
DIGITAL PCI Development Platform
Reconfigurable Hardware Device for
the PCI Bus

User's Guide
Part Number: EK-PAMP1-UG. A01

April 1998

Digital Equipment Corporation
Maynard, Massachusetts

April 1998

Digital Equipment Corporation makes no representations that the use of its products in the manner described in this
publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication
imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written
license from DIGITAL or an authorized sublicensor.

© Digital Equipment Corporation 1998. All rights reserved.

The following are trademarks of Digital Equipment Corporation: DIGITAL, DIGITAL UNIX, and the DIGITAL logo.

The following are third-party trademarks:
Windows NT is a trademark of Microsoft Corporation.
Intel is a registered trademark of Intel Corporation.
Xilinx is a trademark of XILINX, Inc.

S3589

iii

Table of Contents

1 Introduction

1.1 General..1–1
1.2 Operating System Support ... 1–1
1.3 Platform Support ... 1–1

2 System Overview

2.1 Hardware... 2–1
2.1.1 PCI to User Area Interface FPGA .. 2–2
2.1.2 SROM and EEPROM... 2–2
2.1.3 User-Area FPGA.. 2–2
2.1.4 SRAM and DRAM... 2–2
2.1.5 Clocking Circuitry: System Clock and User Clock... 2–3
2.1.6 Mezzanine Cards ... 2–3
2.1.7 DMA Engine.. 2–3

2.2 Software .. 2–3
2.2.1 Device Driver .. 2–4
2.2.2 Related Software.. 2–4

2.3 Updates ... 2–4

3 PCI Development Platform Configuration and Installation

3.1 Hardware Configuration .. 3–1
3.1.1 Failsafe Jumper.. 3–1

3.2 Hardware Installation... 3–2

4 PCI Development Platform Software Kit Installation

4.1 Introduction ... 4–1
4.2 DIGITAL UNIX PCI Development Platform Software Kit Installation.................... 4–1

4.2.1 Deleting Old DIGITAL UNIX Device Driver Revisions 4–1
4.2.2 Preparing for Kit Installation.. 4–2
4.2.3 Installing the Kit .. 4–2
4.2.4 File List ... 4–4
4.2.5 Rebuilding the Kernel .. 4–5

4.3 Windows NT PCI Development Platform Software Installation 4–5
4.3.1 Installing the Software ... 4–5
4.3.2 Deleting PCI Development Platform Software Revisions 4–5

4.4 Installation Verification Procedure .. 4–6
4.4.1 PamTest... 4–6

iv

4.4.2 SRAM Test .. 4–7

5 Module Architecture

5.1 Introduction ... 5–1
5.2 PCI Interface to User-Area Connections .. 5–2

5.2.1 EBus .. 5–2
5.2.2 Rings ... 5–3

5.3 Clocks ...5–4
5.4 SRAM... 5–5
5.5 DRAM... 5–6
5.6 Mezzanine Connectors... 5–7

6 Address Map

6.1 Introduction ... 6–1

7 DMA Engine

7.1 Introduction ... 7–1
7.2 DMA Address Register: 0x2000 .. 7–1
7.3 DMA Command Register: 0x2000+8... 7–2
7.4 PCI Development Platform as Simultaneous Initiator and Target............................. 7–2

8 Interface Modes

8.1 Introduction ... 8–1
8.2 Static Mode ... 8–1

8.2.1 Static Mode and Clkusr.. 8–2
8.3 Promiscuous Mode .. 8–3
8.4 Transaction Mode.. 8–4

8.4.1 Target Transactions.. 8–5
8.4.2 Master Transactions ... 8–8
8.4.3 Requests from User-area .. 8–9

8.4.3.1 Bus Contention and AIF Cycles.. 8–9
8.4.3.2 Request Codes.. 8–9
8.4.3.3 Link Register in Transaction Mode ..8–10

8.4.4 Interrupts ...8–11
8.4.4.1 End of DMA Interrupt ..8–12
8.4.4.2 User Programmable Interrupt Through the Link Register8–12
8.4.4.3 User Programmable Interrupt Using the Ring Bits..............................8–13

9 Security Considerations

9.1 Introduction ... 9–1

10 Software

10.1 Run-time Libraries...10–1
10.1.1 PamRT.h..10–1

10.1.1.1 PamOpen..10–1
10.1.1.2 PamClose ...10–2
10.1.1.3 PamDownloadBitstream...10–2
10.1.1.4 PamDownloadFile ..10–3

v

10.1.1.5 PamSetMode...10–3
10.1.1.6 PamClockOn...10–4
10.1.1.7 PamClockOff ..10–4
10.1.1.8 PamClockStep...10–5
10.1.1.9 PamWriteWord ...10–5
10.1.1.10 PamReadWord ..10–6
10.1.1.11 PamFlush ..10–6

10.1.2 PamState.h..10–7
10.1.2.1 PamLcaStateTable ..10–7
10.1.2.2 PamStateCLB..10–7
10.1.2.3 PamStateIOB...10–8
10.1.2.4 PamStateIsRam ...10–9
10.1.2.5 PamStateLUT..10–10

10.1.3 PamFriend.h..10–11
10.1.3.1 PamFindBoard ..10–11
10.1.3.2 PamReadInfo...10–11
10.1.3.3 PamRegisterLayout ...10–12
10.1.3.4 PamResetAll ...10–12
10.1.3.5 PamDownloadLcas..10–13
10.1.3.6 PamReadBackMinLength..10–13
10.1.3.7 PamReadBackBitstream..10–14
10.1.3.8 PamSetClockSpeed ...10–14
10.1.3.9 PamClockPeriod..10–15
10.1.3.10 PamWaitClock ..10–15

10.2 PAM Register Declaration ..10–16

11 Command Line Controls for PCI Development Platform

11.1 Introduction ..11–1
11.2 PamTest..11–1
11.3 Mergebit ...11–4
11.4 Prom (ppam_prom for DIGITAL UNIX) ..11–4
11.5 PamControl...11–5
11.6 Pciperf (ppam_pciperf for DIGITAL UNIX)..11–6

12 Restoring Original PCI Interface Design

12.1 Introduction ..12–1

A Major PCI Development Platform User Buses/Pins

B PCI Development Platform Special Purpose/Restricted Use Pins

C PAM Driver Interfaces for DIGITAL UNIX

PAM Driver Interfaces ..C–1
open() ...C–1
close()...C–2
ioctl()..C–2

PAMIOUVTOPHY..C–3
PAMIOGETOWNER...C–3
PAMIOGETRECVR..C–4

vi

PAMIOSETRECVR...C–4
PAMIOSETOWNER...C–4
PAMIODISABLEINTR or PAMIOENABLEINTR..C–4
PAMIOGETINTRTIME ..C–4
PAMIORESTORECONFIG...C–4
PAMIOUVTOBUS..C–4
PAMIOGETBUSCLKPSPERIOD..C–4
PAMIOGETDEVMEMSIZE..C–4

Protecting Resources in an SMP Environment ...C–4

D PAM Driver Interfaces for Windows NT

Glossary

Figures

Figure 2-1 PCI Development Platform Module Overview... 2–1
Figure 2-2 PCI Development Platform Module... 2–2
Figure 3-1 Failsafe Jumper and SROM Configuration for Boot-up................................ 3–1
Figure 5-1 PCI Development Platform Module Architecture... 5–1
Figure 5-2 EBus Connections ... 5–2
Figure 5-3 Ring Bus ... 5–3
Figure 5-4 Clocks ... 5–4
Figure 5-5 SRAM Banks... 5–5
Figure 5-6 DRAM.. 5–6
Figure 5-7 Mezzanine Connectors .. 5–7
Figure 8-1 Static Mode Link Register ... 8–1
Figure 8-2 Bit Flow in Transaction Mode ... 8–4

Tables

Table 2-1 PCI Development Platform Software .. 2–3
Table 8-1 Promiscuous Mode Bit Assignments... 8–3
Table 8-2 State Codes... 8–5
Table A-1 Major PCI Development Platform User Buses/Pins......................................A–1
Table B-1 PCI Development Platform Special Purpose/Restricted Use PinsB–1

vii

Preface

Overview
The DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus
User's Guide describes how to install and configure the PCI Development Platform
reconfigurable hardware module.

Organization
This guide is organized as follows:

Chapter 1 provides an introduction to the PCI Development Platform reconfigurable
hardware module.

Chapter 2 provides an overview of the hardware, device driver, software, and updates.

Chapter 3 describes the hardware installation and configuration.

Chapter 4 describes the PCI Development Platform software kit installation.

Chapter 5 provides information on the physical design of the PCI Development Platform
module.

Chapter 6 describes the PCI Development Platform module address map.

Chapter 7 describes the PCI Development Platform module DMA engine.

Chapter 8 provides information on the supported interface modes.

Chapter 9 contains information on security considerations.

Chapter 10 describes the run-time library functions.

Chapter 11 describes the command line tools for controlling the PCI Development Platform
module and other utilities in the software package.

Chapter 12 provides information on restoring the original PCI interface design.

Appendix A contains a table listing the major user signal buses along with pin connections
and their use.

Appendix B contains a table listing the special purpose/restricted use signals along with the
pin connections present, their special use, and restrictions for user application.

Appendix C describes the PAM driver interfaces for DIGITAL UNIX.

Appendix D describes the PAM driver interfaces for Windows NT.

viii

Conventions
This document uses the following conventions:

Convention Meaning

Note A note calls the reader’s attention to any item of information that may be of
special importance.

Caution A caution contains information essential to avoid damage to the equipment.

Warning A warning contains information essential to the safety of personnel.

Italic type Italic type emphasizes important information, indicates variables, and
indicates complete titles of manuals.

bold type Bold type indicates text that is highlighted for emphasis.
Monospaced In text, this typeface indicates the exact name of a command, routine,

partition, pathname, directory, or file.

______________________________ Note ___________________________

The DIGITAL UNIX commands used in this manual are case sensitive and must
be entered as shown.

__

Reader’s Comments
DIGITAL welcomes your comments on this or any other manual. You can send your
comments to DIGITAL in the following ways:

• Internet electronic mail: reader-comments@digital.com

• Mail:

Digital Equipment Corporation

Shared Engineering Services

PKO3-2/21J

129 Parker Street

Maynard, MA 01754-2199

For additional information, call 1-800-DIGITAL.

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 1–1

1
Introduction

1.1 General
This document describes the installation and use of the PCI Development Platform
reconfigurable hardware module.

The PCI Development Platform module is a reconfigurable hardware device comprised of
five Xilinx Field Programmable Gate Arrays (FPGAs). One FPGA controls the PCI bus
interface while the other four are available for user configuration. The module also contains
SRAM and four DRAM connectors that can be utilized at the user’s discretion.

This document describes the following:

• Hardware architecture and functionality

• Installing the PCI Development Platform module

• Installing and configuring the device driver

• Configuring the user area gate arrays

• Support software

1.2 Operating System Support
The PCI Development Platform reconfigurable hardware module is supported on version 4.0
or higher of DIGITAL UNIX or version 4.0 or higher of Windows NT. The Windows NT
version is compatible with Intel and Alpha based systems, while the DIGITAL UNIX version
is for Alpha systems only.

1.3 Platform Support
The PCI Development Platform reconfigurable hardware module is supported on the
DIGITAL UNIX (Alpha) platform and the Windows NT (Alpha and Intel) platform with a
PCI-compliant 32-bit or 64-bit bus and a free full-size PCI slot. Refer to the Software Product
Information for the specific platforms that are supported.

SES Template Word 7 Blank Page Fix by Peter LaQuerre

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 2–1

2
System Overview

2.1 Hardware
The PCI Development Platform module is a generic PCI board based on reconfigurable logic.
The hardware is built around SRAM based Field Programmable Gate Arrays (FPGAs) from
Xilinx Inc. These components can be infinitely reprogrammed in circuit. Programming time
is measured in tens of milliseconds. The reconfigurable nature of the board makes it useful
for an extremely broad class of applications. Figure 2-1 shows a PCI Development Platform
module overview and Figure 2-2 shows the PCI Development Platform module.

____________________________ Caution __________________________

It is possible to program the FPGAs in a manner that can cause physical damage
to the module or system.
__

Figure 2-1 PCI Development Platform Module Overview

PCI
Interface
FPGA

User
Area
FPGA

User
Area
FPGA

User
Area
FPGA

User
Area
FPGAclocks

SRAM

SRAM DRAM

Download/
Readback

P
C

I

Mezzanine
Board
Connectors

System Overview

2–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

Figure 2-2 PCI Development Platform Module

2.1.1 PCI to User Area Interface FPGA
The board uses a Xilinx 4000 series FPGA to interface directly to a PCI bus. This FPGA is
programmed to contain a proprietary Digital Equipment Corporation PCI interface. The board
may be used as a 5V, 33 MHz, 32-bit or 64-bit PCI target and initiator.

2.1.2 SROM and EEPROM
The DIGITAL PCI interface firmware is stored in both EEPROMs and SROM. The firmware
in the EEPROMs is reconfigurable by the user. The PROM used at power-up is determined by
the position of a failsafe jumper located in the top left corner of the board.

_____________________________Caution__________________________

Although the firmware in the EEPROMs is reconfigurable, any changes to this
firmware may affect compatibility with the device driver and support software
and will not be supported by DIGITAL.

__

2.1.3 User-Area FPGA
Behind the PCI interface FPGA (PIF) is a 2 x 2 user matrix of PQ208 footprints which,
depending on the version, are populated with Xilinx 4000 series FPGA devices. The user
matrix can be programmed from the host system via the interface FPGA. Devices in the user
matrix can be programmed individually or in parallel with other user matrix devices. The
matrix connects to the SRAM, DRAM modules, and IEEE P1386 daughter board connectors
(Common Mezzanine Card/PCI Mezzanine Card).

2.1.4 SRAM and DRAM
Two independent SRAM banks are provided, each is 64 k x 16-bits. These offer small fast
scratch pad memory using 12ns SRAM.

DRAM modules provide large amounts of local storage, which can be read/written in excess
of 100 MB/s to provide bulk storage independent of the host memory system. The board has
four angled 72-pin SIMM connectors. The data connections are shared. There are two address
inputs, each going to two SIMMs. This allows the SIMMs to be operated in an interleaved
manner. The data connection supports memories up to 36 bits wide. There are 12 address
lines supporting up to four 64 M modules. To meet the dimension limits of a single PCI slot,
the DRAM modules used should be 1-inch or less in depth. Deeper modules may be used
provided the next slot is empty or it contains a short PCI card. Since all the logic controlling
the SIMMs would be in user FPGAs, it would be possible to use any kind of 5V 72-pin
SIMM.

System Overview

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 2–3

2.1.5 Clocking Circuitry: System Clock and User Clock
The PCI Development Platform module has two independent clock systems, the user clock
and the system clock, each of which is distributed to all of the FPGAs. The system clock is a
copy of the PCI clock that has been recovered with a PLL. The system clock provides an in-
phase copy of the PCI clock at the PCI frequency or double the PCI frequency.

The user clock is the output of a programmable frequency generator. The frequency range of
the user clock is 400 kHz to 100 MHz with a resolution of about 0.5%. The user clock can be
stopped, stepped, or double-stepped under software control. The user clock has no defined
phase relation to the PCI clock.

2.1.6 Mezzanine Cards
The board provides a daughter card facility conformant with the IEEE P1386 Common
Mezzanine Card (CMC) standard. Short, single width, mezzanine cards are supported.

With appropriate user FPGA programming, the mezzanine card may use PCI protocols (IEEE
P1386.1) that are 32-bit or 64-bit wide with 64 extra uncommitted I/Os, or a custom protocol
may be developed using only the P1386 layer. Thus, the mezzanine card allows electrical
adaptation for external connections through the development of simple low-cost adapter cards
using a custom protocol as well as the direct connection of standard commercially available
PCI Mezzanine Cards (PMCs).

2.1.7 DMA Engine
The PCI Development Platform module contains a simple but flexible DMA engine
controlled by two registers. The DMA engine only supports 32-bit aligned addresses, but does
support 32-bit and 64-bit data transfers. The following burst order and data widths are
supported:

• Linear increment

• Intel cacheline wrap mode

• Cacheline wrap

• Linear increment (request 64-bit)

2.2 Software
The following sections describe the software used with the PCI Development Platform
module.

Table 2-1 lists the software used with the PCI Development Platform module.

Table 2-1 PCI Development Platform Software

Software Platforms Distributed as Language

Drivers DIGITAL UNIX (Alpha)
Windows NT (Alpha & Intel)

Binary and Source C

PamRT run-time
library

DIGITAL UNIX (Alpha)
Windows NT (Alpha & Intel)

Binary and Source C

Testing software DIGITAL UNIX (Alpha)
Windows NT (Alpha & Intel)

Binary and Source C

Support tools DIGITAL UNIX (Alpha)
Windows NT (Alpha & Intel)

Binary and Source C

System Overview

2–4 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

2.2.1 Device Driver
The PCI Development Platform drivers allow the board to be mapped to a user application's
address space and provide support for allocation and translation of memory, and fielding of
interrupts.

2.2.2 Related Software
The accompanying software contains three major items; run-time libraries, testing software,
and support tools.

The PamRT C language run-time library allows the user to write applications to control the
board and communicate with user developed circuits that have been downloaded into the
board. It also supports download and read-back of user circuits, setting clocks, and other
functions.

Testing software consists of PamTest , a verification test used to ensure that the board is
performing some basic functions and the hardware is reliable. The PCI Development Platform
module is a programmable gate array board; therefore, the functional test software focuses
its’ coverage on the communication between the board components. In other words, PamTest
is not a design verification tool.

The Xilinx design tools create individual bit streams for each FPGA. These can be
downloaded as a single entity, simplifying the downloading procedure of designs. The
support tools provided by DIGITAL are used to concatenate the bit streams together when
downloading to the Xilinx user FPGAs and for reading bit streams from the FPGAs and the
firmware from the EEPROM. The support tools also include an application that can be used
to update the PIF firmware in the EEPROMs.

2.3 Updates
For updates on the current software and firmware kits, see the World Wide Web site at
location:

http://www.digital.com/customsystems/platforms/realtime_manu.html

This site also contains the answers to the most frequently asked questions and other
miscellaneous information concerning the PCI Development Platform module.

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 3–1

3
PCI Development Platform Configuration and

Installation

3.1 Hardware Configuration
The PCI Development Platform module communicates with the host system across the PCI
bus via the PCI compliant PCI interface FPGA (PIF). This FPGA may be reprogrammed after
initial boot-up, but it is recommended that the DIGITAL supplied PCI design be loaded into
this FPGA during initial boot-up. This allows for initial confirmation of communication
between the PCI Development Platform module and the platform.

3.1.1 Failsafe Jumper
A failsafe jumper is provided to select the source of the configuration bit stream for the PCI
interface FPGA. As shipped, the SROM and EEPROMs are loaded with the DIGITAL PCI
compliant firmware. When the failsafe jumper is located in the “on” position (see Figure 3-1),
the PCI interface FPGA is loaded with the firmware from the SROM. When the failsafe
jumper is located in the “off” position (default), the PCI interface FPGA is loaded from the
EEPROMs. The original PCI interface firmware can always be restored by rebooting after
placing the failsafe jumper in the “on” position (see Chapter 12).

Figure 3-1 Failsafe Jumper and SROM Configuration for Boot-up

o n

o f f

f a i l s a fe

PCI Development Platform Configuration and Installation

3–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

3.2 Hardware Installation
The PCI Development Platform module can be installed in either a 32-bit or a 64-bit PCI bus.
A mezzanine card (CMC or PMC) can be connected to the PCI Development Platform
module using the stand-off pin and mezzanine connector. There is also space for four
Dynamic RAM modules. For initial boot-up and testing, a mezzanine card and DRAM are not
needed. Physical installation of the module should be performed with the host platform
powered off.

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 4–1

4
PCI Development Platform Software Kit

Installation

4.1 Introduction
The PCI Development Platform Software Kit contains two CDs (one for Windows NT and
one for DIGITAL UNIX). Each disk contains a device driver, run-time library, schematics,
and this user guide. The installation process for DIGITAL UNIX and Windows NT is
different, so they are covered separately in the following sections.

4.2 DIGITAL UNIX PCI Development Platform Software Kit
Installation

The DIGITAL UNIX PCI Development Platform Software Kit is installed by using the
setld command.

_____________________________ Note____________________________

The DIGITAL UNIX commands are case sensitive and must be entered as shown.
__

4.2.1 Deleting Old DIGITAL UNIX Device Driver Revisions
If there is an old version of the PCI development platform software kit on the system, it
should be removed before installation or reinstallation of the new kit. The easiest way to do
this is using the setld command. This command (setld –i) lists all the currently installed
software subsets. The correct command and sample output are shown below:

setld –i | grep –i pam

PRLPPAMDRV247 installed PAM PCI Device Driver

An installed software subset can be removed using the following command:

setld –d {software subset name as shown above}

For example, to remove the PAM PCI device driver above use:

setld –d PRLPPAMDRV247

All installed software subsets associated with the PCI development platform software kit
should be deleted before installing the new software kit.

PCI Development Platform Software Kit Installation

4–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

4.2.2 Preparing for Kit Installation
After inserting the Digital UNIX Device Driver for the PCI Development Platform
Reconfigurable Hardware Array CD-ROM in the system’s CD-ROM device, mount it and
change the working directory. For example:

mount -r /dev/rz4c /mnt

cd /mnt/PAMDRV

______________________________ Note ___________________________

The actual CD-ROM device and mount point may be different from above.
__

4.2.3 Installing the Kit
The PCI development platform software kit is installed using the standard setld command.
The command for installation and corresponding output are shown below. The command
(setld -l .) should be executed from the same directory that the driver package is in.

setld -l .

The subsets listed below are optional:

There may be more optional subsets than can be presented on a
single screen. If this is the case, you can choose subsets screen
by screen or all at once on the last screen. All of the choices
you make will be collected for your confirmation before any
subsets are installed.

1) C++ Logic Description Library

2) Miscellaneous Support Tools

3) PAM PCI Device Driver

4) Pam Source Packages

5) Pamette Runtime Library

6) Pamette Sample Applications

7) Pamette Test Programs

--- MORE TO FOLLOW ---

Enter your choices or press RETURN to display the next screen.

Choices (for example, 1 2 4-6):

Enter your choices or press RETURN to display the next screen.

Choices (for example, 1 2 4-6): 1-7

Or you may choose one of the following options:

8) ALL of the above

9) CANCEL selections and redisplay menus

10) EXIT without installing any subsets

Add to your choices, choose an overriding action or press RETURN
to confirm previous selections.

Choices (for example, 1 2 4-6): 1-7

You are installing the following optional subsets:

PCI Development Platform Software Kit Installation

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 4–3

C++ Logic Description Library

Miscellaneous Support Tools

PAM PCI Device Driver

Pam Source Packages

Pamette Runtime Library

Pamette Sample Applications

Pamette Test Programs

Is this correct? (y/n): y

7 subset(s) will be installed.

Loading 1 of 7 subset(s)....

PAM PCI Device Driver

 Copying from . (disk)

 Verifying

Loading 2 of 7 subset(s)....

Pamette Test Programs

 Copying from . (disk)

 Verifying

Loading 3 of 7 subset(s)....

Pamette Source Package

 Copying from . (disk)

 Verifying

Loading 4 of 7 subset(s)....

Pamette Sample Applications

 Copying from . (disk)

 Verifying

Loading 5 of 7 subset(s)....

Pamette Runtime Library

 Copying from . (disk)

 Verifying

Loading 6 of 7 subset(s)....

C++ Logic Description Library

 Copying from . (disk)

 Verifying

Loading 7 of 7 subset(s)....

Miscellaneous Support Tools

 Copying from . (disk)

 Verifying

7 of 7 subset(s) installed successfully.

PCI Development Platform Software Kit Installation

4–4 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

Configuring "PAM PCI Device Driver" (PRLPPAMDRV247)

To enable this functionality, rebuild the system kernel using
doconfig with no command flags.

Configuring "Pamette Test Programs" (PRLPAMTEST216)

Configuring "Pam Source Packages" (PRLPAMSRC260)

Configuring "Pamette Sample Applications" (PRLPAMSAMP205)

Configuring "Pamette Runtime Library" (PRLPAMRT151)

Configuring "C++ Logic Description Library" (PRLPAMDC231)

Configuring "Miscellaneous Support Tools" (PRL1UTL124)

4.2.4 File List
After the kit is installed, the setld –i command will display all of the currently installed
subsets. The following subsets are installed during the PCI development platform installation:

PRL1UTL124 Miscellaneous Support Tools

PRLPAMDC231 C++ Logic Description

PRLPAMRT151 Pamette Runtime Library

PRLPAMSAMP205 Pamette Sample Applications

PRLPAMSRC260 Pam Source Packages

PRLPAMTEST216 Pamette Test Programs

PRLPPAMDRV247 Pam PCI Device Driver

By appending the subset name to the setld –i command, information on content and
location of the files within the subset is revealed. The following example shows the contents
of the Pam PCI Device Driver. The device driver is in the PRLPPAMDRV241 subset. This
name is appended to the setld –i command as follows.

setld –i PRLPPAMDRV247

The resulting file list is show below.

./usr/opt/PRLPPAMDRV240

./usr/opt/PRLPPAMDRV240/config.file

./usr/opt/PRLPPAMDRV240/files

./usr/opt/PRLPPAMDRV240/pci_data

./usr/opt/PRLPPAMDRV240/ppam.c

./usr/opt/PRLPPAMDRV240/stanza.static

./usr/sys/include/sys/ppamio.h

PCI Development Platform Software Kit Installation

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 4–5

4.2.5 Rebuilding the Kernel
After the driver is installed using the setld command , the kernel has to be rebuilt and the
system has to be rebooted. The kernel can only be rebuilt by root, using the following
command:

doconfig

The user is then prompted to decide what options to be included with the new kernel. This
configuration is typically left up to the system administrator. After the kernel is rebuilt, it
should be moved to the root directory.

mv /sys/{ system name }/vmunix /

The system name may be the computer name or a different name assigned by the system
administrator. After the doconfig command has finished building the new kernel, the path
to the new kernel will be shown. It is the kernel in this path that should be moved to the root
directory.

4.3 Windows NT PCI Development Platform Software Installation
The Windows NT PCI development platform software is installed by using an installation
shield.

4.3.1 Installing the Software
To install the PCI Development Platform software, place the CD-ROM in the CD-ROM
drive. From the start button, go to run and execute D:\setup_alpha or
D:\setup_intel (this assumes the CD-ROM drive letter is D). An installation shield will
load. If a version of the Pamette software is currently installed, the user is prompted for
permission to remove the old version. It is recommended that the user remove older versions
of the software kit before preceding. The license agreement is presented next. After reading
the agreement, click the next button. The software allows different subsets to be installed. It
is recommended that the PCI Pamette Driver and PamRT subsets be installed. The PamDC
and Samples subsets are optional. The installation can now proceed by clicking the next
button. Follow the directions on the screen to complete the installation of the software kit.

4.3.2 Deleting PCI Development Platform Software Revisions
The software kit can be removed by going from start -> settings -> control panel, on the
Windows NT menu bar. In the control panel window, double click the Add/Remove
Programs icon. Click on the Pam Software Kits line in the lower window, then click the
Add/Remove button and confirm the removal of the program.

PCI Development Platform Software Kit Installation

4–6 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

4.4 Installation Verification Procedure
The following sections provide the procedure for running tests to verify proper hardware and
software installation.

4.4.1 PamTest
After the software is installed and the system is rebooted, the module’s operating condition
can be tested with the PamTest utility. The following code displays the options associated
with PamTest . It is recommended that the user begin with PamTest –C 0 . (Chapter 11
describes the other software utilities that can be used to control the module from the
command line in Windows NT or DIGITAL UNIX.) The executable for PamTest is located
in the /usr/bin directory under DIGITAL UNIX and Windows NT executable is located in
c:\Pam\bin directory. The following statement describes the use of the PamTest . On
Windows NT systems, PamTest is run from the MS-DOS prompt as shown below:

C:\pam\bin\PamTest –C 0

On DIGITAL UNIX systems, the PamTest is run from the command line as shown below:

/usr/bin/PamTest –C 0

The appropriate result for DIGITAL UNIX and Windows NT is shown below. If PamTest
does not run and a runtime error results, please check the installation procedure.

-- PamTest of Aug 18 19971 15:18:11 --

Board : 2.1 Firmware : 1.8 Serial Number : 0

Config : 4020E 4020E 4020E 4020E

Download OK

Clock OK

Connect OK

Readback OK

Sram OK

Intr OK

Ebus OK

Note:

The PamTest application is currently designed for PCI buses that run at 33.3 MHz. Many PCI
buses do not meet this requirement (the PCI specification only requires a PCI bus to operate
at less than or equal to 33.3 MHz). This would cause the Pamtest application to fail during the
clock test. If PamTest reports a clock frequency less than 33.3 MHz, your module may be
functioning correctly. To check the functionality of the board run the following PamTest
option, which excludes the clock test.

On Windows NT systems, run the following command from the MS-DOS prompt:

C:\pam\bin\PamTest –C 0 –e clock

On DIGITAL UNIX systems, the appropriate command is shown below:

/usr/bin/PamTest –C 0 –e clock

The appropriate result for DIGITAL UNIX and Windows NT is shown below.

-- PamTest of Aug 18 19971 15:18:11 --

PCI Development Platform Software Kit Installation

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 4–7

Board : 2.1 Firmware : 1.8 Serial Number : 0

Config : 4020E 4020E 4020E 4020E

Download OK

Connect OK

Readback OK

Sram OK

Intr OK

Ebus OK

4.4.2 SRAM Test
SRAM Test checks the functionality of the onboard SRAM. In testing the SRAM, the module
programs the FPGAs to complete the connection between the PCI interface and the SRAM
memory; therefore, this test adds coverage to the PamTest utility. The following statement
describes the use of the SRAM Test. On Windows NT systems, the SRAM Test is run from
the MS-DOS prompt as shown below:

C:\pam\bin\sramtest

On DIGITAL UNIX systems, the SRAM Test is run from the command line as shown below:

/usr/bin/ppam_sramtest

The SRAM test returns a passed message if the SRAM is functioning correctly:

Sramtest passed

SES Template Word 7 Blank Page Fix by Peter LaQuerre

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 5–1

5
Module Architecture

5.1 Introduction
To completely utilize the functional and programmable capabilities of the PCI Development
Platform module, the designer must have an in-depth knowledge of the interconnections on
the module, the resources within the FPGA, and the accompanying software including run-
time libraries and drivers. The accompanying schematics and software code, along with the
technical specifications for the FPGAs, are necessary for implementing an actual design.

To understand the host interface of the PCI Development Platform module, one must first be
familiar with the physical resources that exist for communication between the PCI interface
FPGA (PIF), which has a relatively fixed configuration, and the four user-area FPGAs, which
are programmed with application specific configurations. In the schematics1, the PIF is called
the pcilca. The usrlca0, usrlca1, usrlca2, and usrlca3 comprise the user-area.
The overall architecture of the PCI Development Platform module is shown in Figure 5-1.
The available resources for the PIF user-area interface are presented in the following sections.

Figure 5-1 PCI Development Platform Module Architecture

FPGA

FPGA

FPGA

FPGA

FPGA

SRAM

SRAM DRAM

64 37

36

40

98

68

40 20

16+16

16+16 28
63

Mezzanine

Board

Connectors

PCI

1 The schematics are contained on the installation disk as a postscript file, ppschema.ps.

Module Architecture

5–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

5.2 PCI Interface to User-Area Connections
The following sections describe the PCI interface to user-area connections.

5.2.1 EBus
EBus<35:0> (east bus) and CnfgP_ld.din 1 constitute a 37-bit wide bus joining the
pcilca , usrlca0, and usrlca1 FPGAs (see Figure 5-2). CnfgP_ld.din also connects
to the download input of the PIF and its serial ROMs and is used during PIF configuration
and firmware upgrades, but during normal operation it is treated as an extension of
EBus<35:0> .

Figure 5-2 EBus Connections

pcilca

Usrlca0

Usrlca1

Usrlca2

Usrlca3

clocks

sram

sram dram

Mezzanine
Board
Connectors

Download/
Readback

P
C

I

1 Refer to the schematics for reference on all physical components.

Module Architecture

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 5–3

5.2.2 Rings
The Ring<1:0> is a 2-bit wide bus that connects to all five FPGAs (see Figure 5-3). The
Ring pins are privileged in that they connect to pins that can directly drive FPGA global
buffers.

Figure 5-3 Ring Bus

pcilca

Usrlca0

Usrlca1

Usrlca2

Usrlca3

clocks

sram

sram dram

Mezzanine
Board
Connectors

Download/
Readback

P
C

I

Module Architecture

5–4 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

5.3 Clocks
The PCI Development Platform module has two independent clock systems, each of which
are distributed to all FPGAs (see Figure 5-4).

Clksys is a copy of the PCI clock that has been recovered with a Phase-Locked Loop (PLL).
The clock recovery circuit is a Motorola MC88915T. In addition to producing a
buffered low skew copy of the input, Clksys can, under software control, be put into a
mode in which its output is double the frequency of the PCI clock. Thus Clksys
provides an in-phase copy of the PCI clock at the PCI frequency or double the PCI
frequency. This PLL can also produce an in-phase copy of an externally supplied
clock (over the mezzanine connector). The clock source selection signal is driven
from pin 5 on Usrlca3.

Clkusr is the output of an ICD2053B programmable frequency generator. This clock can be
set to frequencies in the range 400 kHz to 100 MHz in steps of about 0.5%.
Additionally, Clkusr clock can be stopped, stepped, or double-stepped1 under software
control. Clkusr has no defined phase relation to the PCI clock.

Figure 5-4 Clocks

pcilca

Usrlca0

Usrlca1

Usrlca2

Usrlca3

clocks

sram

sram dram

Mezzanine
Board
Connectors

Download/
Readback

P
C

I

1 Double-stepped means from the stopped state two clicks are issued by Clkusr after which the clock
returns to the stopped state.

Module Architecture

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 5–5

5.4 SRAM
The Development Platform module has two separate SRAM banks (see Figure 5-5), one for
Usrlca0 and the other for Usrlca1 . Each bank contains 128 Kbytes of storage. This
SRAM is fast asynchronous memory capable of operating at clock speed above 80 MHz. The
SRAM can be used to hold state bits, data in intermediate stages of computation or other
necessary storage. Larger amounts of data can be stored in DRAM modules, which may be
placed directly on the module and is discussed in Section 5.5.

Figure 5-5 SRAM Banks

pcilca

Usrlca0

Usrlca1

Usrlca2

Usrlca3

clocks

sram

sram dram

Mezzanine
Board
Connectors

Download/
Readback

P
C

I

Module Architecture

5–6 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

5.5 DRAM
Four 72-pin SIMMs DRAM connectors are present on the Development Platform module.
The DRAM is connected between the mezzanine card connectors and Usrlca3 (see Figure 5-
6). There is no DRAM controller on the module; consequently, any 72-pin SIMMs can be
used on the board. The appropriate control logic for the SIMMs needs to be placed in Usrlca3
or on the daughter board. The DRAM is meant for storage of bulk data, while the SRAM
provides fast access to smaller amounts of data.

Figure 5-6 DRAM

pcilca

Usrlca0

Usrlca1

Usrlca2

Usrlca3

clocks

sram

sram dram

Mezzanine
Board
Connectors

Download/
Readback

P
C

I

Module Architecture

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 5–7

5.6 Mezzanine Connectors
The Development Platform module supports short, single width, mezzanine cards conformant
with the IEEE P1386 Common Mezzanine Card Standard. The module also has the capability
of supporting PCI mezzanine Cards. Similar to the DRAM connectors, the control logic for
the mezzanine cards has to be developed for each application. Usrlca2 and Usrlca3
connect directly to the mezzanine card.

When the mezzanine card is placed on the Development Platform module, one end of the
card adjoins the PCI bracket. This allows external connectors (see Figure 5-7) and cabling to
attach directly to the daughter board through an opening in the PCI bracket. The use of a
custom daughter board allows the Development Platform module to adapt to a variety of
applications. Daughter boards can be used for data collection and other I/O communications.
Specialized functions, such as JPEG and MPEG compression, can be accomplished by fitting
daughter boards with application specific chips or processors.

Figure 5-7 Mezzanine Connectors

pcilca

Usrlca0

Usrlca1

Usrlca2

Usrlca3

clocks

sram

sram dram

Download/
Readback

P
C

I

Mezzanine
Board
Connectors

SES Template Word 7 Blank Page Fix by Peter LaQuerre

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 6–1

6
Address Map

6.1 Introduction
PCI Development Platform decodes its configuration space (mandatory for all PCI devices),
and a single 16 MB memory space region. The pam value returned by PamOpen is a pointer
to the base of the memory space region. The memory space region is subdivided as follows:

Address range Contents

0x0 ... 0x3f struct PamRegs

0x40 ... 0x3ff 15 more aliased copies of PamRegs

0x400 ... 0x1fff < reserved >

0x2000 ... 0x200b DMA engine

0x200c ... 0x ffff < reserved >

0x10000 ... 0x1003f aliased copy of PamRegs with secure access

0x10040 ... 0x103ff 15 more aliased copies of PamRegs

0x10400 ... 0x11fff < reserved >

0x12000 ... 0x1200b aliased copy of DMA engine

0x1200c ... 0x1ffff < reserved >

0x20000 ... 0x1000000 user transaction region

_____________________________ Note____________________________

Most users only need to know that the first 128 kB of address space is treated
differently from the rest.
__

• struct PamRegs is defined in <PamRegs.h >, which is part of the PCI Pamette run-
time software kit.

• The regions labeled reserved in the memory space address map are used primarily for
PCI target performance testing. In these regions, writes are NOPs and reads return
unpredictable data.

The reserved regions below 0x20000 which have address bit 14 set (0x4000), have the
special property that they accept 64-bit transactions. (In PCI protocol terms, when
transactions are addressed to these regions with the PCI signal REQ64 asserted, ACK64
is asserted in response, in all other regions ACK64 is never asserted).

Address Map

6–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

User software that writes to currently reserved regions must be reviewed with each new
firmware revision to ensure that new functions have not been assigned to these regions. A
prudent coding practice for such code would be to refuse to run on firmware revisions
higher than the current released revisions, thereby obliging the programmer to review it
at each new revision. Recall that the only code that should need to access reserved
regions is PCI target performance testing code.

• The address range 0x10000 ... 0x1ffff is essentially an alias for the range 0x0 ... 0xffff
with the additional property that certain security sensitive bits in struct PamRegs can
only be written by accesses to this range. PCI Pamette device drivers may only permit
privileged users to map the range 0x10000 ... 0x1ffff. See Chapter 9 for more discussion
of the security bits.

• Access to some fields in aliased copies of PamRegs may use addr<9..6> as an
argument to the access. See the source code of PamRT for details.

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 7–1

7
DMA Engine

7.1 Introduction
The PCI Development Platform module contains a simple but flexible DMA engine
controlled by two control registers starting at address 0x2000. These DMA registers are also
accessible from the user-area FPGA (see Section 8.4.3). Access to the DMA engine is
disabled unless the appropriate security bit is set (see Chapter 9).

7.2 DMA Address Register: 0x2000
PCI Development Platform only supports 32-bit aligned addresses. The low two bits of the
address register are used to encode the burst order and data width, as follows:

0x0 linear increment.

0x1 Intel cacheline wrap mode (now deprecated in PCI spec).

0x2 cacheline wrap (linear increment within cacheline).

0x3 linear increment (request 64 bit).

The DMA engine only makes requests for 64-bit transactions (asserts the PCI signal REQ64)
when the low two bits are 0x3. All other transactions initiated by the DMA engine use 32-bit
data cycles.

The DMA address register is incremented on each data cycle. Increment order is always
linear, even if the specified burst order is not linear. The non-linear burst orders only exist for
the purposes of testing other devices. The DMA address register counter only applies to bits
2..12, thus DMA addresses wrap within an 8 kB region.

DMA Engine

7–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

7.3 DMA Command Register: 0x2000+8
DMA commands are encoded in an arcane format whose primary motivation is to simplify
the PIF circuit. The fields in the DMA command register are as follows.

Bit Range Contents

31..28 PCI command

27..16 0x1000 – length

15..12 delay to next request

11..2 0x400 - burst length

1 Unused

0 Unused

Note that in the table above, “0x1000 - length” means the numerical value of 0x1000 minus
length. Likewise for “0x400 - burst length”. Thus if the user wants a length of 8, bits 27..16
should be loaded with 0x1000 - 8.

Burst lengths of 2 or 3 are treated as burst length 1 due to internal pipelining restrictions.

The DMA length should be a multiple of the burst length, otherwise the DMA engine may
overrun beyond length up to the next multiple of burst length.

The interface will start requesting DMA when bit 27 is set. Bits 27..16 are a counter, which
will count up by one for each data cycle — when bit 27 rolls over DMA stops. Be careful at
page boundaries: it may be possible for a burst started just before it to spill into the next page
—it depends on the host bridge.

The length field (11..2) is the desired burst length in data cycles. If the burst is disconnected,
the next request will try to complete the DMA up to the burst boundary then stop and start a
new request for the next burst. The maximum burst size is attained by setting bits (11..2) to
all zeroes. Hence, maximum burst size is 0x400 data cycles, or 4096 bytes (8192 bytes for 64-
bit transactions).

The delay to next request (bits 15..12) specifies a delay between bursts. This lets us throttle
back the rate, it also lets us optimize throughput on host bridges that introduce their own wait
states.

When the remaining length is less than twice the burst length and delay to next request is set
to 0 or 1, the interface increases delay to next request to 2 or 3. Were this not done, the DMA
engine could issue an extra burst (beyond the rules stated above) because the decrement of
length is delayed by a couple of cycles from the cycle when the actual data is transferred.

Note that since lengths and burst sizes are measured in data cycles, these fields count for
double in byte terms when applied to 64-bit transactions.

7.4 PCI Development Platform as Simultaneous Initiator and Target
The DMA engine is well partitioned from the PCI target state machine in the PIF. One
consequence of this is that it is perfectly possible for PCI Development Platform to be the
target of cycles that it initiates. Allowing PCI Development Platform to be the target of its
own cycles makes it possible to access any PIF control register from the user-area.

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 8–1

8
Interface Modes

8.1 Introduction
Three distinct interface modes are supported in the current firmware. These are selected
through the PamRT.h function PamSetMode which sets the appropriate value in the decode
register at address 0x30 in PCI Development Platform memory space. The three modes are:

• Static mode is a simple low-performance interface that provides statically configured 16-
bit paths to and from the user-area.

• Promiscuous mode streams all data seen on the PCI bus to the user-area. The flow of
data is one-way. This is similar to promiscuous mode on Ethernet adapters.

• Transaction mode is a high performance transaction oriented mode that supports both
target and master operation.

The three modes are described in more detail in the following sections.

8.2 Static Mode
From the host side, Static Mode consists of a single 32-bit link register (address 0x38 in struct
PamRegs) that can be read or written. The high 16 bits of write data are ignored. From the
user-area side it consists of a 16-bit input port driven by the low 16 bits of the link register
and a 16-bit output port which loads the high 16 bits of the link register on each Clksys cycle.
The user-area input port is EBus<15:0> and the output port is EBus<31:16> .

Figure 8-1 shows the Static Mode link register flow.

Figure 8-1 Static Mode Link Register

 C lo ck
 R e cov er y C lk S y s

U ser -A r ea

 1 6

 1 6

 P I F

C lk P C I

E bu s< 3 1 :1 6 >

E bu s< 1 5 :0 >

L ink
R eg
< 3 1 :1 6 >

L ink
R eg
< 1 5 :0 >

Interface Modes

8–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

8.2.1 Static Mode and Clkusr
All signals on the PIF side of the EBus are clocked on Clksys. The user-area interface may be
clocked on any clock of the user’s choosing (in particular Clkusr), however the PIF side of
the interface will continue to be clocked on Clksys. Potential metastability problems on the
reception of EBus<31:16> are handled in the PIF, but if an asynchronous interface is used
the user may see some bits in the input and output ports change one cycle ahead of others.
One way to deal with this is to use sideband signals provided by the download path (see
Section 5.2.1) as a strobe. The following code fragment illustrates this. It assumes that the
user-area circuit is configured to only read from or update the EBus when a logic high (1) is
present on Cntrl_.U_ din<n> (pin 151). Circuits internal to the PIF cause the value written
to bit n of the PamRegs field dwnld1 is driven onto Cntrl_.U_din<n> .

/* update link register */

PAMREGS(pam)->link = new_link_val;

PamFlush();

/* strobe all usrlca DIN (pin 151) */

PAMREGS(pam)->dwnld1 = 0xf;

PamFlush();

/* end strobe */

PAMREGS(pam)->dwnld1 = 0x0; PamFlush();

/* get new link register value */

new_link_result = PAMREGS(pam)->link;

In user-area applications that use Clksys set to double speed, some care is required to
determine which cycles correspond to the first half of the PCI clock and which to the second
half. See the PCI performance tests for an example.

Interface Modes

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 8–3

8.3 Promiscuous Mode
In Promiscuous Mode, EBus<31:0> is always driven by the PIF. On each cycle it contains a
copy of the low 32 bits of the PCI address/data bus delayed by a few cycles. During
Promiscuous Mode the clock recovery circuit is configured such that Clksys runs at twice the
PCI clock speed. The data/address from the PCI bus is driven on to EBus<31:0> during the
first half of the PCI clock period. On the second half of each PCI clock period, the PCI
control signals for that cycle are driven on to EBus<31:0> . This mode can be used for a
variety of bus monitoring applications. Table 8-1 lists the bit assignments.

Table 8-1 Promiscuous Mode Bit Assignments

Bit range Contents

31 FRAME

30 TRDY

29 IRDY

28 STOP

27 DEVSEL

26 GNT

25 REQ

24 ACK64

23 REQ64

22 PAR

21..18 C/BE < 3:0 >

17..12 < undefined >

11..0 AD < 43:32 >

The ability to enter Promiscuous Mode is disabled unless the appropriate security bit is set
(see Chapter 9).

Interface Modes

8–4 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

8.4 Transaction Mode
In Transaction Mode, the EBus carries multi-cycle transactions that reflect activity on the PCI
bus. Since Clksys is used as the clock, all activity is synchronous with the PCI.

Transaction Mode has a 32-bit bi-directional address/data bus, a 3-bit state code from the PIF
to the user-area, and a 2-bit request code from the user-area to the PIF. On each cycle the
state code on EBus<34:32> tells the disposition of the data bus (EBus<31:0>) on the next
cycle. When the state code indicates that the data bus is idle, the user-area may read or write
certain PIF internal registers using the request codes on EBus<35> and CnfgP_ld.Din . The
request codes are also used for coarse-grained flow control of DMA.

Figure 8-2 shows the bit flow in Transaction Mode.

Figure 8-2 Bit Flow in Transaction Mode

 C lo ck
 R ec ov er y C lk S y s

U ser -A r ea

 3 2

 P IF

C lk P C I

Ebus<31:0>

2

3

re q

sta te

da ta

E bu s< 3 4 :3 2 >

E bu s< 3 5 > & cn fg P . ld .d in

At all times the PIF is master of the protocol and the user-area must satisfy its requests. Flow
control must be handled at higher application specific levels, for instance through user-area
initiated interrupts and polling of ready bits implemented in user-area status registers. The
user-area cannot introduce delays or wait states within an individual transaction.

The user-area design must respect the direction of EBus<31:0> dictated by the state code on
EBus<34:32> on each cycle. Failure to do so could result in conflicting values being driven
onto EBus<31:0> , with possible damage to the module.

Interface Modes

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 8–5

The state codes are listed in Table 8-2.

Table 8-2 State Codes

Mnemonic Code Meaning

AIF 7 Address cycle of a write to a register in the PCI Interface
(address range 0x0 ... 0x1f f f f).

DW 6 Data Wait: transaction is active but no progress on this
cycle.

AIU 5 Address cycle of transaction transferring data to user-area

AUI 4 Address cycle of transaction transferring data from user-area

DV 3 Data Valid on EBus

DS 2 Data Skip: like DV, but byte enables were off— should
increment address and ignore data

MSTR 1 Used to prefix transactions that were initiated by PCI
Development Platform

IDLE 0 No active transaction

The distinction between AIF and AIU or AUI is that the PIF claims the first 128 kB (0x20000
bytes) of address space so CPU reads to this region are invisible from the user-area and writes
appear as a transaction headed by an AIF cycle. Any CPU read or write beyond the first 128
kB produces an AIU or AUI cycle.

8.4.1 Target Transactions
Transactions for which PCI Development Platform is the target will most commonly be
generated by CPU accesses to the PCI Development Platform address space, although they
can be generated by other PCI Development Platforms or any other master capable PCI
device in the system. A basic transaction as seen from the user-area consists of an address
cycle (AIU, AUI, or AIF), followed by one or more data cycles (DW, DV, or DS). A
transaction is usually terminated by the IDLE state code, but may be terminated by the start
of a new transaction (MSTR, AIU, AUI, or AIF). The PIF will never retry transactions1 , so
there will always be at least one DV or DS cycle, however user-area applications should not
rely on this behavior as it may change in future firmware revisions.

AIU

Transactions started by an AIU cycle present address and data to the user-area. In the cycle
following AIU, the PIF drives the address onto EBus<31:0> and continues to drive
EBus<31:0> with data until the end of the transaction. The number of DW, DV, and DS
cycles depends on the master of the transaction, usually the hostbridge. In the simplest case a
transaction consists of an AIU cycle, one or more DW cycles, a DV cycle, and then either an
IDLE cycle or a new transaction. Note that there will always be at least one DW cycle
because the PCI Development Platform is a medium decode device.

1 Retry is PCI terminology for a transaction that transfers zero data because the target signals to the
master that it is not currently ready, and that transaction should be attempted again at a later time.

Interface Modes

8–6 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

Host bridges may aggregate neighboring writes, and Alpha based systems can reorder writes.
The PamRT function PamFlush will ensure write ordering but will not guarantee that
aggregation is disabled. One way to suppress aggregation is to perform a read to some
harmless PCI location, for instance address 0x0 of the PCI Development Platform memory
space. DS states may occur when aggregation of a noncontiguous sequence of writes occurs.
For example, from the code sequence:

volatile int *user_area;

user_area = ((volatile int *) pam) + (1<<17)/sizeof(int);

user_area[0] = 0xaaaaaaaa;

user_area[2] = 0xbbbbbbbb;

user_area[3] = 0xcccccccc;

The sequence of states could be:

Cycle State Ebus<31:0> PIF Drives

0 AIU < undefined > NO

1 DW 0xXX020000 YES

2 DW < undefined > YES

3 DV < undefined > YES

4 DS 0xaaaaaaaa YES

5 DV < undefined > YES

6 DW 0xbbbbbbbb YES

7 DW < undefined > YES

8 DV < undefined > YES

9 IDLE 0xcccccccc YES

10 IDLE < undefined > NO

Observe that the high six address bits are reserved since these correspond to the location
when the PCI Development Platform was mapped when the PCI was configured at boot time
and hence are host specific. Note also that bit 17 of the address is set because the user-area
address space is offset 128 kB from the base of memory space.

AIF

Transactions started by an AIF cycle are normally ignored by the user-area application apart
from the utilization described in Section 9.4.3. In the cycle following AIF, the PIF drives the
address onto EBus<31:0> and continues to drive EBus<31:0> with data until the end of the
transaction. AIF transactions are in other respects like AIU transactions.

AUI

Transactions started by an AUI cycle present an address to the user-area and receive data
from it. In the cycle following AUI, the PIF drives the address onto EBus<31:0> and on the
cycle after, stops driving allowing the user-area to drive EBus<31:0> with result data.
Whereas in the AIU case, address and data flow in the same direction and can be pipelined to
arbitrary depth, transactions started by an AUI cycle will in general need to process the
received address and return data.

Interface Modes

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 8–7

The delay between the receipt of address and the time the first data must be on EBus<31:0>
is fixed at 6 cycles. Six cycles is chosen as a compromise between the shortest possible delay,
which yields the best throughput, and the longer delays, which allow deeper pipelines in the
user-area application.

The current firmware does not support wait states introduced by the other party of the PCI
transaction. This means you should avoid bursting on platforms that may introduce wait states
after first data. See Section 9.4.2 for further discussion of bursting issues when PCI
Development Platform is sourcing data.

Due to internal pipelining in PIF, the DV cycles of an AUI-type transaction arrive a few
cycles after the result data must have been driven onto EBus<31:0>. Thus the presence of
DV cycles is not used to decide when to transmit data. It can, however, be used to detect
errors due to wait states after the fact and to raise errors in such circumstances.

Assuming that a user-area access at address 0x2004C from the base of the PCI Development
Platform memory space returns the value 0xaaaaaaaa , a code sequence such as this:

volatile int *user_area;

user_area = ((volatile int *) pam) + (1<<17)/sizeof(int);

printf("User area [0x13] = %08x\n", user_area[0x13]);

Could produce the following sequence of states:

Cycle State EBus<31:0> PIF Drives User-area Drives

0 AUI < undefined > NO NO

1 DW 0xXX02004c YES NO

2 DW < undefined > NO NO

3 DW < undefined > NO YES

4 DW < undefined > NO YES

5 DW < undefined > NO YES

6 DW < undefined > NO YES

7 DW 0xaaaaaaaa NO YES

8 DW < undefined > NO YES

9 DW < undefined > NO YES

10 DW < undefined > NO YES

11 DV < undefined > NO YES

12 IDLE < undefined > NO YES

13 IDLE < undefined > NO NO

Note that although the cycles following 0xaaaaaaaa in the above example are marked
undefined, the user-area does not know until five cycles later that this transaction consisted of
a single dword transfer. Therefore on hosts which may burst on read, user-area applications
should continue to send the data values for successive addresses of subsequent cycles. This
effectively prohibits the use of side-effect on read in Transaction Mode PCI Development
Platform applications.

Interface Modes

8–8 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

8.4.2 Master Transactions
Master Transactions are transactions that were initiated by the PCI Development Platform.
Such transactions are sometimes called DMA. Master transactions are very similar to the
target transaction described above except that they are prefixed by a MSTR cycle. An AIU or
AUI cycle and a sequence of data cycles will always follow the MSTR cycle. Since target
devices may retry, the transaction may have zero DV cycles. Byte enables are always on
during PCI transactions initiated by PCI Development Platform so DS should never be seen in
a Master Transaction. The address associated with the AIU or AUI cycle of a Master
Transaction is the target address of the operation, that is the remote device address.

The delay to first data in transactions where PCI Development Platform sources data is
different for Master Transactions (MSTR/AUI) from that described for AUI target
transactions. Performance is usually more important for Master Transactions and, since the
PCI Development Platform is initiating the transaction, the target address can be tracked
internally to the user-area and so few cycles are needed in the user-area between when the
address is known and when the first data is emitted1. One dead cycle is provided after the
AUI cycle to allow EBus<31:0> to be turned around and the data starts to flow on the
following cycle.

As discussed above, the firmware does not tolerate wait states when it sources data onto the
PCI bus. If the user cannot ensure that the host does not introduce wait states, then Master
Transactions where PCI Development Platform sources data (DMA writes) should be limited
to single word bursts.

The following sequence of states can be seen in a four dword MSTR/AUI (DMA write)
sequence to address 0x00543210 , which writes the sequence of values 0xaaaaaaaa ,
0xbbbbbbbb , 0xcccccc , 0xdddddd .

Cycle State EBus<31:0> PIF Drives User-area Drives

0 MSTR undefined NO NO

1 AUI undefined NO NO

2 DW 0x00543210 YES NO

3 DW undefined NO NO

4 DW 0xaaaaaaaa NO YES

5 DW 0xbbbbbbbb NO YES

6 DW 0x00cccccc NO YES

7 DW 0x00dddddd NO YES

8 DV undefined NO YES

9 DV undefined NO YES

10 DV undefined NO YES

11 DV undefined NO YES

12 IDLE undefined NO YES

13 IDLE Undefined NO NO

1 First data could be emitted immediately on seeing MSTR, without reference to the address, but this
would render it impossible for the user-area to know the address at all since the Ebus would be busy
transmitting data on the cycle when the address is available.

Interface Modes

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 8–9

MSTR/AIU sequences are so similar to the target transaction case that a specific example will
not be given here. The user should however note that MSTR/AIU sequences usually suffer
much longer delays between address and first data, particularly when the remote device is
host memory.

8.4.3 Requests from User-area
The user request bits, EBus<35> and CnfgP ld.Din , are used to signal requests from the
user-area to the PIF. They allow the user-area to read and write control registers in the PCI
interface. In this way the user-area can determine the current state of the PIF, raise interrupts,
initiate DMA, and other similar functions.

8.4.3.1 Bus Contention and AIF Cycles
The PCI interface will ignore control register accesses that are attempted when the EBus is
not IDLE. The primary function of AIF is to allow the user-area to avoid contention for PCI
interface internal resources when it is trying to access control registers. When these registers
are written they use the same internal PIF paths that are used by write access from the user-
area. The user-area needs to know when the registers are potentially being written from the
PCI side, and hence when its own write requests are being rejected by the PIF. Of course
some applications may additionally be able to use AIF to monitor driver access to the PCI
interface.

Note that when the PIF is in static mode EBus<34:32> are disabled and pulled up. This
corresponds to the state code AIF. Thus the state tracking machinery of an application
expecting the PIF to be in Transaction Mode will see a sequence of AIF state codes. This
choice is deliberate. In IDLE mode the user-area may legitimately drive EBus<31:0> which
would conflict with EBus<15:0> in Static Mode.

8.4.3.2 Request Codes
Both request bits are active low, that is, they are asserted by a low logic value and deasserted
by a high logic value. Therefore, a deconfigured user-area will pull-up the request bits
thereby deasserting them. The request bits are mutually exclusive. If both are driven low, they
are ignored, except that if either or both request bits are driven low the DMA engine is
disabled from requesting a new transaction. Thus the request bits also provide coarse DMA
flow control. Note that once PCI Development Platform has started to request mastership of
the PCI bus it will complete it even if the request bits become active before the bus arbiter
grants the request. Furthermore, activation of request bits does not cause any form of early
termination of a currently active PCI transaction.

Read

CnfgP_ld.Din requests that the contents of the link register be driven onto EBus<31:0> .
There are two cycles of pipeline delay between the user-area asserting CnfgP_ld.Din and
the value being driven onto EBus<31:0> . The value is only valid when the state on
EBus<34:32> is IDLE.

Interface Modes

8–10 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

Write

EBus<35> requests that the value currently1 being driven by the user-area onto EBus<31:0>
be written into a PIF internal register. EBus<1:0> provides an address, and EBus<31:2>
provides data. The possible target registers are:

Addr PIF Register

0x0 DMA address register

0x1 DMA command register

0x2 Reserved for future use

0x3 Link register

______________________________ Note ___________________________

Currently, only 32-bit DMAs can be initiated from the user-area. 32-bit or 64-bit
DMAs can be initiated from the PCI bus.

__

The ability to write the DMA register from the user-area is disabled unless the appropriate
security bit is set (see Chapter 9). Since EBus<1:0> provides an address, these bits cannot be
written in the target registers.

If the EBus<34:32> passes out of the IDLE state on the cycle that EBus<35> is asserted or
the immediately following cycle, the request is ignored. It is the user-area’s responsibility to
monitor the EBus state and track when requests have been ignored.

8.4.3.3 Link Register in Transaction Mode
In transaction mode, the link register takes on special meaning.

Bit Assignments for Link Register Reads

Among the low 16 bits, the even bits can be read and written from the PCI side at their usual
offset, however, the odd bits represent internal state of the PIF. The currently defined bit
assignments are:

Bit Meaning

EBus<0> Address bit must be set to 1

EBus<1> Address bit must be set to 1

EBus<15> DMA engine is active

Bit Assignments for Link Register Writes

The high 16 bits of the link register can always be read from the PCI side at their usual offset,
however, they are updated only when EBus<35> is asserted (low logic value). The high 16
bits of the link register are reset when the PIF enters transaction mode. Some of the bits have
special meaning in transaction mode. The currently defined bit assignments are:

Bit Meaning

EBus<0> Address bit must be set to 1

EBus<1> Address bit must be set to 1

EBus<16> Raise interrupt

1 Same cycle as Ebus<35> is asserted.

Interface Modes

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 8–11

8.4.4 Interrupts
The Development Platform module has three interrupt sources: an end of DMA interrupt, a
user programmable interrupt through the link register, and a user programmable interrupt
activated by the ring bits. In transaction mode, control of these interrupts is performed
through bit manipulations in the VCO and link registers within the PIF. Enabling of interrupts
are done in the VCO register. The state of the interrupt sources is in the Clock register. The
VCO and Clock registers are defined in PamRegs.h (see Section 10.2). The link register is
used to raise the user programmable interrupts as initiated by the user-area FPGAs. The ring
pins can also be used to raise an interrupt. The link register can be read from the user area or
the PCI bus, but Link<16> may only be written from the user area. The notable bits in the
VCO, Clock, and link register are shown below. The unspecified bits of the VCO, Clock, and
link register should be written as “0”.

VCO Register

Bit Meaning

VCO<4> Enable global interrupt

VCO<5> Global interrupt active

VCO<8> Enable DMA done interrupt

VCO<9> Enable link<16> interrupt

VCO<10> Enable Ring[0] interrupt

VCO<11> Enable Ring[1] interrupt

Clock Register

Bit Meaning

Clock<8> DMA done interrupt active

Clock<9> Link<16> interrupt active

Clock<10> Ring[0] interrupt active

Clock<11> Ring[1] interrupt active

Link Register

Bit Meaning

Link<0> Address bit must be set to 1

Link<1> Address bit must be set to 1

Link<15> DMA engine is active

Link<16> Raise interrupt

Interface Modes

8–12 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

8.4.4.1 End of DMA Interrupt
To use the end of DMA interrupt, both the global enable and the end of DMA enable bits
should be set, as shown below:

 /*

 enable end of DMA interrupt bits

 interrupt enables: global (bit 4) and end of DMA (bit 8)

 */

 PAMREGS(pam)->vco = (1<<4) | (1<<8);

The end of DMA interrupt is automatically generated when the DMA engine’s length counter
rolls over. The driver disables the global enable in the VCO register. The application
programmer’s interrupt service routine should first clear the interrupt by writing a “1” to
Clock<8>, then set both the global (VCO<4>) and DMA done (VCO<8>) enables. There is
no chance of getting caught in an infinite loop of interrupts, since the hardware has already
cleared the interrupt. To verify the interrupt source was the DMA engine, the clock register
can be checked.

______________________________ Note ___________________________

The End of DMA interrupt is enabled by default in the current driver version.
__

8.4.4.2 User Programmable Interrupt Through the Link Register
The user interrupt can be set by accessing the link register from the user-area FPGAs (see
Section 8.4.3.2). To enable the user programmable interrupt, the global enable and user
interrupt enable both have to be set. This is shown below:

/*

 enable user interrupt bits

 interrupt enables: global (bit 4) and user enable (bit 9)

 */

 PAMREGS(pam)->vco = (1<<4) | (1<<9);

To generate the actual interrupt, bit 16 of the link register has to be set. The driver will then
disable the global interrupt enable before passing control to the user’s interrupt service
routine. The interrupt is cleared by writing a one to bit 9 of the clock register. This should be
done before enable bits are reset. The following sequence sets the interrupt. To verify the
interrupt source was the user programmable interrupt, the clock register can be read.

Cycle Ebusstate Value on EBUS<31:0> EBUS<35>

0 IDLE XXXXXXXX 1

1 IDLE 0x00010003 0

42 IDLE XXXXXXXX 1

Interface Modes

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 8–13

_____________________________ Note____________________________

Ebus <35> requests a write to a register in the PIF and is active low. Refer to
Section 8.4.3.2. The programmer should not write “1”s to unspecified VCO and
Clock register bits (i.e. read-modify-write can place other components in an
unknown state).
__

The following software sequence clears the interrupt and resets the appropriate enables.

/* Clear interrupt */

PAMREGS(pam)->clock = (1<<9);

/* Reset enables */

PAMREGS(pam)->vco = (1<<4) | (1<<9);

8.4.4.3 User Programmable Interrupt Using the Ring Bits
A user programmable interrupt set directly by the ring bits. The ring bits are a two bit wide
bus that connects to all four user area FPGAs (see Section 5.2.2). These two bits can be used
to control the interrupt from any FPGA. There is a different enable for each of the ring bits.
To enable one of the ring bits, the global enable and one of the ring enables both have to be
set. This is shown below for ring[0]:

/*

 enable user interrupt bits

 interrupt enables: global (bit 4) and ring[0] enable (bit 10)

 */

 PAMREGS(pam)->vco = (1<<4) | (1<<10);

To generate the actual interrupt, ring[0] would have to be driven high for at least one cycle.
The driver will then disable the global interrupt enable before passing control to the user’s
interrupt service routine. Writing a one to bit 10 of the clock register clears the interrupt. This
should be done before enable bits are reset and ring[0] should no longer be driven high.

The following software sequence clears the interrupt active bit and resets the appropriate
enables.

/* Clear interrupt */

PAMREGS(pam)->clock = (1<<10);

/* Reset enables */

PAMREGS(pam)->vco = (1<<4) | (1<<10);

The same process can be used to enable and clear the ring[1] interrupt. The programmer
should substitute bit 11 for bit 10 in both the Clock and VCO registers.

SES Template Word 7 Blank Page Fix by Peter LaQuerre

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 9–1

9
Security Considerations

9.1 Introduction
Many capabilities of PCI Development Platform could compromise system security and
integrity if all users were granted free access to them.

• DMA with invalid addresses can provoke hardware exceptions.

• DMA into kernel data structures and code can cause the system to crash or bypass normal
access checks.

• Deconfiguring the PIF can provoke hardware exceptions.

• Deconfiguring the PIF allows a new PIF configuration to be loaded which could disable
current security features.

• Promiscuous mode can allow a user to capture bus traffic and thereby gain read access to
normally protected data.

To protect against these kinds of abuse, access to some PIF functions is only enabled when
certain security enable bits in struct PamRegs are set. As described in Chapter 6, these bits
can be read from any of the aliased copies of struct PamRegs but may only be written
using addresses above the 64 kB offset. PCI Development Platform device drivers may
restrict access to these addresses to privileged users. For non-privileged users attempts to map
the 64 kB to 128 kB range to the PCI Development Platform address space are remapped to 0
kB to 64 kB. In this case, attempts to write the bits by non-privileged users will fail.
Therefore, the usual algorithm to set a security bit is to try to write it and then read it to see if
it was set. If it was not set, the user lacks sufficient privilege. Note that security bits are
persistent: a privileged user may leave a security bit set for a non-privileged user’s use.

The security bits are bits 8 to 11 of the control field of struct PamRegs . The bit is
enabled when it is logic high (1). Their meanings are as follows:

Bit Meaning

8 Enable PIF deconfiguration

9 Enable writes to DMA engine from user-area

10 Enable writes to DMA engine from PCI

11 Allow promiscuous mode

Security Considerations

9–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

The following statement shows how to set the all security bits active. On Windows NT
systems, PamControl is used to change the security bits:

C:\pam\bin\PamControl security f

On DIGITAL UNIX systems, the PamControl is run from the command line as shown
below:

/usr/bin/PamControl security f

______________________________ Note ___________________________

The security bits are offset by 8 bits. For example, f sets all security bits and 8
would only set bit 11 (or promiscuous mode).

__

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 10–1

10
Software

10.1 Run-time Libraries
The following sections summarize the different functions that are included with the run-time
libraries. The run-time libraries are broken up into three sections, according to the functions
found in the different header files. The variable declarations and in-depth information about
each function can be found within the header files source code.

10.1.1 PamRT.h

10.1.1.1 PamOpen
PamOpen opens a PAM board, allows the possibility for multiple PAM boards on a single
PCI bus and allows the board to be brought up in a variety of states.

SYNTAX

#include<PamRT.h>

Pam PamOpen (device, mode)
const char *device;
enum PamOpenMode mode;

PARAMETERS

device “/dev/pam0”
mode PamWait PamWaitVerbose PamNoWait PamNoLock

EXAMPLE

int fd;
if ((fd = PamOpen("/dev/pam", PamNoWait)) < 0) {

perror (“PamOpen”);
exit(1);

}

RETURN VALUES

Upon successful completion, the PamOpen() function returns the file descriptor, a
nonnegative integer. Otherwise, a value of -1 is returned and errno is set to indicate the error.

Software

10–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

10.1.1.2 PamClose
This function closes the PAM board and releases its lock.

SYNTAX

#include<PamRT.h>

int PamClose (fd);
int fd;

PARAMETERS

fd A valid open file descriptor as returned by PamOpen().

EXAMPLE

int fd;

if (PamClose(fd)) {
perror (“PamClose”);
exit(1);

}

RETURN VALUES

Upon successful completion, the PamClose() function returns a value of 0 (zero). Otherwise,
a value of -1 is returned and errno is set to indicate the error.

10.1.1.3 PamDownloadBitstream
PamDownloadBitstream resets the whole board, downloads a new bit stream to configure it,
sets the clock period to the desired value, and establishes the standard initial state.

SYNTAX

#include<PamRT.h>

void PamDownloadBitstream (pam, bitstream, clockPeriod)
Pam pam;
const struct PamBitstream *bitstream;
double clockPeriod;

PARAMETERS

pam The pointer to the current pam device.
bitstream The pointer to the current application bitstream.
ClockPeriod The clock speed that the FPGA can be loaded at.

EXAMPLE

Pam pam;
extern struct PamBitstream bitstream;
double clockPeriod = 30;

pam = PamOpen(device, PamWaitVerbose);
PamDownloadBitstream(pam, bitstream, clockPeriod);

RETURN VALUES

No return value.

Software

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 10–3

10.1.1.4 PamDownloadFile
PamDownloadFile also downloads a bit stream but takes it from a file.

SYNTAX

#include<PamRT.h>

void PamDownloadFile(pam, *filename, clockPeriod)
Pam pam;
const char *filename;
double clockPeriod;

PARAMETERS

pam The pointer to the current pam device.
filename “/dev/pam0”
ClockPeriod The clock speed that the FPGA can be loaded at.

EXAMPLE

Pam pam;
const char *filename;
double clockPeriod = 30;

pam = PamOpen(device, PamWaitVerbose);
PamDownloadFile (pam, filename, clockPeriod);

RETURN VALUES

No return value.

10.1.1.5 PamSetMode
PamSetMode gets/sets the mode of the interface between the bus interface FPGA and the
user-area FPGAs. The action is determined by the mode parameter.

SYNTAX

#include<PamRT.h>

void PamSetMode(pam, mode)
Pam pam;
Enum PamInterfaceMode mode;

PARAMETERS

pam The pointer to the current pam device.
mode PamTransaction, PamPromiscuous, or PamStatic are valid modes

EXAMPLE

Pam pam;

pam = PamOpen(device, PamWaitVerbose);
PamSetMode(pam, PamPromiscuous);

RETURN VALUES

No return value.

Software

10–4 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

10.1.1.6 PamClockOn
PamClockOn starts the programmable user clock.

SYNTAX

#include<PamRT.h>

void PamClockOn(pam, clockIndex)
Pam pam;
int clockIndex;

PARAMETERS

pam The pointer to the current pam device.
clockIndex Sets the clock period to the desired value.

EXAMPLE

Pam pam;

pam = PamOpen(device, PamWaitVerbose);
PamClockOn(pam, clockIndex);

RETURN VALUES

No return value.

10.1.1.7 PamClockOff
PamClockOff stops the programmable user clock.

SYNTAX

#include<PamRT.h>

void PamClockOff(pam, clockIndex)
Pam pam;
int clockIndex;

PARAMETERS

pam The pointer to the current pam device.
clockIndex Sets the clock period to the desired value.

EXAMPLE

Pam pam;

pam = PamOpen(device, PamWaitVerbose);
PamClockOff(pam, clockIndex);

RETURN VALUES

No return value.

Software

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 10–5

10.1.1.8 PamClockStep
PamClockStep starts the clock for <count> cycles, and waits for the completion of the burst.

SYNTAX

#include<PamRT.h>

void PamClockStep(pam, clockIndex, count)
Pam pam;
int clockIndex;
int count;

PARAMETERS

pam The pointer to the current pam device.
clockIndex Sets the clock period to the desired value.
count The number of cycles.

EXAMPLE

Pam pam;
int count = 2;

pam = PamOpen(device, PamWaitVerbose);
PamClockStep(pam, clockIndex, count);

RETURN VALUES

No return value.

10.1.1.9 PamWriteWord
PamWriteWord this function performs single transactions to the board.

SYNTAX

#include<PamRT.h>

void PamWriteWord(pam, address, data)
Pam pam;
int address;
int data;

PARAMETERS

pam The pointer to the current pam device.
address This parameter is a word address within the board address space.
data The data to be written to the pam device.

EXAMPLE

Pam pam;
Int address = 0x20000; /* offset to the User Area */

pam = PamOpen(device, PamWaitVerbose);
PamWriteWord(pam, address, data);

RETURN VALUES

No return value.

Software

10–6 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

10.1.1.10 PamReadWord
PamReadWord this function performs single transactions from the board.

SYNTAX

#include<PamRT.h>

void PamReadWord(pam, address)
Pam pam;
int address;

PARAMETERS

pam The pointer to the current pam device.
address This parameter is a word address within the board address space.

EXAMPLE

Pam pam;
int address = 0x20000; /* offset to the User Area */

pam = PamOpen(device, PamWaitVerbose);
PamReadWord(pam, address);

RETURN VALUES

No return value.

10.1.1.11 PamFlush
PamFlush flushes the write buffer, ensuring that all pending writes have actually reached the
board. It should be used between any two successive transactions to the board for which one
cares about sequentially.

SYNTAX

#include<PamRT.h>

void PamFlush()

PARAMETERS

No parameters needed.

EXAMPLE

PamFlush();

RETURN VALUES

No return value.

______________________________ Note ____________________________

On some platforms it may be necessary to do a read from the PCI development
platform after the writes to flush the write buffer. This is true on the DIGITAL
Personal Workstations.

Software

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 10–7

10.1.2 PamState.h

10.1.2.1 PamLcaStateTable
PamLcaStateTable returns a handle to the mapping table needed to extract state information
for a given LCA.

SYNTAX

#include<PamState.h>

const struct PamLcaStateTable *PamLcaGetStateTable(lca)
struct PamLcaType lca;

PARAMETERS

lca A pointer to a lca types structure.

EXAMPLE

const struct PamLcaStateTable *statetable;
extern struct PamLcaType lca; /* initialized in the design.c that contains the bitstream. */
statetable = PamLcaGetStateTable(lca);

RETURN VALUES

Returns a handle to the mapping table.

10.1.2.2 PamStateCLB
PamStateCLB returns the value of a given CLB bit. The coordinates of each CLB within the
chip can be specified.

SYNTAX

#include<PamState.h>

int PamStateCLB(x, y, bit, lca, *data, *table)
int x;
int y;
PamLcaStateBit bit;
int lca;
const unsigned char *data;
const struct PamLcaStateTable *table;

PARAMETERS

x, y are the coordinates of the CLB within the chip, (0,0) being the upper-left CLB.
bit is the bit to extract within the CLB.
lca is the lca number (0 to 3).
data is the readback data obtained from PamReadbackBitstream;
table is the mapping table obtained from PamLcaGetStateTable.

Software

10–8 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

EXAMPLE

int clb_bit;
int x=0, y=0;
PamLcaStateBit bit = PAMLCA_I2;
int lca = 3;
const unsigned char *data;
const struct PamLcaStateTable *table;

clb_bit = PamStateCLB(x, y, bit, lca, data, table);

RETURN VALUES

Returns the value (0 or not 0) of a given CLB bit:

10.1.2.3 PamStateIOB
PamStateIOB returns the value of a given IOB bit. The pad number for the individual bit can
be specified.

SYNTAX

#include<PamState.h>

int PamStateIOB(pad, bit, lca, *data, *table)
int pad;
PamLcaStateBit bit;
int lca;
const unsigned char *data;
const struct PamLcaStateTable *table;

PARAMETERS

pad is the pad number within the chip (counted clockwise, 1 being the leftmost pad of
the
 upper side.
bit is the bit to extract within the IOB.
lca is the lca number (0 to 3).
data is the readback data obtained from PamReadbackBitstream.
table is the mapping table obtained from PamLcaStateTable.

EXAMPLE

int iob_bit;
int pad = 1;
PamLcaStateBit bit = PAMLCA_I2;
int lca = 3;
const unsigned char *data;
const struct PamLcaStateTable *table;

 iob_bit = PamStateIOB(pad, bit, lca, data, table);

RETURN VALUES

Returns the value (0 or 1) of a given IOB bit.

Software

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 10–9

10.1.2.4 PamStateIsRam
PamStateIsRam returns the value 1 if the corresponding LUT to <bit> is configured as RAM,
otherwise 0.

SYNTAX

#include<PamState.h>

int PamStateIsRAM(x, y, bit, lca, *data, *table);
int x;
int y;
PamLcaStateBit bit;
int lca;
const unsigned char *data;
const struct PamLcaStateTable *table;

PARAMETERS

x, y are the coordinates of the CLB within the chip, (0,0) being the upper-left CLB;
bit is the LUT WE bit to extract within the CLB. Valid values are PAMLCA_F or
 PAMLCA_G.
lca is the lca number (0 to 3);
data is the readback data obtained from PamReadbackBitstream;
table is the mapping table obtained from PamLcaGetStateTable.

EXAMPLE

int lut_bit;
int x=0, y=0;
PamLcaStateBit bit = PAMLCA_I2;
int lca = 3;
const unsigned char *data;
const struct PamLcaStateTable *table;

lut_bit = PamStateIsRam(x, y, bit, lca, data, table);

RETURN VALUES

Returns the value 1 if the corresponding LUT to <bit> is configured as RAM, otherwise 0.

Software

10–10 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

10.1.2.5 PamStateLUT
PamStateLUT returns the value of the LUT corresponding to <bit>.

SYNTAX

#include<PamState.h>

int PamStateLUT(x, y, bit, lca, *data, *table);
int x;
int y;
PamLcaStateBit bit;
int lca;
const unsigned char *data;
const struct PamLcaStateTable *table;

PARAMETERS

x, y are the coordinates of the CLB within the chip, (0,0) being the upper-left CLB;
bit is the LUT to extract within the CLB. Valid values are PAMLCA_F or
PAMLCA_G.
lca is the lca number (0 to 3).
data is the readback data obtained from PamReadbackBitstream;
table is the mapping table obtained from PamLcaGetStateTable.

EXAMPLE

int lut_bit;
int x=0, y=0;
PamLcaStateBit bit = PAMLCA_I2;
int lca = 3;
const unsigned char *data;
const struct PamLcaStateTable *table;

lut_bit = PamStateLUT(x, y, bit, lca, data, table);

RETURN VALUES

Returns the value of the LUT corresponding to <bit>.

Software

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 10–11

10.1.3 PamFriend.h

10.1.3.1 PamFindBoard
This function returns a pointer to struct PamBoard that corresponds to a given user pointer.

SYNTAX

#include<PamFriend.h>

struct PamBoard *PamFindBoard(pam)
Pam pam;

PARAMETERS

pam the user pointer or 0 if this entry is free.

EXAMPLE

Pam pam = PamOpen(device, PamWaitVerbose);
struct PamBoard *board = PamFindBoard(pam);

RETURN VALUES

Returns a pointer to struct PamBoard.

10.1.3.2 PamReadInfo
PamReadInfo reads the “information” registers of the PAM board, checks them and fills the
corresponding registers in the PamBoard structure.

SYNTAX

#include<PamFriend.h>

void PamReadInfo(Pam pam)
Pam pam;

PARAMETERS

pam the user pointer or 0 if this entry is free.

EXAMPLE

struct PamBoard *board = PamFindBoard(pam);
int rev;

PamReadInfo(pam);
rev = board->fwRevision;

printf (“ The firmware version of this board is %d.”, rev);

RETURN VALUES

No return value.

Software

10–12 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

10.1.3.3 PamRegisterLayout
PamRegisterLayout returns an integer, which identifies the control register layout used by
this board.

SYNTAX

#include<PamFriend.h>

int PamRegisterLayout(*board)
struct PamBoard *board;

PARAMETERS

board corresponds to a given user pointer.

EXAMPLE

struct PamBoard *board = PamFindBoard(pam);
int reg_layout;
int nM0_mask;

/* Check that the LCAs are configured */
/* Only applies to boards that do not support partial configuration */

 switch (reg_layout = PamRegisterLayout(board)) {

 case 0:

 nM0_mask = TPAMCTRL_NM0;

 break;

 case 1:

 nM0_mask = PPAMCTRL_NM0;

 break;

 default:

 PamError(PamErrInfo, pam, "Unsupported register layout");

RETURN VALUES

Returns 0 if the board type is less than 2 or if the firmware version is 1 or if the firmware
revision is less than 8. Otherwise it returns a 1.

10.1.3.4 PamResetAll
PamResetAll returns the complete board to its initial state, resets all the control registers, and
deconfigures the user LCAs.

SYNTAX

#include<PamFriend.h>

void PamResetAll(pam)
Pam pam;

PARAMETERS

pam The pointer to the current pam device.

EXAMPLE

Pam pam = PamOpen(device, PamWaitVerbose);

PamResetAll(pam);

Software

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 10–13

RETURN VALUES

No return value.

10.1.3.5 PamDownloadLcas
PamDownloadLcas downloads a bit stream to the board. If the bit stream chosen has some
LCA positions empty, the corresponding LCAs on PCI Development Platform are left with
their current configuration. This allows a form of hardware overlay. It is the programmer’s
responsibility to ensure that these configurations produced by this overlay are compatible.

SYNTAX

#include<PamFriend.h>

void PamDownloadLcas(pam, *bitstream, check);
Pam pam;
const struct PamBitstream *bitstream;
int check;

PARAMETERS

pam The pointer to the current pam device.
bitstream is a list of bitstreams that are searched in order.
check a value of 1 = safe/slow version, and 0 = the fast unchecked version.

EXAMPLE

Pam pam = PamOpen(device, PamWaitVerbose);
extern struct PamBitstream bitstream;
double clockPeriod = 30;
int check = 1;

PamDownloadLcas(pam, *bitstream, check);

RETURN VALUES

No return value.

10.1.3.6 PamReadBackMinLength
PamReadBackMinLength returns the minimum size of the buffer holding a readback bit
stream for a given board.

SYNTAX

#include<PamFriend.h>

unsigned PamReadbackMinLength(pam)
Pam pam;

PARAMETERS

pam The pointer to the current pam device.

EXAMPLE

struct PamBoard *board = PamFindBoard(pam);
unsigned length = PamReadbackMinLength(pam);

RETURN VALUES

Returns the minimum size of the buffer.

Software

10–14 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

10.1.3.7 PamReadBackBitstream
PamReadBackBitstream reads back the configuration bit stream and stores it in <bits> ,
which is of size <bits_length> . The bits buffer must be large enough to hold the
readback bit stream of the largest chip currently installed on the board.

SYNTAX

#include<PamFriend.h>

void PamReadbackBitstream(pam, bits, length)
Pam pam;
unsigned char bitb[];
unsigned bits_length;

PARAMETERS

pam The pointer to the current pam device.
bitb will contain the n’th element raw readback bitstream as defined in the data
 book.
bits_length size of the buffer returned by PamReadBackMinLength.

EXAMPLE

struct PamBoard *board = PamFindBoard(pam);
unsigned length = PamReadbackMinLength(pam);
unsigned char *bits = (unsigned char *)malloc(length);

if (bits == 0)
 PamError(PamErrNoMem, pam, 0);

PamReadbackBitstream(pam, bits, length);

RETURN VALUES

No return value.

10.1.3.8 PamSetClockSpeed
PamSetClockSpeed sets the VCO range and dividers to approximate the given period. It does
not wait for the clock speed to stabilize. It takes the value (in MHz) of the reference
frequency from the PamBoard structure (see section 10.1.3.9). The reference frequency in
the PamBoard structure should be changed to the desired value if an external reference clock
is used.

SYNTAX

#include<PamFriend.h>

void PamSetClockSpeed(pam, period)
Pam pam;
double period;

PARAMETERS

pam The pointer to the current pam device.
period Sets the clock to the desired period.

Software

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 10–15

EXAMPLE

Pam pam = PamOpen(device, PamWaitVerbose);
double speed = 30;
double period = 1000.0/speed;

PamSetClockSpeed(pam, period);

RETURN VALUES

No return value.

10.1.3.9 PamClockPeriod
PamClockPeriod returns the exact clock period in nanoseconds as would be set by a call to
PamSetClockSpeed with the same <period> parameter. It does no physical access to the
board.

SYNTAX

#include<PamFriend.h>

double PamClockPeriod(Pam pam, double period);
Pam pam;
Double period;

PARAMETERS

pam The pointer to the current pam device.
period Sets the clock to the desired period.

EXAMPLE

PamSetClockSpeed(pam, period);

(void)printf("Clock period set to %.5fns (%.5fMHz)\n",

 PamClockPeriod(pam, period),

 1000.0 / PamClockPeriod(pam, period));

RETURN VALUES

Returns the exact clock period in nanoseconds.

10.1.3.10 PamWaitClock
PamWaitClock waits until the clock stepper/stopper has finished executing its last command.

SYNTAX

#include<PamFriend.h>

void PamWaitClock(Pam pam)
Pam pam;

PARAMETERS

pam The pointer to the current pam device.

EXAMPLE

Pam pam = PamOpen(device, PamWaitVerbose);

PamWaitClock(Pam pam);

RETURN VALUES

No return value.

Software

10–16 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

10.2 PAM Register Declaration
The register layout within the PCI interface can be found in the PamRegs.h header file.
Control registers have a naturally sparse layout to simplify operation on early Alpha systems
that have a normal read granularity of 64-bits. It is recommended that the programmer check
register compatibility between different revisions of the software kit and firmware.

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 11–1

11
Command Line Controls for PCI Development

Platform

11.1 Introduction
The following sections describe the command line tools for controlling the PCI Development
Platform module and other utilities in the software package. The name of each section is the
name of the executable for Windows NT. If the DIGITAL UNIX name is different, it is
shown in parenthesis to the right.

11.2 PamTest
PamTest is a command line utility that tests the functionality of Development Platform.
PamTest is not a design verification tool. It tests the basic operation of the board. For
example, PamTest verifies the connections between FPGAs, the clock speed, and ability to
download designs. To see all the current commands in PamTest, run PamTest -help. The man
page for PamTest is also shown below. Not all of the commands listed are used for the PCI
Development Platform module. The PamTest utility has been used for multiple versions of
Development Platform. The PamTest option PamTest -C 0 will verify the correct operation of
the Development Platform module. Most of the other tests are used during manufacturing and
initial testing of the board and require test fixtures. The test fixtures needed for these options
are not provide with the module. There are also useful options to create log files for errors
and to exclude particular tests.

_____________________________ Note____________________________

Any daughter card should be disconnected when running PamTest.
__

PamTest - test of Pamette board

SYNTAX

 PamTest [testname ...] [options]

DESCRIPTION

 Testnames for PCI Pamette are (default is all):

 download
 clock
 connect
 readback
 sram

Command Line Controls for PCI Development Platform

11–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

 Testnames for TURBOchannel Pamette are (default is all):

 init

 prom

 download

 clock

 connect

 readback

 io

 dma

 Options are:

 -dev device

 (default is /dev/pam0)

 -C level

 connect level for PCI Pamette v1:

 level = 0

 internal connections only

 level = 1

 without loop-back connectors

 level = 2

 with type 1 loopback connector

 level = 3

 with type 1 loopback connector and DRAM

 connect level for TURBOchannel Pamette:

 level = 0

 internal connections only

 level = 1

 without loop-back connectors

 level = 2

 with loop-back connectors on P2 P3 P4 P5 P6

 level = 3

 with loop-back connector on P7 or on P5 P6

 -e testname

 exclude testname

 -forceprom

 force testprom even if EEPROM initialised

 -log filename

 append error messages in filename

Command Line Controls for PCI Development Platform

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 11–3

 -nostatus

 do not print status messages

 -nostop

 do not stop on error

 -pass nb_pass

 (default is 1)

 -print nb_err

 (default is 10)

 -debug Code

 reserved to test debug

Note:

The PamTest application is currently designed for PCI buses that run at 33.3 MHz. Many PCI
buses do not meet this requirement (the PCI specification only requires a PCI bus to operate
at less than or equal to 33.3 MHz). This would cause the Pamtest application to fail during
the clock test. If PamTest reports a clock frequency less than 33.3 MHz, your module may be
functioning correctly. To check the functionality of the board run the following PamTest
option, which excludes the clock test.

On Windows NT systems, run the following command from the MS-DOS prompt:

C:\pam\bin\PamTest –C 0 –e clock

On DIGITAL UNIX systems, the appropriate command is shown below:

/usr/bin/PamTest –C 0 –e clock

The appropriate result for DIGITAL UNIX and Windows NT is shown below.

-- PamTest of Aug 18 19971 15:18:11 --

Board : 2.1 Firmware : 1.8 Serial Number : 0

Config : 4020E 4020E 4020E 4020E

Download OK

Connect OK

Readback OK

Sram OK

Command Line Controls for PCI Development Platform

11–4 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

11.3 Mergebit
The Mergebit application concatenates the four bit streams used to program the four
individual FPGAs in the user-area, directions for use of the application follow:

Usage: mergebit [-v] [-c <name>] [-o <outfile>]
<design>[.mergebit] ...

This program reads one or more description files "design.mergebit"
containing the names of the 4 rawbit (.rbt) files to merge, and
produces a binary file "<outfile>.pam" ready to be downloaded into
a PAM board. Multiple description files specify alternate bit
streams. The download process examines each possible bit stream
until it finds one which is compatible with the target board. The
description file must contain the file names in order, separated
by whitespace. If the extension ".rbt" is not present on a
filename, it is added. If a filename is "-", it will be
substituted by a null bit stream (stream of 1s). The description
file may also contain comments, extending from a semicolon
character ';' to the end of the line. LCA order is as follows:

 LCA00 LCA01

 LCA02 LCA03

The -v flag selects the "verbose" mode (file names are printed).

If the -c flag is present, the output will be a C file suitable
for compilation and linking with the driver program of the
application. In this case, the default output filename is
"design_pam.c". "name" will be the C name of the structure
declared.

The -o flag changes the name of the output file. If the -o flag
is not present, the outfile file name is derived from the name of
first "design.mergebit" file .

11.4 Prom (ppam_prom for DIGITAL UNIX)
The prom application is used for reading and writing to both the SROM (Xilinx) and the
EEPROM (Amtel). The program can be used to read the current configuration or to write a
new configuration to the EEPROM.

Usage C:\PAM\BIN\PROM.EXE read|write|copy [-x|a] [-llenght] [-dev
device] [filename]

-x is the Xilinx prom (default)

-a is the Amtel eprom

length is in bytes (default 32 kB)

input file can be either a RBT file a raw hex file

output file is a raw hex file

Command Line Controls for PCI Development Platform

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 11–5

11.5 PamControl
PamControl is a command line interpretive mode that allows direct access to Development
Platform controls. This program allows the user to configure the board appropriately to their
application by setting the mode of the board and the security bits. To see all the current
commands in PamControl, run PamControl and type help on the command line. The man
page for PamControl is shown below.

Usage: PamControl [-dev dev] [-nolock|-wait] [command]

DESCRIPTION

This command-based program can perform several control and debug
operations on a Pamette board. If a command argument is given, it
will execute it and exit, otherwise it will enter interactive
mode. The help command lists the currently available commands.
Expect this list to change frequently as this program is used as a
debug tool and new functions are added to it as needed.

OPTIONS

 -dev dev Open pam device dev instead of the default /dev/pam0.

 -nolock Open the pam device without taking the lock.

 -wait Wait for the pam device to be unlocked.

Command Line Controls for PCI Development Platform

11–6 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

11.6 Pciperf (ppam_pciperf for DIGITAL UNIX)
The Pciperf (ppam_pciperf) tool is used to exercise and spy on the PCI bus. The tool can be
used to measure throughput and traffic on the PCI bus. The Pciperf command has the ability
to exchange 64 bits on the PCI bus, if your system supports the 64-bit extended PCI. The
other tests only test 32 bits, allowing them to be used on all PCI busses; therefore, this
function can be used to test the full PCI extension. The following man page explains the
function and set up of the Pciperf tool.

This application turns the PCI Pamette into a PCI exerciser and
spy. The information in this README regarding register layout has
been superceded by the interface.ps or interface.pdf document in
the PCI Pamette documentation archive.

NB: As of v1.8 of the PCI Pamette firmware initiating DMA and
using the spying mode (a.k.a. promiscuous mode) requires the
setting of security bits (as documented in interface.ps)

This is most easily done with the command:

 PamControl security C

which sets security bits 2 - to allow DMA - and 3 to allow
promiscuous mode.

If . is the directory into which you unpacked the archive and from
which you are reading this README, then the application is in
./runtime/pciperf

Running pciperf with no arguments prints the following cryptic
usage message:

Usage: runtime/pciperf

 [-dev device]

 [-verbose 0-6] (-v also accepted)

 [-timeout n] (default 100)

 [-rep repetions] (default 1)

 [-flush]

 [-dirty]

 <cmd> [<flags>]

 cmd is small digit for PIO tests or coded DMA engine command for
DMA

 see README for more details

Command Line Controls for PCI Development Platform

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 11–7

Meaning of flags

-verbose 0 [default] prints a single number which is the MB/s
achieved.

-verbose 1 prefixes the number with "Average rate: "

-verbose 2 also prints the rate for each pass (meaningful only
with -rep n>1)

-verbose 3 prints a summary of the burst types seen.

-verbose 4 prefixes the summary with a compact transaction log

-verbose 5 prints a detailed log of every bus cycle recorded.

-verbose 6 prints uninterpreted trace data for debugging the
program itself

-timeout n specifies the number of idle bus cycles after which
the trace analysis stops. When spying on other traffic (cmd code
10 below) you may wish to set a large value, say 100000.

-rep n number of times to repeat the test

-flush tries to ensure that DMA memory region is not in cache

-dirty tries to ensure that DMA memory region is in cache

The cmd determines how the PCI bus is exercised.

PIO tests

PIO tests read/write a contiguous 2 kB block.

0 - 32-bit PCI reads.

1 - 32-bit PCI writes.

2 - like 0, but accepts 64-bit PCI reads.

3 - like 1, but accepts 64-bit PCI writes.

10 - generates no traffic on its own but may spy other traffic.

Codes 4-F are DIGITAL UNIX specific, not all are currently
implemented

4 - used with a special tweaked version of the PCI Pamette PCI
interface which responds more quickly in a certain address region.
On the standard PCI interface 4 behaves like 0

6 - like 4, but accepts 64-bit transactions

8 - on ev5 it seems by using a non-linear load sequence we can
persuade the processor to issue 32 byte reads. The specific
sequence within a 32 byte block is [0..7] [24..31] [8..15]
[16..23]

A - like 8, but accepts 64-bit transactions

C - like A, but loop unrolled once

Command Line Controls for PCI Development Platform

11–8 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

DMA tests and command encoding

cmd may also encode a DMA transaction request. On DIGITAL UNIX,
user must be root to generate DMA transactions, because we need
the mlock syscall.

The DMA transaction are encoded in a arcane format that exactly
mirrors the value to be loaded into the 32-bit CSR that controls
DMA requests. See the interface.ps or interface.pdf documents for
a definitive reference on DMA command encoding.

By default DMA requests are 32-bit linear increment. The optional
flags permits the specification of:

1 - intel cacheline wrap mode (now deprecated)

2 - cacheline wrap with linear increment within cacheline

3 - 64 bit

The fields in the DMA control CSR are as follows.

 31..28 : PCI command 3..0

 15..12 : delay to next request

 11.. 2 : 0x400 - burst length

 1 : must be 0

 0 : must be 1

For example ppam_pciperf -v 3 7c000fc1 on an AlphaStation 200
4/166 might report:

ppam_pciperf -v 3 7c000fc1

Total DMA length = 4096 bytes

DMA Engine preferred burst length = 64 bytes

67.3% A [mmwr 1*decode 15*data / 1*data]

13.7% B [mmwr 1*decode 8*data 1*disc / 1*disc]

11.5% C [mmwr 1*decode 7*data / 1*data]

 0.6% D [mmwr 1*decode 1*retry / 1*retry]

 6.9% idle

Pass average rate: 103.2 MB/s

Average rate: 103.2 MB/s

Burst lengths of 2 or 3 are treated as burst length 1 due to
internal pipelining restrictions.

Some care should be exercised in the choice of "length" and
overrun due to the pipelined control that was necessary in this
part of the PCI interface. The DMA engine will start a new burst
whenever the specified "length" has not been achieved.

Command Line Controls for PCI Development Platform

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 11–9

If the total "length" is not a multiple of the "burst length", the
DMA engine may issue extra DMA cycles up to the next multiple of
"burst length" beyond the specified length.

The interface will start requesting DMA when bit 27 is set. Bits
27..16 are a counter which will count up by one for each longword
transferred -- when bit 27 transitions to zero DMA stops. Be
careful at the page boundary, it may be possible for a burst
started just before it to spill into the next page -- it depends
on the host bridge.

The length field (11..2) is the desired burst length in long
words. If the burst is disconnected the next request will try to
complete the DMA up to the burst boundary then stop and start a
new request for the next burst. Top bit must be one in length
counter otherwise burst length is limited to one. Hence maximum
burst size is 0x200 or 2048 bytes.

The "delay to next request" (bits 15..12) specifies a delay
between bursts. This let's us throttle back the rate, it also
let's us optimize throughput on host bridges that introduce their
own wait states.

When the remaining "length" is less than twice the "burst length"
and "delay to next request" is set to 0 or 1, the interface
increases "delay to next request" to 2 or 3. If this is not done
the DMA engine can issues an extra burst (beyond the rules stated
above) because the decrement of "length" is delayed by a couple of
cycles from the cycle when the actual data is transferred.

Notes on "-verbose 3" and "-verbose 4" output

The burst type summary produced by the flag "-verbose 3" should be
read as follows: each distinct transaction is given an upper case
alphabetic classification. The percentage is the percentage of
total bus cycles that the bus was busy with this type of
transaction. Next is a breakout of the sequence of cycles within a
given transaction type, the "/" indicates when frame went high,
dataSkip means a data phase but with byte masks disabled, other
cycle type names should I hope be self explanatory, repeated
cycles are indicated by count*type, e.g. 3*data64 means three 64
bit data cycles.

The observed transaction log over time using the upper case
alphabetic transaction type classifications. The log consists of a
sequence of pairs, a count of number of cycles the PCI was idle,
and the transaction type that was observed after those idle
cycles. If the transaction type is identical to the immediately
previous transaction type a "." is substituted for the upper case
alphabetic.

For instance in the following example we see a sequence of 16
dword memory writes each separated by one idle cycle lasting in
total about 1300 bytes, followed by a mixture 16 dword memory
writes and 8 dword memory writes caused by host disconnects.

Command Line Controls for PCI Development Platform

11–10 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

ppam_pciperf -verbose 4 7e010fc1

Total DMA length = 2044 bytes

DMA Engine preferred burst length = 64 bytes

 6 A 1 . 1 . 1 . 1 . 1 . 1 . 1 .

 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .

 1 . 1 . 1 . 1 . 1 B 1 A 1 . 1 C

 1 D 1 A 1 . 1 . 1 . 1 C 1 D 1 A

DMA Engine preferred burst length = 64 bytes

 6 A 1 . 1 . 1 . 1 . 1 . 1 . 1 .

 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .

 1 . 1 . 1 . 1 . 1 B 1 A 1 . 1 C

 1 D 1 A 1 . 1 . 1 . 1 C 1 D 1 A

85.4% A count=30 len=18 bytes=64 avg-idle=1.3

 3.8% C count=2 len=12 bytes=32 avg-idle=1.0

 3.2% D count=2 len=10 bytes=32 avg-idle=1.0

 0.6% B count=1 len=4 bytes=0 avg-idle=1.0

Total observed data = 2048 bytes

85.4% A [mmwr 1*decode 15*data / 1*data]

 3.8% C [mmwr 1*decode 8*data 1*disc / 1*disc]

 3.2% D [mmwr 1*decode 7*data / 1*data]

 0.6% B [mmwr 1*decode 1*retry / 1*retry]

 7.0% idle

Pass average rate: 106.9 MB/s

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide 12–1

12
Restoring Original PCI Interface Design

12.1 Introduction
As discussed in Section 2.1.2, the PCI development platform has the ability to be
programmed with a customized PCI interface. The EEPROM is used to store the current PCI
interface design. The user has the ability to overwrite the information in this EEPROM with
their own design. The original design is permanently stored in the SROM and this design can
be restored in a few simple steps.

Power down the system and place the fail safe jumper in the ON position. The failsafe jumper
is located on the front of the board in the upper left corner (see Figure 3-1). Reboot the
system and run PamControl . PamControl is explained in detail in Section 11.5. At the
PamControl prompt, run the SetConfig option. The user is prompted for the serial number.
The serial number can be found on the yellow label, which is located on the back of the
board. Enter only the last six digits of the serial number. The program then prompts for the
LCA numbers. The LCA numbers identify the version of the board. The boards are classified
according to the FPGAs mounted in the user area. The list below explains the value which
should be assigned to each LCA according to the model number of the board.

For 2T-PAMP1-PM, 2T-PAMP1-AA, and 2T-PAMP1-BA

LCA0? 4010E

LCA1? 4010E

LCA2? 4010E

LCA3? 4010E

For 2T-PAMP1-CA and 2T-PAMP1-DA

LCA0? 4020E

LCA1? 4020E

LCA2? 4020E

LCA3? 4020E

For 2T-PAMP1-EA

LCA0? 4028EX

LCA1? 4028EX

LCA2? 4028EX

LCA3? 4028EX

Restoring Original PCI Interface Design

12–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

If the model number is not known, examine the FPGAs and identify the size of the chips in
the user area. There are five FPGAs mounted on the board. Four of them should have the
same size. The size is located underneath the word XILINX. The first two letters are always
XC and the size follows. For example, if the FPGA says XC4010E, the size of the chip is
4010E. The above list identifies the current available options.

After finishing SetConfig and exiting PamControl, the EEPROM should be written with the
configuration information just entered. On Windows NT systems, the EEPROM is written
from the MS-DOS prompt as shown below:

C:\pam\bin\prom write c:\pam\lib\pif.rbt

On DIGITAL UNIX systems, the SRAM Test is run from the command line as shown below:

/usr/bin/ppam_prom write /usr/lib/Pam/pif.rbt

The original configuration is now restored in the PCI interface. The system should be
powered down and the failsafe jumper placed in the OFF position. When the system is
rebooted, the original configuration is restored.

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide A–1

A
Major PCI Development Platform User

Buses/Pins

Table A-1 lists the major user signal buses along with pin connections present and their use.

Table A-1 Major PCI Development Platform User Buses/Pins

User Signal pif Lca0 Lca1 Lca2 Lca3 PMC/
CMC

Use

Ebus[31:0] X X X TM Datapath PIF to user-area

Ebus[34:32] X X X TM Ebus State

Ebus[35] X X X TM Request Code

cnfgP_ld.Din X X X TM Request Code

Sbus0.x[1:0][2:0] (6 pins) X X User-defined
Sbus0.x[0][1] on lca0 output ONLY
Sbus0.x[1][1] on lca1 output ONLY

Sbus0.d[31:0] X X User-defined

Sbus1.x[1:0][1:0] (4 pins) X X User-defined
Sbus1.x[0][1] on lca2 output ONLY
Sbus1.x[1][1] on lca3 output ONLY

Sbus1.d[15:0] X X User-defined

Wbus0[35:0] X X User-defined

Wbus1[35:0] X X User-defined

Clksys X X X X X X Copy of PCI or External Clock

ClkUsr X X X X User-programmable Clk

Srbus0.addr[14:0] X Lca0 SRAM Address

Srbus0.data[15:0] X Lca0 SRAM Data

Srbus0.write X Lca0 SRAM Write

Srbus0.oe X Lca0 SRAM Output Enable

Srbus0.bank[1:0] X Lca0 SRAM Bank Select

Srbus1.addr[14:0] X Lca1 SRAM Address

Srbus1.data[15:0] X Lca1 SRAM Data

Srbus1.write X Lca1 SRAM Write

Srbus1.oe X Lca1 SRAM Output Enable

Srbus1.bank[1:0] X Lca1 SRAM Bank Select

 X = pin connections present

Major PCI Development Platform User Buses/Pins

A–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

Table A-1 (Cont.) Major PCI Development Platform User Buses/Pins

User Signal pif Lca0 Lca1 Lca2 Lca3 PMC/
CMC

Use

Spci (95 pins) X X User-defined I/O -or- Connections support
secondary 64-bit PCI bus

Lca2 Pins 5,6,47,197,198 Output ONLY
Lca2 Pins 9, 76 Input ONLY

Spci.reserved[3:0] X X User-defined Input ONLY

Spci.interrupts (3 pins) X X User-defined I/O -or- Can be connected
directly to Primary PCI bus interrupts

Drbus (92 pins)

.addr, data, ras, cas, write

 X X 64 User-defined I/O -or- DRAM Interface

Ras, cas, write NOT connected to PMC

Busmode[3:0] X X User-defined I/O

Clkext X X External Clock input

Ring[1:0] X X X X X User-defined
Connected to Global buffers within FPGAs

X = pin connections present

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide B–1

B
PCI Development Platform Special

Purpose/Restricted Use Pins

Table B-1 lists the special purpose/restricted use signals along with the pin connections
present, their special use, and restrictions for user application.

Table B-1 PCI Development Platform Special Purpose/Restricted Use Pins

Signal pif Lca 0 Lca 1 Lca 2 Lca3 Special Use Restrictions for User
Application

Cntlr_l_0

 .u_prog, .rb, .u_din,
 .u_init

 X X User-area Download /
Readback

DO NOT USE Pins 108, 48, 77
Lca0 Pin 151 (.u_din) is
connected to lca1 Pin 99 and
may be used as user I/O after
configuration

Cntlr_l_1

 .u_prog, .rb, .u_din,
 .u_init

 X X User-area Download /
Readback

DO NOT USE Pins 108, 48, 77
Lca1 Pin 151 (.u_din) is
connected to lca1 Pin 99 and
may be used as user I/O after
configuration

Cntlr_l_2

 .u_prog, .rb, .u_din,
 .u_init

 X X User-area Download /
Readback

DO NOT USE Pins 108, 48, 77
Lca2 Pin 151 (.u_din) is
connected to lca3 Pin 99 and
may be used as user I/O after
configuration

Cntlr_l_3

 .u_prog, .rb, .u_din,
 .u_init

 X X Configuration /
Readback

DO NOT USE Pins 108, 48, 77
Lca3 Pin 151 (.u_din) is
connected to lca2 Pin 99 and
may be used as user I/O after
configuration

Cntlr_g

 .u_done, .u_cclk,
 .u_rbtrig

 X X X X X User-area Download /
Readback

DO NOT USE Pins 103, 153,
50

CnfgP.ld0

 .cclk, .prog, .done,
 .promce,
 .ser_en[1:0]

 X Used to allow lca0/1
to source the
configuration
bitstream.

DO NOT USE lca0 Pins 204,
46, 47, 203, 76, 59 for normal
user application.

X = pin connections present

PCI Development Platform Special Purpose/Restricted Use Pins

B–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

Table B-1 (Cont.) PCI Development Platform Special Purpose/Restricted Use
Pins

Signal pif Lca 0 Lca 1 Lca 2 Lca3 Special Use Restrictions for User
Application

CnfgP.ld1

 .u_reset, .otp_ce,
 .ce_mux

 X Used to allow lca0/1
to source the
configuration
bitstream.

DO NOT USE lca1 Pins 204,
203, 76 for normal user
application.

CnfgP.ld.din X X X Used to allow lca0/1
to source the
configuration
bitstream to pif.

DO NOT USE Pin 5 for
normal user application.

X = pin connections present

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide C–1

C
PAM Driver Interfaces for DIGITAL UNIX

PAM Driver Interfaces
The following sections describe the PAM driver interfaces.

open()
The open() function establishes a connection between the PAM device named by the path
parameter and a file descriptor. The opened file descriptor is used by subsequent I/O
functions, such as read(), write() , and ioctl().

SYNTAX

#include<sys/fcntl.h>

int open (path, oflag, mode);
const char *path;
int oflag;
mode_t mode;

PARAMETERS

path "/dev/pam”
oflag O_RDWR
mode This parameter is not used.

EXAMPLE

int fd;
if ((fd = open("/dev/pam", O_RDWR, 0)) < 0) {

perror (“open”);
exit(1);

}

RETURN VALUES

Upon successful completion, the open() function returns the file descriptor, a nonnegative
integer. Otherwise, a value of -1 is returned and errno is set to indicate the error. Please see
the open() man page for a description of the possible values for errno.

PAM Driver Interfaces for DIGITAL UNIX

C–2 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

close()
This system call is used by an application to release exclusive control of the PAM device.

SYNTAX

int close (fd);
int fd;

PARAMETERS

fd A valid open file descriptor as returned by open().

EXAMPLE

int fd;

if (close(fd)) {
perror (“close”);
exit(1);

}

RETURN VALUES

Upon successful completion, the close() function returns a value of 0 (zero). Otherwise, a
value of -1 is returned and errno is set to indicate the error. Please see the close() man page
for a description of the possible values for errno.

ioctl()
The ioctl() system call performs device specific actions on or for a device. The action is
determined by the request parameter. The following sections will describe each of the
requests and provide examples of their usage.

Each ioctl() system call will have the same general syntax. The differences of the specific
requests will be discussed in the following sections.

SYNTAX

#include<sys/ioctl.h>
#include“PamRegs.h”

int ioctl (fd, request, arg)
int fd;
unsigned long request;
void *arg;

PAM Driver Interfaces for DIGITAL UNIX

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide C–3

PARAMETERS

fd A valid open file descriptor as returned by open().
request The ioctl command to be performed on the device.

PAMIOUVTOPHY

PAMIOGETOWNER

PAMIOGETTCINFO

PAMIOGETRECVR

PAMIOSETRECVR

PAMIOSETOWNER

PAMIODISABLEINTR

PAMIOENABLEINTR

PAMIOGETINTRTIME

PAMIORESTORECONFIG

PAMIOUVTOBUS

PAMIOGETBUSCLKPSPERIOD

PAMIOGETDEVMEMSIZE

arg The parameters for this request.

EXAMPLE

if (ioctl (fd, PAMIOSETRCVR, 0)) {
perror (“PAMIOSETRCVR”);
exit(1);

}

RETURN VALUES

Upon successful completion, the ioctl() function returns a value of 0 (zero). Otherwise, a
value of -1 is returned and errno is set to indicate the error. Please see the ioctl() man page for
a description of the possible values for errno.

PAMIOUVTOPHY
Using the PAMIOUVTOPHYas the request parameter converts the current virtual address to a
physical address.

This should be used in conjunction with mlock(2) system call (implies effective uid==0). If
virtual address is not locked the translation may change at any time.

This ioctl was used to used for DMA on TURBOchannel. It must not be used with PCI
devices. Use PAMIOUVTOBUS instead.

PAMIOGETOWNER
Using the PAMIOGETOWNER as the request parameter returns the process id of a current
owner process.

The owner process provides advisory information to help identify a current process holding
lock.

PAM Driver Interfaces for DIGITAL UNIX

C–4 DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide

PAMIOGETRECVR
Using the PAMIOGETRECVR as the request parameter returns the process id of the current
interrupt receiver process.

PAMIOSETRECVR
Using the PAMIOSETRECVR as the request parameter sets the interrupt receiver to the
current process.

PAMIOSETOWNER
Using the PAMIOSETOWNER as the request parameter sets the process id of current owner
process.

PAMIODISABLEINTR or PAMIOENABLEINTR
Using PAMIODISABLEINTR or PAMIOENABLEINTR as the request parameter enables or
disables interrupts.

These routines do not control hardware posting of interrupts. They just control the drivers
ability to access the board in the face of an interrupt. If an interrupt arrives from the board
while interrupts are disabled the system will hang. The purpose of these routines is to unwire
the interrupt handler while the interface is being reconfigured so that board accesses are not
generated by interrupts from other devices which share the same interrupt line.

Your process must have superuser privilege to implement these calls.

PAMIOGETINTRTIME
Using PAMIOGETINTRTIME as the request parameter gets the rpcc recorded at the time of
the last interrupt.

PAMIORESTORECONFIG
Using the PAMIORESTORECONFIG as the request parameter restores the PCI configuration
registers to values recorded at boot time.

PAMIOUVTOBUS
Using the PAMIOUVTOBUS as the request parameter converts the user virtual address to an
I/O bus address. This call should be used in conjunction with the mlock(2) system call
(implies effective uid==0 -- superuser).

PAMIOGETBUSCLKPSPERIOD
Using the PAMIOGETBUSCLKPSPERIOD as the request parameter will get the bus clock
period (in picoseconds).

PAMIOGETDEVMEMSIZE
Using the PAMIOGETDEVMEMSIZE as the request parameter gets the device memory
space size.

Protecting Resources in an SMP Environment
The Pam driver currently contains no mechanisms for protecting resources in an SMP
environment. If the user requires synchronized access to kernel data when executing multiple
threads, modify the stanza.static file to funnel a device driver onto a single CPU. You can do
this by modifying the following from:

Device_Char_Funnel = DEV_FUNNEL_NULL

to

Device_Char_Funnel = DEV_FUNNEL

DIGITAL PCI Development Platform Reconfigurable Hardware Device for the PCI Bus User's Guide D–1

D
PAM Driver Interfaces for Windows NT

The Windows NT driver interface document was not ready at the time of release for this
User’s Guide. It may be obtained from the following World Wide Web address:

http://www.digital.com/customsystems/platforms/realtime_manu.html

SES Template Word 7 Blank Page Fix by Peter LaQuerre

Glossary-1

Glossary

Bit stream

A collection of bits that is used to program the configuration of the Xilinx FPGAs.

bus

A collection of many transmission lines or wires. The bus interconnects computer system
components, providing a communications path for addresses, data, and control information or
external terminals and systems in a communications network.

CD-ROM

Compact disc read-only memory. The optical removable media used in a compact disc
reader.

CLB

Configurable logic block. The internal build block of the Xilinx FPGA.

Clkext

An external clock that can be used to control the board. The clock can be brought in through
pin 1 of the mezzanine card connector JN4.

ClkSys

The default clock that is used to control the board. It is a reconstructed PCI clock that can run
at single or double the PCI clock speed.

Clkusr

A programmable PLL that can be used as a secondary clock source. The Clkusr does not have
definitive phase relation to ClkSys.

CMC

Common mezzanine card. The IEEE 1386 standard defines the common mezzanine card in
terms of physical properties.

Deconfiguration

The ability to deactivate a current configuration of an FPGA. The bit stream must be
reloaded to recover the configuration.

Glossary

Glossary-2

DRAM

Dynamic random-access memory.

Ebus

The bus that connects the PCI interface chip to usrlca0 and usrlca1.

Ebusstate

The three state bits which define the current state of Ebus during transactions mode. he state
bits are used for flow control and the avoidance of contention on Ebus.

EEPROM

Electrically Erasable Programmable Read Only Memory. The EEPROM is used to store a
version of PCI interface. There is also an SROM that stores PCI interface design, which
cannot be erased.

FPGA

Field Programmable Gate Array. The FPGA is the foundation of the PCI development
platform. Each FPGA contains a number of CLBs that interconnected by routing channels.
The configuration of the CLBs and the interconnection of the CLBs is programmable.

IOB

Input Output Buffer. The IOB is the driver that is located on the pad within the FPGA.
Typically, the IOB can be programmed as a TTL driver, CMOS driver, or Tri-stateThis
allows the FPGA to function properly in multiple environments.

LCA

Logic Cell Array. The LCA is the collection of CLBs with in the Xilinx 4000 series FPGAs.

LUT

Look up table. Each CLB contains three LUTs for function generation. Two of the LUTs
have four inputs and the third has just three inputs. All of the LUTs have a single output.

NOP

No operation.

PCI

Peripheral component interconnect. An industry-standard expansion I/O bus that is the
preferred bus for high-performance I/O options. PCI is available in a 32-bit and 64-bit
version.

PIF

PCI interface chip. The PIF is DIGITAL proprietary PCI design programmed in a Xilinx
4010E FPGA. The PIF has three modes of operation: transaction, promiscuous, and static.

PMC

PCI mezzanine card. The PMC is the same mechanically as the CMC. The difference is the
PMC has a PCI interface device on it and negotiates according to the PCI standard. See IEEE
Draft Standard 1386.1

Glossary

Glossary-3

Promiscuous Mode

A mode of the PIF in which the PCI development platform constantly snoops the PCI bus.
The PIF runs at twice the speed of the PCI bus. On half of a PCI clock period, the PIF
registers the PCI control signals and on the other half of the period, the PIF reads the data or
address present on the PCI bus.

Reconfiguration

Changing the configuration of the programmable device. The FPGAs on the PCI development
platform are infinitely reconfigurable. Some programmable devices can only be configured
once, an SROM, and therefore, are not reconfigurable.

Rings

A two bit wide bus that is connected to all for User Area FPGAs. The Ring bits can be used to
generate interrupts.

SBUS

South bus. There are two separate south buses on the PCI development platform. One SBUS
connects Usrlca 0 to Usrlca 1 and the other connects Usrlca 2 to Usrlca 3.

Side Effect on Read

A side effect on read is when the act of reading a register changes the state of the register.

SMP

Symmetric multiprocessing.

SRAM

Static random-access memory.

Static Mode

A mode of the PIF in which the PIF has statically defined data paths between the PIF and
Usrlca 0 and Usrlca 1. Ebus is split into two 16-bit wide paths one for reading data and the
other for writing data.

Transaction Mode

The mode of the PIF that allows 32-bit or 64-bit data to be passed in either direction between
the user area and the PIF. In this mode the PIF has interrupts and DMA capabilities. This
mode models the PCI target and initiator. Ebusstate identifies the current state of ongoing
transactions.

User Area

The four FPGAs that are logically placed between the PCI interface chip and the CMC
connectors.

UsrLCA

User logic cell array. This is another term used to refer to one of the FPGAs in the user area.

WBUS

West bus. There are two separate west buses on the PCI development platform. One WBUS
connects Usrlca 0 to Usrlca 2 and the other connects Usrlca 1 to Usrlca 3.

SES Template Word 7 Blank Page Fix by Peter LaQuerre

