
The purpose of the Sequoia 2000 project is to build a
better computing environment for global change
researchers, hereafter referred to as Sequoia 2000
clients. These researchers investigate issues such as
global warming, ozone depletion, environment toxifi-
cation, and species extinction and are members of
earth science departments at universities and national
laboratories. A more detailed conception for the proj-
ect appears in the Sequoia 2000 technical report
“Large Capacity Object Servers to Support Global
Change Research.”1

The participants in the Sequoia 2000 project are
investigators of four types: (1) computer science
researchers, (2) earth science researchers, (3) govern-
ment agencies, and (4) industry partners.

Computer science researchers are responsible for
building a prototype environment that better serves
the needs of the target clients. Participating in
the Sequoia 2000 project are investigators from the
Computer Science Division at the University of
California, Berkeley; the Computer Science Depart-
ment at the University of California, San Diego; the
School of Library and Information Studies at the
University of California, Berkeley; and the San Diego
Supercomputer Center.

Earth science researchers must explain their needs
to the computer science investigators and use the
resulting prototype environment to perform better
earth science research. The Sequoia 2000 project
comprises earth science investigators from the
Department of Geography at the University of
California, Santa Barbara; the Atmospheric Science
Department at the University of California, Los
Angeles (UCLA); the Climate Research Division at
the Scripps Institution of Oceanography; and the
Department of Earth, Air, and Water at the University
of California, Davis.

To ensure that the resulting computer environment
addresses the needs of the Sequoia 2000 clients, gov-
ernment agencies that are affected by global change
matters participate in the project. The responsibility of
these agencies is to steer Sequoia 2000 research
toward achieving solutions to their problems. The
government agencies that participate are the State of
California Department of Water Resources (DWR),

Digital Technical Journal Vol. 7 No. 3 1995 39

An Overview of the
Sequoia 2000 Project

Michael Stonebraker

The Sequoia 2000 project is the joint effort
of computer scientists, earth scientists, gov-
ernment agencies, and industry partners to
build a better computing environment for
global change researchers. The objectives of
this widely distributed project are to support
high-performance I/O on terabyte data sets,
to put all data in a database management
system, and to provide improved visualization
tools and high-speed networking. The partici-
pants developed a four-level architecture to
meet these objectives. Chief among the lessons
learned is that the Sequoia 2000 system must
be considered an end-to-end solution, with all
pieces of the architecture working together.
This paper describes the Sequoia 2000 project
and its implementation efforts during the first
three years. The research was sponsored by
Digital Equipment Corporation.

the State of California Department of Forestry, the
Coordinated Environment Research Laboratory
(CERL) of the United States Army, the National
Aeronautics and Space Administration (NASA), the
National Oceanic and Atmospheric Administration
(NOAA), and the United States Geologic Survey
(USGS).

The task of the industry participants is to use
the Sequoia 2000 technology and to offer guidance
and research direction. In addition, they are a source
of free or discounted computing equipment. Digital
Equipment Corporation was the original indus-
try partner. Recently, Epoch Systems, Hewlett-
Packard, Hughes, Illustra, MCI, Metrum Systems,
PictureTel, RSI, SAIC, Siemens, and TRW have
become participants.

The purpose of this paper is to present the goals of
the Sequoia 2000 project and to discuss how we
achieved these goals and the results we accomplished
during the first three years. The paper describes the
architecture that we decided to pursue and the state of
the software efforts in the various areas. The most
important lesson we have learned is that the Sequoia
2000 system must be considered an end-to-end solu-
tion. Hence, clients can be satisfied only if all pieces of
the architecture work together in a harmonious fash-
ion. Also, many services required by the clients must be
provided by every element of the architecture, each
working with the others. We illustrate this end-to-end
characteristic of Sequoia 2000 by discussing three
issues that cross all parts of the system: guaranteed
delivery, abstracts, and compression. We then indicate
other specific lessons that we learned during the first
three years of the project. The paper concludes with the
current state of the project and its future directions.

The Sequoia 2000 Architecture

The Sequoia 2000 architecture is motivated by four
fundamental computer science objectives:

1. Support high-performance I/O on terabyte data
sets. The Sequoia 2000 clients are frustrated by cur-
rent computing environments because they cannot
effectively store the massive amounts of data
desired for research purposes. The four academic
clients plus DWR collectively want to be able to
store approximately 100 terabytes of information,
much of which is common data sets used by multi-
ple investigators. These clients would like high-
performance system software that would allow
sharing of assorted tertiary memory devices. Unlike
the I/O activities of most other scientific comput-
ing users, their activity involves primarily random
access. For example, DWR is digitizing the agency’s
library of 500,000 slides and is putting it on-line
using the Sequoia 2000 system. This data set has

some locality of reference but will have consider-
able random activity.

2. Put all data in a database management system
(DBMS). To maintain the metadata that describe
their data sets and thus aid in the retrieval of infor-
mation, the Sequoia 2000 clients want to move
all their data to a DBMS. More important, using
a DBMS will facilitate the sharing of information.
Because a DBMS insists on a common schema for
shared information, it will allow the researchers to
define a schema. Then all researchers must use
a common notation for shared data. Such a system
will be a big improvement over the current situa-
tion where every data set exists in a unique format
and must be converted by every researcher who
wishes to use it.

3. Provide improved visualization tools. Sequoia
2000 clients use popular scientific visualization
tools such as Explorer, Khoros, AVS, and IDL and
are eager to use a next-generation toolkit.

4. Provide high-speed networking. Sequoia 2000
clients realize that a 100-terabyte storage server (or
100-terabyte servers) will not be located on each of
their desktops. Moreover, the storage is likely to be
located at the other end of a wide area network
(WAN), far from their client machines. Since the
clients’ visualization scenarios invariably involve
animation, for example, showing the last 10 years
of the ozone hole by playing time forward, the
clients require ultrahigh-speed networking to move
sequences of images from a server machine to
a client machine.

To meet these objectives, we adopted the four-level
architecture illustrated in Figure 1. The architecture
comprises the footprint layer, the file system layer, the
DBMS layer, and the application layer. This section
discusses our efforts at each of the levels and then con-
cludes with a discussion of the Sequoia 2000 network-
ing that connects the elements of the architecture.

The Footprint Layer
The footprint layer is a software system that shields
higher-level software, such as file systems, from device-
specific characteristics of robotic devices. These charac-
teristics include specific robot commands, block sizes,
and media-specific issues. The footprint layer can be
thought of as a common robot device driver. A foot-
print implementation exists for each of the four tertiary
memory devices used by the project, namely, a Sony
write once, read many (WORM) optical disk jukebox,
an HP rewritable optical disk jukebox, a Metrum VHS
tape jukebox, and an Exabyte 8-millimeter tape juke-
box. Collectively, these four devices and the CPUs and
disk storage systems in front of them were named
Bigfoot, after the legendary, very tall recluse spotted
occasionally in the Pacific Northwest.

40 Digital Technical Journal Vol. 7 No. 3 1995

The File System Layer
On top of the footprint layer is the file system layer.
Two file systems manage data in the Bigfoot multilevel
memory hierarchy. The first file system is Highlight,
which extends the Log-structured File System (LFS)
pioneered for disk devices by Ousterhout and
Rosenblum to tertiary memory.2,3 The original LFS
treats a disk device as a single continuous log onto
which newly written disk blocks are appended. Blocks
are never overwritten, so a disk device can always be
written sequentially. Hence, the LFS turns a random-
write environment into a sequential-write environ-
ment. In particular problem areas, this may lead to
much higher performance. Benchmark data support
this conclusion.4 In addition, the LFS can always iden-
tify the last few blocks that were written prior to a file
system failure by finding the end of the log at recovery
time. File system repair is then very fast, because
potentially damaged blocks are easily found. This
approach differs from conventional file system repair,
where a laborious check of the disk must be performed
to ascertain disk integrity.

Highlight extends the LFS to support tertiary mem-
ory by adding a second log-structured file system on
top of the footprint layer. This file system also writes
tertiary memory blocks sequentially, thereby obtain-
ing the performance characteristics of the LFS. The
Highlight file system adds migration and bookkeeping
code that treats the disk LFS file system as a cache for
the tertiary memory file system. In summary,
Highlight should provide good performance for
workloads that consist of mainly write operations.
Since Sequoia 2000 clients want to archive vast

amounts of data, the Highlight file system has the
potential for good performance in the Sequoia 2000
environment.

The second file system is Inversion.5 Most DBMSs,
including the one used for the Sequoia 2000 project,
support binary large objects (BLOBs), which are
arbitrary-length byte strings of variable length. Like
several commercial systems, Sequoia’s data manager
POSTGRES stores large objects in a customized
storage system directly on a raw storage device.6 As
a result, it is a straightforward exercise to support con-
ventional files on top of DBMS large objects. In this
way, the front end turns every read or write operation
into a query or an update, which is processed directly
by the DBMS. Simulating files on top of DBMS large
objects has several advantages. First, DBMS services
such as transaction management and security are auto-
matically supported for files. In addition, novel charac-
teristics of our next-generation DBMS, including time
travel and an extensible type system for all DBMS
objects, are automatically available for files. Of course,
the possible disadvantage of simulating files on top of
a DBMS is poor performance. As reported by Olson,
Inversion performance is exceedingly good when large
blocks of data are read and written, as is characteristic
of the Sequoia 2000 workload.5

At the present time, Highlight is operational but
very buggy. Inversion, on the other hand, is used to
manage production data on Sequoia’s Sony WORM
jukebox. Unfortunately, the reliability of the proto-
type system has not met user expectations. Sequoia
2000 clients have a strong desire for commercial off-
the-shelf (COTS) software and are frustrated by docu-
mentation glitches, bugs, and crashes.

As a result, the Sequoia 2000 project team has also
deployed two commercial file systems, Epoch and
AMASS. The Epoch file system is quite reliable but
does not support either of Sequoia’s large-capacity
robots. Hence, it is used heavily but only for small data
sets. The AMASS file system is just coming into pro-
duction use for Sequoia’s Metrum robot and replaces
an earlier COTS system, which was unreliable. Given
the experience of the Sequoia 2000 team with tertiary
memory support, tertiary memory users should care-
fully test all file system software.

The DBMS Layer
To meet Sequoia 2000 client needs, a DBMS
must support spatial data such as points, lines, and
polygons. In addition, the DBMS must support the
large spatial arrays in which satellite imagery is natu-
rally stored. These characteristics are not met by pop-
ular, general-purpose relational and object-oriented
DBMSs.7 The best fit to client needs is a special-
purpose Geographic Information System (GIS) or
a next-generation object-relational DBMS. Since it
has one such object-relational system, namely

Digital Technical Journal Vol. 7 No. 3 1995 41

APPLICATIONS

DATABASE
MANAGEMENT
SYSTEM

FILE SYSTEMS

FOOTPRINT

STORAGE DEVICES

NETWORK

Figure 1
The Sequoia 2000 Architecture

POSTGRES, the Sequoia 2000 project elected to
focus its DBMS efforts on this system.

To make the POSTGRES DBMS suitable for
Sequoia 2000 use, we require a schema for all Sequoia
data. This database design process has evolved as a
cooperative exercise between various database experts
at Berkeley, the San Diego Supercomputer Center,
CERL, and SAIC. The Sequoia schema is the collec-
tion of metadata that describes the data stored in the
POSTGRES DBMS on Bigfoot. Specifically, these
metadata comprise

■ A standard vocabulary of terms with agreed-upon
definitions that are used to describe the data

■ A set of types, instances of which may store data
values

■ A hierarchical collection of classes that describe
aggregations of the basic types

■ Functions defined on the types and classes

The Sequoia 2000 schema accommodates four
broad categories of data: scalar, vector, raster, and text.
Scalar quantities are stored as POSTGRES types and
assembled into classes in the usual way. Vector quanti-
ties are stored in special line and polygon types.
Vectors are fully enumerated (as opposed to an arc-
node representation) to take advantage of POSTGRES
indexed searches. The advantages of this representa-
tion are discussed in more detail in “The Sequoia
2000 Benchmark.”7

Raster data constitute the bulk of the Sequoia 2000
data. These data are stored in POSTGRES multi-
dimensional arrays objects. The contents of textual
objects (in PostScript or scanned page bitmaps) are
stored in a POSTGRES document type. Both docu-
ments and arrays make use of a POSTGRES large
object storage manager that can support arbitrary-
length objects.

We have tuned the POSTGRES DBMS to meet
the needs of the Sequoia 2000 clients. The interface
to POSTGRES arrays has been improved, and a novel
chunking strategy is now operational.8 Instead of
storing an array by ordering the array indexes from
fastest changing to slowest changing, this system
chooses a stride for each dimension and stores chunks
of the correct stride sizes in each storage object. When
user queries inspect the array in more than one way,
this technique results in dramatically superior retrieval
performance.

Sequoia 2000 clients typically run queries with user-
defined functions in the predicate. Moreover, many
of the predicates are very expensive in CPU time to
compute. For example, the Santa Barbara group has
written a function, SNOW, that recognizes the snow-
covered regions in a satellite image. It is a user-defined
POSTGRES function that accepts an image as an argu-
ment and returns a collection of polygons. A typical

query using the SNOW function for the table
IMAGES (id, date, content) would be to find the
images that were more than 50 percent snow and that
were observed subsequent to June 1992. In SQL, this
query is expressed as follows:

select id
from IMAGES
where AREA (SNOW (content)) . 0.5
and date . “June 1, 1992”

The first clause in the predicate requires the CPU to
evaluate millions of instructions, whereas the second
clause requires only a few hundred instructions. The
DBMS must be cognizant of the CPU cost of clauses
when constructing a query plan, a cost component
that has been ignored by most previous optimization
work. We have extended the POSTGRES optimizer to
deal intelligently with expensive functions.9

It is highly desirable to allow popular expensive
functions to be precomputed. In this way, the CPU
need only evaluate each such function once, rather
than once for each query in which the function
appears. Our approach to this issue is to allow data-
bases to contain indexes on a function of the data and
not on just the data object itself. Hence, the database
administrator can specify that a B-tree index be built
for the function AREA (SNOW(content)). Areas of
images are arranged in sort order in a B-tree, so the
first clause in the above query is now very inexpensive
to compute. Using this technique, the function is
computed at data entry or data update time and not at
query evaluation time. A consequence of function
indexing is that inserting a new image into the data-
base may be very time-consuming, since function
computation is now included in the load transaction.
To deal with the undesirable lengthy response times
for some loads, we have also explored lazy indexing
and partial indexing. Thus, index building does not
need to be synchronous with data loading.

The feedback from the Sequoia 2000 clients regard-
ing POSTGRES is that it is not reliable enough to
serve as a base for production work. Moreover, the
documentation is inadequate, and no facility exists to
train users. Our users want a COTS product and not
a research prototype. Consequently, the Sequoia 2000
project has migrated to the commercial version of
POSTGRES, namely the Illustra system, to obtain a
COTS DBMS product. Migration to this system
required reloading all project data, a task that is now
nearly complete.

The Application Layer
The application layer of the Sequoia 2000 architecture
contains five elements:

1. An off-the-shelf visualization tool
2. A visualization environment

42 Digital Technical Journal Vol. 7 No. 3 1995

3. A browsing capability for textual information
4. A facility to interface the UCLA General Circula-

tion Model (GCM) to the POSTGRES/Illustra
system

5. A desktop videoconferencing or “picturephone”
facility

For the off-the-shelf visualization tool, we have
converged around the use of AVS and IDL for project
activities. AVS has an easy-to-use “boxes-and-arrows”
user interface, whereas IDL has a more conventional
linear programming notation. On the other hand,
IDL has better two-dimensional (2-D) graphics fea-
tures. Both AVS and IDL allow the user to read and
write file data. To connect to the DBMS, we have writ-
ten an AVS–POSTGRES bridge. This program allows
the user to construct an ad hoc POSTGRES query and
pipe the result into an AVS boxes-and-arrows network.
Sequoia 2000 clients can use AVS for further process-
ing on any data retrieved from the DBMS. IDL is
being interfaced to AVS by the vendor. Consequently,
data retrieved from the database can be moved into
IDL using AVS as an intermediary. Now that we have
migrated to the Illustra DBMS, we are considering
porting this AVS bridge to the Illustra application pro-
gramming interface (API).

AVS has some disadvantages as a visualization tool
for Sequoia 2000 clients. First, its type system, which
is different from the POSTGRES/Illustra type system,
has no direct knowledge of the common Sequoia
2000 schema. In addition, AVS consumes significant
amounts of main memory. Architecturally, AVS
depends on virtual memory to pass results between
various boxes. It also maintains the output of each box
in virtual memory for the duration of an execution ses-
sion. The user can thus change a run-time parameter
somewhere in the network, and AVS will recompute
only the downstream boxes by taking advantage of the
previous output. As a result, Sequoia 2000 clients,
who generally produce very large intermediate results,
consume large amounts of both virtual and real mem-
ory. In fact, clients report that 64 megabytes of real
memory on a workstation is often not enough to
enable serious AVS use. Furthermore, AVS does not
support zooming in to investigate data of interest to
obtain higher resolution, nor does it keep track of the
history of how any given data element was con-
structed, i.e., the so-called data lineage of an item.
Lastly, AVS has a video player model for animation
that is too primitive for many Sequoia 2000 clients.

Consequently, we have designed two new visualiza-
tion environments. The first system, called Tecate, is
being built at the San Diego Supercomputer Center.
The Tecate infrastructure enables the creation of appli-
cations that allow end users to browse for and visualize
data from networked data sources. This software

platform capitalizes on the architectural strengths of
current scientific visualization systems, network
browsers, database management system front ends,
and virtual reality systems, as discussed in a companion
paper in this issue of the Journal.10

The other system, Tioga, is a boxes-and-arrows pro-
gramming environment that is DBMS-centric, i.e., the
environment type system is the same as the DBMS
type system. The Tioga user interface gives the user
a flight simulator paradigm for browsing the output
of a network. In this way, the visualizer can navigate
around data and then zoom in to obtain additional
data on items of particular interest. The preliminary
Tioga design was presented at the 1993 Very Large
Databases Conference.11 A first prototype, described
by Woodruff, is currently running.12

A commercial version of the Tioga environment has
also been implemented by Illustra. The Sequoia 2000
project is making considerable use of this tool, which is
named Object-Knowledge. Early user experience with
both Tioga and Object-Knowledge indicates that these
systems are not easy to use. We are now exploring
ways to improve the Tioga system. The objective is to
build a system that a scientist with minimal training in
the environment can use without a reference manual.

The third element of the application layer is a
browsing capability for textual information of interest
to our clients. This capability is a cornerstone of the
Sequoia 2000 architecture. Initially, we converted a
stand-alone text retrieval system called Lassen to our
DBMS-centric view. The first part of the Lassen system
is a facility for constructing weighted keyword indexes
for the words in a POSTGRES document. This index-
ing system, Cheshire, builds on the pioneering work of
the Cornell Smart system and operates as the action
part of a POSTGRES rule, which is triggered on each
document insertion, update, or removal.1,13 The sec-
ond part of the Lassen system is a front-end query tool
that understands natural language. This tool allows
a user to request all documents that satisfy a collection
of keywords by using a natural language interface. The
Lassen system has been operational for more than
a year, and retrievals can be requested against the cur-
rently loaded collection of Sequoia 2000 documents.

In addition, we have moved Lassen to Z39.50,
a popular protocol oriented toward information inter-
change and information retrieval.14 The client portion
of Lassen has been changed to emit Z39.50, and
we have written a Z39.50-to-POSTGRES translator
on the server side. In this way, the Lassen client code
can access non–Sequoia 2000 information and the
Sequoia 2000 server can be accessed by text-retrieval
front ends other than the Cheshire system.

With our move to the Illustra DBMS, we have con-
verted the client side of Lassen to work with Illustra.

Digital Technical Journal Vol. 7 No. 3 1995 43

Illustra has an integrated document data type with
capabilities similar to the extensions we made to
POSTGRES.

A related Berkeley project is focused on digitizing
all the Berkeley Computer Science Technical Reports.
This project uses a Mosaic client to access a custom
World Wide Web server called Dienst, which stores
technical report objects in a UNIX file system. In a few
months, we expect to convert Dienst to store objects
in the Sequoia 2000 database, rather than in files.
When this system, nicknamed Database Dienst, is
operational, Mosaic/Dienst service will be available
for all textual objects in the Sequoia schema.

Our fourth thrust in the application layer is a facility
to interface the UCLA General Circulation Model
(GCM) to the POSTGRES/Illustra system. This pro-
gram is a “data pump” because it pumps data out of
the simulation model and into the DBMS. We named
the program “the big lift” after the DWR pumping
station that raises Northern California water over the
Tehachapi Mountains into Southern California.

Basically, the UCLA GCM produces a vector of sim-
ulation output variables for each time step of a lengthy
run for each tile in a three-dimensional (3-D) grid of
the atmosphere and ocean. Depending on the scale
of the model, its resolution, and the capability of the
serial or parallel machine on which the model is run-
ning, the UCLA GCM can produce from 0.1 to 10.0
megabytes per second (MB/s) output. The purpose of
the big lift is to install the output data into a database
in real time. UCLA scientists can then use Object-
Knowledge, Tioga, Tecate, AVS, or IDL to visualize
their simulation output. The big lift will likely have to
exploit parallelism in the data manager, if it is required
to keep up with the execution of the model on a mas-
sively parallel architecture.

The fifth application system is a conferencing sys-
tem. Since Sequoia 2000 is a distributed project, we
learned early that face-to-face meetings that required
participants to travel to other sites and electronic mail
were not sufficient to keep project members working
as a team. Consequently, we purchased conference
room videoconferencing equipment for each project
site. This technology costs approximately $50,000 per
site and allows multiway videoconferences over inte-
grated services digital network (ISDN) lines.

Although the conference room equipment has
helped project communication immensely, it must be
set up and taken down at each use because the rooms
it occupies at the various sites are normally used as
classrooms. Therefore, videoconferencing tends to be
used for arranged conferences and not for spur-of-the-
moment interactions. To alleviate this shortcoming,
Sequoia 2000 has also invested in desktop videocon-
ferencing. A video compression board, a microphone,
speakers, a network connection, a video camera, and

the appropriate software can turn a conventional
workstation into a desktop videoconferencing facility.
In addition, video can be easily transmitted over the
network interface that is present in virtually all Sequoia
2000 client machines. We are using the Mbone soft-
ware suite to connect about 30 of our client machines
in this fashion and are migrating most of our video-
conferencing activities to desktop technology. This
effort, which is called Hollywood, strives to further
improve the ability of Sequoia 2000 researchers to
communicate.

Note that the Sequoia 2000 researchers do not
need groupware, i.e., the ability to have common win-
dows on multiple client machines separated by a WAN,
in which common code can be run, updated, and
inspected. Rather, our researchers need a way to hold
impromptu discussions on project business. They
want a low-cost multicast picturephone capability, and
our desktop videoconferencing efforts are focused in
this direction.

Sequoia 2000 Networking
The last topic of this section on the Sequoia 2000
architecture is the networking agenda. Regarding
Figure 1, it is possible for the implementation of each
layer to exist on a different machine. Specifically, the
application can be remote from the DBMS, which can
be remote from the file system, which can be remote
from the storage device. Each layer of the Sequoia
2000 architecture assumes a local UNIX socket con-
nection or a local area network (LAN) or WAN connec-
tion using the transmission control protocol/internet
protocol (TCP/IP). Actual connections among
Sequoia 2000 sites use either the Internet or a dedi-
cated T3 network, which the University of California
provides as part of its contribution to the project.

The networking team judged Digital’s Alpha
processors to be fast enough to route T3 packets.
Hence, the project uses conventional workstations as
routers; custom machines are not required. Fur-
thermore, the Sequoia 2000 network has installed
a unique guaranteed delivery service through which
an application can make a contract with the network
that will guarantee a specific bandwidth and latency if
the client sends information at a rate that does not
exceed the rate specified in the contract. These algo-
rithms, which are based on the work of Ferrari, require
a setup phase for a connection that allocates band-
width on all the lines and in all the switches.15

Lastly, the network researchers are concerned that
the Digital UNIX (formerly DEC OSF/1) operating
system copies every byte four times in between retriev-
ing it from the disk and sending it out over a network
connection. The efficient integration of networking
services into the operating system is the topic of
a companion paper by Pasquale et al. in this issue.16

44 Digital Technical Journal Vol. 7 No. 3 1995

Sequoia 2000 as an End-to-End Problem

The major lesson we have learned from the Sequoia
2000 project is that many issues facing our clients can-
not be isolated to a single layer of the Sequoia 2000
architecture. This section describes three such end-to-
end problems: guaranteed delivery, abstracts, and
compression.

Guaranteed Delivery
Clearly, guaranteed delivery must be an end-to-end
contract. Suppose a Sequoia 2000 client wishes to visu-
alize a specific computation; for example, the client
wants to observe Hurricane Andrew as it moves from
the Bahamas to Florida to Louisiana. Specifically, the
client wishes to visualize appropriate satellite imagery at
a resolution of 500 3 500 in 8-bit color at 10 frames
per second. Hence, the client requires 2.5 MB/s of
bandwidth to his screen. The following scenario might
be the computation steps that take place.

The DBMS must run a query to fetch the satellite
imagery. The query might require returning a 16-bit
data value for each pixel that will ultimately appear on
the screen. The DBMS must therefore agree to exe-
cute the query in such a way that it guarantees output
at a rate of 5.0 MB/s.

The storage system at the server will fetch some
number of I/O blocks from secondary and/or tertiary
memory. DBMS query optimizers can accurately guess
how many blocks they need to read to satisfy the
query. The DBMS can then easily generate a guaran-
teed delivery contract that the storage manager must
satisfy, thus allowing the DBMS to satisfy its contract.

The network must agree to deliver 5.0 MB/s over
the network link that connects the client to the server.
The Sequoia 2000 network software expects exactly
this type of contract request.

The visualization package must agree to translate
the 16-bit data element into an 8-bit color and render
the result onto the screen at 2.5 MB/s.

In short, guaranteed delivery is a collection of con-
tracts that must be adhered to by the DBMS, the
storage system, the network, and the visualization
package. One approach to architecting these contracts
was presented at the 1993 Very Large Databases
Conference.11

Abstracts
One aspect of the Sequoia 2000 visualization process
is the necessity of abstracts. Consider the Hurricane
Andrew example. The client might initially want to
browse the hurricane at 100 3 100 resolution. Then,
on finding something of interest, the client would
probably like to zoom in and increase the resolution,
usually to the maximum available in the original data.
This ability to dynamically change the amount of reso-
lution in an image is supported by abstracts.

Note that providing abstracts is a much more pow-
erful construct than merely providing for resolution
adjustment. Specifically, obtaining more detail may
entail moving from one representation to another. For
example, one could have an icon for a document,
zoom in to see the abstract, and then zoom in further
to see the entire document. Hence, zooming can
change from iconic to textual representation. This use
of abstracts was popularized in the DBMS community
by an early DBMS visualization system called the
Spatial Data Management System (SDMS).17

Sequoia 2000 clients wish to have abstracts; how-
ever, it is clear that they can be managed by the visual-
ization tool, the DBMS, the network, or the file
system. In the former case, abstracts are defined for
boxes-and-arrows networks.11 In the DBMS, abstracts
would be defined for individual data elements or for
data classes. If the network manages abstracts, it will
use them to automatically lower resolution to elimi-
nate congestion. Much research on the optimization
of network abstracts (called hierarchical encoding of
data in that community) is available. In the file system,
abstracts would be defined for files. Sequoia 2000
researchers are pursuing all four possibilities, and it is
expected that this notion will be one of the powerful
constructs to be used by Sequoia 2000 software,
perhaps in multiple ways.

Compression
The Sequoia 2000 clients are adamant on the issue of
compression—they are open to any compression
scheme as long as it is lossless. As scientists, they
believe that ultimate resolution may be required to
understand future phenomena. Since it is not possible
to predict what these phenomena might be or where
they might occur, the Sequoia 2000 scientists want
access to all data at full resolution.

Some Sequoia 2000 data cannot be compressed
economically and should be stored in uncompressed
form. The inclusion of abstracts offers a mechanism to
lower the bandwidth required between the storage
device and the visualization program. No saving of
tertiary memory through compression is available for
such data.

Other data ought to be stored in compressed form.
The question of when compression and decompres-
sion should occur can be handled by using a just-in-
time decompression strategy. For example, if the
storage manager compresses data as they are written
and then decompresses them on a read operation, the
network manager may then recompress the data for
transmission over a WAN to a remote site where they
will be decompressed a second time. Obviously, data
should be moved in compressed form and decom-
pressed only when necessary. In general, decompres-
sion will occur in the visualization system on the client
machine. If search criteria are performed on the data,

Digital Technical Journal Vol. 7 No. 3 1995 45

then the DBMS may have to decompress the data to
perform the search. If an application resides on the
same machine as the storage manager, the file system
must be in charge of decompressing the data. All soft-
ware modules in the Sequoia 2000 architecture must
cooperate to perform just-in-time decompression and
as-early-as-possible compression. Like guaranteed
delivery, compression is a task that requires all software
modules to cooperate.

Specific Lessons Learned

In addition to the end-to-end issues, we learned other
lessons from the first three years of the Sequoia 2000
experience, as discussed in this section.

Lesson 1: Infrastructure is necessary, time-consuming,
and very expensive.
We learned early in the project that electronic mail and
travel between sites would not result in the desired
degree of cooperation from geographically dispersed
researchers from different disciplines. Consequently,
we made a significant investment in infrastructure.
This included meetings for all the Sequoia 2000 par-
ticipants, which are now held twice a year, and video-
conferencing equipment at each site. Through this
video link, project members interact by holding
a weekly distributed seminar, semimonthly operations
committee meetings, occasional steering committee
meetings, and meetings between researchers with
common interests. The video quality of the project’s
current videoconferencing equipment is not high, and
to achieve success when participants are located far
apart, specially trained individuals must operate the
equipment. Nevertheless, the equipment has proven
to be valuable in generating cohesion in the dispersed
project. We have installed desktop videoconferencing
systems on 30 Sequoia 2000 workstations and expect
to replace our current conference room equipment
with next-generation desktop technology.

In addition, we conducted a learning experiment in
which a course taught by one of the Sequoia 2000 fac-
ulty members at the Santa Barbara campus was broad-
cast over our videoconferencing equipment to four
other sites. Students could take the course for credit at
their respective campuses. Of course, the overhead of
setting up such a course was substantial. A new course
had to be added at each campus, and every step in the
approval process required briefings on the fact that the
instructor was from a different campus and on the way
everything was going to work. This experiment was
popular, and students have requested additional
courses taught in this manner.

On the other hand, we also tried to run a computer
science colloquium using this technology. We broad-
cast from various sites to six computer science depart-
ments around the U.S. Initial student interest was high

because of the lineup of eminent speakers. Such speak-
ers could be recruited easily, because they only had to
locate the nearest compatible equipment and then get
to that site. No air travel was required. The experiment
failed, however, because attendance decreased through-
out the semester and ended at an extremely low level.

The basic problem was that, typically, speakers were
not skilled in using the medium—they would put too
much information on slides and then flip though the
slides before remote sites could get a complete trans-
mission. Also, the question-and-answer period could
not be very interactive because of the many sites
involved. The experiment ended after one semester
and will not be repeated.

Lesson 2: There was often a mismatch between the
expectations of the earth scientists and those of the
computer scientists.
The computer scientists on the Sequoia 2000 team
wanted access to knowledgeable application specialists
who could describe their problems in terms under-
standable to the computer scientist. The computer
scientists then wanted to think through elegant solu-
tions, verify with the earth scientists that the solutions
were appropriate, and then prototype the results. The
earth scientists wanted final COTS solutions to their
problems; they were unsympathetic about poor docu-
mentation, bugs, and crashes.

With considerable effort, the expectations are con-
verging. The ultimate solution is to move to COTS
software modules as they become available for por-
tions of the system and augment the modules with
in-house prototype code.

We have found that the best way to make forward
progress was to ensure that each earth science group
using Sequoia 2000 prototype code had one or more
sophisticated staff programmers who could deal
successfully with the quirks of prototype code. With
computer science expertise surrounding the earth sci-
entists, the problems in this area became much more
manageable. We also discovered that we could distrib-
ute such expertise. In fact, support programmers for
Sequoia 2000 clients are often not at the same physical
location as the client.

Lesson 3: Interdisciplinary research is fundamentally
difficult.
One lengthy discussion on the construction of a
Sequoia 2000 benchmark eventually led to the discus-
sion presented in the 1993 ACM SIGMOD conference
paper entitled “The Sequoia 2000 Benchmark,”
which we referred to previously.7 The computer sci-
ence researchers were arguing strongly for a represen-
tative abstract example of earth science data access,
i.e., the “specmark of earth science.” On the other
hand, the earth scientists were equally adamant that
the benchmark convey the exact data accesses.

46 Digital Technical Journal Vol. 7 No. 3 1995

Finally, the computer scientists and the earth scien-
tists realized that the word “benchmark” has a different
meaning for each of the two groups of researchers. To
earth scientists, a benchmark is a scenario, whereas to
computer scientists, a benchmark is an abstract exam-
ple. This vignette was typical of the experience these
two disciplines had trying to understand one another.
Fundamentally, this process is time-consuming, and
ample interaction time should be planned for any proj-
ect that must deal with multiple disciplines.

The Sequoia 2000 project participants made effec-
tive use of “converters.” A converter is a person of one
discipline who is planted directly in the research group
of another discipline. Through informal communica-
tion, this person serves as an interpreter and translator
for the other discipline. Converters are encouraged by
the existence of a formal exchange program, whereby
central Sequoia 2000 resources pay the living expenses
of the exchange personnel.

Lesson 4: Database technology is a major advance for
earth scientists.
Our initial plan was to introduce database technology
into the project with the expectation that the earth sci-
entists would pick it up and use it. Unfortunately, they
are accustomed to data being in files and found it very
difficult to make the transition to a database view. The
earth scientists are becoming increasingly aware of
the inherent advantages of DBMS technology.

In addition, we appointed the earth scientist with
the most computer science knowledge as leader of the
database design effort. This person chaired a commit-
tee of mainly computer scientists who were charged
with producing a schema.

This technique failed for several reasons. First, the
computer scientists disagreed about whether we were
designing an interchange format, by which sites could
reliably exchange data sets (i.e., an on-the-wire repre-
sentation), or a schema for stored data at a site. Most
earth science standards, such as the Hierarchical Data
Format (HDF) and the network Common Data Form
(netCDF), are of the first form, and there was substan-
tial enthusiasm for simply choosing one of these for-
mats.18,19 On the other hand, some computer scientists
argued that an on-the-wire representation mixes the
data (e.g., a satellite image) and the metadata that
describe it (e.g., the frequency of the sensor, the date
of the data collection, and the name of the satellite)
into a single, highly encoded bit string. A better design
would separate the two kinds of data and construct
a good stored schema for it.

A second problem was that numerous legacy
formats are currently in use, and some earth scientists
did not want to change the formats they were using.
This led to many arguments about the merits of one
legacy format over another, which in turn caused the

opposing sides to conclude that both formats under
discussion should be supported in addition to a neu-
tral representation.

A third problem was that earth science data are fun-
damentally quite complex. For example, earth scien-
tists store geographic points, which are 3-D positions
on the earth’s surface. There are approximately 20
popular projections of 3-D space onto 2-D space,
including (latitude, longitude), Mercator projection,
and Lambert Equal Azimuthal projection. With every
instance of a geographic point, it is necessary to associ-
ate the projection system that is being used. Another
data problem is related to units. Some geographic data
are represented as integers, with miles as the funda-
mental unit; other data are represented as floating-
point numbers, with meters as the underlying unit.
In addition, satellite imagery must be massaged in
a variety of ways to “cook” it from raw data into
a usable form. Cooking includes converting imagery
from a one-dimensional stream of data recorded in
satellite flight order into a 2-D representation. Many
details of this cooking process must be recorded for all
imagery. This dramatically expands the metadata
about imagery as well as forces the earth scientist to
write down all the extra data elements.

Schema design turned out to be laborious and very
difficult. The earth scientists did not have a good
understanding of database design and thus were not
prepared to take on the extreme complexity of the
task. As a result, we have reconstructed our database
design effort. Now, two computer scientists are
responsible for producing a schema. They interact
with the earth scientists when such action helps to
accomplish the task.

Lesson 5: Project management is a substantial problem.
Sequoia 2000 is a large project. About 110 people
attended the last general meeting. The attendees
included approximately 30 computer scientists, 40
earth scientists, and 40 visitors from industry. Multiple
efforts on multiple campuses must “plug and play.”
Synchronizing distributed development is an extreme
challenge. Furthermore, the skill of project manage-
ment is not fostered in a university environment, nor
is it rewarded in a university faculty evaluation.

The principal investigators viewed the time spent
on project management as time that could be better
invested in research activities. An obvious solution
would be for the Sequoia 2000 project to hire a pro-
fessional project manager. Unfortunately, it is impos-
sible to pay a nonfaculty person the market rates
normally received by such skilled persons. One strat-
egy we attempted to use was to solicit a visitor with
the desired skill mix from one of our industrial spon-
sors. Our efforts in this direction failed, and we were
never able to recruit project management expertise for

Digital Technical Journal Vol. 7 No. 3 1995 47

the Sequoia 2000 effort. As a result, project manage-
ment was performed poorly at best. In any future large
project, this component should be addressed satisfac-
torily up front by project personnel.

Lesson 6: Multicampus projects are extremely difficult
to implement.
Sequoia 2000 work is taking place in seven different
organizations within the University of California edu-
cational system. There is a constant need to transfer
money and people among these organizations. Accom-
plishing such moves is a difficult and slow process,
however, because of the bureaucracy within the sys-
tem. In addition, the personnel rules of the University
are often in conflict with the needs of the Sequoia
2000 project. As a result, multi-institution projects,
where participants are in different and often distant
locations, are extremely difficult to carry out.

Status and Future Plans

The Sequoia 2000 project is more than three years old
and has nearly accomplished its objectives. We have
a common schema in place for all Santa Barbara and
UCLA data, and all participants have agreed to use the
schema. This schema serves as leverage for the stan-
dards efforts under way in the spatial arena.20 The
infrastructure is in place to enable this schema to
evolve as more data types, user-defined functions, and
operators are included in the future.

The combination of Object-Knowledge, Illustra,
Epoch, and AMASS is proving robust and meets our
clients’ needs. Lastly, we have ample resources to
move our prototype into production use at UCLA and
Santa Barbara during the next several months.

We are also extending the scope of the prototype in
two different directions. First, we will recruit addi-
tional earth scientists to utilize our system. This will
require extending our common schema to meet their
needs and then installing our suite of software at their
site. We expect to recruit two to three new groups
during the next year.

Second, a companion project, the Electronic
Repository, has as one of its objectives to use the
Sequoia 2000 technology to support an environmen-
tal digital library of aerial photography, polygonal
data, and text for the Resources Agency of the State of
California.21 This electronic library project is extend-
ing the reach of Sequoia 2000 technology from earth
scientists toward a broader community.

Our research activities are also very active. As noted
earlier, we are continuing our visualization activities
and anticipate an improved Tioga system. The
Sequoia 2000 clients have made it clear that they want
seamless access to distributed data, and we have
evolved POSTGRES to a wide-area distributed DBMS

that makes decisions based on an economic paradigm.
This system is called Mariposa.22 In our COTS system,
a bad impedance mismatch exists between the DBMS
and the tertiary memory file systems. We have there-
fore shifted our research focus to constructing an
intelligent mass storage interface that properly sup-
ports a DBMS.

Finally, the Sequoia 2000 network currently sup-
ports service guarantees, but there is no economic
framework in which to place multiple levels of service.
As a result, our networking research is focused on con-
struction of this type of framework.

We anticipate a robust production environment for
earth science researchers by the end of 1995. In addi-
tion, we expect to continue to improve the Sequoia
2000 environment with future research results in the
above areas.

References and Notes

1. M. Stonebraker and J. Dozier, “Large Capacity Object
Servers to Support Global Change Research,” Sequoia
2000 Technical Report 91/1, Berkeley, California
(July 1991).

2. J. Kohl et al., “Highlight: Using a Log-structured File
System for Tertiary Storage Management,” Proceed-
ings of the 1993 Winter USENIX Meeting, San Diego,
California (January 1993).

3. M. Rosenblum and J. Ousterhout, “The Design and
Implementation of a Log-structured File System,”
ACM Transactions on Computing Systems (TOCS)
(February 1992).

4. M. Seltzer et al., “An Implementation of a Log-
structured File System for UNIX,” Proceedings of the
1993 Winter USENIX Meeting, San Diego, California
(January 1993).

5. M. Olson, “The Design and Implementation of the
Inversion File System,” Proceedings of the 1993
Winter USENIX Meeting, San Diego, California
(January 1993).

6. M. Stonebraker et al., “The Implementation of
POSTGRES,” IEEE Transactions on Knowledge and
Data Engineering (TKDE) (March 1990).

7. M. Stonebraker et al., “The Sequoia 2000 Bench-
mark,” Proceedings of the 1993 ACM SIGMOD
Conference, Washington, D.C. (May 1993).

8. S. Sarawagi and M. Stonebraker, “Efficient Organiza-
tion of Large Multidimensional Arrays,” Proceedings
of the 1993 IEEE Data Engineering Conference,
Houston, Texas (February 1993).

9. J. Hellerstein and M. Stonebraker, “Predicate Migra-
tion: Optimizing Queries with Expensive Predicates,”
Proceedings of the 1993 ACM SIGMOD Conference,
Washington, D.C. (May 1993).

48 Digital Technical Journal Vol. 7 No. 3 1995

10. P. Kochevar and L. Wanger, “Tecate: A Software
Platform for Browsing and Visualizing Data from
Networked Data Sources,” Digital Technical
Journal, vol. 7, no. 3 (1995, this issue): 66–83.

11. M. Stonebraker et al., “Tioga: Providing Data Man-
agement for Scientific Visualization Applications,”
Proceedings of the 1993 VLDB Conference, Dublin,
Ireland (August 1993).

12. A. Woodruff et al., “Zooming and Tunneling in Tioga:
Supporting Navigation in Multidimensional Space,”
Sequoia 2000 Technical Report 94/48, Berkeley,
California (March 1994).

13. R. Larson, “Classification, Clustering, Probabilistic
Information Retrieval and the On-Line Catalog,”
Library Quarterly (April 1991).

14. Information Retrieval Application Service Defini-
tion and Protocol Specification for Open Systems
Interconnection, ANSI/NISO Z39.50-1992 (revi-
sion and redesignation of ANSI Z39.50-1988) (New
York: American National Standards Institute/National
Information Standards Organization, 1992).

15. D. Ferrari, “Client Requirements for Real-time
Communication Services,” IEEE Communications
(November 1990).

16. J. Pasquale et al., “High-performance I/O and Net-
working Software in Sequoia 2000,” Digital Techni-
cal Journal, vol. 7, no. 3 (1995, this issue): 84–96.

17. C. Herot, “SDMS: A Spatial Data Base System,”
ACM Transactions on Computing Systems (TOCS)
(June 1980).

18. The National Center for Supercomputing Applications
(NCSA) at the University of Illinois developed
the Hierarchical Data Format (HDF) as a multiobject
file format.

19. Network Common Data Form (netCDF) is an inter-
face for scientific data access and a freely distributed
software library that provides an implementation of
the interface. netCDF was developed by Glenn Davis,
Russ Rew, and Steve Emmerson at the Unidata Pro-
gram Center in Boulder, Colorado. The netCDF
library defines a machine-independent format for
representing scientific data. Together, the interface,
the library, and the format support the creation,
access, and sharing of scientific data.

20. J. Anderson and M. Stonebraker, “Sequoia 2000
Metadata Schema for Satellite Images,” SIGMOD
Record, Vol. 23, No. 4 (December 1994).

21. R. Larson et al., “The Sequoia 2000 Electronic Repos-
itory,” Digital Technical Journal,vol. 7, no. 3 (1995,
this issue): 50–65.

22. M. Stonebraker et al., “An Economic Paradigm for
Query Processing and Data Migration in Mariposa,”
Proceedings of IEEE Parallel and Distributed
Information Systems Conference, Austin, Texas
(September 1994).

Biography

Digital Technical Journal Vol. 7 No. 3 1995 49

Michael Stonebraker
Michael Stonebraker is a professor of electrical engineer-
ing and computer science at the University of California,
Berkeley, where he has been employed since 1971. He
was one of the principal architects of the INGRES rela-
tional database management system and subsequently
constructed Distributed INGRES. For the last six years,
Michael has been developing POSTGRES, a next-generation
DBMS that can manage objects and rules, as well as data.
Michael is a founder of INGRES Corporation, the founder
of Illustra Information Technologies, a past chairman of
ACM SIGMOD, and the author of many papers on DBMS
technology. He lectures widely and was the winner of the
first ACM SIGMOD innovations award in 1992.

