VAX 4000 Model 105A/106A Customer Technical Information

Order Number: EK-514AA-TI. B01

May 1995

This manual provides technical information for VAX 4000 Model 105A/106A systems. It also gives a list of the console commands, and specifications for the system unit, the CPU, the internal SCSI and DSSI devices.

Digital Equipment Corporation Maynard, Massachusetts

April 1995

Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1995. All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DECnet, Digital, OpenVMS, RRD42, RRD43, RX, ThinWire, TK, VAX, VAXcluster, VAX DOCUMENT, VT, and the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

S2851

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Pı	reface .		vii		
1	Syster	n Description			
	1.1	The VAX 4000 Model 105A/106A System Unit	1–1		
	1.1.1	Model 105A/106A VAX Architecture Support	1–3		
	1.2	Internal Mass Storage Devices	1–5		
	1.3	Communications Devices	1–6		
	1.3.1	Asynchronous Communications Devices	1–6		
	1.3.2	Synchronous Communications Devices	1–6		
2	Conso	le Security Feature and System Defaults			
	2.1	Entering Console Mode	2–2		
	2.2	Using the Console Port MMJ 3	2–4		
	2.3	Console Security Feature	2–5		
	2.3.1	Setting the Security Password	2–6		
	2.3.2	Enabling the Console Security Feature	2–7		
	2.3.3	Logging in to Privileged Console Mode	2–7		
	2.3.4	Changing the Security Password	2–8		
	2.3.5	Disabling the Console Security Feature	2–9		
	2.3.6	Exiting from Privileged Console Mode	2–9		
	2.4	Setting the Default Boot Device	2–10		
	2.5	Setting the Default Recovery Action	2–11		
3	Console Commands				
	3.1	ВООТ	3–1		
	3.2	CONTINUE	3–3		
	3.3	DEPOSIT	3–3		
	3.4	EXAMINE	3–4		
	3.5	FIND	3–6		
	3.6	HALT	3–6		

3.7	HELP	
3.8	INITIALIZE	3–9
3.9	LOGIN	3–10
3.10	MOVE	3–11
3.11	NEXT	3–12
3.12	REPEAT	3–14
3.13	SEARCH	3–15
3.14	SET	3–17
3.15	SHOW	3–18
3.16	START	3–21
3.17	TEST	3–22
3.18	UNJAM	3–26
3.19	X—Binary Load and Unload	
3.20	! (Comment)	3–28

4 Hardware Specifications

4.1	System Unit Specifications	4–1
4.2	Internal DSSI Device Specifications	4–5
4.3	KA53–AA CPU Specifications	4–10
	KA54–AA CPU Specifications	4–13

Index

Figures

1–1	Block Diagram of the VAX 4000 Model 105A/106A	
	System	1–2
2–1	Returning to Console Mode	2–3
2–2	Console Port	2–4

Tables

1–1	Supported Internal Mass Storage Devices	1–5
1–2	Supported Asynchronous Devices	1–6
1–3	Supported Synchronous Devices	1–6
1–4	Synchronous Communications Option Cable Part	
	Numbers	1–6
2–1	Alternative Default Boot Devices	2–10
2–2	Default Recovery Actions and Associated Values	2–11

System Specifications: VAX 4000 Model 105A/106A	4–2
System Unit Metrics	4–3
System Storage Conditions	4–3
System Operating Conditions and Nonoperating	
Conditions	4–3
DSSI Hard Disk Drive Specifications	4–5
TZ30 Tape Drive Specifications	4–6
TZK10 QIC Tape Drive Specifications	4–6
TZK11 QIC Tape Drive Specifications	4–7
TLZ06 Cassette Tape Drive Specifications	4–7
TLZ07 Cassette Tape Drive Specifications	4–8
RRD42 Compact Disc Drive Specifications	4–8
RRD43 Compact Disc Drive Specifications	4–9
	System Unit MetricsSystem Storage ConditionsSystem Operating Conditions and NonoperatingConditionsConditionsDSSI Hard Disk Drive SpecificationsTZ30 Tape Drive SpecificationsTZK10 QIC Tape Drive SpecificationsTZK11 QIC Tape Drive SpecificationsTLZ06 Cassette Tape Drive SpecificationsTLZ07 Cassette Tape Drive SpecificationsRRD42 Compact Disc Drive Specifications

Preface

This manual provides technical information for VAX 4000 Model 105A and Model 106A systems. It also gives a list of the console commands, and specifications for the system unit, the CPU, and the SCSI and DSSI devices.

Audience

This manual is intended for experienced users such as system programmers or system managers.

Structure of This Manual

This manual has four chapters and an index:

- Chapter 1 describes technical information about the Model 105A/106A systems.
- Chapter 2 describes the console security feature and how to set system defaults.
- Chapter 3 describes the console commands.
- Chapter 4 gives specifications for the system unit and for internal DSSI devices.

Additional Information

See VAX 4000 Model 105A/106A Operator Information, EK–513AA–OP, for the list of associated and related documents.

Conventions

The following conventions are used in this manual:

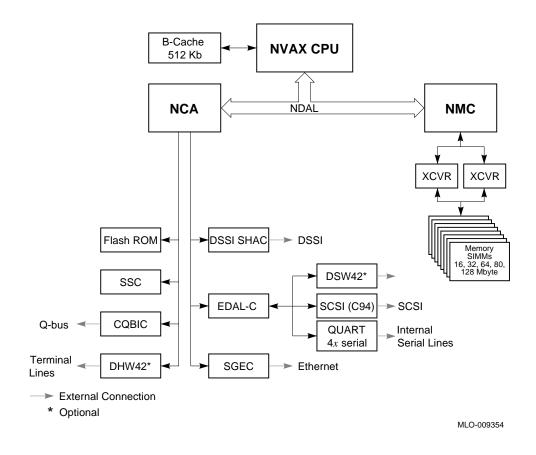
Convention	Description
MONOSPACE	Text displayed on the screen is shown in monospace type.
boldface type	Boldface type in examples indicates user input. Boldface type in text indicates the first instance of terms defined either in the text, in the glossary, or both.
italic type	Italic type emphasizes important information, indicates variables, and indicates complete titles of manuals.
nn nnn.nnn nn	A space character separates digits in numerals with 5 or more digits. For example, <i>10 000</i> equals <i>ten thousand</i> .
n.nn	A period in numerals signals the decimal point indicator. For example, <i>1.75</i> equals <i>one and three-fourths.</i>
UPPERCASE	Words in uppercase indicate a command.
lowercase	In format descriptions, words in lowercase indicate parameters or arguments to be specified by the user.
	In command syntax descriptions, a vertical bar \mid separates similar options, one of which you can choose.
Note	A note contains information of special importance to the reader.
Ctrl/x	Ctrl/ x indicates that you hold down the Ctrl key while you press another key or mouse button (indicated here by x).
X	A lowercase italic x indicates the generic use of a letter. For example, xxx indicates any combination of three alphabetic characters.
n	A lowercase italic n indicates the generic use of a number. For example, $19nn$ indicates a 4-digit number in which the last 2 digits are unknown.
{}	In format descriptions, braces indicate required elements. You must choose one of the elements.
[]	In format descriptions, brackets indicate optional elements. You can choose none, one, or all of the options.

System Description

This chapter gives a technical description of VAX 4000 Model 105A and Model 106A systems, including information on the following subjects:

- Model 105A/106 system unit
- Internal mass storage devices
- Communications devices
- Digital Storage Systems Interconnect (DSSI)
- KA53-AA/KA54-AA CPU specifications

1.1 The VAX 4000 Model 105A/106A System Unit


The VAX 4000 Model 105A system uses the KA53 CPU module, while the VAX 4000 Model 106A system uses the KA54 CPU module . These modules contain the following integrated circuit components:

- NVAX: processor chip, with a 333 MHz clock
- NMC: NVAX memory controller
- NCA: NVAX CP bus adapter
- SHAC: DSSI support (KFDDA daughter card)
- CQBIC: Q-bus support
- SCSI controller
- SQWF buffer
- SSC: Time-of-year (TOY) clock
- SGEC: Ethernet controller (DC541)
- QUART: Serial line controller (DC7085)
- Support for up to 128 Mbytes of SIMMs (single-inline memory modules)

- Support for optional asynchronous communications devices, which provide either 8 or 16 additional DEC423 ports, or 8 additional asynchronous modem control ports
- Support for optional synchronous communications devices, using DSW42 and DHW42 options which provide two synchronous ports

Figure 1–1 is a block diagram of the VAX 4000 Model 105A/106A systems.

Figure 1–1 Block Diagram of the VAX 4000 Model 105A/106A System

1.1.1 Model 105A/106A VAX Architecture Support

The KA53/KA54 CPU modules support the following VAX data types:

- byte, word, longword, quadword
- character string
- variable-length bit field
- absolute queues
- self-relative queues
- f_floating point, d_floating point, and g_floating point

The operating system uses software emulation to support other VAX data types.

The KA53/KA54 CPU modules support the following VAX instructions:

- integer, arithmetic, and logical
- address
- variable-length bit field
- control
- procedure call
- miscellaneous
- queue
- character string instructions:

MOVC3/MOVC5 CMPC3/CMPC5 LOCC SCANC SKPC SPANC

- operating system support
- f_floating point, d_floating point, and g_floating point

The NVAX processor chip provides special microcode assistance to aid the macrocode emulation of the following instruction groups:

- Character string (other than those mentioned previously)
- Decimal string
- CRC
- EDITPC

The operating system uses software emulation to support other VAX instructions.

1.2 Internal Mass Storage Devices

Table 1–1 shows the internal mass storage devices that are supported by VAX 4000 Model 105A/106A systems.

Device	Size (inches)	Capacity (bytes)	Description
RF31T	3.5	381M	Hard disk drive
RF35	3.5	852M	Hard disk drive
RF36	3.5	1.6G	Hard disk drive
TZ30	5.25	95M	Tape drive
TZK10	5.25	320M or 525M	Tape drive
TZK11	5.25	Up to 2.0G	Tape drive
TLZ06	3.5	Up to 4.0G	Tape drive
TLZ07	3.5	Up to 8.0G	Tape drive
RRD42	5.25	600M	CD-ROM drive
RRD43	5.25	600M	CD–ROM drive

Table 1–1 Supported Internal Mass Storage Devices

The Model 105A/106A systems support a maximum of three internal DSSI devices, and two removable SCSI devices. One of the RF-series disks contains factory installed software (FIS). Chapter 4 gives the specifications for each internal DSSI device.

1.3 Communications Devices

The Model 105A/106A systems support asynchronous and synchronous communications devices.

1.3.1 Asynchronous Communications Devices

Table 1–2 lists the asynchronous devices supported by Model 105A/106A systems.

Device	Description
DHW42-AA	Eight-line DEC423 asynchronous option
DHW42-BA	Sixteen-line DEC423 asynchronous option
DHW42-CA	Eight-line EIA-232 modem asynchronous option
DHW42-UP	Eight-line to 16-line upgrade of the DEC423 asynchronous option

Table 1–2 Supported Asynchronous Devices

1.3.2 Synchronous Communications Devices

Table 1–3 lists the synchronous devices supported by Model 105A/106A systems.

Table 1–3 Supported Synchronous Devices

Device	Description
DSW42-AA	Two-line EIA-232/V.24 synchronous module

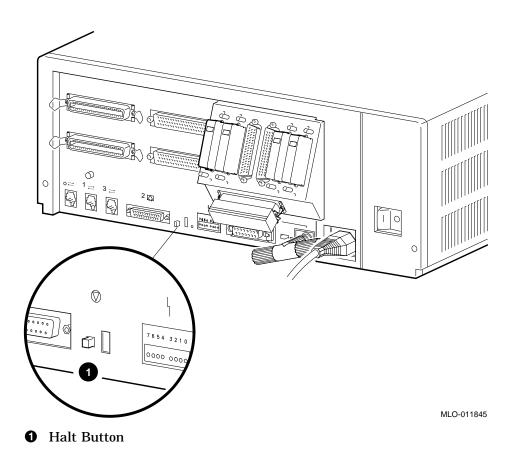
If you order a different synchronous option cable, you can use different interface standards with the synchronous communications module. Table 1-4 lists each standard and the part number of the corresponding option cable.

Table 1–4	Synchronous	Communications	Option	Cable Part Numbers
-----------	-------------	----------------	--------	--------------------

Standard	Option Cable Part Number	
EIA-232/V.24	BC19D-02	
EIA-423/V.10	BC19E-02	
EIA-422/V.11	BC19B-02	

2 Console Security Feature and System Defaults

This chapter describes how to set system defaults and how to use the console security feature. It includes information on the following subjects:


- Entering console mode
- Using the console port
- Using the console security feature
- Setting the default boot device
- Setting the default recovery action

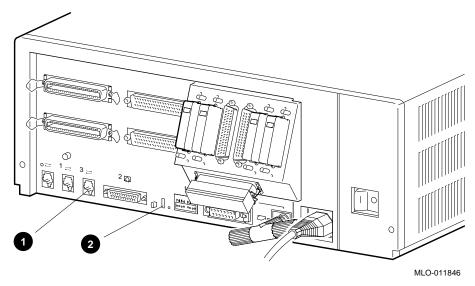
2.1 Entering Console Mode

To use the procedures described in this chapter, the system must be in console mode. To enter console mode, you must shut down the operating system software if it is running. To enter the console mode, follow these steps:

- 1. Shut down the operating system software if it is running. See the operating system documentation for information on the shutdown procedures.
- 2. Press the halt button on the back of the system, as shown in Figure 2–1 ①. The system responds with the console prompt (>>>) on port 3 when it is in console mode.

Figure 2–1 Returning to Console Mode

2.2 Using the Console Port MMJ 3


The VAX 4000 Model 105A/106A systems provide a console port through MMJ port 3. Follow these steps:

- 1. Set the on/off switch on the system unit to the off (O) position.
- 2. Connect the console terminal to MMJ port 3 (Figure 2–2 **1**).
- 3. Set the break enable switch (Figure 2-2 **2**) to the up position (break enable).

The break enable LED lights when you set the switch to the up position.

- 4. Set the on/off switch on the system unit to the on (|) position.
- 5. The system will stop at the console prompt (>>>).

Figure 2–2 Console Port

- **1** MMJ Port 3, Console Port
- **2** Break/Enable Switch

2.3 Console Security Feature

When the security password is set, there are two types of users: privileged users and unprivileged users. Privileged users know the security password and can use the full range of console commands; unprivileged users can use only the following commands:

- LOGIN—Use this command with the security password to become a privileged user.
- BOOT—Use this command without parameters to boot the operating system when the boot device has been set.

The following subsections describe how to do the following tasks:

- Set the security password
- Enable the console security feature
- Log in to privileged console mode
- Change the security password
- Disable the security password
- Exit from privileged console mode

Chapter 3 describes the console commands.

2.3.1 Setting the Security Password

The console security feature is disabled when you receive the system. To set the security password on the system, follow these steps:

1. Enter the following command at the console prompt (>>>):

>>> SET PSWD

The system responds with the following prompt:

>>> PSWD1 :

Note

The security password must be a string of **EXACTLY** 16 hexadecimal characters (0 through 9 and A through F).

Write down the security password and store it in a safe place. If you forget the security password, you must call your Digital Services representative to disable the console security feature.

2. Enter the security password and press Return.

The system does not display the security password as you type it. The system responds with the following prompt:

>>> PSWD2 :

3. Verify the security password by entering it a second time.

Again the system does not display the security password as you type it. If you enter the same security password at each prompt, the system saves the security password in nonvolatile memory. The system does not lose the security password when you turn off the system.

If the second security password does not match the first, the system responds with the following error message:

?80 ILLEGAL PASSWORD

>>>

4. Repeat steps 1 to 3 if you see this error message.

2.3.2 Enabling the Console Security Feature

When you have set the security password, you must enable the console security feature. To enable the console security feature, enter the following command at the console prompt:

>>> SET PSE 1

2.3.3 Logging in to Privileged Console Mode

When the console security feature is enabled, you must enter the security password to log in to privileged console mode. In privileged console mode you can use the full range of console commands. To log in to privileged console mode, follow these steps:

__ Note __

You must set the security password before following these steps (see Section 2.3.1).

1. Enter the following command:

>>> LOGIN

The system responds with the following prompt:

>>> Password:

2. Enter the security password and press Return.

The system does not display the security password as you type it. If you enter the correct security password, the system returns you to the console prompt and you become a privileged user. You can now use the full range of console commands.

If you enter an incorrect security password, the system responds with the following error message:

?81 INCORRECT PASSWORD

>>>

3. Repeat steps 1 and 2 if an error message displays.

2.3.4 Changing the Security Password

You must be a privileged user to change the security password. To change the security password, follow these steps:

- 1. Follow the procedure in Section 2.3.3 using the current security password to log in to the system.
- 2. Enter the following command:

```
>>> SET PSWD
```

The system responds with the following prompt:

PSWD1 :

3. Enter a new security password and press Return.

The system does not display the security password as you type it. The system then responds with the following prompt:

PSWD2 :

4. Verify the new security password by entering it a second time.

The system does not display the security password as you type it. If you enter the correct, current security password at the >>> prompt, and correctly enter the new security password a second time, the system saves the new security password in nonvolatile memory. The system does not lose the new security password when you turn off the system.

If you incorrectly enter the new security password a second time, the system responds with the following error message:

```
?80 ILLEGAL PASSWORD
>>>
```

5. Repeat steps 1 to 4 if this error message displays.

2.3.5 Disabling the Console Security Feature

When you disable the console security feature, all users can use the full range of console commands. To disable the console security feature, follow these steps:

- 1. Follow the procedure in Section 2.3.3 using the current security password to log in to the system.
- 2. Enter the following command:

>>> SET PSE 0

2.3.6 Exiting from Privileged Console Mode

When you exit from privileged console mode, privileged users must enter the LOGIN command with the correct password before they can use the full range of console commands. To exit from privileged console mode, enter one of the following commands:

- BOOT (with any supplied parameters)
- CONTINUE
- HALT
- START

Chapter 3 describes each of these commands.

2.4 Setting the Default Boot Device

When the system is shipped, it is set to boot from the system disk, DIAO. This RF-series disk holds the factory installed software (FIS).

If the TOY battery has discharged, the default boot device may have to be set. Use **SHOW BOOT** to verify.

You can set the system to boot from a different default boot device that holds the operating system software. Table 2–1 shows the alternative default boot devices and their associated OpenVMS device names.

Table 2–1 Alternative Default Boot Devices

OpenVMS Device Name
$DIAu^1$
EZA0
MKA <i>x</i> 00 ²
DKA <i>x</i> 00 ²
-

¹*u* represents the device unit number. ²*x* represents the SCSI ID of that device.

³This excludes ID number 6 which is the default controller ID.

To set an alternative default boot device, enter the SET BOOT command using the OpenVMS device name of the alternative default boot device. For example, to set the system to boot over the network, enter the following command:

>>> SET BOOT EZA0

2.5 Setting the Default Recovery Action

There are five default recovery actions. You can change the default recovery action by entering the SET HALT command and the value or keyword associated with the action you want to set. Table 2–2 shows the five default recovery actions and their associated values. When the system is shipped, the default recovery action is set to halt.

Recovery Action Keyword	Associated Value	Result
DEFAULT	0	The system halts and displays the console prompt. (Same as HALT.)
RESTART	1	The system tries to restart the operating system If it fails to restart the operating system, it halts
REBOOT	2	The system tries to boot. If it fails to boot, it halts.
HALT	3	The system halts and displays the console prompt.
restart_reboot	4	The system tries to restart the operating system If it fails to restart the operating system, it tries to boot. If it fails to boot, it halts.

Table 2–2 Default Recovery Actions and Associated Values

To set an alternative default recovery action, enter the SET HALT command using the value or keyword associated with the recovery action you want to set. For example, to set the system to halt, enter one of the following commands:

>>> SET HALT 3 >>> SET HALT HALT

Console Commands

This chapter describes the console commands that a priveleged user can enter when the system is in console mode. The system displays the console prompt (>>>) when it is in console mode. If the system is running the operating system software, see Section 2.1 for information on returning the system to console mode.

If the console security feature is enabled and a security password is set, you must log in to privileged console mode before using most of these commands. See Section 2.3 for information on the console security feature.

The following sections describe all the console commands, give the command format, and describe the significance of each parameter.

3.1 BOOT

The BOOT command initializes the processor and transfers execution to VMB. VMB attempts to boot the operating system from the specified device or list of devices, or from the default boot device if none is specified. The console qualifies the bootstrap operation by passing a boot flag's bitmap to VMB in R5.

Format:

BOOT [qualifier-list] [{boot_device},{boot_device},...]

If you do not enter either the qualifier or the device name, the default value is used. Explicitly stating the boot flag or the boot device overrides, but does not permanently change, the corresponding default value.

When specifying a list of boot devices (up to 32 characters, with devices separated by commas and no spaces), the system checks the devices in the order specified and boots from the first one that contains bootable software.

_ Note _

If included in a string of boot devices, the Ethernet device, EZA0, should be placed only as the last device of the string. The system will continuously attempt to boot from EZA0.

Set the default boot device and boot flags with the SET BOOT and SET BFLAG commands. If you do not set a default boot device, the processor times out after 30 seconds and attempts to boot from the Ethernet device, EZA0.

Qualifiers:

Command specific:

/R5:{boot_flags}	A 32-bit hex value passed to VMB in R5. The console does not interpret this value. Use the SET BFLAG command to specify a default boot flag's longword. Use the SHOW BFLAG command to display the longword.
/{boot_flags}	Same as /R5:{boot_flags}
[device_name]	A character string of up to 32 characters. When specifying a list of boot devices, the device names should be separated by commas and no spaces. Apart from checking the length, the console does not interpret or validate the device name. The console converts the string to uppercase, then passes VMB a string descriptor to this device name in R0. Use the SET BOOT command to specify a default boot device or list of devices. Use the SHOW BOOT command to display the default boot device. The factory default device is the Ethernet device, EZA0. Table 2–1 lists the boot devices supported by the Model 105A/106A systems.
Examples:	

>>>SHOW BOOT
DKA300
>>>SHOW BFLAG
00000000
>>>B !Boot using default boot flags and device.
(BOOT/R5:0 DKA300)
2..

-DKA300

3.2 CONTINUE

The CONTINUE command causes the processor to begin instruction execution at the address currently contained in the program counter (PC). This address is the address stored in the PC when the system entered console mode or an address that the user specifies using the DEPOSIT command. The CONTINUE command does not perform a processor initialization. The console enters program I/O mode.

Format:

CONTINUE

Example:

>>>CONTINUE \$!VMS DCL prompt

3.3 DEPOSIT

The DEPOSIT command deposits data into the address specified. If you do not specify an address space or data size qualifier, the console uses the last address space and data size used in a DEPOSIT, EXAMINE, MOVE, or SEARCH command. After processor initialization, the default address space is physical memory and the default data size is longword. If you specify conflicting address space or data sizes, the console ignores the command and issues an error message.

Format:

DEPOSIT [qualifier-list] {address} {data} [data...]

Qualifiers:

Data control: /B, /W, /L, /Q, /N:{count}, /STEP:{size}, /WRONG

Address space control: /G, /I, /M, /P, /V, /U

Arguments:

- {address} A longword address that specifies the first location into which data is deposited. The address can be an actual address or a symbolic address.
- {data} The data to be deposited. If the specified data is larger than the deposit data size, the firmware ignores the command and issues an error response. If the specified data is smaller than the deposit data size, it is extended on the left with zeros.

[{data}] Additional data to be deposited (as many as can fit on the command line). *Examples:*

>>>D/P/B/N:1FF 0 0	! Clear first 512 bytes of ! physical memory.
>>>D/V/L/N:3 1234 5	! Deposit 5 into four longwords ! starting at virtual memory address ! 1234. ! Loads GPRs R0 through R8 with -1.
>>>D/L/P/N:10/ST:200 0 8	<pre>! Deposit 8 in the first longword of ! the first 17 pages in physical ! memory.</pre>
>>>D/N:200 - 0	! Starting at previous address, clear ! 513 longwords or 2052 bytes.

3.4 EXAMINE

The EXAMINE command examines the contents of the memory location or register specified by the address. If no address is specified, + is assumed. The display line consists of a single character address specifier, the physical address to be examined, and the examined data.

EXAMINE uses the same qualifiers as DEPOSIT. However, the /WRONG qualifier causes EXAMINE to ignore ECC errors on reads from physical memory. The EXAMINE command also supports an /INSTRUCTION qualifier, which will disassemble the instructions at the current address.

Format:

EXAMINE [qualifier-list] [address]

Qualifiers:

Data control: /B, /W, /L, /Q, /N:{count}, /STEP:{size}, /WRONG

Address space control: /G, /I, /M, /P, /V, /U

Command specific:

/INSTRUCTION Disassembles and displays the VAX MACRO-32 instruction at the specified address.

Arguments:

[{address}] A longword address that specifies the first location to be examined. The address can be an actual or a symbolic address. If no address is specified, + is assumed.

Examples:

>>>EX PC ! Examine the PC. G 000000F FFFFFFC ! Examine the SP. >>>EX SP G 0000000E 00000200 ! Examine the PSL. >>>EX PSL M 0000000 041F0000 >>>E/M ! Examine PSL another way. M 0000000 041F0000 >>>E R4/N:5 ! Examine R4 through R9. G 0000004 0000000 G 0000005 0000000 G 0000006 0000000 G 0000007 0000000 G 0000008 0000000 G 0000009 801D9000 >>>EX PR\$_SCBB !Examine the SCBB, IPR 17 I 00000011 2004A000 ! (decimal). >>>E/P 0 ! Examine local memory 0. P 0000000 0000000 >>>EX /INS 20040000 ! Examine 1st byte of ROM. P 20040000 11 BRB 20040019 >>>EX /INS/N:5 20040019 ! Disassemble from branch. I^#20140000,@#20140000 P 20040019 D0 MOVL P 20040024 D2 MCOML @#20140030,@#20140502 P 2004002F D2 MCOML S^#0E,@#20140030 P 20040036 7D MOVQ R0,@#201404B2 P 2004003D D0 MOVL I^#201404B2,R1 P 20040044 S^#2A, B^44(R1) DB MFPR >>>E/INS ! Look at next instruction. P 20040048 DB MFPR S^#2B, B^48(R1)

>>>

3.5 **FIND**

The FIND command searches main memory, starting at address zero for a page-aligned 128-KByte segment of good memory, or a restart parameter block (RPB). If the command finds the segment or RPB, its address plus 512 is left in SP (R14). If it does not find the segment or RPB, the console issues an error message and preserves the contents of SP. If you do not specify a qualifier, /RPB is assumed.

Format:

FIND [qualifier-list]

Qualifiers:

Command specific:

/MEMORY	Searches memory for a page-aligned block of good memory, 128 KBytes
	in length. The search looks only at memory that is deemed usable by
	the bitmap. This command leaves the contents of memory unchanged.

/RPBSearches all physical memory for an RPB. The search does not use the
bitmap to qualify which pages are looked at. The command leaves the
contents of memory unchanged.

Examples:

>>>EX SP	! Check the SP.
G 000000E 0000000	
>>>FIND /MEM	! Look for a valid 128 KBytes.
>>>EX SP	! Note where it was found.
G 0000000E 00000200	
>>>FIND /RPB	! Check for valid RPB.
2C FND ERR 00C00004	! None to be found here.
>>>	

3.6 HALT

The HALT command has no effect. It is included for compatibility with other VAX consoles.

Format:

HALT

Example:

>>>HALT ! Pretend to halt.
>>>

3.7 HELP

The HELP command provides information about command syntax and usage.

Format:

HELP

Example:

```
>>>HELP
Following is a brief summary of all the commands supported by the
console:
UPPERCASE denotes a keyword that you must type in
           denotes an OR condition
[]
           denotes optional parameters
           denotes a field specifying a syntactically correct value
<>
           denotes one of an inclusive range of integers
. .
           denotes that the previous item may be repeated
. . .
Valid qualifiers:
    /B /W /L /Q /INSTRUCTION
    /G /I /V /P /M
    /STEP: /N: /NOT
    /WRONG /U
Valid commands:
    BOOT [[/R5:]<boot flags>] [<boot device>]
    CONFIGURE
    CONTINUE
    DEPOSIT [<qualifiers>] <address> <datum> [<datum>...]
    EXAMINE [<qualifiers>] [<address>]
    FIND [/MEMORY | /RPB]
    HALT
    HELP
    INITIALIZE
    LOGIN
    MOVE [<qualifiers>] <address> <address>
    NEXT [<count>]
    REPEAT <command>
    SEARCH [<qualifiers>] <address> <pattern> [<mask>]
    SET BFLG <boot_flags>
    SET BOOT <boot_device>
    SET HALT <0..4 |DEFAULT|RESTART|REBOOT|HALT|RESTART_REBOOT>
    SET HOST/DUP/DSSI/BUS:<0..1> <node_number> [<task>]
SET HOST/DUP/UQSSP </DISK |/TAPE> <controller_number>[<task>]
    SET HOST/DUP/UQSSP <physical_CSR_address> [<task>]
    SET HOST/MAINTENANCE/UQSSP/SERVICE <controller_number>
    SET HOST/MAINTENANCE/UQSSP <physical_CSR_address>
    SET LANGUAGE <1..15>
```

```
SET PSE <0..1 |DISABLED | ENABLED>
SET PSWD <password>
SET RECALL <0..1 | DISABLED | ENABLED>
SET SCSI <0..7>
SET SCSI_ID
SHOW BFLG
SHOW BOOT
SHOW CONFIG
SHOW DEVICE
SHOW DSSI
SHOW ETHERNET
SHOW HALT
SHOW LANGUAGE
SHOW MEMORY [/FULL]
SHOW PSE
SHOW QBUS
SHOW RECALL
SHOW RLV12
SHOW SCSI
SHOW SCSI_ID
SHOW TRANSLATION <physical_address>
SHOW UQSSP
SHOW VERSION
START <address>
TEST [<test_code> [<parameters>]]
UNJAM
X <address> <count>
```

>>>

3.8 INITIALIZE

The INITIALIZE command performs a processor initialization.

Format:

INITIALIZE

The following registers are initialized:

Register	State at Initialization
PSL	041F0000
IPL	1F
ASTLVL	4
SISR	0
ICCS	Bits <6> and <0> clear; the rest are unpredictable
RXCS	0
TXCS	80
MAPEN	0
Caches	Flushed
Instruction buffer	Unaffected
Console previous reference	Longword, physical, address 0
TODR	Unaffected
Main memory	Unaffected
General registers	Unaffected
Halt code	Unaffected
Bootstrap-in-progress flag	Unaffected
Internal restart-in-progress flag	Unaffected

The firmware clears all error status bits and initializes the following:

- CDAL bus timer
- Address decode and match registers
- Programmable timer interrupt vectors
- The QUART LPR register is set to 9600 baud
- All error status bits are cleared

Example:

```
>>>INIT
>>>
```

3.9 LOGIN

Allows you to put the system in privileged console mode. When the console security feature is enabled and when you put the system in console mode, the system operates in unprivileged console mode. You can access only a subset of the console commands. To access the full range of console commands, you must use this command. This command may only be executed in secure console mode. The format of this command is as follows:

LO[GIN]

When you enter the command, the system prompts you for a password as follows:

Password:

You must enter the current console security password. If you do not enter the correct password, the system displays the error message, INCORRECT PASSWORD. When you enter the console security password, the system operates in privileged console mode. In this mode, you can use all the console commands. The system exits from privileged console mode when you enter one of the following console commands:

- BOOT
- CONTINUE
- HALT
- START

3.10 MOVE

The MOVE command copies the block of memory starting at the source address to a block beginning at the destination address. Typically, this command has an /N qualifier so that more than one datum is transferred. The destination correctly reflects the contents of the source, regardless of the overlap between the source and the data.

The MOVE command actually performs byte, word, longword, and quadword reads and writes as needed in the process of moving the data. Moves are supported only for the physical and virtual address spaces.

Format:

MOVE [qualifier-list] {src_address} {dest_address}

Qualifiers:

Data control: /B, /W, /L, /Q, /N:{count}, /STEP:{size}, /WRONG

Address space control: /V, /U, /P

Arguments:

{src_address}	A longword address that specifies the first location of the source data to be copied.
(doct addroce)	A languard address that specifies the destination of the first byte

{dest_address} A longword address that specifies the destination of the first byte of data. These addresses may be an actual address or a symbolic address. If no address is specified, + is assumed.

Examples:

>>> EX/N:4 0 P 00000000 0000000 P 00000004 00000000 P 00000008 00000000 P 0000000C 00000000 P 00000010 00000000	! Observe destination.
>>> EX/N:4 200 P 0000200 58DD0520 P 0000204 585E04C1 P 00000208 00FF8FBB P 0000020C 5208A8D0 P 00000210 540CA8DE	! Observe source data.
>>>MOV/N:4 200 0	! Move the data.

3.11 NEXT

The NEXT command executes the specified number of macro instructions. If no count is specified, 1 is assumed.

After the last macro instruction is executed, the console reenters console $\ensuremath{\mathrm{I/O}}$ mode.

Format:

NEXT {count}

The console implements the NEXT command, using the trace trap enable and trace pending bits in the PSL and the trace pending vector in the SCB.

The console enters the "Spacebar Step Mode". In this mode, subsequent spacebar strokes initiate single steps and a carriage return forces a return to the console prompt.

The following restrictions apply:

- If memory management is enabled, the NEXT command works only if the first page in SSC RAM is mapped in S0 (system) space.
- Overhead associated with the NEXT command affects execution time of an instruction.
- The NEXT command elevates the IPL to 31 for long periods of time (milliseconds) while single-stepping over several commands.
- Unpredictable results occur if the macro instruction being stepped over modifies either the SCBB or the trace trap entry. This means that you cannot use the NEXT command in conjunction with other debuggers.

Arguments:

{count} A value representing the number of macro instructions to execute.

Examples:

>>>DEP 1000 50D650D4 ! Create a simple program. >>>DEP 1004 125005D1 >>>DEP 1008 00FE11F9 >>>EX /INSTRUCTION /N:5 1000 ! List it. P 00001000 D4 CLRL RO P 00001002 D6 INCL RO P 00001004 D1 CMPL S^#05,R0 00001002 P 00001007 12 BNEO P 00001009 11 BRB 00001009 P 0000100B 00 HALT >>>DEP PR\$_SCBB 200 ! Set up a user SCBB... >>>DEP PC 1000 ! ...and the PC. >>> >>>N ! Single step... D6 INCL P 00001002 RO ! SPACEBAR P 00001004 D1 CMPL S^#05,R0 ! SPACEBAR P 00001007 12 BNEQ 00001002 ! SPACEBAR P 00001002 D6 INCL R0 ! CR >>>N 5 ... or multiple step the program. 1 P 00001004 D1 CMPL S^#05,R0 12 BNEQ P 00001007 00001002 P 00001002 D6 INCL R0 S^#05,R0 P 00001004 D1 CMPL 12 BNEQ 00001002 P 00001007 >>>N 7 P 00001002 D6 INCL R0 P 00001004 D1 CMPL S^#05,R0 P 00001007 12 BNEQ 00001002 P 00001002 D6 INCL RO P 00001004 D1 CMPL S^#05,R0 P 00001007 12 BNEQ 00001002 P 00001009 11 BRB 00001009 >>>N P 00001009 11 BRB 00001009

>>>

3.12 REPEAT

The REPEAT command repeatedly displays and executes the specified command. Press $\Box TR \sqcup C$ to stop the command. You can specify any valid console command except the REPEAT command.

Format:

REPEAT {command}

Arguments:

{command} A valid console command other than REPEAT.

Examples:

		+				
>>>REPE	AT EX	PRŞ_	_TODR	!Watch	the	CLOCK.
I 000	0001B	5AFI	E78CE			
I 000	0001B	5AFI	E78D1			
I 000	0001B	5AFI	E78FD			
I 000	0001B	5AFI	E7900			
I 000	0001B	5AFI	E7903			
I 000	0001B	5AFI	E7907			
I 000	0001B	5AFI	E790A			
I 000	0001B	5AFI	E790D			
I 000	0001B	5AFI	E7910			
I 000	0001B	5AFI	E793C			
I 000	0001B	5AFI	E793F			
I 000	0001B	5AFI	E7942			
I 000	0001B	5AFI	E7946			
I 000	0001B	5AFI	E7949			
I 000	0001B	5AFI	E794C			
I 000	0001B	5AFI	E794F			
I 000	0001B	5^C				

>>>

3.13 SEARCH

The SEARCH command finds all occurrences of a pattern and reports the addresses where the pattern was found. If the /NOT qualifier is present, the command reports all addresses in which the pattern did not match.

Format:

SEARCH [qualifier-list] {address} {pattern} [{mask}]

SEARCH accepts an optional mask that indicates bits to be ignored (*don't care* bits). For example, to ignore bit 0 in the comparison, specify a mask of 1. The mask, if not present, defaults to 0.

A match occurs if (pattern and not mask) = (data and not mask), where:

Pattern is the target data Mask is the optional don't care bitmask (which defaults to 0) Data is the data at the current address

SEARCH reports the address under the following conditions:

/NOT Qualifier	Match Condition	Action
Absent	True	Report address
Absent	False	No report
Present	True	No report
Present	False	Report address

The address is advanced by the size of the pattern (byte, word, longword, or quadword), unless overridden by the /STEP qualifier.

Qualifiers:

Data control: /B, /W, /L, /Q, /N:{count}, /STEP:{size}, /WRONG

Address space control: /P, /V, /U

Command specific:

/NOT Inverts the sense of the match.

Arguments:

{start_ A longword address that specifies the first location subject to the address} A longword address that specifies the first location subject to the search. This address can be an actual address or a symbolic address. If no address is specified, + is assumed.

{pattern} The target data.

[{mask}] A mask of the bits desired in the comparison.

Examples:

>>>DEP /P/L/N:1000 0 0	! Clear some memory.
>>>DEP 300 12345678 >>>DEP 401 12345678 >>>DEP 502 87654321	! Deposit some search data.
<pre>>>> >>> >>> SEARCH /N:1000 /ST:1 0 12345678 P 00000300 12345678 P 00000401 12345678 >>> SEARCH /N:1000 0 12345678 P 00000300 12345678 >>> SEARCH /N:1000 /NOT 0 0 P 00000300 12345678 P 00000400 34567800 P 00000400 34567800 P 00000404 00000012 P 00000500 43210000 P 00000504 00008765</pre>	<pre>! Search for all occurrences ! of 12345678 on any byte ! boundary. Then try on ! longword boundaries. ! Search for all non-zero ! longwords.</pre>
>>>SEARCH /N:1000 /ST:1 0 1 FFFFFFF P 00000502 87654321 P 00000503 00876543 P 00000504 00008765	! Search for odd-numbered ! longwords on any boundary.
P 00000505 00000087 >>> SEARCH /N:1000 /B 0 12 P 00000303 12 P 00000404 12	! Search for all occurrences ! of the byte 12.
>>>SEARCH /N:1000 /ST:1 /w 0 FE11 >>> >>>	! Search for all words that ! could be interpreted as ! a spin (10\$: brb 10\$). ! Note that none were found.

3.14 SET

The SET command sets the parameter to the value you specify.

Format:

SET {parameter} {value}

Parameters:

BFLAG	Sets the default R5 boot flags. The value must be a hex number of up to eight digits.
BOOT	Sets the default boot device. The value must be a valid device name or list of device names as specified in the BOOT command description in Section 3.1.
DSSI_ID	Sets the bus number to 0 or 1, and the DSSI ID to a number in the range from 0 to 7.
HALT	Sets the user-defined halt action. Acceptable values are the keywords "default", "restart", "reboot", "halt", "restart_reboot", or a number in the range 0 to 4 inclusive.
HOST	Makes a DUP connection to a DSSI device.
LANGUAGE	Sets console language and keyboard type. If the current console terminal does not support the multinational character set (MCS), then this command has no effect and the console message appears in English. Values are 1 through 15.
PSWD	Allows you to enable or disable the console security feature or password of the system. The SET PSE command accepts the following values:
	0—Console security disabled 1—Console security enabled
	When the console security feature is enabled, only a subset of the console commands are available to the user. These commands are listed in Section 2.3. To enable the complete set of console commands once the console security feature is enabled, you must use the LOGIN command (see Section 3.9).
RECALL	Sets command recall state to either ENABLED (1) or DISABLED (0).
SCSI_ID	Sets the SCSI ID of the SCSI controller, to a number in the range 0 to 7. The SCSI ID of the SCSI controller is set to 6 by default.

Qualifiers: Listed in the parameter descriptions above.

```
Examples:
```

```
>>> SET BFLAG 220
>>> SET BOOT DUA0
>>> SET LANGUAGE 5
>>> SET HALT RESTART
>>>
```

3.15 SHOW

The SHOW command displays the console parameter you specify.

Format:

SHOW {parameter}

Parameters:

BFLAG	Displays the default R5 boot flags.
BOOT	Displays the default boot device.
CONFIG	Displays the system configuration. The command displays information about the devices that the firmware has tested. It also displays the device errors that the most recent device test detected.
DEVICE	Displays all devices in the system.
HALT	Shows the user-defined halt action.
DSSI	Shows the status of all nodes that are on the DSSI bus. For each node on the DSSI bus, the console displays the node number, the node name, and the boot name and type of the device, if available. The command does not indicate the "bootability" of the device.
	The node that issues the command reports a node name of "*".
	The device information is obtained from the media type field of the MSCP command GET UNIT STATUS. In the case where the node is not running or is not capable of running an MSCP server, then no device information is displayed.
DSSI_ID	Shows the values of the DSSI ID(s)

ETHERNET	Displays hardware Ethernet address for all Ethernet adapters that can be found. Displays as blank if no Ethernet adapter is present.
LANGUAGE	Displays console language and keyboard type. Refer to the corresponding SET LANGUAGE command for the meaning.
MEMORY	Displays main memory configuration.
MEMORY/FULL	Additionally, displays the normally inaccessible areas of memory, such as the PFN bitmap pages, the console scratch memory pages, the Q22–bus scatter-gather map pages. Also reports the addresses of bad pages, as defined by the bitmap.
PSE	Displays the condition of the console security feature of the system.
QBUS	Displays all Q22–bus I/O addresses that respond to an aligned word read, and speculative device name information. For each address, the console displays the address in the VAX I/O space in hex, the address as it would appear in the Q22–bus I/O space in octal, and the word data that was read in hex.
	This command may take several minutes to complete. Press CTRL/C to terminate the command. During execution, the command disables the scatter-gather map.
SAVED_STATE	Shows the saved values of the following SET commands:
	BFLAG BOOT DSSI_ID HALT LANGUAGE SCSI_ID
SCSI_ID	Shows the value of the CPU SCSI ID.
RECALL	Shows the current state of command recall, either ENABLED or DISABLED.
RLV12	Displays all RL01 and RL02 disks that appear on the Q22-bus.
UQSSP	Displays the status of all disks and tapes that can be found on the Q22–bus that support the UQSSP protocol. For each such disk or tape on the Q22–bus, the firmware displays the controller number, the controller CSR address, and the boot name and type of each device connected to the controller. The command does not indicate whether the device contains a bootable image.
	This information is obtained from the media type field of the MSCP command GET UNIT STATUS. The console does not display device information if a node is not running (or cannot run) an MSCP server.

SCSIShows any SCSI devices in the system.TRANSLATIONShows any virtual addresses that map to the specified physical
address. The firmware uses the current values of page table base
and length registers to perform its search; it is assumed that
page tables have been properly built.VERSIONDisplays the current firmware version.

1 5

Qualifiers: Listed in the parameter descriptions above.

Examples:

>>> >>>SHOW BFLAG 00000220 >>> >>>SHOW BOOT DUA0 >>>SHOW CONTROLP >>> >>>SHOW ETHERNET Ethernet Adapter -EZA0 (08-00-2B-0B-29-14) >>> >>>SHOW HALT restart >>> >>>SHOW LANGUAGE English (United States/Canada) >>>

>>>SHOW MEMORY

16 MB RAM, SIMM Set (0A,0B,0C,0D) present Memory Set 0: 04000000 to 04FFFFFF, 16MB, 32768 good pages, 0 bad pages 64 MB RAM, SIMM Set (1E,1F,1G,1H) present Memory Set 1: 00000000 to 03FFFFFF, 64MB, 131072 good pages, 0 bad pages Total of 80MB, 163840 good pages, 0 bad pages, 136 reserved pages >>>

>>>SHOW MEM/FULL

16 MB RAM, SIMM Set (0A,0B,0C,0D) present Memory Set 0: 00000000 to 00FFFFFF, 16MB, 32768 good pages, 0 bad pages Total of 16MB, 32768 good pages, 0 bad pages, 104 reserved pages

Memory Bitmap -00FF3000 to 00FF3FFF, 8 pages

Console Scratch Area -00FF4000 to 00FF7FFF, 32 pages

```
Scan of Bad Pages
>>>
>>>SHOW SCSI
SCSI Adapter 0 (761300), SCSI ID 7
-DKA100 (DEC TLZ04)
>>>
>>>SHOW TRANSLATION 1000
V 80001000
>>>
>>>SHOW VERSION
KA53 Vn.n VMBn.n
>>>
>>>SHOW DSSI
DSSI Bus 0 Node 1 (R5WBAA)
-DIA1 (RF35)
DSSI Bus 0 Node 7 (*)
```

3.16 **START**

The START command starts instruction execution at the address you specify. If no address is given, the current PC is used. If memory mapping is enabled, macro instructions are executed from virtual memory, and the address is treated as a virtual address. The START command is equivalent to a DEPOSIT to PC, followed by a CONTINUE. It does not perform a processor initialization.

Format:

START [{address}]

Arguments:

```
[address] The address at which to begin execution. This address is loaded into the user's PC.
```

Example:

>>>START 1000

3.17 TEST

The TEST command invokes a diagnostic test program specified by the test number. If you enter a test number of 0 (zero), the powerup diagnostics are executed. The console accepts an optional list of up to five additional hexadecimal arguments.

Format:

TEST [{test_number} [{test_arguments}]]

Arguments:

{test_number}	A two-digit hex number specifying the test to be executed.
{test_arguments}	Up to five additional test arguments. These arguments are accepted, but they have no meaning to the console.

Example:

>>>TEST 0

KA53-A Vn.n, VMB 2.14
Performing normal system tests.
74..73..72..71..70..69..68..67..66..65..64..63..62..61..60..59..
58..57..56..55..54..53..52..51..50..49..48..47..46..45..44..43..
42..41..40..39..38..37..36..35..34..33..32..31..30..29..28..27..
26..25..24..23..22..21..20..19..18..17..16..15..14..13..12..11..
10..09..08..07..06..05..04..03..
Tests completed.

>>>

Example:

>>> ! Display the CPU registers. >>> >>> >>>T 9C savpc=20048C68 savps1=20048C68 sbr=03FA0000 slr=00003040 p1br=00000000 p0br=80000000 p0lr=00182000 pllr=00000000 sid=13001401 sie=03020801 mapen=00000000 tcr0=00000000 tir0=00000000 tnir0=00000000 tivr0=00000078 tcr1=00000001 tir1=02AF768E tnir1=000000F tivr1=0000007C bdr=3FFB08FF ssccr=00D05070 scbb=20053400 DZ csr=0020 tcr=0008 msr=0F75 scr=0000D000 dser=00000000 gbear=0000000F dear=00000000 ipcr=0000 gbmbr=03FF8000 nicsr0=1FFF0003 3=00004030 4=00004050 5=8039FF00 6=83E0F000 7=0000000 nicsr9=04E204E2 10=00040000 11=00000000 12=00000000 13=00000000 15=0000FFFF NISA=08-00-2B-29-1C-7A intmsk=00 intreq=00 scdadr=00000000 scddir=0 SCSI_CSRs 0=00 1=00 2=00 3=00 4=00 6=05 5=05 7=00 8=16 9=5B A=5B B=00 C=04 VIC.....icsr=00000001 vmar=000007E0 ecr=000000CA PC.....pcctl=FFFFFC13 pcsts=FFFFF800 pcadr=FFFFFF8 BC_128K..cctl=00000007 bcetsts=000003E0 bcetidx=FFFFFE0 bcetag=FFFFFE00bcedsts=00000F00 bcedidx=001FFFF8 bcedecc=00000000nests=00000000 neoadr=E0055F70 neocmd=8000FF04 neicmd=000003FFnedathi=FFFFFFF nedatlo=FF7F9FFF cefsts=00019200 cefadr=E00002C0 MEMORY...mesr=00006000 mear=08406010 _Add=21018040 mmcdsr=01111000memcon0=80000005 memcon1=00000007 moamr=00000000 ssr=COCE NCA.....cesr=00000000 cmcdsr=0000C108 cnear=00000000csear1=00000000 csear2=00000000 cioear1=00000000 cioear2=000002C0iccs=00000000 nicr=FFFFD8F0 icr=FFFFD8F0 todr=00000000

>>>

Example:

>>>

>>> ; list diagnostics and scripts

>>>T 9E

Test

Address # Name Parameters 20053800 SCB 20054590 De_executive Memory_Init_Bitmap *** mark_Hard_SBEs ****** 30 200637BC ******** 31 20064094 Memory_Setup_CSRs ******** 32 20064464 NMC_registers ** 33 20064600 NMC powerup *** 34 2005D0A4 SSC ROM bypass_test_mask ******** 35 20067394 B_Cache_diag_mode bypass_test_mask ******** 37 200681C4 Cache_w_Memory 40 2006242C Memory_count_pages SIMM_set0 SIMM_set1 Soft_errs_allowed ***** 41 200579C0 Board_Reset Chk_for_Interrupts ********* 42 2005B56C 200670D4 P_Cache_diag_mode bypass_test_mask ******** 46 47 20063D7C Memory_Refresh start_a end incr cont_on_err time_seconds ***** 48 20061558 Memory_Addr_shorts start_add end_add * cont_on_err pat2 pat3 **** start_add end_add add_incr cont_on_err ****** 4A 200634E0 Memory_ECC_SBEs 4B 20061D78 Memory_Byte_Errors start_add end_add add_incr cont_on_err ****** start_add end_add add_incr cont_on_err ****** 4C 20062E90 Memory_ECC_Logic start_add end_add add_incr cont_on_err ****** 4D 200613BC Memory_Address start_add end_add add_incr cont_on_err ****** 4E20061AF8 Memory_Byte start_add end_add add_incr cont_on_err ****** 4F 20062628 Memory_Data 2005BA5C 51 ******** FPA 52 2005BED8 SSC_Prog_timers which timer wait time us *** 53 2005C1A8 SSC_TOY_Clock repeat_test_250ms_ea Tolerance *** 54 2005B670 ******* Virtual_Mode 55 **** 2005C360 Interval_Timer 58 200602F0 SHAC RESET port_number time_secs not_pres 59 2005F584 SGEC LPBCK ASSIST time secs ** bypass_test_mask ****** 5C 2005FAEC SHAC loopback_type no_ram_tests ****** 5F 2005E870 SGEC 63 2005CF48 input_csr selftest_r0 selftest r1 ****** QDSS_any bypass_test_mask ******** 80 200649FC COBIC memory 81 2005CBA8 Qbus_MSCP IP_csr ***** 82 2005CD70 device_num_addr **** Obus DELQA controller_number ******* 83 QZA_Intlpbck1 20058C70 controller_number ******** 84 2005A328 QZA_Intlpbck2 85 20057EE4 incr test_pattern controller_number ****** QZA_memory 86 200583A0 QZA DMA Controller_number main_mem_buf ******* 90 2005BE54 CQBIC_registers 91 CQBIC_powerup ** 2005BDE8 99 dis_flush_VIC dis_flush_BC dis_flush_PC 200647D0 Flush_Ena_Caches

```
pass_count disable_device ****
9A 2005D1DC INTERACTION
                                * * *
9B 20064680 Init_memory
9C 2005D1A8 List_CPU_registers *
9D 2005DEC4 Utility
                               Modify_CPU_type ********
9E
   2005C518 List_diagnostics
                               script_number *
9F
   20060888 Create_A0_Script
                                ********
C1 20057B90 SSC_RAM_Data
                                *
C2 20057D68 SSC_RAM_Data_Addr
                               *
C5 2005E770 SSC_registers
                                *
                                *******
C6 20057AD4 SSC_powerup
D0 20066C98 V_Cache_diag_mode bypass_test_mask ********
D2 20065220 O_Bit_diag_mode
                               bypass_test_mask ********
   20067FE8 PB_Flush_Cache
                                ********
DA
                               print_speed ********
DB
   20065A18
             Speed
DC 200642BC NO_Memory_present
DD 200661FC B_Cache_Data_debug start_add end_add add_incr *******
DE 20065DB4 B_Cache_Tag_Debug start_add end_add add_incr *******
DF 20065614 O BIT DEBUG
                               start_add end_add add_incr seg_incr ******
                               environment reset_bus time_s ******
E0 20068498 SCSI
                               environment util_nbr target_ID lun ******
E1 20068578 SCSI_Utility
                               bypass_test addr_incr_data_tst *******
E2 20068630 SCSI_MAP
   200689D4 DZ
E4
                               environment ********
                               environment ********
E8
   20068B4C SYNC
                               environment ********
   20068BF4 SYNC_Utility
Е9
                               environment ********
EC 20068CAC ASYNC
Scripts
# Description
A0 User defined scripts
Al Powerup tests, Functional Verify, continue on error, numeric countdown
A3 Functional Verify, stop on error, test # announcements
A4 Loop on A3 Functional Verify
A6 Memory tests, mark only multiple bit errors
Α7
   Memory tests
A8 Memory acceptance tests, mark single and multi-bit errors, call A7
A9 Memory tests, stop on error
B2 Extended tests plus BF
B5 Extended tests, then loop
BF DZ, SYNC, ASYNC with loopbacks
>>>
```

```
>>>
```

3.18 UNJAM

The UNJAM command performs an I/O bus reset, by writing a 1 (one) to IPR 55 (decimal). SHAC and SGEC are explicitly reset, EDAL_INTREQ register error bits are cleared and SCST_DMA map registers are cleared.

Format:

UNJAM

Example:

>>>**UNJAM** >>>

3.19 X—Binary Load and Unload

The X command is for use by automatic systems communicating with the console.

The X command loads or unloads (that is, writes to memory, or reads from memory) the specified number of data bytes through the console serial line (regardless of console type) starting at the specified address.

Format:

X {address} {count} CR {line_checksum} {data} {data_checksum}

If bit 31 of the count is clear, data is received by the console and deposited into memory. If bit 31 is set, data is read from memory and sent by the console. The remaining bits in the count are a positive number indicating the number of bytes to load or unload.

The console accepts the command upon receiving the carriage return. The next byte the console receives is the command checksum, which is not echoed. The command checksum is verified by adding all command characters, including the checksum and separating space (but not including the terminating carriage return, rubouts, or characters deleted by rubout), into an 8-bit register initially set to zero. If no errors occur, the result is zero. If the command checksum is correct, the console responds with the input prompt and either sends data to the requester or prepares to receive data. If the command checksum is in error, the console responds with an error message. The intent is to prevent inadvertent operator entry into a mode where the console is accepting characters from the keyboard as data, with no escape mechanism possible. If the command is a load (bit 31 of the count is clear), the console responds with the input prompt (>>>), then accepts the specified number of bytes of data for depositing to memory, and an additional byte of received data checksum. The data is verified by adding all data characters and the checksum character into an 8-bit register initially set to zero. If the final content of the register is nonzero, the data or checksum are in error, and the console responds with an error message.

If the command is a binary unload (bit 31 of the count is set), the console responds with the input prompt (>>>), followed by the specified number of bytes of binary data. As each byte is sent, it is added to a checksum register initially set to zero. At the end of the transmission, the two's complement of the low byte of the register is sent.

If the data checksum is incorrect on a load, or if memory or line errors occur during the transmission of data, the entire transmission is completed, then the console issues an error message. If an error occurs during loading, the contents of the memory being loaded are unpredictable.

The console represses echo while it is receiving the data string and checksums.

The console terminates all flow control when it receives the carriage return at the end of the command line in order to avoid treating flow control characters from the terminal as valid command line checksums.

You can control the console serial line during a binary unload using control characters (<u>CTRL/C</u>, <u>CTRL/S</u>, <u>CTRL/O</u>, and so on). You cannot control the console serial line during a binary load, since all received characters are valid binary data.

The console has the following timing requirements:

- It must receive data being loaded with a binary load command at a rate of at least one byte every 60 seconds.
- It must receive the command checksum that precedes the data within 60 seconds of the carriage return that terminates the command line.
- It must receive the data checksum within 60 seconds of the last data byte.

If any of these timing requirements are not met, then the console aborts the transmission by issuing an error message and returning to the console prompt.

The entire command, including the checksum, can be sent to the console as a single burst of characters at the specified character rate of the console serial line. The console is able to receive at least 4 Kbytes of data in a single X command.

3.20 ! (Comment)

The comment character (an exclamation point) is used to document command sequences. It can appear anywhere on the command line. All characters following the comment character are ignored.

Format: !

Example:

>>>! The console ignores this line.
>>>

4 Hardware Specifications

This chapter lists the hardware specifications of the following devices:

- System unit
- Internal SCSI device
- KA53-AA/KA54-AA CPU
- Internal DSSI device

4.1 System Unit Specifications

The following tables list the specifications for the VAX 4000 Model 105A and Model 106A systems.

Subject	Description
Processor	Model 105A = KA53 (NVAX), Model 106A = KA54 (NVAX).
Boot and diagnostic firmware ROM	512KB.
DRAM memory	Expandable from 16MB using one set of four 4MB SIMMs to a maximum of 128MB using two sets of four 16MB SIMMs. These are MS44L–BC and MS44–DC memory options.
Hard disk	RF35, RF36, and RF31T (the system supports a maximum of three disk devices in the enclosure).
Tape drive	TZ30, TZK10, TZK11, TLZ06, TLZ07.
Compact disc drive	RRD42, RRD43
Terminals	Supports the VT series.
Interfaces	One or two DSSI buses, one synchronous SCSI bus, one ThinWire Etherner port ¹ , one standard Ethernet port ¹ (thickwire), three MMJ ports, one modem port. Optional: 8 or 16 additional asynchronous DEC423 MMJ ports or 8 additional asynchronous modem ports, 2 synchronous ports.
Input voltage	Automatically adjusting ac input. Range: 100 V ac to 120 V ac or 220 V ac to 240 V ac.
Maximum inrush current	2.0 amperes (A) at 220 V ac.
Maximum running current	2.2 A at 110 V ac, 1.1 A at 220 V ac.
Steady state current	2.2 A at 110 V ac, 1.1 A at 220 V ac.
Maximum power consumption	200 watts (W).
Frequency	49 Hz to 61 Hz.

Table 4–1 System Specifications: VAX 4000 Model 105A/106A

oth Ethernet types cannot be used simultaneously.

Table 4–2 System Unit Metrics

System Unit	Weight ¹ kg (lb)	Height cm (in)	Width cm (in)	Depth cm (in)
Model 105A/106A	18.18 (40)	14.99 (5.90)	46.38 (18.26)	40.00 (15.75)
¹ Depends on configura	ition			

 Table 4–3
 System Storage Conditions

Storage Condition	Range or Value
Temperature range	5°C to 50°C (41°F to 122°F)
Relative humidity	10% to 95% at 66°C (noncondensing)
Altitude	0 m to 2400 m (0 ft to 8000 ft)
Maximum wet bulb temperature	32°C (90°F)
Minimum dew point	2°C (36°F)

Table 4–4 System Operating Conditions and Nonoperating Conditions

Operating Conditions	Range or Value
Temperature range	10°C (50°F) to 32°C (90°F) with TZ30 tape drive; otherwise, 10°C (50°F) to 40°C (104°F)
Temperature change rate	11°C (20°F) per hour maximum
Relative humidity	10% to 90% noncondensing (20% to 80% if tape device installed)
Maximum wet bulb temperature	28°C (82°F)
Minimum dew point	2°C (36°F)
Altitude	2400 m (8000 ft) at 36°C (96°F)
	(continued on next page)

-40°C (-40°F) to 66°C (151°F)
10% to 95% at 66°C (151°F)
4900 m (16 000 ft)
28°C (82°F)
2°C (36°F)

Table 4–4 (Cont.) System Operating Conditions and Nonoperating Conditions

4.2 Internal DSSI Device Specifications

The following tables list the specifications for the internal DSSI devices.

Formatted Storage Capacity	RF31T	RF35	RF36
Per drive (MB)	381	852	1600
Blocks per track	57	57	54-108
Blocks per drive	744,534	1,664,628	3,125,408
Buffer size (Kbytes)	512	512	512
Performance	RF31T	RF35	RF36
Transfer rate to or from media (MB/second)	3.3	3.3	3.3
Data transfer rate (MB/second)	4.0	4.0	5.0
Average seek time (milliseconds)	5.5	9.5	9.7
Maximum seek time, full stroke (milliseconds)	-	19	19
Average latency (milliseconds)	5.6	5.6	5.6
Average access (milliseconds)	11.1	15.1	15.3

Table 4–5 DSSI Hard Disk Drive Specifications

 Table 4–6
 TZ30 Tape Drive Specifications

Subject	Description	
Mode of operation	Streaming	
Media	12.77 mm (0.5 in) unformatted magnetic tape	
Bit density	2624 bits/cm (6667 bits/in)	
Number of tracks	22	
Transfer rate (at host)	62.5Kb/s	
Tape speed	190 cm/s (75 in/s)	
Track format	Multiple track serpentine recording	
Cartridge capacity	95MB, formatted (approx)	

Table 4–7 TZK10 QIC Tape Drive Specifications

Subject	Description
Mode of operation	Streaming.
Media	DC6320, DC6525, or Digital approved equivalent. See the <i>VAX 4000 Model 105A/106A Operator</i> <i>Information</i> manual.
Track width: write	0.1778 mm +0.0000, -0.0127 mm (0.0070 in +0.0000, -0.0005 in).
Track width: read	0.1270 mm +0.0127, -0.0000 mm (0.0050 in +0.0005, -0.0000 in).
Bit density	16Kbyte/in.
Number of tracks	26.
Transfer rate	200Kbyte/s at average streaming mode, 1.5MB/s at SCSI maximum.
Tape speed	305 cm/s (120 in/s).
Track format	Multiple track serpentine recording.
Cartridge capacity	320MB or 525MB, formatted (approx), depending on the QIC tape used.

Subject	Description
Mode of operation	Streaming.
Media	DC9200, DC9200XL, or Digital approved equivalent. See the VAX 4000 Model 105A/106A Operator Information manual.
Track width: write	0.1778 mm ±0.00038 mm (0.0070 in) ±0.00015 in
Track width: read	0.0762 mm ± 0.00038 mm (0.0030 in) ± 0.00015 in
Bit density	40,640 bits/in.
Number of tracks	42.
Transfer rate	300K bytes/s at average streaming mode, 3 M bytes/s burst transfer rate.
Tape speed	70.9 inches/sec with QIC-2GB cartridge.
Track format	Multiple track serpentine recording.
Cartridge capacity	2 G or 2.5 Gbytes, formatted (approx), depending on the QIC tape used.

Table 4–8 TZK11 QIC Tape Drive Specifications

Table 4–9 TLZ06 Cassette Tape Drive Specifications

Subject	Description
Mode of operation	Streaming and start/stop.
Media	TLZ04-CA, TLZ06-CA, or Digital approved equivalent. See the VAX 4000 Model 105A/106A Operator Information manual.
Bit density	114Mb/in.
Transfer rate (sustained)	400KB/s noncompression
Recording format	Digital Data Storage (DDS, DC)

Subject	Description
Mode of operation	Streaming and start/stop.
Media	TLZ04-CA, TLZ06-CA, TLZ07-CA or Digital approved equivalent. See the VAX 4000 Model 105A/106A Operator Information manual.
Bit density	114Mb/in.
Transfer rate (sustained)	400KB/s noncompression
Recording format	Digital Data Storage (DDS, DC)

Table 4–10 TLZ07 Cassette Tape Drive Specifications

Table 4–11	RRD42 Com	pact Disc Drive	Specifications
------------	-----------	-----------------	----------------

Subject	Description
Acceptable discs	CD–ROM mode-1 data discs
	CD-ROM mode-2 data discs
Disc capacity	600MB
Rotation speed: innermost track	530 r/min at CLV = 1.4 m/s
Rotation speed: outermost track	200 r/min at CLV = 1.2 m/s
Sustained data transfer rate	150KB/s
Burst data transfer rate	1.5MB/s
Access time: full stroke	650 ms
Access time: average	380 ms

Subject	Description
Acceptable discs	CD-ROM mode-1 data discs (Audio)
	CD-ROM mode-2 data discs (Data)
Disc capacity	600MB
Rotation speed: innermost track	530 r/min at CLV = 1.4 m/s (Audio)
	1060 r/min at CLV = 1.4 m/s (Data)
Rotation speed: outermost track	200 r/min at CLV = 1.2 m/s (Audio)
	400 r/min at CLV = 1.2 m/s (Data)
Sustained data transfer rate	150KB/s (Audio)
	300KB/s (Data)
Burst data transfer rate	1.5MB/s (Asynch)
	4.2MB/s (Synch)
Access time: full stroke	650 ms (Audio)
	1000 ms (Data)
Access time: average	385 ms (Audio)
	250 ms (Data)

Table 4–12 RRD43 Compact Disc Drive Specifications

4.3 KA53-AA CPU Specifications

The Model 105A system uses the timesharing KA53–AA CPU (54-21797-02).

Program counter: 4 Index: 9 Clock rate 333 MHz (12 ns cycle) Data path width 64 bits Number of data types Hardware: 9 Software emulated: 7 Number of instructions Hardware: 242 Microcode assisted: 21 Software emulated: 41 General purpose registers 16 (32-bit wide) Interval timer: 1 (programmable) Programmable timers: 2 I/O bus interface One Q22-bus interface with 8192 entry scatter/gather map Q-bus backplane termination 123 Ω Memory Management and Control Page size 512 bytes Virtual address space 4GB Physical memory space 128MB Number of memory sets 2 sets Architecture Instruction prefetch buffer size 16 bytes	Central Processing Unit	
Index: 9Clock rate333 MHz (12 ns cycle)Data path width64 bitsNumber of data typesHardware: 9Software emulated: 7Number of instructionsHardware: 242Microcode assisted: 21Software emulated: 41General purpose registers16 (32-bit wide)Interval timer: 1 (programmable)Programmable timers: 2I/O bus interfaceOne Q22-bus interface with 8192 entry scatter/gather mapQ-bus backplane termination123 Ω Memory Management and ControlPage sizePage size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitecture16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through	Addressing modes	General register: 8
Clock rate 333 MHz (12 ns cycle) Data path width 64 bits Number of data types Hardware: 9 Software emulated: 7 Number of instructions Hardware: 242 Microcode assisted: 21 Software emulated: 41 General purpose registers 16 (32-bit wide) Interval timer: 1 (programmable) Programmable timers: 2 I/O bus interface One Q22-bus interface with 8192 entry scatter/gather map Q-bus backplane termination 123 <i>i</i> Memory Management and Control Page size 512 bytes Virtual address space 4GB Physical memory space 128MB Number of memory sets 2 sets Architecture Instruction prefetch buffer size 16 bytes Primary Cache Data stored Instruction and data Write algorithm Write-through		Program counter: 4
Data path width64 bitsNumber of data typesHardware: 9Software emulated: 7Number of instructionsHardware: 242Microcode assisted: 21Software emulated: 41General purpose registers16 (32-bit wide)Interval timer: 1 (programmable)Programmable timers: 2I/O bus interfaceOne Q22-bus interface with 8192 entry scatter/gather mapQ-bus backplane termination123 Ω Memory Management and ControlPage sizePage size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitecture16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through		Index: 9
Number of data typesHardware: 9Number of instructionsHardware: 242Number of instructionsHardware: 242Microcode assisted: 21Software emulated: 41General purpose registers16 (32-bit wide)Interval timer: 1 (programmable)Programmable timers: 2I/O bus interfaceOne Q22-bus interface with 8192Q-bus backplane termination123 Ω Memory Management and ControlPage size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitecture16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through	Clock rate	333 MHz (12 ns cycle)
Software emulated: 7 Number of instructions Hardware: 242 Microcode assisted: 21 Software emulated: 41 General purpose registers 16 (32-bit wide) Interval timer: 1 (programmable) Programmable timers: 2 I/O bus interface One Q22-bus interface with 8192 entry scatter/gather map Q-bus backplane termination 123 Ω Memory Management and Control Page size 512 bytes Virtual address space 4GB Physical memory space 128MB Number of memory sets 2 sets Architecture Instruction prefetch buffer size 16 bytes Primary Cache Data stored Instruction and data Write algorithm Write-through	Data path width	64 bits
Number of instructionsHardware: 242 Microcode assisted: 21 Software emulated: 41General purpose registers16 (32-bit wide) Interval timer: 1 (programmable) Programmable timers: 2I/O bus interfaceOne Q22-bus interface with 8192 entry scatter/gather mapQ-bus backplane termination123 Ω Memory Management and ControlPage sizePage size512 bytesVirtual address space4GB Physical memory spaceNumber of memory sets2 setsArchitecture16 bytesPrimary Cache Data storedInstruction and data Write algorithmWrite algorithmWrite-through	Number of data types	Hardware: 9
Microcode assisted: 21 Software emulated: 41 Io (32-bit wide) Interval timer: 1 (programmable) Programmable timers: 2 I/O bus interface Q-bus backplane termination Q-bus backplane termination Page size Virtual address space Physical memory space Virtual address space Physical memory space Virtual address space Physical memory space Number of memory sets Architecture Instruction prefetch buffer size Primary Cache Data stored Write algorithm Microcode assisted: 21 Software emulated: 41 Software emulated		Software emulated: 7
Software emulated: 41General purpose registers16 (32-bit wide)Interval timer: 1 (programmable)Programmable timers: 2I/O bus interfaceOne Q22-bus interface with 8192Q-bus backplane termination123 Ω Memory Management and ControlPage size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitecture16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through	Number of instructions	Hardware: 242
General purpose registers16 (32-bit wide) Interval timer: 1 (programmable) Programmable timers: 2I/O bus interfaceOne Q22-bus interface with 8192 entry scatter/gather mapQ-bus backplane termination123 Ω Memory Management and ControlPage sizePage size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitecture16 bytesPrimary CacheInstruction prefetch buffer sizeData storedInstruction and dataWrite algorithmWrite-through		Microcode assisted: 21
Interval timer: 1 (programmable) Programmable timers: 2 I/O bus interface Q-bus backplane termination Q-bus backplane termination 123 Ω Memory Management and Control Page size Virtual address space Virtual address space Virtual address space Physical memory space Number of memory sets 2 sets Architecture Instruction prefetch buffer size Primary Cache Data stored Write algorithm Instruction and data Write-through		Software emulated: 41
Programmable timers: 2I/O bus interfaceOne Q22-bus interface with 8192 entry scatter/gather mapQ-bus backplane termination123 Ω Memory Management and ControlPage size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitectureInstruction prefetch buffer size16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through	General purpose registers	16 (32-bit wide)
I/O bus interfaceOne Q22-bus interface with 8192 entry scatter/gather mapQ-bus backplane termination123 Ω Memory Management and ControlPage size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitectureInstruction prefetch buffer size16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through		Interval timer: 1 (programmable)
entry scatter/gather mapQ-bus backplane termination123 ΩMemory Management and ControlPage size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitecture16 bytesInstruction prefetch buffer size16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through		Programmable timers: 2
Memory Management and Control Page size 512 bytes Virtual address space 4GB Physical memory space 128MB Number of memory sets 2 sets Architecture 16 bytes Primary Cache Instruction and data Write algorithm Write-through	I/O bus interface	One Q22–bus interface with 8192 entry scatter/gather map
Page size512 bytesVirtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitecture16 bytesInstruction prefetch buffer size16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through	Q-bus backplane termination	123 <i>Q</i>
Virtual address space4GBPhysical memory space128MBNumber of memory sets2 setsArchitecture16 bytesInstruction prefetch buffer size16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through	Memory Management and Control	
Physical memory space128MBNumber of memory sets2 setsArchitectureInstruction prefetch buffer sizeInstruction prefetch buffer size16 bytesPrimary CacheInstruction and dataWrite algorithmWrite-through	Page size	512 bytes
Number of memory sets 2 sets Architecture 16 bytes Instruction prefetch buffer size 16 bytes Primary Cache Instruction and data Write algorithm Write-through	Virtual address space	4GB
Architecture Instruction prefetch buffer size Primary Cache Data stored Write algorithm Vrite-through	Physical memory space	128MB
Instruction prefetch buffer size 16 bytes Primary Cache Data stored Instruction and data Write algorithm Write-through	Number of memory sets	2 sets
Primary Cache Data stored Instruction and data Write algorithm Write-through	Architecture	
Data storedInstruction and dataWrite algorithmWrite-through	Instruction prefetch buffer size	16 bytes
Write algorithm Write-through	Primary Cache	
	Data stored	Instruction and data
Size 8KB	Write algorithm	Write-through
	Size	8KB

Architecture

Transmit buffer

Receiver buffer

12 nanoseconds (READ)		
Two-way		
Instruction stream and data		
Write-back		
512 Kbytes		
42 nanoseconds		
Direct mapped		
96 entry		
Fully associative		
16 entry		
Fully associative		
32 bytes		
4 bytes		
2.4MB/second		
3.3MB/second		
Ethernet V2.0 (IEEE 802.3)		
Standard or ThinWire		
1 bit		
10Mb/second		

128 bytes 128 bytes

Digital Storage System Interconnect (DSSI)				
Number of DSSI interfaces	1 (or 2 with KFDDA option)			
Maximum number of supported devices	7 (or 14 with KFDDA option)			
Data path width	8 bits			
Maximum bandwidth	4MB/second			
Maximum queue I/O rate	1200/second			
Buffer size				
Transmit buffer	256 bytes			
Receiver buffer	256 bytes			
Console Serial Lines				
Interface standards	EIA RS-423-A/CCITT V.10 X.26			
	EIA RS-232-C/CCITT V.28			
	DEC-423			
Data format	1 start bit, 8 data bits, 0 parity bits, 1 stop bit			
Baud rates	300; 600; 1200; 2400; 4800; 9600; 19,200; 38,400			
Ordering Information				
Included as part of base system				
Operating System Support				
OpenVMS	Version 5.5-2H4 or higher			
Diagnostic Support				
Self-tests	Yes			
Related Documentation				
EK-473AB-MG	KA53/KA54 CPU System Maintenance			
EK-513AA-OP	VAX 4000 Model 105A/106A Operator Information (see Appendix A, Associated and Related Documents)			

4.4 KA54–AA CPU Specifications

The Model 106A system uses the timesharing KA54–AA CPU (54-21797-03).

Central Processing Unit			
Addressing modes	General register: 8		
	Program counter: 4		
	Index: 9		
Clock rate	400 MHz (10 ns cycle)		
Data path width	64 bits		
Number of data types	Hardware: 9		
	Software emulated: 7		
Number of instructions	Hardware: 242		
	Microcode assisted: 21		
	Software emulated: 41		
General purpose registers	16 (32-bit wide)		
	Interval timer: 1 (programmable)		
	Programmable timers: 2		
I/O bus interface	One Q22–bus interface with 8192 entry scatter/gather map		
Q-bus backplane termination	123 <i>Q</i>		
Memory Management and Control			
Page size	512 bytes		
Virtual address space	4GB		
Physical memory space	128MB		
Number of memory sets	2 sets		
Architecture			
Instruction prefetch buffer size	16 bytes		
Primary Cache			
Data stored	Instruction and data		
Write algorithm	Write-through		
Size	8KB		

Architecture

Speed	10 nanoseconds (READ)			
Associativity	Two-way			
Back-up Cache				
Data stored	Instruction stream and data			
Write algorithm	Write-back			
Size	512 Kbytes			
Speed	42 nanoseconds			
Associativity	Direct mapped			
Translation buffer				
Size	96 entry			
Associativity	Fully associative			
Q22–bus address translation Q22–bus map cache				
Size	16 entry			
Associativity	Fully associative			
Q22–bus I/O bus buffer size				
Input	32 bytes			
Output	4 bytes			
Q22-bus Maximum I/O bandwidth				
Block mode DMA read	2.4MB/second			
Block mode DMA write	3.3MB/second			
Ethernet Port				
Supported protocols	Ethernet V2.0 (IEEE 802.3)			
Supported media types	Standard or ThinWire			
Data path width	1 bit			
Data rate	10Mb/second			
Buffer size				

128 bytes 128 bytes _

Transmit buffer

Receiver buffer

Digital Storage System Interconnect (DSSI)				
Number of DSSI interfaces	1 or 2 (with KFDDA option)			
Maximum number of supported devices	7 or 14			
Data path width	8 bits			
Maximum bandwidth	4MB/second			
Maximum queue I/O rate	1200/second			
Buffer size				
Transmit buffer	256 bytes			
Receiver buffer	256 bytes			
Console Serial Lines				
Interface standards	EIA RS-423-A/CCITT V.10 X.26			
	EIA RS-232-C/CCITT V.28			
	DEC-423			
Data format	1 start bit, 8 data bits, 0 parity bits, 1 stop bit			
Baud rates	300; 600; 1200; 2400; 4800; 9600; 19,200; 38,400			
Ordering Information				
Included as part of base system				
Operating System Support				
OpenVMS	Version 5.5-2H4 or higher			
Diagnostic Support				
Self-tests	Yes			
Related Documentation				
EK-473AB-MG	KA53/KA54 CPU System Maintenance			
EK-513AA-OP	<i>VAX 4000 Model 105A/106A Operator Information</i> (see Appendix A, Associated and Related Documents)			

Index

Α

Alternative boot devices, 2–10 Asynchronous communications devices DHW42-AA, 1–6 DHW42-BA, 1–6 DHW42-CA, 1–6 DHW42-UP, 1–6

В

Binary load and unload (X command), 3-26 Boot device, 2-10 recovery action, 2-11 BOOT command, 2-5, 3-1 use of, 2-9 Boot device alternatives, 2-10 default, 2-10 device names, 2-10 resetting default, 2-10 Break enable switch use of, 2-4 Break enable switch LED meaning, 2-4 Break key halting the system, 2-4

С

Cables synchronous option, 1-6 Commands for unprivileged users, 2-5 Comment command (!), 3-28 ! (comment command), 3-28 **Communications devices** asynchronous, 1-6 synchronous, 1-6 Compact disc drives RRD42, 1-5 RRD43, 1-5 Console command LOGIN, 3-10 Console commands binary load and unload (X), 3-26 BOOT, 3-1 ! (comment), 3-28 CONTINUE, 3-3 DEPOSIT, 3-3 EXAMINE, 3-4 FIND, 3-6 HALT, 3-6 HELP, 3-7 INITIALIZE, 3-9 MOVE, 3-11 NEXT, 3-12 REPEAT, 3-14 SEARCH, 3-15 SET, 3-17 SHOW, 3-18 START, 3-21

Console commands (cont'd) TEST, 3-22 UNJAM, 3-26 X (binary load and unload), 3-26 Console mode entering, 2-2 privileged, 2-7 console port MMJ port 3, 2-4 use of, 2-4 Console port, 2-4 Console prompt, 2–2 Console security feature description, 2-5 disabling, 2-9 enabling, 2-7 values, 3-17 CONTINUE command, 3-3 use of, 2-9 CPU KA53, 1-1 KA54, 1-1

D

Defaults boot device, 2–10 recovery action, 2–11 DEPOSIT command, 3–3 Device names boot device, 2–10 Dimensions system unit, 4–3 Disk drives RF31T, 1–5 RF35, 1–5 RF36, 1–5

Ε

EXAMINE command, 3–4

F

Factory installed software, 1–5, 2–10 Features Model 105A, 1–1 Model 106A, 1–1 FIND command, 3–6 FIS, 1–5, 2–10

Η

Halt recovery action, 2-11 Halt button use of, 2-2, 2-4 HALT command, 3-6 use of, 2-9 Halting system, 2-4 Hardware specifications RF31T hard disk drive, 4-5 RF35 hard disk drive, 4-5 RRD42 compact disc drive, 4-8 RRD43 compact disc drive, 4-8 system unit, 4-1 TLZK06 cassette tape drive, 4-7 TLZK07 cassette tape drive, 4-8 TZ30 tape drive, 4-6 TZK10 QIC tape drive, 4-6 TZK11 QIC tape drive, 4–7 HELP command, 3-7

I

INITIALIZE command, 3-9

Κ

KA53–AA modules system names, 4–10 KA54–AA modules system names, 4–13

L

LOGIN command, 2-5, 3-10 use of, 2-7, 2-9

Μ

Mass storage devices internal, 1-5 MMJ port 0 as console port, 2-4 MMJ port 3 alternative console port, 2-4 Model 105A features, 1-1 KA53 CPU, 1-1 system description, 1–1 VAX architecture support, 1-3 Model 106A features, 1-1 KA54 CPU, 1-1 system description, 1-1 VAX architecture support, 1–3 MOVE command, 3-11

Ν

NEXT command, 3–12 Nonoperating conditions system specifications, 4–4 NVAX processor, 1–1

0

Operating conditions system specifications, 4–3 Operating system shutting down, 2–2

Ρ

Password security password, 2–6 Privileged console mode exiting, 2–9 logging in to, 2–7 use of, 2–7 Privileged user definition, 2–5

R

Recovery action actions, 2–11 default, 2–11 resetting default, 2–11 REPEAT command, 3–14 Restart recovery action, 2–11 RF31T hardware specifications, 4–5 RF35 hardware specifications, 4–5 RRD42 compact disc drive hardware specifications, 4–8 RRD43 compact disc drive hardware specifications, 4–8

S

SEARCH command, 3–15 Security password changing, 2–8 entering, 2–6, 2–7 setting, 2–6 verifying, 2–6 SET BOOT command use of, 2–10 SET command, 3–17 SET HALT command boot, 2–11 halt, 2–11 restart, 2–11 use of, 2–11

SET HOST/DUP command, 3-17 SET PASSWORD command use of. 2-6SET PSE command use of, 2-7, 2-9 SET PSWD command use of, 2-8 SHOW command, 3–18 START command, 3-21 use of, 2-9 Storage conditions system unit, 4-3 Storage devices compact disc drives, 1-5 disk drives, 1-5 diskette drives, 1-5 tape drives, 1-5 Support VAX architecture, 1-3 Synchronous communications devices DSW42-AA, 1-6 Synchronous option cables, 1-6 System description Model 105A, 1-1 Model 106A, 1-1 System disk, 1-5, 2-10 System specifications nonoperating conditions, 4-4 operating conditions, 4-3 System unit dimensions, 4-3 hardware specifications, 4-1 storage conditions, 4-3

T

Tape drives TLZ06/TLZ07, 1–5 TZ30, 1–5 TZK10/TZK11, 1–5 TEST command, 3–22 TLZ06 cassette tape drive hardware specifications, 4–7 TLZ07 cassette tape drive hardware specifications, 4–8 TZ30 tape drive hardware specifications, 4–6 TZK10 QIC tape drive hardware specifications, 4–6 TZK11 QIC tape drive hardware specifications, 4–7

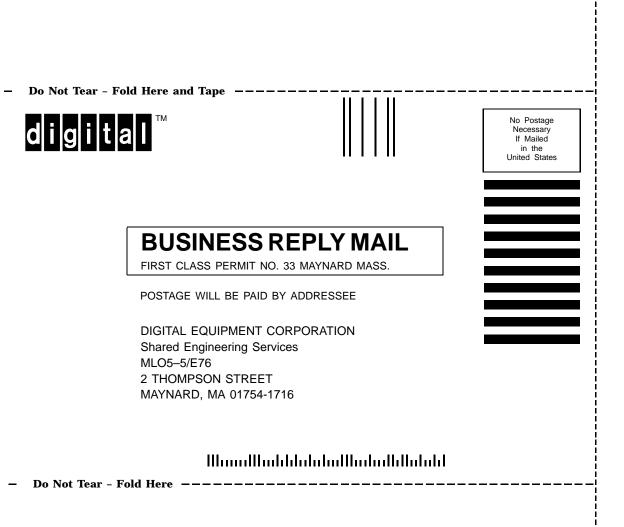
U

UNJAM command, 3–26 Unprivileged user definition, 2–5

V

VAX architecture support, 1–3 VAX architecture support Model 105A, 1–3 Model 106A, 1–3 VAX instructions support of, 1–3

X


X command (binary load and unload), 3-26

Reader's Comments

VAX 4000 Model 105A/106A Customer Technical Information EK–514AA–TI. B01

Your comments and suggestions help us improve the quality of our publications. Thank you for your assistance.

I rate this manual's:	Excellent	Good	Fair	Poor
Accuracy (product works as manual says)				
Completeness (enough information)				
Clarity (easy to understand)				
Organization (structure of subject matter)				
Figures (useful)				
Examples (useful)				
Index (ability to find topic)				
Page layout (easy to find information)				
I would like to see more/less				
What I like best about this manual is				
What I like least about this manual is				
I found the following errors in this manual Page Description	l:			
Additional comments or suggestions to imp	prove this ma	nual:		
For software manuals, please indicate whic	ch version of	the software	e you are us	ing:
Name/Title		Dept.		
Company			Date	
Mailing Address				
		_ Phone		

