Alpha AXP DSSI VMScluster

Installation and Troubleshooting Guide

Order Number: EK-D4AXP-TS. B01

Digital Equipment Corporation Maynard, Massachusetts

First Printing, May 1993 Second Printing, May 1994

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software, if any, described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © Digital Equipment Corporation, 1994. All Rights Reserved.

The Reader's Comments form at the end of this document requests your critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, DEC, DECnet, Digital, MicroVAX, OpenVMS, VAX, VAX DOCUMENT, VAXcluster, VMScluster, the AXP logo, and the DIGITAL logo.

OSF/1 is a registered trademark of Open Software Foundation, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio frequency energy. The equipment has been type tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such radio frequency interference when operated in a commercial environment. Operation of this equipment in a residential area may cause interference, in which case the user at his own expense may be required to take measures to correct the interference.

S2453

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface	vii
1 DSSI VMScluster Configuration and Requirements	
Introducing VMScluster SystemsVMScluster CapabilitiesIn This ChapterDSSI VMScluster Configurations Using Alpha AXP SystemsTwo Types of DSSI VMScluster ConfigurationsDSSI Nodes Per BusDSSI VMScluster RestrictionsRestrictions for AXP Only DSSI VMScluster Systems	1–1 1–1 1–2 1–2 1–2 1–3 1–3
Restrictions for Dual-Architecture DSSI VMScluster Systems Licensing and Software Requirements Software Requirements DSSI Bus Lengths and Grounding Requirements Maximum Bus Lengths Maintain a Common Ground Verify Site Conditions Offset Limits Measuring Grounding Offset Voltage Install Grounding Cables Maximum Number of Enclosures Recommended Guidelines for DSSI VMScluster Systems	1-4 1-5 1-5 1-5 1-6 1-6 1-7 1-7 1-7 1-7 1-7

In this Chapter	2–1
Examples of Configurations	2–1
Step 1: Configure Bus Node IDs for Host Adapters	2–6
DSSI Adapter Bus Node IDs	2–6
KFESA Adapter IDs	2–6
DEC 4000 AXP Adapter IDs	2–6
Changing the KFESA Adapter Bus Node ID (Digital 2100 Server	
Systems)	2–6
Running the ECU	2–6
Turn Off System Power	2–8
Changing NCRn SETUP Environment Variables (DEC 4000	
AXP Systems)	2–8
Set Bus Mode and Bus Node Numbers	2-8
Use NCRn SETUP Environment Variables	2-9
Host Adapters and Bus Locations	2-9
Set NCRn SETUP Example	2-9
Turn Off System Power	2_10
Step 2. Configure Bus Node ID Plugs	2_10
Unique Bus Node ID Plugs	2-11
Step 3: Set HSD05 Array Controller Bus Node ID	2-11
HSD05 Bus Node ID	2-11
Step 4 [•] Connect Ground Cables Between Enclosures	2-12
Daisy Chain Ground Cables	2_12
Step 5: Connect DSSI Cables Between Enclosures	2_12
DSSI Connectors and Cables	2 12
Check Devices on the Power-Un Configuration Screen	2 12
Sten 6: Set DSSI Device Parameters	2 10
DSSI Device Parameters	2 10
For More on DSSI Parameters	2 10
cdn Console Command	2-14
Command Description	2 10
DSSI Parameters Displayed Using cdp	2-16
cdn Fyamnla	2 10
set host dup desi Command	2 17
Starting DIIP: Example	2 17
Satting Allocation Class	2 10
Satting Unit Number	2-10
Setting Node Name	2-19
Eviting the DUP Server Utility	2-20
Stan 7: Configure SCSI Node ID Dlugs	2-21
When to Change SCSI Node Durge	2-22
	2-22

Example with Conflicting SCSI Device NamesExample with Unique SCSI Device NamesStep 8: Set Boot ParametersBoot ParametersBoot ParametersBoot Parameter ExamplesStep 9: Complete the Installation	2–22 2–24 2–25 2–26 2–27 2–27
Troubleshooting	
Troubleshooting ProcedureIn This ChapterCommon ProblemsSymptoms and Corrective ActionDSSI Node Fails to BootTermination ProblemsGrounding and Bus LengthsFor More Information	3–1 3–1 3–1 3–5 3–5 3–5 3–5
Electrical Lengths of Enclosures	
DSSI Bus Lengths by Enclosure	A–1 A–1
Storage Device Parameters	
Examining Storage Device Parametersshow device CommandDevice Parameters DisplayedDSSI Device ParametersPrincipal ParametersParameter DescriptionsHow OpenVMS AXP Uses the DSSI Device ParametersAllocation Class ZeroNonzero Allocation ClassMultiple and Shared BusesExample of Duplicate Device Names	B–1 B–1 B–3 B–3 B–3 B–5 B–5 B–5 B–6 B–6

3

Α

В

Index

Figures

2–1	AXP Only DSSI VMScluster: Two Digital 2100 Servers	2–2
2–2	AXP Only DSSI VMScluster: Two DEC 4000 Systems	2–3
2–3	Dual-Architecture DSSI VMScluster: Digital 2100 Servers and VAX 4000	2–4
2–4	Dual-Architecture DSSI VMScluster: DEC 4000 Systems andVAX 4000	2–5
2–5	Midrange and Pedestal Style DSSI Connectors	2–12
2–6	Configuration with Duplicate SCSI Device Names	2–23
B–1	How OpenVMS Sees Unit Numbers for DSSI Devices	B–7

Tables

1–1	Licensing and Software Requirements for DSSI VMScluster	
	Systems	1–5
1–2	Acceptable Ground Offset Limits by Length of DSSI	
	Interconnect	1–7
1–3	DSSI Adapter Characteristics for AXP Supported	
	Adapters	1–9
2–1	Host Adapters for DEC 4000 AXP Systems	2–9
2–2	DSSI Cable Variations	2–13
2–3	Configuration with Conflicting SCSI Device Names	2–23
2–4	Configuration with Unique SCSI Device Names	2–25
2–5	Boot Parameters for AXP and VAX Systems	2–26
3–1	Digital 2100 Server: DSSI Hardware Installation	
	Troubleshooting	3–2
3–2	DEC 4000 AXP: Troubleshooting VMScluster Hardware	
	Installation Problems	3–3
A–1	Electrical Lengths of Embedded DSSI Interconnects in	
	Enclosures	A–1

Preface

Purpose of This Guide	This guide describes how to install and maintain a DSSI VMScluster configuration with the following Alpha AXP systems:
	Digital 2100 Server systems
	• DEC 4000 AXP systems
Who Should Use This Guide	This guide is intended for system administrators. A system administrator should be an experienced user who is familiar with OpenVMS AXP and OpenVMS VAX operating systems.
Structure of	This guide is divided into three chapters and two appendixes:
This Guide	• Chapter 1 describes the types of DSSI VMScluster configurations you can create, as well as restrictions and requirements.
	 Chapter 2 describes the hardware-related steps in setting up a DSSI VMScluster system using a Digital 2100 Server or DEC 4000 system.
	• Chapter 3 provides troubleshooting tips for solving hardware problems within the DSSI VMScluster configuration.
	 Appendix A provides the DSSI connector type and electrical lengths of DSSI buses for DSSI adapters and enclosures.
	 Appendix B provides information on how to examine storage device parameters, and describes how OpenVMS uses DSSI parameters.

Finding More Information	The following documents provide information related to DSSI VMScluster systems:
	 VAX Systems DSSI VAXcluster Installation and Troubleshooting, EK-410AB-MG.
	VMScluster Systems for OpenVMS
	• OpenVMS AXP Version 6.1 Upgrade and Installation Manual, AA-PV6XB-TE.
	 Digital 2100 Server Model 500MP/500MP-R/600MP Series Service Guide, EK-KN450-SV.
	 DEC 4000 AXP Model 600/700 Series Service Guide, EK- KN430-SV.
	• StorageWorks Solutions HSD05 Array Controller User's Guide, EK-HSD05-UG
Conventions	The following coventions are used in this guide.

Convention	Meaning
lowercase	Lowercase letters in commands indicate that commands can be entered in uppercase or lowercase.
Caution	Cautions provide information to prevent damage to equipment or software.
[]	In command format descriptions, brackets indicate optional elements.
console command abbreviations	Console command abbreviations must be entered exactly as shown.
boot	Console and operating system commands are shown in this special typeface.
italic type	Italic type in console command sections indicates a variable.
{}	In command descriptions, braces containing items separated by commas imply mutually exclusive items.

1

DSSI VMScluster Configuration and Requirements

Introducing VMScluster Systems

VMScluster Capabilities	The OpenVMS AXP Version 6.1 operating system provides the ability to cluster AXP computers or a combination of VAX and AXP computers. This enhanced clustering environment is referred to as a VMScluster system to reflect support for both VAX and Alpha AXP architectures.
	Most VMScluster system capabilities are the same as those for VAXcluster systems. AXP processors in an AXP only cluster and AXP and VAX processors in dual-architecture clusters can share processing resources, data storage, and queues under a single security and management domain, and they can be configured to boot or fail independently.
In This Chapter	This chapter describes DSSI VMScluster configurations and requirements.
	DSSI VMScluster Configurations Using Alpha AXP Systems
	DSSI VMScluster Restrictions
	Licensing and Software Requirements
	DSSI Bus Lengths and Grounding Requirements
	Recommended Guidelines for DSSI VMScluster Systems

DSSI VMScluster Configurations Using Alpha AXP Systems

DSSI VMScluster Configurations Using Alpha AXP Systems

Two Types of DSSI	Alpha AXP systems can be configured in two types of DSSI VMScluster configurations:
VMScluster Configurations	Alpha AXP systems in an AXP only DSSI VMScluster
oomgulations	Up to three Alpha AXP systems can share a DSSI.
	Each Digital 2100 Server system must have a KFESA DSSI adapter.
	DEC 4000 AXP systems can coexist as end nodes on a DSSI with Digital 2100 Server systems.
	 Alpha AXP and VAX systems in a dual-architecture DSSI VMScluster
	Up to three systems (AXP and VAX) can share a DSSI.
	Digital 2100 Server systems using the KFESA DSSI adapter can coexist as middle node or end nodes on a DSSI with VAX 4000/6000/7000/10000 systems.
	DEC 4000 AXP systems can coexist as end nodes on a DSSI with VAX 4000/6000/7000/10000 systems.
DSSI Nodes Per Bus	Each DSSI bus supports up to eight nodes. Each of the following counts as one DSSI node:
	A DSSI adapter
	An HSD05 array controller
	An RF-disk controller interface
	A TF-tape controller interface
	For a two-system DSSI VMScluster system, for instance, a maximum of six RF-disks can be configured per DSSI bus: two DSSI adapters + six disks = eight nodes.

DSSI VMScluster Configurations Using Alpha AXP Systems

_ Note ____

Drives connected through the HSD05 array controller do not count as DSSI nodes; thus, using multiple HSD05 controllers, up to 36 SCSI drives can be configured in a two-system DSSI VMScluster system.

DSSI VMScluster Restrictions

Restrictions for AXP Only DSSI VMScluster Systems	 The following restrictions apply to AXP only DSSI VMScluster systems. There is no tape serving on AXP processors. Because OpenVMS "names" the first SCSI bus it finds in each system as bus A, the second as bus B, and so on, SCSI drives in a DSSI VMScluster can appear to share a common bus between systems. For each SCSI bus that OpenVMS sees as common to the DSSI VMScluster, the total number of drives is limited to eight (node ID plugs 0–7).
	Note

Disks connected through an SWXCR-xx controller cannot be striped or shadowed using host-based shadowing. These disks can be served to the cluster, however.

Hardware shadowing of SCSI disks is supported via the HSD30.

DSSI VMScluster Restrictions

Restrictions for Dual-Architecture	The following restrictions apply to dual-architecture DSSI VMScluster systems.
DSSI VMScluster Systems	• A VAX CPU and an AXP CPU may not boot from a common system disk. AXP processors must boot from an AXP system disk and VAX processors must boot from a VAX system disk. However, VAX and AXP processors can mount and share access to files on any disk (including system disks) in a VMScluster system.
	• Booting of satellite systems across architectures is not supported. AXP satellites must boot from an AXP boot server, and VAX satellites must boot from a VAX boot server.
	• There is no tape serving on AXP processors. However, served tapes are supported for VAX systems in dual- architecture VMScluster systems such that VAX systems can serve TMSCP tapes to both AXP and VAX systems in a VMScluster.
	 AXP CPUs cannot access shadow or stripe sets created on VAX CPUs by the Volume Shadowing for OpenVMS VAX or VAX Disk Striping products.
	• Because OpenVMS "names" the first SCSI bus it finds in each system as bus A, the second as bus B, and so on, SCSI drives in a DSSI VMScluster can appear to share a common bus between systems. For each SCSI bus that OpenVMS sees as common to the DSSI VMScluster, the total number of drives is limited to eight (node ID plugs 0–7).
	Note
	Disks connected through an SWXCR-xx controller cannot be striped or shadowed using host-based shadowing. These disks can be served to the cluster, however.
	Hardware shadowing of SCSI disks is supported via the HSD30.

Licensing and Software Requirements

Licensing and Software Requirements

Software Requirements	Table 1–1 provides the licensing and software requirements for each processor in a DSSI VMScluster system.			
	Table 1–1	Licensing and Software Requirements for DSSI VMScluster Systems		
	Processor	License	Operating Software	
	AXP	VMScluster software license	OpenVMS AXP Version 6.1	
	VAX	VAXcluster software license	OpenVMS VAX Version 5.5-2 (not Version A5.5-2)	
		One full-function DECnet license ¹		
	¹ Since DSSI interconnect required for	VMScluster systems must also be conne for DECnet communications, a full-funct the first system.	cted by an Ethernet ion DECnet license is	

Additional licensing information is described in the VMScluster

and VAXcluster Software Product Descriptions.

DSSI Bus Lengths and Grounding Requirements

Maximum Bus Lengths	The maximum DSSI bus length supported, that is, the total distance between end-node terminators on the DSSI bus, is:
	• 25 m (82 ft) in a computer room environment
	• 20 m (65.6 ft) in an office environment
	Refer to Appendix A for a table of electrical lengths for enclosures.

DSSI Bus Lengths and Grounding Requirements

Maintain a Common Ground	The maximum bus lengths are based on grounding conditions typically found in computer room and office environments. Improper grounding can result in voltage potentials, called ground offset voltages, between the enclosures in the configuration. If these voltages exceed certain limits, data transmission across the DSSI bus can be disrupted and the configuration can experience performance degradation or data corruption.
	For these reasons, a common ground must be maintained between all systems/enclosures in a DSSI VMScluster at all times. All systems must receive their power from a common power feed. It is not advisable to power systems/enclosures from different circuit breaker panels.
Verify Site Conditions	Before you install a DSSI VMScluster system, you should verify site conditions.
	1. A qualified electrician should ensure that site power distribution meets all local electrical codes.
	2. The electrician should inspect the entire site power distribution system to ensure that it does not have any of the following faults:
	Outlets do not have power ground connections
	 Grounding prong is missing from computer equipment power cables
	Power outlet neutral connections are actual ground connections
	• Grounds for the power outlets are not connected to the same power distribution panel
	• Devices that are not UL or IEC approved are connected to the same circuit breaker as the computer equipment

DSSI Bus Lengths and Grounding Requirements

Offset Limits Table 1–2 shows acceptable ground offset limits between cabinets in a DSSI VMScluster.

Table 1–2 Acceptable Ground Offset Limits by Length of DSSI Interconnect

DSSI Length	Allowable Offset	
Up to 20 m (65 ft)	200 mv (DC); 70 mv (AC)	
20-25 m (65-82 ft)	40 mv (DC); 14 mv (AC)	

Measuring Grounding Offset Voltage	You can use a hand-held multimeter to measure the grounding offset voltage between any two cabinets. Connect the voltmeter leads to unpainted metal on each enclosure, and compare the reading you obtain to the acceptable offset values in Table $1-2$.
	The multimeter method provides data only for the moment it is measured. The ground offset values may change over time as additional devices are plugged into the same power source or activated. To ensure that the ground offsets will remain within acceptable limits over time, you need a power survey by an electrician.
Install Grounding Cables	You should install Digital grounding cables between enclosures. Digital supplies ground cables with some hardware kits. You can also order the cables separately (order numbers BC21G-50 and BC21G-25 for the required number 6 cables; the numbers after the hyphen refer to the length).
Maximum Number of Enclosures	When Alpha AXP systems are configured with VAX or MicroVAX systems, up to five enclosures can be configured on a DSSI bus:Two systems and up to three expansion enclosures

• Three systems and up to two expansion enclosures

Recommended Guidelines for DSSI VMScluster Systems

Recommended Guidelines for DSSI VMScluster Systems

General Guidelines	The following are recommended guidelines for configuring a DSSI VMScluster:
	• Whenever possible, DSSI adapters of the same performance level (I/Os per second, Table 1–3) should be connected on the same DSSI bus to optimize performance.
	• Different types of adapters are allowed in the same system; whenever possible, connect the same types of adapters on the same DSSI bus to maximize performance. Refer to Table 1–3 for information on adapter performance and characteristics.
	• Ensure that each DSSI bus is terminated at each end at all times. Breaking a bus connection or removing a DSSI terminator while a cluster is operational may lead to data corruption.
	• Do not configure DSSI VMScluster systems with a power bus. Inadvertently bringing down the cluster defeats the added reliability of a DSSI VMScluster.
	• You can add an optional uninterruptible power supply (UPS) to the VMScluster configuration to increase the level of availability.
DSSI Adapter Characteristics	Table 1–3 provides adapter information for AXP supported adapters.

Recommended Guidelines for DSSI VMScluster Systems

Adapters	Cluster Traffic Support	Middle-Node ¹ Support	I/Os per Second ²	Туре	Cluster Serviceability ³
KFESA (EISA-to- DSSI)	Yes	Yes	1000 x 1	EISA-bus	Yes
N710 (DEC 4000 AXP)	Yes	No	1200 x 4	Embedded	Yes
SHAC (KA676, KA681, KA691, KA692)	Yes	Bus 0—No Bus 1—Yes	1200 x 2	Embedded	Yes
SHAC (KA670)	Yes	Bus 0—No Bus 1—Yes	800 x 2	Embedded	Yes
SHAC (KA52, KA53)	Yes	With IN/OUT connectors—Yes Without IN/OUT connectors—No	1200 x 2	Embedded	Yes
SHAC (KA660)	Yes	No	800	Embedded	No
EDA640	Yes	No	340	Embedded	No
KFMSA	Yes	Yes, BA variant No, AA variant	800 x 2	XMI	Yes
KFQSA	No	With IN/OUT connectors—Yes Without IN/OUT connectors—No	170	Q-bus	With IN /OUT connectors— Yes Without IN/OUT connectors— No

Table 1–3 DSSI Adapter Characteristics for AXP Supported Adapters

¹Middle nodes do not contain embedded DSSI termination, and thus support more than two hosts on their DSSI bus.

²Throughput is per DSSI bus. Total throughput may be less than the sum.

³Cluster serviceability refers to the ability to service the adapter without violating DSSI bus termination.

In this Chapter	This chapter describes the hardware steps required to set up and install a DSSI VMScluster that uses a KFESA-based Digital 2100 Server system or DEC 4000 AXP system:
	• Step 1: Configure Bus Node IDs for Host Adapters
	Step 2: Configure Bus Node ID Plugs
	• Step 3: Set HSD05 Array Controller Bus Node ID
	• Step 4: Connect Ground Cables Between Enclosures
	Step 5: Connect DSSI Cables Between Enclosures
	• Step 6: Set DSSI Device Parameters
	Step 7: Configure SCSI Node ID Plugs
	Step 8: Set Boot Parameters
	• Step 9: Complete the Installation
Examples of Configurations	Figure 2–1 shows a sample configuration with two KFESA-based Digital 2100 Model 500MP systems in a DSSI VMScluster.
	Figure 2–2 shows a sample configuration with two DEC 4000 AXP systems in a DSSI VMScluster.
	Figure 2–3 shows a sample dual-architecture DSSI VMScluster with two KFESA-based Digital 2100 Model 500MP Series systems and a VAX 4000.
	Figure 2–4 shows a sample dual-architecture DSSI VMScluster with two DEC 4000 AXP systems and a VAX 4000.

Figure 2–1 AXP Only DSSI VMScluster: Two Digital 2100 Servers

System B

Figure 2–2 AXP Only DSSI VMScluster: Two DEC 4000 Systems

Shared DSSI Buses and Devices

MLO-010630

Figure 2–3 Dual-Architecture DSSI VMScluster: Digital 2100 Servers and VAX 4000

MA071593

Figure 2–4 Dual-Architecture DSSI VMScluster: DEC 4000 Systems and VAX 4000

Shared DSSI Buses and Devices

MLO-010631

Step 1: Configure Bus Node IDs for Host Adapters

Step 1: Configure Bus Node IDs for Host Adapters

DSSI Adapter Bus Node IDs	By convention, host adapters in a two-system DSSI VMScluster are assigned bus node IDs 6 and 7; in a three-system DSSI VMScluster they are assigned 5, 6, and 7.
KFESA Adapter IDs	Digital 2100 Server systems use the KFESA DSSI host adapter. The bus node ID (or device ID) for the KFESA is changed using the EISA Configuration Utility (ECU).
DEC 4000 AXP Adapter IDs	DEC 4000 AXP systems use embedded DSSI host adapters. The bus node ID (or device ID) for DEC 4000 AXP adapters are changed by setting the NCRn_SETUP environment variables.

Changing the KFESA Adapter Bus Node ID (Digital 2100 Server Systems)

Running the ECU as follows to change the KFESA host bus node ID:
1. Start the ECU according to the instructions provided with your system documentation.
2. After the ECU copyright is displayed, the ECU will load the configuration file for the KFESA. If the file is not included on the ECU diskette, the ECU program will prompt you to insert the configuration diskette for the option. While the configuration files are loading, the ECU displays the message:

Loading configuration files
Please wait...

Changing the KFESA Adapter Bus Node ID (Digital 2100 Server Systems)

When the files have finished loading, a menu similar to the following is displayed.

EISA Configuration Utility Steps in configuring your computer STEP 1: Important EISA configuration Information STEP 2: Add or remove boards STEP 3: View or edit details STEP 4: Examine required details STEP 5: Save and exit >Select=ENTER< <Cancel=ESC>

3. Select the View or edit details option (Step 3 in the example below) and press the Enter key. Scroll through the file until you find the KFESA option and its slot number. The display lists the current settings. A sample file is shown below:

Step 3: View or edit details Slot 7 -- Digital KFESA DSSI EISA Host Adapter Added Host Adapter Interface......Trigger EDGE Host Adapter IRQ.....IRQ 15 Host Adapter DSSI ID......Device ID 7

To change the bus node ID setting (edit details), select the "Host Adapter DSSI ID" function or setting and press the Return key.

__ Note ___

Never set a host adapter IRQ of 9.

When you have finished with the option settings, press F10. A main menu similar to the following is displayed.

EISA Configuration Utility Steps in configuring your computer STEP 1: Important EISA configuration Information STEP 2: Add or remove boards STEP 3: View or edit details STEP 4: Examine required details STEP 5: Save and exit Changing the KFESA Adapter Bus Node ID (Digital 2100 Server Systems)

>Select=ENTER< <Cancel=ESC>

4. Select Save and exit (Step 5 in the example above) and press the Enter key. A screen will verify that you want to save the configuration and a screen similar to the following is then displayed:

EISA Configuration Utility

Your configuration file has been saved, and if possible a backup $\ensuremath{\mathsf{SYSTEM.SCI}}$ file has been made on the current drive.

To complete your configuration, you must do one of the following:

If you need to install boards or change switches and jumpers on boards already installed, turn off your computer and do so.

If you want to test your system or install an operating system, press ENTER to restart your computer, run the configuration utility again, and select the appr main menu item.

If you are finished configuring, remove the SYSTEM CONFIGURATION diskette if it is in drive A and press ENTER to restart your system.

Ok=ENTER

Follow the directions on the screen displays until you have saved and exited the ECU.

5. Return to your system documentation for instructions on returning to the SRM console, which supports OpenVMS.

Changing NCRn_SETUP Environment Variables (DEC 4000 AXP Systems)

Set Bus Mode
and Bus Node
NumbersFor each DEC 4000 AXP host adapter that will support DSSI
devices, set the bus mode to "DSSI."NumbersIn addition, for DSSI VMScluster systems with two DEC 4000
AXP systems, change one of the system's bus node numbers
for the host adapters to be shared. For each host adapter to be
shared, set the bus node number to 6.

Turn OffAfter setting the KFESA host adapter bus node numbers, turnSystem Poweroff system power by setting the DC On/Off switch to off.

Changing NCRn_SETUP Environment Variables (DEC 4000 AXP Systems)

Variables	environment va	Noto	
	When diskle performance bus mode to numbers acc	ess DSSI buses are to b e and redundancy), you o DSSI, and change the cordingly.	e shared (for increased still need to set the host adapter bus node
Host Adapters and Bus Locations	Table 2–1 show	s the relationship of th	e NCRn_SETUP 0 AXP storage buses
Locations	Table 2–1 Host	t Adapters for DEC 400	00 AXP Systems
Locations	Table 2–1 Host Host Adapters	t Adapters for DEC 400 Storage Bus	00 AXP Systems
Locations	Table 2–1 Host Host Adapters NCR0_SETUP	t Adapters for DEC 400 Storage Bus 0 (or A in console mode)	00 AXP Systems Location Top drawer
Locations	Table 2–1HostHost AdaptersNCR0_SETUPNCR1_SETUP	t Adapters for DEC 400 Storage Bus 0 (or A in console mode) 1 (or B in console mode)	00 AXP Systems Location Top drawer Second drawer
Locations	Table 2–1HostHost AdaptersNCR0_SETUPNCR1_SETUPNCR2_SETUP	t Adapters for DEC 400 Storage Bus 0 (or A in console mode) 1 (or B in console mode) 2 (or C in console mode)	00 AXP Systems Location Top drawer Second drawer Third drawer
Locations	Table 2–1HostHost AdaptersNCR0_SETUPNCR1_SETUPNCR2_SETUPNCR3_SETUP	Adapters for DEC 400 Storage Bus 0 (or A in console mode) 1 (or B in console mode) 2 (or C in console mode) 3 (or D in console mode)	00 AXP Systems Location Top drawer Second drawer Third drawer Bottom drawer

Set NCRn_SETUP Example In the following example, all four DSSI host adapters in System A and B are assigned a bus mode of DSSI. All four DSSI host adapters in System B are assigned a bus node number of 6.

Changing NCRn_SETUP Environment Variables (DEC 4000 AXP Systems)

For System A >>> show ncr* ncr0_setup AUTO 7 ncr1_setup AUTO 7 ncr2_setup AUTO 7 AUTO 7 ncr3_setup AUTO 7 ncr4_setup >>> set ncr0 setup "DSSI 7" >>> set ncr1_setup "DSSI 7" >>> set ncr2_setup "DSSI 7" >>> set ncr3_setup "DSSI 7" >>> show ncr* ncr0_setup DSSI 7 DSSI 7 ncr1 setup DSSI 7 ncr2_setup DSSI 7 ncr3_setup ncr4_setup AUTO 7 >>> # For System B >>> show ncr* AUTO 7 ncr0_setup ncr1_setup AUTO 7 ncr2_setup AUTO 7 ncr3_setup AUTO 7 ncr4_setup AUTO 7 >>> set ncr0_setup "DSSI 6" >>> set ncr1_setup "DSSI 6" >>> set ncr2 setup "DSSI 6" >>> set ncr3_setup "DSSI 6" >>> show ncr* ncr0_setup DSSI 6 ncr1_setup DSSI 6 ncr2_setup DSSI 6 DSSI 6 ncr3_setup ncr4_setup AUTO 7 >>>

Turn Off System Power

After setting the host adapter bus node numbers and specifying the bus mode, turn off system power by setting the DC On/Off switch to off.

Step 2: Configure Bus Node ID Plugs

Step 2: Configure Bus Node ID Plugs

Unique Bus
Node ID PlugsConfigure bus node ID plugs so that all DSSI devices on a shared
bus (mass storage and host adapters) have unique bus node
numbers.

DSSI storage devices have bus node ID plugs to provide a DSSI node number for the device. VAX 4000 systems use bus node ID plugs to supply DSSI node numbers for their embedded host adapters. Depending on the number of systems in the cluster, set VAX 4000 host adapters to 6 or 5.

Step 3: Set HSD05 Array Controller Bus Node ID

HSD05 BusEach HSD05 array controller counts as one DSSI node. If your
configuration includes HSD05 array controllers, be sure that
the HSD05 is assigned a unique DSSI bus node ID. DSSI node
IDs for the HSD05 are set by switches on the HSD05 controller
module board. The factory default setting is 0.

Refer to the *StorageWorks Solutions HSD05 Array Controller User's Guide*, EK-HSD05-UG, for information on switchpack settings.

Step 4: Connect Ground Cables Between Enclosures

Step 4: Connect Ground Cables Between Enclosures

Daisy Chain Ground Cables

Attach a number 6 gauge ground cable to the ground terminal on the system power supply. Ground cables should be daisy chained for systems with multiple enclosures.

_ Caution _

Do not attach more than two ground cables per ground terminal.

Step 5: Connect DSSI Cables Between Enclosures

DSSIFigure 2–5 shows the PS (pedestal style or pin-socket) andConnectors and
CablesMR (midrange or micro ribbon) DSSI connectors. Appendix A
provides the connector type for each enclosure and DSSI adapter.Table 2–2 lists the cable variants used with DSSI VMSclusters.

Refer to the *Digital Systems and Options Catalog* for cable order numbers.

Figure 2–5 Midrange and Pedestal Style DSSI Connectors

Midrange or Micro Ribbon Style Connector Pedestal or Pin Socket Style Connector

MLO-007465

Step 5: Connect DSSI Cables Between Enclosures

Table 2–2 DSSI Cable Variations

Cable	Туре		
BC29S-06	KFESA host adapter to HSD05 array controller		
BC29U-02	HSD05 array controller to HSD05 array controller (within same enclosure)		
BC21M-09	Pedestal to pedestal		
BC22Q-xx	Pedestal to midrange		
BC21Q-xx	Midrange to midrange		
Check Devices on the Power-Up Configuration Screen	 After connecting the DSSI cables, power up the system. Check the system configuration display to see if there are any missing drives. If drives are missing, check that bus node IDs are unique for each: DSSI host adapter HSD05 array controller DSSI storage device 		
	If you change the bus node ID plugs, you must recycle power (press the Reset button or turn on power with the DC On/Off switch) before the new setting will take effect. The system reads the bus node ID values at power-up.		

Step 6: Set DSSI Device Parameters

DSSI DeviceIn creating a DSSI VMScluster system, you need to set DSSI**Parameters**device parameters according to your configuration:

ALLCLASS — In a DSSI VMScluster, each device to be served to the cluster must have a nonzero allocation class that matches the allocation class of the system. Each system on a shared DSSI bus must have the same OpenVMS allocation class (ALLOCLASS).
 ______ Note ______
 For devices connected through the HSD05 array controller, this parameter is called DISK_ALCS.
 UNITNUM — Systems using multiple DSSI buses, as described in Appendix B, require that the default values for DSSI storage devices (supplied by bus node ID plugs) be replaced with unique unit numbers.

_ Note ____

Devices connected through the HSD05 array controller are automatically assigned unique unit numbers.

• NODENAME — You can provide your own node names for drives; you can use the factory-supplied node names; or use the cdp console command to supply node names that relate to the device name conventions for AXP systems. Systems using the HSD05 array controller must use the set host -dup -task -params device name console command.

For MoreFor more information on DSSI parameters and their functions,on DSSIrefer to Appendix B and VMScluster Systems for OpenVMS.Parameters

cdp Console	Caution		
Command	The HSD05 array controller does not currently support the cdp command. If your configuration includes the HSD05, do not use the cdp command. Doing so will cause the console subsystem to hang and you will have to press the Reset button to return to the console prompt.		
	For systems configured with the HSD05 array controller, use the set host -dup -dssi device_name command to set and examine DSSI parameters using the Diagnostic and Utility Program (DUP).		
	For examples of the set host -dup -dssi command, see the section "Set host -dup -dssi Command." For more information, refer to the <i>StorageWorks Solutions HSD05</i> <i>Array Controller User's Guide</i> , EK-HSD05-UG.		
	The AXP console command cdp allows you to modify the NODENAME, ALLCLASS, and UNITNUM parameters. The cdp command automatically connects to the device's DUP server for all devices or any number of specified devices.		
	Note		
	When a DSSI bus is shared with a VAX system, the cdp console command can connect to all the shared drives, even though they physically reside in the VAX enclosure (and/or expansion enclosure).		
	Enter cdp without an option or target device to list the DSSI parameters for all DSSI drives on the system.		
Command	cdp ([-{i.n.a.u.o}] [-sn] [-sa allclass] [-su unitnum] [dssi_device])		
Description	Arguments:		
	[dssi_device] Name of the DSSI device or DSSI adapter. Only the parameters for the specified device or devices on this adapter will be modified.		

Options: [-i] Selective interactive mode, set all parameters. [-n] Set device node name, NODENAME (alphanumeric, up to 6 characters). Set device allocation class, ALLCLASS. [-a] [-u] Set device unit number, UNITNUM. [-sn] Set node name (NODENAME) for all DSSI drives on the system to either RFhscn or TFhscn, where: *h* is the device hose number (0) s is the device slot number (0-3)*c* is the device channel number (0) *n* is the bus node ID (0-6). [-sa] Set ALLCLASS for all DSSI devices on the system to a specified value. [-su] Specify a starting unit number for a device on the system. The unit number for subsequent DSSI devices will be incremented (by 1) from the starting unit number.

A sample display of DSSI device information using the cdp is shown below:

Parameters Displayed Using cdp

DSSI

0	0	8	4	6	6
pua0.0.0.0.0	ALPHA0	0411214901371	2	0	\$2\$DIA0
pua0.1.0.0.0	ALPHA1	0411214901506	2	1	\$2\$DIA1
pua0.2.0.0.0	ALPHA2	041122A001625	2	2	\$2\$DIA2
pua0.3.0.0.0	ALPHA3	0411214901286	2	3	\$2\$DIA3
pua0.4.0.0.0	ALPHA4	0411224904506	2	4	\$2\$DIA4
pua0.5.0.0.0	ALPHA5	0411233087412	2	5	\$2\$DIA5
>>>					

- **1** Storage adapter device name
- **2** Node name (NODENAME)

>>> cdp

- **3** System ID (SYSTEMID) modified during warm swap
- **4** Allocation class (ALLCLASS)
- **•** Unit number (UNITNUM)

6 Operating system device name

cdp Example In the following example, which corresponds to the configuration shown in Figure 2–2:

- The unit numbers for drives on DSSI buses B, C, and D are changed to avoid duplicate unit numbers. Bus B is given unit numbers starting with 10; Bus C starting with 20; and Bus D starting with 30.
- The allocation class for all drives is changed to 1.
- Drive dub0 is given the new node name, SYSTEM.

>>> cdp -sa 1					
pua0.0.0.0.0	ALPHA0	0411214901371	1	0	\$1\$DIA0
pua0.1.0.0.0	ALPHA1	0411214901506	1	1	\$1\$DIA1
pua0.2.0.0.0	ALPHA2	041122A001625	1	2	\$1\$DIA2
pua0.3.0.0.0	ALPHA3	0411214901286	1	3	\$1\$DIA3
pua0.4.0.0.0	ALPHA4	0411224904506	1	4	\$1\$DIA4
pua0.5.0.0.0	ALPHA5	0411233087412	1	5	\$1\$DIA5
>>> cdp -sa 1	-su 10 dub				
pub0.0.0.1.0	SNEEZY	0411214906794	1	10	\$1\$DIA10
pub1.1.0.1.0	DOPEY	0411214457623	1	11	\$1\$DIA11
pub2.2.0.1.0	SLEEPY	0478512447890	1	12	\$1\$DIA12
pub3.3.0.1.0	GRUMPY	0571292500565	1	13	\$1\$DIA13
pub4.4.0.1.0	BASHFL	0768443122700	1	14	\$1\$DIA14
pub5.5.0.1.0	HAPPY	0768443122259	1	15	\$1\$DIA15
>>> cdp -sa 1	-su 20 duc				
puc0.0.0.2.0	RF0200	0347500845133	1	20	\$1\$DIA20
puc1.1.0.2.0	RF0201	0889734564411	1	21	\$1\$DIA21
puc2.2.0.2.0	RF0202	0411780351455	1	22	\$1\$DIA22
puc3.3.0.2.0	RF0203	0555613903222	1	23	\$1\$DIA23
puc4.4.0.2.0	RF0204	0744673884100	1	24	\$1\$DIA24
puc5.5.0.2.0	RF0205	0298438401226	1	25	\$1\$DIA25
>>> cdp -sa 1	-su 30 dud				
pud0.0.0.3.0	RF0300	0620707250334	1	30	\$1\$DIA30
pud1.1.0.3.0	RF0301	0889734564411	1	31	\$1\$DIA31
>>> cdp -n duk	00				
pub0.0.0.1.0:					
Node Name [SNE	EZY]? SYSTE	CM			
>>>					

set host -dup -dssi Command

The set host -dup -dssi device_name command allows you to enter the DUP server utility for a specified device. Through the DUP server utility, you can set and examine DSSI parameters for the specified device. This command must be used in place of the cdp command for systems using the HSD05 array controller.

Starting DUP: Example	>>> set host -dup -dssi dub34 >>> set host -dup -dssi dub34				
•	starting DIRECT on pub0.3.0.3.1 (HSD05A)				
	Copyright 1994 Digital HSD05 Serial No: 2033 Firmware Rev. B1 (X36A)				
	DIRECT V1.0 D Mar 21 1994 17:09:41 PARAMS V1.0 D Mar 21 1994 17:09:41 UTILIT V1.0 D Mar 21 1994 17:09:41				
	End of directory Task? params				
	starting PARAMS on pub0.3.0.3.1 (HSD05A)				
	Copyright 1994 Digital HSD05 Serial No: 2033 Firmware Rev. B1 (X36A) PARAMS>				
Setting Allocation	After entering the DUP server utility for a specified device, you can examine and set the allocation class for the device as follows.				
Class	Note				
Class	Note				
Class	Note Set the ALLCLASS parameter only through console mode, at the PARAMS> prompt. Setting the ALLCLASS parameter from the operating system is not recommended. Devices connected through the HSD05 array controller use the parameter DISK_ALCS for allocation class; all other DSSI devices use the parameter ALLCLASS.				
Class	 Note Set the ALLCLASS parameter only through console mode, at the PARAMS> prompt. Setting the ALLCLASS parameter from the operating system is not recommended. Devices connected through the HSD05 array controller use the parameter DISK_ALCS for allocation class; all other DSSI devices use the parameter ALLCLASS. 1. At the PARAMS> prompt, enter show allclass (or show disk_alcs for HSD05 devices) to check the allocation class of the device to which you are currently connected. 				
Class	 Note				
Step 6: Set DSSI Device Parameters

The following example shows the steps for examining and changing the allocation class for a specified device. In the example, the allocation class is changed from class 0 to class 1 for a device connected through an HSD05.

PARAMS> show disk_alcs

DISK_ALCS PARAMS> set disk_alcs 1	0	0	255	DecimalNum
PARAMS> show disk_alcs				
DISK_ALCS	1	0	255	DecimalNum

Setting Unit After ent Number can exam

After entering the DUP server utility for a specified device, you can examine and set the unit number for the device as follows.

4. Enter show unitnum to verify the new unit number.

value supplied by the bus node ID plug.

- 5. Enter show forceuni to verify that the current value for the FORCEUNI parameter is 0.
- 6. Label the device with its unit number, using the unit number labels shipped with your system.

The following example shows the steps for changing the unit number of a specified device from number 0 to number 10.

Step 6: Set DSSI Device Parameters

PARAMS>show un	itnum						
Parameter	Current		Default		Туре	Radix	
UNITNUM		0		0	Word	Dec	U
PARAMS>set uni PARAMS>set for PARAMS>show un	tnum 10 ceuni 0 itnum						
Parameter	Current		Default		Туре	Radix	
UNITNUM		10		0	Word	Dec	U
PARAMS>show fo	orceuni						
Parameter	Current		Default		Туре	Radix	
FORCEUNI		0		1	Boolean	0/1	U

Setting Node Name

After entering the DUP server utility for a specified device, you can examine and set the node name for the device as follows.

- 1. At the PARAMS> prompt, enter show nodename to check the node name of the device to which you are currently connected.
- 2. Enter set nodename sysdsk (or enter the desired alphanumeric node name of up to eight characters).
- 3. Enter show nodename to verify the new node name.

The following example shows the steps for changing the node name of a specified device from the factory-supplied name to SYSDSK.

PARAMS>show	nodename				
Parameter	Current	Default	Туре	Radix	
NODENAME	R7CZZC	RF35	String	Ascii	В
PARAMS>set PARAMS>show	nodename sysdsk nodename				
Parameter	Current	Default	Туре	Radix	
NODENAME	SYSDSK	 RF35	String	Ascii	В

Step 6: Set DSSI Device Parameters

Exiting the DUP Server Utility After you have finished setting and examining DSSI device parameters for a specified device, enter the write command at the PARAMS> prompt to save the device parameters you have changed using the SET command. The changes are recorded to nonvolatile memory.

_ Note ___

If you have set host to devices connected through the HSD05 array controller, you must enter the restart command, and then press the Reset button or enter the init command for the new parameters to take effect.

• If you have changed the allocation class or node name of a device, the DUP server utility will ask you to initialize the controller. Answer Yes (Y) to allow the changes to be recorded and to exit the DUP server utility.

```
PARAMS>write
Changes require controller initialization, ok? [Y/(N)] Y
Stopping DUP server...
>>>
```

• If you have not changed the allocation class or node name, enter the exit command at the PARAMS> prompt to exit the DUP server utility for the specified device.

_ Note ____

You must repeat the procedures in this step for each device for which you want to change parameters.

Step 7: Configure SCSI Node ID Plugs

When to Change SCSI Node Plugs	If systems in a DSSI VMScluster contain SCSI drives, configure SCSI node ID plugs or SCSI node ID switch settings so that OpenVMS sees each SCSI device name as unique.			
	To determine if you need to change SCSI node ID plugs, consider these points:			
	• For each system, OpenVMS "names" the first SCSI bus it finds as bus A, the second SCSI bus as bus B, and so on.			
	• All SCSI drives in the DSSI VMScluster are forced to the allocation class of the host systems.			
Example with Conflicting SCSI Device	Figure 2–6 and Table 2–3 show a sample configuration that calls for changing SCSI node ID plugs to avoid duplicate device names.			
names	Note			
	SCSI unit numbers are forced to 100 x node ID (ID plug).			

Figure 2–6 Configuration with Duplicate SCSI Device Names

Table 2–3 Configuration with Conflicting SCSI Device Names

System SCSI Node ID	n A Console Mode Device Name	OpenVMS Device Name
5	MKA500	\$1\$MKA500*
6	DKA600	\$1\$DKA600*
System	n B	
5	MKA500	\$1\$MKA500*
6	DKA600	\$1\$DKA600*
*Duplic	ate SCSI device name	

Example with Unique SCSI Device Names	To avoid the problem of duplicate SCSI device names, shown in Table 2–3, change the SCSI node ID switch settings for the SCSI drives on System A.		
	Table 2–4 shows how the devices are uniquely named after you change the SCSI node ID switches for the SCSI devices. The SCSI disks in System A are given node ID settings of 0, 1, and the host SCSI ID is set to 6.		
	Note that in this example, the node ID for the SCSI host adapter in System A is changed from the default (7) to 6. This allows up to eight SCSI devices to be configured on the SCSI bus, each with a unique SCSI node ID (0–7).		
	The following commands are used to set SCSI host adapter node IDs:		
System	Command		
Digital 2100 Server	set pk*_host_id <i>node_ID</i>		
DEC 4000 AXP	set ncr*_setup "SCSI <i>node_ID</i> "		
VAX 4000 Model 100A/100	SET SCSI_ID bus_number node_ID		

System	System A			
SCSI Node ID	Console Mode Device Name	OpenVMS Device Name		
0	MKA0	\$1\$MKA0 ¹		
1	DKA100	\$1\$DKA100		
6	Host adapter			
System	ו B			
5	MKA500	\$1\$MKA500		
6	DKA600	\$1\$DKA600		
7	Host adapter			
¹ In this	example, the allocation cl	ass is 1.		

Table 2–4 Configuration with Unique SCSI Device Names

Note

For each SCSI bus that OpenVMS sees as common to both systems, the total number of drives is limited to eight (node IDs 0–7).

Step 8: Set Boot Parameters

Set the boot parameters for booting on each system.

Step 8: Set Boot Parameters

BootTable 2–5 lists the boot environment variables and their relatedParametersboot parameters.

Table 2–5 Boot Parameters for AXP and VAX Systems

AXP Console Boot Parameters	
>>> set bootdef_dev dua0	Sets the device or device list from which booting is to be attempted. In this example, dua0 is specified as the boot device.
>>> set boot_osflags 0,0	Sets additional parameters (root number and boot flags) to be passed to the system software during booting if none are specified. In this example, system root 0 [SYS0] with 0 as the boot flag mask.
>>> set boot_osflags 0,1	Sets additional parameters (root number and boot flags) to be passed to the system software during booting if none are specified. In this case the system will stop at SYSBOOT.
>>> set boot_osflags 1,0	Sets additional parameters (root number and boot flags) to be passed to the system software during booting if none are specified. In this case the system boots from the system root [SYS1] rather than [SYS0].
VAX Console Boot Parameters	
>>> set boot dua0	Sets the device or device list from which booting is to

>>> set boot dua0	Sets the device or device list from which booting is to be attempted. In this example, dua0 is specified as the boot device.
>>> set bflag 0	Sets additional parameters to be passed to the system software during booting if none are specified. In this example, system root 0 [SYS0].
>>> set bflag 1	Sets additional parameters to be passed to the system software during booting if none are specified. In this case the system will stop at SYSBOOT.
>>> set bflag 10000000	Sets additional parameters to be passed to the system software during booting if none are specified. In this case the system boots from the system root [SYS1] as opposed to [SYS0].

Step 8: Set Boot Parameters

Boot Parameter AXP Only Example Examples In the following example, boot parameters are set for two AXP systems in a DSSI VMScluster: # For system A >>> set boot_osflags 0,0 >>> set bootdef dev dua0 >>> boot # For system B >>> set boot_osflags 1,0 >>> set bootdef dev dua0 >>> boot **Dual-Architecture Example** In the following example, boot parameters are set for a dual-architecture DSSI VMScluster: # For system A (AXP System) >>> set boot osflags 0,0 >>> set bootdef_dev dub10 >>> boot

>>> boot
For system B (VAX System)
>>> set bflag 10000000
>>> set boot dua0
>>> boot

Note _

In a dual-architecture configuration, the AXP system and the VAX system **cannot** boot from a common disk.

Step 9: Complete the Installation

Complete the software steps of the DSSI VMScluster installation, such as updating cluster_config.com. Refer to the information provided in *Factory Installed Software User Information* or *OpenVMS AXP Version 6.1 Upgrade and Installation Manual* and *VMScluster Systems for OpenVMS*.

3 Troubleshooting

Troubleshooting Procedure

In This Chapter	This chapter provides troubleshooting tips for solving DSSI- related hardware problems.
Common Problems	If hardware failures occur, check these common problem sources first:
	Loose or missing terminators
	Incorrect bus node ID plugs (duplicate device names)
	Duplicate DSSI adapter node IDs
	Loose or damaged cables or connectors
Symptoms and Corrective	Table 3–1 lists symptoms and corrective action for Digital 2100 Server systems.
Action	Table 3–2 lists symptoms and corrective action for DEC 4000 AXP systems.

U		
Problem	Symptom	Corrective Action
Drive failure	Fault LED for drive is on (steady).	Replace drive.
Duplicate bus node IDs	Drives with duplicate bus node IDs are missing from the show config display.	Correct bus node IDs.
Drive bus node ID set to 7 (reserved for host adapter ID)	Valid drives are missing from the show config display. One drive may appear seven times on the display.	Correct bus node IDs. KFESA bus node ID for host adapter is set using the EISA Configuration Utility (ECU).
Missing or loose cables	Drive activity LEDs do not come on. Drive missing from the show config display.	Remove device and inspect cable connections.
Terminator missing	Read/write errors in console event log; storage adapter port may fail.	Attach terminators as needed.
KFESA module failure	Problems persist after eliminating the above problem sources.	Replace KFESA module.

Table 3–1 Digital 2100 Server: DSSI Hardware Installation Troubleshooting

Symptom	Problem	Corrective Action
Drives are missing from the configuration screen display. A drive defaults to zero.	Duplicate bus node ID plugs (or a missing plug).	Correct bus node ID plugs.
Valid drives are missing from the configuration screen display.	Bus node ID set to 7, or that of the host adapter.	Correct bus node ID plugs.
One drive appears seven times on the configuration screen display.		
OpenVMS sees duplicate drives.	Duplicate unit numbers (device names are not unique).	Provide unique unit numbers using the cdp command.
Disk power failure LED on PSC^1 is on.	LDC failure	Replace LDC ² .
LDC OK LED on storage compartment front panel is off.		
Power-up screen reports a failing storage adapter port.		
Fault LED for drive is on (steady).	Drive failure	Replace drive.
Disk power failure LED on PSC is on.	Storage drawer not properly seated.	Remove drawer and check its connectors. Reseat drawer.
LDC OK LED on storage compartment front panel is off.		
Power-up screen reports a failing storage adapter port.		

Table 3–2 DEC 4000 AXP: Troubleshooting VMScluster Hardware Installation Problems

¹PSC refers to the power system controller.

²LDC refers to the disk power supply.

(continued on next page)

Symptom	Problem	Corrective Action
Valid drives missing from the configuration screen display; read/write errors in event /error log; storage adapter port may fail.	Loose or damaged external DSSI cable	Inspect external DSSI cable and cable connection.
Cable: Storage device to ID panel—Bus node ID defaults to zero; online LEDs do not come on.	Missing or loose internal cables	Remove storage drawer and inspect cable connections.
Flex circuit: LDC to storage interface module—Disk power failure LED on PSC is on; LDC OK LED on storage compartment front panel is off; and power-up screen reports a failing storage adapter port.		
Cable: LDC to storage interface module—Power- up screen reports a failing storage adapter port; drive LEDs do not come on at power-up.		
Cable: LDC to storage device—Drive does not show up in configuration screen display.		
Read/write errors in console event log; storage adapter port may fail	Terminator missing	Attach terminator to connector port.

Table 3–2 (Cont.) DEC 4000 AXP: Troubleshooting VMScluster Hardware Installation Problems

(continued on next page)

Table 3–2 (Cont.)	DEC 4000 AXP: Troubleshooting VMScluster Hardware Installation
	Problems

Symptom	Problem	Corrective Action		
DSSI terminator LED or no termination volt measured at connector	is off No termination age power r (pin	n Replace LDC (termination power source for fixed-media storage compartments).		
38, ground pin 1); read errors; storage adapte may fail.	l/write r port	Replace DC5 converter (termination power source for storageless fixed-media storage compartments).		
DSSI Node	If a DSSI node fails to b	boot, perform the following steps:		
Fails to Boot	1. Check the BOOT command you entered.			
	2. Check the DSSI node ID for the RF device you are trying to boot from and the unit number specified. Ensure that the unit number specified in the BOOT command is correctly programmed into the disk node you wish to boot.			
	3. Run device tests to check that the boot device is operating.			
	4. Check that the DSS	I bus is terminated.		
Termination Problems	It is especially important to check that only two terminators are on every bus (at the ends of the bus), even if none of the above symptoms is present. The SF7 <i>x</i> , BA440, BA430, KFMSA, and KFQSA may have internal terminators that are not visible externally. These devices do not have the green lights found on the external terminators.			
Grounding and Bus Lengths	Excessive ground offset voltages or exceeding the maximum DSSI bus length can cause virtual circuit closures, system crashes, or degradation in performance. All enclosures should be grounded using number 6 gauge wire, and DSSI bus lengths must be within the limits specified in Chapter 1.			
For More Information	For additional troublesh service guide.	nooting information, refer to the system		

A Electrical Lengths of Enclosures

DSSI Bus Lengths by Enclosure

Lengths of	Table A-1 gives the maximum electrical lengths of embedded
Interconnects	DSSI interconnects within the various enclosures, as well as the
	number and type of DSSI connector.

Enclosure/Device	Connector Type	Internal DSSI Length
KFESA adapter using one connector (end-node)	1 external MR ¹	0.15 m (6.0 in)
KFESA adapter using two connectors (middle-node)	2 external MR ¹	0.6 m (24.0 in)
R400x through-bus mode; no internal terminator; both upper and lower rows	2 external PS ²	94.5 in (2.40 m)
R400x split bus mode 1; no internal terminator; upper row only	2 external PS	66 in (1.68 m)
R400x split bus mode 2; no internal terminator; lower row only	2 external PS	40 in (1.02 m)
BA640 embedded storage (Bus A-D) has internal terminator; DEC 4000 Model 6xx	4 external PS (one for each of four buses, A–D)	70.9 in (1.8 m)

Table A–1 Electrical Lengths	of Embedded DSSI Interconnects in Enclosures
------------------------------	--

 $^1\mbox{MR}$ is a midrange or micro ribbon style shielded connector used for bulkhead mounting. This connector mates with MR only.

 ^2PS is a pin-and-socket style shielded connector used for bulkhead mounting. This connector mates with PS only.

(continued on next page)

DSSI Bus Lengths by Enclosure

Enclosure/Device	Connector Type	Internal DSSI Length
BA641 embedded storage (Bus A–D) has internal terminator; rackmount DEC 4000 Model 6xx	4 external PS (one for each of four buses, A–D)	15 in (0.38 m)
BA440 embedded storage (BUS 0) has internal terminator; VAX 4000-300 and higher	1 external PS	52 in (1.32 m)
BA440 in/out port (BUS 1), no internal terminator; VAX 4000-300 and higher	2 external PS	20 in (0.51 m)
BA440 in/out port (BUS 2), no internal terminator; VAX 4000-300 and higher	2 external PS	56 in (1.4 m)
BA440 in/out port (BUS 3), no internal terminator; VAX 4000-300 and higher	2 external PS	56 in (1.4 m)
BA441 embedded storage (BUS 0) has internal terminator; VAX 4000-300 and higher	1 external PS	96 in (2.45 m)
BA441 in/out port (BUS 1), no internal terminator; VAX 4000-300 and higher	2 external PS	20 in (0.51 m)
BA441 in/out port (BUS 2), no internal terminator; VAX 4000-300 and higher	2 external PS	56 in (1.4 m)
BA441 in/out port (BUS 3), no internal terminator; VAX 4000-300 and higher	2 external PS	56 in (1.4 m)
BA430 embedded storage (BUS 0) has internal terminator; VAX 4000-200	1 external PS	54 in (1.37 m)
BA431 embedded storage (BUS 0) has internal terminator; VAX 4000-200	1 external PS	96 in (2.45 m)
BA42 embedded storage (BUS 0) has internal terminator; VAX 4000-100A/100	1 external PS	30 in (0.76 m)
BA42 embedded storage (BUS 1), no internal terminator; VAX 4000-100A/100	2 external PS	43 in (1.08 m)
BA213; has internal terminator	1 external PS	45 in (1.14 m)
B213F; has internal terminator	1 external PS	20 in (0.51 m)
BA215; has internal terminator	1 external PS	30 in (0.76 m)

Table A-1 (Cont.) Electrical Lengths of Embedded DSSI Interconnects in Enclosures

(continued on next page)

DSSI Bus Lengths by Enclosure

Enclosure/Device	Connector Type	Internal DSSI Length
R215F; no internal terminator	1 external PS	60 in (1.52 m)
R23RF; no internal terminator	2 external PS	39 in (1.0 m)
KFQSA adapter with 1 connector directly attached to KFQSA (for example, BA440)	1 external PS	N/A
KFQSA adapter with 2 connectors directly attached to KFQSA (for example, BA440)	2 external PS	12 in (0.31 m)
SF12 in through-bus mode; 1 to 4 drives per bus; no internal terminator	2 external MR ²	50 in (1.25 m)
SF35 in through-bus mode; 1 to 6 drives per bus; no internal terminator	2 external MR ²	84 in (2.13 m)
SF35 in split-bus mode; 1 to 3 drives per bus using internal terminator	1 external MR	42 in (1.07 m)
SF7 <i>x</i> in through-bus mode; 1 to 4 drives per bus; no internal terminator	2 external MR	168 in (4.27 m)
SF72 <i>x</i> in split bus mode; 1 or 2 drives using internal SF72 terminator	1 external MR	83.5 in (2.12 m)
TF857; no internal terminator	2 external MR	10 in (0.25 m)

Table A-1 (Cont.) Electrical Lengths of Embedded DSSI Interconnects in Enclosures

 $^2\mathrm{PS}$ is a pin-and-socket style shielded connector used for bulkhead mounting. This connector mates with PS only.

B

Storage Device Parameters

Examining Storage Device Parameters

show device	The show device command displays information for all DSSI and
Command	SCSI devices in the system.

Device Parameters Displayed show device *Example:*

>>> show device

0	0	0		4	6
dka600.6.0.1.0	DKA600			RRD43	2893
dua0.0.0.2.1	\$2\$DIA0	(ALPHAO)		RF35	
dua1.1.0.2.1	\$2\$DIA1	(ALPHA1)		RF35	
dua2.2.0.2.1	\$2\$DIA2	(ALPHA2)		RF35	
dua3.3.0.2.1	\$2\$DIA3	(ALPHA3)		RF35	
dua4.4.0.2.1	\$2\$DIA4	(ALPHA4)		RF35	
dua5.5.0.2.1	\$2\$DIA5	(ALPHA5)		RF35	
dva0.0.0.1	DVA0			RX26	
mka500.5.0.1.0	MKA500			TLZOG	0435
ewa0.0.0.0.0	EWAO		08-00-2B-3B	3-42-FD	
pka0.7.0.1.0	pka0		SCSI Bu	ıs ID 7	
pua0.7.0.2.1	PAAO		DSSI Bu	ıs ID 7	
pub0.6.0.3.1	PAB0		DSSI Bu	ıs ID 6	
>>>					

1 Console device name:

Examining Storage Device Parameters

dka	0.0.0.0	
	Hose Number:	0 PCI_0 (32-bit PCI); 1 EISA; 2 PCI_1
	Slot Number:	For EISA optionsCorrespond to EISA card cage slot numbers (18) For PCI optionsSlot 0 = Ethernet adapter (EWA0) Slot 1 = SCSI controller on standard I/O Slot 2 = EISA to PCI bridge chip Slots 35 = Reserved Slots 68 = Correspond to PCI card cage slots: PCI0, PCI1, and PCI2
	Channel Number:	Used for multi-channel devices.
	Bus Node Number:	Bus Node ID
	Device Unit Number:	Unique device unit number (MSCP Unit Number) SCSI unit numbers are forced to 100 x Node ID
	Storage Adapter ID:	One-letter storage adapter designator (A,B,C)
	Driver ID:	Two-letter port or class driver designator: DRRAID-set device DVFloppy drive EREthernet port (EISA) EWEthernet port (PCI) PKSCSI port, DKSCSI disk, MKSCSI tape PUDSSI port, DUDSSI disk, MUDSSI tape
	0	Operating system device name:
		• For an allocation class of zero: NODENAME\$DIAu
		NODENAME is a unique node name and <i>u</i> is the unit number. For example, R7BUCC\$DIA0.
		For a nonzero allocation class:
		\$ALLCLASS\$DIAu
		ALLCLASS is the allocation class for the system and devices, and u is a unique unit number. For example, $$1$ SDIA0.
	8	Node name (alphanumeric, up to 6 characters)
	4	Device type
	9	Firmware version (if known)

DSSI Device Parameters

DSSI Device Parameters

Principal Parameters

Five principal parameters are associated with each DSSI device:

- Bus node ID
- ALLCLASS (DISK_ALCS for devices connected through the HSD05 controller)
- UNITNUM
- NODENAME
- SYSTEMID

Parameter Descriptions

Bus Node ID

The bus node ID parameter for DSSI storage devices is provided by the bus node ID plug on the front panel of the storage compartment. Each DSSI bus can support up to eight nodes, bus nodes 0–7. Each DSSI adapter, HSD05 array controller, and each DSSI storage device counts as a node. Hence, in a single-system configuration, a DSSI bus can support up to seven devices, bus nodes 0–6 (with node 7 reserved for the adapter); in a two-system DSSI VMScluster configuration, up to six devices, 0–5 (with nodes 6 and 7 reserved for the adapters); in a threesystem DSSI VMScluster configuration, up to five devices, 0–4 (with nodes 5, 6, and 7 reserved for the adapters).

__ Note ____

Drives connected through the HSD05 array controller do not count as DSSI nodes; thus, using multiple HDS05 controllers, up to 36 SCSI drives can be configured in a two-system DSSI VMScluster.

The bus node ID for the KFESA host adapter is set using the EISA Configuration Utility (ECU). The bus node ID for the HDS05 array controller is set by switches on the HSD05 controller module board. **DSSI Device Parameters**

ALLCLASS

Note _

For devices connected through the HSD05 array controller, this parameter is called DISK_ALCS.

The ALLCLASS parameter determines the device allocation class. The allocation class is a numeric value from 0–255 that is used by the OpenVMS AXP operating system to derive a path-independent name for multiple access paths to the same device. The ALLCLASS firmware parameter corresponds to the OpenVMS AXP IOGEN parameter ALLOCLASS.

DSSI devices are shipped from the factory with a default allocation class of zero.

Use the cdp command to examine and modify the ALLCLASS parameter. Systems using the HSD05 array controller must use the set host -dup -dssi *device_name* command.

__ Note ____

Each device to be served to a cluster must have a nonzero allocation class that matches the allocation class of the system.

Refer to *VMScluster Systems for OpenVMS* for rules on specifying allocation class values.

UNITNUM

The UNITNUM parameter determines the unit number of the device. By default, the device unit number is supplied by the bus node ID plug on the front panel of the storage compartment.

____ Note ____

Systems using multiple DSSI buses require that the default values be replaced with unique unit numbers. See the section "How OpenVMS AXP Uses the DSSI Device Parameters ."

DSSI Device Parameters

To set unit numbers and override the default values, use the cdp console command to supply values to the UNITNUM parameter.

Note _

Devices connected through the HSD05 array controller are automatically assigned unique unit numbers.

NODENAME

The NODENAME parameter allows each device to have an alphanumeric node name of up to six characters. DSSI devices are shipped from the factory with a unique identifier, such as R7CZZC, R7ALUC, and so on. You can provide your own node name, keep the factory-supplied node names, or use the cdp console command to supply node names that relate to the device name conventions for AXP systems. Systems using the HSD05 array controller must use the set host -dup -dssi device_name command.

SYSTEMID

The SYSTEMID parameter provides a number that uniquely identifies the device to the operating system. This parameter is modified when you replace a device using warm-swapping procedures. The SYSTEMID parameter is changed using the console command: set host -dup -task -params *device name*.

How OpenVMS AXP Uses the DSSI Device Parameters

Allocation Class Zero With an allocation class of zero, the operating system can use the default parameter values to provide each device with a unique device name. The operating system uses the node name along with the device logical name as follows:

NODENAME\$DIA*u*

NODENAME is a unique node name and *u* is the unit number. For example, R7BUCC\$DIA0.

How OpenVMS AXP Uses the DSSI Device Parameters

Nonzero Allocation Class	With a nonzero allocation class, the operating system relies on unit number values to create a unique device name. The operating system uses the allocation class along with the device logical name as follows:
	\$ALLCLASS\$DIAu
	ALLCLASS is the allocation class for the system and devices, and u is a unique unit number. For example, \$1\$DIA0.
Multiple and Shared Buses	Using KFESA modules, you can fill two DSSI buses; with DEC 4000 systems you can fill multiple DSSI buses: A–D. Each bus can have up to seven DSSI drives (bus nodes 0–6). When a bus is shared between two systems in a DSSI VMScluster, six DSSI drives can be shared; in a three-system DSSI VMScluster, five DSSI drives can be shared.
	When more than one bus is being used, and your system is using a nonzero allocation class, you need to assign new unit numbers for devices on all but one of the DSSI buses, since the unit numbers for all DSSI storage devices connected to a system's associated DSSI buses must be unique.
	Note
	Drives connected through the HSD05 array controller do not count as DSSI nodes; thus, using multiple HDS05 controllers, up to 36 SCSI drives can be configured in a two-system DSSI VMScluster.
	Devices connected through the HSD05 array controller are automatically assigned unique unit numbers.
Example of Duplicate Device Names	Figure B–1 illustrates the problem of duplicate operating system device names for a system that is using more than one DSSI bus and a nonzero allocation class. In the case of the nonzero allocation class, the operating system sees four of the devices as having duplicate device names. This is an error, as all unit numbers must be unique. The unit numbers for one of the two DSSI buses in this example need to be reprogrammed.

How OpenVMS AXP Uses the DSSI Device Parameters

Nonzero Allocation Class Allocation Class=0 (Example: ALLCLASS=1) *Duplicate 0 R7BUCC\$DIA0 \$1\$DIA0 -*Duplicate 1 R7CZZC\$DIA1 \$1\$DIA1 -*Duplicate 2 R7ALUC\$DIA2 \$1\$DIA2 -*Duplicate 3 R7EB3C\$DIA3 \$1\$DIA3 -R7IDFC\$DIA0 \$1\$DIA0 -R7IBZC\$DIA1 \$1\$DIA1 -\$1\$DIA2 R7IKJC\$DIA2 R7ID3C\$DIA3 \$1\$DIA3 -R7XA4C\$DIA4 \$1\$DIA4 R7QIYC\$DIA5 \$1\$DIA5 R7DA4C\$DIA6 \$1\$DIA6

Figure B-1 How OpenVMS Sees Unit Numbers for DSSI Devices

* Nonzero allocation class examples with an asterisk indicate duplicate device names. For one of the DSSI buses, the unit numbers need to be reprogrammed to avoid this error.

LJ-02063-TI0

Index

Α

ALLCLASS parameter, B-4 Allocation class, using set host, 2-18 Availability, UPS for, 1-8

В

Boot parameters examples, 2-27 setting, 2-25 Boot restrictions, 1-4 Bus mode changing for DEC 4000 AXP host adapters, 2-8 Bus node ID plugs configuring, 2-11 Bus node IDs changing for DEC 4000 AXP host adapters, 2-6 changing for KFESA host adapters, 2-6 Bus node numbers changing for DEC 4000 AXP host adapters, 2-8

С

Cables See DSSI cables; Ground cables cdp command, 2–15 Configurations AXP only, 1–2 diskless DSSI buses, 2–9 dual-architecture, 1–2 Configurations (cont'd)

examining with power-up screen, 2–13 maximum number of enclosures, 1–7 power bus, 1–8 sample AXP only, 2–1, 2–3 sample dual-architecture, 2–4 Console commands cdp, 2–15 set bflag, 2–26 set boot, 2–26 set boot_osflags, 2–26 set boot_osflags, 2–26 set host -dup, B–5 set host -dup, B–5 set host -dup -dssi, 2–17 show device, B–1 Console device name, B–1

D

DECnet license, 1–5 Device parameters See Storage parameters Devices, missing, 2–13 DISK_ALCS parameter, B–4 DSSI adapter characteristics, 1–8 DSSI bus electrical lengths by enclosure, A–1 maximum lengths, 1–5 termination, 1–8 DSSI cables connecting, 2–12 order numbers, 2–13 variations, 2–13 DSSI connectors, 2–12 DSSI device name example of duplicate names, B-6 **DSSI** device parameters defined, B-3 function of, B-3 list of, B-3 modifying, 2–15 reprogramming, B-6 use by OpenVMS AXP, B-5 DSSI nodes, 1-2 **DSSI** parameters ALLCLASS, 2-13 NODENAME, 2-13 UNITNUM, 2–13 DSSI VMScluster guidelines, 1-8 DUP server utility, B-5 exiting, 2-21

Ε

Enclosures bus lengths, A-1 maximum number, 1-7 Environment variables bflag, 2-26 boot, 2-26 bootdef_dev, 2-26 boot_osflags, 2-26 NCRn_SETUP, 2-8

F

FDDI support, 1–3

G

Ground cables, 1–7 connecting, 2–12 Ground offset limits, 1–7 measuring, 1–7 Grounding requirements, 1–6

Η

Host adapters, 2–9 HSD05 array controller, 2–15 HSD05 bus node ID configuring, 2–11

Installation procedure, 2-8

L

Licenses DECnet, 1–5 VAXcluster software, 1–5 Licensing requirements, 1–5

Ν

NCRn_SETUP, 2–8 example, 2–9 Node name, setting with set host, 2–20 NODENAME parameter, B–5

S

SCSI device names conflicting, example of, 2-23 unique, example of, 2-24 SCSI drives DSSI VMScluster limitations, 1-3, 1-4, 2 - 25limits in a DSSI VMScluster, 1-4 SCSI node ID plugs configuring, 2-22 set bflag command, 2-26 set boot command, 2-26 set bootdef_dev command, 2-26 set boot_osflags command, 2-26 set host -dup command, 2-17, B-5 Setting DSSI parameters See cdp

show device command, B–1 Site verification, 1–6 Software installation, 2–27 Software requirements, 1–5 Storage bus locations, 2–9 Storage parameters described, B–3 examining, B–1 examining with set host, 2–17 use by OpenVMS, B–5 SYSTEMID parameter, B–5

Т

Tape serving, 1–3, 1–4 Troubleshooting, 3–1

U

Unit number labels, 2–20 Unit number, setting with set host, 2–19 UNITNUM parameter, B–4 UPS, 1–8

V

VAXcluster software license, 1–5 VMScluster capabilities, 1–1 restrictions, 1–3, 1–4 VMScluster software license, 1–5 Volume shadowing, 1–4

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825) and press 2 for technical assistance.

Electronic Orders

If you wish to place an order through your account at the Electronic Store, dial 800-234-1998, using a modem set to 2400- or 9600-baud. You must be using a VT terminal or terminal emulator set at 8 bits, no parity. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825) and ask for an Electronic Store specialist.

Telephone and Direct Mail Orders

From	Call	Write
U.S.A.	DECdirect Phone: 800-DIGITAL (800-344-4825) Fax: (603) 884-5597	Digital Equipment Corporation P.O. Box CS2008 Nashua, NH 03061
Puerto Rico	Phone: (809) 781-0505 Fax: (809) 749-8377	Digital Equipment Caribbean, Inc. 3 Digital Plaza, 1st Street Suite 200 Metro Office Park San Juan, Puerto Rico 00920
Canada	Phone: 800-267-6215 Fax: (613) 592-1946	Digital Equipment of Canada Ltd. 100 Herzberg Road Kanata, Ontario, Canada K2K 2A6 Attn: DECdirect Sales
International		Local Digital subsidiary or approved distributor
Internal Orders ¹ (for software documentation)	DTN: 264-3030 (603) 884-3030 Fax: (603) 884-3960	U.S. Software Supply Business Digital Equipment Corporation 10 Cotton Road Nashua, NH 03063-1260
Internal Orders (for hardware documentation)	DTN: 264-3030 (603) 884-3030 Fax: (603) 884-3960	U.S. Software Supply Business Digital Equipment Corporation 10 Cotton Road Nashua, NH 03063-1260

¹Call to request an Internal Software Order Form (EN-01740-07).

Reader's Comments

Alpha AXP DSSI VMScluster Installation and Troubleshooting Guide

EK-D4AXP-TS. B01

Your comments and suggestions help us improve the quality of our publications. Thank you for your assistance.

I rate this manual's:	Excellent	Good	Fair	Poor
Accuracy (product works as manual says)				
Completeness (enough information)				
Clarity (easy to understand)				
Organization (structure of subject matter)				
Figures (useful)				
Examples (useful)				
Index (ability to find topic)				
Page layout (easy to find information)				
I would like to see more/less				
What I like best about this manual is				
What I like least about this manual is				
I found the following errors in this manua Page Description	1:			
Additional comments or suggestions to imp	prove this ma	nual:		
For software manuals, please indicate whi	ch version of	the software	e you are us	ing:
Name/Title		Dept.		
Company			Date	
Mailing Address				
		Phone		

