MS7AA-FA Memory Module Service Guide

Order Number: EK-MS7AA-SV .A01

These instructions describe the procedure for identifying and replacing a failing SIMM on the VAX 7000/10000 or DEC 7000/10000 MS7AA-FA 2-gigabyte memory module.

Copyright © Digital Equipment Corporation. 1994. All rights reserved.

Digital Equipment Corporation Maynard, Massachusetts

The MS7AA-FA memory module is the 2-gigabyte memory module for VAX 7000/10000 and DEC 7000/10000 systems. It is populated with 36 64-Mbyte single in-line memory modules (SIMMs). Should a SIMM fail it can be replaced in the field.

These instructions tell how to identify the failing SIMM and how to replace a SIMM.

- Section 1 tells how to identify the failing SIMM from the operating system error log.
- Section 2 tells how to replace the SIMM.
- Section 3 tells how to identify the SIMM from the console level. This information may be needed if the operating system cannot be booted.

NOTE

The part number for the 64-Mbyte SIMM is 54-21718-01. This SIMM can only be used on a 2-Gbyte module.

1 How to Identify a Failing SIMM from an Operating System Error Log

First you must identify the failing SIMM.

- 1. From the error log, locate the error syndrome (for OpenVMS, see Example 1).
- 2. Determine if the string is odd or even; is it string 1, 3, 5, or 7, or string 0, 2, 4, or 6?
- **3.** Determine if the memory interface controller (MIC) error is a MIC A or a MIC B error.
- 4. Find the SIMM number in the matrix of Table 1.

For example, from the OpenVMS AXP error log in Example 1, you see:

- The MS7AA-FA module has an error syndrome 34 (see **0**).
- The failing string is 3, which is odd (see **2**).
- The MIC is B (see **③**).

Therefore, from Table 1 you find 34 in the first column, labeled Syndrome. The string, 3, is odd so you look at the columns labeled Odd. The number under MIC B is J31, the socket that holds the failing SIMM.

NOTE

The OSF/1 operating system error log will appear in the next version of this document.

Example 1: Sample OpenVMS System Error Report

VMS SYSTEM ERROR REPORT COMPILED 24-JAN-1994 08:28:00 PAGE 23. ERROR SEQUENCE 630. LOGGED ON: CPU_TYPE 00000002 DATE/TIME 21-JAN-1994 10:27:26.26 SYS_TYPE 0000003 SYSTEM UPTIME: 0 DAYS 16:29:20 SCS NODE: SUVB02 VMS V1.5 HW MODEL: 00000402 Hardware Model = 1026. MEMORY ERROR KN7AA DEC 7000 MODEL 620 CRD FLAGS 0000 LOG REASON 0004 RELATED ENTRY 1 OF 1 00000000 BAD PAGES 00000020 MEMDSC SIZE MEMDSC OFFSET 00000060 NUM OF FPRINTS 00000001 FPRINT SIZE 00000050 FPRINT OFFSET 00000080 MEMORY DESCRIPTOR #1 00000006 NODE LDEV 00004000 MCR 000000C 00000343 AMR MEMORY DESCRIPTOR #2 00000007 NODE LDEV 00004000 MCR 000000C AMR 0000034B 1 FOOTPRINTS IN THIS PACKET CRD FOOTPRINT #1 FOOTPRINT 0004000D 0000006 0 Syndrome = 34(X)Bit in Error = 6. Failing string = 3. Ø ً MICB error Failing node = 6. SYSTEM TIME 20-JAN-1994 20:18:02.93 00000000 0153AE00 LOW ADDRESS HIGH ADDRESS 00000000 115E2600 00000000 100DF800 CUM ADDRESS SCRUB BLOCKSIZE 00000040 STATIC FLAGS 0001 LOG REASON 0008 00000000 CALLER FLAGS SCRUB FAIL 00000000 MATCH COUNT 000000E SCRUB COUNT 0000000E LAST SCRUB TIME 21-JAN-1994 08:50:02.93

	String:	Even	Od	d		String:	Even	Ode	d	
	MIC		MIC			MI	MIC		MIC	
Syndrome	A	В	A	В	Syndrome	A	В	A	В	
00	na	na	na	na	51	J10	J34	J11	J35	
01	J22	J36	J23	J37	52	J10	J34	J11	J35	
02	J22	J36	J23	J37	54	J8	J28	J9	J29	
04	J20	J36	J21	J37	58	J4	J28	J5	J29	
07	J2	J24	J3	J25	61	J4	J18	J5	J19	
08	J18	J36	J19	J37	62	J4	J20	J5	J21	
0B	J22	J30	J23	J31	64	J4	J20	J5	J21	
0D	J2	J24	J3	J25	68	J10	J14	J11	J15	
0E	J14	J26	J15	J27	70	J4	J22	J5	J23	
10	J18	J32	J19	J33	80	J14	J26	J15	J27	
13	J8	J16	J9	J17	83	J10	J22	J11	J23	
15	J8	J20	J9	J21	85	J12	J18	J13	J19	
16	J14	J32	J15	J33	86	J20	J36	J21	J37	
19	J10	J36	J11	J37	89	J6	J26	J7	J27	
1A	J10	J26	J11	J27	8A	J12	J26	J13	J27	
1C	J8	J16	J9	J17	8C	J6	J22	J7	J23	
1F	J24	J32	J25	J33	8F	J18	J34	J19	J35	
20	J14	J34	J15	J35	91	J6	J28	J7	J29	
23	J12	J14	J13	J15	92	J10	J28	J11	J29	
25	J6	J18	J7	J19	94	J2	J28	J3	J29	
26	J20	J32	J21	J33	98	J8	J30	J9	J31	
29	J4	J26	J5	J27	A1	J2	J32	J3	J33	
2A	J10	J26	J11	J27	A2	J12	J30	J13	J31	
2C	J2	J24	J3	J25	A4	J12	J36	J13	J37	
2F	J6	J20	J7	J21	A8	J4	J30	J5	J31	
31	J8	J30	J9	J31	B0	J18	J34	J19	J35	
32	J6	J30	J7	J31	C1	J20	J32	J21	J33	
34	J12	J30	J13	J31	C2	J18	J34	J19	J35	
38	J2	J28	J3	J29	C4	J16	J28	J17	J29	
40	J14	J30	J15	J31	C8	J16	J28	J17	J29	
43	J6	J24	J7	J25	D0	J8	J22	J9	J23	
45	J2	J24	J3	J25	E0	J24	J34	J25	J35	
46	J16	J36	J17	J37	F1	J2	J16	J3	J17	
49	J8	J26	J9	J27	F2	J16	J32	J17	J33	
4A	J4	J32	J5	J33	F4	J22	J34	J23	J35	
4C	J6	J24	J7	J25	F8	J12	J14	J13	J15	
4F	J12	J16	J13	J17						

 Table 1:
 2-Gigabyte SIMM Isolation Matrix

2 How to Replace a SIMM

After you have determined the failing SIMM on the memory module, remove the module from the system and follow this procedure.

CAUTION

You must wear an antistatic wrist strap attached to the cabinet when you handle any modules.

- **1.** Remove the cover that shields side 1 of the module by removing the eight small Phillips screws.
- 2. Determine the location of the failing SIMM from Figure 1.
- **3.** Locate the row of SIMMs on the module that holds the failing SIMM.

Figure 1: SIMM J Connector Numbers

J37 J36 J35 J34 J33 J32 J30 J29 J28 J27 J26	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

BXB-0687-94

- 4. Beginning with the SIMM closest to the gate arrays, remove each SIMM up to and including the failing SIMM. To remove a SIMM, release the latches on both ends of the SIMM connector. Insert a #1 Phillips screwdriver as shown in Figure 2, and rotate the screwdriver until the latch releases. Open both latches. Then turn the SIMM at a 45 degree angle toward the gate arrays and pull the card out of the connector.
- 5. Put the failing SIMM aside for return to the appropriate repair facility.
- **6.** Insert a new SIMM in place of the failing SIMM, angling it into the connector at 45 degrees. Turn it to a vertical position until the latches snap into place. The connector is keyed in the center so that the correct side of the SIMM faces front.
- 7. Insert the other SIMMs back into their connectors.
- 8. Replace the module cover.

Figure 2: Removing a SIMM

Side View

BXB-0699A-94

3 How to Identify a Failing SIMM at Console Level on a DEC 7000/10000

While in console mode, you can determine which SIMM has failed. Example 2 shows a sample console session with the steps to take to identify a failing SIMM.

```
Example 2: Sample Console Display
                       a
>>> set mode diag
>>> set d_startup on
d_startup set to on
                       Ø
>>> show mem
Set
     Node
            Size Base Addr
                              Intlv
                                     Position
_ _ _
     ____
            ____
                  _____
                              ____
                                      _ _ _ _ _ _ _ _ _
      1 2048Mb 00000000 2-Way
A
                                        0
      3 \pm 2048MB = 2GB = 8000 0000 (hex)
>>> mem_ex -t 1 -sa 1000000 -ea 7ffffc0
                             4 # 8000 0000 - 40 = 7FFF FFC0
                        Device
                                  Pass Hard/Soft Test
                                                           Time
     ID Program
mem 0 0 0 20:59:54
     49 mem_ex
CPII 0
unexpected exception/interrupt through vector 00000066
process mem_ex, pcb = 007F0620
pc: 0000000 000D6B40 ps: 3000000 0000004
r2: 0000000 0013F8A0 r5: 0000000 00001F04
r3: 0000000 001ECCA0 r6: 0000000 1FBFFFF0
r4: 0000000 0000020 r7: FFFFFFF FFFFFF
              [listing of GPRs and FPRs]
Machine Check Logout - base: 00006000
                                     byte_count: 8000000 000001D8
das_debug: 00E00555 0000020
            0000000 0000000
flags:
offsets:
            000001A0 00000110
pt0:
            0000001 00000100
                                     pt1:
                                                    00000000 00000FC
                   [listing of registers]
            00000000 000007F
 lbesr2:
                                      lbesr3:
                                                    00000000 000007F
            0000000 03000500 5
 lbecr0:
                                     lbecr1:
                                                    00000000 000C8040
                                      \# 03000500 \times 20 (hex) = 6 000A000
            0000000 0000000
                                                    0000000 00000321
 lmmr0:
                                      lmmr1:
                   [more registers]
ms7aa0_lber:00000000 00040203
                                      ms7aa0_lbecr0: 0000000 03000500
ms7aa0_lbecr1:0000000 000C8040
                                      ms7aa0_mera:
                                                    00000000 00000C07
ms7aa0_msynda:00000000 000000F3
                                      ms7aa0_merb:
                                                    0000000 0000007
ms7aa0_msyndb:0000000 000000F3
Failing FRU: ms7aa0
                       6
>>> CPU:0 Halt Code = 1
operator initiated halt
PC = 13ee0c
>>> dep -1 ms7aa0:21c0 10000002
                                 6
>>> mem_ex -t 1 -f -sa 60000000 -l 2000000
                                           0
```

Example 2 (continued on next page)

ID Program	Device	Pass	Hard/S	oft	Test	Time
4f mem_ex	mem	0	0	0		21:01:29
<pre>>>> dep -1 ms7aa0:21c0 1 >>> dep -1 ms7aa0:2140 >>> dep -1 ms7aa0:2440 >>> mem_ex -t 1 -f -sa 6</pre>	.0000000 ff ff 50000000 -1	9 10 2000000	1			
ID Program	Device	Pass	Hard/S	oft	Test	Time
51 mem_ex	mem	0	0	0		21:01:31
>>> ex -l ms7aa0:2140 ms7aa0: 00002140 0000001	.5 .5	# Address of MERA register				
ms7aa0: 00002180 0000004	15	# Add		. MI		register
>>> ex -1 ms/aa0:4180 ms7aa0: 00004180 000000F	'3	# Addi	ress oi	MYS	SNDB 1	register
<pre>>>> ex -l ms7aa0:2100 ms7aa0: 00002100 0300050 >>></pre>	00 (b)	# Add	ress of	E FA	DR re	gister

Example 2 (Cont.): Sample Console Display

- Enter diagnostic mode.
- **2** Determine the size of physical memory using the **show memory** command.
- Subtract 40 from the highest memory address to determine the ending address for mem_ex.
- **O** Run mem_ex test 1 from 16 meg (100 0000) to the top of memory.
- **6** Multiply the contents of the LBERC0 register by 20 (hex) to get the failing address.
- **6** Determine the failing memory module, ms7aa0.
- **O** Disable ECC checking on the failing module.
- ❸ Initialize all of memory on the failing module by running mem_ex test 1 with the -f option on the 32 meg address block that contains the failing address. This will clear the double-bit errors that were generated during memory self-test.

```
Starting address = 30 0500 X 20 = 6000 A000 = failing byte address

^ from callout ®

Test address = 6000 0000
```

- Length = $20\ 0000$
- Enable ECC checking on the memory module by depositing 1000 0000 into Memory Diagnostic Register A.
- Clear the error registers on the memory module.
- **①** Run mem_ex test 1 with the -**f** option on the 32 meg address block that contains the failing address.
- **2** Examine Memory Error Register A on the failing memory module to determine the failing syndrome (see Figure 3).
- **ⓑ** Examine Memory Error Syndrome Registers A and B to determine the failing bank.

- **1** The contents of Memory Error Syndrome Register A gives the error syndrome.
- Examine the Failing Address Register (FADR) on the failing module. Use Table 2 to determine if the failing string is Odd or Even.
- **()** The contents of FADR indicates the string.

From this information you can identify the failing SIMM.

For example, from the console display in Example 2, you see:

- The MS7AA-FA module has an error syndrome 45 (see **@**).
- The string is even (see **O**). From the **show mem** command (see **O**) we know the interleave is 2-way. Using the contents of FADR **O** and Table 2 we know the string is even.
- The MIC is A (see **@**) because CERA is set in MERA (see **@** and Figure 3).

Therefore, from Table 1 you find 45 in the first column, labeled Syndrome. The failing string is even so you look at the columns labeled Even. The number under MIC A is J2, the socket that holds the failing SIMM.

Table 2:	Using FAD	R Bit to Determine Odd/Even String	
No. of 2-Gbyte Modules	Interleave Count	FADR Bit	
1*	2	bit 1 (0 = Even string 1 = Odd string)	
2	4	bit 2 (0 = Even string 1 = Odd string)	
4	8	bit 3 (0 = Even string 1 = Odd string)	

*The interleave count for one 2-Gbyte module with four 512-Mbyte modules is 4. Use FADR bit 2 in this case.

Figure 3: Memory Error Register A

NOTE

For more information about the memory registers, see the *MS7AA Memory Technical Manual*.