
Full-motion video is fast becoming commonplace to
users of desktop computers. The rising expectations for
low-cost, television-quality video with synchronized
sound have been pushing manufacturers to create new,
inexpensive, high-quality offerings. The bottlenecks
that have been preventing the delivery of video without
specialized hardware are being cast aside rapidly as
faster processors, higher-bandwidth computer buses
and networks, and larger and faster disk drives are
being developed. As a consequence, considerable
attention is currently being focused on efficient imple-
mentations of flexible and extensible software solutions
to the problems of video management and delivery.
This paper surveys the methods and architectures used
in software-only digital video systems.

Due to the enormous amounts of data involved,
compression is almost always used in the storage and
transmission of video. The high level of information
redundancy in video lends itself well to compression,
and many methods have been developed to take
advantage of this fact. While the literature is replete
with compression methods, we focus on those that are
recognized as standards, a requirement for open and
interoperable systems. This paper describes the build-
ing blocks behind popular compression schemes of
the International Organization for Standardization
(ISO), the International Telecommunication Union-
Telecommunication Standardization Sector (ITU-T),
and within the industry.

Rendering is another enabling technology for video
on the desktop. It is the process of scaling, color
adjusting, quantization, and color space conversion of
the video for final presentation on the display. As an
example, Figure 1 shows a simple sequence of video
decoding. In the section Video Presentation, we dis-
cuss rendering methods, along with some novel algo-
rithms for fast video rendering and presentation, and
describe an implementation that parallels the tech-
niques used in Digital’s hardware video offerings.

We follow that discussion with the section The
Software Video Library, in which we present a com-
mon architecture for video compression, decom-
pression, and playback that allows integration into
Digital’s multimedia products. We then describe two
sample applications, the Video Odyssey screen saver

52 Digital Technical Journal Vol. 7 No. 4 1995

Software-only
Compression,
Rendering, and
Playback of Digital Video

Paramvir Bahl
Paul S. Gauthier
Robert A. Ulichney

Software-only digital video involves the com-
pression, decompression, rendering, and display
of digital video on general-purpose computers
without specialized hardware. Today’s faster
processors are making software-only video an
attractive, low-cost alternative to hardware
solutions that rely on specialized compression
boards and graphics accelerators. This paper
describes the building blocks behind popular
ISO, ITU-T, and industry-standard compression
schemes, along with some novel algorithms
for fast video rendering and presentation. A
platform-independent software architecture
that organizes the functionality of compressors
and renderers into a unifying software inter-
face is presented. This architecture has been
successfully implemented on the Digital UNIX,
the OpenVMS, and Microsoft’s Windows NT
operating systems. To maximize the perfor-
mance of codecs and renderers, issues pertain-
ing to flow control, optimal use of available
resources, and optimizations at the algorithmic,
operating-system, and processor levels are con-
sidered. The performance of these codecs on
Alpha systems is evaluated, and the ensuing
results validate the potential of software-only
solutions. Finally, this paper provides a brief
description of some sample applications built
on top of the software architecture, including
an innovative video screen saver and a software
VCR capable of playing multiple, compressed
bit streams.

and a software-only video player. We conclude our
paper by surveying related work in this rapidly evolv-
ing area of software digital video.

Video Compression Methods

A system that compresses and decompresses video,
whether implemented in hardware or software, is
called a video codec (for compressor/decompressor).
Most video codecs consist of a sequence of compo-
nents usually connected in pipeline fashion. The codec
designer chooses specific components based on the
design goals. By choosing the appropriate set of build-
ing blocks, a codec can be optimized for speed of
decompression, reliability of transmission, better color
reproduction, better edge retention, or to perform at
a specific target bit rate. For example, a codec could
be designed to trade off color quality for transmission
bit rate by removing most of the color information
in the data (color subsampling). Similarly a codec may
include a simple decompression model (less process-
ing per pixel) and a complex compression process to
boost the playback rate at the expense of longer com-
pression times. (Compression algorithms that take
longer to compress than to decompress are said to be
asymmetric.) Once the components and trade-offs
have been chosen, the designer then fine tunes the
codec to perform well in a specific application space
such as teleconferencing or video browsing.

Video Codec Building Blocks
In this section, we present the various building blocks
behind some popular and industry-standard video
codecs. Knowledge of the following video codec
components is essential for understanding the com-
pression process and to appreciate the complexity of
the algorithms.

Chrominance Subsampling Video is usually described
as being composed of a sequence of images. Each
image is a matrix of pixels, and each pixel is repre-
sented by three 8-bit values: a single luminance value
(Y) that signifies brightness, and two chrominance val-
ues (U and V, or sometimes Cb and Cr) which, taken
together, specify a unique color. By reducing the
amount of color information in relation to luminance
(subsampling the chrominance), we can reduce the
size of an image with little or no perceptual effect. The

most common chrominance subsampling technique
decimates the color signal by 2:1 in the horizontal
direction. This is done either by simply throwing out
the color information of alternate pixels or by averag-
ing the colors of two adjacent pixels and using the
average for the color of the pixel pair. This technique is
commonly referred to as 4:2:2 subsampling. When
compared to a raw 24-bit image, this results in a com-
pression of two-thirds. Decimating the color signal by
2:1 in both the horizontal and the vertical direction
(by ignoring color information for alternate lines in
the image) starts to result in some perceptible loss of
color, but the compression increases to one-half. This
is referred to as 4:2:0 subsampling: for every 4 lumi-
nance samples, there is a single color specified by a pair
of chrominance values. The ultimate chrominance
subsampling is to throw away all color information
and keep only the luminance data (monochrome
video). This not only reduces the size of the input data
but also greatly simplifies processing for both the com-
pressor and the decompressor, resulting in faster codec
performance. Some teleconferencing systems allow
the user to switch to monochrome mode to increase
frame rate.

Transform Coding Converting a signal, video or
otherwise, from one representation to another is the
task of a transform coder. Transforms can be useful for
video compression if they can convert the pixel data
into a form in which redundant and insignificant infor-
mation in the video’s image can be isolated and
removed. Many transforms convert the spatial (pixel)
data into frequency coefficients that can then be selec-
tively eliminated or quantized. Transform coders
address three central issues in image coding: (1) decor-
relation (converting statistically dependent image
elements into independent spectral coefficients),
(2) energy compaction (redistribution and localization
of energy into a small number of coefficients), and
(3) computational complexity. It is well documented
that human vision is biased toward low frequencies.
By transforming an image to the frequency domain,
a codec can capitalize on this knowledge and remove
or reduce the high-frequency components in the
quantization step, effectively compressing the image.
In addition, isolating and eliminating high-frequency
components in an image results in noise reduc-
tion since most noise in video, introduced during

Digital Technical Journal Vol. 7 No. 4 1995 53

COMPRESSED
BIT STREAM DECOMPRESS RENDER DISPLAY

PRESENTATION

Figure 1
Components in a Video Decoder Pipeline

the digitization step or from transmission interfer-
ence, appears as high-frequency coefficients. Thus
transforming helps compression by decorrelating (or
whitening) signal samples and then discarding
nonessential information from the image.

Unitary (or orthonormal) transforms fall into either
of two classes: fixed or adaptive. Fixed transforms are
independent of the input signal; adaptive transforms
adapt to the input signal.1 Examples of fixed trans-
forms include the discrete Fourier transform (DFT),
the discrete cosine transform (DCT), the discrete sine
transform (DST), the Harr transform, and the Walsh-
Hadamard transform (WHT). An example of an
adaptive transform is the Karhunen-Loeve transform
(KLT). Thus far, no transform has been found for
pictorial information that completely removes statisti-
cal dependence between the transform coordinates.
The KLT is optimum in the mean square error sense,
and it achieves the best energy compaction; however,
it is computationally very expensive. The WHT is the
best in terms of computation cost since it requires only
additions and subtractions; however, it performs
poorly in decorrelation and energy compaction.
A good compromise is the DCT, which is by far
the most widely used transform in image coding. The
DCT is closest to the KLT in the energy-packing sense,
and, like the DFT, it has fast computation algorithms
available for its implementation.2 The DCT is usually
applied in a sliding window on the image with a com-
mon window size of 8 pixels by 8 lines (or simply, 8 by
8). The window size (or block size) is important: if
it is too small, the correlation between neighboring
pixels is not exploited; if it is too large, block bound-
aries tend to become very visible. Transform coding
is usually the most time-consuming step in the
compression/decompression process.

Scalar Quantization A companion to transform cod-
ing in most video compression schemes is a scalar
quantizer that maps a large number of input levels into
a smaller number of output levels. Video is com-
pressed by reducing the number of symbols that need
to be encoded at the expense of reconstruction error.
A quantizer acts as a control knob that trades off
image quality for bit rate. A carefully designed quan-
tizer provides high compression for a given quality.
The simplest form of a scalar quantizer is a uniform
quantizer in which the quantizer decision levels are of
equal length or step size. Other important quantizers
include Lloyd-Max’s minimum mean square error
(MMSE) quantizer and an entropy constraint quan-
tizer.3,4 Pulse code modulation (PCM) and adaptive
differential pulse code modulation (ADPCM) are
examples of two compression schemes that rely on
pure quantization without regard to spatial and tem-
poral redundancies and without exploiting the non-
linearity in the human visual system.

54 Digital Technical Journal Vol. 7 No. 4 1995

Predictive Coding Unless the image is changing
rapidly, a video sequence will normally contain
sequences of frames that are very similar. Predictive
coding uses this fact to reduce the data volume by
comparing pixels in the current frame with pixels in
the same location in the previous frame and encoding
the difference. A simple form of predictive coding uses
the value of a pixel in one frame to predict the value of
the pixel in the same location in the next frame. The
prediction error, which is the difference between
the predicted value and the actual value of the pixel, is
usually small. Smaller numbers can be encoded using
fewer quantization levels and fewer coding bits. Often
the difference is zero, which can be encoded very
compactly. Predictive coding can also be used within
an image frame where the predicted value of a pixel
may be the value of its neighbor or a weighted average
of the pixels in the region. Predictive coding works
best if the correlation between adjacent pixels that are
spatially as well as temporally close to each other is
strong. Differential PCM and delta modulation (DM)
are examples of two compression schemes in which
the predicted error is quantized and coded. The
decompressor recovers the signal by applying this
error to its predicted value for the sample. Lossless
image compression is possible if the prediction error
is coded without being quantized.

Vector Quantization An alternative to transform-
based coding, vector quantization attempts to repre-
sent clusters of pixel data (vectors) in the spatial
domain by predetermined codes.5 At the encoder,
each data vector is matched or approximated with a
code word in the codebook, and the address or index
of that code word is transmitted instead of the data
vector itself. At the decoder, the index is mapped back
to the code word, which is then used to represent the
original data vector. Identical codebooks are needed at
the compressor (transmitter) and the decompressor
(receiver). The main complexity lies in the design of
good representative codebooks and algorithms for
finding best matches efficiently when exact matches
are not available. Typically, vector quantization is
applied to data that has already undergone predictive
coding. The prediction error is mapped to a subset
of values that are expected to occur most frequently.
The process is called vector quantization because the
values to be matched in the tables are usually vectors of
two or more values. More elaborate vector quantiza-
tion schemes are possible in which the difference data
is searched for larger groups of commonly occurring
values, and these groups are also mapped to single
index values.

The amount of compression that results from vec-
tor quantization depends on how the values in the
codebooks are calculated. Compression may be
adjusted smoothly by designing a set of codebooks

Digital Technical Journal Vol. 7 No. 4 1995 55

and picking the appropriate one for a given desired
compression ratio.

Motion Estimation and Compensation Most codecs
that use interframe compression use a more elaborate
form of predictive coding than described above. Most
videos contain scenes in which one or more objects
move across the image against a fixed background or
in which an object is stationary against a moving back-
ground. In both cases, many regions in a frame appear
in the next frame but at different positions. Motion
estimation tries to find similar regions in two frames
and encodes the region in the second frame with a dis-
placement vector (motion vector) that shows how
the region has moved. The technique relies on the
hypothesis that a change in pixel intensity from one
frame to another is due only to translation.

For each region (or block) in the current frame,
a displacement vector is evaluated by matching the
information content of the measurement window with
a corresponding measurement window W within
a search area S, placed in the previous frame, and by
searching for the spatial location that minimizes the
matching criterion ➝

d. Let Li(x,y) represent the pixel
intensity at location (x,y) in frame i; and if (dx,dy) rep-
resents the region displacement vector for the interval
n(5(i1n)2i), then the matching criterion is defined as

The most widely used distance measures are the
absolute value ||x ||5|x | and the quadratic norm
||x ||5x 2. Since finding the absolute minimum is guar-
anteed only by performing an exhaustive search of a
series of discrete candidate displacements within
a maximum displacement range, this process is com-
putationally very expensive. A single displacement
vector is assigned to all pixels within the region.

Motion compensation is the inverse process of using
a motion vector to determine a region of the image to
be used as a predictor.

Although the amount of compression resulting
from motion estimation is large, the coding process is
time-consuming. Fortunately, this time is needed only
in the compression step. Decompression using motion
estimation is relatively fast since no searching has to be
done. For data replenishment, the decompressor sim-
ply uses the transmitted vector and accesses a region in
the previous frame pointed to by the vector for data
replenishment. Region size can vary among the codecs
using motion estimation but is typically 16 by 16.

Frame/Block Skipping One technique for reducing
data is to eliminate it entirely. In a teleconferencing sit-
uation, for example, if the scene does not change
(above some threshold criteria), it may be acceptable
to not send the new frame (drop or skip the frame).
Alternatively, if bandwidth is limited and image quality
is important, it may be necessary to drop frames to stay
within a bit-rate budget. Most codecs used in telecon-
ferencing applications have the ability of temporal sub-
sampling and are able to gracefully degrade under
limited bandwidth situations by dropping frames.

A second form of data elimination is spatial subsam-
pling. The idea is similar to chrominance subsampling
discussed previously. In most transform-based codecs,
a block (8 by 8 or 16 by 16) is usually skipped if the
difference between it and the previous block is below
a predetermined threshold. The decompressor may
reconstruct the missing pixels by using the previous
block to predict the current block.

Entropy Encoding Entropy encoding is a form of sta-
tistical coding that provides lossless compression by
coding input samples according to their frequency of
occurrence. The two methods used most frequently
include Huffman coding and run-length encoding.6

Huffman coding assigns fewer bits to most frequently
occurring symbols and more bits to the symbols that
appear less often. Optimal Huffman tables can be gen-
erated if the source statistics are known. Calculating
these statistics, however, slows down the compression
process. Consequently, predeveloped tables that have
been tested over a wide range of source images are
used. A second and simpler method of entropy encod-
ing is run-length encoding in which sequences of
identical digits are replaced with the digit and the
number in the sequence. Like motion estimation,
entropy encoding puts a heavier burden on the com-
pressor than the decompressor.

Before ending this section, we would like to mention
that a number of other techniques, including object-
based coding, model-based coding, segmentation-
based coding, contour-texture oriented coding, fractal
coding, and wavelet coding are also available to the
codec designer. Thus far, our coverage has concen-
trated on explaining only those techniques that have
been used in the video compression schemes currently
supported by Digital. In the next section, we describe
some hybrid schemes that employ a number of the
techniques described above; these schemes are the basis
of several international video coding standards.

Overview of Popular Video Compression Schemes
The compression schemes presented in this section
can be collectively classified as first-generation video
coding schemes.7 The common assumption in all these
methods is that there is statistical correlation between

d 5 min
(dx , dy)e S{ (

(x ,y) eW
||Li(x,y)

2L i 2n(x 2dx , y 2dy)||} n ≥1

(1)

pixels. Each of these methods attempts to exploit this
correlation by employing redundancy reduction tech-
niques to achieve compression.

Motion-JPEG Algorithm Motion-JPEG (or M-JPEG)
compresses each frame of a video sequence using the
ISO’s Joint Photographic Experts Group (JPEG)
continuous-tone, still-image compression standard.8

As such, it is an intraframe compression scheme. It is
not wed to any particular subsampling format, image
color space, or image dimensions, but most typically
4:2:2 subsampled YCbCr, source input format (SIF,
352 by 240) data is used. The JPEG standard specifies
both lossy and lossless compression schemes. For
video, only the lossy baseline DCT coding scheme has
gained acceptance. The scheme relies on selective
quantization of the frequency coefficients followed by
Huffman and run-length encoding for its compres-
sion. The standard defines a bit-stream format that
contains both the compressed data stream and coding
parameters such as the number of components, quan-
tization tables, Huffman tables, and sampling factors.
Popular M-JPEG file formats usually build on top of
the JPEG-specified formats with little or no modifica-
tion. For example, Microsoft’s audio-video interleaved
(AVI) format encapsulates each JPEG frame with its
associated audio and adds an index to the start of each
frame at the end of the file. Video editing on a frame-
by-frame basis is possible with this format. Another
advantage is frame-limited error propagation in net-
worked, distributed applications. Many video digitizer
boards incorporate JPEG compression in hardware to
compress and decompress video in real time. Digital’s
Sound & Motion J300 and FullVideo Supreme JPEG
are two such boards.9,10 The baseline JPEG codec is a
symmetric algorithm as may be seen in Figure 2a and
Figure 3.

ITU-T’s Recommendation H.261 The ITU-T’s Recom-
mendation H.261 is a motion-compensated, DCT-
based video coding standard.11 Designed for the
teleconferencing market and developed primarily for
low-bit-rate Integrated Services Digital Network
(ISDN) services, H.261 shares similarities with ISO’s
JPEG still-image compression standard. The target bit
rate is p 3 64 kilobits per second with p ranging
between 1 and 30 (H.261 is also known as p 3 64).
Only two frame resolutions, common intermediate
format (CIF, 352 by 288) and quarter-CIF (QCIF,
176 by 144), are allowed. All standard-compliant
codecs must be able to operate with QCIF; CIF is
optional. The input color space is fixed by the
International Radio Consultative Committee (CCIR)
601 YCbCr standard’s with 4:2:0 subsampling (sub-
sampling of chrominance components by 2:1 in both
the horizontal and the vertical direction). Two types
of frames are defined: key frames that are coded

independently and non–key frames that are coded
with respect to a previous frame. Key frames are
coded in a manner similar to JPEG. For non–key
frames, block-based motion compensation is per-
formed to compute interframe differences, which are
then DCT coded and quantized. The block size is
16 by 16, and each block can have a different quanti-
zation table. Finally, a variable word-length encoder
(usually employing Huffman and run-length methods)
is used for coding the quantized coefficients. Rate
control is done by dropping frames, skipping blocks,
and increasing quantization. Error correction codes
are embedded in the bit stream to help detect and
possibly correct transmission errors. Figure 2b shows
a block diagram of an H.261 decompressor.

ISO’s MPEG-1 Video Standard The MPEG-1 video
standard was developed by ISO’s Motion Picture
Experts Group (MPEG). Like the H.261 algorithm,
MPEG-1 is also an interframe video codec that
removes spatial redundancy by compressing key
frames using techniques similar to JPEG and removes
temporal redundancy through motion estimation and
compensation.11,12 The standard defines three different
types of frames or pictures: intra or I-frames that are
compressed independently; predictive or P-frames
that use motion compensation from the previous I-
or P-frame; and bidirectional or B-frames that contain
blocks predicted from either a preceding or following
P- or I-frame (or interpolated from both). Compres-
sion is greatest for B-frames and least for I-frames.
(A fourth type of frame, called the D-frame or the
DC-intracoded frame, is also defined for improving
fast-forward-type access, but it is hardly ever used.)
There is no restriction on the input frame dimensions,
though the target bit rate of 1.5 megabits per second is
for video containing SIF frames. Subsampling is fixed
at 4:2:0. MPEG-1 employs adaptive quantization of
DCT coefficients for compressing I-frames and for
compressing the difference between actual and pre-
dicted blocks in P- and B-frames. A 16-by-16 sliding
window, called a macroblock, is used in motion esti-
mation; and a variable word-length encoder is used in
the final step to further lower the output bit rate. The
full MPEG-1 standard specifies a system stream that
includes a video and an audio substream, along with
timing information needed for synchronization
between the two. The video substream contains the
compressed video data and coding parameters such
as picture rate, bit rate, and image size. MPEG-1 has
become increasingly popular primarily because it
offers better compression than JPEG without compro-
mising on quality. Several vendors and chip manu-
facturers offer specialized hardware for MPEG
compression and decompression. Figure 2c shows
a block diagram of an MPEG-1 video decompressor.

56 Digital Technical Journal Vol. 7 No. 4 1995

Digital Technical Journal Vol. 7 No. 4 1995 57

COMPRESSED
BIT STREAM

PARSER HUFFMAN
DECODER

QUANTIZER–1

AC COEFFICIENTS

CODE
TABLES

DELAY DCT–1 BLOCK TO
RASTER

RENDERER

8 3 8 BLOCKS

Q TABLES

DC

(a) Baseline JPEG Decompressor (ISO Standard, 1992)

RECEIVER
BUFFER

VARIABLE-LENGTH
CODE DECODER

QUANTIZER–1 DCT–1 BLOCK TO
RASTER

RENDERER

4:1:1 YCBCR

MOTION VECTORS

ON/OFF CONTROL

MOTION
COMPENSATOR

PREVIOUS
PICTURE STORE

Q TABLESCODE TABLES

(b) Recommendation H.261 Decompressor (ITU-T Standard, 1990)

RECEIVER
BUFFER

VARIABLE-LENGTH
CODE DECODER AND
DEMULTIPLEXER

QUANTIZER–1 DCT–1 BLOCK TO
RASTER

RENDERER

DISPLAY

4:1:1 YCBCR

ON/OFF CONTROL

MOTION
COMPENSATION
PREDICTION

FUTURE
PICTURE STORE

Q TABLESCODE TABLES STEP SIZE

MOTION
VECTORS

PREVIOUS
PICTURE STORE

PICTURE
TYPE

(c) MPEG-1 Video Decompressor (ISO Standard, 1994)

COMPRESSED
BIT STREAM

COMPRESSED
BIT STREAM

DISPLAY

DISPLAY

Figure 2
Playback Configurations for Compressed Video Streams

RASTER
TO BLOCK

8 3 8 BLOCKS

SOURCE

COMPRESSED
BIT STREAM

QUANTIZERDCT
DELAY

AC COEFFICIENTS

DPCMDC

FORMATTERHUFFMAN
ENCODER

Q TABLES CODE TABLES

Figure 3
ISO’s Baseline JPEG Compressor

Intel’s INDEO Video Compression Algorithm Intel’s
proprietary INDEO video compression algorithm is
used primarily for video presentations on personal
computer (PC) desktops. It employs color subsam-
pling, pixel differencing, run-length encoding, vector
quantization, and variable word-length encoding. The
chrominance components are heavily subsampled. For
every block of 4-by-4 luminance samples, there is
a single sample of Cb and Cr. Furthermore, samples
are shifted one bit to convert them to 7-bit values. The
resulting precompression format is called YVU9,
because on average there are 9 bits per pixel. This
subsampling alone yields a reduction of 9/24. Run-
length encoding is employed to encode any run of
zero pixel differences.

PCWG’s INDEO-C Video Compression Algorithm
INDEO-C is the video compression component of a
teleconferencing system derived from the Personal
Conferencing Specification developed by the Personal
Conferencing Work Group (PCWG), an industry
group led by Intel Corporation. Like the MPEG stan-
dard, the PCWG specification defines the compressed
bit stream and the decoder but not the encoder.
INDEO-C is optimized for low-bit-rate, ISDN-based
connections and, unlike its desktop compression
cousin, is transform-based. It is an interframe algo-
rithm that uses motion estimation and a 4:1 chromi-
nance subsampling in both directions. Spatial and
temporal loop filters are used to remove high-
frequency artifacts. The transform used for converting
spatial data to frequency coefficients is the slant trans-
form, which has the advantage of requiring only shifts
and adds with no multiplies. Like the DCT, the fast
slant transform (FST) is applied on image subblocks
for coding both intraframes and difference frames. As
was the case in other codecs, run-length coding and
Huffman coding are employed in the final step.
Compression and decompression of video in software
is faster than other interframe schemes like MPEG-1
and H.261.

Compression Schemes under Development In addi-
tion to the five compression schemes described in this
section, four other video compression standards,
which are currently in various stages of development
within ISO and ITU-T, are worth mentioning: ISO’s
MPEG-2, ITU-T’s Recommendation H.262, ITU-T’s
Recommendation H.263, and ISO’s MPEG-4.13,14

Although the techniques employed in MPEG-2,
H.262, and H.263 compression schemes are similar to

the ones discussed above, the target applications are
different. H.263 focuses on providing low-bit-rate
video (below 64 kilobits per second) that can be trans-
mitted over narrowband channels and used for real-
time conversational services. The codec would be
employed over the plain old telephone system (POTS)
with modems that have the V.32 and the V.34 modem
technologies. MPEG-2, on the other hand, is aimed at
bit rates above 2 megabits per second, which support
a wide variety of formats for multimedia applications
that require better quality than MPEG-1 can achieve.
One of the more popular target applications for
MPEG-2 is coding for high-definition television
(HDTV). It is expected that ITU-T will adapt MPEG-2
so that Recommendation H.262 will be very similar,
if not identical, to it. Finally, like Recommendation
H.263, ISO’s MPEG-4’s charter is to develop a generic
video coding algorithm for low-bit-rate multimedia
applications over a public switched telephone network
(PSTN). A wide variety of applications, including
those operating over error-prone radio channels, are
being targeted. The standard is expected to embrace
coding methods that are very different from its precur-
sors and will include the so-called second-generation
coding techniques.7 MPEG-4 is expected to reach
draft stage by November 1997.

This ends our discussion on video compression tech-
niques and standards. In the next section, we turn our
attention to the other component of the video play-
back solution, namely video rendering. We describe the
general process of video rendering and present a novel
algorithm for efficient mapping of out-of-range colors
to feasible red, green, and blue (RGB) values that can
be represented on the target display device. Out-of-
range colors can occur when the display quality is
adjusted during video playback.

Video Presentation

Video presentation or rendering is the second impor-
tant component in the video playback pipeline (see
Figure 1). The job of this subsystem is to accept
decompressed video data and present it in a window of
specified size on the display device using a specified
number of colors. The basic components are sketched
in Figure 4 and described in more detail in a previous
issue of this Journal.15 Today, most desktop systems do
not include hardware options to perform these steps,
but some interesting cases are available as described in
this issue.9,16 When such accelerators are not available,
software-only implementation is necessary. Software

58 Digital Technical Journal Vol. 7 No. 4 1995

DECOMPRESSED
YUV COLOR ADJUST SCALE DITHER COLOR SPACE

CONVERT
RGB COLOR
INDEX

Figure 4
Components of Video Rendering

Digital Technical Journal Vol. 7 No. 4 1995 59

The matrix is somewhat simple with only four values
that are not 0 or 1. These constants are a 5 1.402,
b 5 2.344, c 5 2.714, and d 5 1.722.

The RGB color space cube becomes a parallelepiped
in YUV space. This is pictured in Figure 5, where the
black corner is at the bottom, and the white corner is
at the top; the red, green, and blue corners are as
labeled. The chrominance signals U and V are usually
subsampled, so the rendering subsystem must first
restore these components and then transform the
YUV triplets to RGB values.

Typical frame buffers are configured with 8 bits of
color depth. This hardware colormap must, in general,
be shared by multiple applications, which puts a pre-
mium on each of the 256 color slots in the map. Each
application, therefore, must be able to request render-
ing to a limited number of colors. This can be accom-
plished most effectively with a multilevel dithering
scheme, as represented by the dither block in Figure 4.

where the transformation matrix,

rendering algorithms, although very efficient, can still
consume as many computation cycles as are used to
decompress the data.

All major video standards represent image data in a
luminance-chrominance color space. In this scheme,
each pixel is composed of a single luminance compo-
nent, denoted as Y, and two chrominance components
that are sometimes referred to as color difference sig-
nals Cb and Cr, or signals U and V. The relationship
between the familiar RGB color space and YUV can be
described by a 3-by-3 linear transformation:

The color adjustment block controls brightness, con-
trast and saturation by means of simple look-up tables.

Along with up-sampling the chrominance, the scale
block in Figure 4 can also change the size of the
image. Although arbitrary scaling is best performed in
combination with filtering, it is found to be too expen-
sive to do in a software-only implementation. For the
case of enlargement, a trade-off can be made between
image quality and speed; contrary to what is shown in
Figure 4, image enlargement can occur after dithering
and color space converting. Of course, this would
result in scaled dithered pixels, which are certainly less
desirable, but it would also result in faster processing.

To optimize computational efficiency, color space
conversion from YUV to RGB takes place after YUV
dithering. Dithering greatly reduces the number of
YUV triplets, thus allowing a single look-up table
to perform the color space conversion to RGB as well
as map to the final 8-bit color index required by the
graphics display system. Digital pioneered this idea
and has used it in a number of hardware and software-
only products.17

Mapping Out-of-Range Colors
Besides the obvious advantages of speed and simplic-
ity, using a look-up table to convert dithered YUV val-
ues to RGB values has the added feature of allowing
careful mapping of out-of-range YUV values. Refer-
ring again to Figure 5, the RGB solid describes those
r, g, and b values that are feasible, that is, have the nor-
malized range 0 ≤ r, g, b ≤ 1. The range of possible val-
ues in YUV space are those for 0 ≤ y ≤ 1 and 2.5 ≤ u,
v ≤ .5. It turns out that the RGB solid occupies only
23.3 percent of this possible YUV space; thus there
is ample possibility for so-called infeasible or out-of-
range colors to occur. Truncating the r, g, and b values
of these colors has the effect of mapping back to the
RGB parallelepiped along lines perpendicular to its
nearest surface; this is undesirable since it will result
in changing both the hue angle or polar orientation in
the chrominance plane and the luminance value. By
storing the mapping in a look-up table, decisions can
be made a priori as to exactly what values the out-of-
range values should map to.

There is a mapping where both the luminance or y
value and the hue angle are held constant at the
expense of a change in saturation. This section details
how a closed-form solution can be found for such a
mapping. Figure 6 is a cross section of the volume in
Figure 5 through a plane at y = y0. The object is to find
the point on the surface of the RGB parallelepiped that
maps the out-of-range point (y0, u0, v0) in the plane of
constant y0 (constant luminance) and along a straight
line to the u-v origin (constant hue angle). The solu-
tion is the intersection of the closest RGB surface and
the line between (y0, u0, v0) and (y0, 0, 0). This line can

r
g
b

5 M
y
u
v

, (2)

M 5
1 0 a
1 b c
1 d 0

. (3)

Y

U

BV

R

G

Figure 5
The RGB “Cube” in YUV Space

The Software Video Library

When we started this project, we had two objectives in
mind: to showcase the processing power of Digital’s
newly developed Alpha processor and to use this
power to make digital video easily available to devel-
opers and end users by providing extremely low-cost
solutions. We knew that because of the compute-
intensive nature of video processing, Digital’s Alpha
processor would outperform any competitive proces-
sor in a head-to-head match. By providing the ability
to manipulate good-quality desktop video without the
need for additional hardware, we wanted to make
Alpha-based systems the computers of choice for end
users who wanted to incorporate multimedia into
their applications.

Our objectives translated to the creation of a soft-
ware video library that became a reality because of
three key observations. The first one is embedded in
our motivation: processors had become powerful
enough to perform complex signal-processing opera-
tions at real-time rates. With the potential of even
greater speeds in the near future, low-cost multimedia
solutions would be possible since audio and video
decompression could be done on the native processor
without any additional hardware.

A second observation was that multiple emerging
audio/video compression standards, both formal and
industry de facto, were gaining popularity with appli-
cation vendors and hence needed to be supported
on Digital’s platforms. On careful examination of the
compression algorithms, we observed that most of
the prominent schemes used common building
blocks (see Figure 2). For example, all five interna-
tional standards—JPEG, MPEG-1, MPEG-2, H.261,
and H.263—have DCT-based transform coders fol-
lowed by a quantizer. Similarly, all five use Huffman
coding in their final step. This meant that work done
on one codec could be reused for others.

A third observation was that the most common
component of video-based applications was video
playback (for example, videoconferencing, video-on-
demand, video player, and desktop television). The
output decompressed streams from the various
decoders have to be software-rendered for display on
systems that do not have support for color space con-
version and dithering in their graphics adapters. An
efficient software rendering scheme could thus be
shared by all video players.

With these observations in mind, we developed
a software video library containing quality implemen-
tations of ISO, ITU-T, and industry de facto video
coding standards. In the sections to follow, we present
the architecture, implementation, optimization, and
performance of the software video library. We com-
plete our presentation by describing examples of
video-based applications written on top of this library,

60 Digital Technical Journal Vol. 7 No. 4 1995

where the matrix M is as given in equation (2). To find
where this parametric line will intersect the RGB paral-
lelepiped, we can first solve for the a at the intercept val-
ues at each of the six bounding surface planes as follows:

Surface Intercept
Plane Value
r 51 a1 5(12y0)/av0

g 51 a2 5(12y0)/(bu0+cv0)
b 51 a3 5(12y0)/du0

r 5 0 a4 5(a121)
g 5 0 a5 5(a221)
b 5 0 a6 5(a321)

Exactly three ai will be negative, with each describing
the intercept with extended RGB surface planes oppo-
site the u-v origin. Of the remaining three ai, the two
largest values will describe intercepts with extended
RGB surface planes in infeasible RGB space. This is
because the RGB volume, a parallelepiped, is a convex
polyhedron. Thus the solution must simply be the
smallest positive ai. Plugging this value of a into equa-
tion (4) produces the desired RGB value.

be parametrically represented as the locus (y0, au0, av0)
for a single parameter a. The RGB values for these
points are

r
g
b

5 M
y 0

au 0

av 0

5

a(av 0)1y 0

a(b u 0 1cv 0)1y0

a(du 0)1y 0

, (4)

U

V
.5

–.5
–.5 .5

(y0,u0,v0)

(y0,au0,av0)

FEASIBLE RGB REGION DESIRED SURFACE POINT

RANGE OF POSSIBLE
UV VALUES

Figure 6
Mapping Out-of-Range YUV Points to the Surface of the
RGB Parallelepiped in a Plane of Constant y0

including a novel video screen saver we call Video
Odyssey and a software-only video player.

Architecture
Keeping in mind the observations outlined above, we
designed a software video library (SLIB) that would

■ Provide a common architecture under which mul-
tiple audio and video codecs and renderers could
be accessed

■ Be the lowest, functionally complete layer in the
software video codec hierarchy

■ Be fast, extensible, and thread-safe, providing reen-
trant code with minimal overhead

■ Provide an intuitive, simple, flexible, and extens-
ible application programming interface (API)
that supports a client-server model of multimedia
computing

■ Provide an API that would accommodate multiple
upper layers, allowing for easy and seamless integra-
tion into Digital’s multimedia products

Our intention was not to create a library that would
be exposed to end-user applications but to create one
that would provide a common architecture for video
codecs for easy integration into Digital’s multimedia
products. SLIB’s API was purposely designed to be
a superset of Digital’s Multimedia Services’ API for
greater flexibility in terms of algorithmic tuning and
control. The library would fit well under the actual

programming interface provided to end users by
Digital’s Multimedia Services. Digital’s Multimedia
API is the same as Microsoft’s Video For Windows
API, which facilitates the porting of multimedia appli-
cations from Windows and Windows NT to Digital
UNIX and OpenVMS platforms. Figure 7 shows SLIB
in relation to Digital’s multimedia software hierarchy.
The shaded regions indicate the topics discussed in
this paper.

As mentioned, the library contains routines for
audio and video codecs and Digital’s propriety video-
rendering algorithms. The routines are optimized
both algorithmically and for the particular platform on
which they are offered. The software has been success-
fully implemented on multiple platforms, including
the Digital UNIX, the OpenVMS, and Microsoft’s
Windows NT operating systems.

Three classes of routines are provided for the three
subsystems: (1) video compression and decompres-
sion, (2) video rendering, and (3) audio processing.
For each subsystem, routines can be further classified
as (a) setup routines, (b) action routines, (c) query rou-
tines, and (d) teardown routines. Setup routines create
and initialize all relevant internal data structures. They
also compute values for the various look-up tables such
as the ones used by the rendering subsystem. Action
routines perform the actual coding, decoding, and ren-
dering operations. Query routines may be used before
setup or between action routines. These provide the
programmer with information about the capability

Digital Technical Journal Vol. 7 No. 4 1995 61

DIGITAL’S MULTIMEDIA
CLIENT LIBRARY

DIGITAL’S MULTIMEDIA
SERVER (DIGITAL UNIX,
OPENVMS)

APPLICATION 1 APPLICATION N

MICROSOFT’S VIDEO
FOR WINDOWS
(WINDOWS NT)

APPLICATION 1 APPLICATION M

INSTALLABLE
COMPRESSION
MANAGER DRIVER

MEDIA CONTROL
INTERFACE DRIVER

AUDIO PROCESSORSVIDEO RENDERERS

JPEG MPEG H.261 DITHER SCALE COLOR
SPACE
CONVERT

COLOR
ADJUST

SAMPLE
RATE
CONVERSION

ADPCM MPEG-1

SOFTWARE VIDEO
CODING LIBRARY
(SLIB)

VIDEO CODECS

Figure 7
Software Video Library Hierarchy

of the codec such as whether or not it can handle a
particular input format and provide information about
the bit stream being processed. These routines can also
be used for gathering statistics. Teardown routines, as
the name suggests, are used for closing the codec and
destroying all internal memory (state information)
associated with it. For all video codecs, SLIB provides
convenience functions to construct a table of contents
containing the offsets to the start of frames in the input
bit stream. These convenience functions are useful for
short clips: once a table of contents is built, random
access and other VCR functions can be implemented
easily. (These routines are discussed further in the sec-
tion on sample applications.)

Implementation of Video Codecs
In this section, we present the program flow for multi-
media applications that incorporate the various video
codecs. These applications are built on top of SLIB.
We also discuss specific calls from the library’s API to
explain concepts.

Motion JPEG Motion JPEG is the de facto name of
the compression scheme that uses the JPEG compres-
sion algorithm developed for still images to code video
sequences. The motion JPEG (or M-JPEG) player was
the first decompressor we developed. We had recently
completed the Sound & Motion J300 adapter that
could perform JPEG compression, decompression,
and dithering in hardware.9,10 We now wanted to
develop a software decoder that would be able to
decode video sequences produced by the J300 and its
successor, the FullVideo Supreme JPEG adapter,
which uses the peripheral component interconnect
(PCI).10 Only baseline JPEG compression and decom-
pression have been implemented in SLIB. This is suffi-
cient for greater than 90 percent of today’s existing
applications. Figure 2a and Figure 3 show the block
diagrams for the baseline JPEG codec, and Figure 8
shows the flow control for compressing raw video
using the video library routines. Due to the symmetric
structure of the algorithm, the flow diagram for the
JPEG decompressor looks very similar to the one for
the JPEG compressor.

The amount of compression is controlled by the
amount of quantization in the individual image frames
constituting the video sequence. The coefficients for
every 8-by-8 block within the image F(x,y) are quan-
tized and dequantized as

In equation (5), QTable represents the quantization
matrices, also called visibility matrices, associated
with the frame F(x,y). (Each component constituting

62 Digital Technical Journal Vol. 7 No. 4 1995

the frame can have its own QTable.) SLIB provides
routines to download QTables to the encoder explic-
itly; tables provided in the ISO specification can be
used as defaults. The library provides a quality factor
that can scale the base quantization tables, thus pro-
viding a control knob mechanism for varying the
amount of compression from frame to frame. The
quality factor may be dynamically varied between
0 and 10,000, with a value of 10,000 causing no quan-
tization (all quantization table elements are equal
to 1), and a value of 0 resulting in maximum quantiza-
tion (all quantization table elements are equal to 255).
For intermediate values:

The Clip() function forces the out-of-bounds values to
be either 255 or 1. At the low end of the quality set-
ting (small values of the quality factor), the above
formula produces quantization tables that cause
noticeable artifacts.

Although Huffman tables do not affect the quality
of the video, they do influence the achievable bit rate
for a given video quality. As with quantization tables,
SLIB provides routines for loading and using custom
Huffman tables for compression. Huffman coding
works best when the source statistics are known; in

OPEN
CODEC

QUERY COMPRESSOR

REGISTER CALLBACK

SET UP COMPRESSOR

READ FROM DISK OR
CAPTURE LIVE VIDEO

DATA?

COMPRESS FRAME

NO

YES

SvCloseCodec

SvCompressBegin

SvRegisterCallback

SvQueryCompressor

SvOpenCodec

WRITE TO FILE

CLOSE
CODEC

SvCompress

Figure 8
Flow Control for M-JPEG Compression

Fq (x,y) 5
F (x,y)

QTable(x,y) F (x,y)

5 Fq (x,y) 3 QTable(x,y).
(5)

QTable(x,y) 5

Clip
VisibilityTable(x,y)3(1042QualFactor)3255

1043min VisibilityTable (x,y)
.

(6)

practice, statistically optimized Huffman tables are
rarely used due to the computational overhead involved
in their generation. In the case where these tables are
not explicitly provided, the library uses as default the
baseline tables suggested in the ISO specification. In the
case of decompression, the tables may be present in the
compressed bit stream and can be examined by invok-
ing appropriate query calls. In the AVI format, Huffman
tables are not present in the compressed bit stream, and
the default ISO tables are always used.

Query routines for determining the supported
input and output formats for a particular compressor
are also provided. For M-JPEG compression, some of
the supported input formats include interleaved 4:2:2
YUV, noninterleaved 4:2:2 YUV, interleaved and non-
interleaved RGB, 32-bit RGB, and single component
(monochrome). The supported output formats
include JPEG-compressed YUV and JPEG-compressed
single component.

ISO’s MPEG-1 Video Once we had implemented the
M-JPEG codec, we turned our attention to the MPEG-1
decoder. MPEG-1 is a highly asymmetric algorithm.
The committee developing this standard purposely
kept the decompressor simple: it was expected that
there would be many cases of compress once and
decompress multiple times. In general, the task of com-
pression is much more complex than that of decom-
pression. As of this writing, achieving real-time
performance for MPEG-1 compression in software
is not possible. Thus we concentrated our energies
on implementing and optimizing an MPEG-1 decom-
pressor while leaving MPEG-1 compression for batch
mode. Someday we hope to achieve real-time com-
pression all in software with the Alpha processor.
Figure 9 illustrates the high-level scheme of how SLIB
fits into an MPEG player. The MPEG-1 system stream
is split into its audio and video substreams, and each
is handled separately by the different components of

the video library. Synchronization between audio and
video is achieved at the application layer by using the
presentation time-stamp information embedded in
the system stream. A timing controller module within
the application can adjust the rate at which video
packets are presented to the SLIB video decoder and
renderer. It can indicate to the decoder whether to
skip the decoding of B- and P-frames.

Figure 10 illustrates the flow control for an MPEG-1
video player written on top of SLIB. The scheme relies
on a callback function that is registered with the codec
during initial setup, and a SvAddBuffers function, writ-
ten by the client, which provides the codec with the bit-
stream data to be processed. The codec is primed by
adding multiple buffers, each typically containing
a single video packet from the demultiplexed system
stream. These buffers are added to the codec’s internal
buffer queue. After enough data has been provided, the
decoder is told to parse the bit stream in its buffer queue
until it finds the next (f irst) picture. The client applica-
tion can specify which type of picture to locate (I, P, or
B) by setting a mask bit. After the picture is found and
its information returned to the client, the client may
choose to either decompress this picture or to skip it by
invoking the routine to find the next picture. This pro-
vides an effective mechanism for rate control and for
VCR controls such as step forward, fast forward, step
back, and fast reverse. If the client requests that a
non–key picture (P or B) be decompressed and the
codec does not have the required reference (I or P) pic-
tures needed to perform this operation, an error is
returned. The client can then choose to abort or pro-
ceed until the codec finds a picture it can decompress.

During steady state, the codec may periodically
invoke the callback function to exchange messages with
the client application as it compresses or decompresses
the bit stream. Most messages sent by the codec expect
some action from the client. For example, one of
the messages sent by the codec to the application is

Digital Technical Journal Vol. 7 No. 4 1995 63

CD

SLIB SYSTEM
STREAM
PARSER

DISK

NETWORK

ISO 11172-1
STREAM

TIMING
CONTROLLER

SLIB VIDEO
DECODER

SLIB
RENDERER

HARDWARE
RENDERER

FRAME
BUFFER

SLIB AUDIO
DECODER

ISO 11172-3
AUDIO

ISO 11172-2
VIDEO

LEFT

RIGHT

Figure 9
SLIB as Part of a Full MPEG Player

invoked at a (near) periodic rate. A CB_PROCESSING
message is sent to the application by the codec at reg-
ular intervals to give it an opportunity for rate control
of video and/or to perform other operations.

Typically the order in which coded pictures are pre-
sented to the decoder does not correspond to the
order in which they are to be displayed. Consider the
following example:

64 Digital Technical Journal Vol. 7 No. 4 1995

a CB_END_BUFFERS message, which indicates the
codec has run out of data and the client needs to either
add more data buffers or abort the operation. Another
message, CB_RELEASE_BUFFERS, indicates the
codec is done processing the bit-stream data in a data
buffer, and the buffer is available for client reuse. One
possible action for the client is to fill this newly available
buffer with more data and pass it back to the codec. In
the other direction, the client may send messages to the
codec through a ClientAction field. Table 1 gives some
of the messages that can be sent to the codec by the
application.

Another use for the callback mechanism is to accom-
modate client operations that need to be intermixed
between video encoding/decoding operations. For
example, the application may want to process audio
samples while it is decompressing video. The codec can
then be configured such that the callback function is

OPEN
CODEC

QUERY DECOMPRESSOR

REGISTER THE CALLBACK

SET UP DECOMPRESSOR

DETERMINE AND ALLOCATE
OUTPUT OF IMAGE SIZE

PRIME THE DECODER

FIND NEXT
PICTURE

DECODE?

DECOMPRESS PICTURE

DISPLAY?

ADD ADDITIONAL DATA
BUFFERS

ADD ADDITIONAL DATA
BUFFERS

RENDER PICTURE DISPLAY PICTURE

NO

NO YES

NO

YES

YES

CLOSE
CODEC

NO MORE
DATA

NO MORE
DATA

SvCloseCodec/
SvCloseRender

SvAddBuffers

SvRenderFrame

SvDecompress

Callback

Callback

SvAddBuffer

SvGetDecompressSize

SvDecompressBegin/
SvRenderBegin

SvRegisterCallback

SvDecompressQuery

SvOpenCodec/
SvOpenRender

SvSetBrightness
SvSetSaturation
SvSetContrast

Figure 10
Flow Control for MPEG-1 Video Playback

Table 1
List of Client Messages

Message Interpretation

CLIENT_ABORT Abort processing of the frame
CLIENT_CONTINUE Continue processing the frame
CLIENT_DROP Do not decompress
CLIENT_PROCESS Start processing

boundaries. The codec parses the bit stream and,
when enough data is available, reconstructs an image.
Input buffers are freed by calling the callback routine.
When an image is reconstructed, it is placed in an out-
put buffer and the buffer is returned to the applica-
tion through the callback routine. The compression
process is similar, but input buffers contain images and
output buffers contain bit-stream data. One advantage
to this streaming interface is that the application layer
does not need to know the syntax of the H.261 bit
stream. The codec is responsible for all bit-stream
parsing. Another advantage is that the callback mecha-
nism for returning completed images or bit-stream
buffers allows the application to do other tasks with-
out implementing multithreading.

SLIB’s architecture and API can easily accommo-
date ISO’s MPEG-2 and ITU-T’s H.263 video com-
pression algorithms because of their similarity to the
MPEG-1 and H.261 algorithms.

Implementation of Video Rendering
Our software implementation of video rendering
essentially parallels the hardware realization detailed
elsewhere in this issue.9 As with the hardware imple-
mentation, the software renderer is fast and simple
because the complicated computations are performed
off line in building the various look-up tables. In both
hardware and software cases, a shortcut is achieved by
dithering in YUV space and then converting to some
small number of RGB index values in a look-up table.16

Although in most cases the mapping values in the
look-up tables remain fixed for the duration of the
run, the video library provides routines to dynamically
adjust image brightness, contrast, saturation, and the
number of colors. Image scaling is possible but affects
performance. When quality is important, the software
performs scaling before dithering and when speed is
the primary concern, it is done after dithering.

Optimizations
We approached the problem of optimization from two
directions: Platform-independent optimizations, or
algorithmic enhancements, were done by exploiting
knowledge of the compression algorithm and the

Digital Technical Journal Vol. 7 No. 4 1995 65

Display Order I1 B2 B3 P4 B5 B6 P7 B8
Decoder Input I1 P4 B2 B3 P7 B5 B6 I10

The order mismatch is an artifact of the compression
algorithm—a B-picture cannot be decoded until both
its past and future reference frames have been decoded.
Similarly a P-picture cannot be decoded until its past
reference frame has been decoded. To get around this
problem, SLIB defines an output multibuffer. The size
of this multibuffer is approximately equal to three
times the size of a single uncompressed frame. For
example, for a 4:2:0 subsampled CIF image, the size of
the multibuffer would be 352 by 288 by 1.5 by 3 bytes
(the exact size is returned by the library during initial
codec setup). After steady state has been reached, each
invocation to the decompress call yields the correct
next frame to be displayed as shown in Figure 11. To
avoid expensive copy operations, the multibuffer is
allocated and owned by the software above SLIB.

ITU-T’s Recommendation H.261 (a.k.a. p 3 64) At the
library level, decompressing an H.261 stream is very
similar to MPEG-1 decoding with one exception:
instead of three types of pictures, the H.261 recom-
mendation defines only two, key frames and non–key
frames (no bidirectional prediction). The implication
for implementation is that the size of the multibuffer is
approximately twice the size of a single decompressed
frame. Furthermore, the order in which compressed
frames are presented to the decompressor is the same
as the order in which they are to be displayed.

To satisfy the H.261 recommendation, SLIB imple-
ments a streaming interface for compression and
decompression. In this model, the application feeds
input buffers to the codec, which processes the data in
the buffers and returns the processed data to the appli-
cation through a callback routine. During decom-
pression, the application layer passes input buffers
containing sections of an H.261 bit stream. The bit
stream can be divided arbitrarily, or, in the case of live
teleconferencing, each buffer can contain data from a
transmission packet. Empty output buffers are also
passed to the codec to fill with reconstructed images.
Picture frames do not have to be aligned on buffer

I1 I1

P4

I1

P4

B2

I1

P4

B3

P7

P4

B3

P7

P4

B5

P7

P4

B6

P7

I10

B6

TIME

Figure 11
Multibuffering in SLIB

The second component of the video decoders we
looked at was the Huffman decoder. Analysis of the
compressed data indicated that short-code-length
symbols were a large part of the compressed bit
stream. The decoder was written to handle frequently
occurring very short codes (, 4 bits) as special cases,
thus avoiding loads from memory. For short codes
(, 8 bits), look-up tables were used to avoid bit-by-bit
decoding. Together, these two classes of codes
account for well over 90 percent of the total collection
of the variable-length codes.

A third compute-intensive operation is raster-to-
block conversion in preparation for compression. This
operation had the potential of slowing down the com-
pressor on Alpha-based systems on which byte and
short accesses are done indirectly. We implemented an
assembly language routine that would read the
uncompressed input color image and convert it to
three one-dimensional arrays containing 8-by-8
blocks in sequence. Special care was taken to keep
memory references aligned. Relevant bytes were
obtained through shifting and masking operations.
Level shifting was also incorporated within the routine
to avoid touching the same data again.

Other enhancements included replacing multiplies
and divides with shifts and adds, avoiding integer to
floating-point conversions, and using floating-point
operations wherever possible. This optimization is
particularly suited to the Alpha architecture, where
floating-point operations are significantly faster than
integer operations. We also worked to reduce memory
bandwidth. Ill-placed memory accesses can stall the
processor and slow down the computations. Instruc-
tions generated by the compiler were analyzed and
sometimes rescheduled to void data hazards, to keep
the on-chip pipeline full, and to avoid unnecessary
loads and stores. Critical and small loops were unrolled
to make better use of floating-point pipelines.
Reordering the computations to reuse data already in
registers and caches helped minimize thrashing in the
cache and the translation lookaside buffer. Memory
was accessed through offsets rather than pointer

66 Digital Technical Journal Vol. 7 No. 4 1995

input data stream. Platform-dependent optimizations
were done by examining the services available from
the underlying operating system and by evaluating the
attributes of the system’s processor.

As can be seen from Table 2, the DCT is one of the
most computationally intensive components in the
compression pipeline. It is also common to all five
international standards. Therefore, a special effort was
made in choosing and optimizing the DCT. Since all
five standards call for the inverse DCT (IDCT) to be
postprocessed with inverse quantization, significant
algorithmic savings were obtained by computing a
scalar multiple of the DCT and merging the appropri-
ate scaling into the quantizer. The DCT implemented
in the library is a modified version of the one-
dimensional scaled DCT proposed by Arari et al.18 The
two-dimensional DCT is obtained by performing a
one-dimensional DCT on the columns followed by
a one-dimensional DCT on the rows. A total of 80
multiplies and 464 adds are needed for a fully popu-
lated 8-by-8 block. In highly compressed video, the
coefficient matrix to be transformed is generally sparse
because a large number of elements are “zeroed” out
due to heavy quantization. We exploit this fact to
speed up the DCT computations. In the decoding
process, the Huffman decoder computes and passes to
the IDCT a list of rows and columns that are all zeros.
The IDCT then simply skips these columns.19 Another
optimization uses a different IDCT, depending on the
number of nonzero coefficients. The overall speedup
due to these techniques is dependent on the amount
of compression. For lightly compressed video, we
observed that the overhead due to these techniques
slowed down the decompressor. We overcame this dif-
ficulty by building into SLIB the adaptive selection of
the appropriate optimization based on continuous sta-
tistics gathering. Run-time statistics of the number of
blocks per frame that are all zeros are maintained, and
the number of frames over which these statistics are
evaluated is provided as a parameter for the client
applications. Statistic gathering is minimal: a counter
update and an occasional compare.

Table 2
Typical Contributions of the Major Components in the Playback of Compressed Video (SIF)

Coding Bit-stream Huffman Inverse IDCT Motion Vector Tone Adjust, Display
Scheme Parser and Quantizer Compression, Quantization Dither, Quantize

Run-length Block to (INDEO and Color Space
Decoder Raster only) Convert

M-JPEG 0.8% 12.4% 10.5% 35.2% —— —— 33.7% 7.4%
decode
MPEG-1 0.9% 13.0% 9.7% 19.7% 20.2% —— 31.4% 5.1%
decode
INDEO 1.0% —— —— —— —— 57.5% 36.0% 5.5%
decode

Digital Technical Journal Vol. 7 No. 4 1995 67

increments. More local variables than global variables
were used. Wherever possible, fixed values were hard
coded instead of using variables that would need to
be computed. References were made to be 32-bit or
64-bit aligned accesses instead of byte or short.

Consistent with one of the design goals, SLIB was
made thread-safe and fully reentrant. The Digital
UNIX, the OpenVMS, and Microsoft’s Windows NT
operating systems all offer support for multithreaded
applications. Applications such as video playback can
improve their performance by having separate threads
for reading, decompressing, rendering, and display-
ing. Also, a multithreaded application scales up well on
a multiprocessor system. Global multithreading is
possible if the library code is reentrant or thread-safe.
When we were trying to multithread the library inter-
nals, we found that the overhead caused by the birth
and death of threads, the increase in memory accesses,
and the fragmentation of the codec pipeline caused
operations to slow down. For these reasons, rou-
tines within SLIB were kept single-threaded. Other
operating-system optimizations such as memory lock-
ing, priority scheduling, nonpreemption, and faster
timers that are generally good for real-time applica-
tions were experimented with but not included in our
present implementation.

Performance on Digital’s Alpha Machines

Measuring the performance of video codecs is gener-
ally a difficult problem. In addition to the usual depen-
dencies such as system load, efficiency of the
underlying operating system, and application over-
head, the speed of the video codecs is dependent on
the content of the video sequence being processed.
Rapid movement and action scenes can delay both
compression and decompression, while slow motion
and high-frequency content in a video sequence can
generally result in faster decompression. When com-
paring the performance of one codec against another,
the analyst must make certain that all codecs process
the same set of video sequences under similar oper-
ating conditions. Since no sequences have been
accepted as standard, the analyst must decide which
sequences are most typical. Choosing a sequence that
favors the decompression process and presenting
those results is not uncommon, but it can lead to false
expectations. Sequences with similar peak signal-to-
noise ratio (PSNR) may not be good enough, because
more often than not PSNR (or equivalently the mean
square error) does not accurately measure signal qual-
ity. With these thoughts in mind, we chose some
sequences that we thought were typical and used these
to measure the performance of our software codecs.
We do not present comparative results to codecs

implemented elsewhere since we did not have access
to these codecs and hence could not test these with the
same sequences.

Table 3 presents the characteristics of the three
video sequences used in our experiments. Let Li(x,y)
and i(x,y) represent the luminance component of
the original and the reconstructed frame i; let n and m
represent the horizontal and vertical dimensions of
a frame; and let N be the number of frames in the
video sequence. Then the Compression Ratio, the
average output BitsPerPixel, and the average PSNR are
calculated as

Figure 12 shows the PSNR for individual frames in
the video sequences along with the distribution of
frame size for each of three test sequences. Frame
dimensions within a sequence always remain constant.

Table 4 provides specifications of the workstations
and PCs used in our experiments for generating
the various performance numbers. The 21064 chip
is Digital’s first commercially available Alpha proces-
sor. It has a load-store architecture, is based on a
0.75-micrometer complementary metal-oxide semi-
conductor (CMOS) technology, contains 1.68 million
transistors, has a 7- and 10-stage integer and floating-
point pipeline, has separate 8-kilobyte instruction and
data caches, and is designed for dual issue. The
21064A microprocessor has the same architecture as
the 21064 but is based on a 0.5-micrometer CMOS
technology and supports faster clock rates.

We provide performance numbers for the video
sequences characterized in Table 3. Figure 13 provides
measured data on CPU usage when compressed video
(from Table 3) is played back at 30 frames per second
on the various test platforms shown in Table 4. We
chose “percentage of CPU used” as a measure of per-
formance because we wanted to know whether the
CPU could handle any other tasks when it was doing
video processing. Fortunately, it turned out the

CompressionRatio 5

bits in frame[i] of original video(
i =1

N

bits in frame[i] of compressed video(
i =1

N
(7)

Avg. BitsPerPixel5

1
N 3n3m

bits in frame[i] of
compressed video(

i =1

N (8)

Avg. PSNR 5

20log10
255

1
N (1

nm [Li (x,y)2L̂ i (x,y)]
2

(
y=1

m

(
x=1

n)(
i =1

N

.

(9)

L̂

68 Digital Technical Journal Vol. 7 No. 4 1995

P
S

N
R

 (
D

E
C

IB
E

LS
)

34

2001751501251007550250
28

29

30

31

32

33

FRAME NUMBER

SEQUENCE 1 (MOTION JPEG)

D
E

N
S

IT
Y

0.08 MEAN = 26.65
STD. DEVIATION = 4.97
RANGE = 41.03
PEAK-TO-AVG. RATIO = 2.07

0.07

0.06

0.05

0.04

0.03

0.02

0.01

1
0

6 11 16 21 26 31 36 41 46 51 56 61

FRAME SIZE (KBITS)

40

2001751501251007550250

35

30
25

20
15
10
5

FRAME NUMBER

SEQUENCE 2 (MPEG-1 VIDEO)

0.06

D
E

N
S

IT
Y

MEAN = 17.11
STD. DEVIATION = 14.47
RANGE = 97.62
PEAK-TO-AVG. RATIO = 5.72

0.05

0.04

0.03

0.02

0.01

0
1 11 21 31 41 51 61 71 81 91 101

FRAME SIZE (KBITS)

P
S

N
R

 (
D

E
C

IB
E

LS
)

40
35

30

25
20

15
10

5

0 25 50 75 100 125 150 175 200

FRAME NUMBER

0.25

D
E

N
S

IT
Y

0.20

0.15

0.10

0.05

0
1 8 15 22 29 36 43 50 57 64 71 78

FRAME SIZE (KBITS)

MEAN = 16.06
STD. DEVIATION = 6.96
RANGE = 59.01
PEAK-TO-AVG. RATIO = 9.80

SEQUENCE 3 (INDEO)

P
S

N
R

 (
D

E
C

IB
E

LS
)

Figure 12
Characteristics of the Three Test Sequences

Table 3
Characteristics of the Video Sequences Used to Generate the Performance Numbers Shown in Figure 12

Spatial Temporal
Compression Resolution Resolution Avg. Compression Avg. PSNR

Name Algorithm (width X height) (No. of Frames) BitsPerPixel Ratio (dB)

Sequence 1 M-JPEG 352 3 240 200 0.32 50:1 31.56
Sequence 2 MPEG-1 352 3 288 200 0.17 69:1 32.28

Video
M-JPEG 352 3 240 200 0.56 28:1 31.56

Sequence 3 INDEO 352 3 240 200 0.16 47:1 28.73

answer was a resounding “Yes” in the case of Alpha
processors. The video playback rate was measured
with software video rendering enabled. When hard-
ware rendering is available, estimated values for video
playback are provided.

From Figure 13, it is clear that today’s workstations
are capable of playing SIF video at full frame rates with

no hardware acceleration. High-quality M-JPEG and
MPEG-1 compressed video clips can be played at full
speed with 20 percent to 60 percent of the CPU avail-
able for other tasks. INDEO decompression is faster
than M-JPEG and MPEG due to the absence of DCT
processing. (INDEO uses a vector quantization
method based on pixel differencing.) On three out of

Digital Technical Journal Vol. 7 No. 4 1995 69

Table 4
Specifications of Systems Used in Experimentation

Operating Disk
System Name CPU Bus Clock Rate Cache Memory System

AlphaStation Alpha PCI 266 MHz 2 MB 64 MB Digital UNIX RZ28B
600 5/266 21164A (3.7 ns) V3.2
workstation
AlphaStation Alpha PCI 266 MHz 2 MB 32 MB Digital UNIX RZ58
200 4/266 21064A (3.7 ns) V3.0
workstation
DEC 3000/M900 Alpha TURBOchannel 275 MHz 2 MB 64 MB Digital UNIX RZ58
workstation 21064A (3.6 ns) V3.2

DEC 3000/M500 Alpha TURBOchannel 133 MHz 512 KB 32 MB Digital UNIX RZ57
workstation 21064 (7.5 ns) V3.0

S
Y

S
T

E
M

 N
A

M
E

0 20

% OF CPU USED

3000/M500

40 60 80 100 120 140

250-4/266

3000/M900

600-5/266

MPEG-1 VIDEO

WITH HARDWARE VIDEO RENDERING

WITH SOFTWARE VIDEO RENDERING

KEY:

S
Y

S
T

E
M

 N
A

M
E

0 20

% OF CPU USED

3000/M500

40 60 80 100 120 140

250-4/266

3000/M900

600-5/266

M-JPEG

S
Y

S
T

E
M

 N
A

M
E

0 20

% OF CPU USED

3000/M500

40 60 80 100 120 140

250-4/266

3000/M900

600-5/266

INDEO

Figure 13
Percentage of CPU Required for Real-time Playback at 30 fps on Four Different Alpha-based Systems

the four machines tested, two SIF INDEO clips could
be played back at full speed with CPU capacity left
over for other tasks.

The data also shows the advantage of placing the
color conversion and rendering of the video in the
graphics hardware (see Table 2 and Figure 13).
Software rendering accounts for one-third of the total
playback time. Since rendering is essentially a table
look-up function, it is a good candidate for moving
into hardware. If hardware video rendering is available,
multiple M-JPEG and MPEG-1 clips can be played
back on three of the four machines on which the soft-
ware was tested.

Software video compression is more time-consum-
ing than decompression. All algorithms discussed in
this paper are asymmetric in the amount of processing
needed for compression and decompression. Even
though the JPEG algorithm is theoretically symmetric,
the performance of the JPEG decoder is better than
that of the encoder. The difference in performance is
due to the sparse nature of the quantized coefficient
matrices, which is exploited by the appropriate IDCT
optimizations.

For video encoders, we measured the rate of com-
pression for both SIF and quarter SIF (QSIF) formats.
Since the overhead due to I/O affects the rate at which
the compressor works, we present measured rates col-
lected when the raw video sequence is read from disk
and when it is captured in real time. The capture cards
used in our experiments were the Sound & Motion
J300 (for systems with the TURBOchannel bus) and
the FullVideo Supreme (for PCI-based systems). The
compressed bit streams were stored as AVI files on local
disks. The sequences used in this experiment were
the same ones used for obtaining measurement for the
various decompressors; their output characteristics are

given in Table 3. Table 5 provides performance num-
bers for the M-JPEG and an unoptimized INDEO
compressor. For M-JPEG, rates for both monochrome
and color video sequences are provided.

The data in Table 5 indicates that the M-JPEG com-
pression outperforms INDEO (although one has to
keep in mind that INDEO was not optimized). This
difference occurs because M-JPEG compression,
unlike INDEO, does not rely on interframe prediction
or motion estimation for compression. Furthermore,
when raw video is compressed from disk, the encoder
performs better than when it is captured and com-
pressed in real time. This can be explained on the basis
of the overhead resulting from context switching in
the operating system and the scheduling of sequential
capture operation by the applications. Real-time cap-
ture and compression of image sizes larger than QSIF
still require hardware assistance. It should be noted
that in Table 5, the maximum compression rate for
real-time capture and compression does not exceed 30
frames per second, which is the limit of the capture
hardware. Since there are no such limitations for disk
reads, compression rates of greater than 30 frames per
second for QSIF sequences are recorded.

With the newer Alpha chip we expect to see
improved performance. A factor we neglected in our
calculations was prefiltering. Some capture boards are
capable of capturing only in CCIR 601 format and do
not include decimation filters as part of their hard-
ware. In such cases, the software has to filter each
frame down to CIF or QCIF, which adds substantially
to the overall compression time. For applications that
do not require real-time compression, software
digital-video compression may be a viable solution
since video can be captured on fast disk arrays and
compressed later.

70 Digital Technical Journal Vol. 7 No. 4 1995

Table 5
Typical Number of Frames Compressed per Second

M-JPEG (Color) M-JPEG (Monochrome) INDEO (Color)

System Compress Capture and Compress Capture and Compress Capture and
(fps) Compress (fps) (fps) Compress (fps) (fps) Compress (fps)
SIF QSIF SIF QSIF SIF QSIF SIF QSIF SIF QSIF SIF QSIF

AlphaStation
600 5/266
workstation 21.0 79.4 20.0 30.0 32.8 130 29.0 30.0 8.7 35.4 5.8 23.0
AlphaStation
200 4/266
workstation 10.8 45.1 12.0 30.0 15.8 72.9 20.0 30.0 5.6 22.0 4.2 13.0
DEC 3000/M900
workstation 13.2 56.6 7.9 28.0 21.9 87.8 14.0 29.0 6.0 25.4 4.5 7.6
DEC 3000/M500
workstation 6.7 26.6 7.3 8.1 10.4 40.4 7.4 8.2 2.8 11.8 2.2 8.7

Sample Applications

We implemented several applications to test our archi-
tecture (codecs and renderer) and to create a test bed
for performance measurements. These programs also
served as sample code for software developers incorpo-
rating SLIB into other multimedia software layers.

The Video Odyssey Screen Saver
The Video Odyssey screen saver uses software video
decompression and 24-bit YCbCr to 8-bit pseudo-
color rendering to deliver video images to the screen
in a variety of modes. The program is controlled by
a control panel, shown in Figure 14.

The user can select from several methods of display-
ing the decompressed video or let the computer cycle
through all methods. The floaters mode, shown in
Figure 15, floats one to four copies of the video
around the screen with the number of floating win-
dows controlled by a slider in the control panel. The
snapshot mode floats one window of the video around
the screen, but every second takes a snapshot of a
frame and pastes it to the background behind the
floating window.

All settings in the control panel are saved in a con-
figuration file in the user’s home directory. The user
selects a video file with the file button. In the current
implementation, any AVI file containing Motion JPEG
or raw YUV video is acceptable. The user can set the
time interval for the screen saver to take over. Controls
for setting brightness, contrast, and saturation are also
provided. Video can be played back at normal resolu-
tion or with 32 scaling. Scaling is integrated with

the color conversion and dithering for optimization. A
pause feature allows the user to leave his or her screen
in a locked state with an active screen saver. The screen
is unlocked only if the correct password is provided.

The Software Video Player
The software video player is an application for viewing
video that is similar to a VCR. Like Video Odyssey, the
software video player exercises the decompression and
rendering portions of SLIB. Unlike Video Odyssey,
the software video player allows random access to any
portion of the video and permits single-step, reverse,
and fast-forward functions. Figure 16 shows the dis-
play window of the software video player.

Digital Technical Journal Vol. 7 No. 4 1995 71

Figure 14
Video Odyssey Control Panel

Figure 15
Video Odyssey Screen Saver in Floaters Mode

Figure 16
The Software Video Player Display Window

72 Digital Technical Journal Vol. 7 No. 4 1995

The user moves through the file with a scroll bar
and a set of VCR-like buttons. The button on the far
left of the display window allows the video to be dis-
played at normal size or at a magnification of 32. The
far-right button allows adjustment of brightness, con-
trast, saturation, and number of displayed colors. The
quality of the dithering algorithm used in rendering is
such that values as low as 25 colors lead to acceptable
image quality. Allowable file formats for the software
video player are M-JPEG (AVI format and the JPEG
file interchange format or JFIF), MPEG-1 (both video
and system streams), and raw YUV.

Random access into the file is done in one of two
ways, depending on the file format. For formats that
contain an index of the frame positions in the file (like
AVI files), the index is simply used to seek the desired
frame. For formats that do not contain an index, such
as MPEG-1 and JFIF, the software video player esti-
mates the location of a frame based on the total length
of the video clip and a running average of frame size.
This technique is adequate for most video clips and has
the advantage of avoiding the time needed to first
build an index by scanning through the file.

Interframe compression schemes like MPEG-1 and
INDEO pose special problems when trying to access
a random frame in a video clip. MPEG-1’s B- and
P-frames are dependent on preceding frames and can-
not be decompressed alone. One technique for han-
dling random access into files with non–key frames
and no frame index is to use the file position specified
by the user (with a scroll bar or by other means) as a
starting point and then to search the bit stream for the
next key frame (an I-frame in MPEG-1). At that point,
display can proceed normally. Reverse play is also a
problem with these formats. The software video player
deals with reverse by displaying only the key frames.
It could display all frames in reverse by predecom-
pressing all frames in a group and then displaying them
in reverse order, but this would require large amounts
of memory and would pose problems with processing
delays. Rate control functions, including fast-forward
and fast-reverse functions, can be done by selectively
throwing out non–key frames and processing key or
I-frames only.

Other Applications
Several other applications using different components
of SLIB were also written. Some of these are
(1) Encode—a video encoding application that uses
SLIB’s compression component to compress raw
video to M-JPEG format, (2) Rendit—a viewer for
true color images that uses SLIB’s rendering compo-
nent to scale, tone-adjust, dither, quantize, color space
convert, and display 24-bit RGB or 16-bit YUV
images on frame buffers with limited planes, and
(3) routines for viewing compressed on-line video

documentation that was incorporated into Digital’s
videoconferencing product.

Related Work

While considerable effort has been devoted to opti-
mizing video decoders, little has been done for video
encoders. Encoding is generally computationally more
complex and time-consuming than decoding. As a
result, obtaining real-time performance from encoders
has not been feasible. Another rationalization for
interest in decoders has been that many applications
require video playback and only a few are based on
video encoding. As a result, “code once, play many
times” has been the dominant philosophy. In most
papers, researchers have focused on techniques for
optimizing the various codecs; very little has been
published on providing a uniform architecture and an
intuitive API for the video codecs.

In this section, we present results from other papers
published on software video codecs. Of the three
international standards, MPEG-1 has attracted the
most attention, and our presentation is biased slightly
toward this standard. We concentrate on work that
implements at least one of the three recognized inter-
national standards.

The JPEG software was made popular by the
Independent Software JPEG Group formed by Tom
Lane.20 He and his colleagues implemented and made
available free software that could perform baseline JPEG
compression and decompression. Considerable atten-
tion was given to software modularity and portability.
The main objective of this codec was still-image com-
pression although its modified version has been used for
decompression of motion JPEG sequences as well.

The MPEG software video decoder was made popu-
lar by the multimedia research group at the University
of California, Berkeley. The availability of this free soft-
ware sparked the interest of many who now had the
opportunity to play with and experiment with com-
pressed video. Patel et al. describe the implementation
of this software MPEG decoder.21 The focus in their
paper is on an MPEG-1 video player that would
be portable and fast. The authors describe various
optimizations, including in-line procedures, custom
coding frequent bit-twiddling operations, and render-
ing in the YUV space with color conversion through
look-up tables. They observed that the key bottleneck
toward real-time performance was not the compu-
tation involved but the memory bandwidth. They
also concluded that data structure organization and
bit-level manipulations were critical for good perfor-
mance. The authors propose a novel metric for com-
paring the performance of the decoder on systems
marketed by different systems vendors. Their metric,
the percentage of required bit rate per second per

Digital Technical Journal Vol. 7 No. 4 1995 73

thousand dollars (PBSD), takes into account the price
of the system on which the decoder is being evaluated.

Bheda and Srinivasan describe the implementa-
tion of an MPEG-1 decoder that is portable across
platforms because the software is written entirely in
a high-level language.22 The paper describes the vari-
ous optimizations done to improve the decoder’s
speed and provides performance numbers in terms of
number of frames displayed per second. The authors
compare the speed of their decoder on various
platforms, including Digital’s first Alpha-based PC run-
ning Microsoft’s Windows NT system. They conclude
that their decoder performed best on the Alpha system.
It was able to decompress, dither, and display a 320-
pixel by 240-line video sequence at a rate of 12.5 frames
per second. A very brief description of the API sup-
ported by the decoder is also provided. The API is able
to support operations such as random access, fast for-
ward, and fast reverse. Optional skipping of B-frames is
possible for rate control. The authors conclude that the
size of the cache and the performance of the display sub-
system are critical for real-time performance.

Bhaskaran and Konstantinides describe a real-
time MPEG-1 software decoder that can play both
audio and video data on a Hewlett-Packard PA-RISC
processor-based workstation.23 The paper provides
step-by-step details on how optimization was carried
out at both the algorithmic and the architectural
levels. The basic processor was enhanced by including
in the instruction set several multimedia instructions
capable of performing parallel arithmetic operations
that are critical in video codecs. The display subsystem
is able to handle color conversion of YCbCr data and
up-sampling of image data. The performance of the
decoder is compared to software decoders running on
different platforms from different manufacturers. The
comparison is not truly fair because the authors com-
pare their decoder, which has hardware assistance
available to it (i.e., an enhanced graphic subsystem and
new processor instructions), to other decoders that are
truly software based. Furthermore, since all the codecs
were not running on the same machine under similar
operating conditions and since the sequence tested on
their decoder is not the same as the one used by the
others, the comparison is not truly accurate. The paper
does not provide any information on the program-
ming interface, the control flow, and the overall soft-
ware architecture.

There are numerous other descriptions of the
MPEG-1 software codecs. Eckart describes a software
MPEG video player that is capable of decoding both
audio and video in real time on a PC with a 90-mega-
hertz Pentium processor.24 Software for this decoder is
available freely over the Internet. Gong and Rowe
describe a parallel implementation of the MPEG-1

encoder that runs on a network of workstations.25 The
performance improvements of greater than 650
percent are reported when the encoding process is
performed on 9 networked HP 9000/720 systems
as compared to a single system.

Wu et al. describe the implementation and per-
formance of a software-only H.261 video codec on
the PowerPC 601 reduced instruction set computer
(RISC) processor.26 This paper is interesting in that it
deals with optimizing both the encoder and the
decoder to facilitate real-time, full-duplex network
connections. The codec plugs under the QuickTime
architecture developed by Apple Computer, Inc. and
can be invoked by applications that have programmed
to the QuickTime interface. The highest display rate is
slightly under 18 frames per second for a QSIF video
sequence coded at 64 kilobits per second with disk
access. With real-time video capture included, the
frame rate reduces to between 5 and 10 frames per
second. The paper provides an interesting insight by
giving a breakdown of the amount of time spent in
each stage of coding and decoding on a complex
instruction set computer (CISC) versus a RISC system.
Although the paper does a good job of describing the
optimizations, very little is mentioned about the soft-
ware architecture, the programming interface, and the
control flow.

We end this section by recommending some sources
for obtaining additional information on the state
of the art in software-only video in particular and in
multimedia in general. First, the Society of Photo-
Optical Instrumentation Engineers (SPIE) and the
Association of Computing Machinery (ACM) sponsor
annual multimedia conferences. The proceedings from
these conferences provide a comprehensive record of
the advances made on a year-to-year basis. In addition,
both the Institute of Electrical and Electronics
Engineers (IEEE) and ACM regularly publish issues
devoted to multimedia. These special issues contain
review papers with sufficient technical details.14,27

Finally, an excellent book on the subject of video com-
pression is the recently published Digital Pictures (sec-
ond edition) by Arun Netravali and Barry Haskel from
Plenum Press.

Conclusions

We have shown how popular video compression
schemes are composed of an interconnection of dis-
tinct functional blocks put together to meet specified
design objectives. The objectives are almost always set
by the target applications. We have demonstrated that
the video rendering subsystem is an important compo-
nent of a complete playback solution and presented
a novel algorithm for mapping out-of-range colors.

74 Digital Technical Journal Vol. 7 No. 4 1995

We described the design of our software architecture
for video compression, decompression, and playback.
This architecture has been successfully implemented
over multiple platforms, including the Digital UNIX,
the OpenVMS, and Microsoft’s Windows NT operat-
ing systems. Performance results corroborate our
claim that current processors can adequately handle
playback of compressed video in real time with little or
no hardware assistance. Video compression, on the
other hand, still requires some hardware assistance for
real-time performance. We believe the widespread use
of video on the desktop is possible if high-quality
video can be delivered economically. By providing
software-only video playback, we have taken a step in
this direction.

References

1. A. Akansu and R. Haddad, “Signal Decomposition
Techniques: Transforms, Subbands, and Wavelets,”
Optcon ’92, Short Course 28 (November 1992).

2. E. Feig and S. Winograd, “Fast Algorithms for Discrete
Cosine Transform,” IEEE Transactions on Signal
Processing, vol. 40, no. 9 (1992): 2174–2193.

3. S. Lloyd, “Least Squares Quantization in PCM,” IEEE
Transactions on Information Theory,vol. 28 (1982):
129–137.

4. J. Max, “Quantizing for Minimum Distortion,” IRE
Transactions on Information Theory, vol. 6, no. 1
(1960): 7–12.

5. N. Nasrabadi and R. King, “Image Coding using
Vector Quantization: A Review,” IEEE Transactions
Communications, vol. 36, no. 8 (1988): 957–971.

6. D. Huffman, “A Method for the Construction of Min-
imum Redundancy Codes,” Proceedings of the IRE,
vol. 40 (1952): 1098–1101.

7. H. Harashima, K. Aizawa, and T. Saito, “Model-
based Analysis-Synthesis Coding of Video Telephone
Images—Conception and Basic Study of Intelligent
Image Coding,” Transactions of IEICE, vol. E72,
no. 5 (1981): 452–458.

8. Information Technology —Digital Compression
and Coding of Continuous-tone Still Images,
Part 1: Requirements and Guidelines, ISO/IEC IS
10918-1:1994 (Geneva: International Organization
for Standardization/International Electrotechnical
Commission, 1994).

9. K. Correll and R. Ulichney, “The J300 Family
of Video and Audio Adapters: Architecture and Hard-
ware Design,” Digital Technical Journal, vol. 7,
no. 4 (1995, this issue): 20–33.

10. P. Bahl, “The J300 Family of Video and Audio
Adapters: Software Architecture,” Digital Technical
Journal, vol. 7, no. 4 (1995, this issue): 34–51.

11. Video Codec for Audiovisual Services at p 3 64
kbits/s, ITU-T Recommendation H.261, CDM XV-R
37-E (Geneva: International Telegraph and Telephone
Consultative Committee, 1990).

12. Coding of Moving Pictures and Associated Audio
for Digital Storage Media at Up to about 1.5 Mbits/s,
ISO/IEC Standard 11172-2:1993 (Geneva: Interna-
tional Organization for Standardization/International
Electrotechnical Commission, 1993).

13. Generic Coding of Moving Pictures and Associated
Audio, Recommendation H.262, ISO/IEC CD
13818-2:1994 (Geneva: International Organization
for Standardization/International Electrotechnical
Commission, 1994).

14. Special Issue on Advances in Image and Video Com-
pression, Proceedings of the IEEE (February 1995).

15. R. Ulichney, “Video Rendering,” Digital Technical
Journal, vol. 5, no. 2 (Spring 1993): 9–18.

16. L. Seiler and R. Ulichney, “Integrating Video Render-
ing into Graphics Accelerator Chips,” Digital Techni-
cal Journal, vol. 7, no. 4 (1995, this issue): 76–88.

17. R. Ulichney, “Method and Apparatus for Mapping
a Digital Color Image from a First Color Space to a
Second Color Space,” U.S. Patent 5,233,684 (1993).

18. Y. Arari, T. Agui, and M. Nakajima, “A Fast DCT-SQ
Scheme for Images,” IEEE Transactions IEICE, E-71
(1988): 1095–1097.

19. K. Froitzheim and K. Wolf, “Knowledge-based
Approach to JPEG Acceleration,” Digital Video Com-
pression: Algorithms and Technologies 1995, Pro-
ceedings of the SPIE, vol. 2419 (1995): 2–13.

20. T. Lane, “JPEG Software,” Independent JPEG Group,
unpublished paper available on the Internet.

21. K. Patel, B. Smith, and L. Rowe, “Performance of a
Software MPEG Video Decoder,” Proceedings of
ACM Multimedia ’93, Anaheim, Calif. (1993): 75–82.

22. H. Bheda and P. Srinivasan, “A High-performance
Cross-platform MPEG Decoder,” Digital Video Com-
pression: Algorithms and Technologies 1995, Pro-
ceedings of the SPIE, vol. 2187 (1994): 241–248.

23. K. Bhaskaran and K. Konstantinides, “Real-Time
MPEG-1 Software Decoding on HP Workstations,”
Digital Video Compression: Algorithms and Tech-
nologies 1995, Proceedings of the SPIE, vol. 2419
(1995): 466–473.

24. S. Eckart, “High Performance Software MPEG Video
Playback for PCs,” Digital Video Compression: Algo-
rithms and Technologies 1995, Proceedings of the
SPIE, vol. 2419 (1995): 446–454.

25. K. Gong and L. Rowe, “Parallel MPEG-1 Video
Encoding,” Proceedings of the 1994 Picture Coding
Symposium, Sacramento, Calif. (1994).

Digital Technical Journal Vol. 7 No. 4 1995 75

26. H. Wu, K. Wang, J. Normile, D. Ponceleon, K. Chu,
and K. Sung, “Performance of Real-time Software-
only H.261 Codec on the Power Macintosh,” Digital
Video Compression: Algorithms and Technologies
1995, Proceedings of the SPIE, vol. 2419 (1995):
492–498.

27. Special Issue on Digital Multimedia Systems, Com-
munications of the ACM, vol. 34, no. 1 (April 1991).

Biographies

Paramvir Bahl
Paramvir Bahl received B.S.E.E. and M.S.E.E. degrees in
1987 and 1988 from the State University of New York at
Buffalo. Since joining Digital in 1988, he has contributed
to several seminal multimedia products involving both
hardware and software for digital video. Recently, he led
the development of software-only video compression and
video rendering algorithms. A principal engineer in the
Systems Business Unit, Paramvir received Digital’s Doctoral
Engineering Fellowship Award and is completing his Ph.D.
at the University of Massachusetts. There, his research has
focused on techniques for robust video communications
over mobile radio networks. He is the author and coauthor
of several scientific publications and a pending patent. He
is an active member of the IEEE and ACM, serving on pro-
gram committees of technical conferences and as a referee
for their journals. Paramvir is a member of Tau Beta Pi and
a past president of Eta Kappa Nu.

Paul S. Gauthier
Paul Gauthier is the president and founder of Image
Softworks, a software development company in Westford,
Massachusetts, specializing in image and video processing.
He received a Ph.D. in physics from Syracuse University
in 1975 and has worked with a variety of companies on
medical imaging, machine vision, prepress, and digital
video. In 1991 Paul collaborated with the Associated Press
on developing an electronic darkroom. During the Gulf
War, newspapers used his software to process photographs
taken of the nighttime attack on Baghdad by the United
States. Working with Digital, he has contributed to adding
video to the Alpha desktop.

Robert A. Ulichney
Robert Ulichney received a Ph.D. from the Massachusetts
Institute of Technology in electrical engineering and com-
puter science and a B.S. in physics and computer science
from the University of Dayton, Ohio. He joined Digital
in 1978. He is currently a senior consulting engineer with
Digital’s Cambridge Research Laboratory, where he leads
the Video and Image Processing project. He has filed sev-
eral patents for contributions to Digital products in the
areas of hardware and software-only motion video, graphics
controllers, and hard copy. Bob is the author of Digital
Halftoning and serves as a referee for a number of technical
societies, including IEEE, of which he is a senior member.

