
Tsunami/Typhoon 21272 Chipset
Hardware Reference Manual
Order Number: DS–0025A–TE

Revision/Update Information: Revision 4.0
21 October 1999
Compaq Computer Corporation

October 1999

While DIGITAL believes the information included in this publication is correct as of the date of publication, it is
subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the manner described in this
publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication
imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

©Digital Equipment Corporation 1999. All rights reserved.
Printed in U.S.A.

DIGITAL and the DIGITAL logo are trademarks of Digital Equipment Corporation.

21 October 1999

Compaq is a registered trademark of Compaq Computer Corporation.

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Motorola is a registered trademark of Motorola, Inc.

Windows NT is a trademark of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

 Contents

1 Introduction

1.1 Chipset Features . 1-1
1.2 Chipset Overview . 1-2
1.2.1 Cchip Overview . 1-3
1.2.2 Dchip Overview . 1-4
1.2.3 Pchip Overview . 1-5

2 Chipset Configurations

2.1 System Building Block Variables. 2-1
2.2 Chipset Configurations . 2-3
2.2.1 Systems with Two Dchips . 2-3
2.2.2 Systems with Four Dchips . 2-3
2.2.3 Systems with Eight Dchips. 2-6

3 Pinouts

3.1 Cchip Pins and Signals . 3-1
3.1.1 Cchip Pin List by Function . 3-1
3.1.2 C4chip Pin List by Function . 3-4
3.1.3 Cchip Sorted Pin List . 3-8
3.1.4 Cchip Sorted Pin List . 3-19
3.2 Dchip Pins and Signals . 3-55
3.2.1 Dchip Pin List by Function . 3-55
3.2.2 Dchip Sorted Pin List . 3-56
3.3 Pchip Pins and Signals . 3-73
3.3.1 Pchip Pin List by Function . 3-73
3.3.2 Pchip Sorted Pin List . 3-75

4 Electrical Specifications

4.1 Absolute Limits . 4-1
4.2 DC Characteristics . 4-2
4.2.1 Power Supply . 4-2
4.2.2 Input Clocks . 4-2
4.2.3 Signal Pins . 4-2
4.2.3.1 Open-Drain I/O . 4-2
4.2.3.2 3.3-V I/O . 4-3
4.2.3.3 5-V Compatible I/O . 4-3
4.2.4 DC Specifications. 4-3
21 October 1999 iii

4.3 AC Specifications . 4-6
4.3.1 Cchip Specification . 4-6
4.3.2 C4chip Specification . 4-8
4.3.3 Dchip Specification. 4-12
4.3.4 D4chip Specification. 4-13
4.3.5 Pchip Specification. 4-14
4.4 AC Test Specifications . 4-16
4.4.1 Cchip AC Test Specifications. 4-16
4.4.2 Dchip AC Test Specifications. 4-18
4.4.3 Pchip AC Test Specifications . 4-19

5 Mechanical Specifications

6 Cchip Architecture

6.1 Cchip Architecture . 6-1
6.1.1 Memory Array Request Queues, Skid Buffers, and Dispatch Register 6-2
6.1.2 Request Issuing . 6-3
6.1.3 Request, Probe, and Data Ordering. 6-4
6.1.4 Request Queue Maintenance . 6-9
6.1.4.1 Request Queue and Data Queue Deadlock Avoidance . 6-10
6.1.5 Page Hit DRAM Access . 6-11
6.2 CAPbus Interface . 6-11
6.2.1 Power-Up/Reset . 6-11
6.2.2 CAPbus Protocol . 6-11
6.2.2.1 CAPbus Arbitration — b_cactx_l, i_creq_l<1:0>, b_capsel<1:0> 6-12
6.2.2.2 Data Validation — b_capgd<1:0> . 6-14
6.2.2.3 Flow Control — b_cack, i_pack<1:0> . 6-15
6.2.2.4 Flow Control — PTP Operations. 6-18
6.2.2.5 Byte Masks — PTP Write Operations. 6-18
6.2.3 CAPbus Command Encodings. 6-19
6.2.3.1 Cchip-to-Pchip Commands . 6-22
6.2.3.2 Pchip-to-Cchip Commands (Special Cases). 6-23
6.3 TIGbus and Interrupts . 6-24
6.3.1 Device and Error Interrupt Delivery – b_irq<1:0>. 6-28
6.3.2 Interval Timer Interrupts – b_irq<2>. 6-28
6.3.3 Interprocessor Interrupts – b_irq<3>. 6-29
6.4 Monitor Outputs and Counters . 6-29
6.5 Cchip Revision . 6-29
6.6 Cchip-Detected Errors and Error Reporting . 6-29
6.6.1 Nonexistent Memory Errors . 6-29
6.6.2 Memory Data Errors — CPU Reads and Writes . 6-30
6.7 Sleep Mode (ACPI C3 State) . 6-30
6.7.1 Entering Sleep Mode . 6-30
6.7.2 Exiting Sleep Mode . 6-31
6.7.3 Sleep Mode in Multiprocessing Systems . 6-32

7 Dchip Architecture

7.1 Dchip Architecture . 7-1
7.2 PADbus Interface . 7-2
7.3 Dchip Control. 7-3
7.3.1 Dchip-PADbus Interface Control — PAD Commands . 7-4
7.3.1.1 PAD Command and PADbus Timing . 7-6
7.3.2 CPU Bus, xPQ, and Memory Bus Controls — CPM Commands. 7-6
iv 21 October 1999

7.3.3 Data Shifting in the Dchips. 7-9
7.3.3.1 Shifting for Pchip Memory Operations . 7-9
7.3.3.2 Shifting for CPU Originated PIO Operations. 7-11
7.3.3.3 Shifting for PTP Operations . 7-12
7.3.3.4 Shift Amount Versus CPU SysDC and Memory Access. 7-12
7.3.4 Accumulate Timing. 7-13
7.3.5 Wrapping . 7-13
7.4 Dchip Memory Data Slicing . 7-14
7.5 Dchip CPU Data Slicing . 7-17

8 Pchip Architecture

8.1 Pchip Architecture . 8-1
8.1.1 Pchip Interfaces . 8-3
8.1.1.1 PCI Bus. 8-3
8.1.1.2 CAPbus. 8-3
8.1.1.3 PADbus. 8-3
8.1.2 Pchip Internals . 8-4
8.1.2.1 PCI Ordering – Upstream and Downstream Interactions . 8-4
8.1.2.2 Upstream Address Translation . 8-6
8.1.2.3 Clock Control and Generation. 8-6
8.1.2.4 PCI Corner . 8-8
8.2 Peer-to-Peer PCI Memory Operations . 8-8
8.2.1 Use of Page Table Entry for Peer-to-Peer Operations. 8-8
8.2.2 General Peer-to-Peer Operations and Deadlock Avoidance . 8-9
8.3 No Locks . 8-10
8.4 Merging, Splitting, and Chaining Rules . 8-10
8.4.1 Merging Transactions. 8-10
8.4.2 Splitting Transactions. 8-10
8.4.3 Chaining Transactions . 8-10
8.5 Configuration . 8-11
8.6 PCI Arbitration . 8-11
8.7 PCI Software Reset. 8-12
8.8 Error Handling . 8-13
8.8.1 Memory Data Errors — DMA Reads and Writes, SGTE Reads. 8-13
8.8.1.1 Correctable and Uncorrectable Memory Errors . 8-13
8.8.1.1.1 Correctable Memory Errors . 8-13
8.8.1.1.2 Uncorrectable Memory Errors . 8-13
8.8.2 PCI Errors . 8-14
8.8.2.1 No devsel_l — PERROR<NDS> . 8-14
8.8.2.2 Target Abort — PERROR<TA> . 8-14
8.8.2.3 PCI Read Data Parity Error — PERROR<RDPE> . 8-14
8.8.2.4 PCI Write Data Parity Error — PERROR<PERR> . 8-15
8.8.2.5 Invalid Page Table Entry for Scatter-Gather Operation — PERROR<SGE> 8-15
8.8.2.6 PCI Address/Command Parity Error — PERROR<APE, SERR>. 8-15
8.8.2.7 Delayed Completion Retry Timeout — PERROR<DCRTO> 8-16
8.9 Monitor Outputs and Counters . 8-16
8.10 Pchip Revision. 8-17

9 System Memory

9.1 Organization . 9-1
9.2 Memory Arrays . 9-1
9.3 Memory Buses and Sibling Arrays . 9-3
9.4 Supported Array Sizes and DRAM Organizations. 9-4
9.5 Addressing . 9-7
21 October 1999 v

9.6 CPU Address Interface . 9-11
9.7 Address XORing (Typhoon Only) . 9-12
9.8 Bunk and Split Array Addressing. 9-13
9.9 SDRAM Control Signal Buffering . 9-13
9.10 Serial Presence Detect – CSR MPD . 9-13
9.11 Memory Programming – CSR MPRx. 9-13
9.12 Self Refresh – CSR PWR<SR> . 9-14

10 Programmer’s Reference

10.1 System Addressing . 10-1
10.1.1 System Space and Address Map. 10-2
10.1.2 PCI Space . 10-3
10.1.2.1 PCI Memory Space. 10-3
10.1.3 PIO Address Translation (System-to-PCI) . 10-4
10.1.3.1 Linear Memory Space Translation . 10-4
10.1.3.2 Linear I/O Space Translation . 10-5
10.1.3.3 Linear Configuration Space Translation . 10-6
10.1.3.4 Linear IACK/Special Cycle Space Translation . 10-8
10.1.3.5 CSR Space Translation . 10-9
10.1.3.6 TIGbus Space Translation . 10-9
10.1.4 DMA Address Translation (PCI-to-System) . 10-9
10.1.4.1 Window Hole. 10-11
10.1.4.2 Direct-Mapped DMA Address Translation . 10-11
10.1.4.3 Scatter-Gather DMA Address Translation . 10-11
10.1.4.4 Monster Window DMA Address Translation . 10-13
10.2 Chipset Registers . 10-13
10.2.1 Register Addresses . 10-13
10.2.2 Cchip CSRs . 10-19
10.2.2.1 Cchip System Configuration Register (CSC – RW) . 10-19
10.2.2.2 Memory Timing Register (MTR – RW) . 10-26
10.2.2.3 Miscellaneous Register (MISC – RW) . 10-29
10.2.2.4 Memory Presence Detect Register (MPD – RW) . 10-31
10.2.2.5 Array Address Register (AAR0, AAR1, AAR2, AAR3 – RW) 10-31
10.2.2.6 Device Interrupt Mask Register (DIMn, n=0,3 – RW) . 10-33
10.2.2.7 Device Interrupt Request Register (DIRn, n=0,3 – RO) . 10-34
10.2.2.8 Device Raw Interrupt Request Register (DRIR – RO) . 10-34
10.2.2.9 Probe Enable Register (PRBEN – RW) . 10-34
10.2.2.10 Interval Ignore Count Register (IICn, n=0,3 – RW) . 10-34
10.2.2.11 Wake-Up Delay Register (WDR – RW). 10-35
10.2.2.12 Memory Programming Register (MPR0, MPR1, MPR2, MPR3 – WO). 10-35
10.2.2.13 M-Port Control Register (MCTL – MBZ) . 10-35
10.2.2.14 TIGbus Timing Register (TTR – RW) . 10-36
10.2.2.15 TIGbus Device Timing Register (TDR – RW) . 10-37
10.2.2.16 Power Management Control (PWR – RW) . 10-38
10.2.3 Cchip Monitor Control (CMONCTLA, CMONCTLB – RW) – Typhoon only 10-39
10.2.3.1 Cchip Monitor Counters (CMONCNT01, CMONCNT23 – R0) 10-40
10.2.4 Dchip CSRs . 10-41
10.2.4.1 Dchip System Configuration Register (DSC – RO). 10-41
10.2.4.2 Dchip System Configuration Register 2 (DSC2 – R0) . 10-42
10.2.4.3 System Timing Register (STR – RW) . 10-42
10.2.4.4 Dchip Revision Register (DREV – RO) . 10-44
10.2.5 Pchip CSRs . 10-45
10.2.5.1 Window Space Base Address Register (WSBAn – RW) . 10-45
10.2.5.2 Window Space Mask Register (WSM0, WSM1, WSM2, WSM3 – RW) 10-46
10.2.5.3 Translated Base Address Register (TBAn – RW). 10-46
10.2.5.4 Pchip Control Register (PCTL – RW) . 10-46
vi 21 October 1999

10.2.5.5 Pchip Master Latency Register (PLAT – RW). 10-49
10.2.5.6 Pchip Error Register (PERROR – RW). 10-49
10.2.5.7 Pchip Error Mask Register (PERRMASK – RW). 10-51
10.2.5.8 Pchip Error Set Register (PERRSET – WO). 10-51
10.2.5.9 Translation Buffer Invalidate Virtual Register (TLBIV – WO) 10-52
10.2.5.10 Translation Buffer Invalidate All Register (TLBIA – WO) . 10-52
10.2.5.11 Pchip Monitor Control Register (PMONCTL – RW) . 10-53
10.2.5.12 Pchip Monitor Counters (PMONCNT – RO) . 10-54

11 Chipset Clock Generation

11.1 Clock Generation. 11-1
11.2 PCI Bus Clocking . 11-5
11.3 SDRAM Clocking. 11-5
11.4 Clock Skew . 11-5
11.5 CPU Interface Clock Forwarding. 11-5
11.5.1 Clock Forwarding Background . 11-5
11.5.2 21272 Chipset Clock Forwarding . 11-8

12 Reset, Initialization, and Power Management

12.1 Hardware Initialization . 12-1
12.1.1 Chipset Reset. 12-1
12.1.2 Clock Forward Interface Reset. 12-3
12.1.3 SDRAM Initialization . 12-4
12.2 Cchip Firmware Initialization Sequence . 12-4
12.3 PCI (Pchip) Reset . 12-6
12.4 SDRAM Self-Refresh/CPU and 21272 Power Down (ACPI S3) . 12-6
12.4.1 Entering SDRAM Self-Refresh. 12-6
12.4.2 Exiting SDRAM Self-Refresh . 12-7
12.4.3 SDRAM Self-Refresh in Multiprocessing Systems. 12-8

A Technical Abbreviations

B Support

B.1 Customer Support . B-1
B.2 Part Numbers for Ordering Chips. B-1
B.3 Associated Documentation . B-2
21 October 1999 vii

viii 21 October 1999

Figures

1–1 Typical Uniprocessor System with Two PCI Buses . 1-3
2–1 One CPU x One 16-Byte Memory Bus – Two Dchips . 2-3
2–2 One or Two CPU x One 32-Byte Memory Bus – Four Dchips and One or Two Pchips 2-4
2–3 One or Two CPU x One 16-Byte Memory Bus – Four Dchips and One or Two Pchips 2-5
2–4 One or Two CPU x Two 16-Byte Memory Buses – Four Dchips and One or Two Pchips . . 2-6
2–5 One or Two CPU x Two 32-Byte Memory Buses – Eight Dchips and One or Two Pchips . 2-7
2–6 One or Two CPU x Two 16-Byte Memory Buses – Eight Dchips and One or Two Pchips . 2-8
4–1 Open-Drain Termination Scheme . 4-3
5–1 432-Point 2-Layer ESBGA Package (Top and Side View) . 5-2
5–2 432-Point 2-Layer ESBGA Package (Bottom and Section View) . 5-3
5–3 304-Point 2-Layer ESBGA Package (Top and Side View) . 5-5
5–4 304-Point 2-Layer ESBGA Package (Bottom and Section View) . 5-6
6–1 Cchip Block Diagram. 6-2
6–2 CAPbus Arbitration . 6-14
6–3 Format of 2-Cycle Commands . 6-19
6–4 Format of 1-Cycle Commands . 6-20
6–5 TIGbus Flash ROM Control . 6-25
6–6 TIGbus Interrupt Logic . 6-26
6–7 Interrupt Timing Parameters . 6-26
6–8 TIG Address Timing Parameters . 6-27
6–9 TIG Read Timing Parameters . 6-27
6–10 TIG Write Timing Parameters . 6-27
7–1 Dchip Block Diagram . 7-2
7–2 DMA Data Alignment: An Example of Each Possible Alignment . 7-9
7–3 Data Shifting in a DMA Read . 7-10
7–4 Data Shifting in a DMA Write . 7-11
7–5 Shift Amount for PP–FPQ PAD Command . 7-12
8–1 Pchip Block Diagram . 8-2
8–2 Scatter-Gather Associative TLB . 8-6
8–3 PCI Clock to System Clock Transitions. 8-7
8–4 Scatter-Gather Page Table Entry in Memory . 8-8
9–1 Nonsplit Array Block Diagram . 9-2
9–2 Split Array Block Diagram . 9-3
9–3 Twice Split Array Block Diagram (Typhoon Only) . 9-4
10–1 Linear Memory Address Translation . 10-4
10–2 Linear I/O Address Translation . 10-6
10–3 Converting Linear Configuration Address to Type 0 PCI Configuration Cycle 10-6
10–4 Converting Linear Configuration Address to Type 1 PCI Configuration Cycle 10-7
10–5 CSR Space Address Translation . 10-9
10–6 Determining if PCI Address Is Valid DMA Address (One of Four Windows) 10-10
10–7 Scatter-Gather Page Table Entry in Memory . 10-12
10–8 Generating System Address from Scatter-Gather PTE . 10-13
11–1 System Clock Implementation (Example 1) . 11-2
11–2 System Clock Implementation (Example 2) . 11-3
11–3 Cchip/Dchip Clock System . 11-4
11–4 Pchip Clock System . 11-4
11–5 Clock Forwarding Logic . 11-6
11–6 Clock Forwarding Timing . 11-7
11–7 21272 Clock Forwarding Logic . 11-8
11–8 21272 Clock Forwarding Timing . 11-9

Tables

2–1 System Configurations . 2-1
3–1 Cchip Pin List by Function. 3-1
3–2 C4chip Pin List by Function. 3-4
3–3 Cchip Pins — Alphanumeric by Signal Name . 3-8
3–4 C4chip Pins — Alphanumeric by Signal Name . 3-19
3–5 Cchip Pins — Alphanumeric by Pin Number . 3-30
3–6 C4chip Pins — Alphanumeric by Pin Number. 3-43
3–7 Dchip Pin List by Function. 3-55
3–8 Dchip Pins – Alphanumeric by Signal Name. 3-56
3–9 Dchip Pins – Alphanumeric by Pin Number . 3-65
3–10 Pchip Pin List by Function . 3-73
3–11 Pchip Pins – Alphanumeric by Signal Name . 3-75
3–12 Pchip Pins – Alphanumeric by Pin Number. 3-84
4–1 CMOS5L Absolute Operating Conditions . 4-1
4–2 Maximum Power Dissipation . 4-1
4–3 CMOS DC Characteristics. 4-2
4–4 DC Specifications . 4-3
4–5 Cchip AC Specification . 4-6
4–6 C4chip AC Specifications . 4-8
4–7 Dchip AC Specification . 4-12
4–8 D4chip AC Specifications . 4-13
4–9 Pchip AC Specification . 4-14
4–10 Cchip AC Test Specifications . 4-16
4–11 Dchip AC Test Specifications . 4-18
4–12 Pchip AC Test Specifications . 4-19
5–1 21272 Packaging. 5-1
5–2 432-Point 2-Layer ESBGA Package Dimensions . 5-4
5–3 304-Point 2-Layer ESBGA Package Dimensions . 5-7
6–1 PCI and 21272 Lexicon . 6-4
6–2 Request Wait Conditions. 6-5
6–3 Cchip/Pchip Flow Control . 6-16
6–4 Encoding of T Field T Mask Type PADbus Transfer Characteristics 6-20
6–5 C-Bit Encoding . 6-20
6–6 LDP Encoding . 6-20
6–7 Cchip-to-Pchip Commands . 6-20
6–8 Pchip-to-Cchip and Pchip-to-Pchip Bypass Commands . 6-21
6–9 TIG Interrupts and IRQ Lines . 6-28
7–1 PADbus Command Format . 7-4
7–2 PADbus Command Encodings . 7-4
7–3 Length Field in PAD Commands . 7-5
7–4 PADbus Command Shift and Length Fields Restrictions . 7-5
7–5 CPM Commands and Timing of Data Transfer . 7-7
7–6 Source of Shift Amount and SysDC Fields . 7-12
8–1 PCI Read and Write Pchip Ordering – Can Second Pass First?. 8-5
9–1 Selected DRAM Organizations Supported (Tsunami Only). 9-6
9–2 Selected DRAM Organizations Supported (Typhoon Only) . 9-7
9–3 Memory Array Addressing (Tsunami Only) . 9-8
9–4 Memory Array Addressing (Typhoon) . 9-9
9–5 Position of Subarray Bit (Tsunami Only) . 9-10
9–6 Position of Subarray Bits (Typhoon Only) . 9-10
9–7 Decode of Single-Split Subarray Bit Position into Chip Select . 9-10
9–8 Decode of Twice-Split Subarray Bit Position into Chip Select (Typhoon) 9-11
9–9 Array Toggling Due to Address XORing . 9-12
10–1 System Address Map . 10-2
10–2 Generation of PCI b_ad<2:0> and PCI b_cbe_l<7:0> from Linear I/O Address 10-5
10–3 Decode of Device # to Generate IDSEL . 10-6
21 October 1999 –ix

10–4 Generating Configuration Register # LSB and CBE from Mask and Data Type 10-8
10–5 PCI DMA Address to System Address Via Direct Mapping. 10-11
10–6 Generating PTE Address from PCI DMA Address Via Scatter-Gather Mapping. 10-12
10–7 Chipset Register Addresses (Tsunami Only) . 10-13
10–8 Chipset Register Addresses (Typhoon Only) . 10-16
10–9 Cchip System Configuration Register (CSC) (Tsunami Only) . 10-19
10–10 Cchip System Configuration Register (CSC) (Typhoon Only) . 10-22
10–11 Memory Timing Register (MTR) . 10-26
10–12 Miscellaneous Register (MISC). 10-29
10–13 Memory Presence Detect Register (MPD) . 10-31
10–14 Array Address Register (AAR0, AAR1, AAR2, AAR3) (Tsunami Only) 10-31
10–15 Array Address Register (AAR0, AAR1, AAR2, AAR3) (Typhoon Only). 10-32
10–16 Device Interrupt Mask Register (DIMn) . 10-33
10–17 Device Interrupt Request Register (DIRn). 10-34
10–18 Device Raw Interrupt Request Register (DRIR) . 10-34
10–19 Probe Enable Register (PRBEN) . 10-34
10–20 Interval Ignore Count Register (IIC) . 10-35
10–21 Wake-Up Delay Register (WDR) . 10-35
10–22 Memory Programming Register (MPRn) . 10-35
10–23 TIGbus Timing Register (TTR – RW) . 10-36
10–24 TIGbus Device Timing Register (TDR) . 10-37
10–25 Power Management Control Register (PWR – RW) . 10-38
10–26 Cchip Monitor Control Register (CMONCTLA) . 10-39
10–27 Cchip Monitor Control Register (CMONCTLB) . 10-40
10–28 Correspondence Between ECNT and MTE/MSK . 10-41
10–29 CMONCNT01 Registers . 10-41
10–30 CMONCNT23 Registers . 10-41
10–31 Dchip System Configuration Register (DSC). 10-41
10–32 Dchip System Configuration Register 2 (DSC2) . 10-42
10–33 System Timing Register (STR) . 10-43
10–34 Dchip Revision Register (DREV). 10-44
10–35 Window Space Base Address Register (WSBA0, 1, 2). 10-45
10–36 Window Space Base Address Register (WSBA3). 10-45
10–37 Window Space Mask Register (WSMn) . 10-46
10–38 Translated Base Address Registers (TBA0, 1, and 2) . 10-46
10–39 Translated Base Address Registers (TBA3) . 10-46
10–40 Pchip Control Register (PCTL) . 10-46
10–41 Pchip Master Latency Register (PLAT) . 10-49
10–42 Pchip Error Register (PERROR) . 10-50
10–43 Pchip Error Mask Register (PERRMASK). 10-51
10–44 Pchip Error Set Register (PERRSET) . 10-52
10–45 Translation Buffer Invalidate Virtual Register (TLBIV). 10-52
10–46 Translation Buffer Invalidate All Register (TLBIA) . 10-52
10–47 Pchip Monitor Control (PMONCTL). 10-53
10–48 Pchip Monitor Counters (PMONCNT) . 10-54
11–1 Chipset Clocks . 11-1
11–2 Clock Skew Parameters . 11-5
12–1 Configuration Information . 12-2
A–1 Technical Abbreviations . A-1
–x 21 October 1999

hich

hich

s, and

s map-
 Preface

Overview

This is a support and reference document for engineers using the 21264 Alpha micro-
processor and the 21272 core logic chipset to design dual processor and uniprocessor
systems. The document provides information about the architecture, internal design,
external interface, and specifications of the 21272 core logic chipset.

Audience

This manual is for system designers, software developers, and hardware engineers who
use the 21272 chipset.

Manual Organization

This manual includes the following chapters, an appendix, and an index:

Chapter 1, Introduction, provides an overview of the 21272 chipset features.

Chapter 2, Chipset Configurations, describes the various CPU and memory configura-
tions that are supported by the 21272 chipset.

Chapter 3, Pinouts, lists and describes the signal interface pins for each ASIC in the
21272 chipset.

Chapter 4, Electrical Specifications, lists absolute limits, power requirements, dc char-
acteristics, and ac characteristics.

Chapter 5, Mechanical Specifications, provides package outline dimensions for each
ASIC in the 21272 chipset.

Chapter 6, Cchip Architecture, describes the internal architecture for the Cchip, which
controls other chips and interfaces with the CPU’s command and address buses.

Chapter 7, Dchip Architecture, describes the internal architecture for the Dchip, w
provides an interface with the system data bus.

Chapter 8, Pchip Architecture, describes the internal architecture for the Pchip, w
interfaces between devices on the PCI bus and the rest of the system.

Chapter 9, System Memory, describes system memory, its organization into array
its control signals.

Chapter 10, Programmer’s Reference, provides information about system addres
ping and address translation, as well as all internal chipset registers.
21 October 1999 xi

BZ.
 for
Chapter 11, Chipset Clock Generation, provides information about clock generation,
clock skew, system interface clock forwarding, PCI bus clocking, and SDRAM clock-
ing.

Chapter 12, Reset, Initialization, and Power Management, provides information about
hardware reset for the chipset, SDRAM, and PCI bus, firmware/CSR initialization
tasks, and power management.

Appendix A, Technical Abbreviations, contains a list of acronymns and abbreviations
that pertain to the 21272.

Appendix B, Support, contains information about the Alpha OEM web page, ordering
chips, and obtaining related documentation.

Conventions

This section defines product-specific terminology, abbreviations, and other conventions
used throughout this manual.

Abbreviations

• Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples
and have the following values:

For example:

• Register Bit and Field Notation

The abbreviations used to indicate the type of access to register bits and fields have
the following definitions:

MBZ — Must Be Zero

Software must never place a nonzero value in bits and fields specified as M
Read operations return UNPREDICTABLE values. Such fields are reserved
future use.

K = 210 (1024)
M = 220 (1,048,576)
G = 230 (1,073,741,824)

2KB = 2 kilobytes = 2 × 210 bytes
4MB = 4 megabytes = 4 × 220 bytes
8GB = 8 gigabytes = 8 × 230 bytes
xii 21 October 1999

nged
ew

e
ked.

rd-

-

 bits

ith

ra-

ware
 be
 this

 but
uce
RAZ — Read As Zero

Bits and fields specified as RAZ return a zero when read.

RC — Read to Clear

Bits and fields specified as RC are written by hardware and remain uncha
until read by software or microcode, at which point hardware can write a n
value into the bit or field.

RES — Reserved

Bits and fields specified as RES are reserved by DIGITAL and should not b
used. However, zeros can be written to reserved fields that cannot be mas

RO — Read Only

Bits and fields specified as RO can be read by software, microcode, or ha
ware and are ignored (not written) on writes.

RW — Read/Write

Bits and fields specified as RW can be read and written by software, micro
code, or hardware.

R/W1C — Read/Write One to Clear

Bits and fields specified as R/W1C can be read. Writing a one clears these
for the duration of the write; writing a zero has no effect.

SBZ — Should Be Zero

Bits and fields specified as SBZ should be filled by software or microcode w
a zero value. Nonzero values in SBZ fields produce UNPREDICTABLE
results.

W1C — Write One to Clear

Bits and fields specified as W1C can be cleared by writing a one for the du
tion of the write; writing a zero has no effect.

WC — Write to Clear

Bits and fields specified as WC can be read by software or microcode. Soft
or microcode write operations with a one to this bit or field cause the bit to
cleared by hardware. Software or microcode write operations with a zero to
bit or field do not modify the state of the bit.

WO — Write Only

Bits and fields specified as WO can be written by software and microcode
not read. Read operations to this bit or field by software or microcode prod
UNPREDICTABLE results.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.
21 October 1999 xiii

Aligned and Unaligned

The terms aligned and naturally aligned are interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size 2n is stored in memory at a
byte address that is a multiple of 2n; that is, one that has n low-order zeros. For ex-
ample, an aligned 64-byte array has a memory address that is a multiple of 64.

A datum of size 2n is unaligned if it is stored in a byte address that is not a multiple of
2n.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in angle
brackets (<>). Multiple contiguous bits are indicated by a pair of numbers separated by
a colon (:). For example, <9:7,5,2:0> specifies bits 9,8,7,5,2,1, and 0. Similarly, single
bits are frequently indicated with angle brackets. For example, <27> specifies bit 27.

Caution

Cautions indicate potential damage to equipment or loss of data.

Data Units

The following data-unit terminology is used throughout this manual.

External

Unless otherwise stated, external means not contained in the 21272 chipset.

Note

Notes emphasize particularly important information.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indi-
cates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are hexa-
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 1002 is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and are inclu-
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Term Words Bytes Bits Other

Byte ½ 1 8 —
Word 1 2 16 —
Longword (LW) 2 4 32 Dword.
Quadword 4 8 64 2 longwords.
Octaword 8 16 128 Single read fill; that is, the cache space

that can be filled in a single read access. It
takes two read accesses to fill one L2
cache block.

Hexword 16 32 256 The space allocated to a single cache
block.
xiv 21 October 1999

Extents are specified by a pair of numbers in angle brackets (<>) separated by a colon
(:) and are inclusive. Bit fields are often specified as extents. For example, bits <7:3>
specifies bits 7, 6, 5, 4, and 3.

Signal Names

Signal names in text and figures are printed in lowercase, boldface type. Active-high
signals have no suffix. Active-low signals are indicated by the _l suffix or the number
sign (#) suffix. For example, capsel is an active-high signal, and cact_l is a low-
asserted signal.

UNPREDICTABLE and UNDEFINED

Results specified as UNPREDICTABLE may vary from moment to moment, imple-
mentation to implementation, and instruction to instruction within implementations.
Software can never depend on results specified as UNPREDICTABLE.

Operations specified as UNDEFINED may vary from moment to moment, implementa-
tion to implementation, and instruction to instruction within implementations. The
operation may vary from nothing to stopping system operation. UNDEFINED opera-
tions must not cause the processor to hang, that is, reach a state from which there is no
transition to a normal state where the machine can execute instructions.

Note the distinction between results and operations. Unprivileged software cannot
invoke UNDEFINED operations.

Warning

Warnings provide information to prevent personal injury.

Revision History

Associated Documents

The following specifications are referenced in this manual.

• 21264 Specifications, Revision 4.0, August 8, 1998

• Alpha AXP System Reference Manual, Revision 6.0, December 1, 1994

• PCI Local Bus Specification, Revision 2.1, June 1, 1995

• Typhoon 21274 Chipset Functional Specification, October, 1998

Revision Date Description
4.0 6/3/99 Preliminary version, including Typhoon specs

3.0 9/3/98 Released for Tsunami

2.1 5/8/98 Added ac specifications, register tables, and reorganized
entire book; conditionalized manual for several outputs.

1.1 8/2/96 —

1.0 7/14/95 First External Release

0.1 7/6/95 Preliminary Review
21 October 1999 xv

 1
Introduction

This chapter describes the DIGITAL 21272-AA core logic chipset, a set of application-
specific integrated circuits (ASICs) that complement the DIGITAL 21264 family of
Alpha microprocessors (hereafter called CPUs). The 21272 chipset provides a solution
for low-cost, high-performance, mid to high-end client systems and low-end server sys-
tems.

1.1 Chipset Features

The 21272 chipset has the following performance features:

• Support for up to two 21264 CPUs (four for Typhoon variant) without using dupli-
cate cache tags

• Support for up to two 64-bit, 33-MHz PCI buses, each with its own PCI address
space

• Support for a large range of main memory capacity using 16MB or 64MB synchro-
nous DRAMs (SDRAMs):

– 16MB to 1GB using 16Mb SDRAMs

– 32MB to 4GB using 64Mb SDRAMs

• Low-latency memory access (120-ns CPU access using 83-MHz SDRAMs)

• Support for ECC in main memory

• System clock periods from 12 ns to 15 ns

• Very high bandwidth (2.67-GB/s peak memory bandwidth per processor using
SDRAMs and a 83-MHz system clock)
21 October 1999 Introduction 1–1

Chipset Overview

ath

 its
ry

 with

Us’

hips,

l PCI
 four

The 21272 chipset has the following technological features:

• Chips are implemented in CMOS5L process

• HSTL-like I/O interfaces between the CPU and the chipset

• HSTL-like I/O interface on the CAPbus interface between the Cchip and the Pchip

• LVTTL interfaces between all 21272 chips (except for the CAPbus)

• LVTTL interfaces between the chipset and memory

1.2 Chipset Overview

This section describes the basic elements and functions of the 21272 chipset. The 21272
chipset consists of the following components:

• 21272–D1 Dchip (data slice chip) – A system can include two, four, or eight
Dchips. The Dchips interface with the system data bus and provide the data p
between the CPU, DRAM memory, and the Pchip(s).

21274–D1 Dchip – Functionally equivalent to the 21272–D1 Dchip, except for
memory interface drivers. The 21274–D1 is designed to drive a heavier memo
load.

• 21272–C1 Cchip (controller chip) – The Cchip controls the other chips in the
chipset, as well as the DRAM memory array in a system. The Cchip interfaces
the CPU’s command and address buses.

21274–C1 Cchip – Used with Typhoon, the 21274–C1 interfaces with four CP
command and address buses.

• 21272–P1 Pchip (peripheral interface chip) – A system includes one or two Pc
the interface to the PCI bus.

For pin counts and signal descriptions for each chip, refer to the pin lists in
Chapter 3. For information about Typhoon, refer to the Typhoon Specification.

Figure 1–1 shows a typical uniprocessor system using the 21272 chipset in a dua
interface configuration. This figure shows that the Cchip can independently control
memory arrays. Although this figure shows all of the data from the DRAMs on one
memory data bus, two buses can be used as described in Chapter 2 and
Chapter 9.
1–2 Introduction 21 October 1999

Chipset Overview

e,

ax-
 a

can

nd
them.
her
Figure 1–1 Typical Uniprocessor System with Two PCI Buses

1.2.1 Cchip Overview

The Cchip has the following interfaces:

• System address ports – Two independent ports (four for Typhoon), each of
which is a full-duplex, clock-forwarded interface. For details on this interfac
refer to the 21264 Specifications. Each system-address port is clocked at a m
imum rate of 3 ns per beat. It takes four beats (12 ns minimum) to transfer
command/address to the Cchip or probe/address from the Cchip.

• DRAM command and address ports – Four independent ports, each of which
supply addresses for one memory array.

• Pchip command and address port (bidirectional) – A single port to the Cchip a
Pchip bus (CAPbus). For systems with two Pchips, the port is shared between
It takes two cycles (20 ns minimum) to transfer a command and address in eit
direction.

• Dchip control port – A single port with two copies to support eight Dchips.

• TIGbus port – This port handles interrupts, flash ROM, and so forth.

• Miscellaneous test, reset, and clock interfaces.

Memory
 Data

Cchip

MK272_04.AI4

Cmd/Addr
(CAPbus)

I/O Data
(PADbus)

System
Data

Probe/Address

Alpha CPU

Dchips

Pchip 1

Memory
Control/Address

SDRAM
Arrays

PCI
Bus 1

PCI
Bus 2

Control
(CPM/PAD)

21272 Core Logic Chipset

Pchip 2

L2 Bcache
(Optional)

Command/Address
21 October 1999 Introduction 1–3

Chipset Overview

g

or that

data
orts
uti-

us 1
er-
ata
e
erate

o
g for
ions,
-byte
ith

e

ions
The Cchip contains the following internal queues and components:

• Three skid buffers – One shared by the Pchips, and one each per CPU, holdin
requests that have not yet been dispatched to a request queue.

• Four request queues – One per memory array, each of which holds requests f
array (as well as some non-memory requests).

• Wait queues (consisting of pointers to the request queue entries) to enforce ordering
requirements among requests across (as well as within) the request queues.

• An interface for each of the CPUs for issuing probes and fills, and for receiving
requests and probe results. There are no duplicate tags in the 21272 system, there-
fore all memory accesses generate probes. The CPU can usually access its Bcache
tags in the shadow of a Bcache data transfer, so that this does not impact the Bcache
access bandwidth. The system also does not need to have the CPU issue external
notification of memory barrier (MB) instructions.

• Pchip interface controller.

• A central bus arbiter that examines and issues requests from the request queues.

• Dchip controllers: one for the PADbus and one for everything else.

• A translator to convert CPU PIO addresses to CSR and PCI addresses.

1.2.2 Dchip Overview

The Dchip has the following interfaces:

• Two memory bus data ports – Each port is 36 bits wide, allowing for 4 bytes of
plus check bits, and can operate at 83 MHz. In some configurations, the two p
operate as a single 72-bit wide port. In other configurations, the ports are half
lized, in which case each operates as an 18-bit wide port.

• Four CPU data ports – Each port is 11 bits wide, allowing for 1 byte of data, pl
check bit, plus a pair of forwarded clocks (one in each direction). Each port int
faces with one CPU using a clock-forwarding scheme that allows transfer of d
every 3 ns (333 MHz) while compensating for skew. In some configurations, th
ports operate as a single 4-byte wide port. In other configurations, the ports op
as two 2-byte wide ports.

• Two Pchip data ports to the Pchip and Dchip bus (PADbus) – For systems with tw
Pchips, each has its own independent PADbus. Each port is 9 bits wide allowin
1 byte of data plus 1 check bit and can operate at 83 MHz. In some configurat
only one port is used. In other configurations, each port operates as a single 2
wide port. In still other configurations, each port is multiplexed onto five wires w
a half-byte transferred to the PADbus every cycle.

• Control from Cchip (CPM/PAD) – The Dchip receives all of its commands from
the Cchip. The control from the Cchip consists of setting the switches within th
Dchip to move data between ports, or between ports and queues. All connect
are possible except from one memory port to the other memory port.

• Test, reset, and clock interfaces.

The Dchip contains the following queues:
1–4 Introduction 21 October 1999

Chipset Overview

ard
ch
 addi-
iated
used

mini-

er
• One FromPchipQueue (FPQ), shared by the two Pchips, to hold DMA write data,
PIO read data, and peer-to-peer (PTP) data

• One ToPchipQueueMemory (TPQM), shared by the two Pchips, to hold DMA read
data

• One ToPchipQueuePIO (TPQP), shared by the two Pchips, to hold PIO write data
and PTP data

• Two ToCpuAccumulators (TCA) to allow full bandwidth transfers from a pair of
memory buses to a single CPU

• Two ToMemoryAccumulators (TMA) to allow full bandwidth transfers to a pair of
memory buses from the CPUs

• One WriteMergeBuffer (WMB) to temporarily hold memory data to be merged
with Pchip data for DMA writes

1.2.3 Pchip Overview

The Pchip has a cycle time of 12 ns for the system interface and a cycle time of 30 ns
for the PCI interface. It is able to run a 30-ns PCI bus with a 12-ns to 15-ns system
interface. It has the following interfaces:

• PCI bus – A single 64-bit PCI implementation running at 33 MHz.

• PCI central resource functions – Arbitration and PCI clock sourcing.

• Dchip port to the PADbus – 40 bits for 4 bytes of data plus check bits. In stand
mode, the Pchip receives 4 bytes of data and their 4 associated check bits ea
cycle (36 pins used). To support a system with eight Dchips, the Pchip has an
tional mode where it receives 8 bytes over two cycles, but receives all 8 assoc
check bits in one cycle (40 pins used). Quadword-based transfers are always
because that is the unit on which the ECC is calculated.

• Cchip command and address port to the CAPbus – It takes two cycles (20 ns
mum) to transfer a command and address in either direction.

• Test, reset, and clock interfaces.

The Pchip contains the following structures:

• Upstream data queue (away from PCI) for DMA and PTP writes.

• Upstream data queue (away from PCI) for PIO and PTP reads.

• Downstream data queue (towards PCI) for DMA and PTP reads.

• Downstream data queue (towards PCI) for PIO and PTP writes.

• Downstream address queues (towards PCI) for PIO and PTP reads and writes.

• Upstream address state machines (away from PCI) for DMA and PTP reads and
writes.

• Scatter-gather TLB – The Pchip supports both direct mapped and scatter-gath
DMA memory access.
21 October 1999 Introduction 1–5

 2
Chipset Configurations

This chapter describes the various system configurations that are supported by the
21272 chipset.

2.1 System Building Block Variables

The parameters that may be varied are as follows:

• Number of CPUs (one or two)

• Number of memory data buses (one or two)

• Number of Dchips (two, four, or eight)

• Number of Pchips (one or two)

• Number of main memory DRAM arrays (one, two, three, or four)

• Width of the memory data buses (16 bytes or 32 bytes each)

• Type of DRAM SIMMs (synchronous 16MB or 64MB, with various timing param-
eters)

The combinations for possible system configurations are listed in Table 2–1.

Table 2–1 System Configurations

Number of
Cchips

Number of
Dchips

Number of
Pchips

Pchip-to-
Dchip Bus

Width
Number of

CPUs
Number of

Memory Buses
Memory Bus

Width

1 2 1 4 bytes 1 1 16 bytes

1 4 1 or 2 4 bytes 1 or 2 11

1 Preferable for uniprocessors.

32 bytes

1 4 1 or 2 4 bytes 1 or 2 22

2 Preferable for dual processors.

16 bytes

1 8 1 or 2 4 bytes 1 or 2 1 or 23

3 Two memory buses are recommended when using two or four CPUs.

32 bytes

1 8 1 or 2 4 bytes 4 1 or 23 32 bytes
21 October 1999 Chipset Configurations 2–1

System Building Block Variables

 per
0-
The following notes also apply to Table 2–1.

• A 32-byte memory bus can be half-populated, in which case, it operates as a
16-byte memory bus. The difference is that the maximum number of arrays on the
bus is still four.

• Using SDRAMs and a system clock speed of 83 MHz, 16-byte memory buses each
deliver 1.35-GB/s and 32-byte memory buses each deliver 2.7-GB/s effective band-
width.

• The data path from the CPU to the Dchip is always 8 bytes, and can run at 3 ns
using clock forwarding for an effective bandwidth of 2.7-GB/s.

• The PADbus (Pchip-to-Dchip) can run at 83 MHz for a raw bandwidth of
400-MB/s, ignoring turnaround cycles.

• In a system with eight Dchips, each Dchip transfers 1 check bit, but only ½ byte
cycle. So the Pchip transfers 8 bytes with check bits every two cycles over a 4
wire interface.

• In a system with eight Dchips, the Dchips support up to four CPUs, but the Cchip
only supports one or two CPUs.

• In a system with two memory buses, memory arrays 0 and 2 must be attached to
bus 0, while memory arrays 1 and 3 must be attached to bus 1. The memory array
number is determined by the set of DRAM control signals from the Cchip. The
memory bus number is determined by the set of data signals on the Dchip slices
(see Section 7.4).
2–2 Chipset Configurations 21 October 1999

Chipset Configurations

 The
s

all of

 can
ted.

d or

g 1
2.2 Chipset Configurations

The following sections present a variety of typical system configurations.

2.2.1 Systems with Two Dchips

Figure 2–1 shows the minimum system that can be constructed uses two Dchips.
memory bus is 16 bytes wide, and the path between the Pchip and Dchip is 4 byte
wide. A single CPU uses all of the CPU ports on the Dchips. A single Pchip uses
the Pchip ports on the Dchips.

Figure 2–1 One CPU x One 16-Byte Memory Bus – Two Dchips

2.2.2 Systems with Four Dchips

Figure 2–2 through Figure 2–4 show how the number and width of memory buses
be varied in systems with four Dchips. Two CPUs are shown but one can be omit
Two Pchips are shown but one can be omitted.

In Figure 2–2, a system is shown using four Dchips. A single 32-byte bus from the
DRAM arrays is split into the two memory ports of the Dchips. A cache block is rea
written to memory using two transfers on this bus. Either one or two CPUs may be
installed in this system, with each Dchip supplying 2 bytes to each installed CPU.
Either one or two Pchips may be installed in this system, with each Dchip supplyin
byte to each Pchip.

LJ-05484.AI4

CPU 0

1,5

3,7

3,7,11,15

0,4

2,6

1,5,9,13

2,6,10,14

0,4,8,12

DRAM
Arrays

Dchip 1

Dchip 0

Pchip
PADbus Bytes 3:0

1,3 0,2

One to Four
DRAM Arrays

DRAM Bus Bytes 15:0CPU Bus Bytes 7:0
21 October 1999 Chipset Configurations 2–3

Chipset Configurations
Figure 2–2 One or Two CPU x One 32-Byte Memory Bus – Four Dchips and One
or Two Pchips

19,23,27,31

2,6

2,6

3,7

3,7

CPU 0

3,7,11,15

18,22,26,30

1,5

1,5

2,6,10,14

17,21,25,29

0,4

0,4

1,5,9,13

16,20,24,28

0,4,8,12

Dchip

Dchip

Dchip

Dchip

Pchip 1

Pchip 0

Two PADbuses Bytes 3:0 Each

3 2 1

3 2 1

0

0

Two CPU Buses Bytes 7:0 Each

CPU 1

DRAM Bus Bytes 31:0

DRAM
Arrays

One to Four
DRAM Arrays

LJ-05485.AI4
2–4 Chipset Configurations 21 October 1999

Chipset Configurations

 bus is
fers
Figure 2–3 shows the same system as that in Figure 2–2, except that the memory
half-populated so that only a single memory port is used in each Dchip. Four trans
across the memory bus are required for a cache block access.

Figure 2–3 One or Two CPU x One 16-Byte Memory Bus – Four Dchips and One
or Two Pchips

2,6

2,6

3,7

3,7

CPU 0

3,7,11,15

1,5

1,5

2,6,10,14

0,4

0,4

1,5,9,13

X

X

X

X

0,4,8,12

Dchip

Dchip

Dchip

Dchip

Pchip 1

Pchip 0

Two PADbuses Bytes 3:0 Each

3 2 1

3 2 1

0

0

Two CPU Buses Bytes 7:0 Each

CPU 1

DRAM Bus Bytes 15:0

DRAM
Arrays

One to Four
DRAM Arrays

LJ-05486.AI4
21 October 1999 Chipset Configurations 2–5

Chipset Configurations

nd
dent
d in
access

m has
en-

re pos-
al
em
This
usy
M

l-size
 since
 cycle

es,
the
ppro-

Dchip
In Figure 2–4, another system is shown using four Dchips. In this case, the CPU a
Pchip connections are the same as the previous cases, but there are two indepen
memory buses, each of which is 16 bytes wide so that both memory ports are use
each Dchip. Four transfers across the memory bus are required for a cache block
from either set of DRAM arrays.

Figure 2–4 One or Two CPU x Two 16-Byte Memory Buses – Four Dchips and One
or Two Pchips

The difference between this system and that shown in Figure 2–2 is that this syste
lighter loading on the Dchip memory ports, which may allow easier physical implem
tation at higher speeds. Also, if two CPUs are installed, simultaneous accesses a
sible by means of the two memory buses, which might reduce latency to the critic
quadword for any given access. In addition, for a given memory capacity, the syst
with two small buses has twice as many banks as the system with one large bus.
can improve the throughput on operations such as DMA read-modify-write, which b
a bank for a long period of time. However, the maximum capacity for a given DRA
technology is halved with this organization.

2.2.3 Systems with Eight Dchips

Figure 2–5 and Figure 2–6 show systems using eight Dchips. This enables two ful
32-byte memory buses. Two Pchips are also enabled in these systems. However,
the data path to each Pchip is only 4 bytes wide, each Dchip transfers ½ byte per
as well as 1 check bit (repeated in the two cycles of the associated byte transfer).

Figure 2–5 shows a system that uses eight Dchips and supports two memory bus
each of which is 32 bytes wide. This system provides the highest bandwidth from
DRAM arrays. A cache block from either set of arrays takes two transfers on the a
priate memory bus. Each CPU port on each Dchip is only half utilized. One or two
Pchips can be installed, and each has a 4-byte data path to the Dchips with each
transferring ½ byte per cycle.

LJ-05487.AI4

3,7,11,15

2,6

2,6

3,7

3,7

CPU 0

3,7,11,15

2,6,10,14

1,5

1,5

2,6,10,14

1,5,9,13

0,4

0,4

1,5,9,13

0,4,8,12

0,4,8,12

DRAM
Arrays A

DRAM
Arrays B

Dchip

Dchip

Dchip

Dchip

Pchip 1

Pchip 0

Two PADbuses Bytes 3:0 Each

3 2 1

3 2 1

0

0

One or Two
DRAM Arrays

One or Two
DRAM Arrays

Two CPU Buses Bytes 7:0 Each

CPU 1

Two DRAM Buses Bytes 15:0 Each
2–6 Chipset Configurations 21 October 1999

Chipset Configurations

ra-
le of
er nib-

 The
chip
This “nibble” mode of the PADbus is described in Chapter 7. In the following illust
tions, the nomenclature 0H(0L) through 7H(7L) indicates that the lower-order nibb
each byte is transferred in one cycle on the same wires used to carry the high-ord
ble of the same byte in the next cycle.

Figure 2–5 One or Two CPU x Two 32-Byte Memory Buses – Eight Dchips and One
or Two Pchips

Figure 2–6 shows a system configuration very similar to that shown in Figure 2–5.
only difference is that both of the memory buses are half-populated so that each D
uses the data from only one half of each of its memory ports.

LJ-05488.AI4

7,15,23,31

7,X

7,X

CPU 0

7,15,23,31

0,X

0,X

0,8,16,24

0,8,16,24

DRAM
Arrays A

DRAM
Arrays B

Dchip 7

Dchip 0

Pchip 1

Pchip 0

Two PADbuses Bytes 7:0H(L) Each

7H(7L)

7H(7L)

0H(0L)

0H(0L)

One or Two
DRAM Arrays

One or Two
DRAM Arrays

Two CPU Buses Bytes 7:0 Each

CPU 1

Two DRAM Buses Bytes 31:0 Each
21 October 1999 Chipset Configurations 2–7

Chipset Configurations
Figure 2–6 One or Two CPU x Two 16-Byte Memory Buses – Eight Dchips and One
or Two Pchips

LJ-05489.AI4

7,15,X,X

7,X

7,X

CPU 0

7,15,X,X

0,X

0,X

0,8,X,X

0,8,X,X

DRAM
Arrays A

DRAM
Arrays B

Dchip 7

Dchip 0

Pchip 1

Pchip 0

Two PADbuses Bytes 7:0H(L) Each

7H(7L)

7H(7L)

0H(0L)

0H(0L)

One or Two
DRAM Arrays

One or Two
DRAM Arrays

Two CPU Buses Bytes 7:0 Each

CPU 1

Two DRAM Buses Bytes 15:0 Each
2–8 Chipset Configurations 21 October 1999

e
 3
Pinouts

This chapter lists and describes the signal interface pins for each ASIC in the 21272
chipset. The following abbreviations are used in the Type column of the pin list tables:

• B = Bidirectional

• I = Input

• O = Output

• P = Power

3.1 Cchip Pins and Signals

This section provides information about Cchip pins, pin types, pin numbers, and signal
definitions.

3.1.1 Cchip Pin List by Function

Table 3–1 lists the pin categories, signal names, types, and signal functions for th
Cchip.

Table 3–1 Cchip Pin List by Function

Signal Name Quantity Type Function

CAPbus Interface

b_cack 1 B Cchip acknowledge to Pchips

b_cacta_l, cactb_l 2 B Cchip CAPbus active

b_cap<23:0> 24 B CAPbus command/address

b_capgd<1:0> 2 B PAD good data sideband signal

b_capsel<1:0> 2 B Pchip selection

i_creq_l<1:0> 2 I Pchip CAPbus request

i_pack<1:0> 2 I Pchip acknowledgment to Cchip

SUBTOTAL 35 — —
21 October 1999 Pinouts 3–1

Cchip Pins and Signals
CPU Interface

b_c0clki_l 1 B CPU 0 clock in

b_c0clko_l 1 B CPU 0 clock out

b_c2ai_l<14:2> 13 B CPU 0 command and address

b_c2ao_l<14:2> 13 B CPU 0 command and address

b_c0div_l 1 B CPU 0 data in valid

b_c0fv_l 1 B CPU 0 fill valid

b_c1clki_l 1 B CPU 1 clock in

b_c1clko_l 1 B CPU 1 clock out

b_c1ai_l<14:2> 13 B CPU 1 command and address

b_c1ao_l<14:2> 13 B CPU 1 command and address

b_c1div_l 1 B CPU 1 data in valid

b_c1fv_l 1 B CPU 1 fill valid

SUBTOTAL 60 — —

Dchip Interface

b_cpma<7:0>,
b_cpmb<7:0>

16 B CPM command

b_pada<4:0>,
b_padb<4:0>

10 B PAD command

SUBTOTAL 26 — —

CSALT

o_nandtr 1 O NAND tree

i_scanen 1 I Scan enable

i_scanin 1 I Scan in

i_trsen_l 1 I Tristate outputs

SUBTOTAL 4 — —

Memory Interface

b_m0a<12:0> 13 B Array 0 address

b_m0ba<1:0> 2 B Array 0 bank address

b_m1ba<1:0> 2 B Array 1 bank address

b_m2ba<1:0> 2 B Array 2 bank address

b_m3ba<1:0> 2 B Array 3 bank address

b_m0cs_l<1:0> 2 B Array 0 chip selects1

b_m0dqm<1:0> 2 B Array 0 OW write control

b_m1a<12:0> 13 B Array 1 address

Table 3–1 Cchip Pin List by Function (Continued)

Signal Name Quantity Type Function
3–2 Pinouts 21 October 1999

Cchip Pins and Signals
b_m1cs_l<1:0> 2 B Array 1 chip selects1

b_m1dqm<1:0> 2 B Array 1 OW write control

b_m2a<12:0> 13 B Array 2 address

b_m2cs_l<1:0> 2 B Array 2 chip selects1

b_m2dqm<1:0> 2 B Array 2 OW write control

b_m3a<12:0> 13 B Array 3 address

b_m3cs_l<1:0> 2 B Array 3 chip selects1

b_m3dqm<1:0> 2 B Array 3 OW write control

b_mcas_l<3:0> 4 B CAS2

b_mcke_l<3:0> 4 B CKEs2

b_mras_l<3:0> 4 B RAS2

b_mwe_l<3:0> 4 B Write enables2

SUBTOTAL 92 — —

TIGbus/Interrupt Interface

b_tas 1 B TIGbus address strobe

b_tcs_l 1 B TIGbus read strobe

b_td<7:0> 8 B TIGbus data

b_tia<2:0> 3 B TIG interrupt address

b_tioe_l 1 B Interrupt buffer output enable

b_tis 1 B TIG interrupt strobe

b_toe_l 1 B TIG flash ROM output enable

b_twe_l 1 B TIG flash ROM write enable

SUBTOTAL 17 — —

Miscellaneous

b_cfrst<1:0> 2 B Clock forward reset (per CPU)

i_fwdclk, i_fwdclk_l 2 I Clock forward clock

i_intim_l 1 I Interval timer

i_modrst_l 1 I Module reset

b_monitor<7:0> 8 B Internal signal monitor outputs

b_mpdclk 1 B Memory presence detect clock

b_mpdd 1 B Memory presence detect data

b_sromoe_l<1:0> 2 B SROM output enable (1 per CPU)

i_sysclk, i_sysclk_l 2 I Clock in

b_sysrst{a,b,c}_l 3 B Reset (deasserts synchronously)

Table 3–1 Cchip Pin List by Function (Continued)

Signal Name Quantity Type Function
21 October 1999 Pinouts 3–3

Cchip Pins and Signals

e
3.1.2 C4chip Pin List by Function

Table 3–2 lists the pin categories, signal names, types, and signal functions for th
C4chip.

i_vref<2:0> 3 I 2-V I/O reference

b_spare<1:0> 2 B Spare pads

SUBTOTAL 28 — —

SIGNAL SUBTOTAL 262 — —

Power Pins

Vdd 40 P Vdd ring (9000)

Vss 48 P Vss plane (8000)

Vssx 46 P

SUBTOTAL 133 — —

SIGNAL/PIN TOTAL 395 — 37 pins not connected

1 For nonsplit arrays, only bit 0 is used. For split arrays, bit n for subarray n.
2 Bit n for array n.

Table 3–2 C4chip Pin List by Function

Signal Name Quantity Type Function

CAPbus Interface

b_cack 1 B Cchip acknowledge to Pchips

b_cacta_l, cactb_l 2 B Cchip CAPbus active

b_cap<23:0> 24 B CAPbus command/address

b_capgd<1:0> 2 B PAD good data sideband signal

b_capsel<1:0> 2 B Pchip selection

i_creq_l<1:0> 2 I Pchip CAPbus request

i_pack<1:0> 2 I Pchip acknowledgment to Cchip

SUBTOTAL 35 — —

Table 3–1 Cchip Pin List by Function (Continued)

Signal Name Quantity Type Function
3–4 Pinouts 21 October 1999

Cchip Pins and Signals
CPU Interface

b_c0clki_l 1 B CPU 0 clock in

b_c0clko_l 1 B CPU 0 clock out

b_c0ai_l<14:2> 13 B CPU 0 command and address

b_c0ao_l<14:2> 13 B CPU 0 command and address

b_c0div_l 1 B CPU 0 data in valid

b_c0fv_l 1 B CPU 0 fill valid

b_c1clki_l 1 B CPU 1 clock in

b_c1clko_l 1 B CPU 1 clock out

b_c1ai_l<14:2> 13 B CPU 1 command and address

b_c1ao_l<14:2> 13 B CPU 1 command and address

b_c1div_l 1 B CPU 1 data in valid

b_c1fv_l 1 B CPU 1 fill valid

b_c2clki_l 1 B CPU 2 clock in

b_c2clko_l 1 B CPU 2 clock out

b_c2ai_l<14:2> 13 B CPU 2 command and address

b_c2ao_l<14:2> 13 B CPU 2 command and address

b_c2div_l 1 B CPU 2 data in valid

b_c2fv_l 1 B CPU 2 fill valid

b_c3clki_l 1 B CPU 3 clock in

b_c3clko_l 1 B CPU 3 clock out

b_c3ai_l<14:2> 13 B CPU 3 command and address

b_c3ao_l<14:2> 13 B CPU 3 command and address

b_c3div_l 1 B CPU 3 data in valid

b_c3fv_l 1 B CPU 3 fill valid

SUBTOTAL 120 — —

Dchip Interface

b_cpma<7:0>, b_cpmb<7:0> 16 B CPM command

b_pada<4:0>, b_padb<4:0> 10 B PAD command

SUBTOTAL 26 — —

CSALT

o_nandtr 1 O NAND tree

Table 3–2 C4chip Pin List by Function (Continued)

Signal Name Quantity Type Function
21 October 1999 Pinouts 3–5

Cchip Pins and Signals
i_scanen 1 I Scan enable

i_scanin 1 I Scan in

i_trsen_l 1 I Tristate outputs

SUBTOTAL 4 — —

Memory Interface

b_m0a<12:0> 13 B Array 0 address

b_m0ba<2:0> 3 B Array 0 bank address

b_m1ba<2:0> 3 B Array 1 bank address

b_m2ba<2:0> 3 B Array 2 bank address

b_m3ba<2:0> 3 B Array 3 bank address

b_m0cs_l<3:0> 4 B Array 0 chip selects1

b_m0dqm<1:0> 2 B Array 0 OW write control

b_m1a<12:0> 13 B Array 1 address

b_m1cs_l<3:0> 4 B Array 1 chip selects1

b_m1dqm<1:0> 2 B Array 1 OW write control

b_m2a<12:0> 13 B Array 2 address

b_m2cs_l<3:0> 4 B Array 2 chip selects1

b_m2dqm<1:0> 2 B Array 2 OW write control

b_m3a<12:0> 13 B Array 3 address

b_m3cs_l<3:0> 4 B Array 3 chip selects1

b_m3dqm<1:0> 2 B Array 3 OW write control

b_mcas_l<3:0> 4 B CAS2

b_mcke_l<3:0> 4 B CKEs2

b_mras_l<3:0> 4 B RAS2

b_mwe_l<3:0> 4 B Write enables2

SUBTOTAL 104 — —

TIGbus/Interrupt Interface

b_tas 1 B TIGbus address strobe

b_tcs_l 1 B TIGbus read strobe

b_td<7:0> 8 B TIGbus data

b_tia<2:0> 3 B TIG interrupt address

b_tioe_l 1 B Interrupt buffer output enable

b_tis, b_tis2 2 B TIG interrupt strobe

b_toe_l 1 B TIG flash ROM output enable

Table 3–2 C4chip Pin List by Function (Continued)

Signal Name Quantity Type Function
3–6 Pinouts 21 October 1999

Cchip Pins and Signals
b_twe_l 1 B TIG flash ROM write enable

SUBTOTAL 18 — —

Miscellaneous

b_cfrst<3:0> 4 B Clock forward reset (per CPU)

i_fwdclk, i_fwdclk_l 2 I Clock forward clock

i_intim_l 1 I Interval timer

i_modrst_l 1 I Module reset

b_monitor<7:0> 8 B Internal signal monitor outputs

b_mpdclk 1 B Memory presence detect clock

b_mpdd 1 B Memory presence detect data

b_sromoe_l<3:0> 4 B SROM output enable (1 per CPU)

i_sysclk, i_sysclk_l 2 I Clock in

b_sysrst{a,b,c}_l 3 B Reset (deasserts synchronously)

i_vref<4:0> 5 I 2-V I/O reference

SUBTOTAL 32 — —

Miscellaneous New Signals

i_fckrep, i_fckrep_l 2 I ?

null 6 — ?

o_fck_fb, o_fck_fb_l 2 O Feedback

o_fckrep_fb, o_fckrep_fb_l 2 O Feedback

o_sysck_fb, o_sysck_fb_l 2 O Feedback

o_sysckrep_fb, o_sysckrep_fb_l 1 B Memory presence detect clock

SUBTOTAL 15 — —

SIGNAL SUBTOTAL 353 — —

Power Pins

Vdd 58 P Vdd ring (9000)

Vddq 4 P

Vss 184 P Vss plane (8000)

Vssq 1 P

SUBTOTAL 246 — —

SIGNAL/PIN TOTAL 599 — ? pins not connected

1 For nonsplit arrays, only bit 0 is used. For split arrays, bit n for subarray n.
2 Bit n for array n.

Table 3–2 C4chip Pin List by Function (Continued)

Signal Name Quantity Type Function
21 October 1999 Pinouts 3–7

Cchip Pins and Signals
3.1.3 Cchip Sorted Pin List

Table 3–3 lists the Cchip pins in alphanumeric order by signal name.

Table 3–3 Cchip Pins — Alphanumeric by Signal Name

Signal Name Pin Driver Type

b_c0ai_l<2> U29 BD16TOD B

b_c0ai_l<3> T31 BD16TOD B

b_c0ai_l<4> T28 BD16TOD B

b_c0ai_l<5> M30 BD16TOD B

b_c0ai_l<6> R31 BD16TOD B

b_c0ai_l<7> R30 BD16TOD B

b_c0ai_l<8> R29 BD16TOD B

b_c0ai_l<9> P30 BD16TOD B

b_c0ai_l<10> P29 BD16TOD B

b_c0ai_l<11> N31 BD16TOD B

b_c0ai_l<12> N30 BD16TOD B

b_c0ai_l<13> N29 BD16TOD B

b_c0ai_l<14> M31 BD16TOD B

b_c0ao_l<2> AJ25 BD16TOD B

b_c0ao_l<3> AK26 BD16TOD B

b_c0ao_l<4> AL27 BD16TOD B

b_c0ao_l<5> AH26 BD16TOD B

b_c0ao_l<6> AL28 BD16TOD B

b_c0ao_l<7> AH31 BD16TOD B

b_c0ao_l<8> AF28 BD16TOD B

b_c0ao_l<9> AF30 BD16TOD B

b_c0ao_l<10> AE29 BD16TOD B

b_c0ao_l<11> AE30 BD16TOD B

b_c0ao_l<12> AD29 BD16TOD B

b_c0ao_l<13> AD30 BD16TOD B

b_c0ao_l<14> AC29 BD16TOD B

b_c0clki_l R28 BD16TOD B

b_c0clko_l AG31 BD16TOD B

b_c0div_l AC31 BD16TOD B

b_c0fv_l AA28 BD16TOD B

b_c1ai_l<2> U28 BD16TOD B
3–8 Pinouts 21 October 1999

Cchip Pins and Signals
b_c1ai_l<3> V30 BD16TOD B

b_c1ai_l<4> V29 BD16TOD B

b_c1ai_l<5> AA29 BD16TOD B

b_c1ai_l<6> W31 BD16TOD B

b_c1ai_l<7> W30 BD16TOD B

b_c1ai_l<8> W29 BD16TOD B

b_c1ai_l<9> Y30 BD16TOD B

b_c1ai_l<10> W28 BD16TOD B

b_c1ai_l<11> Y29 BD16TOD B

b_c1ai_l<12> AA31 BD16TOD B

b_c1ai_l<13> AA30 BD16TOD B

b_c1ai_l<14> Y28 BD16TOD B

b_c1ao_l<2> A27 BD16TOD B

b_c1ao_l<3> D26 BD16TOD B

b_c1ao_l<4> E29 BD16TOD B

b_c1ao_l<5> E30 BD16TOD B

b_c1ao_l<6> F29 BD16TOD B

b_c1ao_l<7> F31 BD16TOD B

b_c1ao_l<8> H28 BD16TOD B

b_c1ao_l<9> J28 BD16TOD B

b_c1ao_l<10> H31 BD16TOD B

b_c1ao_l<11> J30 BD16TOD B

b_c1ao_l<12> K29 BD16TOD B

b_c1ao_l<13> K30 BD16TOD B

b_c1ao_l<14> L29 BD16TOD B

b_c1clki_l Y31 BD16TOD B

b_c1clko_l G31 BD16TOD B

b_c1div_l L30 BD16TOD B

b_c1fv_l M29 BD16TOD B

b_cack AK11 BD4T B

b_cacta_l AJ11 BD4T B

b_cactb_l AH12 BD4T B

b_cap<0> AH23 BD16TOD B

b_cap<1> AK24 BD16TOD B

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–9

Cchip Pins and Signals
b_cap<2> AL24 BD16TOD B

b_cap<3> AK23 BD16TOD B

b_cap<4> AL23 BD16TOD B

b_cap<5> AJ22 BD16TOD B

b_cap<6> AK22 BD16TOD B

b_cap<7> AL22 BD16TOD B

b_cap<8> AJ21 BD16TOD B

b_cap<9> AK21 BD16TOD B

b_cap<10> AL21 BD16TOD B

b_cap<11> AJ20 BD16TOD B

b_cap<12> AJ19 BD16TOD B

b_cap<13> AK19 BD16TOD B

b_cap<14> AL19 BD16TOD B

b_cap<15> AH17 BD16TOD B

b_cap<16> AK18 BD16TOD B

b_cap<17> AJ17 BD16TOD B

b_cap<18> AL17 BD16TOD B

b_cap<19> AH16 BD16TOD B

b_cap<20> AJ16 BD16TOD B

b_cap<21> AL16 BD16TOD B

b_cap<22> AJ15 BD16TOD B

b_cap<23> AH15 BD16TOD B

b_capgd<0> AL11 BD4T B

b_capgd<1> AJ12 BD4T B

b_capsel<0> AK12 BD4T B

b_capsel<1> AL12 BD4T B

b_cfrst<0> B15 BD16TOD B

b_cfrst<1> C15 BD16TOD B

b_cpma<0> P3 BD6T B

b_cpma<1> P2 BD6T B

b_cpma<2> R4 BD6T B

b_cpma<3> R3 BD6T B

b_cpma<4> T3 BD6T B

b_cpma<5> T4 BD6T B

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–10 Pinouts 21 October 1999

Cchip Pins and Signals
b_cpma<6> U1 BD6T B

b_cpma<7> U2 BD6T B

b_cpmb<0> U3 BD6T B

b_cpmb<1> V2 BD6T B

b_cpmb<2> U4 BD6T B

b_cpmb<3> V3 BD6T B

b_cpmb<4> W1 BD6T B

b_cpmb<5> W2 BD6T B

b_cpmb<6> W3 BD6T B

b_cpmb<7> W4 BD6T B

b_m0a<0> A9 BD8T B

b_m0a<1> C10 BD8T B

b_m0a<2> D11 BD8T B

b_m0a<3> B10 BD8T B

b_m0a<4> A10 BD8T B

b_m0a<5> B11 BD8T B

b_m0a<6> A11 BD8T B

b_m0a<7> C12 BD8T B

b_m0a<8> D13 BD8T B

b_m0a<9> B12 BD8T B

b_m0a<10> A12 BD8T B

b_m0a<11> C13 BD8T B

b_m0a<12> B13 BD8T B

b_m0ba<0> A13 BD8T B

b_m0ba<1> C14 BD8T B

b_m0cs_l<0> C9 BD8T B

b_m0cs_l<1> B9 BD8T B

b_m0dqm<0> A7 BD8T B

b_m0dqm<1> C8 BD8T B

b_m1a<0> AE1 BD8T B

b_m1a<1> AD2 BD8T B

b_m1a<2> AD1 BD8T B

b_m1a<3> AC3 BD8T B

b_m1a<4> AC2 BD8T B

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–11

Cchip Pins and Signals
b_m1a<5> AC1 BD8T B

b_m1a<6> AB3 BD8T B

b_m1a<7> AA4 BD8T B

b_m1a<8> AB2 BD8T B

b_m1a<9> AB1 BD8T B

b_m1a<10> AA3 BD8T B

b_m1a<11> Y4 BD8T B

b_m1a<12> AA2 BD8T B

b_m1ba<0> AA1 BD8T B

b_m1ba<1> Y3 BD8T B

b_m1cs_l<0> AD4 BD8T B

b_m1cs_l<1> AE2 BD8T B

b_m1dqm<0> AG1 BD8T B

b_m1dqm<1> AF3 BD8T B

b_m2a<0> H2 BD8T B

b_m2a<1> J4 BD8T B

b_m2a<2> H3 BD8T B

b_m2a<3> G1 BD8T B

b_m2a<4> G2 BD8T B

b_m2a<5> H4 BD8T B

b_m2a<6> G3 BD8T B

b_m2a<7> F1 BD8T B

b_m2a<8> F2 BD8T B

b_m2a<9> F3 BD8T B

b_m2a<10> C6 BD8T B

b_m2a<11> B6 BD8T B

b_m2a<12> A6 BD8T B

b_m2ba<0> C7 BD8T B

b_m2ba<1> D8 BD8T B

b_m2cs_l<0> J3 BD8T B

b_m2cs_l<1> H1 BD8T B

b_m2dqm<0> L3 BD8T B

b_m2dqm<1> K1 BD8T B

b_m3a<0> AL8 BD8T B

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–12 Pinouts 21 October 1999

Cchip Pins and Signals
b_m3a<1> AK8 BD8T B

b_m3a<2> AL7 BD8T B

b_m3a<3> AK7 BD8T B

b_m3a<4> AH8 BD8T B

b_m3a<5> AJ7 BD8T B

b_m3a<6> AL6 BD8T B

b_m3a<7> AK6 BD8T B

b_m3a<8> AJ6 BD8T B

b_m3a<9> AL5 BD8T B

b_m3a<10> AK5 BD8T B

b_m3a<11> AH6 BD8T B

b_m3a<12> AJ5 BD8T B

b_m3ba<0> AL4 BD8T B

b_m3ba<1> AK4 BD8T B

b_m3cs_l<0> AK9 BD8T B

b_m3cs_l<1> AJ9 BD8T B

b_m3dqm<0> AL10 BD8T B

b_m3dqm<1> AK10 BD8T B

b_mcas_l<0> B8 BD8T B

b_mcas_l<1> AF1 BD8T B

b_mcas_l<2> L4 BD8T B

b_mcas_l<3> AJ10 BD8T B

b_mcke_l<0> A5 BD8T B

b_mcke_l<1> AG2 BD8T B

b_mcke_l<2> J1 BD8T B

b_mcke_l<3> AJ8 BD8T B

b_monitor<0> D17 BD4CS B

b_monitor<1> B18 BD4CS B

b_monitor<2> C18 BD4CS B

b_monitor<3> A19 BD4CS B

b_monitor<4> A25 BD4CS B

b_monitor<5> B7 BD4CS B

b_monitor<6> AL25 BD4CS B

b_monitor<7> B26 BD4CS B

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–13

Cchip Pins and Signals
b_mpdclk C24 BD4CS B

b_mpdd D23 BD4CS B

b_mras_l<0> A8 BD8T B

b_mras_l<1> AE3 BD8T B

b_mras_l<2> K3 BD8T B

b_mras_l<3> AL9 BD8T B

b_mwe_l<0> D9 BD8T B

b_mwe_l<1> AF2 BD8T B

b_mwe_l<2> K2 BD8T B

b_mwe_l<3> AH11 BD8T B

b_pada<0> M4 BD6T B

b_pada<1> L2 BD6T B

b_pada<2> L1 BD6T B

b_pada<3> M3 BD6T B

b_pada<4> N4 BD6T B

b_padb<0> M2 BD6T B

b_padb<1> M1 BD6T B

b_padb<2> N3 BD6T B

b_padb<3> N2 BD6T B

b_padb<4> N1 BD6T B

b_spare<0> B14 BD8CS B

b_spare<1> D15 BD8CS B

b_sromoe_l<0> A16 BD16TOD B

b_sromoe_l<1> B16 BD16TOD B

b_sysrsta_l C16 BD6T B

b_sysrstb_l D16 BD6T B

b_sysrstc_l A15 BD6T B

b_tas C20 BD4CS B

b_tcs_l B20 BD4CS B

b_td<0> A21 BD4CS B

b_td<1> B21 BD4CS B

b_td<2> D20 BD4CS B

b_td<3> C21 BD4CS B

b_td<4> A22 BD4CS B

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–14 Pinouts 21 October 1999

Cchip Pins and Signals
b_td<5> B22 BD4CS B

b_td<6> D21 BD4CS B

b_td<7> C22 BD4CS B

b_tia<0> B23 BD4CS B

b_tia<1> C23 BD4CS B

b_tia<2> A24 BD4CS B

b_tioe_l A20 BD4CS B

b_tis D19 BD4CS B

b_toe_l C19 BD4CS B

b_twe_l B24 BD4CS B

i_creq_l<0> AL13 IBUF I

i_creq_l<1> AJ14 IBUF I

i_fwdclk T29 PECLINDIFFA I

i_fwdclk_l T30 PECLINDIFFA I

i_intim_l B19 IBUF I

i_modrst_l C17 IBUF I

i_pack<0> AJ13 IBUF I

i_pack<1> AK13 IBUF I

i_scanen C25 IBUF I

i_scanin A26 IBUF I

i_sysclk T1 PECLINDIFFA I

i_sysclk_l T2 PECLINDIFFA I

i_trsen_l B25 IBUF I

i_vref<0> N28 DDRV I

i_vref<1> AB31 DDRV I

i_vref<2> AK20 DDRV I

o_nandtr D24 B8 O

vdd A1 — P

vdd A31 — P

vdd AB4 — P

vdd AB28 — P

vdd AE4 — P

vdd AE28 — P

vdd AH4 — P

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–15

Cchip Pins and Signals
vdd AH7 — P

vdd AH10 — P

vdd AH14 — P

vdd AH18 — P

vdd AH22 — P

vdd AH25 — P

vdd AH28 — P

vdd AJ3 — P

vdd AJ29 — P

vdd AK2 — P

vdd AK30 — P

vdd AL1 — P

vdd AL31 — P

vdd B2 — P

vdd B30 — P

vdd C3 — P

vdd C29 — P

vdd D10 — P

vdd D14 — P

vdd D18 — P

vdd D22 — P

vdd D25 — P

vdd D28 — P

vdd D4 — P

vdd D7 — P

vdd G4 — P

vdd G28 — P

vdd K4 — P

vdd K28 — P

vdd P4 — P

vdd P28 — P

vdd V4 — P

vdd V28 — P

vss A2 — P

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–16 Pinouts 21 October 1999

Cchip Pins and Signals
vss A3 — P

vss A14 — P

vss A17 — P

vss A18 — P

vss A29 — P

vss A30 — P

vss AH3 — P

vss AH29 — P

vss AJ1 — P

vss AJ2 — P

vss AJ4 — P

vss AJ28 — P

vss AJ30 — P

vss AJ31 — P

vss AK1 — P

vss AK3 — P

vss AK15 — P

vss AK29 — P

vss AK31 — P

vss AL2 — P

vss AL3 — P

vss AL14 — P

vss AL15 — P

vss AL18 — P

vss AL29 — P

vss AL30 — P

vss B1 — P

vss B3 — P

vss B17 — P

vss B29 — P

vss B31 — P

vss C1 — P

vss C2 — P

vss C4 — P

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–17

Cchip Pins and Signals
vss C28 — P

vss C30 — P

vss C31 — P

vss D3 — P

vss D29 — P

vss P1 — P

vss P31 — P

vss R1 — P

vss R2 — P

vss U30 — P

vss U31 — P

vss V1 — P

vss V31 — P

vssx AB29 — P

vssx AB30 — P

vssx AC28 — P

vssx AC30 — P

vssx AD28 — P

vssx AD31 — P

vssx AE31 — P

vssx AF29 — P

vssx AF31 — P

vssx AG29 — P

vssx AG30 — P

vssx AH19 — P

vssx AH20 — P

vssx AH21 — P

vssx AH24 — P

vssx AH30 — P

vssx AJ18 — P

vssx AJ23 — P

vssx AJ24 — P

vssx AJ26 — P

vssx AJ27 — P

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–18 Pinouts 21 October 1999

Cchip Pins and Signals
3.1.4 Cchip Sorted Pin List

Table 3–4 lists the C4chip pins in alphanumeric order by signal name.

vssx AK14 — P

vssx AK16 — P

vssx AK17 — P

vssx AK27 — P

vssx AK28 — P

vssx AL20 — P

vssx AL26 — P

vssx B27 — P

vssx C26 — P

vssx C27 — P

vssx D31 — P

vssx E31 — P

vssx F28 — P

vssx F30 — P

vssx G9 — P

vssx G29 — P

vssx G30 — P

vssx H29 — P

vssx H30 — P

vssx J29 — P

vssx J31 — P

vssx K31 — P

vssx L28 — P

vssx L31 — P

vssx M28 — P

Table 3–4 C4chip Pins — Alphanumeric by Signal Name

Signal Name Pin Driver Type

b_c0ai_l<10> R04 BODTY B

b_c0ai_l<11> R03 BODTY B

b_c0ai_l<12> R05 BODTY B

b_c0ai_l<13> P02 BODTY B

Table 3–3 Cchip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–19

Cchip Pins and Signals
b_c0ai_l<14> R06 BODTY B

b_c0ai_l<2> W03 BODTY B

b_c0ai_l<3> W04 BODTY B

b_c0ai_l<4> W02 BODTY B

b_c0ai_l<5> P04 BODTY B

b_c0ai_l<6> V06 BODTY B

b_c0ai_l<7> V05 BODTY B

b_c0ai_l<8> V04 BODTY B

b_c0ai_l<9> T04 BODTY B

b_c0ao_l<10> AN09 BODTY B

b_c0ao_l<11> AH09 BODTY B

b_c0ao_l<12> AJ07 BODTY B

b_c0ao_l<13> AN07 BODTY B

b_c0ao_l<14> AM05 BODTY B

b_c0ao_l<2> AH13 BODTY B

b_c0ao_l<3> AM10 BODTY B

b_c0ao_l<4> AN11 BODTY B

b_c0ao_l<5> AJ10 BODTY B

b_c0ao_l<6> AM09 BODTY B

b_c0ao_l<7> AH11 BODTY B

b_c0ao_l<8> AJ09 BODTY B

b_c0ao_l<9> AJ08 BODTY B

b_c0clki_l R01 BODTY B

b_c0clko_l AL10 BODTY B

b_c0div_l AL05 BODTY B

b_c0fv_l AH07 BODTY B

b_c1ai_l<10> P06 BODTY B

b_c1ai_l<11> N05 BODTY B

b_c1ai_l<12> P05 BODTY B

b_c1ai_l<13> P03 BODTY B

b_c1ai_l<14> N02 BODTY B

b_c1ai_l<2> K02 BODTY B

b_c1ai_l<3> N06 BODTY B

b_c1ai_l<4> L04 BODTY B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–20 Pinouts 21 October 1999

Cchip Pins and Signals
b_c1ai_l<5> P01 BODTY B

b_c1ai_l<6> M01 BODTY B

b_c1ai_l<7> N04 BODTY B

b_c1ai_l<8> L02 BODTY B

b_c1ai_l<9> N01 BODTY B

b_c1ao_l<10> E01 BODTY B

b_c1ao_l<11> E03 BODTY B

b_c1ao_l<12> F02 BODTY B

b_c1ao_l<13> H06 BODTY B

b_c1ao_l<14> E02 BODTY B

b_c1ao_l<2> A09 BODTY B

b_c1ao_l<3> E08 BODTY B

b_c1ao_l<4> F09 BODTY B

b_c1ao_l<5> C06 BODTY B

b_c1ao_l<6> F08 BODTY B

b_c1ao_l<7> E06 BODTY B

b_c1ao_l<8> B06 BODTY B

b_c1ao_l<9> A05 BODTY B

b_c1clki_l M04 BODTY B

b_c1clko_l E07 BODTY B

b_c1div_l G05 BODTY B

b_c1fv_l H01 BODTY B

b_c2ai_l<10> Y03 BODTY B

b_c2ai_l<11> Y04 BODTY B

b_c2ai_l<12> Y01 BODTY B

b_c2ai_l<13> W06 BODTY B

b_c2ai_l<14> Y02 BODTY B

b_c2ai_l<2> AC02 BODTY B

b_c2ai_l<3> AA04 BODTY B

b_c2ai_l<4> AB04 BODTY B

b_c2ai_l<5> W05 BODTY B

b_c2ai_l<6> AA01 BODTY B

b_c2ai_l<7> Y06 BODTY B

b_c2ai_l<8> AA05 BODTY B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–21

Cchip Pins and Signals
b_c2ai_l<9> AA02 BODTY B

b_c2ao_l<10> AD03 BODTY B

b_c2ao_l<11> AE04 BODTY B

b_c2ao_l<12> AC06 BODTY B

b_c2ao_l<13> AD05 BODTY B

b_c2ao_l<14> AD04 BODTY B

b_c2ao_l<2> AG06 BODTY B

b_c2ao_l<3> AH02 BODTY B

b_c2ao_l<4> AJ02 BODTY B

b_c2ao_l<5> AF06 BODTY B

b_c2ao_l<6> AF01 BODTY B

b_c2ao_l<7> AG05 BODTY B

b_c2ao_l<8> AE03 BODTY B

b_c2ao_l<9> AF03 BODTY B

b_c2clki_l Y05 BODTY B

b_c2clko_l AF05 BODTY B

b_c2div_l AA06 BODTY B

b_c2fv_l AB03 BODTY B

b_c3ai_l<10> L06 BODTY B

b_c3ai_l<11> J04 BODTY B

b_c3ai_l<12> L05 BODTY B

b_c3ai_l<13> L01 BODTY B

b_c3ai_l<14> K04 BODTY B

b_c3ai_l<2> G04 BODTY B

b_c3ai_l<3> J01 BODTY B

b_c3ai_l<4> H05 BODTY B

b_c3ai_l<5> M03 BODTY B

b_c3ai_l<6> K06 BODTY B

b_c3ai_l<7> H03 BODTY B

b_c3ai_l<8> K03 BODTY B

b_c3ai_l<9> J05 BODTY B

b_c3ao_l<10> D11 BODTY B

b_c3ao_l<11> F13 BODTY B

b_c3ao_l<12> A11 BODTY B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–22 Pinouts 21 October 1999

Cchip Pins and Signals
b_c3ao_l<13> D10 BODTY B

b_c3ao_l<14> F11 BODTY B

b_c3ao_l<2> C16 BODTY B

b_c3ao_l<3> B15 BODTY B

b_c3ao_l<4> C15 BODTY B

b_c3ao_l<5> B14 BODTY B

b_c3ao_l<6> F15 BODTY B

b_c3ao_l<7> C14 BODTY B

b_c3ao_l<8> B13 BODTY B

b_c3ao_l<9> D13 BODTY B

b_c3clki_l K01 BODTY B

b_c3clko_l D12 BODTY B

b_c3div_l E09 BODTY B

b_c3fv_l C10 BODTY B

b_cack AM23 BDZ20C B

b_cacta_l AK22 BDZ50C B

b_cactb_l AN21 BDZ50C B

b_cap<0> AL19 BODTY B

b_cap<10> AM16 BODTY B

b_cap<11> AN17 BODTY B

b_cap<12> AL16 BODTY B

b_cap<13> AM15 BODTY B

b_cap<14> AK15 BODTY B

b_cap<15> AN15 BODTY B

b_cap<16> AL15 BODTY B

b_cap<17> AM14 BODTY B

b_cap<18> AH15 BODTY B

b_cap<19> AN14 BODTY B

b_cap<1> AN19 BODTY B

b_cap<20> AL14 BODTY B

b_cap<21> AM13 BODTY B

b_cap<22> AJ13 BODTY B

b_cap<23> AK12 BODTY B

b_cap<2> AK19 BODTY B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–23

Cchip Pins and Signals
b_cap<3> AM19 BODTY B

b_cap<4> AL18 BODTY B

b_cap<5> AH17 BODTY B

b_cap<6> AN18 BODTY B

b_cap<7> AM18 BODTY B

b_cap<8> AJ17 BODTY B

b_cap<9> AM17 BODTY B

b_capgd<0> AK21 BDZ50C B

b_capgd<1> AN22 BDZ50C B

b_capsel<0> AK23 BDZ30C B

b_capsel<1> AH21 BDZ30C B

b_cfrst<0> B18 BODTY B

b_cfrst<1> D17 BODTY B

b_cfrst<2> B17 BODTY B

b_cfrst<3> E17 BODTY B

b_cpma<0> AL26 BDZ20C B

b_cpma<1> AH24 BDZ20C B

b_cpma<2> AN25 BDZ20C B

b_cpma<3> AK27 BDZ20C B

b_cpma<4> AL25 BDZ20C B

b_cpma<5> AH25 BDZ20C B

b_cpma<6> AJ27 BDZ20C B

b_cpma<7> AN26 BDZ20C B

b_cpmb<0> AN27 BDZ20C B

b_cpmb<1> AM29 BDZ20C B

b_cpmb<2> AH26 BDZ20C B

b_cpmb<3> AN28 BDZ20C B

b_cpmb<4> AJ28 BDZ20C B

b_cpmb<5> AM28 BDZ20C B

b_cpmb<6> AH27 BDZ20C B

b_cpmb<7> AN30 BDZ20C B

b_m0a<0> AE33 BDZ20C B

b_m0a<10> AH29 BDZ20C B

b_m0a<11> AH32 BDZ20C B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–24 Pinouts 21 October 1999

Cchip Pins and Signals
b_m0a<12> AG28 BDZ20C B

b_m0a<1> AF29 BDZ20C B

b_m0a<2> AE31 BDZ20C B

b_m0a<3> AE28 BDZ20C B

b_m0a<4> AG29 BDZ20C B

b_m0a<5> AF33 BDZ20C B

b_m0a<6> AG33 BDZ20C B

b_m0a<7> AH31 BDZ20C B

b_m0a<8> AF28 BDZ20C B

b_m0a<9> AH33 BDZ20C B

b_m0ba<0> AJ31 BDZ20C B

b_m0ba<1> AJ33 BDZ20C B

b_m0ba<2> AN29 BDZ20C B

b_m0cs_l<0> AD33 BDZ20C B

b_m0cs_l<1> AD31 BDZ20C B

b_m0cs_l<2> AF31 BDZ20C B

b_m0cs_l<3> AD28 BDZ20C B

b_m0dqm<0> AD29 BDZ20C B

b_m0dqm<1> AE32 BDZ20C B

b_m1a<0> L30 BDZ20C B

b_m1a<10> P33 BDZ20C B

b_m1a<11> R28 BDZ20C B

b_m1a<12> P32 BDZ20C B

b_m1a<1> M33 BDZ20C B

b_m1a<2> N30 BDZ20C B

b_m1a<3> L32 BDZ20C B

b_m1a<4> N33 BDZ20C B

b_m1a<5> P28 BDZ20C B

b_m1a<6> N29 BDZ20C B

b_m1a<7> P29 BDZ20C B

b_m1a<8> P31 BDZ20C B

b_m1a<9> N32 BDZ20C B

b_m1ba<0> R29 BDZ20C B

b_m1ba<1> R31 BDZ20C B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–25

Cchip Pins and Signals
b_m1ba<2> R30 BDZ20C B

b_m1cs_l<0> L33 BDZ20C B

b_m1cs_l<1> K30 BDZ20C B

b_m1cs_l<2> M31 BDZ20C B

b_m1cs_l<3> N28 BDZ20C B

b_m1dqm<0> J29 BDZ20C B

b_m1dqm<1> L28 BDZ20C B

b_m2a<0> Y32 BDZ20C B

b_m2a<10> AA30 BDZ20C B

b_m2a<11> AB33 BDZ20C B

b_m2a<12> AC30 BDZ20C B

b_m2a<1> W28 BDZ20C B

b_m2a<2> Y33 BDZ20C B

b_m2a<3> Y30 BDZ20C B

b_m2a<4> Y31 BDZ20C B

b_m2a<5> Y29 BDZ20C B

b_m2a<6> AA29 BDZ20C B

b_m2a<7> Y28 BDZ20C B

b_m2a<8> AA33 BDZ20C B

b_m2a<9> AB30 BDZ20C B

b_m2ba<0> AA28 BDZ20C B

b_m2ba<1> AB31 BDZ20C B

b_m2ba<2> AD32 BDZ20C B

b_m2cs_l<0> W32 BDZ20C B

b_m2cs_l<1> W30 BDZ20C B

b_m2cs_l<2> W31 BDZ20C B

b_m2cs_l<3> W29 BDZ20C B

b_m2dqm<0> V31 BDZ20C B

b_m2dqm<1> T30 BDZ20C B

b_m3a<0> G28 BDZ20C B

b_m3a<10> J31 BDZ20C B

b_m3a<11> G30 BDZ20C B

b_m3a<12> J33 BDZ20C B

b_m3a<1> F32 BDZ20C B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–26 Pinouts 21 October 1999

Cchip Pins and Signals
b_m3a<2> F29 BDZ20C B

b_m3a<3> F33 BDZ20C B

b_m3a<4> H28 BDZ20C B

b_m3a<5> E32 BDZ20C B

b_m3a<6> G33 BDZ20C B

b_m3a<7> H33 BDZ20C B

b_m3a<8> G29 BDZ20C B

b_m3a<9> J28 BDZ20C B

b_m3ba<0> K28 BDZ20C B

b_m3ba<1> H31 BDZ20C B

b_m3ba<2> K31 BDZ20C B

b_m3cs_l<0> C29 BDZ20C B

b_m3cs_l<1> A29 BDZ20C B

b_m3cs_l<2> E33 BDZ20C B

b_m3cs_l<3> D33 BDZ20C B

b_m3dqm<0> F26 BDZ20C B

b_m3dqm<1> A28 BDZ20C B

b_mcas_l<0> AC28 BDZ20C B

b_mcas_l<1> J32 BDZ20C B

b_mcas_l<2> V30 BDZ20C B

b_mcas_l<3> B28 BDZ20C B

b_mcke<0> AC33 BDZ20C B

b_mcke<1> K33 BDZ20C B

b_mcke<2> R33 BDZ20C B

b_mcke<3> C28 BDZ20C B

b_monitor<0> E21 BDZ50C B

b_monitor<1> A21 BDZ50C B

b_monitor<2> D22 BDZ50C B

b_monitor<3> D21 BDZ50C B

b_monitor<4> A22 BDZ50C B

b_monitor<5> D23 BDZ50C B

b_monitor<6> F21 BDZ50C B

b_monitor<7> C22 BDZ50C B

b_mpdclk E19 BDZ50C B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–27

Cchip Pins and Signals
b_mpdd F19 BDZ50C B

b_mras_l<0> AE30 BDZ20C B

b_mras_l<1> K29 BDZ20C B

b_mras_l<2> V28 BDZ20C B

b_mras_l<3> F27 BDZ20C B

b_mwe_l<0> AC29 BDZ20C B

b_mwe_l<1> L29 BDZ20C B

b_mwe_l<2> V29 BDZ20C B

b_mwe_l<3> E28 BDZ20C B

b_pada<0> AL22 BDZ20C B

b_pada<1> AK24 BDZ20C B

b_pada<2> AN23 BDZ20C B

b_pada<3> AJ24 BDZ20C B

b_pada<4> AM25 BDZ20C B

b_padb<0> AJ23 BDZ20C B

b_padb<1> AH23 BDZ20C B

b_padb<2> AJ25 BDZ20C B

b_padb<3> AN24 BDZ20C B

b_padb<4> AL24 BDZ20C B

b_sromoe_l<0> C18 BODTY B

b_sromoe_l<1> D18 BODTY B

b_sromoe_l<2> A18 BODTY B

b_sromoe_l<3> F17 BODTY B

b_sysrsta_l B21 BDZ20C B

b_sysrstb_l C20 BDZ20C B

b_sysrstc_l A20 BDZ20C B

b_tas F23 BDZ50C B

b_tcs_l E24 BDZ50C B

b_td<0> D25 BDZ50C B

b_td<1> A24 BDZ50C B

b_td<2> C24 BDZ50C B

b_td<3> C26 BDZ50C B

b_td<4> F24 BDZ50C B

b_td<5> A25 BDZ50C B

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–28 Pinouts 21 October 1999

Cchip Pins and Signals
b_td<6> E26 BDZ50C B

b_td<7> C25 BDZ50C B

b_tia<0> F25 BDZ50C B

b_tia<1> E27 BDZ50C B

b_tia<2> A26 BDZ50C B

b_tioe_l A23 BDZ50C B

b_tis E23 BDZ50C B

b_tis2 B25 BDZ50C B

b_toe_l B24 BDZ50C B

b_twe_l A27 BDZ50C B

i_creq_l<0> AM21 BDZ50C I

i_creq_l<1> AJ21 BDZ50C I

i_fckrep U01 PECLINTY I

i_fckrep_l T02 PECLINTY I

i_fwdclk V01 PECLINTY I

i_fwdclk_l U02 PECLINTY I

i_intim_l D20 BDZ50C I

i_modrst_l A19 BDZ50C I

i_pack<0> AK20 BDZ50C I

i_pack<1> AL20 BDZ50C I

i_scanen D19 BDZ50C I

i_scanin C19 BDZ50C I

i_sysckrep U33 PECLINTY I

i_sysckrep_l T32 PECLINTY I

i_sysclk V33 PECLINTY I

i_sysclk_l U32 PECLINTY I

i_trsen_l B19 BDZ50C I

i_vref<0> AN06 I

i_vref<1> K05 I

i_vref<2> V03 I

i_vref<3> B09 I

i_vref<4> AK13 I

null AM31

null AL32

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–29

Cchip Pins and Signals
Table 3–5 shows the Cchip pins in alphanumeric order by pin number.

null C32

null B31

null B03

null AL02

o_fck_fb W01 PECLOUT O

o_fck_fb_l V02 PECLOUT O

o_fckrep_fb T01 PECLOUT O

o_fckrep_fb_l R02 PECLOUT O

o_nandtr B20 BDZ50C O

o_sysck_fb W33 PECLOUT O

o_sysck_fb_l V32 PECLOUT O

o_sysckrep_fb R32 PECLOUT O

o_sysckrep_fb_l T33 PECLOUT O

Vdd AM03 P

Vdd AJ19 P

Vdd A04 P

Vdd C02 P

Vdd AK01 P

Vddq U30 P

Vddq T31 P

Vddq T03 P

Vddq U04 P

Vss AN05 P

Vss AN04 P

Vss AM06 P

Vss AJ06 P

Vss AH08 P

Vss AL06 P

Vss AN08 P

Table 3–5 Cchip Pins — Alphanumeric by Pin Number

Pin Number Signal Name Driver Type

A1 vdd — P

Table 3–4 C4chip Pins — Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–30 Pinouts 21 October 1999

Cchip Pins and Signals
A2 vss — P

A3 vss — P

A5 b_mcke_l<0> BD8T B

A6 b_m2a<12> BD8T B

A7 b_m0dqm<0> BD8T B

A8 b_mras_l<0> BD8T B

A9 b_m0a<0> BD8T B

A10 b_m0a<4> BD8T B

A11 b_m0a<6> BD8T B

A12 b_m0a<10> BD8T B

A13 b_m0ba<0> BD8T B

A14 vss — P

A15 b_sysrstc_l BD6T B

A16 b_sromoe_l<0> BD16TOD B

A17 vss — P

A18 vss — P

A19 b_monitor<3> BD4CS B

A20 b_tioe_l BD4CS B

A21 b_td<0> BD4CS B

A22 b_td<4> BD4CS B

A24 b_tia<2> BD4CS B

A25 b_monitor<4> BD4CS B

A26 i_scanin IBUF I

A27 b_c1ao_l<2> BD16TOD B

A29 vss — P

A30 vss — P

A31 vdd — P

AA1 b_m1ba<0> BD8T B

AA2 b_m1a<12> BD8T B

AA3 b_m1a<10> BD8T B

AA4 b_m1a<7> BD8T B

AA28 b_c0fv_l BD16TOD B

AA29 b_c1ai_l<5> BD16TOD B

AA30 b_c1ai_l<13> BD16TOD B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–31

Cchip Pins and Signals
AA31 b_c1ai_l<12> BD16TOD B

AB1 b_m1a<9> BD8T B

AB2 b_m1a<8> BD8T B

AB3 b_m1a<6> BD8T B

AB4 vdd — P

AB28 vdd — P

AB29 vssx — P

AB30 vssx — P

AB31 i_vref<1> DDRV I

AC1 b_m1a<5> BD8T B

AC2 b_m1a<4> BD8T B

AC3 b_m1a<3> BD8T B

AC28 vssx — P

AC29 b_c0ao_l<14> BD16TOD B

AC30 vssx — P

AC31 b_c0div_l BD16TOD B

AD1 b_m1a<2> BD8T B

AD2 b_m1a<1> BD8T B

AD4 b_m1cs_l<0> BD8T B

AD28 vssx — P

AD29 b_c0ao_l<12> BD16TOD B

AD30 b_c0ao_l<13> BD16TOD B

AD31 vssx — P

AE1 b_m1a<0> BD8T B

AE2 b_m1cs_l<1> BD8T B

AE3 b_mras_l<1> BD8T B

AE4 vdd — P

AE28 vdd — P

AE29 b_c0ao_l<10> BD16TOD B

AE30 b_c0ao_l<11> BD16TOD B

AE31 vssx — P

AF1 b_mcas_l<1> BD8T B

AF2 b_mwe_l<1> BD8T B

AF3 b_m1dqm<1> BD8T B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–32 Pinouts 21 October 1999

Cchip Pins and Signals
AF28 b_c0ao_l<8> BD16TOD B

AF29 vssx — P

AF30 b_c0ao_l<9> BD16TOD B

AF31 vssx — P

AG1 b_m1dqm<0> BD8T B

AG2 b_mcke_l<1> BD8T B

AG29 vssx — P

AG30 vssx — P

AG31 b_c0clko_l BD16TOD B

AH3 vss — P

AH4 vdd — P

AH6 b_m3a<11> BD8T B

AH7 vdd — P

AH8 b_m3a<4> BD8T B

AH10 vdd P

AH11 b_mwe_l<3> BD8T B

AH12 b_cactb_l BD4T B

AH14 vdd — P

AH15 b_cap<23> BD16TOD B

AH16 b_cap<19> BD16TOD B

AH17 b_cap<15> BD16TOD B

AH18 vdd — P

AH19 vssx — P

AH20 vssx — P

AH21 vssx — P

AH22 vdd — P

AH23 b_cap<0> BD16TOD B

AH24 vssx — P

AH25 vdd — P

AH26 b_c0ao_l<5> BD16TOD B

AH28 vdd — P

AH29 vss — P

AH30 vssx — P

AH31 b_c0ao_l<7> BD16TOD B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–33

Cchip Pins and Signals
AJ1 vss — P

AJ2 vss — P

AJ3 vdd — P

AJ4 vss — P

AJ5 b_m3a<12> BD8T B

AJ6 b_m3a<8> BD8T B

AJ7 b_m3a<5> BD8T B

AJ8 b_mcke_l<3> BD8T B

AJ9 b_m3cs_l<1> BD8T B

AJ10 b_mcas_l<3> BD8T B

AJ11 b_cacta_l BD4T B

AJ12 b_capgd<1> BD4T B

AJ13 i_pack<0> IBUF I

AJ14 i_creq_l<1> IBUF I

AJ15 b_cap<22> BD16TOD B

AJ16 b_cap<20> BD16TOD B

AJ17 b_cap<17> BD16TOD B

AJ18 vssx — P

AJ19 b_cap<12> BD16TOD B

AJ20 b_cap<11> BD16TOD B

AJ21 b_cap<8> BD16TOD B

AJ22 b_cap<5> BD16TOD B

AJ23 vssx — P

AJ24 vssx — P

AJ25 b_c0ao_l<2> BD16TOD B

AJ26 vssx — P

AJ27 vssx — P

AJ28 vss — P

AJ29 vdd — P

AJ30 vss — P

AJ31 vss — P

AK1 vss — P

AK2 vdd — P

AK3 vss — P

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–34 Pinouts 21 October 1999

Cchip Pins and Signals
AK4 b_m3ba<1> BD8T B

AK5 b_m3a<10> BD8T B

AK6 b_m3a<7> BD8T B

AK7 b_m3a<3> BD8T B

AK8 b_m3a<1> BD8T B

AK9 b_m3cs_l<0> BD8T B

AK10 b_m3dqm<1> BD8T B

AK11 b_cack BD4T B

AK12 b_capsel<0> BD4T B

AK13 i_pack<1> IBUF I

AK14 vssx — P

AK15 vss — P

AK16 vssx — P

AK17 vssx — P

AK18 b_cap<16> BD16TOD B

AK19 b_cap<13> BD16TOD B

AK20 i_vref<2> DDRV I

AK21 b_cap<9> BD16TOD B

AK22 b_cap<6> BD16TOD B

AK23 b_cap<3> BD16TOD B

AK24 b_cap<1> BD16TOD B

AK26 b_c0ao_l<3> BD16TOD B

AK27 vssx — P

AK28 vssx — P

AK29 vss — P

AK30 vdd — P

AK31 vss — P

AL1 vdd — P

AL2 vss — P

AL3 vss — P

AL4 b_m3ba<0> BD8T B

AL5 b_m3a<9> BD8T B

AL6 b_m3a<6> BD8T B

AL7 b_m3a<2> BD8T B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–35

Cchip Pins and Signals
AL8 b_m3a<0> BD8T B

AL9 b_mras_l<3> BD8T B

AL10 b_m3dqm<0> BD8T B

AL11 b_capgd<0> BD4T B

AL12 b_capsel<1> BD4T B

AL13 i_creq_l<0> IBUF I

AL14 vss — P

AL15 vss — P

AL16 b_cap<21> BD16TOD B

AL17 b_cap<18> BD16TOD B

AL18 vss — P

AL19 b_cap<14> BD16TOD B

AL20 vssx — P

AL21 b_cap<10> BD16TOD B

AL22 b_cap<7> BD16TOD B

AL23 b_cap<4> BD16TOD B

AL24 b_cap<2> BD16TOD B

AL25 b_monitor<6> BD4CS B

AL26 vssx — P

AL27 b_c0ao_l<4> BD16TOD B

AL28 b_c0ao_l<6> BD16TOD B

AL29 vss — P

AL30 vss — P

AL31 vdd — P

B1 vss — P

B2 vdd — P

B3 vss — P

B6 b_m2a<11> BD8T B

B7 b_monitor<5> BD4CS B

B8 b_mcas_l<0> BD8T B

B9 b_m0cs_l<1> BD8T B

B10 b_m0a<3> BD8T B

B11 b_m0a<5> BD8T B

B12 b_m0a<9> BD8T B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–36 Pinouts 21 October 1999

Cchip Pins and Signals
B13 b_m0a<12> BD8T B

B14 b_spare<0> BD8CS B

B15 b_cfrst<0> BD16TOD B

B16 b_sromoe_l<1> BD16TOD B

B17 vss — P

B18 b_monitor<1> BD4CS B

B19 i_intim_l IBUF I

B20 b_tcs_l BD4CS B

B21 b_td<1> BD4CS B

B22 b_td<5> BD4CS B

B23 b_tia<0> BD4CS B

B24 b_twe_l BD4CS B

B25 i_trsen_l IBUF I

B26 b_monitor<7> BD4CS B

B27 vssx — P

B29 vss — P

B30 vdd — P

B31 vss — P

C1 vss — P

C2 vss — P

C3 vdd — P

C4 vss — P

C6 b_m2a<10> BD8T B

C7 b_m2ba<0> BD8T B

C8 b_m0dqm<1> BD8T B

C9 b_m0cs_l<0> BD8T B

C10 b_m0a<1> BD8T B

C12 b_m0a<7> BD8T B

C13 b_m0a<11> BD8T B

C14 b_m0ba<1> BD8T B

C15 b_cfrst<1> BD16TOD B

C16 b_sysrsta_l BD6T B

C17 i_modrst_l IBUF I

C18 b_monitor<2> BD4CS B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–37

Cchip Pins and Signals
C19 b_toe_l BD4CS B

C20 b_tas BD4CS B

C21 b_td<3> BD4CS B

C22 b_td<7> BD4CS B

C23 b_tia<1> BD4CS B

C24 b_mpdclk BD4CS B

C25 i_scanen IBUF I

C26 vssx — P

C27 vssx — P

C28 vss — P

C29 vdd — P

C30 vss — P

C31 vss — P

D3 vss — P

D4 vdd — P

D7 vdd — P

D8 b_m2ba<1> BD8T B

D9 b_mwe_l<0> BD8T B

D10 vdd — P

D11 b_m0a<2> BD8T B

D13 b_m0a<8> BD8T B

D14 vdd — P

D15 b_spare<1> BD8CS B

D16 b_sysrstb_l BD6T B

D17 b_monitor<0> BD4CS B

D18 vdd — P

D19 b_tis BD4CS B

D20 b_td<2> BD4CS B

D21 b_td<6> BD4CS B

D22 vdd — P

D23 b_mpdd BD4CS B

D24 o_nandtr B8 O

D25 vdd — P

D26 b_c1ao_l<3> BD16TOD B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–38 Pinouts 21 October 1999

Cchip Pins and Signals
D28 vdd — P

D29 vss — P

D31 vssx — P

E29 b_c1ao_l<4> BD16TOD B

E30 b_c1ao_l<5> BD16TOD B

E31 vssx — P

F1 b_m2a<7> BD8T B

F2 b_m2a<8> BD8T B

F3 b_m2a<9> BD8T B

F28 vssx — P

F29 b_c1ao_l<6> BD16TOD B

F30 vssx — P

F31 b_c1ao_l<7> BD16TOD B

G1 b_m2a<3> BD8T B

G2 b_m2a<4> BD8T B

G3 b_m2a<6> BD8T B

G4 vdd — P

G9 vssx — P

G29 vssx — P

G28 vdd — P

G30 vssx — P

G31 b_c1clko_l BD16TOD B

H1 b_m2cs_l<1> BD8T B

H2 b_m2a<0> BD8T B

H3 b_m2a<2> BD8T B

H4 b_m2a<5> BD8T B

H28 b_c1ao_l<8> BD16TOD B

H29 vssx — P

H30 vssx — P

H31 b_c1ao_l<10> BD16TOD B

J1 b_mcke_l<2> BD8T B

J3 b_m2cs_l<0> BD8T B

J4 b_m2a<1> BD8T B

J28 b_c1ao_l<9> BD16TOD B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–39

Cchip Pins and Signals
J29 vssx — P

J30 b_c1ao_l<11> BD16TOD B

J31 vssx — P

K1 b_m2dqm<1> BD8T B

K2 b_mwe_l<2> BD8T B

K3 b_mras_l<2> BD8T B

K4 vdd — P

K28 vdd — P

K29 b_c1ao_l<12> BD16TOD B

K30 b_c1ao_l<13> BD16TOD B

K31 vssx — P

L1 b_pada<2> BD6T B

L2 b_pada<1> BD6T B

L3 b_m2dqm<0> BD8T B

L4 b_mcas_l<2> BD8T B

L28 vssx — P

L29 b_c1ao_l<14> BD16TOD B

L30 b_c1div_l BD16TOD B

L31 vssx — P

M1 b_padb<1> BD6T B

M2 b_padb<0> BD6T B

M3 b_pada<3> BD6T B

M4 b_pada<0> BD6T B

M28 vssx — P

M29 b_c1fv_l BD16TOD B

M30 b_c0ai_l<5> BD16TOD B

M31 b_c0ai_l<14> BD16TOD B

N1 b_padb<4> BD6T B

N2 b_padb<3> BD6T B

N3 b_padb<2> BD6T B

N4 b_pada<4> BD6T B

N28 i_vref<0> DDRV I

N29 b_c0ai_l<13> BD16TOD B

N30 b_c0ai_l<12> BD16TOD B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–40 Pinouts 21 October 1999

Cchip Pins and Signals
N31 b_c0ai_l<11> BD16TOD B

P1 vss — P

P2 b_cpma<1> BD6T B

P3 b_cpma<0> BD6T B

P4 vdd — P

P28 vdd — P

P29 b_c0ai_l<10> BD16TOD B

P30 b_c0ai_l<9> BD16TOD B

P31 vss — P

R1 vss — P

R2 vss — P

R3 b_cpma<3> BD6T B

R4 b_cpma<2> BD6T B

R28 b_c0clki_l BD16TOD B

R29 b_c0ai_l<8> BD16TOD B

R30 b_c0ai_l<7> BD16TOD B

R31 b_c0ai_l<6> BD16TOD B

T1 i_sysclk PECLINDIFFA I

T2 i_sysclk_l PECLINDIFFA I

T3 b_cpma<4> BD6T B

T4 b_cpma<5> BD6T B

T28 b_c0ai_l<4> BD16TOD B

T29 i_fwdclk PECLINDIFFA I

T30 i_fwdclk_l PECLINDIFFA I

T31 b_c0ai_l<3> BD16TOD B

U1 b_cpma<6> BD6T B

U2 b_cpma<7> BD6T B

U3 b_cpmb<0> BD6T B

U4 b_cpmb<2> BD6T B

U28 b_c1ai_l<2> BD16TOD B

U29 b_c0ai_l<2> BD16TOD B

U30 vss — P

U31 vss — P

V1 vss — P

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–41

Cchip Pins and Signals
V2 b_cpmb<1> BD6T B

V3 b_cpmb<3> BD6T B

V4 vdd — P

V28 vdd — P

V29 b_c1ai_l<4> BD16TOD B

V30 b_c1ai_l<3> BD16TOD B

V31 vss — P

W1 b_cpmb<4> BD6T B

W2 b_cpmb<5> BD6T B

W3 b_cpmb<6> BD6T B

W4 b_cpmb<7> BD6T B

W28 b_c1ai_l<10> BD16TOD B

W29 b_c1ai_l<8> BD16TOD B

W30 b_c1ai_l<7> BD16TOD B

W31 b_c1ai_l<6> BD16TOD B

Y3 b_m1ba<1> BD8T B

Y4 b_m1a<11> BD8T B

Y28 b_c1ai_l<14> BD16TOD B

Y29 b_c1ai_l<11> BD16TOD B

Y30 b_c1ai_l<9> BD16TOD B

Y31 b_c1clki_l BD16TOD B

Table 3–5 Cchip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–42 Pinouts 21 October 1999

Cchip Pins and Signals
Table 3–6 shows the Cchip pins in alphanumeric order by pin number.

Table 3–6 C4chip Pins — Alphanumeric by Pin Number

Pin Number Signal Name Driver Type

A04 Vdd

A05 b_c1ao_l<9> BODTY

A06 Vss

A07 Vss

A08 Vss

A09 b_c1ao_l<2> BODTY

A10 Vss

A11 b_c3ao_l<12> BODTY

A12 Vss

A13 Vss

A14 Vss

A15 Vss

A16 Vss

A17 Vss

A18 b_sromoe_l<2> BODTY

A19 i_modrst_l BDZ50C

A20 b_sysrstc_l BDZ20C

A21 b_monitor<1> BDZ50C

A22 b_monitor<4> BDZ50C

A23 b_tioe_l BDZ50C

A24 b_td<1> BDZ50C

A25 b_td<5> BDZ50C

A26 b_tia<2> BDZ50C

A27 b_twe_l BDZ50C

A28 b_m3dqm<1> BDZ20C

A29 b_m3cs_l<1> BDZ20C

A30 Vss

AA01 b_c2ai_l<6> BODTY

AA02 b_c2ai_l<9> BODTY

AA04 b_c2ai_l<3> BODTY

AA05 b_c2ai_l<8> BODTY

AA06 b_c2div_l BODTY

AA28 b_m2ba<0> BDZ20C
21 October 1999 Pinouts 3–43

Cchip Pins and Signals
AA29 b_m2a<6> BDZ20C

AA30 b_m2a<10> BDZ20C

AA32 Vss

AA33 b_m2a<8> BDZ20C

AB01 Vss

AB03 b_c2fv_l BODTY

AB04 b_c2ai_l<4> BODTY

AB30 b_m2a<9> BDZ20C

AB31 b_m2ba<1> BDZ20C

AB33 b_m2a<11> BDZ20C

AC01 Vss

AC02 b_c2ai_l<2> BODTY

AC04 Vss

AC05 Vss

AC06 b_c2ao_l<12> BODTY

AC28 b_mcas_l<0> BDZ20C

AC29 b_mwe_l<0> BDZ20C

AC30 b_m2a<12> BDZ20C

AC32 Vss

AC33 b_mcke<0> BDZ20C

AD01 Vss

AD02 Vss

AD03 b_c2ao_l<10> BODTY

AD04 b_c2ao_l<14> BODTY

AD05 b_c2ao_l<13> BODTY

AD06 Vss

AD28 b_m0cs_l<3> BDZ20C

AD29 b_m0dqm<0> BDZ20C

AD30 Vss

AD31 b_m0cs_l<1> BDZ20C

AD32 b_m2ba<2> BDZ20C

AD33 b_m0cs_l<0> BDZ20C

AE01 Vss

AE02 Vss

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–44 Pinouts 21 October 1999

Cchip Pins and Signals
AE03 b_c2ao_l<8> BODTY

AE04 b_c2ao_l<11> BODTY

AE05 Vss

AE06 Vss

AE28 b_m0a<3> BDZ20C

AE29 Vss

AE30 b_mras_l<0> BDZ20C

AE31 b_m0a<2> BDZ20C

AE32 b_m0dqm<1> BDZ20C

AE33 b_m0a<0> BDZ20C

AF01 b_c2ao_l<6> BODTY

AF03 b_c2ao_l<9> BODTY

AF05 b_c2clko_l BODTY

AF06 b_c2ao_l<5> BODTY

AF28 b_m0a<8> BDZ20C

AF29 b_m0a<1> BDZ20C

AF31 b_m0cs_l<2> BDZ20C

AF33 b_m0a<5> BDZ20C

AG01 Vss

AG04 Vss

AG05 b_c2ao_l<7> BODTY

AG06 b_c2ao_l<2> BODTY

AG28 b_m0a<12> BDZ20C

AG29 b_m0a<4> BDZ20C

AG30 Vss

AG33 b_m0a<6> BDZ20C

AH01 Vss

AH02 b_c2ao_l<3> BODTY

AH03 Vss

AH05 Vss

AH07 b_c0fv_l BODTY

AH08 Vss

AH09 b_c0ao_l<11> BODTY

AH10 Vss

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–45

Cchip Pins and Signals
AH11 b_c0ao_l<7> BODTY

AH13 b_c0ao_l<2> BODTY

AH15 b_cap<18> BODTY

AH17 b_cap<5> BODTY

AH19 Vss

AH21 b_capsel<1> BDZ30C

AH23 b_padb<1> BDZ20C

AH24 b_cpma<1> BDZ20C

AH25 b_cpma<5> BDZ20C

AH26 b_cpmb<2> BDZ20C

AH27 b_cpmb<6> BDZ20C

AH29 b_m0a<10> BDZ20C

AH31 b_m0a<7> BDZ20C

AH32 b_m0a<11> BDZ20C

AH33 b_m0a<9> BDZ20C

AJ01 Vss

AJ02 b_c2ao_l<4> BODTY

AJ03 Vss

AJ06 Vss

AJ07 b_c0ao_l<12> BODTY

AJ08 b_c0ao_l<9> BODTY

AJ09 b_c0ao_l<8> BODTY

AJ10 b_c0ao_l<5> BODTY

AJ11 Vss

AJ13 b_cap<22> BODTY

AJ15 Vss

AJ17 b_cap<8> BODTY

AJ19 Vdd

AJ21 i_creq_l<1> BDZ50C

AJ23 b_padb<0> BDZ20C

AJ24 b_pada<3> BDZ20C

AJ25 b_padb<2> BDZ20C

AJ26 Vss

AJ27 b_cpma<6> BDZ20C

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–46 Pinouts 21 October 1999

Cchip Pins and Signals
AJ28 b_cpmb<4> BDZ20C

AJ31 b_m0ba<0> BDZ20C

AJ32 Vss

AJ33 b_m0ba<1> BDZ20C

AK01 Vdd

AK07 Vss

AK09 Vss

AK10 Vss

AK11 Vss

AK12 b_cap<23> BODTY

AK13 i_vref<4>

AK14 Vss

AK15 b_cap<14> BODTY

AK16 Vss

AK17 Vss

AK18 Vss

AK19 b_cap<2> BODTY

AK20 i_pack<0> BDZ50C

AK21 b_capgd<0> BDZ50C

AK22 b_cacta_l BDZ50C

AK23 b_capsel<0> BDZ30C

AK24 b_pada<1> BDZ20C

AK25 Vss

AK27 b_cpma<3> BDZ20C

AK33 Vss

AL02 null

AL05 b_c0div_l BODTY

AL06 Vss

AL08 Vss

AL09 Vss

AL10 b_c0clko_l BODTY

AL12 Vss

AL14 b_cap<20> BODTY

AL15 b_cap<16> BODTY

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–47

Cchip Pins and Signals
AL16 b_cap<12> BODTY

AL18 b_cap<4> BODTY

AL19 b_cap<0> BODTY

AL20 i_pack<1> BDZ50C

AL22 b_pada<0> BDZ20C

AL24 b_padb<4> BDZ20C

AL25 b_cpma<4> BDZ20C

AL26 b_cpma<0> BDZ20C

AL28 Vss

AL29 Vss

AL32 null

AM03 Vdd

AM05 b_c0ao_l<14> BODTY

AM06 Vss

AM09 b_c0ao_l<6> BODTY

AM10 b_c0ao_l<3> BODTY

AM11 Vss

AM13 b_cap<21> BODTY

AM14 b_cap<17> BODTY

AM15 b_cap<13> BODTY

AM16 b_cap<10> BODTY

AM17 b_cap<9> BODTY

AM18 b_cap<7> BODTY

AM19 b_cap<3> BODTY

AM20 Vss

AM21 i_creq_l<0> BDZ50C

AM23 b_cack BDZ20C

AM24 Vss

AM25 b_pada<4> BDZ20C

AM28 b_cpmb<5> BDZ20C

AM29 b_cpmb<1> BDZ20C

AM31 null

AN04 Vss

AN05 Vss

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–48 Pinouts 21 October 1999

Cchip Pins and Signals
AN06 i_vref<0>

AN07 b_c0ao_l<13> BODTY

AN08 Vss

AN09 b_c0ao_l<10> BODTY

AN10 Vss

AN11 b_c0ao_l<4> BODTY

AN12 Vss

AN13 Vss

AN14 b_cap<19> BODTY

AN15 b_cap<15> BODTY

AN16 Vss

AN17 b_cap<11> BODTY

AN18 b_cap<6> BODTY

AN19 b_cap<1> BODTY

AN20 Vss

AN21 b_cactb_l BDZ50C

AN22 b_capgd<1> BDZ50C

AN23 b_pada<2> BDZ20C

AN24 b_padb<3> BDZ20C

AN25 b_cpma<2> BDZ20C

AN26 b_cpma<7> BDZ20C

AN27 b_cpmb<0> BDZ20C

AN28 b_cpmb<3> BDZ20C

AN29 b_m0ba<2> BDZ20C

AN30 b_cpmb<7> BDZ20C

B03 null

B05 Vss

B06 b_c1ao_l<8> BODTY

B09 i_vref<3>

B10 Vss

B11 Vss

B13 b_c3ao_l<8> BODTY

B14 b_c3ao_l<5> BODTY

B15 b_c3ao_l<3> BODTY

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–49

Cchip Pins and Signals
B16 Vss

B17 b_cfrst<2> BODTY

B18 b_cfrst<0> BODTY

B19 i_trsen_l BDZ50C

B20 o_nandtr BDZ50C

B21 b_sysrsta_l BDZ20C

B23 Vss

B24 b_toe_l BDZ50C

B25 b_tis2 BDZ50C

B28 b_mcas_l<3> BDZ20C

B29 Vss

B31 null

C02 Vdd

C05 Vss

C06 b_c1ao_l<5> BODTY

C08 Vss

C09 Vss

C10 b_c3fv_l BODTY

C12 Vss

C14 b_c3ao_l<7> BODTY

C15 b_c3ao_l<4> BODTY

C16 b_c3ao_l<2> BODTY

C18 b_sromoe_l<0> BODTY

C19 i_scanin BDZ50C

C20 b_sysrstb_l BDZ20C

C22 b_monitor<7> BDZ50C

C24 b_td<2> BDZ50C

C25 b_td<7> BDZ50C

C26 b_td<3> BDZ50C

C28 b_mcke<3> BDZ20C

C29 b_m3cs_l<0> BDZ20C

C32 null

D01 Vss

D07 Vss

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–50 Pinouts 21 October 1999

Cchip Pins and Signals
D09 Vss

D10 b_c3ao_l<13> BODTY

D11 b_c3ao_l<10> BODTY

D12 b_c3clko_l BODTY

D13 b_c3ao_l<9> BODTY

D14 Vss

D15 Vss

D16 Vss

D17 b_cfrst<1> BODTY

D18 b_sromoe_l<1> BODTY

D19 i_scanen BDZ50C

D20 i_intim_l BDZ50C

D21 b_monitor<3> BDZ50C

D22 b_monitor<2> BDZ50C

D23 b_monitor<5> BDZ50C

D24 Vss

D25 b_td<0> BDZ50C

D27 Vss

D33 b_m3cs_l<3> BDZ20C

E01 b_c1ao_l<10> BODTY

E02 b_c1ao_l<14> BODTY

E03 b_c1ao_l<11> BODTY

E06 b_c1ao_l<7> BODTY

E07 b_c1clko_l BODTY

E08 b_c1ao_l<3> BODTY

E09 b_c3div_l BODTY

E10 Vss

E11 Vss

E13 Vss

E15 Vss

E17 b_cfrst<3> BODTY

E19 b_mpdclk BDZ50C

E21 b_monitor<0> BDZ50C

E23 b_tis BDZ50C

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–51

Cchip Pins and Signals
E24 b_tcs_l BDZ50C

E25 Vss

E26 b_td<6> BDZ50C

E27 b_tia<1> BDZ50C

E28 b_mwe_l<3> BDZ20C

E31 Vss

E32 b_m3a<5> BDZ20C

E33 b_m3cs_l<2> BDZ20C

F01 Vss

F02 b_c1ao_l<12> BODTY

F03 Vss

F05 Vss

F07 Vss

F08 b_c1ao_l<6> BODTY

F09 b_c1ao_l<4> BODTY

F10 Vss

F11 b_c3ao_l<14> BODTY

F13 b_c3ao_l<11> BODTY

F15 b_c3ao_l<6> BODTY

F17 b_sromoe_l<3> BODTY

F19 b_mpdd BDZ50C

F21 b_monitor<6> BDZ50C

F23 b_tas BDZ50C

F24 b_td<4> BDZ50C

F25 b_tia<0> BDZ50C

F26 b_m3dqm<0> BDZ20C

F27 b_mras_l<3> BDZ20C

F29 b_m3a<2> BDZ20C

F31 Vss

F32 b_m3a<1> BDZ20C

F33 b_m3a<3> BDZ20C

G01 Vss

G04 b_c3ai_l<2> BODTY

G05 b_c1div_l BODTY

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–52 Pinouts 21 October 1999

Cchip Pins and Signals
G06 Vss

G28 b_m3a<0> BDZ20C

G29 b_m3a<8> BDZ20C

G30 b_m3a<11> BDZ20C

G33 b_m3a<6> BDZ20C

H01 b_c1fv_l BODTY

H03 b_c3ai_l<7> BODTY

H05 b_c3ai_l<4> BODTY

H06 b_c1ao_l<13> BODTY

H28 b_m3a<4> BDZ20C

H29 Vss

H31 b_m3ba<1> BDZ20C

H33 b_m3a<7> BDZ20C

J01 b_c3ai_l<3> BODTY

J02 Vss

J03 Vss

J04 b_c3ai_l<11> BODTY

J05 b_c3ai_l<9> BODTY

J06 Vss

J28 b_m3a<9> BDZ20C

J29 b_m1dqm<0> BDZ20C

J30 Vss

J31 b_m3a<10> BDZ20C

J32 b_mcas_l<1> BDZ20C

J33 b_m3a<12> BDZ20C

K01 b_c3clki_l BODTY

K02 b_c1ai_l<2> BODTY

K03 b_c3ai_l<8> BODTY

K04 b_c3ai_l<14> BODTY

K05 i_vref<1>

K06 b_c3ai_l<6> BODTY

K28 b_m3ba<0> BDZ20C

K29 b_mras_l<1> BDZ20C

K30 b_m1cs_l<1> BDZ20C

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–53

Cchip Pins and Signals
K31 b_m3ba<2> BDZ20C

K32 Vss

K33 b_mcke<1> BDZ20C

L01 b_c3ai_l<13> BODTY

L02 b_c1ai_l<8> BODTY

L04 b_c1ai_l<4> BODTY

L05 b_c3ai_l<12> BODTY

L06 b_c3ai_l<10> BODTY

L28 b_m1dqm<1> BDZ20C

L29 b_mwe_l<1> BDZ20C

L30 b_m1a<0> BDZ20C

L32 b_m1a<3> BDZ20C

L33 b_m1cs_l<0> BDZ20C

M01 b_c1ai_l<6> BODTY

M03 b_c3ai_l<5> BODTY

M04 b_c1clki_l BODTY

M30 Vss

M31 b_m1cs_l<2> BDZ20C

M33 b_m1a<1> BDZ20C

N01 b_c1ai_l<9> BODTY

N02 b_c1ai_l<14> BODTY

N04 b_c1ai_l<7> BODTY

N05 b_c1ai_l<11> BODTY

Table 3–6 C4chip Pins — Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–54 Pinouts 21 October 1999

Dchip Pins and Signals

e
3.2 Dchip Pins and Signals
This section provides information about Dchip pins, pin types, pin numbers, and signal
definitions.

3.2.1 Dchip Pin List by Function

Table 3–7 lists the pin categories, signal names, types, and signal functions for th
Dchip.

Table 3–7 Dchip Pin List by Function

Signal Name Quantity Type Function

CPU Interface

b_cc_l<3:0> 4 B CPU check bits

b_cclki_l<3:0> 4 I CPU interface clock in

b_cclko_l<3:0> 4 O CPU interface clock out

b_cd_l<31:0> 32 B CPU data

SUBTOTAL 44 — —

PADbus Interface

b_p0c 1 B PADbus 0 check

b_p0d<7:0> 8 B PADbus 0 address and data

b_p1c 1 B PADbus 1 check

b_p1d<7:0> 8 B PADbus 1 address and data

SUBTOTAL 18 — —

Cchip Interface

i_cpm<7:0> 8 I CPM command

i_pad<4:0> 5 I PAD command

SUBTOTAL 13 — —

Memory Interface

b_m0c<3:0> 4 B Memory bus 0 check bits

b_m0d<31:0> 32 B Memory bus 0 data

b_m1c<3:0> 4 B Memory bus 1 check bits

b_m1d<31:0> 32 B Memory bus 1 data

SUBTOTAL 72 — —

Miscellaneous Signals

i_fwdclk, i_fwdclk_l 2 I Forward clock in

i_scanrclk 1 I Scan receive clock

i_scanrclken 1 I Scan receive clock enable

i_sysclk, i_sysclk_l 2 I System clock in

i_sysrst_l 1 I Reset
21 October 1999 Pinouts 3–55

Dchip Pins and Signals
3.2.2 Dchip Sorted Pin List

Table 3–8 lists the Dchip pins in alphanumeric order by signal name.

i_vref<3:0> 4 I 2-V I/O reference

b_spare <7:2> 6 B Spare

SUBTOTAL 17 — —

CSALT

o_nandtr 1 O NAND tree

i_scanen 1 I Scan enable

i_scanin 1 I Scan in

i_trsen_l 1 I Tristate outputs

SUBTOTAL 4 — —

SIGNAL SUBTOTAL 168 — —

Power Pins

Vdd 36 P Vdd ring (9000)

Vss 36 P Vss plane (8000)

Vssx 43 P

SUBTOTAL 115 — —

SIGNAL/PIN TOTAL 283 — 21 pins not connected

Table 3–8 Dchip Pins – Alphanumeric by Signal Name

Signal Name Pin Driver Type

b_cc_l<0> W21 BD16TOD B

b_cc_l<1> M21 BD16TOD B

b_cc_l<2> F21 BD16TOD B

b_cc_l<3> B15 BD16TOD B

b_cclki_l<0> AA18 BD16TOD I

b_cclki_l<1> R21 — I

b_cclki_l<2> H22 BD16TOD I

b_cclki_l<3> E21 BD16TOD I

b_cclko_l<0> AB19 BD16TOD O

b_cclko_l<1> R22 BD16TOD O

b_cclko_l<2> G23 BD16TOD O

b_cclko_l<3> B18 BD16TOD O

b_cd_l<0> AB15 BD16TOD B

Table 3–7 Dchip Pin List by Function (Continued)

Signal Name Quantity Type Function
3–56 Pinouts 21 October 1999

Dchip Pins and Signals
b_cd_l<1> AB16 BD16TOD B

b_cd_l<2> AA16 BD16TOD B

b_cd_l<3> Y16 BD16TOD B

b_cd_l<4> AB18 BD16TOD B

b_cd_l<5> AA19 BD16TOD B

b_cd_l<6> AC21 BD16TOD B

b_cd_l<7> AA23 BD16TOD B

b_cd_l<8> W22 BD16TOD B

b_cd_l<9> U20 BD16TOD B

b_cd_l<10> V22 BD16TOD B

b_cd_l<11> T20 BD16TOD B

b_cd_l<12> U23 BD16TOD B

b_cd_l<13> R23 BD16TOD B

b_cd_l<14> P22 BD16TOD B

b_cd_l<15> N20 BD16TOD B

b_cd_l<16> L23 BD16TOD B

b_cd_l<17> L21 BD16TOD B

b_cd_l<18> K23 BD16TOD B

b_cd_l<19> K21 BD16TOD B

b_cd_l<20> K20 BD16TOD B

b_cd_l<21> G22 BD16TOD B

b_cd_l<22> G21 BD16TOD B

b_cd_l<23> E23 BD16TOD B

b_cd_l<24> D22 BD16TOD B

b_cd_l<25> A21 BD16TOD B

b_cd_l<26> C19 BD16TOD B

b_cd_l<27> B19 BD16TOD B

b_cd_l<28> D17 BD16TOD B

b_cd_l<29> D16 BD16TOD B

b_cd_l<30> A17 BD16TOD B

b_cd_l<31> B16 BD16TOD B

b_m0c<0> B6 BD8CS B

b_m0c<1> D5 BD8CS B

b_m0c<2> H3 BD8CS B

Table 3–8 Dchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–57

Dchip Pins and Signals
b_m0c<3> L4 BD8CS B

b_m0d<0> B9 BD8CS B

b_m0d<1> C9 BD8CS B

b_m0d<2> B8 BD8CS B

b_m0d<3> A7 BD8CS B

b_m0d<4> C8 BD8CS B

b_m0d<5> B7 BD8CS B

b_m0d<6> D8 BD8CS B

b_m0d<7> C7 BD8CS B

b_m0d<8> A5 BD8CS B

b_m0d<9> D7 BD8CS B

b_m0d<10> C6 BD8CS B

b_m0d<11> B5 BD8CS B

b_m0d<12> A4 BD8CS B

b_m0d<13> C5 BD8CS B

b_m0d<14> B4 BD8CS B

b_m0d<15> A3 BD8CS B

b_m0d<16> E2 BD8CS B

b_m0d<17> F3 BD8CS B

b_m0d<18> G4 BD8CS B

b_m0d<19> F2 BD8CS B

b_m0d<20> G3 BD8CS B

b_m0d<21> H4 BD8CS B

b_m0d<22> G2 BD8CS B

b_m0d<23> G1 BD8CS B

b_m0d<24> H2 BD8CS B

b_m0d<25> J3 BD8CS B

b_m0d<26> J2 BD8CS B

b_m0d<27> K4 BD8CS B

b_m0d<28> J1 BD8CS B

b_m0d<29> K3 BD8CS B

b_m0d<30> K2 BD8CS B

b_m0d<31> K1 BD8CS B

b_m1c<0> P3 BD8CS B

Table 3–8 Dchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–58 Pinouts 21 October 1999

Dchip Pins and Signals
b_m1c<1> T4 BD8CS B

b_m1c<2> Y2 BD8CS B

b_m1c<3> AA7 BD8CS B

b_m1d<0> M3 BD8CS B

b_m1d<1> M2 BD8CS B

b_m1d<2> N1 BD8CS B

b_m1d<3> N2 BD8CS B

b_m1d<4> N3 BD8CS B

b_m1d<5> N4 BD8CS B

b_m1d<6> P1 BD8CS B

b_m1d<7> P2 BD8CS B

b_m1d<8> R1 BD8CS B

b_m1d<9> P4 BD8CS B

b_m1d<10> R2 BD8CS B

b_m1d<11> R3 BD8CS B

b_m1d<12> T2 BD8CS B

b_m1d<13> U1 BD8CS B

b_m1d<14> T3 BD8CS B

b_m1d<15> U2 BD8CS B

b_m1d<16> U3 BD8CS B

b_m1d<17> V2 BD8CS B

b_m1d<18> W1 BD8CS B

b_m1d<19> U4 BD8CS B

b_m1d<20> V3 BD8CS B

b_m1d<21> W2 BD8CS B

b_m1d<22> Y1 BD8CS B

b_m1d<23> W3 BD8CS B

b_m1d<24> AB4 BD8CS B

b_m1d<25> AA5 BD8CS B

b_m1d<26> AC4 BD8CS B

b_m1d<27> AB5 BD8CS B

b_m1d<28> AA6 BD8CS B

b_m1d<29> Y7 BD8CS B

b_m1d<30> AC5 BD8CS B

Table 3–8 Dchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–59

Dchip Pins and Signals
b_m1d<31> AB6 BD8CS B

b_p0c C12 BD4TS B

b_p0d<0> A15 BD4TS B

b_p0d<1> C14 BD4TS B

b_p0d<2> B14 BD4TS B

b_p0d<3> A14 BD4TS B

b_p0d<4> D13 BD4TS B

b_p0d<5> C13 BD4TS B

b_p0d<6> B13 BD4TS B

b_p0d<7> A13 BD4TS B

b_p1c D10 BD4TS B

b_p1d<0> B12 BD4TS B

b_p1d<1> A11 BD4TS B

b_p1d<2> B11 BD4TS B

b_p1d<3> C11 BD4TS B

b_p1d<4> D11 BD4TS B

b_p1d<5> A10 BD4TS B

b_p1d<6> C10 BD4TS B

b_p1d<7> A9 BD4TS B

b_spare<2> AB9 BD4TS B

b_spare<3> Y10 BD4TS B

b_spare<4> AC9 BD4TS B

b_spare<5> AA10 BD4TS B

b_spare<6> AB10 BD4TS B

b_spare<7> AC10 BD4TS B

i_cpm<0> Y11 IBUF I

i_cpm<1> AA11 IBUF I

i_cpm<2> AB11 IBUF I

i_cpm<3> AC11 IBUF I

i_cpm<4> AA12 IBUF I

i_cpm<5> AB12 IBUF I

i_cpm<6> AC13 IBUF I

i_cpm<7> AB13 IBUF I

i_fwdclk N22 PECLINDIFFA I

Table 3–8 Dchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–60 Pinouts 21 October 1999

Dchip Pins and Signals
i_fwdclk_l N23 PECLINDIFFA I

i_pad<0> AA13 IBUF I

i_pad<1> Y13 IBUF I

i_pad<2> AC14 IBUF I

i_pad<3> AB14 IBUF I

i_pad<4> AA14 IBUF I

i_scanen AC7 IBUF I

i_scanin AB7 IBUF I

i_scanrclk AB IBUF I

i_scanrclken AA9 IBUF I

i_sysclk L1 PECLINDIFFA I

i_sysclk_l L2 PECLINDIFFA I

i_sysrst_l AC15 IBUF I

i_trsen_l AA8 IBUF I

i_vref<0> Y17 DDRV I

i_vref<1> T22 DDRV I

i_vref<2> J21 DDRV I

i_vref<3> D23 DDRV I

o_nandtr Y8 B8 O

Vdd A1 — P

Vdd A23 — P

Vdd AA3 — P

Vdd AA21 — P

Vdd AB2 — P

Vdd AB22 — P

Vdd AC1 — P

Vdd AC23 — P

Vdd B2 — P

Vdd B22 — P

Vdd C3 — P

Vdd C21 — P

Vdd D4 — P

Vdd D6 — P

Vdd D9 — P

Table 3–8 Dchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–61

Dchip Pins and Signals
Vdd D12 — P

Vdd D15 — P

Vdd D18 — P

Vdd D20 — P

Vdd F4 — P

Vdd F20 — P

Vdd J4 — P

Vdd J20 — P

Vdd M4 — P

Vdd M20 — P

Vdd R4 — P

Vdd R20 — P

Vdd V4 — P

Vdd V20 — P

Vdd Y4 — P

Vdd Y6 — P

Vdd Y9 — P

Vdd Y12 — P

Vdd Y15 — P

Vdd Y18 — P

Vdd Y20 — P

Vss A2 — P

Vss A6 — P

Vss A8 — P

Vss A12 — P

Vss A16 — P

Vss A18 — P

Vss A22 — P

Vss AA2 — P

Vss AA22 — P

Vss AB1 — P

Vss AB3 — P

Vss AB21 — P

Vss AB23 — P

Table 3–8 Dchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–62 Pinouts 21 October 1999

Dchip Pins and Signals
Vss AC2 — P

Vss AC6 — P

Vss AC8 — P

Vss AC12 — P

Vss AC16 — P

Vss AC18 — P

Vss AC22 — P

Vss B1 — P

Vss B3 — P

Vss B21 — P

Vss B23 — P

Vss C2 — P

Vss C22 — P

Vss F1 — P

Vss F23 — P

Vss H1 — P

Vss H23 — P

Vss M1 — P

Vss M23 — P

Vss T1 — P

Vss T23 — P

Vss V1 — P

Vss V23 — P

Vssx A19 — P

Vssx A20 — P

Vssx AA15 — P

Vssx AA17 — P

Vssx AB17 — P

Vssx AB20 — P

Vssx AC17 — P

Vssx AC19 — P

Vssx AC20 — P

Vssx B17 — P

Vssx B20 — P

Table 3–8 Dchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
21 October 1999 Pinouts 3–63

Dchip Pins and Signals
Vssx C15 — P

Vssx C16 — P

Vssx C17 — P

Vssx C18 — P

Vssx C23 — P

Vssx D14 — P

Vssx D19 — P

Vssx E22 — P

Vssx F22 — P

Vssx G20 — P

Vssx H20 — P

Vssx H21 — P

Vssx J22 — P

Vssx J23 — P

Vssx K22 — P

Vssx L20 — P

Vssx L22 — P

Vssx M22 — P

Vssx N21 — P

Vssx P20 — P

Vssx P21 — P

Vssx P23 — P

Vssx T21 — P

Vssx U21 — P

Vssx U22 — P

Vssx V21 — P

Vssx W20 — P

Vssx W23 — P

Vssx Y14 — P

Vssx Y19 — P

Vssx Y22 — P

Vssx Y23 — P

Table 3–8 Dchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Driver Type
3–64 Pinouts 21 October 1999

Dchip Pins and Signals
Table 3–9 lists the Dchip pins in alphanumeric order by pin number.

Table 3–9 Dchip Pins – Alphanumeric by Pin Number

Pin Number Signal Name Driver Type

A1 Vdd — P

A2 Vss — P

A3 b_m0d<15> BD8CS B

A4 b_m0d<12> BD8CS B

A5 b_m0d<8> BD8CS B

A6 Vss — P

A7 b_m0d<3> BD8CS B

A8 Vss — P

A9 b_p1d<7> BD4TS B

A10 b_p1d<5> BD4TS B

A11 b_p1d<1> BD4TS B

A12 Vss — P

A13 b_p0d<7> BD4TS B

A14 b_p0d<3> BD4TS B

A15 b_p0d<0> BD4TS B

A16 Vss — P

A17 b_cd_l<30> BD16TOD B

A18 Vss — P

A19 Vssx — P

A20 Vssx — P

A21 b_cd_l<25> BD16TOD B

A22 Vss — P

A23 Vdd — P

AA2 Vss — P

AA3 Vdd — P

AA5 b_m1d<25> BD8CS B

AA6 b_m1d<28> BD8CS B

AA7 b_m1c<3> BD8CS B

AA8 i_trsen_l IBUF I

AA9 i_scanrclken IBUF I

AA10 b_spare<5> BD4TS B
21 October 1999 Pinouts 3–65

Dchip Pins and Signals
AA11 i_cpm<1> IBUF I

AA12 i_cpm<4> IBUF I

AA13 i_pad<0> IBUF I

AA14 i_pad<4> IBUF I

AA15 Vssx — P

AA16 b_cd_l<2> BD16TOD B

AA17 Vssx — P

AA18 b_cclki_l<0> BD16TOD I

AA19 b_cd_l<5> BD16TOD B

AA21 Vdd — P

AA22 Vss — P

AA23 b_cd_l<7> BD16TOD B

AB i_scanrclk IBUF I

AB1 Vss — P

AB2 Vdd — P

AB3 Vss — P

AB4 b_m1d<24> BD8CS B

AB5 b_m1d<27> BD8CS B

AB6 b_m1d<31> BD8CS B

AB7 i_scanin IBUF I

AB9 b_spare<2> BD4TS B

AB10 b_spare<6> BD4TS B

AB11 i_cpm<2> IBUF I

AB12 i_cpm<5> IBUF I

AB13 i_cpm<7> IBUF I

AB14 i_pad<3> IBUF I

AB15 b_cd_l<0> BD16TOD B

AB16 b_cd_l<1> BD16TOD B

AB17 Vssx — P

AB18 b_cd_l<4> BD16TOD B

AB19 b_cclko_l<0> BD16TOD O

AB20 Vssx — P

AB21 Vss — P

AB22 Vdd — P

Table 3–9 Dchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–66 Pinouts 21 October 1999

Dchip Pins and Signals
AB23 Vss — P

AC1 Vdd — P

AC2 Vss — P

AC4 b_m1d<26> BD8CS B

AC5 b_m1d<30> BD8CS B

AC6 Vss — P

AC7 i_scanen IBUF I

AC8 Vss — P

AC9 b_spare<4> BD4TS B

AC10 b_spare<7> BD4TS B

AC11 i_cpm<3> IBUF I

AC12 Vss — P

AC13 i_cpm<6> IBUF I

AC14 i_pad<2> IBUF I

AC15 i_sysrst_l IBUF I

AC16 Vss — P

AC17 Vssx — P

AC18 Vss — P

AC19 Vssx — P

AC20 Vssx — P

AC21 b_cd_l<6> BD16TOD B

AC22 Vss — P

AC23 Vdd — P

B1 Vss — P

B2 Vdd — P

B3 Vss — P

B4 b_m0d<14> BD8CS B

B5 b_m0d<11> BD8CS B

B6 b_m0c<0> BD8CS B

B7 b_m0d<5> BD8CS B

B8 b_m0d<2> BD8CS B

B9 b_m0d<0> BD8CS B

B11 b_p1d<2> BD4TS B

B12 b_p1d<0> BD4TS B

Table 3–9 Dchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–67

Dchip Pins and Signals
B13 b_p0d<6> BD4TS B

B14 b_p0d<2> BD4TS B

B15 b_cc_l<3> BD16TOD B

B16 b_cd_l<31> BD16TOD B

B17 Vssx — P

B18 b_cclko_l<3> BD16TOD O

B19 b_cd_l<27> BD16TOD B

B20 Vssx — P

B21 Vss — P

B22 Vdd — P

B23 Vss — P

C2 Vss — P

C3 Vdd — P

C5 b_m0d<13> BD8CS B

C6 b_m0d<10> BD8CS B

C7 b_m0d<7> BD8CS B

C8 b_m0d<4> BD8CS B

C9 b_m0d<1> BD8CS B

C10 b_p1d<6> BD4TS B

C11 b_p1d<3> BD4TS B

C12 b_p0c BD4TS B

C13 b_p0d<5> BD4TS B

C14 b_p0d<1> BD4TS B

C15 Vssx — P

C16 Vssx — P

C17 Vssx — P

C18 Vssx — P

C19 b_cd_l<26> BD16TOD B

C21 Vdd — P

C22 Vss — P

C23 Vssx — P

D4 Vdd — P

D5 b_m0c<1> BD8CS B

D6 Vdd — P

Table 3–9 Dchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–68 Pinouts 21 October 1999

Dchip Pins and Signals
D7 b_m0d<9> BD8CS B

D8 b_m0d<6> BD8CS B

D9 Vdd — P

D10 b_p1c BD4TS B

D11 b_p1d<4> BD4TS B

D12 Vdd — P

D13 b_p0d<4> BD4TS B

D14 Vssx — P

D15 Vdd — P

D16 b_cd_l<29> BD16TOD B

D17 b_cd_l<28> BD16TOD B

D18 Vdd — P

D19 Vssx — P

D20 Vdd — P

D22 b_cd_l<24> BD16TOD B

D23 i_vref<3> DDRV I

E2 b_m0d<16> BD8CS B

E21 b_cclki_l<3> BD16TOD I

E22 Vssx — P

E23 b_cd_l<23> BD16TOD B

F1 Vss — P

F2 b_m0d<19> BD8CS B

F3 b_m0d<17> BD8CS B

F4 Vdd — P

F20 Vdd — P

F21 b_cc_l<2> BD16TOD B

F22 Vssx — P

F23 Vss — P

G1 b_m0d<23> BD8CS B

G2 b_m0d<22> BD8CS B

G3 b_m0d<20> BD8CS B

G4 b_m0d<18> BD8CS B

G20 Vssx — P

G21 b_cd_l<22> BD16TOD B

Table 3–9 Dchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–69

Dchip Pins and Signals
G22 b_cd_l<21> BD16TOD B

G23 b_cclko_l<2> BD16TOD O

H1 Vss — P

H2 b_m0d<24> BD8CS B

H3 b_m0c<2> BD8CS B

H4 b_m0d<21> BD8CS B

H20 Vssx — P

H21 Vssx — P

H22 b_cclki_l<2> BD16TOD I

H23 Vss — P

J1 b_m0d<28> BD8CS B

J2 b_m0d<26> BD8CS B

J3 b_m0d<25> BD8CS B

J4 Vdd — P

J20 Vdd — P

J21 i_vref<2> DDRV I

J22 Vssx — P

J23 Vssx — P

K1 b_m0d<31> BD8CS B

K2 b_m0d<30> BD8CS B

K3 b_m0d<29> BD8CS B

K4 b_m0d<27> BD8CS B

K20 b_cd_l<20> BD16TOD B

K21 b_cd_l<19> BD16TOD B

K22 Vssx — P

K23 b_cd_l<18> BD16TOD B

L1 i_sysclk PECLINDIFFA I

L2 i_sysclk_l PECLINDIFFA I

L4 b_m0c<3> BD8CS B

L20 Vssx — P

L21 b_cd_l<17> BD16TOD B

L22 Vssx — P

L23 b_cd_l<16> BD16TOD B

M1 Vss — P

Table 3–9 Dchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–70 Pinouts 21 October 1999

Dchip Pins and Signals
M2 b_m1d<1> BD8CS B

M3 b_m1d<0> BD8CS B

M4 Vdd — P

M20 Vdd — P

M21 b_cc_l<1> BD16TOD B

M22 Vssx — P

M23 Vss — P

N1 b_m1d<2> BD8CS B

N2 b_m1d<3> BD8CS B

N3 b_m1d<4> BD8CS B

N4 b_m1d<5> BD8CS B

N20 b_cd_l<15> BD16TOD B

N21 Vssx — P

N22 i_fwdclk PECLINDIFFA I

N23 i_fwdclk_l PECLINDIFFA I

P1 b_m1d<6> BD8CS B

P2 b_m1d<7> BD8CS B

P3 b_m1c<0> BD8CS B

P4 b_m1d<9> BD8CS B

P20 Vssx — P

P21 Vssx — P

P22 b_cd_l<14> BD16TOD B

P23 Vssx — P

R1 b_m1d<8> BD8CS B

R2 b_m1d<10> BD8CS B

R3 b_m1d<11> BD8CS B

R4 Vdd — P

R20 Vdd — P

R21 b_cclki_l<1> — I

R22 b_cclko_l<1> BD16TOD O

R23 b_cd_l<13> BD16TOD B

T1 Vss — P

T2 b_m1d<12> BD8CS B

T3 b_m1d<14> BD8CS B

Table 3–9 Dchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–71

Dchip Pins and Signals
T4 b_m1c<1> BD8CS B

T20 b_cd_l<11> BD16TOD B

T21 Vssx — P

T22 i_vref<1> DDRV I

T23 Vss — P

U1 b_m1d<13> BD8CS B

U2 b_m1d<15> BD8CS B

U3 b_m1d<16> BD8CS B

U4 b_m1d<19> BD8CS B

U20 b_cd_l<9> BD16TOD B

U21 Vssx — P

U22 Vssx — P

U23 b_cd_l<12> BD16TOD B

V1 Vss — P

V2 b_m1d<17> BD8CS B

V3 b_m1d<20> BD8CS B

V4 Vdd — P

V20 Vdd — P

V21 Vssx — P

V22 b_cd_l<10> BD16TOD B

V23 Vss — P

W1 b_m1d<18> BD8CS B

W2 b_m1d<21> BD8CS B

W3 b_m1d<23> BD8CS B

W20 Vssx — P

W21 b_cc_l<0> BD16TOD B

W22 b_cd_l<8> BD16TOD B

W23 Vssx — P

Y1 b_m1d<22> BD8CS B

Y2 b_m1c<2> BD8CS B

Y4 Vdd — P

Y6 Vdd — P

Y7 b_m1d<29> BD8CS B

Y8 o_nandtr B8 O

Table 3–9 Dchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–72 Pinouts 21 October 1999

Pchip Pins and Signals

he
3.3 Pchip Pins and Signals

This section provides information about Pchip pins, pin types, pin numbers, and signal
definitions.

3.3.1 Pchip Pin List by Function

Table 3–10 lists the pin categories, signal names, types, and signal functions for t
Pchip.

Y9 Vdd — P

Y10 b_spare<3> BD4TS B

Y11 i_cpm<0> IBUF I

Y12 Vdd — P

Y13 i_pad<1> IBUF I

Y14 Vssx — P

Y15 Vdd — P

Y16 b_cd_l<3> BD16TOD B

Y17 i_vref<0> DDRV I

Y18 Vdd — P

Y19 Vssx — P

Y20 Vdd — P

Y22 Vssx — P

Y23 Vssx — P

Table 3–10 Pchip Pin List by Function

Signal Name Quantity Type Function

CAPbus Interface

i_cack 1 I Cchip acknowledge to Pchip

i_cact_l 1 I Cchip CAP command active

b_cap<23:0> 24 B CAPbus command/address

i_capgd 1 I PAD good data sideband signal

i_capsel 1 I Cchip CAP command valid for this Pchip

i_capselrmt 1 I Cchip CAP command valid for remote
Pchip

b_creqa_l, creqb_l 2 O Request CAPbus

i_creqrmt_l 1 I Other Pchip CAP request

b_pack 1 O Pchip acknowledge to Cchip

Table 3–9 Dchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–73

Pchip Pins and Signals
SUBTOTAL 33 — —

PADbus Interface

b_padc<7:0> 8 B PAD check bits

b_padd<31:0> 32 B PAD data bus

SUBTOTAL 40 — —

PCI Interface

b_ack64_l 1 B 64-bit transfer acknowledge

b_ad<63:0> 64 B Address and data

b_cbe_l<7:0> 8 B Command and byte enables

b_devsel_l 1 B Device select

b_frame_l 1 B Frame

b_gntreq_l<0> 1 O Bus grant

b_gnt_l<6:1> 6 O Bus grant

b_irdy_l 1 B Initiator ready

b_par 1 B Parity

b_par64 1 B Parity

i_pclkdiv<1:0> 2 I PCI clock divisor value

i_pclki 1 I PCI clock input

b_pclko<7:0> 8 O Master PCI clocks

b_perr_l 1 B Parity error

b_prst_l 1 O PCI reset

b_reqgnt_l<0> 1 I Bus request

b_req_l<6:1> 6 I Bus request

b_req64_l 1 B 64-bit transfer request

b_serr_l 1 I System error

b_stop_l 1 B Stop

b_trdy_l 1 B Target ready

SUBTOTAL 109 — —

Miscellaneous

b_error 1 O Error detected

i_fwdclk, i_fwdclk_l 2 I Clock forward clock

b_monitor<1:0> 2 O Internal signal monitor outputs

i_pid 1 I Pchip ID number

i_sysclk, i_sysclk_l 2 I Clock in

Table 3–10 Pchip Pin List by Function (Continued)

Signal Name Quantity Type Function
3–74 Pinouts 21 October 1999

Pchip Pins and Signals
3.3.2 Pchip Sorted Pin List

Table 3–11 lists the Pchip pins in alphanumeric order by signal name.

i_sysrst_l 1 I Reset

i_vref 1 I 2-V interface reference voltage

i_scanrclk 1 I Scan receive clock

i_scanrclken 1 I Scan receive clock enable

b_spare<3:0> 4 I Unused pads

SUBTOTAL 16 — —

CSALT

o_nandtr 1 O NAND tree

i_scanen 1 I Scan enable

i_scanin 1 I Scan in

i_trsen_l 1 I Tristate outputs

SUBTOTAL 4 — —

SIGNAL SUBTOTAL 202 — —

Power Pins

Vdd 36 P Vdd ring (9000)

Vss 36 P Vss plane (8000)

Vssx 9 P

SUBTOTAL 81 — —

SIGNAL/PIN TOTAL 283 — 21 pins not connected

Table 3–11 Pchip Pins – Alphanumeric by Signal Name

Signal Name Pin Number Driver Type

b_ack64_l Y21 BD12CPCIU B

b_ad<0> AA6 BD12CPCIU B

b_ad<1> Y7 BD12CPCIU B

b_ad<2> AC5 BD12CPCIU B

b_ad<3> AB6 BD12CPCIU B

b_ad<4> AA7 BD12CPCIU B

b_ad<5> Y8 BD12CPCIU B

b_ad<6> AB7 BD12CPCIU B

b_ad<7> AC7 BD12CPCIU B

b_ad<8> AA8 BD12CPCIU B

Table 3–10 Pchip Pin List by Function (Continued)

Signal Name Quantity Type Function
21 October 1999 Pinouts 3–75

Pchip Pins and Signals
b_ad<9> AB9 BD12CPCIU B

b_ad<10> Y10 BD12CPCIU B

b_ad<11> AC9 BD12CPCIU B

b_ad<12> AA10 BD12CPCIU B

b_ad<13> AB10 BD12CPCIU B

b_ad<14> AC10 BD12CPCIU B

b_ad<15> Y11 BD12CPCIU B

b_ad<16> AA11 BD12CPCIU B

b_ad<17> AB11 BD12CPCIU B

b_ad<18> AC11 BD12CPCIU B

b_ad<19> AA12 BD12CPCIU B

b_ad<20> AB12 BD12CPCIU B

b_ad<21> AC13 BD12CPCIU B

b_ad<22> AB13 BD12CPCIU B

b_ad<23> AA13 BD12CPCIU B

b_ad<24> Y13 BD12CPCIU B

b_ad<25> AC14 BD12CPCIU B

b_ad<26> AB14 BD12CPCIU B

b_ad<27> Y14 BD12CPCIU B

b_ad<28> AB15 BD12CPCIU B

b_ad<29> AA15 BD12CPCIU B

b_ad<30> AB16 BD12CPCIU B

b_ad<31> AC17 BD12CPCIU B

b_ad<32> W22 BD12CPCIU B

b_ad<33> V21 BD12CPCIU B

b_ad<34> U20 BD12CPCIU B

b_ad<35> W23 BD12CPCIU B

b_ad<36> V22 BD12CPCIU B

b_ad<37> U21 BD12CPCIU B

b_ad<38> U23 BD12CPCIU B

b_ad<39> T21 BD12CPCIU B

b_ad<40> T22 BD12CPCIU B

b_ad<41> R21 BD12CPCIU B

b_ad<42> R22 BD12CPCIU B

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
3–76 Pinouts 21 October 1999

Pchip Pins and Signals
b_ad<43> P20 BD12CPCIU B

b_ad<44> R23 BD12CPCIU B

b_ad<45> P21 BD12CPCIU B

b_ad<46> P22 BD12CPCIU B

b_ad<47> P23 BD12CPCIU B

b_ad<48> N20 BD12CPCIU B

b_ad<49> N23 BD12CPCIU B

b_ad<50> M21 BD12CPCIU B

b_ad<51> M22 BD12CPCIU B

b_ad<52> L23 BD12CPCIU B

b_ad<53> L22 BD12CPCIU B

b_ad<54> L21 BD12CPCIU B

b_ad<55> L20 BD12CPCIU B

b_ad<56> K23 BD12CPCIU B

b_ad<57> K22 BD12CPCIU B

b_ad<58> K21 BD12CPCIU B

b_ad<59> J23 BD12CPCIU B

b_ad<60> K20 BD12CPCIU B

b_ad<61> J22 BD12CPCIU B

b_ad<62> J21 BD12CPCIU B

b_ad<63> H22 BD12CPCIU B

b_cap<0> A21 BD16TOD B

b_cap<1> B20 BD16TOD B

b_cap<2> C19 BD16TOD B

b_cap<3> B19 BD16TOD B

b_cap<4> C18 BD16TOD B

b_cap<5> D17 BD16TOD B

b_cap<6> B18 BD16TOD B

b_cap<7> C17 BD16TOD B

b_cap<8> D16 BD16TOD B

b_cap<9> A17 BD16TOD B

b_cap<10> C16 BD16TOD B

b_cap<11> B16 BD16TOD B

b_cap<12> B15 BD16TOD B

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
21 October 1999 Pinouts 3–77

Pchip Pins and Signals
b_cap<13> A15 BD16TOD B

b_cap<14> C14 BD16TOD B

b_cap<15> A14 BD16TOD B

b_cap<16> D13 BD16TOD B

b_cap<17> C13 BD16TOD B

b_cap<18> A13 BD16TOD B

b_cap<19> C12 BD16TOD B

b_cap<20> B12 BD16TOD B

b_cap<21> B11 BD16TOD B

b_cap<22> C11 BD16TOD B

b_cap<23> D11 BD16TOD B

b_cbe_l<0> AA16 BD12CPCIU B

b_cbe_l<1> AB17 BD12CPCIU B

b_cbe_l<2> Y16 BD12CPCIU B

b_cbe_l<3> AA17 BD12CPCIU B

b_cbe_l<4> AA23 BD12CPCIU B

b_cbe_l<5> Y22 BD12CPCIU B

b_cbe_l<6> W21 BD12CPCIU B

b_cbe_l<7> Y23 BD12CPCIU B

b_creqa_l A7 BD4T O

b_creqb_l C8 BD4T O

b_devsel_l Y19 BD12CPCIU B

b_error P2 BD12CPCIU O

b_frame_l AA19 BD12CPCIU B

b_gnt_l<1> F22 BD12CPCIU O

b_gnt_l<2> G20 BD12CPCIU O

b_gnt_l<3> E22 BD12CPCIU O

b_gnt_l<4> E21 BD12CPCIU O

b_gnt_l<5> C23 BD12CPCIU O

b_gnt_l<6> D21 BD12CPCIU O

b_gntreq_l<0> H21 BD12CPCIU O

b_irdy_l AB20 BD12CPCIU B

b_monitor<0> Y5 BD4CS O

b_monitor<1> AC3 BD4CS O

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
3–78 Pinouts 21 October 1999

Pchip Pins and Signals
b_pack B7 BD4T O

b_padc<0> L4 BD4TS B

b_padc<1> L3 BD4TS B

b_padc<2> L2 BD4TS B

b_padc<3> L1 BD4TS B

b_padc<4> N2 BD4TS B

b_padc<5> N3 BD4TS B

b_padc<6> N4 BD4TS B

b_padc<7> P1 BD4TS B

b_padd<0> D8 BD4TS B

b_padd<1> C7 BD4TS B

b_padd<2> B6 BD4TS B

b_padd<3> A5 BD4TS B

b_padd<4> D7 BD4TS B

b_padd<5> C6 BD4TS B

b_padd<6> B5 BD4TS B

b_padd<7> A4 BD4TS B

b_padd<8> C5 BD4TS B

b_padd<9> B4 BD4TS B

b_padd<10> A3 BD4TS B

b_padd<11> D5 BD4TS B

b_padd<12> D2 BD4TS B

b_padd<13> E3 BD4TS B

b_padd<14> D1 BD4TS B

b_padd<15> E2 BD4TS B

b_padd<16> F3 BD4TS B

b_padd<17> G4 BD4TS B

b_padd<18> E1 BD4TS B

b_padd<19> F2 BD4TS B

b_padd<20> G3 BD4TS B

b_padd<21> H4 BD4TS B

b_padd<22> G2 BD4TS B

b_padd<23> H3 BD4TS B

b_padd<24> H2 BD4TS B

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
21 October 1999 Pinouts 3–79

Pchip Pins and Signals
b_padd<25> J3 BD4TS B

b_padd<26> J2 BD4TS B

b_padd<27> K4 BD4TS B

b_padd<28> J1 BD4TS B

b_padd<29> K3 BD4TS B

b_padd<30> K2 BD4TS B

b_padd<31> K1 BD4TS B

b_par AB18 BD12CPCIU B

b_par64 W20 BD12CPCIU B

b_pclko<0> U2 BD12CPCIU O

b_pclko<1> T4 BD12CPCIU O

b_pclko<2> U3 BD12CPCIU O

b_pclko<3> U4 BD12CPCIU O

b_pclko<4> V3 BD12CPCIU O

b_pclko<5> W2 BD12CPCIU O

b_pclko<6> Y1 BD12CPCIU O

b_pclko<7> W3 BD12CPCIU O

b_perr_l AC19 BD12CPCIU B

b_prst_l AC4 BD12CPCIU O

b_req64_l AC20 BD12CPCIU B

b_req_l<1> G21 BD12CPCIU I

b_req_l<2> E23 BD12CPCIU I

b_req_l<3> F21 BD12CPCIU I

b_req_l<4> D23 BD12CPCIU I

b_req_l<5> D22 BD12CPCIU I

b_req_l<6> E20 BD12CPCIU I

b_reqgnt_l<0> G23 BD12CPCIU I

b_serr_l Y17 BD12CPCIU I

b_spare<0> Y2 BD4CS I

b_spare<1> AA1 BD4CS I

b_spare<2> AA4 BD4CS I

b_spare<3> AB5 BD4CS I

b_stop_l AA20 BD12CPCIU B

b_trdy_l AC21 BD12CPCIU B

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
3–80 Pinouts 21 October 1999

Pchip Pins and Signals
i_cack B8 IBUF I

i_cact_l A9 IBUF I

i_capgd D10 IBUF I

i_capsel B9 IBUF I

i_capselrmt C9 IBUF I

i_creqrmt_l C10 IBUF I

i_fwdclk V2 PECLINDIFFA I

i_fwdclk_l W1 PECLINDIFFA I

i_pclkdiv<0> AB4 TLCHT I

i_pclkdiv<1> AA5 TLCHT I

i_pclki N21 IBUF I

i_pid R3 IBUF I

i_scanen P4 IBUF I

i_scanin T2 IBUF I

i_scanrclk R1 IBUF I

i_scanrclken P3 IBUF I

i_sysclk M2 PECLINDIFFA I

i_sysclk_l M3 PECLINDIFFA I

i_sysrst_l R2 IBUF I

i_trsen_l U1 IBUF I

i_vref D14 DDRV I

o_nandtr T3 B8 O

Vdd A1 — P

Vdd A23 — P

Vdd AA3 — P

Vdd AA21 — P

Vdd AB2 — P

Vdd AB22 — P

Vdd AC1 — P

Vdd AC23 — P

Vdd B2 — P

Vdd B22 — P

Vdd C3 — P

Vdd C21 — P

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
21 October 1999 Pinouts 3–81

Pchip Pins and Signals
Vdd D4 — P

Vdd D6 — P

Vdd D9 — P

Vdd D12 — P

Vdd D15 — P

Vdd D18 — P

Vdd D20 — P

Vdd F4 — P

Vdd F20 — P

Vdd J4 — P

Vdd J20 — P

Vdd M4 — P

Vdd M20 — P

Vdd R4 — P

Vdd R20 — P

Vdd V4 — P

Vdd V20 — P

Vdd Y4 — P

Vdd Y6 — P

Vdd Y12 — P

Vdd Y18 — P

Vdd Y9 — P

Vdd Y15 — P

Vdd Y20 — P

Vss A2 — P

Vss A6 — P

Vss A8 — P

Vss A12 — P

Vss A16 — P

Vss A18 — P

Vss A22 — P

Vss AA2 — P

Vss AA22 — P

Vss AB1 — P

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
3–82 Pinouts 21 October 1999

Pchip Pins and Signals
Vss AB3 — P

Vss AB21 — P

Vss AB23 — P

Vss AC2 — P

Vss AC6 — P

Vss AC8 — P

Vss AC12 — P

Vss AC16 — P

Vss AC18 — P

Vss AC22 — P

Vss B1 — P

Vss B3 — P

Vss B21 — P

Vss B23 — P

Vss C2 — P

Vss C22 — P

Vss F1 — P

Vss F23 — P

Vss H1 — P

Vss H23 — P

Vss M1 — P

Vss M23 — P

Vss T1 — P

Vss T23 — P

Vss V1 — P

Vss V23 — P

Vssx A10 — P

Vssx A11 — P

Vssx A19 — P

Vssx A20 — P

Vssx B13 — P

Vssx B14 — P

Vssx B17 — P

Vssx C15 — P

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
21 October 1999 Pinouts 3–83

Pchip Pins and Signals
Table 3–12 lists the Pchip pins in alphanumeric order by pin number.

Vssx D19 — P

Table 3–12 Pchip Pins – Alphanumeric by Pin Number

Pin Number Signal Name Driver Type

A1 Vdd — P

A2 Vss — P

A3 b_padd<10> BD4TS B

A4 b_padd<7> BD4TS B

A5 b_padd<3> BD4TS B

A6 Vss — P

A7 b_creqa_l BD4T O

A8 Vss — P

A9 i_cact_l IBUF I

A10 Vssx — P

A11 Vssx — P

A12 Vss — P

A13 b_cap<18> BD16TOD B

A14 b_cap<15> BD16TOD B

A15 b_cap<13> BD16TOD B

A16 Vss — P

A17 b_cap<9> BD16TOD B

A18 Vss — P

A19 Vssx — P

A20 Vssx — P

A21 b_cap<0> BD16TOD B

A22 Vss — P

A23 Vdd — P

AA1 b_spare<1> BD4CS I

AA2 Vss — P

AA3 Vdd — P

AA4 b_spare<2> BD4CS I

AA5 i_pclkdiv<1> TLCHT I

AA6 b_ad<0> BD12CPCIU B

Table 3–11 Pchip Pins – Alphanumeric by Signal Name (Continued)

Signal Name Pin Number Driver Type
3–84 Pinouts 21 October 1999

Pchip Pins and Signals
AA7 b_ad<4> BD12CPCIU B

AA8 b_ad<8> BD12CPCIU B

AA10 b_ad<12> BD12CPCIU B

AA11 b_ad<16> BD12CPCIU B

AA12 b_ad<19> BD12CPCIU B

AA13 b_ad<23> BD12CPCIU B

AA15 b_ad<29> BD12CPCIU B

AA16 b_cbe_l<0> BD12CPCIU B

AA17 b_cbe_l<3> BD12CPCIU B

AA19 b_frame_l BD12CPCIU B

AA20 b_stop_l BD12CPCIU B

AA21 Vdd — P

AA22 Vss — P

AA23 b_cbe_l<4> BD12CPCIU B

AB1 Vss — P

AB2 Vdd — P

AB3 Vss — P

AB4 i_pclkdiv<0> TLCHT I

AB5 b_spare<3> BD4CS I

AB6 b_ad<3> BD12CPCIU B

AB7 b_ad<6> BD12CPCIU B

AB9 b_ad<9> BD12CPCIU B

AB10 b_ad<13> BD12CPCIU B

AB11 b_ad<17> BD12CPCIU B

AB12 b_ad<20> BD12CPCIU B

AB13 b_ad<22> BD12CPCIU B

AB14 b_ad<26> BD12CPCIU B

AB15 b_ad<28> BD12CPCIU B

AB16 b_ad<30> BD12CPCIU B

AB17 b_cbe_l<1> BD12CPCIU B

AB18 b_par BD12CPCIU B

AB20 b_irdy_l BD12CPCIU B

AB21 Vss — P

AB22 Vdd — P

Table 3–12 Pchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–85

Pchip Pins and Signals
AB23 Vss — P

AC1 Vdd — P

AC2 Vss — P

AC3 b_monitor<1> BD4CS O

AC4 b_prst_l BD12CPCIU O

AC5 b_ad<2> BD12CPCIU B

AC6 Vss — P

AC7 b_ad<7> BD12CPCIU B

AC8 Vss — P

AC9 b_ad<11> BD12CPCIU B

AC10 b_ad<14> BD12CPCIU B

AC11 b_ad<18> BD12CPCIU B

AC12 Vss — P

AC13 b_ad<21> BD12CPCIU B

AC14 b_ad<25> BD12CPCIU B

AC16 Vss — P

AC17 b_ad<31> BD12CPCIU B

AC18 Vss — P

AC19 b_perr_l BD12CPCIU B

AC20 b_req64_l BD12CPCIU B

AC21 b_trdy_l BD12CPCIU B

AC22 Vss — P

AC23 Vdd — P

B1 Vss — P

B2 Vdd — P

B3 Vss — P

B4 b_padd<9> BD4TS B

B5 b_padd<6> BD4TS B

B6 b_padd<2> BD4TS B

B7 b_pack BD4T O

B8 i_cack IBUF I

B9 i_capsel IBUF I

B11 b_cap<21> BD16TOD B

B12 b_cap<20> BD16TOD B

Table 3–12 Pchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–86 Pinouts 21 October 1999

Pchip Pins and Signals
B13 Vssx — P

B14 Vssx — P

B15 b_cap<12> BD16TOD B

B16 b_cap<11> BD16TOD B

B17 Vssx — P

B18 b_cap<6> BD16TOD B

B19 b_cap<3> BD16TOD B

B20 b_cap<1> BD16TOD B

B21 Vss — P

B22 Vdd — P

B23 Vss — P

C2 Vss — P

C3 Vdd — P

C5 b_padd<8> BD4TS B

C6 b_padd<5> BD4TS B

C7 b_padd<1> BD4TS B

C8 b_creqb_l BD4T O

C9 i_capselrmt IBUF I

C10 i_creqrmt_l IBUF I

C11 b_cap<22> BD16TOD B

C12 b_cap<19> BD16TOD B

C13 b_cap<17> BD16TOD B

C14 b_cap<14> BD16TOD B

C15 Vssx — P

C16 b_cap<10> BD16TOD B

C17 b_cap<7> BD16TOD B

C18 b_cap<4> BD16TOD B

C19 b_cap<2> BD16TOD B

C21 Vdd — P

C22 Vss — P

C23 b_gnt_l<5> BD12CPCIU O

D1 b_padd<14> BD4TS B

D2 b_padd<12> BD4TS B

D4 Vdd — P

Table 3–12 Pchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–87

Pchip Pins and Signals
D5 b_padd<11> BD4TS B

D6 Vdd — P

D7 b_padd<4> BD4TS B

D8 b_padd<0> BD4TS B

D9 Vdd — P

D10 i_capgd IBUF I

D11 b_cap<23> BD16TOD B

D12 Vdd — P

D13 b_cap<16> BD16TOD B

D14 i_vref DDRV I

D15 Vdd — P

D16 b_cap<8> BD16TOD B

D17 b_cap<5> BD16TOD B

D18 Vdd — P

D19 Vssx — P

D20 Vdd — P

D21 b_gnt_l<6> BD12CPCIU O

D22 b_req_l<5> BD12CPCIU I

D23 b_req_l<4> BD12CPCIU I

E1 b_padd<18> BD4TS B

E2 b_padd<15> BD4TS B

E3 b_padd<13> BD4TS B

E20 b_req_l<6> BD12CPCIU I

E21 b_gnt_l<4> BD12CPCIU O

E22 b_gnt_l<3> BD12CPCIU O

E23 b_req_l<2> BD12CPCIU I

F1 Vss — P

F2 b_padd<19> BD4TS B

F3 b_padd<16> BD4TS B

F4 Vdd — P

F20 Vdd — P

F21 b_req_l<3> BD12CPCIU I

F22 b_gnt_l<1> BD12CPCIU O

F23 Vss — P

Table 3–12 Pchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–88 Pinouts 21 October 1999

Pchip Pins and Signals
G2 b_padd<22> BD4TS B

G3 b_padd<20> BD4TS B

G4 b_padd<17> BD4TS B

G20 b_gnt_l<2> BD12CPCIU O

G21 b_req_l<1> BD12CPCIU I

G23 b_reqgnt_l<0> BD12CPCIU I

H1 Vss — P

H2 b_padd<24> BD4TS B

H3 b_padd<23> BD4TS B

H4 b_padd<21> BD4TS B

H21 b_gntreq_l<0> BD12CPCIU O

H22 b_ad<63> BD12CPCIU B

H23 Vss — P

J1 b_padd<28> BD4TS B

J2 b_padd<26> BD4TS B

J3 b_padd<25> BD4TS B

J4 Vdd — P

J20 Vdd — P

J21 b_ad<62> BD12CPCIU B

J22 b_ad<61> BD12CPCIU B

J23 b_ad<59> BD12CPCIU B

K1 b_padd<31> BD4TS B

K2 b_padd<30> BD4TS B

K3 b_padd<29> BD4TS B

K4 b_padd<27> BD4TS B

K20 b_ad<60> BD12CPCIU B

K21 b_ad<58> BD12CPCIU B

K22 b_ad<57> BD12CPCIU B

K23 b_ad<56> BD12CPCIU B

L1 b_padc<3> BD4TS B

L2 b_padc<2> BD4TS B

L3 b_padc<1> BD4TS B

L4 b_padc<0> BD4TS B

L20 b_ad<55> BD12CPCIU B

Table 3–12 Pchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–89

Pchip Pins and Signals
L21 b_ad<54> BD12CPCIU B

L22 b_ad<53> BD12CPCIU B

L23 b_ad<52> BD12CPCIU B

M1 Vss — P

M2 i_sysclk PECLINDIFFA I

M3 i_sysclk_l PECLINDIFFA I

M4 Vdd — P

M20 Vdd — P

M21 b_ad<50> BD12CPCIU B

M22 b_ad<51> BD12CPCIU B

M23 Vss — P

N2 b_padc<4> BD4TS B

N3 b_padc<5> BD4TS B

N4 b_padc<6> BD4TS B

N20 b_ad<48> BD12CPCIU B

N21 i_pclki IBUF I

N23 b_ad<49> BD12CPCIU B

P1 b_padc<7> BD4TS B

P2 b_error BD12CPCIU O

P3 i_scanrclken IBUF I

P4 i_scanen IBUF I

P20 b_ad<43> BD12CPCIU B

P21 b_ad<45> BD12CPCIU B

P22 b_ad<46> BD12CPCIU B

P23 b_ad<47> BD12CPCIU B

R1 i_scanrclk IBUF I

R2 i_sysrst_l IBUF I

R3 i_pid IBUF I

R4 Vdd — P

R20 Vdd — P

R21 b_ad<41> BD12CPCIU B

R22 b_ad<42> BD12CPCIU B

R23 b_ad<44> BD12CPCIU B

T1 Vss — P

Table 3–12 Pchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–90 Pinouts 21 October 1999

Pchip Pins and Signals
T2 i_scanin IBUF I

T3 o_nandtr B8 O

T4 b_pclko<1> BD12CPCIU O

T21 b_ad<39> BD12CPCIU B

T22 b_ad<40> BD12CPCIU B

T23 Vss — P

U1 i_trsen_l IBUF I

U2 b_pclko<0> BD12CPCIU O

U3 b_pclko<2> BD12CPCIU O

U4 b_pclko<3> BD12CPCIU O

U20 b_ad<34> BD12CPCIU B

U21 b_ad<37> BD12CPCIU B

U23 b_ad<38> BD12CPCIU B

V1 Vss — P

V2 i_fwdclk PECLINDIFFA I

V3 b_pclko<4> BD12CPCIU O

V4 Vdd — P

V20 Vdd — P

V21 b_ad<33> BD12CPCIU B

V22 b_ad<36> BD12CPCIU B

V23 Vss — P

W1 i_fwdclk_l PECLINDIFFA I

W2 b_pclko<5> BD12CPCIU O

W3 b_pclko<7> BD12CPCIU O

W20 b_par64 BD12CPCIU B

W21 b_cbe_l<6> BD12CPCIU B

W22 b_ad<32> BD12CPCIU B

W23 b_ad<35> BD12CPCIU B

Y1 b_pclko<6> BD12CPCIU O

Y2 b_spare<0> BD4CS I

Y4 Vdd — P

Y5 b_monitor<0> BD4CS O

Y6 Vdd — P

Y7 b_ad<1> BD12CPCIU B

Table 3–12 Pchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
21 October 1999 Pinouts 3–91

Pchip Pins and Signals
Y8 b_ad<5> BD12CPCIU B

Y9 Vdd — P

Y10 b_ad<10> BD12CPCIU B

Y11 b_ad<15> BD12CPCIU B

Y12 Vdd — P

Y13 b_ad<24> BD12CPCIU B

Y14 b_ad<27> BD12CPCIU B

Y15 Vdd — P

Y16 b_cbe_l<2> BD12CPCIU B

Y17 b_serr_l BD12CPCIU I

Y18 Vdd — P

Y19 b_devsel_l BD12CPCIU B

Y20 Vdd — P

Y21 b_ack64_l BD12CPCIU B

Y22 b_cbe_l<5> BD12CPCIU B

Y23 b_cbe_l<7> BD12CPCIU B

Table 3–12 Pchip Pins – Alphanumeric by Pin Number (Continued)

Pin Number Signal Name Driver Type
3–92 Pinouts 21 October 1999

sing

spec-
 4
Electrical Specifications

This chapter provides dc and ac electrical data for each ASIC in the 21272 chipset.

4.1 Absolute Limits

Table 4–1 lists the absolute operating conditions for the 21272 chipset elements u
the CMOS5L process.

The maximum power dissipation for each 21272 chip is listed in Table 4–2 and is
ified at Tj maximum = 125°C (257°F) with Vdd maximum = 3.465 V.

Table 4–1 CMOS5L Absolute Operating Conditions

Parameter Minimum Maximum

Operating ambient temperature 0°C (32°F) 40°C (104°F)

Storage temperature –55°C (–67°F) 125°C (257°F)

Positive dc supply voltage Vss –0.5 V dc Vss +3.6 V dc

Operating junction temperature 0°C (32°F) 100°C (212°F)

Input signal voltage (3.3-V I/O) Vss –0.3 V 3.6 V

Input signal voltage (5.0-V tolerant I/O) Vss –0.3 V Vss +6.3 V (Vdd = 3.0 V)

Table 4–2 Maximum Power Dissipation

Device Frequency/Bus Width Power

Dchip 83-MHz system interface 3.21 W

Cchip 83-MHz system interface 5.40 W

Pchip 64-bit, 33.3-MHz PCI bus
32-bit, 66.7-MHz PCI bus

3.23 W
3.34 W
21 October 1999 Electrical Specifications 4–1

DC Characteristics

the

5-V
.

 use a

 of the
4.2 DC Characteristics

The 21272 chipset is designed to run in a CMOS/TTL environment. The design uses
the CMOS5L, 3.3-V process. All I/O, except for the PCI interface, the CPU interface,
and the internal CAPbus interface, assume a 3.3-V signaling environment. The PCI
interface utilizes the 3.3-V supply for output drive and is designed to accept an input
voltage of up to 5 V. The CPU interface and the CAPbus operate on a custom 2-V inter-
face.

4.2.1 Power Supply

The 21272 chipset operates on a 3.3-V, ±5% supply. The i_vref inputs are set by means
of a resistor divider network to deliver 0.67 x (2-V supply – 1.4 V nominal).

4.2.2 Input Clocks

Signals i_sysclk/i_sysclk_l and i_fwdclk/i_fwdclk_l are expected to be differential
PECL signals. Signal cfin is defined as a single-ended signal that operates using
custom 2-V interface.

4.2.3 Signal Pins

Signal pins are organized into three classes: open-drain (OD) I/O, 3.3-V I/O, and
compatible I/O. Table 4–3 lists the dc characteristics for the 21272 I/O signal pins

4.2.3.1 Open-Drain I/O

Signals that use the OD driver are low asserted on the pins of the chip. Input pins
single-ended differential receiver. The receiver switchpoint is ±50 mV around vref.
Output pins use the driver to assert an electrical zero on the network. Deassertion
network is performed by external termination to the 2-V supply (see Figure 4–1).

Table 4–3 CMOS DC Characteristics

Driver
Class

Signaling
Type Vih Vil Voh Vol Overshoot Undershoot

Open-drain Custom 2 V vref + 0.05 V vref – 0.05 V 2 V 0.8 V — —

CSALT “T” LVTTL 2.0 V 1.0 V 2.4 V 0.4 V Vss + 4.2 V –0.8 V

CSALT “TS” LVTTL 2.0 V 1.0 V 2.4 V 0.4 V Vss + 4.2 V –0.8 V

CSALT “C” LVTTL 2.0 V 1.0 V 2.4 V 0.4 V Vss + 6.3 V –0.8 V

CSALT “CS” LVTTL 2.0 V 1.0 V 2.4 V 0.4 V Vss + 6.3 V –0.8 V

CSALT PCI — 2.0 V 1.0 V 2.4 V 0.4 V — —
4–2 Electrical Specifications 21 October 1999

DC Characteristics
Figure 4–1 Open-Drain Termination Scheme

4.2.3.2 3.3-V I/O

The 3.3-V I/O pins, when used as an input, receive signals that adhere to TTL signaling
conventions. When used as an output, the signals swing from Vss to Vdd (3.3 V).
Output timing is specified to standard TTL levels. These signals assume that there are
no devices capable of driving a dc level above the 3.3-V supply.

4.2.3.3 5-V Compatible I/O

The 5-V compatible I/O pins, when used as an input, receive signals that adhere to TTL
signaling conventions. When used as an output, the signals swing from Vss to Vdd (3.3
V). Output timing is specified to standard TTL levels. These signals assume that the
network contains devices capable of driving a dc level based upon a 5-V supply.

4.2.4 DC Specifications

Table 4–4 shows the dc specifications for the 21272.

Table 4–4 DC Specifications

Driver Spec
Lower Level
DRV

Upper Level
DRV Units VDD Conditions and Limits

BD4CS

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

VOL 0.00 0.40 V 3.00 0.0 mA < IOL < 4.0 mA

VOH 2.40 3.00 V 3.00 -4.0 mA < IOH < 0.0 mA

IOZL -10.00 0.00 µA 3.60 Vout = VSS

IOZH 0.00 10.00 µA 3.60 Vout = VDD

IOZ5H 0.00 10.00 µA 3.60 Vout = 5.25 V

DIOL 26.00 50.00 mA 3.00 Vout = 0.5 ∗ VDD

DIOH -40.00 -21.00 mA 3.00 Vout = 0.5 ∗ VDD

BD8CS

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

VOL 0.00 0.40 V 3.00 0.0 mA < IOL < 8.0 mA

LJ-05490.AI4

22 Ohms 22 Ohms

+2-V Supply

90 Ohms 90 Ohms

Module Etch

Chip 2
Connection

Chip 1
Connection
21 October 1999 Electrical Specifications 4–3

DC Characteristics
VOH 2.40 3.00 V 3.00 -8.0 mA < IOH < 0.0 mA

IOZL -10.00 0.00 µA 3.60 Vout = VSS

IOZH 0.00 10.00 µA 3.60 Vout = VDD

IOZ5H 0.00 10.00 µA 3.60 Vout = 5.25 V

DIOL 33.00 66.00 mA 3.00 Vout = 0.5 ∗ VDD

DIOH -54.00 -28.00 mA 3.00 Vout = 0.5 ∗ VDD

BD4TS

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

VOL 0.00 0.40 V 3.00 0.0 mA < IOL < 4.0 mA

VOH 2.40 3.00 V 3.00 -4.0 mA < IOH < 0.0 mA

DIOL 24.00 49.00 mA 3.00 Vout = 0.5 ∗ VDD

DIOH -45.00 -22.00 mA 3.00 Vout = 0.5 ∗ VDD

BD4T

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

VOL 0.00 0.40 V 3.00 0.0 mA < IOL < 4.0 mA

VOH 2.40 3.00 V 3.00 -4.0 mA < IOH < 0.0 mA

DIOL 41.00 69.00 mA 3.00 Vout = 0.5 ∗ VDD

DIOH -65.00 -37.00 mA 3.00 Vout = 0.5 ∗ VDD

BD6T

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

VOL 0.00 0.40 V 3.00 0.0 mA < IOL < 6.0 mA

VOH 2.40 3.00 V 3.00 -6.0 mA < IOH < 0.0 mA

DIOL 58.00 96.00 mA 3.00 Vout = 0.5 ∗ VDD

DIOH -97.00 -55.00 mA 3.00 Vout = 0.5 ∗ VDD

Table 4–4 DC Specifications (Continued)

Driver Spec
Lower Level
DRV

Upper Level
DRV Units VDD Conditions and Limits
4–4 Electrical Specifications 21 October 1999

DC Characteristics
BD8T

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

VOL 0.00 0.40 V 3.00 0.0 mA < IOL < 8.0 mA

VOH 2.40 3.00 V 3.00 -8.0 mA < IOH < 0.0 mA

DIOL 77.00 127.00 mA 3.00 Vout = 0.5 ∗ VDD

DIOH -124.00 -70.00 mA 3.00 Vout = 0.5 ∗ VDD

BD12CPCIU

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

VOL 0.00 0.40 V 3.00 0.0 mA < IOL < 8.0 mA

VOH 2.40 3.00 V 3.00 -8.0 mA < IOH < 0.0 mA

IOZL -3.00 -1.20 mA 3.60 Vout = VSS

IOZH 20.00 100.00 µA 3.60 Vout = VDD

IOZ5H 1.30 mA 3.60 Vout = 5.25 V

DIOL 110.00 181.00 mA 3.00 Vout = 0.5 ∗ VDD

DIOH -79.00 -46.00 mA 3.00 Vout = 0.5 ∗ VDD

VCLAMP 5.35 6.60 V 3.00 Force +25 mA

IBUF

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

IIL -10.00 0.00 µA 3.60 Vin = VSS

IIH 0.00 10.00 µA 3.60 Vin = 5.25 V

TLCHT

VIL — 1.00 V 3.00 0.0 V < Vin < 5.5 V

VIH 2.00 — V 3.60 0.0 V < Vin < 5.5 V

IIL -10.00 0.00 µA 3.60 Vin = VSS

IIH 0.00 10.00 µA 3.60 Vin = VDD

B8

VOL — 0.4 V 3 0.0 mA < IOL < 8.0 mA

VOH 2.4 3 V 3 -8.0 mA < IOH < 0.0 mA

DIOL 63 106 mA 3 Vout = 0.5 ∗ VDD

DIOH -85 -47 mA 3 Vout = 0.5 ∗ VDD

Table 4–4 DC Specifications (Continued)

Driver Spec
Lower Level
DRV

Upper Level
DRV Units VDD Conditions and Limits
21 October 1999 Electrical Specifications 4–5

AC Specifications

mul-
out-
4.3 AC Specifications

This section contains ac specifications for the Cchip, Dchip, and Pchip.

4.3.1 Cchip Specification

Table 4–5 contains ac specifications for the Cchip. All outputs include a 700-ps si
taneous switching adder (maximum case). A standard load of 60 pf is used on all
puts.

BD16TOD

VIL — Vref - 0.1V V 3.00 0.0 V < Vin < VDD + 0.5,
0.7 < Vref < VDD/2

VIH Vref + 0.1V — V 3.60 0.0 V < Vin < VDD + 0.5,
0.7 < Vref < VDD/2

VOL 0.00 0.19 V 3.00 0.0 mA < IOL < 20.0 mA

IOZL -10.00 10.00 µA 3.60 0 < Vin < VDD

PECLINDIFF

VIL — 1.46 V 3.00 0.0 V < Vin < VDD + 0.5

VIL — 1.75 V 3.60 0.0 V < Vin < VDD + 0.5

VIH 1.56 — V 3.00 0.0 V < Vin < VDD + 0.5

VIH 1.85 — V 3.60 0.0 V < Vin < VDD + 0.5

IIL -500.00 500.00 µA 3.60 0 < Vin < VDD

Table 4–5 Cchip AC Specification

Signal Name TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

FF Min
Clk Rise

FF Max
Clk Rise

FF Min
Clk Fall

FF Max
Clk Fall

b_c0ao_l<14:2> 6.502 7.472 6.164 7.466 3.636 5.449 3.403 5.397

b_c0clko_l 7.425 7.425 6.167 6.167 5.422 5.422 3.41 3.41

b_c0div_l 6.502 7.472 6.164 7.466 3.636 5.449 3.403 5.397

b_c0fv_l 6.502 7.472 6.164 7.466 3.636 5.449 3.403 5.397

b_c1ao_l<14:2> 6.407 7.389 6.064 7.379 3.584 5.391 3.345 5.335

b_c1clko_l 7.383 7.383 6.094 6.094 5.382 5.382 3.355 3.355

b_c1div_l 6.407 7.389 6.064 7.379 3.584 5.391 3.345 5.335

b_c1fv_l 6.407 7.389 6.064 7.379 3.584 5.391 3.345 5.335

Setup,
Clk Rise

Setup,
Clk Fall

Hold,
Clk Rise

Hold,
Clk Fall

Reference
Clk

b_c0ai_l<14:2> 0.64 0.825 0.465 0.406 B_CLKI_L

b_c1ai_l<14:2> 0.625 0.815 0.436 0.322 B_CLKI_L

Min Max Setup Hold
b_cack 3.7 8.10

b_cacta_l 3.8 8.20

Table 4–4 DC Specifications (Continued)

Driver Spec
Lower Level
DRV

Upper Level
DRV Units VDD Conditions and Limits
4–6 Electrical Specifications 21 October 1999

AC Specifications
Min Max Setup Hold
b_cactb_l 3.8 8.20

b_capgd 3.8 8.20

b_capsel 3.8 8.30

b_cfrst_l 2.6 7.70 no SSO

b_cpma 3.3 7.10

b_cpmb 3.3 7.10

b_m0a 3.1 7.50

b_m0ba<2:0> 3.5 7.50

b_m0cs_l<3:0> 3.2 6.90

b_m0dqm 3.3 7.20

b_m1a 3.1 6.80

b_m1ba<2:0> 3.1 6.80

b_m1cs_l<3:0> 3.1 6.70

b_m1dqm 3.1 6.70

b_m2a 3.1 7.30

b_m2ba<2:0> 3.3 7.00

b_m2cs_l<3:0> 3.1 6.70

b_m2dqm 3.1 6.70

b_m3a 3.2 7.30

b_m3ba<2:0> 3.2 6.90

b_m3cs_l<3:0> 3.1 6.70

b_m3dqm 3.1 6.70

b_mcas_l<0> 3.2 6.90

b_mcas_l<1> 3.1 6.70

b_mcas_l<2> 3.1 6.70

b_mcas_l<3> 3.1 6.70

b_mcke<0> 3.1 6.90

b_mcke<1> 3.1 6.70

b_mcke<2> 3.1 6.70

b_mcke<3> 3.1 6.70

b_monitor 4.30 10.70

b_mpdclk 4.60 12.60 0.26 2.01

b_mpdd 4.60 12.50 0.29 1.98

b_mras_l<0> 3.2 6.90

b_mras_l<1> 3.1 6.70

b_mras_l<2> 3.1 6.70

b_mras_l<3> 3.1 6.70

b_mwe_l<0> 3.2 6.90

b_mwe_l<1> 3.1 6.70

b_mwe_l<2> 3.1 6.70

b_mwe_l<3> 3.1 6.70

b_pada 3.2 7.10

b_padb 3.3 7.20

b_sromoe_l -0.324 1.919

b_sysrsta_l 3.1 7.20

b_sysrstb_l 3.1 7.20

b_sysrstc_l 3.1 7.20

Table 4–5 Cchip AC Specification (Continued)
21 October 1999 Electrical Specifications 4–7

AC Specifications

imul-
out-
4.3.2 C4chip Specification

Table 4–5 contains ac specifications for the C4chip. All outputs include a 700-ps s
taneous switching adder (maximum case). A standard load of 60 pf is used on all
puts.

Min Max Setup Hold
b_tas 4.80 10.70

b_tcs_l 4.70 11.70

b_td<7:0> 4.00 13.00 0.32 2.07

b_tia 4.30 10.70

b_tioe_l 4.70 12.00

b_tis 4.30 9.90

b_toe_l 4.40 11.50

b_twe_l 4.30 10.70

i_creq_l 0.684 2.179

i_intim_l -0.226 2.299

i_modrst_l 2.925

i_pack -0.15 2.204

TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

FF Min
Clk Rise

FF Max
Clk Rise

FF Min
Clk Fall

FF Max
Clk Fall

b_cap<23:0> 5.8 7.2 5.7 7.2 4 5 2.9 3.8

Setup,
Clk Rise

Setup,
Clk Fall

Hold,
Clk Rise

Hold,
Clk Fall

Reference
Clk

b_cap<23:0> 0.511 0.536 1.795 2.31 SYSCLK

Table 4–6 C4chip AC Specifications

TT Process/SS Environment FF Process/FF Environment

Clock Rise Clock Fall Clock Rise Clock Fall

DR DF DR DF DR DF DR DF

b_c0ao_l<14:02> Min 6.90 7.11 6.99 7.07 3.72 3.65 3.77 3.62

Max 6.99 7.20 7.09 7.17 3.82 3.74 3.88 3.73

b_c0fv_l Min 6.90 7.11 6.99 7.07 3.72 3.65 3.77 3.62

Max 6.99 7.20 7.09 7.17 3.82 3.74 3.88 3.73

b_c0div_l Min 6.90 7.11 6.99 7.07 3.72 3.65 3.77 3.62

Max 6.99 7.20 7.09 7.17 3.82 3.74 3.88 3.73

b_c0clko_l Min 6.95 6.95 7.13 7.13 3.78 3.78 3.69 3.69

Max 6.95 6.95 7.13 7.13 3.78 3.78 3.69 3.69

b_c1ao_l<14:02> Min 6.58 6.79 6.66 6.75 3.44 3.36 3.48 3.33

Max 6.66 6.87 6.74 6.82 3.49 3.41 3.53 3.38

Table 4–5 Cchip AC Specification (Continued)
4–8 Electrical Specifications 21 October 1999

AC Specifications
TT Process/SS Environment FF Process/FF Environment

Clock Rise Clock Fall Clock Rise Clock Fall

DR DF DR DF DR DF DR DF

b_c1fv_l Min 6.58 6.79 6.66 6.75 3.44 3.36 3.48 3.33

Max 6.66 6.87 6.74 6.82 3.49 3.41 3.53 3.38

b_c1div_l Min 6.58 6.79 6.66 6.75 3.44 3.36 3.48 3.33

Max 6.66 6.87 6.74 6.82 3.49 3.41 3.53 3.38

b_c1clko_l Min 6.62 6.62 6.78 6.78 3.45 3.45 3.34 3.34

Max 6.62 6.62 6.78 6.78 3.45 3.45 3.34 3.34

b_c2ao_l<14:02> Min 6.60 6.83 6.68 6.78 3.40 3.33 3.44 3.30

Max 6.69 6.91 6.77 6.86 3.50 3.41 3.53 3.39

b_c2fv_l Min 6.60 6.83 6.68 6.78 3.40 3.33 3.44 3.30

Max 6.69 6.91 6.77 6.86 3.50 3.41 3.53 3.39

b_c2div_l Min 6.60 6.83 6.68 6.78 3.40 3.33 3.44 3.30

Max 6.69 6.91 6.77 6.86 3.50 3.41 3.53 3.39

b_c2clko_l Min 6.62 6.62 6.80 6.80 3.43 3.43 3.32 3.32

Max 6.62 6.62 6.80 6.80 3.43 3.43 3.32 3.32

b_c3ao_l<14:02> Min 6.90 7.12 7.01 7.09 3.76 3.67 3.81 3.66

Max 7.01 7.21 7.12 7.19 3.83 3.74 3.88 3.73

b_c3fv_l Min 6.90 7.12 7.01 7.09 3.76 3.67 3.81 3.66

Max 7.01 7.21 7.12 7.19 3.83 3.74 3.88 3.73

b_c3div_l Min 6.90 7.12 7.01 7.09 3.76 3.67 3.81 3.66

Max 7.01 7.21 7.12 7.19 3.83 3.74 3.88 3.73

b_c3clko_l Min 7.01 7.01 7.19 7.19 3.83 3.83 3.73 3.73

Max 7.01 7.01 7.19 7.19 3.83 3.83 3.73 3.73

Table 4–6 C4chip AC Specifications
21 October 1999 Electrical Specifications 4–9

AC Specifications
Setup Hold

Clk Rise Clk Fall Clk Rise Clk Fall Reference Clk

b_c0ai_l<14:02> 0.9 0.7 0.3 0.5 b_clki_l

b_c1ai_l<14:02> 0.9 0.8 0.3 0.4 b_clki_l

b_c2ai_l<14:02> 0.9 0.9 0.3 0.4 b_clki_l

b_c3ai_l<14:02> 0.9 0.7 0.3 0.5 b_clki_l

Min Max Setup Hold

b_monitor 3.9 8.6

b_mpdclk 4.1 9.2 –0.1 3.5

b_mpdd 4.1 9.2 –0.6 3.5

b_twe_l 4.0 8.9

b_tia 4.0 8.8

b_td<07:00> 4.0 9.7 –0.6 2.8

b_tas 4.0 8.9

b_tis 4.0 8.9

b_tcs_l 4.0 8.9

b_tioe_l 4.0 8.8

b_toe_l 4.0 8.8

i_intim_l –0.8 3.2

i_modrst_l –0.8 3.2

b_sromoe_l –0.3 2.5

b_sysrsta_l 3.0 7.9

b_sysrstb_l 3.0 7.9

b_sysrstc_l 3.0 7.9

b_cfrst_l 2.3 8.2

b_m0ba_l<02:00> 2.2 7.2

b_m0a 2.8 7.2

b_0cs_l<03:00> 2.2 7.2

b_m0dqm 2.8 7.2

b_mras_l<0> 2.8 7.2

b_mcas_l<0> 2.8 7.2

b_mwe_l<0> 2.8 7.2

b_mcke_l<0> 2.8 7.2

b_m1ba_l<02:00> 2.2 7.2 7.2

Table 4–6 C4chip AC Specifications
4–10 Electrical Specifications 21 October 1999

AC Specifications
Min Max Setup Hold

b_m1a 2.8 7.2 7.2

b_1cs_l<03:00> 2.2 7.2 7.2

b_m1dqm 2.8 7.2 7.2

b_mras_l<1> 2.8 7.2 7.2

b_mcas_l<1> 2.8 7.2 7.2

b_mwe_l<1> 2.8 7.2

b_mcke_l<1> 2.8 7.2

b_m2ba_l<02:00> 2.2 7.2

b_m2a 2.8 7.2

b_2cs_l<03:00> 2.2 7.2

b_m2dqm 2.8 7.2

b_mras_l<2> 2.8 7.2

b_mcas_l<2> 2.8 7.2

b_mwe_l<2> 2.8 7.2

b_mcke_l<2> 2.8 7.2

b_m3ba_l<02:00> 2.2 7.2

b_m3a 2.8 7.2

b_3cs_l<03:00> 2.2 7.2

b_m3dqm 2.8 7.2

b_mras_l<3> 2.8 7.2

b_mcas_l<3> 2.8 7.2

b_mwe_l<3> 2.8 7.2

b_mcke_l<3> 2.8 7.2

b_pada 3.0 7.9

b_padb 3.0 8.0

b_cpma 3.0 7.9

b_cpmb 3.0 7.9

b_cacta_l 3.9 8.8

b_cactb_l 3.9 8.8

b_cack 3.2 9.8

b_capgd 4.1 10.1

b_capsel 3.2 9.9

i_pack 0.4 2.1

i_creq_l –0.1 2.5

Table 4–6 C4chip AC Specifications
21 October 1999 Electrical Specifications 4–11

AC Specifications

mul-
out-
4.3.3 Dchip Specification

Table 4–7 contains ac specifications for the Dchip. All outputs include a 700-ps si
taneous switching adder (maximum case). A standard load of 60 pf is used on all
puts.

Min Max Setup Hold

o_sysclk_fb 2.1 4.8

TT Data FF Data

Min Rise Max Rise Min Fall Max Fall

b_cap<23:00> 7.0 7.5 7.1 7.6 2.7 2.7 2.5 2.5

Setup Hold

Data Rise Data Fall Data Rise Data Fall
Reference Clk

b_cap<23:00> 0.4 0.4 2.9 2.9 sysclk

Table 4–7 Dchip AC Specification

Signal Name TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

FF Min
Clk Rise

FF Max
Clk Rise

FF Min
Clk Fall

FF Max
Clk Fall

b_cc_l<0> 6.63 7.59 6.30 7.59 3.75 5.55 3.52 5.51
b_cc_l<1> 6.64 7.58 6.32 7.59 3.74 5.55 3.51 5.49
b_cc_l<2> 6.66 7.63 6.34 7.64 3.77 5.58 3.53 5.53
b_cc_l<3> 6.66 7.61 6.32 7.61 3.77 5.59 3.54 5.53
b_cd_l<15:8> 6.64 7.58 6.32 7.59 3.74 5.55 3.51 5.49
b_cd_l<23:16> 6.66 7.63 6.34 7.64 3.77 5.58 3.53 5.53
b_cd_l<31:24> 6.66 7.61 6.32 7.61 3.77 5.59 3.54 5.53
b_cd_l<7:0> 6.63 7.59 6.30 7.59 3.75 5.55 3.52 5.51
b_clko_l<0> 7.55 7.55 6.33 6.33 5.52 5.52 3.53 3.53
b_clko_l<1> 7.57 7.57 6.35 6.35 5.52 5.52 3.53 3.53
b_clko_l<2> 7.60 7.60 6.38 6.38 5.55 5.55 3.56 3.56
b_clko_l<3> 7.58 7.58 6.35 6.35 5.55 5.55 3.55 3.55

Setup,
Clk Rise

Setup,
Clk Fall

Hold,
Clk Rise

Hold,
Clk Fall

Reference
Clk

b_cc_l<3:0> 0.64 0.73 0.35 0.28 B_CLKI_L
b_cd_l<31:0> 0.64 0.73 0.35 0.28 B_CLKI_L

Min Max Setup Hold
b_m0c 3.50 8.80 0.20 2.00
b_m0d 3.50 8.80 0.20 2.00
b_m1c 3.50 8.80 0.20 2.00
b_m1d 3.50 8.80 0.20 2.00
b_p0c 3.90 9.00 -0.20 2.30
b_p0d 3.90 9.00 -0.20 2.30
b_p1c 3.90 9.00 -0.20 2.30

Table 4–6 C4chip AC Specifications
4–12 Electrical Specifications 21 October 1999

AC Specifications

imul-
out-
4.3.4 D4chip Specification

Table 4–7 contains ac specifications for the D4chip. All outputs include a 700-ps s
taneous switching adder (maximum case). A standard load of 60 pf is used on all
puts.

b_p1d 3.90 9.00 -0.20 2.30
i_cpm 0.00 2.10
i_pad 0.30 2.00
i_sysrst 2.70

Table 4–8 D4chip AC Specifications

TT Process/SS Environment FF Process/FF Environment

Clock Rise Clock Fall Clock Rise Clock Fall

DR DF DR DF DR DF DR DF

b_cd_l<7:0> Min 7.54 6.63 7.53 6.30 5.51 3.75 5.47 3.52

Max 7.59 6.69 7.59 6.37 5.55 3.79 5.51 3.56

b_cc_l<0> Min 7.54 6.63 7.53 6.30 5.51 3.75 5.47 3.52

Max 7.59 6.69 7.59 6.37 5.55 3.79 5.51 3.56

b_clko_l<0> Min 7.55 7.55 6.33 6.33 5.52 5.52 3.53 3.53

Max 7.55 7.55 6.33 6.33 5.52 5.52 3.53 3.53

b_cd_l<15:8> Min 7.55 6.64 7.55 6.32 5.51 3.74 5.46 3.51

Max 7.58 6.68 7.59 6.36 5.55 3.78 5.49 3.55

b_cc_l<1> Min 7.55 6.64 7.55 6.32 5.51 3.74 5.46 3.51

Max 7.58 6.68 7.59 6.36 5.55 3.78 5.49 3.55

b_clko_l<1> Min 7.57 7.57 6.35 6.35 5.52 5.52 3.53 3.53

Max 7.57 7.57 6.35 6.35 5.52 5.52 3.53 3.53

b_cd_l<23:16> Min 7.58 6.66 7.57 6.34 5.54 3.77 5.48 3.53

Max 7.63 6.73 7.64 6.41 5.58 3.82 5.53 3.59

b_cc_l<2> Min 7.58 6.66 7.57 6.34 5.54 3.77 5.48 3.53

Max 7.63 6.73 7.64 6.41 5.58 3.82 5.53 3.59

b_clko_l<2> Min 7.60 7.60 6.38 6.38 5.55 5.55 3.56 3.56

Max 7.60 7.60 6.38 6.38 5.55 5.55 3.56 3.56

Table 4–7 Dchip AC Specification (Continued)

Signal Name TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

FF Min
Clk Rise

FF Max
Clk Rise

FF Min
Clk Fall

FF Max
Clk Fall
21 October 1999 Electrical Specifications 4–13

AC Specifications

ulta-
s.
4.3.5 Pchip Specification

Table 4–9 contains ac specifications for the Pchip. All outputs include a 700 ps sim
neous switching adder (maximum case). A standard of 60 pf is used on all output

b_cd_l<31:24> Min 7.56 6.66 7.54 6.32 5.54 3.77 5.48 3.54

Max 7.61 6.71 7.61 6.38 5.59 3.82 5.53 3.59

b_cc_l<3> Min 7.56 6.66 7.54 6.32 5.54 3.77 5.48 3.54

Max 7.61 6.71 7.61 6.38 5.59 3.82 5.53 3.59

b_clko_l<3> Min 7.58 7.58 6.35 6.35 5.55 5.55 3.55 3.55

Max 7.58 7.58 6.35 6.35 5.55 5.55 3.55 3.55

Setup Hold

Clk Rise Clk Fall Clk Rise Clk Fall Reference Clk

b_cd_l<31:00> 0.6 0.7 0.4 0.3 b_clki_l

b_cc_l<03:00> 0.6 0.7 0.4 0.3 b_clki_l

Min Max Setup Hold

b_p0d 3.9 9.00 –0.2 2.3

b_p0c 3.9 9.00 –0.2 2.2

b_p1d 3.9 9.00 –0.2 2.3

b_p1c 3.9 9.00 –0.2 2.3

b_m0d 3.4 8.0 –0.2 2.2

b_m0c 3.4 8.0 –0.2 2.2

b_m1d 3.4 8.0 –0.2 2.2

b_m1c 3.4 8.0 –0.2 2.2

i_cpm 0.0 2.1

i_pad 0.2 1.9

i_sysreset 2.7

Table 4–9 Pchip AC Specification

Signal Name Min Max Setup Hold Reference
b_ack64_l 3.20 8.30 6.30 0.10 PCLKI
b_ad 3.20 8.60 6.60 0.30 PCLKI
b_cbe_l 3.10 8.20 6.40 0.30 PCLKI
b_creqa_l 3.70 8.00 SYSCLK
b_creqb_l 3.70 8.00 SYSCLK
b_devsel_l 3.20 8.00 6.30 0.30 PCLKI
b_error 4.20 9.60 SYSCLK

Table 4–8 D4chip AC Specifications
4–14 Electrical Specifications 21 October 1999

AC Specifications
b_frame_l 3.10 8.20 6.60 0.20 PCLKI
b_gnt_l 3.20 9.00 PCLKI
b_gntreq_l<0> 3.10 8.00 PCLKI
b_irdy_l 3.10 8.00 6.80 0.30 PCLKI
b_monitor 4.40 10.10 SYSCLK
b_pack 3.70 8.00 SYSCLK
b_padc 3.90 9.30 -0.30 2.40 SYSCLK
b_padd 3.80 9.30 0.40 2.40 SYSCLK
b_par 3.10 8.30 6.60 0.10 PCLKI
b_par64 3.10 8.10 5.90 0.30 PCLKI
b_pclko 3.40

3.40
7.70
7.70

FWDCLK
FWDCLK_L

b_perr_l 3.20 8.10 6.50 -0.90 PCLKI
b_prst_l 3.70 8.40 PCLKI
b_req_l 5.70 -0.20 PCLKI
b_req64_l 3.40 8.10 4.70 0.30 PCLKI
b_reqgnt_l<0> 6.60 -0.40 PCLKI
b_serr_l 5.30 -0.70 PCLKI
b_stop_l 3.20 8.00 6.40 0.20 PCLKI
b_trdy_l 3.20 8.00 6.60 0.10 PCLKI
i_cack -0.30 2.20 SYSCLK
i_cact_l 0.70 2.20 SYSCLK
i_capgd -0.30 2.20 SYSCLK
i_capsel -0.30 2.20 SYSCLK

Table 4–9 Pchip AC Specification (Continued)

Signal Name Min Max Setup Hold Reference
21 October 1999 Electrical Specifications 4–15

AC Test Specifications
4.4 AC Test Specifications

This section contains the ac test specifications for the Cchip, Dchip, and Pchip. These
SPICE test specifications are used internally by DIGITAL for testing wafers and pack-
aging parts.

4.4.1 Cchip AC Test Specifications

Table 4–10 shows the Cchip ac test specifications.

i_capselrmt -0.30 2.20 SYSCLK
i_creqrmt_l 1.10 2.20 SYSCLK
i_pid 7.90

7.80
1.00
-1.20

SYSCLK
SYSCLK_L

i_sysrst_l 2.90 SYSCLK

TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

FF Min
Clk Rise

FF Max
Clk Rise

FF Min
Clk Fall

FF Max
Clk Fall

b_cap<23:0> 6.50 7.40 5.70 6.50 4.30 5.10 2.70 3.50

Setup,
Clk Rise

Setup,
Clk Fall

Hold,
Clk Rise

Hold,
Clk Fall

Reference
Clk

b_cap<23:0> 0.35 0.24 1.80 2.30 SYSCLK

Table 4–10 Cchip AC Test Specifications

Signal Name TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

b_c0ao_l<14:2> 5.75 6.00 5.70 5.75
b_c0clko_l 5.75 5.75 5.70 5.70
b_c0div_l 5.75 6.00 5.70 5.75
b_c0fv_l 5.75 6.00 5.70 5.75
b_c1ao_l<14:2> 5.65 6.00 5.60 5.70
b_c1clko_l 5.70 5.70 5.60 5.60
b_c1div_l 5.65 6.00 5.60 5.70
b_c1fv_l 5.65 6.00 5.60 5.70

Setup,
Clk Rise

Setup,
Clk Fall

Hold,
Clk Rise

Hold,
Clk Fall

Reference Clk

b_c0ai_l<14:2> 0.64 0.83 0.47 0.41 B_CLKI_L
b_c1ai_l<14:2> 0.63 0.82 0.44 0.32 B_CLKI_L

Min Max Setup Hold
b_cack 3.00 5.90
b_cacta_l 3.10 6.00
b_cactb_l 3.10 6.10
b_capgd 3.10 6.10
b_capsel 3.10 6.10
b_cfrst_l 2.70 6.10
b_cpma 2.80 5.40
b_cpmb 2.80 5.40
b_m0a 2.80 6.10
b_m0ba<2:0> 3.20 6.10
b_m0cs_l<3:0> 2.90 5.30

Table 4–9 Pchip AC Specification (Continued)

Signal Name Min Max Setup Hold Reference
4–16 Electrical Specifications 21 October 1999

AC Test Specifications
Min Max Setup Hold
b_m0dqm 2.90 5.70
b_m1a 2.80 5.40
b_m1ba<2:0> 2.80 5.40
b_m1cs_l<3:0> 2.80 5.30
b_m1dqm 2.80 5.30
b_m2a 2.80 6.00
b_m2ba<2:0> 3.00 5.60
b_m2cs_l<3:0> 2.80 5.30
b_m2dqm 2.80 5.30
b_m3a 2.90 6.00
b_m3ba<2:0> 2.90 5.50
b_m3cs_l<3:0> 2.80 5.30
b_m3dqm 2.80 5.30
b_mcas_l<0> 2.90 5.30
b_mcas_l<1> 2.80 5.30
b_mcas_l<2> 2.80 5.30
b_mcas_l<3> 2.80 5.30
b_mcke<0> 2.80 5.30
b_mcke<1> 2.80 5.30
b_mcke<2> 2.80 5.30
b_mcke<3> 2.80 5.30
b_monitor 3.20 7.10
b_mpdclk 3.50 9.30 0.26 2.01
b_mpdd 3.50 9.20 2.85 1.98
b_mras_l<0> 2.90 5.30
b_mras_l<1> 2.80 5.30
b_mras_l<2> 2.80 5.30
b_mras_l<3> 2.80 5.30
b_mwe_l<0> 2.90 5.30
b_mwe_l<1> 2.80 5.30
b_mwe_l<2> 2.80 5.30
b_mwe_l<3> 2.80 5.30
b_pada 2.80 5.40
b_padb 2.80 5.40
b_sromoe_l -0.32 1.92
b_sysrsta_l 2.70 5.50
b_sysrstb_l 2.70 5.50
b_sysrstc_l 2.70 5.50
b_tas 3.60 7.10
b_tcs_l 3.60 8.00
b_td<7:0> 3.00 9.50 0.32 2.07
b_tia 3.20 7.00
b_tioe_l 3.60 8.30
b_tis 3.30 6.30
b_toe_l 3.40 7.90
b_twe_l 3.20 7.10
i_creq_l 0.68 2.18
i_intim_l -0.23 2.30
i_modrst_l 2.93
i_pack -0.15 2.20

TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

b_cap<23:0> 5.50 6.20 5.30 6.10

Table 4–10 Cchip AC Test Specifications (Continued)
21 October 1999 Electrical Specifications 4–17

AC Test Specifications
4.4.2 Dchip AC Test Specifications

Table 4–11 shows the Dchip ac test specifications.

Setup,
Clk Rise

Setup,
Clk Fall

Hold,
Clk Rise

Hold,
Clk Fall

Reference Clk

b_cap<23:0> 0.51 0.54 1.80 2.31 SYSCLK

Table 4–11 Dchip AC Test Specifications

Signal Name Driver TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

b_cc_l<0> BD16TOD 5.85 6.20 5.85 5.90
b_cc_l<1> BD16TOD 5.85 6.20 5.85 5.90
b_cc_l<2> BD16TOD 5.90 6.25 5.85 5.95
b_cc_l<3> BD16TOD 5.85 6.25 5.85 5.90
b_cd_l<15:8> BD16TOD 5.85 6.20 5.85 5.90
b_cd_l<23:16> BD16TOD 5.90 6.25 5.85 5.95
b_cd_l<31:24> BD16TOD 5.85 6.25 5.85 5.90
b_cd_l<7:0> BD16TOD 5.85 6.20 5.85 5.90
b_clko_l<0> BD16TOD 5.85 5.90 6.85 5.85
b_clko_l<1> BD16TOD 5.90 5.90 6.85 5.85
b_clko_l<2> BD16TOD 5.90 5.90 6.90 5.90
b_clko_l<3> BD16TOD 5.90 5.90 6.90 5.90

Setup,
Clk Rise

Setup,
Clk Fall

Hold,
Clk Rise

Hold,
Clk Fall

Reference Clk

b_cc_l<3:0> BD16TOD 0.64 0.73 0.35 0.28 B_CLKI_L
b_cd_l<31:0> BD16TOD 0.64 0.73 0.35 0.28 B_CLKI_L

Min Max Setup Hold Reference Clk
b_m0c BD8CS 2.80 6.00 0.20 2.00
b_m0d BD8CS 2.80 6.00 0.20 2.00
b_m1c BD8CS 2.80 6.00 0.20 2.00
b_m1d BD8CS 2.80 6.00 0.20 2.00
b_p0c BD4TS 2.90 6.00 -0.20 2.30
b_p0d BD4TS 2.90 6.00 -0.20 2.30
b_p1c BD4TS 2.90 6.00 -0.20 2.30
b_p1d BD4TS 2.90 6.00 -0.20 2.30
i_cpm IBUF 0.00 2.10
i_pad IBUF 0.30 2.00
i_sysrst IBUF 2.70

Table 4–10 Cchip AC Test Specifications (Continued)
4–18 Electrical Specifications 21 October 1999

AC Test Specifications
4.4.3 Pchip AC Test Specifications

Table 4–12 shows the Pchip ac test specifications.

Table 4–12 Pchip AC Test Specifications

Signal Name Min Max Setup Hold Reference
b_ack64_l 2.90 6.30 6.30 0.10 PCLKI
b_ad 2.90 6.60 6.60 0.30 PCLKI
b_cbe_l 2.80 6.10 6.40 0.30 PCLKI
b_creqa_l 2.90 5.80 SYSCLK
b_creqb_l 2.90 5.80 SYSCLK
b_devsel_l 2.90 6.00 6.30 0.30 PCLKI
b_error 3.20 6.00 SYSCLK
b_frame_l 2.80 6.20 6.50 0.20 PCLKI
b_gnt_l 3.00 7.30 PCLKI
b_gntreq_l<0> 2.80 6.00 PCLKI
b_irdy_l 2.80 6.00 6.70 0.20 PCLKI
b_monitor 3.30 6.50 SYSCLK
b_pack 2.90 5.80 SYSCLK
b_padc 2.90 6.20 -0.26 2.40 SYSCLK
b_padd 2.80 6.20 0.35 2.40 SYSCLK
b_par 2.80 6.30 6.50 0.00 PCLKI
b_par64 2.80 6.10 5.90 0.30 PCLKI
b_pclko 3.10

3.10
5.70
5.70

FWDCLK
FWDCLK_L

b_perr_l 2.90 6.10 6.40 -0.90 PCLKI
b_prst_l 3.40 6.40 PCLKI
b_req_l 5.60 -0.20 PCLKI
b_req64_l 3.10 6.10 4.70 0.30 PCLKI
b_reqgnt_l<0> 6.60 -0.40 PCLKI
b_serr_l 5.30 -0.70 PCLKI
b_stop_l 2.90 6.10 6.30 0.20 PCLKI
b_trdy_l 2.90 6.00 6.60 0.10 PCLKI
i_cack -0.30 2.20 SYSCLK
i_cact_l 0.70 2.20 SYSCLK
i_capgd -0.30 2.20 SYSCLK
i_capsel -0.30 2.20 SYSCLK
i_capselrmt -0.30 2.20 SYSCLK
i_creqrmt_l 1.10 2.20 SYSCLK
i_pid 7.90

7.70
1.00
-1.20

SYSCLK
SYSCLK_L

i_sysrst_l 2.90 SYSCLK

TT Min
Clk Rise

TT Max
Clk Rise

TT Min
Clk Fall

TT Max
Clk Fall

b_cap<23:0> 5.20 5.40 5.30 5.40

Setup,
Clk Rise

Setup,
Clk Fall

Hold,
Clk Rise

Hold,
Clk Fall

Reference
Clk

b_cap<23:0> 0.35 0.24 1.80 2.30 SYSCLK
21 October 1999 Electrical Specifications 4–19

AC Test Specifications
21 October 1999 Electrical Specifications 4–21

AC Test Specifications
4–22 Electrical Specifications 21 October 1999

GA.
.

ce
s
 5
Mechanical Specifications

This chapter provides dimensional information for each of the 21272 package types.

Chips in the 21272-AA chipset are contained in two custom enhanced super ball grid
array (ESBGA) packages. The 21272–C1 Cchip is contained in a 432-point ESB
The 21272–D1 Dchip and 21272–P1 Pchip are contained in 304-point ESBGAs
Table 5–1 lists the ESBGA package specifications.

Note: The drawings and tables with dimensions in this chapter are for referen
only. Examples of board layout, including detailed engineering drawing
and plot files, are available from DIGITAL.

 Figures 5–1 and 5–2 show the 21272–C1 432-point ESBGA (Cchip) package.

Table 5–1 21272 Packaging

Package Type
Number of
Layers

Number of
Planes

Number of
Balls Tied to
Vss Plane and
Vdd Ring

Number of
Balls
Available
for I/O Package Body Size

432-point ESBGA 2 1 88 344 40 mm x 40 mm

304-point ESBGA 2 1 72 232 31 mm x 31 mm
21 October 1999 Mechanical Specifications 5–1

Figure 5–1 432-Point 2-Layer ESBGA Package (Top and Side View)

A1 Ball I.D.
1.0 Dia
Ink Mark

Seating
Plane

Top View

A1 Ball
Corner

Side View

4

A// 0.127

B

A

D

E

A0.127

A1

A A2

3

C// bbb ccc

aaa C

FM-06248.AI4
5–2 Mechanical Specifications 21 October 1999

Figure 5–2 432-Point 2-Layer ESBGA Package (Bottom and Section View)

Bottom View

A1 Ball
Corner

Section View

P

d
ddd

A-A

Die Side

eS

A

A

e

S

01
02

03
04

05
06

07
08

09
10

11
12

13
14

15
16

17
18

19
20

21
22

23

A
B

C
D

E
F

G
H

J
K

L
M

N
P

R
T

V
W

U

Y
AA

AB
AC

AC S B / 0.30 A S

9

2
b /

8

5 9

AD
AE

AF
AG

AH
AJ

AK
AL

24
25

26
27

28
29

30
31

FM-06249.AI4

M1

1D , M

1E , N
21 October 1999 Mechanical Specifications 5–3

t
Table 5–2 lists the 21272–C1 432-point ESBGA (Cchip) package dimensions.

Figures 5–3 and 5–4 show the 21272–D1 (Dchip) and 21272–P1 (Pchip) 304-poin
ESBGA package.

Table 5–2 432-Point 2-Layer ESBGA Package Dimensions

Symbol Dimension Value (mm)

A Package overall thickness 1.41 minimum to 1.67 maximum (1.54 nominal)

A1 Ball height 0.56 minimum to 0.70 maximum (0.63 nominal)

A2 Body thickness 0.85 minimum to 0.97 maximum (0.91 nominal)

D Package overall width 39.90 minimum to 40.10 maximum (40.00 nominal)

D1 Ball footprint 38.00 minimum to 38.20 maximum (38.10 nominal)

E Package overall length 39.90 minimum to 40.10 maximum (40.00 nominal)

E1 Ball footprint 38.00 minimum to 38.20 maximum (38.10 nominal)

M,N Ball matrix 31 X 31

M1 Number of rows deep 4

b Solder ball diameter 0.60 minimum to 0.90 maximum (0.75 nominal)

d Corner radius/flat 0.6

e Solder ball pitch 1.27

aaa Surface coplanarity 0.20 maximum

bbb Parallel 0.15 maximum

ccc Top flatness 0.20 maximum

ddd Seating plane clearance 0.15 minimum to 0.50 maximum (0.33 nominal)

P Encapsulation height 0.20 minimum to 0.35 maximum (0.30 nominal)

S Solder ball placement 0.00 maximum
5–4 Mechanical Specifications 21 October 1999

Figure 5–3 304-Point 2-Layer ESBGA Package (Top and Side View)

A1 Ball I.D.
1.0 Dia
Ink Mark

Seating
Plane

Top View

A1 Ball
Corner

Side View

4

A// 0.127 A

D

A0.127

A1

A A2

3

C// bbb ccc

aaa C

E

FM-06246.AI4

B

21 October 1999 Mechanical Specifications 5–5

Figure 5–4 304-Point 2-Layer ESBGA Package (Bottom and Section View)

Bottom View

A1 Ball
Corner

Section View

P

d
ddd

A-A

Die Side

eS

A

A

e

S

01
02

03
04

05
06

07
08

09
10

11
12

13
14

15
16

17
18

19
20

21
22

23

A
B

C
D

E
F

G
H

J
K

L
M

N
P

R
T

V
W

U

Y
AA

AB
AC

AC S B / 0.30 A S

9

2
b /

8

5 9

FM-06247A.AI4

1E , N

M1

1D , M
5–6 Mechanical Specifications 21 October 1999

ck-
Table 5–3 lists the 21272–D1 (Dchip) and 21272–P1 (Pchip) 304-point ESBGA pa
age dimensions.

Table 5–3 304-Point 2-Layer ESBGA Package Dimensions

Symbol Dimension Value (mm)

A Package overall thickness 1.41 minimum to 1.67 maximum (1.54 nominal)

A1 Ball height 0.56 minimum to 0.70 maximum (0.63 nominal)

A2 Body thickness 0.85 minimum to 0.97 maximum (0.91 nominal)

D Package overall width 30.90 minimum to 31.10 maximum (31.00 nominal)

D1 Ball footprint 27.84 minimum to 28.04 maximum (27.94 nominal)

E Package overall length 30.90 minimum to 31.10 maximum (31.00 nominal)

E1 Ball footprint 27.84 minimum to 28.04 maximum (27.94 nominal)

M,N Ball matrix 23 X 23

M1 Number of rows deep 4

b Solder ball diameter 0.60 minimum to 0.90 maximum (0.75 nominal)

d Corner radius/flat 0.6

e Solder ball pitch 1.27

aaa Surface coplanarity 0.15 maximum

bbb Parallel 0.15 maximum

ccc Top flatness 0.20 maximum

ddd Seating plane clearance 0.15 minimum to 0.50 maximum (0.33 nominal)

P Encapsulation height 0.20 minimum to 0.35 maximum (0.30 nominal)

S Solder ball placement 0.00 maximum
21 October 1999 Mechanical Specifications 5–7

 6
Cchip Architecture

This chapter describes the internal architecture for the Cchip.

6.1 Cchip Architecture

The Cchip performs the following functions:

• Accepts requests from the Pchips and the CPUs

• Orders the arriving requests as required

• Selects among the requests to issue controls to the DRAMs

• Issues probes to the CPUs as appropriate to the selected requests

• Translates CPU PIO addresses to PCI and CSR addresses

• Issues commands to the Pchip as appropriate to the selected (PIO or PTP) requests

• Issues responses to the Pchip and CPU as appropriate to the issued requests

• Issues controls to the Dchip as appropriate to the DRAM accesses, and the probe
and Pchip responses

• Controls the TIGbus to manage interrupts, and maintains CSRs including those that
represent interrupt status

A block diagram of the Cchip is shown in Figure 6–1.
21 October 1999 Cchip Architecture 6–1

Cchip Architecture

o the
 the
ue is
har-

mand
Figure 6–1 Cchip Block Diagram

6.1.1 Memory Array Request Queues, Skid Buffers, and Dispatch Register

Each new request that arrives from a CPU or Pchip is eventually dispatched into one of
four request queues. Request queues have the following characteristics:

• Each queue corresponds to one of the memory arrays controlled by the Cchip.

• Each queue has six entries.

Even requests that do not require DRAM access are placed in one of these queues. In
this case, the selection of the queue is based upon a round-robin algorithm in order to
prevent saturation of one array’s queue with nonmemory accesses.

A newly arriving request is selected into the dispatch register before it is moved int
appropriate array request queue. In case of simultaneous arrival of requests, or if
dispatch register cannot be unloaded because the appropriate array’s request que
full, requests are temporarily held in skid buffers. Skid buffers have the following c
acteristics:

• They contain a simple FIFO for arriving requests.

• There are four entries per CPU skid buffer (x 2 CPUs). (x 4 CPUs for Typhoon)

• There are four entries for the CAPbus skid buffer shared by two Pchips. (three
entries for Typhoon)

Each 21264 CPU is designed to send, at most, four requests (such as two RdBlk with
WrVictimBlk pairs) until it receives an Ack in return. The interface to the Pchips works
in a similar fashion; that is, each Pchip sees the other’s requests on a common com
and address bus.

Dispatch
Register

CPU
Skid Buffers

CAPbus
Skid Buffer

CRSs

CPU
Interface

Dchip Control

System
Command/
Address

Pchip
Interface

Pchip
Command/
Address

Wait
Queues

Status/
Ready

Array
Control

(x4)

Issue/Ready

Request Issue

Status (x2)

Probe/Fill Issue DRAM
Control
(x4)

LJ-05500.AI4

Memory Array A
Request Queue

Memory Array B
Request Queue

Memory Array C
Request Queue

Memory Array D
Request Queue

Memory
and CPU

Bus
Arbiter
6–2 Cchip Architecture 21 October 1999

Cchip Architecture

 gets
void
Although each requestor has a fixed amount of space in its own skid buffer, the
requestor receives an Ack as each request is loaded into the dispatch register. Thus, in
principle, all of the entries in the array request queues could be filled with requests from
a single requestor. Rather, dispatching stops when the dispatch register is destined for
an array queue that is already full, even if another request could be dispatched to a non-
full array queue.

6.1.2 Request Issuing

To service a request, the Cchip issues it from one to three times. When it issues a
request, it initiates various operations that ultimately service the request. To initiate the
operations, the issue logic sends various directives (as necessary) to:

• The memory controllers to initiate DRAM accesses

• The CPU interfaces to initiate probes and SysDC command transmissions

• The Pchip interface

• The Dchips to initiate data movement between the CPUs, the Dchip FPQ or TPQ,
or memory

• The wait queues to enqueue or dequeue the requests there

For example, a CPU requests a PCI device read operation. It is issued two times. The
first issue ultimately causes the read data to be moved from the PCI to the Dchip. The
second issue ultimately causes the data to be moved from the Dchip to the CPU.

Typhoon Issue Modes

Because it supports four CPUs, the Typhoon Cchip has a more complex set of issue
modes: issue throttling and three CPU alternation modes. The three alternation modes
are:

• CPU0 or CPU1 issue alternate with CPU2 or CPU3 issue

• CPU0 or CPU2 issue alternate with CPU1 or CPU3 issue

• CPU0 or CPU3 issue alternate with CPU1 or CPU2 issue

The rules described for the non-Typhoon Cchip that force issue throttling apply also to
Typhoon.

If requests exist from only two CPUs, an alternation mode is entered equivalent to the
non-Typhoon CPU alternation mode for those two CPUs. Otherwise, the alternation
mode used depends on the particular order in which the requests from the CPUs arrived
and were retired.

However, if a request exists from one CPU that gets a dirty-probe hit in another CPU,
the alternation mode is entered, which allows the simultaneous issue of the probe date
extraction and read data fill to the respective CPUs. By contrast, the non-Typhoon
Cchip enters throttle mode in this case. If a conflict of required alternation modes
occurs – for example, a CPU0 read gets a CPU1 probe-dirty hit while a CPU2 read
a CPU0 probe-dirty hit – the alternation mode is changed after several cycles to a
starvation of one of these requests.
21 October 1999 Cchip Architecture 6–3

Cchip Architecture

es in

 mem-
 this
ry

pecific
array
r valid

ts that
le, sev-
 is
ipe-

ues
quest
6.1.3 Request, Probe, and Data Ordering

The CPU interface logic for each CPU holds a list of requests for which probes have
been issued by the request arbiters. The probe queue on each 21264 is eight entries
deep. An arbiter cannot issue a request that requires a probe unless there is room in the
appropriate probe queue. As the probe results are returned, the count of outstanding
probes is decremented, allowing additional requests to issue probes. Using the list of
probes issued, the interface updates the corresponding request in the request queue with
the probe result. This usually allows the request to proceed to the next phase of its pro-
cessing.

The 21272 chipset interacts with the 21264 CPU to ensure the ordering rules of Alpha
architecture. The Cchip and Pchips interact to ensure the ordering and deadlock avoid-
ance rules of the PCI Specification, Revision 2.1. In this regard, the 21272 performs as
a host bridge for CPU PIO and DMA memory accesses. The 21272 also performs as a
PCI-to-PCI bridge for PTP operations from one Pchip to the other.

Table 6–1 provides an interpretation of the PCI Specification, Rev 2.1 ordering rul
the context of the 21272 chipset.

Table 6–2 shows the interaction of requests in the request queue. Normally, CPU
ory references to different addresses can be issued out of order. The arbiters use
freedom in an attempt to optimize the latency and bandwidth of the system. Memo
accesses to the same address are strictly ordered. This is enforced in the array-s
request queue logic because any address matches can occur only within a given
request queue. At the time that a request is loaded, it is compared against all olde
requests, and waits in the event of a match.

DMA requests are ordered with respect to one another. This includes those reques
access different memory addresses, but these requests are pipelined. For examp
eral DMA read requests can be issued one after another, in arrival order. The data
delivered in order, but the DRAM accesses and issuance of CPU probes can be p
lined.

The rules in Table 6–2 that are not address specific are enforced with the wait que
described in Section 6.1.2. The status of these wait queues is forwarded to the re
queues to allow the requests to transition from the Waiting to Ready state.

Table 6–1 PCI and 21272 Lexicon

PCI Lexicon 21272 Lexicon

PMW Posted memory write PIO write request
DMA write request
PTP write request

DRR Delayed read request PIO read request
DMA read request
PTP read request

DWR Delayed write request N/A (all writes are posted)

DRC Delayed read completion PIO read data return
DMA read data return
PTP read data return

DWC Delayed write completion N/A (all writes are posted)
6–4 Cchip Architecture 21 October 1999

Cchip Architecture

o
e the

rt
The one type of access that is not included in this table is scatter-gather table entry
(SGTE) fetch requests from the Pchip. As described in Section 6.1.2, these requests can
pass all other requests from the Pchip as well as all PIO requests, but not vice versa.
These SGTE fetch requests participate in cache coherence. That is, the comments in
Table Note #11 (following Table 6–2) with regard to “wait if equal address” apply t
the interaction between SGTE fetch requests and all other memory accesses. Se
description of scatter-gather translation in Section 10.1.4.3 for more details.

It is necessary to understand the usage of the term issue, which refers to different
actions depending on the request (in the context of Table 6–2). The following cha
helps to interpret the term issue:

Request Issue refers to...

CPU memory The probes and the DRAM access

DMA memory read The probes and the DRAM access

DMA memory write The probe only, but the DRAM location is blocked from other
accesses until the data movement takes place

PIO read Only sending the command to the Pchip

PIO write Moving the data from the CPU to the TPQ; the data movement takes
place when the data is at the head of the TPQ

PTP read Only sending the command to the target

Pchip PTP write Moving the data from the FPQ to the TPQ

Table 6–2 Request Wait Conditions

1st request
dispatched →

PIO or PTP
read

PIO or PTP
write

CPU memory
(read/write/tag)

DMA memory
read

DMA memory
write

2nd request
dispatched ↓

PIO or PTP
read

Wait until
issued data
return in Pchip
order1

1 PIO and PTP reads are strictly ordered against each other for issue to the Pchips. The Pchips and any PCI
bridges should keep them in order. However, two read requests that are sent to different Pchips complete in
whichever order that the data returns.

Wait until
issued to
Pchip2

No wait3 Wait until
issued data in
order4

Wait until
issued data
order from
Pchip5

PIO or PTP
write

No wait 6 Wait until
issued to
Pchip7

No wait3 Wait to issue
data in order8

Wait to issue
data in order9

CPU memory
(read or write)

No wait3 No wait3 Wait if equal
address and
other CPU10

Wait if equal
address11

Wait if equal
address11

DMA memory
read

No wait4 Wait to issue
data can pass8

Wait if equal
address11

Wait to issue
data in order12

Wait until
issued13

DMA memory
write

No wait5 Wait to issue
data in order9

Wait if equal
address11

Wait until
issued13

Wait to issue
data in order14
21 October 1999 Cchip Architecture 6–5

Cchip Architecture
2 PIO and PTP reads wait to issue until any prior PIO or PTP writes have been issued (with data) to the target
Pchip. The Pchip and bridges are responsible for maintaining the order established by the Cchip. This is
required by the PCI Specification, Rev 2.1.

3 CPU memory accesses are not ordered with respect to PIO or PTP operations. This is because there is no rea-
son for the system to do so. The CPU may just as easily have a cached copy of the memory data. If the pro-
gram requires such ordering for PIO operations, it must use register dependencies, or issue the MB instruction.
If the memory operation is first, the MB ensures that the system has delivered any probes for DMA operations
to that cache block before the PIO operation can proceed. If the PIO operation is first, a register dependency
ensures that the PIO read has completed. For a PIO write, Alpha architecture requires a subsequent PIO read to
ensure that the write has been seen at the device. This is necessary because a DMA read return may pass the
write (see Table Note 8).

 If DMA is not an issue, an MB after a PIO write can be used to ensure that the write has been initiated, because
the CPU waits for the data to be moved before proceeding past the MB. This can be useful for ordering PIO
operations between processors, threads or processes in the same processor, CSR operations, and PTP opera-
tions.

4 PIO and PTP reads wait until earlier DMA memory reads issue. Also, PTP reads complete after earlier DMA
reads complete (return data to the Pchip). On the other hand, DMA memory reads do not wait for PTP reads to
issue or to complete. This is allowed by the PCI Specification, Rev 2.1.

5 The issue of a DMA write includes the invalidating probes and guarantees that the data will be written to mem-
ory before the next access to that memory location by any other request (because of the equal-address waits in
the table). A PIO or PTP read that arrives after the DMA write will not issue, and therefore, will not return its
data until the DMA write has completed. If a DMA write arrives after a PIO or PTP read has been issued, but
before the data for the PIO returns, the DMA data must be written to memory (and the associated invalidate
probes issued to the CPUs) before the PIO data is returned to the requestor. If the DMA write arrives after the
PIO read data, the DMA write waits until the PIO read data is delivered. (Although nominally not allowed by
the PCI Specification, Rev 2.1, there is no deadlock possibility because nothing prevents the DMA write from
completing.) In summary, the system keeps the ordering of the returning PIO read data and any DMA write
data that occurred on the PCI bus as delivered by the Pchip. This is required by the PCI Specification, Rev 2.1
(except as noted).

6 PIO and PTP writes may pass PIO and PTP reads. This is allowed by the PCI Specification, Rev 2.1.

7 PIO and PTP writes are strictly ordered against each other. This is required by the PCI Specification, Rev 2.1.

8 If a DMA read arrives after a PIO or PTP write, the read waits to issue, but the DMA read data can pass the
data for the PIO or PTP write. This apparent violation of the PCI Specification, Rev 2.1, (DRC should not pass
a PMW) is required to accommodate devices (such as an ISA bridge), which are not PCI Specification, Rev
2.1 compliant, in that they might not accept a write while waiting for their read to complete. Such a device
would lead to deadlock if DMA read data could not pass PIO write data.

If a PIO or PTP write arrives after a DMA read, the write data waits until the data for the DMA read has been
delivered to the Pchip. The Pchip and bridges need to reorder this data to prevent deadlock according to the
PCI Specification, Rev 2.1.

9 PIO writes and PTP writes are strictly ordered with respect to DMA writes. The ordering of PTP writes and
DMA writes from the same Pchip is required by the PCI Specification, Rev 2.1.

10All memory accesses to the same address are ordered. Between CPUs, this is important to cover the interac-
tion of nearly simultaneous SharedToDirty requests, as well as InvalToDirty and WrVictimBlk interactions.
Since a given CPU will never have two requests to the same address outstanding at the same time, compari-
sons of addresses from the same CPU are ignored. In any case, the address comparison is inexact; addresses
are considered equal if bits <26:12> and bits <7:6> are equal.

11DMA versus CPU ordering on equal addresses ensures, among other things, that DMA quadword RMW oper-
ations are atomic. It also ensures that WrVictimBlk requests will wait to be suppressed by invalidating probes,
when the request and probe pass on the duplex system address buses. The address comparison is inexact;
addresses are considered equal if bits <26:12> and bits <7:6> are equal.

12All DMA reads are strictly ordered against each other because DMA devices have no internal MB to enforce
ordering. This is allowed but not required by the PCI Specification, Rev 2.1.
6–6 Cchip Architecture 21 October 1999

Cchip Architecture

g of
uests
d by

an MB
lpha

t be

 be
sued
 can-
The need to strictly order probes for DMA accesses, even reads and writes, to distinct
addresses can be shown by the following violation of the impossible sequence of Alpha
Architecture Litmus Test 8 between a CPU and a DMA device, assuming the rule for
ordering of responses and probes is not followed:

The rules of Table 6–2 define the serialization point of the system to be the loadin
the request queue for those requests that have wait conditions. In addition, for req
that do not have wait conditions, there is an additional point of serialization define
the time that the requests are issued. In this context issue means both CPU probe issued
and memory access issued. Because the Cchip does not receive any indication of
instruction executed by the 21264, in order to avoid the impossible sequence of A
Architecture Litmus Test 8, the Cchip must also invoke the following rule:

Rule: Ordering of Responses and Probes: If Request A from CPU A is issued after
Request B from any other source, the response to CPU A for Request A mus
issued after any probe for Request B has been issued to CPU A.

The converse is not required. That is, it is permissible for a probe for Request A to
issued before the Request B response is issued to CPU B, even if Request A is is
after Request B. In less formal words it can be said, “probes can pass fills, but fills
not pass probes.”

13DMA reads and writes are issued in arrival order, even if the addresses are not equal. This ordering applies to
the issuance of probes only. The actual memory accesses may be reordered if the addresses are not equal so
that the impact on DMA read latency is minimized. See the following text for a potential failure of Litmus Test
8 if the probe ordering is not enforced. The fact that DMA reads cannot pass DMA writes from the same Pchip
is required by the PCI Specification, Rev 2.1. The fact that DMA writes cannot pass DMA reads from the
same Pchip is nominally not allowed by the PCI Specification, Rev 2.1 (to avoid deadlock). Since both opera-
tions are guaranteed to complete on the Cchip, there is no deadlock issue to avoid.

14All DMA writes are strictly ordered against each other because DMA devices have no internal MB to enforce
ordering. This is required by the PCI Specification, Rev 2.1.

CPU A Device B System

Rd X,1 ;A has an old copy of X,

Wr X,2 DMA write to X from B arrives first

Rd Y,? DMA read to Y from B arrives second

St Y,2 RdBlkMod to Y from A arrives third
DMA read to Y issues first

Rd Y,1 Probe Y misses, DMA gets memory data
RdBlkMod to Y issues second, succeeds

MB CPU A has not seen the probe for X yet and system does not see
the MB

Rd X,1 Violates Litmus Test 8
DMA write to X from B issues third
Invalidate X probe sent to A (too late)
21 October 1999 Cchip Architecture 6–7

Cchip Architecture

ead.
eed
 wait

i-

n
e

cause
only
com-
If this rule is not implemented, the following sequence of events leads to a failure of
Litmus Test 8:

In addition to the ordering rule for request issue, and the ordering rule for probe deliv-
ery, it is also necessary to take into account the ordering of data for PIO and DMA
requests. In particular the following rule must be obeyed:

Rule: Ordering of PIO Read Data: When PIO read data arrives on the Dchip, it cannot
be delivered to the CPU until any previously arrived DMA write requests have
been completed (or at least had their probes issued).

If this rule is not obeyed, then a DMA write request (that had been sent from the device
prior to the arrival of the PIO read at the device) might not be reflected to the CPU issu-
ing the PIO read. This would render useless the “DMA flushing” purpose of a PIO r
In systems with more than one Pchip, only the DMA writes from the same Pchip n
be flushed as dictated by the PCI Specification, Rev 2.1. This is implemented with
conditions.

Similarly, the PCI Specification, Rev 2.1 producer-consumer paradigm appears to
require the following rule, which is violated by the Cchip, in favor of the Alpha arch
tecture mandate to verify the completion of a PIO write by using a subsequent PIO
read:

Rule: Ordering of PIO Write Data: If any DMA reads have been issued after a give
PIO write, the data for the PIO write must be delivered to the Pchip before th
data for the DMA read.

If this rule were followed, a CPU issuing a PIO write/MB/memory write sequence
could never have the memory update arrive at the device before the PIO write. Be
the CPU’s knowledge of the ordering of the PIO write and the DMA read is based
on the ordering of the data movement and probe commands, the CPU would not
plete the MB in this case until the data movement for the PIO write.

CPU A CPU B System

Rd Y,1 Rd X,1

Rd X,1 Rd Y,1 ;A has a shared copy of X,

;B has a shared copy of Y

St Y,2 St X,2 SharedToDirty Y from A issues first
SharedToDirty X from B issues second
Invalidate Y probe queued to B
Invalidate X probe queued to A
Response SharedToDirty Y Success sent to A
Response SharedToDirty X Success sent to B

MB MB CPUs have not seen the probes yet and system does not see
the MB

Rd X,1 Rd Y,1 Violates Litmus Test 8
Invalidate Y probe sent to B (too late)
Invalidate X probe sent to A
6–8 Cchip Architecture 21 October 1999

Cchip Architecture

lock.
t,

vice

s. In
be

the
uest

sed

to a
f the
er-

ke
As described in the notes to Table 6–2, this rule is violated in order to avoid a dead
A device such as an ISA bridge, which is not PCI Specification, Rev 2.1 complian
may never allow a write to complete until it has its read data returned. If a program
requires the PIO write to complete before updating memory, it should follow the ad
given in the Alpha Architecture to issue a subsequent PIO read.

6.1.4 Request Queue Maintenance

The request queue is a unified queue of all requests from the CPUs and the Pchip
an implementation-dependent manner, the relative ages of any set of entries can
determined. Each queue entry contains the following information:

• Command and other information, such as; CPU MAF/VAF id, number of QW for
DMA ops, and PIO mask

• Address

• Phase, Valid

• Status (such as probe results)

• Address match wait vector – A bit vector identifying the older requests in this
queue with (nearly) the same address, and for which this request must wait

• Page hit vector – A bit vector identifying the older requests in this queue with
same DRAM page address, so that this request can issue after a previous req
without waiting for RAS precharge delay

• Older request vector – A bit vector identifying all older requests in this queue (u
to arbitrate among otherwise equal ready requests)

Note: Although there are conceptually 3-bit vectors, they can be combined in
2-bit vector to represent the following four comparisons against each o
other requests in the array queue (address match wait includes and ov
rides page hit):

1. Not younger

2. Younger and page hit match
 (but not address match wait)

3. Younger and address match wait

4. Younger and no match

At the time that a request is dispatched into the queue, the following operations ta
place:

• The command and address are loaded.

• The phase, valid, and status indicators are initialized.

• The command and address are matched against all other valid requests in this array
queue.
21 October 1999 Cchip Architecture 6–9

Cchip Architecture
• Based on the results of the address match, the address match, page hit, and older
request vectors are initialized.

6.1.4.1 Request Queue and Data Queue Deadlock Avoidance

Two types of requests, PIO reads and PTP reads, are issued from the request queue, but
must wait for data to return from the Pchip before completing. However, in order to
receive the returned data, it might be necessary for a DMA write request from the same
Pchip to complete first. This can lead to a deadlock if there is no free entry in the appro-
priate request queue. This could happen if the appropriate request queue is full of PIO
read requests waiting for their data.

In addition, when there are devices in the system that are not PCI Specification, Rev 2.1
compliant, DMA read requests from the Pchip may need to complete before any subse-
quent PIO or PTP operations (reads or writes) can complete. These noncompleted oper-
ations may block other PIO or PTP operations from being issued to the Pchip.

The Dchip TPQ, associated with such PIO and PTP operations, holds data for a finite
number of requests. In fact, the TPQ is split into the TPQM (for returning DMA data,
which can always be delivered) and the TPQP (for PIO write and PTP read or write
data, which may not be immediately deliverable).

In particular, the Dchips support:

• A TPQP of four entries in a system with two Dchips

• A TPQP of eight entries in a system with four or eight Dchips

In order to avoid these deadlocks, the following limits are imposed:

Rule: Limiting PIO Requests: The total number of PIO requests in the array queues
from both CPUs at any time is limited to four.

In addition, the dispatcher never allows a request queue to completely fill with PIO
requests. For the CPU, if no more PIO requests can be dispatched, the CPU will not
receive an Ack for its PIO (and any subsequent requests), and will stall. For the Pchips,
this strategy is not sufficient because a DMA request may become stalled by this strat-
egy, and it is the DMA request that must complete. Therefore, the following rule must
be imposed on the Pchips:

Rule: Limiting PTP Requests: The total number of PTP requests that may be outstand-
ing from both Pchips at any time is limited to four. The Pchip should force retry
on the PCI bus for any requests over this limit.

Due to these limits, in a two-Dchip system (only one Pchip, so no PTP is possible), the
TPQP can hold the data for all of the PIO writes in the system that can be issued. In a
four- or eight-Dchip system, the TPQP can hold the data for all of the PIO reads (or PTP
reads or writes) that can be issued. Once all of the PIO and PTP writes have issued, any
DMA reads or writes can issue (the WQI allows DMA operations to pass any unissued
PIO or PTP reads) and can also complete (the WQT allows DMA operations to pass all
others).

In a system that has PCI-to-PCI bridges on both PCI buses, the PTP limit rule on the
Pchips can lead to another deadlock. Consider the case where the bridge tries to send a
PTP write to the bridge on the other PCI bus, but is inhibited by the Pchip due to the
6–10 Cchip Architecture 21 October 1999

CAPbus Interface

ads
 to the
al sit-
s.

That
uest
at
tion,
te.
ad-
1
at

of
llow

 band-
nly if,
3

 no

 pull-
 the
 all

se of
preceding rule. At the same time, if the Pchip’s downstream queue is filled with re
(possibly from a CPU) targeted at the bridge, the bridge may be unable to respond
read until its write is serviced because its upstream data buffer is full. In a reciproc
uation, the system will deadlock because the PTP writes can never make progres

The following rule for the Cchip prevents this deadlock:

Rule: Limiting PCI Read Requests to the Pchip: The Cchip should never allow the
Pchip’s request queue to fill with read requests.

In this sense, the Cchip must obey the PCI Specification, Rev 2.1 ordering rules.
is, it must always allow a PCI write to pass PCI reads. By not filling the Pchip’s req
queue with PCI reads, it guarantees that it can send a PCI write to the Pchip. If th
write is a PTP write to the PCI-to-PCI bridge, the latter bridge (being PCI Specifica
Rev 2.1 compliant) must accept the write without requiring its own write to comple
Accepting the write decrements the PTP count on the Cchip, thus breaking the de
lock. If the write sent to the Pchip is any other write to a PCI Specification, Rev 2.
compliant device, it must also complete. If the write is to a noncompliant device, th
device can only delay the write until its DMA request completes, and by the rules
Table 6–2, nothing can block the DMA request completion. (The 21272 does not a
noncompliant devices to perform PTP operations.)

6.1.5 Page Hit DRAM Access

The Cchip uses page-hit DRAM accesses under certain circumstances to improve
width. The Cchip considers two addresses to be in the same DRAM page if, and o
bits <26:12> of the addresses are equal. Typhoon uses bits <27:12> if the DRAM has
blank bits.

6.2 CAPbus Interface

The Cchip and Pchips communicate over a 24-pin open-drain bus called the
CAPbus. It is used for command transfers and for Cchip CSR data, since there is
data path from the Cchip to the Dchips.

The CAPbus is implemented with open-drain drivers on the Cchip and Pchips, and
up resistors on the module. The command encodings are defined such that when
CAPbus is not actively driven by any chip, a No-op (all ones) command is seen by
receivers.

6.2.1 Power-Up/Reset

At power-up/reset, the Cchip drives b_cap<1:0> with the PADbus check-bit width
information in the form of the base-configuration setting from b_td<1:0>. The Pchip
latches this information on the deasserting edge of i_sysrst_l. See Section 10.2.2.1 for
details of the Cchip system configuration CSR.

6.2.2 CAPbus Protocol

This section describes CAPbus arbitration, data validation, flow control, and the u
byte masks for PTP write operations.
21 October 1999 Cchip Architecture 6–11

CAPbus Interface

ssary

g
n

 that
 after

the

e
6.2.2.1 CAPbus Arbitration — b_cact x_l, i_creq_l<1:0>, b_capsel<1:0>

The CAPbus uses a distributed arbitration scheme. Each device samples the arbitration
signals on the rising edge of clock to determine who won arbitration. The arbitration
protocol requires a minimum of one turnaround cycle (or idle state) between active bus
masters, enforced by each device. The idle state is defined as no bus master actively
driving the CAPbus (all devices tristated).

The Cchip and the Pchips use b_cactx_l, i_creq_l<0>, and i_creq_l<1> to arbitrate for
the CAPbus. During an arbitration cycle:

• If the Cchip asserts b_cactx_l, it may drive the CAPbus the following cycle.

• If b_cactx_l is not asserted and only one of the Pchips asserts i_creq_l, that Pchip
drives the CAPbus the following two cycles and is considered the owner of the
CAPbus.

• If b_cactx_l is not asserted and both Pchips assert i_creq_l, the Pchip that was not
the most recent owner of the CAPbus drives the CAPbus the following two cycles
and is considered the owner of the CAPbus.

An arbitration cycle is defined as being any cycle, except for the two cycles after an
arbitration cycle, in which one of the Pchips wins arbitration. This ensures the turn-
around cycle after any Pchip drives the CAPbus for two cycles. (The turnaround cycle
is the next arbitration cycle.)

The Cchip also asserts b_cactx_l during any cycle in which it drives the CAPbus. This
ensures a turnaround cycle before a Pchip can drive the CAPbus, but allows the Cchip
itself to drive multiple times in a row.

The Cchip uses the b_capsel<0> and b_capsel<1> signals to indicate the target of a com-
mand that it drives on the CAPbus. That is, when b_cactx_l and b_capsel<0> are simulta-
neously asserted, the command must be accepted by Pchip0, and similarly for Pchip1 when
b_cactx_l and b_capsel<1> are simultaneously asserted. The signal b_capsel<n> is only
asserted for the first cycle of a multicycle command. This allows the Pchips to decode
downstream commands if, and only if, b_capsel<n> is asserted. Furthermore, each Pchip
receives a copy of the other Pchip’s b_capsel signal. This allows a Pchip to monitor the
transmission of a PTP write command from the Cchip to the other Pchip, which is nece
for flow control of PTP operations (see Section 6.2.2.4).

One other special use of b_cactx_l allows a Pchip to drive the CAPbus without winnin
an arbitration cycle or becoming the owner of the CAPbus. This occurs either for a
RMW operation or for a Cchip CSR write operation.

For RMW, the Cchip first asserts b_cactx_l and b_capsel, and then drives the CAPbus
with a Downstream LoadP–RMW command. It holds b_cactx_l asserted until the tar-
get Pchip drives the CAPbus with an Upstream LoadP–RMW command, indicating
the Pchip is returning the merged data. The data flows on the PADbus to the Pchip
the downstream LoadP, and flows from the Pchip after the upstream LoadP.

For Cchip CSR write, the Cchip first asserts b_cactx_l and b_capsel, and then drives
the CAPbus with a Cchip CSR write command. The data flows on the PADbus to
Pchip after this command. The Cchip holds b_cactx_l asserted until the target Pchip
drives the CAPbus with an Upstream LoadP–CSR write command, followed by th
6–12 Cchip Architecture 21 October 1999

CAPbus Interface

 the

g

o
CSR write data on the CAPbus in four consecutive cycles (least significant word first).
At the conclusion of these cycles, the Cchip may deassert b_cactx_l (or drive another
command itself).

Some examples of the CAPbus arbitration signals are shown in the timing diagram in
Figure 6–2. This figure indicates which cycles are arbitration cycles, which chip is
owner of the CAPbus, and which Pchip has priority in case they both assert
i_creq_l<n> in the same arbitration cycle. The owner is not always the entity drivin
the bus. The least recent Pchip owner (arbitration winner) determines the priority
between Pchips for the next arbitration cycle.

At power-up/reset, the priority is determined in each Pchip by examining its
Pchip_Num input. Pchip0 has the initial priority. Also, at power-up/reset, b_cactx_l,
i_creq_l<0>, and i_creq_l<1> are all asserted for one cycle. This allows the Cchip t
determine which Pchips are present without a Pchip winning arbitration.
21 October 1999 Cchip Architecture 6–13

CAPbus Interface
Figure 6–2 CAPbus Arbitration

6.2.2.2 Data Validation — b_capgd<1:0>

When the Cchip issues a LoadP command to a Pchip, indicating that it is supplying data
in response to an earlier Pchip request, it must validate the data. This is done with the
b_capgd<n> signal (one per Pchip). This allows the Cchip to speculatively deliver
memory data from DRAM while waiting for probe results from the CPUs.

C
lk

P
0_

re
a

P
1_

re
a

C
_a

ct
iv

e

ar
b_

cy
c

B
us

 O
w

ne
r

P
ch

ip
 P

rio
rit

y

P
0_

se
l

P
1_

se
l

C
A

P
bu

s
*P

0
C

m
d

*P
1

C
m

d
*C

ch
ip

*C
ch

ip
 C

m
d/

C
S

R
 W

r
*P

0
Lo

ad
P

*P
0

C
m

d
*P

1
C

m
d

LJ
-0

55
07

.A
I4

P
ch

ip
 1

P
ch

ip
 0

P
ch

ip
 0

P
ch

ip
 1

P
ch

ip
 0

P
ch

ip
 1

C
ch

ip

P
ch

ip
 0

P
ch

ip
 1

N
on

e

*T
he

 c
om

m
an

d
on

 th
e

C
A

P
bu

s
is

 s
et

 to
 N

O
P

 (
al

l o
ne

s)
 b

y
pu

ll-
up

s
on

 th
e

m
od

ul
e.
6–14 Cchip Architecture 21 October 1999

CAPbus Interface

ction
unt
Precisely two cycles after the LoadP command, the Cchip can assert this unidirectional
signal to validate the data delivered on the PADbus. If the data is not valid, the Dchips
drive the PADbus with one quadword (two PADbus cycles) of junk data. The Cchip
may reissue the LoadP command without asserting b_capgd<n> numerous times.
Eventually the Cchip reissues the LoadP command and asserts b_capgd<n>, and the
Dchips supply the correct data. The succession of LoadP commands (without or with
b_capgd<n>) is only constrained by the normal CAPbus and PADbus availability.

If a LoadP command is issued on the CAPbus in cycle n, the Good_Data signal is valid
in cycle n+2. Because the Good_Data signal is needed to determine if the PADbus will
continue to be used, the Cchip does not issue another CAPbus command that requires
use of the PADbus until cycle n+3.

The b_capgd<n> signal is used for:

• DMA memory read LoadP (speculative memory access)

• SGTE read LoadP (speculative memory access)

• PTP read LoadP (unconditional access to target PCI bus)

The b_capgd<n> signal is not used for DMA RMW LoadP (no speculative access). If
b_capgd<n> were used with RMW, it would complicate the RMW processing on the
Pchip and would also complicate the ownership of the CAPbus. Because RMW opera-
tions should be rare, the additional delay, while the Cchip verifies if the data is good
before sending the CAPbus command, has negligible performance impact.

6.2.2.3 Flow Control — b_cack, i_pack<1:0>

Signal b_cack is a unidirectional signal that informs the Pchips when a Pchip dispatch
queue entry has been freed on the Cchip, and when an upstream data buffer has been
freed on the Dchip. This signal goes to both Pchips. The signal first synchronizes the
Pchips by asserting for one clock cycle on the deasserting edge of i_sysrst_l. From then
on it transfers the following information on alternating clock cycles:

• Request Queue Ack

• Data Buffer Ack

Signals i_pack<1:0> are unidirectional signals (one per Pchip), which inform the
Cchip when a downstream data buffer has been freed on the Pchip, and when a Cchip
request queue entry has been freed on the Pchip. The signals are first synchronized with
the b_cack signal, as described in the previous paragraph, and then on alternating clock
cycles send Request Queue Ack and Data Buffer Ack.

The Cchip and the Pchips monitor the CAPbus commands, their sources and destina-
tions, and the Ack signals to keep track of the number of data buffers and request
queues any given chip has available.

Until the relevant Ack signal is received, the number of requests and data transfers is
limited to the following maximum values, although not all transactions count against
the limit, as shown in Table 6–3. In the table, the notation +1 means that the transa
increases the count. The notation –1 means that the transaction decreases the co
toward the following limits:
21 October 1999 Cchip Architecture 6–15

CAPbus Interface

and
ible

rds).
o

du-

ip

d

with
the
 over-
ends
 is

pi-
 TPD,
 does
ing

 for
s do

APbus
• TPR (ToPchipRequests) — Programmable on the Cchip. Set to 4 for the Pchip
applies to each Pchip individually. In addition, to avoid a deadlock that is poss
with PTP operations and PCI-to-PCI bridges, the Cchip never allows a Pchip
request queue to fill with PCI reads.

• TPD (ToPchipData) — Programmable on the Cchip. Set to 2 for the Pchip. The
data transfer can range from one quadword to a full cache block (eight quadwo
The Pchip sends i_pack<n> signals for multiple small transfers as long as they d
not cumulatively consume a full cache block. This applies to each Pchip indivi
ally.

• FPR (FromPchipRequests) — Programmable on the Pchip. Set to 4 for the Cch
and applies cumulatively to the requests from both Pchips.

• FPD (FromPchipData) — Programmable on the Pchip. Set to 4 for the Dchip an
applies cumulatively to the transfers from both Pchips. For a system with two
Dchips (and hence only one Pchip) this is the actual Dchip limit. For a system
four or eight Dchips, there are actually more data buffers available. However,
Pchips are still programmed to the limit of 4 because this allows staggered but
lapping transfers on the two PADbuses. When this limit is reached, the Cchip s
one b_cack for each additional nonoverlapped transfer, until the true limit (of 8)
reached.

Table 6–3 lists the flow-control mechanisms used by the Cchip and the Pchips. Ty
cally, data solicited by the Pchip and returned by the Cchip does not count against
but the reverse is not true — data solicited by the Cchip and returned by the Pchip
count against FPD. RMW data does not count in either direction, but for bookkeep
purposes, the initial request is charged with a data transfer (like a DMA write). As
the counts of requests, typically the downstream LoadP commands on the CAPbu
not count against the TPR, but some of the upstream LoadP commands on the C
do count against the FPR.

Table 6–3 Cchip/Pchip Flow Control

Pchip Action Cchip Action FPR1 FPD1 TPR1 TPD1

Issue DMA N QW Read
Signal Req Ack
Return LOAD_P_DMA
Return Data, Signal Good_Data

+1
–1

Issue SGTE N QW Read
Signal Req Ack
Return LOAD_P_SGTE
Return Data, Signal Good_Data

+1
–1

Issue DMA N QW Write
Send Data

Signal Req Ack
Signal Data Ack

+1

–1
+1

–1

6–16 Cchip Architecture 21 October 1999

CAPbus Interface
Issue DMA RMW QW
(no data but increment count)

Return LOAD_P_RMW (up)
Return Merged Data

Signal Req Ack
Return LOAD_P_RMW (down)
Return Data

Signal Data Ack

+1

–1
+1

–1

Issue PTP Read
Signal Req Ack
Return LOAD_P_PTP
Return Data, Signal Good_Data

+1
–1

Return LOAD_P_IO, Status
Return Data
Signal Req Ack

Issue PTP or PIO Read

Signal Req Ack
Signal Data Ack

+1

–1

+1

–1

+1

–1

Issue PTP Write
Send Data

Signal Req Ack
Signal Data Ack

+1

–1
+1

–1

Signal Req Ack
Signal Data Ack

Issue PTP or PIO Write
Send Data

+1

–1
+1

–1

Return LOAD_P_CSR_Rd
Return Data

Issue Pchip CSR Read

Signal Req Ack
Signal Data Ack

+1

–1
+1

–1

—2

Issue Pchip CSR Write Send Data —2

Return LOAD_P_CSR_Rd
Return Data (PADbus)

Issue Cchip CSR Read Send Data
(CAPbus) Signal Req Ack Sig-
nal Data Ack

+1 –1 +1 –1 —2

Return LOADP_CSR_Wr
Return Data (CAPbus)

Issue Cchip CSR Write Send
Data (PADbus)

—2

1 The notation +1 means that the transaction increases the count. The notation –1 means that
the transaction decreases the count toward the limits stated in the paragraphs preceding this
table.

2 CSR reads and writes do not count against the TPR limit, but be aware of the following:

• Because of limited resources on the Pchip, only one CSR read request may be outstanding
to a given Pchip at any time.

• CSR write operations are executed as an atomic CAPbus transaction so that no special restriction
is needed. Details of these operations are provided in Section 6.2.2.4 and Section 6.2.2.5.

Table 6–3 Cchip/Pchip Flow Control (Continued)

Pchip Action Cchip Action FPR1 FPD1 TPR1 TPD1
21 October 1999 Cchip Architecture 6–17

CAPbus Interface

 a
com-
w of

ing

 snoop

ust
ause
e it to
ned).
a sep-
TP
 write

g

e
fol-
e
gle
6.2.2.4 Flow Control — PTP Operations

In addition to the flow control requirements listed in Table 6–3, the Cchip also has
requirement for deadlock avoidance in that the Pchips have no more than four un
pleted PTP operations outstanding in the Cchip at one time. In fact, to avoid overflo
the Dchips TPQP the data must be transferred from the Dchips TPQP for the first
request before the fifth request can be made. For PTP read operations, the return
LoadP signifies the completion of the operation. The transfer from TPQP can be
assumed to be of maximum length (one cache block) in this case. Each Pchip can
the CAPbus for the other Pchip’s PTP LoadP.

For PTP write operations, which in the context of the PCI Specification are posted
writes, there is no required acknowledgment of completion. Instead, the chipset
employs the following strategy. Any PTP write operation originating from a Pchip m
eventually result in a PCI memory write operation targeted at the other Pchip. Bec
both Pchips can observe this request from the Cchip on the CAPbus, they can us
determine the completion of the PTP write operation (as far as the Cchip is concer
In fact, this mechanism is the only reason that PCI memory write operations have
arate CAPbus opcode, depending on whether they originate from a CPU or as a P
(see Table 6–7 for opcodes). The transfer length from TPQP is encoded in the PTP
CAPbus command.

6.2.2.5 Byte Masks — PTP Write Operations

One side effect of the flow control mechanism for PTP operations is that the Pchip must
not accept more than one PTP operation from the PCI bus into its request queue, until
all previous PTP requests have been sent on the CAPbus. (Otherwise, the Pchip might
not be able to send an accepted PTP operation as the PCI ordering rules would block
subsequent DMA operations.) However, if a device on the PCI bus turns off some of the
byte enables in the middle of a transfer, the Pchip requires one more PCI cycle to stop
the transfer. During that extra cycle, still more byte enables may be de-asserted. Com-
bined with the earlier “full” quadwords, the Pchip now has to package the followin
into one CAPbus request to the Cchip:

• Several full quadwords

• A quadword with some byte enables

• Another quadword with some byte enables

To solve this problem, the chipset implements the following strategy. The CAPbus
command to the Cchip for a PTP write operation always specifies a quadword mask that
indicates all of the quadwords (full or not) to be transferred on the PADbus. However,
before this CAPbus command is sent, a special PTP byte-mask bypass CAPbus opera-
tion is sent by the Pchip to the other Pchip. This command contains 16 byte-mask bits
corresponding to the byte-enable signals from the PCI bus for the last two quadwords
transferred on the PADbus. If only one quadword is sent, only the low-order 8 byte-
mask bits are used. The increasing order of byte-mask bits always corresponds to the
increasing PCI addressed bytes (see Table 6–8).

The order of these PTP byte-mask bypass commands must match the order of th
upstream and downstream PTP memory write commands. This is guaranteed as
lows. The Cchip downstream PTP memory write commands follow the order of th
upstream PTP memory write commands by design of the Cchip and Dchips (a sin
6–18 Cchip Architecture 21 October 1999

CAPbus Interface

ast
iority

e
 a

, the

e
ith
otes
s, for
sfers,
resent

e C-
 in
FPQ and TPQ is shared by both Pchips). The upstream PTP memory write commands
follow the order of the PTP byte-mask bypass commands because the Pchips maintain a
“PTP memory write priority” bit. The priority is assigned to the Pchip that sent the le
recent PTP byte-mask bypass without a corresponding PTP memory write. This pr
is easy to track because a Pchip never sends two PTP byte-mask bypass commands
without an intervening PTP memory write command. Even though Pchip0 may los
overall CAPbus priority to Pchip1 between its two commands, Pchip1 cannot send
PTP memory write unless it has already sent a PTP byte-mask bypass. Therefore
worst case is:

• Pchip0 sends PTP byte-mask bypass for request A and loses CAPbus priority (but
gains PTP memory write priority).

• Pchip1 sends PTP byte-mask bypass for request B and loses CAPbus priority.

• Pchip0 sends PTP memory write for request A and loses CAPbus priority (and
Pchip1 gains PTP memory write priority).

• Pchip1 sends PTP memory write for request B.

6.2.3 CAPbus Command Encodings

Figure 6–3 shows the format of the 2-cycle CAPbus commands. Table 6–4 lists th
encoding of the T field, the number of quadwords for which the PADbus is busy w
the transfer, and the address of the first quadword transferred. The mask field den
which data is valid in the transfer, and is aligned to eight times the data type. That i
byte transfers, the eight bits represent a total of one quadword. For longword tran
the eight bits represent four quadwords. For quadword transfers, the eight bits rep
up to a full cache block (eight quadwords).

Figure 6–4 shows the format of the 1-cycle CAPbus commands. Table 6–5 lists th
bit encoding. Table 6–6 lists the encoding of the LDP field. The CSR# is described
Chapter 10.

Figure 6–3 Format of 2-Cycle Commands

LJ-05508.AI4

Phase 2

0121920212223 11

Phase 1

0192023

T X Mask <7:0> Address <34:32, 11:3>

Command Address <31:12>
21 October 1999 Cchip Architecture 6–19

CAPbus Interface

s.
Figure 6–4 Format of 1-Cycle Commands

Table 6–7 lists the commands that the Cchip sends to the Pchips over the CAPbu

Table 6–4 Encoding of T Field T Mask Type PADbus Transfer Characteristics

T Mask Type PADbus Transfer Characteristics

00 Byte One quadword transferred.

01 Longword Four quadwords are always transferred. The 8-bit mask comprises
four longword pairs. The first transferred quadword is specified by
addr<4:3> and corresponds to the lowest-order nonzero pair of
mask bits. If the number of nonzero mask bit pairs is less than four,
the trailing quadwords on the PADbus are discarded.

10 Quadword The number of quadwords transferred is equal to the number of
asserted mask bits. The first transferred quadword is specified by
addr<5:3> and corresponds to the lowest-order asserted mask bit.

11 Illegal Causes unspecified results.

Table 6–5 C-Bit Encoding

C-Bit Meaning

0 Pchip CSR operation

1 Cchip CSR operation

Table 6–6 LDP Encoding

LDP Meaning for Downstream LoadP Meaning for Upstream LoadP

00 LoadP DMA read LoadP PCI read

01 LoadP DMA RMW (to Pchip) LoadP DMA RMW (from Pchip)

10 LoadP PTP LoadP CSR read

11 LoadP SGTE read LoadP CSR write

Table 6–7 Cchip-to-Pchip Commands

Code Command Cycles Valid Fields

0000 PCI IACK cycle 2 T, Mask

0001 PCI special cycle 2 T, Mask

0010 PCI IO read 2 T, Mask

Phase 1

0192023

Command

LJ-05509.AI4

Ldp C Reserved

1213161718

CSR #
6–20 Cchip Architecture 21 October 1999

CAPbus Interface

.
Table 6–8 lists the commands that the Pchips send to the Cchip over the CAPbus

0011 PCI IO write 2 T, Mask

0100 Reserved — —

0101 PCI memory write, PTP 2 T, Mask

0110 PCI memory read 2 T, Mask

0111 PCI memory write, from CPU 2 T, Mask

1000 CSR read 1 or 51 C-bit, CSR#

1001 CSR write 1 (+1)1 C-bit, CSR#

1010 PCI configuration read 2 T, Mask

1011 PCI configuration write 2 T, Mask

1100 Load PADbus data downstream 1 LDP

1101 Reserved (Pchip upstream LoadP) — —

1110 Reserved — —

1111 No-op 1 —

1 For details, refer to command descriptions.

Table 6–8 Pchip-to-Cchip and Pchip-to-Pchip Bypass Commands

Code Command Cycles Valid Fields

0000 DMA read N QW 2 T=10, Mask

0001 Scatter-gather table entry read N QW 2 T=10, Mask

0010 Reserved — —

0011 Reserved — —

0100 Reserved — —

0101 Reserved — —

0110 PTP memory read 2 T, Mask

0111 PTP memory write 2 T=10, Mask

1000 DMA RMW QW 2 T=10, only one mask bit set

1001 DMA write N QW 2 T=10, Mask

1010 Reserved — —

1011 Reserved — —

1100 Reserved (Cchip downstream LoadP) — —

Table 6–7 Cchip-to-Pchip Commands (Continued)

Code Command Cycles Valid Fields
21 October 1999 Cchip Architecture 6–21

CAPbus Interface

–7

al

K/
6.2.3.1 Cchip-to-Pchip Commands

The following is a detailed description of special-case commands listed in Table 6
and Table 6–8.

PIO IACK

The PIO IACK command is issued when the CPU does a PIO read to IACK/speci
cycle space. It causes an IACK command to be generated on the PCI bus.

PIO Special Cycle

The PIO special cycle command is issued when the CPU does a PIO write to IAC
special space. It causes a special cycle command to be issued on the PCI bus.

Load PADbus Downstream (To Pchip) — Potential PADbus Conflict

This command is issued when the Cchip has instructed the Dchips to put data on the
PADbus for the Pchips. The Cchip always issues this command as a single cycle, assert-
ing b_cactx_l and one of the b_capsel signals simultaneously with the command on the
CAPbus. The LDP field indicates whether the data is for a DMA read, an SGTE read, a
PTP read, or the first stage of a DMA RMW operation.

In case of DMA RMW, the Cchip holds b_cactx_l asserted, but disables its drivers on
the CAPbus. After at least one turnaround cycle, the target Pchip drives a LoadP RMW
upstream command for one cycle when it is ready to return the merged data on the
PADbus. Then the Pchip drives a no-op command for one cycle. The cycle after the no-
op is an arbitration cycle that serves as a turnaround cycle for the CAPbus.

Because b_cactx_l is only asserted for one cycle, the target Pchip must resolve the fol-
lowing potential PADbus conflict:

If the Cchip issues a LoadP to Pchip0 on the CAPbus in cycle N, Pchip0 can only
decode that LoadP in cycle N+1. In the meantime, Pchip0 may be asserting i_creq_l in
cycle N+1 for an upstream write operation. If it wins arbitration in cycle N+1 (possible
since b_cactx_l is not asserted in cycle N+1), Pchip0 would normally issue its write
command on the CAPbus in cycle N+2. But since the PADbus for Pchip0 will be in use
for the LoadP, this would present a conflict. Therefore, if the Pchip decodes a LoadP
targeted at itself in cycle N+1, it must convert an upstream write operation to a no-op
before driving the CAPbus in cycle N+2. This cannot lead to starvation of a Pchip since
the Cchip only sends LoadP operations in response to Pchip requests.

1101 Load PADbus data upstream 2 or 51 LDP

1110 PTP write byte-mask bypass 2 See text in Section 6.2.3.2

1111 No-op 1 —

1 For details, refer to command descriptions.

Table 6–8 Pchip-to-Cchip and Pchip-to-Pchip Bypass Commands (Continued)

Code Command Cycles Valid Fields
6–22 Cchip Architecture 21 October 1999

CAPbus Interface

e

-
e tar-
t four
d
the

s that
 QW,
differ-
cesses,
nd that

ry
CSR Read

This command is issued when the CPU does a PIO read that the Cchip determines is to
a Pchip CSR or to a Cchip CSR (or the TIGbus). If the read is of a Cchip CSR, the
Pchip receives the Cchip CSR data (8 bytes, least significant word first) on the next
four CAPbus cycles on b_cap<15:0>. Otherwise, the Pchip selects its internal CSR
data.

In either case, after one (Pchip CSR) or five (Cchip CSR) cycles, normal arbitration
resumes. The Cchip may send additional commands to this or the other Pchip, and
either Pchip may send commands to the Cchip. However, the Cchip may not send a sec-
ond CSR read command to the same Pchip until it receives the LoadP CSR upstream
command for one cycle from the target Pchip. This happens when that Pchip is ready to
drive the CSR data on the PADbus. The Pchip then drives a no-op command for one
cycle. The cycle after the no-op is an arbitration cycle, which serves as a turnaround
cycle for the CAPbus.

CSR Write — Potential PADbus Conflict

This command is issued when the CPU does a PIO write that the Cchip determines is to
a Pchip CSR or to a Cchip CSR (or the TIGbus).

If the CSR write is to a Pchip, the operation completes on the CAPbus after one cycle.
However, to avoid a PADbus conflict, the Cchip holds b_cactx_l for an extra cycle, as
denoted by the “+1” in Table 6–7. This extra b_cactx_l is not a performance issue sinc
Pchip CSR writes are extremely rare.

If the CSR write is to a Cchip, the Cchip holds b_cactx_l asserted (similar to the down
stream LoadP–RMW), but disables its drivers on the CAPbus. When it is ready, th
get Pchip drives a LoadP CSR write upstream command for one cycle. In the nex
cycles the Pchip drives the data (8 bytes, least significant word first) that it receive
from the PADbus onto the CAPbus. During those four cycles, it places a no-op in
command field of the CAPbus, and 16 bits of data onto b_cap<15:0>.

6.2.3.2 Pchip-to-Cchip Commands (Special Cases)

Scatter Gather Table Entry (SGTE) Read N QW

This command is used when the Pchip gets a TLB miss on a PCI upstream acces
requires scatter-gather translation. It accesses memory identical to a DMA read N
with its address and mask field specifying the desired quadwords to be read. The
ence is that SGTE accesses are not ordered on the Cchip with respect to other ac
and may need to pass other accesses in order to avoid deadlock. A LoadP comma
is specific to SGTE requests is used by the Cchip to return the requested data.

DMA Read/Modify/Write QW

This command is issued when the address of an incoming memory write or memo
write and invalidate command lies in either of the following:

• The DMA monster window

• One of the four windows defined by the window base and window mask register
pairs that also has any bytes masked out in a quadword
21 October 1999 Cchip Architecture 6–23

TIGbus and Interrupts

ord
 PAD-
ether
 the
pass

rans-
e
 the
mand

st
s oper-
chip.
 and
details.

) and
y
 are

en

 there
 pend-
The quadwords that have bytes masked out are issued as different transactions to the
Cchip, but are issued in order with the rest of the data phases in that transaction. The T
field is set to 10. The mask field has only the appropriate bit set.

LoadP Upstream

As previously described, this command is used for several purposes. For returning PIO
read data, or for passing CSR read data, the Pchip arbitrates normally for the
CAPbus, and after issuing the LoadP command for one cycle, drives the CAPbus with a
no-op for one additional cycle.

For delivering Cchip CSR write data, and for returning merged RMW data, the Pchip
does not arbitrate for the CAPbus. Instead it drives the LoadP command in the
“shadow” of the b_cactx_l that is held asserted by the Cchip for that purpose.

PTP Write with Byte-Mask Bypass

As discussed in Section 6.2.2.5, for PTP write operations, the Pchip uses a quadw
mask (T=10) to delineate the maximum extent of the data to be transferred on the
bus. (But the T field is not used here.) However, it is necessary to communicate wh
the last two quadwords transferred have an associated byte mask, as detected on
originating PCI bus. For this purpose, the Pchip drives the PTP write byte-mask by
opcode on the CAPbus. The byte mask for the last two quadwords is driven on
b_cap<15:0> with b_cap<0> associated with the lowest addressed byte, and
b_cap<15> associated with the highest addressed byte. (If only one quadword is t
ferred, only b_cap<7:0> are meaningful.) This occurs in both of the cycles where th
Pchip drives the CAPbus. After this CAPbus transaction, which can be ignored by
Cchip, the Pchip rearbitrates for the CAPbus and drives a PTP memory write com
to the Cchip.

Because the Cchip maintains PTP memory writes in order, and because a Pchip mu
always send a bypass before it sends the PTP memory write, the order of the bypas
ations is exactly the same as the order of the PTP memory writes arriving from the C
This is true even if the CAPbus priority toggles between Pchips inbetween a bypass
the associated PTP memory write from the same Pchip. See Section 6.2.3 for more

6.3 TIGbus and Interrupts

The TIGbus supports miscellaneous system logic such as flash ROM (Figure 6–5
interrupt inputs (Figure 6–6). The Cchip TIG controller polls interrupts continuousl
except when a read or write to flash is requested. The 64 possible interrupt inputs
polled eight at a time by selecting a byte with the b_tia<2:0> pins, and asserting
b_toe_l to allow the selected byte to be driven onto b_td<7:0>. Using the polled inter-
rupts, the Cchip calculates the b_irq values that should be delivered to the CPUs. Wh
any change occurs in these b_irq values, the Cchip drives the b_irq<3:0> data for both
CPUs onto b_td<7:0>, and asserts signal b_tis to strobe it into a register on the mod-
ule. If there is no flash read or write outstanding, the polling process is repeated. If
is a flash read or write outstanding, it is serviced between interrupt reads after any
ing b_irq updates. Thus, the rounds of interrupt polling are not atomic, but the b_irq
values reflect the most recently polled interrupts. Furthermore, b_irq<1> may be artifi-
cially suppressed for one full polling loop using the CSR bit MISC<DEVSUP>, as
described in Section 6.3.1.
6–24 Cchip Architecture 21 October 1999

TIGbus and Interrupts
In Typhoon only, the Cchip drives the b_irq<3:0> data for CPU3 and CPU2 onto
b_td<7:0> and asserts b_tis<2> to strobe it into a register on the module.

Flash ROM addresses and data move over b_td<7:0>. The 24-bit address is sent out
least-significant byte first over three address cycles, and captured in a register on the
module when signal b_tas is asserted. Address bits <23:22> select one of four sets of
timing information in the TDR that allows the timing needs of different devices to be
met without using a least-common denominator approach. There is only one Cchip
select pin for the TIGbus, and it is expected that the high-order address bits will be
decoded on the module to determine which device is being addressed. Signals b_toe_l
and b_twe_l control reading and writing of TIGbus devices.

Figure 6–5 TIGbus Flash ROM Control

The following CSRs control the timing of interrupt and flash ROM operations:

• TTR – TIGbus timing register (Section 10.2.2.14)

• TDR – TIGbus device timing register (Section 10.2.2.15)

Clk
D

Q

Clk
D

Q

Clk
D

Q

tigadr<23:0>

To Seven
Other Devices

Decoder

O0
O1
O2
O3
O4
O5
O6
O7

EN

A<2:0>

Flash ROM

we_l

oe_l

data<7:0>

cs_l

addr

tigwe_l

tigoe_l

tigdata<7:0>

tigcs_l

tigas

Cchip

LJ-05502A-AI4
21 October 1999 Cchip Architecture 6–25

TIGbus and Interrupts
Figure 6–6 TIGbus Interrupt Logic

TIGbus timing is shown in Figure 6–7, Figure 6–8, Figure 6–9, and Figure 6–10.

Figure 6–7 Interrupt Timing Parameters

Decoder

O0
O1
O2
O3
O4
O5
O6
O7

EN

A<2:0>

LJ-05503A-AI4

Clk
D

Q

tigintoe_l

tigdata<7:0>

tigis

Cchip

tigintadr<2:0>

Interrupt<63:56>

Interrupt<7:0>

Bits <3:0> to CPU0 irq<3:0>

Bits <7:4> to CPU1 irq<3:0>

FM-06256.AI4

tigintoe_l

tigdata<7:0>

tigintadr<2:0>

tigis

7

TTR<IRT>

6

Int<55:48> Int<63:56> 0 IRQ<7:0>

TTR<IS>
6–26 Cchip Architecture 21 October 1999

TIGbus and Interrupts
Figure 6–8 TIG Address Timing Parameters

Figure 6–9 TIG Read Timing Parameters

Figure 6–10 TIG Write Timing Parameters

FM-06257.AI4

tigas

tigcs_l

tigdata<7:0>

TTR<AS>

ADR<7:0> ADR<15:8> ADR<23:16>

TTR<AH>

FM-06258.AI4

tigcs_l

tigoe_l

tigdata<7:0>

TDR<RA> TDR<RD>

Read Data Latched Here

FM-06259.AI4

tigcs_l

tigwe_l

tigdata<7:0>

TDR<WS> TDR<WH>TDR<WP>
21 October 1999 Cchip Architecture 6–27

TIGbus and Interrupts

as-
the
 is
e

loop,
6.3.1 Device and Error Interrupt Delivery – b_irq<1:0>

As interrupts are read into the Cchip through the TIGbus, the corresponding bits are set
in DRIR. These bits are ANDed with the mask bits in DIMn and then placed in DIRn. If
any bits are set in DIRn<55:0>, then CPUn is interrupted using CPU pin b_irq<1>.
Interrupt bits <62:58> cause b_irq<0> to be asserted and are intended for use as error
signals. Assertion of interrupt bits <62:58> causes b_irq<0> to be asserted. Interrupt
bits <62:61> can be used for Pchip 0 and Pchip 1 errors, respectively. Interrupt bit <63>
is special because it is not read from the TIGbus, but is internally generated as the
Cchip detected error interrupt (currently used only for NXM requests). Assertion of
interrupt bit <63> causes b_irq<0> to be asserted. See Chapter 10 for descriptions of
the interrupt-related CSRs (DRIR, DIMn, DIRn, and MISC). A full mask register for
each CPU allows software to decide whether to send each of the 64 possible interrupts
to either or both CPUs.

After handling all known outstanding interrupts, software may suppress b_irq<1>
device interrupts to allow the Cchip’s polling mechanism to detect the updated (de
serted) value of the interrupt lines from the PCI devices and thereby avoid giving
CPU “stale” interrupts, which require passive release. The field MISC<DEVSUP>
provided for this purpose. When a CPU writes a one to its bit in MISC<DEVSY> th
Cchip deasserts b_irq<1> to that CPU (regardless of the value in the DIRn) until it has
completed an entire polling loop. When the Cchip has completed an entire polling
b_irq<1> will again reflect the value of DIRn<55:00>.

6.3.2 Interval Timer Interrupts – b_irq<2>

The interval timer interrupts the Cchip through a dedicated pin, i_intim_l, and is
asserted low. When the Cchip sees an asserting (falling) edge of this pin, it asserts
MISC<ITINTR> for both CPUs. Pin b_irq<2> remains asserted for each CPU
<ITINTR>. When the CPU has finished handling the interrupt, it writes a one to its
MISC<ITINTR> bit to clear it. Software can suppress interval timer interrupts for n
cycles by writing n into IICn. See Section 6.7 for details about sleep mode (ACPI C3
state).

Table 6–9 TIG Interrupts and IRQ Lines

TIG Interrupt Assertion Level irq<n> Use

63 N/A irq<0> N/C (internally generated Cchip error)
(currently NXM only)

62:58 High irq<0> Errors (Pchips, and so on)
Recommended:

• Bit <62> – Pchip0 error

• Bit <61> – Pchip1 error

57:56 N/A N/A Reserved

55:0 Low irq<1> PCI devices (level sensitive)
6–28 Cchip Architecture 21 October 1999

Monitor Outputs and Counters

 to

r-

y
n B
4.
6.3.3 Interprocessor Interrupts – b_irq<3>

Either CPU can send an interprocessor interrupt to itself, or to the other CPU, by writ-
ing MISC<IPREQ> with a mask of the CPUs to be interrupted. Either or both CPUs
can be interrupted with a single write to MISC<IPREQ> with the appropriate mask. If
an interprocessor interrupt is pending to a CPU, MISC<IPINTR> will be set for that
CPU. The interrupt is cleared by writing a 1 to MISC<IPINTR>. The interprocessor
interrupts are delivered to the CPUs on b_irq<3>. CSC<IPENA> is the enable mask
for interprocessor interrupts.

6.4 Monitor Outputs and Counters

The Cchip provides facilities for system monitoring through CSRs, as described in
Chapter 10. A CSR on the Cchip allows the selection of two signals from among many
chip-internal signals. After a delay of two i_sysclk cycles, the selected signals are
driven on the chip’s external b_monitor<1:0> pins.

In addition, the Cchip has a CSR that contains two counters. Each counter is used
count assertions of the associated b_monitor<n> output signal. For example, Counter0
on the Cchip counts the number of i_sysclk cycles during which the Cchip
b_monitor<0> signal is asserted. Similarly, Counter1 counts the number of i_sysclk
cycles during which the Cchip b_monitor<1> signal is asserted.

For more informatin on monitoring outputs and counters, contact your DIGITAL se
vice representative.

6.5 Cchip Revision

Software can distinguish between the Revision B Cchip and the Revision C Cchip b
reading the state of the <PHCW> field of the MTR register after reset. In the Revisio
Cchip, this field is initialized to 15; in the Revision C Cchip, this field is initialized to 1

6.6 Cchip-Detected Errors and Error Reporting

The Cchip reports asynchronous errors to the CPU by asserting irq<0> by means of the
TIGbus. The sources for asynchronous errors are:

• Interrupt <62:58> asserted active high to the Cchip, and DIMn<62:58> asserted

• Nonexistent memory address error, other than for a CPU fill

Module designers should connect the Pchip0 error signal to Interrupt<61> and the
Pchip1 error signal to Interrupt<62>. However, the Cchip design does not require this
assignment.

6.6.1 Nonexistent Memory Errors

If a CPU requests a fill (using the RdBlk or FetchBlk command) from a nonexistent
memory address, the Cchip returns the ReadDataError SysDC command to that CPU,
rather than setting an error bit and interrupting both of the CPUs. If either CPU issues
any command to a nonexistent memory address other than RdBlk or FetchBlk, it is con-
sidered an asynchronous error. If either of the Pchips issues a DMA read or write, or an
21 October 1999 Cchip Architecture 6–29

Sleep Mode (ACPI C3 State)

tain

nly the

,
PU
pt.

 the
 take
:

activi-
o the

 the

 may

 to the
de
unit
 suf-
BEN
SGTE read to a nonexistent memory address, this is also an asynchronous error. For
asynchronous errors, the Cchip sets MISC<NXM> and DRIR<63>. The MISC<NXS>
field indicates the source of the error. If either CPU has DIMn<63> asserted, the corre-
sponding DIRn<63> will be asserted, and that CPU will be interrupted on b_irq<0>.
The MISC<NXS> field is locked once MISC<NXM> is set. The interrupt is cleared
and the MISC<NXS> field is unlocked by writing a 1 to MISC<NXM>. The failing
address is not saved.

6.6.2 Memory Data Errors — CPU Reads and Writes

The 21264 CPU has single-bit ECC error correction and double-bit error detection cir-
cuitry. If ECC memory is installed on a system using the 21272 chipset, the ECC bits
are passed from main memory to the CPU, and from the CPU to main memory (and
from one CPU to the other in case of a probe hit). The ECC bits are treated as data by
the Dchips. The Dchips do not detect or correct ECC errors.

6.7 Sleep Mode (ACPI C3 State)

The Cchip supports the 21264 CPU’s sleep mode. However, the chipset does not con
any support for reducing its own power consumption. The following sections cover the
chipset features that support 21264 sleep mode. For sleep-mode features that affect o
CPU or L2 cache (Bcache), refer to the DIGITAL 21264 Microprocessor Specification.

Note: The module must use an edge-triggered interval timer interrupt. That is
interval timer interrupts should be sent as pulses, not levels. While a C
is “sleeping,” it cannot perform a write to clear the interval timer interru

6.7.1 Entering Sleep Mode

The Cchip recognizes that a CPU will enter sleep mode when the CPU reads from
Cchip PRBEN register (Section 10.2.2.9). Prior to reading PRBEN, the CPU must
the following additional steps to ensure proper entry to, and exit from, sleep mode

1. The CPU makes a decision to enter sleep mode and performs housekeeping
ties that require use of the system interface. All dirty cache data is forced out t
system memory and all data in the Bcache is invalidated.

2. The CPU writes the number of interval timer interrupts that it wants to ignore to
Cchip IIC register that corresponds to its CPU ID.

3. The CPU reads the Cchip PRBEN register, signaling that the system interface
be shut down upon completion of this read.

4. The Cchip issue unit informs the sleep mode logic that the read data from the
PRBEN has been returned to the requesting CPU and that any probes pending
CPU, at the time PRBEN was deasserted, have been delivered. The sleep mo
logic then requests a toggle clock forward reset for that CPU, which the issue
places into the next available idle slot. The delay incurred in this handshake is
ficient to guarantee enough clock forward clocks for the CPU to absorb the PR
read data.
6–30 Cchip Architecture 21 October 1999

Sleep Mode (ACPI C3 State)

k

y,

t the

egins.
nter

U to
rting

 the

r

box
ys-
itial-

r-
writes

ng

5. The CPU receives the dummy read data for PRBEN CSR read. The firmware then
executes an MB (memory barrier) instruction to ensure that all of the pending
probes are processed and responses are sent to the Cchip so that the previous step
can complete. The CPU can then slow down its internal clocks to reduce power
consumption.

6. When the issue unit sends the command on the CPM bus, it also notifies the CSR
section that the command has been sent.

7. One cycle later, the CSR section asserts the b_cfrst<1:0> signals that go to the
CPU.

8. The Dchips receive and decode the toggle clock forward reset command and assert
the clock forward reset signal onto the interface.

9. During this time, the Cchip CSR section waits a number of cycles equivalent to the
Dchip decode path, and then asserts the b_cfrst<1:0> signals onto the Cchip’s
clock forward interface.

10. On both the Cchip and the Dchips, the clock forward interfaces are reset, cloc
transmission to the CPU stops, and the incoming clocks are ignored.

Note: DMA operations and operations from another (nonsleeping) CPU
continue normally. The sleeping CPU is not probed for cache coherenc
but according to the algorithm, it has no dirty cache blocks.

6.7.2 Exiting Sleep Mode

Once the Cchip IIC register has been programmed, the Cchip begins to decremen
counter for each interval timer interrupt seen on the i_initim_l INPUT. When this
counter reaches 0, or if a device interrupt must be serviced, the walk-up process b
The counter continues to decrement and sets the overflow bit to indicate if the cou
goes beyond 0.

The Cchip sends either the interval timer interrupt or the device interrupt to the CP
begin the walk-up process. The Cchip then waits for the CPU to indicate, by asse
b_sromoe_l, that it is ready to resume operation. Upon detecting the assertion of
b_sromoe_l, the Cchip sends a two-SYSCLK cycle pulse to the sleeping CPUs on
CFRST lines.

When the Cchip sends the brief pulse on b_cfrst<1:0> to start the CPU SROM load
sequence, the Cchip begins counting down the power-up clock forward reset time
value in the WDR (initialized to 218–1, or 262,143 i_sysclk cycles). This timer value
allows 1.5 million cycles for the CPU to perform BiSt, repair, init, and to load the C
configuration data from the SROM. This value is based upon the minimum CPU/s
tem clock ratio of 6:1. Higher clock ratios leave spare time at the end of the CPU in
ization sequence.

1. When the CPU deasserts b_sromoe_l, the Cchip deasserts the clock forward inte
face reset, following the sequence described in Section 12.1.2. The CPU then
to the PRBEN CSR indicating that it is ready to participate in the 21272 cache
coherence protocol. When the clock forward reset logic detects the deasserti
edge of b_sromoe_l, it notifies the Cchip issue unit, which issues a toggle clock
forward reset command.
21 October 1999 Cchip Architecture 6–31

Sleep Mode (ACPI C3 State)
2. The Cchip issue unit waits for an idle cycle to insert the toggle clock forward reset
command onto the CPM bus to the Dchip. When the issue unit sends the command
on the CPM bus, it also notifies the CSR section that the command has been sent.

3. One cycle later, the CSR section deasserts the b_cfrst<1:0> signals to the CPU.

4. The Dchip receives and decodes the toggle clock forward reset command, and
deasserts the clock forward reset signal onto the clock forward interface.

6.7.3 Sleep Mode in Multiprocessing Systems

The Cchip supports multiple CPUs in independent sleep modes. Each CPU is assigned
its own IIC register to define the length of the sleep period, and its own b_sromoe_l
and b_cfrst<1:0> signals to perform handshaking during the wake-up sequence.

Because each CPU has its own interrupt mask register DIMx, no special handling of
interrupts is required based on the independent sleep modes of the processors. The
Cchip has only one IIC register. If multiple CPUs are asleep when the timer finishes its
count, all sleeping CPUs will be awoken at approximately the same time. In a multipro-
cessor system, a CPU that wishes to go to sleep should determine whether another CPU
is already asleep. This task must be managed by system software. In essence, because
the Cchip has only one IIC register, writing this CSR while one CPU is already asleep is
not advised.
6–32 Cchip Architecture 21 October 1999

 7
Dchip Architecture

This chapter describes the internal architecture for the Dchip.

7.1 Dchip Architecture

The Dchip performs the following functions:

• Implements data flow between the Pchips, CPUs, and memory

• Shifts data to and from the PADbus, as required

• Provides Pchip queue buffering

• Provides memory data buffering

• Implements data merging for quadword write operations to memory and the DMA
RMW command

Dchip architecture does not implement:

• Flow control

• Error detection

• Error reporting

• Error correction

• Data wrapping

The Dchip uses multiplexers to switch data among its ports and queues. In addition to
moving data from one port to another, these multiplexers must support the various sys-
tem configurations. The system may have two, four, or eight Dchips. This allows for
one or two 21264 CPUs, one or two Pchip ports, and one or two 16-byte or 32-byte
memory buses. Data may be moved between the CPU, Pchips, or memory ports. Also,
data may be transferred between the two CPU ports. PTP transfers are supported
between Pchip ports.

Figure 7–1 shows the Dchip internal architecture.
21 October 1999 Dchip Architecture 7–1

PADbus Interface

revi-
Figure 7–1 Dchip Block Diagram

7.2 PADbus Interface

The PADbus is a bidirectional data connection between a Pchip and the Dchips. It com-
prises a 4-byte data path and 8 check bits. There are two PADbus paths on the Dchips;
one for each of two Pchips. Both the Cchip and the Pchip monitor the CAPbus to deter-
mine if the operation generates an associated PADbus operation, and if so, for how
many cycles. There is a fixed relationship between the start of a CAPbus command and
the start of any associated PADbus transfer. If the first cycle of the CAPbus command is
driven in cycle N, the first PADbus data is driven in cycle N+4. If a command does not
require a PADbus transfer, it can be issued on the CAPbus in the “shadow” of a p
ous CAPbus command’s PADbus transfer.

The PADbus has the following two modes of operation:

• 4-byte mode

• 8-nibble mode

In 4-byte mode, a complete longword (4 bytes) and the 4 associated check bits are
transferred each cycle, least significant longword (of the enclosing quadword) first. In
8-nibble mode, 8 nibbles and the 8 check bits associated with the quadword are trans-
ferred each cycle, least significant nibble of each byte first, with the 8 check bits
repeated during the transfer of the most significant nibbles. These modes arise from the
need for having the Pchip-to-Dchip interconnect rearranged depending on the number
of Pchips and Dchips in a system. For more information, refer to the configurations in
Section 2.2.1 through Section 2.2.3.

Write
Merge
Buffer

(16b x 2)

Memory
Out

(16B x 1.5)

Memory
In

(16B x 1.5)

TPQM
TPQP

2 x (8 x 16B)

FPQ
(8 x 16B)

Buffers Memory Data

Array 1

Array 0

Buffers I/O Data

Pchip 1

Pchip 0

CPU
Out

CSR
(1B x 2)

Clock
Forwarding

Logic

SM
Decode and

Control

Cchip
CPM/PAD

CPU

System
Data

LJ-05497.AI4

PADbus
7–2 Dchip Architecture 21 October 1999

Dchip Control
During normal system operation, if a Pchip is installed, it is the default driver for its
PADbus. However, during reset, while the system is determining the configuration
(number of Dchips and whether a second Pchip is installed), the Dchip is the default
PADbus driver.

7.3 Dchip Control

The Dchip is controlled by PADbus commands and the CPM commands. The PADbus
commands control data movement between the TPQ or the FPQ and the appropriate
PADbus. In the special case of the DMA RMW command, the PADbus command con-
trols data movement between the PADbus and the write merge buffer. The PADbus
commands are listed in Section 7.3.1.

The CPM commands control all other data transfers. This includes transfers between
CPUs, memory, the write merge buffer, the FPQ, and the TPQ. The transfers use the
FPQ as a source or the TPQ as a destination only. This interface controls transfers from
the FPQ to the TPQ (for PTP operations). These commands are generated by the central
bus arbitration logic on the Cchip. The CPM commands are listed in Section 7.3.2.

The Dchip supports several possible system configurations. The various modes that are
supported by the Dchip are listed in Chapter 2. The modes are stored in the Dchip sys-
tem configuration register (DSC) at power-on/reset. The Dchip also supports variable
timing parameters for the CPM commands, and 16-byte or 32-byte memory bus widths.
This information is stored in the system timing register (STR) during initialization, after
system software has determined the parameters for the installed DIMMs or SIMMs.
The 32-byte buses can be half-populated (connected to 16-byte arrays in the lower-
order bits). Such buses should be programmed as 16-byte buses in the STR CSR
(Section 10.2.4.3).

The CPM commands are decoded in the SM block. The SM block creates delayed ver-
sions of the commands, and selects one of them for decode according to the values
stored in STR. The SM block uses the command decode and the configuration informa-
tion stored in DSC to generate control signals for the other logical subblocks.

Note: The following bus configurations are not supported:

• Mixed-size memory buses

• Half-populated 32-byte buses with components in the upper 16 bytes

The following sections describe the control interface from the Cchip to the Dchips.
21 October 1999 Dchip Architecture 7–3

Dchip Control

es
1 is

pera-
rd sent
into

sts
7.3.1 Dchip-PADbus Interface Control — PAD Commands

The Cchip issues PADbus commands to the Dchips to control the movement of data
between the Pchips and the Dchips. Data from a Pchip is loaded into the FPQ, and data
to the Pchips is unloaded from the TPQ. The two-phase command encoding is shown in
Table 7–1.

The V bit typically indicates that the command is valid. The T field typically indicat
that data movement is to the Pchip. The P field indicates whether Pchip0 or Pchip
involved in the transaction.

The full VCCT field is interpreted as outlined in Table 7–2.

The special “stutter” command is used for PIO read byte and PIO read longword o
tions from a CPU. In these cases, the transfer to the CPU must have each quadwo
twice in succession. To accomplish this, each quadword from the Pchip is written
two successive locations in the FPQ when the PP–FPQ command is received. Then, a
normal CPM command is used to transfer the data from the FPQ to the CPU.

The S<1:0> bits represent a shift amount, in quadwords, from zero to three. The three
length bits indicate the length of the transfer in quadwords, modulo 8. Table 7–3 li
the PAD command length field encoding.

Table 7–1 PADbus Command Format

Cycle 1 V C C T P

Cycle 2 S1 S0 Length

Table 7–2 PADbus Command Encodings

VCCT Mnemonic Command

0xxx — No-op

1000 P–FPQ Move data from the Pchip to the Dchips

1001 TPQM–P Move data to the Pchip from the Dchip’s TPQM

1010 P–WMB Return data from Pchip to Dchips for RMW

1011 WMB–P Move data from Dchips to Pchip for RMW

1100 PP–FPQ Stutter move of data from the Pchip to the Dchips

1101 TPQP–P Move data to the Pchip from the Dchip’s TPQP

111x — Reserved
7–4 Dchip Architecture 21 October 1999

Dchip Control

 field

l com-
 is

st

The Dchip stores the shift amount and length of valid data for each FPQ queue entry. It
uses this knowledge when merging quadwords of data from the FPQ into cache blocks
in memory, and when transferring data to a CPU.

For transfers out of the TPQ to the Pchip, the Dchip uses the shift amount and length to
transfer only the quadwords containing valid data to the Pchip.

Because the shift amount has a maximum value of three, shifting of four to seven quad-
words is accomplished by wrapping the data by four quadwords (one-half cache block) at
either the memory or the CPU. Table 7–4 lists the PADbus command shift and length
restrictions. For more details on the shift amount, refer to Section 7.3.3.

There is one special case where the Cchip can send the Dchip an otherwise illega
bination of S<1:0> and length fields. This is used where speculative memory data
sent to the Pchip. If the Cchip determines that it cannot assert b_capgd<n> for the
transfer (see Section 6.2.2.2), it sends the TPQM–P PAD command with a shift amount
of 3 and a length of 7. In this case, the Dchip should drive the PADbus for two cycles
(one quadword), but should not increment its TPQM pointer. This is because the Cchip
will eventually send an h2po CPM command (see Table 7–5) to overwrite the olde
TPQM contents.

Table 7–3 Length Field in PAD Commands

Length Meaning

000 Eight quadwords

001 One quadword

010 Two quadwords

011 Three quadwords

100 Four quadwords

101 Five quadwords

110 Six quadwords

111 Seven quadwords

Table 7–4 PADbus Command Shift and Length Fields Restrictions

Command Restriction

P–WMB Len = 001

WMB–P Len = 001

PP–FPQ Len = 001 or 100

Others Shift + Length ≤ 8

Special case (see the
following text)

Shift = 11, Length = 111
21 October 1999 Dchip Architecture 7–5

Dchip Control

-
(that
d is

rce

e

r–4 is
 or
er to
 and

ates
p,
m

n the
n by
ation
 the
7.3.1.1 PAD Command and PADbus Timing

The relationship between the cycle of the PAD command from the Cchip to the Dchip,
and the PADbus data transfer between the Pchips and Dchips, depends on the direction
of the PADbus transfer. As described in Section 7.2, if the CAPbus command (first
cycle) is driven in cycle N, any associated data is driven on the PADbus in cycle N+4.

For upstream transfers (Pchip to Dchip):

• The CAPbus command (first cycle) is driven by the Pchip in cycle N.

• The PAD command (first cycle) is driven by the Cchip in cycle N+2.

• The PADbus data (first cycle) is driven by the Pchip in cycle N+4.

For downstream transfers (Dchip to Pchip):

• The CAPbus command (first cycle) is driven by the Cchip in cycle N.

• The PAD command (first cycle) is driven by the Cchip in cycle N+1.

• The PADbus data (first cycle) is driven by the Dchip in cycle N+4.

7.3.2 CPU Bus, xPQ, and Memory Bus Controls — CPM Commands

The central bus arbiter controls transfers between the CPUs, the TPQ and FPQ, and the
memory buses. The CPM commands consist of a 5-bit opcode and a 3-bit extension.
Table 7–5 lists these commands and gives a brief description of each.

In Table 7–5, the columns labeled “Source Data Timing” and “Destination Data Tim
ing” show the cycle of the first data on the external source and destination buses
is; the memory bus, CPU bus, or PADbus), relative to the cycle when the comman
driven from the Cchip to the Dchip. For example, if the source timing is “3” and the
CPM command is on the wires from the Cchip to the Dchip in cycle N, the first sou
data will be on the wires to the Dchip in cycle N+3.

The notations “iddr” and “iddw” refer to the values (in sysclk cycles) specified in th
system configuration CSR (on either the Cchip or Dchip). The notation “iddr–2,4”
means that the value iddr–2 is used for 32-byte memory arrays, and the value idd
used for 16-byte memory arrays. Furthermore, for commands that transfer data to
from the FPQ and TPQ, Table 7–5 indicates the minimum additional time for transf
or from the PADbus. This information allows proper scheduling of associated CPM
PAD commands as follows:

• For transfers to the PADbus, which require a CPM command *2p and a PAD com-
mand TPQ*–P, the sum of the source and destination timings in the table indic
the minimum number of cycles, after the CPM command is driven by the Cchi
that the data can be driven by the Dchip on the PADbus. (For m2p, the minimu
delay is always iddr+drtp–2, regardless of whether 16-byte or 32-byte memory
arrays are used.)

• For transfers to the PADbus from the WMB, which require a CPM command *2w
and a PAD command WMB–P, the sum of the source and destination timings i
table indicates the minimum number of cycles after the CPM command is drive
the Cchip that the data can be driven by the Dchip on the PADbus. (The destin
timings are shown in parentheses because the data in the WMB is only sent to
PADbus for RMW operations.)
7–6 Dchip Architecture 21 October 1999

Dchip Control

 indi-
e

ion

• For transfers from the PADbus, which require a PAD command P*–FPQ and a
CPM command p2*, the sum of the source and destination timings in the table
cates the minimum number of cycles after the final piece of data is driven by th
Pchip on the PADbus that the data can be driven by the Dchip on the destinat
bus.

The notations “dwfp”, “dwtp”, and “drtp” refer to the values specified in the system
configuration CSR on the Cchip (which describe the fixed minimum delays on the
Dchip through the TPQ and FPQ).

Table 7–5 CPM Commands and Timing of Data Transfer

Opcode Extension Mnemonic
Source
Data Timing

Destination
Data Timing Dchip Operation

00000 xxx nop — — No-op

00001 xxx rsv — — —

00010 mcc m2c iddr–2,4 iddr–0,2 – Mem bus m to CPU bus cc
– Pass-through timing

00011 mcc m2ca iddr–2,4 iddr – Mem bus m to CPU bus cc
– Accumulate timing

0010x xxx rsv — — —

0011x mcc c2m iddw–2 iddw CPU bus cc to mem bus m

01000 mxx m2p iddr–2,4 +drtp+0,2 Mem bus m to TPQ

01001 mxx pw2m dwfp+ iddw FPQ to mem bus m and merge with
WMB

0101x xxx rsv — — —

0110x xcc c2p iddw–2 +dwtp CPU bus cc to TPQ

01110 xcc h2po iddw–2 +dwtp – Cache hit on CPU cc to TPQ
– Load cache data at top of TPQ
and overwrite stale memory data

01111 xcc h2pb1 iddw–2 +dwtp – Late cache hit on CPU c to TPQ
– Decrement top of TPQ pointer,
then load late cache data at top of
TPQ and overwrite stale memory
data

1000d dcc c2dp iddw–2 — – CPU bus cc to TPQ
– CPU bus cc to Dchip csr dd

1001d dcc dp2c — iddw Dchip csr dd to CPU bus cc and dis-
card 1 from FPQ

10100 xcc p2c dwfp+ iddw FPQ to CPU bus cc

10101 xxx rsv — — —

1011x xxx p2p dwfp+ iddw FPQ to TPQ

110bb xaa h2c iddw–2 iddw CPU bus aa to CPU bus bb – used
for cache hit

11100 xxx rsv — — —
21 October 1999 Dchip Architecture 7–7

Dchip Control

e
ding

e
two

 of

y
for
 com-

-

e-
The 2-bit CPU designator subfield “cc” (sometimes “aa” or “bb” in Table 7–5) in th
CPU designator subfield in the CPM command, has the following meaning depen
on the number of Dchips in the configuration:

• Two-Dchip configuration – No meaning; only one CPU supported and must be
“00”.

• Four-Dchip configuration – Meaning is “xc” and must be “00” or “01”, that is, th
most significant bit must be zero. The least significant bit indicates one of the
possible CPUs in this configuration.

• Eight-Dchip configuration – The two bits must be fully specified to indicate one
the four possible CPUs in this configuration.

Although the Dchip is capable of overlapping many of the data transfers initiated b
these commands, there are some resources within the Dchip that are made busy
more than one cycle. Therefore, it is necessary to restrict the issuance of multiple
mands in consecutive cycles. The following rules govern the issuance of CPM com
mands to the Dchip:

• No commands may be issued that would create a conflict on a memory bus (taking
into account the width of the memory bus). Overlapped operations to different
memory buses are permitted in any combination.

• No commands may be issued that would create a conflict on a CPU bus. Over-
lapped operations to different CPU buses are permitted in any combination.

• Consecutive commands, which write the TPQP or TPQM (for instance; m2p, c2p,
c2dp, h2po, h2pb, p2p), must be separated by at least one cycle.

• Consecutive commands, which read from the FPQ (for instance; pw2m, p2c, dp2c,
p2p), must be separated by at least one cycle.

In addition to these rules, the Cchip is responsible for avoiding overflow and underflow
of the FPQ, TPQP, and TPQM. Underflow is governed by the parameters “dwfp”,
“dwtp”, and “drtp” described previously. After loading data in a queue, these param
ters specify the earliest that such data can be unloaded. Overflow is governed by
observing the following:

• A TPQM or TPQP entry is free (can be written with new data) in the cycle that its
last quadword is driven on the PADbus (first cycle of the last quadword on the
PADbus).

• An FPQ entry is free (can be written with new data) iddw + 2 cycles after the CPM
command is driven by the Cchip.

11101 mxx m2w iddr–2,4 (+4) Mem bus m to WMB

11110 mxx w2m — iddw WMB to mem bus m

11111 xcc h2w iddw–2 (+4) Cache hit on CPU cc to WMB

1 The Cchip cannot issue this command if the TPQ is full without overwriting the tail of the
queue.

Table 7–5 CPM Commands and Timing of Data Transfer (Continued)

Opcode Extension Mnemonic
Source
Data Timing

Destination
Data Timing Dchip Operation
7–8 Dchip Architecture 21 October 1999

Dchip Control

n

n to
7.3.3 Data Shifting in the Dchips

As previously described, the PAD command from the Cchip to the Dchip has a 2-bit
shift field that controls the shifting of data as it is moved between the PADbus and the
FPQ or TPQ on the Dchips. The following sections describe the use of this control for
various types of operations.

7.3.3.1 Shifting for Pchip Memory Operations

The Pchip memory operations are:

• Read N quadwords

• Write N quadwords

• Read-modify-write one quadword

Data transfers to and from memory are always one cache block long, either in two 32-
byte cycles or four 16-byte cycles. Transfers to and from the Pchips are N quadwords,
where 1≤N≤8. If the desired quadwords in a Pchip-to-memory transaction are not
aligned to the cache block boundaries, the data will be shifted. The Dchips use a combi-
nation of shift bits (ss) and length bits (nnn) to select the appropriate quadwords for
processing. The shift bits are sourced directly from bits <4:3> of the data’s system
address.

There are three classifications of quadword alignment that pertain to the Dchips. A
example of each is shown in Figure 7–2.

Figure 7–2 DMA Data Alignment: An Example of Each Possible Alignment

Cases 1 and 3 look the same to the Dchips, because the Cchip simply reverses the order
of the half-cache blocks if the desired data is entirely contained in the last half of the
block. This is done by using address bit <5>, which swaps the two half-cache blocks to
access either the memory or the CPU cache.

Shifting on a Memory Read N Quadwords

Data for a memory read either comes from the memory (in the m2p command) or from
the cache of another CPU (in the h2pb and h2po commands).

The Dchip loads the entry in the TPQM. When the data is retrieved from the TPQM, the
Cchip selects only the data that was requested by the Pchip. It does this by using the
shift and length bits in the TPQM–P operation. The Dchip uses the shift informatio

QW QW QW QW QW QW QW QW

Case 1: The transaction data is contained in the first 32 Bytes. ss = 01, nnn =

QW QW QW QW QW QW QW QW

Case 2: The transaction data spans both halves of the cache block. ss = 10, nnn =

QW QW QW QW QW QW QW QW

Case 3: The transaction data is contained in the second 32 Bytes. ss = 01, nnn = 010

LJ-05510A.FH8
21 October 1999 Dchip Architecture 7–9

Dchip Control

n.
move the first requested QW to the bottom of the shift register. The Dchip then uses the
length information to shift the requested number of quadwords out to the Pchip. Figure
7–3 illustrates this operation.

Figure 7–3 Data Shifting in a DMA Read

Shifting on a Memory Write N Quadwords

A write of N quadwords is merged with a block of data in the WMB, unless N = 2, 4, 6,
or 8, and the data is octaword aligned. The Dchips (under the control of the Cchip) first
bring the relevant cache block into the WMB, either from memory or cache. The N
quadwords of data to be written will be resident in the FPQ. When the pw2m command
is issued, a combination of the data in the WMB, and the N quadwords in the FPQ, will
be written to memory. The combination is controlled as follows:

1. The first ss quadwords are written from the WMB.

2. The next nnn quadwords are written from the FPQ, where nnn is the length bits of
valid FPQ data.

3. The final quadwords, if eight have not yet been written, are loaded from the WMB
and aligned so that the last quadword written is the last quadword in the WMB.

In the case where N = 8, there is no need to merge data in the Dchips because an entire
cache block is being written with Pchip data, and any CPU cache data will be invali-
dated. Thus, the preliminary step of loading the WMB is skipped by the Cchip. The
pw2m command still functions as described previously.

In the case where N = 2, 4, or 6, and the data is octaword aligned, the Cchip algorithm
depends on whether a CPU is found to have the data in Dirty state in its cache. If there
is dirty cache data, the algorithm proceeds exactly as for the unaligned case. If there is
no dirty cache data, the algorithm is the same as N = 8, and the Cchip only causes the
DRAMs to be written for the proper octawords. Figure 7–4 illustrates this operatio

QW7 QW6 QW5 QW4 QW3 QW2 QW1 QW0

Read data in memory or cache.

xx xx xx xx QW5 QW4 QW3 QW2

Data in the TPQ output shift register after shifted by the Dchip. ss = 10, nnn = 100

LJ-05511.AI4
7–10 Dchip Architecture 21 October 1999

Dchip Control

m-
ip
 load

mory.

e
d-

cache
IO

he
ount.

ad-
ese

-
 (for
 bits
irst
ords
rds if

CPU
FPQ
PQ.
s the
ow-
son.
Figure 7–4 Data Shifting in a DMA Write

Shifting on a RMW One Quadword

In this case, the entire cache block is transferred to the WMB, either from memory or a
CPU’s cache (as in Write N Quadwords). Then the shift amount in the WMB–P co
mand is used to select one quadword from the WMB to the PADbus. After the Pch
updates the single quadword, the shift amount in the WMB–P command is used to
the single quadword from the PADbus back into its original location in the WMB. A
w2m command is used to transfer the entire cache block from the WMB to the me

7.3.3.2 Shifting for CPU Originated PIO Operations

For PIO operations that originate from the CPU, the shift operation depends on th
direction of transfer and the granularity of the operation — byte, longword, or qua
word. This complication is due to the CPU interface for PIO operations.

As in the case of memory operations, address bit <5> is used to swap the two half-
blocks on their way to or from the CPU, except in the cases of PIO read bytes or P
read longwords, where only four quadwords are transferred to the CPU.

For PIO read or write quadwords, the shifting operation to or from the PADbus is t
same as for Pchip memory operations. Address bits <4:3> are used as the shift am
Then, regardless of the value of the length field in the PAD command, eight full qu
words are transferred to the CPU, which then selects the valid quadwords from th
eight.

For PIO write bytes or PIO write longwords, the CPU always supplies eight quad
words. Of these, only one quadword (for write bytes), or at most four quadwords
write longwords), are valid. When the TPQ–P PAD command is issued, address
<4:3> are used as the shift amount, which causes the transfer to start with the f
valid quadword. The length is one quadword for PIO write bytes and four quadw
for PIO write longwords. In the latter case, the Pchip ignores the excess quadwo
there were actually less than four valid quadwords from the CPU.

The exceptional cases are PIO read bytes and PIO read longwords, because the
requires each quadword to be repeated during transfer. For these cases, the PP–
“stutter” PAD command is used when the data is loaded from the PADbus to the F
Each quadword on the PADbus is loaded into two locations in the FPQ. This allow
data to be read normally from the FPQ when it must be transferred to the CPU. H
ever, it does complicate the interpretation of the shift amount for the following rea

QW7 QW6 QW5 QW4 QW3 QW2 QW1 QW0

Data fetched from memory or cache in the WMB.

xx D3 D2 D1 D0 xx xx xx

Data in FPQ, ss = 11, nnn = 100.

QW7 D3 D2 D1 D0 QW2 QW1 QW0

Data as it is written to memory shifted and merged by the Dchip.

LJ-05512A.AI7
21 October 1999 Dchip Architecture 7–11

Dchip Control

. This
ad
shift
unt to
le-
ata.

e PP–

t
rder

 PIO

unt is
the
For the PP–FPQ command, the shift amount represents a shift of quadword pairs
is further complicated by the fact that the length can be one quadword (for PIO re
bytes) or nominally four quadwords (for PIO read longwords) even with a nonzero
amount. As for the other operations, address bits <4:3> are used as the shift amo
load the FPQ. When the data is transferred to the CPU, it picks out the valid doub
pumped quadwords from the four duplicated quadwords and ignores the invalid d

Figure 7–5 shows examples of how the shift amount is used to load the FPQ for th
FPQ PAD command.

Figure 7–5 Shift Amount for PP –FPQ PAD Command

7.3.3.3 Shifting for PTP Operations

In the case of PTP operations, the shift amount in the PAD command is redundan
because both PADbus transfers begin with the first valid quadword. However, in o
to simplify the control logic, address bits <4:3> are used as a shift amount for both
incoming and outgoing transfers. Thus, these operations are the same as the CPU
operations, except that the “stutter” PAD command is never used.

7.3.3.4 Shift Amount Versus CPU SysDC and Memory Access

Table 7–6 shows how, for each operation that involves the PADbus, the shift amo
related to the SysDC<1:0> field (used for CPU data wrapping) and the access to
memory DRAMs.

Table 7–6 Source of Shift Amount and SysDC Fields

Operation
PAD Command
Shift Amount SysDC<1:0> Memory Access LSB

Pchip DMA read addr<4:3> addr<5> + 0 addr<5>

Pchip DMA write addr<4:3> addr<5> + 0 addr<5>

Pchip DMA RMW addr<4:3> addr<5> + 0 addr<5>

xx xx D2 D2 D1 D1 D0 D0

xx xx

Data in FPQ, ss = 01, nnn = 100.

D1 D1 D0 D0 xx xx xx

LJ-05513.AI4

D0 xx xx xx xx xx xx

Data in FPQ, ss = 11, nnn = 100.

Data in FPQ, ss = 00, nnn = 100.

Data in FPQ, ss = 10, nnn = 100.

D2 D1 D1 D0 D0D2

xx

D0

Note: In all cases of PP-FPQ if nnn = 001 only D0 is loaded.
7–12 Dchip Architecture 21 October 1999

Dchip Control

of the
ck is
e
7.3.4 Accumulate Timing

Accumulate timing is used in the case of multiple queued data transfers, where the data
arrives on the memory bus over four cycles (16-byte arrays), but is delivered to the
CPU in two cycles. The accumulate command causes the Dchips to accumulate the
memory data in a storage register, instead of piping it out directly to the CPU. When the
Cchip issues the m2ca CPM command, the memory data is delayed by two cycles to the
CPU bus. In a series of alternating transfers from two (16-byte) memory buses to the
same CPU, the first transfer uses m2c and the subsequent transfers use m2ca. This
allows the aggregate bandwidth of the two memory buses to fully utilize the bandwidth
of the CPU data bus.

7.3.5 Wrapping

Wrapping is a method of reordering quadwords in a cache block, with the goal of hav-
ing a particular quadword being moved to the front of the block. This is most com-
monly done when the CPU is reading in a new cache block. This allows the CPU to use
data from any one of the eight quadwords in the block immediately, without waiting for
any other quadwords to transfer first.

The Dchips do not support wrapping. However, the Cchip accesses the memory and
other CPU’s data (in the case of a cache hit) with wrapping dependent on the size
memory bus. For systems with 32-byte memory arrays, the desired half-cache blo
delivered first. For systems with 16-byte memory arrays, the desired quarter-cach
block is delivered first.

CPU PIO Rd Bytes addr<4:3> 00 N/A

CPU PIO Rd LWs addr<4:3> 00 N/A

CPU PIO Rd QWs addr<4:3> addr<5> + 0 N/A

CPU PIO Wr Bytes addr<4:3> addr<5> + 0 N/A

CPU PIO Wr LWs addr<4:3> addr<5> + 0 N/A

CPU PIO Wr QWs addr<4:3> addr<5> + 0 N/A

PTP addr<4:3> N/A N/A

Table 7–6 Source of Shift Amount and SysDC Fields (Continued)

Operation
PAD Command
Shift Amount SysDC<1:0> Memory Access LSB
21 October 1999 Dchip Architecture 7–13

Dchip Memory Data Slicing
7.4 Dchip Memory Data Slicing

This section describes the specific quadwords and bytes that are gated to the memory
bus for all Dchip configurations. Mapping is listed in detail for Dchip 0. Maps for other
Dchips in the system can be translated using the note provided.

2 Dchips

Note:
Dchip 1 uses the same pattern with bytes 1, 5, 3, and 7 instead of 0, 4, 2, and 6, respec-
tively.

2 Dchips, 16-Byte Bus
Cycle 0 Cycle 1 Cycle 2 Cycle 3

Dchip 0 QW Byte QW Byte QW Byte QW Byte
m1d<31:24> 1 6 3 6 5 6 7 6

m1d<23:16> 0 6 2 6 4 6 6 6

m1d<15:8> 1 2 3 2 5 2 7 2

m1d<7:0> 0 2 2 2 4 2 6 2

m0d<31:24> 1 4 3 4 5 4 7 4

m0d<23:16> 0 4 2 4 4 4 6 4

m0d<15:8> 1 0 3 0 5 0 7 0

m0d<7:0> 0 0 2 0 4 0 6 0
7–14 Dchip Architecture 21 October 1999

Dchip Memory Data Slicing
4 Dchips

Notes:
Dchip 1 uses the same pattern with bytes 1 and 5 instead of 0 and 4, respectively.

Dchip 2 uses the same pattern with bytes 2 and 6 instead of 0 and 4, respectively.

Dchip 3 uses the same pattern with bytes 3 and 7 instead of 0 and 4, respectively.

Cycle 0 Cycle 1 Cycle 2 Cycle 3
Dchip 0 QW Byte QW Byte QW Byte QW Byte
4 Dchips, 2 16-Byte Buses, Memory 1
m1d<31:24> 1 4 3 4 5 4 7 4

m1d<23:16> 0 4 2 4 4 4 6 4

m1d<15:8> 1 0 3 0 5 0 7 0

m1d<7:0> 0 0 2 0 4 0 6 0

4 Dchips, 2 16-Byte Buses, Memory 0
m0d<31:24> 1 4 3 4 5 4 7 4

m0d<23:16> 0 4 2 4 4 4 6 4

m0d<15:8> 1 0 3 0 5 0 7 0

m0d<7:0> 0 0 2 0 4 0 6 0

4 Dchips, 1 32-Byte Bus
m1d<31:24> 3 4 7 4 – – – –

m1d<23:16> 2 4 6 4 – – – –

m1d<15:8> 1 4 5 4 – – – –

m1d<7:0> 0 4 4 4 – – – –

m0d<31:24> 3 0 7 0 – – – –

m0d<23:16> 2 0 6 0 – – – –

m0d<15:8> 1 0 5 0 – – – –

m0d<7:0> 0 0 4 0 – – – –
21 October 1999 Dchip Architecture 7–15

Dchip Memory Data Slicing
8 Dchips

Note:
Dchips 1 through 7, bytes 1 through 7, use the same pattern as Dchip 0.

Cycle 0 Cycle 1 Cycle 2 Cycle 3
Dchip 0 QW Byte QW Byte QW Byte QW Byte
8 Dchips, 2 16-Byte Buses, Memory 1
m1d<31:24> – – – – – – – –

m1d<23:16> – – – – – – – –

m1d<15:8> 1 0 3 0 5 0 7 0

m1d<7:0> 0 0 2 0 4 0 6 0

8 Dchips, 2 16-Byte Buses, Memory 0
m0d<31:24> – – – – – – – –

m0d<23:16> – – – – – – – –

m0d<15:8> 1 0 3 0 5 0 7 0

m0d<7:0> 0 0 2 0 4 0 6 0

8 Dchips, 2 32-Byte Buses, Memory 1
m1d<31:24> 3 0 7 0 – – – –

m1d<23:16> 2 0 6 0 – – – –

m1d<15:8> 1 0 5 0 – – – –

m1d<7:0> 0 0 4 0 – – – –

8 Dchips, 2 32-Byte Buses, Memory 0
m0d<31:24> 3 0 7 0 – – – –

m0d<23:16> 2 0 6 0 – – – –

m0d<15:8> 1 0 5 0 – – – –

m0d<7:0> 0 0 4 0 – – – –
7–16 Dchip Architecture 21 October 1999

Dchip CPU Data Slicing
7.5 Dchip CPU Data Slicing

This section shows data movement to and from the CPU data pins on the Dchip. Data
always moves in 8 cycles, with a quadword moving each cycle. Every four cycles on
the CPU port corresponds to a single i_sysclk cycle. The following tables show the
details of movement for the first four cycles. The second four cycles are identical,
except that quadwords 4 through 7 are moved instead of quadwords 0 through 3.

2 Dchips

Dchip 0 2 Dchips
 CPU Cycle 0 Cycle 1 Cycle 2 Cycle 3

QW Byte QW Byte QW Byte QW Byte
cd_l<31:24> 0 0 6 1 6 2 6 3 6

cd_l<23:16> 0 0 2 1 2 2 2 3 2

cd_l<15:8> 0 0 4 1 4 2 4 3 4

cd_l<7:0> 0 0 0 1 0 2 0 3 0

Dchip 1 2 Dchips
 CPU Cycle 0 Cycle 1 Cycle 2 Cycle 3

QW Byte QW Byte QW Byte QW Byte
cd_l<31:24> 0 0 7 1 7 2 7 3 7

cd_l<23:16> 0 0 3 1 3 2 3 3 3

cd_l<15:8> 0 0 5 1 5 2 5 3 5

cd_l<7:0> 0 0 1 1 1 2 1 3 1
21 October 1999 Dchip Architecture 7–17

Dchip CPU Data Slicing
4 Dchips

Dchip 0 4 Dchips
 CPU Cycle 0 Cycle 1 Cycle 2 Cycle 3

QW Byte QW Byte QW Byte QW Byte
cd_l<31:24> 1 0 4 1 4 2 4 3 4

cd_l<23:16> 1 0 0 1 0 2 0 3 0

cd_l<15:8> 0 0 4 1 4 2 4 3 4

cd_l<7:0> 0 0 0 1 0 2 0 3 0

Dchip 1 4 Dchips
 CPU Cycle 0 Cycle 1 Cycle 2 Cycle 3

QW Byte QW Byte QW Byte QW Byte
cd_l<31:24> 1 0 5 1 5 2 5 3 5

cd_l<23:16> 1 0 1 1 1 2 1 3 1

cd_l<15:8> 0 0 5 1 5 2 5 3 5

cd_l<7:0> 0 0 1 1 1 2 1 3 1

Dchip2 4 Dchips
 CPU Cycle 0 Cycle 1 Cycle 2 Cycle 3

QW Byte QW Byte QW Byte QW Byte
cd_l<31:24> 1 0 6 1 6 2 6 3 6

cd_l<23:16> 1 0 2 1 2 2 2 3 2

cd_l<15:8> 0 0 6 1 6 2 6 3 6

cd_l<7:0> 0 0 2 1 2 2 2 3 2

Dchip 3 4 Dchips
 CPU Cycle 0 Cycle 1 Cycle 2 Cycle 3

QW Byte QW Byte QW Byte QW Byte
cd_l<31:24> 1 0 7 1 7 2 7 3 7

cd_l<23:16> 1 0 3 1 3 2 3 3 3

cd_l<15:8> 0 0 7 1 7 2 7 3 7

cd_l<7:0> 0 0 3 1 3 2 3 3 3
7–18 Dchip Architecture 21 October 1999

 8
Pchip Architecture

This chapter describes the internal architecture for the Pchip.

8.1 Pchip Architecture

The Pchip is the interface chip between devices on the PCI bus and the rest of the sys-
tem. There can be one or two Pchips, and corresponding single or dual PCI buses, con-
nected to the Cchip and Dchips. The Pchip performs the following functions:

• Accepts requests from the Cchip by means of the CAPbus and enqueues them

• Issues commands to the PCI bus based on these requests

• Accepts requests from the PCI bus and enqueues them

• Issues commands to the Cchip by means of the CAPbus based on these requests

• Transfers data to and from the Dchips based on the above commands and requests

• Buffers the data when necessary

• Reports errors to the Cchip, after recording the nature of the error
21 October 1999 Pchip Architecture 8–1

Pchip Architecture
Figure 8–1 shows a block diagram of the Pchip.

Figure 8–1 Pchip Block Diagram

Legend:

QDDW: Downstream Write Data Queue

QDDR: Downstream Read Data Queue

QDAW: Downstream Write Address Queue

QDAR: Downstream Read Address Queue

QUDW: Upstream Write Data Queue

QUDR: Upstream Read Data Queue

PCSR: Pchip CSR

CCSR: Cchip CSR

Buffers

Translation
Lookaside

Buffer

PTE

Data

Cmd/
Addr

PCSR

CCSR Read

CCSR
Write

RMW

Dchip
I/O Data
PADbus

Buffers

Buffers

Cchip Command/Address
CAPbus

PCI Bus

LJ-05504.AI4

QDDW

16 QW

 QDDR

16 QW

QDAW

(4)

 QDAR

(4)

QUDW

16 QW

 QUDR

8 QW

PTP
R/W
(1)

DMA
Write
(2)

DMA
Read

(1)
8–2 Pchip Architecture 21 October 1999

Pchip Architecture

 sup-
8.1.1 Pchip Interfaces

This section contains descriptions of three Pchip interfaces:

• PCI bus

• CAPbus

• PADbus

8.1.1.1 PCI Bus

The Pchip is compliant with PCI Bus Specification, Revision 2.1 (although as a host
bridge it does not comply with all of the ordering rules – see Section 8.1.2.1), and
ports the following:

• 33-MHz operation.

• 64-bit wide AD (interoperates with 32-bit devices).

• Dual-address cycle (DAC) is accepted for DMA, with some restrictions.

The Pchip only supports DAC operations on a 64-bit PCI bus when the entire address is
provided in the first cycle of the DAC transaction.

Locks are not supported. Further details on precisely which PCI operations are sup-
ported by the Pchip, and how they are supported, can be found in Section 8.8.2.

8.1.1.2 CAPbus

The Cchip and Pchips communicate over a bidirectional 24-bit wide multicycle bus
called the CAPbus. This communication can take the form of requests for reading or
writing data to or from the PCI or system, or as an indication of the data return for read
transactions. Because the Cchip has no direct data path connection to the Dchips, Cchip
CSR data is also transferred over this bus. The CAPbus also has sideband signals for
arbitration of its ownership, and for flow control. See Chapter 6 for details on the CAP-
bus.

8.1.1.3 PADbus

The PADbus is a bidirectional 32-bit bus with 8 check bits. It is controlled by the Cchip
and is used to transfer data between the Pchip and the Dchips. Each Pchip has a sepa-
rate PADbus. The PADbus will either use the lower 4 check bits on each of the two
transfers required for a quadword, or it will present all 8 check bits on the first transfer
and repeat them on the second transfer. This mode is static and is determined at power-
up/reset. See Chapter 7 for details on the PADbus.
21 October 1999 Pchip Architecture 8–3

Pchip Architecture

e

f the

s of
 com-
n ear-

 or
ata

ead or
ata
Under control of PCTL<ECCEN>, the Pchip corrects single-bit errors and detects
uncorrectable errors using the ECC matrix defined by the 21264 for the following oper-
ations only:

• DMA reads

• SGTE reads

• DMA RMW

The Pchip generates check bits using the same ECC matrix for all outgoing data on the
PADbus.

8.1.2 Pchip Internals

In the following sections, the terms upstream and downstream are defined as follows:

• Upstream data – From the Pchip to the Dchips, regardless of the initiator of th
request.

• Downstream data – From the Dchips to the Pchip, regardless of the initiator o
request.

• Upstream command – From the Pchip to the Cchip on the CAPbus, regardles
the originator of the request. For example, the Pchip sends an upstream LoadP
mand on the CAPbus when it is ready to return upstream data in response to a
lier downstream PCI read command on the CAPbus from the Cchip.

• Downstream command – From the Cchip to the Pchip on the CAPbus.

• Upstream operations – These are operations where the request (CAPbus read
write command) is from the Pchip to the Cchip, regardless of the direction of d
flow. The Pchip is the PCI target.

• Downstream operations – These are operations where the request (CAPbus r
write command) is from the Cchip to the Pchip, regardless of the direction of d
flow. The Pchip is the PCI master.

8.1.2.1 PCI Ordering – Upstream and Downstream Interactions

The PCI Specification, Rev 2.1, has rules governing which transactions can pass other
transactions. The Pchip implements the ordering rules using some interactions between
the upstream address machines and the two downstream address controllers. The Cchip
imposes the ordering rules described in Section 6.1.3, as well as the Pchip rules
described in the following paragraphs.
8–4 Pchip Architecture 21 October 1999

Pchip Architecture

of
PU

l CAP-
Table 8–1 and the accompanying table notes list the Pchip rules and the manner
implementation. The QDA cannot distinguish between PCI reads initiated by the C
(PIO read) and those initiated by the other Pchip (PTP read), because the identica
bus command is used for both (PCI read).

Table 8–1 PCI Read and Write Pchip Ordering – Can Second Pass First?

First →

DMA
write
request

PIO
write
request

PTP
write
request

DMA
read
request

PIO/PTP
read
request

DMA read
completion

PIO/PTP
read
completion

Second ↓

DMA write request No1

1 The three upstream write machines maintain strict ordering with respect to one another. Also, in QDA, all
write requests are handled in order.

N/A No1 Yes Yes N/A Yes

PIO write request N/A No1 No1 N/A Yes Yes Yes

PTP write request No1 No1 No1 Yes Yes Yes Yes

DMA read request No2

2 The upstream read machines wait to make their CAPbus requests until any earlier upstream write machines
have made all of their CAPbus requests. The downstream read controller waits until all earlier downstream
writes have completed before making its PCI read request.

N/A No2 No3

3 There is only one upstream DMA read machine, so DMA read requests or completions cannot pass each other.
However, there is no ordering imposed between the upstream DMA read machine and the upstream PTP read
machine.

Yes3 N/A Yes

PIO/PTP read request No2 No2 No2 Yes3 No4

4 The single upstream PTP read machine implies that upstream PTP read requests or completions cannot pass
each other. In addition, in QDA, the downstream PCI read requests and completions (PIO and PTP) are pro-
cessed in order. (This latter is simply an implementation convenience and is not required.)

Yes Yes

DMA read comp N/A Yes5

5 In violation of the PCI Specification, Rev 2.1, DMA delayed-read completions are allowed to pass down-
stream write requests. This is necessary to avoid deadlocks with ISA bridges, because an ISA bus may not be
able to complete a write until its DMA read completes. This is also the behavior of the Cchip for DMA reads,
as described in Section 6.1.3. This behavior of the Pchip is the same whether the PCI master is retried (delayed
completion) or remains connected while the DMA data is fetched from memory.

Yes5 N/A Yes No3 Yes

PIO/PTP read comp No6

6 This is the pipe-cleaner function of PIO reads flushing DMA writes in the upstream direction. It is imple-
mented by signals from the upstream machines to QDA. When QDA begins a read, it notes the number of
active upstream write machines. QDA does not return its data until all of the active write machines have gone
idle at least once.

Yes7

7 PIO read completions and PIO write requests travel in opposite directions and have no relationship. A PTP
read completion in the upstream PTP read machine does not wait for PIO writes in QDA because they have
distinct sources of data (the other Pchip versus the CPU).

No8

8 This is the pipe-cleaner as applied to PTP operations, and is applied in QDA and in the upstream machines. As
stated in Table Note #6, QDA waits to complete a read until earlier upstream write machines have gone idle.
Conversely, unlike Table Note #7, the upstream PTP read machine, when it receives its completion data,
records the number of outstanding PTP writes in QDA. The upstream PTP read machine does not return its
data on the PCI bus until all of those outstanding writes have completed.

Yes Yes Yes No4
21 October 1999 Pchip Architecture 8–5

Pchip Architecture

ck of
uld
ely.
8.1.2.2 Upstream Address Translation

The Pchip performs the following address translation functions on incoming PCI
addresses:

• Determines if the address lies inside an enabled window.

• Determines if the address lies inside the enabled DMA monster window (if a DAC).

• Determines if the address is direct mapped or scatter-gather mapped.

• Determines if the address is for DMA or PTP operation.

• Translates the address to a system address if the address is direct mapped.

• Constructs the system address of the PTE for use by the upstream address
machines, if the address is scatter-gather mapped and the scatter-gather PTE TLB
does not have the correct valid PTE. Otherwise, it translates the address using the
TLB entry.

The scatter-gather TLB is arranged as 168 locations of 4 consecutive quadwords (see
Figure 8–2).

Figure 8–2 Scatter-Gather Associative TLB

8.1.2.3 Clock Control and Generation

The clock control logic generates the PCI clock from one of three possible multiples of
the input i_fwdclk clock. The multiplier is determined by the values read from two
input pins to the Pchip (i_pclkdiv<1:0>), which must be tied to the appropriate power
and ground values for the desired multiple (see Chapter 11). The PCI clocks are active
during system reset.

This logic also generates synchronizing signals that are used to enable transitions to and
from state elements (flip-flops), which are clocked on system clocks, to those clocked
on PCI clocks. The use of these signals is shown in Figure 8–3. A nominal PCI clo
30 ns is shown in this figure. Using the multipliers of 6, 5, and 4, this PCI clock wo
be derived from a system clock with a half-period of 5 ns, 6 ns, or 7.5 ns respectiv

DAC
Cycle

PCI
Address
<31:15> 8KB CPU Page Address

Hit

Physical Memory
Dword Address

Memory Page
Address<32:13>

PCI
Address<12:2>

PCI Address<14:13>

Index

D A T ATAG

LJ04276A.AI7

V
V
V
V
V
V
V
V

V
V
V
V
V
V
V
V

V
V
V
V
V
V
V
V

V
V
V
V
V
V
V
V

8–6 Pchip Architecture 21 October 1999

Pchip Architecture

 sys-
ition
s:

m
-

-
ted
Figure 8–3 PCI Clock to System Clock Transitions

The signals from flip-flops triggered by the rising edge of the PCI clock are labeled
“signal_PR”. The general signals from flip-flops triggered by the rising edge of the
tem clock are labeled “signal_R”. The signals from flip-flops that are used to trans
between the PCI clock domain and the system clock domain are labeled as follow

• signal_UR – Upstream flip-flop; clocked on certain rising edges of the system
clock. Such flip-flops can have as inputs signals derived from “_PR” flip-flops.

• signal_DR – Downstream flip-flop; clocked on certain rising edges of the syste
clock. Such flip-flops can be used to derive signals used as inputs to “_PR” flip
flops.

Figure 8–3 shows (for the multiplier of 6 only) the timing of the signals that enable
loading the “_DR” and “_UR” flip-flops (“DR_enbl” and “UR_enbl”). For the multipli
ers of 5 and 4, the timing of these enabling signals can be inferred from the indica
transitions. This figure shows, for all multipliers, the transitions of the “_DR” and
“_UR” flip-flops. The following rules apply:

• There is exactly one “_DR” transition per PCI clock period.

LJ-05505.AI4

Sysclk n=6

DR enbl

PCIclk

DR enbl

UR enbl

Sysclk n=5

Sysclk n=4

odd_PR even_PR

A_n=6_DR B_n=6_DR

C_n=6_UR D_n=6_UR

A_n=4_DR

C_n=5_UR D_n=5_UR

C_n=4_UR D_n=4_UR

B_n=4_DR

A_n=5_DR B_n=5_DR

30 ns

5 ns

6 ns

7.5 ns
21 October 1999 Pchip Architecture 8–7

Peer-to-Peer PCI Memory Operations

i-

the

 per-
s,
CI
in a

a
.

a
.
f

se state

ip

rded
dress
 page
repre-
E from
• There is exactly one “_UR” transition per PCI clock period.

• There is always a “_DR” transition at the next rising system clock edge immed
ately following a “_UR” transition.

• The total delay – From a “_PR” transition to the next “_UR” transition, then to
next “_DR” transition, and then to the next “_PR” transition always consumes
exactly two PCI clock periods. Therefore, assuming that some logic function is
formed in the system clock domain between the “_UR” and the “_DR” flip-flop
the impact of that logic function will be felt on the second PCI clock after the P
clock that initiated the function. If there is a logic function that must take effect
single PCI clock period, it must be performed in the PCI clock domain.

• For nominal static-timing analysis, the minimum path from a “_PR” flip-flop to
“_UR” flip-flop is 15 ns, which occurs in a path from “odd_PR” to “C_n=4_UR”
For n=5, the minimum “_PR” to “_UR” path is 18 ns (“even_PR” to
“D_n=5_UR”). For n=6, the minimum is 20 ns.

• For nominal static-timing analysis, the minimum path from a “_DR” flip-flop to
“_PR” flip-flop is 24 ns, which occurs in a path from “B_n=5_DR” to “odd_PR”
All of the other paths from “_DR” flip-flops to “_PR” flip-flops have a minimum o
30 ns.

8.1.2.4 PCI Corner

The PCI corner comprises the PCI master and the PCI target state machines. The
machines conform to the PCI Specification, Rev 2.1, and support the operations
described in Section 8.8.2. The PCI target state machine is a medium speed b_devsel_l
device. That is, if b_frame_l and the address are on the PCI bus in cycle N, the Pch
can assert b_devsel_l in cycle N+2.

8.2 Peer-to-Peer PCI Memory Operations

This section explains peer-to-peer PCI memory operations (PCIx to System to PCIy).

8.2.1 Use of Page Table Entry for Peer-to-Peer Operations

A local PCI memory command that hits a window register whose PTP bit is set is forwa
to the Cchip as a PTP memory access. To support software’s use of either system ad
bits <43> or <40> to indicate PIO space, and because PTE bits <22:1> correspond to
address bits <34:13>, it is convenient to use either bit <31> or bit <28> of the PTE to
sent the PTP bit. The Pchip ORs together bits <31> and <28> of the scatter-gather PT
memory to form the TLB’s PTP field. The formats are shown in Figure 8–4.

Figure 8–4 Scatter-Gather Page Table Entry in Memory

MBZ Page Adress <34:13> V

Valid Bit

63 31 28 23 22 1 0

LJ-05522A-AI4
8–8 Pchip Architecture 21 October 1999

Peer-to-Peer PCI Memory Operations

le
t pre-
nto

ame
m-

 with
most

ory
(64-

PCI
he

y
an

letes
pli-
ted
MA
m-
 that a
y,
pletion
f an
The Pchip checks the PTE if either PTP bit is set. When ECC checking is enabled and
an uncorrectable ECC error is detected on a PTE, that entry is marked invalid in the
TLB. If a PTP bit is set, the Pchip also invalidates an entry if the Pchip does not detect
the presence of a remote Pchip at reset time, or if the PTE bits <22:20> (system address
<34:32>) do not correspond to the PCI memory space in the other Pchip, per system
address space shown in Table 10–1. Only 4GB of PCI memory space is accessib
because the Pchip does not support DAC as a bus master. However, this does no
clude DAC PCI addresses that fall within Window 3 from scatter-gather mapping i
the peer’s PCI memory space.

8.2.2 General Peer-to-Peer Operations and Deadlock Avoidance

A Pchip responds to a PTP PCI memory operation from the Cchip in exactly the s
way that it responds to a PIO PCI memory operation from the CPU. The same co
mand is actually used from the Cchip to the Pchip for both of these cases.

Only the following commands are supported for PTP operations:

• Memory read – A memory read command is forwarded as a PCI memory read
a byte mask corresponding to the byte enables on the originating PCI bus. At
eight bytes are fetched in this case.

• Memory write.

• Memory read line – A memory read line command is forwarded as a PCI mem
read with a quadword mask that reads all bytes to the end of the cache block
byte boundary) as defined by the CPU.

• Memory read multiple – A memory read multiple command is forwarded as a
memory read with a quadword mask that reads all bytes to the end of the cac
block (64-byte boundary) as defined by the CPU.

• Memory write and invalidate – A memory write and invalidate command is for-
warded as a memory write command.

All PTP read operations use the delayed-completion mechanism and PTP memor
writes will be posted. System software is responsible for avoiding deadlocks that c
result from simultaneous PTP operations, just as it is if the PTP operations were
between devices on the same PCI bus.

For example, a device that does not accept a read or write until its own read comp
can lead to a PTP deadlock. An ISA bridge exhibits this behavior (it is not PCI com
ant) because it will not accept a write downstream to the ISA bus until a read initia
on that bus completes. The 21272 chipset prevents such deadlocks by allowing D
reads to system memory to complete before outstanding PIO or PTP writes are co
pleted. However, the 21272 chipset antideadlock mechanism depends on the fact
PTP write delivered to the target PCI bus will complete unconditionally. Conversel
the 21272 chipset antideadlock mechanism also depends on the fact that the com
of any other operation initiated on a PCI bus is not conditional on the completion o
earlier PTP read initiated on that bus.
21 October 1999 Pchip Architecture 8–9

No Locks
For this reason the following rules apply:

Rules: PTP operations should not be targeted to devices on an ISA bus, or any
other device that is not PCI Specification, Rev 2.1 compliant.

PTP operations should not be initiated by any devices on an ISA bus, or
any other device that is not PCI Specification, Rev 2.1 compliant.

In addition, no prefetching is performed for PTP read operations between Pchips.
Therefore, to achieve high-bandwidth transfers between two devices, if the devices are
placed on separate PCI buses, only PTP write operations should be used for the transfer.
Best performance is obtained if the devices are on the same PCI bus, so that no PTP
operations through the Pchip or Cchip are required.

8.3 No Locks

The Pchip does not distinguish lock transactions on the PCI bus because it does not
have an input for the PCI signal LOCK#.

8.4 Merging, Splitting, and Chaining Rules

The Pchip attempts to maximize PCI bus utilization by combining the transactions
listed in the following sections.

8.4.1 Merging Transactions

Merging is defined as using a single write transaction to transfer bytes that were origi-
nally in separate requests. The Pchip does not perform merging.

8.4.2 Splitting Transactions

Splitting is defined as taking a single request that has multiple consecutive quadwords
masked out (the CPU merges multiple accesses into one request), and generating two
back-to-back PCI transactions. The Pchip does not perform splitting.

8.4.3 Chaining Transactions

Chaining is the process of taking two requests to consecutive addresses and continuing
the first PCI transaction past the boundary between them without a new PCI address
cycle. The Pchip performs chaining only under the following conditions:

• Write requests with quadword masks only.

• The last quadword of the first request is enabled.

• The first two quadwords of the second request are enabled.
8–10 Pchip Architecture 21 October 1999

Configuration
8.5 Configuration

Configuration of the PCI buses is conventional for each Pchip individually. The follow-
ing configuration cycle conversion and forwarding rule applies:

Rule: A Pchip converts a configuration cycle command from the CAPbus to a
Type 0 command on its PCI bus if the Bus # is zero. It forwards it as a Type
1 command if the Bus # is nonzero.

8.6 PCI Arbitration

The Pchips have the capability to act as the arbiter for their respective PCI buses. There
are seven request inputs (b_req_l<6:1> and b_reqgnt_l<0>) and seven grant outputs
(b_grant_l<6:1> and b_gntreq_l<0>). This supports eight devices (seven plus the
Pchip itself, whose request and grant are internal signals).

The arbiter consists of two round-robin selectors; one high priority and one low priority.
The low-priority group as a whole represents one entry in the high-priority group. The
PCTL register controls whether a device connected to a request/grant pair is in the low-
priority or high-priority group. Each request/grant pair has a corresponding bit in the
register, that if set to 1, puts that device in the high-priority group, otherwise, it is in the
low-priority group.

Arbitration parking, selectable between the Pchip or the device that last had its grant
asserted, is selected by means of a bit in the PCTL CSR.

The previously described internal arbitration scheme can be disabled by means of a bit
in the PCTL CSR. In this case, the Pchip sends its request signal out to an external arbi-
ter on b_gntreq_l<0> and brings in its grant signal on b_reqgnt_l<0>. In this manner,
b_gntreq_l<0> is always an output pin and b_reqgnt_l<0> is always an input pin,
regardless of whether the arbiter is internal or external.

The request and grant lines are all pulled up (to the deasserted state) using weak pull-
ups in the Pchip. If the Pchip internal arbiter is not enabled, inadvertent grants are pre-
vented. This also prevents spurious requests from PCI slots into which no device has
been installed.
21 October 1999 Pchip Architecture 8–11

PCI Software Reset

ther
n to
 will
each

e
s
 soft-
ster
uld

te
d

ta to
ues.

is if
 data
Chip

I
ait a

his

nd the

d.
8.7 PCI Software Reset

The Pchip supports software writes to reset its PCI bus.

A PIO write to the Pchip’s SPRST CSR will cause RST# to be asserted, while ano
CSR write to the same location will cause RST# to be deasserted. The data writte
the Soft PCI Reset Register is ignored. As in the hardware system reset, REQ64#
be driven as necessary. This function will need to be executed independently on
Pchip in the system.

The requirement that there be no traffic requiring Pchip action prior to asserting th
software reset is guaranteed by the following procedure, which applies to all case
except PTP. Software must ensure that all PTP traffic is complete before asserting
ware reset1. If a PCI transaction is in progress in which the PChip is the slave or ma
at the assertion of software reset, the results will be UNPREDICTABLE. This sho
not happen if the following sequence completes successfully:

1. Disable PTP and wait for all outstanding PTP transactions to complete.

2. Disable all Pchip windows (both Pchips). This will prevent the Pchip target sta
machines from allowing any new connections or retried connections for delaye
read completions.

3. Set Pchip CSR PCTL <FDSC> (both Pchips) for "fast" discard of delayed read
completion data. This will allow any prefetched DMA read data or PTP read da
be thrown away and the state machines to go back to idle and free up the que

4. Wait at least 214 PCI clock cycles. This will allow any in-progress transactions to
complete. Note, however, that some PCI transactions can take longer than th
there are excessive retries or long IRDY slips when the Pchip transfers a lot of
(maximum 8KB). If either of these cases occurs when reset is asserted, the P
is in the middle of a transaction as either master or slave, and results will be
UNPREDICTABLE. Neither case is considered likely with currently known PC
devices. If there is a danger of this in your system, the recommendation is to w
longer time before asserting software reset.

5. Issue a PIO PCI read (both Pchips). This will ensure that all non-PTP traffic is
complete.

6. Disable PChip internal arbiter (both Pchips) if the Pchip was the PCI arbiter. T
will ensure proper reset behavior for the arbitration pins.

7. Set PCI reset (both Pchips).

8. Wait for at least 100 µsec. PCI reset will be held during this period. Do not make
any new PIO read or write request during this period.

9. Clear PCI reset (both Pchips).

10. Clear the PERROR CSR (both Pchips). There may have been errors logged a
Pchip’s error interrupt line pulled during this process.

11. Reenable the Pchip windows and reenable the Pchip internal arbiter as neede

1 A limited window exists in which PTP reads may not have completed by issuing a PIO PCI read as set
forth in the reset sequence. But because of this window, software reset is not guaranteed to work if
PTP traffic can be active.
8–12 Pchip Architecture 21 October 1999

Error Handling

Gbus.

, or
> is
nd the

us

rst.
.

rror
8.8 Error Handling

The following sections describe error handling.

8.8.1 Memory Data Errors — DMA Reads and Writes, SGTE Reads

If ECC memory is installed in a system using the 21272 chipset, PCTL<ECCEN> can
be set. In this case, the Pchips:

• Generate ECC bits for DMA writes (including DMA RMW operations).

• Check the ECC and correct single-bit errors for DMA reads.

• Check the ECC and correct single-bit errors for DMA RMW operations.

• Check the ECC and correct single-bit errors for SGTE reads.

8.8.1.1 Correctable and Uncorrectable Memory Errors

This section describes how correctable and uncorrectable errors are handled.

If a correctable or uncorrectable ECC error is detected for a cache block prefetch of
DMA read data, and that data is not delivered to the PCI bus, it is UNPREDICTABLE
whether or not the ECC error will be reported. (This depends on when the PCI
operation completed relative to when the ECC error is detected.) If the data is delivered
to the PCI bus, any ECC error will be reported (unless the PERRMASK bits are set).

8.8.1.1.1 Correctable Memory Errors

If a single-bit error is corrected, the operation in question completes normally. If
PERRMASK<CRE> is enabled, and PERROR<CRE> is set, then the system address
(not the PCI address) is captured in PERROR<ADDR>. The PERROR<CMD> field
indicates the type of operation (DMA read, DMA RMW, or SGTE read) that detected
the error. The Pchip’s b_error output signal is asserted. This signal should be
connected to one of the error interrupt pins routed to the Cchip by means of the TI

8.8.1.1.2 Uncorrectable Memory Errors

The Pchip can detect an uncorrectable memory error on a DMA read, a DMA RMW
an SGTE read. In all cases, if PERRMASK<UECC> is enabled, PERROR<UECC
set, the system address (not the PCI address) is captured in PERROR<ADDR>, a
PERROR<CMD> field indicates the type of operation (DMA read, DMA RMW, or
SGTE read) that detected the error. The Pchip’s b_error output signal is asserted. The
rest of the operation depends on the type of transaction.

On DMA reads, the Pchip drives incorrect parity on the PCI bus when the erroneo
data is being returned on the PCI.

Note: Incorrect parity will be driven for all subsequent data transfers in that bu
Software is expected to crash the system on the detection of this error

On the read portion of an RMW, the Pchip forces incorrect ECC into that location
during the write portion of the RMW by inverting the upper three checkbits. This
ensures that when this location is subsequently read, an uncorrectable memory e
will be detected with a known syndrome of E0 (hexadecimal).
21 October 1999 Pchip Architecture 8–13

Error Handling

n

at
R are
dress

 are
n it is
Note: As in the case of reads, the uncorrectable error could be forced on subse-
quent writes to memory, as well. Software is expected to crash the system
on the detection of this error.

If an uncorrectable error is detected on an SGTE read operation, the TLB entry is not
marked valid, and the PTE is not used to fetch DMA data.

If an uncorrectable error is detected on DMA read data, the Pchip drives incorrect parity
on the PCI bus as the data is being returned to the master.

If an uncorrectable error is detected on the read portion of a DMA RMW operation, the
Pchip forces incorrect ECC into memory on the write portion of the RMW by inverting
the upper three checkbits. This results in a syndrome of E0 (Hexadecimal) when that
data is read.

8.8.2 PCI Errors

The PERROR bits that represent PCI errors are defined in Section 10.2.5.6. Each of
these bits has a counterpart in the PERRMASK register to enable that error, and a
counterpart in the PERRSET register to force a report of that type of error without the
error actually occurring. When any of these bits are set in PERROR, the Pchip’s error
signal is asserted to the Cchip, and PERROR is locked. Any further error detectio
causes PERROR<LOST> to be set.

If PERROR<CRE> or PERROR<UECC> is set, then the PERROR<ADDR> and
PERROR<CMD> fields represent the system address and the type of operation th
caused the ECC error to be detected. If any of the other (PCI error) bits in PERRO
set, then the PERROR<ADDR> and PERROR<CMD> fields represent the PCI ad
and PCI command of the operation that caused the error to be detected.

The following sections provide more details on the PCI operations for which errors
detected. Typically, the Pchip only reports errors using the PERROR register whe
the master of the PCI transaction. When the Pchip is the target of the transaction, it
relies on the master to report the error. Exceptions are noted.

8.8.2.1 No devsel_l — PERROR<NDS>

If the Pchip as master does not detect b_devsel_l on the PCI bus, it terminates the
transaction with master-abort. For a read transaction, the Pchip returns all 1s. For a
write transaction, it discards the data. For all transactions, except configuration reads
and special cycles, the Pchip sets PERROR<NDS> and asserts its error signal.

8.8.2.2 Target Abort — PERROR<TA>

When the Pchip as master receives a target abort response, it sets PERROR<TA> and
asserts its b_error signal. For a read transaction, the Pchip returns all 1s. For a write
transaction, it discards the data.

8.8.2.3 PCI Read Data Parity Error — PERROR<RDPE>

If the Pchip as master detects a PIO read parity error, it asserts b_perr_l on the PCI bus
and sets PERROR<RDPE>. It returns the erroneous data as received. As a target of a
read operation, the Pchip ignores b_perr_l, relying on the PCI master to report the
error.
8–14 Pchip Architecture 21 October 1999

Error Handling

ed to

ad to
ay not

s
 a
8.8.2.4 PCI Write Data Parity Error — PERROR<PERR>

When the Pchip is the master, if the target device of a PCI write detects a parity error
and asserts PERR# on the PCI bus, the Pchip sets PERROR<PERR>.

As the target of a write operation, if the Pchip detects a write data parity error, it asserts
b_perr_l, sets the PERROR<PERR> bit, and forces uncorrectable memory errors on
the erroneous data when the write happens in memory. The uncorrectable memory error
is generated by inverting the upper three ECC checkbits. This ensures that a subsequent
read of that location results in an uncorrectable memory error with the syndrome E0
(hexadecimal).

Note: This operation has side effects, and could result in subsequent memory
writes, forcing uncorrectable ECC errors in memory. Software is expected
to crash the system.

8.8.2.5 Invalid Page Table Entry for Scatter-Gather Operation — PERROR<SGE>

If the Pchip is the target of an operation that is not direct mapped and issues an SGTE
read, but the target PTE returned from memory is not valid, the Pchip sets PER-
ROR<SGE>. The PCI address stored in PERROR<ADDR> is only valid to the granu-
larity of a page (8KB). For a read or write operation, the Pchip continually retries the
operation on the PCI bus. (The Pchip always retries operations on the PCI bus that are
not direct mapped and that miss in the TLB, or have an invalid PTE in the TLB.)

It is possible to have a valid TLB tag entry with an invalid PTE without setting
PERROR<SGE>. This is because four PTEs are fetched at once, and the invalid PTE
may have been fetched as a side effect of an earlier operation. In this case, the entire
TLB entry is discarded and the four PTEs are refetched. If the target PTE is returned as
invalid, PERROR<SGE> is set.

To minimize latency in the case of a DMA read that has a TLB miss, when the SGTE
read returns, the DMA memory read is sent to the Cchip without inspecting whether the
PTE is valid. Therefore, it is possible that the Cchip will detect an NXM (nonexistent
memory) error in this case, in addition to the Pchip’s detection of the invalid PTE.
However, if the PTE was not valid, the fetched data is discarded and is not deliver
the PCI bus.

For PTP reads, this optimization is not taken to prevent side effects of a PIO-like re
an erroneous location. In fact, the erroneous system address in the invalid PTE m
even translate to the other Pchip’s PCI memory space.

8.8.2.6 PCI Address/Command Parity Error — PERROR<APE, SERR>

When the Pchip is not the PCI master, if the Pchip detects a parity error on a command/
address cycle on the PCI bus, it will not assert b_serr_l on the PCI bus, but will set
PERROR<APE>. If the erroneous address hits in a Pchip window, the Pchip asserts
b_devsel_l normally.

In this case, if the operation is a write, the Pchip will target abort the write and
disconnect from the PCI bus. No write will be sent to the Cchip. If the operation is a
read, the Pchip will also target abort the operation. However, the Pchip may return one
PCI bus transfer’s worth of erroneous data before the target abort, if the erroneou
address happens to match the address of a pending delayed completion read. As
potential target of the operation, the Pchip does not set PERROR<SERR>.
21 October 1999 Pchip Architecture 8–15

Monitor Outputs and Counters

from

d to

When the Pchip is the PCI master, if a device detects an address parity error and asserts
b_serr_l, the Pchip sets PERROR<SERR>. If the device proceeds with the data
transfer, that is the only error indication provided and the operation is completed
normally. If the device does not proceed with the data transfer, the Pchip reacts as
follows:

• If the operation was a read, the Pchip returns all 1s.

• If the operation was a write, the Pchip discards the data.

If the Pchip detects b_serr_l asserted at any other time, it also sets PERROR<SERR>.

Note: The address/command information in the PERROR register is undefined
when the PERROR<SERR> bit is set.

As a PCI master, the Pchip always supplies good parity on the upper 32 address bits,
even though the Pchip never uses a DAC command. As a PCI target, the Pchip only
checks the parity on the upper 32 address bits when b_req64_l is asserted and the
command is DAC.

8.8.2.7 Delayed Completion Retry Timeout — PERROR<DCRTO>

When the Pchip is the target of a read operation, it may retry the request and complete
the operation using a delayed completion, as dictated in the PCI Specification. This
mechanism is always used for:

• PTP reads

• DMA reads when the data is not returned fast enough from memory (see
PCTL<TGTLAT>, Section 10.2.5.4)

• If the address was not direct mapped, and there was a TLB miss on the Pchip

The Pchip holds the delayed completion data for a fixed number of PCI cycles (see
PCTL<FDSC>, Section 10.2.5.4) and waits for the PCI master to retry the request. If
the master fails to retry the request in the specified time limit, the Pchip sets
PERROR<DCRTO> and discards the fetched data. For DMA operations, this has no
serious consequences because the data was always prefetchable. For PTP operations, if
the initial PCI command was read (not ReadMultiple and not ReadLine), the discarded
data may not have been prefetchable, and a side effect may have occurred on the other
Pchip’s PCI bus as a result of the read.

8.9 Monitor Outputs and Counters

The Pchip provides facilities for system monitoring through CSRs, as described in
Chapter 10. On each chip, there is a CSR that allows the selection of two signals
among many chip-internal signals. After a delay of two i_sysclk cycles, the selected
signals are driven on the chip’s external b_monitor<1:0> pins.

In addition, each chip has a CSR that contains two counters. Each counter is use
count assertions of the associated b_monitor<n> output signal. For example, Counter0
on the Pchip counts the number of i_sysclk cycles during which the Pchip
b_monitor<0> signal is asserted. Similarly, Counter1 counts the number of i_sysclk
cycles during which the Pchip b_monitor<1> signal is asserted.
8–16 Pchip Architecture 21 October 1999

Pchip Revision
For more information about the monitor functionality, contact your DIGITAL service
representative.

8.10 Pchip Revision

The latest revision of the Pchip can be detected as follows:

• The revision field PCTL<REV> is a 1.

• After the deassertion of reset, the value of CSR PMONCTL is 1. In previous ver-
sions, this register defaults to 0 after reset deassertion.
21 October 1999 Pchip Architecture 8–17

lines
re

-
ontrol
 is

ntrol
ports
 to 3
 9
System Memory

This chapter describes system memory, its organization into arrays, and its control sig-
nals.

9.1 Organization

System memory is implemented in synchronous DRAMs (SDRAMs). SDRAMs are
organized into one to four memory arrays as described in Section 2.2.1 through Section
2.2.3. Each cache block of system memory lies within one of the arrays. Each array pro-
vides the blocks for a contiguous region of the physical memory address space. Each
array is controlled by a separate set of address and control lines driven by the Cchip.
Data is moved to and from the arrays by means of one or two memory buses connected
to the Dchips. If two memory buses are present, each array is supported by a single bus.

9.2 Memory Arrays

Each memory array can be either split or nonsplit and either 16 bytes or 32 bytes wide.
The total number of signal lines for both types of arrays is as follows:

• 16-byte array — 128 data lines plus 16 check bits if ECC is supported

• 32-byte array — 256 data lines plus 32 check bits if ECC is supported

A nonsplit array is a collection of DRAMs that share common address and control
but have separate data lines as shown in Figure 9–1. In split arrays, the DRAMs a
organized into two subarrays as shown in Figure 9–2; twice split arrays used in
Typhoon have four subarrays, as shown in Figure 9–3 . Each subarray looks like a non
split array of the same width. The subarrays share the same data, address, and c
lines except that the subarrays have separate chip selects. If more than one array
present, then all of the arrays must have the same width.

The Cchip has four memory control ports. Each port can drive the address and co
lines for a single array. If less than four arrays are present, any subset of the four
can be used. For identification purposes, each array is assigned an integer from 0
depending on which port it is connected to.
21 October 1999 System Memory 9–1

Memory Arrays
Figure 9–1 Nonsplit Array Block Diagram

Array 0 must be installed. Arrays 1, 2, and 3 are optional. If more than one array is
present, then all the arrays must have the same width. All accesses to nonexistent mem-
ory locations are handled as accesses to array 0. If 4-byte or 8-byte memory modules
(SIMMs or DIMMs) are used, then the number of modules required for a nonsplit array
is:

• Two for 16-byte arrays using 8-byte modules

• Four for 16-byte arrays using 4-byte modules, or 32-byte arrays using 8-byte mod-
ules

• Eight for 32-byte arrays using 4-byte modules

For split arrays, either the same number of modules or twice as many modules are
needed, depending on whether the modules themselves are split.

The D/Q mask (DQM) pins on the SDRAM DIMMs are used to implement partial-
block writes. The SDRAMs are always sequenced as if a full 64-byte block is being
written, but the DQM pins are asserted to suppress writes to octawords that are not
being updated. Partial writes are only used for PCI DMA writes. All other writes update
full 64-byte blocks. All reads operate on full blocks. Partial writes of less than octaword
granularity are handled by means of RMW operations.

LJ-05514.AI4

memxcs_l<0>
memxdqm<0>
memxras_l<x>
memxcas_l<x>
memxwe_l<x>

memxadd<14:0>

memxdqm<1>

D

DDRAM

DRAM
9–2 System Memory 21 October 1999

Memory Buses and Sibling Arrays
Figure 9–2 Split Array Block Diagram

Because the DQM signals to nonbuffered DIMMs may have a heavy electrical load, an
extra pipeline buffer is allowed on the module for the DQM signals over the other
SDRAM control signals. If such a buffer is used, the MTR<MPD> bit must be set to
allow the chipset to adjust the timing appropriately. The two DQM pins for each array
are driven with the same signal in 16-byte (octaword) buses, and can be used to ease the
electrical load on the pins.

9.3 Memory Buses and Sibling Arrays

The memory buses can be 16 bytes or 32 bytes wide. If two buses are present, they must
both have the same width. 16-byte buses can only support 16-byte memory arrays. 32-
byte buses can support 16-byte (half-populated) arrays or 32-byte (fully-populated)
arrays. All arrays must be either fully populated or half populated. Mixing fully-popu-
lated arrays with half-populated arrays is not supported. If the arrays are half populated,
the DIMMs must be installed in the lower half of the DIMM sockets, not the upper half.

The four memory arrays are divided into two pairs of sibling arrays: arrays 0 and 2 are
each others sibling, and the same is true for arrays 1 and 3. However, neither array 0 nor
2 are siblings of either array 1 or 3 and vice versa. In systems with two memory buses,

LJ-05515.AI4

memxcs<1>

DRAM
1

memxcs<0>

DRAM
0

memxdqm<0>
memxras_l<x>
memxcas_l<x>
memxwe_l<x>

memxadd<14:0>

DRAM
1

DRAM
0

memxdqm<1>

D

D

21 October 1999 System Memory 9–3

Supported Array Sizes and DRAM Organizations
only siblings can reside on the same memory bus. This restriction exists because in two-
bus systems, the Cchip does not check for conflicts on the memory buses between
accesses to nonsibling arrays.

Figure 9–3 shows a twice split array.

Figure 9–3 Twice Split Array Block Diagram (Typhoon Only)

9.4 Supported Array Sizes and DRAM Organizations

The array sizes supported are 16, 32, 64, 128, 256, 512MB, and 1GB. 16MB is only
supported in nonsplit arrays. Typhoon also supports 2, 4, and 8GB arrays.

The size S of an array is given by:

FM-06406.AI4

memxcs<1>

DRAM
1

memxcs<0>

DRAM
0

memxdqm<0>
memxras_l<x>
memxcas_l<x>
memxwe_l<x>

memxadd<14:0>

DRAM
3

DRAM
2

memxcs<2>

D

memxcs<3>

DRAM
1

DRAM
0

DRAM
3

DRAM
2

D

memxdqm<1>
9–4 System Memory 21 October 1999

Supported Array Sizes and DRAM Organizations

ed
Nonsplit array S = W • 2(B + R + C)

Split array S = W • 2(B + R + C + 1)

Twice split array S = W • 2(B + R + C + 2)

where W is the array width, and B, R and C are the number of bank, row address, and
column address bits respectively.

Any DRAM organization is supported (irrespective of the DRAM’s capacity) provid
that the following constraints for B, R, and C are satisfied:

• The array size as calculated from B, R, and C is one of the supported sizes previ-
ously described

• 1 ≤ B ≤ 2 (Typhoon also supports B=3)

• 11 ≤ R ≤ 13

• 8 ≤ C ≤ 11

Notes: Many of the supported organizations are not currently manufactured or
likely to be manufactured in the future.

The desired organizations might not be available on industry-standard
modules even if manufactured.

Certain organizations might not be practical because the chipset can not
effectively drive the number of DRAMs that would be required.

Table 9–1 lists Tsunami DRAM organizations supported. Table 9–2 lists Typhoon
DRAM organizations supported. The array size for each is a function of:

• The array width

• Whether the array is nonsplit or split or twice-split
21 October 1999 System Memory 9–5

Supported Array Sizes and DRAM Organizations

Table 9–1 Selected DRAM Organizations Supported (Tsunami Only)

DRAM Organization

Array Size

NonSplit Array Split Array

B + R + C 16-Byte Array 32-Byte Array 16-Byte Array 32-Byte Array

16Mb 1M x 16 20 16MB 32MB 32MB 64MB

 2M x 8 21 32MB 64MB 64MB 128MB

 4M x 4 22 64MB 128MB 128MB 256MB

 16M x 1 24 256MB 512MB 512MB 1GB

64Mb 2M x 32 21 32MB 64MB 64MB 128MB

 4M x 16 22 64MB 128MB 128MB 256MB

 8M x 8 23 128MB 256MB 256MB 512MB

 16M x 4 24 256MB 512MB 512MB 1GB

128Mb 4M x 32 22 64MB 128MB 128MB 256MB

 8M x 16 23 128MB 256MB 256MB 512MB

 16M x 8 24 256MB 512MB 512MB 1GB

 32M x 4 25 512MB 1GB 1GB 2GB

256Mb 8M x 32 23 128MB 256MB 256MB 512MB

 16M x 16 24 256MB 512MB 512MB 1GB

 32M x 8 25 512MB 1GB — 2GB

 64M x 4 26 1GB — — —
9–6 System Memory 21 October 1999

Addressing
9.5 Addressing

Each array supports a contiguous region of the physical memory address space as deter-
mined by the base address and array size fields of the array address CSRs. Each region
(as programmed) must be naturally aligned, and no two regions may overlap. If arrays
are present with different sizes, then firmware can avoid holes in the address space by
locating (in the address space) the regions for the smaller arrays above those for the
larger arrays.

In Typhoon, all arrays must have at least 256MB aligned addresses, even if they are
smaller than 256MB. This means that holes may be unavoidable in a Typhoon system
that contains arrays smaller than 256MB.

The following fields are positioned in the physical memory address according to Table 9–3
to Table 9–4.

• Bank bit(s)

Table 9–2 Selected DRAM Organizations Supported (Typhoon Only)

 Array Size

 NonSplit Array Split Array Twice-Split Array

DRAM Organization B+R+C
16-Byte
Array

32-Byte
Array

16-Byte
Array

32-Byte
Array

16-Byte
Array

32-Byte
Array

16Mb 1M x 16 20 16MB 32MB 32MB 64MB 64MB1

1 Typhoon only.

128MB1

 2M x 8 21 32MB 64MB 64MB 128MB 128MB1 256MB1

 4M x 4 22 64MB 128MB 128MB 256MB 256MB1 512MB1

 16M x 1 24 256MB 512MB 512MB 1GB 1GB1 2GB1

64Mb 2M x 32 21 32MB 64MB 64MB 128MB 128MB1 256MB1

 4M x 16 22 64MB 128MB 128MB 256MB 256MB1 512MB1

 8M x 8 23 128MB 256MB 256MB 512MB 512MB1 1GB1

 16M x 4 24 256MB 512MB 512MB 1GB 1GB1 2GB1

128Mb 4M x 32 22 64MB 128MB 128MB 256MB 256MB1 512MB1

 8M x 16 23 128MB 256MB 256MB 512MB 512MB1 1GB1

 16M x 8 24 256MB 512MB 512MB 1GB 1GB1 2GB1

 32M x 4 25 512MB 1GB 1GMB 2GB 2GB1 4GB1

256Mb 8M x 32 23 128MB 256MB 256MB 512MB 512MB1 1GB1

 16M x 16 24 256MB 512MB 512MB 1GB 1GB1 2GB1

 32M x 8 25 512MB 1GB 1GB 2GB1 2GB1 4GB1

 64M x 4 26 1GB 2GB1 2GB1 4GB1 4GB1 8GB1

128M x 2 27 2GB1 4GB1 4GB1 8GB1 8GB1 —
21 October 1999 System Memory 9–7

Addressing
• Row address

• Widest supported column address for the array width and values of B and R

These field extractions are a function of:

• Array width

• B

• R

The array width is determined by the array width field of the system configuration CSR.
B and R are determined by the DRAM organization fields of the array address CSRs
AARx<ROWS> and AARx<BNKS>.

Table 9–3 shows memory array addressing for the Tsunami 21272. Table 9–4 shows
memory array addressing for the Typhoon 21274.

Table 9–3 Memory Array Addressing 1 (Tsunami Only)

1 Bank and row address bits are transferred one cycle earlier than column address bits and are fixed
independent of RAM organization. One cycle is available to select column address bits as a func-
tion of CSR settings. Also, the bank bit assignment is selected to keep the width of the minimum
column address in the expected range.

Bank Bits Row Address Column Address Minimum
Column Bits

B R 2 1 0 12 11 10:0 12 11 10 9 8 7:2 1 0

16-Byte Array

1 11 23 22:12 26 25 24 11:6 5 4 8

1 12 23 25 22:12 27 26 24 11:6 5 4 8

1 13 23 26 25 22:12 28 27 24 11:6 5 4 8

2 11 24 23 22:12 27 26 25 11:6 5 4 8

2 12 24 23 25 22:12 28 27 26 11:6 5 4 8

2 13 24 23 26 25 22:12 29 28 27 11:6 5 4 8

32-Byte Array

1 11 23 22:12 27 26 25 11:6 24 5 8

1 12 23 25 22:12 28 27 26 11:6 24 5 8

1 13 23 26 25 22:12 29 28 27 11:6 24 5 8

2 11 24 23 22:12 28 27 26 11:6 25 5 8

2 12 24 23 25 22:12 29 28 27 11:6 26 5 8

2 13 24 23 26 25 22:12 30 29 28 11:6 27 5 8
9–8 System Memory 21 October 1999

Addressing

l-
le to
 are

ay
The actual column address bits are the C lowest-ordered bits shown for the column
address in Table 9–3 in Table 9–4. (The Cchip always drives the widest supported co
umn address to memory.) Due to the mapping of address bits <27:24> it is possib
have a “hole” in the address space if SDRAMs with a small number of column bits
used. The minimum number of column bits supported for each combination of arr
width, B, and R is noted in Table 9–3 in Table 9–4.

Table 9–4 Memory Array Addressing 1 (Typhoon)

1 Bank and row address bits are transferred one cycle earlier than column address bits and are fixed
independent of RAM organization. One cycle is available to select column address bits as a func-
tion of CSR settings. Also, the bank bit assignment is selected to keep the width of the minimum
column address in the expected range.

Bank Bits Row Address Column Address Minimum
Column Bits

B R 2 1 0 12 11 10:0 12 11 10 9 8 7:2 1 0

16-Byte Array

1 11 23 22:12 26 25 24 11:6 5 4 8

1 12 23 25 22:12 27 26 24 11:6 5 4 8

1 13 23 26 25 22:12 28 27 24 11:6 5 4 8

2 11 24 23 22:12 27 26 25 11:6 5 4 8

2 12 24 23 25 22:12 28 27 26 11:6 5 4 8

2 13 24 23 26 25 22:12 29 28 27 11:6 5 4 8

3 11 27 24 23 22:12 28 26 25 11:6 5 4 10 Typhoon only

3 12 27 24 23 25 22:12 29 28 26 11:6 5 4 9 Typhoon only

3 13 27 24 23 26 25 22:12 30 29 28 11:6 5 4 8 Typhoon only

32-Byte Array

1 11 23 22:12 27 26 25 11:6 24 5 8

1 12 23 25 22:12 28 27 26 11:6 24 5 8

1 13 23 26 25 22:12 29 28 27 11:6 24 5 8

2 11 24 23 22:12 28 27 26 11:6 25 5 8

2 12 24 23 25 22:12 29 28 27 11:6 26 5 8

2 13 24 23 26 25 22:12 30 29 28 11:6 27 5 8

3 11 27 24 23 22:12 29 28 26 11:6 25 5 9 Typhoon only

3 12 27 24 23 25 22:12 30 29 28 11:6 26 5 8 Typhoon only

3 13 27 24 23 26 25 22:12 31 30 29 11:6 28 5 8 Typhoon only
21 October 1999 System Memory 9–9

Addressing

high-
For split arrays, a subarray bit that identifies the subarray is also extracted. This bit is
extracted from the bit position shown in Table 9–5 in Table 9–6 (Typhoon) as a func-
tion of the array size. This position is one bit higher than the position used for the
est-ordered column address bit (used by memory).

Table 9–7 shows the decode of single-split subarray bit positions into chip select.

Table 9–5 Position of Subarray Bit (Tsunami Only)

Array Size
Subarray Bit Position
CS0 = ~CS1 = CS2 = ~CS3

 32MB 24

 64MB 25

128MB 26

256MB 27

512MB 28

 1GB 29

Table 9–6 Position of Subarray Bits (Typhoon Only)

Array Size
Subarray Bit Position
CS0 = ~CS1 = CS2 = ~CS3

Subarray X 2 Bit Position

 32MB 24 24:231

1 Typhoon only.

 64MB 25 25:241

128MB 26 26:251

256MB 27 27:261

512MB 28 28:271

 1GB 29 29:281

 2GB 301 30:291

 4GB 311 31:301

 8GB 321 32:311

Table 9–7 Decode of Single-Split Subarray Bit Position into Chip Select

SA MemxCS<3> MemxCS<2> MemxCS<1> MemxCS<0>

0 1 0 0 1

1 0 1 1 0
9–10 System Memory 21 October 1999

CPU Address Interface

ith
d

ith
d
Table 9–8 shows the decode of twice-split subarray bit positions into chip select.

9.6 CPU Address Interface

The Tsunami 21272 Cchip utilizes the “page-mode hit” interface from the 21264. W
the address mappings employed, the first two cycles of the CPU address/comman
transfer determine:

• The array

• The subarray (split arrays only)

• The bank bit(s)

• The row address

The Typhoon 21274 Cchip utilizes the “bank interleave” interface from the 21264. W
the address mappings employed, the first two cycles of the CPU address/comman
transfer determine:

• The array (ignoring the address XORing discussed in Section 9.7)

• The subarray

• The bank bit(s) (ignoring the address XORing discussed in Section 9.7)

Also:

• Each bit of the row and bank address has a fixed position in the physical memory
address.

• 64 cache blocks can be accessed at consecutive addresses without leaving page
mode (constant row address).

Table 9–8 Decode of Twice-Split Subarray Bit Position into Chip Select (Typhoon)

SA<1> SA<0> MemxCS<3> MemxCS<2> MemxCS<1> MemxCS<0>

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0
21 October 1999 System Memory 9–11

Address XORing (Typhoon Only)

rray”
tual
 bank

(bit <6>
ray,

ore,
 are
y are
e

for
 which

s of

size
9.7 Address XORing (Typhoon Only)

Address XORing consists of using address bits <7:9> to remap accesses across memory
buses, arrays, and banks to avoid resource conflicts and thereby enhance performance.
Under certain conditions, these address bits in a request are XORed with the otherwise
determined array number and least significant bank bit. In other words, a “virtual a
is first determined by matching against CSRs AARx. Also, the least significant “vir
bank bit” is just address bit <23> that is shown in Table 9–2. The actual array and
to be accessed are determined using the XOR function of these virtual values with
address bits <7:9> of the request. In this manner, a long succession of sequential
address accesses are broken into a succession of pairs of cache block accesses
toggles once per cache-block pair). Each pair is accessed from a different bus, ar
and bank.

This feature is completely disabled if the CSR bit SC<AXD> is asserted. Futherm
the feature is selectively disabled for address bits <8:7> if the required array sizes
incompatible. (Because all arrays have at least two banks and all banks in an arra
of equal size, bit <9> has no such compatibility restriction.) In particular, if all of th
arrays to be toggled are of equal size (and thus, have no incompatibilities) and
SC<AXD> is off, then:

• Asserted address<7> toggles arrays across memory buses

• Asserted address<8> toggles arrays within buses (sibling arrays)

• Asserted address<9> toggles the least significant bank bit within each array

Table 9–9 indicates exactly which arrays are toggled (between virtual and actual)
each combination of address bits <8:7>. Table 9–9 can also be used to determine
arrays must be of equal size to allow a particular bit to be XORed. For example, if
Array0 and Array1 are a different size, then address bit <7> is not used, regardles
SC<AXD>. However, bit <8> may still be used if Array0 = Array2 and Array1 =
Array3 in size. If two arrays are both disabled, they are considered to be of equal
for this purpose.

Table 9–9 Array Toggling Due to Address XORing

Address <8:7>
Virtual-to-Actual
Bus Toggle

Virtual-to-Actual Array Toggles

00 No None

01 Yes Array0 <−> Array1 and Array2 <−> Array3

10 No Array0 <−> Array2 and Array1 <−> Array3

11 Yes Array0 <−> Array3 and Array1 <−> Array2
9–12 System Memory 21 October 1999

Bunk and Split Array Addressing

o it
 bus.
-
nd
ta
n a

mine
 deter-

 data
et
more
9.8 Bunk and Split Array Addressing

SDRAMs are internally split into two or four banks. Typhoon supports 8 banks. The
Cchip groups both banks into two (four for Typhoon) bunks based on the least signifi-
cant bank bit(s) in the address (bit <23> for Tsunami; bits <24:23> for Typhoon), and
can have one row open in each bunk at any time.

For a split array, each bunk spans the two subarrays so that when a row activate com-
mand is sent to the DRAMs, the chip select pins to both subarrays are asserted. How-
ever, when the read or write command is sent to an open row, only the chip select to the
addressed subarray is asserted. If a request is received to a row in a bunk that has a dif-
ferent row already open, the open row is closed and the new row is opened (even if the
rows are in different banks in the SDRAMs). Once a row is open, the Cchip considers
accesses to that row to be page hits regardless of which subarray the access maps to.

9.9 SDRAM Control Signal Buffering

The control signals to the SDRAMs (b_mras_l<3:0>, b_mcas_l<3:0>,
b_mwe_l<3:0>, b_mndqm<1:0>, b_mcke_l<3:0>, and b_mna<14:0>) may be buff-
ered on the module, on the DIMMs, or on both. The system timing CSRs provide for
zero, one, or two cycles of buffering on all these signals as a group, as well as a possible
additional cycle of buffering on b_mndqm<1:0>. The number of these pipeline stages
is used to determine the values for STR<IDDW>, STR<IDDR>, and MTR<IRD>. See
Section 10.2.4.3 for the formulas to determine these CSR values based on the number
of pipeline stages. If the DQM signals have an additional pipeline stage over the other
control signals, then MTR<MPD> should be set.

9.10 Serial Presence Detect – CSR MPD

Some SDRAM DIMMs have serial presence detect pins to read data from a serial ROM
using the I2C protocol. The Cchip has two open-drain pins that can be used by software
to implement the I2C protocol and read this information. Access to these pins is pro-
vided directly through the Cchip’s MPD CSR. The Cchip does not implement an I2C
controller in hardware. The I2C protocol can address a maximum of eight devices, s
is not possible to connect every DIMM in a system using the 21272 chipset to the
Therefore, it is recommended that on a nonsplit-array system, two DIMMs be con
nected to the I2C bus in each array; one in the lower 16 bytes of the memory bus a
one in the upper 16 bytes of the memory bus. That way, by reading the SROM da
firmware, one can determine the size and width of the installed memory DIMMs. I
system design that supports split arrays, one DIMM should be connected to the I2C bus
from each subarray. Firmware should test the width of the installed arrays to deter
whether they are 16 bytes or 32 bytes wide. Firmware can use the SROM data to
mine which subarrays are installed and how large they are.

9.11 Memory Programming – CSR MPRx

The SDRAMs may need to be programmed after they are powered on. To do so, soft-
ware can use the Cchip’s MPRx CSRs (one per memory array). The programming
supplied by the software is written on the address lines while the Mode Register S
command is delivered to the SDRAMs on the control signals. See Chapter 12 for
information about memory initialization.
21 October 1999 System Memory 9–13

Self Refresh – CSR PWR<SR>
9.12 Self Refresh – CSR PWR<SR>

To support power management, the Cchip can be instructed to put the SDRAMs into the
self-refresh state by using the CSR bit PWR<SR>. While this bit is set, the Cchip inhib-
its its standard refresh of the SDRAMs and sends the self-refresh command to all the
arrays. This includes deassertion of the b_mcke_l<3:0> control signals. SDRAM spec-
ifications state that in the cycles after b_mcke_l<3:0> is deasserted, other signals to the
SDRAMs are ignored. Any SDRAM accesses attempted while PWR<SR> is set will
cause UNPREDICTABLE results.

Note: Software must ensure that no DMA operations or CPU memory accesses
are in progress whenever PWR<SR> is set. See Chapter 12 for more infor-
mation about power management.
9–14 System Memory 21 October 1999

9–16 System Memory 21 October 1999

Self Refresh – CSR PWR<SR>

IO
LE
 10
Programmer’s Reference

This chapter describes system addressing and the 21272 chipset control and status
register (CSR) set.

10.1 System Addressing

This section describes the chipset-implemented translations between several address
spaces. System space addresses can be translated to one of the following:

• Pchip0 PCI bus IACK/special operation

• Pchip0 PCI bus memory space

• Pchip0 PCI bus I/O space

• Pchip0 PCI bus configuration space

• Pchip1 PCI bus IACK/special operation

• Pchip1 PCI bus memory space

• Pchip1 PCI bus I/O space

• Pchip1 PCI bus configuration space

• CSR and TIGbus accesses

These translations (from system address to PCI, CSR, or TIG) are collectively referred
to as PIO translations and are invoked when the Cchip receives a PIO command from
the CPU or a peer-to-peer (PTP) command from a Pchip.

For all other commands (non-PIO from the CPU or DMA from a Pchip), system
addresses are used without translation to access system memory.

The CPU determines whether to send a PIO operation by examining bit <43> of its
internal address. The Cchip does not see bit <43>; it only sees if the operation from the
CPU is PIO or not.

PCI memory space addresses (from a PCI bus on one of the Pchips) are translated into
system space addresses using window registers. If the window does not specify PTP, a
DMA operation takes place to system memory without further translation. If the win-
dow does specify PTP, the system space address is translated back to PCI memory space
on the other Pchip’s PCI bus so that a PTP operation can take place. Any other P
translation (from PCI bus to system to PIO) is illegal and results in UNPREDICTAB
results.
21 October 1999 Programmer’s Reference 10–1

System Addressing

 is

 each
r, the
 in

 bit

10.1.1 System Space and Address Map

The system address space is divided into two parts: system memory and PIO. This divi-
sion is indicated by physical memory bit <43> = 1 for PIO accesses from the CPU, and
by the PTP bit in the window registers for PTP accesses from the Pchip. While the oper-
ating system may choose bit <40> instead of bit <43> to represent PIO space, bit <43>
is used throughout this chapter. In general, bits <42:35> are don’t cares if bit <43>
asserted.

There is 16GB of PIO space available on the 21272 chipset with 8GB assigned to
Pchip. The Pchip supports up to bit <34> (35 bits total) of system address. Howeve
Version 1 Cchip only supports 4GB of system memory (32 bits total). As described
Chapter 6, the CAPbus protocol between the Pchip and Cchip does support up to
<34>, as does the Cchip’s interface to the CPU. The Typhoon Cchip supports 32GB of
system memory (35 bits total).

The system address space is divided as shown in Table 10–1.

Table 10–1 System Address Map

Space Size System Address <43:0> Comments

System memory 4GB 000.0000.0000 – 000.FFFF.FFFF Cacheable and prefetchable.

Reserved 8188GB 001.0000.0000 – 7FF.FFFF.FFFF —

Pchip0 PCI
memory

4GB 800.0000.0000 – 800.FFFF.FFFF Linear addressing.

TIGbus 1GB 801.0000.0000 – 801.3FFF.FFFFaddr<5:0> = 0.
Single byte valid in quadword
access.
16MB accessible.

Reserved 1GB 801.4000.0000 – 801.7FFF.FFFF —

Pchip0 CSRs 256MB 801.8000.0000 – 801.8FFF.FFFFaddr<5:0> = 0.
Quadword access.

Reserved 256MB 801.9000.0000 – 801.9FFF.FFFF —

Cchip CSRs 256MB 801.A000.0000 – 801.AFFF.FFFFaddr<5:0> = 0.
Quadword access.

Dchip CSRs 256MB 801.B000.0000 – 801.BFFF.FFFFaddr<5:0> = 0.
All eight bytes in quadword
access must be identical.

Reserved 768MB 801.C000.0000 – 801.EFFF.FFFF —

Reserved 128MB 801.F000.0000 – 801.F7FF.FFFF —

PCI IACK/
special Pchip0

64MB 801.F800.0000 – 801.FBFF.FFFF Linear addressing.

Pchip0 PCI I/O 32MB 801.FC00.0000 – 801.FDFF.FFFF Linear addressing.

Pchip0 PCI
configuration

16MB 801.FE00.0000 – 801.FEFF.FFFF Linear addressing.

Reserved 16MB 801.FF00.0000 – 801.FFFF.FFFF —
10–2 Programmer’s Reference 21 October 1999

System Addressing

, are
 not

stem
ws.

be four
 is

 bus.

hip
ct-
spec-

 are
w 3

 to a
10.1.2 PCI Space

PCI space has 4GB of memory space, 32MB of I/O space, and 16MB of configuration
space. If two Pchips are present, then each Pchip has its own set of PCI space. PCI
memory transactions are directed to the 4GB memory space. PCI I/O transactions are
directed to the 32MB I/O space. PCI configuration transactions are directed to the
16MB configuration space.

10.1.2.1 PCI Memory Space

Accesses to a Pchip’s PCI memory space, from either the CPU or the other Pchip
linearly mapped into the 4GB space. Dual-address cycle access to the PCI bus is
supported from the CPU or the other Pchip.

Each Pchip can also have up to five regions in PCI memory space that map to sy
memory space. This is DMA space, and the regions are referred to as DMA windo
PCI devices can access system memory by means of these windows. There can
standard DMA windows and one DMA monster window. The DMA monster window
enabled by PCTL<MWIN>. If enabled, this window lies from 100.0000.0000 to
100.FFFF.FFFF, which requires a dual-address cycle (DAC) access from the PCI
This window maps to system memory as defined in Section 10.1.4. Because the
Cchip’s interface to the CPU and the CAPbus protocol between the Pchip and Cc
only support 35 bits of addressing, and because the DMA monster window is dire
mapped, there is not a unique PCI address from this 1Terabyte DMA window that
ifies the same 32GB region in system memory. The ordinary DMA windows are
enabled and defined by the WSBAn, WSMn, and TBAn CSRs. These windows map to
system memory as defined in Section 10.1.4. Window 0, Window 1, and Window 2
never DAC capable, while Window 3 can be enabled to be DAC capable. If Windo
is enabled to be DAC capable, it is accessed by PCI addresses that range from
800.0000.0000 to FFF.FFFF.FFFF. Again, the translated system address is limited
maximum range of 35 bits.

Pchip1 PCI
memory

4GB 802.0000.0000 – 802.FFFF.FFFF Linear addressing.

Reserved 2GB 803.0000.0000 – 803.7FFF.FFFF —

Pchip1 CSRs 256MB 803.8000.0000 – 803.8FFF.FFFFaddr<5:0> = 0, quadword access.

Reserved 1536MB 803.9000.0000 – 803.EFFF.FFFF —

Reserved 128MB 803.F000.0000 – 803.F7FF.FFFF —

PCI IACK/
special Pchip1

64MB 803.F800.0000 – 803.FBFF.FFFF Linear addressing.

Pchip1 PCI I/O 32MB 803.FC00.0000 – 803.FDFF.FFFF Linear addressing.

Pchip1 PCI
configuration

16MB 803.FE00.0000 – 803.FEFF.FFFF Linear addressing.

Reserved 16MB 803.FF00.0000 – 803.FFFF.FFFF —

Reserved 8172GB 804.0000.0000 – FFF.FFFF.FFFF Bits <42:35> are don’t cares if bit
<43> is asserted.

Table 10–1 System Address Map (Continued)

Space Size System Address <43:0> Comments
21 October 1999 Programmer’s Reference 10–3

System Addressing

ss in
10.1.3 PIO Address Translation (System-to-PCI)

The CPU sends the following commands to the Cchip:

• PIO RdBytes (byte mask)

• PIO RdLWs (longword mask)

• PIO RdQWs (quadword mask)

• PIO WrBytes (byte mask)

• PIO WrLWs (longword mask)

• PIO WrQWs (quadword mask)

The CPU issues the above operations when a read or write operation has physical
address bit <43> equal to 1. If the access is to PCI memory space, a PCI memory read
or PCI memory write command is issued. If the access is to PCI I/O space, a PCI I/O
read or PCI I/O write command is issued. If the access is to PCI configuration space, a
PCI configuration read or PCI configuration write command is issued. If the access is a
read to PCI IACK/special space, a PCI IACK command is issued. If the access is a
write to PCI IACK/special space, a PCI special cycle command is issued. If the read is
to CSR space or TIGbus space, the appropriate CSR or TIGbus data is transferred. (The
Pchips are not involved in Dchip CSR transfers. The Pchips are involved in Cchip CSR
or TIGbus transfers because there is no path for data between the CPU and the Cchip.)

10.1.3.1 Linear Memory Space Translation

A CPU read or write to this space causes a memory read or memory write command,
respectively, on the PCI bus. For byte-oriented accesses, the CPU requests only one
byte or one word at a time. A longword-oriented access can be up to eight longwords,
and a quadword-oriented access can be up to eight quadwords (one cache block).

Figure 10–1 shows how a PCI memory space address is generated from an addre
linear memory space. Table 10–2 details the generation of PCI address bits b_ad<2:0>,
and the PCI command and byte enable bits b_cbe_l<7:0>. However, in PCI memory
space, PCI b_ad<1:0> = 00, and in 64-bit mode PCI b_ad<2> = 0 as well.

Figure 10–1 Linear Memory Address Translation

43

LJ-05516.AI4

02331

33132

PCI BE

1 0 0 0 0 0 0 0 0 0 0 0

PCI Memory Address

CPU Address

From Table

Mask
10–4 Programmer’s Reference 21 October 1999

System Addressing

space.
10.1.3.2 Linear I/O Space Translation

A CPU read or write to linear I/O address space causes an I/O read or I/O write com-
mand, respectively, on the PCI bus. For byte-oriented accesses, the CPU requests only
one byte or one word at a time. A longword-oriented access can be up to eight long-
words, and a quadword-oriented access can be up to eight quadwords (one cache
block).

Figure 10–2 shows how a PCI address is generated from an address in linear I/O
Table 10–2 details the generation of PCI address bits b_ad<2:0>, and the PCI com-
mand and byte enable bits b_cbe_l<7:0>.

Table 10–2 Generation of PCI b_ad<2:0> and PCI b_cbe_l<7:0> from Linear I/O Address

Type Mask
ad<2:0>
(64-Bit)1

1 The difference between memory space and I/O space is that the lower address bits are not
used in memory space (<1:0> in 32-bit mode, <2:0> in 64-bit mode).

cbe_l<7:0>
(64-Bit)

ad<2:0>
(32-Bit)1

cbe_l<3:0>
(32-Bit)

Byte 0000.0001 000 1111.1110 000 1110

Byte 0000.0010 001 1111.1101 001 1101

Byte 0000.0100 010 1111.1011 010 1011

Byte 0000.1000 011 1111.0111 011 0111

Byte 0001.0000 100 1110.1111 100 1110

Byte 0010.0000 101 1101.1111 101 1101

Byte 0100.0000 110 1011.1111 110 1011

Byte 1000.0000 111 0111.1111 111 0111

Word 0000.0011 000 1111.1100 000 1100

Word 0000.1100 010 1111.0011 010 0011

Word 0011.0000 100 1100.1111 100 1100

Word 1100.0000 110 0011.1111 110 0011

Longword xxxx.xxx1 000 xxxx.0000 000 0000

Longword xxxx.xx10 100 0000.1111 100 0000

Longword xxxx.x100 000 xxxx.0000 000 0000

Longword xxxx.1000 100 0000.1111 100 0000

Longword xxx1.0000 000 xxxx.0000 000 0000

Longword xx10.0000 100 0000.1111 100 0000

Longword x100.0000 000 xxxx.0000 000 0000

Longword 1000.0000 100 0000.1111 100 0000

Quadword xxxx.xxxx 000 0000.0000 000 0000
21 October 1999 Programmer’s Reference 10–5

System Addressing

nfigu-

vice
ed
the
Figure 10–2 Linear I/O Address Translation

10.1.3.3 Linear Configuration Space Translation

A CPU read or write to linear configuration address space causes a configuration read
or configuration write command, respectively, on the PCI bus. There are two types of
configuration cycles: Type 0 and Type 1. Refer to Section 8.5 for details on when each
is generated.

If the CPU requests more than one longword transfer, the Pchip uses a burst transaction
on the PCI bus. Configuration read cycles that do not receive a b_devsel_l return all 1s
data to the CPU and do not flag an error. Figure 10–3 shows how a Type 0 PCI co
ration command is generated from an address in linear configuration space.

Figure 10–3 Converting Linear Configuration Address to Type 0 PCI Configuration Cycle

Table 10–3 lists the generation of the individual device IDSEL bits from the PCI de
number. Figure 10–4 shows how a Type 1 PCI configuration command is generat
from an address in linear configuration space. Table 10–4 shows how the LSB of
register # field and the PCI byte enables from the mask field are generated.

Table 10–3 Decode of Device # to Generate IDSEL

Device# <15:11> IDSEL <31:11>

0.0000 0.0000.0000.0000.0000.0001

0.0001 0.0000.0000.0000.0000.0010

0.0010 0.0000.0000.0000.0000.0100

0.0011 0.0000.0000.0000.0000.1000

43

LJ-05517.AI4

02331

3

PCI BE

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

PCI Memory Address

CPU Address

From Table

Mask

0 0 0 0 0 0 0

2425

2425

43

LJ-05518.AI4

012378101131

378101115162324

IDSEL: See Table #Register #Func. PCI BE

Bus # not=0 Register #Func.Device #

0 0

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

PCI Memory Address

CPU Address

Decode From Table

Mask
10–6 Programmer’s Reference 21 October 1999

System Addressing
Figure 10–4 Converting Linear Configuration Address to Type 1 PCI
Configuration Cycle

0.0100 0.0000.0000.0000.0001.0000

0.0101 0.0000.0000.0000.0010.0000

0.0110 0.0000.0000.0000.0100.0000

0.0111 0.0000.0000.0000.1000.0000

0.1000 0.0000.0000.0001.0000.0000

0.1001 0.0000.0000.0010.0000.0000

0.1010 0.0000.0000.0100.0000.0000

0.1011 0.0000.0000.1000.0000.0000

0.1100 0.0000.0001.0000.0000.0000

0.1101 0.0000.0010.0000.0000.0000

0.1110 0.0000.0100.0000.0000.0000

0.1111 0.0000.1000.0000.0000.0000

1.0000 0.0001.0000.0000.0000.0000

1.0001 0.0010.0000.0000.0000.0000

1.0010 0.0100.0000.0000.0000.0000

1.0011 0.1000.0000.0000.0000.0000

1.0100 1.0000.0000.0000.0000.0000

1.0110 – 1.1111 0.0000.0000.0000.0000.0000

Table 10–3 Decode of Device # to Generate IDSEL (Continued)

Device# <15:11> IDSEL <31:11>

43

LJ-05519.AI4

0 0 0 0 0 0 0 0

01237810111516232431

378101115162324

Bus # #Register #Func.Device # PCI BE

Bus # not=0 Register #Func.Device #

0 1

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

From Table

Mask

PCI Memory Address

CPU Address
21 October 1999 Programmer’s Reference 10–7

System Addressing

es a
. The
10.1.3.4 Linear IACK/Special Cycle Space Translation

A CPU read to linear IACK/special cycle space causes an interrupt acknowledge cycle
on the PCI bus. The PCI address is a “don’t care”. A CPU write to this space caus
special cycle on the PCI bus. The PCI address and byte enables are “don’t cares”
data will be the same as the data if this were a normal write.

Table 10–4 Generating Configuration Register # LSB and CBE from Mask and
Data Type

Type Mask
PCA ad<2>

(Register # LSB) PCI cbe_l<3:0>

Byte 0000.0001 0 1110

Byte 0000.0010 0 1101

Byte 0000.0100 0 1011

Byte 0000.1000 0 0111

Byte 0001.0000 1 1110

Byte 0010.0000 1 1101

Byte 0100.0000 1 1011

Byte 1000.0000 1 0111

Word 0000.0011 0 1100

Word 0000.1100 0 0011

Word 0011.0000 1 1100

Word 1100.0000 1 0011

Longword xxxx.xxx1 0 0000

Longword xxxx.xx10 1 0000

Longword xxxx.x100 0 0000

Longword xxxx.1000 1 0000

Longword xxx1.0000 0 0000

Longword xx10.0000 1 0000

Longword x100.0000 0 0000

Longword 1000.0000 1 0000

Quadword xxxx.xxxx 0 0000
10–8 Programmer’s Reference 21 October 1999

System Addressing

Q
 on
10.1.3.5 CSR Space Translation

A CPU read or write to CSR space causes CSR data to be moved to or from the CPU,
respectively. Accesses to this space are to a single quadword aligned to a cache block
only. Figure 10–5 shows the CSR address space translation.

Note: Firmware accessing 21272 CSR space must use only the STQ and LD
instruction so that the CPU uses only the PIO WrQws and PIO RdQws
the interface. Other instructions will cause UNPREDICTABLE results.

Figure 10–5 CSR Space Address Translation

10.1.3.6 TIGbus Space Translation

A CPU read or write to TIGbus space causes a read or write, respectively, of a device
on the TIGbus. An access to this space is only to a byte aligned to a cache block.
addr<29:6> are sent out as tigadr<23:0>.

Note: Firmware accessing 21272 TIGbus space must use only the STQ and LDQ
instruction so that the CPU uses only the PIO WrQws and PIO RdQws on
the interface. Other instructions will cause UNPREDICTABLE results.

10.1.4 DMA Address Translation (PCI-to-System)

The 21272 chipset supports some PCI commands as a target and does not support
(ignores) others as a target. The Pchip does not respond as a target when it acts as a PCI
master.

The Pchip ignores all of the following commands as a target:

• Interrupt acknowledge

• Special cycle

• I/O read

• I/O write

• Configuration read

• Configuration write

The Pchips may respond to the following commands as a target:

• Memory read

43

LJ-05520.AI4

012

CSR #

01

618192930

Chip #

1 0 0 0 0 0 0 0 0 0 0 1 1 0

Chip and CSR Number

CPU Address

2728
21 October 1999 Programmer’s Reference 10–9

System Addressing

,
in-
ify

 mem-
ndary

,
 con-

d of

ss lies

r
ter
ow
scatter-
• Memory read line

• Memory write

• Memory write and invalidate – The Pchip requests a DMA N QW read or write
respectively, when an incoming PCI address lies inside one of the four DMA w
dows or in the DMA monster window, and the matching window does not spec
PTP. Otherwise, a PTP read or write request will be made. In either case, for a
ory read line, the request is made for data until the end of the cache block bou
(64 bytes).

• Memory read multiple – The Pchip requests a DMA N QW read when the PCI
command hits in one of the four DMA windows or in the DMA monster window
and the matching window does not specify PTP. The Pchip prefetches data by
tinuing to issue DMA N QW read commands until the transaction ends. If the
matching window does specify PTP, a PTP read request will be made to the en
the cache block boundary (64 bytes).

• Dual-address cycle – This command is accepted by the Pchip when the addre
inside the DMA monster window.

There are two kinds of DMA address translation: direct mapped and scatter-gathe
mapped. Each type starts by comparing the incoming PCI address with the mons
window (if it is enabled and if it is a DAC), and with the four window base and wind
mask registers (the window base registers also have an enable window bit and a
gather enable bit). This process is shown in Figure 10–6.

Figure 10–6 Determining if PCI Address Is Valid DMA Address (One of Four
Windows)

If the address resides in one of the windows, and the window is enabled, then if the
scatter-gather enable bit is set, the translation is as described in Section 10.1.4.3. Other-
wise, the translation described in Section 10.1.4.2 is used.

In addition, if the matching window has the PTP bit set, then the result of the address
translation is treated as if it had bit <43> set. That is, it is treated like a PIO address
from the CPU. Otherwise, the address is a system memory address.

LJ-05521.AI4

PCI Address

1213192031 0n-1n

Window Base
Register

2031 n-1n

Window Mask
Register

2031 n-1n

Peripheral Page Number

0 0 0 0 0 0 0 0

X X X X

1 1 1 1

Compare

Offset

(Determines n)

Hit
10–10 Programmer’s Reference 21 October 1999

System Addressing

s (TBA)
ize as
d base

ted base
f PCI
ugh one

chip,
e, the
10.1.4.1 Window Hole

All window registers are simultaneously subject to a hole that inhibits matching, under
the control of the PCTL<HOLE> CSR bit described in Section 10.2.5.4. If that bit is
set, the hole is enabled in all windows and has the following extent:

• From PCI address base 512K (address<31:0> = 0008.0000)

• To PCI address limit 1M–1 (address<31:0> = 000F.FFFF)

If enabled, the hole applies whether or not the PTP bit is set for the window.

10.1.4.2 Direct-Mapped DMA Address Translation

Direct-mapped addressing uses a base address register, a translated base addres
register, and a mask register. The block of PCI addresses at base address, of a s
determined by the mask register, is translated to a block of addresses at translate
address (see Table 10–5). Values in the WSMn field other than those shown produce
unspecified results.

10.1.4.3 Scatter-Gather DMA Address Translation

Scatter-gather addressing uses a base address register, a mask register, a transla
address register, and a page table entry (PTE) in system memory. An 8KB page o
addresses at base address is translated to an 8KB page of system addresses thro
level of indirection. The PTE contains the address of the 8KB page.

To improve performance, fetches of PTEs by the Pchip are given priority on the C
and are allowed to pass earlier DMA write operations to system memory. Therefor
following rule applies:

Table 10–5 PCI DMA Address to System Address Via Direct Mapping

Window Size WSMn<31:20> Translated Address <34:2>

1MB 0000.0000.0000 TBA<34:20>:ad<19:2>

2MB 0000.0000.0001 TBA<34:21>:ad<20:2>

4MB 0000.0000.0011 TBA<34:22>:ad<21:2>

8MB 0000.0000.0111 TBA<34:23>:ad<22:2>

16MB 0000.0000.1111 TBA<34:24>:ad<23:2>

32MB 0000.0001.1111 TBA<34:25>:ad<24:2>

64MB 0000.0011.1111 TBA<34:26>:ad<25:2>

128MB 0000.0111.1111 TBA<34:27>:ad<26:2>

256MB 0000.1111.1111 TBA<34:28>:ad<27:2>

512MB 0001.1111.1111 TBA<34:29>:ad<28:2>

1GB 0011.1111.1111 TBA<34:30>:ad<29:2>

2GB 0111.1111.1111 TBA<34:31>:ad<30:2>

4GB N/A 000:ad<34:2> (monster window only)
21 October 1999 Programmer’s Reference 10–11

System Addressing

e final
oduce

> or

 PCI
Rule: System software must not depend on the order of completion of DMA
writes to a page table with respect to fetches of PTEs from that table for the
purpose of scatter-gather translation.

At TBA is a region (of size SG PTE AREA) of PTEs, each of which is eight bytes. Bits
<22:1> of the PTE become bits <34:13> (the 8KB page) of the system address, and bits
<12:0> of the PCI address become bits <12:0> (the page offset) of the system address.

Table 10–6 shows how the address of the page table entry (to be used as part of th
system address) is generated. Values in the WSM field other than those shown pr
unspecified results.

Figure 10–7 shows the structure of a page table entry in memory. If either bit <31
bit <28> is set, the address is interpreted as being a peer-to-peer address.

Figure 10–7 Scatter-Gather Page Table Entry in Memory

Figure 10–8 shows how a page table entry is used in conjunction with an incoming
address to generate a system address.

Table 10–6 Generating PTE Address from PCI DMA Address Via Scatter-Gather Mapping

Window Size SG PTE AREA WSMn<31:20> PTE Address <34:3>

 1MB 1KB 0000.0000.0000 TBA<34:10>:ad<19:13>

 2MB 2KB 0000.0000.0001 TBA<34:11>:ad<20:13>

 4MB 4KB 0000.0000.0011 TBA<34:12>:ad<21:13>

 8MB 8KB 0000.0000.0111 TBA<34:13>:ad<22:13>

 16MB 16KB 0000.0000.1111 TBA<34:14>:ad<23:13>

 32MB 32KB 0000.0001.1111 TBA<34:15>:ad<24:13>

 64MB 64KB 0000.0011.1111 TBA<34:16>:ad<25:13>

128MB 128KB 0000.0111.1111 TBA<34:17>:ad<26:13>

256MB 256KB 0000.1111.1111 TBA<34:18>:ad<27:13>

512MB 512KB 0001.1111.1111 TBA<34:19>:ad<28:13>

 1GB 1MB 0011.1111.1111 TBA<34:20>:ad<29:13>

 2GB 2MB 0111.1111.1111 TBA<34:21>:ad<30:13>

 4GB 4MB N/A TBA<34:22>:ad<31:13> (Window 3 in DAC
mode only)

MBZ Page Adress <34:13> V

Valid Bit

63 31 28 23 22 1 0

LJ-05522A-AI4
10–12 Programmer’s Reference 21 October 1999

Chipset Registers
Figure 10–8 Generating System Address from Scatter-Gather PTE

10.1.4.4 Monster Window DMA Address Translation

In case of a PCI dual-address cycle command, the high-order PCI address bits <63:40>
are compared to the constant value 0x0000_01 (that is, bit <40> = 1; all other bits = 0).
If these bits match, a monster window hit has occurred and the low-order PCI address
bits <34:0> are used unchanged as the system address bits <34:0>. PCI address bits
<39:35> are ignored. The high-order 32 PCI address bits are available on b_ad<31:0>
in the second cycle of a DAC, and also on b_ad<63:32> in the first cycle of a DAC if
b_req64_l is asserted.

10.2 Chipset Registers

The following sections describe the control and status (CSR) register set. All 21272
CSRs are accessed 64 bits wide, although in many cases fewer than 64 bits are imple-
mented. The registers are addressed on 64-byte boundaries. For definitions of abbrevia-
tions, refer to the Preface.

Note: Programmers must write only zeros to register fields identified as RES.

10.2.1 Register Addresses

Table 10–7 lists all Tsunami internal chipset registers with their system address.

Table 10–7 Chipset Register Addresses (Tsunami Only)

Register Address Type Register Number

Cchip Registers

CSC 801.A000.0000 RW 00

MTR 801.A000.0040 RW 01

MISC 801.A000.0080 RW 02

MPD 801.A000.00C0 RW 03

AAR0 801.A000.0100 RW 04

AAR1 801.A000.0140 RW 05

AAR2 801.A000.0180 RW 06

AAR3 801.A000.01C0 RW 07

DIM0 801.A000.0200 RW 08

DIM1 801.A000.0240 RW 09

DIR0 801.A000.0280 RO 0A

DIR1 801.A000.02C0 RO 0B

LJ-05523.AI4

0121334

Page Address <34:13> Offset <12:0>

PTE <22:1> PCI Address <12:0>
21 October 1999 Programmer’s Reference 10–13

Chipset Registers
DRIR 801.A000.0300 RO 0C

PRBEN 801.A000.0340 Special 0D

IIC0 801.A000.0380 RW 0E

IIC1 801.A000.03C0 RW 0F

MPR0 801.A000.0400 WO 10

MPR1 801.A000.0440 WO 11

MPR2 801.A000.0480 WO 12

MPR3 801.A000.04C0 WO 13

Reserved 801.A000.0500 RW 14

TTR 801.A000.0580 RW 16

TDR 801.A000.05C0 RW 17

Dchip Registers

DSC 801.B000.0800 RO 20

STR 801.B000.0840 RW 21

DREV 801.B000.0880 RW 22

DSC2 801.B000.008C0 RO 23 (Reserved for future use)

Pchip Registers

P0–WSBA0 801.8000.0000 RW 00

P0–WSBA1 801.8000.0040 RW 01

P0–WSBA2 801.8000.0080 RW 02

P0–WSBA3 801.8000.00C0 RW 03

P0–WSM0 801.8000.0100 RW 04

P0–WSM1 801.8000.0140 RW 05

P0–WSM2 801.8000.0180 RW 06

P0–WSM3 801.8000.01C0 RW 07

P0–TBA0 801.8000.0200 RW 08

P0–TBA1 801.8000.0240 RW 09

P0–TBA2 801.8000.0280 RW 0A

P0–TBA3 801.8000.02C0 RW 0B

P0–PCTL 801.8000.0300 RW 0C

P0–PLAT 801.8000.0340 RW 0D

P0–RES 801.8000.0380 RW 0E

P0–PERROR 801.8000.03C0 RW 0F

P0–PERRMASK 801.8000.0400 RW 10

Table 10–7 Chipset Register Addresses (Tsunami Only) (Continued)

Register Address Type Register Number
10–14 Programmer’s Reference 21 October 1999

Chipset Registers
P0–PERRSET 801.8000.0440 WO 11

P0–TLBIV 801.8000.0480 WO 12

P0–TLBIA 801.8000.04C0 WO 13

P0–PMONCTL 801.8000.0500 RW 14

P0–PMONCNT 801.8000.0540 RO 15

P0-SPRST 801.8000.0800 WO 20

P1–WSBA0 803.8000.0000 RW 00

P1–WSBA1 803.8000.0040 RW 01

P1–WSBA2 803.8000.0080 RW 02

P1–WSBA3 803.8000.00C0 RW 03

P1–WSM0 803.8000.0100 RW 04

P1–WSM1 803.8000.0140 RW 05

P1–WSM2 803.8000.0180 RW 06

P1–WSM3 803.8000.01C0 RW 07

P1–TBA0 803.8000.0200 RW 08

P1–TBA1 803.8000.0240 RW 09

P1–TBA2 803.8000.0280 RW 0A

P1–TBA3 803.8000.02C0 RW 0B

P1–PCTL 803.8000.0300 RW 0C

P1–PLAT 803.8000.0340 RW 0D

P1–RES 803.8000.0380 RW 0E

P1–PERROR 803.8000.03C0 RW 0F

P1–PERRMASK 803.8000.0400 RW 10

P1–PERRSET 803.8000.0440 WO 11

P1–TLBIV 803.8000.0480 WO 12

P1–TLBIA 803.8000.04C0 WO 13

P1–PMONCTL 803.8000.0500 RW 14

P1–PMONCNT 803.8000.0540 RO 15

P1-SPRTS 803.8000.0800 WO 20

Table 10–7 Chipset Register Addresses (Tsunami Only) (Continued)

Register Address Type Register Number
21 October 1999 Programmer’s Reference 10–15

Chipset Registers
Table 10–8 lists all Typhoon internal chipset registers with their system address.

Table 10–8 Chipset Register Addresses (Typhoon Only)

Register Address Type Register Number

Cchip Registers

CSC 801.A000.0000 RW 00

MTR 801.A000.0040 RW 01

MISC 801.A000.0080 RW 02

MPD 801.A000.00C0 RW 03

AAR0 801.A000.0100 RW 04

AAR1 801.A000.0140 RW 05

AAR2 801.A000.0180 RW 06

AAR3 801.A000.01C0 RW 07

DIM0 801.A000.0200 RW 08

DIM1 801.A000.0240 RW 09

DIR0 801.A000.0280 RO 0A

DIR1 801.A000.02C0 RO 0B

DRIR 801.A000.0300 RO 0C

PRBEN 801.A000.0340 Special 0D

IIC0 801.A000.0380 RW 0E

IIC1 801.A000.03C0 RW 0F

MPR0 801.A000.0400 WO 10

MPR1 801.A000.0440 WO 11

MPR2 801.A000.0480 WO 12

MPR3 801.A000.04C0 WO 13

Reserved 801.A000.0500 RW 14

TTR 801.A000.0580 RW 16

TDR 801.A000.05C0 RW 17

DIM2 801.A000.0600 RW 18 (Typhoon only)

DIM3 801.A000.0640 RW 19 (Typhoon only)

DIR2 801.A000.0680 RO 1A (Typhoon only)

DIR3 801.A000.06C0 RO 1B (Typhoon only)

IIC2 801.A000.0700 RW 1C (Typhoon only)

IIC3 801.A000.0740 RW 1D (Typhoon only)

PWR 801.A000.0780 RW 1E (Typhoon only)

Cchip (reserved) 801.A000.07C0–0BC0 1F–2F

CMONCTLA 801.A000.0C00 RW 30 (Typhoon only)
10–16 Programmer’s Reference 21 October 1999

Chipset Registers
CMONCTLB 801.A000.0C40 RW 31 (Typhoon only)

CMONCNT01 801.A000.0C80 RO 32(Typhoon only)

CMONCNT23 801.A000.0CC0 RO 33 (Typhoon only)

Dchip Registers

DSC 801.B000.0800 RO 20

STR 801.B000.0840 RW 21

DREV 801.B000.0880 RW 22

DSC2 801.B000.008C0 RO 23 (Reserved for future use)

Pchip Registers

P0–WSBA0 801.8000.0000 RW 00

P0–WSBA1 801.8000.0040 RW 01

P0–WSBA2 801.8000.0080 RW 02

P0–WSBA3 801.8000.00C0 RW 03

P0–WSM0 801.8000.0100 RW 04

P0–WSM1 801.8000.0140 RW 05

P0–WSM2 801.8000.0180 RW 06

P0–WSM3 801.8000.01C0 RW 07

P0–TBA0 801.8000.0200 RW 08

P0–TBA1 801.8000.0240 RW 09

P0–TBA2 801.8000.0280 RW 0A

P0–TBA3 801.8000.02C0 RW 0B

P0–PCTL 801.8000.0300 RW 0C

P0–PLAT 801.8000.0340 RW 0D

P0–RES 801.8000.0380 RW 0E

P0–PERROR 801.8000.03C0 RW 0F

P0–PERRMASK 801.8000.0400 RW 10

P0–PERRSET 801.8000.0440 WO 11

P0–TLBIV 801.8000.0480 WO 12

P0–TLBIA 801.8000.04C0 WO 13

P0–PMONCTL 801.8000.0500 RW 14

P0–PMONCNT 801.8000.0540 RO 15

P0-SPRST 801.8000.0800 WO 20

P1–WSBA0 803.8000.0000 RW 00

P1–WSBA1 803.8000.0040 RW 01

Table 10–8 Chipset Register Addresses (Typhoon Only) (Continued)

Register Address Type Register Number
21 October 1999 Programmer’s Reference 10–17

Chipset Registers
P1–WSBA2 803.8000.0080 RW 02

P1–WSBA3 803.8000.00C0 RW 03

P1–WSM0 803.8000.0100 RW 04

P1–WSM1 803.8000.0140 RW 05

P1–WSM2 803.8000.0180 RW 06

P1–WSM3 803.8000.01C0 RW 07

P1–TBA0 803.8000.0200 RW 08

P1–TBA1 803.8000.0240 RW 09

P1–TBA2 803.8000.0280 RW 0A

P1–TBA3 803.8000.02C0 RW 0B

P1–PCTL 803.8000.0300 RW 0C

P1–PLAT 803.8000.0340 RW 0D

P1–RES 803.8000.0380 RW 0E

P1–PERROR 803.8000.03C0 RW 0F

P1–PERRMASK 803.8000.0400 RW 10

P1–PERRSET 803.8000.0440 WO 11

P1–TLBIV 803.8000.0480 WO 12

P1–TLBIA 803.8000.04C0 WO 13

P1–PMONCTL 803.8000.0500 RW 14

P1–PMONCNT 803.8000.0540 RO 15

P1-SPRTS 803.8000.0800 WO 20

Table 10–8 Chipset Register Addresses (Typhoon Only) (Continued)

Register Address Type Register Number
10–18 Programmer’s Reference 21 October 1999

Chipset Registers

10.2.2 Cchip CSRs

Section 10.2.2.1 through Section 10.2.2.16 describe the Cchip register set.

10.2.2.1 Cchip System Configuration Register (CSC – RW)

Note: Follow the rules listed in Chapter 12 when writing to this CSR. After writ-
ing to this register, a delay is required to ensure that subsequent accesses to
the 21272 will succeed.

All fields in CSC are read/write except for those in the two low-order bytes, which are
read-only. Bits <7:0> are initialized from the pins of the Cchip on power-up. Bits
<13:8> are written whenever the Dchip register STR is written. This ensures that the
Cchip and Dchip versions of these fields are always synchronized, because the system
will not function correctly if they are not the same. Table 10–9 describes the Tsunami
Cchip configuration register (CSC).

Table 10–9 Cchip System Configuration Register (CSC) (Tsunami Only)

Field Bits Type Init Description

RES <63> MBZ,RAZ 0 Reserved.

RES <62> MBZ,RAZ 0 Reserved.

RES <61> MBZ,RAZ Reserved.

RES <60> MBZ,RAZ Reserved.

RES <59> MBZ,RAZ 0 Reserved.

PBQMAX1 <58:56> RW 1 CPU probe queue maximum – 0 indicates 8 entries.

RES <55> MBZ,RAZ 0 Reserved.

PRQMAX <54:52> RW 2 Maximum requests to one Pchip until ACK, modulo 8
– the value 1 is illegal. Pchip Rev. 0 allows up to 4.

RES <51> MBZ,RAZ 0 Reserved.

PDTMAX <50:48> RW 1 Maximum data transfers to one Pchip until Ack, mod-
ulo 8. Pchip Rev. 0 allows up to 2.

RES <47> MBZ,RAZ 0 Reserved.

FPQPMAX <46:44> RW 1 Maximum entries in FPQ on Dchips known to Pchips,
modulo 8. Dchip Rev. 0 allows up to 4. Must be the
same as Pchip CSR PCTL <CDQMAX>.

RES <43> MBZ,RAZ 0 Reserved.

FPQCMAX <42:40> RW 1 True maximum entries in Dchip FPQ, modulo 8. Must
be the same as Pchip CSR PCTL<CDQMAX>.

RES 39 MBZ,RAZ 0 Reserved.

TPQMMAX <38:36> RW 1 Maximum entries in TPQM on Dchips, modulo 8
(2 Dchips = 4, 4 or 8 Dchips = 8).

B3D <35> RW 0 Bypass 3 issue path disable

B2D <34> RW 0 Bypass 2 issue path disable

B1D <33> RW 0 Bypass 1 issue path disable
21 October 1999 Programmer’s Reference 10–19

Chipset Registers
FTI1 <32> RW 0 Force throttle issue

EFT <31> RW 1 Extract to fill turnaround cycles.

Value Cycles

0 0 cycles

1 1 cycle

QDI <30:28> RW 0 Queue drain interval

Value Cycles

0
1
2
3
4
5
6
7

Disable draining
1024 cycles
256 cycles
64 cycles
16 cycles
1 cycles
Reserved
Reserved

FET <27:26> RW 2 Fill to extract turnaround cycles.

Value Cycles

0 1 cycle – SED must be 2 or 3 cycles.

1 2 cycles – SED must be 3, 4, or 5 cycles.

2 3 cycles – SED must be 3, 4, or 5 cycles.

3 Reserved.

QPM <25> RW 0 Queue priority mode

Value Description

0 Round robin

1 Modified round robin

PME <24> RW 0 Page mode enable.

RES <23:22> RO 0 Reserved.

DRTP <21:20> RW 3 Minimum delay through Dchip from memory bus to
PADbus.

Value Cycles

0 2 cycles (rev 0 Dchip)

1 3 cycles

2 4 cycles

3 5 cycles

DWFP <19:18> RW 3 Minimum delay through Dchip from PADbus to CPU
or memory bus.

Table 10–9 Cchip System Configuration Register (CSC) (Tsunami Only) (Continued)

Field Bits Type Init Description
10–20 Programmer’s Reference 21 October 1999

Chipset Registers
Value Cycles

0 2 cycles

1 3 cycles (rev 0 Dchip)

2 4 cycles

3 5 cycles

DWTP <17:16> RW 3 Minimum delay through Dchip from CPU bus to
PADbus.

Value Cycles

0 2 cycles

1 3 cycles

2 4 cycles (rev 0 Dchip)

3 5 cycles

RES <15> MBZ,RAZ 0 Reserved

P1P2 <14> RO Pchip 1 present.

IDDW <13:12> RO3 3 Issue to data delay for all transactions except memory
reads (see Table 7–5).

Value Cycles

0 3 cycles

1 4 cycles

2 5 cycles

3 6 cycles

IDDR <11:9> RO3 4 Issue to data delay for memory reads (see Table 7–5).

Value Cycles

0 5 cycles

1 6 cycles

2 7 cycles

3 8 cycles

4 9 cycles

5 10 cycles

6 11 cycles

7 Reserved

AW <8> RO3 0 Array width.

Value Description

0 16 bytes
32 bytes

Table 10–9 Cchip System Configuration Register (CSC) (Tsunami Only) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–21

Chipset Registers
Table 10–10 describes the Typhoon Cchip system configuration register.

FW4 <7> RO Available for firmware.

SFD4 <6> RO SysDC fill delay. The number of cycles from the
SysDC cycle to the first CPU data cycle when moving
data into the CPU.

Value Description

0 2 cycles

1 3 cycles

SED4 <5:4> RO SysDC extract delay – The number of cycles from the
SysDC cycle to the first CPU data cycle when moving
data out of the CPU.

Value Cycles

0
1
2
3

2 cycles
3 cycles
4 cycles
5 cycles

C1CFP4 <3> RO CPU1 clock forward preset (see Chapter 11).

C0CFP4 <2> RO CPU0 clock forward preset (see Chapter 11).

BC4 <1:0> RO Base configuration.

Value Configuration

0
1
2
3

2 Dchips, 1 memory bus
4 Dchips, 1 memory bus
4 Dchips, 2 memory buses
8 Dchips, 2 memory buses

1 The combination of PBQMAX = 1 and FTI = 0 is not allowed.
2 Powers up to the value present on the CAPREQ<1> pin.
3 These fields are updated when the Dchip STR register is written.
4 Byte 0 powers up to the value present on bits 7:0 of the TIGbus.

Table 10–10 Cchip System Configuration Register (CSC) (Typhoon Only)

Field Bits Type Init Description

RES <63> MBZ,RAZ 0 Reserved.

RES <62> MBZ,RAZ 0 Reserved.

P1W1 <61> RO 1 = Wide PADbus 1. (Typhoon only)

P0W1 <60> RO 1 = Wide PADbus 0. (Typhoon only)

RES <59> MBZ,RAZ 0 Reserved.

PBQMAX2 <58:56> RW 1 CPU probe queue maximum – 0 indicates 8 entries.

RES <55> MBZ,RAZ 0 Reserved.

PRQMAX <54:52> RW 2 Maximum requests to one Pchip until ACK, modulo 8
– the value 1 is illegal. Pchip Rev. 0 allows up to 4.

Table 10–9 Cchip System Configuration Register (CSC) (Tsunami Only) (Continued)

Field Bits Type Init Description
10–22 Programmer’s Reference 21 October 1999

Chipset Registers
RES <51> MBZ,RAZ 0 Reserved.

PDTMAX <50:48> RW 1 Maximum data transfers to one Pchip until Ack, mod-
ulo 8. Pchip Rev. 0 allows up to 2.

RES <47> MBZ,RAZ 0 Reserved.

FPQPMAX <46:44> RW 1 Maximum entries in FPQ on Dchips known to Pchips,
modulo 8. Dchip Rev. 0 allows up to 4. Must be the
same as Pchip CSR PCTL <CDQMAX>.

RES <43> MBZ,RAZ 0 Reserved.

FPQCMAX <42:40> RW 1 True maximum entries in Dchip FPQ, modulo 8. Must
be same as Pchip CSR PCTL<CDQMAX>.

AXD 39 RW 0 Disable memory XOR. (Typhoon only)

TPQMMAX <38:36> RW 1 Maximum entries in TPQM on Dchips, modulo 8
(2 Dchips = 4, 4 or 8 Dchips = 8).

B3D <35> RW 0 Bypass 3 issue path disable

B2D <34> RW 0 Bypass 2 issue path disable

B1D <33> RW 0 Bypass 1 issue path disable

FTI2 <32> RW 0 Force throttle issue

EFT <31> RW 1 Extract to fill turnaround cycles.

Value Cycles

0 0 cycles

1 1 cycle

QDI <30:28> RW 0 Queue drain interval

Value Cycles

0
1
2
3
4
5
6
7

Disable draining
1024 cycles
256 cycles
64 cycles
16 cycles
1 cycles
Reserved
Reserved

FET <27:26> RW 2 Fill to extract turnaround cycles.

Value Cycles

0 1 cycle – SED must be 2 or 3 cycles.

1 2 cycles – SED must be 3, 4, or 5 cycles.

2 3 cycles – SED must be 3, 4, or 5 cycles.

3 Reserved.

Table 10–10 Cchip System Configuration Register (CSC) (Typhoon Only) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–23

Chipset Registers
QPM <25> RW 0 Queue priority mode

Value Description

0 Round robin

1 Modified round robin

PME <24> RW 0 Page mode enable.

RES <23:22> RO 0 Reserved.

DRTP <21:20> RW 3 Minimum delay through Dchip from memory bus to
PADbus.

Value Cycles

0 2 cycles (rev 0 Dchip)

1 3 cycles

2 4 cycles

3 5 cycles

DWFP <19:18> RW 3 Minimum delay through Dchip from PADbus to CPU
or memory bus.

Value Cycles

0 2 cycles

1 3 cycles (rev 0 Dchip)

2 4 cycles

3 5 cycles

DWTP <17:16> RW 3 Minimum delay through Dchip from CPU bus to
PADbus.

Value Cycles

0 2 cycles

1 3 cycles

2 4 cycles (rev 0 Dchip)

3 5 cycles

RES <15> MBZ,RAZ 0 Reserved.

P1P3 <14> RO Pchip 1 present.

IDDW <13:12> RO4 3 Issue to data delay for all transactions except memory
reads (see Table 7–5).

Value Cycles

0 3 cycles

1 4 cycles

Table 10–10 Cchip System Configuration Register (CSC) (Typhoon Only) (Continued)

Field Bits Type Init Description
10–24 Programmer’s Reference 21 October 1999

Chipset Registers
2 5 cycles

3 6 cycles

IDDR <11:9> RO4 4 Issue to data delay for memory reads (see Table 7–5).

Value Cycles

0 5 cycles

1 6 cycles

2 7 cycles

3 8 cycles

4 9 cycles

5 10 cycles

6 11 cycles

7 Reserved

AW <8> RO4 0 Array width.

Value Description

0 16 bytes
32 bytes

FW5 <7> RO Available for firmware.

SFD5 <6> RO SysDC fill delay. The number of cycles from the
SysDC cycle to the first CPU data cycle when moving
data into the CPU.

Value Description

0 2 cycles

1 3 cycles

SED5 <5:4> RO SysDC extract delay – The number of cycles from the
SysDC cycle to the first CPU data cycle when moving
data out of the CPU.

Value Cycles

0
1
2
3

2 cycles
3 cycles
4 cycles
5 cycles

C1CFP5 <3> RO CPU1 clock forward preset (see Chapter 11).

C0CFP5 <2> RO CPU0 clock forward preset (see Chapter 11).

BC5 <1:0> RO Base configuration.

Value Configuration

Table 10–10 Cchip System Configuration Register (CSC) (Typhoon Only) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–25

Chipset Registers
10.2.2.2 Memory Timing Register (MTR – RW)

Table 10–11 describes the memory timing register (MTR).

0
1
2
3

2 Dchips, 1 memory bus
4 Dchips, 1 memory bus
4 Dchips, 2 memory buses
8 Dchips, 2 memory buses

1 Loaded from CAPbus<13:12> during reset.
2 The combination of PBQMAX = 1 and FTI = 0 is illegal.
3 Powers up to the value present on the CAPREQ<1> pin.
4 These fields are updated when the Dchip STR register is written.
5 Byte 0 powers up to the value present on bits <7:0> of the TIGbus.

Table 10–11 Memory Timing Register (MTR)

Field Bits Type Init Description

RES <63:46> MBZ,RAZ 0 Reserved.

MPH <45:40> RW 0 Maximum page hits – The most page hits the memory
controller allows before forcing a page to be closed.
The issue unit can, under some circumstances, sneak
in one more page hit than this parameter allows.

PHCW <39:36> RW 14 Page hit cycles for writes – The number of cycles that
the memory controller must wait after a write is
issued until it attempts to close the page.

Note: Must be greater than or equal to the greater of
(IRD + RPW – 2) and (IRD + RCD + bl + tRWL – 3),
where bl is 4 for 16-byte buses and 2 for 32-byte
buses.

Note: Initializes as 14 in the Rev. C Cchip; initializes
as 15 in the Rev. B Cchip.

PHCR <35:32> RW 15 Page hit cycles for reads – The number of cycles that
the memory controller must wait after a read is issued
until it attempts to close the page.

Note: Must be greater than or equal to the greater of
(RPW – 2) and (RCD + bl – 2) where bl is 4 for
16-byte buses and 2 for 32-byte buses.

RES <31:30> MBZ,RAZ 0 Reserved.

RI <29:24> RW 0 Refresh interval – The number of cycles per refresh
interval divided by 64. Each DRAM is refreshed once
per refresh interval. A value of 0 disables refreshing.
The values 1, 2, and 3 are illegal.

RES <23:21> MBZ,RAZ 0 Reserved.

MPD <20> RW 0 Mask pipeline delay – The b_mndqm<1:0> signals
to the SDRAMs may need to be buffered. Setting this
bit causes the memory controllers to signal the DQM
masks one cycle earlier to compensate.

Table 10–10 Cchip System Configuration Register (CSC) (Typhoon Only) (Continued)

Field Bits Type Init Description
10–26 Programmer’s Reference 21 October 1999

Chipset Registers
Value Delay

0 No delay

1 One pipeline stage

RES <19:17> MBZ,RAZ 0 Reserved.

Table 10–11 Memory Timing Register (MTR) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–27

Chipset Registers
RRD <16> RW 0 Minimum same-array different-bank RAS-to-RAS
delay – The minimum number of cycles from the Row
Activate or Refresh command to the next Row Acti-
vate or Refresh command to the other bank of the
same array.

Value Delay

0 2

1 3

RES <15:14> MBZ,RAZ 0 Reserved.

RPT <13:12> RW 0 Minimum RAS precharge time – The minimum num-
ber of cycles from a Precharge command to the next
Row Activate or Refresh command to the same bank.

Value Cycles

0 2

1 3

2 4

3 Reserved

RES <11:10> MBZ,RAZ 0 Reserved.

RPW <9:8> RW 0 Minimum RAS pulse width (tRAS) – The minimum
number of cycles from a Row Activate or Refresh
command to the next Precharge command to the same
bank. Used by the refresh logic only. PHCW and
PHCR are used by the page-hit logic.

Value Cycles

0 4

1 5

2 6

3 7

RES <7> MBZ,RAZ 0 Reserved.

IRD <6:4> RW 0 Issue to RAS delay – For memory writes this is the
number of cycles from when the arbitrator issues the
request, to when the DRAM row is activated. See
Section 10.2.4.3 for the correct value to use.

Value Cycles

0 0

1 1

2 2

3 3

4 4

Table 10–11 Memory Timing Register (MTR) (Continued)

Field Bits Type Init Description
10–28 Programmer’s Reference 21 October 1999

Chipset Registers
10.2.2.3 Miscellaneous Register (MISC – RW)

This register is designed so that there are no read side effects, and that writing a 0 to any
bit has no effect. Therefore, when software wants to write a 1 to any bit in the register, it
need not be concerned with read-modify-write or the status of any other bits in the reg-
ister. Once NXM is set, the NXS field is locked so that initial NXM error information is
not overwritten by subsequent errors. It is unlocked when software clears the NXM
field. The ABW (arbitration won) field is locked if either ABW bit is set, so the first
CPU to write it locks out the other CPU. Writing a 1 to ACL (arbitration clear) clears
both ABW bits and both ABT (arbitration try) bits and unlocks the ABW field. Table
10–12 describes the miscellaneous register (MISC).

5 5

6 Reserved

7 Reserved

RES <3> MBZ,RAZ 0 Reserved.

CAT <2> RW 0 CAS access time – The number of cycles from the
CAS command to when data appears on the DRAM
outputs. Must be greater than or equal to RCD.

Value Cycles

0 2

1 3

RES <1> MBZ,RAZ 0 Reserved.

RCD <0> RW 0 RAS-to-CAS delay – The number of cycles from the
Row Activate command to the next Read or Write
command to the same bank. Must be less than or
equal to CAT.

Value Cycles

0 2

1 3

Table 10–12 Miscellaneous Register (MISC)

Field Bits Type Init Description

RES <63:44> MBZ,RAZ 0 Reserved.

DEVSUP <43:40> WO 0 Suppress IRQ1 (device) interrupts to the
CPU corresponding to a 1 in this field until
the interrupt polling machine has com-
pleted a poll of all PCI devices.
(<43:42> are used in Typhoon only)

REV <39:32> RO — Latest revision of Cchip:

1 21272 (Tsunami)

8 21274 (Typhoon)

Table 10–11 Memory Timing Register (MTR) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–29

Chipset Registers

NXS <31:29> RO 0 NXM source – Device that caused the NXM
– UNPREDICTABLE if NXM is not set.

Value Source

0 CPU 0

1 CPU 1

2 Reserved
CPU2 – Typhoon only

3 Reserved
CPU3 – Typhoon only

4 Pchip 0

5 Pchip 1

6, 7 Reserved

NXM <28> R,W1C 0 Nonexistent memory address detected. Sets
DRIR<63> and locks the NXS field until it
is cleared.

RES <27:25> MBZ,RAZ 0 Reserved.

ACL <24> WO 0 Arbitration clear – writing a 1 to this bit
clears the ABT and ABW fields.

ABT <23:20> R,W1S 0 Arbitration try – writing a 1 to these bits
sets them. (<23:22> are used in Typhoon
only)

ABW <19:16> R,W1S 0 Arbitration won – writing a 1 to these bits
sets them unless one is already set, in
which case the write is ignored.
(<19:18> are used in Typhoon only)

IPREQ <15:12> WO 0 Interprocessor interrupt request – write a 1
to the bit corresponding to the CPU you
want to interrupt. Writing a 1 here sets the
corresponding bit in the IPINTR.
(<15:14> are used in Typhoon only)

IPINTR <11:8> R,W1C 0 Interprocessor interrupt pending – one bit
per CPU. Pin irq<3> is asserted to the CPU
corresponding to a 1 in this field.
(<11:10> are used in Typhoon only)

ITINTR <7:4> R,W1C 0 Interval timer interrupt pending – one bit
per CPU. Pin irq<2> is asserted to the CPU
corresponding to a 1 in this field.
(<7:6> are used in Typhoon only)

RES <3:2> MBZ,RAZ 0 Reserved.

CPUID <1:0> RO — ID of the CPU performing the read.
(<1> are used in Typhoon only)

Table 10–12 Miscellaneous Register (MISC) (Continued)

Field Bits Type Init Description
10–30 Programmer’s Reference 21 October 1999

Chipset Registers

 pres-
10.2.2.4 Memory Presence Detect Register (MPD – RW)

The memory presence detect register is connected to two open-drain pins on the Cchip.
These pins can be used by software to implement the I2C protocol to read the serial
presence detect pins on the SDRAM DIMMs. Table 10–13 describes the memory
ence detect register (MPD).

10.2.2.5 Array Address Register (AAR0, AAR1, AAR2, AAR3 – RW)

Table 10–14 describes the Tsunami array address registers.

Table 10–13 Memory Presence Detect Register (MPD)

Field Bits Type Init Description

RES <63:4> MBZ,RAZ 0 Reserved

DR <3> RO 1 Data receive

CKR <2> RO 1 Clock receive

DS <1> WO 1 Data send – Must be a 1 to receive

CKS <0> WO 1 Clock send

Table 10–14 Array Address Register (AAR0, AAR1, AAR2, AAR3) (Tsunami Only)

Field Bits Type Init Description

RES <63:35> MBZ,RAZ 0 Reserved.

ADDR <34:24> RW 0 Base address – Bits <34:24> of the physical byte
address of the first byte in the array.
(<27:24> are used in Tsunami only; <31:24> are
valid.)

RES <23:17> MBZ,RAZ 0 Reserved.

DBG <16> RW 0 Enables this memory port to be used as a debug inter-
face.

ASIZ <15:12> RW 0 Array size.

Value Size

0000 0 (bank disabled)

0001 16MB

0010 32MB

0011 64MB

0100 128MB

0101 256MB

0110 512MB

0111 1GB

1011–
1111

Reserved

RES <11:9> MBZ,RAZ 0 Reserved.

SA <8> RW 0 Split array.
21 October 1999 Programmer’s Reference 10–31

Chipset Registers
Table 10–15 describes the Typhoon array address registers.

RES <7:4> MBZ,RAZ 0 Reserved.

ROWS <3:2> RW 0 Number of row bits in the SDRAMs.

Value Number of Bits

0 11

1 12

2 13

3 Reserved

BNKS <1:0> RW 0 Number of bank bits in the SDRAMs.

Value Number of Bits

0 1

1 2

2 Reserved

3 Reserved

Table 10–15 Array Address Register (AAR0, AAR1, AAR2, AAR3) (Typhoon Only)

Field Bits Type Init Description

RES <63:35> MBZ,RAZ 0 Reserved.

ADDR <34:24> RW 0 Base address – Bits <34:24> of the physical byte
address of the first byte in the array.
(<34:32> are used in Typhoon only; <34:28> are
valid)

RES <23:17> MBZ,RAZ 0 Reserved.

DBG 16 RW 0 Enables this memory port to be used as a debug inter-
face.

ASIZ <15:12> RW 0 Array size (<15> is used in Typhoon only).

Value Size

0000 0 (bank disabled)

0001 16MB

0010 32MB

0011 64MB

0100 128MB

0101 256MB

0110 512MB

0111 1GB

1000 2GB (Typhoon only)

Table 10–14 Array Address Register (AAR0, AAR1, AAR2, AAR3) (Tsunami Only) (Continued)

Field Bits Type Init Description
10–32 Programmer’s Reference 21 October 1999

Chipset Registers
10.2.2.6 Device Interrupt Mask Register (DIMn, n=0,3 – RW)

Register n applies to CPUn. (Typhoon only: n=2,3.)

These two mask registers control which interrupts are allowed to go through to the
CPUs. No interrupt in DRIR will get through to the masked interrupt registers (and on
to interrupt the CPUs) unless the corresponding mask bit is set in DIMn. All bits are ini-
tialized to 0 at reset. Table 10–16 describes the device interrupt mask registers.

1001 4GB (Typhoon only)

1010 8GB (Typhoon only)

1011–
1111

Reserved.

RES <11:10> MBZ,RAZ 0 Reserved.

TSA <9> RW 0 Twice-split array (Typhoon only)

SA <8> RW 0 Split array.

RES <7:4> MBZ,RAZ 0 Reserved.

ROWS <3:2> RW 0 Number of row bits in the SDRAMs.

Value Number of Bits

0 11

1 12

2 13

3 Reserved

BNKS <1:0> RW 0 Number of bank bits in the SDRAMs

Value Number of Bits

0 1

1 2

2 3 (Typhoon only)

3 Reserved

Table 10–16 Device Interrupt Mask Register (DIM n)

Field Bits Type Init Description

DIM <63:0> RW 0 Interrupts allowed through to the CPU

Table 10–15 Array Address Register (AAR0, AAR1, AAR2, AAR3) (Typhoon Only) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–33

Chipset Registers

8

e
10.2.2.7 Device Interrupt Request Register (DIRn, n=0,3 – RO)

Register n applies to CPUn. (Typhoon only: n=2,3.)

These two registers indicate which interrupts are pending to the CPUs. If a raw request
bit is set and the corresponding mask bit is set, then the corresponding bit in this regis-
ter will be set and the appropriate CPU will be interrupted. Table 10–17 describes the
device interrupt request registers.

10.2.2.8 Device Raw Interrupt Request Register (DRIR – RO)

DRIR indicates which of the 64 possible device interrupts is asserted. Table 10–1
describes the device raw interrupt request register (DRIR).

10.2.2.9 Probe Enable Register (PRBEN – RW)

This register is special in that reads do not return the value of the register, but rather
cause the probe enable bit for the requesting CPU to be cleared. The return data is
UNPREDICTABLE. Writing to this register causes the probe enable bit for the request-
ing CPU to be set, regardless of the value written. Table 10–19 describes the prob
enable register (PRBEN).

10.2.2.10 Interval Ignore Count Register (IICn, n=0,3 – RW)

Register n applies to CPUn. (Typhoon only: n=2,3.)

These registers are used for 21264 CPU sleep mode. They are written with a count of
how many interval timer interrupts to suppress and count down to 0 as subsequent inter-
val timer interrupts are asserted. They can be read at any time to find the remaining
count. After the count has been decremented to 0, the next interval timer interrupt will

Table 10–17 Device Interrupt Request Register (DIR n)

Field Bits Type Init Description

ERR <63:58> RO 0 IRQ0 error interrupts
<63> Chip detected MISC<NXM>
<62> recommended hookup to Pchip0
error
<61> recommended hookup to Pchip1 err-
ror
Others per module designer’s choice

RES <57:56> RO 0 Reserved

DEV <55:0> RO 0 IRQ1 PCI interrupts pending to the CPU

Table 10–18 Device Raw Interrupt Request Register (DRIR)

Field Bits Type Init Description

DRIR <63:0> RO 0 Interrupts pending from devices

Table 10–19 Probe Enable Register (PRBEN)

Field Bits Type Init Description

RES <63:1> MBZ 0 Reserved

PRBEN <0> RTC,WTS 0 Probe enable bit
10–34 Programmer’s Reference 21 October 1999

Chipset Registers

he

22
be sent through to the CPU. After the wake-up tick is received, the count goes nega-
tive, and the OF bit is set on the next timer interval tick. This allows the CPU to deter-
mine exactly how many interval timer ticks were skipped. Table 10–20 describes t
interval ignore count register (IIC).

10.2.2.11 Wake-Up Delay Register (WDR – RW)

The WDR register determines how long (in system cycles) the chipset waits after a
reset, or after sending a wake-up interrupt to a sleeping CPU, before deasserting
b_cfrst<1:0>.

10.2.2.12 Memory Programming Register (MPR0, MPR1, MPR2, MPR3 – WO)

A write to these registers causes a RAM program cycle (a mode register set command) to
the associated memory array using the data written to the MPRDAT field. Table 10–
describes the memory programming registers.

10.2.2.13 M-Port Control Register (MCTL – MBZ)

The M-port control register controls chipset debug features. It must be 0 for normal
operations. In Typhoon, this register is replaced by the CMONCTL registers.

Table 10–20 Interval Ignore Count Register (IIC)

Field Bits Type Init Description

RES <63:25> MBZ,RAZ 0 Reserved

OF <24> RO 0 Overflow – Indicates negative count

ICNT <23:0> RW 0 Count of remaining interrupts to ignore

Table 10–21 Wake-Up Delay Register (WDR)

Field Bits Type Init Description

RES <63:25> MBZ 0 Reserved

Table 10–22 Memory Programming Register (MPR n)

Field Bits Type Init Description

RES <63:13> MBZ 0 Reserved

MPRDAT <12:0> WO — Data to be written on address lines <12:0>
21 October 1999 Programmer’s Reference 10–35

Chipset Registers
10.2.2.14 TIGbus Timing Register (TTR – RW)

The TIGbus timing register controls the nonaddress-specific timing of the TIGbus.
Table 10–23 describes the TIGbus timing register (TTR). See Section 6.3 for
timing diagrams and information.

Table 10–23 TIGbus Timing Register (TTR – RW)

Field Bits Type Init Description

RES <63:15> MBZ,RAZ 0 Reserved.

ID <14:12> RW 7 Interrupt starting device – If there are fewer than eight
interrupt buffers present on the module, this field
determines the lowest-order byte number that gets
read in – Devices <7:ID> all present is a requirement.

RES <11:10> MBZ,RAZ 0 Reserved.

IRT <9:8> RW 3 Interrupt read time – The number of cycles that the
interrupt driver is enabled on the TIGbus before the
interrupt data is latched in the Cchip.

Value Cycles

0 1 cycle

1 2 cycles

2 3 cycles

3 4 cycles

RES <7:6> MBZ,RAZ 0 Reserved.

IS <5:4> RW 3 Interrupt setup time – The number of cycles that the
Cchip drives the IRQ data on the TIGbus before
asserting b_tis to strobe the data into a register on the
module.

Value Cycles

0 1 cycle

1 2 cycles

2 3 cycles

3 4 cycles

RES <3:2> MBZ,RAZ 0 Reserved

AH <1> RW 0 Address hold after as_l before cs_l.

Value Cycles

0 1 cycle

1 2 cycles

AS <0> RW 0 Address setup to the address latch before as_l.

Value Cycles

0 1 cycle

1 2 cycles
10–36 Programmer’s Reference 21 October 1999

Chipset Registers
10.2.2.15 TIGbus Device Timing Register (TDR – RW)

One 16-bit field of this register is selected by TIG address bits <23:22> to allow up to
four different timing domains on the TIGbus. All values in the register are expressed in
cycles. The state machine stays in each state one cycle longer than the number in the
register (that is, a value of 0 means one cycle). See Section 6.3 for timing diagrams
describing these fields.

Table 10–24 describes the TIGbus device timing register (TDR).

Table 10–24 TIGbus Device Timing Register (TDR)

Field Bits Type Init Description

WH3 <63> RW 0 See bit WH0

WP3 <62:60> RW 0 See bit WP0

RES <59:58> MBZ,RAZ 0 Reserved

WS3 <57:56> RW 0 See bit WS0

RES <55> MBZ,RAZ 0 Reserved

RD3 <54:52> RW 0 See bit RD0

RA3 <51:48> RW 0 See bit RS0

WH2 <47> RW 0 See bit WH0

WP2 <46:44> RW 0 See bit WP0

RES <43:42> MBZ,RAZ 0 Reserved

WS2 <41:40> RW 0 See bit WS0

RES <39> MBZ,RAZ 0 Reserved

RD2 <38:36> RW 0 See bit RD0

RA2 <35:32> RW 0 See bit RS0

WH1 <31> RW 0 See bit WH0

WP1 <30:28> RW 0 See bit WP0

RES <27:26> MBZ,RAZ 0 Reserved

WS1 <25:24> RW 0 See bit WS0

RES <23> MBZ,RAZ 0 Reserved

RD1 <22:20> RW 0 See bit RD0

RA1 <19:16> RW 0 See bit RS0

WH0 <15> RW 0 Write hold time – The number of cycles
that cs_l, the address, and the data are held
once we_l is deasserted

WP0 <14:12> RW 0 Write pulse width – The number of cycles
that we_l is held asserted

RES <11:10> MBZ,RAZ 0 Reserved

WS0 <9:8> RW 0 Write setup time – The number of cycles
that the address and data are held stable to
the device before we_l is asserted
21 October 1999 Programmer’s Reference 10–37

Chipset Registers
10.2.2.16 Power Management Control (PWR – RW)

This register controls chipset management features. To date, only SDRAM self-refresh
mode is implemented.

Warning: Software must ensure that there are no DRAM accesses active in the 21272
when self-refresh mode is active.

Table 10–25 describes the power management control register (PWR).

RES <7> MBZ,RAZ 0 Reserved

RD0 <6:4> RW 0 Read output disable time – The number of
cycles that the device takes to turn off its
output drivers once oe_l is deasserted

RA0 <3:0> RW 0 Read access time – The number of cycles
that cs_l and oe_l are asserted to the device
before the data is latched in from the TIG-
bus

Table 10–25 Power Management Control Register (PWR – RW)

Field Bits Type Init Value Description

RES <63:1> MBZ,RAZ 0 Reserved.

SR <0> RW 0 0 Normal operation.

1 Self-refresh mode; standard
refreshing is suppressed,
regardless of MTR<RI>.

Table 10–24 TIGbus Device Timing Register (TDR) (Continued)

Field Bits Type Init Description
10–38 Programmer’s Reference 21 October 1999

Chipset Registers

27
10.2.3 Cchip Monitor Control (CMONCTLA, CMONCTLB – RW) – Typhoon only

All fields in the CMONCTLA and CMONCTLB registers are RW. They are cleared by
reset. Some monitor signals are hardwired to select a specific CPU. The mask and
match/entry fields provide wide flexibility in the selection of events to count.

Table 10–26 describes the Cchip monitor control register CMONCTLA and Table 10–
describes register CMONCTLB.

Table 10–26 Cchip Monitor Control Register (CMONCTLA)

Field Bits Type Init Description

RES <63:62> MBZ,RAZ 0 Reserved.

MSK23 <61:52> RW 0 Mask field – For ECNT2 and ECNT3, the
match/entry fields can be used to qualify the
value in the <SLCTn> field.

RES <51:50> MBZ,RAZ 0 Reserved.

MSK01 <49:40> RW 0 Mask field – For ECNT0 and ECNT1.

STKDIS3 <39> RW 0 ECNT3 stick disable.

Value Description

0 ECNT3 sticks at all ones

1 ECNT3 wraps

STKDIS2 <38> RW 0

STKDIS1 <37> RW 0

STKDIS0 <36> RW 0

RES <35:34> MBZ,RAZ 0 Reserved.

SLCTMBL <33:32> RW 0 Select memory bus monitor low bits.
Note: Memory bus monitor bits <20:16> are
fixed.

Value Group

0 mem bus monitor <15:0> =
mgroup0

1 mem bus monitor <15:0> =
mgroup1

2 mem bus monitor <15:0> =
mgroup2

3 mem bus monitor <15:0> =
mgroup3

SLCT3 <31:24> RW 0 Select B MONITOR<3>; Select Event 3.
21 October 1999 Programmer’s Reference 10–39

Chipset Registers
10.2.3.1 Cchip Monitor Counters (CMONCNT01, CMONCNT23 – R0)

The 21272 has four 23-bit event counters. The event counted by counter n (ECNTn) is
selected by the CMONCTL<SLCTn> field. One of the possible events selected is the
carry-out of the previous counter, which allows both counters to be used as two 64-bit
counters. In this case, the CMONCTL<STKDISn> bit must be set to ensure that the
low-order 32-bit counter does not stick at all ones.

Both counters hold their values for four cycles each time that a read to CMONCNTx is
performed, so that a slight inaccuracy can result if the events being counted continue to
occur at the time of reading.

The <SLCTn> field may specify the use of the CMONCTL fields <MTEx> and
<MSKy> to further qualify the selection. In this case, a fixed correspondence occurs
between the ECNT field to be updated and the combination MTE/MSK qualifier field
used. Table 10–28 shows this correspondence.

SLCT2 <23:16> RW 0 Select B MONITOR<2>; Select Event 2.

SLCT1 <15:8> RW 0 Select B MONITOR<1>; Select Event 1.

SLCT0 <7:0> RW 0 Select B MONITOR<0>; Select Event 0.

Table 10–27 Cchip Monitor Control Register (CMONCTLB)

Field Bits Type Init Description

RES <63:62> MBZ,RAZ 0 Reserved

MTE3 <61:52> RW 0 Match/entry field – for ECNT3
The match/entry and mask fields can be used to
qualify the value in the <SLCTn> field.

RES <51:50> MBZ,RAZ 0 Reserved

MTE2 <49:40> RW 0 Match/entry field – for ECNT2

RES <39:38> MBZ,RAZ 0 Reserved

MTE1 <37:28> RW 0 Match/entry field – for ECNT1

RES <27:26> MBZ,RAZ 0 Reserved

MTE0 <25:16> RW 0 Match/entry field – for ECNT0

RES <15:1> MBZ,RAZ 0 Reserved

DIS <0> RW 0 Disable monitor output signals:

Value Description

0 B_MONITOR outputs in use for
monitor

1 B_MONITOR outputs static at
zero

Table 10–26 Cchip Monitor Control Register (CMONCTLA) (Continued)

Field Bits Type Init Description
10–40 Programmer’s Reference 21 October 1999

Chipset Registers

0

CMONCNT01 Registers – Typhoon Only

All fields in the CMONCNT01 registers are Read/Write; however, the write feature is
only for diagnostic purposes. Writing a value of all ones to any field of CMONCNT is
not supported due to implementation considerations (the carry-out is precomputed).

All fields of CMONCNT are cleared by reset and when CMONCTLA or CMONCTLB
is written. The expected usage is to write CMONCTL, wait for a while, read CMON-
CNT, and repeat. Table 10–29 shows the CMONCNT01 registers.

CMONCNT23 Registers – Typhoon Only

The operation of CMONCNT23 is the same as that for CMONCNT01. Table 10–3
shows the CMONCNT23 registers.

10.2.4 Dchip CSRs

Section 10.2.4.1 through Section 10.2.4.4 describe the Dchip register set.

10.2.4.1 Dchip System Configuration Register (DSC – RO)

Table 10–31 describes the Dchip system configuration register (DSC).

Table 10–28 Correspondence Between ECNT and MTE/MSK

Field to Increment MTE Field Used MSK Field Used

ECNT3 MTE3 MSK23

ECNT2 MTE2 MSK23

ECNT1 MTE1 MSK01

ECNT0 MTE0 MSK01

Table 10–29 CMONCNT01 Registers

Field Bits Type Init Values Description

ECNT1 <63:32> RW 0 — Increments when Event 1 is true

ECNT0 <31:0> RW 0 — Increments when Event 0 is true

Table 10–30 CMONCNT23 Registers

Field Bits Type Init Values Description

ECNT3 <63:32> RW 0 — Increments when Event 3 is true

ECNT2 <31:0> RW 0 — Increments when Event 2 is true

Table 10–31 Dchip System Configuration Register (DSC)

Field Bits Type Init Description

RES <63:8> Special1 0 —

RES <7> RAZ 0 Reserved

P1P <6> RO —2 Pchip 1 present
21 October 1999 Programmer’s Reference 10–41

Chipset Registers
10.2.4.2 Dchip System Configuration Register 2 (DSC2 – R0)

These registers are for future use, for a Dchip that implements wide PADbus support.
Table 10–32 describes the Dchip system configuration register 2.

10.2.4.3 System Timing Register (STR – RW)

When the system timing register is written, all Dchips, as well as the corresponding
fields in the CSC register, are updated at the same time. The corresponding fields in the
CSC register are read-only, so the only way to update them is to write this register.

Note: Follow the rules listed in Chapter 12 when writing to this CSR. After writ-
ing to this register, a delay is required to ensure that subsequent accesses to
the 21272 will succeed.

IDDR, IDDW, and IRD (set in CSC) must be set as follows before accessing memory:

• RCD is the RAS-to-CAS delay in the DRAMs (set in CSC).

• CAT is the CAS access time in the DRAMs (set in CSC).

C3CFP <5> RO —2 CPU3 clock forward preset (see Chapter 11)

C2CFP <4> RO —2 CPU2 clock forward preset (see Chapter 11)

C1CFP <3> RO —2 CPU1 clock forward preset (see Chapter 11)

C0CFP <2> RO —2 CPU0 clock forward preset (see Chapter 11)

BC <1:0> RO —2 Base configuration

Value Configuration

0 2 Dchips, 1 memory bus

1 4 Dchips, 1 memory bus

2 4 Dchips, 2 memory buses

3 8 Dchips, 2 memory buses
1 This is an 8-bit register that mirrors some information in CSC. It is special, however, in that it is byte-sliced

across eight Dchips. Therefore, it is read as a quadword with the same value repeated in all eight bytes.
2 This register powers up to the value present on bits <6:0> of the CPM command from the Cchip.

Table 10–32 Dchip System Configuration Register 2 (DSC2)

Field Bits Type Init Description

RES <63:5> RO 0 Reserved

RES <4:2> RO —1

1 This register powers up to the value present on bits <4:0> of the PADCMD bus from the Cchip.

Reserved

P1W <1> RO —1 Reserved
0 = Wide PADbus1 (Typhoon only)

P0W <0> RO —1 Reserved
0 = Wide PADbus0 (Typhoon only)

Table 10–31 Dchip System Configuration Register (DSC) (Continued)

Field Bits Type Init Description
10–42 Programmer’s Reference 21 October 1999

Chipset Registers

ows
• SED is the SysDC extract delay (set in the CSC).

• b is the burst length (2 for 32-byte memories and 4 for 16-byte memories).

• p is the number of pipeline stages on the control signals between the Cchip and the
SDRAMs (0, 1, or 2).

IDDR = RCD + CAT + p + b – 1

IDDW = MAX (RCD + p – 1, SED + 1, IDDR – 2b + 1)

IRD = IDDW – RCD – p + 1

If software wishes to set IDDW to a value other than the power-up default, and kn
that memory will not yet be accessed, then the restriction is relaxed to:

IDDW > SED

Table 10–33 describes the system timing register (STR).

Table 10–33 System Timing Register (STR)

Field Bits Type Init Description

RES <63:8> Special1 0 —1

RES <7:6> MBZ,RAZ 0 Reserved

IDDW <5:4> RW 2 Issue to data delay for all transactions except memory
reads (see Table 7–5)

Value Cycles

0 3 cycles

1 4 cycles

2 5 cycles

3 6 cycles

IDDR <3:1> RW 4 Issue to data delay for memory reads (see Table 7–5)

Value Cycles

0 5 cycles

1 6 cycles

2 7 cycles

3 8 cycles

4 9 cycles

5 10 cycles

6 11 cycles

7 Reserved

AW <0> RW 0 Array width
21 October 1999 Programmer’s Reference 10–43

Chipset Registers
10.2.4.4 Dchip Revision Register (DREV – RO)

Table 10–34 describes the Dchip revision register (DREV).

Value Cycles

0 16 bytes

1 32 bytes

1 This is an 8-bit register corresponding to bits CSC<13:8>. It is special, however, in that it
must be written to up to eight Dchips simultaneously. Therefore, it is written as a quadword
with the same value repeated in all eight bytes. That way, all Dchips are configured properly
regardless of system configuration.

Table 10–34 Dchip Revision Register (DREV)

Field Bits Type Init Description

RES <63:60> RAZ 0 Reserved

REV7 <59:56> RO 1 Dchip 7 revision. This field indicates the
latest revision of the Dchip.

RES <55:52> RAZ 0 Reserved

REV6 <51:48> RO 1 Dchip 6 revision. This field indicates the
latest revision of the Dchip.

RES <47:44> RAZ 0 Reserved

REV5 <43:40> RO 1 Dchip 5 revision. This field indicates the
latest revision of the Dchip.

RES <39:36> RAZ 0 Reserved

REV4 <35:32> RO 1 Dchip 4 revision. This field indicates the
latest revision of the Dchip.

RES <31:28> RAZ 0 Reserved

REV3 <27:24> RO 1 Dchip 3 revision. This field indicates the
latest revision of the Dchip.

RES <23:20> RAZ 0 Reserved

REV2 <19:16> RO 1 Dchip 2 revision. This field indicates the
latest revision of the Dchip.

RES <15:12> RAZ 0 Reserved

REV1 <11:8> RO 1 Dchip 1 revision. This field indicates the
latest revision of the Dchip.

RES <7:4> RAZ 0 Reserved

REV0 <3:0> RO 1 Dchip 0 revision. This field indicates the
latest revision of the Dchip.

Table 10–33 System Timing Register (STR) (Continued)

Field Bits Type Init Description
10–44 Programmer’s Reference 21 October 1999

Chipset Registers

 2.
10.2.5 Pchip CSRs

Section 10.2.5.1 through Section 10.2.5.12 describe the Pchip register set.

10.2.5.1 Window Space Base Address Register (WSBAn – RW)

Because the information in the WSBAn registers and WSMn registers (Section
10.2.5.2) is used to compare against the PCI address, a clock-domain crossing (from
i_sysclk to i_pclko<7:0>) is made when these registers are written. Therefore, for a
period of several clock cycles, a window is disabled when its contents are disabled. If
PCI bus activity, which accesses the window in question, is not stopped before updating
that window, the Pchip might fail to respond with b_devsel_l when it should. This
would result in a master abort condition on the PCI bus. Therefore, before a window
(base or mask) is updated, all PCI activity accessing that window must be stopped, even
if only some activity is being added or deleted.

The contents of the window may be read back to confirm that the update has taken
place. Then PCI activity through that window can be resumed.

Table 10–35 describes the window space base address registers WSBA0, 1, and
Table 10–36 describes WSBA3.

Table 10–35 Window Space Base Address Register (WSBA0, 1, 2)

Field Bits Type Init Description

RES <63:32> MBZ,RAZ 0 Reserved

ADDR <31:20> RW 0 Base address

RES <19:2> MBZ,RAZ 0 Reserved

SG <1> RW 0 Scatter-gather

ENA <0> RW 0 Enable

Table 10–36 Window Space Base Address Register (WSBA3)

Field Bits Type Init Description

RES <63:40> MBZ,RAZ 0 Reserved

DAC <39> RW 0 DAC enable

RES <38:32> MBZ,RAZ 0 Reserved

ADDR <31:20> RW 0 Base address if DAC enable = 0
Not used if DAC enable = 1

RES <19:2> MBZ,RAZ 0 Reserved

SG <1> RO 1 Scatter-gather always enabled

ENA <0> RW 0 Enable
21 October 1999 Programmer’s Reference 10–45

Chipset Registers

ister.

Table
10.2.5.2 Window Space Mask Register (WSM0, WSM1, WSM2, WSM3 – RW)

Table 10–37 describes the window space mask registers. Refer to the WSBAn register
description (Section 10.2.5.1) for a brief description of the window space mask reg

10.2.5.3 Translated Base Address Register (TBAn – RW)

Table 10–38 describes the translated base address registers TBA0, 1, and 2.
10–39 describes TBA3.

10.2.5.4 Pchip Control Register (PCTL – RW)

Table 10–40 describes the Pchip control register (PCTL).

Table 10–37 Window Space Mask Register (WSM n)

Field Bits Type Init Description

RES <63:32> MBZ,RAZ 0 Reserved

AM <31:20> RW 0 Address mask

RES <19:0> MBZ,RAZ 0 Reserved

Table 10–38 Translated Base Address Registers (TBA0, 1, and 2)

Field Bits Type Init Description

RES <63:35> MBZ,RAZ 0 Reserved

ADDR <34:10> RW 0 Translated address base

RES <9:0> MBZ,RAZ 0 Reserved

Table 10–39 Translated Base Address Registers (TBA3)

Field Bits Type Init Description

RES <63:35> MBZ,RAZ 0 Reserved

ADDR <34:10> RW 0 If DAC enable = 1, bits <34:22> are the
Page Table Origin address <34:22> and
bits <21:10> are ignored.
If DAC enable = 0, this is the translated
address base.

RES <9:0> MBZ,RAZ 0 Reserved

Table 10–40 Pchip Control Register (PCTL)

Field Bits Type Init Description

RES <63:48> MBZ,RAZ 0 Reserved.

PID <47:46> RO —1 Pchip ID.

RPP <45> RO —2 Remote Pchip present.

PTEVRFY <44> RW — PTE verify for DMA read.

Value Description
10–46 Programmer’s Reference 21 October 1999

Chipset Registers
0 If TLB miss, then make DMA read request
as soon as possible and discard data if PTE
was not valid – could cause Cchip non-
existent memory error.

1 If TLB miss, then delay read request until
PTE is verified as valid – no request if not
valid.

FDWDIS <43> RW — Fast DMA read cache block wrap request disable.

Value Description

0 Normal operation

1 Reserved for testing purposes only

Table 10–40 Pchip Control Register (PCTL) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–47

Chipset Registers
FDSDIS <42> RW — Fast DMA start and SGTE request disable.

Value Description

0 Normal operation

1 Reserved for testing purposes only

PCLKX <41:40> RO —3 PCI clock frequency multiplier

Value Multiplier

0 x6

1 x4

2 x5

3 Reserved

PTPMAX <39:36> RW 2 Maximum PTP requests to Cchip from both Pchips
until returned on CAPbus, modulo 16 (minimum = 2)
(use 4 for pass 1 Cchip and Dchip).

CRQMAX <35:32> RW 1 Maximum requests to Cchip from both Pchips until
Ack, modulo 16 (use 4 for Cchip).
(Use 3 or less for Typhoon because there is one less
skid buffer in the C4 chip.)

REV <31:24> RO 0 In conjunction with the state of PMONCTL<0>, this
field indicates the revision of the Pchip (see
 Section 8.10).

CDQMAX <23:20> RW 1 Maximum data transfers to Dchips from both Pchips
until Ack, modulo 16 (use 4 for Dchip). Must be same
as Cchip CSR CSC<FPQPMAX>.

PADM <19> RW —4 PADbus mode.

Value Mode

0
1

8-nibble, 8-check bit mode
4-byte, 4-check bit mode

ECCEN <18> RW 0 ECC enable for DMA and SGTE accesses.

RES <17:16> MBZ,RAZ 0 Reserved.

PPRI <15> — 0 Arbiter priority group for the Pchip.

PRIGRP <14:8> RW 0 Arbiter priority group; one bit per PCI slot with bits
<14:8> corresponding to input b_req_l<6:0>.

Value Group

0 Low-priority group

1 High-priority group

ARBENA <7> RW 0 Internal arbiter enable.

MWIN <6> RW 0 Monster window enable.

HOLE <5> RW 0 512KB-to-1MB window hole enable.

Table 10–40 Pchip Control Register (PCTL) (Continued)

Field Bits Type Init Description
10–48 Programmer’s Reference 21 October 1999

Chipset Registers
10.2.5.5 Pchip Master Latency Register (PLAT – RW)

Table 10–41 describes the Pchip master latency register (PLAT).

10.2.5.6 Pchip Error Register (PERROR – RW)

If any of bits <11:0> are set, then this entire register is frozen and the Pchip output
signal b_error is asserted. Only bit <0> can be set after that. All other values will
be held until all of bits <11:0> are clear. When an error is detected and one of bits
<11:0> becomes set, the associated information is captured in bits <63:16> of this
register. After the information is captured, the INV bit is cleared, but the informa-
tion is not valid and should not be used if INV is set.

TGTLAT <4> RW 0 Target latency timers enable.

Value Mode

0 Retry/disconnect after 128 PCI clocks
without data.

1 Retry initial request after 32 PCI clocks
without data; disconnect subsequent trans-
fers after 8 PCI clocks without data.

CHAINDIS <3> RW 0 Disable chaining.

THDIS <2> RW 0 Disable antithrash mechanism for TLB.

Value Mode

0
1

Normal operation
Testing purposes only

FBTB <1> RW 0 Fast back-to-back enable.

FDSC <0> RW 0 Fast discard enable.

Value Mode

0 Discard data if no retry after 215 PCI
clocks.

1 Discard data if no retry after 210 PCI
clocks.

1 This field is initialized from the PID pins.
2 This field is initialized from the assertion of CREQRMT_L pin at system reset.
3 This field is initialized from the PCI i_pclkdiv<1:0> pins.
4 This field is initialized from a decode of the b_cap<1:0> pins.

Table 10–41 Pchip Master Latency Register (PLAT)

Field Bits Type Init Description

RES <63:16> MBZ,RAZ 0 Reserved

LAT <15:8> RW 0 Master latency timer

RES <7:0> MBZ,RAZ 0 Reserved

Table 10–40 Pchip Control Register (PCTL) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–49

Chipset Registers

 set.
,
In rare circumstances involving more than one error, INV may remain set because the
Pchip cannot correctly capture the SYN, CMD, or ADDR field.

Furthermore, if software reads PERROR in a polling loop, or reads PERROR before the
Pchip’s error signal is reflected in the Cchip’s DRIR CSR, the INV bit may also be
To avoid the latter condition, read PERROR only after receiving an IRQ0 interrupt
then read the Cchip DIR CSR to determine that this Pchip has detected an error.

 Table 10–42 describes the Pchip error register (PERROR).

Table 10–42 Pchip Error Register (PERROR)

Field Bits Type Init Description

SYN <63:56> RO 0 ECC syndrome of error if CRE or UECC.

CMD <55:52> RO 0 PCI command of transaction when error detected if
not CRE and not UECC.

If CRE or UECC, then:

Value Command

0000 DMA read

0001 DMA RMW

0011 SGTE read

Others Reserved

INV <51> RO Rev1
RAZ Rev0

0 Info Not Valid – only meaningful when one of bits
<11:0> is set. Indicates validity of <SYN>, <CMD>,
and <ADDR> fields.

Value Mode

0 Info fields are valid.

1 Info fields are not valid.

ADDR <50:16> RO 0 If CRE or UECC, then ADDR<50:19> = system
address <34:3> of erroneous quadword and
ADDR<18:16> = 0.

If not CRE and not UECC, then ADDR<50:48> = 0;
ADDR<47:18> = starting PCI address <31:2> of
transaction when error was detected;
ADDR<17:16> = 00 → not a DAC operation;
ADDR<17:16> = 01 → via DAC SG Window 3;
ADDR<17> = 1 → via Monster Window

RES <15:12> MBZ,RAZ 0 Reserved.

CRE <11> R,W1C 0 Correctable ECC error.

UECC <10> R,W1C 0 Uncorrectable ECC error.

RES <9> MBZ,RAZ 0 Reserved.

NDS <8> R,W1C 0 No b_devsel_l as PCI master.

RDPE <7> R,W1C 0 PCI read data parity error as PCI master.

TA <6> R,W1C 0 Target abort as PCI master.
10–50 Programmer’s Reference 21 October 1999

Chipset Registers
10.2.5.7 Pchip Error Mask Register (PERRMASK – RW)

If any of the MASK bits have the value 0, they prevent the setting of the corresponding
bit in the PERROR register, regardless of the detection of errors or writing to PERR-
SET. The default is for all errors to be disabled.

Beside masking the reporting of errors in PERROR, certain bits of PERRMASK have
the following additional effects:

• If PERROR<RDPE> = 0, the Pchip ignores read data parity as the PCI master.

• If PERROR<PERR> = 0, the Pchip ignores write data parity as the PCI target.

• If PERROR<APE> = 0, the Pchip ignores address parity.

Table 10–43 describes the Pchip error mask register (PERRMASK).

10.2.5.8 Pchip Error Set Register (PERRSET – WO)

If any of the SET bits = 1, and the corresponding MASK bits in PERRMASK also
= 1, they cause the setting of the corresponding bits in the PERROR register, the cap-
ture of the INFO into the corresponding bits in the PERROR register, and the freezing
of the PERROR register. Zero (0) values in the PERRMASK register override one (1)
values in the PERRSET register. If the PERROR register is already frozen when PERR-
SET is written, only the LOST bit will be additionally set in PERROR.

APE <5> R,W1C 0 Address parity error detected as potential PCI target.

SGE <4> R,W1C 0 Scatter-gather had invalid page table entry.

DCRTO <3> R,W1C 0 Delayed completion retry timeout as PCI target.

PERR <2> R,W1C 0 b_perr_l sampled asserted.

SERR <1> R,W1C 0 b_serr_l sampled asserted.

LOST <0> R,W1C 0 Lost an error because it was detected after this register
was frozen, or while in the process of clearing this
register.

Table 10–43 Pchip Error Mask Register (PERRMASK)

Field Bits Type Init Description

RES <63:12> MBZ,RAZ 0 Reserved

MASK <11:0> RW 0 PERROR register bit enables (see the text
in this section and in Section 10.2.5.6)

Table 10–42 Pchip Error Register (PERROR) (Continued)

Field Bits Type Init Description
21 October 1999 Programmer’s Reference 10–51

Chipset Registers

r scat-
page
Table 10–44 describes the Pchip error set register (PERRSET).

10.2.5.9 Translation Buffer Invalidate Virtual Register (TLBIV – WO)

A write to this register invalidates all scatter-gather TLB entries that correspond to PCI
addresses whose bits <31:16> and bit 39 match the value written in bits <19:4> and 27
respectively. This invalidates up to eight PTEs at a time, which are the
number that can be defined in one 21264 cache block (64 bytes). Because a single TLB
PCI tag covers four entries, at most two tags are actually invalidated. PTE bits <22:4>
correspond to system address bits <34:16> – where PCI<34:32> must be zeros fo
ter-gather window hits – in generating the resulting system address, providing 8-
(8KB) granularity.

Table 10–45 describes the translation buffer invalidate virtual register (TLBIV).

10.2.5.10 Translation Buffer Invalidate All Register (TLBIA – WO)

A write to this register invalidates the scatter-gather TLB. The value written is ignored.

Table 10–46 describes the translation buffer invalidate all register (TLBIA).

Table 10–44 Pchip Error Set Register (PERRSET)

Field Bits Type Init Description

INFO <63:16> WO 0 PERROR register information (see the text
in this section)

RES <15:12> MBZ 0 Reserved

SET <11:0> WO 0 PERROR register bit set (see the text in
this section and in Section 10.2.5.6)

Table 10–45 Translation Buffer Invalidate Virtual Register (TLBIV)

Field Bits Type Init Description

RES <63:28> WO,MBZ 0 Reserved

DAC <27> WO 0 Only invalidate if match PCI address <39>

RES <26:20> WO,MBZ 0 Reserved

ADDR <19:4> WO 0 Only invalidate if match against PCI
address <31:16>

RES <3:0> WO,MBZ 0 Reserved

Table 10–46 Translation Buffer Invalidate All Register (TLBIA)

Field Bits Type Init Description

RES <63:0> WO,MBZ 0 Reserved
10–52 Programmer’s Reference 21 October 1999

Chipset Registers

. The

e

ot the
th
cur in
his

that
 for
ount-

er.
10.2.5.11 Pchip Monitor Control Register (PMONCTL – RW)

This register has two fields — one each for selecting among a set of internal signals
set of selectable signals is identical for each field. SLCT0 selects the signal that is
brought to the chip output b_monitor<0>. SLCT1 selects the signal that is brought to th
chip output b_monitor<1>. The chip monitor outputs are two i_sysclk cycles later than
the defined signal. All of the defined signals are synchronized to the system clock (n
PCI clock). Also, some of the signals derived from PCI clocked signals are gated wi
UREN_D1_R (see Section 8.1.2.3) so that they can be used to count events that oc
the PCI clock domain, regardless of the PCI clock frequency. Others are not gated t
way, so that durations can be measured in terms of system clocks.

In addition, b_monitor<0> is used as the input to the CNT0 field in PMONCNT, and
b_monitor<1> is used as the input to the least significant bit in the CNT1 field in
PMONCNT.

Writing any value to PMONCTL clears both fields of PMONCNT.

In normal operation, the two counters in PMONCNT stick at the value of all 1s (so
overflow can be detected). The two STKDIS control bits can disable this behavior
either counter, so that the associated counter wraps back to all 0s and continues c
ing. This is useful if one counter’s carry-out is used as the input to the other count

Table 10–47 describes the Pchip monitor control register (PMONCTL).

Table 10–47 Pchip Monitor Control (PMONCTL)

Field Bits Type Init Description

RES <63:18> MBZ,RAZ 0 Reserved

STKDIS1 <17> RW 0 Sticky count1 disable

Value Mode

0 PMONCNT<CNT1> sticks at all 1s.

1 PMONCNT<CNT1> wraps at all 1s.

STKDIS0 <16> RW 0 Sticky count0 disable

Value Mode

0 PMONCNT<CNT0> sticks at all 1s.

1 PMONCNT<CNT0> wraps at all 1s.

SLCT1 <15:8> RW 0 Selects chip output b_monitor<1>, which is also the
input to the least significant bit of PMON-
CNT<CNT1>.

SLCT0 <7:0> RW 1 Selects chip output b_monitor<0> on reset; used to
differentiate between current and previous revisions
of the Pchip. Also input to the least significant bit of
PMONCNT<CNT0>.
21 October 1999 Programmer’s Reference 10–53

Chipset Registers
10.2.5.12 Pchip Monitor Counters (PMONCNT – RO)

The two fields CNT0 and CNT1 count the system clock cycles during which the
b_monitor<0> and b_monitor<1> signals respectively (selected by
PMONCTL<SLCT0> and PMONCTL<SLCT1>) are asserted.

Both fields are cleared when any value is written to PMONCTL.

Each of the counters sticks at the value of all 1s, unless the associated STKDIS bit is set
in PMONCTL.

The counters both hold their values for four cycles each time that a read to
PMONCNT is performed. A slight inaccuracy can result if the events being counted
continue to occur at the time of the reading.

Table 10–48 describes the Pchip monitor counters (PMONCNT).

Table 10–48 Pchip Monitor Counters (PMONCNT)

Field Bits Type Init Description

CNT1 <63:32> RO 0 Counts i_sysclk cycles that b_monitor<1>
is asserted

CNT0 <31:0> RO 0 Counts sysclk cycles that monitor<0> is
asserted
10–54 Programmer’s Reference 21 October 1999

10–56 Programmer’s Reference 21 October 1999

Chipset Registers

ple-
 11
Chipset Clock Generation

This chapter describes the chipset input and output clocks, and their timing relation-
ships.

11.1 Clock Generation

The 21272 chipset has seven unique clock types. They are:

• System reference clock pair (i_sysclk, i_sysclk_l)

• Forward reference clock pair (i_fwdclk, i_fwdclk_l)

• Input forwarded clocks – one per CPU (b_c0clki_l, b_c1clki_l)

• Output forwarded clocks – one per CPU (b_c0clko_l, b_c1clko_l)

• PCI output reference clocks (b_pclko<7:0>)

• PCI input clock (i_pclki)

• Memory reference clock (MEMCLK)

Signals i_sysclk, i_sysclk_l, i_fwdclk, i_fwdclk_l, i_pclki, b_c0clki_l, and b_c1clki_l
are clock inputs to the 21272 chipset. Signals MEMCLK, b_pclko<7:0>, b_c0clko_l,
and b_c1clko_l are output clocks generated by the 21272 chipset. The timing relation-
ships of all 21272 clocks can be derived from input clock signal pair i_sysclk{_l} (see
Table 11–1).

Figure 11–1 and Figure 11–2 show example block diagrams for a system clock im
mentation.

Table 11–1 Chipset Clocks

Clock Relationship to sysclk Signal Level Comments

i_sysclk{_l} – Differential PECL Main system clock

i_fwdclk{ _l} 2* i_sysclk Differential PECL Creates b_cnclko_l

pclko<n>/pclki (2*i_sysclk)/(4 or 5 or 6) LVTTL Use divisor that yields a
result of 33.3 MHz

MEMCLK 1* i_sysclk LVTTL Address/data transfers on
rising edge

b_cnclki_l/
b_cnclko_l

2*i_sysclk (FCLK) Custom 2 V Data clocked on both ris-
ing and falling edges
21 October 1999 Chipset Clock Generation 11–1

Clock Generation
Figure 11–1 System Clock Implementation (Example 1)

15

Motorola
MC100-
LVE222
PECL
Clock
Driver

Motorola
MC100-
LVE222
PECL
Clock
Driver

Differential
PECL Outputs Divide by 1

200 MHz
+

-

Motorola
MPC12439
400-MHz

PLL

Divide by 2

10-25 MHz
ECL osc

Differential
PECL

200 MHz fwdclk

15

100 MHz sysclk

LJ-05524.AI7
11–2 Chipset Clock Generation 21 October 1999

Clock Generation
Figure 11–2 System Clock Implementation (Example 2)

200 MHz

8

100 MHz

3.3-V
Control

200 MHz

100 MHz

pwdclk

sysclk
Pchip

pciclk

200 MHz

100 MHz

pwdclk

mclk
Cchip

sysclk

200 MHz

100 MHz

osc
21264
CPU

ref

12 Cache
Memory

Clocks are all
Differential PECL

Cache Address,
Control and Clocking

Control
(2V OD)

Forwarded
Clocks

3.3-V
Data

pclk<7:0>

Main Memory-
SDRAM DIMMs

LJ-05559A.FH8

100 MHzmclk(100 MHz) Motorola
MPC974

PLL Up to 16

3.3-V Rail-
to-Rail
CMOS
Interface

2, 4, or 8 Dchips

mclk
(100 MHz)

CPU to Cchip and Dchip
interfaces are clock
forwarded

Up to 200-MHz clock
is used when Cchip and
Dchips are sourcing data

21264 Features:
1) 500-MHz internal clock
2) Divide by (1.5 to 3) I/O clock
3) Phase locks to system reference
 (sys ref = integer multiple of
 I/O clock)

pwdclk

sysclk
Dchips
21 October 1999 Chipset Clock Generation 11–3

Clock Generation
Figure 11–3 and Figure 11–4 show how the various clock domains for the 21272
chipset are connected within each ASIC.

Figure 11–3 Cchip/Dchip Clock System

Figure 11–4 Pchip Clock System

mainclk

memclk

memclk
sysclk

sysclk

(Cchip Only)

PECL
Receivers

PECL
Receiver

system
_clk

fw
dclk

fw
dclk_l

fclk

fclk_l

sclk

sclk_l

LKG-11034A-98WI

Divide by
4, 5, 6

Non-PCI
Logic

pclk (8 Copies)

PCIclk (1 Copy) PCI
Logic

fclk

sysclk

LJ-05526.AI4
11–4 Chipset Clock Generation 21 October 1999

PCI Bus Clocking

he

two
men-

rk,
d
 are
 these
and
als in

f mis-
ro-

tions
11.2 PCI Bus Clocking

The 21272 chipset supports up to 33.3-MHz PCI operation and provides seven copies
of the PCI clock (b_pclko<n>) for module use. An eighth copy is used as an input to
the Pchip. Clocks b_pclko<n> are generated by internally dividing the i_fwdclk input
by a user defined value of 4, 5, or 6.

11.3 SDRAM Clocking

The 21272 chipset supports synchronous DRAM interface timing. The Cchip provides
a copy of the system clock for use as the memory reference clock (MEMCLK). Address
and data are driven/received on the rising edge of i_sysclk.

11.4 Clock Skew

The 21272 chipset clock skew design parameters are listed in Table 11–2.

11.5 CPU Interface Clock Forwarding

The following sections provide information about clock forwarding principles and t
21272-specific implementation.

11.5.1 Clock Forwarding Background

Clock forwarding is a technique to provide synchronous transfer of data between
chips whose I/O path delay and skew is greater than 1 clock period. For any imple
tation that takes multiple clock cycles to complete a data transfer, there must be a
method to identify the individual clocks. In order for forwarded data transfers to wo
careful matching of the delays of the data lines and the positioning of the forwarde
clock with respect to the data must be performed. Because the data and the clock
sourced from the same device, and the wire delays have been carefully matched,
signals are said to be correlated. This means that the effects of process, voltage,
temperature affect the entire group in a similar fashion. The skew between the sign
the group is caused by errors in matching the signals to one another. Examples o
match errors can include etch variations, simultaneous switching effects, onchip p
cess variations, and so forth.

The operation of the clock forwarding logic can be defined by a set of simple equa
(not shown here), which define the following terms:

Table 11–2 Clock Skew Parameters

Clock Intrachip Skew Interchip Skew
Clock-to-Clock
Skew Duty Cycle Requirement

i_sysclk 200 ps 2.0 ns i_fwdclk 100 ps
pclki 3 ns
MEMCLK 3 ns

Pulse width > 4 ns

i_fwdclk 100 ps Unspecified i_sysclk 100 ps 50/50 ±100 ps

i_pclki 300 ps Unspecified i_sysclk 3 ns Pulse width > 11 ns

MEMCLK Unspecified Unspecified i_sysclk 2 ns Pulse width > 4 ns
21 October 1999 Chipset Clock Generation 11–5

CPU Interface Clock Forwarding

buffer

 tar-

. This
ple

dow

ses
e

 chip
ip. In
 clock

on
e

p-
• Sample time – The elapsed time before data can be removed from the target
with respect to the source clock that sent the data.

• Recovered data valid time – The minimum data buffering time required on the
get chip.

• Minimum bit time – The minimum time between data samples.

In practice, at least one extra target flip-flop is required to ensure proper operation
extra flip-flop is used to ensure that the received data remains valid during the sam
time. That is, it provides additional data hold time to ensure that the data valid win
is greater than the uncertainty between the source and destination clocks.

Figure 11–5 shows the basic logic used for clock forwarding. The target receiver u
two input flip-flops and a multiplexer. This allows one flip-flop to be loaded while th
other is being read. Figure 11–6 shows the timing of data flowing from the source
into the receiver’s clock forwarding logic, and the data as seen by the receiving ch
Figure 11–5 the source and target clocks are operating at the same frequency. The
forwarding clock is running at 1/2 the source clock frequency, but data is clocked
both the rising and falling edges. Flip-flop RXOUT0 clocks on the rising edge of th
forwarded clock while flip-flop RXOUT1 uses the falling edge. The use of two flip-
flops in this fashion doubles the data_out valid window as compared to a single fli
flop. This increased window allows sufficient time for the positioning of the target
clock to successfully capture the source data into register RT.

Figure 11–5 Clock Forwarding Logic

R
X

O
U

T
0

R
X

O
U

T
1

Clock
Generator

Unload
Control

RT
RCV Data

Target Clock

Source Clock

Data

LJ-05527.AI4
11–6 Chipset Clock Generation 21 October 1999

CPU Interface Clock Forwarding
Figure 11–6 Clock Forwarding Timing

LJ-05528.AI4

0 ns 50 ns

Forward Data

SD

D0 D1 D2 D3 D4 D5 D6 D7

SD SD SD SD SD SD SD SD

TRx_hold_max

D1 D2 D3 D4 D5 D6 D7D0

Tdata_max

TRx_setup_max

D1 D2 D3 D4 D5 D6 D7D0

TRx_hold_min

TRx_setup_min

TRx_data

TRt_setup

D2 D4 D6D0

D3 D5 D7D1

TRt_hold

TRx_data

TRx_setup

TRt_hold

TRt_delay

D1 D2 D3 D4 D5 D6 D7

Forward_data_min

Forward_data_max

RXOUT0

RXOUT1

Source CLK

FWD CLK

Forward_clk_min

Forward_clk_max

Target CLK

RT D0

Tdata_min
21 October 1999 Chipset Clock Generation 11–7

CPU Interface Clock Forwarding

gic
 data

t are
 of
11.5.2 21272 Chipset Clock Forwarding

With traditional clock forwarding, the source and target clock cycle times are identical.
In the 21272 chipset design, the system clock is a multiple (1.5, 2.0, 2.5, or 3.0) of the
CPU I/O clock cycle.

With the source and destination clocks running at two different frequencies, some
changes to the 21272 clock forwarding logic are required to ensure that valid data can
be captured from, or sent to, the CPU. Figure 11–7 shows the clock forwarding lo
required for the 21264 CPU and the 21272 chipset. The figure shows the logic for
transfers in both directions. This logic assumes that the system clock cycle is 4X the
CPU I/O clock cycle and that the forwarding clock is 2X. Because the CPU delivers
four pieces of data for every system clock tick, the data paths in the 21272 chipse
4X the size on the input data path. Figure 11–8 shows the logical timing operation
21272 clock forwarding.

Figure 11–7 21272 Clock Forwarding Logic

0

1

2

3

4

5

6

7

Clock
Generator

0 Data<0>

1 Data<1>

2 Data<2>

3 Data<3>

Input
Unloader sysclk

FF

FF

FF

FF

FF

Data<0>

Data<1>

Data<2>

Data<3>

sysclk

twdclk

1

0

Data Out

Cnclko_l

Cnclki_l

Data In

1

0

FF

FF

EV Input
Unloader

EV Input
Loader

F
LO

P

I/O CLK
Generation

gclk

RXOUT RT21272 Logic21264 Logic

LJ-05529A.AI7
11–8 Chipset Clock Generation 21 October 1999

CPU Interface Clock Forwarding
Figure 11–8 21272 Clock Forwarding Timing

LJ-05530.AI4

Source CLK

FWD CLK

0 ns 50 ns

Forward Data

SD

D0 D1 D2 D3 D4 D5 D6 D7

100 ns

SD

D6 D7

TRt_hold

SD

Forward_data_min

Forward_data_max

SD SD SD SD SD

TRx_hold_min

TRx_setup_min

D1 D2 D3 D4 D5 D6 D7

D1 D2 D3 D4 D5D0

TRx_setup_max

TRx_hold_maxTdata_max

Forward_clk_min

Forward_clk_max

RXOUT0

RXOUT1

D0

SD

Tdata_min

D0

D1

TRx_data

D2

TRx_data

RXOUT2

RXOUT3

RXOUT4

RXOUT5

RXOUT6

RXOUT7

Target CLK

D3

D4

D6

TRx_data

D7

TRx_data

RT0 D0

TRt_delay

RT1 D1

TRt_delay

RT2 D2

TRt_delay

RT3 D3

TRt_delay

D4

D5

D6

D7

TRt_setup

TRt_hold

TRt_setup

TRx_data

D5

TRx_data

TRx_data

TRx_data
21 October 1999 Chipset Clock Generation 11–9

ut the

iately.

s
Pbus

-

ge
ke up
 12
Reset, Initialization, and Power Management

This chapter describes the 21272/CPU/PCI hardware and firmware reset and initializa-
tion sequences. It also describes power management.

12.1 Hardware Initialization

Hardware initialization covers overall chipset and CPU reset timing, clock forward
interface reset, and synchronous DRAM initialization.

12.1.1 Chipset Reset

The module reset signal (b_modrst_l) must be asserted at power-up, and held asserted
for a minimum of 200 µs after power and clocks are stable. The Cchip takes as inp
unsynchronized reset signal, b_modrst_l, and provides three copies of a reset signal
with a synchronized deasserting edge (b_sysrsta_l, b_sysrstb_l, and b_sysrstc_l).
Reset asserting edges are not synchronized, but are relayed by the Cchip immed
While system reset (i_sysrst_l) is asserted, the Cchip holds the clock forward resets
(b_cfrst<1:0>) asserted and tristates the TIGbus data lines (b_td<7:0>). Pull-ups and
pull-downs on the TIGbus provide configuration information that is needed before
firmware can continue the initialization process. Some of the TIGbus information i
echoed by the Cchip onto the CPM command lines to the Dchips, and onto the CA
lines to the Pchips.

Signal b_sysrstx_l must be deasserted synchronously to i_sysclk such that all chipset
chips see the deassertion within the same i_sysclk cycle. The Cchip provides three cop
ies of a reset signal with a synchronous deasserting edge (b_sysrsta_l, sysrstb_l, and
sysrstc_l). The Cchip also recirculates an internal copy of i_sysrst_l to maintain con-
sistent timing with other 21272 chips. Distributing the synchronous deasserting ed
through each 21272 chip takes two cycles. The synchronizer on the Cchip may ta
to another three cycles. Therefore, the 21272 logic can see i_sysrst_l deassert up to five
i_sysclk cycles after b_modrst_l deasserts.
21 October 1999 Reset, Initialization, and Power Management 12–1

Hardware Initialization

on

 are
lize

he

de
 a
At the deasserting edge of sysrst_l, all the chips store this configuration information
into CSRs. The configuration information is listed in Table 12–1.

The other CSR bits are initialized as indicated in the tables in Chapter 10. Based
these initial settings, the CSRs will be accessible from the CPU. After the b_modrst_l
signal is deasserted, the CPU ramps up its internal clocks. When the CPU clocks
ramped up and the CPU is ready to perform its Built-In Self Test, Repair, and Initia
process (hereafter written as BiSt), it will signal the system by asserting b_sromoe_l.
When the Cchip sees b_sromoe_l asserted, it sends a two SYSCLK-cycle pulse on t
appropriate b_cfrst<1:0> line to notify each CPU to start its BiSt and SROM load
sequence. When a CPU has completed its SROM load operation, it deasserts
b_sromoe_l, indicating that the Cchip may now deassert b_cfrst<1:0> for that CPU.
See Section 12.1.2 for more information about clock forward reset. The SROM co
then initializes the TIGbus timing registers and loads the remaining firmware from
flash ROM attached to the TIGbus.

Table 12–1 Configuration Information

TIGbus Bit Description

<7> Module specific spare

<6> SysDC fill delay

Value Cycles

0 2 cycles

1 3 cycles

<5:4> SysDC extract delay

Value Cycles

00 2 cycles

01 3 cycles

10 4 cycles

11 5 cycles

<3> CPU 1 clock forward preset

<2> CPU 0 clock forward preset

<1:0> Base configuration

 Value Cycles

00 2 Dchips, 1 memory bus

01 4 Dchips, 1 memory bus

10 4 Dchips, 2 memory buses

11 8 Dchips, 2 memory buses
12–2 Reset, Initialization, and Power Management 21 October 1999

Hardware Initialization

.

s do

ode of

nd.

eset
mand
sent.

d

 to

sert-
rd

ore
 first,

 it
he
12.1.2 Clock Forward Interface Reset

The 21272 clock forward interfaces are reset during power-up reset. When b_sysrstx_l
is asserted, the Cchip and Dchip asynchronously reset their clock forward interfaces,
and the Chip also asserts b_cfrst<1:0> to reset the CPU’s clock forwarding interfaces
The clock forward interface may also be reset in support of CPU sleep mode
(Section 6.7). While the clock forward interfaces are in reset mode, the 21272 chip
not count incoming clock forward clocks, nor do the chips transmit clock forward
clocks. When i_sysrst_l is deasserted, the Cchip holds b_cfrst<1:0> asserted until the
CPU is ready to begin code execution.

The CPU deasserts b_sromoe_l to indicate that it is ready for the clock forward inter-
faces to begin operation. The Cchip deasserts the clock forward interface reset m
operation by way of the following steps:

1. When the clock forward reset logic detects the deasserting edge of b_sromoe_l it
notifies the Cchip issue unit, which issues a toggle clock forward reset comma

2. The Cchip issue unit waits for an idle cycle to insert the toggle clock forward r
command onto the CPM bus to the Dchip. When the issue unit sends the com
on the CPM bus, it also notifies the CSR section that the command has been

3. One cycle later, the CSR section deasserts the b_cfrst<1:0> signals to the CPU.

4. The Dchip receives and decodes the toggle clock forward reset command, an
deasserts the clock forward reset signal onto the clock forward interface.

5. During this time, the Cchip’s CSR section waits a number of cycles equivalent
the Dchip decode path, then deasserts the b_cfrst<1:0> signal onto the Cchip’s
clock forward interface receiving logic.

6. On both the Cchip and the Dchips, the clock forward interface aligns the deas
ing edge of b_cfrst<1:0> to the framing clock, and then enables the clock forwa
interface receiving logic.

7. Four cycles later, the clock forward interfaces begin sending output clocks.

If the issue unit receives requests to toggle the clock forward interface reset for m
than one CPU at a time, it prioritizes the requests to service the request for CPU0
and then CPU1.

For proper function, the clock forward receive circuitry must be out of reset before
receives as input, a clock from another device’s clock forward transmit circuitry. T
21264 specifies a 3-cycle delay from the i_sysclk edge when b_cfrst<1:0> is seen
deasserted at the CPU until the CPU’s input and output circuits are operational.
21 October 1999 Reset, Initialization, and Power Management 12–3

Cchip Firmware Initialization Sequence

M

 banks

fac-
egis-
e
. To
ount

o
 set

es
ays.
es to

.

 CSR
e two
e

-

12.1.3 SDRAM Initialization

The SDRAMs require the following sequence to initialize properly:

1. Pull b_mcke and b_mndqm<1:0> inputs high, hold all other inputs at a no-op
command, ramp up Vdd, and start the clock. The Cchip holds its b_mndqm<1:0>
outputs high and sends a no-op command to the SDRAMs during reset. Module
components must ensure that the other requirements of this step are met.

2. Wait 100-200 µs with the inputs held to a no-op (timing depends on the SDRA
manufacturer’s specifications). Signal i_sysrst_l must be held asserted for a mini-
mum of 200 µs to accomplish this step.

3. Precharge all banks. To accomplish this step, the Cchip sends a precharge all
command to the SDRAMs as soon as i_sysrst_l is deasserted. When the Cchip is
reset, refreshing is turned off.

4. Perform a minimum of eight autorefresh cycles (fewer for some SDRAM manu
turers). To perform this step, firmware must set a refresh interval in the MTR r
ter and wait for the proper amount of time (determined by the system cycle tim
and the value programmed into MTR<RI>) for the eight refresh cycles to occur
accomplish this as fast as possible, set MTR<RI> = 4. Once the appropriate am
of time has passed, firmware should turn off refreshing again by writing a 0 int
MTR<RI>. This prevents a refresh cycle from interfering with the mode register
command.

5. Perform a mode register set operation. Writing to the four MPR registers caus
mode register set commands to be sent to the corresponding four memory arr
The value written to the register is the value that will be put on the address lin
place into the mode register.

6. Set MTR<RI> to the final value for the refresh interval that the system will use

The SDRAMs are now ready for operation.

12.2 Cchip Firmware Initialization Sequence

When the system comes out of reset, the only operations guaranteed to work are
reads and writes. Probes to the two CPUs are disabled. In a dual CPU system, th
CPUs can arbitrate to determine which CPU initializes the system by means of th
MISC<ARBn> bits. The arbitration sequence is as follows:

1. Read MISC<CPUID> to obtain the CPU number.

2. Set MISC<ABTn> and MISC<ABWm> to request ownership of system initializa
tion.

3. Issue a memory barrier instruction.

4. Read MISC<ABW>.

If the bit corresponding to your CPU number is not set, you lost arbitration and
should wait for an interprocessor interrupt from the winning CPU, notifying you
that the initialization sequence is complete. Proceed with the initialization
sequence.
12–4 Reset, Initialization, and Power Management 21 October 1999

Cchip Firmware Initialization Sequence
If the bit corresponding to your CPU number is set, you have won arbitration. Read
MISC<ABT> until the other CPUs have set their bits or until some timeout limit is
reached. When other CPUs have set their bits, the winning CPU proceeds with the
initialization process.

5. Wait for the other CPU to finish its read of MISC<ABW> so that a read does not
occur during initialization of the timing registers (can be synchronized by way of an
interprocessor interrupt).

The code held in the SROM is responsible for loading the rest of the firmware from a
flash ROM on the TIGbus. In order to do so, it must initialize the TIGbus timing regis-
ter (TTR) and the TIGbus device timing register (TDR) with the correct values for the
components in the system. Also, the system timing register (STR) and Cchip system
configuration register (CSC) should be initialized, although this can be delayed until
after the flash ROM code is loaded into the CPU.

The correct initialization sequence for STR and CSC is as follows:

1. Read CSRs to obtain the necessary configuration information.

2. Issue a memory barrier instruction or register dependency on the last CSR read.

3. Write STR.

4. Issue a memory barrier instruction.

5. Wait 20 i_sysclk cycles.

6. Write CSC.

7. Issue a memory barrier instruction.

8. Wait 20 i_sysclk cycles.

No other sequence can guarantee correct behavior. Once this sequence is completed, no
further changes are allowed to STR<IDDW> and STR<IDDR>, nor to any fields in
CSC.

Next, the memory arrays must be initialized by programming the memory array sizes
and timings into AARn and MTR. The SDRAMs were initialized previously (as
described in Section 12.1.3). This is accomplished as follows:

1. If serial presence detect pins are in use, read the SPD information from the serial
ROM by using the MPD register and implementing the I2C protocol in software.
This provides the array sizes and SDRAM speeds. If serial presence detect pins are
not in use, the timings can be held in the flash ROM, or firmware may want to use
CSC<FW> to bring in timing parameters from pull-ups/pull-downs on the module.

2. Write MTR with the desired memory timing.

3. If a system has 32-byte memory buses, they may be only half-populated. If this is
the case, set STR<AW> to 32 bytes and test the width by writing data and reading it
back. Set STR<AW> to its proper value.

4. If serial presence detect is not in use, size the memory arrays by setting each array
in turn to its largest possible size, and then, writing and reading back addresses to
find out the highest order address bit in use. If serial presence detect is used, the
serial data contains the SDRAM configuration.

5. Write AARn with the determined memory configuration. Disable any arrays that
are not present.
21 October 1999 Reset, Initialization, and Power Management 12–5

PCI (Pchip) Reset
This concludes the memory array initialization. No further writes are allowed to AARn
and MTR.

Note: If array 0 is not detected, the firmware must not allow the system to boot.

Once the memory arrays are initialized and mapped, probes to the CPUs may be turned
on and the I/O system initialized. The other CPU may be woken up at this time by
means of an interprocessor interrupt.

12.3 PCI (Pchip) Reset

Upon assertion of i_sysrst_l, the Pchips asynchronously assert b_prst_l on the PCI
bus. While b_prst_l is asserted, the Pchips also assert b_req64_l, which indicates to
other PCI devices (if they see b_req64_l asserted) that the PCI bus is 64 bits wide.

Upon deassertion of i_sysrst_l, the Pchips deassert b_prst_l synchronously with
b_pclko<7:0>. This synchronized deassertion occurs several cycles after the deasser-
tion of i_sysrst_l. One PCI cycle after the deassertion of b_prst_l, the Pchips drive
b_req64_l deasserted for one cycle, then tristate the b_req64_l driver.

Upon reset, the Pchip internal arbiter is disabled and remains disabled until reenabled
by firmware. The Pchip contains weak pull-ups that pull these lines to their deasserted
levels when the internal arbiter is disabled. The Pchip also contains weak pull-ups on its
b_req_l<6:1> and b_reqgnt_l<0> inputs, and on the b_ad<63:0>, b_par, b_par64,
and b_cbe_l<7:0> lines to prevent these lines from floating during reset.

12.4 SDRAM Self-Refresh/CPU and 21272 Power Down (ACPI S3)

The 21272 supports SDRAM self-refresh operations during which the CPUs and the
21272 chipset may be powered off. Additional support on the module is required for
correct operation.

12.4.1 Entering SDRAM Self-Refresh

The following algorithm must be followed to enter a state where the SDRAMs
maintain their contents by using self-refresh while the CPUs and 21272 chipset are
powered off.

1. The CPU decides to power down and performs the housekeeping activities that use
the system interface. All dirty cache data is written to system memory.

2. All DMA activity is halted.

3. Wait 100 us to ensure that the 21272 has completed any remaining SDRAM writes
from the cache.

4. The CPU writes the Cchip PWR<SR> register bit, causing the 21272 to issue the
self-refresh command to each of the memory arrays. Then as long as the 21272 has
power, it holds the b_mcke_l<3:0> lines to the SDRAMs deasserted.

5. The CPU writes to the system power controller that maintains the power state. This
controller can be in a South Bridge on the PCI bus, or on the 21272 TIGbus.

6. The power controller asserts a pin that will hold the b_mcke_l<3:0> lines deas-
serted while 21272 power is off.
12–6 Reset, Initialization, and Power Management 21 October 1999

SDRAM Self-Refresh/CPU and 21272 Power Down (ACPI S3)

eth-

be
ppro-

ng

he

 is
e

 self-
.

7. The power controller turns off power to the 21272 and the CPUs.

12.4.2 Exiting SDRAM Self-Refresh

The power controller must be programmed to monitor conditions to detect a set of
wake-up events. If one of these events occur, it uses the following algorithm to restore
normal operation:

1. The power controller detects the enabled wake-up event.

2. The power controller turns on power to the CPUs and the 21272 chipset, and also
causes the b_modrst_l signal to be asserted on the module, for a normal
power-up.

3. As with a normal power-up sequence, the 21272 asserts the b_mcke_l<3:0> lines
during reset, and waits to issue a precharge to all arrays when reset is deasserted.

4. Before deasserting reset, the module stops deasserting b_mcke_l<3:0> lines. This
switches the b_mcke_l<3:0> lines to be asserted asynchronously to the SDRAM
clocks, but that is permitted by the specification for exiting self-refresh mode.
Because the 21272 is held in reset, it will not send any commands to the SDRAMs.

5. As the CPUs power up, they read the SROM and go through the power-up
sequence, using the 21272 srom_oe handshake to enable the interface.

6. The SROM code performs a read from the power controller to determine that this is
a return from a self-refresh state rather than a cold power-up. In the case of a cold
power-up, the power controller has a bit that powers up in the off state.

7. Upon determining that this is not a cold power-up, the CPU firmware must program
the 21272 chipset as described in Section 12.2. However, be careful that no actions
are used that destroy SDRAM contents (for example, sizing of the memory array
must be accomplished without reading or writing to them–presence detection m
ods must be used).

8. Once the 21272 is initialized, the power controller and any other devices can
allowed to cause interrupts to the 21272, which may be forwarded on to the a
priate CPUs.

Following is an alternative algorithm in which control of the b_mcke_l<3:0> lines is
switched from the controller to the 21272 with the b_mcke_l<3:0> lines deasserted.
This is another method for avoiding violation of the SDRAM specification for exiti
self-refresh.

1. The controller notices the enabled wake-up event, powers up the 21272 and t
CPU, and asserts b_modrst_l with the TIGbus containing the initial configuration
information. Signal b_modrst_l is deasserted. The 21272 deasserts
b_mcke_l<3:0> during and after reset, but the controller maintains
b_mcke_l<3:0> deasserted on the SDRAMs.

2. The CPUs power up and the SROM initializes the 21272, recognizing that this
not a cold power-up. The 21272 is attempting to issue refresh commands to th
SDRAMs, but the module switch is holding the b_mcke_l<3:0> lines deasserted so
that these commands are not seen by the SDRAMs.

3. The CPU writes the Cchip PWR<SR> CSR bit to cause the 21272 to issue the
refresh command (deasserting lines b_mcke_l<3:0>) to each of the memory arrays
This has no effect on the SDRAMs because b_mcke_l<3:0> is already deasserted;
but it enables the next step to be completed safely.
21 October 1999 Reset, Initialization, and Power Management 12–7

SDRAM Self-Refresh/CPU and 21272 Power Down (ACPI S3)
4. The controller is directed to switch b_mcke_l<3:0> control from the module to the
21272. Both deassert b_mcke_l<3:0> at this time.

5. The CPU clears the Cchip PWR<CSR> CSR bit. The 21272 asserts
b_mcke_l<3:0> to the SDRAMs and commences normal refresh operations one
refresh later, avoiding violation of the SDRAM specification for exiting self-
refresh.

6. Normal accesses to the SDRAMs through the 21272 are available to complete the
power-up algorithm.

12.4.3 SDRAM Self-Refresh in Multiprocessing Systems

When exiting SDRAM self-refresh state in a multiprocessing system, the CPU must
perform the sequence described in Section 12.2 to arbitrate so CPU attempts to initial-
ize the 21272 chipset.

The individual CPUs may require the savings of unique PAL base locations while they
are powered off. If necessary, this information can be saved in the power controller, or
some other convention can be used to save this information in main memory
(SDRAM). Description of the exact location is beyond the scope of this specification.
12–8 Reset, Initialization, and Power Management 21 October 1999

 A
Technical Abbreviations

This appendix contains acronymns and abbreviations associated with the 21272.

Table A–1 Technical Abbreviations

Abbreviation Description

AAR array address register

ABT arbitration try

ABW arbitration won

ACL arbitration clear

ASIC application-specific integrated circuit

BiSt built-in self test

BMB byte-mask bypass

CMONCNT Cchip monitor counters registers

CMONCTL Cchip monitor control registers

CSALT Technology used for 21272

CSC Cchip system configuration register

DAC dual-address cycle

DIM device interrupt mask register

DIR device interrupt request register

DQM D/Q mask pins

DRC delayed read completion

DREV Dchip revision register

DRIR Device raw interrupt request register

DRR delayed read request

DSC Dchip system configuration register

DWC delayed write completion
21 October 1999 Technical Abbreviations A–1

DWR delayed write request

ESBGA enhanced super ball grid array

FPD FromPchipData

FPQ FromPchipQueue

FPR From Pchip Requests

IIC Cchip interval ignore count register

LDP LoadP

MAF miss address file

MB memory barrier

MCTL M-port control register

MEMCLK memory reference clock

MPD memory presence detect register

MPR memory programming register

MSK Masking

MTE Matching

MTR memory timing register

NXM nonexistent memory error

NXS nonexistent memory error (NXM) source

PCTL Pchip control register

PECL Pseudo ECL

PIO Programmed I/O

PLAT Pchip master latency register

PMONCNT Pchip monitor counters register

PMONCTL Pchip monitor control register

PMW posted memory write

PRBEN probe enable register

PTE page table entry

PTP peer-to-peer

PWR power management control register

QDA queue of downstream addresses

QDDR queue of downstream data for reads

QDDW queue of downstream data for writes

QUDR queue of upstream data for reads

QUDW queue of upstream data for writes

Table A–1 Technical Abbreviations (Continued)

Abbreviation Description
A–2 Technical Abbreviations 21 October 1999

RMW read-modify-write

RPB release probe buffer

RVB release victim buffer

SGTE scatter-gather table entry

SPRST soft PCI reset

STR system timing register

TBA translation base address

TCA ToCpuAccumulator

TDR TIGbus device timing register

TLB translation lookaside buffer

TLBIA translation buffer invalidate all register

TLBIV translation buffer invalidate virtual register

TMA ToMemoryAccumulator

TPD To Pchip Data

TPQ ToPchipQueue

TPQM ToPchipQueueMemory

TPQP ToPchipQueuePIO

TPR ToPchip Requests

TTR TIGbus timing register

VAF victim address file

VDB victim data buffer

WDR wake-up delay register

WMB WriteMergeBuffer

WQF WaitQueueFrom Pchip

WQI WaitQueueIssue

WQT WaitQueueToPchip

WSBA window space base address register

WSM window space mask register

Table A–1 Technical Abbreviations (Continued)

Abbreviation Description
21 October 1999 Technical Abbreviations A–3

 B
Support

B.1 Customer Support

The Alpha OEM website provides the following information for customer support.

B.2 Part Numbers for Ordering Chips

To order the 21272 or 21274 chips, contact your local distributor and refer to the sale-
able part number as follows. The Compaq part number is used internally for tracking.

Website URL and Description
Alpha OEM http://www.digital.com/semiconductor/alpha/alpha.htm

Contains the following links:

• Developers’ Area: Development tools, code examples, driver
developers’ information, and technical white papers

• Motherboard Products: Motherboard details and perfor-
mance information

• Microprocessor Products: Microprocessor details and per-
formance information

• News: Press releases

• Technical Information: Motherboard firmware and drivers,
hardware compatibility lists, and product documentation library

• Customer Support: Feedback form

Chip Saleable Part Number Compaq Part Number

Tsunami Cchip 21272–C1 21–47312–03

Tsunami Dchip 21272–D1 21–47311–02

Tsunami Pchip 21272-P1 21–47310–03

Typhoon C4 21274–C1 21–49689–01

Typhoon D4 21274–D1 21–49733–01
21 October 1999 Support B–1

Associated Documentation
B.3 Associated Documentation

The Alpha OEM Documentation Library is available at the following URL:

http://ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html

The following table shows associated documentation that you can order from a vendor
or download on the world wide web from the Alpha OEM Documentation Library.

Title and Order Number Vendor or URL

Alpha Architecture Reference Manual
EY–W938E–DP

Call your local distributor or call
Butterworth-Heinemann (DIGITAL Press)
at 1-800-366-2665

Alpha Architecture Handbook
EC–QD2KB–TE

Alpha OEM Documentation Library:

http://ftp.digital.com/pub/Digital/info/semiconductor/
literature/dsc-library.html

DIGITAL Alpha 21164 Microprocessor
Hardware Reference Manual
EC–QP99B–TE

See previous entry

DIGITAL Alpha 21164 Microprocessor Data
Sheet
EC–QP98C–TE

See previous entry

PCI Local Bus Specification, Revision 2.1
PCI Multimedia Design Guide, Revision 1.0
PCI System Design Guide
PCI-to-PCI Bridge Architecture Specification,
Revision 1.0
PCI BIOS Specification, Revision 2.1

PCI Special Interest Group
U.S. 1–800–433–5177
International 1–503–797–4207
Fax 1–503–234–6762

82420/82430 PCIset ISA and EISA Bridges
(includes 82378IB/ZB SIO) (PN 290483)

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056
Phone: 1-800-628-8686
FaxBACK Service: 1-800-628-2283
BBS: 1-916-356-3600

Super I/O Combination Controller
(FDC37C935) Data Sheet

Standard Microsystems Corporation
80 Arkay Drive
Hauppauge, NY 11788
Phone: 1-516-435-6000
Fax: 1-516-231-6004
B–2 Support 21 October 1999

Index

B

Numerics
21272-CA, See Cchip

21272-DA, See Dchip

21272-EA, See Pchip

A
AARn registers, 10-31, 12-5

Abbreviations, xii
register access, xii
technical, A-1

Absolute limits, 4-1

ac specifications
Cchip, 4-6
Dchip, 4-12
Pchip, 4-14

ac test specifications
Cchip, 4-16
Dchip, 4-18
Pchip, 4-19

Accumulate timing, 7-13

addr[29:6], 10-9

addr[4:3], 6-20

addr[5:0], 10-2

addr[5:3], 6-20

Address conventions, xiii

Addresses, registers, 10-13

Aligned convention, xiv

APE error, 8-15

Arbitration, PCI bus, 8-11

Array, memory, See Memory array

as_l, 10-36

b_ad[1:0], 10-4

b_ad[2:0], 10-4, 10-5

b_ad[2], 10-4

b_ad[31:0], 10-13

b_ad[63:0], 12-6

b_ad[63:32], 10-13

b_cack, 6-15

b_cactx_l, 6-12, 6-13, 6-22, 6-23, 6-24

b_cap[1:0], 6-11, 10-49

b_cap[15:0], 6-23, 6-24

b_capgd[1:0], 6-14, 7-5

b_capsel, 6-22

b_capsel[1:0], 6-12

b_cbe_l[7:0], 10-4, 10-5, 12-6

b_cfrst[1:0], 6-31, 10-35, 12-1, 12-2

b_cnclki_l, 11-1

b_cnclko_l, 11-1

b_devsel_l, 8-8, 8-14, 8-15, 10-6, 10-45, 10-50

b_error, 8-13, 8-14, 10-49

b_frame_l, 8-8

b_gntreq_l[0], 8-11

b_grant_l[6:1], 8-11

b_irq, 6-30

b_irq[0], 6-29

b_irq[1:0], 6-28

b_irq[1], 6-24

b_irq[2], 6-28

b_irq[3:0], 6-24

b_irq[3], 6-29

b_mcas_l[3:0], 9-13

b_mcke, 12-4
21 October 1999 Index–1

b_mcke_l[3:0], 9-13, 12-6

b_mna[14:0], 9-13

b_mndqm[1:0], 9-13, 10-26, 12-4

b_modrst_l, 12-1, 12-2, 12-7

b_monitor[1:0], 6-29, 8-16, 10-53, 10-54

b_mras_l[3:0], 9-13

b_mwe_l[3:0], 9-13

b_par, 12-6

b_par64, 12-6

b_pclko, 11-5

b_pclko[7:0], 11-1, 12-6

b_perr_l, 8-15, 10-51

b_prst_l, 12-6

b_req_l[6:0], 10-48

b_req_l[6:1], 8-11, 12-6

b_req64_l, 8-16, 10-13, 12-6

b_reqgnt_l[0], 8-11, 12-6

b_serr_l, 8-15, 10-51

b_sromoe_l, 6-31, 12-2

b_sysrstx_l, 12-1

b_tas, 6-25

b_td[1:0], 6-11

b_td[7:0], 6-24, 6-25, 12-1

b_tia[2:0], 6-24

b_tis, 6-24, 10-36

b_toe_l, 6-24, 6-25

b_twe_l, 6-25

Buffering memory control signals, 9-13

Byte-mask
bypass, 6-19, 6-24
PTP write, 6-18

C
Cache block reordering (wrapping), 7-13

CAPbus, 8-3
arbitration, 6-12

flow, 6-14
commands, 6-19
interface, 6-11
protocol, 6-11

Cchip
ac specifications, 4-6
ac test specifications, 4-16
architecture, 6-1
block diagram, 6-2
dispatch register, 6-2
flow control, 6-15
memory control ports, 9-1
overview, 1-3 to 1-4
package diagram, 5-2
package dimensions, 5-4
pinout

sorted by function, 3-1
sorted by pin number, 3-30, 3-43
sorted by signal name, 3-8, 3-19

register addresses, 10-13, 10-16
request issuing, 6-3
request queues, 6-2
skid buffers, 6-2

Cchip firmware initialization, 12-4

Chaining transactions, 8-10

Clocks
forwarding, 11-5 to 11-9
generation, 11-1
implementation, 11-1
PCI bus, 8-6, 11-5
skew, 11-5
types, 11-1

CMONCNT, 10-40

Configuration
system

examples, 2-3 to 2-8
variables, 2-1

system information, 12-2
Connector Pinouts, See Pinouts

Conventions, xii
abbreviations, xii
address, xiii
aligned, xiv
data units, xiv
numbering, xiv
signal names, xv
unaligned, xiv

Counters, 6-29, 8-16

CPM commands, 7-3, 7-6

cs_l, 10-36, 10-37

CSC register, 6-29, 10-19, 10-42, 10-44, 12-5

CSR space translation, 10-9

CSRs, See Registers

D
Data ordering, 6-4

Data units convention, xiv

dc characteristics, 4-2
Index–2 21 October 1999

dc specifications, 4-3

Dchip
ac specifications, 4-12
ac test specifications, 4-18
architecture, 7-1
block diagram, 7-2
control

CPM commands, 7-3
PADbus commands, 7-3

CPU data slicing, 7-17
data shifting, 7-9
memory data slicing, 7-14
overview, 1-4 to 1-5
package diagram, 5-5
package dimensions, 5-7
PADbus interface, 7-2
pinout

sorted by function, 3-55
sorted by pin number, 3-65
sorted by signal name, 3-56

register addresses, 10-14, 10-17
DCRTO error, 8-16

Deadlock avoidance, 6-10, 6-18
PTP, 8-9

DIMn registers, 6-28, 6-29, 6-30, 10-33

Direct-mapped address translation, 10-11

DIRn registers, 6-28, 6-30, 10-34

Dispatch register, 6-2

DMA address translation, 10-9
monster window, 10-13

DRAM, See System memory or Memory array

DRC, 6-4

DREV register, 10-44

DRIR register, 6-30, 10-34

DRR, 6-4

DSC register, 10-41

DSC2 register, 10-42

DWC, 6-4

DWR, 6-4

E
Electrical specifications, 4-1

Errors
Cchip detected, 6-29

nonexistent memory, 6-29
handling correctable and uncorrectable, 8-13
PCI bus, 8-14

APE, 8-15
DCRTO, 8-16
NDS, 8-14
PERR, 8-15
RDPE, 8-14
SERR, 8-15
SGE, 8-15
TA, 8-14

system memory, 8-13

F
Flash ROM

control, 6-25
Flow control, 6-16

PTP, 6-18
FPD, 6-16

FPQ, 6-19, 7-5, 7-6, 7-7, 7-8

FPR, 6-16

I
I/O characteristics

3.3-V, 4-3
5-V compatible, 4-3
open-drain, 4-2

i_creq_l[1:0], 6-12, 6-13

i_creqx_l, 6-22

i_fwdclk, 8-6, 11-1, 11-5

i_intim_l, 6-28

i_pack[1:0], 6-15

i_pclkdiv[1:0], 8-6, 10-49

i_pclki, 11-1

i_pclko[7:0], 10-45

i_sysclk, 6-29, 8-16, 10-45, 10-53, 10-54, 11-1,
11-5, 12-1, 12-5

i_sysrst_l, 6-11, 6-15, 12-1, 12-4, 12-6

IDSEL, 10-6

IIC register, 6-31, 10-34

Initialization
chipset, 12-1
clock forward interface, 12-3
firmware, 12-4
hardware, 12-1 to 12-4
SDRAMs, 12-4
21 October 1999 Index–3

Interfaces
CAPbus, 6-11, 8-3
Dchip control, 7-3
PADbus, 7-2, 8-3
PCI bus, 8-3

Interprocessor interrupts, 6-29

Interrupt logic, 6-26

Interrupt timing, 6-26

Interrupts, 6-24
delivery, 6-28
interprocessor, 6-29
interval timer, 6-28

Issue (definition), 6-5

L
Linear configuration space translation, 10-6

Linear I/O space translation, 10-5

Linear IACK/special cycle space translation, 10-8

Linear memory space translation, 10-4

LOCK#, 8-10

M
Mapping

direct, 10-10, 10-11
scatter-gather, 10-10, 10-11

MCTL register, 10-35

Mechanical specifications, 5-1

MEMCLK, 11-1, 11-5

Memory array, 9-1
addressing, 9-7

bunk and split, 9-13
clocking, 11-5
control signal buffering, 9-13
data slicing, 7-14, 7-17
DRAM organizations, 9-3
nonsplit, 9-1
request queues, 6-2
serial presence detect, 9-13
sibling, 9-3
split, 9-1
supported sizes, 9-3

Memory buses, 9-3

Merging transactions, 8-10

MISC register, 6-28, 6-29, 6-30, 10-29, 12-4

Monitor outputs, 6-29, 8-16

MPD register, 9-13, 10-31, 12-5

MPRn registers, 10-35

MPRx register, 9-13

MTR register, 9-3, 9-13, 10-26, 12-4, 12-5

N
NDS error, 8-14

Nonsplit array, 9-3

Numbering convention, xiv

NXM error, 6-29, 8-15

O
oe_l, 10-38

P
Packaging, 5-1

PADbus, 8-3
commands, 7-3, 7-4
data validation, 6-14
interface, 7-2
modes of operation, 7-2

Page table entry, See PTE

Parking, 8-11

Pchip
ac specifications, 4-14
ac test specifications, 4-19
architecture, 8-1
block diagram, 8-2
CAPbus, 8-3
determining revision, 8-17
flow control, 6-15
interfaces, 8-3
internals, 8-4
overview, 1-5
package diagram, 5-5
package dimensions, 5-7
PADbus, 8-3
PCI bus, 8-3
pinout

sorted by function, 3-73
sorted by pin number, 3-84
sorted by signal name, 3-75

register addresses, 10-14, 10-17
PCI bus, 8-3

addressing, 10-1
arbiter, 8-11
clocking, 11-5
clocks, 8-6
configuration, 8-11
PTP operations, 8-8
reset, 12-6
software reset, 8-12
transaction ordering, 8-4
upstream address translation, 8-6

PCI corner, 8-8

PCI space, 10-3
memory, 10-3

PCTL register, 8-4, 8-11, 8-16, 10-3, 10-11, 10-46
Index–4 21 October 1999

Peer-to-peer, See PTP

PERR error, 8-15

PERRMASK register, 8-13, 8-14, 10-51

PERROR register, 8-13, 8-14, 8-15, 10-49, 10-51

PERRSET register, 8-14, 10-51

Pinouts
Cchip

sorted by function, 3-1
sorted by pin number, 3-30, 3-43
sorted by signal name, 3-8, 3-19

Dchip
sorted by function, 3-55
sorted by pin number, 3-65
sorted by signal name, 3-56

Pchip
sorted by function, 3-73
sorted by pin number, 3-84
sorted by signal name, 3-75

PIO address translation, 10-1, 10-4

PLAT register, 10-49

PMONCNT register, 10-53, 10-54

PMONCTL register, 10-53, 10-54

PMW, 6-4

Power dissipation, 4-1

Power management, 12-1

Power supply, 4-2

PRBEN register, 6-30, 10-34

Precharge, 12-4

Probe
disable, 12-4
enable, 12-6
ordering, 6-4
results, 6-14

PTE
function in generating a system address, 10-12
structure, 10-12

PTP
deadlocks, 8-9
operations, 8-8

PWR register, 9-14, 10-38

R
RDPE error, 8-14

Refreshing, 12-4

Registers
AARn, 10-31
access abbreviations, xii
addresses, 10-13
CSC, 10-19
DCS2, 10-42
DIMn, 10-33
DIRn, 10-34
DREV, 10-44
DRIR, 10-34
DSC, 10-41
IIC, 10-34
MCTL, 10-35
MISC, 10-29
MPD, 10-31
MPRn, 10-35
MTR, 10-26
PCTL, 10-46
PERRMASK, 10-51
PERROR, 10-49
PERRSET, 10-51
PLAT, 10-49
PMONCNT, 10-54
PMONCTL, 10-53
PRBEN, 10-34
PWR, 10-38
STR, 10-42
TBAn, 10-46
TDR, 10-37
TLBIA, 10-52
TLBIV, 10-52
TTR, 10-36
WDR, 10-35
WSBAn, 10-45
WSMn, 10-46

Reordering cache blocks (wrapping), 7-13

Request issuing (Cchip), 6-3

Request queues, 6-2
maintenance, 6-9

Requests
ordering, 6-4
wait conditions, 6-5

Reset
chipset, 12-1
clock forward interface, 12-3
PCI bus, 12-6

Rules
chaining, 8-10
limiting PCI read requests to the Pchip, 6-11
limiting PIO requests, 6-10
limiting PTP requests, 6-10
merging, 8-10
ordering of PIO read data, 6-8
ordering of PIO write data, 6-8
ordering of responses and probes, 6-7
PCI bus configuration, 8-11
PTP operations, 8-10
scatter-gather translation, 10-12
splitting, 8-10
21 October 1999 Index–5

S
Scatter-gather

associative TLB, 8-6
mapped address translation, 10-11
PTE structure, 10-12

SDRAM self-refresh
entering, 12-6
exiting, 12-7
in multiprocessing systems, 12-8

Serial presence detect, 9-13

SERR error, 8-15

SGE error, 8-15

Shifting
amount, 7-12
CPU originated PIO operations, 7-11
Pchip memory operations, 7-9
PTP operations, 7-12

Signal name convention, xv

Skid buffers, 6-2

Sleep mode, 6-30
entering, 6-30
exiting, 6-31
in multiprocessing systems, 6-32

Specifications
ac, 4-6 to 4-16
ac test, 4-16 to 4-19
Cchip ac, 4-6, 4-8
Cchip ac test, 4-16
dc, 4-3
Dchip ac, 4-12
Dchip ac test, 4-18
mechanical, 5-1
Pchip ac, 4-14
Pchip ac test, 4-19

Split array, 9-3

Splitting transactions, 8-10

srom_oe, 12-7

STR register, 9-13, 10-19, 10-42, 12-5

Subarray bit position, 9-10

sysclk, 6-31

SysDC
command, 7-12
extract delay, 10-43

System address space, 10-2

System clock implementation, 11-1

System memory, 9-1
addressing, 9-7
DRAM organizations, 9-4
errors, 8-13

CPU read/write, 6-30
DMA read/write, 8-13
SGTE read, 8-13

programming, 9-7
supported array sizes, 9-4

T
TA error, 8-14

TBAn registers, 10-3, 10-46

TDR register, 10-37, 12-5

Test specifications
ac, 4-16 to 4-19
Cchip ac, 4-16
Dchip ac, 4-18
Pchip ac, 4-19

tigadr[23:0], 10-9

TIGbus, 6-24
address space translation, 10-9
address timing, 6-27
flash ROM, 6-25
interrupt logic, 6-26
interrupt timing, 6-26
read timing, 6-27
write timing, 6-27

Timing
accumulate, 7-13
data transfer, 7-7

TLB miss, 6-23

TLBIA register, 10-52

TLBIV register, 10-52

TPD, 6-16

TPQ, 6-10, 6-19, 7-5, 7-6, 7-7

TPQM, 7-5, 7-8

TPQP, 6-10, 6-18, 7-8

TPR, 6-16, 6-17

Transactions
chaining, 8-10
merging, 8-10
splitting, 8-10
Index–6 21 October 1999

Translation
CSR space, 10-9
direct-mapped, 10-11
DMA address, 10-9
DMA monster window, 10-13
linear configuration space, 10-6
linear I/O space, 10-5
linear IACK/special cycle space, 10-8
linear memory space, 10-4
PIO address, 10-4
scatter-gather mapped, 10-11
TIGbus address space, 10-9

TTR register, 10-36, 12-5

Twice split array, 9-3

U
Unaligned convention, xiv

W
WDR register, 6-30, 10-35

we_l, 10-37

Wrapping, 7-13

WSBAn registers, 10-3, 10-45

WSMn registers, 10-3, 10-11, 10-45, 10-46
21 October 1999 Index–7

	Contents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	A
	B

	Figures
	Tables
	Preface
	Introduction
	1.1� Chipset Features
	1.2� Chipset Overview
	Figure 1–1� Typical Uniprocessor System with Two PCI Buses
	1.2.1� Cchip Overview
	1.2.2� Dchip Overview
	1.2.3� Pchip Overview

	Chipset Configurations
	2.1� System Building Block Variables
	Table 2–1� System Configurations

	2.2� Chipset Configurations
	2.2.1� Systems with Two Dchips
	Figure 2–1� One CPU x One 16-Byte Memory Bus – Two Dchips

	2.2.2� Systems with Four Dchips
	Figure 2–2� One or Two CPU x One 32-Byte Memory Bus – Four Dchips and One or Two Pchips
	Figure 2–3� One or Two CPU x One 16-Byte Memory Bus – Four Dchips and One or Two Pchips
	Figure 2–4� One or Two CPU x Two 16-Byte Memory Buses – Four Dchips and One or Two Pchips

	2.2.3� Systems with Eight Dchips
	Figure 2–5� One or Two CPU x Two 32-Byte Memory Buses – Eight Dchips and One or Two Pchips
	Figure 2–6� One or Two CPU x Two 16-Byte Memory Buses – Eight Dchips and One or Two Pchips

	Pinouts
	3.1� Cchip Pins and Signals
	3.1.1� Cchip Pin List by Function
	Table 3–1� Cchip Pin List by Function �

	3.1.2� C4chip Pin List by Function
	Table 3–2� C4chip Pin List by Function �

	3.1.3� Cchip Sorted Pin List
	Table 3–3� Cchip Pins — Alphanumeric by Signal Name �

	3.1.4� Cchip Sorted Pin List
	Table 3–4� C4chip Pins — Alphanumeric by Signal Name �
	Table 3–5� Cchip Pins — Alphanumeric by Pin Number �
	Table 3–6� C4chip Pins — Alphanumeric by Pin Number �

	3.2� Dchip Pins and Signals
	3.2.1� Dchip Pin List by Function
	Table 3–7� Dchip Pin List by Function �

	3.2.2� Dchip Sorted Pin List
	Table 3–8� Dchip Pins – Alphanumeric by Signal Name �
	Table 3–9� Dchip Pins – Alphanumeric by Pin Number �

	3.3� Pchip Pins and Signals
	3.3.1� Pchip Pin List by Function
	Table 3–10� Pchip Pin List by Function �

	3.3.2� Pchip Sorted Pin List
	Table 3–11� Pchip Pins – Alphanumeric by Signal Name �
	Table 3–12� Pchip Pins – Alphanumeric by Pin Number �

	Electrical Specifications
	4.1� Absolute Limits
	Table 4–1� CMOS5L Absolute Operating Conditions
	Table 4–2� Maximum Power Dissipation

	4.2� DC Characteristics
	4.2.1� Power Supply
	4.2.2� Input Clocks
	4.2.3� Signal Pins
	Table 4–3� CMOS DC Characteristics
	4.2.3.1� Open-Drain I/O
	Figure 4–1� Open-Drain Termination Scheme

	4.2.3.2� 3.3-V I/O
	4.2.3.3� 5-V Compatible I/O

	4.2.4� DC Specifications
	Table 4–4� DC Specifications �

	4.3� AC Specifications
	4.3.1� Cchip Specification
	Table 4–5� Cchip AC Specification �

	4.3.2� C4chip Specification
	Table 4–6� C4chip AC Specifications

	4.3.3� Dchip Specification
	Table 4–7� Dchip AC Specification �

	4.3.4� D4chip Specification
	Table 4–8� D4chip AC Specifications

	4.3.5� Pchip Specification
	Table 4–9� Pchip AC Specification �

	4.4� AC Test Specifications
	4.4.1� Cchip AC Test Specifications
	Table 4–10� Cchip AC Test Specifications �

	4.4.2� Dchip AC Test Specifications
	Table 4–11� Dchip AC Test Specifications �

	4.4.3� Pchip AC Test Specifications
	Table 4–12� Pchip AC Test Specifications �

	Mechanical Specifications
	Table 5–1� 21272 Packaging
	Figure 5–1� 432-Point 2-Layer ESBGA Package (Top and Side View)
	Figure 5–2� 432-Point 2-Layer ESBGA Package (Bottom and Section View)
	Table 5–2� 432-Point 2-Layer ESBGA Package Dimensions
	Figure 5–3� 304-Point 2-Layer ESBGA Package (Top and Side View)
	Figure 5–4� 304-Point 2-Layer ESBGA Package (Bottom and Section View)
	Table 5–3� 304-Point 2-Layer ESBGA Package Dimensions

	Cchip Architecture
	6.1� Cchip Architecture
	Figure 6–1� Cchip Block Diagram
	6.1.1� Memory Array Request Queues, Skid Buffers, and Dispatch Register
	6.1.2� Request Issuing
	6.1.3� Request, Probe, and Data Ordering
	Table 6–1� PCI and 21272 Lexicon
	Table 6–2� Request Wait Conditions

	6.1.4� Request Queue Maintenance
	6.1.4.1� Request Queue and Data Queue Deadlock Avoidance

	6.1.5� Page Hit DRAM Access

	6.2� CAPbus Interface
	6.2.1� Power-Up/Reset
	6.2.2� CAPbus Protocol
	6.2.2.1� CAPbus Arbitration — b_cactx_l, i_creq_l<1:0>, b_capsel<1:0>
	Figure 6–2� CAPbus Arbitration

	6.2.2.2� Data Validation — b_capgd<1:0>
	6.2.2.3� Flow Control — b_cack, i_pack<1:0>
	Table 6–3� Cchip/Pchip Flow Control �

	6.2.2.4� Flow Control — PTP Operations
	6.2.2.5� Byte Masks — PTP Write Operations

	6.2.3� CAPbus Command Encodings
	Figure 6–3� Format of 2-Cycle Commands
	Table 6–4� Encoding of T Field T Mask Type PADbus Transfer Characteristics
	Figure 6–4� Format of 1-Cycle Commands
	Table 6–5� C-Bit Encoding
	Table 6–6� LDP Encoding
	Table 6–7� Cchip-to-Pchip Commands �
	Table 6–8� Pchip-to-Cchip and Pchip-to-Pchip Bypass Commands �
	6.2.3.1� Cchip-to-Pchip Commands
	6.2.3.2� Pchip-to-Cchip Commands (Special Cases)

	6.3� TIGbus and Interrupts
	Figure 6–5� TIGbus Flash ROM Control
	Figure 6–6� TIGbus Interrupt Logic
	Figure 6–7� Interrupt Timing Parameters
	Figure 6–8� TIG Address Timing Parameters
	Figure 6–9� TIG Read Timing Parameters
	Figure 6–10� TIG Write Timing Parameters
	6.3.1� Device and Error Interrupt Delivery – b_irq<1:0>
	Table 6–9� TIG Interrupts and IRQ Lines

	6.3.2� Interval Timer Interrupts – b_irq<2>
	6.3.3� Interprocessor Interrupts – b_irq<3>

	6.4� Monitor Outputs and Counters
	6.5� Cchip Revision
	6.6� Cchip-Detected Errors and Error Reporting
	6.6.1� Nonexistent Memory Errors
	6.6.2� Memory Data Errors — CPU Reads and Writes

	6.7� Sleep Mode (ACPI C3 State)
	6.7.1� Entering Sleep Mode
	6.7.2� Exiting Sleep Mode
	6.7.3� Sleep Mode in Multiprocessing Systems

	Dchip Architecture
	7.1� Dchip Architecture
	Figure 7–1� Dchip Block Diagram

	7.2� PADbus Interface
	7.3� Dchip Control
	7.3.1� Dchip-PADbus Interface Control — PAD Commands
	Table 7–1� PADbus Command Format
	Table 7–2� PADbus Command Encodings
	Table 7–3� Length Field in PAD Commands �
	Table 7–4� PADbus Command Shift and Length Fields Restrictions
	7.3.1.1� PAD Command and PADbus Timing

	7.3.2� CPU Bus, xPQ, and Memory Bus Controls — CPM Commands
	Table 7–5� CPM Commands and Timing of Data Transfer �

	7.3.3� Data Shifting in the Dchips
	7.3.3.1� Shifting for Pchip Memory Operations
	Figure 7–2� DMA Data Alignment: An Example of Each Possible Alignment
	Figure 7–3� Data Shifting in a DMA Read
	Figure 7–4� Data Shifting in a DMA Write

	7.3.3.2� Shifting for CPU Originated PIO Operations
	Figure 7–5� Shift Amount for PP–FPQ PAD Command

	7.3.3.3� Shifting for PTP Operations
	7.3.3.4� Shift Amount Versus CPU SysDC and Memory Access
	Table 7–6� Source of Shift Amount and SysDC Fields �

	7.3.4� Accumulate Timing
	7.3.5� Wrapping

	7.4� Dchip Memory Data Slicing
	7.5� Dchip CPU Data Slicing

	Pchip Architecture
	8.1� Pchip Architecture
	Figure 8–1� Pchip Block Diagram
	8.1.1� Pchip Interfaces
	8.1.1.1� PCI Bus
	8.1.1.2� CAPbus
	8.1.1.3� PADbus

	8.1.2� Pchip Internals
	8.1.2.1� PCI Ordering – Upstream and Downstream Interactions
	Table 8–1� PCI Read and Write Pchip Ordering – Can Second Pass First?

	8.1.2.2� Upstream Address Translation
	Figure 8–2� Scatter-Gather Associative TLB

	8.1.2.3� Clock Control and Generation
	Figure 8–3� PCI Clock to System Clock Transitions

	8.1.2.4� PCI Corner

	8.2� Peer-to-Peer PCI Memory Operations
	8.2.1� Use of Page Table Entry for Peer-to-Peer Operations
	Figure 8–4� Scatter-Gather Page Table Entry in Memory

	8.2.2� General Peer-to-Peer Operations and Deadlock Avoidance

	8.3� No Locks
	8.4� Merging, Splitting, and Chaining Rules
	8.4.1� Merging Transactions
	8.4.2� Splitting Transactions
	8.4.3� Chaining Transactions

	8.5� Configuration
	8.6� PCI Arbitration
	8.7� PCI Software Reset
	8.8� Error Handling
	8.8.1� Memory Data Errors — DMA Reads and Writes, SGTE Reads
	8.8.1.1� Correctable and Uncorrectable Memory Errors
	8.8.1.1.1� Correctable Memory Errors
	8.8.1.1.2� Uncorrectable Memory Errors

	8.8.2� PCI Errors
	8.8.2.1� No devsel_l — PERROR<NDS>
	8.8.2.2� Target Abort — PERROR<TA>
	8.8.2.3� PCI Read Data Parity Error — PERROR<RDPE>
	8.8.2.4� PCI Write Data Parity Error — PERROR<PERR>
	8.8.2.5� Invalid Page Table Entry for Scatter-Gather Operation — PERROR<SGE>
	8.8.2.6� PCI Address/Command Parity Error — PERROR<APE, SERR>
	8.8.2.7� Delayed Completion Retry Timeout — PERROR<DCRTO>

	8.9� Monitor Outputs and Counters
	8.10� Pchip Revision

	System Memory
	9.1� Organization
	9.2� Memory Arrays
	Figure 9–1� Nonsplit Array Block Diagram
	Figure 9–2� Split Array Block Diagram

	9.3� Memory Buses and Sibling Arrays
	Figure 9–3� Twice Split Array Block Diagram (Typhoon Only)

	9.4� Supported Array Sizes and DRAM Organizations
	Table 9–1� Selected DRAM Organizations Supported (Tsunami Only) �
	Table 9–2� Selected DRAM Organizations Supported (Typhoon Only)

	9.5� Addressing
	Table 9–3� Memory Array Addressing (Tsunami Only) �
	Table 9–4� Memory Array Addressing (Typhoon) �
	Table 9–5� Position of Subarray Bit (Tsunami Only)
	Table 9–6� Position of Subarray Bits (Typhoon Only) �
	Table 9–7� Decode of Single-Split Subarray Bit Position into Chip Select
	Table 9–8� Decode of Twice-Split Subarray Bit Position into Chip Select (Typhoon)

	9.6� CPU Address Interface
	9.7� Address XORing (Typhoon Only)
	Table 9–9� Array Toggling Due to Address XORing

	9.8� Bunk and Split Array Addressing
	9.9� SDRAM Control Signal Buffering
	9.10� Serial Presence Detect – CSR MPD
	9.11� Memory Programming – CSR MPRx
	9.12� Self Refresh – CSR PWR<SR>

	Programmer’s Reference
	10.1� System Addressing
	10.1.1� System Space and Address Map
	Table 10–1� System Address Map �

	10.1.2� PCI Space
	10.1.2.1� PCI Memory Space

	10.1.3� PIO Address Translation (System-to-PCI)
	10.1.3.1� Linear Memory Space Translation
	Figure 10–1� Linear Memory Address Translation
	Table 10–2� Generation of PCI b_ad<2:0> and PCI b_cbe_l<7:0> from Linear I/O Address �

	10.1.3.2� Linear I/O Space Translation
	Figure 10–2� Linear I/O Address Translation

	10.1.3.3� Linear Configuration Space Translation
	Figure 10–3� Converting Linear Configuration Address to Type 0 PCI Configuration Cycle
	Table 10–3� Decode of Device # to Generate IDSEL �
	Figure 10–4� Converting Linear Configuration Address to Type 1 PCI Configuration Cycle
	Table 10–4� Generating Configuration Register # LSB and CBE from Mask and Data Type �

	10.1.3.4� Linear IACK/Special Cycle Space Translation
	10.1.3.5� CSR Space Translation
	Figure 10–5� CSR Space Address Translation

	10.1.3.6� TIGbus Space Translation

	10.1.4� DMA Address Translation (PCI-to-System)
	Figure 10–6� Determining if PCI Address Is Valid DMA Address (One of Four Windows)
	10.1.4.1� Window Hole
	10.1.4.2� Direct-Mapped DMA Address Translation
	Table 10–5� PCI DMA Address to System Address Via Direct Mapping

	10.1.4.3� Scatter-Gather DMA Address Translation
	Table 10–6� Generating PTE Address from PCI DMA Address Via Scatter-Gather Mapping
	Figure 10–7� Scatter-Gather Page Table Entry in Memory
	Figure 10–8� Generating System Address from Scatter-Gather PTE

	10.1.4.4� Monster Window DMA Address Translation

	10.2� Chipset Registers
	10.2.1� Register Addresses
	Table 10–7� Chipset Register Addresses (Tsunami Only) �
	Table 10–8� Chipset Register Addresses (Typhoon Only) �

	10.2.2� Cchip CSRs
	10.2.2.1� Cchip System Configuration Register (CSC – RW)
	Table 10–9� Cchip System Configuration Register (CSC) (Tsunami Only) �
	Table 10–10� Cchip System Configuration Register (CSC) (Typhoon Only) �

	10.2.2.2� Memory Timing Register (MTR – RW)
	Table 10–11� Memory Timing Register (MTR) �

	10.2.2.3� Miscellaneous Register (MISC – RW)
	Table 10–12� Miscellaneous Register (MISC) �

	10.2.2.4� Memory Presence Detect Register (MPD – RW)
	Table 10–13� Memory Presence Detect Register (MPD) �

	10.2.2.5� Array Address Register (AAR0, AAR1, AAR2, AAR3 – RW)
	Table 10–14� Array Address Register (AAR0, AAR1, AAR2, AAR3) (Tsunami Only) �
	Table 10–15� Array Address Register (AAR0, AAR1, AAR2, AAR3) (Typhoon Only) �

	10.2.2.6� Device Interrupt Mask Register (DIMn, n=0,3 – RW)
	Table 10–16� Device Interrupt Mask Register (DIMn)

	10.2.2.7� Device Interrupt Request Register (DIRn, n=0,3 – RO)
	Table 10–17� Device Interrupt Request Register (DIRn)

	10.2.2.8� Device Raw Interrupt Request Register (DRIR – RO)
	Table 10–18� Device Raw Interrupt Request Register (DRIR)

	10.2.2.9� Probe Enable Register (PRBEN – RW)
	Table 10–19� Probe Enable Register (PRBEN)

	10.2.2.10� Interval Ignore Count Register (IICn, n=0,3 – RW)
	Table 10–20� Interval Ignore Count Register (IIC)

	10.2.2.11� Wake-Up Delay Register (WDR – RW)
	Table 10–21� Wake-Up Delay Register (WDR)

	10.2.2.12� Memory Programming Register (MPR0, MPR1, MPR2, MPR3 – WO)
	Table 10–22� Memory Programming Register (MPRn)

	10.2.2.13� M-Port Control Register (MCTL – MBZ)
	10.2.2.14� TIGbus Timing Register (TTR – RW)
	Table 10–23� TIGbus Timing Register (TTR – RW) �

	10.2.2.15� TIGbus Device Timing Register (TDR – RW)
	Table 10–24� TIGbus Device Timing Register (TDR) �

	10.2.2.16� Power Management Control (PWR – RW)
	Table 10–25� Power Management Control Register (PWR – RW)

	10.2.3� Cchip Monitor Control (CMONCTLA, CMONCTLB – RW) – Typhoon only
	Table 10–26� Cchip Monitor Control Register (CMONCTLA) �
	Table 10–27� Cchip Monitor Control Register (CMONCTLB) �
	10.2.3.1� Cchip Monitor Counters (CMONCNT01, CMONCNT23 – R0)
	Table 10–28� Correspondence Between ECNT and MTE/MSK
	Table 10–29� CMONCNT01 Registers
	Table 10–30� CMONCNT23 Registers

	10.2.4� Dchip CSRs
	10.2.4.1� Dchip System Configuration Register (DSC – RO)
	Table 10–31� Dchip System Configuration Register (DSC) �

	10.2.4.2� Dchip System Configuration Register 2 (DSC2 – R0)
	Table 10–32� Dchip System Configuration Register 2 (DSC2)

	10.2.4.3� System Timing Register (STR – RW)
	Table 10–33� System Timing Register (STR) �

	10.2.4.4� Dchip Revision Register (DREV – RO)
	Table 10–34� Dchip Revision Register (DREV) �

	10.2.5� Pchip CSRs
	10.2.5.1� Window Space Base Address Register (WSBAn – RW)
	Table 10–35� Window Space Base Address Register (WSBA0, 1, 2) �
	Table 10–36� Window Space Base Address Register (WSBA3)

	10.2.5.2� Window Space Mask Register (WSM0, WSM1, WSM2, WSM3 – RW)
	Table 10–37� Window Space Mask Register (WSMn)

	10.2.5.3� Translated Base Address Register (TBAn – RW)
	Table 10–38� Translated Base Address Registers (TBA0, 1, and 2)
	Table 10–39� Translated Base Address Registers (TBA3)

	10.2.5.4� Pchip Control Register (PCTL – RW)
	Table 10–40� Pchip Control Register (PCTL) �

	10.2.5.5� Pchip Master Latency Register (PLAT – RW)
	Table 10–41� Pchip Master Latency Register (PLAT)

	10.2.5.6� Pchip Error Register (PERROR – RW)
	Table 10–42� Pchip Error Register (PERROR) �

	10.2.5.7� Pchip Error Mask Register (PERRMASK – RW)
	Table 10–43� Pchip Error Mask Register (PERRMASK)

	10.2.5.8� Pchip Error Set Register (PERRSET – WO)
	Table 10–44� Pchip Error Set Register (PERRSET)

	10.2.5.9� Translation Buffer Invalidate Virtual Register (TLBIV – WO)
	Table 10–45� Translation Buffer Invalidate Virtual Register (TLBIV)

	10.2.5.10� Translation Buffer Invalidate All Register (TLBIA – WO)
	Table 10–46� Translation Buffer Invalidate All Register (TLBIA)

	10.2.5.11� Pchip Monitor Control Register (PMONCTL – RW)
	Table 10–47� Pchip Monitor Control (PMONCTL) �

	10.2.5.12� Pchip Monitor Counters (PMONCNT – RO)
	Table 10–48� Pchip Monitor Counters (PMONCNT)

	Chipset Clock Generation
	11.1� Clock Generation
	Table 11–1� Chipset Clocks
	Figure 11–1� System Clock Implementation (Example 1)
	Figure 11–2� System Clock Implementation (Example 2)
	Figure 11–3� Cchip/Dchip Clock System
	Figure 11–4� Pchip Clock System

	11.2� PCI Bus Clocking
	11.3� SDRAM Clocking
	11.4� Clock Skew
	Table 11–2� Clock Skew Parameters

	11.5� CPU Interface Clock Forwarding
	11.5.1� Clock Forwarding Background
	Figure 11–5� Clock Forwarding Logic
	Figure 11–6� Clock Forwarding Timing

	11.5.2� 21272 Chipset Clock Forwarding
	Figure 11–7� 21272 Clock Forwarding Logic
	Figure 11–8� 21272 Clock Forwarding Timing

	Reset, Initialization, and Power Management
	12.1� Hardware Initialization
	12.1.1� Chipset Reset
	Table 12–1� Configuration Information

	12.1.2� Clock Forward Interface Reset
	12.1.3� SDRAM Initialization

	12.2� Cchip Firmware Initialization Sequence
	12.3� PCI (Pchip) Reset
	12.4� SDRAM Self-Refresh/CPU and 21272 Power Down (ACPI S3)
	12.4.1� Entering SDRAM Self-Refresh
	12.4.2� Exiting SDRAM Self-Refresh
	12.4.3� SDRAM Self-Refresh in Multiprocessing Systems

	Technical Abbreviations
	Table A–1� Technical Abbreviations �

	Support
	B.1� Customer Support
	B.2� Part Numbers for Ordering Chips
	B.3� Associated Documentation

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

