
HP DECset for OpenVMS
Language-Sensitive Editor/
Source Code Analyzer Reference
Manual
Order Number: AA–QJERC–TK

July 2005

This manual describes the commands of the HP Language-Sensitive Editor
for OpenVMS and HP Source Code Analyzer for OpenVMS, and provides
other reference information.

Revision/Update information: This is a revised manual.

Operating System Version: OpenVMS I64 Version 8.2

OpenVMS Alpha Version 7.3–2 or 8.2

OpenVMS VAX Version 7.3

Windowing System Version: DECwindows Motif for OpenVMS I64
Version 1.5

DECwindows Motif for OpenVMS Alpha
Version 1.3–1 or 1.5

DECwindows Motif for OpenVMS VAX
Version 1.2–6

Software Version: HP DECset Version 12.7 for OpenVMS

HP Language-Sensitive Editor for
OpenVMS Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendors standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a US trademark of Sun Microsystems, Inc.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.
Printed in the US

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xiii

Command Dictionary

1 Executing Commands . CD–3
2 Canceling Commands . CD–4
3 Commands in Buffers . CD–4
4 Command Categories . CD–4
4.1 Editing Session Control Commands . CD–5
4.2 Text Manipulation Commands . CD–5
4.3 Entering Source Code Commands . CD–6
4.4 SCA Navigation Commands . CD–6
4.5 SCA Library Commands . CD–6
4.6 SCA Query Commands . CD–6
4.7 Query Session Manipulation Commands CD–7
4.8 Commands for Compiling Source Code and Reviewing

Errors . CD–7
4.9 Indenting Source Code Commands . CD–7
4.10 Cursor Movement Commands . CD–7
4.11 Screen Manipulation Commands . CD–8
4.12 File and Buffer Manipulation Commands CD–8
4.13 Program Design Commands . CD–9
4.14 Commands for Tailoring the Environment CD–9
4.15 Help and Status Commands . CD–10
4.16 CMS Commands . CD–10

iii

Command Descriptions

@ (file-specification) . CD–13
ALIGN . CD–14
ANALYZE . CD–16
ATTACH . CD–19
BOX COPY . CD–20
BOX CUT . CD–21
BOX DRAW . CD–22
BOX PASTE . CD–23
BOX LOWERCASE . CD–24
BOX UPPERCASE . CD–25
CALL . CD–26
CANCEL MARK . CD–28
CANCEL SELECT_MARK . CD–29
CAPITALIZE WORD . CD–30
CENTER LINE . CD–31
CHANGE CASE . CD–32
CHANGE DIRECTION . CD–33
CHANGE INDENTATION . CD–34
CHANGE TEXT_ENTRY_MODE . CD–36
CHANGE WINDOW_MODE . CD–37
CHECK LANGUAGE . CD–38
CLOSE BUFFER . CD–41
CMS . CD–42
COLLAPSE . CD–43
COMPILE . CD–45
CONTINUE . CD–49
CONVERT LIBRARY . CD–50
CREATE LIBRARY . CD–51
CUT . CD–53
DCL . CD–57
DEFINE ADJUSTMENT . CD–58
DEFINE ALIAS . CD–64
DEFINE COMMAND . CD–66
DEFINE KEY . CD–67
DEFINE KEYWORDS . CD–73

iv

DEFINE LANGUAGE . CD–75
DEFINE PACKAGE . CD–84
DEFINE PARAMETER . CD–87
DEFINE PLACEHOLDER . CD–89
DEFINE ROUTINE . CD–97
DEFINE TAG . CD–100
DEFINE TOKEN . CD–103
DELETE ADJUSTMENT . CD–108
DELETE ALIAS . CD–109
DELETE BUFFER . CD–110
DELETE COMMAND . CD–111
DELETE KEY . CD–112
DELETE KEYWORDS . CD–113
DELETE LANGUAGE . CD–114
DELETE LIBRARY . CD–115
DELETE MODULE . CD–117
DELETE OVERVIEW . CD–119
DELETE PACKAGE . CD–120
DELETE PARAMETER . CD–121
DELETE PLACEHOLDER . CD–122
DELETE QUERY . CD–123
DELETE ROUTINE . CD–124
DELETE TAG . CD–125
DELETE TOKEN . CD–126
DELETE WINDOW . CD–127
DO . CD–128
END DEFINE . CD–131
END REVIEW . CD–133
ENLARGE WINDOW . CD–134
ENTER COMMENT . CD–135
ENTER LINE . CD–138
ENTER PSEUDOCODE . CD–141
ENTER SPACE . CD–143
ENTER SPECIAL . CD–144
ENTER TAB . CD–145
ENTER TEXT . CD–146
ERASE CHARACTER . CD–147

v

ERASE LINE . CD–149
ERASE PLACEHOLDER . CD–152
ERASE SELECTION . CD–155
ERASE WORD . CD–156
EXIT . CD–159
EXPAND . CD–161
EXTEND . CD–165
EXTRACT ADJUSTMENT . CD–167
EXTRACT ALIAS . CD–169
EXTRACT KEYWORDS . CD–171
EXTRACT LANGUAGE . CD–173
EXTRACT MODULE . CD–175
EXTRACT PACKAGE . CD–177
EXTRACT PARAMETER . CD–179
EXTRACT PLACEHOLDER . CD–181
EXTRACT ROUTINE . CD–183
EXTRACT TAG . CD–185
EXTRACT TOKEN . CD–187
FILL . CD–189
FIND . CD–192
FOCUS . CD–197
GOTO BOTTOM . CD–198
GOTO BUFFER . CD–199
GOTO CHARACTER . CD–201
GOTO COMMAND . CD–203
GOTO DECLARATION . CD–204
GOTO FILE . CD–207
GOTO LINE . CD–210
GOTO MARK . CD–213
GOTO PAGE . CD–214
GOTO PLACEHOLDER . CD–216
GOTO QUERY . CD–218
GOTO REVIEW . CD–219
GOTO SCREEN . CD–220
GOTO SOURCE . CD–222
GOTO TOP . CD–225
GOTO WORD . CD–226

vi

HELP . CD–228
IMPORT . CD–231
INCLUDE . CD–232
INSPECT . CD–234
LINE . CD–239
LOAD . CD–240
LOWERCASE WORD . CD–242
MODIFY LANGUAGE . CD–243
NEXT BUFFER . CD–251
NEXT ERROR . CD–252
NEXT OCCURRENCE . CD–253
NEXT QUERY . CD–254
NEXT STEP . CD–255
NEXT SYMBOL . CD–256
NEXT WINDOW . CD–257
ONE WINDOW . CD–258
OTHER WINDOW . CD–259
PASTE . CD–260
PREVIOUS BUFFER . CD–262
PREVIOUS ERROR . CD–263
PREVIOUS OCCURRENCE . CD–264
PREVIOUS QUERY . CD–265
PREVIOUS STEP . CD–266
PREVIOUS SYMBOL . CD–267
PREVIOUS WINDOW . CD–268
QUIT . CD–269
QUOTE . CD–270
READ . CD–272
RECALL . CD–274
RECOVER BUFFER . CD–275
REDO . CD–277
REFRESH . CD–278
REORGANIZE . CD–279
REPEAT . CD–280
REPLACE . CD–282
REPORT . CD–284
RESERVE . CD–288

vii

REVIEW . CD–290
SAVE ENVIRONMENT . CD–292
SAVE QUERY . CD–294
SAVE SECTION . CD–296
SEARCH . CD–298
SELECT ALL . CD–304
SET AUTO_ERASE . CD–305
SET CMS . CD–306
SET CURSOR . CD–309
SET DEFAULT_DIRECTORY . CD–310
SET DIRECTORY . CD–312
SET FONT . CD–314
SET FORWARD . CD–316
SET INDENTATION . CD–318
SET INSERT . CD–320
SET JOURNALING . CD–321
SET LANGUAGE . CD–323
SET LEFT_MARGIN . CD–325
SET LIBRARY . CD–327
SET MARK . CD–329
SET MAX_UNDO . CD–330
SET MODE . CD–332
SET MODIFY . CD–335
SET NOAUTO_ERASE . CD–337
SET NOJOURNALING . CD–338
SET NOLANGUAGE . CD–340
SET NOLIBRARY . CD–341
SET NOMODIFY . CD–342
SET NOOUTPUT_FILE . CD–344
SET NOOVERVIEW . CD–346
SET NOSOURCE_DIRECTORY . CD–347
SET NOWRAP . CD–348
SET OUTPUT_FILE . CD–349
SET OVERSTRIKE . CD–351
SET OVERVIEW . CD–352
SET READ_ONLY . CD–353
SET REVERSE . CD–354

viii

SET RIGHT_MARGIN . CD–356
SET SCREEN . CD–358
SET SCROLL_MARGINS . CD–360
SET SEARCH . CD–361
SET SELECT_MARK . CD–363
SET SOURCE_DIRECTORY . CD–364
SET TAB_INCREMENT . CD–366
SET WRAP . CD–367
SET WRITE . CD–368
SHIFT . CD–370
SHOW ADJUSTMENT . CD–371
SHOW ALIAS . CD–372
SHOW BUFFER . CD–374
SHOW CMS . CD–377
SHOW COMMAND . CD–378
SHOW DEFAULT_DIRECTORY . CD–379
SHOW DIRECTORY . CD–380
SHOW KEY . CD–381
SHOW KEYWORDS . CD–383
SHOW LANGUAGE . CD–385
SHOW LIBRARY . CD–387
SHOW MARK . CD–388
SHOW MAX_UNDO . CD–390
SHOW MODE . CD–391
SHOW MODULE . CD–392
SHOW PACKAGE . CD–394
SHOW PARAMETER . CD–396
SHOW PLACEHOLDER . CD–398
SHOW QUERY . CD–400
SHOW ROUTINE . CD–401
SHOW SCREEN . CD–403
SHOW SEARCH . CD–404
SHOW SOURCE_DIRECTORY . CD–405
SHOW SUMMARY . CD–406
SHOW TAG . CD–407
SHOW TOKEN . CD–409
SHOW VERSION . CD–411

ix

SHRINK WINDOW . CD–412
SPAWN . CD–413
SPELL . CD–414
SPLIT WINDOW . CD–415
SUBSTITUTE . CD–416
TAB . CD–420
TOGGLE SELECT_MARK . CD–421
TWO WINDOWS . CD–422
UNDO . CD–424
UNDO ENTER COMMENT . CD–426
UNERASE . CD–427
UNEXPAND . CD–430
UNRESERVE . CD–431
UNTAB . CD–432
UPPERCASE WORD . CD–433
VERIFY . CD–434
VIEW SOURCE . CD–436
WHAT LINE . CD–438
WRITE . CD–439

A Interfacing to DECTPU Procedures

A.1 DECTPU Variables and Procedures . A–1
A.2 Guidelines for User-Written TPU Procedures A–5
A.2.1 Adding User-Written TPU Procedures A–5
A.2.2 DECTPU Programming with Hidden Records in LSE A–6
A.3 Supplemental DECTPU Built-Ins . A–8
A.3.1 LSE$DO_COMMAND (String) . A–8
A.3.2 LSE$GET_ENVIRONMENT(String, Keyword) A–8
A.3.3 GET_INFO(buffer, "language") . A–8
A.3.4 GET_INFO(buffer, "overviews") . A–8
A.3.5 GET_INFO(COMMAND_LINE, item) A–8
A.3.6 LSE$FIND_OPEN_COMMENT (marker) A–10
A.3.7 LSE$FIND_CLOSE_COMMENT (marker) A–10
A.3.8 LSE$IS_OVERVIEW [(marker)] . A–10
A.3.9 LSE$IS_VISIBLE [(marker)] . A–10
A.3.10 LSE$MOVE_HORIZONTAL (integer) A–10
A.3.11 LSE$MOVE_VERTICAL (integer) . A–10
A.3.12 LSE$MOVE_BY_SOURCE (integer) A–10
A.3.13 LSE$MAKE_VISIBLE (marker | range) A–11

x

A.3.14 LSE$NEAREST_VISIBLE (marker) . A–11
A.3.15 LSE$SOURCE_ONLY (range) . A–11
A.3.16 LSE$MOVE_TEXT and LSE$COPY_TEXT

(string | range | buffer) . A–11
A.3.17 SET (LSE$LANGUAGE, buffer, language) A–12
A.3.18 SET (LSE$OVERVIEWS, buffer, on/off) A–12
A.3.19 TPU Built-ins for the SCA Callable Interface A–12

B Language-Specific Information

B.1 HP Fortran . B–1
B.1.1 Token and Placeholder Definitions . B–2
B.1.2 Entering and Erasing Text . B–2
B.1.3 Indentation . B–3
B.2 HP COBOL . B–3

C Packages

C.1 DECTPU Procedures for the Package Facility C–1
C.2 Example Procedures . C–4

D LSE and EVE Commands

E Portable and VMSLSE Commands

F Providing 7-Bit Terminal Support for Code Elision

G TPU Pattern Style

G.1 User Interface . G–2
G.2 Partial Pattern Assignment Variables . G–2
G.3 New Line . G–3
G.4 Errors . G–4
G.5 Global Variables . G–4
G.6 Pattern Variables . G–4
G.7 Use for Developing DTM User Filters . G–5

xi

Index

Tables

1 Conventions Used in This Guide . xv
CD–1 LSE Keynames for the Editing and Auxiliary Keypad CD–69
CD–2 LSE Keynames for Keys on the Main Keyboard CD–70
CD–3 OpenVMS Wildcards . CD–299
CD–4 UNIX Wildcards . CD–300
D–1 Corresponding EVE and LSE Commands D–1
E–1 Portable to VMSLSE Commands . E–2

xii

Preface

This manual contains reference material on the HP Language-Sensitive Editor
for OpenVMS (SCA) and the HP Source Code Analyzer for OpenVMS (SCA).
The LSE commands are in the VMSLSE format, and the SCA commands are
in the VMS format. See the DIGITAL Language-Sensitive Editor Command-
Line Interface and Callable Routines Reference Manual for information on the
VMSLSE, VMS, and Portable command language syntaxes.

Intended Audience
This manual is for experienced programmers, technical writers, and technical
managers.

Document Structure
This manual has a command dictionary and appendixes that contain reference
information. The structure is as follows:

• The Command Dictionary contains an alphabetical list of all the LSE and
SCA commands that are available from command-line mode.

• Appendix A provides information on writing your own DECTPU
procedures.

• Appendix B contains information of interest to HP Fortran and HP COBOL
programmers.

• Appendix C describes how to write your own DECTPU routines for use
with the package facility.

• Appendix D contains a list of the EVE commands with the corresponding
LSE commands.

• Appendix E contains a list of the Portable commands with their equivalent
VMSLSE commands.

xiii

• Appendix F contains information about using the OpenVMS Terminal
Fallback Facility to translate double-angle brackets to single-angle
brackets on 7-bit terminals.

Associated Documents
The following documents might also be helpful when using LSE and SCA:

• See your installation guide for installation instructions for LSE and SCA.

• The HP DECset for OpenVMS Guide to Language-Sensitive Editor
contains tutorial information on using the HP DECset for OpenVMS
Language-Sensitive Editor.

• The Guide to DIGITAL Source Code Analyzer for OpenVMS Systems
contains tutorial information on using the HP DECset for OpenVMS
Source Code Analyzer.

• The DIGITAL Language-Sensitive Editor Command-Line Interface and
Callable Routines Reference Manual contains command-line interface
and callable routine information for the HP DECset for OpenVMS
Language-Sensitive Editor.

• The HP DECset for OpenVMS Source Code Analyzer Command-Line
Interface and Callable Routines Reference Manual contains callable routine
and query information for the HP DECset for OpenVMS Source Code
Analyzer.

• The HP Text Processing Utility Reference Manual describes the HP Text
Processing Utility features, including the high-level procedural language
available for use with LSE.

• Using HP DECset for OpenVMS Systems describes how to use the DECset
products with other OpenVMS software development facilities to create an
effective development environment.

References to Other Products
Some older products that DECset components previously worked with might no
longer be available or supported by HP. Any reference in this manual to such
products does not imply actual support, or that recent interoperability testing
has been conducted with these products.

xiv

Note

These references serve only to provide examples to those who continue
to use these products with DECset.

Refer to the Software Product Description for a current list of the products that
the DECset components are warranted to interact with and support.

Conventions
Table 1 lists the conventions used in this guide.

Table 1 Conventions Used in This Guide

Convention Description

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

Return In interactive examples, a label enclosed in a box
indicates that you press a key on the terminal, for
example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP3 or KP-.

file-spec, ... A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

. . . A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

() In format descriptions, if you choose more than one
option, parentheses indicate that you must enclose the
choices in parentheses.

(continued on next page)

xv

Table 1 (Cont.) Conventions Used in This Guide

Convention Description

[] In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all
of the choices.

{} In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text Boldface text represents the introduction of a new
term.

monospaced boldface text Boldface, monospace text represents user input in
interactive examples.

italic text Italic text represents book titles, parameters,
arguments, and information that can vary in system
messages (for example, Internal error number).

UPPERCASE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

lowercase Lowercase in examples indicates that you are to
substitute a word or value of your choice.

mouse The term mouse refers to any pointing device, such as
a mouse, puck, or stylus.

MB1,MB2,MB3 MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button.

xvi

Command Dictionary

This dictionary describes all the commands for HP Language-Sensitive Editor
(LSE) for OpenVMS, and Source Code Analyzer (SCA) for OpenVMS. Section
1 describes how to enter command mode from your editing session. Section 2
describes how to cancel commands and return to your editing session. Section
3 describes how to execute commands typed into a buffer. Section 4 groups
LSE and SCA commands by function. The remainder of the dictionary contains
the individual command descriptions.

Note that if a section, such as Qualifiers or Parameters, is not applicable to a
specific command, the section does not appear under that command.

1 Executing Commands
As described in the related user guides, all the LSE and SCA commands
described in this manual can be entered at the LSE command line. Invoke
LSE (in either character-cell or DECwindows format) with the LSEDIT
command at the OpenVMS prompt. You have the option of executing a single
command and returning to keypad mode, or executing several commands
without leaving command mode, as follows:

• To execute only one command—Enter command mode by pressing
the Do key, or use the PF1 and COMMAND (KP7) sequence. Type the
command at the LSE Command> prompt and press the Return key. The
command executes and LSE returns to keypad mode. In DECwindows only,
you can also enter command mode by clicking MB1 below the status line.

• To execute several commands—Enter command mode by pressing
Ctrl/Z. Type the first command at the LSE> prompt and terminate the
command string by pressing the Return key. You will still be at the LSE>
prompt after the command executes. Press Ctrl/Z or enter the CONTINUE
command to return to keypad mode.

LSE provides multiple command recall; by using the up and down arrow keys
at the LSE> or LSE Command> prompt, you can recall any of the commands you
entered during your current editing session.

LSE provides two command languages: VMSLSE (the commands described in
this manual) and Portable. See the DIGITAL Language-Sensitive Editor
Command-Line Interface and Callable Routines Reference Manual for
information on setting your default command language and bypassing the
default with individual commands.

Appendix E contains a translation table that lists VMSLSE equivalents to
Portable commands.

Descriptions of Portable commands are available only in online Help. To get
help on Portable commands, execute one of the following commands:

• VMSLSE to Portable translation table

LSE> PLSE HELP VMSLSE_Command_translation_Table

• Top-level Help for Portable commands

LSE> PLSE HELP

CD–3

• List of Portable commands with the same first word

LSE> PLSE HELP SET

This example would generate a window containing a list similar to the
following:

SET ADJUSTMENT COMPRESS
SET ADJUSTMENT COUNT
SET ADJUSTMENT CURRENT
.
.
.

Get Help by moving the cursor to the desired command and pressing the
Return key.

2 Canceling Commands
To cancel a command, press Ctrl/Z in response to a prompt. For example,
pressing Ctrl/Z in response to the Search for: prompt cancels the SEARCH
command. Pressing Ctrl/Z in response to the LSE> or LSE Command> prompt
returns you to keypad editing.

Pressing Ctrl/C while the REPEAT or DO/BUFFER command is executing
terminates that command.

3 Commands in Buffers
You can execute commands that have been typed into a buffer. At the LSE>
prompt, enter the DO command with the /BUFFER qualifier and supply the
name of the buffer containing the commands you want (see the individual
command descriptions for more information).

4 Command Categories
The following lists identify the related LSE and SCA commands and tasks.
For information on a command, see its individual description in the Command
Descriptions section of this manual.

CD–4

4.1 Editing Session Control Commands

ATTACH REPEAT

CONTINUE SET DEFAULT_DIRECTORY

DCL SET FONT

DO SET JOURNALING

EXIT SET MAX_UNDO

GOTO COMMAND SET NOJOURNALING

QUIT SPAWN

RECALL

4.2 Text Manipulation Commands

BOX COPY FILL

BOX CUT LOWERCASE WORD

BOX DRAW PASTE

BOX PASTE QUOTE

BOX LOWERCASE REDO

BOX UPPERCASE SELECT ALL

CANCEL SELECT_MARK SET AUTO_ERASE

CAPITALIZE WORD SET FORWARD

CENTER LINE SET INSERT

CHANGE CASE SET NOAUTO_ERASE

CHANGE DIRECTION SET NOWRAP

CHANGE INDENTATION SET OVERSTRIKE

CHANGE TEXT_ENTRY_MODE SET REVERSE

CUT SET SELECT_MARK

ENTER LINE SET WRAP

ENTER SPACE SPELL

ENTER SPECIAL SUBSTITUTE

ENTER TAB TAB

ENTER TEXT TOGGLE SELECT_MARK

ERASE CHARACTER UNERASE

ERASE LINE UNEXPAND

CD–5

ERASE PLACEHOLDER UNTAB

ERASE SELECTION UPPERCASE WORD

ERASE WORD UNDO

EXPAND

4.3 Entering Source Code Commands

ENTER COMMENT SET LANGUAGE

ENTER PSEUDOCODE SET NOAUTO_ERASE

ERASE PLACEHOLDER SET NOLANGUAGE

EXPAND UNDO ENTER COMMENT

GOTO PLACEHOLDER UNERASE

SET AUTO_ERASE UNEXPAND

4.4 SCA Navigation Commands

EXPAND NEXT SYMBOL

GOTO SOURCE PREVIOUS OCCURRENCE

IMPORT PREVIOUS STEP

NEXT OCCURRENCE PREVIOUS SYMBOL

NEXT STEP UNEXPAND

4.5 SCA Library Commands

ANALYZE REORGANIZE

CONVERT LIBRARY SET LIBRARY

CREATE LIBRARY SET NOLIBRARY

DELETE LIBRARY SHOW LIBRARY

DELETE MODULE SHOW MODULE

EXTRACT MODULE VERIFY

LOAD

4.6 SCA Query Commands

FIND INSPECT

GOTO DECLARATION

CD–6

4.7 Query Session Manipulation Commands

DELETE QUERY PREVIOUS QUERY

GOTO QUERY SHOW QUERY

NEXT QUERY

4.8 Commands for Compiling Source Code and Reviewing Errors

COMPILE NEXT STEP

END REVIEW PREVIOUS ERROR

GOTO REVIEW PREVIOUS STEP

GOTO SOURCE REVIEW

NEXT ERROR

4.9 Indenting Source Code Commands

ALIGN SET TAB_INCREMENT

CHANGE INDENTATION SET WRAP

ENTER TAB TAB

FILL UNTAB

SET INDENTATION

4.10 Cursor Movement Commands

CANCEL MARK GOTO TOP

CHANGE DIRECTION GOTO WORD

GOTO BOTTOM LINE

GOTO MARK SET FORWARD

GOTO PAGE SET MARK

GOTO PLACEHOLDER SET REVERSE

GOTO SCREEN SET SEARCH

GOTO SOURCE

CD–7

4.11 Screen Manipulation Commands

CHANGE WINDOW_MODE OTHER WINDOW

DELETE WINDOW PREVIOUS WINDOW

ENLARGE WINDOW REFRESH

GOTO BUFFER SET SCREEN

GOTO FILE SET SCROLL_MARGINS

GOTO SCREEN SHIFT

GOTO SOURCE SHRINK WINDOW

NEXT WINDOW SPLIT WINDOW

ONE WINDOW TWO WINDOWS

4.12 File and Buffer Manipulation Commands

CHANGE DIRECTION SET INSERT

CHANGE TEXT_ENTRY_MODE SET LEFT_MARGIN

CLOSE BUFFER SET MODIFY

CUT SET NOMODIFY

DELETE BUFFER SET NOOUTPUT_FILE

GOTO BUFFER SET NOSOURCE_DIRECTORY

GOTO FILE SET OUTPUT_FILE

GOTO SOURCE SET OVERSTRIKE

INCLUDE SET READ_ONLY

NEXT BUFFER SET REVERSE

PASTE SET RIGHT_MARGIN

PREVIOUS BUFFER SET SOURCE_DIRECTORY

READ SET TAB_INCREMENT

RECOVER BUFFER SET WRAP

SET DEFAULT_DIRECTORY SET WRITE

SET DIRECTORY SHOW BUFFER

SET FORWARD WRITE

SET INDENTATION

CD–8

4.13 Program Design Commands

COLLAPSE EXTRACT KEYWORDS

DEFINE ADJUSTMENT EXTRACT TAG

DEFINE KEYWORDS FOCUS

DEFINE TAG REPORT

DELETE ADJUSTMENT SET NOOVERVIEW

DELETE KEYWORDS SET OVERVIEW

DELETE TAG SHOW ADJUSTMENT

ENTER COMMENT SHOW KEYWORDS

ENTER PSEUDOCODE SHOW TAG

EXPAND UNDO ENTER COMMENT

EXTRACT ADJUSTMENT VIEW SOURCE

4.14 Commands for Tailoring the Environment

CALL DELETE PLACEHOLDER

CHECK LANGUAGE DELETE ROUTINE

DEFINE ADJUSTMENT DELETE TAG

DEFINE ALIAS DELETE TOKEN

DEFINE COMMAND DO

DEFINE KEY END DEFINE

DEFINE KEYWORDS EXTEND

DEFINE LANGUAGE EXTRACT ADJUSTMENT

DEFINE PACKAGE EXTRACT ALIAS

DEFINE PARAMETER EXTRACT KEYWORDS

DEFINE PLACEHOLDER EXTRACT LANGUAGE

DEFINE ROUTINE EXTRACT PACKAGE

DEFINE TAG EXTRACT PARAMETER

DEFINE TOKEN EXTRACT PLACEHOLDER

DELETE ADJUSTMENT EXTRACT ROUTINE

DELETE ALIAS EXTRACT TAG

DELETE COMMAND EXTRACT TOKEN

DELETE KEY MODIFY LANGUAGE

CD–9

DELETE KEYWORDS SAVE ENVIRONMENT

DELETE LANGUAGE SAVE SECTION

DELETE PACKAGE SET MODE

DELETE PARAMETER SET SEARCH

4.15 Help and Status Commands

HELP SHOW MODULE

SHOW ADJUSTMENT SHOW PACKAGE

SHOW ALIAS SHOW PARAMETER

SHOW BUFFER SHOW PLACEHOLDER

SHOW CMS SHOW QUERY

SHOW COMMAND SHOW ROUTINE

SHOW DEFAULT_DIRECTORY SHOW SCREEN

SHOW DIRECTORY SHOW SEARCH

SHOW KEY SHOW SOURCE_DIRECTORY

SHOW KEYWORDS SHOW SUMMARY

SHOW LANGUAGE SHOW TAG

SHOW LIBRARY SHOW TOKEN

SHOW MARK SHOW VERSION

SHOW MAX_UNDO WHAT LINE

SHOW MODE

4.16 CMS Commands

CMS SET CMS

REPLACE SHOW CMS

RESERVE UNRESERVE

CD–10

Command Descriptions

This section describes the LSE and SCA commands in alphabetical order. To
aid in differentiating these commands, the following notations appear under
the command name:

Notation Explanation

No notation LSE standalone commands.

SCA Command SCA standalone commands. These commands are valid any time
you are using SCA, whether or not you are using LSE.

SCA Required LSE commands that are valid only if you are using SCA with
LSE.

In describing DECwindows menu equivalents for commands, the following
terms are used:

Term Description of action

Button To activate, press MB1 on an item.

Pop-up menu To activate, press MB2 on the first path item; follow the path
while holding down MB2.

Pull-down menu To activate, press MB1 on the first path item; follow the path
while holding down MB1.

Note

LSE follows the quoting rules of the HP Command Language (DCL).
All references to quoted strings mean that LSE expects double
quotation marks (").

In the command descriptions that follow, the defaults for qualifiers are
indicated by (D).

@ (file-specification)
SCA Command

@ (file-specification)

Allows the execution of SCA commands contained in a specified file.

Format

@ (file-specification)

Description

The use of command files containing query definitions allows a common set of
queries to be used interactively in different SCA sessions.

Related Commands

SAVE_QUERY

Example

The following queries could be used to describe all the names that might be
associated with the Year 2000 problem:

$ SCA
SCA> @Y2000
SCA> FIND/OUT=Y2000.LIS @Y2000_QUERY AND OCC=REFERENCE

The command file is also usable in DECwindows mode, as follows:

1. Select Commands/Enter Commands . . .

2. Enter command: SET COMMAND LANGUAGE VMS.

3. Enter command: @y2000.

4. Select Cross Reference Query window.

5. Set the name field to "@y2000_query".

6. Set usage to Reference.

7. Issue the query.

Use the SCA/LSE interface to look at the references found.

CD–13

ALIGN

ALIGN

Aligns comments within the current selected range without performing a fill
operation.

Format

ALIGN

Qualifiers Defaults

/COMMENT_COLUMN= /COMMENT_COLUMN=
CONTEXT_DEPENDENT CONTEXT_DEPENDENT

/COMMENT_COLUMN=number /COMMENT_COLUMN=
CONTEXT_DEPENDENT

Qualifier

/COMMENT_COLUMN=CONTEXT_DEPENDENT (D)
/COMMENT_COLUMN=number
The /COMMENT_COLUMN=CONTEXT_DEPENDENT qualifier specifies that
the comment column should be determined from the context. LSE finds the
first trailing comment in the range, uses the starting position of that comment
as the comment column, and adjusts all subsequent comments to conform with
the first. This is the default.

The /COMMENT_COLUMN=number qualifier specifies the column in which to
align the comments. All trailing comments in the range are aligned with the
specified column number, which must be an integer in the range 1 to 131.

Description

The ALIGN command aligns all trailing comments with a particular column.
The column in which you position the comments can be either explicitly
specified (using the /COMMENT_COLUMN=number qualifier) or based on
context.

This command operates on each line in the range, in sequence. For each line,
LSE checks to see whether the line has a trailing comment. If not, it proceeds
to the next line.

If there is a trailing comment, LSE either inserts or deletes spaces or tabs as
necessary to get the comment to align. If there is no room for the comment
on the line (that is, if the noncommented text extends beyond the comment
column), the comment is aligned one space after the end of the noncommented
text.

CD–14

ALIGN

DECwindows Interface Equivalent

Pull-down menu: Edit � Align

Related Commands

FILL

Example

The following is a sample of commented code:

IF (col >= R_Margin) THEN (* This is the start of a *)
BEGIN (* bracketed comment sequence that *)
VAR x: INTEGER; (* extends over several lines *)

Entering the ALIGN command causes LSE to rearrange the text as follows:

IF (col >= R_Margin) THEN (* This is the start of a *)
BEGIN (* bracketed comment sequence that *)
VAR x: INTEGER; (* extends over several lines *)

CD–15

ANALYZE
SCA Command

ANALYZE

Creates an analysis data file that describes a source file.

Format

ANALYZE file-spec[, . . .]

Qualifiers Defaults

/[NO]DESIGN[=design-option] /NODESIGN
/LANGUAGE=language
/[NO]LOG /LOG
/OUTPUT[=file-spec] /OUTPUT=file-name.ANA

Qualifiers

/DESIGN[=design-option]
/NODESIGN (D)
Indicates that the source file should be processed as a program design
language. The design options are as follows:

Option Description

COMMENTS The ANALYZE command looks inside comments for
design information. Information about comments is
included in the analysis data file. Any errors detected
are reported.

NOCOMMENTS The ANALYZE command ignores comments.
PLACEHOLDERS The ANALYZE command treats LSE placeholders as

valid syntax. Placeholders are reported in the analysis
data file.

NOPLACEHOLDERS The ANALYZE command does not report placeholders
in the .ANA file. It does not report errors if
placeholders are encountered.

If you specify the /DESIGN qualifier, the default is /DESIGN=
(COMMENTS,PLACEHOLDERS). If you do not specify this qualifier, the
default is /NODESIGN.

/LANGUAGE=language
Specifies the language of the source file. By default, the language is
determined by the file type of the source file.

CD–16

ANALYZE
SCA Command

/LOG (D)
/NOLOG
Indicates whether each analyzed file is reported.

/OUTPUT[=file-spec]
/OUTPUT=file-name.ANA (D)
Specifies the analysis data file to be created. The default is
/OUTPUT=filename.ANA, where file-name is the name of the first source file
specified as the parameter to this command.

Parameter

file-spec[, . . .]
Specifies the files to be analyzed. You can use wildcards with the file-spec
parameter. Within LSE, the current buffer is analyzed by default.

Description

The ANALYZE command creates an analysis data file to describe a source
file. The analysis data files produced by this command contain a minimal
description of the source file. These files describe the source file primarily as a
set of references to unbound names.

With the ANALYZE command, you can use SCA with languages not directly
supported by SCA. Do not use this command with those languages that
do support SCA. To identify those languages that support SCA, see the
HP DECset for OpenVMS Source Code Analyzer Command-Line Interface
and Callable Routines Reference Manual or the DECset Software Product
Description (SPD).

The ANALYZE command understands the language-specific rules for forming
names (identifiers), comments, quoted strings, and placeholders. It assumes
that tokens are reserved words, and does not include them in the analysis data
file. It processes placeholders and comments depending on the setting of the
/DESIGN qualifier.

You must have a language defined in an environment file to use the ANALYZE
command with that language. Based on the description of the language in that
file, this command analyzes the source file.

The ANALYZE command uses the LSE environment files to determine the
appropriate language based on the file type, or uses the language specified
with the /LANGUAGE qualifier. It uses the same logical names as LSE,
(LSE$ENVIRONMENT and LSE$SYSTEM_ENVIRONMENT) to access the
environment files.

CD–17

ANALYZE
SCA Command

For information about defining your own language, see the chapter on defining
LSE templates in the Guide to Language-Sensitive Editor for VMS Systems.

The REPORT command requires that LSE be installed even if you are using
this command from the SCA command line.

Related Commands

DEFINE LANGUAGE
LOAD

Examples

1. LSE> ANALYZE/LANGUAGE=EXAMPLE PROG1.EXAMPLE

Produces an analysis data file that describes an EXAMPLE language
source file.

2. LSE> ANALYZE/DESIGN=(NOPLACEHOLDERS) PROG2.SDML

Produces an analysis data file and indicates that the source file should be
processed as a program design language. Placeholders are not reported in
the .ANA file. By default, information about comments are reported. The
language is SDML, as determined by the file type of the source file.

CD–18

ATTACH
SCA Command

ATTACH

Allows you to switch control of your terminal to another process.

Note

This function is not available in DECwindows; any attempt to invoke it
creates an error.

Format

ATTACH [subprocess-name]

Parameter

subprocess-name
Specifies the name of the process to which you want to connect. If you do not
specify a process name, LSE connects you to the parent process.

Description

The ATTACH command switches control of your terminal to another process,
just as the DCL command ATTACH does at the dollar sign ($) prompt. To
return to LSE from another process, use the DCL command ATTACH. Use the
LOGOUT command to return to LSE only from a subprocess.

Related Commands

SPAWN

Example

LSE> ATTACH SMITH_1

Switches control to the process SMITH_1.

CD–19

BOX COPY

BOX COPY

Format

BOX COPY

Description

The BOX COPY command copies the currently selected box to the default
location (i.e. the DECwindows clipboard or the paste buffer).

Example

LSE> BOX COPY

CD–20

BOX CUT

BOX CUT

Format

BOX CUT

Qualifiers

/PAD
Indicates that the area of the cut is to be padded with spaces.

Description

The BOX CUT command moves the currently selected text to the default
location (the DECwindows clipboard or the paste buffer).

Example

LSE> BOX CUT

CD–21

BOX DRAW

BOX DRAW

Format

BOX DRAW

Description

The BOX DRAW command draws a box in the overstrike mode. The box is
drawn using the plus sign (+) for the corners, the vertical bar (|) for the sides
and a hyphen (-) for the top and bottom.

Examples

A selection that includes all the upper case letters (of letter B) is made
using the BOX DRAW command.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

If the BOX DRAW command is issued for the preceding selection, the
following is displayed:

LSE> BOX DRAW

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeee+----------------+IIIIIIIIII
IIIIIIII|BBBBBBBBBBBBBBBB|IIIIIIIIII
IIIIIIII|BBBBBBBBBBBBBBBB|IIIIIIIIII
IIIIIIII+----------------+eeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

CD–22

BOX PASTE

BOX PASTE

Format

BOX PASTE

Qualifiers

/OVERSTRIKE
Indicates that the paste is performed in the overstrike mode, the default
selection is the insert mode.

Description

The BOX PASTE command copies the contents of the default location to a box
with the top left hand corner at the current position.

Examples

A selection that includes all the upper case letters (of letter B) is made
using the BOX PASTE command.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

If the BOX PASTE command is issued for the preceding selection, the
following is displayed:

LSE> BOX PASTE

BBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBB

CD–23

BOX LOWERCASE

BOX LOWERCASE

Format

BOX LOWERCASE

Description

The BOX LOWERCASE command changes the case of the text in the selected
box to lowercase.

Examples

A selection that includes all the upper case letters (of letter B) is made
using the BOX LOWERCASE command.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

If the BOX LOWERCASE command is issued for the preceding selection,
the following is displayed:

LSE> BOX LOWERCASE

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeebbbbbbbbbbbbbbbbbbIIIIIIIIII
IIIIIIIIbbbbbbbbbbbbbbbbbbIIIIIIIIII
IIIIIIIIbbbbbbbbbbbbbbbbbbIIIIIIIIII
IIIIIIIIbbbbbbbbbbbbbbbbbbeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

CD–24

BOX UPPERCASE

BOX UPPERCASE

Format

BOX UPPERCASE

Description

The BOX UPPERCASE command changes the case of the text in the selected
box to uppercase.

Examples

A selection that includes all the lower case letters (of letter b) is made
using the BOX UPPERCASE command.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeebbbbbbbbbbbbbbbbbbIIIIIIIIII
IIIIIIIIbbbbbbbbbbbbbbbbbbIIIIIIIIII
IIIIIIIIbbbbbbbbbbbbbbbbbbIIIIIIIIII
IIIIIIIIbbbbbbbbbbbbbbbbbbeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

If the BOX UPPERCASE command is issued for the preceding selection,
the following is displayed:

LSE> BOX UPPERCASE

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
IIIIIIIIBBBBBBBBBBBBBBBBBBIIIIIIIIII
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

CD–25

CALL

CALL

Calls the specified HP Text Processing Utility (DECTPU) procedure.

Format

CALL DECTPU-procedure-name [additional-parameters]

Parameters

DECTPU-procedure-name
Indicates the name of the DECTPU procedure you want to call.

additional-parameters
Contains information to be passed to the procedure as a single string. The
called procedure must then parse and interpret this string.

Description

The CALL command, in combination with the DEFINE COMMAND command,
provides a means for defining new commands implemented in the DECTPU
language. Because the additional parameters are passed to the called
procedure without being parsed, these commands have a flexible syntax.

Related Commands

DEFINE COMMAND
DO/TPU

CD–26

CALL

Example

The following DECTPU procedure issues a DIRECTORY command from within
LSE:

PROCEDURE dir (dir_params)
! Description:
! Issues a DCL DIRECTORY command in a subprocess. The output is
! written to the DIRECTORY buffer. The DIRECTORY buffer is
! mapped to the current window.
!
! Parameter:
! dir_params - a string beginning with "$". The text following
! the "$" contains parameters and qualifiers to be passed to
! the DIRECTORY command.
! The "$" is used to provide a parameter for the call to
! this procedure when no parameters for the DIRECTORY
! command were specified.
!
LOCAL dir_process, cmd;
IF GET_INFO(dir_buffer, "TYPE") <> BUFFER THEN

dir_buffer := CREATE_BUFFER("DIRECTORY");
SET(NO_WRITE,dir_buffer);

ENDIF;
erase(dir_buffer);

! Build the DIRECTORY command, picking up parameters that were
! passed in.
cmd := ’DIRECTORY ’+SUBSTR(dir_params,2,LENGTH(dir_params)-1);
! Create a subprocess and execute the command.
dir_process := CREATE_PROCESS (dir_buffer, cmd);
lse$do_command(’GOTO BUFFER DIRECTORY’);

DELETE (dir_process);
ENDPROCEDURE

To define this procedure, put it in a buffer and compile it using the DO/TPU
command. To use the procedure, define a command named DIR, as follows:

LSE> DEFINE COMMAND DIR "CALL DIR $"

To get a directory listing, enter your newly defined DIR command, as follows:

LSE> DIR/SIZE/DATE

Note the use of the dollar sign ($) to cause the CALL command to always
invoke the procedure named DIR with a parameter, even if you specify nothing
else on the command line of the command DIR. The dollar sign also prevents
qualifiers on the command DIR from being interpreted as an attempt to place
qualifiers on the DECTPU procedure-name parameter named DIR.

CD–27

CANCEL MARK

CANCEL MARK

Cancels the specified marker set by a SET MARK command.

Format

CANCEL MARK [marker-name]

Parameter

marker-name
Names the marker to be canceled; a wildcard marker name is allowed. If you
do not specify a name for the marker, LSE cancels any marker at the current
cursor position.

Description

The CANCEL MARK command causes LSE to remove the specified marker
from the text and to delete the marker name.

DECwindows Interface Equivalent

Pull-down menu: Navigate � Cancel Mark

Related Commands

SET MARK

Example

LSE> CANCEL MARK 1

Deletes the marker named 1 from the inventory of markers in your current
buffer.

CD–28

CANCEL SELECT_MARK

CANCEL SELECT_MARK

Cancels the selected range of the SET SELECT_MARK command.

Format

CANCEL SELECT_MARK

Description

The CANCEL SELECT_MARK command cancels the effect of the SET
SELECT_MARK command. If a block or range of text is displayed in reverse
video, the CANCEL SELECT_MARK command returns the text to its normal
display.

Keypad Equivalent
Key Keypad Mode

PF1-Keypad period (.)
RESET

EDT LK201, EDT VT100, EVE LK201

PF1-E4 SELECT EVE LK201

Related Commands

SET SELECT_MARK

CD–29

CAPITALIZE WORD

CAPITALIZE WORD

Capitalizes the first letter of the current word, or words, in a selected range.

Format

CAPITALIZE WORD

Description

The CAPITALIZE WORD command capitalizes the first letter of the word
following the cursor, or the word that the cursor is on. If a selected range is
active, all the words within that range are capitalized.

If a word is already in uppercase letters, the command changes all but the
first letter to lowercase. The cursor then moves to the first letter of the word
following the target word or selected range.

DECwindows Interface Equivalent

Pull-down menu: Edit � Capitalize

Related Commands

CHANGE CASE
LOWERCASE WORD
UPPERCASE WORD

CD–30

CENTER LINE

CENTER LINE

Centers the current line between the left and right margins.

Format

CENTER LINE

Description

The CENTER LINE command centers text on the line that the cursor is on.
You can place the cursor anywhere on the line to be centered.

DECwindows Interface Equivalent

Pull-down menu: Edit � Center Line

CD–31

CHANGE CASE

CHANGE CASE

Changes the case of a letter, or letters, in a selected range.

Format

CHANGE CASE

Description

The CHANGE CASE command changes the case of letters.

If you select a range of text by using the SET SELECT_MARK command, the
case of each letter in the selected range changes.

Keypad Equivalent
Key Keypad Mode

PF1-KP1 CHNGCASE EDT LK201, EDT VT100, EVE LK201
None EVE VT100

Related Commands

CAPITALIZE WORD
LOWERCASE WORD
UPPERCASE WORD

CD–32

CHANGE DIRECTION

CHANGE DIRECTION

Changes the current direction of the current buffer between forward and
reverse.

Format

CHANGE DIRECTION

Description

The CHANGE DIRECTION command changes the current direction attribute
of the current buffer. The buffer’s status line indicates whether the current
direction is forward or reverse. The direction affects the operation of
such commands as GOTO, ERASE, SEARCH, SUBSTITUTE, CHANGE
INDENTATION, and CHANGE CASE.

With the DECwindows interface, you can switch directions by moving the
mouse cursor to Forward or Reverse on the status line, then pressing MB1.

Keypad Equivalent
Key Keypad Mode

F11 FORWARD REVERSE EVE LK201, EDT LK201
PF3 FORWARD REVERSE EVE VT100
None EDT VT100

DECwindows Interface Equivalent

Buffer status line:
�

Forward
Reverse

�

Related Commands

SET FORWARD
SET REVERSE

CD–33

CHANGE INDENTATION

CHANGE INDENTATION

Adds or removes leading blanks and tabs from lines.

Format

CHANGE INDENTATION

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/[NO]HOLD /HOLD
/REVERSE /CURRENT

Qualifiers

/CURRENT (D)
Specifies the current direction for the change in indentation.

/FORWARD
Specifies the forward direction for the change in indentation.

/HOLD (D)
/NOHOLD
Specifies whether the selected range is canceled by this command. Use the
/HOLD qualifier to keep the selected range active so you can repeat this
command to make incremental changes in indentation.

/REVERSE
Specifies the reverse direction for the change in indentation.

Description

The CHANGE INDENTATION command adds or removes blanks and tabs
from the line that the cursor is on, and sets the new indentation of the current
line as the current indentation level.

If you select a range of text by using the SET SELECT_MARK command, the
CHANGE INDENTATION command adds or removes blanks and tabs from
each line of text in the selected range.

CD–34

CHANGE INDENTATION

Keypad Equivalent

CHANGE INDENTATION/FORWARD
Key Keypad Mode

PF1-� IND FWD EDT LK201, EDT VT100
PF1-] All

CHANGE INDENTATION/REVERSE
Key Keypad Mode

PF1-� IND REV EDT LK201, EDT VT100
PF1-[All

DECwindows Interface Equivalent

CHANGE INDENTATION
�

/FORWARD
/REVERSE

�

Pull-down menu: Edit � Indentation . . .

Related Commands

ENTER TAB
SET INDENTATION
TAB
UNTAB

CD–35

CHANGE TEXT_ENTRY_MODE

CHANGE TEXT_ENTRY_MODE

Switches the mode of text-entry in the current buffer between insert and
overstrike.

Format

CHANGE TEXT_ENTRY_MODE

Description

The CHANGE TEXT_ENTRY_MODE command switches the mode of the
current buffer between insert and overstrike. The status line displays the
current text-entry mode.

Keypad Equivalent
Key Keypad Mode

F14 INSERT OVERSTR EDT LK201, EVE LK201
Ctrl/A All
ENTER INSERT OVERSTR EVE VT100

DECwindows Interface Equivalent

Buffer status line:

� Insert
Overstrike
Unmodifiable

�

Related Commands

SET INSERT
SET OVERSTRIKE

CD–36

CHANGE WINDOW_MODE

CHANGE WINDOW_MODE

Switches between reducing and increasing the number of windows displayed
on the screen.

Format

CHANGE WINDOW_MODE

Description

The CHANGE WINDOW_MODE command changes the number of windows
displayed on the screen. If the screen has one window, this command creates
a second window. If the screen has two or more windows, the CHANGE
WINDOW_MODE command reduces the screen display to a single window
containing the current buffer.

Keypad Equivalent
Key Keypad Mode

PF1-equal sign (=) All

Related Commands

ONE WINDOW
SET SCREEN WINDOW

CD–37

CHECK LANGUAGE

CHECK LANGUAGE

Analyzes the definitions associated with a language and reports errors.

Format

CHECK LANGUAGE language-name

Qualifiers Defaults

/DEFINITIONS /DEFINITIONS
/HELP_INTERFACE /DEFINITIONS

Qualifiers

/DEFINITIONS (D)
Specifies that the CHECK LANGUAGE command report the following:

• Undefined tokens

• Undefined placeholders

• Unreferenced placeholders

• Package routines with the same name as placeholders

• Package parameters with the same name as tokens

• Parameters defined with the same name in multiple packages

• Routines defined with the same name in multiple packages

• Invalid topic strings

/HELP_INTERFACE
Specifies that the CHECK LANGUAGE command report invalid topic strings.

Parameter

language-name
Specifies the name of the language whose definitions are to be checked.
Wildcards are not permitted.

CD–38

CHECK LANGUAGE

Restrictions

The /DEFINITIONS and /HELP_INTERFACE qualifiers are mutually
exclusive.

Description

The CHECK LANGUAGE command analyzes the definitions associated with a
language. This command detects and reports the following:

• Undefined tokens—An undefined token has not been defined by a DEFINE
TOKEN command, but appears in a menu placeholder body.

• Undefined placeholders—An undefined placeholder has not been defined by
a DEFINE PLACEHOLDER command. It appears in the body of a token,
or in the body of a nonterminal or menu placeholder; or it appears as the
value of a /PLACEHOLDER qualifier on a DEFINE TOKEN or DEFINE
PLACEHOLDER command.

• Unreferenced placeholders—An unreferenced placeholder has been defined
using a DEFINE PLACEHOLDER command. It does not appear in the
body of any token, or in the body of any nonterminal or menu placeholder,
and is not used as the value of a /PLACEHOLDER qualifier on a DEFINE
TOKEN or DEFINE PLACEHOLDER command.

• Package routines with the same name as placeholders—A token name that
is the same as the routine name in a package associated with the language
prevents LSE from accessing the template for the routine.

• Package parameters with the same name as tokens—A placeholder name
that is the same as the parameter name in a package associated with the
language prevents the DECTPU procedure associated with the parameters
for that package from being called to properly define the placeholders for
the parameter. It can cause incorrect behavior and erroneous messages.

• Parameters defined with the same name in multiple packages—A
parameter name that is defined in multiple packages associated with
the language might cause the wrong DECTPU procedure to be called for
the parameter. It can cause incorrect behavior and erroneous messages. A
parameter is not reported as defined in multiple packages if the packages
have been defined with the same DECTPU procedure for parameter
expansion; that is, the same value on the /PARAMETER_EXPAND qualifier
on DEFINE PACKAGE commands.

CD–39

CHECK LANGUAGE

• Routines defined with the same name in multiple packages—A routine that
is defined in multiple packages associated with the language prevents LSE
from accessing some of the routine templates, because it will expand only
the first definition for a routine that it encounters.

• Invalid topic strings—Topic strings are specified as values on the /TOPIC
qualifier on the DEFINE TOKEN and DEFINE PLACEHOLDER
commands. A topic string is invalid if there is no corresponding HELP
text in the HELP library for the language.

If LSE detects any of these conditions, they are reported in the
$CHECK_LANGUAGE buffer, which is displayed in an editing window. You
can use the WRITE command to write the contents of this buffer to a file. If
LSE does not detect any of the conditions listed previously, a success message
is displayed.

Example

$ LSEDIT /NODISPLAY /NOCURRENT_FILE /INITIALIZATION=SYS$INPUT: Return

CHECK LANGUAGE/HELP_INTERFACE my_language Return

WRITE /BUFFER=$CHECK_LANGUAGE CHECK_LANGUAGE.LIS Return

QUIT Return

$

The size and structure (key depth) of the HELP library and the number of
tokens and placeholders that have /TOPIC qualifiers determine the amount
of time required to check the HELP library for the language. This checking
can take a significant amount of time. It may be more convenient to check the
HELP library for a language from a batch procedure.

CD–40

CLOSE BUFFER

CLOSE BUFFER

Writes and deletes the current buffer.

Format

CLOSE BUFFER

Description

The CLOSE BUFFER command writes the buffer, contingent on buffer
attributes and status, then deletes the buffer. If the buffer has the WRITE
attribute, and you have modified the contents of the buffer since they were last
written, LSE first writes the contents of the buffer to its associated file. If a
file is not associated with the buffer, LSE prompts you for a file name.

DECwindows Interface Equivalent

Pop-up menu: User buffer � Close
Pull-down menu: File � Close File

Related Commands

WRITE

CD–41

CMS

CMS

Invokes HP Code Management System (CMS) to enable any valid CMS
command to execute from within LSE.

Format

CMS [cms-command]

Parameter

cms-command
Specifies any valid specification for a CMS command, including valid qualifiers.

Description

The CMS command invokes CMS from within LSE to let you enter any valid
CMS command. To use this command, you must have CMS installed on your
system.

Related Commands

GOTO FILE
GOTO SOURCE
READ
REPLACE
RESERVE
SET CMS
UNRESERVE

Examples

1. LSE> CMS SET LIBRARY DISK$:[USER.CMSLIB]

Sets the specified library as your current CMS library. Thereafter, LSE
file-manipulation commands, such as GOTO FILE, GOTO SOURCE, and
READ, access that library when you enter a SET CMS command.

2. LSE> CMS SHOW RESERVATIONS

Reports on the reservation history of all elements in the library set as your
current CMS library.

CD–42

COLLAPSE

COLLAPSE

Compresses text at the current cursor position.

Format

COLLAPSE

Qualifier Defaults

/DEPTH=n /DEPTH=1

Qualifier

/DEPTH=n
/DEPTH=1 (D)
Compresses the text at the current cursor position up n levels. If you specify
the value ALL, this qualifier compresses the text at the cursor position as
much as possible.

Note that when you use the COLLAPSE command in query buffers, this
command does not support the /DEPTH qualifier.

Description

The COLLAPSE command displays an overview of the text at the current
cursor position. Low-level detail lines are replaced by a single overview line.
The cursor position is recorded before the text is collapsed for use with future
EXPAND commands.

The editor determines the relative level of detail of a line by comparing
the indentation of the line with the indentation of other lines. The editor’s
treatment of the indentation of a line is influenced by indentation adjustment
definitions. For more information, see the DEFINE ADJUSTMENT command.

In an SCA query buffer, if the cursor is positioned on a symbol that has been
expanded, or on an occurrence within an expansion, the COLLAPSE command
causes the occurrences to disappear.

Keypad Equivalent
Key Keypad Mode

Ctrl \ All

CD–43

COLLAPSE

DECwindows Interface Equivalent

COLLAPSE
Pop-up menu: Query buffer � Collapse
Pull-down menu: View � Collapse

COLLAPSE/DEPTH=ALL
Pull-down menu: View � Collapse All

Related Commands

DEFINE ADJUSTMENT
DEFINE LANGUAGE/OVERVIEW_OPTIONS
EXPAND
FOCUS
MODIFY LANGUAGE
SET NOOVERVIEW
SET OVERVIEW
VIEW SOURCE

CD–44

COMPILE

COMPILE

Lets you compile the contents of a buffer without leaving LSE.

Format

COMPILE [command-string]

Qualifier Defaults

/[NO]REVIEW /NOREVIEW

Qualifier

/REVIEW
/NOREVIEW (D)
Tells LSE whether to wait for the spawned subprocess to complete and then to
automatically review any errors reported by the compiler. If you do not specify
this qualifier when compiling, you can use the REVIEW command to display
any errors after compilation.

By default, the COMPILE command completes as soon as compilation starts.
Specifying the /REVIEW qualifier causes the review process to occur as soon as
compilation completes.

Parameter

command-string
Specifies the DCL command line to be executed. If you do not specify a
command string, LSE uses the command string specified in the definition of the
language associated with the current buffer (see the /COMPILE_COMMAND
qualifier of the DEFINE LANGUAGE command).

If you specify a dollar sign ($) as the first argument on the COMPILE
command, LSE replaces the dollar sign with the default COMPILE command.
With this feature, you can append file specifications or command qualifiers to
the default COMPILE command without having to type the entire command
yourself.

If the command string or the string specified on the /COMPILE_COMMAND
qualifier contains LSE$FILE, LSE forms the command used to compile the
buffer by substituting for LSE$FILE the file specification that corresponds
to the buffer. With this feature, you can insert text on the command line
immediately after the file specification and before the /DIAGNOSTICS qualifier.

CD–45

COMPILE

If the COMPILE command does not contain LSE$FILE, LSE appends the file
specification to the string specified on the qualifier.

Description

The COMPILE command compiles the contents of a buffer without leaving
LSE. When you enter this command, LSE writes the current buffer and other
buffers associated with the current language back to their files, if they have
been modified since they were last written. A buffer is not written if it is
designated READ_ONLY.

LSE then forms a DCL command line by appending the file specification of the
current buffer to the command string given on the COMPILE command.

If the current buffer’s language has diagnostic capabilities (see the DEFINE
LANGUAGE/CAPABILITIES command), LSE appends the /DIAGNOSTICS
qualifier to the DCL command it forms, as follows:

/DIAGNOSTICS=current-device:[current-directory]filespec.DIA

LSE then spawns a subprocess to execute the DCL command line.

If you specified the /REVIEW qualifier on the COMPILE command, LSE waits
for the subprocess to finish executing the DCL command. Otherwise, the
COMPILE command completes as soon as the subprocess begins executing the
DCL command.

When the subprocess completes, LSE displays a message in the message buffer.
If you specified the /REVIEW qualifier, LSE enters review mode and reviews
any compilation errors that occurred.

DECwindows Interface Equivalent

Pull-down menu: Source � Compile

Examples

1. LSE> COMPILE $/DEBUG

Compiles the contents of the current buffer. If that buffer is named
PROG.FOR, and the current directory specification is USER$:[SMITH],
then the following DCL command executes:

$ FORTRAN/DEBUG PROG.FOR/DIAGNOSTICS=USER$:[SMITH]PROG.DIA

With this command, suppose you had previously specified the following:

DEFINE LANGUAGE/COMPILE_COMMAND="FORTRAN ’LSE$FILE’+XXX"

CD–46

COMPILE

The DCL command that executes would be as follows:

$ FORTRAN PROG.FOR+XXX/DEBUG /DIAGNOSTICS=USER$:[SMITH]PROG.DIA

2. LSE> COMPILE FORTRAN ’LSE$FILE’+YYY

Compiles the contents of the current buffer. If that buffer is named
PROG.FOR, and the current directory specification is USER$:[SMITH], the
following DCL command executes:

$ FORTRAN PROG.FOR+YYY /DIAGNOSTICS=USER$:[SMITH]PROG.DIA

Note that the /DIAGNOSTICS qualifier is appended to the Fortran com-
mand if you specified that qualifier in the DEFINE LANGUAGE/CAPABILITIES
command.

3. $ OPEN/WRITE X BCOMP.COM
$ WRITE X "$ FORTRAN ",P1," ",P2
$ CLOSE X
$ SUBMIT/NOPRINT/DELETE BCOMP
$ SYNCHRONIZE BCOMP

This example is a command procedure, named FORTBATCH.COM, that
you could submit as a batch job to compile a Fortran program.

To submit this as a batch job to the Fortran compiler, enter the following
command:

LSE> COMPILE @FORTBATCH

If the current buffer is A.FOR and it contains a Fortran program, LSE
writes A.FOR to the disk and spawns a subprocess to execute the following
DCL command:

$ @FORTBATCH A.FOR;2 /DIAGNOSTICS=DISK$:[USER]A.DIA

This causes the FORTBATCH procedure to create the file BCOMP.COM,
which contains the following DCL compilation command:

$ FORTRAN A.FOR;2 /DIAGNOSTICS=DISK$:[USER]A.DIA

The FORTBATCH procedure then submits BCOMP.COM to run in batch
mode.

CD–47

COMPILE

The DCL command SYNCHRONIZE (on the final line of the sample
command procedure) causes the subprocess to wait until the batch
job completes before it returns control to LSE. This is essential if you
are specifying the COMPILE/REVIEW command. LSE considers the
compilation to be completed when the subprocess finishes executing. If you
do not specify the SYNCHRONIZE command upon completion of a batch
job, you cannot use the COMPILE/REVIEW command. However, you can
use the LSE REVIEW command to enter Review mode after the batch job
finishes the compilation.

CD–48

CONTINUE

CONTINUE

Ends command entry and returns control to keypad-mode editing.

Format

CONTINUE

Description

With the CONTINUE command, you can return to keypad editing from the
command prompt. You can also press Ctrl/Z at the LSE> prompt to return to
keypad editing.

Keypad Equivalent

Ctrl/Z, at the LSE> prompt

Related Commands

DO

CD–49

CONVERT LIBRARY
SCA Command

CONVERT LIBRARY

Converts the specified library from Version 3.n format to Version 4.n format.

Format

CONVERT LIBRARY directory-spec1 [directory-spec2]

Parameters

directory-spec1
Specifies the directory specification of the Version 3.n library to be converted.

directory-spec2
Specifies the directory in which the Version 4.n library is to be created. If this
parameter is omitted, the new library is created in the directory specified by
directory-spec1, and the old library is deleted. If this parameter is specified
and is different from directory-spec1, the old library is not deleted.

Description

The CONVERT LIBRARY command converts a Version 3.n library to a format
compatible with Version 4.n. Because Version 4.n libraries can contain much
more information than Version 3.n libraries, it is recommended that you
recompile and load new libraries rather than convert libraries, if possible. This
command does not apply to the OpenVMS Alpha product.

Related Commands

CREATE LIBRARY
LOAD

Example

LSE> SCA CONVERT LIBRARY SCA$:[USER.V3LIB] SCA$:[USER.V4LIB]

Uses the existing library [USER.V3LIB] to create a new Version 4.n library
named [USER.V4LIB].

CD–50

CREATE LIBRARY
SCA Command

CREATE LIBRARY

Allocates and initializes OpenVMS library files in a specified directory. The
new library then becomes an active SCA library.

Format

CREATE LIBRARY directory-spec[, . . .]

Qualifiers Defaults

/AFTER=[library-spec]
/BEFORE=[library-spec]
/[NO]LOG /LOG
/MODULES=module-count /MODULES=25
/[NO]REPLACE /NOREPLACE
/SIZE=block-count /SIZE=1000

Qualifiers

/AFTER=[library-spec]
Instructs SCA to insert the new library or libraries into the list of active SCA
libraries following the library you specify as the value of the qualifier. If you
do not specify a value, SCA adds the library or libraries to the end of the list.

/BEFORE=[library-spec]
Instructs SCA to insert the new library or libraries into the list of active SCA
libraries in front of the library you specify as the value of the qualifier. If you
do not specify a value, SCA adds the library or libraries to the beginning of the
list.

/LOG (D)
/NOLOG
Indicates whether SCA reports the successful creation of a library and the
resulting list of active libraries.

/MODULES=module-count
/MODULES=25 (D)
Specifies an estimated number of modules in the library.

/REPLACE
/NOREPLACE (D)
Indicates whether LSE replaces an existing library with a new (empty) library.

CD–51

CREATE LIBRARY
SCA Command

/SIZE=block-count
/SIZE=1000 (D)
Specifies an estimated size for a library.

Parameter

directory-spec[, . . .]
Specifies one or more directories in which library files are to be allocated and
initialized.

Description

The CREATE LIBRARY command initializes a library and defines it as the
active library in your current SCA session. When you subsequently invoke
SCA, it uses the logical name SCA$LIBRARY to reestablish the active library
list.

Related Commands

CONVERT LIBRARY
LOAD
SET LIBRARY

Examples

1. $ SCA CREATE LIBRARY SCA$:[USER.SCA]/REPLACE

Initializes a library in the named directory. SCA replaces the existing
library with empty library files.

2. $ SCA CREATE LIBRARY TOP

Initializes a library in the directory defined by logical name TOP.

For additional examples, see the section about creating a library in the
Guide to Source Code Analyzer for VMS Systems.

CD–52

CUT

CUT

Moves or copies the selected range to the specified buffer.

Format

CUT

Qualifiers Defaults

/[NO]APPEND /NOAPPEND
/BUFFER=buffer-name /BUFFER=$PASTE (D)
/CLIPBOARD See Description
/[NO]ERASE /ERASE
/REPLACE
/SUBSTITUTE

Qualifiers

/APPEND
/NOAPPEND (D)
Indicates whether the moved text should be appended to the current contents
of the receiving buffer, or should replace the current contents of the receiving
buffer.

/BUFFER=buffer-name
/BUFFER=$PASTE (D)
Specifies the buffer to receive the text being moved. If the /REPLACE or
/SUBSTITUTE qualifier is specified, the specified buffer supplies text to
replace text being erased from the current buffer.

/CLIPBOARD
Specifies that the DECwindows clipboard should be used to receive the text
being moved, instead of a buffer. The /CLIPBOARD and /BUFFER qualifiers
are mutually exclusive.

/ERASE (D)
/NOERASE
Specifies whether the moved text should be deleted from the current buffer.
LSE ignores this qualifier if the current buffer is not modifiable.

/REPLACE
Erases the selected text and replaces it with the contents of the specified
buffer.

CD–53

CUT

/SUBSTITUTE
Erases the search string, replaces it with the contents of the buffer specified in
the /BUFFER qualifier, and finds the next occurrence of the string. To use this
qualifier, do the following:

1. Enter the SET SELECT_MARK command (press the SELECT key) at the
command prompt.

2. Type the new text in the buffer.

3. Enter the CUT command (press the CUT or REMOVE key) at the command
prompt. This places the text in the specified buffer.

4. Enter the SEARCH command (press the FIND key) at the command
prompt, followed by the text you want to search for and replace.

5. Press the ENTER key.

6. Enter the CUT/SUBSTITUTE command (press the SUBS key) at the
command prompt.

Subsequently, each time you enter the CUT/SUBSTITUTE command, LSE
makes one substitution and finds the next occurrence of the search string.

Description

The CUT command removes or copies text within the selected range and moves
it into a designated buffer or default location (the DECwindows Clipboard
or character-cell $PASTE buffer). The selected range is the text between the
select marker (see the SET SELECT_MARK command) and the current cursor
position. If no select marker has been set and the cursor is positioned on the
current search string, that string is moved to the buffer.

The /REPLACE and /SUBSTITUTE qualifiers are mutually exclusive; also,
these qualifiers cannot be used in conjunction with the /APPEND and /ERASE
qualifiers.

For users of the DECwindows interface, the default setting is /CLIPBOARD;
otherwise, the default is /BUFFER=$PASTE.

CD–54

CUT

Keypad Equivalent

CUT
Key Keypad Mode

KP6 CUT EVE LK201, EDT LK201, EDT VT100
E3 REMOVE EDT LK201, EVE LK201
KP8 REMOVE EVE VT100

CUT/APPEND
Key Keypad Mode

KP9 APPEND EDT LK201, EDT VT100, EVE LK201
None EVE VT100

CUT/NOERASE
Key Keypad Mode

PF1-/E3 COPY EDT LK201, EVE LK201

CUT/REPLACE
Key Keypad Mode

PF1-KP9 REPLACE EDT LK201, EDT VT100, EVE LK201
None EVE VT100

CUT/SUBSTITUTE
Key Keypad Mode

PF1-Enter SUBS EDT LK201, EDT VT100, EVE LK201
None EVE VT100

DECwindows Interface Equivalent

CUT/CLIPBOARD
Pop-up menu: User buffer � Cut
Pull-down menu: Edit � Cut

CUT/NOERASE/CLIPBOARD
Pop-up menu: User buffer � Copy
Pull-down menu: Edit � Copy

CD–55

CUT

Related Commands

PASTE
SET SELECT_MARK
SUBSTITUTE

Example

LSE> CUT/BUFFER=TEMP.TXT

Places the text being moved in the buffer TEMP.TXT.

CD–56

DCL

DCL

Executes a DCL command from within your editing session.

Format

DCL dcl-command

Parameter

dcl-command
Specifies the DCL command to be executed. If you do not specify a command,
LSE prompts for one. Pressing Ctrl/Z at the prompt cancels the operation.

LSE splits the window to show the DCL buffer. You can edit the DCL buffer to
move the output from the DCL command into another buffer. You can use the
ONE WINDOW command to remove the DCL window.

Description

The LSE command DCL executes a DCL command from within your editing
session. LSE spawns a subprocess for the DCL command you specify and
creates a buffer named DCL to contain the output from the command.

Example

LSE> DCL DIRECTORY *.TXT

Splits the screen and displays the DCL command DIRECTORY and its output
(the directory listing) in the second window. The cursor remains in the first
window.

CD–57

DEFINE ADJUSTMENT

DEFINE ADJUSTMENT

Defines the behavior of the LSE viewing commands on individual lines of a
source file.

Format

DEFINE ADJUSTMENT adjustment-name [pattern]

Qualifiers Defaults

/[NO]COMPRESS /COMPRESS
/[NO]COUNT /COUNT
/CURRENT=number /CURRENT=0
/[NO]INHERIT=inherit-keyword /NOINHERIT
/LANGUAGE=language-name Current buffer language
/[NO]OVERVIEW /OVERVIEW
/[NO]PREFIX=(indentation-value,

adjustment-value) /NOPREFIX
/SUBSEQUENT=number /SUBSEQUENT=0
/[NO]UNIT /NOUNIT

Qualifiers

/COMPRESS (D)
/NOCOMPRESS
Avoids compressing groups and overrides indentation. If a group of lines begins
with a /NOCOMPRESS line, the group is never compressed.

/COUNT (D)
/NOCOUNT
Controls whether the matching line contributes to the line count for the group.
When determining whether to form a group, the line count is compared with
the minimum_lines value for the language.

See the description for DEFINE LANGUAGE/OVERVIEW_OPTIONS=
MINIMUM_LINES.

/CURRENT=number
/CURRENT=0 (D)
Adjusts the indentation of the current line. If a buffer line matches an
adjustment defined with the /CURRENT qualifier, the indentation of the buffer
line is adjusted by the number of columns given as the qualifier value. A
positive value causes the indentation to be adjusted to the right; a negative
value causes the indentation to be adjusted to the left. For example, DEFINE

CD–58

DEFINE ADJUSTMENT

ADJUSTMENT then /CURRENT=1 means ‘‘Adjust each line that begins with
the word ’then’ one column to the right.’’

See the DEFINE LANGUAGE/OVERVIEW_OPTIONS=TAB_RANGE
description.

/INHERIT=inherit-keyword
/NOINHERIT (D)
Specifies that the indentation for the current line is taken from the adjusted
indentation of another line.

You can specify one of the following keywords to determine the indentation of
the current line:

Keyword Description

MAXIMUM The visible indentation for the current line is taken from the
adjusted indentation of either the previous line or the next
line, whichever is larger.

MINIMUM The visible indentation for the current line is taken from the
adjusted indentation of either the previous line or the next
line, whichever is smaller.

NEXT The visible indentation for the current line is taken from the
adjusted indentation of the next line.

PREVIOUS The visible indentation for the current line is taken from the
adjusted indentation of the previous line.

You cannot specify the /INHERIT qualifier with either the /PREFIX or
/SUBSEQUENT qualifier.

/LANGUAGE=language-name
Specifies the language associated with the indentation adjustment. By default,
the new adjustment is associated with the language for the current buffer.
If there is no language associated with the current buffer, the /LANGUAGE
qualifier is required.

/OVERVIEW (D)
/NOOVERVIEW
Controls whether the text of the line is used as the overview line. If a line
matches an adjustment defined with the /NOOVERVIEW qualifier, the text of
the line is never used as the overview text for compressed lines. Instead, text
from a later line is used as the overview text. The /NOOVERVIEW qualifier is
used to prevent uninformative text from appearing in overview lines.

CD–59

DEFINE ADJUSTMENT

/PREFIX=(indentation-value, adjustment-value)
/NOPREFIX (D)
Provides a way to skip a pattern at the beginning of a line to determine
indentation or influence adjustment. The /PREFIX qualifier takes the following
pair of values:

indentation-value
adjustment-value

The indentation-value is one of the following keywords:

• CURRENT—Instructs LSE to use the indentation of the first text in the
pattern—the beginning of the prefix.

• FOLLOWING—Instructs LSE to use the indentation of the text that
follows the prefix. If there is no text after the prefix, use the indentation of
the prefix.

The adjustment-value is one of the following keywords:

• CURRENT—Instructs LSE to use the adjustment qualifier values given
on the current definition.

• FOLLOWING—Instructs LSE to use the adjustment qualifier values from
the definition that matches the text following the prefix. If no text follows
the prefix on the current line, LSE uses the qualifier values for a blank
line. If /PREFIX has an adjustment value of FOLLOWING, other action
qualifiers on the definition are ignored.

The combination (CURRENT,CURRENT) is not useful because it causes both
the indentation and the adjustments to be taken from the text at the beginning
of the pattern. This is the same as having no prefix at all.

You cannot specify the /PREFIX qualifier with the /INHERIT qualifier.

/SUBSEQUENT=number
/SUBSEQUENT=0 (D)
Adjusts the indentation of lines after the current line. If a buffer line matches
an adjustment defined with the /SUBSEQUENT qualifier, the indentation of
all lines after the given one are adjusted by the number of columns given as
the qualifier value. A positive value causes the indentation to be adjusted to
the right; a negative value causes the indentation to be adjusted to the left.

Use the /SUBSEQUENT qualifier for language constructs that denote nesting
and have well-defined endpoints. Use a positive value at the beginning of the
construct and a negative value at the end.

You cannot specify the /SUBSEQUENT qualifier with the /INHERIT qualifier.

CD–60

DEFINE ADJUSTMENT

/UNIT
/NOUNIT (D)
Treats consecutive lines as a single unit. If consecutive lines in the buffer
match adjustments defined with the /UNIT qualifier and have the same
adjusted indentation, the sequence of lines is treated as one group, with the
first serving as the overview line. It is not required that all elements of the
group match the same adjustment definition; it is only required that the /UNIT
qualifier be specified on all the definitions.

Parameters

adjustment-name
Specifies the name of the adjustment being defined.

pattern
Specifes the string that LSE compares against source lines. If no pattern is
used, the adjustment-name parameter is used. For details about the syntax for
pattern strings, see the section about pattern-matching rules in the Guide to
Language-Sensitive Editor for VMS Systems.

Pattern strings match any string that you can specify directly on the command
line. Strings with special characters must be enclosed in quotes (‘‘ ’’).
Regardless of whether the string is quoted, the comparison is case-insensitive.
You must use the ‘‘$()’’ convention to enclose named pattern elements.

Definitions with literal strings take precedence over definitions with predefined
patterns.

The following patterns are predefined:

• COLUMN=(first-column[,last-column])—Limits the column in which
the text can start.

You can specify either the first column, or both the first and last columns.
If you specify both the first and last columns, you must enclose the column
values in parentheses. If you do not specify the last column, it takes its
default from the first column.

• IDENTIFIER—Matches a sequence of identifier characters.

• LINE_END—Matches the end of a line, optionally preceded by white
space.

• OPTIONAL_SPACE—Matches any sequence of spaces and tabs.

• FORMFEED—Matches a form-feed character.

• FORTRAN_COMMENT—Matches only Fortran comment lines.

CD–61

DEFINE ADJUSTMENT

• FORTRAN_FUNCTION— Matches the first line of any Fortran function
subprogram. That is defined to be any line that matches the following
pattern:

type [*number] FUNCTION

where

type :== BYTE
| LOGICAL
| INTEGER
| REAL
| DOUBLE PRECISION
| COMPLEX
| DOUBLE COMPLEX
| CHARACTER

NUMBER :== {DIGIT}...
| (*)

• PREFIX—The preceding part of the pattern is a prefix.

• NUMBER—Matches any sequence of digits. White space cannot
appear between digits. In the case of a match with both NUMBER
and IDENTIFIER, NUMBER takes precedence.

Description

The DEFINE ADJUSTMENT command defines the behavior of the LSE
viewing commands on individual lines of a source file. With the DEFINE
ADJUSTMENT command, you can modify the behavior of overviews to match
your formatting conventions. You can save DEFINE ADJUSTMENT commands
in your environment file.

Related Commands

COLLAPSE
DEFINE LANGUAGE/OVERVIEW_OPTIONS
DELETE ADJUSTMENT
EXPAND
EXTRACT ADJUSTMENT
FOCUS
SHOW ADJUSTMENT
VIEW SOURCE

CD–62

DEFINE ADJUSTMENT

Examples

1. LSE> DEFINE ADJUSTMENT then /CURRENT=1

Adjusts each line that starts with the word then one column to the right.

2. LSE> DEFINE ADJUSTMENT "$(identifier):" /INHERIT=NEXT

Specifies that a line starting with any identifier followed by a colon takes
the indentation from the following line.

CD–63

DEFINE ALIAS

DEFINE ALIAS

Lets you assign an abbreviated sequence of characters to represent a longer
string of text. You can then use the EXPAND command to produce the longer
string each time the cursor is at the end of the abbreviated sequence.

Format

DEFINE ALIAS alias-name [value]

Qualifiers Defaults

/INDICATED
/LANGUAGE=language-name

Qualifiers

/INDICATED
Instructs LSE to interpret the contiguous sequence of characters before and
after the cursor as the alias (long form) for an alias name (short form) that
you supply. To specify which characters are valid in an alias name for the
language you are using, enter a DEFINE LANGUAGE command with the
/IDENTIFIER_CHARACTERS qualifier.

When you use the /INDICATED qualifier, you must not specify the value
parameter.

/LANGUAGE=language-name
Specifies the language associated with the alias. The default is the language
for the current buffer.

Parameters

alias-name
Specifies the name to be defined as an alias. The characters in the alias
name must be in the /IDENTIFIER_CHARACTERS string in the DEFINE
LANGUAGE command.

value
Specifies a quoted string. When you expand the alias, LSE replaces the alias
name with the string given by the value parameter. You must not use a value
parameter if you specify the /INDICATED qualifier.

CD–64

DEFINE ALIAS

Description

With the DEFINE ALIAS command, you can use a shortened name to generate
a string of text. You can specify an identifier at the current cursor position as
the text you want to generate. After you define an alias name, you can type
the alias and then enter the EXPAND command; the text you have assigned to
that alias is then displayed.

Keypad Equivalent

DEFINE ALIAS/INDICATED
Key Keypad Mode

PF1-Ctrl/A All

Related Commands

DEFINE LANGUAGE
EXPAND

Example

LSE> DEFINE ALIAS/LANGUAGE=FORTRAN lse "The HP Language-Sensitive Editor"

Causes the quoted string to appear when you type lse and then enter the
EXPAND command when you are in the Fortran language environment.

See the section about defining an alias in the Guide to Language-Sensitive
Editor for VMS Systems for additional examples.

CD–65

DEFINE COMMAND

DEFINE COMMAND

Defines a user command or an abbreviation for an LSE command.

Format

DEFINE COMMAND command-name value-string

Parameters

command-name
Specifies the name to be defined as a command. A command name can contain
up to 255 characters, but must begin with a letter, an underscore, or a dollar
sign. After the first character, you can use any combination of alphanumeric
characters, underscores, or dollar signs.

value-string
Specifies a quoted string containing an LSE command or the leading portion of
an LSE command.

Description

With the DEFINE COMMAND command, you can define your own commands
or specify an abbbreviation for an LSE command. Before the command
executes, LSE substitutes the specified value string for the command name.

To define a command for a sequence of commands, use the DO command inside
the value string.

Related Commands

CALL
DO

Example

LSE> DEFINE COMMAND CLS "DO/TPU ""ERASE(CURRENT_BUFFER)"""

Associates the command name CLS with the command DO/TPU
‘‘ERASE(CURRENT_BUFFER)’’. After entering this command, whenever you
type CLS at the command prompt, LSE uses DECTPU to clear all text from
the current buffer.

CD–66

DEFINE KEY

DEFINE KEY

Binds an LSE command to a key.

Format

DEFINE KEY key-specifier string

Qualifiers Defaults

/DIALOG
/[NO]IF_STATE=GOLD /NOIF_STATE
/LEARN
/LEGEND=string See text
/REMARK=(string, . . .)
/STATE=GOLD
/TOPIC_STRING=string /TOPIC_STRING=no_topic

Qualifiers

/DIALOG
Specifies that a dialog box should be used to prompt the user for parameters
and qualifier values. The command parameters are optional if this qualifier
is specified. If command parameters and qualifiers are specified with the
/DIALOG qualifier, the parameters and qualifiers are used to set the initial
state of the dialog box.

/IF_STATE=GOLD
/NOIF_STATE (D)
Specifies that the key definition applies only to the GOLD (PF1) state.

/LEARN
Indicates that a sequence of keystrokes, called a learn sequence, defines
the command to be bound to a key. You must type the keystroke sequence
immediately after the command and end the sequence by specifying the END
DEFINE command. If you are using the EVE keypad, Ctrl/R is bound to the
END DEFINE command by default. However, you do not have to define a key
to be the END DEFINE command to use the DEFINE KEY/LEARN command.
When LSE records the learn sequence, the key being defined by the DEFINE
KEY/LEARN command binds to the END DEFINE command. Therefore, you
can press the key that you are defining to end the learn sequence.

When executing the stored sequence, LSE includes your responses to all
prompts, but does not prompt you again for such information as the string for
a SEARCH command.

CD–67

DEFINE KEY

You cannot use a learn sequence to enter a key definition while another key is
in the process of being defined by another learn sequence.

/LEGEND=string
/LEGEND=?
Specifies the text that appears in the keypad diagram for this key. The string
is centered in the figure for the key, or truncated if the string is too long for the
figure.

If you do not specify the /LEGEND qualifier with a string, the default is
/LEGEND=?.

/REMARK=(string, . . .)
Specifies the explanatory text displayed when you enter a SHOW KEY/FULL
command.

/STATE=GOLD
Moves the functionality of the GOLD (PF1) key to the named key. You cannot
specify the string parameter with the /STATE=GOLD qualifier.

/TOPIC_STRING=string
/TOPIC_STRING=no_topic (D)
Specifies the string that the editor uses to retrieve help text for this key for
display through the HELP /KEYPAD command.

If you do not specify a string with the /TOPIC_STRING qualifier, the default is
/TOPIC_STRING=no_topic.

Parameter

key-specifier
Specifies a keyword that indicates the key to be defined. If you use the
DEFINE KEY command to change the definition of a key that was previously
defined, LSE does not save the previous definition.

Table CD–1 lists the LSE keynames and their VT200-type (or higher) and
VT100-type counterparts for the editing and auxiliary keypad. Table CD–2
lists the LSE keynames and their VT200-type (or higher) and VT100-type
counterparts for the main keyboard keys.

As an alternative to using the /IF_STATE=GOLD qualifier, the key-specifier
parameter accepts keynames prefixed with GOLD/. In addition, you can specify
control keys as Ctrl/x, where x is an alphabetic character (A through Z).

CD–68

DEFINE KEY

string
Specifies an LSE command to be executed when the key is pressed. This is a
required parameter unless you use the /LEARN qualifier; you cannot use the
string parameter with either the /LEARN or /STATE=GOLD qualifier.

Table CD–1 LSE Keynames for the Editing and Auxiliary Keypad

Keyname VT200-Type(or higher) VT100-Type

PF1 PF1 PF1
PF2 PF2 PF2
PF3 PF3 PF3
PF4 PF4 PF4
KP0,KP1, . . . ,KP9 KP0,KP1, . . . ,KP9 KP0, KP1, . . . ,KP9
PERIOD Keypad period (.) Keypad period (.)
COMMA Keypad comma (,) Keypad comma (,)
MINUS Keypad minus (–) Keypad minus (–)
ENTER Enter Enter
UP � �

DOWN � �

LEFT � �

RIGHT � �

E1 Find/E1
E2 Insert Here/E2
E3 Remove/E3
E4 Select/E4
E5 Prev Screen/E5
E6 Next Screen/E6
HELP Help/F15
DO Do/F16
F7,F8, . . . ,F20 F7,F8 . . . ,F20

CD–69

DEFINE KEY

Table CD–2 LSE Keynames for Keys on the Main Keyboard

Keyname VT200-Type(or higher) VT100-Type

TAB_KEY Tab Tab
RET_KEY Return Return
DEL_KEY <x Delete
LF_KEY LF/F13 Line feed
BS_KEY BS/F12 Backspace
SPACE_KEY Space bar Space bar
CTRL_A_KEY Ctrl/A Ctrl/A
CTRL_B_KEY Ctrl/B Ctrl/B
. . .
. . .
. . .
CTRL_Z_KEY Ctrl/Z Ctrl/Z
NULL_KEY Ctrl/Space bar Ctrl/Space bar
FS_KEY Ctrl/\ Ctrl/\
GS_KEY Ctrl/] Ctrl/]
RS_KEY Ctrl/~ Ctrl/~
US_KEY Ctrl// Ctrl//

If you want to define a key to be lowercase, you must put the key specifier in
lowercase and in quotes. However, GOLD and Ctrl sequences are not case-
sensitive. For example, Ctrl/A and Ctrl/a produce the same results. Also,
GOLD/A is the same as GOLD/a.

The following combinations of the Ctrl key and keyboard keys can be defined,
but unless your terminal has the PASSALL characteristic set, you cannot
execute your definitions of these keys:

Ctrl/C Ctrl/O Ctrl/Q Ctrl/S
Ctrl/T Ctrl/X Ctrl/Y

If the following combinations of the Ctrl key and keyboard keys are redefined,
the new definition also affects the keyboard key corresponding to that
combination. For example, if Ctrl/I is redefined, the TAB key also assumes
that new definition.

CD–70

DEFINE KEY

Combination Description

Ctrl/I Tab
Ctrl/M Carriage return
Ctrl/J Line feed
Ctrl/H Backspace

If the first key pressed in response to the (Key:) prompt is a key that does
not correspond to a printing key character, LSE echoes the corresponding
keyname. Tables CD–1 and CD–2 list keys that do not correspond to a
printable character.

If the first key pressed is the GOLD key, LSE waits for you to press a second
key. LSE then echoes the key specifier for the key sequence. For example, if
you press the GOLD key and then press the P key, LSE echoes GOLD/P.

Only the first key you press in response to the prompt (or the first two keys
if the GOLD key is first) is handled in this special way. Subsequent input to
the prompt is treated as though you typed in the text that LSE echoes. Ctrl/C,
Ctrl/Z, and the Return key required to end the input line are all handled in
this way. Erasing all the text at the prompt (using Ctrl/U or the DELETE
command) causes LSE to interpret the next key input as the first key.

Description

The DEFINE KEY command associates an LSE command with a key. You can
bind commands to control keys, numeric keypad keys, and the arrow keys on
all keyboards. You can also bind a command to the sequence of the GOLD key
followed by any keyboard key, where the GOLD key is the key defined to set
the GOLD state (usually PF1). (On the VT200-series (or higher) keyboard, you
can also bind to the function (F) keys and the keys on the editing keypad.)

The HELP/KEYPAD command uses the values of the /LEGEND and /TOPIC
qualifiers to build a keypad diagram for the keypad keys and to access help
text for the keys. The SHOW KEY/FULL command displays the strings
associated with the /LEGEND, /TOPIC_STRING, and /REMARK qualifiers.

The effect of a key can vary with its context. The DEFINE KEY command
provides only for definitions for keys that are used in the work region.

CD–71

DEFINE KEY

DECwindows Interface Equivalent

DEFINE KEY/DIALOG
Pull-down menu: Show � Show Key *

Related Commands

END DEFINE

Example

LSE> DEFINE KEY "GOLD/KP5" "GOTO TOP"

If the PF1 key sets the GOLD state, then the key sequence PF1-KP5 always
issues a GOTO TOP command after you assign this definition.

See the section about defining keys in the Guide to Language-Sensitive Editor
for VMS Systems for additional examples.

CD–72

DEFINE KEYWORDS

DEFINE KEYWORDS

Defines the specified keyword list.

Format

DEFINE KEYWORDS keyword-list-name

keyword [/DESCRIPTION=text]

.

.

.

keyword [/DESCRIPTION=text]

END DEFINE

Qualifier Defaults

/DESCRIPTION=text

Qualifier

/DESCRIPTION=text
Indicates the text to be associated with the individual keyword.

Parameters

keyword-list-name
Identifies the keyword list. The name must follow the rules applied to token
names in LSE. You can then use the name as the value you specify for
the /KEYWORDS qualifier to the DEFINE TAG command, as well as the
parameter for the DELETE KEYWORDS, EXTRACT KEYWORDS, and SHOW
KEYWORDS commands.

keyword
Names an individual keyword. Each keyword on the list must appear on a
line by itself. You cannot use continuation characters between the lines for
each keyword, but you can use a continuation character between a particular
keyword and its associated qualifier.

CD–73

DEFINE KEYWORDS

Related Commands

DEFINE TAG
DELETE KEYWORDS
EXTRACT KEYWORDS
SHOW KEYWORDS

Example

DEFINE KEYWORDS author_names
"Pat Jones" /DESCRIPTION="Project Leader"
"Chris Brown"
"Leslie Green"

END DEFINE

Creates a keyword list named author_names and lists the individual names.

CD–74

DEFINE LANGUAGE

DEFINE LANGUAGE

Specifies the characteristics of a language.

Format

DEFINE LANGUAGE language-name

Qualifiers Defaults

/BOOK=file-spec, defined_language
/CAPABILITIES=[NO]DIAGNOSTICS /CAPABILITIES=NODIAGNOSTICS
/COMMENT=(specifier, . . .)
/COMPILE_COMMAND=string
/EXPAND_CASE=AS_IS /EXPAND_CASE=AS_IS
/EXPAND_CASE=LOWER /EXPAND_CASE=AS_IS
/EXPAND_CASE=UPPER /EXPAND_CASE=AS_IS
/FILE_TYPES=(file-type[, . . .])
/FORTRAN=[NO]ANSI_FORMAT /FORTRAN=NOANSI_FORMAT
/[NO]HELP_LIBRARY=file-spec /NOHELP_LIBRARY
/IDENTIFIER_CHARACTERS=string
/INITIAL_STRING=string
/LEFT_MARGIN=n /LEFT_MARGIN=1
/LEFT_MARGIN=CONTEXT_DEPENDENT
/OVERVIEW_OPTIONS=(MINIMUM_LINES=m,

TAB_RANGE=(t1,t2))
/PLACEHOLDER_DELIMITERS=

(delimiter-specification[, . . .]) See text
/PUNCTUATION_CHARACTERS=string /PUNCTUATION_CHARACTERS=",;()"
/[NO]QUOTED_ITEM=(QUOTES=string

[,ESCAPES=string]) /NOQUOTED_ITEM
/REFERENCE=book reference, defined_language
/RIGHT_MARGIN=n /RIGHT_MARGIN=80
/TAB_INCREMENT=n /TAB_INCREMENT=4
/TOPIC_STRING=string
/VERSION=string
/[NO]WRAP /NOWRAP

Qualifiers

/CAPABILITIES=DIAGNOSTICS
/CAPABILITIES=NODIAGNOSTICS (D)
Specifies whether the compiler can generate diagnostic files.

CD–75

DEFINE LANGUAGE

/BOOK=file-spec, defined_language
Specifies the default online-book file name, defining the book LSE uses to
retrieve online text for a placeholder or token whose book is undefined.

/COMMENT=(specifier, . . .)
Specifies the character sequences of comments in the language. The specifiers
are as follows:

• ASSOCIATED_IDENTIFIER=keyword

Indicates the preferred association of comments to identifier. You can
specify one of the following values:

NEXT—Indicates that comments should be associated with the next
identifier.

PREVIOUS—Indicates that comments should be associated with the
preceding identifier.

• BEGIN=list of quoted strings

END=list of quoted strings

Defines the character sequences that start and end bracketed comments.
A bracketed comment begins and ends with explicit comment delimiters.
(Note that the beginning and ending comment delimiters can be the same,
but need not be.) The list provided with the specifiers BEGIN and END
can be any of the following:

A string that is the one open comment sequence for the language. You
must enclose this in quotes.

A parenthesized list of strings, each one of which can be an open
comment sequence for the language. You must enclose each one in
quotes.

The list accompanying the BEGIN specifier must be consistent with the list
accompanying the END specifier. If the BEGIN specifier lists a string, the
END specifier must also list a string.

Bracketed comments are recognized by the formatting commands (see
the ALIGN and FILL commands) and placeholder operations (see the
ERASE PLACEHOLDER command and the /DUPLICATION qualifier of
the DEFINE PLACEHOLDER command).

• TRAILING=list of quoted strings
Defines the character sequence that introduces line-oriented comments. A
line-oriented comment begins with a special character sequence (consisting

CD–76

DEFINE LANGUAGE

of one or more characters) and ends at the end of the line. The list provided
with the TRAILING specifier can be any of the following:

A string that is the one-line comment sequence for the language.

A list of strings enclosed in parentheses; each string can be a line-
comment sequence for the language.

Line comments are recognized by the formatting commands and
placeholder operations, just as bracketed comments are.

• LINE=list of quoted strings

Requires that the comment delimiter be the first character that is not
blank on the line. The LINE specifier is particularly useful with block
comments, such as the following:

/*
** Here is the inside of a comment
** which has LINE="**" specified
*/

• FIXED=quoted string, column number

Used for languages that require that a specific comment delimiter be placed
in a specific column, such as FIXED=("*",1) for COBOL.

Note that for the specifier you cannot use any character that you used in the
/PLACEHOLDER delimiter-specification.

/COMPILE_COMMAND=string
Specifies the default command string for the COMPILE command. (See the
explanation of the command-string parameter in the COMPILE command
entry.)

/EXPAND_CASE=AS_IS (D)
/EXPAND_CASE=LOWER
/EXPAND_CASE=UPPER
Specifies the case of the text of the inserted template. The value AS_IS
specifies that the inserted template be expanded according to the case in the
token or placeholder definition. The values LOWER and UPPER specify that
the inserted template be expanded in lowercase or uppercase, respectively.

/FILE_TYPES=(file-type[, . . .])
Specifies a list of file types that are valid for the language being defined. The
file types must be enclosed in quoted strings. When LSE reads a file into a
buffer, it sets the language for that buffer automatically if it recognizes the file
type. For example, a Fortran file type (.FOR) sets the language to Fortran.
Note that the period character must be included with the file type.

CD–77

DEFINE LANGUAGE

/FORTRAN=ANSI_FORMAT
/FORTRAN=NOANSI_FORMAT (D)
Specifies special processing for ANSI Fortran. Note that some commands
behave differently when you use the /FORTRAN qualifier. Specifying
NOANSI_FORMAT causes LSE to insert templates in non-ANSI (tab) format.

/HELP_LIBRARY=file-spec
/NOHELP_LIBRARY (D)
Specifies the HELP library where you can find help text for placeholders and
tokens defined in this language. LSE applies the default file specification
SYS$HELP:HELPLIB.HLB. If you want to access some HELP library other
than SYS$HELP, you must supply an explicit device name.

/IDENTIFIER_CHARACTERS=string
Specifies the characters that can appear in token and alias names in
that language. This list of characters is used in various contexts for the
/INDICATED qualifier.

The list of identifier characters also determines what LSE considers to be a
word. A word is a sequence of identifier characters, possibly followed by one
or more blanks. All nonblank, nonidentifier characters are considered to be
distinct words.

If you do not specify the /IDENTIFIER_CHARACTERS qualifier, LSE supplies
the following values by default:

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ%$_0123456789"

/INITIAL_STRING=string
Specifies the initial text to appear in a newly created buffer.

/LEFT_MARGIN=n
/LEFT_MARGIN=1 (D)
/LEFT_MARGIN=CONTEXT_DEPENDENT
Specifies the left margin setting to be associated with the language.

If you specify CONTEXT_DEPENDENT as the column number, LSE uses the
indentation of the current line to determine the left margin when you use the
/WRAP qualifier. When you use the FILL command, LSE uses the indentation
of the first line of each selected paragraph to determine the left margin.

/OVERVIEW_OPTIONS=(MINIMUM_LINES=m, TAB_RANGE=(t1,t2))
Specifies both the minimum number of lines an overview line must hide and
the range of acceptable tab increments.

CD–78

DEFINE LANGUAGE

The specifiers are as follows:

• MINIMUM_LINES=m

Specifies the minimum number of lines an overview line must hide.
The default is 1. For example, if the value of the parameter on
MINIMUM_LINES is 5, a line hides other lines only if there are at
least five lines to hide. This specifier helps the user to avoid having very
small source-line groups, and thus to avoid many expansion levels.

• TAB_RANGE=(t1,t2)

The TAB_RANGE specifier indicates the range of tab values for which
the adjustment definitions are valid. The default is (4,8). The second
value must be at least twice the first value; both values must be positive.
For example, if the tab range is (4,8), LSE assumes that the adjustment
definitions will work for any DEFINE LANGUAGE/TAB_INCREMENT
value from 4 to 8, inclusive. If you specify a /TAB_INCREMENT value
outside the tab range, then LSE recomputes indentation to make the
adjustments work.

For best performance, it is recommended that you avoid recomputation
by choosing a range that covers reasonable values. The numbers
specified for the DEFINE ADJUSTMENT/CURRENT and DEFINE
ADJUSTMENT/SUBSEQUENT commands must work for any tab
increment value in the tab range.

/PLACEHOLDER_DELIMITERS=(delimiter-specification[, . . .])
Specifies starting and ending strings that delimit placeholders. Placeholders
can specify single constructs or lists of constructs. The delimiters for each type
of placeholder are specified as a pair of quoted strings separated by commas
and enclosed in parentheses.

The format of a delimiter specification is as follows:

keyword=(starting-string,ending-string)

Possible keywords are REQUIRED, REQUIRED_LIST, OPTIONAL,
OPTIONAL_LIST, or PSEUDOCODE. If you do not use the PSEUDOCODE
keyword, the default is NOPSEUDOCODE. The maximum length of these
strings is seven characters.

The following is an example of a complete set of placeholder delimiter
specifications:

CD–79

DEFINE LANGUAGE

/PLACEHOLDER_DELIMITERS = (-
REQUIRED =("{<",">}"), -
REQUIRED_LIST=("{<",">}..."), -
OPTIONAL =("[<",">]"), -
OPTIONAL_LIST=("[<",">]..."), -
PSEUDOCODE=("«" , "»"))

If any of the five keywords are not specified with the
/PLACEHOLDER_DELIMITERS qualifier, LSE applies the following defaults:

/PLACEHOLDER_DELIMITERS = (-
REQUIRED =("{","}"), -
REQUIRED_LIST=("{","}..."), -
OPTIONAL =("[","]"), -
OPTIONAL_LIST=("[","]..."), -
NOPSEUDOCODE)

The following table lists the placeholder delimiters accepted by each compiler.

Language Placeholder Delimiters

HP Ada { }, { }..., [], []..., « »

HP BASIC { }, { }..., [], []..., « »

VAX BLISS-32 {~ ~}, {~ ~}... , [~ ~], [~ ~]..., « »

HP C {@ @}, {@ @}..., [@ @], [@ @]..., « »

HP COBOL { }, { }..., [], []..., « »

HP C++ {@ @}, {@ @}..., [@ @], [@ @]..., « »

HP F90 { }, { }..., [], []...,

HP Fortran { }, { }..., [], []..., « »

HP Pascal %{ }%, %{ }%..., %[]%, %[]%..., « »

PL/I { }, { }..., [], []..., « »

Note that for the specifier you cannot use any character that you used in the
/COMMENT specifier.

/PUNCTUATION_CHARACTERS=string
/PUNCTUATION_CHARACTERS=",;()" (D)
Specifies the characters that are considered punctuation marks, or delimiters,
in the language. When a placeholder name and its enclosing brackets
are deleted, preceding white space is also deleted if there are punctuation
characters to delimit the program constructs.

CD–80

DEFINE LANGUAGE

/QUOTED_ITEM=(QUOTES=string [,ESCAPES=string])
/NOQUOTED_ITEM (D)
Describes the syntax of certain language elements, such as strings, that require
special handling for proper text formatting. LSE uses the /QUOTED_ITEM
qualifier to detect comments properly. LSE does not acknowledge comment
strings that occur within quoted items, nor does it acknowledge quoted
elements that occur within comments.

The value of the /QUOTED_ITEM qualifier indicates the syntax of a quoted
item. This value must be a keyword list. The keywords are as follows:

• QUOTES

This keyword is required and must have an explicit value. The value must
be a quoted string denoting all the quote characters in the language. LSE
assumes that quoted items begin and end with the same character.

• ESCAPES

This keyword is optional. If given, the value is required and must be a
quoted string containing the escape characters for quoted items. Some
languages use escape characters to insert quote characters into strings.
For example, C uses the backslash (\) as an escape character. If you omit
this keyword, LSE assumes that the language inserts quote characters into
strings by doubling them.

/REFERENCE=book_reference, defined_language
Specifies the book-reference tag string, defining the section of a book to display
for a placeholder or token whose reference tag is undefined.

/RIGHT_MARGIN=n
/RIGHT_MARGIN=80 (D)
Specifies the right margin setting to be associated with the language. By
default, the right margin is set at column 80.

/TAB_INCREMENT=n
/TAB_INCREMENT=4 (D)
Specifies that tab stops be set every n columns, beginning with column 1.

/TOPIC_STRING=string
Specifies a prefix string to be concatenated to the /TOPIC_STRING qualifier
specified in a placeholder or token definition before LSE looks up the help text
for that placeholder or token. (Typically, this is the name of the language in
the HELP library.)

CD–81

DEFINE LANGUAGE

/VERSION=string
Specifies a string that represents the version number of the tokens and
placeholders associated with this language. Use the SHOW LANGUAGE
command to display this string.

/WRAP
/NOWRAP (D)
Specifies whether the ENTER SPACE command (bound to the space bar by
default) should wrap text when there is too much to fit on the current line.
The /NOWRAP qualifier disables text wrapping.

Parameter

language-name
Specifies the name of the language whose characteristics are to be defined.

Description

The DEFINE LANGUAGE command specifies a language so LSE can properly
recognize language-specific text characteristics.

After you specify these language characteristics by using the DEFINE
LANGUAGE command, you can use the MODIFY LANGUAGE command
when you want to make subsequent changes.

Related Commands

DELETE LANGUAGE
EXTRACT LANGUAGE
MODIFY LANGUAGE
SET LANGUAGE
SHOW LANGUAGE

CD–82

DEFINE LANGUAGE

Examples
1. DEFINE LANGUAGE ADA -

/CAPABILITIES=DIAGNOSTICS -
/COMPILE_COMMAND="ADA" -
/FILE_TYPES=(.ADA) -
/IDENTIFIER_CHARACTERS= -

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_0123456789" -
/INITIAL_STRING="{compilation_unit}" -
/COMMENT=(TRAILING="--") -
/PLACEHOLDER_DELIMITERS=(-

REQUIRED=("{","}"), -
REQUIRED_LIST=("{","}..."), -
OPTIONAL=("[","]"), -
OPTIONAL_LIST=("[","]...")) -

/PUNCTUATION_CHARACTERS=",;()*.’" -
/QUOTED_ITEM=(QUOTES="""’") -
/TAB_INCREMENT=4 -
/TOPIC_STRING="ADA Language_Topics"

Defines characteristics of the Ada language.

2. DEFINE LANGUAGE PASCAL -
/CAPABILITIES=DIAGNOSTICS -
/COMMENT=(BEGIN=("{","(*"),END=("}","*)")) -
/COMPILE_COMMAND="PASCAL " -
/FILE_TYPES=(.PAS) -
/IDENTIFIER_CHARACTERS= -

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$%_0123456789" -
/INITIAL_STRING="%{compilation_unit}%" -
/PLACEHOLDER_DELIMITERS=(-

REQUIRED=("%{","}%"), -
REQUIRED_LIST=("%{","}%..."), -
OPTIONAL=("%[","]%"), -
OPTIONAL_LIST=("%[","]%...")) -

/PUNCTUATION_CHARACTERS=",;:()[]{}.’" -
/QUOTED_ITEM=(QUOTES="""’") -
/TAB_INCREMENT=4 -
/TOPIC_STRING="PASCAL "

Defines characteristics of the Pascal language.

See the sections about language definition in the Guide to Language-
Sensitive Editor for VMS Systems for additional examples.

CD–83

DEFINE PACKAGE

DEFINE PACKAGE

Defines a subroutine package for which subroutine call templates are
automatically generated.

Format

DEFINE PACKAGE package-name

Qualifiers Defaults

/HELP_LIBRARY=file-spec
/LANGUAGE=(language [, . . .])
/PARAMETER_EXPAND=TPU_procedure_prefix
/ROUTINE_EXPAND=TPU_procedure_prefix
/TOPIC_STRING=string

Qualifiers

/HELP_LIBRARY=file-spec
Specifies the HELP file (.HLB file) where you can find help text for placeholders
and tokens defined for this package. If omitted, no HELP file is associated with
the package.

LSE applies the default file specification SYS$HELP:HELPLIB.HLB. If you
want to access some device or directory other than SYS$HELP, you must
supply an explicit device and directory name.

/LANGUAGE=(language [, . . .])
Specifies the languages from which LSE can use package entries. If you do not
specify a language, LSE uses the language of the current buffer. If no language
is associated with the current buffer, an error occurs.

/PARAMETER_EXPAND=TPU_procedure_prefix
Lets you customize calling sequences. Normally, LSE uses a fixed algorithm
to produce the appropriate placeholder definitions from the DEFINE
PARAMETER command. If the default algorithm is inadequate, you can
supply explicit DECTPU procedures to produce the DEFINE PLACEHOLDER
command that you want.

The argument provided with the /PARAMETER_EXPAND qualifier must be
the prefix of a DECTPU procedure name. Whenever LSE expands a parameter,
it concatenates this prefix and the current language name, and looks for a
DECTPU procedure by that name. For details, see Appendix D.

CD–84

DEFINE PACKAGE

/ROUTINE_EXPAND=TPU_procedure_prefix
Lets you customize calling sequences. LSE normally uses a fixed algorithm to
produce the appropriate token and placeholder definitions from the DEFINE
ROUTINE command. If the default algorithm is inadequate, you can supply
explicit DECTPU procedures to produce the DEFINE PLACEHOLDER or
DEFINE TOKEN commands that you want.

The argument provided with the /ROUTINE_EXPAND qualifier must
be the prefix of a DECTPU procedure name. Whenever LSE expands a
routine, it concatenates this prefix and the current language name, and
looks for a DECTPU procedure by that name. For example, if you specify
/ROUTINE_EXPAND=my_routine_expand_ and the current language is
Fortran, LSE looks for a DECTPU procedure named my_routine_expand_
fortran. For details, see Appendix D.

/TOPIC_STRING=string
Specifies a prefix string to be concatenated to the TOPIC_STRING specified for
tokens and placeholders associated with the routine or parameter definitions.
If omitted, the null string is used as the topic string. LSE uses the topic string
to look up help text for the package.

Parameter

package-name
Specifies the name of the package being defined.

Description

The DEFINE PACKAGE command defines a subroutine package for which
subroutine-call templates are automatically generated. Packages can contain
routine definitions, which describe calls to subroutines, and parameter
definitions, which describe parameters for subroutine calls.

Related Commands

DEFINE PARAMETER
DEFINE ROUTINE
DELETE PACKAGE
EXTRACT PACKAGE
SHOW PACKAGE

CD–85

DEFINE PACKAGE

Example

DEFINE PACKAGE system_services -
/LANGUAGES =(BASIC,C,COBOL,FORTRAN,PLI) -
/HELP_LIBRARY = HELPLIB -
/TOPIC_STRING = "system_services" -
/ROUTINE_EXPAND = "LSE$PKG_EXPAND_ROUT_" - ! Special routines for
/PARAMETER_EXPAND = "LSE$PKG_EXPAND_PARM_" ! system services

DEFINE ROUTINE sys$add_holder -
/PACKAGE = system_services -
/DESCRIPTION = "Add Holder Record To The Rights Database" -

id/BY_VALUE, -
holder/BY_REFERENCE, -
attrib/BY_VALUE/OPTIONAL -

DEFINE PARAMETER id -
/PACKAGE = system_services -

DEFINE PARAMETER holder -
/PACKAGE = system_services -

DEFINE PARAMETER attrib -
/PACKAGE = system_services -

Shows the incorporation of the DEFINE PACKAGE command in a complete
package definition, along with the DEFINE PARAMETER and DEFINE
ROUTINE commands.

CD–86

DEFINE PARAMETER

DEFINE PARAMETER

Defines a parameter within a package.

Format

DEFINE PARAMETER param-name

Qualifier Defaults

/PACKAGE=package-name

Qualifier

/PACKAGE=package-name
Specifies the name of the package with which the parameter is associated.

Parameter

param-name
Specifies the name of the parameter. This name must be unique among the
tokens of any language from which the package is used.

Description

The DEFINE PARAMETER command defines a parameter within a package.
That parameter can be associated with more than one routine by means of the
DEFINE ROUTINE command.

Related Commands

DEFINE PACKAGE
DEFINE ROUTINE
DELETE PARAMETER
EXPAND
EXTRACT PARAMETER
SHOW PARAMETER

CD–87

DEFINE PARAMETER

Example

DEFINE PACKAGE system_services -
/LANGUAGES =(BASIC,C,COBOL,FORTRAN,PLI) -
/HELP_LIBRARY = HELPLIB -
/TOPIC_STRING = "system_services" -
/ROUTINE_EXPAND = "LSE$PKG_EXPAND_ROUT_" - ! Special routines for
/PARAMETER_EXPAND = "LSE$PKG_EXPAND_PARM_" ! system services

DEFINE ROUTINE sys$add_holder -
/PACKAGE = system_services -
/DESCRIPTION = "Add Holder Record To The Rights Database" -

id/BY_VALUE, -
holder/BY_REFERENCE, -
attrib/BY_VALUE/OPTIONAL -

DEFINE PARAMETER id -
/PACKAGE = system_services -

DEFINE PARAMETER holder -
/PACKAGE = system_services -

DEFINE PARAMETER attrib -
/PACKAGE = system_services -

Shows the incorporation of the DEFINE PARAMETER command into a
complete package definition, along with the DEFINE PACKAGE and DEFINE
ROUTINE commands.

CD–88

DEFINE PLACEHOLDER

DEFINE PLACEHOLDER

Creates a placeholder for use with a specific language and establishes the
characteristics of that placeholder.

Format

DEFINE PLACEHOLDER placeholder-name

placeholder body

END DEFINE

or

DEFINE PLACEHOLDER placeholder-name

/PLACEHOLDER= other-placeholder

Qualifiers Defaults

/[NO]AUTO_SUBSTITUTE /NOAUTO_SUBSTITUTE
/BOOK=string
/DESCRIPTION=string
/DUPLICATION=specifier /DUPLICATION=

CONTEXT_DEPENDENT
/LANGUAGE=language-name
/LEADING=string
/PLACEHOLDER=other-placeholder
/[NO]PSEUDOCODE /PSEUDOCODE
/REFERENCE=book_reference
/SEPARATOR=string
/TOPIC_STRING=string
/TRAILING=string
/TYPE=type-specifier /TYPE=NONTERMINAL

CD–89

DEFINE PLACEHOLDER

Qualifiers

/AUTO_SUBSTITUTE
/NOAUTO_SUBSTITUTE (D)
Specifies whether you want the next placeholder with this name to be replaced
with the same text you typed over the current placeholder.

/BOOK=string
Specifies an online book file name that LSE uses to retrieve the online text for
a placeholder.

/DESCRIPTION=string
Specifies a single line of text to be displayed along with the placeholder name
when the placeholder name appears in a menu during an EXPAND operation.

/DUPLICATION=specifier
/DUPLICATION=CONTEXT_DEPENDENT (D)
Specifies the type of duplication to be performed when the placeholder is
duplicated (either by expanding it or by typing over it). The specifier is one of
the following keywords:

• CONTEXT_DEPENDENT

If the placeholder is the only item within its segment (that is, if it is
either the only item before or the only item within a trailing comment),
LSE duplicates it vertically (see the VERTICAL keyword in this list).
Otherwise, LSE duplicates it horizontally. White space can precede or
follow the placeholder.

• HORIZONTAL

LSE places the duplicate immediately to the right of the original. If you
specify a separation string, LSE places the string between the original and
the duplicate.

• VERTICAL

LSE places the duplicate on the next line immediately under the original.
If a separation string is specified, LSE places it at the end of the original.
If the original placeholder is in the commented segment of the line, LSE
also duplicates the comment delimiters directly underneath the delimiters
in the original line. If necessary, LSE adds close comment delimiters to the
original line to close a bracketed comment on that line.

CD–90

DEFINE PLACEHOLDER

/LANGUAGE=language-name
Specifies the language associated with the placeholder. By default, the new
placeholder is defined for use with the current buffer’s language.

/LEADING=string
Specifies any leading text to be associated with the placeholder. The ERASE
PLACEHOLDER command recognizes this text and erases it along with the
placeholder. The leading text must not have any trailing blank spaces, because
the ERASE PLACEHOLDER command always skips over such spaces.

/PLACEHOLDER=other-placeholder
Specifies the name of another defined placeholder from which this placeholder
inherits its definition. A placeholder defined with the /PLACEHOLDER
qualifier cannot be named on the /PLACEHOLDER qualifier of any other
definition. The /PLACEHOLDER qualifier is mutually exclusive with all other
qualifiers except the /LANGUAGE qualifier.

/PSEUDOCODE (D)
/NOPSEUDOCODE
Specifies whether pseudocode can be entered at a specific placeholder. If you
specify the /NOPSEUDOCODE qualifier for a placeholder, that placeholder
cannot be used with pseudocode.

/REFERENCE=book_reference, defined_language
Specifies the book-reference tag string, which defines the section of a book to
display for a placeholder.

/SEPARATOR=string
Specifies the string that separates each duplication of the placeholder. See the
description of the /DUPLICATION qualifier.

/TOPIC_STRING=string
Specifies a quoted string that LSE uses to retrieve help text for this
placeholder. This string is appended to the string you specify with the /TOPIC_
STRING qualifier of the DEFINE LANGUAGE command to form the complete
string of topics that LSE uses for looking up the help text for this placeholder.

CD–91

DEFINE PLACEHOLDER

/TRAILING=string
Specifies any trailing text to be associated with the placeholder. The ERASE
PLACEHOLDER command recognizes this text and erases it along with the
placeholder. The trailing text must not have any leading blank spaces because
the ERASE PLACEHOLDER command always skips over such spaces.

/TYPE=type-specifier
/TYPE=NONTERMINAL (D)
Specifies the kind of placeholder being defined. The type specifier can be
NONTERMINAL, MENU, or TERMINAL.

Parameters

placeholder-name
Specifies the name of the placeholder being defined. A placeholder name
must be unique within a language and can be a quoted string. To redefine
an existing placeholder, you must first delete it using the DELETE
PLACEHOLDER command.

placeholder body
Is the body of the placeholder being defined. The interpretation of the
placeholder body depends on the type of placeholder. LSE displays the body
of a terminal placeholder when you attempt to expand the placeholder. Note
that displaying this text does not replace the terminal placeholder and its
delimiters.

The body of a nonterminal placeholder is the text of the placeholder expansion;
when a nonterminal placeholder is expanded, the placeholder name and
enclosing delimiters are replaced with the text of the placeholder body.

A nonterminal placeholder can have more than one quoted string in each body
line. For the expansion of the placeholder, you can set the indentation of each
string by using the /INDENTATION qualifier and its associated keywords.

Each quoted string in the body line of a nonterminal placeholder can take the
qualifier and keywords described in the following section.

CD–92

DEFINE PLACEHOLDER

Nonterminal Body Qualifier Defaults

/INDENTATION=(keyword1 [,integer1, keyword2])

keyword1

You can specify any of the following options for keyword1:

Option Description

EXPAND Indents the string to the column of the first character of the
nonterminal placeholder being expanded. This is the default
value if the first body line is not a null string.

CURRENT Indents the string to the indentation of the line containing
the placeholder or token. This is the default value if the first
body line is a null string.

PREVIOUS Indents the string to the indentation of the line before the
line containing the placeholder or token.

FIXED Indents the string to the specified column.

integer1

You can specify any integer for the integer1 option. The default is 0. The
integer is added to the column position as specified by keyword1 and adjusts
the indentation by that number of columns. The integer can be negative.
When the value for keyword1 is FIXED, integer1 specifies the column position
at which to put body text; it must be positive.

keyword2

You can specify either of the following options for keyword2:

Option Description

TAB Specifies that integer1 should be interpreted as specifying an
adjustment in terms of tab increments rather than columns.
Integer1 is multiplied by the tab increment for the buffer before
it is added to the column specified by keyword1.

SPACE Specifies that integer1 should be interpreted as specifying an
adjustment in terms of spaces. This is the default.

Note that you cannot specify keyword2 when keyword1 has a FIXED value.

CD–93

DEFINE PLACEHOLDER

If there is more than one quoted string in a body line, a comma must separate
the strings. For Fortran, if the body line is inside of a comment or there is a
tab in the body lines, the /INDENTATION qualifier and associated keywords
do not take effect for the first quoted string for each body line.

For more information about using the /INDENTATION qualifier, see the
examples for the EXPAND command.

Each line of the body of a menu placeholder represents one option in the
menu. An option can be a string of text, placeholder name, or token name.
If the option is a string of text, it must appear in quotes. If the option is
a placeholder name or a token name and does not appear in quotes, that
placeholder name or token name appears in uppercase letters in the menu
display. For a placeholder name or token name to appear in lowercase letters
in a menu, you must enter the placeholder name or token name as a lowercase,
quoted string.

Each line in the body of a menu placeholder can take one or more of the
following qualifiers:

Menu Body Qualifiers Default

/DESCRIPTION=string
/[NO]LIST /NOLIST
/PLACEHOLDER
/TOKEN

/DESCRIPTION=string

Specifies a description string displayed in the right-hand column of the
menu. If this qualifier is omitted, LSE gets the description string from
the corresponding definition if the line has either the /TOKEN or the
/PLACEHOLDER qualifier. If neither /TOKEN nor /PLACEHOLDER is
specified, the line is a literal string and the value of the /DESCRIPTION string
defaults to the empty string.

/LIST
/NOLIST (D)

Specifies whether the delimiters for the placeholder should be list delimiters.
Use this qualifier only in conjunction with the /PLACEHOLDER qualifier.

CD–94

DEFINE PLACEHOLDER

/PLACEHOLDER

Specifies that the name or string is the name of a placeholder in the language.
This qualifier is mutually exclusive with the /TOKEN qualifier.

/TOKEN

Specifies that the name or string is the name of a token in the language.
This qualifier is mutually exclusive with the /PLACEHOLDER and /[NO]LIST
qualifiers.

Description

The DEFINE PLACEHOLDER command creates and establishes the
characteristics of a placeholder for use with a particular language. A
placeholder definition consists of a DEFINE PLACEHOLDER command
followed by a placeholder body (which might occupy more than one line). If you
do not specify the /PLACEHOLDER qualifier, you must end the placeholder
body with an END DEFINE command.

Subsequently, you can use the new placeholder with the EXPAND and
HELP/LANGUAGE commands.

Related Commands

DEFINE TOKEN
DELETE PLACEHOLDER
END DEFINE
EXPAND
EXTRACT PLACEHOLDER
HELP/INDICATED
SHOW PLACEHOLDER

CD–95

DEFINE PLACEHOLDER

Examples

1. DEFINE PLACEHOLDER parameter -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Parameter name"
/DUPLICATION = HORIZONTAL -
/SEPARATOR = ", " -
/TYPE = TERMINAL
"A string of letters and digits starting with a letter."

END DEFINE

Creates a placeholder named parameter and establishes its characteristics.

2. DEFINE PLACEHOLDER "#IF" -
/LANGUAGE=C -
/TYPE=NONTERMINAL -

"#if {@constant expression@}"/INDENTATION=(FIXED,1)
"[@#else_clause@]"/INDENT=(FIXED,1)
"#endif"/INDENTATION=(FIXED,1)

END DEFINE

The /INDENTATION=(FIXED,1) qualifier puts the body text at column 1
while the expanding operation is performed. With the definitions in this
example, the expanded placeholder [@#IF@] is as follows:

#if {@constant expression@}
[@#else_clause@]
#endif

For additional examples, see the sections about placeholder definitions
and language elements in the Guide to Language-Sensitive Editor for VMS
Systems.

CD–96

DEFINE ROUTINE

DEFINE ROUTINE

Defines templates for a routine contained within a subroutine package.

Format

DEFINE ROUTINE routine-name [parameter, . . .]

Qualifiers Defaults

/BOOK=string
/DESCRIPTION=string
/PACKAGE=package-name
/REFERENCE=string
/TOPIC_STRING=string

Qualifiers

/BOOK/=string
Specifies an online-book file name string that LSE uses to retrieve text for the
specified routine.

/DESCRIPTION=string
Specifies a single line of text to be displayed along with the routine name when
the routine name appears in a menu during an EXPAND operation. The string
is also passed to the /ROUTINE_EXPAND procedure, if any. (The default
algorithm for producing routine calls from DEFINE ROUTINE commands does
not make use of this value.)

/PACKAGE=package-name
Specifies the name of the package with which the routine is associated. You
must specify this qualifier.

/REFERENCE=string
Specifies a reference in an online book file name string that LSE uses to
retrieve text for a routine.

/TOPIC_STRING=string
Specifies a quoted string that LSE uses to retrieve help text for this routine.

CD–97

DEFINE ROUTINE

Parameters

routine-name
Specifies the name of the routine. Routine names must be unique within a
package. Furthermore, routine names cannot conflict with any token names
used by LSE for any language using the package.

parameter, . . .
Specifies the names of the parameters of the routine. These parameters must
be defined (using the DEFINE PARAMETER command) before expanding an
instance of a call on this routine. However, the parameters do not need to be
defined before the DEFINE ROUTINE command. If you omit this qualifier, the
routine is presumed to have no parameters.

The following qualifiers are position-sensitive; they can be used only with the
list of parameters to the routine:

• /BY_VALUE
Indicates that the parameter is passed by value.

• /BY_REFERENCE
Indicates that the parameter is passed by address.

• /BY_DESCRIPTOR
Indicates that the address of the parameter descriptor is passed.

• /[NO]OPTIONAL
Specifies whether the parameter is required or optional. The default is
/NOOPTIONAL.

The /BY_VALUE, /BY_REFERENCE, and /BY_DESCRIPTOR qualifiers are
mutually exclusive. These qualifiers are used primarily for languages, such as
COBOL, that require explicit specification of passing mechanisms for routine
calls.

Description

The DEFINE ROUTINE command defines templates for a routine contained
within a subroutine package. This command makes the routine known as
an element of a package. The first time the routine name is expanded, LSE
generates an appropriate template and simulates a corresponding DEFINE
TOKEN command. Thus, you can expand and unexpand routines in the same
manner as tokens. Note, however, that commands such as SHOW TOKEN
do not operate on tokens defined from routines; instead, you should use the
appropriate routine commands, such as SHOW ROUTINE and EXTRACT
ROUTINE.

CD–98

DEFINE ROUTINE

Related Commands

DEFINE PACKAGE
DEFINE PARAMETER
DELETE ROUTINE
EXPAND
EXTRACT ROUTINE
SHOW ROUTINE

Example

DEFINE PACKAGE system_services -
/LANGUAGES =(BASIC,C,COBOL,FORTRAN,PLI) -
/HELP_LIBRARY = HELPLIB -
/TOPIC_STRING = "system_services" -
/ROUTINE_EXPAND = "LSE$PKG_EXPAND_ROUT_" - ! Special routines for
/PARAMETER_EXPAND = "LSE$PKG_EXPAND_PARM_" ! system services

DEFINE ROUTINE sys$add_holder -
/PACKAGE = system_services -
/DESCRIPTION = "Add Holder Record To The Rights Database" -

id/BY_VALUE, -
holder/BY_REFERENCE, -
attrib/BY_VALUE/OPTIONAL

DEFINE PARAMETER id -
/PACKAGE = system_services

DEFINE PARAMETER holder -
/PACKAGE = system_services

DEFINE PARAMETER attrib -
/PACKAGE = system_services

Shows the incorporation of the DEFINE ROUTINE command into a complete
package definition, along with DEFINE PACKAGE and DEFINE PARAMETER
commands.

CD–99

DEFINE TAG

DEFINE TAG

Defines the specified tag.

Format

DEFINE TAG tag-name

Qualifiers Defaults

/EMPTY=string-list /EMPTY="None"
/KEYWORDS=keyword-list-name
/LANGUAGE=language-name
/SUBTAGS=tag-list
/TYPE=type-keyword /TYPE=TEXT

Qualifiers

/EMPTY=string-list
/EMPTY="None" (D)
Specifies one or more strings indicating that a use of the structured tag has no
subtags. If you do not specify the /EMPTY qualifier, there will be no way to
explicitly indicate that an occurrence of the tag is empty. You can always use
implicitly empty tags by starting a new top-level tag after the current top-level
tag, or by terminating the comment block.

You use this qualifier only with the /TYPE=STRUCTURED case.

/KEYWORDS=keyword-list-name
Defines the keywords that you can use with this tag. You must specify the
keyword-list-name parameter by using the DEFINE KEYWORDS command. If
you specify /KEYWORDS=*, this indicates that any keyword is allowed and no
checking of keywords is to be done.

You use this qualifier only with the /TYPE=KEYWORD case.

/LANGUAGE=language-name
Specifies the language associated with the tag being defined. If you do not
specify a language, the default is the language of the current buffer.

/SUBTAGS=tag-list
Indicates the subtags that can appear in a structured tag. The special case
/SUBTAGS=* indicates that any tag is allowed. For example, you would use
this special case for the PARAMETERS tag.

You use this qualifier only with the /TYPE=STRUCTURED case.

CD–100

DEFINE TAG

/TYPE=type-keyword
Indicates the type of the tag. You can specify any one of the following types:

Keyword Type Description

TEXT Ordinary text tag (default)
KEYWORD List of keywords to be parsed at compile time
STRUCTURED Sequence of zero or more subtags

Parameter

tag-name
Specifies the name of the tag being defined. The tag name must consist only
of alphanumeric characters, the dollar sign ($), or the underscore (_), and
can contain embedded blanks. Tag names are case-insensitive. If you include
embedded blanks, place the name inside quotation marks.

Description

The DEFINE TAG command defines the specified tag. Tags are headings
embedded inside comments for use with design reports. You can save the
definition in an environment file and direct the compiler to process tags with
the /DESIGN qualifier.

For more information about how to use tags, see the section about design
information in the Guide to Language-Sensitive Editor for VMS Systems.

Related Commands

DELETE TAG
EXTRACT TAG
SHOW TAG

Examples

1. LSE> DEFINE TAG "functional description"

Defines the tag functional description and indicates that the tag is an
ordinary text tag.

CD–101

DEFINE TAG

2. LSE> DEFINE TAG parameters /TYPE=STRUCTURED /SUBTAGS=*
_LSE> /EMPTY=("None", "Omitted")

Defines the tag parameters, specifies that the tag type is STRUCTURED,
and indicates that any tag is allowed. The /EMPTY=("None", "Omitted")
qualifier indicates that you can use either the word None or the word
Omitted in your programs to explicitly indicate that the tag has no subtag
values.

CD–102

DEFINE TOKEN

DEFINE TOKEN

Defines an editing token for use with the EXPAND command.

Format

DEFINE TOKEN token-name

token body

END DEFINE

or

DEFINE TOKEN token-name

/PLACEHOLDER= placeholder-name

Qualifiers Defaults

/BOOK=string
/DESCRIPTION=string
/LANGUAGE=language-name
/PLACEHOLDER=placeholder-name
/REFERENCE=string
/TOPIC_STRING=string

Qualifiers

/BOOK=string
Specifies an online-book file name that LSE uses to retrieve text for a token.

/DESCRIPTION=string
Specifies some text to be displayed along with the token name when the token
name appears in a menu during an EXPAND operation, or in a SHOW TOKEN
display.

/LANGUAGE=language-name
Specifies the language associated with the token. By default, the token is
defined for use with the current language.

/PLACEHOLDER=placeholder-name
Specifies the name of a defined placeholder that expands in place of the
token. The token gets its description, topic string, and body from the defining
placeholder.

CD–103

DEFINE TOKEN

Note that the /PLACEHOLDER qualifier is mutually exclusive with
the /DESCRIPTION and /TOPIC_STRING qualifiers, and the END
DEFINE command must not be used on the DEFINE TOKEN command
when /PLACEHOLDER is specified. No token body is specified with the
/PLACEHOLDER qualifier.

/REFERENCE=string
Specifies a book-reference tag string, defining the section of a book to display
for a token.

/TOPIC_STRING=string
Specifies a quoted string that LSE uses to retrieve help text for this token.
This string is appended to the /TOPIC_STRING qualifier specified in the
DEFINE LANGUAGE command to form the complete string of topics that LSE
uses to look up the help text for this token.

Parameter

token-name
Specifies the name for the token being defined. Each token for a particular
language must have a unique name. Token and alias names must not conflict.
A token name can be any character including a blank space, but not a leading
or trailing space.

token body
Is the text of the token expansion. When the token is expanded, the token
name is replaced with the text of the token body. A token can have more than
one quoted string in each body line. For the expansion of the token, you can
set the indentation of each string by using the /INDENTATION qualifier and
its associated keywords.

Each quoted string in the body line of a token can take the qualifier and
keywords described as follows.

CD–104

DEFINE TOKEN

Nonterminal Body Qualifier Defaults

/INDENTATION=
(keyword1 [,integer1, keyword2])

keyword1

You can specify any of the following options for keyword1:

Option Description

EXPAND Indents the string to the column of the first character of the
nonterminal placeholder being expanded. This is the default
value if the first body line is not a null string.

CURRENT Indents the string to the indentation of the line containing
the placeholder or token. This is the default value if the first
body line is a null string.

PREVIOUS Indents the string to the indentation of the line before the
line containing the placeholder or token.

FIXED Indents the string to the specified column.

integer1

You can specify any integer for the integer1 option. The default is 0. The
integer is added to the column position as specified by keyword1 and adjusts
the indentation by that number of columns. The integer can be negative.
When the value for keyword1 is FIXED, integer1 specifies the column position
at which to put body text and must be positive.

keyword2

You can specify either of the following options for keyword2:

Option Description

TAB Specifies that integer1 should be interpreted as specifying an
adjustment in terms of tab increments rather than columns.
Integer1 is multiplied by the tab increment for the buffer before
it is added to the column specified by keyword1.

SPACE Specifies that integer1 should be interpreted as specifying an
adjustment in terms of spaces. This is the default.

Note that you cannot specify keyword2 when keyword1 has a FIXED value.

CD–105

DEFINE TOKEN

If there is more than one quoted string in a body line, a comma must separate
the strings. For Fortran, if the body line is inside of a comment or there is a
tab in the body lines, the /INDENTATION qualifier and associated keywords
do not take effect for the first quoted string for each body line.

For more information about the use of the /INDENTATION qualifier, see the
examples for the EXPAND command.

Description

The DEFINE TOKEN command defines an editing token for use with the
EXPAND command. When you enter the EXPAND command while the cursor
is positioned immediately after the token name or an abbreviation of the token
name, LSE replaces the input string with the body of the token.

Related Commands

DELETE TOKEN
EXPAND
EXTRACT TOKEN
SHOW TOKEN

Examples

1. DEFINE TOKEN ASSIGNMENT -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Assignment statement"
"{identifier} = {expression}"

END DEFINE

Creates a token named ASSIGNMENT and establishes its characteristics.

2. DEFINE TOKEN Parameter_template
/PLACEHOLDER = Parameter

Creates a token named Parameter_template. When you expand this token,
LSE substitutes the placeholder named Parameter for the token.

CD–106

DEFINE TOKEN

3. DEFINE TOKEN { -
/LANGUAGE=C

"{"/INDENTATION=EXPAND
"[@block declaration@]..."/INDENTATION=(CURRENT,1,TAB)
""/INDENTATION=CURRENT
"{@statement@}..."/INDENTATION=(CURRENT,1,TAB)
"}"/INDENTATION=CURRENT

END DEFINE

The /INDENTATION=(CURRENT,1,TAB) qualifier indents the
body text at the current indentation plus the number of spaces
equivalent to one tab increment for the language. Specifying
/INDENTATION=EXPAND indents the body text at the cursor’s position.
Specifying /INDENTATION=CURRENT replaces the body text at the
current indentation level. With these definitions, you can expand the token
{ in the following example:

if (a == b) {

It becomes the following:

if (a == b) {
[@block declaration@]...

{@statement@}...
}

For additional examples, see the sections about token definitions and
defining language elements in the Guide to Language-Sensitive Editor for
VMS Systems.

CD–107

DELETE ADJUSTMENT

DELETE ADJUSTMENT

Removes a name from the list of adjustments associated with a language.

Format

DELETE ADJUSTMENT adjustment-name

Qualifier Defaults

/LANGUAGE=language-name

Qualifier

/LANGUAGE=language-name
Names the language associated with the adjustment being deleted. By default,
LSE deletes the adjustment from the set of adjustments defined for the current
language. By using the /LANGUAGE qualifier, you can delete adjustments
from other languages as well.

Parameter

adjustment-name
Specifies the name of the adjustment to be deleted.

Description

The DELETE ADJUSTMENT command removes a specified name from the list
of adjustments associated with a language.

Related Commands

DEFINE ADJUSTMENT
EXTRACT ADJUSTMENT
SHOW ADJUSTMENT

Example

LSE> DELETE ADJUSTMENT/LANGUAGE=EXAMPLE then

Removes the adjustment named then from the list of adjustments associated
with the language EXAMPLE.

CD–108

DELETE ALIAS

DELETE ALIAS

Deletes the definition of an alias name.

Format

DELETE ALIAS alias-name

Qualifier Defaults

/LANGUAGE=language-name

Qualifier

/LANGUAGE=language-name
Specifies the name of the language in which the alias is defined. The default is
the current language.

Parameter

alias-name
Specifies the alias name to be deleted.

Description

The DELETE ALIAS command cancels the definition of an alias name
established by a previous DEFINE ALIAS command.

Related Commands

DEFINE ALIAS

Example

LSE> DELETE ALIAS lse

Cancels the definition of the alias named lse.

CD–109

DELETE BUFFER

DELETE BUFFER

Deletes a buffer.

Format

DELETE BUFFER [buffer-name]

Parameter

buffer-name
Indicates which buffer is to be deleted. The default is the current buffer.

Description

The DELETE BUFFER command deletes the specified buffer. If the buffer is
being displayed, LSE replaces it with another buffer. You cannot delete system
buffers.

If the specified buffer has been modified and is not read-only, LSE prompts
you to answer Y if you want to continue the DELETE BUFFER operation.
Otherwise, answer N.

Related Commands

GOTO BUFFER
GOTO FILE
SHOW BUFFER

Example

LSE> DELETE BUFFER USER.BUF

Deletes the buffer named USER.BUF.

CD–110

DELETE COMMAND

DELETE COMMAND

Deletes the definition of the specified user-defined command.

Format

DELETE COMMAND command-name

Parameter

command-name
Specifies the command to be deleted.

Description

The DELETE COMMAND command cancels the definition of a command
previously established by a DEFINE COMMAND command.

Related Commands

DEFINE COMMAND

Example

LSE> DELETE COMMAND XYZ

Cancels the definition of the user-defined command XYZ.

CD–111

DELETE KEY

DELETE KEY

Deletes the specified key definition.

Format

DELETE KEY key-specifier

Qualifier Defaults

/[NO]IF_STATE=GOLD /NOIF_STATE

Qualifier

/IF_STATE=GOLD
/NOIF_STATE (D)
Specifies that the key definition to be deleted is for the GOLD state. The
default is to delete the key definition for the default state.

Parameter

key-specifier
Indicates the keyword or single printing character for the key to be deleted.
Valid key-specifiers include all keynames recognized by the DEFINE KEY
command.

Description

The DELETE KEY command cancels a key definition established by a previous
DEFINE KEY command. If the key is a printing key, LSE restores the original
function of inserting a printing character at the current cursor position;
otherwise, the key is undefined.

Related Commands

DEFINE KEY
SHOW KEY

Example

LSE> DELETE KEY KP7

Deletes the definition for the KP7 key (the 7 key on the numeric keypad).

CD–112

DELETE KEYWORDS

DELETE KEYWORDS

Cancels the specified keywords-list definition.

Format

DELETE KEYWORDS keyword-list-name

Parameter

keyword-list-name
Specifies the keyword list to be deleted.

Description

The DELETE KEYWORDS command cancels the keyword list defined by the
previous DEFINE KEYWORDS command.

Related Commands

DEFINE KEYWORDS
EXTRACT KEYWORDS
SHOW KEYWORDS

Example

LSE> DELETE KEYWORDS author_name

Cancels the keyword list named author_name.

CD–113

DELETE LANGUAGE

DELETE LANGUAGE

Cancels the specified language definition.

Format

DELETE LANGUAGE language-name

Parameter

language-name
Specifies the language to be deleted.

Description

The DELETE LANGUAGE command cancels the language defined by the
previous DEFINE LANGUAGE command. LSE does not actually delete the
tokens, placeholders, and aliases associated with the language, but it makes
them unavailable for use. If you subsequently enter a DEFINE LANGUAGE
command for the same language name, LSE reassociates all the previously
defined tokens, placeholders, and aliases with the new language definition.
Thus, you can use the DELETE LANGUAGE command as a step in modifying
the properties of a language definition.

Related Commands

DEFINE LANGUAGE
EXTRACT LANGUAGE
SHOW LANGUAGE

Example

LSE> DELETE LANGUAGE ADA

Cancels the previously defined characteristics for the Ada language.

CD–114

DELETE LIBRARY
SCA Command

DELETE LIBRARY

Deletes an SCA library from an OpenVMS directory.

Format

DELETE LIBRARY library-spec[,...]

Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]LOG /NOLOG

Qualifiers

/CONFIRM
/NOCONFIRM (D)
Indicates whether the delete function will request a confirmation of the deletion
of each library.

To delete an SCA library, you must respond to the confirmation prompt by
typing Y, YE, or YES. Otherwise, the library is not deleted.

/LOG
/NOLOG (D)
Indicates whether successful deletion of the SCA libraries will be reported.

Parameter

library-spec[,...]
Specifies one or more libraries to be deleted. The library must be one of the
current SCA libraries established by the SET LIBRARY command. You can use
a library number in place of a library specification. For example, the primary
library is library #1. You can also specify a wildcard name expression.

Related Commands

CREATE LIBRARY
LOAD
SET LIBRARY
SHOW LIBRARY

CD–115

DELETE LIBRARY
SCA Command

Example

LSE> DELETE LIBRARY/CONFIRM SCA$:[USER.SCA]

Deletes a library after confirmation that the library should be deleted.

CD–116

DELETE MODULE
SCA Command

DELETE MODULE

Deletes specified modules of source-analysis data from SCA libraries.

Format

DELETE MODULE module-name[, . . .]

Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/DECLARATION_CLASS=

declaration-class
/LIBRARY[=library-spec] /LIBRARY=primary-library
/[NO]LOG /LOG

Qualifiers

/CONFIRM
/NOCONFIRM (D)
Tells SCA whether to prompt you to confirm each module deletion.

To delete a module, you must respond to the confirmation prompt by typing
Y, YE, or YES. If you specify N, NO, or press Return, SCA does not delete the
module. SCA considers any other response to be ambiguous and reissues the
confirmation prompt.

/DECLARATION_CLASS=declaration-class
Indicates the class of the module to be deleted. The following declaration
classes are supported:

• PRIMARY—Module implementation

• ASSOCIATED—Module specification

If you do not specify a declaration class, SCA deletes both classes, if they exist.

/LIBRARY[=library-spec]
/LIBRARY=primary-library (D)
Specifies an SCA library containing the module to be deleted. This library
must be one of the current libraries (established by a SET LIBRARY
command).

If you do not specify a library, the primary SCA library is the default; that is,
the module is deleted from the first of the current SCA libraries.

CD–117

DELETE MODULE
SCA Command

/LOG (D)
/NOLOG
Indicates whether SCA reports successful deletion of a module.

Parameter

module-name[, . . .]
Specifies the names of the modules to be deleted from the current library. You
can specify a wildcard name expression.

Description

The DELETE MODULE command allows you to selectively update a specific
SCA library.

Example

$ SCA DELETE MODULE module_1

Deletes module_1 from the library.

CD–118

DELETE OVERVIEW

DELETE OVERVIEW

Format

DELETE OVERVIEW

Qualifier

/BUFFER=buffer name
Indicates the buffer whose overview information is to be reset. The default is
the current buffer.

Description

The DELETE OVERVIEW command gets rid of all the overview lines in the
current buffer and makes all the real lines in the buffer visible.

Example

LSE> DELETE OVERVIEW

CD–119

DELETE PACKAGE

DELETE PACKAGE

Deletes a package definition without deleting the routines or parameters
associated with the package.

Format

DELETE PACKAGE package-name

Parameter

package-name
Names the package definition to be deleted.

Description

The DELETE PACKAGE command deletes the specified package. The routines
and parameters associated with the package are not deleted, but they are no
longer available for use. If a subsequent DEFINE PACKAGE command is
entered for the same package name, all the previously defined routines and
parameters become associated with the new package definition. Thus, you can
use the DELETE PACKAGE command, followed by the DEFINE PACKAGE
command, to modify the properties of a package definition.

Related Commands

DEFINE PACKAGE
EXTRACT PACKAGE
SHOW PACKAGE

Example

LSE> DELETE PACKAGE system_services

Deletes the package named system_services.

CD–120

DELETE PARAMETER

DELETE PARAMETER

Deletes a parameter definition from a package.

Format

DELETE PARAMETER parameter-name

Qualifier Defaults

/PACKAGE=package-name

Qualifier

/PACKAGE=package-name
Specifies the name of the package containing the parameter to be deleted. The
DELETE PARAMETER command requires this qualifier.

Parameter

parameter-name
Specifies the name of the parameter to be deleted.

Description

The DELETE PARAMETER command deletes the specified parameter
definition from the package specified by the /PACKAGE qualifier.

Related Commands

DEFINE PARAMETER
EXTRACT PARAMETER
SHOW PARAMETER

Example

LSE> DELETE PARAMETER/PACKAGE=system_services id

Deletes the parameter named id from the package named system_services.

CD–121

DELETE PLACEHOLDER

DELETE PLACEHOLDER

Removes a name from the list of placeholders associated with a language.

Format

DELETE PLACEHOLDER name

Qualifier Defaults

/LANGUAGE=language-name

Qualifier

/LANGUAGE=language-name
Names the language associated with the placeholder being deleted. By default,
LSE deletes the placeholder from the set of placeholders defined for the current
language. Using the /LANGUAGE qualifier, you can delete placeholders from
other languages as well.

Parameter

name
Specifies the name of the placeholder to be deleted.

Description

The DELETE PLACEHOLDER command removes a specified name from the
list of placeholders associated with a language.

Related Commands

DEFINE PLACEHOLDER
EXTRACT PLACEHOLDER
SHOW PLACEHOLDER

Example

LSE> DELETE PLACEHOLDER/LANGUAGE=EXAMPLE parameter

Removes the placeholder named parameter from the list of placeholders
associated with the language EXAMPLE.

CD–122

DELETE QUERY
SCA Command

DELETE QUERY

Deletes the specified query.

Format

DELETE QUERY [query-name]

Parameter

query-name
Specifies the query to be deleted. If you omit the query name, the current
query is deleted. You can specify wildcards.

Description

The DELETE QUERY command deletes an SCA query.

DECwindows Interface Equivalent

Pop-up menu: Query buffer � Delete Query

Related Commands

FIND
GOTO QUERY
NEXT QUERY
PREVIOUS QUERY
SHOW QUERY

Example

LSE> DELETE QUERY 1

Removes the query named 1.

CD–123

DELETE ROUTINE

DELETE ROUTINE

Deletes a routine definition from a package.

Format

DELETE ROUTINE routine-name

Qualifier Defaults

/PACKAGE=package-name

Qualifier

/PACKAGE=package-name
Indicates the package containing the routine definition to be deleted. The
DELETE ROUTINE command requires this qualifier.

Parameter

routine-name
Specifies the name of the routine to be deleted.

Description

The DELETE ROUTINE command deletes a routine definition from a package.
If the routine has already been expanded in the current editing session, the
tokens defined by the expansion remain.

Related Commands

DEFINE ROUTINE
EXTRACT ROUTINE
SHOW ROUTINE

Example

LSE> DELETE ROUTINE/PACKAGE=system_services sys$add_holder

Deletes the routine named sys$add_holder from the package named
system_services.

CD–124

DELETE TAG

DELETE TAG

Removes a name from the list of tags associated with a language.

Format

DELETE TAG name

Qualifier Defaults

/LANGUAGE=language-name

Qualifier

/LANGUAGE=language-name
Names the language associated with the tag being deleted. By default, LSE
deletes the tag from the set of tags defined for the current language. Using the
/LANGUAGE qualifier, you can delete tags from other languages as well.

Parameter

name
Specifies the name of the tag to be deleted.

Description

The DELETE TAG command removes a specified name from the list of tags
associated with a language.

Related Commands

DEFINE TAG
EXTRACT TAG
SHOW TAG

Example

LSE> DELETE TAG/LANGUAGE=EXAMPLE parameters

Removes the tag named parameters from the list of tags associated with the
language EXAMPLE.

CD–125

DELETE TOKEN

DELETE TOKEN

Removes a token name from the list of tokens associated with a language.

Format

DELETE TOKEN name

Qualifier Defaults

/LANGUAGE=language-name

Qualifier

/LANGUAGE=language-name
Specifies the language associated with the token being deleted. By default,
LSE deletes the token from the set of tokens defined for the current language.
Using the /LANGUAGE qualifier, you can delete tokens from other languages
as well.

Parameter

name
Specifies the token name to be deleted.

Description

The DELETE TOKEN command removes a token name from the list of tokens
associated with either the current language or a language you specify.

Related Commands

DEFINE TOKEN
EXTRACT TOKEN
SHOW TOKEN

Example

LSE> DELETE TOKEN/LANGUAGE=EXAMPLE assignment

Removes the token assignment from the list of tokens associated with the
language EXAMPLE.

CD–126

DELETE WINDOW

DELETE WINDOW

Deletes the current window.

Format

DELETE WINDOW

Description

The DELETE WINDOW command deletes the current window, unless there is
only one window. The remaining windows are enlarged to occupy the entire
screen.

DECwindows Interface Equivalent

Pull-down menu: View � Delete Window

Related Commands

ONE WINDOW
SET SCREEN WINDOW

CD–127

DO

DO

Directs LSE to execute LSE commands or DECTPU program statements.

Format

DO [string[, . . .]]

Qualifiers Defaults

/BUFFER[=buffer-name]
/[NO]CONTINUE /CONTINUE
/LSE /LSE
/PROMPT=prompt-string
/TPU /LSE

Qualifiers

/BUFFER[=buffer-name]
Indicates that LSE should read commands from the specified buffer and
execute the commands or DECTPU program statements within that buffer.
The default is the current buffer. If you do not specify either the /BUFFER or
/PROMPT qualifier, LSE executes the current buffer.

/CONTINUE (D)
/NOCONTINUE
Indicates whether LSE prompts for a single string to be executed, or
for multiple strings to be executed. If you specify the /NOCONTINUE
qualifier, LSE repeatedly prompts for additional commands until you enter
a CONTINUE command.

You use the /[NO]CONTINUE qualifier with the /PROMPT qualifier; you must
not specify the /NOCONTINUE qualifier with the /TPU qualifier.

/LSE (D)
Indicates that the strings are LSE commands.

/PROMPT=prompt-string
Indicates that LSE should prompt you for a command (or DECTPU program
statement) to execute.

The /PROMPT and /BUFFER qualifiers are mutually exclusive. If you specify
the string parameter, you cannot specify the /PROMPT or /BUFFER qualifier.
If you do not specify the /BUFFER qualifier but specify the /PROMPT qualifier,
LSE prompts you for a command and does not execute the current buffer.

CD–128

DO

/TPU
Indicates that the strings are DECTPU program statements. When specifying
the /TPU qualifier, you cannot use the /NOCONTINUE qualifier.

Parameter

string[, . . .]
Specifies a list of comma-separated commands or statements to be executed.
Commands with embedded spaces, such as GOTO BUFFER, must be enclosed
by double quotation marks.

Description

With the DO command, you can enter commands from a command line or from
a buffer. You can specify a list of commands to be executed, or direct LSE to
prompt you for LSE/SCA commands or DECTPU program statements (see the
HP Text Processing Utility Reference Manual for a description of DECTPU
programs).

To end the prompting for commands and return to keypad editing, enter the
CONTINUE command, or press Ctrl/Z.

Keypad Equivalent

DO/CONTINUE/PROMPT=LSE Command>
Key Keypad Mode

PF1-KP7 COMMAND EDT LK201, EDT VT100, EVE LK201
DO DO EDT LK201, EVE LK201
PF4 DO EVE VT100

DO/NOCONTINUE/PROMPT=LSE>
Key Keypad Mode

Ctrl/Z All

DO/CONTINUE/TPU/PROMPT=TPU>
Key Keypad Mode

PF1-Ctrl/Z All

CD–129

DO

Related Commands

CALL
CONTINUE
GOTO COMMAND
EXTEND

Examples

1. LSE> DO "GOTO LINE","PASTE"

Moves the cursor to the end of the line in the current direction and copies
the contents of the $PASTE buffer at that position.

2. LSE> DO/TPU "ERASE(MESSAGE_BUFFER)"

Invokes DECTPU to erase the contents of the message buffer. Any
messages that have accumulated at the bottom of your screen are removed.

CD–130

END DEFINE

END DEFINE

Ends a body of text that begins with a DEFINE command.

Format

END DEFINE

Description

The END DEFINE command ends the body that follows a DEFINE
PLACEHOLDER or DEFINE TOKEN command, if the placeholder or token
definition has a body. The END DEFINE command ends the list of keywords
defined by the DEFINE KEYWORDS command.

The END DEFINE command also ends the sequence of keystrokes that follows
a DEFINE KEY/LEARN command. To use the END DEFINE command for
this purpose, enter the command by pressing a key you have defined to be the
END DEFINE key.

Keypad Equivalent
Key Keypad Mode

Ctrl/R EVE LK201, EVE VT100
None EDT LK201, EDT VT100

Related Commands

DEFINE KEY
DEFINE KEYWORDS
DEFINE PLACEHOLDER
DEFINE TOKEN

CD–131

END DEFINE

Example

DEFINE PLACEHOLDER parameter -
/LANGUAGE = EXAMPLE -
/DESCRIPTION = "Parameter name"
/DUPLICATION = HORIZONTAL -
/SEPARATOR = ", " -
/TYPE = TERMINAL
"A string of letters and digits starting with a letter."

END DEFINE

Shows the position of the END DEFINE command at the end of a DEFINE
PLACEHOLDER command.

CD–132

END REVIEW

END REVIEW

Ends an LSE REVIEW session.

Format

END REVIEW

Description

The END REVIEW command ends the current REVIEW session (initiated by a
REVIEW or COMPILE/REVIEW command) and deletes the window containing
the $REVIEW buffer.

DECwindows Interface Equivalent

Pop-up menu: Review buffer � End Review

Related Commands

REVIEW

CD–133

ENLARGE WINDOW

ENLARGE WINDOW

Enlarges the current window.

Format

ENLARGE WINDOW line-count

Parameter

line-count
Specifies the number of screen lines you want to add to the current window. If
you do not supply this parameter, LSE prompts you for the number of lines to
add.

The maximum size of a window depends on the size and type of the terminal
screen you are using. The minimum size is one line of text and one line for the
status line.

Description

The ENLARGE WINDOW command enlarges the window the text cursor is in
(if you are using more than one window). LSE shrinks the other window (or
windows) accordingly.

Related Commands

SHRINK WINDOW

Example

LSE> ENLARGE WINDOW 10

Adds ten lines to the current window, taking them proportionally from the
other window (or windows) on the screen.

CD–134

ENTER COMMENT

ENTER COMMENT

Converts pseudocode into comments.

Format

ENTER COMMENT

Qualifiers Defaults

/BLOCK /BLOCK
/LINE /BLOCK

Qualifiers

/BLOCK (D)
Specifies that the comment should be entered above the cursor (or selected
text range), which formats the comment according to the placeholder
LSE$BLOCK_COMMENT.

You cannot specify both the /BLOCK and /LINE qualifiers.

/LINE
Specifies that the comment should be entered at the end of the current line (or
selected text range), which formats the comment according to the placeholder
LSE$LINE_COMMENT.

You cannot specify both the /LINE and /BLOCK qualifiers.

Description

The ENTER COMMENT command converts pseudocode into comments. It
inserts a comment near the current cursor position.

If the cursor is on a pseudocode placeholder, the command moves the
placeholder’s text into the comment and replaces the placeholder with the
LSE$GENERIC placeholder. The cursor is then positioned on the generic
placeholder.

If the cursor is in a comment, the LSE editor finds a nearby pseudocode
placeholder P, and converts P’s content into a comment. The LSE$GENERIC
placeholder is inserted in place of P and the cursor remains on the generic
placeholder. The command qualifiers are ignored when the cursor is on a
comment.

CD–135

ENTER COMMENT

If the cursor is not on a placeholder or comment, the command inserts a new
comment and puts the LSE$GENERIC placeholder inside the comment. The
cursor is then positioned on the generic placeholder.

If there is a sequence of pseudocode placeholders and a selected range
is active when ENTER COMMENT is executed, all text in the selected
range is converted into a comment and the placeholders are replaced with
LSE$GENERIC placeholders accordingly. The cursor is positioned on the first
placeholder after the comment.

The ENTER COMMENT command requires definitions for three placeholders,
as follows:

• LSE$BLOCK_COMMENT—Specifies the comment format to be used by
ENTER COMMENT/BLOCK

• LSE$LINE_COMMENT—Specifies the comment format to be used by
ENTER COMMENT/LINE

• LSE$GENERIC—Specifies the text to be inserted in place of the
pseudocode placeholder removed by ENTER COMMENT

The following are example definitions for Ada:

DEFINE PLACEHOLDER LSE$BLOCK_COMMENT /TYPE=NOTERMINAL
"-- {tbs}"
"--"

END DEFINE

DEFINE PLACEHOLDER LSE$LINE_COMMENT /TYPE=NOTERMINAL
"-- {tbs}"

END DEFINE

DEFINE PLACEHOLDER LSE$GENERIC /TYPE=NOTERMINAL
"{tbs}"

END DEFINE

The following is an example definition for COBOL:

DEFINE PLACEHOLDER LSE$BLOCK_COMMENT
"*"/INDENTATION=(fixed,1), "{tbs}"
"*"/INDENTATION=(fixed,1)

The following is an example definition for Fortran:

DEFINE PLACEHOLDER LSE$BLOCK_COMMENT
"!", " {tbs}"/INDENTATION=EXPAND
"!"

CD–136

ENTER COMMENT

Keypad Equivalent

ENTER COMMENT/BLOCK
Key Keypad Mode

PF1-B All

ENTER COMMENT/LINE
Key Keypad Mode

PF1-L All

Related Commands

UNDO ENTER COMMENT

Examples

The following are examples of converting pseudocode to comments:

1. «This is something interesting.»

Entering the ENTER COMMENT/LINE command causes LSE to convert
the pseudocode placeholder to a comment, as follows:

{tbs} ! This is something interesting.

2. «We will move the third item from the left to be the»
«next to the last item from the right in this case.»

If there is a selected range active for both lines, entering the ENTER
COMMENT/BLOCK command causes LSE to convert pseudocode to
comments, as follows:

-- We will move the third item from the left to be the
-- next to the last item from the right in this case.
{tbs}

CD–137

ENTER LINE

ENTER LINE

Splits the current line into two lines.

Format

ENTER LINE

Qualifiers Defaults

/BEGINNING /BEGINNING
/[NO]COMMENT /COMMENT
/END /BEGINNING

Qualifiers

/BEGINNING (D)
Indicates that the cursor should be left at the beginning of the second line.
If you position the cursor at the end of the original line, the /BEGINNING
qualifier adds a new blank line to the current buffer and repositions the cursor
at the beginning of the new line.

If you position the cursor at the beginning of a line, the /BEGINNING qualifier
adds a new blank line before the current line and the cursor remains at the
beginning of the current line.

If you position the cursor within a line, the /BEGINNING qualifier splits that
line into two lines at the original cursor position and repositions the cursor at
the beginning of the second line.

/COMMENT (D)
/NOCOMMENT
Indicates whether the second line should be a comment. This qualifier has no
effect unless each of the following conditions are met:

• The current buffer is associated with a language.

• Comments are defined for the language.

• The cursor is positioned within a comment.

• Wrapping is set for the current buffer.

If all these conditions apply, you use the /NOCOMMENT qualifier when you
want to terminate a comment and begin a code line.

CD–138

ENTER LINE

/END
Indicates that the cursor should be left at the end of the first line. If you start
with the cursor at the end of the original line, the /END qualifier causes the
cursor to stay there.

If you start with the cursor at the beginning of a line, the /END qualifier adds
a new blank line before the current line and positions the cursor on that blank
line.

If you position the cursor within a line, specifying the /END qualifier splits the
line in two leaving the cursor at the end of the first line.

Description

The ENTER LINE command splits the current line into two lines and places
the cursor at the end of the first line or the beginning of the second line,
depending on the qualifier you specify.

The ENTER LINE command also works in conjunction with the SET WRAP
command to let you fill lines of text between margins. If wrapping is set for
the buffer, LSE indents the second line to the left margin.

CD–139

ENTER LINE

Keypad Equivalent

ENTER LINE/BEGINNING
Key Keypad Mode

Return All

ENTER LINE/END
Key Keypad Mode

PF1-KP0 OPEN LINE EDT LK201, EDT VT100, EVE LK201

ENTER LINE/NOCOMMENT
Key Keypad Mode

PF1-Return All

Related Commands

ENTER SPACE
SET WRAP

CD–140

ENTER PSEUDOCODE

ENTER PSEUDOCODE

Inserts pseudocode placeholder delimiters.

Format

ENTER PSEUDOCODE

Description

The ENTER PSEUDOCODE command inserts pseudocode placeholder
delimiters and positions the cursor on the first character of the right delimiter.
The pseudocode placeholder delimiters must be defined before using this
command.

If the cursor is on a placeholder defined with the command DEFINE
PLACEHOLDER/PSEUDOCODE, the command has the usual effects of text
insertion on the defined placeholders. The defined placeholder is autoerased
and, if it is a list placeholder, it is duplicated.

If the cursor is on a placeholder defined with the command DEFINE
PLACEHOLDER/NOPSEUDOCODE, or is on a pseudocode placeholder,
the command is not allowed and a warning message is displayed.

If the cursor is not on a placeholder, the command inserts the pseudocode
placeholder delimiter.

Keypad Equivalent
Key Keypad Mode

PF1-Space bar All

Related Commands

DEFINE LANGUAGE
DEFINE PLACEHOLDER
MODIFY LANGUAGE

CD–141

ENTER PSEUDOCODE

Examples

The following are examples of entering pseudocode:

1. IF {expression}

Entering the ENTER PSEUDOCODE command causes LSE to insert
pseudocode placeholder delimiters, as follows:

IF «»

2. {statement} . . .

Entering the ENTER PSEUDOCODE command causes LSE to insert
pseudocode placeholder delimiters, as follows:

«»
[statement] . . .

CD–142

ENTER SPACE

ENTER SPACE

Inserts or overstrikes a space at the current cursor position, depending on
whether the current editing mode is insert or overstrike.

If wrap mode is set, line-oriented filling occurs.

Format

ENTER SPACE

Description

The ENTER SPACE command either inserts or overstrikes a space, depending
on the current editing mode. If the cursor is past the right margin and wrap
mode is set, the ENTER SPACE command performs a line-fill operation on the
current line (see the SET [NO]WRAP command). You can change the right
margin with the SET RIGHT_MARGIN command.

Keypad Equivalent
Key Keypad Mode

Space bar All

Related Commands

ENTER LINE
SET WRAP

CD–143

ENTER SPECIAL

ENTER SPECIAL

Causes LSE to insert into the current buffer a character whose ASCII code you
specify.

Format

ENTER SPECIAL ASCII-code

Parameter

ASCII-code
Specifies the ASCII code of the character you want as a decimal number from
0 through 255.

Description

The ENTER SPECIAL command inserts a special character into the buffer at
the current cursor position. You can insert a form feed or other nonprinting
characters as well as printing characters, such as letters and punctuation
marks. When you enter the command, LSE prompts you for the ASCII code of
the character you want to insert.

Keypad Equivalent

ENTER SPECIAL
Key Keypad Mode

PF1-KP3 SPECINS EDT LK201, EDT VT100, EVE LK201
Ctrl/V All

Related Commands

QUOTE

Example

LSE> ENTER SPECIAL 12

Causes LSE to insert a form-feed character (Ctrl/L).

CD–144

ENTER TAB

ENTER TAB

Inserts tabs and blanks at the current cursor position.

Format

ENTER TAB

Description

The ENTER TAB command inserts tabs and blanks at the current cursor
position. If the cursor is at the beginning of the line, LSE inserts tabs and
blanks up to the current indentation level. If the current indentation level is
set at the beginning of the line, the ENTER TAB command does not insert tabs
and blanks. If the cursor is not at the beginning of the line, the ENTER TAB
command inserts an ASCII tab character.

Related Commands

SET INDENTATION
SET TAB_INCREMENT
TAB

CD–145

ENTER TEXT

ENTER TEXT

Inserts text at the current cursor position.

Format

ENTER TEXT string

Parameter

string
Is a quoted string specifying the text to be inserted.

Description

The ENTER TEXT command inserts text from a quoted string at the current
cursor position.

Example

LSE> ENTER TEXT "Insert this"

Inserts the quoted text Insert this at the current cursor position.

CD–146

ERASE CHARACTER

ERASE CHARACTER

Erases a single character at the current cursor position.

Format

ERASE CHARACTER

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/INDICATED /INDICATED
/REVERSE /CURRENT
/TO /INDICATED

Qualifiers

/CURRENT (D)
Erases text in the current direction.

/FORWARD
Erases text in the forward direction.

/INDICATED (D)
Deletes the character at the current cursor position.

/REVERSE
Erases text in the reverse direction.

/TO
Deletes the character at the current cursor position when the direction is
FORWARD. Deletes the character before the current cursor position when the
direction is REVERSE.

Description

The ERASE CHARACTER command removes a single character from the
current buffer. (A line terminator or ASCII tab character is considered one
character.) In either insert or overstrike mode, the remainder of the line
moves left one character to close up the space. An exception is the ERASE/TO
CHARACTER/REVERSE command, which in overstrike mode changes the
erased character to a space and moves left one position.

CD–147

ERASE CHARACTER

When the cursor is at the end of a line, the carriage return is deleted, and the
text from the following line moves up to the right of the text in the current
line.

Keypad Equivalent

ERASE/TO CHARACTER/REVERSE
Key Keypad Mode

Delete All

ERASE/TO CHARACTER/FORWARD
Key Keypad Mode

Keypad comma (,) DEL C EDT LK201, EDT VT100, EVE LK201
None EVE VT100

Related Commands

UNERASE CHARACTER

Example

LSE> ERASE CHARACTER

Deletes the character at the current cursor position (equivalent to pressing the
comma key on the EDT numeric keypad).

CD–148

ERASE LINE

ERASE LINE

Removes a line of text at the current cursor position.

Format

ERASE LINE

Qualifiers Defaults

/BEGINNING /BEGINNING
/CURRENT /CURRENT
/END /BEGINNING
/FORWARD /CURRENT
/INDICATED /INDICATED
/REVERSE /CURRENT
/TO /INDICATED

Qualifiers

/BEGINNING (D)
Indicates that the cursor should be moved to the beginning of a line as part
of the ERASE operation. You cannot use the /BEGINNING qualifier with the
/INDICATED qualifier.

/CURRENT (D)
Erases text in the current direction.

/END
Indicates that the cursor should be moved to the end of a line as part of the
ERASE operation. You cannot use the /END qualifier with the /INDICATED
qualifier.

/FORWARD
Erases text in the forward direction.

/INDICATED (D)
Erases the entire line that the cursor is on (including the carriage return and
line feed), regardless of the cursor position within that line or the direction
specified. The cursor moves to the beginning of the next line. You cannot use
the /INDICATED qualifier with the /BEGINNING, /END, or /TO qualifiers.

/REVERSE
Erases text in the reverse direction.

CD–149

ERASE LINE

/TO
Erases text from the current cursor position to the next line in the direction
specified.

Description

The ERASE LINE command removes a line of text from the current cursor
position. When LSE deletes all the text from the current cursor position to the
end of the current line, the text on the following line moves up to fill the space
to the right of the cursor.

Keypad Equivalent

ERASE/TO LINE/BEGINNING/REVERSE
Key Keypad Mode

Ctrl/U All

ERASE/TO LINE/BEGINNING/FORWARD
Key Keypad Mode

PF4 DEL L EDT LK201, EDT VT100, EVE LK201
None EVE VT100

ERASE/TO LINE/END
Key Keypad Mode

PF1-KP2 DEL EOL EDT LK201, EDT VT100, EVE LK201
None EVE VT100

Related Commands

UNERASE LINE

Examples

1. LSE> ERASE LINE

Erases the entire line that the cursor is on, regardless of cursor position or
direction specified.

CD–150

ERASE LINE

2. Ctrl/U

Erases text from the current cursor position to the beginning of the current
line. If the cursor is already at the beginning of a line, Ctrl/U erases to the
beginning of the previous line.

3. LSE> ERASE/TO LINE/END

Erases text from the current cursor position to the end of the current line,
but does not erase the line break.

CD–151

ERASE PLACEHOLDER

ERASE PLACEHOLDER

Deletes the text of a placeholder and related punctuation.

Format

ERASE PLACEHOLDER

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/[NO]GOTO_PLACEHOLDER /GOTO_PLACEHOLDER
/REVERSE /CURRENT

Qualifiers

/CURRENT (D)
Specifies cursor motion in the current direction.

/FORWARD
Specifies cursor motion in the forward direction.

/GOTO_PLACEHOLDER (D)
/NOGOTO_PLACEHOLDER
Specifies whether the cursor should move to the next placeholder after
performing the ERASE operation. The movement to the next placeholder
does not take place if it would force the current position to scroll off the screen.

/REVERSE
Specifies cursor motion in the reverse direction.

Description

The ERASE PLACEHOLDER command moves the cursor to the next
placeholder in the direction specified and deletes the placeholder. The implicit
GOTO PLACEHOLDER command caused by the ERASE PLACEHOLDER
command goes only to regular LSE placeholders, not to pseudocode
placeholders. If the cursor is already on a placeholder, the deletion occurs
in place.

If the cursor is on a character of a closing pseudocode placeholder delimiter, or
not on a placeholder, the ERASE PLACEHOLDER command performs a GOTO
PLACEHOLDER command before erasing.

If no placeholder is found, LSE returns an error message.

CD–152

ERASE PLACEHOLDER

After deleting the placeholder and any leading tabs or blanks, LSE then
deletes any leading separator text, or leading and trailing punctuation. If the
resulting line or line segment is now empty, LSE then deletes the entire line or
line segment.

Keypad Equivalent

ERASE PLACEHOLDER/FORWARD
Key Keypad Mode

Ctrl/K All

Related Commands

DEFINE PLACEHOLDER
UNERASE PLACEHOLDER

Examples
DEFINE PLACEHOLDER identifier_list -

/TRAILING=":" -
/SEPARATOR=","

. . .

This DEFINE PLACEHOLDER specification applies to each of the
following examples. The line comment delimiter is a double hyphen
(��).

1. <text> [identifier_list] <more text>

If this is the original text, entering an ERASE PLACEHOLDER command
produces the following:

<text> <more text>

2. <text> [identifier_list] : <more text>

If this is the original text, entering an ERASE PLACEHOLDER command
produces the following:

<text> <more text>

CD–153

ERASE PLACEHOLDER

3. <text> , [identifier_list] <more text>

If this is the original text, entering an ERASE PLACEHOLDER command
produces the following:

<text> <more text>

4. <text> -- [identifier_list] <more text>

If this is the original text, entering an ERASE PLACEHOLDER command
produces the following:

<text> -- <more text>

5. -- [identifier_list] <more text>

If this is the original text, entering an ERASE PLACEHOLDER command
produces the following:

-- <more text>

CD–154

ERASE SELECTION

ERASE SELECTION

Removes the text within the selected range.

Format

ERASE SELECTION

Description

The ERASE SELECTION command removes the text within the selected
range. The selected range is the text between the select marker (see the SET
SELECT_MARK command) and the current cursor position.

Related Commands

UNERASE SELECTION

Example

LSE> ERASE SELECTION

Removes the text within the selected range.

CD–155

ERASE WORD

ERASE WORD

Removes a word at the current cursor position.

Format

ERASE WORD

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/INDICATED /INDICATED
/NEXT
/PREVIOUS
/REVERSE /CURRENT
/TO /INDICATED

Qualifiers

/CURRENT (D)
Erases text in the current direction.

/FORWARD
Erases text in the forward direction.

/INDICATED (D)
Deletes the entire word the cursor is on, regardless of the cursor’s position
within that word.

/NEXT
Erases the word following the cursor. When the cursor is positioned on a
space, LSE erases all the spaces before and after the deleted word except
one space. If the cursor is at the end of a line, the next line is appended to
the current line. You cannot use the /NEXT qualifier with any other ERASE
WORD qualifier.

/PREVIOUS
Erases the previous word when the cursor is on the first character of a word or
between words. When the cursor is in the middle of a word, that entire word is
erased and the cursor moves on to the first letter of the next word. You cannot
use the /PREVIOUS qualifier with any other ERASE WORD qualifier.

/REVERSE
Erases text in the reverse direction.

CD–156

ERASE WORD

/TO
Deletes text from the current cursor position to the beginning of the next word
in the specified direction.

Description

The ERASE WORD command removes a word from the current buffer.
A word can be terminated by tabs or characters not specified in the
/IDENTIFIER_CHARACTERS qualifier on the DEFINE LANGUAGE
command. A word can consist of identifier characters and trailing blanks,
or it can consist of a single nonblank, nonidentifier character.

Keypad Equivalent

ERASE/TO WORD/REVERSE
Key Keypad Mode

F13 DEL PRV W EDT LK201
Ctrl/J LINEFEED All

ERASE/TO WORD/FORWARD
Key Keypad Mode

Keypad minus (–) DEL W EDT LK201, EDT VT100, EVE LK201
None EVE VT100

ERASE WORD/NEXT
Key Keypad Mode

Keypad comma (,)
ERASE WORD

EVE VT100

F13 ERASE WORD EVE LK201

Related Commands

UNERASE WORD

CD–157

ERASE WORD

Example

LSE> ERASE WORD

Deletes the entire word at the current cursor position.

CD–158

EXIT
SCA Command

EXIT

Ends an LSE editing session or SCA query session, and returns control to the
calling process or the OpenVMS command language interpreter.

Format

EXIT

Qualifier Defaults

/[NO]LOG {SCA only} /NOLOG

Qualifier

/LOG
/NOLOG (D)
Indicates whether completion of an SCA session is reported.

Description

The EXIT command ends or suspends your session and returns control to the
process that called LSE or SCA (usually the DCL command interpreter). If you
are using LSE, the contents of buffers associated with files are written to their
files if they have been modified. Buffers with the READ_ONLY attribute are
not written back.

Keypad Equivalent
Key Keypad Mode

F10 EXIT EDT LK201, EVE LK201
None EDT VT100, EVE VT100

DECwindows Interface Equivalent

Pull-down menu: File � Exit

Related Commands

ATTACH
QUIT
SPAWN

CD–159

EXIT
SCA Command

Examples

1. LSE> EXIT

Ends an LSE session and writes modified buffers back to their respective
files.

2. SCA> EXIT

Ends an SCA query session.

CD–160

EXPAND

EXPAND

Replaces placeholders, token names, alias names, or routine names at the
current cursor position with the appropriate body of text or code, if the cursor
is not on the overview line. Replaces the overview line with the underlying
source lines if the cursor is on the overview line. Expands symbols to include
their occurrences if the cursor is in a query buffer.

Format

EXPAND

Qualifiers Defaults

/DEPTH=n /DEPTH=1
/[NO]GOTO_PLACEHOLDER /GOTO_PLACEHOLDER

Qualifiers

/DEPTH=n
/DEPTH=1 (D)
Specifies how many levels of detail are displayed. If you specify the value ALL,
all subgroups for this overview line are expanded.

If the cursor is not on an overview line or is in a query buffer, the /DEPTH
qualifier is ignored. Note that when you use the EXPAND command with SCA,
this command does not support the /DEPTH qualifier.

/GOTO_PLACEHOLDER (D)
/NOGOTO_PLACEHOLDER
Specifies whether the cursor should move to the next placeholder after
performing the EXPAND operation. The movement to the next placeholder
does not take place if it would force the current position to scroll off the screen.

If the cursor is on an overview line, the /GOTO_PLACEHOLDER qualifier
is ignored. Note that when you use the EXPAND command with SCA, this
command does not support the /GOTO_PLACEHOLDER qualifier.

CD–161

EXPAND

Description

If the cursor is not on an overview line, the EXPAND command expands text
representing alias names, routine names, token names, or placeholders at the
current position.

The EXPAND_CASE setting (defined with the DEFINE LANGUAGE or
MODIFY LANGUAGE command) determines the case of the inserted text. If
the EXPAND_CASE is UPPER or LOWER, LSE inserts the text in that case.
If the EXPAND_CASE is AS_IS, LSE inserts the text as it appears in the token
definition.

If the cursor is on an overview line, the overview is expanded to display the
underlying hidden text.

The editor determines the relative level of detail of a line by comparing
the indentation of the line with the indentation of other lines. The editor’s
treatment of the indentation of a line is influenced by indentation adjustment
definitions. For more information, see the DEFINE ADJUSTMENT command.

For SCA, if the cursor is positioned on a symbol in a query buffer, the EXPAND
command expands the symbol to display its occurrences.

Keypad Equivalent

EXPAND
Key Keypad Mode

Ctrl/E EDT LK201, EDT VT100
Ctrl// EVE LK201, EVE VT100

EXPAND/DEPTH=ALL
Key Keypad Mode

PF1-< All

CD–162

EXPAND

DECwindows Interface Equivalent

EXPAND
Pop-up menu: Query buffer � Expand
Pull-down menu: View � Expand

EXPAND/DEPTH=ALL
Pull-down menu: View � Expand All

Related Commands

COLLAPSE
DEFINE ADJUSTMENT
DEFINE LANGUAGE/OVERVIEW_OPTIONS
FOCUS
MODIFY LANGUAGE
SET NOOVERVIEW
SET OVERVIEW
UNEXPAND
VIEW SOURCE

Examples

The following are examples of replacing a token or nonterminal placeholder
with its body text based on the token or placeholder definition.

1. DEFINE TOKEN for -
/LANGUAGE=C -

"for ([@expression@]; [@expression@]; [@expression@])"
"{@statement@}"/INDENTATION=(EXPAND,1,TAB)

END DEFINE

DEFINE TOKEN "{" -
/LANGUAGE=C -

"{"/INDENTATION=PREVIOUS
"{@statement@}..."/INDENTATION=(PREVIOUS, 1, TAB)
"}"/INDENTATION=PREVIOUS

END DEFINE

CD–163

EXPAND

With the definitions in this example, typing ‘‘{’’ on the placeholder
{@statement@} (Step 1) and expanding it (Step 2) produces the following
(Step 3):

Step 1:
for (i = 0; i >15; i++)

{@statement@}
Step 2:

for (i = 0; i >15; i++)
{

Step 3:
for (i = 0; i >15; i++)
{

{@statement@}...
}

2. DEFINE PLACEHOLDER "#IF" -
/LANGUAGE= C -

"#if {@constant expression@}"/INDENTATION=(FIXED,1)
"[@#else_clause@]"/INDENTATION=(FIXED,1)
"#endif"/INDENTATION=(FIXED,1)

END DEFINE

With the definitions in this example, expanding the [@#IF@] placeholder at
any column always yields indentation to the column defined, as follows:

Step1:
[@#if@]

Step2:

#if {@constant expression@}
[@#else_clause@]
#endif

CD–164

EXTEND

EXTEND

Compiles one or more DECTPU procedures to extend LSE.

Format

EXTEND
�

procedure-name
*

�

Qualifier Defaults

/INDICATED /INDICATED

Qualifier

/INDICATED (D)
If you specify the /INDICATED qualifier, the EXTEND command compiles
the DECTPU procedure in which the cursor is located. You cannot specify the
/INDICATED qualifier with a parameter.

Parameters

procedure-name
The name of the DECTPU procedure you want to compile. You can abbreviate
the procedure name.

*
Wildcard symbol instructing DECTPU to compile all the procedures and
statements in the buffer.

Description

The EXTEND command compiles one or more DECTPU procedures to extend
LSE. Using EXTEND without specifying the procedure name compiles the
procedure in which the cursor is located.

To execute a compiled procedure, use the EXTEND command followed by the
name of the procedure you want executed. To save a compiled procedure in a
section file for future editing sessions, use the SAVE SECTION command.

If the procedure contains any overview records, a message informs you that
the operation cannot be performed because there are overview records in the
selected range. Compiler messages appear in the message window.

You cannot specify a parameter with the /INDICATED qualifier.

CD–165

EXTEND

Example

LSE> EXTEND user_proc

Compiles a procedure called USER_PROC.

CD–166

EXTRACT ADJUSTMENT

EXTRACT ADJUSTMENT

Extracts the definition of the named adjustment and formats the definition as
a command.

Format

EXTRACT ADJUSTMENT adjustment-name

Qualifiers Defaults

/LANGUAGE[=language-name]
/NEW

Qualifiers

/LANGUAGE[=language-name]
Specifies the language associated with the adjustment being extracted. If you
do not specify the /LANGUAGE qualifier, the default is the current language.

/NEW
Specifies that only the adjustment definitions defined during this editing
session should be extracted.

Parameter

adjustment-name
Specifies the name of the adjustment you want. You can specify a wildcard.

Description

The EXTRACT ADJUSTMENT command extracts the specified adjustment
definition and formats it as a command. LSE inserts the specified definitions
at the end of the current buffer in a form that permits them to be read back
and replace existing definitions. Specifically, the DELETE ADJUSTMENT
command precedes the corresponding DEFINE ADJUSTMENT command.

With the EXTRACT ADJUSTMENT command, you can modify definitions
by editing and then executing them using the DO command. You can write
definitions to a file.

You can use this command to extract adjustments to make global changes to
them. After you edit the buffer, use the DO command to execute the changes.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

CD–167

EXTRACT ADJUSTMENT

Related Commands

DEFINE ADJUSTMENT
DELETE ADJUSTMENT
SHOW ADJUSTMENT

Example

LSE> EXTRACT ADJUSTMENT/LANGUAGE=ADA then

Extracts the current definition of the then adjustment from the list of
adjustments associated with the Ada language and places the definition at
the end of the current buffer.

CD–168

EXTRACT ALIAS

EXTRACT ALIAS

Extracts the definition of an alias and formats the definition as a command.

Format

EXTRACT ALIAS alias-name

Qualifiers Defaults

/LANGUAGE[=language-name]
/NEW

Qualifiers

/LANGUAGE[=language-name]
Specifies the language associated with the alias being extracted. If you do not
specify the /LANGUAGE qualifier, the default is the current language.

/NEW
Specifies that only the definitions of aliases defined during this editing session
should be extracted.

Parameter

alias-name
Specifies the name of the alias you want. You can specify a wildcard.

Description

The EXTRACT ALIAS command extracts the specified alias definition and
formats it as a command. LSE inserts the specified definitions at the end of
the current buffer in a form that permits them to be read back and replace
existing definitions. Specifically, the DELETE ALIAS command precedes the
corresponding DEFINE ALIAS command.

With the EXTRACT ALIAS command, you can modify alias definitions by
editing and then executing them using the DO command. You can write
definitions to a file.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

CD–169

EXTRACT ALIAS

Related Commands

DEFINE ALIAS
DELETE ALIAS
SHOW ALIAS

Example

LSE> EXTRACT ALIAS EXE

Places the current definition of the EXE alias at the end of the current buffer.

CD–170

EXTRACT KEYWORDS

EXTRACT KEYWORDS

Extracts the definition of the specified keyword list and formats the definition
as a command.

Format

EXTRACT KEYWORDS keyword-list-name

Qualifier Defaults

/NEW

Qualifier

/NEW
Specifies that only the definitions of keyword list names defined during this
editing session should be extracted.

Parameter

keyword-list-name
Specifies the keyword list name. You can specify a wildcard.

Description

The EXTRACT KEYWORDS command extracts the specified keyword list
definition and formats it as a command. LSE inserts the specified definitions
at the end of the current buffer in a form that permits them to be read back
and replace existing definitions. Specifically, the DELETE KEYWORDS
command precedes the corresponding DEFINE KEYWORDS command.

With the EXTRACT KEYWORDS command, you can modify keyword-list
definitions by editing and then executing them using the DO command. You
can write definitions to a file.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

Related Commands

DEFINE KEYWORDS
DELETE KEYWORDS
SHOW KEYWORDS

CD–171

EXTRACT KEYWORDS

Example

LSE> EXTRACT KEYWORDS author_name

Places the current definition of the keyword list author_name at the end of the
current buffer.

CD–172

EXTRACT LANGUAGE

EXTRACT LANGUAGE

Extracts the definition of the specified language and formats the definition as a
command.

Format

EXTRACT LANGUAGE language-name

Qualifier Defaults

/NEW

Qualifier

/NEW
Specifies that only the definitions of languages defined during this editing
session should be extracted.

Parameter

language-name
Specifies the name of the language you want. You can specify a wildcard.

Description

The EXTRACT LANGUAGE command extracts the specified language
definition and formats it as a command. LSE inserts the specified definitions at
the end of the current buffer in a form that permits them to be read back and
replace existing definitions. Specifically, the DELETE LANGUAGE command
precedes the corresponding DEFINE LANGUAGE commands.

With the EXTRACT LANGUAGE command, you can modify language
definitions by editing and then executing them using the DO command.
You can write definitions to a file.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

Related Commands

DEFINE LANGUAGE
DELETE LANGUAGE
SHOW LANGUAGE

CD–173

EXTRACT LANGUAGE

Example

LSE> EXTRACT LANGUAGE Pascal

Places the current definition of the Pascal language at the end of the current
buffer.

CD–174

EXTRACT MODULE
SCA Command

EXTRACT MODULE

Extracts specified modules of source-analysis data from an SCA library.

Format

EXTRACT MODULE module-name-expr[, . . .]

Qualifiers Default

/DECLARATION_CLASS=declaration-class
/LIBRARY=library-spec
/[NO]LOG /NOLOG
/OUTPUT=file-spec

Qualifiers

/DECLARATION_CLASS=declaration-class
Indicates the class of the module to be copied. The following declaration classes
are supported:

• PRIMARY—Module implementation

• ASSOCIATED—Module specification

If you do not specify a declaration class, SCA extracts both classes, if they
exist.

/LIBRARY=library-spec
Specifies the SCA static library from which to extract the module. This library
must be one of the current SCA libraries (established by a SET LIBRARY
command). If you do not specify this qualifier, SCA tries to extract the module
from the primary library (the first of the current SCA libraries).

/LOG
/NOLOG (D)
Indicates whether SCA reports the extraction of a module.

/OUTPUT=file-spec
Specifies the file into which all modules of source-analysis data will be written.
The default is /OUTPUT=module-name.ANA, where the module name is the
name of the file the compiler created.

CD–175

EXTRACT MODULE
SCA Command

Parameter

module-name-expr[, . . .]
Specifies the modules to extract. If you specify more than one library, SCA
extracts the module from the first library in which it occurs.

Description

The EXTRACT MODULE command extracts the specified module from the
specified SCA static library and places it in a file of type .ANA, which is the
file type for source-analysis data files created by compilers. The EXTRACT
MODULE command performs the reverse function of the LOAD command.

Related Commands

LOAD
SET LIBRARY

Example

$ SCA EXTRACT MODULE module_1

Extracts module_1 from the current library.

CD–176

EXTRACT PACKAGE

EXTRACT PACKAGE

Extracts the definition of the specified package and formats the definition as a
command.

Format

EXTRACT PACKAGE package-name

Qualifiers Defaults

/LANGUAGE[=language-name]
/NEW

Qualifiers

/LANGUAGE[=language-name]
Specifies the language associated with the package being extracted. If you do
not specify the /LANGUAGE qualifier, the default is the current language.

/NEW
Specifies that only the definitions of packages defined during this editing
session should be extracted.

Parameter

package-name
Specifies the name of the package you want. You can specify a wildcard.

Description

The EXTRACT PACKAGE command extracts the specified package definition
and formats it as a command. LSE inserts the specified definitions at the end
of the current buffer in a form that permits them to be read back and replace
existing definitions. Specifically, the DELETE PACKAGE command precedes
the corresponding DEFINE PACKAGE command.

With the EXTRACT PACKAGE command, you can modify package definitions
by editing and then executing them using the DO command. You can write
definitions to a file.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

CD–177

EXTRACT PACKAGE

Related Commands

DEFINE PACKAGE
DELETE PACKAGE
SHOW PACKAGE

Example

LSE> EXTRACT PACKAGE system_services

Places the current definition of the system_services package at the end of the
current buffer.

CD–178

EXTRACT PARAMETER

EXTRACT PARAMETER

Extracts the definition of the specified parameter and formats the definition as
a command.

Format

EXTRACT PARAMETER parameter-name

Qualifiers Defaults

/LANGUAGE[=language-name]
/NEW

Qualifiers

/LANGUAGE[=language-name]
Specifies the language associated with the parameter being extracted. If you
do not specify the /LANGUAGE qualifier, the default is the current language.

/NEW
Specifies that only the definitions of parameters defined during this editing
session should be extracted.

Parameter

parameter-name
Specifies the name of the parameter you want. You can specify a wildcard.

Description

The EXTRACT PARAMETER command extracts the specified parameter
definition and formats it as a command. LSE inserts the specified definitions
at the end of the current buffer in a form that permits them to be read back
and replace existing definitions. Specifically, the DELETE PARAMETER
command precedes the corresponding DEFINE PARAMETER command.

With the EXTRACT PARAMETER command, you can modify definitions by
editing and then executing them using the DO command. You can write
definitions to a file.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

CD–179

EXTRACT PARAMETER

Related Commands

DEFINE PARAMETER
DELETE PARAMETER
SHOW PARAMETER

Example

LSE> EXTRACT PARAMETER id

Places the current definition of the id parameter at the end of the current
buffer.

CD–180

EXTRACT PLACEHOLDER

EXTRACT PLACEHOLDER

Extracts the definition of the specified placeholder and formats the definition
as a command.

Format

EXTRACT PLACEHOLDER placeholder-name

Qualifiers Defaults

/LANGUAGE[=language-name]
/NEW

Qualifiers

/LANGUAGE[=language-name]
Specifies the language associated with the placeholder being extracted. If you
do not specify the /LANGUAGE qualifier, the default is the current language.

/NEW
Specifies that only the placeholder definitions defined during this editing
session should be extracted.

Parameter

placeholder-name
Specifies the name of the placeholder you want. You can specify a wildcard.

Description

The EXTRACT PLACEHOLDER command extracts the specified placeholder
definition and formats it as a command. LSE inserts the specified definitions
at the end of the current buffer in a form that permits them to be read back
and replace existing definitions. Specifically, the DELETE PLACEHOLDER
command precedes the corresponding DEFINE PLACEHOLDER command.

With the EXTRACT PLACEHOLDER command, you can modify definitions
by editing and then executing them using the DO command. You can write
definitions to a file.

You can use this command to extract placeholders to make global changes
to them, such as changing delimiters or placeholder names. Use the SET
NOAUTO_ERASE command to avoid erasing the placeholders as you type

CD–181

EXTRACT PLACEHOLDER

within their delimiters and perform other edits. After you edit the buffer, use
the DO command to execute the changes.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

Related Commands

DEFINE PLACEHOLDER
DELETE PLACEHOLDER
SHOW PLACEHOLDER

Example

LSE> EXTRACT PLACEHOLDER/LANGUAGE=ADA text

Extracts the current definition of the text placeholder from the list of
placeholders associated with the Ada language and places the definition at
the end of the current buffer.

CD–182

EXTRACT ROUTINE

EXTRACT ROUTINE

Extracts the definition of the specified routine and formats the definition as a
command.

Format

EXTRACT ROUTINE routine-name

Qualifiers Defaults

/LANGUAGE[=language-name]
/NEW

Qualifiers

/LANGUAGE[=language-name]
Specifies the language associated with the routine being extracted. If you do
not specify the /LANGUAGE qualifier, the default is the current language.

/NEW
Specifies that only the definitions of routines defined during this editing session
should be extracted.

Parameter

routine-name
Specifies the name of the routine you want. You can specify a wildcard.

Description

The EXTRACT ROUTINE command extracts the specified routine definition
and formats it as a command. LSE inserts the specified definitions at the end
of the current buffer in a form that permits them to be read back and replace
existing definitions. Specifically, the DELETE ROUTINE command precedes
the corresponding DEFINE ROUTINE command.

With the EXTRACT ROUTINE command, you can modify definitions by editing
and then executing them using the DO command. You can write definitions to
a file.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

CD–183

EXTRACT ROUTINE

Related Commands

DEFINE ROUTINE
DELETE ROUTINE
SHOW ROUTINE

Example

LSE> EXTRACT ROUTINE add_holder

Places the current definition of the add_holder routine at the end of the current
buffer.

CD–184

EXTRACT TAG

EXTRACT TAG

Extracts the definition of the specified tag and formats the definition as a
command.

Format

EXTRACT TAG tag-name

Qualifiers Defaults

/LANGUAGE[=language-name]
/NEW

Qualifiers

/LANGUAGE[=language-name]
Specifies the language associated with the tag being extracted. If you do not
specify the /LANGUAGE qualifier, the default is the current language.

/NEW
Specifies that only the tag definitions defined during this editing session should
be extracted.

Parameter

tag-name
Specifies the name of the tag you want. You can specify a wildcard.

Description

The EXTRACT TAG command extracts the specified tag definition and formats
it as a command. LSE inserts the specified definitions at the end of the
current buffer in a form that permits them to be read back and replace
existing definitions. Specifically, the DELETE TAG command precedes the
corresponding DEFINE TAG command.

With the EXTRACT TAG command, you can modify definitions by editing and
then executing them using the DO command. You can write definitions to a
file.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

CD–185

EXTRACT TAG

Related Commands

DEFINE TAG
DELETE TAG
SHOW TAG

Example

LSE> EXTRACT TAG/LANGUAGE=ADA text

Extracts the current definition of the text tag from the list of tags associated
with the Ada language and places the definition at the end of the current
buffer.

CD–186

EXTRACT TOKEN

EXTRACT TOKEN

Extracts the definition of the specified token and formats the definition as a
command.

Format

EXTRACT TOKEN token-name

Qualifiers Defaults

/LANGUAGE[=language-name]
/NEW

Qualifiers

/LANGUAGE[=language-name]
Specifies the language associated with the token being extracted. If you do not
specify the /LANGUAGE qualifier, the default is the current language.

/NEW
Specifies that only the definitions of tokens defined during this editing session
should be extracted.

Parameter

token-name
Specifies the name of the token you want. You can specify a wildcard.

Description

The EXTRACT TOKEN command extracts the specified token definition and
formats it as a command. LSE inserts the specified definitions at the end of
the current buffer in a form that permits them to be read back and replace
existing definitions. Specifically, the DELETE TOKEN command precedes the
corresponding DEFINE TOKEN command.

With the EXTRACT TOKEN command, you can modify definitions by editing
and then executing them using the DO command. You can write definitions to
a file.

You can use this command to extract tokens to make global changes to them,
such as changing delimiters or token names. Use the SET NOAUTO_ERASE
command to avoid erasing the tokens as you type within their delimiters and

CD–187

EXTRACT TOKEN

perform other edits. After you edit the buffer, use the DO command to execute
the changes.

You can create new definitions in a buffer, and edit and execute them until
they are correct.

Related Commands

DEFINE TOKEN
DELETE TOKEN
SHOW TOKEN

Example

LSE> EXTRACT TOKEN WHILE

Places the current definition of the WHILE statement at the end of the current
buffer.

For additional examples, see the section about redefining language elements in
the Guide to Language-Sensitive Editor for VMS Systems.

CD–188

FILL

FILL

Reformats the text within a selected range to put as much text on a line as
possible. This command is particularly useful for comments and ordinary
prose, but is not normally used with program code.

Format

FILL

Qualifiers Defaults

/COMMENT_COLUMN= /COMMENT_COLUMN=
CONTEXT_DEPENDENT CONTEXT_DEPENDENT

/COMMENT_COLUMN=number /COMMENT_COLUMN=
CONTEXT_DEPENDENT

Qualifiers

/COMMENT_COLUMN=CONTEXT_DEPENDENT (D)
/COMMENT_COLUMN=number
Specifies that the comment column should be determined from the context.
LSE uses the position of the commented segment in the first line of the selected
range as the comment column.

The number specifies an explicit column number in which to align the
comments. LSE aligns all commented segments in the selected range with
this column; all paragraphs within the range have the same comment-column
setting. The number must be an integer in the range of from 1 to 131. The
value must be consistent with the lengths of the comment delimiters used
within the range.

For a text fill, LSE ignores this qualifier.

Description

The FILL command reformats the text in the selected range. The selected
range is the text between the select marker (see the SET SELECT_MARK
command) and the current cursor position. If you do not provide a selected
range, the FILL command reformats the current paragraph. (Note that the
current paragraph includes the text on all previous and subsequent lines until
LSE encounters a completely blank line.) LSE preserves any blank lines you
insert in the text.

CD–189

FILL

If the buffer is associated with a language, and comment delimiters have been
defined for the language, LSE just reformats the commented segments of the
lines in the selected range. If the buffer is not associated with a language, or
there are no comment delimiters, LSE performs a text fill.

The FILL command reformats a block of text so as many complete words
as possible fit on each line without exceeding the right margin. You can
change the right margin with the SET RIGHT_MARGIN command. Except
in comments, the FILL command indents the reformatted text to the
LEFT_MARGIN setting.

When you enter the FILL command, LSE treats spaces, tabs, and carriage
returns as word delimiters. LSE treats character sequences as whole words if
it recognizes such sequences as placeholders.

Keypad Equivalent
Key Keypad Mode

PF1-KP8 FILL EDT LK201, EDT VT100, EVE LK201
None EVE VT100

DECwindows Interface Equivalent

Pull-down menu: Edit � Fill

Related Commands

DEFINE LANGUAGE
SET SELECT_MARK
SET WRAP

Examples

The /COMMENT_COLUMN=CONTEXT_DEPENDENT qualifier (the
default) is in effect in the following examples.

1. IF (col >= R_Margin) THEN ! This is the start of an
BEGIN ! extended end-of-line comment block
i := i + 1 ;
j := j + i ; ! another comment

!to be filled

CD–190

FILL

Entering the FILL command for this example of line comments produces
the following format:

IF (col >= R_Margin) THEN ! This is the start of an extended
BEGIN ! end-of-line comment block
i := i + 1 ;
j := j + i ; ! another comment to be filled

Note that the first word after the start of the comment on the second line
(the word extended) was used to fill out the first line.

2. IF (col >= R_Margin) THEN (* This is the start of a *)
BEGIN (* bracketed comment sequence that *)
VAR x: INTEGER; (* extends over several lines *)

Entering the FILL command for this example of consecutive, single-line
bracketed comments produces the following format:

IF (col >= R_Margin) THEN (* This is the start of a bracketed *)
BEGIN (* comment sequence that extends *)
VAR x: INTEGER; (* over several lines *)

CD–191

FIND
SCA Command

FIND

Locates occurrences described by the current SCA libraries.

Format

FIND query-expression

Qualifiers Defaults

/DESCRIPTION=string
/[NO]DISPLAY[=(option, . . .)] /DISPLAY=DEFAULT
/[NO]LOG /LOG
/[NO]MODIFY[=query-name] /NOMODIFY
/NAME=[query-name]
/OUTPUT[=file-spec]
/[NO]REPLACE /NOREPLACE
/[NO]RESULT=option /RESULT=DEFAULT
/[NO]SYNCHRONIZE /NOSYNCHRONIZE

Qualifiers

/DESCRIPTION=string
Specifies a single line of text displayed along with the query name when the
query is displayed by entering the SHOW QUERY command.

/DISPLAY[=(option, . . .)]
/DISPLAY=DEFAULT (D)
/NODISPLAY
Indicates how much information SCA displays about query results. Use one or
more of the following keywords to request specific information:

Keyword Description

NAME Symbol name
CLASS Class of item
LINE_NUMBER Compilation line number
MODULE Module name containing a symbol occurrence
FILE_SPEC File name and type containing a symbol occurrence
FULL_FILE_SPEC Complete file specification containing a symbol

occurrence

CD–192

FIND
SCA Command

Keyword Description

RECORD_NUMBER Record number within a source file
RELATIONSHIP Relationship type
ROUTINE_NAME Routine name containing a symbol occurrence
NUMBER Number of the display line
OCCURRENCE_
TYPE

Type of symbol occurrence (such as declaration, read, or
call)

ALL All of the previous options
DEFAULT Default settings of the display options
NONE Nothing (equivalent to the /NODISPLAY qualifier)

You can prefix any keyword (except ALL, DEFAULT, and NONE) with NO to
request that the information be excluded.

The initial default for each type of new query is as follows:

DISPLAY=(NAME,CLASS,MODULE,LINE_NUMBER,OCCURRENCE_TYPE,RELATIONSHIP)

/LOG (D)
/NOLOG
Indicates whether the count of symbol occurrences will be reported.

/MODIFY[=query-name]
/NOMODIFY (D)
Indicates that an existing query is to be modified. By default, each FIND
command creates a new query.

The /MODIFY=query-name qualifier indicates that the specified query should
be modified according to the specification of the FIND command. The specified
query must already exist.

By default, the /MODIFY qualifier specifies the current query.

/NAME[=query-name]
Specifies the name of the query. If a query with the same name already exists,
you must also specify the /REPLACE qualifier. If a query name is not specified,
then SCA assigns a unique name to the query. The query name can be a
quoted string.

/OUTPUT[=file-spec]
Specifies that command output is to go to a file rather than be displayed on
your screen (or go to a batch log file). The default output-file specification is
SCA.LIS.

CD–193

FIND
SCA Command

/REPLACE
/NOREPLACE (D)
Indicates whether existing queries should be replaced by new queries. By
default, a FIND command that creates a query with the same name as an
already existing query will fail.

/RESULT=option
/RESULT=DEFAULT (D)
/NORESULT
Indicates the type of query results displayed. You must specify one of the
following keywords:

Keyword Description

SYMBOLS Only symbols are displayed.
OCCURRENCES Symbols and occurrences are displayed.
DEFAULT Either symbols or occurrences, or both, are displayed. SCA

chooses the result type that is most appropriate for the
current query.

The /NORESULT qualifier specifies that no results should be displayed. This
means that no query evaluation is done. If a query result exists because you
entered a FIND command, specifying /NORESULT causes that result to be
deleted.

/SYNCHRONIZE
/NOSYNCHRONIZE (D)
Indicates that the query result must be synchronized with the current state
of the virtual library being queried. By default, /NOSYNCHRONIZE causes
SCA to do as little processing as necessary to evaluate the query. This can
lead to query results that reflect the state of the virtual library at the time of a
previous query.

The /SYNCHRONIZE qualifier specifies that the query result must be
synchronized with the current virtual library. SCA attempts to minimize
the amount of processing, but the result is still synchronized with the virtual
library that was in effect at the time the query was evaluated.

Parameter

query-expression
Specifies the set of occurrences to be found.

CD–194

FIND
SCA Command

For information on query expressions, see the chapters on query expressions
and query language in the Guide to Source Code Analyzer for VMS Systems.

Description

The FIND command locates occurrences described by the current SCA libraries.
By default, each time you enter a FIND command, SCA creates a new query
to describe the result. To remove queries you no longer need, use the DELETE
QUERY command.

For more information about the FIND command, see the chapter on performing
SCA tasks in the Guide to Source Code Analyzer for VMS Systems.

DECwindows Interface Equivalent

FIND SYMBOL
Pull-down menu: Navigate � Find Symbol

Related Commands

COLLAPSE
DELETE QUERY
EXPAND
GOTO QUERY
GOTO SOURCE
NEXT QUERY
NEXT STEP
PREVIOUS QUERY
PREVIOUS STEP
SAVE QUERY

Examples

1. LSE> FIND build*

Finds all occurrences of symbols whose name begins with build.

2. LSE> FIND/RESULT=SYMBOL copy_file and symbol=literal

Finds all occurrences of literals named copy_file. Only symbol information
is included in the display.

CD–195

FIND
SCA Command

3. LSE> FIND/RESULT=OCCURRENCE occ=primary and symbol=routine

Finds the primary declarations of all routines. Both symbol and occurrence
information are included in the display.

4. LSE> FIND calling expand_string

Finds the routines that are calling expand_string.

5. LSE> FIND called_by(translit, depth=all)

Displays the complete call-tree below translit.

6. LSE> FIND typed_by(integer, symbol=variable)

Finds all the variables of type integer.

CD–196

FOCUS

FOCUS

Displays an overview of the buffer. The current line remains visible, and the
rest of the buffer is compressed.

Format

FOCUS

Description

The FOCUS command displays the current line and its surrounding text.
The rest of the lines in the buffer are collapsed as much as possible and are
represented by overview lines.

The editor determines the relative level of detail of a line by comparing
the indentation of the line with the indentation of other lines. The editor’s
treatment of the indentation of a line is influenced by indentation adjustment
definitions. For more information, see the DEFINE ADJUSTMENT command.

Keypad Equivalent
Key Keypad Mode

PF1-period All

DECwindows Interface Equivalent

Pull-down menu: View � Focus

Related Commands

COLLAPSE
DEFINE ADJUSTMENT
DEFINE LANGUAGE/OVERVIEW_OPTIONS
EXPAND
MODIFY LANGUAGE
SET NOOVERVIEW
SET OVERVIEW
VIEW SOURCE

CD–197

GOTO BOTTOM

GOTO BOTTOM

Moves the cursor to the bottom of the current buffer.

Format

GOTO BOTTOM

Description

The GOTO BOTTOM command moves the cursor to the bottom of the current
buffer. To achieve the same result, DECwindows interface users can use MB1
to drag the vertical scroll bar slider to the bottom of the scroll bar.

Keypad Equivalent
Key Keypad Mode

PF1-KP4 BOTTOM EDT LK201, EDT VT100, EVE LK201
PF1-E6 EDT LK201
PF1-� EVE LK201, EVE VT100

DECwindows Interface Equivalent

Pull-down menu: Navigate � Goto Bottom

Related Commands

GOTO TOP

CD–198

GOTO BUFFER

GOTO BUFFER

Moves the cursor to the specified buffer.

Format

GOTO BUFFER buffer-name

Qualifiers Defaults

/[NO]CREATE /NOCREATE
/[NO]READ_ONLY /READ_ONLY
/[NO]WRITE /NOWRITE

Qualifiers

/CREATE
/NOCREATE (D)
Specifies whether the buffer should be created if it does not exist.

/READ_ONLY (D)
/NOREAD_ONLY
Specifies whether the specified buffer should have the read-only attribute. If
the buffer has this attribute, LSE does not write the contents to a file when
you exit from LSE, or when you enter a COMPILE command. This qualifier
has an effect only if the GOTO BUFFER command is creating a buffer. If you
are going to an already existing buffer, the read-write status of that buffer
is not changed. The /WRITE qualifier is equivalent to the /NOREAD_ONLY
qualifier.

/WRITE
/NOWRITE (D)
Specifies whether the specified buffer should have the write attribute. If the
buffer has this attribute, LSE writes the contents of the buffer to a file when
you exit from LSE, or when you enter a COMPILE command. This qualifier
has an effect only if the GOTO BUFFER command is creating a buffer. If you
are going to an already existing buffer, the read-write status of the buffer is not
changed. The /NOREAD_ONLY qualifier is equivalent to the /WRITE qualifier.

CD–199

GOTO BUFFER

Parameter

buffer-name
Specifies the name of the buffer. You can use abbreviations.

You can specify a buffer name with a character string value of up to 255
alphanumeric or special characters. If you begin the buffer name with special
characters, such as those accessed on the top row of your keyboard by pressing
the shift key, you must enclose the buffer name in quotation marks. Similarly,
to specify a name that contains embedded blanks (spaces), or quotation marks
and spaces, enclose the entire string in quotation marks.

Description

The GOTO BUFFER command moves the cursor to the specified buffer. LSE
maps the buffer to the current window, and moves the cursor to the last
remembered position in that buffer.

You can use the mouse to select a buffer from the list displayed by the SHOW
BUFFER command.

DECwindows Interface Equivalent

Pull-down menu: Source � Goto Buffer

Related Commands

GOTO FILE
NEXT BUFFER
PREVIOUS BUFFER
SHOW BUFFER

Example

LSE> GOTO BUFFER $SHOW

Causes LSE to display the buffer that contains the latest response to a SHOW
command.

CD–200

GOTO CHARACTER

GOTO CHARACTER

Moves the cursor to the next character.

Format

GOTO CHARACTER

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/HORIZONTALLY /HORIZONTALLY
/REVERSE /CURRENT
/VERTICALLY /HORIZONTALLY

Qualifiers

/CURRENT (D)
Instructs LSE to use the current direction of the buffer.

/FORWARD
Instructs LSE to move the cursor down, or to the right.

/HORIZONTALLY (D)
Instructs LSE to move the cursor horizontally.

/REVERSE
Instructs LSE to move the cursor up, or to the left.

/VERTICALLY
Instructs LSE to move the cursor vertically.

Description

The GOTO CHARACTER command moves the cursor one character in the
specified direction. LSE does not position the cursor when the screen is empty,
unless text spaces have been created using the space bar. The cursor moves
across tab characters and wraps at the edge of the screen.

You can use the mouse cursor to position the editing cursor to any text in an
editing window.

CD–201

GOTO CHARACTER

Keypad Equivalent

GOTO CHARACTER/VERTICALLY/FORWARD
Key Keypad Mode

Down � All
KP2 � EVE VT100

GOTO CHARACTER/HORIZONTALLY/REVERSE
Key Keypad Mode

Left � All
KP1 � EVE VT100

GOTO CHARACTER/HORIZONTALLY/FORWARD
Key Keypad Mode

Right � All
KP3 � EVE VT100

GOTO CHARACTER/VERTICALLY/REVERSE
Key Keypad Mode

Up � All
KP5 � EVE VT100

GOTO CHARACTER/HORIZONTALLY/CURRENT
Key Keypad Mode

KP3 CHAR EDT LK201, EDT VT100, EVE LK201
None EVE VT100

Related Commands

GOTO LINE
GOTO WORD

CD–202

GOTO COMMAND

GOTO COMMAND

Produces the LSE Command> prompt at which you can enter LSE or SCA
commands.

Format

GOTO COMMAND

Description

The GOTO COMMAND command moves the cursor to the command region.
With the DECwindows interface, you can use the mouse to move the cursor to
the commands region.

Keypad Equivalent
Key Keypad Mode

Do DO EDT LK201, EVE LK201
PF1-KP7 All

Related Commands

DO

CD–203

GOTO DECLARATION
SCA Required

GOTO DECLARATION

Displays the declaration of the symbol specified. LSE displays the source code
containing the symbol declaration in another window and positions the cursor
on the symbol declaration.

Format

GOTO DECLARATION [symbol-name]

Qualifiers Defaults

/ASSOCIATED /PRIMARY
/CONTEXT_DEPENDENT /PRIMARY
/INDICATED
/PRIMARY /PRIMARY

Qualifiers

/ASSOCIATED
Indicates that you want to see the associated declaration for the symbol. An
associated declaration is a related declaration that accompanies the primary
declaration (such as an EXTERNAL declaration).

/CONTEXT_DEPENDENT
If you specify both the /CONTEXT_DEPENDENT and the /INDICATED
qualifiers, SCA determines which declaration to display using the following
criteria:

• If the specified occurrence of the symbol is a reference, LSE displays the
declaration specified by the compiler as bound to that occurrence of the
symbol.

• If the specified occurrence of the symbol is an associated declaration, LSE
displays the primary declaration.

• If the specified occurrence of the symbol is a primary declaration, LSE
displays the associated declaration.

If you specify the /CONTEXT_DEPENDENT qualifier but not the /INDICATED
qualifier, LSE displays the primary declaration.

/INDICATED
Instructs LSE to use the symbol name at the current cursor position, or
the text within the currently active selected range, as the symbol name. To
help SCA identify exactly which occurrence of the symbol name the cursor is

CD–204

GOTO DECLARATION
SCA Required

positioned on, LSE passes both the current cursor position in the buffer and
the file specification for the current buffer to SCA.

If SCA has no information for the symbol name at the current cursor position
(for example, if the line containing the symbol is a new line and the file has
not been recompiled), SCA uses whatever general information it has about that
symbol, as if you entered a GOTO DECLARATION command for the symbol
name without the /INDICATED qualifier.

If you specify the /INDICATED qualifier, you must not specify the symbol-name
parameter.

/PRIMARY (D)
Indicates that you want to see the primary declaration for the symbol. A
primary declaration is the declaration that SCA interprets as most significant
for a symbol (such as a FUNCTION declaration). For example, the primary
declaration of a routine describes the body of the routine.

Parameter

symbol-name
Specifies that the declaration associated with the specified symbol is to be
displayed. You must not specify a symbol name if you specify the /INDICATED
qualifier.

Description

The GOTO DECLARATION command causes LSE to display the source for the
declaration of the specified or indicated symbol.

If more than one declaration is to be displayed, LSE creates a new query to list
those declarations.

CD–205

GOTO DECLARATION
SCA Required

Keypad Equivalent

GOTO DECLARATION/INDICATED/PRIMARY
Key Keypad Mode

Ctrl/D All

GOTO DECLARATION/INDICATED/CONTEXT_DEPENDENT
Key Keypad Mode

PF1-Ctrl/D All

DECwindows Interface Equivalent

GOTO DECLARATION/INDICATED
Pop-up menu: User buffer � Find Declaration

Related Commands

FIND
GOTO QUERY
GOTO SOURCE

Example
LOCAL X;

.

.

.
X = Y;

LSE> GOTO DECLARATION/INDICATED

Causes LSE to display the declaration LOCAL X if your cursor is positioned on
the X of the assignment statement X = Y.

CD–206

GOTO FILE

GOTO FILE

Moves the cursor to the buffer containing the specified file. If no buffer
contains the specified file, LSE reads the file into a new buffer.

Format

GOTO FILE file-spec

Qualifiers Default

/[NO]CREATE /NOCREATE
/[NO]MODIFY
/NEW
/READ_ONLY
/WRITE

Qualifiers

/CREATE
/NOCREATE (D)
Specifies whether the GOTO FILE command should succeed if the specified file
does not exist. This qualifier has no effect if you are going to an existing buffer.

/MODIFY
/NOMODIFY
Specifies whether the buffer you create is modifiable or unmodifiable. If you
specify the /MODIFY qualifier, the GOTO FILE command creates a modifiable
buffer. If you specify the /NOMODIFY qualifier, the GOTO FILE command
creates an unmodifiable buffer. If you do not specify either qualifier, LSE
determines the buffer’s modifiable status from the read-only or write setting.
By default, a read-only buffer is unmodifiable and a write buffer is modifiable.

/NEW
Specifies that you want to create a new file. If the specified file already exists,
LSE reports an error and aborts the command. The file-spec parameter cannot
contain wildcards if you specify this qualifier. You cannot use this qualifier
with the /[NO]CREATE or /[NO]MODIFY qualifiers.

/READ_ONLY
Specifies that the buffer you create is read-only and therefore unmodifiable.
This qualifier and the /WRITE qualifier override any setting established by the
SET DIRECTORY command.

CD–207

GOTO FILE

If you specify neither the /READ_ONLY nor the /WRITE qualifier, LSE uses
the default established by the most recent SET DIRECTORY command for
the directory that contains the file. If during your current editing session
you have not entered a SET DIRECTORY command nor defined the logical
LSE$READ_ONLY_DIRECTORY, the buffer is writable by default.

/WRITE
Specifies that the buffer you create is writable and therefore modifiable. This
qualifier and the /READ_ONLY qualifier override any setting established by
the SET DIRECTORY command.

If you specify neither the /WRITE nor the /READ_ONLY qualifier, LSE uses
the default established by the most recent SET DIRECTORY command for
the directory that contains the file. If during your current editing session
you have not entered a SET DIRECTORY command nor defined the logical
LSE$READ_ONLY_DIRECTORY, the buffer is writable by default.

Parameter

file-spec
Specifies the name of the file to be edited. LSE uses the directories specified
in the SET SOURCE_DIRECTORY command to resolve the file specification.
If the file cannot be found in one of those directories (or the list of directories
is empty) and you used the /CREATE qualifier, LSE creates the file in your
default directory.

Description

The GOTO FILE command moves the cursor to its last position in the buffer
containing the specified file, if a buffer corresponding to the specified file
already exists.

If no such buffer exists, LSE creates a new one, taking the buffer name from
the name and type of the file-spec parameter. If that name is not unique, LSE
prompts you for a buffer name and gives you the option of replacing an already
existing buffer of the same name or canceling the command. If you do not
cancel the command, LSE reads the specified file into the buffer, positions the
cursor in that buffer, and maps the buffer to the current window.

If you do not specify either the /READ_ONLY or the /WRITE qualifier on
the command, LSE sets the read and write status of the buffer based on
the status of the directory in which the file is found. If the directory is
a read-only directory (that is, if it is on the list established by the SET
DIRECTORY/READ_ONLY command), LSE creates the buffer as read-only and
unmodifiable; otherwise, the buffer is set writable and modifiable.

CD–208

GOTO FILE

If the specified file is to be read in (that is, it is not already in a buffer), LSE
uses CMS to fetch a copy of the file and place it in an unmodifiable buffer,
if the directory for the file to be accessed is the same as your current CMS
library. The GOTO FILE command uses the setting of the SET CMS command
when performing a FETCH operation.

Note that you cannot use the GOTO FILE command to reserve files from your
current CMS library. To reserve a file, use the RESERVE command.

DECwindows Interface Equivalent

GOTO FILE/NEW
Pull-down menu: File � New File . . .

GOTO FILE
Pull-down menu: File � Open File . . .

Related Commands

GOTO BUFFER
READ
SET CMS
SET DIRECTORY

Example

LSE> GOTO FILE x.y

Brings the file x.y into the current buffer.

CD–209

GOTO LINE

GOTO LINE

Moves the cursor to the end of the line, or to the next line if the cursor is
already at the end of a line.

Format

GOTO LINE

Qualifiers Defaults

/BEGINNING /BEGINNING
/BOUND
/BREAK
/CURRENT /CURRENT
/END /BEGINNING
/FORWARD /CURRENT
/REVERSE /CURRENT

Qualifiers

/BEGINNING (D)
Indicates that the cursor should be moved to the beginning of the line. The
/BEGINNING, /BREAK, /BOUND, and /END qualifiers are mutually exclusive.

/BOUND
Moves the cursor to the beginning or the end of the current line, depending
on whether the direction specified is FORWARD or REVERSE. If the cursor is
already at the specified destination, LSE issues a message to that effect and
the cursor does not move. The /BEGINNING, /BREAK, /BOUND, and /END
qualifiers are mutually exclusive.

/BREAK
Moves the cursor either to the beginning or end of a line, depending on whether
the direction currently specified is FORWARD or REVERSE. If the cursor is
already at the specified destination, LSE moves it to the corresponding
break on the next line in the current direction. The /BEGINNING, /BREAK,
/BOUND, and /END qualifiers are mutually exclusive.

/CURRENT (D)
Instructs LSE to use the current direction of the buffer.

/END
Indicates that the cursor should be moved to the end of the line. The
/BEGINNING, /BREAK, /BOUND, and /END qualifiers are mutually exclusive.

CD–210

GOTO LINE

/FORWARD
Instructs LSE to move the cursor down, or to the right.

/REVERSE
Instructs LSE to move the cursor up, or to the left.

Description

The GOTO LINE command moves the cursor to one end of the line in the
direction specified. If the cursor is already at the end of the current line, this
command moves the cursor to the next line, unless you have specified the
/BOUND qualifier.

Keypad Equivalent

GOTO LINE/BEGINNING/REVERSE
Key Keypad Mode

Ctrl/H BACKSPACE EDT LK201, EDT VT100
F12 BOL EDT LK201

GOTO LINE/BEGINNING/CURRENT
Key Keypad Mode

KP0 LINE EDT LK201, EDT VT100, EVE LK201
None EVE VT100

GOTO LINE/END/CURRENT
Key Keypad Mode

KP2 EOL EDT LK201, EDT VT100, EVE LK201
None EVE VT100

GOTO LINE/BOUND/REVERSE
Key Keypad Mode

Ctrl/H BACKSPACE EVE LK201, EVE VT100
PF1-� EVE VT100, EVE LK201

CD–211

GOTO LINE

GOTO LINE/BOUND/FORWARD
Key Keypad Mode

Ctrl/E EVE LK201, EVE VT100
PF1-� EVE VT100, EVE LK201

GOTO LINE/BREAK/CURRENT
Key Keypad Mode

F12 MOVE BY LINE EVE LK201
Keypad minus (–) MOVE BY LINE EVE VT100

Related Commands

GOTO CHARACTER
GOTO WORD

Example

LSE> GOTO LINE/BOUND/REVERSE

Moves the cursor to the start of the current line. If the cursor is at the start of
a line, LSE displays the message, ‘‘Already at the start of the line’’ when you
enter this command.

CD–212

GOTO MARK

GOTO MARK

Moves the cursor to a marker name defined by a SET MARK command.

Format

GOTO MARK marker-name

Parameter

marker-name
Specifies the name of a marker created with a SET MARK command.

Description

The GOTO MARK command moves the cursor to a marker name you define
using a SET MARK command. LSE maps a new buffer to the current window
if the marker you specify is not in the current buffer.

DECwindows Interface Equivalent

Pull-down menu: Navigate � Goto Mark

Related Commands

SET MARK

Example

LSE> GOTO MARK 1

Moves the cursor to the position previously marked using the command SET
MARK 1. If MARK 1 is not in the current buffer, the buffer that contains
MARK 1 becomes the current buffer.

CD–213

GOTO PAGE

GOTO PAGE

Moves the cursor to the next page where a page boundary is a form feed, or the
beginning or end of a buffer.

Format

GOTO PAGE

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/REVERSE /CURRENT

Qualifiers

/CURRENT (D)
Instructs LSE to use the current direction of the buffer.

/FORWARD
Instructs LSE to move the cursor down.

/REVERSE
Instructs LSE to move the cursor up.

Description

The GOTO PAGE command moves the cursor to the beginning of the next
or previous page in the current buffer, depending on the direction set by
FORWARD or REVERSE. A form feed delimits a page. If there is no form feed
in the current buffer, the GOTO PAGE command moves the cursor to the end
(or beginning) of the buffer.

Keypad Equivalent
Key Keypad Mode

KP7 PAGE EDT LK201, EDT VT100, EVE LK201
None EVE VT100

CD–214

GOTO PAGE

Related Commands

GOTO LINE
GOTO WORD

CD–215

GOTO PLACEHOLDER

GOTO PLACEHOLDER

Moves the cursor to a placeholder.

Format

GOTO PLACEHOLDER

Qualifiers Defaults

/ALL /ALL
/CURRENT /CURRENT
/FORWARD /CURRENT
/NOPSEUDOCODE
/REVERSE /CURRENT

Qualifiers

/ALL (D)
Instructs the GOTO PLACEHOLDER command to recognize all placeholders,
including pseudocode placeholders and overview records.

/CURRENT (D)
Instructs LSE to use the current direction of the buffer.

/FORWARD
Instructs LSE to move the cursor down, or to the right.

/NOPSEUDOCODE
Instructs the GOTO PLACEHOLDER command to ignore pseudocode
placeholders.

/REVERSE
Instructs LSE to move the cursor up, or to the left.

Description

The GOTO PLACEHOLDER command moves the cursor to the next
placeholder in the direction specified. A placeholder must be defined for
the GOTO PLACEHOLDER command to recognize it.

CD–216

GOTO PLACEHOLDER

Keypad Equivalent

GOTO PLACEHOLDER/ALL/FORWARD
Key Keypad Mode

Ctrl/N All

GOTO PLACEHOLDER/ALL/REVERSE
Key Keypad Mode

Ctrl/P All

GOTO PLACEHOLDER/NOPSEUDOCODE/FORWARD
Key Keypad Mode

PF1-Ctrl/N All

GOTO PLACEHOLDER/NOPSEUDOCODE/REVERSE
Key Keypad Mode

PF1-Ctrl/P All

Related Commands

DEFINE PLACEHOLDER
ERASE PLACEHOLDER

CD–217

GOTO QUERY
SCA Command

GOTO QUERY

Moves the cursor to the specified SCA query session.

Format

GOTO QUERY query-name

Parameter

query-name
Specifies the name of the query session.

Description

The GOTO QUERY command splits the current window (if possible) and maps
the specified query to the current window and the buffer associated with the
query to the screen.

Related Commands

DELETE QUERY
FIND
NEXT QUERY
PREVIOUS QUERY
SHOW QUERY

Example

LSE> GOTO QUERY 1

Moves the cursor to the window containing query buffer 1.

CD–218

GOTO REVIEW

GOTO REVIEW

Moves the cursor to the currently active review session.

Format

GOTO REVIEW

Description

The GOTO REVIEW command moves the cursor to the current review session
and sets the current status to review mode. LSE maps the $REVIEW buffer to
the screen and positions the cursor to the last current position in that buffer.

If no review session is currently active, the GOTO REVIEW command fails.

Related Commands

END REVIEW
GOTO QUERY
GOTO SOURCE
NEXT STEP
PREVIOUS STEP
REVIEW

CD–219

GOTO SCREEN

GOTO SCREEN

Moves the cursor in the specified direction two lines less than the number of
lines in the current window.

Format

GOTO SCREEN

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/REVERSE /CURRENT

Qualifiers

/CURRENT (D)
Instructs LSE to use the current direction of the buffer.

/FORWARD
Instructs LSE to move the cursor down.

/REVERSE
Instructs LSE to move the cursor up.

Description

The GOTO SCREEN command moves the cursor two lines less than the
number of lines in the current window, depending on the direction set by the
/FORWARD or /REVERSE qualifier.

Users of the DECwindows interface can achieve similar results by pressing
MB1 above or below the slider in the vertical scroll bar.

CD–220

GOTO SCREEN

Keypad Equivalent

GOTO SCREEN/FORWARD
Key Keypad Mode

E6 NEXT SCREEN EDT LK201, EVE LK201
KP0 Next Screen EVE VT100
None EDT VT100

GOTO SCREEN/REVERSE
Key Keypad Mode

E5 PREV SCREEN EDT LK201, EVE LK201
Keypad period Prev Screen EVE VT100
None EDT VT100

GOTO SCREEN/CURRENT
Key Keypad Mode

KP8 SECT EDT LK201, EDT VT100, EVE LK201
None EVE VT100

CD–221

GOTO SOURCE

GOTO SOURCE

Displays the source corresponding to the current diagnostic or query item. To
display a query item, you must be using SCA.

Format

GOTO SOURCE

Qualifiers Defaults

/READ_ONLY
/WRITE

Qualifiers

/READ_ONLY
Specifies that the buffer containing the source be set read-only and therefore
unmodifiable. Using this qualifier overrides any setting established by the SET
DIRECTORY command.

/WRITE
Specifies that the buffer containing the source be set writable and therefore
modifiable. Using this qualifier overrides any setting established by the SET
DIRECTORY command.

Description

The GOTO SOURCE command has different actions, depending on whether
LSE is in review or query mode. To be in query mode, you must be using SCA.

Review Mode
In review mode, LSE selects the diagnostic at the current position in the buffer
$REVIEW and a region where you want the source displayed. This becomes
the current diagnostic.

LSE highlights the current diagnostic and the current region and displays in
a second window, with the region highlighted, the file containing the current
region. When a diagnostic is selected in this way, the buffer containing the
current region becomes the current buffer.

LSE might display a suggested error correction and prompt for a yes (Y) or no
(N) response; LSE makes the correction if you respond with a Y.

CD–222

GOTO SOURCE

Query Mode
In query mode, LSE selects the query item occurrence at the current position in
the current query buffer. This becomes the current query item. LSE highlights
the current query item and displays the file containing the corresponding
source for the current query item in a second window. The buffer containing
the source that corresponds to the current query item becomes the current
buffer.

Review or Query Modes
If the source file corresponding to the current diagnostic region or current
query item is not in a buffer, LSE creates an unmodifiable buffer and reads the
source file specified in the diagnostics file or SCA data file into that buffer.

If it cannot find that file, LSE uses the list of directories specified by the SET
SOURCE_DIRECTORY command to find the file.

LSE uses CMS to access a file if the directory for the file to be accessed is the
same as the translation of CMS$LIB.

Users of the DECwindows interface can invoke the GOTO SOURCE command
by moving the mouse cursor to an occurrence in the query buffer, or an error
region in the review buffer, and pressing MB1 twice.

Keypad Equivalent
Key Keypad Mode

Ctrl/G All

DECwindows Interface Equivalent

Pop-up menu:
�

Review buffer � Goto Source
Query buffer � Goto Source

�

Double click MB1 on the review or query item.
Pull-down menu: Source � Goto Source

Related Commands

SET DIRECTORY
SET SOURCE_DIRECTORY
SHOW DIRECTORY
SHOW SOURCE_DIRECTORY

CD–223

GOTO SOURCE

Example

LSE> GOTO SOURCE

Moves the cursor to the buffer containing the source code corresponding to the
current diagnostic or query item.

CD–224

GOTO TOP

GOTO TOP

Moves the cursor to the top of the current buffer.

Format

GOTO TOP

Description

The GOTO TOP command moves the cursor to the top of the buffer that
contains the cursor. To achieve the same result, DECwindows interface users
can use MB1 to drag the vertical scroll bar slider to the top of the scroll bar.

Keypad Equivalent
Key Keypad Mode

PF1-KP5 TOP EDT LK201, EDT VT100, EVE LK201
PF1-E5 EDT LK201
PF1-� EVE LK201, EVE VT100

DECwindows Interface Equivalent

Pull-down menu: Navigate � Goto Top

Related Commands

GOTO BOTTOM

CD–225

GOTO WORD

GOTO WORD

Moves the cursor to the beginning of the current, next, or previous word in the
current buffer, depending on the direction specified.

Format

GOTO WORD

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/REVERSE /CURRENT

Qualifiers

/CURRENT (D)
Instructs LSE to use the current direction of the buffer.

/FORWARD
Instructs LSE to move the cursor down, or to the right.

/REVERSE
Instructs LSE to move the cursor up, or to the left.

Description

The GOTO WORD command moves the cursor to the first character of the
current, next, or previous word, depending on the current direction or the
direction set by the /FORWARD or /REVERSE qualifier. If the current direction
is FORWARD, the cursor moves to the beginning of the next word. If the
current direction is REVERSE, the cursor moves to the beginning of the
current word; if the cursor is at the beginning of a word, it moves to the
beginning of the previous word.

A word consists only of identifier characters and trailing blanks and can be
delimited only by tabs or characters not specified in the
/IDENTIFIER_CHARACTERS qualifier on the DEFINE LANGUAGE
command. LSE also considers all nonblank, nonidentifier characters to be
words.

CD–226

GOTO WORD

Keypad Equivalent
Key Keypad Mode

KP1 WORD EDT LK201, EDT VT100, EVE LK201
None EVE VT100

Related Commands

GOTO CHARACTER
GOTO LINE

CD–227

HELP

HELP

Displays information about LSE and SCA commands.

Format

HELP [topic-list]

Qualifiers Defaults

/INDICATED
/KEYPAD
/LANGUAGE=language-name
/LIBRARY=library-name
/PACKAGE=package-name

Qualifiers

/INDICATED
Causes LSE to display the help text associated with the token, placeholder,
or routine at the current cursor position. If you do not specify or negate
the /LANGUAGE qualifier or the /PACKAGE qualifier, LSE first looks for a
language element. If the indicated item is not a language element, LSE looks
for a package element.

The help text comes from the HELP library associated with the specified
language or package. LSE forms a topic string by concatenating the
/TOPIC_STRING qualifier associated with the language or package, followed
by the indicated token, placeholder, or entry name. LSE then searches for the
topic in the HELP library.

You cannot use the /INDICATED qualifier with any of the following qualifiers:
/KEYPAD, /LANGUAGE, /LIBRARY, or /PACKAGE.

/KEYPAD
Specifies that you want keypad HELP. You cannot use the /KEYPAD qualifier
with any of the following qualifiers: /INDICATED, /LANGUAGE, /LIBRARY, or
/PACKAGE.

The /KEYPAD qualifier builds the keypad diagram by using legends specified
with the /LEGEND qualifier on the DEFINE KEY command. When the
diagram is displayed and you press a key, LSE looks up the topic specified
for that key by using the /TOPIC qualifier on the DEFINE KEY command,
and displays the corresponding help text. The HELP library accessed is
LSE$KEYPAD.HLB.

CD–228

HELP

/LANGUAGE=language-name
Causes LSE to take the value of the /TOPIC_STRING qualifier for the
indicated language and concatenate that value to the front of the topic-list
parameter on the HELP command. If you specify the /LANGUAGE qualifier
without a value, LSE uses the language associated with the current buffer. (In
this case, not having the current buffer associated with a language creates an
error.)

You must not specify either the /KEYPAD qualifier or the /PACKAGE qualifier
with the /LANGUAGE qualifier.

/LIBRARY=library-name
Specifies which HELP library LSE searches for the topic. This qualifier
overrides the library file determined by the default behavior of LSE. You
can specify any other qualifiers with the /LIBRARY qualifier except for the
/KEYPAD qualifier.

/PACKAGE=package-name
Causes LSE to take the value of the /TOPIC_STRING qualifier for the
indicated package and concatenate that value to the front of the topic-list
parameter on the HELP command. You must provide the package name as the
value of the qualifier.

You must not specify either the /KEYPAD or the /LANGUAGE qualifier with
the /PACKAGE qualifier.

Parameter

topic-list
Indicates the topic for which you want help. This can be any list of topics valid
for input to the DCL command interpreter’s HELP command. The topic list
must not be specified with the /INDICATED qualifier.

Description

The HELP command displays information about the requested topic of LSE, a
language, or a package.

If you have more than one screen of help text available, and do not want to
review the additional screens of information, press Ctrl/Z to return to editing
mode.

After exiting from HELP, the buffer $HELP contains the text displayed by the
HELP command. This does not happen if you are using keypad HELP.

CD–229

HELP

Keypad Equivalent

HELP/KEYPAD (VT100 keypad)
Key Keypad Mode

PF2 HELP All

HELP/KEYPAD (VT200 keypad or higher)
Key Keypad Mode

Help EDT LK201, EVE LK201

HELP/INDICATED
Key Keypad Mode

PF1-PF2 HELP IND All
PF1-Help EDT LK201, EVE LK201

Examples

1. LSE> HELP CREATE LIBRARY

Invokes HELP at the LSE level.

2. LSE> HELP/LANGUAGE=PASCAL STATEMENTS

Indicates that, for Pascal, the value PASCAL is assigned to the
/TOPIC_STRING qualifier. LSE HELP is invoked to provide information
about the STATEMENTS topic list.

CD–230

IMPORT
SCA Command

IMPORT

Performs a conversion of XREF files into analysis data files.

Format

IMPORT file-spec[, . . .]

Qualifiers Defaults

/[NO]LOG /LOG
/OUTPUT[=file-spec]

Qualifiers

/LOG (D)
/NOLOG
Indicates whether SCA reports successful file conversions.

/OUTPUT[=file-spec]
Specifies that file conversion data is to go to a file rather than be displayed on
your screen (or go to a batch log file). The default output file specification is
SCA.LIS.

Parameter

file-spec
Specifies the XREF files to be converted to SCA analysis data files. Wildcards
can be used, and the default extension is .XREF.

Description

The HP C++ compilers do not generate analysis data files that can be directly
loaded into an SCA library. Instead, they generate XREF data files, which
must be converted using the SCA IMPORT command. Future versions of other
compilers might also require the use of this command.

Example

LSE> IMPORT PHASE.XREF NEWPHASE.ANA

Converts an XREF file specification to an ANA analysis data file with a
different file name.

CD–231

INCLUDE

INCLUDE

Inserts the specified file at the current editing position.

Format

INCLUDE file-spec

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Specifies a buffer into which the file is to be included. If the buffer does not
exist, it is created for display only (the buffer cannot be written back to a file).

Parameter

file-spec
Specifies the file to be copied to the current editing position. Wildcards are
permitted in DECwindows mode.

Description

The INCLUDE command inserts the contents of the specified file at the current
editing position. After inserting the file, the editing cursor is positioned on the
first character of the inserted text.

This command is similar to the READ command, except that the INCLUDE
command inserts the file’s contents into the receiving buffer at the position
your cursor was on. The cursor is then positioned on the first character of the
inserted text, rather than remaining on the original character.

DECwindows Interface Equivalent

Pop-up menu: None
Pull-down menu: File � Include File . . .

CD–232

INCLUDE

Related Commands

READ

Example

LSE> INCLUDE y.x

Opens file y.x for input and inserts its contents at the current editing position,
which leaves the cursor on the first character of the inserted text.

CD–233

INSPECT
SCA Command

INSPECT

Inspects the consistency between declarations or references for the same
symbol.

Format

INSPECT query-expression

Qualifiers Defaults

/CHARACTERISTICS=(option[. . .]) /CHARACTERISTICS=ALL
/DESCRIPTION=string
/[NO]DISPLAY[=(option, . . .)] /DISPLAY=DEFAULT
/[NO]ERROR_LIMIT= /NOERROR_LIMIT

(global-limit[,symbol-limit])
/[NO]LOG /LOG
/[NO]MODIFY[=query-name] /NOMODIFY
/NAME=query-name
/OUTPUT[=file-spec]
/[NO]REPLACE /NOREPLACE
/[NO]RESULT=option /RESULT=DEFAULT
/SEVERITY_LEVEL=severity-level /SEVERITY=INFORMATIONAL
/[NO]SYNCHRONIZE /NOSYNCHRONIZE

Qualifiers

/CHARACTERISTICS=(option[. . .])
/CHARACTERISTICS=ALL (D)
Indicates which characteristics of the occurrences should be checked. You can
use one or more of the following options to request specific information:

Option Description

IMPLICIT_DECLARATIONSChecks that all symbols are explicitly declared
TYPE Checks that the types of all occurrences of each

symbol match
UNIQUENESS Checks that multiple declarations of the same

symbol have the same name

CD–234

INSPECT
SCA Command

Option Description

UNUSED_SYMBOLS Checks that all symbols are used
USAGE Looks for symbols that are read but never

written, or written but never read
ALL Checks all of the preceding characteristics

Any of these options (except ALL) can have the prefix NO to indicate that the
characteristic should not be checked.

Each of the characteristic options takes a query-expression as an optional value.
The characteristic-specific query expression specifies the set of occurrences for
which that characteristic will be checked. If the prefix NO is present, the
query expression indicates occurrences for which that characteristic will not be
checked. The default query expression for each characteristic option is to check
all occurrences.

/DESCRIPTION=string
Specifies a single line of text that is displayed along with the query name when
the query is displayed by entering the SHOW QUERY command.

/DISPLAY[=(option, . . .)]
/DISPLAY=DEFAULT (D)
/NODISPLAY
Indicates how much information SCA displays about query results. Use one or
more of the following keywords to request specific information:

Keyword Description

NAME Symbol name
CLASS Class of item
LINE_NUMBER Compilation line number
FILE_NAME File name and type containing a symbol occurrence
FULL_FILE_SPEC Complete file specification containing a symbol

occurrence
RECORD_NUMBER Record number within a source file

CD–235

INSPECT
SCA Command

Keyword Description

OCCURRENCE_
TYPE

Type of symbol occurrence (such as declaration, read, or
call)

ALL All of the previous options
DEFAULT Default settings of the display options
NONE Nothing (equivalent to the /NODISPLAY qualifier)

You can prefix any keyword (except ALL, DEFAULT, and NONE) with NO to
request that information be excluded.

The initial default for each type of new query is as follows:

DISPLAY=(NAME,CLASS,MODULE,LINE_NUMBER,OCCURRENCE_TYPE)

/ERROR_LIMIT=(global-limit[,symbol-limit])
/NOERROR_LIMIT (D)
Specifies the maximum number of errors that the INSPECT command should
report. This causes the INSPECT command to stop if the number of errors
exceeds the maximum.

The global-limit parameter specifies the maximum number of errors reported
for all symbols before the INSPECT command stops.

The symbol-limit parameter specifies the maximum number of errors reported
for a particular symbol before the INSPECT command stops reporting errors
for that symbol.

/LOG (D)
/NOLOG
Indicates whether the count of symbol occurrences will be reported.

/MODIFY[=query-name]
/NOMODIFY (D)
Indicates that an existing query is to be modified. By default, each INSPECT
command creates a new query.

The /MODIFY=query-name qualifier indicates that the specified query should
be modified according to the specification of the INSPECT command. The
specified query must already exist.

By default, the /MODIFY qualifier specifies the current query.

CD–236

INSPECT
SCA Command

/NAME[=query-name]
Specifies the name of the query. If a query with the same name already exists,
you must also specify the /REPLACE qualifier. If a query name is not specified,
SCA assigns a unique name to the query.

/OUTPUT[=file-spec]
Specifies that command output is to go to a file rather than be displayed on
your screen (or go to a batch log file). The default output-file specification is
SCA.LIS.

/REPLACE
/NOREPLACE (D)
Indicates whether existing queries should be replaced by new queries. By
default, an INSPECT command that creates a query with the same name as
an already existing query will fail.

/RESULT=option
/RESULT=DEFAULT (D)
/NORESULT
Indicates the type of query results displayed. You must specify one of the
following keywords:

Keyword Description

SYMBOLS Only symbols are displayed.
OCCURRENCES Symbols and occurrences are displayed.
DEFAULT Either symbols or occurrences, or both, are displayed. SCA

chooses the result type that is most appropriate for the
current query.

The /NORESULT qualifier specifies that no results should be displayed. This
means that no query evaluation is done. If a query result exists because you
entered an INSPECT command, specifying /NORESULT causes that result to
be deleted.

CD–237

INSPECT
SCA Command

/SEVERITY_LEVEL=severity-level
/SEVERITY=INFORMATIONAL (D)
Indicates the lowest severity level for diagnostics to be reported, as follows:

INFORMATIONAL
WARNING
ERROR
FATAL_ERROR

/SYNCHRONIZE
/NOSYNCHRONIZE (D)
Indicates that the query result must be synchronized with the current state
of the virtual library being queried. By default, /NOSYNCHRONIZE causes
SCA to do as little processing as necessary to evaluate the query. This can
lead to query results that reflect the state of the virtual library at the time of a
previous query.

The /SYNCHRONIZE qualifier specifies that the query result must be
synchronized with the current virtual library. SCA attempts to minimize
the amount of processing, but the result is still synchronized with the virtual
library that was in effect at the time the query was evaluated.

Parameter

query-expression
Specifies the set of occurrences to be inspected.

Description

The INSPECT command checks the consistency between declarations or
references for the same symbol.

Related Commands

FIND

Example

LSE> INSPECT *

Inspects all characteristics of all symbols.

CD–238

LINE

LINE

Moves the cursor in the current buffer to the start of the source line you
specify.

Format

LINE integer [procedure-name]

Parameters

integer
Specifies the number of the line in the current buffer to which you want LSE
to move the cursor. If you do not specify a line number, LSE prompts for one.
Pressing Ctrl/Z at the prompt cancels the command.

procedure-name
Specifies the name of a DECTPU procedure in the current buffer. The
procedure name is valid only for DECTPU source files. This parameter is
useful because some compiler messages refer to line numbers in a procedure.

To find out the current line number and total number of lines in the buffer, use
the WHAT LINE command.

Description

The LINE command moves the cursor in the current buffer to the start of
the line you specify. If the line requested is hidden, the overview records are
expanded to the source level and the cursor is placed on the requested line.

Related Commands

WHAT LINE

Examples

1. LSE> LINE 14

Moves the cursor to the beginning of line 14.

2. LSE> LINE 12 user_proc

Moves the cursor to the beginning of line 12 of a procedure named
user_proc.

CD–239

LOAD
SCA Command

LOAD

Loads one or more files of compiler-generated, source-analysis data into an
SCA library.

Format

LOAD file-spec[, . . .]

Qualifiers Defaults

/[NO]DELETE NODELETE
/LIBRARY=library-spec /LIBRARY=primary-library
/[NO]LOG /LOG
/[NO]REPLACE /REPLACE

Qualifiers

/DELETE
/NODELETE (D)
Deletes an analysis data file after it has been successfully loaded into an SCA
library.

/LIBRARY=library-spec
/LIBRARY=primary-library (D)
Specifies an SCA physical library to update. This library must be one of the
current SCA libraries established by a SET LIBRARY command.

If you do not specify this qualifier, SCA refers to the primary SCA library; that
is, SCA updates the first of the current SCA physical libraries.

/LOG (D)
/NOLOG
Indicates whether SCA reports successful updating of SCA libraries.

/REPLACE (D)
/NOREPLACE
Indicates whether SCA replaces existing modules of source analysis data with
new information.

CD–240

LOAD
SCA Command

Parameter

file-spec[, . . .]
Specifies one or more files of source-analysis data to be loaded into an SCA
library. You can use a wildcard file specification.

The default file type is .ANA, which is the default file type for source-analysis
data files created by compilers.

Description

With the LOAD command, you can load SCA library files with compiler-
generated source information.

Related Commands

SET LIBRARY

Example

$ SCA LOAD obj:getfile*

Loads the specified modules, located at a directory defined as obj, into the
current library.

For additional examples, see the section about loading a library in the Guide to
Source Code Analyzer for VMS Systems.

CD–241

LOWERCASE WORD

LOWERCASE WORD

Changes the letters in the current word or the selected range to lowercase.

Format

LOWERCASE WORD

Description

The LOWERCASE WORD command changes the letters in the current word to
lowercase. If the word contains both uppercase and lowercase characters, LSE
changes all letters to lowercase.

If the cursor is between words, LSE changes the following word to lowercase.
If a selected range is active, all the words within that range are changed to
lowercase. The cursor then moves to the start of the next word.

DECwindows Interface Equivalent

Pull-down menu: Edit � Lowercase

Related Commands

CAPITALIZE WORD
UPPERCASE WORD

CD–242

MODIFY LANGUAGE

MODIFY LANGUAGE

Modifies the characteristics of the specified language.

Format

MODIFY LANGUAGE language-name

Qualifiers Default

/BOOK=file-spec, defined_language
/CAPABILITIES=[NO]DIAGNOSTICS
/COMMENT=(specifier, . . .)
/COMPILE_COMMAND=string
/EXPAND_CASE=AS_IS
/EXPAND_CASE=LOWER
/EXPAND_CASE=UPPER
/FILE_TYPES=(file-type[, . . .])
/FORTRAN=[NO]ANSI_FORMAT
/[NO]HELP_LIBRARY=file-spec
/IDENTIFIER_CHARACTERS=string
/INITIAL_STRING=string
/LEFT_MARGIN=n /LEFT_MARGIN=1
/LEFT_MARGIN=

CONTEXT_DEPENDENT
/OVERVIEW_OPTIONS=

(MINIMUM_LINES=m,
TAB_RANGE=(t1,t2))

/PLACEHOLDER_DELIMITERS=
(delimiter-specification[, . . .])

/PUNCTUATION_CHARACTERS=string
/[NO]QUOTED_ITEM=(QUOTES=string

[,ESCAPES=string])
/REFERENCE=

file-spec, defined_language
/RIGHT_MARGIN=n
/TAB_INCREMENT=n
/TOPIC_STRING=string
/VERSION=string
/[NO]WRAP

CD–243

MODIFY LANGUAGE

Qualifiers

/BOOK=file-spec, defined_language
Specifies the default online-book file name, defining the book LSE uses to
retrieve online text for a placeholder or token whose book is undefined.

/CAPABILITIES=DIAGNOSTICS
/CAPABILITIES=NODIAGNOSTICS
Specifies whether the compiler can generate diagnostic files.

/COMMENT=(specifier, . . .)
Specifies the character sequences of comments in the language. The specifiers
are as follows:

• ASSOCIATED_IDENTIFIER=keyword

Indicates the preferred association of comments to identifier. You can
specify one of the following values:

NEXT—Indicates that comments should be associated with the next
identifier

PREVIOUS—Indicates that comments should be associated with the
preceding identifier

• BEGIN=list of quoted strings

END=list of quoted strings

Defines the character sequences that start and end bracketed comments.
A bracketed comment begins and ends with explicit comment delimiters.
(Note that the beginning and ending comment delimiters can be the same,
but need not be.) The list provided with the specifiers BEGIN and END
can be any of the following:

A string that is the one open comment sequence for the language. You
must enclose this in quotes.

A parenthesized list of strings, each one of which can be an open
comment sequence for the language. You must enclose each one in
quotes.

The list accompanying the BEGIN specifier must be consistent with the list
accompanying the END specifier. If the BEGIN specifier lists a string, the
END specifier must also list a string.

Bracketed comments are recognized by the formatting commands (see
the ALIGN and FILL commands) and placeholder operations (see the
ERASE PLACEHOLDER command and the /DUPLICATION qualifier of
the DEFINE PLACEHOLDER command).

CD–244

MODIFY LANGUAGE

• TRAILING=list of quoted strings
Defines the character sequence that introduces line-oriented comments. A
line-oriented comment begins with a special character sequence (consisting
of one or more characters) and ends at the end of the line. The list provided
with the TRAILING specifier can be any of the following:

A string that is the one-line comment sequence for the language

A list of strings enclosed in parentheses; each string can be a line-
comment sequence for the language

Line comments are recognized by the formatting commands and
placeholder operations, just as bracketed comments are.

• LINE=list of quoted strings

Requires that the comment delimiter be the first character that is not
blank on the line. The LINE specifier is particularly useful with block
comments, such as the following:

/*
** Here is the inside of a comment
** which has LINE="**" specified
*/

• FIXED=quoted string, column number

Used for languages that require that a specific comment delimiter be placed
in a specific column, such as FIXED=("*",1) for COBOL.

/COMPILE_COMMAND=string
Specifies the default command string for the COMPILE command. (See the
explanation of the command-string parameter in the COMPILE command
entry.)

/EXPAND_CASE=AS_IS
/EXPAND_CASE=LOWER
/EXPAND_CASE=UPPER
Specifies the case of the text of the inserted template. The value AS_IS
specifies that the inserted template be expanded according to the case in the
token or placeholder definition. The values LOWER and UPPER specify that
the inserted template be expanded in lowercase or uppercase, respectively.

/FILE_TYPES=(file-type[, . . .])
Specifies a list of file types that are valid for the language being defined. The
file types must be enclosed in quoted strings. When LSE reads a file into a
buffer, it sets the language for that buffer automatically if it recognizes the file

CD–245

MODIFY LANGUAGE

type. For example, a Fortran file type (.FOR) sets the language to Fortran.
The period character must be included with the file type.

/FORTRAN=ANSI_FORMAT
/FORTRAN=NOANSI_FORMAT
Specifies special processing for ANSI Fortran. Note that some commands
behave differently when you use the /FORTRAN qualifier. Specifying
NOANSI_FORMAT causes LSE to insert templates in non-ANSI (tab) format.

/HELP_LIBRARY=file-spec
/NOHELP_LIBRARY
Specifies the HELP library where you can find help text for placeholders and
tokens defined in this language. LSE applies the default file specification
SYS$HELP:HELPLIB.HLB. If you want to access some HELP library other
than SYS$HELP, you must supply an explicit device name.

/IDENTIFIER_CHARACTERS=string
Specifies the characters that can appear in token and alias names in
that language. This list of characters is used in various contexts for the
/INDICATED qualifier.

The list of identifier characters also determines what LSE considers to be a
word. A word is a sequence of identifier characters, possibly followed by one
or more blanks. All nonblank, nonidentifier characters are considered to be
distinct words.

If you do not specify the /IDENTIFIER_CHARACTERS qualifier, LSE supplies
the following values by default:

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ%$_0123456789"

/INITIAL_STRING=string
Specifies the initial text to appear in a newly created buffer.

/LEFT_MARGIN=n
/LEFT_MARGIN=1 (D)
/LEFT_MARGIN=CONTEXT_DEPENDENT
Specifies the left margin setting to be associated with the language.

If you specify CONTEXT_DEPENDENT as the column number, LSE uses the
indentation of the current line to determine the left margin when you use the
/WRAP qualifier. When you use the FILL command, LSE uses the indentation
of the first line of each selected paragraph to determine the left margin.

CD–246

MODIFY LANGUAGE

/OVERVIEW_OPTIONS=(MINIMUM_LINES=m, TAB_RANGE=(t1,t2))
Specifies both the minimum number of lines an overview line must hide and
the range of acceptable tab increments.

The specifiers are as follows:

• MINIMUM_LINES=m

Specifies the minimum number of lines an overview line must hide.
The default is 1. For example, if the value of the parameter on
MINIMUM_LINES is 5, a line hides other lines only if there are at
least 5 lines to hide. This specifier helps the user to avoid having very
small source-line groups, which avoids many expansion levels.

• TAB_RANGE=(t1,t2)

The TAB_RANGE specifier indicates the range of tab values for which
the adjustment definitions are valid. The default is (4,8). The second
value must be at least twice the first value; both values must be positive.
For example, if the tab range is (4,8), LSE assumes that the adjustment
definitions will work for any DEFINE LANGUAGE/TAB_INCREMENT
value from 4 to 8, inclusive. If you specify a /TAB_INCREMENT
value outside the tab range, LSE recomputes indentation to make the
adjustments work.

For best performance, it is recommended that you avoid recomputation
by choosing a range that covers reasonable values. The numbers
specified for the DEFINE ADJUSTMENT/CURRENT and DEFINE
ADJUSTMENT/SUBSEQUENT commands must work for any tab
increment value in the tab range.

/PLACEHOLDER_DELIMITERS=(delimiter-specification[, . . .])
Specifies the starting and ending strings that delimit placeholders.
Placeholders can specify single constructs or lists of constructs. The delimiters
for each type of placeholder are specified as a pair of quoted strings separated
by commas and enclosed in parentheses.

The format of a delimiter specification is as follows:

keyword=(starting-string,ending-string)

Possible keywords are REQUIRED, REQUIRED_LIST, OPTIONAL,
OPTIONAL_LIST, or PSEUDOCODE. If you do not use the PSEUDOCODE
keyword, the default is NOPSEUDOCODE. The maximum length of these
strings is seven characters.

CD–247

MODIFY LANGUAGE

The following is an example of a complete set of placeholder delimiter
specifications:

/PLACEHOLDER_DELIMITERS = (-
REQUIRED =("{<",">}"), -
REQUIRED_LIST=("{<",">}..."), -
OPTIONAL =("[<",">]"), -
OPTIONAL_LIST=("[<",">]..."), -
PSEUDOCODE=("«" , "»"))

If any of the five keywords are not specified with the
/PLACEHOLDER_DELIMITERS qualifier, LSE applies the following defaults:

/PLACEHOLDER_DELIMITERS = (-
REQUIRED =("{","}"), -
REQUIRED_LIST=("{","}..."), -
OPTIONAL =("[","]"), -
OPTIONAL_LIST=("[","]..."), -
NOPSEUDOCODE)

/PUNCTUATION_CHARACTERS=string
Specifies the characters considered punctuation marks, or delimiters, in the
language. When a placeholder name and its enclosing brackets are deleted,
preceding white space is also deleted if there are punctuation characters to
delimit the program constructs.

/QUOTED_ITEM=(QUOTES=string [,ESCAPES=string])
/NOQUOTED_ITEM
Describes the syntax of certain language elements, such as strings, that require
special handling for proper text formatting. LSE uses the /QUOTED_ITEM
qualifier to detect comments properly. LSE does not acknowledge comment
strings that occur within quoted items, nor does LSE acknowledge quoted
elements that occur within comments.

The value of the /QUOTED_ITEM qualifier indicates the syntax of a quoted
item. This value must be a keyword list. The keywords are as follows:

• QUOTES

This keyword is required and must have an explicit value. The value must
be a quoted string denoting all the quote characters in the language. LSE
assumes that quoted items begin and end with the same character.

• ESCAPES

This keyword is optional. If given, the value is required and must be a
quoted string containing the escape characters for quoted items. Some
languages use escape characters to insert quoting characters into strings.
For example, C uses the backslash (\) as an escape character. If you omit

CD–248

MODIFY LANGUAGE

this keyword, LSE assumes that the language inserts quote characters into
strings by doubling them.

/REFERENCE=book_reference, defined_language
Specifies the book-reference tag string, defining the section of a book to display
for a placeholder or token whose reference tag is undefined.

/RIGHT_MARGIN=n
Specifies the right margin setting to be associated with the language. By
default, the right margin is set at column 80.

/TAB_INCREMENT=n
Specifies that tab stops be set every n columns beginning with column 1.

/TOPIC_STRING=string
Specifies a prefix string to be concatenated to the /TOPIC_STRING qualifier
specified in a placeholder or token definition before LSE looks up the help text
for that placeholder or token. (Typically, this is the name of the language in
the HELP library.)

/VERSION=string
Specifies a string that represents the version number of the tokens and
placeholders associated with this language. Use the SHOW LANGUAGE
command to display this string.

/WRAP
/NOWRAP
Specifies whether the ENTER SPACE command (bound to the space bar by
default) should wrap text when there is too much to fit on the current line.
The /NOWRAP qualifier disables text wrapping.

Parameter

language-name
Specifies the name of the language whose characteristics are to be defined.

Description

With the MODIFY LANGUAGE command, you can supersede text
characteristics that you have set for a specific language. It does not affect
other characteristics that you might have changed from the initial default by
using the DEFINE LANGUAGE command.

CD–249

MODIFY LANGUAGE

Related Commands

DEFINE LANGUAGE
DELETE LANGUAGE
EXTRACT LANGUAGE
SET LANGUAGE
SHOW LANGUAGE

Examples
1. LSE> MODIFY LANGUAGE SAMPLE /EXPAND_CASE=LOWER

Makes every letter lowercase in the template for the language SAMPLE;
this includes the words inside comments.

2. LSE> MODIFY LANGUAGE FORTRAN /FORTRAN=ANSI_FORMAT

Sets ANSI_FORMAT as the format for your Fortran language definition.

3. LSE> MODIFY LANGUAGE Ada /PLACEHOLDER_DELIMITERS=PSEUDOCODE=("«" , "»")

Sets pseudocode placeholder delimiters for Ada.

CD–250

NEXT BUFFER

NEXT BUFFER

Moves your next buffer into the current window, which returns you to your last
position in that buffer.

Format

NEXT BUFFER

Description

The NEXT BUFFER command moves the cursor to the next buffer in the list
of buffers and maps that buffer to the current window. This allows you to cycle
through several buffers without having to type their names.

If you have only two buffers, repeating NEXT BUFFER toggles between them.
If you have more than two buffers, the next buffer is determined by the order
in which you created the buffers. Only user buffers are included in the list of
buffers. For a list of your buffers, enter the SHOW BUFFER/USER_BUFFERS
command.

If you enter a NEXT BUFFER command while you are positioned in the last
buffer in the list, LSE takes you to the first buffer in the list.

Users of the DECwindows interface can press MB1 with the mouse cursor on
the buffer name to cycle through the user buffers.

DECwindows Interface Equivalent

User buffer status line: � Buffer name

Related Commands

GOTO BUFFER
PREVIOUS BUFFER
SHOW BUFFER

Example

LSE> NEXT BUFFER

Moves your next buffer into the current window.

CD–251

NEXT ERROR

NEXT ERROR

Selects the next diagnostic in the current set of diagnostics.

Format

NEXT ERROR

Description

The NEXT ERROR command positions the cursor at the next diagnostic in the
buffer $REVIEW, which contains the current set of diagnostics. If the current
error is the last in the set, the NEXT ERROR command does not wrap around
from the last error back to the first.

If you are in review mode, a NEXT STEP command is equivalent to a NEXT
ERROR command.

DECwindows Interface Equivalent

Pop-up menu: Review buffer � Next Error
Pull-down menu: Source � Next Error

Related Commands

GOTO REVIEW
NEXT STEP
PREVIOUS ERROR
REVIEW

CD–252

NEXT OCCURRENCE
SCA Required

NEXT OCCURRENCE

Moves the cursor forward to the next occurrence of the current source symbol
in the current query and highlights that next occurrence.

Format

NEXT OCCURRENCE

Description

The NEXT OCCURRENCE command moves the cursor forward to the next
occurrence in the current query; that occurrence is highlighted. If there are no
more occurrences of the current source symbol, LSE interprets the command
as a NEXT SYMBOL command. If necessary, LSE remaps the query buffer.

DECwindows Interface Equivalent

Pop-up menu: Query buffer � Next Occurrence

Related Commands

NEXT STEP
NEXT SYMBOL
PREVIOUS OCCURRENCE

CD–253

NEXT QUERY
SCA Command

NEXT QUERY

Moves the cursor to the next SCA query session.

Format

NEXT QUERY

Description

The NEXT QUERY command moves the cursor to the next session in a series
of SCA query sessions. LSE maps the query display and moves the cursor
to the last remembered position in that query. SCA determines the order of
multiple query sessions by the order in which the sessions were created.

DECwindows Interface Equivalent

Query buffer status line: � Query-name

Related Commands

DELETE QUERY
GOTO QUERY
PREVIOUS QUERY

CD–254

NEXT STEP

NEXT STEP

Moves the cursor forward to the next error, item, or occurrence, depending on
whether LSE is in review or query mode. The specified item is highlighted.

Format

NEXT STEP

Description

The NEXT STEP command moves the cursor in a manner that depends on the
current mode:

• In review mode, LSE treats this command as a NEXT ERROR command.

• In query mode, the NEXT STEP command moves the cursor to the next
line in the query display and highlights it, whether it is a symbol or an
occurrence.

Keypad Equivalent
Key Keypad Mode

Ctrl/F All

Related Commands

NEXT ERROR
NEXT NAME
NEXT OCCURRENCE
NEXT SYMBOL
PREVIOUS STEP

CD–255

NEXT SYMBOL
SCA Required

NEXT SYMBOL

Moves the cursor forward to the next source symbol in the current query and
highlights that next symbol.

Format

NEXT SYMBOL

Description

The NEXT SYMBOL command moves the cursor forward to the next source
symbol in the current query and highlights this symbol. If necessary, LSE
remaps the query buffer.

DECwindows Interface Equivalent

Pop-up menu: Query buffer � Next Symbol

Related Commands

NEXT STEP
PREVIOUS SYMBOL

CD–256

NEXT WINDOW

NEXT WINDOW

Moves the cursor from the current window to the next window, if the screen is
split into multiple windows.

Format

NEXT WINDOW

Description

The NEXT WINDOW command works only if the screen displays multiple
windows. LSE positions the cursor in the next window on the screen.

NEXT WINDOW is synonymous with the OTHER WINDOW command.

Keypad Equivalent
Key Keypad Mode

PF1-� NXT WNDW EDT LK201, EDT VT100
PF1-E6 NXT WNDW EVE LK201

Related Commands

CHANGE WINDOW_MODE
DELETE WINDOW
ENLARGE WINDOW
ONE WINDOW
OTHER WINDOW
PREVIOUS WINDOW
SET SCREEN
SHRINK WINDOW
TWO WINDOWS

CD–257

ONE WINDOW

ONE WINDOW

Deletes all windows but the current window.

Format

ONE WINDOW

Description

The ONE WINDOW command removes from your screen all windows
associated with your current editing session, except the one that currently
has input focus.

DECwindows Interface Equivalent

Pull-down menu: View � One Window

Related Commands

CHANGE WINDOW_MODE
DELETE WINDOW
ENLARGE WINDOW
OTHER WINDOW
PREVIOUS WINDOW
SET SCREEN
SHRINK WINDOW
TWO WINDOWS

CD–258

OTHER WINDOW

OTHER WINDOW

Moves the cursor from the current window to the next window, if the screen is
split into multiple windows.

Format

OTHER WINDOW

Description

The OTHER WINDOW command works only if the screen displays multiple
windows. LSE positions the cursor in the next window on the screen.

The OTHER WINDOW command is synonymous with the NEXT WINDOW
command.

Related Commands

CHANGE WINDOW_MODE
DELETE WINDOW
ENLARGE WINDOW
ONE WINDOW
PREVIOUS WINDOW
SET SCREEN
SHRINK WINDOW
TWO WINDOWS

CD–259

PASTE

PASTE

Copies the contents of the specified buffer into the current buffer at the current
cursor position.

Format

PASTE

Qualifiers Defaults

/BUFFER=buffer-name /BUFFER=$PASTE (D)
/CLIPBOARD See text

Qualifiers

/BUFFER=buffer-name
/BUFFER=$PASTE (D)
Specifies the buffer to be copied into the current buffer.

/CLIPBOARD
Instructs LSE to use the DECwindows clipboard, instead of a buffer, to supply
the text being inserted. The /CLIPBOARD and /BUFFER qualifiers are
mutually exclusive.

Description

The PASTE command copies text from a specified location to the current
buffer. If you do not specify a buffer to copy from, LSE copies from the location
(DECwindows Clipboard or character-cell terminal $PASTE buffer) that
contains the text you last removed using the CUT command.

For users of the DECwindows interface, the default setting is /CLIPBOARD;
otherwise, the default is /BUFFER=$PASTE.

Keypad Equivalent
Key Keypad Mode

PF1-KP6 PASTE EDT LK201, EDT VT100, EVE LK201
E2 INSERT HERE EDT LK201, EVE LK201
KP9 INSERT HERE EVE VT100

CD–260

PASTE

DECwindows Interface Equivalent

Pop-up menu: User buffer � Paste
Pull-down menu: Edit � Paste

Related Commands

CUT

CD–261

PREVIOUS BUFFER

PREVIOUS BUFFER

Moves your previous buffer into the current window, which returns you to your
last position in that buffer.

Format

PREVIOUS BUFFER

Description

The PREVIOUS BUFFER command moves the cursor back to the previous
buffer in the list of buffers and maps that buffer to the current window. This
allows you to cycle through several buffers without having to type their names.

If you have only two buffers, repeating PREVIOUS BUFFER toggles
between them. If you have more than two buffers, the previous buffer is
determined by the order in which you created the buffers. Only user buffers
are included in the list of buffers. For a list of your buffers, use the SHOW
BUFFER/USER_BUFFERS command.

If you enter a PREVIOUS BUFFER command while you are positioned in the
first buffer in the list, LSE takes you to the last buffer in the list.

Related Commands

GOTO BUFFER
NEXT BUFFER
SHOW BUFFER

Example

LSE> PREVIOUS BUFFER

Moves your previous buffer into the current window.

CD–262

PREVIOUS ERROR

PREVIOUS ERROR

Selects the previous diagnostic in the current set of diagnostics.

Format

PREVIOUS ERROR

Description

The PREVIOUS ERROR command positions the cursor at the previous
diagnostic in the buffer $REVIEW, which contains the current set of
diagnostics. If the current error is the first in the set, the PREVIOUS ERROR
command does not wrap around from the first error backwards to the last. If
necessary, LSE remaps the $REVIEW buffer.

If you are in review mode, a PREVIOUS STEP command is equivalent to a
PREVIOUS ERROR command.

DECwindows Interface Equivalent

Pop-up menu: Review buffer � Previous Error
Pull-down menu: Source � Previous Error

Related Commands

GOTO REVIEW
NEXT ERROR
PREVIOUS STEP
REVIEW

CD–263

PREVIOUS OCCURRENCE
SCA Required

PREVIOUS OCCURRENCE

Moves the cursor back to the previous occurrence of the current source symbol
in the current query and highlights that occurrence.

Format

PREVIOUS OCCURRENCE

Description

The PREVIOUS OCCURRENCE command moves the cursor back to the
previous occurrence in the current query; that occurrence is highlighted. If
there are no more occurrences of current source symbols, LSE interprets the
command as a PREVIOUS ITEM command. If necessary, LSE remaps the
query.

DECwindows Interface Equivalent

Pop-up menu: Query buffer � Previous Occurrence

Related Commands

NEXT OCCURRENCE
PREVIOUS ITEM
PREVIOUS STEP

CD–264

PREVIOUS QUERY
SCA Command

PREVIOUS QUERY

Moves the cursor back to the previous SCA query session.

Format

PREVIOUS QUERY

Description

The PREVIOUS QUERY command moves the cursor back to the previous
session in a series of SCA query sessions. LSE maps the query display
and moves the cursor to the last remembered position in that query. SCA
determines the order of multiple query sessions by the order in which the
sessions were created.

Related Commands

DELETE QUERY
GOTO QUERY
NEXT QUERY

CD–265

PREVIOUS STEP

PREVIOUS STEP

Moves the cursor back to the previous error, item, name, or occurrence,
depending on whether LSE is in review or query mode. That item is
highlighted.

Format

PREVIOUS STEP

Description

The PREVIOUS STEP command moves the cursor in a manner that depends
on the current mode:

• In review mode, LSE treats this command as a PREVIOUS ERROR
command.

• In query mode, the PREVIOUS STEP command moves the cursor to the
previous line and highlights it, whether it is a symbol or occurrence.

Keypad Equivalent
Key Keypad Mode

Ctrl/B All

Related Commands

PREVIOUS ERROR
PREVIOUS ITEM
PREVIOUS OCCURRENCE
NEXT STEP

CD–266

PREVIOUS SYMBOL
SCA Required

PREVIOUS SYMBOL

Moves the cursor back to the previous source symbol in the current query and
highlights that source symbol.

Format

PREVIOUS SYMBOL

Description

The PREVIOUS SYMBOL command moves the cursor back to the previous
source symbol in the current query; that source symbol is highlighted. If no
more source symbols with the current name exist, LSE interprets the command
as a PREVIOUS NAME command. If necessary, LSE remaps the query.

DECwindows Interface Equivalent

Pop-up menu: Query buffer � Previous Symbol

Related Commands

NEXT SYMBOL
PREVIOUS STEP

CD–267

PREVIOUS WINDOW

PREVIOUS WINDOW

Moves the cursor from one window to the previous window, if the screen is split
into multiple windows.

Format

PREVIOUS WINDOW

Description

The PREVIOUS WINDOW command moves the cursor from the bottom
window to the top, in sequence, if the screen is split into multiple windows.

Keypad Equivalent
Key Keypad Mode

PF1-� PRV WNDW EDT LK201, EDT VT100
PF1-E5 PRV WNDW EVE LK201

Related Commands

CHANGE WINDOW_MODE
DELETE WINDOW
ENLARGE WINDOW
ONE WINDOW
SET SCREEN
SHRINK WINDOW
TWO WINDOWS

CD–268

QUIT

QUIT

Ends an LSE session without saving any modified user buffers.

Format

QUIT

Description

The QUIT command ends the editing session without saving modified user
buffers.

If you have modified any buffers, LSE warns you that you have changes
that will be lost and asks if you want to continue quitting. Typing Y or
YES confirms that you want to discard the modified buffers; typing N or NO
reactivates the editing session and returns the cursor to the last current buffer.

In DECwindows mode, if you have modified any buffers, LSE displays a dialog
box to warn you that modifications will be discarded and to confirm that you
want to continue quitting.

DECwindows Interface Equivalent

Pull-down menu: File � Quit

Related Commands

ATTACH
EXIT
SPAWN

CD–269

QUOTE

QUOTE

Enters a control code or other character, either as text in the buffer you are
editing or as a string for a command.

Format

QUOTE

Description

The QUOTE command enters the character according to the current mode of
the buffer, as shown in the status line.

You can also use the QUOTE command for entering strings for search or
substitute commands.

If you use the DEFINE KEY command to define a typing key (letter, number,
or punctuation mark) or a control key, you can use the QUOTE command to
enter the character or control code normally bound to that key.

Keypad Equivalent
Key Keypad Mode

Ctrl/V EDT LK201, EDT VT100, EVE LK201

Related Commands

SET INSERT
SET OVERSTRIKE

Examples

To use the QUOTE command to enter strings for search or substitute
commands, do the following:

1. Press the key defined for the SEARCH or SUBSTITUTE command.

2. Press Ctrl/V.

3. Press Ctrl/J for the line-feed character.

CD–270

QUOTE

You can define a typing or control key, then use the QUOTE command
to enter the character or control code normally bound to that key. For
example, if you define the tilde to execute a procedure, insert a tilde
character (~) by doing the following:

1. Press Ctrl/V.

2. Type the tilde.

CD–271

READ

READ

Inserts the contents of a file into a buffer.

Format

READ file-spec

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Specifies a buffer into which the file is to be read. If the buffer does not exist,
it is created for display only (the buffer cannot be written back to a file).

Parameter

file-spec
Specifies the file to be read. LSE uses the list for the current SET
SOURCE_DIRECTORY command to resolve the file specification.

LSE uses CMS to access a file, if the directory for the file to be accessed is the
same as the current CMS library.

Description

The READ command opens a file for input and inserts the file’s contents into
a buffer. LSE inserts the text before the line containing the current position
in the receiving buffer; if the buffer previously contained no text, the cursor is
positioned at the end of the buffer.

Unless you specify otherwise, the receiving buffer is the current buffer.

Related Commands

GOTO FILE
INCLUDE
SET CMS
SET SOURCE_DIRECTORY
WRITE

CD–272

READ

Example

LSE> READ x.y

Opens file x.y for input and reads that file’s contents into the current buffer.

CD–273

RECALL

RECALL

Recalls a previous LSE command, which you can edit and execute again.

Format

RECALL

Description

The RECALL command recalls a previous LSE command, which you can edit
(if necessary) and execute again. You cannot just enter RECALL to recall a
previous LSE command. If you enter RECALL, the command itself is recalled.
Instead, use GOLD/DO or a key defined as RECALL.

When you press GOLD/DO, the most recent command you entered is displayed
in the command window with the cursor at the end of the command line. To
execute the recalled command, press Return or the Do key.

To recall another command, press GOLD/DO again, or press the up arrow key
(in effect, scrolling back through the command buffer.)

To cancel the recalled command, erase the recalled line (for example, by
pressing Ctrl/U).

Do not enter the command RECALL. If you enter RECALL, that command
itself is recalled. Instead, use GOLD/DO or a key defined as RECALL.

Keypad Equivalent
Key Keypad Mode

PF1-DO EVE LK201, EDT LK201

CD–274

RECOVER BUFFER

RECOVER BUFFER

Reconstructs the contents of a buffer from a buffer-change journal file.

Format

RECOVER BUFFER [file-name]

Qualifier Defaults

/ALL

Qualifier

/ALL
Specifies that LSE should use the latest generation of all locatable buffer-
change journal files to attempt to perform a recovery operation. LSE uses the
file specification LSE$JOURNAL:.TPU$JOURNAL to locate all buffer-change
journal files. If you specify the /ALL qualifier, you cannot specify the file-name
parameter.

Parameter

file-name
Specifies the name of the file. You can specify either of the following files that
the editor should use to perform the recovery operation:

• Source file that was in the buffer

• Full name of the buffer-change journal file

For information about the procedure for recovering changes lost in a system
failure, see the section about recovering from a failed editing session in the
HP DECset for OpenVMS Guide to Language-Sensitive Editor and Guide to
DIGITAL Source Code Analyzer for OpenVMS Systems.

Description

The RECOVER BUFFER command attempts to rebuild the contents of a buffer
by using the latest available generation of the file that was in the buffer and
a journal file that contains a description of the changes to that buffer. LSE
uses the default file specification LSE$JOURNAL:*.TPU$JOURNAL when
attempting to locate buffer-change journal files.

CD–275

RECOVER BUFFER

Before LSE attempts to recover a buffer, information about the journal file
is displayed. When you specify the /ALL qualifier, LSE displays information
about each available journal file in succession. You can choose not to recover a
buffer if the information describes a journal file other than the one you want.

Related Commands

SET JOURNALING
SET NOJOURNALING

Example

LSE> RECOVER BUFFER login.com

Recovers the buffer LOGIN.COM from the journal file in
LSE$JOURNAL:LOGIN_COM.TPU$JOURNAL.

CD–276

REDO

REDO

Reverses an UNDO operation for the current buffer.

Format

REDO

Description

A follow-up command to UNDO, the REDO command reverses the UNDO
command. A series of UNDO commands can be reversed by a series of REDO
commands.

DECwindows Interface Equivalent

Pull-down menu: Edit � Redo

Related Commands

SET MAX_UNDO
SET MODE UNDO=OFF
SET MODE UNDO=ON
SHOW MAX_UNDO
UNDO

CD–277

REFRESH

REFRESH

Refreshes the screen display.

Format

REFRESH

Description

The REFRESH command clears and redisplays the screen, which preserves all
valid text, including messages in the message window. The cursor returns to
its current position.

Keypad Equivalent
Key Keypad Mode

Ctrl/W All

DECwindows Interface Equivalent

Pull-down menu: View � Refresh

Example

Ctrl/W

Causes the screen to go blank for a moment. The display then returns without
any extraneous characters that do not belong in your displayed buffers.

CD–278

REORGANIZE
SCA Command

REORGANIZE

Optimizes the organization of the specified SCA libraries.

Format

REORGANIZE [library-spec[, . . .]]

Qualifier Defaults

/[NO]LOG /LOG

Qualifier

/LOG (D)
/NOLOG
Indicates whether SCA reports a successful library reorganization.

Parameter

library-spec[, . . .]
Specifies the SCA libraries to be reorganized. If you do not specify a library,
LSE reorganizes the primary SCA library.

Description

The REORGANIZE command optimizes the organization of SCA libraries so
you get the best query and update performance.

Example

$ SCA
SCA> CREATE LIBRARY library-directory /MODULE_COUNT=...
SCA> LOAD data-file-directory:*.ANA
SCA> REORGANIZE

Creates and optimizes the size and organization of your SCA library.

CD–279

REPEAT

REPEAT

Repeats a command the specified number of times.

Format

REPEAT repeat-count command

Parameters

repeat-count
Specifies a positive decimal integer number indicating the number of times you
want to repeat the command.

command
Specifies the command to be repeated.

Description

The REPEAT command repeats a command the number of times you specify.

To repeat a single key, press the PF1 key followed by one or more keyboard
number keys to indicate the number of times you want the key to be repeated.
Then, press the key you want.

You cannot use the PF1 key to repeat the delete key or Ctrl/Z key.

The repeat operation aborts if you receive a warning of an error while this
command is active.

Keypad Equivalent

Key Keypad Mode

PF1-number key(s) All

CD–280

REPEAT

Examples

1. LSE> REPEAT 5 ENTER LINE

Adds five new lines to the text in the current buffer.

2. PF1 7 0 =

Inserts 70 equals signs (=) at the current cursor position.

CD–281

REPLACE

REPLACE

Creates a new generation of the specified element in your current CMS library.

Format

REPLACE

Qualifier Default

/[NO]VARIANT=variant-letter /NOVARIANT

Qualifier

/VARIANT=variant-letter
/NOVARIANT (D)
Controls whether CMS creates a variant generation.

Description

The REPLACE command returns to your current CMS library an element
name with the same name and type as the input file for your current buffer.
When a REPLACE command executes successfully, it creates a new generation
of that element; you no longer hold a reservation for the element.

The sequence of actions this command takes are as follows:

1. Writes out the buffer if you have modified it.

2. Performs a CMS REPLACE operation.

3. Deletes the buffer.

DECwindows Interface Equivalent

Pull-down menu: File � Replace

Related Commands

RESERVE
SET CMS
UNRESERVE

CD–282

REPLACE

Example

LSE> REPLACE

Creates a new generation of the element with the same name and type as the
input file for your current buffer.

CD–283

REPORT
SCA Command

REPORT

Produces the specified report.

Format

REPORT report-name other-parms[. . .]

Qualifiers Defaults

/DOMAIN=query-name
/[NO]FILL /FILL
/HELP_LIBRARY=library_name
/LANGUAGES=(language,[. . .])
/OUTPUT=file-name
/TARGET=target-file-type See text

Qualifiers

/DOMAIN=query-name
Specifies the name of the query to use as the domain for the report. The query
should include occurrences of files that have been compiled. This value is
converted to a DECTPU value and assigned to the global DECTPU variable
SCA$REPORT_DOMAIN_QUERY. This procedure limits the report to objects
that are contained, directly or indirectly, within at least one of the files in this
query.

The default value is the null string. By convention, DECTPU report procedures
interpret this as the entire SCA library.

/FILL (D)
/NOFILL
Specifies that whenever a paragraph of commented text is inserted into
a report, it is set up so a text processor, such as DECdocument, performs
the usual fill and justification operations on the paragraph. If you specify
/NOFILL, the report tool does not instruct the text processor to fill or justify
the paragraph.

For any individual paragraph, you can override the setting of this qualifier
by including appropriate text-processor comments within the body of the
comment.

The value of this qualifier is used to set the value of the global DECTPU
variable SCA$REPORT_FILL as follows. If you specify the /FILL qualifier, or
it is specified by default, SCA$REPORT_FILL is 1; if you specify the /NOFILL
qualifier, SCA$REPORT_FILL is 0.

CD–284

REPORT
SCA Command

The /FILL qualifier is ignored if it is not meaningful for the target. In
particular, it is ignored for LSE package definitions.

/HELP_LIBRARY=library_name
Specifies the help library to use for PACKAGE reports. This qualifier is
ignored for other reports. The PACKAGE report generates one or more
DEFINE PACKAGE commands. The library_name specifies the value to use
with the /HELP_LIBRARY qualifier for the generated DEFINE PACKAGE
commands.

If you omit this qualifier, the PACKAGE report omits the /HELP_LIBRARY
qualifier from the DEFINE PACKAGE commands it generates.

/LANGUAGES=(language,[. . .])
Specifies the language to use for PACKAGE reports. This qualifier is ignored
for other reports. The PACKAGE report generates one or more DEFINE
PACKAGES commands. This qualifier specifies the languages to use as the
values of the /LANGUAGE qualifier for the generated DEFINE PACKAGE
commands.

If you omit this qualifier, the PACKAGE report inserts the LSE placeholder
{language_name} . . . as the value for the /LANGUAGE qualifier with the
DEFINE PACKAGE commands. Before you can execute the DEFINE
PACKAGE command, you must replace the placeholder manually with the
names of the languages that are appropriate for the languages being defined.

/OUTPUT=file-name
Specifies the output file to use for the report. This value is converted to a
DECTPU string and passed as the value for the global DECTPU variable
SCA$REPORT_OUTPUT. The default value takes the file name from the
report-name parameter and the file type from the target-file-type parameter.
The target-file-type is implied by the /TARGET qualifier. For example, if you
specify DECdocument for the /TARGET qualifier, this implies a file type of
.SDML.

CD–285

REPORT
SCA Command

/TARGET=target-file-type
Specifies the type of target file to produce. This value is converted to
a DECTPU string value and assigned to the global DECTPU variable
SCA$REPORT_TARGET. You can specify one of the following keywords:

Keyword Type of file

TEXT, TXT Text file
RUNOFF, DSR, RNO A file for processing by DIGITAL RUNOFF
SDML, DOCUMENT A file for processing by DECdocument
LSEDIT, LSE A file for processing by LSE
HLP, HELP A help file for processing by the VMS

Librarian
OTHER=value1 Optional file type

1The OTHER keyword can take an optional value. The default value is the null string, which by
convention is interpreted by the DECTPU procedures as TEXT. User-supplied report procedures
can ignore this convention and provide their own defaults.

The default target file types are SDML for INTERNALS and 2167A_DESIGN
reports, HLP for HELP reports, and LSE for PACKAGE reports.

Parameters

report-name
Specifies the name of the report to produce. The command looks for a
corresponding DECTPU procedure by constructing the DECTPU identifier
SCA_REPORT_report-name and looking for a DECTPU procedure with
that name to use for producing the report. Because DECTPU limits
identifiers to 132 characters, report names are limited to 132 minus
LENGTH‘‘SCA_REPORT_’’, which equals 121 characters.

HP has implemented the following reports:

• HELP—A help file suitable for processing by the VMS Librarian into a
help library

• PACKAGE—An LSE package definition, which can be processed by LSE
and put into an environment file, to create templates for calling the
procedures in your code

• INTERNALS—A comprehensive report on the software in your system, all
of the information in comment headers, and a structural presentation of
your code

CD–286

REPORT
SCA Command

• 2167A_DESIGN—The design section of the DOD-STD-2167A Software
Design Document

You must type report names completely as they appear in the previous list.

other-parms[. . .]
Specifies other parameters passed to the DECTPU procedure. These
parameters are collected into a single string, which is then assigned to
the global DECTPU variable SCA$_REPORT_REST_OF_LINE. These SCA
parameters are obtained from the command line from the $REST_OF_LINE
type of the OpenVMS Command Definition Utility. For information on the
built-in value type $REST_OF_LINE, see the section about defining values in
the OpenVMS Command Definition, Librarian, and Message Utilities Manual.

Description

The REPORT command produces a specified report. For more information
about the REPORT command and about customizing reports, see the chapter
about customizing reports in the Guide to Source Code Analyzer for VMS
Systems.

The REPORT command requires that LSE be installed, even if you are using
this command from the SCA command line.

Examples

1. LSE> REPORT HELP /TARGET=HELP

Produces a report named HELP with a file type of .HLP for processing with
the VMS Librarian.

2. SCA> FIND/NAME=abc_files abc* AND symbol=file AND occ=command_line
SCA> REPORT/DOMAIN=abc_files INTERNALS

Produces an INTERNALS report only on files with names beginning with
abc.

CD–287

RESERVE

RESERVE

Reserves an element in your current CMS library.

Format

RESERVE [element-name]

Qualifiers Default

/GENERATION[=generation-exp]
/[NO]MERGE=generation-exp /NOMERGE

Qualifiers

/GENERATION[=generation-exp]
Specifies the generation of the element to reserve. If you do not specify a
value, LSE assumes you have specified generation ‘‘1+’’ (the generation-exp
parameter must be enclosed in quotation marks if nonalphanumeric characters
are present). If you omit the qualifier altogether, LSE uses the specified or
default value from the command SET CMS/GENERATION to determine the
generation to reserve.

/MERGE=generation-exp
/NOMERGE (D)
Determines whether LSE merges another generation of the element with the
generation being reserved. If you omit this qualifier, LSE uses the setting
of the command SET CMS/[NO]MERGE to determine whether to merge
generations of the element being reserved.

You must enclose generation-exp in quotes (‘‘ ’’) if nonalphanumeric characters
are present.

Parameter

element-name
Specifies the elements to reserve. If you do not specify an element name, LSE
uses the file name and type of your current buffer as the element name.

CD–288

RESERVE

Description

The RESERVE command executes the CMS command RESERVE on the
specified element in your current CMS library and reads the file created into
the current editing buffer.

To specify conditions for reserving the element, use the SET CMS command
with its available command qualifiers.

DECwindows Interface Equivalent

Pull-down menu: File � Reserve

Related Commands

REPLACE
SET CMS
UNRESERVE

Example

LSE> RESERVE USER.TXT

Reserves an element called USER.TXT in your current CMS library.

CD–289

REVIEW

REVIEW

Selects and displays a set of diagnostic messages that resulted from a
compilation. The diagnostics associated with the current contents of the
buffer become the current diagnostic set.

Format

REVIEW [buffer]

Qualifier Defaults

/FILE=file-spec

Qualifier

/FILE=file-spec
Specifies the name of the diagnostics file containing the results of a
compilation. By default, LSE looks in your current directory for a .DIA
file with the same file name as the file associated with the buffer.

Parameter

buffer
Specifies that the set of diagnostics associated with the specified buffer is to be
reviewed. The default is the current buffer.

Description

The REVIEW command selects and displays a set of diagnostic messages
associated with the current contents of a buffer.

A set of diagnostics becomes associated with a buffer by a
COMPILE/REVIEW or REVIEW command. It remains associated with that
buffer until you enter a subsequent COMPILE command for that buffer, a
REVIEW command with an explicit /FILE qualifier, or an END REVIEW
command.

If no diagnostics are associated with the buffer, LSE attempts to read a set of
diagnostics from a file. If you do not supply a file specification, LSE uses the
name of the file associated with the buffer, but with .DIA as the file type. You
can use the /FILE qualifier to override this default.

CD–290

REVIEW

You can use the REVIEW command at any time to change the set of diagnostics
to be reviewed. If you use the REVIEW command to return to a set of
diagnostics, the last diagnostic and region selected in that set become the
current diagnostic and region.

DECwindows Interface Equivalent

Pull-down menu: Source � Review

Related Commands

COMPILE/REVIEW
END REVIEW
GOTO REVIEW

Example

LSE> REVIEW

Displays compilation diagnostics in a window containing the $REVIEW buffer,
after you have used the /DIAGNOSTICS qualifier to invoke a compiler.

CD–291

SAVE ENVIRONMENT

SAVE ENVIRONMENT

Writes out all user-defined languages, placeholders, tokens, aliases, and
packages to an environment file.

Format

SAVE ENVIRONMENT file-spec

Qualifiers Defaults

/ALL /ALL
/NEW /ALL

Qualifiers

/ALL (D)
Specifies that LSE write all defined items to the environment file.

/NEW
Specifies that LSE write out only those definitions you made during the current
editing session. Definitions that were read in from an environment file are not
written.

Parameter

file-spec
Specifies the file to which LSE should write the environment data.

Description

The SAVE ENVIRONMENT command writes out all user-defined languages,
placeholders, tokens, aliases, and packages to an environment file. This
procedure saves processing time when LSE reads the definitions back in.
(See the section about using environment and section files in the Guide to
Language-Sensitive Editor for VMS Systems for information on the use of
the logical name LSE$ENVIRONMENT or the LSE command-line qualifier
/ENVIRONMENT to restore definitions in an environment file.)

Usually, LSE writes all user-defined items to the environment file. You
can supply user-defined items with the LSEDIT /INITIALIZATION and
/ENVIRONMENT qualifiers, or with DEFINE commands during the editing
session. You can use the /NEW qualifier to tell LSE to write only those items
defined during the current editing session.

CD–292

SAVE ENVIRONMENT

DECwindows Interface Equivalent

Pull-down menu: Options � Save Options

Related Commands

SAVE SECTION

Example

LSE> SAVE ENVIRONMENT myfile.env

Creates an environment file named myfile.env to hold any current language,
placeholder, token, alias, and package definitions.

CD–293

SAVE QUERY
SCA Command

SAVE QUERY

Saves queries from the SCA query list into a command file.

Format

SAVE QUERY [query-name, . . .]

Qualifiers Defaults

/OUTPUT[=file-spec] QUERY.COM
/PREFIX=name-prefix
/QUALIFIERS=find-command-qualifiers

Qualifiers

/OUTPUT[=file-spec]
Specifies an output file name and overrides the default QUERY.COM.

/PREFIX=name-prefix
Adds the specified prefix to all query names. This qualifier can be used to
make sure the query names are unique, and is useful if any of the query names
are numbers.

/QUALIFIERS=find-command-qualifiers
Used to specify FIND command qualifiers to be added to each saved query.
For example, the value of "/NORESULT" will prevent the queries from being
evaluated when they are read into SCA until they are used.

Parameter

query-name
Specifies the name of an existing command file to receive the queries from the
SCA query list.

Description

The SAVE QUERY command saves queries from an SCA query list into a
command file. The saved query can then be read into any SCA session by
using the @file-specification command.

CD–294

SAVE QUERY
SCA Command

Related Commands

@ (file-specification)
FIND

Example

$ SCA
SCA> FIND/NAME=Q1/NORESULT NAME11 OR NAME12
SCA> FIND/NAME=Q2/NORESULT NAME21 OR NAME22
SCA> FIND/NAME=Q/NORESULT @Q1 OR @Q2
SCA> SAVE QUERY/PREFIX=X_/QUALIFIERS="/NORESULT"
SCA> EXIT

$ TY QUERY.COM
FIND/NAME=X_Q1/NORESULT NAME11 OR NAME12
FIND/NAME=X_Q2/NORESULT NAME21 OR NAME22
FIND/NAME=X_Q/NORESULT @X_Q1 OR @X_Q2

This example demonstrates the use of the SAVE QUERY command in
OpenVMS syntax format.

Note

A query for which there are no matches will not be put in the query list
unless it is defined with the /NORESULT qualifier.

CD–295

SAVE SECTION

SAVE SECTION

Writes the binary form of all current key definitions, learn sequences, and
DECTPU procedures and variables to a section file. This saves processing time
when LSE reads the definitions back in.

Format

SAVE SECTION file-spec

Qualifiers Defaults

/[NO]DEBUG_NAMES /DEBUG_NAMES
/IDENT=string
/[NO]PROCEDURE_NAMES /PROCEDURE_NAMES

Qualifiers

/DEBUG_NAMES (D)
/NODEBUG_NAMES
Specifies whether DECTPU procedure parameters or local variable names
should be written to the section file.

/IDENT=string
Specifies an identifying string for the section file.

/PROCEDURE_NAMES (D)
/NOPROCEDURE_NAMES
Specifies whether DECTPU procedure names should be written to the section
file.

Parameter

file-spec
Specifies the file to which LSE should write the section data. The default file
type is .TPU$SECTION.

CD–296

SAVE SECTION

Description

The SAVE SECTION command writes key definitions, learn sequences, user-
defined commands, mode settings, DECTPU procedures, and DECTPU variable
names to a section file so they can be restored at a later time. (See the
section about using environment and section files in the Guide to Language-
Sensitive Editor for VMS Systems for information on the use of the logical
name LSE$SECTION or the LSE command line qualifier /SECTION, to restore
definitions saved in the section file.)

The SAVE SECTION command calls the DECTPU built-in SAVE procedure to
actually write the section file. By default, the type of the saved section file is
.TPU$SECTION.

DECwindows Interface Equivalent

Pull-down menu: Options � Save Options . . .

Related Commands

SAVE ENVIRONMENT

Example

LSE> SAVE SECTION MY_SECTION

Creates a section file named MY_SECTION.TPU$SECTION; the file saves all
current key definitions, learn sequences, DECTPU procedures, and variable
names.

CD–297

SEARCH

SEARCH

Searches the current buffer for the specified string and positions the cursor at
that string.

Format

SEARCH search-string

Qualifiers Defaults

/DIALOG /NODIALOG
/[NO]PATTERN /NOPATTERN

Qualifiers

/DIALOG
/NODIALOG (D)
Instructs LSE to use a dialog box to prompt the user for parameters and
qualifier values. The command parameters are optional if you specify this
qualifier. If you supply command parameters and qualifiers with the /DIALOG
qualifier, these parameters and qualifiers are used to set the initial state of the
dialog box.

LSE ignores the /DIALOG qualifier if you are using a character-cell terminal.

/PATTERN
/NOPATTERN (D)
Enables or disables special interpretation of wildcard characters and a quote
character in the search-string parameter. You can set the syntax for specifying
a pattern to the OpenVMS style (/PATTERN=OPENVMS), UNIX style
(/PATTERN=ULTRIX) or TPU style
(/PATTERN=TPU).

For more details on TPU patterns see Appendix G and DEC Text Processing
Utility Reference Manual. Table CD–3 lists the OpenVMS wildcards.
Table CD–4 lists the UNIX wildcards.

CD–298

SEARCH

Table CD–3 OpenVMS Wildcards

Wildcard Matches

* One or more characters of any kind on a line.
** One or more characters of any kind crossing lines.
% A single character.
\< Beginning of a line.
\> End of a line.
\[set-of-
characters]

Any character in the specified set. For example, \[abc]
matches any letter in the set ‘‘abc’’ and \[c-t] matches any
letter in the set ‘‘c’’ through ‘‘t.’’

\[~set-of-
characters]

Anything not in the specified set of characters.

\ Lets you specify the characters \,*,% or] within wildcard
expressions. For example, \\ matches the backslash
character (\).

\. Repeats the previous pattern zero or more times, including
the original.

\: Repeats the previous pattern at least once, including the
original; that is, a null occurrence does not match.

\w Any empty space created by the space bar or tab stops,
including no more than one line break.

\d Any decimal digit.
\o Any octal digit.
\x Any hexadecimal digit.
\a Any alphabetic character, including accented letters, other

marked letters, and non-English letters.
\n Any alphanumeric character.
\s Any character that can be used in a symbol: alphanu-

meric, dollar sign, and underscore.
\l Any lowercase letter.
\u Any uppercase letter.
\p Any punctuation character.

(continued on next page)

CD–299

SEARCH

Table CD–3 (Cont.) OpenVMS Wildcards

Wildcard Matches

\f Any formatting characters: backspace, tab, line feed,
vertical tab, form feed, and carriage return.

\^ Any control character.
\+ Any character with bit 7 set; that is, ASCII decimal values

from 128 through 255.

Table CD–4 UNIX Wildcards

Wildcard Matches

. A single character.
^ Beginning of a line.
$ End of a line.
[set-of-characters] Any character in the specified set. For example, [abc]

matches any letter in the set ‘‘abc’’ and [c-t] matches any
letter in the set ‘‘c’’ through ‘‘t.’’

[^set-of-
characters]

Anything not in the specified set of characters.

\ Lets you specify the characters \,.,^,$,[,],or * in wildcard
expressions. For example, \\ matches the backslash
character (\).

* Repeats the previous pattern zero or more times, including
the original.

+ Repeats the previous pattern at least once, including the
original; that is, a null occurrence does not match.

When you specify the /NOPATTERN qualifier (or when it is the default),
special interpretation of the asterisk, percent sign, and backslash characters is
disabled.

Parameter

search-string
Specifies a quoted string indicating the string for which to search.

If you are using the DECwindows interface and specify the /DIALOG qualifier,
the search string field in the Find dialog box takes the default value from the
the previous search string, if any.

CD–300

SEARCH

Description

The SEARCH command searches the current buffer in the specified direction
for the specified character string, but ignores any occurrence of the search
string that begins at the current cursor position. If the search is successful,
LSE positions the cursor on the first character of the string. If LSE does not
find the string, it issues a message indicating that no matching string was
found.

The direction in which a search is performed is independent of the current
direction set for a buffer. This lets you change the direction of the search
operation without changing the current direction set for the buffer. The
prompts for the search string reflect this behavior. Note that you can change
the direction of the search by pressing a key that changes the search direction;
this can be the first key you press in response to the prompt, or the key that
terminates the prompt.

When conducting a search, LSE regards uppercase and lowercase letters as
equivalent. To alter this behavior, see the SET SEARCH command.

If you specify a null string as the search string, LSE searches for the last
search string given in the SEARCH command. If LSE prompts you for a
search string, you must not use quotation marks in your response unless you
want LSE to search for a string that includes quotation marks.

The direction in which LSE executes the SEARCH command is determined by
the key used to end the SEARCH command. If you end your response to the
prompt with a keypad key bound to SET FORWARD or SET REVERSE, LSE
changes the search direction before the SEARCH command. This is not true in
DECwindows if you are specifying search strings through the dialog box.

Keys bound to other commands end the string and LSE conducts the search in
the current direction.

For information about searching for a formatting or control character, see the
QUOTE command.

CD–301

SEARCH

Keypad Equivalent

SEARCH
Key Keypad Mode

PF1-PF3 FIND EDT LK201, EDT VT100, EVE LK201
E1 FIND EDT LK201, EVE LK201
KP4 FIND EVE VT100

SEARCH ""

Key Keypad Mode

PF3 FNDNXT EDT LK201, EDT VT100, EVE LK201

SEARCH/PATTERN
Key Keypad Mode

PF1-E1 FNDPATT EDT LK201, EVE LK201

DECwindows Interface Equivalent

SEARCH/DIALOG
Pull-down menu: Search � Search . . .

SEARCH ""
Pop-up menu: User buffer � Find Next
Pull-down menu: Search � Search . . .

Related Commands

QUOTE
SET SEARCH
SHOW SEARCH

Examples

1. LSE> SEARCH "the editor"

Searches the current buffer for the next occurrence of the string the editor.
The quotation marks in the search string indicate to LSE that you are
searching for the words enclosed in the quotation marks.

CD–302

SEARCH

2. FIND

_Forward Search: open

Searches the current buffer for the next occurrence of the word open.

3. LSE> SEARCH/PATTERN "2%\%"

Searches the current buffer for the next occurrence of a string consisting of
the number 2, any character, and a percent sign. Text that would satisfy
this condition includes the strings "20%" and "29%."

CD–303

SELECT ALL

SELECT ALL

Selects the entire contents of the current buffer.

Format

SELECT ALL

Description

The SELECT ALL command places all the contents of the current buffer in the
selected range. Any operations that LSE performs on a selected range then
apply to all the contents of the buffer.

DECwindows Interface Equivalent

Pull-down menu: Edit � Select All

CD–304

SET AUTO_ERASE

SET AUTO_ERASE

Enables automatic erasing of placeholders in the specified buffer.

Format

SET AUTO_ERASE

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer for which automatic erasing is to be enabled. The default
is the current buffer.

Description

The SET AUTO_ERASE command enables LSE to erase the placeholder
that the cursor is on when you type a character over that placeholder in the
specified buffer. However, if the cursor is on the first character of an open
placeholder delimiter, LSE displays the characters you type without erasing
the placeholder.

Initially, LSE is set to automatically erase placeholders.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

SET NOAUTO_ERASE
SHOW BUFFER

Example

LSE> SET AUTOERASE/BUFFER=USER.TXT

Enables automatic erasing of placeholders in the buffer USER.TXT.

CD–305

SET CMS

SET CMS

Sets the default values for reservations and fetches that LSE performs when
you enter the appropriate LSE file-manipulation commands.

Format

SET CMS

Qualifiers Defaults

/[NO]CONCURRENT
/[NO]CONFIRM
/GENERATION=generation-exp
/[NO]HISTORY
/[NO]MERGE=generation-exp
/[NO]NOTES
/[NO]REMARK=string

Qualifiers

/CONCURRENT
/NOCONCURRENT
Controls whether an element reserved by you can be reserved by another user
while you have it reserved. The initial setting is /CONCURRENT.

/CONFIRM
/NOCONFIRM
Specifies whether you want to be prompted for confirmation before LSE
performs a FETCH or RESERVE operation. The initial setting is /CONFIRM.

/GENERATION=generation-exp
Specifies the generation to be used for CMS RESERVE and FETCH operations.
The initial setting is /GENERATION=‘‘1+’’.

/HISTORY
/NOHISTORY
Controls whether CMS includes the element history in the file if the element
has the history attribute and if a CMS FETCH or CMS RESERVE operation is
performed. The initial setting is /HISTORY.

/MERGE=generation-exp
/NOMERGE
Controls whether LSE merges a reserved or fetched element with another
generation of the same element. The initial setting is /NOMERGE.

CD–306

SET CMS

/NOTES
/NONOTES
Controls whether notes are embedded in the file if the retrieved element has
the notes attribute and if a CMS FETCH or CMS RESERVE operation is
performed. The initial setting is /NOTES.

/REMARK=string
/NOREMARK
Specifies the remark to be used on RESERVE operations. The initial setting
is to prompt for the remark. If you specify the /NOREMARK qualifier, LSE
prompts you for a remark when you enter a CMS file-manipulation command.

Description

The SET CMS command specifies default settings for the LSE file-
manipulation commands that reserve or fetch files.

The effect of the SET CMS command is cumulative; that is, entering a SET
CMS/NOHISTORY command followed by a SET CMS/NONOTES command
causes both /NOHISTORY and /NONOTES to be set. (You would then need to
enter the command SET CMS/HISTORY to set /HISTORY again.)

If you do not specify any qualifiers, the SET CMS command resets all values to
their initial settings.

Note

The SET CMS command settings are not used by any commands that
begin with the word CMS.

DECwindows Interface Equivalent

Pull-down menu: Options � CMS . . .

Related Commands

GOTO FILE
GOTO SOURCE
READ
REPLACE
RESERVE
SHOW CMS
UNRESERVE

CD–307

SET CMS

Example

LSE> SET CMS/GENERATION=Baselevel_1

Causes fetches performed by the commands GOTO FILE, GOTO SOURCE, and
READ to use the generation that corresponds to the class Baselevel_1. Any
reservations made using the RESERVE command also use this class.

CD–308

SET CURSOR

SET CURSOR

Selects either bound cursor motion or free cursor motion.

Format

SET CURSOR motion-setting

Parameter

motion-setting
Specifies the cursor-motion setting. Motion-setting keywords and their effects
are as follows:

BOUND
Restricts the cursor to positioning on a character, end-of-line, or end-of-buffer.
This is the initial setting and is similar to cursor motion in the EDT editor.

FREE
Lets the cursor move anywhere in a window including past the end-of-line,
past the end-of-buffer, in the middle of a tab, or to the left of the left margin.
This is similar to the default cursor motion for the EVE editor.

Description

The SET CURSOR command either binds the cursor to that part of the
buffer occupied by text, or sets it free to be positioned anywhere in the buffer,
depending on the parameter you specify.

DECwindows Interface Equivalent

Pull-down menu: Customize � Global Attributes . . .

Related Commands

SHOW MODE

CD–309

SET DEFAULT_DIRECTORY

SET DEFAULT_DIRECTORY

Changes your default device and directory specifications.

Format

SET DEFAULT_DIRECTORY [device-name[:][directory-spec]

Parameters

device-name[:]
Specifies a device name to be used as the default device in a file specification.

directory-spec
Specifies a directory name to be used as the default directory in a file
specification. A directory name must be enclosed in brackets. Use the minus
sign to specify the next higher directory from the current default directory.

You must specify either the device-name parameter or the directory-spec
parameter. If you specify only the device name, the current directory is the
default for the directory-spec parameter. If you specify only the directory name,
the current device is the default for the device-name parameter.

You can use a logical name, but it must constitute at least the device part of
the specification.

Description

The SET DEFAULT_DIRECTORY command changes your default device
and directory names, along with any equivalence strings. The new default
is applied to all subsequent file specifications that do not explicitly include a
device or directory name.

The default set in an LSE editing session remains in effect after you terminate
the LSE session.

Related Commands

SHOW DEFAULT_DIRECTORY

CD–310

SET DEFAULT_DIRECTORY

Example

LSE> SET DEFAULT DISK$:[USER.LSE]

Establishes DISK$:[USER.LSE] as the default directory for LSE to use in
accessing files.

CD–311

SET DIRECTORY

SET DIRECTORY

Sets the default read-only or writable status of files in a specified directory.

Format

SET DIRECTORY directory-spec

Qualifiers Defaults

/READ_ONLY /WRITE
/WRITE /WRITE

Qualifiers

/READ_ONLY
Specifies that files in the specified directories are read-only and unmodifiable
by default. The /READ_ONLY qualifier prevents the WRITE command from
writing files to the specified directory, unless you subsequently override this
default.

/WRITE (D)
Specifies that files in the specified directories are writable and unmodifiable by
default.

Parameter

directory-spec
Specifies a directory to be set as read-only or writable.

Description

The SET DIRECTORY command determines the read-only or writable status
of a directory you specify. The logical name LSE$READ_ONLY_DIRECTORY
stores the list of read-only directories.

Related Commands

SHOW DIRECTORY

CD–312

SET DIRECTORY

Example

LSE> SET DIRECTORY/READ_ONLY [LIBRARY_DIRECTORY]

Specifies files in the directory LIBRARY_DIRECTORY as unmodifiable.

CD–313

SET FONT

SET FONT

Sets the specified fonts for the screen.

Format

SET FONT keyword-list

Parameter

keyword-list
Indicates the fonts to be set or reset. The types of fonts are as follows:

BIG
Specifies that the fonts should be big

CONDENSED
Specifies that the fonts should be condensed

LITTLE
Specifies that the fonts should be little

NORMAL
Specifies that the fonts should be normal

Description

The SET FONT command sets the fonts to big or little, normal or condensed.
You can specify either big or little, and either normal or condensed.

You use the SET FONT command only with DECwindows.

DECwindows Interface Equivalent

Pull-down menu: Customize � Window Attributes . . .

Related Commands

SHOW SCREEN

CD–314

SET FONT

Example

LSE> SET FONT BIG,CONDENSED

Set the fonts to big and condensed.

CD–315

SET FORWARD

SET FORWARD

Sets the current direction of a buffer to forward.

Format

SET FORWARD

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose direction is to be set to forward. The default is the
current buffer.

Description

The SET FORWARD command sets the current direction of the specified buffer
to forward. The status line of each buffer displays the current direction.

Users of the DECwindows interface can switch direction by selecting the status
line button and pressing MB1.

Keypad Equivalent
Key Keypad Mode

KP4 FORWARD EDT LK201, EDT VT100, EVE LK201
None EVE VT100

DECwindows Interface Equivalent

Buffer status line:
�

Forward
Reverse

�
Pull-down menu: Options � Buffer Attributes . . .

CD–316

SET FORWARD

Related Commands

CHANGE DIRECTION
SET REVERSE

CD–317

SET INDENTATION

SET INDENTATION

Sets the current indentation-level count for the current buffer without changing
the current line.

Format

SET INDENTATION level-option

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose current indentation-level count is to be changed.
The default is the current buffer.

Parameter

level-option
Indicates the level to be set or changed. The indentation keywords and their
effects are as follows:

CURRENT
Sets the indentation level count to the beginning of the text on the current line

CURSOR
Sets the indentation level count to the column currently occupied by the cursor

LEFT
Decreases the indentation level count by the current tab increment

RIGHT
Increases the indentation level count by the current tab increment

Description

The SET INDENTATION command sets the current indentation-level count for
the current buffer. A TAB or ENTER TAB command given at the beginning of
a line inserts tabs and blanks corresponding to the current indentation-level
count.

CD–318

SET INDENTATION

DECwindows Interface Equivalent

Pull-down menu: Edit � Indentation . . .

Related Commands

CHANGE INDENTATION
ENTER TAB
EXPAND
TAB
UNTAB

CD–319

SET INSERT

SET INSERT

Sets the text-entry mode of the specified buffer to insert mode.

Format

SET INSERT

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose text-entry mode is to be changed. The default is the
current buffer.

Description

The SET INSERT command sets the mode of the specified buffer to insert. In
insert mode, LSE inserts typed characters before the current cursor position.

The status line of each buffer displays the current text-entry mode.

Users of the DECwindows interface can cycle through Insert, Overstrike, and
Unmodifiable by selecting the status line button and pressing MB1.

DECwindows Interface Equivalent

Buffer status line:

� Insert
Overstrike
Unmodifiable

�

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

CHANGE TEXT_ENTRY_MODE
SET OVERSTRIKE

CD–320

SET JOURNALING

SET JOURNALING

Enables buffer-change journaling for the specified buffers.

Format

SET JOURNALING [buffer-name]

Qualifier Defaults

/ALL

Qualifier

/ALL
Specifies that all of the LSE user buffers that exist when the command is
entered should be journaled. If you specify the /ALL qualifier, you cannot
specify the buffer-name parameter.

Parameter

buffer-name
Specifies the name of the buffer that should be journaled. If you omit this
parameter, the default is the current buffer.

Description

The SET JOURNALING command starts buffer-change journaling for the
specified user buffer. SET JOURNALING does not allow buffer-change
journaling for system buffers.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

RECOVER BUFFER
SET NOJOURNALING

CD–321

SET JOURNALING

Example

LSE> SET JOURNALING login.com

Enables buffer-change journaling for the buffer login.com. Buffer changes are
written to the file LSE$JOURNAL:LOGIN_COM.TPU$JOURNAL.

CD–322

SET LANGUAGE

SET LANGUAGE

Sets the language associated with the specified buffer.

Format

SET LANGUAGE language-name

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose associated language you want to set. The current
buffer is the default.

Parameter

language-name
Specifies the name of the language to associate with the buffer. The SET
LANGUAGE command requires this parameter.

Description

The SET LANGUAGE command associates a language with a buffer. By
default, LSE uses a file-type specification to determine the language to
associate with the buffer. If LSE cannot determine the language from the file
type, or if no file is associated with the buffer, LSE uses the language in effect
when you created the buffer. If you attempt to associate a language with a
system buffer, such as $REVIEW, $MESSAGES, or $HELP, you receive an
error message.

To disassociate a language with a specified buffer, use the SET NOLANGUAGE
command.

DECwindows Interface Equivalent

Pull-down menu:Options � Buffer Attributes . . .

CD–323

SET LANGUAGE

Related Commands

DEFINE LANGUAGE
DELETE LANGUAGE
SET NOLANGUAGE
SHOW LANGUAGE

Example

LSE> SET LANGUAGE example

Associates the language example with the current buffer.

CD–324

SET LEFT_MARGIN

SET LEFT_MARGIN

Sets the left margin for the specified buffer.

Format

SET LEFT_MARGIN column-number

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose left margin is to be changed. The default is the
current buffer.

Parameter

column-number
Specifies the column for the left margin. The value must be greater than or
equal to 1, and less than the value set for the right margin.

If you specify the CONTEXT_DEPENDENT value as the column number, LSE
uses the indentation of the current line to determine the left margin when
you use the /WRAP qualifier. When you use the FILL command, LSE uses the
indentation of the first line of each selected paragraph to determine the left
margin.

Description

The SET LEFT_MARGIN command sets the left margin for a buffer. The FILL
and ENTER LINE commands use this margin setting. By default, the left
margin is at column 1.

To find out the setting of the left margin, use the SHOW BUFFER command.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

CD–325

SET LEFT_MARGIN

Related Commands

SET RIGHT_MARGIN
SHOW BUFFER [DECwindows interface]

Example

LSE> SET LEFT_MARGIN 10

Sets the left margin in the current buffer at column 10.

CD–326

SET LIBRARY
SCA Command

SET LIBRARY

Identifies the SCA physical libraries to be used for subsequent SCA functions.

Format

SET LIBRARY directory-spec[, . . .]

Qualifiers Default

/AFTER[=library-spec]
/BEFORE[=library-spec]
/[NO]LOG /LOG

Qualifiers

/AFTER[=library-spec]
Instructs SCA to insert the new library or libraries into the list of active SCA
libraries after the library you specify as the qualifier value. If you do not
specify a value, SCA adds the library or libraries to the end of the list.

/BEFORE[=library-spec]
Instructs SCA to insert the new library or libraries into the list of active SCA
libraries before the library you specify as the qualifier value. If you do not
specify a value, SCA adds the library or libraries to the beginning of the list.

/LOG (D)
/NOLOG
Indicates whether SCA reports the resulting list of active SCA libraries.

Parameter

directory-spec[, . . .]
Specifies one or more directories, each of which comprises a separate SCA
library. The list of libraries you specify replaces the current list of active
libraries, unless you specify an /AFTER or /BEFORE qualifier.

Description

The SET LIBRARY command lets you activate the specified library for use
during the current SCA session. If you list several directories, SCA can
access all of them during your session as a single logical library. When
you subsequently invoke SCA, it uses the logical name SCA$LIBRARY to
reestablish the active library list.

CD–327

SET LIBRARY
SCA Command

Related Commands

SET NOLIBRARY

Example

$ SCA SET LIBRARY DISK$:[USER.SCALIB]

Defines the library named as the one SCA uses for subsequent access.

See the chapter about using SCA libraries in the Guide to Source Code
Analyzer for VMS Systems for additional examples.

CD–328

SET MARK

SET MARK

Associates a marker name with the current cursor position. You can later use
that marker name with the GOTO MARK command to return to the specified
position.

Format

SET MARK marker-name

Parameter

marker-name
Specifies the name of the marker to be placed. For a marker name, you can use
any combination of up to 21 alphanumeric characters, underscores, or dollar
signs. If this marker name is already in use, the previous marker is canceled.

Description

The SET MARK command tells LSE to remember the current cursor position
by a marker. The command is useful if you are editing a large file and want to
go back to a particular point in the text without having to search through the
file.

Related Commands

GOTO MARK

Example

LSE> SET MARK M

Sets a marker named M as the reference for the current cursor position.
Thereafter, entering the command GOTO MARK M returns the cursor to this
position.

CD–329

SET MAX_UNDO

SET MAX_UNDO

Sets the maximum number of UNDO operations that you can perform for a
specific buffer.

Format

SET MAX_UNDO [/BUFFER=buffer-name] undo-number

Qualifiers Defaults

/BUFFER=buffer-name See text

Qualifiers

/BUFFER=buffer-name
Indicates the buffer whose maximum undo number is to be changed. The
default is the current buffer.

Parameter

undo-number
Indicates the maximum undo number.

Description

Sets the maximum number of UNDO operations you can perform for a specific
buffer. The default maximum value is 100.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

REDO
SET MODE UNDO=OFF
SET MODE UNDO=ON
SHOW MAX_UNDO
UNDO

CD–330

SET MAX_UNDO

Example

LSE> SET MAX_UNDO 60

Sets the maximum number of UNDO operations to 60.

CD–331

SET MODE

SET MODE

Establishes the status of warning bells sounding, keypad emulation, select
range, UNDO processing, tab appearance, tab characters, and the use of
graphic characters in menus.

Format

SET MODE keyword-list

Parameter

keyword-list
Indicates the modes to be set or reset. The mode keywords and their effects
are as follows:

BELL=NONE
BELL=ALL
BELL=BROADCAST
BELL=NOBROADCAST
Specifies which new messages should be accompanied by a warning bell
character. By default, only broadcast messages are accompanied by a warning
bell.

KEYPAD=EDT
KEYPAD=EVE
Specifies whether the key definitions should be similar to EDT or EVE. Note
that EVE key definitions do not use the numeric keypad on VT200 (or higher)
terminals; numeric keypads on VT200-series (or higher) terminals emulate
EDT key definitions, regardless of the keypad mode you choose.

MENU=[NO]GRAPHICS
Lets you choose between graphic characters and nongraphic characters in the
display of a menu. The initial setting is MENU=GRAPHICS. If the terminal
characteristics do not include DEC_CRT, LSE uses nongraphic characters,
regardless of the setting of this mode.

Graphic characters currently require more screen repainting than do non-
graphic characters, so you might want to use SET MODE MENU=NOGRAPHICS
if you are working at a low baud rate.

CD–332

SET MODE

PENDING_DELETE
NOPENDING_DELETE
Specifies whether a selection in a user buffer should be deleted when
the user inserts text. The initial setting is NOPENDING_DELETE.
PENDING_DELETE is disabled for a selection made with SELECT ALL.
You can use the UNERASE SELECTION command to restore deleted text.

TAB=VISIBLE
TAB=INVISIBLE
Specifies whether tabs should appear as blanks, or a combination of the HT
(horizontal tab) symbol and dots (‘‘HT......’’).

TABS=[NO]HARD
Specifies whether tab or space characters are used for tabulation. HARD (the
default) specifies tab characters, whereas NOHARD specifies space characters.

UNDO=ON
UNDO=OFF
Specifies whether UNDO processing is enabled (ON is the default).

Description

The SET MODE command establishes the status of warning bells, keypad
emulation, selected range, UNDO processing, tab appearance, tab characters,
and the use of graphic characters.

DECwindows Interface Equivalent

Pull-down menu: Options � Global Attributes . . .

Related Commands

SHOW MODE

Examples

1. LSE> SET MODE BELL=NOBROADCAST

Prevents the warning bell from sounding when broadcast messages appear
in the LSE message buffer.

2. LSE> SET MODE KEYPAD=EVE

Sets key definitions to be the same as those used with EVE.

CD–333

SET MODE

3. LSE> SET MODE PENDING_DELETE

Causes a selection to be deleted when the user inserts text into a user
buffer.

4. LSE> SET MODE TAB=INVISIBLE

Causes tabs to be displayed as blanks.

5. LSE> SET MODE TABS=NOHARD

Causes tabs to be implemented using space characters.

6. LSE> SET MODE UNDO=OFF

Switches off UNDO processing.

CD–334

SET MODIFY

SET MODIFY

Sets the buffer status to modifiable.

Format

SET MODIFY

Qualifier Defaults

/BUFFER=buffer

Qualifier

/BUFFER=buffer
Indicates the buffer to be set as modifiable. The current buffer is the default.

Description

The SET MODIFY command changes the status of the current buffer, or the
buffer specified, from unmodifiable to modifiable.

Users of the DECwindows interface can cycle through Insert, Overstrike, and
Unmodifiable by selecting the status line button and pressing MB1. If the
status line shows Insert and Overstrike, then the buffer is modifiable.

DECwindows Interface Equivalent

Buffer status line:

� Insert
Overstrike
Unmodifiable

�

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

SET CMS
SET DIRECTORY
SET NOMODIFY

CD–335

SET MODIFY

Example

LSE> SET MODIFY

Enables you to modify a file that you previously brought into the current buffer
as Read-only.

CD–336

SET NOAUTO_ERASE

SET NOAUTO_ERASE

Disables automatic erasing of placeholders in the specified buffer.

Format

SET NOAUTO_ERASE

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer for which automatic erasing is to be disabled. The default
is the current buffer.

Description

The SET NOAUTO_ERASE command prevents LSE from automatically
erasing the placeholder the cursor is on when you type a character over that
placeholder in the specified buffer.

Initially, LSE is set to automatically erase placeholders.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

SET AUTO_ERASE
SHOW BUFFER [DECwindows interface]

Example

LSE> SET NOAUTOERASE/BUFFER=USER.TXT

Disables automatic erasing of placeholders in the buffer USER.TXT.

CD–337

SET NOJOURNALING

SET NOJOURNALING

Disables buffer journaling for the specified buffers.

Format

SET NOJOURNALING [buffer-name]

Qualifier Defaults

/ALL

Qualifier

/ALL
Specifies that all of the LSE buffer-change journal files should be closed and
buffer-change journaling halted for those buffers. If you specify the /ALL
qualifier, you cannot specify the buffer-name parameter.

Parameter

buffer-name
Specifies the name of the buffer that no longer has an associated buffer-change
journal file. If you omit this parameter, the default is the current buffer.

Description

The SET NOJOURNALING command terminates buffer-change journaling for
the specified buffer. Any subsequent changes to the buffer are not journaled,
unless you use the SET JOURNALING command to enable buffer-change
journaling.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

RECOVER BUFFER
SET JOURNALING

CD–338

SET NOJOURNALING

Example

LSE> SET NOJOURNALING login.com

Terminates buffer-change journaling for the buffer login.com.

CD–339

SET NOLANGUAGE

SET NOLANGUAGE

Disassociates the language associated with the specified buffer.

Format

SET NOLANGUAGE

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose associated language you want to disassociate. The
current buffer is the default.

Description

The SET NOLANGUAGE command disassociates the language currently in
effect from the specified buffer.

System buffers, such as $REVIEW, $MESSAGES, or $HELP, have no
languages associated with them; if you attempt to use this command with
system buffers, you receive an error message.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

DEFINE LANGUAGE
DELETE LANGUAGE
SET LANGUAGE
SHOW LANGUAGE

Example

LSE> SET NOLANGUAGE

Disassociates the currently associated language from the current buffer.

CD–340

SET NOLIBRARY
SCA Command

SET NOLIBRARY

Removes the specified SCA libraries from the current list of active libraries.

Format

SET NOLIBRARY [library-spec[, . . .]]

Qualifier Default

/[NO]LOG /LOG

Qualifier

/LOG (D)
/NOLOG
Indicates whether LSE reports removal of the libraries from the active list.

Parameter

library-spec[, . . .]
Specifies the libraries to be removed from the current active libraries list. If
you omit this parameter, SCA removes all the active libraries from the list.

Description

The SET NOLIBRARY command enables you to selectively discard or purge
specific SCA libraries from an active library list.

Related Commands

SET LIBRARY

Example

LSE> SET NOLIBRARY PROJ:[USER.LIB1],PROJ:[USER.LIB2]

Removes the specified libraries from the current active libraries list.

See the chapter about using SCA libraries in the Guide to Source Code
Analyzer for VMS Systems for additional examples.

CD–341

SET NOMODIFY

SET NOMODIFY

Sets a buffer to Read-only (unmodifiable).

Format

SET NOMODIFY

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer that is to be set to Read-only. The default is the current
buffer.

Description

The SET NOMODIFY command sets a buffer to read-only (unmodifiable).
After entering this command, you cannot change the buffer’s contents until you
enter a SET MODIFY command.

Users of the DECwindows interface can cycle through Insert, Overstrike, and
Unmodifiable by selecting the status line button and pressing MB1.

DECwindows Interface Equivalent

Buffer status line:

� Insert
Overstrike
Unmodifiable

�

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

SET MODIFY
SHOW BUFFER [DECwindows interface]

CD–342

SET NOMODIFY

Example

LSE> SET NOMODIFY

Prevents you from modifying text that you had previously brought into the
current buffer as modifiable.

CD–343

SET NOOUTPUT_FILE

SET NOOUTPUT_FILE

Disassociates the buffer from any output file.

Format

SET NOOUTPUT_FILE

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose output file is to be changed. The default is the
current buffer.

Description

The SET NOOUTPUT_FILE command disassociates the specified buffer from
any output file. LSE uses output file associations when writing the buffer out
to a file; thus, when you enter the SET NOOUTPUT_FILE command and then
enter a COMPILE, EXIT, or WRITE command, you must supply LSE with a
file name.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

COMPILE
EXIT
SET OUTPUT_FILE
SHOW BUFFER [DECwindows interface]
WRITE

CD–344

SET NOOUTPUT_FILE

Example

LSE> SET NOOUTPUT_FILE

Disassociates the current buffer from any output file. You must specify a file
name to write the buffer to if you subsequently enter an EXIT or WRITE
command.

CD–345

SET NOOVERVIEW

SET NOOVERVIEW

Disables overview operations in the specified buffer.

Format

SET NOOVERVIEW

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer in which overview operations are to be disabled. The
default is the current buffer.

Description

The SET NOOVERVIEW command disables the use of overview operations
in the specified buffer. This disables the COLLAPSE, FOCUS, and VIEW
SOURCE commands, and the use of the EXPAND command on an overview
line.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

COLLAPSE
EXPAND
FOCUS
SET OVERVIEW
VIEW SOURCE

CD–346

SET NOSOURCE_DIRECTORY

SET NOSOURCE_DIRECTORY

Specifies a directory or directories to be removed from the list of source
directories.

Format

SET NOSOURCE_DIRECTORY [directory-spec [,directory-spec] . . .]

Parameter

directory-spec [,directory-spec] . . .
Specifies a list of directory specifications to be removed from the list of source
directories. If you do not specify any parameter, LSE removes all directories
from the list of source directories.

Description

The SET NOSOURCE_DIRECTORY command removes the directories you
specify from the list of source directories. If you do not specify any directories,
LSE removes all directories in the source list from that list.

Related Commands

SET SOURCE_DIRECTORY

Examples

1. LSE> SET NOSOURCE [PROJECT_DIRECTORY]

Removes the directory PROJECT_DIRECTORY from the list of source
directories.

2. LSE> SET NOSOURCE/READ_ONLY [LIBRARY_DIRECTORY]

Removes the directory LIBRARY_DIRECTORY from the set of read-only
directories.

CD–347

SET NOWRAP

SET NOWRAP

Disables wrapping of the current line in the specified buffer.

Format

SET NOWRAP

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer for which wrapping is to be disabled. The default is the
current buffer.

Description

The SET NOWRAP command prevents the ENTER SPACE command (bound
to the space bar by default) from performing a wrap operation on the current
line in the specified buffer.

Initially, wrapping of the current line is disabled.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

ENTER LINE
ENTER SPACE
SET WRAP
SHOW BUFFER [DECwindows interface]

CD–348

SET OUTPUT_FILE

SET OUTPUT_FILE

Establishes the output file associated with the buffer.

Format

SET OUTPUT_FILE file-spec

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose output file is to be changed. The default is the
current buffer.

Parameter

file-spec
Indicates the file specification for the output file.

Description

The SET OUTPUT_FILE command associates the specified output file with the
specified buffer. LSE uses output file associations when writing the buffer out
to a file; this happens when you enter a COMPILE, EXIT, or WRITE command.

This command does not cause the buffer to be written to a file. You might also
need to use the SET WRITE command.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

COMPILE
EXIT
SET NOOUTPUT_FILE
SET WRITE
SHOW BUFFER [DECwindows interface]
WRITE

CD–349

SET OUTPUT_FILE

Example

LSE> SET OUTPUT_FILE USER.TXT

Associates the output file USER.TXT with the current buffer. When you enter
an EXIT or WRITE command, LSE writes the contents of that buffer to the file
USER.TXT without prompting you for a file name.

CD–350

SET OVERSTRIKE

SET OVERSTRIKE

Sets the text-entry mode of the specified buffer to overstrike mode.

Format

SET OVERSTRIKE

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose text-entry mode is to be changed. The default is the
current buffer.

Description

The SET OVERSTRIKE command sets the mode of the specified buffer to
overstrike mode. When you set this mode, typing a character replaces that
character at the current cursor position. Pressing the Delete key replaces the
character to the left of the cursor with a blank space.

The status line of each window displays the current text-entry mode for the
associated buffer.

Users of the DECwindows interface can cycle through Insert, Overstrike, and
Unmodifiable by selecting the status line button and pressing MB1.

DECwindows Interface Equivalent

Buffer status line:

� Insert
Overstrike
Unmodifiable

�

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

CHANGE TEXT_ENTRY_MODE
SET INSERT

CD–351

SET OVERVIEW

SET OVERVIEW

Enables overview operations in the specified buffer.

Format

SET OVERVIEW

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer in which overview operations are to be enabled. The
default is the current buffer.

Description

The SET OVERVIEW command enables the use of overview operations in the
specified buffer. This enables the COLLAPSE, FOCUS and VIEW SOURCE
commands, as well as the use of the EXPAND command on an overview line.

By default, overview operations are allowed in a buffer when it is created. LSE
disables overview operations in some system buffers that it creates. To see the
current setting, use the SHOW BUFFER/FULL command.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

COLLAPSE
EXPAND
FOCUS
SET NOOVERVIEW
VIEW SOURCE

CD–352

SET READ_ONLY

SET READ_ONLY

Instructs LSE not to write the specified buffer to a file when you exit from
LSE, or when you enter a COMPILE command.

Format

SET READ_ONLY

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose read-only or write state is to be changed. The
default is the current buffer.

Description

The SET READ_ONLY command prevents LSE from writing the contents of
the specified buffer to a file when you exit from LSE or enter a COMPILE
command. The LSE status line displays the read-only or write state.

Users of the DECwindows interface can switch between Write and Read-only
by selecting the status line button and pressing MB1.

DECwindows Interface Equivalent

Buffer status line:
�

Write
Read-only

�
Pull-down menu: Options � Buffer Attributes . . .

Related Commands

SET MODIFY
SET NOMODIFY
SET WRITE
SHOW BUFFER [DECwindows interface]

CD–353

SET REVERSE

SET REVERSE

Sets the current direction of the specified buffer to reverse.

Format

SET REVERSE

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose direction is to be set to reverse. The default is the
current buffer.

Description

The SET REVERSE command sets the current direction of the specified buffer
to reverse. The status line displays the current direction.

Users of the DECwindows interface can switch between Forward and Reverse
by selecting the status line button and pressing MB1.

Keypad Equivalent
Key Keypad Mode

KP5 REVERSE EDT LK201, EDT VT100, EVE LK201
None EVE VT100

DECwindows Interface Equivalent

Buffer status line:
�

Forward
Reverse

�
Pull-down menu: Options � Buffer Attributes . . .

CD–354

SET REVERSE

Related Commands

CHANGE DIRECTION
SET FORWARD

CD–355

SET RIGHT_MARGIN

SET RIGHT_MARGIN

Sets the right margin for the specified buffer.

Format

SET RIGHT_MARGIN column-number

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose right margin is to be changed. The default is the
current buffer.

Parameter

column-number
Specifies the column for the right margin. The value must be an integer
greater than the value set for the left margin.

Description

The SET RIGHT_MARGIN command sets the right margin of the specified
buffer to the column number you specify. By default, the right margin is set at
column 80.

The right margin controls where LSE wraps words when you type new text.
The FILL and ENTER SPACE commands also use this setting. To find out the
setting of the right margin, use the SHOW BUFFER command.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

SET LEFT_MARGIN
SHOW BUFFER [DECwindows interface]

CD–356

SET RIGHT_MARGIN

Example

LSE> SET RIGHT_MARGIN 65

Sets the right margin in the current buffer at column 65.

CD–357

SET SCREEN

SET SCREEN

Sets specified characteristics of the screen.

Format

SET SCREEN keyword-list

Parameter

keyword-list
Indicates the screen characteristics to be set. The screen keywords are as
follows:

BALANCE_WINDOWS (D)
NOBALANCE_WINDOWS
Specifies how LSE manages window length. If you specify
BALANCE_WINDOWS, LSE adjusts all the window lengths on the screen to
be, as nearly as possible, of equal lengths. This is the default value. If you
specify NOBALANCE_WINDOWS, LSE splits the current window in half when
it needs a new window, which leaves all the other window lengths unchanged.

HEIGHT=n
Specifies the number of lines on the screen. The height, n, must be an integer
in the range 11 through 62.

MAXIMUM_WINDOW_NUMBER=n
Specifies the maximum number of windows LSE creates when it displays
information in a window as a result of entering one of the following commands:

FIND
GOTO DECLARATION
GOTO SOURCE
INSPECT
REVIEW

LSE uses the MAXIMUM_WINDOW_NUMBER and
MINIMUM_WINDOW_LENGTH settings to determine whether to add a
window to the screen, or reuse an existing window. LSE checks both settings
and creates a new window only if both conditions are met.

The default value for MAXIMUM_WINDOW_NUMBER is 3. Specifying a
value of 2 produces the two-window behavior previously associated with the
commands listed under this keyword.

CD–358

SET SCREEN

MINIMUM_WINDOW_LENGTH=n
Specifies a lower bound on the windows LSE creates. When you need to map
a buffer to a window, LSE creates a new window as long as the window is not
shorter than n.

LSE uses the MINIMUM_WINDOW_LENGTH and
MAXIMUM_WINDOW_NUMBER settings to determine whether to add a
window to the screen) or reuse an existing window. LSE checks both settings
and creates a new window only if both conditions are met.

WIDTH=n
Specifies the number of characters on each input or output line. The width, n,
must be an integer in the range 1 through 252.

If you specify a width greater than 80, LSE sets the terminal to 132-character
mode. The initial setting is 80 characters.

WINDOW=n
Specifies the number of windows to display on the screen.

If you change the number of windows from one to two, LSE displays the
current buffer in both windows. If you change the number of windows from
two to one, LSE displays the current buffer in the single window. The initial
setting is one window.

DECwindows Interface Equivalent

Pull-down menu: Options � Window Attributes . . .

Related Commands

SHOW SCREEN

Examples

1. LSE> SET SCREEN WIDTH=132

Sets your terminal to 132-character mode.

2. LSE> SET SCREEN MINIMUM_WINDOW_LENGTH=5,BALANCE_WINDOWS

For automatic window creation on a 24-line terminal, the keyword
MINIMUM_WINDOW_LENGTH=5 allows up to four windows and the
keyword BALANCE_WINDOWS causes the editor to keep all the windows
approximately equal in length.

CD–359

SET SCROLL_MARGINS

SET SCROLL_MARGINS

Delimits the lines at which the cursor triggers scrolling.

Format

SET SCROLL_MARGINS top-line-count[%] bottom-line-count[%]

Parameters

top-line-count
Specifies the number of lines down from the top of a window at which you want
downward scrolling to begin.

bottom-line-count
Specifies the number of lines up from the bottom of a window at which you
want upward scrolling to begin.

%
Optionally specifies scroll margins as percentages of the window height, which
are rounded to the nearest whole-line count. This is useful when you have a
workstation with screens of varying sizes.

Description

The SET SCROLL_MARGINS command specifies the lines at the top and
bottom of the window at which scrolling is triggered by moving the cursor to
these lines.

The scroll margins you set apply to all windows in the current editing session.

Examples

1. LSE> SET SCROLL_MARGINS 2 3

Sets the scroll margins at 2 lines from the top and 3 lines from the bottom
of all windows in the current editing session.

2. LSE> SET SCROLL_MARGINS 10% 15%

Sets the scroll margins at 10% from the top and 15% from the bottom of all
windows in the current editing session.

CD–360

SET SEARCH

SET SEARCH

Sets text search options.

Format

SET SEARCH keyword-list

Parameter

keyword-list
Indicates the search mode settings. The keywords are as follows:

AUTO_REVERSE
NOAUTO_REVERSE

Specifies whether LSE searches in the current direction only, or searches in the
opposite direction if the string is not found in the current direction. The initial
setting is NOAUTO_REVERSE.

CASE_SENSITIVE
NOCASE_SENSITIVE

Specifies whether the SEARCH command matches case exactly or is insensitive
to character case. The initial setting is NOCASE_SENSITIVE.

DIACRITICAL_SENSITIVE
NODIACRITICAL_SENSITIVE

Specifies whether the SEARCH command matches characters with diacritical
markings exactly or is insensitive to diacritical markings. The initial setting is
DIACRITICAL_SENSITIVE.

PATTERN=OPENVMS
PATTERN=ULTRIX
PATTERN=TPU

Specifies either UNIX-style regular expressions, OpenVMS-style patterns or
TPU-style patterns for the SEARCH/PATTERN command. The initial setting
is OpenVMS.

CD–361

SET SEARCH

SPAN_SPACE
NOSPAN_SPACE

Determines whether LSE matches blanks in the search string exactly
(NOSPAN_SPACE), or allows each blank to match sequences of one or more
characters containing blanks and tabs and, at most, a single line break
(SPAN_SPACE). The initial setting is NOSPAN_SPACE.

Description

The SET SEARCH command sets preconditions for matching text when you
enter the SEARCH command.

DECwindows Interface Equivalent

Pull-down menu: Options � Search Attributes . . .

Related Commands

SEARCH
SHOW SEARCH

Example

LSE> SET SEARCH CASE_SENSITIVE

Directs LSE to match case exactly when you enter a SEARCH command.

CD–362

SET SELECT_MARK

SET SELECT_MARK

Marks a position as one end of a selected range.

Format

SET SELECT_MARK

Description

The SET SELECT_MARK command marks a position as one end of a selected
range. The selected range is the text between the select marker and the
current cursor position; it is denoted by a reverse video display. This command
is not valid if the select marker has already been set.

Keypad Equivalent
Key Keypad Mode

Keypad period (.) SELECT EDT LK201, EDT VT100, EVE LK201
None EVE VT100

DECwindows Interface Equivalent

Pull-down menu: Navigate � Mark . . .

Related Commands

CANCEL SELECT_MARK
TOGGLE SELECT_MARK

CD–363

SET SOURCE_DIRECTORY

SET SOURCE_DIRECTORY

Specifies a search list of directories to be used to find source files.

Format

SET SOURCE_DIRECTORY directory-spec [,directory-spec] . . .

Qualifiers Defaults

/AFTER[=directory-spec] /AFTER
/BEFORE[=directory-spec] /AFTER

Qualifiers

/AFTER (D)
/AFTER[=directory-spec]
Specifies that LSE should insert the directory or directories specified into the
list of source directories in back of the directory you specify as the value on the
qualifier. If you do not specify a directory-spec value, LSE adds the directory or
directories to the end of the list.

If you do not specify either the /AFTER qualifier or the /BEFORE qualifier,
LSE replaces the entire directory list.

/BEFORE
/BEFORE[=directory-spec]
Specifies that LSE should insert the directory or directories specified into
the list of source directories in front of the directory you specify as the value
on the qualifier. If you do not specify a directory-spec value, the directory or
directories are added at the front of the list.

If you do not specify either the /BEFORE qualifier or the /AFTER qualifier,
LSE replaces the entire directory list.

Parameter

directory-spec [,directory-spec] . . .
Specifies one or more directory specifications. You can specify CMS$LIB as one
directory specification; however, you might not get the results you expect if you
set CMS$LIB as a source directory and do not enter the CMS command SET
LIBRARY.

CD–364

SET SOURCE_DIRECTORY

Description

The SET SOURCE_DIRECTORY command specifies the directories LSE
uses to find source files when you enter the commands GOTO FILE, GOTO
SOURCE, and READ.

The GOTO FILE and READ commands use this list of directories if you do not
specify a directory for the file specified on the GOTO FILE or READ command.

The GOTO SOURCE command uses this list of directories if LSE does not find
the source file specified in the SCA data file or the diagnostics file.

The logical name LSE$SOURCE stores the list of source directories.

Related Commands

SET CMS
SET NOSOURCE_DIRECTORY

Example

LSE> SET SOURCE_DIRECTORY [],[MY_SOURCE_DIRECTORY],-
_LSE> [PROJECT_SOURCE_DIRECTORY],CMS$LIB

Directs LSE to search for sources first in the current directory, then in the
user’s source directory, then in the project source directory, and finally in
CMS$LIB.

CD–365

SET TAB_INCREMENT

SET TAB_INCREMENT

Specifies logical tab stops in the specified buffer.

Format

SET TAB_INCREMENT number

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose tab increment is to be changed. The default is the
current buffer.

Parameter

number
Specifies the interval for setting tab stops.

Description

The SET TAB_INCREMENT command specifies the number of columns
between the tab stops for the specified buffer. Tab stops are set beginning with
column 1. All previous tab stops are cleared.

Related Commands

ENTER TAB
SHOW BUFFER [DECwindows interface]
TAB

Example

LSE> SET TAB_INCREMENT 4

Sets tab stops in columns 1, 5, 9, 13, and so on.

CD–366

SET WRAP

SET WRAP

Enables wrapping in the specified buffer. LSE automatically splits the current
line at the right-margin setting when you type text past the right margin.

Format

SET WRAP

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer for which wrapping is to be enabled. The default is the
current buffer.

Description

The SET WRAP command enables the ENTER SPACE and ENTER LINE
commands to perform a wrap operation in the specified buffer.

Initially, wrapping is disabled.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

ENTER LINE
ENTER SPACE
SET NOWRAP
SHOW BUFFER [DECwindows interface]

CD–367

SET WRITE

SET WRITE

Instructs LSE to write the contents of the specified buffer to a file when you
exit from LSE or enter a COMPILE command.

Format

SET WRITE

Qualifier Defaults

/BUFFER=buffer-name

Qualifier

/BUFFER=buffer-name
Indicates the buffer whose read-only or write state is to be changed. The
default is the current buffer.

Description

The SET WRITE command reverses the action of the SET READ_ONLY
command. When you exit from LSE or enter a COMPILE command, LSE
writes the contents of the specified buffer to a file. The status line displays the
setting of the read-only or write state.

If the specified buffer is unmodifiable, entering a SET WRITE command is also
equivalent to entering a SET MODIFY command. If the directory for the file
associated with the buffer is read-only, LSE displays a message informing you
of that fact.

Users of the DECwindows interface can switch between Write and Read-only
by selecting the status line button and pressing MB1.

DECwindows Interface Equivalent

Buffer status line:
�

Write
Read-only

�
Pull-down menu: Options � Buffer Attributes . . .

CD–368

SET WRITE

Related Commands

SET OUTPUT_FILE
SET READ_ONLY
SHOW BUFFER [DECwindows interface]

CD–369

SHIFT

SHIFT

Shifts the window horizontally to the left or right one column.

Format

SHIFT

Qualifiers Defaults

/CURRENT /CURRENT
/FORWARD /CURRENT
/REVERSE /CURRENT

Qualifiers

/CURRENT (D)
Specifies the current direction for the shift.

/FORWARD
Shifts the window to the right so you can view formerly hidden text to the
right of the original text.

/REVERSE
Shifts the window to the left so you can view any text hidden by a
SHIFT/FORWARD command.

Description

The SHIFT command shifts or moves the display window horizontally to the
left or right one column. The SHIFT qualifiers refer to the direction of window
movement with respect to the text. When used with a repeat count, the
value of the repeat count determines the extent of the shift (see the REPEAT
command).

Users of the DECwindows interface can achieve similar results by using the
horizontal scroll bar.

Example

LSE> REPEAT 3 SHIFT/FORWARD

Moves the display window 3 columns to the right.

CD–370

SHOW ADJUSTMENT

SHOW ADJUSTMENT

Displays the characteristics of specified adjustments.

Format

SHOW ADJUSTMENT [adjustment-name]

Qualifier Defaults

/LANGUAGE=language-name

Qualifier

/LANGUAGE=language-name
Associates a language with the specified adjustments. If you do not specify
a language, LSE displays information about adjustments associated with the
correct language. If you specify /LANGUAGE=*, LSE displays information on
any adjustment that matches the adjustment name, regardless of the language
for which it is defined.

Parameter

adjustment-name
Specifies which adjustments are to be shown. If you omit this parameter, LSE
assumes you have specified a wildcard adjustment name.

Description

The SHOW ADJUSTMENT command displays the definitions and
characteristics of adjustments.

Related Commands

DEFINE ADJUSTMENT
DELETE ADJUSTMENT
EXTRACT ADJUSTMENT

Example

LSE> SHOW ADJUSTMENT then

Displays all the characteristics defined for the adjustment then.

CD–371

SHOW ALIAS

SHOW ALIAS

Displays information on the specified alias.

Format

SHOW ALIAS [alias-name]

Qualifiers Default

/BRIEF See text
/FULL See text
/LANGUAGE=language-name

Qualifiers

/BRIEF
Causes LSE to display (in tabular format) the alias name and equivalent
string.

If you specify a wildcard expression for the parameter or if LSE assumes one,
/BRIEF is the default.

/FULL
Causes LSE to display the alias name and equivalent string in list format.

If you specify an explicit name for the parameter, /FULL is the default.

/LANGUAGE=language-name
Specifies the language associated with the alias. The default is the current
language.

Parameter

alias-name
Specifies the name of the alias whose characteristics are to be displayed. If
this parameter is omitted, a wildcard alias name is assumed.

Description

The SHOW ALIAS command displays information on an alias you defined
using the DEFINE ALIAS command.

CD–372

SHOW ALIAS

Related Commands

DEFINE ALIAS

Example

LSE> SHOW ALIAS

Displays one line of information for each of the aliases you have currently
defined.

CD–373

SHOW BUFFER

SHOW BUFFER

Displays the characteristics of one or more buffers.

Format

SHOW BUFFER [buffer-name]

Qualifiers Defaults

/ALL_BUFFERS /USER_BUFFERS
/BRIEF See text
/FULL See text
/SYSTEM_BUFFERS /USER_BUFFERS
/USER_BUFFERS /USER_BUFFERS

Qualifiers

/ALL_BUFFERS
Specifies all buffers to be displayed when a wildcard buffer name is specified or
assumed. LSE ignores this qualifier if you specify an explicit buffer name.

/BRIEF
Causes the current window to display (in tabular format) the name, number
of text lines, and information about whether the buffer is modified, compiled,
reviewed, or modifiable.

If you move the cursor to a line containing a buffer name and press the Select
key, LSE performs a GOTO BUFFER command for that buffer. If you move
the cursor to a line containing a buffer name and press the Remove key, LSE
performs a DELETE BUFFER command for that buffer. In DECwindows
mode, you can perform a GOTO BUFFER for a buffer displayed in the list by
pressing Return on the line containing the buffer name.

If you specify a wildcard expression, or if LSE assumes one, /BRIEF is the
default.

/FULL
Causes LSE to list all the information available about each specified buffer,
including associated input and output files, language, and all the buffer
attributes that you can set, such as margins and text-entry mode.

If you specify an explicit buffer, /FULL is the default.

CD–374

SHOW BUFFER

/SYSTEM_BUFFERS
Specifies that only system buffers be displayed when a wildcard buffer name is
specified or assumed. LSE ignores this qualifier if you specify an explicit buffer
name.

/USER_BUFFERS (D)
Specifies that only user buffers be displayed when a wildcard buffer name is
specified or assumed. LSE ignores this qualifier if you specify an explicit buffer
name.

Parameter

buffer-name
Specifies the name of the buffers whose characteristics are to be displayed.
If you specify a null buffer name (""), the current buffer is assumed. If this
parameter is omitted, a wildcard buffer name is assumed.

Description

The SHOW BUFFER command displays information about the specified
buffers.

DECwindows Interface Equivalent

SHOW BUFFER
Pull-down menu: Show � Show Buffer *

SHOW BUFFER /FULL ""
Pull-down menu: Options � Buffer Attributes . . .

Related Commands

NEXT BUFFER
PREVIOUS BUFFER
SET AUTO_ERASE
SET LEFT_MARGIN
SET NOAUTO_ERASE
SET NOOUTPUT_FILE
SET NOWRAP
SET OUTPUT_FILE
SET READ_ONLY
SET RIGHT_MARGIN

CD–375

SHOW BUFFER

SET TAB_INCREMENT
SET WRAP
SET WRITE

Example

LSE> SHOW BUFFER/SYSTEM

Displays the name, number of text lines, and status (read-only or modifiable)
for each system buffer.

CD–376

SHOW CMS

SHOW CMS

Displays the current CMS settings, which are the initial settings unless you
have changed them using the SET CMS command.

Format

SHOW CMS

Description

The SHOW CMS command lists all the CMS settings specified by the qualifiers
to the SET CMS command. If you have not entered a SET CMS command, the
listed CMS settings reflect initial conditions.

For users of the DECwindows interface, the SHOW CMS command displays a
CMS Attribute dialog box to let you change the current CMS settings.

DECwindows Interface Equivalent

Pull-down menu: Options � CMS . . .

Related Commands

SET CMS

CD–377

SHOW COMMAND

SHOW COMMAND

Displays the characteristics of the specified user-defined command.

Format

SHOW COMMAND [command-name]

Parameter

command-name
Specifies the name of the command whose characteristics are to be displayed.
If you omit this parameter, LSE displays information on all user-defined
commands.

Description

The SHOW COMMAND command displays the characteristics of a command
you have defined using the DEFINE COMMAND command.

DECwindows Interface Equivalent

Pull-down menu: Show � Show Command *

Related Commands

DEFINE COMMAND

Example

LSE> SHOW COMMAND

Displays the command definition for each user-defined command.

CD–378

SHOW DEFAULT_DIRECTORY

SHOW DEFAULT_DIRECTORY

Displays the current default device and directory.

Format

SHOW DEFAULT_DIRECTORY

Description

The SHOW DEFAULT_DIRECTORY command displays the current device
and directory names, along with any equivalence strings. You can change the
default with the LSE command SET DEFAULT_DIRECTORY.

Related Commands

SET DEFAULT_DIRECTORY

Example

LSE> SHOW DEFAULT_DIRECTORY

Displays the current device and directory names.

CD–379

SHOW DIRECTORY

SHOW DIRECTORY

Displays the setting of the SET DIRECTORY command.

Format

SHOW DIRECTORY

Description

The SHOW DIRECTORY command displays the list of directories specified by
the SET DIRECTORY command.

Related Commands

SET DIRECTORY

CD–380

SHOW KEY

SHOW KEY

Displays the definitions bound to the normal and GOLD states of any defined
key.

Format

SHOW KEY key-specifier

Qualifiers Defaults

/BRIEF /BRIEF
/FULL /BRIEF

Qualifiers

/BRIEF (D)
Indicates how much information you want displayed. The /BRIEF qualifier
instructs LSE to display only key names and the commands associated with
them.

/FULL
Indicates how much information you want displayed. The /FULL qualifier
instructs LSE to display topics, legends, and remarks, as well as the key
names and commands.

Parameter

key-specifier
Specifies the name of the key whose definitions are to be displayed. You can
use a wildcard character on the command line to specify all defined keys or a
group of related keys. If you press the Return key before specifying a key, LSE
supplies quotation marks to any specifier you type at the prompt. Therefore,
LSE interprets an asterisk specified at the prompt as the asterisk key on the
keyboard, not as a wildcard character.

To specify key combinations beginning with the PF1 key, use the prefix GOLD/.
To specify combinations by using the control key, use the form Ctrl/x, where x
can be the letters A through Z.

CD–381

SHOW KEY

Description

The SHOW KEY command displays the definitions bound to the normal and
GOLD states of any or all keyboard keys. This includes both the default
bindings and those keys you have bound using the DEFINE KEY command.

The SHOW KEY command accepts key names that are valid for the DEFINE
KEY command if you have used the following syntax for the key being defined:

LSE> DEFINE KEY "CTRL/A" "SHOW BUFFER"

DECwindows Interface Equivalent

Pull-down menu: Show � Show Key *

Related Commands

DEFINE KEY
DELETE KEY

Examples

1. LSE> SHOW KEY PF2

Displays the definitions currently bound to the PF2 key.

2. LSE> SHOW KEY CTRL*

Displays the definitions currently bound to all key sequences that begin
with Ctrl.

CD–382

SHOW KEYWORDS

SHOW KEYWORDS

Displays the characteristics of the specified keyword list.

Format

SHOW KEYWORDS [keyword-list-name]

Qualifiers Defaults

/BRIEF /BRIEF
/FULL /BRIEF

Qualifiers

/BRIEF (D)
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name of the specified keyword
list.

/FULL
Indicates how much information you want displayed. The /FULL qualifier
causes LSE to display all the information available about the specified keyword
list, as specified by the current DEFINE KEYWORDS command (see the list of
qualifiers for the DEFINE KEYWORDS command).

Parameter

keyword-list-name
Specifies the keyword lists about which information is wanted. By default,
LSE displays information about the keyword list associated with the current
buffer.

Description

The SHOW KEYWORDS command displays the characteristics of a specified
keyword list. The keyword list must be known to LSE.

Related Commands

DEFINE KEYWORDS
DELETE KEYWORDS
EXTRACT KEYWORDS

CD–383

SHOW KEYWORDS

Example

LSE> SHOW KEYWORDS author_name

Displays the characteristics associated with author_name.

CD–384

SHOW LANGUAGE

SHOW LANGUAGE

Displays the characteristics of the specified language.

Format

SHOW LANGUAGE [language-name]

Qualifiers Defaults

/BRIEF /FULL
/FULL /FULL

Qualifiers

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name and file type of the
specified language.

/FULL (D)
Indicates how much information you want displayed. The /FULL qualifier
causes LSE to display all the information available about the specified
language, as specified by the current DEFINE LANGUAGE command (see
the list of qualifiers for the DEFINE LANGUAGE command).

Parameter

language-name
Specifies the languages about which information is wanted. By default, LSE
displays information about the language associated with the current buffer.

Description

The SHOW LANGUAGE command displays the characteristics of a specified
language. The language must be known to LSE.

Related Commands

DEFINE LANGUAGE
MODIFY LANGUAGE
SET LANGUAGE

CD–385

SHOW LANGUAGE

Example

LSE> SHOW LANGUAGE Pascal

Displays the compiler, file type, punctuation, and other characteristics
associated with the programming language Pascal.

CD–386

SHOW LIBRARY
SCA Command

SHOW LIBRARY

Displays the directory specification for all active SCA libraries.

Format

SHOW LIBRARY

Qualifiers Defaults

/BRIEF /BRIEF
/FULL /BRIEF

Qualifiers

/BRIEF (D)
Displays only the directory specification for all active libraries.

/FULL
Displays all information about all active SCA libraries.

Description

The SHOW LIBRARY command displays the directory specifications for all
active SCA libraries.

Related Commands

CREATE LIBRARY
SET LIBRARY
SET NOLIBRARY

Example

$ SCA SHOW LIBRARY

Displays the location of the current library.

CD–387

SHOW MARK

SHOW MARK

Displays the setting of the specified mark.

Format

SHOW MARK [marker-name]

Qualifiers Defaults

/BRIEF See text
/FULL See text

Qualifiers

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name and associated buffer for
each marker currently set.

If you specify a wildcard expression for the parameter, or if LSE assumes one,
/BRIEF is the default.

/FULL
Indicates how much information you want displayed. The /FULL qualifier
causes LSE to list all the information available about each specified marker,
including the associated text.

If you specify an explicit marker for the parameter, /FULL is the default.

Parameter

marker-name
Specifies the name of the marker whose characteristics are to be displayed. If
you omit this parameter, LSE displays the names of all the markers you have
set.

Description

The SHOW MARK command displays the names of markers associated with
the current buffer.

CD–388

SHOW MARK

DECwindows Interface Equivalent

Pull-down menu: Show � Show Mark *

Related Commands

SET MARK

Example

LSE> SHOW MARK

Lists the currently set marker names and their associated buffers.

CD–389

SHOW MAX_UNDO

SHOW MAX_UNDO

Shows the maximum number of UNDO operations you can perform for a
specific buffer.

Format

SHOW MAX_UNDO

Qualifiers Defaults

/BUFFER=buffer-name

Qualifiers

/BUFFER=buffer-name
Indicates the buffer whose maximum undo number is to be displayed. The
default is the current buffer.

Description

Shows the maximum number of undo operations that you can undo for
a specific buffer. If you have not set a maximum number with the SET
MAX_UNDO command, the SHOW MAX_UNDO command displays the default
value of 100.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

REDO
SET MAX_UNDO
SET MODE UNDO=OFF
SET MODE UNDO=ON
UNDO

Example

LSE> SHOW MAX_UNDO

Displays the maximum number of UNDO operations that you can perform on
the current buffer.

CD–390

SHOW MODE

SHOW MODE

Displays the current settings for modes set with the SET MODE command.

Format

SHOW MODE

Description

The SHOW MODE command displays the current mode settings for keywords
used with the SET MODE command.

For users of the DECwindows interface, the SHOW MODE command uses the
Global Attribute dialog box to display the modes. This dialog box permits you
to change the mode settings.

DECwindows Interface Equivalent

Pull-down menu: Options � Buffer Attributes . . .

Related Commands

SET MODE

Example

LSE> SHOW MODE

Displays the current editing-mode status for warning bells, keypad mode, select
range, UNDO processing, tab appearance, tab characters, and menu-display
characters.

CD–391

SHOW MODULE
SCA Command

SHOW MODULE

Displays information about SCA library modules.

Format

SHOW MODULE [module-name[, . . .]]

Qualifiers Defaults

/ALL /VISIBLE
/BRIEF See text
/FULL See text
/HIDDEN /VISIBLE
/LIBRARY=library-spec /LIBRARY=*
/OUTPUT[=file-spec]
/VISIBLE /VISIBLE

Qualifiers

/ALL
Specifies that SCA display both hidden and visible modules.

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes SCA to display selected information about each specified module in
tabular format. For an example, see the chapter about getting started with
SCA in the Guide to Source Code Analyzer for VMS Systems.

If you specify a wildcard expression for the parameter, or if SCA assumes one,
/BRIEF is the default.

/FULL
Indicates how much information you want displayed. The /FULL qualifier
causes SCA to list all information available about each specified module. For
an example, see the chapter about getting started with SCA in the Guide to
Source Code Analyzer for VMS Systems.

If you specify an explicit name for the parameter, /FULL is the default.

/HIDDEN
Specifies that SCA display only hidden modules.

CD–392

SHOW MODULE
SCA Command

/LIBRARY=library-spec
/LIBRARY=* (D)
Specifies an SCA library containing the module to be displayed. The library
must be one of the current SCA libraries established by a SET LIBRARY
command.

If you do not specify the /LIBRARY qualifier, SCA assumes you have specified
all current SCA libraries.

/OUTPUT[=file-spec]
Directs command output to a file rather than to the $SHOW buffer. The
default output file specification is SCA.LIS.

/VISIBLE (D)
Specifies that SCA display only visible modules.

Parameter

module-name[, . . .]
Specifies the modules to be displayed. If you omit this parameter, SCA displays
all modules. You can specify wildcard module names.

Description

The SHOW MODULE command displays information about modules in SCA
libraries.

Related Commands

SET LIBRARY

Example

$ SCA SHOW MODULE

Displays all of the source module information from the library in an
abbreviated form. (/BRIEF is the default.)

CD–393

SHOW PACKAGE

SHOW PACKAGE

Displays the characteristics of the specified packages.

Format

SHOW PACKAGE package-name

Qualifiers Defaults

/BRIEF See text
/FULL See text

Qualifiers

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name of each specified package.

If you specify a wildcard expression for the parameter, or if LSE assumes one,
/BRIEF is the default.

/FULL
Indicates how much information you want displayed. The /FULL qualifier
causes LSE to display all the information available about each specified
package, as specified by the current DEFINE PACKAGE command (see the list
of qualifiers for the DEFINE PACKAGE command).

If you specify an explicit name for the parameter, /FULL is the default.

Parameter

package-name
Specifies the name of the package to be displayed. You can use wildcards. If
you omit this parameter, LSE displays the status of all known packages.

Description

The SHOW PACKAGE command displays the status of the specified packages.
By default, LSE gives a brief description.

CD–394

SHOW PACKAGE

Related Commands

DEFINE PACKAGE

Example

LSE> SHOW PACKAGE system_services

Displays all the characteristics defined for the package system_services.

CD–395

SHOW PARAMETER

SHOW PARAMETER

Displays the characteristics of the specified parameters.

Format

SHOW PARAMETER [parameter-name]

Qualifiers Defaults

/BRIEF See text
/FULL See text
/LANGUAGE=language-name
/PACKAGE=package-name

Qualifiers

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name and package associated
with each specified parameter. If you specify a wildcard expression for the
parameter, or if LSE assumes one, /BRIEF is the default.

/FULL
Indicates how much information you want displayed. The /FULL qualifier
causes LSE to display all the information available about each specified
parameter, as specified by the current DEFINE PARAMETER command (see
the list of qualifiers for the DEFINE PARAMETER command).

If you specify an explicit name for the parameter, /FULL is the default.

/LANGUAGE=language-name
Shows only those parameters associated with the specified language. If you
do not specify a language, LSE uses the current language. If you specify
/LANGUAGE=*, LSE displays information on any parameter that matches the
parameter name, regardless of the language for which it is defined.

The /LANGUAGE qualifier is mutually exclusive with the /PACKAGE qualifier.

/PACKAGE=package-name
Specifies the name of the package with which the parameter is associated. The
/PACKAGE qualifier is mutually exclusive with the /LANGUAGE qualifier.

CD–396

SHOW PARAMETER

Parameter

parameter-name
Specifies which parameters are to be shown. If you omit this name, LSE
assumes you have specified a wildcard parameter name.

Description

The SHOW PARAMETER command displays the definitions and characteristics
of one or more parameters.

Related Commands

DEFINE PARAMETER

Example

LSE> SHOW PARAMETER id

Displays all the characteristics defined for the parameter id.

CD–397

SHOW PLACEHOLDER

SHOW PLACEHOLDER

Displays the characteristics of the specified placeholders.

Format

SHOW PLACEHOLDER [placeholder-name]

Qualifiers Defaults

/BRIEF See text
/FULL See text
/LANGUAGE=language-name

Qualifiers

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name and description of each
placeholder.

If you specify a wildcard expression for the parameter, or if LSE assumes one,
/BRIEF is the default.

/FULL
The /FULL qualifier causes LSE to display all the information available
about each specified placeholder, as specified by the current DEFINE
PLACEHOLDER command (see the list of qualifiers for the DEFINE
PLACEHOLDER command).

If you specify an explicit name for the parameter, /FULL is the default.

/LANGUAGE=language-name
Associates a language with the specified placeholders. If you do not specify
a language, LSE associates placeholders with the current language. If you
specify /LANGUAGE=*, LSE displays information on any placeholder that
matches the placeholder name, regardless of the language for which it is
defined.

Parameter

placeholder-name
Specifies which placeholders are to be shown. If you omit this parameter, LSE
assumes you have specified a wildcard placeholder name.

CD–398

SHOW PLACEHOLDER

Description

The SHOW PLACEHOLDER command displays the definitions and
characteristics of one or more placeholders.

Related Commands

DEFINE PLACEHOLDER

Example

LSE> SHOW PLACEHOLDER parameter

Displays all the characteristics defined for the placeholder parameter.

CD–399

SHOW QUERY
SCA Command

SHOW QUERY

Displays information about one or more current SCA query sessions.

Format

SHOW QUERY [query-name,...]

Qualifiers Defaults

/BRIEF /BRIEF
/FULL /BRIEF

Qualifiers

/BRIEF (D)
Indicates how much information you want to be displayed. The /BRIEF
qualifier causes SCA to display (in tabular format) the query name, query
expression, and description for the specified query.

/FULL
Indicates how much information you want to be displayed. The /FULL qualifier
causes SCA to display all information about the specified query.

Parameter

query-name
Specifies the name of the query to be displayed. If you specify a null query
name (""), SCA assumes you mean the current query. If you omit this
parameter, SCA assumes you have specified an asterisk (*).

Related Commands

FIND
GOTO QUERY

Example

LSE> SHOW QUERY

Displays one line of information on all current SCA queries.

CD–400

SHOW ROUTINE

SHOW ROUTINE

Displays the characteristics of one or more routines.

Format

SHOW ROUTINE [routine-name]

Qualifiers Defaults

/BRIEF See text
/FULL See text
/LANGUAGE=language-name
/PACKAGE=package-name

Qualifiers

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name and package associated
with each routine.

If you specify a wildcard expression for the parameter, or if LSE assumes one,
/BRIEF is the default.

/FULL
Indicates how much information you want displayed. The /FULL qualifier
causes LSE to display all the information available about each specified
routine, as specified by the current DEFINE ROUTINE command (see the list
of qualifiers for the DEFINE ROUTINE command).

If you specify an explicit name for the parameter, /FULL is the default.

/LANGUAGE=language-name
Shows routines that are associated with the specified language. If you do
not specify a language, LSE uses the current language. If you specify
/LANGUAGE=*, LSE displays information on any routine that matches
the routine name, regardless of the language for which it is defined. The
/LANGUAGE and /PACKAGE qualifiers are mutually exclusive.

/PACKAGE=package-name
Specifies the name of the package with which the routine is associated. The
/PACKAGE and /LANGUAGE qualifiers are mutually exclusive.

CD–401

SHOW ROUTINE

Parameter

routine-name
Indicates which routines are to be displayed. If you omit this parameter, LSE
assumes you have specified a wildcard routine name.

Description

The SHOW ROUTINE command displays the definitions and characteristics of
one or more routines.

Related Commands

DEFINE ROUTINE

Example

LSE> SHOW ROUTINE sys$add_holder

Displays all the characteristics defined for the routine sys$add_holder.

CD–402

SHOW SCREEN

SHOW SCREEN

Displays the current values set with the SET SCREEN command.

Format

SHOW SCREEN

Description

The SHOW SCREEN command displays the current values for keywords used
with the SET SCREEN command.

For users of the DECwindows interface, the SHOW SCREEN command uses
the Window Attributes dialog box to display the screen attributes. This dialog
box permits you to change the screen settings.

DECwindows Interface Equivalent

Pull-down menu: Options � Window Attributes . . .

Related Commands

SET SCREEN

Example

LSE> SHOW SCREEN

Displays all the screen attributes set by the WIDTH, HEIGHT, WINDOW,
BALANCE_WINDOWS, and MINIMUM_WINDOW_LENGTH keywords of the
SET SCREEN command, and the fonts set by the SET FONT command.

CD–403

SHOW SEARCH

SHOW SEARCH

Displays the settings of text-search options.

Format

SHOW SEARCH

Description

The SHOW SEARCH command shows the current settings of the various
text-search options. In DECwindows mode, LSE uses the Search Attributes
dialog box to display the search settings. This dialog box permits you to change
the settings.

DECwindows Interface Equivalent

Pull-down menu: Options � Search Attributes . . .

Related Commands

SEARCH
SET SEARCH

CD–404

SHOW SOURCE_DIRECTORY

SHOW SOURCE_DIRECTORY

Displays the setting of the SET SOURCE_DIRECTORY command.

Format

SHOW SOURCE_DIRECTORY

Description

The SHOW SOURCE_DIRECTORY command displays the list of directories
specified by the SET SOURCE_DIRECTORY command.

Related Commands

SET SOURCE_DIRECTORY

CD–405

SHOW SUMMARY

SHOW SUMMARY

Shows statistics and other information about LSE.

Format

SHOW SUMMARY

Description

The SHOW SUMMARY command shows statistics and other information about
LSE, as follows:

• Version number of the software

• Current journal file specification (if any)

• Current section file specification

• Total number of buffers (system- and user-created)

• Modules used in the section file

• Other information about the LSE configuration

This information is useful for DECTPU programming, or in case you need to
submit a software performance report (SPR).

To scroll through the list, use the Next Screen and Prev Screen keys. To return
to the buffer you were editing, press the Return key.

CD–406

SHOW TAG

SHOW TAG

Displays the characteristics of the specified tags.

Format

SHOW TAG [tag-name]

Qualifiers Defaults

/BRIEF See text
/FULL See text
/LANGUAGE=language-name

Qualifiers

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name and description of each tag.

If you specify a wildcard expression for the parameter, or if LSE assumes one,
/BRIEF is the default.

/FULL
The /FULL qualifier causes LSE to display all the information available about
each specified tag, as specified by the current DEFINE TAG command (see the
list of qualifiers for the DEFINE TAG command).

If you specify an explicit name for the parameter, /FULL is the default.

/LANGUAGE=language-name
Associates a language with the specified tags. If you do not specify a language,
LSE associates tags with the current language. If you specify /LANGUAGE=*,
LSE displays information on any tag that matches the tag name, regardless of
the language for which it is defined.

Parameter

tag-name
Specifies which tags are to be shown. If you omit this parameter, LSE assumes
you have specified a wildcard tag name.

CD–407

SHOW TAG

Description

The SHOW TAG command displays the definitions and characteristics of tags.

Related Commands

DEFINE TAG
DELETE TAG
EXTRACT TAG

Example

LSE> SHOW TAG parameter

Displays all the characteristics defined for the tag parameter.

CD–408

SHOW TOKEN

SHOW TOKEN

Displays the characteristics of one or more tokens.

Format

SHOW TOKEN [token-name]

Qualifiers Defaults

/BRIEF See text
/FULL See text
/LANGUAGE=language-name

Qualifiers

/BRIEF
Indicates how much information you want displayed. The /BRIEF qualifier
causes LSE to display (in tabular format) the name and description of each
token.

If you specify a wildcard expression for the parameter, or if LSE assumes one,
/BRIEF is the default.

/FULL
Indicates how much information you want displayed. The /FULL qualifier
causes LSE to display all the information available about each specified token,
as specified by the current DEFINE TOKEN command (see the list of qualifiers
for the DEFINE TOKEN command).

If you specify an explicit name for the parameter, /FULL is the default.

/LANGUAGE=language-name
Associates a language with the specified tokens. If you do not specify a
language, LSE associates tokens with the current language. If you specify
/LANGUAGE=*, LSE displays any tokens that match the token name,
regardless of the language for which it is defined.

Parameter

token-name
Indicates which tokens are to be displayed. If you omit this parameter, LSE
assumes you have specified a wildcard token name.

CD–409

SHOW TOKEN

Description

The SHOW TOKEN command displays the definitions and characteristics of
one or more tokens.

Related Commands

DEFINE TOKEN

Example

LSE> SHOW TOKEN/LANGUAGE=EXAMPLE ASSIGNMENT

Displays the characteristics defined for the token ASSIGNMENT associated
with the language EXAMPLE.

CD–410

SHOW VERSION
SCA Command

SHOW VERSION

Displays the current version of LSE and SCA.

Format

SHOW VERSION

Description

The SHOW VERSION command displays the current version of LSE and SCA.

If you are using SCA alone, only the SCA version is displayed. If you are using
LSE, the LSE version is displayed, and the SCA version is displayed if SCA is
installed on your system.

Examples

1. $ SCA SHOW VERSION
%SCA-S-VERSION, this is SCA version V4.6
$

Displays the version of SCA that you are using.

2. LSE> SHOW VERSION
This is LSE version V4.6
This is SCA version V4.6
LSE>

Displays the version of LSE and SCA that you are using.

CD–411

SHRINK WINDOW

SHRINK WINDOW

Shrinks the current window.

Format

SHRINK WINDOW line-count

Parameter

line-count
Indicates the number of screen lines you want to subtract from the current
window. The maximum size of a window depends on the size and type of the
terminal screen you are using. The minimum size is one line of text and one
line for the status line.

Description

The SHRINK WINDOW command shrinks the window that the text cursor is
in (if you are using more than one window). LSE enlarges the other window
(or windows) accordingly.

Related Commands

ENLARGE WINDOW

Example

LSE> SHRINK WINDOW 5

Subtracts five lines from the current window and apportions the lines to the
other windows you have on the screen.

CD–412

SPAWN
SCA Command

SPAWN

Spawns a subprocess running the DCL command interpreter and suspends the
editing session.

Note

This function is not available in DECwindows; any attempt to invoke it
incurs an error.

Format

SPAWN [command]

Parameter

command
Specifies a command line to be executed by the spawned subprocess. If you
specify this parameter, the subprocess ends and LSE regains control upon
completion of the command.

Description

The SPAWN command suspends the current LSE session and connects your
terminal to a new OpenVMS process at the DCL level. To resume your editing
session, log out of the OpenVMS process, or use the DCL command ATTACH to
resume the editor process.

This command is useful for running screen-oriented programs and OpenVMS
utilities without ending the current editing session.

Related Commands

ATTACH

Example

LSE> SPAWN

Connects you to a new subprocess. The DCL dollar sign ($) prompt signifies
subprocess connection.

CD–413

SPELL

SPELL

Runs DECspell to check the currently selected text or the entire buffer.

Format

SPELL

Description

The SPELL command runs DECspell (if it is installed on your system) to check
the currently selected text or the entire buffer.

Use the following steps:

1. Select the text you want to check. If you do not select any text, SPELL
checks the entire buffer.

2. Enter the SPELL command. If you select less than a full line, LSE extends
the selected range to include the beginning and end of the line containing
the range.

If the selected range (or the entire buffer if you do not select any text) contains
any overview records, a message informs you that the operation cannot be
performed.

LSE spawns a subprocess to run DECspell and writes out the current buffer
or selected range to a temporary file in SYS$SCRATCH. (The name of the
temporary file uses the subprocess PID.)

When SPELL finishes, LSE replaces the buffer or selected range with the new
version of the temporary file (with corrections) and deletes any old versions of
the temporary file. You then resume editing.

Do not use Ctrl/Y with SPELL. Ctrl/Y deletes lines in the temporary output
file, which destroys the selected range or current buffer.

You use the SPELL command only with DECwindows.

CD–414

SPLIT WINDOW

SPLIT WINDOW

Divides the current window into two or more windows.

Format

SPLIT WINDOW [window-count]

Parameter

window-count
Specifies the number of windows to create. The maximum size of a window
depends on the size and type of the terminal screen you are using. The
minimum size is one line of text and one line for the status line.

The text cursor appears in the lowest of the new windows.

Description

The SPLIT WINDOW command splits the current window into two or more
windows. LSE displays the current buffer in each of the new windows.

DECwindows Interface Equivalent

SPLIT WINDOW 2
Pull-down menu: View � New Window

Related Commands

CHANGE WINDOW_MODE
DELETE WINDOW

Example

LSE> SPLIT WINDOW 4

Splits the current window into 4 windows with the current buffer displayed in
each.

CD–415

SUBSTITUTE

SUBSTITUTE

Replaces occurrences of one text string with another.

Format

SUBSTITUTE search-string
replace-string

Qualifiers Defaults

/ALL /CONFIRM
/[NO]CASE_MATCHING /NOCASE_MATCHING
/CONFIRM /CONFIRM
/DIALOG /NODIALOG
/[NO]PATTERN /NOPATTERN
/SINGLE /CONFIRM

Qualifiers

/ALL
Specifies that all occurrences of the search string are to be replaced with the
replace string. Specifying the /ALL qualifier causes LSE to perform all the
specified substitutions without prompting you for further instructions.

/CASE_MATCHING
/NOCASE_MATCHING (D)
Specifies whether LSE uses the case of words in the search string to determine
the case for the replacement string. The four conditions are: uppercase,
lowercase, capitalized, or undetermined. For example, if a word in the
search string is all uppercase, all the letters of the corresponding word in
the replacement string become uppercase. If a word in the search string does
not match the criteria for uppercase, lowercase, or capitalization, or there are
no alphabetic characters in the search string word, its case is undetermined
and LSE does not modify the case of the corresponding word in the replacement
string.

If the replacement string contains more than one word, LSE respectively
matches the case of words in the replacement string with the case of the
corresponding words in the search string. If the search string contains fewer
words than the replacement string, LSE matches the case of the additional
words of the replacement string with the case of the last word in the search
string.

CD–416

SUBSTITUTE

Specifying the /NOCASE_MATCHING qualifier causes LSE not to modify the
case of the replacement string to match that of the search string.

/CONFIRM (D)
Instructs LSE to prompt you for a confirmation at each occurrence before
performing a substitution. If you specify the /CONFIRM qualifier, LSE
highlights each occurrence of the search string located by the search and
prompts you for an action. Enter one of the following responses:

• YES instructs LSE to replace this occurrence.

• NO instructs LSE not to replace this occurrence, but to proceed with the
command.

• QUIT ends the command without replacing this occurrence and stops the
SUBSTITUTE operation.

• ALL replaces this occurrence and all remaining occurrences without further
prompting.

/DIALOG
/NODIALOG (D)
Instructs LSE to use a dialog box to prompt you for parameters and qualifier
values. If you specify this qualifier, the command parameters are optional. If
you supply command parameters and qualifiers with the /DIALOG qualifier,
LSE uses those parameters and qualifiers to set the initial state of the dialog
box.

The Substitute dialog box has the same fields as the Search dialog box, plus
a button for case-matching replacement and a text field for the replacement
string.

/PATTERN
/NOPATTERN (D)
Enables or disables special interpretation of wildcard characters and a quoting
character in the search-string parameter. You can use the SET SEARCH
command to set the syntax for specifying a pattern to either OpenVMS style,
UNIX style or TPU style. For listing of OpenVMS- and UNIX-style wildcards,
see the /PATTERN qualifier on the SEARCH command.

For more detials on TPU patterns see Appendix G and DEC Text Processing
Utility Reference Manual.

When the /NOPATTERN qualifier is specified (or is the default), special
interpretation of the asterisk, percent sign, and backslash characters is
disabled.

CD–417

SUBSTITUTE

/SINGLE
Specifies that only one occurrence of the search string is to be replaced with the
replacement string. Specifying the /SINGLE qualifier causes LSE to perform a
single substitution without prompting you for an action.

Parameters

search-string
Specifies the string for which to search.

replace-string
Specifies the string to substitute.

Description

The SUBSTITUTE command replaces one string of text with another. If the
search-string and replace-string parameters appear on the command line, you
should enclose each string in quotation marks. To obtain expected results, this
is required if the search string contains (or you want the replacement string to
contain) lowercase or nonalphanumeric characters.

If LSE prompts you for search and replace strings, you must omit any
quotation marks that are not part of the text of the string.

LSE performs the search in the current direction. If you specify a null string
for a search string, LSE uses the last search string specified in a SEARCH
or SUBSTITUTE command. The SUBSTITUTE command differs from the
SEARCH command in that, with the SUBSTITUTE command, LSE does not
ignore an occurrence of the search string at the current cursor position.

When the substitution is complete, LSE leaves the cursor at the end of the last
changed occurrence.

If you specify a repeat count, LSE ignores the count unless you specify the
/SINGLE qualifier.

If the cursor is beyond the target of the search, LSE displays a message in the
message buffer informing you that the target was not found.

DECwindows Interface Equivalent

SUBSTITUTE/DIALOG
Pull-down menu: Search � Substitute . . .

CD–418

SUBSTITUTE

Related Commands

SEARCH
SET SEARCH

Examples

1. LSE> SUBSTITUTE "man" "person"

Moves the cursor to the first occurrence of the word man in the current
direction and invokes the confirmation prompt. A positive response
replaces the word man with the word person.

2. LSE> SUBSTITUTE/CASE_MATCHING
_Search for: str$append
_Replace with: str$prefix

Moves the cursor to the first occurrence of the string str$append
in the current direction. A positive response to the confirmation
replaces str$append with str$prefix. If str$append occurs in uppercase
(STR$APPEND), LSE puts the replacement string in uppercase
(STR$PREFIX) even though you specified it in lowercase on the command
line.

3. LSE> SUBSTITUTE/PATTERN "NAME_%_LENGTH" "NAME_B_LENGTH"

Moves the cursor to the next occurrence of a string consisting of
NAME_ and _LENGTH separated by any single character. A positive
response to the confirmation prompt replaces that string with the string
NAME_B_LENGTH.

CD–419

TAB

TAB

Inserts indentation. If the cursor is at the beginning of the line, it moves to
the current indentation level; otherwise, the cursor moves to the next tab stop.

Format

TAB

Description

The TAB command inserts blanks and tabs to move the cursor to the current
indentation level (if at the beginning of the line), or to move the cursor to
the next tab stop as set by the /TAB_INCREMENT qualifier on the DEFINE
LANGUAGE command or by the SET TAB_INCREMENT command.

If the current indentation level is set to the beginning of the line and the
cursor is at the beginning of the line, the TAB command inserts enough blank
space to move the cursor to the first tab stop. In contrast, the ENTER TAB
command has no effect when both the cursor and current indentation level are
at the beginning of the line.

Keypad Equivalent
Key Keypad Mode

Ctrl/I TAB All

Related Commands

ENTER TAB
SET TAB_INCREMENT
UNTAB

CD–420

TOGGLE SELECT_MARK

TOGGLE SELECT_MARK

Sets or cancels the SELECT_MARK state.

Format

TOGGLE SELECT_MARK

Description

The TOGGLE SELECT_MARK command sets the select mark if it is not set,
and cancels the select mark if it is set.

Keypad Equivalent
Key Keypad Mode

E4 SELECT EDT LK201, EVE LK201
KP7 SELECT EVE VT100

DECwindows Interface Equivalent

Pull-down menu: Edit � Select_mark

Related Commands

CANCEL SELECT_MARK
SET SELECT_MARK

CD–421

TWO WINDOWS

TWO WINDOWS

Splits the current window into two windows.

Format

TWO WINDOWS

Description

The TWO WINDOWS command splits the current window into two smaller
windows. (This command is the same as the SPLIT WINDOW command except
it does not take a parameter.) You can view different buffers at the same time,
or different parts of the same buffer.

The cursor appears in the new lower window. Each window has its own status
line and displays the buffer you are currently editing. To put a different buffer
in the window, use one of the following commands:

GOTO BUFFER
GOTO FILE
NEXT BUFFER (if you have created more than one buffer)

To continue splitting windows, repeat the TWO WINDOWS command.

DECwindows Interface Equivalent

Pull-down menu: View � New Window

Related Commands

CHANGE WINDOW_MODE
DELETE WINDOW
ENLARGE WINDOW
ONE WINDOW
OTHER WINDOW
PREVIOUS WINDOW
SET SCREEN
SHRINK WINDOW

CD–422

TWO WINDOWS

Example

LSE> TWO WINDOWS

Splits the current window into two windows.

CD–423

UNDO

UNDO

Reverses the most recently executed LSE editing operation for the current
buffer.

Format

UNDO

Description

The UNDO command is used to undo the previous operation on the current
buffer. The command can be used repeatedly until there are no more
operations to be undone, or until the maximum number of operations that
can be undone for the buffer is reached.

Some operations (such as a call to an external TPU procedure) cannot be
undone, and therefore cause undo information to be lost. An informational
message is issued for each operation that cannot be undone.

The commands SET OVERSTRIKE and FOCUS result in the current undo
information being lost for the appropriate buffer.

Operations that might result in user TPU code being executed result in the
current undo information being lost for all buffers. For example:

DO/TPU/BUFFER=user.tpu

It should be noted that UNDO operations often do not have a one-to-one
relationship with editing operations. For example, a series of cursor-positioning
operations are treated as a single operation moving from the first position to
the last position.

DECwindows Interface Equivalent

Pull-down menu: Edit � Undo

CD–424

UNDO

Related Commands

REDO
SET MAX_UNDO
SET MODE UNDO=OFF
SET MODE UNDO=ON
SHOW MAX_UNDO

CD–425

UNDO ENTER COMMENT

UNDO ENTER COMMENT

Reverses the effect of the last ENTER COMMENT command.

Format

UNDO ENTER COMMENT

Description

The UNDO ENTER COMMENT command deletes the comments created from
pseudocode with the ENTER COMMENT command and restores the text to
the pseudocode placeholders.

Related Commands

ENTER COMMENT

CD–426

UNERASE

UNERASE

Restores the text deleted by the corresponding ERASE command that you most
recently executed.

Format

UNERASE [erase-option]

Parameter

erase-option
The following are valid options with the UNERASE command:

CHARACTER
LINE
PLACEHOLDER
SELECTION
WORD

Description

The UNERASE command restores text erased by the previous ERASE
CHARACTER, ERASE LINE, ERASE PLACEHOLDER, ERASE SELECTION,
or ERASE WORD command. LSE inserts the restored text before the current
cursor position, except for UNERASE PLACEHOLDER, which restores the text
to its original position.

If you do not specify an erase option, LSE restores the text erased by the
previous ERASE {CHARACTER, LINE, PLACEHOLDER, SELECTION,
WORD} command, whichever was the most recent.

The UNERASE PLACEHOLDER command also restores the placeholders
created by the ENTER PSEUDOCODE command and erased by the ERASE
PLACEHOLDER command.

CD–427

UNERASE

Keypad Equivalent

UNERASE
Key Keypad Mode

PF1-E2 INSERT HERE EVE LK201

UNERASE CHARACTER
Key Keypad Mode

PF1-keypad comma (,)
UND C

EDT LK201, EDT VT100, EVE LK201

None EVE VT100

UNERASE LINE
Key Keypad Mode

PF1-PF4 UND L EDT LK201, EDT VT100, EVE LK201
None EVE VT100

UNERASE PLACEHOLDER
Key Keypad Mode

PF1-Ctrl/K All

UNERASE SELECTION
Key Keypad Mode

None All

UNERASE WORD
Key Keypad Mode

PF1-keypad minus (–)
UND W

EDT LK201, EDT VT100, EVE LK201

None EVE VT100

CD–428

UNERASE

Related Commands

ERASE CHARACTER
ERASE LINE
ERASE PLACEHOLDER
ERASE SELECTION
ERASE WORD

Example

LSE> UNERASE CHARACTER

Retrieves the contents of the deleted-character buffer.

CD–429

UNEXPAND

UNEXPAND

Reverses the effect of the EXPAND command.

Format

UNEXPAND

Description

For LSE, the UNEXPAND command reverses the effect of the last EXPAND
command. LSE deletes the range containing the text inserted as part of the
last EXPAND command, and restores the token, placeholder, or alias that
appeared at that position before the EXPAND command was entered.

Keypad Equivalent
Key Keypad Mode

PF1-Ctrl/E EDT LK201, EDT VT100
PF1-Ctrl// EVE LK201, EVE VT100

Related Commands

EXPAND

CD–430

UNRESERVE

UNRESERVE

Cancels the reservation of a CMS element with the same name and type as the
input file for your current buffer.

Format

UNRESERVE

Description

The UNRESERVE command cancels the reservation in your current CMS
library for an element with the same name and type as the input file for your
current buffer. After successfully canceling a reservation, LSE deletes your
current buffer and its corresponding file.

DECwindows Interface Equivalent

Pull-down menu: File � Unreserve

Related Commands

REPLACE
RESERVE
SET CMS

CD–431

UNTAB

UNTAB

Erases blanks and tabs to the left of the cursor, which moves the cursor to the
previous stop.

Format

UNTAB

Description

The UNTAB command removes blanks and tabs to the left of the cursor,
which moves the cursor to the previous tab stop set by the /TAB_
INCREMENT qualifier on the DEFINE LANGUAGE command, or by the
SET TAB_INCREMENT command.

If no tabs or blanks immediately precede the cursor, this command has no
effect. If nonblank or nontab characters are present in the column positions at
or after the previous tab stop, LSE removes the blanks and tabs between those
characters and the cursor, then repositions the cursor after those characters,
not at the tab stop.

Keypad Equivalent
Key Keypad Mode

PF1-TAB All

Related Commands

ENTER TAB
TAB

CD–432

UPPERCASE WORD

UPPERCASE WORD

Changes the current word to uppercase.

Format

UPPERCASE WORD

Description

The UPPERCASE WORD command puts the current word in uppercase letters.
If the word is in both lowercase and uppercase letters, LSE changes all letters
to uppercase.

If the cursor is between words, LSE puts the following word in uppercase
letters. If a selected range is active, all the words within that range are
changed to uppercase. Then, the cursor moves to the start of the next word.

DECwindows Interface Equivalent

Pull-down menu: Edit � Uppercase

Related Commands

CHANGE CASE
LOWERCASE WORD

CD–433

VERIFY
SCA Command

VERIFY

Verifies that the specified SCA libraries are valid, and repairs any corrupted
libraries.

Format

VERIFY [library-spec[, . . .]]

Qualifiers Defaults

/[NO]LOG /LOG
/[NO]RECOVER /NORECOVER

Qualifiers

/LOG (D)
/NOLOG
Indicates whether SCA reports the library verification or repair operation.

/RECOVER
/NORECOVER (D)
Indicates whether SCA should repair a corrupted library.

If the interrupted command is a LOAD command, SCA deletes from the library
any module that had begun to load but had not completed loading. Also, SCA
cannot recover modules that were waiting to be processed for loading when
the interruption occurred. To load interrupted and waiting modules, enter a
subsequent LOAD command and include those modules.

If the interrupted library operation is a DELETE MODULE command, the
/RECOVER qualifier causes SCA to delete the incompletely deleted module.
Any modules still waiting to be processed for deletion when the interruption
occurred are excluded from the recovery operation; to delete them, you must
respecify them in a subsequent DELETE MODULE command.

Parameter

library-spec[, . . .]
Specifies the SCA libraries to be verified. If you do not specify a library, SCA
assumes you have specified the primary library.

CD–434

VERIFY
SCA Command

Description

The VERIFY command performs the following operations to verify the validity
of specific SCA libraries:

• Checks for corrupted libraries resulting from abnormal termination of a
LOAD or DELETE MODULE command

• Optionally, repairs corrupted libraries

Example

SCA> VERIFY/RECOVER SCA$:[USER.SCA]

Determines whether the library SCA$:[USER.SCA] has been corrupted and
repairs any damage detected.

CD–435

VIEW SOURCE

VIEW SOURCE

Displays an overview of the buffer.

Format

VIEW SOURCE

Qualifiers Defaults

/DEBUG
/DEPTH=n /DEPTH=1

Qualifiers

/DEBUG
Provides a way to debug adjustment definitions by generating a copy of the
source buffer, indented as LSE views the indentation. LSE displays the result
in a system buffer named $OVERVIEW with all source lines visible. Numeric
values for the indentation are also displayed with information about the
adjustment applied to each line.

You cannot specify the /DEBUG qualifier with the /DEPTH qualifier.

/DEPTH=n
/DEPTH=1 (D)
Displays the top n levels of detail of the buffer. Lower levels are collapsed and
represented by overview lines. If you specify /DEPTH=ALL, all the lines in the
buffer are displayed; none of the lines are replaced by overview lines.

You cannot specify the /DEPTH qualifier with the /DEBUG qualifier.

Description

The VIEW SOURCE command displays the top n levels of detail of the entire
buffer.

The editor determines the relative level of detail of a line by comparing
the indentation of the line with the indentation of other lines. The editor’s
treatment of the indentation of a line is influenced by indentation-adjustment
definitions. For more information, see the DEFINE ADJUSTMENT command.

CD–436

VIEW SOURCE

Keypad Equivalent

VIEW SOURCE/DEPTH=1
Key Keypad Mode

PF1-> All

DECwindows Interface Equivalent

VIEW SOURCE/DEPTH=1
Pull-down menu: View � Overview Source

VIEW SOURCE/DEPTH=ALL
Pull-down menu: View � View Source

Related Commands

COLLAPSE
DEFINE ADJUSTMENT
DEFINE LANGUAGE/OVERVIEW_OPTIONS
EXPAND
FOCUS
MODIFY LANGUAGE
SET NOOVERVIEW
SET OVERVIEW

CD–437

WHAT LINE

WHAT LINE

Shows the current line number and total number of lines in the buffer. Also
shows what percentage of the lines in the buffer are located above the current
line.

Format

WHAT LINE

Description

The WHAT LINE command shows the current line number and total number
of lines in the buffer. It also shows what percentage of the lines in the buffer
are located above the current line.

This command is useful if you want to know whether to insert a page break, or
find out how many lines are in the buffer.

To move to a specific line by number, use the LINE command.

Related Commands

LINE

CD–438

WRITE

WRITE

Writes the contents of a buffer, or the contents of the selected range, to a file.

Format

WRITE [file-spec]

Qualifiers Defaults

/BUFFER=buffer-name
/DIALOG
/SELECT_RANGE
/VISIBLE

Qualifiers

/BUFFER=buffer-name
Indicates which buffer is to be written. The default is the current buffer.

/DIALOG
Instructs LSE to use a dialog box to prompt you for a parameter value. The
command parameter is optional if you supply this qualifier. If you specify a
command parameter with /DIALOG, LSE uses that parameter to set the initial
state of the dialog box.

/SELECT_RANGE
Indicates that the selected range is to be written.

/VISIBLE
Indicates that the visible records in the buffer or selected range be written to a
file. You must specify the file-spec parameter when you use this qualifier.

Parameter

file-spec
Specifies the file to which the buffer will be written. By default, LSE writes
the data to the file associated with the buffer. This parameter is required if
you specify the /SELECT_RANGE qualifier.

CD–439

WRITE

Description

The WRITE command places the contents of the specified buffer in the file
you specify. Your editing session continues until you enter an EXIT or QUIT
command. If you are editing an existing file and do not supply a new file name,
LSE creates a new version of that file when you enter the WRITE command.

When you enter a WRITE command without specifying a file name, LSE also
displays an informational message and prompts you for confirmation before
writing the buffer under either of the following conditions:

• If you have not modified the buffer (not made any changes during your
editing session)

• If the buffer’s status is read-only

If you enter the WRITE command and the current buffer is associated with a
file of the same name, LSE creates a new version of the file. If the buffer is
unnamed, LSE prompts you for a name.

You can use the WRITE command and supply a file name at any time while
you are in an editing session, which creates a new file containing the output
up to that point in your editing session. However, using the WRITE command
to write the data to a different file does not change the file association of the
buffer; that is, LSE still creates a new version of the file with the same name
as that associated with the buffer when you exit from that editing session,
or subsequently use the WRITE command without specifying a file name. To
change the file association, use the SET OUTPUT_FILE command.

If you use the WRITE command to write to a directory that you have set
read-only (using the SET DIRECTORY command), LSE prompts you for
confirmation before writing out the buffer.

DECwindows Interface Equivalent

WRITE
Pop-up menu: User buffer � Save
Pull-down menu: File � Save File

WRITE/DIALOG
Pull-down menu: File � Save As . . .

CD–440

WRITE

Related Commands

GOTO FILE
READ
SET OUTPUT_FILE

Example

LSE> WRITE/BUFFER=$SHOW SHOW.TXT

Causes LSE to write the current contents of the $SHOW buffer to a file called
SHOW.TXT.

CD–441

A
Interfacing to DECTPU Procedures

Some LSE commands depend on procedures written in the DECTPU
programming language that are present in the LSE default section file
(LSE$SECTION.TPU$SECTION). These procedures must be present for LSE
to function properly. For this reason, if you want to use your own DECTPU
section file, you must build it using LSE$SECTION.TPU$SECTION as a base.
To do this successfully, your DECTPU procedures must obey certain rules
described in this appendix.

HP reserves all variable names and buffer names containing the dollar sign
($) character. You must not use names containing a dollar sign ($) in your
own DECTPU code except as explained in the following sections.

A.1 DECTPU Variables and Procedures
The following three variable names have special meaning to LSE and
DECTPU:

• MESSAGE_BUFFER—The buffer to which LSE writes messages

• SHOW_BUFFER—The buffer to receive output from the DECTPU SHOW
built-in

• INFO_WINDOW—The window to which the DECTPU SHOW built-in maps
SHOW_BUFFER

Your section file must not redefine TPU$INITIALIZE, the DECTPU
procedure that LSE calls to set up the editing environment.
LSE$SECTION.TPU$SECTION provides its own TPU$INIT_PROCEDURE.
Instead, you should redefine TPU$LOCAL_INIT to perform initialization at
startup time as described later in this appendix.

LSE uses the following DECTPU variables and procedures.

Interfacing to DECTPU Procedures A–1

Interfacing to DECTPU Procedures
A.1 DECTPU Variables and Procedures

TPU$LOCAL_INIT
The LSE TPU$INIT_PROCEDURE calls this procedure after it has
finished LSE initialization. LSE initialization includes processing the
/INITIALIZATION qualifier and reading into a buffer the input file specified on
the LSEDIT command. You can supply your own TPU$LOCAL_INIT procedure
to initialize your own DECTPU variables and procedures.

LSE$CREATE_SELECT_RANGE
This procedure sets LSE$SELECT_RANGE through the following process. If
LSE$START_SELECT_MARK is nonzero, it sets LSE$SELECT_RANGE to
the range from LSE$START_SELECT_MARK to the current position, then
zeros out LSE$START_SELECT_MARK and LSE$SELECT_IN_PROGRESS.
Otherwise, if the cursor is positioned to the last string for which the user
searched, it sets LSE$SELECT_RANGE to be a range containing that string.
Otherwise, it sets LSE$SELECT_RANGE to 0.

LSE$SET_STATUS_LINE (window)
LSE calls this procedure whenever it wants to update the status line of a
window. The procedure takes one argument—the window whose status line
is to be set. If you want to change the status line for LSE, see the VAX Text
Processing Utility Manual.

LSE$MESSAGE_WINDOW
This is a procedure that returns the window to which LSE maps
MESSAGE_BUFFER.

LSE$NUMBER_OF_WINDOWS
This is a procedure that returns the number of windows mapped to the
screen. Note that the number of windows may be more than two, which is the
maximum for earlier versions of LSE.

LSE$MAIN_WINDOW
This procedure returns the top window displayed on the screen. It
is compatible with earlier versions of LSE in which it was a variable
that returned the window that was used in one-window mode. The
current multiwindow implementation based on EVE creates and deletes
windows as needed, making a backwards-compatible implementation of
LSE$MAIN_WINDOW impossible.

LSE$TOP_WINDOW
LSE$BOTTOM_WINDOW
These procedures return the top and bottom windows currently being
displayed. They are compatible with earlier versions of LSE in which they
were variables that returned the windows that were used in two-window mode.

A–2 Interfacing to DECTPU Procedures

Interfacing to DECTPU Procedures
A.1 DECTPU Variables and Procedures

LSE$MAIN_BUFFER
After LSE startup, this procedure points to the buffer containing the input file
that appeared on the LSEDIT command line. When you exit from LSE, LSE
remembers the current cursor position in this buffer. It is compatible with
earlier versions of LSE in which it was a variable. It has been replaced by the
variable EVE$X_MAIN_BUFFER.

LSE$START_SELECT_MARK
This procedure returns the contents of the EVE$X_SELECT_POSITION
variable. It is compatible with earlier versions of LSE in which it was a
variable. The contents of EVE$SELECT_POSITION can be either the select
marker set by the SET SELECT_MARK command, or a range created by
the SELECT ALL command or by using the mouse. If there is no SELECT
operation in progress, its value is the integer 0.

LSE$SELECT_IN_PROGRESS
This procedure returns 1 if there is a SELECT operation in progress. If no
SELECT operation is in progress, it returns 0. The value returned is computed
by the TPU expression (EVE$X_SELECT_POSITION <> 0).

LSE$SELECT_RANGE
This is the range variable in which LSE$CREATE_SELECT_RANGE returns
its value. LSE commands that act on the selected range use this variable.

Sample DECTPU Procedure
The following is a DECTPU procedure that demonstrates the use of an LSE
selected range from a user-defined DECTPU procedure. Note the use of the
variables LSE$SELECT_IN_PROGRESS and LSE$SELECT_RANGE, and the
procedure LSE$CREATE_SELECT_RANGE.

PROCEDURE sort (qual)
! Description:
! Sorts the lines in the selected range. Complete lines should be
! selected. If no qualifiers are specified, the lines in the
! selected range are sorted in ascending order.
!
! Parameter:
! qual - a string beginning with "$". The remainder of the string
! contains qualifiers to be passed to the SORT command. The "$" is
! a dummy character. It is there to serve as a parameter when no
! SORT qualifiers are specified, and to prevent qualifiers for
! SORT from being interpreted as qualifiers on the LSE CALL
! command.
!
LOCAL sort_process,cmd,save_position,current_message;

Interfacing to DECTPU Procedures A–3

Interfacing to DECTPU Procedures
A.1 DECTPU Variables and Procedures

! If there is a selected range, write it to a temporary file.
IF NOT LSE$SELECT_IN_PROGRESS
THEN

MESSAGE (’No select active’);
RETURN;

ENDIF;
LSE$CREATE_SELECT_RANGE;
WRITE_FILE (LSE$SELECT_RANGE, ’sort_input.dat’);

! Create a subprocess in which to run SORT. Note that terminal output
! from the subprocess goes to the message buffer.
sort_process := CREATE_PROCESS (message_buffer, ’SET NOON’);

! Build the SORT command, picking up qualifiers that were passed in.
cmd := ’SORT/STABLE sort_input sort_output ’+SUBSTR(qual,2,LENGTH(qual)-1);

! Display the SORT command in the message window.
MESSAGE (cmd);

! Execute the SORT command in the subprocess.
SEND (cmd, sort_process);

! If no messages were written to the message buffer by SORT,
! assume that the SORT operation succeeded and replaced the selected range
! with the output from SORT.
save_position := MARK(NONE);
POSITION(message_buffer);
current_message := CURRENT_LINE;
POSITION (save_position);
IF current_message = cmd
THEN

ERASE (LSE$SELECT_RANGE);
READ_FILE (’sort_output.dat’);

ENDIF;

! Cleanup
DELETE (LSE$SELECT_RANGE);
SEND (’DELETE sort_input.dat;,sort_output.dat;’,sort_process);
DELETE (sort_process);

ENDPROCEDURE

To use the preceding procedure, define a SORT command as follows:

LSE> DEFINE COMMAND SORT "CALL SORT $"

To sort the lines in the selected range in ascending order, enter the following
command:

LSE> SORT

A–4 Interfacing to DECTPU Procedures

Interfacing to DECTPU Procedures
A.1 DECTPU Variables and Procedures

To sort the lines in the selected range in descending order based on the text
that begins in the 10th column and extends to, but does not include, the 20th
column, enter the following command:

LSE> SORT/KEY=(POSITION=10, SIZE=10, DESCENDING)

A.2 Guidelines for User-Written TPU Procedures
You can transport user-written TPU procedures from EVE to LSE. Therefore,
you can use code that calls EVE procedures within LSE.

The following LSE variables are now procedures. If a TPU procedure accesses
the value of the corresponding variable, but does not assign a value to it, the
TPU procedure should continue to work. If a TPU procedure must change the
value of one of the following variables, you should change the TPU code to use
the corresponding EVE variable, if any, shown in parentheses.

• LSE$MESSAGE_WINDOW (MESSAGE_WINDOW)

• LSE$NUMBER_OF_WINDOWS (EVE$X_NUMBER_OF_WINDOWS)

• LSE$MAIN_WINDOW

• LSE$TOP_WINDOW

• LSE$BOTTOM_WINDOW

• LSE$MAIN_BUFFER (EVE$X_MAIN_BUFFER)

• LSE$START_SELECT_MARK (EVE$X_SELECT_POSITION)

• LSE$SELECT_IN_PROGRESS (returns
EVE$X_SELECT_POSITION <> 0)

To tailor window-status lines, see the information on EVE status-line fields in
the VAX Text Processing Utility Manual.

A.2.1 Adding User-Written TPU Procedures
You can add user-written TPU procedures to LSE with the DECTPU tool
EVE$BUILD. You use EVE$BUILD for modifying or adding user-written TPU
procedures to LSE. EVE$BUILD compiles DECTPU code with an existing LSE
section file to produce a new section file. See the HP Text Processing Utility
Manual for more information on using EVE$BUILD.

To extend LSE with EVE$BUILD, do the following:

1. Create a file called USER_MASTER.FILE that lists the files being used to
extend LSE. For example:

Interfacing to DECTPU Procedures A–5

Interfacing to DECTPU Procedures
A.2 Guidelines for User-Written TPU Procedures

sys$login:abbreviation.tpu
lseplus:auto_indent.tpu
sys$login:customizations.tpu

2. Create a file called USER_VERSION.DAT that contains the version
number to be associated with this section file, for example, Version 1.0.

3. Define a foreign command to use for builds. For example:

$ BUILD == "LSEDIT/NODISP/NOINIT/COMM=SYS$EXAMPLES:EVE$BUILD"

4. Enter the command that builds this module in with the existing LSE
section file. You will get messages that the definitions of various EVE
procedures are being superseded, which you may ignore. For example:

$ BUILD USER
%TPU-S-FILEIN, xxx lines read from file SYS$EXAMPLES:EVE$BUILD.TPU
Definition of procedure EVE$BUILD_MODULE_INDENT superceded
.
.
.
Definition of procedure EVE$BUILD superceded
Section file name [default = product name USER]:

At this point, you must enter the name and location of the section file that
you want to create.

5. Press the Return key to create a section file named USER.TPU$SECTION
in the current directory.

To use this newly created section file, invoke LSE with the /SECTION qualifier
and supply the full file specification that corresponds to the section file.
Alternatively, you can define the logical name LSE$SECTION to be the full file
specification for this new section file.

A.2.2 DECTPU Programming with Hidden Records in LSE
With LSE, you use the COLLAPSE, EXPAND, FOCUS, and VIEW SOURCE
commands for viewing source code. This code elision feature means that there
can be four different types of records (or lines) in a buffer. A record can be a
source record or an overview record, and can be visible or hidden.

Source records correspond to the actual text that is read from a file, edited, and
written to a file. Overview records are inserted by LSE and are representatives
for source records that have been hidden or omitted. Overview records
themselves are hidden when the corresponding source is made visible.
Overview records might also be hidden along with source records, such as
when a set of lines containing both source lines and overview lines is collapsed
to an overview.

A–6 Interfacing to DECTPU Procedures

Interfacing to DECTPU Procedures
A.2 Guidelines for User-Written TPU Procedures

Thus, the four types of records are as follows:

• Visible source record

• Hidden source record

• Visible overview record

• Hidden overview record

With TPU, the current position in a buffer can be on any one of these types
of records. The TPU built-ins MOVE_VERTICAL and MOVE_HORIZONTAL
move from record to record and are not influenced by the visibility or whether
the record is an overview. A TPU procedure that does not consider visibility or
overview records might not function as intended if you use the elision facility
prior to calling the procedure.

After each LSE command, if the current position is not on a visible record, LSE
makes the record visible. If the current position is on a hidden source record,
LSE expands sufficient overviews to make the record visible. If the current
position is on a hidden overview record, LSE collapses the source to make the
overview visible.

Overview records are not modifiable. If you attempt to alter the text, split the
record, or append the record to another record, it will fail.

A number of built-ins are available for you to enhance or develop TPU
procedures to work when there are overviews or hidden records in a buffer.
The built-ins are listed here and described in Section A.3:

• LSE$IS_OVERVIEW

• LSE$IS_VISIBLE

• LSE$MAKE_VISIBLE

• LSE$MOVE_BY_SOURCE

• LSE$MOVE_HORIZONTAL

• LSE$MOVE_TEXT

• LSE$MOVE_VERTICAL

• LSE$NEAREST_VISIBLE

• LSE$SOURCE_ONLY

Interfacing to DECTPU Procedures A–7

Interfacing to DECTPU Procedures
A.3 Supplemental DECTPU Built-Ins

A.3 Supplemental DECTPU Built-Ins
LSE supports new DECTPU built-in procedures and extends some of the
existing built-ins, as described in the following sections.

A.3.1 LSE$DO_COMMAND (String)
Takes a single character string as its argument. It executes the string as
an LSE command. You can use this built-in to execute LSE commands from
within your DECTPU procedures.

A.3.2 LSE$GET_ENVIRONMENT(String, Keyword)
Incorporates the definitions contained in an environment file into the editing
session. There are two arguments, as follows:

• string — Specifies the file specification of the environment file.

• keyword — Specifies the keyword that indicates whether definitions
from the file should be written out by the LSE SAVE ENVIRONMENT
command. The possible keywords are as follows:

ON—Write out the definitions.

OFF—Do not write out the definitions.

A.3.3 GET_INFO(buffer, "language")
Returns a string representing the name of the language currently associated
with the given buffer. If there is no language associated with the buffer, the
integer 0 is returned.

A.3.4 GET_INFO(buffer, "overviews")
Returns the keyword ON or OFF, based on whether overview operations are
allowed in the given buffer.

A.3.5 GET_INFO(COMMAND_LINE, item)
LSE provides the following additional COMMAND_LINE items for the
GET_INFO built-in:

• CHARACTER
Returns an integer containing the starting character position in the
starting line for the edit. The first character position in the line
is character 1. This is the value from the second number in the
/START_POSITION qualifier, or the value from translating the logical
name LSE$START_CHARACTER. This item is a synonym for the
START_CHARACTER item maintained for compatibility with earlier
versions of LSE.

A–8 Interfacing to DECTPU Procedures

Interfacing to DECTPU Procedures
A.3 Supplemental DECTPU Built-Ins

• ENVIRONMENT
Returns 1 if the /ENVIRONMENT qualifier is present on the command
line; otherwise, it returns 0.

• ENVIRONMENT_FILE
Returns a string containing the file specification from the
/ENVIRONMENT qualifier. The /ENVIRONMENT qualifier specifies a list
of file specifications. Each time a GET_INFO(COMMAND_LINE,
‘‘ENVIRONMENT_FILE’’) built-in call is done, LSE returns the next file
specification in the list. It returns the null string on all calls after the end
of the list is reached.

This built-in call returns the null string if /ENVIRONMENT was not
present on the command line.

• LANGUAGE
Returns a string containing the language name from the /LANGUAGE
qualifier on the command line, or the null string if /LANGUAGE was not
specified.

• LINE
Returns an integer containing the starting line number for LSE. The
first line in the file is considered line 1. This is the value from the
/START_POSITION qualifier, or the translation of the logical name
LSE$START_LINE. This item is a synonym for the START_RECORD item
maintained for compatibility with earlier versions of LSE.

• SYSTEM_ENVIRONMENT
Returns 1 if the /SYSTEM_ENVIRONMENT qualifier is present on the
command line; otherwise, it returns 0.

• SYSTEM_ENVIRONMENT_FILE
Returns a string containing the file specification from the
/SYSTEM_ENVIRONMENT qualifier, or it returns the null string if
/SYSTEM_ENVIRONMENT is not present on the command line.

• CURRENT_FILE
Returns 0 if the /NOCURRENT_FILE qualifier is specified on the command
line, and returns 1 if the /CURRENT_FILE qualifier is specified on the
command line.

Interfacing to DECTPU Procedures A–9

Interfacing to DECTPU Procedures
A.3 Supplemental DECTPU Built-Ins

A.3.6 LSE$FIND_OPEN_COMMENT (marker)
Returns a range that corresponds to the first open-comment delimiter found
after the marker, but on the same line as the marker.

Returns 0 if there is no language associated with the buffer containing the
marker.

A.3.7 LSE$FIND_CLOSE_COMMENT (marker)
Returns a range that corresponds to the first close-comment delimiter found
after the marker, but on the same line as the marker.

Returns 0 if there is no language associated with the buffer, or if no close
comment is found.

A.3.8 LSE$IS_OVERVIEW [(marker)]
Returns 1 if the indicated record is an overview record and 0 if it is a source
record. If the marker parameter is not specified, the current record is used.

A.3.9 LSE$IS_VISIBLE [(marker)]
Returns 1 if the indicated record is a visible record and 0 if it is a hidden
record. If the marker parameter is not specified, the current record is used.

A.3.10 LSE$MOVE_HORIZONTAL (integer)
Restricts the cursor to visible records. LSE does not count the characters
or end-of-line on hidden lines when determining where to establish the
new editing point. If the original editing point is on a hidden record, the
movement to a visible record counts as a move of one line. (Similar to the
TPU MOVE_HORIZONTAL built-in.)

A.3.11 LSE$MOVE_VERTICAL (integer)
Restricts the cursor to visible records. Hidden records are not counted as they
are traversed and the cursor cannot be left on a hidden record.

A.3.12 LSE$MOVE_BY_SOURCE (integer)
Restricts the cursor to source records only. LSE does not count overview lines
when determining where to establish the new editing point. If the original
editing point is on an overview line, the movement to a source line counts as a
move of one line. If the source line on to which the cursor is to move is hidden,
LSE$MOVE_BY_SOURCE makes the source line visible. (Similar to the TPU
MOVE_VERTICAL built-in.)

A–10 Interfacing to DECTPU Procedures

Interfacing to DECTPU Procedures
A.3 Supplemental DECTPU Built-Ins

A.3.13 LSE$MAKE_VISIBLE (marker | range)
Makes the specified records visible. If a marker is specified, LSE makes
the corresponding record visible by expanding overview lines. If a range is
specified, LSE makes all the source records in the range visible by expanding
sufficient overviews.

A.3.14 LSE$NEAREST_VISIBLE (marker)
Moves the editing position to the beginning of the visible line nearest to the
specified position. If the record at the specified position is visible, it moves the
current editing position there. If the marker parameter is not specified, the
current editing position is used. This is useful for operations that move the
editing position to a new record but should not change the view, for example,
moving the cursor by using a scroll bar, or moving the cursor to a window
where the last position in that window has become hidden.

A.3.15 LSE$SOURCE_ONLY (range)
Returns 1 if all the source records within the range are visible; otherwise it
returns 0. If all the source records within the range are visible, then, as a side
effect, all the hidden overview records in the range are deleted. This function
is useful when writing a TPU procedure that operates on a range. It does not
operate properly if there are hidden records or overview records in the range.
For example, this built-in is used in the procedure that implements the FILL
operation.

A.3.16 LSE$MOVE_TEXT and LSE$COPY_TEXT (string | range | buffer)
Move or copy the text from the specified string, range, or buffer to the current
editing position and return the resultant range. If the input is a string, these
functions are equivalent to MOVE_TEXT and COPY_TEXT. For ranges and
buffers, the LSE functions preserve overview information. (Similar to the TPU
built-ins MOVE_TEXT and COPY_TEXT.)

Overview information is language-dependent, so the language associated with
the input range or buffer must be the same as the language associated with
the current buffer. If the input language is not the same as the language for
the current buffer, there are side effects, as follows:

• If the current buffer can legally accept overview records, and if the current
buffer is empty, or if the current buffer has no associated language and
contains no overview records, the current buffer inherits the language of
the input buffer. A buffer containing no records or only one null record is
considered empty.

Interfacing to DECTPU Procedures A–11

Interfacing to DECTPU Procedures
A.3 Supplemental DECTPU Built-Ins

• In the case of LSE$COPY_TEXT, only visible records are copied. Visible
overview records in the result range are marked as source records. In this
case, LSE$MOVE_TEXT aborts to avoid the loss of hidden source lines.

If LSE$MOVE_TEXT is given a range, any hidden overview lines immediately
preceding the range are deleted.

If there are overview records in a range or buffer, the TPU functions MOVE_
TEXT and COPY_TEXT change the overview records into source records.
Visibility of records is preserved.

LSE$COPY_TEXT and LSE$MOVE_TEXT will not operate on an input range
that includes part, but not all, of an overview line. An overview line includes
the line break at its end.

A.3.17 SET (LSE$LANGUAGE, buffer, language)
Associates or disassociates a language and a buffer. See the descriptions of the
SET LANGUAGE and SET NOLANGUAGE commands in this manual for a
more complete discussion of associating a language with a buffer.

The arguments to the built-in are the keyword LSE$LANGUAGE, followed by
a buffer variable, followed by the language string. The literal current buffer
can be used as the buffer variable. The language string can be passed as
double quotes (‘‘’’), which results in disassociating the language from the buffer.

A.3.18 SET (LSE$OVERVIEWS, buffer, on/off)
Enables or disables overview operations in the indicated buffer. See the
descriptions of the SET OVERVIEW and SET NOOVERVIEW commands in
this manual for a more complete description of overview operations.

The arguments to the built-in are the keyword LSE$OVERVIEWS, followed by
a buffer variable, followed by either the keyword ON or the keyword OFF. You
can use the literal current_buffer as the buffer varible.

A.3.19 TPU Built-ins for the SCA Callable Interface
There are TPU built-ins for the SCA$QUERY_xxx functions in the new SCA
callable interface. Specifically, the built-ins are as follows:

• SCA$QUERY_CLEANUP

• SCA$QUERY_COPY

• SCA$QUERY_FIND

• SCA$QUERY_GET_ATTRIBUTE

• SCA$QUERY_GET_ATTRI_KIND_T

A–12 Interfacing to DECTPU Procedures

Interfacing to DECTPU Procedures
A.3 Supplemental DECTPU Built-Ins

• SCA$QUERY_GET_ATTRI_VALUE_T

• SCA$QUERY_GET_OCCURRENCE

• SCA$QUERY_GET_NAME

• SCA$QUERY_INITIALIZE

• SCA$QUERY_PARSE

• SCA$QUERY_SELECT_ENTITY

None of the other routines are available. LSE calls SCA$INITIALIZE and
SCA$CLEANUP automatically for you. The command context created by LSE
is available in the TPU variable LSE$SCA_COMMAND_CONTEXT; you must
use this as the first parameter to call SCA$QUERY_INITIALIZE.

SCA message codes are available as TPU keywords, as in the conventional
format SCA$_xxx. These can be used as message constants for the TPU
MESSAGE built-in.

SCA constants for the attribute kinds are available as TPU constants in the
form SCA$K_ATTRI_xxx. These can be passed directly to
SCA$QUERY_GET_ATTRI_VALUE_T.

LSE handles the calling sequences for you. You need not be concerned with
whether objects are passed by value or reference.

Note that TPU does not produce a traceback if an SCA routine signals an error.

Interfacing to DECTPU Procedures A–13

B
Language-Specific Information

This appendix contains information of interest to HP Fortran and HP COBOL
programmers. Section B.1 provides information on using HP Fortran with
LSE. Section B.2 provides information on using HP COBOL with LSE.

B.1 HP Fortran
Some LSE commands behave differently when the definition of the current
language includes the /FORTRAN qualifier. The syntax of this qualifier is as
follows:

/FORTRAN=[NO]ANSI_FORMAT

ANSI_FORMAT specifies that templates should be expanded in ANSI format.
The default is NOANSI_FORMAT (tab format).

To choose a format that is different from the format specified in the /FORTRAN
qualifier on the language definition, use the MODIFY LANGUAGE command
and specify /FORTRAN=ANSI_FORMAT or /FORTRAN=NOANSI_FORMAT.
(See the MODIFY LANGUAGE command in the Command Dictionary for more
information on the /FORTRAN=[NO]ANSI_FORMAT qualifier.)

HP Fortran Source Format
The HP Fortran compiler supports two source-line formats: ANSI format and
tab format.

Language-Specific Information B–1

Language-Specific Information
B.1 HP Fortran

HP Fortran differs from the other languages supported by LSE in that each
source line is divided into three fields. These fields are as follows:

• Statement number field

• Continuation field

• Statement field

In ANSI format, the first five characters contain the line number and
padding blanks. The sixth character is nonblank and nonzero if the line is
a continuation of the last line. The HP Fortran statement field begins at
the seventh character and the line terminates with the 72nd character. Any
characters after the 72nd character are ignored.

In tab format, the optional line number appears first on the line and is
terminated by a tab character. If the character after the tab is a nonzero
digit, that digit is the continuation field. The character after the continuation
field begins the statement field. If the character after the tab is a nondigit
character, that character begins the statement field.

B.1.1 Token and Placeholder Definitions
The bodies of HP Fortran tokens and placeholders should be entered as legal
source lines in tab format. This allows LSE to determine the fields and permit
the lines to contain statement number and continuation fields. If ANSI_
FORMAT is specified, LSE converts the body to ANSI format when the body
is expanded into the source file. A placeholder appearing in the statement
number field is limited to five characters and must be a terminal placeholder.

B.1.2 Entering and Erasing Text
When a placeholder is erased from the statement number field in
ANSI_FORMAT mode, it is replaced with blanks.

When a placeholder in the statement field is expanded, the statement number
and continuation fields of the first line of the placeholder body are ignored and
the statement field is inserted at the position vacated by the placeholder.

Note that the procedure for expanding tokens is identical.

B–2 Language-Specific Information

Language-Specific Information
B.1 HP Fortran

B.1.3 Indentation
Indentation of FORTRAN statements is done only in the statement field,
rather than at the beginning of a line as for other languages. Tab stops are
set for the statement field only, with column 1 being the first character of the
statement field.

An ENTER TAB or TAB command (bound to the TAB key) entered at the
beginning of a line inserts a tab character in NOANSI mode. In ANSI mode, a
tab at the beginning of a line moves the cursor to the statement field. Erasing
one character backwards at that point puts the cursor in the continuation field.

An ENTER TAB or TAB command entered at the beginning of the statement
field inserts the current indentation.

B.2 HP COBOL
Within the HP COBOL placeholders, you see the following three notations:

• [placeholder ..]

• [placeholder]...

• [placeholder]....

In the notation [placeholder ..], the space and two dots following the
placeholder indicate that, upon expansion, you will see more details of the
placeholder and not just the keywords that appear within the brackets.

The notation [placeholder]... is a list placeholder. The three dots indicate that
the placeholder will be duplicated upon expansion.

The notation [placeholder].... is a list placeholder followed by punctuation,
in this case, a period. The first three dots indicate that the placeholder will
be duplicated upon expansion. Upon removal of the duplicated placeholder, a
period will end the line.

Language-Specific Information B–3

C
Packages

LSE provides a mechanism for defining your own packages. The package
facility includes two DECTPU sets of procedures to help you write your own
packages.

C.1 DECTPU Procedures for the Package Facility
The DECTPU procedures generate the appropriate DEFINE TOKEN and
DEFINE PLACEHOLDER commands for each routine or parameter. The
DECTPU procedures, indicated by the /ROUTINE_EXPAND qualifier, generate
a token definition for the routine name. The DECTPU procedures, indicated
by the /PARAMETER_EXPAND qualifier, generate one or more placeholder
definitions for each parameter name.

LSE comes with two sets of predefined DECTPU procedures that you can
use to perform these expansions. For each language associated with the
package, there must be a ROUTINE_EXPAND and PARAMETER_EXPAND
procedure. You can specify these procedures with the /ROUTINE_EXPAND
and /PARAMETER_EXPAND qualifiers. The value that you specify for these
qualifiers in the DEFINE PACKAGE command must be a prefix shared by all
the corresponding procedures. LSE determines the actual procedure name by
concatenating the prefix value and the appropriate language name.

The procedures supplied with LSE are as follows:

• LSE$PKG_EXPAND_ROUT_ADA

• LSE$PKG_EXPAND_PARM_ADA

• LSE$PKG_EXPAND_ROUT_BASIC

• LSE$PKG_EXPAND_PARM_BASIC

• LSE$PKG_EXPAND_ROUT_BLISS

• LSE$PKG_EXPAND_PARM_BLISS

• LSE$PKG_EXPAND_ROUT_C

Packages C–1

Packages
C.1 DECTPU Procedures for the Package Facility

• LSE$PKG_EXPAND_PARM_C

• LSE$PKG_EXPAND_ROUT_COBOL

• LSE$PKG_EXPAND_PARM_COBOL

• LSE$PKG_EXPAND_ROUT_FORTRAN

• LSE$PKG_EXPAND_PARM_FORTRAN

• LSE$PKG_EXPAND_ROUT_PASCAL

• LSE$PKG_EXPAND_PARM_PASCAL

• LSE$PKG_EXPAND_ROUT_PLI

• LSE$PKG_EXPAND_PARM_PLI

You use these routines by specifying the following:

/ROUTINE_EXPAND = LSE$PKG_EXPAND_ROUT_
/PARAMETER_EXPAND = LSE$PKG_EXPAND_PARM_

If you want to write your own DECTPU procedures for these purposes, they
must conform to the following restrictions:

• When LSE needs to generate a token definition from a routine definition,
it calls the DECTPU procedure specified by the /ROUTINE_EXPAND
qualifier. A typical DECTPU procedure for the /ROUTINE_EXPAND
qualifier appears as follows:

PROCEDURE my_routine_expand_somelanguage
LOCAL command_string, {other tpu local variables}...;

. . .

command_string := ’DEFINE TOKEN ’
+ routine_name
+ ’/LANGUAGE = somelanguage ’
+ <any other qualifiers for the DEFINE TOKEN command>;

LSE$DO_COMMAND (command_string) ;

< tpu code to generate the body of the token, using LSE$DO_COMMAND>

LSE$DO_COMMAND (’END DEFINE’);

ENDPROCEDURE;

C–2 Packages

Packages
C.1 DECTPU Procedures for the Package Facility

All the information included in the DEFINE ROUTINE command is passed
to your DECTPU routine by means of the DECTPU global variables. The
following global variables are defined:

Variable Description

LSE$PKG_ROUT_
NAME

Contains the name of the routine being defined, enclosed
in quotes (").

LSE$PKG_ROUT_
LANG

Contains the name of the language.

LSE$PKG_ROUT_
DESC

Contains the value of the /DESCRIPTION parameter.

LSE$PKG_ROUT_
TOP

Contains the value of the /TOPIC parameter.

LSE$PKG_ROUT_
PACK

Contains the package name.

LSE$PKG_ROUT_
PARM

Contains the list of parameters associated with the
routine being defined. Each parameter is enclosed
in quotes and separated from the next by a carriage
return, line feed pair; that is, the TPU string ASCII(13) +
ASCII(10).

LSE$PKG_ROUT_
OPT

Contains a list of flags, in one-to-one correspondence
to the list of parameters. Each flag can be either O,
indicating that the parameter is optional, or R, indicating
that the parameter is required. Each flag is separated
from the next by a single-space character.

LSE$PKG_ROUT_
MECH

Contains a list of flags, in one-to-one correspondence to
the list of parameters. Each flag can have one of the
following values:

• V—By value

• R—By reference

• D—By descriptor

• U—Unknown

Each flag is separated from the next by
a single-space character.

Packages C–3

Packages
C.1 DECTPU Procedures for the Package Facility

• When LSE needs to generate a placeholder definition from a
parameter definition, it calls the DECTPU procedure specified by the
/PARAMETER_EXPAND qualifier of the package. A typical DECTPU
procedure for /PARAMETER_EXPAND appears as follows:

PROCEDURE my_parameter_expand_somelanguage
LOCAL command_string, {other tpu local variables}...;

. . .

command_string := ’DEFINE PLACEHOLDER ’
+ routine_name
+ ’/LANGUAGE = somelanguage ’
+ ’/TYPE = TERMINAL/SEPARATOR = ","’
+ {other qualifiers for the DEFINE PLACEHOLDER command};

LSE$DO_COMMAND (command_string) ;

. . .

ENDPROCEDURE;

The following global variables are defined for use by the DECTPU
procedure specified by the /PARAMETER_EXPAND qualifier:

Variable Description

LSE$PKG_PARA_
NAME

Contains the name of the parameter to be defined.

LSE$PKG_PARA_
LANG

Contains the name of the language.

C.2 Example Procedures
This section presents the TPU expansion procedures for Pascal and some of the
support routines. The first TPU procedure, LSE$PKG_EXPAND_ROUT_PASCAL,
defines a token for a package routine. It calls other TPU procedures that you
can use as is or redefine according to your needs.

The second procedure, LSE$PKG_EXPAND_PARM_PASCAL, defines two
placeholders for each parameter. Because the Pascal system-service routines
are in a keyword format (for example, %[p1 := %{p1}%]%), a placeholder
must be defined for p1 and p1 := %{p1}%. The first placeholder is defined
in the procedure LSE$PKG_DEFINE_PARAMETER, and the second in
LSE$PKG_EXPAND_PARAM_PASCAL.

The following called procedures are also listed:

• LSE$PKG_PAD_NAME

C–4 Packages

Packages
C.2 Example Procedures

• LSE$PKG_DEFINE_TOKEN

• LSE$PKG_GET_PARAM

• LSE$PKG_DEFINE_PARAMETER

Note that the TPU built-in procedure, change_case, is called to force the case
of expansions. You can modify the expansion routines to use CHANGE_CASE
to follow any case convention you want.

PROCEDURE lse$pkg_expand_rout_pascal
!++
! FUNCTIONAL DESCRIPTION:
!
! This routine generates a Pascal token definition from a parameter
! definition using keyword syntax.
!
! FORMAL PARAMETERS:
!
! None
!
! IMPLICIT INPUTS:
!
! LSE$PKG_ROUT_NAME
! The name of the routine to be defined.
!
! LSE$PKG_ROUT_PARM
! The list of parameters of the routine separated by spaces.
!
! LSE$PKG_ROUT_OPT
! A list of flags in one-to-one correspondence with the list of
! parameters. Each flag can be either O, indicating optional, or
! R, indicating required. Each flag is separated from the next by a
! space.
!
! IMPLICIT OUTPUTS:
!
! None
!
! ROUTINE VALUE:
!
! None
!

Packages C–5

Packages
C.2 Example Procedures

! SIDE EFFECTS:
!
! A token definition is issued.
!--

LOCAL
proc_name,
command_string,
cur_param,
cur_option,
param_name,
keyword_param,
mech;

! Start the DEFINE TOKEN command.
lse$pkg_define_token;

! Remove quotes from procedure name.
proc_name := SUBSTR(LSE$PKG_ROUT_NAME, 2, LENGTH(LSE$PKG_ROUT_NAME)-2);
! Format the call with the procedure name in lowercase.
command_string := ’"’ + proc_name;
CHANGE_CASE(command_string,LOWER);

IF LSE$PKG_ROUT_PARM = ’’ THEN
! The call consists of just the procedure name
command_string := command_string + ’"’;
LSE$DO_COMMAND(command_string);

ELSE
! The call has parameters

! Form the first line of the call.
! First line is just the procedure name and open parenthesis.
command_string := command_string + ’ (’;
LSE$DO_COMMAND(command_string);

! Move a required parameter to the beginning of the list.
! This avoids a problem in erasing a comma after the first
! parameter if it is optional.
lse$pkg_reorder_params (LSE$PKG_ROUT_PARM, LSE$PKG_ROUT_OPT);
! Loop for each parameter.
LOOP

EXITIF lse$pkg_get_param (cur_param,
cur_option,
LSE$PKG_ROUT_PARM,
LSE$PKG_ROUT_OPT) = 0;

! Remove passing mechanism .x suffix (x = v, d, or r).
keyword_param := lse$pkg_remove_mech (cur_param, mech);

! Modify parameter names that conflict with Pascal keywords.
IF keyword_param = "TYPE"
THEN

keyword_param := keyword_param + ’_’;

ENDIF;

C–6 Packages

Packages
C.2 Example Procedures

lse$pkg_pad_name (keyword_param, param_name);

! Form the template line for the parameter.
command_string := ’"’ + ASCII(9);
IF cur_option = "O"
THEN

! optional parameter
command_string := command_string

+ ’%[’ + param_name + ’ := %{’ + cur_param + ’}%]%’
ELSE

! required parameter
command_string := command_string

+ param_name + ’ := %{’ + cur_param + ’}%’
ENDIF;

IF LSE$PKG_ROUT_PARM = ’’ THEN ! No more parameters
! Complete the call statement.
command_string := command_string + ’)’;

ELSE
! Add a separator after the parameter.
command_string := command_string + ’,’;

ENDIF ;
! Make the line lowercase.
CHANGE_CASE (command_string,LOWER);

! Add the line to the token definition.
LSE$DO_COMMAND (command_string);

ENDLOOP;
ENDIF; ! parameter string is/isn’t empty

! End the DEFINE TOKEN command
LSE$DO_COMMAND ("end define") ;

ENDPROCEDURE

PROCEDURE lse$pkg_expand_parm_pascal
!++
! FUNCTIONAL DESCRIPTION:
!
! This routine generates Pascal placeholder definitions from a parameter
! definition for keyword syntax.
!
! FORMAL PARAMETERS:
!
! None
!
! IMPLICIT INPUTS:
!
! LSE$PKG_PARA_NAME
! The name of the placeholder to define.
!

Packages C–7

Packages
C.2 Example Procedures

! IMPLICIT OUTPUTS:
!
! None
!
! ROUTINE VALUE:
!
! None
!
! SIDE EFFECTS:
!
! Two placeholder definitions are issued.
!--

LOCAL
command_string,
name_noquote,
padded_key,
keyword_name,
mech;

! Define a placeholder for the parameter.
lse$pkg_define_parameter(’’);

! Define a placeholder of the form "name := %{name}%".
! This is done in case the parameter is optional.

! Strip the quotes off the name
name_noquote := SUBSTR(LSE$PKG_PARA_NAME,

2,
LENGTH(LSE$PKG_PARA_NAME) - 2) ;

! Remove passing mechanism .x suffix (x = v, d, or r).
keyword_name := lse$pkg_remove_mech (name_noquote, mech);

! Modify parameter names that conflict with Pascal keywords
IF keyword_name = ’TYPE’
THEN

keyword_name := keyword_name + ’_’;
ENDIF;
lse$pkg_pad_name (keyword_name, padded_key) ;

! Do the DEFINE PLACEHOLDER command.
command_string :=

’define placeholder /language=pascal /separator="," "’ +
padded_key + ’ := %{’ + name_noquote + ’}%"’ ;

CHANGE_CASE (command_string, lower);
LSE$DO_COMMAND (command_string) ;
! Do the body.
command_string := ’"’ + padded_key + ’ := %{’ + name_noquote + ’}%"’ ;

CHANGE_CASE (command_string, LOWER);
LSE$DO_COMMAND (command_string) ;

C–8 Packages

Packages
C.2 Example Procedures

! End the definition.
LSE$DO_COMMAND (’end define’) ;

ENDPROCEDURE

PROCEDURE lse$pkg_pad_name (cur_param, p_keyword)
!++
! FUNCTIONAL DESCRIPTION:
!
! Pads a parameter name so that it is at least six characters long. This
! is for use by keyword-style routine calls, so that the intermediate
! assignment operations, which separate the keyword from the parameter value,
! line up properly.
!
! FORMAL PARAMETERS:
!
! cur_param
! The parameter name to be padded.
!
! p_keyword
! The result of padding the parameter name.
!
! IMPLICIT INPUTS:
!
! None
!
! IMPLICIT OUTPUTS:
!
! None
!
! ROUTINE VALUE:
!
! None
!
! SIDE EFFECTS:
!
! p_keyword is set as indicated above
!--

LOCAL
len, !* the length of cur_param
i ;

p_keyword := cur_param;

Packages C–9

Packages
C.2 Example Procedures

! Pad the p_keyword so it’s six letters long.
! This tends to make the keyword calls to system services look
! better.
len := LENGTH (p_keyword) ;
IF len < 6 THEN

i := 0 ;
LOOP EXITIF i = 6 - len ;

p_keyword := p_keyword + " " ;
i := i + 1 ;

ENDLOOP ;
ENDIF ;

ENDPROCEDURE

PROCEDURE lse$pkg_define_token
!++
! FUNCTIONAL DESCRIPTION:
!
! This routine generates LSE DEFINE TOKEN commands for routines.
! It issues only the DEFINE TOKEN token-name, with qualifiers, and
! leaves the editor in a state ready to process the definition of
! the body of the token. This procedure is suitable for being
! called from any procedure that needs to define a token from a
! routine definition; the calling procedure is responsible for
! defining the body of the routine and issuing the closing END
! DEFINE command.
!
! FORMAL PARAMETERS:
!
! None
!
! IMPLICIT INPUTS:
!
! LSE$PKG_ROUT_NAME
! The name of the routine to be defined.
!
! LSE$PKG_ROUT_LANG
! The name of the language for which to define the routine.
!

! LSE$PKG_ROUT_DESC
! The description string for the routine.
!
! LSE$PKG_ROUT_TOP
! The topic string for the routine.
!

C–10 Packages

Packages
C.2 Example Procedures

! IMPLICIT OUTPUTS:
!
! None
!
! ROUTINE VALUE:
!
! None
!
! SIDE EFFECTS:
!
! Begins a DEFINE TOKEN definition. The next calls to
! LSE$DO_COMMAND must complete the definition.
!
! MODIFICATION HISTORY:
!
!--

LOCAL
proc_name, ! name of routine being defined, with quotes removed
command_string; ! command string to send to LSE$DO_COMMAND

! Form DEFINE TOKEN command string
command_string :=

’define token ’ + LSE$PKG_ROUT_NAME
+ ’ /language = ’ + LSE$PKG_ROUT_LANG
+ ’ /description = "’ + LSE$PKG_ROUT_DESC
+ ’" /topic_string = "’ + LSE$PKG_ROUT_TOP + ’"’;

! Execute the DEFINE TOKEN command
LSE$DO_COMMAND (command_string) ;

ENDPROCEDURE;

PROCEDURE lse$pkg_get_param (param, option, param_line, option_line)
!++
! FUNCTIONAL DESCRIPTION:
!
! Return the first parameter and option from the given parameter
! lists and option line, which removes them from the lists.
!

! FORMAL PARAMETERS:
!
! param
! On exit, this will be the first parameter from the param line.
!
! option
! On exit, this will be the first option field from the option line.
!

Packages C–11

Packages
C.2 Example Procedures

! param_line
! A list of parameters for a routine, as in LSE$PKG_ROUT_PARM. On exit,
! the first parameter from the list will have been removed.
!
! option_line
! A list of option flags for a routine’s parameter list, as in
! LSE$PKG_ROUT_OPT. On exit, the first option from the list will have
! been removed.
!
! IMPLICIT INPUTS:
!
! None
!
! IMPLICIT OUTPUTS:
!
! None
!
! ROUTINE VALUE:
!
! 0 - if there were no more parameters
! 1 - if a parameter name is returned
!
! SIDE EFFECTS:
!
! param_line and option_line are changed as indicated above
!--

LOCAL
blank_idx ; ! ** location of blanks in parameter lines

! Locate a parameter in param_line.
blank_idx := INDEX (param_line, ASCII(13)+ASCII(10));

! Return if no more parameters.
IF blank_idx <= 1 THEN

param_line := ’’ ;
RETURN (0) ;

ENDIF ;

! Get parameter, stripping off the outside set of quotes.
param := SUBSTR (param_line, 2, blank_idx - 3) ;

! Remove parameter from param_line.
param_line := SUBSTR (param_line, blank_idx + 2, LENGTH(param_line)) ;

C–12 Packages

Packages
C.2 Example Procedures

! Get option and remove from option_line.
option := SUBSTR (option_line, 1, 1) ;
option_line := SUBSTR (option_line, 3, LENGTH(option_line)) ;
RETURN (1) ;

ENDPROCEDURE

PROCEDURE lse$pkg_define_parameter(qualifiers)
!++
! FUNCTIONAL DESCRIPTION:
!
! This procedure issues a standard DEFINE PARAMETER command for the parameter
! currently being expanded. This routine is suitable for being called from
! any procedure that needs to define a placeholder from a parameter. Note that
! unlike lse$pkg_define_token, this routine generates a complete placeholder
! definition.
!

! FORMAL PARAMETERS:
!
! qualifiers
! A string containing any additional qualifiers to be added to the
! placeholder definition. Most commonly, this will be either empty
! or just a separator definition (for example, ’/SEPARATOR=","’). Note that
! the parameter must be a complete qualifier or sequence of qualifier,
! in legal LSE syntax. Furthermore, since this routine automatically
! adds a /type=terminal and a /language=lse$pkg_para_lang to the
! placeholder definitions, these two qualifiers may NOT be included in
! the qualifiers parameters.
!
!
! IMPLICIT INPUTS:
!
! LSE$PKG_PARA_NAME
! The name of the placeholder to define.
!
! LSE$PKG_PARA_LANG
! The language for which to define the placeholder.
!
! IMPLICIT OUTPUTS:
!
! None
!
! ROUTINE VALUE:
!
! None
!

Packages C–13

Packages
C.2 Example Procedures

! SIDE EFFECTS:
!
! A new placeholder is defined.
!--

LOCAL
command_string,
name_noquote,
mech;

! Form DEFINE PLACEHOLDER command string
command_string :=

’define placeholder ’ + LSE$PKG_PARA_NAME +
’ /type=terminal /language=’ + LSE$PKG_PARA_LANG
+ qualifiers;

! Force to lowercase
CHANGE_CASE (command_string, LOWER);

! Execute the DEFINE PLACEHOLDER command
LSE$DO_COMMAND (command_string);

! Strip the quotes off the name
name_noquote := SUBSTR(LSE$PKG_PARA_NAME, 2, LENGTH(LSE$PKG_PARA_NAME) - 2);

! Remove passing mechanism .x suffix (x = v, d, or r).
name_noquote := lse$pkg_remove_mech (name_noquote, mech);

! Do the body line.
command_string := ’"The actual data you want to pass to parameter ’ +

name_noquote + ’."’;
LSE$DO_COMMAND (command_string);

! Do a body line for the passing mechanism.
IF mech = ’V’ THEN

LSE$DO_COMMAND(’"The parameter is passed by value."’);
ELSE IF mech = ’R’ THEN

LSE$DO_COMMAND(’"The parameter is passed by reference."’);
ELSE IF mech = ’D’ THEN

LSE$DO_COMMAND(’"The parameter is passed by descriptor."’);
ENDIF; ENDIF; ENDIF;

C–14 Packages

Packages
C.2 Example Procedures

! End the DEFINE PLACEHOLDER command
LSE$DO_COMMAND ("end define")

ENDPROCEDURE

PROCEDURE lse$pkg_remove_mech(param_name, mech_char)
!++
! FUNCTIONAL DESCRIPTION:
!
! This procedure removes a suffix from a parameter name of the form
! name.suffix. The suffix must be either v, d, or r and
! indicate that the parameter is passed by value, descriptor, or
! reference, respectively.
!
! FORMAL PARAMETERS:
!
! param_name
! The name of the parameter.
!
! mech_char
! Set to the suffix character removed from param_name (uppercase).
!

! IMPLICIT INPUTS:
!
! None
!
! IMPLICIT OUTPUTS:
!
! None
!
! ROUTINE VALUE:
!
! The parameter name without the .suffix.
!
! SIDE EFFECTS:
!
! None
!--

LOCAL
param_length,
mech_suffix,
mech_separator;

mech_char := ’’;
param_length := LENGTH (param_name) ;
IF param_length < 2 THEN RETURN (param_name) ENDIF;
! Get last character from param_name.
mech_suffix := SUBSTR(param_name, param_length, 1);

Packages C–15

Packages
C.2 Example Procedures

! Get second-to-last character from param_name.
mech_separator := SUBSTR(param_name, param_length - 1, 1);
CHANGE_CASE (mech_suffix, UPPER);
IF ((mech_suffix = ’V’) OR (mech_suffix = ’D’) OR (mech_suffix = ’R’))

AND (mech_separator = ’.’) THEN
mech_char := mech_suffix;
RETURN (SUBSTR (param_name, 1, param_length - 2)) ;

ENDIF;

RETURN (param_name);
ENDPROCEDURE

C–16 Packages

D
LSE and EVE Commands

Table D–1 lists the EVE commands with the corresponding LSE commands.

Table D–1 Corresponding EVE and LSE Commands

EVE Command LSE Command

@ None

ATTACH ATTACH

BOTTOM GOTO BOTTOM

BUFFER GOTO BUFFER

CAPITALIZE WORD CAPITALIZE WORD

CENTER LINE CENTER LINE

CHANGE DIRECTION CHANGE DIRECTION

CHANGE MODE CHANGE TEXT_ENTRY_MODE

DCL DCL

DEFINE KEY DEFINE KEY

DELETE BUFFER DELETE BUFFER

DELETE WINDOW DELETE WINDOW

DO GOTO COMMAND

END OF LINE GOTO LINE/BOUND/FORWARD

ENLARGE WINDOW ENLARGE WINDOW

ERASE CHARACTER ERASE/TO CHARACTER/REVERSE

ERASE LINE ERASE/TO LINE/BEGINNING/FORWARD

ERASE PREVIOUS WORD ERASE WORD/PREVIOUS

ERASE START OF LINE ERASE/TO LINE/BEGINNING/REVERSE

(continued on next page)

LSE and EVE Commands D–1

LSE and EVE Commands

Table D–1 (Cont.) Corresponding EVE and LSE Commands

EVE Command LSE Command

ERASE WORD ERASE WORD/NEXT

EXIT EXIT

EXTEND ALL EXTEND *

EXTEND EVE EXTEND

EXTEND THIS EXTEND /INDICATED

EXTEND TPU DO /TPU

FILL FILL

FILL PARAGRAPH FILL

FILL RANGE FILL

FIND SEARCH

FORWARD SET FORWARD

GET FILE GOTO FILE

GOTO GOTO MARK

HELP HELP

INCLUDE FILE READ

INSERT HERE PASTE

INSERT MODE SET INSERT

INSERT PAGE BREAK None

LEARN DEFINE KEY/LEARN

LINE LINE

LOWERCASE WORD LOWERCASE WORD

MARK SET MARK

MOVE BY LINE GOTO LINE/BREAK

MOVE BY PAGE GOTO PAGE

MOVE BY WORD GOTO WORD/BEGINNING/CURRENT

MOVE DOWN GOTO CHARACTER/VERTICALLY/FORWARD

MOVE LEFT GOTO CHARACTER/HORIZONTALLY/REVERSE

MOVE RIGHT GOTO CHARACTER/HORIZONTALLY/FORWARD

MOVE UP GOTO CHARACTER/VERTICALLY/REVERSE

(continued on next page)

D–2 LSE and EVE Commands

LSE and EVE Commands

Table D–1 (Cont.) Corresponding EVE and LSE Commands

EVE Command LSE Command

NEXT SCREEN GOTO SCREEN/FORWARD

NEXT WINDOW NEXT WINDOW

ONE WINDOW ONE WINDOW

OTHER WINDOW NEXT WINDOW

OVERSTRIKE MODE SET OVERSTRIKE

PREVIOUS SCREEN GOTO SCREEN/REVERSE

PREVIOUS WINDOW PREVIOUS WINDOW

QUIT QUIT

QUOTE QUOTE

RECALL RECALL

REFRESH REFRESH

REMEMBER END DEFINE

REMOVE CUT

REPEAT REPEAT

REPLACE SUBSTITUTE

RESET None

RESTORE UNERASE

RESTORE CHARACTER UNERASE CHARACTER

RESTORE LINE UNERASE LINE

RESTORE SENTENCE None

RESTORE WORD UNERASE WORD

RETURN ENTER LINE

REVERSE SET REVERSE

SAVE EXTENDED EVE SAVE SECTION

SAVE EXTENDED TPU SAVE SECTION

SELECT TOGGLE SELECT_MARK

SET CURSOR BOUND SET CURSOR BOUND

SET CURSOR FREE SET CURSOR FREE

SET FIND NOWHITESPACE SET SEARCH NOSPAN_SPACE

(continued on next page)

LSE and EVE Commands D–3

LSE and EVE Commands

Table D–1 (Cont.) Corresponding EVE and LSE Commands

EVE Command LSE Command

SET FIND WHITESPACE SET SEARCH SPAN_SPACE

SET LEFT MARGIN SET LEFT MARGIN

SET NOPENDING DELETE SET MODE NOPENDING_DELETE

SET NOWRAP SET NOWRAP

SET PENDING DELETE SET MODE PENDING_DELETE

SET RIGHT MARGIN SET RIGHT MARGIN

SET SCROLL MARGINS SET SCROLL_MARGINS

SET SHIFT KEY DEFINE KEY /STATE=GOLD

SET TABS AT None

SET TABS EVERY None

SET TABS INVISIBLE SET MODE TABS=INVISIBLE

SET TABS VISIBLE SET MODE TABS=VISIBLE

SET WIDTH SET SCREEN WIDTH

SET WILDCARD ULTRIX SET SEARCH PATTERN=ULTRIX

SET WILDCARD VMS SET SEARCH PATTERN=VMS

SET WRAP SET WRAP

SHIFT LEFT SHIFT/REVERSE

SHIFT RIGHT SHIFT/FORWARD

SHOW SHOW BUFFER

SHOW KEY SHOW KEY

SHOW SUMMARY SHOW SUMMARY

SHOW SYSTEM BUFFERS SHOW BUFFERS/SYSTEM_BUFFERS

SHOW WILDCARD None

SHRINK WINDOW SHRINK WINDOW

SPACE ENTER SPACE

SPAWN SPAWN

SPELL SPELL

SPLIT WINDOW SPLIT WINDOW

START OF LINE GOTO LINE/BOUND/REVERSE

(continued on next page)

D–4 LSE and EVE Commands

LSE and EVE Commands

Table D–1 (Cont.) Corresponding EVE and LSE Commands

EVE Command LSE Command

STORE TEXT None

TAB TAB

TOP GOTO TOP

TPU DO/TPU "string"

TWO WINDOWS TWO WINDOWS

UNDEFINE KEY DELETE KEY

UPPERCASE WORD UPPERCASE WORD

WHAT LINE WHAT LINE

WILDCARD FIND None

WRITE FILE WRITE

LSE and EVE Commands D–5

E
Portable and VMSLSE Commands

This appendix contains a translation table that lists the Portable commands
with their corresponding VMSLSE equivalents.

• There are cases in which many individual Portable commands are used to
establish a set environment. Because the VMSLSE command language
requires the setting of the complete environment in a single command line,
there is not a simple VMSLSE equivalent for these Portable commands.
Therefore, their listings typically show the corresponding VMSLSE base
command, sometimes with one qualifier, and an ellipsis (. . .) to indicate
that the VMSLSE command is not complete. For example:

SET LANGUAGE ANSI FORTRAN
ON | OFF [defined_language] 1

MODIFY LANGUAGE
/FORTRAN=[NO]ANSI_FORMAT ...

SET LANGUAGE BRACKETED
COMMENTS begin_string end_string
[add_remove [defined_language]] 1

MODIFY LANGUAGE
/COMMENT=(BEGIN=
string_list,END=string_list) ...

Such commands are footnoted with 1 in Table E–1.

• The SET LANGUAGE commands are shown as being equivalent to the
VMSLSE command MODIFY LANGUAGE.

There are no equivalents to MODIFY LANGUAGE for the other complex
DEFINE commands (PLACEHOLDER, TOKEN, etc.).

• Some commands have to be enabled using the portable command ENABLE
VMS INTEGRATION. These commands are shown at the end of Table E–1
in two separate table sections.

Note

Any Portable command can be issued as a VMSLSE command by
prefixing the command with PLSE (such as PLSE SET PROMPT
KEYPAD VMSLSE).

Portable and VMSLSE Commands E–1

Portable and VMSLSE Commands

Table E–1 Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

ALIGN [column] ALIGN[/COMMENT_COLUMN=column]

ATTACH [process_name] ATTACH [process_name]

BALANCE WINDOWS No equivalent—See SET SCREEN
BALANCE_WINDOWS

BOTTOM GOTO BOTTOM

CAPITALIZE CAPITALIZE WORD

CENTER LINE CENTER LINE

CHANGE CASE CHANGE CASE

CHECK LANGUAGE DEFINITIONS
[defined_name]

CHECK LANGUAGE/DEFINITIONS
defined_name

CHECK LANGUAGE HELP [defined_name] CHECK LANGUAGE/HELP_INTERFACE
defined_name

CLI cli_command DCL cli_command

CLOSE CLOSE BUFFER

CLOSE BUFFER [buffer_name] No equivalent

CLOSE FILE file_spec No equivalent

COLLAPSE [depth] COLLAPSE[/DEPTH=depth]

COMPILE [compile_command] COMPILE [compile_command]

COMPILE REVIEW [compile_command] COMPILE/REVIEW [compile_command]

COPY [user_paste_buffer] CUT/NOERASE[/BUFFER=
user_paste_buffer | /CLIPBOARD]

COPY APPEND [user_paste_buffer] CUT/NOERASE/APPEND[/BUFFER=
user_paste_buffer | /CLIPBOARD]

CUT [user_paste_buffer] CUT[/BUFFER=user_paste_buffer | /CLIPBOARD]

CUT APPEND [buffer_name] CUT/APPEND[/BUFFER=buffer_name | /CLIPBOARD]

DELETE ADJUSTMENT
[adjustment_name_wild
[language_name_wild]]

DELETE ADJUSTMENT[/LANGUAGE=
language_name_wild] adjustment_name_wild

DELETE ALIAS [alias_name_wild
[language_name_wild]]

DELETE ALIAS[/LANGUAGE=
language_name_wild] alias_name_wild

DELETE BUFFER [buffer_name] DELETE BUFFER [buffer_name]

(continued on next page)

E–2 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

DELETE EXPAND UNEXPAND

DELETE KEY user_key_name DELETE KEY user_key_name

DELETE LANGUAGE language_name_wild DELETE LANGUAGE language_name_wild

DELETE MARK [mark_name] CANCEL MARK [mark_name]

DELETE MENU ENTRY menu_name
menu_entry

No equivalent

DELETE MENU LABEL menu_label No equivalent

DELETE MENU SEPARATOR menu_name
number

No equivalent

DELETE PACKAGE package_name_wild DELETE PACKAGE package_name_wild

DELETE PLACEHOLDER
[placeholder_name_wild
[language_name_wild]]

DELETE PLACEHOLDER[/LANGUAGE=
language_name_wild]
placeholder_name_wild

DELETE ROUTINE [routine_name_wild
[package_name_wild]]

DELETE ROUTINE[/PACKAGE=
package_name_wild] routine_name_wild

DELETE SELECTION MARK CANCEL SELECT_MARK

DELETE TAB UNTAB

DELETE TOKEN [token_name_wild
[language_name_wild]]

DELETE TOKEN[/LANGUAGE=
language_name_wild] token_name_wild

DELETE WINDOW DELETE WINDOW

DISABLE GRAMMAR PREFIX prefix No equivalent

DISABLE VMS INTEGRATION COMMANDS No equivalent

ENABLE GRAMMAR PREFIX prefix
help_library

No equivalent

ENABLE VMS INTEGRATION COMMANDS No equivalent

END OF LINE GOTO LINE/FORWARD/BOUND

ENLARGE WINDOW [number] ENLARGE WINDOW number

ENTER COMMENT [BLOCK | LINE] ENTER COMMENT[/BLOCK| /LINE]

ENTER LINE ENTER LINE

ENTER PSEUDOCODE ENTER PSEUDOCODE

ENTER SPACE ENTER SPACE

(continued on next page)

Portable and VMSLSE Commands E–3

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

ENTER SPECIAL ascii_code ENTER SPECIAL ascii_code

ENTER TAB ENTER TAB

ENTER TEXT text_string ENTER TEXT text_string

ERASE CHARACTER ERASE CHARACTER

ERASE COMMENT No equivalent

ERASE END OF LINE ERASE LINE/END/FORWARD

ERASE END OF WORD ERASE WORD/FORWARD

ERASE LINE ERASE LINE

ERASE NEXT CHARACTER ERASE CHARACTER/FORWARD

ERASE NEXT LINE ERASE LINE/BEGINNING/FORWARD

ERASE NEXT PLACEHOLDER ON | OFF ERASE PLACEHOLDER/FORWARD/[NO]GOTO_
PLACEHOLDER

ERASE NEXT WORD ERASE WORD/NEXT

ERASE NUM CHARS number No equivalent

ERASE PLACEHOLDER ON | OFF ERASE PLACEHOLDER/CURRENT/[NO]GOTO_
PLACEHOLDER

ERASE PREVIOUS CHARACTER ERASE CHARACTER/REVERSE

ERASE PREVIOUS LINE ERASE LINE/END/REVERSE

ERASE PREVIOUS PLACEHOLDER ON | OFF ERASE PLACEHOLDER/REVERSE/[NO]GOTO_
PLACEHOLDER

ERASE PREVIOUS WORD ERASE WORD/PREVIOUS

ERASE SELECTION ERASE SELECTION

ERASE START OF LINE ERASE LINE/BEGINNING/REVERSE

ERASE START OF WORD ERASE WORD/REVERSE

ERASE WORD ERASE WORD

EXACT SUBSTITUTE search_string
replace_string ALL | SINGLE

SUBSTITUTE/CASE_MATCHING[/ALL]
search_string replace_string

EXECUTE BUFFER LSE [buffer_name] DO[/BUFFER=buffer_name]

EXECUTE BUFFER PLSE [buffer_name] DO[/BUFFER=buffer_name]

EXECUTE BUFFER TPU [buffer_name] DO/TPU[/BUFFER=buffer_name]

(continued on next page)

E–4 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

EXIT EXIT

EXPAND [depth] EXPAND[/DEPTH=depth]

EXTEND [procedure_name] EXTEND [procedure_name]

EXTRACT ADJUSTMENT
[adjustment_name_wild
[language_name_wild]]

EXTRACT ADJUSTMENT[/LANGUAGE=
language_name_wild]
adjustment_name_wild

EXTRACT ALIAS [alias_name_wild
[language_name_wild]]

EXTRACT ALIAS[/LANGUAGE=
language_name_wild] alias_name_wild

EXTRACT LANGUAGE language_name_wild EXTRACT LANGUAGE language_name_wild

EXTRACT NEW ADJUSTMENT
[adjustment_name_wild
[language_name_wild]]

EXTRACT ADJUSTMENT/NEW
[/LANGUAGE=language_name_wild]
adjustment_name_wild

EXTRACT NEW ALIAS [alias_name_wild
[language_name_wild]]

EXTRACT ALIAS/NEW
[/LANGUAGE=language_name_wild]
alias_name_wild

EXTRACT NEW LANGUAGE
language_name_wild

EXTRACT LANGUAGE/NEW
language_name_wild

EXTRACT NEW PACKAGE package_name_wild EXTRACT PACKAGE/NEW
package_name_wild

EXTRACT NEW PLACEHOLDER
[placeholder_name_wild [language_name_wild]]

EXTRACT PLACEHOLDER/NEW[/LANGUAGE=language_
name_wild] placeholder_name_wild

EXTRACT NEW ROUTINE [routine_name_wild
[package_name_wild]]

EXTRACT ROUTINE/NEW[/LANGUAGE=
language_name_wild] routine_name_wild

EXTRACT NEW TOKEN [token_name_wild
[language_name_wild]]

EXTRACT TOKEN/NEW[/LANGUAGE=
language_name_wild] token_name_wild

EXTRACT PACKAGE package_name_wild EXTRACT PACKAGE package_name_wild

EXTRACT PLACEHOLDER
[placeholder_name_wild [language_name_wild]]

EXTRACT PLACEHOLDER[/LANGUAGE=
language_name_wild] placeholder_name_wild

EXTRACT ROUTINE [routine_name_wild
[package_name_wild]]

EXTRACT ROUTINE[/LANGUAGE=
language_name_wild] routine_name_wild

EXTRACT TOKEN [token_name_wild
[language_name_wild]]

EXTRACT TOKEN[/LANGUAGE=
language_name_wild] token_name_wild

(continued on next page)

Portable and VMSLSE Commands E–5

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

FETCH [element_name [element_id [remark]]] [SET CMS/REMARK=remark]
CMS FETCH[/GENERATION=element_id]
[element_name] [remark]

FILL [column] FILL[/COMMENT_COLUMN=column]

FIND OCCURRENCES FIND/INDICATED

FOCUS FOCUS

GOTO BUFFER buffer_name GOTO BUFFER buffer_name

GOTO COMMAND [lse_command] GOTO COMMAND

GOTO DECLARATION GOTO DECLARATION/INDICATED

GOTO MARK mark_name GOTO MARK mark_name

GOTO REVIEW GOTO REVIEW

GOTO SOURCE GOTO SOURCE

HELP [help_topic_wild] HELP [help_topic_wild]

HELP INDICATED HELP/INDICATED

HELP KEY user_key_name No equivalent

HELP KEYPAD HELP/KEYPAD

INCLUDE FILE file_spec INCLUDE file_spec

INDENT LEFT CHANGE INDENTATION/REVERSE

INDENT RIGHT CHANGE INDENTATION/FORWARD

LINE number [procedure_name] LINE number [procedure_name]

LOWERCASE LOWERCASE WORD

LSE lse_command LSE lse_command

MOVE DOWN GOTO CHARACTER/FORWARD/VERTICAL

MOVE UP GOTO CHARACTER/REVERSE/VERTICAL

NEW ADJUSTMENT adjustment_name [defined_
language] 1

DEFINE ADJUSTMENT ...

NEW ALIAS alias_name [defined_language] 1 DEFINE ALIAS ...

NEW BUFFER new_buffer_name GOTO BUFFER/CREATE new_buffer_name

NEW FILE file_spec GOTO FILE/CREATE file_spec

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

E–6 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

NEW KEY user_key_name lse_command help_
topic remark legend tpu_command 1

DEFINE KEY ...

NEW LANGUAGE language_name 1 DEFINE LANGUAGE ...

NEW LEARN KEY user_key_name 1 DEFINE KEY/LEARN ...

NEW MARK mark_name SET MARK mark_name

NEW MENU ENTRY menu_name menu_label
before_menu_entry

No equivalent

NEW MENU LABEL menu_label tpu_command
mnemonic_character

No equivalent

NEW MENU SEPARATOR menu_name
before_menu_entry

No equivalent

NEW PACKAGE package_name 1 DEFINE PACKAGE ...

NEW PLACEHOLDER placeholder_name 1 DEFINE PLACEHOLDER ...

NEW ROUTINE routine_name
defined_package 1

DEFINE ROUTINE ...

NEW SELECTION MARK SET SELECT_MARK

NEW TOKEN token_name token_type [defined_
language] 1

DEFINE TOKEN ...

NEW WINDOW [number] SPLIT WINDOW [number]

NEXT BUFFER NEXT BUFFER

NEXT CHARACTER GOTO CHARACTER/FORWARD

NEXT END OF LINE GOTO LINE/FORWARD/BREAK

NEXT ERROR NEXT ERROR

NEXT PAGE GOTO PAGE/FORWARD

NEXT PLACEHOLDER GOTO PLACEHOLDER/FORWARD

NEXT SCREEN GOTO SCREEN/FORWARD

NEXT START OF LINE GOTO LINE/FORWARD

NEXT WINDOW NEXT WINDOW

NEXT WORD GOTO WORD/FORWARD

ONE WINDOW ONE WINDOW

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

Portable and VMSLSE Commands E–7

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

OPEN FILE file_spec GOTO FILE file_spec

OPEN SELECTED FILE No equivalent

OVERVIEW SOURCE VIEW SOURCE/DEPTH=1

PASTE [user_paste_buffer] PASTE[/BUFFER[=user_paste_buffer] | /CLIPBOARD]

PATTERN EXACT SUBSTITUTE
pattern_search_string replace_string
ALL | SINGLE

SUBSTITUTE/PATTERN/CASE_MATCHING
[/ALL] pattern_search_string replace_string

PATTERN SEARCH pattern_search_string SEARCH/PATTERN pattern_search_string

PATTERN SUBSTITUTE pattern_search_string
replace_string ALL | SINGLE

SUBSTITUTE/PATTERN[/ALL]
pattern_search_string replace_string

PLSE lse_command PLSE lse_command

POSITION CURSOR line column No equivalent

PREVIOUS BUFFER PREVIOUS BUFFER

PREVIOUS CHARACTER GOTO CHARACTER/REVERSE

PREVIOUS END OF LINE GOTO LINE/REVERSE/END

PREVIOUS ERROR PREVIOUS ERROR

PREVIOUS PAGE GOTO PAGE/REVERSE

PREVIOUS PLACEHOLDER GOTO PLACEHOLFER/REVERSE

PREVIOUS SCREEN GOTO SCREEN/REVERSE

PREVIOUS START OF LINE GOTO LINE/PREVIOUS

PREVIOUS WINDOW PREVIOUS WINDOW

PREVIOUS WORD GOTO WORD/PREVIOUS

QUIT QUIT

QUOTE QUOTE

QUOTE KEYNAME No equivalent

RECOVER BUFFER file_spec RECOVER BUFFER file_spec

REDO REDO

REFRESH REFRESH

REPEAT number lse_command REPEAT number lse_command

(continued on next page)

E–8 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

REPLACE [element_name [element_id [remark]]] [SET CMS/REMARK=remark]
REPLACE[/GENERATION=element_id]
[element_name]

RESERVE [element_name [element_id [remark]]] [SET CMS/REMARK=remark]
RESERVE[/GENERATION=element_id]
[element_name]

RESTORE [restore_option] UNERASE [restore_option]

REVIEW REVIEW

REVIEW BUFFER buffer_name REVIEW buffer_name

REVIEW FILE file_spec REVIEW/FILE=file_spec

SAVE AS file_spec WRITE file_spec

SAVE ENVIRONMENT file_spec SAVE ENVIRONMENT file_spec

SAVE ENVIRONMENT CHANGES file_spec SAVE ENVIRONMENT/NEW file_spec

SAVE FILE file_spec WRITE file_spec

SAVE SECTION file_spec SAVE SECTION file_spec

SAVE SELECTION file_spec WRITE/SELECT_REGION file_spec

SAVE VISIBLE file_spec WRITE/VISIBLE file_spec

SEARCH search_string SEARCH search_string

SELECT TOGGLE SELECT MARK

SELECT ALL SELECT ALL

SET ADJUSTMENT COMPRESS ON | OFF
[defined_adjustment [defined_language]] 1

DEFINE ADJUSTMENT/[NO]COMPRESS ...

SET ADJUSTMENT COUNT ON | OFF [defined_
adjustment [defined_language]] 1

DEFINE ADJUSTMENT/[NO]COUNT ...

SET ADJUSTMENT CURRENT
current_indentation [defined_adjustment
[defined_language]] 1

DEFINE ADJUSTMENT/CURRENT=
current_indentation ...

SET ADJUSTMENT INHERIT
inherit_keyword [defined_adjustment
[defined_language]] 1

DEFINE ADJUSTMENT/[NO]INHERIT=
inherit_keyword ...

SET ADJUSTMENT OVERVIEW ON | OFF
[defined_adjustment [defined_language]] 1

DEFINE ADJUSTMENT/[NO]OVERVIEW ...

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

Portable and VMSLSE Commands E–9

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SET ADJUSTMENT PATTERN
adjustment_pattern [defined_adjustment
[defined_language]] 1

DEFINE ADJUSTMENT ...

SET ADJUSTMENT PREFIX ADJUSTMENT
adjustment_value [defined_adjustment
[defined_language]] 1

DEFINE ADJUSTMENT/PREFIX= ...

SET ADJUSTMENT PREFIX INDENTATION
indentation_value [defined_adjustment
[defined_language]] 1

DEFINE ADJUSTMENT/PREFIX= ...

SET ADJUSTMENT SUBSEQUENT subsequent_
indentation [defined_adjustment [defined_
language]] 1

DEFINE ADJUSTMENT/SUBSEQUENT=
subsequent_indentation ...

SET ADJUSTMENT UNIT ON | OFF [defined_
adjustment [defined_language]] 1

DEFINE ADJUSTMENT/[NO]UNIT ...

SET ALIAS EXPAND TEXT text_string
[defined_alias [defined_language]]

DEFINE ALIAS ...

SET BALANCE WINDOWS ON | OFF SET SCREEN [NO]BALANCE_WINDOW

SET BELL ALL OFF SET MODE BELL=NONE

SET BELL ALL ON SET MODE BELL=ALL

SET BELL BROADCAST ON | OFF SET MODE BELL=[NO]BROADCAST

SET BUFFER AUTO ERASE ON | OFF SET [NO]AUTO_ERASE

SET BUFFER CLOSE READ_ONLY SET READ_ONLY

SET BUFFER CLOSE SAVE SET WRITE

SET BUFFER DIRECTION FORWARD SET FORWARD

SET BUFFER DIRECTION REVERSE SET REVERSE

SET BUFFER INDENTATION level SET INDENTATION level

SET BUFFER JOURNALING ON | OFF SET [NO]JOURNALING

SET BUFFER LANGUAGE language_name SET LANGUAGE language_name

SET BUFFER LEFT MARGIN column SET LEFT_MARGIN column

SET BUFFER MODIFIABLE ON | OFF SET [NO]MODIFY

SET BUFFER OUTPUT FILE file_spec SET OUTPUT_FILE file_spec

SET BUFFER OVERVIEW ON | OFF SET [NO]OVERVIEW

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

E–10 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SET BUFFER RIGHT MARGIN column SET RIGHT_MARGIN column

SET BUFFER TAB INCREMENT number SET TAB_INCREMENT number

SET BUFFER TEXT INSERT SET INSERT

SET BUFFER TEXT OVERSTRIKE SET OVERSTRIKE

SET BUFFER WRAP ON | OFF SET [NO]WRAP

SET CLIPBOARD ON | OFF COPY[/CLIPBOARD] ... | CUT[/CLIPBOARD]
... | PASTE[/CLIPBOARD] ...

SET COMMAND LANGUAGE
command_language

SET COMMAND LANGUAGE
command_language

SET CURSOR cursor_option SET CURSOR cursor_option

SET DIRECTORY DEFAULT directory_spec SET DEFAULT_DIRECTORY directory_spec

SET DIRECTORY READONLY directory_spec
ADD | REMOVE

SET DIRECTORY[/READ_ONLY | /WRITE]
directory_spec

SET DIRECTORY SOURCE directory_spec SET SOURCE_DIRECTORY directory_spec

SET FONT font_attribute SET FONT font_attribute

SET HEIGHT number SET SCREEN HEIGHT=number

SET KEYPAD keypad_name SET MODE KEYPAD=keypad_name

SET LANGUAGE ANSI FORTRAN ON | OFF
[defined_language] 1

MODIFY LANGUAGE/FORTRAN=
[NO]ANSI_FORMAT ...

SET LANGUAGE BRACKETED COMMENTS
begin_string end_string [add_remove
[defined_language]] 1

MODIFY LANGUAGE/COMMENT=
(BEGIN=string_list,END=string_list) ...

SET LANGUAGE COMMENT ASSOCIATION
comment_association [defined_language] 1

MODIFY LANGUAGE/COMMENT=
ASSOCIATED=comment_association ...

SET LANGUAGE COMPILE COMMAND
compile_command [defined_language] 1

MODIFY LANGUAGE
/COMPILE_COMMAND=
compile_command ...

SET LANGUAGE DIAGNOSTICS ON | OFF
[defined_language] 1

MODIFY LANGUAGE/CAPABILITIES=
[NO]DIAGNOSTICS ...

SET LANGUAGE ESCAPES character_string
[defined_language] 1

MODIFY LANGUAGE/QUOTED_ITEM=
ESCAPES=character_string ...

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

Portable and VMSLSE Commands E–11

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SET LANGUAGE EXPAND CASE case_type
[defined_language] 1

MODIFY LANGUAGE/EXPAND_CASE=
case_type ...

SET LANGUAGE FILE TYPES text_string [add_
remove [defined_language]] 1

MODIFY LANGUAGE/FILE_TYPES=
string_list ...

SET LANGUAGE FIXED COMMENTS text_
string column [add_remove
[defined_language]] 1

MODIFY LANGUAGE/COMMENT=
FIXED=(string,column) ...

SET LANGUAGE FORTRAN boolean [defined_
language] 1

No equivalent

SET LANGUAGE HELP LIBRARY file_spec
[defined_language] 1

MODIFY LANGUAGE/HELP_LIBRARY=
file_spec ...

SET LANGUAGE HELP TOPIC text_string
[defined_language] 1

MODIFY LANGUAGE/TOPIC_STRING=
text_string ...

SET LANGUAGE IDENTIFIER CHARACTERS
identifier_characters [defined_language] 1

MODIFY LANGUAGE
/IDENTIFIER_CHARACTERS=
identifier_characters ...

SET LANGUAGE INITIAL STRING
text_string [defined_language] 1

MODIFY LANGUAGE/INITIAL_STRING=
text_string ...

SET LANGUAGE LEFT MARGIN column
[defined_language] 1

MODIFY LANGUAGE/LEFT_MARGIN=
column ...

SET LANGUAGE LINE COMMENTS text_string
[add_remove [defined_language]] 1

MODIFY LANGUAGE/COMMENT=LINE=
string_list ...

SET LANGUAGE OPTIONAL DELIMIT begin_
string end_string [defined_language] 1

MODIFY LANGUAGE
/PLACEHOLDER_DELIMITERS=
(OPTIONAL=begin_string,end_string) ...

SET LANGUAGE OPTIONAL LIST DELIMIT
begin_string end_string [defined_language] 1

MODIFY LANGUAGE
/PLACEHOLDER_DELIMITERS=
(OPTIONAL_LIST=begin_string,end_string)
...

SET LANGUAGE OVERVIEW MINIMUM
LINES number defined_language 1

MODIFY LANGUAGE
/OVERVIEW_OPTIONS=MINIMUM_
LINES=
number ...

SET LANGUAGE OVERVIEW TAB RANGE
min_value max_value [defined_language] 1

MODIFY LANGUAGE
/OVERVIEW_OPTIONS=TAB_RANGE=
(min_value,max_value) ...

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

E–12 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SET LANGUAGE PSEUDOCODE DELIMIT
begin_string end_string [defined_language] 1

MODIFY LANGUAGE
/PLACEHOLDER_DELIMITERS=
PSEUDOCODE=(begin_string,end_string) ...

SET LANGUAGE PUNCTUATION CHARACTERS
character_string
[defined_language] 1

MODIFY LANGUAGE
/PUNCTUATION_CHARACTERS=
character_string ...

SET LANGUAGE QUOTES character_string
[defined_language] 1

MODIFY LANGUAGE/QUOTED_ITEM=
QUOTES=character_string ...

SET LANGUAGE REQUIRED DELIMIT begin_
string end_string [defined_language] 1

MODIFY LANGUAGE
/PLACEHOLDER_DELIMITERS=
REQUIRED=(begin_string,end_string) ...

SET LANGUAGE REQUIRED LIST DELIMIT
begin_string end_string
[defined_language] 1

MODIFY LANGUAGE
/REQUIRED_LIST=
(begin_string,end_string) ...

SET LANGUAGE RIGHT MARGIN column
[defined_language] 1

MODIFY LANGUAGE/RIGHT_MARGIN=
column ...

SET LANGUAGE TAB INCREMENT number
[defined_language] 1

MODIFY LANGUAGE/TAB_INCREMENT=
number ...

SET LANGUAGE TAG TERMINATORS
character_string [add_remove [defined_language]]
1

MODIFY LANGUAGE/TAG_TERMINATORS=

string_list ...

SET LANGUAGE TRAILING COMMENTS text_
string [add_remove [defined_language]] 1

MODIFY LANGUAGE/COMMENT=
TRAILING=string_list ...

SET LANGUAGE VERSION text_string [defined_
language] 1

MODIFY LANGUAGE/VERSION=text_
string ...

SET LANGUAGE WRAP boolean
[defined_language] 1

MODIFY LANGUAGE/WRAP boolean ...

SET MAX UNDO number SET MAX_UNDO=number

SET MAXIMUM WINDOWS number SET SCREEN
MAXIMUM_WINDOW_NUMBER=number

SET MENU LABEL menu_label tpu_command
mnemonic_character

No equivalent

SET MENU MNEMONICS boolean No equivalent

SET MINIMUM WINDOW LENGTH=number SET SCREEN
MINIMUM_WINDOW_LENGTH number

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

Portable and VMSLSE Commands E–13

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SET NUMBER OF WINDOWS number SET SCREEN WINDOW=number

SET PACKAGE HELP LIBRARY file_spec
[defined_package] 1

DEFINE PACKAGE/HELP_LIBRARY=
file_spec ...

SET PACKAGE HELP TOPIC text_string
[defined_package] 1

DEFINE PACKAGE/TOPIC_STRING=
text_string ...

SET PACKAGE LANGUAGE
defined_language [add_remove
[defined_package]] 1

DEFINE PACKAGE/LANGUAGE=
language_list ...

SET PACKAGE PARAMETER EXPAND
text_string defined_package 1

DEFINE PACKAGE
/PARAMETER_EXPAND=text_string ...

SET PACKAGE ROUTINE EXPAND
text_string defined_package 1

DEFINE PACKAGE/ROUTINE_EXPAND=
text_string ...

SET PENDING DELETE ON | OFF SET MODE [NO]PENDING_DELETE

SET PLACEHOLDER AUTO SUBSTITUTE
ON | OFF [defined_placeholder
[defined_language]] 1

DEFINE PLACEHOLDER
/[NO]AUTO_SUBSTITUTE ...

SET PLACEHOLDER BODY LINE
body_string indent_type indent_column-
tab_or_space same_next_line [add_remove
[defined_placeholder- [defined_language]]] 1

DEFINE PLACEHOLDER/TYPE=
NONTERMINAL ...

SET PLACEHOLDER DESCRIPTION descrip-
tion [defined_placeholder
[defined_language]] 1

DEFINE PLACEHOLDER/DESCRIPTION=
description ...

SET PLACEHOLDER DUPLICATION
duplication [defined_placeholder
[defined_language]] 1

DEFINE PLACEHOLDER/DUPLICATION=
duplication ...

SET PLACEHOLDER HELP TOPIC
help_topic [defined_placeholder
[defined_language]] 1

DEFINE PLACEHOLDER
/TOPIC_STRING=help_topic ...

SET PLACEHOLDER INHERIT
placeholder_name [defined_placeholder
[defined_language]] 1

DEFINE PLACEHOLDER
/PLACEHOLDER=placeholder_name ...

SET PLACEHOLDER LEADING
text_string [defined_placeholder
[defined_language]] 1

DEFINE PLACEHOLDER/LEADING=
text_string ...

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

E–14 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SET PLACEHOLDER MENU LINE
body_string description menu_line_type-
list_boolean [add_remove [defined_placeholder
[defined_language]]] 1

DEFINE PLACEHOLDER/TYPE=MENU ...

SET PLACEHOLDER PSEUDOCODE ON | OFF
[defined_placeholder
[defined_language]] 1

DEFINE PLACEHOLDER
/[NO]PSEUDOCODE [defined_placeholder] ...

SET PLACEHOLDER SEPARATOR
text_string [defined_placeholder
[defined_language]] 1

DEFINE PLACEHOLDER/SEPARATOR=
text_string ...

SET PLACEHOLDER TERMINAL LINE body_
string [add_remove [defined_placeholder [defined_
language]]] 1

DEFINE PLACEHOLDER/TYPE=
TERMINAL ...

SET PLACEHOLDER TRAILING text_string
[defined_placeholder [defined_language]] 1

DEFINE PLACEHOLDER/TRAILING=
text_string ...

SET PRIMARY SELECTION MODEL selection_
model

No equivalent

SET PROMPT ABORT user_key_name
add_remove

No equivalent

SET PROMPT ALTERMINATOR user_key_name
add_remove

No equivalent

SET PROMPT DIALOG CCT | DEFAULT No equivalent

SET PROMPT DIALOG WINDOW DEFINE KEY/DIALOG ... | SEARCH/DIALOG
... | WRITE/DIALOG ...

SET PROMPT EXPANDMENU prompt_keypad No equivalent

SET PROMPT KEYPAD prompt_keypad No equivalent

SET PROMPT TERMINATOR user_key_name
add_remove

No equivalent

SET ROUTINE DESCRIPTION description
[defined_routine [defined_package]] 1

DEFINE ROUTINE/DESCRIPTION=
description ...

SET ROUTINE HELP TOPIC help_topic
[defined_routine [defined_package]] 1

DEFINE ROUTINE/TOPIC_STRING=
help_topic ...

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

Portable and VMSLSE Commands E–15

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SET ROUTINE PARAMETER parameter_name
optional_or_required mechanism-
[add_remove [defined_routine
[defined_package]]] 1

DEFINE ROUTINE ...

SET SAVE RELATED BUFFERS boolean No equivalent

SET SCROLL MARGINS top_margin
bottom_margin

SET SCROLL_MARGINS top_margin
bottom_margin

SET SEARCH AUTO REVERSE OFF SET SEARCH NOAUTO_REVERSE

SET SEARCH AUTO REVERSE ON SET SEARCH AUTO_REVERSE

SET SEARCH CASE SENSITIVE OFF SET SEARCH NOCASE_SENSITIVE

SET SEARCH CASE SENSITIVE ON SET SEARCH CASE_SENSITIVE

SET SEARCH DIACRITICAL OFF SET SEARCH
NODIACRITICAL_SENSITIVE

SET SEARCH DIACRITICAL ON SET SEARCH DIACRITICAL_SENSITIVE

SET SEARCH PATTERN search_pattern_name SET SEARCH PATTERN
search_pattern_name

SET SEARCH SPAN SPACE OFF SET SEARCH NOSPAN_SPACE

SET SEARCH SPAN SPACE ON SET SEARCH SPAN_SPACE

SET TABS HARD OFF SET MODE TABS=NOHARD

SET TABS HARD ON SET MODE TABS=HARD

SET TABS VISIBLE OFF SET MODE TABS=NOVISIBLE

SET TABS VISIBLE ON SET MODE TABS=VISIBLE

SET TOKEN BODY LINE body_string indent_
type indent_column tab_or_space-
same_next_line [add_remove [defined_token
[defined_language]]] 1

DEFINE TOKEN ...

SET TOKEN DESCRIPTION description
[defined_token [defined_language]] 1

DEFINE TOKEN/DESCRIPTION=
description ...

SET TOKEN HELP TOPIC help_topic [defined_
token [defined_language]] 1

DEFINE TOKEN/TOPIC_STRING=
help_topic ...

SET TOKEN INHERIT placeholder_name
[defined_token [defined_language]] 1

DEFINE TOKEN/PLACEHOLDER=
placeholder_name ...

1Indicates that the VMSLSE Equivalent command is incomplete as shown.

(continued on next page)

E–16 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SET UNDO OFF SET MODE UNDO=OFF

SET UNDO ON SET MODE UNDO=ON

SET WIDTH number SET SCREEN WIDTH=number

SHIFT LEFT SHIFT/REVERSE

SHIFT LEFT number REPEAT number SHIFT/REVERSE

SHIFT_RIGHT SHIFT/FORWARD

SHIFT_RIGHT number REPEAT number SHIFT/FORWARD

SHOW ADJUSTMENT [adjustment_name_wild
[defined_language]]

SHOW ADJUSTMENT[/LANGUAGE=
defined_language] [adjustment_name_wild]

SHOW ALIAS [alias_name_wild
[defined_language]]

SHOW ALIAS[/LANGUAGE=
defined_language] [alias_name_wild]

SHOW ATTRIBUTES SHOW DEFAULT_DIRECTORY
or SHOW DIRECTORY
or SHOW MODE
or SHOW SOURCE_DIRECTORY

SHOW BUFFER buffer_name_wild SHOW BUFFER buffer_name_wild

SHOW KEY user_key_name_wild SHOW KEY user_key_name_wild

SHOW LANGUAGE language_name_wild SHOW LANGUAGE language_name_wild

SHOW LANGUAGE ROUTINE
[routine_name_wild [defined_language]]

SHOW ROUTINE[/LANGUAGE=
defined_language] routine_name_wild

SHOW MARK [mark_name_wild] SHOW MARK [mark_name_wild]

SHOW MAX UNDO SHOW MAX_UNDO

SHOW MAX UNDO buffer_name No equivalent

SHOW PACKAGE [package_name_wild] SHOW PACKAGE package_name_wild

SHOW PACKAGE ROUTINE
[routine_name_wild [defined_package]]

SHOW ROUTINE[/PACKAGE=
defined_package] [routine_name_wild]

SHOW PLACEHOLDER [placeholder_name_wild
[defined_language]]

SHOW PLACEHOLDER[/LANGUAGE=
defined_language] [placeholder_name_wild]

SHOW PROMPT ATTRIBUTES No equivalent

SHOW SEARCH ATTRIBUTES SHOW SEARCH

SHOW SUMMARY SHOW SUMMARY

(continued on next page)

Portable and VMSLSE Commands E–17

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

SHOW SYSTEM BUFFER [buffer_name_wild] SHOW BUFFER/SYSTEM_BUFFERS
[buffer_name_wild]

SHOW TOKEN [token_name_wild
[defined_language]]

SHOW TOKEN[/LANGUAGE=
defined_language] token_name_wild

SHOW VERSION SHOW VERSION

SHOW WINDOW ATTRIBUTES SHOW SCREEN

SHRINK WINDOW [number] SHRINK WINDOW [number]

SPAWN [cli_command] SPAWN [cli_command]

SPELL SPELL

START OF LINE GOTO LINE/REVERSE/BOUND

SUBSTITUTE search_string replace_string
ALL | SINGLE

SUBSTITUTE[/ALL] search_string
replace_string

TOGGLE INSERT OVERSTRIKE CHANGE TEXT_ENTRY_MODE

TOP GOTO TOP

TPU tpu_command TPU tpu_command

TWO WINDOWS TWO WINDOWS

UNDO UNDO

UNRESERVE [element_name [element_id
[remark]]]

[SET CMS/REMARK=remark]
UNRESERVE[/GENERATION=element_id]
[element_name]

UPPERCASE UPPERCASE WORD

VIEW DEBUGGING SOURCE VIEW SOURCE/DEBUG

VIEW_FILE file_spec GOTO FILE/READ_ONLY file_spec

VIEW SOURCE depth VIEW SOURCE/DEPTH=depth

WHAT LINE WHAT LINE

Additional Commands if VMSSCA_ Prefix is Enabled

ANALYZE [file_spec] ANALYZE/NODESIGN [file_spec]

CHECK CALLS [routine] CHECK CALLS [routine]

COLLAPSE COLLAPSE

CONVERT LIBRARY [sca_library] CONVERT LIBRARY [sca_library]

(continued on next page)

E–18 Portable and VMSLSE Commands

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

Additional Commands if VMSSCA_ Prefix is Enabled

CREATE LIBRARY [sca_library] CREATE LIBRARY [sca_library]

DELETE LIBRARY [sca_library] DELETE LIBRARY [sca_library]

DELETE MODULE [sca_module] DELETE MODULE [sca_module]

DELETE QUERY [query] DELETE QUERY [query]

EXPAND EXPAND

EXTRACT MODULE [sca_module] EXTRACT MODULE [sca_module]

FIND [find_exp] FIND [find_exp]

GOTO ASSOCIATED DECLARATION [goto_exp] GOTO DECLARATION/ASSOCIATED
[goto_exp]

GOTO CONTEXT DECLARATION [goto_exp] GOTO DECLARATION
/CONTEXT_DEPENDENT [goto_exp]

GOTO DECLARATION [goto_exp] GOTO DECLARATION/PRIMARY [goto_exp]

GOTO INDICATED DECLARATION GOTO DECLARATION/INDICATED

GOTO PRIMARY DECLARATION [goto_exp] GOTO DECLARATION/PRIMARY [goto_exp]

GOTO QUERY [query] GOTO QUERY [query]

GOTO SOURCE GOTO SOURCE

INSPECT [inspect_exp] INSPECT [inspect_exp]

LOAD MODULE [sca_module] LOAD MODULE [sca_module]

NEXT OCCURRENCE NEXT OCCURRENCE

NEXT QUERY NEXT QUERY

NEXT STEP NEXT STEP

NEXT SYMBOL NEXT SYMBOL

PREVIOUS OCCURRENCE PREVIOUS OCCURRENCE

PREVIOUS QUERY PREVIOUS QUERY

PREVIOUS STEP PREVIOUS STEP

PREVIOUS SYMBOL PREVIOUS SYMBOL

RECOVER LIBRARY [sca_library] VERIFY/RECOVER

REORGANIZE LIBRARY [sca_library] REORGANIZE LIBRARY [sca_library]

REPORT [report_name] REPORT [report_name]

(continued on next page)

Portable and VMSLSE Commands E–19

Portable and VMSLSE Commands

Table E–1 (Cont.) Portable to VMSLSE Commands

Portable Command VMSLSE Equivalent

Additional Commands if VMSSCA_ Prefix is Enabled

SET LIBRARY [sca_library] SET LIBRARY [sca_library]

SET NOLIBRARY [sca_library] SET NOLIBRARY [sca_library]

SHOW BRIEF LIBRARY [sca_library] SHOW BRIEF LIBRARY [sca_library]

SHOW BRIEF MODULE [sca_module] SHOW MODULE/BRIEF [sca_module]

SHOW FULL LIBRARY [sca_library] SHOW LIBRARY/FULL [sca_library]

SHOW FULL MODULE sca_module SHOW MODULE/FULL [sca_module]

SHOW LIBRARY [sca_library] SHOW BRIEF LIBRARY [sca_library]

SHOW MODULE sca_module SHOW MODULE/BRIEF [sca_module]

SHOW QUERY [query] SHOW QUERY [query]

VERIFY LIBRARY [sca_library] VERIFY/NORECOVER [sca_library]

Additional Commands if VMSCMS_ Prefix is Enabled

CMS [cms_command] CMS [cms_command]

REPLACE [cms_element] REPLACE [cms_element]

RESERVE [cms_element] RESERVE [cms_element]

SET CMS [cms_attributes] SET CMS [cms_attributes]

SHOW CMS SHOW CMS

UNRESERVE [cms_element] UNRESERVE [cms_element]

E–20 Portable and VMSLSE Commands

F
Providing 7-Bit Terminal Support for Code

Elision

You can use the OpenVMS Terminal Fallback Facility (TFF) to resolve the
problem of VT100 terminals displaying unrecognizable characters in place
of the double-angle brackets («») displayed on VT200 terminals. The TFF
translates the double-angle brackets to single-angle brackets. Have your
system manager use the following procedure:

1. Enable TFF by including the following commands in the system startup
procedure SYS$MANAGER:SYSTARTUP_V5.COM:

$ @SYS$MANAGER:TFF$STARTUP.COM

2. Add the commands to load the default system fallback and compose
sequence tables to the file SYS$MANAGER:TFF$STARTUP.COM.

For example, to load the necessary fallback and compose-sequence table
for use in North America, the system manager would add the following
commands:

$ RUN SYS$SYSTEM:TFU
SET LIBRARY SYS$SYSTEM:TFF$MASTER ! Define the library of tables
LOAD TABLE ASCII_OVST ! Load for hardcopy ASCII terminal
SET DEFAULT_TABLE ASCII ! Set default to ASCII
EXIT
$ EXIT

After this has been done, you can use the fallback utility. To enable terminal
fallback, enter the following command:

$ SET TERMINAL/FALLBACK

From this point on terminal fallback is enabled. If you want to disable
terminal fallback, enter the following command:

$ SET TERMINAL/NOFALLBACK

Providing 7-Bit Terminal Support for Code Elision F–1

Providing 7-Bit Terminal Support for Code Elision

If the SOFT_COMPOSE feature is enabled, you must rebind the ERASE
PLACEHOLDER and UNERASE PLACEHOLDER keys to something other
than Ctrl/K. This is because Ctrl/K is reserved by TFF to signal the initiation
of a compose sequence. You might want to use the Ctrl/space and GOLD-
Ctrl/space key bindings, but this produces an ASCII NULL, which might cause
problems with some communications equipment. It is recommended that
SOFT_COMPOSE be disabled unless it is required.

F–2 Providing 7-Bit Terminal Support for Code Elision

G
TPU Pattern Style

A new pattern style called Text Processing Utility (TPU) is added to the
existing pattern styles VMS and ULTRIX.

For more details on TPU patterns, see the DEC Text Processing Utility
Reference Manual.

Pattern styles are used in the following:

• SEARCH/PATTERN command (VMS command language)

• SUBSTITUTE/PATTERN command (VMS command language)

• PATTERN SEARCH command (Portable command language)

• PATTERN SUBSTITUTE command (Portable command language)

• PATTERN EXACT SUBSTITUTE command (Portable command language)

• Search dialog box (Search / Search ...)

• Substitute dialog box (Search / Substitute ...)

The usage of the TPU pattern style is similar to the existing pattern styles.
The main advantages of the TPU style are as follows:

• Direct access to the powerful TPU pattern facility (the existing pattern
styles use the facility indirectly).

• The ability to make a substitution that is a function of the pattern found.

• The ability to develop HP Test Manager for OpenVMS (DTM) user defined
filters interactively.

Most of the examples in the following sections are given using the VMS
command language and assume that the search options are set to the TPU
pattern style and case insensitive searching. The search direction is assumed
to be forward and the cursor is assumed to be positioned before the example
text. The search and replace parameters in the VMS command language
examples can be used unchanged in the equivalent Portable command
language commands.

TPU Pattern Style G–1

TPU Pattern Style
G.1 User Interface

G.1 User Interface
Select the TPU pattern style using one of the following options:

• SET SEARCH PATTERN=TPU (vms command language)

• SET SEARCH PATTERN TPU (portable command language)

• Select TPU pattern on the Search Attributes window
(Options/Search Attributes...)

The only other user interface change is the form of the search and replace
string parameters when the TPU pattern style is selected for a pattern search
or substitution.

The search string parameter is a TPU expression that must evaluate to a
TPU pattern and the replace string parameter is a TPU expression that must
evaluate to a TPU string.

Following are the examples in both the command languages. The first two
examples search for ’abc’ or ’def ’ and the last two examples substitute all
occurrences of ’abc’ or ’def ’ by ’ghi’:

SEARCH/PATTERN "’abc’ | ’def’"
PATTERN SEARCH "’abc’ | ’def’"

SUBSTITUTE/PATTERN/ALL "’abc’ | ’def’" "’ghi’"
PATTERN SUBSTITUTE "’abc’ | ’def’" "’ghi’" ALL

In the above examples ’abc’, ’def ’ and ’ghi’ are TPU strings and | is the TPU
pattern alternation operator.

The outermost quotes in the above example must be omitted if the parameters
are prompted for or if a dialog box is used.

G.2 Partial Pattern Assignment Variables
Partial pattern assignment variables allow a substitution to be a function of
the found pattern.

For example, the following command replaces the date format ’yyyy/mm/dd’ to
’dd/mm/yyyy’:

SUBSTITUTE/PATTERN -
"(_year@_v1)+’/’+(_month@_v2)+’/’+(_day@_v3)" -
"str(_v3)+’/’+str(_v2)+’/’+ str(_v1)"

when applied to: 1998/04/21 generates: 21/04/1998

In the above example, _year, _month and _day are TPU variables holding
patterns that match the year, month and day parts of a date. For more
information on setting up the variables, refer to Section G.6, Pattern Variables.

G–2 TPU Pattern Style

TPU Pattern Style
G.2 Partial Pattern Assignment Variables

In addition, @ is the TPU partial pattern assignment operator, and _v1, _v2
and _v3 are partial pattern assignment variables that are set to the found
year, date and day.

A partial pattern assignment variable holds a TPU range. When used in the
replacement string must be converted to a string using the TPU procedure
STR.

For example, the following command prefixes XYZ_ to any line that starts with
any three characters from ABCDEFGHI:

SUBSTITUTE/PATTERN/ALL -
"LINE_BEGIN + (ANY(’ABCDEFGHI’,3)@_v1)" -
"’XYZ_’+ str(_v1)"

when applied to: abc generates: XYZ_abc
012 012
defghi XYZ_defghi

In the above example, LINE_BEGIN is a TPU keyword that matches the
beginning of a line and ANY is a TPU pattern procedure that matches a
specified number of characters from a specified set of characters.

G.3 New Line
A new line is generated for each line feed character in the replacement string.
A line feed character can be introduced by means of the TPU procedure ASCII
with the value 10 as a parameter.

For example, to replace numbers at the end of lines with the string ’xxx’ (a line
feed is necessary because the search pattern includes the end of the line):

SUBSTITUTE/PATTERN/ALL -
"_n + LINE_END" -
"’xxx’ + ASCII(10)"

when applied to: 123 456 generates: 123 xxx
789 xxx

In the above example, LINE_END is a TPU keyword that matches the end of a
line and _n is TPU variable holding a pattern that matches a number.

When TPU procedure STR converts a partial pattern assignment variable to
a string, an optional second parameter is set to ASCII(10) to cause any end
of lines in the range described by the variable to be converted to line feed
characters (without the parameter they are represented by the null string).
For example:

TPU Pattern Style G–3

TPU Pattern Style
G.3 New Line

SUBSTITUTE/PATTERN/ALL -
"(LINE_BEGIN + _n + LINE_END + _n + LINE_END)@_v1" -
"STR(_v1, ASCII(10)) + STR(_v1, ASCII(10))"

when applied to: 123 generates: 123
456 456

123
456

Carriage return characters adjacent to line feed characters in the replacement
string are ignored.

G.4 Errors
The search and replace strings are TPU expressions that must be
evaluated. During the process of evaluation, there might be various TPU
compilation/evaluation errors messages generated.

Two new error messages are added for invalid search or replace parameters:

Error in search pattern
Error in replacement string

These messages are normally preceded by various TPU error messages. For
example, the search string "’aaa’ + bbb" results in the following error messages:

Undefined procedure call BBB
Operand combination STRING + INTEGER unsupported
Error in search pattern

G.5 Global Variables
Partial pattern assignment variables and pattern variables (such as ’_year’ in
the preceding examples) must be global and not clash with any TPU global
variables used by LSE. This can be achieved by starting any such variable
names with an underscore character.

G.6 Pattern Variables
Any complicated search or substitution is likely to need various pattern
variables to be already set up. This can be achieved in various ways.

The definitions can be set up by issuing DO/TPU commands, for example:

G–4 TPU Pattern Style

TPU Pattern Style
G.6 Pattern Variables

DO/TPU "_digits:=’0123456789’"
DO/TPU "_digit:=any(_digits)"
DO/TPU "_year:=any(_digits,4)"

DO/TPU "_month:=any(’01’,1)+_digit"
DO/TPU "_day:=any(’0123’,1)+_digit"
DO/TPU "_n:=span(_digits)"

The file LSE$PATTERNS.TPU in the LSE$EXAMPLE directory contains
examples of patterns, which can be added to LSE by means of the following
commands:

GOTO FILE LSE$EXAMPLE:LSE$PATTERNS.TPU
EXTEND *
DO/TPU "LSE$PATTERNS_MODULE_INIT"

G.7 Use for Developing DTM User Filters
The user defined filters global replace feature introduced in DTM Version 4.0
can be simulated using the SUBSTITUTE/PATTERN/ALL command. This
allows DTM user defined filters to be developed interactively using LSE.

For example, to replace any numbers at the end of lines with the string ’xxx’:

global_replace(
_n + LINE_END,
’xxx’ + ASCII(10),
NO_EXACT,
OFF,
ON);

The LSE equivalent (assuming that the current search attributes are
equivalent to NO_EXACT) is:

SUBSTITUTE/PATTERN/ALL -
"_n + LINE_END" -
"’xxx’ + ASCII(1O)"

The LSE equivalent of the pattern to replace parameter (first parameter of
the global_replace routine) is the same except that the parameter has to be in
quotes.

The LSE equivalent of the replacement string parameter (second parameter)
is the same if the evaluate replacement parameter (fourth parameter) is set to
ON. If the evaluate replacement parameter is set to OFF the parameter must
be in quotes.

The LSE equivalent of the search mode parameter (third parameter) is the
setting of the search options (set by the SET SEARCH command).

TPU Pattern Style G–5

TPU Pattern Style
G.7 Use for Developing DTM User Filters

LSE does not have equivalents of the evaluate replacement parameter (fourth
parameter) or the convert linefeeds parameter (fifth parameter). It always
evaluates the replacement string parameter and it always converts linefeed
characters (and ignores adjacent carriage return characters).

G–6 TPU Pattern Style

Index

A
ALIGN command, CD–14
ANALYZE command, CD–16
ATTACH command, CD–19

B
BOX COPY command, CD–20
BOX CUT command, CD–21
BOX LOWERCASE command, CD–24
BOX PASTE command, CD–22, CD–23
BOX UPPERCASE command, CD–25
Buffer

commands in, CD–4

C
CALL command, CD–26
Canceling commands, CD–4
CANCEL MARK command, CD–28
CANCEL SELECT_MARK command,

CD–29
CAPITALIZE WORD command, CD–30
CENTER LINE command, CD–31
CHANGE CASE command, CD–32
CHANGE DIRECTION command, CD–33
CHANGE INDENTATION command,

CD–34
CHANGE TEXT_ENTRY_MODE command,

CD–36

CHANGE WINDOW_MODE command,
CD–37

CHECK LANGUAGE command, CD–38
CLOSE BUFFER command, CD–41
CMS command, CD–42
COLLAPSE command, CD–43
Command prompts

LSE, CD–3
Commands

canceling, CD–4
categories of, CD–4
corresponding EVE and LSE table, D–1

COMPILE command, CD–45
CONTINUE command, CD–49
CONVERT LIBRARY command, CD–50
CREATE LIBRARY command, CD–51
CUT command, CD–53

D
DCL command, CD–57
DECTPU

procedure, A–1
restrictions, A–1
sample procedure, A–3
section file, A–1
supplemental built-ins, A–8
variable, A–1

DEFINE ADJUSTMENT command, CD–58
DEFINE ALIAS command, CD–64
DEFINE COMMAND command, CD–66
DEFINE KEY command, CD–67
DEFINE KEYWORDS command, CD–73

Index–1

DEFINE LANGUAGE command, CD–75
DEFINE PACKAGE command, CD–84
DEFINE PARAMETER command, CD–87
DEFINE PLACEHOLDER command,

CD–89
DEFINE ROUTINE command, CD–97
DEFINE TAG command, CD–100
DEFINE TOKEN command, CD–103
DELETE ADJUSTMENT command,

CD–108
DELETE ALIAS command, CD–109
DELETE BUFFER command, CD–110
DELETE COMMAND command, CD–111
DELETE KEY command, CD–112
DELETE KEYWORDS command, CD–113
DELETE LANGUAGE command, CD–114
DELETE LIBRARY command, CD–115
DELETE MODULE command, CD–117
DELETE OVERVIEW command, CD–119
DELETE PACKAGE command, CD–120
DELETE PARAMETER command, CD–121
DELETE PLACEHOLDER command,

CD–122
DELETE QUERY command, CD–123
DELETE ROUTINE command, CD–124
DELETE TAG command, CD–125
DELETE TOKEN command, CD–126
DELETE WINDOW command, CD–127
DO command, CD–128

E
END DEFINE command, CD–131
END REVIEW command, CD–133
ENLARGE WINDOW command, CD–134
ENTER COMMENT command, CD–135
ENTER LINE command, CD–138
ENTER PSEUDOCODE command, CD–141
ENTER SPACE command, CD–143
ENTER SPECIAL command, CD–144
ENTER TAB command, CD–145
ENTER TEXT command, CD–146
ERASE CHARACTER command, CD–147

ERASE LINE command, CD–149
ERASE PLACEHOLDER command,

CD–152
ERASE SELECTION command, CD–155
ERASE WORD command, CD–156
EXIT command, CD–159
EXPAND command, CD–161
EXTEND command, CD–165
EXTRACT ADJUSTMENT command,

CD–167
EXTRACT ALIAS command, CD–169
EXTRACT KEYWORDS command, CD–171
EXTRACT LANGUAGE command, CD–173
EXTRACT MODULE command, CD–175
EXTRACT PACKAGE command, CD–177
EXTRACT PARAMETER command, CD–179
EXTRACT PLACEHOLDER command,

CD–181
EXTRACT ROUTINE command, CD–183
EXTRACT TAG command, CD–185
EXTRACT TOKEN command, CD–187

F
@ (file-specification) command, CD–13
FILL command, CD–189
FIND command, CD–192
FOCUS command, CD–197

G
GET_INFO DECTPU built-in, A–8 to A–9
GOTO BOTTOM command, CD–198
GOTO BUFFER command, CD–199
GOTO CHARACTER command, CD–201
GOTO COMMAND command, CD–203
GOTO DECLARATION command, CD–204
GOTO FILE command, CD–207
GOTO LINE command, CD–210
GOTO MARK command, CD–213
GOTO PAGE command, CD–214
GOTO PLACEHOLDER command, CD–216
GOTO QUERY command, CD–218

Index–2

GOTO REVIEW command, CD–219
GOTO SCREEN command, CD–220
GOTO SOURCE command, CD–222
GOTO TOP command, CD–225
GOTO WORD command, CD–226

H
HELP command, CD–228

I
IMPORT command, CD–231
INCLUDE command, CD–232
INSPECT command, CD–234

K
Key

names, CD–69

L
LINE command, CD–239
LOAD command, CD–240
LOWERCASE WORD command, CD–242
LSE$BOTTOM_WINDOW, A–2
LSE$CREATE_SELECT_RANGE, A–2
LSE$DO_COMMAND, A–8
LSE$GET_ENVIRONMENT, A–8
LSE$MAIN_BUFFER, A–3
LSE$MAIN_WINDOW, A–2
LSE$MESSAGE_WINDOW, A–2
LSE$NUMBER_OF_WINDOWS, A–2
LSE$SECINI.TPU$SECTION, A–1
LSE$SELECT_IN_PROGRESS, A–3
LSE$SELECT_RANGE, A–3
LSE$SET_STATUS_LINE, A–2
LSE$START_SELECT_MARK, A–3
LSE$TOP_WINDOW, A–2

M
MODIFY LANGUAGE command, CD–243

N
NEXT BUFFER command, CD–251
NEXT ERROR command, CD–252
NEXT OCCURRENCE command, CD–253
NEXT QUERY command, CD–254
NEXT STEP command, CD–255
NEXT SYMBOL command, CD–256
NEXT WINDOW command, CD–257

O
ONE WINDOW command, CD–258
OTHER WINDOW command, CD–259

P
PASTE command, CD–260
PREVIOUS BUFFER command, CD–262
PREVIOUS ERROR command, CD–263
PREVIOUS OCCURRENCE command,

CD–264
PREVIOUS QUERY command, CD–265
PREVIOUS STEP command, CD–266
PREVIOUS SYMBOL command, CD–267
PREVIOUS WINDOW command, CD–268

Q
QUIT command, CD–269
QUOTE command, CD–270

R
READ command, CD–272
RECALL command, CD–274
RECOVER BUFFER command, CD–275
REDO command, CD–277
REFRESH command, CD–278

Index–3

REORGANIZE command, CD–279
REPEAT command, CD–280
REPLACE command, CD–282
REPORT command, CD–284
RESERVE command, CD–288
REVIEW command, CD–290

S
SAVE ENVIRONMENT command, CD–292
SAVE QUERY command, CD–294
SAVE SECTION command, CD–296
SEARCH command, CD–298
SELECT ALL command, CD–304
SET AUTO_ERASE command, CD–305
SET CMS command, CD–306
SET CURSOR command, CD–309
SET DEFAULT_DIRECTORY command,

CD–310
SET DIRECTORY command, CD–312
SET FONT command, CD–314
SET FORWARD command, CD–316
SET INDENTATION command, CD–318
SET INSERT command, CD–320
SET JOURNALING command, CD–321
SET LANGUAGE command, CD–323
SET LEFT_MARGIN command, CD–325
SET LIBRARY command, CD–327
SET MARK command, CD–329
SET MAX_UNDO command, CD–330
SET MODE command, CD–332
SET MODIFY command, CD–335
SET NOAUTO_ERASE command, CD–337
SET NOJOURNALING command, CD–338
SET NOLANGUAGE command, CD–340
SET NOLIBRARY command, CD–341
SET NOMODIFY command, CD–342
SET NOOUTPUT_FILE command, CD–344
SET NOOVERVIEW command, CD–346
SET NOSOURCE_DIRECTORY command,

CD–347
SET NOWRAP command, CD–348
SET OUTPUT_FILE command, CD–349

SET OVERSTRIKE command, CD–351
SET OVERVIEW command, CD–352
SET READ_ONLY command, CD–353
SET REVERSE command, CD–354
SET RIGHT_MARGIN command, CD–356
SET SCREEN command, CD–358
SET SCROLL_MARGINS command,

CD–360
SET SEARCH command, CD–361
SET SELECT_MARK command, CD–363
SET SOURCE_DIRECTORY command,

CD–364
SET TAB_INCREMENT command, CD–366
SET WRAP command, CD–367
SET WRITE command, CD–368
SHIFT command, CD–370
SHOW ADJUSTMENT command, CD–371
SHOW ALIAS command, CD–372
SHOW BUFFER command, CD–374
SHOW CMS command, CD–377
SHOW COMMAND command, CD–378
SHOW DEFAULT_DIRECTORY command,

CD–379
SHOW DIRECTORY command, CD–380
SHOW KEY command, CD–381
SHOW KEYWORDS command, CD–383
SHOW LANGUAGE command, CD–385
SHOW LIBRARY command, CD–387
SHOW MARK command, CD–388
SHOW MAX_UNDO command, CD–390
SHOW MODE command, CD–391
SHOW MODULE command, CD–392
SHOW PACKAGE command, CD–394
SHOW PARAMETER command, CD–396
SHOW PLACEHOLDER command, CD–398
SHOW QUERY command, CD–400
SHOW ROUTINE command, CD–401
SHOW SCREEN command, CD–403
SHOW SEARCH command, CD–404
SHOW SOURCE_DIRECTORY command,

CD–405
SHOW SUMMARY command, CD–406
SHOW TAG command, CD–407

Index–4

SHOW TOKEN command, CD–409
SHOW VERSION command, CD–411
SHRINK WINDOW command, CD–412
SPAWN command, CD–413
SPELL command, CD–414
SPLIT WINDOW command, CD–415
SUBSTITUTE command, CD–416

T
TAB command, CD–420
TOGGLE SELECT_MARK command,

CD–421
TPU$INITIALIZE, A–2
TPU$LOCAL_INIT, A–2
TWO WINDOWS command, CD–422

U
UNDO command, CD–424
UNDO ENTER COMMENT command,

CD–426
UNERASE command, CD–427
UNEXPAND command, CD–430
UNRESERVE command, CD–431
UNTAB command, CD–432
UPPERCASE WORD command, CD–433

V
VERIFY command, CD–434
VIEW SOURCE command, CD–436

W
WHAT LINE command, CD–438
WRITE command, CD–439

Index–5

