memory Channel
writes. This allows NVRAM on the PCI to be kept consistent with main
memory.  The integrated I/O port supports Memory Channel writes down
the Down Hose. 

The KFTIA interfaces the TLSB bus to any one of three different I/O bus
adapter modules through the external hose.  The three I/O adapter mod-
ules are the XMI adapter (DWLMA), the Futurebus+ adapter (DWLAA),
and the PCI bus adapter (DWLPA).

The integrated I/O section is connected to the TLSB bus interface by the
internal hose (Hose 0).  The internal hose is identical in operation and pro-
tocol to the external hose.  It is different electrically, as there are no driv-
ers and receivers needed to drive and receive the hose cable. 

6.8.1  Integrated I/O Section 

The integrated I/O section communicates with the integrated I/O port
through Hose 0 (the internal hose).  Refer to the documents listed below for
detailed description and discussions of the various components of the inte-
grated I/O section. 

• DWLPA PCI Adapter Technical Manual:  Describes the hose to PCI
(HPC) gate array and related hardware.  The hose to PCI interface
that is implemented on the integrated I/O port is a subset of what is
implemented on the DWLPA. 

• Ethernet Controller 21040 (TULIP) Engineering Specification:  De-
scribes the Ethernet chip.  Consult also the DEC 21040 Typical
Motherboard Implementation.

• ISP 1020 Intelligent SCSI Processor Technical Manual

• DEFPZ Hardware Specification

• ITIOP (KFTIA) NVRAM Specification

Figure 6-35 shows a block diagram of the integrated I/O section of the
KFTIA.
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 Figure 6-35 Integrated I/O Section of the KFTIA
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The PCI interface consists of the following sections: 

• Two HPC (hose to PCI) gate arrays 

• Map RAM

• Up Hose control logic 

These sections are discussed below.

HPC Gate Arrays 

Each HPC provides the connection between the internal hose and each 
PCI bus (PCI0 and PCI1). 

The HPCs provide access to all three PCI address spaces:  memory space,
I/O space, and configuration space.  All three are accessible using sparse
address mapping that allows for individual byte access.  PCI memory space
is also accessible through dense mapping, which supports cache block-sized
bursts.  PCI memory and I/O space each appear as a contiguous 32-bit ad-
dress space across both PCI buses.  Accesses to these address spaces are
sent to both buses.  PCI configuration space is contiguous across both
buses but accesses are only sent to one bus.

Map RAM 

The integrated I/O port supports 128 Kbytes of scatter/gather (32K-entry)
map RAM.  The map RAM, when enabled, is used to store the page entry
used to form the 40-bit system memory address.  The map RAM is accessi-
ble through the HPC gate array. 

NOTE:  All Map RAM locations must be written to before reading to set correct par-
ity.

Control Logic 

The hose control logic consists of: 

• Up Hose control PAL 

• Map RAM control PAL

6.8.1.2 SCSI Ports 

The KFTIA module supports:

• One 8-bit single-ended SCSI port

• Three 16-bit differential SCSI ports

The single-ended SCSI port supports the fast synchronous transfer mode
with a bandwidth of 10 Mbyte/sec, and the differential SCSI ports support
the fast synchronous transfer mode with a bandwidth of 20 Mbyte/sec.  The
single-ended SCSI port uses the SCSI-2 50-pin high-density connector and
is optionally (software controlled) terminated internally on the integrated
I/O port using an active SCSI terminator.  The differential ports use the
68-pin high-density connector and are not terminated internally on the in-
tegrated I/O port. Two of the SCSI ports are on PCI0, and the other two
are on PCI1. 
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6.8.1.3 Ethernet Ports

The integrated I/O port supports two Ethernet ports and uses the twisted-
pair (10baseT) connection.  The  Ethernet port can sustain reception of
back-to-back packets at full line speed with a 9.6 µs IPG (interpacket gap),
or to transmit such back-to-back packets, due to its on-chip dual 256-byte
FIFOs. 

6.8.1.4 Optional NVRAM Daughter Card 

NVRAM is a memory module (DJ-ML300-BA) used on the PCI local bus,
which provides for the retention of data in the event of system failure. The
caching software can use the NVRAM module to enhance the performance
of applications in synchronous disk I/O.   The integrated I/O port NVRAM
daughter card has a capacity of 4 Mbytes.

6.8.2  Integrated I/O Section Transactions

The HPC gate array communicates over the internal hose (hose 0) inter-
face using four types of transactions: 

• DMA

• Mailbox

• CSR

• Interrupt

6.8.2.1 DMA Transactions

All PCI DMA transactions access the HPC as a PCI target.  PCI memory
transactions are forwarded to the Up Hose if they access one of the address
ranges specified by a set of DMA window registers.  If required, the PCI
DMA address is translated to a system memory address through a scat-
ter/gather address map.  The HPC can generate DMA read and masked/
unmasked write transactions to the Up Hose.  The HPC generates an in-
terlocked read transaction to the Up Hose in response to a PCI DMA read
with PCI lock asserted. 

DMA write transactions are received from the PCI bus in a store and for-
ward manner.  The HPC generates masked octaword or hexword writes, or
unmasked double hexword writes to the HDR gate array.  Each HPC con-
tains two PCI DMA write buffers allowing one transaction’s write data to
be transferred over the Up Hose while another PCI DMA command is be-
ing received from the PCI bus.  All DMA read transactions are the size of
the system memory block, which is 64 bytes.  DMA read commands sent to
the HDR are tagged with an HPC ID code. Read return data received over
the Down Hose bus is identified by its tag and buffered by the appropriate
HPC.  Each HPC contains one 64-byte read return buffer.  The buffer is
filled from the Down Hose until a cut-through threshold is reached, at
which point the HPC begins transferring data on the PCI.  The  PCI trans-
fer proceeds in parallel with the remainder of the hose transfer. 
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6.8.2.2 Mailbox Transaction

All mailbox transactions are executed by the HPC as a PCI master.
Mailbox transactions forwarded from the HDR can access a PCI I/O device
through the PCI bus, an HPC CSR, or the map RAM.  Mailbox transac-
tions to PCI memory or I/O space on the PCI bus are sent to both PCI
buses.  However, only one bus responds to the transaction. 

Mailbox transactions are byte, word, tribyte, longword, or quadword in
length.  A Mailbox Command packet is received by the HPC on the Down
Hose.  Each of the HPCs independently decodes the command, although
only one executes it.  After executing the mailbox read or write command
to the appropiate destination, the executing HPC returns a mailbox status
packet to the HDR over the Up Hose.  Data is included in the Up Hose
packet if the command was a mailbox read. 

Mailbox transactions are used for diagnostics and initialization. Although
the HPC can buffer up to four mailbox transactions, it executes only one
transaction at a time.  The HDR sends one mailbox transaction at a time
to the HPC. 

6.8.2.3 CSR Transactions 

All CSR transactions are executed by the HPC as a PCI master.  CSR
transactions generated by the HDR can access a location on the PCI bus,
an HPC CSR, or the map RAM and flash ROM. CSR transactions to PCI
memory or I/O space on the PCI bus are sent to both PCI buses, with only
one bus actually responding to the transaction. 

CSR transactions are byte, word, tribyte, longword, quadword, or hexword
in length.  Byte, word, tribyte, longword, and quadword transfers are sup-
ported through a sparse CPU-to-PCI address mapping.  Byte, word,
tribyte, and longword transfers result in a PCI length burst of one.
Quadword transfers result in a PCI burst length of two.  Hexword trans-
fers result in a PCI length burst of eight. 

Each HPC independently decodes the CSR command, although only one
HPC executes it.  After executing the CSR read or write command to the
appropriate destination, the executing HPC returns a CSR status packet to
the HDR over the Up Hose.  Data is included in the Up Hose packet if the
command was a CSR read. 

The HPC can buffer up to four CSR transactions, thus reducing the wait
time between the end of one transaction on the PCI bus and the start of
the next transaction on the PCI bus. 

Memory Channel writes received from the HDR are handled in the same
manner as CSR transactions. 

6.8.2.4 Interrupt Transactions

Each HPC accepts the PCI device interrupts from the bus it interfaces to. 
Each HPC contains 17 interrupt vector registers that are programmable by
software. Sixteen of the registers hold hardware device interrupt vectors,
and one register holds an error interrupt vector. 

The interrupts are latched and prioritized in the HPC.  The HPC generates
an INTR/IDENT by accessing the CSR that contains the selected inter-
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rupt’s vector and merging it with a programmable device IPL.  The
INTR/IDENT is then sent to the HDR over the Up Hose. 

Because the interrupt request lines of the devices are connected to more
than one of the HPC’s 16 interrupt request input pins, software controls
the interrupt priority of the devices on each PCI bus.  See Table 6-36. 

  Table 6-36 PCI 0 and PCI 1 Interrupt Priority

All PCI device interrupts are issued as INTR/IDENTs at the same inter-
rupt priority level.  No prioritization is provided between interrupts gener-
ated on different PCI buses.  Normal Up Hose arbitration is used to select
the order in which HPCs issue INTR/IDENTs to the Up Hose.  All HPCs
monitor the outstanding INTR/IDENTs and inhibit issuing INTR/IDENTs
at the outstanding IPLs until an interrupt status packet for that IPL is re-
turned on the Down Hose. 

PCI 0 INT<15:0>L Device PCI 1 INT<15:0>L Device

PCI 0 INT<0>L
PCI 0 INT<1>L
PCI 0 INT<2>L
PCI 0 INT<3>L
PCI 0 INT<4>L
PCI 0 INT<5>L
PCI 0 INT<6>L
PCI 0 INT<7>L
PCI 0 INT<8>L
PCI 0 INT<9>L
PCI 0 INT<10>L
PCI 0 INT<11>L
PCI 0 INT<12>L
PCI 0 INT<13>L
PCI 0 INT<14>L
PCI 0 INT<15>L

SCSI 0
SCSI 1
Ethernet 0
FDDI
SCSI 1
Ethernet 0
FDDI
SCSI 0
Ethernet 0
FDDI
SCSI 0
SCSI 1
FDDI
SCSI 0
SCSI1
Ethernet 0

PCI 1 INT<0>L
PCI 1 INT<1>L
PCI 1 INT<2>L
PCI 1 INT<3>L
PCI 1 INT<4>L
PCI 1 INT<5>L
PCI 1 INT<6>L
PCI 1 INT<7>L
PCI 1 INT<8>L
PCI 1 INT<9>L
PCI 1 INT<10>L
PCI 1 INT<11>L
PCI 1 INT<12>L
PCI 1 INT<13>L
PCI 1 INT<14>L
PCI 1 INT<15>L

SCSI 2
SCSI 3
Ethernet 1
NVRAM
SCSI 3
Ethernet 1
NVRAM
SCSI 2
Ethernet 1
NVRAM
SCSI 2
SCSI 3
NVRAM
SCSI 2
SCSI 3
Ethernet 1
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Chapter 7

System Registers

The system registers are divided into two main groups:

• TLSB registers

• Node-specific registers

TLSB registers are used for internode communications and transactions
over the TLSB bus.  Node-specific registers implement functions related to
the operation of the module.  

Each node implements some TLSB required registers as well as node-
specific registers.  All system registers are located in node spaces and are
accessed using CSR read or write commands.  Nodes respond to all ad-
dresses within the node space.  If a read is performed to a valid node, but
to a CSR that is not implemented, the return data is Unpredictable.

This chapter discusses the system registers in four sections as follows:

• TLSB registers

• CPU module-specific registers

• Memory module-specific registers

• I/O port-specific registers

The discussions proceed as follows:  Section 7.3 describes all the registers
required to implement the system platform.  Sections 7.4, 7.5, and 7.6 list
registers on CPU, memory, and I/O ports, respectively, but describe only
module-specific registers. 

7.1  Register Conventions

Certain conventions are followed in register descriptions and in references
to bits and bit fields:

• Registers are referred to by their mnemonics, such as TLCNR regis-
ter.  The full name of a register (for example,  Memory Configura-
tion Register) is spelled out only at the top of the register description
page, or when the register is first introduced.  

• Bits and fields are enclosed in angle brackets.  For example, bit <31>
and bits <31:16>.  For clarity of reference, bits are usually specified by
their numbers or names enclosed in angle brackets adjacent to the reg-
ister mnemonic, such as TLBER<16> or TLBER<UDE>, which are
equivalent designations. 
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• When the value of a bit position is given explicitly in a register dia-
gram, the information conveyed is as follows:

• The entry in the type column of a register description table may in-
clude the initialization value of the bits.  For example,  entry "R/W,  0"
indicates a read/write bit that is initialized to 0.  

• Acronyms are used throughout register descriptions to indicate the ac-
cess type of the bit(s) as follows:

7.2  Register Address Mapping

CSRs are mapped to a node space as offsets from a base address that is
assigned to the node (slot on the TLSB backplane).  The base address is
implemented in hardware and depends on the node ID of the module,
which is determined by the TLSB slot occupied by the module.  

Table 7-1 gives the physical base addresses of nodes on the TLSB bus.   
Some registers are mapped to the broadcast space.  The broadcast space
base address (BSB) is common to all nodes and is FF 8E00 0000.  

      Bit Value
   Designation Meaning

             0

             1

             X

Reads as zero; ignored on writes.

Reads as one; ignored on writes.

Does not exist in hardware. The value of the
bit is Unpredictable on reads and ignored on
writes. 

Acronym Access Type

R

R0

R/W

U

W

W1C

W1S

Read only; writes ignored.

Read as zero.

Read/write.

Undefined

Write only.

Read/write one to clear; unaltered by a write of zero.

Write one to set; self-cleared; cannot be cleared by a
write of  zero.
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  Table 7-1 TLSB Node Space Base Addresses

     Node              Module

 Physical Base Address (BB)
       Address Field <39:0>

34-Bit Range 

0
1
2

‘ 3
4
5
6
7
8

CPU, Memory
CPU, Memory
CPU, Memory
CPU, Memory
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
CPU, Memory, I/O
I/O

FF 8800 0000
FF 8840 0000
FF 8880 0000
FF 88C0 0000
FF 8900 0000
FF 8940 0000
FF 8980 0000
FF 89C0 0000
FF 8A00 0000
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7.3  TLSB Registers

Table 7-2 lists the TLSB registers.  Descriptions of registers follow.

  Table 7-2 TLSB Registers

Mnemonic Name Address
Modules That
 Implement 

TLDEV
TLBER
TLCNR
TLVID
TLMMR0
TLMMR1
TLMMR2
TLMMR3
TLMMR4
TLMMR5
TLMMR6
TLMMR7
TLFADR0 
TLFADR1
TLESR0
TLESR1 
TLESR2 
TLESR3 
TLILID0 
TLILID1 
TLILID2 
TLILID3 
TLCPUMASK 
TLMBPR 
TLPRIVATE 
TLIPINTR 
TLIOINTR4 
TLIOINTR5 
TLIOINTR6 
TLIOINTR7 
TLIOINTR8 
TLWSDQR4 
TLWSDQR5 
TLWSDQR6 
TLWSDQR7 
TLWSDQR8 
TLRMDQRX 
TLRMDQR8 
TLRDRD 
TLRDRE 
TLMCR

Device Register 
Bus Error Register
Configuration Register
Virtual ID Register
Memory Mapping Register
Memory Mapping Register
Memory Mapping Register 
Memory Mapping Register 
Memory Mapping Register 
Memory Mapping Register 
Memory Mapping Register 
Memory Mapping Register 
TLSB Failing Address Register 0
TLSB Failing Address Register 1
TLSB Error Syndrome Register 0
TLSB Error Syndrome Register 1
TLSB Error Syndrome Register 2
TLSB Error Syndrome Register 3
Interrupt Level0 IDENT Register
Interrupt Level1 IDENT Register
Interrupt Level2 IDENT Register
Interrupt Level3 IDENT Register
CPU Interrupt Mask Register
Mailbox Pointer Register
Reserved for private transactions
Interprocessor Interrupt Register
I/O Interrupt Register 4
I/O Interrupt Register 5
I/O Interrupt Register 6
I/O Interrupt Register 7
I/O Interrupt Register 8
Window Space Decr Queue Counter Reg 4
Window Space Decr Queue Counter Reg 5
Window Space Decr Queue Counter Reg 6
Window Space Decr Queue Counter Reg 7
Window Space Decr Queue Counter Reg 8
Mem Channel Decr Queue Counter Reg X
Mem Channel Decr Queue Counter Reg 8
CSR Read Data Return Data Register
CSR Read Data Return Error Register
Memory Control Register

BB+0000
BB+0040
BB+0080
BB+00C0
BB+0200
BB+0240
BB+0280
BB+02C0
BB+0300
BB+0340
BB+0380
BB+03C0
BB+0600
BB+0640
BB+0680
BB+06C0
BB+0700
BB+0740
BB+0A00
BB+0A40
BB+0A80
BB+0AC0
BB+0B00
BB+0C001

BSB+0000
BSB+0040
BSB+0100
BSB+0140
BSB+0180
BSB+01C0
BSB+0200
BSB+0400
BSB+0440
BSB+0480
BSB+04C0
BSB+0500
BSB+0600
BSB+0640
BSB+0800
BSB+0840
BSB+1880

CPU, Mem, I/O
CPU, Mem, I/O
CPU, Mem, I/O
CPU, Mem
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
CPU, I/O
Mem, I/O
Mem, I/O
CPU, Mem, I/O
CPU, Mem, I/O
CPU, Mem, I/O
CPU, Mem, I/O
I/O
I/O
I/O
I/O
I/O
I/O
None2

CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU
CPU, I/O
CPU, I/O
CPU
CPU
Memory

1 Virtual CPU ID asserted on TLSB_BANK_NUM<3:0> to select one of 16 actual registers.

2 Data not to be recorded by another node.
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TLDEV—Device Register 

  Table 7-3 TLDEV Register Bit Definitions

Address
Access

BB + 0000 
R/W

The TLDEV register is loaded during initialization with informa-
tion that identifies a node.    A zero value indicates an uninitialized
node.

31 24 23 16 15 0

HWREV SWREV DTYPE

BXB-0491-93

Name Bit(s) Type Function

HWREV <31:24> R/W, 0 Hardware Revision.   Identifies the hardware
revision level of a TLSB node.  The value will be
loaded by hardware or self-test firmware during
node self-test.  Bits <31:28> specify a major revi-
sion number and bits <27:24> specify a minor re-
vision number to be displayed by the console in
the format 0.0 through 15.15.

SWREV <23:16> R/W, 0 Software Revision.  Identifies the software (or
firmware) revision level of a TLSB node. The
value will be loaded by hardware or self-test
firmware during node self-test. Bits <23:20>
specify a major revision number and bits
<19:16> specify a minor revision number to be
displayed by the console in the format 0.0
through 15.15. These bits shall be zero if a soft-
ware revision level is not applicable to this node.
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 Table  7-3  TLDEV Register Bit Definitions (Continued)

Name Bit(s) Type Function

DTYPE <15:0> R/W, 0 Device Type.   Identifies the type of node as fol-
lows: bit <15> specifies a CPU node; bit <14>
specifies a memory node; bit <13> specifies an
I/O node.  Bits <7:0> specify the ID of a node
type.  The following table defines the current
TLSB device types.

Device
<DTYPE>
(Hex) Module

KFTHA

KFTIA

MS7CC

Single DECchip 21164
processor,
4-Mbyte cache

Single DECchip 21164
processor, 
16-Mbyte cache

Dual DECchip 21164
processor, 4-Mbyte
cache

Dual DECchip 21164
processor, 16-Mbyte
cache

2000

2020

5000

8011

8012

8014

8015

I/O port

I/O port

Memory

CPU

CPU

CPU

CPU
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TLBER—Bus Error Register

Address
Access

BB + 0040 
R/W

The TLBER register contains bits that are set when a TLSB node
detects errors in the TLSB system.   The entire register is locked
when the first error bit gets set in this register if TLCNR<LOFE> is
set.  All bits except the four DSn bits cause the register to be
locked.   When the register is locked, no bits change value until all
bits are cleared by software or TLCNR<LOFE> is cleared.  Locking
the register is intended only for diagnostics.  Not intended for use
in normal operation. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 11 10 9 4 3 08 7 6 5 12

RSVD

BXB-0508-93

Data Errors 
UDE: 
Uncorrectable
CWDE: 
Correctable Write
CRDE:
Correctable Read
CWDE2

Address Errors 
ATCE: Addr Transmit
   Ck Err
APE: Addr Parity Err
BAE:  Bank Avail
  Violation Err

LKTO:  Bank Lock Timeout
NAE: NO ACK Err
RTCE:  Read Transmit Ck Err
ACKTCE: ACK Transmit Ck Err

Status 
DS0:  Data Synd 0
DS1:  Data Synd 1
DS2:  Data Synd 2
DS3:  Data Synd 3
DTDE: Data Transmitter
     During Error
ATDE:  Address
    Transmitter During Err

Fatal Data Errors 
FDTCE:  Fatal Data Transmit Ck Err


DCTCE:  Data Control Transmit Ck Err
SEQE:  Sequence Err
DSE: Data Status Err
DTO:  Data Timeout

MMRE:  Memory Mapping Reg Err
FNAE:  Fatal No ACK Err
REQDE:  Request Deassertion Err
UACKE:  Unexpected ACK Err
ABTCE:  Addr Bus Transmit Ck Err
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  Table 7-4 TLBER Register Bit Definitions

Name Bit(s) Type Function

DTO <31> W1C, 0 Data Timeout.   Set when a commanding node
times out waiting for a slave to assert
TLSB_SEND_DATA.  This is a system fatal er-
ror that asserts TLSB_FAULT.  This error is dis-
abled if TLCNR<DTOD> is set. 

Memory:  Not implemented. 

DSE <30> W1C, 0 Data Status Error.  Set when
TLSB_STATCHK does not match the logical OR
of TLSB_SHARED and TLSB_DIRTY. This is a
system fatal error that asserts TLSB_FAULT.

SEQE <29> W1C, 0 Sequence Error.  Set when an unexpected
value of TLSB_SEQ<3:0> is received.  This is a
system fatal error that asserts TLSB_FAULT.

DCTCE <28> W1C, 0 Data Control Transmit Check Error.  Set
when a transmit check error is detected on
TLSB_SEND_DATA, TLSB_SEQ<3:0>,
TLSB_SHARED, TLSB_DIRTY, TLSB_HOLD,
TLSB_STATCHK, or TLSB_DATA_ERROR sig-
nals.  This is a system fatal error that asserts
TLSB_FAULT.

I/O:  Does not drive TLSB_SHARED,
TLSB_DIRTY, and TLSBSTACHK.

ABTCE <27> W1C, 0 Address Bus Transmit Check Error.  Set
when a transmit check error is detected on
TLSB_ARB_SUP, TLSB_LOCKOUT, or
TLSB_BANK_AVL<15:0>  signals.  This is a sys-
tem fatal error that asserts TLSB_FAULT.

I/O:  Does not drive TLSB_LOCKOUT or
TLSB_BANK_AVL<15:0>. 

UACKE <26> W1C, 0 Unexpected Acknowledge.  Set if a node re-
ceives unexpected TLSB_CMD_ACK.  This is a
system fatal error that asserts TLSB_FAULT.

FDTCE <25> W1C, 0 Fatal Data Transmit Check Error.  Set when
a node detects a data transmit check error and
does NOT detect any ECC error.  This is a sys-
tem fatal error that asserts TLSB_FAULT.

DTDE <24> Data Transmitter During Error.  A status bit
set on receipt of TLSB_DATA_ERROR if node
was the transmitter of the data during data bus
transaction.
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Table 7-4  TLBER Register Bit Definitions (Continued)

Name Bit(s) Type Function

DS3 <23> R, U Data Syndrome 3.  A status bit set when the
TLESR3 register contains status relative to the
current data error.  This bit is undefined when
CRDE, CWDE, and UDE are zero.  It is over-
written on a second error of higher significance.

DS2 <22> R, U Data Syndrome 2.  A status bit set when the
TLESR2 register contains status relative to the
current data error.  This bit is undefined when
CRDE, CWDE, and UDE are zero.  It is over-
written on a second error of higher significance.

DS1 <21> R, U Data Syndrome 1.  A status bit set when the
TLESR1 register contains status relative to the
current data error.  This bit is undefined when
CRDE, CWDE, and UDE are zero.  It is over-
written on a second error of higher significance.

DS0 <20> R, U Data Syndrome 0.  A status bit set when the
TLESR0 register contains status relative to the
current data error.  This bit is undefined when
CRDE, CWDE and UDE are zero.  It is overwrit-
ten on a second error of higher significance.

CWDE2 <19> W1C, 0 Second Correctable Write Data Error.   Set
when a second CWDE error is received when
<CWDE> is still set from the first error.

CRDE <18> W1C, 0 Correctable Read Data Error.  Set when a
CRECC error is set in any TLESRn register. 
This is a soft error that asserts TLSB_DATA_
ERROR if CRDD is not set in the TLCNR regis-
ter.

I/O:  Posts an IPL 17 error interrupt after as-
serting TLSB_DATA_ERROR if interrupts are
enabled.

CWDE <17> W1C, 0 Correctable Write Data Error.  Set when a
CWECC error is set in any TLESRn register. 
This is a soft error that asserts TLSB_DATA_
ERROR if CWDD is not set in the TLCNR regis-
ter.

I/O:  Posts an IPL 17 error interrupt after as-
serting TLSB_DATA_ERROR if interrupts are
enabled.
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Table 7-4  TLBER Register Bit Definitions (Continued)

Name Bit(s) Type Function

UDE <16> W1C, 0 Uncorrectable Data Error.  Set when
<UECC> is set in any TLESRn register.  This is
a hard error that asserts TLSB_DATA_ ERROR.

CPU:  Set when <UECC> is set in any TLESRn
register.

I/O:  Posts an IPL 17 error interrupt if inter-
rupts are enabled. 

RSVD <15:11> R, 0 Reserved.  Read as zeros. 

ATDE <10> W1C, 0 Address Transmitter During Error.  A status
bit set when FNAE, NAE, APE, or ATCE errors
are detected if node was the transmitter of the
command, address, and bank number during the
address bus sequence.

Memory:  Not implemented. 

I/O:  <ATDE> is set also on BAE error. 

REQDE <9> W1C, 0 Request Deassertion Error.  Set when a re-
quest signal is not deasserted by a node that has
won address bus arbitration.  This is a system
fatal error that asserts TLSB_FAULT.

Memory:  Not implemented. 

FNAE <8> W1C, 0 Fatal No Acknowledge Error.  Set when a
commander fails to receive a TLSB_CMD_ACK
response for a memory access command.  This is
a system fatal error that asserts TLSB_FAULT.

Memory:  Not implemented. 

MMRE <7> W1C, 0 Memory Mapping Register Error.  Set when
a commander node detects an error translating a
physical address to a bank number.   An improp-
erly initialized TLMMRn register will normally
be the cause.  This bit will be set when no bank
number is found.  This is a commander specific
error and handling of the error is node specific. 
If the address is issued on the bus, the command
must be no-op.

Memory:  Not implemented. 

I/O:  Does not issue address on the bus and
posts IPL 17 interrupt if interrupts are enabled.
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Table 7-4  TLBER Register Bit Definitions (Continued)

Name Bit(s) Type Function

ACKTCE <6> W1C, 0 Acknowledge Transmit Check Error.  Set
when a transmit check error is detected on the
TLSB_CMD_ACK signal.  This is a system fatal
error that asserts TLSB_FAULT.

I/O:  Also sets <NAE> if I/O port was com-
mander of transaction.

RTCE <5> W1C, 0 Request Transmit Check Error.  Set when a
transmit check error is detected on a request sig-
nal: TLSB_REQ<7:0>, TLSB_REQ8_HIGH,
TLSB_REQ8_LOW.  This is a system fatal error
that asserts TLSB_FAULT.

Memory:  Not implemented. 

NAE <4> W1C, 0 No Acknowledge Error.  Set when a com-
mander fails to receive an expected 
TLSB_CMD_ACK in response to a CSR com-
mand.  

CPU:  This is a fatal error when the CSR opera-
tion is a write to other than one of the TLMBPR
registers.  In this case, <CSR_NXM_WR> in the
TLEPAERR register also sets.  When the opera-
tion is a CSR read, bogus data is cycled back to
DECchip 21164 and FILL_ERROR is asserted to
the DECchip 21164. 

Memory:  Not implemented. 

I/O:  When set, I/O port posts an IPL 17 inter-
rupt if interrupts are enabled.  

LKTO <3> W1C, 0 Bank Lock Timeout.  Set when a memory node
times out waiting for a Write Bank Unlock com-
mand after processing a Read Bank Lock com-
mand.  This is a hard error.  The memory node
asserts TLSB_BANK_AVL upon setting
<LKTO>.  This error is disabled if LKTOD is set
in the TLCNR register.

CPU:  Not used.

I/O:  Not implemented.
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Table 7-4  TLBER Register Bit Definitions (Continued)

Name Bit(s) Type Function

BAE <2> W1C, 0 Bank Available Violation Error.  Set when a
memory bank is addressed by a memory access
command while the memory bank is busy.  Also
set when any node detects a CSR access com-
mand while a CSR command is already in pro-
gress. This is a system fatal error that asserts
TLSB_FAULT.

I/O:  Also sets <ADTE>.

APE <1> W1C, 0 Address Parity Error.  

CPU:  Set when a node detects even parity on
the TLSB_ADR<30:5> and TLSB_ADR_PAR sig-
nals, or on the TLSB_ADR<39:31>,
TLSB_ADR<4:3>,  TLSB_BANK_NUM<3:0>,
TLSB_CMD<2:0>, and TLSB_CMD_PAR sig-
nals.  This is a system fatal error that asserts
TLSB_FAULT.  When this bit is set, <ATDE> is
also set.

Memory:  Set when a node detects even parity on
the TLSB_ADR<30:5> and TLSB_ADR_PAR sig-
nals, or on the TLSB_ADR<39:31>,
TLSB_ADR<4:3>,  TLSB_BANK_NUM<3:0>,
TLSB_CMD<2:0>, and TLSB_CMD_PAR sig-
nals.  This is a system fatal error that asserts
TLSB_FAULT.  When this bit is set, <ATDE> is
also set.

I/O:  Set when I/O port detects even parity on
the TLSB_ADR<30:5> and TLSB_ADR_PAR<0>
signals, or on the TLSB_ADR<39:31>,
TLSB_BANK_NUM<3:0>, TLSB_CMD<2:0>,
and TLSB_CMD_PAR<1> signals.  This is a sys-
tem fatal error that asserts TLSB_FAULT. 
When this bit is set, <ATDE> is also set.
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Table 7-4  TLBER Register Bit Definitions (Continued)

Name Bit(s) Type Function

ATCE <0> W1C, 0 Address Transmit Check Error.  

CPU:  Set when a transmit check error is de-
tected on the TLSB_ADR<39:3>, 
TLSB_ADR_PAR, TLSB_BANK_NUM<3:0>,
TLSB_CMD<2:0>, or TLSB_CMD_PAR signals. 
This is a system fatal error that asserts
TLSB_FAULT.  When this bit is set, <ATDE> is
also set.

Memory:  Not implemented. 

I/O:  Set when a transmit check error is de-
tected on the TLSB_ADR<39:5>, 
TLSB_ADR_PAR, TLSB_BANK_NUM<3:0>,
TLSB_CMD<2:0>, or TLSB_CMD_PAR signals. 
This is a system fatal error that asserts
TLSB_FAULT.  When this bit is set, <ATDE> is
also set.
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TLCNR—Configuration Register

Address
Access

BB + 0080
R/W

The TLCNR register contains the TLSB system configuration setup
and status information.  Node-specific configuration information
exists in node-specific registers.

31 30 29 28 27 22 21 20 19 14 13 12 11 4 3 08 7 12

RSVD RSVD VCNT NODE_ID

BXB-0492A-93

RSTSTAT
RSVD
NRST:  Node Reset
LOFE:  Lock on First Error

DTOD:  Data Timeout Dis
LKTOD:  Bank Lock Timeout Dis

CRDD:  Corr Read Data Err INTR Dis
CWDD:  Corr Write Data Err INTR Dis

HALT_A
HALT_B

STF_A:
   Self-Test Fail A
STF_B:
   Self-Test Fail B
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  Table 7-5 TLCNR Register Bit Definitions

Name Bit(s) Type Function

LOFE <31> R/W, 0 Lock on First Error.  If set, the node locks the
TLBER and TLFADR registers when the first er-
ror bit is set in the TLBER register. 

NRST <30> W, 0 Node Reset.  When set, the node undergoes a
reset sequence.  The behavior of a node during
reset is implementation specific.

CPU:  Starts self-test.  Caches and CSRs are in-
itialized.

Memory:  Self-test halts if running and does not
restart. 

I/O:  All logic except TLSB interface logic is re-
set.  All internal registers are reset to their de-
fault values.  Conditionally, attached I/O bus
adapters are reset through the hose signal, DN-
RST<3:0>, if DPDRn<DIS_DN_HOSE_RESET>
is not set.  If DPDRn<DIS_DN_HOSE_RESET>
is set, the corresponding I/O bus adapter will not
be reset.  

RSVD <29:22> R/W, 0 Reserved.  Read as zero.

RSTSTAT <28> W1C, 0 Reset Status.  Set when <NRST> is set. 
Cleared by writing 1 to it, system power-up re-
set, or assertion of TLSB_RESET L.

RSVD <27:22> R/W, 0 Reserved.  Read as zero.

HALT_B <21> R/W, 0 Halt CPU1.   When set, CPU1 enters console
mode if the halt is enabled in the TLINTRMASK
register.  Cleared by writing TLINTR-
SUM1<HALT> to zero.

Memory:  Not implemented. 

I/O:  Not implemented. 

HALT_A <20> R/W, 0 Halt CPU0.   When set, CPU0 enters console
mode if the halt is enabled in the TLINTRMASK
register. Cleared by writing TLINTR-
SUM0<HALT> to zero.

Memory:  Not implemented. 

I/O:  Not implemented.   

RSVD <19:14> R0 Reserved.  Read as zero. 
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Table 7-5  TLCNR Register Bit Definitions (Continued)

Name Bit(s) Type Function

STF_B <13> R/W, 1 Self-Test Fail B.  When set, indicates that unit
has not yet passed self-test.

CPU:  When set, indicates that CPU1 has not yet
passed self-test.  Initialized to zero for uniproces-
sor module.

Memory:  When set, indicates that memory has
not yet completed self-test. Memory clears this
bit if self-test executes to completion regardless
of whether or not errors were found within
the DRAM array.  When this bit is clear, the
self-test LED will be lit, indicating that the mod-
ule completed the self-test.  <STF_B> and
<STF_A> are set and cleared simultaneously.

I/O:  Not implemented. 

STF_A <12> R/W, 1 Self-Test Fail A.  When set, indicates that unit
has not yet passed self-test.

CPU:  When set, indicates that CPU0 has not yet
passed self-test.  

Memory:  When set, indicates that memory has
not yet completed self-test. Memory clears this
bit if self-test executes to completion regardless
of errors (if any)  found within the DRAM
array.  When this bit is clear, the self-test LED
will be lit, indicating that the module completed
the self-test.  <STF_A> and <STF_B> are set
and cleared simultaneously.

I/O:  When set, indicates that I/O port has not
yet passed self-test.  There is no on-board self-
test for the I/O port.  The self-test is performed
by the CPUs.  If self-test is successful, primary
CPU clears this bit.

The state of this bit also affects the I/O port’s
green LED.  When this bit is set, the LED will
not be lit.  When this bit is clear, the LED will be
lit.
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Table 7-5  TLCNR Register Bit Definitions (Continued)

Name Bit(s) Type Function

VCNT <11:8> R/W, 0 Virtual Unit Count.  This field indicates the
number of virtual units contained in this mod-
ule.  

CPU: Self-test firmware loads this field with a
value of 1 on all uniprocessor modules and 2 on
all dual-processor modules. 

Memory:  Memory hardware loads this field with
a value of 1 on all single-bank modules, and 2 on
all two-bank modules.

I/O:  I/O port hardware loads a value of 1 to this
field.

NODE_ID <7:4> R, ID Node ID.  This field reflects the physical node
ID as presented to the node by TLSB_NID<2:0>.  

I/O:  An I/O node presented with
TLSB_NID<2:0> equal to zero presents a hex
value of 8 in the NODE_ID field.

DTOD <3> R/W, 0 Data Timeout Disable.  When set, a node
(CPU or I/O) disables the timeout counter for
TLSB_SEND_DATA.  The error bit TL-
BER<DTO> does not set.

Memory:  Reserved.  Reads as zero.

LKTOD <2> R/W, 0 Bank Lock Timeout Disable.  When set, a
memory node disables the timeout counter wait-
ing for a Bank Unlock Write command after
processing a Read Bank Lock command.  The
<LKTO> error bit in the TLBER register will not
set.

CPU:  Reserved.  Reads as zero.

I/O:  Reserved.  Reads as zero.
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Table 7-5  TLCNR Register Bit Definitions (Continued)

Each node on the TLSB can contain up to two individually addressable
units.  These units can be CPUs or memory banks and are physically ad-
dressed as A and B. The number of these units is presented in <VCNT>.
These units are also addressed using virtual IDs that are assigned by writ-
ing to the TLVID register.

A failure in the node’s self-test may declare individual units unusable or
the entire node unusable.  If individual units fail self-test but the remain-
der of the node is deemed usable, the self-test fail bits for the usable units
are cleared.  An entire node is unusable if all implemented self-test fail
bits remain set or if the <VCNT> field contains a zero.

Unimplemented Halt and Self-Test Fail bits read zero. 

Name Bit(s) Type Function

CRDD <1> R/W, 0 Correctable Read Data Error Interrupt Dis-
able.   When set, TLSB_DATA_ERROR is not 
asserted on detection of a single-bit data error
during a read command.  Setting CRDD in all
nodes disables correctable read data error inter-
rupts.

CWDD <0> R/W, 0 Correctable Write Data Error Interrupt
Disable.  When set, TLSB_DATA_ERROR is not
asserted on detection of a single-bit data error
during a write command.  Setting CWDD in all
nodes disables correctable write data error inter-
rupts.
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TLVID—Virtual ID Register 

Address
Access

BB + 00C0
R/W

The TLVID register contains the TLSB virtual identifiers assigned
to a physical node.  The virtual units can be CPUs or memory
banks.  The number of these units is presented in TLCNR<VCNT>.
The units are addressed using virtual IDs that are assigned by
writing the TLVID register. 

31 4 3 08 7

VID_B VID_A

BXB-0493-93

RSVD
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  Table 7-6 TLVID Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:8> R/W, 0 Reserved.  Must be written as zero.

VID_B <7:4> R/W, 0 Virtual ID B.  Contains the virtual ID for unit
B in this node.  Reads zero if unimplemented.

CPU:  Contains the virtual ID for CPU1.  Initial-
izes to TLSB_NID<2:0> shifted left filled with
one.  A read of this register reads the hardwired
value.  However, the register must be written to
update the DIGA VID field.

Memory:  Contains the virtual ID number for
memory bank 1. Console loads this field at in-
itialization time. The contents of this register are
compared to TLSB_BANK_NUM<3:0> during a
memory space command/address cycle to deter-
mine if bank 1 of this module is selected.

VID_A <3:0> R/W, 0 Virtual ID A.  Contains the virtual ID for unit
A in this node.

CPU:  Contains the virtual ID for CPU0.  Initial-
izes to TLSB_NID<2:0> shifted left filled with
zero.  A read of this register reads the hardwired
value.  However, the register must be written to
update the DIGA VID field.

Memory:  Contains the virtual ID number for
memory bank 0. Console loads this field at in-
itialization time. The contents of this register are
compared to TLSB_BANK_NUM<3:0> during a
memory space command/address cycle to deter-
mine if bank 0 of this module is selected.
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TLMMRn—Memory Mapping Registers 

  Table 7-7 TLMMRn Register Bit Definitions

Address
Access

BB + 0200 to BB + 03C0
W (CPU), R/W (I/O)

The TLMMRn registers contain the mapping information for per-
forming bank decode.  

31 3 012

ADDRESS

BXB-0757-93

SBANK 
INTMASK

46 57891030

ADRMSK

VALID

RSVD

25

INTLV

1126

RSVD

12

Name Bit(s) Type Function

VALID <31> CPU, W, 0
I/O, R/W, 0

Valid.  When set, indicates that the mapping
register is valid and can be used in address de-
coding.  <VALID> is set only if a corresponding
memory bank ID has been written to a memory
controller.

RSVD <30:26> CPU, W, 0
I/O, R/W, 0

Reserved.  Must be written as zero.

ADDRESS <25:12> CPU, W, 0
I/O, R/W, 0

Address.  Bank address range to be decoded.
This field is compared to the physical address
lines TLSB_ADR<39:26>.

SBANK <11> CPU, W, 0
I/O, R/W, 0

Single Bank.  Set to define a single bank num-
ber determined by the register number n.
Cleared to define two bank numbers, n and n+8.
This bit should be set when defining a bank
number for a single-bank module.  
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Table 7-7   TLMMRn Register Bit Definitions (Continued)

  Table 7-8 Interleave Field Values for Two-Bank Memory Modules

Name Bit(s) Type Function

INTLV <10:8> CPU, W, 0
I/O, R/W, 0

Interleave.  Lower address bits used in inter-
leaving.  This field is compared to physical ad-
dress lines TLSB_ADR<8:6>.  Table 7-8 gives
<INTLV> values for various interleave levels.

ADRMASK <7:4> CPU, W, 0
I/O, R/W, 0

Address Mask.  Indicates the number of ad-
dress bits not used in the address comparison.
This field allows physical memory sizes from 64
Mbytes through 1 terabyte to be mapped.  Ad-
dress ranges indicated by various values of
<ADRMASK> are given in Table 7-9.

RSVD <3:2> CPU, W, 0
I/O, R/W, 0

Reserved.  Must be written as zero.

INTMASK <1:0> CPU, W, 0
I/O, R/W, 0

Interleave Mask.  Indicates how many bits are
valid in the interleave field.  This permits 1, 2, 4,
and 8-way interleaving when <SBANK> is set,
or 2, 4, 8, and 16-way interleaving when
<SBANK> is clear.  Table 7-8 gives <INTMASK>
values for various interleave levels.

Interleave
Level

Modules 
Interleaved <SBANK> <INTMASK> <INTLV> Bank n Bank n+8

  2-way
  4-way
  8-way
16-way

1
2
4
8

0
0
0
0

0
1
2
3

N/A
0:1
0:3
0:7

ADR<6>=0
ADR<7>=0
ADR<8>=0
ADR<9>=0

ADR<6>=1
ADR<7>=1
ADR<8>=1
ADR<9>=1
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  Table 7-9 Address Ranges Selected by ADRMASK Field Values

<ADRMASK>
Address
Range

TLSB_ADR Bits
Compared

TLSB_ADR Bits
Masked

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F (reserved)

 64  Mbytes
128 Mbytes
256 Mbytes
512 Mbytes
    1 Gbyte
    2 Gbytes
    4 Gbytes
    8 Gbytes
  16 Gbytes
  32 Gbytes
  64 Gbytes
128 Gbytes
256 Gbytes
512 Gbytes
    1 Tbyte
    

<39:26>
<39:27>
<39:28>
<39:29>
<39:30>
<39:31>
<39:32>
<39:33>
<39:34>
<39:35>
<39:36>
<39:37>
<39:38>
<39>
-----

----
<26>
<27:26>
<28:26>
<29:26>
<30:26>
<31:26>
<32:26>
<33:26>
<34:26>
<35:26>
<36:26>
<37:26>
<38:26>
<39:26>
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TLFADRn—Failing Address Registers 

  Table 7-10 TLFADRn Register Bit Definitions

Address
Access

BB + 0600, 0640
R/W

The TLFADRn registers contain status information associated with
an error condition.  Some nodes may not preserve this information
for all error types.  Therefore, field valid bits are used to indicate
which fields contain data.

BXB-0733-94

FBANK

FADR<31:3>

ADRV
CMDV
BANKV

23 22 21 20 19 18 17 16 15 14 013 12 11 10 9 8 7 6 5 4 3 2 127 26 25 2431 30 29 28

RSVD

FCMD RSVD FADR<39:32>

TLFADR0

TLFADR1

Name Bit(s) Type Function

TLFADR0

FADR <31:3> R, U Failing Address<31:3>.  The address field from
the command that resulted in an error.  This
field is Undefined when <ADRV> is zero.

RSVD <2:0> R/W, 0 Reserved.  Must be zero.

TLFADR1

RSVD <31:27> R/W, 0 Reserved.  Must be zero.

BANKV <26> W1C, 0 Bank Valid.   Set when <FBANK> contains a
valid bank number from a bus transaction.

CMDV <25> Command Valid.  Set when <FCMD> contains
a valid command code from a bus transaction.
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Table 7-10  TLFADRn Register Bit Definitions (Continued)

The TLFADRn registers are updated on the following conditions, listed in
decreasing priority:

1. <FNAE>, <APE>, <ATCE>, or TLBER<BAE> set in TLBER register

2. <UDE> or <NAE> sets in TLBER register

3. <CWDE> sets in TLBER register

4. <CRDE> sets in TLBER register

5. Node-specific conditions

If any of the bits <ADRV>, <CMDV>, or <BANKV> are set, the registers
are considered to be latched.  A second occurrence of the same update con-
dition does not overwrite latched status.  However, latched status is over-
written if an update condition of higher priority occurs.  The priority of
each update condition is denoted by the number in the above list.  A prior-
ity of 1 is the highest priority.  When latched status is overwritten by a
higher priority condition, all fields are updated, even if the update results
in clearing <ADRV>, <CMDV>, or <BANKV>. 

Software may unlatch the status by writing ones to the <ADRV>,
<CMDV>, and <BANKV> bits to clear them.

The node-specific conditions include, but are not limited to, receipt of
TLSB_DATA_ERROR when the node is participating in the data transfer
(as commander or a slave).  Nodes are encouraged to latch status on addi-
tional error conditions.

All nodes must latch the command and bank number for all conditions
listed above. All nodes must latch the address on address bus errors (that
is, <NAE>, <FNAE>, <APE>, <ATCE>, and TLBER<BAE>).  Memory
nodes must latch the address on data bus errors.

Name Bit(s) Type Function

TLFADR1

ADRV <24> W1C, 0 Address Valid.  Set when <FADR> contains a valid
address from a bus transaction.

FBANK <23:20> R, U Failing Bank Number.  The bank number field
from the command that resulted in an error. This
field is Undefined when <BANKV> is zero.

RSVD <19> R0 Reserved.  Reads as zero. 

FCMD <18:16> R, U Failing Command Code.  The command code field
from the command that resulted in an error.  This
field is Undefined when <CMDV> is zero.

RSVD <15:8> R0 Reserved.  Read as zeros. 

FADR <7:0> R, U Failing Address<39:32>.  The high-order address
field bits from the command that resulted in an er-
ror.  This field is Undefined when <ADRV> is zero.
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TLESRn—Error Syndrome Registers 

  Table 7-11 TLESRn Register Bit Definitions

Address
Access

BB + 0680 through 0740
R/W

The TLESRn registers contain the status information on a data er-
ror within a 64-bit slice of the data. 

TLESR0 contains the error syndrome and status derived from
TLSB_D<63:0>, TLSB_ECC<7:0>, and TLSB_DATA_VALID<0>.

TLESR1 contains the error syndrome and status derived from
TLSB_D<127:64>,  TLSB_ECC<15:8>, and TLSB_DATA_VALID<1>.

TLESR2 contains the error syndrome and status derived from
TLSB_D<191:128>, TLSB_ECC<23:16>, and TLSB_DATA_VALID<2>.

TLESR3 contains the error syndrome and status derived from
TLSB_D<255:192>, TLSB_ECC<31:24>, and TLSB_DATA_VALID<3>.

31 30 22 21 20 19 18 17 16 15 08 7

RSVD SYND1 SYND0

BXB-0784C-94

TDE:  Transmitter During Error
TCE:  Transmitter Check Error
CPU and I/O: DVTCE; MEM: RSVD
UECC:  Uncorrectable ECC Error

CRECC:  Correctable
Read ECC Error      

CWECC:  Correctable
   Write ECC Error       

LOFSYN


23

CPU1
 CPU0



24

Name Bit(s) Type Function

LOFSYN <31> R/W, 0 Lock on First Syndrome.  When set, the TLESR
register locks on the first error.

RSVD <30:24> R/W, 0 Reserved.  Must be written as zero.
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Table 7-11  TLESRn Register Bit Definitions (Continued)

Name Bit(s) Type Function

CPU1

RSVD

RSVD

<23> RO, 0

R0

R0

CPU 1.  When set together with <TDE>, indicates
that CPU1 was involved with sourcing the data er-
ror.  This bit is Unpredictable when <TDE> is clear
and also when CRECC, CWECC, and UCE are zero.

Memory:   Reserved.  Reads as zero.

I/O:  Reserved.  Reads as zero.

CPU0 <22> RO, 0 CPU 0.  When set together with <TDE>, indicates
that CPU0 was involved with sourcing the data er-
ror.  This bit is Unpredictable when <TDE> is clear
and also when CRECC, CWECC, and UCE are zero.

Memory:   Reserved.  Reads as zero.

I/O:  Reserved.  Reads as zero.

CRECC <21> W1C, 0 Correctable Read ECC Error.  Set when an error
occurs during a read command. This is a soft error.

CWECC <20> W1C, 0 Correctable Write ECC Error.  Set when an error
occurs during a write command. This is a soft error.

UECC <19> W1C, 0 Uncorrectable ECC Error.  Set when an uncor-
rectable syndrome is detected, or if a correctable syn-
drome is detected on receipt of CSR data which the
node is unable to correct.  This is a hard error.

DVTCE

RSVD

<18> W1C, 0

R0

I/O,  CPU:   Data Valid Transmit Check Error. 
Set when a transmit check error is detected on the
TLSB_DATA_VALID signal covered by this register.
This is a soft error.

Memory:  Reserved.   Reads as zero. 

TCE <17> W1C, 0 Transmit Check Error.  Set when a transmit
check error is detected on the TLSB_D or
TLSB_ECC signals covered by the TLESRn register.
This is a system fatal error if not accompanied by a
CRECC, CWECC, or UECC (I/O port only) error in
the same data cycle.
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Table 7-11  TLESRn Register Bit Definitions (Continued)

The four TLESRn registers are independent of each other.  Each register
displays error and status information on one 64-bit slice of data.  Two con-
secutive data cycles of the 64-bit data slice constitute one data transaction.
When an error is detected on the data bus, error bits may set in one or
more TLESRn registers.

Multiple error bits may be set from a single data transaction.  For exam-
ple, <TCE> and <UECC> may both set at the same time.  If <LOFSYN> is
not set, multiple error occurrences cumulatively set error bits. The <TDE>,
<SYND0>, and <SYND1> status bits present information from one data
transaction.  The data transaction for which status is presented is the first
transaction that resulted in the most significant error type.  The error
types, in order of significance, are:

1. UECC—Hard error

2. CWECC—Soft error during write command

3. CRECC—Soft error during read command

If a CRECC error occurs in one data transaction,  then a CWECC error in
a later data transaction (and <LOFSYN> is not set), the <TDE>,
<SYND0>, and <SYND1> fields change to reflect the status at the time of
the CWECC error. If UECC is set, the status is latched and will not be
changed no matter how many other error bits set later.  Software must
clear the error bits after each error to ensure proper reporting of the next
error.

The <TDE>, <SYND0>, and <SYND1> fields are not latched due to TCE or
DVTCE errors. 

A zero syndrome is the expected no error condition.  A nonzero ECC syn-
drome may indicate a single-bit or a multiple-bit error.  A multiple-bit er-
ror syndrome results in a UECC error.  A single-bit error syndrome results
in a CRECC or CWECC error (depending on command) for memory data. 
Single-bit errors on memory data are soft errors and correctable.  Not all
nodes, however, have the capability of correcting single-bit errors on CSR
data.  If a node receives CSR data with a single-bit error syndrome and it
is not capable of correcting the data, a UECC error results.

Name Bit(s) Type Function

TDE <16> W1C, 0 Transmitter During Error.  A status bit set when
data transmitted by a node results in error.  This bit
is Undefined when <CRECC>, <CWECC>, and
<UECC> are zero.

SYND1 <15:8> R, U Syndrome  1.  Latched error syndrome from second
data cycle. This field is Undefined when <CRECC>,
<CWECC>, and <UECC> are zero.

SYND0 <7:0> R, U Syndrome 0.  Latched error syndrome from first
data cycle. This field is Undefined when <CRECC>,
<CWECC>, and <UECC> are zero.
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Four error bits in the TLBER register will set as a result of the five error
bits in this register.

• CRECC sets TLBER<CRDE> 

• CWECC sets TLBER<CWDE>

• UECC sets TLBER<UDE>

• TCE, when no ECC error detected, sets TLBER<FDTCE>

• DVTCE sets TLBER<CRDE> during a read command

• DVTCE sets TLBER<CWDE> during a write command

If multiple error bits set in one TLESRn register during a single data
transaction, for UECC in one data cycle and CRECC in the other, the most
significant corresponding error bit in the TLBER register (<UDE>) must
set.  It is not necessary that two bits set in the TLBER register.  This is
implementation dependent.

If error bits set in two TLESRn registers during a single data transaction,
for example, <UECC> in TLESR0 and <CRECC> in TLESR1, the most sig-
nificant corresponding error bit in the TLBER register (<UDE>) must set.
It is not necessary that two bits set in the TLBER register.  This is imple-
mentation dependent. 

The TLBER register also records which TLESRn registers contain status
for the most significant error by setting the <DSn> bits accordingly.  All 
<DSn> bits are overwritten when an error of higher significance occurs.
<DSn> bits are set only for the TLESRn registers that detect the error of
highest significance.  If <UECC> is set in TLESR0 and <CRECC> in
TLESR1, only <DS0> sets in the TLBER register.  Should a UECC error be
detected later in the TLESR1 register, <SYND0> and <SYND1> are over-
written and no longer correspond to the first occurrence of CRECC in the
TLBER register.

This register is locked when the first error bit gets set in this register if
<LOFSYN> is set.  The error bits <CRECC>, <CWECC>, <UECC>,
<DVTCE>, and <TCE> cause the register to be locked.  When the register
is locked, no bits change value until all error bits are cleared by software
or <LOFSYN> is cleared.  Locking the register is intended only for diag-
nostics.  It is not intended for use in normal operation. 
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TLILIDn—Interrupt Level IDENT Registers 

  Table 7-12 TLILIDn Register Bit Definitions

NOTE:  An internally generated I/O port error interrupt takes priority over device
interrupts.  A read of TLILID3 returns the IDENT for an internal error be-
fore all pending device interrupt IDENTs.

Address
Access

BB + 0A00 through 0AC0
R/W

Each of the four TLILIDn registers is the topmost (oldest) entry in
a queue of the interrupts for that IPL.  A read from this register
sends the "oldest" interrupt IDENT to the CPU that requests it.
When all active interrupts have been read, the TLILIDn register
returns zeros.  This forces a passive release at the processor.

31 16 15 0

RSVD IDENT <15:0>

BXB-0495-93

Name Bit(s) Type Function

RSVD <31:16> R/W, 0 Reserved.  Must be zero.

IDENT <15:0> R/W, 0 Identification Vector.  The offset vector supplied
by the original I/O device/adapter that posted the
interrupt.
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TLCPUMASK—CPU Interrupt Mask Register 

  Table 7-13 TLCPUMASK Register Bit Definitions

Address
Access

BB + 0B00
R/W

The TLCPUMASK register is used to determine which CPUs are to
service interrupts.  The contents of this register is combined with
the interrupt level to form the data to be written to the
TLI/OINTRn register.  

The TLCPUMASK register is loaded at system initialization time
(before I/O interrupts are enabled).  This register must not be
changed while I/O interrupts are enabled.

31 16 15 0

CPU_MASK

BXB-0776-93

RSVD

Name Bit(s) Type Function

RSVD <31:16> R/W, 0 Reserved.  Must be zero.

CPU_MASK <15:0> R/W, 0 CPU Mask.   When a bit is set in this field, all in-
terrupts received from the I/O system by the I/O
port are posted to interrupt the corresponding
CPU.  CPUs are selected by virtual node ID.
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TLMBPR—Mailbox Pointer Registers

  Table 7-14 TLMBPR Register Bit Definitions

Figure 7-1 shows the mailbox data structure.

Address
Access

BB + 0C00
W

The TLMBPR register posts mailbox requests in an I/O port for ac-
cess to a CSR on an external I/O bus.  Software access to this regis-
ter is through the single address BB+0C00.  CPU hardware selects
one of the 16 registers by asserting the value of the CPU’s virtual
ID on TLSB_BANK_NUM<3:0>.

0
0

0
5

0
6

3
9

4
0

6
3

MBZMBX_ADR <39:6>

BXB-0499-93

RSVD

Name Bit(s) Type Function

RSVD

MBX_ADR

<63:40>

<39:6>

W, 0

W, 0

Reserved.  Must be zero.

Mailbox Address.    Contains the 64-byte aligned
physical address of the mailbox data structure in
memory where the I/O port can find information to
complete the required operation. 

MBZ <5:0> W, 0 Reserved.  Must be zero.
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 Figure 7-1 Mailbox Data Structure

Table 7-15 gives the description of the mailbox data structure fields.

  Table 7-15 Mailbox Data Structure Description

63 48 47 40 39 32 31 012

MBZ MBZ CMD

BXB-0174 C-94

RBADR <63:0>

WDATA <63:0>

UNPREDICTABLE

RDATA <63:0>

STATUS
E
R
R

D
O
N

UNPREDICTABLE

UNPREDICTABLE

MASKQW 0

QW 1

QW 2

QW 3

QW 4

QW 5

QW 6

QW 7

56 55

HOSE BW

2930

QW Bit(s) Name Description

0 <29:0> CMD Remote Bus Command.  Controls the remote bus operation
and can include fields such as address only, address width, and 
data width.  See Alpha SRM.

<30> B Remote Bridge Access.  If set, the command is a special or
diagnostic command directed to the remote side.  See Alpha
SRM.

<31> W Write Access.  If set, the remote bus operation is a write.

<39:32> MASK Disable Byte Mask.  Disables bytes within the remote bus ad-
dress.  Mask bit <i> set causes the corresponding byte to be dis-
abled.  For example, data byte 1 will NOT be written to the re-
mote address if MASK bit <33> is set.  See Alpha SRM.

<55:48> HOSE Hose.  Specifies the remote bus to be accessed.  Bridges can
connect to up to 256 remote buses.

1 <63:0> RBADR Remote Bus Address.  Contains the target address of the de-
vice on the remote bus.  See Alpha SRM.

2 <63:0> WDATA Write Data.  For write commands, contains the data to be
written.  For read commands, the field is not used by the
bridge.
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Table 7-15   Mailbox Data Structure Description (Continued)

QW Bit(s) Name Description

4 <63:0> RDATA Read Data.  For read commands, contains the data returned.
For write data commands, the field is Unpredictable.

5 <0> DON Done.  For read commands, indicates that the <ERR>,
<STATUS>, and <RDATA> fields are valid.  For all commands,
indicates that the mailbox structure may be safely modified by
host software.

<1> ERR Error.  If set on a read command, indicates that an error was
encountered. Valid only on read commands and when <DON>
is set.  This field is Unpredictable on write commands.  See Al-
pha SRM.

<63:2> STATUS Operation Completion Status. Contains information specific
to the bridge implementation.  Valid only on read commands
and when <DON> is set.  This field is Unpredictable on write
commands.  
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TLIPINTR—Interprocessor Interrupt Register

  Table 7-16 TLIPINTR Register Bit Definitions

To post an interprocessor interrupt to another processor, a processor sets
the relevant bit in the TLIPINTR register.  The bits are write one to set. 
An interprocessor interrupt can be cleared by writing <IP_INTR> in the
appropriate TLINTRSUM register. 

Address
Access

BSB + 0040
W

The TLIPINTR register is used by CPU nodes to signal inter-
processor interrupts.

31 16 15 0

MASK

BXB-0497-93

RSVD

Name Bit(s) Type Function

RSVD <31:16> W, 0 Reserved.  Must be zero.

MASK <15:0> W1S, 0 Interprocessor Interrupt Mask. When a given
bit is set, an interprocessor interrupt is posted to
the corresponding CPU.   Bit  <0> posts an inter-
rupt to the CPU with VID0, bit <1> posts an inter-
rupt to the CPU with VID1, and so on.   A bit in the
<MASK> field is cleared by a write to the appropri-
ate TLINTRSUM<IP_INTR>.
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TLIOINTRn—I/O Interrupt Registers 

  Table 7-17 TLI/OINTR Register Bit Definitions

To post an interrupt, the I/O port writes the TLI/OINTR register appropri-
ate for its node with the desired IPL(s) and the targeted CPUs.  

These registers appear in TLSB broadcast space.  Writes that address
these locations are accepted without regard to receiver node ID.  This

Address
Access

BSB + 0100 through 0200
W

The TLIOINTRn registers are used by the I/O nodes to signal inter-
rupts from the TLSB I/O system to processors.

31 16 15 0

VID_MASK

BXB-0498-93

RSVD

20 19 18 17

IPL 14 INTR
IPL 15 INTR   
IPL 16 INTR
IPL 17 INTR

Name Bit(s) Type Function

RSVD <31:20> R/W, 0 Reserved.  Must be zero.

INTL <19:16> W1S, 0 Interrupt Level.   When a bit is set in this field,
an interrupt is posted at the corresponding level.

INTL Bit IPL

<19>
<18>
<17>
<16>

17
16
15
14

VID_MASK <15:0> W1S, 0 Virtual ID Mask.   When a bit is set in this field,
an interrupt is posted in a corresponding CPU. 
Specific CPUs are selected by virtual ID.



       System Registers   7-37

means that all CPUs accept writes to these registers.  Multiple writes to a
register post multiple interrupts.  Reads to these locations produce Unpre-
dictable results. 

A CPU receiving one of the four bits set in its target assignment is ex-
pected to respond by reading a TLILIDn register in the I/O node and dis-
patch an interrupt based on the IDENT vector.  The four bits determine
the specific TLILIDn register to be read as follows:

• TLILID0 is read if <IPL 14 INTR> is set

• TLILID1 is read if <IPL 15 INTR> is set

• TLILID2 is read if <IPL 16 INTR> is set

• TLILID3 is read if <IPL 17 INTR> is set
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TLWSDQR4-8—Window Space Decr Queue Counter
Registers

Address
Access

BSB + 0400 through 0500
R/W

The TLWSDQRn registers are used by an I/O node to inform CPU
nodes when a window space address register becomes available. 
One register is assigned to each I/O node by physical node ID (for
example, TLWSDQR5 to node 5).  If the I/O node acknowledges the
CSR write command, it must cycle the data bus and provide data
with good ECC.  The data is considered Unpredictable and is not
used by the receiver.  The receiving node must decrement the
counter whether the command is acknowledged or not. 

31 0

BXB-0541V-93

Unpredictable



       System Registers   7-39

TLRMDQRX—Memory Channel Decr Queue Counter
Register X 

Address
Access

BSB + 0600 
R/W

The TLRMDQR register X is used by an I/O node to inform all
nodes when a Memory Channel address register becomes avail-
able.  One I/O port in physical nodes 4 through 7 that is enabled to
handle Memory Channel transactions issues writes to this register. 
If the I/O node acknowledges the CSR write command, it must cy-
cle the data bus and provide data with good ECC.  The data is con-
sidered Unpredictable and is not used by the receiver.  The receiv-
ing nodes must decrement the counter whether the command is
acknowledged or not.

31 0

BXB-0541V-93

Unpredictable
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TLRMDQR8—Memory Channel Decr Queue Counter
Register 8 

Address
Access

BSB + 0640 
R/W

The TLRMDQR register 8 is used by an I/O node to inform all nodes
when a Memory Channel address register becomes available.   An
I/O port in physical node 8 issues writes to this register.  If the I/O
node acknowledges the CSR write command, it must cycle the data
bus and provide data with good ECC.  The data is considered Un-
predictable and is not used by the receiver.  The receiving nodes
must decrement the counter whether the command is acknowl-
edged or not.

31 0

BXB-0541V-93

Unpredictable
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TLRDRD—CSR Read Data Return Data Register

  Table 7-18 TLRDRD Register Bit Definitions

Address
Access

BSB + 0800 
W

The TLRDRD register is used by I/O nodes to return data read
from a remote CSR window space read command and complete the
remote CSR read command.   The CPU virtual ID is asserted on the
TLSB_BANK_NUM<3:0> signals when this command is issued.  The
CPU virtual ID came from the CPU during the CSR window space
read command.

511 0

BXB-0541V1-93

READ_DATA (64 Bytes)

Name Bit(s) Type Function

READ_DATA <511:0> W, 0 Data Read from Remote CSR.  Size and format
of the data are implementation specific.
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TLRDRE—CSR Read Data Return Error Register 

Address
Access

BSB + 0840 
W

The TLRDRE register is used by I/O nodes to signal an error dur-
ing a remote CSR window space read command and complete the
remote CSR read command.  The data returned is Unpredictable. 
The CPU virtual ID is asserted on the TLSB_BANK_NUM<3:0> sig-
nals when this command is issued.  The CPU virtual ID came from
the CPU during the CSR window space read command.

31 0

BXB-0541V-93

Unpredictable
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TLMCR—Memory Control Register

  Table 7-19 TLMCR Register Bit Definitions

Address
Access

BSB + 1880 
W

The TLMCR register is used by memory nodes to set DRAM timing
rates. DRAM timing is dependent on bus cycle time and must be
written into each memory node to ensure the most efficient mem-
ory operation.  DRAM timing affects the memory’s refresh rate. To
allow memory nodes to refresh simultaneously, this register sets
DRAM timing in all memory nodes in the system.

31 4 35 0

RSVD DTR RSVD

BXB-0760-93

6

Name Bit(s) Type Function

RSVD <31:6> W, 0 Reserved.  Must be zero.

DTR <5:4> W, 0 DRAM Timing Rate.  Contents of this field are
memory node implementation specific. 

RSVD <3:0> W, 0 Reserved.  Must be zero.
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7.4  CPU Module Registers

CPU module registers are divided into four groups:

• Module-specific registers

• CPU0-specific registers 

• CPU1-specific registers 

• Gbus registers

The first three groups of registers are implemented in TLSB node space for
visibility.  Gbus registers reside in the node private space. 

NOTE:  Accesses by a CPU to its own Gbus registers are treated as private accesses
and are performed through the TLPRIVATE location in broadcast space
(BSB + 0000). 

Module-specific registers support module diagnostics, console operations.
or module functions that are CPU independent.  CPU0 and CPU1 specific
registers are identical registers dedicated to a particular CPU.  These reg-
isters provide the interrupt masking, identification, and communications
for each CPU.  Gbus registers implement console/diagnostic/interrupt re-
lated functions.  Table 7-20 lists the CPU module registers.  Table 7-21
lists the Gbus registers.  

Refer to Table 7-2 for the TLSB required registers implemented on the
CPU module.
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  Table 7-20 CPU Module Registers

Mnemonic Name Address

Module Registers

TLDIAG
TLDTAGDATA
TLDTAGSTAT
TLMODCONFIG
TLCON00
TLCON0A
TLCON0B
TLCON0C
TLCON10
TLCON1A
TLCON1B
TLCON1C
TLCON01
TLCON11
TLEPAERR
TLEPDERR
TLEPMERR
TLEP_VMG
TLDMCMD
TLDMADRA
TLDMADRB
TLPM_CMD
TLPM_TOT_CYC
TLPM_EV5_LAT
TLPM_RD_LAT
TLPM_SYS_OWN
TLPM_CMD_SILO
TLPM_LOCK
TLPM_MB
TLPM_SD_TOTAL 
TLPM_SD_ACKED
TLPM_RD_CSR
TLPM_RD
TLPM_RD_MOD
TLPM_RD_STC
TLPM_VICTIM
TLPM_WR_CSR
TLPM_WR
TLPM_WR_LOCK
TLPM_INVAL
TLPM_SET_SHRD
TLPM_RD_DIRTY 
TLPM_ADR_SILO

Diagnostic Setup Register 
DTag Data Register
DTag Status Register
CPU Module Configuration Register
Console Communications Register 0 for CPU0
DIGA Communications Test Register 0 for DIGA1
DIGA Communications Test Register 0 for DIGA2
DIGA Communications Test Register 0 for DIGA3
Console Communications Register 0 for CPU1
DIGA Communications Test Register 1 for DIGA1
DIGA Communications Test Register 1 for DIGA2
DIGA Communications Test Register 1 for DIGA3
Console Communications Register 1 for CPU0
Console Communications Register 1 for CPU1
ADG Error Register
DIGA Error Register
MMG Error Register
Voltage Margining Register 
Data Mover Command Register
Data Mover Source Address Register
Data Mover Destination Address Register
Performance Monitor Command Register1

Total number of cycles since start bit was set1

Total average read latency seen by EV5 (DECchip 21164)
Average latency for individual reads1

Number of cycles for which system owned the add/cmd bus1

Command Silo Register1

Number of lock commands acknowledged1

Number of memory barriers acknowledged1

Number of set Dirtys issued by DECchip 211641

Number of those set Dirtys that were acknowledged1

Number of CSR read commands1

Number of memory space read miss commands1

Number of read miss mod commands1

Number of read miss STxC commands1

Number of B-cache victims1

Number of CSR write commands1

Number of write block commands acknowledged1

Number of write block lock commands acknowledged1

Number of invalidates from system1

Number of set Shared bits from system1

Number of read Dirty bits from system1

Address Silo Register1

BB+1000
BB+1040
BB+1080
BB+10C0
BB+1200
BB+1240
BB+1280
BB+12C0
BB+1300
BB+1340
BB+1380
BB+13C0
BB+1400
BB+1440
BB+1500
BB+1540
BB+1580
BB+15C0
BB+1600
BB+1680
BB+16C0
BB+1800
BB+1840
BB+1880
BB+18C0
BB+1900
BB+1940
BB+1980
BB+19C0
BB+1A00
BB+1A40
BB+1A80
BB+1AC0
BB+1B00
BB+1B40
BB+1B80
BB+1BC0
BB+1C00
BB+1C40
BB+1C80
BB+1CC0
BB+1D00
BB+1D40

1  This register is used by performance analysts to monitor the overall performance of the CPU module.
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Table 7-20   CPU Module Registers (Continued)

  Table 7-21 Gbus Registers

Mnemonic Name Address

Module Registers

RM_RANGE_0A
RM_RANGE_0B
RM_RANGE_1A
RM_RANGE_1B

Memory Channel Range Register for channel 0
Memory Channel Range Register for channel 0
Memory Channel Range Register for channel 1
Memory Channel Range Register for channel 1

BB+1E00
BB+1E40
BB+1E80
BB+1EC0

CPU Chip Registers

TLINTRMASK0
TLINTRMASK1
TLINTRSUM0
TLINTRSUM1

Interrupt Mask Register for CPU0
Interrupt Mask Register for CPU1
Interrupt Source Register for CPU0
Interrupt Source Register for CPU1

BB+1100
BB+1140
BB+1180
BB+11C0

Register Address

GBUS$WHAMI
GBUS$LED0
GBUS$LED1
GBUS$LED2
GBUS$MISCR
GBUS$MISCW
GBUS$TLSBRST
GBUS$SERNUM
GBUS$TEST

FF C000 0000
FF C100 0000
FF C200 0000
FF C300 0000
FF C400 0000
FF C500 0000
FF C600 0000
FF C700 0000
FF C800 0000
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TLDIAG—Diagnostic Setup Register 

  Table 7-22 TLDIAG Register Bit Definitions

Address
Access

BB + 1000 
R/W

The TLDIAG register is used to configure the module for the vari-
ous diagnostic modes required for a complete module-level self-
test.  Only one diagnostic setup register is specified, shared be-
tween the two CPUs. 

31 16 15 14 13 12 11 10 9 4 3 08 7 6 12

RSVD

BXB-0500-93

GSLOW
QWVAL_EN: Quadword Valid Enable

ASSRT_FLT:  Assert Fault
RSVD

FDE3:  Force Data Error
FDE2:  Force Data Error
FDE1:  Force Data Error
FDE0:  Force Data Error

FDBE:  Force Double-Bit Error


DTCP:  Dtag CPU
DTRD:  Dtag Read
DTWR:  Dtag Write

FRIGN:  Force Ignore

RSVD

Name Bit(s) Type Function

RSVD

GSLOW

QWVAL_EN

<31:16>

<15>

<14>

R/W, 0

R/W, 0

R/W, 0

Reserved.  Must be written as zeros. 

Gbus Slow.  When set, causes the Gbus clock to run at
TLSB_clk/12 instead of TLSB_clk/6.

Quadword Valid Enable.   When set, enables the gen-
eration of quadword data valid bit to the bus, instead of
octaword data valid bits.
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Table 7-22   TLDIAG Register Bit Definitions (Continued)

Name Bit(s) Type Function

ASRT_FLT

RSVD

FDE<3:0>

FDBE

RSVD

DTCP

DTRD

DTWR

FRIGN

<13>

<12>

<11:8>

<7>

<6:4>

<3>

<2>

<1>

<0>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

W, 0

W, 0

R/W, 1

Assert Fault.   When set, clearing <FRIGN> causes
TLSB_FAULT to be asserted to the bus.  On power-up re-
set, this bit is clear, as TLSB_FAULT should not be as-
serted. On node reset, self-test code sets <ASRT_FLT> to
force TLSB_FAULT assertion when <FRIGN> is cleared.

Reserved.  Must be written as zeros. 

Force Data Error.  One bit assigned for each quadword.
 ECC is written with a single-bit error if <FDBE> is
clear, and with a double-bit error if <FDBE> is set. 
<FDE> forces an error on data being moved into the buff-
ers.  These bits are provided so that the ECC error check-
ers can be tested by module diagnostics.  Bad ECC is
written to the transmit buffer.  Subsequent reads of this
data should detect the error.  Errors are forced for as long
as the bit is set.

Force Double-Bit Error.  When one of the <FDE> bits
is set and this bit is clear, a single-bit error is forced onto
data transmitted to a memory space address.  If this bit
is set together with one or more of the <FDE> bits,
double-bit errors are forced onto the transmitted data.

Reserved.  Must be written as zeros. 

DTag CPU.  Used in conjunction with <DTWR> or
<DTRD> to specify which CPU’s DTag entry is to be
tested.  When DTCP is clear, DTag tests are directed at
CPU0.  When DTCP is set, they are directed at CPU1.

DTag Read.  When set, causes the DTag entry associ-
ated with the next memory space read to be moved into
the TLDTAGDATA and TLDTAGSTAT registers.  Valid
only when <FRIGN> is set.

DTag Write.  When set, causes the DTag entry at the in-
dex specified by the next memory space read to be writ-
ten with the value in the TLDTAGDATA and TLDTAG-
STAT registers. The entry is written to the CPU specified
by <DTCP>.  Valid only when <FRIGN> is set.

Force Ignore.  When set, causes all TLSB transactions
to be ignored and disallows transactions from this mod-
ule to go to the TLSB.  Causes the module to drop out of
the distributed arbitration scheme.  <FRIGN> causes
transactions from this module to be bypassed to the bus
interface inputs without going to the bus.  Note that al-
though this bit can be read, the value is read from the
copy in the DIGA chip (CPU module).  Several copies of
<FRIGN> are distributed to all the control arrays.
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Table 7-22   TLDIAG Register Bit Definitions (Continued)

Name Bit(s) Type Function

DTWR <1> W, 0 DTag Write.  When set, causes the DTag entry at the in-
dex specified by the next memory space read to be writ-
ten with the value in the TLDTAGDATA and TLDTAG-
STAT registers. The entry is written to the CPU specified
by <DTCP>.  Valid only when <FRIGN> is set.

FRIGN <0> R/W, 1 Force Ignore.  When set, causes all TLSB transactions
to be ignored and disallows transactions from this mod-
ule to go to the TLSB.  Causes the module to drop out of
the distributed arbitration scheme.  <FRIGN> causes
transactions from this module to be bypassed to the bus
interface inputs without going to the bus.  Note that al-
though this bit can be read, the value is read from the
copy in the DIGA chip (CPU module).  Several copies of
<FRIGN> are distributed to all the control arrays.
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TLDTAGDATA—DTag Data Register

  Table 7-23 TLDTAGDATA Register Bit Definitions

Address
Access

BB + 1040
R/W

Diagnostics test the DTag RAMs by writing a value to the DTag
and reading the value back to check that the two match.  On diag-
nostic DTag writes, the TLDTAGDATA register is used to set up the
DTag data to be written.  On diagnostic DTag reads, the TLDTAG-
DATA register is used to report the DTag data read from the DTag. 
The TLDTAGDATA register also covers the DTag Data Parity bit. 
Parity is not generated on the data written to the DTag, but is
checked on subsequent reads. 

31 01

RSVD

BXB-0755-93

1920


DTAG_DAT_PAR

DTAG_DATA<38:20>

Name Bit(s) Type Function

RSVD

DTAG_DATA<38:20>

DTAG_DAT_PAR

<31:20>

<19:1>

<0>

R/W, 0

R/W, 0

R/W, 0

Reserved.  Must be written as zeros. 

DTag Data Entry.  Data read from the DTag
entry associated with <DTCP>.  When <DTRD>
is set, data is read at the index specified by the
DTag index of the next memory read.  Valid only
when <FRIGN> is set.  

If <DTWR> is set, the entry currently in this reg-
ister is written to the  DTag entry subject to the
above qualifiers.

DTag Data Parity.  Subject to all the qualifiers
above, this is the data parity.  Parity errors are
reported using the normal mechanism.  Bad par-
ity can be written as this data does not go
through the DTag data parity generator.
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TLDTAGSTAT—DTag Status Register

  Table 7-24 TLDTAGSTAT Register Bit Definitions

Address
Access

BB + 1080
R/W

Diagnostics test the DTag status RAMs by writing a value to
<DT_STAT> and reading  the value back to check that the two
match.  On diagnostic DTag writes, the TLDTAGSTAT register is
used to set up the <DT_STAT> value to be written.  On diagnostic
DTag reads, the TLDTAGSTAT register is used to report the
<DT_STAT> value read from the DTag.  This register also has a
DTag Status Parity bit.  Parity is not generated on data written to
the DTag, but is checked on subsequent reads. 

31 3 012

RSVD

BXB-0777-93


DT_STAT_PAR

4

DT_STAT_V
DT_STAT_S
DT_STAT_D

Name Bit(s) Type Function

RSVD

DT_STAT_(V,S,D)

DT_STAT_PAR

<31:4>

<3:1>

<0>

R/W, 0

R/W, 0

R/W, 0

Reserved.  Must be written as zeros. 

DTag Status (Valid, Shared, Dirty).   Status
read from the DTag entry associated with <DTCP>,
when <DTRD> is set at the index specified by the
DTag index of a memory read, when <FRIGN> is
set and is loaded into the appropriate bits in this
register.  If <DTWR> is set, then the entry cur-
rently in this register is written to <DTAG_STAT
(V,S,D)> subject to the above qualifiers.

DTag Status Parity.  Subject to all the qualifiers
above, this is the <DTAG_STAT> parity.  Parity er-
rors are reported using the normal mechanism un-
less the latter is disabled.  Bad parity can be writ-
ten because this data does not go through the
<DTAG_STAT> parity generator.
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TLMODCONFIG—CPU Module Configuration Register 

  Table 7-25 TLMODCONFIG Register Bit Definitions

Address
Access

BB + 10C0
R/W

The TLMODCONFIG register is set by console code to show the
module configuration.

31 18 1517 16 14 13 10 9 4 3 06 5 12

RSVD

BXB-0785-93

FAULT_DIS
         CPU_PIPE_DIS

SYS_PIPE_DIS
BQ_MAX_ENT

CQ_MAX_ENT
BCIDLETIM: BC Idle Time

RM_SIZE
 LOCKOUT_EN

BCACHE_SIZE
CPU1_DIS
CPU0_DIS

712 11 819

1

Name Bit(s) Type Function

RSVD

RSVD

FAULT_DIS

CPU_PIPE_DIS

SYS_PIPE_DIS

<31:20>

<19>

<18>

<17>

<16>

R/W, 0

R/W, 1

R/W, 0

R/W, 0

R/W, 0

Reserved.  Must be written as zeros. 

Reserved.  Must be written as one. 

Fault Disable.  When set, disables the CPU module
from asserting TLSB_FAULT.

CPU Pipe Disable.  When set, disables the piping of
commands to the system from the CPUs. 

System Pipe Disable.  When set, disables the piping
of commands to the CPUs from the system.  Debug op-
tion only.
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Table 7-25   TLMODCONFIG Register Bit Definitions (Continued)

NOTE:  A write to the TLMODCONFIG register must be followed by a MEMB.  The
acknowledge of this MEMB will be held off until the module is reconfig-
ured.  The TLMODCONFIG register should only be written when
TLDIAG<FRIGN> is set. 

Name Bit(s) Type Function

BQ_MAX_ENT

CQ_MAX_ENT

BCIDLETIM

RM_SIZE

LOCKOUT_EN

BCACHE_SIZE

CPU1_DIS

CPU0_DIS

<15:13>

<12:10>

<9:6>

<5>

<4>

<3:2>

<1>

<0>

R/W, 4

R/W, 4

R/W, F

R/W, F

R/W, 1

R/W, 0

R/W, 0

R/W, 0

Bus Queue Maximum Entries.  Indicates the maxi-
mum number of bus queue entries supported.  Not all
values are supported. 

Cache Queue Maximum Entries.  Indicates the
maximum number of cache queue entries supported. 
Not all values are supported.  

B-Cache Idle Time.  Time that BC_IDLE must be as-
serted before fill data can be returned. Value indicates
the number of sysclock cycles.  The default is set to the
highest value.  Legal values are 2 to F.  Set the value
to the desired number of cycles of BC_IDLE assertion
plus 2.  (If 7 cycles of the BC_IDLE assertion are re-
quired, then set this field to 9.)   The appropriate value
should be written here for optimum system perform-
ance.

Memory Channel Size.  When set, the CPU module
sets Memory Channel threshold at five buffers;  when
clear, threshold is three. 

Lockout Enable.  When set, enables lockouts.  In-
itialized to 1. 

B-Cache Size.   Value is read by console from
GBUS$MISCR and loaded in this field.  May also be
changed for prototype debug.  Indicates B-cache sizes
as follows:

CPU1 Disable.   Can be set to cause service requests
from the DECchip 21164 to be ignored. 

CPU0 Disable.   Can be set to cause service requests
from the DECchip 21164 to be ignored.  

<BCACHE_SIZE> Cache Size per CPU

00
01
10
11

     Reserved
  4 Mbytes
16 Mbytes
     Reserved
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TLEPAERR— ADG Error Register 

Address
Access

BB + 1500
R/W

The ADG Error Register contains CPU module error bits. These
bits are set as a result of errors detected in the ADG. 

31 16 15 14 13 12 11 10 9 4 3 08 7 6 5 12

RSVD

CSR_WR_NXM
WSPC_RD_PEND <1:0>

IBOXTO: IBOX_Timeout <1:0>
WSPC_RD_ERR<1:0>

SYSFAULT
SYSDERR:  System Data Error

D2ACPE: DIGA0 to ADG CSR Parity Error
DTSPE:  Duplicate Tag Status Parity Error

DTDPE:  Duplicate Tag Data Parity Error

M2AAPE1:  MMG to ADG Address Parity Error #1
M2AAPE0:  MMG to ADG Address Parity Error #0
E2MAPE1:  EV5 to MMG Address Parity Error #1
E2MAPE0:  EV5 to MMG Address Parity Error #0

BXB-0511-93

NO_ACK


17
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  Table 7-26 TLEPAERR Register Bit Definitions

Name Bit(s) Type Function

RSVD

NO_ACK

CSR_WR_NXM

WSPC_RD_PEND

IBOXTO

WSPC_RD_ERR

SYSFAULT

SYSDERR

D2ACPE

DTSPE

DTDPE

<31:18>

<17:16>

<15>

<14:13>

<12:11>

<10:9>

<8>

<7>

<6>

<5>

<4>

R/W, 0

W1C, 0

R, 0

R, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

Reserved.  Must be written as zeros. 

No Acknowledgment.   No acknowledgment from
one of the DECchip 21164 processors.  Bit <16> ap-
plies to CPU0; bit <17> to CPU1.

CSR Write Not Transmitted.  CSR write to other
than the TLMBPR register was not acknowledged.

Window Space Read Pending.   Set when a win-
dow space read is pending in the corresponding
CPU.  Bit <13> applies to CPU0; bit <14> to CPU1.

Ibox Timeout.  When set, indicates that the
DECchip 21164 Ibox timers have fired.  Bit <11>
applies to CPU0; bit <12> to CPU1.

Window Space Read Error.  When set, indicates
a window space read error.  Bit <9> applies to
CPU0; bit <10> to CPU1.

System Fault.  When set, indicates that
TLSB_FAULT is asserted, but not by this module.

System Data Error.  Set as a result of the asser-
tion of TLSB_DATA_ERROR.  If <SYSDERR> is
set and no TLBER bits are set, then <SYSDERR> is
indicative of a TLSB data error detected on a mod-
ule other than TLEP, but not detected on TLEP.

DIGA0 to ADG CSR Parity Error.  Set when the
ADG detects a parity error on CSR data transmit-
ted from DIGA0 to the ADG.  This error can occur
when a CSR in the ADG is being written.  This er-
ror indicates that CSR data has been corrupted.
This is a hard error.

DTag Status Parity Error.  Set when the ADG
detects a parity error on duplicate tag store status
data.  This error can be detected as a result of any
duplicate tag read, including DTag lookups and di-
agnostic DTag reads. This error indicates corrupted
system coherency.  This is a hard error and causes
a machine check.

DTag Data Parity Error.  Set when the ADG de-
tects a parity error on duplicate tag store tag data. 
This error can be detected as a result of any dupli-
cate tag read, including DTag lookups and diagnos-
tic DTag reads.  This error indicates corrupted sys-
tem coherency.  This is a hard error and causes a
machine check.
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Table 7-26   TLEPAERR Register Bit Definitions (Continued)

Name Bit(s) Type Function

M2AAPE1

M2AAPE0

E2MAPE1

E2MAPE0

<3>

<2>

<1>

<0>

W1C, 0

W1C, 0

W1C, 0

W1C, 0

MMG to ADG Address Parity Error #1.   Set when
the ADG detects a parity error on the address bus be-
tween CPU1 MMG and the ADG.  A parity check is
performed after the ADG has assembled the CPU ad-
dress and cmd/addr parity, as piped from the MMG,
and combined it with the CPU command sent directly
from the CPU.  This error can occur at any time when
CPU1 is driving CPU1 ADDR<39:4>, CMD<3:0>, and
ADDR_CMD_PAR. This is a hard error.

MMG to ADG Address Parity Error #0.  Set when
the ADG detects a parity error on the address bus be-
tween CPU0 MMG and the ADG.  A parity check is
performed after the ADG has assembled the CPU ad-
dress and cmd/addr parity, as piped from the MMG,
and combined it with the CPU command sent directly
from the CPU.  This error can occur at any time when
CPU0 is driving CPU0 ADDR<39:4>, CMD<3:0>, and
ADDR_CMD_PAR.  This is a hard error.

CPU to MMG Address Parity Error #1.  Set when
the ADG detects a parity error on the address bus be-
tween CPU1 and the MMG.  The parity check for this
error is done in the MMG. The results are piped to the
ADG.  This error can only occur when CPU1 is driving
CPU1 ADDR<39:4>, CMD<3:0>, and
ADDR_CMD_PAR.  This is a hard error.

CPU to MMG Address Parity Error #0.   Set when
the ADG detects a parity error on the address bus be-
tween CPU0 and the MMG.  The parity check for this
error is done in the MMG.  The results are piped to the
ADG.  This error can only occur when CPU0 is driving
CPU0 ADDR<39:4>, CMD<3:0>, and
ADDR_CMD_PAR. This is a hard error.
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TLEPDERR—DIGA Error Register 

Address
Access

BB + 1540
R/W

The TLEPDERR register contains CPU module error bits. These
bits are set as a result of errors detected in the MMG or any of the
DIGA chips.  This register resides in DIGA0.

31 3 012

RSVD

BXB-0503-93

GBTO: Gbus Timeout Error
D2DCPE0:  DIGA to DIGA CSR Parity Error #0

A2DCPE:  ADG to DIGA CSR Parity Error 
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  Table 7-27 TLEPDERR Register Bit Definitions

Name Bit(s) Type Function

RSVD

GBTO

<31:3>

<2>

R/W, 0

W1C, 0

Reserved.  Must be written as zeros. 

Gbus Timeout Error.  Set when DIGA0 issues a
Gbus read and fails to receive Gbus Acknowledge
within the Gbus timeout period.  This error indicates
that the CPU module is unable to access some Gbus re-
source. This error also results in a TLSB data timeout
error and causes assertion of TLSB_FAULT (unless
<FRIGN> is asserted).  The CPU module treats this as
an error by asserting a machine check interrupt. 
DECchip 21164 treats this as a synchronous error, en-
tering a machine check handler when its internal read
counter times out.  This is a system fatal error.

D2DCPE0

A2DCPE

<1>

<0>

W1C, 0

W1C, 0

DIGA to DIGA CSR Parity Error #0.  Set when
DIGA0 detects a parity error on the DIGA to DIGA
CSR bus.  This error can occur when a CSR in DIGA0
is being written or read.  This error can be detected on
either CSR data or CSR command/address informa-
tion, but only when the DIGA0’s DCSR valid bit is as-
serted, or during a DIGA0 to DIGA0 data movement. 
This error indicates that CSR data has been corrupted.
This is a hard error and causes a machine check.

ADG to DIGA CSR Parity Error.  Set when DIGA0
detects a parity error on the ADG to DIGA CSR bus.
This error can occur when any CPU module CSR is be-
ing read or written to.  This error can be detected on
either CSR data or CSR command/address informa-
tion, but only when the ADG is driving the ACSR bus. 
This error indicates that CSR data has been corrupted. 
This is a hard error and causes a machine check.
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TLEPMERR—MMG Error Register 

Address
Access

BB + 1580
R/W

The TLEPMERR register contains CPU module error bits. These
bits are set as a result of errors detected in the MMG.   This regis-
ter also contains the node reset status bit.

31 3 012

RSVD

BXB-0502-93

D2DCPE3:  DIGA to DIGA CSR Parity Error #3
D2DCPE2:  DIGA to DIGA CSR Parity Error #2
D2DCPE1:  DIGA to DIGA CSR Parity Error #1


A2MAPE1:  ADG to MMG Address Parity Error #1
A2MAPE0:  ADG to MMG Address Parity Error #0

46 5


D2MCPE:  DIGA to MMG CSR Parity Error   



78


RSTSTAT   
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  Table 7-28 TLEPMERR Register Bit Definitions

Name Bit(s) Type Function

RSVD

RSTSTAT

D2DCPE3

D2DCPE2

D2DCPE1

<31:7>

<6>

<5>

<4>

<3>

R/W, 0

W1C, 0

W1C, 0

W1C, 0

W1C, 0

Reserved.  Must be written as zeros. 

Node Reset Status.  When set, indicates that the
node was reset by writing 1 to TLCNR<NRST>. 

DIGA to DIGA CSR Parity Error #3.  Set when
DIGA3 detects a parity error on the DIGA to DIGA
CSR bus. This error can occur when a CSR in DIGA3 is
being written or read.  This error can be detected on
either CSR data or CSR command/address informa-
tion, but only when DIGA3’s DCSR valid bit is as-
serted, or during a DIGA0 to DIGA3 data movement.
This error indicates that CSR data has been corrupted.
This is a hard error and causes a machine check.

DIGA to DIGA CSR Parity Error #2.  Set when
DIGA2 detects a parity error on the DIGA to DIGA
CSR bus.  This error can occur when a CSR in DIGA2
is being written or read.  This error can be detected on
either CSR data or CSR command/address informa-
tion, but only when DIGA2’s DCSR valid bit is as-
serted, or during a DIGA0 to DIGA2 data movement. 
This error indicates that CSR data has been corrupted.
This is a hard error and causes a machine check.

DIGA to DIGA CSR Parity Error #1.  Set when
DIGA1 detects a parity error on the DIGA to DIGA
CSR bus.  This error can occur when a CSR in DIGA1
is being written or read.  This error can be detected on
either CSR data or CSR command/address informa-
tion, but only when DIGA1’s DCSR valid bit is as-
serted, or during a DIGA0 to DIGA1 data movement. 
This error indicates that CSR data has been corrupted.
This is a hard error and causes a machine check.
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Table 7-28  TLEPMERR Register Bit Definitions (Continued)

Name Bit(s) Type Function

D2MCPE

A2MAPE1

A2MAPE0

<2>

<1>

<0>

W1C, 0

W1C, 0

W1C, 0

DIGA to MMG CSR Parity Error.  Set when the
MMG detects a parity error on the DIGA to DIGA CSR
bus.  This error can occur when a CSR in the MMG is
being written or read.  This error can be detected on
either CSR data or CSR command/address informa-
tion, but only when MMG’s DCSR valid bit is asserted,
or during a DIGA0 to MMG data movement. This error
indicates that CSR data has been corrupted. This is a
hard error and causes a machine check.

ADG to MMG Address Parity Error #1.  Set when
the MMG detects a parity error on the ADG to
MMG/CPU1 address bus.  This error can only occur
when ADG is driving the CPU1 CMD<3:0> wires and
the MMG ADDR<17:0>.  This error causes the CPU
module to assert a machine check interrupt to
DECchip 21164 (both).  In general, however, the CPU1
detects this error on chip as well.  This error renders
CPU1 incapable of servicing the system command that
generated the error.  This in turn could result in a
TLSB DTO error and cause the assertion of
TLSB_FAULT.  This is a system fatal error.

ADG to MMG Address Parity Error #0.  Set when
the MMG detects a parity error on the ADG to
MMG/CPU0 address bus.  This error can only occur
when ADG is driving the CPU0 CMD<3:0> wires and
the MMG ADDR<17:0>.  This error causes the CPU
module to assert a machine check interrupt to
DECchip 21164 (both).  In general, however, the CPU0
detects this error on chip as well.  This error renders
CPU0 incapable of servicing the system command that
generated the error.  This in turn could result in a
TLSB DTO error and cause assertion of
TLSB_FAULT.  This is a system fatal error.
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TLEP_VMG—Voltage Margining Register

  Table 7-29 TLEP_VMG Register Bit Definitions

Address
Access

BB + 15C0
R/W

The TLEP_VMG register is implemented in DIGA1. It drives the
voltage margining circuit on the CPU module to vary the 5 V and
3.3 V supplies. The otherwise unused (on DIGA1) interrupt lines
are used for this function.  Any value written into this register is
cleared on reset.

31 3 012

RSVD

BXB-0502V-93

3V - 5% 
 3V + 5%

4

   5V - 5%
      5V + 5%

Name Bit(s) Type Function

RSVD

3 V -5%

3 V +5%

5 V -5%

5 V +5%

<31:4>

<3>

<2>

<1>

<0>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Reserved.  Must be written as zeros. 

Set 3.3 V Down 5%.

Set 3.3 V Up 5%.

Set 5 V Down 5%.

Set 5 V Up 5%.
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TLINTRMASK0–1—Interrupt Mask Registers 
 

Address
Access

BB + 1100, BB + 1140
R/W

The TLINTRMASK0–1 registers are used to enable interrupts to
the CPUs.  TLINTRMASK0 controls interrupts on CPU0 and TLIN-
TRMASK1 on CPU1. 

31 9 4 3 08 7 6 5 12

BXB-0770-93

Ctrl/P HALT ENA
HALT ENA

INTIM_ENA
IP_ENA

IPL17_ENA
IPL16_ENA
IPL15_ENA
IPL14_ENA

DUART0_ENA

RSVD
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  Table 7-30 TLEPDERR Register Bit Definitions

Name Bit(s) Type Function

RSVD

Ctrl/P_HALT_ENA

HALT_ENA

INTIM_ENA

IP_ENA

IPL17_ENA

IPL16_ENA

IPL15_ENA

IPL14_ENA

DUART0_ENA

<31:9>

<8>

<7>

<6>

<5>

<4>

<3>

<2>

<1>

<0>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Reserved.  Must be written as zeros. 

Ctrl/P Halt Enable.  Enables halt through ^P if
<TLSB_SECURE> of GBUS$MISCR is not set,
and if a ^P Halt interrupt is received from the
Gbus.

CPU Halt Enable.   Enables halts by writes to
TLCNR<HALT> for this CPU.

Interval Timer Interrupt Enable.   The inter-
val timer can be set to interrupt or to be polled.  If
the timer is set to interrupt, the interrupts can be
directed to either CPU or to both.  

Interprocessor Interrupt Enable.   When set,
enables interprocessor interrupts to this register’s 
associated CPU. 

IPL17 Interrupt Enable.  If set, IPL17 inter-
rupts from the I/O port or other TLSB I/O devices
are enabled to this register’s associated CPU. 

IPL16 Interrupt Enable.  If set, IPL16 inter-
rupts from the I/O port or other TLSB I/O devices
are enabled to this register’s associated CPU. 

IPL15 Interrupt Enable.  If set, IPL15 inter-
rupts from the I/O port or other TLSB I/O devices
are enabled to this register’s associated CPU. 

IPL14 Interrupt Enable.  If set, IPL14 inter-
rupts from the I/O port or other TLSB I/O devices
are enabled to this register’s associated CPU. 

DUART0 Interrupt Enable.  If set, enables
DUART interrupts from DUART0 to this regis-
ter’s associated CPU.
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TLINTRSUM0–1—Interrupt Source Registers 

Address
Access

BB + 1180, BB + 11C0
R/W

The DECchip 21164 has seven interrupt lines.   They are as follows:

1.  IRQ<3:0> - Interrupt request lines mapping to IPL17:IPL14
2.  SYS_MCH_CHK_IRQ - Machine check interrupt request
3.  MCH_HLT_IRQ - Machine halt interrupt request
4.  PWR_FAIL_IRQ - Power fail interrupt request

Multiple interrupts from different devices may be targeted at the
same interrupt request pin of the CPU.  For example, two I/O devices
may request service at IPL14, while an on-module DUART interrupt
may occur at the same time.  All these interrupts would be targeted
to the IRQ<0> pin of the CPU.

DECchip 21164 PALcode reads the TLINTRSUM register to deter-
mine the source of any outstanding interrupts. 

31 4 3 07 6 5 12

BXB-0510-93

INTIM_INTR
IP_INTR

IPL17_INTR

IPL16 _INTR
IPL15_INTR

IPL14 _INTR
DUART0_INTR

Ctrl/P HALT
HALT

29 28 27 26 22 21 17 16 15 14 13 12 11

ILP17 IPL16 IPL 15 IPL14

Node 8
Node 7
Node 6
Node 5
Node 4
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  Table 7-31 TLINTRSUM Register Bit Definitions

Name Bit(s) Type Function

RSVD

HALT

Ctrl/P_HALT

IPL17_INTR

IPL16_INTR

IPL15_INTR

<31:29>

<28>

<27>

<26:22>

<21:17>

<16:12>

R/W, 0

R, 0

W1C, 0

R, 0

R, 0

R, 0

Reserved.  Must be written as zeros. 

Halt.  CPU halt was written in TLCNR<HALT_x>
(this CPU) and TLINTR<HALT_ENA> is set.

Ctrl/P Halt.   Ctrl/P_HALT has been received for this
CPU.  Cleared with a write of 1. 

IPL17 Interrupts.  Indicator of outstanding inter-
rupts at IPL17.  If a bit is set in this field, it indicates
that there is at least one interrupt outstanding at
IPL17 from the node number associated with the bit.

IPL16 Interrupts.  Indicator of outstanding inter-
rupts at IPL16.  If a bit is set in this field, it indicates
that there is at least one interrupt outstanding at
IPL17 from the node number associated with the bit.

IPL15 Interrupts.  Indicator of outstanding inter-
rupts at IPL15.  If a bit is set in this field, it indicates
that there is at least one interrupt outstanding at
IPL17 from the node number associated with the bit.

IPL17_INTR Bit Node Number

<26>
<25>
<24>
<23>
<22>

8
7
6
5
4

IPL16_INTR Bit Node Number

<21>
<20>
<19>
<18>
<17>

8
7
6
5
4

IPL15_INTR Bit Node Number

<16>
<15>
<14>
<13>
<12>

8
7
6
5
4
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Table 7-31   TLINTRSUM Register Bit Definitions (Continued)

Name Bit(s) Type Function

IPL14_INTR

INTIM_INTR

IP_INTR

IPL17_INTR

IPL16_INTR

IPL15_INTR

IPL14_INTR

DUART0_INTR

<11:7>

<6>

<5>

<4>

<3>

<2>

<1>

<0>

R, 0

W1C, 0

W1C, 0

R, 0

R, 0

R, 0

R, 0

W1C, 0

IPL14 Interrupts.  Indicator of outstanding inter-
rupts at IPL14.  If a bit is set in this field, it indicates
that there is at least one interrupt outstanding at
IPL17 from the node number associated with the bit.

Interval Timer Interrupt.  The interval timer can be
set to interrupt or to be polled.  If the timer is set to
interrupt, the interrupts can be directed to either CPU
or to both.  The interval timer interrupt period is the
same for both CPUs. The interrupt line from the watch
chip is cleared by reading the CSRC register in the
watch chip.  The interrupt in the TLINTRSUM regis-
ter is latched and is a W1C bit.  This enables both
CPUs to have interval timer interrupts enabled, and
provides a means for both CPUs to have visibility of
the interrupt source. 

Interprocessor Interrupt.  A write of this register
with this bit set causes the interprocessor interrupt to
be cleared.

IPL17 Interrupt.  Logical OR of all the IPL17 bits.

IPL16 Interrupt.  Logical OR of all the IPL16 bits.

IPL15 Interrupt.  Logical OR of all the IPL15 bits.

IPL14 Interrupt.  Logical OR of all the IPL14 bits.

DUART0 Interrupt.

IPL14_INTR Bit Node Number

<11>
<10>
<9>
<8>
<7>

8
7
6
5
4
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TLCON00,01,10,11—Console Communications Regs

Address
Access

BB + 1200 & 1400; BB + 1300 & 1440
R/W

Two 32-bit wide register scratch pads are provided for each CPU
on a module for communications between CPUs.  Bits in these two
registers are not allocated to any particular function and are un-
der software control.  These registers could be used to provide a
lock mechanism for access to module-level devices, to pass diag-
nostic information, arbitration for module control, and so on.  

NOTE:   These registers are for console and diagnostic use only.

0

BXB-0723-94

Console Communications  Data 1

31

Console Communications  Data 0
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TLCON0A,0B,0C,1A,1B,1C—DIGA Comm. Test Regs

The Console Communications registers are implemented in DIGA0.  The
same registers exist in DIGA1,2,3. To facilitate individual loads of
DIGA1,2,3, the Console Communications registers are used as scratchpad
areas.  Each CPU is allocated its own pair of registers.  A write to TL-
CON00 updates TLCON00, 0A, 0B, and 0C. A write to TLCON10 updates
TLCON10, 1A, 1B, and 1C.  A read of any of these registers returns the
value stored in it.  Writes targeted at 0A, 0B, 0C, 1A, 1B, or 1C are han-
dled as writes to nonexistent CSRs.

Address
Access

BB + 1240, 1280, & 12C0; BB + 1340, 1380, & 13C0
R

DIGA Communications Test registers are used by diagnostic self-
test code only.

0

BXB-0724-94

DIGA Communications Test Reg 1

31

DIGA Communications Test Reg 0
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RM_RANGE_nA,B—Memory Channel Range Regs

Address
Access

BB + 1E00 through 1EC0
R/W

The Memory Channel Range registers define the two separate
memory ranges to be set up on the CPU module.  

31 30 0

BASE_ADR_A <39:20>

BXB-0782-93

VALID

28 2 7 4 38 7

BASE_ADR_B <39:20>RSVD

EXT_MASK

RSVDRSVD

RSVD

INTLV_EN

52 6
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  Table 7-32 Memory Channel Range Register Bit Definitions

Name Bit(s) Type Function

VALID

RSVD

BASE_ADR<38:20> 

RSVD

INTLV_EN

ADR_EXTENT

<31>

<30:27>

<26:8>

<7:5>

<4>

<3:0>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Valid.   When set, the contents of this register
are valid. 

Reserved.  Read as zeros. 

Base Address <38:20>.  The address of Mem-
ory Channel region.  Aligned to the extent size.

Reserved.  Read as zeros. 

RM Interleave Enable.  If set, the address
range for RM_RANGE_0 can only match if ad-
dress bit <6> is clear.  The address range for
RM_RANGE_1 can only match if address bit
<6> is set.  The range registers for channel 0
and channel 1 should be set to the same values.

Address Extent.   Address extent for Memory
Channel region.

<ADR_EXTENT>
Memory Region Off Base
Address Enabled

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

    1 Mbyte
    2 Mbytes
    4 Mbytes
    8 Mbytes
  16 Mbytes
  32 Mbytes
  64 Mbytes
128 Mbytes
256 Mbytes
512 Mbytes
    1 Gbyte
    2 Gbytes
    4 Gbytes
    8 Gbytes
  16 Gbytes
  32 Gbytes
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TLDMCMD—Data Mover Command Register

Address
Access

BB + 1600
R/W

The TLDMCMD register controls the data mover transactions.

31 30 29 17 16 15 14 13 12 11 10 9 4 3 08 7 6 5 12

RSVD

BXB-0773-93

DM_8KB
DM_4KB
DM_2KB
DM_1KB

DM_512B

IN_PROG
DM_DONE

RM_INTLV
RM_4
RM_3

DM_CMD_VALID
RSVD



RSVD

DC_CMD   

CPU_ID    
RSVD    
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  Table 7-33 TLDMCMD Register Bit Definitions

Name Bit(s) Type Function

DM_DONE

IN_PROG

RSVD

CPU_ID

RSVD

RM_INTLV

RM_4

RM_3

DM_CMD_VALID

RSVD

<31>

<30>

<29:17>

<16>

<15>

<14>

<13>

<12>

<11>

<10>

W1C, 0

R, 0

R/W, 0

R, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

RTC, 0

R/W, 0

Data Movement Done.  When set, indicates that
the required function has been completed and that
the data mover is idle.  This bit clears when the
CPU that initiated the data mover transaction
writes one to it.  Note that when this bit is set, only
the CPU identified in TLDMCMD<CPU_ID> can
change any value in this register.  Reads of this bit
by other than the CPU identified in <CPU_ID> re-
turn zero.

Data Movement in Progress.   Set when a CPU
does a write to the TLDMCMD register in which
TLDMCD0<DM_CMD_VALID> is written to a one. 
Clears when the data mover has completed the
transaction specified in the register write that set
the bit. Note that if <IN_PROG> is set, reads from
the CPU that did not set TLDMCMD<IN_PROG>
receive zero response for <IN_PROG>. 

Reserved.   Must be written as zeros. 

CPU Identification.   Identifies which of the two
CPUs on the module initiated the data mover trans-
action.  Set for CPU1; clear for CPU0.

Reserved.   Must be written as zeros. 

Memory Channel Interleave.  When set, Mem-
ory Channel 0 is targeted (TLSB_ADR<3>), if ad-
dress bit <6> is set.  When clear, Memory Channel
1 is targeted (TLSB_ADR<4>), if address bit <6> is
clear.

Memory Channel Operation TLSB_ADR<4>.   
When set, the normal mechanism that asserts
TLSB_ADR<4> or TLSB_ADR<3> is bypassed by
the data mover mechanism.  To make data move-
ment visible to Memory Channel interfaces, one or
both of bits <13:12> of this register must be set, or
bit <14> must be set if Memory Channel interleav-
ing is enabled.

Memory Channel Operation TLSB_ADR<3>.   
When set, the normal mechanism that asserts
TLSB_ADR<4> or TLSB_ADR<3> is bypassed by
the data mover mechanism.  To make data move-
ment visible to Memory Channel interfaces, one or
both of bits <13:12> of this register must be set, or
bit <14> must be set if Memory Channel interleav-
ing is enabled.

Data Mover Command Valid.  When set, indi-
cates that the data mover command is valid. 

Reserved.   Must be written as zeros. 
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Table 7-33   TLDMCMD Register Bit Definitions (Continued)

Name Bit(s) Type Function

DM_CMD

RSVD

DM_8KB

DM_4KB

DM_2KB

DM_1KB

DM_512B

<9:8>

<7:5>

<4>

<3>

<2>

<1>

<0>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

R/W, 0

Data Mover Command.  Encodes the data mover
command.  

Reserved.   Reserved for data expansion.

DM Size 8 Kbytes.  When set, causes 8 Kbytes of
data to move.  Bits <3:0> must be zero if this bit is set.

DM Size 4 Kbytes.  When set, causes 4 Kbytes of
data to move.  Bits <4; 2:0> must be zero if this bit is
set.

DM Size 2 Kbytes.  When set, causes 2 Kbytes of
data to move.  Bits <4:3; 1:0> must be zero if this bit is
set.

DM Size 1 Kbyte.  When set, causes 1 Kbyte of data
to move.   Bits <4:2;0> must be zero if this bit is set.

DM Size 512 Bytes.  When set, causes 512 bytes of
data to move.  Bits <4:1> must be zero if this bit is set.

<DM_CMD> Encoding

00

01

10

11

Initialize memory at the addresses
specified by the TLDMADRA register
and the data length field to zero. 

Read blocks from addresses specified
by the TLDMADRA register and the
data length field.  The read causes
the blocks to become shared. 

Copy data from source address speci-
fied by the TLDMADRA register and
the data length field to the addresses
specified by the TLDMADRB register
using the same offsets.   This func-
tion is used to move blocks of data
from one portion of memory to an-
other.  

Copy data from source address speci-
fied by TLDMADRA and the data
length field to itself. This function is
used to make a block of data visible
to the Memory Channel interface by
forcing a write of the data on the bus.
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TLDMADRA—Data Mover Source Address Register 

  Table 7-34 TLDMADRA Register Bit Definitions

Address
Access

BB + 1680
W

The TLMADRA register contains the source address of the data
mover transaction.

31 30 29 0

SRC_ADR <38:9>

BXB-0772-93RSVD

Name Bit(s) Type Function

RSVD

SRC_ADR<38:9>

<31:30>

<29:0>

W, 0

W, 0

Reserved.   Must be written as zeros. 

Source Address  Bits <38:9>.  Bit <39> is implied
zero.  Block moves are always aligned on 512-byte
boundaries.  Hence bits <8:0> are also implied zero. 
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TLDMADRB—Data Mover Destination Address Reg 

  Table 7-35 TLDMADRB Register Bit Definitions

Address
Access

BB + 16C0
W

The TLMADRB register contains the destination address of the
data mover transaction.

31 30 29 0

DEST_ADR <38:9>

BXB-0771-93RSVD

Name Bit(s) Type Function

RSVD

DEST_ADR<38:9>

<31:30>

<29:0>

R/W, 0

R/W, 0

Reserved.   Must be written as zeros. 

Destination Address  Bits <38:9>.  Bit <39> is
implied zero.  Block moves are always aligned on
512-byte boundaries.  Hence bits <8:0> are also
implied zero. 
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GBUS$WHAMI

  Table 7-36 GBUS$WHAMI Register Bit Definitions

Address
Access

FF C000 0000
R/W

The GBUS$WHAMI register provides node ID, CPU number, and
reflects the status of some backplane signals. 

4 3 07 6 5 1

0

BXB-0514-93

CPU_NUM
NID


MFG_MODE_L

TLSB_CONWIN
TLSB _BAD

Name Bit(s) Type Function

RSVD

MFG_MODE_L

TLSB_CONWIN

TLSB_BAD

NID

CPU_NUM

<7>

<6>

<5>

<4>

<3:1>

<0>

R0

R

R

R

R

R, X

Reserved.   Reads as zero. 

Manufacturing Mode Low.   Tied to a center-
plane signal.  Used by manufacturing to indicate
that the  module is in a manufacturing environ-
ment.

TLSB CONWIN.   Reflects the inverted state of
the TLSB_CONWIN L backplane signal.

TLSB BAD.  Reflects the inverted state of the
TLSB_BAD L backplane signal.

TLSB Node ID.  Identifies which node this module
is in a TLSB system.

CPU Number.  Hardware responds with a 0 for
CPU0 and a 1 for CPU1.
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GBUS$LED0,1,2

Address
Access

FF C100 0000, FF C200 0000, FF C300 0000
R/W

The GBUS$LEDn registers are used by diagnostics to indicate test
numbers for both CPUs.  LEDs are illuminated by writing a one to
the appropriate bits in one of the GBUS$LEDn registers. 

       GBUS$LED0 is for CPU0 and drives a 7-segment display.
       GBUS$LED1 is for CPU1 and drives a 7-segment display.
       GBUS$LED2 is a general purpose display of eight individual      
       registers. 

07

BXB-0726-93
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GBUS$MISCR

Address
Access

FF C400 0000
R

The GBUS$MISCR register is used to gather various read bits that
show module configuration. 

4 3 07 6 5 12

BXB-0725-93

RSVD
PROCNT
FPROM_WE

CONWIN1W
CONWIN0W

DRIVE_CONWIN
DRIVE_RUN
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  Table 7-37 GBUS$MISCR Register Bit Definitions

Name Bit(s) Type Function

CONWIN1R

CONWIN0R

RSVD

TLSB_RUN

TLSB_SECURE

PROCNT

CACSIZ

<7>

<6>

<5>

<4>

<3>

<2>

<1:0>

R, 0

R, 0

R0

R, 0

R, 0

R, 0

R, X

Console Winner CPU1 Read.  When set, indi-
cates that CPU1 is running console. This is a read
copy of the write-only bit implemented in
GBUS$MISCW.

Console Winner CPU0 Read.  When set, indi-
cates that CPU0 is running console. This is a read
copy of the write-only bit implemented in
GBUS$MISCW.

Reserved.  Reads as zero. 

TLSB Run.  A read copy of the TLSB run line, in-
dicating that some module is running an operating
system.

TLSB Secure.  Reflects the state of the
TLSB_SECURE L signal on the centerplane.  This
bit is also tied to ^P DUART.  When set, it inhibits
^P halts.

Processor Count.  Indicates the number of CPUs
on the module.  When clear, there is one CPU pre-
sent on the module.  This is always CPU0. When
set, two processors are present.

B-Cache Size.   Indicates the size of the B-cache. 

     <CACSIZ> B-Cache Size (Mbytes)

00
01
10
11

 1 
 4 
16
Reserved
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GBUS$MISCW

  Table 7-38 GBUS$MISCW Register Bit Definitions

Address
Access

FF C500 0000
W

The GBUS$MISCW register is used to gather write bits that control
various functions. 

4 3 07 6 5 12

BXB-0515-93

CACSIZ:  B-Cache Size
DRIVE_BAD
TLSB_SECURE

CONWIN1R
CONWIN0R

RSVD
TLSB_RUN

Name Bit(s) Type Function

CONWIN1W

CONWIN0W

DRIVE_CONWIN

DRIVE_RUN

FPROM_WE

DRIVE_BAD

RSVD

<7>

<6>

<5>

<4>

<3>

<2>

<1:0>

W, 0

W, 0

W, 0

W, 0

W, 0

W, 0

W, 0

Console Winner CPU1 Write.  This bit is set to
indicate that CPU1 has won console arbitration. 

Console Winner CPU0 Write.  This bit is set to
indicate that CPU0 has won console arbitration. 

Drive Console Winner.   Written when this mod-
ule has won arbitration for console.

Drive Run.  Written when this module is running
an operating system.

FEPROM Write Enable.  When set, writes to the
FEPROM are enabled.  FEPROM update and re-
covery programs must set this bit prior to writing
FEPROM and clear it after writing is complete.

Drive TLSB Bad.  If set, drives the TLSB_BAD
line.  The CPU drives this line if self-test has not
yet passed, or if it determines that another module
that the CPU is testing (for example, I/O port) or
monitoring (XMI or Futurebus+ adapters) has
failed.

Reserved.  Must be zero.
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GBUS$TLSBRST

Address
Access

FF C600 0000
R/W

The GBUS$TLSBRST register is used to initiate a system reset se-
quence.  When this register is loaded with any value, the CCL RE-
SET signal is asserted by the CPU module for 128 TLSB cycles.  The
CCL then drives TLSB_RESET for 16 µs.  No register is imple-
mented.

07

BXB-0727-93
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GBUS$SERNUM

  Table 7-39 GBUS$SERNUM Register Bit Definitions

Address
Access

FF C700 0000
R/W

The GBUS$SERNUM register is used to read and write an SROM
on the clock module where the system serial number is stored.  All
reads and writes to this register are done by software. 

4 3 07 6 5 12

BXB-0728-93

SROM_CLK
RCV_DATA
XMT_DATA

STP
PIUA
PIUB

EXPSEL

Name Bit(s) Type Function

STP

PIUA

PIUB

<7>

<6>

<5>

R/W, 0

R, 0

R, 0

Self-Test Passed.  Drives large green STP LED on
the CPU module.

PIUA Status.  Depending on the system configura-
tion, this bit indicates that the peripheral unit
marked as A has power status OK, or that AC is
failing.  Writing one to this bit enables power-fail
interrupts to the DECchip 21164 based on a change
of state of <PIUA>.  Note that a read of the bit
yields the PIU status, not the interrupt enable
state.  Writing zero to this bit turns off power-fail
interrupts to the DECchip 21164.  

PIUB Status.  Depending on the system configura-
tion, this bit indicates that the peripheral unit
marked as B has power status OK, or the battery
charge is low, or one of the regulators has a prob-
lem.



7-84   System Registers

Table 7-39   GBUS$SERNUM Register Bit Definitions (Continued)

Name Bit(s) Type Function

EXPSEL

XMT_DATA

RCV_DATA

SROM_CLK

<4:3>

<2>

<1>

<0>

R/W, 0

W, 1

R, 1

W, 1

Expander Select.  Selects which cabinet the
power supply UART lines are logically connected to
and, therefore, which set of three 48V power sup-
plies are connected to the PS lines.  May be used by
console when TLDIAG<FRIGN> is set for commu-
nication between the CPUs. 

Transmit Data.  This bit must be set to receive
data from RCV_DATA.

Receive Data.

Serial ROM Clock.

EXPSEL      Selection

00

01

10

11

PS lines talk to the main CPU
cabinet.

PS lines talk to the right ex-
pander cabinet.

PS lines talk to the left ex-
pander cabinet.

PS transmit line is looped back
to PS receive line.
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7.5  Memory-Specific Registers
Table 7-40 lists the memory-specific registers.  Descriptions follow.

Refer to Table 7-2 for the TLSB registers implemented on the memory
module.

  Table 7-40 Memory-Specific Registers

Mnemonic Register Name
   Address
(Byte Offset)

SECR
MIR
MCR
MCR
STAIR
STER
MER
MDRA
MDRB

STDERA_0
STDERB_0
STDERC_0
STDERD_0
STDERE_0
DDR0

STDERA_1
STDERB_1
STDERA_1
STDERA_1
STDERA_1
DDR1

STDERA_2
STDERA_2
STDERA_2
STDERA_2
STDERA_2
DDR2

STDERA_3
STDERA_3
STDERA_3
STDERA_3
STDERA_3
DDR3

Serial EEPROM Control/Data Register
Memory Interleave Register
Memory Configuration Register
Memory Configuration Register
Self-Test Address Isolation Register
Self-Test Error Register 
Memory Error Register 
Memory Diagnostic Register A
Memory Diagnostic Register B

Self-Test Data Error Register A_0
Self-Test Data Error Register B_0
Self-Test Data Error Register C_0
Self-Test Data Error Register D_0
Self-Test Data Error Register E_0
Data Diagnostic Register 0

Self-Test Data Error Register A_1
Self-Test Data Error Register B_1
Self-Test Data Error Register C_1
Self-Test Data Error Register D_1
Self-Test Data Error Register E_1
Data Diagnostic Register 1

Self-Test Data Error Register A_2
Self-Test Data Error Register B_2
Self-Test Data Error Register C_2
Self-Test Data Error Register D_2
Self-Test Data Error Register E_2
Data Diagnostic Register 2

Self-Test Data Error Register A_3
Self-Test Data Error Register B_3
Self-Test Data Error Register C_3
Self-Test Data Error Register D_3
Self-Test Data Error Register E_3
Data Diagnostic Register 3

BB1 + 01800
BB + 01840
BB + 01880
BSB2 + 01880
BB + 018C0
BB + 01900
BB + 01940
BB + 01980
BB + 019C0

BB + 10000
BB + 10040
BB + 10080
BB + 100C0
BB + 10100
BB + 10140

BB + 14000
BB + 14040
BB + 14080
BB + 140C0
BB + 14100
BB + 14140 

BB + 18000
BB + 18040
BB + 18080
BB + 180C0
BB + 18100
BB + 18140 

BB + 1C000
BB + 1C040
BB + 1C080
BB + 1C0C0
BB + 1C100
BB + 1C140 

1  BB is the node space base address of the memory module in hex.

2  BSB is the broadcast space base address, which is FF 8E00 0000.  This register is write only.
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SECR—Serial EEPROM Control/Data Register 

  Table 7-41 SECR Register Bit Definitions

Address
Access

BB + 0000 1800 
R/W

The SECR register is used to access the EEPROM on the memory
module.  Access to the EEPROM is accomplished by continual up-
dates of this register by software. 

31 4 3 012

RSVD

BXB-0729-94

SCLK
XMT_SDAT
RCV_SDAT

Name Bit(s) Type Function

RSVD <31:3> R0 Reserved.  Read as zero.

SCLK <2> R/W, 0 Serial Clock.  Used to implement the EEPROM
serial clock interface by software.  When this bit
is written with a one, the EEPROM serial clock
input is forced to a logic high.  When this bit is
cleared the serial clock input is forced to low
logic level.

XMT_SDAT <1> R/W, 1 Transmit Serial Data.  Used by software to as-
sert the serial data line of the EEPROM to either 
high or low logic levels.  This bit is used with the
SCLK bit to transfer command, address, and
write data to the EEPROM.  Must be set to one
to receive an EEPROM response or serial read
data.

RCV_SDAT <0> R Receive Serial Data.  Returns the status of the
EEPROM serial data line.  This bit is used by
software to receive serial read data and
EEPROM responses.
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MIR—Memory Interleave Register 

Address
Access

BB + 0000 1840
R/W

The MIR register is used by memory to determine DRAM RAS se-
lection based upon how a given memory module is configured on
the TLSB.  Console software initializes this register upon start-up
after system or node reset.

31 3 02

RSVD

BXB-0730-94

INTLVVALID

30
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  Table 7-42 MIR Register Bit Definitions

Name Bit(s) Type Function

VALID <31> R/W, 0 Valid.   When set, enables the module to re-
spond to TLSB memory space transactions.

RSVD <30:3> R0 Reserved.  Read as zero.

INTLV <2:0> R/W, 0 Interleave.   The value of this field loaded by
console during system initialization determines
whether this module is 1,2,4,8 or 16-way inter-
leaved in the system. 

INTLV
(Hex)

Banks/
Module

No of
Modules Interleave

0
0

1
1

2
2

3
3

4

5,6,7,

1
2

1
2

1
2

1
2

2

1
1

2
1

4
2

8
4

8

1-way
Reserved

2-way
2-way

4-way
4-way

8-way
8-way

16-way

Reserved
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MCR—Memory Configuration Register

Address
Access

BB + 0000 1880; BSB + 0000 1880
R/W

The MCR register provides information about the DRAM array
structure including DRAM type and number of strings installed.  It
includes a battery OK indication and battery disable when used
with the SRAM option. This information is required by the console
to set up the eight address mapping registers in each TLSB com-
mander node and the MIR register located on each memory mod-
ule.  The MCR register also contains a 2-bit field (DTR) that is used
to select one of three cycle time variants.  

A unique feature of this register is that it responds to a TLSB
broadcast space address (BSB+1880).  This feature allows all mem-
ory modules to set the DRAM timing rate at the same time.  This
feature is important to ensure that all memory modules continue
to refresh at the same time whenever MCR<DTR> is updated. 

31 30 29 28 27 6 510 9 4 3 08 7 12

RSVD DTR

BXB-0769-93


BDIS
BAT


STRN
RSVD
DTYP

BDC
BREN 

DEFAULT


RSVD


    SHRD                      
 OPTION
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  Table 7-43 MCR Register Bit Definitions

Name Bit(s) Type Function

BAT <31> R, none1 Battery OK.  Indicates the state of the batteries
when memory is configured to support the
SRAM (NVRAM) option.  When set, the battery
supply is sufficient and present.  When clear,
two possibilities exist. First, if the battery has
been disconnected through bit <30>, a zero will
indicate that the battery disable circuitry is
functioning properly.  The second and foremost
function of this bit is to indicate that the battery
supply is sufficient to power the SRAMS in the
case of a power outage.  If this bit is clear and bit
<28> is also clear, the battery must be re-
placed to guarantee proper operation during a
power outage.

BDIS <30> W, 0 Battery Disable.  This bit disconnects the bat-
tery supply from the SRAMS when battery
backup is not required.  To disable the battery
supply, the user must write this bit twice
through successive CSR writes to this bit in this
register. If a write with bit <30> cleared to this
register is received after the first "write disable"
write, the function will fail and the battery will
not be disconnected.  The user side I/O pin will
be forced to a zero when the battery is discon-
nected and forced to a one (set) during power-
up/reset states.

BREN <29> W, 0 Battery Reenable.  When set, reenables the
battery supply after it has been disconnected
through writes to bit <30> during diagnostic
checking of NVRAM functions.   It is not neces-
sary to write this bit to a one to enable the bat-
tery under power-up/reset states if Prestoserve
software left the battery enabled when a power-
fail occurred.

BDC <28> R, 0 Battery Disconnected.  When set, this status
bit indicates that the user has disconnected the
battery supply through writes to bit <30>.  It
will be clear on a power-up/reset state, or if the
user reenables the battery supply through a CSR
write to bit <29> of this register.

RSVD <27:10> R0 Reserved.  Read as zero.

1  There is no initialized value.  State is a direct read of the condition of the batteries.  Valid only if  bit <1> of this
register (DTYP) is a zero.
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Table 7-43   MCR Register Bit Definitions (Continued)

Name Bit(s) Type Function

OPTION <9> R, X1 Option Installed.  This field specifies whether
the SRAM option or the DRAM option is in-
stalled.  When read as a value of zero, the SRAM
is installed. The SRAM option is used to support
NVRAM (nonvolatile memory).  When this mode
is selected, refresh and self-test are inhibited
from being executed.

Option Memory Option

0
1

70 ns SRAMs
60 ns DRAMs (default)

SHRD <8> R/W, 0 Shared.  When set, and when the SRAM option
(DRAM = 0) is selected, causes assertion of
TLSB_SHARED whenever this module is read or
written in memory space.

RSVD <7> R0 Reserved.  Read as zero.

DEFAULT <6> R, 1 Default Power-Up State.  When set, indicates
that the memory’s DRAM timing rate and re-
fresh rate are set to the default power-up or re-
set values.  Writing the <DTR> field to any
value clears this bit.  This bit is normally set on
power-up or reset.

1  Value loaded into register at system initialization/reset through manufacturing installed jumpers on the module.
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Table 7-43   MCR Register Bit Definitions (Continued)

Name Bit(s) Type Function

DTR <5:4> R/W, 0 DRAM Timing Rate.  This field is used to mod-
ify the DRAM timing and refresh rate. At reset,
DRAM timing defaults to supporting a 10 ns bus
cycle time, while the refresh rate defaults to sup-
porting a 30 ns bus.  <DTR> is normally written
by console through a TLSB broadcast write com-
mand.  This ensures that all memories will re-
main syncronized as to when they refresh the
DRAMs. The <DTR> field should not be changed
from the value set by console when other bits in
this field are modified. 

DTR
Bus Speed
Range

Refresh Counter
Value

00 (Def)
01
10
11

10.0 - 11.2
Reserved
12.5 - 13.7
13.8 - 15.0

1360
None
1088
1008

STRN <3:2> R, X1 Strings Installed.  This field supplies informa-
tion about the number of strings installed on a
module.

STRN Strings

00
01
10
11

1
2
4
8

RSVD <1> R0 Reserved.  Read as zero.

DTYP <0> R, X1 DRAM Type.  This field supplies information
about what size DRAM technology is being used;
this together with the number of strings in-
stalled determines module capacity.

DTYP DRAM Type

0
1

  4 Mbit
16 Mbit

1  Value loaded into register at system initialization/reset through manufacturing installed jumpers on the module.
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STAIR—Self-Test Address Isolation Register 

  Table 7-44 STAIR Register Bit Definitions

Address segments are mapped according to total possible module capacity
(maximum of 8 strings 2-Gbyte capacity), not to the actual capacity imple-
mented, which may be less.  In Table 7-45 all addresses are listed as physi-
cal byte addresses.

Address
Access

BB + 0000 18C0
R/W

The STAIR register is used to isolate self-test failures to a given ad-
dress segment or segments in the case of multiple failures in a
module.  This register breaks up a memory module into at most 32
distinct address segments, which would be the case of a 2-Gbyte
module.  Each segment maps 64 Mbytes (1 meg 64-byte blocks) of
memory independent of the selected DRAM (4 Mbit, 16 Mbit). 
When a bit is set following completion of self-test, the correspond-
ing address segment has failed.  This information can be used by
the console to map out bad areas of memory.  The contents of this
register will be cleared when bit <7> (POEMC) in the MDRA regis-
ter is asserted while self-test is executed in POEM mode.

31 0

BXB-0732-93

STAIR

Name Bit(s) Type Function

STAIR <31:0> W1C, 0 Self-Test Failing Address Range.  A bit in
this register is set when self-test detects a data
mismatch error in the corresponding address
segment.  The address range specified in Table 
7-45 indicates the failing address segment. 
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  Table 7-45 STAIR Register Bit Correspondence of Memory Address Segments

Each module executes self-test as if it were the only memory module in the
system (no interleave with other modules).  

Assuming a given processor takes approximately 600 nanoseconds to scan
each 64-byte block of memory for uncorrectable ECC errors, a 64-Mbyte
failing address segment (1 meg 64-byte blocks, with failures in each block)
can be scanned from first to last block in about 600 milliseconds.

Bit Set Failing Address Range Bit Set Failing Address Range

  0
  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15

0000 0000 – 03FF FFFF
0400 0000 – 07FF FFFF
0800 0000 – 0BFF FFFF
0C00 0000 – 0FFF FFFF
1000 0000 – 13FF FFFF
1400 0000 – 17FF FFFF
1800 0000 – 1BFF FFFF
1C00 0000 – 1FFF FFFF
2000 0000 – 23FF FFFF
2400 0000 – 27FF FFFF
2800 0000 – 2BFF FFFF
2C00 0000 – 2FFF FFFF
3000 0000 – 33FF FFFF
3400 0000 – 37FF FFFF
3800 0000 – 3BFF FFFF
3C00 0000 – 3FFF FFFF

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

4000 0000 – 43FF FFFF
4400 0000 – 47FF FFFF
4800 0000 – 4BFF FFFF
4C00 0000 – 4FFF FFFF
5000 0000 – 53FF FFFF
5400 0000 – 57FF FFFF
5800 0000 – 5BFF FFFF
5C00 0000 – 5FFF FFFF
6000 0000 – 63FF FFFF
6400 0000 – 67FF FFFF
6800 0000 – 6BFF FFFF
6C00 0000 – 6FFF FFFF
7000 0000 – 73FF FFFF
7400 0000 – 77FF FFFF
7800 0000 – 7BFF FFFF
7C00 0000 – 7FFF FFFF
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STER—Self-Test Error Register

Address
Access

BB + 0000 1900
R/W

The STER register contains address information pertaining to data
mismatch failures while self-test executes in POEM (pause on er-
ror) mode.  The contents of this register when read after an error
has been detected in POEM mode can be used to isolate the failing
DRAM string and to indicate which of the four MDIs the error was
detected in. This information in conjunction with the four ST-
DERA:E registers located in the MDI ASICs can be used to isolate
down to a failing DRAM bit or bits. This register is cleared when
MDRA<POEMC> is asserted. 

BXB-0750-93

RSVD

31 4 3 08 7 6 5 2

FSTR

STE0
STE1
STE2
STE3

RSVD
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  Table 7-46 STER Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:8> R0 Reserved.  Read as zero.

STE3 <7> W1C, 0 Self-Test Error in MDI3.  Set during POEM mode when
MDI3 detects a data mismatch error.  The setting of this
bit locks bit <6> (STE2), bit <5> (STE1), bit <4> (STE0),
and bits <2:0> (FSTR) of the failing string field1.

STE2 <6> W1C, 0 Self-Test Error in MDI2.  Set during POEM mode when
MDI2 detects a data mismatch error.  The setting of this
bit locks bit <7> (STE3), bit <5> (STE1), bit <4> (STE0),
and bits <2:0> (FSTR) of the failing string field1.

STE1 <5> W1C, 0 Self-Test Error in MDI1.  Set during POEM mode when
MDI1 detects a data mismatch error.  The setting of this
bit locks bit <7> (STE3), bit <6> (STE2), bit <4> (STE0),
and bits <2:0> (FSTR) of the failing string field1.

STE0 <4> W1C, 0 Self-Test Error in MDI0.  Set during POEM mode when
MDI0 detects a data mismatch error.  The setting of this
bit locks bit <7> (STE3), bit <6> (STE2), bit <5> (STE1),
and bits <2:0> (FSTR) of the failing string field1.

RSVD <3> R0 Reserved.  Read as zero.

FSTR <2:0> R Failing String.   When read together with the <STEx>
bits, this field indicates the failing DRAM string when a
data mismatch error is detected by self-test.  This field is
Undefined if none of the <STEx> bits are set. 

1 Any one STER bit being set will prevent the other STER bits from being set on a subsequent data mismatch during
self-test. More than one STER bit may be set if multiple MDI ASICs detect a data mismatch during the same cycle. A
data mismatch error is defined as any failure that is detected within a 64-byte block that is considered to be a bus
transaction.
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MER—Memory Error Register

  Table 7-47 MER Register Bit Definitions

Address
Access

BB + 0000 1940
R/W

The MER register provides the DRAM string that failed when an
ECC error is detected during a memory read transaction.   This in-
formation in conjunction with the error syndrome registers can be
used to isolate correctable ECC errors down to a failing DRAM
component.   This information is logged by the OS error logging
software and written to the serial EEPROM.  

31 4 3 02

FSTRRSVD

BXB-0751-94

Name Bit(s) Type Function

RSVD <31:3> R0 Reserved.  Read as zero.

FSTR <2:0> R, 0 Failing String.  This field indicates which of
the eight strings was being accessed during a
TLSB memory read or memory write when an
uncorrectable or correctable ECC error was de-
tected and, together with the four syndrome reg-
isters and the failing address registers, isolates
single-bit errors to a failing DRAM component.
This field is locked on the occurrence of a
correctable or uncorrectable error detected in
any of the four MDI ASICs.
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MDRA—Memory Diagnostic Register A 

  Table 7-48 MDRA Register Bit Definitions

Address
Access

BB + 0000 1980
R/W

MDRA register A  is used by diagnostics and manufacturing to
force error conditions in the memory module and isolate failures.

31 30 29 28 27 9 4 3 08 7 6 5 12

BXB-0752-92


BRFSH: Burst Refresh
DRFSH:  Dis Refresh

RFR

FRUN: Free Run
EXST: Exec Self-Test

MMPS: Moving  Inv Pattern Sel
FCAPE: Force Col Addr Par Err

FRAPE: Force Row Addr Par Err
AMEN: Addr Match Ena

RSVD


DEDA: TLSB Data Err Dis

POEMC: Pause on Err Mode Cont
POEM: Pause on Err Mode

Name Bit(s) Type Function

DRFSH <31> R/W, 0 Disable Refresh.  When set, "on-board" refresh
of the module is disabled and diagnostic burst re-
fresh, bit <30>, is enabled.  When this bit is set
concurrently with bit <30>, a burst refresh cycle
will be executed.

BRFSH <30> W, 0 Burst Refresh.  When set, and bit <31> is also
set, a single row address within the addressed
DRAMs will be refreshed as per CAS before RAS
refresh operation. When this bit is set concur-
rently with bit <31>, a burst refresh cycle is exe-
cuted.  
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Table 7-48   MDRA Register Bit Definitions (Continued)

Name Bit(s) Type Function

RFR <29:28> R/W, 01 Refresh Rate.  Determines the refresh rate of
the module.

<RFR> Refresh Rate

00
01
10
11

1X
2X (Default)
4X
Reserved

RSVD <27:9> R0 Reserved.  Read as zero.

DEDA <8> R/W, 01 TLSB_DATA_ERROR Disable.  When set and
used in conjunction with POEM or FRUN modes,
TLSB_DATA_ERROR will not assert if an error
is detected. This bit would be set by a user that
wishes to run POEM or FRUN self-test modes in
a system environment  (console mode) where the
assertion of TLSB_DATA_ERROR would prevent
the system from operating correctly.

POEMC <7> W, 0 Pause on Error Mode Continue.  When set in
conjunction with <POEM> and <EXST> of this
register, causes memory self-test to continue exe-
cuting from the point where it halted due to an
error condition being detected. At this point self-
test will either halt on the next error, or con-
tinue to loop.  <EXST> is cleared by software, 
when TLSB_RESET is asserted or <NRST> is
set.  When asserted following an error detection,
the STER and STAIR registers are cleared. This
bit is only valid when self-test is in POEM mode. 
Setting this bit during other self-test modes re-
sults in Undefined operation.1,2

1 If <POEM> is set and an error occurs on Bank0 of two back-to-back reads in modules of greater than one string, an
error detected on the second read to Bank1 will not be reported. 

2 When an error is detected during POEM mode, the data bit(s) in error will be logged in the STDERA,B,C,D,E regis-
ters in each MDI ASIC. Since the assertion of POEMC will not clear the error bits in the STDERA:E registers, it is
required that the user set bit <1> in DDR0:3 prior to setting <POEMC>.
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Table 7-48   MDRA Register Bit Definitions (Continued)

Name Bit(s) Type Function

POEM1 <6> R/W, 01 Pause on Error Mode.  When set, self-test will
halt execution upon the detection of a data mis-
match error. TLSB_DATA_ERROR is asserted
and remains asserted providing that <DEDA> is
cleared, until either <POEM> is set or the mod-
ule is reset. This bit is used in conjunction with
<EXST> to execute self-test in this mode.  When
set, self-test continues to loop until <EXST> is
cleared by software, when TLSB_RESET is as-
serted or <NRST> is set.

FRUN <5> R/W, 0 Free Run.  When set in conjunction with
<EXST>, memory will continue to loop on self-
test until <EXST> is cleared, TLSB_RESET is
asserted, or Node Reset is asserted.  If while op-
erating in Free Run mode, self-test detects a
data mismatch, TLSB_DATA_ERROR will as-
sert and remain asserted providing that DEDA
is cleared, until either FRUN is cleared or the
module is reset.  Setting this bit in conjunction
with other self-test modes results in Undefined
operations.

EXST <4> R/W, 1 Execute Self-Test.  When set, and the DRAM
option mode is selected, memory self-test is in-
voked. The self-test logic examines this bit and
bits <10:9> in MCR to determine if self-test
should be executed. If the option field is zero,
self-test does not execute.  This bit is set 2 upon
system power-up or TLSB_RESET.

MMPS <3> R/W, 0 Moving Inversion Pattern Select.  When set,
memory self-test executes a specific moving in-
version test pattern that combines specific data
and address test patterns known to detect
DRAM sensitivity faults.  This bit must be se-
lected in conjunction with bit <3> (Self-Test Pat-
tern Select) in DDR0:3 registers to execute this
special test.  This mode is normally selected only
during memory manufacturing.

1 Lock on Error (LOE) in the four Data Diagnostic Registers (DDR0:3) must be set prior to executing self-test in POEM
 mode.  This ensures that the Self-Test Data Error registers capture the first failure only.

2 If the SRAM option is selected (NVRAM memory option), <EXST> is not set and self-test is not be executed under any
circumstance.
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Table 7-48   MDRA Register Bit Definitions (Continued)

Name Bit(s) Type Function

FCAPE <2> R/W, 0 Force Column Address Parity Error.  When
set, incorrect DRAM column address parity is
written into the addressed location when a
match is detected between the TLSB address
and the MDRB register and when <AMEN> is
also set.

FRAPE <1> R/W, 0 Force Row Address Parity Error.  When set,
incorrect DRAM row address parity is written
into the addressed location when a match is de-
tected between the TLSB address and the MDRB
register and when <AMEN> is also set.

AMEN <0> R/W, 0 Address Match Enable.  When set, a TLSB
memory space address or a self-test generated
address is matched against the 32-bit 64-byte
aligned address contained in MDRB. If a match
is detected, and if bit 15, <EFLPD>, and/or bit
14, <EFLPC>, in one or all of the DDR0:3 regis-
ters are also set, then the data bit and/or check
bit selected to be flipped during a memory space
write will be written to memory inverted. In ad-
dition to the above, AMEN is also used to enable
address match comparisons to force ROW and
COL parity errors.
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MDRB—Memory Diagnostic Register B

  Table 7-49 MDRB Register Bit Definitions

Address
Access

BB + 0000 19C0
R/W

Memory Diagnostic Register B contains a 32-bit 64-byte aligned ad-
dress value that is directly compared to TLSB_ADR<37:6>, or an
address generated by the self-test address generator. The value
loaded into this register is used in conjunction with MDRA and
DDR0:3 to cause a specific data bit and/or check bit to be flipped
whenever a TLSB memory write address matches the value con-
tained in this register.

NOTE: Since the TLSB addresses are 64-byte aligned, only TLSB_ADR-
<37:6> need be compared with this register.  TLSB_ADR<4:0> is not used
and TLSB_ADR<5> is the WRAP bit, which is ignored in the comparison.

31 0

BXB-0753-93

MADR

Name Bit(s) Type Function

MADR <31:0> R/W Match Address.  The register may be loaded
with an address value that is used in diagnostic
modes to cause correctable and uncorrectable
ECC errors to be written to memory at the 64-
byte aligned address contained in this field.
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STDERA,B,C,D,E—Self-Test Data Error Registers 

The function of STDERA is slightly different from the other four registers
(STDERB,C,D,E).  STDERA can be written or read, while the other four
are read only.  STDERA can be used by diagnostics to ensure that most of
the data path and control logic, to and from the various CSRs, is fully func-
tional.

Table 7-50 describes each field of self-test error data registers A,B,C,D.
These four registers are used to store failing self-test data bits <127:0> in
MDI0, <255:128> in MDI1, <383:256> in MDI2, and <511:384> in MDI3.

Address
Access

BB + 0001 0000 to 0001 C100
R/W

The four sets of STDERx_n registers are used to isolate self-test
failures down to a single failing bit or bits. When self-test is exe-
cuted any data bit error(s) that are detected by the self-test data
compare logic will set the appropriate data bit(s) in these regis-
ters.  The operation and contents of this register can be affected by
bits <2:0> of the DDR0:3 registers in the MDI ASICs.  

31 0

ADAT

31 0

ADAT

31 0

BDAT

31 0

BDAT

STDERA

STDERB

STDERC

STDERD

31 0

BXB-0754-93

RSVD

16 1519

STDEREVRC

STDERE

18
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  Table 7-50 STDER A, B, C, D Register Bit Definitions

Table 7-51 describes each field of self-test data error register E.  This regis-
ter is used to store failing self-test ECC check bits <15:0> in MDI0,
<31:16> in MDI1, <47:32> in MDI2, and <63:48> in MDI3.

Name Bit(s) Type Function

STDERA <31:0> R/W, 0 Self-Test Data Error Register_A.  One or
more bits set indicate a self-test data bit error.
The contents of this register can be used to iso-
late self-test failures to a single failing bit.  This
register can be read or written as an aid in de-
termining proper CSR operation.

STDERB <31:0> R, 0 Self-Test Data Error Register_B.  One or
more bits set indicate a self-test data bit error.
The contents of this register can be used to iso-
late self-test failures to a single failing bit.

STDERC <31:0> R, 0 Self-Test Data Error Register_C.  One or
more bits set indicate a self-test data bit error.
The contents of this register can be used to iso-
late self-test failures to a single failing bit.

STDERD <31:0> R, 0 Self-Test Data Error Register_D.  One or
more bits set indicate a self-test data bit error.
The contents of this register can be used to iso-
late self-test failures to a single failing bit.
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  Table 7-51 STDERE Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:19> R0 Reserved.  Read as zero.

VRC <18:16> R, X Valid Residue Check.  This 3-bit read-only
field is loaded at the beginning of the third pass
in self-test and specifies which one of eight val-
ues will be used by the self-test data-checking
logic to determine that the self-test data linear
feedback shift register logic is working correctly.
This field is useful in diagnosing improper opera-
tion of self-test that may be due to a faulty mod-
ule or ASIC.  The value read from this register is
based upon the DRAM type and the number of
strings on a given module.  This field is Unde-
fined in moving inversion self-test mode.  It is
also Undefined when the SRAM option is se-
lected in the Memory Configuration Register.

VRC
(Hex)

DRAM 
Type

No. of
Strings

Module
Capacity
(Mbyte)

0
1
2
3
4
5
6
7

  4 Mbit
  4 Mbit
  4 Mbit
  4 Mbit
16 Mbit
16 Mbit
16 Mbit
16 Mbit

1
2
4
8
1
2
4
8

   64 (N/A)
  128
  256
  512
  256
  512
1024
2048

STDERE <15:0> R, 0 Self-Test Data Error Register_E.   One or
more bits set indicate a self-test data ECC check
bit error. The contents of this register can be
used to isolate self-test failures to a single failing
bit.
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DDR0:3—Data Diagnostic Registers 

  Table 7-52 DDRn Register Bit Definitions

Address
Access

BB + 0001 0140; 0001 04140; 0001 8140; 0001 C140
R/W

There are four DDR registers, one in each of the four MDI ASICs. 
They are used by diagnostics and manufacturing to force error
conditions, to isolate failures, and to margin the DC to DC power
converters.

31 9 4 3 08 7 613 12

RSVD

BXB-0764-93

RSVD


CFLP: Check Bit to Flip
PAT: Self-Test Pattern Select

ICFR: Inhibit Clear on Free Run
CDER: Clear Self-Test Data Err Reg

LOE: Lock on Error

16 15 14

DFLP: Data Bit to Flip
EFLPC: Ena Flip ECC Check Bit

EFLPD: Ena Flip Data Bit

MARG: Margin

30

Name Bit(s) Type Function

MARG <31> R/W, 0 Margin.   When set, margins the module’s 5.0 V
and 3.35 V DC to DC converters over a +/− 5%
range. 

Register Voltage Margin

DDR0
DDR1
DDR2
DDR3

  5.0
  5.0
  3.5
  3.5

  +5%
  −5%
  +5%
  −5%

RSVD <30:16> R0 Reserved.  Read as zero.
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Table 7-52   DDRn Register Bit Definitions (Continued)

Name Bit(s) Type Function

EFLPD <15> R/W, 0 Enable Flip Data Bit.  When set in conjunction
with MDRA<AMEN>, the data bit selected in
DFLP<13:8> is flipped during memory write
transactions.  This function allows diagnostics to
check ECC error detection logic.

NOTE:  Setting both EFLPD and EFLPC results
in Uncorrectable ECC written into memory.

EFLPC <14> R/W, 0 Enable Flip ECC Check Bit.  When set in con-
junction with MDRA<AMEN>, the check bit se-
lected in CFLP<6:4> will be flipped during mem-
ory write transactions. This function allows diag-
nostics to check ECC error detection logic.

NOTE:  Setting both EFLPD and EFLPC results
in Uncorrectable ECC written into memory.

DFLP <13:8> R/W, 0 Data Bit to Flip.  This field contains a hexa-
decimal value of the data bit to flip within a
quadword during a memory write transaction
when bit <15> (EFLPD) of this register is set
and MDRA<AMEN> is set.  

RSVD <7> R0 Reserved.  Reads as zero.

CFLP <6:4> R/W, 0 Check Bit to Flip.  This field contains a hexa-
decimal value of the check bit to flip within a
quadword during a memory write transaction
when bit <14> (EFLPC) of this register is set
and MDRA<AMEN> is set.  

PAT <3> R/W, 0 Self-Test Pattern Select.  When set, self-test
executes a defined data pattern required for the
"moving inversion" self-test mode of operation.
This bit in each of the four DDR registers and
MDRA<MMPS> must be set to execute this spe-
cial test mode.  
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Table 7-52   DDRn Register Bit Definitions (Continued)

Name Bit(s) Type Function

ICFR <2> R/W, 0 Inhibit Clear on Free Run.  When set in con-
junction with MDRA<FRUN>, the contents of
the STDER registers accumulate errors detected
by self-test.  When ICFR is cleared, the contents
of the STDER registers will be cleared when self-
test reenters the start execution phase due to
<FRUN> set.  This bit is valid only when self-
test is in free run mode.   If set during other self-
test modes, operation is Undefined. 

CDER <1> W, 0 Clear Self-Test Data Error Registers.  When
set, clears the Self-Test Data Error Registers
(STDERA:E).  This bit is normally used in con-
junction with MDRA<POEM>.  When <POEM>
is set and an error is detected, self-test will halt
and lock the error bit(s) in the STDERx_n regis-
ters.  This function is normally exercised after
an error halt, prior to continuing self-test
(through <POEMC>) when in pause on error
mode.  Failure to set this bit following a POEM
halt results in the STDERx_n registers accumu-
lating data bit errors.

LOE <0> R/W, 0 Lock on Error.  When set, the contents of the
STDERn registers and the contents of the STER
registers lock and save the failing data bit(s),
failing string, and which MDI(s) detected the er-
ror upon the first detection of an error during 
pause on error mode self-test operation.  If this
bit is set during other self-test modes, operation
is Undefined.
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7.6  I/O Port-Specific Registers

The I/O port responds to all addresses within its node space.  If, however,
the I/O port receives a read to a nonimplemented CSR, the I/O port returns
Unpredictable data, with good ECC.  Table 7-53 shows the mapping of the
I/O port-specific registers.

  Table 7-53 I/O Port-Specifc Registers

Mnemonic Name Address

RMRR0A
RMRR1A
RMRR0B
RMRR1B
ICCMSR 
ICCNSE
ICCDR 
ICCMTR
ICCWTR 
IDPNSE1 
IDPDR1 
IDPNSE2
IDPDR2 
IDPNSE3 
IDPDR3 
IDPNSE0
IDPDR0 
IPCPUMR
IDPVR 
IDPMSR 
IBR  
DHR0A
DHR1A
DHR0B
DHR1B

Memory Channel Range Register 0A
Memory Channel Range Register 1A
Memory Channel Range Register 0B
Memory Channel Range Register 1B
I/O Control Chip Mode Select Register
I/O Control Chip Node-Specific Error Register
I/O Control Chip Diagnostic Register
I/O Control Chip Mailbox Transaction Register
I/O Control Chip Window Transaction Register
I/O Data Path Node-Specific Error Register 1
I/O Data Path Diagnostic Register 1
I/O Data Path Node-Specific Error Register 2 
I/O Data Path Diagnostic Register 2
I/O Data Path Node-Specific Error Register 3
I/O Data-Path Diagnostic Register 3
I/O Data Path Node-Specific Error Register 0 
I/O Data Path Diagnostic Register 0
IPCPU Mask Register
I/O Data Path Vector Register
I/O Data Path Mode Select Register
Information Base Repair Register
Down Hose Range Register 0A
Down Hose Range Register 1A
Down Hose Range Register 0B
Down Hose Range Register 1B

BB+1E00
BB+1E40
BB+1E80
BB+1EC0
BB+2000
BB+2040
BB+2080
BB+20C0
BB+2100
BB+2140
BB+2180
BB+2240
BB+2280
BB+2340
BB+2380
BB+2A40
BB+2A80
BB+2AC0
BB+2B40
BB+2B80
BB+2BC0
BB+3000
BB+3040
BB+3080
BB+30C0
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RMRR0-1—Memory Channel Range Registers

Address
Access

BB + 1E00 to 1EC0 
R/W

The I/O port houses two incoming Memory Channel address range
register pairs. These register pairs are not specific to a single hose,
but are generic across all four hoses.  The I/O port compares the
addresses of all incoming DMA write packets to the contents of
these registers, regardless of the originating Up Hose.

One pair (RMRR0n) checks for matches of incoming DMA ad-
dresses targeted to an I/O port in TLSB node 8.  The other pair
(RMRR1n) checks for matches of incoming DMA addresses tar-
geted to an I/O port in TLSB nodes 4, 5, 6, or 7.

After the I/O port has set the appropriate TLSB_ADR<4:3> bits, it
passes the DMA write to the TLSB as a normal memory write.

Incoming Memory Channel writes are never compared against the
RMRRs and thus are never reflected as outgoing writes.

31 30 0

BASE_ADR_A <39:20>

BXB-0782-93

VALID

28 2 7 4 38 7

BASE_ADR_B <39:20>RSVD

EXT_MASK

RSVDRSVD

RSVD

INTLV_EN

52 6
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  Table 7-54 RMRR0-1 Register Bit Definitions

Name Bit(s) Type Function

VALID

RSVD

BASE_ADR<38:20> 

RSVD

INTLV_EN

EXT_MASK

<31>

<30:28>

<27:8>

<7:5>

<4>

<3:0>

R/W, 0

R/W, 0

R/W, 0

R/W, 0

 0

R/W, 0

Valid.   When set, the contents of this register
is valid. 

Reserved.  Read as zeros. 

Base Address <39:20>.  The address of Mem-
ory Channel region.  Aligned to the extent size.

Reserved.  Read as zeros. 

Memory Channel  Interleave Enable.   Al-
ways set to zero.  Memory Channel interleave
is never enabled. 

Extent Mask.   Can be used to mask the 16
least significant bits of the BASE_ADR field in
each of the Memory Channel Range registers
as follows: 

<EXT_
MASK>

Valid Base Address
Bits

Memory 
Channel 
Size

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

TLSB_ADR<39:20>
TLSB_ADR<39:21>
TLSB_ADR<39:22>
TLSB_ADR<39:23>
TLSB_ADR<39:24>
TLSB_ADR<39:25>
TLSB_ADR<39:26>
TLSB_ADR<39:27>
TLSB_ADR<39:28>
TLSB_ADR<39:29>
TLSB_ADR<39:30>
TLSB_ADR<39:31>
TLSB_ADR<39:32>
TLSB_ADR<39:33>
TLSB_ADR<39:34>
TLSB_ADR<39:35>

    1 Mbyte
    2 Mbytes
    4 Mbytes
    8 Mbytes
  16 Mbytes
  32 Mbytes
  64 Mbytes
128 Mbytes
256 Mbytes
512 Mbytes
    1 Gbyte
    2 Gbytes
    4 Gbytes
    8 Gbytes
  16 Gbytes
  32 Gbytes
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ICCMSR—I/O Control Chip Mode Select Register

  Table 7-55 ICCMSR Register Bit Definitions

Address
Access

BB + 2000 
R/W

The ICCMSR register can be used by software to select the desired
mode of operation for the I/O port.

31 0

BXB-0768-94

RSVD

SUP_CTL<1:0>
ARB_CTL<1:0>



1234

Name Bit(s) Type Function

RSVD <31:4> R/W, 0 Reserved.  Must be zero. 
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Table 7-55   ICCMSR Register Bit Definitions (Continued)

Name Bit(s) Type Function

SUP_CTL<1:0> <3:2> R/W, 0 Suppress Control.   This field can be pro-
grammed to select the number of outstanding 
transactions the I/O port will permit on the
TLSB before it asserts TLSB_ARB_SUP.   No
node, including the I/O port, may arbitrate for
the TLSB address bus until TLSB_ARB_SUP is
deasserted.  The field is defined as follows:

SUP_CTL Function

00 Suppress after 16 transactions. If
the I/O port detects 16 outstand-
ing transactions pending on the
TLSB, it asserts TLSB_ARB_SUP
during the command/address cycle
of the 16th transaction for one cy-
cle, then deasserts it for one cycle.
It will repeat this two-cycle se-
quence until arbitration can be
permitted again, that is, when
fewer than 16 outstanding trans-
actions are pending on the TLSB.  
This is the normal default mode.

01 Suppress after 8 transactions.  If
the I/O port detects 8 outstanding
transactions pending on the TLSB,
it will assert TLSB_ARB_SUP
during the command/address cycle
of the 8th transaction for one cy-
cle, then deassert it for one cycle.
It will repeat this two-cycle se-
quence until arbitration can be
permitted again, that is, when
fewer than 8 outstanding transac-
tions are pending on the TLSB.

10 Suppress after 4 transactions.  If
the I/O port detects 4 outstanding
transactions pending on the TLSB,
it will assert TLSB_ARB_SUP
during the command/address cycle
of the 4th transaction for one cy-
cle, then deassert it for one cycle.
It will repeat this two-cycle se-
quence until arbitration can be
permitted again, that is, when
fewer than 4 outstanding transac-
tions are pending on the TLSB.
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Table 7-55   ICCMSR Register Bit Definitions (Continued)

Name Bit(s) Type Function

SUP_CTL<1:0>

ARB_CTL<1:0>

<3:2>

<1:0>

R/W, 0

R/W, 0 Arbitration Control.  This field can be pro-
grammed to select the manner in which the I/O
port installed in node 8 arbitrates for the TLSB.  
This field has no effect on an I/O port in any
other slot.

NOTE:  Potential_REQ_CYCLE = IDLE_CYCLE
or ARB_CYCLE+1 and not ARB_SUPRESS and
not RCV_REQ8_HIGH. 

SUP_CTL Function

11 Suppress after 2 transactions.  If 
the I/O port detects 2 outstanding
transactions pending on the
TLSB, it asserts TLSB_ARB_
SUP during the command/ ad-
dress cycle of the second transac-
tion for one cycle, then deasserts
it for one cycle. It repeats this
two-cycle sequence until arbitra-
tion can be permitted again, that
is, when fewer than 2 outstand-
ing transactions are pending.

ARB_CTL Function

00 Minimum latency mode (default). 
When the I/O port wins the bus ar-
bitration and accesses a particular
memory bank, its next request to
that same memory bank will  arbi-
trate on TLSB_REQ8_LOW if it is
a back-to-back request.  A back-to-
back request is when the I/O port
arbitrates for the same bank on
the first allowable cycle after that
bank’s TLSB_BANK_AVL line is
asserted.  
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Table 7-55   ICCMSR Register Bit Definitions (Continued)

Name Bit(s) Type Function

ARB_CTL<1:0> <1:0> R/W, 0 ARB_CTL Function

00 (Cont) If the I/O port does not issue a 
back-to-back request to the same
memory bank, that is, at least one 
potential request cycle to that
memory bank occurs, then the
next request to that memory bank
by the I/O port can be initiated
through TLSB_REQ8_HIGH. 
Thus, if the I/O port requests
back-to-back transactions to the
same bank, it will arbitrate the
second transaction at TLSB_
REQ8_LOW.  At all other times it
will arbitrate at TLSB_REQ8_
HIGH.  This guarantees that the
I/O port wins its arbitration al-
most 100% of the time.  It also
guarantees that the I/O port can-
not lock out a memory bank.

NOTE:  If the I/O port loses at
TLSB_REQ8_LOW, it switches to
TLSB_REQ8_HIGH on the next
cycle.  Write Unlocks always use
TLSB_REQ8_HIGH, regardless of
the previous arbitration request cy-
cle.

This mode guarantees minimum
latency to I/O devices located on
remote nodes such as the XMI or
Futurebus+.

This is the normal default mode.
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Table 7-55   ICCMSR Register Bit Definitions (Continued)

Name Bit(s) Type Function

ARB_CTL<1:0> <1:0> R/W, 0 ARB_CTL Function

01

10

11

Toggle 50% high/50% low mode.  
The I/O port always arbitrates on
TLSB_REQ8_HIGH once, fol-
lowed by TLSB_REQ8_LOW once
for a given memory bank. This
guarantees that the I/O port wins
that memory bank at least 50% of
the time. It also guarantees that
the I/O port cannot lock out a
memory bank.

NOTE:  Write Unlocks use TLSB_
REQ8_HIGH, regardless of the
previous arbitration request cycle. 

Fixed low mode.  The I/O port al-
ways arbitrates on TLSB_REQ8_
LOW.  This guarantees that the
I/O port cannot lock out a memory
bank.  However, I/O latency could
be very high. In addition, the I/O
port could potentially be locked
out from ever winning a given
memory bank due to other nodes
on the TLSB.

Fixed high mode.  The I/O port al-
ways arbitrates on TLSB_
REQ8_HIGH. This guarantees
that the I/O port cannot be locked
out itself. However, it could po-
tentially cause a memory bank to
be locked out from another  node
on the TLSB.
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ICCNSE—I/O Control Chip Node-Specific Error Reg

Address
Access

BB + 2040
R/W

The ICCNSE register logs the collective error information relative
to the internal operations of the I/O port.

The following errors leave the I/O port in an Unpredictable state. 
If any of these errors occur, the I/O port should be reset to initial-
ize it to a predictable state.

UP_HDR_IE<1:0> 
ICR_IE 
ICR_UP_VRTX_ERR<1:0> 
DN_VRTX_ERR<1:0> 

NOTE: Some errors are specific to the IDR0–3 data path gate arrays. These 
errors are generally logged in the IDPNSE0–3 registers, which are  physi-
cally located in the IDR0–3 gate arrays. 

This register is physically located in the ICR gate array.  

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 4 3 08 7

0 RSVD

BXB-0767-94

MULT_INTR_ERR
DN_VRTX_ERR
UP_VRTX_ERR
ICR_IE

UN_MBX_STAT
UP_HOSE_OFLO

UP_HOSE_PKT_ERR
UP_HOSE_PAR_ERR
UP_HDR_IE

ICR_CSR_BUS_PE
TLSB_WND_OFLO
INTR_NSES
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  Table 7-56 ICCNSE Register Bit Definitions

Name Bit(s) Type Function

INTR_NSES <31> R/W, 0 Interrupt on NSES.  When set, globally en-
ables all error interrupt sources on the I/O port. 
If an error is detected and this bit is set, the I/O
port posts a level 17 interrupt to the CPU.  The
subsequent read of TLILID3 returns the vector
from the IDR Vector Register (IDPVR). When
this bit is clear, no interrupt is posted as the re-
sult of an I/O port detected error. The appropri-
ate error bit will still be set in ICCNSE or ID-
PNSE0–3, however.  Note that all I/O port spe-
cific error bits must be cleared before a
subsequent error interrupt can be posted. 

TLSB_WND_OFLO <29> W1C, 0 TLSB Window Overflow.  Set when the ICR
control gate array detects an overflow of its win-
dow transaction address FIFO.  This occurs if
more than four window transactions occur on the
TLSB before the I/O port can perform a CSR
write to the Window Space Decrement Queue
Counter Register in broadcast space.  This is a
fatal error that causes the I/O port to drive
TLSB_FAULT. 

ICR_CSR_BUS_PE <28> W1C, 0 ICR CSR Bus Parity Error.  When set, indi-
cates that the ICR gate array detected a  parity
error on the CSR data bus when receiving data
from the IDR0 gate array.   An IPL 17 interrupt
will be generated when this bit sets if interrupts
are enabled by INTR_NSES (ICCNSE<31>). 

ICR_IE <27> W1C, 0 ICR Internal Error.  When set, indicates that
the ICR gate array detected an illogical internal
error.  The internal error generally indicates a
hardware problem where control logic encoun-
tered an undefined condition or conditions. 
ICR_IE is a system fatal error that causes the
I/O port to assert TLSB_FAULT.  The following
conditions cause the I/O port to assert ICR_IE:

Up Turbo Vortex overflow 
Up Turbo Vortex sequence error   
ICR read/merge FIFO overflow/underflow 
TLMBPR FIFO overflow/underflow 
Parity err on first cycle of up Turbo Vortex 
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Table 7-56   ICCNSE Register Bit Definitions (Continued)

Name Bit(s) Type Function

UP_VRTX_ERR <26:25> W1C, 0 Up Vortex Error.  This field is a composite
error field of possible Up Turbo Vortex  errors
that the ICR gate array can detect.  There are
two separate Up Turbo Vortex buses, one for
hose<3:2> and one for hose<1:0>.

ICR_UP_VRTX_ERR<1> detects errors 
on Up Turbo Vortex B (hose<3:2> 

ICR_UP_VRTX_ERR<0> detects errors on 
Up Turbo Vortex A (hose<1:0>) 

An IPL 17 interrupt is generated when these
bits set if interrupts are enabled by
INTR_NSES (ICCNSE<31>).  The I/O port
should be reset if this error bit is set.  The
possible Up Turbo Vortex errors are as follows: 

Parity
Sequence error 
Buffer overflow   
Illegal command   

DN_VRTX_ERR <24:23> W1C, 0 Down Vortex Error.  This field is a composite
error field of possible Down Turbo Vortex er-
rors that the Down HDR gate arrays can de-
tect.  There are two separate Down Turbo Vor-
tex buses, one for hose<3:2> and one for 
hose<1:0>.

DN_VRTX_ERR<1> detects errors on 
Down Turbo Vortex B (hose<3:2>)

DN_VRTX_ERR<0> detects errors on 
Down Turbo Vortex A (hose<1:0>) 

An IPL 17 interrupt is generated when these
bits set if interrupts are enabled by
INTR_NSES (ICCNSE<31>).  The I/O port
should be reset if this error bit is set.  The
possible Down Turbo Vortex errors are as fol-
lows: 

Parity
Illegal command 
Sequence error
Buffer overflow
Internal HDR error 
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Table 7-56   ICCNSE Register Bit Definitions (Continued)

Name Bit(s) Type Function

MULT_INTR_ERR <22> W1C, 0 Multiple Interrupt Error.   The I/O port has
four TLILID FIFOs, one for each IPL.  Each
TLILID FIFO is four entries deep, so it can ac-
cept up to four pending interrupts for the given
IPL level.  The MULT_INTR_ERROR bit is set
if a TLILID FIFO overflows.  The overflow only
occurs if an I/O adapter module issues multiple
interrupts at a given IPL and the I/O adapter
modules on the other three hoses have inter-
rupts pending at the same IPL (that is, the I/O
port received five interrupts from the hoses at
a given IPL before the CPU read the TLILID
for the first interrupt).   

An IPL17 interrupt is generated when these
bits set if interrupts are enabled by
INTR_NSES (ICCNSE<31>). 

UP_HDR_IE <21:20> W1C, 0 Up HDR Internal Error.  A bit set in this
field indicates that one of the two Up HDR gate 
arrays detected an illogical internal error. The
internal error generally indicates a hardware
problem where control logic encountered  an
undefined condition or conditions.

An IPL 17 interrupt is generated when these
bits set if interrupts  are enabled by
INTR_NSES (ICCNSE<31>).  The I/O port
should be reset if this error bit  is set.

UP_HDR_IE<1> detects errors in Up-  
HDR-HDR-B (hose<3:2>) 

UP_HDR_IE<0> detects errors in Up-
HDR-HDR-A (hose<1:0>) 

UP_HOSE_PAR_ERR <19:16> W1C, 0 Up Hose Parity Error.   This field indicates
that one of the Up HDR gate arrays detected a
parity error on either the command or data cy-
cles for the corresponding Up Hose.

An IPL 17 interrupt is generated when these
bits set if interrupts are enabled by INTR_
NSES (ICCNSE<31>).  
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Table 7-56   ICCNSE Register Bit Definitions (Continued)

Name Bit(s) Type Function

UP_HOSE_PKT_ERR <15:12> W1C, 0 Up Hose Packet Error.   This field indicates
that one of the Up HDR gate arrays detected
either an illegal command or sequence error
on the corresponding Up Hose.

An IPL17 interrupt is generated when these
bits set if interrupts are enabled by
INTR_NSES (ICCNSE<31>). 

UP_HOSE_OFLO <11:8> W1C, 0 Up Hose FIFO Overflow.    This field indi-
cates one of the Up HDR gate arrays detected
a FIFO overflow error on the corresponding
Up Hose.

An IPL17 interrupt is generated when these
bits set if interrupts are enabled by
INTR_NSES (ICCNSE<31>). 

UN_MBX_STAT <7:4> W1C, 0 Unexpected Mailbox Status Packet Re-
ceived.   This field indicates that the I/O port
has received a Mailbox Status packet  for
which there was no pending Mailbox Com-
mand packet (that is, the  associated ICC-
MTR<MBX_TIP> bit was not set).

An IPL17 interrupt is generated when these
bits set if interrupts are enabled by
INTR_NSES (ICCNSE<31>). 

RSVD <3:0> R/W, 0 Reserved.  Must be zero. 
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ICCDR—I/O Control Chip Diagnostic Register

Address
Access

BB + 2080
R/W

The ICCDR register can be programmed by diagnostics to force er-
rors on the TLSB and Turbo Vortex buses for the I/O port to detect.  
Hose errors can also be forced, but this is a function of the
loopback feature.  Refer to the TurboLaser I/O port functional
specifications for details. 

System bus errors are transmitted on the TLSB and are detected
by the I/O port when the signals are received back. 

This register can also be used to force errors to be generated
across the Down and Up Turbo Vortex buses.

This register is physically located in the ICR gate array of the I/O
port. 

31 30 9 4 3 08 7 6 5 12

RSVD

BXB-0765-93

ENA_DMA_HID FRC_IDR_CMD_PE
RSVD

FRC_BNK_BSY
FRC_CMD_PE

DIS_TLSB_FAULT


FRC_DTO
FRC_DSE

FRC_IDR_CSR_BUS_PE

DIS_TLSB_CMD
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  Table 7-57 ICCDR Register Bit Definitions

Name Bit(s) Type Function

ENA_DMA_HID <31> R/W, 0 Enable DMA Hose ID.  When set and the I/O
port is hard-wired to enable debug mode, the
number of the hose that originated the transac-
tion is inserted at address bits <26:25> for mem-
ory transactions (that is, A<28>=0). This bit is
only valid when the I/O port is hard-wired to en-
able debug mode.  Otherwise, the bit has no ef-
fect on I/O port operation.

RSVD <30:9> R/W, 0 Reserved.  Must be zero. 

FRC_IDR_CMD_PE <8> W, 0 Force IDR CMD Parity Error.   When set,
forces a parity error on all four CMD buses going
from the ICR to the IDRs.  It should cause the
IDPNSE<IDR_CMD_PE> bit in each of the IDRs
to set.  This error causes the I/O port to assert
TLSB_FAULT.

RSVD <7> R/W, 0 Reserved.  Must be zero. 

FRC_BNK_BSY <6> W, 0 Force Bank Busy Error.  When set, inverts
the CSR_BANK_BUSY signal in the ICR.  A
CSR access to the I/O port while this bit is set
causes TLBER<BAE> to set.  This error causes
the I/O port to drive TLSB_FAULT.  This bit will
automatically clear after the I/O port detects
TLER<BAE>.

FRC_CMD_PE <5> R/W, 0 Force Command Parity Error.  When set,
forces the ICR to assert bad parity on the TLSB
during a command cycle driven by the I/O port. 
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Table 7-57   ICCDR Register Bit Definitions (Continued)

Name Bit(s) Type Function

DIS_TLSB_FAULT <4> R/W, 0 Disable TLSB Fault.  Setting this bit prevents
the I/O port from driving TLSB_FAULT even if a
system fatal error condition is detected by the
I/O port.  It allows diagnostics to force various
fatal TLSB errors (such as APE, ATCE, BBE,
DTO, DSE)  and various fatal Up Turbo Vortex
errors without crashing the system. 

NOTE:  Disabling the I/O port from driving
TLSB_FAULT may prevent the I/O port from re-
covering (for example, resyncing gate arrays and
TLSB) after a fatal error condition is detected,
and may require a node reset.

DIS_TLSB_CMD <3> R/W, 0 Disable TLSB Command Transmission.  
This feature prevents the I/O port from trans-
mitting Up Turbo Vortex packets onto the TLSB. 
It does not prevent the I/O port from responding
to CSR reads/writes or from fetching mailbox
structures from TLSB memory and sending a
Mailbox Command packet on the Down Hose. 
Once the bit is cleared, the I/O port processes all
the transactions in its Up Turbo Vortex buffers. 

FRC_DTO <2> R/W, 0 Force Data Timeout Error.  Inhibits sending
data after starting a broadcast write command
on the TLSB.

FRC_DSE <1> W, 0 Force Data Status Error.  Flips the signal
TLSB_STATCHK during a TLSB transaction.  It
clears automatically after one transaction.

FRC_IDR_CSR_BUS
_PE

<0> R/W, 0 Force IDR CSR Bus Parity Error.  When set,
the ICR forces bad parity on the CSR data bus 
to IDR0 whenever a register in the ICR is read.
This causes IDR0 to set IDPNSE0<IDR_ CSR_
BUS_PE>. Forcing this error also sets TLESR0-
<UECC>, TLESR0<TDE>, TLBER<DTDE>, and
TLBER<UDE>. 
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ICCMTR—I/O Control Chip Mailbox Transaction Reg

Address
Access

BB + 20C0
R

The ICCMTR register indicates if a mailbox transaction is in pro-
gress and the targeted hose of the transaction.  This register is
physically located in the ICR gate array.

31 4 3 0

RSVD

BXB-0555-94


MBX_TIP<3:0>
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  Table 7-58 ICCMTR Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:4> R0 Reserved.  Read as zeros. 

MBX_TIP<3:0> <3:0> W1C, 0 Mailbox Transaction in Progress.  Indicates
that the I/O port has transmitted a Mailbox
Command packet, targeting the corresponding
hose, across one of the Down Turbo Vortex
buses. When the corresponding Mailbox Status
packet is received and processed, the bit is
cleared. 

An incomplete mailbox transaction (no Mailbox
Status packet returned) is detected by software
using a software timeout. Software examines
this field to determine the hose used to send the
packet down. The TLMBPR register points to the
mailbox data structure that was accessed.  Soft-
ware then writes a one to clear the MBX_TIP bit,
so that the I/O port control logic no longer ex-
pects a Mailbox Status packet to be returned.
This allows subsequent mailbox transactions to
be processed.    

IMPORTANT:  The MBX_TIP bits should never
be cleared by software unless the software
timeout limit has been reached.

Clearing these bits prior to the software timeout
can result in Mailbox Status packets being writ-
ten to incorrect mailbox data structures.

This field is cleared by writing a one to the bit or
by setting  the appropriate HOSEn_RESET bit
in the IDPNSEn register. Note that setting 
HOSEn_RESET results in the initialization of
the entire I/O subsystem attached to the hose.
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ICCWTR—I/O Control Chip Window Transaction Reg

  Table 7-59 ICCWTR Register Bit Definitions

Address
Access

BB + 2100
R

The ICCWTR register indicates if a window transaction is in pro-
gress and the targeted hose of the transaction.  This register is
physically located in the ICR gate array.

31 04

RSVD

BXB-0761-94

WIP<3:0>

3

Name Bit(s) Type Function

RSVD <31:4> R0 Reserved.  Read as zeros. 

WIP<3:0> <3:0> W1C, 0 Window in Progress.    When set, these bits indi-
cate that the I/O port has at least one window com-
mand packet outstanding down the hose. 
WIP<3:0> correspond to hoses 3 to 0, respectively.

Each time a window command packet is transmit-
ted down a hose, the associated WIP counter is in-
cremented.  As long as the WIP counter is nonzero,
the corresponding WIP<3:0> bit remains set.

Writing one to a bit position in WIP<3:0> clears
the bit and its associated WIP counter.  This is use-
ful if a window transaction fails to complete and
the WIP counter needs to be reset manually.
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IDPNSE0–3—I/O Data Path Node-Specific Error Regs 

Address
Access

BB + 2A40, 2140, 2240, 2340
R/W

The IDPNSE0–3 registers are physically located in the correspond-
ing IDR0–3 I/O port gate arrays. They log the collective error infor-
mation related to  the internal operations of the gate arrays.

The following errors leave the I/O port in an Unpredictable state. 

IDR_IE 
IDR_UP_VRTX_ERR<1:0> 

If any of these errors occur,  the I/O port should be reset to initial-
ize it to a predictable state. 

31 30 29 28 27 26 25 24 23 4 3 012

RSVD

BXB-0558-94

IDR_CMD_PAR_ERR
IDR_UP_VRTX_ERR
IDR_INTR_ERR


HOSEn_PWROK_TR
HOSEn_CBLOK

             HOSEn_PWROKIDR_CSR_BUS_PAR_ERR
RSVD
HOSEn_RESET

   HOSEn_ERR
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  Table 7-60 IDPNSE0–3 Register Bit Definitions

Name Bit(s) Type Function

HOSEn_RESET <31> W, 0 HOSEn Reset.  When this bit is written to a
one, the I/O port generates a reset to the  associ-
ated hose as follows:

HOSEn_RESET in IDPNSE3 causes a reset
to be generated to HOSE 3

HOSEn_RESET in IDPNSE2 causes a reset
to be generated to HOSE 2

HOSEn_RESET in IDPNSE1 causes a reset
to be generated to HOSE 1

HOSEn_RESET in IDPNSE0 causes a reset
to be generated to HOSE 0 

Reads to this bit position always return a zero.

RSVD <30:29> R0 Reserved.  Read as zeros. 

IDR_CSR_BUS_PAR
_ERR

<28> W1C, 0 IDR CSR Bus Parity Error.   When set, indi-
cates that the applicable IDRn data path gate 
array detected a parity error on the CSR data
bus or the CSR address bus when receiving data
from the ICR or another IDRn gate array.

An IPL 17 interrupt is generated when this bit
sets if interrupts are enabled by INTR_NSES
(ICCNSE<31>. 

IDR_INTR_ERR <27> W1C, 0 IDR Internal Error.   IDR_IE is a composite
error bit of all possible internal errors that can
be detected by the IDR data path gate array. 
Each IDR gate array has its own IDR_IE bit. 
The I/O port asserts IDR_IE under the following
conditions: 

XB Buffer overflow/underflow 
Up Turbo Vortex sequence error 
TL CMD FIFO overflow 

This is a fatal error that causes the I/O port to
drive TLSB_FAULT.
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Table 7-60   IDPNSE0–3 Register Bit Definitions (Continued)

Name Bit(s) Type Function

IDR_UP_VRTX_ERR <26:25> W1C, 0 IDR Up Vortex Error.  This is a composite er-
ror field of possible Up Turbo Vortex errors 
that the IDR gate arrays can detect in each of
the IDR0-3 data path gate arrays as follows:

IDR_UP_VRTX_ERR<1:0> in IDR-3 detects 
Turbo Vortex errors detected  by the IDR3 
data path array

IDR_UP_VRTX_ERR<1:0> in IDR-2 detects 
Turbo Vortex errors detected  by the IDR2 
data path array

IDR_UP_VRTX_ERR<1:0> in IDR-1 detects 
Turbo Vortex errors detected  by the IDR1 
data path array

IDR_UP_VRTX_ERR<1:0> in IDR-0 detects 
Turbo Vortex errors detected  by the IDR0 
data path array 

There are two separate Up Turbo Vortex buses,
one for hose<3:2> and one for hose<1:0>.

IDR_UP_VRTX_ERR<1> detects errors on 
Up-Turbo Vortex-B (hose<3:2>)

IDR_UP_VRTX_ERR<0> detects errors on 
Up-Turbo Vortex-A (hose<1:0>) 

An IPL 17 interrupt is generated when this bit
sets if interrupts are enabled by INTR_NSES
(ICCNSE<31>).  The I/O port should be reset
if this error bit  is set.  The possible Up Turbo
Vortex errors are as follows: 

Parity 
Sequence error
Buffer overflow 

IDR_CMD_PAR_ ERR <24> W1C, 0 IDR Command Parity Error.  Sets whenever
a parity error is detected on either the
TL_CMD<4:0> bus or CRM_CMD<2:0> bus. 
This is a fatal error that causes the I/O port to
drive TLSB_FAULT.  

RSVD <23:4> R0 Reserved.  Read as zeros. 
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Table 7-60   IDPNSE0–3 Register Bit Definitions (Continued)

Name Bit(s) Type Function

HOSEn_PWROK_TR <3> W1C, X HOSEn Power OK Transitioned.  This bit is
latched whenever the associated HOSEn_
PWROK signal transitions.  HOSEn_PWROK
can then be read to determine the reason why 
this bit set. A PWROK transition from 0 to 1 in-
dicates a power-up, while  a PWROK transition
of 1 to 0 indicates a power-down.

The bit indicates an I/O adapter’s power transi-
tion status on a given hose "n" as follows:

HOSEn_PWROK_TR in IDPNSE3 indicates
an I/O adapter’s power transition status on 
hose 3.

HOSEn_PWROK_TR in IDPNSE2 indicates
an I/O adapter’s power transition status on 
hose 2. 

HOSEn_PWROK_TR in IDPNSE1 indicates
an I/O adapter’s power transition status on 
hose 1.

HOSEn_PWROK_TR in IDPNSE0 indicates
an I/O adapter’s power transition status on 
hose 0. 

An IPL 17 interrupt is generated when this bit
sets if interrupts are enabled by INTR_NSES
(ICCNSE<31>).

HOSEn_CBLOK <2> R, X HOSEn Cable OK.   This bit is derived from the
hose signal CBLOK.  If the associated hose cable
is good and connected properly and the I/O
adapter is plugged into its card cage, this bit will
be a 1. The setting of this bit does not result in
any TLSB interrupt.

The bit indicates an I/O adapter’s hose cable
status on a given hose  "n" as follows:

HOSEn_CBLOK in IDPNSE3 indicates an 
I/O adapter’s hose cable status on hose 3.

HOSEn_CBLOK in IDPNSE2 indicates an 
I/O adapter’s hose cable status on hose 2.

HOSEn_CBLOK in IDPNSE1 indicates an 
I/O adapter’s hose cable status on hose 1.

HOSEn_CBLOK in IDPNSE0 indicates an 
I/O adapter’s hose cable status on hose 0.
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Table 7-60   IDPNSE0–3 Register Bit Definitions (Continued)

Name Bit(s) Type Function

HOSEn_PWROK <1> R, X HOSEn Power OK.   This bit is derived from
the HOSEn_PWROK signal and reflects its cur-
rent level.  If the associated hose cable is con-
nected properly to the I/O adapter and has suffi-
cient power to process commands, then this bit
will be a 1.  The transition of this bit from either
1 to 0 or 0 to 1 causes HOSEN_PWROK_TR<3>
to set.  This bit has no effect on I/O port inter-
rupts.

The bit indicates an I/O adapter’s power status
on a given hose  "n" as follows:

HOSEn_PWROK in IDPNSE3 indicates an 
I/O adapter’s power status on hose 3.

HOSEn_PWROK in IDPNSE2 indicates an 
I/O adapter’s power status on hose 2. 

HOSEn_PWROK in IDPNSE1 indicates an 
I/O adapter’s power status on hose 1. 

HOSEn_PWROK in IDPNSE0 indicates an 
I/O adapter’s power status on hose 0.

HOSEn_ERR <0> R, X HOSEn Error.  This bit is derived from the
hose signal ERROR.  The I/O adapters assert
this signal when they detect any fatal error that
prevents them from using normal Up Hose
packet protocols.  The I/O adapters continue to
assert this signal until cleared by an associated
HOSEn_RESET.

The bit indicates an I/O adapter’s error status on
a given hose  "n" as follows:

HOSEn_ERR in IDPNSE3 indicates an 
I/O adapter’s error status on hose 3.

HOSEn_ERR in IDPNSE2 indicates an 
I/O adapter’s error status on hose 2.

HOSEn_ERR in IDPNSE1 indicates an 
I/O adapter’s error status on hose 1.

HOSEn_ERR in IDPNSE0 indicates an 
I/O adapter’s error status on hose 0. 

An IPL 17 interrupt is generated when this bit
sets if interrupts are enabled by INTR_NSES
(ICCNSE<31>).



       System Registers   7-133

IDPDRn—I/O Data Path Diagnostic Registers

Address
Access

BB + 2A80, 2180, 2280, 2380
R/W

The IDPDRn registers can be programmed by diagnostics to force
errors on the TLSB and Turbo Vortex buses for the I/O port to de-
tect. System bus errors are transmitted on the TLSB and are de-
tected by the I/O port when the signals are received back. These
registers can also be used to force errors to be generated across 
the Down Turbo Vortex buses.

These registers are physically located in the four IDR data path
gate arrays IDR0–3, respectively, of the I/O port. 

31 30 29 21 20 19 18 17 16 15 08 7

RSVD

BXB-0562-94

DIS_DN_HOSE_RST
VOLT_MARG

FRC_ECC <7:0>RSVD

FRC_CSR_BUS_DPE
FRC_CSR_BUS_APE
FRC_DN_DPE
FRC_VAL_SEQ_ERR
FRC_EOP_SEQ_ERR
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  Table 7-61 IDPDR0–3 Register Bit Definitions

Name Bit(s) Type Function

VOLT_MARG <31> R/W, 0 Voltage Margin.  When set, the module’s 5.0
and 3.35 volt DC to DC converters are margined
over a +/− 5% range. 

NOTE:  If both plus and minus margining bits
are set for a given voltage, the DC to DC con-
verter goes to its nominal output voltage.

The VOLT_MARG bit is not cleared by a node
reset.  It is only cleared at system power-up.

IDR Register Voltage Margin

IDPDR0
IDPDR1
IDPDR2
IDPDR3

5.0
5.0
3.5.
3.5

+5%
−5%
+5%
−5%

DIS_DN_HOSE_RST <30> R/W, 0 Disable Down Hose Reset.  When set,  pre-
vents DHRST L from asserting during an I/O
port node reset. This allows diagnostics to reset
the I/O port without resetting the entire I/O
subsystem. Each IDPDR  register corresponds
to a particular hose as follows:  

IDR Register Affected Hose

IDPDR0
IDPDR1
IDPDR2
IDPDR3

0
1
2
3

RSVD <29:21> R/W, 0 Reserved.  Read as zeros.  

FRC_EOP_SEQ_ERR <20> R/W, 0 Force Down EOP Sequence Error.  When
set, forces an early assertion of down Turbo Vor-
tex EOP for down Turbo Vortex Mailbox Com-
mand packets.
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Table 7-61   IDPDR0–3 Register Bit Definitions (Continued)

Name Bit(s) Type Function

FRC_VAL_SEQ_ERR <19> R/W, 0 Force Down Valid Sequence Error.  When
set,  forces VALID to be asserted for an extra
cycle for down Turbo Vortex Mailbox Command
packets.

FRC_DN_DPE <18> R/W, 0 Force Down Data Parity Error.  When set,
forces bad parity on the down Turbo Vortex bus
as it exits the IDR.  This bit can be set inde-
pendently in each IDR to force bad parity in dif-
ferent longwords.

FRC_CSR_BUS_APE <17> W, 0 Force CSR Bus Address Parity Error.  This
bit forces an address parity error in the selected
IDR chip on the CSR address bus.  The error is
detected as IDPNSE<IDR_CSR_BUS_PE> in
the IDR in which the error was forced. Refer to
Table 7-62.  This bit automatically clears after a
CSR read or CSR write to the I/O port. 

FRC_CSR_BUS_DPE <16> R/W, 0 Force CSR Bus Data Parity Error.  This bit
forces a data parity error from the IDR0 chip on
the CSR data bus between IDR0 and the ICR
and other IDRs. The error is detected at the
ICR and IDR1:3 chips.  Refer to Table 7-62.

RSVD <15:8> R/W, 0 Reserved.  Read as zeros.  

FRC_ECC<7:0> <7:0> R/W, 0 Force ECC<7:0>.   When set, these bits flip the
corresponding ECC check bits.  Setting one of
these bits causes a single-bit error when the I/O
port drives read return data on the TLSB.  Set-
ting two of these bits at the same time cause a
double-bit error when the I/O port drives read
return data on the TLSB. 

FRC_ECC<0> flips ECC check bit 0,
FRC_ECC<1> flips ECC check bit 1, and so on. 
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  Table 7-62 Error Matrix for Force Error Bits

Set Diagnostic Bit Perform Transaction Detect Error

IDPDR0<FRC_CSR_BUS_DPE>
IDPDR0<FRC_CSR_BUS_DPE>
IDPDR0<FRC_CSR_BUS_DPE>
IDPDR0<FRC_CSR_BUS_DPE>

IDPDR1<FRC_CSR_BUS_DPE>
IDPDR2<FRC_CSR_BUS_DPE>
IDPDR3<FRC_CSR_BUS_DPE>

ICCDR<FRC_IDR_CSR_BUS_PE>

IDPDR0<FRC_CSR_BUS_APE>
IDPDR1<FRC_CSR_BUS_APE>
IDPDR2<FRC_CSR_BUS_APE>
IDPDR3<FRC_CSR_BUS_APE>

Write to CSR in IDR1 
Write to CSR in IDR2 
Write to CSR in IDR3 
Write to CSR in ICR 

Read to CSR in IDR1 
Read to CSR in IDR2 
Read to CSR in IDR3 

Read a CSR in ICR 

R/W any I/O port CSR
R/W any I/O port CSR
R/W any I/O port CSR
R/W any I/O port CSR

IDPNSE1<IDR_CSR_BUS_PE>
IDPNSE2<IDR_CSR_BUS_PE>
IDPNSE3<IDR_CSR_BUS_PE>
ICCNSE<ICR_CSR_BUS_PE>

IDPNSE0<IDR_CSR_BUS_PE>
IDPNSE0<IDR_CSR_BUS_PE>
IDPNSE0<IDR_CSR_BUS_PE>

IDPNSE0<IDR_CSR_BUS_PE>

IDPNSE0<IDR_CSR_BUS_PE>
IDPNSE1<IDR_CSR_BUS_PE>
IDPNSE2<IDR_CSR_BUS_PE>
IDPNSE3<IDR_CSR_BUS_PE>
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IDPVR—I/O Data Path Vector Register 

  Table 7-63 IDPVR Register Bit Definitions

Address
Access

BB + 2B40
R/W

The IDPVR register is loaded by software with the vector associ-
ated with I/O port-specific errors.

31 0

VECTOR<15:0>

BXB-0759-93

RSVD

16 15

Name Bit(s) Type Function

RSVD <31:16> R/W, 0 Reserved.  Read as zeros.  

VECTOR<15:0> <15:0> R/W, 0 Vector<15:0>.   Contains the vector that will be
returned as read data when the CPU servicing
an I/O port error interrupt reads the TLILID3
register.
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IDPMSR—I/O Data Path Mode Select Register

Address
Access

BB + 2B80
R/W

The IDPMSR register can be used by software to select the desired
mode of  operation for the I/O port.

31 012

RSVD

BXB-0761-94

ENA_HOSE_VECT


HDR_LPBCK_EN
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  Table 7-64 IDPMSR Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:2> R/W, 0 Reserved.  Read as zeros.  

HDR_LPBCK_EN <1> R/W, 0 HDR Loopback Enable.  When set, enables
the I/O port to internally loopback Mailbox
Command packets and Sparse Window Read
packets between the Down Hose and Up Hose.
When set, the ICR automatically disables all at-
tached I/O adapter modules by driving the hose
error signal (HOS_ERROR) on all Up Hoses.
Refer to the I/O port functional specification for
loopback programming details.

ENA_HOSE_VECT <0> R/W, 0 Enable Hose onto Vector.   If set, the number
of the hose that originated the interrupt is
stored in bits <15:14> of the TLILIDx register,
which contains the interrupt vector as follows:

If this bit is clear, the value in bits <15:14> of
the vector that is passed to the I/O port from the
originating hose will be stored in  bits <15:14>
of the TLILIDx register.

TLILIDx<15:14> Hose Number

00
01
10
11

0
1
2
3
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IBR—Information Base Repair Register

Address
Access

BB + 2BC0
R/W

The IBR register is used to access the EEPROM  located on the I/O
port.   To access the EEPROM, software continually updates the
IBR register to transfer command, address, and data to and from
the device.  Writing an alternating one and zero pattern to
IBR<SCLK> implements the serial data clock used for the
EEPROM protocol.  Command, address, and write data is serially
transferred to the EEPROM by writing to IBR<XMT_SDAT> in ac-
cordance with the logic selected by <SCLK>.  EEPROM read data
and response are  read serially from IBR<RCV_SDAT> in accor-
dance with the logic selected by <SCLK>.  When receiving
EEPROM read data and responses,  <XMT_SDAT> must be one.

31 0

BXB-0766-92

RSVD

SCLK
XMT_SDAT
RCV_SDAT

123
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  Table 7-65 IBR Register Bit Definitions

Name Bit(s) Type Function

RSVD <31:3> R/W, 0 Reserved.  Read as zeros.  

SCLK <2> R/W, 0 Serial Clock.  Used to implement the
FEPROM serial clock interface by software.
When this bit is written with a one, the
FEPROM serial clock input is forced to a logic
high.  When this bit is cleared, the serial clock
input is forced to low logic level.

XMT_SDAT <1> R/W, 1 Transmit Serial Data.  Used by software to
assert the serial data line of the  EEPROM to
either high or low logic level.  This bit is used
with <SCLK> to transfer command, address,
and write data to the EEPROM.

RCV_SDAT <0> R, 1 Receive Serial Data.   Returns the status of
the EEPROM serial data line.  This bit is used 
by software to receive serial read data and
EEPROM responses.  

NOTE:  XMT_SDAT must be one to receive an
EEPROM response or serial read data.
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7.7  KFTIA Specific Registers

Registers specific to the integrated I/O module, the KFTIA (registers in ad-
dition to those specific to the KFTHA module) can be grouped in two
classes:

• PCIA registers

• PCI device registers

The discussion of these registers is beyond the scope of this manual.   PCIA
registers are discussed in the DWLPA PCI Adapter Technical Manual. PCI
device registers are discussed in their respective specifications.   

• Ethernet  - See DECchip 21040-AA Ethernet LAN Controller for PCI
(DC1003 TULIP Specification)

• FDDI  - See DEFPZ Specification

• NVRAM  - See I/O Port NVRAM Specification, K-SP-5423472-0

• SCSI  - See IPS1020 Technical Manual, QLogic Corporation
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Chapter 8

Interrupts

The TLSB supports both vectored and nonvectored interrupts.   

• Vectored interrupts are the traditional I/O adapter interrupts, where
the processor dispatches the interrupt based on an IDENT (identifica-
tion) vector supplied by the adapter. The value of the IDENT vector is
loaded into each adapter at system initialization.

• Nonvectored interrupts are those interrupts that have been architec-
turally defined mechanisms for entering the relevant interrupt service
routine.  These interrupts do not require IDENT vectors.  Inter-
processor interrupts and system and error interrupts are examples of
nonvectored interrupts.

The TLSB interrupt mechanism allows multiple I/O controllers to generate
vectored interrupts without requiring new PALcode support for vectored
interrupt dispatch.  The TLSB extends the interrupt mechanism to target
16 CPUs.  The target of an interrupt is identified by the CPU virtual ID. 

8.1  Vectored Interrupts

The TLSB supports up to five I/O interrupting nodes.  Interrupts are re-
stricted to nodes 4 through 8.  Thus, TLSB implements 5 interrupt level
registers, TLIOINTR4 –TLIOINTR8.  To determine which of the five nodes
sent the interrupt request, the I/O devices write to the TLIOINTRn regis-
ter where n equals physical node ID.  This informs the processor of the
pending interrupt request and because the write occurs to an indexed reg-
ister the CPU knows the physical node number of the requester.

To process an interrupt, software executes a read of the TLILIDn register
of the interrupting node.  The data pattern written into TLIOINTRn speci-
fies one of four interrupt levels, which is used to select one of TLILID0 –
TLILID3.

The mapping of the bus interrupt levels to the processor IPLs is implemen-
tation specific.   Each CPU must implement a 4-bit interrupt mask in a
node-specific register to enable/disable individual interrupt levels.

8.1.1  I/O Port Interrupt Rules

The I/O module posts interrupts to CPUs through writes to the TLIOIN-
TRn registers and obeys the following rules:
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• At most, four interrupts at levels 0, 1, and 2 can be pending on the
TLSB bus (one per interrupt level 14, 15, and 16, respectively, per I/O
hose) per I/O node. 

• However, up to five interrupts at level 3 can be pending on the TLSB
bus (one at interrupt level 17 per I/O hose and one internally gener-
ated I/O module error interrupt) per I/O node. 

• When a CPU module performs a CSR read of a given TLILIDn regis-
ter, the I/O module considers the relevant interrupt to be serviced.

• Multiple CPUs can be targeted for a single interrupt at a given level.  
This is specified by the contents of the TLCPUMASK register.

• If a CPU performs a TLSB CSR read of a given TLILIDn register for a
given interrupt level and the I/O module considers all the interrupts
posted at that  level  to be serviced, the I/O module returns a value of
zero as CSR read data (passive release). 

8.1.2  CPU Interrupt Rules

Both AlphaServer 8200 and 8400 systems support up to three I/O modules. 
Each I/O module can generate four interrupts at level 0, four at level 1,
four at level 2, and five at level 3.  Thus, one I/O port can have 17 out-
standing interrupts.  In a system with three I/O ports there can be up to 51
outstanding interrupts.

A  CPU module services an interrupt by reading from the TLILIDn regis-
ter indexed with the physical node ID of the interrupting I/O device.

To store all outstanding interrupt requests, a CPU keeps a count of the
number of requests at each level and the physical node ID of the interrupt-
ing I/O device.  CPUs can do this by keeping an outstanding interrupt
count (in the range 0–4 for levels 0, 1, and 2; 0–5 for level 3) for each level,
for each I/O device.

8.1.3  I/O Port Interrupt Operation

The following observations apply to the I/O port interrupt operation:

• An I/O adapter posts an interrupt at a given interrupt level.

• The  I/O module assembles the interrupt vector in the queue for the
relevant interrupt level for a later read of the appropriate TLILIDn
register.  The I/O module then issues a CSR write transaction over the 
TLSB bus to one of five TLIOINTRn registers using the TLCPUMASK 
register to specify which target CPUs are to receive the interrupt.

• During the CSR write transaction the I/O module asserts its node ID
on the four least significant address bits of the TLSB bus.  These four 
bits determine the specific TLIOINTRn register to be written as fol-
lows:

— Node ID 4 = TLIOINTR4 register

— Node ID 5 = TLIOINTR5 register

— Node ID 6 = TLIOINTR6 register

— Node ID 7 = TLIOINTR7 register

— Node ID 8 = TLIOINTR8 register
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• The  targeted CPUs are interrupted at an appropriate level and the
CPU issues a CSR read transaction over the TLSB bus to the TLILIDn
register for the relevant interrupt level to get the interrupt vector.

• After the CSR read of TLILIDn is successfully completed, the I/O mod-
ule considers the interrupt to be serviced.

• If an interrupt targets more than one CPU, the first CPU to win the
TLSB for the CSR read of TLILIDn gets the relevant IDENT informa-
tion.  If another interrupt at the relevant level is pending, additional
CSR reads of TLILIDn will return that IDENT information.   If  no 
other interrupts are pending at the given level,  the I/O module will re-
turn zeros, forcing the CPU to take a passive release. 

8.2  Nonvectored Interrupts

In a nonvectored interrupt, the interrupting node writes a value to a speci-
fied location in TLSB broadcast space.  The dispatch of this request is im-
plementation specific.

To post an interprocessor interrupt, a processor sets the relevant MASK
bit in the TLIPINTR register.  The bits are write-one-to-set.  Clearing is
implementation dependent.  I/O nodes also use this register to post nonvec-
tored interrupts.  

The TLIPINTR register is in TLSB broadcast space.  Writes are accepted
without regard to receiver ID.  All CPU nodes accept writes to this regis-
ter.  Reads of the TLIPINTR register are illegal.

8.3  I/O Interrupt Mechanism

I/O subsystems field an interrupt to an I/O port by sending an interrupt
IPL level and IDENT vector up the hose.  The I/O port interrupts a CPU by
posting an interrupt at a particular interrupt level to the CPU. The CPU
responds by reading the IDENT register in the I/O port to determine the
offset vector to be used in processing the interrupt.  When all interrupts at
a particular level have been serviced, the IDENT register is read as zero
and the processor is passively released.

CPUs can interrupt each other by posting interrupts to the Interprocessor
Interrupt Register.  Other module-level interrupt sources exist (UARTs, in-
terval timer).  

8.3.1  TLSB Principles for Interrupts

Interrupt operations proceed through various steps.  Registers are used to
specify the destination and other parameters of the interrupt and to direct
the interrupt through the various steps.  The following registers are used
to execute the various steps in an interrupt operation:

• TLVID

• Interrupt registers

• Interrupt Mask registers

• Interrupt Summary registers  
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Refer to Chapter 7 for the format of all registers used in the interrupt op-
eration.

8.3.1.1 Virtual Node Identification - TLVID

TLSB system functionality requires that certain units be identified
uniquely, independent of physical location in the system.  Specifically, indi-
vidual memory banks and CPUs must be uniquely addressable entities at
the system level, independent of their physical node ID.  A physical node
ID (NID) is insufficient to uniquely address a destination element when
multiple memory banks and multiple CPUs are permitted to coexist on a 
module.  The system employs software generated and dynamically stored
virtual node IDs in each uniquely identifiable unit.  Both CPUs on a mod-
ule are considered to be uniquely identifiable units. 

The console sets the virtual node IDs (VID) by writing the TLVID register
fields with the required values at power-up.  

The mapping of TLVID entries to CPUs is as follows:  Each DECchip
21164 on the module is identified by number. The DECchip 21164 nearest
the TLSB connector is labeled CPU0.  This is the DECchip 21164 in a uni-
processor implementation.  The second DECchip 21164 is labeled CPU1. 
The processor identified by position on the module as CPU0 is assigned
VID A.  The processor identified as CPU1 is assigned VID B. A uniproces-
sor module has VID A assigned to the single processor. Writes to VID B do
not affect module performance.  Reads of VID B return the value written
previously. 

8.3.1.2 Directing Interrupts - TLCPUMASK

In a multiprocessor system, interrupts can be directed to individual CPUs.
Each I/O port can be set up so that interrupts are targeted at individual or
multiple CPUs by setting the appropriate bits in the TLCPUMASK regis-
ter.  For example, if bit <0> is set, interrupts can be targeted at the CPU
with VID=0. 

The CPU module implements another mask in a TLINTRMASK register
which allows selective enabling  and disabling of interrupts at each of the
four levels. 

8.3.1.3 Directing Interrupts - TLINTRMASK

The TLINTRMASK registers allow interrupts at different IPLs to be en-
abled for each of the CPUs on a CPU module.  One mask register is pro-
vided per CPU.  In addition, these registers are used to enable module
level interrupts (DUART, interval timer, Ctrl/P Halt) to the CPUs.  A bit
set in the mask register allows interrupts of the type corresponding to the
bit to be issued to the corresponding DECchip 21164. 

8.3.1.4 Interrupt Registers - TLIOINTR4–8

I/O ports are restricted to slots 4 through 8.  Based on its physical node ID,
an I/O port writes interrupts only to the corresponding TLIOINTRn inter-
rupt register.  Five TLIOINTR registers are specified in the system for this
purpose.  For example, interrupts from an I/O port in slot 4 are written



       Interrupts   8-5

only to TLIOINTR4.  Interrupts at the IPL level(s) specified in bits
<19:16> are targeted at the VIDs specified in bits <15:0> (see Chapter 7).

8.3.2  Generating Interrupts

The TLCPUMASK for each I/O port and the TLINTRMASK for each CPU
are set up by the console.  To generate an interrupt, the I/O port issues a
write to its corresponding TLIOINTRn register in TLSB broadcast space. 
Based on whether its VID is enabled, and whether the IPL levels are en-
abled for the targeted CPU(s), the interrupt is accepted by the DIGA.  If
the interrupt is targeted at a CPU on this module, then the DIGA incre-
ments the outstanding interrupt count at the posted IPL level, for the
source I/O port, for the targeted CPU, and asserts the appropriate inter-
rupt flag.  The interrupt flag is then sent to the DECchip 21164 over one of
the IRQ<3:0> lines. 

The CPU reads the TLILIDx register of the appropriate I/O port, at the ap-
propriate IPL level, to determine the offset vector to be used in servicing
the interrupt.  The interrupt service PALcode reads the TLINTRSUM reg-
ister to determine which I/O port device is interrupting.  Reads of the
TLILDx register cause the CPU module’s outstanding interrupt count to be
decremented for the target I/O port, at that IPL level. 

8.3.3  Servicing Interrupts

To allow a CPU to distinguish between different interrupt sources at the
same IPL, and to identify the source of interrupts it receives, PALcode
reads the TLINTRSUM register associated with the CPU.  Bits <26:7> of
TLINTRSUM are used to summarize interrupts from the various I/O de-
vices.

NOTE:  In addition to I/O interrupts, the CPU must be able to handle interrupts
from other CPUs and from on-module interrupt sources. 

When an interrupt is posted, the targeted CPU is identified by virtual node
ID.  The DIGA selects the appropriate fields from the TLIOINTRn register
based on virtual node ID for both CPUs, the TLCPUMASK and the module
specific mask register TLINTRMASK.  A count is maintained of how many
interrupts are received at each level from each I/O port for each CPU.  Bits
<4:1> are a logical OR of the interrupts for each of the IPL levels. These
are provided as a convenience for PALcode.  Up to four interrupts at IPL
14 (hex), 15 (hex), and 16 (hex) are held for each CPU for each of the five
I/O slots.  Five interrupts are stored at IPL 17 (hex) for each CPU for each
of the five I/O slots.  Therefore, the CPU module is capable of queuing 85
interrupts for each of the DECchip 21164s. 

8.3.4  Interprocessor Interrupts

Interrupts can also be posted from one CPU to one or more other CPUs.
Interprocessor interrupts are posted by writing the TLIPINTR register
which is in broadcast space.  Interprocessor interrupts to a CPU on a given
module can be disabled by clearing <IP_ENA> in the appropriate TLINTR-
MASK register.

To post an interrupt to the CPU with VID0, bit <0> of the TLIPINTR is
set.  To post an interrupt to the CPU with VID1, bit <1> of the TLIPINTR
is set, and so on.  The DIGA selects the appropriate bit from the
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TLIPINTR register and interrupts either (or both) of the CPUs as appro-
priate, based on their virtual node IDs.  The interprocessor interrupt is
cleared by a write to TLINTRSUM<IP>. 

8.3.5  Module-Level Interrupts

The CPU module uses the hardware interrupts provided as shown in Table 
8-1.  The handling of interrupts from  I/O devices, the interval timer, and
UARTs is under both hardware and PALcode control. 

  Table 8-1 CPU Module Interrupts

Note that there are three sources of CPU interrupts at IPL 16 and two
sources of interrupts at IPL 14.  

On receiving an IRQ<2> or an IRQ<0> interrupt, the CPU reads the TLIN-
TRSUM register. Bits <0> and <1> of the TLINTRSUM register are logi-
cally ORed together to drive IRQ0 into the DECchip 21164. Bits <4>, <6>,
and <7> of the TLINTRSUM register logically ORed together drive
IRQ<2> into the DECchip 21164. This register therefore provides a means
for determining the source of IPL14 and IPL16 interrupts to the processor.

I/O interrupts to a particular processor can be disabled using the TLCPU-
MASK registers and/or the TLINTRMASK register.  Interprocessor inter-
rupts, UART interrupts, and interval timer interrupts can be  disabled by
using the TLINTRMASK registers.  

IPL Interrupt Condition DECchip Interrupt Pin

1F
1F
1F
17
16
16
16
15
14
14

Machine check
CTRL/P detection
Node Halt (TLCNR.HALT_x)
IPL 17 I/O port interrupts
Interval timer
Interprocessor interrupt
IPL 16 I/O port interrupts
IPL 15 I/O port interrupts
CPU console/power UARTs
IPL 14 I/O port interrupts

SYS_MCH_CHK_IRQ
MCH_HLT_IRQ
MCH_HLT_IRQ
IRQ3
IRQ2
IRQ2
IRQ2
IRQ1
IRQ0
IRQ0
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Glossary

ADG
Address gate array.

Bank
Smallest group of DRAMs that can be interleaved.  A bank consists of one
or more strings. 

Block
64 bytes of data within naturally aligned boundaries.

CTL
Control address interface.

DDB
DRAM data bus.  The 576-bit bidirectional data bus that interfaces be-
tween the DRAM chips and the MDC gate arrays.

DIGA
Data interface gate array.

Direct mapped I/O access
A method of accessing I/O space on certain I/O bus adapters such as the
integrated I/O section and the DWLPA.   Window space access is direct
mapped.

Down HDR
Hose to data path chip that transmits transactions to the Down Hose.

Down Hose
The cable that transmits data and control information from the I/O port to
an I/O bus adapter module.

External Hose
The connection (hose cable) between the I/O port and a single I/O bus
adapter module. 

FBUS+
Futurebus+.
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FNS
Fast, narrow, single-ended.  

FWD
Fast, wide, differential. 

Internal Hose
The connection (etch pathway) between the TLSB interface and the inte-
grated I/O section of the KFTIA. 

HDR (DC296)
Hose to I/O data path chip. 

Hose
The interface between the I/O port and a single I/O bus adapter module.

ICR (DC295)
I/O control chip.

IDR (DC294)
I/O data path chip.

Integrated I/O section
Refers to all functions/hardware implemented from the internal hose to the
SCSI, Ethernet, and FDDI ports. 

KFTHA
I/O module.

KFTIA
Integrated TLSB I/O port. The sum of the I/O port section and the inte-
grated I/O section. 

Line
64 bytes of data within naturally-aligned boundaries.

MDI
Memory data interface controller;  the chip that buffers data between the
MIC and the DRAM arrays.

MMG
Address multiplexing gate array.

PCI
Peripheral component interconnect.

Read-Modify-Write
A Read-Modify-Write sequence is an atomic operation that the I/O port
executes to write less than a double-hexword block to memory. 

RMW
See Read-Modify-Write. 
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String
The smallest group of DRAMs (144 1/4M x 4) needed to store and retrieve
64 bytes of data per TLSB transaction.  In some array implementations,
the number of banks and strings can be equal, while in others there may
be more strings than banks.

TLSB
The system bus for Digital AlphaServer 8200 and 8400 systems.

Turbo Vortex bus
The bus that interconnects the HDR, IDR, and ICR chips.

Up HDR
Hose to data path chip that receives transactions from the Up Hose.

Up Hose
The cable that transmits data and control information from an I/O bus
adapter module to the I/O port. 

VID
Virtual node identifier.

32-Bit ECC
Synonymous with longword ECC.

64-Bit ECC
Synonymous with quadword ECC.
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Index

A
ABTCE, 7-8
Accessing remote I/O CSRs, 6-15
Accessing through I/O window space, 6-15
Accessing through mailboxes, 6-14
Access, remote I/O CSR, 6-14
Acknowledge Transmit Check Error bit, 7-11
ACKTCE, 7-11
ADDRESS, 7-21
Addressing, CSR, 2-25
Addressing, I/O port, 6-14
Address bank decode, 2-6
Address bits, 7-21
Address bit mapping, 2-7
Address bit swapping, 5-6, 5-7, 5-8
Address bus arbitration, 2-12
Address bus commands, 2-17

CSR read, 2-18
CSR write, 2-18
No-op, 2-17
Read, 2-17
Read bank lock, 2-17
Victim, 2-17
Write, 2-17
Write bank unlock, 2-18

Address bus concepts, 2-6
Address bus cycles, 2-16
Address bus errors, 3-16, 6-70

bank lock error, 2-37
command field parity errors, 2-36
memory mapping register error, 2-38
multiple address bus errors, 2-38
no acknowledge errors, 2-36
transmit check errors, 2-35
unexpected acknowledge, 2-37

Address bus errors, summary, 2-38
Address bus parity errors, 6-71
Address bus priority, 2-12
Address bus related errors

command field parity errors, 3-16
Memory Mapping register error, 3-16
no acknowledge errors, 3-16
transmit check errors, 3-16
unexpected acknowledge, 3-16

Address bus request, 2-13
Address bus sequencing, 2-11
Address bus transactions, 2-12
Address Bus Transmit Check Error bit, 7-8
Address decode, 2-10
Address Extent bits, 7-71
Address Mask bits, 7-22
Address Match Enable bit, 7-101
Address Parity Error bit, 7-12
Address space, 3-6
Address Transmitter During Error bit, 7-10
Address transmit check errors, 6-70
Address Transmit Check Error bit, 7-13
Address Valid bit, 7-25
ADDRESS, PCI, 3-12
Address/RAS decode logic, 5-5
ADG Error register, 7-54
ADG gate array, 3-3, 7-54
ADG to DIGA CSR Par Err bit, 7-58
ADG to MMG Address  Par Err #0 bit, 7-61
ADG to MMG Address  Par Err #1 bit, 7-61
ADRMASK, 7-22
ADRV, 7-25
ADR_EXTENT, 7-71
AMEN, 7-101
APE, 7-12
Arbitration

early, 2-7
false, 2-7

Arbitration Control bits, 7-114
Arbitration mode selection, node 8, 6-31
Arbitration suppress, 2-16, 6-34
Arbitration, distributed, 2-12
Arbitration, early, 2-13
Arbitration, node 8, 6-31
Arbitration, TLSB, 2-2
ARB_CTL<1:0>, 7-114
Array capacity, 4-13
ASRT_FLT, 7-48
Asserting request, 2-13
Assert Fault bit, 7-48
ATCE, 7-13
ATDE, 7-10
A2DCPE, 7-58
A2MAPE0, 7-61
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A2MAPE1, 7-61

B
Backup cache, 1-4, 4-2
BAE, 7-12
BANKV, 7-24
Bank address decoding, 2-9
Bank available flags, 5-4
Bank available status, 2-11
Bank available transition, 2-14
Bank busy check, 2-6
Bank busy violation, 6-71
Bank Busy Violation Error bit, 7-12
Bank collision, 2-15
Bank collision effect on priority, 6-34
Bank contention, CSR, 2-15
Bank decode in memory, 2-6
Bank lock and unlock, 2-15
Bank Lock Timeout bit, 7-11
Bank Lock Timeout Disable bit, 7-17
Bank match logic, 5-3
Bank Valid bit, 7-24
Base addresses, node space, 7-3
Base addresses, TLSB nodes, 2-28
BASE_ADR<38:20>, 7-71, 7-111
BAT, 7-90
Battery Disable bit, 7-90
Battery Disconnected bit, 7-90
Battery OK bit, 7-90
Battery Reenable bit, 7-90
BCACHE_SIZE, 7-53
BCIDLETIM, 7-53
BDC, 7-90
BDIS, 7-90
Block diagram

CPU module, 3-2
I/O port, 6-3
I/O subsystem, 6-1
KTFIA, 6-79
memory module, 4-10

BQ_MAX_ENT, 7-53
BREN, 7-90
BRFSH, 7-98
Burst Refresh bit, 7-98
Bus architecture, 1-2
Bus commands, address, 2-17
Bus cycles, 2-16
Bus Error register, 7-7
Bus Queue Maximum Entries bits, 7-53
Bus request, 2-13
Bus sequencing, 2-11
Bus signals, miscellaneous, 2-24
Bus transaction initiation, 2-12
Byte mask field, 6-51
B-cache, 3-4, 4-2

states, 4-4
state changes, 4-5

B-Cache Idle Time bits, 7-53
B-Cache Size bit, 7-53
B-Cache Size bits, 7-80
B-cache states, 4-4
B-cache tags, 4-3

C
Cache

backup, 4-2
data, 4-1
instruction, 4-1
internal, 4-1
second level, 4-2
state transition, 4-5, 4-6

Cache coherency, 4-2
Cache coherency on processor writes, 4-8
Cache coherency protocol, 2-2
Cache index mapping, 4-3
Cache Queue Maximum Entries bits, 7-53
Cache tag lookup, 2-6
Cache tag mapping, 4-3
Cache, backup, 1-4
CACSIZ, 7-80
CDER, 7-108
CFLP, 7-107
Check Bit to Flip bits, 7-107
Clear Self-Test Data Error Registers bit, 7-108
CMD, 7-33
CMDV, 7-24
Coherency protocol, cache, 2-2
Collision, bank, 2-15
Commands, address bus, 2-17
Command acknowledge, 2-16
Command field parity errors, 3-17
Command Valid bit, 7-24
Configuration, 1-1
Configuration register, 7-14
Configuration, I/O, 6-2
Console, 3-4
Console Communications register, 7-68
Console firmware, 1-6
Console support hardware, 1-4
Console Winner CPU0 Read bit, 7-80
Console Winner CPU0 Write bit, 7-81
Console Winner CPU1 Read bit, 7-80
Console Winner CPU1 Write bit, 7-81
Control address interface, 4-11, 5-1
Control logic, hose, 6-82
Conventions, register, 7-1
CONWIN0R, 7-80
CONWIN0W, 7-81
CONWIN1R, 7-80
CONWIN1W, 7-81
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Correctable Read Data Error bit, 7-9
Correctable Read Data Error Interrupt Disable

bit, 7-18
Correctable Read ECC Error bit, 7-27
Correctable Write Data Error bit, 7-9
Correctable Write Data Error Interrupt

Disable bit, 7-18
Correctable Write ECC Error bit, 7-27
CPU Halt Enable bit, 7-64
CPU Identification bit, 7-73
CPU Interrupt Mask register, 7-31
CPU interrupt rules, 8-2
CPU Mask bits, 7-31
CPU module address space, 3-6
CPU module block diagram, 3-2
CPU module components, 3-1
CPU Module Configuration register, 7-52
CPU module errors

faults, 3-15
hard errors, 3-14
nonacknowledged CSR reads, 3-16
soft errors, 3-14

CPU module interrupts, 8-6
CPU module registers, 7-44, 7-45
CPU module  wrapping, 3-7
CPU module, overview, 1-3
CPU Number bit, 7-77
CPU Pipe Disable bit, 7-52
CPU to MMG Addr Par Err #0, 7-56
CPU to MMG Addr Par Err #1, 7-56
CPU virtual ID, 6-15
CPU 0 bit, 7-27
CPU 1 bit, 7-27
CPU0, 7-27
CPU0 Disable bit, 7-53
CPU0_DIS, 7-53
CPU1, 7-27
CPU1 Disable bit, 7-53
CPU1_DIS, 7-53
CPU_ID, 7-73
CPU_MASK, 7-31
CPU_NUM, 7-77
CPU_PIPE_DIS, 7-52
CQ_MAX_ENT, 7-53
CRDD, 7-18
CRDE, 7-9
CRECC, 7-27
CSRCA addressing, 5-15
CSRCA encoding, 5-14
CSRCA parity, 5-16, 5-18
CSR addressing, 2-25
CSR addressing  scheme, 2-8
CSR address bit mapping, 2-26
CSR address mapping, 2-29
CSR address space map, 2-27
CSR address space regions, 2-26

CSR bank contention, 2-15
CSR bus parity errors, 6-77
CSR interface context, 5-13
CSR interface, memory, 5-13
CSR multiplexing, memory, 5-16, 5-17
CSR reads to remote I/O, 2-32
CSR read data ECC, 5-11
CSR Read Data Return Data register, 7-41
CSR Read Data Return Error register, 7-42
CSR read transactions, I/O window space, 6-8
CSR state machine, 5-2
CSR transactions, 6-84
CSR writes to remote I/O, 2-32
CSR write data ECC check, 5-10
CSR Write Not Transmitted bit, 7-55
CSR write transactions, I/O window space, 6-7
CSR_WR_NXM, 7-55
CTL CSR functions, 5-13
Ctrl/P Halt bit, 7-66
Ctrl/P Halt Enable bit, 7-64
Ctrl/P_HALT, 7-66
Ctrl/P_HALT_ENA, 7-64
CWDD, 7-18
CWDE, 7-9
CWDE2, 7-9
CWECC, 7-27
Cycles per instruction, 3-2
Cycles, address bus, 2-16

D
Data Bit to Flip bits, 7-107
Data bus concepts, 2-18
Data bus errors, 3-18, 6-72

data status errors, 2-41
double-bit ECC errors, 2-40
illegal sequence errors, 2-40
multiple errors, 2-41
SEND_DATA timeout errors, 2-40
single-bit ECC errors, 2-40
transmit check errors, 2-41

Data bus errors, summary, 2-42
Data bus sequencing, 2-18
Data cache, 4-1
Data Control Transmit Check Error bit, 7-8
Data Diagnostic register, 7-106
Data field, 2-20
Data Movement Done bit, 7-73
Data Movement in Progress bit, 7-73
Data Mover Command bits, 7-74
Data Mover Command register, 7-72
Data Mover Command Valid bit, 7-73
Data Mover Destination Address register, 7-76
Data Mover Source Address register, 7-75
Data path logic, 5-9
Data Read from Remote CSR bits, 7-41
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Data return format, 2-19
Data status errors, 2-41, 6-73
Data Status Error bit, 7-8
Data Syndrome 0 bit, 7-9
Data Syndrome 1 bit, 7-9
Data Syndrome 2 bit, 7-9
Data Syndrome 3 bit, 7-9
Data Timeout bit, 7-8
Data Transmitter During Error bit, 7-8
Data Transmit Disable bit, 7-17
Data Valid Transmit Check Error bit, 7-27
Data wrapping, 2-20
DCTCE, 7-8
DDR register, 7-106
DECchip 21164A

features, 3-2
overview, 1-3

Decrement queue counter, 3-11
DEDA, 7-99
DEFAULT, 7-91
Default interleave, 4-15
Default Power Up State bit, 7-91
Demand-paged memory management unit, 3-2
Dense address mapping, 6-37
Dense address space transactions, 6-20
Dense address space write data, 6-22
Dense space reads and writes, 3-13
Dense window read command packet, 6-47,

6-48, 6-49
Dense window read data, 6-22
Dense window read data return packet, 6-62,

6-63
Dense window write command packet, 6-47,

6-50, 6-51
Destination Address bits, 7-76
DEST_ADR<38:9>, 7-76
Device register, 7-5
Device Type field, 7-6
DFLP, 7-107
Diagnostics, 1-7
Diagnostic Setup register, 7-47
DIGA Comm. Test registers, 7-69
DIGA Error register, 7-57
DIGA gate array, 3-3
DIGA to DIGA CSR Par Err #0, 7-58
DIGA to DIGA CSR Par Err #1, 7-60
DIGA to DIGA CSR Par Err #2, 7-60
DIGA to DIGA CSR Par Err #3, 7-60
DIGA to MMG CSR Par Err bit, 7-61
DIGA0 to ADG CSR Parity Error bit, 7-55
Digital UNIX, 1-7
Directing interrupts, TLCPUMASK, 8-4
Directing interrupts, TLINTRMASK, 8-4
Directly addressable console hardware, 3-5
Disable byte mask, 7-33
Disable Down Hose Reset bit, 7-134

Disable Refresh bit, 7-98
Disable TLSB Command Transmission bit,

7-124
Disable TLSB Fault bit, 7-124
Distributed arbitration, 2-12
DIS_DN_HOSE_RST, 7-134
DIS_TLSB_CMD, 7-124
DIS_TLSB_FLT, 7-124
DMA masked write packet, 6-57, 6-58
DMA masked write packet sizes, 6-58
DMA masked write request, 6-12
DMA masked write transactions, 6-26
DMA masked write with data, 6-57
DMA read, 6-54
DMA read data return packet, 6-42
DMA read data return packet description, 6-43
DMA read data return packet with errors,

6-43, 6-44
DMA read data return packet with errors

description, 6-44
DMA read packet, 6-54, 6-55
DMA read packet sizes, 6-55
DMA read transactions, 6-10, 6-24
DMA transactions, 6-24, 6-83
DMA unmasked write, 6-12
DMA unmasked write packet description, 6-60
DMA unmasked write transactions, 6-26
DMA unmasked write with data, 6-59
DMA write transactions, 6-11
DMA  interlock read transactions, 6-10
DM Size bit, 7-74
DM_CMD, 7-74
DM_CMD_VALID, 7-73
DM_DONE, 7-73
DM_1KB, 7-74
DM_2KB, 7-74
DM_4KB, 7-74
DM_512B, 7-74
DM_8KB, 7-74
DN_VRTX_ERR, 7-119
DON, 7-34
Done, 7-34
Double-bit ECC errors, 2-40, 6-72
Down Hose, 6-35
Down Hose packet specifications, 6-39
Down Hose signals, 6-38
Down Turbo Vortex errors, 6-76
Down Vortex Error bits, 7-119
DRAM arrays, 4-12
DRAM control, 5-4
DRAM Timing Rate bits, 7-43, 7-92
DRAM type, 7-105
DRAM Type bit, 7-92
DRFSH, 7-98
Drive Console Winner bit, 7-81
Drive Run bit, 7-81
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Drive TLSB Bad bit, 7-81
DRIVE_BAD, 7-81
DRIVE_CONWIN, 7-81
DRIVE_RUN, 7-81
DSE, 7-8
DS0, 7-9
DS1, 7-9
DS2, 7-9
DS3, 7-9
DTag CPU bit, 7-48
DTag Data Entry bits, 7-50
DTag Data Parity bit, 7-50
DTag Data Parity Error bit, 7-55
DTag Data register, 7-50
DTag Read bit, 7-48
DTag Status bits, 7-51
DTag Status Parity bit, 7-51
DTag Status Parity Error bit, 7-55
DTag Status register, 7-51
DTag Write bit, 7-48, 7-49
DTAG_DATA<38:20>, 7-50
DTAG_DAT_PAR, 7-50
DTCP, 7-48
DTDE, 7-8
DTDPE, 7-55
DTO, 7-8
DTOD, 7-17
DTR, 7-43, 7-92
DTRD, 7-48
DTSPE, 7-55
DTWR, 7-48, 7-49
DTYP, 7-92
DTYPE, 7-6
DT_STAT_PAR, 7-51
DT_STAT_(V,S,D), 7-51
DUART0 Interrupt bit, 7-67
DUART0 Interrupt Enable bit, 7-64
DUART0_ENA, 7-64
DUART0_INTR, 7-67
Duplicate tags, 4-4
DVTCE, 7-27
D2ACPE, 7-55
D2DCPE0, 7-58
D2DCPE1, 7-60
D2DCPE2, 7-60
D2DCPE3, 7-60
D2MCPE, 7-61

E
Early arbitration, 2-7, 2-13
ECC check, CSR write data, 5-10
ECC coding scheme, 2-21, 5-10
ECC error handling, 2-22
ECC protection, memory operations, 4-16
EFLPC, 7-107

EFLPD, 7-107
Enable DMA Hose ID bit, 7-123
Enable Flip Data bit, 7-107
Enable Flip ECC Check bit, 7-107
Enable Hose onto Vector bit, 7-139
ENA_DMA_HID, 7-123
ENA_HOSE_VECT, 7-139
ERR, 7-34
Error, 7-34
Errors, address bus, 6-70
Errors, data bus, 6-72
Errors, hose, 6-65
Errors, TLSB, 2-33
Error categories, 2-34

hardware recovered soft errors, 2-34
hard errors, 2-34
software recovered soft errors, 2-34
system fatal errors, 2-34

Error detection and correction logic, MDI, 5-12
Error detection schemes, 6-34
Error handling, CPU module, 3-14
Error handling, I/O port, 6-66
Error handling, TLSB, 2-2
Error interrupts, IPL 17, 6-69
Error matrix for force error bits, 7-136
Error recovery, 2-43

read errors, 2-43
write errors, 2-45

Error signals
TLSB_DATA ERROR, 2-24
TLSB_FAULT, 2-24

Error status, additional, 2-42
Error Syndrome registers, 7-26
Ethernet ports, 6-83
Ethernet registers, 7-142
Execute Self-Test bit, 7-100
Exercisers, 1-8
Expander Select bits, 7-84
EXPSEL, 7-84
EXST, 7-100
Extended NVRAM write transactions, 6-13,

6-30
Extent Mask bits, 7-111
EXT_MASK, 7-111
E2MAPE0, 7-56
E2MAPE1, 7-56

F
FADR, 7-24, 7-25
Failing Address registers, 7-24
Failing Address<31:3> bits, 7-24
Failing Address<7:0> bits, 7-25
Failing Bank Number bits, 7-25
Failing Command Code bits, 7-25
Failing String bits, 7-96, 7-97
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False arbitration, 2-7, 2-14
Fatal Data Transmit Check Error bit, 7-8
Fatal No Acknowledge Error bit, 7-10
Fault Disable bit, 7-52
FAULT_DIS, 7-52
FBANK, 7-25
FCAPE, 7-101
FCMD, 7-25
FDBE, 7-48
FDDI registers, 7-142
FDE<3:0>, 7-48
FDTCE, 7-8
Fixed high mode, 6-33
Fixed low mode, 6-33
Flash ROMs, 3-4
Flow control, 3-10
FNAE, 7-10
Force Bank Busy Error bit, 7-123
Force Column Address Par Err bit, 7-101
Force CSR  Bus Addr Par Err bit, 7-135
Force CSR  Bus Data Par Err bit, 7-135
Force data error bit, 7-48
Force Data Status Error bit, 7-124
Force Data Timeout Error bit, 7-124
Force Down Data Par Err bit, 7-135
Force Down EOP Sequence Error bit, 7-134
Force Down Valid Sequence Err bit, 7-135
Force ECC<7:0> bits, 7-135
Force IDP CMD Par Err bit, 7-123
Force IDP CSR Bus Par Err bit, 7-124
Force Ignore bit, 7-48, 7-49
Force Row Address Par Err bit, 7-101
FPROM_WE, 7-81
FRAPE, 7-101
FRC_BNK_BSY, 7-123
FRC_CSR_BUS_APE, 7-135
FRC_CSR_BUS_DPE, 7-135
FRC_DN_DPE, 7-135
FRC_DSE, 7-124
FRC_DTO, 7-124
FRC_ECC<7:0>, 7-135
FRC_EOP_SEQ_ERR, 7-134
FRC_IDP_CMD_PE, 7-123
FRC_IDP_CSR_BUS_PE, 7-124
FRC_VAL_SEQ_ERR, 7-135
Free Run bit, 7-100
FRIGN, 7-48, 7-49
FRUN, 7-100
FSTR, 7-96, 7-97

G
GBTO, 7-58
Gbus, 1-4
Gbus map, 3-9
Gbus registers, 7-46

Gbus Slow bit, 7-47
Gbus space, 3-9
Gbus Timeout Error bit, 7-58
GBUS$LED register, 7-78
GBUS$MISCR register, 7-79
GBUS$MISCW register, 7-81
GBUS$SERNUM register, 7-83
GBUS$TLSBRST register, 7-82
GBUS$WHAMI register, 7-77
GSLOW, 7-47

H
HALT, 7-66
Halt bit, 7-66
Halt CPU A bit, 7-15
Halt CPU B bit, 7-15
HALT_A, 7-15
HALT_B, 7-15
HALT_ENA, 7-64
Hardware Revision field, 7-5
Hard internal I/O port errors, 6-66
Hard I/O port errors, 6-75
Hard TLSB errors, I/O port, 6-66
HDP Loopback Enable bit, 7-139
HDP_LPBCK_EN, 7-139
HOSE, 3-12, 7-33
Hose, 6-35
HOSEn Cable OK bit, 7-131
HOSEn Error bit, 7-132
HOSEn Power OK bit, 7-132
HOSEn Power OK Transitioned bit, 7-131
HOSEn Reset bit, 7-129
HOSEn_CBLOK, 7-131
HOSEn_ERR, 7-132
HOSEn_PWROK, 7-132
HOSEn_PWROK_TR, 7-131
HOSEn_RESET, 7-129
Hose control logic, 6-82
Hose errors, 6-65
Hose interface, 6-35
Hose packet specifications, 6-39
Hose protocol, 6-35
Hose signals, 6-37
Hose status change errors, 6-78
Hose status signals, 6-40
HPC gate arrays, 6-82
HWREV, 7-5

I
IBOXTO, 7-55
Ibox Timeout bits, 7-55
IBR register, 7-140
ICCDR register, 7-122
ICCMSR register, 7-112
ICCMTR register, 7-125
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ICCNSE register, 7-117
ICCWTR register, 7-127
ICC and IDP internal illogical errors, 6-77
ICC CSR Bus Par Err bit, 7-118
ICC Internal Error bit, 7-118
ICFR, 7-108
ICR_CSR_BUS_PE, 7-118
ICR_IE, 7-118
IDENT, 7-30
Identification Vector bits, 7-30
IDPDR register, 7-133
IDPMSR Data Path Mode Select register,

7-138
IDPMSR register, 7-138
IDPNSE register, 7-128
IDPVR register, 7-137
IDR Command Par Err bit, 7-130
IDR CSR Bus Par Err bit, 7-129
IDR Internal Error bit, 7-129
IDR Up Vortex Error bits, 7-130
IDR_CMD_PAR_ERR, 7-130
IDR_CSR_BUS_PAR_ERR, 7-129
IDR_INTR_ERR, 7-129
IDR_UP_VRTX_ERR<1:0>, 7-130
Illegal sequence errors, 2-40, 6-73
Information Base Repair register, 7-140
Inhibit Clear on Run bit, 7-108
Input latches, 5-2
Instruction cache, 4-1
Integrated I/O section, 6-80, 6-81
Integrated I/O section transactions, 6-83
Interface, hose, 6-35
Interface, PCI, 6-81
Interleave, 4-15
Interleave bits, 7-22, 7-88
Interleave field values, 2-9
Interleave Mask bits, 7-22
Interlocked read/unlock write, 6-25
Interlock read, 6-55
Interlock read packet, 6-56
Interlock read packet size, 6-56
Internal cache, 4-1
Interprocessor interrupts, 8-5
Interprocessor Interrupt bit, 7-67
Interprocessor Interrupt Enable bit, 7-64
Interprocessor Interrupt Mask bits, 7-35
Interprocessor Interrupt register, 7-35
Interrupts

nonvectored, 8-3
vectored, 8-1

Interrupts, CPU module, 8-6
Interrupts, error, I/O port generated, 6-9
Interrupts, interprocessor, 8-5
Interrupts, module level, 8-6
Interrupts, remote bus, 6-8
Interrupt conditions, 8-6

Interrupt generation, 8-5
Interrupt Level bits, 7-36
Interrupt Level IDENT registers, 7-30
Interrupt Mask register, 7-63
Interrupt on NSES bit, 7-118
Interrupt operation,  I/O port, 8-2
Interrupt principles, 8-3
Interrupt registers, TLIOINTR, 8-4
Interrupt rules

CPU, 8-2
I/O port, 8-1

Interrupt servicing, 8-5
Interrupt Source register, 7-65
Interrupt transactions, 6-8, 6-26, 6-84
Interval Timer Interrupt bit, 7-67
Interval Timer Interrupt Enable bit, 7-64
INTIM_ENA, 7-64
INTIM_INTR, 7-67
INTL, 7-36
INTLV, 7-22, 7-88
INTLV_EN, 7-71, 7-111
INTMASK, 7-22
INTR/IDENT, 6-60
INTR/IDENT packet, 6-60, 6-61
INTR/IDENT status return packet, 6-44, 6-45
INTR_NSES, 7-118
IN_PROG, 7-73
IO_SPACE, 3-12
IPL 17 error interrupts, 6-69
IPL14 Interrupt bit, 7-67
IPL14 Interrupt Enable bit, 7-64
IPL14_ENA, 7-64
IPL14_INTR, 7-67
IPL15 Interrupt bit, 7-67
IPL15 Interrupt bits, 7-66
IPL15 Interrupt Enable bit, 7-64
IPL15_ENA, 7-64
IPL15_INTR, 7-66, 7-67
IPL16 Interrupt bit, 7-67
IPL16 Interrupt bits, 7-66
IPL16 Interrupt Enable bit, 7-64
IPL16_ENA, 7-64
IPL16_INTR, 7-66, 7-67
IPL17 Interrupt bit, 7-67
IPL17 Interrupt bits, 7-66
IPL17 Interrupt Enable bit, 7-64
IPL17_ENA, 7-64
IPL17_INTR, 7-66, 7-67
IP_ENA, 7-64
IP_INTR, 7-67
I/O architecture, overview, 1-5
I/O Chip Mode Select register, 7-112
I/O configuration, 6-2
I/O Control Chip Diagnostic register, 7-122
I/O Control Chip Mailbox Transaction register,

7-125
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I/O Control Chip Node-Specific Error register,
7-117

I/O Ctrl Chip Window Transaction register,
7-127

I/O Data Path Diagnostic register, 7-133
I/O Data Path Node Specific Error register,

7-128
I/O Data Path Vector register, 7-137
I/O interrupt mechanism, 8-3
I/O Interrupt registers, 7-36
I/O port addressing, 6-14
I/O port arbitration, node 8, 6-31
I/O port block diagram, 6-3
I/O port components, 6-2
I/O port CSR read/write transactions, 6-28
I/O port errors, hard, 6-75
I/O port errors, hard internal, 6-66
I/O port errors, miscellaneous, 6-77
I/O port error handling, 6-66
I/O port generated error interrupts, 6-9
I/O port interrupt operation, 8-2
I/O port interrupt rules, 8-1
I/O port TLSB interface, 6-23
I/O port transactions, 6-3, 6-23
I/O port transaction types, 6-5
I/O port-specific registers, 7-109
I/O space, 3-8
I/O subsystem block diagram, 6-1
I/O window space, 3-8

read transactions, 6-29
transactions, 6-7
write transactions, 6-29

K
KFTIA block diagram, 6-79
KFTIA connections, 6-78
KFTIA overview, 6-78
KFTIA specific registers, 7-142

L
LKTO, 7-11
LKTOD, 7-17
Loadable diagnostic environment, 1-8
Lockout Enable bit, 7-53
LOCKOUT_EN, 7-53
Lock on First Error bit, 7-15
Lock on First Syndrome bit, 7-26
Lock registers, 4-6
LOE, 7-108
LOFE, 7-15
LOFSYN, 7-26
Look-back-two, 2-14, 6-34

M
MADR, 7-102
Mailboxes, 2-30
Mailbox Address bits, 7-32
Mailbox Command packet, 6-41, 6-42
Mailbox data structure, 2-30, 2-31, 7-33
Mailbox Pointer register, 7-32
Mailbox status return, 6-52
Mailbox status return packet, 6-53, 6-54
Mailbox transactions, 6-5, 6-28, 6-84
Mailbox Transaction in Progress bits, 7-126
Main memory, 4-9
MAI CSR sequencer, 5-15
Manufacturing Mode Low bit, 7-77
Mapping, CSR  address space, 7-2
Map RAM, 6-82
MARG, 7-106
Margin bit, 7-106
MASK, 7-33, 7-35
Match Address bits, 7-102
MBX, 7-32
MBX_TIP<3:0>, 7-126
MCR register, 7-89
MDI CSR functions, 5-16
MDI CSR sequencer, 5-16
MDI error detection and correction logic, 5-12
MDRA register, 7-98
MDRB register, 7-102
Memory address bit mapping, 2-7
Memory bank addressing  scheme, 2-8
Memory bank address decoding, 2-9
Memory bank state machine, 5-2
Memory barriers, 4-9
Memory block diagram, 4-10
Memory Channel Decr Queue Counter register

X, 7-39
Memory Channel Decr Queue Counter register

8, 7-40
Memory Channel Interleave bit, 7-73
Memory Channel Operation TLSB_ADR<3>

bit, 7-73
Memory Channel Operation TLSB_ADR<4>

bit, 7-73
Memory Channel Range registers, 7-70, 7-110
Memory Channel Size bit, 7-53
Memory Channel Write packet, 6-53
Memory Channel  Interleave Enable bit, 7-111
Memory Configuration register, 7-89
Memory Control register, 7-43
Memory data interface, 4-11, 5-9
Memory Diagnostic register A, 7-98
Memory Diagnostic register B, 7-102
Memory Error register, 7-97
Memory Interleave register, 7-87
Memory Mapping registers, 7-21
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Memory mapping register error, 3-18, 6-71
Memory Mapping Register Error bit, 7-10
memory module capacity, 7-105
Memory module, overview, 1-4
Memory organization, 4-13
Memory refresh, 4-16
Memory sections, 4-10
Memory self-test, 4-16
Memory self-test error registers, 4-18
Memory space, 3-7
Memory specific registers, 7-85
Memory transactions, 4-16
Memory, main, 4-9
Merge register, 5-17
MER register, 7-97
Minimum latency mode, 6-31
MIR register, 7-87
MMG Error register, 7-59
MMG to ADG Addr Par Err #0, 7-56
MMG to ADG Addr Par Err #1, 7-56
MMPS, 7-100
MMRE, 7-10
MNFG_MODE_L, 7-77
Module transactions, 2-12
Module-level interrupts, 8-6
Moving Inversion Pattern Select bit, 7-100
Multiple data bus errors, 6-74
Multiple errors, 3-19
Multiple Error Interrupt bit, 7-120
Multiple error priority rules, 3-19
MULT_INTR_ERR, 7-120
M2AAPE0, 7-56
M2AAPE1, 7-56

N
NAE, 7-11
Node base addresses, 2-28
Node ID bits, 7-17
Node Reset bit, 7-15
Node Reset Status bit, 7-60
Node space base addresses, 7-3
Node 8 arbitration, 6-31
NODE_ID, 7-17
Nonvectored interrupts, 8-3
No acknowledge errors, 3-18, 6-71
No Acknowledge Error bit, 7-11
No Acknowledgment bits, 7-55
No acknowledgment errors, 6-71
NO_ACK, 7-55
NRST, 7-15
NVRAM daughter card, 6-83
NVRAM registers, 7-142

O
Online exercisers, 1-8

OpenVMS, 1-7
Operation completion status, 7-34
OPTION, 7-91
Option Installed bit, 7-91

P
Packet specifications, Down Hose, 6-39
Packet specifications, Up Hose, 6-52
Packet types, 6-35
PALcode, 3-2, 3-3
PAT, 7-107
Pause on Error Mode bit, 7-100
Pause on Error Mode Continue bit, 7-99
PCIA registers, 7-142
PCI accesses, 3-11
PCI address bit descriptions, 3-12
PCI device registers, 7-142
PCI interface, 6-81
PCI interrupt priority, 6-85
PCI programmer’s address, 3-11
PCI_SPACE_TYP, 3-12
Physical address space map, 3-6
Physical node ID, 2-5
PIUA, 7-83
PIUA Status bit, 7-83
PIUB, 7-83
PIUB Status bit, 7-83
POEM, 7-93, 7-95, 7-100
POEMC, 7-93, 7-99
Processor Count bit, 7-80
PROCNT, 7-80

Q
Quadword Valid Enable bit, 7-47

R
RBADR, 7-33
RCV_DATA, 7-84
RCV_SDAT, 7-86, 7-141
RDATA, 7-34
Read data, 7-34
Read data buffers, 5-11
Read data output logic, 5-11
Read data path ECC algorithm, 5-11
Read-Modify-Write, 6-33
READ_DATA, 7-41
Receive Data bit, 7-84
Receive Serial Data bit, 7-86, 7-141
Refresh, 4-16
Refresh Rate bits, 7-99
Register

ADG Error, 7-54
Console Communications, 7-68
CPU Interrupt Mask, 7-31
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CPU Module Configuration, 7-52
Data Diagnostic, 7-106
Data Mover Command, 7-72
Data Mover Destination Address, 7-76
Data Mover Source Address, 7-75
Diagnostic Setup, 7-47
DIGA Communications Test, 7-69
DIGA Error, 7-57
DTag Data, 7-50
DTag Status, 7-51
GBUS$LED, 7-78
GBUS$MISCR, 7-79
GBUS$MISCW, 7-81
GBUS$SERNUM, 7-83
GBUS$TLSBRST, 7-82
GBUS$WHAMI, 7-77
Information Base Repair, 7-140
Interrupt Mask, 7-63
Interrupt Source, 7-65
I/O Control Chip Diagnostic, 7-122
I/O Control Chip Mode Select, 7-112
I/O Control Chip Node-Specific Error, 7-117
I/O Ctrl Chip Mailbox Transaction, 7-125
I/O Ctrl Chip Window Transaction, 7-127
I/O Data Path Diagnostic, 7-133
I/O Data Path Mode Select, 7-138
I/O Data Path Node Specific Error, 7-128
I/O Data Path Vector, 7-137
Memory Configuration, 7-89
Memory Diagnostic A, 7-98
Memory Diagnostic B, 7-102
Memory Error, 7-97
Memory Interleave, 7-87
Memory  Channel Range, 7-70
MMG Error, 7-59
Reflective Memory Range, 7-110
Self-Test Address Isolation, 7-93
Self-Test Data Error, 7-103
Self-Test Error, 7-95
Serial EEPROM Control/Data, 7-86
TLRMDQRX, 7-39
TLRMDQR8, 7-40
Voltage Margining, 7-62

Registers
Error Syndrome, 7-26
Ethernet, 7-142
Failing Address, 7-24
FDDI, 7-142
ITIOP specific, 7-142
I/O port specific, 7-109
Mailbox Pointer, 7-32
Memory Mapping, 7-21
memory specific, 7-85
NVRAM, 7-142
PCIA, 7-142
PCI device, 7-142

SCSI, 7-142
TLBER, 7-7
TLCNR, 7-14
TLDEV, 7-5
TLILID0-3, 7-30
TLIOINTR4-8, 7-36
TLIPINTR, 7-35
TLMCR, 7-43
TLRDRD, 7-41
TLRDRE, 7-42
TLVID, 7-19
TLWSDQR4-8, 7-38

Registers, CPU module, 7-44, 7-45
Registers, Gbus, 7-46
Register access acronyms, 7-2
Register address mapping, 7-2
Register conventions, 7-1
Register list, TLSB, 7-4
Remote bridge access, 7-33
Remote bus address, 7-33
Remote bus command, 7-33
Remote bus interrupts, 6-8
Remote I/O access, 6-14
REQDE, 7-10
Request assertion, 2-13
Request Deassertion Error bit, 7-10
Request Transmit Check Error bit, 7-11
Reset Status bit, 7-15
RFR, 7-99
RMRR registers, 7-110
RM Interleave Enable bit, 7-71
RM_INTLV, 7-73
RM_RANGE_xx registers, 7-70
RM_SIZE, 7-53
RM_3, 7-73
RM_4, 7-73
ROM-based diagnostics, 1-7
RSTSTAT, 7-15, 7-60
RTCE, 7-11

S
SBANK, 7-21
SCLK, 7-86, 7-141
SCSI ports, 6-82
SCSI registers, 7-142
Second Correctable Write Data Error bit, 7-9
Second-level cache, 4-2
SECR register, 7-86
Self-Test Address Isolation register, 7-93
Self-Test Data Error register, 7-103
Self-Test Data Error Register_A bits, 7-104
Self-Test Data Error Register_B bits, 7-104
Self-Test Data Error Register_C bits, 7-104
Self-Test Data Error Register_D bits, 7-104
Self-Test Data Error Register_E bits, 7-105
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Self-Test Error in MDI0 bit, 7-96
Self-Test Error in MDI1 bit, 7-96
Self-Test Error in MDI2 bit, 7-96
Self-Test Error in MDI3 bit, 7-96
Self-Test Error register, 7-95
Self-Test error reporting, 4-18
Self-Test Failing Address Range bits, 7-93
Self-Test Fail A bit, 7-16
Self-Test Fail B bit, 7-16
Self-test modes, memory, 4-17
Self-test operation, memory, 4-18
Self-Test Passed bit, 7-83
Self-Test Pattern Select bit, 7-107
Self-test performance, 4-19
Self-test times, 4-19
Self-test, memory, 4-16
SEND_DATA timeout errors, 2-40, 6-73
SEQE, 7-8
Sequence Error bit, 7-8
Sequence numbers, 2-20
Sequence number errors, 2-20
Serial Clock bit, 7-86, 7-141
Serial EEPROM Control/Data register, 7-86
Serial ROM Clock bit, 7-84
Serial ROM port, 3-5
Servicing interrupts, 8-5
Set Voltage Down bit, 7-62
Set Voltage Up bit, 7-62
Shared bit, 7-91
SHRD, 7-91
Single Bank bit, 7-21
Single-bit ECC errors, 2-40, 6-72
Software, 1-6
Software Revision field, 7-5
Soft TLSB errors recovered by hardware, I/O

port, 6-66
Source Address bits, 7-75
Sparse address mapping, 6-37
Sparse address space, 6-19
Sparse address space reads, 6-15
Sparse address space writes, 6-17
Sparse address space write data, 6-18
Sparse address write length, 6-20
Sparse space reads and writes, 3-12
Sparse window read command packet, 6-45,

6-46
Sparse window read data, 6-16
Sparse window read data return packet, 6-61,

6-62
Sparse window write command packet, 6-46,

6-47
Sparse window write command packet

description, 6-48
SRC_ADR<38:9>, 7-75
SROM_CLK, 7-84
STAIR, 7-93

STAIR register, 7-93
STATUS, 7-34
STDERA, 7-104
STDERB, 7-104
STDERC, 7-104
STDERD, 7-104
STDERE, 7-105
STDERX register, 7-103
STER register, 7-95
STE0, 7-96
STE1, 7-96
STE2, 7-96
STE3, 7-96
STF_A, 7-16
STF_B, 7-16
STP, 7-83
Strings Installed bits, 7-92
STRN, 7-92
Suppress Control bits, 7-113
SUP_CTL<1:0>, 7-113
SWREV, 7-5
Syndrome 0 bits, 7-28
Syndrome 1 bits, 7-28
SYND0, 7-28
SYND1, 7-28
SYSDERR, 7-55
SYSFAULT, 7-55
System block diagram, 1-2
System Data Error bit, 7-55
System fatal errors, I/O port, 6-66
System Fault bit, 7-55
System interleave, 4-15
System Pipe Disable bit, 7-52
SYS_PIPE_DIS, 7-52

T
Tags

B-cache, 4-3
TCE, 7-27
TDE, 7-28
TIOP_SEL, 3-12
TLBER register, 7-7
TLCNR register, 7-14
TLCONxx registers, 7-69
TLCON register, 7-68
TLCPUMASK register, 7-31
TLDEV register, 7-5
TLDIAG register, 7-47
TLDMADRA register, 7-75
TLDMADRB register, 7-76
TLDMCMD register, 7-72
TLDTAGDATA register, 7-50
TLDTAGSTAT register, 7-51
TLEPAERR register, 7-54
TLEPDERR register, 7-57



Index-12

TLEPMERR register, 7-59
TLEP_VMG register, 7-62
TLESR0-3 registers, 7-26
TLFADR0-1 registers, 7-24
TLILID0-3 registers, 7-30
TLINTRMASK register, 7-63
TLINTRSUM register, 7-65
TLIOINTR4-8 registers, 7-36
TLIPINTR register, 7-35
TLMBPR register, 7-32
TLMBPR register map, 6-15
TLMCR register, 7-43
TLMMR0-7 registers, 7-21
TLMODCONFIG register, 7-52
TLRDRD register, 2-33, 7-41
TLRDRE register, 7-42
TLRMDQRX register, 7-39
TLRMDQR8 register, 7-40
TLSB address transmit check errors, 6-70
TLSB arbitration, 2-2, 6-30
TLSB architecture, 1-2
TLSB Bad bit, 7-77
TLSB bank available flags, 5-4
TLSB bank match logic, 5-3
TLSB bus monitor, 5-2
TLSB command decode, 5-2
TLSB command encoding, 5-3
TLSB Conwin bit, 7-77
TLSB CSR address mapping, 2-29
TLSB CSR control, memory, 5-14
TLSB CSR space, 3-8
TLSB CSR space map, 3-8
TLSB errors, 2-33
TLSB error handling, 2-2
TLSB input latches, 5-2
TLSB interface, CPU, 1-4
TLSB interface, I/O port, 6-23
TLSB mailboxes, 2-30
TLSB memory control, 5-1
TLSB Node ID bits, 7-77
TLSB operation, 2-5
TLSB overview, 2-1
TLSB principles for interrupts, 8-3
TLSB quadword transmit on hose, 6-20
TLSB register list, 7-4
TLSB Run bit, 7-80
TLSB signals, 2-3
TLSB status, additional, 6-74
TLSB transactions, 2-2
TLSB Window Overflow bit, 7-118
TLSB wrapping, 3-7
TLSB_ADR<2:0>, 6-17
TLSB_ADR<31:5>, 6-17, 6-19
TLSB_ADR<33:32>, 6-17, 6-19, 6-21
TLSB_ADR<35:34>, 6-17, 6-19, 6-21
TLSB_ADR<38:36>, 6-17, 6-19, 6-21

TLSB_ADR<39>, 6-17, 6-19, 6-21
TLSB_ADR<4:0>, 6-19
TLSB_ADR<4:3>, 6-17
TLSB_BAD, 7-77
TLSB_BANK_NUM<3:0>, 6-17, 6-19
TLSB_BANK_NUM<<3:0>, 6-21
TLSB_CONWIN, 7-77
TLSB_DATA_ERR, 6-67
TLSB_DATA_ERROR Disable bit, 7-99
TLSB_DATA_VALID, 2-22
TLSB_DIRTY, 2-23
TLSB_FAULT, 6-68
TLSB_LOCKOUT, 2-24
TLSB_RESET, 2-24
TLSB_RUN, 7-80
TLSB_SECURE, 7-80
TLSB_SHARED, 2-22
TLSB_STATCHK, 2-23
TLSB_WND_OFLO, 7-118
TLVID register, 7-19
TLWSDQR4-8 registers, 7-38
Toggle mode, 6-32
Transactions

extended NVRAM, 6-13
I/O port, 6-3, 6-23, 6-28

Transactions, address bus, 2-12
Transactions, dense address space, 6-20
Transactions, DMA, 6-24
Transactions, DMA interlock read, 6-10
Transactions, DMA masked write, 6-26
Transactions, DMA read, 6-10, 6-24
Transactions, DMA unmasked write, 6-26
Transactions, DMA write, 6-11
Transactions, extended NVRAM write, 6-30
Transactions, integrated I/O section, 6-83
Transactions, interrupt, 6-26
Transactions, I/O window space read, 6-29
Transactions, I/O window space write, 6-29
Transactions, mailbox, 6-28
Transactions, memory, 4-16
Transactions, module, 2-12
Transaction types

I/O port, 6-5
I/O port supported, 6-24

Translation buffer, 3-2
Transmitter During Error bit, 7-28
Transmit check errors, 2-41, 3-17, 6-74
Transmit Check Error bit, 7-27
Transmit Data bit, 7-84
Transmit Serial Data bit, 7-86, 7-141
Turbo Vortex errors, 6-75, 6-76

U
UACKE, 7-8
UDE, 7-10
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UECC, 7-27
Uncorrectable Data Error bit, 7-10
Uncorrectable ECC Error bit, 7-27
Unexpected acknowledge, 6-71
Unexpected Acknowledge bit, 7-8
Unexpected acknowledge error, 3-18
Unexpected mailbox status packet, 6-77
Unexpected Mailbox Status Packet Received

bits, 7-121
UNIX, 1-7
UN_MBX_STAT, 7-121
UPCTL<3:0> encoding, 6-39
Up HDP Internal Error bit, 7-120
Up Hose, 6-35
Up Hose errors, 6-75
Up Hose FIFI Overflow bits, 7-121
Up Hose Packet Error bits, 7-121
Up Hose packet specifications, 6-52
Up Hose Parity Error bits, 7-120
Up Hose signals, 6-38
Up Turbo Vortex errors, 6-75
Up Vortex Error bits, 7-119
UP_HDR_IE, 7-120
UP_HOSE_OFLO, 7-121
UP_HOSE_PAR_ERR, 7-120
UP_HOSE_PKT_ERR, 7-121
UP_VRTX_ERR, 7-119

V
VALID, 7-21, 7-71, 7-88, 7-111
Valid bit, 7-21, 7-71, 7-88, 7-111
Valid Residue Check bits, 7-105
VCNT, 7-17
Vectored interrupts, 8-1
VECTOR<15:0>, 7-137
Vector<15:0> bits, 7-137
Victim buffers, 4-6
VID-A, 7-20
VID_B, 7-20
VID_MASK, 7-36
Virtual ID A bits, 7-20
Virtual ID B bits, 7-20
Virtual ID Mask bits, 7-36
Virtual instruction cache, 3-3
Virtual node identification, 2-6, 8-4
Virtual Unit Count bits, 7-17
Virtual  ID register, 7-19
Voltage Down bit, 7-62
Voltage Margining register, 7-62
Voltage Margin bit, 7-134
Voltage Up bit, 7-62
VOLT_MARG, 7-134
VRC, 7-105

W
WDATA, 7-33
Window in Progress bits, 7-127
Window Space Decr Queue Counter registers,

7-38
Window space I/O, 2-32
Window space mapping, dense, 6-37
Window space mapping, sparse, 6-37
Window space reads, 3-10
Window Space Read Error bits, 7-55
Window Space Read Pending bits, 7-55
Window space writes, 3-10
Window write status return packet, 6-64
WIP<3:0>, 7-127
Wrapped reads, 6-25
Wrapping, 3-7
Write access, 7-33
Write CSR data format, 6-27
Write data, 7-33
Write data buffer, 5-9
Write data input logic, 5-9
Write data out selection, 5-11
Write data path ECC algorithm, 5-9
Write error forcing, 5-10
Write length encoding, 6-20
Write types, I/O adapter to memory, 6-26
WSPC_RD_ERR, 7-55
WSPC_RD_PEND, 7-55

X
XMT_DATA, 7-84
XMT_SDAT, 7-86, 7-141


