
DIGITAL Alpha VME 5/352 and
5/480 Single-Board Computers

User Manual

Order Number:  EK–VME54–UM. A01

This manual provides an introduction to the Alpha VME 5/352 and 5/480 single-
board computers (SBCs), explains how to use the console firmware, and dis-
cusses diagnostics and troubleshooting. 

Revision/Update Information: This is a new manual.
Digital Equipment Corporation
Maynard, Massachusetts



 ist.

ons.”

nada.”

 

First Printing, October 1997

FCC Notice:
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the 
FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is 
operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not 
installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. 
Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be 
required to correct the interference at his own expense.

Warning!
This is a Class A product.  In a domestic environment this product may cause radio interference in which case the user 
may be required to take adequate measures.

Achtung!
Dieses ist ein Gerät der Funkstörgrenzwertklasse A.  In  Wohnbereichen können bei Betrieb dieses Gerätes 
Rundfunkstörungenauftreten, in welchen Fällen der Benutzer für entsprechende Gegenmaßnahmen verantwortlich

Attention!
Ceci est un produit de Classe A.  Dans un environment domestique, ce produit risque de créer des interférences 
radioélectriques, il appartiendra alors à l'utilisateur de prendre les mesures spécifiques appropriées.

Canadian EMC Notice:
“This Class [A] Digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulati

“Cet appareil numerique de la class [A] respecte toutes les exigences du Reglement sur le materiel broilleur du Ca

© Digital Equipment Corporation 1997. All rights reserved.
Printed in U.S.A.

The following are trademarks of Digital  Equipment Corporation:  DECchip, DECnet,  DECpc, DIGITAL, OpenVMS,
ThinWire, VAX, and the DIGITAL logo.

The following are third-party trademarks:

DALLAS is a registered trademark of Dallas Systems Corporation. 
DIGITAL UNIX and UNIX are registered trademarks licensed exclusively by X/Open Company Ltd.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a trademark of Intel Corporation.
NCR is a registered trademark of NCR Corporation.
VIC64 is a trademark of Cypress Semiconductor Corporation.
VxWorks is a registered trademark of Wind River Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.



 Contents
Preface

Part I Introduction

1 Specifications and Requirements

Product Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Physical Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Environmental Specifications and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Environmental Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-5
Cooling Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-6

Regulatory Compliance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

2 Module Components

Module Component Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
CPU Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
IO Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
CPU and I/O Assembly Controls and Indicators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Memory Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Primary Breakout Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Secondary Breakout Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
PMC I/O Companion Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

3 Functional Components

Functional Component Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
21164 Alpha Microprocessor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
21172 Core Logic Chipset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Chipset Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-5
Chipset Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-5

Bcache Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Memory Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
SROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Clock Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
PCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

Ethernet Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-8
SCSI Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-8
PMC I/O Companion Card. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-9
iii



Nbus Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
 Interrupt Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-9
Flash ROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10
TOY Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10
Watchdog Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-11
NVRAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-11
Interval Timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-12
Keyboard and Mouse Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13
Super I/O Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13

VME Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
VIP Chip  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14
VIC64 and CY7C964 Chips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-15
Address Mapping and the Scatter-Gather Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-15

Part II The Console

4 Console Basics

Setting Up the Console for Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Console Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Entering Console Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Exiting Console Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Online Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Displaying Online Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3
Displaying Online Help for Multiple Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3
Controlling the Display of Online Help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4

Console Command Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Special Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Command Line Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Console Command Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Controlling the Radix of Command Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Using Flow Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Filtering Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Redirecting I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Running Commands in Background Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Creating Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Copying Scripts Over the Network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

5 Using the Console

Summary of Console Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Managing Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Environment Variable Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5
Setting Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-9
Displaying the Values of Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-9
Removing Environment Variables from System Name Space . . . . . . . . . . . . . . . . . . . .  5-10

Booting the System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Specifying Boot Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-10
Specifying a Boot Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-11
Passing Additional Boot Information to the Operating System  . . . . . . . . . . . . . . . . . . .  5-11
Booting Over the Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-11
Invoking the Console as Soon as the Boot Image is Loaded. . . . . . . . . . . . . . . . . . . . . .  5-16

Using TFTP to Read Files Across the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
iv



Managing the TOY Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Displaying the TOY Clock’s Time and Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-17
Setting the TOY Clock’s Time and Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-17
Disabling the TOY Clock’s Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-17

Getting System Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Updating Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Examining and Depositing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19

The Default Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-19
Console Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-20
Device Byte Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-20
Specifying a Data Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-21
Depositing and Examining Data in Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-21
Depositing and Examining Data in Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-22

Managing the Console, Devices, and CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
Initializing SBC Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-24
Stopping and Starting the CPU or Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-24
Exercising Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-24

Managing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-26
Displaying the State of Dynamic Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-26
Displaying the System’s Virtual Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-27
Allocating and Freeing Blocks of Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-27
Changing the Ownership of a Block of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-27
Testing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-27
Graycode Memory Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-28

Performing Network Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31
Setting Reboot to the SROM Mini-Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
Controlling the LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
Running the Power-On Diagnostics Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
Managing the Console Error Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-33

Displaying the Contents of the Console Error Log  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-33
Initializing the Console Error Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-33

Evaluating Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-33
Managing Console Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34

Creating and Exiting Console Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-34
Monitoring Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-34
Setting the Priority of Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-35
Specifying the CPUs on Which a Process Can Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-35
Suspending Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-36
Stopping Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-36
Breaking from Control Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-36
Returning a Failure Status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-36

Displaying Semaphores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36
Managing Files and File Content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37

6 Console Command Reference

alloc – allocate a block of memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
boot – boot the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-4
break – break from a program loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
cat – copy files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
chmod – change file attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
chown – change ownership of memory block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
clear – delete environment variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
clear_log – clear error log in NVRAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
v



date – display or change the date and time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13
deposit – write data to memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14
dynamic – show memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
echo – display text output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21
eval – evaluate expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22
examine – display memory data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
exer – exercise devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29
exit – exit current shell process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34
false – return a failure status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-35
free – deallocate memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36
grep – search for regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-37
hd – dump file contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-40
help – display help on commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41
 init_ev – initialize environment variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-42
init – initialize a device or the processor and console. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-43
kill – delete process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-44
line – read a line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-45
ls – list files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46
man – help on commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-47
memexer – memory exerciser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-48
memtest – memory test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-49
net – perform MOP operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-53
ps – show process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56
pwrup – run power-on diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-57
rm – remove file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-58
sa – set process affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-59
semaphore – show system semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-60
set – set environment variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-61
set led – display char on LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-64
set reboot srom – set reboot mode to Serial ROM Mini-Console. . . . . . . . . . . . . . . . . . . . 6-65
set toy sleep – disable TOY clock's internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-66
sh – create new shell process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-67
show – display system information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-69
show_log – display NVRAM error log 

information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-72
sleep – suspend execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-74
sort – sort a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-75
sp – set priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76
start – start program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-77
stop – stop CPU or device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-78
update – update flash ROMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-79

Part III Diagnostics

7  Diagnostics  and System Initialization

POST Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
System Initialization Sequence and Countdown  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
POST NVRAM and Memory Diagnostics Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
POST Nonvolatile RAM Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
POST Memory Diagnostic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5

8 Console Mode Diagnostics
vi



Console Mode Diagnostics Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Heartbeat Timer Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
Interval Timer Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
DECchip 21040 Ethernet Controller Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9
DALLAS DS1386 NVRAM Watchdog Timekeeper Tests . . . . . . . . . . . . . . . . . . . . . . . . . 8-11
Local Area Network Address ROM Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14
NCR 53C810 PCI-SCSI I/O Processor Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16
Watchdog Timer Interrupt Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19
VME Interface Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20

Part IV Appendixes

A Console Command Summary

B Troubleshooting

SROM Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Flash ROM Diagnostics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
Troubleshooting Systems that Include a PMC I/O Companion Card . . . . . . . . . . . . . . . . . . B-2
Operating System and Application Use of the Dot Matrix Display . . . . . . . . . . . . . . . . . . . B-2
Troubleshooting Your SBC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

C Module Connector Pin Assignments

CPU Module Connector Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
I/O Module Connector Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

P1 VMEbus Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-1
P2 VMEbus Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-2
Console and Auxiliary Connector Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-4
Ethernet Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-4

Primary Breakout Module Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-5
Secondary Breakout Module Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . C-6

Keyboard and Mouse Connector Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-7
Parallel Port Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-8

PMC I/O Companion Card Connector Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9
PMC Option 1 Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-9
PMC Option 2 Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-13
PMC I/O Companion Card Diskette Drive Connector Pin Assignments. . . . . . . . . . . . .  C-15
PMC I/O Companion Card Keyboard and Mouse Connector Pin Assignments . . . . . . .  C-17

Figures
1–1 Required Air Flow Relative to Ambient Temperature  . . . . . . . . . . . . . . . . . . 1-6
2–1 Alpha VME 5/352 and 5/480 Module Components  . . . . . . . . . . . . . . . . . . . . 2-2
2–2 CPU Module Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2–3 I/O Module Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2–4 Controls and Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2–5 Memory Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2–6 Primary Breakout Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2–7 Secondary Breakout Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2–8 PMC I/O Companion Card Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
3–1 Alpha VME 5/352 and 5/480 Functional Components . . . . . . . . . . . . . . . . . . 3-3
3–2 21164 Alpha Microprocessor Functional Block Diagram. . . . . . . . . . . . . . . . 3-4
vii



3–3  Level 3 Bcache Array  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
3–4 PCI-to-VME Interface Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
8–1 Loopback Descriptions for Interval Timer Test 3 and 4. . . . . . . . . . . . . . . . . 8-8
8–2 LAN Address ROM Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15
C–1 Console and Auxiliary Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . C-4
C–2 Ethernet Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4
C–3 Primary Breakout Module Connector Pin Assignments . . . . . . . . . . . . . . . . . C-6
C–4 Secondary Breakout Module Connector Pin Assignments. . . . . . . . . . . . . . . C-7
C–5 Keyboard and Mouse Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-8
C–6 Parallel Port Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9
C–7 PMC Option 1 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-9
C–8 PMC Option 2 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-13
C–9 PMC I/O Companion Card Diskette Connector Pin Assignments . . . . . . . . . C-17
C–10 PMC I/O Companion Card Mouse and Keyboard Connector Pin Assignments C-18

Tables
1–1 Alpha VME5/352 and 5/480 SBC Specifications. . . . . . . . . . . . . . . . . . . . . . 1-1
1–2 Input Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1–3 Environmental Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
2–1 Controls and Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2–2 Valid DIMM Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
3–1 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
3–2 Timer Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
4–1 Commonly Used Console Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4–2 Special Keys for Console Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4–3 Console Command Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
5–1 Summary of Console Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5–2 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
5–3 Symbols Used by Examine and Deposit Commands . . . . . . . . . . . . . . . . . . . 5-20
6–1 Action String Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30
7–1 SROM Initialization and Console Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
8–1 Console Mode Diagnostic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8–2  Console Command Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
B–1 Troubleshooting Your SBC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2
C–1 P1 VMEbus Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
C–2 P2 VMEbus Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
C–3 Console and Auxiliary Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . C-4
C–4 Ethernet Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-4
C–5 Primary Breakout Module Connector Pin Assignments . . . . . . . . . . . . . . . . . C-5
C–6 Keyboard and Mouse Connector Pin Assignments  . . . . . . . . . . . . . . . . . . . . C-7
C–7 Parallel Port Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-8
C–8 PMC Option 1 J11 Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-10
C–9 PMC Option 1 J12 Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-11
C–10 PMC Option 1 VMEbus P2 Signal Connector (J14) Pin Assignments  . . . . . C-12
C–11 PMC Option 2 J21 Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-13
C–12 PMC Option 2 J22 Pin Assignments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-14
C–13 PMC I/O Companion Card Diskette Drive Connector Pin Assignments . . . . C-15
C–14 PMC I/O Companion Card Mouse Connector Pin Assignments . . . . . . . . . . C-17
C–15 PMC I/O Companion Card Keyboard Connector Pin Assignments. . . . . . . . C-17
viii



Preface 
o-
Purpose of this Manual

This manual introduces you to the DIGITAL Alpha VME 5/352 and 5/480 single-
board computers (SBCs) by discussing physical, power, and environmental 
requirements and describing the module and functional components. This manual 
also explains how to use the console firmware and discusses diagnostics and trou-
bleshooting. 

 Intended Audience

This manual is for OEM system integrators who are designing and building a       
DIGITAL Alpha VME 5/352 or 5/480 SBC into specific application systems. 
These systems may range in scope from a single Alpha VME 5/352 or 5/480 SBC 
to highly complex multiprocessor systems that include a variety of hardware. 
Hardware and mechanical engineers refer to the physical and environmental spec-
ifications.  Field and manufacturing technicians and support specialists use infor-
mation in this manual to configure systems and diagnose problems.

This manual assumes that readers have prerequisite knowledge and experience 
with the following:

• System design

• VMEbus design and specifications

Structure of this Manual

This manual consists of four parts and an index organized as follows:

Part I, Introduction

• Chapter 1, Specifications and Requirements, provides product specifications; 
physical, power, and environmental requirements; and FCC regulations.

• Chapter 2, Module Components, introduces the physical components of the 
SBC product.

• Chapter 3, Functional Components, describes the SBC’s functional comp
nents.
ix



Part II, The Console

• Chapter 4, Console Basics, gets you started with using the console.

• Chapter 5, Using the Console to Operate the SBC, explains how to perform 
various tasks, using the console.

• Chapter 6, Console Command Reference, describes available console com-
mands.

Part III, Diagnostics

• Chapter 7, Diagnostics and System Initialization, introduces types of diagnos-
tics tests, discusses system initialization, and describes the power-on self-test 
(POST) diagnostics for nonvolatile RAM and memory.

• Chapter 8, Console Mode Diagnostics, describes diagnostics that you can ini-
tiate from the console.

Part IV, Appendixes

• Appendix A, Console Command Summary, serves as a quick reference to 
available console commands.

• Appendix B, Troubleshooting, provides some guidance with troubleshooting 
a Alpha VME 5/352 or 5/480 SBC system.

• Appendix C, Module Connector Pin Assignments, describes the pin assign-
ments for the various module connectors. 

Conventions

This section defines terminology, abbreviations, and other conventions used in 
this manual.

Abbreviations

• Register access

The following list describes the register bit and field abbreviations:

• Binary multiples

Bit/Field Abbreviation Description

MBZ (must be zero) Bits and fields specified as MBZ must be zero.

RO (read only) Bits and fields specified as RO can be read but not writ-
ten.

RW (read/write) Bits and fields specified as RW can be read and written.

SBZ (should be zero) Bits and fields specified as SBZ should be zero.

WO (write only) Bits and fields specified as WO can be written but not 
read
x



The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples 
and have the following values:

For example:

Addresses

Unless otherwise noted, addresses and offsets are hexadecimal values.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in 
angle brackets (< >). Multiple contiguous bits are indicated by a pair of numbers 
separated by a colon  ( : ).  For example, <9:7,5,2:0> specifies bits 9, 8, 7, 5, 2, 1, 
and 0. Similarly, single bits are frequently indicated with angle brackets. For 
example, <27> specifies bit 27.

Caution

Cautions indicate potential damage to equipment or loss of data.

Data Field Size

The term INTnn, where nn  is one of 2, 4, 8, 16, 32, or 64, refers to a data field 
of nn contiguous NATURALLY ALIGNED bytes.  For example, INT4 refers to a 
NATURALLY ALIGNED longword.

Data Units

The following data unit terminology is used throughout this manual.

Abbreviation Binary Multiple

K 210 (1024)

M 220 (1,048,576)

G 230 (1,073,741,824)

2 KB = 2 kilobytes = 2 x 210 bytes

4 MB = 4 megabytes = 4 x 220 bytes

8 GB = 8 gigabytes = 8 x 230 bytes

Term Words Bytes Bits Other

Byte 1/2 1 8 −

Word 1 2 16 −

Longword 2 4 32 Longword

Quadword 4 8 64 2 Longwords

Octaword 8 16 128 2 Quadwords

Hexword 16 32 256 2 Octawords
xi



Keyboard Keys

The following keyboard key conventions are used throughout this manual.

Examples

Prompts, input, and output in examples are shown in a monospaced font. Interac-
tive input is differentiated from prompts and system output with bold type.  For 
example:

>>> echo This is a test.[Return]
This is a test.

Ellipsis points indicate that a portion of an example is omitted.

Names and Symbols

The following table lists typographical conventions used for names of various 
items throughout this manual.

Note

Notes emphasize particularly important information.

Convention Example

Control key sequences are represented as Ctrl/x.
Press Ctrl while you simultaneously press the x key

Ctrl/C

In plain text, key names match the name on the actual
key.

Return key

In tables, key names match the name of the actual key and appear in 
square brackets ([ ]).

[Return]

Items Example

Bits sysBus<32:2>

Commands boot command

Command arguments address argument

Command options -sb option

Environment variables AUTO_ACTION

Environment variable values HALT

Files and pathnames /usr/foo/bar

Pins LIRQ pin

Register symbols VIP_ICR register

Signals iogrant signal

Variables n, x, mydev
xii



Numbering

Numbers are decimal or hexadecimal unless otherwise indicated.  The prefix 0x 
indicates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A 
are hexadecimal (see also Addresses). Otherwise, the base is indicated by a sub-
script; for example, 1002 is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods ( .. ) and are 
inclusive.  For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, 
and 4.

Extents are specified by a pair of numbers in angle brackets (< >) separated by a 
colon ( : ) and are inclusive.

Bit fields are often specified as extents.  For example, bits <7:3> specifies bits 7, 
6, 5, 4, and 3.

Register and Memory Figures

Register figures have bit and field position numbering starting at the right (low-
order) and increasing to the left (high-order).

Memory figures have addresses starting at the top and increasing toward the bot-
tom.

Syntax

The following syntax elements are used throughout this manual. Do not type the 
syntax elements when entering information.

UNPREDICTABLE and UNDEFINED

This manual uses the terms UNPREDICTABLE and UNDEFINED.  Their mean-
ings are different and must be carefully distinguished.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of 
the processor.  The processor continues to execute instructions in its normal man-
ner. In contrast, UNDEFINED operations can halt the processor or cause it to lose 
information.

Element Example Description

[ ] [-file filename] The enclosed items are optional.

| - | + | = Choose one of two or more items. Select 
one of the items unless the items are 
optional.

{ } {- | + | =} You must specify one (and only one) of the 
enclosed items.

( ) (a,b,c) You must specify the enclosed items 
together.

... arg... You can repeat the preceding item one or 
more times.
xiii



 
 

i-
-

he 
For More Information

For more information, refer to the following:

• Your supplier

• A DIGITAL Field Applications Engineer

• The  DIGITAL OEM web site at http://www.digital.com/oem.

• The following DIGITAL Alpha VME 5/352 and 5/480 SBC documentation, 
which is available on the DIGITAL OEM web site:

• The following DIGITAL documentation:

Document Order Number Description

DIGITAL Alpha VME 5/352 
and 5/480 Board Computer 
Family Data Sheet

Describes the DIGITAL Alpha 5/352 and 5/480 
SBCs, highlighting product features and specifica-
tions.

DIGITAL Alpha VME 5/352 and 
5/480 Single Board Computers 
Cover Letter

EK–VME54–CL Highlights important product information and 
explains how to acquire the DIGITAL Alpha VME 5/
352 and 5/480 Single Board Computers User Man-
ual and DIGITAL Alpha VME 5/352 and 5/480 Sin-
gle Board Computers Technical Reference.

DIGITAL Alpha VME 5/352 and 
5/480 Single Board Computers 
Warranty and Parts Information

EK–VME54–WI Explains the warranty of your DIGITAL Alpha 
VME 5/352 or 5/480 SBC and provides parts infor-
mation for ordering.

DIGITAL Alpha VME 5/352 and 
5/480 Single Board Computers 
Installation Guide

EK–VME54–UM Explains how to install your DIGITAL Alpha VME 
5/352 or 5/480 SBC.  Use this guide if you need to
adjust jumper settings or remove and reinstall field
replaceable units (FRUs).

DIGITAL Alpha VME 5/352 and 
5/480 Single Board Computers 
User Manual

EK–VME54–UM Introduces the product by discussing product spec
fications and requirements and describing the mod
ule and functional components.  This manual also 
explains how to use the console firmware and dis-
cusses diagnostics and troubleshooting.

DIGITAL Alpha VME 5/352 and 
5/480 Single Board Computers 
Techincal Reference

EK–VME54–TM This manual discusses system address mapping, t
VME interface, system registers, and system inter-
rupts.

Document Order Number

Alpha AXP Architecture Reference Manual EY–T132E–DP

Alpha Architecture Handbook EC–QD2KB–TE

Alpha Microprocessors SROM Mini-Debugger User’s 
Guide

EC–QHUXB–TE

Answers to Common Questions about PALcode for 
Alpha AXP Systems

EC–N0647–72

Digital Semiconductor Alpha 21164 Microprocessor 
Product Brief

EC–QP97C–TE
xiv



• The following specifications, which are available through the indicated ven-
dor or organization: 

Digital Semiconductor 21052 PCI–PCI Bridge Data 
Sheet

EC–QHURB–TE

Digital Semiconductor 21164 Alpha Microprocessor 
Data Sheet

EC–QP98B–TE

Digital Semiconductor 21172 Core Logic Chipset Prod-
uct Brief

EC–QUQHA–TE

Digital Semiconductor 21164 Alpha Microprocessor 
Hardware Reference Manual

EC–QP99B–TE

Digital Semiconductor 21172 Core Logic Chipset Tech-
nical Reference Manual

EC–QUQJA–TE

DIGITAL UNIX Guide to Real-time Programming AA–PS33D–TE

DIGITAL UNIX: Writing PCI Bus Device Drivers AA–Q7RQC–TE

DIGITAL UNIX: Writing VMEbus Device Drivers AA–Q057G–TE

Manpages on the VxWorks Real-Time Tools for Alpha 
CD-ROM

Not applicable

PALcode for Alpha Microprocessors System Design 
Guide

EC–QFGLC–TE

Document Vendor or Organization

CY7C9640 Specification Cypress Semiconductor Corp.

Intel 82378ZB PCI-ISA Bridge Chip 
Specification

Intel Corp.

PCI Local Bus Specification Rev 2.1 PCI Special Interest Group

Super I/O FDC37C6656T Specification Standard Microsystems Corp.

Symbios 53C810 SCSI Controller Spec-
ification

Symbios

TOY clock DS1386 Specification Dallas Semiconductor

VIC64 Specification Cypress Semiconductor Corp.

Document Order Number
xv





Part I
Introduction
Part I introduces the DIGITAL Alpha VME 5/352 and 5/480 single-board comput-
ers (SBCs). This part consists of the following chapters:

• Chapter 1, Specifications and Requirements

• Chapter 2, Module Components

• Chapter 3, Functional Components





nd 
0 

.7 

ons. 
es at 
CC 
fig-
nd a 
 1
Specifications and Requirements

This chapter discusses specifications and requirements for the DIGITAL Alpha 
VME 5/352 and 5/480 single-board computers (SBCs). Specifically, Sections 1.1 
through 1.4 discuss:

• Product specifications, Section 1.1

• Physical requirements, Section 1.2

• Power requirements, Section 1.3

• Environmental specifications and requirements, Section 1.4

Section 1.5 discusses the product’s regulatory compliance.

1.1 Product Specifications

Based on the 21164 Alpha microprocessor, the DIGITAL Alpha VME 5/352 a
5/480 SBCs run at 352 MHz and 480 MHz, respectively. Unofficially, the 5/48
model achieves  SPECint95 at 13.8 and SPECfp95 at 15.5 (peak geometric 
means), while model 5/352 achieves SPECint95 at 10.7 and SPECfp95 at 13
(peak geometric means). 

Other distinguishing features include improved cache and memory configurati
The 2 MB of on-board ECC protected Level 3 backup cache (Bcache) operat
700 MB/s. You can populate four memory connectors with 16 to 512 MB of E
protected dynamic random access memory (DRAM). The memory is autocon
ured for a 128- or 256-bit data bus. A 256-bit wide bus operates at 355 MB/s a
128-bit wide bus operates at 210 MB/s.

Table 1–1 lists the Alpha VME 5/352 and 5/480 SBC specifications:

Table 1–1 Alpha VME5/352 and 5/480 SBC Specifications 

Alpha processor

Alpha microprocessor 21164A

CPU speed 5/352 – 352 MHz
5/480 – 480 MHz

Chip cache Level 1 8/8 KB, Level 2 96 KB unified, I/D

Performance (unofficial) 5/352 – SPECint95: 10.7, SPECfp95: 13.7
5/480 – SPECint95: 13.8, SPECfp95: 15.5

Memory

Cache 2 MB of on-board Level 3 cache
Specifications and Requirements 1–1



A

-

p

DRAM 16 to 512 MB
ECC protected
Autoconfiguration on 128- or 256-bit data bus 
Single bit error correction
Double bit error detection
Must be configured in pairs of EDO DIMM memory 
modules

Flash EPROM 4 MB (3.5 MB available to the user application)

Nonvolatile RAM (NVRAM) 32 KB

Networking

Features Alpha 21040 PCI Ethernet controller 
DMA (bus master)
256-byte send and receive FIFO queues
Double bandwidth with full duplex Ethernet

   Interconnect 10BASE–T Ethernet (twisted pair)

Interfaces

SCSI interface Symbios 53C810 single-ended, 8-bit SCSI–2 with DM
Up to 10 MB/s transfer rate
SCSI connection through VMEbus P2 connector

Serial interface 82C42PE and FDC37C665GT Super I/O chip
Two asynchronous DEC423 ports
75 to 19200 baud through two MMJ front panel connec
tors
Keyboard, mouse, and parallel ports

PCI I/O companion card Accepts two PCI mezzanine cards
IEEE P1386.1 compliant

Clocks and timers

Real-time clock DS1386 RTC with Lithium (<0.5 grams) battery backu

Timers Three 16-bit timers
Two timers are driven at 10 MHz
One timer is clocked by external input (through the P2 
connector) for event counting or synchronization

Watchdog timer Programmable timeout
Output reset is available on the P2 connector

VME specifications

VMEbus interface VIC64 interface chip
Conforms to ANSI/IEEE standard 1014–1987
Supports extensions for 64-bit data transfers
IEC 821 and 297

VMEbus transactions Master: A32/24/18, D64/32/16/8
Slave: A32/24/16, D64/32/16/8
UAT, BLT, MBLT

VMEbus arbitration System controller with configurable arbitration
PRI, RRS, SGL, FAIR

Table 1–1 Alpha VME5/352 and 5/480 SBC Specifications  (Continued)
1–2 Specifications and Requirements



1.2 Physical Requirements

DIGITAL Alpha VME 5/352 and 5/480 SBCs have the industry-standard 6U 
VME form factor and requires two adjacent backplane slots in your VME chassis. 
A third slot is required if you use the optional PMC I/O companion card.

VMEbus interrupts Handles all seven levels
8-bit software programmable status
Requester for all seven levels 
Software-programmable vector

VMEbus connector DIN 41612 style C
96 contacts
P1/P2 connector

Other VMEbus features SYSCLK and SYSRESET

Physical characteristics

Single-board computer Dual-height Eurocard format (6U8HP)
233 x 160 x 40.3 mm (9.17 x 6.3 x 1.59 in.)

Weight 1.014 kg (2.21 lbs.), including four DIMMs

Number of slots 2 (3 with the optional PMC I/O companion card)

PCI mezzanine card 150 x 75 mm (5.9 x 2.95 in.)

Breakout module Dual-slot version

Power specifications 

Configuration CPU with 512 MB and no PMC option

5 Vdc 352 MHz – 9 A idle, 13 A peak
480 MHz – 11 A idle, 15 A peak

12 Vdc 0.2 A

-12 Vdc <01. A

Dissipation (typical) 5/352 – 50 W
5/480 – 60 W

Environmental specifica-
tions

Operating temperature 0 C to 50 C with forced air cooling

Storage temperature -40 C to 66 C 

Temperature change 20 C/hour

Relative humidity 10% to 95% (noncondensing)

Operating systems

DIGITAL UNIX Version 4.0A or higher

VxWorks for Alpha Version 5.2C or higher

Table 1–1 Alpha VME5/352 and 5/480 SBC Specifications  (Continued)

° °

° °

°

Specifications and Requirements 1–3



g 

er 
es 
wer 
n-
, 

ME 
em-

 

ted 

opu-
Once you identify the slots, you must make sure sufficient space exists on the 
back of the selected slots to install a primary breakout module. This module 
requires a minimum of 38 mm (1.5 in). For a description of the primary breakout 
module, see Section 2.6.

If you choose to use the secondary breakout module, you need an incremental 
clearance of at least 56 mm (2.25 inches) to install the module. For a description 
of the secondary breakout module, see Section 2.7.

1.3 Power Requirements

The Alpha VME 5/352 and 5/480 SBCs require power voltages of +5 V and  
V. The VME backplane provides the power to the logic of the SBCs through 

the P1 and P2 VMEbus connectors.The primary power for the SBCs is 5 V, which 
is provided by the P1 and P2 VMEbus connectors on the CPU module and the P2 
VMEbus connector on the I/O module. A required primary breakout module aug-
ments the current capacity of the backplane’s etch and connectors by shuntin
power from the I/O module connectors to the CPU module connectors. 

The two DC-to-DC converters — 5 V to 2.5 V and 5 V to 3.3 V — provide pow
for CPU module and I/O module operation. The 5 V to 2.5 V converter provid
power for the Alpha 21164 core logic. The 5 V to 3.3 V converter provides po
for the 21172 core logic chipset, SRAM, DRAMs, SCSI chip, and Ethernet co
troller. Both converters operate in an 85% to 95% conversion efficiency range
requiring no heat sink.

The required primary breakout module, which is installed on the rear of the V
backplane directly behind the slots occupied by the CPU and I/O module ass
bly, provides additional current to the CPU module from the I/O module.

An optional +5 V STANDBY is available to provide power for the time-of-year
(TOY) clock and NVRAM chip.

Table 1–2 provides the power ratings for the various voltage supplies suppor
by the Alpha VME 5/352 and 5/480 SBCs.

The peak current shown in Table 1–2 assumes an Alpha VME 5/480 SBC is p
lated with 512 MB of DRAM.

Table 1–2 Input Power Requirements

Voltage 
Supply

Tolerance
Maximum 
Ripple

5/352 Idle 
Current

5/352 Peak 
Current

5/480 Idle 
Current

5/480 Peak 
Current

+5 V +0.25 V
–0.125 V

50 mV 9 A 13 A 11 A 15 A

+12 V +0.60 V
–0.36 V

50 mV 150 mA 250 mA 150 mA 250 mA

+5 V STDBY +0.25 V
–0.125V

50 mV 25 mA 50 mA 25 mA 50 mA

-12 V + 0.36 V
–0.60V

50 mV 150 mA 250 mA 150 mA 250 mA

12±
1–4 Specifications and Requirements



 

nd 
Warning

The +5 V tolerance and ripple specifications shown in Table 1–2 must be
met when supplying the peak current specified. If they are not met, unde-
fined operation will result.

1.4 Environmental Specifications and Requirements

DIGITAL Alpha VME 5/352 and 5/480 SBCs require a VME chassis 
with sufficient cooling. Section 1.4.1 lists the environmental specifica-
tions for the SBCs. Section 1.4.2 explains cooling requirements.

1.4.1 Environmental Specifications

Table 1–3 shows the environmental specifications for the Alpha VME 5/352 a
5/480 SBCs.

1MTBF (MIL–HDBK–217F)

Table 1–3 Environmental Specifications

Condition Range or Value

Operating

Temperature range 0 C (32 F) to 50 C (122 F)

Relative humidity 5% to 90% (noncondensing)

Altitude 6,000 feet (maximum)

Maximum wet bulb 28 C (82 F) 

Minimum dew point 2 C (36 F) 

Vibration  5 to 500 Hz, 0.1 g, 3 axis

Shock 11 ms, 10 g, 3 axis

Meantime between failures1 – 5/480 250,000 hours at 25 C

Meantime between failures1 – 5/352 300,000 hours at 25 C

Nonoperating

Temperature range -40 C (-40 F) to 65 C (149 F)

Storage (shipping) 40,000 feet

Relative humidity 5% to 95% (noncondensing)

Packaging weight 0.89 kg (1.96 lb)

Maximum wet bulb 32 C (90 F) 

Vibration 1.5 g, 3 axis

° ° ° °

° °

° °

°

°

° ° ° °

° °
Specifications and Requirements 1–5



con-
to 
s the 
 vari-
ir 
Notes

Real failures for MBTF figures are defined as random component failures 
that are not caused by customer errors, workmanship related failures, 
third-party component issues, or design related problems where corrective 
action has been implemented.

The operating temperature range is 0 C to 50 C. This is dependent on pro-
cessor speed and enclosure air flow (see Figure 1–1).

1.4.2 Cooling Requirements

The Alpha VME 5/352 and 5/480 SBCs provide a heat sink for CPU thermal 
trol. The amount of cooling required is defined by the operating environment 
which the SBC assembly is subjected. The curve shown in Figure 1–1 define
amount of ambient air the SBC assembly requires in linear feet per minute at
ous ambient temperatures. Actual cooling depends on the turbulence in the a
stream as it enters the assembly volume.

Figure 1–1 Required Air Flow Relative to Ambient Temperature

Note

The maximum temperature, when measured between the heat sink studs 
on the base of the heat sink, must be less than 68 C.

1.5 Regulatory Compliance

The DIGITAL Alpha VME 5/352 and 5/480 SBCs have been tested and shown to 
operate within a suitable enclosure with the following regulatory compliances:

° °

200 400 600 800

40

45

50

55

60

A
m

bi
en

t T
em

pe
ra

tu
re

 C

Linear Feet Per Minute

1000 352 MHz Unit

480 MHz Unit

°

1–6 Specifications and Requirements



can 
• EMC, CE, and VCCI limits for a Class A device

• UL, CSA, and TUV safety limits

These limits are designed to provide reasonable protection against harmful inter-
ference when the equipment is operated in a commercial environment. This equip-
ment generates, uses, and can radiate radio frequency energy and, if not installed 
and used as instructed in the DIGITAL Alpha VME 5/352 and 5/480 Single-Board 
Computers Installation Guide, may cause harmful interference to radio communi-
cations. Operation of an Alpha VME 5/352 or 5/480 SBC in a residential area is 
likely to cause harmful interference, in which case the interference is required to 
be corrected at the user’s own risk.

When used in an appropriate enclosure, an Alpha VME 5/352 or 5/480 SBC 
operate at the level of a Class B device. If used as a Class B device, your applica-
tion may require shielded cables for all I/O interfaces.

Note

It is incumbent upon Original Equipment Manufacturers (OEMs) to 
obtain regulatory FCC approval for a consolidated system.
Specifications and Requirements 1–7





er-
 The 

po-

y-

C 
 2
Module Components

The DIGITAL Alpha VME 5/352 and 5/480 SBCs consist of a single CPU mod-
ule and support modules that provide I/O, memory, and power. This chapter 
describes the module components. The chapter begins with an overview (Section 
2.1) and then describes the following:

• CPU module, Section 2.2

• I/O module, Section 2.3

• CPU and I/O assembly controls and indicators, Section 2.4

• Memory modules, Section 2.5

• Primary breakout module, Section 

• Secondary breakout module, Section 2.7

• PMC I/O companion card, Section 2.8

2.1 Module Component Overview

Alpha VME 5/352 and 5/480 SBCs can consist of two or three 6U modules 
depending on whether you use an optional PMC I/O companion card. The base 
SBC assembly includes a CPU module and an I/O module. The CPU module fea-
tures either a 352 MHz or 480 MHz 21164 Alpha microprocessor and a support-
ing 21172 core logic chip set. Four DIMM sockets for DRAM and 2 MB of Level 
3 SRAM Bcache also reside on the CPU module. Two DC-to-DC power convert-
ers — 5 V to 2.5 V and 5 V to3.3 V — provide power for the CPU module’s op
ation. The CPU module is shipped preassembled with a required I/O module.
I/O module connects to the CPU module through a PCI–32 interface.

The I/O module provides support for your application’s I/O devices. Key com
nents of this module include:

• PCI-to-VME64 bridge (DC7407 VIP and VIC64)

• PCI-to-SCSI–2 controller (53C810)

• PCI-to-Ethernet controller (21040)

• PCI-to Nbus bridge (82378ZB)

• PCI–32 interface to an optional PMC I/O companion card

The Nbus supports a diskette drive, two serial-line ports, a parallel port, a ke
board and mouse, the Flash ROM, the TOY clock, and NVRAM.

The optional PMC I/O companion card provides a PCI-to-PCI bridge, two PM
option slots, and keyboard, mouse, and diskette drive connectors.
Module Components 2–1



0 

s. 
Figure 2–1 identifies the module components of an Alpha VME 5/352 or 5/48
SBC and optional PMC I/O companion card.

Figure 2–1 Alpha VME 5/352 and 5/480 Module Components

The numeric callouts in the figure identify the following key components:

1 PMC I/O companion card option

2 I/O module

3 CPU module

4 Memory modules

5 Secondary breakout module 

6 Primary breakout module 

Note

The I/O module (2) and CPU module (3) are attached and share a com-
mon front panel. These modules should be detached only to replace the 
SROM. They appear separately in Figure 2–1 only to provide a view of 
primary SBC module components.

2.2 CPU Module

The CPU module is the compute engine of Alpha VME 5/352 and 5/480 SBC
Figure 2–2 shows the layout and primary components.

ML013780

1

2

3

4

5

6

2–2 Module Components



Figure 2–2 CPU Module Layout

The numeric callouts in the figure identify the following key components:

1 P1 VMEbus connector

2 P2 VMEbus connector

3 64-bit PCI connector (not used)

4 J11 bus grant pass-through jumper

5 Connectors for memory DIMMs 2 and 3

6 Connectors for memory DIMMs 0 and 1

7 Power and VME slave activity/watchdog timeout LED

8 Status display

9 I/O module connector

10 SROM

2.3 IO Module

The I/O module is a required second tier module that handles all I/O activity for 
the Alpha VME 5/352 and 5/480 SBCs. This module plugs into the I/O module 
connector on the CPU module. 

Note

The I/O module is attached to the CPU module when you receive it. Dis-
assemble the CPU and I/O assembly only if you need to replace the 
SROM.

Figure 2–3 shows the layout and primary components.

ML013781

5

9

78

3

1 2

10

6

4

Module Components 2–3



dica-
Figure 2–3 I/O Module Layout

The numeric callouts in the figure identify the following key components:

1 P1 VMEbus connector

2 Connector to CPU module (on the back of the I/O module) 

3 Debug jumper (for use with Serial ROM Mini-Console only)

4 P2 VMEbus connector

5 Configuration switchpack

6 Caterpillar insulation strip

7 PMC I/O companion card connector

8 Nonvolatile RAM/time-of-year (TOY) clock

9 Auxiliary serial port

10 Console serial port

11 Reset/Halt switch

12 Twisted-pair Ethernet connector

2.4 CPU and I/O Assembly Controls and Indicators

The CPU and I/O modules are delivered as a single assembly. The modules are 
attached and share a single front panel. Figure 2–4 shows the controls and in
tors on that front panel and Table 2–1 describes their functions.

ML013782
9101112

7

8

51 42 3

6

2–4 Module Components



Figure 2–4 Controls and Indicators

1See your operating system documentation for information on how to recover from reset and halt 
operations.

2.5 Memory Modules

The Alpha VME 5/352 and 5/480 SBCs support memory configurations that 
range from 16 to 512 MB of dynamic random access memory (DRAM). This 
memory is accessible from the CPU, PCI bus, and VMEbus.

You can plug either two or four dual integrated memory modules (DIMMs), rang-
ing from 8 MB to 128 MB, into the memory connectors on the CPU module.  Fig-
ure 2–5 shows a typical memory module.

Table 2–1 Controls and Indicators

Callout Control or Indicator Description

1 Reset/Halt switch A switch that resets the SBC when pressed in the 
Reset (up) direction and halts the operating system 
when pressed in the Halt (down) direction. A reset 
operation starts SROM execution the same way as 
when you power on the system.   When you use the 
Halt switch, the SBC enters console mode.

Caution: Keep in mind that reset and halt opera-
tions can cause loss of data.1

2 Status display A display that shows which test is running during 
power-on self-test (POST) diagnostics. When the 
POST diagnostics are complete, the display is under 
control of the operating system or an application 
program.

3 VME Slave Activ-
ity/Watchdog Time-
out LED

An amber LED with two functions. The LED flashes 
when the SBC is accessed as a slave by another 
device on the VMEbus. The LED lights continu-
ously when the watchdog timer has timed out.

Note: The LED can appear to light continuously 
when the module is receiving slave accesses. Since 
the LED glows for 1/3 of a second each time it 
flashes, three slave accesses per second could make 
the LED light continuously.

4 Power LED A green LED that is lit when the power is on.

1

2 3 4
ML013262
Module Components 2–5



Figure 2–5 Memory Module

The number of DIMMs you use determines the memory bus bandwidth, and con-
sequently the overall speed of data write and read operations to and from memory.  
DIGITAL recommends that you use four DIMMs to achieve maximum perfor-
mance. No jumper changes are required. The system automatically configures 
memory based on the DIMMs you install.  The following table shows the width of 
the memory bus and its performance when you use two and four DIMMs:

Error correction code (ECC) is provided for single-bit errors and error detection is 
provided for double-bit errors. For details on how the operating system reports 
and handles ECC errors, see your operating system documentation.

In addition to the requirement of using either two or four DIMMs, all DIMMs you 
use must be identical in size (number of MB), speed, and architecture (EDO).

Note

DIGITAL memory DIMMs are supplied in pairs. DIGITAL may source 
the pairs of DIMMs from different memory vendors. To ensure proper 
operation of your SBC, you must install the DIMMs as supplied pairs in 
memory connectors 0 and 1 or 2 and 3. If you choose to use only two 
DIMMs, you must populate memory connectors 0 and 1.

Table 2–2  shows valid DIMM combinations.

Number of DIMMs Bus Width Memory Bandwidth

2 128 bits 210 MB/s

4 256 bits 355 MB/s

Table 2–2 Valid DIMM Combinations 

Memory Size
(MB)

DIMM 0
(MB)

DIMM 1
(MB)

DIMM 2
(MB)

DIMM 3
(MB)

16 8 8

32 8 8 8 8

32 16 16

64 16 16 16 16

64 32 32

128 32 32 32 32

ML013783
2–6 Module Components



For information on memory installation, see the DIGITAL Alpha VME 5/352 and 
VME 5/480 Single-Board Computers Installation Guide.

2.6 Primary Breakout Module

The primary breakout module is a required module that plugs into your VMEbus 
backplane behind the slots occupied by your Alpha VME 5/352 or 5/480 SBC 
CPU and I/O modules. This breakout module supplies additional power to the 
CPU module by way of the VMEbus P2 connector and provides:

• A connector for attaching a SCSI bus

• Additional P2 options, such as the secondary breakout module

• SCSI termination control

• A connection for and control of a watchdog timeout signal

• A connector to Alpha VME external timing signals

Figure 2–6 shows the primary breakout module.

Figure 2–6 Primary Breakout Module

The numeric callouts in the figure identify the following key components: 

1 SCSI termination and watchdog reset signal jumpers

2 Connector for the secondary breakout module or an external monitoring 
device 

3 SCSI cable connector

128 64 64

256 64 64 64 64

256 128 128

512 128 128 128 128

Table 2–2 Valid DIMM Combinations  (Continued)

Memory Size
(MB)

DIMM 0
(MB)

DIMM 1
(MB)

DIMM 2
(MB)

DIMM 3
(MB)

ML013784

2

3

1

Module Components 2–7



 
 
itch 

-

ri-

he 
ector 
A reset input signal on pin C10 of the primary breakout module’s VMEbus P2
connector is available for resetting the SBC. This signal is low during normal
operation and high during a watchdog timer reset in parallel with the Reset sw
on the SBC’s front panel. Because pin C10 is a nonbuffered input pin, you should 
use shielded wiring to apply the reset input signal. 

Caution

You must use the primary breakout module included in your Alpha VME 
5/352 or 5/480 SBC hardware kit. Applying power to a DIGITAL Alpha 
VME 5/352 or 5/480 SBC WITHOUT that primary breakout module in 
place, or WITH the breakout module included with the AXPvme 160, 
166, or 230 (part number 54-22605-01) in place, may damage your back
plane, the Alpha VME 5/352 or 5/480 SBC, or both.

For information on primary breakout module jumper settings, see the DIGITAL 
Alpha VME 5/352 and 5/480 Single-Board Computers Installation Guide.

2.7 Secondary Breakout Module

The secondary breakout module is an optional module that connects to the p
mary breakout module. Connectors on the secondary breakout module include a 
PS/2 keyboard and mouse Y-cable connector and a parallel port connector. T
primary use of this module is to add a serial-line (keyboard and mouse) conn
and parallel port to the rear of the VME chassis.

Figure 2–7 shows the secondary breakout module. 

Figure 2–7 Secondary Breakout Module

The numeric callouts in the figure identify the following key components: 

1 PS/2 keyboard and mouse connector

ML013785

1

4

3

2

2–8 Module Components



and 
ctor. 
 a 
he 

ilable 
2 PS/2 keyboard and mouse Y-cable (supplied in PMC I/O companion card kits, 
EBV1P)

3 Keyboard and mouse jumper

4 Parallel port 

Note

The Alpha VME 5/352 and 5/480 SBCs support a PS/2-type 101-compat-
ible keyboard and mouse.

2.8 PMC I/O Companion Card

The PMC I/O companion card is an optional third tier module that plugs into a 
connector on the I/O module. Using the PMC I/O companion card, you can 
expand your SBC’s I/O capabilities by adding interfaces, such as a second Ether-
net interface or a graphics card. Primary components on the companion card 
include connectors for two PMC options, a PCI-to-PCI bridge chip, keyboard 
mouse connectors, two VMEbus connectors, and a VMEbus P2 signal conne
The VMEbus P2 signal connector provides a way of sending I/O signals from
PMC option to a device attached to the VMEbus P2 connector instead of to t
front panel of the PMC option card. 

To use the PMC I/O companion card, you must have three adjacent slots ava
in your VME chassis. 

Figure 2–8 shows the layout of the card.

Figure 2–8 PMC I/O Companion Card Layout 

The numeric callouts in the figure identify the following key components:

ML013786
4567

10

8

3

9

11

21
Module Components 2–9



y of 
ctor, 
L 
1 P1 VMEbus connector

2 P2 VMEbus connector

3 VMEbus P2 signal connector for PMC option 1

4 I/O module connector (on the back of the PMC I/O companion card)

5 Power LED

6 Keyboard connector

7 Mouse connector

8 Diskette drive connector

9 Signaling level jumper (jumper MUST be set to 5.0 V)

10 PMC option 2 connector

11 PMC option 1 connector

Note

The Alpha VME 5/352 and 5/480 SBCs support a PS/2-type 101-compat-
ible keyboard and mouse. 

The 34-pin diskette drive connector (see item 8 in Figure 2–8) provides a wa
attaching a diskette drive (for example, an RX23 or RX26). To use this conne
you must make or buy a cable that is best suited for your application. DIGITA
supplies only the pin assignments for the connector.

For a description of the connector pin assignments, see Appendix C.
2–10 Module Components



 3
Functional Components

This chapter describes the functional components associated with the DIGITAL 
Alpha VME 5/352 and 5/480 SBCs. The chapter begins with an overview (Sec-
tion 3.1) and then describes the following:

• 21164 Alpha microprocessor chip, Section 3.2

• 21172 core logic chipset, Section 3.3

• Bcache subsystem, Section 3.4

• Memory subsystem, Section 3.5

• SROM, Section 3.6

• Clock interface, Section 3.7

• PCI interface, Section 3.8

• Nbus interface, Section 3.9

• VME interface, Section 3.10

For information on the address mapping, registers, and system interrupts associ-
ated with these components, see the DIGITAL Alpha VME 5/352 and 5/480 Sin-
gle-Board Computers Technical Reference.
Functional Components 3–1



 
e 
. 
 and 

s 
6 

2 

bit 

bus 
3.1 Functional Component Overview

Figure 3–1 identifies the functional components of the Alpha VME 5/352 and
5/480 SBCs. The Alpha VME 5/352 and 5/480 CPU modules are based on th
21164 Alpha microprocessor, and run at 352 MHz and 480 MHz, respectively
The 21172 core logic chip set consists of the 21172–CA control, I/O interface,
address (CIA) chip and four 21172–BA data switch (DSW) chips.  Nine SRAM
provide 2 MB of Bcache and two or four main memory DIMMs provide from 1
to 512 MB of EDO memory. The system clock uses a phase lock loop 
(PLL)/buffer circuit to provide SYSCLK signals to 10 system components at 3
MHz. 

The CPU module interfaces with the I/O module through a 32-bit PCI bus. As 
Figure 3–1 shows, the I/O module provides a:

• PCI-to-VME64 bridge (DC7407 VIP and VIC64), which provides an inter-
face to the VMEbus

• PCI-to-SCSI controller (53C810), which provides an interface to SCSI 
devices

• PCI-to-Ethernet controller (21040), which provides a network interface

• PCI-to-Nbus bridge (82378ZB), which provides access to the system’s 8-
Nbus and includes interrupt controller and interval timer support

• PCI–32 interface to an optional PMC I/O companion card

The I/O module’s Nbus is a resource bus that is based on the ISA bus. The N
handles the read and write cycles for the following:

• 4M of flash ROM

• Super I/O chip (FDC37C6656T) resources, which include console and paral-
lel ports and a diskette drive

• TOY clock, watchdog timer, and NVRAM chip (DS1386) resources

• Keyboard and mouse controller (82C42PE)

The I/O module interfaces to an optional PMC I/O companion card through the 
32-bit PCI bus. The PMC I/O companion card uses a DEC 21052 PCI-to-PCI 
bridge to provide access to two PMC option slots. This optional card also provides 
keyboard, mouse, and diskette drive connectors.
3–2 Functional Components



Figure 3–1 Alpha VME 5/352 and 5/480 Functional Components

3.2 21164 Alpha Microprocessor

The Alpha VME 5/352 and 5/480 SBCs are based on the 21164 Alpha micropro-
cessor, which is a superscalar pipelined processor manufactured using 0.35 m 
CMOS technology. It is packaged in a 499-pin IPGA carrier.

The 21164 microprocessor can issue four Alpha instructions in a single cycle, 
thereby minimizing the average cycles per instruction (CPI). A number of low-
latency and/or high-throughput features in the instruction issue unit and the 
onchip components of the memory subsystem further reduce the average CPI.

The 21164 microprocessor and associated PALcode implements IEEE single-pre-
cision and double-precision, VAX F_floating and G_floating data types, and sup-
ports longword (32-bit) and quadword (64-bit) integers. Byte (8-bit) and word 
(16-bit) support is provided by byte-manipulation instructions. Limited hardware 

4 MB Flash

Nbus, 8 Bits

PCI Bus, 32 Bits

PMC
Option
Slot 0

ML014166

CPU Module

I/O Module

PMC I/O
Companion

Card

Memory Control

Memory Data, ECC,
256 or 128 Bits

21172-BA
Data Path
(4 chips)

21172-CA
Memory

Controller
and I/O

Interface

System Bus Address, Tag_Dirty, Tag_Ctl

2 MB
Bcache

Control

System Bus Data, ECC, Tag, 128 Bits

Control

PCI Bus, 64 Bits
SROM

Main
Memory
(2 or 4)

8 to 128 MB
DIMMs

352 or
480 MHz

CPU
Clock

21164
Micro-

processor

Phase
Lock Loop SYSCLK <9:0>

32 MHz
SYSCLK 10

DEC21052
PCI-to-PCI

Bridge

PMC
Option
Slot 2

32
Bits

32
Bits

VIP/VIC64
PCI-to-VME

Bridge

53C510
SCSI

Controller

DEC21040
Ethernet
Controller

VMEbus SCSI Ethernet

= Uses system clock (32 MHz)

DS1386

TOY Clock

Watchdog Timer

32 KB NVRAM

S10 Chip 82378ZB

Interrupt Controller

PCI-to-Nbus Bridge

Interval Timer

Super I/O
FDC37C6656T
Console and
Parallel Ports

82C42PE
Keyboard

and Mouse
Controller

Diskette
Console
Console

Parallel Port

Keyboard

Mouse

µ

Functional Components 3–3



ional 
support is provided for the VAX D_floating data type. Partial hardware implemen-
tation is provided for the architecturally optional FETCH and FETCH_M instruc-
tions. 

Other features of the microprocessor include:

• An onchip, demand-paged memory-management unit with a translation buffer

• Two onchip, high-throughput pipelined floating-point units, capable of exe-
cuting both DIGITAL and IEEE floating-point data types

• An onchip, 8 KB virtual instruction cache (Icache) with 7-bit ASNs 
(MAX_ASN=127

• An onchip, dual-read-ported, 8 KB data cache (Dcache)

• An onchip, write buffer with six 32-byte entries

• An onchip, 96 KB, 3-way, set-associative, write-back, second level (level 2) 
mixed instruction and data cache

• A 128-bit data bus with onchip parity and error correction code (ECC) sup-
port

• An external third level (level 3) synchronous 2 MB backup cache (Bcache)

• An internal clock generator providing a high-speed clock used by the 21164 
microprocessor, and a pair of programmable system clocks for use by the 
CPU module

• Onchip performance counters to measure and analyze CPU and system per-
formance

• Chip and module level test support, including an Icache test interface to sup-
port chip and module level testing

• A 3.3 V external interface and 2.5 V core power for reduced power consump-
tion

Figure 3–2 shows the microprocessor’s functional units and caches in a funct
block diagram.

Figure 3–2 21164 Alpha Microprocessor Functional Block Diagram

For more detailed information on the microprocessor, see the Digital Semiconduc-
tor 21164 Alpha Microprocessor Hardware Reference Manual.

ML014168

Instruction
Cache
8 KB

Instruction
Fetch/

Decode
and

Branch
Unit

Integer

Integer

FPX

FPX

Merge
Logic

Data Cache
8 KB

Write-Through

Second-
Level
Cache
96 KB
Write-
Back

Bus
Interface

Unit

21164
Microprocessor

2 MB
Backup
Cache

128-Bit Data

40-Bit Address
3–4 Functional Components



3.3 21172 Core Logic Chipset

The DIGITAL 21172 core logic chipset supports the 21164 Alpha microprocessor 
in high-performance uniprocessor systems. The chipset includes an interface to 
the 64-bit peripheral component interconnect (PCI) bus, and associated control 
and data paths for the 21164 microprocessor chip, memory, and level 3 Bcache. 

Sections 3.3.1 and 3.3.2 discuss the chipset components and features. For more 
detailed information on the 21172 core logic chipset, see the Digital Semiconduc-
tor 21172 Core Logic Chipset Technical Reference Manual.

3.3.1 Chipset Components 

The chipset consists of:

• A control, I/O interface, and address (CIA) chip − 21172-CA chip

The CIA chip is a 388-pin plastic ball grid array (PBGA) package that 
provides control functions for main memory, a bridge to the 64-bit PCI 
bus, and control functions for the DSW chips and part of the I/O data 
path. 

• Four data switch (DSW) chips − 21172-BA chips

The DSW chips are 208-pin plastic quad flat pack (PQFP) packages that 
provide bidirectional data paths between the 21164 microprocessor, main 
memory, Bcache, the CIA chip, and part of the I/O data path. The major-
ity of the DSW logic consists of data buffers and multiplexers. Using two 
encoded control fields, the CIA chip directs data flow to and from the 
DSW chips.

3.3.2 Chipset Features

The chipset includes the majority of functions required to develop high perfor-
mance systems that require minimum discrete logic on the module. Features 
include:

• Support for the 21164 Alpha microprocessor chip

• A 64-bit, ECC-protected data path (IOD bus) between the CIA and DSW 
chips

• A 128-bit ECC-protected data path (system bus) between the 21164 and DSW 
chips

• A 256-bit ECC-protected memory data path (memory bus) between the DSW 
chips and memory

• A 32 MHz system bus interface

• Support for 2 MB of write-back, ECC-protected, level 3 Bcache using the 
flush cache coherency protocol 

• Support for 16 to 512 MB of EDO memory

• PCI bus support that includes 64-bit multiplexed address and data paths, 64-
bit PCI address handling, and scatter-gather mapping 
Functional Components 3–5



 
em-

IA 
a 
per-
• 32 MHz PCI clock frequency

• DSW chips that provide a victim buffer for read miss/victim transitions

3.4 Bcache Subsystem

The DIGITAL Alpha VME 5/352 and 5/480 SBCs provides 2 MB of direct 
mapped Bcache. The Bcache is populated with nine 9 nanosecond, 64K-bit X 36-
bit synchronous static random access memories (SRAMs). Bcache features 
include:

• A block size of 64 bytes 

• System bus Bcache private read/write transfer rate of 700 MB/s

• ECC protection

• Use of the flush cache coherency protocol as described in the Digital Semi-
conductor 21164 Alpha Microprocessor Hardware Reference Manual

The 21164 Alpha microprocessor controls the level 3 Bcache array as shown in 
Figure 3–3. 

Figure 3–3  Level 3 Bcache Array

3.5 Memory Subsystem

The Alpha VME 5/352 and 5/480 SBCs support two or four dynamic random 
access memory (DRAM) DIMMs for up to a total of 512 MB of 60 nanosecond, 
EDO main memory. The memory resides in a single bank. Table 2–2 lists valid 
DIMM combinations.

Quadword error checking and correction (ECC) is supported on the memory and
system buses. The 21172 core logic chipset controls and routes all CPU-to-m
ory caching and PCI direct memory access (DMA) operations. The DSW and C
components of the chipset provide a high-speed memory data path that has 
width of either 128 or 256 bits, depending on the mode in which the SBC is o

ML013816

21164
Microprocessor

index_h<20:4>

un_data_ram_oe_h

un_data_ram_we_h

un_tag_ram_oe_h

un_tag_ram_we_h

index_h<20:6>

tag_data_h<38:30>

tag_data_h<29:20>

tag_data_par_h

tag_ctl_par_h

tag_valid_h

tag_dirty_h

data_h<127:0>

data_check_h<15:0>

Bcache
SRAM

Buffer
st_clk1_h st_clk1_<9:1>_h

idle_bc
(From CIA Chip)

Tag
Array

Data
Array
3–6 Functional Components



the 
ory 
AS 
in 

that 
tem 

ROM 

ies 

to 

ach 

b-
sts of 
ating. When you use two DIMMs, the SBC operates in 128-bit mode; when you 
use four DIMMs the SBC operates in 256-bit mode. The memory bus bandwidth 
in 128-bit mode is 210 MB/s, while the bandwidth in 256-bit mode is 355 MB/s.

The memory subsystem optimizes its cache read miss with victim write cycle to 
improve memory and system bus bandwidth. The optimizations are achieved by 
partitioning the the memory row and column addressing such that the read miss 
row and victim row addresses match.

The cache read miss cycle begins when the 21164 Alpha microprocessor recog-
nizes a cache read miss with victim. When a read miss with victim is identified, 
the microprocessor instructs the CIA chip to take the victim and then get the read 
miss data. The CIA chip places the victim data in a DSW buffer while initiating a 
memory read cycle (RAS–CAS–RAS). The CIA and DSW chips then supply 
read data to the microprocessor and cache then write the victim data to mem
(CAS–CAS). The resulting memory cycle — CAS – RAS (read 32 bytes) – R
(read 32 bytes) – RAS (write 32 bytes) – RAS (write 32 bytes) — completes 
360 ns or 355 MB/s.

3.6 SROM

The SROM for the Alpha VME 5/352 and 5/480 SBCs contains 8 KB of code 
is loaded into the Alpha 21164 microprocessor’s Icache serially when the sys
powers up or during a reset. Execution is passed to this code in PAL mode. S
initialization is explained in detail in Chapter 7.

The SROM is socketed to allow future firmware upgrades. 

3.7 Clock Interface

The CPU clock circuit used by the Alpha VME 5/352 and 5/480 SBCs multipl
a 16 MHz clock frequency by 22 or 30 and buffers the results, supplying the 
Alpha 21164 microprocessor with a 352 MHz or 480 MHz clock speed. The 
microprocessor divides the input value 352 or 480 by 11 or 15, respectively, 
generate the system clock.

The 21164 system clock signal (SYSCLK) drives a phase lock loop (PLL)/buffer 
circuit. That circuit, in turn, generates 10 copies of the 32 MHz SYSCLK signal 
for the 21172 core logic chip set components and all PCI devices.

The 21172 core logic chipset generates its own 1x and 2x clock signals on e
DSW and CIA chip.

3.8 PCI Interface

The PCI interface consists of a PCI bus that serves as the base of the I/O su
system, connecting all of the system’s PCI devices. The I/O subsystem consi
the 21172 core logic CIA and DSW chips and the following PCI devices:

• Ethernet controller

• SCSI controller

• PMC I/O companion card 
Functional Components 3–7



mbly.

 

 the 

e 
 

 This 
 
 

• Nbus interface 

• VME interface

Sections 3.8.1 to 3.8.3 briefly discuss Ethernet, SCSI, and PCI Expansion Card 
support. For introductions to the Nbus and VME interfaces, see Sections 3.9 and 
3.10. 

3.8.1 Ethernet Controller

The Ethernet controller for the Alpha VME 5/352 and 5/480 SBCs is based on the 
DECchip 21040-AA. This chip keeps processor intervention in local area network 
(LAN) control to a minimum. The chip behaves:

• As a bus slave when communicating with the PCI bus to gain access to con-
figuration and control/status registers

• As a bus master when communicating with memory

The Ethernet controller handles the following types of cycle termination:

• Target-initiated retry

• Abort

• DEVSEL abort

Target-aborted terminations cause an interrupt.

The physical connection to the network is through the Ethernet 10BASE–T 
twisted-pair connector located on the front panel of the CPU and I/O subasse

The Ethernet ID address for the Alpha VME 5/352 or 5/480 SBC assembly is
stored in a 20-pin socketed PLCC.

For more information on programming and using the DECchip 21040-AA, see
DECchip 21040-AA Specification.

3.8.2 SCSI Controller

The SCSI controller for the Alpha VME 5/352 and 5/480 SBCs is based on th
Symbios 53C810 chip. This controller allows you to attach up to seven SCSI
devices to your SBC.

The primary breakout module provides an interface to a standard SCSI cable.
module brings the SCSI bus to a standard 50-pin SCSI connector pinning for
direct connection to an unshielded SCSI A-cable. A 6-pin jumper block on the
module controls SCSI termination as follows:

• Enables SCSI termination when the jumper is set across pins 1 and 3

• Disables SCSI termination when the jumper is set across pins 3 and 5

The controller can affect high-level SCSI operations with very little intervention 
from the processor. The controller accomplishes this through its low-level register 
interface or by applying Symbios SCSI scripts.

Once the controller is configured in PCI address space, programming of the Sym-
bios 53C810 chip is compatible with the Symbios 53C720 chip. 
3–8 Functional Components



’s 

hip 
idth 
ctor 

st 
ncy 
h 
 

 the 
vides 
 
 

For more information on programming the Symbios 53C720 chip, see the chip
programming guide.

3.8.3 PMC I/O Companion Card

The optional PMC I/O companion card provides a 21052 PCI-to-PCI bridge c
and two sets of PMC connectors for adding one double-width or two single-w
PMC option modules. One of the PMC connector sets includes a third conne
that allows I/O access through the P2 connector.

PCI bus arbitration supports two PMC devices with up to four interrupt reque
lines. The PCI clock is driven from the CPU and I/O subassembly at a freque
of 32 MHz. The card connectors provide 3V and 5V supply voltages. Althoug
you can have mixed supply voltages between cards, the PCI bus signaling voltage
must be configured to 5 V when the card is installed.

3.9 Nbus Interface

The Nbus interface is a simple nonmultiplexed resource bus that is based on
ISA bus and supports 8-bit data transfers and 16-bit addressing. This bus pro
an interface to the PCI bus through an Intel System I/O chip (82378ZB). The
interface translates PCI I/O references to the Nbus into simple read and write
cycles for resources attached to the Nbus lines. Such resources include the sys-
tem’s:

• Interrupt controllers

• Flash ROM

• TOY clock

• Watchdog timer

• NVRAM

• Interval timer

• Keyboard and mouse controller

• Super I/O chip

3.9.1  Interrupt Controllers

Most interrupts on Alpha VME 5/352 and 5/480 SBCs are routed through the fol-
lowing interrupt controllers:

• Xilinx interrupt controller

• VIC64 chip system interrupt controller

• SIO chip (82378ZB) programmable interrupt controller

The Xilinx interrupt controller handles CPU interrupts. This controller consists of 
four interrupt mask registers that generate CPU interrupt request signals.
Functional Components 3–9



Y) 
lity 

ute, 
ate for 
n 

me-

ess 
ition, 
ns. 
The VIC64 chip interrupt controller handles VMEbus interrupts. It controls two 
external/system interrupt sources: DC7407 status and DC7407 errors. Each of 
these sources has an associated interrupt control register (ICR) that allows the 
interrupt to be programmed with an interrupt priority level (IPL) or disabled.

Use of the VIC64 chip in Alpha VME 5/352 and 5/480 SBCs as an interrupt con-
troller is modified slightly by the operation of the DC7407, the SIO chip, and the 
interrupt/mask registers.

The SIO chip interrupt controller delivers interrupts from the mouse, keyboard, 
and Super I/O chip (37C665) to the interrupt/mask register.

For more information about the interrupt controllers and the handling of system 
interrupts, see the DIGITAL Alpha VME 5/352 and 5/480 Single-Board Comput-
ers Technical Reference .

3.9.2 Flash ROM

The Alpha VME 5/352 and 5/480 SBCs have a total of 4 MB of electrically eras-
able and writable flash ROM. The flash ROM is segmented into 1 MB windows, 
using bits <1:0> of a module control register. The system console firmware is pre-
written into the first 512 KB, providing you with 3.5 MB of additional space to 
use for your application. 

To protect the contents of the flash ROM from unauthorized or accidental updates, 
you must close DIP Switch 2 on the I/O module before enabling write operations. 
That switch must always be open unless you are updating the flash ROM. (The 
state of the switch is stored in Flash Switch bit <3> of the module control regis-
ter.) Independent of the state of the switch, you can overwrite the setting in the 
software to enable automatic updates.

3.9.3 TOY Clock

The Dallas Semiconductor DS1386 chip provides the SBC’s time-of-year (TO
clock functionality. This chip also supports the watchdog and SRAM functiona
as nonvolatile random access memory (NVRAM).

Note

The Alpha VME 5/352 and 5/480 SBCs do not support the DS1386 chip’s 
alarm features.

The TOY clock maintains the system’s time: year, month, date, day, hour, min
second, 110th of a second, and 1/100th of a second. The clock corrects the d
months with fewer than 31 days and for leap years.   In addition, the clock ca
maintain the time in 24-hour or 12-hour AM/PM format.

The square wave output of the chip generates a fixed 1024 Hz interval and ti
keeping accuracy is better than +/- minute/month at 25 C.

The clock maintains time in the absence of Vcc by using an internal lithium (l
than 0.5 grams) energy cell that has an active life of at least 10 years. In add
internally the clock protects against spurious accesses during power transitio

°

3–10 Functional Components



the 
m 
Some applications may require the TOY clock and NVRAM to operate from an 
external uninterruptable power supply (UPS). The Alpha VME 5/352 and 5/480 
SBCs have an onboard switch (J3 switch 1) to allow a connection to the 5 V 
standby connection (5VSTDBY) on the VMEbus. When Switch 1 is closed, the 
VME 5VSTDBY is connected to the TOY supply through isolation diodes.

The chip is socketed to allow:

• Replacement when the internal power source is no longer functional

• Physical removal of the NVRAM

The TOY clock registers are updated every 0.01 seconds. You gain access to the 
clock to examine or set the current time by using the console date command (see 
Section 5.5).

3.9.4 Watchdog Timer

The watchdog timer resides on the Dallas Semiconductor DS1386 chip.    The 
watchdog timer allows hardware to bring the system back to a known state when a 
software failure occurs.

An application can initialize the watchdog timer with a value in the range 0.01 to 
99.9 seconds. If left unaccessed, the timer decrements towards 0. If the timer 
reaches 0, the watchdog timer halts the system (jump to Halt entry in firmware) 
and then forces the module hardware to be reset (some 300 ms later). The applica-
tion can maintain the module by periodically accessing the watchdog timer regis-
ters. When you access these registers, the watchdog timer resets back to the 
initialization value. Therefore, as long as the worst-case time between watchdog 
timer access is less than the programmed timeout value, the module functions nor-
mally.

The Alpha VME 5/352 and 5/480 SBCs indicate the status of the on-board watch-
dog timer with the signal WD_STATUS_OC on pin C6. This signal is driven low 
when an on-board watchdog timer expires. The device that drives the signal is a 
74LS05 open-collector inverter. This device is capable of sinking the signal a 
maximum of 8 mA (IOL). You can pull up the WD_STATUS_OC signal to the 5 
V rail by using a 2 K  resistor and setting the primary breakout module jumper 
across pins 4 and 6 (default). To disconnect the resistor from the 5 V rail, set the 
jumper across pins 2 and 4.

In addition to the hardware support for watchdog timer operation, you can config-
ure the firmware to dispatch to user code or continue with its default reset action 
on watchdog timeout. The firmware can detect the expiration of the watchdog 
timer during a reset operation by examining the hardware reset reason register. 
The jump to the Halt code just before the reset enables the firmware to record a 
snapshot of the processor’s state before the hardware reset is complete.

3.9.5 NVRAM

Within the TOY clock, the Alpha VME 5/352 and 5/480 SBCs offer just under 32 
KB of on-board SRAM that is backed up by battery. The RAM is provided by 
Dallas Semiconductor DS1386 chip and is held nonvolatile by a built-in lithiu
battery source.

Ω

Functional Components 3–11



w-
t 
ta-

 by 

11. 
 
 
n 

tus 
The nonvolatile RAM (NVRAM) is accessible for read and write operations in 
Nbus space. The DS1386 chip contains 32 KB read/write byte elements. The low-
est 14 of these bytes have special register functions for operation of the TOY clock 
and watchdog timer. You can use the remaining bytes, 32754 bytes, as general-
purpose bytewide read/write RAM.

3.9.6 Interval Timer

The interval timer for the Alpha VME 5/352 and 5/480 SBCs is based on the 
82C54 chip. On power up, the 82C54 chip is in an undefined state and must be ini-
tialized before being used. For information on how to initialize the chip, see the 
DIGITAL Alpha VME 5/352 and 5/480 Single-Board Computers Technical Ref-
erence.

3.9.6.1 Timers

This chip is made up of three independent 16-bit counter/timers that are function-
ally identical: 

The timers are implemented by register/interrupt logic. The programming inter-
face is byte wide in the Nbus region of PCI I/O space.

Table 3–1 Timers

Timer Description

Timer 0 Must be clocked externally by P2 pin C13. Optionally, this timer’s 
gate input can be driven by P2 pin C14. When this timer makes a lo
to-high transition, its output causes the assertion of an input reques
(IRQ). To dismiss the IRQ, you need to access the timer interrupt s
tus register.

Timer 1 Operates as a rate generator with its output being driven off-module
P2 pin C12. This timer is clocked by a fixed 10 MHz. The output is 
also routed directly to the VIC local IRQ input <3>.

Timer 2 Operates as a rate generator with its output connected to P2 pin C
This timer is clocked with the same fixed 10 MHz. You can also use
the output on the module to generate an IRQ. If enabled, Timer #0’s
output during a transition from low-to-high causes the assertion of a
IRQ. To dismiss the IRQ, you need to access the timer interrupt sta
register.
3–12 Functional Components



t) 
3.9.6.2 Timer Modes

In addition to supporting the three timers discussed in Section 3.9.6.1, the Alpha 
VME 5/352 and 5/480 SBCs implement two timer modes (modes 1 and 3) pro-
vided by the 82C54 chip for timers 1 and 2. The hardware connections for the 
timer output are available on the P2 VMEbus connector.  The timers are driven 
from an internally generated 10 MHz asynchronous clock.

Applications can uses these timers for a variety of off-module functions. For more 
information about how to use the timers and timer modes, see the DIGITAL Alpha 
VME 5/352 and 5/480 Single-Board Computers Technical Reference.

3.9.7 Keyboard and Mouse Controller

The keyboard and mouse controller is provided by an Intel 82C42PE single-chip 
microcomputer. The controller is programmed to be IBM PC/AT compatible and 
can drive the keyboard and PS/2 type mouse supported by DECpc systems. The 
keyboard and mouse ports are female 6-pin mini-DIN, PS/2 type connectors. The 
controller is programmed to allow either device to operate in either port.

3.9.8 Super I/O Chip

The FDC37C665GT Super I/O chip (not to be confused with the standard I/O, or 
SIO, chip) supports serial-line port channels A and B (16550 UARTS) and a paral-
lel port. It provides first-in-first-out (FIFO) data access for the serial ports and 
EPP/ECP modes for the parallel port. 

The Alpha VME 5/352 and 5/480 SBCs use channel A for the console. The firm-
ware configures this channel as an asynchronous line, using baud rate, parity, data 
bit, and stop bit configuration data that you define and is stored in NVRAM. If 
NVRAM does not contain valid data on power-up, the SBC configures channel A 
with defaults of 9600 baud, no parity, eight bits, and one stop bit.

The system firmware does not commit or initialize channel B.

3.10 VME Interface

The PCI-to-VME interface for the Alpha VME 5/352 and 5/480 SBCs conforms 
to the IEC 821, IEEE1014–1987, and D64 sections of IEEE1014 Rev.D (draf
standards. The interface is implemented using the following components:

• VIP ASIC (DC7047B) chip

Table 3–2 Timer Modes

Mode Description

1 Allows the application to write a value n to the timer. An external 
hardware trigger causes the timer to count down from n to zero. If a  
new value n is written to an associated mode 1 register before the 
countdown reaches zero, the timer begins counting from the new value 
at clock n+1.

3 Allows the application to write a value n to the timer. The timer uses 
the value to generate a square wave with a period equal to n times the 
10 MHz clock period.
Functional Components 3–13



 

• The Cypress Semiconductor VIC64 VMEbus interface chip set

• Three CY7C964 bus interface chips

• Static scatter-gather RAM for address mapping

• Support logic implemented with programmable logic devices (PLDs)

The VIP/VIC64 chip combination accepts and generates VMEbus D08, D16, 
D32, and D64 data transfers and protocols. The chip combination supports 
addressing modes A16, A24, and A32 as a master or slave on the VMEbus.

The VIP chip uses information stored in the scatter-gather RAM to perform big-
to-little endian data translation (byte swapping) and address mapping when data 
moves to and from the VMEbus. 

Figure 3–4 shows the interface components and the address and data paths
between them.

Figure 3–4 PCI-to-VME Interface Components

3.10.1 VIP Chip

The VIP chip controls the 32-bit wide PCI bus. Its PCI configuration registers 
allow it to function as the PCI bus target and initiator. The VIP chip:

• Functions as a PCI slave to all processor I/O read and write operations that 
target the VIP registers, the CY7C964 chip registers, the scatter/gather RAM, 
or VME memory space

• Responds to PCI interrupt acknowledge cycles when set up as the PCI inter-
rupt responder

• Functions as a PCI master in response to the VIC64 chip requesting data from 
or sending data to PCI memory

ML014167

VME_A[31:1]

CY7C964
A,D<31:24>
VME_A,D
<31:24>

VME_D[31:0]

CY7C964
A,D<23:16>
VME_A,D
<23:16>

CY7C964
A,D<15:8>
VME_A,D

<15:8>

VIC64

VME_A,D<7:0>

<D<31:0>

<A<31:0>

VIC CSRs

A<7:0>

D<7:0>

A<31:0> D<31:0> A<27:13> D<31:5>

Scatter/Gather
RAM

VIP
VIP Registers

PCI Bus
3–14 Functional Components



nce
• Performs address translation between the PCI bus and the VMEbus for trans-
fers to and from the VMEbus

3.10.2 VIC64 and CY7C964 Chips

The VIC64 and CY7C964 chips control the VMEbus. The VIC64 chip functions 
as a VMEbus slave in response to VME addresses that match those set up by the 
address base and address base mask registers. This chip functions as VMEbus 
master:

• In response to the processor reading from and writing to VME memory  (pro-
grammed I/O)

• To execute DMA transactions (master block transfers) set up by the processor 
in the VIP/VIC64 interface

For more information on the VIC64 and CY7C964 chips, see the Cypress Semi-
conductor VIC068 User’s Guide, VIC64 design notes, and CY7C964 User’s 
Guide.

3.10.3 Address Mapping and the Scatter-Gather Map

The VIP chip translates addresses by using a mapping table in scatter-gather RAM 
called the scatter-gather map. The scatter-gather map translates addresses for out-
bound and inbound VMEbus transactions. 

For outbound transactions, the VIP chip maps a 512 MB region of PCI memory 
space to the VMEbus. The outbound scatter-gather map translates a maximum of 
2K naturally aligned 256 KB pages within that 512 MB region to 256 KB of natu-
rally aligned pages on the VMEbus (A32, A24, or A16). A PCI address is used as 
an index into the scatter-gather map to give the corresponding VME address.

For inbound transactions, the VIP chip maps naturally aligned 8 KB regions of 
VMEbus A32 and A24 address spaces to naturally aligned 8 KB regions of PCI 
address space (memory or I/O). The inbound scatter-gather map consists of two 
parts. One part translates up to 2K pages (8 KB) of VMEbus A24 address space to 
8 KB pages of PCI address space. The other part maps up to 16K pages (8 KB) of 
VMEbus A32 address space to 8 KB pages of PCI address space. An incoming 
VME address is used as the index to select the PCI address. 

The scatter-gather map may be accessed from the PCI bus (written to or read 
from) under VIP control. Scatter-gather entries also contain information to control 
inbound accesses and byte swapping.

The VIP chip contains a single entry scatter-gather cache and a set of registers. 
The cache stores the last accessed outbound scatter-gather entry and its corre-
sponding scatter-gather address index. The registers provide mapping for inbound 
and outbound transactions (one mapping in each direction).

For more information about VME interface address mapping, see the DIGITAL 
Alpha VME 5/352 and VME 5/480 Single-Board Computers Technical Refere.
Functional Components 3–15





Part II
The Console
Part II discusses the console interface for the DIGITAL Alpha VME 5/352 and 
5/480 single-board computers (SBCs). This part consists of the following chap-
ters:

• Chapter 4, Console Basics 

• Chapter 5, Using the Console

• Chapter 6, Console Command Reference





 4
Console Basics

The Alpha VME 5/352 and 5/480 SBC console provides an interface to the SBC 
firmware. From a video terminal or video terminal emulator, you can use console 
firmware commands to perform operations such as configuring your system, 
debugging your application, embedding script code in the NVRAM, or updating 
the firmware. 

This chapter introduces you to console basics by:

• Explaining required serial-line settings, Section 4.1

• Identifying console features, Section 4.2

• Explaining how to enter console mode, Section 4.3

• Explaining how to exit console mode, Section 4.4

• Discussing online help, Section 4.5

• Providing an overview of console commands, Chapter 4.6

• Describing special keys, Section 4.7

• Discussing command line characteristics, Section 4.8

• Describing console command operators, Section 4.9

• Explaining how to control the radix of command input, Section 4.10

• Explaining how to use flow control, Section 4.11

• Explaining how to filter output, Section 4.12

• Explaining how to redirect I/O, Section 4.13

• Explaining how to run commands in background mode, Section 4.14

• Discussing the use of scripts, Section 4.15

• Explaining how to copy scripts over the network, Section 4.16 

4.1 Setting Up the Console for Use

To use the console firmware, you need to connect your SBC to a console device. 
The console device can be a video terminal connected with a serial line or a PC or 
workstation connected to the system through the network running a terminal emu-
lator. 

For information on installing serial-line or network cables, see the DIGITAL 
Alpha VME 5/352 and 5/480 Single-Board Computers Installation Guide.

Once you have connected the SBC to a console device, set up the device to use the 
following parameters:
Console Basics 4–1



ter-
• Send/receive 9600 baud

• DEC VT100 (ANSI)

• Eight (8) bit data word

• No parity

• One (1) stop bit

• Xon/Xoff

4.2 Console Features

The Alpha VME 5/352 and 5/480 SBC console environment is extremely power-
ful and features: 

• An operator interface

• An operating system bootstrap mechanism 

• Operating system restarts

• Self-test and extended functional diagnostics

You can use UNIX command methods, such as piping, I/O redirection, and com-
mand-level scripting. Because the console is built around a multitasking kernel, it 
can support more complex functions, such as system exercisers, the Maintenance 
Operations Protocol (MOP) listener, and remote console operations.

4.3 Entering Console Mode

Console mode provides the user interface to the SBC’s firmware. You enter this 
mode automatically when the power-on self-test (POST) completes. Upon en
ing console mode, the system displays the following prompt: 

>>> 

The system also enters console mode when:

• You press the Halt/Reset switch on the front panel. 

• The SBC receives a VMEbus reset signal and configuration switch 3 on the 
I/O module is enabled. 

• You use the operating system command for entering console mode.

• The operating system executes a HALT instruction.

• The watchdog timer is enabled, and the system software allows the timer to 
time out.

• You initiate an external hardware reset by using pin C10 on the P2 VMEbus 
connector.
4–2 Console Basics



Note

Depending on the operating system and applications running at the time, 
pressing the Halt/Reset switch or receiving a VMEbus reset signal with 
configuration switch 3 enabled could damage application files.

4.4 Exiting Console Mode

To exit console mode, use the console command boot.

4.5 Online Help

The Alpha VME 5/352 and 5/480 SBC console provides online help for each con-
sole command. Sections 4.5.1 through 4.5.3 discuss:

• How to display online help

• How to display help for multiple commands

• How to control the display of online help

4.5.1 Displaying Online Help

To display online help, specify the help or the man command with the name of 
the command for which you are seeking help. If you do not specify a command 
name, the console displays a complete listing of console commands.

For help on the help or man command, including help on the symbols used to rep-
resent syntax, specify help or man with the help command as shown in the fol-
lowing example:

>>> help help

4.5.2 Displaying Online Help for Multiple Commands

You can request help on multiple commands in a single command line by separat-
ing the command names with a space or by using wildcards. The following exam-
ple shows how to display help on the examine and deposit commands:

>>> help examine deposit
NAME

examine
FUNCTION

Display data at a specified address.
SYNOPSIS

examine [-{b,w,l,q,o,h,d}] [-{physical,virtual,gpr,fpr,ipr}]
[-n <count>] [-s <step>]
[<)device>:]<address>

NAME
deposit

FUNCTION
Write data to a specified address.

SYNOPSIS
deposit [-{b,w,l,q,o,h}] [-{physical,virtual,gpr,fpr,ipr}]

[-n <count>] [-s <step>]
[<device>:]<address> <data>
Console Basics 4–3



 at a 

ar 

om-
 

pling 
To display help on all commands that begin with “st”, such as start and stop, 
specify an asterisk (*) as follows:

>>> help st*

4.5.3 Controlling the Display of Online Help

If full help is available, the commands help * and man * display all information 
on all commands. To control the amount of help text that the console displays
time, combine the help or man command with the more command. The following 
example combines the help and more commands: 

>>> help * | more

This command combination displays a screen of text at a time. Press the spaceb
to continue the display or press Ctrl/C to terminate the display. 

4.6 Console Command Overview

The Alpha VME 5/352 and 5/480 SBC console interface consists of a set of c
mands for operating a system, running diagnostics, and verifying application
design. Some of the commands are similar in function to UNIX commands. 

Chapter 6 describes the console commands in detail. Table 4–1 shows a sam
of the most commonly used commands.

Table 4–1 Commonly Used Console Commands 

Command Description

boot Bootstraps the system

cat Copies the contents of files to standard output

deposit Writes data to a specified address

echo Sends specified text to the current output device

eval Evaluates a specified expression

examine Displays the contents of a specified address

exer Exercises system devices with read, write, and comparison operations

grep Searches for expressions and writes the search results to standard out-
put

hd Dumps the contents of a file

help Displays the definition and syntax for specified commands

ls Displays a listing of files in the system

man Displays the definition and syntax for specified commands

memexer Executes memory test processes in the background

memtest Executes memory tests

ps Displays the status and statistics associated with system processes

sa Specifies the processors on which a specified process can run 
4–4 Console Basics



nd’s 
s, 
. For 

le 

nal 
Most console commands require that you specify arguments. In most cases, you 
can also specify options that give you a finer level of control over the comma
execution. Options have a hyphen (-) prefix, as in -b. When specifying option
you must separate the option from the command and arguments with spaces
example, you must specify e -b 0. If you enter e-b 0, the console issues an 
error message.

4.7 Special Keys

Table 4–2 lists special key and key combinations that perform specific conso
operations.

4.8 Command Line Characteristics

The character sequence used for the console prompt (>>>) is:

0Dh 0Ah 0Dh 3Eh 3Eh 3Eh 20h 

This translates to:

<CR>  <LF> <CR>   > > >  <SP>

Host system software executing a binary load operation on the console termi
port can look for this character string to determine when to respond.

set Sets the value of an environment variable

show Displays information about the system

sleep Suspends execution of a console process

Table 4–2 Special Keys for Console Operation 

Keys Operation

Ctrl/U Ignores the current command line.

Backspace/Delete Deletes a character within the command line.

Ctrl/S Suspends command output to the console terminal.

Ctrl/Q Resumes command output to the console.

Ctrl/C Aborts the current command, if possible.

The console program has no control of an abort once it passes 
control to another program, such as an operating system or 
loadable diagnostic.

Ctrl/R Retypes the current command line.

Ctrl/O Causes the console to throw away output characters rather 
than send them to the terminal.

Entering another Ctrl/O resumes sending output characters to 
the terminal.

Up and down arrows Recall command lines.

Table 4–1 Commonly Used Console Commands  (Continued)

Command Description
Console Basics 4–5



Commands are limited to 80 characters. Characters that you enter beyond the 80-
character limit replace the last character in the buffer. Depending on your termi-
nal, the lost characters may be displayed, but they are not included in the actual 
command line.

The command interpreter is not case-sensitive. Lowercase ASCII characters a 
through z are treated as uppercase characters.

The parser rejects characters with codes greater than 0x7F. However, such charac-
ters are acceptable in comments.

The console does not provide type-ahead buffer support. The console checks char-
acters received before the console prompt appears for special characters (Ctrl/S, 
Ctrl/Q, Ctrl/C), but otherwise discards the characters.

4.9 Console Command Operators

Table 4–3 lists operators that extend the console command interface.

Table 4–3 Console Command Operators 

Operator Name Description

> Output creation Writes output to a specified destination, such as a 
file.

Form: > destination

>> Output append Adds output to a specified destination, such as a file.

Form: >> destination

< Input redirection Reads input from a specified source.

Form: < source

<< Here document Reads input from standard input until a specified 
string is found at the beginning of a line.
 
Form: << string

| Pipe Uses the output of the first command as the input for 
the second command.

Form: cmd1 | cmd2

; Sequence Runs the first command to completion before run-
ning the second command. 

Form: cmd1; cmd2

\ Line continuation Continues the command on the next line. The 
prompt changes to _> until the command is com-
pleted.

Form: cmd1 \
_> cmd2
4–6 Console Basics



 
 

atch 
4.10 Controlling the Radix of Command Input

By default, the console interprets numbers that you enter in a console command 
line as hexadecimal. To change the radix of command input to decimal, precede 
the input value with %d. To explicitly specify a hexadecimal radix, precede the 
input value with %x.

4.11 Using Flow Control

The console provides reserved words that you can use in flow control struc-
tures.    The reserved words include:

The syntax for valid control structures follows:

• while command_sequence done

# Line comment Ignores the text that follows the operator. Used for 
embedding comments in command scripts or logs.

Form: # text

& Background Runs the command in a background process. The 
command line remains available for a new com-
mand.

Form: cmd1 &

&a Affinity Runs the process on the CPU that is allowed by the 
processor affinity mask, m. You can specify multiple 
processors by using a list or range. 

Form: &a m

( ), { }, ‘ ‘ Grouping Shows which commands are grouped together in 
complex command lines. These operators override
the precedence of pipe, sequence, and background
operators. 

Form: {cmd1; cmd2} |  cmd3

*, ?, [...] Pattern specifiers Specifies a character or group of characters to m
in character strings.

    * matches any characters or none
    ? matches any single character
    [...] matches any of the enclosed characters

Form: str*, arg?, [1 2 3] 

case elif fi in while

do else for then

done esac if until

Table 4–3 Console Command Operators  (Continued)

Operator Name Description
Console Basics 4–7



• while command_sequence do command_sequence done

• until command_sequence done

• until command_sequence do command_sequence done

• for name do command_sequence done

• for name in list do command_sequence done 

• case word in case_part_list
pattern) command_sequence ;;
[ pattern ) command_sequence ;; ] 
esac 

• if command_sequence
then command_sequence
[ elif command_sequence then command_sequence) ]
[ else command_sequence ] 
fi 

The console determines conditional branching in if, while, and until loops by 
checking the exit status of the command sequence that follows the control struc-
ture. In general, an exit status of zero indicates success and results in the execution 
of the true path.

The following example uses the eval command to extract an exit status from vari-
able junk. The console command set initializes the variable. 

>>> set junk 0
>>> show junk
junk                    0
>>> eval junk
0
>>> if (eval junk) then (echo true) else (echo false) fi
0
true
>>> set junk 1
>>> if (eval junk) then (echo true) else (echo false) fi
1
false
>>> set junk 2
>>> if (eval junk)
_> then (echo true)
_> else (echo false) fi
2
false
>>> 

4.12 Filtering Output

You can search for specific values in a device by using a pipe with the grep com-
mand. A pipe (|) enables the output of one command to be the input for the next 
command without creating an intermediate file. The grep command filters its 
input according to the command argument. Because the grep command requires 
input, a pipe is used to channel the output of the examine command into the grep 
command.
4–8 Console Basics



The following example uses grep to search for a pattern in memory. In this case, 
grep parses all the output lines from the examine command, but only permits 
lines that contain ABCDEF12 to reach the display. You can also use the grep com-
mand to search for patterns that do not match the model provided; that is, it 
searches for every line that does not contain the input pattern. The following 
example sets up memory and then uses grep to filter the output.

>>> d pmem:3fff000 0 –n 8 # Clear some memory.

>>> d 3fff020 ABCDEF12 # Drop in a target.

>>> e 3fff000 –n 8 # Display memory.

pmem:          3FFF000 0000000000000000
pmem:          3FFF008 0000000000000000
pmem:          3FFF010 0000000000000000
pmem:          3FFF018 0000000000000000
pmem:          3FFF020 00000000ABCDEF12
pmem:          3FFF028 0000000000000000
pmem:          3FFF030 0000000000000000
pmem:          3FFF038 0000000000000000
pmem:          3FFF040 0000000000000000

>>> e 3fff000 -n 8 | grep ABCDEF12 # Display only lines with ABCDEF12.

pmem:          3FFF020 00000000ABCDEF12

4.13 Redirecting I/O

By default, console commands display on the console terminal. You can redirect 
output to other devices or files by using the redirection operator (>). In the follow-
ing example, the output of the examine command is redirected to file foo, which 
is created dynamically from the console’s memory heap. The console command 
cat, displays the contents of the new file. The rm command deletes the foo file.

>>> ls foo # Check to see if foo exists.

foo no such file

>>> e 3fff000 -n 1 > foo # Redirect examine output to file foo.

>>> ls foo # Check to see if foo exists.

foo

>>> cat foo # Display foo.

pmem:          3FFF000 0000000000000000
pmem:          3FFF008 0000000000000000

>>> rm foo # Delete (remove) file foo.

>>> ls foo # Check to see if foo exists.

foo no such file

4.14 Running Commands in Background Mode

You have the option of executing console commands in background mode. When 
a command executes in background mode, the console creates a process for exe-
cuting the command and leaves the main process available for you to enter a new 
command. You can execute any console command in the background by placing 
the background operator & at the end of the command.
Console Basics 4–9



 

The following example starts three processes in the background. The exer com-
mand invokes the first process, which reads data from block 0 of a disk. Then, the 
memtest command creates two processes that perform console memory tests. In 
all three cases, the console immediately returns with the console prompt and waits 
for you to enter another command.

>>> show device # See what devices are available.

dka0.2.0.1.0               dka0              dka0
eza0.0.0.0.0               EZA0              08-00-2B-1D-02-91
ezb0.0.0.1.0               EZB0              08-00-2B-1D-02-92
pka0.7.0.2.0               PKA0              SCSI Bus ID 7

>>> exer dka0 -sb 0 -p 0 & # Read block 0 forever.

>>> memtest -p 0 & # Start up the memory test forever. 

>>> memtest -p 0 & # Start up another memory test task. 

>>>

4.15 Creating Scripts

A script is a file that contains a sequence of console commands. The console firm-
ware contains many scripts, such as the power-up script, that you can run by typ-
ing the name of the script file.

If you have a complex command or a series of commands that you have to use fre-
quently, you can write a script for your convenience. Use the echo command and 
the output creation operator (>) to write characters to a file. The file is the script. 
The following example creates the script foo, which invokes the examine com-
mand.

>>> echo e pmem:3fff000 > foo# Write "e 0" to file foo. 

>>> cat foo # List foo.

e pmem:3fff000

>>> foo # Execute script foo.

pmem:          3FFF000 0000000000000000

To add another command to the script, use the append operator (>>). If the com-
mand you are appending contains characters that could be interpreted by the echo 
command, specify the characters with a grouping operator. The following example 
uses the single quote (’) grouping character to prevent the command-separator
operator   (;) in the appended command from terminating the echo command.

>>> echo ’d 3fff000 5 ; e 3fff000’ >> foo # Append "d 0 5 ; e 0" to 
foo.

>>> cat foo # List foo.

e pmem:3fff000
d 3fff000 5 ; e 3fff000

>>> foo # Execute foo.

pmem:          3FFF000 0000000000000000
pmem:          3FFF000 0000000000000005
4–10 Console Basics



You can also use a grouping operator to create a script that contains many com-
mands. You have to rearrange the echo command so that the appended characters 
are at the end. Then, use the open grouping operator to open the character string 
and take as many lines as needed to create the script before specifying the close 
grouping operator. The following example shows how to create a long script using 
grouping operators:

>>> echo > foo ’ex 3fff000

_> d 3fff000 7
_> e 3fff000
_> d 3fff000 5
_> e 3fff000’

>>> cat foo

ex 3fff000
d 3fff000 7
e 3fff000
d 3fff000 5
e 3fff000

>>> foo

pmem:          3FFF000 0000000000000000
pmem:          3FFF000 0000000000000007
pmem:          3FFF000 0000000000000005

4.16 Copying Scripts Over the Network

The console provides a mechanism for transferring command scripts over the net-
work. You can create scripts on an OpenVMS system and then fetch them from 
the console of an Alpha VME 5/352 or 5/480 SBC by using the following proce-
dure:

1. Create a file of console commands in the OpenVMS environment, using your 
favorite editor. The following example shows the OpenVMS create command 
being used to create a script file called sample.

$ create sample.
show version
ls –l sample
(Control-Z exit)
$

2. Make the script file compatible with the MOP load protocol. To accomplish 
this, run the add_header.exe program to append a one-block header to the 
file, making it compatible with the MOP load server. This executable program 
is on the Firmware Update CD at [ALPHAVME]ADD_HEADER.EXE. If 
you prefer, copy the file to the SYS$LOGIN area and define it as a foreign 
command, for example, addhead. To run the program, invoke addhead and 
supply the file name as input and a name for the resulting output file.

Note

The current MOP load protocol only supports 15-character file names. To 
make use of all 15 characters in the name, do not specify a file extension. 
The MOP server defaults to a file extension of.sys.
Console Basics 4–11



3. Place the output file in the MOP server’s load file directory, MOP$LOAD. 
Whenever MOP gets a request for the script, it searches in its service area.

At this point, the script file is available on the Ethernet segment of the MOP 
server. If the Alpha VME 5/352 or 5/480 SBC is on the same Ethernet segment as 
the MOP server, the following example copies the script file over the network. 
The string, mopdl:sample.sys/eza0, specifies that the file, sample.sys, can be 
accessed over the Ethernet device, eza0, using the MOP download protocol 
driver, mopdl:.

>>> cat mopdl:sample.sys/eza0# Be patient! The MOP protocol is slow.

show version
ls –l sample
>>> 

You can then use the redirection operator (>) to redirect the output of the cat com-
mand to a local file. The following cat command redirects output to sample.

>>> cat mopdl:sample/eza0 > sample# Remember be patient!

When the console prompt returns, the copy operation is complete. You can then 
display and execute the resident script file, sample, by using the following 
sequence of console commands:

>>> cat sample

show version
ls –l sample

>>> sample

version             V1.1-0 Jul 1 1996 10:16:59

rwx-   rd                512/2048           0   sample
4–12 Console Basics



ns 
 5
Using the Console

This chapter explains how to use the console command interface to:

• Manage environment variables, Section 5.2

• Boot the system, Section 5.3

• Use TFTP to read files across the network, Section 5.4

• Manage the TOY clock, Section 5.5

• Get system information, Section 5.6

• Update firmware, Section 5.7

• Examine and deposit data, Section 5.8

• Manage the console, devices, and processor, Section 5.9

• Manage memory, Section 5.10

• Perform network operations, Section 5.11

• Set reboot to the SROM Mini-Console, Section 5.12

• Control the LED, Section 5.13

• Run the power-up diagnostics script, Section 5.14

• Manage the error log in NVRAM, Section 5.15

• Evaluate expressions, Section 5.16

• Manage console processes, Section 5.17

• Manage files and file content, Section 5.19

5.1 Summary of Console Operations

The DIGITAL Alpha VME 5/352 and 5/480 SBC console interface consists of 
commands for managing the operation of your SBC, running diagnostics, and ver-
ifying the integrity of your system design. Table 5–1 lists the types of operatio
you can perform by using the console commands. 

Table 5–1 Summary of Console Operations 

Operation Command

Managing Environment Variables

Set the value of an environment variable set

Set all environment variables to their default values init_ev

Delete an environment variable from the system’s name spaceclear
Using the Console 5–1



Booting the System

Boot the system boot

Managing the TOY Clock

Set or display the date and time stored in the TOY clock date

Disable the TOY clock’s internal oscillator set toy sleep

Getting System Information

Display the value of a specified environment variable show

Display the system configuration show config

Display the devices and controllers in the system show device

Display the address of the Alpha hardware restart parameter block 
(HWRPB)

show hwrpb

Display the character illuminated on the LED show led

Display a map of the system’s virtual memory show map

Updating Firmware

Update firmware in the system’s flash ROMs update

Examining and Depositing Data

Write data to a specified memory location, register, device, or filedeposit

Display the contents of a memory location, register, device, or fileexamine

Managing the Console, Devices, and the CPU

Initialize the a device or the CPU init

Stop the CPU or system devices stop

Start system devices start

Exercise system devices with read, write, and comparison opera-
tions

exer

Managing Memory

Allocate a block of memory from the system’s heap alloc

Free a block of memory that has been allocated from the system’s 
heap

free

Change the ownership of a block of memory chown

Display the state of dynamic memory dynamic

Display the system’s virtual memory map show map

Test memory memtest

Start a specified number of memory test processes that are to run 
in the background

memexer

Performing Network Operations

Table 5–1 Summary of Console Operations  (Continued)

Operation Command
5–2 Using the Console



Perform maintenance operations protocol (MOP) operations, such 
as loopbacks, ID requests, and remote file loads 

net

Setting Reboot to the SROM Mini-Console

Enter Serial ROM Mini-Console after the next reboot set reboot srom

Controlling the LED

Specify a character to be displayed on the front panel LED set led

Show the character currently being displayed on the front panel 
LED

show led

Running the Power-Up Diagnostics Script

Run the power-up script pwrup

Managing the Error Log in NVRAM

Clear and initialize the area of NVRAM used for console error 
logging

clear_log

Display error log information stored in NVRAM show_log

Evaluating Expressions

Evaluate expressions eval

Managing Console Processes

Create a new shell process sh

Exit the current shell process exit

Start the execution of a program or driver at a 
specified address

start

Display console process status and statistics ps

Delete specified console processes kill

Break from a for, while, or until control loop break

Return a failure status false

Specify the processors on which a console process 
can run

sa

Display the semaphores known to the system semaphore

Set the priority of a console process sp

Suspend the execution of a console process sleep

Managing Files and File Content

Copy specified files to standard output cat

Change the attributes of a specified file chmod

Dump the contents of a file hd

List the files and inodes that are in the system ls

Remove specified files from the system rm

Table 5–1 Summary of Console Operations  (Continued)

Operation Command
Using the Console 5–3



5.2 Managing Environment Variables

Environment variables define the following types of configuration information for 
a system’s firmware and operating system: 

• Boot parameters

• Console terminal characteristics

• Options associated with diagnostic tests

• Network protocols and associated characteristics and data

• Values for storage bus adapters

• Versions of PALcode and console firmware

• PCI bus settings

• Use of TGA video cards

• VMEbus settings

• VxWorks boot file

The data defined by the environment variables is stored in memory. Some of the 
data is stored in volatile memory and some is stored in nonvolatile memory. 

You can use console commands to set and display the values of environment vari-
ables and delete environment variables from the system’s name space. 

Sort the content of a file sort

Writes specified text to standard output echo

Search for expressions in specified files grep

Copy a line from the input channel of a file to 
 the standard output channel for that file

line

Table 5–1 Summary of Console Operations  (Continued)

Operation Command
5–4 Using the Console



rip-

r-

 

p 

 

re 

 

 

 

y 

r-

 

re 

e 
5.2.1 Environment Variable Summary

Table 5–2 lists the environment variables with possible values and brief desc
tions. 

Table 5–2 Environment Variables 

Variable Parameter Values Description

AUTO_ACTION BOOT, HALT, or RESET Defines the action of the console following an error, 
halt, or power-up. Default is HALT.

BOOT_DEV – Specifies the device list to be used by the last, or cu
rently in progress, bootstrap attempt. The console 
modifies BOOT_DEV at console initialization and 
when a bootstrap is initiated by a boot command. 
The value of BOOT_DEV is set from the device list
specified by the boot command or, if no deivce list 
is specified, BOOTDEF_DEV. The console uses 
BOOT_DEV without change on all bootstrap 
attempts that are not initiated by a boot command.

BOOT_FILE file-name Specifies the file name to be used when a bootstra
requires a file name, when the bootstrap is not the 
result of a boot command, or when no file name is 
specified with the boot command. The console 
passes the value between the console presentation
layer and system software without interpretation.

BOOT_OSFLAGS For use with UNIX:
a (automatic boot)
s (stop in single-user 
mode)
i (interactive boot)
D (full dump and s)

Specifies arguments to be passed to system softwa
when the bootstrap is not the result of a boot com-
mand or when no arguments are specified with the
boot command. The console passes the value 
between the console presentation layer and system
software without interpretation. The default is 
NULL.

BOOTDEF_DEV device-list Specifies the device list from which bootstrapping is
to be attempted when no path is specified with the 
boot command.

BOOTED_DEV A device in the 
BOOT_DEV list

Specifies devices to be used by the last or currentl
in progress bootstrap attempt. 

BOOTED_FILE Derived from 
BOOT_FILE or the cur-
rent boot command

Specifies the file name to be used by the last or cu
rently in progress bootstrap attempt. The console 
passes the value between the console presentation
layer and system software without interpretation.

BOOTED_OSFLAGS Derived from 
BOOT_OSFLAGS or 
the current boot com-
mand

Specifies arguments to be passed to system softwa
during the last or currently in progress bootstrap 
attempt. The console passes the value between th
console presentation layer and system software 
without interpretation.

CHAR_SET 0 (ISO-LATIN_1) Specifies current console terminal character-set 
encoding.

CONSOLE – Specifies whether console input and output are to 
use the console serial line or a graphics console, if 
present.
Using the Console 5–5



D_BELL ON or OFF Specifies whether the bell is to sound on error. The 
default is OFF.

D_CLEANUP ON or OFF Specifies whether cleanup code is to be executed at 
the end of diagnostics. The default is ON.

D_COMPLETE ON or OFF Specifies whether a diagnostic completion message 
is to be displayed. The default is OFF.

D_EOP ON or OFF Specifies whether end-of-pass messages are to be 
displayed. The default is OFF.

D_GROUP FIELD, MFG, or other 
(up to 32 characters)

Specifies the diagnostic group to be executed. The 
default is FIELD.

D_HARDERR CONTINUE, HALT, or 
LOOP

Defines the action that is to be taken following a 
hard error detection. The default is HALT.

D_OPER ON or OFF Specifies whether an operator is present. The default 
is OFF.

D_PASSES 0 (run indefinitely), 1 
(pass), or a user-defined 
value

Specifies the diagnostic pass count. The default is 1.

D_REPORT SUMMARY, FULL, or 
OFF

Specifies the level of information to be provided by 
diagnostic error reports. The default value is FULL.

D_SOFTERR CONTINUE, HALT, or 
LOOP

Defines the action that is to be taken following soft 
error detection. The default is CONTINUE.

D_STARTUP ON or OFF Specifies whether a diagnostic startup message is to 
be displayed. The default is OFF.

D_TRACE ON or OFF Specifies whether trace messages are to be dis-
played. The default is OFF.

DUMP_DEV device Specifies that a device is to write operating system 
crash dumps.

ENABLE_AUDIT ON or OFF Specifies whether audit trail messages are to be gen-
erated during bootstrap. The default is ON.

EWA0_ARP_TRIES n Specifies the number of transmissions to be 
attempted before the Internet Address Resolution 
Protocol (ARP) fails. Values less than 1 cause the 
protocol to fail immediately. The default is 3, which 
translates to an average of 12 seconds before failing. 
Interfaces on busy networks may need higher values.

EWA0_BOOTP_FILE file-name Specifies a generic file name to be included in an 
Internet Boot Protocol (BOOTP) request. The 
BOOTP server returns a fully qualified file name for 
booting. There is no default.

EWA0_BOOTP_SERVER server-name Specifies a server name to be included in a BOOTP 
request. This can be set to the name of the server 
from which the machine is to be booted, or left 
empty.

Table 5–2 Environment Variables  (Continued)

Variable Parameter Values Description
5–6 Using the Console



i-

i-

i-

i-

s 

 

ch 
EWA0_BOOTP_TRIES n Specifies the number of transmissions that are to be 
attempted before BOOTP fails. Values less than 1 
cause the protocol to fail immediately. The default is 
3, which translates to an average of 12 seconds 
before failing. Interfaces on busy networks may 
need higher values.

EWA0_DEF_GINETADDR – Specifies the initial value for EWA0_GINETADDR 
when the interface's internal Internet database is in
tialized from BOOTP (EWA0_INET_INIT is set to 
BOOTP).

EWA0_DEF_INETADDR – Specifies the initial value for EWA0_INETADDR 
when the interface's internal Internet database is in
tialized from BOOTP (EWA0_INET_INIT is set to 
BOOTP).

EWA0_DEF_INETFILE – Specifies the initial value for EWA0_INETFILE 
when the interface's internal Internet database is in
tialized from BOOTP (EWA0_INET_INIT is set to 
BOOTP).

EWA0_DEF_SINETADDR – Specifies the initial value for EWA0_SINETADDR 
when the interface's internal Internet database is in
tialized from BOOTP (EWA0_INET_INIT is set to 
BOOTP).

EWA0_INET_INIT NVRAM and default 
BOOTP

Specifies whether the interface's internal Internet 
database is to be initialized from non-volatile RAM 
(NVRAM) or from a network server (by way of 
BOOTP).

EWA0_LOOP_COUNT x Specifies the number of times each message is 
looped. The default is 0x3e8.

EWA0_LOOP_INC x Specifies the amount the message size is to be 
increased from message to message. The default i
0xa.

EWA0_LOOP_PATT 0xffffffff = all patterns
0 = all zeros
1= all ones
2 = all fives
3 = all as
4 = incrementing
5 = decrementing

Specifies the type of data pattern that is to be used
for loopback.

EWA0_LOOP_SIZE x Specifies the size of the loop data to be used. The 
default is 0x2e.

EWA0_LP_MSG_NODE n Specifies the number of messages to be sent to ea
node originally. The default is 7.

EWA0_MODE TWISTED-PAIR or 
FULL (full-duplex 
twisted-pair)

Specifies the operating mode of the embedded 
Ethernet controller. 

Table 5–2 Environment Variables  (Continued)

Variable Parameter Values Description
Using the Console 5–7



e 

 

n 
 
e 

s 

.

EWA0_PROTOCOLS BOOTP, MOP, or 
BOOTP,MOP

Specifies the network protocol to be enabled for 
booting and other functions. The default is MOP. A 
null value is equivalent to BOOTP,MOP.

EWA0_TFTP_TRIES n Specifies the number of transmissions that are to be 
attempted before the Trivial File Transfer Protocol 
(TFTP) fails. Values less than 1 cause the protocol to 
fail immediately. The default value is 3, which trans-
lates to an average of 12 seconds before failing. 
Interfaces on busy networks may need higher values.

LANGUAGE 00 none (cryptic)
30 Dansk
32 Deutsch
34 Deutsch (Schweiz)
36 English (American)
38 English (British/Irish)
3A Espanol
3C Francais
3E Francais (Canadian)
40 Francais (Suisse 
     Romande)
42 Italiano
44 Nederlands
46 Norsk
48 Portugues
4A Suomi
4C Svenska
4E Vlaams
Other reserved

Specifies the current console terminal language 
(integer ID).

LANGUAGE_NAME language-name Specifies the ASCII string of the current console ter-
minal language code as defined by LANGUAGE.

LICENSE MU – multi-user system
SU – single-user system

Specifies whether a software license is in effect.

MODE FASTBOOT or 
NOFASTBOOT

Specifies whether diagnostics are to be run when th
firmware is initialized. 

PAL n Specifies versions of VMS and OSF PALcode in the
firmware.

TGA_SYNC_GREEN x Specifies a hexadecimal byte indicating whether 
video synchronization should be driven on the gree
channel for up to eight TGA video cards. Video card
0 corresponds to bit 0, card 1 to bit 1, and so on. Us
with the CONSOLE environment variable.

TTY_DEV n Specifies the current console terminal unit. Indicate
which entry of the CTP Table corresponds to the 
actual console terminal. The default is 0 (30 hex).

VERSION version Specifies the version of the console code firmware

VME_A32_BASE address Specifies the base address of VMEbus A32 space.

VME_A32_SIZE n Specifies the size of VMEbus A32 space.

Table 5–2 Environment Variables  (Continued)

Variable Parameter Values Description
5–8 Using the Console



ds 

 issue 
5.2.2 Setting Environment Variables

To set the values of environment variables, use the set command. This command 
requires that you specify the name of an environment variable and either a 
numeric or ASCII string value. Section 5.2.1 provides a complete listing of avail-
able environment variables. 

If at any time you need to restore a variable to its default value, you can do so by 
using the set command’s -default option. Or, if you want to set all environment 
variables to their default values at the same time, use the init_ev command. 

For any environment variable changes that you make with the set or init_ev com-
mand to take effect, you must reset the system or issue the init command.

Note

Before you change the value of an environment variable, you should 
understand the implications of the change. 

5.2.3 Displaying the Values of Environment Variables

You can display the values of environment variables by using the show command. 
As indicated in the following table, the extent of this command’s output depen
on the argument that you specify.

To see the changes to variables that you reset, you must reset the system or
the init command before using show.

VME_A24_BASE address Specifies the base address of VMEbus A24 space.

VME_A24_SIZE n Specifies the size of VMEbus A24 space.

VME_A16_BASE address Specifies the base address of VMEbus A16 space.

VME_CONFIG mode Specifies the VME setup mode. This variable is used 
by the operating systems for storing VME configu-
ration information for the initialization of the VME 
corner. See your operating system documentation 
for more information.

VX_BOOTLINE file-name Specifies the name of the file to be used for the 
VxWorks bootstrap.

To display... Specify...

The value of a specific variable The name of that variable

The values of a group of related variables A name that includes a wildcard (*); 
for example, BOOT*

The values of all variables No argument

Table 5–2 Environment Variables  (Continued)

Variable Parameter Values Description
Using the Console 5–9



5.2.4 Removing Environment Variables from System Name Space

If a subset of the environment variables do not apply to your system configura-
tion, you may want to consider removing them from the system name space. To 
remove a variable from the name space, specify the variable as an argument to the 
clear command. If you specify a variable name that includes a wildcard, such as 
EWA0_*, the command removes a group of related variables from the name 
space. In the case of the EWA0_* example, the command removes all environ-
ment variables that begin with EWA0_.

Note

Some environment variables are permanent and are not affected by this 
clear command.

5.3 Booting the System

You boot your SBC to initialize the processor, load a program image, and transfer 
control to that image. To initiate a boot operation, use the boot command.   In the 
command line, you have the option of specifying:

• One or more devices from which the system is to be booted 

• A program image to be booted

• Boot flags for passing additional information along to the operating system

• The protocol to be used for booting over the network

• That the console gain control immediately after the boot image is loaded

5.3.1 Specifying Boot Devices

You can specify the boot device for an SBC by setting the value of the environ-
ment variable BOOTDEF_DEV or by specifying one or more devices with the 
boot command. BOOTDEF_DEV defines a default boot device list.   

To override the default boot device list, specify one or more devices with the boot 
command. If you specify multiple devices, separate device names with a comma 
(without spaces). The console firmware attempts to boot the system from each 
device in order. When a device boots successfully, the firmware passes control to 
the boot image on that device. 

Note

If you include network devices in the boot device list, place them at the 
end of the list. This is necessary because network boots terminate only if a 
fatal error occurs or an image loads successfully.
5–10 Using the Console



ou 
stem 
), 

ent 

 
oot 

 then 

P to 
s 
5.3.2 Specifying a Boot Image

When an Alpha VME 5/352 or 5/480 SBC boots successfully, the console firm-
ware passes control to a boot image. You can specify the boot image that is to be 
used by setting the value of the environment variable BOOT_FILE or by specify-
ing the file name of a boot image with the boot command. BOOT_FILE defines 
the default boot image. To override the default, specify a boot image file name 
with the -file option in the boot command line. 

5.3.3 Passing Additional Boot Information to the Operating System

You have the option of passing boot information, in addition to the boot image, to 
the operating system. You can specify the additional information as longword data 
in the definition for the BOOT_OSFLAGS (or BOOTED_OSFLAGS) environ-
ment variable or with the boot command. The information can consist of one or 
more longword values. If you specify multiple values, separate the values with a 
comma (without spaces). The environment variables define the default boot infor-
mation. To override the default, specify boot information with the boot com-
mand’s -flags option.

5.3.4 Booting Over the Network

If you choose to boot an Alpha VME 5/352 or 5/480 SBC over the network, y
need to define the Ethernet protocol that is to be used. Depending on your sy
configuration, you can use the DECnet maintenance operation protocol (MOP
the Internet boot protocol (BOOTP), or both. 

You can specify the protocols to be used by setting the value of the environm
variable EWAn_PROTOCOLS (n identifies the network interface) or the boot 
command’s -protocols option to MOP or BOOTP. If you specify both protocols,
the console firmware tries to use each protocol in the order listed to solicit a b
server. If you do not define EWAn_PROTOCOLS, both protocols are enabled.

The following example causes the console firmware to try to use BOOTP and
MOP to complete a network boot using interface ewa0:

>>> set EWA0_PROTOCOLS BOOTP,MOP

5.3.4.1 Internet Protocols

For the Internet environment, the console uses the protocols BOOTP and TFT
support network booting and file transfers. An Internet network boot occurs a
follows:

1. BOOTP broadcasts a boot request.

BOOTP copies the values of the environment variables 
EWAn_BOOTP_SERVER and EWAn_BOOTP_FILE to the fields 
sname and file in the request packet. The sname field specifies the 
host from which the SBC wants to boot. If it does not matter which server 
responds to the request, you can leave EWAn_BOOTP_SERVER unde-
fined.
Using the Console 5–11



o 
 

eir 
 

or 
f 

nfigu-
. 
er 
The file field identifies the boot file the server is to include in its 
response. For example, if the file is specified generically as “unix” or 
“lat”, the boot server would respond with a fully qualified file path to be 
used with TFTP. If a machine will always be booting the same file, you 
can leave EWAn_BOOTP_FILE undefined. 

BOOTP establishes a connection with a boot server, which in turn pro-
vides the SBC with the information it needs to obtain the boot image from 
the server. The BOOTP server delivers the information in a message 
packet. Using the same format, the SBC stores the information in a 300-
byte Internet database. When the SBC receives the BOOTP packet, the 
database is marked as initialized.

2. The SBC uses TFTP to acquire the boot image.

TFTP uses the remote host address and the file name of the boot image t
get the boot image file from the boot server (host system). TFTP gets this
information from the BOOTP packet, the boot command’s file-name 
argument, or the BOOT_FILE environment variable.

If the value of BOOT_FILE is not specified in the correct format, TFTP 
fails. A common practice used to avoid this failure is to leave 
BOOT_FILE undefined. This causes TFTP to default to using the values 
of EWAn_DEF_SINETADDR and EWAn_DEF_INETFILE.

Both BOOTP and TFTP use the Internet user datagram protocol (UDP) as th
primary transport mechanism. UDP is an unreliable, connectionless datagram
delivery service. 

For complete descriptions of the Internet protocols, see Douglas Comer’s Inter-
networking with TCP/IP, Vol I, Principles, Protocols and Architecture, Second 
edition, Prentice Hall.

5.3.4.2 Defining Fields of the Internet Database

BOOTP and TFTP rely on Internet configuration information that you define f
the system by setting network environment variables. You must define a set o
variables for each network interface in the system. The system stores the co
ration information for each interface in a separate 300-byte Internet database
These databases have the same format as BOOTP packets; the BOOTP driv
reads from and writes to the databases in binary form directly.
5–12 Using the Console



The following table lists the environment variables that define the most important 
work data. Unlike other environment variables, these variables are nonvolatile.

Each network interface must have its own set of variable definitions. The variable 
n in the names of the preceding environment variables, identifies a specific inter-
face. For example, all variables associated with network interface 0 have the pre-
fix EWA0.

Note

If you misconfigure the Internet network parameters, the Internet proto-
cols are robust enough to work intermittently, making it difficult to debug 
failures.

5.3.4.3 Internet Database Initialization

The Internet database on an Alpha VME 5/352 or 5/480 SBC is initialized each 
time the system is booted as a result of a TFTP or BOOTP invocation.

TFTP Initialization

A TFTP invocation is the more common form of Internet database initialization. If 
TFTP is invoked and the Internet database has not yet been marked as initialized, 
initialization occurs automatically, based on the definition of the environment 
variable EWAn_INET_INIT. If this variable is set to BOOTP (the default), the 
BOOTP protocol driver broadcasts a BOOTP request and stores the response in 
the database, initializing it. 

If EWZn_INET_INIT is set to NVRAM, the values of the following nonvolatile 
Internet environment variables are copied to corresponding fields in the Internet 
database:

Environment Variable Description

EWAn_DEF_INETADDR The Internet address of a network interface on the 
SBC. The Internet protocols TFTP and address reso-
lution protocol (ARP) require the correct Internet 
address to operate properly. Enter the address in dot-
ted decimal notation (n.n.n.n).

EWAn_DEF_SINETADDR The Internet address of the remote host system to be 
contacted by TFTP. The remote host system might 
not be on the local area network (LAN). Enter the 
address in dotted decimal notation (n.n.n.n).

EWAn_DEF_GINETADDR The Internet address of a remote Internet gateway on 
the LAN. TFTP cannot communicate beyond the 
LAN if this address is incorrect. Enter the address in 
dotted decimal notation (n.n.n.n).

EWAn_DEF_SUBNETMASK The Internet subnet mask to be used. Enter the mask 
in dotted decimal notation (n.n.n.n).

EWAn_DEF_INETFILE The file to be booted. The value that you specify 
must be a valid file name or path name for the TFTP 
server on the remote host system.
Using the Console 5–13



EWAn_DEF_INETADDR

EWAn_DEF_SINETADDR

EWAn_DEF_GINETADDR

EWAn_DEF_SUBNETMASK

EWAn_DEF_INETFILE

TFTP assumes that you have set the values of these variables in advance of its 
invocation. For example:

>>> SET EWA0_DEF_INETADDR 16.123.16.53
>>> SET EWA0_DEF_SINETADDR 16.123.16.242
>>> SET EWA0_DEF_GINETADDR 16.123.16.242
>>> SET EWA0_DEF_SUBNETMASK 255.255.255.0
>>> SET EWA0_DEF_INETFILE bootfiles/alphavme5
>>> SET EWA0_INET_INIT NVRAM

BOOTP Initialization

Alternatively, the Internet database might be initialized by BOOTP. This may 
result from an explicit invocation of BOOTP or as a consequence of invoking 
TFTP. Generally, BOOTP copies the reply packet it receives into the Internet data-
base, initializing it. However, if BOOTP is invoked with the NOBROADCAST 
parameter, as shown below, no request is broadcast, no reply is received, and no 
data is placed in the database:

bootp:nobroadcast/ewa0

5.3.4.4 Using Retransmission to Improve Robustness

The Internet protocols ARP, BOOTP, and TFTP retransmit failed message packets 
to improve robustness. If the initial transmission of a packet is not answered 
appropriately, the protocol software retransmits the packet. By default, the proto-
cols attempt three transmissions. 

If your Alpha VME 5/352 or 5/480 SBC is on a busy network or is associated with 
servers that handle heavy network loads, you may need to increase the retransmis-
sion count. You can adjust the number of retransmissions associated with a given 
protocol by setting the following environment variables:

EWAn_ARP_TRIES

EWAn_BOOTP_TRIES

EWAn_TFTP_TRIES

If you set one of these variables to a value that is less than one, the protocol fails 
immediately.

Three retries translates to an average of 12 seconds before failing. The retransmis-
sion algorithms use a randomized exponential backoff delay. If the first try fails, a 
second try occurs about 4 seconds later. A third try occurs after another 8 seconds, 
a fourth after 16 seconds, and so on, up to 64 seconds. These times are averages 
since random jitter of about +/- 50% is added to each delay. For example, if 
EWA0_ARP_TRIES is 3, ARP fails if it does not get a response within 12 sec-
onds on the average; the actual timeout is between 6 and 18 seconds.

EWAn_TFTP_TRIES, EWAn_BOOTP_TRIES, or EWAn_ARP_TRIES. 
5–14 Using the Console



5.3.4.5 Different Ways of Booting Over the Internet

The following list shows the priority of the different ways of booting an initialized 
system over the Internet:

1. Specify the file name of the image to be booted and a network boot device in 
the boot command line. For example: 

>>> boot -file filename ewa0

If the pathname for the file includes slashes (/), specify each slash as a 
double slash (//). For example:
>>> boot -file //var//adm//ris//ris0.alpha//alphavme5 ewa0

2. Assign the file name of the image to be booted to the environment variable 
BOOT_FILE and then specify the network device in the boot command line. 
If the pathname for the file includes slashes  (/), specify each slash as a double 
slash (//). For example:

>>> set BOOT_FILE //var//adm//ris//ris0.alpha//alphavme5 
>>> boot ewa0

3. Assign the file name of the image to be booted to the environment variable 
EWA0_INETFILE and then specify the network device in the boot command 
line. For example:

>>> set EWA0_INETFILE/var/adm/ris/ris0.alpha/alphavme5.exe
>>> boot ewa0

This method uses only the TFTP protocol. All other fields in the BOOTP 
packet must already be initialized with valid information from a previous 
Internet boot.

4. Assign the file name of the image to be booted to the environment variable 
EWA0_BOOTP_FILE and then specify the network device in the boot com-
mand line. For example:

>>> set EWA0_BOOTP_FILE /var/adm/ris/ris0.alpha/alphavme5.exe 
>>> boot ewa0

The file name defined by EWA0_BOOTP_FILE becomes the file name in 
the outgoing BOOTP request packet. 

5. Do not define or specify an image to be booted. Just execute the boot com-
mand as follows:

>>> boot ewa0 

With this method, because none of the environment variables are defined, 
the boot process runs through both the BOOTP and TFTP stages of an 
Internet network boot (see Section 5.3.4.1). Any server that receives the 
boot request replies.

Note

In the client-server paradigm, the way the firmware acts is affected by the 
software running on the server. Thus, the format of the file specification 
used with TFTP depends on the server. For example, if you are booting 
from a UNIX server, you must specify a complete pathname. See your 
operating system documentation for details about your server software.
Using the Console 5–15



o-
 

sm 
ca-
-

 
d the 
le to 
 with 

 net-

ble. 

nd 

 sec-
5.3.5 Invoking the Console as Soon as the Boot Image is Loaded

Normally, when you boot an image, that image takes control of the system as soon 
as the image is loaded and the associated page tables and other data structures are 
set up. If you have a need to interact with the system after booting (for example, to 
debug the system or change environment variable settings), use the boot com-
mand’s -halt option. This option forces the boot code to invoke the console pr
gram once the boot image is loaded and all associated page tables and data
structures are set up.

Note

The -halt option does not shut down console device drivers.

5.4 Using TFTP to Read Files Across the Network

In addition to serving as a boot protocol, the TFTP driver provides a mechani
for reading files across the network. For example, you can use a TFTP specifi
tion when issuing the cat command to copy the contents of a remote file to stan
dard output.

The syntax for a TFTP specification follows:

tftp:n.n.n.n:pathname/network-interface

The n.n.n.n represents an Internet address in dotted decimal notation. This
must be the Internet address of the remote system from which you want to rea
file. The colon (:) separates the Internet address from the pathname for the fi
be read. If the pathname includes slash (/) characters, you must replace them
double slashes (//) in the specification. Specify network-interface as ewan, 
where n identifies the interface. The following example displays the file 
/usr/foo/bar, which is on a remote system with address 16.123.16.242, using
work interface ewa0:

>>> cat tftp:16.123.16.242://usr//foo//bar/ewa0

For convenience, you can save the Internet address in an environment varia
For example:

>>> set ktrose 16.123.16.242
>>> cat tftp:$ktrose://usr//foo//bar/ewa0

If you omit the address and file specification, TFTP uses the server address a
file names defined by EWAn_DEF_SINETADDR and EWAn_DEF_INETFILE.

5.5 Managing the TOY Clock

The time-of-year (TOY) clock maintains the SBC’s time, including the year, 
month, date, day, hour, minute, second, 1/10th of a second, and 1/100th of a
ond. Using console commands, you can:

• Display the clock’s time and date

• Set the clock’s time and date
5–16 Using the Console



 and 

 

 are 
e 

cil-
 
e 
must 

 

• Disable the clock’s internal oscillator

5.5.1 Displaying the TOY Clock’s Time and Date

To display the TOY clock’s time and date, use the date command without any 
arguments. For example:

>>> date
10:29:04  August   3, 1997

5.5.2 Setting the TOY Clock’s Time and Date

If the internal oscillator for the TOY clock becomes disabled due to use of the set 
toy sleep command or another cause, you may need to reset the clock’s time
date the next time you power up the system. 

To set the time and date, issue the date command with a time specification of the
form yyymmddhhmm.ss., which specifies:

When you reset the time and date, you must specify at least four digits, which
interpreted as hours and minutes. If you specify six digits, the digits specify th
day, hours, and minutes. 

5.5.3 Disabling the TOY Clock’s Internal Oscillator

If you are testing an Alpha VME 5/352 or 5/480 SBC TOY clock or if you are 
planning to put one of these SBCs in storage, you may want to use the set toy 
sleep command to disable the TOY clock’s internal oscillator. Disabling the os
lator before storing the SBC can extend the shelf life of the oscillator’s lithium
battery. The oscillator is reenabled and the clock starts counting time again th
next time you power up the SBC. Once the system is powered up again, you 
reset the SBC’s time and date.

Note

Alpha VME 5/352 and 5/480 SBCs are shipped with sleep mode enabled
to conserve battery life.

Time Component... As... With a Value in the Range...

Year yyyy 0000 to 9999

Month mm 01 to 12

Day dd 01 to 31

Hour hh 00 to 23

Minute mm 00 to 59

Second ss 00 to 59
Using the Console 5–17



5.6 Getting System Information

You can acquire information about your system by using the show command. You 
specify this command with an environment variable or a predefined keyword 
argument. When you specify an environment variable, the command displays the 
value of that variable. For example, the following command displays the default 
system power-up action as defined by the environment variable AUTO_ACTION:

>>> show auto_action
boot
>>>

For a complete listing of environment variables, see Section 5.2.1.

By specifying the show command with a keyword argument, you can display the 
following information on your console terminal:

The following example displays information about the devices that are known to 
the system:

>>> show device
dkb0.0.0.1.0 DKB0 RZ57
mke0.0.0.4.0 MKE0 TZ85
eza0.0.0.6.0 EZA0 08-00-2B-19-60-31
ezb0.0.0.7.0 EZB0 08-00-2B-1A-2C-06
p_a0.7.0.0.0 Bus ID 7
p_c0.7.0.2.0 Bus ID 7
pkb0.7.0.1.0 PKB0 SCSI Bus ID 7
pke0.7.0.4.0 PKE0 SCSI Bus ID 7

5.7 Updating Firmware

During the life of your SBC, you may receive one or more update kits for loading 
new firmware into the flash ROMs (FEPROMs). The documentation provided in 
the firmware update kit will guide you through the update procedure. A summary 
of the procedure follows:

1. Close DIP switch #2 on the I/O module to allow the update image to write to 
the FEPROM.

2. Issue the boot command.

3. Issue the update command.

The update command loads the FEPROM update image from a specified 
device into system memory. Once the image is loaded, the console 
prompts for confirmation for the update to continue.

Information Keyword

The system configuration config

Devices and controllers on the system device

The Alpha HWRPB hwrpb

The character illuminated on the system’s LED LED

A map of the system’s virtual memory map
5–18 Using the Console



4. Respond to the confirmation prompt.

If you respond with No, the update process terminates. If you respond 
with Yes, the update image erases, programs, and verifies the target 
FEPROMs. 

Note

Once you commit to the update at this point, you must not interrupt pro-
gram execution. Doing so may result in the SBC being placed in an inop-
erable state.

The update image verifies each byte of the FEPROM. Each step provides 
for a certain number of retries to perform the operation successfully on a 
particular byte of the EPROM. If a failure occurs during any of the steps, 
the console displays an error message.

5. Reset or power the system off and on to run the new image in the FEPROMs.

6. Open DIP switch #2 on the I/O module to disable write operations to the 
FEPROM.

Using update command options, you can specify the name of the FEPROM 
update image, whether MOP or TFTP is to be used as the source transport proto-
col, the device from which the image is to be loaded (ewa0), and whether the con-
sole or user flash is to be upgraded.

For more information about firmware updates, see the documentation provided in 
your firmware update kit.

5.8 Examining and Depositing Data

If you need to manipulate data within an Alpha VME 5/352 or 5/480 SBC, you 
can do so by using the examine and deposit commands. These commands manip-
ulate byte streams (extents of memory, sets of registers, physical devices, or files) 
and address spaces, which this discussion collectively refers to as devices.

5.8.1 The Default Device 

Unless otherwise specified, the default device is physical memory. If you specify 
another device, that device becomes the default. A default device is sticky, in 
that all subsequent commands affect that device until you explicitly specify 
another device. 
Using the Console 5–19



5.8.2 Console Device Drivers

The console uses drivers as the mechanism for referring to various devices and 
provides drivers for the following Alpha devices:

You can direct the examine or deposit command towards a specific device by 
specifying the corresponding device name in the command line. 

5.8.3 Device Byte Offsets

One of the arguments that you must specify with the deposit and examine com-
mands is the address of the data to be examined or the address at which data is to 
be deposited. Because the Alpha VME 5/352 and 5/480 SBCs treat an address 
space as a device, the address argument that you specify becomes a byte offset.

For example, pmem:0 refers to the location in physical memory at offset zero, 
that is, physical address 0. If you do not supply a device name, the offset applies 
to the last device referenced (physical memory by default). However, in the 
remaining discussions, the terms address and offset are used synonymously.

The examine and deposit commands act on a physical address. You can specify 
the actual address or use a symbol in Table 5–3 to point to the address.

Device Name Description

pmem Physical memory

vmem Virtual memory

gpr General-purpose registers

fpr Floating-point registers

ipr Internal processor registers

pt PAL temporary register set

pcicfg PCI configuration space

pcidmem PCI dense memory space

pcismem PCI sparse memory space

pciio PCI I/O space

eerom Environment variable and error log NVRAM

ferom Intel 28F020 firmware FEPROM

toy DS1386 registers, clock chip, and NVRAM

Table 5–3 Symbols Used by Examine and Deposit Commands

Symbol Description

+ Next address

* Current address

– Previous address
5–20 Using the Console



These symbols work because the console keeps track of the last referenced 
address. If you issue an examine or a deposit command without an address, the 
console firmware uses the next address. The console computes the next address as 
the last referenced address plus the current data size.

5.8.4 Specifying a Data Size

You have the option of explicitly specifying the size of the data to be examined or 
deposited by including one of the following options in the command line:

5.8.5 Depositing and Examining Data in Memory

The steps for gaining access to and manipulating data in memory are as follows:

1. Find an unused block of memory.

To find a block of memory, use the alloc command (see Section 5.10.3 for 
more information). 

Note

Because the console itself and other critical data structures reside in mem-
ory, be careful not to alter them.

The alloc command in the following example finds an unused 1000-byte 
block of memory:
>>> alloc 1000
03FFF000

The address of the allocated block is, in this case, 0x03FFF000. 

2. Add a value to physical memory.

Use the deposit command to add a value to physical memory. The follow-
ing command adds a value of 1:
>>> deposit pmem:3fff000 1

3. Check the contents of the address.

Use the examine command to check the contents of the address. For 
example:
>>> examine pmem:3fff000
pmem:          3FFF000 00000001

Option Data Size

-b Byte

-w Word

-l Longword

-q Quadword

-o Octaword

-h Hexaword
Using the Console 5–21



You can abbreviate commands and you do not need to specify the device if you 
are referring to the default device. The following example shows the deposit and 
examine commands in an abbreviated form. The current device is still physical 
memory.

>>> d 3fff000 abcdef12 # Deposit new data there.

>>> e 3fff000 # Check it out.

pmem:          3FFF000 ABCDEF12

You can also specify command options. The following example shows how to use 
the –n option to specify a repeat count. The command is executed over n+1 suc-
cessive addresses.

>>> d 3fff000 aaaa5555 –n 3  # Write to 4 locations, yes 4!

>>> e 3fff000 –n 3 # Notice that –n 3 yields n+1 or 4!

pmem:          3FFF000 AAAA5555
pmem:          3FFF004 AAAA5555
pmem:          3FFF008 AAAA5555
pmem:          3FFF00C AAAA5555

An alternate method for examining memory (or other devices or files) is to use the 
hex dump command, hd. The –l option for that command specifies the number of 
bytes to display.

>>> hd pmem:3fff000 –l 10 # Dump the allocated memory.

00000000  55 55 aa aa 55 55 aa aa 55 55 aa aa 55 55 aa aa 
UUªªUUªªUUªªUUªª

>>> hd –l 20 show_status # Dump part of SHOW_STATUS script. 

00000000  65 63 68 6f 20 27 64 2f 53 27 20 3e 24 24 73 73 echo ’d/S’ 
>$$ss
00000010  0a 65 63 68 6f 20 27 2d 2d 2d 27 20 3e 3e 24 24 .echo ’---’ 
>>$$

Note

Both –l and –n give the same result, but –l works only with hd and –n 
works only with examine. 

5.8.6 Depositing and Examining Data in Registers

You can use the deposit and examine commands to manipulate data in registers. 
To operate on a register, include the address of the register in the command line in 
one of the following ways:

• Symbolically, for example, r0 or ksp

• Explicitly, as offsets within device address space, for example, gpr:0 or ipr:0

You can also use the symbolic addresses +, *, –, and the implied address incre-
ment (no address specified). The following examples show the different ways to 
include an address: 

>>> e r0 # Examine R0 symbolically,...
5–22 Using the Console



gpr:                0 (    R0) 0000000000000002

>>> e gpr:0 #...explicitly as device offset,...

gpr:                0 (    R0) 0000000000000002

>>> e 0  #         ...or implicitly as device offset.

gpr:                0 (    R0) 0000000000000002

>>> e 8 # Examine R1...

gpr:                8 (    R1) 000000000000C408

>>> e #           ...and the next R2.

gpr:               10 (    R2) 0000000000000000

>>> e ipr:0 # Examine an IPR... 

ipr:                0 (   ASN) 0000000000000000

>>> e #               ...and the next...

ipr:                1 ( ASTEN) 0000000000000000

>>> e + #               ...and the next...

ipr:                2 ( ASTSR) 0000000000000000

>>> e * #               ...and the current...

ipr:                2 ( ASTSR) 0000000000000000

>>> e – #               ...and the previous one.

ipr:                1 ( ASTEN) 0000000000000000

>>> e ksp # Examine an IPR by name...

ipr:               12 (   KSP) 0000000000000F30

>>> e # ...and the next one.

ipr:               13 (   ESP) 0000000000000000

The examine and deposit commands support symbolic representation of the fol-
lowing processor registers:

>>> e pc # Program Counter

PC psr:                0 (    PC) 0000000000000D30

>>> e ps # Process Status

ipr:               17 (    PS) 0000000000001F00

>>> e sp # Stack Pointer

gpr:               F0 (   R30) 0000000000000F30

Register Meaning

pc Program counter

sp Stack pointer

ps Processor status longword

− Previous address
Using the Console 5–23



ys-

U 
in. 

n 

 to 
5.9 Managing the Console, Devices, and CPU

Console commands are available for managing the console, devices, and CPU of 
an Alpha VME 5/352 or 5/480 SBC. Using console commands you can:

• Initialize the console, a device, or the CPU

• Stop the CPU or a specified device

• Exercise devices with read, write, and comparison operations

5.9.1 Initializing SBC Components

Use the init command to initialize your SBC’s  devices or CPU. To initialize a 
specific device, specify the command with the -d option and the name of the 
device to be initialized. For example to initialize the network interface ewa0, 
enter:

>>> init -d ewa0

If you need to initialize the processor, specify the init command without any 
options as follows:

>>> init

5.9.2 Stopping and Starting the CPU or Devices

If you need to stop and start an Alpha VME 5/352 or 5/480 SBC CPU or the s
tem devices, you can use the stop and start commands. To stop the CPU, enter 
just the command name stop on the command line. You can then restart the CP
by specifying the start command with the address at which execution is to beg

To stop and start one or more devices, specify the stop and start commands with 
the -drivers option and one of the following:

5.9.3 Exercising Devices

You can exercise your SBC’s devices with various read, write, and compariso
operations by using the exer command. This command also can report perfor-
mance statistics. 

5.9.3.1 Exercise Buffers

The exer command uses two buffers in the “memzone” heap of main memory
perform the exercise operations. The command: 

• Reads from a device to a buffer

• Writes from a buffer to a device

• Compares the contents of the two buffers

Option Parameter Stops or Starts

Specific device name The specified device

Device prefix (for example, ewa) All devices of the specified class

None All system devices
5–24 Using the Console



m-

 
ial 
n-
Prior to initiating any I/O operations, the command initializes the buffers with 
data patterns. By default, the data pattern for each buffer consists of 0x5A in every 
byte. Alternatively, you can specify your own data patterns with the -d1 and -d2 
options. These options take a postfix string argument. For each byte in a given 
buffer, starting with the first byte:

1. exer passes the postfix string to the eval command

2. eval evaluates the string and returns a value 

3. exer writes the value to the buffer

Note

The exer command never reinitializes the buffers, even after completing 
one or more exercise passes.

5.9.3.2 Exercise Operations

The types of I/O operations that the exerciser performs include the following:

• Read to a specific buffer

• Write from a specific buffer

• Write from a specific buffer without a lock

• Compare the contents of the two buffers

• Seek to the file offset prior to the last read or write

• Seek to varying device locations, using the console firmware’s random nu
ber generator, before performing read and write operations

• Sleep for a specified number of milliseconds

5.9.3.3 Tailoring the Exercises

You can tailor the behavior of the exer command by using options to specify the 
following:

• The address range to exercise

• The packet size (number of bytes) to be used in each I/O operation

• The number of passes to run

• The number of seconds to run

• The sequence of I/O operations to be performed

5.9.3.4 Seeking to Random Device Locations

You can instruct the exerciser to seek to random device locations prior to perform-
ing I/O operations. You specify this action by including the action string ? with the 
exer command’s -a option. The exerciser achieves randomization by using the
console firmware’s random number generator, which uses a linear congruent
generator to generate the random numbers. The LCG algorithm is not truly ra
dom, but it comes closest to meeting the needs of the exer command. Each time 
Using the Console 5–25



dom 
ize 
dulus 
-

, 
LT. 
ent 
ons. 
e a 
ubse-

ri-
 for 
the exerciser calls the random number generator, it returns a number from a speci-
fied range. If the range of numbers is a power of two, then each subsequent call to 
the random number generator is guaranteed to return a different number from the 
range until all possible numbers within the range have been chosen. If the range of 
numbers is not a power of two, the exerciser uses the console firmware’s ran
number generator with an upper bound that is greater than the actual range s
but is a power of two. Then the exerciser uses the range size to perform a mo
operation on the number that the random number generator returns, thereby ensur
ing that a random number is generated within the random range size.

5.9.3.5 Returning Error Codes On I/O Failures

If you want the exer command to return an error code immediately after a read
write, or comparison error, set the environment variable D_HARDERR to HA
If an error occurs and D_HARDERR is set to CONTINUE or LOOP, subsequ
operations specified by the action string option can occur except for comparis
For example, if a read error occurs, a subsequent comparison is skipped sinc
read failure preceding a comparison guarantees that the comparison fails. If s
quent block I/O operations succeed, comparisons of those blocks occur.

5.10 Managing Memory

The console interface includes commands you can use to:

• Display the state of dynamic memory

• Display a map of the system’s virtual memory

• Allocate and free blocks of memory

• Change the ownership of a block of memory

• Test memory

5.10.1 Displaying the State of Dynamic Memory

Display the state of your SBC’s dynamic memory by using the dynamic com-
mand. By default, the command displays state information for two heaps: a p
vate console heap and remaining memory heap. The state information listed
each heap (or zone) includes:

• Starting address

• Size

• Used blocks

• Used bytes

• Free blocks

• Free bytes

• Utilization

• High water mark

To display information about a specific heap of memory, specify the address of 
that heap with the -z option.
5–26 Using the Console



r-

es. 
of 
ain-
f 

 
 
 

e 

 
, 
tart-
A number of other options are available for controlling the information that the 
command displays and the operations it performs. Depending on the options you 
specify, the command may:

• Perform consistency checking on the heap

• Repair corrupted heap by flooding free blocks

• Include block headers in the display output

• Display state information on a per process basis

• Perform a validation test on the heap

• Set the size of the total memory for the system

• Extend the size of the default memory zone by a specified number of bytes

5.10.2 Displaying the System’s Virtual Memory Map

To display your SBC’s virtual memory map, use the show map command. The 
virtual memory map is empty after console initialization. If the command gene
ates an empty map, you can fill the page tables by issuing the command boot -
halt.

5.10.3 Allocating and Freeing Blocks of Memory

To allocate and free blocks of memory, use the alloc and free commands. The 
arguments that you specify with these commands must be hexadecimal valu
When you allocate a block of memory, you must specify at least the number 
bytes to allocate. Other arguments allow you to specify the modulus and rem
der to be used for computing the beginning address of the requested block o
memory.

A -flood option lets you flood the block of allocated memory with zeros. If you
want to allocate memory starting at a specific heap address (for example, an
address displayed by the dynamic command), you can specify that address with
the -z option.

The free command returns the memory identified by specified addresses to th
appropriate heap.

5.10.4 Changing the Ownership of a Block of Memory

Your SBC identifies the owner of a block of memory by associating that block
with a process identifier (PID). To change the ownership of blocks of memory
specify the chown command with the PID of the new owner process and the s
ing addresses of blocks of memory that process is to own. 

To display a listing of PIDs, issue the ps command.

5.10.5 Testing Memory

The following tests are available for exercising memory:

• Graycode memory test

• March memory test
Using the Console 5–27



• Random memory test

• Victim block test

To run the tests, issue the memtest command. By default, this command runs all 
four tests, starting at the address of the first free space in the memory zone. You 
can run a subset of the available tests by specifying the tests of interest with the -t 
option.

Note

If you use memtest to test large sections of memory, it might take a while 
for testing to complete.

5.10.5.1 Specifying the Range of Addresses to be Tested

Using various options, you can specify the range of memory addresses that are to 
be tested. You identify an address range by specifying a starting address with the   
-sa option and either an ending address, length, or block size (for the random 
memory test only) with the -ea, -l, or -bs option. Block size equals the specified 
length for all tests except the random memory test. The default block size is 1892 
bytes.

Specify the length or block size in bytes. If you specify the length of the address 
range, the ending address equals the starting address plus the length.

When you specify a starting address, memtest calls the malloc function to allo-
cate the specified amount of memory plus 32 bytes, beginning at that starting 
address. The extra 32 bytes are reserved for malloc header information. There-
fore, if you specify starting address 0xa00000 and a length of 0x100000, memtest 
allocates from address 0x9fffe0 through 0xb00000. Generally, this is transparent. 
However, it could be confusing if you begin two memtest processes simulta-
neously with one beginning at address 0xa00000 for length 0x100000 and the 
other at 0xb00000 for length 0x100000. This will result in the second memtest 
process displaying the following message:

“Unable to allocate memory of length 100000 at starting address b00000.”

The second process should use the starting address 0xb00020.

5.10.6 Graycode Memory Test

The graycode memory test uses the following algorithm to test a specified section 
of memory:

data  =  (x>>1)^x 

The variable x is an incremented value.
5–28 Using the Console



The test makes three passes over the memory being tested:

You can instruct the graycode memory test to:

• Perform pass 1 only by specifying the fast mode option -f. When you use this 
option, the test detects ECC/EDC errors only.

• Increment through the memory being tested by a specified number of quad-
words. For example, an increment of 1 tests every other quadword. Specify 
the increment with the -i option. This option is useful for testing the same 
physical address range on multiple CPUs.

• Serialize access to memory by setting up a memory barrier after each memory 
access. The memory barrier option, -mb, is available only if you are running 
the test in fast mode. 

5.10.6.1 March Memory Test

The march memory test uses a marching 1s and 0s algorithm to test a specified 
section of memory. The default data patterns that the test uses are 0x55555555 
and its inverse 0xAAAAAAAA. You can specify an alternative data pattern with 
the memtest command’s -d option.

The march memory test makes three passes over the memory being tested:

For Pass The Test

1 Writes a data pattern that alternates graycode and inversed graycode to 
each longword. This causes all but one data bit to toggle between each 
longword write. For example, graycode(0)=0x00000000 while the inverse 
of graycode(1)=0xFFFFFFFE.

2 Reads the data at each location, verifies the data, and writes the inverse of 
the data. The test performs these operations one longword at a time to 
ensure that:

• All data bits are written as a one and zero.

• All but one data bit toggle between longword writes.

• Address shorts are identified.

3 Reads and verifies each location. 

For Pass The Test

1 Writes the default or a specified data pattern to the specified memory loca-
tion, starting at the specified starting address and repeating through the 
specified length. 

2 Reads the data pattern that has been written to memory, starting at the spec-
ified starting address, and writes back the inverse. The test operates on the 
data pattern a longword at a time until it reaches the specified length.

3 Reads back the inverse of the data pattern, starting at the end of the mem-
ory region being tested, and writes back 0s. The test operates on the data 
pattern a longword at a time until it reaches the specified starting address.
Using the Console 5–29



e 

 

 an 

 spec-
ower 
 
ting 

rite 
d of 
-

ta. 
-
 

ior to 
5.10.6.2 Random Memory Test

The random memory test writes random data to random addresses using random 
data sizes, lengths, and alignments. The test gains access to every memory loca-
tion in the specified range of addresses to be tested so long as the length does not 
exceed 8 MB. When the length exceeds 8 MB, the test applies a modulo function 
to the seed, which can result in some addresses being tested multiple times and 
others not being tested at all.

The random memory test proceeds as follows:

1. Gets an address index into the random number generator’s LCG structur
based on the length of the address range being tested.

2. Gets a data index based on a random data seed that you specify with the
memtest command’s -rs option and the size of the address range.

3. Calls the random number generator with the acquired address index and
initial address seed of 0 to get a random address.

4. Calls the random number generator with the acquired data index and the
ified data seed to get the longword of data to be used during testing. The l
bit of the random data determines whether the test performs longword or
quadword transactions. (Use of the lower bit speeds up the test by elimina
the need for another call to the random number generator.)

5. Stores the random data at the random address.

6. Flushes the data out to the Bcache.

7. Reads the data back into memory. 

8. Compares the data that was written and read. In the case of quadword w
and read operations, the test forms the quadword by shifting the longwor
random data to the left by 32 and ORing it with the original data’s comple
ment.

Note

The run time of the random memory test can be noticeably longer than 
that of the other memory tests because the test requires two calls to the 
console firmware’s random number generator every time the test writes 
data.

5.10.6.3 Victim Eject Memory Test

The victim eject memory test exercises memory using a specified block of da
By default, the test uses a block containing four longwords of 0xFs, four long
words of 0s, four longwords of 0xFs, and 4 longwords of 0s, in that order. You
have the option of instructing the test to use a block of data that you set up pr
running the test. You specify the address of the block of data with the memtest 
command’s -ba option.

The victim eject memory test proceeds as follows:

1. Writes the specified block of data to the specified starting address.
5–30 Using the Console



e 
2. Adds 4 MB to the starting address.

3. Writes arbitrary data to the new resulting address. This causes the original 
data to be victimized to memory.

4. Reads data starting at the original starting address.

5. Verifies that the data is correct.

6. Increments the starting address by a block.

7. Repeats steps 1 through 6 for the remainder of the specified address range.

5.10.6.4  Specifying Other Test Options

Other memory test options are available for:

• Requesting that all specified memory be allocated and tested randomly

• Timing the memory tests

• Requesting that the tests use the specified memory without an allocation

• Allocating memory to be tested from the firmware heap

• Using a memory barrier after each memory access to serialize access to the 
memory

• Specifying a group name

• Specifying a soft error threshold

5.10.6.5 Running Multiple Memory Tests

You can start multiple memory tests running in the background by using the 
memexer command. Issue this command with an integer value indicating the 
number of test processes you want to start. 

5.11 Performing Network Operations

The console interface’s net command provides a way of initiating basic mainte-
nance operations protocol (MOP) operations for a specified network port. Th
default port is ewa0. By using various command options, you can:

• Display the status of the network port, including the values of MOP counters

• Display the network port’s Ethernet station address

• Reinitialize port drivers

• Initialize MOP counters

• Send a MOP request ID to a specified node

• Send an Ethernet loopback to a specified node

• Request a MOP loopback and specify the number of seconds to wait for the 
loopback messages

• Send a reboot request to a remote boot node

• Display the values of Ethernet port CSRs

• Enable and disable the extended design verification test (DVT) loop service
Using the Console 5–31



 

-

sole 
n-
 

• Change the mode of the port device

• Specify a remote node address to be used for Ethernet loopbacks, MOP 
requests, and remote boot requests

• Broadcast a MOP load request for a specified file

• Set the version of MOP to be used

5.12 Setting Reboot to the SROM Mini-Console

Generally, when you power on or reboot your Alpha VME 5/352 or 5/480 SBC, 
the SBC enters console mode after the POST diagnostics complete. Under certain 
conditions it may be necessary for you to enter SROM Mini-Console mode 
instead. For example, you may want to do this to debug the PCI bus. While in 
SROM Mini-Console mode there is less activity on the bus and you do not have to 
be concerned with interrupts generated by other system devices.

To enter this mode, use the set reboot srom command. After issuing the com-
mand, the SBC enters SROM Mini-Console mode the next time you power on or 
reboot the system. 

Note

If the I/O module’s debug jumper is installed, the system displays the 
SROM Mini-Debugger prompt every time you power on the system. 
While in the SROM Mini-Debugger, you can start the SROM console by 
entering the st command and then entering address 0x8000 at the address
prompt as follows:
SROM> st
a> 8000

5.13 Controlling the LED

The console commands set led and show led are available for you to display char
acters on the system’s front panel LED and to check the current value being illu-
minated on the LED. When using set led, you specify the character you want 
displayed. You can also indicate that the character be displayed in bright mode by 
specifying the -b option. By default, characters are displayed in dim mode.

5.14 Running the Power-On Diagnostics Script

You can start the system’s power-on self-test (POST) diagnostics from the con
by entering the pwrup command. This command initializes the network enviro
ment variables, runs memory tests, and executes the contents of the NVRAM
script.

For more information about the POST diagnostics, see Chapter 8.
5–32 Using the Console



rator, 
5.15 Managing the Console Error Log 

The console firmware logs console errors in an area of NVRAM. Using console 
commands, you can display the contents of and initialize the log.

5.15.1 Displaying the Contents of the Console Error Log

To display the contents of the console error log, use the show_log command. 
Options allow you to control whether the command displays information about a 
specified number of most recent errors (-n), all errors (-all), or new (-new) errors. 

The command displays the following types of information associated with each 
error:

• Date and time of the error

• The diagnostic that was running at the time of the error

• The pass count

• The test number

• The failing point

• Error message text

5.15.2 Initializing the Console Error Log

At any time, you can clear and initialize the console error log by issuing the 
clear_log command. This command sets the entire log area to zero and resets all 
error logging pointers, counters, and initialization flags accordingly. 

Prior to initializing the error log area, the command displays the following confir-
mation message:

Error Log data in NVRAM will be destroyed!!
Continue (y/n)?

If you prefer not to be prompted for confirmation, specify the command’s -nc 
option.

5.16 Evaluating Expressions

The console firmware evaluates postfix expressions that you specify with the eval 
command. The expression must consist of two numeric operands and an ope
in that order. Valid operators include:

Operator Meaning

+ Add the operands.

- Subtract the second operand from the first.

* Multiply the operands.

/ Divide the first operand by the second.
Using the Console 5–33



 
t 
. 

e pro-
The default radix for operands and command output is decimal. Command options   
-ib, -io, -id, and -ix allow you to specify the radix as binary, octal, decimal, or 
hexadecimal, respectively. Similarly, the options -b, -o, -d, and -x specify the 
radix of the command’s output.

5.17 Managing Console Processes

At any given time, you can have multiple console processes running on your
Alpha VME 5/352 or 5/480 SBC. Each console process is a shell process tha
implements most of the functionality that is offered by the UNIX Bourne shell

The console interface provides commands that help you manage your consol
cesses.   Commands are available for: 

• Creating and exiting console processes

• Monitoring the status of system processes

• Setting the priority of a console process

• Specifying the CPU on which a console process can run

• Suspending the execution of a console process

• Stopping and deleting processes from the system

• Breaking from control loops

• Returning a failure status 

• Displaying the semaphores known to the system

5.17.1 Creating and Exiting Console Processes

Create (spawn) new console processes by using the sh command. You can pass 
arguments to the new process and use options to control whether:

• Lines are to be displayed as they are read

• A command should be displayed just before being executed

• The contents of standard input (stdin) should be deleted when the process 
exits

• Lexical elements (tokens) should be displayed as they are recognized

• Rules should be displayed as they are executed

• The names of routines should be displayed as they are called

When you are ready to exit a console process, you can do so by using the exit 
command. You can specify a status value to be returned on exit. If you choose not 
to specify an exit status, the command returns the status of the last command exe-
cuted.

5.17.2 Monitoring Processes

The console monitors all processes while they are executing. To see the status of 
all the processes, use the ps command. This command displays the following 
information for each console process in the system:
5–34 Using the Console



peci-

e 

 
f the 

ght 
 do 
d a 
n CPU 
• Process identifier (PID)

• Address of the process control block (PCB)

• Process priority

• CPU time

• Processor affinity

• CPU

• Program running

• Process state

To see the status of a specific process, use the grep command with a pipe to filter 
the output, as shown at the end of the following example:

>>> ps # Display complete process status.

ID       PCB     Pri CPU Time Affinity CPU  Program    State
-------- -------- - ----- -------- --- -------- ------------------
0000006c 001423a0 3     2 00000001 0         ps running
0000005c 00144b40 2 19253 00000001 0    memtest ready
0000005b 00147a60 2     9 00000001 0      sh_bg waiting on 00144B40
00000059 0014c060 2 21750 00000001 0    memtest ready
00000058 0014edc0 2     5 00000001 0      sh_bg waiting on 0014C060
00000056 00152860 2     3 00000001 0   exer_kid waiting on mscp_rsp
00000055 00153ae0 2     2 00000001 0       exer waiting on exer_tqe
00000054 00181580 2     6 00000001 0      sh_bg waiting on 00153AE0
0000004f 00154d60 5    38 ffffffff 0  pke0_poll waiting on tqe

.

.

.
>>> ps | grep exer # Check exer.
00000056 00152860 2         6 00000001 0     exer_kid waiting on 
mscp_rsp
00000055 00153ae0 2         2 00000001 0         exer waiting on 
exer_tqe

5.17.3 Setting the Priority of Processes

If the system is running multiple processes, you may find it necessary to set pro-
cess priorities to ensure proper system operation. Set a process’ priority by s
fying the PID and a priority value with the sp command. Priority values range 
from 0 to 7 with 7 being the highest. To determine the PID of a process use thps 
command.

5.17.4 Specifying the CPUs on Which a Process Can Run

If your application environment consists of multiple CPUs, you can specify an
affinity mask that indicates on which CPUs a process can run. Bits 0 and 1 o
mask correspond to CPUs 0 and 1, respectively. 

Suppose a process is in the ready state on CPU 0 and CPU 1 is idle. You mi
consider changing the CPU affinity so that the process can run on CPU 1. To
this, use the sa command. Specify the command with the PID of the process an
mask value. For example, to set the mask such that a process can execute o
1, specify a mask value of 2.
Using the Console 5–35



5.17.5 Suspending Processes

You can suspend the execution of the current console process for a specified 
amount of time by using the sleep command. By default, the command suspends 
the process for one second. When the console process is suspended, another con-
sole process that is in the ready state can start executing.

If the default sleep time is insufficient, you can specify a different value and you 
can use the -v option to specify milliseconds.

5.17.6 Stopping Processes

To stop a process and delete it from the system, use the kill command. You must 
specify the process identifier (PID) for each process that is to be stopped. If you 
do not know the PID for a given process, acquire it by using the ps command.

The following example uses the ps command to acquire the PIDs for processes 
running memtest, stops and deletes the process that has PID 59, and then reissues 
the ps command to check whether the process associated with that PID was 
deleted.

>>> ps | grep memtest# Find a process to kill.

0000005c 00144b40 2     135733 00000001 0      memtest ready
00000059 0014c060 2     138258 00000001 0      memtest ready

>>> kill 59 # Kill one of the memtests.

>>> ps | grep memtest# Display our background tasks.

0000005c 00144b40 2     135733 00000001 0      memtest ready

5.17.7 Breaking from Control Loops

To break from a for, while, or until program loop, use the break command. This 
command exits the current console process and returns a status code. You can 
specify the status code that is to be returned. If you omit the status code, break 
returns the status of the last console command executed.

5.17.8 Returning a Failure Status

You can return a failure status from the console by using the false command.

5.18 Displaying Semaphores

To display information about all the semaphores known to the system, use the   
semaphore command. The command traverses the semaphore queue and for each 
known semaphore, displays the following:

• Name

• Value

• Address

• Address of the first waiting process
5–36 Using the Console



5.19 Managing Files and File Content

Several console commands are available for managing files and file content. You 
can:

• Display the contents of a file (standard output)

• Change the attributes of a file

• Dump the contents of a file

• List the files and inodes in the system

• Delete files from the system

• Sort the contents of a file

• Write text to a file (standard output)

• Search for expressions within files

• Copy a file from the standard input channel of the current process to the stan-
dard output channel of that process

For more information on performing these operations, see descriptions of the cat, 
chmod, echo, grep, hd, line, ls, rm, and sort commands in Chapter 6. 
Using the Console 5–37





 6
Console Command Reference

This chapter describes the DIGITAL Alpha VME 5/352 and 5/480 SBC console 
commands. The descriptions are ordered alphabetically by command name for 
quick reference. The command descriptions include the following information:

• Explanation of usage

• Syntax

• Arguments

• Options

• Examples

• Related commands
Console Command Reference 6–1



alloc – allocate a block of memory
Allocates a block of memory from heap. Once allocated, test routines can write to 
and read from the allocated memory. Only one routine can write to the memory at 
a time, but multiple routines can read from the memory simultaneously. 

Syntax

alloc size [modulus] [remainder] [-flood] 
      [-z heap_address]

Arguments

size

Specifies the number of bytes of memory to be allocated. Specify the size as a 
hexadecimal value. 

modulus

Specifies the modulus for the beginning address of the block of memory being 
allocated. Specify the modulus as a hexadecimal value.

remainder

Specifies the remainder to be used with the modulus for computing the beginning 
address of the block of memory being allocated. Specify the modulus as a hexa-
decimal value.

Options

–flood

Flood the allocated block of memory with zeros. 

–z heap_address

Allocate memory from the memory zone that starts at the specified heap address. 
To view the starting addresses of the system’s memory zones, use the dynamic 
command.

Example

>>> alloc 200

00FFFE00

>>> free fffe00
>>> set base ‘alloc 400‘
>>> show base 

base                    00FFFC00

>>> memtest $base 
>>> free $base  
>>> clear base 

See Also
6–2 Console Command Reference



dynamic, free
Console Command Reference 6–3



boot – boot the system
Initializes the processor, loads a program image from a boot device, and transfers 
control to that image.

Syntax
boot [-file boot_file] [-flags longword ,...]
     [-protocols enet_protocol] [-halt] [boot_device] 

Argument

boot_device

The path for a device or list of devices from which the console firmware is to boot 
the system. If you specify a list of devices, separate the device names with  com-
mas (,) and no spaces. For example:

>>> boot ewa0,dka0 

The firmware tries to boot the system from each device in the list in order. When 
one of the devices boots successfully, control passes to the booted image. 

Note

Place network devices at the end of a boot device list.  This is necessary 
because network bootstraps only terminate if a fatal error occurs or an 
image is successfully loaded.

If you omit boot_device,  the firmware uses a boot specification previously 
defined with an environment variable. For example, if you used the set command 
to associate the environment variable BOOTDEF_DEV with a boot device, the 
firmware will use that boot device as the default.

Note

When you specify a boot device with the boot command, that device 
specification overrides the current default boot device for the current boot 
request, but does not change the setting of the corresponding environment 
variable.

Options

–file boot_ file 

Load the specified boot file image into the system. If you do not specify this 
option, the console firmware loads a boot file previously associated with the envi-
ronment variable BOOT_FILE.

–flags longword, ... 
6–4 Console Command Reference



Use the specified longwords as additional boot information for the operating sys-
tem. If you do not specify this option, the firmware loads flags previously associ-
ated with the environment variable BOOT_FLAGS or BOOTED_FLAGS.

Note

If you specify flags in the boot command line, the flags override the cur-
rent default values for the current boot request, but do not change the set-
ting of the corresponding environment variable.

–protocols enet_protocol 

Use the specified Ethernet protocols for a network boot. Specify MOP for a DEC-
net MOP boot, BOOTP for a TCP/IP boot, or both. If you specify both, the firm-
ware attempts to use each protocol to solicit a boot server. If you do not specify a 
protocol, the firmware uses the protocol previously associated with the environ-
ment variable, EWA0_PROTOCOLS.

–halt 

Forces the boot operation to halt and invoke the console program once the boot 
image is loaded and page tables and other data structures are set up. Console 
device drivers are not shut down when you specify this option.

Examples

1. >>> boot

The system tries to boot from a default boot device. If you have not set up 
a default boot device, the console program returns an error message.

2. >>> boot ewa0

The system boots from the Ethernet port EWA0.

3. >>> boot -file avme.sys ewa0

The system boots the file avme.sys from Ethernet port EWA0.

4. >>> boot -fi //usr//local//bootfile//alphavme_v1_1-0 
-protocol bootp ewa0 

The system uses TCP/IP BOOTP to perform a network boot from Ether-
net port EWA0.

5. >>> boot -flags 0,1 

The system boots from a previously defined default boot device with boot 
flag settings 0 and 1.

6. >>> boot -halt dka0 

The system boots from the SCSI disk, dka0, but remains in console 
mode.

See Also

set, show 
Console Command Reference 6–5



break – break from a program loop 
Breaks from a for, while, or until loop. The console firmware exits the current 
shell with a status or returns the status of the last command.

Syntax

break [break_level] 

Argument

break_level 

Specifies the status code to be returned by the shell.

Example

>>> for i in 1 2 3 4 5 ; do  echo $i ; break ; done 
1 
>>> 
6–6 Console Command Reference



cat – copy files
Copies specified files to standard output. You also can use this command to copy 
or append one file to another by specifying I/O redirection.

Syntax

cat [-l length] [file ...]

Arguments

file ...

Specifies the names of one or more input files to be copied.  If you do not specify 
a file on the command line, the command copies standard input to standard output.

Options

–l length 

Copy the specified number of  bytes of each input file. Specify the length as a dec-
imal value.

Examples

1. >>> echo > foo ’this is a test.’ 
>>> cat foo
this is a test. 
>>> 

Creates the file foo with the echo command, and then uses the cat com-
mand to send the contents of the file to the standard output. 

2. >>> cat -l 6 foo 
this i
>>> 

Sends the first six bytes of the file foo to the standard output.

See Also

echo, ls, rm 
Console Command Reference 6–7



chmod – change file attributes 
Changes the attributes of files or inodes. This command provides a subset of the 
capabilities of the equivalent UNIX command.

Syntax

chmod [[{- + =}{r w x b z}]...] file...

Arguments

file ... 

Specifies the files or inodes for which the attributes are to be modified.

Options

-

Clear the specified attributes.

+ 

 Set the specified attributes.

 = 

Set the specified attributes and clear all other attributes not included in the com-
mand line.

 r  

Set or clear the read attribute.

w 

Set or clear the write attribute.

 x  

Set or clear the execute attribute.

 b  

Set or clear the binary attribute.

 z 

Set or clear the expand attribute.

Examples

1. >>> chmod +x script 

Sets the executable attribute for the file script.

2. >>> chmod =r errlog 

Sets the file errlog to read only and clears all other attributes.

3. >>> chmod -w dk* 

Makes all SCSI disks nonwriteable.
6–8 Console Command Reference



See Also

chown, ls –l 
Console Command Reference 6–9



hip is 

tput 
chown – change ownership of memory block 
Changes the ownership of a memory block to a specified process.

Syntax

chown pid address ... 

Arguments

pid 

Specifies the hexadecimal process identifier (PID) of the new owner process. To 
display the PIDs of the system’s current processes, use the ps command.

address ... 

Specifies the hexadecimal addresses of the memory blocks for which owners
to be changed.

Example

>>> chown ‘ps | grep idle | find 0‘ ‘alloc 200‘  

Uses the ps command to display the system’s current processes,  pipes the ou
to the grep command to find an idle process, and then uses the alloc command 
to return the starting address of the first free block of 200 bytes.

See Also

alloc, dynamic, ps
6–10 Console Command Reference



clear – delete environment variable 
Deletes an environment variable from the system’s name space.

Note

Some environment variables, such as BOOTDEF_DEV, are permanent 
and cannot be deleted.

Syntax

clear envar

Argument

envar

Specifies the name of the environment variable to be deleted.

Example

>>> clear foo
>>>

Deletes the environment variable foo.

See Also

set, show 
Console Command Reference 6–11



clear_log – clear error log in NVRAM 
Clears and initializes the area of NVRAM used for console error logging. The 
console firmware clears the entire area of NVRAM where fault information is 
stored and resets miscellaneous pointers, counters, and initialization flags used in 
the error logging process.

Notes 

When you use clear_log, the current contents of the NVRAM error log 
area is destroyed and lost forever. 

Console error logging is completely independent of the operating system’s 
error logging.

Syntax

clear_log

Options

–nc 

Do not prompt for confirmation before starting the clear operation.  By default, 
the firmware prompts for confirmation before starting the clear operation. Specify 
the    –nc option if you do not want the firmware to prompt you.

Example

>>> clear_log 

Error Log data in NVRAM will be destroyed!! 
Continue (y/n)? 
y 
Initializing NVRAM Error Log... 

Prompts for confirmation to continue with the clear operation.  When the user rep-
sponds with y, the firmware  clears and initializes the NVRAM error log.

See Also

show_log 
6–12 Console Command Reference



OY) 

e 
ars 

ing 

ds 
ay, 

 

date – display or change the date and time 
Displays or changes the date and time stored in the system’s time-of-year (T
clock. 

Note 

The date and time are  not preserved if the TOY clock battery has been 
disabled with the set toy sleep command. The next time the system is 
powered on the firmware reenables the battery,  but you may need to rein-
itialize the date and time.

The format of the date and time registers for the console is as described in th
DS1386 specification, except that the year register contains the number of ye
1858. This is done to retain compatibility with the openVMS and UNIX operat
systems.

Syntax

date [[[[yyyy]mm]dd]hhmm[.ss]] 

Arguments

yyyymmddhhmm.ss 

Specifies the new date and time as follows:

If you omit this argument, the command displays the current date and time. 

To modify the date or time, you must specify at least the hour and minute fiel
(four digits). If you include six digits, the command interprets the input as the d
hour, and minute fields. The command inherits values for fields that you omit
from the specification. 

Example

>>> date 199708031029.00
>>> date
10:29:04 August 3, 1997
>>> 

Field Meaning Valid Range of Values

yyyy Year 0000 to 9999

mm Month 01 to 12

dd Day 01 to 31

hh Hour 00 to 23

mm Minutes 00 to 59

ss Seconds 00 to 59
Console Command Reference 6–13



deposit – write data to memory
Writes data to a memory location, register, device, or file.

After initialization, if you have not specified a data address or size, the default 
address space is physical memory, the default data size is a quadword, and the 
default address is zero.

You specify an address or device by concatenating the device name with the 
address, for example, pmem:0, and by specifying the size of the space to which to 
write.

If you do not specify an address, the data is written to the current address in the 
current data size (the last previously specified address and data size).

If you specify a conflicting device, address, or data size, the console ignores the 
command and issues an error.

Syntax
deposit [-b -w -l -q -o -h] [-physical -virtual -gpr -fpr         
        -ipr] [-n count] [-s step] [device] address data
6–14 Console Command Reference



Arguments 

device

Specifies the device name or address space to which the data is to be written. 
Specify one of the following: 

Value Description

pmem: Physical memory.

vmem: Virtual memory. The console firmware checks on accessibility and protec-
tion. If the access would not be allowed to a program running with the cur-
rent program stack, the firmware issues an error message. If memory 
mapping is not enabled, virtual addresses are equal to physical addresses. 

gpr: General purpose register. The data size defaults to quadword. When you 
specify this value, you can specify the following symbols for address:  r0, 
r1 through r31, ai, ra, pv, fp, sp, or rz. 

fpr: Floating-point register set. The data size defaults to quadword. When you 
specify this value, you can specify the  following symbols for address:  f0 
through f31.

ipr: Internal processor register set. The data size defaults to quadword. When 
you specify this value, you can specify the following symbols for address: 
ps, asn, asten, astsr, at, fen, apir, ipl, mces, pcbb, prbr, ptbr, scbb, sirr, 
sisr, tbchk, tbia, tbiap, tbis, esp, ssp, usp, or whami.

pt: PAL Temporary register set. The data size defaults to quadword. When you 
specify this value, you can specify the following symbols for address: PT:0 
through PT:31 or PT0: through PT31:.

pcicfg: PCI configuration space.

pcidmem: PCI dense memory space.

pcismem: PCI sparse memory space.

pciio: PCI I/O space.

eerom: Environment variable and error log NVRAM.

ferom: Intel 28F020 firmware FEPROM.

toy: DS1386 registers, clock chip, and NVRAM.
Console Command Reference 6–15



m-

he 
aller 
 writ-
address 

Specifies the address to which the data is to be written. The address can be:

• Any valid hexadecimal offset in the address space of the specified device 

• A symbolic address (if you omit the device  argument)

For hexadecimal addresses that start with “f”, you must add a leading zero (0) to 
prevent recognition as a floating-point register. For example, 0f0 is a valid me
ory address while f0 is not.

If you do not specify the device argument, you can specify one of the follow-
ing symbolic addresses:

data 

The data to be written. If the specified data is larger than the specified size, t
console firmware ignores the command and issues an error. If the data is sm
than the specified size, the firmware pads the data with leading zeros before
ing it.

Options

–b 

Use a data size of byte.

–w 

Value Description

gpr General purpose register 0.

fpr Floating-point register 1.

ipr Internal processor register.

pt or pt0 -pt31 PAL Temporary registers 0 through 31. The data size defaults to quad-
word; the address space defaults to pt.

PC Program counter (execution address register). The last address, size, 
and type are unchanged.

+ The location immediately following the last location referred to by the  
examine or deposit command. For references to physical or virtual 
memory, the location is the last address plus the size of the last refer-
ence. For other address spaces, the address is the last address referred 
to plus one.

– The location immediately preceding the last location referred to by the 
examine or deposit command. For references to physical or virtual 
memory, the location is the last address minus the size of the last refer-
ence. For other address spaces, the address is the last address referred 
to minus one.

* The location last referred to by the examine or deposit command.

@ Uses the data at the last address referred to by the examine or deposit 
command.
6–16 Console Command Reference



Use a data size of word.

–l 

Use a data size of longword.

–q 

Use a data size of quadword.

–o 

Use a data size of octaword. 

–h 

Use a data size of hexaword. 

–physical 

Write the data to physical memory. Using this option is the same as specifying 
pmem: for device.

–virtual 

Write the data to virtual memory. Using this option is the same as specifying  
vmem: for device.

–gpr 

Write the data to the general purpose registers. Using this option is the same as 
specifying gpr: for device.

–fpr 

Write the data to the floating-point registers. Using this option is the same as spec-
ifying fpr: for device.

–ipr 

Write the data to the internal processor registers. Using this option is the same as 
specifying ipr: for device.

–n count 

Write to the specified number of consecutive locations. The console firmware 
deposits to the first address, then to the specified number of succeeding addresses. 
Specify count  as a hexadecimal value.

–s step 

Increment the address location by the specified size. By default, the  address 
increment size is the data size.  Use this option to override the default. This option 
is not inherited. Specify step  as a hexadecimal value.

Examples

1. >>> d -b -n 1FF pmem:0 0 

Clears the first 512 bytes of physical memory.

2. >>> d -l -n 3 vmem:1234 5 

Deposits 5 into four longwords starting at virtual memory address 1234.

3. >>> d -n 8 R0 FFFFFFFF 
Console Command Reference 6–17



Loads general purpose registers R0 through R8 with –1. 

4. >>> d -l -n 10 -s 200 pmem:0 8 

Deposits 8 into the first longword of each of the first 17 pages in physical 
memory.

See Also

examine 
6–18 Console Command Reference



dynamic – show memory 
Shows the state of dynamic memory. Dynamic memory is split into two main 
heaps: the console’s private heap and the remaining memory heap.

Syntax
dynamic [-c [-r]] [-h] [-p] [-v] [-extend byte_count] 
         [-z heap_address] 

Options

–c 

Perform a consistency check on the default heap or the heap specified with option 
–z. 

–r 

Repair a broken heap by flooding free blocks with DYN$K_FLOOD_FREE if 
and only if the free blocks have been corrupted. Repairing broken heaps is danger-
ous at best, as it masks underlying errors. This flag takes effect only if a consis-
tency check is being done.

–h 

Display the headers of the blocks in the default heap or the heap specified with 
option –z. 

–p 

Display dynamic memory statistics on a per process basis.

–v 

Perform a validation test on the default heap or the heap specified with option –z. 

–extend byte_count 

Extend the default memory zone by the specified byte count at the expense of the 
main memory zone. The command assumes that the two memory zones are physi-
cally adjacent.

–z heap_address 

Operate on the heap at the specified address.

Examples

1. >>> dynamic 

zone     zone       used    used       free    free       utili-  high
address  size       blocks  bytes      blocks  bytes      zation  water
-------- ---------- ------- ---------- ------- ---------- ------- ------
---
00097740 1048576    389     358944     17      689664      34 %   371872
001D2B80 14805504   1       32         1       14805504     0 %   0

2. >>> dynamic -cv -z 97740 

zone     zone       used    used       free    free       utili-  high 
Console Command Reference 6–19



address  size       blocks  bytes      blocks  bytes      zation  water 
-------- ---------- ------- ---------- ------- ---------- ------- ------
---
00097740 1048576    398     359520     17      689088      34 %   
371872)

3. >>> dynamic -h 

zone     zone       used    used       free    free       utili-  high 
address  size       blocks  bytes      blocks  bytes      zation  water 
-------- ---------- ------- ---------- ------- ---------- ------- ------
---
00097740 1048576    392     359136     17      689472      34 %   389280 
a 00097740 000E1600_001E0600 000E1608_001BF628 00000000 00097740 32 
f 000E1600 0017E600_00097740 00189E68_00097748 FFFFFFFF 000E1600 643072)
a 0017E600 001823C0_000E1600 001BF448_001B0D6C 00000023 0017E600 15808)

.

.

.
>>> 

See Also

alloc, free 
6–20 Console Command Reference



echo – display text output 
Sends a line of text that you enter on the command line to the standard output.  By 
default, standard output is your console screen. The echo command separates 
arguments (words) in the line with blanks and adds a new line character to the end 
of the line.

Syntax

echo [-n] args ... 

Arguments

args ... 

Specifies the character strings to be displayed. 

The character strings can include pipes and I/O redirection.  However, if you use 
them, enclose the characters strings within single quotes.

Options

–n 

Suppress new lines characters from the output.

Examples

1. >>> echo this is a test. 
this is a test. 
>>> 

Sends a character string to your console screen.

2. >>> echo -n this is a test. 
this is a test.>>> 

Sends a character string to your console screen, but with no new line sep-
arating the string from the next console prompt >>> .

3. >>> echo ’this is a test’ > foo 
>>> cat foo 
this is a test 
>>> 

Pipes a string to the file foo. Typing the contents of the file foo then 
shows the string.

4. >>> echo > foo ’this is the simplest way 
_>to create a long file. All characters will be echoed 
_>to file foo until the closing single quote.’ 
>>> cat foo 
this is the simplest way 
to create a long file. All characters will be echoed 
to file foo until the closing single quote. 
>>> 

Shows how you can use echo to create a file that is several lines long.

See Also

cat 
Console Command Reference 6–21



eval – evaluate expression 
Evaluates a postfix expression.

Syntax
eval [-ib -io -id -ix] [-b -o -d -x] operand1 operand2
     operator

Arguments

operand1 

Specifies the first numeric value to be evaluated.

 operand2 

Specifies the second numeric value to be evaluated.

operator 

Specifies one of the following: 

Options

–ib 

Use the operands as binary values.

–io 

Use the operands as octal values.

–id 

Use the operands as decimal values.

–ix 

Use the operands as hexadecimal values.

–b 

Display the output as a binary value.

–o 

Display the output as an octal value.

–d 

Display the output as a decimal value.

–x 

Operator Description

+ Adds the operands.

- Subtracts operand2  from operand1.

* Multiplies the operands.

/ Divides operand1  by operand2.
6–22 Console Command Reference



Display the output as a hexadecimal value.

Examples

1. >>> eval 5 10 + 
15 

Adds 5 and 10 and displays 15 as the result. 

2. >>> eval -ix -d 5 10 + 
21

Adds the hexadecimal values 0x5 and  0x10 and displays the result as 
decimal value 21.
Console Command Reference 6–23



examine – display memory data 
Displays the content of a memory location, register, device, or file.

After initialization, if you have not specified a data address or size, the default 
address space is physical memory, the default data size is a quadword, and the 
default address is zero.

You specify an address or device by concatenating the device name with the 
address, for example, pmem:0, and by specifying the size of the data to be dis-
played.

If you do not specify an address, the data at the current address is displayed in the 
current data size (the last previously specified address and data size).

If you specify a conflicting device, address, or data size, the console ignores the 
command and issues an error.

The information that the command displays consists of the device name, the 
address (or offset within the device) in hexadecimal, and the examined data in 
hexadecimal.

The examine command uses the same options as the deposit command. Addition-
ally, the examine command supports instruction decoding (see option –d), which 
disassembles instructions beginning  at  the current address.

Syntax
examine [-b -w -l -q -o -h -d] [physical -virtual -gpr -fpr
        -ipr] [-n count] [-s step] [device] address
6–24 Console Command Reference



m-
Arguments

device 

Specifies the device name or address space to access. The following devices are 
supported:

address 

Specifies the address of the data that is to be examined. The address can be:

• Any valid hexadecimal offset in the address space of the specified device 

• A symbolic address (if you omit the device  argument)

For hexadecimal addresses that start with “f,” you must add a leading zero (0) to 
prevent recognition as a floating-point register. For example, 0f0 is a valid me
ory address while f0 is not.

Value Description

pmem: Physical memory.

vmem: Virtual memory. The console firmware checks on accessibility and protec-
tion. If the access would not be allowed to a program running with the cur-
rent program stack, the firmware issues an error message. If memory 
mapping is not enabled, virtual addresses are equal to physical addresses. 

gpr: General purpose register. The data size defaults to quadword. When you 
specify this value, you can specify the following symbols for address:  r0 
through r31. The default data size is quadword. 

fpr: Floating-point register set. The data size defaults to quadword. When you 
specify this value, you can specify the  following symbols for address:  f0 
through f31. The default data size is quadword.

ipr: Internal processor register set. 

pt: PAL Temporary register set. The data size defaults to quadword.

pcicfg: PCI configuration space.

pcidmem: PCI dense memory space.

pcismem: PCI sparse memory space.

pciio: PCI I/O space.

eerom: Environment variable and error log NVRAM.

ferom: Intel 28F020 firmware FEPROM.

toy: DS1386 registers, clock chip, and NVRAM.
Console Command Reference 6–25



If you do not specify the device  argument, you can specify one of the following 
symbolic addresses: 

Options 

–b 

Use a data size of byte.

–w 

Use a data size of word.

–l 

Use a data size of longword.

–q 

Use a data size of quadword.

–o 

Value Description

gpr- name Names a general purpose register. The data size defaults to quadword 
and the address space defaults to gpr. Symbols you can specify as 
valid names include r0 through r31, ai, ra, pv, fp, sp, and rz.

fpr- name Names a floating-point register. The data size defaults to quadword 
and the address space defaults to fpr. Symbols you can specify as 
valid names include f0 through f31.

ipr- name Names an internal processor register. The data size defaults to quad-
word and the address space defaults to ipr.  Symbols you can specify 
as valid names include ps,  asn, asten, astsr, at, fen, ipir, ipl, mces, 
pcbb, prbr, ptbr, scbb, sirr, sisr, tbchk, tbia, tbiap, tbis, esp, ssp, 
usp, and whami.

pt- name Names a PAL Temporary register.  The data size defaults to quadword 
and the address space defaults to pt. Symbols you can specify as valid 
names include pt0 through pt31.

PC Names the program counter (execution address register). The last 
address, size, and type are unchanged.

+ Names the location immediately following the last location referred to 
by the  examine or deposit command. For references to physical or 
virtual memory, the location is the last address plus the size of the last 
reference. For other address spaces, the address is the last address 
referred to plus one.

– Names the location immediately preceding the last location referred to 
by the examine or deposit command. For references to physical or 
virtual memory, the location is the last address minus the size of the 
last reference. For other address spaces, the address is the last address 
referred to minus one.

* Names the location last referred to by the examine or deposit com-
mand.

@ Uses the data at the last address referred to by the examine or deposit 
command as the address.
6–26 Console Command Reference



Use a data size of octaword.

–h 

Use a data size of hexaword.

–d 

Display the decoded macro instruction. This option does not recognize machine-
specific PAL instructions.

–physical 

Display data that is at an address in physical memory. Using this option is the 
same as specifying pmem: for device.

–virtual 

Display data that is at an address in virtual memory. Using this option is the same 
as specifying vmem: for device.

–gpr 

Display data that is in the general purpose registers. Using this option is the same 
as specifying gpr: for device.

–fpr 

Display data that is in the floating-point registers. Using this option is the same as 
specifying fpr: for device.

–ipr 

Display data that is in the internal processor registers. Using this option is the 
same as specifying ipr: for device.

–n count 

Display the data at the specified number of consecutive locations.

–s step 

Increment the address location by the specified size.   By default, the address 
increment size is the data size.  Use this option to override the default. This option 
is not inherited. Specify step as a hexadecimal value.

1. >>> e r0 
gpr:                0 (    R0) 0000000000000002 

Examine general purpose register R0 by symbolic address.

2. >>> e -g 0 
gpr:                0 (    R0) 0000000000000002 

Examine general purpose register R0 by address space (–gpr option).

3. >>> e gpr:0 
gpr:                0 (    R0) 0000000000000002 

Examine R0 by device name.

4. >>> examine pc 
gpr: 0000000F (    PC) FFFFFFFC 

Examine the program counter.

5. >>> examine sp 
gpr: 0000000E (    SP) 00000200 
Console Command Reference 6–27



Examine the GPR stack pointer register.

6. >>> examine -n 5 R7 
gpr: 00000007 (    R7) 00000000 
gpr: 00000008 (    R8) 00000000 
gpr: 00000009 (    R9) 801D9000 
gpr: 0000000A (   R10) 00000000 
gpr: 0000000B (   R11) 00000000 
gpr: 0000000C (    AP) 00000000 

Examine register R7 plus the 5 following general purpose registers. 

7. >>> examine ipr:11 
ipr: 00000011 (  SCBB) 2004A000 

Examine the SCBB, internal processor register 17 (decimal).

8. >>> examine scbb 
ipr: 00000011 (  SCBB) 2004A000 

Examine the SCBB using the symbolic name.

9. >>> examine pmem:0 
pmem: 00000000 00000000 

Examine physical address 0.

10. >>> examine -d 40000 
pmem: 00040000      11 BRB     20040019 

Examine address 40000 with macro instruction decode.

11. >>> examine 
pmem: 20040048   DB MFPR    S^#2B,B^48(R1) 

Look at the next instruction.

See Also

deposit 
6–28 Console Command Reference



cified 
exer – exercise devices 
Exercises one or more devices by performing read, write, and comparison opera-
tions. Optionally, this command reports performance statistics.

A read operation reads data from a device and places the data in a buffer. A write 
operation writes data that resides in a buffer to a device. A comparison operation 
compares the contents of two buffers.

The exer command uses two buffers in “memzone” heap of main memory, 
buffer1 and buffer2. A read or write operation can use either buffer. A com-
pare operation uses both buffers.

The total number of bytes read or written on each pass of the exerciser is spe
by the length (in blocks) or starting and ending block address options.

Syntax
exer [-sb start_block] [-eb end_block] [-p pass_count]
     [-l blocks] [-bs block_size] [-bc block_per_io]
     [-d1 buf1_string] [-d2 buf2_string] [-a 
action_string]
     [-sec seconds] [-m] [-v] [-delay milliseconds]
    [device...]

Arguments

device...

Specifies the names of one or more  devices or file streams to be exercised. 

Options

–sb start_block 

Use the specified hexadecimal value as the starting block number within the file 
stream. The default is 0.

–eb end_block 

Use the specified hexadecimal value as the ending block number within the file 
stream. The default is 0.

–p pass_count 

Run the exerciser for the specified number of passes.  If you specify 0, the exer-
ciser runs forever or until you enter Ctrl/C. The default is 1.

–l blocks 

Exercise the specified number of blocks. Specify the block value as hexadecimal. 
This option has precedence over the –eb option. If the exerciser is reading only, 
and you do not specify –l or –eb, the exerciser reads until it reaches the end-of-file 
(EOF). If the exerciser is writing, and you do not specify –l or –eb, the exerciser 
writes for the size of the device.  The default is 1.

–bs block_size 
Console Command Reference 6–29



te, 

rom 
-
ice 
tring. 

 

Use the specified block size.  Specify the block size in bytes as a hexadecimal 
value. The default is 0x200 except for tape drives, which default to 0x800. The 
maximum block size allowed with variable length block reads is 0x800 bytes.

–bc block_per_io 

Use the specified number of blocks per I/O operation. Specify the number of 
blocks as a hexadecimal value. The default is 1.

–d1 buf1_string 

Evaluate the specified character string and initialize buffer1  with the results. 
By default, the console firmware loads the buffer with alternating 5s and As 
(hexadecimal).

–d2 buf2_string 

Evaluate the specified character string and initialize buffer2  with the results. 
By default, the console firmware loads the buffer with alternating 5s and As 
(hexadecimal).

–a action_string 

Use the specified “action string,” which determines the sequence of read, wri
and comparison operations that are to be performed on various buffers. The con-
sole firmware processes each command code character in the action string f
left to right. Each time the exer command completes all of the operations speci
fied by the action string, the command reduces the remaining amount of dev
data to be processed by the size of the last packet processed by the action s
The exer command processes the action string repeatedly until the specified 
amount of device data has been processed.

Lowercase action string characters specify operations that use buffer1. Upper-
case action string characters specify operations that use buffer2.  The action 
string character c requires the use of both buffers.  The action string characters “?” 
and “-” do not use a buffer.

Table 6–1 lists the action string characters  and corresponding actions. The default
action string is “?r.”: 

Table 6–1 Action String Characters 

Character Action

r Read data from a device and place the data in buffer1.

w Write data that is in buffer1 to a device.

R Read data from a device and place the data in buffer2.

W Write data that is in buffer2 to a device.

n Write data that is in buffer1 without using locking to maintain mutual 
exclusion. 

N Write data that is in buffer2 without using locking to maintain mutual 
exclusion.

c Compare the contents of buffer1 and buffer2.
6–30 Console Command Reference



The action string can specify any combination  or sequence of read, write,  and 
comparison operations on buffer1 and buffer2. Depending on the option argu-
ments that you use, you can omit one or two of the three operations without affect-
ing the execution of the other operations.

If the exer command writes to a file, the number of bytes processed per pass 
equals the allocation size of the file.  The allocation size is usually larger than the 
length of the file for RAM disk files, but equal to the length for disk devices.

Note

Disk device I/O fails if the block size is not equal to 1 or a multiple of 
512. Partial block read or write operations are not supported; therefore, a  
length that is not a multiple of the block size results in no errors, but the 
last partial block I/O operation on the data does not occur.

–sec seconds 

Terminate the exercise after the specified number of seconds have elapsed. By 
default, the exerciser continues until the specified number of blocks or pass-
count are processed.

–m 

Use metrics mode and report throughput at the end of the exercise.

–v 

Use verbose mode for read operations and write the data that is read to standard 
output (STDOUT). This option does not apply to write and comparison opera-
tions.

- Seek to a file offset prior to performing the last read or write operation.

? Seek to a random block offset within a specified range of blocks, call 
the random function  to  create each of a set of numbers once, and 
then choose a set that is a power of two and is greater than or equal to 
the block range. 

Each call to random results in a number that is then mapped to the 
set of numbers in the block range. The exer command seeks to that 
location in the file stream. 

Since the exer command starts with the same random number seed, 
the set of random numbers generated  is always over the same set of 
block range numbers.

s Sleep for the number of milliseconds specified by the delay option. If 
you do not specify the delay option, the console sleeps for 1 millisec-
ond.

Note: Times reported in verbose mode are not necessarily accurate 
when this action character is used.

Table 6–1 Action String Characters  (Continued)

Character Action
Console Command Reference 6–31



e 

  

 or 
. 

rite 

atisfy 

 

Delay processing by the specified number of milliseconds if  “s” appears in th
action string.

Examples

1. >>> exer dk*.* -p 0 -secs 36000 

Read all SCSI type disks for the entire length of each disk. Repeat this for
36000 seconds (10 hours). All disks are read concurrently. Each block 
read occurs at a random block number on each disk.

2. >>> exer -l 2 dka0 

Read block numbers 0 and 1 from device dka0.

3. >>> exer -sb 1 -eb 3 -bc 4 -a ’w’ -d1 ’0x5a’ dka0 

Write 0x5as to every byte of blocks 1, 2, and 3. The packet size is 
bc * bs, 4 * 512, 2048 for all writes.

4. >>> ls -l du*.* dk*.* 
d**.* no such file 
r---   dk                  0/0              0   dka0.0.0.0.0 
>>> exer dk*.* -bc 10 -sec 20 -m -a ’r’ 
dka0.0.0.0.0 exer completed 

packet                                    IOs            elapsed idle 
size    IOs  bytes read  bytes written   /sec bytes/sec seconds secs 
8192  3325    27238400              0    166   1360288     20    19 

5. >>> exer -eb 64 -bc 4 -a ’?w-Rc’ dka0 

Perform a destructive write test on blocks  0 through 100 on disk dka0. 
The packet size is 2048 bytes. The action string specifies the following 
sequence of operations:

a. Set the current block address to a random block number on the disk 
between 0 and 97. A 4-block packet, starting at block number 98, 99,
100, will access blocks beyond the end of the length to be processed
Thus, 97 is the largest possible starting block address of a packet.

b. Write from buffer1, which contains the previously read data, to the 
current block address.

c. Set the current block address to what it was just prior to the previous w
operation.

d. From the current block address, read a packet into buffer2.

e. Compare buffer1 with buffer2 and report any discrepancies.

f. Repeat steps a through e until enough packets have been written to s
the length requirement of 101 blocks.

6. >>> exer -a ’?r-w-Rc’ dka0 

Perform a nondestructive write test with packet sizes of 512 bytes. The 
action string specifies the following sequence of operations:

a. Set the current block address to a random block number on the disk.

b. From the current block address on the disk, read a packet into buffer1.

c. Set the current block address to the device address, where it was just 
before the previous read operation occurred.
6–32 Console Command Reference



d. Write a packet of 0x5as from buffer1 to the current block address.

e. Set the current block address to what it was just prior to the previous write 
operation.

f. From the current block address on the disk, read a packet into buffer2.

g. Compare buffer1 with buffer2 and report any discrepancies.

h. Repeat the preceding steps until each block on the disk has been written 
once and read twice.

7. >>> set myd 0 
>>> exer -bs 1 -bc a -l a -a ’w’ -d1 ’myd myd ~ =’ foo 
>>> clear myd 
>>> hd foo -l a 
00000000  ff 00 ff 00 ff 00 ff 00 ff 00 .......... 

Use an environment variable myd  as a counter. Write 10 bytes of the pat-
tern ff 00 ff 00... to RAM disk file foo, using a packet size of 10 bytes. 
Because the length specified is also 10 bytes, only one write occurs. 
Delete the environment variable myd.

The hd, hexadecimal dump, of foo shows the contents of foo after the 
exer command runs.

8. >>> set myd 0 
>>> exer -bs 1 -bc a -l a -a ’w’ -d1 ’myd myd 1 + =’ foo 
>>> hd foo -l a 
00000000  01 02 03 04 05 06 07 08 09 0a .......... 

Write a pattern of 01 02 03 ... 0a to file foo. 

9. >>> set myd 0 
>>> exer -bs 1 -bc 4 -l a -a ’w’ -d1 ’myd myd 1 + =’ foo -m 
foo exer completed 

packet                                    IOs            elapsed idle 
size    IOs  bytes read  bytes written   /sec bytes/sec seconds secs 
4     3           0             10   3001     10001      0     0 
>>> hd foo 
00000000  01 02 03 04 01 02 03 04 01 02 .......... 
>>> show myd 
myd                 4 

10. >>> echo ’0123456789abcdefghijklmnopqrstAB’ -n > foo3 
>>> exer -bs 1 -v -m foo3 
b2lkfmp8jatsnA1gri54B69o3qdc7eh0foo3 exer completed 

packet                                    IOs            elapsed idle 
size    IOs  bytes read  bytes written   /sec bytes/sec seconds secs 
1    32          32              0   5333      5333      0     0 

See Also

memexer 
Console Command Reference 6–33



exit – exit current shell process
Exits the current shell process with the specified status or returns the status of the 
last command executed.

Syntax

exit exit_value 

Argument

exit_value 

Specifies the status code to be returned by the shell process.

Examples

1. >>> exit 

Exits and returns the status of the previously executed command.

2. >>> exit 0 

Exits with a success status.

3. >>> test || exit 

Runs test and exits if there is an error.
6–34 Console Command Reference



false – return a failure status 
Returns a failure status.

Syntax

false 

Example

>>> while false ; do echo foo; done 
>>> 
Console Command Reference 6–35



free – deallocate memory 
Frees a block of memory that has been allocated from heap. The block is returned 
to the appropriate heap.

Syntax

free address... 

Argument

address ...

Specifies the addresses of blocks of memory that are to be returned to the heap.   If 
you specify more than one address, separate the addresses with a space. 

Example

>>> alloc 200 
00FFFE00 
>>> free fffe00 
>>> free ‘alloc 10‘ ‘alloc 20‘ ‘alloc 30‘  
>>> 

See Also

alloc, dynamic 
6–36 Console Command Reference



grep – search for regular expressions 
Globally searches for regular expressions and displays any lines containing occur-
rences of those expressions. A regular expression is a shorthand way of specifying 
a wildcard type of string comparison. Since the grep command is line-oriented, it 
works only on ASCII files.

Syntax

grep [-c] [-i] [-n] [-v] {expression -f file} [file ...] 

Arguments

expression 
Console Command Reference 6–37



Specifies the regular expression for which to search. If the expression includes 
any of the metacharacters listed in the following table, enclose the expression 
within quotes to avoid interpretation by the shell.

file ... 

Specifies the files to be searched. If you do not specify a file, the command 
searches standard input (STDIN).

Options

–c 

Print only the number of lines that matched.

–i 

Ignore case during the search. By default, the grep command is case-sensitive.

–n 

Metacharacter Description

^ Matches the beginning of a line.

$ Matches the end of a line.

. Matches any single character.

[ ] Matches a specified set of characters, for example, [ABC] 
matches  A or B or C. The following rules also apply for these 
sets:

• A dash other than the first or last character denotes a range 
of characters: [A-Z] matches any uppercase letter.

• If the first character of the set is ^, then the sense of match 
is reversed: [^0-9] matches any non-digit.

• You must precede the backslash (\), right square bracket 
(]), dash (-), and circumflex (^) characters with a back-
slash ( \ ) if they occur in a set.

* Matches repeatedly. When you place an asterisk (*) after a pat-
tern, the asterisk indicates that the pattern should match any num-
ber of times. For example, [a-z][0-9]* matches a lowercase 
letter followed by zero or more digits.

+ Matches repeatedly.  When you place a plus sign (+)  after a pat-
tern, the plus sign indicates that the pattern should match one or 
more times. For example, [0-9]+ matches any sequence of one 
or more digits.

? Matches optionally. When you place a question mark (?) after a 
pattern, the question mark indicates that the pattern can match 
zero or one times. For example, [a-z][0-9]? matches a lower-
case letter alone or followed by a single digit.

\x’ Prevents the character (denoted by x) following the backslash 
from having special meaning.
6–38 Console Command Reference



Print the line numbers of the matching lines.

–v 

Print all lines that do not contain the specified expression.

–f file 

Use the regular expression in the specified file instead of the expression specified 
on the command line.

Examples

1. >>> ps | grep ewa0 
0000001f 0019e220 3    2 ffffffff 0  mopcn_ewa0 waiting on 
mop_ewa0_cnw
00000019 0018e220 2    1 ffffffff 0  mopid_ewa0 waiting on tqe 
00000018 0018f900 3    3 ffffffff 0  mopdl_ewa0 waiting on 
mop_ewa0_dlw
00000015 0019c320 5    0 ffffffff 0     tx_ewa0 waiting on 
ewa0_isr_tx
00000013 001a2ce0 5    2 ffffffff 0     rx_ewa0 waiting on 
ewa0_isr_rx

Search the output of the  ps  command  (standard input) for lines contain-
ing EWA0.

2. >>> alloc 20 
00FFFFE0 
>>> deposit -q pmem:fffff0 0  
>>> e -n 3 ffffe0 
pmem:           FFFFE0 EFEFEFEFEFEFEFEF 
pmem:           FFFFE8 EFEFEFEFEFEFEFEF 
pmem:           FFFFF0 0000000000000000 
pmem:           FFFFF8 EFEFEFEFEFEFEFEF 
>>> e -n 3 ffffe0 | grep -v 0000000000000000 
pmem:           FFFFE0 EFEFEFEFEFEFEFEF)
pmem:           FFFFE8 EFEFEFEFEFEFEFEF)
pmem:           FFFFF8 EFEFEFEFEFEFEFEF)
>>> free ffffe0 
>>> 

Using grep, search for all quadwords in a range of memory that are non-
zero.
Console Command Reference 6–39



hd – dump file contents 
Dumps the contents of a file in hexadecimal and ASCII format.

Syntax

hd [-byte -word -long -quad] file ... 

Arguments

file ... 

Specifies the files to be displayed.

Options

–byte 

Print the data in bytes.

–word 

Print the data in words.

–long 

Print the data in longwords.

–quad 

Print the data in quadwords.

Examples

1. >>> echo -n ’the quick brown fox jumped over the lazy dog’ >foo
>>> hd foo 

00000000 74 68 65 20 71 75 69 63 6B 20 62 72 6P 77 6E 20  the quick 
brown
00000010 66 6F 78 20 6A 75 6D 70 65 64 20 6F 76 65 72 20  fox jumped 
over
00000020 74 68 65 20 6C 61 7A 79 20 64 6F 67              the lazy dog

2. >>> -byte foo 
00000000 74 68 65 20 71 75 69 63 6B 20 62 72 6P 77 6E 20  the quick 
brown 
00000010 66 6F 78 20 6A 75 6D 70 65 64 20 6F 76 65 72 20  fox jumped 
over 
00000020 74 68 65 20 6C 61 7A 79 20 64 6F 67              the lazy dog 

3. >>> -word foo 
00000000 6874 2065 7571 6369 206B 7262 776F 206E  the quick brown 
00000010 6F66 2078 756A 706D 6465 6F20 6576 2072  fox jumped over 
00000020 6874 2065 616C 797A 6420 676F            the lazy dog 

4. >>> -long foo 
00000000 20656874  63697571 7262206B  206E776F    the quick brown 
00000010 20786F66  706D756A 6F206465  20726576    fox jumped over 
00000020 20656874  797A616C 676F6420              the lazy dog 

5. >>> -quad foo 
00000000 6369757120656874   206E776F7262206B      the quick brown 
00000010 706D756A20786F66   207265766F206465      fox jumped over 
00000020 797A616C20656874   00000000676F6420      the lazy dog 
>>> 
6–40 Console Command Reference



help – display help on commands 
Displays the syntax for Alpha VME 5/352 and 5/480 SBC console firmware com-
mands. If you do not specify a command, the help command displays information 
about itself and lists the commands for which additional information is available.

The following conventions are used for the command syntax that the help com-
mand displays: 

You can use the help and man commands interchangeably.

Syntax

help [command-spec ...] 

Arguments

command-spec ... 

Specifies the commands or topics for which you request help.

For each command specification that you specify,  the help command tries to find 
all topics that match. For example, if you specify a ex as the command specifica-
tion,  help displays information about the  exit and examine commands.

The help command supports wildcards.   Use an asterisk (*) as the wildcard char-
acter.  For example, enter help * to display help on all console commands. 

The help command treats command specifications as regular expressions. For 
more information on regular expressions, see the grep command. Help command 
specifications are case-sensitive.

Examples

1. >>> help

Display a list of console commands for which help is available.

2. >>> help *

Display help on all console commands.

3. >>> help ex 

Display help on all commands that begin with “ex.”

4. >>> help boot

Display help on the  boot command.

Convention Description

<item> Angle brackets denote an item  for which you must specify a 
value.

[<item>] Square brackets enclose optional arguments, options, or values.

{a, b, c } Braces enclosing items separated by commas indicate mutually 
exclusive items. Choose only one of a, b, or c.

{a | b | c } Braces enclosing items separated by vertical bars indicate combi-
natorial items. Choose any combination of a, b, and c.
Console Command Reference 6–41



 init_ev – initialize environment variables 
Sets all environment variables to default values. For the new variable settings to 
take effect, you must reset the system or issue the initialize command.

Syntax

init_ev 

Example

>>> init_ev 

Note: A System Reset or init command must be issued immediately 
      after this command to set all environment variables to their 
      default values!! 
 
>>> 

Reset the system or issue the init command to ensure that the new default environ-
ment variable settings take effect.
6–42 Console Command Reference



init – initialize a device or the processor and console 
Initializes a device or the processor and console.

Syntax

init [-d device] 

Option

–d device 

Initialize the specified device. 

Example

1. >>> init

Initialize the processor and console.

2. >>> init -d ewa0 

Initialize device ewa0.
Console Command Reference 6–43



kill – delete process 
Deletes the specified processes.

Syntax

kill pid ...

Arguments

pid ... 

Specifies the process IDs (PIDs) of the processes to be deleted. To acquire a list-
ing of PIDs associated with your system, use the ps command.

Example

>>> memtest -p 0 & 
>>> ps | grep memtest 
000000f1 00217920 2       9357 ffffffff 0      memtest ready 
>>> kill f1 
>>> ps | grep memtest 

Run memtest and display the test’s PID (f1) with the ps and grep commands. 
Using the displayed data, delete the process with the kill command. Try to display 
the test process again. The command output shows that the process is gone.

See Also

ps 
6–44 Console Command Reference



line – read a line 
Copies a line (up to the new line character) from the standard input channel of the 
current process to the standard output channel of that process. This command 
always writes at least the new line character as output.

Use this command in scripts to read from the user’s terminal, or to read lines from 
a pipeline while in a for/while/until loop.

Syntax

line 

Examples

1. >>> line 
type a line of input followed by carriage return 
type a line of input followed by carriage return 

Copy the line of typed input to the terminal screen.

2. >>> line >foo 
type a line of input followed by carriage return 
>>> cat foo 
type a line of input followed by carriage return 

Use the line command interactively.

3. >>> echo -n ’continue [Y, (N)]? ’ 
>>> line <tt >tee:foo/nl 
>>> if grep <foo ’[yY]’ >nl; then echo yes; else echo no; fi 
>>> 

Use the line command within a script.
Console Command Reference 6–45



ls – list files 
Lists the files or inodes in the system. Inodes are RAM disk files, open channels, 
and some drivers. RAM disk files include script files, diagnostics, and executable 
shell commands.

Syntax

ls [-l] [file ...] 

Argument

file ... 

Specifies the files and inodes to be listed. You can use an asterisk (*) as a wildcard 
character. If you use a wildcard, the command lists all files and inodes that match 
the specification. If you omit the argument, the command lists all files and inodes 
on the system.

Option

–l 

Lists the files and inodes in long format. When using long format, the command 
lists each file and inode on a line with additional information. By default, the com-
mand lists just names.

Examples

1. >>> ls examine 
examine 

Lists the file named examine.

2. >>> ls d* 
d            date         debug1       debug2       decode      
deposit
dg_pidlist   dka0.0.0.0.0              dke100.1.0.4.0 
dub0.0.0.1.0              dynamic 

Lists files and inodes that start with d.
6–46 Console Command Reference



man – help on commands 
Displays the syntax for Alpha VME 5/352 and 5/480 SBC console firmware com-
mands. If you do not specify a command, the man command displays information 
about itself and lists the commands for which additional information is available.

The following conventions are used for the command syntax that the man com-
mand displays: 

You can use the help and man commands interchangeably.

Syntax

man [command-spec ...] 

Arguments

command-spec ... 

Specifies the commands or topics for which you request help.

For each command specification that you specify, the man command tries to find 
all topics that match. For example, if you specify a ex as the command specifica-
tion,  man displays information about the  exit and examine commands.

The man command supports wildcards.   Use an asterisk (*) as the wildcard char-
acter.  For example, enter man * to display help on all console commands. 

The man command treats command specifications as regular expressions. For 
more information on regular expressions, see the grep command. Help command 
specifications are case sensitive.

Examples

1. >>> man

Display a list of console commands for which help is available.

2. >>> man *

Display help on all console commands.

3. >>> man ex 

Display help on all commands that begin with “ex.”

4. >>> man boot

Display help on the  boot command.

Convention Description

<item> Angle brackets denote an item  for which you must specify a 
value.

[<item>] Square brackets enclose optional arguments, options, or values.

{a, b, c } Braces enclosing items separated by commas indicate mutually 
exclusive items. Choose only one of a, b, or c.

{a | b | c } Braces enclosing items separated by vertical bars indicate combi-
natorial items. Choose any combination of a, b, and c.
Console Command Reference 6–47



memexer – memory exerciser 
Starts a specified number of graycode memory test processes running in the back-
ground. Each test randomly allocates and tests blocks of memory twice the size of 
the Bcache, using all available memory. 

The command does not display any output unless an error occurs.

Syntax

memexer [number_of_tests] 

Argument

number_of_tests 

Specifies the number of memory test processes to start. The default is 1. To run 
tests indefinitely, specify 0.

Example

>>> memexer 2 & 
>>> 

Run two memory tests in the background. The tests run in blocks of two times the 
backup cache size across all available memory.

See Also

memtest 
6–48 Console Command Reference



memtest – memory test 
Tests memory with any or all of four tests:

Notes

If you use memtest to test large sections of memory, it might take a while 
for testing to complete.

If you issue a Ctrl/C or the kill command with a PID in the middle of test-
ing,  the memtest process might not abort right away. To increase speed 
of execution, check for a Ctrl/C or kill command done outside of any test 
loops. If this is not satisfactory, you can run concurrent memtest pro-
cesses in the background with shorter lengths within the target range.

Syntax
memtest [-sa start_address] [-ea end_address] [-l 
length]
        [-ba block_address] [-bs block_size] 
        [-i address_inc] [-p pass_count] 
        [-d data_pattern] [-rs random_seed] [-rb] [-f] [-
m] 
        [-z] [-h] [-mb] [-t] [-g] [-se] 

Options

–sa start_address 

Use the specified address as the starting address for the test. The default is the first 
free space in the memory zone.

–ea end_address 

Use the specified address as the ending address for the test. The default is 
start_address  plus length.

–l length 

Test the specified length (in bytes) of memory.  The default length is equal to 
block_size, except with the –rb option, which uses the zone size. The –l 
option has precedence over the –ea option.

–ba block_address

Test Description

Graycode memory test Writes, reads, and verifies a graycode pattern and an inverse 
graycode pattern for the specified address range.

March memory test Writes, reads, and verifies a marching pattern and an inverse 
marching pattern for the specified address range.

Random memory test Exercises random addresses within the specified range with 
random data of random length.

Victim block test Writes blocks of data to the specified address, victimizes the 
data, and then reads back and verifies the block. 
Console Command Reference 6–49



Test the block of memory at the specified address using the victim eject memory 
test. This option applies victim eject memory test only.

–bs block_size 

Test the specified amount of memory (in bytes).  Specify the size as a hexadecimal 
value. The default is 8192 bytes. This option applies to the random block test only. 
For all other tests, the block size equals length.

–i address_inc 

Test memory at increments specified by the increment. The default is 0, which 
implies no incrementation.  This option applies to the graycode test only. The 
increment value is in quadwords (that is, an increment of one  tests every other 
quadword). This option is useful if multiple CPUs test the same physical memory.

To test an unaligned starting address, you must also specify the –z option.  

–d data_pattern 

Use the specified test pattern. The default pattern is 5s. 

–p pass_count 

Execute the test the number of times specified by the pass count.  If you specify 0, 
the command runs forever or until you enter Ctrl/C. The default is 1. 

–rs random_seed 

Use the specified random seed. Use this option only with the –rb option. The 
default is 0.

–rb 

Randomly allocate and test all of the specified memory address range. Allocations 
are done of size block_size.

–f 

Use fast mode. If you specify this option, the data comparison is omitted. The 
console firmware detects only ECC/EDC errors.

–m 

Time the memory test and at the end of the test, display the elapsed time. By 
default, the timer is off.

–z 

Use the specified memory address without an allocation. This bypasses all check-
ing, but allows testing in addresses outside of the main memory heap. It also 
allows unaligned testing.

Caution 

This flag allows you to test and corrupt any memory.

–h 
6–50 Console Command Reference



. 
Allocate the memory to be tested from the firmware heap.

–mb 

Use memory barriers after each memory access. Use this option only for fast 
mode  (-f) graycode tests. When you specify this flag, the console firmware exe-
cutes an Alpha MB instruction after every memory access. This guarantees serial 
access to memory.

–t 

Run the specified tests.  By default, the command runs all tests in the group speci-
fied by the -g option.  The individual tests are as follows:

–g 

Use the specified group. Currently, the only group supported is MFG.

–se 

Use a soft error threshold.

Examples

1. >>> memtest -sa 200000 -l 1000 

Test memory starting at address 0x200000 (–sa) for 0x1000 bytes (–l).

2. >>> memtest -sa 200000 -l 1000 -f 

Test memory starting at address 0x200000 for 0x1000 bytes, using fast 
mode.  Fast mode eliminates data verification.

3. >>> memtest -sa 300000 -p 10 

Write a default block size of 8192 bytes starting at address 0x300000 for 
10 passes (–p).

4. >>> memtest -f -mb 

Test memory in arbitrary 8192 byte blocks, without data verification. 
After each read and write operation, execute a memory barrier (MB) 
instruction.

5. >>> memtest -sa 200000 -ea 400000 -rb 

Test memory starting at address 0x200000 and ending at address 0x3fffff
Randomly allocate every block within this range. 

Test Test Number

Graycode test 1

March test 2

Random test 3

Victim eject test 4
Console Command Reference 6–51



Note 

The memtest command does not generate an error with the –rb  option if 
a block within the range cannot be allocated.

6. >>> memtest -h -rb -bs 100 

Test the console heap by randomly allocating memory in blocks of size 
0x100 bytes.

7. >>> memtest -rb -p 0 

Test memory across all of the memory zone (all memory excluding the 
HWRPB, the PAL area, the console, and the console heap). The test runs 
in the foreground until you enter Ctrl/C.

See Also

memexer 
6–52 Console Command Reference



net – perform MOP operations 
Using a specified Ethernet port, performs basic maintenance operations protocol 
(MOP) operations, such as loopbacks, ID requests, and remote file loads. This 
command also allows you to observe the status of a network port. Specifically, 
when you use net with the –s option, the command displays the current status of a 
port, including the contents of MOP counters. This command is useful for moni-
toring port  activity and trying to isolate network failures.

Syntax

net [-s] [-sa] [-ri] [-ic] [-id] [-l0] [-l1] [-rb] [-csr] 
    [-els] [-kls] [-cm mode] [-da node_address] 
    [-l file_name] [-lw wait_in_secs] [-sv mop_version] 
   port

Arguments

port

Specifies the name of the Ethernet port on which to operate. If you do not specify 
a port, the command uses the default port, EWA0.

Options

–s 

Display port status information, including MOP counters.

–sa 

Display the port’s Ethernet station address.

–ri 

Reinitialize the port’s drivers.

–ic 

Initialize the MOP counters.

–id 

Send a MOP request ID to the destination node specified with the –da option.

–l0 

Send an Ethernet loopback to the destination node specified with the –da option. 
This option, –l0, is “l” for loopback and zero.

–l1 

Request a MOP loopback.

–rb 

Request a system reboot by sending a MOP V4 request boot message to the 
remote boot node specified with the –da option. 

–csr 
Console Command Reference 6–53



lues 
Display the values of the Ethernet port control/status registers (CSRs).

–els 

Enable the extended design verification test (DVT) loop service.

–kls 

Disable the extended DVT loop service.–cm mode

Change the mode of the port device. Valid modes and their corresponding va
include the following:

–da node_address 

Use the specified destination node address with the –l0, –id, or –rb  option.

–l file_name 

Broadcast a MOP load request for the specified load file.

–lw wait_in_secs 

Wait the specified number of seconds for loop messages from the –l1 option to 
return. If the messages do not return in the specified time period, the console firm-
ware generates an error message.

–sv mop_version 

Set the preferred version of MOP to be used.  Valid version numbers are 3 and 4.

Examples

1. >>> net -sa 
-ewa0:  08-00-2b-1d-02-91 

Display the local Ethernet port station address.

Mode Symbol

Normal nm

Internal loopback in

External loopback ex

Normal filter nf

Promiscuous pr

Multicast mc

Internal loopback and promiscuous ip

Force collisions fc

No force collisions nofc

Default df
6–54 Console Command Reference



2. >>> net -s 

DEVICE SPECIFIC: 
TI: 203 RI: 42237 RU: 4 ME: 0 TW: 0 RW: 0 BO: 0 
HF: 0 UF: 0 TN: 0 LE: 0 TO: 0 RWT: 39967 RHF: 39969  TC: 54 

PORT INFO: 
tx full: 0 tx index in: 10 tx index out: 10 
rx index in: 11 

MOP BLOCK: 
Network list size: 0 

MOP COUNTERS: 
Time since zeroed (Secs): 2815 

TX: 
Bytes: 116588 Frames: 204 
Deferred: 2 One collision: 52 Multi collisions: 14 
TX Failures: 
Excessive collisions: 0 Carrier check: 0 Short circuit: 0 
Open circuit: 0 Long frame: 0 Remote defer: 0 
Collision detect: 0 

RX: 
Bytes: 116564 Frames: 194 
Multicast bytes: 13850637 Multicast frames: 42343 
RX Failures: 
Block check: 0 Framing error: 0 Long frame: 0 
Unknown destination: 42343 Data overrun: 0 No system buffer: 22 
No user buffers: 0 
>>> 

Display the EWA0 port status, including the MOP counters.
Console Command Reference 6–55



ps – show process 
Displays the system state in the form of process status and statistics.

Syntax

ps 

Example

>>> ps 
                      CPU 
ID       PCB      Pri Time   Affinity CPU Program   State 
-------- -------- --- ------ -------- --- --------- --------------------
--
0000008f 0010e8a0 3        0 00000001 0          ps running 
00000020 00110160 1        0 ffffffff 0    puc_poll waiting on tqe 
0000001f 0013cb60 6        0 ffffffff 0 puc_receive waiting on 
puu_receive 
0000001c 0013ed00 1        0 ffffffff 0    pub_poll waiting on tqe 
0000001b 0014fc00 6        0 ffffffff 0 pub_receive waiting on 
puu_receive 
0000001a 00111a20 3        0 00000001 0          sh ready 
00000015 001176a0 2        0 ffffffff 0  mopcn_ewa0 waiting on 
mop_ewa0_cnw 
00000014 00119140 2        0 ffffffff 0  mopid_ewa0 waiting on tqe 
00000013 0011ac20 2        0 ffffffff 0  mopdl_ewa0 waiting on 
mop_ewa0_dlw 
00000012 0011f6a0 6        0 ffffffff 0     tx_ewa0 waiting on 
ewa0_isr_tx 
00000011 00121140 6        0 ffffffff 0     rx_ewa0 waiting on 
ewa0_isr_rx 
00000010 00122ac0 1        0 ffffffff 0    pua_poll waiting on tqe 
0000000f 001244e0 6        0 ffffffff 0 pua_receive waiting on 
pua_receive 
00000009 00147460 5        0 ffffffff 0    lad_poll waiting on tqe 
00000008 00148f00 5        0 ffffffff 0    dup_poll waiting on tqe 
00000007 0014a9a0 5        0 ffffffff 0   mscp_poll waiting on tqe 
00000006 0014e1a0 5        0 00000001 0    entry_00 waiting on entry_00 
00000004 001516e0 2        0 ffffffff 0  dead_eater waiting on dead_pcb 
00000003 00153140 7 11759330 ffffffff 0       timer waiting on timer 
00000002 00158740 6        0 ffffffff 0  tt_control waiting on 
tt_control 
00000001 0005cfd8 0        0 00000001 0        idle ready 
>>>  

See Also

sa, sp 
6–56 Console Command Reference



pwrup – run power-on diagnostics 
Runs the power-on diagnostics script. The pwrup command  initializes network 
environment variables and runs diagnostic tests.

Syntax

pwrup

Example

>>> pwrup 

Runs the power-on script.
Console Command Reference 6–57



rm – remove file 
Removes specified files from the file system. Allocated memory associated with 
the removed files is returned to memory heap.

Syntax

rm file...

Arguments

file ... 

Specifies the files to be removed.

Example

>>> ls foo 
foo 
>>> rm foo 
>>> ls foo 
foo no such file 
>>> 

List file foo to show that it exists, remove the file, and then try to list the file 
again to show that it is gone.

See Also

cat, ls
6–58 Console Command Reference



sa – set process affinity 
Change the affinity mask of a process. The affinity mask specifies the processors 
on which the process can run.

Syntax

sa process_id affinity_mask 

Arguments

process_id 

Specifies the process ID (PID) of the process for which the affinity mask is to be 
modified.

affinity_mask 

Specifies the new affinity mask, which indicates on which processors the process 
can run. Bits 0 and 1 of the mask correspond to processors 0 and 1, respectively.

Example

>>> memtest -p 0 & 
>>> ps | grep  memtest 
00000025 001a9700 2      23691 00000001 0      memtest ready 
>>> sa 25 2 
>>> ps | grep  memtest 
00000025 001a9700 2     125955 00000002 1      memtest running 
>>> 

See Also

ps, sp 
Console Command Reference 6–59



semaphore – show system semaphores 
Shows all the semaphores known to the system by traversing the semaphore 
queue.

Syntax

semaphore

Example

>>> semaphore 

                Name              Value   Address  First Waiter 
-------------------------------- -------- -------- ---------------------
---
                                dyn_sync 00000001 00050378 
                             dyn_release 00000001 000503A0 
                            shell_iolock 00000001 0015D684 
                             exit_iolock 00000001 0015D770 
                             grep_iolock 00000001 0015DB20 
                             eval_iolock 00000001 0015DC0C 
                            chmod_iolock 00000001 0015DCF8 
^C 
>>> 
6–60 Console Command Reference



For a  

n the 
set – set environment variable 
Sets the value of an environment variable. Use environment variables to pass con-
figuration information between the console firmware and the operating system. 

Some environment variables are stored in nonvolatile memory. 

For a listing of predefined environment variables, see Table 5–2. 

Syntax

set envar value [-default] [-integer] [-string] 

Arguments

envar

Specifies the name of the environment variable to be assigned a new value. 
listing of predefined environment variables, see Table 5–2.

value 

Specifies the value to be assigned to the environment variable. Depending o
environment variable, the value must be a numeric value or an ASCII string.

Options

–default 

Restore the environment variable to its default value.

–integer 

Create an environment variable that is set to an integer value.

–string 

Create an environment variable that is set to an ASCII string value.

Examples

1. >>> set MODE FASTBOOT 

Set the mode for controlling the level of testing done at power-on or after 
console initialization to FASTBOOT.  The FASTBOOT value indicates 
that you want the system to execute minimal console diagnostics.

2. >>> set VME_A16_BASE 0 
>>> set VME_A24_BASE a00000 
>>> set VME_A24_SIZE 400 
>>> set VME_A32_BASE 80000000 
>>> set VME_A32_SIZE 4000 

Set the following:

• The base address of the VMEbus A16 address space to be %x0

• The base address of the VMEbus A24 address space to be %x0xa00000

• The size of the VMEbus A24 address space to be 1 MB

• The base address of the VMEbus A32 address space to be %x80000000
Console Command Reference 6–61



• The size of the VMEbus A32 address space to be 16 MB

3. >>> set EWA0_PROTOCOLS BOOTP 

Set the network protocol for booting and other network functions to be 
BOOTP.

4. >>> set BOOTDEF_DEV ewa0 

Set the default device from which the system attempts to boot to EWA0.
6–62 Console Command Reference



5. >>> set AUTO_ACTION BOOT 

Set the system’s default console action to boot after an error, halt, or 
power-on.

6. >>> set BOOT_FILE avme.sys 

Set the file name to be used when the system’s boot requires a file name. 

7. >>> set BOOT_OSFLAGS 0,1 

Set the system’s default boot flags to 0,1.

8. >>> set foo 5 

Create environment variable foo and set its value to 5.

See Also

clear, show 
Console Command Reference 6–63



set led – display char on LED 
Displays a character on the front panel light emitting diode (LED).

Syntax

set led char [-b] 

Argument

char 

Specifies the character to be displayed on the front panel LED. Specify the char-
acter in quotation marks (""). You must specify a metacharacter with a backslash 
(\ ) prefix.

Options

–b 

Display the character in bright mode. The default is dim mode.

Example

>>> set LED W -b 

Display an uppercase W on the LED panel at full brightness.

See Also

show led 
6–64 Console Command Reference



set reboot srom – set reboot mode to Serial ROM 
Mini-Console 

Enters the Serial ROM (SROM) Mini-Console.

When you issue this command, the module enters the SROM Mini-Console the 
next time you reset or power on the system. Once issued, the command prevents 
you from rebooting from the console until you alter NVRAM bytes using the 
SROM Mini-Console.

Note 

If the I/O module’s debug jumper is installed, the system displays the 
SROM Mini-Debugger prompt every time you power on the system.  
While in the SROM Mini-Debugger, you can start the SRM console by 
entering the st command and then entering address 0x8000 at the address 
prompt as follows:

SROM> st

a> 8000 

Syntax

set reboot srom

Example

>>> set reboot srom 

Set the reboot flag to enter Serial ROM Mini-Console the next time you reset or 
power on the system. 
Console Command Reference 6–65



set toy sleep – disable TOY clock's internal oscillator 
Disables the DS1386 TOY clock’s internal oscillator. When you execute this com-
mand, bit 8 of the MONTH register of the device is set to 1, disabling the TOY 
clock’s oscillator. This prevents the TOY clock’s time registers from advancing 
and lengthens the life of the device’s internal lithium battery. The next time you 
power on the system, the console firmware automatically reenables the oscillator, 
enabling the clock to count time again. 

This command is useful for final testing during manufacturing or for preparing the 
system for storage.

Note 

Reset the time and date once the module is powered on after disabling the 
battery.

Syntax

set toy sleep

Example

>>> set toy sleep 

Set the TOY clock into storage mode. The clock is automatically reenabled on 
subsequent initialization.
6–66 Console Command Reference



sh – create new shell process
Creates a new shell process. Each shell process implements most of the function-
ality of the Bourne shell.

Syntax

sh [-v] [-x] [-d] [-l] [-r] [-p] [arg ...]

Arguments

arg ...

Specifies one or more arguments that are to be passed to the new shell process.  
Specify the arguments as text strings terminated with white space.

Options

–v 

Print lines as they are read.

–x 

 Show commands just before executing them.

–d  

Delete standard input (STDIN) when the shell is done.

–l 

Trace the lexical analyzer (show tokens as they are recognized).

–r 

Trace the parser (show rules as they execute).

–p 

Trace the execution engine (show routines called).
Console Command Reference 6–67



Example

>>> sh         # start a new shell\bold))
>>>              # the new shell’s prompt\bold))
  
>>> sh -v <foo # execute command file "foo" and show lines as read in
>>> sh -x <foo # print out commands as they are executed and after 
>>>             # all substitutions have been performed. 
6–68 Console Command Reference



show – display system information 
Displays the current value of an environment variable or other system parameter.

Syntax

show [system_param] [envar] 

Arguments

system_param

Specifies the type of information that is to be displayed. Specify one of the fol-
lowing parameters:

You can specify a device name with the device parameter.  The name that you 
specify can include abbreviations or an asterisk (*) as a wildcard character. The 
naming convention for system devices is as follows:

dka0.0.0.0.0
| || | | | | 
| || | | | +-- Hose # : Always zero for Alpha VME 5/352 and 5/480 SBCs
| || | | +---- Slot # : On PCI System = 
| || | |                <PCI bus * 1000>+<PCI function *100>+<PCI slot>
| || | +--- Channel # : Always zero.
| || +---- Bus Node # : Device’s bus ID (i.e. SCSI node ID plug #).
| |+--- Device Unit # : Device’s unique system unit number.
| +---- Controller ID : One letter controller designator.
+---------- Driver ID : Two letter port or class driver designator.
                           PK - SCSI port, DK - SCSI class
                           EW - Ethernet Port 

envar 

Displays the value of the specified environment variable. For a listing of  pre-
defined environment variables, see Table 5–2.

Examples

Parameter Description

config Displays the system configuration.

device [device-name] Displays information about devices and controllers in the sys-
tem.

hwrpb Displays the Alpha hardware restart parameter block 
(HWRPB).

led [-hex] Displays a character on the LED panel.  The -hex option dis-
plays the contents of the LED register instead of the character 
that is set to be displayed.

map Displays system virtual memory map.

mode Displays the current mode, FASTBOOT or NOFASTBOOT.

pal Displays the version of PALcode for VMS and OSF (UNIX).

version Displays the version of the console firmware.
Console Command Reference 6–69



1. >>> show version 
version                 V1.1-0 Jul 1 1996 10:16:59 
>>> 

Display the version of the firmware running on the system. 

2. >>> show auto_action 
boot 
>>> 

Display the default system power-on action.

3. >>> show bootdef_dev 
ewa0 
>>> 

Display the system’s default boot device.  In this example, the default boot 
device is EWA0.

4. >>> show config
                    Digital Equipment Corporation
                          AlphaVME 5/480

SRM Console T1.0-0  VMS PALcode V1.19-8, OSF PALcode V1.21-8

             MEMORY:  128 Meg of system memory
  System Controller:  VIC64 Enabled

   
   Hose 0, PCI
           slot 0  DECchip 7407
           slot 1  DECchip 21040-AA  ewa0.0.0.1.0  00-00-F8-23-B7-8E
           slot 2  NCR 53C810       pka0.7.0.2.0  SCSI Bus ID 7
           slot 3  Intel 82378
   
   >>>

5. >>> show device
dva0.0.0.0.1             DVA0
ewa0.0.0.1.0             EWA0           08-00-2B-1D-27-AA 
pka0.7.0.2.0             PKA0           SCSI Bus ID 7 
>>> 

Display all devices and controllers in the system. The display output 
includes the device name, device ID, device type, and device internal 
firmware revision information (if available).

6. >>> show device e 
ewa0.0.0.6.0               EWA0         08-00-2B-1D-27-AA 

Display devices that start with “e.”

7. >>> show device dk          # Show SCSI disks. 
dkc0.0.0.2.0               DKC0                           RZ57 

Display all devices starting with “dk” (all SCSI disks).

8. >>> show device mk          # Show SCSI tape drives. 
mke0.0.0.4.0               MKE0                          TLZ04 
>>> 

Display all devices starting with “mk” (all SCSI tapes).

9. >>> show hwrpb 
HWRPB is at 2000 

           .
           .
           .
   display of the contents of HWRPB registers
6–70 Console Command Reference



              .
              .
              .

>>> 

Display the system’s HWRPB address and register data.

10. >>> show led 

Display the current character being displayed on the LED panel.

11. >>> show led -hex 

Display the contents of the LED register.

12. >>> boot -halt
>>> show map 
pte 00001020 v FFFFFC0902408000 p 00000000 V KR    SR            FR 
FW 
pte 00001028 v FFFFFC090240A000 p 00000000 V KR    SR               
FW 
pte 00001020 v FFFFFC0902C08000 p 00000000 V KR    SR            FR 
FW 
pte 00001028 v FFFFFC0902C0A000 p 00000000 V KR    SR               
FW 
pte 00001020 v FFFFFC0B02408000 p 00000000 V KR    SR            FR 
FW 
pte 00001028 v FFFFFC0B0240A000 p 00000000 V KR    SR               
FW 
pte 00001020 v FFFFFC0B02C08000 p 00000000 V KR    SR            FR 
FW 
pte 00001028 v FFFFFC0B02C0A000 p 00000000 V KR    SR               
FW 
>>> 

Note 

The map is empty after all console initialization. To fill in the page table 
entries, enter the boot command with the –halt option.

See Also

set, set led
Console Command Reference 6–71



show_log – display NVRAM error log 
information 

Displays console-detected fault information that was previously stored in the error 
log area of NVRAM. If you do not specify command-line options, the command 
displays the most recent fault.

Before using the  show_log command, you must initialize the error log by issuing 
the clear_log command.

Note

Console error logging is completely independent of the operating system’s 
error logging.

Syntax  

show_log [{-n [count]} -all -new]

Options

–n [count] 

Display the specified number of most-recent faults that are logged into the 
NVRAM error log area. The default value for count is 1.

–all 

Display all faults logged into the NVRAM error log area. All faults are marked as 
seen so you can display new faults easily by using the –new option. This option  
always causes the command to display all logged faults.

–new 

Display new faults logged into the NVRAM error log area; displays faults that 
have not been previously displayed with the –all option.
6–72 Console Command Reference



Examples

1. >>> show_log 

============================= F A U L T #1 
============================

Time of Error: 13:08:39  9-AUG-1997
Diagnostic   : Interval Timer
Pass Count   : 1     Test Number: 4     Failing Point: 18
Error Message: Interrupt not invoked and should have been
>>> 

Display the most recent fault.

2. >>> show_log -n 3 

============================= F A U L T #1 
============================

Time of Error: 13:10:06  9-AUG-1997
Machine Check: IOC Controller
SCB Vector   : 67
IOC Status 0 : 0400031604000316
IOC Status 1 : 0400000004000000
PC           : 0000000000064c40

============================= F A U L T #2 
============================

Time of Error: 13:08:39  9-AUG-1997
Diagnostic   : Interval Timer
Pass Count   : 1     Test Number: 4     Failing Point: 18
Error Message: Interrupt not invoked and should have been

=====================================================================
==

No more faults found

=====================================================================
==

>>> 

Display the two most-recent faults since they are the only ones logged 
into NVRAM.

See Also

clear_log 
Console Command Reference 6–73



sleep – suspend execution 
Suspends execution of a console process for a specified number of seconds. The 
console process temporarily wakes up every second to check for and kill pending 
bits.

Syntax

sleep [-v] time

Argument

time

Specifies the number of seconds to sleep. The default is one second.

Option

–v 

Use a time value of  milliseconds. The default is 1000 milliseconds (one second).

Examples

1. >>> ((sleep 10; echo hi there)&) 
>>> 

(10 seconds elapse...) 

hi there 

Sleep for 10 seconds, then execute the echo command.

2. >>> sleep -v 20 

Sleep for 20 milliseconds. 

This command does not function if set toy sleep has been issued.
6–74 Console Command Reference



sort – sort a file 
Arranges the lines of a file in lexicographic order and writes the results to standard 
output (STDOUT). The size of the file that sort can handle is limited by the size of 
memory.

Syntax

sort file 

Argument

file 

Specifies the file to be sorted.

Example

>>> echo > foo ’banana 
_>pear 
_>apple 
_>orange’ 

Create file foo with 4 lines.

>>> sort foo 
apple 
banana 
orange 
pear 

Sort file foo and display the output.
Console Command Reference 6–75



sp – set priority 
Modifies the priority of a process. 

Note

Changing the priority of the process impacts the behavior of the process 
and the rest of the system.

Syntax

sp process_id priority

Arguments

process_id 

Specifies the process ID (PID) of the process for which the priority is being set.

priority 

Specifies the new priority for the specified process. Priority values range from 0 
to 7, with 7 being the highest priority.

Example

>>> memtest -p 0 & 
>>> ps | grep  memtest 
00000025 001a9700 2      23691 00000001 0      memtest ready 
>>> sp 25 3 
>>> ps | grep  memtest 
00000025 001a9700 3     125955 00000001 0      memtest ready 
>>> 

Raise the priority of process 25 from 2 to 3.

See Also

ps, sa 
6–76 Console Command Reference



start – start program 
Starts program execution at the specified address or starts drivers.

Syntax

start [-drivers [device_prefix]] [address] 

Argument

address 

Specifies the PC address at which to start execution.

Options

–drivers [ device_prefix] 

Specifies the name of the device or class of devices to stop. If you do not specify a 
device prefix, the command starts all drivers.

Examples

1. >>> start -driver ewa 400 

Start program execution at address 400.

2. >>> start -drivers 

Start all the drivers in the system.

See Also

continue, init, stop
Console Command Reference 6–77



stop – stop CPU or device 
Stops the CPU or a specified device.

Syntax

stop [-drivers [device_prefix]] [processor_num] 

Argument

processor_num 

Specifies the processor to stop. If you use this argument, specify 0.

Option

–drivers [ device_prefix] 

Stop the specified device or all devices of the specified device class. If you do not 
specify a device prefix, the command stops all drivers.

Example

>>> stop 

Stop the processor.

See Also

continue, init, start 
6–78 Console Command Reference



 or 

pro-
 a 
r 
update – update flash ROMs
Loads updated firmware into the system’s flash ROMs (FEPROMs). Prior to 
using this command, you must close DIP switch #2 on your Alpha VME 5/352
5/480 SBC’s I/O module and you must issue the boot command.

During the update process, each byte of the FEPROM is verified. Each step 
vides for a certain number of retries to perform the operation successfully on
particular byte of the FEPROM. If a failure occurs in any of the steps, an erro
message is displayed on the console.

If the update is successful, a success message is displayed on the console.

Notes 

You must reset or power on the system to run the new image in the 
FEPROMs; otherwise, the previous console image executes out of mem-
ory.

Be sure to disable FEPROM writing after completing the update process 
by setting switch #2 back to the open position.

For more information about updating firmware, see Section 5.7.

Syntax

update [-file filename] [-protocol transport] 
       [-device source_device] [-target target_device] 

Options

–file filename 

Update the FEPROM with the specified image.

–protocol transport 

Use the specified source transport protocol. Valid protocols are MOP and TFTP. 
See Section 5.4 for more information on using the TFTP protocol to read files 
across the network.
Console Command Reference 6–79



–device source_device

Load the new FEPROM update image from the specified device.  Currently, the 
only valid device is EWA0.

–target target_device 

Use the specified target device for the upgrade operation.  Valid target devices are 
CONSOLE and USERFLASH.

Example
>>> boot -fi alphavme5_v1_0 -prot mop ewa0
(boot ewa0.0.0.1.0 -file alphavme5_v1_0 -flags 0)

Trying MOP boot.
...............

Network load complete.
Host name: oemert
Host address: aa-00-04-00-56-4b

bootstrap code read in
base = 1c2000, image_start = 0, image_bytes = db000
initializing HWRPB at 2000
initializing page table at 1b4000
initializing machine state
setting affinity to the primary CPU
jumping to bootstrap code
starting console on CPU 0
initialized idle PCB
initializing semaphores
initializing heap
initial heap 200c0
memory low limit= 1b2000
heap = 200c0, 17fc0
initializing driver structures
initializing idle process PID
XDELTA not enabled.
initializing file system
initializing timer data structures
lowering IPL
CPU 0 speed is 2.08 ns (481MHz)
create dead_eater
create poll
create timer
create powerup
128 Meg of system memory
2MB Bcache
probing hose 0, PCI
bus 0, slot 1 -- ewa -- DECdhip 21040-AA
bus 0, slot 2 -- pka -- NCR 53C810
entering idle loop
Skipping powerup tests...
AlphaVME 5/480 Common Console V1.0-0, built on Sep 24 1997 at 
09:20:32

>>> update
(update -path noname -target console)

new: 1.0-0

       Note: Module DIP Switch #2 must be CLOSED to enable Updates!
6–80 Console Command Reference



                       FEPROM UPDATE UTILITY
                       --->CAUTION<---
          EXECUTING THIS PROGRAM WILL CHANGE YOUR CURRENT ROM!

Do you really want to continue[Y/N]?:y

          DO NOT ATTEMPT TO INTERRUPT PROGRAM EXECUTION!
          DOING SO MAY RESULT IN LOSS OF OPERARBLE STATE.

The program will take at most several minutes.

Erasing the target flash device...
.......
Erasure completed.
Programming...
.......
Programming completed
Verifying...
Update successfu
          
      Note: Module DIP Switch #2 should be OPENED to disable Updates!

>>>
Console Command Reference 6–81





Part III
Diagnostics
Part III discusses the diagnostics for DIGITAL Alpha VME 5/352 and 5/480 sin-
gle-board computers (SBCs). This part consists of the following chapters:

• Chapter 7, Diagnostics and System Initialization

• Chapter 8, Console Mode Diagnostics





 7
 Diagnostics  and System Initialization

Diagnostics for the Alpha VME 5/352 and 5/480 SBCs provide a fast, high cover-
age suite of power-on self-test (POST) diagnostics to be invoked automatically at 
power-on and system reset. In addition to the POST diagnostics, there are ROM-
based console mode diagnostics that provide additional testing and fault isolation. 
You invoke the console mode diagnostics by entering commands at your terminal. 
You also have the option of using diagnostic environment variables to gain more 
control over your test environment. 

This chapter introduces you to DIGITAL Alpha VME 5/352 and 5/480 SBC diag-
nostics by discussing the: 

• POST diagnostics, Section 7.1

• System initialization sequence and countdown, Section 7.2

• POST NVRAM and memory diagnostics descriptions, Section 7.3

7.1 POST Diagnostics

Your SBC invokes POST diagnostics when you apply power to or reset the sys-
tem. In this mode, a sequence of diagnostics is executed without operator inter-
vention.

Once the SROM code has been loaded into the 8 KB internal instruction cache, a 
very basic system initialization is performed in preparation for starting the console 
firmware. After enough of the system has been initialized, the flash ROM-based 
console is loaded into system memory and execution is transferred to it. During 
this phase of console startup, the system automatically invokes several more diag-
nostics and executes them without operator intervention.

The system LED display indicates progress of the SROM initialization by show-
ing a countdown from 8 to 1.

If a failure is detected by the SROM-based tests, the test sequence halts and the 
LED displays the number of the failing test. If the Intel SIO is successfully config-
ured and the console UART test passes, the SROM does all I/O through the con-
sole UART.

Failures detected beyond the SROM do not halt the POST sequence. Instead, the 
display freezes at the first failing test, and the sequence attempts to continue to 
console mode. An attempt is also made to write the diagnostic log to the console 
terminal.

You can affect the POST sequence by using certain user-selectable, control 
parameters (implemented as environment variables) that allow the initialization to 
continue, despite the existence of some errors that you may not wish to treat as 
fatal.
Diagnostics and System Initialization 7–1



7.2 System Initialization Sequence and Countdown

During SROM initialization and console tests, the LED display shows a count-
down indicating progress. The console serial output also reports the countdown if 
the environment variable CONSOLE is set to SERIAL. The SROM initialization 
and console tests execute and display output as shown in Table 7–1.

Table 7–1 SROM Initialization and Console Tests 

Initialization Procedures
LED 
Display

Console Display

Read the SROM and initialize the CPU, the CIA 
chip, the PCI bus, COMM1 port, and the SIO chip.

8 8..

Detect the CPU speed, initialize the CPU and CIA 
Bcache registers, and turn off the Bcache.

7 7..

Initialize CIA memory control registers, wake up the 
DRAMs, and determine the amount of memory that 
is installed.

6 6..

Enable the Dcache and Bcache. Disable ECC report-
ing, read from memory, and then write back to mem-
ory with a good ECC. Clear the CPU and CIA error 
registers.

5 5..

4 4..

Write to memory (data=address), read from mem-
ory, and compare. Check the ECC error status. Load 
the SRM console and perform a checksum.

2 2..

Enable all Scache. Set and flush the Icache.

1 1..

Jump to the console. 0 starting console on 
CPU 0

Initialize console, test memory and NVRAM, and 
probe the PCI bus

See sample output 
below

Perform console SCSI test. A SCSI Tests...

Perform console heartbeat test. B Heartbeat Test...

Perform console interval timer tests. C Interval Timer 
Tests...

Perform console TOY clock tests. D Time-of-Year Test...

Perform console serial com port tests. E
7–2 Diagnostics and System Initialization



A sample of actual console output follows. Note that the SROM version, CPU 
speed, memory size, cache size, and SRM version appear in boldface type. You 
should record and store this information for safekeeping. You will be asked for 
this in the event that you call for support.

Alpha VME 5xxx V1.0
8..7..6..5..4..2..1..starting console on CPU 0
initialized idle PCB
initializing semaphores
initializing heap
initial heap 200c0
memory low limit = 12c000
heap = 200c0, 17fc0
initializing driver structures
initializing idle process PID
XDELTA not enabled.
initializing file system
initializing time data structures
lowering IPL
CPU 0 speed is 2.08 ns (481MHz)
64 Meg of system memory
2MB Bcache
probing hose 0, PCI
bus 0, slot 1 -- ewa -- DECchip 21040-AA
bus 0, slot 2 -- pka -- NCR 53C810
entering idle loop
SCSI Tests...
Heartbeat Tests...
Interval Timer Tests...
Time-of-Year Test...
Ethernet ROM Tests...
NI Loopback Test...
Watchdog Test...
VIP Tests...
.................
Alpha VME 5/480 Common Console V0.0-1, built on Feb 14 1997 at 12:55:07

7.3 POST NVRAM and Memory Diagnostics Descriptions

This section provides details on the POST NVRAM and memory diagnostics. 
These diagnostics run during system initialization testing.

Perform console Ethernet ROM tests. F Ethernet ROM 
Tests...

Perform console internal loopback tests. G NI Loopback Test...

Perform console watchdog test. H Watchdog Test...

Perform console VIP/VIC65 tests. I VIP Tests...

>>>

Table 7–1 SROM Initialization and Console Tests  (Continued)

Initialization Procedures
LED 
Display

Console Display
Diagnostics and System Initialization 7–3



n 
c 
the 

s and 
POST Nonvolatile RAM Diagnostic 
The POST NVRAM Diagnostic verifies the SBC’s NVRAM. It performs a data 
integrity test, through power cycles, and performs write, read, and compariso
operations on specific NVRAM locations used for diagnostics. This diagnosti
also checks for uninitialized NVRAM by comparing the stored checksum with 
calculated checksum.

Description

This test executes at the beginning of console boot before the console driver
devices have been initialized.

Test Name: None; executes when the power is turned on 
7–4 Diagnostics and System Initialization



POST Memory Diagnostic 
The POST Memory Diagnostic verifies system memory. It runs with ECC 
enabled. If the test detects a memory error that cannot be corrected with ECC, it 
logs the error in the error logging area of NVRAM.

Description

The POST Memory Diagnostic executes at the beginning of console boot before 
the console drivers and devices have been initialized. The test provides the fol-
lowing coverage:

See also the description of the memtest console command in Chapter 6.

Note 

This test is dependent upon the setting of the   environment variable 
MODE. Setting MODE to FASTBOOT results in a quick memory verifi-
cation test. NOFASTBOOT results in a full memory test.

Test Name: None; executes when the power is turned on

Memory bits Stuck bits, bit transition fault, or bit coupling fault.

Decoder logic An address selects no memory, two or more addresses 
select the same memory cell, or one address selects 
more than one cell.

Sense amplifier logic Stuck fault or coupling fault.

Component and path coverage The CPU memory control logic, etch from the CPU to 
the daughter card connectors, etch from the CPU 
backup cache control to the backup cache and from 
backup cache to the memory bus. The daughter card is 
assumed good since it is tested separately in manufac-
turing.
Diagnostics and System Initialization 7–5





an use 
mpt.
 8
Console Mode Diagnostics

This chapter describes the following console mode diagnostic tests, which might 
be run during system initialization testing or from the console: 

• Heartbeat Timer Test

• Interval timer tests

• DECchip 21040 Ethernet controller tests

• DALLAS DS1386 RAMified watchdog timekeeper tests

• LAN Address ROM Test

• NCR 53C810 PCI-SCSI I/O processor tests

• Watchdog Timer Interrupt Test

• VME interface tests

Section 8.1 provides a summary of the dianostics.

8.1 Console Mode Diagnostics Summary

You can invoke some diagnostics directly from the console terminal, and you can 
control them by using command options and diagnostic environment variables. 
These tests may require operator intervention.

Table 8–1 shows the console mode diagnostic tests and the command you c
to invoke them. You can invoke the majority of these tests at the console pro

Table 8–1 Console Mode Diagnostic Tests 

HW Under Test Command Description

Device Exerciser exer device Exercises one or more devices

Memory and Cache

– Memory exerciser test memtest or 
mem_ex

Network Interface

– DECchip 21040 internal loopback test niil_diag -t 1

– DECchip 21040 external loopback test niil_diag -t 2

–DECchip 21040 nicsr_diag -t 1 Reads the configuration register

–DECchip 21040 CSR tests nicsr_diag -t 2 
nicsr_diag -t 3 

Command/status register read test
Register write/read test
Console Mode Diagnostics 8–1



NVRAM + TOY Clock

– NVRAM tests ds1386_diag -t 1
ds1386_diag -t 2
ds1386_diag -t 3

NVRAM write/read test
NVRAM unique address test
NVRAM march test

– Time-of-year (TOY) clock register testsds1386_diag -t 4
ds1386_diag -t 5

Bit pattern test on TOY clock register
Time keeper test

SCSI 

– SCSI device tests ncr810 -t 1
ncr810 -t 2
ncr810 -t 3
ncr810 -t 4
ncr810 -t 5
ncr810 -t 6
ncr810 -t 7

MBLT write/read test
Prints command/status registers
Register read/write test
Chip reset test
Internal loopback test
External loopback test
SCSI interrupt test (drives must be 
removed)

Timers

– Heartbeat timer test hbeat_diag -t 1 Verifies heartbeat frequency=1024 Hz

– Interval timer tests i8254_diag -t 1
i8254_diag -t 2
i8254_diag -t 3 *

i8254_diag -t 4 *

i8254_diag -t 5
i8254_diag -t 6

Timer 2 interrupt test
Data line test with Timer 2
P2 connector test using Timers 0, 1, and 2
Master/slave timer test
Timer 2 noninterrupt test
Periodic real-time test using VIC64 chip

– Watchdog timer test wdog_diag -t 1 Timer interrupt test

*Requires external loopback connector 
configured as shown in Figure 8–1.

VME InterfaceTests

– VIP PCI configuration register test vip_diag -t 1

– VIP register write/read test
– VIC64 register write/read test

vip_diag -t 2
vip_diag -t 3

– Scatter-gather RAM test vip_diag -t 4

MISC

– Ethernet hardware address test enet_diag -t 1
enet_diag -t 2

Displays LAN address ROM
LAN address ROM test

Table 8–1 Console Mode Diagnostic Tests  (Continued)

HW Under Test Command Description
8–2 Console Mode Diagnostics



Heartbeat Timer Test
The Heartbeat Timer Diagnostic Test verifies that a heartbeat interrupt is gener-
ated at the correct interval (1024 Hz) and is properly dismissed by way of the 
module clear heartbeat register.

This test checks for the following logic:

• Heartbeat timer and interrupt delivery mechanism

• Module clear heartbeat register

Heartbeat Timer Test 
Console Command: hbeat_diag -t 1 

Command Option:

–dd: Print detailed test information on each pass.

Miscellaneous Notes 

• This is a POST diagnostic.

• The test expects timer interrupts to be enabled. If they are not enabled, an 
interrupt count of zero results.

• You cannot run this test concurrently with other tests.
Console Mode Diagnostics 8–3



Interval Timer Tests 
The Interval Timer Tests test the functionality of the 8254 interval timer chip and 
surrounding external circuitry, including latches, programmable-array logic (PAL) 
devices and printed circuit board module etch. The intent of the tests is to verify 
that timers 0, 1, and 2 can generate a CPU interrupt, if properly enabled, at the 
programmed frequency. Since all three interval timers of the 8254 chip have dif-
ferent external configurations, several tests are required for complete test cover-
age.

These tests require that you properly program both timer 0 and 1 and connect 
them externally for successful operation.

Timer 2 Terminal Count Test 
The Timer 2 Terminal Count Test exercises Timer 2 with  timer interrupts enabled. 
The gate input for Timer 2 is always enabled and the clock input is connected to a 
10 MHz (100 ns period) clock source.

Timer 2 is programmed to mode 0, interrupt on terminal count. After the timer is 
initially programmed to mode 0 and loaded with a count value, the OUT output is 
low and remains low until the internal count value reaches zero. When the count 
value reaches zero, OUT output is asserted high and remains high until Timer 2 is 
reprogrammed. The event of OUT transitioning from low to high should generate 
a CPU interrupt. 

The interrupt service routine (ISR) invoked due to the timer generated interrupt 
sets a global flag indicating the interrupt took place and that software was dis-
patched to the correct point.

Console Comman: i8254_diag -t 1 

Miscellaneous Notes 

• The interrupt enable bits for Timers 0 and 2 (bits 4 and 5 of the interrupt status 
register at address 0x4010) are not writable directly. You toggle bits 4 and 5 
by writing to addresses 0x4010 and 0x4014, respectively.  In both cases, the 
data written is Don’t Care.

• A read of the interrupt status register at address 0x4014 causes both interrupt 
status bits (bits 0 and 1) to be cleared.

• Due to hardware limitations on interrupt detection, the value programmed for 
Timer 2 must be greater than 2.

• See the Intel 8254 interval timer sheet for more details.

Timer 2 Square Wave Test 
The Time 2 Square Wave Test exercises Timer 2. The gate input for Timer 2 is 
always enabled and the clock input is connected to a 10 MHz (100 ns period) 
clock source.
8–4 Console Mode Diagnostics



Timer 2 is programmed to mode 3, square wave mode. After the timer is initially 
programmed for mode 3 and then loaded with a count value, the OUT output pro-
duces a continuous, square wave output whose period is equal to the count value 
multiplied by the period of the clock input. The count values are chosen such that 
they check stuck NDATA lines.

The event of OUT transitioning from low to high should generate a CPU interrupt, 
provided the timer 2 interrupt enable bit is set.

The ISR invoked due to the timer generated interrupt increments an interrupt 
counter and sets a global flag indicating the interrupt took place and that software 
was dispatched to the correct point. The test verifies that the interrupt count is 
within a certain range, based on the count value the timer was programmed with 
and the duration of time that interrupts were enabled.

Console Command: i8254_diag -t 2 

Miscellaneous Notes

• The interrupt enable bits for Timers 0 and 2 (bits 4 and 5 of the interrupt status 
register at address 0x4010) are not directly writable. You toggle bits 4 and 5 
by writing to addresses 0x4010 and 0x4014, respectively. In both cases, the 
data written is Don’t Care.

• A read of the interrupt status register at address 0x4014 causes both interrupt 
status bits (bits 0 and 1) to be cleared.

• Due to hardware limitations on interrupt detection, the value programmed into 
Timer 2 must be greater than 2.

• See the Intel 8254 interval timer sheet for more details.
Console Mode Diagnostics 8–5



3 Timers Loopback Test 
The 3 Timers Loopback Test exercises Timer 2, Timer 1, and Timer 0. The gate 
input for Timer 2 and Timer 1 is always enabled and the clock input is connected 
to a 10 MHz (100 ns period) clock source. Timer 0 accepts its input through a P2 
loopback connector to which the output of Timer 1 and Timer 2 is tied. Timer 2 is 
the gate input and Timer 1 provides the clock.

This test essentially emulates the real-time time provider and slave scheme found 
in the Real-Time Clock and Interval Device Driver functional specification.

Note

A VMEbus P2 loopback connector is required. See Figure 8–1 for a 
description of the loopback connections.

The –lp option enables the timers indefinitely, making the SBC the master time 
provider for Test #4.

Timer 2 and Timer 1 are programmed to mode 3, square wave mode. Timer 0 is 
programmed to mode 1. After you program the timers with the appropriate mode 
and load them with a count value, the OUT output produces a continuous, square 
wave output that has a period equal to the count value multiplied by the period of 
the clock input. In this test Timer 2 provides a major clock, which basically pro-
vides the start time of Timer 0, and Timer 1 produces a much faster clock called 
the minor clock, which controls the rate that Timer 0 counts down.

Timer 0 is the only interrupt that is enabled during this test. The event of OUT 
transitioning from low to high should generate a CPU interrupt.

The ISR invoked due to the timer generated interrupt increments an interrupt 
counter and sets a global flag indicating the interrupt took place and that software 
was dispatched to the correct point. The test verifies that the interrupt occurs, and 
that no more than one interrupt occurs per major clock cycle.

Console Command: i8254_diag -t 3 

Command Options:

• –np: Do not print a P2 connector message. 

• –lp: Prevent timers from being stopped at the end of the test. This option is 
required before you invoke Test #4.

Timer 0 Loopback Test 
The Timer 0 Loopback Test exercises only Timer 0. Timer 0 accepts its clock and 
gate input from the P2 loopback connector. In this test, you can cause Timer 0 
inputs on the P2 connector to be driven by a master Alpha VME SBC running Test 
3 by specifying the –lp option on the command line. 

This test essentially emulates the slave system found in the Real-Time Clock and 
Interval Device Driver functional specification.
8–6 Console Mode Diagnostics



This test enables only Timer 0 as is done in Test 3, but does not use Timer 1 or 
Timer 2. The clock and gate come from the timers on the master Alpha VME 
SBC. Timer 0 interrupts when the gate is received and its count is decremented to 
0.

Note 

A VMEbus P2 loopback connector is required. See Figure 8–1 for a 
description of the loopback connections.

Console Command: i8254_diag -t 4 

Command Option: 

• –np: Do not print a P2 connector message. 

Miscellaneous Notes 

Test #3 must be invoked with the –lp option on the master Alpha VME SBC prior 
to invoking this test.

Timer 2 Interrupt Test 
The Timer 2 Interrupt Test exercises Timer 2 with the timer interrupt disabled. 
The gate input for Timer 2 is always enabled and the clock input is connected to a 
10 MHz (100 ns period) clock source.

Timer 2 is programmed to mode 0, interrupt on terminal count. After the timer is 
initially programmed to mode 0 and loaded with a count value, OUT output is low 
and remains low until the internal count value reaches zero. When the count value 
reaches zero, OUT output is asserted high and remains high until Timer 2 is repro-
grammed. The event of OUT transitioning from low to high should set the Timer 2 
status bit and not generate a CPU interrupt.

The ISR global flag is checked verifying that the ISR was not invoked. The Timer 
2 status bit is checked to indicate the interrupt took place.

Console Command: i8254_diag -t 5 

Miscellaneous Notes 

• The interrupt enable bits for Timers 0 and 2 (bits 4 and 5 of the interrupt status 
register at address 0x4010) are not directly writable. Bits 4 and 5 are toggled 
by writing to addresses 0x4010 and 0x4014, respectively. In both cases, the 
data written is Don’t Care.

• A read of the interrupt status register at address 0x4014 causes both interrupt 
status bits (bits 0 and 1) to be cleared.

• Due to hardware limitations on interrupt detection, the value programmed into 
Timer 2 must be greater than 2.

• See the Intel 8254 interval timer sheet for more details.
Console Mode Diagnostics 8–7



Timer 1 Interrupt Test 
The Timer 1 Interrupt Test verifies the interrupt path of Timer 1 (periodic real-
time  timer). Timer 1 is programmed to mode 3, square wave mode. After the 
timer is initially programmed to mode 3 and loaded with a count value, OUT out-
put is low and remains low until the internal count value reaches zero. When the 
count value reaches zero, OUT output is asserted high and remains high until 
timer 1 is reprogrammed.

A global interrupt count flag is checked verifying whether the ISR was invoked.

Console Command: i8254_diag -t 6 

Figure 8–1 Loopback Descriptions for Interval Timer Test 3 and 4

ML013463

Configuration for Interval Timer test 3

To make a loopback for test 3 connect pin C11 to C14. With a second jumper,
connect C12 to C13.

row C
B
A

14   13          12   11

Configuration for Interval Timer test 4 (MASTER/SLAVE Alpha VME)

For test 4, the MASTER signals must be the input for the second Alpha VME
module. Connect pins C11 and C14 of the MASTER to C14 of the SLAVE.
With a second jumper, connect C12 and C13 of the MASTER to C13 of the
SLAVE.

(VMEbus P2 Connector)

row C
B
A

14  13

(VMEbus P2 Connector, SLAVE)

C
B
A

14  13           12  11

(VMEbus P2 Connector, MASTER)
8–8 Console Mode Diagnostics



DECchip 21040 Ethernet Controller Tests
The DECchip 21040 Ethernet Controller diagnostics verify that the internal and 
external loopback mechanisms of the DECchip 21040 Ethernet controller chip  
are operating properly and are performing write and read operations on behalf of 
all configuration registers.

Ethernet Internal Loopback Test 
The Ethernet Internal Loopback Test  transmits Ethernet packets from the transmit 
ring in main memory, loops them back at the MAC layer, and returns them to the 
receive ring in main memory. No traffic is put on the network cable.

This test transmits Ethernet packets from the transmit ring in main memory and 
places them on the network medium  (twisted-pair cable). It concurrently listens 
to the line that carries its own transmissions and returns them to the receive ring in 
main memory. Received packets not identified as test packets are discarded for the 
duration of the test.

Note 

To run the external loopback test, you must use a 10baseT loopback con-
nector (H4082-AA). The external loopback test does not run if the device 
is connected to an  open network. 

This test checks the following logic respectively:

• The device’s internal logic up to but not including the Ethernet transmission 
logic

• The on-chip transmit/receive circuitry and the passive external components 
that connect to the  twisted-pair  interface

Console Command 

• For internal loopback: niil_diag -t 1 

• For external loopback: niil_diag -t 2 

Command Option: 

–dd: Print detailed test information on each pass.

DECchip 21040 PCI Configuration Register Dump
The DECchip 21040 PCI Configuration Register Dump Test  reads the PCI con-
figuration registers of the DECchip 21040 and prints them to the standard output.

Console Command: nicsr_diag -t 1 

DECchip 21040 Control/Status Register Dump 
The DECchip 21040 Control/Status Register (CSR) Dump Test reads the CSRs of 
the DECchip 21040 and prints them to standard output.

Console Command: nicsr_diag -t 2 
Console Mode Diagnostics 8–9



DECchip 21040 Configuration Register Test 
The DECchip 21040 Configuration Register Test performs write and read opera-
tions on the chip’s configuration registers with data patterns of all 1s, all 0s, and 
alternating 1s and 0s. Upon exiting, the test returns the configuration registers to 
their initial values.

Console Command: nicsr_diag -t 3 

Command Option: 

–dd: Print detailed test information on each pass.

Miscellaneous Notes 

This test runs only when you power on the system.
8–10 Console Mode Diagnostics



DALLAS DS1386 NVRAM Watchdog Timekeeper 
Tests 

The DALLAS DS1386 NVRAM Watchdog Timekeeper tests verify the 32 KB of 
NVRAM and the real-time clock of the DALLAS DS1386. Tests 1 through 3 
exercise the NVRAM and Tests 4 and 5 exercise the real-time clock. The tests test 
the DS1386, and decoders. 

The functionality of the watchdog feature is tested by a separate diagnostic test. 
No alarm features are tested, since the alarms are not used.

The NVRAM is tested on a page basis; there are 128 pages each containing 256 
bytes.  However, the first page has reserved addresses for the real-time clock reg-
isters.

NVRAM March I Test 
The NVRAM March I Test writes, reads, and compares all 32 KB of NVRAM 
with data patterns of all 1s, all 0s, alternating 1s and 0s, and shifting 1s and 0s. If 
the quick verify option is set (default), only the first location of each page is 
tested. The no quick verify option tests every location (32 KB) of the NVRAM.

Note 

The contents of the NVRAM are overwritten by this diagnostic and 
restored on test completion. If the module is reset during this test, the 
NVRAM contents are undefined.

Console Command: ds1386_diag -t 1 

Command Options: 

• –dd: Print detailed test information on each pass.

• –nqv: Test every location in NVRAM. The default is to test one location per  
page.

Miscellaneous Notes 

This diagnostic is an extended test.

NVRAM Address-On-Address Test 
The NVRAM Address-On-Address Test writes, reads, and compares all 32 KB of 
NVRAM using this unique page offset for test data. Locations in the DS1386 are 
byte wide. Therefore, you do not have enough room to write the unique address 
into each corresponding location. However, this test writes the unique page offset 
to its corresponding location in NVRAM.

If you set the quick verify option (default), only the first location of each page is 
tested. The no quick verify option tests every location (32 KB) of the NVRAM.
Console Mode Diagnostics 8–11



Note 

The contents of the NVRAM are overwritten by this diagnostic and 
restored on test completion. If the module is reset during this test the 
NVRAM contents are undefined.

Console Command: ds1386_diag -t 2 

Command Options: 

• –dd: Print detailed test information on each pass.

• –nqv: Test every location in NVRAM. The default is to test one location per  
page.

Miscellaneous Notes 

This diagnostic is an extended test.

NVRAM March II Test 
The NVRAM March II Test verifies NVRAM addressing by marching (writing, 
reading, and comparing) a 0x00 byte value through a field of 0xFF. Each iteration 
reads the entire 32 KB for background pattern of 0xFF. If you set the quick verify 
option (default), only the first location of each page is tested. The no quick verify-
option, -nqv, tests every location (32 KB) of the NVRAM.

Note 

The contents of the NVRAM are overwritten by this diagnostic test and 
restored on test completion. If the SBC is reset during this test, the 
NVRAM contents are undefined.

Console Command: ds1386_diag -t 3 

Command Options: 

• –dd: Print detailed test information on each pass.

• –nqv: Test every location in NVRAM. The default is to test one location per 
page.

Miscellaneous Notes 

This diagnostic is an extended test.

TOY Clock Bitwalk Test 
The TOY Clock Bitwalk Test does a walking 1, walking 0, and A5 on the TOY 
clock  registers. It also tests the rollover cases associated with keeping time.

The watchdog reset enable bit in the module control register is set to zero to 
ensure that a watchdog expiration does not cause a hardware reset to occur. Sec-
ondly, the contents of the command register is saved and the transfer enable bit is 
set to 0 to disable updates to the registers while the diagnostic is in progress.
8–12 Console Mode Diagnostics



The diagnostic bit patterns are then walked through all 14 registers. Next, the sec-
onds, minutes, hours, day, month, and year registers are programmed such that the 
next clock tick rolls over for each of these parameters. The updates to the registers 
are started and updated for a three second time period. After the three second 
update period, the registers are then examined to verify that each parameter did 
indeed roll over to the appropriate value.

The diagnostic test cleans up by reenabling the watchdog reset bit in the module 
control register and restoring the original contents of the TOY clock command 
register.

Note 

The current date and time has to be reset after invoking this diagnostic test 
since approximately 3 seconds of time is lost for each pass.

Console Command: ds1386_diag -t 4 

Command Option: 

–dd: Print detailed test information on each pass.

Miscellaneous Notes 

This diagnostic is an extended test.

TOY Clock Time Advancement Test 
The TOY Clock Time Advancement Test is a power-on diagnostic. It verifies that 
the TOY clock registers are advancing with clock ticks.

The test reads the current value of the seconds register. Then the test sleeps for 1.2 
seconds and reads the seconds register again expecting it to have incremented 
with the exception of the rollover case. The rollover case is where the seconds 
register advances from 59 to 0. If the rollover case is encountered, the test sleeps 
for another second and reads the register again. This is repeated four times.

Console Command: ds1386_diag -t 5 

Command Option: 

–dd: Print detailed test information on each pass.

Miscellaneous Notes 

This diagnostic is a POST diagnostic.
Console Mode Diagnostics 8–13



Local Area Network Address ROM Tests 
The Local Area Network (LAN) Address ROM tests test the integrity of the LAN 
address ROM, decoders, and printed circuit board module etch. The LAN address 
ROM contains the Ethernet station address of the module.

LAN Address ROM Dump Test
The LAN Address ROM Dump Test dumps the contents of the 32 octets within 
the LAN address ROM to the screen. No verification of the data is performed.

Console Command: enet_diag -t 1 

Command Options: 

–dd: Print the LAN address ROM to screen.

–np: Do not print the LAN address ROM to screen.

Miscellaneous Notes 

• The LAN address ROM octets must be read by using longword aligned byte 
accesses.

• This diagnostic is an extended test.

LAN Address ROM Verification Test 
The LAN Address ROM Verification Test verifies the format of the data in the 
LAN address ROM. It verifies that the octets are ordered appropriately and that 
the checksums are correctly calculated based on the LAN address.

Console Command: enet_diag -t 2 

Command Option: 

–dd: Print the  LAN ROM address to screen.

Miscellaneous Notes 

• The LAN address ROM octets must be read by using longword aligned byte 
accesses.

• This test is considered a POST diagnostic.
8–14 Console Mode Diagnostics



Figure 8–2 LAN Address ROM Format 

Address Octet 0

Address Octet 1

Address Octet 2

Address Octet 3

Address Octet 4

Address Octet 5

Checksum Octet 1

Checksum Octet 2

Checksum Octet 2

Checksum Octet 1

Address Octet 5

Address Octet 4

Address Octet 3

Address Octet 2

Address Octet 1

Address Octet 0

Address Octet 0

Address Octet 1

Address Octet 2

Address Octet 3

Address Octet 4

Address Octet 5

Checksum Octet 1

Checksum Octet 2

Test Pattern = FF

Test Pattern = 00

Test Pattern = 55

Test Pattern = AA

Test Pattern = FF

Test Pattern = 00

Test Pattern = 55

Test Pattern = AA
Console Mode Diagnostics 8–15



NCR 53C810 PCI-SCSI I/O Processor Tests 
The NCR 53C810 PCI-SCSI I/O processor tests check the NCR810 SCSI control-
ler chip. The tests do not require a drive to be attached to the SCSI port and are 
meant to be a power-on check of the NCR810 chip’s low-level modes through pro-
grammed    I/O issued  from the CPU. No NCR810 scripts execute during these 
tests.

All tests set up the diagnostic support environment, allocate memory, set up the 
PCI configuration registers, and check for the default values in the command/sta-
tus registers as defined by the NCR810 53C810 chip specification.

Note 

If any of these tests fails, the console SCSI driver does not restart after the 
test. This causes SCSI devices connected to the system to be removed 
from the device list, and any attempts to run the disk exerciser or boot 
from a disk fails. (The console command show device lists the currently 
installed devices.)

NCR810 PCI Configuration Register Test 
The NCR810 PCI Configuration Register Test prints the current setting of the 
NCR810 PCI configuration registers to the console screen using formatted output.

Console Command: ncr810_diag -t 1 

Command Option: 

–np: Do not print the contents of the configuration register.

NCR810 Command/Status Register Dump 
The NCR810 Command/Status Register Dump Test displays the contents of all of 
the control/status registers (CSRs) on your screen. No test of the contents is per-
formed.

Console Command: ncr810_diag -t 2 

Command Option: 

–np: Do not print the contents of the configuration register. 
8–16 Console Mode Diagnostics



NCR810 Command/Status Register Test 
The NCR810 Command/Status Register Test writes, reads, and compares the con-
tents of all NCR810 CSRs  that can be tested. When the test finishes, it returns the 
registers to their initialized values.

Console Command: ncr810_diag -t 3 

Command Option: 

–lp: Loop on write and read operations.

NCR810 Command/Status Register Reset Value Test 
The NCR810 Command/Status Register Test checks that a reset of the NCR810 
sets the CSRs  to their default values as defined by the NCR810 53C810 chip 
specification.

Console Command: ncr810_diag -t 4 

NCR810 Internal Loopback Test 
The NCR810 Internal Loopback Test performs a SCSI loopback internal to the 
NCR810 chip. The following data patterns are used: all 1s, all 0s, alternating 1s 
and 0s. The test also verifies parity checking and that the SCSI reset control lines 
can be toggled internally.

Console Command: ncr810_diag -t 5 

NCR810 Internal Live Bus Loopback Test 
The NCR810 Internal Live Bus Loopback Test performs an internal SCSI loop-
back that also drives the signal lines on the SCSI bus.

You must remove all devices from the SCSI bus before running this test. Devices 
on the bus interfere with the test and cause false error reports. Also, the test data 
may produce invalid device instructions and cause the devices to hang.

First, the test places the SCSI bus in a high impedance state by loading a data pat-
tern that causes the output drivers to draw no current. Then the test checks the out-
put latches for the correct data. The test also verifies parity checking and that the 
SCSI reset control lines can be toggled internally. The following data patterns are 
used: all 1s, all 0s, alternating 1s and 0s.

Console Command: ncr810_diag -t 6 

NCR810 Interrupt Test 
The NCR810 Interrupt Test verifies the interrupt connection between the NCR810 
and the SIO controller to the CPU. The test enables a general-purpose timer, 
which generates an interrupt that is dispatched to the CPU through the SIO con-
troller. The console PALcode dispatches to the NCR810_diag ISR, which clears 
the interrupt.

Console Command: ncr810_diag -t 7 

Miscellaneous Notes 

• These tests do not run in parallel with the SCSI exerciser tests.
Console Mode Diagnostics 8–17



• No external loopback connectors are needed for the loopback tests.

• References - NCR 53C810 PCI-SCSI I/O Processor specification Revision 
2.1
8–18 Console Mode Diagnostics



Watchdog Timer Interrupt Test 
The Watchdog Timer Interrupt Test verifies the functionality of the watchdog 
timer by checking its ability to handle a user programmed watchdog timer reset. 
The test checks logic associated with the:

• Watchdog timer

• Some reset logic

• DS1386 TOY clock

Watchdog Timer Interrupt Test 
The Watchdog Timer Interrupt Test sets the diagnostic-in-progress bit and invokes 
a watchdog  timeout by loading a short time value into the watchdog timeout reg-
ister. The test queries you  to be sure the watchdog LED is off. Upon expiration of 
the timeout value, a HALT interrupt is expected. After the expected time, the test 
evaluates the reset reason register. If the HALT interrupt did not occur, or the 
watchdog reason was not set, the test calls out an error. Also, the test asks you  to 
verify that the watchdog LED is now on. At the end of the test, the watchdog timer 
and diagnostic-in-progress bit are disabled.

Console Command: wdog_diag -t 1 

Command Options: 

• –dd: Print detailed test information on each pass.

• –nc: Do not prompt user to verify the state of the LED.

• –np: Override the -nc option by prompting user to verify the state of the LED.  

Miscellaneous Notes 

The purpose of setting the diagnostic-in-progress bit is to avoid an actual system 
reset when the watchdog timer expires. The watchdog expiration first causes a 
HALT interrupt. Approximately 300 ms later an actual system reset occurs, unless 
the diagnostic-in-progress bit is set. The reset reason register shows a watchdog 
reset reason whether or not the diagnostic-in-progress bit is set. The HALT inter-
rupt and the reset reason are used for this diagnostic. User interaction can be sup-
pressed with the –nc option. 
Console Mode Diagnostics 8–19



VME Interface Tests 
The VME Interface Tests verify the VME interface logic on the Alpha VME 
5/352 and 5/480 SBCs, including the VME interface processor (VIP), the Cypress 
VIC064 chip, the scatter/gather RAMs, and some of the interrupt paths from the 
VME corner to the Alpha processor. These tests perform no VMEbus transactions 
and, therefore, require no additional VMEbus modules.

VIP PCI Configuration Register Test 
The VIP PCI Configuration Register Test reads the first 8 longwords of the VIP 
PCI configuration space. Only the device and vendor ID, and base addresses 0, 1, 
2, and 3 are compared to an expected value. The remaining longwords are always 
read and displayed only if you specify the –dd option.

Console Command: vip_diag -t 1 

Command Option: 

–dd: Print detailed test information.

VIP Register Write/Read Test 
The VIP Register Write/Read Test ensures that the bits of a VIP register can be 
written and read correctly; verifying the data path and internal access.

Console Command: vip_diag -t 2 

Command Option: 

–dd: Print detailed test information.

VIC Register Write/Read Test 
The VIC Register Write/Read Test ensures that the bits of a VIC register can be 
written and read correctly; verifying the data path and internal access.

Console Command: vip_diag -t 3 

Command Option: 

–dd: Print detailed test information.

VME Scatter/Gather RAM Test 
The VME Scatter/Gather RAM Test verifies the integrity of the scatter/gather 
RAM by performing write, read, and verify operations of various patterns to the 
entire scatter/gather RAM.

Console Command: vip_diag -t 4 

Command Option: 

–dd: Print detailed test information on each pass.
8–20 Console Mode Diagnostics



Part IV
Appendixes
Part IV consists of the following appendixes:

• Appendix A, Console Command Summary

• Appendix B, Troubleshooting

• Appendix C, Module Connector Pin Assignments





le 
 A
Console Command Summary

Table A–1 summarizes the DIGITAL Alpha VME 5/352 and 5/480 SBC conso
commands.

Table A–1  Console Command Summary 

Command Options Arguments

alloc [-flood] [–z heap_address] size [modulus] [remainder]

boot [–file boot_file] [–flags longword,...] 
[-protocols enet_protocol] [–halt]

 [ boot_device ]

break [break_level]

cat [-l length] [file...]

chmod [[{–  +   =} { r   w   x   b   z}]...] file...

chown pid address ...

clear envar

clear_log

date [[[[ yyyy]mm]dd]hhmm[.ss]]

deposit [-b -w -l -q -o -h] 
[-physical  -virtual -gpr  -fpr  -ipr] [–n count] 
[–s step]

[ device] address data

dynamic [–c  [-r ]] [–h] [-p] [–v] [-extend byte_count] 
[–z heap_address]

echo [–n] args...

eval [-ib -io -id -ix] [-b -o -d -x] operand1 operand2     operator

examine [-b -w -l -q -o -h  -d] 
[-physical -virtual  -gpr -fpr  -ipr ] [–n count] 
[–s step]

[ device] address

exer [–sb start_block] [–eb end_block] [–p pass_count]
[–l blocks] [–bs block_size] [–bc block_per_io]
[–d1 buf1_string] [–d2 buf2_string]
[–a action_string] [–sec seconds] [–m] [–v]
[-delay milliseconds]

[device...]

exit  exit_value

false

free address...

grep [-c] [-i] [-n]  [-v] [–f  file] expression [file...]

hd [ -byte  -word  -long  -quad] file...
Console Command Summary A–1



1 You must issue the boot command before using update.

help [command-spec...]

init_ev

init [–d device] 

kill pid...

line

ls [–l] [file...]

man [command-spec...]

memexer [number_of_tests]

memtest [-sa start_address] [-ea end_address] [-l length]
[-ba block_address] [-bs block size]
[-i address_inc] [-p pass_count] [-d data_pattern]
[-rs random_seed] -rb ] [-f] [-m] [-z] [-h]  [-mb]
[-t] [-g] [-se]

net [-s] [-sa] [-ri ] [-ic] [-id] [-l0] [-l1] [-rb ] [-csr]
[-els] [-kls] [-cm mode] [-se] [-da node_address]
[-l file_name] [-lw wait_in_seconds] 
[-sv mop_version]

[port]

ps

pwrup

rm file...

sa process_id affinity_mask

semaphore

set [-default] [-integer] [-string] envar value

set led [-b] char

set reboot srom

set toy sleep

sh [-v] [-x] [-d] [-l] [-r ] [-p] [arg ...]

show system_param envar

show log [{-n [count]} -all -new]

sleep [-v] time

sort file

sp process_id priority

start [-drivers [device_prefix]] address

stop [-drivers [device_prefix]] processor_num

update1 [-file filename] [-protocol transport]
[-device source_device] [-target target_device]

Table A–1  Console Command Summary  (Continued)

Command Options Arguments
A–2 Console Command Summary



 B
Troubleshooting

The DIGITAL Alpha VME 5/352 and 5/480 SBCs include extensive diagnostic 
capabilities that execute when you power on the system. These include both 
SROM and flash ROM code. This appendix:

• Briefly discusses SROM and flash ROM diagnostics, Sections B.1 and B.2

• Provides guidance on troubleshooting systems that include a PMC I/O com-
panion card, B.3

• Briefly discusses use of the dot matrix display by operating systems and 
applications, B.4

• Provides troubleshooting tips, B.5

For details about system diagnostics, see Chapter 7.

B.1 SROM Diagnostics

SROM diagnostics execute when you power on the system and display decreasing 
numeric codes (8, 7, ...1) on the dot matrix display to indicate status. All SROM 
tests must pass successfully before the flash ROM and console diagnostics run. If 
one or more SROM diagnostics fail, the flash ROM and console diagnostics are 
not loaded and a single right angle bracket prompt (SROM>) appears on the con-
sole terminal. The code of the failing diagnostic appears on the dot matrix display. 
In some cases, additional information appears on the console terminal.

B.2 Flash ROM Diagnostics

When the SROM diagnostics complete successfully, the flash ROM diagnostics 
are loaded, decompressed, and executed. Flash ROM diagnostics use an ascend-
ing (A, B,..., I) character-based code to indicate progress. If one or more flash 
ROM-based diagnostics fail, the code representing the first error remains on the 
dot matrix display and alternates between dim and bright intensity.

If all SROM and flash ROM diagnostics pass, and you have not set any 
AUTO_ACTION environment variables, the console prompt (>>>) appears on 
the console terminal, and a “rotating bar” appears on the dot matrix display.
Troubleshooting B–1



 
 
 

 

B.3 Troubleshooting Systems that Include a PMC I/O Companion 
Card

A problem in the PMC I/O companion card that hangs the PCI bus signal lines 
could cause diagnostics to report problems throughout the I/O subsystem and in 
the PCI controller of the processor chip. If you have a PMC I/O companion card 
installed and you are experiencing diagnostic failures, remove it and rerun the 
POST diagnostics.

B.4 Operating System and Application Use of the Dot Matrix 
Display

Operating system and application software can use the dot matrix display. Once 
the system boots, the dot matrix display is no longer under control of the console 
code and can change. The console automatically clears the display before booting 
an image.

B.5 Troubleshooting Your SBC

Table B–1 lists symptoms and corrective actions you can use to troubleshoot 
Alpha VME 5/352 and 5/480 SBCs. See the DIGITAL Alpha VME 5/352 and 5/
480 Single-Board Computers User Manual for more information on system diag-
nostics.

Table B–1 Troubleshooting Your SBC 

Symptom Corrective Action

No LEDs are lit and a prompt does not 
appear on the console.

Check the power source. If 5 V power is 
out of specification, the SBC is held in 
reset. Check that all modules are seated 
properly.

The green LED is lit and the number 4 
appears on the dot matrix display when you 
power on the system. 

Check the seating of the memory modules.

The green LED is lit and the number 0 
appears on the dot matrix display when you 
power on the system. 

Ensure that the console terminal is not in 
“hold screen” mode.

The green LED is lit and a flashing A 
appears on the dot matrix display when you 
power on the system.

Check the SCSI termination, the seating of
the Alpha VME 5/352 and 5/480 SBC CPU
and I/O module assembly, the seating of the
breakout modules, the seating of the SCSI
cable, and the seating of all SCSI devices.

The green LED is lit and a flashing D 
appears on the dot matrix display when you 
power on the system.

Check that the TOY Clock/NVRAM 
device is seated properly.

The green LED is lit and a flashing F 
appears on the dot matrix display when you 
power on the system.

Check the seating of the network address 
ROM.
B–2 Troubleshooting



The green LED is lit and a flashing G 
appears on the dot matrix display when you 
power on the system. 

Check the seating of the twisted-pair cable 
and the nearest network transceiver.

The green LED is lit and a flashing I 
appears on the dot matrix display when you 
power on the system. 

Check the seating of the Alpha VME 5/352 
and 5/480 SBC CPU and I/O module 
assembly, the seating of the breakout mod-
ules, and the seating of all VME devices.

Diagnostics pass but the SCSI tests take 
more than 10 seconds to complete.

Check the SCSI termination, the seating of 
the Alpha VME 5/352 and 5/480 SBC CPU 
and I/O module assembly, the seating of the 
breakout modules, the seating of the SCSI 
cable, and the seating of all SCSI devices.

Diagnostics pass but there are no (or 
unreadable) characters displayed on the 
console.

Check the console terminal connections 
and settings (9600 baud, 8-bits, no parity). 
The terminal should be plugged into the 
console (CON) port.

Table B–1 Troubleshooting Your SBC  (Continued)

Symptom Corrective Action
Troubleshooting B–3





 

nec-
dule 

ctor 
 C
Module Connector Pin Assignments

Sections C.1 through C.5 provide pin assignment information for the Alpha VME 
5/352 and 5/480 SBC:

• CPU module connector, C.1

• I/O Type 1 module connector, C.2

• Primary breakout module connector, C.3

• Secondary breakout module connector, C.4

• PMC I/O companion card connector, C.5

C.1 CPU Module Connector Pin Assignments

The CPU module (54–24827–xx) P2 connector has the following power/ground
pin assignments:

C.2 I/O Module Connector Pin Assignments

Sections C.2.1 through C.2.4 show the pin assignments for the VMEbus con
tor, console and serial connectors, and the Ethernet connector on the I/O mo
(54-24319-01).

C.2.1 P1 VMEbus Connector Pin Assignments

Table C–1 lists the pin assignments for the P1 VMEbus connector.P2 Conne

Row A Row B Row C

Ground 1, 2, 4, 5, 7, 8, 10, 11, 13, 15, 
16, 18-23, 28-30

2, 12, 22, 31 3, 4, 7-11, 14-17, 20-22, 
24-27, 30

VCC 3, 6, 9, 12, 14, 17, 24-27, 31, 
32

1, 13, 32 1, 2, 5, 6, 12, 13, 18, 19, 
23, 28, 29, 31, 32

Table C–1 P1 VMEbus Connector Pin Assignments 

Pin Row A Row B Row C

1 VME_D0 VME_BBSY_L VME_D08

2 VME_D1 VME_BCLR_L VME_D09

3 VME_D2 VME_ACFAIL_L VME_D10

4 VME_D3 VME_BGIN0_L VME_D11

5 VME_D4 VME_BGOUT0_l VME_D12

6 VME_D5 VME_BGIN1_L VME_D13
Module Connector Pin Assignments C–1



C.2.2 P2 VMEbus Connector Pin Assignments

Table C–2 lists the pin assignments for the P2 VMEbus connector.

7 VME_D6 VME_BGOUT1_L VME_D14

8 VME_D7 VME_BGIN2_L VME_D15

9 Ground VME_BGOUT2_L Ground

10 VME_SYSCLK VME_BGIN3_L VME_SYSFAIL_L

11 Ground VME_BGOUT3_l VME_BERR_L

12 VME_DS1_L VME_BR0_L VME_SYSRESET_L

13 VME_DS0_L VME_BR1_L VME_LWORD_l

14 VME_WRITE_L VME_BR2_L VME_AM5

15 Ground VME_BR3_L VME_A23

16 VME_DTACK_L VME_AM0 VME_A22

17 Ground VME_AM1 VME_A21

18 VME_AS_L VME_AM2 VME_A20

19 Ground VME_AM3 VME_A19

20 VME_IACK_L Ground VME_A18

21 VME_IACKIN_L N/C VME_A17

22 VME_IACKOUT_L N/C VME_A16

23 VME_AM4 Ground VME_A15

24 VME_A7 VME_IRQ7_L VME_A14

25 VME_A6 VME_IRQ6_L VME_A13

26 VME_A5 VME_IRQ5_L VME_A12

27 VME_A4 VME_IRQ4_L VME_A11

28 VME_A3 VME_IRQ3_L VME_A10

29 VME_A2 VME_IRQ2_L VME_A09

30 VME_A1 VME_IRQ1_L VME_A08

31 PWRN12 VME_5VSTBY PWRP12

32 VCC VCC VCC

Table C–2 P2 VMEbus Connector Pin Assignments 

Pin Row A Row B Row C

1 SCSI_DATA0_L VCC MSDATA

2 SCSI_DATA1_L Ground MSCLK

3 SCSI_DATA2_L N/C Ground

Table C–1 P1 VMEbus Connector Pin Assignments  (Continued)

Pin Row A Row B Row C
C–2 Module Connector Pin Assignments



4 SCSI_DATA3_L VME_A24 KBDATA

5 SCSI_DATA4_L VME_A25 KBCLK

6 SCSI_DATA5_L VME_A26 WD_STATUS_OC

7 SCSI_DATA6_L VME_A27 BREAKOUT0

8 SCSI_DATA7_L VME_A28 BREAKOUT1

9 SCSI_DP_L VME_A29 Ground

10 SCSI_ATN_L VME_A30 EXT_RESET_L

11 SCSI_BSY_L VME_A31 TMR2_EXT_OP_L

12 SCSI_ACK_L Ground TMR1_EXT_OP_L

13 SCSI_RST_L VCC TMR_MINOR_IP_L

14 SCSI_MSG_L VME_D16 TRM_MAJOR_IP_L

15 SCSI_SEL_L VME_D17 Ground

16 SCSI_CD_L VME_D18 PP_STB_L

17 SCSI_REQ_L VME_D19 PP_ERR_L

18 SCSI_IO_L VME_D20 PP_DATA0

19 Ground VME_D21 PP_DATA1

20 Ground VME_D22 PP_DATA2

21 Ground VME_D23 PP_DATA3

22 Ground Ground PP_DATA4

23 VME_MASTER_SW_L VME_D24 PP_DATA5

24 VCC VME_D25 PP_DATA6

25 VCC VME_D26 PP_DATA7

26 VCC VME_D27 PP_SLCT

27 VCC VME_D28 PP_PE

28 Ground VME_D29 PP_BUSY

29 Ground VME_D30 PP_ACK_L

30 Ground VME_D31 PP_AFD_L

31 VCC Ground PP_INIT_L

32 VCC VCC PP_SLIN_L

Table C–2 P2 VMEbus Connector Pin Assignments  (Continued)

Pin Row A Row B Row C
Module Connector Pin Assignments C–3



igure 

hows 
C.2.3 Console and Auxiliary Connector Pin Assignments

Table C–3 lists the pin assigments for the console and auxiliary connectors. F
C–1 shows a pin assignment diagram.

Figure C–1 Console and Auxiliary Connector Pin Assignments

C.2.4 Ethernet Connector Pin Assignments

Table C–4 lists the pin assignments for the Ethernet connector. Figure C–2 s
a pin assignment diagram.

Figure C–2 Ethernet Connector Pin Assignments

Table C–3 Console and Auxiliary Connector Pin Assignments 

Pin Signal

1 Ready out (always asserted, tied high with a 150  resistor)

2 Transmit +

3 Transmit – (send common, tied to ground)

4 Receive +

5 Receive –

6 Ready in (tied to ground with 3.01K  resistor)

Table C–4 Ethernet Connector Pin Assignments

Pin Signal

1 Transmit +

2 Transmit –

3 Receive +

4 No connection

5 No connection

6 Receive –

7 No connection

8 No connection

Ω

Ω

Pin 1 Pin 6

MLO-013549

Front view mating side

Pin 8Pin 1

Front view mating side

MLO-013550
C–4 Module Connector Pin Assignments



63-
C.3 Primary Breakout Module Connector Pin Assignments

Table C–5 lists the pin assignments for the primary breakout module (54-246
01).  Figure C–3 shows a pin assignment diagram. 

Table C–5 Primary Breakout Module Connector Pin Assignments

Pin Row A Row B Row C

1 SCSI_DATA0_L VCC MSDATA

2 SCSI_DATA1_L Ground MSCLK

3 SCSI_DATA2_L N/C Ground

4 SCSI_DATA3_L N/C KBDATA

5 SCSI_DATA4_L N/C KBCLK

6 SCSI_DATA5_L N/C WD_STATUS_OC

7 SCSI_DATA6_L N/C BREAKOUT0

8 SCSI_DATA7_L N/C BREAKOUT1

9 SCSI_DP_L N/C Ground

10 SCSI_ATN_L N/C EXT_RESET_L

11 SCSI_BSY_L N/C TMR2_EXT_OP_L

12 SCSI_ACK_L Ground TMR1_EXT_OP_L

13 SCSI_RST_L VCC TMR_MINOR_IP_L

14 SCSI_MSG_L N/C TRM_MAJOR_IP_L

15 SCSI_SEL_L N/C Ground

16 SCSI_CD_L N/C PP_STB_L

17 SCSI_REQ_L N/C PP_ERR_L

18 SCSI_IO_L N/C PP_DATA0

19 Ground N/C PP_DATA1

20 Ground N/C PP_DATA2

21 Ground N/C PP_DATA3

22 Ground Ground PP_DATA4

23 VME_MASTER_SW_L N/C PP_DATA5

24 VCC N/C PP_DATA6

25 VCC N/C PP_DATA7

26 VCC N/C PP_SLCT

27 VCC N/C PP_PE

28 Ground N/C PP_BUSY

29 Ground N/C PP_ACK_L
Module Connector Pin Assignments C–5



out 
ort) 
Figure C–3 Primary Breakout Module Connector Pin Assignments

C.4 Secondary Breakout Module Connector Pin Assignments

Figure C–4 shows the layout of the pin assignments for the secondary break
module. Note the positions of the J1 (keyboard and mouse) and J6 (parallel p
connectors.

30 Ground N/C PP_AFD_L

31 VCC Ground PP_INIT_L

32 VCC VCC PP_SLIN_L

Table C–5 Primary Breakout Module Connector Pin Assignments
 (Continued)

Pin Row A Row B Row C

Side 1

J2 (SCSI)

XP2 J1

1

250

49

C1
B1
A1

C32
B32
A32

Side 2

C32
B32
A32

C1
B1
A1

C32
B32
A32

C1
B1
A1

J3

J4

MLO-013551
C–6 Module Connector Pin Assignments



tor. 
Figure C–4 Secondary Breakout Module Connector Pin Assignments

Sections C.4.1 and C.4.2 provide more detail on the J1 and J6 connectors, respec-
tively.

C.4.1 Keyboard and Mouse Connector Pin Assignments

Table C–6 lists the pin assignments for the keyboard and mouse (J1) connec
Figure C–5 shows a pin assignment diagram.

Table C–6 Keyboard and Mouse Connector Pin Assignments 

Pin Signal

1 MOUSE_DATA

2 KBRD_DATA

3 Ground

4 VCC

5 MOUSE_CLOCK

6 KBRD_CLOCK

J6

J2

J5

26

13

A32

C32

A1

C1

C32
B32
A32

C1
B1
A1

MLO-01355

P2

14

1
4

3

2

1

4

3

2

1
J4

J1
Module Connector Pin Assignments C–7



e C–
Figure C–5 Keyboard and Mouse Pin Assignments

C.4.2 Parallel Port Connector Pin Assignments

Table C–7 lists the pin assignments for the parallel port (J6) connector. Figur
6 shows a pin assignment diagram.

Table C–7 Parallel Port Connector Pin Assignments 

Pin Signal

1 PP_STB_L

2 PP_DATA0

3 PP_DATA1

4 PP_DATA2

5 PP_DATA3

6 PP_DATA4

7 PP_DATA5

8 PP_DATA6

9 PP_DATA7

10 PP_ACK_L

11 PP_BUSY

12 PP_PE

13 PP_SLCT

14 PP_AFD_L

15 PP_ERR_L

16 PP_INIT_L

17 PP_SLIN_L

18–25 Ground

26 N/C

6

4

2 1

3

5

MLO-013553

Front view mating side
C–8 Module Connector Pin Assignments



d 
Figure C–6 Parallel Port Connector Pin Assignments

C.5 PMC I/O Companion Card Connector Pin Assignments

Sections C.5.3 through C.5.3 identify the pin assignments for the following PMC 
I/O companion card (54-24665-01) connectors:

• PMC option 1 connectors

• PMC option 2 connectors

• Diskette drive connector 

• Mouse and keyboard connector 

C.5.1 PMC Option 1 Connector Pin Assignments

Figure C–7 shows the locations of the PMC option 1 connectors J11, J12, an
J14(the P2 VMEbus signal connector). Tables C–8 through C–10 list the pin 
assignments for the connectors.

Figure C–7 PMC Option 1 Connectors

J6

J2

26

13

MLO-013554

14

1

Front view mating side

J12 J14

J112
1

2 64

63

2 64

1 63

1 63

64

P1 P2
Module Connector Pin Assignments C–9



Table C–8 PMC Option 1 J11 Pin Assignments 

Signal Pin Pin Signal

Ground 1 2 PWRN12

Ground 3 4 BPCIOPT0_IRQA_L

BPCIOPT0_IRQB_L 5 6 BPCIOPT0_IRQC_L

N/C 7 8 VCC

BPCIOPT0_IRQD_L 9 10 N/C

Ground 11 12 N/C

PCICLK_OPT0_L 13 14 Ground

Ground 15 16 SGNT0_L

SSREQ0_L 17 18 VCC

SVIO 19 20 BPCI_AD31

BPCI_AD28 21 22 BPCI_AD27

PBCI_AD25 23 24 Ground

Ground 25 26 BPCI_CBE3_L

BPCI_AD22 27 28 BPCI_AD21

BPCI_AD19 29 30 VCC

SVIO 31 32 BPCI_AD17

BPCI_FRAME_L 33 34 Ground

Ground 35 36 BPCI_IRDY_L

BPCI_DEVSEL_L 37 38 VCC

Ground 39 40 BPCI_LOCK_L

SVIO 41 42 SVIO

BPCI_PAR 43 44 Ground

SVIO 45 46 BPCI_AD15

BPCI_AD12 47 48 BPCI_AD11

BPCI_AD9 49 50 VCC

Ground 51 52 BPCI_CBE0_L

BPCI_AD6 53 54 BPCI_AD5

BPCI_AD4 55 56 Ground

SVIO 57 58 BPCI_AD3

BPCI_AD2 59 60 BPCI_AD1

BPCI_AD0 61 62 VCC

Ground 63 64 SVIO
C–10 Module Connector Pin Assignments



Table C–9 PMC Option 1 J12 Pin Assignments 

Signal Pin Pin Signal

PWRP12 1 2 Ground

SVIO 3 4 N/C

SVIO 5 6 Ground

Ground 7 8 N/C

N/C 9 10 N/C

VCC 11 12 +3V

S_RST_L 13 14 Ground

+3V 15 16 Ground

N/C 17 18 Ground

BPCI_AD30 19 20 BPCI_AD29

Ground 21 22 BPCI_AD26

BPCI_AD24 23 24 +3V

BPCI_AD17 25 26 BPCI_AD23

+3V 27 28 BPCI_AD20

BPCI_AD18 29 30 Ground

BPCI_AD16 31 32 BPCI_CBE2_L

Ground 33 34 N/C

BPCI_TRDY_L 35 36 +3V

Ground 37 38 BPCI_STOP_L

BPCI_PERR_L 39 40 Ground

+3V 41 42 BPCI_SERR_L

BPCI_CBE1_L 43 44 Ground

BPCI_AD14 45 46 BPCI_AD13

Ground 47 48 BPCI_AD10

BPCI_AD8 49 50 +3V

BPCI_AD7 51 52 N/C

+3V 53 54 N/C

N/C 55 56 Ground

N/C 57 58 N/C

Ground 59 60 N/C

SVIO 61 62 +3V

Ground 63 64 N/C
Module Connector Pin Assignments C–11



Table C–10 PMC Option 1 VMEbus P2 Signal Connector (J14) Pin Assign-
ments 

Signal Pin Pin Signal

P2_1C 1 2 P2_1A

P2_2C 3 4 P2_2A

P2_3C 5 6 P2_3A

P2_4C 7 8 P2_4A

P2_5C 9 10 P2_5A

P2_6C 11 12 P2_6A

P2_7C 13 14 P2_7A

P2_8C 15 16 P2_8A

P2_9C 17 18 P2_9A

P2_10C 19 20 P2_10A

P2_11C 21 22 P2_11A

P2_12C 23 24 P2_12A

P2_13C 25 26 P2_13A

P2_14C 27 28 P2_14A

P2_15C 29 30 P2_15A

P2_16C 31 32 P2_16A

P2_17C 33 34 P2_17A

P2_18C 35 36 P2_18A

P2_19C 37 38 P2_19A

P2_20C 39 40 P2_20A

P2_21C 41 42 P2_21A

P2_22C 43 44 P2_22A

P2_23C 45 46 P2_23A

P2_24C 47 48 P2_24A

P2_25C 49 50 P2_25A

P2_26C 51 52 P2_26A

P2_27C 53 54 P2_27A

P2_28C 55 56 P2_28A

P2_29C 57 58 P2_29A

P2_30C 59 60 P2_30A

P2_31C 61 62 P2_31A

P2_32C 63 64 P2_32A
C–12 Module Connector Pin Assignments



. 
C.5.2 PMC Option 2 Connector Pin Assignments

Figure C–8 shows the locations of the PMC option 2 connectors J21 and J22
Tables C–11 and C–12 list the pin assignments for the connectors. 

Figure C–8 PMC Option 2 Connectors

Table C–11 PMC Option 2 J21 Pin Assignments 

Signal Pin Pin Signal

Ground 1 2 PWRN12

Ground 3 4 BPCIOPT1_IRQA_L

BPCIOPT1_IRQB_L 5 6 BPCIOPT1_IRQC_L

N/C 7 8 VCC

BPCIOPT1_IRQD_L 9 10 N/C

Ground 11 12 N/C

PCICLK_OPT1_L 13 14 Ground

Ground 15 16 SGNT1_L

SSREQ1_L 17 18 VCC

SVIO 19 20 BPCI_AD31

BPCI_AD28 21 22 BPCI_AD27

PBCI_AD25 23 24 Ground

Ground 25 26 BPCI_CBE3_L

BPCI_AD22 27 28 BPCI_AD21

BPCI_AD19 29 30 VCC

SVIO 31 32 BPCI_AD17

BPCI_FRAME_L 33 34 Ground

Ground 35 36 BPCI_IRDY_L

BPCI_DEVSEL_L 37 38 VCC

J22

J212

1

2 64

63

1 63

64

P1 P2
Module Connector Pin Assignments C–13



Ground 39 40 BPCI_LOCK_L

SVIO 41 42 SVIO

BPCI_PAR 43 44 Ground

SVIO 45 46 BPCI_AD15

BPCI_AD12 47 48 BPCI_AD11

BPCI_AD9 49 50 VCC

Ground 51 52 BPCI_CBE0_L

BPCI_AD6 53 54 BPCI_AD5

BPCI_AD4 55 56 Ground

SVIO 57 58 BPCI_AD3

BPCI_AD2 59 60 BPCI_AD1

BPCI_AD0 61 62 VCC

Ground 63 64 SVIO

Table C–12 PMC Option 2 J22 Pin Assignments

Signal Pin Pin Signal

PWRP12 1 2 Ground

SVIO 3 4 N/C

SVIO 5 6 Ground

Ground 7 8 N/C

N/C 9 10 N/C

VCC 11 12 +3V

S_RST_L 13 14 Ground

+3V 15 16 Ground

N/C 17 18 Ground

BPCI_AD30 19 20 BPCI_AD29

Ground 21 22 BPCI_AD26

BPCI_AD24 23 24 +3V

BPCI_AD17 25 26 BPCI_AD23

+3V 27 28 BPCI_AD20

BPCI_AD18 29 30 Ground

BPCI_AD16 31 32 BPCI_CBE2_L

Ground 33 34 N/C

Table C–11 PMC Option 2 J21 Pin Assignments  (Continued)

Signal Pin Pin Signal
C–14 Module Connector Pin Assignments



te 
tor.
C.5.3 PMC I/O Companion Card Diskette Drive Connector Pin Assignments

Table C–13 lists the pin assignments for the PMC I/O companion card disket
drive connector. Figure C–9 shows a pin assignment diagram for the connec

BPCI_TRDY_L 35 36 +3V

Ground 37 38 BPCI_STOP_L

BPCI_PERR_L 39 40 Ground

+3V 41 42 BPCI_SERR_L

BPCI_CBE1_L 43 44 Ground

BPCI_AD14 45 46 BPCI_AD13

Ground 47 48 BPCI_AD10

BPCI_AD8 49 50 +3V

BPCI_AD7 51 52 N/C

+3V 53 54 N/C

N/C 55 56 Ground

N/C 57 58 N/C

Ground 59 60 N/C

SVIO 61 62 +3V

Ground 63 64 N/C

Table C–13 PMC I/O Companion Card Diskette Drive Connector Pin Assign-
ments 

Pin Signal

1 Ground

2 DENSEL

3 Ground

4 No connection

5 Ground

6 DRATE0_L

7 Ground

8 INDEX_L

9 Ground

10 MTR0_L

11 Ground

12 DS1_L

Table C–12 PMC Option 2 J22 Pin Assignments (Continued)

Signal Pin Pin Signal
Module Connector Pin Assignments C–15



13 Ground

14 DS0_L

15 Ground

16 MTR1_L

17 Ground

18 DIR_L

19 Ground

20 STEP_L

21 Ground

22 WRDATA_L

23 Ground

24 WGATE_L

25 Ground

26 TR0_L

27 Ground

28 WRTPRT_L

29 Ground

30 RDATA

31 Ground

32 HDSEL_L

33 Ground

34 RDSKCHG

Table C–13 PMC I/O Companion Card Diskette Drive Connector Pin Assign-
ments  (Continued)

Pin Signal
C–16 Module Connector Pin Assignments



ard 
ign-
Figure C–9 PMC I/O Companion Card Diskette Connector Pin Assignments 

C.5.4 PMC I/O Companion Card Keyboard and Mouse Connector Pin 
Assignments

Tables C–14 and C–15 list the pin assignments for the PMC I/O companion c
mouse and keyboard connectors, respectively. Figure C–10 shows a pin ass
ment diagram for the connectors.

Table C–14 PMC I/O Companion Card Mouse Connector Pin Assignments

Pin Signal

1 MOUSE_DATA

2 KBRD_DATA

3 Ground

4 VCC

5 MOUSE_CLOCK

6 KBRD_CLOCK

Table C–15 PMC I/O Companion Card Keyboard Connector Pin Assignments

Pin Signal

1 KBRD_DATA

2 MOUSE_DATA

3 Ground

4 VCC

5 KBRD_CLOCK

6 N/C

Pin 34 Pin 33

Pin 2 Pin 1

J7

J6
Module Connector Pin Assignments C–17



Figure C–10 PMC I/O Companion Card Mouse and Keyboard Connector Pin 
Assignments

6

4

2 1

3

5

MLO-013553

Front view mating side
C–18 Module Connector Pin Assignments



Index
Symbols
# operator, 4-7
& operator, 4-7
&a operator, 4-7
( ) operator, 4-7
* operator, 4-7
; operator, 4-6
< operator, 4-6
<< operator, 4-6
<kcommand>update command, 6-79
> operator, 4-6
>> operator, 4-6
? operator, 4-7
[ ] operator, 4-7
\ operator, 4-6
{ } operator, 4-7
| operator, 4-6
’ ’ operator, 4-7

Numerics
10BASE-T twisted-pair Ethernet connector, 2-4, 3-8

checking the seating of, B-3

pinout assignments for, C-4

See also 21040 Ethernet controller; Networking, 
1-2

21040 Configuration Register Test, 8-10
21040 Control/Status Dump, 8-9
21040 Ethernet controller, 2-1, 3-2, 3-8

PCI configuration registers, reading and printing, 
8-9

21040 Ethernet Controller Tests, 8-1, 8-9
21040 PCI Configuration Register Dump, 8-9
21164 Alpha microprocessor, 1-1, 2-1, 3-2

chip cache for, 1-1

description of, 3-3

functional block diagram, 3-4

initializing, 5-2, 6-43

managing, 5-24

performance of, 1-1

speed of, 1-1

stopping, 5-2, 6-78

stopping and starting, 5-24
21172 core logic chip set, 3-2
21172 core logic chipset, 2-1

components of, 3-5

description of, 3-5

features of, 3-5
21172-BA chips, 3-5
21172-CA chip, 3-5
3 Timers Loopback Test, 8-6
32, 3-6
5 V standby connection, 3-11
53C810 SCSI chip, 1-2
82378ZB chip, 3-9
82C42PE chip, 1-2

A
Address mapping, VMEbus, 3-15
Address Resolution Protocol (ARP), 5-6
Addresses, symbolic, 5-22
Addressing modes, VMEbus, 3-14
Affinity mask, processor, 4-7, 6-59
alloc command, 5-2, 5-27, 6-2
Alpha hardware restart parameter block

displaying the address of, 5-2
Alpha microprocessor
Index–1



 

See 21164 Alpha microprocessor
Altitude specification, 1-5
Ambient air required, 1-6
Arguments, boot, 5-5

passing, 5-11
ARP (Address Resolution Protocol), 5-6
Arrow keys, 4-5
Audit trail messages, 5-6
AUTO_ACTION environment variable, 5-5
Auxiliary serial port, 2-4

connector pin assignments for, C-4

B
Background mode, console, 4-7, 4-9
Backplane slots, 1-3
Backspace key, 4-5
Backup cache (Bcache)

See Bcache
Battery, 3-10
Bcache, 1-1, 3-4

array, 3-6

operating speed of, 1-1

See also Memory

subsystem, 3-6
Bell, sounding on error, 5-6
Boot

network, 5-15
Boot arguments, 5-5, 6-4

passing, 5-11
boot command, 4-3, 5-2, 5-10, 6-4

for firmware update, 5-18

with -halt option, 5-16
Boot device, 6-4
Boot devices, 5-10
Boot file, 5-13, 6-4
Boot image, 5-11
Boot protocols

Boot Protocol (BOOTP), 5-6, 5-11

initialization, 5-14

Protocols

boot, 6-5
Boot, network, 5-11
BOOT_DEV environment variable, 5-5
BOOT_FILE environment variable, 5-5
BOOT_OSFLAGS environment variable, 5-5
BOOTDEF_DEV environment variable, 5-5
BOOTED_DEV environment variable, 5-5
BOOTED_FILE environment variable, 5-5
BOOTED_OSFLAGS environment variable, 5-5
BOOTP (Boot Protocol), 5-6, 5-11

initialization, 5-14
break command, 5-3, 5-36, 6-6
Breakout modules

See Primary breakout module; Secondary break-

out module
Buffers, exercise, 5-24
Bus grant pass-through jumper, 2-3

C
Cache

Bcache, 1-1, 3-4

array, 3-6

operating speed of, 1-1

See also Memory

subsystem, 3-6

data, 3-4

instruction, 3-4

second level, 3-4

third level, 3-4
case reserved word, 4-7
cat command, 5-3, 6-7
Caterpillar insulation strip, 2-4
Channels, 3-13
CHAR_SET environment variable, 5-5
Characters, deleting, 4-5
chmod command, 5-3, 6-8
chown, 5-2
chown command, 5-27, 6-10
CIA chip, 3-5
Circuit board module etch, testing, 8-4
Cleanup code, 5-6
clear command, 5-1, 5-10, 6-11
clear log command, 5-3
clear_log command, 5-33, 6-12
Clock interface, 3-7
Clocks, 1-2

real-time clock, 1-2

system clock, 3-2
Command

operators, 4-6
Command input, redirecting, 4-9
Command line

aborting, 4-5

characteristics of, 4-5

continuing, 4-6

deleting characters from, 4-5

ignoring, 4-5

recalling, 4-5

retyping, 4-5
Command output
Index–2        



 

disgarding, 4-5

filtering, 4-8

redirecting, 4-9

resuming, 4-5
Commands

alloc, 5-2, 5-27, 6-2

boot, 4-3, 5-2, 5-10, 6-4

for firmware update, 5-18

with -halt option, 5-16

break, 5-3, 5-36, 6-6

cat, 5-3, 6-7

chmod, 5-3, 6-8

chown, 5-27, 6-10

chown command, 5-2

clear, 5-1, 5-10, 6-11

clear log, 5-3

clear_log, 5-33, 6-12

commenting, 4-7

commonly used, 4-4

date, 5-2, 5-17, 6-13

deposit, 5-2, 6-14

descriptions of, 6-1

ds1368_diag, 8-11, 8-12, 8-13

ds1386_diag, 8-2

dynamic, 5-2, 5-26, 6-19

echo, 5-4, 6-21

enet_diag, 8-2, 8-14

eval, 5-3, 5-33, 6-22

examine, 5-2, 5-19, 6-24

executing in sequence, 4-6

exer, 5-2, 5-24, 6-29, 8-1

exit, 5-3, 6-34

false, 5-3, 5-36, 6-35

free, 5-2, 5-27, 6-36

grep, 4-8, 5-4, 6-37

grouping, 4-7

hbeat_diag, 8-2, 8-3

hd, 5-3, 5-22, 6-40

help, 4-3, 6-41

i8254_diag, 8-2, 8-4, 8-5

i8524_diag, 8-6, 8-7, 8-8

including in files, 4-10

init, 5-2, 5-24

init_ev, 5-1, 5-9, 6-42

initialize, 6-43

kill, 5-3, 5-36, 6-44

line, 5-4, 6-45

ls, 5-3, 6-46

man, 4-3, 6-47

mem_ex, 8-1

memexer, 5-2, 6-48

memtest, 5-2, 5-28, 6-49, 8-1

more, 4-4

ncr810, 8-2

ncr810_diag, 8-16, 8-17

ncr810_diag, 8-16

net, 5-3, 5-31, 6-53

nicsr_diag, 8-1, 8-9, 8-10

niil_diag, 8-1, 8-9

overview of, 4-4

piping, 4-6

ps, 5-3, 5-34, 6-56

pwrup, 5-3, 5-32, 6-57

redirecting I/O with, 4-9

rm, 5-3, 6-58

running in background mode, 4-7, 4-9

sa, 5-3, 6-59

scripts of, 4-10

semaphore, 5-3, 5-36, 6-60

set, 5-1, 5-9, 6-61

set led, 5-3, 5-32, 6-64

set reboot srom, 5-3, 5-32, 6-65

set toy sleep, 5-2, 5-17, 6-66

sh, 5-3, 5-34, 6-67

show, 5-2, 5-9, 5-18, 6-69

show LED, 5-3

show led, 5-32

show log, 5-3

show map, 5-27

show_log, 5-33, 6-72

sleep, 5-3, 5-36, 6-74

sort, 5-4, 6-75

sp, 5-3, 5-35, 6-76

specifying arguments with, 4-5

specifying options with, 4-5

specifying patterns with, 4-7

specifying radix in, 4-7

start, 5-2, 5-24, 6-77

stop, 5-2, 5-24, 6-78

summary of, A-1

summary of console, A-1

update, 5-2, 5-18, 6-79
Index–3



 

using reserved words with, 4-7

using with flow control, 4-7

vip_diag, 8-2, 8-20

wdog_diag, 8-2, 8-19
Component and path coverage, testing, 7-5
Components

functional, 3-1

figure of, 3-3

module, 2-1

system

initializing, 5-24
Configuration switchpack, 2-4
Connectors

10BASE-T twisted-pair Ethernet connector, 1-2, 
3-8

64-bit PCI connector, 2-3

at rear of VME chassis, 2-8

checking the seating of, B-3

CPU module connector, C-1

CPU module connector on I/O module, 2-4

DIMM connectors, 2-3

diskette drive connector, 2-10

pin assignements for, C-15

Ethernet connector, 2-4

pin assignments for, C-4

external monitoring device connector, 2-7

I/O module connector, C-1

on CPU module, 2-3

on PMC I/O companion card, 2-10

keyboard and mouse connector

pin assignments for, C-7, C-17

keyboard connector, 2-8, 2-10

memory module connectors, 2-3

mouse connector, 2-8, 2-10

P1 VMEbus connector

on CPU module, 2-3

on I/O module, 2-4

on PMC I/O companion card, 2-10

pin assignments for, C-1

P2 VMEbus connector

on CPU module, 2-3

on I/O module, 2-4

on PMC I/O companion card, 2-10

pin assignments for, C-2

signal, PMC option 2, 2-10

parallel port connector, 2-8

pin assignments for, C-8

pin assignments for, C-1

PMC I/O companion card connector on I/O mod-

ule, 2-4

PMC I/O companion card connectors, C-9

PMC option connectors, 2-9, 2-10

primary breakout module connector, C-5

SCSI bus connector, 2-7

secondary breakout module connector, 2-7

pin assignments for, C-6

serial port connectors

pin assignments for, C-4

VMEbus connector, 1-3

VMEbus connectors

pin assignments for, C-1

Y-cable connector, 2-8
Console

basics, 4-1

case sensitivity, 4-6

command arguments, 4-5

command operators, 4-6

command options, 4-5

command summary, A-1

commands

See Commands

defining action following an error, halt or power-

up, 5-5

device, 4-1

device drivers, 5-20

error log

displaying contents of, 5-33

initializing, 5-33

managing, 5-33

features, 4-2

filtering output for, 4-8

flow control, 4-7

graphics, 5-5

heap, 5-26

initializing, 5-2, 6-43

invoking immediately after boot, 5-16

managing, 5-24

mode

entering, 4-2

exiting, 4-3

operations, 5-1

parser, 4-6

processes
Index–4



 

creating, 5-34

deleting, 5-3, 6-44

displaying the state of, 6-56

displaying the status of, 5-3

exiting, 5-34, 6-34

managing, 5-3, 5-34

monitoring, 5-34

setting priority of, 5-35, 6-76

setting processor affinity, 6-59

setting the priority of, 5-3

specifying CPU for, 5-35

stopping, 5-36

suspending, 5-3, 5-36, 6-74

prompt, 4-2

character sequence for, 4-5

redirecting I/O for, 4-9

reserved words, 4-7

scripts, 4-10

serial-line, 5-5

setting up for use, 4-1

special keys for, 4-5

specifying the language of, 5-8

type-ahead buffer support, 4-6

UART, 7-1

using, 5-1
CONSOLE environment variable, 5-5, 7-2
Console firmware

See Console
Console mode diagnostics, 8-1

21040 Configuration Register Test, 8-10

21040 Control/Status Register Dump, 8-9

21040 Ethernet Controller Tests, 8-9

21040 PCI Configuration Register Dump, 8-9

3 Timers Loopback Test, 8-6

DALLAS DS1386 NVRAM Watchdog Time-

keeper Tests, 8-11

Ethernet Internal Loopback Test, 8-9

Heartbeat Timer Test, 8-1

Interval Timer Tests, 8-4

LAN Address ROM Dump Test, 8-14

LAN Address ROM Tests, 8-14

LAN Address ROM Verification Test, 8-14

NCR 53C810 PCI-SCSI I/O Processor Tests, 8-

16

NCR810 Command/Status Register Dump, 8-16

NCR810 Command/Status Register Reset Value 

Test, 8-17

NCR810 Command/Status Register Test, 8-17

NCR810 Internal Live Bus Loopback Test, 8-17

NCR810 Internal Loopback Test, 8-17

NCR810 Interrupt Test, 8-17

NCR810 PCI Configuration Register Test, 8-16

NVRAM Address-On-Address Test, 8-11

NVRAM March I Test, 8-11

Timer 0 Loopback Test, 8-6

Timer 1 Interrupt Test, 8-8

Timer 2 Interrupt Test, 8-7

Timer 2 Square Wave Test, 8-4

Timer 2 Terminal Count Test, 8-4

TOY Clock Bitwalk Test, 8-12

TOY Clock Time Advancement Test, 8-13

VIC Register Write/Read Test, 8-20

VIP PCI Configuration Register Test, 8-20

VIP Register Write/Read Test, 8-20

VME Interface Tests, 8-20

VME Scatter-Gather RAM Test, 8-20

Watchdog Timer Interrupt Test, 8-19
Console serial port, 2-4

connector pin assignments for, C-4
Control, I/O interface, and address (CIA) chip, 3-5
Controllers

diskette drive controller, 2-1

Ethernet controller, 2-1, 3-2

interrupt, 3-9

SCSI controller, 2-1, 3-2
Controls, front panel, 2-4

figure showing, 2-5
Cooling requirements, 1-6
CPU

See 21164 Alpha microprocessor
CPU module, 2-1, 2-2

checking the seating of, B-2

connector, C-1

I/O module connector on, 2-3

layout of, 2-3

VMEbus connectors, 2-3
Crash dumps, 5-6
Ctrl/C, 4-5
Ctrl/O, 4-5
Ctrl/Q, 4-5
Ctrl/R, 4-5
Ctrl/S, 4-5
Ctrl/U, 4-5
CY7C964 bus interface chips, 3-14, 3-15
Index–5



 

D
D_BELL environment variable, 5-6
D_CLEANUP environment variable, 5-6
D_COMPLETE environment variable, 5-6
D_EOP environment variable, 5-6
D_GROUP environment variable, 5-6
D_HARDERR environment variable, 5-6, 5-26
D_OPER environment variable, 5-6
D_PASSES environment variable, 5-6
D_REPORT environment variable, 5-6
D_SOFTERR environment variable, 5-6
D_STARTUP environment variable, 5-6
D_TRACE environment variable, 5-6
DALLAS DS1386 NVRAM Watchdog Timekeeper 

Tests, 8-11
Data

depositing and examining in memory, 5-21

depositing in memory, 5-2

depositing in registers, 5-22

examining and depositing, 5-19

examining in memory, 5-2, 6-24

examining in registers, 5-22
Data cache (Dcache), 3-4
Data size, specifying, 5-21
Data switch (DSW) chips, 3-5
Data transfers, VMEbus, 3-14
Data types, supported, 3-3
Date

changing, 6-13

displaying, 5-2, 5-17

setting, 5-2, 5-17
date command, 5-2, 5-17, 6-13
Dcache, 3-4
DC-to-DC converters, 1-4, 2-1
Debug jumper, 2-4
Decoder logic, testing, 7-5
Delete key, 4-5
deposit command, 5-2, 5-19, 6-14
Design verification test (DVT) loop service, 5-31
Device

default, 5-19

sticky, 5-19
Device classification, 1-7
Device drivers, 5-20
Device exerciser, 8-1
Device locations, seeking random, 5-25
Devices, 5-20

boot, 5-5, 5-10, 6-4

byte offsets for, 5-20

displaying information about, 5-2, 5-18

exercising, 5-2, 5-24, 6-29

initializing, 5-2, 6-43

managing, 5-24

starting, 5-2, 6-77

stopping, 5-2, 6-78

stopping and starting, 5-24
Dew point specification, 1-5
Diagnostic completion message, 5-6
Diagnostic pass count, 5-6
Diagnostic startup message, 5-6
Diagnostics

Flash ROM, B-1

groups, 5-6

modes for, 5-8

overview, 7-1

running cleanup code after, 5-6

See also Console mode diagnostics; POST diag-

nostics

SROM, B-1
DIGITAL UNIX, 1-3
DIMMs, 2-5, 3-6

connectors for, 2-3

See also Memory

valid combinations of, 2-6
DIP Switch 2, I/O module, 3-10
Direct memory access (DMA) operations, 3-6
Diskette drive connector, 2-10

pin assignments for, C-15
Diskette drive controller, 2-1
Display

dot matrix, B-2

POST diagnostics, 2-5

status, 2-3, 2-5
Dissipation specification, 1-3
DMA operations, 3-6
do reserved word, 4-7
done reserved word, 4-7
Dot matrix display, B-2
Double-bit errors, 2-6
Down arrow key, 4-5
DRAMs (dynamic random access memory)

See Memory
DS1386 real-time clock, 1-2
ds1386_diag command, 8-2, 8-11, 8-12, 8-13
DSW chips, 3-5
DUMP_DEV environment variable, 5-6
Dumps, crash, 5-6
DVT (design verification test) loop service, 5-31
dynamic command, 5-2, 5-26, 6-19
Dynamic random access memory (DRAM)

See Memory
Index–6



 

E
ECC (error checking and correction), 2-6, 3-6
echo command, 5-4, 6-21
elif reserved word, 4-7
else reserved word, 4-7
ENABLE_AUDIT environment variable, 5-6
Energy cell, 3-10
enet_diag command, 8-2, 8-14
Environment variables, 5-20

deleting, 5-10, 6-11

deleting from name space, 5-1

descriptions of, 5-5

displaying the values of, 5-2, 5-9

initializing, 6-42

managing, 5-1, 5-4

nonvolatile, 5-13

setting, 5-1, 5-9, 6-61

using to affect POST diagnostics sequence, 7-1

using wildcards with, 5-10
Environmental requirements, 1-5
Environmental specifications, 1-3, 1-5
Error checking and correction (ECC), 2-6, 3-6
Error codes, returning on I/O failures, 5-26
Error detection, 2-6
Error log, 5-20

clearing, 6-12

displaying, 6-72

displaying contents of, 5-33

initializing, 5-33

managing, 5-3, 5-33
Errors

hard, detection of, 5-6

single- and double-bit, 2-6

soft, detection of, 5-6
esac reserved word, 4-7
Ethernet connector

See 10BASE-T twisted-pair Ethernet connector
Ethernet controller

See 21040 Ethernet controller
Ethernet Hardware Address Test, 8-2
Ethernet ID address, 3-8
Ethernet Internal Loopback Test, 8-9
Ethernet loopback, 5-31
Ethernet station address, 5-31
Eurocard format, 1-3
eval command, 5-3, 5-33, 6-22
EWA0_ARP_TRIES environment variable, 5-6
EWA0_BOOTP_FILE environment variable, 5-6
EWA0_BOOTP_SERVER environment variable, 5-6
EWA0_BOOTP_TRIES environment variable, 5-7

EWA0_DEF_GINETADDR environment variable, 5-
7

EWA0_DEF_INETADDR environment variable, 5-7
EWA0_DEF_INETFILE environment variable, 5-7
EWA0_DEF_SINETADDR environment variable, 5-

7
EWA0_INET_INIT environment variable, 5-7
EWA0_LOOP_COUNT environment variable, 5-7
EWA0_LOOP_INC environment variable, 5-7
EWA0_LOOP_PATT environment variable, 5-7
EWA0_LOOP_SIZE environment variable, 5-7
EWA0_LP_MSG_NODE environment variable, 5-7
EWA0_MODE environment variable, 5-7
EWA0_PROTOCOLS environment variable, 5-8
EWA0_TFTP_TRIES environment variable, 5-8
EWAn_DEF_GINETADDR environment variable, 5-

13
EWAn_DEF_INETADDR environment variable, 5-

13
EWAn_DEF_INETFILE environment variable, 5-13
EWAn_DEF_SINETADDR environment variable, 5-

13
EWAn_DEF_SUBNETMASK environment variable, 

5-13
examine command, 5-2, 5-19, 6-24
exer command, 5-2, 5-24, 6-29, 8-1
Exercise buffers, 5-24
Exercise operations, 5-25
Exercises, 5-25
exit command, 5-3, 6-34
Expressions

evaluating, 5-3, 5-33, 6-22

searching for, 5-4, 6-37
External monitoring device, 2-7
External timing signals, 2-7

F
Failure status

returning, 6-35
Failure status, returning, 5-3, 5-36
false command, 5-3, 5-36, 6-35
FDC37C665GT Super I/O chip

See Super I/O chip
fi reserved word, 4-7
Files

boot, 5-5, 5-11, 5-13, 6-4

changing attributes of, 5-3, 6-8

copying to standard output, 5-3, 6-7

deleting, 5-3, 6-58

dumping contents of, 5-3, 6-40

listing, 5-3, 6-46
Index–7



 

loading remotely, 6-53

managing, 5-3, 5-37

searching for expressions in, 5-4

sorting contents of, 5-4, 6-75
Firmware

updating, 5-2, 5-18, 6-79

version of, 5-8
Flash ROM, 1-2, 2-1, 3-2, 3-10, 5-20

diagnostics, B-1

See also Memory
Floating-point registers, 5-20
Flow control, 4-7

loops, breaking, 5-36, 6-6
for reserved word, 4-7
free command, 5-2, 5-27, 6-36
Front panel, 2-4

figure showing, 2-5

LED

checking while troubleshooting, B-2

controlling, 5-3, 5-32

display, 7-1

displaying a character on, 6-64
Functional components, 3-1

figure of, 3-3

G
General-purpose registers, 5-20
Graycode memory test, 5-28
grep command, 4-8, 5-4, 6-37

H
Halt switch, 2-4, 2-5, 4-2
Hard errors, detection of, 5-6
Hardware reset reason register, 3-11
Hardware restart parameter block

displaying the address of, 5-2
hbeat_diag, 8-2
hbeat_diag command, 8-3
hd command, 5-3, 5-22, 6-40
Heap, 5-26
Heartbeat Timer Test, 8-1, 8-2
Help

See help command; Online help
help command, 4-3, 6-41
Humidity, relative

nonoperating, 1-5

operating, 1-3, 1-5
HWRPB, 5-18

I
I/O

access through P2 VMEbus connector, 3-9

adding, 2-9

failures, 5-26

redirecting, 4-9
I/O module, 2-1, 2-2, 2-3

checking the seating of, B-2

configuration switch 3, 4-2

connector

on CPU module, 2-3

on PMC I/O companion card, 2-10

pin assignments for, C-1

CPU connector on, 2-4

DIP Switch 2, 3-10

layout, 2-4

PMC I/O companion card connector on, 2-4

VMEbus connectors, 2-4
I/O subsystem, 3-7
i8254_diag command, 8-2, 8-4, 8-5
i8524_diag command, 8-6, 8-7, 8-8
Icache, 3-4
ID requests, 6-53
if reserved word, 4-7
in reserved word, 4-7
Indicators, front panel, 2-4

figure showing, 2-5
init command, 5-2, 5-24
init_ev command, 5-9, 6-42
init_ev command, 5-1
Initialization

system, 7-2
initialize command, 6-43
Inodes, listing, 5-3
Input, command

controlling radix of, 4-7

reading, 4-6

redirecting, 4-6
Instruction cache (Icache), 3-4
Insulation strip, caterpillar, 2-4
Internal processor registers, 5-20
Internet

Address Resolution Protocol (ARP), 5-6

addresses, 5-13

saving in an environment variable, 5-16

Boot Protocol (BOOTP), 5-6

database, 5-7

defining fields of, 5-12

initialization, 5-13
Index–8



 

protocols, 5-11

subnet mask, 5-13
Internet Trivial File Transfer Protocol (TFTP), 5-8
Interrupt controllers, 3-9
Interrupt delivery mechanism, testing, 8-3
Interval timer, 3-12
Interval timer chip, testing, 8-4
Interval Timer Tests, 8-2, 8-4

J
J11 bus grant pass-through jumper, 2-3
Jumpers

debug jumper, 2-4

J11 bus grant pass-through jumper, 2-3

keyboard and mouse jumper, 2-9

primary breakout module jumper, 2-7

SCSI termination and watchdog reset signal 

jumpers, 2-7

signaling level jumper, 2-10

SROM Mini-Console, debug jumper for, 2-4

K
Keyboard, 2-1

connector, 2-8, 2-10

pin assignments for, C-7, C-17

controller, 3-2, 3-13

jumper, 2-9
Keys, special console, 4-5
kill command, 5-3, 5-36, 6-44

L
LAN Address ROM Dump Test, 8-14
LAN Address ROM Tests, 8-14
LAN Address ROM Verification Test, 8-14
LANGUAGE environment variable, 5-8
LANGUAGE_NAME environment variable, 5-8
LEDs

checking while troubleshooting, B-2

front panel LED

controlling, 5-3, 5-32

display, 7-1

displaying a character on, 6-64

power LED, 2-3, 2-5, 2-10

VME slave activity/watchdog timeout LED, 2-3, 
2-5

Level 3 cache
See Bcache

LICENSE environment variable, 5-8
line command, 5-4, 6-45

Log files, commenting in, 4-7
Log, error

clearing, 6-12

displaying, 6-72
Loop count, 5-7
Loop data, 5-7
Loopback

Ethernet, 5-31
Loopbacks, 6-53

maintenance operations protocol (MOP), 5-31
ls command, 5-3, 6-46

M
Maintenance operations protocol (MOP)

counters, 5-31

for copying scripts over the network, 4-11

loopback, 5-31

operations

performing, 6-53

operations, performing, 5-3
man command, 4-3, 6-47
March memory test, 5-29
Meantime between failures (MBTF), 1-5
mem_ex command, 8-1
memexer command, 5-2, 6-48
Memory, 1-1, 1-2, 2-1, 3-2

allocating, 5-2, 5-27, 6-2

autoconfiguration of, 1-1

bits, testing, 7-5

changing ownership of, 5-2, 5-27, 6-10

configurations, 2-6

data bus, 2-6

bandwidths, 1-1, 3-7

depositing data into, 5-21

displaying the state of, 5-2, 6-19

examining data in, 5-21, 6-24

exercising, 6-48

freeing, 5-2, 5-27, 6-36

Graycode test, 5-28

managing, 5-2, 5-26

march test, 5-29

modules, 2-2, 2-5

checking the seating of, B-2

connectors for, 2-3

physical, 5-20

as default device, 5-19

random test, 5-30

subsystem, 3-6
Index–9



 

test options, 5-31

testing, 5-2, 5-27, 6-49

tests, running multiple, 5-31

verification of, 7-5

victim eject test, 5-30

virtual, 5-20

displaying a map of, 5-2

mapping of, 5-18

writing data to, 6-14
Memory Exerciser Test, 8-1
memtest command, 5-2, 5-28, 6-49, 8-1
Memzone, 5-24
Message packets, retransmission of, 5-14
Microprocessor

See 21164 Alpha microprocessor
Mini-Console

See SROM Mini-Console
MODE environment variable, 5-8

dependence of diagnostic test on, 7-5
Modules, 2-1

as system components, 2-1

checking the seating of, B-2

clear heartbeat register, testing, 8-3

CPU module, 2-2

figure of, 2-2

I/O module, 2-3

memory modules, 2-5

PMC I/O companion card, 2-9

primary breakout module, 1-4, 2-7

secondary breakout module, 2-8
MOPSee Maintenance operations protocol (MOP)
more command, 4-4
Mouse, 2-1

connector, 2-8, 2-10

pin assignments for, C-7, C-17

controller, 3-2, 3-13

jumper, 2-9

N
Nbus, 2-1, 3-2, 3-9
NCR 53C810 PCI-SCSI I/O Processor Tests, 8-16
ncr810 command, 8-2
NCR810 Command/Status Register Dump, 8-16
NCR810 Command/Status Register Reset Value Test, 

8-17
NCR810 Command/Status Register Test, 8-17
NCR810 Internal Live Bus Loopback Test, 8-17
NCR810 Internal Loopback Test, 8-17
NCR810 Interrupt Test, 8-17

NCR810 PCI Configuration Register Test, 8-16
ncr810_diag command, 8-16, 8-17
net command, 5-3, 5-31, 6-53
Network address ROM

checking the seating of, B-2
Network booting, 5-11, 5-15
Network interface, Internet address of, 5-13
Network port, 5-31
Network protocol, 5-8
Networking, 5-2, 5-31, 6-53

features, 1-2

interconnect for, 1-2
nicsr_diag command, 8-1, 8-9, 8-10
niil_diag command, 8-1, 8-9
Nonvolatile RAM

See NVRAM
NVRAM, 1-2, 1-4, 2-1, 3-2, 3-11, 5-20

checking the seating of, B-2

location of, 2-4

See also Memory

verification of, 7-4
NVRAM Address-On-Address Test, 8-11
NVRAM March I Test, 8-11
NVRAM Test, 8-2

O
Online help, 4-3

controlling the display of, 4-4

displaying, 4-3, 6-41, 6-47

for multiple commands, 4-3
Operating systems, 1-3

use of dot matrix display with, B-2
operator, 4-7
Operator, presence, 5-6
Operators

console command, 4-6

eval command, 5-33
Options, command, 4-5
Output, command

appending, 4-6

disregarding, 4-5

filtering, 4-8

resuming, 4-5

writing, 4-6
Output, standard

copying files to, 6-7

writing to, 5-4
Index–10



 

P
P1 VMEbus connector

CPU module, 2-3

I/O module, 2-4

pin assignments for, C-1

PMC I/O companion card, 2-10
P2 VMEbus connector

CPU module, 2-3

I/O module, 2-4

pin assignments for, C-2

PMC I/O companion card, 2-10
Packaging weight, 1-5
PAL

environment variable, 5-8

temporary register set, 5-20
PAL devices, testing, 8-4
PALcode, 3-3, 5-8
Parallel port, 2-1, 2-9, 3-13

connector, 2-8

pin assignments for, C-8
Parameters, console device, 4-1
Patterns

specifying, 4-7
Patterns, specifying text, 4-7
PCI bus, 3-7

clock, 3-9
PCI configuration space, 5-20
PCI connector, 64-bit, 2-3
PCI dense memory space, 5-20
PCI I/O space, 5-20
PCI sparse memory space, 5-20
PCI-32 interface, 2-1, 3-2

See also PMC I/O companion card
PCI-to-Ethernet controller

See 21040 Ethernet controller
PCI-to-Nbus bridge, 2-1, 3-2
PCI-to-PCI bridge, 2-9, 3-2, 3-9
PCI-to-SCSI controller

See SCSI controller
PCI-to-VME interface components, 3-14
PCI-to-VME64 bridge, 2-1, 3-2

See also VIC64 chip; VIP chip
PCP (process control block), 5-35
Performance

CPU, 1-1

memory data bus, 2-6
Phase lock loop (PLL)/buffer circuit, 3-2, 3-7
Physical characteristics, 1-3
Physical memory, 5-20

as default device, 5-19

Physical requirements, 1-3
PID (process identifier), 5-35
Pin assignments, C-1

for CPU module connector, C-1

for diskett drive connector, C-15

for Ethernet connector, C-4

for keyboard and mouse connector, C-7, C-17

for P1 VMEbus connector, C-1

for P2 VMEbus connector, C-2

for parallel port connector, C-8

for PMC I/O companion card connectors, C-9

for PMC option 1 connectors, C-9

for PMC option 2 connectors, C-13

for primary breakout module connector, C-5

for secondary breakout module connector, C-6

for serial port connectors, C-4

for VMEbus connectors, C-1

I/O module connectors, C-1
PMC I/O companion card, 1-2, 2-1, 2-2, 2-9, 3-2, 3-9

connector on I/O module, 2-4

connector pin assigments, C-9

layout, 2-9

See also PMC options

troubleshooting systems that include, B-2

voltage supply, 3-9
PMC option connectors, 2-10
PMC options, 3-9

connectors for, 2-9, C-9
Ports

drivers for, 5-31

parallel, 2-9, 3-13

serial, 1-2, 3-13

setting parameters for, 4-1
POST diagnostics, 7-1

affecting the sequence of, 7-1

display for, 2-5

memory diagnostic, 7-5

NVRAM diagnostic, 7-4

running, 5-3, 5-32, 6-57
Power

LED, 2-3, 2-5, 2-10

requirements, 1-4

input, 1-4

source, checking, B-2

specifications, 1-3

supplied by primary breakout module, 2-7
Power-on diagnostics
Index–11



 

See POST diagnostics
Power-on self test (POST) diagnostics

See POST diagnostics
Primary breakout module, 1-4, 2-2, 2-7

as a SCSI interface, 3-8

checking the seating of, B-2

connector pin assignments, C-5

figure of, 2-7

jumpers, 3-8
Process control block (PCB), 5-35
Process identifier (PID), 5-35
Process priority, 5-35
Process state, 5-35
Processes

console

setting priority of, 6-76

setting processor affinity for, 6-59

creating, 5-34

deleting, 5-3, 6-44

displaying the state of, 6-56

displaying the status of, 5-3

exiting, 5-34, 6-34

managing, 5-3, 5-34

monitoring, 5-34

setting priority of, 5-35

setting processor affinity for for, 6-59

setting the priority of, 5-3

shell, creating, 6-67

specifying CPU for, 5-35

stopping, 5-36

suspending, 5-3, 5-36, 6-74
Processor

affinity, 5-35, 6-59

registers, 5-20
Processor affinity mask, 4-7
Product specifications

See Specifications
Program counter, 5-23
Program loop, breaking, 6-6
Programs, starting, 5-3, 6-77
Prompt

character sequence for, 4-5
Prompt, character sequence for console, 4-5
Protocols

VMEbus, 3-14
ps command, 5-3, 5-34, 6-56
pwrup command, 5-3, 5-32, 6-57

R
Radix, specifying, 4-7
Random memory test, 5-30
Real-time clock, 1-2
Registers, 5-20

21040 Ethernet controller

PCI configuration, reading and printing, 8-9

depositing data in, 5-22

examining data in, 5-22

module, clear heartbeat register, 8-3
Regulatory compliance, 1-6
Remote host system Internet address of, 5-13
Remote Internet LAN gateway Internet address of, 5-

13
Requirements, 1-1

cooling, 1-6

environmental, 1-5

physical, 1-3

power, 1-4

input, 1-4
Reserved words, 4-7
Reset reason register, 3-11
Reset signal, VMEbus, 4-2
Reset switch, 2-4, 2-5, 4-2
Ripple, voltage, 1-4
rm command, 5-3, 6-58

S
sa command, 5-3, 6-59
Scatter-gather map, VMEbus, 3-15
Scatter-Gather RAM Test, 8-2
Scatter-gather RAM, VMEbus, 3-14
Scripts

commenting in, 4-7

console command, 4-10

power-on diagnostics, running, 5-3
SCSI bus connector, 2-7
SCSI cable, 3-8

checking the connection of, B-2

connector, 2-7
SCSI controller, 1-2, 2-1, 3-2, 3-8
SCSI Device Tests, 8-2
SCSI devices, checking the seating of, B-2
SCSI termination, 3-8

checking, B-2

control, 2-7

signal, 2-7
Second level cache, 3-4
Secondary breakout module, 2-2, 2-8

checking the seating of, B-2
Index–12



 

connector on primary breakout module, 2-7

connector pin assignments for, C-6
semaphore command, 5-3, 5-36, 6-60
Semaphores, displaying, 5-3, 5-36, 6-60
Sense amplifier logic, testing, 7-5
Seria ports, 3-13
Serial ports, 1-2, 2-1, 2-4

setting parameters for, 4-1
Serial-line interface, 1-2
set command, 5-1, 5-9, 6-61
set led command, 5-3, 5-32, 6-64
set reboot srom command, 5-3, 5-32, 6-65
set toy sleep command, 5-2, 5-17, 6-66
sh command, 5-3, 5-34, 6-67
Shell process

creating, 5-3, 6-67

exiting, 5-3, 6-34
Shock specification, 1-5
show command, 5-2, 5-9, 5-18, 6-69
show LED command, 5-3
show led command, 5-32
show log command, 5-3
show map command, 5-27
show_log command, 5-33, 6-72
Signaling level jumper, 2-10
Signals

external timing signals, 2-7

SCSI termination signal, 2-7

watchdog reset signal, 2-7

watchdog timeout signal, 2-7
Single-bit errors, 2-6
SIO chip, 3-9
sleep command, 5-3, 5-36, 6-74
Slots, backplane, 1-3, 2-9
Soft errors

detection of, 5-6
sort command, 5-4, 6-75
sp command, 5-3, 5-35, 6-76
Specifications, 1-1

environmental, 1-3, 1-5

power, 1-3

VME, 1-2
SPECmarks, 1-1
SRAMs, 3-2
SROM, 3-7

diagnostics, B-1

location of, 2-3
SROM initialization, 7-1
SROM Mini-Console

debug jumper for, 2-4

setting reboot to, 5-3, 5-32, 6-65

Stack pointer, 5-23
Standard output, copying files to, 6-7
Standby connection, 5 V, 3-11
start command, 5-2, 5-24, 6-77
Status display, 2-3, 2-5
Sticky device, 5-19
stop command, 5-2, 5-24, 6-78
Storage specification, 1-5
Super I/O chip, 1-2, 3-2, 3-13
Switches

Halt and Reset, 2-4

Halt and Reset switch, 2-5, 4-2

I/O module configuration switch 3, 4-2
Switchpack, configuration, 2-4
Symbolic addresses, 5-22
SYSRESET signal, 1-3
System

booting, 5-2, 5-10, 6-4

configuration, displaying, 5-2
System clock, 3-2
System clock signal (SYSCLK), 1-3, 3-2, 3-7
System components, initializing, 5-24
System configuration, 5-18
System I/O (SIO) chip, 3-9
System information

displaying, 6-69

getting, 5-2, 5-18
System initialization sequence, 7-2
System parameters

setting, 6-61

T
Technical specifications

See Specifications
Temperature

ambient, 1-6

change, 1-3

controlling, 1-6

nonoperating range, 1-5

operating, 1-3

operating range, 1-5

storage, 1-3
Tests, 8-1

21040 Configuration Register Test, 8-10

21040 Control/Status Register Dump, 8-9

21040 Ethernet Controller Tests, 8-1, 8-9

21040 PCI Configuration Register Dump, 8-9

3 Timers Loopback Test, 8-6

DALLAS DS1386 NVRAM Watchdog Timer-
Index–13



 

keeper Tests, 8-11

Ethernet Hardware Address Test, 8-2

Ethernet Internal Loopback Test, 8-9

Graycode memory test, 5-28

Heartbeat Timer Test, 8-1, 8-2

Interval Timer Tests, 8-2, 8-4

LAN Address ROM Dump Test, 8-14

LAN Address ROM Tests, 8-14

LAN Address ROM Verification Test, 8-14

march memory test, 5-29

memory

options for, 5-31

running multiple, 5-31

NCR 53C810 PCI-SCSI I/O Processor Tests, 8-

16

NCR810 Command/Status Register Dump, 8-16

NCR810 Command/Status Register Reset Value 

Test, 8-17

NCR810 Command/Status Register Test, 8-17

NCR810 Internal Live Bus Loopback Test, 8-17

NCR810 Internal Loopback Test, 8-17

NCR810 Interrupt Test, 8-17

NCR810 PCI Configuration Register Test, 8-16

NVRAM Address-On-Address Test, 8-11

NVRAM March I Test, 8-11

NVRAM Test, 8-2

random memory test, 5-30

running cleanup code after, 5-6

Scatter-Gather RAM Test, 8-2

SCSI Device Tests, 8-2

Timer 0 Loopback Test, 8-6

Timer 1 Interrupt Test, 8-8

Timer 2 Interrupt Test, 8-7

Timer 2 Square Wave Test, 8-4

Timer 2 Terminal Count Test, 8-4

TOY Clock Bitwalk Test, 8-12

TOY Clock Register Tests, 8-2

TOY Clock Time Advancement Test, 8-13

VIC Register Write/Read Test, 8-20

VIC64 Register Write/Read Test, 8-2

victim eject memory test, 5-30

VIP PCI Configuration Register Test, 8-2, 8-20

VIP Register Write/Read Test, 8-2, 8-20

VME Interface Tests, 8-2, 8-20

VME Scatter-Gather RAM Test, 8-20

Watchdog Timer Interrupt Test, 8-19

Watchdog Timer Test, 8-2
Text

displaying on console, 6-21

reading a line of, 6-45

writing to standard output, 5-4
TFTP (Trivial File Transfer Protocol), 5-8, 5-12, 5-13

using to read files across the network, 5-16
TGA_SYNC_GREEN environment variable, 5-8
then reserved word, 4-7
Thermal control, 1-6
Third-level cache

See Bcache
Time

changing, 6-13

displaying, 5-2, 5-17

setting, 5-2, 5-17

specification, 5-17
Time-of-year clock

See TOY clock
Timer 0 Loopback Test, 8-6
Timer 1 Interrupt Test, 8-8
Timer 2

exercising, 8-4
Timer 2 Interrupt Test, 8-7
Timer 2 Square Wave Test, 8-4
Timer 2 Terminal Count Test, 8-4
Timer modes, 3-13
Timers, 1-2, 3-12
TOY clock, 1-4, 2-1, 3-2, 3-10

checking the seating of, B-2

disabling oscillator of, 5-2, 5-17, 6-66

displaying time and date of, 5-17

location of, 2-4

managing, 5-2, 5-16

NVRAM registers, 5-20

setting time and data of, 5-17
TOY Clock Bitwalk Test, 8-12
TOY Clock Register Tests, 8-2
TOY Clock Time Advancement Test, 8-13
Trace messages, 5-6
Trivial File Transfer Protocol (TFTP), 5-8, 5-12

initialization, 5-13

using to read files across the network, 5-16
Troubleshooting, B-1

symptoms and corrective actions for, B-2

systems that include a PMC I/O companion card, 
B-2

TTY_DEV environment variable, 5-8
Index–14



 

U
UART, 7-1
UNIX

See DIGITAL UNIX
until reserved word, 4-7
Up arrow key, 4-5
update command, 5-2, 5-18

V
Variables

See Environment variables
VERSION environment variable, 5-8
Vibration specification, 1-5
VIC Register Write/Read Test, 8-20
VIC64 chip, 1-2, 3-14, 3-15
VIC64 chip system interrupt controller, 3-9
VIC64 Register Write/Read Test, 8-2
Victim eject memory test, 5-30
Video synchronization, 5-8
VIP chip, 3-13, 3-14
VIP PCI Configuration Register Test, 8-2, 8-20
VIP Register Write/Read Test, 8-2, 8-20
vip_diag command, 8-2, 8-20
Virtual memory, 5-20

displaying a map of, 5-2

map of, 5-18
VME configuration, 5-9
VME external timing signals, 2-7
VME interface, 3-13
VME Interface Tests, 8-2, 8-20
VME setup mode, 5-9
VME slave activity LED, 2-3, 2-5
VME specifications, 1-2
VME_A16_BASE environment variable, 5-9
VME_A24_BASE environment variable, 5-9
VME_A24_SIZE environment variable, 5-9
VME_A32_BASE environment variable, 5-8
VME_A32_SIZE environment variable, 5-8
VME_CONFIG environment variable, 5-9
VMEbus, 1-3

A16 address space, 5-9

A24 address space, 5-9

A32 address space, 5-8

address mapping, 3-15

addressing modes, 3-14

arbitration, 1-2

connectors, 1-3

connectors pin assignments, C-1

data transfers, 3-14

interface, 1-2

interrupts, 1-3

P2 options, 2-7

P2 signal connector, 2-10

protocols, 3-14

reset signal, 4-2

scatter-gather map, 3-15

transactions, 1-2
VMEbus Scatter-Gather RAM Test, 8-20
Voltage supply, 1-4

PMC I/O companion card, 3-9
VX_BOOTLINE environment variable, 5-9
VxWorks for Alpha, 1-3

boot file, 5-9

W
Watchdog reset signal, 2-7
Watchdog timeout LED, 2-3, 2-5
Watchdog timeout signal, 2-7
Watchdog timer, 1-2, 3-2, 3-11, 4-2

timeout LED, 2-5
Watchdog Timer IInterrupt Test, 8-19
Watchdog Timer Interrupt Test, 8-19
Watchdog Timer Test, 8-2
wdog_diag command, 8-2
wdog_diag command, 8-19
Wet bulb specification, 1-5
while reserved word, 4-7
Wildcards, in environment variable names, 5-10

X
Xilinx interrupt controller, 3-9

Y
Y-cable connector, 2-8
Index–15


	title1 - DIGITAL Alpha VME 5/352 and
	title2 - 5/480 Single-Board Computers
	titleSub - User Manual
	copyrightDate1 - First Printing, October 1997
	prefaceTitle - Preface
	prefaceHead - Purpose of this Manual
	prefaceHead - Intended Audience
	prefaceHead - Structure of this Manual
	prefaceHead - Conventions
	headSub1 - Abbreviations
	headSub1 - Addresses
	headSub1 - Bit Notation
	headSub1 - Caution
	headSub1 - Data Field Size
	headSub1 - Data Units
	headSub1 - Keyboard Keys
	headSub1 - Examples
	headSub1 - Names and Symbols
	headSub1 - Note
	headSub1 - Numbering
	headSub1 - Ranges and Extents
	headSub1 - Register and Memory Figures
	headSub1 - Syntax
	headSub1 - UNPREDICTABLE and UNDEFINED

	prefaceHead - For More Information

	partNumber - Part I
	partTitle - Introduction

	chapterNumber - 1
	chapterTitle - Specifications and Requirements
	head1 - 1.1� Product Specifications
	tableNcaption - Table 1–1� Alpha VME5/352 and 5/480 SBC Specificat...

	head1 - 1.2� Physical Requirements
	head1 - 1.3� Power Requirements
	tableWcaption - Table 1–2� Input Power Requirements

	noteCaption - Warning
	noteEnd - 
	head1 - 1.4� Environmental Specifications and Requirements...
	head2 - 1.4.1� Environmental Specifications
	tableNcaption - Table 1–3� Environmental Specifications




	noteCaption - Notes
	noteEnd - 
	head2 - 1.4.2� Cooling Requirements
	figureNcaption - Figure 1–1� Required Air Flow Relative to Ambient ...



	noteCaption - Note
	noteEnd - 
	head1 - 1.5� Regulatory Compliance


	noteCaption - Note
	noteEnd - 


	chapterNumber - 2
	chapterTitle - Module Components
	head1 - 2.1� Module Component Overview
	figureNcaption - Figure 2–1� Alpha VME 5/352 and 5/480 Module Compo...
	listCallout1 - 1 PMC I/O companion card option
	listCalloutN - 2 I/O module
	listCalloutN - 3 CPU module
	listCalloutN - 4 Memory modules
	listCalloutN - 5 Secondary breakout module
	listCalloutN - 6 Primary breakout module

	noteCaption - Note
	noteEnd - 
	head1 - 2.2� CPU Module
	figureNcaption - Figure 2–2� CPU Module Layout
	listCallout1 - 1 P1 VMEbus connector
	listCalloutN - 2 P2 VMEbus connector
	listCalloutN - 3 64-bit PCI connector (not used)
	listCalloutN - 4 J11 bus grant pass-through jumper
	listCalloutN - 5 Connectors for memory DIMMs 2 and 3
	listCalloutN - 6 Connectors for memory DIMMs 0 and 1
	listCalloutN - 7 Power and VME slave activity/watchdog timeout LE...
	listCalloutN - 8 Status display
	listCalloutN - 9 I/O module connector
	listCalloutN - 10 SROM

	head1 - 2.3� IO Module


	noteCaption - Note
	noteEnd - 
	figureNcaption - Figure 2–3� I/O Module Layout
	listCallout1 - 1 P1 VMEbus connector
	listCalloutN - 2 Connector to CPU module (on the back of the I/O ...
	listCalloutN - 3 Debug jumper (for use with Serial ROM Mini-Conso...
	listCalloutN - 4 P2 VMEbus connector
	listCalloutN - 5 Configuration switchpack
	listCalloutN - 6 Caterpillar insulation strip
	listCalloutN - 7 PMC I/O companion card connector
	listCalloutN - 8 Nonvolatile RAM/time-of-year (TOY) clock
	listCalloutN - 9 Auxiliary serial port
	listCalloutN - 10 Console serial port
	listCalloutN - 11 Reset/Halt switch
	listCalloutN - 12 Twisted-pair Ethernet connector
	head1 - 2.4� CPU and I/O Assembly Controls and Indicators
	figureNcaption - Figure 2–4� Controls and Indicators
	tableNcaption - Table 2–1� Controls and Indicators

	head1 - 2.5� Memory Modules
	figureNcaption - Figure 2–5� Memory Module



	noteCaption - Note
	noteEnd - 
	tableNcaption - Table 2–2� Valid DIMM Combinations (Continued)
	head1 - 2.6� Primary Breakout Module
	figureNcaption - Figure 2–6� Primary Breakout Module
	listCallout1 - 1 SCSI termination and watchdog reset signal jumpe...
	listCalloutN - 2 Connector for the secondary breakout module or a...
	listCalloutN - 3 SCSI cable connector



	noteCaption - Caution
	noteEnd - 
	head1 - 2.7� Secondary Breakout Module
	figureNcaption - Figure 2–7� Secondary Breakout Module
	listCallout1 - 1 PS/2 keyboard and mouse connector
	listCalloutN - 2 PS/2 keyboard and mouse Y-cable (supplied in PMC...
	listCalloutN - 3 Keyboard and mouse jumper
	listCalloutN - 4 Parallel port



	noteCaption - Note
	noteEnd - 
	head1 - 2.8� PMC I/O Companion Card
	figureNcaption - Figure 2–8� PMC I/O Companion Card Layout
	listCallout1 - 1 P1 VMEbus connector
	listCalloutN - 2 P2 VMEbus connector
	listCalloutN - 3 VMEbus P2 signal connector for PMC option 1
	listCalloutN - 4 I/O module connector (on the back of the PMC I/O...
	listCalloutN - 5 Power LED
	listCalloutN - 6 Keyboard connector
	listCalloutN - 7 Mouse connector
	listCalloutN - 8 Diskette drive connector
	listCalloutN - 9 Signaling level jumper (jumper MUST be set to 5....
	listCalloutN - 10 PMC option 2 connector
	listCalloutN - 11 PMC option 1 connector



	noteCaption - Note
	noteEnd - 


	chapterNumber - 3
	chapterTitle - Functional Components
	head1 - 3.1� Functional Component Overview
	figureWcaption - Figure 3–1� Alpha VME 5/352 and 5/480 Functional C...

	head1 - 3.2� 21164 Alpha Microprocessor
	figureWcaption - Figure 3–2� 21164 Alpha Microprocessor Functional ...

	head1 - 3.3� 21172 Core Logic Chipset
	head2 - 3.3.1� Chipset Components
	head2 - 3.3.2� Chipset Features

	head1 - 3.4� Bcache Subsystem
	figureNcaption - Figure 3–3� Level 3 Bcache Array

	head1 - 3.5� Memory Subsystem
	head1 - 3.6� SROM
	head1 - 3.7� Clock Interface
	head1 - 3.8� PCI Interface
	head2 - 3.8.1� Ethernet Controller
	head2 - 3.8.2� SCSI Controller
	head2 - 3.8.3� PMC I/O Companion Card

	head1 - 3.9� Nbus Interface
	head2 - 3.9.1� Interrupt Controllers
	head2 - 3.9.2� Flash ROM
	head2 - 3.9.3� TOY Clock

	noteCaption - Note
	noteEnd - 
	head2 - 3.9.4� Watchdog Timer
	head2 - 3.9.5� NVRAM
	head2 - 3.9.6� Interval Timer
	head3 - 3.9.6.1� Timers
	tableNcaption - Table 3–1� Timers

	head3 - 3.9.6.2� Timer Modes
	tableNcaption - Table 3–2� Timer Modes


	head2 - 3.9.7� Keyboard and Mouse Controller
	head2 - 3.9.8� Super I/O Chip
	head1 - 3.10� VME Interface
	figureNcaption - Figure 3–4� PCI-to-VME Interface Components
	head2 - 3.10.1� VIP Chip
	head2 - 3.10.2� VIC64 and CY7C964 Chips
	head2 - 3.10.3� Address Mapping and the Scatter-Gather Map...




	partNumber - Part II
	partTitle - The Console

	chapterNumber - 4
	chapterTitle - Console Basics
	head1 - 4.1� Setting Up the Console for Use
	head1 - 4.2� Console Features
	head1 - 4.3� Entering Console Mode
	noteCaption - Note
	noteEnd - 
	head1 - 4.4� Exiting Console Mode
	head1 - 4.5� Online Help
	head2 - 4.5.1� Displaying Online Help
	head2 - 4.5.2� Displaying Online Help for Multiple Command...
	head2 - 4.5.3� Controlling the Display of Online Help

	head1 - 4.6� Console Command Overview
	tableNcaption - Table 4–1� Commonly Used Console Commands (Continu...

	head1 - 4.7� Special Keys
	tableNcaption - Table 4–2� Special Keys for Console Operation �

	head1 - 4.8� Command Line Characteristics
	head1 - 4.9� Console Command Operators
	tableNcaption - Table 4–3� Console Command Operators (Continued)

	head1 - 4.10� Controlling the Radix of Command Input
	head1 - 4.11� Using Flow Control
	head1 - 4.12� Filtering Output
	head1 - 4.13� Redirecting I/O
	head1 - 4.14� Running Commands in Background Mode
	head1 - 4.15� Creating Scripts
	head1 - 4.16� Copying Scripts Over the Network
	listNumber1 - 1. Create a file of console commands in the OpenVM...
	listNumberN - 2. Make the script file compatible with the MOP lo...




	noteCaption - Note
	noteEnd - 
	listNumberN - 3. Place the output file in the MOP server's load ...



	chapterNumber - 5
	chapterTitle - Using the Console
	head1 - 5.1� Summary of Console Operations
	tableNcaption - Table 5–1� Summary of Console Operations (Continue...

	head1 - 5.2� Managing Environment Variables
	head2 - 5.2.1� Environment Variable Summary
	tableWcaption - Table 5–2� Environment Variables (Continued)

	head2 - 5.2.2� Setting Environment Variables

	noteCaption - Note
	noteEnd - 
	head2 - 5.2.3� Displaying the Values of Environment Variab...
	head2 - 5.2.4� Removing Environment Variables from System ...


	noteCaption - Note
	noteEnd - 
	head1 - 5.3� Booting the System
	head2 - 5.3.1� Specifying Boot Devices



	noteCaption - Note
	noteEnd - 
	head2 - 5.3.2� Specifying a Boot Image
	head2 - 5.3.3� Passing Additional Boot Information to the ...
	head2 - 5.3.4� Booting Over the Network
	head3 - 5.3.4.1� Internet Protocols
	listNumber1 - 1. BOOTP broadcasts a boot request.
	listNumberN - 2. The SBC uses TFTP to acquire the boot image.


	head3 - 5.3.4.2� Defining Fields of the Internet Database



	noteCaption - Note
	noteEnd - 
	head3 - 5.3.4.3� Internet Database Initialization
	headSub1 - TFTP Initialization
	headSub1 - BOOTP Initialization

	head3 - 5.3.4.4� Using Retransmission to Improve Robustnes...
	head3 - 5.3.4.5� Different Ways of Booting Over the Intern...
	listNumber1 - 1. Specify the file name of the image to be booted...
	listNumberN - 2. Assign the file name of the image to be booted ...
	listNumberN - 3. Assign the file name of the image to be booted ...
	listNumberN - 4. Assign the file name of the image to be booted ...
	listNumberN - 5. Do not define or specify an image to be booted....




	noteCaption - Note
	noteEnd - 
	head2 - 5.3.5� Invoking the Console as Soon as the Boot Im...


	noteCaption - Note
	noteEnd - 
	head1 - 5.4� Using TFTP to Read Files Across the Network
	head1 - 5.5� Managing the TOY Clock
	head2 - 5.5.1� Displaying the TOY Clock’s Time and Date
	head2 - 5.5.2� Setting the TOY Clock’s Time and Date
	head2 - 5.5.3� Disabling the TOY Clock’s Internal Oscillat...



	noteCaption - Note
	noteEnd - 
	head1 - 5.6� Getting System Information
	head1 - 5.7� Updating Firmware
	listNumber1 - 1. Close DIP switch #2 on the I/O module to allow ...
	listNumberN - 2. Issue the boot command.
	listNumberN - 3. Issue the update command.
	listNumberN - 4. Respond to the confirmation prompt.




	noteCaption - Note
	noteEnd - 
	listNumberN - 5. Reset or power the system off and on to run the...
	listNumberN - 6. Open DIP switch #2 on the I/O module to disable...
	head1 - 5.8� Examining and Depositing Data
	head2 - 5.8.1� The Default Device
	head2 - 5.8.2� Console Device Drivers
	head2 - 5.8.3� Device Byte Offsets
	tableNcaption - Table 5–3� Symbols Used by Examine and Deposit Com...

	head2 - 5.8.4� Specifying a Data Size
	head2 - 5.8.5� Depositing and Examining Data in Memory
	listNumber1 - 1. Find an unused block of memory.




	noteCaption - Note
	noteEnd - 
	listNumberN - 2. Add a value to physical memory.
	listNumberN - 3. Check the contents of the address.


	noteCaption - Note
	noteEnd - 
	head2 - 5.8.6� Depositing and Examining Data in Registers
	head1 - 5.9� Managing the Console, Devices, and CPU
	head2 - 5.9.1� Initializing SBC Components
	head2 - 5.9.2� Stopping and Starting the CPU or Devices
	head2 - 5.9.3� Exercising Devices
	head3 - 5.9.3.1� Exercise Buffers
	listNumber1 - 1. exer passes the postfix string to the eval comm...
	listNumberN - 2. eval evaluates the string and returns a value
	listNumberN - 3. exer writes the value to the buffer






	noteCaption - Note
	noteEnd - 
	head3 - 5.9.3.2� Exercise Operations
	head3 - 5.9.3.3� Tailoring the Exercises
	head3 - 5.9.3.4� Seeking to Random Device Locations
	head3 - 5.9.3.5� Returning Error Codes On I/O Failures
	head1 - 5.10� Managing Memory
	head2 - 5.10.1� Displaying the State of Dynamic Memory
	head2 - 5.10.2� Displaying the System’s Virtual Memory Map...
	head2 - 5.10.3� Allocating and Freeing Blocks of Memory
	head2 - 5.10.4� Changing the Ownership of a Block of Memor...
	head2 - 5.10.5� Testing Memory



	noteCaption - Note
	noteEnd - 
	head3 - 5.10.5.1� Specifying the Range of Addresses to be ...
	head2 - 5.10.6� Graycode Memory Test
	head3 - 5.10.6.1� March Memory Test
	head3 - 5.10.6.2� Random Memory Test
	listNumber1 - 1. Gets an address index into the random number ge...
	listNumberN - 2. Gets a data index based on a random data seed t...
	listNumberN - 3. Calls the random number generator with the acqu...
	listNumberN - 4. Calls the random number generator with the acqu...
	listNumberN - 5. Stores the random data at the random address.
	listNumberN - 6. Flushes the data out to the Bcache.
	listNumberN - 7. Reads the data back into memory.
	listNumberN - 8. Compares the data that was written and read. In...





	noteCaption - Note
	noteEnd - 
	head3 - 5.10.6.3� Victim Eject Memory Test
	listNumber1 - 1. Writes the specified block of data to the speci...
	listNumberN - 2. Adds 4 MB to the starting address.
	listNumberN - 3. Writes arbitrary data to the new resulting addr...
	listNumberN - 4. Reads data starting at the original starting ad...
	listNumberN - 5. Verifies that the data is correct.
	listNumberN - 6. Increments the starting address by a block.
	listNumberN - 7. Repeats steps 1 through 6 for the remainder of ...


	head3 - 5.10.6.4� Specifying Other Test Options
	head3 - 5.10.6.5� Running Multiple Memory Tests
	head1 - 5.11� Performing Network Operations
	head1 - 5.12� Setting Reboot to the SROM Mini-Console


	noteCaption - Note
	noteEnd - 
	head1 - 5.13� Controlling the LED
	head1 - 5.14� Running the Power-On Diagnostics Script
	head1 - 5.15� Managing the Console Error Log
	head2 - 5.15.1� Displaying the Contents of the Console Err...
	head2 - 5.15.2� Initializing the Console Error Log

	head1 - 5.16� Evaluating Expressions
	head1 - 5.17� Managing Console Processes
	head2 - 5.17.1� Creating and Exiting Console Processes
	head2 - 5.17.2� Monitoring Processes
	head2 - 5.17.3� Setting the Priority of Processes
	head2 - 5.17.4� Specifying the CPUs on Which a Process Can...
	head2 - 5.17.5� Suspending Processes
	head2 - 5.17.6� Stopping Processes
	head2 - 5.17.7� Breaking from Control Loops
	head2 - 5.17.8� Returning a Failure Status

	head1 - 5.18� Displaying Semaphores
	head1 - 5.19� Managing Files and File Content



	chapterNumber - 6
	chapterTitle - Console Command Reference
	rtnName - alloc – allocate a block of memory
	rtnName - boot – boot the system
	noteCaption - Note
	noteEnd - 

	noteCaption - Note
	noteEnd - 

	noteCaption - Note
	noteEnd - 
	codeInList1 - 1. >>> boot
	codeInListN - 2. >>> boot ewa0
	codeInListN - 3. >>> boot -file avme.sys ewa0
	codeInListN - 4. >>> boot -fi //usr//local//bootfile//alphavme_v...
	codeInListN - 5. >>> boot -flags 0,1
	codeInListN - 6. >>> boot -halt dka0



	rtnName - break – break from a program loop
	rtnName - cat – copy files
	codeInList1 - 1. >>> echo > foo 'this is a test.' >>> cat foo th...
	codeInListN - 2. >>> cat -l 6 foo this i >>>

	rtnName - chmod – change file attributes
	codeInList1 - 1. >>> chmod +x script
	codeInListN - 2. >>> chmod =r errlog
	codeInListN - 3. >>> chmod -w dk*

	rtnName - chown – change ownership of memory block
	rtnName - clear – delete environment variable
	noteCaption - Note
	noteEnd - 


	rtnName - clear_log – clear error log in NVRAM
	noteCaption - Notes
	noteEnd - 


	rtnName - date – display or change the date and time
	noteCaption - Note
	noteEnd - 


	rtnName - deposit – write data to memory
	codeInList1 - 1. >>> d -b -n 1FF pmem:0 0
	codeInListN - 2. >>> d -l -n 3 vmem:1234 5
	codeInListN - 3. >>> d -n 8 R0 FFFFFFFF
	codeInListN - 4. >>> d -l -n 10 -s 200 pmem:0 8

	rtnName - dynamic – show memory
	codeInList1 - 1. >>> dynamic
	codeInListN - 2. >>> dynamic -cv -z 97740
	codeInListN - 3. >>> dynamic -h

	rtnName - echo – display text output
	codeInList1 - 1. >>> echo this is a test.
	codeInListN - 2. >>> echo -n this is a test.
	codeInListN - 3. >>> echo 'this is a test' > foo
	codeInListN - 4. >>> echo > foo 'this is the simplest way

	rtnName - eval – evaluate expression
	codeInList1 - 1. >>> eval 5 10 +
	codeInListN - 2. >>> eval -ix -d 5 10 +

	rtnName - examine – display memory data
	codeInList1 - 1. >>> e r0
	codeInListN - 2. >>> e -g 0
	codeInListN - 3. >>> e gpr:0
	codeInListN - 4. >>> examine pc
	codeInListN - 5. >>> examine sp
	codeInListN - 6. >>> examine -n 5 R7
	codeInListN - 7. >>> examine ipr:11
	codeInListN - 8. >>> examine scbb
	codeInListN - 9. >>> examine pmem:0
	codeInListN - 10. >>> examine -d 40000
	codeInListN - 11. >>> examine

	rtnName - exer – exercise devices
	tableNcaption - Table 6–1� Action String Characters (Continued)
	noteCaption - Note
	noteEnd - 
	codeInList1 - 1. >>> exer dk*.* -p 0 -secs 36000
	codeInListN - 2. >>> exer -l 2 dka0
	codeInListN - 3. >>> exer -sb 1 -eb 3 -bc 4 -a 'w' -d1 '0x5a' dk...
	codeInListN - 4. >>> ls -l du*.* dk*.*
	codeInListN - 5. >>> exer -eb 64 -bc 4 -a '?w-Rc' dka0
	listNumber_a - a. Set the current block address to a random block...
	listNumber_z - b. Write from buffer1, which contains the previous...
	listNumber_z - c. Set the current block address to what it was ju...
	listNumber_z - d. From the current block address, read a packet i...
	listNumber_z - e. Compare buffer1 with buffer2 and report any dis...
	listNumber_z - f. Repeat steps a through e until enough packets h...
	codeInListN - 6. >>> exer -a '?r-w-Rc' dka0

	listNumber_z - a. Set the current block address to a random block...
	listNumber_z - b. From the current block address on the disk, rea...
	listNumber_z - c. Set the current block address to the device add...
	listNumber_z - d. Write a packet of 0x5as from buffer1 to the cur...
	listNumber_z - e. Set the current block address to what it was ju...
	listNumber_z - f. From the current block address on the disk, rea...
	listNumber_z - g. Compare buffer1 with buffer2 and report any dis...
	listNumber_z - h. Repeat the preceding steps until each block on ...
	codeInListN - 7. >>> set myd 0
	codeInListN - 8. >>> set myd 0
	codeInListN - 9. >>> set myd 0
	codeInListN - 10. >>> echo '0123456789abcdefghijklmnopqrstAB' -n...




	rtnName - exit – exit current shell process
	codeInList1 - 1. >>> exit
	codeInListN - 2. >>> exit 0
	codeInListN - 3. >>> test || exit

	rtnName - false – return a failure status
	rtnName - free – deallocate memory
	rtnName - grep – search for regular expressions
	codeInList1 - 1. >>> ps | grep ewa0
	codeInListN - 2. >>> alloc 20

	rtnName - hd – dump file contents
	codeInList1 - 1. >>> echo -n 'the quick brown fox jumped over th...
	codeInListN - 2. >>> -byte foo
	codeInListN - 3. >>> -word foo
	codeInListN - 4. >>> -long foo
	codeInListN - 5. >>> -quad foo

	rtnName - help – display help on commands
	codeInList1 - 1. >>> help
	codeInListN - 2. >>> help *
	codeInListN - 3. >>> help ex
	codeInListN - 4. >>> help boot

	rtnName - init_ev – initialize environment variables
	rtnName - init – initialize a device or the processor and co...
	codeInList1 - 1. >>> init
	codeInListN - 2. >>> init -d ewa0

	rtnName - kill – delete process
	rtnName - line – read a line
	codeInList1 - 1. >>> line
	codeInListN - 2. >>> line >foo
	codeInListN - 3. >>> echo -n 'continue [Y, (N)]? '

	rtnName - ls – list files
	codeInList1 - 1. >>> ls examine
	codeInListN - 2. >>> ls d*

	rtnName - man – help on commands
	codeInList1 - 1. >>> man
	codeInListN - 2. >>> man *
	codeInListN - 3. >>> man ex
	codeInListN - 4. >>> man boot

	rtnName - memexer – memory exerciser
	rtnName - memtest – memory test
	noteCaption - Notes
	noteEnd - 

	noteCaption - Caution
	noteEnd - 
	codeInList1 - 1. >>> memtest -sa 200000 -l 1000
	codeInListN - 2. >>> memtest -sa 200000 -l 1000 -f
	codeInListN - 3. >>> memtest -sa 300000 -p 10
	codeInListN - 4. >>> memtest -f -mb
	codeInListN - 5. >>> memtest -sa 200000 -ea 400000 -rb


	noteCaption - Note
	noteEnd - 
	codeInListN - 6. >>> memtest -h -rb -bs 100
	codeInListN - 7. >>> memtest -rb -p 0



	rtnName - net – perform MOP operations
	codeInList1 - 1. >>> net -sa
	codeInListN - 2. >>> net -s

	rtnName - ps – show process
	rtnName - pwrup – run power-on diagnostics
	rtnName - rm – remove file
	rtnName - sa – set process affinity
	rtnName - semaphore – show system semaphores
	rtnName - set – set environment variable
	codeInList1 - 1. >>> set MODE FASTBOOT
	codeInListN - 2. >>> set VME_A16_BASE 0
	codeInListN - 3. >>> set EWA0_PROTOCOLS BOOTP
	codeInListN - 4. >>> set BOOTDEF_DEV ewa0
	codeInListN - 5. >>> set AUTO_ACTION BOOT
	codeInListN - 6. >>> set BOOT_FILE avme.sys
	codeInListN - 7. >>> set BOOT_OSFLAGS 0,1
	codeInListN - 8. >>> set foo 5

	rtnName - set led – display char on LED
	rtnName - set reboot srom – set reboot mode to Serial ROM Mi...
	noteCaption - Note
	noteEnd - 


	rtnName - set toy sleep – disable TOY clock's internal oscil...
	noteCaption - Note
	noteEnd - 


	rtnName - sh – create new shell process
	rtnName - show – display system information
	codeInList1 - 1. >>> show version
	codeInListN - 2. >>> show auto_action
	codeInListN - 3. >>> show bootdef_dev
	codeInListN - 4. >>> show config
	codeInListN - 5. >>> show device
	codeInListN - 6. >>> show device e
	codeInListN - 7. >>> show device dk # Show SCSI disks.
	codeInListN - 8. >>> show device mk # Show SCSI tape drives.
	codeInListN - 9. >>> show hwrpb
	codeInListN - 10. >>> show led
	codeInListN - 11. >>> show led -hex
	codeInListN - 12. >>> boot -halt
	noteCaption - Note
	noteEnd - 


	rtnName - show_log – display NVRAM error log information
	noteCaption - Note
	noteEnd - 
	codeInList1 - 1. >>> show_log
	codeInListN - 2. >>> show_log -n 3



	rtnName - sleep – suspend execution
	codeInList1 - 1. >>> ((sleep 10; echo hi there)&)
	codeInListN - 2. >>> sleep -v 20

	rtnName - sort – sort a file
	rtnName - sp – set priority
	noteCaption - Note
	noteEnd - 


	rtnName - start – start program
	codeInList1 - 1. >>> start -driver ewa 400
	codeInListN - 2. >>> start -drivers

	rtnName - stop – stop CPU or device
	rtnName - update – update flash ROMs
	noteCaption - Notes
	noteEnd - 



	partNumber - Part III
	partTitle - Diagnostics

	chapterNumber - 7
	chapterTitle - Diagnostics and System Initialization
	head1 - 7.1� POST Diagnostics
	head1 - 7.2� System Initialization Sequence and Countdown
	tableNcaption - Table 7–1� SROM Initialization and Console Tests (...

	head1 - 7.3� POST NVRAM and Memory Diagnostics Description...
	rtnName - POST Nonvolatile RAM Diagnostic
	rtnName - POST Memory Diagnostic
	noteCaption - Note
	noteEnd - 



	chapterNumber - 8
	chapterTitle - Console Mode Diagnostics
	head1 - 8.1� Console Mode Diagnostics Summary
	tableWcaption - Table 8–1� Console Mode Diagnostic Tests (Continue...

	rtnName - Heartbeat Timer Test
	rtnGenericHdr - Heartbeat Timer Test
	headSub1 - Miscellaneous Notes

	rtnName - Interval Timer Tests
	rtnGenericHdr - Timer 2 Terminal Count Test
	headSub1 - Miscellaneous Notes
	rtnGenericHdr - Timer 2 Square Wave Test
	rtnGenericHdr - 3 Timers Loopback Test

	noteCaption - Note
	noteEnd - 
	rtnGenericHdr - Timer 0 Loopback Test


	noteCaption - Note
	noteEnd - 
	rtnGenericHdr - Timer 2 Interrupt Test
	rtnGenericHdr - Timer 1 Interrupt Test
	figureNcaption - Figure 8–1� Loopback Descriptions for Interval Tim...




	rtnName - DECchip 21040 Ethernet Controller Tests
	rtnGenericHdr - Ethernet Internal Loopback Test
	noteCaption - Note
	noteEnd - 
	rtnGenericHdr - DECchip 21040 PCI Configuration Register Dump
	rtnGenericHdr - DECchip 21040 Control/Status Register Dump
	rtnGenericHdr - DECchip 21040 Configuration Register Test



	rtnName - DALLAS DS1386 NVRAM Watchdog Timekeeper Tests
	rtnGenericHdr - NVRAM March I Test
	noteCaption - Note
	noteEnd - 
	rtnGenericHdr - NVRAM Address-On-Address Test


	noteCaption - Note
	noteEnd - 
	rtnGenericHdr - NVRAM March II Test


	noteCaption - Note
	noteEnd - 
	rtnGenericHdr - TOY Clock Bitwalk Test


	noteCaption - Note
	noteEnd - 
	rtnGenericHdr - TOY Clock Time Advancement Test



	rtnName - Local Area Network Address ROM Tests
	rtnGenericHdr - LAN Address ROM Dump Test
	rtnGenericHdr - LAN Address ROM Verification Test
	headSub1 - Miscellaneous Notes
	figureNcaption - Figure 8–2� LAN Address ROM Format


	rtnName - NCR 53C810 PCI-SCSI I/O Processor Tests
	noteCaption - Note
	noteEnd - 
	rtnGenericHdr - NCR810 PCI Configuration Register Test
	rtnGenericHdr - NCR810 Command/Status Register Dump
	rtnGenericHdr - NCR810 Command/Status Register Test
	rtnGenericHdr - NCR810 Command/Status Register Reset Value Test
	rtnGenericHdr - NCR810 Internal Loopback Test
	rtnGenericHdr - NCR810 Internal Live Bus Loopback Test
	rtnGenericHdr - NCR810 Interrupt Test



	rtnName - Watchdog Timer Interrupt Test
	rtnGenericHdr - Watchdog Timer Interrupt Test

	rtnName - VME Interface Tests
	rtnGenericHdr - VIP PCI Configuration Register Test
	rtnGenericHdr - VIP Register Write/Read Test
	rtnGenericHdr - VIC Register Write/Read Test
	rtnGenericHdr - VME Scatter/Gather RAM Test


	partNumber - Part IV
	partTitle - Appendixes

	appendixNumber - A
	chapterTitle - Console Command Summary
	tableWcaption - Table A–1� Console Command Summary (Continued)


	appendixNumber - B
	chapterTitle - Troubleshooting
	head1 - B.1� SROM Diagnostics
	head1 - B.2� Flash ROM Diagnostics
	head1 - B.3� Troubleshooting Systems that Include a PMC I/...
	head1 - B.4� Operating System and Application Use of the D...
	head1 - B.5� Troubleshooting Your SBC
	tableNcaption - Table B–1� Troubleshooting Your SBC (Continued)


	appendixNumber - C
	chapterTitle - Module Connector Pin Assignments
	head1 - C.1� CPU Module Connector Pin Assignments
	head1 - C.2� I/O Module Connector Pin Assignments
	head2 - C.2.1� P1 VMEbus Connector Pin Assignments
	tableNcaption - Table C–1� P1 VMEbus Connector Pin Assignments (Co...

	head2 - C.2.2� P2 VMEbus Connector Pin Assignments
	tableNcaption - Table C–2� P2 VMEbus Connector Pin Assignments (Co...

	head2 - C.2.3� Console and Auxiliary Connector Pin Assignm...
	tableNcaption - Table C–3� Console and Auxiliary Connector Pin Ass...
	figureNcaption - Figure C–1� Console and Auxiliary Connector Pin As...

	head2 - C.2.4� Ethernet Connector Pin Assignments
	tableNcaption - Table C–4� Ethernet Connector Pin Assignments
	figureNcaption - Figure C–2� Ethernet Connector Pin Assignments


	head1 - C.3� Primary Breakout Module Connector Pin Assignm...
	tableNcaption - Table C–5� Primary Breakout Module Connector Pin A...
	figureNcaption - Figure C–3� Primary Breakout Module Connector Pin ...

	head1 - C.4� Secondary Breakout Module Connector Pin Assig...
	figureNcaption - Figure C–4� Secondary Breakout Module Connector Pi...
	head2 - C.4.1� Keyboard and Mouse Connector Pin Assignment...
	tableNcaption - Table C–6� Keyboard and Mouse Connector Pin Assign...
	figureNcaption - Figure C–5� Keyboard and Mouse Pin Assignments

	head2 - C.4.2� Parallel Port Connector Pin Assignments
	tableNcaption - Table C–7� Parallel Port Connector Pin Assignments...
	figureNcaption - Figure C–6� Parallel Port Connector Pin Assignment...


	head1 - C.5� PMC I/O Companion Card Connector Pin Assignme...
	head2 - C.5.1� PMC Option 1 Connector Pin Assignments
	figureNcaption - Figure C–7� PMC Option 1 Connectors
	tableNcaption - Table C–8� PMC Option 1 J11 Pin Assignments �
	tableNcaption - Table C–9� PMC Option 1 J12 Pin Assignments �
	tableNcaption - Table C–10� PMC Option 1 VMEbus P2 Signal Connecto...

	head2 - C.5.2� PMC Option 2 Connector Pin Assignments
	figureNcaption - Figure C–8� PMC Option 2 Connectors
	tableNcaption - Table C–11� PMC Option 2 J21 Pin Assignments (Cont...
	tableNcaption - Table C–12� PMC Option 2 J22 Pin Assignments (Cont...

	head2 - C.5.3� PMC I/O Companion Card Diskette Drive Conne...
	tableNcaption - Table C–13� PMC I/O Companion Card Diskette Drive ...
	figureNcaption - Figure C–9� PMC I/O Companion Card Diskette Connec...

	head2 - C.5.4� PMC I/O Companion Card Keyboard and Mouse C...
	tableNcaption - Table C–14� PMC I/O Companion Card Mouse Connector...
	tableNcaption - Table C–15� PMC I/O Companion Card Keyboard Connec...
	figureNcaption - Figure C–10� PMC I/O Companion Card Mouse and Keyb...


	GroupTitlesIX - Symbols
	GroupTitlesIX - Numerics
	GroupTitlesIX - A
	GroupTitlesIX - B
	GroupTitlesIX - C
	GroupTitlesIX - D
	GroupTitlesIX - E
	GroupTitlesIX - F
	GroupTitlesIX - G
	GroupTitlesIX - H
	GroupTitlesIX - I
	GroupTitlesIX - J
	GroupTitlesIX - K
	GroupTitlesIX - L
	GroupTitlesIX - M
	GroupTitlesIX - N
	GroupTitlesIX - O
	GroupTitlesIX - P
	GroupTitlesIX - R
	GroupTitlesIX - S
	GroupTitlesIX - T
	GroupTitlesIX - U
	GroupTitlesIX - V
	GroupTitlesIX - W
	GroupTitlesIX - X
	GroupTitlesIX - Y


