
Digital developed the eXcursion family of display
server products to provide interoperability between
desktop personal computers (PCs) running the
Microsoft Windows operating system and remote
hosts running the X Window System operating system
under the UNIX or OpenVMS operating systems. The
first version of the eXcursion X server was a 16-bit
application written specifically for Microsoft Windows
versions 3.0 and 3.1. As the popularity of Windows
increased and desktop systems were connected to cor-
porate networks, the market for X interoperability
grew quickly. The 16-bit eXcursion code, much of
which had been ported from 32-bit UNIX code, was
again ported—this time to Microsoft’s Win32 appli-
cation programming interface (API) to support the
Windows NT operating system. When release 6 of
the X Window System version 11 protocol (X11R6)
appeared and a new sample implementation source
kit became available from the X Consortium, the
eXcursion team decided that it was time for a complete
rewrite of the eXcursion software. Microsoft had
established the Win32 API as a uniform coding inter-
face for all its Windows-based operating systems. Since
development tools such as 32-bit compilers and
debuggers of sufficient quality and robustness had
become available, it was now possible to implement a
high-quality, 32-bit product. This product would sup-
port the entire range of Windows-based platforms,
from notebook PCs running the Windows operating
system to high-end Alpha systems running the
Windows NT operating system.

Terminology

This paper incorporates certain conventions to clarify
the distinction between the two window systems
under consideration. X window refers to the collection
of data structures, concepts, and operations that con-
stitute a window, as defined in the X Window System
environment. Win32 window refers to a window as
defined in Microsoft’s Win32 API.

When referring to a window system as opposed to
a particular window instance, X Window System
is sometimes abbreviated to X. Windows denotes
the Microsoft Windows operating system.

32 Digital Technical Journal Vol. 8 No. 1 1996

Design of eXcursion
Version 2 for Windows,
Windows NT, and
Windows 95

John T. Freitas
James G. Peterson
Scot A. Aurenz
Charles P. Guldenschuh
Paul J. Ranauro

Version 2 of the eXcursion product is a complete
rewrite of the successful Windows-based X
server software package. Based on release 6
of the X Window System version 11 protocol,
the new product runs on Microsoft’s Windows,
Windows NT, and Windows 95 operating sys-
tems. The X server is one of several components
that compose this package. The other compo-
nents are X Image Extension, the control panel
(which constitutes the user interface for product
configuration), the error logger, the application
launcher, and the setup program. An interprocess
communication facility enables the eXcursion
components to communicate in a uniform fash-
ion under all three operating systems. A unique
server design using object-oriented program-
ming techniques integrates the X graphics con-
text with the Windows device context into a
combined state management facility. The result-
ing implementation maximized graphics perfor-
mance while conserving Windows resources,
which are in limited supply under the 16-bit
version of the Windows operating system. The
control panel was coded completely in the C++
programming language, thus making full use
of the Microsoft Foundation Class library to
minimize development time and to ensure
consistency with the Windows user interface
paradigm.

Note that the word bitmap has more than one
meaning. In the X environment, a bitmap is a two-
dimensional array of bits, and a pixmap is a two-
dimensional array of pixels, where each pixel may
consist of one or more bits. Under the Win32 API, the
term bitmap is used exclusively; that is, no distinction
is made between an array of depth 1 and an array of
depth n. In this paper, the term pixmap is used in
its general sense to refer to X pixel arrays, and the
term bitmap refers to the Win32 concept.

Another common point of confusion when dis-
cussing the X Window System environment is the use
of the terms server and client. To one familiar with file
and print servers, the meanings of these two terms in
the X environment may seem to be reversed. In the X
environment, the server is a display server, and the
clients are the applications requesting display services.
The X server and the X client applications may reside
on the same PC, but the power of the eXcursion soft-
ware is in its ability to bridge the gap between the
Windows desktop and the traditional X11 UNIX and
OpenVMS workstations.

eXcursion Version 2 Product Goals

The design of eXcursion version 2 was driven primarily
by the following product goals:

■ Support X Window System version 11, release 6.
■ Support the Microsoft Windows, Windows NT,

and Windows 95 operating systems.
■ Code the single source pool to Microsoft’s Win32

API.
■ Exceed graphics performance of eXcursion version

1 as measured with the standard benchmark tests
X11perf and Xbench.

■ Preserve maintainability by using modular coding
and limiting changes of the sample implementation
from the X Consortium.

■ Maximize reliability by performing extended error
checking and resource management.

■ Correct known protocol conformance deficiencies
in version 1. For example, in version 1, plane mask
support was implemented for only a few graphics
operations. Version 2 would provide plane mask
support for all graphics operations.

Components of eXcursion Version 2

In eXcursion version 1, most of the functions provided
by the product were combined in a single executable.
To conserve resources and to partition the code for
easier maintenance, version 2 is divided into several
separate components or modules. Some of these run
as individual processes, and some are built as dynamic
link libraries (DLLs). A DLL is a shared memory

library module that is linked to the calling program at
run time.

eXcursion version 2 is partitioned into the following
major components:

■ X server. The X server is the primary component of
eXcursion version 2. The X server process is respon-
sible for displaying windows and graphics on the
Windows desktop and for sending keyboard,
mouse, and other events to the client application.

■ X Image Extension. X extensions are additions to
the server that support functionality not addressed
by the core X11 protocol, such as displaying shaped
(nonrectangular) windows, handling large requests,
testing/recording, and imaging. All extensions
except the X Image Extension (XIE) are imple-
mented internally in the X server. Because of its
size, XIE is implemented as a pair of DLLs, one for
XIE version 3 and one for XIE version 5.

■ Control panel. As the primary user interface, the
control panel provides the user with access to the
many configuration settings. It is an independent
Win32 application implemented using Microsoft
Visual C++ and the Microsoft Foundation Class
(MFC) library.

■ Interprocess communication library. The inter-
process communication (IPC) library is an operat-
ing system–independent library used by cooperating
processes or tasks to communicate configuration
and status information.

■ Error logger. The error logger is a simple Win32
application that records error and status informa-
tion from other eXcursion components in a win-
dow, a file, or the Windows NT event log.

■ Application launcher. The application launcher is a
Win32 application that starts X client applications
at the request of the X server or the control panel.
The application launcher is invisible to the user.

■ Registry interface. The registry interface is an
operating system–independent interface to the
eXcursion configuration profile. The registry inter-
face is implemented as a Win32 DLL.

X Server

The core of the eXcursion product is the X server, a
Win32 application that accepts X requests from client
applications and transforms them into graphics on the
Windows desktop. The device-independent portion of
the server code is ported from the sample implementa-
tion provided by the X Consortium. The device-
dependent portion treats the Win32 API as the device
interface through which client requests are material-
ized on the screen. The eXcursion X server is illus-
trated in Figure 1.

Digital Technical Journal Vol. 8 No. 1 1996 33

34 Digital Technical Journal Vol. 8 No. 1 1996

The server can operate in one of two modes: single-
window mode or multiwindow mode. In single-
window mode, the server creates one Win32 window,
which represents the X root window. All descendant
windows and their contents are drawn into the root
window using Win32 function calls. In multiwindow
mode, the root window is a virtual window; that is, it is
never drawn on the screen. Each top-level child of the
root window has a corresponding Win32 window,
which is created when the X window is mapped. All
descendants of a top-level window are drawn inside
the Win32 window with Win32 calls. Multiwindow
mode thereby creates a desktop environment in which
X applications are peers of other Win32 applications.

Single-window mode is useful for emulating a com-
plete workstation environment including the window
manager and the session or desktop manager. In multi-
window mode, drawing to and getting input from the
root window is restricted by the X server to prevent
conflicts with the Microsoft Windows system’s use
of the desktop window. Despite this restriction, the
multiwindow mode, when used with the native win-
dow manager, provides the cleanest integration of the
X and Windows environments.

Resource Management and Performance
Both the X and Win32 systems have built-in notions
of graphics state and resource allocation. The seman-
tics and usage of the concept, however, are quite dif-
ferent in the two window systems.

In X, graphics state is maintained in a data structure
known as a graphics context (GC). A GC has an inde-
pendent existence and may be created, destroyed,
updated, queried, and copied at will by the X applica-
tion. During graphics operations, a GC is associated
with the X “drawable” (window or pixmap) being
drawn into, and information in the GC is used to fully
define the operation. For example, the GC may specify
foreground or background colors, line styles, or font
information.

The Win32 API has a concept called a device con-
text (DC), which also contains state information but
whose purpose is more closely related to providing
device independence. Consequently, two different
types of DCs are required under the Win32 API,

depending on whether the graphics operation is draw-
ing to a window or to a bitmap. Furthermore, a win-
dow DC may be allocated either permanently or from
a cache, depending on its expected lifetime. Any draw-
ing operation therefore requires that both the GC
used in the X graphics request and the DC used in the
ultimate Win32 call be properly set up and synchro-
nized. The manner in which this is done has a signifi-
cant effect on the graphics performance of the server.

Before an X graphics operation can be started, the
GC must be validated. Validation is a process of
preparing the output device to render the graphics
properly. In the case of the eXcursion server, the out-
put device is a Win32 DC. For every graphics com-
mand, the GC must be checked for changes and the
appropriate Win32 objects and state values must be
selected into the DC. This process can be very time-
consuming. The key to maximizing performance is to
recognize that most operations are repetitive. A typical
stream of X requests tends to contain many commands
directed at the same window with the same GC.
Therefore, the way to reduce GC/DC validation time
is to cache the most recent GC/DC pair so that subse-
quent commands that use the same combination need
not trigger a validation step. In some cases, graphics
operations will toggle between two or more GCs. (For
example, the CopyArea operation takes a source and a
destination.) The performance in these cases can be
improved by simply caching more than one recent
GC/DC pair. Tuning experiments on the server
revealed that a cache size between 2 and 4 was suffi-
cient to maximize performance. Under the Windows
and Windows 95 operating systems, where resources
are limited, a cache size of 2 is used. Under the
Windows NT operating system, the cache size is 4.

In the eXcursion server, the notion of a cached
GC/DC pair is encapsulated in a C++ class called a
WXDC. The WXDC remembers the Win32 objects that
have been selected into the DC and the last GC that was
used with it. As long as these elements do not change
from one graphics operation to the next, no validation
is necessary. If the client application changes the con-
tents of the GC, any affected objects in the DC are
tagged and the next graphics operation on that WXDC
will require new objects to be selected into the DC.

INTERNAL WINDOW MANAGER

NETWORK
TRANSPORT

DEVICE-INDEPENDENT
CODE

DEVICE-DEPENDENT
CODE

WIN32 FUNCTION CALLS

WIN32 MESSAGES

X REQUESTS

X EVENTS

Figure 1
The eXcursion X Server

Digital Technical Journal Vol. 8 No. 1 1996 35

Events in the window system can also cause WXDC
elements to become invalid. For example, if the win-
dow is moved on the screen by the window manager,
its clip list may have changed. This causes the WXDC
to invalidate the clip region in its DC. (Clip list and
region are defined in the following section.) The next
graphics operation on that window will require the
clip region to be recalculated and reloaded.

Clipping in Single-window Mode
In the X Window System environment, all descen-
dants of the root window have a clip list, which is a list
of rectangles that defines the visible area of the win-
dow. The clip list is equal to the area of the child
window minus any areas that are occluded by other
X windows. Before drawing into a descendant win-
dow, the server must convert the clip list into a Win32
region. In the Win32 API, a region is a polygonal area,
not necessarily rectangular, that can be selected into
a DC for clipping. Before initiating a graphics out-
put operation, the target WXDC checks to see if the
current region for the window is valid. If it is not, the
X clip list is converted to a Win32 region and com-
bined with the client-supplied clip list in the GC, if
any. The result is selected into the output DC.

Clipping in Multiwindow Mode
In multiwindow mode, the root window is invisible.
Each top-level X window (first-generation child of the
root) corresponds to a Win32 window on the desktop.
No clipping is necessary for these windows, because
Win32 does this automatically. For windows below
the first generation, clipping is accomplished in a man-
ner similar to that used in single-window mode, except
that the offset of the clip region must be adjusted to be
relative to the top-level window instead of relative to
the root window.

Graphics Rendering
Graphics rendering is at the heart of the X server. Two
of the core goals for the eXcursion version 2 project
were to significantly improve server performance over
that of the eXcursion version 1 server and to improve
server compliance to the X protocol specification.
Figure 2 compares the performance of the eXcursion
version 2 server with that of the version 1 server. The
standard benchmark tests X11perf and Xbench were
run over a local area network to eXcursion running
on a 66-megahertz Pentium processor with an S3
video card.

The sample X server upon which the eXcursion X
server is based provides a machine-independent layer
that is capable of rendering all X graphics through a
small set of device-dependent functions. In the
eXcursion X server, the Win32 functions provide the
virtual hardware interface. For maximum perfor-
mance, X graphics requests are passed to the Win32

API as early as possible without compromising the
requested rendering. Many X graphics requests map
neatly into Win32 calls with little or no data manipu-
lation. Some complex graphics requests, however,
cannot be practically mapped into high-level Win32
calls and achieve proper pixelization. In such cases, the
machine-independent functions are called as helper
functions to break the request down into simpler
graphics requests.

GDI Context Switching To reduce context switching,
Windows batches graphics device interface (GDI)
calls. The default GDI batch size is 20, but this limit
can be adjusted per thread. Testing with a mix of all X
requests showed that an overall performance increase
of about 9 percent could be achieved by increasing the
GDI batch limit to 30. At this level, there is no mea-
surable latency, and, furthermore, increasing the batch
size beyond this point had no measurable benefit.

P
E

R
C

E
N

T
 IM

P
R

O
V

E
M

E
N

T

100

90

80

70

60

50

40

30

20

0

10

LI
N

E
S

T
O

N
E

S

F
IL

LS
T

O
N

E
S

B
LI

T
S

T
O

N
E

S

A
R

C
S

T
O

N
E

S

T
E

X
T

S
T

O
N

E
S

C
O

M
P

LE
X

S
T

O
N

E
S

X
S

T
O

N
E

S

X
M

A
R

K

PERFORMANCE BENCHMARK

Figure 2
Comparison of eXcursion Version 1 and Version 2
Performance

Performance eXcursion eXcursion
Benchmark Version 1 Version 2 Improvement

XBench
lineStones 135,735 239,740 76.6%
fillStones 38,083 74,331 95.2%
blitStones 59,743 88,320 47.8%
arcStones 2,172,720 3,662,770 68.6%
textStones 156,190 214,762 37.5%
complexStones 71,633 71,699 0.1%
XStones 80,057 126,408 57.9%

X11perf
Xmark 1.6495 2.5805 56.4%

Notes:
The test machine was a DECpc XL 566.

Since eXcursion version 1 did not support 16-bit fonts, the version 2
numbers were substituted to obtain the Xmark number.

36 Digital Technical Journal Vol. 8 No. 1 1996

Some competing X server products set the batch size
very high (100) at the beginning of every request and
flush the queue at the end. This approach has no mea-
surable benefit over our simpler method, probably
because the Windows operating system already per-
forms timer-based flushing to prevent drawing latency.

Similarly, whenever possible, Win32 graphics calls
are combined to reduce the overhead of context
switching. For example, an X PolyLine request could
be rendered with a series of Win32 LineTo calls,
but it is much more efficient to render the PolyLine
request with a single Win32 PolyLine call. Similarly, a
PolyRectangle X request is best rendered with a single
PolyPolyLine call.

Solid Fills Many different Win32 resources such as
pens, brushes, fonts, and clip regions may be required
for any given graphics request. The resources needed
are determined by the graphics operation itself and the
state of the X GC. As noted earlier, these resources are
created as needed and managed by the WXDC objects,
removing significant complexity and nearly redundant
code from the actual graphics drawing routines.

Windows Pen structures provide color and dash
pattern when drawing line objects. For drawing lines,
segments, and arcs, the X server creates and uses Pens
that correspond to the GC state. In some cases, how-
ever, exact pixelization cannot be achieved when using
Windows Pens. Examples of this are drawing wide
lines with raster operations other than GXcopy or
with long, dash patterns. In these cases, machine-
independent functions are used to reduce the request
to a set of spans (single-width horizontal lines) to be
filled. The use of Pens is also abandoned in special
cases when the highly optimized GDI pattern block
transfer (PatBlt) function can be used. PatBlt fills rec-
tangular regions with specified colors or patterns. It is
faster, for example, to use the PatBlt function to draw
vertical or horizontal lines than to use the Windows
traditional line-drawing functions.

Windows Brush structures provide color and pat-
tern when drawing filled rectangles, filled polygons,
and filled arcs. Again, for performance reasons, the
PatBlt function is often used even when there is a
higher-level function that seems to be a closer match.
For example, PatBlt can perform the X PolyPoint
request about 10 percent faster than SetPixelV, the
Windows standard call for setting single pixel values.
Similarly, PatBlt can perform the X PolyFillRect
request about 14 percent faster than the Windows
FillRectangle call.

Tile and Stipple Fills An X pixmap can be specified as a
pattern to be used when performing fill operations.
When the pixmap is created, it is realized as a Win32
bitmap. When the pixmap has a depth greater than 1,
it is used as a color tile that will be used for the fill. If

the pixmap has a depth of 1, it can be used as either a
transparent or an opaque stipple. An opaque stipple
draws both the GC’s foreground and background col-
ors, where the stipple is 1 and 0 respectively. A trans-
parent stipple is similar except that it leaves the
destination untouched where the stipple is 0.

When the tile or opaque stipple is 8 by 8 or smaller,
a Win32 color brush is created and cached for the
drawing. On the Windows NT system, brushes larger
than 8 by 8 can be created, but our experience has
shown it to be slower to draw with them than it is to
perform a series of bit block transfer (BitBlt) opera-
tions from the tile/stipple bitmap to the destination.

Transparent Stipple Fills There is a Win32 function,
MaskBlt, that seems ideally suited for performing
transparent stipple fills. This function, however, was
not fully implemented on all platforms at the time we
designed the eXcursion version 2 software product.
Without this function, there is no easy way in the
Win32 environment to perform the transparent stip-
ple operations. When the foreground color is either
0 or 0xFFFF, the raster operation can be remapped
to get the proper effect. General rectangular fills that
do not meet the requirements of the special case previ-
ously mentioned must be accomplished by first con-
verting the stipple bitmap to the depth of the
destination and then remapping the raster operation.
In general cases that are not rectangular fills, machine-
independent functions are called to break down the
request into spans.

Image Requests The GetImage and PutImage
requests are other examples of X graphics requests
that do not map well into the Win32 API. The only
way in the Win32 environment to put image data on
the screen is to first create a Win32 bitmap and initial-
ize it with the image data, and then call the BitBlt
function to copy the bitmap to the screen. X image
data always lists the top scan lines first, whereas the
bottom scan lines are listed first in Windows bitmap
data. Therefore, before the bitmap is initialized, the
X image data must be scan-line flipped. Similarly,
the X GetImage request requires the use of an inter-
mediate bitmap and also requires the scan-line flip.

Plane Mask Support Any graphics operation in X can
be modified by setting a plane mask in the GC. The
plane mask specifies which bits of the destination pixel
are allowed to be changed. Without a plane mask, an
X graphics operation may be defined as

dst r src J dst,

where J is one of the 16 binary raster operations
(e.g., OR, AND, and XOR). When a plane mask is
given, the following assignment defines the destina-
tion pixel:

Digital Technical Journal Vol. 8 No. 1 1996 37

dst r ((src J dst) & pm) | (dst & ~pm)

Most video hardware devices support plane masking,
and those that do not support it generally provide fast
access to video random-access memory (RAM). The
Win32 API, however, provides neither plane masking
nor direct video RAM access. To understand why, you
must realize that Windows has virtualized the color
handling in an attempt to mediate conflicts between
applications that would otherwise want to modify the
colormap (the pixel–to–color mapping table). In this
virtual color environment, the concept of plane masks
has no meaning because Win32 applications need not
know the pixel value that corresponds to a particular
color. See the section Color Resource Management for
an explanation of how the eXcursion software manages
to assign specific pixel values to colors.

In the general plane mask case, it is necessary for the
X server to first save the contents of the destination in
a bitmap. The graphics can then be temporarily drawn
without regard to the plane mask. Those bits in the
destination that are specified by the plane mask
as being unaffected can then be restored from the saved
bitmap. This process will work in every case but is inef-
ficient since it involves several graphics operations
before achieving the final result. Many special cases can
be reduced to one or two simple steps by modifying the
source color and raster operation. Table 1 shows how
the source color and raster operation can be set to
achieve the plane mask effect. The eXcursion X server
uses these optimizations for many graphics operations
when the source fill is a solid color.

Internal Window Manager
In the absence of a window manager, the eXcursion
server creates all windows as pop-up windows. All win-
dows, including top-level windows in multiwindow
mode, are undecorated. They have no Win32 borders,
title bars, or system menus. To move, size, minimize,
maximize, or close windows, the user must run a win-
dow manager.

An eXcursion user always has the option of using
one of the many X-based window managers available,
such as the Motif Window Manager. However, many
users will want a window manager paradigm that is
consistent with Windows so that all windows on the
desktop have the same user interface. To accomplish
this, a built-in window manager is provided as part of
the eXcursion server. This internal window manager
is operative only in multiwindow mode.

The internal window manager, although linked with
the server, is functionally isolated from the rest of the
code so that it can easily be disabled. This allows exter-
nal window managers to be used and also facilitates
debugging by allowing problems to be isolated. The
window manager creates a “hook” into the server’s
window procedure, so that all Win32 messages are first

examined by the window manager. This gives the
window manager the opportunity to act on window
management–related messages such as those that indi-
cate a change in the window’s configuration or state.
If the window manager decides to handle a message, it
is removed from the queue, and the server never sees
it. If the window manager is not interested, the mes-
sage is passed on to the normal window procedure.

The purpose of the internal window manager is
to give X windows the same appearance and behavior
as Win32 windows that are created by typical desk-
top applications, such as word processors and
spreadsheets. When an X window is mapped for
the first time, the internal window manager receives
a Win32 WM_CREATE message. Before the window
becomes visible on the screen, the window man-
ager alters the style of the Win32 window to
WS_OVERLAPPEDWINDOW. Win32 windows with
this style are automatically managed by Windows,
which handles moving, resizing, iconifying, maximiz-
ing, and closing the windows. Each of these actions
causes a corresponding message to be sent to the
server’s window procedure. The internal window
manager intercepts the messages and dispatches them
to the appropriate internal function.

The role of the internal window manager comple-
ments the role of the server. The server processes client
requests on X windows and translates them into opera-
tions on Win32 windows. The internal window man-
ager handles Windows messages that indicate changes
to a Win32 window and translates them into corre-
sponding changes to the underlying X window. For
example, the most important message that the window
manager handles is WM_WINDOWPOSCHANGING.
This message is sent just before any change in the win-
dow’s position, size, stacking order, or visibility. If this
message indicates that the window size changed, the
window manager changes the size of the correspond-
ing X window and sends a ConfigureNotify event to
the client. Similarly, the window manager translates
other user-directed events such as focus change, win-
dow stacking, and iconification into changes to the
underlying X data structures. In most cases, the win-
dow manager does this by calling into the device-
independent layer, thus simulating an X request that
would occur from an external window manager.

Mouse, Keyboard, and Input Focus
Mouse actions and keystrokes are received by the
eXcursion server as Win32 messages. Each message
contains information about the window that received
the input and the time of the input. For mouse moves
and clicks, the server uses the window information to
locate the corresponding X window and forwards an
X event to that window. Keyboard input is forwarded
to the window that currently has X focus.

38 Digital Technical Journal Vol. 8 No. 1 1996

Table 1
Plane Mask Optimizations

Requested X Raster src 0 0 1 1 Modified Source Color and
Operation dst 0 1 0 1 Notes Raster Operations

GXclear 0 0 0 0 4 src r ~pm, rop r and
GXand 0 0 0 1 1 src r src | ~pm
GXandReverse 0 0 1 0 6 src r src | ~pm

src r ~pm, rop r xor
GXcopy 0 0 1 1 8 src r ~pm, rop r and

src r src & pm, rop r or
GXcopy 0 0 1 1 8 src r pm, rop r or
(src & pm) = pm
GXcopy 0 0 1 1 8 src r src | ~pm, rop r and
(src & pm) = 0
GXandInverted 0 1 0 0 2 src r src & pm
GXnoop 0 1 0 1 10 —
GXxor 0 1 1 0 2 src r src & pm
GXor 0 1 1 1 2 src r src & pm
GXnor 1 0 0 0 7 src r src & pm

src r ~pm, rop r xor
GXequiv 1 0 0 1 1 src r src | ~pm
GXinvert 1 0 1 0 5 src r pm, rop r xor
GXorReverse 1 0 1 1 7 src r src & pm

src r ~pm, rop r xor
GXcopyInverted 1 1 0 0 9 src r ~pm, rop r and

src r ~src & pm, rop r or
GXorInverted 1 1 0 1 1 src r src | ~pm
GXnand 1 1 1 0 6 src r src | ~pm

src r ~pm, rop r xor
GXset 1 1 1 1 3 src r pm, rop r or

Notes:
1. dst is unchanged when src equals 1 for these raster operations. Therefore, to preserve the value of dst when

pm equals 0, set src equal to 1.
2. dst is unchanged when src equals 0 for these raster operations. Therefore, to preserve the value of dst when

pm equals 0, set src equal to 0.
3. This operation sets all dst bits to 1 except where the plane mask equals 0. This can be done simply by ORing

pm into dst.
4. This operation clears all dst bits except where the plane mask equals 0. This can be done simply by ANDing

pm into dst.
5. XORing with 1 has the effect of inverting. To invert only where pm equals 1, XOR pm with dst.
6. These operations are performed in two steps. Note that dst is inverted when src equals 1. First perform the

operation with src set to 1 where pm equals 0. dst is now correct except that it is inverted where pm equals 0.
The second operation of XORing with the invert of pm corrects this.

7. These operations are performed in two steps. Note that dst is inverted when src equals 0. First perform the
operation with src set to 0 where pm equals 0. dst is now correct except that it is inverted where pm equals 0.
The second operation of XORing with the invert of pm corrects this.

8. This operation is performed in two steps. First dst is set to 0 whenever pm equals 1. Then dst is set to 1 when-
ever both pm and src equal 1. The two special cases can be reduced to operations that use GXset and GXclear.

9. This operation is performed in two steps. First dst is set to 0 whenever pm equals 1. Then dst is set to 1 when-
ever pm equals 1 and src equals 0.

10. dst is unchanged; therefore, no operation is required.

The font management library supports both bitmap
and scalable outline fonts. Bitmap font glyphs are sim-
ply reformatted and used. Scalable formats, such as
Adobe Type1, are rasterized on demand into the X
font format.

For maximum performance, the server draws text
with native Win32 fonts using the Win32 API. Win32
fonts are bitmap fonts in the FON format. Win32
functionality covers the great majority of text-drawing
operations, but there are a few cases in which it is
either not possible or not efficient to use Win32 fonts.

The server can also draw directly with the X fonts to
provide full X font support and complete text-drawing
functionality. This method uses Win32 BitBlt() opera-
tions to copy the character glyphs to the display as
bitmaps. Drawing speed with this method is accept-
able but not maximum.

Therefore, both X and Win32 fonts are used. The
Win32 fonts may be thought of as optional accelera-
tors: the server uses them whenever possible and falls
back to the X fonts when necessary. The decision to
fall back can be made on a variety of conditions. This
technique has also proved useful in working around
problems such as text-drawing bugs in individual
video drivers.

Since scalable font outlines are rasterized into
bitmaps at run time, they are generally drawn directly
with the internal X font format. The extra work of
compiling a companion Win32 font at run time gener-
ally outweighs its value as an accelerator.

X bitmap fonts are most commonly distributed in
the Bitmap Distribution Format (BDF), an ASCII text
source file. The eXcursion team wrote a font compiler
tool that generates native Win32 (FON format) fonts
from the BDF sources. The fonts created can be used
by any Win32 application.

The compiler can generate either the commonly
used version 2 format or the extended version 3 for-
mat, which is necessary for large fonts that require
more than 64 kilobytes (KB) of glyph storage. Figure 3
illustrates the process of generating equivalent X and
Win32 fonts from a common source.

The X font format contains extra information (e.g.,
metrics and properties) that cannot be derived from

Digital Technical Journal Vol. 8 No. 1 1996 39

The X server is a single application in the Win32
environment that “owns” all the X windows it creates.
From the user’s perspective, though, there may appear
to be more than one X application running, each with
its own collection of windows. The user expects to
be able to shift the keyboard focus from one window
to another in the same fashion that focus is shifted
between other applications. When an external window
manager is in use, focus control is straightforward.
The window manager, using whatever semantic it
was designed for, monitors mouse events and shifts
focus accordingly. However, the semantic model for
this may or may not be consistent with the Win32
model. In either case, the window decorations, e.g.,
borders, title bars, and menus, are almost guaranteed
to be different. A user who wants a consistent user
interface model across all applications must employ
the internal window manager.

At any given time, one window on the screen has
Win32 focus and one X window has X focus. The two
windows are not necessarily the same. Since the X
server creates and owns all the X windows in use, the
server receives keyboard input when any one of its
windows has Win32 focus. The keystrokes are not
necessarily sent to the underlying X window, however.
They are sent to the window that has X focus. The
internal window manager assigns X focus to the X win-
dow that receives Win32 focus. The client receives
notification of this event and may decide to assign X
focus to some other window, perhaps a child window.

The server must therefore keep track of both the
X window that currently has focus and the state of
Win32 focus. When the server loses Win32 focus, the
X focus is assigned to the root window. When the
server receives Win32 focus, X focus is assigned to the
X window that previously had it. Whenever X focus is
changed by an application or by the window manager,
the current X focus state is cached so that it can be
restored later, if necessary.

Font Management
Fonts and text functionality make up a significant por-
tion of any graphics architecture. Both the X and the
Win32 systems define a rich set of text-rendering
operations and can process several font formats.

X and Win32 Fonts The X font management library is
a modular architecture that defines an API for reading
and writing individual font formats. The module that
implements the API for a given font format is called a
renderer. This approach allows X to support several
font formats: the library’s renderer modules convert
external formats to a single, internal bitmap format,
which is used for all drawing operations. The term
X font refers to font data in this internal format.

BDF FONT

X FONT
LIBRARY

EXCURSION
FONT
COMPILER

X FONT

WINDOWS (FON)
FONT

Figure 3
Font Conversion

In the X Window System environment, when an
application reserves a colormap cell, it references the
cell with a pixel value. This value is an index into the
colormap and is used to look up the value that will
actually be stored in screen memory when that pixel
value is used in a drawing operation.

In the Win32 system, color management is handled
by the palette manager through a palette structure.
Each application has a logical palette, and a single sys-
tem palette contains the colors currently mapped to
the hardware colormap. Applications reference colors
relative to their logical palette, and the palette man-
ager handles the mapping between the logical palette
and the system palette. When an application is given
focus, the palette manager maps all the colors from the
logical palette into the system palette. If the system
palette does not have enough empty cells, the palette
manager frees cells allocated to other applications. If
this occurs, the palette manager will attempt to remap
the other applications’ colors into any remaining free
cells in the system colormap. If not enough cells are
free, any remaining unmapped colors are mapped to
the system palette colors that most closely match.

Because of this way of handling color resource man-
agement, an application does not know what value is
being stored in screen memory for any particular color
and the value stored for any color can change over the
lifetime of the application. This situation presents sig-
nificant difficulties for X operations that require exact
knowledge of the pixel values in screen memory, such
as the GetImage operation and operations involving
plane masks. The server works around the difficulties
by creating two Win32 logical palettes.

The first palette, i.e., the working palette, corre-
sponds exactly to the X default colormap and does not
allow sharing of the palette by Win32 applications.
Whenever an X window has focus, the working palette
is in use. This causes the Win32 palette manager to set
up the system palette such that it directly corresponds
to the X colormap, and operations that are pixel based
work properly.

The other palette, i.e., the identity palette, is set up
to correspond exactly to the system palette. The iden-
tity palette is used whenever no X window has focus.
Because of the correspondence, no translation is
involved between the identity palette and the system
palette, which allows the X server to know what pixel
value is stored in screen memory.

The X Window System environment allows for pri-
vate colormaps, which are created and used by a single
application. The server creates a working palette for
every colormap created. When the colormap is installed
(normally by the window manager when the X applica-
tion is given focus), the eXcursion software installs the
working palette associated with the private colormap.

The eXcursion X server currently supports the
PseudoColor visual class and the StaticGray depth 1

40 Digital Technical Journal Vol. 8 No. 1 1996

the Win32 font. Therefore, the X and Win32 fonts are
used together; the X information comes from the
X font and the Win32 font is used by the Win32 API.

Realizing Win32 and X Fonts When the X server first
opens a font, it invokes the function RealizeFont().
This function gives the server an opportunity to initial-
ize data structures and perform any format-specific
operations necessary to make the font available.

To make a Win32 font available for drawing,
the server retrieves the filename of the font from the
server’s look-up table and registers it with the Win32
API using the function AddFontResource(). A handle
to the font is obtained from CreateFontIndirect(), and
thereafter the handle is selected into the desired DC
for drawing operations. If the Win32 realization fails
for any reason, the code simply realizes the X font
instead. Failing to realize a Win32 font does not neces-
sarily imply an error condition. Such failure happens in
any case in which the server decides that it is best to
use the X font directly.

The internal X font format is a set of data structures.
The glyphs are stored in conventional arrays in user
memory. To improve performance, the server realizes
an X font by writing all glyphs to a Win32 bitmap in
off-screen memory. CreateBitmap() returns a handle
for later reference, and the glyphs in the bitmap are
indexed for use in drawing operations.

Drawing with Win32 and X Fonts The glyphs in X text
strings are often kerned, that is, overlapped for best
typographic appearance. To draw with Win32 fonts,
the server emulates the way X draws text by using
ExtTextOut(), which uses an intercharacter spacing
vector to place the individual glyphs. The font’s X met-
rics are used directly to calculate this vector.

Glyphs from X fonts are drawn by performing
BitBlts from the Win32 bitmap to the target window
or bitmap. The server places the glyphs using the font’s
X metrics as described in the previous paragraph.

Color Resource Management
Although some X Window System concepts and struc-
tures map fairly closely to those in the Win32 system,
color resource management is handled very differ-
ently. The difference is most evident when dealing
with pseudocolor video systems. Consequently, this
paper describes only this case.

The X Window System environment shares 256 col-
ormap cells among all applications that use the default
colormap (i.e., those that do not have a private col-
ormap). Applications can allocate cells in the default
colormap to protect them from modification by other
applications. In contrast, the Win32 system allows
each application complete access to the system palette
while the application has focus and maps the palettes
of the windows without focus as best it can.

Digital Technical Journal Vol. 8 No. 1 1996 41

visual class, which is mainly used for bitmaps.
eXcursion version 1 also supported a StaticColor visual
class for 16-color video graphics array (VGA) displays.
eXcursion version 2 treats VGA devices identically to
PseudoColor devices and allows the Windows palette
manager to generate dithering patterns for the
unavailable colors.

Network Interface
With the release of X11R6, the X Consortium com-
bined all transport-specific code into a single place
in the source tree, the X transport interface. The
eXcursion team extended the X transport interface to
include Network Computing Device’s (NCD’s)
Xremote serial line transport. Combined with the
transmission control protocol/internet protocol
(TCP/IP) and DECnet transports, the eXcursion
product can now execute X sessions over any of these
transports simultaneously. The eXcursion product
supports any TCP/IP stack that complies with the
Winsock version 1.1 implementation, PATHWORKS
DECnet protocol, and NCD’s Xremote protocol for
serial line.

The X transport interface provides functions that
are common to all transports, such as parsing an
address into a host and port number. The interface
does not provide an abstraction for the select() call,
because it assumes that this call is transport indepen-
dent. Unfortunately, the Xremote protocol requires
an independent select() mechanism, and, thus, it
was necessary to implement a select() abstraction to
combine the transport-independent select() with the
Xremote select(). Although somewhat compromised
by this addition, performance was a problem only
when the Xremote protocol was used in combination
with either the TCP/IP or the DECnet protocol.

X Image Extension

eXcursion version 2 provides versions 3 and 5 of the
X Image Extension to support a wide range of imaging
applications. Because it is a large body of code, XIE
is implemented as a pair of Win32 DLLs to conserve
memory on systems that will not be running applica-
tions that use XIE.

Normally, access to a DLL is one-way. Applications
can load and make function calls into a DLL, but
because it is linked dynamically at run time, the DLL
code cannot make function calls back into the calling
application. XIE, however, must call into the device-
dependent layer of the server to perform any required
drawing after processing its imaging requests. To per-
mit this, an addition to the interface was designed.
When the XIE DLL is initialized, the caller supplies a
list of pointers to the functions needed by the XIE.

The DLL fills an array with these pointers and then
calls back indirectly through the array. On the
Windows operating system, this design could create a
problem because under Win32 APIs, global data in a
DLL is not instanced; that is, the code is not reentrant.
The approach works in this case because there is only
one copy of the DLL loaded. If another application
was sharing the DLL, the pointers would be overwrit-
ten by the second initialization.

Control Panel

The eXcursion control panel is the primary interface
through which the user configures and controls the
product. Some other components create simple win-
dows or icons, but these functions are limited. The
control panel constitutes 90 percent of the user inter-
face for the eXcursion application. This fact makes the
control panel an ideal candidate for the rapid applica-
tion development features of the Microsoft Visual
C++ environment. The control panel is a Win32 appli-
cation coded almost entirely in C++ and linked with
the Microsoft Foundation Class library.

The main purpose of the control panel is to pre-
sent a manageable interface through which the user
can view and modify the eXcursion configuration pro-
file. To do this in a manner consistent with the new
Windows 95 shell, the Property Sheet MFC object
was chosen. Property Sheets are tabbed dialog boxes
that have the advantage of organizing large amounts
of data settings in a compact space. They are used
extensively by the Windows 95 operating system and
by the most recent versions of Microsoft applications.

The Property Sheet object is a subclass of the
Windows object and is essentially a container for the
tabbed pages. Each tab, when clicked by the user, dis-
plays a dialog box that is subclassed from the MFC
Property Page object. The individual pages can be
visually configured and revised using the class wizard
feature of Microsoft Visual C++. The designer simply
selects dialog box controls such as buttons, drop lists,
or edit fields and positions them on the dialog box.
The code to handle user actions is then filled in.

The eXcursion control panel is shown in Figure 4.
We constructed an initial prototype of the control
panel application with about 60 percent of the final
functionality in less than one month.

Interprocess Communication Library

eXcursion version 2 consists of several cooperating
processes that must communicate and synchronize
with one another. When a remote X application is
started by the server or the control panel, the applica-
tion launcher signals when the operation is complete.

42 Digital Technical Journal Vol. 8 No. 1 1996

Error and status information is sent to the error logger
by the other components. When the user changes
a configuration setting through the control panel, the
change must be communicated to the X server, if it is
running. In some cases, the change can take effect
immediately; in other cases, the server cannot imple-
ment the change without restarting. The control panel
and the server must engage in a dialog so that the user
can be informed as to what action must be taken, if any.
The IPC library is an operating system–independent
API that permits eXcursion components to determine
which other components are present and to exchange
commands and configuration information.

The Windows NT operating system provides several
built-in IPC mechanisms, but most are not available
on the Windows or Windows 95 systems. The only
mechanism that is universal to the three operating
systems is the message-passing interface in the Win32
API. This mechanism, while not the most efficient, is
relatively straightforward to implement. Since the per-
formance demands on the IPC library were deter-
mined to be very light, this mechanism was chosen.

The disadvantage of the Win32 message-passing
interface is that it is window based, not process based.
Messages are received by a callback procedure that
must be associated with a window before any commu-
nication can take place. If an application has not yet
created a window, or never creates a window, as is the
case with the application launcher, no communication
is possible. To remedy this, the IPC library creates its
own window when the calling process initializes. The
IPC window is never mapped to the screen, so it is not
visible to the user. All interprocess communication
passes through the IPC window.

The IPC library consists of a collection of unique
messages and an API. The messages are registered
with the Win32 function RegisterWindowMessage.
This ensures that the messages used by the eXcursion
application do not conflict with system messages or
messages used by other applications. The eXcursion
IPC messages are

■ ipcComponentStartedMsg, which the IPC posts to
all components when a component initializes.

Figure 4
The eXcursion Control Panel

Digital Technical Journal Vol. 8 No. 1 1996 43

■ ipcRestartServerMsg, which the IPC sends to the
server to tell it to restart.

■ ipcRestartServerStatusMsg, which the IPC posts
with the status of the restart request.

■ ipcInquireMsg, which the IPC sends to retrieve a
data item from a component.

■ ipcProfileChangedMsg, which the control panel
sends when the registry profile changes.

■ ipcLaunchOneCompleteMsg, which the applica-
tion launcher sends to notify the server of launch
completion.

■ ipcLaunchAllCompleteMsg, which the application
launcher sends to notify the server of launch com-
pletion.

■ ipcHideAllWindowsMsg, which the server sends to
all components to tell them to hide all their win-
dows. The eXcursion application uses this message
to execute the pause/resume feature.

■ ipcShowAllWindowsMsg, which the server sends
to all components to tell them to show all their win-
dows. The eXcursion application uses this message
to execute the pause/resume feature.

In addition to sending and receiving messages,
eXcursion processes can use the IPC library to deter-
mine which other components are running. The IPC
initialization procedure creates a window with a
unique name that identifies the calling component. To
determine whether a specific component is present
in the system, the IPC searches all windows on the
system until it finds one with the correct name.

Error Logger

The error logger is a Win32 application that receives
error and informational messages from other compo-
nents and either displays them in a window or logs
them to a file. On the Windows NT operating system,
information that may help system managers or users
diagnose problems may additionally be recorded in
the Windows NT event log.

Application Launcher

The application launcher is a Win32 application that
handles requests from the control panel or server to
start X client applications. The client may reside on
a remote host or on the same machine.

When the user requests the server or control panel
to start an X client application, it starts the eXcursion
application launcher in a separate process. The applica-
tion command, host name, account information, net-
work transport, and command shell are passed to the
launcher in its command line arguments. The launcher
makes the connection to the remote system, initiates

the command using the selected protocol (rexec, rsh,
DECnet object, or local command), and sends an IPC
message to the server indicating that a new application
is starting.

Registry Interface

The Windows NT operating system introduced a new
concept called the registry. This is a protected database
maintained by the operating system, wherein Win32
applications may store configuration and state infor-
mation. The registry has a well-defined API and
a maintenance utility program that is shipped with
the Windows NT operating system. Under the
Windows operating system, configuration information
is kept in simple text files, which are vulnerable to
accidental or malicious tampering. At the time the
design of eXcursion version 2 was under way, it was
unknown which, if either, of these two methods would
be available under the Windows 95 operating system.
Nevertheless, all three of these operating systems had
to be supported.

We designed an API for accessing the configuration
information in a manner independent of the operating
system. Knowledge of the operating system and its reg-
istry access method is encapsulated in the library. Since
several independent processes must access the informa-
tion, the library is built as a DLL to conserve memory.
The interface basically resembles that of the Windows
NT registry API but eliminates some of the complexity.

If the eXcursion software has not been configured
when the registry interface first accesses the profile,
default values for all settings are selected to allow the
software to function normally.

Summary

With computer systems based on the Microsoft
Windows operating system increasing in power and
decreasing in price, Windows-based systems are appear-
ing on desktops that once held workstations running
the UNIX or OpenVMS operating systems. Windows
systems must be able to access applications on remote
file and compute servers running in the X Window
System environment. Version 2 of the eXcursion prod-
uct provides desktop integration of X client applications
with native Win32 applications. Modular coding tech-
niques, object-oriented programming, and selective use
of the Microsoft Foundation Class library helped
reduce development time, and improve performance,
maintainability, and reliability.

General References

D. Giokas and A. Leskowitz, “eXcursion for Windows:
Integrating Two Windowing Systems,” Digital Technical
Journal, vol. 4, no. 1 (Winter 1992): 56–67.

44 Digital Technical Journal Vol. 8 No. 1 1996

X Window System
S. Angebranndt et al., Definition of the Porting Layer for
the X v11 Sample Server (Cambridge, Mass.: X Consor-
tium, Inc., 1994).

J. Fulton, The X Font Service Protocol, Version 2.0,
X Version 11, Release 6 (Cambridge, Mass.: X Consor-
tium, Inc., 1994).

E. Israel and E. Fortune, The X Window System Server,
X Version 11, Release 5 (Woburn, Mass.: Digital Press,
1993).

O. Jones, Introduction to the X Window System (Engle-
wood Cliffs, N.J.: Prentice-Hall, Inc., 1989).

K. Packard and D. Lemke, The X Font Library (Cam-
bridge, Mass.: X Consortium, Inc., 1995).

D. Rosenthal, Inter-Client Communication Conventions
Manual, Version 2.0 (Cambridge, Mass.: X Consortium,
Inc., 1994).

R. Scheifler, X Window System Protocol, X Version 11,
Release 6 (Cambridge, Mass.: X Consortium, Inc., 1994).

R. Scheifler and J. Gettys, X Window System (Bedford,
Mass.: Digital Press, 1992).

Networks
M. Hall et al., “Windows Sockets: An Open Interface for
Network Programming under Microsoft Windows, Version
1.1” (1993).

K. Packard, X Display Manager Control Panel, Version
1.0, X Version 11, Release 5 (Cambridge, Mass.: MIT
X Consortium, 1989).

W. Stevens, UNIX Network Programming (Englewood
Cliffs, N.J.: Prentice-Hall, Inc., 1990).

X Transport Interface (Dayton, Ohio: NCR Corporation,
1993).

Windows Operating Systems
R. Blake, Optimizing Windows NT, Windows NT Resource
Kit, vol. 3 (Redmond, Wash.: Microsoft Press, 1993).

H. Custer, Inside Windows NT (Redmond, Wash.:
Microsoft Press, 1993).

A. King, Inside Windows 95 (Redmond, Wash.: Microsoft
Press, 1994).

Win32 Programmer’s Reference, vols. 1–5 (Redmond,
Wash.: Microsoft Press, 1995).

Windows Programming
K. Christian, The Microsoft Guide to C++ Programming
(Redmond, Wash.: Microsoft Press, 1992).

P. DiLascia, Windows++: Writing Reusable Windows
Code in C++ (Reading, Mass.: Addison-Wesley Publishing
Company, 1992).

The GUI Guide, International Terminology for the Win-
dows Interface (Redmond, Wash.: Microsoft Press, 1993).

S. McConnell, Code Complete: A Practical Handbook of
Software Construction (Redmond, Wash.: Microsoft
Press, 1993).

C. Petzold, Programming Windows, 2d ed. (Redmond,
Wash.: Microsoft Press, 1990).

B. Stroustrup, The C++ Programming Language (Read-
ing, Mass.: Addison-Wesley Publishing Company, 1986).

Biographies

John T. Freitas
Presently a software engineer at Atria Software, John
Freitas worked at Digital for 15 years. For the last few
years, he was associated with Digital’s eXcursion product
as an individual contributor, an architect, and a designer.
Previously, he was in the Workstation group. John received
a B.S.E.E. from Northeastern University in 1967. While
in college, he worked as a co-op student on the Apollo
Project at MIT’s Draper Laboratory. During the 1970s,
he worked for Harvard University developing and main-
taining medical computing facilities at Massachusetts
General Hospital.

James G. Peterson
James Peterson is currently a software engineer at
DeLorme Mapping. As a member of Digital’s Windows
NT group, James led the releases of the eXcursion soft-
ware from version 1.1 through version 2.1. In addition,
he worked as architect and individual contributor on
the eXcursion project, concentrating on graphics and
performance. Earlier, he worked in the PATHWORKS
and Rainbow groups. James was employed by Compion
Corporation before joining Digital in 1984. He received
a B.A. (1979) in mathematics from Indiana University
and an M.S. (1981) in mathematics and an M.S. (1984)
in computer science, both from the University of Illinois.

Digital Technical Journal Vol. 8 No. 1 1996 45

Paul J. Ranauro
Paul Ranauro joined Digital in 1987 and is a principal
software engineer in the Windows NT group. He is
responsible for application failover for the Digital Clusters
for Windows NT product. In earlier work, he participated
in the development of the eXcursion software and the
ACMSxp transaction processing monitor, specifically,
in the implementation of the RTI protocol. He also par-
ticipated in the implementation of the Manufacturing
Messaging Service OSI application layer protocol for the
DEComni product and a network performance analyzer.
Prior to coming to Digital, he was a consultant at Index
Systems and a senior software engineer at Micom-Interlan.
Paul holds a B.A. in history from the University of
Massachusetts at Boston.

Scot A. Aurenz
Scot Aurenz is a principal software engineer in the
Windows NT group where he works on the development
of the eXcursion PC X server. Scot has contributed to many
projects at Digital, including the Language Sensitive Editor
(DECset LSE) and the SUVAX workstation. Scot came to
Digital in 1979 as a Purdue University co-op student and
became a full-time employee after receiving his B.S.E.E.
in 1982. He received an M.S.E.E. from the University of
Illinois in 1986.

Charles P. Guldenschuh
Charles Guldenschuh is a principal software engineer in
Digital’s Windows NT group. He is responsible for color
support and software installation of the eXcursion product.
Previously, he worked in the Real-Time Software,
Professional 300 Software Engineering, and RT-11
Engineering groups. Charles joined Digital after receiving
his B.S. in information and computer science from the
Georgia Institute of Technology in 1976.

