
Software
Product
Description
PRODUCT NAME: HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

DESCRIPTION

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6
contains both the HP Fortran 95/90 Version 5.6 soft-
ware and the HP Fortran 77 Version 5.6 software as
well as the Compaq Extended Math Library (CXML) Ver-
sion 5.20. In this Software Product Description (SPD),
HP Fortran refers to HP Fortran 95/90 unless a spe-
cific reference to the 95/90 or 77 product is needed to
distinguish between the two software products.

HP Fortran is an implementation of the Fortran program-
ming language that supports the FORTRAN 66, FOR-
TRAN 77, Fortran 90, and Fortran 95 standards. HP
Fortran 95/90 and HP Fortran 77 fully support the fol-
lowing standards:

• ANSI X3.9-1966 (FORTRAN 66)

• ANSI X3.9-1978 (FORTRAN 77)

• ISO 1539-1980(E) (FORTRAN 77)

• MIL-STD-1753

• FIPS-69-1 (HP Fortran meets the requirements of
this standard by conforming to the ANSI Standard
and by including a flagger. The flagger optionally
produces diagnostic messages for compile-time el-
ements that do not conform to the Full-Level ANSI
Fortran Standard.)

HP Fortran 95/90 supports all of the standards that HP
Fortran 77 supports plus the following new standards:

• ANSI X3.198-1992 (Fortran 90)

• ISO/IEC 1539-1:1997(E) (Fortran 95)

HP FORTRAN

HP Fortran 95/90 fully supports the multivendor
OpenMP Fortran Version 1.1 Specification, including
support for directed parallel processing using OpenMP
directives on shared memory multiprocessor systems.

HP Fortran 95/90 supports most statement, library, and
directive extensions from the HPF-2 specification (High
Performance FORTRAN Language Specification, Ver-
sion 2.0, January 31, 1997).

HP Fortran supports extensions to the ISO and ANSI
standards, including a number of extensions defined by
HP Fortran for the various HP Fortran platforms (operat-
ing system/architecture pairs). In addition to HP Tru64
UNIX Alpha systems, HP Fortran platforms include:

• HP Fortran for OpenVMS Integrity Systems

• HP Fortran and HP Fortran 77 for OpenVMS Alpha
systems

• Compaq Fortran 77 for OpenVMS VAX systems

Major additions to the FORTRAN 77 standard intro-
duced by the Fortran 90 standard include:

• Array operations

• Improved facilities for numeric computation

• Parameterized intrinsic data types

• User-defined data types

• Facilities for modular data and procedure definitions

• Pointers

• The concept of language evolution

September 2005

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

• Support for DATE_AND_TIME intrinsic for obtaining
dates using a four-digit year format

HP Fortran contains full support for the Fortran 95 stan-
dard, including the following features:

• FORALL statement and construct

• Automatic deallocation of ALLOCATABLE arrays

• DIM argument to MAXLOC and MINLOC

• PURE user-defined subprograms

• ELEMENTAL user-defined subprograms (a restricted
form of a pure procedure)

• Pointer initialization (initial value)

• The NULL intrinsic to nullify a pointer

• Derived-type structure initialization

• CPU_TIME intrinsic subroutine

• KIND argument to CEILING and FLOOR intrinsics

• Nested WHERE constructs, masked ELSEWHERE
statement, and named WHERE constructs

• Comments allowed in namelist input

• Generic identifier in END INTERFACE statements

• Minimal width field editing using a numeric edit de-
scriptor with 0 width

• Detection of Obsolescent and/or Deleted features
listed in the Fortran 95 standard. HP Fortran flags
these obsolescent and deleted features, but fully sup-
ports them.

HP Fortran includes the following features and enhance-
ments:

• Full support for 64-bit address space, including 64-bit
static space

• Support for linking against static and shared libraries

• Support for creating shareable code to be put into a
shared library

• Support for stack-based storage

• Support for dynamic memory allocation

• Support for reading and writing binary data files
in nonnative formats, including IEEE™ (little-endian
and big-endian), VAX, IBM™ System\360, and
CRAY™ integer and floating point formats

• User control over IEEE floating point exception han-
dling, reporting, and resulting values

• Control for memory boundary alignment of items in
COMMON and fields in structures and warnings for
unaligned data

• Directives to control listing page titles and subtitles,
object file identification field, COMMON and record
field alignment, and some attributes of COMMON
blocks

• Ability to CALL an external function subprogram

• 7200 Character Statement Length

• Free form unlimited line length

• Mixing Subroutines/Functions in Generic Interfaces

• Composite data declarations using STRUCTURE,
END STRUCTURE, and RECORD statements, and
access to record components through field refer-
ences

• Explicit specification of storage allocation units for
data types such as:

INTEGER*4
LOGICAL*4
REAL*4
REAL*8
COMPLEX*8

• Support for 64-bit signed integers using INTEGER*8
and LOGICAL*8

• Support for 128-bit floating-point real numbers (reals)
using REAL*16 and COMPLEX*32

• A set of data types:

— BYTE

— LOGICAL*1, LOGICAL*2, LOGICAL*4, LOGI-
CAL*8

— INTEGER*1, INTEGER*2, INTEGER*4, INTE-
GER*8

— REAL*4, REAL*8, REAL*16

— COMPLEX*8, COMPLEX*16, DOUBLE COM-
PLEX, COMPLEX*32

— POINTER (CRAY style)

• Data statement style initialization in type declaration
statements

• AUTOMATIC and STATIC statements

• Bit constants to initialize LOGICAL, REAL, and INTE-
GER values and participate in arithmetic and logical
expressions

• Built-in functions %LOC, %REF, and %VAL

• VOLATILE statement

• Bit manipulation functions

• Binary, hexadecimal, and octal constants and Z and
O format edit descriptors applicable to all data types

• I/O unit numbers that can be any nonnegative INTE-
GER*4 value

2

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

• Variable amounts of data can be read from and writ-
ten to "STREAM" files, which contain no record de-
limiters

• ENCODE and DECODE statements

• ACCEPT, TYPE, and REWRITE input/output state-
ments

• DEFINE FILE, UNLOCK, and DELETE statements

• USEROPEN subroutine invocation at file OPEN time

• Support for I/O record larger than 2.1 Gigabytes in
variable-length unformatted files

• Support for reading nondelimited character strings as
input for character NAMELIST items

• Debug statements in source

• Generation of a source listing file with optional ma-
chine code representation of the executable source

• Generation of a symbolic assembly language repre-
sentation of the executable source that can be as-
sembled

• Variable format expressions in a FORMAT statement

• Optional run-time bounds checking of array sub-
scripts and character substrings

• 31-character identifiers that can include dollar sign
($) and underscore (_)

• Support for executing in-line assembler code using
the ASM intrinsics

• Support for the supercomputer intrinsics POPCNT,
POPPAR, LEADZ, TRAILZ, and MULT_HIGH

• Language elements that support the various ex-
tended range and extended precision floating point
architectural features:

— 32-bit IEEE S_floating data type, with an 8-
bit exponent and 24-bit mantissa, which pro-
vides a range of 1.17549435E-38 (normalized) to
3.40282347E38 (the IEEE denormalized limit is
1.40129846E-45) and a precision of typically 7
decimal digits

— 64-bit IEEE T_floating data type, with an 11-bit
exponent and 53-bit mantissa, which provides
a range of 2.2250738585072013D-308 (normal-
ized) to 1.7976931348623158D308 (the IEEE de-
normalized limit is 4.94065645841246544D-324)
and a precision of typically 15 decimal digits

— 128-bit IEEE extended Alpha X_floating data type,
with a 15-bit exponent and a 113-bit mantissa,
which provides a range of approximately 6.48Q-
4966 to 1.18Q4932 and a precision of typically 33
decimal digits

• Command line control for:

— The size of default INTEGER, REAL, and DOU-
BLE PRECISION data items

— The levels and types of optimization to be applied
to the program

— The directories to search for INCLUDE files

— Inclusion or suppression of various compile-time
warnings

— Inclusion or suppression of run-time checking for
various I/O and computational errors

— Control over whether compilation terminates after
a specific number of errors has been found

— Choosing whether executing code will be thread-
reentrant

• Internal procedures can be passed as actual argu-
ments to procedures

• Kind types for all of the hardware-supported data
types:

— For 1-, 2-, 4-, and 8-byte LOGICAL data:

LOGICAL (KIND=1)
LOGICAL (KIND=2)
LOGICAL (KIND=4)
LOGICAL (KIND=8)

— For 1-, 2-, 4-, and 8-byte INTEGER data:

INTEGER (KIND=1)
INTEGER (KIND=2)
INTEGER (KIND=4)
INTEGER (KIND=8)

— For 4-, 8-, and 16-byte REAL data:

REAL (KIND=4)
REAL (KIND=8)
REAL (KIND=16)

— For single precision, double precision, and quad-
precision COMPLEX data:

COMPLEX (KIND=4)
COMPLEX (KIND=8)
COMPLEX (KIND=16)

• The following features found in Compaq Visual For-
tran:

— # Constants–constants using other than base 10

— C Strings–NULL terminated strings

— Conditional Compilation And Metacommand Ex-
pressions ($define, $undefine, $if, $elseif, $else,
$endif)

— $FREEFORM, $NOFREEFORM, $FIXEDFORM–
source file format

— $INTEGER, $REAL–selects size

3

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

— $FIXEDFORMLINESIZE–line length for fixed form
source

— $STRICT, $NOSTRICT–F90 conformance

— $PACK-structure packing

— $ATTRIBUTES ALIAS–external name for a sub-
program or common block

— $ATTRIBUTES C, STDCALL–calling and naming
conventions

— $ATTRIBUTES VALUE, REFERENCE–calling con-
ventions

— \ Descriptor–prevents writing an end-of-record
mark

— Ew.dDe and Gw.dDe Edit Descriptors–similar to
Ew.dEe and Gw.dEe

— $DECLARE and $NODECLARE (same as IM-
PLICIT NONE)

— $ATTRIBUTES EXTERN–variable allocated in an-
other source file

— $ATTRIBUTES VARYING–variable number of ar-
guments

— $ATTRIBUTES ALLOCATABLE–allocatable array

— Mixing Subroutines/Functions in Generic Inter-
faces

— $MESSAGE–output message during compilation

— $LINE (same as C’s #line)

— INT1 converts to one byte integer by truncating

— INT2 converts to two byte integer by truncating

— INT4 converts to four byte integer by truncating

— COTAN returns cotangent

— DCOTAN returns double precision cotangent

— IMAG returns the imaginary part of complex num-
ber

— IBCHNG reverses value of bit

— ISHA shifts arithmetically left or right

— ISHC performs a circular shift

— ISHL shifts logically left or right

• Support for directed decomposition for parallel pro-
cessing on shared memory multiprocessor systems
using source code directives from either OpenMP
(!$OMP) or HP Fortran (!$PAR):

— PARALLEL and END PARALLEL directives to de-
fine parallel regions

— DO and END DO directives to define parallel work
constructs

— PARALLEL and SECTIONS directives to define
parallel work constructs

— PRIVATE and SHARED attributes to describe data
local or global to the threads of execution

— CRITICAL section directive to define a guarded
region where one thread executes at a time

— TASK COMMON or THREADPRIVATE directives
to allow each thread to have a local copy of a
COMMON block

— Environment variables to control resource utiliza-
tion at run-time

— Library routines to query and adjust the run-time
parallel environment

— Nested OpenMP parallel regions

— NUM_THREADS clause

• A number of High Performance Fortran (HPF) fea-
tures, including:

— The data parallel FORALL statement and con-
struct

— Execution model procedure prefixes:

EXTRINSIC(HPF)
EXTRINSIC(HPF_LOCAL)
EXTRINSIC(HPF_SERIAL)

— PURE procedure prefix to specify a lack of proce-
dure side effects

— The following HPF data alignment and distribution
directives:

ALIGN
DISTRIBUTE
INHERIT
PROCESSORS
TEMPLATE
SHADOW
ON (in conjunction with INDEPENDENT loops)

— Many HPF-2 approved extensions, including:

* HPF_LOCAL routines, and all HPF_LOCAL_
LIBRARY routines except LOCAL_BLKCNT,
LOCAL_LINDEX, and LOCAL_LINDEX but
none of the approved extensions to HPF_
LOCAL_LIBRARY routines

* HPF_SERIAL routines

* ON directive within INDEPENDENT loops

* RESIDENT directive used in conjunction with
INDEPENDENT loops

* Mapping of derived type components

* Pointers to mapped objects

4

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

* Shadow width declarations

— HPF intrinsic procedures and library routines:

* NUMBER_OF_PROCESSORS and PROCES-
SORS_SHAPE

* Reduction functions

* Combining scatter functions

* Parallel prefix and suffix functions

* Sorting functions

* System inquiry intrinsics

* Computational intrinsics

* Mapping inquiry subroutines

* Bit manipulation functions

* Array reduction functions

* Array combining scatter functions

* Array parallel prefix and suffix functions

* Array sorting functions GRADE_UP, GRADE_
DOWN

— HPF INDEPENDENT directive

— HPF SEQUENCE and NOSEQUENCE directives

HP Fortran 77 contains the following extensions to the
FORTRAN 77 standard:

• Support for recursive subprograms

• IMPLICIT NONE statements

• INCLUDE statement

• NAMELIST-directed I/O

• DO WHILE and ENDDO statements

• Use of exclamation point (!) for end of line comments

• Generation of Cross Reference Listings

• Support for NTT Technical Requirement TR550001,
Multivendor Integration Architecture (MIA) Version
1.1, Division 2, Part 3-2, Programming Language
FORTRAN

• Support for automatic arrays

• Support for the SELECT CASE - CASE - CASE DE-
FAULT - END SELECT statements

• Support for the EXIT and CYCLE statements and for
construct names on DO - END DO statements

• Reporting of unused and uninitialized variables

• Support for DATE_AND_TIME intrinsic for obtaining
dates using a four-digit year format

HP Fortran provides a multiphase optimizer that is capa-
ble of performing optimizations across entire programs.
Specific optimizations performed by both HP Fortran
95/90 and HP Fortran 77 include:

• Constant folding

• Optimizations of arithmetic IF, logical IF, and block
IF-THEN-ELSE

• Global common subexpression elimination

• Removal of invariant expressions from loops

• Global allocation of general registers across program
units

• In-line expansion of statement functions and routines

• Optimization of array addressing in loops

• Value propagation

• Deletion of redundant and unreachable code

• Loop unrolling

• Thorough dependence analysis

• Software pipelining to rearrange instructions between
different unrolled loop iterations

• Optimized interface to intrinsic functions

• Loop transformation optimizations that apply to array
references within loops, including:

— Loop blocking

— Loop distribution

— Loop fusion

— Loop interchange

— Loop scalar replacement

— Outer loop unrolling

• Speculative code scheduling, where a conditionally
executed instruction is moved to a position before a
test instruction and executed unconditionally. This
reduces instruction latency stalls. (Performance may
be reduced somewhat, because the run-time system
must dismiss exceptions caused by speculative in-
structions.)

Specific optimizations performed by HP Fortran 95/90
include:

• Array temporary elimination

• A number of HPF-specific optimizations, including:

— Message vectorization

— Nearest-neighbor optimizations for improved com-
munication performance of constructs typically
seen in PDE solvers

— Parallelism of reductions

5

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

— Run-time preprocessing of loops for improved per-
formance of irregular data access code

— Many other communication-based optimizations

Both HP Fortran 95/90 and HP Fortran 77 are share-
able, re-entrant compilers that operate under the HP
Tru64 UNIX operating system. They globally optimize
source programs while taking advantage of the native
instruction set and the HP Tru64 UNIX virtual memory
system.

COMPAQ EXTENDED MATH LIBRARY (CXML)

Compaq Extended Math Library (CXML) is a set of
mathematical subprograms that are optimized for HP
architectures. Included subprograms cover the areas
of:

• Basic Linear Algebra

• Linear System and Eigenproblem Solvers

• Sparse Linear System Solvers

• Sorting

• Random Number Generation

• Signal Processing

The Basic Linear Algebra library includes the industry-
standard Basic Linear Algebra Subprograms (BLAS)
Level 1, Level 2, and Level 3. Also included are sub-
programs for BLAS Level 1 Extensions, Sparse BLAS
Level 1, and Array Math Functions (VLIB).

The Linear System and Eigenproblem Solver library pro-
vides the complete LAPACK V3 package developed by
a consortium of university and government laboratories.
LAPACK is an industry-standard subprogram package
offering an extensive set of linear system and eigenprob-
lem solvers. LAPACK uses blocked algorithms that are
better suited to most modern architectures, particularly
ones with memory hierarchies. LAPACK will supersede
LINPACK and EISPACK for most users.

The Sparse Linear System library provides both direct
and iterative sparse linear system solvers. The direct
solver package supports symmetric and symmetrically
structured matrices with real or complex elements. The
iterative solver package contains a basic set of storage
schemes, preconditioners, and iterative solvers. The
design of this package is modular and matrix-free, al-
lowing future expansion and easy modification by users.

The Signal Processing library provides a basic set of sig-
nal processing functions. Included are one-, two-, and
three-dimensional Fast Fourier Transforms (FFT), group
FFTs, Cosine/Sine Transforms (FCT/FST), Convolution,
Correlation, and Digital Filters.

Many CXML subprograms are optimized for the sup-
ported hardware platforms. Optimization techniques in-
clude traditional optimizations such as loop unrolling and
loop reordering. CXML subprograms also provide effi-
cient management of the hierarchical memory system,
using techniques such as the following:

• Reuse of data within registers to minimize memory
accesses

• Efficient cache management

• Use of blocked algorithms that minimize translation
buffer misses and unnecessary paging

Since CXML routines can be called from all languages
that support the HP Tru64 UNIX calling standard, the
library provides optimized computation for applications
written in these languages. Where appropriate, most
subprograms are available in both real and complex ver-
sions, as well as in both single and double precision.
CXML for HP Tru64 Alpha supports IEEE floating-point
format.

Parallel Library Support for Symmetric
Multiprocessing

CXML also supports symmetric multiprocessing (SMP)
for improved performance. Key BLAS Level 2 and 3
routines have been modified to execute in parallel if run
on SMP hardware. Also modified for this purpose are:

• LAPACK GETRF and POTRF routines

• Sparse iterative solvers

• Direct sparse solvers

• FFT routines

These parallel routines along with the other serial rou-
tines are supplied in an alternative library. The user can
choose to link with either the parallel or the serial library,
depending on whether SMP support is required, since
each library contains the complete set of routines.

Basic Linear Algebra Subprograms

Linear algebra operations are fundamental to many
mathematical applications, and several libraries of linear
algebra subprograms exist throughout the computer in-
dustry. The CXML BLAS library contains the most com-
monly used linear algebra subprograms.

The CXML linear algebra library contains five groups of
subprograms at three levels:

• Basic Linear Algebra Subprograms (BLAS) Level 1

• BLAS Level 1 Extensions

• BLAS Level 1 Sparse Extensions

• BLAS Level 2

6

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

• BLAS Level 3

BLAS Level 1 (Scalar/Vector and Vector/Vector
Operations)

BLAS Level 1 provides a set of elementary vector func-
tions, operating on one or two vectors. These are typ-
ically very small routines, and they make less efficient
use of the computing resources of modern computer ar-
chitectures than the Level 2 and 3 operations.

CXML provides the 15 standard BLAS Level 1 opera-
tions:

• The index of the element of a vector having maximum
absolute value

• The sum of the absolute values of the elements of a
vector

• Inner product of two real vectors

• Scalar plus the extended precision inner product of
two real vectors

• Conjugated inner product of two complex vectors

• Unconjugated inner product of two complex vectors

• Square root of the sum of squares (norm) of the el-
ements of a vector

• Scalar times a vector plus a vector

• Copy one vector to another

• Apply a Givens rotation

• Apply a modified Givens plane rotation

• Generate elements for a Givens plane rotation

• Generate elements for a modified Givens plane ro-
tation

• Product of a vector times a scalar

• Swap the elements of two vectors

BLAS Level 1 Extensions (Vector/Vector
Operations)

When developing mathematical algorithms using the
BLAS Level 1, scientists and engineers found that sev-
eral additional constructs were used on a regular basis.
These constructs are well known throughout the com-
puter industry as BLAS Level 1 Extensions.

CXML contains 13 BLAS Level 1 Extension operations:

• Index of element having the minimum absolute value

• Index of element having the maximum value

• Index of element having the minimum value

• Largest value of the elements of a vector

• Smallest value of the elements of a vector

• Largest absolute value of the elements of a vector

• Smallest absolute value of the elements of a vector

• Sum of the values of the elements of a vector

• Set all elements of a vector equal to a scalar

• Constant times a vector set to another
vector (y = a�x)

• Euclidean norm with no intermediate scaling

• Sum of the squares of the elements of a vector

• Constant times a vector plus a vector set to another
vector (z = a�x + y)

BLAS Level 1 Sparse Extensions (Vector/Vector
Operations)

This group of operations is similar to the BLAS Level
1 routines, but is designed to work on sparse vectors
(vectors in which most of the elements are zero). Six of
the routines are from industry standard Sparse BLAS 1,
and the remaining three are enhancements.

The nine sparse BLAS Level 1 operations are:

• Scalar times a sparse vector plus a vector

• Sum of a sparse vector and a full vector

• Inner product of a sparse vector and a full vector

• Gather a sparse vector from a full vector

• Gather a sparse vector from the scaled elements of
a full vector

• Gather a sparse vector from a full vector and zero
corresponding elements of full vector

• Apply Givens rotation to a sparse vector and a full
vector

• Scatter a sparse vector into a full vector

• Scale and scatter a sparse vector into a full vector

7

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

BLAS Level 2 (Matrix/Vector Operations)

The BLAS Level 2 codes make more effective use of
the data in the registers, reducing the number of reg-
ister loads and stores required. In addition, loop un-
rolling techniques are used to minimize cache misses
and page faults. The BLAS Level 2 subprograms use
the following types of operations:

• Matrix/vector products

• Rank-1 and rank-2 matrix updates

• Solutions of triangular systems of equations

Six types of matrices are supported by these BLAS
Level 2 routines:

• General

• General band

• Symmetric/Hermitian

• Symmetric/Hermitian band

• Triangular

• Triangular band

BLAS Level 3 (Matrix/Matrix Operations)

The BLAS Level 3 routines operate at a level that makes
the most efficient use of machine resources. CXML opti-
mizes these routines by partitioning matrices into blocks
and computing matrix/matrix operations on each block.
This approach avoids excessive memory accesses by
providing full reuse of data while each block is in the
cache or the registers. BLAS Level 3 routines provide
this kind of blocking for three basic types of operations:

• Matrix/matrix products

• Rank-k and rank-2k updates of a symmetric matrix

• Solving triangular systems of equations with multiple
right-hand sides

Three types of matrices are supported by these BLAS
Level 3 routines:

• General

• Symmetric/Hermitian

• Triangular

A set of additional matrix-matrix routines is provided:

• Add two matrices

• Subtract one matrix from another

• Transpose a matrix, in-place or out-of-place

Array Math Functions

The Array Math Functions provide a set of basic math
functions that operate on arrays of numbers rather than
on scalars. On vector and superscalar architectures,
such functions have a performance advantage over a
loop of scalar operations. The library includes the fol-
lowing array functions for double precision numbers:

• Sine of array

• Cosine of array

• Cosine and sine of array

• Exponent of array

• Logarithm of array

• Square root of array

• Reciprocal of array

LAPACK Library Contents

LAPACK is a library of linear algebra subprograms
intended to solve a wide range of problems, includ-
ing dense systems of linear equations, linear least
squares problems, eigenvalue problems, and singular
value problems. It is also useful in doing computations
such as matrix factorizations and estimations of condi-
tion numbers.

The CXML LAPACK library provides the complete LA-
PACK V3 package, compiled, tested, and ready to use.
Combined with the optimized BLAS Level 3 routines,
the CXML LAPACK provides optimal performance on all
supported platforms. LAPACK should be used in place
of LINPACK and EISPACK, because it is more efficient,
accurate, and robust.

LAPACK supports both real and complex, single and
double precision data. It operates on the following types
of matrices:

• Bidiagonal

• General band

• General unsymmetric

• General tridiagonal

• Hermitian

• Hermitian, packed storage

• Upper Hessenberg, generalized problem

• Upper Hessenberg

• Orthogonal

• Orthogonal, packed storage

• Symmetric/Hermitian positive definite band

• Symmetric/Hermitian positive definite

8

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

• Symmetric/Hermitian positive definite, packed stor-
age

• Symmetric/Hermitian positive definite tridiagonal

• Symmetric band

• Symmetric, packed storage

• Symmetric tridiagonal

• Symmetric

• Triangular band

• Triangular, generalized problem

• Triangular, packed storage

• Triangular

• Trapezoidal

• Unitary

• Unitary, packed storage

LAPACK provides the following operations:

• Triangular factorization

• Unblocked triangular factorization

• Solve a system of linear equations (based on trian-
gular factorization)

• Compute the inverse (based on triangular factoriza-
tion)

• Compute a split Cholesky factorization of a symmet-
ric/Hermitian positive definite band matrix

• Unblocked computation of inverse

• Estimate condition number

• Refine initial solution returned by solver

• Perform QR factorization without pivoting

• Unblocked QR factorization

• Solve linear least squares problem (based on QR
factorization)

• Solve the linear equality constrained least squares
(LSE) problem

• Solve the Gauss-Markov linear model problem

• Perform LQ factorization without pivoting

• Unblocked LQ factorization

• Solve underdetermined linear system (based on LQ
factorization)

• Generate a real orthogonal or complex unitary matrix
as a product of Householder matrices

• Unblocked generation of real orthogonal or unitary
matrix

• Multiply a matrix by a real orthogonal or complex uni-
tary matrix by applying a product of Householder ma-
trices

• Unblocked version of multiplication of a matrix by a
real orthogonal or complex unitary matrix by applying
a product of Householder matrices

• Reduce a square matrix to upper Hessenberg form

• Unblocked version of square matrix reduction

• Reduce a symmetric matrix to real symmetric tridiag-
onal form

• Reduce a band matrix to bidiagonal form

• Unblocked version of symmetric matrix reduction

• Reduce a rectangular matrix to bidiagonal form

• Reduce a band symmetric/Hermitian matrix to tridi-
agonal form

• Reduce a symmetric/Hermitian-definite banded gen-
eralized eigenproblem to standard form

• Compute various norms of a complex Hermitian tridi-
agonal matrix

• Compute eigenvalues and optional Schur factoriza-
tion or eigenvectors using QR algorithm

• Compute selected eigenvectors by inverse iteration

• Compute eigenvectors from Schur factorization

• Compute eigenvectors using the Pal-Walker-Kahan
variant of the QL or QR algorithm

• For a pair of N-by-N real nonsymmetric matrices,
compute the generalized eigenvalues, the real Schur
form, the left and/or right Schur vectors, and the left
and/or right generalized eigenvectors

• Solve the generalized nonsymmetric eigenproblem
Ax = lambda Bx

• Solve the generalized definite banded eigenproblem
Ax = lambda Bx

• Solve the generalized symmetric/Hermitian-definite
banded eigenproblem

• Solve the symmetric eigenproblem using divide-and-
conquer algorithm

• Compute singular values and, optionally, singular
vectors using the QR algorithm

• Compute the generalized (quotient) singular value
decomposition

• Compute the generalized singular value decompo-
sition (GSVD) on the M-by-N matrix A and P-by-N
matrix B

• Solve a generalized linear regression model problem

9

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

Sparse System Solver Subprograms

The CXML Sparse System Solver library contains a set
of subprograms that can be used to solve sparse linear
systems of equations. Two packages providing direct
and iterative methods are supported.

Direct Method Sparse Solver Package:

The direct solver package includes routines to solve
symmetric and symmetrically structured matrices with
real or complex elements. For symmetric matrices,
these routines can solve both positive definite and in-
definite systems.

The direct solver package routines use a row major,
upper triangular storage format.

Routines are provided to do the following:

• Initialize the solver

• Define the structure of the matrix

• Reorder the matrix

• Factor the matrix

• Compute the solution vector of the system

• Return statistics about the phases of the solving pro-
cess

The package permits the factorization of a matrix to
be used to compute solutions for additional right-hand
sides, and for the reordering of a matrix to be used to
solve additional systems with the same structure but dif-
ferent values for the matrix elements.

Iterative Method Sparse Solver Package:

For the iterative method, the library provides a modular
set of storage schemes, preconditioners, and solvers.
These solvers and preconditioners are easily accessed
through an integrated driver routine.

Six iterative sparse solvers for real, double precision
data are supplied:

• Preconditioned conjugate gradient method

• Preconditioned least squares conjugate gradient
method

• Preconditioned biconjugate method

• Preconditioned conjugate gradient squared method

• Preconditioned generalized minimum residual method

• Preconditioned transpose free QMR method

Routines for three storage schemes are provided, or the
user can develop routines to employ a custom storage
scheme. The supplied storage schemes include:

• Symmetric diagonal

• Unsymmetric diagonal

• General storage by rows

Three preconditioners are supplied, which can be selec-
tively applied to the data. Users can also supply custom
preconditioners. The preconditioners supplied include:

• Diagonal

• Polynomial (Neumann)

• Incomplete LU with zero diagonals added

Sorting Subprograms

Two sort subprograms using the Quicksort algorithm
and two general purpose radix sort subprograms are
provided, as follows:

• Sort elements of a vector using the Quicksort algo-
rithm

• Sort an indexed vector of data using the Quicksort
algorithm

• Sort data using a radix sort algorithm

• Sort an indexed vector of data using a radix sort al-
gorithm

All of the above sorts operate on data stored in mem-
ory.

Random Number Subprograms

CXML provides four random number generator subpro-
grams:

• Produce a vector of uniform [0,1], long-period
random numbers using the L’Ecuyer multiplicative
method. Two auxiliary input routines are provided
to allow this subprogram to be called from within a
parallel section of a program.

• Produce a vector of N(0,1), normally-distributed ran-
dom numbers. Two auxiliary input routines are pro-
vided to allow this subprogram to be called from
within a parallel section of a program.

• Produce single precision random numbers using a
linear multiplicative algorithm

• Produce single precision random numbers using a
Lehmer multiplicative generator

10

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

Signal Processing Subprograms

The CXML Signal Processing library contains a set of
subprograms in four basic areas of signal processing:

• Fast Fourier Transforms (FFT)

• Fast Cosine and Fast Sine Transforms (FCT and
FST)

• Convolution and correlation

• Digital filters

Fast Fourier Transforms and Cosine and Sine
Transforms

CXML provides one-dimensional, two-dimensional,
three-dimensional, and group FFT routines and one-
dimensional FCT/FST routines. Each routine is supplied
in two forms:

• The first form computes the transform in one unit
operation. This is convenient for programs requiring
speed on only one or a few operations.

• The second form is provided for programs requiring
speed on repeated operations. With this form, each
routine is subdivided into three routines. One routine
builds the rotation factors, a second routine applies
them to perform the transform, and a third routine
deallocates any virtual memory allocated in the first
routine. Thus, for repeated operations, the rotation
factors need to be built only once.

Convolution and Correlation

CXML provides routines for computing one-dimensional
discrete convolutions and correlations. These routines
can process both periodic and nonperiodic data.

Digital Filters

CXML provides support for one-dimensional, nonrecur-
sive digital filtering. Based on the Kaisers Sinh-Bessel
algorithm, these routines allow programming of band-
pass, bandstop, low-pass, and high-pass filters.

Cray SciLib Portability Support

SCIPORT is an HP implementation of V7 of the Cray
Research scientific numerical library, SciLib. SCIPORT
provides 64 bit single-precision and 64-bit integer inter-
faces to underlying CXML routines for Cray users port-
ing programs to Alpha systems running HP Tru64 UNIX.
SCIPORT also provides equivalent versions of almost
all Cray Math Library and CF77 (Cray Fortran 77) Math
intrinsic routines.

In order to be completely source code compatible with
SciLib, the SCIPORT library calling sequence supports
64-bit integers passed by reference. However, inter-
nally, SCIPORT uses 32 bit integers. Consequently,
some run-time uses of SciLib may not be supported by
SCIPORT.

SCIPORT provides the following:

• 64-bit versions of all Cray SciLib single-precision
BLAS Level 1, Level 2, and Level 3 routines

• All Cray SciLib LAPACK routines

• All Cray SciLib Special Linear System Solver routines

• All Cray SciLib Signal Processing routines

• All Cray SciLib Sorting and Searching routines

These routines are completely interchangeable with
their Cray SciLib counterparts up to the runtime limit
on integer size, and with the exception of the ORDERS
routine, require no program changes to function cor-
rectly. Owing to endian differences of machine archi-
tecture, special considerations must be given when the
ORDERS routine is used to sort multibyte character
strings.

Run-Time Library Redistribution

The HP Fortran kit may include updated Run-Time Li-
brary shareable images. HP grants the user a nonexclu-
sive royalty-free worldwide right to reproduce and dis-
tribute the executable version of the Run-Time Library
(the ‘‘RTLs’’), provided that the user does all of the fol-
lowing:

• Distributes the RTLs only in conjunction with and as
a part of the user’s software application product that
is designed to operate in the HP Tru64 UNIX envi-
ronment.

• Does not use the name, logo, or trademarks of HP
to market the user’s software application product.

• Includes the copyright notice of HP Fortran on the
user’s product disk label and/or on the title page of
the documentation for software application product.

11

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

• Agrees to indemnify, hold harmless, and defend HP
from and against any claims or lawsuits, including
attorney’s fees, that arise or result from the use or
distribution of the software application product.

Except as expressly provided herein, HP grants no im-
plied or express license under any of its patents, copy-
rights, trade secrets, trademarks, or any license or other
proprietary interests and rights.

For HP Tru64 UNIX Alpha systems, the RTL images are
designated as:

• libfor.a, libfor.so

• libUfor.a, libUfor.so

• libFutil.a, libFutil.so

• libshpf.a, libshpf.so (HP Fortran 95/90 only)

• libhpfcmpi.a, libhpfcmpi.so (HP Fortran 95/90 only)

• libhpfsmpi.a, libhpfsmpi.so (HP Fortran 95/90 only)

• for_msg.cat

• libcxml_ev4.a, libcxml_ev4.so

• libcxml_ev5.a, libcxml_ev5.so

• libcxml_ev6.a, libcxml_ev6.so

• libcxmlp_ev4.a, libcxmlp_ev4.so (HP Fortran 95/90
only)

• libcxmlp_ev5.a, libcxmlp_ev5.so (HP Fortran 95/90
only)

• libcxmlp_ev6.a, libcxmlp_ev6.so (HP Fortran 95/90
only)

HARDWARE REQUIREMENTS

Processors Supported:

Any Alpha system that is capable of running HP Tru64
UNIX Version 4.0F or newer.

Disk Space Requirements:

Disk space required for HP Fortran installation:

Root file system: / 0 MB

Other file systems: /usr 71 MB
/tmp 1 MB
/var 0 MB

Disk space required for HP Fortran use (permanent):

Root file system: /0 MB

Other file systems: /usr 67 MB
/var 0 MB

To install the Compaq Extended Math Library (CXML),
an additional 75 MB (or more) is needed in the /usr file
system.

These sizes are approximate; actual sizes may vary de-
pending on the user’s system environment, configura-
tion, and software options.

Memory Requirements:

For systems used to compile a program for parallel exe-
cution with the -hpf flag, a minimum of 64 MB of physical
memory is recommended.

SOFTWARE REQUIREMENTS

• HP Tru64 UNIX Operating System Version 4.0F
(SPD 41.61.xx) or higher

• HP Tru64 UNIX Developers’ Toolkit Version 4.0F or
higher (SPD 44.36.xx) for HP Tru64 UNIX Version
4.0F or higher

SOFTWARE LICENSING INFORMATION

This software is furnished only under license. For more
information about licensing terms and policies of HP,
contact your local HP office.

LICENSE MANAGEMENT FACILITY SUPPORT

HP Fortran supports the License Management Facility
of HP.

License units for HP Fortran are allocated on an Unlim-
ited System Use plus Concurrent Use basis.

Each Concurrent Use license allows any one individual
at a time to use the layered product.

For more information on the License Management Facil-
ity, refer to the HP Tru64 UNIX Operating System Soft-
ware Product Description (SPD 41.61.xx) or to the HP
Tru64 UNIX Operating System documentation set.

OPTIONAL SOFTWARE

• Compaq MPI is required to link and execute High
Performance Fortran programs compiled for parallel
execution using the -hpf option, for shared-memory
or Memory Channel Cluster target machines. For
AlphaServer SC target machines, no additional soft-
ware is required.

See http://hp.com/techservers/software/cmpi.html.

• Compaq Kap Fortran/OpenMP V4.4 for HP Tru64
UNIX (for HP Fortran 95/90 compiler; see SPD
45.72.13).

12

HP Fortran for Tru64 UNIX Alpha Systems Version 5.6 SPD 37.54.17

GROWTH CONSIDERATIONS

The minimum hardware/software requirements for any
future version of this product may be different from the
requirements for the current version.

DISTRIBUTION MEDIA

Media and documentation for HP Fortran are available
on the HP Software Product Library CD-ROM set for
HP Tru64 UNIX Products (QA-054AA-H8) or a CD-ROM
containing only the HP Fortran for HP Tru64 UNIX Alpha
Systems product (QA-MV2AA-H8). Documentation in
printed format can be ordered separately (see the HP
Fortran ‘‘read before installing’’ cover letter or the online
release notes).

SOFTWARE WARRANTY

This software is provided by HP with a 90-day confor-
mance warranty in accordance with the HP warranty
terms applicable to the license purchase.

The above information is valid at time of release. Please
contact your local HP office for the most up-to-date in-
formation.

ORDERING INFORMATION

Software Licenses:

Unlimited System Use: QL-MV2A*-AA
Personal Use: QL-MV2AM-2B
Concurrent Use: QL-MV2AM-3B
Concurrent 5 Pack: QL-MV2AM-3C

Concurrent 10 Pack: QL-MV2AM-3D

Software Documentation:

HP Fortran 95/90 Documentation: QA-MV2AA-GZ
HP Fortran 77 Documentation: QA-MV2AB-GZ

Software Product Services: QT-MV2*-**

* Denotes variant fields. For additional information on
available licenses, services, and media, refer to the
appropriate price book.

A variety of service options are available from HP. For
more information, contact your local HP office.

COPYRIGHT INFORMATION

Copyright © 2005 Hewlett-Packard Development Com-
pany, L.P.

The information contained herein is subject to change
without notice. The only warranties for HP products and
services are set forth in the express warranty statements
accompanying such products and services. Nothing
herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial
errors or omissions contained herein.

Proprietary computer software. Valid license from HP
required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Soft-
ware, Computer Software Documentation, and Tech-
nical Data for Commercial Items are licensed to the
U.S. Government under vendor’s standard commercial
license.

13

