
Wrapping the Terminal Services API for Visual Basic
Wrapping API calls in order to access advanced features of the operating system has a long history in the Visual Basic world; in fact, it's hard to find an API call which has not been wrapped by someone else.

The Terminal Services API, however, is one of the rarely-wrapped interfaces, for a variety of reasons. Terminal Servers are by their nature much less common than other operating systems. there are many users, of course, but there may be only one Terminal Server out there for every 10 to 100 users in a particular environment. Those of us who do network also actively discourage their use as software testbeds. The first version of Visual Basic to be officially supported for use with Terminal Services was VB6. Finally, the Terminal Services API can be daunting at first glance since it seems to require an extra two parameters in virtually every call made to it.
These obstacles tend to dissolve when examined closely; all you need is some very basic hardware for a testbed, access to a VB6 compiler and the (free) Microsoft Platform SDK, and a little thought about the differences between Terminal Services and other operating systems. I'm going to discuss setting up an environment for Terminal Services programming, getting the background information you need to work with it, and then walk through developing basic API wrappers for a couple of the basic prototypes shown in the Terminal Services API documentation.
Programming Environment
My preferred approach is to use VB6 on a Windows 2000 or XP system, and have a simple Windows 2000 Terminal Server for actually running my test code. The hardware expense is minor; until recently I used an old P-233 with 128 MB of RAM for my test Windows 2000 Terminal Server.
Note that VB5 is not supported for Terminal Services. I have had no issues using it as an alternate environment, but since it antedates Windows Terminal Services there are significant possibilities for misbehavior, particularly when run through a remote session.
References

The key reference you will need is the Terminal Services portion of the core Microsoft Platform SDK, from http://www.microsoft.com/msdownload/platformsdk/sdkupdate/. The central API is covered in the SDK help files; constants used are available in the wtsapi32.h header file which is installed to an Include/ subfolder of the SDK install.
Another reference you may find useful is MSKB Article Q190000 - HOWTO: Get Started Programming with the Windows API .
One other useful reference if you are learning to use API calls is Bruce McKinney's book Hardcore Visual Basic. It is unfortunately out of print, but Microsoft Press has permitted publication of the entire book online at the Hardcore VB site.
Terminal Services as a Social Operating System
Before jumping into code, we need to orient ourselves towards what we are doing. I found I understood the API structure much better when I realized that Terminal Services is a social operating system.
When dealing with normal workstation actions, it is usually obvious what I mean when I issue a "Logoff" command. I, at the console, am telling my computer that I want to be logged off.
That's not the way TS works; a single server will normally have to deal with multiple user sessions; and for easy leveraging, the API should be (and is) written with so that you can specify which session is involved in a certain action. In fact, the TS developers went one step further and designed the interface to deal with any server you can contact in the same way. This makes it look much more complicated on paper. In reality, though, we can make an API call default to this server and this session with minimal effort.

The advantage of this approach is that when you want to deal with many sessions and many servers, you have none of the major surgery normally involved with accessing a process on a remote system.
Let's Wrap!
We're gong to start out with some very simple but useful actions and information. When we are done, we will have wrappers for disconnecting or logging off the user session in which an application is running. One handy feature we will see is that the APIs are very symmetric. Disconnecting and logging off sessions are similar actions; after wrapping one, we automatically have the process for the other.
The Session Disconnect API Function
The first thing we will do is figure out how to programmatically disconnect a session from Visual Basic. You can break the process into 2 steps that pretty much every standard API call from VB will follow.

(1) We find an API declaration for something we want to do; not hard with the Platform SDK's find window

(2) We need to "translate" the declaration so that it becomes a legal Visual Basic procedure; this involves converting the C++ parameter types to corresponding VB ones and then declaring the code.

Finding the API Declaration

If you look through the Platform SDK TS information with "disconnect" as your search term, you will find WTSDisconnectSession. The prototype for this is shown as

BOOL WTSDisconnectSession(HANDLE hServer, DWORD SessionId, BOOL bWait);

Notice that right away we have references to a server and a session that I mentioned; the same format is used in every API call which needs either one. The third value, bWait, indicates whether the call should wait to return until the operation has completed; for the case of a single disconnecting session it is not of critical importance.
Translating the API Declaration into Visual Basic

We have the API; now what do we do with it?

We have 3 things to check here; first we walk around the API and look for any sharp objects in it that could stab our VB app; then we translate while "padding" those tough spots. We may also find some special constants referenced (called "defines" in C++) which we need to look up.
"Sharp objects" typically mean two things: handles and pointers. Although C++ has a very rich set of typenames, both can usually be identified even by a newcomer. Handles usually have a typename including the word HANDLE before a variable name (we have one here) and pointers usually begin with LP (an abbreviation for "long pointer to…").

There are standard ways for dealing with handles in VB API wrappers, but to simplify programming the developers gave us a shortcut technique which makes use from VB very simple. If we want to deal with the server where we are logged on specifically, we can use WTS_CURRENT_SERVER_HANDLE for the hServer parameter.

We have a similar shortcut with the SessionID value; if we want to simply refer to "this session", we use WTS_CURRENT_SESSION as its value. We'll get back to those constants in a moment, but first we need to make the API wrapper.

There are some general rules for API wrappers in VB; the MSKB article I mentioned earlier, Q190000, can serve as a crash-course introduction to them. Life is not always this easy, but the Terminal Server APIs can generally be translated very easily using Q190000 as a guide. Almost every API call is made to wtsapi32.dll and most of the parameters and return values are C++ handles, Booleans, and DWORD values (which means they translate into VB as "Long" values). The API call above can thus be translated into
Public Declare WTSDisconnectSession lib "wtsapi32" (ByVal hServer As Long, _

ByVal SessionID As Long, ByVal bWait As Long) As Long

Now let's get back to the constants I mentioned - what are the values for WTS_CURRENT_SERVER_HANDLE and WTS_CURRENT_SESSION?
You can look for them in the SDK Help files, but the quickest thing to do is to open wtsapi32.h with a text editor and do a search, since they will be C++ defines (constants in VB-speak.

We find

#define WTS_CURRENT_SERVER_HANDLE ((HANDLE)NULL)

#define WTS_CURRENT_SESSION ((DWORD)-1)

Both of those look pretty ugly from a VB standpoint, but they are fairly easy to use. You may see other ways of translating ((HANDLE)NULL) into a VB constant, but they are minimally useful from a VB6 standpoint. Both are long values in VB; a null handle can be translated to Long 0, and a DWORD value of -1 is simply -1 Long. So we can define these as:
PUBLIC CONST WTS_CURRENT_SERVER_HANDLE As Long = 0

PUBLIC CONST WTS_CURRENT_SESSION As Long = -1

Note that position and type of the parameters you supply is important, as with any function call; names are not. I prefer to keep the names identical with those used in the API declarations to make the use of the values obvious.
The Session Logoff API Function

That was a lot of thinking for a single API call; but we can now leverage the experience.

If we now look up WTSLogoffSession, we will see it is virtually identical to WTSDisconnectSession:

BOOL WTSLogoffSession (HANDLE hServer, DWORD SessionId, BOOL bWait);
In fact, we can clone our WTSDisconnectSession wrapper and just change the function called to WTSLogoffSession.
The Finished Module

Everything we have done so far can be integrated into a simple module, callable from any type of Visual Basic project we want.

Option Explicit

' pointer to current server

PUBLIC CONST WTS_CURRENT_SERVER_HANDLE = 0

' generic ID for current session

PUBLIC CONST WTS_CURRENT_SESSION As Long = -1

Public Declare WTSDisconnectSession lib "wtsapi32" (_

ByVal hServer As Long, _

ByVal SessionID As Long, ByVal bWait As Long) As Long

Public Declare WTSLogoffSession lib "wtsapi32" (_

ByVal hServer As Long, _

ByVal SessionID As Long, ByVal bWait As Long) As Long
Now we're ready to write an application and an ActiveX DLL.
A Visual Basic Disconnect/Logoff Application
Start a new Visual Basic EXE project, and add the code above to a module in it. Add two buttons to it, and name them btnDisconnect and btnLogoff. We can then use the following for our btnDisconnect Click event handler:
Private Sub btnDisconnect_Click()

 WTSDisconnectSession WTS_CURRENT_SERVER_HANDLE, _

WTS_CURRENT_SESSION, False

End Sub

The Logoff handler is worth some extra thought. When we log off, the Terminal Server will have to force the application to close since it will still be running if we simply call the WTSLogoffSession wrapper. If we set bWait to false, the application returns immediately, and we can then tell the application to shut down from within our code by including an END statement; that makes it a little cleaner:

Private Sub btnLogoff_Click()

 WTSLogoffSession WTS_CURRENT_SERVER_HANDLE, _

WTS_CURRENT_SESSION, False

 END

End Sub

Now we just need to compile the application, copy it to the Terminal Server, and run it from a Terminal Services session. If you click the "Disconnect" button, your session immediately closes; when you reconnect, the application window is still open.
If you click the "Logoff" button, we see that when we reconnect we have a clean session; everything was closed during our forced logoff.
Writing a Scriptable DLL
A COM-accessible DLL is even simpler. It uses the same module, and roughly the same code in the class module as in the VB form; the only difference is that the code will terminate and clean up automatically after calling the logoff method if we make it the last call from a script.

Start another VB project, this one for an ActiveX DLL. I've given this one the ugly but unique name of xprjWtsapi1. Add the module we already wrote to the project, then go to the automatically created class module. I renamed mine to clsWtsapi1. This is important since when we register the control its classname for use from script will be <project-name>.<class-module-name>; so my version will have a classname of "xprjWtsapi1.clsWtsapi1". Not pretty, but not likely to collide with anything else on your system.
The class code I use is just:

Option Explicit

Public Sub Disconnect()

 WTSDisconnectSession WTS_CURRENT_SERVER_HANDLE, _

 WTS_CURRENT_SESSION, False

End Sub

Public Sub Logoff()

 WTSLogoffSession WTS_CURRENT_SERVER_HANDLE, _

 WTS_CURRENT_SESSION, False

End Sub

After compiling, we have a DLL which can be registered on your Terminal Server with regsvr32, and then you can call either of its methods from script. To disconnect the current session from script, you would include the following two lines in a standard VBScript:

Set objTSControl = CreateObject("xprjWtsapi1.clsWtsapi1")

objTSControl.Disconnect

To perform a logoff, you would simply change that to

Set objTSControl = CreateObject("xprjWtsapi1.clsWtsapi1")

objTSControl.Logoff
