
1. Introduction

This document speci fies the architectu re of the MC, Memory Controller, gate
array for MIPS R4000 based Fast Forwar d machines. This array is the
interfa ce between the R4000, main memory, GIO64 bus, and the EIS A bus. This
chip will handle all the bus traffic from th e R4000 as well as requests to
main memory from the GIO64 or EISA bus. A bl ock diagram of a co mplete R4000
based machine is shown below:

1

MC Chip Specificati on

CPU Module

GIO64 Bus

16 Memory Simms

64 Bits Wide

2 Way Interleave

Sliced Mux

20 ns R4000 Bus

Serial EEROM

64

MC

64

Optional
Cache

GIO Expansion

Graphics

EISA Slots

SCSI

E−NET

SCC

Prom RTCINT2 Audio

EEPROM

HPC3Par 8051

Single Chip, FIP

GIO64 Device

R4000
SC or PC

EISA
CHIPS

SCSI

MUX

32

SGI Confidential
Do Not Copy

1.1 MC Features

The memory controller gate array supports the R4000, GIO64 bus, and EISA
interface to main memory as well as the interface from the R4000 to GIO64
and EISA devices. These two interfaces run at different speeds. The R4000
bus is currently a 50 MHz bus. The GIO64 bus will run at speeds up to 33
MHz. The MC chip is made up of eleven major blocks: GIO64 arbiter, CPU
memory controller, GIO64 memory controller, GIO64 graphics DMA master, GIO64
DMA slave, GIO64 single reads and writes, CPU request state machine, memory
refresh, CPU interrupts, R4000 initialization, and parity checking logic.
The R4000 can be either in the small package, PC, or the large package, SC,
that supports the second level cache. A block diagram of MC is shown below.

The GIO64 arbiter determines what device has control of the GIO64 bus as
well as main memory. This is really more of a memory arbiter then it is a
GIO64 arbiter since it also handles requests from the CPU and memory refresh
which are not GIO64 devices. The arbiter is programmable so that it can
handle both long burst devices and real time devices. The seven devices
that can request the GIO64 bus and memory are: the CPU, memory refresh, the
HPC I/O controller, the two GIO64 expansion slot, the GIO64 graphics DMA
master, graphics, and the EISA bus.

2

MC Chip Specification

MC Block Diagram
R4000 Sysad Bus

R4000 Init. Pins

GIO64 Bus GIO64 Bus
Requests and Grants

Memory

R4000
Interface

Address and
Command Fifo

GIO CPU
Rd and Wr

CPU Memory
Rd and Wr

R4000
Init.

Graphics DMA
Master

GIO Slave

Memory
Controller

GIO Arbiter

SGI Confidential
Do Not Copy

The memory controller state machine is a programmable interface to the main
memory system. Main memory is constructed with standard 36 bit wide simms.
To allow a wide variety of memory configurations, many different size simms
will be supported. The memory controller maps physical addresses to a bank
of memory. Memory and processor speeds will change over time and the
interface should be flexible enough that it can be reprogrammed to work with
various speed DRAMs and processors, while still maximizing performance.
This is done by programming when the control signals should be active and
the number of cycles a control signal will be active. The control signals
are changed on cycle and half cycle boundaries. There are two copies of the
memory controller state machine, one for the CPU accesses which is
synchronous to the CPU clock and the other is for GIO64 accesses,
synchronous to the GIO64 clock.

The MC chip contains one DMA master for graphics DMA. This DMA master is
programmable by the CPU. The CPU sets up a DMA descriptor in MC and then
tells the DMA engine to start. When the DMA operation is complete a status
register bit is set and an interrupt is generated if it is enabled. The CPU
can also poll a register in MC to determine when the DMA is complete. The
DMA master supports virtual DMA so that user processes can program the DMA
master. The memory address is a virtual address instead of being a physical
address. The DMA master uses a TLB in MC and the UNIX page tables to
translate the virtual addresses into physical addresses.

The MC chip contains one DMA slave that is used by all of the GIO64 bus
masters to access main memory. The DMA slaves uses the GIO64 memory
controller to interface to memory. The DMA slave does not keep any state
about DMA operations that get preempted, so it is the responsibility of the
DMA master to keep enough information about the transfer to restart the
transfer if necessary. This includes the next memory address to access.

The CPU can issue reads and writes to GIO64 devices directly and the GIO64
single reads and writes state machine in the MC chip is responsible for
performing the transfer over the GIO64 bus. This block is not used for
accessing memory however. This block is called by the CPU request state
machine to orchestrate the GIO64 transfer. This block also handles CPU
reads and writes to EISA devices. EISA devices for the most part look like
GIO64 devices, but there are some dedicated control signals for CPU reads
and writes to EISA devices.

The MC chip handles all CPU read and write requests. These may be requests
to main memory, a MC register, a GIO64 device, or an EISA device. The CPU
read state machine is responsible for issuing the read and returning the
data to the CPU. The CPU write state machine handles all of the CPU writes.
There is a address and command fifo inside the MC chip that is fifteen
entries deep so that it can hold many graphics writes. The number of
entries in the address fifo is programmable. The depth of the fifo can be
adjusted to maximize the writes performance to graphics while at the same
time minimizing the number of entries the graphics has to accept when the
graphics fifo is "full". All write data, except MC register write data,
from the CPU will be buffered inside the MUX chip. The MUX fifo can store
at least one 32 word block from the CPU. If the block size of the second
level cache is less then 32 words then it is possible that the write buffer
can hold a block write and some graphics writes.

3

MC Chip SpecificationSGI Confidential
Do Not Copy

Memory refresh is handled by the memory controller. Refr esh will be done at
a fixed interval i n small bursts. The control of the RAS and CAS lines are
parameterized to allow flexibility in DRAM speeds and sy stem clock rates.
The number of lines to refresh in each burst and the number of cycles
betwee n bursts is also pr ogrammable.

On the large packag e R4000 there is only one maskable int errupt pin, instead
of one for each le vel like the R3000 and small package R4000. On the R4000
an interrupt to any level can be gene rated by a write to the CPU. The INT2
array will be used to collect all of t he interrupts and send six interrupt
signals (one for eac h interrupt level) to the MC chip. This will cause an
in terrupt write to th e R4000 by MC. Thi s provides a soluti on for interrupts
t hat will work with both the small and large package R4000.

The R4000 needs to be initialized by t he boot time mode control interface at
power up. This in volves controlling the three reset sig nals on the R4000
and setting up the serial EEROM so that the R4000 can read out the 256
config uration bits stored inside the EEROM. The MC chip also needs to
coordinate the reset sequence of the rest of the machine. To make i t easy
to change between running the machine in big and l ittle endian mode t he CPU
can read and write the R4000 co nfiguration EEROM.

The MC chip will ch eck parity on the sysad, syscmd, and GIO64 bus. The MUX
chip will check par ity on the sysad bus, memory data, and the GIO64 bus.
The MUX chip will generate 8 parity er ror signals that wi ll be connected to
MC to indicate that a parity error has occurred. The MC chip will log the
t he byte(s) that had the parity error(s) and the memory address.

1.2 MC Gate Count

The MC array will be implemented using LSI’s one micron LCA100K technology.
The die will be a 100182, which has about 80K usable gat es, of which about
64K are used. This chip will be packa ged in a 299 cerami c pga for
prototypi ng and hopefully ch ange to a 304 mquad for production if the
package gets qualified.

1.3 Bit and Byte Numbering Conventions

The MC chip can operate in a big or li ttle endian machine . The endianess of
the CPU is set by the CPU serial init ialization EEROM. The endianess can be
changed by writin g the CPU control r egister.

GIO64 bus operation s can be either big or little endian. There is a bit in
the byte count cycl e that indicates th e endianess of the transfer.

Big−endian means th at byte 0 is bits (31:24), byte 1 is bits (23:16), byte 2
is bits (15:8), and byte 3 is bits (7 :0). Little−endian is just the
opposi te so, byte 0 is bi ts (7:0), byte 1 is bits (15:8), byte 2 is bits
(23:16), and byte 3 is bits (31:24).

The bit numbering scheme is always lit tle−endian, so that bit zero is always
the least signific ant bit and bit 31 is the most signifi cant bit.

4

MC Chip Specificati onSGI Confidential
Do Not Copy

The following figures show byte addressing for the big and little endian
modes.

1.4 Other Documents

Other related documents are the MIPS R4000 Processor Interface, the GIO64
Bus Specification, the MUX Chip Specification, the Virtual DMA programmer’s
Guide, and the HPC3 Chip Specification.

1.5 Signal Naming Conventions

Signal names that end with a trailing "_n" represent active low signals.
This is used instead of the trailing backwack or trailing underscore because
VHDL does not allow the backwack character or trailing underscores in signal
names.

5

MC Chip Specification

0 1 2 3

4 5 6 7

8 9 10 11

31 24 23 16 15 7 08

0

4

8

Word Address

Bit Numbers

Addresses of Bytes Within Words

Big Endian

3 2 1 0

7 6 5 4

11 10 9 8

31 24 23 16 15 7 08

0

4

8

Word Address

Bit Numbers

Addresses of Bytes Within Words

Little Endian

SGI Confidential
Do Not Copy

2.0 MC Chip Functional Blocks

The MC chip is made up of eleven major blocks: GIO64 arbi ter, CPU memory
con troller, GIO64 memory controller, GIO64 graphics DMA mast er, GIO64 DMA
slave , GIO64 single read s and writes, CPU r equest state machin e, memory
refresh, CPU interrupts, R4000 initialization, and parity checking logic.
Each of th ese functional bloc ks are described in detail in the foll owing
sections.

2.1 GIO64 Arbiter

There is one arbite r that is used to get access to either the main memory or
the GIO64 bus. Even though the CPU does not really need the GIO64 bus to
access main memory, other device on the GIO64 bus would have to be stalled
while the CPU accesse d main memory since almost all GIO64 device will access
main memory. Theref ore it makes sense to only have one ar biter for both
main memory and the GIO64 bus. The GIO64 arbitrator determin es whether the
CPU, memory refresh, HPC, GIO64 expansion slot 0 or 1, the EI SA bus, GIO64
graph ics DMA master, or the graphics slot has control of the memory system.
The CPU will own the memory system if it i s not being request ed by any other
dev ice so that the CPU memory access time will be minimized.

There are two kinds of GIO64 devices: real time and long burst. The real
ti me devices need to use the bus within a fixed amount of t ime after they
requ est the bus or data could be lost. Once a real time devi ce gets the bus
it only uses it for a short amount of tim e. Other devices t hat only use the
bus for a short amount of time have also been placed in the real time
devices category.

A long burst device wants to use the bus for a long perio d of time, but can
tolerate waiting a long time to get th e bus. They have no real time
constra ints on the data th ey are transferring . Long burst devic es are
preemptable by real time device s.

There are three dev ices that are alway s treated as real t ime devices: EISA,
HPC and refresh. Graphics and the t wo GIO64 expansion slots can be
config ured as either real time or long burst devices. Long bur st devices
that are using the bus when a real time device requests the bus will be
preempted so that the real time device can use the bus. After each r eal
time device is serviced the arbite r starts at the top of the real time
device list looking for a real time dev ice that wants the bus. The first
real time device in the list that wants th e bus is granted it . If no real
time device wants the bus then it is return ed to the long burs t device that
was preempted. The real time device arbite r is not a round ro bin arbiter,
but ra ther a prioritize arbiter, so it is possible for the bus grant order
to be: EISA, HPC, EISA, HPC, EISA, graphics, etc. The real time devices are
servic ed in the order tha t is given below:

1. EISA Bus
2. HPC
3. Refresh
4. Graphics, (if co nfigured as real ti me)
5. GIO64 Expansion Slot 0, (if configu red as real time)
6. GIO64 Expansion Slot 1, (if configu red as real time)

A real time device can only hold the GIO64 bus for 5 µs before it must give

6

MC Chip Specificati onSGI Confidential
Do Not Copy

up the GIO64 bus. This restriction is not enforced by th e GIO64 arbiter so
it is up to the rea l time devices to give up the bus when its 5 µs is up. A
real time device i s not allowed to re quest the bus more often then every 20
µs if it is not pr eempted. It is the responsibility of the device to make
sure that this spec ification is also met. Refresh will r equest the bus
ever y 62 µs and hold th e bus for about 800 nanoseconds.

HPC is a special re al time in that it may request the bus many times within
30 µs and can be co nfigured for the maximum time it is al lowed to be on the
bus. HPC will requ est the bus multipl e times in 30 µs because it only
reque sts the bus when one of the fifo’s cro sses the high water mark. Since
HPC has many fifo’s it i s possible that the y will all need ser vice at
different t imes. If HPC, EISA and refresh are th e only real time devices
then there is no reason to limit the amount of time HPC is on the bus, which
in the worst case it 10 µs ever y 30 µs. If there are other real time
devices then HPC will have to limit t he amount of time i t is on the bus to 5
µs to guarantee t hat the other real time devices will get the bus in worst
case conditions in some reasonable amount of time.

The worst case real time device bus ac quisition time can be calculated as
fo llows:

1. Worst case CPU block read, 1 µs for 32 word block.
2. EISA service tim e of 16 µs.
3. HPC service time , 5 µs.
4. Refresh, 800 ns.
5. Next real time device.

This means that a r eal time device sho uld get the bus wit hin 23 µs of
reques ting the GIO64 bus.

Unlike the real tim e devices, long bur st devices are issu ed the bus in round
robin order, excep t the CPU is grante d the bus between every long burst
dev ice. The CPU and GIO64 graphics DMA master are always lo ng burst
devices. The graphics slot, and two GIO64 expan sion slots can be configured
as long burst or real time devices. If the GIO64 graphics DMA master and
GIO64 Expan sion slot 0 both want the bus and no r eal time devices wanted the
bus, the bus would be granted as follows: CPU, GIO64 graphics DMA, CPU,
Graphics, CPU, GIO64 graphics DMA etc. There is two counters that dete rmine
the ratio of time that the bus i s issued to the CPU and long burst dev ices.
CPU_TIME det ermines how long th e CPU owns the bus once it is granted the
bus. When a re al time device pree mpts a long burst device the counter stops
and is resumed once the bus is gi ven back to the dev ice that was preemp ted.
The CPU is gi ven the bus for the entire CPU_TIME period even if it is not
using the bus. This is necessary since the CPU is not going to run for very
long before it will need the bus and if the bus is given to a different
device the CPU cou ld be stalled for a very long time. There is also a
LB_TIME counter that is for all of the lon g burst devices, ex cept the CPU,
and works just like the CPU_TIME counter. Unlike the CPU when a long burst
devic e is finished using the bus the bus is granted to CPU eve n if the
LB_TIME co unter has not expir ed. Once either th e CPU_TIME or LB_TI ME
counter expires the device is preem pted and given to t he next device.

The EISA bus will use the real time device or one of the expansion slot
requ est/grant pairs. The EISA bus master and dma requests fr om all EISA
devices will be intercepte d and collected and not passed directl y to the
EISA chip set to get control over the EISA arbit ration. One EISA r equest at

7

MC Chip Specificati onSGI Confidential
Do Not Copy

a time wi ll be given to the EISA chip set at a time and the bus wi ll be
given to othe r devices between each EISA device. A EISA device will only
be granted the bus when the EISA chip set also owns the GIO bus so that the
2.5 µS rule ca n be obeyed.

2.2 Memory Controller

The memory system state machine contro ls the accesses to the DRAMs. Since
we know in the futur e that the processo r chips will get fa ster it is a good
i dea to have a inter face to memory that is parameterized so that the
interfac e does not have to be changed, just th e parameters have t o be
changed. This state machine is parameterized so tha t it is easy to cha nge
the way main memory is accessed. The parameters are:

RASH number of cycles RA S must be high befo re it can be
droppe d again to satisfy the RAM precharge t ime.

ROW number of cycles mi nus one that the ro w address is driven
before switching t o the column addres s.

RD_COL number of cycles co lumn address is dri ven before the next
column can be driv en for a page mode access for reads.
This number can be adjusted if the pro cessor can not
acce pt data as fast as the memory system c an return data.

WR_COL number of cycles th at the column addre ss is driven before
switching to the n ext column address for writes.

CBR number of cycles CA S is low before RAS is taken low for
CAS before RAS refre sh.

RCASL number cycles after dropping RAS that CAS is low during
r efresh.

RASL number of cycles af ter raising RAS bef ore dropping CAS
during refresh.

CAS_HALF drive CAS low on a half cycle boundary for memory reads.
CAS will be high f or only one half of a cycle during pag e
mode reads.

ADDR_HALF change the column a ddress on a half cy cle boundary. This
can only be set fo r GIO accesses for memory reads.

For normal memory r eads and write RAS is always dropped one cycle after the
row address is driv en and CAS is dropp ed two cycles after the column address
is driven. For wr ites data is driven from the MUX chips the cycle before
CAS is dropped and on reads the data is flopped in the MUX chips on the same
edge as CAS is driv en high.

Some diagrams of th e memory accesses f ollow on the next f ew pages. When a
cycle range is given in the diagrams th e range is controll ed by the CAS_HALF
and ADDR_HALFparam eters. These param eters are for memory reads only. The
ADDR_HALFis only used for GIO accesse s.

8

MC Chip Specificati onSGI Confidential
Do Not Copy

9

MC Chip Specification

2.2.1 Memory Reads

A memory read is parametrized as follows:

2.2.2 Memory Writes

Memory writes are parameterized as follows:

1 Cycle

ROW − 1

Row Addr Col Addr
RD_COL

RASH

DATAD

RAS

CAS

Addr

1.5−2 Cycles 1 Cycle

Data Flopped

ROW − 1

Row Addr Col Addr
WR_COL

RASH

Addr

RAS

CAS

WE

DataD

1 Cycle 2 Cycles

1 Cycle

1 Cycle

SGI Confidential
Do Not Copy

2.2.3 Memory Reads, Page Mode

Page mode memory reads are parameterized as follows:

2.2.4 Memory Writes, Page Mode

Page mode writes are parameterized as follows:

1 0

MC Chip Specification

1 Cycle

Row Addr Col Addr
RD_COL

RASH

DATAD

RAS

CAS

Addr Col Addr
RD_COL

DATA

1.5−2 Cycles 1 Cycle 0.5−1 Cycle

Data FloppedData Flopped

ROW − 1

Row Addr Col AddrAddr Col Addr

Data 0D Data 1

1 Cycle

WR_COL

RASH

RAS

CAS

WR_COL

2 Cycles 1 Cycle 1 Cycle

WE

1 Cycle

ROW − 1

SGI Confidential
Do Not Copy

2.2.6 Memory Address Signals

The correlation between the memory address signal from the MC chip and the
memory address is set up so that both the symmetrical and nonsymmetrical
address 16M density DRAMs can be used in the Fast Forward machines. The
nonsymmetrical address DRAMs use less power than the symmetrical address
parts. The mapping of a memory address to the memory address pins is as
follows, the memory address bits are in the boxes:

The bit numbers of the CAS signals are the same as the little endian byte
number that they should control. Interleave memory A is connected to
CAS(15:8) and memory B is connected to CAS(7:0). There is two RAS signals
for each bank of DRAMS. The simms with two subbanks, (512Kx36, 2Mx36, and
8Mx36) uses both RAS signals and the simms with one subbank only use one RAS
signal from MC. RAS(1:0) is used for bank 0, RAS(3:2) for bank 1, RAS(5:4)
for bank 2, and RAS(7:6) for bank 3. The odd RAS signals are used for simms
with two subbank only. RAS numbering is tricky since on a one subbank simm
the RAS signals are labeled RAS0 and RAS2. These should both be connected
logically to a even RAS signal. Two subbank simms have four RAS signals.
RAS1 and RAS3 on a two subbank simm should logically be connected to an odd
RAS bit.

2.3 Graphics DMA Master

There is a separate document that describes the graphics DMA master. This

2.2.5 Memory Refresh

Memory refresh is accomplished by using the CAS before RAS refresh cycle.
When using this type of refresh cycle an internal row address counter is
used so the MC chip does not need to provide a refresh address. Memory
refresh is parameterized as follows:

1 1

MC Chip Specification

01234567891011

Memory Address Signals

131415161718192021222524

456789101112232424

Row

Colum

RCASLCBR

RAS(7,5,3,1)

CAS

RASL

RAS(6,4,2,0)

3 Cycles 3 Cycles

CBR

3 Cycles

SGI Confidential
Do Not Copy

DMA master is capable of doing virtual DMA. Since the DMA is virtual a user
process can set up a DMA transfer. This will be a much cleaner way to
implement the functionality of 3 way transfers.

2.4 GIO64 DMA Slave

The GIO64 DMA slave is used by GIO64 bus masters to read and write memory on
their behalf. This DMA slave is used by HPC and the EISA chips to read and
write memory. The DMA slave uses the GIO memory controller interface to
access the memory system. It is capable of handling subblock order
requests. The DMA slave retains no information about any transfer that gets
preempted. It is up to the master to keep all information that is necessary
to complete the transfer. This DMA slave is used by both pipelined and
nonpipelined GIO64 devices. The peak memory bandwidth is 266 Mbytes/second
when the GIO64 bus is running at 33 MHz.

2.5 GIO64 Single Reads and Writes

The CPU can issue reads and writes to GIO64 devices. These transfers do not
involve using the GIO64 DMA master or slave. This functional block is
responsible for executing the GIO64 read or write on behalf of the CPU
request state machine. If the processor issues a write then the data to be
written will be in the CPU write buffer inside the MUX chip. Once the GIO64
bus has been granted to the GIO64 single read and write state machine the
CPU request state machine will transfer the data from the CPU write buffer
to the GIO64 bus. If the processor issues a read the GIO64 single read and
write state machine will request the GIO64 bus, issue the read and then tell
the CPU request state machine that the data is on the GIO64 bus. The CPU
request state machine will transfer the data to the the CPU from the GIO64
bus through the MUX chip. Once the data has been transferred to the
processor the CPU request state machine will acknowledge to the GIO64 slave
that the data have been transferred by dropping masdly.

The expected bandwidth of programmed I/O over the GIO64 bus is as follows:
GIO64 PIO CPU read bandwidth: 13 Mbytes/second at 33 MHz.
GIO64 PIO CPU write bandwidth: 66 Mbytes/second at 33 MHz.

Cache block reads and writes to a GIO64 devices will result in one GIO64 bus
operation for each double word to be transferred. Data to/from a 32 bit
GIO64 device can not be cached.

To increase the bandwidth of CPU writes to GIO64 devices there is a bit in
the CPU control register that will allow back to back writes to GIO64 device
occur back to back in a minimum of 4 GIO clock cycles. This potentially
could have tristate overlap problems since the MC chip drives the address
and byte count fields and the MUX chip drives the data. If the tristate
overlap does not work back to back GIO64 writes can be turned off so that
there is a dead cycle between MC and MUX driving the GIO64 bus.

2.6 CPU Request State Machine

The CPU request state machine is responsible for executing any requests the
CPU issues. Inside the MC chip there is a command and address fifo. This
fifo has fifteen entries so that writes to the graphics system can be

1 2

MC Chip SpecificationSGI Confidential
Do Not Copy

buffered up before being sent over the GIO64 bus. The operations in the
fifo will always be issued in order.

The state machine looks at the oldest request in the fifo and uses the other
blocks within the MC chip to execute the request. When each request is
complete it deletes the entry from the fifo to get the next request. There
are six different types of requests: memory reads and writes, GIO64 reads
and writes, and MC chip reads and writes. All of these different kinds of
requests are handled by the CPU request state machine.

The CPU request state machine is also used to issue interrupt writes to the
processor.

The expected peak memory bandwidth for CPU requests is 266 Mbytes/second for
reads and writes at 50 MHz.

2.6.1 Semaphores

There is 16 user single bit semaphores in the MC chip. They are each on a
4K page so that they can selectively be mapped into the users address space.
A write to a semaphore register just writes the value of bit 0 into the
register. A read from a semaphore register will return the value of the
semaphore register and then change the semaphore value to a one.

There is also one system semaphore that is in the same page as the rest of
the MC privileged registers.

2.6.2 RPSS Counter

The RPSS counter is a 32 bit counter that increments every 100 nanoseconds.
Since the clock rate of the processor may not always be 50 MHz there is a
RPSS divider registers that determines both how much the processor clock
needs to be divided by and also how much to increment the RPSS by each time
the clock divider rolls over. For a 50 MHz processor clock the divider
should be four, (count from zero to four, so it is dividing by five), and
the increment should be one. This will increment the rpss counter every
five processor clocks.

2.6.3 EISA Lock

The EISA bus can lock the CPU out of main memory by asserting eglock_n to
the MC chip. Once the eglock_n signal is asserted the CPU will not be
granted the bus until it is deasserted.

2.6.4 CPU Lock

The CPU can lock the EISA bus out of main memory by writing the EISA_LOCK
register in the MC chip. This will assert the gelock_n signal to the EISA
chips. It is the responsibility of the EISA chips to lock the EISA bus
since the GIO64 arbiter will still grant the bus to the EISA chips even if
the EISA bus is locked. The the CPU is finished with its locked cycle
sequence it then must clear the EISA_LOCK register. The software should
change the long burst time register to a small value so that if the CPU does
get preempted during a locked cycle it does not have to wait a long time for
a long burst device before the CPU can unlock the EISA bus.

1 3

MC Chip SpecificationSGI Confidential
Do Not Copy

2.7 Memory Refresh

Refresh will be done in bursts just li ke the current machines. The number
of lines to do in each burst is program mable as well as how often the bursts
occur. This flexib ility will allow fo r future DRAMs whic h may have
differen t refresh requireme nts. Refreshing fo ur rows every 62 µs will work
with the 1Mx36, 2Mx36, 4Mx36, and 8Mx36 DRAMs. For the 256Kx36 and 512Kx36
simms, 8 rows need to be ref reshed every 62 µs. The CAS before RAS refresh
method wi ll be used so that the row counter ins ide the DRAMs can be used.
The eight different RAS lines will be staggered to reduce the refre sh
current surges. Four RAS lines are dropped in one cyc le and the other fo ur,
three cycles la ter.

The refresh counter is loaded with the counter preload va lue. The counter
counts down to zero and then reloads th e counter with the counter preload
val ue. At the same ti me it sends a refre sh request to the GIO64 arbiter.
The arbiter returns the refresh grant sign al when it is ready to hand
control of the memory system over to the refresh logic. The refres h logic
sends the start refresh signal to the memory syst em controller which then
refreshes the number of rows ind icated in the CPU control register. The
refresh counter roll over is also used by the watch dog timer as a counte r
increment.

2.8 CPU Interrupts

Interrupts are hand led differently on the R4000 then they are on the R3000.
On the R3000 there are interrupt pins on the package, which is the same way
that the R4000 small package handles interrupts. On the R4000 large packag e
there is one maskable interrupt pin. Interrupts on the R4000 can also be
generated by writin g to an internal re gister in the proce ssor. Since the
wr iting method suppor ts all six levels of interrupts it wil l be used for
both large and small pac kage R4000’s. The INT2 chip will coll ect all of the
inte rrupts and the six interrupt lines fro m INT2 will be conn ected to the MC
chi p instead of the pr ocessor. The MC ch ip will generate wr ites to the
process or when the interru pt lines change. This write will use the sysad
bus to se nd the data to the processor.

2.9 R4000 Initialization

The R4000 needs to be initialized by t he boot time mode control interface at
power on. There are three reset like signals, cpu_vccok , cpu_cold_rst_n and
cpu_reset_n. These signals have to be sequenced correc tly and with the
co rrect timing. The MC chip will contro l the reset signals . Part of the
power on reset sequence includes reading i n 256 configuration bits that are
stor ed in a serial EEROM. The MC chip wil l set up the EEROMfor reading and
wat ch over the complet e reset process. The reset process is quite lengthy
due to the time that is spent waiting for PLL’s to lock. The reset sequence
is given below:

1. Reset to MC is deasserted, all MC r eset outputs are as serted.
2. MC chip reads th ree bits from EEROM.
3. Cpu_vccok to R4000 is asserted, R4000 reads 256 EEROMbits.
4. MC chip wait 100 milliseconds for R4000 PLL to lock.
5. Cpu_cold_rst_n t o R4000 is deassert ed.
6. MC chip waits 20 milliseconds for a stable tclock from R4K.

1 4

MC Chip Specificati onSGI Confidential
Do Not Copy

7. MC deasserts pll_reset_out_n and the reset to MC’s PLL’s.
8. MC waits about 20 milliseconds for PLL’s to lock.
9. MC chip reset and GIO reset are deasserted.
10. Cpu_reset_n is deasserted.

There is also an interface so that processor can read and write the contents
of the EEROM through MC register reads and writes. This will allow the
processor to change the configuration. This is necessary so that the endian
mode can be changed. The processor can change the EEROM and then force a
cold reset which will reload the CPU configuration bits from the EEROM. The
processor will then be configured with the new values in the EEROM. The
first three bits in the EEROM are used by the MC chip and not the processor.
The first bit in the EEROM will be the endian mode, the second bit is the
size of the HPC GIO64 interface (32 or 64 bits), and the third bit is
reserved. The MC chip will read the endian mode bit and then drive a
control signal to the rest of the machine that indicates the endian mode.
The endian mode bit will be duplicated later in the EEROM for the processor.
The software will have to update both bits to change the endian mode of the
processor.

The R4000 interface block also contains a watch dog timer that will reset
the machine if the watch dog location is not written to about once a minute.
The timeout period changes with the refresh counter preload value.

2.10 Parity Checking Logic

Parity will be checked over the R4000 system bus and GIO64 bus by the MUX
chip. The MUX chip will send byte parity error signals to the MC chip which
will keep track of any parity errors and the memory address of the data that
had the parity error. MUX will regenerate parity that is written into
memory. Parity that is read from memory will be sent out on the GIO64 or
sysad bus after being checked by the MUX chip. Parity over the GIO64 bus is
optional so MC will keep track of which devices are sending parity and only
record parity errors that occur when one of those devices is using the bus.
Parity on data read from memory will always be checked because it should
always be correct since it was regenerated when the data was written into
main memory.

1 5

MC Chip SpecificationSGI Confidential
Do Not Copy

3. System Operations

The MC chip is the interface between the memory system, the R4000 processor,
the GIO64 Bus and the EISA bus chips. In this section operations that
involve the MC chip will be described.

3.1 Memory System

Most of the complexity in the MC chip involves the memory system since the
GIO64 bus and the processor need access to the memory system in a timely
fashion. The memory system supports a number of different operations which
also add to its complexity. The memory system is made up of four to sixteen
simms and a custom MUX ASIC which is used to mux the data from the dual
interleave memory, CPU write data, and GIO64 write data. The MUX part also
handles fanning out the data to both the GIO64 bus and the CPU. The MUX
chips also do parity generation and checking.

3.1.1 Memory Simms and Configurations

The Fast Forward machines will use standard 36 bit wide simms so that the
system will be as open as possible and to reduce cost. There are six
different simms that will be supported: 256Kx36, 512Kx36, 1Mx36, 2Mx36,
4Mx36, and 8Mx36. These need to be 80 ns DRAMS, although the MC chip is
flexible enough to handle different speed parts (see section on Memory
System Controller). All of the simms in a system will need to be the same
speed however.

There is room for four groups of four simms in the system. Each group of
four simms is called a bank. Each bank is 128 bits wide, plus parity, so
that the memory system can respond to cache block reads and writes from the
R4000 in a timely fashion. The interface to the R4000 is 64 bits wide, so
each bank allows for an interleave of two.

Simms must be added in groups of four, but there is no restriction on mixing
simms of different depths as long as each group of four simms is the same
size. This allows easy expansion. The minimum system is four 256Kx36
simms, (4 MBytes) and maximum memory capacity is sixteen 8Mx36 simms,
(512MBytes). It is important to remember that the 8Mx36 simms will not be
available until sometime in 1993. Using simms that are available today the
maximum memory size is sixteen 2Mx36 simms, (128 MBytes).

The 512X36, 2Mx36 and 8Mx36 simms all are implemented using two subbanks of
DRAMs. These are double sided simms, since each one contains 24 DRAMs.
There is a configuration bit, BNK, for each bank of memory in the MEMCFGx
registers that must be set if these simms are being used.

There are two registers inside the MC chip that are used to configure the
simms that are installed. Each register holds the configuration information
for two banks. For each bank there are four fields: size of the simm, the
number of subbanks per simm, (1 or 2), the base address of the simm, and a
valid bit that indicates that the bank has memory installed. For more
information on the register format see the section on MEMCFG0 and MEMCFG1.

1 6

MC Chip SpecificationSGI Confidential
Do Not Copy

3.1.2 CPU Memory Reads

There are many different kinds of main memory reads the R4000 can issue, but
only two different types that have to be handled differently. This first
types is block reads which may or may not be coherent, it really does not
matter since this is a single processor system. The second type of read is
a double word, word or partial word request. These are handled in basically
the same way except that the block reads of more than four words will
require multiple accesses to memory using page mode.

Memory reads are a split transaction on the R4000 processor bus, which means
the address and command will be sent in one bus transaction and the data
will be returned with a different transaction. The R4000 sends the address
and a command out onto the bus with the validOut_n signal active to initiate
the read. This gets sent to the MC chip which flops the command and
address. In the next cycle the MC chip determines what part of the physical
address space is being accessed (memory, GIO64, EISA, PROM etc.). If the
request is to main memory and the memory system is not busy at the time the
bank of memory that the read targets will also be determined. The memory
system controller state machine will be activated to execute the request.
The state machine will access memory and control RAS, CAS and the memory
address. If the request is for a double word or less it will only require
one read from memory. The memory data will be flopped inside the MUX chips
and then sent back over the processor bus to the R4000 in 64 bit pieces. If
the request is for four words then the MUX chips will send the data back to
the processor in two back to back cycles, (remember the memory system is 64
bits wide and has an interleave of two). If the request is for more then
four words then the memory system controller will use page mode on the DRAMs
to get the next 4 words.

If the memory system is not busy reads will take ten cycles from the time
the processor puts the address and command on the bus until the memory
system returns the first piece of data. Each double word requested will
take an additional cycle to return to the processor. For requests of more
then four words there is an additional delay of one cycle for each group of
four words for the page mode access time.

The R4000 has a mode to increase performance called smiss restart or
subblock ordering. In machine configurations with a second level cache and
the block size of the second level cache is larger then the block size of
the first level cache the processor can start to execute instructions once
the data for the fist level cache miss is returned from memory. When the
processor issues a block read and smiss restart is enabled the processor
sends the address of the first level cache block that caused the cache miss
instead of the second level cache block address. This data is returned
first and followed by the rest of the second level cache block. Once the
first level cache data is returned the processor can start execution again
while the second level cache refill is still taking place.

Block read data can not be returned to the processor at a rate faster then
in can write it into the second level cache since it has no way to fifo the
data. Since there is no way for the processor to throttle read data that is
being returned, it is up to the devices connected to the processor to
throttle the data transfer. The rate that data can be returned depends on
the second level cache write time. The RD_COL field in the CPU_MEMACC
register is used to set the number of cycles between 128 bit transfers to

1 7

MC Chip SpecificationSGI Confidential
Do Not Copy

the CPU. This parameter can be changed to throttle the data transfer r ate
back to the CPU. This parameter needs to be set to at least 3 for the
memory timing to wor k. This means the CPU has to write th e second level
cach e every 6 pclocks.

A breakdown of the memory read cycles is shown below:
Cycle Function Number of Cycles

1 Read on CPU Bus 1
2 MC Decodes Read 1
3 Row Address Sent to DRAMs 1
4 RAS Sent to DRAMs 1
5 Column Address Sent to DRAM’s 2
7 CAS Sent to DRAMs 2
9 Next Column, Data Sent to MUX 1

10 Data on CPU Bus 1

3.1.3 CPU Memory Writes

The caches on the R4000 are writeback unlike the R3000 ca che which is write
through. Therefore every write is not being sent to the memory system so a
deep write buffer i s not necessary. There is a write buf fer that will hold
a small number of cache blocks in the MUX chip, which is needed to hold the
write data until it can be written to main memory, a GIO64 device or an EISA
device. The size of the buffer will depend on the secon d level cache block
size we support (4 , 8, 16 , or 32 wor ds). The number of outstanding writes
that will be allowe d depends on the si ze of the write buf fer in the MUX
chip , the block size of the second level cache, and the depth of the address
and command fifo in th e MC chip. The address and command fi fo is 15 entries
deep. Just like proc essor reads there are two kinds of wri tes, block write
of four to thirty−two words and writes of two words or less .

Unlike memory reads , memory writes are not a split transa ction. The
process or will send out th e address and command in the first cyc le and then
in the following cycles se nd the data to be written. There may be dead
cycles betw een the write data cycles due to the f act that the R4000 may have
to read th e data out of the second level cache which may not be as fast as
the bus tra nsfer rate. This data will be put into the MUX write buff er until
it can be written into main memory. If the writ e buffer is full th e WrRdy_n
signal wi ll be deasserted so that the R4000 wil l not issue another write,
overwriting the data that is i n the buffer. If t he memory system is
available the writ e will start as soo n as the data is in the write buffer.
The memory system controller will con trol the memory sys tem for the CPU
req uest state machine during memory write s. Main memory can be written in
doub le word blocks. For writes of more th an four words, page mode writes
will be used to write the rest of the block.

For writes of less then a double word the DRAM CAS lines will be used as
byt e write enables.

3.1.4 CPU Triplet Requests

The R4000 may issue up to three reques ts in a group which should be handled
together to maximiz e performance. The three requests occ ur when there is a
first and second le vel cache miss and the data that is being replaced is

1 8

MC Chip Specificati onSGI Confidential
Do Not Copy

dirty. The three requests are a block read, an invalidate or update, and a
block write. The MC chip will need to handle all three requests pending at
the same time and queue up the three requests.

The address and command fifo in MC is fifteen entries so it can hold a
triplet. This is independent of the MUX write buffer that will be able to
hold at least a complete second level cache block. The R4000 will have at
most one triplet outstanding at a time. Also the order of the triplet is
fixed as given above. It is also possible to have triplets without the
write or without the update or invalidate.

3.1.5 EISA Memory and I/O Reads

EISA memory and I/O reads look the same except the eisa_memory signal will
be assert for EISA memory accesses. EISA reads and writes look like a
normal GIO64 bus transaction except that there is a decoded address strobe,
gio_eisa_as_n, which is asserted instead of gio_as_n during the address
cycle of a GIO bus transaction. Before the MC can issue a request to the
EISA chips it must make sure that eisa_ecp_n is not asserted. The MC chip
then starts the read from EISA by sending out the address and then byte
count in what looks like a normal GIO64 read.

3.1.6 EISA Memory and I/O Writes

EISA writes look like normal GIO64 writes except that the MC chip must make
sure the the eisa_ecp_n signal is deasserted before it can start another
request. This signal is used to indicate the the EISA chips set can not
currently accept another request because the address/data buffer is
currently in use by the last CPU request.

3.1.7 GIO64 Memory Reads

Any GIO64 bus master can issue memory read requests. These can be 32 or 64
bit wide transfers. Once the GIO64 device has been granted the bus, the
address is sent to the MC chip and the GIO64 DMA slave in the MC chip is
used to access memory. The memory data is sent to the MUX chips and then
driven onto the GIO64 bus. The GIO64 memory controller in the MC chip
handles the actual memory access.

A preempted memory read will take five cycles from the time read is driven
high to when the MUX will stop driving data onto the gio_ad bus. The GIO64
specification indicates that the bus should be tristated in two clocks.

3.1.8 GIO64 Memory Writes

GIO64 memory writes are a lot like GIO64 memory reads. The memory address is
sent to the MC chip. The data is sent through the MUX chip and then written
into memory. Again the GIO64 DMA slave and GIO64 memory controller are used
to perform the writes into memory.

3.2 MC Register Reads/Writes

The processor can issue reads and writes to the MC registers. These reads
and writes are handled differently then the processor reads and writes to

1 9

MC Chip SpecificationSGI Confidential
Do Not Copy

main memory. The processor directly sends data to the MC chip for register
writes. MC register reads are a split transaction like all processor reads.
The processor sends out the address to the MC chip. The MC chip then
returns data over the sysad bus. Because the MC only connects to
sysad(31:0) the address of the registers in the MC chip changes when the
processor when the processor endian mode is changed. The address map of the
MC registers is described in section 5.

3.3 R4000 System Bus Interface

The R4000 system bus is a 64 bit multiplexed address/data bus with byte
parity. There is a nine bit command field that is sent with all addresses
and data that are sent over the bus. There is a validout_n signal which is
active whenever the R4000 is driving data out and a validin_n signal which
must be asserted when valid data is being returned to the R4000. The MC
chip and MUX chip cannot drive the bus until the R4000 has released the bus
to the external agent (the MC or MUX chips). There is an extrqst_n signal
that the MC chip uses to get the R4000 to release the bus to the external
agent.

Flow control for data being sent to the MC and MUX chips is accomplished
through the rdrdy_n and wrrdy_n signals. The MC chip does not use the
rdrdy_n signal since it always leaves one entry in the address/command fifo
for a read. There can only be one read outstanding at a time so the MC chip
can guarantee that it can always take one read. The R4000 does not have a
mechanism for throttling the data being sent to it. However, the external
agent cannot send data to the R4000 faster then it can write it into the
second level cache.

The most significant bit of the command determines if this is an address
cycle or a data cycle, the bit is a zero for address cycles. There are
eight different commands that the bus supports.

SysCmd(7:5) Command
0 Read Request
1 Read Request, Write Request forthcoming
2 Write Request
3 Null Request
4 Invalidate Request
5 Update Request
6 Intervention Request
7 Snoop Request

If the processor issues an invalidate or update request it will be
acknowledged and no other action will be taken since there are no other
caches to update or invalidate. The system will not issue any invalidate,
update, or snoop requests to the processor so these three commands will not
be used by the MC chip.

The format of the rest of the command depends on the command being issued.
For reads and writes the size of the read or write is encoded in the
remaining SysCmd bits.

The CPU request state machine in the MC chip handles all requests to and
from the processor. For more information about the R4000 system interface
see the R4000 System Interface Manual.

2 0

MC Chip SpecificationSGI Confidential
Do Not Copy

3.4 Timers

There are three tim ers inside the MC chip, the refresh co unter, the watchdog
timer, and the RPSS timer. The refre sh counter is prelo aded with the value
in the refresh pre load register when the counter counts down to zero. When
the counter gets t o zero a refresh burst is done and the counter is
reloade d.

The watchdog timer counts the number of refresh bursts th at take place
(norm ally every 64 micro seconds). The watc hdog timer is a 20 bit counter
which r olls over in about 67 seconds (if the refresh counter is programmed
for 64 microseconds interva ls). When the coun ter rolls over the machine
will reset itself if the watch dog timer is enable d. Writing a regis ter in
the MC chip will reset the watc hdog counter so tha t it will not roll over.

The RPSS timer is a thirty−two bit 100 ns timer. Since t he clock speed of
t he interface may ch ange the clock divi der is programmable so that the units
of this timer will still be 100’s of nanoseconds. The ti mer can be read by
a user process. No interrupt is gener ated when this time r rolls over.

3.5 Three Way Transfers

Three way transfers can not be support ed in this machine as there were in
past machines because the R4000 has a wr ite back cache. This causes two
probl ems, the first bein g the data does not get written back t o main memory
until it is flushed or a miss occurs at the same cache block t hat is holding
the write data, so the data in memory that is being transferr ed may not be
consi stent with the cach e. The second prob lem is that there i s no way to
get the physical address since the actual wri te of the data may not occur
for many cycles and other memory writes that were issued after the three way
transfer writes may occur before the three way transfer writes.

To replace three way transfers virtual DMA support is bei ng added. This
wil l allow a user proc ess to set up a DMA to graphics. The the DMA hardware
does address translat ion it is safe for the user process to set up this
transf er. This DMA engin e can perform recta ngular DMA as well as a number
of othe r fancy DMA modes.

2 1

MC Chip Specificati onSGI Confidential
Do Not Copy

4. Physical Address Space

The physical address space of the R4000 is divided up as shown below. There
are two different regions of local memory since the maximum memory the
system will support is 512 MBytes and there is only one 512 MByte area in
the physical address space that can be accessed in three different ways:
user virtual (kuseg), cached kernel physical (kseg0), and uncached kernel
physical (kseg1). The high local memory will only be accessible through the
user virtual address space, kseg0.

CPU Memory Map

_____Range Size Usage
0xffffffff 0x80000000 2 GB EISA Memory
0x7fffffff 0x30000000 1.25 GB Reserved
0x2fffffff 0x20000000 256 MB High System Memory
0x1fffffff 0x1fc00000 4 MB Boot PROM
0x1fbfffff 0x1fb00000 1 MB HPC and I/O devices
0x1fafffff 0x1fa00000 1 MB MC registers
0x1f9fffff 0x1f600000 4 MB GIO64 Expansion Slot 1
0x1f5fffff 0x1f400000 2 MB GIO64 Expansion Slot 0
0x1f3fffff 0x1f000000 4 MB Graphics System
0x1effffff 0x18000000 112 MB Reserved (Future GIO Space)
0x17ffffff 0x08000000 256 MB Low Local Memory
0x07ffffff 0x000a0000 ~128 MB EISA Memory
0x0009ffff 0x00090000 64 KB EISA I/O Space Alias
0x0008ffff 0x00080000 64 KB EISA I/O Space
0x0007ffff 0x00000000 512 KB System Memory Alias

Accesses to the unused or reserved regions in the physical address space
will cause a bus error response on reads and a bus error interrupt on
writes. The bottom 512 KB of memory is just an alias for the memory located
at address 0x08000000 to 0x0807ffff. This alias is necessary for the CPU
exception vectors that are at physical addresses 0x00000000 and 0x00000080.
This space is also used by ISA masters on the EISA bus that expect the
system memory to be located in the first 640 KB of the address space and
cannot address more than 16 MB of memory.

The EISA/ISA memory map is almost the same as the CPU memory map except that
EISA devices can not interact with GIO64 devices. Also the EISA memory map
does not need a region for the EISA I/O space since there is a distinction
between I/O and memory cycles on the EISA bus. The EISA memory and I/O maps
are as follows:

EISA Bus Memory Map

0xffffffff 0x80000000 2 GB EISA Memory
0x7fffffff 0x30000000 1.24 GB Reserved
0x2fffffff 0x20000000 256 MB High System Memory
0x1fffffff 0x18000000 128 MB Reserved, (GIO Space)
0x17ffffff 0x08000000 256 MB Low System Memory
0x07ffffff 0x00100000 127 MB EISA Memory
0x000fffff 0x000e0000 128 KB BIOS ROM
0x000dffff 0x000c0000 128 KB BIOS Exp. ROM
0x000bffff 0x000a0000 128 KB Video ROM
0x0009ffff 0x00080000 128 KB Reserved (System Memory)
0x0007ffff 0x00000000 512 KB System Memory Alias

2 2

MC Chip SpecificationSGI Confidential
Do Not Copy

2 3

MC Chip Specification

Virutal Addresses

Physical Addresses

256 MB

Low Local Memory

256 MB

High Local Memory

16 MB

GIO64 Devices

~128 MB

EISA Memory

512 KB

Sys Memory Alias

2 GB

Mapped

0.5 GB

Unmapped Cached

0.5 GB

Unmapped Uncached

1 GB

Mapped

CPU Virtual To Physical Mapping

112 MB

GIO 64 Reserved

64 KB

EISA I/O

64 KB

EISA I/O Alias

2 GB

High Eisa Memory

1.25 GB

Reserved

SGI Confidential
Do Not Copy

5. MC Internal Registers

Register Name Address R/W Function
CPUCTRL 0 0x1fa00000/4 R/W CPU control 0.
CPUCTRL 1 0x1fa00008/c R/W CPU control 1.
DOGC 0x1fa00010/4 R Watchdog timer.
DOGR 0x1fa00010/4 W Watchdog timer clear.
SYSID 0x1fa00018/c R System ID register.
RPSS_DIVIDER 0x1fa00028/c R/W RPSS divider register.
EEROM 0x1fa00030/4 R/W R4000 EEROM interface.
CTRLD 0x1fa00040/4 R/W Refresh counter preload value.
REF_CTR 0x1fa00048/c R Refresh counter.
GIO64_ARB 0x1fa00080/4 R/W GIO64 arbitration parameters.
CPU_TIME 0x1fa00088/c R/W Arbiter CPU time period.
LB_TIME 0x1fa00098/c R/W Arbiter long burst time period.
MEMCFG0 0x1fa000c0/4 R/W Memory size configuration register 0.
MEMCFG1 0x1fa000c8/c R/W Memory size configuration register 1.
CPU_MEMACC 0x1fa000d0/4 R/W CPU main memory access Configuration

parameters.
GIO_MEMACC 0x1fa000d8/c R/W GIO main memory access configuration

parameters.
CPU_ERROR_ADDR 0x1fa000e0/4 R CPU error address.
CPU_ERROR_STAT 0x1fa000e8/c R CPU error status.
CLR_ERROR_STAT 0x1fa000e8/c W Clears CPU error status register.
GIO_ERROR_ADDR 0x1fa000f0/4 R GIO error address.
GIO_ERROR_STAT 0x1fa000f8/c R GIO error status.
CLR_ERROR_STAT 0x1fa000f8/c W Clears GIO error status register.
SYS_SEMAPHORE 0x1fa00100/4 R/W System semaphore.
LOCK_MEMORY 0x1fa00108/c R/W Lock GIO out of memory.
EISA_LOCK 0x1fa00110/4 R/W Lock EISA bus.
DMA_GIO_MASK 0x1fa00150/4 R/W Mask to translate GIO64 address.
DMA_GIO_SUB 0x1fa00158/c R/W Substitution bits for translating GIO64

address.
DMA_CAUSE 0x1fa00160/4 R/W DMA interrupt cause.
DMA_CTL 0x1fa00168/c R/W DMA control.
DMA_TLB_HI_0 0x1fa00180/4 R/W DMA TLB entry 0 high.
DMA_TLB_LO_0 0x1fa00188/c R/W DMA TLB entry 0 low.
DMA_TLB_HI_1 0x1fa00190/4 R/W DMA TLB entry 1 high.
DMA_TLB_LO_1 0x1fa00198/c R/W DMA TLB entry 1 low.
DMA_TLB_HI_2 0x1fa001a0/4 R/W DMA TLB entry 2 high.
DMA_TLB_LO_2 0x1fa001a8/c R/W DMA TLB entry 2 low.
DMA_TLB_HI_3 0x1fa001b0/4 R/W DMA TLB entry 3 high.
DMA_TLB_LO_3 0x1fa001b8/c R/W DMA TLB entry 3 low.

RPSS_CTR 0x1fa01000/4 R RPSS 100 nanosecond counter.
DMA_MEMADR 0x1fa02000/4 R/W DMA memory address.
DMA_MEMADRD 0x1fa02008/c R/W DMA memory address and set default

parameters.
DMA_SIZE 0x1fa02010/4 R/W DMA line count and width.
DMA_STRIDE 0x1fa02018/c R/W DMA line zoom and stride.
DMA_GIO_ADR 0x1fa02020/4 R/W DMA GIO64 address, do not start DMA.
DMA_GIO_ADRS 0x1fa02028/c R/W DMA GIO64 address and start DMA.
DMA_MODE 0x1fa02030/4 R/W DMA mode.
DMA_COUNT 0x1fa02038/c R/W DMA zoom count and byte count.
DMA_STDMA 0x1fa02040/4 R/W Start virtual DMA.
DMA_RUN 0x1fa02048/c R Virtual DMA is running.DMA_MEM_ADRDS

2 4

MC Chip SpecificationSGI Confidential
Do Not Copy

DMA_MEMADRDS 0x1fa02070/4 R/W DMA GIO64 address, set default and
start DMA.

SEMAPHORE_0 0x1fa10000/4 R/W Semaphore 0.
SEMAPHORE_1 0x1fa11000/4 R/W Semaphore 1.
SEMAPHORE_2 0x1fa12000/4 R/W Semaphore 2.
SEMAPHORE_3 0x1fa13000/4 R/W Semaphore 3.
SEMAPHORE_4 0x1fa14000/4 R/W Semaphore 4.
SEMAPHORE_5 0x1fa15000/4 R/W Semaphore 5.
SEMAPHORE_6 0x1fa16000/4 R/W Semaphore 6.
SEMAPHORE_7 0x1fa17000/4 R/W Semaphore 7.
SEMAPHORE_8 0x1fa18000/4 R/W Semaphore 8.
SEMAPHORE_9 0x1fa19000/4 R/W Semaphore 9.
SEMAPHORE_10 0x1fa1a000/4 R/W Semaphore 10.
SEMAPHORE_11 0x1fa1b000/4 R/W Semaphore 11.
SEMAPHORE_12 0x1fa1c000/4 R/W Semaphore 12.
SEMAPHORE_13 0x1fa1d000/4 R/W Semaphore 13.
SEMAPHORE_14 0x1fa1e000/4 R/W Semaphore 14.
SEMAPHORE_15 0x1fa1f000/4 R/W Semaphore 15.

All of the MC registers will respond to two different addresses. It is up
to the programmer to use the correct address depending on the endian mode of
the processor. The MC is connected to the least significant 32 bits of the
sysad bus. When a register is written the data must be driven on those
bits. When register is read the data will be returned on those pins as
well. If the processor is running in big endian mode the odd word
addresses, (addresses that end in 4 and 0xc) are used. When the processor
is running in little endian mode the even word addresses, (addresses that
end in 0 and 8) are used.

2 5

MC Chip SpecificationSGI Confidential
Do Not Copy

5.1 CPU Control Register 0, CPUCTRL0

The CPU control reg ister is a readable and writable regis ter that controls
some of the system f unctions described below.

Bit Reset Bit Description
Name Value Number
REFS 2 3:0 Number of lines to refresh in each bur st

divided by 2. T his should be set f or 4 lines
unless t here are 256Kx36 or 512Kx36 simms
inst alled in the system , then this should be
set for 8 lines.

1 − Refresh 2 lines .
2 − Refresh 4 lines .
4 − Refresh 8 lines .
15 − Refresh 30 lin es.

RFE 1 4 Refresh enable.
0 − Refresh disable d.
1 − Refresh enabled .

GPR 0 5 Enable parity error reporting on GIO64
transactions.

0 − Disable parity error reporting.
1 − Enable parity e rror reporting.

MPR 0 6 Enable parity error reporting on main memory.
0 − Disable parity error reporting.
1 − Enable parity e rror reporting.

CPR 0 7 Enable parity error reporting on the C PU bus
transactions .

0 − Disable parity error reporting.
1 − Enable parity e rror reporting.

DOG 0 8 Enable watchdog tim er. If watchdog ti mer goes
off it wil l reset the machine .

0 − Disable watch d og timer.
1 − Enable watch do g timer.

SIN 0 9 System initializati on. Setting this b it will
reset the e ntire system, which will have the
same effect as cycling power on the machin e.

0 − Do not reset ma chine.
1 − Reset machine.

GRR_ 0 10 Graphics reset. Cl earing this bit wil l assert
reset to t he graphics system.

0 − Assert graphics reset.
1 − Deassert graphi cs reset.

EN_LOCK 0 11 Enable EISA to lock memory from the CP U. This
should be set to 0. Most lik ely EISA will not
use eglock_n to run locked memory cycle s.

0 − EISA cards cann ot issue locks
1 − EISA cards can issues locks

CMD_PAR 0 12 Enable parity error reporting on syscm d bus.
Version 1.2 of the R4000 will not support
syscmd parity.

INT_EN 0 13 Enable interrupt wr ites from MC chip. This
should be ena bled or the R4000 w ill never get
an in terrupt.

SNOOP_EN 0 14 Enable snoop logic for graphics DMA’s.
PROM_WR_EN 0 15 Bus error interrupt enable for boot PR OM

2 6

MC Chip Specificati onSGI Confidential
Do Not Copy

writes. Deasser ting this bit does not stop
writes to the PROM, it only e nables a bus
error interrupt when PROM writes occur. HPC 3
has a true PROM w rite enable registe r to block
writes w hen a Flash PROM is used.

0 − Generate an int errupt on PROM writ es.
1 − Do not interrup t on PROM writes.

WR_ST 0 16 Warm restart, start s a R4000 reset seq uence
without reset ting any of the oth er chips and
most o f MC. Refresh cont inues during this
r eset sequence.

0 − Normal mode.
1 − Reset CPU.

UNDEF 17 Reserved.
LITTLE 0 18 Setting this bit wi ll configure the MC chip to

run in lit tle endian mode. T his bit is
automati cally set by the bo ot time
initializat ion EEROM. The BIG /LITTLE pin on
the MC chip will reflec t the value of this
register. If this bit does not match the
endian mode of the R4000 the mach ine will not
work.

0 − Big Endian.
1 − Little Endian.

WRST 0 19 Warm reset. Do a w arm reset to R4000. This
will generat e a warm reset to t he R4000 which
does not reread the EER OM.

MUX_HWM 0x01 24:20 MUX chip CPU write fifo high water mar k for
de−asserting wrrdy_n. The lsb o f this
register is ignored. The high water mark is:

28 − (2nd level cac he line size in wor ds/2)
This field is set t o (32 − the high wa ter
mark). Therefo re the smallest val ue that can
be safe ly used for differe nt lines sizes are:

Line Size in Words Water Mark Value
4 26 6
8 24 8

16 20 12
32 12 20

BAD_PAR 0 25 Generate bad parity on data written by CPU to
memory. Th is can be used to w rite a parity
erro r diagnostic.

R4K_CHK_PAR_N 26 Send a syscmd to R4 K that indicates th at it
should check parity on CPU reads from memory.
If t his is not asserted the R4K will not c heck
parity on memo ry read data.

0 − Indicate to R4K to check parity.
1 − Indicate to R4K to not check parit y.

BACK^2 0 27 Enable back to back GIO64 writes with no dead
tristate cy cles between MC and MUX. This
should be enabled, but som e testing is
requir ed to make sure the tristate overlap
does not cause any p roblems.

0 − Disable add dea d cycles.
1 − Enable back to back cycles.

BUS_RATE 0 31:28 Stall cycle between bus error data ret urned to

2 7

MC Chip Specificati onSGI Confidential
Do Not Copy

the CPU. T his is required to throttle data
retur ned to the R4000 to the rate the R4000
can write the seco nd level cache. Thi s should
be set to the same value as t he RD_COL value
in the CPU_MEMACC regi ster.

5.2 CPU Control Register 1, CPUCTRL1

The CPU control reg ister one is a read able and writable r egister that
contro ls some of the syst em functions descri bed below.

Bit Reset Bit Description
Name Value Number
MC_HWM 0xC 3:0 MC chip CPU address /command fifo high water

mark for de−a sserting wrrdy_n. The value in
this f ield is (17 − maxim um number of entrie s
desired in the fi fo). The smallest value this
field s hould be written wi th is 0x6 so that
t here is room in the fifo after all ope rations
that are in flight and one rea d operations
since reads are not stall ed.

ABORT_EN 0 4 Enable GIO bus time outs. If this is disabled
the system will hang on a bad GIO bus address.

UNDEF 11:5 Reserved.
HPC_FX 0 12 The endianess of HP C is fixed and is t he

HPC_LITTLE value below. This bit n eeds to be
asserted for HPC1.5 and dea sserted for HPC3.

HPC_LITTLE 0 13 Endian mode of HPC DMA if HPC_FX is as serted.
This shoul d be set to the end ian mode of the
CPU when a HPC1.5 is b eing used.

EXP0_FX 0 14 The endianess of EX P0 is fixed and is the
EXP0_LITTLE val ue below.

EXP0_LITTLE 0 15 Endian mode of EXP0 DMA if EXP0_FX is
asserted.

EXP1_FX 0 16 The endianess of EX P1 is fixed and is the
EXP1_LITTLE val ue below.

EXP1_LITTLE 0 17 Endian mode of EXP1 DMA if EXP1_FX is
asserted.

UNDEF 31:18 Reserved.

5.3 Watchdog Timer, DOGC and DOGR

The watchdog timer is a 20 bit counter that counts refres h bursts. If the
watchdog timer is enabled and the count er rolls over to ze ro the machine
will be reset as if power was cycled to th e machine. If the refresh
intervals are 64 microseconds apart, the counter will roll over in about 67
seconds. Writing to it with any data will clear the counter. If th e timer
is enabled the system needs to write to the dog r eset, DOGR, locatio n at
least every 60 seconds or the tim er will go off and reset the system. The
watchdog timer enable is located i n the CPUCTRLregis ter. The format of the
counter, DOGC, is shown below.

Bit Reset Bit Description
Name Value Number
DOG 0 19:0 Watchdog timer.

2 8

MC Chip Specificati onSGI Confidential
Do Not Copy

UNDEF 31:20 Reserved.

5.4 System ID, SYSID

The sysid register is a readable regis ter that contains t he revision of the
chip and the EISA bus present bit.

Bit Reset Bit Description
Name Value Number
CHIP_REV 0 3:0 Revision of MC chip .

0 − Revision A
1 − Revision B

EISA 4 EISA bus is present . Determined by
eis a_present_n pin.

UNDEF 31:5 Reserved.

5.5 RPSS Divider

The RPSS divider re gister determines how often and by how much the RPSS
coun ter gets incremente d. There is two fi elds. The first fi eld is the
amount t o divide the CPU mi nus one. If this f ield is four the co unter is
incremente d every five CPU cl ocks. The second f ield is the amount to add to
the count er when it is incre mented. For a 50 MHz processor the di vider
should be fou r, (divide by five) , and the increment amount should be one.
The RPSS count er will be incremen ted by one every 100 nanoseconds. For a 33
MHz processor the divider should be nine, (divide by 10), and the incr ement
should be thr ee. The RPSS count er in this case wil l be incremented ev ery
300 nanoseconds by three.

Bit Bit Description
Name Number
DIV 4 7:0 RPSS counter divide r.
INC 1 15:8 RPSS counter increm ent.
UNDEF 31:16 Reserved.

5.6 R4000 Configuration EEROM Interface, EEROM

The R4000 reads a serial EEROMto set all of its configur ation bits when it
is powered up. One of these bits dete rmines if the proce ssor is configured
in big or little endian mode. The MC chip also need to know if the
processo r is running in big or little mode. The first bit out of the EEROM
will be used to determine which mode the proces sor is running in f or the MC
chip. These bits need to be changed so that th e endian mode of th e machine
can be switched. In order t o do this the proce ssor needs to write the
EEROM. This i nterface is provide d so that the proce ssor can write the EEROM
and then forc e a cold reset whic h will force the pr ocessor to reload t he
bits from the EEROM. When the proc essor comes back up it will be using t he
new configuratio n values stored in the EEROM. The big /little endian bit is
stored in the EEROM twice. The fir st bit is used by t he MC chip to

2 9

MC Chip Specificati onSGI Confidential
Do Not Copy

determine the endian mode. Another bit in the EEROM that is defined in the
MIPS R4000 Microprocessor User’s Guide will be used by the processor to
determine the endian mode. The interface to the EEROM is the same as the
interface to the system identification EEROM. It is up to the software to
wiggle all of the control signals and the clock to the EEROM. The SI bit
can not be written. The register is defined as follows:

Bit Reset Bit Description
Name Value Number
UNDEF 0 0 Reserved.
CS 0 1 EEROM chip select. Active high.
SCK 0 2 Serial EEROM clock.
SO 0 3 Data to serial EEROM.
SI 4 Data from serial EEROM.
UNDEF 0 31:5 Reserved.

5.7 Refresh Counter Preload, CTRLD

The refresh counter counts down and when it gets to zero it is reloaded with
the value in this register. This counter operates at the frequency of the
CPU, which will be 50 MHz (20 ns), for the first machine. This allows the
interval for the refresh bursts to be completely programmable. This feature
was added because when faster processors become available the counter
preload value can be changed instead of changing the counter carry tap.

Bit Bit Description
Name Number
REF 0x0C30 15:0 Refresh counter load value. The refresh

counter gets reloaded with this value when it
counts down to zero. This register should be
set to the number of CPU cycles in 62.5
microseconds. When the sysad bus is running
at less than 50 MHz this register needs to be
changed.

5.8 Refresh Counter, REF_CTR

The refresh counter value can be read by reading this register. The format
of the register is as follows:

Bit Bit Description
Name Number
REFC 15:0 Refresh counter.

5.9 Arbitration Parameters, GIO64_ARB

The GIO64 arbiter has a number of parameters that are used to determine how
it allocates time to the different devices. The GIO64 arbiter must know if
each device is a real time device or a long burst device. The arbiter must
also know the size of each device so that it can drive the GSIZE64 line and
if each device can be a bus master. The HPC size bits is set at reset time
from a bit in the R4000 initialization EEROM since MC needs this information
to do the boot ROM fetches.

3 0

MC Chip SpecificationSGI Confidential
Do Not Copy

Bit Reset Bit Description
Name Value Number
HPC_SIZE 0 Width of data trans fers to first HPC. The

first HPC resi des at 0x1fb80000 t o 0x1fffffff.
This should be set to 0 for HPC1 and HPC1. 5.
For HPC3 the si ze should be set to one. The
R4000 se rial EEROM should s et this up when the
machine is reset.

0 − 32 bit device.
1 − 64 bit device.

GRX_SIZE 0 1 Width of data trans fers to graphics. Starter
and Express graphics are 32 bi t devices.
Newport will be a 32 bit d evice in Indigo and
a 64 bit device in other machines.

0 − 32 bit device.
1 − 64 bit device.

EXP0_SIZE 0 2 Width of data trans fers to GIO64 Slot 0. For
Indigo this should be 0.

0 − 32 bit device.
1 − 64 bit device.

EXP1_SIZE 0 3 Width of data trans fers to GIO64 Slot 1. For
Indigo this should be 0.

0 − 32 bit device.
1 − 64 bit device.

EISA_SIZE 0 4 Width of data trans fers to the EISA bu s. This
should be set to 0.

0 − 32 bit device.
1 − 64 bit device.

HPC_EXP_SIZE 5 Width of data trans fers to the second HPC that
resides in the address space from 0x1fb00000
to 0x1fb7ffff.

0 − 32 bit device.
1 − 64 bit device.

GRX_RT 0 6 Graphics is a real time device.
0 − Long burst devi ce.
1 − Real time devic e.

EXP0_RT 0 7 GIO64 expansion slo t 0 is a real time device.
0 − Long burst devi ce.
1 − Real time devic e.

EXP1_RT 0 8 GIO64 expansion slo t 1 is a real time device.
0 − Long burst devi ce.
1 − Real time devic e.

EISA_MST 0 9 EISA bus can be a G IO64 bus master. T his
should be zero in Indigo and one i f Full
House.

0 − Device is only a slave
1 − Device can be a master.

ONE_GIO 1 10 There is only one p ipelined GIO64 bus. This
should be se t.

0 − System has two pipelined GIO64 bus es.
1 − System has one pipelined GIO64 bus .

GRX_MST 0 11 Graphics can be a G IO64 bus master. T his
should be zero for all devices tha t exist.

0 − Device is only a slave
1 − Device can be a master.

EXP0_MST 0 12 GIO64 expansion slo t 0 can be a GIO64 bus

3 1

MC Chip Specificati onSGI Confidential
Do Not Copy

master. This s hould only be set i f a device
that can become a bus maste r is installed.

0 − Device is only a slave
1 − Device can be a master.

EXP1_MST 0 13 GIO64 expansion slo t 1 can be a GIO64 bus
master. This s hould only be set i f a device
that can become a bus maste r is installed.

0 − Device is only a slave
1 − Device can be a master.

EXP0_PIPED 0 14 Expansion slot 0 is a pipelined device . This
should be z ero for Indigo and one for Full
House.

0 − Device is nonpi pelined.
1 − Device is pipel ined.

EXP1_PIPED 0 15 Expansion slot 1 is a pipelined device . This
should be 0 .

0 − Device is nonpi pelined.
1 − Device is pipel ined.

UNDEF 31:16 Reserved.

5.10 GIO64 CPU Arbitration Time Period, CPU_TIME

The GIO64 arbiter has programmable tim e periods for the CPU and long burst
devices. This regis ter is the time per iod for the CPU. Once the CPU has
been granted the bus i t is allowed to use the bus for the ti me period. If
once the time period is up another device wants to use the bus the CPU will
be preempted. The CPU is give the bus for this time period even if it does
not use it during this time period. The f ormat of the CPU_TIME register is
as f ollows:

Bit Reset Bit Description
Name Value Number
CPU_TIME 0x100 15:0 Number of GIO64 cyc les in CPU time per iod.

5.11 GIO64 Burst Arbitration Time Period, LB_TIME

The LB_TIME registe r is just like the CPU_TIME register except it is for
lon g burst devices. Unlike the CPU, when a long burst devic e is done using
the bus the bus is giv en to the CPU. The format of the regi ster is as
follows:

Bit Reset Bit Description
Name Value Number
LB_TIME 0x200 15:0 Number of GIO64 cyc les in long burst t ime

period.

5.12 Memory Configuration Registers, MEMCFG0, MEMCFG1

The memory configur ation registers ind icate the size of t he simms installed
in the machine. There are four fields for each bank of simms. The first
fi eld indicates the base address of the simm. The second f ield is the size
of the simm in megabytes. The third fie ld indicates if the simm is valid,
ie. installed. The la st field indicates whether the simm co ntains one or

3 2

MC Chip Specificati onSGI Confidential
Do Not Copy

two subbanks of DRAMs on it, (512Kx36, 2Mx36, and 8Mx36 simms contain two).
The simms have to be ins talled in groups of four and all four simms must be
the same size. The bank field should be zer o for one subbank and one for two
subb anks. The base address is an eight bi t field. These eigh t bits will be
compared with the addre ss bits (29:22) alo ng with the size and bank bit to
deter mine which simm sho uld be accessed. Memory needs to be configured in
simm size order with the larges simms at the lowest base addres s. If the
largest simms are not mapped first there will either be holes in the memory
map or t here will be overla p in the memory map. The base address of a simm
must be aligned to the size of the bank bounda ry. For example a bank of
1Mx36 simms must be aligned to a 16 Mbyte boundar y. This is because as the
simms get l arger more of the bottom base address bits are ignored. Address
bits (31:30) must be zero when accessing main memory. The size enco ding for
the simms that will be suppor ted and the number of subbanks (for se tting the
bank bit) are as follows:

00000 − 256K x 36 bits
00001 − 512K x 36 bits, 2 subbanks
00011 − 1M x 36 bit s
00111 − 2M x 36 bit s, 2 subbanks
01111 − 4M x 36 bit s
11111 − 8M x 36 bit s, 2 subbanks

Any other settings will have a defined , but very strange effect.

The valid bit indic ates which simm slo ts contain simms. If more than one
si mm maps to an addre ss a bus error inte rrupt will be gener ated and the
memory operation will not complete.

The MEMCFGregister s are defined as sh own below. MEMCFG0defines banks 0
and 1 and MEMCFG1def ines banks 2 and 3.

Bit Reset Bit Description
Name Value Number
BASE1 7:0 Base address for ba nk 1/3.
MSIZE1 12:8 Simm size for bank 1/3.
VLD1 0 13 Bank 1/3 is valid.
BNK1 14 Number of subbanks for bank 1/3.
UNDEF 15 Reserved.
BASE0 23:16 Base address for ba nk 0/2.
MSIZE0 28:24 Simm size for bank 0/2.
VLD0 0 29 Bank 0/2 is valid.
BNK0 30 Number of subbanks for bank 0/2.
UNDEF 31 Reserved.

5.13 Main Memory Access Configuration Parameters, CPU_MEMACC And
GIO_MEMACC

The main memory acc ess configuration parameter register holds the values
tha t the main memory state machine uses when executing memory operations.
This allows the timing critical parameters to be changed if i t is necessary.
The individual fields are described in t he memory system co ntroller section.
The format of the CPU_MEMACCis show below: The number of cycles is in CPU
clock cycles for the CPU register (20 ns clock) and GIO64 clock cycles for
th e GIO64 register (n onfixed clock rate) .

3 3

MC Chip Specificati onSGI Confidential
Do Not Copy

Bit Reset Bit Description
Name Value Number
WR_COL 0x3 3:0 WR_COL equals the number of cycles the column

address is driven before next column address
can be drive for a page mode write access.
When this register is set to 3 a page mode
write will take place ever three cycles.

RD_COL 0x3 7:4 RD_COL equals the number of cycles the column
address is driven before next column address
can be drive for a page mode read access.

ROW 0x3 11:8 ROW equals the number of cycles minus one that
the row address is driven before switching to
the column address. This field needs to be
set to 0x4.

RASH 0x4 15:12 RASH equals the number of cycles RAS must be
high before it can be dropped again. This
field can be set to 0x3.

RCASL 0x5 19:16 RCASL is the number of cycles RAS is low
before CAS is driven high during refresh.

RASL 0x4 23:20 RASL is the number of cycles RAS is high
before driving CAS low between lines during
refresh.

CBR 0x1 27:24 CBR is the number of cycle CAS is low before
RAS is taken low for refresh.

CAS_HALF 0 28 When asserted, CAS will be high for only one
half of a clock cycle on page mode reads.
This bit should be asserted so that three
cycle page mode reads work.

UNDEF 31:29 Reserved.

The format of the GIO_MEMACC register is as follows:

Bit Reset Bit Description
Name Value Number
WR_COL 0x3 3:0 WR_COL equals the number of cycles the column

address is driven before next column address
can be drive for a page mode write access.
The WR_COL should be set to two so that the
memory system can keep up with the GIO64 bus.

RD_COL 0x3 7:4 RD_COL equals the number of cycles the column
address is driven before next column address
can be drive for a page mode read access. The
RD_COL should be set to two so that the memory
system can keep up with the GIO64 bus.

ROW 0x3 11:8 ROW equals the number of cycles to drive the
row address before switching to the column
address. This field should be set to 3
cycles.

RASH 0x4 15:12 RASH equals the number of cycles RAS must be
high before it can be dropped again. This
field should be set to 2 cycles.

CAS_HALF 0 16 Drive CAS high for only one half of a cycle
during page mode reads. The Q_CAS bit should
be set so that two cycle page mode reads will
work.

ADDR_HALF 0 17 When asserted the column address is changed on

3 4

MC Chip SpecificationSGI Confidential
Do Not Copy

the falling edge of the clock. The ADDR_HALF
bit should be set so that two cycle page mode
reads work.

UNDEF 31:18 Reserved.

5.14 CPU Error Address, CPU_ERROR_ADDR

The CPU error address register will contain the address of any CPU parity or
bus errors. This register is only valid if one of the error bits is set in
the CPU_ERROR_STATUS register. If the CPU_ERROR_STATUS register indicates a
parity error bits (2:0) of should be ignored. The byte in error bits of the
error status register can be used to determine the byte address of the
parity error.

Bit Reset Bit Description
Name Value Number
ADDR 0 31:0 Address of error.

5.15 CPU Error Status, CPU_ERROR_STAT

The CPU error status register contains the cause of the bus error as well as
the bytes that were in error for a parity error.

Bit Reset Bit Description
Name Value Number
BYTE 0 7:0 Byte(s) in error. Multiple bits are set if

more than one parity error occurred on the
same bus cycle. Bit 0 indicated a parity
error occurred on byte lane 0 (bits 7:0 of the
bus).

RD 0 8 Read parity error if PAR is asserted. If PAR
= 1 and RD = 0 then a parity error occurred on
CPU a memory write.

PAR 0 9 CPU parity error. Memory read if RD is
asserted, otherwise the parity error occurred
on a memory write. Memory parity errors can
be disabled by deasserting the MPR (memory
parity reporting enable) in the CPUCTRL0
register.

ADDR 0 10 Memory bus error. Address does not map to a
valid bank of memory or the address for a MC
register read or write was not correct for
MC’s endian mode.

SYSAD_PAR 0 11 Sysad address or MC write data parity error.
Only BYTE(3:0) in the error status register is
valid. Parity checking can be disabled by
deasserting the CPR bit in CPUCTRL0.

SYSCMD_PAR 0 12 Syscmd parity error. The BYTE field of the
error status register is invalid. Parity
error reporting can be disabled by deasserting
CMD_PAR in CPUCTRL0. Some versions of the
R4000 are know to not generate correct syscmd
parity.

BAD_DATA 0 13 CPU sent a bad data identifier. The bad data
bit was set in a data identifier from the

3 5

MC Chip Specification

3 5

MC Chip SpecificationSGI Confidential
Do Not Copy

3 6

MC Chip Specification

R4000. This error reporting can be disabled
by deasserting the CPR bit in the CPUCTRL0
register.

5.16 GIO64 Error Address, GIO_ERROR_ADDR

The GIO error address register will contain the address of any GIO parity or
bus errors. The GIO_ERROR_STATUS register will indicate if this register
contains a valid address. Bits (2:0) should be ignored for 64 bit devices
that generate parity errors and bits (1:0) for 32 bit devices.

Bit Reset Bit Description
Name Value Number
ADDR 0 31:0 Address of error.

5.17 GIO64 Error Status, GIO_ERROR_STAT

The GIO error status register contains the cause of the bus error interrupt
as well as the bytes that were in error for a GIO bus parity error.

Bit Reset Bit Description
Name Value Number
BYTE 0 7:0 Byte(s) in error. Multiple bits can be set if

more than one byte was in error. Bit 0
indicated a parity error occurred on byte lane
0 (bits 7:0 of the bus).

RD_PAR 0 8 GIO memory read parity error.
WR_PAR 0 9 GIO memory write parity error.
TIME 0 10 GIO transaction bus timed out. Timeouts are

enabled with the ABORT_EN bit of the CPUCTRL1
register.

PROM 0 11 Write to PROM when PROM_WR_EN bit in CPUCTRL0
was not set.

ADDR 0 12 Parity error on GIO64 slave address cycle.
This parity error checking can be disabled by
deasserting the GPR bit in the CPUCTRL0
register.

BC 0 13 Parity error on GIO64 slave byte count cycle.
This parity error checking can be disabled by
deasserting the GPR bit in the CPUCTRL0
register

PIO_RD_PAR 0 14 Data parity error on GIO programmed I/O read.
This parity error checking can be disabled by
deasserting the GPR bit in the CPUCTRL0
register.

PIO_WR_PAR 0 15 Data parity error on GIO programmed I/O write.
This parity error checking can be disabled by
deasserting the GPR bit in the CPUCTRL0
register.

5.18 Semaphores, SYS_SEMAPHORE and SEMAPHORE_x

There are sixteen user semaphores and one system semaphore in the MC chip.
When a read is issued to a semaphore the value of the one bit semaphore is
returned and the semaphore is set to a one. The semaphore can be cleared or

SGI Confidential
Do Not Copy

set by writing to t he semaphore. The sixteen user semaphores are on
differ ent pages so that t hey can be selectiv ely mapped in the user address
space.

Bit Reset Bit Description
Name Value Number
SEM 0 0 Single bit semaphor e.

5.19 Lock GIO64 Out of Memory, LOCK_MEMORY

The LOCK_MEMORYreg ister when set to zero will lock all devices except the
CPU out of main memory. This can be us ed by the CPU to do a locked
sequence.

Bit Reset Bit Description
Name Value Number
LOCK_N 1 0 Lock device except CPU out of memory w hen set.

0 − Locked
1 − Unlocked

5.20 Lock EISA Out of Memory, EISA_LOCK

The EISA_LOCK regis ter when written wi th a zero will asse rt gelock_n to the
EISA chips. This will allow the CPU t o issue a locked se quence over the
EIS A bus. When the lo cked sequence is ov er the EISA_LOCK re gister should be
se t to one. While th is be is set to zer o the EISA bus will not be granted
to an EISA device. The actual use of thi s register may chan ge since EISA is
being implemented in a different way tha n was originally pl anned. The
LOCK_MEMORYregister can also be used to lock EISA out of main memory.

Bit Reset Bit Description
Name Value Number
LOCK 1 0 Lock EISA out of me mory when set.

0 − Locked
1 − Unlocked

5.21 RPSS Counter, RPSS_CTR

The RPSS counter is a 100 nanosecond i ncrement, 32 bit co unter. It is
reada ble, but not writab le. When the maximum count it reached it just rolls
over and no interrupt i s generated. The RPSS_DIVIDER registe r determines
when t his register get updated.

Bit Reset Bit Description
Name Value Number
CNT 0 31:0 Counter Value

3 7

SGI Confidential
Do Not Copy

MC Chip Specificati on

6. MC Pins

There are 220 signal pins on the MC array including the pins for the PLL.
The 299 CPGA and 304 pin metal quad flat pack packages will be used for this
part.

All inputs have TTL thresholds except for the clock inputs (cpu_clk, gio_clk
and masterout_clk) which have CMOS thresholds. All outputs swing rail to
rail except for the 3.3 V interface to the R4000: cpu_sysad, cpu_sysadc,
cpu_syscmd, cpu_syscmdp, cpu_validin_n, cpu_extrqst_n, cpu_wrrdy_n,
cpu_ivdack_n, cpu_cold_rst_n, cpu_reset_n, and cpu_vccok. All output
buffers are 4 mA except the following buffers are 8 mA with moderate slew
rate control: gio_adp, gio_ad, gio_read, gio_masdly, gio_slvdly,
gio_vld_parity_n, gio_as_n, gio_gsize64, gio_bpre_n, mem_we, and mem_cas.
The gio_adp, jtck, jtdi, and jtms pins have very weak pull ups on them.

6.1 R4000 Interface

The R4000 is a 64 bit multiplexed address and data bus.

cpu_sysad(31:0) i/o Address and data bus.
parity_error(7:0) input Parity error from MUX.
cpu_sysadc(3:0) i/o Parity over the cpu.sysad bus.
cpu_syscmd(8:0) i/o Command bus from R4000.
cpu_syscmdp i/o Parity on cpu.syscmd bus.
cpu_validin_n output System is driving cpu.sysad and

cpu.syscmd with valid data.
cpu_validout_n input R4000 is driving cpu.sysad and

cpu.syscmd with valid data.
cpu_extrqst_n output Request control of the system interface

from the R4000.
cpu_release_n input R4000 released control of the system

interface to the MC chip.
cpu_wrrdy_n output Signals that the R4000 is capable of

accepting another write request.
cpu_ivdack_n output R4000 invalidate or update completed

successfully.
cpu_modeclk input R4000 serial boot mode data clock.
cpu_eerom_dato output Serial EEROM data to set up EEROM read

and for writing EEROM.
cpu_eerom_dati input Serial eerom data from EEROM.
cpu_eerom_cs output Chip select for serial EEROM.
cpu_eerom_sck output Serial EEROM clock.
cpu_vccok output Start reading serial eerom.
cpu_cold_rst_n output Release after EEROM is read.
cpu_reset_n output Release to start processor.

6.2 Main Memory Interface

mem_addr(11:0) output Address to memory, both row and column.
mem_ras(7:0) output Row address strobe, one per subbank.
mem_cas(15:0) output Column address strobe, one per byte

width of memory.
mem_we output Memory write enable.
mux_gio_sel output GIO clock owns MUX.

3 8

MC Chip SpecificationSGI Confidential
Do Not Copy

mux_cpu_sel output CPU clock owns MUX.
mux_cpu_push output Push data onto CPU fifo.
mux_cpu_mem_oe output Output enable for M UX sysad and memory

output buffers.
mux_data_sel(2:0) output Selects read/write data.
mux_dir output Data is going to me mory if zero,

other wise data is from m emory.
mux_graphics(1:0) output Determines which de lay signal is use:

0 − slvdly
1 − grxdly(0)
2 − grxdly(1)
3 − grxdly(2)

mux_aen_mem output A register enable w hen cpu_sel = 1, el se
memory <−> GIO i ndicator.

mux_ben_ctrl output B register enable w hen cpu_sel = 1,
ot herwise fifo push/p op for GIO memory
f ifo.

mux_cen_fifo output C register enable w hen cpu_sel = 1,
ot herwise fifo push/p op for GIO memory
f ifo, part of GIO co mmand.

mux_par_flush output Generate bad parity if cpu_sel = 1,
ot herwise flush GIO c ommand fifo.

mux_giostb output GIO command is vali d.
mux_mc_dly output Early masdly/slvdly for MUX chip used on

GIO slave reads.

6.3 EISA Bus Interface

eisa_ecp_n i CPU command pending on the EISA bus.
eisa_eglock_n i The EISA bus wants to lock the CPU out

of main memory.
eisa_gelock_n o CPU wants to lock t he EISA bus out.
eisa_memory o This is a EISA memo ry operation, not a n

I/O operation.
eisa_present_n i EISA bus present.

6.4 GIO64 Interface Signals

gio_ad(31:0) i/o Least significant b ytes of the GIO64
bus.

gio_adp(3:0) i/o Address and data pa rity bits.
gio_vld_parity_n i/o GIO64 has valid par ity.
gio_as_n i/o Address strobe.
gio_grx_as_n output Graphics space addr ess strobe. For

gr aphics GIO bus slav es only.
gio_eisa_as_n i/o GIO64 address strob e for EISA.
gio_read i/o Read or write and v alid bus cycle.
gio_masdly i/o Master delay.
gio_slvdly i/o Slave delay.
gio_dmasync_n i DMA synchronization signal from

graphi cs.
gio_grxdly0 i Graphics delay 0.
gio_grxdly1 i Graphics delay 1.
gio_grxdly2 i Graphics delay 2.
gio_grxrst_n output Graphics reset.

3 9

MC Chip Specificati onSGI Confidential
Do Not Copy

gio_bpre_n output Bus preempt.
gio_hpc_req_n input HPC bus request.
gio_hpc_gnt_n output HPC bus grant.
gio_exp0_req_n input GIO64 expansion slo t 0 bus request
gio_exp0_gnt_n output GIO64 expansion slo t 0 bus grant
gio_exp1_req_n input GIO64 expansion slo t 1 bus request
gio_exp1_gnt_n output GIO64 expansion slo t 1 bus grant
gio_grx_req_n input Graphics bus reques t.
gio_grx_gnt_n output Graphics bus grant.
gio_eisa_req_n input GIO64 bus request f or EISA.
gio_eisa_gnt_n output GIO64 bus grant for EISA.
gio_gsize64 output GIO64 bus master si ze.

0 − 32 bits wide.
1 − 64 bits wide.

gio_ctl(3:0) output Controls for flops that connect GIO64
bus to graphics.
(1,0) − Active low OE from nonpiped to
piped.
(2) − Active high O E from piped bus 0 to
nonpiped.
(3) − Active high O E from piped bus 1 to
nonpiped.

6.5 Misc Signals

cpu_clk input CPU clock. 50 MHz
masterout_clk input CPU clock, 50 or 75 MHz, masterout fro m

processor.
gio_clk input GIO64 Clock. 33 MHz
int_bus_err output Bus error interrupt .
int_dma_done output DMA master operatio n complete.
int_cpu_n(5:0) input Interrupts from INT 2.
big_endian output CPU is running in b ig endian mode.
reset_out_n output Kick one shot reset pulse generator.

This is an open dra in output. MC only
drives this pin lo w to reset the
machine. Therefore thi s pin needs a
pullu p.

gio_reset_out_n output Reset to GIO64 devi ces.
reset_in input Power on reset.
jtdi input JTAG data in.
jtdo output JTAG data out.
jtms input JTAG mode.
jtck input JTAG clock.
quick_boot input Shorten reset seque nce.
pll_reset_in_in input On rev B MC only. Connect to

pll_rese t_out_n. This will reset the MC
plls.

pll_reset_out_n output Reset PLL in MUX an d HPC3.
cpu_pll_lp1 analog CPU clock pll loop filter output.
cpu_pll_lp2 analog CPU clock pll loop filter input.
cpu_pll_vss CPU clock pll groun d input.
cpu_pll_vdd CPU clock pll power input.
cpu_pll_agnd CPU clock pll groun d output.
gio_pll_lp1 analog GIO clock pll loop filter output.
gio_pll_lp2 analog GIO clock pll loop filter input.

4 0

MC Chip Specificati onSGI Confidential
Do Not Copy

4 1

MC Chip Specification

gio_pll_vss GIO clock pll ground input.
gio_pll_vdd GIO clock pll power input.
gio_pll_agnd GIO clock pll ground output.

SGI Confidential
Do Not Copy

6.6 MC Pins Delays

The clock to output pin times are depe ndent on the capaci tive load that pin.
The chart below l ists all of the dig ital pins on the ch ip with the
capacit ive load, worst cas e clock to output t ime, setup time, and hold
times. Ther e is also a column which indicates what clock (cpu_clk, gio_clk,
or masterou t_clk) the signal i s being used to flo p the signal. Some signals
are floppe d with both the gio _clk and the cpu_cl k. For signals tha t are a
bus the tim es for the worst si gnal in that bus ar e given.

Signal Clock load clk−>q setup hold
(pf) (ns) (ns) (ns)

parity_error(7:0) cpu, gio 4.0 −1.5
cpu_sysad(31:0) cpu 50 15.7 4.4 −2.1
cpu_sysadc(3:0) cpu 60 15.7 4.6 −2.1
cpu_syscmd(8:0) cpu 50 14.4 4.3 −2.2
cpu_syscmdp cpu 50 14.3 4.2 −2.1
cpu_validin_n cpu 50 12.9
cpu_validout_n cpu 3.6 −1.7
cpu_extrqst_n cpu 50 12.7
cpu_release_n cpu 3.9 −1.6
cpu_wrrdy_n cpu 50 12.6
cpu_ivdack_n cpu 50 12.9
cpu_modeclk master 3.7 3.0
cpu_eerom_dato master 50 15.8
cpu_eerom_dati master 9.34 2.3
cpu_eerom_cs master 50 15.8
cpu_eerom_sck master 50 16.1
cpu_vccok master 50 13.0
cpu_cold_rst_n master 50 12.9
cpu_reset_n master 50 12.5
mem_addr(11:0) cpu, gio 50 12.3
mem_ras(7:0) cpu, gio 50 12.0
mem_cas(15:0) cpu, gio 50 10.7
mem_we cpu, gio 50 12.7
mux_gio_sel gio 50 12.0
mux_cpu_sel cpu 50 11.9
mux_cpu_push cpu 50 11.9
mux_cpu_mem_oe cpu 50 11.7
mux_data_sel(2:0) cpu, gio 50 12.7
mux_dir cpu, gio 50 12.6
mux_graphics(1:0) gio 50 11.2
mux_aen_mem cpu, gio 50 12.7
mux_ben_ctrl cpu, gio 50 12.7
mux_cen_fifo cpu, gio 50 12.7
mux_par_flush cpu, gio 50 12.8
mux_giostb gio 50 11.7
mux_mc_dly gio 50 12.0
eisa_ecp_n gio 3.6 −1.4
eisa_eglock_n gio 3.6 −1.4
eisa_gelock_n gio 50 10.7
eisa_memory gio 50 10.6
eisa_present_n gio 3.6 −1.4
gio_ad(31:0) gio 120 17.9 3.7 −1.3
gio_adp(3:0) gio 120 16.8 3.7 −1.4
gio_vld_parity_n gio 130 16.9 3.7 −1.4

4 2

MC Chip Specificati onSGI Confidential
Do Not Copy

Signal Clock load clk−>q setup hold
(pf) (ns) (ns) (ns)

gio_as_n gio 130 17.9 3.7 −1.4
gio_grx_as_n gio 50 12.2
gio_eisa_as_n gio 50 11.8 3.7 −1.4
gio_read gio 150 18.5 3.5 −1.4
gio_masdly gio 150 18.5 3.5 −1.4
gio_slvdly gio 150 18.5 3.5 −1.4
gio_dmasync_n gio 3.6 −1.4
gio_grxdly0 gio 6.0 −1.6
gio_grxdly1 gio 6.0 −1.4
gio_grxdly2 gio 6.0 −1.4
gio_grxrst_n gio 50 11.3
gio_bpre_n gio 100 13.9
gio_hpc_req_n gio 3.8 −1.4
gio_hpc_gnt_n gio 50 11.2
gio_exp0_req_n gio 3.8 −1.4
gio_exp0_gnt_n gio 50 11.3
gio_exp1_req_n gio 3.8 −1.4
gio_exp1_gnt_n gio 50 11.3
gio_grx_req_n gio 3.8 −1.4
gio_grx_gnt_n gio 50 11.4
gio_eisa_req_n gio 3.8 −1.4
gio_eisa_gnt_n gio 50 11.1
gio_gsize64 gio 100 13.8
gio_ctl(3:0) gio 80 14.6
int_bus_err gio 50 11.1
int_dma_done gio 50 11.0
int_cpu_n(5:0) cpu 3.9 −1.4
big_endian cpu 50 11.4
reset_out_n cpu 30 9.2
gio_reset_out_n gio 50 14.9
reset_in master 3.9 2.8
jtdi jtck 4.7 −1.8
jtdo jtck 50 20.0
jtms jtck
quick_boot master 15.0 2.6
pll_reset_out_n master 50 11.1

4 3

MC Chip Specificati onSGI Confidential
Do Not Copy

4 4

MC Chip Specification

6.7 MC Scan Chain and Pinout, 299 CPGA

This chart shows the package pin numbers for a 299 CPGA, the signal name,
the type of signal, the number of the flop in the serial chain for the
input, output and output enable, and the active level of the signal.

Pin Number Signal Name Type In Out Enable Active
A2 VSS POWER
A3 VDD POWER
A4 VSS POWER
A5 VDD4 POWER 0 0 0
A6 CPU_SYSAD_10 BIDIR 216 215 219 LOW
A7 CPU_SYSAD_15 BIDIR 227 226 219 LOW
A8 CPU_SYSAD_18 BIDIR 235 234 238 LOW
A9 VDD POWER
A10 VSS POWER
A11 VDD POWER
A12 VSS POWER
A13 VDD POWER
A14 CPU_SYSAD_27 BIDIR 256 255 257 LOW
A15 VSS POWER 0 0 0
A16 CPU_SYSCMD_3 BIDIR 275 274 278 LOW
A17 CPU_SYSCMD_6 BIDIR 282 281 278 LOW
A18 VDD POWER
A19 VSS POWER
A20 VDD POWER
B1 VDD POWER
B2 MEM_ADDR_10 OUTPUT 0 188 0
B3 CPU_SYSADC_0 BIDIR 191 190 201 LOW
B4 CPU_SYSAD_5 BIDIR 205 204 201 LOW
B5 CPU_SYSAD_7 BIDIR 209 208 201 LOW
B6 CPU_SYSAD_8 BIDIR 212 211 219 LOW
B7 CPU_SYSAD_13 BIDIR 223 222 219 LOW
B8 CPU_SYSAD_16 BIDIR 231 230 238 LOW
B9 CPU_SYSAD_20 BIDIR 240 239 238 LOW
B10 CPU_SYSAD_22 BIDIR 244 243 238 LOW
B11 VDD4 POWER 0 0 0
B12 CPU_SYSADC_3 BIDIR 248 247 257 LOW
B13 CPU_SYSAD_25 BIDIR 252 251 257 LOW
B14 CPU_SYSAD_31 BIDIR 265 264 257 LOW
B15 CPU_SYSCMD_2 BIDIR 273 272 278 LOW
B16 CPU_SYSCMD_5 BIDIR 280 279 278 LOW
B17 CPU_SYSCMD_8 BIDIR 286 285 278 LOW
B18 CPU_VALIDIN_N OUTPUT 0 290 0
B19 CPU_COLD_RST_N OUTPUT 0 303 0
B20 VSS POWER
C1 VSS POWER
C2 MEM_ADDR_8 OUTPUT 0 186 0
C3 VDD4 POWER 0 0 0
C4 CPU_SYSAD_1 BIDIR 196 195 201 LOW
C5 CPU_SYSAD_6 BIDIR 207 206 201 LOW
C6 CPU_SYSADC_1 BIDIR 193 210 219 LOW
C7 CPU_SYSAD_11 BIDIR 218 217 219 LOW
C8 VSS POWER 0 0 0
C9 CPU_SYSAD_17 BIDIR 233 232 238 LOW
C10 CPU_SYSAD_19 BIDIR 237 236 238 LOW

SGI Confidential
Do Not Copy

4 5

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
C11 CPU_SYSAD_26 BIDIR 254 253 257 LOW
C12 CPU_SYSAD_28 BIDIR 259 258 257 LOW
C13 CPU_SYSAD_29 BIDIR 261 260 257 LOW
C14 CPU_SYSCMD_0 BIDIR 269 268 278 LOW
C15 CPU_SYSCMD_4 BIDIR 277 276 278 LOW
C16 CPU_SYSCMD_7 BIDIR 284 283 278 LOW
C17 CPU_WRRDY_N OUTPUT 0 288 0
C18 CPU_CLK CLOCK 0 0 0
C19 CPU_PLL_LP2 PLL 0 0 0
C20 VDD POWER
D1 VDD POWER
D2 MEM_ADDR_4 OUTPUT 0 182 0
D3 MEM_ADDR_6 OUTPUT 0 184 0
D4 VDD POWER 0 0 0
D5 CPU_SYSAD_3 BIDIR 200 199 201 LOW
D6 CPU_SYSAD_2 BIDIR 198 197 201 LOW
D7 CPU_SYSAD_9 BIDIR 214 213 219 LOW
D8 CPU_SYSAD_14 BIDIR 225 224 219 LOW
D9 CPU_SYSADC_2 BIDIR 229 228 238 LOW
D10 CPU_SYSAD_23 BIDIR 246 245 238 LOW
D11 VSS POWER 0 0 0
D12 CPU_SYSAD_30 BIDIR 263 262 257 LOW
D13 CPU_SYSCMDP BIDIR 267 266 278 LOW
D14 CPU_IVDACK_N OUTPUT 0 287 0
D15 CPU_RESET_N OUTPUT 0 301 0
D16 VDD4 POWER 0 0 0
D17 VDD3_4 POWER 0 0 0
D18 CPU_PLL_VDD POWER 0 0 0
D19 CPU_VALIDOUT_N INPUT 293 0 0
D20 INT_CPU_N_0 INPUT 294 0 0
E1 MEM_ADDR_1 OUTPUT 0 179 0
E2 MEM_ADDR_2 OUTPUT 0 180 0
E3 MEM_ADDR_3 OUTPUT 0 181 0
E4 MEM_ADDR_9 OUTPUT 0 187 0
E5 VSS POWER 0 0 0
E6 CPU_SYSAD_0 BIDIR 194 192 201 LOW
E7 CPU_SYSAD_4 BIDIR 203 202 201 LOW
E8 CPU_SYSAD_12 BIDIR 221 220 219 LOW
E9 VDD4 POWER 0 0 0
E10 CPU_SYSAD_21 BIDIR 242 241 238 LOW
E11 CPU_SYSAD_24 BIDIR 250 249 257 LOW
E12 VDD4 POWER 0 0 0
E13 CPU_SYSCMD_1 BIDIR 271 270 278 LOW
E14 CPU_EXTRQST_N OUTPUT 0 289 0
E15 CPU_VCCOK OUTPUT 0 302 0
E16 CPU_PLL_LP1 PLL 0 0 0
E17 MASTEROUT_CLK CLOCK 0 0 0
E18 CPU_RELEASE_N INPUT 291 0 0
E19 INT_CPU_N_1 INPUT 295 0 0
E20 INT_CPU_N_3 INPUT 297 0 0
F1 MEM_RAS_6 OUTPUT 0 176 0
F2 MEM_RAS_7 OUTPUT 0 177 0
F3 MEM_ADDR_0 OUTPUT 0 178 0
F4 MEM_ADDR_7 OUTPUT 0 185 0
F5 MEM_ADDR_11 OUTPUT 0 189 0

SGI Confidential
Do Not Copy

4 6

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
F16 CPU_PLL_VSS POWER 0 0 0
F17 CPU_PLL_AGND PLL 0 0 0
F18 INT_CPU_N_2 INPUT 296 0 0
F19 INT_CPU_N_5 INPUT 299 0 0
F20 GIO_GRX_AS_N OUTPUT 0 10 0
G1 MEM_RAS_2 OUTPUT 0 172 0
G2 MEM_RAS_4 OUTPUT 0 174 0
G3 VSS POWER 0 0 0
G4 VDD POWER 0 0 0
G5 MEM_ADDR_5 OUTPUT 0 183 0
G16 VSS POWER 0 0 0
G17 INT_CPU_N_4 INPUT 298 0 0
G18 NC 0 0 0
G19 VDD POWER 0 0 0
G20 RESET_OUT_N OTHER 0 0 304 LOW
H1 MEM_CAS_14 OUTPUT 0 165 0
H2 VDD POWER 0 0 0
H3 MEM_RAS_0 OUTPUT 0 170 0
H4 MEM_RAS_3 OUTPUT 0 173 0
H5 MEM_RAS_5 OUTPUT 0 175 0
H16 VSS POWER 0 0 0
H17 PLL_RESET_IN_N PLL 0 0 0
H18 BIG_ENDIAN OUTPUT 0 300 0
H19 CPU_EEROM_SCK OUTPUT 0 312 0
H20 VSS POWER
J1 VSS POWER
J2 MEM_CAS_12 OUTPUT 0 163 0
J3 MEM_CAS_15 OUTPUT 0 166 0
J4 VSS POWER 0 0 0
J5 MEM_RAS_1 OUTPUT 0 171 0
J16 VSS POWER 0 0 0
J17 PLL_RESET_OUT_N OUTPUT 0 306 0
J18 GIO_RESET_OUT_N OUTPUT 0 1 0
J19 CPU_EEROM_DATO OUTPUT 0 309 0
J20 VDD POWER
K1 VDD POWER
K2 MEM_CAS_10 OUTPUT 0 161 0
K3 MEM_CAS_13 OUTPUT 0 164 0
K4 MEM_CAS_9 OUTPUT 0 160 0
K5 MEM_CAS_11 OUTPUT 0 162 0
K16 CPU_EEROM_CS OUTPUT 0 307 0
K17 RESET_IN INPUT 305 0 0
K18 GIO_GRXRST_N OUTPUT 0 2 0
K19 VSS POWER 0 0 0
K20 VSS POWER
L1 VSS POWER
L2 MEM_CAS_8 OUTPUT 0 159 0
L3 MEM_CAS_4 OUTPUT 0 155 0
L4 VSS POWER 0 0 0
L5 MEM_CAS_6 OUTPUT 0 157 0
L16 JTDO JTAG 0 0 0
L17 CPU_EEROM_DATI INPUT 308 0 0
L18 JTMS JTAG 0 0 0
L19 CPU_MODECLK INPUT 311 0 0
L20 VDD POWER

SGI Confidential
Do Not Copy

4 7

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
M1 VDD POWER
M2 MEM_CAS_7 OUTPUT 0 158 0
M3 MEM_CAS_2 OUTPUT 0 153 0
M4 MEM_CAS_0 OUTPUT 0 169 0
M5 VDD POWER 0 0 0
M16 GIO_GSIZE64 OUTPUT 0 3 0
M17 TP1 TEST 0 0 0
M18 ENTEI OTHER 0 0 0
M19 JTCK JTAG 0 0 0
M20 VSS POWER
N1 VSS POWER
N2 MEM_CAS_5 OUTPUT 0 156 0
N3 MEM_CAS_1 OUTPUT 0 152 0
N4 MUX_GIO_SEL OUTPUT 0 131 0
N5 MUX_CPU_PUSH OUTPUT 0 148 0
N16 GIO_HPC_GNT_N OUTPUT 0 7 0
N17 GIO_EXP1_GNT_N OUTPUT 0 6 0
N18 GIO_GRX_GNT_N OUTPUT 0 4 0
N19 QUICK_BOOT INPUT 312 0 0
N20 JTDI JTAG 0 0 0
P1 MEM_CAS_3 OUTPUT 0 154 0
P2 MEM_WE OUTPUT 0 150 0
P3 MUX_CPU_SEL OUTPUT 0 149 0
P4 VSS POWER 0 0 0
P5 MUX_AEN_MEM OUTPUT 0 132 0
P16 EISA_ECP_N INPUT 18 0 0
P17 EISA_PRESENT_N INPUT 20 0 0
P18 GIO_GRX_REQ_N INPUT 9 0 0
P19 GIO_EXP0_GNT_N OUTPUT 0 5 0
P20 TP0 TEST 0 0 0
R1 VSS POWER 0 0 0
R2 MUX_CPU_MEM_OE OUTPUT 0 147 0
R3 MUX_DATA_SEL_1 OUTPUT 0 129 0
R4 MUX_CEN_FIFO OUTPUT 0 135 0
R5 MUX_PAR_FLUSH OUTPUT 0 136 0
R16 GIO_AS_N BIDIR 23 24 37 LOW
R17 INT_BUS_ERR OUTPUT 0 21 0
R18 GIO_HPC_REQ_N INPUT 13 0 0
R19 GIO_EXP1_REQ_N INPUT 12 0 0
R20 GIO_BPRE_N OUTPUT 0 8 0
T1 MUX_DATA_SEL_2 OUTPUT 0 146 0
T2 MUX_DATA_SEL_0 OUTPUT 0 128 0
T3 MUX_GRAPHICS_1 OUTPUT 0 127 0
T4 VDD POWER 0 0 0
T5 PARITY_ERROR_7 INPUT 145 0 0
T6 GIO_PLL_LP1 PLL 0 0 0
T7 GIO_PLL_AGND PLL 0 0 0
T8 GIO_MASDLY BIDIR 118 117 119 LOW
T9 GIO_CTL_1 OUTPUT 0 108 0
T10 GIO_AD_27 BIDIR 65 64 57 LOW
T11 GIO_AD_21 BIDIR 51 52 40 LOW
T12 GIO_AD_15 BIDIR 106 107 91 LOW
T13 GIO_AD_11 BIDIR 98 99 91 LOW
T14 GIO_AD_2 BIDIR 79 80 74 LOW
T15 GIO_ADP_3 BIDIR 31 35 36 LOW

SGI Confidential
Do Not Copy

4 8

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
T16 GIO_ADP_1 BIDIR 29 33 36 LOW
T17 EISA_EGLOCK_N INPUT 19 0 0
T18 EISA_GELOCK_N OUTPUT 0 16 0
T19 EISA_GNT_N OUTPUT 0 14 0
T20 GIO_EXP0_REQ_N INPUT 11 0 0
U1 MUX_DIR OUTPUT 0 134 0
U2 MUX_GRAPHICS_0 OUTPUT 0 126 0
U3 MUX_BEN_CTRL OUTPUT 0 133 0
U4 PARITY_ERROR_6 INPUT 144 0 0
U5 PARITY_ERROR_5 INPUT 143 0 0
U6 GIO_PLL_VSS POWER 0 0 0
U7 PARITY_ERROR_4 INPUT 142 0 0
U8 GIO_CTL_3 OUTPUT 0 110 0
U9 GIO_AD_31 BIDIR 73 72 57 LOW
U10 GIO_AD_25 BIDIR 60 61 57 LOW
U11 GIO_AD_23 BIDIR 55 56 40 LOW
U12 GIO_AD_17 BIDIR 44 43 40 LOW
U13 GIO_AD_13 BIDIR 102 103 91 LOW
U14 GIO_AD_10 BIDIR 96 97 91 LOW
U15 GIO_AD_0 BIDIR 75 76 74 LOW
U16 GIO_AD_3 BIDIR 81 82 74 LOW
U17 GIO_ADP_0 BIDIR 28 32 36 LOW
U18 INT_DMA_DONE OUTPUT 0 22 0
U19 EISA_MEMORY OUTPUT 0 17 0
U20 EISA_REQ_N INPUT 15 0 0
V1 VSS POWER
V2 MUX_GIOSTB OUTPUT 0 125 0
V3 GIO_CLK CLOCK 0 0 0
V4 GIO_PLL_VDD POWER 0 0 0
V5 PARITY_ERROR_2 INPUT 140 0 0
V6 GIO_GRXDLY0 INPUT 121 0 0
V7 GIO_DMASYNC_N INPUT 120 0 0
V8 GIO_CTL_2 OUTPUT 0 109 0
V9 GIO_AD_29 BIDIR 69 68 57 LOW
V10 VDD POWER 0 0 0
V11 GIO_AD_19 BIDIR 47 48 40 LOW
V12 VSS POWER 0 0 0
V13 GIO_AD_18 BIDIR 45 46 40 LOW
V14 GIO_AD_14 BIDIR 104 105 91 LOW
V15 GIO_AD_8 BIDIR 92 93 91 LOW
V16 GIO_AD_5 BIDIR 85 86 74 LOW
V17 GIO_AD_1 BIDIR 77 78 74 LOW
V18 GIO_VLD_PARITY_N BIDIR 26 27 25 LOW
V19 GIO_EISA_AS_N BIDIR 38 39 37 LOW
V20 VDD POWER
W1 VDD POWER
W2 MUX_MC_DLY OUTPUT 0 124 0
W3 GIO_PLL_LP2 PLL 0 0 0
W4 PARITY_ERROR_3 INPUT 141 0 0
W5 PARITY_ERROR_0 INPUT 138 0 0
W6 GIO_GRXDLY2 INPUT 123 0 0
W7 GIO_SLVDLY BIDIR 115 114 116 LOW
W8 GIO_AD_30 BIDIR 71 70 57 LOW
W9 GIO_AD_28 BIDIR 67 66 57 LOW
W10 VSS POWER 0 0 0

SGI Confidential
Do Not Copy

4 9

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
W11 GIO_AD_26 BIDIR 63 62 57 LOW
W12 GIO_AD_24 BIDIR 58 59 57 LOW
W13 GIO_AD_20 BIDIR 49 50 40 LOW
W14 GIO_AD_16 BIDIR 42 41 40 LOW
W15 GIO_AD_9 BIDIR 94 95 91 LOW
W16 GIO_AD_6 BIDIR 87 88 74 LOW
W17 GIO_AD_4 BIDIR 83 84 74 LOW
W18 VDD POWER 0 0 0
W19 GIO_ADP_2 BIDIR 30 34 36 LOW
W20 VSS POWER
X1 VSS POWER
X2 VDD POWER
X3 VSS POWER
X4 PARITY_ERROR_1 INPUT 139 0 0
X5 GIO_GRXDLY1 INPUT 122 0 0
X6 GIO_READ BIDIR 112 113 111 LOW
X7 GIO_CTL_0 OTHER 0 0 0
X8 VDD POWER
X9 VSS POWER
X10 VDD POWER
X11 VSS POWER
X12 VDD POWER
X13 GIO_AD_22 BIDIR 53 54 40 LOW
X14 VDD POWER 0 0 0
X15 GIO_AD_12 BIDIR 100 101 91 LOW
X16 GIO_AD_7 BIDIR 89 90 74 LOW
X17 VSS POWER
X18 VDD POWER
X19 VSS POWER
X20 VDD POWER

SGI Confidential
Do Not Copy

5 0

MC Chip Specification

6.8 MC Scan Chain and Pinout, 304 MQUAD

This chart shows the package pin numbers for a 304 MQUAD, the signal name,
the type of signal, the number of the flop in the serial chain for the
input, output and output enable, and the active level of the signal.

Pin Number Signal Name Type In Out Enable Active
1 VDD POWER 0 0 0
2 VDD4 POWER 0 0 0
3 VSS POWER 0 0 0
4 CPU_SYSADC_0 BIDIR 191 190 201 LOW
5 CPU_SYSAD_0 BIDIR 194 192 201 LOW
6 CPU_SYSAD_1 BIDIR 196 195 201 LOW
7 CPU_SYSAD_2 BIDIR 198 197 201 LOW
8 CPU_SYSAD_3 BIDIR 200 199 201 LOW
9 CPU_SYSAD_4 BIDIR 203 202 201 LOW
10 CPU_SYSAD_5 BIDIR 205 204 201 LOW
11 VSS POWER 0 0 0
12 CPU_SYSAD_6 BIDIR 207 206 201 LOW
13 VSS POWER 0 0 0
14 CPU_SYSAD_7 BIDIR 209 208 201 LOW
15 VSS2_4 POWER 0 0 0
16 VDD4 POWER 0 0 0
17 CPU_SYSADC_1 BIDIR 193 210 219 LOW
18 VSS2_4 POWER 0 0 0
19 CPU_SYSAD_8 BIDIR 212 211 219 LOW
20 CPU_SYSAD_9 BIDIR 214 213 219 LOW
21 VSS POWER 0 0 0
22 CPU_SYSAD_10 BIDIR 216 215 219 LOW
23 CPU_SYSAD_11 BIDIR 218 217 219 LOW
24 CPU_SYSAD_12 BIDIR 221 220 219 LOW
25 CPU_SYSAD_13 BIDIR 223 222 219 LOW
26 CPU_SYSAD_14 BIDIR 225 224 219 LOW
27 CPU_SYSAD_15 BIDIR 227 226 219 LOW
28 VDD4 POWER 0 0 0
29 VSS POWER 0 0 0
30 CPU_SYSADC_2 BIDIR 229 228 238 LOW
31 CPU_SYSAD_16 BIDIR 231 230 238 LOW
32 CPU_SYSAD_17 BIDIR 233 232 238 LOW
33 CPU_SYSAD_18 BIDIR 235 234 238 LOW
34 CPU_SYSAD_19 BIDIR 237 236 238 LOW
35 CPU_SYSAD_20 BIDIR 240 239 238 LOW
36 CPU_SYSAD_21 BIDIR 242 241 238 LOW
37 CPU_SYSAD_22 BIDIR 244 243 238 LOW
38 CPU_SYSAD_23 BIDIR 246 245 238 LOW
39 VSS3_4 POWER 0 0 0
40 VDD4 POWER 0 0 0
41 VSS POWER 0 0 0
42 CPU_SYSADC_3 BIDIR 248 247 257 LOW
43 CPU_SYSAD_24 BIDIR 250 249 257 LOW
44 CPU_SYSAD_25 BIDIR 252 251 257 LOW
45 CPU_SYSAD_26 BIDIR 254 253 257 LOW
46 CPU_SYSAD_27 BIDIR 256 255 257 LOW
47 CPU_SYSAD_28 BIDIR 259 258 257 LOW
48 CPU_SYSAD_29 BIDIR 261 260 257 LOW
49 CPU_SYSAD_30 BIDIR 263 262 257 LOW

SGI Confidential
Do Not Copy

5 1

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
50 CPU_SYSAD_31 BIDIR 265 264 257 LOW
51 VDD4 POWER 0 0 0
52 VSS POWER 0 0 0
53 CPU_SYSCMDP BIDIR 267 266 278 LOW
54 CPU_SYSCMD_0 BIDIR 269 268 278 LOW
55 CPU_SYSCMD_1 BIDIR 271 270 278 LOW
56 CPU_SYSCMD_2 BIDIR 273 272 278 LOW
57 CPU_SYSCMD_3 BIDIR 275 274 278 LOW
58 VSS POWER 0 0 0
59 CPU_SYSCMD_4 BIDIR 277 276 278 LOW
60 CPU_SYSCMD_5 BIDIR 280 279 278 LOW
61 VSS2_4 POWER 0 0 0
62 CPU_SYSCMD_6 BIDIR 282 281 278 LOW
63 VSS2_4 POWER 0 0 0
64 CPU_SYSCMD_7 BIDIR 284 283 278 LOW
65 VSS POWER 0 0 0
66 CPU_SYSCMD_8 BIDIR 286 285 278 LOW
67 VSS POWER 0 0 0
68 VDD4 POWER 0 0 0
69 CPU_IVDACK_N OUTPUT 0 287 0
70 CPU_WRRDY_N OUTPUT 0 288 0
71 CPU_EXTRQST_N OUTPUT 0 289 0
72 CPU_VALIDIN_N OUTPUT 0 290 0
73 CPU_RESET_N OUTPUT 0 301 0
74 CPU_COLD_RST_N OUTPUT 0 303 0
75 CPU_VCCOK OUTPUT 0 302 0
76 VDD3 POWER 0 0 0
77 VDD POWER 0 0 0
78 CPU_CLK CLOCK 0 0 0
79 CPU_PLL_LP1 PLL 0 0 0
80 CPU_PLL_LP2 PLL 0 0 0
81 CPU_PLL_VSS POWER 0 0 0
82 CPU_PLL_VDD POWER 0 0 0
83 CPU_PLL_AGND PLL 0 0 0
84 MASTEROUT_CLK CLOCK 0 0 0
85 VSS POWER 0 0 0
86 CPU_VALIDOUT_N INPUT 293 0 0
87 CPU_RELEASE_N INPUT 291 0 0
88 INT_CPU_N_0 INPUT 294 0 0
89 VSS2 POWER 0 0 0
90 INT_CPU_N_1 INPUT 295 0 0
91 VSS2 POWER 0 0 0
92 INT_CPU_N_2 INPUT 296 0 0
93 INT_CPU_N_3 INPUT 297 0 0
94 VSS POWER 0 0 0
95 INT_CPU_N_4 INPUT 298 0 0
96 VDD POWER 0 0 0
97 INT_CPU_N_5 INPUT 299 0 0
98 PLL_RESET_IN_N PLL 0 0 0
99 GIO_GRX_AS_N OUTPUT 0 10 0
100 VSS POWER 0 0 0
101 VDD POWER 0 0 0
102 PLL_RESET_OUT_N OUTPUT 0 306 0
103 BIG_ENDIAN OUTPUT 0 300 0
104 GIO_RESET_OUT_N OUTPUT 0 1 0

SGI Confidential
Do Not Copy

5 2

SGI Confidential
Do Not Copy

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
105 RESET_OUT_N OTHER 0 0 304 LOW
106 GIO_GRXRST_N OUTPUT 0 2 0
107 CPU_EEROM_SCK OUTPUT 0 312 0
108 CPU_EEROM_CS OUTPUT 0 307 0
109 CPU_EEROM_DATO OUTPUT 0 309 0
110 RESET_IN INPUT 305 0 0
111 VSS2 POWER 0 0 0
112 VSS3 POWER 0 0 0
113 VDD POWER 0 0 0
114 CPU_EEROM_DATI INPUT 308 0 0
115 CPU_MODECLK INPUT 311 0 0
116 JTDO JTAG 0 0 0
117 JTCK JTAG 0 0 0
118 JTMS JTAG 0 0 0
119 JTDI JTAG 0 0 0
120 ENTEI OTHER 0 0 0
121 QUICK_BOOT INPUT 312 0 0
122 TP1 TEST 0 0 0
123 TP0 TEST 0 0 0
124 GIO_GSIZE64 OUTPUT 0 3 0
125 GIO_GRX_GNT_N OUTPUT 0 4 0
126 GIO_EXP1_GNT_N OUTPUT 0 6 0
127 GIO_EXP0_GNT_N OUTPUT 0 5 0
128 GIO_HPC_GNT_N OUTPUT 0 7 0
129 GIO_BPRE_N OUTPUT 0 8 0
130 VDD POWER 0 0 0
131 GIO_GRX_REQ_N INPUT 9 0 0
132 VSS POWER 0 0 0
133 GIO_EXP1_REQ_N INPUT 12 0 0
134 GIO_EXP0_REQ_N INPUT 11 0 0
135 VSS2 POWER 0 0 0
136 GIO_HPC_REQ_N INPUT 13 0 0
137 VSS2 POWER 0 0 0
138 EISA_GNT_N OUTPUT 0 14 0
139 VSS2 POWER 0 0 0
140 EISA_REQ_N INPUT 15 0 0
141 EISA_GELOCK_N OUTPUT 0 16 0
142 VSS POWER 0 0 0
143 EISA_MEMORY OUTPUT 0 17 0
144 EISA_PRESENT_N INPUT 20 0 0
145 EISA_EGLOCK_N INPUT 19 0 0
146 EISA_ECP_N INPUT 18 0 0
147 INT_DMA_DONE OUTPUT 0 22 0
148 INT_BUS_ERR OUTPUT 0 21 0
149 GIO_EISA_AS_N BIDIR 38 39 37 LOW
150 GIO_AS_N BIDIR 23 24 37 LOW
151 GIO_VLD_PARITY_N BIDIR 26 27 25 LOW
152 VDD POWER 0 0 0
153 VDD3 POWER 0 0 0
154 GIO_ADP_0 BIDIR 28 32 36 LOW
155 GIO_ADP_1 BIDIR 29 33 36 LOW
156 GIO_ADP_2 BIDIR 30 34 36 LOW
157 GIO_ADP_3 BIDIR 31 35 36 LOW
158 VDD POWER 0 0 0
159 GIO_AD_0 BIDIR 75 76 74 LOW

5 3

SGI Confidential
Do Not Copy

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
160 GIO_AD_1 BIDIR 77 78 74 LOW
161 GIO_AD_2 BIDIR 79 80 74 LOW
162 GIO_AD_3 BIDIR 81 82 74 LOW
163 GIO_AD_4 BIDIR 83 84 74 LOW
164 VSS POWER 0 0 0
165 GIO_AD_5 BIDIR 85 86 74 LOW
166 VSS2 POWER 0 0 0
167 GIO_AD_6 BIDIR 87 88 74 LOW
168 VSS2 POWER 0 0 0
169 GIO_AD_7 BIDIR 89 90 74 LOW
170 GIO_AD_8 BIDIR 92 93 91 LOW
171 GIO_AD_9 BIDIR 94 95 91 LOW
172 VDD POWER 0 0 0
173 GIO_AD_10 BIDIR 96 97 91 LOW
174 GIO_AD_11 BIDIR 98 99 91 LOW
175 GIO_AD_12 BIDIR 100 101 91 LOW
176 GIO_AD_13 BIDIR 102 103 91 LOW
177 GIO_AD_14 BIDIR 104 105 91 LOW
178 GIO_AD_15 BIDIR 106 107 91 LOW
179 GIO_AD_16 BIDIR 42 41 40 LOW
180 GIO_AD_17 BIDIR 44 43 40 LOW
181 VDD POWER 0 0 0
182 VSS POWER 0 0 0
183 GIO_AD_18 BIDIR 45 46 40 LOW
184 GIO_AD_19 BIDIR 47 48 40 LOW
185 GIO_AD_20 BIDIR 49 50 40 LOW
186 GIO_AD_21 BIDIR 51 52 40 LOW
187 GIO_AD_22 BIDIR 53 54 40 LOW
188 GIO_AD_23 BIDIR 55 56 40 LOW
189 GIO_AD_24 BIDIR 58 59 57 LOW
190 VSS3 POWER 0 0 0
191 GIO_AD_25 BIDIR 60 61 57 LOW
192 GIO_AD_26 BIDIR 63 62 57 LOW
193 GIO_AD_27 BIDIR 65 64 57 LOW
194 VSS POWER 0 0 0
195 VDD POWER 0 0 0
196 GIO_AD_28 BIDIR 67 66 57 LOW
197 GIO_AD_29 BIDIR 69 68 57 LOW
198 GIO_AD_30 BIDIR 71 70 57 LOW
199 GIO_AD_31 BIDIR 73 72 57 LOW
200 GIO_CTL_0 OTHER 0 0 0
201 GIO_CTL_1 OUTPUT 0 108 0
202 GIO_CTL_2 OUTPUT 0 109 0
203 GIO_CTL_3 OUTPUT 0 110 0
204 GIO_SLVDLY BIDIR 115 114 116 LOW
205 GIO_MASDLY BIDIR 118 117 119 LOW
206 GIO_READ BIDIR 112 113 111 LOW
207 VDD POWER 0 0 0
208 GIO_DMASYNC_N INPUT 120 0 0
209 VSS POWER 0 0 0
210 GIO_GRXDLY2 INPUT 123 0 0
211 GIO_GRXDLY1 INPUT 122 0 0
212 VSS2 POWER 0 0 0
213 GIO_GRXDLY0 INPUT 121 0 0
214 PARITY_ERROR_0 INPUT 138 0 0

5 4

SGI Confidential
Do Not Copy

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
215 VSS2 POWER 0 0 0
216 PARITY_ERROR_1 INPUT 139 0 0
217 PARITY_ERROR_2 INPUT 140 0 0
218 VSS POWER 0 0 0
219 PARITY_ERROR_3 INPUT 141 0 0
220 PARITY_ERROR_4 INPUT 142 0 0
221 PARITY_ERROR_5 INPUT 143 0 0
222 GIO_PLL_AGND PLL 0 0 0
223 GIO_PLL_VDD POWER 0 0 0
224 GIO_PLL_VSS POWER 0 0 0
225 GIO_PLL_LP2 PLL 0 0 0
226 GIO_PLL_LP1 PLL 0 0 0
227 GIO_CLK CLOCK 0 0 0
228 VDD3 POWER 0 0 0
229 VDD POWER 0 0 0
230 PARITY_ERROR_6 INPUT 144 0 0
231 PARITY_ERROR_7 INPUT 145 0 0
232 MUX_MC_DLY OUTPUT 0 124 0
233 MUX_PAR_FLUSH OUTPUT 0 136 0
234 MUX_GIOSTB OUTPUT 0 125 0
235 MUX_CEN_FIFO OUTPUT 0 135 0
236 MUX_BEN_CTRL OUTPUT 0 133 0
237 MUX_AEN_MEM OUTPUT 0 132 0
238 VDD POWER 0 0 0
239 VSS POWER 0 0 0
240 MUX_GRAPHICS_0 OUTPUT 0 126 0
241 MUX_GRAPHICS_1 OUTPUT 0 127 0
242 VSS2 POWER 0 0 0
243 MUX_DIR OUTPUT 0 134 0
244 MUX_DATA_SEL_0 OUTPUT 0 128 0
245 VSS2 POWER 0 0 0
246 MUX_DATA_SEL_1 OUTPUT 0 129 0
247 MUX_DATA_SEL_2 OUTPUT 0 146 0
248 VSS POWER 0 0 0
249 VDD POWER 0 0 0
250 MUX_CPU_MEM_OE OUTPUT 0 147 0
251 MUX_CPU_PUSH OUTPUT 0 148 0
252 MUX_CPU_SEL OUTPUT 0 149 0
253 MUX_GIO_SEL OUTPUT 0 131 0
254 VSS POWER 0 0 0
255 VDD POWER 0 0 0
256 MEM_WE OUTPUT 0 150 0
257 MEM_CAS_0 OUTPUT 0 169 0
258 MEM_CAS_1 OUTPUT 0 152 0
259 MEM_CAS_2 OUTPUT 0 153 0
260 MEM_CAS_3 OUTPUT 0 154 0
261 MEM_CAS_4 OUTPUT 0 155 0
262 MEM_CAS_5 OUTPUT 0 156 0
263 MEM_CAS_6 OUTPUT 0 157 0
264 MEM_CAS_7 OUTPUT 0 158 0
265 VSS POWER 0 0 0
266 VDD POWER 0 0 0
267 VSS2 POWER 0 0 0
268 MEM_CAS_8 OUTPUT 0 159 0
269 MEM_CAS_9 OUTPUT 0 160 0

5 5

SGI Confidential
Do Not Copy

MC Chip Specification

Pin Number Signal Name Type In Out Enable Active
270 MEM_CAS_10 OUTPUT 0 161 0
271 MEM_CAS_11 OUTPUT 0 162 0
272 MEM_CAS_12 OUTPUT 0 163 0
273 MEM_CAS_13 OUTPUT 0 164 0
274 MEM_CAS_14 OUTPUT 0 165 0
275 MEM_CAS_15 OUTPUT 0 166 0
276 VDD POWER 0 0 0
277 VSS POWER 0 0 0
278 MEM_RAS_0 OUTPUT 0 170 0
279 MEM_RAS_1 OUTPUT 0 171 0
280 MEM_RAS_2 OUTPUT 0 172 0
281 MEM_RAS_3 OUTPUT 0 173 0
282 MEM_RAS_4 OUTPUT 0 174 0
283 MEM_RAS_5 OUTPUT 0 175 0
284 VSS POWER 0 0 0
285 VDD POWER 0 0 0
286 MEM_RAS_6 OUTPUT 0 176 0
287 VSS POWER 0 0 0
288 MEM_RAS_7 OUTPUT 0 177 0
289 MEM_ADDR_0 OUTPUT 0 178 0
290 VSS2 POWER 0 0 0
291 MEM_ADDR_1 OUTPUT 0 179 0
292 MEM_ADDR_2 OUTPUT 0 180 0
293 VSS POWER 0 0 0
294 MEM_ADDR_3 OUTPUT 0 181 0
295 VDD POWER 0 0 0
296 MEM_ADDR_4 OUTPUT 0 182 0
297 MEM_ADDR_5 OUTPUT 0 183 0
298 MEM_ADDR_6 OUTPUT 0 184 0
299 MEM_ADDR_7 OUTPUT 0 185 0
300 MEM_ADDR_8 OUTPUT 0 186 0
301 MEM_ADDR_9 OUTPUT 0 187 0
302 MEM_ADDR_10 OUTPUT 0 188 0
303 MEM_ADDR_11 OUTPUT 0 189 0
304 VDD3 POWER 0 0 0

5 6

SGI Confidential
Do Not Copy

MC Chip Specificati on

7.0 MC Revision B Fixes

This is a list of t he changes made to revision B of the MC chip.

1. PLL reset in pin added to gain more control over pll r eset signal mainly
for testing.

2. Graphics address strobe added. LG2 board needs a deco ded address strobe.
This address stro be is an output onl y so it will only work with slave
devi ces. This strobe i s active for addres ses 0x1f000000 − 0x 1f3fffff.

3. Revision A of th e MC chip would hang if a memory addre ss that was not
mapped by MC was read from while doing a dirty cache line wr ite back. This
has been fixed. In cp u_mc_rd_cmd sticky_ invalid was f_stick y_invalid and
f_cpu _invalid_bnk instea d of an or function .

4. A true pll bypas s mux that does not depend on the stat e of LP2 was added
to both plls.

5. Added flops to boundary scan chain that were missing i n revision A. All
I/O pins can be con trolled by the jtag controller except mem_cas.

6. Changed the chip revision field in the sysid register to 1.

7. Added a arc to t he gio_memory_state fsm in the main_rd _stall state for
pr eempted transfers. This arc was missi ng and if rd_col was set to two and
a gio memory read was preempted while th is fsm was in the main_rd_stall
state the machine would hang.

8. Fixed writing MC registers that are preceded by a read with write
forthco ming. The fsm in cpu_mc_command, disp atch_dispatch state needs to
qualify validout = 1 with th e fifo not being fu ll. The MUX fifo was full so
the writ e to MC was stalled by the R4000, but cpu_mc_command popp ed the fifo
to exec ute the MC register write even though the MC fifo was empty. This
caused th e fifo to be comple tely full and hung the machine.

9. A vdma that was waiting for the GIO bus about to do a page table look up
that got a GIO bus grant and preempt i n the same cycle would hang and not
deassert its bus requ est signal.

10. Valid parity was not always being driven high before being tri−stated.
In the gio_pio_fsm drive gio_vld_parit y high while in the own_state and
wait ing for a GIO opera tion.

11. Cpu memory erro r address is someti mes wrong if a writ e follows a read
and the read gets a parity error. The write address was ca ptured. This was
because the fsm in cpu_memory_error would not reload the memory address if
th e memory controller was given back to back operations. The fsm_in_idle
sign al would not get as serted, which reloa ds the memory addre ss register.

12. Delay cells bet ween different cloc ks in scan chain have been changed to
40 ns to prevent cl ock delay problems between master_clk and the other
clock s.

13. R4000 block wri tes that are not part of a dirty cache miss, (ie from the
cache instruction) , that have data on cpu_sysad(31:0) of the form 0x1faxxxx x

5 7

SGI Confidential
Do Not Copy

MC Chip Specification

will hang the machine. This is because in cpu_mc_command, dispatch_dispatch
state, if mc_space gets asserted the fsm will goto a state to wait for the
MC register read or write to complete. The fsm’s in cpu_mc_rd_cmd and
cpu_mc_wr_cmd realize that this is not a real MC register read or write so
never start a command, therefore they never send a complete signal that
cpu_mc_command is waiting for.

8.0 Document Changes

Oct 12, 1990
1. Added config bit to allow RAS pins to come out encoded to support 32

simms. Added two more MEMCFGregisters to support this.
2. Changed reset va lue for CPU_TIME and LB_TIME registers .

Feb. 4, 1991
1. Updated memory t iming waveforms, and chip pin names.
2. Added Little bit to DMA descriptors .

Feb. 23, 1991
1. Fixed the memory timing waveforms. Also changed some of the reset values

on the memory regi sters.
2. Changed address map.

April 12, 1991
1. Removed a lot ol d, wrong data.

July 11, 1991
1. Updated all but section 3. Graphics DMA section still needs work.

August 29, 1991
1. New arbiter and changes for EISA 2. 5 µs problem.

September 6. 1991
1. Update time EISA holds GIO64 bus.

September 24, 1991
1. Changed Mux cont rol signal names.
2. Changed Memory Map.

October 22, 1991
1. Added definition of GIO error regis ters.
2. Added restrictio ns to GIO PIO by th e CPU.

October 28, 1991
1. Added section on R3000 support.

November 19, 1991
1. Fixed GIO_ERROR_STATUS register.
2. Added fixed endi aness bits to CPU CTRL 1 register.

November 22, 1991
1. Changed memory map. The GIO expans ion slots moved.

February 5, 1992
1. Removed R3K supp ort.
2. Removed exclusiv e arbiter.
3. Removed most spe cial support for EI SA.

April 10, 1992
1. Fixed register definitions.
2. Added informatio n about I/O pins.

5 8

SGI Confidential
Do Not Copy

MC Chip Specificati on

MC Specification
R4000 Project

Revision 1.15
May 13, 2000

James Tornes

SGI Confidential
Do Not Copy

Silicon Graphics
Computer Systems

Table of Contents

1.0 Introduction 1
1.1 MC Features 2
1.2 MC Gate Count 4
1.3 Bit and Byte Numbering Conventions 4
1.4 Other Documents 5
1.5 Signal Naming Conventions 5

2.0 MC Chip Functional Blocks 6
2.1 GIO64 Arbiter 6
2.2 Memory Controller 8
2.2.1 Memory Reads 9
2.2.2 Memory Writes 9
2.2.3 Memory Reads, Page Mode 10
2.2.4 Memory Writes, Page Mode 10
2.2.5 Memory Refresh 11
2.2.6 Memory Address Signals 11
2.3 Graphics DMA Master 11
2.4 GIO64 DMA Slave 12
2.5 GIO64 Single Reads and Writes 12
2.6 CPU Request State Machine 12
2.6.1 Semaphores 13
2.6.2 RPSS Counter 13
2.6.3 EISA Lock 13
2.6.4 CPU Lock 13
2.7 Memory Refresh 14
2.8 CPU Interrupts 14
2.9 R4000 Initialization 14
2.10 Parity Checking 15

3.0 System Operations 16
3.1 Memory System 16
3.1.1 Memory Simms and Configurations 16
3.1.2 CPU Memory Reads 17
3.1.3 CPU Memory Writes 18
3.1.4 CPU Triplet Requests 18
3.1.5 EISA Memory and I/O Reads 19
3.1.6 EISA Memory and I/O Writes 19
3.1.7 GIO64 Memory Reads 19
3.1.8 GIO64 Memory Writes 19
3.2 MC Register Reads/Writes 19
3.3 R4000 System Bus Interface 20
3.4 Timers 21
3.5 Three Way Transfers 21

4.0 Physical Address Space 22

5.0 MC Internal Registers 24
5.1 CPU Control 0 Register 26
5.2 CPU Control 1 Register 28
5.3 Watchdog Timer 28
5.4 System ID 29
5.5 RPSS Divider 29
5.6 R4000 Configuration EEROM 29
5.7 Refresh Counter Preload 30

i

SGI Confidential
Do Not Copy

MC Chip Specification

5.8 Refresh Counter 30
5.9 GIO64 Arbitration Parameters 30
5.10 GIO64 CPU Arbitration Time Period 32
5.11 GIO64 Long Burst Arbitration Time 32
5.12 Memory Configuration 32
5.13 Main Memory Access Configuration 33
5.14 CPU Error Address 35
5.15 CPU Error Status 35
5.16 GIO Error Address 36
5.17 GIO Error Status 36
5.18 Semaphores 36
5.19 Lock GIO Out of Memory 37
5.20 Lock EISA Out of Memory 37
5.21 RPSS Counter 37

6.0 MC Pins 38
6.1 R4000 Interface 38
6.2 Main Memory Interface 38
6.3 EISA Bus Interface 39
6.4 GIO64 Interface Signals 39
6.5 Misc Pins 40
6.6 MC Pin Delays 42
6.7 MC Scan Chain and Pinout, 299 CPGA 44
6.8 MC Scan Chain and Pinout, 304 MQUAD 50

7.0 MC Revision B Fixes 56

8.0 Document Changes 58

ii

SGI Confidential
Do Not Copy

MC Chip Specification

