
VAX DATATRIEVE
Reference Manual
Order Number: AA–K079G–TE

May 1992

This manual contains general information on using VAX DATATRIEVE.

Operating System: VMS Version 5.4 or higher

Software Version: VAX DATATRIEVE Version 6.0

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1984, 1985, 1987, 1989.

The following are trademarks of Digital Equipment Corporation:

ACMS DECUS RT
ALL–IN–1 DECwindows TDMS
CDD/Repository DECwrite ULTRIX
DATATRIEVE DIBOL UNIBUS
DBMS FMS VAX
DEC MASSBUS VAX CDD
DEC/CMS P/OS VAX FMS
DEC/MMS PDP VAXcluster
DECchart Professional VAXstation
DECdecision Rainbow VIDA
DECdesign RALLY VMS
DECforms Rdb/ELN VT
DECintact Rdb/VMS Work Processor
DECmate ReGIS WPS/Plus
DECnet RSTS
DECpresent RSX �™

The following are third-party trademarks:

IBM is a registered trademark of IBM Corp.

PostScript is a registered trademark of Adobe Systems Corp.

LOTUS 1-2-3 is a registered trademark of Lotus Development Corp.

This document was prepared using VAX DOCUMENT, Version 2.0.

Contents

Preface . xi

1 Value Expressions and Boolean Expressions

1.1 Value Expressions . 1–2
1.1.1 Literals . 1–2
1.1.1.1 Character String Literals . 1–2
1.1.1.2 Numeric Literals . 1–4
1.1.2 Qualified Field Names . 1–4
1.1.2.1 Elementary and REDEFINES Field Names 1–4
1.1.2.2 COMPUTED BY Fields . 1–5
1.1.2.3 Group Field Names . 1–5
1.1.2.4 Query Names . 1–6
1.1.2.5 Qualifying Field Names . 1–6
1.1.3 Variables . 1–6
1.1.3.1 Global Variables . 1–7
1.1.3.2 Local Variables . 1–7
1.1.4 Date Value Expressions . 1–8
1.1.5 Prompting Value Expressions . 1–10
1.1.6 Values from a Table . 1–11
1.1.7 Statistical Expressions . 1–11
1.1.8 Arithmetic Expressions . 1–18
1.1.9 Concatenated Expressions . 1–19
1.1.10 Conditional Value Expressions 1–21
1.1.10.1 CHOICE Value Expression 1–21
1.1.10.2 IF THEN ELSE Value Expression 1–23
1.1.11 FORMAT Value Expression . 1–25
1.1.12 FROM Value Expression . 1–28
1.2 Boolean Expressions . 1–30
1.2.1 Relational Operators . 1–31
1.2.2 Boolean Operators . 1–35

iii

2 Using DATATRIEVE Variables

2.1 Declaring Variables . 2–1
2.2 Local Variables . 2–2
2.3 Global Variables . 2–3
2.4 Using Variables to Assign Values to Fields 2–3
2.5 Changing the Value of a Variable . 2–5
2.6 Using Context Variables . 2–5

3 DATATRIEVE Functions

3.1 Functions Grouped by Type . 3–1
3.1.1 Function Value Expressions . 3–2
3.1.1.1 Functions Using Numeric Data 3–2
3.1.1.2 Trigonometric Functions . 3–3
3.1.1.3 Functions Using Alphanumeric Data 3–3
3.1.1.4 Functions Using Dates . 3–3
3.1.2 Functions for Keypad Definitions 3–4
3.1.3 Functions Relating to Processes 3–4
3.1.3.1 Functions for Timing Processes 3–4
3.1.3.2 Functions for Using Logical Names 3–5
3.1.3.3 Function for Using Symbols 3–5
3.1.3.4 Other Functions Relating to Processes 3–5
3.2 DATATRIEVE Mathematical Functions Now Use G

FLOATING Format Numbers . 3–5
3.3 Functions Listed Alphabetically . 3–6

FN$ABS . 3–7
FN$ATAN . 3–8
FN$COMMAND_KEYBOARD . 3–9
FN$COS . 3–10
FN$CREATE_LOG . 3–11
FN$DATE . 3–12
FN$DAY . 3–13
FN$DCL . 3–14
FN$DEFINE_KEY . 3–17
FN$DELETE_KEY . 3–18
FN$DELETE_LOG . 3–19
FN$EXP . 3–20
FN$FLOOR . 3–21
FN$GET_SYMBOL . 3–22
FN$HEX . 3–23

iv

FN$HOUR . 3–24
FN$HUNDREDTH . 3–25
FN$INIT_TIMER . 3–26
FN$JULIAN . 3–27
FN$KEYPAD_MODE . 3–28
FN$KEYTABLE_ID . 3–29
FN$LN . 3–30
FN$LOAD_KEYDEFS . 3–31
FN$LOG10 . 3–32
FN$MINUTE . 3–33
FN$MOD . 3–34
FN$MONTH . 3–35
FN$NINT . 3–36
FN$OPENS_LEFT . 3–37
FN$PROMPT_KEYBOARD . 3–38
FN$SECOND . 3–39
FN$SHOW_KEY . 3–40
FN$SHOW_KEYDEFS . 3–41
FN$SHOW_TIMER . 3–42
FN$SIGN . 3–43
FN$SIN . 3–44
FN$SPAWN . 3–45
FN$SQRT . 3–47
FN$STR_EXTRACT . 3–48
FN$STR_LOC . 3–49
FN$TAN . 3–50
FN$TIME . 3–51
FN$TRANS_LOG . 3–52
FN$UPCASE . 3–53
FN$WEEK . 3–54
FN$WIDTH . 3–56
FN$YEAR . 3–57

3.4 Optimizing Function Execution . 3–58

v

4 DATATRIEVE Commands, Statements, and Definition
Clauses

: (EXECUTE) . 4–3
@ (Invoke Command File) . 4–7
ABORT Statement . 4–9
ADT Command . 4–14
ALLOCATION Clause . 4–16
Assignment Statements . 4–19
AT Statements (Report Writer) . 4–27
BEGIN END Statement . 4–35
CDO Command . 4–40
CHOICE Statement . 4–41
CLOSE Command . 4–45
COMMIT Statement . 4–46
COMPUTED BY Clause . 4–48
CONNECT Statement . 4–51
CROSS Clause . 4–52
DATATRIEVE Command . 4–56
DECLARE Statement . 4–58
DECLARE_ATT Statement (Report Writer) 4–62
DECLARE PORT Statement . 4–66
DECLARE SYNONYM Command 4–69
DEFAULT VALUE Clause . 4–72
DEFINE DATABASE Command . 4–74
DEFINE DICTIONARY Command 4–76
DEFINE DOMAIN Command . 4–81
DEFINE FILE Command . 4–95
DEFINE PORT Command . 4–102
DEFINE PROCEDURE Command 4–105
DEFINE RECORD Command . 4–109
DEFINE TABLE Command . 4–119
DEFINEP Command . 4–126
DELETE Command . 4–132
DELETEP Command . 4–135
DISCONNECT Statement . 4–138
DISPLAY Statement . 4–139
DISPLAY_FORM Statement . 4–141

vi

DROP Statement . 4–144
EDIT Command . 4–148
EDIT_STRING Clause . 4–155
END_REPORT Statement (Report Writer) 4–169
ERASE Statement . 4–170
EXIT Command . 4–172
EXTRACT Command . 4–174
FIND Statement . 4–181
FINISH Command . 4–184
FOR Statement . 4–187
HELP Command . 4–191
IF THEN ELSE Statement . 4–195
LIST Statement . 4–198
MATCH Statement . 4–204
MISSING VALUE Clause . 4–208
MODIFY Statement . 4–211
OCCURS Clause . 4–228
ON Statement . 4–232
OPEN Command . 4–236
PICTURE Clause . 4–239
PLOT Statement . 4–243
PRINT Statement . 4–246
PRINT Statement (Report Writer) 4–259
PURGE Command . 4–267
QUERY_HEADER Clause . 4–270
QUERY_NAME Clause . 4–272
READY Command . 4–274
RECONNECT Statement . 4–298
REDEFINE Command . 4–299
REDEFINES Clause . 4–302
REDUCE Statement . 4–304
RELEASE Command . 4–310
RELEASE SYNONYM Command 4–314
REPEAT Statement . 4–316
REPORT Statement (Report Writer) 4–320
Restructure Statement . 4–324
ROLLBACK Statement . 4–329

vii

SCALE Clause . 4–330
SELECT Statement . 4–332
SET Command . 4–339
SET Statement (Report Writer) . 4–349
SHOW Command . 4–356
SHOWP Command . 4–364
SIGN Clause . 4–366
SORT Statement . 4–368
STORE Statement . 4–371
STORE Statement (for VAX DBMS and Relational
Sources) . 4–381
SUM Statement . 4–384
SYNCHRONIZED Clause . 4–387
THEN Statement . 4–389
USAGE Clause . 4–391
VALID IF Clause . 4–396
WHILE Statement . 4–398
WITH_FORM Statement . 4–400

A VAX DATATRIEVE Keywords

A.1 DATATRIEVE Keywords . A–1

B Access Privileges Tables

B.1 Access Privilege Requirements . B–3
B.2 Default Access Control Lists . B–9

C Logical Names for the DATATRIEVE Environment

D Edit String Characters

viii

Index

Figures

4–1 Control Group Report Based on One Sort Key 4–33

Tables

1 Notation Used in Syntax Diagrams xiii
1–1 Character String Literals and Their Values 1–3
1–2 Values Derived with Statistical Functions 1–12
1–3 Arithmetic Operators . 1–18
1–4 Relational Operators . 1–31
1–5 Compound Boolean Expressions 1–37
4–1 AT Statements Summary Elements 4–28
4–2 DECLARE_ATT Print Attributes 4–63
4–3 Output File Specification Defaults 4–89
4–4 Allowed Combinations of Key Field Attributes 4–97
4–5 Output File Specification Defaults 4–98
4–6 Summary of Field Definition Clauses 4–115
4–7 Default Journal File Types . 4–150
4–8 EDIT_STRING Output for Two Field Values 4–158
4–9 Replacement Characters in Numeric Fields 4–161
4–10 Sign Insertion Characters . 4–163
4–11 Decimal Point Insertion . 4–163
4–12 Special Insertion Characters . 4–164
4–13 Floating Characters in Edit Strings 4–165
4–14 EDIT_STRING Output for Date Values 4–168
4–15 Output File Specification Defaults 4–177
4–16 Output File Specification Defaults 4–199
4–17 Modifying Selected Records . 4–215
4–18 Modifying All Records in the CURRENT Collection . . . 4–216
4–19 Modifying All Records in a Record Stream 4–217
4–20 Modifying Records in a Record Stream Formed by a

FOR Loop . 4–218
4–21 Output File Specification Defaults 4–232
4–22 Picture-String Characters . 4–240

ix

4–23 Output File Specification Defaults 4–247
4–24 Print List Elements . 4–251
4–25 Report Parameters Controlled by Print List

Elements . 4–259
4–26 Report Parameters Affected by Print List Modifiers . . . 4–260
4–27 Access Options . 4–276
4–28 Multi-User Access to RMS Domains 4–278
4–29 Multi-User Access to VAX DBMS, Rdb/VMS, and

Rdb/ELN Sources . 4–280
4–30 Access Modes Required by DATATRIEVE

Statements . 4–290
4–31 DATATRIEVE Default Access Modes 4–291
4–32 Output File Specification Defaults 4–321
4–33 SET Statement Arguments . 4–352
4–34 Output File Specification Defaults 4–386
4–35 COMP Storage Allocation Types 4–393
B–1 Access Privileges for DMU Format Dictionaries B–1
B–2 Access Privileges for CDO Format Dictionaries B–2
B–3 DMU/CDO ACL Privilege Equivalents B–3
B–4 Access Privilege Requirements B–4
B–5 Default Access Control Lists for DMU Format

Dictionaries . B–10
B–6 Default Access Control Lists for CDO Format

Dictionaries . B–10
C–1 Logical Name Assignments . C–1
D–1 Edit String Characters . D–1

x

Preface

This manual describes the VAX DATATRIEVE software and provides reference
information for terms, concepts, syntax elements, commands, statements, and
definition clauses.

Intended Audience
This manual assumes you have a working knowledge of DATATRIEVE, or you
know the basic concepts of data processing and are familiar with the VMS
operating system.

If you have no prior experience with DATATRIEVE, the VAX DATATRIEVE
User’s Guide describes the tasks of managing information with DATATRIEVE.

Operating System Information
Information about the versions of the operating system and related software that
are compatible with this version of VAX DATATRIEVE is included in the VAX
DATATRIEVE media kit, in either the VAX DATATRIEVE Installation Guide.

For information on the compatibility of other software products with this version
of VAX DATATRIEVE, refer to the System Support Addendum (SSA) that comes
with the Software Product Description (SPD). You can use the SPD/SSA to verify
which versions of your operating system are compatible with this version of
VAX DATATRIEVE.

Related Documents
For further information on the topics covered in this manual, you can refer to the
following documentation:

• VAX DATATRIEVE Release Notes

Includes specific information about the current VAX DATATRIEVE release
and contains material added too late for publication in the other VAX
DATATRIEVE documentation.

• VAX DATATRIEVE Installation Guide

xi

Describes the installation procedure for VAX DATATRIEVE. The manual
also explains how to run User Environment Test Packages (UETPs), which
test VAX DATATRIEVE product interfaces, such as the interface between
DATATRIEVE and Rdb/VMS.

• VAX DATATRIEVE User’s Guide

Describes how to use VAX DATATRIEVE interactively.

• VAX DATATRIEVE Guide to Interfaces

Includes information on using VAX DATATRIEVE to manipulate data and
on using VAX DATATRIEVE with forms, relational databases, and database
management systems.

• VAX DATATRIEVE Guide to Programming and Customizing

Explains how to use the VAX DATATRIEVE Call Interface. The manual also
describes how to create user-defined keywords and user-defined functions to
customize VAX DATATRIEVE and how to customize VAX DATATRIEVE help
and message texts.

References to Products
The VAX DATATRIEVE documentation to which this manual belongs often refers
to products by their abbreviated names:

• VAX CDD/Repository software is referred to as CDD/Repository.

• VAX DATATRIEVE software is referred to as DATATRIEVE.

• VAX Rdb/ELN software is referred to as Rdb/ELN.

• VAX Rdb/VMS software is referred to as Rdb/VMS.

• VAX TDMS software is referred to as TDMS.

• VAX FMS software is referred to as FMS.

• DECforms software is referred to as DECforms.

• VIDA software is referred to as VIDA.

This manual uses the terms relational database or relational source to refer to all
three of these products:

• VAX Rdb/ELN

• VAX Rdb/VMS

• VIDA

xii

Syntax Diagrams
Table 1 explains the notation used in syntax diagrams.

Table 1 Notation Used in Syntax Diagrams

Element Meaning Do You Enter It?

WORD An uppercase word is a keyword.1 Yes

word A lowercase word indicates a syntax element. Yes

separators
(punctuation)

Separators are used to separate words (space),
separate items you are listing (comma)2, or tell
DATATRIEVE you are finished with a clause
(period) or a statement or command (semicolon).

Yes

{ } (braces) Braces enclose a clause from which you must
choose one alternative.

No

[] (brackets) Brackets enclose optional clauses from which
you can choose one or none.

No

... (horizontal
ellipsis)

A horizontal ellipsis indicates you can repeat
the part of the clause, statement, command,
or expression immediately to the left of the
ellipsis.

No

.

. (vertical

. ellipsis)

A vertical ellipsis indicates you can repeat the
line of the clause, statement, command, or
expression immediately above the ellipsis.

No

1Major keywords, such as READY, STORE, and FIND are always a required part of the input. Minor
keywords, such as USING, AS, and ALL, sometimes let DATATRIEVE know what to expect next. In
this case they are a required part of your input. Minor keywords can also be included to make input
more like English. In this case they are enclosed in square brackets and you can omit them from your
input. Do not use any DATATRIEVE keywords to name something you define. If you do, you might
get either an error message or unexpected results.
2You are recommended to leave a space after a comma. A comma preceding a string of editing
characters could be interpreted as part of the string if there were no intervening space.

xiii

1
Value Expressions and Boolean

Expressions

This chapter describes the value expressions and Boolean expressions used in
VAX DATATRIEVE statements.

A value expression is a string of symbols that specifies a value DATATRIEVE
can use when executing statements. DATATRIEVE provides you with value
expressions of the following types:

• Character string literals

• Numeric literals

• Qualified field names

• Local and global variables

• Date value expressions

• Prompting value expressions

• Values from dictionary and domain tables

• FROM value expression

• CHOICE value expression

• IF-THEN-ELSE value expression

• FORMAT value expression

• Statistical expressions

• Arithmetic expressions

• Concatenated expressions

In addition, certain DATATRIEVE functions are value expressions. They are
described in Chapter 3.

A Boolean expression is the logical representation of a relationship between
value expressions. The value of a Boolean expression is either true or false.

Value Expressions and Boolean Expressions 1–1

Value Expressions and Boolean Expressions

The Boolean expressions used in DATATRIEVE consist of value expressions,
relational operators, and Boolean operators. The relational operators control
the comparison of value expressions. The Boolean operators enable you to
join two or more Boolean expressions and to reverse the value of a Boolean
expression.

1.1 Value Expressions
Value expressions specify values that DATATRIEVE uses when executing
statements.

1.1.1 Literals
The simplest way to specify a value is with a literal. A literal is either a
character string enclosed in quotation marks or a number.

1.1.1.1 Character String Literals
A character string literal is a string of printing characters up to 253 characters
long. The maximum size for an input line in DATATRIEVE is 255 characters,
but in character string literals, two of those characters are used for the quotation
marks. The printing characters consist of the uppercase and lowercase letters,
numbers, and the following special characters:

! @ # $ % ^ & * () - _ = + ‘ [

{] } ~ ; : ’ " \ | , < . > / ?

To type a literal on more than one line, enter a hyphen immediately before
pressing the RETURN key. DATATRIEVE strips the hyphen from that part of
the character string literal and waits for you to complete the literal by typing the
closing quotation mark. As long as the total number of characters in the literal
does not exceed 253, you can use any number of continuation characters between
the quotation marks.

The maximum length of character strings used as the values of variables or fields
is independent of the maximum length of character string literals. However, to
assign as a value a character string exceeding 253 characters in length, you must
use one of two methods:

• You can use concatenated expressions (described in the section in this chapter
on concatenated expressions).

• For field values, you can define a very long field as a group field composed of
elementary fields up to 253 characters long, and then store character string
values in each elementary field.

1–2 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

Use pairs of either single or double quotation marks to enclose character string
literals. You must use the same type of quotation mark to end a character string
literal as you used to begin it.

To include one type of quotation mark in a character string literal, enclose the
literal in quotation marks of the other type. For example, to include double
quotation marks in a character string literal, enclose the character string in
single quotation marks. In such cases, you can include unpaired quotation marks
in the literals.

To include a quotation mark in a character string literal enclosed by the quotation
marks of the same type, you must type two consecutive quotation marks for every
one you want to include in the literal.

Table 1–1 shows some examples of character string literals and their values.

Table 1–1 Character String Literals and Their Values

Character String Literal Value of String

"Invalid value for this field" Invalid value for this field

"MAXIMUM PRICE IS $1400.-
PLEASE RE-ENTER PRICE."

MAXIMUM PRICE IS $1400.
PLEASE RE-ENTER PRICE.

"Capt. Jack says, ""Time to reorder.""" Capt. Jack says, "Time to reorder."

"They said, ""We’re going.""" They said, "We’re going."

’They said, "We’’re going."’ They said, "We’re going."

Although DATATRIEVE usually converts all lowercase letters of your input to
uppercase, it preserves lowercase letters in character string literals. Because the
case of the character string literals is preserved, comparisons using these literals
are case sensitive.

Value Expressions and Boolean Expressions 1–3

Value Expressions and Boolean Expressions
1.1 Value Expressions

1.1.1.2 Numeric Literals
A numeric literal is a string of digits that DATATRIEVE interprets as a decimal
number. A numeric literal may contain a decimal point and up to 31 digits. The
decimal point is optional and is not counted in the maximum number of digits.

A numeric literal can begin with a decimal point. Thus, for example, .5 is a valid
numeric literal.

A numeric literal cannot end with a decimal point. For example, 123. is not a
valid numeric, but 123.0 is.

If you use a numeric literal to assign a value to a field or a variable, the data type
of the field or variable controls the maximum value you can assign.

Restrictions

• For a field or variable that belongs to the data type COMP, the limit on the
number of digits you can specify in the PICTURE (PIC) clause is 18. If you
specify a number of digits greater than 18 in the PIC clause, DATATRIEVE
displays an error message.

• For a field or variable that belongs to the data type LONG, the largest
number you can assign to that field or variable is 2,147,483,647. Any larger
number with 31 digits or less results in a truncation error. The smallest
number you can assign is -2,147,483,648. Any smaller number with less than
31 digits results in a truncation error.

• For all other numerical data types, the limit on digits you can assign and
display is 31.

• The format specified in the PIC clause of a field or variable also limits the
values you can assign with numeric literals. See the section on the PICTURE
clause in Chapter 4 for more information.

1.1.2 Qualified Field Names
You can use elementary field names, virtual field names, and group field names
as value expressions.

1.1.2.1 Elementary and REDEFINES Field Names
The value specified by an elementary field name is the value stored in a field
of a record. If the field name you use refers to a REDEFINES field, the
value associated with the name is determined by the clauses that define the
REDEFINES field in the record definition.

1–4 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

1.1.2.2 COMPUTED BY Fields
COMPUTED BY fields are virtual fields. DATATRIEVE does not store the value
of a COMPUTED BY field in a record. That value is calculated every time you
refer explicitly or implicitly to a COMPUTED BY field.

The COMPUTED BY clause includes a value expression. The value specified by
the virtual field is associated with the value expression in the COMPUTED BY
clause. See the section on COMPUTED BY in Chapter 4 for more information.

1.1.2.3 Group Field Names
When you use group field names in assignment statements, the value of the group
field depends on the type of assignment you specify. For example:

• group-field-name-1 = group-field-name-2

In this type of assignment, the value of group-field-name-2 includes the
values of all elementary fields, all REDEFINES fields, and all COMPUTED
BY fields. The assignment of values is made on the basis of similar field
names. For field names in group-field-1 that match names in group-field-2,
DATATRIEVE assigns the values in group-field-2 to the appropriate fields in
group-field-1.

DATATRIEVE ignores any fields in group-field-2 whose names do not match
any field names in group-field-1. For any elementary field in group-field-1
whose name matches none of the field names in group-field-2, DATATRIEVE
assigns the MISSING or DEFAULT value if one is defined for the field, or
a value of 0 if the field is numeric, or a blank if the field is alphabetic or
alphanumeric.

DATATRIEVE stores no values in any COMPUTED BY or REDEFINES fields
in group-field-1, regardless of any matches between the names of those fields
and fields of any type in group-field-2.

The values of the elementary, REDEFINES, and COMPUTED BY fields
associated with group-field-name-2 are the values stored in or associated with
the fields that constitute group-field-2 of a record.

• elementary-field-name = group-field-name

Because of problems that can arise from conflicting data types, assignments
of this type are not recommended.

If you make an assignment of this type, the value of the group field is the
same value displayed when you enter a DISPLAY group-field-name statement.
The value is the concatenation of the values in the elementary fields that
constitute the group field. The REDEFINES and COMPUTED BY fields are
ignored. You can reduce conflicts of data types by using an alphanumeric
PICTURE string in the definition of the elementary field.

Value Expressions and Boolean Expressions 1–5

Value Expressions and Boolean Expressions
1.1 Value Expressions

1.1.2.4 Query Names
If the record definition contains a query name for a field, you can use the query
name exactly as you use the associated field name.

1.1.2.5 Qualifying Field Names
To clarify the context for recognizing names and associating values with those
names, you can qualify field names with several optional elements:

• Context variables

Distinguish between fields in different record streams.

• Collection names

Distinguish between fields in selected records in different collections. You can
use a collection name to modify a field from a selected record only.

• Domain names

Distinguish between fields that have the same field name but are associated
with different domains.

• Record names

Distinguish between fields that have the same field name but are contained
in different records.

• Group field names

Distinguish between fields that have the same field name but are contained
in different group fields.

Use the following format to specify field names:�
collection-name
context-variable

�
[domain-name] [group-field-name] [...] field-name

For duplicate field names, you must specify whatever option or combination of
options is needed to make the name unique.

1.1.3 Variables
The DECLARE statement defines global and local variables for use as value
expressions. When DATATRIEVE initializes a variable, it assigns the variable
the MISSING VALUE or DEFAULT VALUE if one is specified in the DECLARE
statement. DATATRIEVE assigns a value of zero to numeric variables and
a space to alphabetic and alphanumeric variables if no MISSING VALUE or
DEFAULT VALUE is specified.

1–6 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

1.1.3.1 Global Variables
You can define global variables only with DECLARE statements entered in
response to the DTR> prompt of DATATRIEVE command level.

You can use a global variable as a value expression in any DATATRIEVE
statement. Unless you define a global variable with a COMPUTED BY clause,
the global variable retains the value you assign to it until you either assign it a
new value or release it with the RELEASE command.

The value of a global variable defined with a COMPUTED BY clause depends on
the value expression that controls the computation. For example, you can declare
the value of the variable to be 1.2 times the price of a boat in the YACHTS
domain. The value of the variable changes according to the value of the PRICE
field for different records:

DTR> READY YACHTS
DTR> DECLARE VAR COMPUTED BY PRICE * 1.2.
DTR> FOR FIRST 5 YACHTS PRINT VAR USING $$$,$$$.99

VAR

$44,341.20
$21,480.00
$33,000.00
$22,320.00
$11,874.00

DTR>

1.1.3.2 Local Variables
You can define local variables with DECLARE statements entered in BEGIN-END
and THEN statements.

A local variable is released as soon as DATATRIEVE completes the execution
of the clause or statement in which it was declared. Although a local variable
stays in effect for subsequent statements of the compound statement in which it
is declared, it has no meaning in any outer statements containing that compound
statement.

The following example illustrates how a local variable declared in an inner
statement can supersede one with the same name declared in an outer statement.
Notice, however, that the value of the variable in the outer statement is not
affected by the different data type or different value assigned to the inner one.
Note also that neither local variable exists when DATATRIEVE completes the
execution of the compound statements containing them both:

Value Expressions and Boolean Expressions 1–7

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR> SET NO PROMPT
DTR> BEGIN
CON> DECLARE X PIC XXX.
CON> X = "TOP"
CON> PRINT X
CON> BEGIN
CON> DECLARE X PIC 9V99 EDIT_STRING 9.99.
CON> X = 1.23
CON> PRINT X
CON> END
CON> PRINT X
CON> END

X

TOP

X

1.23

X

TOP

DTR> PRINT X
Field "X" is undefined or used out of context
DTR>

To avoid problems resolving names for variables and fields, do not use variable
names that duplicate field names of domains you have readied.

1.1.4 Date Value Expressions
If you define a field or a variable with a USAGE DATE clause, then you can
assign a value with one of the four DATATRIEVE date value expressions:

• ‘‘TODAY’’ returns the value of the current system date.

• ‘‘NOW’’ returns the value of the current system date and time.

• ‘‘YESTERDAY’’ returns the value of one day before the current date.

• ‘‘TOMORROW’’ returns the value of one day after the current date.

Note that ‘‘NOW’’ is the only value expression that returns the time as well as
the date. You can use the function FN$DATE to assign a date field a time that is
not current.

The following DATATRIEVE session illustrates these expressions:

1–8 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR> DECLARE X USAGE DATE.
DTR> X = "TODAY"
DTR> PRINT X

X

28-Dec-1990

DTR> X = "TOMORROW"
DTR> PRINT X

X

29-Dec-1990

DTR> X = "YESTERDAY"
DTR> PRINT X

X

27-Dec-1990

DTR> DECLARE Y PIC X(23).
DTR> X = "NOW"
DTR> Y = X
DTR> PRINT Y

Y

28-Dec-1990 13:35:11.54

DTR>

You can add or subtract dates. For example, you might want to know how many
days you have to complete a project. Define variables for today’s date and the
project date. Then subtract today’s date from the project due date:

DTR> DECLARE T USAGE DATE.
DTR> T = "TODAY"
DTR> DECLARE PROJECT_DUE DATE.
DTR> PROJECT_DUE = "21-AUG-90"
DTR> PRINT (PROJECT_DUE - T)

112

DTR>

DATATRIEVE indicates that the project is due in 112 days.

To use these value expressions, you must assign the DATE data type to the field
or variable. Otherwise, DATATRIEVE treats the expression as a character string
literal. For example:

DTR> PRINT "TODAY"
TODAY

DTR>

Value Expressions and Boolean Expressions 1–9

Value Expressions and Boolean Expressions
1.1 Value Expressions

DATATRIEVE returns the value ‘‘TODAY’’ because the quoted expression is not
associated with a variable or field of the DATE data type. However, if you supply
an edit string containing date edit string characters, DATATRIEVE returns the
current system date in the form specified by the edit string:

DTR> PRINT "TODAY" USING DD-MMM-YY
18-Jan-90

DTR>

1.1.5 Prompting Value Expressions
If you want DATATRIEVE to prompt you for a value, use a prompting value
expression. This feature is especially useful in a procedure because it allows
you to use a different value each time you invoke the procedure. DATATRIEVE
recognizes two types of prompting expressions: the *.prompt and the **.prompt.

The *.prompt value expression has the following format:

*."prompt-name"

The prompt name is a character string literal. If the prompt name contains no
blanks and conforms to the rules for DATATRIEVE names, you do not have to
enclose the literal in quotation marks. If the prompt name contains blanks or
does not conform to those rules, you must enclose it in quotation marks.

If you put a *.prompt value expression in a REPEAT loop or a FOR loop,
DATATRIEVE prompts you for a value each time it executes the loop.

The **.prompt value expression has the following format:

**."prompt-name"

The same rules govern the use of quotation marks for the literal in the prompt
name.

If you put a **.prompt value expression in a REPEAT loop or a FOR loop,
DATATRIEVE prompts you for a value only the first time it executes the loop.
If your **.prompt value expression assigns a value to a variable or a field,
DATATRIEVE uses the same value each time through the loop. This feature
is especially useful when storing or modifying a group of records that have a
common value in one or more fields.

The following example shows the difference between the *.prompt and **.prompt
value expressions:

1–10 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR> READY PHONES WRITE
DTR> REPEAT 2
CON> STORE PHONES USING
CON> BEGIN
CON> DEPARTMENT = **.DEPARTMENT
CON> LOCATION = **.LOCATION
CON> NAME = *.NAME
CON> NUMBER = *.NUMBER
CON> END
Enter DEPARTMENT: CED
Enter LOCATION: MK3
Enter NAME: Gardens, Marvin
Enter NUMBER: 555-1776
Enter NAME: D’Ecor, Espree
Enter NUMBER: 555-1812
DTR>

1.1.6 Values from a Table
You can use a value stored in a dictionary table or a domain table anywhere the
syntax of a DATATRIEVE statement allows a value expression.

The format for retrieving a value from a dictionary table or a domain table is as
follows:

value-expression VIA table-name

If the value expression you specify is stored as a code string in the table you
specify, the value of the entire expression is the corresponding translation string
in the table.

If the table contains an ELSE clause and the value expression you specify does
not match any code string in the table, the value of the entire expression is the
translation string stored in the ELSE clause of the table.

If the table contains no ELSE clause and the value expression you specify does
not match any code string in the table, DATATRIEVE displays the following
message:

Value not found from record or table.

See the VAX DATATRIEVE User’s Guide for more information about the creation
and use of dictionary tables and domain tables.

1.1.7 Statistical Expressions
Statistical expressions compute values based on a value expression evaluated for
each record in a record stream.

Value Expressions and Boolean Expressions 1–11

Value Expressions and Boolean Expressions
1.1 Value Expressions

Format
To specify the average, maximum, minimum, standard deviation, or total:�����
����

AVERAGE
MAX
MIN
STD_DEV
TOTAL

�����
���	

value-expression [OF rse]

To specify the count:

COUNT [OF rse]

To specify the running count:

RUNNING COUNT

To specify the running total:

RUNNING TOTAL value-expression

Arguments
value-expression
Is a DATATRIEVE value expression on which the statistical function operates.

OF rse
Is a record selection expression you can use to form a record stream of the records
to which the statistical function applies.

Table 1–2 shows the operations performed by the DATATRIEVE statistical
functions.

Table 1–2 Values Derived with Statistical Functions

Function Value of Function

AVERAGE The average value of the value expression

COUNT The number of records in the CURRENT collection or in a
specified collection or record stream

MAX The largest value of the value expression

MIN The smallest value of the value expression

RUNNING COUNT The running count of the evaluations of the PRINT statement

RUNNING TOTAL The running total of the value expression for each evaluation
of the PRINT statement

(continued on next page)

1–12 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

Table 1–2 (Cont.) Values Derived with Statistical Functions

Function Value of Function

STD_DEV The standard deviation of the value expression

TOTAL The total value of the value expression

Restrictions

• If you leave out the OF rse clause, you must have a current collection of
records to which the value expression applies.

• Except for COUNT and RUNNING COUNT, you must supply a value
expression when using the statistical functions. The value expression you
usually supply is a field name or a variable name.

• Do not supply a value expression when using COUNT or RUNNING COUNT.

• Note that DATATRIEVE does not reset RUNNING COUNT and RUNNING
TOTAL inside a compound statement:

DTR> FOR FIRST 3 YACHTS
CON> BEGIN
CON> PRINT "outside running count", RUNNING COUNT, BUILDER
CON> FOR FIRST 3 YACHTS
CON> PRINT "inside running count", RUNNING COUNT, BUILDER
CON> END

In this example, DATATRIEVE does not reset the running count for ‘‘inside
running count.’’

Results

• If you supply a record selection expression, DATATRIEVE uses all the records
in the resulting record stream to compute the value of the function.

• If you do not supply a record selection expression in the OF clause,
DATATRIEVE uses all records in the current collection to compute the value
of the function.

Usage Notes

• When you specify two or more statistical expressions in the same PRINT
statement, include an OF rse clause with each expression to identify the
record stream relating to each statistical function. In the following example,
the average is computed for the current collection because no RSE is specified,
but the total is computed for the first five yachts only:

Value Expressions and Boolean Expressions 1–13

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR> READY YACHTS
DTR> FIND YACHTS
[113 records found]
DTR> PRINT AVERAGE LOA, TOTAL LOA OF FIRST 5 YACHTS

AVERAGE TOTAL
LENGTH LENGTH
OVER OVER
ALL ALL

30. 146

In the following case, the RSE is specified for both average and total. As a
result, the statistical functions compute the average LOA and total LOA for
the first five YACHTS records.

DTR> PRINT AVERAGE LOA OF FIRST 5 YACHTS,
CON> TOTAL LOA OF FIRST 5 YACHTS

AVERAGE TOTAL
LENGTH LENGTH
OVER OVER
ALL ALL

29. 146

DTR>

• When a value expression is more complex than a field name or variable name,
enclose the expression with parentheses. For example:

DTR> PRINT TOTAL (BEAM + LOA) OF FIRST 5 YACHTS

TOTAL

194

DTR> PRINT AVERAGE (BEAM/2) OF FIRST 5 YACHTS

AVERAGE

4.800

DTR>

• When you include a statistical expression in a PRINT statement or in Report
Writer PRINT or AT statements, DATATRIEVE forms a column header by
combining the name of the statistical function and the field name.

• When DATATRIEVE uses a statistical function to calculate a value based
on the values of fields or variables, it does not include those values specified
as MISSING values in the record definition or in the DECLARE statement.
When DATATRIEVE omits records from a calculation because they have
MISSING values in the specified field, it displays a message between the
column header and the value. For example:

1–14 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR> FINISH
DTR> READY YACHTS
DTR> FIND YACHTS
[113 records found]
DTR> PRINT AVERAGE PRICE

AVERAGE
PRICE

[Function computed using 50 of 113 values.]
$25,388

DTR>

• When you specify statistical expressions, you can use them anywhere the
syntax of a DATATRIEVE statement allows a value expression. A statistical
expression can be the value expression that is part of another statistical
expression.

• When DATATRIEVE encounters a RUNNING TOTAL or RUNNING COUNT,
it increments it for each occurrence of a list field and for each iteration of a
loop. For example:

DTR> FOR FIRST 2 FAMILIES
CON> BEGIN
CON> PRINT SKIP 1, "Outer Running Count", RUNNING COUNT
CON> PRINT PARENTS, SKIP 1
CON> FOR KIDS
CON> PRINT "Inner Loop", RUNNING COUNT,
CON> EACHKID, RUNNING TOTAL AGE
CON> END

RUNNING
COUNT

Outer Running Count 1

FATHER MOTHER

JIM ANN

RUNNING
RUNNING KID TOTAL
COUNT NAME AGE AGE

Inner Loop 1 URSULA 7 7
Inner Loop 2 RALPH 3 10

Outer Running Count 2

JIM LOUISE

Value Expressions and Boolean Expressions 1–15

Value Expressions and Boolean Expressions
1.1 Value Expressions

Inner Loop 3 ANNE 31 41
Inner Loop 4 JIM 29 70
Inner Loop 5 ELLEN 26 96
Inner Loop 6 DAVID 24 120
Inner Loop 7 ROBERT 16 136

• The TOTAL function is the only statistical function for which the default edit
string of the field is not used. This is the expected behavior. The field’s edit
string is not used because the value generated by TOTAL is likely to be quite
a bit larger than the individual field values. This larger value could overflow
the edit string associated with the field. You can provide an edit string for the
totaled value by specifying an edit string on the print statement as follows:

DTR> PRINT TOTAL PRICE OF CURRENT USING $$$$$.99

Examples
AVERAGE
DTR> PRINT AVERAGE PRICE OF YACHTS WITH BUILDER = "AMERICAN"

AVERAGE
PRICE

$14,395

DTR>

COUNT
DTR> PRINT COUNT OF FAMILIES WITH NUMBER_KIDS EQ 2 USING 9

COUNT

6

DTR>

MAX
DTR> PRINT FAMILIES WITH
DTR> NUMBER_KIDS EQ MAX NUMBER_KIDS OF FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

BASIL MERIDETH 6 BEAU 28
BROOKS 26
ROBIN 24
JAY 22
WREN 17
JILL 20

DTR>

1–16 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

MIN
DTR> PRINT YACHTS WITH PRICE EQ MIN PRICE

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

VENTURE 21 SLOOP 21 1,500 07 $2,823

DTR>

RUNNING COUNT
DTR> PRINT RUNNING COUNT, TYPE, BEAM, LOA OF YACHTS WITH
CON> BUILDER = "PEARSON"

LENGTH
RUNNING OVER
COUNT MANUFACTURER MODEL BEAM ALL

1 PEARSON 10M 11 33
2 PEARSON 26 08 26
3 PEARSON 26W 09 26
4 PEARSON 28 09 28
5 PEARSON 30 09 30
6 PEARSON 35 10 35
7 PEARSON 36 11 37
8 PEARSON 365 11 36
9 PEARSON 39 12 39
10 PEARSON 419 13 42

DTR>

RUNNING TOTAL
DTR> FOR FIRST 5 YACHTS PRINT TYPE, PRICE,
CON> RUNNING TOTAL PRICE USING $$$$,$$$

RUNNING
TOTAL

MANUFACTURER MODEL PRICE PRICE

ALBERG 37 MK II $36,951 $36,951
ALBIN 79 $17,900 $54,851
ALBIN BALLAD $27,500 $82,351
ALBIN VEGA $18,600 $100,951
AMERICAN 26 $9,895 $110,846

DTR>

Value Expressions and Boolean Expressions 1–17

Value Expressions and Boolean Expressions
1.1 Value Expressions

STD_DEV
DTR> PRINT STD_DEV PRICE OF YACHTS USING $$$,$$$

STANDARD
DEVIATION
PRICE

[Function computed using 50 of 113 values.]
$15,480

DTR>

TOTAL
DTR> PRINT TOTAL PRICE OF YACHTS WITH
CON> BUILDER = "CHALLENGER" USING $$$$,$$$

TOTAL
PRICE

$122,278

DTR>

1.1.8 Arithmetic Expressions
An arithmetic expression consists of value expressions and arithmetic operators.
The value expressions must all be numeric. You can use an arithmetic expression
anywhere the syntax of a DATATRIEVE statement allows a value expression.

DATATRIEVE provides four arithmetic operators. Table 1–3 shows the arithmetic
operators and the operation each performs.

Table 1–3 Arithmetic Operators

Operator Operation

+ Addition

– Subtraction or negation

* Multiplication

/ Division

You do not have to use spaces to separate arithmetic operators from value
expressions, except in one case: if a DATATRIEVE name precedes a minus sign,
you must put a space before the minus sign. Otherwise, DATATRIEVE interprets
the minus sign as a hyphen and converts it to an underscore:

1–18 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR> DECLARE X PIC 99.
DTR> X = 8
DTR> PRINT X-1
"X_1" is undefined or used out of context
DTR> PRINT 1-X
-7

DTR>

You can use parentheses to control the order in which DATATRIEVE performs
arithmetic operations. DATATRIEVE follows the normal rules of precedence
when evaluating arithmetic expressions:

1. DATATRIEVE first evaluates any value expressions in parentheses.

2. DATATRIEVE then performs multiplications and divisions from left to right
in the arithmetic expression.

3. Finally, DATATRIEVE performs additions and subtractions from left to right
in the arithmetic expression.

The following examples show how DATATRIEVE evaluates arithmetic
expressions:

DTR> PRINT (6 * 7) + 5
47

DTR> PRINT 6 * (7 + 5)
72

DTR> PRINT 6 + 7 * 5
41

DTR> PRINT 12 - 6 * 2
0

DTR> PRINT 5 + 10 / 2
10

DTR>

1.1.9 Concatenated Expressions
DATATRIEVE allows you to join value expressions to form a concatenated
expression. You can use a concatenated expression anywhere the syntax of a
DATATRIEVE statement allows a character string literal. When DATATRIEVE
concatenates value expressions, it converts their values to character string
literals.

DATATRIEVE provides three types of concatenated expressions:

• value-expression | value-expression

• value-expression | | value-expression

Value Expressions and Boolean Expressions 1–19

Value Expressions and Boolean Expressions
1.1 Value Expressions

• value-expression | | | value expression

In each case, DATATRIEVE converts the values of each value expression to
a character string literal and joins the literals to form a longer literal. The
differences among the three forms of concatenated expression lie in the way they
treat trailing spaces of the first literal, and whether they add any spaces between
the literals:

• A single bar leaves the literals as they are. For example:

"ABC"|"DEF" "ABC "|"DEF" "ABC"|" DEF" "ABC "|" DEF"
ABCDEF ABC DEF ABC DEF ABC DEF

• A double bar suppresses trailing spaces of the first literal and does nothing to
the leading spaces of the second literal. For example:

"ABC"||"DEF" "ABC "||"DEF" "ABC"||" DEF" "ABC "||" DEF"
ABCDEF ABCDEF ABC DEF ABC DEF

• A triple bar suppresses trailing spaces of the first literal, inserts one space,
and does nothing to the leading spaces of the second literal. For example:

"ABC"|||"DEF" "ABC "|||"DEF" "ABC"|||" DEF" "ABC "|||" DEF"
ABC DEF ABC DEF ABC DEF ABC DEF

You can use concatenated expressions for assigning values to lengthy fields or
variables. Concatenated expressions provide the only method for assigning values
to fields or variables whose lengths exceed 255 characters. The following example
combines the T edit string, *.prompt value expressions, and character string
literals to assign a value to a long variable. You can use similar assignment
statements in the USING clauses of the STORE and MODIFY statements:

DTR> DECLARE STR PIC X(300) EDIT_STRING IS T(50).
DTR> STR = *.L1|*.L2|*.L3|*.L4|*.L5
Enter L1: This string contains the first part of a long character
Enter L2: string. This string is so long that you can’t use just
Enter L3: one character string literal to assign a value to it.
Enter L4: You need concatenated expressions to increase the length
Enter L5: of this string beyond the limit of 255 characters.
DTR> PRINT STR

STR

This string contains the first part of a long
character string. This string is so long that you
can’t use just one character string literal to
assign a value to it. You need concatenated
expressions to increase the length of this string
beyond the limit of 255 characters.

DTR>

1–20 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

1.1.10 Conditional Value Expressions
The CHOICE and IF-THEN-ELSE value expressions return a value based on
the evaluation of one or more Boolean expressions. These value expressions
are useful when you need to assign values that depend on certain conditions.
They can be used in any statement that accepts value expressions, as well as in
COMPUTED BY clauses for variables or field definitions.

1.1.10.1 CHOICE Value Expression
Returns one of a series of values depending on the evaluation of a series of
conditional (Boolean) expressions.

Format
CHOICE [OF]

boolean-expression-1 [THEN] value-1
[boolean-expression-2 [THEN] value-2]

. . .

. . .

. . .
ELSE value-n

END_CHOICE

Arguments
CHOICE
Marks the beginning of a CHOICE value expression.

OF
Is an optional word used to clarify syntax.

boolean-expression
Is a Boolean expression.

THEN
Is an optional language element you can use to clarify syntax.

value
Is the value returned by DATATRIEVE if the corresponding Boolean expression
evaluates to true.

ELSE value-n
Is the value returned by DATATRIEVE if all the Boolean expressions evaluate to
false.

Restriction
You must include the ELSE clause in the CHOICE value expression.

Value Expressions and Boolean Expressions 1–21

Value Expressions and Boolean Expressions
1.1 Value Expressions

Results

• DATATRIEVE evaluates each Boolean expression in order. When a Boolean
expression evaluates to true, DATATRIEVE returns the corresponding value
in the THEN clause. DATATRIEVE then goes on to interpret the next
language element after END_CHOICE.

• If all the Boolean expressions evaluate to false, DATATRIEVE returns the
value specified in the ELSE clause.

Examples
Edit the record definition for YACHTS to add a new field DISCOUNT_PRICE.
Calculate the price based on the discount that applies to a particular price range.

The following example shows the field definition for DISCOUNT_PRICE:

06 DISCOUNT_PRICE COMPUTED BY
CHOICE

PRICE LT 20000 THEN (PRICE * .9)
PRICE LT 30000 THEN (PRICE * .8)
PRICE LT 40000 THEN (PRICE * .7)
ELSE (PRICE * .6)

END_CHOICE
EDIT_STRING IS $$$,$$$.

The following example displays the expanded records:

DTR> READY YACHTS
DTR> FOR YACHTS WITH BUILDER = "ALBIN" OR
CON> BUILDER = "AMERICAN" PRINT BOAT

LENGTH
OVER DISCOUNT

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE PRICE

ALBIN 79 SLOOP 26 4,200 09 $17,900 $16,110
ALBIN BALLAD SLOOP 30 7,276 09 $27,500 $22,000
ALBIN VEGA SLOOP 27 5,070 09 $18,600 $16,740
AMERICAN 26 SLOOP 26 4,000 08 $9,895 $8,906
AMERICAN 26-MS MS 26 5,500 08 $18,895 $17,006

The following example declares a variable called DISCOUNT_PRICE that takes
values depending on the value for PRICE. It then displays the field values for the
records in YACHTS along with the value for DISCOUNT_PRICE:

1–22 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR> DECLARE DISCOUNT_PRICE COMPUTED BY
CON> CHOICE
CON> PRICE LT 20000 THEN (PRICE * .9)
CON> PRICE LT 30000 THEN (PRICE * .8)
CON> PRICE LT 40000 THEN (PRICE * .7)
CON> ELSE (PRICE * .6)
CON> END_CHOICE
CON> EDIT_STRING IS $$$,$$$.
DTR> FOR YACHTS WITH BUILDER = "ALBIN" OR BUILDER =
CON> "AMERICAN" PRINT TYPE, PRICE, DISCOUNT_PRICE

DISCOUNT
MANUFACTURER MODEL PRICE PRICE

ALBIN 79 $17,900 $16,110
ALBIN BALLAD $27,500 $22,000
ALBIN VEGA $18,600 $16,740
AMERICAN 26 $9,895 $8,906
AMERICAN 26-MS $18,895 $17,006

DTR>

1.1.10.2 IF THEN ELSE Value Expression
Returns one of two values depending on the evaluation of a conditional (Boolean)
expression.

Format
IF boolean-expression [THEN] value-1 ELSE value-2

Arguments
boolean-expression
Is a Boolean expression.

THEN
Is an optional language element you can use to clarify syntax.

value-1
Is the value returned by DATATRIEVE if the Boolean expression evaluates to
true.

ELSE value-2
Is the value returned by DATATRIEVE if the Boolean expression evaluates to
false.

Restriction
Unlike the IF-THEN-ELSE statement, the ELSE clause is required in the IF-
THEN-ELSE value expression.

Value Expressions and Boolean Expressions 1–23

Value Expressions and Boolean Expressions
1.1 Value Expressions

Results

• DATATRIEVE evaluates the Boolean expression. If the Boolean expression
evaluates to true, DATATRIEVE returns the value-1.

• If the expression evaluates to false, DATATRIEVE returns the value-2.

Examples
You can use the IF-THEN-ELSE value expression to help avoid a dividing by zero
error.

The following example specifies an IF-THEN-ELSE value expression as a print
list item, assigning a value of -1 where the denominator is zero. It then displays
data about Albin’s and Ryder’s yachts, and calculates the relationship of length
(LOA) to width (BEAM). If the width is zero, it sets the value to -1:

DTR> FOR YACHTS WITH BUILDER = "ALBIN" OR BUILDER = "RYDER"
CON> PRINT TYPE, PRICE, LOA, BEAM,
CON> IF BEAM = 0 THEN -1 ELSE LOA/BEAM ("LOA/"/"BEAM")

LENGTH
OVER LOA/

MANUFACTURER MODEL PRICE ALL BEAM BEAM

ALBIN 79 $17,900 26 10 2.600
ALBIN BALLAD $27,500 30 10 3.000
ALBIN VEGA $18,600 27 08 3.375
RYDER S. CROSS $32,500 31 00 -1.000

DTR>

The following example declares a variable LOA_BEAM and uses the IF-THEN-
ELSE value expression within an assignment statement. For yachts built by
Albin or Ryder, it assigns a value of –1 to LOA_BEAM when the BEAM equals 0.
Otherwise, it assigns LOA_BEAM the value of LOA divided by BEAM:

DTR> DECLARE LOA_BEAM PIC S9V99 EDIT_STRING +9V99.
DTR> FOR YACHTS WITH BUILDER = "ALBIN" OR BUILDER = "RYDER"
CON> BEGIN
CON> LOA_BEAM =
CON> IF BEAM = 0 THEN -1 ELSE LOA/BEAM
CON> PRINT TYPE, PRICE, LOA, BEAM, LOA_BEAM
CON> END

LENGTH
OVER LOA

MANUFACTURER MODEL PRICE ALL BEAM BEAM

ALBIN 79 $17,900 26 10 +2.60
ALBIN BALLAD $27,500 30 10 +3.00
ALBIN VEGA $18,600 27 08 +3.38
RYDER S. CROSS $32,500 31 00 -1.00

1–24 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR>

1.1.11 FORMAT Value Expression
Specifies a value that is formatted according to the default edit string or the edit
string you indicate.

Format
FORMAT value-expression [USING edit-string]

Arguments
value-expression
Is a field name or other DATATRIEVE value expression specifying a value that
DATATRIEVE uses when executing statements.

edit-string
Is one or more edit string characters that determines the value of the value
expression. For more information, see the section on the EDIT_STRING clause in
Chapter 4.

Restriction
The edit string must conform to the conventions for specifying edit strings in
DATATRIEVE. For more information, see the section on the EDIT_STRING
clause in Chapter 4.

Results

• If a USING clause is present, DATATRIEVE returns a value according to the
specified edit string.

• If no USING clause is present, DATATRIEVE returns a value according to
the default edit string of the value expression. This edit string is based on
the edit string or PICTURE clause for the field that is a part of the value
expression.

Usage Notes

• You can use the FORMAT value expression as a sort key in a SORT statement
or SORTED BY clause of an RSE. DATATRIEVE sorts the records according
to the formatted value of the expression.

• You can use the FORMAT value expression as a reduce key in a REDUCE
statement or REDUCED TO clause of an RSE. DATATRIEVE evaluates the
expression for each record. Every time DATATRIEVE finds a new value, it
retains the value of the field contained in the value expression.

• The maximum length of strings created using the FORMAT value expression
is 65,535 characters.

Value Expressions and Boolean Expressions 1–25

Value Expressions and Boolean Expressions
1.1 Value Expressions

Examples
You can use the FORMAT value expression to assist in data retrieval for fields
with leading zeros. The following example shows the record definition for the
PATIENT domain:

DTR> SHOW PATIENT_REC
RECORD PATIENT_REC USING
01 ACCOUNT.

03 PATIENT_ID PIC IS X(7).
03 NAME.

05 FIRST_NAME PIC IS X(10).
05 LAST_NAME PIC IS X(10).

;

The records in this example are stored in an indexed file with PATIENT_ID as
the key field. The following example shows the patient data:

DTR> PRINT PATIENT

PATIENT FIRST LAST
ID NAME NAME

0000010 HANK MORRISON
0000011 BILL SWAY
0000012 SY KELLER
0000013 WAYNE SMITH
0000014 JOE FREDERICK

The following statement attempts to find the first record:

DTR> FIND PATIENT WITH PATIENT_ID = 10
[0 records found]

In this case DATATRIEVE does not find the record, because the leading zeros are
significant when the field is alphanumeric. (The PICTURE clause for PATIENT_
ID is X(7).)

Applying a FORMAT value expression to the field name overcomes the problem of
the leading zeros:

DTR> FIND PATIENT WITH (FORMAT PATIENT_ID USING 99) = 10
[1 record found]
DTR> PRINT CURRENT

PATIENT FIRST LAST
ID NAME NAME

0000010 HANK MORRISON

DTR>

1–26 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

You can use the FORMAT value expression along with the REDUCED TO clause
of the RSE to display the unique values in a record stream. The following
procedure produces a report which displays data on all the yachts that have a
price, divides the yachts into price categories that are multiples of $10,000, and
specifies headings such as ‘‘YACHTS UNDER $10,000’’ and ‘‘YACHTS UNDER
$20,000’’:

DTR> SHOW REDUCE_RPT
PROCEDURE REDUCE_RPT
READY YACHTS
FIND YACHTS WITH PRICE NE 0 1
FOR A IN CURRENT REDUCED TO (FN$FLOOR(PRICE/10000)) 2
BEGIN

PRINT SKIP, COL 10,
"YACHTS UNDER "(FORMAT (FN$FLOOR(A.PRICE/10000) + 1) USING 3
$90,000), SKIP

FOR YACHTS WITH PRICE NE 0 AND FN$FLOOR (PRICE/10000) = 4
FN$FLOOR (A.PRICE/10000) SORTED BY PRICE

PRINT PRICE, TYPE, RIG 5
END

END_PROCEDURE

DTR> :REDUCE_RPT

YACHTS UNDER $10,000

PRICE MANUFACTURER MODEL RIG

$2,823 VENTURE 21 SLOOP
$3,500 WINDPOWER IMPULSE SLOOP
. . . .
. . . .
. . . .

YACHTS UNDER $90,000

$80,500 OLYMPIC ADVENTURE KETCH

DTR>

1 This statement forms a collection of all the yachts that have a price.

2 This statement determines the price categories that apply for the group of
yachts. The expression FN$FLOOR (PRICE/10000) gives the value of the
integer in the ten-thousands place of the price for a specific yacht. The
expression is placed within a REDUCED TO clause to identify the unique
digits in the ten-thousands place of the PRICE of all the yachts.

3 This statement prints headings for each price category of yachts, using the
following expression for the price:

FORMAT (FN$FLOOR(A.PRICE/10000) + 1) USING $90,000

Value Expressions and Boolean Expressions 1–27

Value Expressions and Boolean Expressions
1.1 Value Expressions

This expression yields the value of the digit in the ten-thousands place plus
1, formatted according to the edit string of $90,000. For example, if the
digit is ‘‘1’’ (‘‘1’’ in the ten-thousands place), the value of the FORMAT value
expression is $20,000.

4 This statement searches through the yacht records for each of the digits in
the ten-thousands place, and finds records which match on the corresponding
number in the price field. That is, it finds those yachts for which:

FN$FLOOR (PRICE/10000) = FN$FLOOR (A.PRICE/10000)

5 This statement prints the values for PRICE, TYPE, and RIG for each yacht
that match on PRICE/10000.

1.1.12 FROM Value Expression
Allows you to perform complex retrievals of records from one or more domains or
collections. You can include a FROM value expression in the Boolean of the RSE
that forms the collection or record stream. The optional OTHERWISE clause lets
you specify an alternative DATATRIEVE value expression if an initial search of
data based on an RSE produces no records. If the number of records in a record
stream equates to zero, the alternative specified by the OTHERWISE clause is
returned.

Format
value-expression FROM rse [OTHERWISE value-expression]

Arguments
value-expression
Is a DATATRIEVE value expression

rse
Is a record selection expression

Results
When you use a FROM...OTHERWISE value expression, DATATRIEVE
determines its value in the following way:

1. It forms a record stream as specified by the RSE.

2. If at least one record matches the RSE, DATATRIEVE uses the value stored
in the first record of the record stream to evaluate the overall expression.

3. If the number of records in the record stream is zero, DATATRIEVE uses the
value expression provided in the OTHERWISE clause to determine the value
of the overall expression. This value expression is evaluated independently of
the previously mentioned record stream; its value will be determined based on
any context or record stream established outside of the FROM record stream.

1–28 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.1 Value Expressions

Examples
The following example illustrates the use of the FROM...OTHERWISE value
expression. In this example, the value expression specified by the OTHERWISE
clause is the character string literal, "No builder."

DTR>PRINT MANUFACTURER FROM YACHTS WITH LOA > 55 OTHERWISE
[Looking for value expression]
CON> "No builder"

No builder

DTR>

You can use other value expressions as well. The OTHERWISE clause at the end
of the following example uses the MAX statistical operator to produce alternative
information when the RSE in the FROM...OTHERWISE value expression finds no
appropriate matches.

DTR>PRINT MANUFACTURER FROM YACHTS WITH LOA GT 55 OTHERWISE
[Looking for value expression]
CON>MAX LOA OF YACHTS
42

DTR>

You can also use the FROM...OTHERWISE value expression in a field definition
based on a COMPUTED BY or a VALID IF clause. The following example
illustrates such a definition:

DTR>SET DICTIONARY DISK$1:[KLAUS.DTR]
DTR>DEFINE RECORD SAMPLE_RECORD USING
DFN>01 SAMPLE_RECORD.
DFN> 03 SAMPLE_MODEL PIC X(10).
DFN> 03 SAMPLE_PRICE PIC 9(5).
DFN> 03 SAMPLE_BUILDER COMPUTED BY MANUFACTURER FROM YACHTS WITH
DFN> PRICE GT 50000 OTHERWISE "NO BUILDER".
DFN> ;
[Record is 15 bytes long.]

Restriction
The following restrictions apply to the use of the FROM...OTHERWISE value
expression:

• The keyword OTHERWISE must follow the RSE on the same line, or you
must use a continuation character (-) to tell DTR that the expression is not
yet complete. Because the part of the statement preceding the OTHERWISE
clause can generally be construed by DATATRIEVE as a complete statement,
DATATRIEVE prematurely terminates the search and produces a series of
error messages. The following example illustrates this:

Value Expressions and Boolean Expressions 1–29

Value Expressions and Boolean Expressions
1.1 Value Expressions

DTR> PRINT MANUFACTURER FROM YACHTS WITH LOA > 55
Value not found from record or table.
DTR> OTHERWISE NO BUILDER
OTHERWISE NO BUILDER

Expected statement, encountered "OTHERWISE".
DTR>

Proper use of the continuation character (-) corrects this problem:

DTR> PRINT MANUFACTURER FROM YACHTS WITH LOA GT 55 -
CON> OTHERWISE "No builder"
No builder

DTR>

• The FROM...OTHERWISE value expression can be used in record definitions
with COMPUTED BY and VALID IF fields; however, certain products with
which DATATRIEVE interacts may not fully recognize the new syntax. For
example, you can store the definition in either the DMU or the CDO format
dictionary and you can use the definition from within DATATRIEVE; however,
you cannot currently use the CDO SHOW RECORD/FULL command to
display the user-specified attributes used in the record definition. In addition,
other products such as Rdb/VMS or VAX DBMS may not be able to recognize
the OTHERWISE clause in COMPUTED BY and VALID IF fields.

• While nesting of FROM...OTHERWISE clauses is allowed, you should
consider the impact of such nesting on performance and on complications
that could arise from multiple or complex nested statements.

1.2 Boolean Expressions
A Boolean expression is the logical representation of a relationship between value
expressions. The value of a Boolean expression is either true or false.

You can use Boolean expressions in the following DATATRIEVE clauses and
statements:

• WITH clause in a record selection expression

• WITH clause in a SELECT statement

• IF clause of an IF-THEN-ELSE statement

• IF clause of an IF-THEN-ELSE value expression

• CHOICE statement

• CHOICE value expression

1–30 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.2 Boolean Expressions

• VALID IF clause in a record definition

• WHILE statement

Boolean expressions consist of value expressions, relational operators, and
Boolean operators. Relational operators control the comparison of value
expressions. Boolean operators enable you to join two or more Boolean
expressions and to reverse the value of a Boolean expression. All Boolean
expressions contain value expressions and relational operators, and some contain
Boolean operators.

1.2.1 Relational Operators
Relational operators compare value expressions, check whether a code string is
contained in a table, and check whether a record stream is empty or not. Most
Boolean expressions contain a field name, a relational operator, and a value
expression. Table 1–4 shows the format for using each relational operator.

Table 1–4 Relational Operators

Type of
Comparison

Relationship of
Values in
Boolean

Relational
Operator

Boolean
Expression

PATTERN
RECOGNITION

Exact match
(case sensitive).

=
EQUAL
EQ

RIG = ‘‘YAWL’’
‘‘YAWL’’ = RIG
RIG = ‘‘MS’’,‘‘YAWL’’

No match (case
sensitive).

NE
NOT_EQUAL
NOT EQUAL

RIG NE ‘‘YAWL’’
‘‘YAWL’’ NE RIG
RIG NE ‘‘MS’’,‘‘YAWL’’

Substring
matches (not
case sensitive).

CONT
CONTAINING

RIG CONT ‘‘yawl’’
RIG CONT ‘‘ms’’,‘‘yawl’’

Beginning
substring
matches (case
sensitive).

STARTING WITH 1 RIG STARTING WITH ‘‘M’’
RIG STARTING WITH
‘‘M’’,‘‘Y’’

Substring does
not match (not
case sensitive).

NOT CONT
NOT CONTAINING

RIG NOT CONT ‘‘ms’’
RIG NOT CONT ‘‘ms’’,‘‘ya’’

1Using the STARTING WITH operator with numeric fields can produce inconsistent results; use only
ASCII printable characters for the specified substring.

(continued on next page)

Value Expressions and Boolean Expressions 1–31

Value Expressions and Boolean Expressions
1.2 Boolean Expressions

Table 1–4 (Cont.) Relational Operators

Type of
Comparison

Relationship of
Values in
Boolean

Relational
Operator

Boolean
Expression

VALUE
WITHIN
A RANGE

First value is
greater.

>
GT
GREATER_THAN

PRICE > 50000
50000 > PRICE

First date value
is later than
the second
expression.

AFTER START_DATE AFTER
‘‘1-Jan-1990’’
‘‘1-Jan-1990’’ AFTER
START_DATE

First value is
greater than or
equal.

GE
GREATER_EQUAL

PRICE GE 50000
50000 GE PRICE

First value is
less.

<
LT
LESS_THAN

PRICE < 20000
20000 < PRICE

First date value
is earlier than
the second
expression.

BEFORE START_DATE BEFORE
‘‘1-Jan-1990’’
‘‘1-Jan-1990’’
BEFORE
START_DATE

First value is
less than or
equal.

LE
LESS_EQUAL

PRICE LE 20000
20000 LE PRICE

First value is
between the two
values or equal
to one.

BT
BETWEEN

PRICE BETWEEN 30000
AND 54000

FIELD VALUE
MISSING

Field value is
the MISSING
VALUE.

MISSING PRICE MISSING

Field value
is not the
MISSING
VALUE.

NOT MISSING PRICE NOT MISSING

LOOK UP IN
TABLE

Field value is in
the table.

IN table-name RIG IN RIG_TABLE

Field value is
not in the table.

NOT IN
table-name

RIG NOT IN RIG_TABLE

(continued on next page)

1–32 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.2 Boolean Expressions

Table 1–4 (Cont.) Relational Operators

Type of
Comparison

Relationship of
Values in
Boolean

Relational
Operator

Boolean
Expression

RECORD
STREAM
EMPTY

Record stream
is not empty.

ANY rse FAMILIES WITH ANY
KIDS

Record stream
is empty.

NOT ANY rse FAMILIES WITH NOT
ANY KIDS

The STARTING WITH relational operator is designed to work on text strings and
can give inconsistent results when used with numeric fields.

When handling character string literals, DATATRIEVE considers lowercase
letters to have a greater value than uppercase letters. Within each case, however,
DATATRIEVE sorts the letters alphabetically, and considers the letters near the
beginning of the alphabet to be smaller than those near the end. Consequently,
‘‘ALBIN’’ is less than ‘‘AMERICAN.’’

The order and value associated with alphanumeric characters is determined by
the ASCII collating sequence. Lowercase letters have a higher ASCII value than
uppercase letters. See the VAX/VMS documentation for more information on the
DEC Multinational Character Set, which includes the ASCII character set.

In Boolean expressions using the relational operator CONTAINING, the
comparison of the value expression and the field value is case insensitive.
The comparison is case insensitive regardless of whether you enclose a character
string literal within quotation marks.

The following examples show how to use relational operators that compare field
values to value expressions:

DTR> FIND YACHTS WITH BEAM EQ 9,10,14
[50 records found]
DTR> PRINT CURRENT WITH RIG NE "SLOOP"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

EASTWARD HO MS 24 7,000 09 $15,900
FISHER 30 KETCH 30 14,500 09
GRAMPIAN 34 KETCH 33 12,000 10 $29,675

Value Expressions and Boolean Expressions 1–33

Value Expressions and Boolean Expressions
1.2 Boolean Expressions

The last PRINT statement can be written with the value expression preceding
the field name. DATATRIEVE displays the same records:

DTR> PRINT CURRENT WITH "SLOOP" NE RIG

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

EASTWARD HO MS 24 7,000 09 $15,900
FISHER 30 KETCH 30 14,500 09
GRAMPIAN 34 KETCH 33 12,000 10 $29,675

You can also search for field values within a specified range:

DTR> PRINT YACHTS WITH LOA BT 30 AND 31

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN BALLAD SLOOP 30 7,276 10 $27,500
BOMBAY CLIPPER SLOOP 31 9,400 11 $23,950
C&C CORVETTE SLOOP 31 8,650 09

. . .

. . .

. . .
SOLNA CORP SCAMPI SLOOP 30 6,600 10

The following examples show some other queries using Boolean expressions:

DTR> PRINT COUNT OF YACHTS WITH BUILDER CONTAINING "a"

COUNT

78

DTR> FIND YACHTS WITH LOA < 20
[2 records found]
DTR> FIND YACHTS WITH PRICE MISSING
[63 records found]
DTR> FIND YACHTS WITH PRICE NOT MISSING
[50 records found]

The relational operator IN compares the contents of a field with the code strings
in a dictionary table or domain table. This comparison is useful for validating
data you assign to fields or variables. The following example shows how to write
a record definition that uses a table to validate the data before it is stored:

1–34 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.2 Boolean Expressions

DTR> DEFINE RECORD PHONE_REC USING
DFN> 01 PHONE.
DFN> 02 NAME PIC X(20).
DFN> 02 NUMBER PIC 9(7) EDIT_STRING IS XXX-XXXX.
DFN> 02 LOCATION PIC X(9).
DFN> 02 DEPARTMENT PIC XX
DFN> VALID IF DEPARTMENT IN DEPT_TABLE.
DFN> ;

The relational operator ANY checks whether a record stream is empty or not.
This operator is useful for work with lists in hierarchical records. The record
selection expression following ANY generally specifies the name of a list or
sublist. The following examples show how to use ANY. For more information on
lists and hierarchies, see the VAX DATATRIEVE User’s Guide.

DTR> READY FAMILIES
DTR> PRINT FAMILIES WITH ANY KIDS WITH AGE = 20

NUMBER KID
FATHER MOTHER KIDS NAME AGE

BASIL MERIDETH 6 BEAU 28
BROOKS 26
ROBIN 24
JAY 22
WREN 17
JILL 20

JEROME RUTH 4 ERIC 32
CISSY 24
NANCY 22
MICHAEL 20

DTR> PRINT FAMILIES WITH ANY KIDS WITH KID_NAME CONT "RAL"

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

DTR>

1.2.2 Boolean Operators
There are four Boolean operators: AND, OR, NOT, and BUT. With AND, OR,
and BUT, you can join two or more Boolean expressions to form a single Boolean
expression. NOT allows you to reverse the value of a Boolean expression.

The AND and BUT operators perform the same function. If you link Boolean
expressions with either AND or BUT, the resulting Boolean expression is true
only if all the Boolean operators linked with either AND or BUT are true.

Value Expressions and Boolean Expressions 1–35

Value Expressions and Boolean Expressions
1.2 Boolean Expressions

If you link Boolean expressions with OR, the resulting Boolean expression is true
if any one of the Boolean linked with OR are true.

If you precede a Boolean expression with NOT, the resulting Boolean expression
is true if the Boolean expression following NOT is false.

The following examples show the use of Boolean operators:

DTR> READY YACHTS
DTR> PRINT YACHTS WITH BUILDER = "PEARSON" AND LOA = 30

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

PEARSON 30 SLOOP 30 8,320 09

DTR> FIND YACHTS WITH BUILDER = "PEARSON" OR LOA = 30
[21 records found]

DTR> READY FAMILIES
DTR> PRINT FAMILIES WITH FATHER NOT EQ "JIM" AND
[Looking for Boolean expression]
CON> ANY KIDS WITH AGE GT 31

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JEROME RUTH 4 ERIC 32
CISSY 24
NANCY 22
MICHAEL 20

HAROLD SARAH 3 CHARLIE 31
HAROLD 35
SARAH 27

DTR>

You can also use parentheses to group Boolean expressions. DATATRIEVE
evaluates Boolean expressions in parentheses before evaluating other Boolean
expressions. If a Boolean expression contains Boolean operators as well as
parentheses, DATATRIEVE evaluates the Boolean expression in the following
order:

1. Expressions enclosed in parentheses

2. Expressions preceded by NOT

3. Expressions combined with AND or BUT

4. Expressions combined with OR

1–36 Value Expressions and Boolean Expressions

Value Expressions and Boolean Expressions
1.2 Boolean Expressions

Table 1–5 shows the use of parentheses and the evaluation of compound Boolean
expressions.

Table 1–5 Compound Boolean Expressions

Expression Value

bool-1 AND bool-2 AND bool-3 True if all three Boolean expressions are true.

bool-1 AND (bool-2 OR bool-3) True if bool-1 is true and either bool-2 or
bool-3 is true.

(bool-1 AND bool-2) OR (bool-3 AND
bool-4)

True if both bool-1 and bool-2 are true or if
both bool-3 and bool-4 are true.

NOT (bool-1 OR bool-2) AND bool-3 True if both bool-1 and bool-2 are false and
bool-3 is true.

The following example illustrates compound Boolean expressions:

DTR> PRINT YACHTS WITH
[Looking for Boolean expression]
CON> (MODEL = "BALLAD" AND BUILDER = "ALBIN") OR
[Looking for Boolean expression]
CON> (BUILDER = "TANZER" AND MODEL = 28)

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN BALLAD SLOOP 30 7,276 10 $27,500
TANZER 28 SLOOP 28 6,800 10 $17,500

DTR>

Value Expressions and Boolean Expressions 1–37

2
Using DATATRIEVE Variables

You use variables in DATATRIEVE:

• To assign values to fields in STORE and MODIFY statements

• As counters in FOR, REPEAT, and WHILE loops

• As conditional values in Boolean expressions

• To specify field names that would otherwise be ambiguous

2.1 Declaring Variables
The statement for declaring a variable has the following format:

DECLARE variable-name variable-definition.

The variable name is the name you give to the variable you are creating. The
variable definition consists of field definition clauses. When you declare a
variable, you can use any of the DATATRIEVE definition clauses except OCCURS
and REDEFINES. You must include at least one PIC, COMPUTED BY, or
USAGE clause. You can also use the QUERY-HEADER, EDIT-STRING, SIGN,
MISSING VALUE, and DEFAULT VALUE clauses.

To declare the variable A to be a three-digit numeric value with an initial value
of zero, you use the variable name and variable definition as follows:

DTR> DECLARE A PIC 999.
DTR> A = 0

If you print the variable, it looks like this:

DTR> PRINT A

A

000

The initial value for variables in numeric fields is zero. In alphanumeric strings,
it is spaces. These are the default values if you do not specify a different default
value or missing value.

Using DATATRIEVE Variables 2–1

Using DATATRIEVE Variables
2.1 Declaring Variables

You can also use a date field as a variable, as in this example:

DTR> DECLARE Y USAGE DATE EDIT_STRING DD-MMM-YY.
DTR> Y = "TODAY"
DTR> PRINT Y

Y

19-May-87

You can define two kinds of variables:

• Local variables

• Global variables

2.2 Local Variables
You define local variables with DECLARE statements entered in BEGIN-END
and THEN statements. The local variable has an effect only within the clause or
statement in which you declare it.

In the following example, the local variable declared in the inner statement
supersedes one with the same name declared in the outer statement. Notice
that the different value or different data type assigned to the inner variable
has no effect on the value of the variable in the outer statement. Note also that
neither local variable exists when DATATRIEVE finishes executing the compound
statements containing them both:

DTR> SET NO PROMPT
DTR> BEGIN
CON> DECLARE X PIC XXX.
CON> X = "TOP"
CON> PRINT X
CON> BEGIN
CON> DECLARE X PIC 9.99.
CON> X = 1.23
CON> PRINT X
CON> END
CON> PRINT X
CON> END

X

TOP

X

1.23

X

TOP

2–2 Using DATATRIEVE Variables

Using DATATRIEVE Variables
2.2 Local Variables

DTR>

2.3 Global Variables
Global variables are defined at the DATATRIEVE command level. They remain
in your workspace until they are released or until you exit DATATRIEVE.

Suppose you want to assign to each boat in YACHTS a new price that is two-
thirds of the present price. Using a COMPUTED BY clause in a global variable,
you can apply a single formula to every yacht, as in the next example. Use the
DECLARE statement to create the variable. Use a COMPUTED BY clause with
a value expression to calculate the changed values.

DTR> READY YACHTS MODIFY
DTR> DECLARE FIRE_PRICE COMPUTED BY PRICE/1.5
CON> EDIT_STRING IS $99,999.99.
DTR> FOR FIRST 5 YACHTS PRINT BOAT, FIRE_PRICE

LENGTH
OVER FIRE

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951 $24,634.00
ALBIN 79 SLOOP 26 4,200 10 $17,900 $11,933.33
ALBIN BALLAD SLOOP 30 7,276 10 $27,500 $18,333.33
ALBIN VEGA SLOOP 27 5,070 08 $18,600 $12,400.00
AMERICAN 26 SLOOP 26 4,000 08 $9,895 $06,596.67
DTR>

The variable FIRE_PRICE declared at DATATRIEVE command level remains in
the workspace throughout the session. It changes its value whenever the value
of PRICE changes. (See the VAX DATATRIEVE User’s Guide for a discussion of
context changes.) The variable remains in your workspace until you release the
variable with a RELEASE statement or declare another global variable with the
same name.

2.4 Using Variables to Assign Values to Fields
You can use variables to assign values to fields in the USING clauses of STORE
and MODIFY statements. You cannot, however, use a variable to respond to
a prompt for a field value, whether the prompt is the result of the STORE
or MODIFY statement or of a prompting value expression in an Assignment
statement.

In the USING clause of the STORE and MODIFY statements, you can supply
values for fields by using value expressions on the right side of Assignment
statements. In some circumstances, you can use variables in those assignments
to control the uniformity of input data.

Using DATATRIEVE Variables 2–3

Using DATATRIEVE Variables
2.4 Using Variables to Assign Values to Fields

In this example, WORK is a domain you want to contain uniform names. The
domain is indexed on WHO and allows duplicates:

DTR> SHOW WORK_REC
RECORD WORK_REC
USING
01 TOP.

03 JOB PIC X(15).
03 RESPONSIBLE_PERSON PIC X(4)

QUERY_NAME WHO.
;

NAME_TABLE translates the varying inputs into uniform values to store in the
work domain:

DTR> SHOW NAME_TABLE
TABLE NAME_TABLE
EDIT_STRING IS X(16)
E : ED
ED : ED
EM : ED
M : ED
F : FRED
FH : FRED
FRED : FRED
H : FRED
L : RICK
R : RICK
RBL : RICK
RICK : RICK
RL : RICK
ELSE "NOT A VALID NAME"
END_TABLE

In the following STORE statement, the USING clause uses the variable PERSON
with a prompting value expression for the responsible person. The table
translates the value supplied to that prompt and stores the uniform results in the
field WHO:

2–4 Using DATATRIEVE Variables

Using DATATRIEVE Variables
2.4 Using Variables to Assign Values to Fields

DTR> SET NO PROMPT
DTR> DECLARE PERSON PIC X(16).
DTR> READY WORK WRITE
DTR> REPEAT 3 STORE WORK USING
CON> BEGIN
CON> JOB = *.JOB
CON> PERSON = *.WHO
CON> WHO = PERSON VIA NAME_TABLE
CON> END
Enter JOB: CLEANING
Enter WHO: E
Enter JOB: DRYING
Enter WHO: FR
Enter JOB: SELLING
Enter WHO: R
DTR> PRINT WORK

RESPONSIBLE
JOB PERSON

CLEANING ED
DRYING NOT A VALID NAME
SELLING RICK

DTR>

2.5 Changing the Value of a Variable
You can change the value of a variable with an Assignment statement, using any
DATATRIEVE value expression on the right side of the statement. You can also
use a prompting value expression to change the value of a variable:

DTR> DECLARE X PIC XXX.
DTR> X = *."VALUE FOR X"
Enter VALUE FOR X: LIP
DTR> PRINT X
X

LIP

DTR>

2.6 Using Context Variables
DATATRIEVE also provides context variables which serve as labels that
identify a record stream to DATATRIEVE. You assign context variables to be
temporary names of particular record streams. In this way you can make clear
the domain from which a record stream originates, or you can create two different
record streams based on the same domain.

Using DATATRIEVE Variables 2–5

Using DATATRIEVE Variables
2.6 Using Context Variables

In most cases, DATATRIEVE will know to what record stream a field name
applies without needing context variables. For example, DATATRIEVE does not
need context variables in the following store statement:

DTR> ! First, define a domain that will hold a subset
DTR> ! of YACHTS records, namely, those that
DTR> ! cost more than $20,000.
DTR> DEFINE DOMAIN RITZY_ONES USING YACHT ON RITZY;
DTR> DEFINE FILE FOR RITZY_ONES
DTR> READY RITZY_ONES WRITE
DTR> ! The FOR statement includes a STORE USING statement
DTR> ! to store the desired records in RITZY_ONES.
DTR> ! Note that you don’t need context variables.
DTR> FOR YACHTS WITH PRICE > "$20,000"
CON> STORE RITZY_ONES USING
CON> BEGIN
CON> TYPE = TYPE
CON> PRICE = PRICE
CON> END

In this example, DATATRIEVE assigns the values of TYPE and PRICE of all
boats in YACHTS that cost more than $20,000 to records in a new domain called
RITZY_ONES.

Should you so choose, however, you can use context variables to identify record
streams and to qualify field names. This makes your statements and procedures
less ambiguous and easier to maintain. For example, you can perform the
preceding store operation as follows:

DTR> FOR Y IN YACHTS WITH PRICE > "$20,000"
CON> STORE R IN RITZY_ONES USING
CON> BEGIN
CON> R.TYPE = Y.TYPE
CON> R.PRICE = Y.PRICE
CON> END

In certain cases, however, you must use context variables to identify a record
stream explicitly. When you need to access the same domain two or more times
in one statement, or when you need to compare record streams from the same
domain, you must use context variables. In all other cases, you can use the
domain name for qualifying field names, or else DATATRIEVE resolves the
context automatically (as in the former example).

But when you must establish two record streams from the same domain, or when
you cross a domain over itself, you use context variables to label different record
streams. By qualifying each field name with the context variable and a period
(.), you indicate clearly to DATATRIEVE how to evaluate field references. In the
previous example, DATATRIEVE looks to the R stream to evaluate R.TYPE and
to the Y stream to evaluate Y.TYPE. Thus, DATATRIEVE allows you to create

2–6 Using DATATRIEVE Variables

Using DATATRIEVE Variables
2.6 Using Context Variables

two (or more) record streams from the same domain without confusing or mixing
records.

For example, assume that you wish to find how much of the company’s workforce
each department employs. You can perform the query in the following manner:

DTR> FOR D IN PERSONNEL REDUCED TO DEPT
CON> PRINT D.DEPT, (100 * (COUNT OF PER IN PERSONNEL -
CON> WITH PER.DEPT = D.DEPT)/ -
CON> (COUNT OF PERSONNEL)) ("PCT") USING Z9.9%

DEPT PCT

C82 21.7%
D98 17.4%
E46 8.7%
F11 17.4%
G20 13.0%
T32 17.4%
TOP 4.3%

This statement sets up an inner loop of records from the PERSONNEL domain
identified by the context variable PER and an outer loop of records from the same
domain identified by the label D.

For each group of records with the same department, DATATRIEVE counts
the records and divides the number by the total number of all records in
PERSONNEL. The context variables D and PER allow you to refer to the same
records in the PERSONNEL domain twice. Thus, you can print out all the
department names and count all their members in the same statement.

The VAX DATATRIEVE User’s Guide contains more examples of context variables
and presents detailed information about how DATATRIEVE resolves context.

Using DATATRIEVE Variables 2–7

3
DATATRIEVE Functions

A DATATRIEVE function is a word you define and add to the DATATRIEVE
language. By adding functions, you extend the capability of DATATRIEVE
to efficiently perform specific tasks. To learn how to define functions for
DATATRIEVE, see the VAX DATATRIEVE Guide to Programming and
Customizing.

The DATATRIEVE installation kit provides some functions. You can use them to
form value expressions or to set parameters for a process. These functions can be
modified by users at your site. If they do not work as indicated in the examples,
consult the person at your site responsible for DATATRIEVE for a list of the
functions currently available.

DATATRIEVE functions have the following format:

function-name [(value-expression [,...])]

The remainder of this chapter is divided into three sections. The first section
groups and lists the functions by type, with a brief description of the common
features of each type. The second section presents all the functions (regardless
of type) in alphabetic order, indicating the input and output of each function, as
well as an example. The third section discusses optimizing function execution.

3.1 Functions Grouped by Type
The following sections group and list functions by type. The types include the
following:

• Function value expressions

Functions using numeric data

Trigonometric functions

Functions using alphanumeric data

• Functions for keypad definitions

DATATRIEVE Functions 3–1

DATATRIEVE Functions
3.1 Functions Grouped by Type

• Functions relating to processes

Functions for timing processes

Functions for using logical names

Functions for using symbols

Other functions relating to processes

Each section includes a description of the common features of each type.

3.1.1 Function Value Expressions
The following functions are value expressions, which you can use in any
DATATRIEVE statement that permits a value expression. The functions are
classified according to their input values. They take either numeric data,
alphanumeric data, or dates as arguments.

3.1.1.1 Functions Using Numeric Data
The following functions are value expressions that take numbers as arguments
and return numbers as values:

• FN$ABS—Calculates the absolute value of input

• FN$EXP—Calculates the value of e to a specified power

• FN$FLOOR—Truncates the decimal part of positive input or rounds negative
input

• FN$LN—Calculates the natural log of input

• FN$LOG10—Calculates the base 10 log of input

• FN$MOD—Calculates the value of input according to a specified modulus

• FN$NINT—Calculates the integer nearest to input

• FN$SIGN—Indicates the sign of a number

• FN$SQRT—Calculates the square root of input

The following function differs from those listed above since it takes a number as
input but returns a character string as value:

• FN$HEX—Calculates the hexadecimal character string equivalent of input

3–2 DATATRIEVE Functions

DATATRIEVE Functions
3.1 Functions Grouped by Type

3.1.1.2 Trigonometric Functions
The following are trigonometric functions available with DATATRIEVE:

• FN$ATAN—Calculates the arctangent of input

• FN$COS—Calculates the cosine of input

• FN$SIN—Calculates the sine of input

• FN$TAN—Calculates the tangent of input

3.1.1.3 Functions Using Alphanumeric Data
The following functions use alphanumeric data as input. The default format for
functions using alphanumeric data is PIC X(30). If a function returns a value that
is longer than 30 characters, DATATRIEVE truncates the value. You can override
the default and process a value longer than 30 characters by using a FORMAT
value expression. Include the function in the FORMAT value expression and
specify an edit string long enough for the value you want to process.

For more information about using FORMAT value expressions, see Chapter 1.

• FN$STR_EXTRACT—Extracts the substring from input

• FN$STR_LOC—Calculates the starting position of a substring in input

• FN$UPCASE—Changes the characters in a string to uppercase

3.1.1.4 Functions Using Dates
The following functions use dates as input:

• FN$JULIAN—Calculates the Julian date of input

• FN$WEEK—Calculates the number of weeks from start of year

• FN$YEAR—Extracts the year part of input

• FN$MONTH—Extracts the month part of input

• FN$DAY—Extracts the day part of input

• FN$TIME—Extracts the time part of input

• FN$HOUR—Extracts the hour part of input

• FN$MINUTE—Extracts the minute part of input

• FN$SECOND—Extracts the second part of input

• FN$HUNDREDTH—Extracts the hundredth-of-a-second part of input

• FN$DATE—Converts a date string to a 64-bit data value

DATATRIEVE Functions 3–3

DATATRIEVE Functions
3.1 Functions Grouped by Type

3.1.2 Functions for Keypad Definitions
You can use the following functions to show and customize your keypad
definitions:

• FN$COMMAND_KEYBOARD—Returns the current value of the
COMMAND_KEYBOARD field in the DATATRIEVE Access Block (DAB)

• FN$DEFINE_KEY—Takes a key definition in DIGITAL Command Language
(DCL) DEFINE/KEY syntax, then creates the defined key in DATATRIEVE

• FN$DELETE_KEY—Lets you delete a key definition currently in effect

• FN$KEYPAD_MODE—Lets you specify the terminal mode from within
DATATRIEVE

• FN$KEYTABLE_ID—Returns the value of the KEYTABLE_ID field currently
in the DAB

• FN$LOAD_KEYDEFS—Lets you define multiple keypad keys from a file
containing DCL DEFINE/KEY commands

• FN$PROMPT_KEYBOARD—Returns the value of the PROMPT_KEYBOARD
field currently in the DAB

• FN$SHOW_KEY—Shows the definition of a keypad key

• FN$SHOW_KEYDEFS—Shows the key definitions in all of the states

These functions are not available in a DECwindows environment.

3.1.3 Functions Relating to Processes
Most of the functions relating to processes are not value expressions; they initiate
or affect various DATATRIEVE processes but have no output. The two exceptions
are the FN$TRANSLOG and FN$OPENSLEFT functions, which generate output
in providing information about a process.

3.1.3.1 Functions for Timing Processes
You can use the following functions to time processes:

• FN$INIT_TIMER—Initializes a timer and counter

• FN$SHOW_TIMER—Shows elapsed time since timer was last initialized

3–4 DATATRIEVE Functions

DATATRIEVE Functions
3.1 Functions Grouped by Type

3.1.3.2 Functions for Using Logical Names
The following functions define, delete, and translate logical name synonyms for
physical names like file specifications.

• FN$CREATE_LOG—Assigns a logical name as a synonym for a physical
name

• FN$DELETE_LOG—Deletes the assignment of a logical name

• FN$TRANS_LOG—Translates a logical name

For more information about logical names, see Appendix C.

3.1.3.3 Function for Using Symbols
The following function returns the value of a DCL symbol.

• FN$GET_SYMBOL—Returns the value of a DCL symbol

3.1.3.4 Other Functions Relating to Processes
The following functions allow you to control your process and customize your
terminal:

• FN$DCL—Allows you to spawn directly from your main DATATRIEVE
process to execute a specified DIGITAL Command Language (DCL) command

• FN$OPENS_LEFT—Calculates the number of additional files you can open

• FN$SPAWN—Creates a subprocess

• FN$WIDTH—Changes the character width of the terminal

3.2 DATATRIEVE Mathematical Functions Now Use G
FLOATING Format Numbers

The DATATRIEVE functions that perform mathematical operations now use
G-FLOATING format numbers for their internal operation. These functions
include the following:

• FN$ABS

• FN$ATAN

• FN$COS

• FN$EXP

• FN$FLOOR

• FN$LN

• FN$LOG10

DATATRIEVE Functions 3–5

3.2 DATATRIEVE Mathematical Functions Now Use G FLOATING Format Numbers

• FN$MOD

• FN$NINT

• FN$SIN

• FN$SQRT

• FN$TAN

The use of G-FLOATING numbers ensures an improved precision, as these
functions now provide 15 significant digits and an exponent range of ±1023.

If you require a different level of precision such as F-FLOATING or D-
FLOATING, you can override these functions using the techniques described
in the VAX DATATRIEVE Guide to Programming and Customizing.

3.3 Functions Listed Alphabetically
The following sections describe each function in alphabetical order. Each section
includes the following information:

• A description of the function, its input, and its output.

• An example of the function’s use.

3–6 DATATRIEVE Functions

FN$ABS

FN$ABS
Calculates the absolute value of input.

Input

A signed decimal number.

Output

An unsigned decimal number.

Example

DTR> PRINT FN$ABS (-128)

FN$ABS

1.2800E+02

DTR>

DATATRIEVE Functions 3–7

FN$ATAN

FN$ATAN
Calculates the arctangent of input.

Input

A signed decimal number (radians).

Output

A signed decimal number.

Example

DTR> PRINT 4 * (FN$ATAN (1))
3.1416E+00
DTR>

3–8 DATATRIEVE Functions

FN$COMMAND_KEYBOARD

FN$COMMAND_KEYBOARD
Returns the current value of the COMMAND_KEYBOARD field in the data
access block (DAB). COMMAND_KEYBOARD is the keyboard used for command
input.

This function allows you to add other functions that access the features of the
Screen Management Guidelines (SMG) of the Screen Management Facility.

This function is not available in a DECwindows environment.

Input

None.

Output

None.

Example

DTR> DECLARE COMMAND_KEYBOARD LONG.
DTR> COMMAND_KEYBOARD = FN$COMMAND_KEYBOARD

DATATRIEVE Functions 3–9

FN$COS

FN$COS
Calculates the cosine of input.

Input

A signed decimal number (radians).

Output

A signed decimal number.

Example

DTR> PRINT FN$COS (3.14159) using s9.999

FN$COS

-1.000

DTR>

3–10 DATATRIEVE Functions

FN$CREATE_LOG

FN$CREATE_LOG
Assigns a user mode logical name within the process logical name table as a
synonym for a physical name. The logical name is deleted when you exit from
DATATRIEVE.

Input

This function takes two parameters as input. The first is a logical name character
string; the second is a physical name character string. Each string must be in
quotation marks (unless you use variables previously declared). The two strings
must be separated by a comma and enclosed in parentheses.

Output

None.

Example

DTR> FN$CREATE_LOG ("HANK", "DB0:[MORRISON.RW]LOG.RNO")
DTR>

Usage Note

Logical names are defined at execution time (runtime) and not during the
compilation phase. If you define a logical name within a statement, the logical
name is not translated during the compilation phase, consequently it is executed
without being defined, which will lead to an error.

DTR> READY YACHTS
DTR> BEGIN
[Looking for statement]
CON> FN$CREATE_LOG("FORM_DIR","DTR$LIBRARY:FORMS");
CON> FOR X IN YACHTS
[Looking for statement]
CON> WITH_FORM YACHT IN FORM_DIR
[Looking for SEND or RECEIVE statement]
CON> SEND FROM X TO BOAT;
CON> END
Error opening DECforms form file DISK:[DALFY]FORM_DIR.EXE; .

DATATRIEVE Functions 3–11

FN$DATE

FN$DATE
Converts a date string to a 64-bit data value.

Input

A complete date string formatted as "dd-MMM-yyyy hh:mm:ss.cc". Unpredictable
results may occur if you supply only a portion of a date string, such as "21-MAR-
1990". The month must be specified in uppercase.

Output

A date data value formatted as "dd-MMM-yyyy hh:mm:ss.cc".

Example

DTR> DECLARE X USAGE DATE EDIT_STRING X(23).
DTR> X = FN$DATE("30-AUG-1990 15:20:31.45")
DTR> PRINT X

X

30-Aug-1990 15:20:31.45

DTR>

DTR> DECLARE Y USAGE DATE EDIT_STRING X(23).
DTR> DECLARE Z PIC X(23).
DTR> Z = "20-FEB-1990 14:54:29.83"
DTR> Y = FN$DATE (Z)
DTR> PRINT Y

Y

20-Feb-1990 14:54:29.83

DTR>

3–12 DATATRIEVE Functions

FN$DAY

FN$DAY
Extracts the day part of input (dd in dd-MMM-yyyy hh:mm:ss.cc).

Input

A date.

Output

An unsigned integer from 1 to 31.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55

DTR> PRINT FN$DAY (CAL)

FN$DAY

1

DTR>

DATATRIEVE Functions 3–13

FN$DCL

FN$DCL
Allows you to spawn directly from your main DATATRIEVE process to execute a
specified DCL command.

Input

Type FN$DCL at the DATATRIEVE prompt. On the same line, specify the DCL
command argument you want to spawn to, such as the DCL print command. The
DCL command argument can be any DCL command and must be placed inside
quotation marks (unless you use variables previously declared), and enclosed in
parentheses.

Output

Your DATATRIEVE process is suspended and the terminal is attached to the
subprocess. The DCL command is executed.

Examples

DTR> FN$DCL ("PRINT REPORTACCOUNTS.RPT")
Job REPORTACCOUNTS (queue SYSTEMPRINT$QUEUE, entry 148)
started on PRINTER$LPA0
DTR>

In the above example the message appears indicating that the job has been added
to the print queue. After the command has completed or you have exited from the
program initiated by the command, you see the DTR> prompt. This shows that
control has been returned to the original process in DATATRIEVE.

The following example shows how you can use variables with FN$DCL:

DTR> DECLARE ALP PIC X(30).
DTR> ALP = "DIR/COL=1"
DTR> FN$DCL (ALP)

Directory MY$DISK:[DALFY]

TEST.OBJ;1
ZTEST.FOR;3

Note that the FN$DCL process inherits attributes from the caller (that is,
the main DATATRIEVE process from which it spawned). Refer to the VMS
documentation on run-time library routines for more information.

3–14 DATATRIEVE Functions

FN$DCL

Usage Notes

• The FN$DCL and FN$SPAWN functions are disabled by default for users in
captive accounts.

You can change this default and allow use of the FN$DCL and FN$SPAWN
functions from captive accounts by using the logical name DTR$CAPTIVE_
ALLOWED. Before you invoke DATATRIEVE, use the DCL ASSIGN or
DEFINE command to define or assign the logical name DTR$CAPTIVE_
ALLOWED to be either FNDCL, FNSPAWN, or both.

$ DEFINE DTR$CAPTIVE_ALLOWED FN$DCL
$ DEFINE DTR$CAPTIVE_ALLOWED FN$SPAWN
$ DEFINE DTR$CAPTIVE_ALLOWED FN$DCL, FN$SPAWN

You can type FN$DCL and FN$SPAWN in either uppercase or lowercase; the
translation is not case sensitive. If you define DTR$CAPTIVE_ALLOWED to
be both FN$DCL and FN$SPAWN and use quotation marks in the definition
or assignment, you must use a set of quotation marks for each function and
separate them with a comma:

$ DEFINE DTR$CAPTIVE_ALLOWED "FN$DCL", "FN$SPAWN"

Because DATATRIEVE checks the value of DTR$CAPTIVE_ALLOWED
during startup, you cannot change the definition of DTR$CAPTIVE_
ALLOWED from within DATATRIEVE using the function FN$CREATE_
LOG.

If the translation of DTR$CAPTIVE_ALLOWED is not valid, DATATRIEVE
continues as if the logical name were not defined, but does not issue a
message notifying you that it is ignoring the logical name.

If your application allows users to enter commands at the DTR> prompt and
you define DTR$CAPTIVE_ALLOWED as FN$DCL, be aware that users can
spawn a process by entering SPAWN with the FN$DCL function:

DTR> FN$DCL ("SPAWN")
$

You can allow a captive account to use the FN$DCL function to access DCL
commands other than the DCL SPAWN command. To exclude SPAWN, set
the AUTHORIZE parameter PRCLM to a value of 1 for the captive account.

• You cannot use FN$DCL in a DECwindows environment unless you have
invoked DATATRIEVE from a DCL command line in a DECterm window.

• If you use FN$DCL in a DATATRIEVE DECwindows session, the subprocess
is spawned to the DECterm window from which you invoked DATATRIEVE.

DATATRIEVE Functions 3–15

FN$DCL

The subprocess displays any output generated by the DCL command included
as the argument to the FN$DCL function. This output appears in the
DECterm window. To see the output, you may want to move the DECterm
window from back to front. When the subprocess is complete, the DTR>
prompt in the main application window is reactivated.

3–16 DATATRIEVE Functions

FN$DEFINE_KEY

FN$DEFINE_KEY
Takes a key definition in DCL DEFINE/KEY syntax, then creates the defined key
in DATATRIEVE.

This function is not available in a DECwindows environment.

Input

A quoted string containing the key definition in DCL DEFINE/KEY command
syntax.

You must use single quotation marks for the outer pair of quotation marks. The
inner pair of quotation marks must be double.

Output

None.

Example

DTR> FN$KEYPAD_MODE ("APPLICATION")
DTR> FN$DEFINE_KEY (’DEFINE/KEY/ECHO/NOTERMINATE KP7 "FIND" ’)

Usage Note

The previous example will not work unless the device is set to APPLICATION.
DATATRIEVE ignores the the terminal characteristics of your device, for this
reason you must execute the FN$KEYPAD_MODE function before executing the
FN$DEFINE_KEY function.

DATATRIEVE Functions 3–17

FN$DELETE_KEY

FN$DELETE_KEY
Deletes a key definition currently in effect.

This function is not available in a DECwindows environment.

Input

This function takes two parameters.

• The first parameter is the name of the key whose definition you want to
delete.

• The second parameter is the state string. You must specify the state name
DEFAULT when there is no alternate state.

Each parameter must be in matching quotation marks. The two parameters must
be separated by a comma and enclosed in parentheses.

Output

None.

Example

DTR> FN$DELETE_KEY ("KP0","DEFAULT")
DTR> FN$DELETE_KEY ("KP0","GOLD")

3–18 DATATRIEVE Functions

FN$DELETE_LOG

FN$DELETE_LOG
Deletes the assignment of a logical name.

Input

The logical name you want to delete.

Output

None.

Example

DTR> FN$DELETE_LOG ("HANK")
DTR> PRINT FN$TRANS_LOG ("HANK") USING X(30)

FN$TRANS
LOG

DTR>

DATATRIEVE Functions 3–19

FN$EXP

FN$EXP
Calculates the value of e to a specified power.

Input

A signed decimal number.

Output

A signed decimal number.

Example

DTR> PRINT FN$EXP (2)

FN$EXP

7.3891E+00

DTR>

3–20 DATATRIEVE Functions

FN$FLOOR

FN$FLOOR
Truncates the decimal part of positive input or rounds negative input.

Input

A signed decimal number.

Output

A signed decimal number.

Example

DTR> PRINT FN$FLOOR (59.99)

FN$FLOOR

5.9000E+01

DTR> PRINT FN$FLOOR (-59.99)

FN$FLOOR

-6.0000E+01

DATATRIEVE Functions 3–21

FN$GET_SYMBOL

FN$GET_SYMBOL
Returns the value of a DCL symbol.

Input

A character string that represents the symbol name.

Output

The value of a DCL symbol.

Example

DTR> PRINT FN$GET_SYMBOL("DTR$INVOKE") USING X(45)

FN$GET
SYMBOL

RUN DTR$DISK:[DTR.TESTS]DTRV4.EXE

DTR>

3–22 DATATRIEVE Functions

FN$HEX

FN$HEX
Calculates the hexadecimal equivalent of input.

Input

A signed integer no larger than (2 ** 31) –1 (the maximum value that can be
stored in a signed longword).

Output

A hexadecimal character string.

Example

DTR> PRINT FN$HEX(183)

FN$HEX

B7

DTR>

DATATRIEVE Functions 3–23

FN$HOUR

FN$HOUR
Extracts the hour part of input (hh in dd-MMM-yyyy hh:mm:ss.cc).

Input

A date.

Output

An unsigned integer from 1 to 24.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55

DTR> PRINT FN$HOUR (CAL)

FN$HOUR

8

DTR>

3–24 DATATRIEVE Functions

FN$HUNDREDTH

FN$HUNDREDTH
Extracts hundredth-of-a-second part of input (cc in dd-MMM-yyyy hh:mm:ss.cc).

Input

A date.

Output

An unsigned integer from 0 to 99.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55

DTR> PRINT FN$HUNDREDTH (CAL)

FN$HUNDREDTH

55

DTR>

DATATRIEVE Functions 3–25

FN$INIT_TIMER

FN$INIT_TIMER
Initializes a timer and counter.

Input

None.

Output

None.

Example

DTR> SHOW TIME_READY
PROCEDURE TIME_READY
FN$INIT_TIMER
READY OWNERS
FN$SHOW_TIMER
END_PROCEDURE

DTR> :TIME_READY

ELAPSED: 0 00:00:04.24 CPU: 0:00:00.61 BUFIO: 1 DIRIO: 42
FAULTS: 64

DTR>

3–26 DATATRIEVE Functions

FN$JULIAN

FN$JULIAN
Calculates the Julian date of input.

(A Julian date is based on days of the year being numbered beginning with
January 1st. The Julian date of January 6th is 6. The Julian date of February
2nd is 33, and so on.)

Input

A date.

Output

An unsigned integer from 1 to 366. (There are 366 days in a leap year.)

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55
DTR> PRINT FN$JULIAN (CAL)

FN$JULIAN

32

DTR>

DATATRIEVE Functions 3–27

FN$KEYPAD_MODE

FN$KEYPAD_MODE
Lets you specify the terminal mode from within DATATRIEVE.

This function duplicates the ability of the SET [NO] APPLICATION_KEYPAD
command. The function form of FN$KEYPAD_MODE, however, allows you to
change the keypad mode inside compound statements.

This function is not available in a DECwindows environment.

Input

You must specify one of two parameters:

• APPLICATION specifies application keypad mode.

• NUMERIC specifies numeric keypad mode.

This function is not case sensitive; you can type APPLICATION or NUMERIC
in either uppercase or lowercase. The words must be in either single or double
quotation marks, and the spelling must be exact.

Output

None.

Example

DTR> FN$KEYPAD_MODE ("APPLICATION")
DTR> FN$KEYPAD_MODE ("NUMERIC")

3–28 DATATRIEVE Functions

FN$KEYTABLE_ID

FN$KEYTABLE_ID
Returns the value of the KEYTABLE_ID field currently in the data access block
(DAB).

FN$KEYTABLE_ID allows you to add other functions that access other
capabilities of the Screen Management Guidelines (SMG) of the Screen
Management Facility.

This function is not available in a DECwindows environment.

Input

None.

Output

None.

Example

DTR> DECLARE KEYTABLE LONG.
DTR> KEYTABLE = FN$KEYTABLE_ID

DATATRIEVE Functions 3–29

FN$LN

FN$LN
Calculates the natural log of input.

Input

A signed number.

Output

A signed number.

Example

DTR> PRINT FN$LN (36)

FN$LN

3.5835E+00

DTR>

3–30 DATATRIEVE Functions

FN$LOAD_KEYDEFS

FN$LOAD_KEYDEFS
Lets you define multiple keypad keys from a file containing DCL DEFINE/KEY
commands. This way you do not have to make multiple calls to the FN$DEFINE_
KEY function.

This function is not available in a DECwindows environment.

Input

A quoted string with a DCL file specification indicating the file containing the
DCL DEFINE/KEY commands.

Output

None.

Example

DTR> FN$LOAD_KEYDEFS ("APPL1.KEYS")

DATATRIEVE Functions 3–31

FN$LOG10

FN$LOG10
Calculates the base 10 log of input.

Input

A signed number.

Output

A signed number.

Example

DTR> PRINT FN$LOG10 (36)

FN$LOG10

1.5563E+00

DTR>

3–32 DATATRIEVE Functions

FN$MINUTE

FN$MINUTE
Extracts the minute part of input (mm in dd-MMM-yyyy hh:mm:ss.cc).

Input

A date.

Output

An unsigned integer from 0 to 59.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55

DTR> PRINT FN$MINUTE (CAL)

FN$MINUTE

51

DTR>

DATATRIEVE Functions 3–33

FN$MOD

FN$MOD
Calculates the value of input according to a specified modulus.

Input

This function takes two parameters: a signed number and a modulus. The two
must be separated by a comma and enclosed in parentheses.

Output

A real number.

Example

DTR> PRINT FN$MOD (31,7)

FN$MOD

3.0000E+00

DTR>

3–34 DATATRIEVE Functions

FN$MONTH

FN$MONTH
Extracts the month part of input (MMM in dd-MMM-yyyy hh:mm:ss.cc).

Input

A date.

Output

An unsigned integer from 1 to 12.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55

DTR> PRINT FN$MONTH (CAL)

FN$MONTH

2

DTR>

DATATRIEVE Functions 3–35

FN$NINT

FN$NINT
Calculates the integer nearest to input.

Input

A signed number.

Output

A signed integer.

Example

DTR> PRINT FN$NINT (59.99)

FN$NINT

60

DTR>

3–36 DATATRIEVE Functions

FN$OPENS_LEFT

FN$OPENS_LEFT
Calculates the number of additional files you can open.

Input

None.

Output

An unsigned integer.

Example

DTR> PRINT FN$OPENS_LEFT

FN$OPENS
LEFT

3

DTR>

DATATRIEVE Functions 3–37

FN$PROMPT_KEYBOARD

FN$PROMPT_KEYBOARD
Returns the value of the PROMPT_KEYBOARD field currently in the data access
block (DAB). PROMPT_KEYBOARD is the keyboard ID used for prompting.

FN$PROMPT_KEYBOARD allows you to add other functions that access
other capabilities of the Screen Management Guidelines (SMG) of the Screen
Management Facility.

This function is not available in a DECwindows environment.

Input

None.

Output

None.

Example

DTR> DECLARE PROMPT_KEYBOARD LONG.
DTR> PROMPT_KEYBOARD = FN$PROMPT_KEYBOARD

3–38 DATATRIEVE Functions

FN$SECOND

FN$SECOND
Extracts the second part of input (ss in dd-MMM-yyyy hh:mm:ss.cc).

Input

A date.

Output

An unsigned integer from 0 to 59.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55

DTR> PRINT FN$SECOND (CAL)

FN$SECOND

11

DTR>

DATATRIEVE Functions 3–39

FN$SHOW_KEY

FN$SHOW_KEY
Displays the definition of a keypad key.

This function is not available in a DECwindows environment.

Input

This function takes two parameters:

• The first parameter specifies the keypad key name.

• The second parameter is the state string. You must specify the state name
DEFAULT when there is no alternate state.

Each parameter must be in matching quotation marks. The two quoted
parameters must be separated by a comma and enclosed in parentheses.

Output

The definition of the specified key.

Example

DTR> FN$SHOW_KEY ("KP7","DEFAULT")

KP7 = "SHOW ALL"
(echo,terminate,noerase,nolock)

3–40 DATATRIEVE Functions

FN$SHOW_KEYDEFS

FN$SHOW_KEYDEFS
Displays the key definitions in all of the states. This function duplicates the
ability of the DATATRIEVE SHOW KEYDEFS command.

The function form of FN$SHOW_KEYDEFS lets you show all keypad definitions
inside compound statements.

This function is not available in a DECwindows environment.

Input

None.

Output

The definitions of all the defined keys.

Example

DTR> FN$SHOW_KEYDEFS

BLUE state keypad definitions:
KP1 = "SHOW KEYDEFS"

(noecho,terminate,noerase,nolock)
DEFAULT state keypad definitions:

PF1 = " "
(echo,noterminate,noerase,nolock,set_state=GOLD)

PF4 = " "
(echo,noterminate,noerase,nolock,set_state=BLUE)

KP0 = "SHOW KEYDEFS"
(echo,terminate,noerase,nolock)

KP1 = "READY "
(echo,noterminate,noerase,nolock)

KP7 = "SHOW ALL"
(echo,terminate,noerase,nolock)

KP8 = "SHOW DOMAINS"
(echo,terminate,noerase,nolock)

KP9 = "SHOW RECORDS"
(echo,terminate,noerase,nolock)

ENTER = "SET APPLICATION_KEYPAD"
(echo,terminate,noerase,nolock)

GOLD state keypad definitions:
ENTER = "SET NO APPLICATION_KEYPAD"

(echo,terminate,noerase,nolock)
KP1 = "SHOW KEYDEFS"

(noecho,terminate,noerase,nolock)

DATATRIEVE Functions 3–41

FN$SHOW_TIMER

FN$SHOW_TIMER
Shows elapsed time since the timer was last initialized.

Note that DATATRIEVE does not include the information displayed by
FN$SHOW_TIMER in a log file created with the OPEN command.

Input

None.

Output

Displays the elapsed time in this format:

D HH:MM:SS.SS

Example

DTR> SHOW TIME_READY
PROCEDURE TIME_READY
FN$INIT_TIMER
READY OWNERS
FN$SHOW_TIMER
END_PROCEDURE

DTR> :TIME_READY
ELAPSED: 0 00:00:04.24 CPU: 0:00:00.61 BUFIO: 1 DIRIO: 42

FAULTS: 64

DTR>

At the end of a 24-hour period, the timer begins displaying time in the number of
days rather than the accumulated number of hours.

3–42 DATATRIEVE Functions

FN$SIGN

FN$SIGN
Indicates the sign of a number.

Input

A signed number.

Output

1, –1, or 0 (depending on the sign of the number).

Example

DTR> PRINT FN$SIGN (-4)

FN$SIGN

-1

DTR>

DATATRIEVE Functions 3–43

FN$SIN

FN$SIN
Calculates the sine of input.

Input

A signed decimal number (radians).

Output

A signed decimal number.

Example

DTR> PRINT FN$SIN (3.14159/2)

FN$SIN

1.000

DTR>

3–44 DATATRIEVE Functions

FN$SPAWN

FN$SPAWN
Creates a subprocess by calling the Run-Time Library (RTL) routine LIB$SPAWN.

Input

Type FN$SPAWN at the DTR> prompt to create the subprocess.

Output

Your default DCL prompt appears on the screen. You can then invoke utilities or
enter commands.

Type LOGOUT after the DCL prompt to return to your original process in
DATATRIEVE. A message is printed on the screen indicating that you have
logged out of the subprocess. DATATRIEVE generates the DTR> prompt, showing
that control has been returned to the original process in DATATRIEVE.

Example

DTR> FN$SPAWN
$ MAIL
.
.
.

MAIL> EXIT
$ LOGOUT
Process PROCESSNAME_1 logged out at 25-FEB-1990 09:47:09:27

DTR>

Usage Notes

• Use FN$SPAWN as a single and complete DATATRIEVE statement. Do not
use this function within another simple or compound statement (unlike other
functions).

The FN$SPAWN function inherits attributes from the caller (the main
DATATRIEVE process it spawned from). Refer to the VMS documentation on
run-time library routines for more information.

• The FN$DCL and FN$SPAWN functions are disabled by default for users in
captive accounts.

DATATRIEVE Functions 3–45

FN$SPAWN

You can change this default and allow use of the FN$DCL and FN$SPAWN
functions from captive accounts by using the logical name DTR$CAPTIVE_
ALLOWED. Before you invoke DATATRIEVE, use the DCL ASSIGN or
DEFINE command to define or assign the logical name DTR$CAPTIVE_
ALLOWED to be either FNDCL, FNSPAWN, or both.

$ DEFINE DTR$CAPTIVE_ALLOWED FN$DCL
$ DEFINE DTR$CAPTIVE_ALLOWED FN$SPAWN
$ DEFINE DTR$CAPTIVE_ALLOWED FN$DCL, FN$SPAWN

You can type FN$DCL and FN$SPAWN in either uppercase or lowercase; the
translation is not case sensitive. If you define DTR$CAPTIVE_ALLOWED to
be both FN$DCL and FN$SPAWN and use quotation marks in the definition
or assignment, you must use a set of quotation marks for each function and
separate them with a comma:

$ DEFINE DTR$CAPTIVE_ALLOWED "FN$DCL", "FN$SPAWN"

Because DATATRIEVE checks the value of DTR$CAPTIVE_ALLOWED
during startup, you cannot change the definition of DTR$CAPTIVE_
ALLOWED from within DATATRIEVE using the function FN$CREATE_
LOG.

If the translation of DTR$CAPTIVE_ALLOWED is not valid, DATATRIEVE
continues as if the logical name were not defined, but does not issue a
message notifying you that it is ignoring the logical name.

If your application allows users to enter commands at the DTR> prompt and
you define DTR$CAPTIVE_ALLOWED as FN$DCL, be aware that users can
spawn a process by entering SPAWN with the FN$DCL function:

DTR> FN$DCL ("SPAWN")
$

You can allow a captive account to use the FN$DCL function to access DCL
commands other than the DCL SPAWN command. To exclude SPAWN, set
the AUTHORIZE parameter PRCLM to a value of 1 for the captive account.

• You cannot use FN$SPAWN in a DECwindows environment unless you have
invoked DATATRIEVE from a DCL command line in a DECterm window.

• If you use FN$SPAWN during a DATATRIEVE DECwindows session, the
subprocess is spawned to the DECterm window from which you invoked
DATATRIEVE.

You must input any commands to your FN$SPAWN process from the DCL
prompt of the DECterm window. When you have completed your subprocess,
enter the LOGOUT command at the DCL prompt to return control to your
DATATRIEVE session.

3–46 DATATRIEVE Functions

FN$SQRT

FN$SQRT
Calculates the square root of the input number.

Input

Zero or a positive decimal number.

Output

Zero or a positive decimal number.

Example

DTR> PRINT FN$SQRT (196)

FN$SQRT

1.4000E+01

DTR>

DATATRIEVE Functions 3–47

FN$STR_EXTRACT

FN$STR_EXTRACT
Extracts a substring from the input character string using a default edit string of
30 characters.

Input

This function takes three parameters:

• A character string

• An ordinal number of starting character (numerical position within string)

• The length of desired substring

Output

A substring.

Example

DTR> DECLARE WOMBAT PIC X(25).
DTR> WOMBAT = "Wombats have sharp claws."
DTR> PRINT FN$STR_EXTRACT (WOMBAT,9,4)

FN$STR
EXTRACT

have

DTR>

3–48 DATATRIEVE Functions

FN$STR_LOC

FN$STR_LOC
Calculates the starting position of the specified substring in the input character
string.

Input

This functions takes two parameters: a character string and a substring.

Output

An unsigned integer. If the string is undefined, FN$STR_LOC returns the value
0.

Example

DTR> DECLARE WOMBAT PIC X(25)
DTR> WOMBAT = "Wombats have sharp claws."
DTR> PRINT FN$STR_LOC (WOMBAT,"claws")

FN$STR
LOC

20

DTR>

DATATRIEVE Functions 3–49

FN$TAN

FN$TAN
Calculates the tangent of the input number.

Input

A signed decimal number (radians).

Output

A signed decimal number.

Example

DTR> PRINT FN$TAN (3.14159/4)

FN$TAN

1.0000E+00

DTR>

3–50 DATATRIEVE Functions

FN$TIME

FN$TIME
Extracts the time part of input (hh:mm:ss.cc in dd-MMM-yyyy hh:mm:ss.cc).

Input

A date.

Output

The time in VMS format.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55

DTR> PRINT FN$TIME (CAL)

FN$TIME

08:51:11.5

DTR>

DATATRIEVE Functions 3–51

FN$TRANS_LOG

FN$TRANS_LOG
Translates a logical name.

Input

A character string containing the logical name you want to translate.

Output

A character string.

Example

DTR> FN$CREATE_LOG ("HANK", "DB0:[MORRISON.RW]LOG.RNO")
DTR> PRINT FN$TRANS_LOG ("HANK") USING X(30)

FN$TRANS
LOG

DB0:[MORRISON.RW]LOG.RNO

DTR>

3–52 DATATRIEVE Functions

FN$UPCASE

FN$UPCASE
Changes the characters in a string to uppercase.

Input

A character string.

Output

The input character string, all in uppercase.

Example

DTR> DECLARE WOMBAT PIC X(25).
DTR> WOMBAT = "Wombats have sharp claws."
DTR> PRINT FN$UPCASE (WOMBAT)

FN$UPCASE

WOMBATS HAVE SHARP CLAWS.

DTR>

Usage Note

DATATRIEVE truncates the output string at 30 characters. To display a string
longer than 30 characters, specify the length of the string in a USING clause.

DATATRIEVE Functions 3–53

FN$WEEK

FN$WEEK
Calculates the week number for a date you enter.

(The week number is an integer from 1 to 52. A week number is assigned
sequentially to each week, beginning with the first week of the year. The first
week of January is week number 1, the second week of January is week number
2, and so on.)

Input

A date.

Output

An unsigned integer from 1 to 52.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1983 08:51:11.55

DTR> PRINT FN$WEEK (CAL)

FN$WEEK

5

DTR>

Usage Note

The FN$WEEK function does not use Sunday as the default beginning of each
week (unlike most calendars); instead, it begins its calculations with the first day
of each year. It uses the day of the week on which January 1st occurs as the first
day of each subsequent week that year. For example, January 1st occurred on a
Wednesday in 1986, so FN$WEEK calculates all week numbers in 1986 as though
each week begins on Wednesday. Thus, the first Sunday, Monday, and Tuesday in
1986 are still part of week number 1.

Use the following procedure and table to print the week of the year with Sunday
as the first day of the week:

3–54 DATATRIEVE Functions

FN$WEEK

DTR> DEFINE PROCEDURE OTHER_WEEK
DFN> !
DFN> ! declare variables for the various operations
DFN> !
DFN> DECLARE DATE USAGE DATE EDIT_STRING X(23).
DFN> DECLARE YEAR PIC 9(4).
DFN> DECLARE TEMP PIC 9(3).
DFN> DECLARE WEEK PIC 9(2).
DFN> !
DFN> DATE = *."date"
DFN> YEAR = FN$YEAR(DATE)
DFN> TEMP = YEAR VIA FIRST_DAY_TBL
DFN> WEEK = FN$WEEK(DATE + TEMP)
DFN> PRINT "The week of the year is ", WEEK (-) USING X9
DFN> END_PROCEDURE
DTR> DEFINE TABLE FIRST_DAY_TBL
DFN> 1984:0
DFN> 1985:2
DFN> 1986:3
DFN> 1987:4
DFN> 1988:5
DFN> 1989:6
DFN> 1990:7
DFN> ELSE 0
DFN> END_TABLE
DTR>

The procedure calls a number from the table. This number represents the
difference between the actual first day of the year and Sunday. The procedure
adds this number to the date you have entered. The first week will then begin on
Sunday; the OTHER_WEEK procedure will use Sunday as the default beginning
of subsequent weeks.

Note that the numbers are stored in the table by year. The years shown in the
table are only a sample; you can include as many years as you need.

DATATRIEVE Functions 3–55

FN$WIDTH

FN$WIDTH
Changes the character width of the terminal.

Input

An integer.

Output

None.

Example

DTR> SET COLUMNS_PAGE = 132
DTR> FN$WIDTH (132)

FN$WIDTH (132) sets the terminal’s width at 132 characters or columns. The
SET COLUMNS_PAGE command ensures that any output produced by REPORT,
PRINT, SUM, or LIST statements is spaced across the 132 columns.

Usage Note

You should not use the FN$WIDTH function to adjust terminal width in a
DECwindows environment. DATATRIEVE continues to function if you use
FN$WIDTH in a DECwindows environment; however, you may get unexpected
output.

3–56 DATATRIEVE Functions

FN$YEAR

FN$YEAR
Extracts the year part of input (yyyy in dd-Mmm-yyyy hh:mm:ss.cc).

Input

A date.

Output

An unsigned integer for years 1858 to 9999.

Example

DTR> DECLARE CAL USAGE DATE EDIT_STRING X(23).
DTR> CAL = "NOW"; PRINT CAL

CAL

1-Feb-1990 08:51:11.55

DTR> PRINT FN$YEAR (CAL)

FN$YEAR

1990

DTR>

DATATRIEVE Functions 3–57

DATATRIEVE Functions
3.4 Optimizing Function Execution

3.4 Optimizing Function Execution
DATATRIEVE executes functions within loops in two ways:

• For some functions, DATATRIEVE optimizes their execution within loops.
Optimizing means that DATATRIEVE factors the function out of the loop and
executes it once at the top of the loop.

• For the remainder of the functions, DATATRIEVE does not optimize their
execution within loops. Instead, DATATRIEVE executes these functions for
each iteration of the loop.

You can determine the default for each function by looking at the function
definitions. Function definitions for all functions provided with the DATATRIEVE
kit are found in DTR$LIBRARY:IDTRFND.MAR. Site specific or user-defined
functions are found in DTR$LIBRARY:DTRFNDxx.MAR. 1

• If the function definition does not include the DTR$FUN_NOOPTIMIZE
statement, DATATRIEVE optimizes the function execution in loops. In the
following example, FN$COS (3.14159) is computed only once, since the result
does not vary between iterations of the FOR loop:

READY VALUES
FOR VALUES

PRINT X * FN$COS (3.14159)

• If a function definition does include the DTR$FUN_NOOPTIMIZE statement,
DATATRIEVE does not optimize the execution of the function in loops. The
following functions are not optimized because, in most instances, they should
be executed for each iteration of a loop:

FN$CREATE_LOG
FN$DELETE_LOG
FN$INIT_TIMER
FN$SHOW_TIMER
FN$TRANS_LOG
FN$WIDTH

You can control the optimization of function execution for user-defined functions
by editing the function definitions in DTR$LIBRARY:DTRFNDxx.MAR to include
or to delete the DTR$FUN_NOOPTIMIZE statement.

See the VAX DATATRIEVE Guide to Programming and Customizing for more
information about changing function definitions and adding your own functions to
DATATRIEVE.

1 xx represents the 1 to 26-character suffix that may be added at installation.

3–58 DATATRIEVE Functions

4
DATATRIEVE Commands, Statements,

and Definition Clauses

This chapter describes all DATATRIEVE commands, statements, and record and
field definition clauses, and presents them in alphabetical order. Before you use a
command, statement, or clause, read its description completely.

Structure of DATATRIEVE Command Descriptions
The description or each DATATRIEVE command, statement, or clause is divided
into the following categories of information:

� Format

The format of the command, statement, or clause includes the spelling and
placement of keywords and the placement of required and optional syntax
elements. As a rule, command and statement names and other keywords
cannot be abbreviated.

The sequence of command, statement, or clause elements is also critical.
You must follow the sequence shown in the format. If you omit an optional
element, leave its relative position in the command or statement empty and
proceed to the remaining elements in a left-to-right order.

Statements cannot use path names in place of given names. You can use path
names with commands but not with statements. The FINISH command is the
only exception to this rule.

� Arguments

The arguments section explains each element of the syntax in greater detail.

� Restrictions

The restrictions tell you what requirements and limits there are on the use
and action of a command, statement, or clause. They also list the access
privileges you must have to enter a command or statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–1

� Results

Results tell you what action DATATRIEVE takes when you use the command
or statement and its various options.

� Usage Notes

Usage Notes present some common uses of the command, statement, or clause
and its elements and indicate what other commands and statements you can
use in conjunction with the command or statement.

� Examples

The examples show the use of representative sequences of commands
and statements. In the case of clauses, they show sample record or field
definitions.

Symbols and conventions used in syntax formats are listed at the beginning of
this manual.

4–2 DATATRIEVE Commands, Statements, and Definition Clauses

: (EXECUTE)

: (EXECUTE)
Invokes a DATATRIEVE procedure.

Format
 :

EXECUTE

�
procedure-name

Argument

procedure-name
Is the given name, full dictionary path name, or relative dictionary path name of
the DATATRIEVE procedure you want to invoke.

Restrictions

• To invoke a procedure, you must have P (PASS_THRU), S (SEE), and E (DTR
EXECUTE/EXTEND) access to it.

• You cannot invoke a procedure during an ADT, EDIT, or Guide Mode session.

• You cannot include the invocation of a procedure in the definition of a domain,
record, or table.

• Do not allow a procedure to invoke itself, either directly or indirectly; you
may create an infinite loop.

• If the procedure contains any commands, you cannot include an invocation of
the procedure within a BEGIN-END block.

Results

• If the procedure consists of full commands or statements, DATATRIEVE
executes each command or statement in the procedure in order.

• If the procedure contains only a clause or an argument from a command or
statement, DATATRIEVE includes the procedure within the command or
statement containing the procedure invocation.

DATATRIEVE Commands, Statements, and Definition Clauses 4–3

: (EXECUTE)

Usage Notes

• You can use either a colon (:) or EXECUTE before the procedure name. The
results are the same.

• You can nest procedures by invoking a procedure within another procedure,
but you must be careful not to allow the procedure to invoke itself.

• You can invoke a procedure in a REPEAT statement to execute it a number
of times or in a FOR statement to apply it to a collection of records. You
must, however, use care when invoking a procedure in these statements. For
example, the following syntax can be used, but the results may be unexpected:

REPEAT n :procedure-name

This statement does not execute the procedure n times. When DATATRIEVE
encounters the first complete statement in the procedure, it assumes that the
REPEAT statement is also complete. Therefore, it executes the first command
or statement in the procedure n times. DATATRIEVE then executes the
remaining commands or statements in the procedure once.

To repeat the entire procedure n times, enclose the procedure invocation in a
BEGIN-END block:

REPEAT n
BEGIN

:procedure-name
END

Use a similar technique for procedure invocations controlled by a FOR loop.
For example:

FOR rse
BEGIN

:procedure-name
END

Remember that if you use a procedure in this way, it cannot include a FIND,
SELECT, or DROP statement because these statements cannot be used in
BEGIN-END blocks.

4–4 DATATRIEVE Commands, Statements, and Definition Clauses

: (EXECUTE)

Examples

The following example invokes a procedure to find the employee in PERSONNEL
with the largest salary. It uses EXECUTE to invoke the procedure from the
DIGITAL Command Language (DCL) level. In this example, DTR is the global
symbol for invoking VAX DATATRIEVE.

DTR> SHOW MAX_SALARY
PROCEDURE MAX_SALARY
READY PERSONNEL
PRINT PERSONNEL WITH SALARY = MAX SALARY OF PERSONNEL
END_PROCEDURE

DTR> EXIT
$ DTR EXECUTE MAX_SALARY

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CARLA SPIVA TOP 12-Sep-1972 $75,892 00012

$

The following example invokes a procedure three times. The procedure displays
employees in a given department with salaries greater than $40,000.

DTR> SHOW BIG_SALARY
PROCEDURE BIG_SALARY
FOR PERSONNEL WITH DEPT = *."the department"
BEGIN

IF SALARY GT 40000
THEN PRINT ID, NAME, DEPT,START_DATE, SALARY

END
END_PROCEDURE

DTR> REPEAT 3
CON> BEGIN
CON> :BIG_SALARY
CON> END
Enter the department: F11

FIRST LAST START
ID NAME NAME DEPT DATE SALARY

00891 FRED HOWL F11 9-Apr-1976 $59,594
78923 LYDIA HARRISON F11 19-Jun-1979 $40,747
Enter the department: T32
38462 BILL SWAY T32 5-May-1980 $54,000
83764 JIM MEADER T32 4-Apr-1980 $41,029
Enter the department: TOP
00012 CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–5

: (EXECUTE)

The following example invokes a procedure to specify an edit string clause for a
variable:

DTR> DEFINE PROCEDURE E_S
DFN> EDIT_STRING IS $$,$$$.99
DFN> END_PROCEDURE
DTR> DECLARE PRICE_PER_FT COMPUTED BY PRICE/LOA :E_S.
DTR> PRINT TYPE, PRICE_PER_FT OF FIRST 5 YACHTS

PRICE
PER

MANUFACTURER MODEL FT

ALBERG 37 MK II $998.68
ALBIN 79 $688.46
ALBIN BALLAD $916.67
ALBIN VEGA $688.89
AMERICAN 26 $380.58

DTR>

4–6 DATATRIEVE Commands, Statements, and Definition Clauses

@ (Invoke Command File)

@ (Invoke Command File)
Invokes a command file.

Format

@ file-spec

Argument

file-spec
Is the file specification for the file you want to execute.

Restrictions

• When you invoke a command file, it must be on a line by itself.

• You cannot invoke command files while you are using the Application Design
Tool (ADT) or Guide Mode.

• You cannot invoke a command file in a loop created by the FOR, REPEAT, or
WHILE statements.

• You cannot include a command file invocation within a BEGIN-END block.

• Do not allow a command file to invoke itself, either directly or indirectly; you
can create an infinite loop.

• When you invoke a command file using the DCL DATATRIEVE command, you
must use double quotation marks around the @ command and the command
file. This is to prevent the operating system from interpreting the commands
contained in the command file as a DCL commands.

Results

• If you do not include a file type in the file specification, DATATRIEVE uses a
.COM file type as a default. If there is no file in the specified VMS directory
with a .COM file type, DATATRIEVE uses a .DTR file type as a default.

• If the command file consists of full commands or statements, DATATRIEVE
executes each command or statement in the command file in order.

• If the command file ends with an incomplete DATATRIEVE command or
statement, DATATRIEVE returns a CON> prompt, waiting for you to supply
the missing elements.

DATATRIEVE Commands, Statements, and Definition Clauses 4–7

@ (Invoke Command File)

Usage Notes

• You can include comments in a command file by placing an exclamation mark
(!) before each comment line.

• To display the lines of a command file when you invoke it, enter the SET
VERIFY command either from DCL or DATATRIEVE command level.

Example

The following example invokes a command file, BUILDER.COM, from DCL to
produce a report on yachts by a specified builder.

$ DATATRIEVE "@BUILDER"
READY YACHTS
REPORT YACHTS WITH BUILDER = *.BUILDER
SET COLUMNS_PAGE = 70
PRINT BOAT
END_REPORT
Enter BUILDER: ALBIN

11-Oct-1982
Page 1

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

$

4–8 DATATRIEVE Commands, Statements, and Definition Clauses

ABORT Statement

ABORT Statement
Stops the execution of a single statement, an entire procedure, or a command file.

Format

ABORT [value-expression]

Argument

value-expression
Is a DATATRIEVE value expression, usually a character string literal.

Restriction

When DATATRIEVE processes the ABORT statement, ABORT affects the
outermost statement that contains it.

When a statement contains nested FOR loops, you cannot use an ABORT
statement to transfer control from an inner loop to an outer loop. Similarly, when
a statement contains nested BEGIN-END blocks, you cannot use an ABORT
statement to transfer control from an inner block to an outer one.

Results

• If the abort occurs during an interactive session, DATATRIEVE stops
executing the statement containing the ABORT statement and returns
control to the DATATRIEVE command level (indicated by the DTR> prompt).
The ABORT statement does not end the interactive session.

• If the abort occurs in a procedure or command file, the result depends on
whether SET ABORT is in effect:

If SET ABORT is in effect, DATATRIEVE returns to command level
without executing the rest of the procedure or command file.

If SET NO ABORT is in effect, DATATRIEVE aborts the current
statement and then processes any statements and commands remaining
in the procedure or command file.

• If the abort occurs within a STORE or MODIFY statement, DATATRIEVE
does not store a new record or modify the target record.

• If the abort occurs during an interactive session, DATATRIEVE displays
a message containing the value of the value expression you specify in the
ABORT statement:

DATATRIEVE Commands, Statements, and Definition Clauses 4–9

ABORT Statement

DTR> ABORT "Bad value for LOA."
ABORT: Bad value for LOA.
DTR> ABORT 3+2
ABORT: 5
DTR>

• If you invoke DATATRIEVE with an invocation command line (for example,
$ DTR32 @BIGJOB), the effect of an ABORT statement depends on whether
SET ABORT is in effect:

If SET ABORT is in effect, DATATRIEVE returns to the DCL command
level (indicated by the dollar sign prompt) without executing the rest of
the command file.

If SET NO ABORT is in effect, DATATRIEVE aborts the statement
containing the ABORT statement and then processes any statements and
commands remaining in the command file.

• When you submit a batch stream containing a DATATRIEVE command file,
any ABORT statements in the command file behave as they would if you had
entered them during an interactive session:

Whether SET ABORT is in effect or not, DATATRIEVE prints the abort
message containing the value of the specified value expression in the log
file of the batch job.

If SET ABORT is in effect and DATATRIEVE processes an ABORT
statement in a procedure or command file, DATATRIEVE returns to the
DATATRIEVE command level without executing the rest of the procedure
or command file.

If SET NO ABORT is in effect and DATATRIEVE processes an ABORT
statement in a procedure or command file, DATATRIEVE aborts the
current statement and then processes any statements and commands
remaining in the procedure or command file.

If you invoke DATATRIEVE with an invocation command line in the
batch stream and DATATRIEVE processes an ABORT statement, SET
ABORT ends the DATATRIEVE session and returns control of the process
to the batch stream. SET NO ABORT aborts the current statement, and
DATATRIEVE processes the remaining statements in the command file.

If the batch stream contains other command files queued after the
DATATRIEVE command file, the processing of a DATATRIEVE ABORT
statement does not end the batch job.

4–10 DATATRIEVE Commands, Statements, and Definition Clauses

ABORT Statement

Usage Note

Use an IF-THEN-ELSE statement to establish the conditions for the abort (see
the section on the IF-THEN-ELSE statement in this chapter). The Boolean
expression in the IF clause establishes the conditions that control the ABORT
statement. An abort occurs when:

• The Boolean expression is true and the ABORT statement is in the THEN
clause.

• The Boolean expression is false and the ABORT statement is in the ELSE
clause.

Examples

The following example shows how to store a record in the YACHTS domain. If the
value of the BEAM field is 0, the operation is aborted and a message is displayed.

DTR> STORE YACHTS VERIFY USING
[Looking for statement]
DTR> IF BEAM EQ 0 THEN ABORT "Bad value for BEAM"
Enter MANUFACTURER: AMERICAN
Enter MODEL: 1980
Enter RIG: SLOOP
Enter LENGTH_OVER_ALL: 25
Enter DISPLACEMENT: 7500
Enter BEAM: 0
Enter PRICE: 10000
ABORT: Bad value for BEAM
DTR>

The following example shows how to define a procedure to write a report on the
current collection and abort the entire procedure if there is no current collection
to report on.

DTR> DEFINE PROCEDURE YACHT_REPORT
DFN> SET ABORT
DFN> PRINT "HAVE YOU ESTABLISHED A CURRENT COLLECTION?"
DFN> IF *."YES or NO" CONTAINING "N" THEN
DFN> ABORT "SORRY--NO COLLECTION, NO REPORT."
DFN> REPORT
DFN> PRINT BOAT
DFN> AT BOTTOM OF REPORT PRINT COUNT, TOTAL PRICE
DFN> END_REPORT
DFN> END_PROCEDURE
DTR> :YACHT_REPORT

DATATRIEVE Commands, Statements, and Definition Clauses 4–11

ABORT Statement

HAVE YOU ESTABLISHED A CURRENT COLLECTION?
Enter YES or NO: NO
ABORT: SORRY--NO COLLECTION, NO REPORT.
DTR>

In the following example, a procedure is defined to update the OWNERS domain
after the sale of a boat. The boat is checked against the inventory in the YACHTS
domain and the procedure is aborted if the boat is not in YACHTS. Then, the
OWNERS domain is checked for a record of the boat. If a record exists, the
owner’s name is changed and the boat name is updated, if desired. If no record
exists, a new record is stored in the OWNERS domain. The procedure requires
MODIFY or WRITE access to OWNERS for the update and EXTEND or WRITE
access for the entry of a new record.

The example aborts because there is no YACHTS record for an ALBERG 42. The
value expression specified in the ABORT statement includes the variables BLD
and MOD.

DTR> SHOW SALE_BOAT
PROCEDURE SALE_BOAT
READY YACHTS, OWNERS WRITE
SET ABORT
DECLARE BLD PIC X(10).
DECLARE MOD PIC X(10).
BLD = *."BUILDER’S NAME"
MOD = *."MODEL"
IF NOT ANY YACHTS WITH (BUILDER = BLD AND

MODEL = MOD) THEN
BEGIN

PRINT SKIP, "RECORD NOT FOUND IN YACHTS.", SKIP
ABORT "POSSIBLE INVENTORY ERROR FOR--"||BLD|||MOD

END ELSE
PRINT SKIP, "YACHTS RECORD FOUND FOR "|BLD|||MOD

IF ANY OWNERS WITH (BUILDER = BLD AND
MODEL = MOD) THEN
BEGIN

FOR OWNERS WITH (BUILDER = BLD AND
MODEL = MOD)

MODIFY USING
BEGIN

PRINT COL 10, NAME, SKIP
NAME = *."NEW OWNER’S NAME"
PRINT COL 10, BOAT_NAME, SKIP
IF *."CHANGE BOAT NAME? Y/N"

CONTAINING "Y" THEN PRINT SKIP THEN
BOAT_NAME = *."NEW BOAT NAME"

END
END ELSE

4–12 DATATRIEVE Commands, Statements, and Definition Clauses

ABORT Statement

STORE OWNERS USING
BEGIN

NAME = *."NEW OWNER’S NAME"
BOAT_NAME = *."BOAT NAME"
BUILDER = BLD
MODEL = MOD

END
END_PROCEDURE
DTR> :SALE_BOAT
Enter BUILDER’S NAME: ALBERG
Enter MODEL: 42
RECORD NOT FOUND IN YACHTS.
ABORT: POSSIBLE INVENTORY ERROR FOR--ALBERG 42
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–13

ADT Command

ADT Command
Invokes the Application Design Tool (ADT), an interactive aid that helps you
define a domain, its associated record, and its data file.

Format

ADT

Arguments

None.

Restrictions

• You cannot invoke ADT from an application program using the DATATRIEVE
Call Interface.

• Do not use the ADT command in a command file.

• The record definition and data file definition created by ADT do not contain
all the features, clauses, and options available when using the DATATRIEVE
DEFINE or REDEFINE commands.

• The length of the domain name cannot exceed 27 characters.

• See the following commands for the access privileges needed to add the
domain and record definitions to the data dictionary and to define the data
file for the domain: DEFINE DOMAIN, DEFINE RECORD, DEFINE FILE,
and DELETE.

• You cannot use ADT to create a new version of a domain or record definition.

Results

• DATATRIEVE invokes the Application Design Tool, which asks you a series
of questions about the domain, the size and type of the fields you want in
the record, and the name and type of the data file. On VT100-, VT200-, and
VT300- family terminals and workstations, the current state of the record
definition is displayed in the upper part of the screen or window. There is a
reverse facility, enabling you to return to an earlier stage of your dialogue
with ADT. See the VAX DATATRIEVE User’s Guide for additional information
on ADT.

• ADT gives you the option of having ADT enter your definitions immediately
into the CDD/Repository data dictionary or having ADT write a command file
you can invoke at a later time.

4–14 DATATRIEVE Commands, Statements, and Definition Clauses

ADT Command

• If you respond to any of ADT’s questions with a CTRL/Z, DATATRIEVE
returns control to command level (indicated by the DTR> prompt), and
displays the following message:

ADT exited by user request
DTR>

Example

Invoke the Application Design Tool:

DTR> ADT
Do you want detailed prompts? (YES or NO) :

See the VAX DATATRIEVE User’s Guide for a sample ADT session.

DATATRIEVE Commands, Statements, and Definition Clauses 4–15

ALLOCATION Clause

ALLOCATION Clause
Specifies the type of word boundary alignment DATATRIEVE uses when storing
records in a data file associated with a record definition. It also controls the
way DATATRIEVE retrieves data from files created by user programs or other
applications software.

Format

ALLOCATION [IS]

 MAJOR_MINOR
ALIGNED_MAJOR_MINOR
LEFT_RIGHT

�

Arguments

MAJOR_MINOR
Causes DATATRIEVE to use MAJOR_MINOR alignment when storing or
retrieving data in a data file. MAJOR_MINOR forces word boundary alignments
according to data types for elementary fields defined with the SYNCHRONIZED
clause and forces group fields to the maximum alignment of the elementary fields
they contain. MAJOR_MINOR is the default for DATATRIEVE, VAX COBOL,
and COBOL–81.

ALIGNED_MAJOR_MINOR
Causes DATATRIEVE to use ALIGNED_MAJOR_MINOR alignment when
storing or retrieving data in a data file. ALIGNED_MAJOR_MINOR forces word
boundary alignments according to data types for all elementary fields in the
record and group fields to the maximum alignment of the elementary fields they
contain.

LEFT_RIGHT
Causes DATATRIEVE to use LEFT_RIGHT alignment when storing or retrieving
data in a data file. LEFT_RIGHT forces word boundary alignment for elementary
fields defined as COMP, COMP_1, COMP_2, and DATE. LEFT_RIGHT is the
default alignment for DATATRIEVE, COBOL-11, and COBOL-74.

Restriction

When defining a record for an existing data file, the alignment type of the record
definition must match that of the data file.

4–16 DATATRIEVE Commands, Statements, and Definition Clauses

ALLOCATION Clause

Results

• For records with ALIGNED_MAJOR_MINOR allocation and for fields with
SYNCHRONIZED clauses in records with MAJOR_MINOR allocation,
DATATRIEVE aligns fields on word boundaries. When DATATRIEVE shifts a
field to the next word boundary, it considers the bytes it skips as part of the
record. These bytes are called filler bytes.

• The number of filler bytes DATATRIEVE inserts when MAJOR_MINOR and
ALIGNED_MAJOR_MINOR are in effect depends on the data type of the
field.

• Fields begin on quadword boundaries if they are declared DATE, COMP_2 (or
DOUBLE), and QUAD (COMP for numbers from PICTURE 9(10) to 9(18)).

• Fields begin on longword boundaries if they are declared LONG (COMP for
numbers from PICTURE 9(5) to 9(9)), and COMP_1 (or REAL).

• Fields begin on word boundaries if they are declared WORD (COMP for
numbers from PICTURE 9(1) to 9(4)).

• When the allocation is either ALIGNED_MAJOR_MINOR or MAJOR_
MINOR, the group field boundaries are aligned according to the maximum
alignment of the elementary fields that comprise the group.

• When the allocation is LEFT_RIGHT, fields begin on word boundaries if they
are declared DATE, QUAD, COMP_2 (or DOUBLE), LONG, COMP_1 (or
REAL), and WORD.

Usage Notes

• The ALLOCATION clause is an optional record definition clause. If you
include it in your record definition, it can affect the way DATATRIEVE
handles the internal storage and retrieval of data in some or all of the fields
in your data file.

• If you want to use VAX DATATRIEVE on data files created with
DATATRIEVE, you must add an ALLOCATION LEFT-RIGHT clause to
the DATATRIEVE record definition to ensure that VAX DATATRIEVE can
interpret your data correctly.

DATATRIEVE Commands, Statements, and Definition Clauses 4–17

ALLOCATION Clause

Example

The following example shows the use of the ALLOCATION clause with the
YACHT record:

DELETE YACHT;
REDEFINE RECORD YACHT OPTIMIZE
ALLOCATION IS LEFT_RIGHT
01 BOAT.
03 TYPE.

06 MANUFACTURER PIC X(10)
QUERY_NAME IS BUILDER.

06 MODEL PIC X(10).
03 SPECIFICATIONS

QUERY_NAME SPECS.
06 RIG PIC X(6)

VALID IF RIG CONT "SLOOP","KETCH","MS","YAWL".
06 LENGTH_OVER_ALL PIC XXX

VALID IF LOA BETWEEN 15 AND 50
QUERY_NAME IS LOA.

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS "WEIGHT"
EDIT_STRING IS ZZ,ZZ9
QUERY_NAME IS DISP.

06 BEAM PIC 99 MISSING VALUE IS 0.
06 PRICE PIC 99999

MISSING VALUE IS 0
VALID IF PRICE>DISP*1.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

;

4–18 DATATRIEVE Commands, Statements, and Definition Clauses

Assignment Statements

Assignment Statements
An Assignment statement assigns a value to an elementary field, a group field, or
a variable.

Assigning a Value to an Elementary Field
Assigns a value to an elementary field in a MODIFY or STORE statement.

Format

field-name = value-expression

Arguments

field-name
Is the name of an elementary field.

=
Is an equal sign indicating assignment; it is not equivalent to the relational
operator EQ or EQUAL.

value-expression
Is the value to be assigned to the field. This argument can be any DATATRIEVE
value expression.

Restrictions

• An elementary field Assignment statement can be used only in a
MODIFY . . . USING or STORE . . . USING statement. See the sections
on MODIFY and STORE in this chapter for more information.

• To use an Assignment statement inside a STORE . . . USING statement, you
must ready the domain for WRITE or EXTEND access. To use this statement
inside a MODIFY . . . USING statement, you must ready the domain for
WRITE or MODIFY access. See the section on READY in this chapter for
more information.

• You cannot assign a value to a COMPUTED BY field.

DATATRIEVE Commands, Statements, and Definition Clauses 4–19

Assignment Statements

Results

• DATATRIEVE stores the value of the value expression in the specified field,
performing any data type conversions necessary.

• If the value expression is a prompting value expression (*.prompt-name),
DATATRIEVE prompts for the value of the field. DATATRIEVE rejects your
input and reprompts for the value if any of the following occurs:

Truncation error

You have entered more characters than the field definition allows.

Conversion error

You have entered a character that is inappropriate for the field, such as a
letter for a numeric field.

Sign error

You have entered a minus sign for an unsigned numeric field.

VALID IF failure

You have entered an invalid value for the field. That is, the value
results in a Boolean expression (specified in a VALID IF clause in the
record definition) that is ‘‘False.’’ See the chapter on record definitions
in the VAX DATATRIEVE User’s Guide for more information on record
definitions and field definition clauses.

• If the value expression is not a prompting value expression and truncation,
conversion, or sign errors occur, DATATRIEVE accepts the value with a
warning:

If you enter too many digits for a numeric field, DATATRIEVE truncates
the high-order digits, stores the remaining digits in the field, and issues
an error message.

If you enter too many characters for an alphanumeric field, DATATRIEVE
truncates the rightmost characters, stores the remaining characters in the
field, and issues an error message.

If a VALID IF failure occurs, DATATRIEVE does not execute the
Assignment statement and does not execute the STORE or MODIFY
statement containing the Assignment statement.

4–20 DATATRIEVE Commands, Statements, and Definition Clauses

Assignment Statements

Usage Notes

• When using this type of Assignment statement, you may want DATATRIEVE
to check your values for validity and give you the opportunity to recover from
an error caused by invalid input. The prompting value expression, shown
in the Assignment statement that follows, provides the only means for you
to recover from truncation, conversion, or sign errors, or VALID IF failures.
This facility is especially useful when you are creating records with the
STORE . . . USING statement.

field-name = *.prompt-name

• If you are unsure of the name of a field or the general type of data it contains,
use the SHOW FIELDS command (see the section in this chapter on the
SHOW command). SHOW FIELDS displays a brief description of each field
in a readied domain.

Examples

In the following example, the YACHTS domain is readied for WRITE access, and
a record for the manufacturer CHALLENGER is stored in the domain:

DTR> READY YACHTS WRITE
DTR> STORE YACHTS USING MANUFACTURER = "CHALLENGER"
DTR> PRINT YACHTS WITH BUILDER EQ "CHALLENGER"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 0 00
CHALLENGER 32 SLOOP 32 12,800 11 $31,835
CHALLENGER 35 SLOOP 35 14,800 12 $39,215
CHALLENGER 41 KETCH 41 26,700 13 $51,228

DTR>

In the following example, the YACHTS domain is readied for MODIFY access,
and the value of the PRICE field is changed to a new value specified by the user:

DTR> READY YACHTS MODIFY
DTR> FIND YACHTS
[113 records found]
DTR> SELECT
DTR> PRINT PRICE THEN MODIFY USING PRICE = *."NEW PRICE"

PRICE

$36,951
Enter NEW PRICE: 39000
DTR> PRINT PRICE

DATATRIEVE Commands, Statements, and Definition Clauses 4–21

Assignment Statements

PRICE

$39,000

DTR>

Assigning a Value to a Group Field
Assigns a value to a group field in a MODIFY or STORE statement.

Format

group-field-name-1 = group-field-name-2

Arguments

group-field-name-1
Is the name of a group field to which you want to assign a value.

=
Is an equal sign indicating assignment; it is not equivalent to the relational
operator EQ or EQUAL.

group-field-name-2
Is the name of a group field containing the values you want to assign to group-
field-1. This group field must have at least one elementary field with the same
name as an elementary field in group-field-1.

Restrictions

• A group field Assignment statement can be used only in a MODIFY . . .
USING or STORE . . . USING statement. See the sections in this chapter on
the MODIFY and STORE statements for more information.

• To use an Assignment statement in a MODIFY . . . USING statement, you
must ready the domain containing group-field-1 for MODIFY or WRITE
access. To use it in a STORE . . . USING statement, you must ready the
domain for WRITE or EXTEND access. See the section in this chapter on the
READY command for more information.

• Both group-field-1 and group-field-2 must have at least one elementary field
with the same field name or query name.

4–22 DATATRIEVE Commands, Statements, and Definition Clauses

Assignment Statements

Results

DATATRIEVE changes the values of all fields in group-field-1 to the values of
identically named fields in group-field-2. All other elementary fields in group-
field-1 are set to zero or blank in a STORE statement or remain unchanged in a
MODIFY statement.

Examples

The following example shows how to store a record in the YACHTS domain with
the same values in the group field SPECIFICATIONS as the selected record:

DTR> SET NO PROMPT
DTR> READY YACHTS WRITE
DTR> FIND YACHTS
[113 records found]
DTR> SELECT
DTR> PRINT SPECS

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 37 20,000 12 $36,951

DTR> STORE YACHTS USING
CON> BEGIN
CON> BUILDER = *.BUILDER
CON> SPECS = SPECS
CON> END
Enter BUILDER: HUGHES
DTR> PRINT YACHTS WITH BUILDER = "HUGHES"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

HUGHES KETCH 37 20,000 12 $36,951

DTR>

The following example shows how to store records into a new domain PRICED_
YACHTS. Only the boats that have a price are stored.

DATATRIEVE Commands, Statements, and Definition Clauses 4–23

Assignment Statements

DTR> DEFINE DOMAIN PRICED_YACHTS USING YACHT ON PYACHT.DAT;
DTR> DEFINE FILE FOR PRICED_YACHTS
DTR> READY PRICED_YACHTS WRITE
DTR> SET NO PROMPT
DTR> FOR YACHTS WITH PRICE NE 0
CON> STORE PRICED_YACHTS USING BOAT = BOAT
DTR> FIND PRICED_YACHTS
[50 records found]
DTR>

Assigning a Value to a Variable
Assigns a value to a variable.

Format

variable-name = value-expression

Arguments

variable-name
Is the name of a variable that has been defined with a DECLARE statement.

=
Is an equal sign indicating assignment; it is not equivalent to the relational
operator EQ or EQUAL.

value-expression
Is a value expression, the value of which you want to assign to the specified
variable.

Restrictions

• You can use a variable Assignment statement anywhere a DATATRIEVE
statement is allowed.

• The variable-name must be defined with the DECLARE statement.

Results

• DATATRIEVE assigns the specified value to the variable.

• If the value expression is a prompting value expression (*.prompt-name)
DATATRIEVE prompts for the value of the field. DATATRIEVE rejects your
input and reprompts for the value if any of the following occurs:

Truncation error

You have entered more characters than the field definition allows.

4–24 DATATRIEVE Commands, Statements, and Definition Clauses

Assignment Statements

Conversion error

You have entered a character that is inappropriate for the field, such as a
letter for a numeric field.

Sign error

You have entered a minus sign for an unsigned numeric field.

VALID IF failure

You have entered an invalid value for the field. That is, the value
results in a Boolean expression (specified in a VALID IF clause in the
record definition) that is false. See the chapter on record definitions
in the VAX DATATRIEVE User’s Guide for more information on record
definitions and field definition clauses.

• If the argument value expression is not a prompting value expression and
truncation, conversion, or sign errors occur, DATATRIEVE accepts the value
with a warning:

If you enter too many digits for a numeric field, DATATRIEVE truncates
the high-order digits, stores the remaining digits in the field, and issues
an error message.

If you enter too many characters for an alphanumeric field, DATATRIEVE
truncates the rightmost characters, stores the remaining characters in the
field, and issues an error message.

If a VALID IF failure occurs, DATATRIEVE does not execute the
Assignment statement.

Usage Note

When using this type of Assignment statement, you may want DATATRIEVE
to check your values for validity and give you the opportunity to recover from
an error caused by invalid input. The prompting value expression shown in the
following Assignment statement provides the only means for you to recover from
truncation, conversion, or sign errors or VALID IF failure:

variable-name = *.prompt-name

DATATRIEVE Commands, Statements, and Definition Clauses 4–25

Assignment Statements

Examples

In the following example, the global variable NEW_PRICE is declared and a
value is assigned to it:

DTR> DECLARE NEW_PRICE PIC 9(5) EDIT_STRING IS $$$,$$$.
DTR> NEW_PRICE = "$25,000"
DTR> PRINT NEW_PRICE

NEW
PRICE

$25,000

DTR>

In the following example, two global variables, NEW_PRICE and OLD_PRICE,
are declared. The value in the PRICE field of the first boat in YACHTS is printed
and then assigned to OLD_PRICE. Then the value of OLD_PRICE is assigned to
NEW_PRICE:

DTR> DECLARE NEW_PRICE PIC 9(5).
DTR> DECLARE OLD_PRICE PIC 9(5).
DTR> FIND YACHTS; SELECT; PRINT PRICE

PRICE

$36,951
DTR> OLD_PRICE = PRICE
DTR> PRINT OLD_PRICE

OLD
PRICE

$36,951

DTR> NEW_PRICE = OLD_PRICE
DTR> PRINT NEW_PRICE

NEW
PRICE

$36,951

DTR>

4–26 DATATRIEVE Commands, Statements, and Definition Clauses

AT Statements (Report Writer)

AT Statements (Report Writer)
The Report Writer AT statements display header and summary lines at the top
and bottom of the report, and at the top and bottom of pages and control groups
(groups of sorted records with the same value in one or more fields).

The AT TOP statement summarizes information for the entire group of records
in the current collection, not the records of the page, group, or report that you
specify in the statement.

The AT BOTTOM statement calculates the summary information based on the
records of the page, group, or report that you specify in the statement.

With the two forms of the AT statement, you can specify the value, position, and
format of the print objects in the header and summary lines:

The AT statements accept the same types of print objects as a PRINT statement.

Format

AT BOTTOM OF

 REPORT
PAGE
field-name

�
PRINT summary-element [, ...]

AT TOP OF

 REPORT
PAGE
field-name

�
PRINT

� header-element
summary-element

[, ...]

Arguments

field-name
Is a field from the record definition for the report’s record stream or a variable.

header-element
summary-element
Specifies the value, position, and format of the fields. These elements are
summarized in Table 4–1.

DATATRIEVE Commands, Statements, and Definition Clauses 4–27

AT Statements (Report Writer)

Table 4–1 AT Statements Summary Elements

Summary
Element Function Usage Notes

AVERAGE
value expression

Displays the average value of
the value expressions.

Calculated for the detail
lines of the report, page, or
group specified. Does not
indicate the average for the
detail lines of the report,
page, or control group.

ATT name Sets print attributes for the
following print list elements.

Same usage as in the PRINT
statement (Report Writer).

COL n Specifies where the output of
the next header or summary
element begins.

Same usage as in the PRINT
statement (Report Writer).

COLUMN_
HEADER

Displays the column headers. Overrides the suppression of
column headers for AT TOP
OF REPORT or PAGE.

COUNT Displays the number of detail
lines.

Calculated for the detail
lines of the report, page,
or group specified.Does
not indicate the number of
detail lines of control group
specified.

field-name
[modifier]

In AT BOTTOM OF field-
name and AT TOP OF field-
name, prints the common
field value for each control
group.

Same usage as in the PRINT
statement (Report Writer).

MAX value
expression

Displays the maximum value
of the value expression.

Calculated for the detail
lines of the report, page,
or group specified.Does
not indicate the maximum
value for the detail lines of
the report, page, or control
group specified.

(continued on next page)

4–28 DATATRIEVE Commands, Statements, and Definition Clauses

AT Statements (Report Writer)

Table 4–1 (Cont.) AT Statements Summary Elements

Summary
Element Function Usage Notes

MIN value
expression

Displays the minimum value
of the value expression.

Calculated for the detail
lines of the report, page,
or group specified.Does
not indicate the minimum
value for the detail lines of
the report, page, or control
group specified.

NEW_PAGE Causes the Report Writer to
start a new page before the
output of the next summary
element.

Same usage as in the PRINT
statement (Report Writer).
Cannot be used in neither
AT BOTTOM OF PAGE nor
AT TOP OF PAGE.

NEW_SECTION Starts a new page and a new
sequence of page numbers,
beginning with Page 1.

Cannot be used in neither
AT BOTTOM OF PAGE, nor
AT TOP OF PAGE.

REPORT_
HEADER

Displays the report header,
including the report name,
date, and page number.

Overrides the suppression of
a report header in AT TOP
OF REPORT or PAGE.

RUNNING
COUNT

In AT BOTTOM OF field-
name and AT TOP OF field-
name, prints the number of
control breaks for that field
to that point in the report.

In AT BOTTOM OF PAGE
and AT TOP OF PAGE,
prints the number of pages
to that point in the report.

SKIP [n] Prints the next header or
summary element n lines
from the current line.

Same usage as in the PRINT
statement (Report Writer).

SPACE [n] Leaves spaces between the
output of the preceding and
following elements.

Same usage as in the PRINT
statement (Report Writer).

(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–29

AT Statements (Report Writer)

Table 4–1 (Cont.) AT Statements Summary Elements

Summary
Element Function Usage Notes

STD_DEV
value expression

Displays the standard
deviation of values for the
value expression.

Calculated for the detail
lines of the report, page,
or group specified.Does
not indicate the standard
deviation for the detail lines
of the report, page, or control
group specified.

TAB [n] Inserts the space of one or
more tabs before the output
of the next element.

Same usage as in the PRINT
statement (Report Writer).

TOTAL value
expression

Displays the total of values
for the expression.

Calculated for the detail
lines of the report, page,
or group specified.Does not
indicate the total for the
detail lines of the report,
page, or control group.

value expression Displays the value in a
header or summary line.

Same usage as in the PRINT
statement (Report Writer).

Restrictions

• AT TOP OF PAGE and AT BOTTOM OF PAGE are ignored in DTIF reports.

• Elements NEW_PAGE, NEW_SECTION, and REPORT_HEADER are ignored
in AT statements in DTIF format.

• You cannot specify the summary elements NEW_PAGE and NEW_SECTION
in neither an AT BOTTOM OF PAGE PRINT statement, nor an AT TOP OF
PAGE PRINT statement.

• For relational sources, DATATRIEVE uses the relation’s name as the top-level
group field. This top-level field cannot be used in AT TOP or AT BOTTOM
statements. For example, with the EMPLOYEES relational domain, you
cannot use this statement:

AT BOTTOM OF EMPLOYEES PRINT EMPLOYEE_ID

• You cannot use OCCURS fields from views in AT TOP OF or AT BOTTOM
OF statements. Using view domain fields defined with OCCURS clauses in
Report Writer AT statements causes a NODATA error message.

4–30 DATATRIEVE Commands, Statements, and Definition Clauses

AT Statements (Report Writer)

• You cannot specify a statistical expression in an AT TOP statement unless
you have already formed a current collection. VAX DATATRIEVE evaluates
the statistical expression based on the records in the current collection.

• Under certain conditions, specifying an AT TOP OF clause may have an
effect on the subsequent column positioning of the field if it is also specified
in the PRINT detail line. This occurs under the following combination of
circumstances:

You specify the field in an AT TOP OF statement.

You specify a column number for the start of the field value in the print
detail line.

You do not specify a header for the column in the print detail line.

To print the field value in the column you specify, you must explicitly suppress
the header for the individual field using a hyphen in parentheses (-).

Results

• The AT BOTTOM OF field-name statement and the AT TOP OF field-
name statement establish a pattern of control breaks for the entire report,
dividing the report into groups of records with a common value for the field.
DATATRIEVE displays the summary line at the bottom of the control group
for which the field name is the sort key. Statistical expressions are computed
for the records for the detail lines in that control group.

When you specify AT BOTTOM OF field-name PRINT field-name, the Report
Writer prints the value in the specified field of the last detail line in the
control group.

• If you use AT BOTTOM OF field-name, DATATRIEVE checks the sort order
of the collection or record stream you want to report. You can establish a sort
order with the FIND, SORT, or REPORT statements.

• If AT BOTTOM OF REPORT is included in a report specification,
DATATRIEVE displays the header line or summary line below the detail
lines on the last page of the report. Statistical expressions are computed for
the records for all of the detail lines in the report.

• If an AT TOP OF REPORT is included in a report specification, DATATRIEVE
displays the header line or summary line above the detail lines on the first
page of the report and suppresses the report header on the first page of the
report. The report header is displayed on the following pages of the report,
and the page numbers begin with Page 1 on the second physical page of
the report. To specify a title page for your report, end the print list with
NEW_PAGE or NEW_SECTION.

DATATRIEVE Commands, Statements, and Definition Clauses 4–31

AT Statements (Report Writer)

• If an AT BOTTOM OF PAGE statement is included in a report specification,
DATATRIEVE displays the header line or summary line at the bottom of each
page of the report. Statistical expressions are computed for the records for
the detail lines on that page.

• If an AT TOP OF PAGE is included in a report specification, DATATRIEVE
displays the header line or summary line at the top of each page of the report
and replaces the report header on every page.

Usage Notes

• The header and summary elements may contain modifiers to specify edit
strings or to suppress headers.

• If you use AT BOTTOM OF field-name without having sorted the records,
the Report Writer divides the detail lines into control groups anyway. A new
control group is formed every time the value in the specified field changes.
If no values in that field are repeated in consecutive detail lines, the Report
Writer treats each line as a separate control group and prints the header
and summary lines above and below each line as indicated in the record
specification.

You may want to follow this approach in the following situation. For example,
the records may already be sorted according to an indexed key field. If
there is only one level of control break, the Report Writer divides the control
groups at the appropriate places. However, if you want multiple levels of
control groups, you must sort the records in advance with a FIND, SORT, or
REPORT statement.

• In table formats AT TOP OF PAGE and AT BOTTOM OF PAGE are ignored.

Examples

The following example shows the use of both the AT BOTTOM and AT TOP
statements:

DTR> SHOW SALARY_REPORT

4–32 DATATRIEVE Commands, Statements, and Definition Clauses

AT Statements (Report Writer)

PROCEDURE SALARY_REPORT
REPORT PERSONNEL WITH DEPT = "D98","E46","T32" SORTED BY DEPT
SET REPORT_NAME = "SALARY REPORT"
SET COLUMNS_PAGE = 60
AT TOP OF DEPT PRINT DEPT
PRINT ID, FIRST_NAME|||LAST_NAME ("NAME"), SALARY
AT BOTTOM OF DEPT PRINT SKIP,

COL 36, DEPT|||"TOTAL:",
TOTAL SALARY USING $$$$,$$$, SKIP, COL 13,
"***********************************",
SKIP, COL 32, "OVERALL TOTAL:", COL 50,
RUNNING TOTAL (TOTAL SALARY) USING $$$$,$$$, SKIP

END_REPORT
END_PROCEDURE

Figure 4–1 shows the report produced by this specification.

Figure 4–1 Control Group Report Based on One Sort Key
DTR> :SALARY_REPORT

SALARY REPORT 14-May-1984
Page 1

DEPT ID NAME SALARY

D98
02943 CASS TERRY $29,908
39485 DEE TERRICK $55,829
49843 BART HAMMER $26,392
84375 MARY NALEVO $56,847

D98 TOTAL: $168,976

OVERALL TOTAL: $168,976

E46
38465 JOE FREIBURG $23,908
48475 GAIL CASSIDY $55,407

E46 TOTAL: $79,315

OVERALL TOTAL: $248,291

T32
34456 HANK MORRISON $30,000
38462 BILL SWAY $54,000
48573 SY KELLER $31,546
83764 JIM MEADER $41,029

(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–33

AT Statements (Report Writer)

Figure 4–1 (Cont.) Control Group Report Based on One Sort Key

T32 TOTAL: $156,575

OVERALL TOTAL: $404,866

See the VAX DATATRIEVE User’s Guide for more examples of the AT TOP
statement.

4–34 DATATRIEVE Commands, Statements, and Definition Clauses

BEGIN END Statement

BEGIN END Statement
Groups DATATRIEVE statements into a single compound statement called a
BEGIN-END block.

Format

BEGIN

statement-1

[statement-2]
.
.
.

END

Arguments

BEGIN
Marks the beginning of a BEGIN-END block.

statement
Is a DATATRIEVE statement. Within the BEGIN-END block, end each statement
with a semicolon, a RETURN, or both.

END
Marks the end of the BEGIN-END block.

Restrictions

• You must observe all restrictions on the statements included in the BEGIN-
END block. This manual lists these restrictions in the descriptions of the
various statements.

• Do not use FIND, SELECT, or DROP statements in a BEGIN-END block.

• You cannot use DATATRIEVE commands in a BEGIN-END block.
Consequently, a BEGIN-END block cannot include a procedure that contains
DATATRIEVE commands.

• You cannot invoke a command file in a BEGIN-END block. That is, you
cannot have a line in a BEGIN-END block that contains an at sign (@)
followed by a file specification. DATATRIEVE treats a command file
invocation as a command and does not execute command files specified
within a BEGIN-END block.

DATATRIEVE Commands, Statements, and Definition Clauses 4–35

BEGIN END Statement

Results

• Within a BEGIN-END block, DATATRIEVE executes the statements in the
order you entered them.

• When the BEGIN-END block includes a DECLARE statement, the variable it
defines is a local variable. You cannot refer to a local variable from outside
the BEGIN-END block. DATATRIEVE automatically releases all local
variables when it completes the BEGIN-END block in which they are defined.

If a BEGIN-END block that defines a local variable is in a FOR loop or
REPEAT statement, the local variable is initialized each time DATATRIEVE
executes the BEGIN-END block. The variable is initialized to zero, space, the
DEFAULT value, or the MISSING value depending on the way you defined
the variable in the DECLARE statement. See the sections on the DECLARE
statement and the DEFAULT VALUE and MISSING VALUE clauses for more
information.

• When you create a single BEGIN-END block interactively, DATATRIEVE
prompts you, after you press the RETURN key, for the elements needed to
complete an individual statement or to complete the block. The CON> prompt
indicates that DATATRIEVE is ready for you to continue entering statements
or elements of statements into the BEGIN-END block.

After you enter END, DATATRIEVE executes all the statements in the
BEGIN-END block. When DATATRIEVE completes the last statement in the
BEGIN-END block, you see the DTR> prompt, indicating you have returned
to DATATRIEVE command level. If you are entering nested BEGIN-END
blocks, DATATRIEVE continues to prompt you with the CON> until you have
entered the END that completes the outermost BEGIN-END block.

DATATRIEVE does not execute any of the statements in the nested blocks
until you enter the END that completes the outermost BEGIN-END block.

• If you enter CTRL/C while DATATRIEVE is executing the statements in a
BEGIN-END block, DATATRIEVE does not execute any of the remaining
statements that follow in the block.

DATATRIEVE treats the whole BEGIN-END block as one statement,
regardless of the number of statements or nested BEGIN-END blocks it
contains. Because CTRL/C cancels the execution of the current statement,
it cancels the execution of the remainder of the entire, outermost BEGIN-
END block, regardless of its complexity or the number of levels of other
BEGIN-END blocks nested in it.

4–36 DATATRIEVE Commands, Statements, and Definition Clauses

BEGIN END Statement

If a statement in a BEGIN-END block prompts you for a value and you enter
a CTRL/C, DATATRIEVE reprompts you for the value; it does not end the
execution of the BEGIN-END block. To end the execution of a BEGIN-END
block when DATATRIEVE is prompting you for a value, enter CTRL/Z.
DATATRIEVE then ends the execution of the outermost BEGIN-END block
and returns you to DATATRIEVE command level.

Usage Notes

• You can use a BEGIN-END block anywhere you can use a DATATRIEVE
statement.

• You can nest BEGIN-END blocks. There is virtually no limit on the levels of
nested BEGIN-END blocks you can form.

• To repeat an entire sequence of DATATRIEVE statements, put the statements
in a BEGIN-END block, and put the BEGIN-END block in a REPEAT
statement.

• If you invoke a procedure in a REPEAT statement (using the form REPEAT n
:procedure-name), DATATRIEVE repeats the first statement of the procedure
n times and then executes the other statements in the procedure once each.

To repeat all the statements of a procedure you invoke in a REPEAT
statement, put the procedure invocation in a BEGIN-END block, and put
the BEGIN-END block in the REPEAT statement.

• Use a BEGIN-END block to include more than one DATATRIEVE statement
in a FOR loop.

• Use a BEGIN-END block to include more than one DATATRIEVE statement
in the THEN and ELSE clauses in an IF-THEN-ELSE statement.

• When storing or modifying records, use BEGIN-END blocks to include more
than one statement in the USING and VERIFY USING clauses of the STORE
and MODIFY statements.

• If you write a procedure that uses consecutive PRINT statements to format
your output, the line spacing changes when you put the procedure in a
BEGIN-END block. The one blank line between the result of each PRINT
statement disappears. To preserve that spacing when you include the
procedure in a BEGIN-END block, edit the procedure and insert a SKIP
print-list element at the beginning of the second and each succeeding PRINT
statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–37

BEGIN END Statement

Examples

The following example shows how to store five records in the domain PHONES,
each having LOCATION MB1-H2 and DEPARTMENT CE. The SET NO
PROMPT command suppresses the ‘‘[Looking for . . .]’’ prompts preceding
each CON> prompt. This example also shows how DATATRIEVE responds to
CTRL/C and CTRL/Z when it is prompting you for input.

DTR> READY PHONES WRITE
DTR> SET NO PROMPT
DTR> REPEAT 5 STORE PHONES USING
DTR> BEGIN
CON> NAME= *.NAME
CON> NUMBER= *.NUMBER
CON> LOCATION= "MB1-H2"
CON> DEPARTMENT= "CE"
CON> END
Enter NAME: FRED
Enter NUMBER: 555-1234
Enter NAME: GERRY
Enter NUMBER: CTRL/C

^C
Enter NUMBER: CTRL/Z

Execution terminated by operator
DTR>

The following example shows how to use a BEGIN-END block to put three
statements in the USING clause of a MODIFY statement, print a YACHTS
record, modify the price, and print the result of the modification:

DTR> READY YACHTS WRITE
DTR> SET NO PROMPT
DTR> FOR YACHTS WITH PRICE = 0
CON> MODIFY USING
CON> BEGIN
CON> PRINT
CON> PRICE = *."NEW PRICE"
CON> PRINT
CON> END

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39 18,500 12
Enter NEW PRICE: 30000

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

4–38 DATATRIEVE Commands, Statements, and Definition Clauses

BEGIN END Statement

BLOCK I. 40 SLOOP 39 18,500 12 $30,000
BUCCANEER 270 SLOOP 27 5,000 08
Enter NEW PRICE: CTRL/Z

Execution terminated by operator

DTR>

The following example shows how a BEGIN-END block is treated as a single
statement:

DTR> DEFINE PROCEDURE LOOP_EXAMPLE
DFN> PRINT "SHOW HOW A BEGIN-END WORKS WITH REPEAT"
DFN> PRINT "AND MORE THAN ONE STATEMENT"
DFN> END_PROCEDURE
DTR>
DTR> REPEAT 2 :LOOP_EXAMPLE
SHOW HOW A BEGIN-END WORKS WITH REPEAT
SHOW HOW A BEGIN-END WORKS WITH REPEAT
AND MORE THAN ONE STATEMENT

DTR> REPEAT 2 BEGIN :LOOP_EXAMPLE; END
SHOW HOW A BEGIN-END WORKS WITH REPEAT
AND MORE THAN ONE STATEMENT
SHOW HOW A BEGIN-END WORKS WITH REPEAT
AND MORE THAN ONE STATEMENT

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–39

CDO Command

CDO Command
Passes a command line to the Common Dictionary Operator (CDO) Utility.

Format

CDO cdo-command-line

Argument

cdo-command-line
Is a command line to be passed to the CDO.

Result

DATATRIEVE passes the command line to the CDO. DATATRIEVE does not
validate your command line or modify it in any way.

Usage Notes

• The DATATRIEVE CDO command is the same as spawning a CDO command
but is more efficient because no subprocess is created.

• The DATATRIEVE SET DICTIONARY command controls the default
dictionary directory setting used by the CDO command. When you enter
a SET DICTIONARY command, the default dictionary used by the CDO
command is also changed. However, a CDO SET DEFAULT command does
not change your current DATATRIEVE default dictionary directory setting.

Example

In the following example, a change in field definition FLD_A causes a message
to be displayed when you READY MY_DB. The message is displayed and cleared
and the CLEAR NOTICES command is verified using the CDO command.

DTR> CDO SHOW NOTICES MY_DB
USR$DISK:[RICK.TEST]GLOBAL.MY_DB;1 is possibly invalid, triggered
by CDD$DATA_ELEMENT USR$DISK:[RICK.TEST]GLOBAL.FLD_A;1

DTR> CDO CLEAR NOTICES MY_DB
DTR> CDO SHOW NOTICES MY_DB
%CDO-I-NOMESSAGES, USR$DISK:[RICK.TEST]GLOBAL.MY_DB;1 has no notices
DTR>

4–40 DATATRIEVE Commands, Statements, and Definition Clauses

CHOICE Statement

CHOICE Statement
Causes DATATRIEVE to execute one of a series of statements or compound
statements, depending on the evaluation of a series of conditional (Boolean)
expressions. The CHOICE statement is a convenient substitute for nested IF-
THEN-ELSE statements.

Format

CHOICE [OF]

boolean-expression-1 [THEN] statement-1
[boolean-expression-2 [THEN] statement-2]

. . .

. . .

. . .
[ELSE statement-n]

END_CHOICE

Arguments

CHOICE
Marks the beginning of a CHOICE statement.

OF
Is an optional language element you can use to clarify syntax.

boolean-expression
Is a Boolean expression. (See Chapter 1.)

THEN
Is an optional language element you can use to clarify syntax.

statement
Is a simple or compound statement you want DATATRIEVE to execute if the
corresponding Boolean expression evaluates to true.

ELSE statement-n
Specifies the statement you want DATATRIEVE to execute if all the preceding
Boolean expressions evaluate to false.

END_CHOICE
Marks the end of the CHOICE statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–41

CHOICE Statement

Restrictions

• You must observe all restrictions on the statements used in the CHOICE
statement. This manual lists these restrictions in the descriptions of the
various statements.

• DATATRIEVE does not evaluate view domain fields defined with an OCCURS
clause when you use such fields in CHOICE statements.

Results

• DATATRIEVE evaluates each Boolean expression in order. When a Boolean
expression evaluates to true, DATATRIEVE executes the corresponding
statement in the THEN clause. Then DATATRIEVE goes on to execute the
next command or statement after END_CHOICE.

• If you specify an ELSE clause and all the preceding Boolean expressions
evaluate to false, DATATRIEVE executes statement-n in the ELSE clause.

• If you do not specify an ELSE clause and all the preceding Boolean
expressions evaluate to false, DATATRIEVE does not execute any of the
statements in the THEN clauses and is ready to execute the next command
or statement it encounters.

Usage Note

If any of the statements in the THEN clauses are compound statements, you
must enclose the set of statements within a BEGIN-END block.

Examples

The following example shows how to define a procedure MODIFY_YACHTS,
prompt the user to identify a record by specifying the BUILDER and MODEL of
a yacht, and print the record, prompting the user to modify a field from YACHTS.
This process is continued until the user replies to a prompt that no further
changes need to be made.

4–42 DATATRIEVE Commands, Statements, and Definition Clauses

CHOICE Statement

DTR> SHOW MODIFY_YACHTS
PROCEDURE MODIFY_YACHTS
READY YACHTS WRITE
FOR YACHTS WITH BUILDER = *."the builder" AND

MODEL = *."the model"
BEGIN

PRINT
PRINT SKIP
PRINT "The fields you can modify are: RIG,LOA,DISP,BEAM,PRICE"
MODIFY USING
WHILE *."Y to modify a field, N to exit" CONT "Y"
BEGIN

DECLARE FLD PIC X(5).
FLD = *."field to modify"
CHOICE

FLD = "RIG" THEN RIG = *.RIG
FLD = "LOA" THEN LOA = *.LOA
FLD = "DISP" THEN DISP = *.DISP
FLD = "BEAM" THEN BEAM = *.BEAM
FLD = "PRICE" THEN PRICE = *.PRICE
ELSE PRINT "That’s not a field in YACHTS."

END_CHOICE
PRINT
PRINT SKIP

END
PRINT SKIP, "No more changes."

END
END_PROCEDURE

DTR> :MODIFY_YACHTS
Enter the builder: ALBIN
Enter the model: 79

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900

The fields you can modify are: RIG, LOA, DISP, BEAM, PRICE
Enter Y to modify a field, N to exit: Y
Enter field to modify: RIG
Enter RIG: KETCH

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 KETCH 26 4,200 10 $17,900

Enter Y to modify a field, N to exit: Y
Enter field to modify: RUG
That’s not a field in YACHTS.
ALBIN 79 KETCH 26 4,200 10 $17,900

DATATRIEVE Commands, Statements, and Definition Clauses 4–43

CHOICE Statement

Enter Y to modify a field, N to exit: N

No more changes.

DTR>

The following example shows how to print the TYPE and PRICE of the yachts by
ALBERG and ALBIN, indicating whether the price is inexpensive, moderate, or
expensive. Column headers are suppressed:

DTR> READY YACHTS
DTR> FOR YACHTS WITH BUILDER = "ALBERG" OR BUILDER = "ALBIN"
CON> CHOICE
CON> PRICE LT 20000 THEN PRINT TYPE(-),PRICE(-),"INEXPENSIVE"
CON> PRICE LT 30000 THEN PRINT TYPE(-),PRICE(-),"MODERATE"
CON> ELSE PRINT TYPE(-), PRICE(-), "EXPENSIVE"
CON> END_CHOICE

ALBERG 37 MK II $36,951 EXPENSIVE
ALBIN 79 $17,900 INEXPENSIVE
ALBIN BALLAD $27,500 MODERATE
ALBIN VEGA $18,600 INEXPENSIVE

DTR>

4–44 DATATRIEVE Commands, Statements, and Definition Clauses

CLOSE Command

CLOSE Command
Closes a Record Management System (RMS) trace file you created with an OPEN
command as a log for your interactive dialogue with DATATRIEVE.

Format

CLOSE

Arguments

None.

Restriction

The CLOSE command can be entered at DTR> prompt or, if you are using the
DATATRIEVE DECwindows interface, choose the Close Log item of the File
menu.

Usage Note

The CLOSE command allows you to close the log file without ending your
DATATRIEVE session.

Examples

The following example shows a CLOSE command:

DTR> CLOSE

DATATRIEVE Commands, Statements, and Definition Clauses 4–45

COMMIT Statement

COMMIT Statement
Makes permanent all the changes you made to relational and VAX DBMS
databases since the most recent COMMIT or ROLLBACK statement or, if you
have not performed a COMMIT or ROLLBACK, since the first database READY
command.

The COMMIT statement does not affect collections; collections are maintained.
For VAX DBMS databases, the COMMIT statement performs a COMMIT
RETAINING. For relational databases, the COMMIT statement starts a new
transaction that gives you a new look at the database.

When you have both relational and VAX DBMS databases readied, the COMMIT
statement commits all VAX DBMS and relational databases, regardless of
whether you made any changes to their data.

RMS domains are not affected by the COMMIT statement.

Format

COMMIT

Arguments

None.

Restriction

Do not include COMMIT statements in compound statements containing RSEs
that operate on data from relational sources. You must keep the COMMIT
statement independent of the compound statement containing the RSE in order
for it to work.

Usage Note

The COMMIT statement for both relational and VAX DBMS databases starts a
new transaction. COMMIT maintains collections. After a COMMIT, a relational
database collection will include changes other users have made to the records in
your collection since you formed the collection.

4–46 DATATRIEVE Commands, Statements, and Definition Clauses

COMMIT Statement

Examples

The following VAX DBMS example connects an employee named Hill to a part
LA36 in the RESPONSIBLE_FOR set. The COMMIT statement makes this
change permanent.

DTR> FIND E IN EMPLOYEES WITH EMP_LAST_NAME = "HILL"
DTR> SELECT 1
DTR> FOR P IN PART WITH PART_DESC = "LA36"
CON> CONNECT P TO E.RESPONSIBLE_FOR
DTR> COMMIT

DTR>

The following relational database example stores a record in the relation
DEPARTMENTS. The COMMIT statement makes this change permanent:

DTR> READY DATABASE PERSONNEL USING DEPARTMENTS WRITE
DTR> STORE DEPARTMENTS
Enter DEPARTMENT_CODE: SENG
Enter DEPARTMENT_NAME: SOFTWARE ENGINEERING
Enter MANAGER_ID: 87215
DTR> COMMIT

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–47

COMPUTED BY Clause

COMPUTED BY Clause
Describes a COMPUTED BY field.

Format

COMPUTED BY value-expression

Argument

value-expression
Is a DATATRIEVE value expression.

Restrictions

• This clause is valid for elementary fields only.

• You cannot use an OCCURS clause or a VALID IF clause in a COMPUTED
BY field.

• Because it does not exist in the record, you cannot assign a value to a
COMPUTED BY field. STORE and MODIFY statements cannot refer to a
COMPUTED BY field.

• You cannot redefine a COMPUTED BY field with the REDEFINES clause.

• Do not use a MISSING VALUE, PICTURE, or USAGE clause when defining
a COMPUTED BY field. Because a COMPUTED BY field is a virtual
expression, you cannot use a clause that specifies how the value is stored.

Result

When you refer to the COMPUTED BY field in a statement, DATATRIEVE
resolves the field name to the nearest single record context and evaluates the
value expression using the field values in that record.

Usage Notes

• COMPUTED BY fields are useful if you display arithmetic computations
frequently. COMPUTED BY fields allow you to specify the computation once
in the record definition, and then to print its value simply by referring to
its field name. Generally, the computation includes the name of one or more
fields in the record definition.

• A COMPUTED BY field does not occupy space in a record. It exists solely in
the record definition. The value of a COMPUTED BY field is calculated only
when you use it in a statement.

4–48 DATATRIEVE Commands, Statements, and Definition Clauses

COMPUTED BY Clause

• You can use the CHOICE or IF-THEN-ELSE value expression in defining a
COMPUTED BY field. This is useful if the value of the field depends on other
field values.

• You can use a COMPUTED BY field as a sort key in SORT and SUM
statements and in the SORTED BY clause of record selection expressions.
You can also use a COMPUTED BY field to form control groups in the AT
TOP and AT BOTTOM statements of the DATATRIEVE Report Writer.

• If you include a COMPUTED BY clause in a field definition, you do not have
to include any other field definition clause. However, you may want to use an
EDIT_STRING clause to format the computed value when it is printed.

• Edit strings are not inherited from the fields that make up a COMPUTED
BY value. If you want a specific representation for the COMPUTED BY field,
explicitly specify an edit string for that field.

• The value expression of a COMPUTED BY field in a record definition cannot
refer to a list field in the same domain. To compute the value of a list field in
the same domain, ready the domain containing the list field and then declare
a variable outside the record definition to include the COMPUTED BY value
expression.

• When a COMPUTED BY field refers to a list field in another domain, you
must ready the domain with the list field before you ready the domain with
the COMPUTED BY field. You must finish the domains in the reverse order:
the domain with the COMPUTED BY field first and the domain with the list
field last.

Examples

In the following example, the price per pound of a yacht is computed as the price
divided by the displacement. In this case, both the PRICE and DISP fields are
defined in the record definition.

06 PRICE_PER_POUND
EDIT_STRING $$$,$$9.99
COMPUTED BY PRICE/DISP.

When the PRICE_PER_POUND field is used in a command or statement,
DATATRIEVE divides the value of the record’s PRICE field by the value of its
DISP field. The result of the computation is the value of the PRICE_PER_
POUND field.

DATATRIEVE Commands, Statements, and Definition Clauses 4–49

COMPUTED BY Clause

In the following example, the discount price of a yacht is computed. The amount
of the discount varies with the price of a yacht. The field PRICE is defined in the
record definition for YACHTS:

06 DISCOUNT_PRICE COMPUTED BY
CHOICE

PRICE LT 20000 THEN (PRICE * .9)
PRICE LT 30000 THEN (PRICE * .8)
PRICE LT 40000 THEN (PRICE * .7)
ELSE (PRICE * .6)

END_CHOICE
EDIT_STRING IS $$$,$$$.

When DISCOUNT_PRICE is used in a command or statement, DATATRIEVE
evaluates each Boolean expression in order until one evaluates to true. Then it
performs the corresponding computation on PRICE.

In the following example, the value of the SALESFORCE field is derived from a
dictionary or domain table named SALES_TABLE:

06 SALESFORCE
EDIT_STRING IS X(20)
COMPUTED BY MANUFACTURER VIA SALES_TABLE.

In this example, DATATRIEVE uses the value of the MANUFACTURER field in
the current record to search the dictionary or domain table SALES_TABLE for a
matching code. If one is found, DATATRIEVE uses its translation as the value of
the SALESFORCE field.

4–50 DATATRIEVE Commands, Statements, and Definition Clauses

CONNECT Statement

CONNECT Statement
Makes explicit connections between a record and the VAX DBMS sets you specify
in the TO list. Before establishing the connections, DATATRIEVE sets up a
currency indicator for each set specified in the TO list.

Format

CONNECT context-name-1

[TO] {[context-name-2.] set-name-1} [,...]

Arguments

context-name-1
Is the name of a valid context variable or the name of a collection with a selected
record. It must identify a record occurrence of a domain with a record type that
participates in the specified set type. That record must not be a member of the
sets specified by the TO list, but its record type must be a valid member type in
the specified set types.

context-name-2
Is the name of a valid context variable or the name of a collection with a selected
record. It must identify a record that participates in the specified set. If the
SYSTEM owns the set, you do not need to establish a context for the set. If
the set is not owned by the SYSTEM and the context name is not present,
DATATRIEVE uses the most recent single record context of a domain with a
record type that participates in the specified set type.

set-name
Is the name of a set type.

Example

The following example connects an employee named Hill to a part LA36 in the
RESPONSIBLE_FOR set. P and E in the following example are context names.
E refers to a collection with a selected record and P to a record stream. The
records in these contexts are all owner records or member records in the set.

DTR> FIND E IN EMPLOYEES WITH EMP_LAST_NAME = "HILL"
DTR> SELECT 1
DTR> FOR P IN PART WITH PART_DESC = "LA36"
CON> CONNECT P TO E.RESPONSIBLE_FOR
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–51

CROSS Clause

CROSS Clause

You use the CROSS clause to perform the following tasks:

• Compare records from one domain or collection

• Combine records from two or more domains or collections

• Flatten hierarchical domains to ease access to the list items

Format

CROSS context-variable [IN rse-source]

OVER field-name [...]

Arguments

context-variable
Is the name of a valid context variable. A context variable is a temporary name
that identifies a record stream to DATATRIEVE.

rse-source
Is the record selection expression (RSE) that identifies the records you want to
work with.

field-name
Is a field whose values form the basis for the cross operation.

Restriction

You cannot reference a group field name in an OVER clause if the group field
includes a COMPUTED BY field. If you cross over a group field containing a
COMPUTED BY field, DATATRIEVE includes too many records in the record
stream. Instead, you should explicitly list each individual field of the group.

Result

When you include the CROSS clause in an RSE, DATATRIEVE uses two or more
sources to form combinations of records you could otherwise form only with nested
FOR loops or view domains. You can join these records in combinations based on
the relationship between the values of fields in the sources. This combining of
records is called a relational join.

4–52 DATATRIEVE Commands, Statements, and Definition Clauses

CROSS Clause

Usage Note

You can use key optimization to improve the way DATATRIEVE performs the
join. See the VAX DATATRIEVE User’s Guide for guidelines on how to improve
DATATRIEVE performance.

Example

Crossing a Domain with Itself
When you want to compare records within the same domain, use the CROSS
clause to cross the domain with itself. For example, suppose you want to display
information about manufacturers who build boats with more than one type of
rig. The following query uses one RSE that includes five out of the six optional
elements of an RSE. DATATRIEVE processes the query far faster than if nested
FOR loops were used:

DTR> DEFINE PROCEDURE CROS
DFN> READY YACHTS
DFN> PRINT BUILDER, RIG, A.RIG OF
DFN> A IN YACHTS CROSS YACHTS OVER BUILDER WITH
DFN> RIG GT A.RIG REDUCED TO BUILDER, RIG, A.RIG
DFN> END_PROCEDURE

DTR> :CROS

MANUFACTURER RIG RIG

AMERICAN SLOOP MS
CHALLENGER SLOOP KETCH
GRAMPIAN SLOOP KETCH
IRWIN SLOOP KETCH
ISLANDER SLOOP KETCH
NORTHERN SLOOP KETCH
PEARSON SLOOP KETCH

DTR>

Crossing Two Domains
When you want to join records from two domains, use the CROSS clause. If the
records share a common field, you may want to add OVER followed by the field
name.

For example, suppose you want to join the names of boat owners from the
OWNERS domain with information on individual boats you have in the YACHTS
domain. You want each OWNERS record paired only with the YACHTS record
having the same MANUFACTURER and MODEL. The group field TYPE, which
includes both MANUFACTURER and MODEL, is the primary key for the
YACHT.DAT file. It is defined as NO DUP and, as a result, no two boats can

DATATRIEVE Commands, Statements, and Definition Clauses 4–53

CROSS Clause

have the same value for TYPE. The RSE that forms this temporary combination
of records is on the second input line of the following PRINT statement:

DTR> PRINT NAME, YACHTS.TYPE, PRICE OF
CON> YACHTS CROSS OWNERS OVER TYPE

NAME MANUFACTURER MODEL PRICE

STEVE ALBIN VEGA $18,600
HUGH ALBIN VEGA $18,600
JIM C&C CORVETTE
ANN C&C CORVETTE
JIM ISLANDER BAHAMA $6,500
ANN ISLANDER BAHAMA $6,500
STEVE ISLANDER BAHAMA $6,500
HARVEY ISLANDER BAHAMA $6,500
TOM PEARSON 10M
DICK PEARSON 26
JOHN RHODES SWIFTSURE

DTR>

Crossing More Than Two Domains
You can join records from more than two domains, collections, or lists. In fact,
you can join two domains that share a common field and then join the expanded
‘‘records’’ with a third domain by means of a different field.

For example, suppose that you have three domains A, B, and C. A and B share a
common field (FOO) that is a key field for B. You can join records from A and B
by specifying the following RSE:

A CROSS B OVER FOO

But you may want to join this record stream with records from C. Assume that C
has a key field (BAR) that is also found in either A or B. You specify the following
RSE to join records from the three sources:

A CROSS B OVER FOO CROSS C OVER BAR

The CROSS clause also simplifies your work with hierarchical records. One
record in FAMILIES can have data on as many as 10 children.

The following example forms a collection of the records with the largest number
of children:

DTR> FIND FAMILIES WITH NUMBER_KIDS = MAX NUMBER_KIDS OF FAMILIES
DTR> PRINT CURRENT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

4–54 DATATRIEVE Commands, Statements, and Definition Clauses

CROSS Clause

BASIL MERIDETH 6 BEAU 28
BROOKS 26
ROBIN 24
JAY 22
WREN 17
JILL 20

The record selection expression CURRENT CROSS KIDS flattens the hierarchy,
simplifying the retrieval of list items. For example:

DTR> PRINT FATHER, MOTHER, NUMBER_KIDS,
DTR> EACH_KID OF CURRENT CROSS KIDS

NUMBER KID
FATHER MOTHER KIDS NAME AGE

BASIL MERIDETH 6 BEAU 28
BASIL MERIDETH 6 BROOKS 26
BASIL MERIDETH 6 ROBIN 24
BASIL MERIDETH 6 JAY 22
BASIL MERIDETH 6 WREN 17
BASIL MERIDETH 6 JILL 20

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–55

DATATRIEVE Command

DATATRIEVE Command
The DCL command DATATRIEVE starts a DATATRIEVE session. This DCL
command lets you specify several optional qualifiers that let you customize your
DATATRIEVE session.

Format

DATATRIEVE

�
��� /INTERFACE=

� DECWINDOWS
CHARACTER_CELL

/[NO]DEBUG
/VARIANT=image-suffix

�
��� ["DATATRIEVE"]

Arguments

/INTERFACE =
�

DECwindows
CHARACTER_CELL

�
Specifies the display interface to be used by DATATRIEVE. If your default
environment is the command line interface, then CHARACTER_CELL is the
default. If your system is properly defined to invoke the DECwindows interface,
then DECwindows is the default. This qualifier overrides the setting specified by
the DTR$NOWINDOWS logical. (See the VAX DATATRIEVE Guide to Interfaces
for more information on the DTR$NOWINDOWS logical.)

/[NO]DEBUG
Specifies whether DATATRIEVE should display special debug messages. The
default is NODEBUG.

/VARIANT = image-suffix
Indicates the 1- to 26-character suffix applied to a DATATRIEVE image upon
installation to uniquely identify that image. This qualifier is needed only if you
invoke a DATATRIEVE image that was not selected as the default image at
installation time. If the default image you are running includes a suffix and you
want to run an image that does not include a suffix, use the /VARIANT qualifier
alone, as in the following example:

$ DATATRIEVE/VARIANT

"DATATRIEVE"
Specifies a DATATRIEVE command or statement that is to be executed by
DATATRIEVE. It allows the user to execute a DATATRIEVE command,
statement, or procedure without entering interactive DATATRIEVE. If the

4–56 DATATRIEVE Commands, Statements, and Definition Clauses

DATATRIEVE Command

DATATRIEVE argument contains more than one word, it must be placed in
quotation marks.

Usage Notes

• Invoking DATATRIEVE with the DATATRIEVE command is particularly
useful if you are working in a DECwindows environment and you want to
submit a DATATRIEVE command procedure from a foreign command line.
Normally, if your system is defined to invoke the DECwindows interface and
you try to execute a DATATRIEVE command from a foreign command line,
the DATATRIEVE main application window appears on your screen. By using
the DCL DATATRIEVE command with the /INTERFACE=CHARACTER_
CELL qualifier, you can enter the command on a foreign command line and
the main application window will not be displayed.

• You can abbreviate this DCL command to the shortest form that is unique
among other DCL commands.

• If you are not certain about the default image of DATATRIEVE that was
installed on your system, see your system manager or the person in charge of
DATATRIEVE on your system.

Example

The following example shows how to execute the DATATRIEVE SHOW
DICTIONARY command without entering interactive DATATRIEVE.

$ DATATRIEVE/INTERFACE=CHARACTER_CELL "SHOW DICTIONARY"

The default directory is _CDD$TOP.DTR$LIB.DEMO

$

DATATRIEVE Commands, Statements, and Definition Clauses 4–57

DECLARE Statement

DECLARE Statement
Defines a global or a local variable.

Format

DECLARE variable-name variable-definition .

Arguments

variable-name
Is the name of the variable being defined. The name must conform to the rules
for names listed in the VAX DATATRIEVE User’s Guide.

variable-definition
Is the definition of the variable, which consists of field definition clauses.
If you include more than one such clause, separate them with spaces, tab
characters, or carriage returns. Refer to the chapter on record definitions in the
VAX DATATRIEVE User’s Guide for information on field definition clauses.

. (period)
Ends the DECLARE statement.

Restrictions

• In the variable definition, you must include at least one COMPUTED BY,
PICTURE (PIC), or USAGE clause to specify the data type, length, scale, and
edit string of the variable.

• Although you can include other field definition clauses, you cannot use
an OCCURS clause or REDEFINES clause in the variable definition. A
variable can have the properties of only an elementary, nonrepeating field in
a DATATRIEVE record definition.

Results

• When you use a DECLARE statement at the DATATRIEVE command level,
DATATRIEVE creates a global variable. A global variable exists until you end
the DATATRIEVE session, until you explicitly release the variable with the
RELEASE command, or until you enter a DECLARE statement for a variable
of the same name.

4–58 DATATRIEVE Commands, Statements, and Definition Clauses

DECLARE Statement

• Unless you define a global variable with a COMPUTED BY clause, the
global variable retains the value you assign it until you explicitly release
the variable with a RELEASE command, assign a new value to the variable,
or end your DATATRIEVE session. The value of a global variable defined
with a COMPUTED BY clause depends on the value expression that controls
the computation. If the value expression is based on the value of a field in
a record, the variable has a value only when there is a valid single record
context in which to resolve the value expression.

• When you use a DECLARE statement as part of any other DATATRIEVE
statement, such as a BEGIN-END or THEN statement, DATATRIEVE creates
a local variable. A local variable exists only within the statement in which
it is defined. DATATRIEVE releases all local variables created within a
statement when it encounters the end of that statement.

For example, if you define a local variable in the third BEGIN-END block in
a series of four nested BEGIN-END blocks, you can refer to, assign values
to, and retrieve values from the variable in the third and fourth blocks. That
is, after DATATRIEVE executes the DECLARE statement in the third block,
the value of the variable can be changed or retrieved by any of the remaining
statements in the third block, including any of the statements in the fourth
and innermost block. That local variable, however, has no meaning for any
statement outside those two inner blocks. No statement in the first or second
block and outside the two inner blocks can refer to the local variable defined
in the third one.

• If the statement that defines a local variable is in a FOR loop or REPEAT
statement, the local variable is initialized each time DATATRIEVE executes
the statement.

The initial value assigned to the variable by DATATRIEVE depends on the
field definition clauses included in the DECLARE statement in which the
variable was defined. DATATRIEVE assigns the DEFAULT value to the
variable if one is defined. If no DEFAULT value is defined but a MISSING
value is, DATATRIEVE assigns the MISSING value to the variable.

If neither a DEFAULT nor MISSING value is defined, numeric variables are
initialized as zero, and alphanumeric and alphabetic variables are initialized
as spaces.

DATATRIEVE Commands, Statements, and Definition Clauses 4–59

DECLARE Statement

Usage Notes

• To assign a value to the variable, use the following format of the Assignment
statement:

variable-name = value-expression

See Chapter 1 and the section on the DECLARE statement for more
information on assigning values to variables.

• Two SHOW commands let you display the names and types of the global
variables currently defined: SHOW FIELDS and SHOW VARIABLES. See
the section on the SHOW command for more information.

DTR> DECLARE X REAL.
DTR> DECLARE Y PIC 9(5).
DTR> DECLARE A PIC XX.
DTR> DECLARE B PIC AAA.
DTR> SHOW VARIABLES
Global variables

X <Number>
Y <Number>
A <Character string>
B <Character string>

DTR>

• Use the RELEASE command (see the section on the RELEASE command) to
remove global variables from your workspace and from the context stack:

DTR> SHOW VARIABLES
Global variables

X <Number>
Y <Number>
A <Character string>
B <Character string>

DTR> RELEASE X, A
DTR> SHOW VARIABLES
Global variables

Y <Number>
B <Character string>

DTR>

4–60 DATATRIEVE Commands, Statements, and Definition Clauses

DECLARE Statement

Examples

Declare the global variable NEW_BEAM as a 2-digit numeric field with a
DEFAULT value of 10:

DTR> DECLARE NEW_BEAM PIC 99 DEFAULT VALUE IS 10.
DTR> PRINT NEW_BEAM

NEW
BEAM

10

DTR>

Declare the global variable X as a single-precision floating-point number, with a
MISSING VALUE of 36:

DTR> DECLARE X REAL MISSING VALUE IS 36.
DTR> PRINT X

X

36.0000000

DTR> SHOW VARIABLES
Global variables

X <Number>

DTR> RELEASE X
DTR> SHOW FIELDS
No ready sources or global variables declared.
DTR>

Declare the variable DUE as a date. Assign today’s date to DUE and suppress
the header with a hyphen in parentheses:

DTR> DECLARE DUE USAGE IS DATE.
DTR> DUE = "TODAY"
DTR> PRINT DUE (-)

22-Sep-90

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–61

DECLARE_ATT Statement (Report Writer)

DECLARE_ATT Statement (Report Writer)
Specifies text control elements (font family, character size, weight, slant,
underline) overriding or complementing the default attributes for the ATT
argument used by the Report Writer’s PRINT and SET statements.

Format

DECLARE_ATT att-name

��������
�������

FAMILY= font-option
SIZE= point-size

[NO]

���
��

BOLD
ITALIC
UNDERLINE
REVERSE

���
�	

��������
������	

[,...]

Arguments

att-name
Is the user-defined name of the attribute list. This name is used by the ATT
clause in the Report Writer Print statement.

Table 4–2 shows the options which can be controlled by the DECLARE_ATT
statement.

4–62 DATATRIEVE Commands, Statements, and Definition Clauses

DECLARE_ATT Statement (Report Writer)

Table 4–2 DECLARE_ATT Print Attributes

Attribute Options Header default Body default

Family HELVETICA
TIMES
COURIER
AVANTGARDE
SYMBOL
LUBALIN_GRAPH
NC_SCHOOLBOOK

SOUVENIR

HELVETICA HELVETICA

Point Size 8 10 12 14 18 24
36 48 72 96

14 10

Bold BOLD
NO BOLD

BOLD NO BOLD

Italic ITALIC
NO ITALIC

NO ITALIC NO ITALIC

Underline UNDERLINE
NO UNDERLINE

NO UNDERLINE NO UNDERLINE

Reverse REVERSE
NO REVERSE

NO REVERSE NO REVERSE

font-option
Is the font family chosen. Available options are listed in Table 4–2.

point-size
Is the point size for the chosen font family. Available options are listed in
Table 4–2.

Restrictions

• DECLARE_ATT is legal within the REPORT statement only.

• DECLARE_ATT statements must precede all other statements in the report
specification.

• RESET is not a valid name for a DECLARE_ATT statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–63

DECLARE_ATT Statement (Report Writer)

Result

The DECLARE_ATT statement creates attributes that can be referred to using
the ATT clause.

Usage Notes

• Attributes declared through DECLARE_ATT can be used in subsequent SET
and PRINT statements.

• If there are multiple DECLARE_ATTs with the same name, latter ones
override the earlier ones.

• Font size is specified in typographical points.

• Text attributes are ignored when a DTIF format is chosen.

• In DDIF and PS formats, all attributes are encoded.

• Note that certain devices or receiving applications may not process correctly
the attributes set. For example, certain terminals do not support ANSI escape
sequences.

• For TEXT format reports, attributes are applied through the introduction of
standard ANSI escape sequences in the text file. The following table defines
the applicability of text attributes to TEXT format:

Attribute Applicable to TEXT

FAMILY N
SIZE N
BOLD Y
ITALIC N
UNDERLINE Y
REVERSE Y

• There are different default text attributes for the headers (report title, column
headers) and body (all other components) of the report. The default text
attributes are shown in Table 4–2.

4–64 DATATRIEVE Commands, Statements, and Definition Clauses

DECLARE_ATT Statement (Report Writer)

Example

The following example shows a number of DECLARE_ATT statements:

DTR> REPORT PAYABLES WITH INVOICE_DUE NOT MISSING -
RW> SORTED BY AGE ON AGING_REPORT.PS FORMAT PS
RW>
RW> DECLARE_ATT TITLE FAMILY = TIMES, SIZE = 24, BOLD, NOITALIC
RW> DECLARE_ATT DATE_PAGE FAMILY = TIMES, SIZE = 14, NOBOLD, ITALIC
RW> DECLARE_ATT COL_HDR FAMILY = TIMES, SIZE = 12, BOLD, ITALIC
RW> DECLARE_ATT DETAIL FAMILY = NC_SCHOOLBOOK, SIZE = 10
RW> DECLARE_ATT TOT_ACCNTS FAMILY = HELVETICA, SIZE = 12, NOBOLD
RW> DECLARE_ATT TOTAL FAMILY = HELVETICA, SIZE = 14, BOLD
RW> DECLARE_ATT ULINE UNDERLINE
RW> DECLARE_ATT NO_ULINE NOUNDERLINE
RW> DECLARE_ATT GRAND_TOTAL FAMILY = HELVETICA, SIZE = 14,

BOLD, ITALIC

DATATRIEVE Commands, Statements, and Definition Clauses 4–65

DECLARE PORT Statement

DECLARE PORT Statement
Creates a temporary DATATRIEVE port with the name you specify and readies
the port for WRITE access. DATATRIEVE does not enter a definition of the port
in the CDD/Repository data dictionary.

Format

DECLARE PORT port-name USING

level-number-1 field-definition-1.

[level-number-2 field-definition-2.]
. .
. .
. .

[level-number-n field-definition-n.]
;

Arguments

port-name
Is the name of the port. It cannot duplicate a DATATRIEVE keyword or the given
name of any domain you may bring into your workspace.

level-number
Is the level number for the field in the port declaration. It indicates the
relationship of the field to the other fields of the port.

field-definition
Is a field definition. A port declaration must have at least one field definition.
Each field definition ends with a period. See the chapter on record definitions
in the VAX DATATRIEVE User’s Guide for descriptions of the field definition
clauses.

; (semicolon)
Ends the port declaration.

4–66 DATATRIEVE Commands, Statements, and Definition Clauses

DECLARE PORT Statement

Restrictions

• You cannot invoke a procedure in a port declaration.

• In the port declaration, you must include at least one PICTURE (or PIC)
clause or one USAGE clause.

• You cannot ready a port that is already declared. When you declare a port,
DATATRIEVE automatically readies the port for WRITE access.

Results

• If you press the RETURN key before typing the semicolon, DATATRIEVE
prompts you to continue the declaration with the CON> prompt.
DATATRIEVE continues to prompt you with the CON> prompt until you
type a semicolon and press the RETURN key, or until it detects a syntax
error.

If you make a syntax error while entering the port declaration, DATATRIEVE
returns to command level (indicated by the DTR> prompt) without creating
the port.

• If your application program declares a port at the DATATRIEVE command
level, DATATRIEVE creates a port that is available to your application
program until you end your access to it with the FINISH command or until
you exit from your session. Such a port is a global port and, in this respect,
is similar to a global variable.

• If your application program declares the port at some level in a compound
statement, the port is valid only for the remainder of the statement in which
it is declared and for those statements contained in the statement in which
it is declared. Such a port is a local port and, in this respect, is similar to a
local variable.

Usage Note

See the VAX DATATRIEVE Guide to Programming and Customizing for
information about using a port to transfer data between DATATRIEVE and
your application program.

DATATRIEVE Commands, Statements, and Definition Clauses 4–67

DECLARE PORT Statement

Example

The following example shows a port declared for YACHTS records in a FORTRAN
program:

CALL DTR$COMMAND (DAB,’DECLARE PORT BOAT_PORT USING
1 01 YACHT.
2 03 BOAT.
3 06 BUILDER PIC X(9).
4 06 MODEL PIC X(10).
5 06 RIG PIC X(6).
6 06 LOA PIC X(3).
7 06 DISP PIC X(5).
8 06 BEAM PIC XX.
9 06 PRICE PIC X(5).;’)

4–68 DATATRIEVE Commands, Statements, and Definition Clauses

DECLARE SYNONYM Command

DECLARE SYNONYM Command
Defines a synonym for a DATATRIEVE keyword.

Format

DECLARE SYNONYM { synonym [FOR] keyword } [,...]

Arguments

synonym
Is the name of the synonym being defined. The name must conform to the rules
for names listed in the VAX DATATRIEVE User’s Guide.

FOR
Is an optional word to clarify syntax.

keyword
Is the name of a DATATRIEVE keyword for which a synonym is being defined.
(See the VAX DATATRIEVE User’s Guide.)

Restrictions

• You cannot define a synonym for the keyword CURRENT.

• You cannot use the DECLARE SYNONYM command within a BEGIN-END
block.

• You cannot use the DECLARE SYNONYM command within a FOR loop.

• You cannot define a keyword as a synonym for another keyword. For example,
you cannot define PRINT as a synonym for FIND.

• You cannot define the same synonym for two different keywords. For example,
if you have already defined A as a synonym for ALL, you cannot define A as a
synonym for AVERAGE.

• You cannot use the DTR$SYNONYM file for creating synonyms for user-
defined keywords (UDK). If you want to create synonyms for user-defined
keywords, you can use the startup command file DTR$STARTUP.

DATATRIEVE Commands, Statements, and Definition Clauses 4–69

DECLARE SYNONYM Command

Results

• DATATRIEVE interprets the synonym in exactly the same way as the
keyword with which you associated it.

• This synonym is in effect for the current DATATRIEVE session only. When
you exit from DATATRIEVE, all the synonyms you defined with DECLARE
SYNONYM are released.

Usage Notes

• Use DECLARE SYNONYM to define temporary synonyms during a particular
DATATRIEVE session.

• You can define a synonym for a user-defined keyword.

• You can define a synonym for another synonym. For example:

DTR> DECLARE SYNONYM P FOR PRINT
DTR> DECLARE SYNONYM PR FOR P

Now PR is a synonym for the keyword PRINT. You can use PR, PRINT, or P
interchangeably.

• If you want to define synonyms that will remain in effect in future
DATATRIEVE sessions, include the assignment of synonyms in your
DTR$STARTUP command file.

• You can also assign synonyms using a DTR$SYNONYM file. (The DECLARE
SYNONYM command replaced this method for assigning synonyms in Version
2.0 and is still the recommended method for users of Version 2.0 or later.)

Create a file containing a list of keywords and their corresponding
abbreviations. Use one keyword/abbreviation pair per line. Capitalize all
keywords and definitions and leave at least one space between the keyword
and the abbreviation. Assign the logical name DTR$SYNONYM to this file.
When you invoke DATATRIEVE, it uses this file to find any synonyms you
have defined. If you make an incorrect synonym file entry, DATATRIEVE
does not produce an error message, but the synonym does not work.

4–70 DATATRIEVE Commands, Statements, and Definition Clauses

DECLARE SYNONYM Command

Examples

Define synonyms for the keywords FIND and PRINT. Use the synonyms to form a
collection of the first two yachts, and then print the collection.

DTR> READY YACHTS
DTR> DECLARE SYNONYM FD FOR FIND, PT FOR PRINT
DTR> FD FIRST 2 YACHTS; PT CURRENT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900

DTR>

Calculate the price per foot and per pound for the first five yachts. To save typing,
define synonyms for COMPUTED, EDIT_STRING, and PRINT.

DTR> SET NO PROMPT
DTR> DECLARE SYNONYM CD FOR COMPUTED
CON> E_S FOR EDIT_STRING, PT FOR PRINT
DTR> DECLARE PER_FT CD BY (PRICE/LOA) E_S $$$$.99.
DTR> DECLARE PER_LB CD BY (PRICE/DISP) E_S $$.99.
DTR> FOR FIRST 5 YACHTS
CON> PT TYPE, PRICE, PER_FT, PER_LB

PER PER
MANUFACTURER MODEL PRICE FT LB

ALBERG 37 MK II $36,951 $998.68 $1.85
ALBIN 79 $17,900 $688.46 $4.26
ALBIN BALLAD $27,500 $916.67 $3.78
ALBIN VEGA $18,600 $688.89 $3.67
AMERICAN 26 $9,895 $380.58 $2.47

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–71

DEFAULT VALUE Clause

DEFAULT VALUE Clause
Specifies a default value for initializing a field to which you do not make a direct
assignment in STORE or Restructure statements.

Format

DEFAULT [VALUE] [IS] literal

Argument

VALUE IS
Are optional keywords you can use to clarify the syntax of the clause.

literal
Is either a numeric or character string literal. (See Chapter 1 for a discussion of
these two types of literals.)

Restriction

This clause is valid for elementary fields only.

Results

DATATRIEVE uses the DEFAULT VALUE clause to initialize fields when you
create records in the following ways:

• When you use Assignment statements in the USING clause of a STORE
statement but make no assignment to the field with the default value
specified in the DEFAULT VALUE clause

• When you respond either to prompts from a STORE statement without a
USING clause or to prompting value expressions in the USING clause of a
STORE statement and, in response to a prompt, you press the TAB key and
then the RETURN key

Examples

Define a field in a student record that sets a default value for tuition owed at
registration.

09 TUITION_DUE PIC Z(4)9.99
EDIT_STRING IS $$$,$$$.99
DEFAULT VALUE IS 4800.

4–72 DATATRIEVE Commands, Statements, and Definition Clauses

DEFAULT VALUE Clause

Define a date field with the default value of the day you store the record:

03 DATE_IN USAGE DATE DEFAULT "TODAY".

DATATRIEVE Commands, Statements, and Definition Clauses 4–73

DEFINE DATABASE Command

DEFINE DATABASE Command
Defines a path name for a relational database (Format 1) or a path name for a
VAX DBMS database instance (Format 2).

Format 1

DEFINE DATABASE rdb-database-path ON root-file-spec;

Format 2

DEFINE DATABASE dbms-database-path

[USING] [SUBSCHEMA] subschema-name

[OF] [SCHEMA] schema-path-name

ON root-file-spec;

Arguments

rdb-database-path
Is the CDD/Repository path name of the relational database you want to define.
The path name can be either a DMU or a CDO style path name.

root-file-spec
Is the name of the database root file. For relational databases, the default file
type is .RDB; for VAX DBMS, the default file type is .ROO.

dbms-database-path
Is the CDD/Repository path name you choose for the VAX DBMS database
instance. The path name can be either a DMU or a CDO style path name.
Although a DMU style path name is still accepted, you are recommended to use a
CDO path name.

subschema-name
Is the name of a subschema for the specified schema.

schema-path-name
Is the CDO path name of a VAX DBMS schema.

;(semicolon)
Ends the DEFINE DATABASE command.

4–74 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DATABASE Command

Restrictions

• Relational and VAX DBMS database path names do not have version
numbers.

• To define a DMU format database you must have the following access
privileges:

P (PASS_THRU) access to all ancestors of the dictionary directory you
want to create

P (PASS_THRU) and X (EXTEND) access to the parent directory

• To define a CDO format database you must have the following access
privileges:

VMS access to the VMS directory

S (SHOW) and U (CHANGE) access to the dictionary

• When you define a VAX DBMS database using Format 2, you cannot use the
same path name for both the database and the schema.

• For Rdb/VMS and Rdb/ELN, the root file is the file specification of
the database file. For VIDA, it is a VIDA database name. The VIDA
database name is a set of value assignments to database name qualifiers.
DATATRIEVE passes the database name to VIDA in the form of a text string
literal. DATATRIEVE does not validate the text string.

Note that for any relational database, root-file-spec can also be a logical name.
If you choose to include a logical name, you must assign an appropriate value
to that name before readying the database.

Examples

Define a relational database path name:

DTR> DEFINE DATABASE CDD$TOP.DEPT29.PERSONNEL ON
DFN> DBA2:[D29.DAT]PERSONNEL.RDB;
DTR>

Define a VAX DBMS database instance. The CDD/Repository path name of
the schema is SYS$COMMON:[CDDPLUS]DBMS.PARTS. The name of the
subschema is PARTSS1, and the root file is DB0:[BULGAKOV]PARTSDB.ROO:

DTR> DEFINE DATABASE PARTS_DB
DFN> USING PARTSS1
DFN> OF SYS$COMMON:[CDDPLUS]DBMS.PARTS
DFN> ON DB0:[BULGAKOV]PARTSDB.ROO;
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–75

DEFINE DICTIONARY Command

DEFINE DICTIONARY Command
Creates a dictionary directory in the CDD/Repository data dictionary system.

Format

DEFINE DICTIONARY path-name

Argument

path-name
Is the given name, the full dictionary path name, or a relative dictionary path
name of the dictionary you want to create. The DEFINE DICTIONARY command
accepts both DMU and CDO style path names.

Restrictions

• All ancestors of the dictionary directory you want to create must exist.

• The name you assign to the dictionary directory you want to create must not
duplicate the name of any other directory or dictionary object in the parent
directory.

• The dictionary path name does not have a version number.

• To define a DMU format dictionary directory you must have the following
access privileges:

P (PASS_THRU) access to all ancestors of the dictionary directory you
want to create

P (PASS_THRU) and X (EXTEND) access to the parent directory

• To define a CDO format dictionary directory you must have the following
access privileges:

VMS access to the VMS directory

S (SHOW) and U (CHANGE) access to the dictionary

• Before you define a CDO dictionary directory, you must create the dictionary
through CDO. If the dictionary does not exist, you will get an error message.
For example, if you enter the following command and the dictionary
DISK1:[SWANSON.DTRWORK] does not exist, the DEFINE DICTIONARY
command will fail:

DTR> DEFINE DICTIONARY DISK1:[SWANSON.DTRWORK]NEWDICT

4–76 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DICTIONARY Command

Results

• DATATRIEVE creates an empty directory in the CDD/Repository data
dictionary system. In this directory, you can place other dictionary directories
and the definitions of dictionary objects.

• If you do not enter the path name on the same input line as the DEFINE
DICTIONARY command, DATATRIEVE prompts you for it with the
DFN> prompt. After you enter the completed command, you return to
the DATATRIEVE command level.

• DATATRIEVE does not make the newly created directory your default
dictionary directory. Your default dictionary directory setting is unaffected
by the DEFINE DICTIONARY command, regardless of its relationship to the
new directory within the data dictionary.

• CDD/Repository provides the new directory with a default access control list.
Two user identification criteria are supplied: a wildcarded UIC and the the
user name of your process.

If you define the dictionary directory in the DMU format dictionary, six
privileges are granted: C (CONTROL), D (LOCAL_DELETE), H (HISTORY),
P (PASS_THRU), S (SEE), and X (EXTEND). No privileges are denied, and
none are banished. The access privileges you have to the new directory
depend on the privileges that are granted, denied, and banished by the
ancestors of the new directory.

If you define the dictionary directory in the CDO format dictionary, four
privileges are granted: U (CHANGE), C (CONTROL), D (DELETE), and S
(SHOW).

The chapter on ACL in the VAX DATATRIEVE User’s Guide explains access
control lists and the DATATRIEVE and CDD/Repository access privileges.

Usage Notes

• You can verify the creation of the new dictionary directory. Use the SET
DICTIONARY command to make the parent of the new directory your default
dictionary directory. Then enter the SHOW DICTIONARIES command.
DATATRIEVE displays the name of the new directory along with those of any
other dictionary directories cataloged in your default directory.

• To change your default directory to the newly created directory, use the SET
DICTIONARY command. If your current default directory is the parent of
the new directory, you can specify the new directory’s given name in the SET
DICTIONARY command.

DATATRIEVE Commands, Statements, and Definition Clauses 4–77

DEFINE DICTIONARY Command

If your current default directory is not the parent of the new directory, you
can use either the new directory’s full dictionary path name or the appropriate
relative path name in the SET DICTIONARY command.

Once you have changed your default directory, you can use the SHOW
DICTIONARY command to display the complete dictionary path name of your
new default directory.

• You do not have to set your default dictionary directory to the newly created
directory to define either dictionary objects or directories in that new
directory. With the appropriate DEFINE command, you need only specify
the full or relative dictionary path name of the directory or object you want to
define.

• To enter definitions of dictionary elements in a directory you create, use
the following commands: DEFINE DOMAIN, DEFINE PORT, DEFINE
PROCEDURE, DEFINE RECORD, DEFINE TABLE. (See the sections on
these commands in this chapter.)

• To create new versions of dictionary elements, use the following commands:
REDEFINE DOMAIN, REDEFINE PORT, REDEFINE PROCEDURE,
REDEFINE RECORD, REDEFINE TABLE. (See the section in this chapter
on REDEFINE.)

• To change the access control list for a dictionary directory, use the DEFINEP
command.

• Use the SHOWP command to see the access control list for the new dictionary
directory.

• To show your access privileges to your current default dictionary directory,
enter the SHOW PRIVILEGES command.

Examples

Use a given name to define a dictionary directory named TEST when
CDD$TOP.RESEARCH is your default directory:

4–78 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DICTIONARY Command

DTR> SHOW DICTIONARY
The default directory is CDD$TOP.RESEARCH
DTR> DEFINE DICTIONARY TEST
DTR> SHOW DICTIONARIES
Dictionaries:

DEMO TEST
DTR> SET DICTIONARY TEST
DTR> SHOW DICTIONARY
The default dictionary is CDD$TOP.RESEARCH.TEST
DTR> SHOW PRIVILEGES
Privileges for CDD$TOP.RESEARCH.TEST
R (DTR_READ) - may ready for READ, use SHOW and EXTRACT
W (DTR_WRITE) - may ready for READ, WRITE, MODIFY, or EXTEND
M (DTR_MODIFY) - may ready for READ, MODIFY
E (DTR_EXTEND/EXECUTE) - may ready to EXTEND, or access table

or procedure
C (CONTROL) - may issue DEFINEP, SHOWP, DELETEP commands
D (LOCAL_DELETE) - may delete a dictionary object
F (FORWARD) - may create a subdictionary
H (HISTORY) - may add entries to object’s history list
P (PASS_THRU) - may use given name of directory or object

in pathname
S (SEE) - may see (read) dictionary
U (UPDATE) - may update dictionary object
X (extend) - may create directory or object within directory

DTR>

Use a relative dictionary path name to define a dictionary directory in the
CDD$TOP.MANUFACTURING directory when CDD$TOP.DTR$LIB is your
default directory:

DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$LIB
DTR> DEFINE DICTIONARY
DFN> -.MANUFACTURING.TEST
DTR> SET DICTIONARY -.MANUFACTURING
DTR> SHOW DICTIONARIES

INVENTORY TEST
DTR> SHOWP TEST
1: [*,*], Username: "JONES"

Grant - CDHPSX, Deny - None, Banish - none

DTR>

Use a full name to define a CDO dictionary directory named TEST.
DISK1:[SWANSON.DTRWORK] is your default directory:

DATATRIEVE Commands, Statements, and Definition Clauses 4–79

DEFINE DICTIONARY Command

DTR> SHOW DICTIONARY
The default directory is DISK1:[SWANSON.DTRWORK]
DTR> DEFINE DICTIONARY DISK1:[SWANSON.DTRWORK]TEST
DTR> SHOW DICTIONARIES
Dictionaries:

MYDICT TEST

DTR>

4–80 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DOMAIN Command

DEFINE DOMAIN Command
Stores a domain definition in the CDD/Repository data dictionary system.

The following sections explain how to define domains for CDD$DATABASE
objects, VAX DBMS databases, network domains based on domains residing at
other DECnet nodes, domains based on relational databases, domains based on
single RMS files, and views based on one or more domains. (Further information
on VAX DBMS databases, relational databases, and network domains can be
found in the VAX DATATRIEVE User’s Guide).

Format
To define a CDD$DATABASE domain, use the following syntax:

DEFINE DOMAIN domain-path-name [USING] database-name

[FORM [IS] form-name [IN] file-name [USING exchange-record]]

[WITH] RELATIONSHIPS ;

To define a VAX DBMS domain, use the following syntax:

DEFINE DOMAIN domain-path-name [USING] record-name

[OF] [DATABASE] database-path-name

[FORM [IS] form-name [IN] file-name [USING exchange-record]] ;

To define a network domain, use the following syntax:

DEFINE DOMAIN domain-path-name [USING] remote-path-name AT node-spec

[FORM [IS] form-name [IN] file-name [USING exchange-record]]

[[WITH] RELATIONSHIPS] ;

To define a relational domain, use the following syntax:

DEFINE DOMAIN domain-path-name [USING] relation-name

[OF] [DATABASE] database-path-name

[FORM [IS] form-name [IN] file-name [USING exchange-record]]

[[WITH] RELATIONSHIPS] ;

DATATRIEVE Commands, Statements, and Definition Clauses 4–81

DEFINE DOMAIN Command

To define an RMS domain, use the following syntax:

DEFINE DOMAIN path-name [USING] record-path-name ON file-spec

[FORM [IS] form-name [IN] file-name [USING exchange-record]]

[[WITH] RELATIONSHIPS] ;

To define a view domain, use the following syntax:

DEFINE DOMAIN view-path-name OF domain-path-name-1 [,...]
� BY

USING

�
level-number-1 field-name-1 OCCURS FOR rse-1 .

level-number-2 field-name-2
� OCCURS FOR rse-n

FROM domain-path-name-n

.

. . .

. . .

. . .
[FORM [IS] form-name [IN] file-name [USING exchange-record]]
[[WITH] RELATIONSHIPS] ;

Arguments

domain-path-name
Is the CDD/Repository dictionary path name of the domain you are defining. The
domain-path-name can be either a DMU or CDO style path name.

database-name
Is the name of a CDD$DATABASE object, defined through CDO using the
DEFINE DATABASE command, that points to a CDD$RMS_DATABASE object.
Refer to the CDD/Repository Common Dictionary Operator Reference Manual for
more information on CDD$RMS_DATABASE objects.

record-name
Is the name of a record type contained in a subschema of the specified VAX DBMS
database.

database-path-name
Is the DATATRIEVE definition of the database instance. The database-path-name
can be both DMU and CDO style path name.

4–82 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DOMAIN Command

remote-path-name
Is the given name, full dictionary path name, or relative dictionary path name
of a domain definition at another node in a network of VAX computers linked by
DECnet. That domain, the associated record definition, and the associated data
file must already exist in the data dictionary at the remote node before you can
ready the network domain. The domain-path-name can be either a DMU or CDO
style path name.

node-spec
Specifies the network address.

If the login procedure used by the remote process does not supply the necessary
login information (user name, password, and, optionally, account name), either
the person readying the network domain or the network domain definition must
supply this information.

You can use any of the following formats to specify the network address and to
provide the best level of access security for your installation:

� node-name"username password [account-name]")

Examples of this format are:

BIGVAX"WARTON KNOCKKNOCK DEPT32"

ELEVEN"LINTE LETMEIN"

When you specify the network address using this format, users do not have to
supply login information when readying the network domain.

� node-name"*.username-prompt *.password-prompt [*.account-prompt]"

Examples of this format are:

WINKEN"*.USERNAME *.PASSWORD *.ACCOUNT"

VAXTWO"*.’user name’ *.’password’"

PDPTWO"*.’user name’ *.’password’"

When you specify the network address using this format, users are prompted
for login information when they ready the network domain. This method
provides the best security.

� node-name

Two examples of this format are:

BIGVAX

ELEVEN

DATATRIEVE Commands, Statements, and Definition Clauses 4–83

DEFINE DOMAIN Command

When you specify the network address with this format, the account used by
the remote process must provide login information automatically.

If you prefer, you can combine elements from the first two formats. For example,
you can explicitly specify the user name and specify a prompting value expression
for the password:

SNOOPY"CLARK *.PASSWORD"

relation-name
Is the name assigned to the relation when the database was created.

path-name
Is the given name, full dictionary path name, or relative dictionary path name
of the domain being defined. The path name cannot resolve to the full dictionary
path name of any other object or directory in the data dictionary system. The
path-name can be either a DMU or CDO style path name.

record-path-name
Is the given name, full dictionary path name, or relative dictionary path name
of the record definition to be associated with the domain. You must enter this
record definition in the data dictionary (with the DEFINE RECORD command)
before you can ready the domain. The dictionary path name of the record cannot
resolve to the full dictionary path name of any other directory or object in the
data dictionary. The record-path-name can be either a DMU or CDO style path
nam

file-spec
Is the VMS file specification of the RMS file containing the data for the domain.
This file must exist when you ready the domain. A complete file specification has
the following format:

node-spec::device:[directory]file-name.type;version

view-path-name
Is the given name, full dictionary path name, or relative dictionary path name of
the view being defined. The path name cannot resolve to the full dictionary path
name of any other object or directory in the data dictionary. The view-path-name
may be either a DMU or CDO style path name.

domain-path-name-1
domain-path-name-n
Is either the given name, full dictionary path name, or relative dictionary path
name of a domain containing records to be included in the view. If the domain
name is a domain path name, it cannot duplicate the name of the view. When
specifying more than one domain path name, use a comma to separate each name

4–84 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DOMAIN Command

from the next. The domain-path-name may be either a DMU or CDO style path
name.

level-number
Is the level number for a field in the view definition.

field-name
Is the name of a field in the view definition. If field-name is followed by an
OCCURS FOR clause, field-name has no relationship to any field in the domain
or domains specified in the RSE. Whether or not field-name is the same as the
names of any of those fields does not matter. If field-name is followed by a FROM
clause, field-name must be the name of a field in a domain specified in the OF
domain-path-name-1 [,...] clause.

OCCURS FOR rse
Indicates that the associated field is to be included in the view only for those
records specified by the RSE. The RSE must contain a reference to one of the
domains, relations, or VAX DBMS records listed in the OF clause.

FROM domain-path-name
Indicates that the definition of the associated field is identical to that of the field
of the same name in the domain, relation, or VAX DBMS record specified by
domain-path-name-n. The argument domain-path-name must be the same as
that used in the preceding OCCURS FOR clause.

. (period)
Ends a field definition.

form-name
Is a form name.

file-name
For TDMS and FMS forms it is the name of a form library. For DECforms forms
it is the form file name, which can either be a .FORM or a .EXE file.

exchange-record
Is the CDD/Repository path name (either DMU or CDO) of a record used to send
and receive data with DECforms.

RELATIONSHIPS
Causes relationships to be set up between the domain being defined and one of
the following items:

• The CDD$DATABASE object

DATATRIEVE Commands, Statements, and Definition Clauses 4–85

DEFINE DOMAIN Command

• The domain specified on the remote node

• The record definition

• The objects referenced by the view

; (semicolon)
Ends the domain definition.

Restrictions

• General Restrictions

DATATRIEVE creates a default access control list for the domain. The
UIC identification matches any UIC ([*,*]), and the user name is set to
your current VMS user name.

If you define your domain with a DMU path name, the privileges
granted are C (CONTROL), D (LOCAL_DELETE), E (DTR_EXTEND
/EXECUTE), H (HISTORY), M (DTR_MODIFY), R (DTR_READ), S (SEE),
U (UPDATE), and W (DTR_WRITE). If you define your domain with a
CDO path name, the privileges granted are U (CHANGE + DEFINE),
C (CONTROL), D (DELETE), E (EXTEND), M (MODIFY), R (READ), S
(SHOW), and W (WRITE). In either case, the C (CONTROL) privilege
allows you to change the access control list to suit your needs.

The RELATIONSHIPS clause requires that the record definition, or the
database being referenced, exist in the CDO dictionary at the time the
domain is defined.

The USING subclause of the FORM IS clause is supported only for
domains defined in CDO format. Nevertheless, the exchange record can
exist either in DMU or CDO format.

You can use the second optional USING clause only if preceded by a
FORM IS clause.

To use the RELATIONSHIPS argument, you must define the domain in
the CDO dictionary.

You cannot create a new version of a domain unless you use the
REDEFINE command.

You cannot invoke a procedure in a domain definition.

Do not assign to domains a given name that duplicates a DATATRIEVE
keyword.

The field names of an FMS or TDMS form must be the same as the
corresponding DATATRIEVE field names.

4–86 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DOMAIN Command

The length and the data types of the DATATRIEVE fields must match the
length and the data types of the FMS or TDMS form fields.

The FMS or TDMS form field names can contain underscores (_) but not
hyphens (-).

When you use a form with the DATATRIEVE Call Interface, all fields
are passed as strings. This can create problems for COMP fields and for
numeric fields with implicit decimal points.

To initialize the DATATRIEVE interface to forms, SET FORM must be in
effect when you ready a domain that contains a FORM clause or when
you use the DISPLAY_FORM or WITH_FORM statement.

You cannot use the forms interface in batch processing of DATATRIEVE
commands and statements.

For domains defined with a FORM clause, DATATRIEVE uses the forms
interface for these statements:

PRINT, PRINT [ALL] [OF] rse

MODIFY, MODIFY ALL OF rse

STORE domain-name

For domains defined with a FORM clause, DATATRIEVE does not use the
forms interface for these statements:

PRINT print-list

MODIFY { [USING statement] [VERIFY USING statement] }

STORE domain-name { [USING statement] [VERIFY USING statement] }

To use the RELATIONSHIPS argument, the record definition being
referenced in the RMS and Network domains must exist in the CDO
dictionary at the time the domain is defined.

• Defining a VAX DBMS Domain

Do not use the same path name for both the domain and the database
instance.

RELATIONSHIPS are not supported for VAX DBMS domains.

• Defining a Network Domain

You can define network domains only if your VMS system is linked by
DECnet to one or more VMS systems on which DATATRIEVE has been
installed.

DATATRIEVE Commands, Statements, and Definition Clauses 4–87

DEFINE DOMAIN Command

If you include the FORM IS clause in the network domain definition, the
forms library must reside on your own VAX system.

Other restrictions on network domains are the same as those for RMS
domains.

The RELATIONSHIPS argument has the following requirements:

* The remote node referenced in the definition must be accessible.

* CDD/Repository must be installed on the remote node.

* The domain being referenced on the remote node must exist in the
CDO dictionary.

* You must define the network domain in the CDO directory.

• Defining a Relational Domain

RELATIONSHIPS can only be used on relational domains that reference
a CDD$DATABASE object supplied by the relational database.

• Defining a View Domain

The view definition must contain an OCCURS FOR clause as the top-level
field.

The view definition must contain at least one FROM clause for each
source.

Statements cannot refer to the field defined in the OCCURS FOR clause
to retrieve or update data. For example, in the BOAT_VIEW domain
defined in the Examples section, the statement PRINT BOAT_INFO OF
BOAT_VIEW will generate an error.

The restrictions on defining RMS domains apply to defining views.

To use the RELATIONSHIPS argument, the domains referenced by the
view must already exist in the CDO dictionary. If a view references more
than one domain and not all of the domains exist in the CDO dictionary,
then DATATRIEVE will define the view domain. However, you will be
warned that the domains that are not in the CDO dictionary will not be
part of a relationship.

4–88 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DOMAIN Command

Results

• General Results

If you press the RETURN key before typing the semicolon, DATATRIEVE
prompts you to continue the definition with the DFN> prompt.
DATATRIEVE continues to prompt you with the DFN> prompt until
you type a semicolon and press the RETURN key or until it detects a
syntax error. If you make a syntax error while entering the domain
definition, DATATRIEVE returns to command level (indicated by the
DTR> prompt) without creating a domain definition.

If you omit a field in the file specification of the data file, DATATRIEVE
uses the defaults listed in Table 4–3.

Table 4–3 Output File Specification Defaults

Field Default

node-spec:: Your local node
device: Your default device
[directory] Your default directory
file-name Null string
.type .DAT, .RDB, .ROO (for VAX DBMS root files)
;version 1 or next higher version number

The minimum file specification consists of a period (.); the specification of
such a file stored in your default VMS directory ends with ".;n", where n
is the version number and both the file name and the extension are null
strings.

If the RELATIONSHIPS argument is used, DATATRIEVE creates a
CDD$DATABASE, CDD$RMS_DATABASE, and underlying objects.
The CDD$RMS_DATABASE object provides information about files
created by DATATRIEVE to other products that access data through the
CDD$DATABASE object.

DATATRIEVE enters a domain definition into the directory of the data
dictionary determined by the dictionary path name you specify with the
DEFINE DOMAIN command. If you do not specify the dictionary path
name, DATATRIEVE saves the full path name of each of the domains the
view references.

DATATRIEVE Commands, Statements, and Definition Clauses 4–89

DEFINE DOMAIN Command

DATATRIEVE stores the view domain definition in the parent directory
determined by the full dictionary path name of the view domain. In the
full dictionary path name, the name of the parent directory immediately
precedes the given name of the view domain.

• Defining a View Domain

When you define a view with the RELATIONSHIPS argument,
DATATRIEVE creates relationships between the view domain, the
domains specified on the command line, and the data aggregate entity
containing view field information. You can see these relationships by
using the command CDO SHOW USED_BY view-path-name.

DATATRIEVE also attempts to create data instance relationships pointing
to the fields referenced by the view. To do this, the domains you specified
must have been defined with relationships. If they were not, the view
definition continues, but DATATRIEVE displays the following warning
message:

Some domains referenced by view were defined without
RELATIONSHIPS. Therefore not all view relationships
will be formed.

If the underlying domains were defined with relationships, DATATRIEVE
creates the data instance relationships and searches the record owned by
the underlying domain for the names of elementary fields within the view.
If the field is not found, the view definition fails and DATATRIEVE will
display the following error message:

<...> is not a field name

Usage Notes

• Generic Usage Notes

Relationships between objects are made to specific versions of objects;
relationships are not automatically propagated to newer versions of
objects. This means that when a new version of the database is created,
the owner domain, since it was defined with RELATIONSHIPS, will still
point to the old version.

The record definition and the data file associated with the domain need
not be defined when you enter a DEFINE DOMAIN command.

You cannot modify a domain definition with the DEFINE DOMAIN
command. To change an existing domain definition, use the EDIT
command, which places a REDEFINE DOMAIN command with the old

4–90 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DOMAIN Command

definition into the main buffer of the editor. Then you can use the editor
to make the desired changes.

When you exit from the editor, DATATRIEVE places the updated domain
definition with a new version number into the data dictionary. If the
SET EDIT_BACKUP command is in effect, the old definition is retained
in an earlier version. (See the chapter on record definitions in the
VAX DATATRIEVE User’s Guide and the section on EDIT in this
chapter for information on changing the definitions of domains and
other dictionary objects.)

To increase the ease of transporting your domain definitions, specify the
domain name as a given name and the record name as a full dictionary
path name.

Use a more complete file specification than just the file name and type.
Then you can access your data even though you may be in a different
VMS directory than the one where you first defined the domain.

• Defining a CDD$DATABASE Domain

Defines a domain based on an existing CDD$DATABASE object. The domain
is stored in the specified or implied directory of the data dictionary and
creates an access control list for the domain.

If you have already defined a RMS$DATABASE through CDO, this form
of the DEFINE DOMAIN command provides a simple way to access it.

• Defining a VAX DBMS Domain

This special form of the DEFINE DOMAIN command specifies a VAX DBMS
record type within a database instance.

You do not need to define a VAX DBMS domain to access a VAX DBMS
database.

You need to define a VAX DBMS domain to:

* Create a view that includes VAX DBMS data

* Use a VAX DBMS domain from a remote system

* Associate a form with a VAX DBMS record

• Defining a Network Domain

Stores the definition of a network domain in the specified or implied directory
of the data dictionary and creates an access control list for the domain.

• If the dictionary path name specified for the remote domain is a relative
one, DATATRIEVE resolves it based on the translation of the logical name

DATATRIEVE Commands, Statements, and Definition Clauses 4–91

DEFINE DOMAIN Command

CDD$DEFAULT, which results from starting a VMS process with the
node specification indicated.

If no user name and password are specified in the node specification
argument, the remote process logs in under the default DECnet account.
If a user name and password are specified, the remote process logs in as
that user.

If CDD$DEFAULT is not defined as a system, group, or process logical
name when the remote process logs in on the remote node, a relative
dictionary path name for the remote domain resolves from CDD$TOP as
the default dictionary directory.

• You may find that passwords are echoed if you use the CDO utility’s
SHOW GENERIC command to display the definition of a remote domain
entity. To avoid displaying passwords, use a prompting value expression
(*.prompt) as part of the access control string in the node specification of
the DEFINE DOMAIN command for network or remote domains. When
you display the definition of the remote domain, you will see the *.prompt
rather than an actual password.

• If the remote domain is on a PDP–11 system, you specify only the
domain’s given name. Otherwise, the format for referring to remote
domains is the same for both the VAX and the PDP–11 systems.

• Note that the remote domain you refer to in a network domain definition
is no different from any other DATATRIEVE domain. It specifies the
relationship of a particular record definition and a data file. (At remote
VAX/VMS systems, a VAX DBMS or relational domain can also be the
access path to a VAX DBMS or relational database.) The remote domain
must be defined at the remote node during a DATATRIEVE session
running on that remote node. A person or program local to that system
can invoke DATATRIEVE to enter the domain definition, or a person
or program running on that system as a remote terminal can enter the
definition.

• Defining a Relational Domain

This special form of the DEFINE DOMAIN command specifies a relation in a
relational database.

You do not need to define a domain for a relation in order to ready it.
When you ready a database directly, DATATRIEVE response time is
faster than when you use domains to access relational records.

You need to define domains for relations to:

* Create a view that includes data from a relation

4–92 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE DOMAIN Command

* Use relational domains from a remote system

* Associate a form with a relation

• Defining an RMS Domain

Stores a definition of an RMS domain in the specified or implied directory of
the data dictionary and creates an access control list for the domain.

• Defining a View Domain

Stores the definition of a view domain in the specified or implied directory of
the data dictionary and creates an access control list for the view domain.

Examples

Define the CDD$DATABASE domain NEWYACHTS. Use the already defined
CDD$DATABASE YACHTS.

DTR> DEFINE DOMAIN NEWYACHTS USING YACHTS_DB
DFN> WITH RELATIONSHIPS;

Define the VAX DBMS domain EMPLOYEES. The name of the record-type is
EMPLOYEE, and the name of the database instance is PARTS_DB. The domain
definition includes the FORM clause.

DTR> DEFINE DOMAIN EMPLOYEES
DFN> USING EMPLOYEE OF DATABASE PARTS_DB
DFN> FORM IS EMPFOR IN FORMS:PARTS.FLB;
DTR>

Define a network domain called REMOTE_YACHTS:

DTR> DEFINE DOMAIN REMOTE_YACHTS USING
DFN> CDD$TOP.DTR$LIB.DEMO.YACHTS AT
DFN> VAX32"SMITH ADRIENNE" FORM IS YACHT1 IN DTRFRM;
DTR>

The following example defines a DATATRIEVE domain that automatically uses a
form. The domain is defined for the relation EMPLOYEES.

DTR> DEFINE DOMAIN EMPLOYEES
DFN> USING EMPLOYEES OF DATABASE PERSONNEL
DFN> FORM IS EMPFOR IN FORMSLIB;
DTR>

Define the domain PHONES. Use the record definition PHONE_REC that is
cataloged in the directory CDD$TOP.DEPARTMENT. Specify PHONE.DAT as the
data file:

DTR> DEFINE DOMAIN PHONES USING
DFN> CDD$TOP.DEPARTMENT.PHONE_REC ON PHONE.DAT;
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–93

DEFINE DOMAIN Command

Define a view of yacht and owner information:

DTR> SHOW BOAT_VIEW
DOMAIN BOAT_VIEW OF YACHTS, OWNERS USING
01 BOAT_INFO OCCURS FOR YACHTS.

03 TYPE FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT.TYPE.

05 NAME FROM OWNERS.
05 BOAT_NAME FROM OWNERS.

;

DTR> READY BOAT_VIEW
DTR> PRINT FIRST 4 BOAT_VIEW

BOAT
MANUFACTURER MODEL NAME NAME

ALBERG 37 MK II
ALBIN 79
ALBIN BALLAD
ALBIN VEGA STEVE DELIVERANCE

HUGH IMPULSE

DTR>

You can use a view domain such as BOAT_VIEW as a source for modifying data
in an RMS domain. See the VAX DATATRIEVE User’s Guide for more examples
of view definitions.

4–94 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE FILE Command

DEFINE FILE Command
Creates an RMS sequential or indexed sequential data file for the DATATRIEVE
RMS domain specified by the dictionary path name.

Format for Defining a Sequential File

DEFINE FILE [FOR] path-name� ALLOCATION = n
SUPERSEDE
MAX

�
[,...]

Format for Defining an Indexed File

DEFINE FILE [FOR] path-name� ALLOCATION = n
SUPERSEDE
MAX

�
[,...]

{ KEY = field-name-1 [([NO]CHANGE[,] [NO]DUP)] } [,...]

Format for Defining an RMS File Using a FDL File

DEFINE FILE [FOR] domain-name USING fdl-file-spec

Arguments

path-name
Is the dictionary path name of the DATATRIEVE RMS domain for which you
want to create a data file.

domain-name
Is the name of the DATATRIEVE domain for which you want to create a data file.

ALLOCATION = n
Specifies an unsigned nonzero integer that determines the number of disk blocks
initially allocated for the data file. If you omit this argument, zero blocks are
allocated for the file.

SUPERSEDE
Causes DATATRIEVE to delete any existing data file that exactly matches the
complete file specification, including the version number, in your RMS domain
definition. The new file you are defining replaces the existing data file. If your

DATATRIEVE Commands, Statements, and Definition Clauses 4–95

DEFINE FILE Command

RMS domain definition does not include a file version number, the old file is not
deleted, and the new file is assigned the next higher version number.

MAX
Causes DATATRIEVE to create a fixed-length RMS file for a domain whose record
definition contains an OCCURS . . . DEPENDING clause. The length of every
record in the data file has the maximum possible size, as determined by the value
of the MAX argument in the OCCURS . . . DEPENDING clause:

OCCURS min TO max TIMES DEPENDING ON field-name

Each record can then store the maximum number of items in the list defined by
the OCCURS . . . DEPENDING clause.

If you omit this argument, DATATRIEVE does not create a file with fixed-length
records of the maximum possible size. The size of each record is determined when
you store the record. If the file is defined as a sequential file, a record size cannot
be increased to include more list items after it is initially stored.

KEY = field-name
Causes DATATRIEVE to create an RMS indexed file and specifies a field in the
domain’s record definition to be used as an index key for the domain’s data file.
The first key field specified in the DEFINE FILE command is the primary key,
and all subsequent ones are alternate keys. If you specify more than one KEY
clause, use a comma (,) to separate each clause from the next. If you are defining
a file for a hierarchical record, do not make a list field the primary key.

If you omit this clause, DATATRIEVE creates an RMS sequential file.

CHANGE
NO CHANGE
Determines whether or not you can modify the content of the associated key field.
The default is NOCHANGE for the primary key field and CHANGE for alternate
key fields. See Table 4–4 for the allowed combinations of key field attributes.

DUP
NO DUP
Determines whether or not you can assign the same value to the specified key
fields of two or more records. The default is NO DUP for the primary key field
and DUP for alternate key fields. See Table 4–4 for the allowed combinations of
key field attributes.

4–96 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE FILE Command

Table 4–4 Allowed Combinations of Key Field Attributes

Key Field Attributes

Key Type
CHANGE
+ DUP

CHANGE
+ NO DUP

NO CHANGE
+ DUP

NO CHANGE
+ NO DUP

Primary Not Allowed Not Allowed Allowed Allowed
Alternate Allowed Allowed Allowed Allowed

USING fdl-file-spec
Specifies the FDL file to be used in creating the RMS file.

Restrictions

• To define a data file for a DMU RMS domain, you must have the following
privileges:

P (PASS_THRU) access to the parent directories cataloging the domain
definition and the record definition

P (PASS_THRU), R (DTR_READ), S (SEE), and W (DTR_WRITE) access
privileges to the domain definition

E (DTR_EXTEND/EXECUTE), P (PASS_THRU), S (SEE), R (DTR_
READ), and W (DTR_WRITE) access to the associated record definition

• To define a data file for a CDO RMS domain, you must have the following
privileges:

S (SHOW) access to the dictionary cataloging the domain definition and
the record definition

S (SHOW) and W (WRITE) access to the domain and record definitions

• You cannot assign the CHANGE attribute to a primary key. See Table 4–4 for
the allowed combinations of key field attributes.

• If you are defining a file for a hierarchical record, you cannot designate a list
field as the primary key.

• If you define a group field key with DATATRIEVE or a segmented key with
RMS, DATATRIEVE uses only the first elementary item for indexed access.
However, DATATRIEVE does not use any part of a multiple field key when
one of the subordinate items is numeric. Therefore, all elementary fields in
a multiple field key must be nonnumeric for DATATRIEVE to use the first
elementary field for indexed access.

DATATRIEVE Commands, Statements, and Definition Clauses 4–97

DEFINE FILE Command

• DATATRIEVE does not use keyed access when the record source is a
collection.

• The domain specified by the dictionary path name must be an RMS domain,
not a view domain, VAX DBMS domain, relational domain, remote domain, or
port.

Results

• DATATRIEVE checks each DEFINE FILE command for special arguments
that affect the characteristics of your data file. When you use the DEFINE
FILE command to create a data file for a domain defined with relationships,
DATATRIEVE creates a special CDD/Repository entity called a CDD$FILE_
DEFINITION file. This entity contains information on the characteristics of
your data file.

• If you include no KEY clauses, DATATRIEVE creates an RMS sequential data
file for the domain specified by the dictionary path name.

• If you include one or more KEY clauses, DATATRIEVE creates an RMS
indexed sequential data file for the domain specified by the dictionary path
name.

• The file specification of the RMS file created by this command is the same as
that of the data file in the definition of the domain specified by the dictionary
path name. (Note that if you are using the USING fdl-file-spec format of the
DEFINE FILE command, the name of the RMS file is also taken from the
domain definition, not from any file name specified in the FDL file.)

If the domain definition omits a field in the file specification, DATATRIEVE
uses the following defaults:

Table 4–5 Output File Specification Defaults

Field Default

node-spec:: Your local node
device: Your default device
[directory] Your default directory
file-name Null string
.type .DAT
;version 1 or next higher version number

• If you omit the ALLOCATION = n clause, DATATRIEVE sets the initial disk
space allocation for the data file to zero blocks. When you store records into

4–98 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE FILE Command

the data file, RMS automatically extends the data file according to the cluster
size established by your VMS system manager.

• If the record definition associated with the specified domain contains no
OCCURS . . . DEPENDING clauses, DATATRIEVE creates a data file with a
fixed-length record format.

• If you do not include the MAX argument and the record definition associated
with the specified domain contains an OCCURS . . . DEPENDING clause,
DATATRIEVE creates a data file with a variable-length record format.

• If you include the MAX argument and the record definition associated
with the specified domain contains an OCCURS . . . DEPENDING clause,
DATATRIEVE creates a data file with a fixed-length record format.

• If you include the SUPERSEDE argument and the file specification in the
domain definition specifies a version number, DATATRIEVE deletes any
existing data file having that file specification (including the version number)
and replaces it with the new data file created by the DEFINE FILE command.
The new file has the same file specification (including the version number) as
that of the deleted file.

Usage Notes

• If you define a sequential file, you cannot erase records with the
DATATRIEVE ERASE statement. You can, however, change the value of
any field in a record.

• If you define an indexed file, you can erase records with the DATATRIEVE
ERASE statement. You cannot, however, change the value of the primary
key field of a record, or the value of any secondary key field with the NO
CHANGE attribute.

• If you change the size of a record, you also need to define a new file to agree
with the new record definition. Otherwise, you receive an error message
indicating ‘‘bad record size’’ when you try to ready the domain.

To avoid defining a new file, you can define filler fields in your record
definition to allow space for future additions.

• If you define a sequential file for a record with an OCCURS . . . DEPENDING
clause and do not use MAX, then you cannot extend the length of the list
without defining a new file.

• See the VAX DATATRIEVE User’s Guide for more information on defining
data files.

DATATRIEVE Commands, Statements, and Definition Clauses 4–99

DEFINE FILE Command

• If you are using the USING fdl-file-spec format of the DEFINE FILE
command, you should also note the following:

DATATRIEVE does not verify the validity of the FDL file specifications.
For example, DATATRIEVE does not check to see that offsets of any
specified keys match fields defined for the record; nor does it check for
valid record formats, file organization, segmented keys, and so forth.

DATATRIEVE does check the record size, however, and generates an error
message if the size of the record differs from the record size specified in
the FDL file.

DATATRIEVE ignores any CONNECT-related options included in the
FDL file because the file is being created, not opened.

DATATRIEVE dynamically activates the FDLSHR image the first time
you request a DEFINE FILE with the USING fdl-file-spec clause.
Subsequent requests do not incur the overhead of activating that image.

If DATATRIEVE receives any kind of error or warning messages from the
FDL parse of the file, DATATRIEVE does not call FDL to create the RMS
file. (Note that this includes syntax warnings. If you used FDL outside
of DATATRIEVE such warnings might be ignored and the file would be
created.) DATATRIEVE instead returns an appropriate error message.
The error message may contain the statement number of the line in the
FDL file that caused the error if the statement number is returned from
FDL. The message will not include any additional information about the
error.

You should therefore debug your FDL file at the DCL level before
attempting to use it from within DATATRIEVE.

For more information on using FDL files to improve the performance of
your application, see the VAX DATATRIEVE User’s Guide and the VMS
documentation on File Definition Language and on file applications.

• If you are defining data files for domains defined using the WITH
RELATIONSHIPS clause, you should also note the following:

If the DEFINE FILE command line contains no arguments other
than the domain name, DATATRIEVE checks to see if there is a
CDD$FILE_DEFINITION entity already associated with the domain.
If DATATRIEVE finds a CDD$FILE_DEFINITION entity, DATATRIEVE
uses the RMS file parameters stored in that entity when it defines the
file. If DATATRIEVE does not find a CDD$FILE_DEFINITION entity,
it creates the data file using the default RMS file parameters and then
creates a CDD$FILE_DEFINITION entity to reflect those parameters.

4–100 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE FILE Command

If the DEFINE FILE command line contains one or more of the arguments
listed in the DEFINE FILE syntax (ALLOCATION, SUPERSEDE, MAX,
KEY, USING fdl-file-spec) and a CDD$FILE_DEFINITION is already
associated with the specified domain, DATATRIEVE compares the
arguments with the contents of the CDD$FILE_DEFINITION entity. If
the argument you listed was an FDL file specification, DATATRIEVE
compares the RMS parameters of the FDL file with the contents of the
existing CDD$FILE_DEFINITION entity.

If the new arguments and the CDD$FILE_DEFINITION entity do not
match or if the domain does not own a CDD$FILE_DEFINITION entity,
DATATRIEVE creates a CDD$FILE_DEFINITION that reflects the new
DEFINE FILE (or FDL) arguments.

DATATRIEVE also creates a new version of the domain that points to the
new CDD$FILE_DEFINITION.

If the domain is a CDD$DATABASE domain, DATATRIEVE uses the file
parameters you specified when defining the RMS_DATABASE through
CDO. DATATRIEVE does not update the CDD$FILE_DEFINITION
entity of a CDD$DATABASE domain, and ignores any arguments on the
DEFINE FILE command line for a CDD$DATABASE domain.

Examples

The following example shows how to define an indexed file for the domain
PAYABLES using the field NAME as the primary key and TYPE as the alternate
key, and allowing no changes to the alternate key:

DTR> DEFINE FILE FOR PHONES KEY=NAME(DUP), KEY=TYPE(NO CHANGE)
DTR>

The following example defines a sequential file for the domain FAMILIES:

DTR> DEFINE FILE FOR FAMILIES
DTR>

The following example shows how to define a new indexed file for the domain
YACHTS using the group field TYPE as the primary key, allowing duplicate
values for this key. This command replaces the previous data file for YACHT.

DTR> DEFINE FILE FOR YACHTS SUPERSEDE, KEY=TYPE (DUP)
DTR>

The following example defines a new file for the YACHTS domain using the
specifications included in YACHTS.FDL, a file created outside of DATATRIEVE:

DTR> DEFINE FILE FOR YACHTS USING YACHTS.FDL
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–101

DEFINE PORT Command

DEFINE PORT Command
Enters the definition of a DATATRIEVE port in the specified or implied directory
of the CDD/Repository data dictionary system and creates an access control list
(ACL) for the port.

Format

DEFINE PORT path-name [USING] record-path-name ;

Arguments

path-name
Is the given name, full dictionary path name, or relative dictionary path name of
the port being defined. The path name cannot resolve to the full dictionary path
name of any other object or directory in the data dictionary system. DEFINE
PORT will accept both DMU and CDO style path names.

record-path-name
Is the given name, full dictionary path name, or relative dictionary path name of
the record definition to be associated with the port. The dictionary path name of
the record cannot resolve to the full dictionary path name of any other object or
directory in the data dictionary system. DEFINE PORT will accept both DMU
and CDO style path names.

; (semicolon)
Ends the port definition.

Restrictions

• Do not use a DATATRIEVE keyword as the given name of a port or as the
given name of the record definition associated with the port.

• You cannot use a DEFINE PORT command as part of a compound statement.

• You cannot invoke a procedure in a port definition.

• You must enter the port definition in the data dictionary before using it to
transfer data between DATATRIEVE and your application program.

4–102 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE PORT Command

Results

• If you press the RETURN key before typing the semicolon, DATATRIEVE
prompts you with the DFN> prompt to continue the definition. DATATRIEVE
continues to prompt you until you type a semicolon and press the RETURN
key or until it detects a syntax error. If you make a syntax error while
entering the port definition, DATATRIEVE returns to command level
(indicated by the DTR> prompt) without entering the port definition in
the data dictionary.

• DATATRIEVE enters the port definition into the directory of the data
dictionary determined by the dictionary path name you specify with the
DEFINE PORT command. DATATRIEVE stores the port definition in the
parent directory determined by the full dictionary path name of the port. In
the full dictionary path name, the name of the parent directory immediately
precedes the given name of the port.

• DATATRIEVE creates a default access control list for the port. The UIC
identification matches any UIC ([*,*]), and the user name is set to your
current VMS user name.

If you define your port with a DMU path name, the privileges granted are
C (CONTROL), D (LOCAL_DELETE), E (DTR_EXTEND/EXECUTE), H
(HISTORY), M (DTR_MODIFY), R (DTR_READ), S (SEE), U (UPDATE),
and W (DTR_WRITE). If you define your port with a CDO path name, the
privileges granted are U (CHANGE + DEFINE), C (CONTROL), D (DELETE),
E (EXTEND), M (MODIFY), R (READ), S (SHOW), and W (WRITE). In either
case, the C (CONTROL) privilege allows you to change the access control list
to suit your needs.

Usage Notes

• Before you can use the port, you must enter in the data dictionary the record
definition associated with the port. Use the DEFINE RECORD command.

• Use the SHOW path-name command to display the definition of the port.

• Use the SHOW DOMAINS command to display the names of all the ports in
your default dictionary directory.

• See the VAX DATATRIEVE Guide to Programming and Customizing for
information about using a port to transfer data between DATATRIEVE and
your application program.

DATATRIEVE Commands, Statements, and Definition Clauses 4–103

DEFINE PORT Command

Example

The following example defines a port for transferring records between the
YACHTS domain and an application program:

DTR> DEFINE PORT YPORT USING CDD$TOP.DTR$LIB.DEMO.YACHT;
DTR>

4–104 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE PROCEDURE Command

DEFINE PROCEDURE Command
Enters a procedure definition into the CDD/Repository data dictionary system
and creates an access control list (ACL) for the procedure.

Format

DEFINE PROCEDURE procedure-name

.

.

.

END_PROCEDURE

Arguments

procedure-name
Is the given name, full dictionary path name, or relative dictionary path name
of the procedure you want to define. The path name cannot resolve to the full
dictionary path name of any other object or directory in the data dictionary.
Procedures can be defined in either the DMU or CDO dictionary.

END_PROCEDURE
Ends the procedure definition.

Restrictions

• You must enter the DEFINE PROCEDURE command at DATATRIEVE
command level (indicated by the DTR> prompt); it cannot be part of a
DATATRIEVE statement.

• To define a procedure in the DMU format dictionary, you must have the
following access privileges:

P (PASS_THRU) access to the ancestors of the procedure

P (PASS_THRU) and X (EXTEND) access to the parent directory

• To define a procedure in the CDO format dictionary, you must have the
following access privileges:

VMS access to the VMS directory

S (SHOW) and U (CHANGE) access to the dictionary.

DATATRIEVE Commands, Statements, and Definition Clauses 4–105

DEFINE PROCEDURE Command

Results

• After you type DEFINE PROCEDURE procedure-name and press the
RETURN key, DATATRIEVE displays the DFN> prompt. This prompt
indicates that DATATRIEVE expects a procedure definition and that the
commands and statements you enter before the END_PROCEDURE clause
are included in the procedure.

Until you end the procedure definition with END_PROCEDURE,
DATATRIEVE treats your input as input to the procedure and continues
to prompt you with the DFN> prompt.

• DATATRIEVE enters the procedure definition in the dictionary directory
determined by the full dictionary path name of the procedure. If you use only
the given name of the procedure in the DEFINE command, DATATRIEVE
stores the definition in your default dictionary directory.

• DATATRIEVE creates a default access control list entry for the procedure.
The UIC matches any UIC ([*,*]), and the user name is set to your current
VMS user name.

If you define your domain with a DMU path name, the privileges granted
are C (CONTROL), D (LOCAL_DELETE), E (DTR_EXTEND/EXECUTE),
H (HISTORY), M (DTR_MODIFY), R (DTR_READ), S (SEE), U (UPDATE),
and W (DTR_WRITE). If you define your domain with a CDO path name, the
privileges granted are U (CHANGE + DEFINE), C (CONTROL), D (DELETE),
E (EXTEND), M (MODIFY), R (READ), S (SHOW), and W (WRITE). In either
case, the C (CONTROL) privilege allows you to change the access control list
to suit your needs.

• If you include comments in a procedure (by preceding your input line
with an exclamation point), DATATRIEVE stores the comments in the
CDD/Repository dictionary as part of the procedure definition. If you include
comments in the procedure, DATATRIEVE does not display them when you
invoke the procedure and DATATRIEVE executes it.

Usage Notes

• To invoke a procedure, enter a colon (or its synonym, EXECUTE) followed
by the given name, full dictionary path name, or relative path name of the
procedure. You can invoke a procedure in response to any DATATRIEVE
prompts, except those of ADT, Guide Mode, and the editor. You can also
invoke procedures in the midst of input lines.

• To invoke a procedure with a VMS command line, you must do the following:

Use the keyword EXECUTE instead of the colon.

4–106 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE PROCEDURE Command

Include the EXECUTE command together with the procedure name
between double quotation marks.

$ DATATRIEVE/INTERFACE=CHARACTER_CELL "EXECUTE TEST_PROCEDURE"

• You cannot modify a procedure definition with the DEFINE PROCEDURE
command. To change an existing procedure definition, use the EDIT
command. The EDIT command places a REDEFINE PROCEDURE command
with the old procedure definition into the main buffer of the editor. You can
then use the editor to make the desired changes.

When you exit from the editor, DATATRIEVE places the updated procedure
definition with a new version number into the DMU dictionary. If SET EDIT_
BACKUP is in effect, the old definition is retained in an earlier version.

See the section on the EDIT command for more information on changing the
definitions of procedures and other dictionary objects.

• You must take care when using a procedure in a loop formed by a REPEAT or
FOR statement. To ensure that DATATRIEVE executes all the statements in
the procedure each time through the loop, enclose the procedure in a BEGIN-
END block. Remember, though, that if you use a procedure in this way, it
cannot include any commands or FIND, SELECT, or DROP statements.

• For more information on procedures, see the VAX DATATRIEVE User’s Guide.

Examples

The following example shows how to define a procedure to set your default
directory to the DEMO directory, which contains the sample data for the
YACHTS, OWNERS, and FAMILIES domains:

DTR> DEFINE PROCEDURE DEMO
DFN> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
DFN> SHOW DICTIONARY
DFN> END_PROCEDURE
DTR> :DEMO
The default directory is CDD$TOP.DTR$LIB.DEMO
DTR>

The following example shows how to define a procedure that displays a group of
boats with a price less than a figure you supply when the procedure runs:

DATATRIEVE Commands, Statements, and Definition Clauses 4–107

DEFINE PROCEDURE Command

DTR> DEFINE PROCEDURE PRICE_LIST
DFN> READY YACHTS
DFN> PRINT SKIP, COL 20,
DFN> ’*** Price List of YACHTS ***’, SKIP
DFN> FOR YACHTS WITH PRICE NE 0 AND
DFN> PRICE LE *.’the ceiling price’
DFN> PRINT BOAT
DFN> PRINT SKIP, COL 10, ’See anything interesting?’
DFN> END_PROCEDURE
DTR> :PRICE_LIST

*** Price List of YACHTS ***

Enter the ceiling price: 5,000

LENGTH
OVER

MANUFACTURER MODEL RIG ALL DISPLACEMENT BEAM PRICE

CAPE DORY TYPHOON SLOOP 19 1,900 06 $4,295
VENTURE 21 SLOOP 21 1,500 07 $2,823
VENTURE 222 SLOOP 22 2,000 07 $3,564
WINDPOWER IMPULSE SLOOP 16 650 07 $3,500

See anything interesting?

DTR>

The following example shows how to use a VMS command line to invoke the
procedure created in the first example:

$ DTR32 EXECUTE DEMO
The default directory is CDD$TOP.DTR$LIB.DEMO

$

4–108 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE RECORD Command

DEFINE RECORD Command
Enters a record definition in the CDD/Repository data dictionary and creates an
access control list (ACL) for the record.

Format

DEFINE RECORD record-path-name [USING] [OPTIMIZE]�
�� ALLOCATION IS

 MAJOR-MINOR
ALIGNED-MAJOR-MINOR
LEFT-RIGHT

� �
��

definition[,...]

;

Arguments

record-path-name
Is the given name, full dictionary path name, or relative dictionary path name
of the record being defined. The record path name cannot resolve to the full
dictionary path name of any other object or directory in the data dictionary
system. DEFINE RECORD will accept both DMU and CDO style path names.

[USING] OPTIMIZE
Allows you to optimize record definitions, reducing the central processing unit
(CPU) time needed to ready a domain that refers to the record. See the Usage
Notes section for special considerations.

ALLOCATION IS

MAJOR-MINOR
ALIGNED-MAJOR-MINOR
LEFT-RIGHT

�

Specifies the type of word-boundary alignment DATATRIEVE uses when storing
records in the data file. It also controls the way DATATRIEVE retrieves data
from data files created by user programs or other application software. The
default allocation is no alignment. See the VAX COBOL documentation set for
more information on word-boundary alignment and allocation of fill bytes.

definition
Is the description of the fields in the record. Each definition has one of the
following formats:

DATATRIEVE Commands, Statements, and Definition Clauses 4–109

DEFINE RECORD Command

level-number-1 field-name-1.
level-number-2 field-name-2 field-definition-2.
[level-number-n field-name-n field-definition-n.]

. . .

. . .

. . .

or

level-number-n FROM
� FIELD

GROUP

path-name.

level-number
Is the level number for the field in the record definition. It indicates the
relationship of the field to the other fields in the record definition.

field-name
Is the name of the field. Every field must have a name. The keyword FILLER
is a special field name that can be repeated at the same level in the record
definition.

field-definition
Is a field definition. A record definition must contain at least one field definition.
Elementary fields must have at least one field definition clause, but group fields
are not required to have any field definition clauses.

Each field definition must end with a period (.).

FROM
Allows you to create a definition using fields imported from CDO field/record
definitions.

FIELD
Specifies that you are referencing an existing CDO field.

GROUP
Specifies that you are referencing an existing CDO group field.

path-name
Specifies the path name of the field or record referenced by a FROM field.
The record or field specified by this path name must reside in a CDO format
dictionary.

4–110 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE RECORD Command

; (semicolon)
Ends the record definition.

Restrictions

• You cannot invoke a procedure in a record definition.

• The level number must be an integer between 1 and 65.

• A record definition must contain the field definition of at least one elementary
field.

• The field definition of an elementary field must contain at least one field
definition clause.

• The maximum number of fields that VAX DATATRIEVE is able to handle in a
CDO format record is 1024.

• No field name can duplicate the domain name.

• Use of the FROM clause is restricted to records defined in the CDO dictionary.

• A FROM field cannot have subordinate fields. A FROM field is treated as an
elementary field in the record definition, because any subordinate fields are
predefined in the CDD/Repository dictionary.

• A FROM clause definition must end with both a period and a carriage return.

• If you want to use records defined in the CDD/Repository system, make sure
that variant clauses containing more than one field are declared as structures.

Results

• If you press the RETURN key before typing the semicolon, DATATRIEVE
prompts you with the DFN> prompt to continue the definition. DATATRIEVE
continues to prompt you until you type a semicolon and press RETURN or
until it detects a syntax error. If you make a syntax error while entering the
record definition, DATATRIEVE returns to command level (indicated by the
DTR> prompt) without creating the record definition.

• When you end the record definition, DATATRIEVE displays the following
message to indicate the length of the new record in bytes:

[Record is n bytes long]

• DATATRIEVE enters the record definition in the dictionary directory
determined by the full dictionary path name of the record. If you use only
the given name of the record definition in the DEFINE RECORD command,
DATATRIEVE stores the definition in your default dictionary directory.

DATATRIEVE Commands, Statements, and Definition Clauses 4–111

DEFINE RECORD Command

• Directory entries are not made for fields that are part of the record.

• When you specify the OPTIMIZE qualifier, DATATRIEVE stores its internal
representation of the record (called the field tree) in the dictionary. This
means DATATRIEVE does not have to reconstruct the field tree each time you
ready a domain that refers to the record.

DATATRIEVE constructs a new field tree only when the record is redefined
using the OPTIMIZE qualifier. (Note that the DEFINE FILE command also
uses record definitions. Its performance will also improve by optimizing
records.)

DATATRIEVE does not perform optimization by default. When defining a
new record, you must specify the OPTIMIZE qualifier to optimize a record. To
optimize existing record definitions, you must redefine the records (using the
EDIT or EXTRACT command) and include the OPTIMIZE qualifier.

When a new version of DATATRIEVE is installed, you may find that you
have to redefine optimized records if you want to continue the benefits of
optimization. If the new version of DATATRIEVE requires that the field tree
be stored in a different format, then DATATRIEVE may no longer be able to
use the field tree stored by previous versions. If this happens, DATATRIEVE
ignores the older version field tree when you enter a READY command and
displays the following message:

Record <"record-name"> uses old record format. Processing will
continue, but for optimization you must redefine record.

You can restore optimization to your record by redefining the record with the
EDIT or EXTRACT command.

• DATATRIEVE creates a default access control list entry for the record
definition. The UIC matches any UIC ([*,*]), and the user name is set to your
current VMS user name.

If you define your record with a DMU path name, the privileges granted
are C (CONTROL), D (LOCAL_DELETE), E (DTR_EXTEND/EXECUTE),
H (HISTORY), M (DTR_MODIFY), R (DTR_READ), S (SEE), U (UPDATE),
and W (DTR_WRITE). If you define your record with a CDO path name, the
privileges granted are U (CHANGE + DEFINE), C (CONTROL), D (DELETE),
E (EXTEND), M (MODIFY), R (READ), S (SHOW), and W (WRITE). In either
case, the C (CONTROL) privilege allows you to change the access control list
to suit your needs.

4–112 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE RECORD Command

Usage Notes

• This command creates a record definition but cannot modify or replace one.
To modify a record definition, use the EDIT command.

• The EDIT command places a REDEFINE RECORD command with the old
definition in the main buffer of the editor. You can then use the editor to
make the desired changes. When you exit from the editor, DATATRIEVE
places the updated record definition with a new version number in the data
dictionary.

If SET EDIT_BACKUP is in effect, the old definition is retained in an earlier
version. See the section on the EDIT command in this chapter for information
on changing the definitions of records, tables, and other dictionary objects.

• If you change a record definition, you may not be able to use old data files. If
the new record definition is not the same length or the new field definitions
change to data types incompatible with the previous definition, you have to
define a new data file.

The safest method for changing record definitions is to define a new domain
and a new file to accompany the new record definition. Then use the STORE
statement or the Restructure statement to transfer the values from the data
file of the old domain to the data file of the new one.

• The FROM clause forms a relationship between the record being defined and
the specific version of the field or record referenced by the FROM clause. If a
newer version of the field or record is defined, your record still points to the
older version. You can use the EDIT command to change the version of the
field being referenced by the FROM clause.

• Consider the following performance and storage tradeoffs before using the
OPTIMIZE qualifier:

The major benefit of the OPTIMIZE qualifier is the decrease in CPU time
when readying a domain with an optimized record. On sample records,
CPU times decreased anywhere from 50 to 95 percent. Larger records
showed the greater improvement.

Using the OPTIMIZE qualifier increases the CPU time necessary to
define a record. The elapsed CPU time for a DEFINE RECORD command
increases anywhere from a few percentage points to nearly double the
time. The smaller percentage increases occur for small records. Larger
records cause the larger percentage increases in CPU time.

DATATRIEVE Commands, Statements, and Definition Clauses 4–113

DEFINE RECORD Command

You can avoid increased record definition time by not using the OPTIMIZE
qualifier while designing a record. Instead, edit the final version of the
record and add the OPTIMIZE qualifier. This way you still benefit from
the READY performance improvements.

Note also that the increase in definition time is essentially a one-time
occurrence. Once you define your record, you experience the improved
performance each time you ready a domain that uses that record.

When the record is optimized, the space used by the record definition in
the dictionary may increase.

The sample record definition ACCOUNT_BALANCES_REC (located in
CDD$TOP.DTR$LIB.DEMO) uses the new OPTIMIZE qualifier, allowing
you to see the performance improvements and tradeoffs involved in using
OPTIMIZE.

Field Definition Clauses
When you define a field, you specify its characteristics with one or more field
definition clauses. A field definition clause consists of a keyword (such as
PICTURE or QUERY_NAME) followed by a character string or value expression.
Field definition clauses specify the following characteristics of fields:

• The class and length of the data and the format in which the data is stored
(PICTURE, USAGE, COMPUTED BY, OCCURS)

• The format used when DATATRIEVE writes the data to a file or output device
(EDIT_STRING, QUERY_HEADER, SIGN)

• The values accepted when you store data in the field (VALID IF, DEFAULT
VALUE, MISSING VALUE)

• The way DATATRIEVE computes numeric values when you refer to the field
(USAGE, SCALE, COMPUTED BY, MISSING)

• An alternate and equivalent name for the field (QUERY_NAME)

• An alternate way to define another field in the record (REDEFINES)

You can also use a FROM clause to include previously defined CDO field level
definitions in a DATATRIEVE record definition.

When you write DATATRIEVE record definitions, you can choose from the field
definition clauses summarized in Table 4–6.

4–114 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE RECORD Command

Table 4–6 Summary of Field Definition Clauses

Clause Valid For Purpose

COMPUTED BY Elementary
field

Describes a COMPUTED BY field.

DEFAULT VALUE Elementary
field

Specifies a value stored in the field
if you do not enter a value when
creating the record.

EDIT_STRING Elementary
field

Specifies the format of a value when
DATATRIEVE writes a field value to
a file or output device.

MISSING VALUE Elementary
field

Specifies a numeric or character-
string literal denoting that no value
is stored in the field. This causes
DATATRIEVE to ignore a record with
a MISSING value in a field when
calculating statistical functions using
values in that field.

OCCURS Elementary or
group field

Defines multiple occurrences of a field
or group of fields.

PICTURE Elementary
field

Specifies the data type, length, and
format of values stored in the field.

QUERY_HEADER Elementary
field

Specifies the column header for a
field when DATATRIEVE writes one
or more field values to a file or output
device.

QUERY_NAME Elementary or
group field

Specifies an alternate name for a
field.

REDEFINES Elementary or
group field

Creates an alternate definition for a
field.

SCALE Numeric
elementary
field

Specifies a scaling factor, a positive or
negative integer indicating the power
of 10 that determines the number of
significant digits of an input value
stored as a value in the field.

(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–115

DEFINE RECORD Command

Table 4–6 (Cont.) Summary of Field Definition Clauses

Clause Valid For Purpose

SIGN Numeric
elementary
field

Specifies the location and repre-
sentation of the sign in a numeric
field.

SYNCHRONIZED Elementary
field

Forces word boundary SYNC
alignment according to data types
when MAJOR_MINOR alignment is
in effect.

USAGE Numeric or
date
elementary
field

Specifies the length and format of a
numeric field or specifies a date field.

VALID IF Elementary
field

Tests a value against conditions
specified in the Boolean expression
before storing or modifying the value
in the field.

Guide for Using Field Definition Clauses
When you write field definitions, observe these rules and guidelines for using field
definition clauses:

• The definition of a group field must contain at least a level number and
a field name. It can also contain one or more field definition clauses.
DATATRIEVE ignores any PICTURE or USAGE clauses you include in a
group field definition.

• A definition of an elementary field must contain a PICTURE, COMPUTED
BY, or USAGE clause.

• If you use a PICTURE clause in a field definition, DATATRIEVE treats it as
an edit string if no EDIT_STRING clause is present.

• If you use the USAGE clauses BYTE, WORD, LONG, QUAD, COMP (or
INTEGER), or COMP-2 (or DOUBLE), then you do not need a PICTURE
clause. The other USAGE clauses, COMP-3 (or PACKED), COMP-5 (or
ZONED), and DISPLAY, require a PICTURE clause.

• If you use a COMPUTED BY clause to define a field, DATATRIEVE ignores
any USAGE clause in your definition and treats a PICTURE clause as an edit
string if no EDIT_STRING clause is present.

4–116 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE RECORD Command

• You must end each field definition with a period. If the field is a group field
with no field definition clause, place the period immediately after the field
name.

• If the field definition contains one or more clauses, place the period after the
last clause.

• You can put one or more field definition clauses on the same input line as the
level number and field name.

• You can also put each field definition clause on one or more input lines.

• You can enter the clauses of a field definition in any order.

• Separate each field definition clause from the next by entering a space, a tab,
or a carriage return.

• Indenting field definition clauses with spaces or tabs, or entering them on
separate lines, does not change the characteristics of the field, but this
practice makes your record definition easy to read.

Examples

The following example defines the record PHONE_REC:

DTR> DEFINE RECORD PHONE_REC USING
DFN> 01 PHONE.
DFN> 02 NAME PIC X(20).
DFN> 02 NUMBER PIC 9(7) EDIT_STRING IS XXX-XXXX.
DFN> 02 LOCATION PIC X(9).
DFN> 02 DEPARTMENT PIC XX.
DFN> ;
[Record is 38 bytes long.]
DTR>

The following example defines the record FAMILY:

DTR> DEFINE RECORD FAMILY USING
DFN> 01 FAMILY.
DFN> 03 PARENTS.
DFN> 06 FATHER PIC X(10).
DFN> 06 MOTHER PIC X(10).
DFN> 03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
DFN> 03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.
DFN> 06 EACH_KID.
DFN> 09 KID_NAME PIC X(10) QUERY_NAME IS KID.
DFN> 09 AGE PIC 99 EDIT_STRING IS Z9.
DFN> ;
[Record is 142 bytes long.]
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–117

DEFINE RECORD Command

The following example defines the record ACCOUNT_BALANCE_REC using the
OPTIMIZE qualifier. Note that the USING clause is optional.

DTR> DEFINE RECORD ACCOUNT_BALANCE_REC USING OPTIMIZE
.
.
.

DFN> ;
DTR>

The following example defines the record YACHT_REC in the CDO format
dictionary using fields from a CDO dictionary. Note that you can mix fields from
an existing CDO dictionary and fields private to DATATRIEVE in the same record
definition. Field BEAM uses CDD$DEFAULT.BEAM as a path. Fields LOA and
PRICE are defined only for this record.

DTR> DEFINE RECORD YACHT_REC USING
DFN> 01 BOAT.
DFN> 03 FROM GROUP SYS$COMMON:[CDDPLUS]DTR32.TYPE.
DFN> 03 SPECIFICATIONS.
DFN> 06 LOA PIC 99.
DFN> 06 FROM FIELD BEAM.
DFN> 06 PRICE PIC 999999.
DFN> ;
DTR>

4–118 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE TABLE Command

DEFINE TABLE Command
Enters the definition of a dictionary or domain table in the CDD/Repository data
dictionary and creates an access control list (ACL) for the table. The following
sections explain how to define dictionary and domain tables.

Format
To define a dictionary table use the following syntax:

DEFINE TABLE path-name

[QUERY_HEADER [IS] ‘‘header-segment’’[/...]]

[EDIT_STRING [IS] edit-string]

[USING] code-field : translation-field [,]� ‘‘code-1’’
code-1

:
� ‘‘translation-1’’

translation-1

[,]

� � ‘‘code-2’’
code-2

:
� ‘‘translation-2’’

translation-2

 �
[,]

. .

. .

. .�
ELSE

� ‘‘translation-n’’
translation-n

 �

END_TABLE

To define a domain table use the following syntax:

DEFINE TABLE path-name FROM [DOMAIN] domain-path-name

[QUERY_HEADER [IS] ‘‘header-segment’’[/...]]

[EDIT_STRING [IS] edit-string]

[USING] code-field : translation-field [,]�
ELSE

� ‘‘translation-string’’
translation-string

 �

DATATRIEVE Commands, Statements, and Definition Clauses 4–119

DEFINE TABLE Command

END_TABLE

Arguments

path-name
Is the given name, full dictionary path name, or relative dictionary path name
of the dictionary table being defined. The full dictionary path name of the table
cannot resolve to the full dictionary path name of any other object or directory in
the data dictionary system. The DEFINE TABLE command accepts both DMU or
CDO style path names.

"code" : "translation"
code : translation
Is a code-and-translation pair. You must separate each pair with a colon. The
comma after each pair is optional. If the code or translation conforms to the rules
for DATATRIEVE names given in the VAX DATATRIEVE User’s Guide, you do
not have to enclose it in quotation marks. However, DATATRIEVE converts to
uppercase any lowercase letters in an unquoted code or translation.

If the code or translation does not conform to the rules for DATATRIEVE names
(especially if it contains any spaces), or if you want to preserve lowercase letters,
you must enclose the code or translation in quotation marks (" ") and follow the
rules for character string literals. (See Chapter 1.)

ELSE "translation"
translation
Is the translation to be used if you specify a code not defined in the dictionary
table. The rules for specifying this translation string are the same as those for
codes and translations. (See Chapter 1.)

END_TABLE
Ends the dictionary table definition.

Restrictions

• You cannot include the invocation of a procedure (:procedure-name) in a table
definition.

• The given name of a table cannot duplicate a DATATRIEVE keyword.

• If, in different directories, the data dictionary contains two tables with the
same given name, you cannot have both tables in your workspace at the same
time. After you refer to one of them with an IN clause or a VIA clause, you
cannot use the second one until you remove the first from your workspace
with a RELEASE command.

4–120 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE TABLE Command

• The total length of all the code-and-translation pairs in a single dictionary
table cannot exceed 63,000 bytes.

• To define a domain table stored in the DMU dictionary, you need the following
privileges:

P (PASS_THRU) to the parent directory of the domain table definition

P (PASS_THRU), S (SEE), and E (DTR_EXTEND/EXECUTE) privileges
to the domain table definition

P (PASS_THRU), S (SEE), and R (DTR_READ) privileges to the domain
containing the code and translation fields

P (PASS_THRU), S (SEE), and E (DTR_EXTEND/EXECUTE) privileges
to the record definition associated with the domain containing the code
and translation fields

• To access a domain table stored in the CDO dictionary, you need the following
privileges:

VMS access to the VMS directory of the anchor

S (SHOW) and U (CHANGE) access to the parent directory

S (SHOW) and R (READ) access to the domain and record definitions

• Do not bring a domain table and a domain with the same given names into
your workspace at the same time.

• Do not ready a domain with an alias that is the same as the given name of a
domain table in your workspace.

Results

• If you press the RETURN key before entering the END_TABLE argument,
DATATRIEVE prompts with the DFN> prompt to continue. DATATRIEVE
continues to prompt until you end the definition with the END_TABLE
argument.

• DATATRIEVE enters the definition of the table in the dictionary directory
determined by the full dictionary path name of the table. If you use only the
given name of the table with the DEFINE command, DATATRIEVE enters
the definition in your default directory.

• DATATRIEVE creates a default access control list entry for the table. The
UIC matches any UIC ([*,*]), and the user name is set to your current VMS
user name.

DATATRIEVE Commands, Statements, and Definition Clauses 4–121

DEFINE TABLE Command

If you define your domain with a DMU path name, the privileges granted
are C (CONTROL), D (LOCAL_DELETE), E (DTR_EXTEND/EXECUTE),
H (HISTORY), M (DTR_MODIFY), R (DTR_READ), S (SEE), U (UPDATE),
and W (DTR_WRITE). If you define your domain with a CDO path name, the
privileges granted are U (CHANGE + DEFINE), C (CONTROL), D (DELETE),
E (EXTEND), M (MODIFY), R (READ), S (SHOW), and W (WRITE). In either
case, the C (CONTROL) privilege allows you to change the access control list
to suit your needs.

• Values coming from a table are always converted to the string computational
class. In most cases this causes no problems because the value may be
converted to another class. But a problem may occur when you try to
interpret as a date class a value computed via table that looks like a date
but, since it comes from a table, is a string (i.e. "01-JAN-1991"). The result
of this action will be random output. To obviate the problem, use the function
FN$DATE to convert the string coming from a table to a date class. For
instance, in a computation, replace the string constant "01-JAN-1991" with
the date expression FN$DATE("01-JAN-1991").

Usage Notes

• When you invoke a dictionary table with an IN or VIA clause, the table is
loaded into your workspace and remains available to you until you remove it
from your workspace.

• The IN and VIA operators are case sensitive. DATATRIEVE finds the values
on the table only if they agree with the case of the characters.

• Use the SHOW READY command to display the names of the tables loaded
in your work space.

• A table loaded in your workspace remains available to you even if you change
default dictionary directories.

• To remove a dictionary table from your workspace, use the RELEASE table-
name command. To remove a domain table from your workspace, use either
the RELEASE table-name command or the FINISH table-name command. A
FINISH ALL command also removes all domain tables from your workspace.

• DATATRIEVE uses a default edit string of 10 characters when it displays
the translation string or writes the value to another output device. You can
specify an edit string each time you use a VIA value expression. With the
EDIT_STRING clause in the table definition, you can also give one edit string
to apply to all the translations.

4–122 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE TABLE Command

If you do not use the EDIT_STRING clause in the table definition,
DATATRIEVE uses the edit string of the code field to format its output of the
translation field only if there is no ELSE clause in the domain table definition.
If the domain table definition contains an ELSE clause, DATATRIEVE assigns
an edit string of X(n), where n is the number of characters in either the edit
string of the translation field or the ELSE translation string, whichever is
longer.

• You can specify a column header each time you use a VIA value expression.
You can also specify, with the QUERY_HEADER clause in the table definition,
one query header to apply to all the translations.

• When you specify a query header for a VIA value expression, you must
enclose the entire expression in parentheses for the query header to take
effect.

• DATATRIEVE does not use the query header in the field definition of the
translation field. To specify a query header for the translation field, use the
QUERY_HEADER clause in the command when defining the domain table.

• The definition of a dictionary table differs from the definitions of domains and
records because it contains values, not just a data description.

• To modify an existing definition of a table use the EDIT command.
DATATRIEVE loads the table definition into the main buffer of the editor.
Then you edit the definition, modifying any codes and translations. When you
exit from the editor, DATATRIEVE stores the updated definition with a new
version number in the data dictionary.If SET EDIT_BACKUP is in effect, the
old definition is retained in an earlier version.

• If the data file associated with a domain table contains duplicate values for
a code field specified in a VIA value expression, DATATRIEVE outputs the
value of the translation field corresponding to the first code field it encounters
as it searches the data file. The order of records for the search is determined
by the physical order or records in sequential data files and by the sequence
of values in the key fields of indexed records.

• You can replace the definition of a domain table by deleting it from the
data dictionary with the DELETE command and entering another DEFINE
TABLE command.

To change individual codes or translations associated with a domain table, you
can use the DATATRIEVE MODIFY and ERASE statements on the records
in the domain containing the values for the code and translation fields. Use
the READY command to get access to the domain containing those fields and
change the field values the way you would those of any other domain.

DATATRIEVE Commands, Statements, and Definition Clauses 4–123

DEFINE TABLE Command

• You cannot change the value of a code or translation field if the field is the
primary key of an indexed file.

• When you define a domain table using the given name of the associated
domain, DATATRIEVE stores the full dictionary path name of the domain
as an attribute of the table. If you copy the table to another part of the
CDD/Repository data dictionary, the definition still points to the old data
dictionary location for the domain. Therefore, you must redefine the table if
you move it.

• For more information on using tables, see the VAX DATATRIEVE User’s
Guide.

Examples

The following example defines a table of department codes and specify a query
header for the translations of the table:

DTR> DEFINE TABLE DEPT_TABLE
DFN> QUERY_HEADER IS "Responsible"/"Department"
DFN> CE : "Commercial Engineering"
DFN> PE : "Plant Engineering"
DFN> CS : "Customer Support"
DFN> RD : "Research and Development"
DFN> SD : "Sales Department"
DFN> ELSE "UNKNOWN DEPARTMENT"
DFN> END_TABLE
DTR>

The following example defines a table with a translation for each possible rig
and include an edit string in the definition that displays the translation in a 10
character wide column:

DTR> DEFINE TABLE RIGGING
DFN> EDIT_STRING IS T(10)
DFN> QUERY_HEADER "TYPE OF"/"RIGGING"
DFN> SLOOP : "ONE MAST"
DFN> KETCH : "TWO MASTS, BIG ONE IN FRONT"
DFN> YAWL : "SIMILAR TO KETCH"
DFN> MS : "SAILS AND A BIG MOTOR"
DFN> ELSE "SOMETHING ELSE"
DFN> END_TABLE
DTR> PRINT "KETCH" VIA RIGGING

TYPE OF
RIGGING

TWO MASTS,
BIG ONE IN
FRONT

4–124 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINE TABLE Command

DTR>

The following example shows how to define a domain table that returns the
price of a yacht when you enter a value for LENGTH_OVER_ALL. The example
specifies a query header and an edit string for the translation field:

DTR> DEFINE TABLE LOA_PRICE_TABLE
DFN> FROM YACHTS
DFN> QUERY_HEADER IS "SAMPLE"/"PRICE"
DFN> EDIT_STRING IS $$$,$$$
DFN> USING LOA : PRICE
DFN> ELSE "NO BOATS IN STOCK WITH THAT LOA."
DFN> END_TABLE
DTR> PRINT 26 VIA LOA_PRICE_TABLE

SAMPLE
PRICE

$17,900

DTR>

See the VAX DATATRIEVE User’s Guide for further examples of the definition
and use of domain tables.

DATATRIEVE Commands, Statements, and Definition Clauses 4–125

DEFINEP Command

DEFINEP Command
Adds an entry to the access control list (ACL) for a dictionary object or dictionary
directory.

Format

DEFINEP [FOR] path-name sequence-number [,]�������������
������������

PW = password
UIC = [uic-spec]
USER = username

TERMINAL =

�����
����

TTnn:
LOCAL
NONLOCAL
BATCH
NETWORK

�����
���	

�������������
�����������	

[,...] {,}

���
��

 GRANT

DENY
BANISH

�
=
� privilege-list

ALL

 ���
�	 [,...]

Arguments

path-name
Is the given name, full dictionary path name, or relative dictionary path name of
the dictionary object or dictionary directory whose ACL list you want to change.
DEFINEP accepts both DMU and CDO style path names.

sequence-number
Is the sequence number of the entry to be added to the ACL. This number must
be an unsigned, nonzero integer.

PW = password
Specifies a password to be appended to the given name of the dictionary object
or dictionary directory when used alone in a command or statement or as part of
a full or relative dictionary path name. You can specify a password in an ACL
entry on a directory or object either in the DMU or in the CDO format dictionary.

4–126 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINEP Command

UIC = [uic-spec]
Specifies the UIC or group of UICs to which the added ACL entry applies. The
UIC specification must be enclosed in square brackets and must conform to the
VMS rules for specifying UICs (see the VMS documentation set). You can specify
numeric and alphanumeric UICs and rights identifiers. (A rights identifier is
a single text string enclosed in brackets. The system manager defines a rights
identifier in the system rights database. The identifier indicates all members of a
particular group.)

USER = username
Specifies the VMS user name to which the added ACL entry applies. Do not put
the user name in parentheses or brackets.

TERMINAL =

TTnn:
LOCAL
NONLOCAL
BATCH
NETWORK

Specifies a particular terminal or a type of terminal to which the added ACL
entry applies.

• TTnn: is the number of a specific terminal line to which the added ACL entry
applies. You can specify a particular terminal only in ACL entries in the
DMU format dictionary.

• LOCAL specifies that the added ACL entry applies to all terminals hard-wired
to your local system.

• NONLOCAL specifies that the added ACL entry applies to the local
system’s dial-up terminal lines, to batch jobs on the local system, to remote
terminals logged in to the system by DECnet, and to processes initiated by a
DATATRIEVE Distributed Data Manipulation Facility on a remote node in a
network of VAX computers.

• BATCH specifies that the added ACL entry applies to all batch jobs run on
the local system.

• NETWORK specifies that the added ACL entry applies to all processes
initiated by a DATATRIEVE Distributed Data Manipulation Facility on a
remote node in a network of VAX computers.

, (comma)
Separates user identification criteria and privilege specifications.

DATATRIEVE Commands, Statements, and Definition Clauses 4–127

DEFINEP Command

GRANT
Specifies the privileges granted by the added ACL entry.

DENY
Specifies the privileges denied by the added ACL entry.

BANISH
Specifies, for a dictionary directory and all its descendants, the access privileges
that the entry denies and the privileges that no ACL of any of the descendants
can grant. The BANISH clause is valid in ACL entries either in the DMU or in
the CDO format dictionary.

privilege-list
Is a letter or string of letters, each one of which is the abbreviation for the access
privilege granted, denied, or banished by the added ACL entry.

See the chapter on ACL in the VAX DATATRIEVE User’s Guide for more
information on access privileges.

Restrictions

• To define an entry in an ACL on an object in the DMU format dictionary, you
must have P (PASS_THRU) access to the parent of the dictionary object or
directory to which the ACL applies. You must also have P (PASS_THRU) and
C (CONTROL) access privileges to the dictionary object.

• To define an entry in an ACL on an object in the CDO format dictionary, you
must have S (SHOW) and U (CHANGE) access to the dictionary. You must
also have S (SHOW), U (CHANGE + DEFINE), and C (CONTROL) access to
the object.

• With a DEFINEP command, you must specify at least one user identification
criterion (PW=, USER=, UIC=, or TERMINAL=). You can specify one of each
in an ACL entry, but you cannot specify two criteria of the same type. For
example, in a DMU ACL entry you can specify a password, a user name, a
UIC, and a terminal type, but you cannot specify two passwords. Likewise, in
a CDO ACL entry you can specify a user name, a UIC, and a terminal type,
but you cannot specify two UICs.

• With a DEFINEP command, you must enter at least one privilege
specification (GRANT=, DENY=, or BANISH=). You can enter one of each
in an ACL entry, but you cannot enter two criteria of the same type. For
example, in a DMU ACL entry you can enter a GRANT=, a DENY=, and
BANISH=, but you cannot enter more than one GRANT=. Likewise, in a
CDO ACL entry you can enter a GRANT= and a DENY=, but you cannot
enter more than one GRANT=.

4–128 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINEP Command

Results

• DATATRIEVE creates an entry in the ACL. Depending on the sequence
number you supply, DATATRIEVE may change the sequence number of other
ACL entries:

If the sequence number already exists in the ACL, DATATRIEVE adds
the entry immediately before the existing entry with the same number.
DATATRIEVE then increments by 1 the sequence number of all entries
after the new entry.

If the sequence number you supply is greater than the last sequence
number plus 1, DATATRIEVE ignores your sequence number and adds
the entry to the end of the list. Its sequence number becomes the next
sequential number in the list.

• The following results apply only to ACLs in the DMU format dictionary:

Privileges are cumulative. A privilege granted by the ACL of a dictionary
directory is also granted for all its descendants unless that privilege is
explicitly denied or banished in the ACL of a particular descendant. If a
GRANT clause includes a privilege the user had to the parent directory,
the data dictionary takes no action regarding that privilege.

A privilege denied by the ACL of a dictionary directory is also denied
for all the descendants of that directory unless the ACL of a descendant
explicitly grants the privilege. If a DENY clause includes a privilege the
user did not have to the parent directory, the data dictionary takes no
action regarding that privilege.

A privilege banished by the ACL of a dictionary directory can never
be granted by the ACL of any descendant of that directory, even if the
descendant’s ACL explicitly grants the privilege. If a GRANT clause or a
DENY clause includes a privilege banished by the ACL of an ancestor, the
data dictionary takes no action regarding that privilege.

• You can specify more than one privilege by including a string of letters (such
as RWM for READ, WRITE, and MODIFY access). Do not put spaces between
letters in a string of letters. You can enter the letters in any order.

• You can specify all of the DATATRIEVE and CDD/Repository privileges by
using the keyword ALL in place of a string of letters. If you grant some
privileges with the GRANT clause but specify ALL in the DENY or BANISH
clause, no privileges are granted by the ACL entry. The DENY and BANISH
clauses take precedence over the GRANT clause when you include the same
privilege abbreviation in more than one clause in the same ACL entry.

DATATRIEVE Commands, Statements, and Definition Clauses 4–129

DEFINEP Command

• If the ACL of a DMU format dictionary object or directory is empty, you
have the same privileges to that object or directory as you have to its parent
directory. If the ACL of a CDO format dictionary object or directory is empty,
you have all privileges to the dictionary or object.

• If the ACLs of all the ancestors of a DMU format dictionary object or directory
are empty, then all users have all privileges to the object.

Usage Notes

• When designing an ACL, put the entries with the most specific user
identification criteria at the top of the list. Put the entries with the most
general user identification criteria at the bottom of the list. When you access
a dictionary object or directory, CDD/Repository begins at the top of the list
and applies the first entry in which all the user identification criteria apply to
you.

For example, the first ACL entry specifies a terminal line number as the only
user identification criterion in the entry, and you are using that terminal line.
You match all the user identification criteria for that entry. Neither your UIC
or user name nor any password you supply matters.

If the first ACL entry with the terminal number is the first one in the ACL
that matches you, the privilege specifications in that entry apply to you. That
you also match other entries in the ACL is of no consequence; your other
user identification characteristics would not get checked by other ACL entries
until you used another terminal to access the dictionary object or directory in
question.

• When you specify a rights identifier with the DEFINEP command, you can
use only identifiers that are currently in the system rights database. Your
system manager can check valid identifiers using the Authorize Utility:

$ RUN AUTHORIZE

UAF> SHOW/ID INVENTORY

• You can enter user identification criteria and privilege specifications in any
order. You need not put the user identification criteria before the privilege
specifications.

• To avoid errors when making an addition, display a copy of the current ACL
with the SHOWP command before issuing the DEFINEP command. See
the section in this chapter on the SHOWP command for more information.
Because DATATRIEVE can change sequence numbers, a new entry can affect
the numbering of other table entries.

• To remove an entry from an ACL, use the DELETEP command.

4–130 DATATRIEVE Commands, Statements, and Definition Clauses

DEFINEP Command

• To display the privileges you have for a dictionary object or directory, use the
SHOW PRIVILEGES command.

• The chapter on ACL in the VAX DATATRIEVE User’s Guide discusses the use
of ACLs.

Example

The following example defines an ACL entry for a DMU format dictionary
directory that uses all the user identification criteria and all the privilege
specifications:

DTR> DEFINEP FOR MONTHLY_DATA 1 PW = "SECRET", USER = JONES,
[Looking for define privilege option]
CON> UIC = [240,240], TERMINAL = NETWORK, GRANT = PSRWME,
[Looking for define privilege option]
CON> DENY = CDUXH, BANISH = FG
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–131

DELETE Command

DELETE Command
Deletes one or more dictionary objects and their access control lists from the
CDD/Repository data dictionary system.

Format

DELETE path-name-1 [,...] ;

Arguments

path-name
Is the given name, full dictionary path name, or relative path name of the
dictionary object you want to remove from the data dictionary system. DELETE
accepts both DMU and CDO style path names. If you specify more than one
dictionary path name, separate each path name from the next with a comma.

; (semicolon)
Ends the DELETE command.

Restrictions

• To delete a DMU dictionary object, you must have the following access
privileges:

P (PASS_THRU) access to the ancestors of the dictionary object

P (PASS_THRU) and X (EXTEND) access to the parent directory of the
object

P (PASS_THRU) and either D (LOCAL_DELETE) or G (GLOBAL_
DELETE) access to the object

• To delete a CDO dictionary object, you must have the following access
privileges:

S (SHOW) and U (CHANGE) access to the dictionary containing the object

S (SHOW) and D (DELETE) access to the object

• You can delete dictionary objects in directories other than your default
directory, but you must have the appropriate access privileges to the object,
the directory containing the object, and, for objects in the DMU format
dictionary, to the ancestors of the object.

• If you do not explicitly include a version number in the path name,
DATATRIEVE deletes the highest version of the object.

4–132 DATATRIEVE Commands, Statements, and Definition Clauses

DELETE Command

• You cannot delete a dictionary directory with the DELETE command, even
if the directory is empty. To delete a directory from the data dictionary,
you must use the DELETE command of the Dictionary Management Utility
(DMU) for DMU directories or the DELETE command of the Common
Dictionary Operator Utility (CDO) for CDO directories. See the VAX
CDD/Repository documentation for an explanation of how to delete dictionary
directories.

Results

• If you specify the dictionary path name of a domain definition or a record
definition with the DELETE command, DATATRIEVE deletes the highest or
the specified version of the definition of the domain or record; the associated
data file and its contents are unaffected.

A readied domain in your workspace is not affected by the deletion of the
domain definition or the definition of its associated record. However, after you
finish a domain whose definition or record definition has been deleted from
the data dictionary, you cannot ready the domain again.

• If the dictionary object you specify with a DELETE command is a procedure,
DATATRIEVE deletes the procedure itself from the data dictionary. You
cannot invoke a procedure after it has been deleted from the DMU data
dictionary.

• If the dictionary object you specify with a DELETE command is a dictionary
table, DATATRIEVE deletes the dictionary table itself from the data
dictionary.

• If the dictionary object you specify in a DELETE command is the definition of
a domain table, DATATRIEVE deletes the definition of the domain table from
the data dictionary; the definitions of the associated domain and record are
unaffected, and the associated data file and its contents are unaffected.

• A dictionary or domain table loaded in your workspace remains there until
you release it, even if you delete its definition while the table is loaded in
your workspace.

• When DATATRIEVE deletes a dictionary object, it also deletes from the data
dictionary the ACL associated with the object.

• If you enter the names of more than one dictionary object with a DELETE
command, DATATRIEVE deletes the objects in the order you specify in the
command.

DATATRIEVE Commands, Statements, and Definition Clauses 4–133

DELETE Command

Usage Notes

• Be sure to specify the version number of the object you want to delete. If you
do not specify a version number in the path name, DATATRIEVE deletes the
highest version number of the specified object.

• You must include a semicolon at the end of the DELETE command line,
regardless of whether you specify a version number:

If you specify a version number, the command will have two semicolons.
For example:

DTR> DELETE PERSONNEL;1;

If you do not specify a version number, the command will have one
semicolon and DATATRIEVE will delete the version with the highest
version number. For example:

DTR> DELETE PERSONNEL;

• You cannot delete an object if it is a member of a relationship with another
dictionary object. The owner of a relationship must be deleted before the
member of a relationship. In the case of a domain, the domain must be
deleted before an object owned by the domain (a record, database, or another
domain) is deleted.

Examples

The following example shows how to delete two domain versions from your
default dictionary:

DTR> SHOW DOMAINS
Domains:
* YACHTS;4 * YACHTS;3 * YACHTS;2 * YACHTS;1

The following example does not specify a version number, so DATATRIEVE
deletes the highest version, YACHTS;4.

DTR> DELETE YACHTS;
DTR> SHOW DOMAINS
Domains:
* YACHTS;3 * YACHTS;2 * YACHTS;1

DTR> DELETE YACHTS;2;
DTR> SHOW DOMAINS
Domains:
* YACHTS;3 * YACHTS;1

4–134 DATATRIEVE Commands, Statements, and Definition Clauses

DELETEP Command

DELETEP Command
Deletes an entry from the access control list (ACL) of an object or directory in the
data dictionary system.

Format

DELETEP path-name sequence-number

Arguments

path-name
Is the dictionary path name of the object or directory whose ACL you want to
change. DELETEP accepts both DMU and CDO style path names.

sequence-number
Is a nonzero integer indicating the entry’s position in the ACL.

Restrictions

• To delete an entry from a DMU format ACL you must have the following
access privileges:

P (PASS_THRU) access to the parent directory of the object or directory
whose ACL you want to change

P (PASS_THRU) and C (CONTROL) access to the dictionary object or
directory whose ACL you want to change

• To delete an entry from a CDO format ACL you must have the following
access privileges:

S (SHOW) and U (CHANGE) access to the dictionary containing the object
whose ACL you want to change

S (SHOW), U (CHANGE + DEFINE), and C (CONTROL) access to the
dictionary object or directory whose ACL you want to change

• You must enter one DELETEP command for each ACL entry you want to
delete. You cannot delete more than one ACL entry with one DELETEP
command.

• There must be an entry with the sequence number you specify.

DATATRIEVE Commands, Statements, and Definition Clauses 4–135

DELETEP Command

Results

• DATATRIEVE deletes the entry with the specified sequence number from the
ACL of the object or directory.

• If the sequence number you specify is greater than the number of entries in
the ACL, DATATRIEVE displays the following message from CDD/Repository
.

DTR> DELETEP YACHTS 26
%CDD-E-ACLNOTFND, Access control list entry not found
DTR>

• When you remove an entry from any position in the ACL, except the last
one, DATATRIEVE renumbers the remaining entries so that the sequence
numbers begin at 1 and increase in steps of 1.

Usage Notes

• To ensure that you delete the correct entry, display the ACL with the SHOWP
command before entering the DELETEP command.

• If you need to remove many entries from a long ACL, begin with the entries
at the bottom of the list and work your way toward the top. This method
preserves the original sequence numbers of the entries you want to remove.
If you start removing entries at the top of the list, every time you remove an
entry, the numbers of all the other ones you want to remove change.

• Do not delete the one ACL entry whose user identification criteria identify all
users. Users not identified by an entry in a DMU ACL have all the privileges
to the object or directory that they have to the parent directory. Users not
identified by an entry in a CDO ACL have all privileges to the object or
directory.

Example

The following example shows the ACL of the DMU YACHTS domain and deletes
an entry from it:

DTR> SHOWP YACHTS
1: [*,*], Username: "STARKEY"

Grant - CDEFGHMPRSUWX, Deny - none, Banish - none
2: [*,*], Username: "DUNCAN"

Grant - EHMPRSUW, Deny - CDFGX, Banish - none
3: [*,*], Username: "HARRISON"

Grant - CDEFGHMPRSUWX, Deny - none, Banish - none
4: [*,*]

Grant - none, Deny - CDEFGHMPRSUWX, Banish - none

4–136 DATATRIEVE Commands, Statements, and Definition Clauses

DELETEP Command

DTR> DELETEP YACHTS 2
DTR> SHOWP YACHTS
1: [*,*], Username: "STARKEY"

Grant - CDEFGHMPRSUWX, Deny - none, Banish - none
2: [*,*], Username: "HARRISON"

Grant - CDEFGHMPRSUWX, Deny - none, Banish - none
3: [*,*]

Grant - none, Deny - CDEFGHMPRSUWX, Banish - none

DTR>

See the chapter on ACL in the VAX DATATRIEVE User’s Guide for other
examples of working with ACLs.

DATATRIEVE Commands, Statements, and Definition Clauses 4–137

DISCONNECT Statement

DISCONNECT Statement
Removes records from the sets you specify in the TO list of the CONNECT
statement. The DISCONNECT statement can be used only for sets in which VAX
DBMS retention is optional.

Format

DISCONNECT context-name-1 [FROM] set-name-1 [,...]

Arguments

context-name-1
Is the name of a valid context variable or the name of a collection with a selected
record. The target record must be a member of the specified sets.

set-name
Is the name of a VAX DBMS set.

Result

The record is removed from the VAX DBMS set you specify.

Examples

The following example removes a part with a specified PART_ID from its
membership in the set ALL_PARTS_ACTIVE:

DTR> FOR P IN PART WITH PART_ID = "TU4722AS"
CON> DISCONNECT P FROM ALL_PARTS_ACTIVE
DTR>

The following example removes the group named PLANT ENGINEERING from
the set MANAGES:

DTR> FIND GROUPS WITH GROUP_NAME = "PLANT ENGINEERING"
DTR> SELECT
DTR> DISCONNECT CURRENT FROM MANAGES
DTR>

4–138 DATATRIEVE Commands, Statements, and Definition Clauses

DISPLAY Statement

DISPLAY Statement
Displays the value of a single DATATRIEVE value expression. The value
displayed is not formatted by any edit string associated with the value expression.

Format

DISPLAY value-expression

Argument

value-expression
Is a DATATRIEVE value expression.

Restrictions

• To display the value of a field in a record, the domain containing that record
must be readied for READ, WRITE, or MODIFY access. If the domain is
readied for EXTEND access, DATATRIEVE displays an error message when
you try to specify a field name from that domain in the DISPLAY statement.

• If you specify a field name as the value expression in a DISPLAY statement,
you must establish a valid context for the record or records containing the
values you want to display. For a discussion of DATATRIEVE context, see the
VAX DATATRIEVE User’s Guide.

Results

• DATATRIEVE displays the current value of the specified value expression.

• If the value expression has an edit string associated with it, the DISPLAY
command ignores the edit string when displaying the value.

• If the value expression you specify is a group field, the DISPLAY command
concatenates the values of the elementary fields and leaves no spaces between
fields except the blanks that pad character fields.

• The value DATATRIEVE displays is not affected by the COLUMNS_PAGE
setting. See the section in this chapter on the SET command for more
information.

DATATRIEVE Commands, Statements, and Definition Clauses 4–139

DISPLAY Statement

Examples

The following example shows how to declare a numeric variable with a money
edit string, give it a value, and use both the PRINT statement and the DISPLAY
statement to display that value:

DTR> DECLARE SALARY PIC Z(5)9V99 EDIT_STRING $$$$$$.99.
DTR> SALARY = 15753.67
DTR> PRINT SALARY

SALARY

$15753.67

DTR> DISPLAY SALARY
DISPLAY: 15753.67
DTR>

The following example redeclares the above variable as a character variable,
assigns a new value, and displays that value:

DTR> DECLARE SALARY PIC X(15).
DTR> SALARY = "MUCH TOO LOW"
DTR> PRINT SALARY

SALARY

MUCH TOO LOW

DTR> DISPLAY SALARY
DISPLAY: MUCH TOO LOW

The following example displays the group fields TYPE and SPECS from the
domain YACHTS:

DTR> READY YACHTS
DTR> FIND FIRST 1 YACHTS
[1 Record found]
DTR> SELECT; PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> DISPLAY TYPE
DISPLAY: ALBERG 37 MK II
DTR> DISPLAY SPECS
DISPLAY: KETCH 37 200001236951
DTR>

4–140 DATATRIEVE Commands, Statements, and Definition Clauses

DISPLAY_FORM Statement

DISPLAY_FORM Statement
Lets you display data on a form and collect data from a TDMS or FMS form.

Format

DISPLAY_FORM form-name IN file-name

[USING statement-1]

[RETRIEVE [USING] statement-2]

Arguments

form-name
Is the name of the TDMS or FMS form to be used with the domain.

file-name
Is the file specification of the form library file containing the form. File-name can
be a TDMS request library file or an FMS forms library. The default file type for
TDMS request library files is .RLB; the default file type for FMS form libraries is
.FLB.

statement-1
Is a DATATRIEVE statement or a series of statements within a BEGIN-END
block. Statement-1 can include one or more PUT_FORM assignment statements
for assigning values to fields on a form.

The PUT_FORM statement has the following format:

PUT_FORM form-field = value-expression

form-field
Is the name of a field in a form.

value-expression
Is any DATATRIEVE value expression.

statement-2
Is a DATATRIEVE statement or a series of statements within a BEGIN-END
block. Statement-2 can include GET_FORM value expressions for assigning
values on a form to DATATRIEVE fields or variables.

The GET_FORM value expression has the following format:

GET_FORM form-field

DATATRIEVE Commands, Statements, and Definition Clauses 4–141

DISPLAY_FORM Statement

form-field
Is the name of a field in a form.

Restriction

If SET NO FORM is in effect, DATATRIEVE does not use its form interface
and does not attempt to open a form library. You can not use the SEND or
RECEIVE clauses of the WITH_FORM statement with a TDMS or FMS form.
DATATRIEVE returns an error message.

Result

DATATRIEVE displays the form specified. If you have included the USING
clause, DATATRIEVE displays only the fields specified in the PUT_FORM
assignment statements.

Usage Notes

• The DISPLAY_FORM statement lets you use forms to modify and store data
for specified fields. See the VAX DATATRIEVE Guide to Interfaces for more
information on using forms with DATATRIEVE.

• Note that, because you specify both record and form field names in the
DISPLAY_FORM format, form and record field names need not match.

Examples

The following example shows that you can display a form for a domain even if the
form was not specified in the domain definition:

DTR> DISPLAY_FORM YACHTF IN FORMSLIB;

The following example displays the MANUFACTURER and MODEL fields on a
form for the first five records of YACHTS:

DTR> FOR FIRST 5 YACHTS
CON> DISPLAY_FORM YACHTF IN FORMSLIB USING
CON> BEGIN
CON> PUT_FORM MANUFA = MANUFACTURER
CON> PUT_FORM MODEL = MODEL
CON> END;

The following example displays the MANUFACTURER and MODEL fields on
a form for the first record of YACHTS and assigns the values to two variables,
BUILT and MODELLER:

4–142 DATATRIEVE Commands, Statements, and Definition Clauses

DISPLAY_FORM Statement

DTR> DECLARE BUILT PIC X(10).
DTR> DECLARE MODELLER PIC X(10).
DTR> FOR FIRST 1 YACHTS
CON> DISPLAY_FORM BOATS IN [MORRIS]DTR32.FLB USING
CON> BEGIN
CON> PUT_FORM MANUFA = MANUFACTURER
CON> PUT_FORM MODEL = MODEL
CON> END RETRIEVE USING
CON> BEGIN
CON> BUILT = GET_FORM MANUFA
CON> MODELLER = GET_FORM MODEL
CON> END
DTR> PRINT BUILT

BUILT

ALBERG

DTR> PRINT MODELLER

MODELLER

37 MK II

DTR>

You can use a form to store and modify values for selected fields. You can also
associate more than one form with a single domain. See the VAX DATATRIEVE
Guide to Interfaces for more examples.

DATATRIEVE Commands, Statements, and Definition Clauses 4–143

DROP Statement

DROP Statement
Removes the selected record from a collection, but does not remove that record
from the data file in which it resides.

Format

DROP [collection-name]

Argument

collection-name
Is the name of a collection. If the DROP statement does not contain this
argument, it affects the CURRENT collection.

Restrictions

• You must use the SELECT statement to establish a selected record in a
collection before entering a DROP statement.

• You cannot drop a record you have already dropped. If you have dropped
the selected record of a collection, DATATRIEVE responds with the following
message when you enter a DROP statement:

Target record has already been dropped.

• You cannot drop a record that has been erased. If you have erased the
selected record of a collection, DATATRIEVE responds with the following
message when you enter a DROP statement:

No collection with selected record for DROP.

• If you have no established collections, or if no collection has a selected record,
DATATRIEVE responds with the following message when you enter a DROP
statement:

No collection with selected record for DROP.

Results

• When you drop a record from a collection, the record is no longer available
to you for retrieval or update. The dropped record is not erased from the
data file, and it can be retrieved again by forming a record stream or another
collection that contains it.

• When you enter a DROP statement without specifying a collection name,
DATATRIEVE drops the selected record in the nearest single record context.

4–144 DATATRIEVE Commands, Statements, and Definition Clauses

DROP Statement

If the CURRENT collection has a selected record, DATATRIEVE drops it from
the CURRENT collection. If the CURRENT collection has no selected record
but other named collections do, DATATRIEVE drops the selected record from
the most recently formed of those collections.

If the selected record in the nearest single record context has been dropped,
DATATRIEVE responds to a DROP statement with the following message:

Target record has already been dropped.

• When you specify a collection name in the DROP statement, DATATRIEVE
drops the selected record in the specified collection. If the named
collection has no selected record, or if the selected record has been erased,
DATATRIEVE responds to the DROP statement with the appropriate message
as described above.

Usage Notes

• By using the DROP statement, you can refine a collection until it contains
exactly the records you want.

• To see if a selected record has been dropped or erased, use the SHOW
collection-name command.

• Before dropping a selected record in the nearest single record context, display
the record by typing PRINT and pressing the RETURN key.

Example

In the following example, a record is stored in YACHTS and a series of collections
is formed. The DROP statement is illustrated using the SELECT, DROP, ERASE,
and PRINT statements and the SHOW collection-name command:

DTR> READY YACHTS WRITE
DTR> STORE YACHTS USING BUILDER = "HINKLEY",
DTR> FIND YACHTS WITH BUILDER = "HINKLEY"
[1 record found]
DTR> FIND A IN CURRENT
[1 record found]
DTR> FIND B IN YACHTS
[114 records found]
DTR> SELECT B; PRINT B.BOAT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DATATRIEVE Commands, Statements, and Definition Clauses 4–145

DROP Statement

DTR> FIND C IN YACHTS
[114 records found]
DTR> SELECT LAST; PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

WRIGHT SEAWIND II SLOOP 32 14,900 00 $34,480

DTR> SHOW C
Collection C

Domain: YACHTS
Number of Records: 114
Selected Record: 114

DTR> DROP
DTR> SHOW C
Collection C

Domain: YACHTS
Number of Records: 114
Selected Record: 114 (Dropped)

DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> DROP

Target record has already been dropped.
DTR> SHOW B
Collection B

Domain: YACHTS
Number of Records: 114
Selected Record: 1

DTR> DROP B
DTR> SHOW B
Collection B

Domain: YACHTS
Number of Records: 114
Selected Record: 1 (Dropped)

DTR> RELEASE C
DTR> DROP
Target record has already been dropped.
DTR> ERASE
No target record for ERASE.
DTR> RELEASE B
DTR> PRINT
No record selected, printing whole collection

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

4–146 DATATRIEVE Commands, Statements, and Definition Clauses

DROP Statement

HINKLEY 0 00

DTR> DROP
No collection with selected record for DROP.
DTR> SHOW CURRENT
Collection A

Domain: YACHTS
Number of Records: 1
No Selected Record

DTR> SELECT; ERASE; SHOW CURRENT
Collection A

Domain: YACHTS
Number of Records: 1
Selected Record: 1 (Erased)

DTR> DROP
No collection with selected record for DROP.
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–147

EDIT Command

EDIT Command
Invokes an editor to edit the previous command or statement, one or more types
of object definitions, or the dictionary object specified by the dictionary path
name.

Format

EDIT

�
�������������

[ALL]

�����
����

DOMAINS
PLOTS
PROCEDURES
RECORDS
TABLES

�����
���	

[,...] [RECOVER]

ALL [RECOVER]

[path-name] [RECOVER]

�
�������������

Arguments

ALL
Places all the objects in your CDD/Repository default directory in an editing
buffer. The keyword ALL is optional when used with the object types, but
required when used alone or with only RECOVER.

path-name
Is the given name, full dictionary path name, or relative path name of a
DATATRIEVE domain, record, procedure, or table definition you want to edit.
EDIT accepts both DMU and CDO style path names.

DOMAINS
PLOTS
PROCEDURES
RECORDS
TABLES
You can specify one or more types of object definitions with the EDIT command.
This allows you to edit all the domains, plots, procedures, records, or tables from
your current default CDD/Repository directory.

RECOVER
Allows recovery for edited dictionary objects.

4–148 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT Command

Restrictions

• To edit a DATATRIEVE domain, record, procedure, or table definition defined
in the DMU format dictionary, you must have the following access privileges:

P (PASS_THRU) and X (EXTEND) access to the parent directory of the
definition

P (PASS_THRU), S (SEE), and R (DTR_READ) access to the object to get
the definition into the main buffer of the editor

U (UPDATE) if you are editing in EDIT_BACKUP mode

Either D (LOCAL_DELETE) or G (GLOBAL_DELETE) if you are editing
in NO EDIT_BACKUP mode

• To edit a DATATRIEVE domain, record, procedure, or table definition defined
in the CDO format dictionary, you must have the following access privileges:

S (SHOW) and U (CHANGE) access to the directory containing the
definition

S (SHOW) and R (READ) access to the object to get the definition into the
main buffer of the editor

U (CHANGE + DEFINE) if you are editing in EDIT_BACKUP mode

D (DELETE) and U (CHANGE + DEFINE) if you are editing in NO
EDIT_BACKUP mode

• When you use the EDIT command, the definition you are editing must have
access privileges that allow creation of later versions. Typically, you need
not worry about these privileges. The data dictionary is usually set up by
the system manager to include the ACL access privileges you need. See the
chapter on ACL in the VAX DATATRIEVE User’s Guide for a description of
privileges necessary to edit definitions.

• When you specify multiple CDD/Repository objects for the EDIT command,
the length of the names of the dictionary objects together cannot exceed 227
characters.

• You cannot specify both object types and object path names in the same
argument list. The following combination of PLOTS and object path name
would generate an error message:

DTR> EDIT PLOTS, CDD$TOP.DTR$LIB.DEMO.YACHTS
Argument list cannot contain both the object path name and
the object type.

DATATRIEVE Commands, Statements, and Definition Clauses 4–149

EDIT Command

• If you specify the RECOVER option to restore changes made to
CDD/Repository objects during an aborted edit session, use exactly the
same syntax you used for the original editing session (with the addition of the
keyword RECOVER). For example:

DTR> EDIT ALL DOMAINS, RECORDS
DTR> EDIT ALL DOMAINS, RECORDS RECOVER

• If you use the EDIT command in a procedure, the statements and commands
affected by the edit do not execute until the rest of the procedure has finished.

• If you are running the DATATRIEVE DECwindows interface, you cannot
set your DTR$EDIT logical to EDT. The EDT editor does not work in the
DATATRIEVE DECwindows environment.

Results

• When you specify the dictionary path name with the EDIT command,
DATATRIEVE invokes the editor and places the text of the object in the edit
buffer. The main buffer of the editor contains a REDEFINE command for
the object, followed by the contents of the dictionary object. If SET EDIT_
BACKUP is in effect, DATATRIEVE saves the original definition in the data
dictionary when you exit the editor.

• When you omit the dictionary path name from the EDIT command line,
DATATRIEVE invokes the editor and loads the previous command or
statement into the main text buffer of the editor.

• While you are editing CDD/Repository objects, DATATRIEVE places a journal
file for the editing session in your default VMS directory. The journal file
is automatically deleted upon successful completion of the editing session.
Table 4–7 shows the default file types for journal files.

Table 4–7 Default Journal File Types

Editor Default Journal File Type

EDT .JOU
LSE .TJL
VAXTPU .TJL

If you exit an editing session abnormally (if you enter a CTRL/Y or the
operating system fails), you can recover the editing session with the
RECOVER qualifier. For example:

DTR> EDIT YACHTS RECOVER;

4–150 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT Command

• DATATRIEVE automatically executes the content of the main text buffer if
you end the editing session with an EXIT command. This lets you use the
editor to correct typographical, syntax, and logical errors in less time than
you could retype most commands and statements.

The content of the main text buffer when you exit need not have any
relationship to the content it had when you invoked the editor.

• To end an editing session, use either the EXIT or QUIT command.

QUIT causes DATATRIEVE to ignore the contents of the editor’s main buffer
and to return you to the DATATRIEVE command level (indicated by the
DTR> prompt).

EXIT causes DATATRIEVE to take one of two actions, depending on how you
invoked it:

If you specified a dictionary path name and DATATRIEVE is in EDIT_
BACKUP mode, EXIT causes DATATRIEVE to create a new definition of
the object, with the next highest version number. The original version of
that object remains in the data dictionary. The new version of the object
contains the ACL and the history list entries from the previous version.

If you invoked the editor with only the keyword EDIT, the EXIT command
causes DATATRIEVE to execute the commands and statements in the
editor’s main buffer. If the commands and statements are incomplete and
SET PROMPT is in effect, DATATRIEVE prompts you for the next syntax
element in the command or statement.

• The editor does not check the syntax of any DATATRIEVE commands or
statements in the main buffer. If you make a syntax error when correcting
your definition or your previous command or statement, DATATRIEVE
responds to the error only when it executes the commands or statements after
you exit from the editor or when you invoke the edited procedure or ready the
domain.

Usage Notes

• If SET VERIFY is in effect, DATATRIEVE displays the contents of the
buffer when you exit from the editor. Then DATATRIEVE executes any
commands and statements. If SET NOVERIFY or SET NO VERIFY is in
effect, DATATRIEVE does not provide this display.

• Object types are placed in the edit buffer in the order you specify. In the
following example, the record object definitions are placed in the edit buffer
before the domain object definitions:

DTR> EDIT ALL RECORDS, DOMAINS

DATATRIEVE Commands, Statements, and Definition Clauses 4–151

EDIT Command

• You can use EDIT in two modes, EDIT_BACKUP and NO EDIT_BACKUP:

When you edit a definition in EDIT_BACKUP mode, DATATRIEVE
creates a new definition of the object, with the next highest version
number.

When you edit a definition in NO EDIT_BACKUP mode, DATATRIEVE
places a DELETE command, a REDEFINE command, and the text of the
object in the edit buffer.

When you exit the edit buffer, DATATRIEVE deletes the highest existing
version, or the version you specified, and replaces it with the definition
in the edit buffer. You receive the informational message ‘‘object to be
redefined not found’’ during this process. You can ignore this message.

Because DATATRIEVE deletes the highest version before it redefines the
new version, you will lose the existing definition, the definition’s ACL, and
its history list if you exit the edit buffer and the definition fails. When
you exit the edit buffer and the definition succeeds, DATATRIEVE gives
the new definition the ACL and the history list of the highest existing
version. If there is no existing version of the definition, DATATRIEVE
gives the new definition the default ACL and history list.

• To delete previous versions of an object in the data dictionary, use the
DELETE command with an explicit version number or use the PURGE
command.

• If you invoke a procedure that contains one or more errors, DATATRIEVE
stops executing the procedure and displays an error message. If you invoke
the editor with the keyword EDIT, DATATRIEVE puts the faulty command or
statement and the remainder of the commands and statements in the main
buffer. When you have corrected the error and leave the editor with the EXIT
command, DATATRIEVE executes the remaining commands and statements
in the procedure.

The changes you make in these circumstances are not lasting changes to
the procedure’s definition that is stored in the data dictionary. To make
the correction permanent, you must include the procedure name when you
invoke the editor and make changes to the CDD/Repository definition of the
procedure.

• Be careful when editing record definitions. If you change the length of the
record definition, you have to create a new data file and transfer the old
information from the old file to the new one.

If you change the name of any fields, any procedures and reports that refer to
those fields have to be edited to reflect the changes.

4–152 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT Command

If you change the definition of a domain or its associated record definition
while you have that domain readied in your workspace, the changes do not
take effect until you finish the domain with the FINISH command and ready
it again. Simply rereadying the domain without finishing it does not use any
new definitions you may have entered into the data dictionary since you first
readied the domain.

• To perform the editing function, DTR makes use of the VMS mailbox
mechanism. DATATRIEVE uses temporary mailboxes to transfer the edit
information to and from the editor. This has several implications for users:

• To use the DATATRIEVE EDIT command, you must have the VMS
process privilege TMPMBX. This is the privilege that allows the creation
of a temporary mailbox. If your account does not have TMPMBX privilege,
VMS generates a privilege violation error message when you use the
EDIT command.

• VAX DATATRIEVE uses a logical name for the temporary mailbox. The
logical name is entered into the logical name table LNM$TEMPORARY_
MAILBOX. If you redefine LNM$TEMPORARY_MAILBOX, you must be
careful to follow the guidelines provided in the section on SYS$CREMBX
in the VMS System Services Reference Manual so that DATATRIEVE can
continue to access LNM$TEMPORARY_MAILBOX using the mailbox
system services.

• For more information on the DTR$EDIT logical and on how to use the EDIT
command, see the VAX DATATRIEVE User’s Guide.

Example

The following example shows how to edit the definition for the record YACHT:

DATATRIEVE Commands, Statements, and Definition Clauses 4–153

EDIT Command

DTR> EDIT YACHT
REDEFINE RECORD YACHT USING
01 BOAT.
03 TYPE.

06 MANUFACTURER PIC X(10)
QUERY_NAME IS BUILDER.

06 MODEL PIC X(10).
03 SPECIFICATIONS

QUERY_NAME SPECS.
06 RIG PIC X(6)

VALID IF RIG EQ "SLOOP","KETCH","MS","YAWL".
06 LENGTH_OVER_ALL PIC XXX

VALID IF LOA BETWEEN 15 AND 50
QUERY_NAME IS LOA.

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS "WEIGHT"
EDIT_STRING IS ZZ,ZZ9
QUERY_NAME IS DISP.

06 BEAM PIC 99 MISSING VALUE IS 0.
06 PRICE PIC 99999

MISSING VALUE IS 0
VALID IF PRICE>DISP*1.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

;
[Record is 41 bytes long.]

You can now edit the record definition. If SET EDIT_BACKUP is in effect, the
old version of the YACHT record is retained in the data dictionary when you exit
the editor.

See the VAX DATATRIEVE User’s Guide for examples of using the editor to edit
previous commands and statements in an interactive DATATRIEVE session.

4–154 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT_STRING Clause

EDIT_STRING Clause
Specifies the output format of a field value.

Format

EDIT_STRING [IS] edit-string

Argument

edit-string
Is one or more edit string characters describing the output format of the field
value.

Restrictions

• The EDIT_STRING clause is valid only for elementary fields.

• Edit strings must consist of valid edit string characters.

Restriction on Certain Date Edit Strings
The use of the D edit string character without also using one of the other date
edit string characters (M, Y, N, J, or W) is restricted. The D character by
itself is not sufficient to uniquely identify it as a specific character.

This stems from the fact that DATATRIEVE is flexible in interpreting data,
regardless of type. The ambiguity lies with the characters D and B. Used
together they can be interpreted either as a request to print the letters DB
to indicate a negative value or to print the corresponding day of the month
followed by a blank.

For the proper interpretation, you must use the edit string character D in the
context of the other date characters.

However, if your application requires the use of just the D (day) portion of the
date you may consider using the following to generate that information:

DTR>DECLARE abc USAGE DATE.
DTR>abc = "20-Feb-1900"
DTR>DECLARE xyz PIC X(2) COMPUTED BY (FORMAT abc USING DDM).
DTR>PRINT xyz

XYZ

20

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–155

EDIT_STRING Clause

Result

DATATRIEVE uses the edit string as the default format when writing a field
value to a file or output device.

Usage Notes

• If you do not include an EDIT_STRING clause in a field definition,
the PICTURE clause determines the default output format. However,
DATATRIEVE does not display a sign specified in a PICTURE clause unless
you specify those characters in an edit string.

• You can override the default output format specified by either a PICTURE or
an EDIT_STRING clause. With the print list modifier USING edit-string, you
can specify an output format for a value within the PRINT statement.

• You specify the format of the field value with a string of one or more edit
characters. Specify the edit characters as a string without embedded spaces.
In general, each edit character corresponds to one character position in the
printed output. For example, 999999 specifies that the output will be six
digits in six character positions.

• To enter more than one of the same edit character, you can shorten the edit
string by placing a repeat count in parentheses following the edit character.
For example, the edit string 9(6) is equal to 999999.

• The TOTAL function is the only statistical function that ignores edit strings.
This is the expected behavior. The field’s edit string is not used because
the value generated by TOTAL is likely to be quite a bit larger than the
individual field values. This larger value could overflow the edit string
associated with the field. You can provide an edit string for the totaled value
by specifying an edit string on the print statement as follows:

DTR> PRINT TOTAL PRICE OF CURRENT USING $$$$$.99

The edit string characters you can specify for a field depend on the class of the
field: alphabetic, alphanumeric, numeric, or date. Do not use editing characters
designated only alphabetic or alphanumeric on numeric fields (or vice versa).

Remember that field type is determined by the PIC or USAGE clause, not the
value in the field. A field defined as PIC X(10) might contain only numbers, for
example, but you should use only alphanumeric editing characters to format the
way you want to display those numbers.

4–156 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT_STRING Clause

Fields in general

? If the field has a MISSING VALUE clause, the question mark
separates two edit strings. The first edit string formats the
output of the field if the value is not the missing value. If
the content of the field is the missing value, the second edit
string controls the output of the field.

(n) a repeat count (0 < n). The previous character is repeated a
total of "n" times. The edit string XXXX is equivalent to X(4).

The MISSING VALUE clause designates a value for a field that DATATRIEVE
recognizes, not as the literal value, but as a marker that no value is stored in the
field. DATATRIEVE ignores fields containing the "missing value" marker when
calculating statistical functions. If you do not have a default value defined for a
field, DATATRIEVE uses the missing value for the default value.

Format

MISSING##[VALUE]##[IS] literal

For more information on missing values, see the MISSING VALUE clause.

Alphanumeric Fields

For a text edit string:
T indicates text. Each T reserves a column on a line for

the associated print list element. For example, PRINT
"1234567890" USING T(5) displays 12345 in the first five
columns of one line and 67890 in the first five columns of the
next line. Edit strings containing a T cannot contain other
characters.

For alphanumeric edit strings:
A is replaced by an alphabetic character.
X is replaced by one character.
9 is replaced by one digit.
B is replaced by one space.
"literal" the literal enclosed in quotation marks is inserted. The outer

quotation marks are not inserted in the output.
0, $, %, *, +, -, ., / are simply inserted.

The edit string for an alphanumeric field specifies the number and type of
characters to be printed, except for T edit strings, which print all the characters.
The edit character X is replaced by one character from the field’s content. The
characters are transferred from the field to the output in left-to-right order.

DATATRIEVE Commands, Statements, and Definition Clauses 4–157

EDIT_STRING Clause

DATATRIEVE always left justifies alphanumeric fields. If the edit string contains
X and the field’s content has more characters than the edit string, only the
leftmost characters are printed. If it has fewer characters than its edit string,
DATATRIEVE pads the output with blanks on the right.

If the field contains only digits, you may use a numeric edit string. The
restrictions on edit strings for numeric fields are explained in the following
section.

If you use a field in any arithmetic computations, you should define it as a
numeric field. You can perform computations with alphanumeric fields that
contain only digits, but because alphanumeric fields are padded with spaces on
the right, the results may not be valid.

DATATRIEVE drops leading zeros from alphanumeric fields when it converts
from a numeric to an alphanumeric field.

Table 4–8 contains sample edit strings and the format of the DATATRIEVE
output for two field values: CHALLENGER and 123. The picture-string X(10) is
used in the PICTURE clause of both fields. This defines the internal format of
the field value. The format of the output is determined by the edit strings. In the
table, a number sign (#) represents a space.

Table 4–8 EDIT_STRING Output for Two Field Values

Picture
String

Edit
String

Output for
CHALLENGER

Output
for 123

X(10) X(10) CHALLENGE 123#######
X(10) X(3) CHA 123
X(10) XX/X(8) CH/ALLENGER 12/3#######
X(10) X(5)/X(5) CHALL/ENGER 123##/#####
X(10) X(5)-XX CHALL-EN 123##-##

The edit character T allows you to print alphanumeric field values on one or more
lines. The primary use of T is to print fields containing large amounts of text.
The number of Ts in the edit string indicates the maximum number of characters
to be printed on one line. For example, the edit string T(20) indicates that a line
of output will contain no more than 20 characters (unless a single word contains
more than 20 characters).

4–158 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT_STRING Clause

If the field contains more characters than specified in the edit string,
DATATRIEVE prints as many full words on the line as possible. (A word, in
this sense, is a string of characters delimited by a space.) It does not divide
words unless a word is longer than the edit string. DATATRIEVE then prints
the remaining characters on the next line and following lines, if necessary.
DATATRIEVE does not print out trailing spaces when you use a T edit string.

The following example uses data from EMP_REVIEW, a domain set up to keep
information about employee reviews. Here is the record definition:

DTR> SHOW EMP_REVIEW_REC
RECORD EMP_REVIEW_REC USING

01 EMP_REC.
05 BADGE PIC IS 9(5).
05 NAME PIC IS X(10).
05 JOB PIC IS X(15).
05 EVALUATION PIC IS X(60).
05 EVAL_DATE USAGE IS DATE

EDIT_STRING IS DD-MMM-YY.
;

In the following DATATRIEVE session, a PRINT statement specifies a T(20) edit
string for the EVALUATION field:

DTR> FOR EMP_REVIEW
[Looking for statement]
CON> PRINT NAME, EVALUATION USING T(20), EVAL_DATE, SKIP

EVAL
NAME EVALUATION DATE

BRAD H. Brad did a fine job 29-Apr-83
in implementing
staged output.

DAVID D. David is a master of 12-Mar-83
developing report
specifications.

TERRY C. Terry is an 21-Mar-83
exceptional system
manager and
developer.

DTR>

Note that when you print a long field value, the field name can be in any position
within the print list. EVAL_DATE followed EVALUATION in the print list, but
its value was printed on the same line as the first line of text.

DATATRIEVE Commands, Statements, and Definition Clauses 4–159

EDIT_STRING Clause

Numeric Fields

For numeric and floating point edit strings:
9 is replaced by one digit. The digits are right justified in the

output, and leading character positions are filled with zeros.
Z is replaced by a space if it matches a leading zero; otherwise

it is replaced by a digit.
* (asterisk) is inserted if it matches a leading zero; otherwise,

it is replaced by a digit.
+ (plus sign) is replaced by a plus or minus sign depending

on the field’s value. If more than one plus sign is specified,
all leading zeros are suppressed, the sign (plus or minus)
is displayed to the immediate left of the leftmost character
position determined by the other edit string characters.

- (minus sign) is replaced by a space or minus sign depending
on the field’s value. If more than one minus sign is specified,
all leading zeros are suppressed. If the value of the field is
negative, a minus sign is inserted to the immediate left of
the leftmost character position determined by the other edit
string characters.

. (decimal point) specifies the position of the decimal point, and
is inserted in that character position.

, (comma) If all the digits to the left of the comma are
suppressed zeros, the comma is replaced by a blank. If
not, a comma is inserted in that character position.

() (parentheses) If the field’s content is negative, the value is
enclosed in parentheses. Otherwise, the field value is printed
without parentheses.

"literal" the literal enclosed in quotation marks is inserted. The outer
quotation marks are not inserted in the output.

CR If the field’s content is negative, the letters CR are inserted.
If the field’s content is positive, CR is replaced by 2 blanks.

DB If the field’s content is negative, the letters DB are inserted.
If the field’s content is positive, DB is replaced by 2 blanks.

B a space is inserted.

4–160 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT_STRING Clause

$ If only one dollar sign is specified, it is replaced by a $ in that
character position. If more than one dollar sign is specified,
any leading zeros are suppressed, and one dollar sign is
displayed to the immediate left of the leftmost digit.

For a floating point edit string:
E The E divides the edit string into two parts for floating_point

or scientific notation. The first part is the mantissa edit
string and the second part is the exponent edit string.

0, %, / are simply inserted.

An EDIT_STRING clause prints numeric field values in a format that is easy to
read. With edit strings, you can suppress leading zeros and print dollar signs,
percent signs, commas, decimal points, and plus or minus signs. For example, the
EDIT STRING clause $$$,$$$ causes DATATRIEVE to print the value 09870 as
$9,870.

You can use three types of edit characters in edit strings for numeric fields:
replacement characters, insertion characters, and floating characters.

Replacement Characters
Table 4–9 shows the differences between the 9, Z and * (asterisk) replacement
characters. In the table, a number sign (#) represents a space.

Table 4–9 Replacement Characters in Numeric Fields

Picture
String

Edit
String

Field
Content Output

99999 9(5) 04092 04092
99999 Z(5) 04092 #4092
99999 *(5) 04092 *4092
99V99 99.99 0001 00.01
99V99 ZZ.99 0001 ##.01

Before printing a field, DATATRIEVE computes the number of digits to the left
of the decimal point. (If there is no V in the picture string, all digits are to the
left of the decimal.) If there are more digits to the left of the decimal than the
edit string specifies (either with replacement characters or floating characters),
DATATRIEVE prints an asterisk in each character position specified by the edit
string. If the field has fewer digits than the edit string specifies, DATATRIEVE
pads the output with leading zeros. (These are suppressed by the Zs or floating
characters you use. If there are more leading zeros than Zs or floating characters,

DATATRIEVE Commands, Statements, and Definition Clauses 4–161

EDIT_STRING Clause

the remaining zeros are displayed at the left of the field value but to the right of
any floating character.)

For example, a PICTURE clause could specify four digits for a field and its edit
string only two digits:

03 MODEL_NUMBER
PICTURE IS 9999
EDIT_STRING IS 99.

If the field value is 1234, DATATRIEVE prints two asterisks (**) for the field
value. Therefore, be careful to specify edit strings that are long enough for
numeric fields.

If you define a numeric field with the clauses PIC 9(4) and USAGE IS COMP,
then the field can contain numbers as high as 32,768. To print the field when it
contains a 5-digit number, you must use an edit string that specifies five digits.

Insertion Characters
With insertion characters, you can print the sign of a field, a decimal point,
a dollar sign, DB or CR or parentheses for a negative value, a percent sign,
commas, zeros, slashes, and character string literals.

Printing a Sign To print a sign (+ or –) in a field value (indicated by an S in
its PICTURE clause), you must specify a plus (+) or minus (–) sign in the edit
string for that field. The sign must be the first or last character in the edit string.

If you specify only one sign in the edit string, DATATRIEVE prints the sign in
the position you indicate. If you specify more than one sign in the leftmost part
of the edit string, the sign is a floating character.

You can use only one DB or CR in an edit string, and it must be the leftmost or
rightmost element of the edit string.

If you specify double parentheses around the edit string, DATATRIEVE prints
single left and right parentheses around a field value if it is negative.

Table 4–10 shows the use of the edit characters +, –, DB, CR, and parentheses.
In the table, a number sign (#) represents a space.

4–162 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT_STRING Clause

Table 4–10 Sign Insertion Characters

Picture
String

Edit
String

Field
Content Output

S9999 None –1234 1234
S9999 –9999 –1234 –1234
S9999 –9999 +1234 #1234
S9999 9999+ –1234 1234–
S9999 +9999 +1234 +1234
S9999 9999DB –1234 1234DB
S9999 9999CR –1234 1234CR
S9999 CR9999 +1234 ##1234
S9999 ((9999)) –1234 (1234)

Printing a Decimal Point By default, DATATRIEVE prints the implied decimal
point in a field value (indicated by a V in its PICTURE clause). You can, however,
control the placement of the decimal point (.) by specifying one in the edit string
for that field. When DATATRIEVE prints the field content, it aligns all output on
the decimal point.

DATATRIEVE matches the decimal point in the edit string with the implied
decimal place in the field. If the edit string contains fewer digits to the right of
the decimal, the extra digits are not printed. If the edit string contains fewer
digits to the left of the decimal, DATATRIEVE prints asterisks. Thus it is best
to place the period in the edit string in the same position as the V in the picture
string.

Table 4–11 shows printing decimal points in several different numeric fields. In
the table, a number sign (#) represents a space.

Table 4–11 Decimal Point Insertion

Picture
String

Edit
String

Field
Content Output

99V99 (None) 1234 12.34
99V99 Z9.99 1234 12.34
99V99 999.9 1234 012.3

(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–163

EDIT_STRING Clause

Table 4–11 (Cont.) Decimal Point Insertion

Picture
String

Edit
String

Field
Content Output

99V99 9.999 1234 *****
99V99 9.999 0123 1.230
99V99 Z(4) 1234 ##12

If the last character of the edit string is a period and is not followed by other
input on the same line, DATATRIEVE treats the period as the termination of the
field definition and not as part of the edit string. If the EDIT STRING clause is
the last part of the field definition, specify two periods; the first period is part
of the edit string and the second period ends the field definition. If the EDIT
STRING clause is not the last part of the field definition, place the next clause on
the same line or place a hyphen at the end of the line.

Printing Other Characters To print a comma, slash, percent sign, dollar sign,
or zero, specify that character in the edit string. If there are only spaces to the
left of a comma, DATATRIEVE prints a space instead of a comma. If you include
more than one dollar sign, it is a floating character. Table 4–12 shows how these
characters are used. In the table, a number sign (#) represents a space.

Table 4–12 Special Insertion Characters

Picture
String

Edit
String

Field
Content Output

99 99% 45 45%
9(6) $999,999 100000 $100,000
9(6) $$$$,$$$ 100000 $100,000
9(6) ZZZ,ZZZ 000040 #####40
9(6) 999/999 123456 123/456

Printing Literals You can include character string literals in edit strings. Do not
leave any spaces between the elements of the edit string. You can have spaces
embedded in the quoted character strings but do not leave spaces between the
quotation marks and the other edit string characters.

4–164 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT_STRING Clause

Here are two examples of using character strings in edit strings. Field definition
clauses in DECLARE statements perform just as they do when you use them in
field definitions.

DTR> DECLARE NUM PIC 9(5).
DTR> NUM = 12345
DTR> PRINT NUM USING "THIS NUMBER, "ZZ,Z99", WILL SURPRISE YOU."

NUM

THIS NUMBER, 12,345, WILL SURPRISE YOU.

DTR> DECLARE NOTE USAGE DATE EDIT_STRING IS
[Looking for picture or edit string]
CON> "Today is "W(9)", the "DD"th day of "M(9)", in the year "Y(4).
DTR> NOTE = "TODAY"
DTR> PRINT NOTE

NOTE

Today is Monday, the 14th day of August, in the year 1989

DTR>

Floating Characters
You can specify three edit string characters ($, –, and +) as floating characters.
A floating character replaces all but the last leading zero with spaces. The
last leading zero is replaced by the edit string character ($, –, or +). Floating
characters that correspond to digits are replaced by those digits. Because one
character is replaced by a +, –, or $, you must specify one more character than
the number of digits in the field.

To use a floating character, you must specify two or more of the same character.
You can specify only one floating character in an edit string. For example, you
cannot have both a floating minus sign and a floating dollar sign in the same edit
string. The floating characters must be the leftmost characters in an edit string.

Table 4–13 shows the use of floating characters in edit strings. In the table, a
number sign (#) represents a space.

Table 4–13 Floating Characters in Edit Strings

Picture
String

Edit
String

Field
String Output

S9(4) ++++9 +0187 #+187
S9(4) ++++9 –5764 –5764

(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–165

EDIT_STRING Clause

Table 4–13 (Cont.) Floating Characters in Edit Strings

Picture
String

Edit
String

Field
String Output

S9(4) —-9 +0187 ##187
S9(4) —-9 –0001 ###–1
9(5)V99 $9(5).99 0015786 $00157.86
9(5)V99 $$$,$$$.99 0015786 ###$157.86
9(5)V99 $$$,$$$.00 0015786 ###$158.00
S9(5) $$$,$$$CR +54362 $54,362CR

Changing the Defaults for Currency Symbols
You can change the default displays for the currency symbol, for the decimal
point, and for the digit separator. To make your output conform to other
conventions for numeric and monetary notation, you can override the system
defaults for these symbols by redefining the following logical names:

SYS$CURRENCY
SYS$RADIX_POINT
SYS$DIGIT_SEP

You can use the necessary DCL DEFINE commands in your LOGIN.COM file at
the DCL command level. You can also have your system manager set up system
logical names for these symbols.

Date Fields

For date edit strings:
D is replaced by a digit of the day of the month.
M is replaced by a letter of the name of the month.
N is replaced by a digit of the number of the month.
Y is replaced by a digit of the numeric year.
J is replaced by a digit of the Julian date.
W is replaced by a letter from the name of the day of the week.
0, $, %, *, +, -, ., / are simply inserted.

A field defined as USAGE IS DATE is stored internally as a binary value. To
print this field, DATATRIEVE must convert it to another format. If you do
not include an EDIT_STRING clause in the field definition for a date field,
DATATRIEVE prints the field value in the following format:

4–166 DATATRIEVE Commands, Statements, and Definition Clauses

EDIT_STRING Clause

DD-MMM-YYYY

To print the date in any other format, you must include an EDIT_STRING clause
in the field’s definition. (You can also specify the output format with the print list
modifier USING edit-string in your output statement.) The edit string for a date
field gives you several formatting choices for printing a date: For example, the
date can include the following:

• The name of the day of the week (such as Monday, Tuesday) or just the first
characters of the name (such as Mon, Tue, Wed)

• The day of the month (such as 1, 2, 3)

• The name of the month (such as January, February) or just the first
characters of the name (such as Jan, Feb, Mar)

• The number of the month (for example, 1 for January and 12 for December)

• The year (such as 1988) or just the last two digits of the year (88)

• The Julian date (for example, 001 for January 1 and 366 for December 31 in
a leap year)

• Delimiters to separate the parts of the date (such as a slash or period after
the month and day)

To print just the day part of a date field, extract the day using the FN$DAY
function. For example:

DTR> PRINT ("TODAY") USING DD-MMM-YYYY
15-Nov-1990

DTR> PRINT FN$DAY("TODAY")

FN$DAY

15

You specify the characters to be printed (letters, digits, spaces, slashes, hyphens,
or periods) and the order in which the parts of the date are to appear (such as
month, day, year).

DATATRIEVE does not always output the total number of characters you specify
with an alphabetic edit string such as M(9) or W(9). If the content of the field is
shorter than its edit string specifies, DATATRIEVE output equals the length of
the field value, not the length of the edit string. For example, an edit string can
specify a 9-letter month: M(9). If the field contains a month with a name shorter
than nine letters (such as June), DATATRIEVE prints only four characters,
‘‘June.’’ DATATRIEVE does not pad the output with blanks.

DATATRIEVE Commands, Statements, and Definition Clauses 4–167

EDIT_STRING Clause

Table 4–14 contains edit strings and the format of the output for two field values:
June 4, 1990 and November 27, 1989. In the table, a number sign (#) represents
a space.

Table 4–14 EDIT_STRING Output for Date Values

Edit String

Output if Field
Value Is
June 4, 1990

Output if Field Value Is
November 27, 1989

DD-MMM-YY #4-Jun-90 27-Nov-89
MMMBDDBY(4) Jun##4#1990 Nov#27#1989
M(9)BDDBY(4) June##4#1990 November#27#1989
NN/DD/YY #6/04/90 11/27/89
W(9) Monday Monday
YYYY/JJJ 1990/156 1989/331
DDBMMMBYY/WWW #4#Jun#90/Mon 27#Nov#89/Mon
DD.NN.YY #4.06.90 27.11.89

4–168 DATATRIEVE Commands, Statements, and Definition Clauses

END_REPORT Statement (Report Writer)

END_REPORT Statement (Report Writer)
Ends the report specification.

Format

END_REPORT

Restriction

The END_REPORT statement must be the last statement in the report
specification.

Results

After you enter the END_REPORT statement, the Report Writer takes one of
three courses of action:

• Prompts you for the values you specified with a *.prompt in the record
specification and then produces the report.

• Sends you a message indicating a syntax error in the report specification.
When you see the DTR> prompt, type EDIT and press RETURN so that you
can make the needed changes. When you leave the editor with the EXIT
command, DATATRIEVE executes the new report specification. You can also
edit a report specification by enclosing it in a procedure by using the DEFINE
PROCEDURE command.

• Produces the report and sends it to the device or file you have specified in the
REPORT command.

Example

For examples of report specifications, see the chapters on writing reports in the
VAX DATATRIEVE User’s Guide.

DATATRIEVE Commands, Statements, and Definition Clauses 4–169

ERASE Statement

ERASE Statement
Permanently removes one or more data records from an indexed or relative data
file, a VAX DBMS database, or a relational database.

Format

ERASE [ALL [OF rse]]

Arguments

ALL
Causes DATATRIEVE to permanently remove from the data file every record in
the current collection.

ALL OF rse
Causes DATATRIEVE to permanently remove from the data file every record
identified by the record selection expression.

Restrictions

• The domain containing the targeted records must be readied for WRITE
access. (See the section on the READY command.)

• The data file containing the targeted records must be an indexed sequential
file or a relative file. You cannot delete records from a sequential file.

• You cannot delete a record from a view domain or a port.

• You cannot use the ERASE statement to change or remove fields from a list
in a hierarchical record.

• When you erase a VAX DBMS record from DATATRIEVE, you erase not
only that record, but all records in all sets owned by the erased record, all
records in all sets owned by those records, and so forth. This effect is more
far-reaching than that of the DML ERASE statement, so use caution when
erasing VAX DBMS records from DATATRIEVE.

Results

• DATATRIEVE deletes the targeted records from the domain. If the domain is
a VAX DBMS domain or a relational domain or relation, the changes are not
permanent until you enter a COMMIT statement, a FINISH statement, or
you exit from DATATRIEVE.

• If you use the argument ALL, DATATRIEVE deletes from the domain every
record in the current collection.

4–170 DATATRIEVE Commands, Statements, and Definition Clauses

ERASE Statement

• If you use the argument ALL OF rse, DATATRIEVE permanently deletes
from the domain every record identified by the record selection expression.

• If you put the keyword ERASE by itself in a FOR statement, DATATRIEVE
permanently deletes from the domain each record specified by the FOR
statement.

If you erase a collection or record stream that contains a selected record,
the values of the fields of that record are still available in your workspace,
even though the record has been removed from the domain by the ERASE
statement. You can display the fields of that selected record, and you can
use those field values in value expressions. Those values remain in your
workspace until you change the single record context with another SELECT
statement or with a DROP statement or a RELEASE or FINISH command.

• The ERASE statement permanently removes the selected record from the
data file if you do not establish a target record stream with a FOR statement,
with the OF rse clause, or with the keyword ALL. If you have no selected
record in any collection, DATATRIEVE displays this message:

DTR> ERASE
No target record for ERASE.
DTR>

Usage Note

Before using the ERASE statement, you can check the current collection and
selected record with the SHOW CURRENT command or the PRINT statement.

Examples

The following example shows how to erase all the yachts built by Albin:

DTR> FIND YACHTS WITH BUILDER EQ "ALBIN"
[3 records found]
DTR> ERASE ALL

In the following example, a procedure is defined that erases selected yachts:

DTR> DEFINE PROCEDURE SELL_BOAT
DFN> FIND YACHTS WITH BUILDER EQ *.BUILDER AND
DFN> MODEL = *.MODEL
DFN> PRINT ALL
DFN> IF *."Y IF BOAT SOLD" CONT "Y" THEN ERASE ALL
DFN> END_PROCEDURE
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–171

EXIT Command

EXIT Command
Ends a DATATRIEVE session.

Format� EXIT
CTRL/Z

Parameters

None.

Restriction

You must issue the EXIT command at the DTR> prompt or, if you are using the
DATATRIEVE DECwindows interface, choose the Exit item of the File menu.

Results

• EXIT stops a DATATRIEVE session and returns you to the DCL command
level (indicated by the dollar sign prompt).

• Entering CTRL/Z from the DTR> prompt acts as an EXIT command and stops
a DATATRIEVE session.

• When you stop your DATATRIEVE session by typing either EXIT or CTRL/Z,
DATATRIEVE automatically finishes all readied domains and releases all
collections, global variables, and tables.

• Entering CTRL/Z from the DFN>, CON>, and RW> prompts brings you back
to DATATRIEVE command level.

• Using CTRL/Z does not stop your DATATRIEVE session if you are in HELP,
ADT, Guide Mode, or the editor. Three consecutive CTRL/Zs in response to
the line mode prompt of the editor act like a QUIT command and return you
to DATATRIEVE command level.

• Entering CTRL/Z does not stop your DATATRIEVE session when you enter it
in response to an Enter prompt during the execution of a STORE or MODIFY
statement. Entering CTRL/Z in response to an Enter prompt returns you to
DATATRIEVE command level and aborts the STORE or MODIFY statement.

• When changes have been made to a VAX DBMS or relational database,
entering EXIT or CTRL/Z from the DTR> prompt is equivalent to issuing a
VAX DBMS or relational database COMMIT command.

4–172 DATATRIEVE Commands, Statements, and Definition Clauses

EXIT Command

Examples

The following example shows how to end a DATATRIEVE session:

DTR> EXIT
$

The following example shows the result of entering CTRL/Z to the Enter prompt
of a STORE statement:

DTR> READY YACHTS WRITE
DTR> STORE YACHTS
Enter MANUFACTURER: CTRL/Z

Execution terminated by operator
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–173

EXTRACT Command

EXTRACT Command
Copies the CDD/Repository data dictionary definition of one or more dictionary
objects or types of object definitions to a command file.

Format

EXTRACT

������������������
�����������������

[ALL]

�����
����

DOMAINS
PLOTS
PROCEDURES
RECORDS
TABLES

�����
���	

[,...] [ON] file-spec

ALL [ON] file-spec

[ON] file-spec path-name [,...]

path-name [,...] [ON] file-spec

������������������
����������������	

Arguments

ALL
Causes DATATRIEVE to copy into the specified command file the definitions of
one or more dictionary objects in your default dictionary directory.

The keyword ALL is optional when used with the types of object definitions such
as PLOTS or DOMAINS.

The keyword ALL is required, however, when used with the EXTRACT ALL [ON]
file-spec syntax.

DOMAINS
PLOTS
PROCEDURES
RECORDS
TABLES
Allows you to extract all the domains, plots, procedures, records, or tables from
your current default CDD/Repository directory.

file-spec
Is the VMS specification of the RMS file to contain the definitions. A complete file
specification has the following format:

node-spec::device:[directory]file-name.type;version

4–174 DATATRIEVE Commands, Statements, and Definition Clauses

EXTRACT Command

path-name
Is the given name, full dictionary path name, or relative path name of the
dictionary object whose definition you want to copy. If you specify more than
one dictionary path name, use a comma to separate each one from the next.
EXTRACT accepts both DMU and CDO style path names.

Restrictions

• To extract the definition of a dictionary object from the DMU format
dictionary, you must have the following access privileges to it:

P (PASS_THRU) and X (EXTEND) access to the parent directory of the
dictionary object

P (PASS_THRU), S (SEE), and R (DTR_READ) access to the object you
want to extract

• To extract the definition of a dictionary object from the CDO format dictionary,
you must have the following access privileges to it:

S (SHOW) access to the directory containing the object

S (SHOW) and R (READ) access to the object you want to extract

• To check what privileges you have to a dictionary object, use the SHOW
PRIVILEGES command (see the section on the SHOW command.)

• You cannot specify both object types and object path names in the same
argument list. The following combination of PLOTS and object path name
would generate an error message:

DTR> EXTRACT PLOTS, CDD$TOP.DTR$LIB.DEMO.YACHTS
Argument list cannot contain both the object path name and
the object type.

• An ON file-spec clause may precede or follow the list of dictionary path
names, but it must occur exactly once.

• You must specify at least one field of the file specification.

• Do not extract a procedure containing comment lines that end with a hyphen.
DATATRIEVE interprets the hyphen as a continuation mark and appends the
next line to the comment line.

• If you do not specify an explicit version number, DATATRIEVE copies the
highest version of the definition to a command file preceded by the DELETE
and REDEFINE commands.

DATATRIEVE Commands, Statements, and Definition Clauses 4–175

EXTRACT Command

Results

• DATATRIEVE creates a command file with the file specification you provide.
For each dictionary object you name, DATATRIEVE enters a DELETE
command and a REDEFINE command in the command file. The REDEFINE
command operates on the highest or a specified version of the object.

• For all dictionary objects entered in the data dictionary by DATATRIEVE,
the EXTRACT command copies the text of the highest or a specified version
of the definition, exactly as it was entered. For example, when you extract a
domain definition, the dictionary path names of the domain and the record
are extracted just as they were entered. DATATRIEVE does not adjust or
generalize the path names. If the path name was stored as a relative path
name, the relative path name is copied into the command file.

• When DATATRIEVE constructs the DELETE command, it puts only the given
name of the dictionary object in the DELETE command.

• When the EXTRACT command copies the definitions into the command file,
DATATRIEVE does not delete the definitions from the data dictionary

• If a record definition has been stored in the data dictionary by something
other than DATATRIEVE, you can extract a definition of that record.
When DATATRIEVE extracts such a record, however, it translates the
field definition clauses into DATATRIEVE terminology and puts those clauses
into a DATATRIEVE DEFINE RECORD command.

You cannot extract and edit a record definition defined using the
CDD/Repository Common Data Dictionary Data Definition Language’s
(CDDL) VARIANT field unless each VARIANT field has a STRUCTURE
statement. If the CDDL record definition includes a STRUCTURE field
description statement for each VARIANT field, you can extract and edit the
record definition.

• When you invoke the command file, each DELETE command in that file
causes DATATRIEVE to delete from the data dictionary the definition of any
dictionary object with the same dictionary path name as that of the extracted
dictionary object.

• When you invoke the command file, each DEFINE command in it enters its
definition in the directory determined by the dictionary path name of the
object specified in the command.

If the path name in the command is a full dictionary path name,
DATATRIEVE enters the definition in the specified directory, whether or
not it happens to be your default dictionary directory.

4–176 DATATRIEVE Commands, Statements, and Definition Clauses

EXTRACT Command

If the path name in the command is a relative dictionary path name,
DATATRIEVE first checks whether the path name is valid relative to your
default dictionary directory. If it is valid, DATATRIEVE enters the definition
in the appropriate directory. If it is not valid, DATATRIEVE displays an error
message and the definition is not entered into any CDD/Repository directory.

• If you omit a field in the file specification, DATATRIEVE uses the defaults
listed in Table 4–15:

Table 4–15 Output File Specification Defaults

Field Default

node-spec:: Your local node
device: Your default device
[directory] Your default directory
file-name Null string
.type .COM
;version 1 or next higher version number

The minimum file specification consists of a period (.). The specification of
such a file stored in your default VMS directory ends with .;n, where n is the
version number and both the file name and the type are null strings.

Usage Notes

• You can use the EDIT command in place of EXTRACT to edit dictionary
objects. If SET NO EDIT_BACKUP is in effect, EDIT enters a DELETE
command to delete the old definition from the data dictionary and places the
old definition into the main buffer of the editor in the form of a REDEFINE
command. This allows you to modify the old definition. Essentially, EDIT
combines the EXTRACT, DELETE, and REDEFINE commands. If SET
EDIT_BACKUP is in effect, the old definition is retained in an earlier version.

• DATATRIEVE extracts object types in the order you specify. In the following
example, the record object definitions are extracted before the domain object
definitions:

DTR> EXTRACT ALL RECORDS, DOMAINS ON SAMPLE.DTR

• The EXTRACT command lets you modify dictionary objects and redistribute
data definitions in the data dictionary without ending your DATATRIEVE
session and without having to work directly on the data dictionary with DMU
or CDO.

DATATRIEVE Commands, Statements, and Definition Clauses 4–177

EXTRACT Command

Without ending your DATATRIEVE session, you can use this method to
manipulate your data descriptions and minimize the risk of corrupting the
data dictionary:

Extract the definitions you want to change.

Edit the definitions in the command file with the editor.

Invoke the command file to replace the old definitions.

See the section on the EDIT command in this chapter and the
VAX DATATRIEVE User’s Guide for details about using the editor to change
command files.

• The EXTRACT command enables you to create backup copies of your
CDD/Repository objects in a file that you specify.

• The EXTRACT command enables you to transport the definitions to other
CDD/Repository directories.

• The EXTRACT command enables you to convert domains and records from
DMU format to CDO format.

• To invoke the command file, type an at sign (@) and the command file name
in response to the DTR> prompt. If the file type is not .COM, you must give
the file type when entering the file specification.

• When you are moving a definition from one dictionary directory to another,
use a SHOW path-name command to see if an object exists in the new
directory with the same given name as that in the DELETE command or with
the same path name as the one specified in the REDEFINE command.

If one exists, you must decide whether or not you want it deleted when you
invoke the command file. If you do not want that object deleted, you must
edit the command file to change one or both of the names in the DELETE and
REDEFINE commands.

Be sure to anticipate the problems that might arise when you change default
dictionary directories. No two objects in the same dictionary directory can
have the same name, but if you shift to a new default dictionary directory,
that new directory may legitimately contain an object with the same given
name or the same relative path name (especially if relative path name in
the command file contains a minus sign to indicate ‘‘the next level up’’ in the
CDD/Repository hierarchy).

For example, you extract the definition of a procedure ABC from the
directory CDD$TOP.WIDGETS. You then set your default directory to
CDD$TOP.THINGS, which contains a domain table called ABC. If you invoke
the command file, the DELETE ABC command in the command file deletes

4–178 DATATRIEVE Commands, Statements, and Definition Clauses

EXTRACT Command

the domain table definition from CDD$TOP.THINGS, and the REDEFINE
DOMAIN ABC command enters the procedure definition.

• When you extract a domain definition defined with the RELATIONSHIPS
clause, you might have to edit the definition before you move it to another
dictionary directory. You will need to edit the definition if you want the
new domain definition to refer to a different record path name than the
original definition. This is because the domain has the full record path name,
including the version number, stored in it.

For example, if you move a domain and all the associated records from one
dictionary directory to another, you will need to edit the domain and change
the record definitions to match the new ones.

• When you extract a record that contains one or more FROM clauses, the
FROM clause will be extracted exactly as it was defined in the record.
Therefore, a FROM clause that contains a full directory specification is more
transportable than a FROM clause that relies on a specific default dictionary
directory. In either case, you may need to edit the record definition if you
move it from one dictionary directory to another.

• To invoke a command file produced by using the EXTRACT command on an
object in the DMU format dictionary, you must have the following privileges:

P (PASS_THRU) and X (EXTEND) to the parent directory

P (PASS_THRU) and either D (LOCAL_DELETE) or G (GLOBAL_
DELETE) access to the object named in the DELETE command

• To invoke a command file produced by using the EXTRACT command on an
object in the CDO format dictionary, you must have the following privileges:

S (SHOW) and U (CHANGE) to the parent directory

S (SHOW), U (CHANGE + DEFINE), and D (DELETE) access to the
object named in the DELETE command

• To invoke the command file, you must have VMS R (read) access privilege to
it. If you create the file, you are the owner of it and have R (read), W (write),
E (execute), and D (delete) access to the command file, or whatever you or
your LOGIN.COM file establish as the default file protection setting for your
process.

• The EXTRACT command does not copy the access control list (ACL) of
the dictionary object. After you invoke the command file, the ACL for the
dictionary object is the default ACL assigned by CDD/Repository . Use the
DEFINEP command to add other entries to the ACL.

DATATRIEVE Commands, Statements, and Definition Clauses 4–179

EXTRACT Command

• When you execute the command file, the existing object and its associated
ACL may be deleted before the REDEFINES command can execute and
propagate a new definition. Therefore, you may want to remove the DELETE
command from the command file.

Example

Extract all the definitions in a dictionary directory to create a backup file:

DTR> EXTRACT ALL ON BAKUP1
DTR>

4–180 DATATRIEVE Commands, Statements, and Definition Clauses

FIND Statement

FIND Statement
Establishes a collection of records from a domain, view, collection, or list. The
collection formed with the FIND statement becomes the current collection.

Format

FIND rse

Arguments

rse
Is a record selection expression specifying the records to be included in the
collection.

Restrictions

• The domains containing the records specified in the RSE must be readied for
READ, WRITE, or MODIFY access. The source domain cannot be readied for
EXTEND access (see the section on the READY command.)

• The source domain cannot be a port.

• Do not use a FIND statement in a compound statement, such as a BEGIN-
END, FOR, REPEAT, or THEN statement. (To establish single record context
in compound statements, use the RSE clauses of FOR, PRINT, or MODIFY
statements. These RSEs can establish the record streams needed to control
the name recognition and single record context inside compound statements.)

• The following restrictions apply to the number of records you can include in a
collection:

The maximum number of RMS records that can be included in a collection
is 1,301,264. Only half this many are allowed when you create collections
by crossing two sources. This is because each record created by a CROSS
operation is considered two records. A collection created by crossing three
sources can contain only a third of 1,301,264 records as a maximum (each
record in the collection is made up of three records, one from each source),
and so on.

Because a collection is formed when a SORT is performed, 1,301,264 is
also the maximum number of RMS records that can be sorted from within
DATATRIEVE.

DATATRIEVE Commands, Statements, and Definition Clauses 4–181

FIND Statement

The maximum number of VAX DBMS records that can be included in a
collection is approximately 979,776 records. The maximum is half this
number in a collection created by crossing two sources, one-third this
number in a collection involving three VAX DBMS sources, and so on.

The maximum number of relational database records that can be included
in a collection from a single relation is 979,776 records. The maximum
is half this number in a collection from an Rdb/VMS or Rdb/ELN view
relation that involves two relations or a collection created by crossing two
relational sources. The maximum is one-third this number in collections
created by crossing three relations, and so on.

• You cannot use the FIND statement to find a record by its position. For
example, FIND nth YACHTS does not work. You can use FIND FIRST n
YACHTS and then use the SELECT statement with the LAST argument.

Results

• When you issue a FIND statement, DATATRIEVE forms a current collection.
If you specify a context variable in the RSE, the collection has two names:
CURRENT and that of the context variable.

• When the collection has been formed, DATATRIEVE displays the following
message (n is the number of records in the collection):

[n records found]

If you put the FIND statement inside a procedure, DATATRIEVE does
not display this message unless the FIND statement is the last one in the
procedure.

If you put the FIND statement on the same input line with other
DATATRIEVE statements or commands, using semicolons (;) to separate
them, DATATRIEVE does not display this message unless the FIND
statement is the last one on the line.

• DATATRIEVE collects the records in the order it finds them in the data file.
Do not assume there is any order to the collection unless you include the
SORTED BY clause in the record selection expression or unless the domain
uses an indexed file.

4–182 DATATRIEVE Commands, Statements, and Definition Clauses

FIND Statement

Examples

The following example forms a collection of yachts longer than 30 feet and gives
the collection the name BIG-ONES:

DTR> FIND BIG-ONES IN YACHTS WITH LOA GT 30
[57 records found]
DTR>

The following example forms a collection of the 10 most expensive yachts:

DTR> FIND FIRST 10 YACHTS SORTED BY DESC PRICE
[10 records found]
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–183

FINISH Command

FINISH Command
Ends your access to domains, domain tables, relations, and VAX DBMS records.
The FINISH command also releases any collections associated with the domains.

For VAX DBMS, when the last VAX DBMS domain or record is finished,
collections are purged, a commit with no retention is performed, and databases
are unbound. The last FINISH commits all VAX DBMS databases. A commit is
not done until you finish the last VAX DBMS record or domain.

For relational sources, when the last domain or relation is finished, a commit is
performed and no collections are retained.

Format

FINISH

�
����

ALL� domain-name
dbms-record-name
rdb-relation-name

�
[,...]

�
����

Arguments

ALL
Ends your control over all readied domains, relations, VAX DBMS records, and
all domain or dictionary tables loaded in your workspace.

domain-name
Is the given name of a readied domain or domain table you want to finish. If you
specify the names of more than one domain or domain table, separate each from
the next with a comma (,).

rdb-relation-name
Is the given name of a readied relation you want to finish. If you specify the
names of more than one relation, separate each from the next with a comma (,).

dbms-record-name
Is the given name of a VAX DBMS record readied with the READY database
command. If you specify the names of more than one record, separate each from
the next with a comma (,).

4–184 DATATRIEVE Commands, Statements, and Definition Clauses

FINISH Command

Restrictions

• You must enter the FINISH command at DATATRIEVE command level.

• You cannot use a full or relative dictionary path name when you specify the
name of a domain or domain table.

• You cannot specify a database name.

Results

• If you use the keyword ALL or do not specify any domains, relations,
VAX DBMS records, or domain tables in the FINISH command,
DATATRIEVE ends your control over all readied domains, relations, VAX
DBMS records, and all domain or dictionary tables loaded in your workspace.

• If you specify one or more domains, relations, records, or domain tables
with the FINISH command, DATATRIEVE ends your control over only those
specified.

• DATATRIEVE releases all collections associated with the domains, relations,
and records you finish.

• The FINISH command can commit changes made to a VAX DBMS or
relational database. A COMMIT statement executes when you finish the
last readied domain, relation, or record, or when you finish all of them at
once.

Usage Notes

• With the FINISH command, you can clear your workspace of unneeded
domains, relations, records, and tables.

• With the FINISH command, you can end your access to the data associated
with a readied domain, relation, or VAX DBMS record. For example, if you
ready a domain for exclusive use, no one else can get access to the data file
associated with that domain until you use the FINISH command or ready the
domain again with a less restrictive access control option.

• You do not need to issue a FINISH command before an EXIT command. EXIT
automatically finishes all readied domains and all domain tables, releases
all collections and dictionary tables, and commits VAX DBMS and relational
sources if necessary.

DATATRIEVE Commands, Statements, and Definition Clauses 4–185

FINISH Command

• If you redefine the format of the record associated with a readied RMS
domain, the change in the record definition does not take effect until you
use the FINISH command to finish the domain and the READY command to
ready it again. Simply readying the domain again does not activate the new
record definition.

• If you delete from the data dictionary the domain or record definition
associated with a readied domain, you can continue to work with the domain,
performing any operations consistent with the mode of your access to the
domain. You can also ready the domain again to change your access mode to
it, as long as you avoid any conflicts of access control options (see the section
on the READY command.) Under these circumstances, however, when you
use the FINISH command to end your control over the domain, the domain
definition is no longer in the data dictionary, and you can no longer get any
access to the domain.

• If you delete a domain table definition from the data dictionary, you can
continue to use the domain table. However, when you use the FINISH or
RELEASE command to end your control over the domain table, the definition
of the domain table is no longer in the data dictionary, and you can no longer
get any access to the domain.

• If you have more than one domain linked to a DECforms form, finishing a
single domain will not disable the form session. You disable the session only
when you issue the FINISH command on the last domain linked to the form.

Example

The following example releases control of the domain YACHTS:

DTR> SHOW READY
Ready sources:

YACHTS: Domain, RMS indexed, protected read
<CDD$TOP.DTR$LIB.DEMO.YACHTS;1>

No loaded tables.

DTR> FINISH YACHTS
DTR> SHOW READY
No ready sources.
No loaded tables.
DTR>

4–186 DATATRIEVE Commands, Statements, and Definition Clauses

FOR Statement

FOR Statement
Causes DATATRIEVE to execute a statement or group of statements once for
each record in the record stream formed by a record selection expression (RSE).
The FOR statement provides repeating loops for DATATRIEVE operations.

Format

FOR rse statement

Arguments

rse
Is a record selection expression that forms the record stream that controls the
number of times DATATRIEVE executes the statement and controls the single-
record context for the statement. See the VAX DATATRIEVE User’s Guide for a
discussion of DATATRIEVE context.

statement
Is either a simple or a compound statement you want DATATRIEVE to execute
once for each record in the record stream formed by the RSE. You can form
compound DATATRIEVE statements with the BEGIN-END, IF-THEN-ELSE, and
THEN statements, which are described in this chapter.

Restrictions

• Each domain associated with the record selection expression must be readied
for READ, WRITE, or MODIFY access.

• Do not include FIND, SELECT, SORT, DROP, or RELEASE statements in a
FOR statement.

• You cannot include a DATATRIEVE command in a FOR statement.

Results

• For each record in the record stream, DATATRIEVE executes the statement
once, unless an ABORT statement, a CTRL/C, or a CTRL/Z to an ‘‘Enter...:’’
prompt forces an early end to the repetitions of the statement.

• For each record in the record stream, DATATRIEVE executes the statements
of a BEGIN-END block in the order you entered them.

• Each time DATATRIEVE executes the statement in the FOR loop, it
establishes a single record context for one record from the record stream.

DATATRIEVE Commands, Statements, and Definition Clauses 4–187

FOR Statement

However, a statement nested in a BEGIN-END block in a FOR loop can create
its own single record context. The new context lasts until DATATRIEVE
completes the execution of the nested statement. The single record context
then returns to its state before the execution of the statement.

Similarly, when DATATRIEVE completes the execution of the FOR loop, the
single record context returns to its state prior to the execution of the FOR
loop.

Usage Notes

• Use the FOR statement to repeat sequences of DATATRIEVE statements.
You do not have to know how many records the record stream contains to
control the number of times DATATRIEVE loops through the statement. You
can use an ABORT statement in the statement to end the loop when certain
conditions are met, regardless of the number of records remaining in the
record stream.

• You can nest FOR statements. You can use nested FOR loops to work with
lists (the repeating fields contained in hierarchical records).

You establish the single record context in the outer loop, and the single
list-item context in the inner loop. The statement acts on all list items in one
target record before acting on any in the next record in the record stream.

You can, however, use the CROSS clause in record selection expressions to
simplify work with lists (see the chapter on RSE in the VAX DATATRIEVE
User’s Guide).

• Inside a FOR loop, you can force an exit from the loop by specifying the exit
conditions in the IF clause of an IF-THEN-ELSE statement and putting an
ABORT statement in the THEN clause.

You can also stop the execution of a FOR loop by entering a CTRL/C during
the execution of a statement, or you can enter a CTRL/Z in response to an
‘‘Enter . . . :’’ prompt.

• Inside the FOR loop, you can use a variable as a counter to force an exit from
the loop before all records in the record stream have been acted upon:

1. Declare the variable outside the FOR loop.

2. Inside the loop, increase the value of the variable by 1 during each
repetition of the loop.

4–188 DATATRIEVE Commands, Statements, and Definition Clauses

FOR Statement

3. Put an ABORT statement in the THEN clause or the ELSE clause of
an IF-THEN-ELSE statement, and specify the conditions for the exit,
based on the value of the variable, in the conditional expression of the IF
clause.

Examples

The following example assigns a value to the field PRICE for three yachts with
prices equal to zero:

DTR> READY YACHTS MODIFY
DTR> SET NO PROMPT
DTR> FIND FIRST 3 A IN YACHTS WITH PRICE = 0
[3 records found]
DTR> PRINT A

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR> FOR A
CON>MODIFY USING PRICE = DISP * 1.3 + 5000
DTR> PRINT A

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39 18,500 12 $29,050
BUCCANEER 270 SLOOP 27 5,000 08 $11,500
BUCCANEER 320 SLOOP 32 12,500 10 $21,250

DTR>

The following example uses a variable to force an end to a FOR loop before all
records in the record stream have been acted upon:

DTR> READY YACHTS
DTR> DECLARE A PIC 9.
DTR> PRINT A

A

0

DATATRIEVE Commands, Statements, and Definition Clauses 4–189

FOR Statement

DTR> SET NO PROMPT
DTR> FOR YACHTS
CON> BEGIN
CON> A = A + 1
CON> PRINT A, BOAT
CON> IF A = 5 THEN ABORT "END OF LOOP"
CON> END

LENGTH
OVER

A MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

1 ALBERG 37 MK II KETCH 37 20,000 12 $36,951
2 ALBIN 79 SLOOP 26 4,200 10 $17,900
3 ALBIN BALLAD SLOOP 30 7,276 10 $27,500
4 ALBIN VEGA SLOOP 27 5,070 08 $18,600
5 AMERICAN 26 SLOOP 26 4,000 08 $9,895
ABORT: END OF LOOP

DTR>

The following example uses nested FOR loops to increase by one year the age of
each child in the first two records of the domain FAMILIES:

DTR> READY FAMILIES MODIFY
DTR> PRINT FIRST 2 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

DTR> SET NO PROMPT
DTR> FOR FIRST 2 FAMILIES
CON> FOR KIDS
CON> MODIFY USING AGE = AGE + 1
DTR> PRINT FIRST 2 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

JIM LOUISE 5 ANNE 32
JIM 30
ELLEN 27
DAVID 25
ROBERT 17

4–190 DATATRIEVE Commands, Statements, and Definition Clauses

HELP Command

HELP Command
Provides on-line information about the use of DATATRIEVE commands,
statements, and language elements.

Format� HELP
?

[ERROR] [topic][...]

Arguments

ERROR
Provides additional information on the last error message that you received or on
any other error that you specify.

topic
Is a DATATRIEVE command, statement, statement element, or error. Use
commas to separate each topic from the next.

. . . (ellipsis)
Indicates that all help subtopics and any of their subtopics should be displayed.

? (question mark)
Is a synonym for HELP.

Note

If you enter HELP HELP, DATATRIEVE displays an explanation of the
HELP command.

Restrictions

• You must issue the HELP command at DATATRIEVE command level in
response to the DTR> prompt.

• When you use DECLARE SYNONYM to customize DATATRIEVE language
elements, you cannot display the appropriate help message if you specify a
synonym with the HELP command. You can customize the DATATRIEVE
Help library to accommodate any site-specific synonyms or shared user-
defined functions.

DATATRIEVE Commands, Statements, and Definition Clauses 4–191

HELP Command

Results

• DATATRIEVE displays the help message for each topic you list. If prompting
for help is in effect, you receive the help prompt for help topics or subtopics.
For more information, issue the command HELP SET HELP.

• The help messages for each command or statement contain on-line
information about optional arguments associated with the command or
statement.

• On VT100-type video terminals, help messages can appear in a window of the
screen. For more information, issue the command HELP VIDEO or HELP
SET HELP.

• In most circumstances, after DATATRIEVE has displayed an error message,
you can issue the HELP ERROR command to have DATATRIEVE display the
help text pertaining to the error message.

Usage Notes

• You can write your own Help messages for the use of specific domains and
procedures, site-specific synonyms, user-defined functions, and any other
topic you find appropriate. DATATRIEVE uses the VMS Librarian Utility to
access the help messages. Refer to the chapter on the Librarian Utility in the
VAX DATATRIEVE Guide to Programming and Customizing for information
and instructions on creating and maintaining a private help library.

• If you are running DATATRIEVE in a DECwindows environment, you can
get help on the objects displayed in the main application window by following
these steps:

1. Press MB1 and drag the pointer to the object on which you want help.

2. Hold down the HELP key on the keyboard.

3. Release MB1.

For more information on obtaining help on DECwindows objects, see the
VAX DATATRIEVE User’s Guide.

• If you are running DATATRIEVE in a DECwindows environment, you can
get the traditional DATATRIEVE help by issuing the HELP command at the
DTR> prompt.

• For more information on obtaining the traditional DATATRIEVE help, see the
VAX DATATRIEVE User’s Guide.

4–192 DATATRIEVE Commands, Statements, and Definition Clauses

HELP Command

Examples

The following example shows how to ask for a list of the help that is available:

DTR> HELP

The following example shows how to ask for help on the screen-oriented help
facility:

DTR> HELP VIDEO

The following example shows how to ask for help on the last error message you
received. For example, if you use the SORT statement without first forming a
collection, DATATRIEVE displays an error message:

DTR> READY YACHTS
DTR> SORT BY LOA
No collection for sort.

You can issue the HELP ERROR command to find out the reason for the error
message, possible actions to correct the error, and how to obtain more on-line
information:

DTR> HELP ERROR
No collection for sort.

ERROR

NOCOLSOR

EXPLANATION:

You can only use the SORT statement with a collection.

USER ACTION:

Form a collection with a FIND statement. You can sort the
collection by including a SORTED BY clause in the RSE of
the FIND statement. Or you can use a SORT statement after
the collection is established.

FOR MORE INFORMATION TYPE:

HELP SORT
HELP RSE

Topic?

In response to the ‘‘Topic?’’ prompt, you can type SORT or RSE for more
information on these topics. Or you can press the RETURN key to return to
the DATATRIEVE command level. At the DATATRIEVE command level, you can
type HELP SORT or HELP RSE for more information on these topics.

DATATRIEVE Commands, Statements, and Definition Clauses 4–193

HELP Command

The following example shows how to ask for help on adjusting the window for
help on video terminals:

DTR> HELP SET HELP

The following example shows how to get help on the FIND command:

DTR> HELP FIND

4–194 DATATRIEVE Commands, Statements, and Definition Clauses

IF THEN ELSE Statement

IF THEN ELSE Statement
Causes DATATRIEVE to execute one of two statements or compound statements,
depending on the evaluation of a conditional (Boolean) expression.

Format

IF boolean-expression [THEN] statement-1 [ELSE statement-2]

Arguments

boolean-expression
Is a Boolean expression. (See Chapter 1).

THEN
Is an optional language element you can use to clarify syntax.

statement-1
Is a simple or compound statement you want DATATRIEVE to execute if the
Boolean expression evaluates to true.

ELSE statement-2
Specifies the statement you want DATATRIEVE to execute if the Boolean
expression evaluates to false.

Restriction

You must observe all restrictions on the statements used in the IF-THEN-ELSE
statement.

Results

• If the Boolean expression evaluates to true, DATATRIEVE executes
statement-1 in the THEN clause.

• If you specify an ELSE clause and the Boolean expression evaluates to false,
DATATRIEVE executes statement-2 in the ELSE clause.

• If you do not specify an ELSE clause and the Boolean expression evaluates to
false, DATATRIEVE does not execute statement-1 in the THEN clause and is
ready to execute the next command or statement it encounters.

DATATRIEVE Commands, Statements, and Definition Clauses 4–195

IF THEN ELSE Statement

Usage Notes

• You can press the RETURN key before all elements of the statement except
ELSE. If you press the RETURN key before typing ELSE, DATATRIEVE
considers the syntax of the statement complete. It executes or ignores the
THEN clause, depending on the evaluation of the Boolean expression. It then
tries to execute the ELSE clause as though it were a separate statement and
displays an error message.

When you have to break lines in an IF-THEN-ELSE statement, put
ELSE at the end of a line rather than at the beginning of the next. This
practice is especially important when you are writing a procedure, because
DATATRIEVE does not check the syntax of the statements in the procedure
until you invoke it.

• You can use an IF-THEN-ELSE statement to force an exit from a BEGIN-
END block or from a FOR loop. Put an ABORT statement in either the
THEN clause or the ELSE clause, and put the resulting IF-THEN-ELSE
statement in an appropriate place in the BEGIN-END block or FOR loop.

• You can nest IF-THEN-ELSE statements by using an IF-THEN-ELSE
statement as either statement-1 or statement-2, or both.

Examples

The following example shows how to print each yacht built by Pearson, and
modify the price if you want to:

DTR> SET NO PROMPT
DTR> READY YACHTS WRITE
DTR> FOR YACHTS WITH BUILDER = "PEARSON"
CON> BEGIN
CON> PRINT
CON> IF *."Y TO MODIFY PRICE, N TO SKIP" CONT "Y"
CON> THEN MODIFY PRICE ELSE
CON> PRINT "NO CHANGE"
CON> IF *."Y TO CONTINUE" NOT CONT "Y" THEN
CON> ABORT "END OF PRICE CHANGES"
CON> END

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

4–196 DATATRIEVE Commands, Statements, and Definition Clauses

IF THEN ELSE Statement

PEARSON 10M SLOOP 33 12,441 11
Enter Y TO MODIFY PRICE, N TO SKIP: N
NO CHANGE
Enter Y TO CONTINUE, N TO ABORT: Y
PEARSON 26 SLOOP 26 5,400 08
Enter Y TO MODIFY PRICE, N TO SKIP: N
NO CHANGE
Enter Y TO CONTINUE, N TO ABORT: N
ABORT: END OF PRICE CHANGES

DTR>

In the following example the IF statement is used to select families with fathers
named Jim and list the children in those families:

DTR> READY FAMILIES
DTR> FOR FAMILIES WITH ANY KIDS
CON> IF FATHER EQ "JIM" THEN
CON> PRINT "The Kids of JIM and"|||MOTHER,
CON> ALL KID_NAME ("Kids with Fathers"/
CON> "Named Jim") OF KIDS, SKIP

Kids with Fathers
Named Jim

The Kids of JIM and ANN URSULA
RALPH

The Kids of JIM and LOUISE ANNE
JIM
ELLEN
DAVID
ROBERT

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–197

LIST Statement

LIST Statement
Causes DATATRIEVE to format and write to your terminal, to a file, or to a unit
record device one or more values of implied or specified fields from records in one
or more readied domains.

Format
For retrieving from selected records and target record streams formed by FOR
loops:

LIST [print-list]

�
ON

� file-spec
*.prompt

 �

For retrieving from the current collection:

LIST ALL [print-list]

�
ON

� file-spec
*.prompt

 �

For retrieving from record streams formed by the LIST statement using one RSE:

LIST [print-list OF] rse

�
ON

� file-spec
*.prompt

 �

For retrieving from record streams formed by the LIST statement using two RSEs
(the inner print list follows another print list):

LIST print-list, ALL print-list OF rse-1 [,print-list] OF rse-2�
ON

� file-spec
*.prompt

 �

For retrieving from record streams formed by the LIST statement using two RSEs
(the inner print list precedes any other print list):

LIST ALL ALL print-list OF rse-1 [,print-list] OF rse-2�
ON

� file-spec
*.prompt

 �

4–198 DATATRIEVE Commands, Statements, and Definition Clauses

LIST Statement

Arguments

print-list
Is a list of field names; it can also include only the print list elements SKIP,
NEW_PAGE, and inner print lists. See Table 4–24, in the PRINT command
section, for a description of these two print-list elements. You can control the
format in which DATATRIEVE displays values from the specified fields with the
USING edit-string modifiers described in the Results section of the the PRINT
command section.

ALL
When used alone following LIST, causes the records in the current collection to be
displayed or written to the specified file or device.

When used with a print list, ALL causes the print list to be evaluated for each
record in the current collection.

When used with the OF rse clause, ALL is optional. You can use it to clarify the
LIST statement, but, regardless of the presence of ALL, DATATRIEVE evaluates
the LIST statement once for each record in the record stream formed by the RSE.

When the print list begins with an inner print list, ALL is required to establish
the proper context in which to resolve references to the items in the hierarchical
list.

rse
Is a record selection expression that creates the record stream DATATRIEVE uses
to evaluate the elements of the print list.

file-spec
Is the file specification to which you want to write the output of the statement. A
complete file specification has the following format:

node-spec::device:[directory]file-name.type;version

If you omit a field in the file specification, DATATRIEVE uses the defaults listed
in Table 4–16.

Table 4–16 Output File Specification Defaults

Field Default

node-spec:: Your local node
(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–199

LIST Statement

Table 4–16 (Cont.) Output File Specification Defaults

Field Default

device: Your default device
[directory] Your default directory
file-name Null string
.type .LIS
;version 1 or next higher version number

The minimum file specification consists of a period (.). The specification of such
a file stored in your default VMS directory ends with ‘‘.;n’’, where n is the version
number and both the file name and the type are null strings.

*.prompt-name
Is a prompting value expression that prompts you for a device name or file
specification to which you want to write the output of the statement.

Restrictions

• To list data from records in a domain, you must ready the domain for READ,
WRITE, or MODIFY access. You cannot list data from domains readied for
EXTEND access because you cannot establish collections or record streams
from domains readied for EXTEND access. See the section in this chapter on
the READY command for more information.

• If you specify a device name in a LIST statement, the device must be one to
which you have access, such as a line printer, a tape drive, your own terminal,
or another terminal. You cannot cause DATATRIEVE to display the output of
the LIST statement on another terminal that is logged in.

• To send your output to a tape drive, you must mount your tape and assign
the tape drive to your process at DCL command level before you run
DATATRIEVE. Only then can you specify a tape drive as the output device
for the LIST statement.

• When you use ON LP: to send LIST statement output directly to a line
printer, DATATRIEVE assumes your system has a line printer. If your
system does not have a device defined as LPA0:, using the clause ON LP: does
not work.

Although this restriction applies to any system without a line printer, you
may encounter it unexpectedly if your system is part of a VAXcluster with a
common line printer. The ON LP: clause does not work in a VAXcluster that
uses a common printer not directly connected to your system.

4–200 DATATRIEVE Commands, Statements, and Definition Clauses

LIST Statement

If the nodes in the cluster are connected with DECnet, you can work around
this restriction. To send output from a node without a line printer, you
must include the node name of the system with the line printer in the LP:
specification. For example, if the cluster’s line printer is on a node named
BIGVAX, the following list statement sends output to it:

DTR> LIST YACHTS ON BIGVAX::LP:

Note that you cannot directly specify the line printer on BIGVAX by using the
cluster device name BIGVAX$LPA0: in the ON clause.

Results

• The LIST statement causes DATATRIEVE to display each field and its value
on one line. The value displayed is the one in the field of the record in the
single record context. DATATRIEVE evaluates the LIST statement once for
the selected record, or once for each record in the CURRENT collection or in
the record stream formed by a FOR statement or the OF rse clause of the
LIST statement.

For record streams or collections containing more than one record,
DATATRIEVE inserts a blank line in the display between the blocks of
fields that derive from the evaluation of the records in the record stream.

• If you do not include ALL or an RSE in a LIST statement, DATATRIEVE
evaluates the print list once in the context of the nearest selected record and
creates one or more lines of output, depending on the number of fields and
the type and number of formatting options you specify.

• If you specify the argument ALL and do not include an RSE, DATATRIEVE
uses the data in the records of the CURRENT collection to evaluate the value
expressions in the print list. DATATRIEVE evaluates the print list once for
each record in the CURRENT collection and creates one or more lines of
output for each record depending on the number of fields and the type and
number of formatting options you specify.

• If you include an RSE in a LIST statement, DATATRIEVE uses the data in
each record in the record stream to evaluate the print list. DATATRIEVE
evaluates the print list once for each record in the record stream and creates
one or more lines of output for each record depending on the number of fields
and the type and number of formatting options you specify.

• If you put a LIST statement in a FOR loop, DATATRIEVE uses the data in
each record in the record stream created by the RSE in the FOR statement.
DATATRIEVE evaluates the print list once for each record and creates one or
more lines of output for each record, depending on the number of fields and
the type and number of formatting options you specify.

DATATRIEVE Commands, Statements, and Definition Clauses 4–201

LIST Statement

• If you do not put the LIST statement in a FOR loop and do not include
an RSE or the argument ALL, DATATRIEVE uses the data from the
selected record in the nearest single record context to evaluate the print
list. DATATRIEVE evaluates the print list once and creates one or more lines
of output, depending on the number of fields and the type and number of
formatting options you specify.

• If you end your file specification with the name of a line printer or another
terminal that is not a spooled device, the output of a LIST statement can be
immediately displayed on the device. Consult the VMS documentation set for
details regarding spooled devices.

Usage Notes

• You can use inner print lists to output hierarchical displays of data contained
in the lists of variable-length records.

• With SET SEARCH in effect, you can print the data in lists by letting
DATATRIEVE generate implicit inner print lists.

Examples

The following example lists three records from YACHTS:

DTR> READY YACHTS
DTR> LIST FIRST 3 YACHTS

MANUFACTURER : ALBERG
MODEL : 37 MK II
RIG : KETCH
LENGTH_OVER_ALL : 37
DISPLACEMENT : 20,000
BEAM : 12
PRICE : $36,951

MANUFACTURER : ALBIN
MODEL : 79
RIG : SLOOP
LENGTH_OVER_ALL : 26
DISPLACEMENT : 4,200
BEAM : 10
PRICE : $17,900

MANUFACTURER : ALBIN
MODEL : BALLAD
RIG : SLOOP
LENGTH_OVER_ALL : 30
DISPLACEMENT : 7,276
BEAM : 10
PRICE : $27,500

4–202 DATATRIEVE Commands, Statements, and Definition Clauses

LIST Statement

The following example lists the first two records in FAMILIES:

DTR> READY FAMILIES
DTR> LIST FIRST 2 FAMILIES

FATHER : JIM
MOTHER : ANN
NUMBER_KIDS : 2

KID_NAME : URSULA
AGE : 7
KID_NAME : RALPH
AGE : 3

FATHER : JIM
MOTHER : LOUISE
NUMBER_KIDS : 5

KID_NAME : ANNE
AGE : 31
KID_NAME : JIM
AGE : 29
KID_NAME : ELLEN
AGE : 26
KID_NAME : DAVID
AGE : 24
KID_NAME : ROBERT
AGE : 16

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–203

MATCH Statement

MATCH Statement
Relates two list names with their subordinate elementary fields, so that data from
the second list can be stored in the first list.

Format

MATCH list-rse-1, list-rse-2 statement

Arguments

list-rse-1
Is an RSE containing a list name from the record definition of the domain that is
to receive the data.

list-rse-2
Is an RSE containing a list name from the record definition of the source domain
for the data.

statement
Is a DATATRIEVE Assignment statement or series of Assignment statements
enclosed by a BEGIN-END block.

Restrictions

• The MATCH statement should be used only when you need to reorganize the
structure of lists — for example, when you want to restructure two list fields
into one list field.

• In each Assignment statement, the expression to the left of the equal sign
(=) must be an elementary field subordinate to the list name in list-rse-1.
The expression to the right of the equal sign must be an elementary field
subordinate to the list name in list-rse-2.

Result

DATATRIEVE associates the left field name in each Assignment statement
with the list name list-rse-1. DATATRIEVE associates the right field name in
each Assignment statement with the list name in list-rse-2. When the MATCH
statement is included within a STORE statement, DATATRIEVE stores data from
the second list into the first list.

4–204 DATATRIEVE Commands, Statements, and Definition Clauses

MATCH Statement

Usage Note

Use the MATCH statement to transfer data from one list to another. The MATCH
statement can be part of a BEGIN-END block in the USING clause of a STORE
statement, associating list names and elementary field names. The BEGIN-END
block can also include Assignment statements for data transfer between fields
that are not part of lists.

Use the following compound statement to reorganize data from one hierarchical
domain to another:

FOR domain-name-1
STORE domain-name-2 USING statement

The records of the first domain are the source of the data for the second domain.
The first domain can be a view domain.

Example

Consider the following record definition for the domain FAM:

DTR> SHOW FAM_REC
RECORD FAM_REC USING
01 FAMILY.
03 PARENTS.

06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS_N OCCURS 10 TIMES.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.

03 KIDS_A OCCURS 10 TIMES.
06 EACH_KID.

09 AGE PIC 99 EDIT_STRING IS Z9.
;

The fixed-length list format means that values are displayed for 10 KIDS_N
and 10 KIDS_A, no matter what the value for NUMBER_KIDS. In displays and
reports, this means that most FAM records would be separated by strings of
blanks (for ‘‘empty’’ occurrences of KIDS_N) and zeros (for ‘‘empty’’ occurrences of
KIDS_A).

DTR> PRINT FAM

NUMBER KID
FATHER MOTHER KIDS NAME AGE

DATATRIEVE Commands, Statements, and Definition Clauses 4–205

MATCH Statement

JIM ANN 2 URSULA 7
RALPH 3

0
0
0
0
0
0
0
0

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

0
0
0
0
0

. . .

. . .

. . .

To improve display and report formats for this domain, you could restructure it
using the MATCH statement so that it contains one variable-length list field. In
other words, the modified record definition would look like the current one for the
FAMILIES domain.

DTR> SHOW FAMILY_REC
RECORD FAMILY_REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 AGE PIC 99 EDIT_STRING IS Z9.

;

If you attempted to restructure FAM without using the MATCH statement,
DATATRIEVE would not store the list elements. This problem occurs because
the modified record definition combines two list fields into one. Therefore,
to restructure the FAM domain, you must use the MATCH statement within
a STORE statement that is controlled by a FOR loop. The following series
of statements stores the data from the records in FAM into the records in
FAMILIES and then prints the results:

4–206 DATATRIEVE Commands, Statements, and Definition Clauses

MATCH Statement

DTR> READY FAM
DTR> DEFINE FILE FOR FAMILIES
DTR> READY FAMILIES WRITE
DTR> FOR FAM
CON> STORE FAMILIES USING
CON> BEGIN
CON> PARENTS = PARENTS
CON> NUMBER_KIDS = NUMBER_KIDS
CON> MATCH KIDS, KIDS_N
CON> KID_NAME = KID_NAME
CON> MATCH KIDS, KIDS_A
CON> AGE = AGE
CON> END
DTR> PRINT FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

. . .

. . .

. . .

DATATRIEVE Commands, Statements, and Definition Clauses 4–207

MISSING VALUE Clause

MISSING VALUE Clause
Designates a value for a field that DATATRIEVE recognizes, not as the literal
value, but as a marker that no value is stored in the field. DATATRIEVE
ignores fields containing the ‘‘missing value’’ marker when evaluating statistical
expressions (AVERAGE, MAX, MIN, TOTAL, and STD_DEV).

When you store a record and do not directly assign a value to a field with a
MISSING VALUE defined, DATATRIEVE uses the missing value to initialize the
field if it contains no DEFAULT VALUE clause.

Format

MISSING [VALUE [IS]] literal

Arguments

VALUE IS
Are optional keywords you can use to clarify the syntax of the clause.

literal
Is either a numeric or character string literal. (See Chapter 1 for a discussion of
these two types of literals).

Restrictions

• This clause is valid only for elementary fields that are not OCCURS fields.

• The missing value for a field must be consistent with the data type for that
field.

Results

• If part of an expression is missing, then the expression is missing. It will still
have a value that is the result of the calculation, but it will be considered
missing for assignments and edit string processing.

• The MISSING VALUE clause is ignored on fields or variables with the
COMPUTED BY clause. The COMPUTED BY value is missing if the
computed expression is missing. The EDIT_STRING clause is applied and
may have a missing component.

• If the source value of an assignment is missing and the target field has a
missing value clause, then the value specified in the missing value clause of
the target field is stored in the target field.

4–208 DATATRIEVE Commands, Statements, and Definition Clauses

MISSING VALUE Clause

Usage Notes

• When you create a record with Assignment statements in the USING
clause of a STORE statement but make no assignment to a field that has
a MISSING VALUE clause and no DEFAULT VALUE clause in its field
definition, DATATRIEVE initializes the field with the missing value.

• When you create a record by responding to prompts from a STORE statement
without a USING clause or from prompting value expressions in the USING
clause of a STORE statement, DATATRIEVE does the following: If you
respond to a prompt by pressing the TAB key once and pressing the RETURN
key, DATATRIEVE initializes a field with the value specified in the MISSING
VALUE clause.

• In the YACHT record definition, the definition of the field PRICE includes a
MISSING VALUE clause designating that the missing value is zero. Having
zero in the PRICE field means that no price was available when the record
was stored, not that the boat is free.

• If you include a MISSING VALUE clause in a field definition, you can also
include a MISSING VALUE edit string to control the output format when
you retrieve the missing value from the field. The question mark (?) divides
an edit string into two parts. The first part applies to the output of the field
value if that value is not the missing value. The second part of the edit string
applies if the field contains the designated missing value. Because you can
include character string literals in edit strings, you do not have to display the
actual value stored in the field. You can display a text message or a string of
repeated characters for easy recognition of records with missing values.

• DATATRIEVE also has a relational operator you can use on fields with
missing values to establish selected records and to form record streams and
collections. The Boolean expression has this form:

field-name MISSING.

A record selection expression using this form of Boolean looks like this:

YACHTS WITH PRICE MISSING.

When DATATRIEVE does a statistical calculation on fields that contain
missing values, it displays a message telling you the total number of records
in the record stream or collection and the number of records in the collection
that were used in the calculation.

DATATRIEVE Commands, Statements, and Definition Clauses 4–209

MISSING VALUE Clause

Examples

The following example defines a record that contains MISSING VALUE clauses:

DTR> DEFINE DOMAIN THINGS USING THINGREC ON THINGS;
DTR> DEFINE RECORD THINGREC USING
DFN> 01 THINGS.
DFN> 03 NUM PIC 9(5)
DFN> MISSING VALUE IS 11111
DFN> EDIT_STRING IS ZZ,Z99?"***MISSING***".
DFN> 03 STR PIC X(10) MISSING VALUE IS "EMPTY"
DFN> EDIT_STRING IS X(10)?"***MISSING***".
DFN> ;

DTR>

The following example defines a new domain based on YACHTS that uses a new
missing value and a MISSING VALUE edit string:

DTR> DEFINE DOMAIN YACHTS_PRICE_LIST USING YPL_REC ON YPL.DAT;
DTR> DEFINE RECORD YPL_REC USING
DFN> 01 BOAT.
DFN> 03 TYPE.
DFN> 05 BUILDER PIC X(10).
DFN> 05 MODEL PIC X(8).
DFN> 03 PRICE PIC 9(5) MISSING VALUE IS 0
DFN> EDIT_STRING $$$,$$$?"NOT LISTED".
DFN> ;
[Record is 23 bytes long.]
DTR> DEFINE FILE FOR YACHTS_PRICE_LIST KEY = TYPE
DTR> READY YACHTS_PRICE_LIST AS YPL WRITE
DTR> READY YACHTS
DTR> YPL = YACHTS WITH LOA GT 35
DTR> FIND YPL WITH PRICE MISSING
[12 records found]
DTR> PRINT FIRST 3 CURRENT

BUILDER MODEL PRICE

BLOCK I. 40 NOT LISTED
CABOT 36 NOT LISTED
DOWN EAST 38 NOT LISTED

DTR>

4–210 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

MODIFY Statement
Changes the value of one or more fields in a selected record or in any or all
records in a collection or record stream.

Format 1

MODIFY [ALL]
� field-name [,...]

USING statement-1

�
[VERIFY [USING] statement-2]

[OF rse]

Format 2

MODIFY [ALL] rse

USING statement-1

[VERIFY [USING] statement-2]

Arguments

ALL
Specifies that you want to modify either all records in the CURRENT collection or
all records in the record stream specified in the record selection expression (rse).

field-name
Specifies the name of a field in the target records you want to modify. If you
specify more than one field name, use a comma to separate each field name from
the next. DATATRIEVE prompts you to supply a value for each field you specify.

USING statement-1
Specifies a simple or compound DATATRIEVE statement that assigns values to
one or more fields in the target records you want to modify. This clause can also
contain any other DATATRIEVE statements, such as PRINT, STORE, and other
MODIFY statements.

VERIFY [USING] statement-2
Specifies a statement that DATATRIEVE executes before modifying the target
record.

OF rse
Is a record selection expression that forms a record stream of the records you
want to modify. An OF rse clause is optional in format 1 of the MODIFY
statement. In format 2, an rse without OF is required.

DATATRIEVE Commands, Statements, and Definition Clauses 4–211

MODIFY Statement

Restrictions

• The domain containing the records you want to modify must be readied for
MODIFY or WRITE access. See the section in this chapter on the READY
command for more information.

• For data stored in an RMS indexed file, you cannot modify a primary key or
an alternate key with the NO CHANGE attribute. (See the section on the
DEFINE FILE command.)

• You cannot modify a COMPUTED BY field.

• You cannot modify list fields or their subordinates in hierarchical records in
remote domains.

• When entering a complex MODIFY statement, you must use the hyphen
continuation character if you want to press the RETURN key before typing
the keywords USING, VERIFY, or OF rse. If you must break an input line
near one of these keywords, you can also type the keyword at the end of a line
and press the RETURN key.

• You cannot use a prompting value expression in a USING clause to assign a
value to a group field.

• You must establish a context to specify the records on which the MODIFY
statement acts. You can establish context in four ways:

By forming a collection with a FIND statement and using a SELECT
statement to identify a selected record (see Table 4–17)

By forming a CURRENT collection with a FIND statement and specifying
ALL (see Table 4–18)

By forming a record stream with an RSE within the MODIFY statement
(see Table 4–19)

By using a FOR loop and forming a record stream with the rse in the
FOR statement (see Table 4–20)

• If you use ALL without an OF rse clause in a MODIFY statement that is part
of a FOR loop, all the records in the CURRENT collection are modified each
time through the FOR loop. The result is a series of redundant changes to
the records.

You should also avoid similarly redundant loops when using the OF rse clause
in MODIFY statements used in FOR loops. The OF rse clause should contain
a Boolean expression that matches each record to be modified with one record
from the record stream providing the data. (See the fourth example.)

4–212 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

• If you specify one or more field names in a MODIFY statement, they must be
the names of group or elementary fields that DATATRIEVE can recognize in
the context established for the MODIFY statement. If you specify more than
one field name, use a comma to separate each field name from the next.

• If you specify a record stream with an OF rse clause in the MODIFY
statement and omit the field list or the USING clause, you must include
the keyword ALL: MODIFY ALL OF rse. This special case of the MODIFY
statement syntax reminds you that this statement makes all the records in
the record stream identical.

• If you want to use a form to display the records you are changing with the
MODIFY statement, you can use one of two methods:

Include a FORM clause in the definition of the domain you wish to access.
Then you must omit the field list and the USING clauses of the MODIFY
statement. That is, you must retrieve entire records from the target
collection or record stream.

Use the DISPLAY_FORM statement for FMS and TDMS forms, or the
WITH_FORM statement for DECforms forms.

Use the DISPLAY_FORM statement with the GET_FORM value
expression to collect data from a form. With the DISPLAY_FORM
statement, you can specify a field list in the USING clause of the MODIFY
statement.

Use the WITH_FORM statement with the SEND and RECEIVE clauses
to send data to the form and receive it back modified.

See the sections on DEFINE DOMAIN and DISPLAY_FORM in this chapter.
SET FORM must be in effect when you ready the domain and when you enter
the MODIFY statement. Check the status of the SET FORM/NO FORM
setting with the SHOW SET_UP command.

Results

• When DATATRIEVE executes a MODIFY statement, it immediately changes
the information in the data file.

• DATATRIEVE prompts you for field values with this message:

Enter field-name:

• When DATATRIEVE prompts for a field value, you can enter any of the
following responses:

To leave the value unchanged, press the TAB key and then the RETURN
key.

DATATRIEVE Commands, Statements, and Definition Clauses 4–213

MODIFY Statement

To change the value of the field, type a new value, and then press the
RETURN key. The new value should conform to the data description of
the field, as defined in the record definition.

To change to spaces the value of an alphabetic or alphanumeric field,
press the SPACE bar and then press the RETURN key.

To change to zero the value of a numeric field, enter a zero or press the
SPACE bar and then the RETURN key.

To end the prompting cycle, press CTRL/Z. DATATRIEVE discards the
changes made to the one record being modified when you enter the
CTRL/Z. That record is unchanged, but if you have already modified
records from the collection or record stream, those changes remain in
effect. Each of those records was changed in the data file as soon as you
entered your response to the last prompt for that record.

• If you press the RETURN key in response to a prompt for a field value,
DATATRIEVE reprompts you for a field value.

• If, in response to a prompt, you enter a value that is longer than the length
of the field to which it is being assigned, DATATRIEVE displays an error
message and reprompts you for the value.

• If you omit from a MODIFY statement both a list of field names and a USING
clause, DATATRIEVE prompts for each elementary field in the record.

• If you include a list of field names, DATATRIEVE prompts you for each
elementary field specified or implied by the list. If you include a group
field name in the list, DATATRIEVE prompts you for each elementary field
contained in the group field.

• If you specify a USING clause, DATATRIEVE uses any Assignment
statements in statement-1 to modify the values of the specified fields.
DATATRIEVE does not then prompt you for any field values unless the
USING clause contains an Assignment statement with a prompting value
expression (value-expression = *.prompt-name). See Table 4–17, Table 4–18,
Table 4–19, and Table 4–20 for syntax examples of the USING clause.

• If you do not include ALL or an RSE in a MODIFY statement and do not put
the statement in a FOR loop, DATATRIEVE modifies the selected record. It
assigns to each specified or implied field in the selected record the value you
supply to the corresponding prompt or in the Assignment statements in the
USING clause.

DATATRIEVE prompts you to supply a value for each specified or implied
field in the selected record, unless you specify a USING clause that contains
no prompting value expressions. (See the first example.)

4–214 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

If, however, in the USING clause, you assign a value to the field with an
arithmetic calculation that involves a prompting value expression (USING
PRICE = PRICE * *.EXCHANGE_RATE), DATATRIEVE uses your response
to the prompt to calculate the value of the arithmetic expression. The value
of that arithmetic expression is the value put in the updated field, not the
value you enter in response to the prompt. (See the third example.)

Table 4–17 lists the syntax, prompts, and results of the statements that
modify selected records.

Table 4–17 Modifying Selected Records

Syntax Result

MODIFY Prompts once for each elementary field in the record
definition. Changes each elementary field in the
selected record to the value you supply in response
to the corresponding prompt.

MODIFY field-list Prompts once for each elementary field specified or
implied by the list. Changes each elementary field
specified or implied by the list to the value you supply in
response to the corresponding prompt.

MODIFY USING
statement-1

No prompts unless statement-1 contains prompting
value expressions. Changes each specified or implied
elementary field in the selected record to the values
supplied by the Assignment statements in statement-1.

For these forms of the MODIFY statement, the context is determined by the
selected record of the most recently established collection.

If no selected record exists for the CURRENT collection, then the context is
determined by the most recently established collection that has a selected
record.

If there is no selected record for any existing collection, DATATRIEVE issues
an error message.

• If you specify the argument ALL but do not include an RSE clause in a
MODIFY statement, DATATRIEVE changes all the records in the CURRENT
collection. It assigns the same value to each specified and implied field of
every record in the CURRENT collection. If, however, in the USING clause,
you assign a value to the field with an arithmetic calculation that involves
the old value of the field, DATATRIEVE uses the value of each calculation to
modify the field value in the corresponding record.

DATATRIEVE Commands, Statements, and Definition Clauses 4–215

MODIFY Statement

DATATRIEVE prompts you only once to supply a value for each specified or
implied field. If you specify a USING clause that contains no prompting value
expressions, DATATRIEVE does not prompt you for the field values.

Table 4–18 lists the syntax, prompts, and results of the statements that
modify all the records in the CURRENT collection.

Table 4–18 Modifying All Records in the CURRENT Collection

Syntax Result

MODIFY ALL [CURRENT] Prompts once for each field in the record
definition. Changes each field of every record
in the CURRENT collection to the value you
supply in response to the corresponding prompt.

MODIFY ALL field-list Prompts once for each elementary field specified
or implied by the list. Changes each specified or
implied field of every record in the CURRENT
collection to the value you supply in response to
the corresponding prompt.

MODIFY ALL [CURRENT]
USING statement-1

No prompts unless statement-1 contains
prompting value expressions. Changes each
specified or implied elementary field of every
record in the CURRENT collection to the
value supplied by the Assignment statements
in statement-1.

• If you use an RSE in a MODIFY statement, DATATRIEVE changes all the
records in the record stream specified by the RSE. It assigns the same
value to each specified and implied field of every record in the record
stream. If, however, in the USING clause, you assign a value to the field
with an arithmetic calculation that involves the old value of the field,
DATATRIEVE uses the value of each calculation to modify the field value in
the corresponding record.

DATATRIEVE prompts you only once to supply a value for each specified and
implied field, unless you specify a USING clause that contains no prompting
value expressions.

Table 4–19 lists the syntax, prompts, and results of the statements that
modify all the records in a target record stream.

4–216 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

Table 4–19 Modifying All Records in a Record Stream

Syntax Result

MODIFY [ALL] OF rse Use with care. MODIFY ALL OF domain-
name changes all the records in the
domain. Prompts once for each field in
the record definition. Changes each field
of every record in the record stream to
the value you supply in response to the
corresponding prompt.

MODIFY [ALL] field-list OF rse Prompts once for each elementary field
specified or implied by the list. Changes
each specified or implied field of every
record in the record stream to the
value you supply in response to the
corresponding prompt.

MODIFY [ALL] rse USING
statement-1
MODIFY [ALL] USING statement-1
OF rse

No prompts unless statement-1 contains
prompting value expressions. Changes
each specified or implied elementary field
of every record in the record stream to
the value supplied by the Assignment
statements in statement-1.

When using a MODIFY statement that contains an RSE, you do not change
the result by including the optional ALL or by excluding it.

• If you include a MODIFY statement within a FOR loop, DATATRIEVE
modifies the records specified by the RSE in the FOR statement, but it
handles the prompts differently from the other methods of changing records
in record streams and collections. When you want DATATRIEVE to prompt
for field values of each record that it modifies, include the MODIFY statement
within a FOR statement.

Table 4–20 lists the syntax, prompts, and results of the statements that
modify each record of a record stream specified by the RSE in a FOR
statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–217

MODIFY Statement

Table 4–20 Modifying Records in a Record Stream Formed by a FOR Loop

Syntax Result

FOR rse MODIFY Prompts once for every elementary field
in the record definition for each record
in the record stream. Changes each field
of each record to the value you supply in
response to the corresponding prompt.

FOR rse MODIFY field-list Prompts once for every elementary field
specified or implied by the list for each
record in the record stream. Changes
each specified or implied field of each
record to the value you supply in response
to the corresponding prompt.

FOR rse MODIFY USING statement-
1

No prompts unless statement-1 contains
prompting value expressions. A *.prompt
value expression prompts once for each
record in the record stream. A **.prompt
value expression prompts only once,
during the first execution of the FOR
loop. Changes each specified or implied
elementary field of each record in the
record stream to the value supplied by the
Assignment statements in statement-1.

FOR rse MODIFY list-rse USING
statement-1

Useful for modifying list items within
hierarchical records. The first RSE
specifies the records to be modified, and
the second RSE (list-rse) specifies the
occurrences of the list to be modified.
Changes each specified or implied
elementary field of each list of each
record in the record stream. (See the last
example in the Examples section.)

• If you include a VERIFY clause in a MODIFY statement, DATATRIEVE
executes statement-2 for each target record before changing that record.
If statement-2 contains an ABORT statement and a target record causes
the abort conditions to be met, DATATRIEVE aborts the MODIFY statement
without changing that record. Any previous records changed by that MODIFY
statement, however, remain changed, and DATATRIEVE returns you to
command level (indicated by the DTR> prompt).

4–218 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

• If a MODIFY statement with an ABORT statement in the VERIFY clause is
not part of a procedure or command file, neither SET ABORT nor SET NO
ABORT has an effect on the result of the ABORT.

• If a MODIFY statement with an ABORT statement in a VERIFY clause
is part of a procedure or command file and SET ABORT is in effect,
DATATRIEVE aborts the MODIFY statement without changing the record
that caused the abort. DATATRIEVE returns you to command level without
executing the rest of the procedure or command file.

On the other hand, if SET NO ABORT is in effect, DATATRIEVE aborts the
MODIFY statement without changing the record that caused the abort and
executes the next statement in the procedure or command file.

Usage Notes

• You should use the MODIFY statement with the utmost care because it
changes the information in the data file. DATATRIEVE catches any syntax
errors you might make in entering the statement. But even if the syntax is
correct, the statement may still contain a logical error that causes the wrong
records to be changed or the wrong values to be entered into the fields.

If DATATRIEVE prompts you for a field you did not expect, enter CTRL/Z to
prevent changing records or fields you do not wish to change. A good practice
is to print each record before you modify it.

• Once you have modified the values in one or more fields, you can recover
the previous information only by explicitly changing the new values back to
the old ones. You may have to use several MODIFY statements to make the
necessary changes.

• When modifying records in relations that are dependent on other relations
because of a definition constraint, ready all the involved relations.

• The statement in the USING statement-1 clause of a MODIFY statement is
usually an Assignment statement or a BEGIN-END block containing more
than one Assignment statement. See the section in this chapter on the
Assignment statement for more information.

• When you change all the records in the CURRENT collection or in a record
stream created by an RSE, you do not have to assign the same field value
to every target record. In the USING clause, you can put an Assignment
statement that makes the new value of a field in the target record depend on
the old value of that field. For example, you change the price of a collection of
yachts with a MODIFY statement containing an assignment such as PRICE =
PRICE * 1.1, or PRICE = PRICE + 500. (See the third example.)

DATATRIEVE Commands, Statements, and Definition Clauses 4–219

MODIFY Statement

The same calculation must apply to each target record, but the new values
derived for each record are independent of one another. The operation
performed on a field value, however, must be appropriate to the data type of
that field. Do not, for example, try to do arithmetic with the nonnumeric data
in an alphanumeric field.

• With the MODIFY statement, you can transfer information from one domain
to another, from one group field to another, and from one elementary field
to another. Use one of the following Assignment statements in the USING
clause:

field-name-1 = field-name-2

group-field-name-1 = group-field-name-2

In each case, put the target field name on the left side of the Assignment
statement and the source field name on the right side. Each field name
must be adequately qualified to establish the proper context for each
side of the Assignment statement. (See the discussion of context in the
VAX DATATRIEVE User’s Guide.)

This transfer of data is easiest when the field definitions are exactly the same
on both sides of the Assignment statement. If the field definitions differ,
make sure you understand the truncations that may result if the lengths of
the fields do not match.

You must also anticipate any conflicts between data types. For example,
you can modify an alphanumeric field with the content of a numeric, but
modifying a numeric field with the content of an alphanumeric gives you a
warning if your alphanumeric field contains nondigit characters.

For further information about using field names in Assignment statements,
see the section in this chapter on the Assignment statement.

• To include other DATATRIEVE statements in the USING clause of a MODIFY
statement, put them in a BEGIN-END block. For example, to see the target
record before changing it you can precede the Assignment statements in the
BEGIN-END block with a PRINT statement.

• With a BEGIN-END block in the USING clause of a MODIFY statement, you
can create an audit trail of the previous values of the records you modify. You
need to define and ready another domain that uses the same record definition
as the one whose records you intend to modify. You then put an appropriate
STORE statement in a BEGIN-END block in the USING clause of a MODIFY
statement. (See the fifth example.)

• Typically, statement-2 in a VERIFY clause contains an IF-THEN-ELSE
statement and an ABORT statement (see the sections on these statements in
this chapter).

4–220 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

• The values you supply to the prompts of the MODIFY statement are first
checked against any validation conditions specified for that field in the record
definition. If the value conforms to the conditions specified in the appropriate
VALID IF clause in the record definition, only then is it checked against the
conditions in the VERIFY clause of the MODIFY statement.

If you always use the same validation conditions for modifying and storing
data, put those conditions in VALID IF clauses in the record definition.
That way, DATATRIEVE prompts you for another value for the same field.
When you couple the validation conditions with an ABORT statement in
the VERIFY clause of a MODIFY statement, you return to DATATRIEVE
command level and must reenter the MODIFY statement.

• If you try to use the first format of MODIFY and the name of a field
duplicates the name of a readied domain, DATATRIEVE interprets the
field name as a readied domain. In addition, if the field name duplicates the
name of a DATATRIEVE keyword such as FIRST, DATATRIEVE interprets
the field name as the beginning of an RSE. To avoid these outcomes, use a
query name for the field that does not duplicate the name of a keyword or
domain.

Examples

The following example changes one field value in a selected record:

DTR> READY YACHTS MODIFY
DTR> FIND FAMILIES WITH FATHER = "JOHN"
[2 records found]
DTR> PRINT
No record selected, printing whole collection.

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JOHN JULIE 2 ANN 29
JEAN 26

JOHN ELLEN 1 CHRISTOPHR 0

DTR> SELECT 1
DTR> MODIFY FATHER
Enter FATHER: JON
DTR> PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JON JULIE 2 ANN 29
JEAN 26

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–221

MODIFY Statement

The following example makes a 10 percent increase in the price of the first five
yachts. Each yacht begins and ends with a unique price, but the new price of
each yacht is 10 percent greater than the old price of that same yacht.

DTR> MODIFY FIRST 5 YACHTS USING PRICE = PRICE * 1.1
DTR> PRINT FIRST 5 YACHTS

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $40,646
ALBIN 79 SLOOP 26 4,200 10 $19,690
ALBIN BALLAD SLOOP 30 7,276 10 $30,250
ALBIN VEGA SLOOP 27 5,070 08 $20,460
AMERICAN 26 SLOOP 26 4,000 08 $10,885

DTR>

The following example forms a collection of yachts and modifies all the elementary
fields within the group field SPECIFICATIONS for the first record:

DTR> SET NO PROMPT
DTR> READY YACHTS MODIFY
DTR> FIND YACHTS WITH BEAM = 0
[5 records found]
DTR> FOR CURRENT MODIFY USING
CON> BEGIN
[Looking for statement]
CON> PRINT SPECS
CON> RIG = **.RIG
CON> LOA = **.LOA
CON> DISP = *.WEIGHT
CON> BEAM = *.BEAM
CON> PRICE = PRICE * 1.1
CON> END

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

4–222 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

SLOOP 32 9,500 00
Enter RIG: TAB

Enter LOA: 33
Enter WEIGHT: 12000
Enter BEAM: 10
SLOOP 32 11,000 00 $29,500
Enter WEIGHT: TAB

Enter BEAM: 11
SLOOP 31 13,600 00 $32,500
Enter WEIGHT: 15000
Enter BEAM: 12
SLOOP 35 23,200 00
Enter WEIGHT: TAB

Enter BEAM: 13
SLOOP 32 14,900 00 $34,480
Enter WEIGHT: TAB

Enter BEAM: 9
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

METALMAST GALAXY SLOOP 33 12,000 10
O’DAY 32 SLOOP 33 11,000 11 $32,450
RYDER S. CROSS SLOOP 33 15,000 12 $35,750
TA CHIAO FANTASIA SLOOP 33 23,200 13
WRIGHT SEAWIND II SLOOP 33 14,900 09 $37,928

DTR>

The following example uses a MODIFY statement in a FOR loop to update a
master file with the data in a transaction file:

DTR> FOR UPDATES
DTR> MODIFY USING
DTR> PRICE = UPDATE.PRICE OF
DTR> YACHTS WITH TYPE = UPDATE.TYPE
DTR>

The following example provides an audit trail by forming a domain AUDIT_
YACHTS to store records of changes made to YACHTS. The record definition for
AUDIT_YACHTS is the same as the one for YACHTS except for the addition of
a field CHANGE_DATE. This field enables you to store data on the date of the
change. A DEFAULT VALUE clause automatically assigns the current system
date as the value for the field. The field definition is as follows:

06 CHANGE_DATE USAGE IS DATE
DEFAULT VALUE IS "TODAY".

DATATRIEVE Commands, Statements, and Definition Clauses 4–223

MODIFY Statement

The following statement allows you to modify records in YACHTS while storing
the changes in AUDIT_YACHTS:

DTR> SHOW AUDIT_YACHTS
DOMAIN AUDIT_YACHTS USING
AUD_REC ON AUDYACHT;

DTR> FOR A IN YACHTS MODIFY USING
CON> BEGIN
CON> BUILDER = *.BUILDER
CON> MODEL = *.MODEL
CON> RIG = *.RIG
CON> LOA = *.LOA
CON> DISP = *.DISP
CON> BEAM = *.BEAM
CON> PRICE = *.PRICE
CON> STORE B IN AUDIT_YACHTS USING
CON> B.BOAT = A.BOAT
CON> END
DTR>

The following example modifies the name of the child of TOM and ANNE from
PATRICK to PATRICIA and prints the record before and after the change:

DTR> READY FAMILIES MODIFY
DTR> FOR FAMILIES WITH FATHER = "TOM" AND MOTHER = "ANNE"
CON> BEGIN
CON> PRINT
CON> MODIFY KIDS WITH KID_NAME = "PATRICK" USING
CON> KID_NAME = "PATRICIA"
CON> PRINT
CON> END

NUMBER KID
FATHER MOTHER KIDS NAME AGE

TOM ANNE 2 PATRICK 4
SUZIE 6

NUMBER KID
FATHER MOTHER KIDS NAME AGE

TOM ANNE 2 PATRICIA 4
SUZIE 6

DTR>

4–224 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

Common Context Errors
The previous sections contain the correct formats to modify the records you want
to change from the record source you intend to use. This section describes some
problems you can encounter if you inadvertently use the wrong format or combine
format elements incorrectly. When you make this kind of mistake, DATATRIEVE
either displays an error message or modifies records from the wrong record
source, depending on the type of error you make.

Modifying All Records Rather Than Just the Selected Record
If you want to modify a selected record, do not include the keyword ALL in the
MODIFY statement.

If you type MODIFY ALL, you are telling DATATRIEVE either to target
the entire collection for the modify operation or to expect an RSE in the
MODIFY statement. Because there may be times when this is your intention,
DATATRIEVE does not display an error message. If you create this situation
unintentionally, you can make all the records in the CURRENT collection
identical for the field values you supply when you intended to change values
in only one of those records.

Modifying the Wrong Selected Record
This error can occur if you forget to enter a SELECT statement for the CURRENT
collection. There may be times when you have more than one collection in your
workspace, and the collections formed before the CURRENT one have selected
records.

When you enter a MODIFY statement appropriate for a selected record and your
CURRENT collection does not have one, DATATRIEVE tries to apply the modify
operation to the selected records you do have available. It modifies the most
recently selected record to which it can apply your statement.

If your statement contains a field name that is not in any of the available selected
records, DATATRIEVE does not modify any record but tells you that the field
name is used out of context.

There may be times when you want to modify a selected record in a collection
other than the CURRENT one. In this case, you can enter SELECT NONE
statements to ‘‘unselect’’ records associated with any collections formed after the
one containing the selected record you want to change. In effect, this process
releases selected records from the current collection, and you can repeat it until
you reach the individual records selected from the target collection.

The error you want to avoid in this situation is entering too many or too few
SELECT NONE statements. You can use the PRINT statement to see which
is the current selected record. You can also use SHOW CURRENT or SHOW
COLLECTIONS to make sure that you are working with the collection you want.

DATATRIEVE Commands, Statements, and Definition Clauses 4–225

MODIFY Statement

Modifying Records in the Wrong RSE
This error occurs when you intend to modify records using a FOR statement RSE,
but you also include an RSE or the keyword ALL in the MODIFY statement
itself. If you do this, you are telling DATATRIEVE to modify records specified in
the MODIFY statement for as many iterations as there are records in the FOR
statement RSE. (The only time you want to do something like this is when you
modify repeating fields in a hierarchical record. When you modify hierarchical
records, however, the RSE in the MODIFY statement specifies an OCCURS field
name as the record source, rather than a true record source, such as a domain
or collection.) If you inadvertently include two RSEs in the combined statements
that carry out a modify operation, the results can be unexpected.

In the following example, the user intends to change the last name in the
first PERSONNEL record. The superfluous RSE in the FOR statement causes
DATATRIEVE to prompt for the field as many times as there are records in the
PERSONNEL domain:

DTR> SET NO PROMPT
DTR> FOR PERSONNEL MODIFY FIRST 1 PERSONNEL USING BEGIN
CON> PRINT
CON> LAST_NAME = *."last name"
CON> END

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
Enter last name: WHITE
00012 EXPERIENCED CHARLOTTE WHITE TOP 12-Sep-1972 $75,892 00012
Enter last name: TAB

00012 EXPERIENCED CHARLOTTE WHITE TOP 12-Sep-1972 $75,892 00012
Enter last name: TAB

00012 EXPERIENCED CHARLOTTE WHITE TOP 12-Sep-1972 $75,892 00012
.
.
.

A correct statement in the previous example would have been either:

MODIFY FIRST 1 PERSONNEL USING . . .

or

FOR FIRST 1 PERSONNEL MODIFY USING . . .

In the following example, the user intends to modify the DEPT field of only the
employee record with ID number 34456. Because of the keyword ALL in the
MODIFY statement, however, DATATRIEVE uses the value entered to modify the
DEPT field of all the records in the CURRENT collection:

4–226 DATATRIEVE Commands, Statements, and Definition Clauses

MODIFY Statement

DTR> FIND PERSONNEL WITH DEPT = "T32"
[4 records found]
DTR> PRINT
No record selected, printing whole collection.

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

34456 TRAINEE HANK MORRISON T32 1-Mar-1982 $30,000 87289
38462 EXPERIENCED BILL SWAY T32 5-May-1980 $54,000 00012
48573 TRAINEE SY KELLER T32 2-Aug-1981 $31,546 87289
83764 EXPERIENCED JIM MEADER T32 4-Apr-1980 $41,029 87289

DTR> FOR PERSONNEL WITH ID = 34456
CON> MODIFY ALL DEPT
Enter DEPT: F11
DTR> PRINT
No record selected, printing whole collection.

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

34456 TRAINEE HANK MORRISON F11 1-Mar-1982 $30,000 87289
38462 EXPERIENCED BILL SWAY F11 5-May-1980 $54,000 00012
48573 TRAINEE SY KELLER F11 2-Aug-1981 $31,546 87289
83764 EXPERIENCED JIM MEADER F11 4-Apr-1980 $41,029 87289

DTR> ! YIPES!!!!
DTR>

To avoid this, the user could enter either:

SELECT 1; MODIFY DEPT

or

FOR PERSONNEL WITH ID = 34456 MODIFY DEPT

DATATRIEVE Commands, Statements, and Definition Clauses 4–227

OCCURS Clause

OCCURS Clause
The OCCURS clause defines multiple occurrences (or repetitions) of a field or
group of fields. The multiple occurrences, called a list, create a hierarchy in
the domain. (See the VAX DATATRIEVE User’s Guide for more information on
hierarchies.)

The OCCURS clause has two formats: one format for a fixed number of
occurrences and one for a variable number of occurrences. Each is described
in the following sections.

Fixed Number of Occurrences
Defines a fixed number of occurrences for a field or group of fields.

Format

OCCURS n TIMES

Argument

n TIMES
Is a positive integer specifying the number of occurrences for the field.

Restrictions

• A field definition cannot contain both an OCCURS and a COMPUTED BY
clause. You cannot specify multiple occurrences of a COMPUTED BY field.

• You cannot use an OCCURS clause and a MISSING VALUE clause to describe
the same field in a record definition.

Result

This format of the OCCURS clause defines a list with a fixed number of
occurrences. It reserves enough space in each record to contain all the
occurrences of the field (or fields), whether or not they contain data.

Usage Notes

• A record definition can contain any number of OCCURS clauses in this
format.

• A field in a group field with an OCCURS clause can contain an OCCURS
clause. The result is a sublist: a list nested within a list. (See the third
example.)

4–228 DATATRIEVE Commands, Statements, and Definition Clauses

OCCURS Clause

• Retrieving and modifying data in fields defined with the OCCURS clause
requires more complicated syntax than retrieving data from other types of
fields. For information on alternatives to defining records using the OCCURS
clause, see the chapter on using hierarchies in the VAX DATATRIEVE User’s
Guide.

Examples

The following field definition reserves enough space in every record for two
occurrences of the elementary field KIDS_NAMES; each occurrence is 10
characters long:

03 KIDS_NAMES PIC X(10)
OCCURS 2 TIMES.

You can store up to two names (containing up to 10 characters each) in any
record. The following definition specifies that the group field KIDS_NAMES
is repeated twice. Each group field contains two fields: FIRST_NAME (10
characters long) and MIDDLE_INIT (1 character). A total of 22 characters is
reserved in every record for the group field:

03 KIDS_NAMES OCCURS 2 TIMES.
05 FIRST_NAME PIC X(10).
05 MIDDLE_INIT PIC X.

In the record, the fields are stored in the following order:

KIDS_NAMES
FIRST_NAME
MIDDLE_INIT

KIDS_NAMES
FIRST_NAME
MIDDLE_INIT

By nesting a sublist within a list, reserve enough space in a record to store up to
three nicknames for each KIDS_NAMES:

03 KIDS_NAMES OCCURS 2 TIMES.
05 FIRST_NAME PIC X(10).
05 MIDDLE_INIT PIC X.
05 NICKNAME PIC X(10)
OCCURS 3 TIMES.

The fields are stored in the following order:

DATATRIEVE Commands, Statements, and Definition Clauses 4–229

OCCURS Clause

KIDS_NAMES
FIRST_NAME
MIDDLE_INIT
NICKNAME
NICKNAME
NICKNAME

KIDS_NAMES
FIRST_NAME
MIDDLE_INIT
NICKNAME
NICKNAME
NICKNAME

Variable Number of Occurrences
Defines a variable number of occurrences of a group of fields.

Format

OCCURS min TO max TIMES DEPENDING ON field-name

Arguments

min
Is a nonnegative integer specifying the minimum number of occurrences of the
field. This value can be zero. DATATRIEVE does not check this value.

max
Is a positive integer specifying the maximum number of occurrences of the field.
This value must be greater than zero.

field-name
Is the name of a field in the same record definition. The value of the field
determines the number of occurrences of this field. The field must be a numeric
field containing a nonnegative integer; it cannot be defined with digits to the
right of the decimal point.

Restrictions

• No other field definition can follow the last elementary field in the group field
containing this clause.

• A record definition can contain only one OCCURS clause in this format.

• A field definition cannot contain both an OCCURS and a REDEFINES clause
or an OCCURS and a COMPUTED BY clause.

• You cannot use a qualified field name, such as TYPE.BUILDER, as the
DEPENDING ON variable in an OCCURS clause.

4–230 DATATRIEVE Commands, Statements, and Definition Clauses

OCCURS Clause

Result

The number of occurrences of the group field in any record is equal to the value
of the field specified in the OCCURS clause. Therefore, the sizes of records in the
domain can vary. If you use the MAX argument when you define the data file, all
records in the file have the same length. See the section on the DEFINE FILE
command.

Usage Notes

• A group field containing this format of the OCCURS clause can contain one or
more fields with an OCCURS clause. The nested OCCURS clause, however,
must specify a fixed number of occurrences of the field.

• Retrieving and modifying data in fields defined with the OCCURS clause
requires more complicated syntax than retrieving data from other types of
fields. For information on alternatives to defining records using the OCCURS
clause, see the chapter on using hierarchies in the VAX DATATRIEVE User’s
Guide.

Example

The FAMILY_REC record definition shows the use of an OCCURS clause in the
following format:

01 FAMILY.
03 PARENTS.

06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 AGE PIC 99 EDIT_STRING IS Z9.

The number of occurrences of the KIDS field depends on the value of the
NUMBER_KIDS field. If the value is 0, there are no occurrences of the field;
if it is 1, there is one occurrence, and so on. Each occurrence of KIDS contains
three fields: the group field EACH_KID and the elementary fields KID_NAME
and AGE.

DATATRIEVE Commands, Statements, and Definition Clauses 4–231

ON Statement

ON Statement
Sends the output of all indicated statements to the specified output file or device.

Format

ON
� file-spec

*.prompt

statement

Arguments

file-spec
Specifies the file to which you want to write the output of the statement. The file
specification has the following format:

node-spec::device:[directory]file-name.type;version

The minimum file specification consists of a period (.). The specification of such
a file stored in your default VMS directory ends with ‘‘.;n’’, where n is the version
number and both the file name and the type are null strings.

If you omit a field in the file specification, DATATRIEVE uses the defaults listed
in Table 4–21.

Table 4–21 Output File Specification Defaults

Field Default

node-spec:: Your local node
device: Your default device
[directory] Your default directory
file-name Null string
.type .LIS
;version Highest version number

statement
Is a simple or compound statement you want DATATRIEVE to execute and write
the output to the specified file.

4–232 DATATRIEVE Commands, Statements, and Definition Clauses

ON Statement

Restrictions

• If you specify a compound statement, you must enclose the simple statements
within a BEGIN-END block.

• When you use ON LP: to send output directly to a line printer, DATATRIEVE
assumes your system has a line printer. If your system does not have a
device defined as LPA0:, the clause ON LP: will not work. Although this
restriction applies to any system without a line printer, you may encounter
it unexpectedly if your system is part of a VAXcluster with a common line
printer. The ON LP: clause does not work in a VAXcluster that uses a
common printer not directly connected to your system.

If the nodes in the cluster are connected with DECnet, you can work around
this restriction. To send output from a node without a line printer, you
must include the node name of the system with the line printer in the LP:
specification. For example, if the cluster’s line printer is on a node named
BIGVAX, the following PRINT statement sends output to it:

DTR> PRINT YACHTS ON BIGVAX::LP:

Note that you cannot directly specify the line printer on BIGVAX by using the
cluster device-name BIGVAX$LPA0: in the ON clause.

• Use the ON statement, not the ON clause, to generate multiple reports within
iterations of a loop.

The following example generates a new version of the file Y for each iteration
of the WHILE loop. The example uses a domain and record definition
that are not in the DATATRIEVE samples. The company in this example
uses invoices, each having a unique, identifying number. INVOICE_NUM
represents these invoice numbers. CURRENT_NUM is the count of all
invoices plus 1.

DTR> READY INVOICES
DTR> WHILE INVOICE_NUM LT CURRENT_NUM
CON> BEGIN
CON> ON Y
CON> REPORT INVOICE WITH PRICE = *
CON> PRINT INVOICE_HEADER
CON> END_REPORT
CON> !
CON> ! further processing of invoices
CON> !
CON> END

To generate a single version of the Y file containing all the WHILE reports,
use the ON clause of the REPORT statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–233

ON Statement

Result

DATATRIEVE writes the output of the simple or compound statement to the file
specified.

Usage Notes

• Use the ON file-spec statement to file output of REPORT, PRINT, SUM, or
LIST statements.

• To write the output to more than one file, nest the ON statement. Do not
use a comma to separate each occurrence of ON file-spec. (See the second
example.)

Examples

The following example shows how to search all yachts built by AMERICAN
and print the TYPE, PRICE, and RIG for each sloop. For all yachts built by
AMERICAN which are not sloops, a line is skipped and a message is printed. The
output is written to an RMS file.

Since an IF-THEN-ELSE statement is used and the same file name is specified in
the THEN and ELSE clauses, DATATRIEVE creates two versions of the file.

DTR> FOR YACHTS WITH BUILDER = "AMERICAN"
CON> IF RIG = "SLOOP" THEN
CON> PRINT TYPE, PRICE, RIG ON BOAT.RNO ELSE
CON> PRINT SKIP, "NOT A SLOOP" ON BOAT.RNO
Creating file DB0:[MORRISON.REF]BOAT.RNO;1 ...
Creating file DB0:[MORRISON.REF]BOAT.RNO;2 ...

The content of BOAT.RNO;1 is as follows:

MANUFACTURER MODEL PRICE RIG

AMERICAN 26 $9,895 SLOOP

The content of BOAT.RNO;2 is as follows:

NOT A SLOOP

However, if you use the ON statement, all of the data can be written to the same
file as follows:

DTR> ON SHIP.RNO
CON> FOR YACHTS WITH BUILDER = "AMERICAN"
CON> IF RIG = "SLOOP" THEN PRINT TYPE, PRICE, RIG ELSE
CON> PRINT SKIP, "NOT A SLOOP"
Creating file DB0:[MORRISON.REF]SHIP.RNO;1 ...

4–234 DATATRIEVE Commands, Statements, and Definition Clauses

ON Statement

The contents of SHIP.RNO is as follows:

MANUFACTURER MODEL PRICE RIG

AMERICAN 26 $9,895 SLOOP

NOT A SLOOP

The following example shows how to write the output of a LIST statement to
three files and display the output. Data on every family with three children is
included:

DTR> ON FAM1.RNO
CON> ON FAM2.RNO
CON> ON FAM3.RNO
CON> ON TT:
CON> LIST FAMILIES WITH NUMBER_KIDS = 3
Creating file DB0:[MORRIS.REF]FAM1.RNO;1 ...
Creating file DB0:[MORRIS.REF]FAM2.RNO;1 ...
Creating file DB0:[MORRIS.REF]FAM3.RNO;1 ...
Sending output to terminal TT.

FATHER : GEORGE
MOTHER : LOIS
NUMBER_KIDS : 3

KID_NAME : JEFF
AGE : 23

KID_NAME : FRED
AGE : 26

KID_NAME : LAURA
AGE : 21

FATHER : HAROLD
MOTHER : SARAH
NUMBER_KIDS : 3

KID_NAME : CHARLIE
AGE : 31

KID_NAME : HAROLD
AGE : 35

KID_NAME : SARAH
AGE : 27

DTR>

DATATRIEVE sends the output to the terminal and creates the three files
specified. All three files contain the data displayed on the terminal.

DATATRIEVE Commands, Statements, and Definition Clauses 4–235

OPEN Command

OPEN Command
Opens an RMS file to serve as a log of your interactive dialogue with
DATATRIEVE. DATATRIEVE copies your input and the DATATRIEVE output
including error messages to the file exactly as displayed.

Format

OPEN file-spec

Argument

file-spec
Is the VMS file specification of the file to be opened. The file specification must
be in the following format:

node-spec::device:[directory]file-name.type;version

Restrictions

• None of your input to or the output from the editor or Guide Mode is written
to the log file.

• If you use the OPEN command in a procedure, no statements or commands in
the procedure are written to the log file. The output of a procedure, however,
is written to the file.

• If you invoke a procedure after you have used the OPEN command, none of
the commands or statements in the procedure are written to the log file.

• You cannot use the OPEN command in BEGIN-END, FOR, or REPEAT
statements.

• You cannot have two log files open at the same time. If you enter a second
OPEN command without closing the first log file, DATATRIEVE automatically
closes the first log file and opens another one, even if you give the same file
specification in both OPEN commands.

Results

• Except for the dialogue with the editor, Guide Mode, and procedures,
DATATRIEVE writes both your input and its own output to the VMS file
you specify in the command.

• If you have a log file open when you invoke a command file, DATATRIEVE
includes the various DATATRIEVE prompts (such as DTR> and CON>) in the
log file, even though it does not display those prompts when it executes the
commands and statements in the command file.

4–236 DATATRIEVE Commands, Statements, and Definition Clauses

OPEN Command

• DATATRIEVE closes the file under four circumstances:

When you enter another OPEN command

When you enter a CLOSE command

When you exit from DATATRIEVE with the EXIT command or with
CTRL/Z

When you exit from DATATRIEVE with CTRL/Y

• If you close the file with a CLOSE or EXIT command, that command is also
included in the file. If you close the file by exiting from DATATRIEVE with a
CTRL/Z or CTRL/Y, neither the control character nor any of the input line is
included in the file.

Usage Notes

• Keeping log files of your dialogue with DATATRIEVE can provide you with a
transaction log.

• Keeping a log file of your dialogue with DATATRIEVE can aid in developing
and debugging DATATRIEVE applications.

• Keeping a log file of your dialogue with DATATRIEVE is essential when
submitting a Software Performance Report (SPR) to Digital.

• To include the contents of a procedure into a log file, enter a SHOW command
to show the procedure before invoking the procedure.

Example

This example opens a log file, displays the contents of a procedure, invokes the
procedure, closes the log file with a CTRL/Z exit from DATATRIEVE, and uses
the VMS TYPE command to display the contents of the log file:

DTR> OPEN LOG
DTR> !THIS IS A TEST OF THE OPEN COMMAND.
DTR> READY YACHTS
DTR> SHOW SELL_BOAT
PROCEDURE SELL_BOAT
FIND YACHTS WITH BUILDER EQ *.BUILDER AND MODEL EQ *.MODEL
PRINT ALL
IF *."Y IF BOAT SOLD" EQ "Y" THEN ERASE ALL ELSE

PRINT "SELL IT NOW!"
END_PROCEDURE

DTR> :SELL_BOAT
Enter BUILDER: ALBIN
Enter MODEL: VEGA

DATATRIEVE Commands, Statements, and Definition Clauses 4–237

OPEN Command

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN VEGA SLOOP 27 5,070 08 $18,600

Enter Y IF BOAT SOLD: N

SELL IT NOW!
DTR> CTRL/Z

$ TYPE LOG.LIS
DTR> !THIS IS A TEST OF THE OPEN COMMAND.
DTR> READY YACHTS
DTR> SHOW SELL_BOAT
PROCEDURE SELL_BOAT
FIND YACHTS WITH BUILDER EQ *.BUILDER AND MODEL EQ *.MODEL
PRINT ALL
IF *."Y IF BOAT SOLD" EQ "Y" THEN ERASE ALL
PRINT "SELL IT NOW !"
END_PROCEDURE

DTR> :SELL_BOAT
Enter BUILDER: ALBIN
Enter MODEL: VEGA

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN VEGA SLOOP 27 5,070 08 $18,600

Enter Y IF BOAT SOLD: N

SELL IT NOW!

$

4–238 DATATRIEVE Commands, Statements, and Definition Clauses

PICTURE Clause

PICTURE Clause
Specifies the format of the field value as it is stored.

Format

PIC[TURE] [IS] picture-string

Argument

picture-string
Is one or more picture-string characters describing the format in which the field
value is stored.

Restrictions

• This clause is valid for elementary fields only.

• Specify the picture-string characters as a string. Do not embed a space in the
picture string.

Result

The storage format for the field’s content is determined by the specified picture
string. In general, each character in the string corresponds to one character
position in the field value.

Usage Notes

• For numeric fields, you can also include a USAGE clause to specify the
internal format of the digits. For example, for a numeric field without
a USAGE clause, 999999 specifies six digits in six character positions,
occupying six bytes of storage.

• To enter a series of identical picture characters, you can shorten the string
by placing a repeat count in parentheses following the picture character. For
example, the picture string 9(6) is equal to 999999.

Table 4–22 contains a list of the picture-string characters. The picture-string
characters you specify for a field depend on the class of the field: alphabetic,
alphanumeric, or numeric.

DATATRIEVE Commands, Statements, and Definition Clauses 4–239

PICTURE Clause

Table 4–22 Picture-String Characters

Field Class
Picture
Character Meaning

Alphabetic A Each A represents one alphabetic character
in the field.

Alphanumeric X Each X represents one character in the field.

Numeric 9 Each 9 represents one digit in the field. You
can specify from 1 to 31 digits for a numeric
field.

S An S indicates that a sign (+ or -) is stored in
the field. A picture string can have only one
S and it must be the leftmost character. If
there is no SIGN clause for the field, the sign
shares the rightmost character position with
the lowest-valued digit.

V A V indicates an implied decimal point. The
decimal point does not occupy a character
position in the field, although DATATRIEVE
uses its location to align data in the field. A
picture string can contain only one V.

P Each P specifies a decimal scaling position.
Each P represents a ‘‘distance’’ in digits from
an implied decimal point. (A P does not
count toward the limit of 31 digits per field.)
A P can appear at the right or left of the
picture string. A V is unnecessary for any
picture string containing a P.

Alphabetic Fields
The picture string for an alphabetic field specifies the number of characters in the
field. Only the picture character A is valid in the picture string for an alphabetic
field. Each A corresponds to a single character position in the field. For example,
the following field definition specifies an alphabetic field of six characters:

06 LETTERS_ONLY PIC A(6).

4–240 DATATRIEVE Commands, Statements, and Definition Clauses

PICTURE Clause

Alphanumeric Fields
The picture string for an alphanumeric field specifies the number of characters
in the field. Only the picture character X is valid in the picture string for an
alphanumeric field. Each X corresponds to a single character position in the
field. For example, the following field definition specifies that the MODEL field
contains 10 alphanumeric characters:

06 MODEL PIC X(10).

Numeric Fields
A numeric field can contain the characters 9, S, V, and P in its picture string to
specify: the number of digits in the field, a sign, an implied decimal point, and a
decimal scaling factor.

Specifying the Number of Digits The picture character 9 represents one digit
in the field value. For example, the picture string 9(4) indicates four digits; the
field value can range from 0 to 9999. There is one exception to this; if you specify
PIC 9999 and USAGE IS COMP, then it is possible to store numbers as large as
32,768. You can specify from 1 to 31 digits for a numeric field.

The following field definition specifies that the BEAM field contains two digits:

03 BEAM PIC 99.

Specifying a Sign To specify that a numeric field can contain a sign (+ or -), you
must include an S in its picture string. The S must be the leftmost character
in the picture string; a picture string can contain only one S. For example, the
picture string S9(4) indicates a signed field, four digits in length; the field value
can range from -9999 to +9999.

The sign specified with the PICTURE clause is not printed unless you include an
EDIT_STRING clause with the field definition. For example, the following field
definition specifies a sign in the picture string, which is printed following the last
digit of the field value:

03 CURRENT_BALANCE
PICTURE IS S9999V99
EDIT_STRING IS $$$$9.99-.

Specifying a Decimal Place The picture character V specifies the position of
an ‘‘implied’’ decimal point. For example, the picture string 9(5)V99 specifies a
7-digit field; the last two digits of the field value follow the decimal point.

The decimal point does not occupy a character position in the record; DATATRIEVE
uses the implied decimal point in computations, Boolean expressions, and other
arithmetic operations.

DATATRIEVE Commands, Statements, and Definition Clauses 4–241

PICTURE Clause

DATATRIEVE does, however, display the implied decimal point when you retrieve
the value from a field with a V in the picture string. You do not have to use an
edit string solely for the purpose of expressing the decimal point in the output
format.

If there is no V in the picture string, DATATRIEVE treats the field value as an
integer (that is, as if a V were specified to the right of the rightmost digit). Thus,
the picture strings 999 and 999V are equal.

Scaling Factor The picture character P specifies a decimal scaling position. Each
P represents one decimal position between the value stored in the field and the
implied decimal point of the value. A P does not occupy a character position in
the field.

The P (or multiple Ps) must be the leftmost or rightmost characters in the picture
string. If Ps are the leftmost characters, the decimal point is assumed to be to
the left of the leftmost P. For example, the picture strings PPP99 and VPPP99
are equal. (If you specify a P in a picture string, the V character is optional.) If
Ps are the rightmost characters, the decimal point is assumed to be to the right
of the rightmost P. Thus, 999PP and 999PPV are equal.

DATATRIEVE treats each P in a picture string as a zero. The string PPP99
specifies that the field can contain values in the range 0 to .00099; the three
leftmost digits are assumed to be zeros. The range of values for a field with a
picture string of 999PP is 0 and 100 to 99,900, but the two rightmost digits are
assumed to be zeros.

You do not need to use an edit string to display the decimal point in fields with P
picture string characters in them.

If the picture string of a field contains one or more Ps at the left of its picture
string, DATATRIEVE includes the implied decimal in the default formats when
you retrieve a value from the field. The scaling positions are displayed as zeros
between the decimal point and the value stored in the field.

If the picture string of a field contains one or more Ps at the right of its picture
string, DATATRIEVE includes the implied decimal in the default formats when
you retrieve a value from the field. The scaling positions are displayed as zeros
between the decimal point and the value stored in the field.

4–242 DATATRIEVE Commands, Statements, and Definition Clauses

PLOT Statement

PLOT Statement
Each DATATRIEVE plot statement uses the following general syntax.

Format

PLOT plotname [USING] [ALL]
[arg [,arg]...] [OF rse]�

ON
� file-spec

*.prompt

 �

Arguments

plotname
Is the name of the plot, for example:

DTR> PLOT BAR

BAR is the name of the plot. Refer to the VAX DATATRIEVE User’s Guide for
plotname descriptions.

USING
Is an optional keyword to make the syntax more like English. The keyword
USING does not affect the plot statement.

ALL
Is a keyword that may be optional or required, depending on the structure of the
plot statement you use. It is optional if you use the OF rse clause; it is required
if you use the current collection without any qualification.

For example, the following two plot statements are the same:

DTR> PLOT BAR BUILDER, PRICE OF YACHTS WITH
CON> PRICE NE 0

DTR> FIND YACHTS WITH PRICE NE 0
DTR> PLOT BAR ALL BUILDER, PRICE

The first example uses an OF rse clause in which the keyword ALL is not
required. In the second example, ALL is required because it refers to the
collection created in the FIND statement.

In the syntax diagrams of the sections that follow, the keyword ALL is shown in
brackets as an optional element. Note, however, that if you use the keyword ALL
to refer to the contents of the current collection, ALL is required.

DATATRIEVE Commands, Statements, and Definition Clauses 4–243

PLOT Statement

arg
Is a field name or other value expression. The argument can also contain
an optional label string. To specify a label string, put a quoted string inside
parentheses after the value expression. For example:

DTR> PLOT X_Y LOA,
CON> DISP / 2000 ("Weight in tons") OF YACHTS

OF rse
Specifies the record stream to be used in the plot. (See the chapter on record
selection expressions in the VAX DATATRIEVE User’s Guide for more information
on RSEs.)

If you do not specify an RSE, the plot statement will use data from the current
collection.

ON
�

file-spec
*.prompt

�
Specifies a device or file for output. If you do not specify a device or file
specification, DATATRIEVE displays the plot on your terminal screen.

You can use a complete VMS file specification or simply a file name.
DATATRIEVE uses .LIS as the default file type. You can also use a prompting
value expression that prompts you for a file or device specification. (See the
section on prompting value expressions in Chapter 1 for more information.) For
example:

DTR> PLOT PIE ALL RIG ON DRA0:[IACOBONE]RIGPLOT.LIS
DTR> PLOT PIE ALL RIG ON *."File Name or Device Specification"

You can use the ON clause with any of the plot statements to create a file
containing the ReGIS graphics commands. Note the following rules and
restrictions:

Restrictions

• You can use any terminal when you issue the plot statement that creates such
a file. However, you need a Digital-supported ReGIS terminal to convert the
code in that file into a graphic representation of data.

• You can display the plot file you create at your Digital-supported ReGIS
terminal with the DCL TYPE command. If you examine the file with a text
editor, it is meaningless unless you are familiar with the ReGIS graphics
language.

• You can print the plot file on any printer supporting ReGIS graphics (i.e.
LPS20).

4–244 DATATRIEVE Commands, Statements, and Definition Clauses

PLOT Statement

• Sometimes the ReGIS code is not sufficient to draw the picture. For example,
some plot statements (such as PLOT CROSS_HATCH after PLOT MULTI_
SHADE) take the output of another plot, change the plot in some way, and
send the output to a file. The ReGIS code stored in that file produces a
crosshatched plot only if the multishaded plot is still in the graphics memory
of your Digital-supported ReGIS terminal.

• You cannot plot data that includes null date values. To exclude records with
null date values from a plot, put the expression WITH DATE NE " " in the
RSE of your PLOT statement.

Usage Note

The VAX DATATRIEVE User’s Guide illustrates the results of all the PLOT
statements and presents many other examples.

Examples

The following example produces a simple bar chart showing the salary for each
employee in PERSONNEL:

DTR> FIND PERSONNEL SORTED BY DEPT
DTR> PLOT BAR ALL LAST_NAME, SALARY
DTR>

The following example plots a marsupial:

DTR> PLOT WOMBAT
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–245

PRINT Statement

PRINT Statement
Causes DATATRIEVE to format and write one or more values of specified or
implied DATATRIEVE value expressions to your terminal or workstation, to a
file, or to a unit record device.

Format
For retrieving from selected records and target record streams formed by FOR
loops:

PRINT [print-list]

�
ON

� file-spec
*.prompt

 �

For retrieving from the current collection:

PRINT ALL [print-list]

�
ON

� file-spec
*.prompt

 �

For retrieving from record streams formed by the PRINT statement using one
RSE:

PRINT [print-list OF] rse

�
ON

� file-spec
*.prompt

 �

For retrieving from record streams formed by the PRINT statement using two
RSEs (the inner print list follows another print list):

PRINT print-list, ALL print-list OF rse-1 [,print-list] OF rse-2�
ON

� file-spec
*.prompt

 �

For retrieving from record streams formed by the PRINT statement using two
RSEs (the inner print list precedes any other print list):

PRINT ALL ALL print-list OF rse-1 [,print-list] OF rse-2�
ON

� file-spec
*.prompt

 �

4–246 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement

Arguments

print-list
Is a list of value expressions and formatting specifications. Table 4–24 describes
the print list elements. See the Results section for a description of the modifiers
you can use to control the column header and format for each data field in the
output of the PRINT statement.

ALL
When used alone following PRINT, ALL causes the records in the current
collection to be displayed or written to the specified file or device.

When used with a print list, ALL causes the print list to be evaluated for each
record in the current collection.

When the print list begins with an inner print list, ALL is required to establish
the proper context in which to resolve references to the items in the hierarchical
list.

rse
Is a record selection expression that creates the record stream DATATRIEVE uses
to evaluate the elements of the print list.

file-spec
Is the file specification of the file to which you want to write the output of the
statement.

A complete file specification has the following format:

node-spec::device:[directory]file-name.type;version

If you omit a field in the file specification, DATATRIEVE uses the defaults listed
in Table 4–23.

Table 4–23 Output File Specification Defaults

Field Default

node-spec:: Your local node
device: Your default device
[directory] Your default directory
file-name Null string

(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–247

PRINT Statement

Table 4–23 (Cont.) Output File Specification Defaults

Field Default

.type .LIS
;version 1 or next higher version number

The minimum file specification consists of a period (.); the specification of such
a file stored in your default VMS directory ends with .;n, where n is the version
number and both the file name and the type are null strings.

*.prompt-name
Is a prompting value expression that prompts you for a file specification to which
you want to write the output of the statement.

Restrictions

• To print data from records in a domain, you must ready the domain for
READ, WRITE, or MODIFY access. You cannot print data from domains
readied for EXTEND access because you cannot establish collections or record
streams from domains readied for EXTEND access. See the section in this
chapter on the READY command for more information.

• If you specify a device name in a PRINT statement, the device must be one to
which you have access, such as a line printer, a tape drive, your own terminal,
or another terminal. You cannot cause the output of the PRINT statement to
be displayed on another terminal that is logged in.

• When you use ON LP: to send PRINT statement output directly to a line
printer, DATATRIEVE assumes your system has a line printer. If your
system does not have a device defined as LPA0:, the clause ON LP: will not
work.

If you do not specify an ON statement or ON clause, DATATRIEVE sends the
output of the PRINT statement to the device assigned to the logical name
SYS$OUTPUT. Usually, this is your terminal (TT:).

Although this restriction applies to any system without a line printer, you
may encounter it unexpectedly if your system is part of a VAXcluster with a
common line printer. The ON LP: clause does not work in a VAXcluster that
uses a common printer not directly connected to your system.

4–248 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement

If the nodes in the cluster are connected with DECnet, you can work around
this restriction. To send output from a node without a line printer, you
must include the node name of the system with the line printer in the LP:
specification. For example, if the cluster’s line printer is on a node named
BIGVAX, the following print statement sends output to it:

DTR> PRINT YACHTS ON BIGVAX::LP:

Note that you cannot directly specify the line printer on BIGVAX by using the
cluster device-name BIGVAX$LPA0: in the ON clause.

• To print character string literals, you must enclose the string with quotation
marks. Single and double quotation marks may be used, but you must use
like types of quotation marks in pairs. That is, you cannot begin a string with
a single quotation mark and end with a double quotation mark.

Either kind of quotation mark may be contained in a character string literal
defined by the other kind. Here are two valid examples:

DTR> PRINT "THEY’RE GONE."
THEY’RE GONE.

DTR> PRINT ’THEY SAID, "GOOD-BYE!"’
THEY SAID, "GOOD-BYE!"

DTR>

To include a quotation mark of the same type as the ones that define the
literal, you must type two quotation marks for every one you want to include
in the output of the statement. The following examples illustrate the type of
alternatives you can choose for complex character string literals.

DTR> PRINT "THEY SAID, ""WE’RE GOING."""
THEY SAID, "WE’RE GOING."

DTR> PRINT ’THEY SAID, "WE’’RE GOING."’
THEY SAID, "WE’RE GOING."

DTR>

• If you want to use a form to display the records with the PRINT statement,
the definition of the domain with which you get access to the records must
include a FORM clause. The domain and form definitions must adhere to the
restrictions listed in the section on the DEFINE FILE command.

SET FORM must be in effect when you ready the domain and when you enter
the PRINT statement. Check the status of the SET FORM/NO FORM setting
with the SHOW SET_UP command.

DATATRIEVE uses a form to display records only if you omit the print list
from the PRINT statement. That is, you must retrieve entire records from
the target collection or record stream.

DATATRIEVE Commands, Statements, and Definition Clauses 4–249

PRINT Statement

• To suppress or specify a column header on a print list element that includes
a CDD/Repository object, you must enclose the entire value expression in
parentheses. Examples of such print list elements include the following:

A field from a domain table or dictionary table using a VIA clause. This
following example shows such a print list element:

DTR> PRINT (RIG VIA RIG_TABLE) (-)

A value that is determined by a procedure. For example:

DTR> PRINT (:DURATION) ("DURATION")

You must use parentheses around the CDD/Repository object expression
in these cases to avoid confusing the column header specification with a
password for the CDD/Repository object.

Results

• DATATRIEVE evaluates the print list and writes the resulting output to
the specified or implied file or device. The format and content of the output
depends on the print list elements you include in the statement. Unless a
COL n, SPACE [n], or TAB [n] element changes the position of the cursor, all
output begins at column 1.

• If you do not put the PRINT statement in a FOR loop and do not include an
RSE or the argument ALL, DATATRIEVE uses the data from the selected
record of the most recently formed collection with a selected record to evaluate
the print list. DATATRIEVE evaluates the print list once and creates one or
more lines of output, depending on the formatting options you specify.

• If you specify the argument ALL and do not include an RSE, DATATRIEVE
uses the data in the records of the CURRENT collection to evaluate the value
expressions in the print list. DATATRIEVE evaluates the print list once for
each record in the CURRENT collection and creates one or more lines of
output for each record, depending on the formatting options you specify.

• If you include a record selection expression in a PRINT statement,
DATATRIEVE uses the data in each record in the record stream to evaluate
the value expressions in the print list. DATATRIEVE evaluates the print list
once for each record in the record stream and creates one or more lines of
output for each record, depending on the formatting options you specify.

• If you put a PRINT statement in a FOR loop, DATATRIEVE uses the data in
each record in the record stream created by the RSE in the FOR statement.
DATATRIEVE evaluates the value expressions in the print list once for each
record and creates one or more lines of output for each record, depending on
the formatting options you specify.

4–250 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement

• Table 4–24 describes the print list elements you can include in the PRINT
statement.

Table 4–24 Print List Elements

Print List Element Function and Results

field-name [modifier]

list-field-name [modifier]
Specifies the field whose contents are to be
output. The optional modifier describes the
column header for the field, or the format of
the output, or both (see Results section). If the
field is a group field, DATATRIEVE displays all
elementary fields contained in that group field. If
the field is a list and SET SEARCH is in effect,
DATATRIEVE outputs one value of the list field
per line per record. If you omit this element, all
elementary fields are output.

literal [modifier]

*.prompt-name [modifier]

**.prompt-name [modifier]

arithmetic-exp [modifier]

statistical-exp [modifier]

Specifies a value expression to be evaluated
and output. The optional modifier describes
the column header for the value expression, or
the format of the output, or both (see Results
section). Chapter 1 discusses these value
expressions.

SPACE [n] Inserts n horizontal spaces before the next print
list element. If you omit n, DATATRIEVE inserts
one space before the next print list element.

(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–251

PRINT Statement

Table 4–24 (Cont.) Print List Elements

Print List Element Function and Results

TAB [n] Inserts the space of n tab characters before
the next print list element. If you omit n,
DATATRIEVE inserts the space of one tab
before the next print list element. DATATRIEVE
assumes that tabs are set every eight spaces
and inserts enough spaces (not actually tab
characters) in the print line to start the next
print list element in appropriate column.

COL n Determines that the following print list element
begins in column n of the detail line. If n is less
than the current column number, DATATRIEVE
skips a line and begins the next print list
element in column n. The first column in the
line is column 1.

SKIP [n] Begins the output of the next print list element
at the beginning of the nth line from the current
line. If n is greater than 1, the intervening lines
are blank. If you omit n, DATATRIEVE moves
the cursor to the beginning of the next line. If
you omit this print list element, DATATRIEVE
displays multilined output on consecutive lines.

NEW_PAGE Moves the cursor to the top of a new print page.
Column headers are suppressed, and output
begins at column 1 unless another print list
element changes the position of the cursor.

(continued on next page)

4–252 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement

Table 4–24 (Cont.) Print List Elements

Print List Element Function and Results

ALL print-list OF rse Specifies an inner print list. DATATRIEVE
evaluates the inner print list once for each
record specified by the outer RSE. This print
list element is generally used with a list in a
hierarchical record to display all the values in
the list for each of the records. When you work
with lists, the list name is the source of the RSE
in the print list element. If an inner print list
is the first element in a print list, you must add
a required ALL before the inner print list (ALL
ALL print-list OF rse OF rse). This additional
ALL is not required if another print list element
precedes the inner print list.

• You can use print list modifiers to control the column header displayed above
a value expression. The modifiers also allow you to specify an edit string that
determines the format of each individual value expression in the print list.
DATATRIEVE allows the following modifiers:

("header-segment"[/...])
Specifies one or more character string literals to be displayed as a column
header above the first line of output from the PRINT statement. The entire
modifier must be enclosed in parentheses and must immediately follow its
associated field name or value expression.

If you specify one header segment, the literal is printed on one line above
the first line of output from the PRINT statement. If the header is shorter
than the field reserved for that value, the header is centered above the field.
If the header is longer than the field reserved for its associated value by the
edit string, the field is centered under the header. In this case, however,
DATATRIEVE determines the placement of the other output fields relative to
the length of the header, not the length of the field.

If you specify more than one header segment ("header-1"/"header-2"[/...]),
the segments are printed on successive lines, centered above the associated
field. The width of the field is determined by the edit string for the field or
the longest header segment, whichever is longer.

DATATRIEVE Commands, Statements, and Definition Clauses 4–253

PRINT Statement

(–)
If you specify a hyphen in parentheses (-) following a field name or a
dictionary table value expression, DATATRIEVE does not display any query
header associated with the field in its record definition or with the dictionary
table in its CDD/Repository definition.

If you omit the column header modifier after a field name, variable, or
dictionary table value expression, DATATRIEVE uses the query header for
the element if one has been defined. If no query header has been defined
for a dictionary table, no header is displayed. If no query header has been
defined for the elementary field, the field name is used. If the field name has
underscores in it, DATATRIEVE suppresses the underscores and converts the
field name to a multiline header (for example, see LENGTH_OVER_ALL). If
no query header has been defined for the variable, the variable name is used.

For the header of value expressions formed with the statistical functions,
MAX, MIN, AVERAGE, STD_DEV, and TOTAL (for example, MAX PRICE),
DATATRIEVE combines the name of the function and the field name to form
a multiline query header. For functions (beginning with FN$), DATATRIEVE
uses the function name to form a column header. For all other value
expressions, DATATRIEVE does not output a column header.

USING edit-string
Imposes the characteristics of the specified edit string on the preceding field
or value expression. The edit string must conform to the rules that govern the
EDIT_STRING clause of a DATATRIEVE record definition. See the section in
this chapter on the EDIT_STRING clause for more information.

If you follow an edit string with other print list items, be sure to put a space
between the last character of the edit string and the comma that separates
the edit string from the next print list element.

If you omit this modifier for a field name or statistical expression,
DATATRIEVE uses the edit string specified for the field in the record
definition or the PICTURE (or PIC) clause if no edit string is given.

If you omit this modifier for a variable, DATATRIEVE uses either the edit
string specified in the DECLARE statement that created the variable or the
PICTURE (or PIC) clause if no edit string was given.

If you omit this modifier for a prompting value expression, DATATRIEVE
uses a default alphanumeric edit string 10 characters long, that is, X(10).

• If you use a prompting value expression to specify the output file or device,
DATATRIEVE prompts you for the name when it executes the PRINT
statement. If you omit this argument, DATATRIEVE displays the output
on your terminal or workstation.

4–254 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement

• If you end your file specification with the name of a line printer or another
terminal that is not a spooled device, the output of a PRINT statement can be
immediately displayed on the device. Consult the VMS documentation set for
details regarding spooled devices.

Usage Notes

• The print list argument allows you to specify the following types of
information:

The data to be included in the output. Data can be the contents of a field,
the value of a variable, or any other value expression.

The format of the data in the output. You can specify an edit string to
override any edit string in the field or variable definition or to format a
value expression.

The spacing (both horizontal and vertical) for the output. You can insert
tabs or spaces between columns or skip lines between lines of output.

Column headers for each column of data in the output. You can also
indicate that no header is to be printed above a column.

• When you enter a PRINT statement that has no print list (PRINT ALL
or PRINT rse), DATATRIEVE automatically formats the output for you.
DATATRIEVE uses the following defaults when you omit the print list:

The data included in the output is the contents of all fields in the selected
record (PRINT), the records in the CURRENT collection (PRINT ALL),
or the records in the record stream formed by the RSE in the PRINT
statement (PRINT rse).

The format of the field contents is determined by the record definition.

The horizontal spacing is based on the longest of three items: the edit
string if one is specified, the longest segment of the header, or the length
of the value of the print list element.

The output begins in column 1. The output is single spaced with a single
blank line following the header line.

Column headers for fields are the query headers or the field names if
there is no query header. If the field name contains an underscore,
DATATRIEVE suppresses the underscore and places each part of the field
name on a separate line. The header is centered above the column of
data. If the query header contains only a hyphen, DATATRIEVE does not
print a header.

DATATRIEVE Commands, Statements, and Definition Clauses 4–255

PRINT Statement

• You can use inner print lists to display data in the lists of hierarchical
records.

• You can use the ON clause of the PRINT statement to specify only one output
file at a time. Use nested ON statements to write the output of the PRINT,
LIST, REPORT, or SUM statements to multiple files.

• With SET SEARCH in effect, you can print the data in lists by letting
DATATRIEVE generate implicit inner print lists. You must, however,
establish the appropriate context for the target record containing the list and
for the list itself. SET SEARCH supplies the ALL and OF rse elements of the
inner print list; you supply the print list.

For example, display the father and children of the first two families:

DTR> SET SEARCH
DTR> READY FAMILIES
DTR> PRINT FATHER, EACH_KID OF FIRST 2 FAMILIES

KID
FATHER NAME AGE

JIM URSULA 7
RALPH 3

JIM ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

DTR>

Examples

The following example retrieves data from selected records and prints the data:

DTR> FIND FIRST 2 YACHTS
DTR> SELECT; PRINT TYPE, LOA, PRICE

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

ALBERG 37 MK II 37 $36,951

The following example shows how to retrieve data from target streams formed by
FOR loops:

4–256 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement

DTR> FOR FIRST 2 YACHTS
CON> PRINT TYPE, LOA, PRICE

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

ALBERG 37 MK II 37 $36,951
ALBIN 79 26 $17,900

DTR>

The following example shows how to retrieve data from hierarchical records using
nested FOR loops:

DTR> FOR FIRST 2 FAMILIES
CON> FOR KIDS
CON> PRINT MOTHER, FATHER, KID_NAME

KID
MOTHER FATHER NAME

ANN JIM URSULA
ANN JIM RALPH
LOUISE JIM ANNE
LOUISE JIM JIM
LOUISE JIM ELLEN
LOUISE JIM DAVID
LOUISE JIM ROBERT

DTR>

The following example shows how to retrieve data from the CURRENT collection:

DTR> FIND FIRST 2 YACHTS
DTR> PRINT ALL TYPE, LOA, PRICE

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

ALBERG 37 MK II 37 $36,951
ALBIN 79 26 $17,900

DTR>

The following example shows how to retrieve data from record streams formed by
the PRINT statement using One RSE:

DTR> PRINT TYPE, LOA, PRICE OF FIRST 2 YACHTS

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

ALBERG 37 MK II 37 $36,951
ALBIN 79 26 $17,900

DATATRIEVE Commands, Statements, and Definition Clauses 4–257

PRINT Statement

DTR>

The following example shows how to retrieve data from record streams formed by
the PRINT statement using two RSEs with the inner print list following another
list:

DTR> PRINT FATHER, MOTHER,
CON> ALL KID-NAME OF KIDS OF FIRST 1 FAMILIES

KID
FATHER MOTHER NAME

JIM ANN URSULA
RALPH

DTR>

The following example shows how to retrieve data from record streams formed by
the PRINT statement using two RSEs with the inner print list preceding all other
print lists:

DTR> PRINT ALL ALL KID-NAME OF FIRST 1 KIDS,
CON> MOTHER OF FIRST 2 FAMILIES

KID
NAME MOTHER

URSULA ANN
ANNE LOUISE

DTR>

4–258 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement (Report Writer)

PRINT Statement (Report Writer)
Specifies the following characteristics of the detail lines in a report:

• The content, such as field values, other desired values, and text strings

• The format of fields, including issues such as the order, column position, print
attributes, and edit string format of print objects

• Column headers for print objects

You can include only one PRINT statement in a report specification. If your
report specification contains an AT statement, then it does not have to contain a
PRINT statement.

Format

PRINT print-list-element [, . . .]

Argument

print-list-element
Specifies the values, position, print attributes, and format of the print objects in
the detail line.

Table 4–25 indicates the parameters of the report controlled by various print list
elements.

Table 4–25 Report Parameters Controlled by Print List Elements

Parameter Print List Element Usage Notes

Content of
detail line

Field-name [modifier] Can include elementary, group,
list, REDEFINES or COMPUTED
BY fields; to print all fields, specify
the top-level field name.

Related value-expression
[modifier]

Derived from field values using
arithmetic operators or RUNNING
TOTAL.

Other value-expression
[modifier]

Can include literals, variables, or
RUNNING COUNT.

(continued on next page)

DATATRIEVE Commands, Statements, and Definition Clauses 4–259

PRINT Statement (Report Writer)

Table 4–25 (Cont.) Report Parameters Controlled by Print List Elements

Parameter Print List Element Usage Notes

Format of
detail line

ATT
�

RESET
name

 Resets the attributes, or uses the
named attribute list. (See the
DECLARE_ATT statement.)

SKIP [n] Begins printing the next print list
element n lines from the current
line. Ignored in DTIF format.

SPACE [n] Leaves spaces between the output
of the preceding and following
print list elements. See also Usage
Notes.

COL n Specifies where the output of the
next print list element begins. See
also Usage Notes.

TAB [n] Inserts the space of n tab
characters before the output of
the next print list element. See
also Usage Notes.

Beginning of
new page

NEW_PAGE Causes the Report Writer to start
a new report page. Ignored in
DTIF

Table 4–26 indicates the parameters of the report controlled by modifiers of print
list elements.

Table 4–26 Report Parameters Affected by Print List Modifiers

Parameter Print List Modifier Usage Notes

Column
headers
for print
items

("header-segment"[/ . . .]) Specifies one or two line headers
for the preceding field or value
expression, overriding the field
name or query header from the
record definition.

(continued on next page)

4–260 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement (Report Writer)

Table 4–26 (Cont.) Report Parameters Affected by Print List Modifiers

Parameter Print List Modifier Usage Notes

(-) Suppresses the header indicated
for the field in the record
definition.

Format of
the
detail line
item

USING edit-string Imposes the characteristics of the
edit string on the preceding field
name or value expression.

Usage Notes

• Unlike the PRINT statement used at the DATATRIEVE command level, the
Report Writer PRINT statement must be followed by at least one print list
element. If you enter PRINT without a print list element, the Report Writer
prompts you for one.

• If the value of the COLUMNS_PAGE attribute (of the Report Writer SET
statement) is too small to accommodate all the fields, the Report Writer
carries the overflow fields onto the next line. No field is split between lines,
but the column headers of the overflow fields may be lost.

• When specifying the detail line, you are not restricted to the field order of the
record definition. In the PRINT statement, you can list the fields (and their
column headers and edit strings) in any order you choose.

• When the data you are reporting includes a list, use an inner print list
element (ALL [print-list] OF rse) in the PRINT statement to specify the
value, position, and format for fields in the list. Each item of the list takes at
least one physical line of printing.

• For relational sources, DATATRIEVE uses the relation’s name as the top-level
group field. This top-level field cannot be used as a print list element. For
example, the following statements using the COLLEGES relational domain
produce an error message:

DTR> REPORT COLLEGES
RW> PRINT COLLEGES
RW> END_REPORT
"COLLEGES" is undefined or used out of context.

DATATRIEVE Commands, Statements, and Definition Clauses 4–261

PRINT Statement (Report Writer)

• To suppress or specify a column header with a print list element that
includes a dictionary object, you must enclose the entire value expression in
parentheses. Examples of such print list elements include the following:

A field from a domain table or dictionary table using a VIA clause. An
example of such a print list element follows:

.
.
.

RW> PRINT (RIG VIA RIG_TABLE) (-)

A value that is determined by a procedure, for example:

.
.
.

RW> PRINT (:DURATION) ("DURATION")

The use of parentheses around the dictionary object expression is necessary
in these cases to avoid confusing the column header specification with a
password for the dictionary object.

For more information on column headers, see the chapter in the
VAX DATATRIEVE User’s Guide on designing a report with the Report
Writer.

RW> PRINT MANUFACTURER ("VENDOR"), -
CON> MODEL (-), LOA, RIG, PRICE (-)

This produces the following report:

5-May-1987
Page 1

LENGTH
OVER

VENDOR ALL RIG

ALBERG 37 MK II 37 KETCH $36,951

DTR>

• For fields with one or two character values, you can compress the headers.
The following PRINT statement specifies a three-line header for the LOA
field:

RW> PRINT MANUFACTURER, LOA ("L"/"O"/"A"), RIG, PRICE

4–262 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement (Report Writer)

This produces the following report:

28-May-1987
Page 1

L
O

MANUFACTURER A RIG PRICE

ALBERG 37 KETCH $36,951

• If you do not specify positions or edit strings for any of the fields in a detail
line, the Report Writer determines the format for those fields using these
criteria:

If the field definition contains an edit string, that edit string determines
the format for the field.

If the field definition has no edit string, the PICTURE clause determines
the format for the field.

If the field definition has neither an edit string nor a PICTURE clause,
the Report Writer invents a picture clause to accommodate the data in the
field.

To gain full control over the formats of the fields of your detail lines, explicitly
define edit strings with a USING clause.

• If the print list includes a variable or a field name and a statistical function
(TOTAL, RUNNING TOTAL, AVERAGE, MAX, MIN, or STD_DEV) based on
that variable or field, the Report Writer puts both values in the same column,
even if you specify a separate column header with the statistical function:

DTR> FIND FIRST 3 PAYABLES
DTR> REPORT CURRENT
RW> PRINT WHSLE_PRICE,
RW> TOTAL WHSLE_PRICE ("GRAND TOTAL"/"OWED") USING $$$,$$$
RW> END_REPORT

13-Aug-1987
Page 1

WHSLE
PRICE

$40,000
$82,000

.

.

.

DATATRIEVE Commands, Statements, and Definition Clauses 4–263

PRINT Statement (Report Writer)

You can print the statistical function in a separate column by specifying a
column assignment:

DTR> FIND FIRST 3 PAYABLES
DTR> REPORT CURRENT
RW> PRINT WHSLE_PRICE,
RW> COL 15, TOTAL WHSLE_PRICE ("GRAND TOTAL"/"OWED") USING $$$,$$$
RW> END_REPORT

13-Aug-1987
Page 1

WHSLE GRAND TOTAL
PRICE OWED

$40,000 $82,000
.
.
.

Note that you may also wish to specify an explicit column for the statistical
function in cases where the calculated size of the statistical function value is
significantly larger than the size of the field or variable it is based on. This
can happen, for example, if the definition of the field or variable includes a
COMPUTED BY clause.

• COL, TAB, SKIP, and SPACE clauses are ignored in DTIF format.

• In DDIF and PS formats, the physical page is divided into a grid of either
80 columns (if PAPER_ORIENTATION is set to PORTRAIT) or 132 columns
(if PAPER_ORIENTATION is set to LANDSCAPE). One tab stop refers to a
group of 8 of these columns. The clauses COL, TAB, and SPACE are used
with reference to this grid.

• In ASCII formats (TEXT and default), the COL, TAB, and SPACE clauses
refer to actual character spaces. Space characters (blank) are inserted to
produce the desired spacing.

• When you insert an ATT clause in a PRINT statement, the relevant attributes
will be applied for all subsequent fields until the end of the print list. To reset
the attributes to their default values, use the ATT RESET clause. Note that
an ATT clause changes only the specified attributes (the effect of several ATT
clauses is therefore cumulative) and that attributes are reset at the end of the
print list.

• Some or all of the default text attributes for the PRINT statement can
be modified using the logical name DTR$RW_BODY_ATTRIBUTES. The
equivalence string will be an attribute list, using the same syntax as the
DECLARE_ATT statement. Attributes which are not defined in such a list
remain set to the default value (see the DECLARE_ATT statement).

4–264 DATATRIEVE Commands, Statements, and Definition Clauses

PRINT Statement (Report Writer)

For example, if a 10-point Italic Courier font is desired as default for the
detail line, the following logical name definition should be applied before
invoking DATATRIEVE:

$ define DTR$RW_BODY_ATTRIBUTES
_Equ name: "FAMILY=COURIER,ITALIC"

• DTIF format reports have some special characteristics:

all the values in a column have the same datatype, edit string and
alignment

every value expression, field, or value derived from a field is put in a
separate column

print items are drawn in columns, not necessarily in the same order as
they would have been in the corresponding printed format. For example,
given the statement

AT TOP OF field 1
PRINT field 1
PRINT field2,field3,field4
AT BOTTOM OF field1
PRINT "Total: ",TOTAL field4

the result of "TOTAL field4" is put in the same column as field4, while
"Total: " is put in a separate column after those occupied by field1, field2,
field3, and field4.

Group fields are expanded so that columns contain elementary fields
only.

• When using proportionally-spaced fonts, (which are accessible from DDIF and
PostScript) column data is aligned according to the following conventions:

Data Type Alignment

Integer Right
Decimal Decimal Point
Floating Point Decimal Point
Character
String

Left

Date Right

• The scope of each attribute is the Report Writer PRINT statement. Therefore
a text attribute is effective until the end of the PRINT statement, unless it is
superseded by other attributes.

DATATRIEVE Commands, Statements, and Definition Clauses 4–265

PRINT Statement (Report Writer)

Example

For examples of the PRINT statement in the Report Writer, see the
VAX DATATRIEVE User’s Guide.

4–266 DATATRIEVE Commands, Statements, and Definition Clauses

PURGE Command

PURGE Command
Deletes all but the highest version of specified dictionary objects.

Format

PURGE
� path-name [,...]

ALL

�
[KEEP [=] n]

Arguments

path-name
Specifies the object you want to purge. The path name must include the name of
a domain, record, procedure, or table. The path name cannot contain a version
number or a semicolon. If you do not specify a path name, DATATRIEVE purges
all objects in your default dictionary directory. PURGE accepts both DMU and
CDO style path names.

ALL
Purges all the definitions in the default dictionary directory. ALL is the default.

KEEP [=] n
Specifies the number of versions of each object you want to keep. The number
must be greater than zero. The default is KEEP=1.

Restriction

You cannot purge out a version of an object if that version is a member of a
relationship with another dictionary object. The owner of the relationship must
be deleted before you purge out the member of a relationship. In the case of a
domain, the domain must be deleted before an object owned by the domain (a
record, database, or another domain) is deleted.

Usage Notes

• By default, PURGE with no arguments is the same as PURGE ALL KEEP =
1.

• Because dictionary directories cannot have multiple versions, PURGE does
not delete them. PURGE deletes only the objects in the directory. Specifying
a dictionary as the final object in a path name generates an error message.

DATATRIEVE Commands, Statements, and Definition Clauses 4–267

PURGE Command

• If you are purging objects in a DMU format dictionary, you need P (PASS_
THRU), S (SEE), R (DTR_READ), and either D (LOCAL_DELETE) or G
(GLOBAL_DELETE) access privileges for each object to be deleted. If you do
not have S (SEE) and R (DTR_READ) access to every object in a directory,
PURGE and PURGE ALL do not delete any versions of any object in that
directory.

• If you are purging objects in a CDO format dictionary, you need S (SHOW)
and U (CHANGE) access privileges to the dictionary and S (SHOW) and D
(DELETE) access privileges to each object to be deleted.

Examples

The following example shows how PURGE deletes all but the highest versions of
objects in a user’s DMU format directory:

DTR> SHOW ALL
Domains:
* FAMILIES;3 * FAMILIES;2 * FAMILIES;1 * OWNERS;2
* OWNERS;1 * PETS;2 * PETS;1 * PROJECTS;3
* PROJECTS;2 * PROJECTS;1 * YACHTS;5 * YACHTS;4

Records:
* FAMILY_REC;2 * FAMILY_REC;1 * OWNER_RECORD;2 * OWNER_RECORD;1
* PET_REC;1 * PROJECT_REC;1 * YACHT;2 * YACHT;1

The default directory is CDD$TOP.DTR$USERS.BELL
No established collections.
No ready sources.
No loaded tables.
DTR> PURGE
DTR> SHOW DOMAINS, RECORDS
Domains:
* FAMILIES;3 * OWNERS;2 * PETS;2 * PROJECTS;3
* YACHTS;5

Records:
* FAMILY_REC;2 * OWNER_RECORD;2 * PET_REC;1 * PROJECT_REC;1
* YACHT;2

DTR>

The following example shows the error message generated if you specify a
dictionary directory as the final object in the path name. It then shows how
PURGE works with the path name and KEEP arguments.

4–268 DATATRIEVE Commands, Statements, and Definition Clauses

PURGE Command

DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS.BELL

DTR> PURGE CDD$TOP.DTR$USERS.BELL
Element "CDD$TOP.DTR$USERS.BELL" is not a Domain, Record, Procedure,
or Table.
No objects purged for dictionary element "CDD$TOP.DTR$USERS.BELL".

DTR> SHOW RECORDS

Records:
* FAMILY_REC;4 * FAMILY_REC;3 * FAMILY_REC;2 * FAMILY_REC;1
* OWNER_RECORD;2 * OWNER_RECORD;1 * PET_REC;1 * PROJECT_REC;1
* YACHT;2 * YACHT;1

DTR> PURGE CDD$TOP.DTR$USERS.BELL.FAMILY_REC KEEP=2
DTR> SHOW RECORDS
Records:
* FAMILY_REC;4 * FAMILY_REC;3 * OWNER_RECORD;2 * OWNER_RECORD;1
* PET_REC;1 * PROJECT_REC;1 * YACHT;2 * YACHT;1

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–269

QUERY_HEADER Clause

QUERY_HEADER Clause
Specifies the column header DATATRIEVE uses when it formats the display of
a field value for the PRINT statement or for the Report Writer AT and PRINT
statements.

Format

QUERY_HEADER [IS] {"header-segment"} [/...]

Argument

"header-segment"
Is the column header displayed above a column of data. If you specify only one
character string literal, that string is printed on one line above the column. You
can specify more than one character string literal by separating each from the
next with a slash (/). The literals are printed on successive lines, centered above
the column.

Restriction

This clause is valid for elementary fields only.

Results

• If you include this clause, DATATRIEVE uses the specified query header as
the default column header when printing this field.

• If you omit this clause, DATATRIEVE uses the field name as the default
column header when printing this field.

Usage Notes

• The column header can include any character except a carriage return, a
line feed, or a control character. To include a quotation mark in a column
header, precede it with another quotation mark. (See the third example in
the Examples section.)

• You can perform the functions of the QUERY_HEADER clause with the
column-header modifier for print list elements in the PRINT statement and
the Report Writer AT and PRINT statements. The column-header modifier
overrides the default query header specified in the field definition. (See the
Results section of the PRINT Statement section for more information on the
print list modifiers.)

4–270 DATATRIEVE Commands, Statements, and Definition Clauses

QUERY_HEADER Clause

Examples

The following example shows how to set up a record so that when the
DISPLACEMENT field is displayed, a column header of WEIGHT is used:

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS "WEIGHT"
EDIT_STRING IS ZZ,ZZ9
QUERY_NAME IS DISP.

DATATRIEVE prints the column header as follows:

WEIGHT

The following example shows how to set up a record so that when the LENGTH_
OVER_ALL field is printed, a column header of LENGTH (IN FEET) is printed
on two separate lines:

06 LENGTH_OVER_ALL PIC XXX
QUERY_HEADER IS "LENGTH" /"(IN FEET)".

DATATRIEVE prints the column header as follows:

LENGTH (IN FEET)

The following example shows how to set up a record so that when the LENGTH_
OVER_ALL field is printed, a column header of Length Over All ("LOA") is
printed on two separate lines:

06 LENGTH_OVER_ALL PIC XXX
QUERY_HEADER IS "Length Over All"/"(""LOA"")".

DATATRIEVE prints the column header as follows:

Length Over All
("LOA")

The following example shows how to set up a record so that when the LENGTH_
OVER_ALL field is printed, a 3-line column header is printed with one letter per
line:

06 LENGTH_OVER_ALL PIC XXX
QUERY_HEADER IS "L"/"O"/"A".

DATATRIEVE prints the column header as follows:

L
O
A

DATATRIEVE Commands, Statements, and Definition Clauses 4–271

QUERY_NAME Clause

QUERY_NAME Clause
Specifies an alternate name for the field.

Format

QUERY_NAME [IS] query-name

Argument

query-name
Is the query name. The rules for forming and using a query name are the same
as those for a field name.

Restriction

The query name must conform to the rules for names (see the VAX DATATRIEVE
User’s Guide).

Result

You can specify the query name as an alternate name for the field name.

Usage Notes

• This clause is valid for both group and elementary fields.

• Use the QUERY_NAME clause when a field name is too long to use easily.

• Like a field name, a query name can duplicate another query name (or a
field name) in the record. A query name can also be qualified by other query
names or field names.

Examples

The following example shows how to set up a record so that DISP is defined as an
alternate name for the DISPLACEMENT field:

06 DISPLACEMENT PIC 99999
QUERY_NAME IS DISP.

The following example shows how to set up a record so that SPECS is defined as
an alternate name for the group field SPECIFICATIONS:

03 SPECIFICATIONS
QUERY_NAME SPECS.

4–272 DATATRIEVE Commands, Statements, and Definition Clauses

QUERY_NAME Clause

The following example shows how to set up a record so that a query name of
SPECIAL_HANDLING is defined for the field DELINQUENT_ACCOUNT_
STATUS:

09 DELINQUENT_ACCOUNT_STATUS
PIC X
QUERY_NAME IS SPECIAL_HANDLING.

DATATRIEVE Commands, Statements, and Definition Clauses 4–273

READY Command

READY Command
Gives you access to one or more domains, relations, databases, or record types
and controls the access of other users to those domains or databases. You can
also use the READY command to ready a domain or database again in order to
change your access mode or access option.

Format 1

READY domain-path-name [AT node-spec] [AS alias-1]

� PROTECTED
SHARED
EXCLUSIVE

� ���
READ
WRITE
MODIFY
EXTEND

�
�� � CONSISTENCY

CONCURRENCY

�
[,...]

[SNAPSHOT]

Format 2

READY database-path-name

[SNAPSHOT]� PROTECTED
SHARED
EXCLUSIVE

� ���
READ
WRITE
MODIFY
EXTEND

�
�� � CONSISTENCY

CONCURRENCY

�

�
�����������

USING
� rdb-relation-name

dbms-record-name

� AS alias �

[SNAPSHOT]� PROTECTED
SHARED
EXCLUSIVE

� ���
READ
WRITE
MODIFY
EXTEND

�
�� � CONSISTENCY

CONCURRENCY

�

�
�����������

[,...]

Arguments

domain-path-name
Is the dictionary path name of a domain to which you want access or the domain
table whose access option you want to change.

4–274 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

node-spec
Is the name of a node and an optional access control string.

A node name is a 1- to 6-character name that identifies the location on the
network. Examples are BIGSYS and LILSYS.

An access control string indicates a particular account on the remote node. It
consists of a user name, followed by one or more blanks or tabs, a password, and
an optional account name.

The following three node specifications are valid:

BIGSYS
BIGSYS"MORRISON RYLE"
BIGSYS"MORRISON RYLE KANT"

On DECnet links to some non-VMS systems, you can use the UIC number in
place of the user name. For example:

BIGSYS"[240,240] RYLE"
BIGSYS"[240,240] RYLE KANT"

In the examples, the remote node is BIGSYS the user name is MORRISON, the
UIC is [240,240], the password is RYLE, and the account name is KANT.

You can also use a prompting value expression to prompt the user for the user
name, password, account name, or UIC. Use single quotation marks for the
prompt string. For example:

DTR> READY CDD$TOP.DTR32.MORRISON.YACHTS AT
CON> BIGSYS"*.’username’ *.’password’"
Enter username: MORRISON
Enter password:
DTR>

alias
Is a name you use if you include the AS clause in the READY command to refer
to the domain, relation, or VAX DBMS record specified. You use the alias in place
of the given name of the domain, relation, or VAX DBMS record where the syntax
of a statement calls for that domain, relation, or VAX DBMS record name. If
you are using an alias for a domain name, do not use the alias in full or relative
dictionary path names.

database-path-name
Is the CDD/Repository path name defined for the DATATRIEVE definition of the
VAX DBMS, Rdb/VMS, Rdb/ELN, or VIDA facility database, or for the relational
database definition created by Rdb/VMS. If you ready a VAX DBMS or relational
database without specifying any relation or record names, DATATRIEVE readies

DATATRIEVE Commands, Statements, and Definition Clauses 4–275

READY Command

all relations or records in the database. READY accepts both DMU and CDO
style path names.

relation-name
Is the name assigned to the relation when the relational database was created.
The relation name can be the name of a view relation.

record-name
Is the name assigned to the VAX DBMS record when the database was created.

SNAPSHOT
PROTECTED
SHARED
EXCLUSIVE
Are the options you can select to control the access of other users to a domain,
relation, or VAX DBMS record you ready. The specific constraints are explained
in Table 4–27:

Table 4–27 Access Options

Option Access Constraints

SNAPSHOT SNAPSHOT is a READ access for databases that takes a ‘‘picture’’
of the database when it is readied. In order to have SNAPSHOT
access, all relations or records pertaining to the database
must be readied with SNAPSHOT access. Any other user can
access the same database with any access mode and option. In
general, you do not see other users’ changes until the end of the
transaction. If you use SNAPSHOT with another option, such as
CONCURRENCY, you may see other users’ changes, depending
on the database system. SNAPSHOT is the default for relational
databases, relations, and domains based on relational sources.

PROTECTED Any other user can have only READ access to records in the
domain or relation. No other user can have WRITE, MODIFY, or
EXTEND access to the records in the domain or relation. This
option is the default for domains containing records from VAX RMS
files and for all view domains.

(continued on next page)

4–276 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

Table 4–27 (Cont.) Access Options

Option Access Constraints

SHARED Any other user can have access to the domain, database, relation,
or VAX DBMS record at the same time, in any access mode.
This option is the default for VAX DBMS domains, VAX DBMS
databases, and VAX DBMS records.

EXCLUSIVE No other user can have access to the domain, database, relation,
or VAX DBMS record at the same time, in any access mode. If the
domain is an RMS domain, the file containing the data is locked by
RMS.

READ
MODIFY
WRITE
EXTEND
Are the options you can select to request a mode of access to a domain, database,
relation, or VAX DBMS record. When using Format 1, whether you get that mode
of access is determined by privileges assigned to you in the access control list of
the domain. (See the chapter on ACL in the VAX DATATRIEVE User’s Guide.)
When using Format 2, whether you get that mode of access is determined by
privileges assigned to you in the access control list of the database definition.

When you are using either Format 1 or Format 2 and you are accessing a
VAX DBMS or relational database, you must also have appropriate privileges in
the VAX DBMS, Rdb/VMS or Rdb/ELN access control lists to request the access
mode you select. For VAX DBMS, you need access to the schema, subschema,
record and DATATRIEVE database definitions in the data dictionary. Appendix B
explains the access modes and lists the privileges (in the DATATRIEVE access
control list) that give you each mode of access to a domain.

CONSISTENCY
CONCURRENCY
Are the options you can select to determine whether you can see changes made by
other users to the data you are accessing. CONSISTENCY guarantees that while
you are accessing data, you do not see updates made by other users.

CONSISTENCY is the DATATRIEVE default for the first ready of a relational
source. For subsequent readies, the DATATRIEVE default is the consistency
option from the most recent ready still in effect for a relational source.

CONCURRENCY allows you to see other users’ updates to the data you are
accessing.

DATATRIEVE Commands, Statements, and Definition Clauses 4–277

READY Command

Table 4–28 summarizes the effects of various combinations of access options and
access modes for RMS domains.

Table 4–28 Multi-User Access to RMS Domains

You Ready a Domain

Another User Can
Then Ready the
Domain

Your Effect on
Other Users

Other Users’Effect
on You

EXCLUSIVE READ
EXCLUSIVE
WRITE

No access. No one else
can read the
file.

No effect.

PROTECTED READ PROTECTED READ
SHARED READ

No one else
can write to
the file.

No effect.

PROTECTED
WRITE

SHARED READ No one else
can write to
the file.

No effect.

SHARED READ PROTECTED READ
PROTECTED
WRITE
SHARED READ
SHARED WRITE

No one with
WRITE access
can select
your selected
record.

Users with
WRITE access
may change
records you are
reading or have
read.

(continued on next page)

4–278 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

Table 4–28 (Cont.) Multi-User Access to RMS Domains

You Ready a Domain

Another User Can
Then Ready the
Domain

Your Effect on
Other Users

Other Users’Effect
on You

SHARED WRITE SHARED READ
SHARED WRITE

No one else
can modify
your selected
record or
the target
record of your
MODIFY
or ERASE
statement.
You can
modify a
record another
user has just
modified.

You cannot write
to the selected
record of any
other user. You
cannot write to
the target record
of a MODIFY
or ERASE
statement
entered by
a SHARED
WRITE user.
A SHARED
WRITE user can
also write to a
record you have
just modified.

When two applications try to access the same RMS domain, RMS may lock
a record that DATATRIEVE needs to access. DATATRIEVE then tries for 12
seconds to access the record. At the end of this period, DATATRIEVE takes one
of two actions, depending on whether SET LOCK_WAIT is in effect.

• If SET NO LOCK_WAIT is in effect, you receive an RMS$_RLK message:
‘‘Target record currently locked by another stream.’’ Then DATATRIEVE
aborts the statement. SET NO LOCK_WAIT is the default.

• If SET LOCK_WAIT is in effect, DATATRIEVE turns control over to RMS to
wait for the record. You cannot use CTRL/C to cancel the wait. RMS waits
until the record is released, or, in case of deadlock, you receive the RMS
deadlock error message.

The LOCK_WAIT setting applies to all sources, including VAX DBMS and
relational databases which are readied after the SET LOCK_WAIT command is
issued. NO LOCK_WAIT was selected as the default for DATATRIEVE because it
is the RMS default. However, NO LOCK_WAIT is not always the recommended
mode for relational access. LOCK_WAIT is required for VIDA.

DATATRIEVE Commands, Statements, and Definition Clauses 4–279

READY Command

Table 4–29 summarizes the effects of various combinations of access options and
access modes for VAX DBMS domains and Rdb/VMS or Rdb/ELN domains and
relations.

Table 4–29 Multi-User Access to VAX DBMS, Rdb/VMS, and Rdb/ELN Sources

You Ready a Domain,
Database, Relation,
VAX DBMS Record

Another User Can
Then Ready the
Domain, Database,
VAX DBMS Record

Your Effect on
Other Users

Other Users’ Effect
on You

EXCLUSIVE READ
EXCLUSIVE
WRITE

No access. No one else
can read
the realm or
relation.

No effect.

PROTECTED READ PROTECTED READ
SHARED READ

No one else
can write to
the realm or
relation.

No effect.

PROTECTED
WRITE

SHARED READ No one else
can write to
the realm
or relation.
Other users
may encounter
write locks
during your
transaction.

You may
encounter read
locks other users
have put on a
record when you
try to modify it.

SHARED READ PROTECTED READ
PROTECTED
WRITE
SHARED READ
SHARED WRITE

A SHARED
WRITE user
may have to
wait until you
release your
read locks.

You may
encounter write
locks during
another user’s
transaction.

(continued on next page)

4–280 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

Table 4–29 (Cont.) Multi-User Access to VAX DBMS, Rdb/VMS, and Rdb/ELN
Sources

You Ready a Domain,
Database, Relation,
VAX DBMS Record

Another User Can
Then Ready the
Domain, Database,
VAX DBMS Record

Your Effect on
Other Users

Other Users’ Effect
on You

SNAPSHOT for
Rdb/VMS or
Rdb/ELN domains
and VAX DBMS
records

With any access and
mode.

No effect on
users.

You do not see
changes other
users make to
the database
until a COMMIT
or ROLLBACK is
performed.

SHARED WRITE SHARED READ
SHARED WRITE

Other users
may encounter
read and
write locks
during your
transaction.

You may
encounter
read and write
locks during
another user’s
transaction.

Restrictions

Readying many sources at one time may produce the following severe error
message:

Internal error (all available dynamic pools have been exhausted).

This error occurs when DATATRIEVE can no longer allocate an internal memory
pool. To avoid this error, keep in mind the following:

• Ready only the sources you need at any one time.

• When dealing with very large relational or VAX DBMS databases, use the
USING clause to ready only those relations or records that you need.

• Use the FINISH command to end access to any sources you are no longer
using.

The following restrictions apply when you use Format 1:

• You can ready only one version of a domain at any one time. To achieve the
effect of readying multiple versions of the same domain, ready the most recent
version by the domain name and then ready other versions using aliases.

DATATRIEVE Commands, Statements, and Definition Clauses 4–281

READY Command

• When you move a domain definition from one part of the data dictionary to
another using the CDD/Repository Dictionary Management Utility (DMU)
COPY command, you may not be able to ready the domain in its new location.

Certain DATATRIEVE objects in the data dictionary, such as domains, refer
to other objects. For example, domain definitions refer to record definitions
and domain table definitions refer to domain definitions. DATATRIEVE stores
pointers to referred objects by full path name, even if you used relative path
names for those objects in your definitions.

Whenever DATATRIEVE processes these definitions, it translates references
into full CDD/Repository path names. Because of this, you must redefine any
object that you copy elsewhere in the CDD/Repository hierarchy using the
DMU COPY command. For more information, see the VAX CDD/Repository
documentation.

• PROTECTED READ is the default access for RMS domains.

• SNAPSHOT mode is the default access for relational domains. All readied
domains pertaining to a relational database must be readied with SNAPSHOT
to have SNAPSHOT access.

• SHARED READ is the default access for VAX DBMS domains.

• To ready a domain that is defined in the DMU format dictionary, you must
have E (DTR_EXTEND/EXECUTE), S (SEE), and P (PASS_THRU) access
privileges to the record definition associated with that domain. (See the
chapter on ACL in the VAX DATATRIEVE User’s Guide.)

To ready a domain associated with a relation in a relational database, you
must also have E (DTR_EXTEND/EXECUTE), S (SEE), and P (PASS_THRU)
access privileges to the database definition associated with that domain.

• To ready a domain that is defined in the CDO format dictionary, you must
have S (SHOW) access to the dictionary containing the domain, and S
(SHOW) access to the record definition associated with that domain. (See the
chapter on ACL in the VAX DATATRIEVE User’s Guide.)

To ready a domain associated with a relation in a relational database, you
must also have E (EXTEND) access to the database definition associated with
that domain.

• You must have the privilege to the domain that gives you access to the
domain in the mode you specify. See Table 4–29 for a list of the privileges
that you need for each access mode.

• The dictionary path name of a DMU domain to be readied must include any
passwords associated with the domain and the dictionary directories in its
full dictionary path name.

4–282 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

• To ready a domain whose definition is stored in a DMU dictionary directory
other than the default one, you must have at least P (PASS_THRU) access to
all the ancestors in the domain’s path name.

• To ready a domain whose associated record definition is stored in a DMU
dictionary directory other than the default one, you must have at least P
(PASS_THRU) access to all the ancestors in the record’s path name.

• You cannot ready a domain unless the data file specified in the domain
definition exists.

• You cannot ready a domain unless the data file associated with it is stored in
a VMS directory that matches the file specification included in the domain
definition (including any defaults for devices, directories, file name, and file
type).

• To ready a domain for READ access, you must have at least VMS READ
access to the data file associated with it.

• To ready a domain for WRITE, MODIFY, or EXTEND access, you must have
VMS WRITE access to the data file.

• If another user has readied the domain for EXCLUSIVE use, you cannot
ready the domain.

• If another user has readied the domain for PROTECTED use, you can ready
the domain only for READ access.

• You cannot specify the SHARED access option for a domain using an RMS
sequential data file.

• If a conflict occurs between the access mode and the access option you specify
(such as trying to ready an RMS sequential file for PROTECTED WRITE),
DATATRIEVE automatically readies the domain with the EXCLUSIVE access
option.

• RMS does not enforce the EXCLUSIVE access option when you combine it
with the READ access mode.

• A restriction exists on the ready of a CDD$DATABASE domain that refers to
a CDD$RMS_DATABASE object when the READY command is issued from a
DMU format dictionary or with a DMU format path name. Such a ready may
cause unpredictable results.

A CDD$DATABASE domain is a domain based on an existing CDD$DATABASE
object. This type of object can be stored only in a CDO format dictionary.

DATATRIEVE Commands, Statements, and Definition Clauses 4–283

READY Command

However, if the CDD$DATABASE object is stored in the compatibility
dictionary, you may encounter a problem under the following conditions:

Your default dictionary directory is set to a DMU format dictionary
and you use the given name of the CDD$DATABASE domain, as in the
command READY CDD_DB_DOM.

The argument of the READY command uses a DMU format path name,
as in the command READY CDD$TOP.DTR32.CDD_DB_DOM

For example, readying the CDD$DATABASE with the following command
may cause an access violation:

DTR>READY CDD$TOP.DTR32.CDD_DB_DOM

You can avoid this problem in either of the following ways:

Explicitly set your default dictionary to the compatibility dictionary using
a path name that begins with either the logical CDD$COMPATIBILITY
or with the CDO anchor SYS$COMMON:[CDDPLUS].

DTR>SET DICTIONARY CDD$COMPATIBILITY.DTR32
DTR>READY CDD_DB_DOM
DTR>

Use a full CDO format path name to identify the CDD$DATABASE object,
as in the following example:

DTR>READY CDD$COMPATIBILITY.DTR32.CDD_DB_DOM

Note that you can use either the anchor SYS$COMMON:[CDDPLUS] or
the logical CDD$COMPATIBILITY that represents that anchor.

The following restrictions apply when you use Format 2:

• For information about the restrictions on VIDA databases, see the
VAX DATATRIEVE Guide to Interfaces or the VIDA documentation.

• SNAPSHOT is the default access for Rdb/VMS and Rdb/ELN databases and
domains and gives users read-only access to the database. Any other user can
access the database with any access option and mode. You do not see changes
other users make to the database until you perform a COMMIT, ROLLBACK,
or a READY that starts a new transaction.

• SNAPSHOT is the default access for VIDA databases. But, you do see
changes that other users make to the data you are accessing when you use
SNAPSHOT access for VIDA databases or when you use SNAPSHOT with
CONCURRENCY for either VIDA or Rdb/ELN databases. When you ready
a VIDA or Rdb/ELN database with both SNAPSHOT and CONCURRENCY,
DATATRIEVE behaves as though the access were SHARED READ.

4–284 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

• In the DMU format dictionary, when you ready a database, relation, or a
domain pointing to a VAX DBMS record, you must have E (DTR_EXTEND
/EXECUTE), S (SEE), and P (PASS_THRU) access privileges to the database
definition associated with the relation or the VAX DBMS schema and
subschema, the DATATRIEVE/VAX DBMS database definition that points
to the VAX DBMS schema and subschema, and the DATATRIEVE definition
that points to the Rdb/VMS relation.

You must also have the privilege for the database definition that gives you
access to the relations or VAX DBMS records in the mode you specify. See
Table 4–29 for a list of the privileges that you need for each access mode.

• In the CDO format dictionary, when you ready a database or relation you
must have E (EXTEND) and S (SHOW) access privileges to the database
definition associated with the relation and the DATATRIEVE definition that
points to the Rdb/VMS relation.

You must also have the privilege for the database definition that gives you
access to the relations in the mode you specify. See Table 4–29 for a list of the
privileges that you need for each access mode.

• The dictionary path name of a database to be readied must include any
passwords associated with the database and the dictionary directories in its
full dictionary path name.

• To ready a database whose definition is stored in a DMU dictionary directory
other than the default one, you must have at least P (PASS_THRU) access to
all the ancestors in the database path name.

• You cannot ready a database unless the database root file specified in the
database definition exists.

• You cannot ready a database unless the root file specification in the database
CDD/Repository definition matches the VMS file specification (including any
defaults for devices, directories, file name, and file type).

• To ready a database, one or more relations, or one or more VAX DBMS records
for READ access, you must have at least VMS READ access to the database
root file associated with it.

• To ready a database, a relation, or a VAX DBMS record for WRITE, MODIFY,
or EXTEND access, you must have VMS WRITE access to the database root
file.

• If another user has readied a database, relation, or VAX DBMS record for
EXCLUSIVE use, you cannot ready the relation or record.

DATATRIEVE Commands, Statements, and Definition Clauses 4–285

READY Command

• If another user has readied the database, relation, or VAX DBMS record for
PROTECTED use, you can ready the relation or record only for PROTECTED
READ access, for SNAPSHOT access, or for SHARED READ access.

• You cannot mix access options when you use SNAPSHOT access. In order
to have SNAPSHOT access for any VAX DBMS record, you must ready all
VAX DBMS records with SNAPSHOT access.

• DATATRIEVE ignores commit operations while any VAX DBMS, Rdb/VMS,
and Rdb/ELN sources are readied in SNAPSHOT mode. If you ready two
databases and use SNAPSHOT mode for one of them, you must finish the
database readied in SNAPSHOT mode or ready it again in a mode other than
SNAPSHOT before you can commit changes to the database that is not in
SNAPSHOT mode.

• You cannot ready any part of a remote Rdb/VMS or VAX DBMS database
directly. You can, however, create Rdb/VMS and VAX DBMS domain
definitions on the remote node and ready the remote databases using those
domains. In the case of Rdb/VMS, you must define a DATATRIEVE domain
on the remote node for each relation you wish to access. To ready a record
type in a remote VAX DBMS database, you must define a domain on the
remote node for each record type you wish to access in the remote database.

• You cannot ready a relational database that contains no relations.

• DATATRIEVE requires unique names for all readied sources. When you ready
different databases with relations or domains that have the same names, you
must use an alias to prevent one name from duplicating another. If you
attempt to ready two relations of the same name from different relational
databases, DATATRIEVE issues a warning message and does not ready the
second source.

Results

• DATATRIEVE gives you access to one or more databases, domains, relations,
or VAX DBMS records with the access options and access modes you specify.

• The default access option for RMS domains is PROTECTED, and the default
access mode is READ. If you accept the defaults, other users can have READ
access to the domain, but not WRITE, MODIFY, or EXTEND. You can retrieve
records, but you cannot store, modify, or erase records.

• The default access option for relational sources is SNAPSHOT. Other users
can have READ, WRITE, MODIFY, or EXTEND access to the database,
domain, or relation. You can retrieve records but cannot store, modify, or
erase records.

4–286 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

• The default access option for a VAX DBMS database, domain, or VAX DBMS
record, is SHARED. The default access mode is READ. With these defaults,
other users can have READ, WRITE, MODIFY, or EXTEND access to the
domain, database, or VAX DBMS record. There is read locking, and you do
see changes other users make to the data.

• If you use Format 2 and do not specify any relations or VAX DBMS record
names, DATATRIEVE gives you access to all the relations or VAX DBMS
records in the database with the access options and access mode you specify.

• If you use the USING clause, DATATRIEVE readies only those relations and
VAX DBMS records you specify.

• If you want to ready a relation or VAX DBMS record with an access mode and
option different from the default, you must specify the access mode and option
for each relation or VAX DBMS record.

• If you ready a VAX DBMS database and specify a record with more restrictive
access than the access specified in the ready, the following occurs:

SHOW READY displays the specified access mode and option for the
domains or records.

You limit the access of other users to those records or domains until you
rollback, commit, and then ready any VAX DBMS domain or record, or
until you finish the database.

• If you ready an Rdb/VMS or an Rdb/ELN database with the SNAPSHOT
access option and specify a relation with a more restrictive access, the
following occurs:

The domains or relations are shown as readied with the specified access
mode and option.

You can access the database and relations that were readied with
SNAPSHOT access with only the more restrictive SHARED READ mode
until all relations are readied with SNAPSHOT access.

• If you ready a VAX DBMS source with SNAPSHOT access and then ready a
second VAX DBMS source with a mode other than SNAPSHOT, DATATRIEVE
gives you SHARED READ access to the first source. SHOW READY indicates
SNAPSHOT access, but the access mode is SHARED READ. DATATRIEVE
returns the access mode on the first source to SNAPSHOT when you finish
the second source or ready the second source again in SNAPSHOT mode.

DATATRIEVE Commands, Statements, and Definition Clauses 4–287

READY Command

• The CONSISTENCY and CONCURRENCY options relate to relational
databases only. They do not have any effect on the readying of a VAX DBMS
database. Note, also, that you can ready selected VAX DBMS records in the
database. You need not ready them all. You can specify access options for
each record, as well as options for the entire database. The following example
illustrates this:

DTR> READY PARTS_DB USING EMPLOYEE READ, DIVISION WRITE
DTR>
DTR> SHOW READY
Ready sources:

DIVISION: Record, DBMS, shared write
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

EMPLOYEE: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

No loaded tables.

This READY command provides access to all the data from the following
sources:

• The records associated with those domains (EMPLOYEE and DIVISION
records)

• The sets in which those records participate (MANAGES, CONSISTS_OF,
ALL_EMPLOYEES)

• CONSISTENCY is the default access option for the first ready of a relational
source. CONSISTENCY access means that while you are accessing data,
you cannot see updates made by other users. CONCURRENCY access to
relational sources allows you to see other users’ updates to the data that
you are accessing. Currently, Rdb/ELN, Rdb/VMS, and VIDA implement
CONSISTENCY and CONCURRENCY in different ways. See the chapter
on accessing relational data in the VAX DATATRIEVE User’s Guide for
more information and for examples of how to access databases using
CONSISTENCY and CONCURRENCY.

• Once you specify CONSISTENCY or CONCURRENCY, that option becomes
the default until you change the option in a subsequent ready or you finish
the database.

• If you supply no alias for a domain, relation, or VAX DBMS record in the
READY command, DATATRIEVE uses the given name of the domain,
relation, or VAX DBMS record to respond to your commands and statements
dealing with that domain, relation, or VAX DBMS record. From then until
you release control over the domain, relation, or VAX DBMS record with the
FINISH command, you can use the given name in commands, and you must
use the given name in all statements requiring a domain name.

4–288 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

• If you assign an alias for a domain, relation, or VAX DBMS record in the
READY command, DATATRIEVE assigns that alias as the name of the
domain, relation, or VAX DBMS record and you cannot perform operations
using its given name.

• If you assign an alias as the name of a database, you receive an error
message, and DATATRIEVE ignores the alias.

• If you ready a domain, relation, or VAX DBMS record as SHARED READ
and then establish a selected record, DATATRIEVE retrieves the record from
storage every time you enter a statement referring to that record.

• If you issue a READY command for a relational or VAX DBMS database, a
relational or VAX DBMS domain, a relation, or VAX DBMS record that is
ready, the following conditions apply:

You can use only the given name or the alias of the domain, relation, or
record.

The access option and access mode specified in the new READY command
replace those previously in effect.

You must end access to the database, domain, relation, or VAX DBMS
record with the COMMIT, ROLLBACK, or FINISH statement before you
can ready any part of the database again. DATATRIEVE can then start
a new transaction if the READY command changes an access mode or
option.

DATATRIEVE preserves collections from databases, domains, records,
or relations even if you issue a READY statement that changes access
mode.

• DATATRIEVE displays any messages attached to a domain when the domain
is readied. Message reporting is done only on domains defined in the CDO
dictionary with RELATIONSHIPS.

Usage Notes

• You can optimize record definitions using the OPTIMIZE qualifier for the
DEFINE RECORD and REDEFINE RECORD commands. This greatly
reduces the CPU time needed to ready a domain that refers to the record.

DATATRIEVE does not perform this optimization by default; you must specify
the OPTIMIZE qualifier in the record definition to optimize a record.

There are performance and storage tradeoffs you should carefully consider
when using the OPTIMIZE qualifier. See the DEFINE RECORD section in
this chapter for more information.

DATATRIEVE Commands, Statements, and Definition Clauses 4–289

READY Command

• If you have defined a new data file for an RMS domain, you must finish the
domain and ready it again for the new file to take effect.

• When you call a domain table based on a relational source, DATATRIEVE
performs an implicit ready of the relational source mentioned in the domain
table. If a relational source has already been readied, DATATRIEVE cannot
perform this implicit ready because of the previous pending transaction.

• If you change the database definition associated with a relational database or
VAX DBMS database, you must finish all ready sources associated with the
database and then ready it again for the modified database definition to take
effect.

• To show the domains, relations, and VAX DBMS records that are ready, use
the SHOW READY command. SHOW READY displays the name, file type
(for RMS domains), access option, access mode, and full dictionary path name
of all readied RMS, VAX DBMS, and relational domains.

For readied relations and VAX DBMS records, SHOW READY displays the
name, type, access option, access mode, and dictionary path name of the
database. For relational sources, SHOW READY also displays the consistency
option (either CONCURRENCY or CONSISTENCY) that you specified.

The SHOW READY command displays the most recently readied domain,
relation, or VAX DBMS record first.

• The access mode you specify determines the commands and statements you
can use on this domain, relation, or VAX DBMS record. The access modes
needed for the commands and statements are listed in Table 4–30. Before
issuing any other command or statement, you can enter a SHOW READY
command to check that you have readied the target domain, relation, or
VAX DBMS record with the appropriate access mode.

Table 4–30 Access Modes Required by DATATRIEVE Statements

Statement Access Mode Required

DISPLAY MODIFY, READ, or WRITE
ERASE WRITE
FIND MODIFY, READ, or WRITE
LIST MODIFY, READ, or WRITE
MODIFY MODIFY or WRITE

(continued on next page)

4–290 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

Table 4–30 (Cont.) Access Modes Required by DATATRIEVE Statements

Statement Access Mode Required

PRINT MODIFY, READ, or WRITE
REPORT MODIFY, READ, or WRITE
Restructure WRITE or EXTEND
SORT MODIFY, READ, or WRITE
STORE WRITE or EXTEND
SUM MODIFY, READ, or WRITE

• You can define your own default access option using the logical name
DTR$READY_MODE. DATATRIEVE checks the definition of DTR$READY_
MODE only when an access option is not found on the READY command line.
DTR$READY_MODE will be applied when you ready RMS, relational, and
VAX DBMS sources.

If you do not specify a default using DTR$READY_MODE, DATATRIEVE
uses the default access options listed in Table 4–31.

Table 4–31 DATATRIEVE Default Access Modes

Source Default Access Mode

RMS sources PROTECTED
Relational sources SNAPSHOT
VAX DBMS sources SHARED

You can assign a default to DTR$READY_MODE in the following ways:

Use the DATATRIEVE function FN$CREATE_LOG. For example:

DTR> FN$CREATELOG ("DTR$READY_MODE", "SHARED")
DTR> FINISH
DTR> READY YACHTS
DTR> SHOW READY
Ready sources:

YACHTS: Domain, RMS indexed, shared read
<CDD$TOP.DTR32.DAB.YACHTS;3>

Use the DIGITAL Command Language (DCL) command DEFINE. For
example:

$ DEFINE DTR$READY_MODE "SHARED"

DATATRIEVE Commands, Statements, and Definition Clauses 4–291

READY Command

If you define DTR$READY_MODE using FN$CREATE_LOG, the definition
lasts only until the end of the DATATRIEVE session. DATATRIEVE checks
the value of DTR$READY_MODE every time a READY command is executed.
Therefore, you can use FN$CREATE_LOG to change the definition numerous
times during a DATATRIEVE session.

You can also override a system-wide definition of DTR$READY_MODE by
making a user or process level definition.

The logical name translation of DTR$READY_MODE is not iterative. If there
are multiple equivalence names for DTR$READY_MODE, the first is used as
the translation. The translation of DTR$READY_MODE is not case sensitive.

DATATRIEVE performs the following error handling only if you have not
included an access option on the READY command line and DTR$READY_
MODE is specified but cannot be used:

DATATRIEVE verifies if the definition of DTR$READY_MODE is a
valid access option or synonym for an access option. If it is not valid,
DATATRIEVE displays the following message:

The value of DTR$READY_MODE, "NOGOOD", is not
a valid access option.

The preceding error occurred while translating DTR$READY_MODE.
Therefore, DATATRIEVE will use the default access option.

The readying will continue using the DATATRIEVE default access option.

You might specify an access option for DTR$READY_MODE that is
not valid for the type of source you are readying. In this instance,
DATATRIEVE treats the error as if the invalid access option had been
included on the command line.

• When you create a VAX DBMS database, you can specify whether
SNAPSHOT access is available. If you allow SNAPSHOT access, you can
use the DBO/MODIFY/SNAPSHOTS=NOENABLE command later to disallow
it.

When you ready a VAX DBMS source using SNAPSHOT, and SNAPSHOT
is not allowed for that source, DATATRIEVE attempts to ready the source
using SHARED READ and displays an informational message. If the source
cannot be readied using SHARED READ, DATATRIEVE does not ready it and
displays a message that indicates the source has not been readied.

• When you specify access options for a database, domain, relation, or
VAX DBMS record, impose as few restrictions on other people as the needs of
your task allow. Remember that if you specify EXCLUSIVE access, no other
person can get access to the database, domain, relation, or VAX DBMS record.

4–292 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

However, EXCLUSIVE access gives better performance with VAX DBMS
because no locking is done.

• If you have a database, domain, relation, or VAX DBMS record readied for
SHARED WRITE, you are permitting another user to modify records from
the file or database. No other user can modify your selected record or the
current target record of your MODIFY statement. Other users cannot modify
VAX DBMS records held in collections.

However, when you modify a record, make sure that you see the current
record before you change any values. For example, in the following case, you
may not be aware that another user has modified your selected record:

DTR> PRINT FIRST 1 YACHTS

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> FIND FIRST 1 YACHTS
[1 record found]
DTR> SELECT
DTR> MODIFY USING PRICE = PRICE * 1.1

Because you displayed the record before you selected it, another user could
have modified the record in the interval between entering your PRINT and
your SELECT statements.

To guarantee that the record you are modifying is the same as the record you
see, enter the statements in this order: select the record, print it, and then
modify it. DATATRIEVE locks the record from the time you select it until you
have finished your update. For example:

DTR> FIND YACHTS
[113 records found]
DTR> SELECT 1
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> MODIFY USING PRICE = PRICE * 1.1

Another safe method is to set up a FOR loop with an RSE controlling a
BEGIN-END block. You can include the PRINT and MODIFY statements in
the BEGIN-END block. DATATRIEVE locks the record that is current in the
loop, displays it, and then modifies it according to your MODIFY statement.
For example:

DATATRIEVE Commands, Statements, and Definition Clauses 4–293

READY Command

DTR> FOR YACHTS
CON> BEGIN
CON> PRINT
CON> MODIFY PRICE
CON> PRINT
CON> END

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
Enter PRICE:

• If you include a password in the domain, relation name, or VAX DBMS
database to get access to records in the mode you need, you can prevent the
display of the password. Enter an asterisk (*) in place of the password in the
parentheses following the segment of the dictionary path name with which
the password is associated.

After you enter the READY command, DATATRIEVE prompts you for the
password. As you enter the password, DATATRIEVE does not echo the
characters.

You can also include a password prompt in a domain or database definition.
Put the asterisk (*) in parentheses after the path name of the record in the
domain definition. When you ready an RMS domain, DATATRIEVE prompts
you for the password and uses your response to search the entries of the
access control list of the record definition to determine which privileges you
have to the record definition.

• A database, domain, relation, or VAX DBMS record stays ready until you
release it with the FINISH command or until you end your DATATRIEVE
session with EXIT or CTRL/Z; the FINISH command releases the collections
of records, allows access to other users, and frees computer resources. See the
FINISH command in this chapter for more information.

If you are working with VAX DBMS sources or relational sources and you
end your session with EXIT or CTRL/Z, or you finish the last readied source,
DATATRIEVE commits any changes you made to the data.

• If you redefine the record associated with a readied RMS domain, the
change in the record definition does not take effect until you use the FINISH
command to finish the domain and the READY command to ready it again.
Simply readying the domain again does not activate the new record definition.

4–294 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

You can make use of this fact if you want to change a record definition
or change the type of file organization of a data file. Follow these steps
to change the record definition or file organization without redefining the
domain; in both cases, you define a new data file and transfer the data with
the Restructure statement:

1. Ready the domain as an alias. For example:

DTR> READY YACHTS AS OLD_YACHTS
DTR> SHOW READY
Ready domains:

OLD_YACHTS: Domain, RMS sequential, protected read
<CDD$TOP.INVENTORY.YACHTS;1>

No loaded tables.

DTR>

2. Change the record definition with the REDEFINE RECORD command, if
you wish.

3. Define a new data file for the domain. Do not use the SUPERSEDE
option of the DEFINE FILE command. This creates a new version of the
file associated with the readied domain but does not interfere with the
link between that readied domain and the original version of the data file.
For example:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE (NODUP)
DTR>

4. Ready the domain using a different alias and specify WRITE access. The
READY command uses the new record definition, if you created one, and
opens the new data file created by the DEFINE FILE command. For
example:

DTR> READY YACHTS AS NEW_YACHTS WRITE
DTR> SHOW READY
Ready domains:

NEW_YACHTS: Domain, RMS indexed, protected write
OLD_YACHTS: Domain, RMS sequential, protected read

<CDD$TOP.INVENTORY.YACHTS;1>
No loaded tables.

DTR>

5. Use the Restructure statement to move the data from the original data
file to the new one. DATATRIEVE transfers data from fields in the
original data file into fields with the same names in the new data file. For
example:

DATATRIEVE Commands, Statements, and Definition Clauses 4–295

READY Command

DTR> NEW_YACHTS = OLD_YACHTS
DTR>

Note

You cannot reorganize relational databases using DATATRIEVE. You can,
however, use the DATATRIEVE Restructure statement to store records
from an RMS data file into an Rdb/VMS or Rdb/ELN database or relation,
or a VAX DBMS database. This can be useful if you are converting RMS
files to relations.

You can also store records from a relational database or relation into
an RMS data file. Similarly, you can store records from one Rdb/VMS
or Rdb/ELN database or relation into another Rdb/VMS or Rdb/ELN
database or relation.

Because VIDA databases are read-only databases, you can use the
Restructure statement to store VIDA data in an RMS data file, but you
cannot store RMS data in a VIDA source.

Examples

The following example readies the domain YACHTS for WRITE access:

DTR> READY YACHTS WRITE

The following example readies the domain PHONES for EXTEND access:

DTR> READY PHONES (*) EXTEND
Enter password for PHONES:

DTR>

The following example defines a domain with the prompt built into the domain
definition. DATATRIEVE does not display the password:

DTR> DEFINE DOMAIN PROMPT_YACHTS USING YACHT(*) ON YACHT;
DTR> READY PROMPT_YACHTS AS PYTS
Enter password for YACHT:

DTR>

The following example readies the relations EMPLOYEES and SALARY_
HISTORY in the Rdb/VMS database PERSONNEL for SNAPSHOT access:

DTR> READY PERSONNEL USING EMPLOYEES, SALARY_HISTORY
DTR>

4–296 DATATRIEVE Commands, Statements, and Definition Clauses

READY Command

The following example readies the SALARY_HISTORY relation in the Rdb/VMS
database PERSONNEL for SHARED WRITE access with the CONCURRENCY
option:

DTR> READY PERSONNEL SHARED WRITE USING SALARY_HISTORY CONCURRENCY

The following example readies the VAX DBMS domain VENDORS for the default
access mode SHARED READ:

DTR> READY VENDORS
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–297

RECONNECT Statement

RECONNECT Statement
Removes a record from the set occurrence in which it participates and connects
it to the set occurrence specified by the TO list. Before the RECONNECT is
performed, DATATRIEVE sets up a currency indicator for each set specified in
the TO list.

Format

RECONNECT context-name-1

[TO] [context-name-2.] set-name-1 [,...]

Arguments

context-name-1
Is the name of a valid context variable or the name of a collection with a selected
record. The target record must be a member of the sets specified by the TO list.

context-name-2
Is the name of a valid context variable or the name of a collection with a selected
record. It must identify a record that participates in the specified set. If the
SYSTEM owns the set, you do not need to establish a context for the set. If
the set is not owned by the SYSTEM and the context name is not present,
DATATRIEVE uses the most recent single record context of a domain with a
record type that participates in the specified set type.

set-name
Is the name of a set type.

Example

The following example uses nested FOR loops to create the necessary contexts.
The procedure uses prompting value expressions to get information from the user.

DTR> DEFINE PROCEDURE NEW_MANAGER
DFN> FOR G IN GROUPS WITH GROUP_NAME = *."the name of the group"
DFN> FOR E IN EMPLOYEES WITH EMP_ID =
DFN> *."the id of the new manager"
DFN> RECONNECT G TO E.MANAGES
DFN> END_PROCEDURE
DTR>

4–298 DATATRIEVE Commands, Statements, and Definition Clauses

REDEFINE Command

REDEFINE Command
Creates a new version of an object.

Format

REDEFINE

�������
������

DATABASE
DOMAIN
PORT
PROCEDURE
RECORD
TABLE

�������
�����	

definition

Argument

definition
Is the path name of the definition and any other keywords, path names, or
arguments that an object takes. (For an explanation of these arguments, see
the DEFINE command for each object. For example, to understand REDEFINE
DOMAIN, see the DEFINE DOMAIN command in this chapter.)

Restrictions

• To redefine a DATATRIEVE definition in the DMU format dictionary, you
must have P (PASS_THRU) and X (EXTEND) access privileges to the parent
directory of the definition and S (SEE), P (PASS_THRU), and U (UPDATE)
privileges to the highest existing version.

• To redefine a DATATRIEVE definition in the CDO format dictionary, you
must have S (SHOW) and U (CHANGE) access privileges to the directory and
S (SHOW) and U (CHANGE + DEFINE) privileges to the highest existing
version.

• You cannot specify a relative version number with the REDEFINE command.

• You cannot specify a version number with the REDEFINE command if an
object of the same name and version number already exists in the data
dictionary

• You cannot redefine a dictionary.

• When you use the REDEFINE command, the definition you are redefining
must have access privileges that allow creation of later versions. Typically,
you need not worry about these privileges. The data dictionary is usually set
up by the system manager to include the ACL access privileges you need. See

DATATRIEVE Commands, Statements, and Definition Clauses 4–299

REDEFINE Command

the chapter on ACL in the VAX DATATRIEVE User’s Guide for a description
of privileges necessary to redefine definitions.

Results

• The REDEFINE command creates a new version of the object in the data
dictionary. The previous version remains in the data dictionary.

• When you specify an explicit version number as part of the REDEFINE
command, DATATRIEVE creates the object with that version number.

• When you issue a REDEFINE command for an object that does not exist,
DATATRIEVE creates a version 1 of that object after issuing a warning.

• When you specify a version number as part of the REDEFINE command and
the object already exists in the data dictionary with that version number,
DATATRIEVE issues an error message.

• The new object always has the ACL and the history list from the previous
highest version. If a previous version did not exist, DATATRIEVE gives the
new object the default ACL.

Usage Notes

• The REDEFINE command is less useful than the EDIT command if you are
revising existing data dictionary objects, because DATATRIEVE does not
place the text of the earlier version of the object in the buffer as it does with
the EDIT command.

• You can use the REDEFINE command everywhere you can use the DEFINE
command, except for DEFINE DICTIONARY and DEFINE FILE.

Examples

The following example redefines the domain YACHTS using the record definition
YACHT and storing the data in the file DB2:[SMYTHE]YACHT.DAT:

DTR> SHOW DOMAINS
Domains:

* YACHTS;1

DTR> REDEFINE DOMAIN YACHTS
DFN> USING YACHT ON DB2:[SMYTHE]YACHT.DAT;

DTR> SHOW DOMAINS
Domains:

* YACHTS;2 * YACHTS;1

4–300 DATATRIEVE Commands, Statements, and Definition Clauses

REDEFINE Command

The following example redefines the domain YACHTS and specifies 4 as the
explicit version number:

DTR> SHOW DOMAINS
Domains:

* YACHTS;2 * YACHTS;1

DTR> REDEFINE DOMAIN YACHTS;4
DFN> USING YACHT ON DB2:[SMYTHE]YACHT.DAT;

DTR> SHOW DOMAINS
Domains:

* YACHTS;4 * YACHTS;2 * YACHTS;1

DATATRIEVE Commands, Statements, and Definition Clauses 4–301

REDEFINES Clause

REDEFINES Clause
Provides an alternate way to define a field.

Format

level-no field-name-1 REDEFINES field-name-2

Arguments

level-no
Is the level number of field-name-1. Although not a part of the REDEFINES
clause, the level number is shown in the format to clarify its position relative to
the clause.

field-name-1
Is the name of the REDEFINES field. You use this name when you want to refer
to this field. Although not a part of the REDEFINES clause, the field name is
shown in the format to clarify its function and its position relative to the clause.

field-name-2
Is the name of the field being redefined.

Restrictions

• The field to be redefined (field-name-2) must appear in the record definition
before its REDEFINES field (field-name-1). Both fields must have the same
level number.

• The definition of field-name-2 cannot contain a REDEFINES clause. However,
it can be subordinate to a group field with a REDEFINES clause.

• Neither field-name-1 nor field-name-2 can be defined with or contain a field
defined with an OCCURS . . . DEPENDING clause.

• Neither field-name-1 nor field-name-2 can contain a COMPUTED BY clause.
(You cannot redefine a COMPUTED BY field.)

• In the definition of field-1, the REDEFINES clause must immediately follow
the field name. No other clause can be used between the field name and the
keyword REDEFINES.

• The REDEFINES field cannot describe an area larger than the area of
field-name-2. However, the area can be smaller than that of field-name-2.

• You cannot use a qualified field name, such as TYPE.BUILDER, as the field
to be redefined in a REDEFINES field.

4–302 DATATRIEVE Commands, Statements, and Definition Clauses

REDEFINES Clause

Result

The REDEFINES clause redefines an elementary or group field. The redefinition
refers to the same area of the record as the original definition, but it uses the
content of the field in a different way.

Usage Note

If you need to refer to parts of a numeric field as well as to the field itself, you
can redefine the field as a group field. The subordinate fields of the group fields
would contain the parts of the numeric field value that you refer to. Thus, the
REDEFINES clause allows you to redefine a numeric field as a group field. (A
group field cannot be numeric; a group field is always alphanumeric.)

Example

The following record definition shows a redefinition of the field PART_NUMBER.
PART_NUMBER is a numeric field containing 10 digits. Two group fields redefine
PART_NUMBER: PART_NUMBERS_PARTS and PART_NUMBER_GROUPS.
Each redefinition specifies a group field containing a total of 10 digits (the total
number of digits in all subordinate fields):

05 PART_NUMBER PIC 9(10)
05 PART_NUMBER_PARTS REDEFINES PART_NUMBER.

07 PRODUCT_GROUP PIC 99.
07 PRODUCT_YEAR PIC 99.
07 ASSEMBLY_CODE PIC 9.
07 SUB_ASSEMBLY PIC 99.
07 PART_DETAIL PIC 999.

05 PART_NUMBER_GROUPS REDEFINES PART_NUMBER.
07 PRODUCT_GROUP_ID PIC 9(4).
07 PART_DETAIL_ID PIC 9(6).

In this example, the field PRODUCT_GROUP refers to the lowest-valued digits of
PART_NUMBER; PRODUCT_YEAR refers to the next two lowest-valued digits,
and so on.

DATATRIEVE Commands, Statements, and Definition Clauses 4–303

REDUCE Statement

REDUCE Statement
Retains only the unique field values or combinations of field values in a
DATATRIEVE collection, dropping all other values, depending on the reduce
key or keys specified.

Format

REDUCE [collection-name] TO reduce-key-1 [,...]

Arguments

collection-name
Is the name of a collection from which you want to retrieve unique occurrences of
values.

reduce-key
Is a field whose values form the basis for the reduction. You can also use a value
expression as a reduce key, if the value expression refers to at least one field of
the records forming the collection.

Use a comma to separate multiple reduce keys.

Restrictions

• You can use the REDUCE statement only on a collection you have already
formed with a FIND statement.

• You cannot use the REDUCE statement in a compound statement.

• You must specify at least one reduce key.

• You cannot specify more than 255 reduce keys in an RSE or in a REDUCE
statement.

Results

• If you use one reduce key and it is a field name, DATATRIEVE retains in the
collection each unique value of the field. All other field values are dropped
from the collection.

DATATRIEVE does not retain the following values in the collection:

Duplicate occurrences of each value

Values of other fields in the record

4–304 DATATRIEVE Commands, Statements, and Definition Clauses

REDUCE Statement

For example:

DTR> READY YACHTS
DTR> FIND YACHTS
[113 records found]
DTR> REDUCE CURRENT TO BEAM
DTR> PRINT CURRENT

BEAM

00
06
07
08
09
10
11
12
13

DTR>

The field name BEAM is a reduce key. DATATRIEVE retains only the unique
values for BEAM in the collection.

• If you use a value expression as a reduce key, DATATRIEVE searches the
collection for each unique occurrence of the value expression. DATATRIEVE
retains the field value that is a component of the value expression. All other
field values are dropped from the collection. For example:

DTR> FIND YACHTS
[113 records found]
DTR> REDUCE CURRENT TO (BEAM * 2)
DTR> PRINT CURRENT

BEAM

00
06
07
08
09
10
11
12
13

DTR>

The value expression (BEAM * 2) is a reduce key. DATATRIEVE retains the
unique values for BEAM, not for double the value of BEAM.

DATATRIEVE Commands, Statements, and Definition Clauses 4–305

REDUCE Statement

• If you use a virtual field as a reduce key you must include the name of the
field on which the virtual field depends as an additional reduce key. In the
following example, the reduce key is a COMPUTED BY field that is based on
another field in the record. You can include such a field as a reduce key only
if you also name the dependent field or expression as an additional reduce
key.

DTR> DECLARE BEAM_PLUS_TWO COMPUTED BY (BEAM + 2).
DTR> PRINT YACHTS REDUCED TO BEAM_PLUS_TWO
"BEAM" is undefined or used out of context.

DTR> PRINT YACHTS REDUCED TO BEAM, BEAM_PLUS_TWO

BEAM
PLUS

BEAM TWO

00 2
06 8
07 9
08 10
09 11
10 12
11 13
12 14
13 15

DTR>

• If you use two or more reduce keys, DATATRIEVE retains in the collection
all the unique combinations of values, based on the reduce keys specified.
DATATRIEVE does not retain any other field values in the collection. For
example:

DTR> FIND FIRST 12 YACHTS
[12 records found]
DTR> REDUCE CURRENT TO BUILDER, RIG
DTR> PRINT CURRENT

MANUFACTURER RIG

ALBERG KETCH
ALBIN SLOOP
AMERICAN MS
AMERICAN SLOOP
BAYFIELD SLOOP
BLOCK I. SLOOP
BOMBAY SLOOP
BUCCANEER SLOOP
CABOT SLOOP

DTR>

4–306 DATATRIEVE Commands, Statements, and Definition Clauses

REDUCE Statement

BUILDER and RIG are reduce keys. The unique combination of values for
the two fields is retained. AMERICAN appears twice because it is the only
manufacturer in the collection that makes yachts with more than one type of
rig.

Usage Notes

• If you omit the collection name, DATATRIEVE reduces the CURRENT
collection to unique field values.

• To reduce record streams to unique field values, use the REDUCED TO
clause of the record selection expression (RSE) that creates the record stream.
To reduce collections when you first form them, use the REDUCED TO
clause of the RSE in the FIND statement. (See the chapter on RSE in the
VAX DATATRIEVE User’s Guide.)

Examples

The following example searches through the YACHTS domain and, for each type
of RIG, lists the prices of all boats that cost over $35,000:

DTR> DEFINE PROCEDURE RIG_QUERY
DFN> FIND YACHTS
DFN> REDUCE CURRENT TO RIG
DFN> PRINT SKIP, RIG, ALL PRICE OF YACHTS WITH
DFN> PRICE GT 35000 AND RIG = Y.RIG OF Y IN CURRENT
DFN> END_PROCEDURE
DTR> :RIG_QUERY

RIG PRICE

KETCH $36,951
$51,228
$41,350
$39,500
$36,950
$54,970
$50,000
$80,500

MS $35,900

SLOOP $37,850
$39,215
$37,850
$48,490

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–307

REDUCE Statement

Note the format of this PRINT statement:

PRINT print-list, ALL print-list OF rse-1 OF rse-2

RSE-1 is: ALL PRICE OF YACHTS WITH PRICE GT 35000 AND RIG = Y.RIG
RSE-2 is: Y IN CURRENT

RSE-2 controls the printing of the first print list (SKIP, RIG) and RSE-1 controls
the printing of the second print-list (PRICE). For more information on inner print
lists, see the section in this chapter on the PRINT statement.

You can use the REDUCED TO statement to match values of a date field for the
month and year.

The following example uses the domain PAYABLES described in the
VAX DATATRIEVE User’s Guide. Records in PAYABLES have the same TYPE
field as in YACHTS, a date field (INVOICE_DUE), and a field for wholesale price
(WHSLE_PRICE). The example shows how to display the records in PAYABLES
where INVOICE_DUE is later than January 1, 1983. The records are separated
according to the month they are due. The REDUCED TO statement is used to
identify the unique values of month and year for PAYABLES. Then the records
are searched for matches to these values.

DTR> SHOW MONTHLY_RPT
PROCEDURE MONTHLY_RPT
READY PAYABLES
FIND PAYABLES WITH INVOICE_DUE AFTER "JAN 1, 1983"
REDUCE CURRENT TO FORMAT INVOICE_DUE USING YYNN
FOR A IN CURRENT

BEGIN
PRINT SKIP, "Invoices Due for the Month of"|||
FORMAT A.INVOICE_DUE USING M(9), SKIP

FOR PAYABLES WITH FORMAT INVOICE_DUE USING YYNN =
FORMAT A.INVOICE_DUE USING YYNN SORTED BY INVOICE_DUE

PRINT INVOICE_DUE, TYPE, WHSLE_PRICE
END

END_PROCEDURE

DTR> :MONTHLY_RPT

Invoices Due for the Month of January

INVOICE WHSLE
DUE VENDOR ITEM_TYPE PRICE

1/02/83 ALBERG 37 MK II $28,500
1/25/83 SALT 19 $4,850
1/31/83 AMERICAN 26-MS $15,150

Invoices Due for the Month of February

4–308 DATATRIEVE Commands, Statements, and Definition Clauses

REDUCE Statement

2/12/83 WINDPOWER IMPULSE $1,500
. . . .
. . . .
. . . .

Invoices Due for the Month of April

4/01/83 BAYFIELD 30/32 $13,000
4/01/83 IRWIN 37 MARK II $29,999
4/15/83 ALBIN VEGA $14,250

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–309

RELEASE Command

RELEASE Command
Ends your control over one or more collections, forms, tables, or global variables
and frees the workspace occupied by them.

Format

RELEASE

�
����

ALL
collection-name
form-name
table-name
variable-name

�
���� [,...]

Arguments

ALL
Causes DATATRIEVE to release all collections, tables, or variables.

form-name
collection-name
table-name
variable-name
Is the name of a form, a collection, a dictionary or domain table, or a variable you
want to release. If you specify more than one item, use a comma to separate each
from the next.

Restrictions

• You must issue this command at the DATATRIEVE command level (indicated
by the DTR> prompt).

• You cannot use the RELEASE command to release a form that was loaded
when a domain was readied. The form must have been loaded with the
DISPLAY_FORM statement or with the WITH_FORM statement.

Results

• If RELEASE or RELEASE ALL is specified, DATATRIEVE releases all
collections, dictionary tables, domain tables, and variables, freeing the
workspace they occupied. The effect is very much like the FINISH command.

• DATATRIEVE releases the collection, dictionary table, domain table, or global
variable and frees the workspace it occupied.

• The records and domains associated with the collection you want to release
are not changed by this command.

4–310 DATATRIEVE Commands, Statements, and Definition Clauses

RELEASE Command

• When you release a DECforms form, you must specify the form name, not the
form file name. If more than one form has that name, only one is removed:
the first in the list displayed by the SHOW FORMS command.

• If you specify more than one item in the command, DATATRIEVE releases
the items in left-to-right order. If the command fails before all items are
released, DATATRIEVE prints a message indicating which item could not be
released. In such a case of failure, DATATRIEVE releases all items in the
command preceding the one that failed and does not release the ones that
follow it.

Usage Notes

• To learn which collections you have in the workspace and in which order you
created them, enter a SHOW COLLECTIONS command.

• To learn which dictionary tables and domain tables you have in your
workspace, enter a SHOW READY command.

• To learn which global variables you can release, enter a SHOW VARIABLES
command or a SHOW FIELDS command.

• When you have two or more collections in your workspace and you release the
CURRENT one, the remaining collection you formed most recently becomes
the new CURRENT collection.

• The RELEASE command is implicit in the following cases:

A FIND statement that successfully forms a collection releases an existing
collection with the same name. If the CURRENT collection has no other
name, a new collection formed by a FIND statement releases and replaces
the previous CURRENT collection. DATATRIEVE releases the previous
collection, even if the new collection contains no records.

Ending a session (with EXIT or CTRL/Z) releases all collections, all
dictionary tables, all domain tables, and all global variables in your
workspace.

When you use a FINISH command, DATATRIEVE releases all collections
associated with the specified domains.

When you declare a global variable that has the same name as one that
exists, DATATRIEVE releases the old global variable.

• You cannot assign a value to or retrieve a value from a global variable once
you release it. You can redefine the variable with the DECLARE statement,
but, if you do, the previous value is lost and the variable is initialized to the
default value: zero, the null string, or the default value established by the

DATATRIEVE Commands, Statements, and Definition Clauses 4–311

RELEASE Command

DEFAULT VALUE clause or the MISSING VALUE clause in the DECLARE
statement that created the variable.

Examples

The following example releases first one of two named collections, then the other:

DTR> SHOW COLLECTIONS
Collections:

BIG-ONES (CURRENT)
A

DTR> RELEASE BIG-ONES
DTR> SHOW COLLECTIONS
Collections:

A (CURRENT)

DTR> RELEASE A
DTR> SHOW COLLECTIONS
No established collections.
DTR>

The following example releases the dictionary table DEPT-TABLE and the global
variables X and Y:

DTR> SHOW READY
No ready sources.

Loaded tables:
DEPT_TBL: Dictionary table

<CDD$TOP.WORK.DEPT_TBL>

DTR> SHOW VARIABLES
Global variables

X <Character string>
Y <Number>

DTR> RELEASE DEPT_TBL, X, Y

DTR> SHOW READY; SHOW VARIABLES
No ready sources.
No loaded tables.
No global variables are declared.
DTR>

The following example uses the RELEASE ALL command to release the
collections LITTLE_ONES and B, and also the global variables T and TERRY:

4–312 DATATRIEVE Commands, Statements, and Definition Clauses

RELEASE Command

DTR> SHOW COLLECTIONS
Collections:

B (CURRENT)
LITTLEONES

DTR> SHOW VARIABLES
Global variables

T <Date>
TERRY <Character string>

DTR> RELEASE ALL
DTR> SHOW COLLECTIONS
No established collections.

DTR> SHOW VARIABLES
No global variables are declared.

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–313

RELEASE SYNONYM Command

RELEASE SYNONYM Command
Releases the definition of a synonym for a DATATRIEVE keyword.

Format

RELEASE SYNONYM synonym-name-1 [,...]

Argument

synonym-name
Is a synonym already defined for a DATATRIEVE keyword.

Restriction

You must issue this command at the DTR> prompt.

Result

DATATRIEVE releases the synonym or synonyms specified. You can no longer
use them in place of DATATRIEVE keywords.

Usage Notes

• To see defined synonyms, enter a SHOW SYNONYMS command.

• To release more than one synonym, separate the synonym names by commas.

Example

The following example defines synonyms for PRINT and READY and then
releases the synonym definitions:

DTR> DECLARE SYNONYM P FOR PRINT, R FOR READY
DTR> R OWNERS; P FIRST 1 OWNERS

BOAT
NAME NAME BUILDER MODEL

SHERM MILLENNIUM FALCON ALBERG 35

DTR> RELEASE SYNONYM R, P
DTR> R YACHTS
R YACHTS

Expected statement, encountered "R".
DTR> P OWNERS
P OWNERS

4–314 DATATRIEVE Commands, Statements, and Definition Clauses

RELEASE SYNONYM Command

Expected statement, encountered "P".
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–315

REPEAT Statement

REPEAT Statement
Causes DATATRIEVE to execute a simple or compound DATATRIEVE statement
a specified number of times.

Format

REPEAT value-expression statement

Arguments

value-expression
Is a value expression indicating the number of times to execute the statement.
This argument must evaluate to a positive integer less than or equal to
2,147,483,647.

statement
Is any simple or compound DATATRIEVE statement (except a FIND, SELECT,
DROP, or SORT statement).

Restrictions

• Do not use a FIND, SELECT, DROP, or SORT statement in a REPEAT
statement.

• You must observe all restrictions on the simple or compound statements you
use in a REPEAT statement.

• If the statement in the REPEAT statement is the invocation of a procedure
(for example, REPEAT n :procedure-name), the procedure cannot contain a
command or a FIND, SELECT, DROP, or SORT statement as its first element.

• If you invoke a procedure in a compound statement in a REPEAT statement
(for example, REPEAT n BEGIN :procedure-name; END), that procedure
cannot contain a DATATRIEVE command, or a FIND, SELECT, DROP, or
SORT statement as its first element.

Results

• DATATRIEVE executes the statement the number of times specified by the
value expression. Then DATATRIEVE executes the command or statement
following the REPEAT statement.

4–316 DATATRIEVE Commands, Statements, and Definition Clauses

REPEAT Statement

• If you invoke a procedure in a REPEAT statement (for example, REPEAT
n :procedure-name), only the first statement (whether simple or compound)
in the procedure is executed the number of times specified in the value
expression. Each succeeding statement in the procedure is executed only
once.

Usage Notes

• Use the REPEAT statement to repeat a simple or compound statement a fixed
number of times.

• You can force an exit from a loop created by a REPEAT statement in the
following ways:

Type CTRL/Z in response to any prompt within the loop.

Use an IF-THEN-ELSE statement with an ABORT statement in the
THEN or ELSE clauses to exit from the loop according to the conditions
specified in the IF clause. See the sections in this chapter on ABORT and
IF-THEN-ELSE for more information.

Type CTRL/C at any time during the execution of the statement (but not
in response to a prompt).

Having SET ABORT or SET NO ABORT in effect does not change the
DATATRIEVE response to an ABORT statement in a REPEAT loop. If
the conditions for the ABORT are met in either case, DATATRIEVE
executes no statement following the ABORT statement in the REPEAT
loop. When the ABORT occurs in a REPEAT loop, DATATRIEVE returns
you to command level (indicated by the DTR> prompt).

• You can nest REPEAT statements. DATATRIEVE executes each inner
REPEAT statement the specified number of times each time it loops through
the outer REPEAT statement.

Examples

The following example prints TEST REPEAT three times:

DTR> REPEAT 3 PRINT "TEST REPEAT"
TEST REPEAT
TEST REPEAT
TEST REPEAT

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–317

REPEAT Statement

The following example aborts a REPEAT statement by responding to a prompt
with a CTRL/Z:

DTR> READY YACHTS WRITE
DTR> REPEAT 5 STORE YACHTS
Enter MANUFACTURER: HOBIE
Enter MODEL: CAT
Enter RIG: SLOOP
Enter LENGTH-OVER-ALL: 22
Enter DISPLACEMENT: 4000
Enter BEAM: 8
Enter PRICE: 6500
Enter MANUFACTURER: CTRL/Z

Execution terminated by operator
DTR> FIND YACHTS WITH BUILDER = "HOBIE"
[1 record found]
DTR>

The following example shows the effect of nesting REPEAT statements in
procedures. The procedure NUM1 contains two PRINT statements. The
procedure NUM2 contains two REPEAT statements, one nested in the other.
The inner REPEAT statement causes DATATRIEVE to execute the first PRINT
statement in NUM1 twice each time DATATRIEVE loops through the outer
REPEAT statement:

DTR> SET NO PROMPT
DTR> SHOW NUM1
PRINT SKIP, "ONE, TWO, THREE"
PRINT "ONE, TWO, THREE, FOUR, FIVE"

DTR> :NUM1

ONE, TWO, THREE

ONE, TWO, THREE, FOUR, FIVE

DTR> SHOW NUM2
REPEAT 2

BEGIN
REPEAT 2 :NUM1

END
:NUM1

DTR> :NUM2

ONE, TWO, THREE

ONE, TWO, THREE
ONE, TWO, THREE, FOUR, FIVE

ONE, TWO, THREE

ONE, TWO, THREE
ONE, TWO, THREE, FOUR, FIVE

4–318 DATATRIEVE Commands, Statements, and Definition Clauses

REPEAT Statement

ONE, TWO, THREE
ONE, TWO, THREE, FOUR, FIVE

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–319

REPORT Statement (Report Writer)

REPORT Statement (Report Writer)
Invokes the Report Writer and is the first entry in a report specification. In the
REPORT statement you can specify the following:

• The data you want to report

• The output device for the report

• The output format for the report

The other statements in the report specification are AT BOTTOM, AT TOP,
DECLARE_ATT, END_REPORT, PRINT, and SET. These statements are
discussed in separate sections of this chapter.

Format

REPORT [rse]

�
ON

� file-spec
*.prompt

 �
[FORMAT format-spec]

Arguments

rse
Specifies the data for your report. To create a record stream for your report, enter
the appropriate RSE in the REPORT statement. You can make reports using
data from:

• Readied domains

• Collections

• Lists

When you omit the RSE, the Report Writer uses the data in your current
collection for the report. If there is no current collection, DATATRIEVE displays
the following error message:

A current collection has not been established.

file-spec
Is the file to which you want to write the report. A complete file specification has
the following format:

node-spec::device:[directory]file-name.type;version

The minimum file specification consists of a period (.); the specification of such a
file stored in your default VMS directory ends with ".;n", where n is the version
number and both the file name and the type are null strings.

4–320 DATATRIEVE Commands, Statements, and Definition Clauses

REPORT Statement (Report Writer)

If you omit a field in the file specification, DATATRIEVE uses the defaults as
listed in Table 4–32.

Table 4–32 Output File Specification Defaults

Field Default

node-spec:: Your local node
device: Your default device
[directory] Your default directory
file-name Null string
.type .LIS
;version Highest version number

When you omit the ON clause in a REPORT statement, DATATRIEVE displays
the report on your terminal.

format_spec
Is the format in which you want the report presented. The following formats are
supported:

Format Explanation Output type

DDIF1 The CDA format for page-based documents. DDIF
allows files produced by the Report Writer to be
processed directly, for example, by DECwrite,
DECpresent, or conversion to other formats.

page

PS PostScript™, produced by conversion from DDIF to
obtain high quality printout.

page

null The default ASCII format produced by the Report
Writer. Format encoded as ASCII characters.

page

TEXT Format encoded as ASCII characters, with ANSI
escape sequences that produce certain attributes on
terminals and printers.

page

DTIF1 The CDA format for tables. DTIF allows files produced
by the Report Writer to be processed directly, for
example, by DECdecision, DECchart, or conversion to
other formats.

table

1DDIF and DTIF output can be converted to a multitude of different formats using the CDA converter.
See the CDA documentation for further details.

DATATRIEVE Commands, Statements, and Definition Clauses 4–321

REPORT Statement (Report Writer)

*.prompt
Is a prompting value expression that allows you to specify a file specification
when DATATRIEVE processes the report specification.

Restrictions

• For spreadsheet outputs (DTIF format), relationships between columns are
lost: for example when COMPUTED BY fields are printed, the result of the
computation is passed to the output file, rather than the formula used to
calculate it.

Usage Notes

• You can report on data only in domains readied for READ, WRITE, or
MODIFY access. Because you cannot establish collections or record streams
in domains readied for EXTEND access, you cannot report on data in domains
readied for EXTEND access.

• The data you report must be contained in the current collection or in the
record stream established by the RSE in the REPORT statement.

• The default format is ASCII text. This takes two forms:

if the FORMAT clause is not specified, the RW output is in ASCII format,
and the ATT clauses are completely ignored. No attributes are applied.
(See the DECLARE_ATT Statement.)

if the FORMAT TEXT clause is explicitly specified, attributes are applied
wherever possible (BOLD, UNDERLINE, and REVERSE attributes)
through the use of ANSI escape sequences.

• All formats, except for the ASCII formats, require the ON clause in the
REPORT statement. In these cases, if the REPORT statement containing
the ON clause is embedded in a ON compound statement, the output will be
directed to the file specified in the ON clause, while the file specified in the
ON compound statement will contain no output.

• If you are using an ASCII format, and want the report written to more than
two output media, you can include multiple ON statements before you invoke
the Report Writer, for example:

DTR> READY PAYABLES
DTR> ON [MORRISON]PAY1.LIS
CON> ON [MORRISON.RPTS]PAY1.LIS
CON> REPORT PAYABLES ON TT:
RW> PRINT INVOICE_DUE
RW> END_REPORT

4–322 DATATRIEVE Commands, Statements, and Definition Clauses

REPORT Statement (Report Writer)

• Every execution of a REPORT statement, for example within a loop, creates a
new file.

• When producing DDIF or DTIF reports, note that these may be converted to
a range of other formats by means of the CDA Converter Library. For further
information, refer to the CDA documentation.

DATATRIEVE Commands, Statements, and Definition Clauses 4–323

Restructure Statement

Restructure Statement
Transfers data from the fields of records in a record stream to fields with the
corresponding names in a domain.

Format

domain-name = rse

Arguments

domain-name
Is the given name or alias of a domain readied for EXTEND or WRITE access.
That domain receives data from the records identified by the RSE.

rse
Is an RSE that identifies records containing one or more fields corresponding to
fields of the same name in the domain that receives the data.

Restrictions

• You must ready the receiving domain for WRITE or EXTEND access.

The domains referred to in the RSE must be readied for READ, MODIFY, or
WRITE access.

• To update a receiving domain defined in the DMU format dictionary, you must
have P (PASS_THRU), S (SEE), and W (DTR_WRITE) or E (DTR_EXTEND
/EXECUTE) access to the domain definition and P (PASS_THRU), S (SEE),
and E (DTR_EXTEND/EXECUTE) access to the record definition.

To form the record stream with the RSE, you must have P (PASS_THRU),
S (SEE), and R (DTR_READ) access to the definitions of the domains from
which the record stream derives and P (PASS_THRU), S (SEE), and E (DTR_
EXTEND/EXECUTE) access to the record definition associated with the
domains from which the record stream derives.

• To update a receiving domain defined in the CDO format dictionary, you
must have S (SHOW) access to the dictionary containing the definition, and S
(SHOW) and W (WRITE) access to the domain and record definitions.

To form the record stream with the RSE, you must have S (SHOW), and R
(READ) access to the definitions of the domains from which the record stream
derives and S (SHOW), and E (EXTEND) access to the record definition
associated with the domains from which the record stream derives.

• The receiving domain and the source in the RSE must have the name of at
least one field in common.

4–324 DATATRIEVE Commands, Statements, and Definition Clauses

Restructure Statement

• The source in the RSE cannot have two elementary field names with the
same name associated with different group fields. The same rule holds for the
receiving domain. DATATRIEVE does not always associate the elementary
fields with the appropriate group fields. In these cases, a STORE domain-
name USING statement is the best approach. See the section in this chapter
on the STORE statement.

• If the record is hierarchical, use the MATCH statement with a STORE
domain-name USING statement to restructure the record. See the section in
this chapter on the MATCH statement.

Results

• DATATRIEVE copies values from the record stream to new records in the
data file of the receiving domain. DATATRIEVE also makes any data type
conversions that might be necessary.

• If the record stream produced by the RSE contains no records, then no records
are stored in the receiving domain.

Usage Notes

• The Restructure statement provides a simple way of copying data from one
domain to another. This statement is especially useful when you modify a
record definition or want to change the file organization of a domain’s data
file. After entering the appropriate READY and DEFINE commands, you use
the Restructure statement to transfer data from the old domain to the new.

• The Restructure statement matches fields from the new domain with fields of
the same name in the old one and then transfers data from the fields in the
old data file to those in the new one.

• If you define a new record, you can add new fields, omit old ones, change
the data type of fields, and change the length of fields. DATATRIEVE does
the data conversions automatically. The lengths and data types of the
corresponding fields do not have to be the same. If they are different, you
need to anticipate any problems (such as truncations or overflows) that might
arise. Only the field names or query names of the corresponding fields must
be the same.

• You can also use the Restructure statement when you want to change the type
of file organization of a domain’s data file. You can change from a sequential
file to an indexed file without defining a new domain. This process uses the
AS alias clause of the READY command and is explained in the section on
the READY command.

DATATRIEVE Commands, Statements, and Definition Clauses 4–325

Restructure Statement

Note

You cannot reorganize VAX DBMS or relational databases using
DATATRIEVE. You can, however, use the DATATRIEVE Restructure
statement to store records from an RMS data file in a relational database
or relation, and in a VAX DBMS domain or record. You can also use
the Restructure statement to store records from a relational database
or relation in an RMS data file, and to store records from a VAX DBMS
domain or record in an RMS data file.

Examples

The following example defines a new domain using FAMILY_REC and stores only
those records of families that have no children younger than 15:

DTR> DEFINE DOMAIN NEWFAMS USING FAMILY_REC ON FAMS;
DTR> DEFINE FILE FOR NEWFAMS MAX, KEY = MOTHER (DUP)
DTR> NEWFAMS = FAMILIES WITH NOT ANY KIDS WITH AGE LE 15
DTR> FIND NEWFAMS
[8 records found]
DTR> FIND FAMILIES
[16 records found]
DTR>

The following example defines a new domain called YACHTS_PRICE_LIST, which
contains only the fields TYPE and PRICE from the old YACHT record definition.
The number of records transferred is checked with the FIND statement and the
accuracy of the transfer is checked with the CROSS statement. The example
displays some of the records from the new domain to check the presence of the
MISSING VALUE edit string.

4–326 DATATRIEVE Commands, Statements, and Definition Clauses

Restructure Statement

DTR> DEFINE DOMAIN YACHTS_PRICE_LIST USING YPL_REC ON YPL.DAT;
DTR> DEFINE RECORD YPL_REC USING
DFN> 01 BOAT.
DFN> 03 TYPE.
DFN> 05 BUILDER PIC X(10).
DFN> 05 MODEL PIC X(8).
DFN> 03 PRICE PIC 9(5) MISSING VALUE IS 0
DFN> EDIT_STRING $$$,$$$?"NOT LISTED".
DFN> ;
[Record is 23 bytes long.]
DTR> DEFINE FILE FOR YACHTS_PRICE_LIST KEY = TYPE
DTR> READY YACHTS_PRICE_LIST AS YPL WRITE
DTR> READY YACHTS
DTR> SHOW READY
Ready domains:

YACHTS: Domain, RMS indexed, protected read
<CDD$TOP.DTR32.WAJ.YACHTS;1>

YPL: Domain, RMS indexed, protected write
<CDD$TOP.DTR32.WAJ.YACHTS_PRICE_LIST;1>

No loaded tables.

DTR> YPL = YACHTS WITH LOA GT 35
DTR> FIND YACHTS WITH LOA GT 35
[23 records found]
DTR> FIND YPL
[23 records found]
DTR> FIND A IN YPL CROSS B IN YACHTS OVER
[Looking for field name]
CON> TYPE WITH A.PRICE NE B.PRICE
[0 records found]
DTR> FIND YPL WITH PRICE MISSING
[12 records found]
DTR> PRINT FIRST 3 CURRENT

BUILDER MODEL PRICE

BLOCK I. 40 NOT LISTED
CABOT 36 NOT LISTED
DOWN EAST 38 NOT LISTED

DTR>

The following example uses the Restructure statement to transfer data from an
indexed file to a sequential file:

DTR> SET NO PROMPT
DTR> READY YACHTS AS OLD
DTR> DEFINE FILE FOR YACHTS
DTR> READY YACHTS AS NEW WRITE
DTR> NEW = OLD
DTR> FIND NEW
[113 records found]
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–327

Restructure Statement

If the field has a DEFAULT VALUE clause, DATATRIEVE initializes the field
with the default value. If the field has a MISSING VALUE clause and no
DEFAULT VALUE clause, DATATRIEVE initializes the field with the missing
value. If the field has neither a DEFAULT VALUE clause nor a MISSING
VALUE clause, DATATRIEVE initializes a numeric field as 0 and an alphabetic
or alphanumeric field as spaces.

4–328 DATATRIEVE Commands, Statements, and Definition Clauses

ROLLBACK Statement

ROLLBACK Statement
Undoes all the changes you made to the database since the last COMMIT
or ROLLBACK statement, or since your first READY if you have not done a
ROLLBACK or a COMMIT. The ROLLBACK statement performs a VAX DBMS
or relational rollback and releases all collections associated with VAX DBMS
domains and records and with relational domains and relations. ROLLBACK
then readies VAX DBMS realms again or finishes and starts a new relational
source transaction.

The ROLLBACK statement also acts as an ABORT in procedures, nested
statements, and command files.

The ROLLBACK statement affects all readied parts of VAX DBMS and relational
databases, whether or not you made any changes to the data they contain. RMS
domains are not affected by the ROLLBACK statement.

Format

ROLLBACK

Usage Notes

• If you do a FINISH that did not cause a COMMIT, the ROLLBACK undoes
changes made since the previous COMMIT, ROLLBACK, or the first READY.

• If you have done a final FINISH on a database, ROLLBACK undoes changes
to that FINISH.

Example

The following example for the VAX DBMS database PARTS_DB connects an
employee named Hill to a part LA36 in the RESPONSIBLE_FOR set. The
ROLLBACK statement undoes the change:

DTR> FIND E IN EMPLOYEES WITH EMP_LAST_NAME = "HILL"
DTR> SELECT 1
DTR> FOR P IN PART WITH PART_DESC = "LA36"
CON> CONNECT P TO E.RESPONSIBLE_FOR
DTR> ROLLBACK
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–329

SCALE Clause

SCALE Clause
Establishes explicitly the scale factor to be applied to the value stored in the field.

Format

SCALE [IS] [-]integer

Arguments

– (minus sign)
Is an optional minus sign to indicate a negative scale factor.

integer
Indicates the number of decimal places the implied decimal point is from the
right or left end of the value stored in the field.

Restriction

Do not use a SCALE clause in the same definition with a V or one or more Ps in
the picture string.

Results

Scale factors help determine the position of the implied decimal point associated
with the value stored in the field. A positive scale determines how many places
the implied decimal point is to the right of the digits stored in the field. If the
scale factor is 2 and the field contains the digits 12, the value of the field is 1200.

A negative scale factor determines how many places the implied decimal point is
to the left of the digits stored in the field. If the scale factor is –2 and the field
contains the digits 12, the value of the field is .12.

Examples

The following example uses a positive scale factor to store a large number in a
small field:

03 BARRELS_PER_DAY WORD
SCALE 6
EDIT_STRING Z(5)" Million".

4–330 DATATRIEVE Commands, Statements, and Definition Clauses

SCALE Clause

The following example uses a negative scale factor to store a minute number in a
small field:

03 PROJECT.
05 PROBABILITY_OF_FINISHING.

07 EVER DEFAULT VALUE IS 1
PIC 99 SCALE -2.

07 ON_TIME 99 SCALE -6
MISSING VALUE 0
EDIT_STRING 0.9(6)?"Better late than never".

DATATRIEVE Commands, Statements, and Definition Clauses 4–331

SELECT Statement

SELECT Statement
Establishes a target record in a collection.

Format

SELECT

�
������

FIRST
NEXT
PRIOR
LAST
value-expression
NONE

�
������ [collection-name] [WITH boolean]

Arguments

FIRST
Selects the first record in the target collection.

NEXT
Selects the next record in the target collection. (See the second and third items in
the Results section.) When you omit a position specification, NEXT is the default.

PRIOR
Selects the previous record in the target collection. (See the fifth and sixth items
in the Results section.)

LAST
Selects the last record in the target collection.

value-expression
Evaluates to a positive number. DATATRIEVE uses the integer part of the
number to select the record with that position number in the collection.

NONE
Releases the selected record so that no selected record exists for the current
collection. If the collection was formed from a file-structured database, SELECT
NONE also releases the RMS lock on the selected record.

collection-name
Is the name of the target collection containing the record to be selected. If you
omit the collection name, the target collection is the current collection.

4–332 DATATRIEVE Commands, Statements, and Definition Clauses

SELECT Statement

WITH boolean
Causes DATATRIEVE to select the record that satisfies both the Boolean
expression and the collection position references (FIRST, LAST, NEXT, PRIOR,
and value-expression).

Restrictions

• You must establish the target collection with a FIND statement before
entering this statement.

• The target collection cannot be empty.

• With the SELECT statement, you can move the collection cursor (which
points to the selected record in a collection) to the position of a record that
has been dropped, but you cannot retrieve any data from the record that
occupied that position before you dropped it. You must form a new collection
or record stream containing that record to retrieve its data. See the section in
this chapter on the DROP command.

• Do not use a SELECT statement in a compound statement.

• Do not use a SELECT statement in FOR, REPEAT, or WHILE statements.

• If you specify a value expression, the expression must evaluate to a positive
number between 1 and 1,301,265, which is the limit on collection size for
records in RMS data files. The integer part of the number must not exceed
the number of records in the collection. If the value expression exceeds the
number of records in the collection, DATATRIEVE displays the following
message:

Record number out of range for collection.

• You cannot use a SELECT statement with a Boolean expression on a remote
collection. For example:

DTR> READY REMOTE-YACHTS
DTR> FIND REMOTE-YACHTS
[113 records found]
DTR> SELECT FIRST WITH PRICE = 0

SELECT with a boolean is not supported for remote collections.

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–333

SELECT Statement

Results

• The SELECT statement establishes a selected record in the target collection
and, thus, establishes a single record context for one record in that collection.

When you enter this statement, the record DATATRIEVE selects depends
on the arguments you supply, the content of the target collection, and the
existence and position of a previous selected record in the collection.

• If you have established a selected record for a collection and that record is not
the last one, entering SELECT NEXT causes the next record in the collection
to become the selected record.

• If you have not established a selected record in a collection and you enter
SELECT NEXT, the first record in the collection becomes the selected record.

• If the collection cursor points to the last record in the collection and you
specify SELECT NEXT, DATATRIEVE displays an error message, and the
last record in the collection is still the selected record.

• If you have not established a selected record in a collection and you enter
SELECT PRIOR, DATATRIEVE displays an error message and does not
select any record in the collection.

• If the first record in the collection is the selected record and you specify
SELECT PRIOR, DATATRIEVE displays an error message, and the first
record in the collection is still the selected record.

• If the record identified by the SELECT statement has been dropped from the
collection with a DROP statement, DATATRIEVE displays a message, and
moves the collection cursor (which points to the selected record in a collection)
to the position of the dropped record.

• If the target collection is not the CURRENT collection, selecting a record from
it does not make it the CURRENT collection.

• When you omit the argument that determines the position of the selected
record, DATATRIEVE responds as though you had entered SELECT NEXT.
(See the second, third, and fourth items in the Results section.)

If no selected record exists for the target collection, DATATRIEVE selects
the first record.

If a selected record exists for the target collection and that selected record
is not the last one in the collection, DATATRIEVE selects the next record
in the collection.

4–334 DATATRIEVE Commands, Statements, and Definition Clauses

SELECT Statement

If the last record in the target collection is the selected record,
DATATRIEVE displays an error message, and the last record in the
collection is still the selected record.

• When you specify a value expression in a SELECT statement, remember that
the positive integer to which the expression evaluates is the position number
of the selected record in the collection.

The integer does not designate the number of records that are selected. For
example, if you type SELECT 5, you select the fifth record in the target
collection, not five records from the collection. You can never select more than
one record at a time per collection.

• If you select a record from the CURRENT collection and then select a record
from another collection, the CURRENT collection and its selected record
remain unchanged.

• If you include a Boolean expression in the SELECT statement, DATATRIEVE
forms a temporary record stream of records that match the conditions
specified by the Boolean expression. DATATRIEVE then uses the position
references FIRST, NEXT, LAST, and PRIOR to select a record from that
temporary record stream.

Usage Notes

• Use the SELECT statement to establish a single record context for a record
in a collection. Having a selected record allows you to retrieve and compare
values in the fields of a selected record without specifying a target record
stream.

When referring to fields of records in a single record context, you can
frequently use the field names without field name qualifiers, almost as though
they were variables.

• When you use a field name by itself in a value expression, its value is
retrieved from the nearest selected record with a field of that name. That
field name is said to resolve to the nearest single record context for that
name.

DATATRIEVE establishes the nearness of selected records based on the order
in which you created the collections with the FIND statement. For example,
suppose that you have three established collections, created in the order A,
then B, then C, and that each collection has a selected record. If you use a
field name by itself, DATATRIEVE first tries to retrieve the field name value
from C’s selected record, then B’s, then A’s.

• Use a SELECT statement to establish a target record for the ERASE and
MODIFY statements.

DATATRIEVE Commands, Statements, and Definition Clauses 4–335

SELECT Statement

• Use a SELECT statement to establish a target record for PRINT and LIST
statements in which you include only the print list or in which you use only
the statement name. (See the third and fourth examples.)

• To show the position of the selected record in the target collection, use the
SHOW command:

SHOW collection-name

This command prints the name of the collection, the name of the domain
or domains from which the collection is derived, the number of records in
the collection, the names of any fields used to establish the sort order of
the collection, and the position number of the selected record in the target
collection. It also tells you if the selected record has been dropped from the
collection by a previous DROP statement.

To show the name and attributes of the CURRENT collection, use the
SHOW CURRENT command. See the section in this chapter on the SHOW
command.

• If you use the SELECT statement to establish a selected record for the
CURRENT collection, you need type only PRINT and press the RETURN key
to display that selected record.

If the CURRENT collection has no selected record, DATATRIEVE displays the
selected record from the most recently established named collection that has
a selected record.

If you enter a PRINT statement without a print list and no existing collection
has a selected record, DATATRIEVE displays a message and displays the
entire CURRENT collection.

• To display all fields of the selected record of a named collection that is not
the CURRENT collection, you must provide a properly qualified top-level field
name in the print list of a PRINT statement. Use the collection name as the
qualifier.

For example, a collection of YACHTS called BIGGIES is not the CURRENT
collection, and the CURRENT collection has a selected record. To display
the selected record in BIGGIES, type PRINT BIGGIES.BOAT and press
RETURN.

If you created the collections in question from different domains, you do not
have to qualify the top-level field names if they are not the same.

If the top level-field names of the different domains are the same, you can use
the domain name to qualify the top-level field names.

4–336 DATATRIEVE Commands, Statements, and Definition Clauses

SELECT Statement

• You can refer to the fields of the selected record as though they were
variables. DATATRIEVE resolves an unqualified field name to the most
recently formed collection with a selected record containing a field with that
name.

To refer to a field name beyond the most recently formed collection with
a selected record containing that same name, you must provide a suitable
qualifier to establish the appropriate context. Use the name of the collection
containing the target record as qualifier.

• To distinguish between two or more selected records referred to in one
complex DATATRIEVE statement, use context variables. Context variables
can be particularly useful if you derived the collections from the same domain
and the field names of the collections in question are identical.

• If you want to perform the same set of statements on each record in the
CURRENT collection, do not use a SELECT statement in a BEGIN-END
block inside a REPEAT statement.

The following example illustrates the proper method of looping through the
CURRENT collection:

FOR CURRENT
BEGIN

PRINT
MODIFY ...
PRINT

END

• See the VAX DATATRIEVE User’s Guide for a discussion of name recognition
and single record context in DATATRIEVE.

Examples

The following example selects the last record in the CURRENT collection:

DTR> SELECT LAST
DTR>

The following example selects the fifth record in the collection BIG_ONES:

DTR> SELECT 5 BIG_ONES
DTR>

The following example selects the last 30-foot boat in the YACHTS inventory from
the CURRENT collection:

DATATRIEVE Commands, Statements, and Definition Clauses 4–337

SELECT Statement

DTR> FIND YACHTS
[113 records found]
DTR> SELECT LAST WITH LOA = 30
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

SOLNA CORP SCAMPI SLOOP 30 6,600 10

DTR>

The following example selects a record from the CURRENT collection, modifies
a field value, and releases the selected record and, in this case, the RMS lock on
the record:

DTR> READY YACHTS SHARED MODIFY
DTR> FIND YACHTS WITH BUILDER = "SOLNA CORP"
[1 record found]
DTR> SELECT
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

SOLNA CORP SCAMPI SLOOP 30 6,600 10

DTR> MODIFY PRICE
Enter PRICE: 50000
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

SOLNA CORP SCAMPI SLOOP 30 6,600 10 $50,000

DTR> SELECT NONE
DTR>

4–338 DATATRIEVE Commands, Statements, and Definition Clauses

SET Command

SET Command
• Controls the DATATRIEVE response to ABORT statements.

• Sets the keypad mode (application or numeric) within DATATRIEVE.

• Sets the maximum number of columns per page for DATATRIEVE output.

• Establishes your default directory in the CDD/Repository data dictionary.

• Determines whether DATATRIEVE creates a DTREDIT.DTR backup file
when you edit dictionary objects.

• Determines whether DATATRIEVE uses its forms interface to control the
video display of your terminal.

• Starts DATATRIEVE Guide Mode.

• Permits or inhibits automatic syntax prompting for continued commands and
statements.

• Permits or inhibits creation of an implicit inner print list in a PRINT
statement and an implicit ANY in a Boolean expression.

• Determines whether a semicolon is required at the end of each command or
statement.

• Controls whether commands and statements in command files are displayed
when the command file is invoked

Format

SET

�������������������������
������������������������

[NO] ABORT
[NO] APPLICATION_KEYPAD
COLUMNS-PAGE=n
DICTIONARY path-name
[NO] EDIT_BACKUP
[NO] FORM
GUIDE [ADVANCED]
KEYDEFS file-spec
[NO] LOCK_WAIT
PLOTS path-name
[NO] PROMPT
[NO] SEARCH
[NO] SEMICOLON
[NO] VERIFY
NOVERIFY

�������������������������
�����������������������	

[,...]

DATATRIEVE Commands, Statements, and Definition Clauses 4–339

SET Command

To change settings for HELP:

SET

 [NO] HELP_PROMPT
[NO] HELP_WINDOW
HELP_LINES n TO m

�
[,...]

Arguments

ABORT
Causes DATATRIEVE to abort the remainder of a procedure or command file
when DATATRIEVE executes an ABORT statement, when you enter a CTRL/Z
to a prompt, or when a syntax or logical error occurs during the execution of a
command or statement.

(The exception to the logical error condition is the DELETE command. If you list
two or more objects as arguments for the DELETE command, DATATRIEVE does
not abort if it fails to find an object of a specified name. Instead, DATATRIEVE
continues to delete the remaining objects in the list.)

NO ABORT
Causes DATATRIEVE, when processing a procedure or a command file, to abort
only the one statement containing an ABORT statement. SET NO ABORT also
causes DATATRIEVE to take the same action when you respond with a CTRL/Z
to a prompt in a procedure or command file. DATATRIEVE then executes the
next command or statement in the procedure or command file. SET NO ABORT
is in effect when you start a DATATRIEVE session.

APPLICATION_KEYPAD
Sets the keypad mode as application keypad within DATATRIEVE.

The default keypad mode for DATATRIEVE is numeric keypad mode.

(You can also set the keypad mode using the function FN$KEYPAD_MODE.)

This command is not available in a DECwindows environment.

NO APPLICATION_KEYPAD
Sets the keypad mode as numeric keypad within DATATRIEVE.

The default keypad mode for DATATRIEVE is numeric keypad mode.

(You can also set the keypad mode using the function FN$KEYPAD_MODE.)

This command is not available in a DECwindows environment.

4–340 DATATRIEVE Commands, Statements, and Definition Clauses

SET Command

COLUMNS_PAGE = n
Establishes the number of columns per page for DATATRIEVE output and the
default page width for the Report Writer. When you start your session, the
default COLUMNS_PAGE setting is 80.

(To set the terminal’s width, use the DATATRIEVE function FN$WIDTH. See the
chapter on functions for more information about FN$WIDTH.)

DICTIONARY path-name
Causes DATATRIEVE to set your default directory node of the CDD/Repository
data dictionary to the node specified by the dictionary path name. When you
start your DATATRIEVE session, your default CDD/Repository directory is either
CDD$TOP or the directory designated by the logical name CDD$DEFAULT.

SET DICTIONARY accepts both DMU and CDO style path names.

EDIT_BACKUP
Causes DATATRIEVE to save the original definition in the CDD/Repository data
dictionary when you use the EDIT command to edit a dictionary object. When
you start your DATATRIEVE session, SET EDIT_BACKUP is in effect. Use the
SHOW EDIT command to see whether or not SET EDIT_BACKUP is currently in
effect.

NO EDIT_BACKUP
Causes DATATRIEVE to delete the highest version of the object in the
CDD/Repository data dictionary, or the version you specify, and replace it with the
definition in the edit buffer when you use the EDIT command to edit a dictionary
object.

FORM
Determines whether DATATRIEVE uses its forms interface when you use the
PRINT, MODIFY, and STORE statements. For terminals supported by the forms
product you are using, SET FORM causes DATATRIEVE to display and use forms
when you enter the PRINT, MODIFY, or STORE statement. If SET NO FORM
was in effect when you accessed the domain with the READY command, you can
use the associated form by entering a SET FORM command.

To use forms with a domain, you can use one of the following methods:

• You can define a domain with a FORM clause in it to specify the name of the
form and the name of the form file in which the form definition is stored.

• You can associate a form with a domain using either the DISPLAY_FORM
statement (for FMS and TDMS forms), or the WITH_FORM statement (for
DECforms forms).

When you start your DATATRIEVE session, SET FORM is in effect.

DATATRIEVE Commands, Statements, and Definition Clauses 4–341

SET Command

NO FORM
Prevents DATATRIEVE from using its forms interface. If SET NO FORM is in
effect when you use the PRINT, MODIFY, or STORE statements, DATATRIEVE
does not use the forms interface.

GUIDE
Starts Guide Mode, the tutorial mode of DATATRIEVE. Refer to the
VAX DATATRIEVE User’s Guide for a description of Guide Mode.

CAITIFFS file-spec
Lets you define multiple keypad keys from a file containing DCL DEFINE/KEY
commands (See the VMS documentation on the DIGITAL Command Language for
more information on the DEFINE/KEY command.) By using SET CAITIFFS, you
do not have to make multiple calls to the FN$DEFINE_KEY function.

The file specification is the full DCL file specification for the file containing the
DCL DEFINE/KEY commands.

This command is not available in a DECwindows environment.

LOCK_WAIT
When two applications try to access the same file, RMS may lock a record that
DATATRIEVE needs to access. DATATRIEVE tries for 12 seconds to access a
locked record. SET LOCK_WAIT causes DATATRIEVE to turn control over to
RMS after this period. RMS then waits for the locked record until it is released,
or until RMS sends you a deadlock message. The default is SET NO LOCK_
WAIT.

NO LOCK_WAIT
Instructs DATATRIEVE not to try to access a locked record after 12 seconds. At
the end of this period, you receive an RMS message informing you that the record
is locked. When you begin your DATATRIEVE session, SET NO LOCK_WAIT is
in effect.

PLOTS
Establishes the default CDD/Repository DMU data dictionary directory for your
DATATRIEVE plot definitions. For more information, see the VAX DATATRIEVE
User’s Guide.

PROMPT
Causes DATATRIEVE to prompt for elements needed to complete the syntax of
the current command or statement. When you press the RETURN key before
completing a command or statement, DATATRIEVE prompts you for the next
syntactic element of that statement or command. The prompt takes the following
form:

4–342 DATATRIEVE Commands, Statements, and Definition Clauses

SET Command

[Looking for element]

At the start of a DATATRIEVE session, SET PROMPT is in effect.

NO PROMPT
Prevents DATATRIEVE from prompting for elements needed to complete the
syntax of the current command or statement.

SEARCH
Causes the DATATRIEVE Context Searcher to create implicit inner print lists in
PRINT statements and implicit ANYs in Boolean expressions. When you work
with VAX DBMS domains, the SET SEARCH command causes the DATATRIEVE
Context Searcher to walk sets to look for a context to resolve references to field
names.

NO SEARCH
Prevents the DATATRIEVE Context Searcher from creating implicit inner print
lists in PRINT statements and implicit ANYs in Boolean expressions. At the
start of a DATATRIEVE session, SET NO SEARCH is in effect.

SEMICOLON
Causes DATATRIEVE to require a semicolon at the end of commands or
statements.

NO SEMICOLON
Causes DATATRIEVE to make semicolons at the end of commands or statements
optional. At the start of a DATATRIEVE session, SET NO SEMICOLON is in
effect.

VERIFY
Causes lines from command files to be displayed when a command file is invoked.

NO VERIFY
Suppresses the display of lines from command files when a command file is
invoked. At the start of your DATATRIEVE session, the current setting for SET
VERIFY/NOVERIFY at the DCL level is in effect.

HELP_PROMPT
Causes DATATRIEVE to prompt for the topic or subtopic when help text is
displayed.

NO HELP_PROMPT
Suppresses the prompting for the topic or subtopic when help text is displayed.

DATATRIEVE Commands, Statements, and Definition Clauses 4–343

SET Command

HELP_WINDOW
Causes help text to be displayed in a scrolling region of a video terminal.

NO HELP_WINDOW
Causes help text to be displayed in a nonscrolling region of a video terminal.

HELP_LINES n TO m
Sets the lines for scrolling help text between lines n and m, where n represents
the beginning of the scrolling region and m represents the end.

Restrictions

• You must enter most SET commands at the DATATRIEVE command level,
indicated by the DTR> prompt.

If you are using the DATATRIEVE DECwindows interface, you can issue
some SET commands by choosing items from the Setup menu. The items
you can choose are Abort, Lock_Wait, Prompt, Search, Semicolon, Verify, and
Columns_Page.

• You cannot use SET commands in compound statements: neither in THEN,
IF-THEN-ELSE, or BEGIN-END statements.

• You cannot use SET commands in FOR, REPEAT, or WHILE statements.

• In the SET COLUMNS-PAGE command, the argument n must be an
unsigned, nonzero integer less than or equal to 255.

• You must have at least P (PASS_THRU) access to all nodes of the dictionary
path name of the directory node you specify in the SET DICTIONARY
command.

• The value for n in SET HELP HELP_LINES must be at least 1. The value
for m must be no greater than 24. In addition, m must be at least 4 greater
than n.

• You should not have two users operating out of the same VMS directory with
different settings for EDIT_BACKUP. DATATRIEVE could delete a backup
file of the user who specified SET EDIT_BACKUP, because the other user had
specified SET NO EDIT_BACKUP. This result is possible because SET NO
EDIT_BACKUP instructs DATATRIEVE to delete the backup file created last.

4–344 DATATRIEVE Commands, Statements, and Definition Clauses

SET Command

Results

• When SET ABORT is in effect and DATATRIEVE is executing a procedure
or command file, DATATRIEVE aborts the entire procedure or command file
if it executes an ABORT statement or you enter a CTRL/Z in response to a
prompt.

• When SET NO ABORT is in effect and DATATRIEVE is executing a procedure
or command file, DATATRIEVE aborts only the statement containing
the ABORT statement or prompt and executes the next statement in the
procedure or command file.

• With the SET COLUMNS_PAGE command, you can affect the output of a
PRINT statement that contains no implicit line feeds, that is, no SKIP, no
NEW_PAGE, or no COL n with n less than the column reserved for previous
print list elements.

If an element in a print list would extend beyond the right column limit
determined by the value of the COLUMNS_PAGE setting, DATATRIEVE
shifts that element to the second line. By adjusting the COLUMNS_PAGE
setting, you can control the way DATATRIEVE breaks the detail lines of its
output.

• If you use a relative dictionary path name with the SET DICTIONARY
command, DATATRIEVE uses your default CDD/Repository data dictionary
directory to supply the missing part of the relative path name.

• If a SET DICTIONARY command fails because the specified CDD/Repository
data dictionary directory does not exist or because you do not have adequate
privileges, your default directory does not change. That is, you remain at
the directory node where you were before you issued the SET DICTIONARY
command.

• When SET HELP HELP_WINDOW is in effect, the location and size of the
scrolling region is determined by the values for n and m with the SET HELP
HELP_LINES command. The default location for the scrolling region is the
upper part of the video terminal screen.

Usage Notes

• To display the settings of ABORT/NO ABORT, APPLICATION_KEYPAD/NO
APPLICATIONKEYPAD, PROMPT/NO PROMPT, SEARCH/NO SEARCH,
COLUMNS_PAGE, FORM/NO FORM, and VERIFY/NO VERIFY use the
SHOW SET_UP command. See the section in this chapter on the SHOW
command for more information.

DATATRIEVE Commands, Statements, and Definition Clauses 4–345

SET Command

• To display your default CDD/Repository data dictionary directory, use the
SHOW DICTIONARY command.

• To display the names of the CDD/Repository data dictionary directories listed
in your default directory, use the SHOW DICTIONARIES command. To
set your dictionary to any descendant of your default directory, you do not
have to specify the entire dictionary path name beginning with CDD$TOP.
You can use a relative dictionary path name. For more information about
dictionary path names and the CDD/Repository data dictionary, see the
VAX DATATRIEVE User’s Guide.

• You can assign a logical name to the full DCL file specification, then use the
logical name with the SET CAITIFFS command. This is useful if you want to
switch between different sets of key definitions for different applications:

DTR> FN$CREATELOG("KYPD1",
CON> "YOUR$DISK:[YOURDIR]DTRKEYS1.COM")
DTR> FN$CREATELOG("KYPD2",
CON> "YOUR$DISK:[YOURDIR]DTRKEYS2.COM")
DTR> SET CAITIFFS KYPD1
DTR> SET CAITIFFS KYPD2

• You can assign two file specifications in succession with the SET CAITIFFS
command. DATATRIEVE implements the key definitions in both files:

DTR> SET CAITIFFS YOUR$DISK:[YOURDIR]SHOWKEYS.COM,
CON> CAITIFFS YOUR$DISK:[YOURDIR]SHOWKEYS2.COM

If a conflict exists between key definitions (if a particular key is defined in
both files), DATATRIEVE uses the definition from the file you specify last. In
this example, DATATRIEVE would resolve key definition conflicts by using
the definition from the file SHOWKEYS2.COM.

Examples

The following example displays the default settings and change the default
settings with one SET statement:

DTR> SHOW SET_UP
Set-up:

Columns-page: 80
No abort
Prompt
No search
Form
No verify
No semicolon
No lock_wait
Application keypad mode

4–346 DATATRIEVE Commands, Statements, and Definition Clauses

SET Command

DTR> SET COLUMNS_PAGE = 132, ABORT, NO PROMPT, SEARCH,
[Looking for SET option]
CON> 9 NO FORM, VERIFY, SEMICOLON, LOCK_WAIT, NO APPLICATION_KEYPAD

DTR> SHOW SET_UP
Set-up:

Columns-page: 132
Abort
No prompt
Search
No form
Verify
Semicolon
Lock_wait
Numeric keypad mode

DTR>

The following example sets your default dictionary directory at CDD$TOP and
uses a variety of path names to change your default directory:

DTR> SET DICTIONARY CDD$TOP
DTR> SET DICTIONARY DTR$LIB.DEMO
DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$LIB.DEMO
DTR> SHOW DICTIONARIES
Dictionaries:
DTR> SET DICTIONARY -.-;
DTR> SHOW DICTIONARY
The default directory is CDD$TOP
DTR> SET DICTIONARY CDD$TOP.DTR32
Element "CDD$TOP.DTR32.JONES" not found in dictionary.
DTR> SET DICTIONARY CDD$TOP.DTR32.TEST
DTR> SHOW DICTIONARIES
Dictionaries:
DTR> SET DEF -; SHOW DICTIONARY
The default directory is CDD$TOP.DTR32
DTR> SHOW DICTIONARIES
Dictionaries:

AWS BRADS BRENT DBF
DDD DEMO DENN DETRIC
DUNCAN JAS KELLERMAN LANDAU
MARISON PLOTS STRONG TEST
WAYNE

DTR> SET DICTIONARY WAYNE
DTR> SET DICTIONARY DISK1:[SWANSON.DTRWORK]TEST.NEWDICT
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–347

SET Command

The following example uses the SET SEARCH command to walk sets in a
VAX DBMS database:

DTR> READY SUPPLIES, VENDORS, PART_S
DTR> SET SEARCH
DTR> PRINT VEND_NAME, PART_DESC OF
[Looking for name of domain, collection, or list]
CON> VENDORS WITH VEND_NAME = "QUALITY COMPS"
Not enough context. Some field names resolved by Context Searcher.
--------------Vendor Name---------------

QUALITY COMPS
VT100 KEYBOARD ASSY
NUMERIC KEYPAD FRAME
VT52 HOUSING

When SET SEARCH is not in effect, you need to provide explicitly the inner print
lists to give DATATRIEVE the necessary context, as follows:

DTR> SET NO SEARCH
DTR> PRINT VEND_NAME, ALL ALL PART_DESC OF PART_S OWNER OF
[Looking for set name]
CON> PART_INFO OF SUPPLIES MEMBER OF VENDOR_SUPPLY OF
[Looking for name of domain, collection, or list]
CON> VENDORS WITH VEND_NAME = "QUALITY COMPS"
--------------Vendor Name---------------

QUALITY COMPS
VT100 KEYBOARD ASSY
NUMERIC KEYPAD FRAME
VT52 HOUSING

DTR>

4–348 DATATRIEVE Commands, Statements, and Definition Clauses

SET Statement (Report Writer)

SET Statement (Report Writer)
Controls the report header and defines the size of report pages and the length of
the report. With Report Writer SET statements, you can specify the following:

• The report header—the report name (if any), the date, page numbering, and
their print attributes

• The size of report pages—the number of columns and the number of lines per
page, or the physical paper size

• The orientation of the paper to be printed on.

• The length of the report—the maximum number of lines and the maximum
number of pages

• Whether or not column headers are printed

Format
For naming the report:

SET REPORT_NAME = � ATT att-name, �
� "string"[/ . . .]

*.prompt

For controlling the printing of default page numbers and for specifying the
beginning page number at the upper right of a page:

SET

�������������
������������

NUMBER

�
��������

=

�������
������

ATT att-name

ATT att-name,
� n

*.prompt

� n

*.prompt

�������
�����	

�
��������

NO NUMBER

�������������
�����������	

For specifying a date or string at the upper right of each page or for disabling the
printing of a date:

DATATRIEVE Commands, Statements, and Definition Clauses 4–349

SET Statement (Report Writer)

SET

�������
������

DATE

�
�� =

 ATT att-name
ATT att-name, "string"
"string"

� �
��

NO DATE

�������
�����	

For disabling the printing of the entire report header:

SET NO REPORT_HEADER

For specifying the printing of column headers:

SET
� COLUMN_HEADER = ATT att-name

NO COLUMN_HEADER

For specifying page width or length, or overall report length:

SET

�����
����

���
��

COLUMNS_PAGE =
LINES_PAGE =
MAX_LINES =
MAX_PAGES =

���
�	
� n

*.prompt

�����
���	

[, . . .]

For specifying paper size:

4–350 DATATRIEVE Commands, Statements, and Definition Clauses

SET Statement (Report Writer)

SET

��
���

PAPER_SIZE

�������������������������������������
������������������������������������

A
B
C
D
LETTER
LEDGER
LEGAL
EXECUTIVE
7_BY_9
A1
A2
A3
A4
A5
B4
C4
C5
C6
C7/6
C5/6
DL

�������������������������������������
�����������������������������������	

� PAPER_HEIGHT
PAPER_WIDTH

=n
� MM

IN

PAPER_ORIENTATION =
� PORTRAIT

LANDSCAPE

��
��	

Arguments Table 4–33 summarizes information about each type of SET
statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–351

SET Statement (Report Writer)

Table 4–33 SET Statement Arguments

Argument Function Default
Prompt
Option

Maximum
Value

Report Header

REPORT_NAME Centers a report name on
the first line of each page.

No report name 1 Yes -

DATE Specifies a date or string
that is printed on the upper
right of each page.

Current system date No -

NO DATE Suppresses the printing of a
date.

Current system date No -

NUMBER Causes the printing of a
page number below the
date.

Current page
number

Yes 99,999

NO NUMBER Suppresses the printing of a
page number.

Current page
number

No -

2 NO REPORT_
HEADER

Suppresses the printing of
report name, date, column
headers, and page number
on each page.

Header printed on
each page

No -

Column Headers

COLUMN_HEADER Only used to specify the
attributes for the column
headers

Headers printed on
each page

No -

NO COLUMN_
HEADER

Suppresses the printing of
column headers.

Headers printed on
each page

No -

Page Size

COLUMNS_PAGE Specifies the page width in
columns.

Value at DCL or 80
columns

Yes 255
columns

LINES_PAGE Specifies the page length in
number of lines.

60 lines Yes About
2
billion
lines

1Response to prompt must be enclosed in quotation marks.
2SET NO REPORT_HEADER overrides all other SET commands that control or specify elements in
the report header.

(continued on next page)

4–352 DATATRIEVE Commands, Statements, and Definition Clauses

SET Statement (Report Writer)

Table 4–33 (Cont.) SET Statement Arguments

Argument Function Default
Prompt
Option

Maximum
Value

Page Size

MAX_LINES Specifies the maximum
lines for the report.

No line limit Yes About
2
billion
lines

Report Size

3MAX_PAGES Specifies the maximum
pages for the report.

No page limit Yes About
2
billion
pages

Paper

PAPER_SIZE Specifies the size of paper
in standard formats

Letter(A) No -

PAPER_HEIGHT Specifies the height of paper
in millimeters or inches

As defined in
PAPER_SIZE

No -

PAPER_WIDTH Specifies the width of paper
in millimeters (MM) or
inches (IN)

As defined in
PAPER_SIZE

No -

PAPER_ORIENTATION Specifies Landscape or
Portrait orientation

PORTRAIT No -

3Although the maximum number of pages is about 2 billion, the maximum page number printed at
the upper right of a page is 99,999.

Usage Notes

• If you embed a SET REPORT_NAME statement with a prompting
value expression in a compound statement that also has other prompts,
DATATRIEVE may execute the prompts in an unexpected order. Consider the
following example:

DATATRIEVE Commands, Statements, and Definition Clauses 4–353

SET Statement (Report Writer)

WHILE ORDER_NUM NOT STARTING WITH "1"
BEGIN
ORDER_NUM = *."Order Number"
REPORT JOBITM ON *."FILE,LP: OR TT"
SET REPORT_NAME= *."Report Name"
PRINT JOBNBR
END_REPORT
END

In this case, the prompt for "Report Name" occurs before either of the other
two prompts.

This is because DATATRIEVE processes the entire compound statement
(beginning with the WHILE statement) at one time. However, in order
to process a REPORT statement, DATATRIEVE must know the length of
the report name first so that it can format the report. This means that
DATATRIEVE must prompt for the report header out of sequence with the
other prompts. DATATRIEVE then prompts for the other values in the same
order as the prompting value expressions appear.

• If your report contains a list, each item in the list counts as a separate detail
line.

• The Report Writer counts all the lines or pages of the report. If you have
specified a limit and it is reached, the Report Writer stops producing the
report and prints one of the following error messages:

Maximum line count exceeded - report terminated.

Maximum report pages exceeded - report terminated.

• DATATRIEVE calculates the maximum lines set for a report at the end of
a page, not in the middle, even if the MAX_LINES setting is reached in
the middle of a page. If DATATRIEVE reaches the MAX_LINES setting
mid-page, it prints out the full page before stopping the report.

• The options PAPER_HEIGHT and PAPER_WIDTH are not necessary when
PAPER_SIZE is defined. If present, they supersede the corresponding values
for the standard size specified through the PAPER_SIZE option.

• Placing an ATT clause before the value of a report header element sets
the attributes for that element. The name of the ATT clause must have
previously been declared by a DECLARE_ATT statement. Only the attributes
specifically set by the DECLARE_ATT statement are affected. All the other
attributes remain at their default value.

4–354 DATATRIEVE Commands, Statements, and Definition Clauses

SET Statement (Report Writer)

• The user can override the default attributes for the report header elements by
defining the logical names DTR$RW_BODY_ATTRIBUTES (for report name,
date, and page number) and DTR$RW_HEADER_ATTRIBUTES (for report
column header). The equivalence string will be an attribute list, using the
same syntax as the DECLARE_ATT statement. Attributes which are not
defined in such a list remain set to the default value (see the DECLARE_ATT
statement).

• The following table summarizes the applicability of the SET statements to
various formats:

SET statement ASCII (TEXT) DDIF, PS DTIF

REPORT_NAME Applicable Applicable Ignored
[NO] DATE Applicable Applicable Ignored
[NO] NUMBER Applicable Applicable Ignored
NO REPORT_HEADER Applicable Applicable Ignored
[NO] COLUMN_HEADER Applicable Applicable Applicable
COLUMNS_PAGE Defines page

width (in
characters)

Ignored Ignored

LINES_PAGES Defines page
height (in
lines)

Ignored Ignored

PAPER_SIZE Ignored Defines page
size (standard
sizes)

Ignored

PAPER_WIDTH Ignored Defines page
width (in IN
or MM)

Ignored

PAPER_HEIGHT Ignored Defines page
height (in IN
or MM)

Ignored

MAX_LINES Applicable Applicable Applicable
MAX_PAGES Applicable Applicable Ignored

DATATRIEVE Commands, Statements, and Definition Clauses 4–355

SHOW Command

SHOW Command
Displays information about the CDD/Repository data dictionary and its contents.

Format

SHOW

���
��

ALL
collection-name
COLLECTIONS
CURRENT
database-name
DATABASES
DICTIONARIES
DICTIONARY
domain-name
DOMAINS
EDIT

FIELDS

�
�� FOR

 domain-name
dbms-record-name
relation-name

� �
��[,...]

FORMS
HELP
CAITIFFS
path-name
PLOTS
PRIVILEGES [[FOR] path-name]
procedure-name
PROCEDURES
READY
record-name
RECORDS
SET-UP
SETS
SYNONYMS
table-name
TABLES
VARIABLES

���
���	

4–356 DATATRIEVE Commands, Statements, and Definition Clauses

SHOW Command

Arguments

SHOW ALL
Displays the names of all the objects and directories listed in your default
CDD/Repository directory, the name of your default directory, and the names of
the collections, the other readied RSE sources (domains, relations, VAX DBMS
records), and the loaded tables in your workspace. DMU format record and
domain definitions are indicated with an asterisk (*).

SHOW collection-name
Displays the collection name, the name of the domain, relation, or VAX DBMS
record within which the collection has been established, the number of records
in the collection, the status of the selected record within the collection, and the
names of the keys on which the collection has been sorted.

SHOW COLLECTIONS
Displays the names of the collections you are using.

SHOW CURRENT
Displays the name of the domain, relation, or VAX DBMS record within which the
CURRENT collection has been formed, the number of records in the CURRENT
collection, the status of the selected record in the CURRENT collection, and the
names of the keys on which the collection has been sorted.

SHOW database-name
For relational databases, displays the name and the file specification of the
database. For VAX DBMS, displays the name, the subschema name, the schema
path name, and the root file specification of the database.

SHOW DATABASES
Displays the names of the relational and VAX DBMS databases listed in your
default directory.

SHOW DICTIONARIES
Displays the names of the dictionary directories appended to your default
directory. (This option tells you if the dictionary branch continues lower than
your current location.)

SHOW DICTIONARY
Displays the full dictionary path name of your default directory.

DATATRIEVE Commands, Statements, and Definition Clauses 4–357

SHOW Command

SHOW domain-name
Displays the name, the record definition name, and the file specification of the
RMS domain. Displays the domain name, the associated VAX DBMS record, and
the database name associated with the VAX DBMS domain. Displays the domain
name, the associated relation name, and the database name associated with the
relational domain.

SHOW DOMAINS
Displays the names of all domains cataloged in your default directory. DMU
format domains are indicated by an asterisk (*).

SHOW EDIT
Indicates whether SET EDIT_BACKUP or SET NO EDIT_BACKUP is in effect
in your DATATRIEVE session. SET EDIT_BACKUP is the default. If you enter
the command SET NO EDIT_BACKUP and edit any definitions, DATATRIEVE
deletes the highest version of the definitions when you exit the editor. SET NO
EDIT_BACKUP automatically keeps outdated versions of definitions from piling
up in your directory, but could erase the only definition you have to fall back on
should you make a mistake in your editing.

SHOW FIELDS
Displays the names, data types, and index-key information of the fields of all
domains you have readied. It also displays the names and data types of global
variables. For RMS sources, the SHOW FIELDS command indicates whether or
not a key field is the primary key or an alternate key. For fields from non-RMS
sources, SHOW FIELDS indicates an indexed key.

SHOW FIELDS
FOR domain-name
dbms-record
rdb-relational-name

Displays the names, data types, and FOR domain-name index-key information of
the fields in the domain you specify after FOR. You can only specify the name of
a readied domain.

SHOW FORMS
Displays the form name, the form file, and the form product name of all loaded
forms.

SHOW HELP
Indicates which of the settings for the HELP command is in effect. The settings
are HELP_LINES, HELP_PROMPT, and HELP_WINDOW.

4–358 DATATRIEVE Commands, Statements, and Definition Clauses

SHOW Command

SHOW CAITIFFS
Shows all current key definitions in all states. A state allows the same key to
be assigned multiple definitions by associating each definition with a different
state key. In addition to SHOW CAITIFFS, you can use the function FN$SHOW_
KEYDEFS to show all key definitions. This command is not available in a
DECwindows environment.

SHOW path-name
Displays the text of the domain, record, procedure, or table definition specified by
the dictionary path name.

SHOW PLOTS
Displays the names of the loaded plots from the directory specified in the SET
PLOTS command.

SHOW PRIVILEGES
Displays the access privileges you have to the directory at which you are currently
located.

SHOW PRIVILEGES
FOR path-name

Displays the access privileges you have to the directory or object you name in the
FOR clause.

SHOW procedure-name
Displays the name of the procedure, the commands and statements contained in
the procedure, and the END_PROCEDURE clause.

SHOW PROCEDURES
Displays the names of all procedures cataloged in the directory at which you are
currently located.

SHOW READY
Displays for each readied RMS domain the full dictionary path name, the file
organization of the associated data file, the access control option (EXCLUSIVE,
PROTECTED, or SHARED), and the access mode (READ, WRITE, EXTEND,
or MODIFY). For all readied relational and VAX DBMS domains, the SHOW
READY command displays the name, type, access option, access mode, and
the domain path. For individual relations and VAX DBMS records, the SHOW
READY command displays the name, type, access option, access mode, and the
dictionary path to the database. The most recently readied domain, relation,
or VAX DBMS record is at the top of the displayed list. (See the section in this
chapter on the READY command for further information.) The SHOW READY

DATATRIEVE Commands, Statements, and Definition Clauses 4–359

SHOW Command

command also displays the full dictionary path name and table type of all tables
loaded in your workspace.

SHOW record-name
Displays the name, level numbers, fields, and field definitions of the record.

SHOW RECORDS
Displays the names of all record definitions cataloged at your current directory
location. DMU format records are indicated by an asterisk (*).

SHOW SET_UP
Displays the current status of the options you can control with the SET command:
ABORT/NO ABORT, APPLICATION_KEYPAD/ NO APPLICATION_KEYPAD,
COLUMNS_PAGE, FORM/NO FORM, PROMPT/NO PROMPT, SEARCH/NO
SEARCH, SEMICOLON/ NO SEMICOLON, and VERIFY/NOVERIFY.

SHOW SETS
Displays the names of any available VAX DBMS sets and their VAX DBMS
insertion and retention classes.

SHOW SYNONYMS
Displays the names of any synonyms for DATATRIEVE keywords in effect during
your DATATRIEVE session.

SHOW table-name
Displays the name of the table, the code and translation pairs, and the END_
TABLE clause.

SHOW TABLES
Displays the names of all dictionary tables and domain tables cataloged in your
default directory.

SHOW VARIABLES
Displays the global variables in effect in the current DATATRIEVE session.

Restrictions

• In the SHOW command, you can use the arguments ALL, DOMAINS,
RECORDS, PROCEDURES, TABLES, and DICTIONARIES to display
the given names of the objects and directories listed in your default
CDD/Repository directory.

4–360 DATATRIEVE Commands, Statements, and Definition Clauses

SHOW Command

• To establish a DMU format directory as your default directory, you must
have at least P (PASS_THRU) access to the directory and all its ancestors.
Thus, if you have P (PASS_THRU) access to a directory and its ancestors, you
have access to the given names of all objects and directories cataloged in that
directory.

• To establish a CDO format dictionary as your default dictionary, you must
have S (SHOW) access to the dictionary.

• To use the SHOW path-name command to display information about a
dictionary object in the DMU format dictionary, you must have the following
access privileges:

P (PASS_THRU) access to it and its ancestors

S (SEE) and R (DTR_READ) access to the object

• To use the SHOW path-name command to display information about a
dictionary object in the CDO format dictionary, you must have the following
access privileges:

S (SHOW) access to the dictionary

S (SHOW) and R (READ) access to the object

• You cannot specify the dictionary path name of a CDD/Repository directory
with the SHOW path-name command.

• When using the SHOW path-name command to display information about the
definition of a domain, record, procedure, or table, that dictionary object must
have been defined using DATATRIEVE.

• Plot definitions are stored only in the DMU format dictionary.

• You must have at least P (PASS_THRU) access to a dictionary object and
its ancestors to display your access rights to it with a SHOW PRIVILEGES
command.

Results

• DATATRIEVE displays the information you request, in the order requested.

• DATATRIEVE displays the objects you specify with version numbers at the
end of the path name.

• You need only P (PASS_THRU) access to your default DMU directory or S
(SHOW) access to your default CDO dictionary to use the SHOW command
with these arguments: COLLECTIONS, collection-name, CURRENT, READY,
FIELDS, VARIABLES, and SET_UP. Any other access privileges you may

DATATRIEVE Commands, Statements, and Definition Clauses 4–361

SHOW Command

have are irrelevant for these SHOW command options because DATATRIEVE
does not access the data dictionary for the information you request.

• You do not need P (PASS_THRU) access to the objects or directories in your
default DMU directory or S (SHOW) access to your default CDO dictionary to
see the given names of objects when you enter a SHOW command with one of
these options: ALL, DOMAINS, RECORDS, PROCEDURES, TABLES, and
DICTIONARIES.

• If you do not have the access privileges needed to obtain information for
the SHOW PRIVILEGES or SHOW path-name commands, DATATRIEVE
displays an error message and returns you to DATATRIEVE command level.

• When you have more than one existing collection and you enter the SHOW
COLLECTIONS command, the order in which DATATRIEVE displays the
collections reverses the order in which you established them. The CURRENT
collection is always at the top of the list, and the oldest existing collection is
always at the bottom of the list.

Knowing the order of the collections is useful because you can see the order in
which DATATRIEVE searches for a selected record to establish a single record
context for the MODIFY, LIST, PRINT, ERASE, and DISPLAY statements
and for resolving field names in value expressions.

• The SHOW SET_UP command lets you check the current status of set options
that affect your DATATRIEVE session. The second example in the Examples
section shows the default settings for these options. The section in this
chapter on the SET command discusses the meaning of these options.

• When you display objects in CDO directories using the CDO DIRECTORY
command, not all objects created by DATATRIEVE appear in the directory
listing. For example, while DATATRIEVE created a CDD$DATABASE object
for the YACHTS_CDO domain, the CDD$DATABASE object for that domain
is not displayed in a CDO directory listing. DATATRIEVE does not create
directory entries for the special CDO objects it creates when it defines a
domain. You can create these directory entries using the generic form of the
CDO utility’s ENTER command. To do this you must know the name of the
object for which you want to create an entry. See the VAX DATATRIEVE
User’s Guide for information on the conventions DATATRIEVE uses when it
creates these objects. See the CDD/Repository documentation for information
on the ENTER command.

A similar situation occurs for parts of record definitions that contain group
fields. If you display the definition of YACHT_CDO_REC using the CDO
SHOW RECORD record-name command, you see that the definition includes
references to records called TYPE and SPECIFICATIONS. The reason for
this is that the CDO utility translates DATATRIEVE group fields as record

4–362 DATATRIEVE Commands, Statements, and Definition Clauses

SHOW Command

definitions. However, entries for these definitions do not appear in a CDO
directory listing. You can add these entries to the directory using the CDO
utility’s ENTER command. See the CDD/Repository documentation for more
information.

Information on the SHOW PRIVILEGES command and on the DATATRIEVE
CDO command can be found in the VAX DATATRIEVE User’s Guide.

Examples

The following example displays the record definition OWNER_REC:

DTR> SHOW OWNER_REC
RECORD OWNER_REC
01 OWNER.

03 NAME PIC X(10).
03 BOAT_NAME PIC X(17).
03 TYPE.

06 BUILDER PIC X(10).
06 MODEL PIC X(10).

;

DTR>

The following example displays the status of the SET command options that
affect your DATATRIEVE session:

DTR> SHOW SET_UP
Set-up:

Columns-page: 80
No abort
Prompt
No search
Form
No verify
No semicolon
No lock wait
Application keypad mode

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–363

SHOWP Command

SHOWP Command
Displays the access control list (ACL) of an object or directory in the
CDD/Repository data dictionary.

Format

SHOWP path-name

Argument

path-name
Is the given name, full dictionary path name, or relative path name of the
dictionary object or directory whose access control list you want to display.

Restrictions

• To display the access control list of an object or directory in the DMU format
data dictionary, you must have the following access privileges:

• P (PASS_THRU) access to the parent directory of the object or directory

• P (PASS_THRU) and C (CONTROL) access to the object or directory

• To display the access control list of an object or directory in the CDO format
data dictionary, you must have S (SHOW) access privileges to the dictionary
and the object.

Result

DATATRIEVE displays the entire access control list for the specified dictionary
object or directory.

Usage Notes

• Before you use the DELETEP command to remove an entry from an access
control list, use the SHOWP command to verify the sequence number of the
entry you want to delete.

• To see what access privileges you have to an object, use the SHOW
PRIVILEGES command. See the SHOW command for further information.

• The VAX DATATRIEVE User’s Guide discusses ACLs and CDD/Repository
protection. See also the VAX CDD/Repository documentation.

4–364 DATATRIEVE Commands, Statements, and Definition Clauses

SHOWP Command

Examples

The following example displays the access control list for the DMU YACHTS
domain:

DTR> SHOWP YACHTS
1: [*,*], Username: "JONES"

Grant - CDEHMRSUW, Deny - none, Banish - none

DTR>

The following example uses a password to gain C (CONTROL) access to the DMU
record YACHT and then display its access control list:

DTR> SHOWP YACHT (*)
Enter password for YACHT: !You enter CEP, which is not echoed.
DTR> SHOWP YACHT
1: [*,*], Password: "P"

Grant - P, Deny - CDESUX, Banish - none
2: [*,*], Password: "DP"

Grant - DP, Deny - CESUX, Banish - none
3: [*,*], Password: "EP"

Grant - EP, Deny - CDSUX, Banish - none
4: [*,*], Password: "PS"

Grant - PS, Deny - CDEUX, Banish - none
5: [*,*], Password: "PU"

Grant - PU, Deny - CDESX, Banish - none
6: [*,*], Password: "PX"

Grant - PX, Deny - CDESU, Banish - none
7: [*,*], Password: "CEP"

Grant - CEP, Deny - DSUX, Banish - none
8: [*,*], Password: "CDP"

Grant - CDP, Deny - ESUX, Banish - none

DTR>

The following example displays the ACL of the CDO format dictionary
SYS$COMMON:[CDDPLUS.PERSONNEL]:

DTR> SHOWP SYS$COMMON:[CDDPLUS.PERSONNEL]
1: [*,*], Username: "CASADAY"

GRANT - RWMESUDC, DENY - none
ACCESS=READ+WRITE+MODIFY+EXTEND+SHOW+DEFINE+CHANGE+DELETE+CONTROL

2: [*,*]
GRANT - S, DENY - RWMEUDC
ACCESS=SHOW

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–365

SIGN Clause

SIGN Clause
Specifies the location and representation of a sign (+ or -) in a numeric elementary
field.

Format

SIGN [IS]
� LEADING

TRAILING

[SEPARATE]

Arguments

LEADING
TRAILING
Indicates that the sign is at the left (LEADING) or right (TRAILING) of the field
value.

SEPARATE
Indicates that the sign occupies its own character position in the field. If this
argument is omitted, the sign shares a character position with the field’s leftmost
(LEADING) or rightmost (TRAILING) digit.

Restrictions

• This clause can be used only with numeric elementary fields.

• A field definition cannot contain both a SIGN and a USAGE clause.

• Currently, the SIGN LEADING SEPARATE and SIGN TRAILING
SEPARATE field clauses cannot be used in a record stored in a CDO format
dictionary. If you include either of these clauses in a record definition, you
receive the following message:

CDD-E-VALDEFAIL, entity definition failed validation CDD$DIGITS_LENGTH.

This problem will be corrected in a future version of VAX CDD/Repository.

Result

If you do not include a SIGN clause with a numeric field, the sign shares a
character position with the field’s rightmost digit. You must include this clause
if a program written in COBOL (or other language) uses the record and requires
that the sign be a separate character or share the leftmost character position. A
sign clause does not affect the output format of a field.

4–366 DATATRIEVE Commands, Statements, and Definition Clauses

SIGN Clause

Examples

The following example defines the field CURRENT_BALANCE as a 6-digit signed
field, with the sign sharing the leftmost character position:

03 CURRENT_BALANCE
PIC IS S9999V99
EDIT_STRING IS $$$$9.99-
SIGN IS LEADING.

The following example defines the field NEW_PRICE as a 4-digit signed field.
The sign is a separate character in the rightmost character position:

03 NEW_PRICE PIC S99V99
SIGN TRAILING SEPARATE
EDIT_STRING +++.99.

DATATRIEVE Commands, Statements, and Definition Clauses 4–367

SORT Statement

SORT Statement
Arranges a DATATRIEVE collection according to the order you specify for the
contents of one or more fields in the records.

Format

SORT [collection-name] [BY] sort-key-1 [,...]

Arguments

collection-name
Is the name of the collection to be sorted.

BY
Is an optional language element you can use to clarify syntax.

sort-key
Is a field whose contents form the basis for the sort. You can also use a value
expression as a sort key as long as the value expression does not contain a
SORTED BY or REDUCED TO clause.

The sort key can be preceded or followed by a keyword that determines the order
in which DATATRIEVE sorts the records in the collection. ASCENDING is the
default order.

To specify the sort order for each sort key, use one of the following terms:

ASC[ENDING]
DESC[ENDING]
INCREASING
DECREASING

If you specify more than one sort key, use a comma to separate each sort key from
the next.

Restrictions

• You can use the SORT statement only to rearrange a collection you have
already formed with a FIND statement.

• You cannot use the SORT statement in a compound statement.

• You must specify at least one sort key.

• You cannot specify more than 255 sort keys in an RSE or in a SORT
statement.

• A sort field cannot be a direct table lookup.

4–368 DATATRIEVE Commands, Statements, and Definition Clauses

SORT Statement

Results

• DATATRIEVE sorts the collection according to the order and fields you
specify. DATATRIEVE sorts alphanumeric fields according to the order of
the ASCII collating sequence. See the VAX/VMS documentation for more
information on the DEC Multinational Character Set, which includes the
ASCII character set.

• If you omit the collection name, DATATRIEVE sorts the current collection.

• If you specify ASC[ENDING] or INCREASING in the sort key, DATATRIEVE
puts the record with the lowest value in the specified field first in the
collection and the one with the highest value last. This is the default.

If you specify DESC[ENDING] or DECREASING, DATATRIEVE puts the
record with the highest value in the specified field first in the collection and
the one with the lowest value last.

• If you specify more than one sort key, DATATRIEVE uses the first field name
as the major sort key and each successive field name as an increasingly minor
key.

• If, in the first sort key, you omit a keyword specifying the sort order (for
example, ASCENDING or DESCENDING), DATATRIEVE arranges the
collection according to the ascending order of the contents of that field.

If, in the second or subsequent sort keys, you omit a keyword specifying
the sort order, DATATRIEVE uses the sort order implied or specified for the
preceding sort key.

• When DATATRIEVE executes the SORT statement, any selected record for
the target collection is released, and the collection cursor does not point to
any record in the collection. In addition, the number of records shown in
the SHOW CURRENT display no longer includes records dropped from the
collection.

Usage Notes

• To sort record streams, use the SORTED BY clause of the record selection
expression that creates the record stream (see the chapter on RSE in the
VAX DATATRIEVE User’s Guide).

• To sort collections when you first form them, use the SORTED BY clause of
the RSE in the FIND statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–369

SORT Statement

Examples

The following example sorts the first ten yachts by the ratio of PRICE to
DISPLACEMENT:

DTR> FIND FIRST 10 YACHTS
[10 records found]
DTR> SORT BY PRICE/DISP
DTR> PRINT ALL TYPE, PRICE, DISP,
[Looking for next element in list]
CON> PRICE/DISP ("$/LB."/"RATIO") USING $$$.99

$/LB.
MANUFACTURER MODEL PRICE WEIGHT RATIO

BLOCK I. 40 18,500 $.00
BUCCANEER 270 5,000 $.00
ALBERG 37 MK II $36,951 20,000 $1.85
AMERICAN 26 $9,895 4,000 $2.47
BOMBAY CLIPPER $23,950 9,400 $2.55
AMERICAN 26-MS $18,895 5,500 $3.44
BAYFIELD 30/32 $32,875 9,500 $3.46
ALBIN VEGA $18,600 5,070 $3.67
ALBIN BALLAD $27,500 7,276 $3.78
ALBIN 79 $17,900 4,200 $4.26

DTR>

The following example forms a collection of FAMILIES CROSS KIDS and sorts
the collection by decreasing age of the children:

DTR> FIND FIRST 6 FAMILIES CROSS KIDS
[6 records found]
DTR> SORT BY DESC AGE
DTR> PRINT ALL FATHER, MOTHER, EACH_KID

KID
FATHER MOTHER NAME AGE

JIM LOUISE ANNE 31
JIM LOUISE JIM 29
JIM LOUISE ELLEN 26
JIM LOUISE DAVID 24
JIM ANN URSULA 7
JIM ANN RALPH 3

4–370 DATATRIEVE Commands, Statements, and Definition Clauses

STORE Statement

STORE Statement
Creates a record in a DATATRIEVE domain and stores values in one or more
fields of the record. For information on using STORE with VAX DBMS and
relational databases, see the section on the STORE statement for VAX DBMS and
relational sources in this chapter.

Format

STORE [context-variable IN] domain-name

[USING statement-1]

[VERIFY [USING] statement-2]

Arguments

context-variable
Is the name of the record to be inserted.

domain-name
Is the given name or alias of the domain that contains the new record.

See the chapter on RSE in the VAX DATATRIEVE User’s Guide for discussions of
context variables.

USING statement-1
Specifies a DATATRIEVE statement that can store one value for one or more
fields in the new record.

VERIFY [USING] statement-2
Specifies a statement DATATRIEVE executes just before storing the new record.

Restrictions

• The domain to contain the new record must be readied for WRITE or
EXTEND access (see the section on the READY command.)

• You cannot store a new record in an RMS relative file or a view.

• With the USING clause you cannot store values in the fields of a list unless
you include a MATCH statement (see the section on the MATCH statement).
You can also store values into list fields by omitting the USING clause and
having DATATRIEVE prompt you for a value for each field in the record. Or
you can make no reference to the list fields in the USING clause, and use the
MODIFY statement later to enter values in the list fields.

DATATRIEVE Commands, Statements, and Definition Clauses 4–371

STORE Statement

• If you include the keyword USING when specifying statement-1, you must
put USING on the same input line as the domain name, unless you end
the input line with a continuation character, hyphen (-). If you omit the
keyword USING and the continuation character, you must put at least the
first element of statement-1 on the same input line as the domain name.

• Unless you end your input line with the continuation character, hyphen
(-), do not press the RETURN key immediately before typing the keyword
VERIFY.

• For data contained in an RMS indexed file, you cannot store a new record
that duplicates the information in either a primary or alternate key field with
the NO DUP attribute.

• You cannot store a value in a COMPUTED BY field.

• You cannot store list fields or their subordinates in hierarchical records in
remote domains.

• To use the name of a REDEFINES field when storing a record, you must
specify the name in a USING clause. Otherwise, DATATRIEVE prompts
you with the name of the elementary field from which the REDEFINES field
takes its value.

• If you want to use a form to display the records you are storing with the
STORE statement, you can use one of two methods:

Include a FORM clause in the definition of the domain you wish to access.
Then you must omit the field list and the USING clauses of the STORE
statement. That is, you must retrieve entire records from the target
collection or record stream.

Use the DISPLAY_FORM statement for FMS and TDMS forms, or the
WITH_FORM statement for DECforms forms.

If you use the DISPLAY_FORM statement to store, you must use its
RETRIEVE clause.

If you use the WITH_FORM statement to store, you must use its
RECEIVE clause.

See the sections on DEFINE DOMAIN and DISPLAY_FORM in this chapter.
SET FORM must be in effect when you ready the domain and when you enter
the STORE statement. Check the status of the SET FORM/NO FORM setting
with the SHOW SET_UP command.

4–372 DATATRIEVE Commands, Statements, and Definition Clauses

STORE Statement

Results

• If you omit the USING statement-1 clause, DATATRIEVE prompts you to
supply a value for the first elementary field in the record with the following
message:

ENTER field-name:

After you enter a value, DATATRIEVE prompts you to supply a value for the
next elementary field in the record, and so on, until you have entered a value
for every elementary field in the record.

After you supply a value to the last elementary field in the record,
DATATRIEVE adds the record to the data file.

• If you press only the RETURN key in response to a prompt, DATATRIEVE
repeats the prompt.

• To enter all spaces in an alphabetic or alphanumeric field or to enter all zeros
in a numeric field, respond to the STORE statement’s prompt with one or
more spaces and press the RETURN key.

• If a field definition contains a DEFAULT VALUE clause and you enter one
TAB when prompted for a value in that field, DATATRIEVE enters the
default value in the field. DATATRIEVE enters the default value regardless
of whether the field definition contains a MISSING VALUE clause.

• If you enter two or more tab characters to a prompt for an alphanumeric field,
DATATRIEVE stores the tab characters in the field. If you enter two or more
tab characters at a prompt for a numeric field, DATATRIEVE displays an
error message and reprompts you for valid numeric data.

• If a field definition contains a MISSING VALUE clause and no DEFAULT
VALUE clause, DATATRIEVE stores the missing value in the field when you
respond to the prompt with one TAB.

• If you press CTRL/Z any time between the first prompt and entering your
response to the last prompt, DATATRIEVE aborts the STORE statement and
returns you to DATATRIEVE command level. No new record is stored.

• If in response to a prompt for a field value you enter more characters or digits
than the field definition specifies, DATATRIEVE displays an error message
and reprompts you for another value.

• If you enter data that conflicts with the conditions specified by a VALID IF
clause in the record definition, DATATRIEVE reprompts you for valid data.

DATATRIEVE Commands, Statements, and Definition Clauses 4–373

STORE Statement

• If you specify a VERIFY USING clause, no data is stored until DATATRIEVE
successfully executes statement-2. If the VERIFY USING clause contains an
ABORT statement in an IF-THEN-ELSE statement and the abort conditions
are met, DATATRIEVE aborts the STORE statement and returns you to
DATATRIEVE command level. This abort occurs whether you have SET
ABORT or SET NO ABORT in effect. When DATATRIEVE aborts a STORE
statement, no record is stored.

Usage Notes

• In the USING statement-1 clause, you can include an Assignment statement
or a BEGIN-END block containing a series of Assignment statements. You
can use the following two forms of the Assignment statement:

field-name = value-expression

group-field-name-1 = group-field-name-2

See the Assignment section of this chapter for more information on assigning
a value to an elementary field and assigning a value to a group field.

• Each time DATATRIEVE completes the execution of a STORE statement,
the new record is part of the data file. If a STORE statement is part of
a loop and it creates a record each time DATATRIEVE executes the loop,
DATATRIEVE enters each new record in the data file when it executes the
STORE statement. If you abort the loop with a CTRL/Z, CTRL/C, or ABORT
statement, the records already stored are unaffected.

Once the records are in the data file, you must, when working with
DATATRIEVE, use either the ERASE statement for indexed files or the
MODIFY statement for sequential files to remove data from the files.

• To store more than one record in a domain, you can use the following form of
the REPEAT statement:

REPEAT n STORE domain-name

The argument n represents the number of records to be stored in the domain.
You can avoid counting the new records you want to store by making n
much larger than the estimated number of new records. When you finish
storing records, stop the prompts for additional data by entering a CTRL/Z in
response to the prompt. DATATRIEVE then returns you to command level.

• You can use the VERIFY clause to check data before DATATRIEVE stores a
new record. Put an ABORT statement in an IF-THEN-ELSE statement that
establishes the conditions for the abort. In statement-2 of the VERIFY clause,
you can also put a BEGIN-END block containing a series of IF-THEN-ELSE
statements.

4–374 DATATRIEVE Commands, Statements, and Definition Clauses

STORE Statement

• The values you supply to the prompts of the STORE statement are first
checked against any validation conditions specified for that field in the record
definition. If the value conforms to the conditions specified in the appropriate
VALID IF clause in the record definition, only then is it checked against the
conditions in the VERIFY clause of the STORE statement.

If you always use the same validation conditions when storing data, put
those conditions in VALID IF clauses in the record definition. That way,
DATATRIEVE reprompts you for a value if you enter invalid data. Otherwise,
the ABORT statement in a VERIFY clause returns you to DATATRIEVE
command level, and you have to reissue the STORE command to resume
entering data.

• With the STORE statement, you can transfer information from one domain
to another. Use the following syntax to nest the STORE statement in a FOR
loop:

FOR domain-1

STORE domain-2 USING

group-field-name-2 = group-field-name-1

The group fields need not contain identical elementary fields, but
DATATRIEVE transfers values only between elementary fields with identical
field names. You should use this method (instead of a RESTRUCTURE
statement) when a record contains duplicate elementary field names
subordinate to different group fields.

Note, however, that DATATRIEVE still needs to know which elementary fields
in the source domain are to be matched with the fields of the same names
in the target domain. The specified group field names must unambiguously
identify the fields in question. For example, do not specify a higher-level
group field that includes multiple elementary fields of the same name; specify
the lower-level group field that can distinguish the appropriate elementary
field.

You can use this method to transfer data between RMS sequential files
and RMS indexed files. Domain-1 and domain-2 can share the same record
definition, but the definition of one domain specifies a sequential file, and
the other an indexed file. See the DEFINE FILE command for details on
specifying types of file organization.

In a similar manner, you can also transfer elementary field values from one
domain to another. Put a STORE statement in a FOR statement whose
RSE selected the desired source records, and put the necessary Assignment
statements in the USING clause of the STORE statement.

DATATRIEVE Commands, Statements, and Definition Clauses 4–375

STORE Statement

If the definition of an elementary field of the target domain contains a
DEFAULT VALUE clause and there is no matching field in the source
domain, DATATRIEVE stores the default value in the field. This default
value is stored whether or not the field definition contains a MISSING
VALUE clause.

If the definition of an elementary field of the target domain contains a
MISSING VALUE clause and no DEFAULT VALUE clause, and there is no
matching field in the source domain, DATATRIEVE stores the missing value
in the field.

If the definition of an elementary field contains neither a DEFAULT VALUE
clause nor a MISSING VALUE clause and there is no matching field in the
source domain, DATATRIEVE stores blanks in alphabetic and alphanumeric
fields and zeros in numeric fields.

• You can also transfer information from one domain to another with the
Restructure statement using the following format:

domain-name = rse

This form of the Assignment statement creates an implicit FOR loop and
an implicit STORE statement with the appropriate USING clause. See the
section in this chapter on the Restructure statement for further details about
restructuring domains.

• Take special care when storing data in primary key fields of RMS indexed
files and in other fields with the NO CHANGE attribute. Values in these
fields cannot be changed with the MODIFY command, and errors can be
corrected only by creating a new record with the correct value and erasing the
old record.

• Use a context variable with the domain name in the STORE statement if
you want to refer to the values you have entered before DATATRIEVE stores
the record. You can use the values for VERIFY USING clauses (as in the
second example of the Examples section), or you can use the values of one
field to calculate the values of other fields in the record as you store them.
For example, you want to store a yearly total after storing the quarterly
quantities:

4–376 DATATRIEVE Commands, Statements, and Definition Clauses

STORE Statement

DTR> STORE X IN ACCOUNTS USING
CON> BEGIN
CON> Q1 = *.Q1
CON> Q2 = *.Q2
CON> Q3 = *.Q3
CON> Q4 = *.Q4
CON> FY = X.Q1 + X.Q2 + X.Q3 + X.Q4
CON> END
Enter Q1: . . .

Examples

The following example stores two records in the FAMILIES domain:

DTR> READY FAMILIES WRITE
DTR> REPEAT 2 STORE FAMILIES
Enter FATHER: GEORGE
Enter MOTHER: SANDY
Enter NUMBER_KIDS: 2
Enter KID_NAME: DANA
Enter AGE: 12
Enter KID_NAME: DACIA
Enter AGE: 9

Enter FATHER: WAYNE
Enter MOTHER: SHEEL
Enter NUMBER_KIDS: 2
Enter KID_NAME: BETE
Enter AGE: 8
Enter KID_NAME: ALEX
Enter AGE: 5
DTR> FIND FAMILIES WITH MOTHER = "SANDY", "SHEEL"
[2 records found]
DTR> PRINT ALL

NUMBER KID
FATHER MOTHER KIDS NAME AGE

GEORGE SANDY 2 DANA 12
DACIA 9

WAYNE SHEEL 2 BETE 8
ALEX 5

DTR>

The following example stores a record in the YACHTS domain, using a context
variable and a VERIFY clause:

DATATRIEVE Commands, Statements, and Definition Clauses 4–377

STORE Statement

DTR> SHOW HINKLEY_STORE
PROCEDURE HINKLEY_STORE
STORE A IN YACHTS USING
BEGIN

BUILDER = "HINKLEY"
MODEL = "BERMUDA 40"
RIG = "YAWL"
LOA = 40
DISP = 20000
BEAM = 12
PRICE = 82000

END VERIFY USING
BEGIN

PRINT A.BOAT, SKIP
IF *.CONFIRMATION CONT "N" THEN
PRINT SKIP THEN ABORT "BAD RECORD"

END
END_PROCEDURE

DTR> READY YACHTS WRITE
DTR> :HINKLEY_STORE

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

HINKLEY BERMUDA 40 YAWL 40 20,000 12 $82,000

Enter CONFIRMATION: N

ABORT: BAD RECORD

DTR>

The following example defines a domain for single-digit integers and their
squares, and uses a WHILE statement to control the number of records stored in
the domain:

4–378 DATATRIEVE Commands, Statements, and Definition Clauses

STORE Statement

DTR> DEFINE DOMAIN SQUARES USING
DFN> SQUARES_REC ON SQUARES.DAT;
DTR> DEFINE RECORD SQUARES_REC USING
DFN> 01 SQUARES.
DFN> 03 NUMBER PIC 9.
DFN> 03 ITS_SQUARE PIC 99.
DFN> ;
[Record is 3 bytes long.]
DTR> DEFINE FILE FOR SQUARES;
DTR> READY SQUARES WRITE
DTR> DECLARE N PIC 99.
DTR> N = 0
DTR> WHILE N NE 10 STORE SQUARES USING
CON> BEGIN
CON> NUMBER=N
CON> ITS_SQUARE = N * N
CON> N = N + 1
CON> END
DTR> FIND SQUARES
[10 records found]
DTR> PRINT ALL

ITS
NUMBER SQUARE

0 00
1 01
2 04
3 09
4 16
5 25
6 36
7 49
8 64
9 81

DTR>

The following example stores data from the WORKER domain into the expanded
NEW_WORKER domain. These domains have duplicate elementary field names
that are subordinate to different group field names. The example uses a FOR
statement to control the STORE statement so that DATATRIEVE stores the
data from the elementary fields correctly. The record definitions and the STORE
statement are as follows:

DATATRIEVE Commands, Statements, and Definition Clauses 4–379

STORE Statement

DTR> SHOW WORK_REC
RECORD WORK_REC USING
01 WORK.

03 LOCAL.
05 CITY PIC X(10).
05 STATE PIC X(2).

03 REMOTE.
05 CITY PIC X(10).
05 STATE PIC X(2).

;
DTR> SHOW NEW_WORK_REC
RECORD NEW_WORK_REC USING
01 WORK.

03 NEW_LOCAL.
05 CITY PIC X(10).
05 STATE PIC X(2).

03 NEW_REMOTE.
05 CITY PIC X(10).
05 STATE PIC X(2).

03 NAME.
05 FIRST PIC X(10).
05 LAST PIC X(15).

;
DTR> READY NEW_WORKER WRITE
DTR> FOR WORKER
CON> STORE NEW_WORKER USING
CON> BEGIN
CON> NEW_LOCAL = LOCAL
CON> NEW_REMOTE = REMOTE
CON> END
DTR>

4–380 DATATRIEVE Commands, Statements, and Definition Clauses

STORE Statement (for VAX DBMS and Relational Sources)

STORE Statement (for VAX DBMS and Relational Sources)
Adds a new record to the database.

Format

STORE

���
��

rdb-domain-name
rdb-relation-name
dbms-domain-name
dbms-record-name

���
�	

[USING statement-1]

[VERIFY [USING] statement-2]

[[CURRENCY] [context-name.]set-name-1 [,...]]

Arguments

rdb-domain-name
Is the given name of the domain to contain the new relation.

rdb-relation-name
Is the name assigned to the relation when the database was created. The relation
name can be the name of a view relation.

dbms-domain-name
Is the given name of the domain to contain the new record.

dbms-record-name
Is the name assigned to the record when the database was created and to the
record which will be stored.

USING statement-1
Specifies a DATATRIEVE statement that can store one value for one or more
fields in the new record.

VERIFY [USING] statement-2
Specifies a statement DATATRIEVE executes just before storing the new record.

CURRENCY
Is a keyword that is used only with VAX DBMS records or domains.

DATATRIEVE Commands, Statements, and Definition Clauses 4–381

STORE Statement (for VAX DBMS and Relational Sources)

context-name
Is the name of a valid context variable or the name of a collection with a selected
VAX DBMS record. It must identify a record that participates in the specified
set. If the SYSTEM owns the set, you do not need to establish a context for the
set. If the set is not owned by the SYSTEM and the context name is not present,
DATATRIEVE uses the most recent single record context of a domain with a
record type that participates in the specified set type.

set-name
Is the name of a VAX DBMS set. The record being stored must be an
AUTOMATIC member of that set. Use the CONNECT statement to connect
the record to MANUAL insertion sets.

It is not necessary to put SYSTEM-owned sets in the currency list. For all other
AUTOMATIC sets, you must establish currency, but it is not necessary to put
them in the currency list.

Usage Notes

• When storing records in relations that are dependent on other relations
because of a constraint definition, ready all the involved relations.

• If you use the optional CURRENCY clause, you must list one or more set
names. For each set name, you can optionally specify a context name. You
can put multiple set names within the CURRENCY list, but you can have
only one CURRENCY clause in a STORE statement.

Examples

The following example stores a new record in the relation JOB_HISTORY and
makes the change permanent by entering a COMMIT statement:

DTR> READY PERSONNEL USING JOB_HISTORY WRITE
DTR> STORE JOB_HISTORY
Enter DEPARTMENT_CODE: HENG
Enter EMPLOYEE_ID: 78645
Enter JOB_CODE: B-78
Enter JOB_END: 021783
Enter JOB_START: 052181
DTR> COMMIT

The following example adds a new COMPONENT record to the database. A
valid context must be established for current records in the sets PART_USED_
ON and PART_USES to store a COMPONENT. The STORE_COMP procedure
prompts for values so that DATATRIEVE knows which record you want to be
current. The nested FOR loop establishes the context, and the CURRENCY
clause translates DATATRIEVE contexts into VAX DBMS currencies. After you

4–382 DATATRIEVE Commands, Statements, and Definition Clauses

STORE Statement (for VAX DBMS and Relational Sources)

enter your response to the last prompt for the values in a record, VAX DBMS
automatically inserts the record into the specified set occurrences:

DTR> DEFINE PROCEDURE STORE_COMP
DFN> DECLARE USED_ON PIC X(8).
DFN> DECLARE SUB_PART PIC X(8).
DFN> SUB_PART = *."I.D. number of the component part"
DFN> USED_ON = *."I.D. number of the part it is used on"
DFN> FOR A IN PART WITH PART_ID = USED_ON
DFN> FOR B IN PART WITH PART_ID = SUB_PART
DFN> STORE COMPONENTS USING

DFN> BEGIN
DFN> COMP_SUB_PART = SUB_PART
DFN> COMP_OWNER_PART = USED_ON
DFN> COMP_MEASURE = *."component measure"
DFN> COMP_QUANTITY = *."quantity"
DFN> END CURRENCY A.PART_USED_ON , B.PART_USES
DFN> END_PROCEDURE
DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–383

SUM Statement

SUM Statement
Provides a summary of totals for one or more numeric fields in the current
collection. The summary is sorted according to the values in one or more fields of
the current collection. The summary includes subtotals for control groups. The
summary can be written to a file or an output device.

Format

SUM print-list BY sort-list

�
ON

� file-spec
*.prompt

 �

Arguments

print-list
Is a list of one or more numeric fields, other value expressions, and modifiers.
The print list has the following format:

{value-expression [{modifier} [...]] } [,...]

The section on the PRINT statement describes the value expressions and
modifiers you can use in a print list.

sort-list
Is a list of one or more sort keys that determine the order in which DATATRIEVE
presents the summary totals. An item in the sort list consists of the name of
a field whose contents form the basis for the sort, preceded or followed by a
keyword that determines the order DATATRIEVE uses to sort the data.

To specify the sort order for each sort key, use one of the following keywords:

ASC[ENDING]

DESC[ENDING]

INCREASING

DECREASING

If you specify more than one sort key, use a comma to separate each sort key from
the next.

file-spec
Is the file specification to which you want to write the output of the statement.

A complete file specification has the following format:

node-spec::device:[directory]file-name.type;version

4–384 DATATRIEVE Commands, Statements, and Definition Clauses

SUM Statement

*.prompt-name
Is the prompting value expression that prompts you for the file specification to
which you want to write the output of the statement.

Restrictions

• You must have established a current collection before issuing this statement.

• You must include only numeric fields in the print list.

• You cannot use table translation values as sort keys in a SUM statement. You
can declare a variable using the COMPUTED BY clause and a translation
value and then use the variable as the sort key.

• When you use ON LP: to send SUM statement output directly to a line
printer, DATATRIEVE assumes your system has a line printer. If your
system does not have a device defined as LPA0:, the clause ON LP: will not
work.

Although this restriction applies to any system without a line printer, you
may encounter it unexpectedly if your system is part of a VAXcluster with a
common line printer. The ON LP: clause does not work in a VAXcluster that
uses a common printer not directly connected to your system.

If the nodes in the cluster are connected with DECnet, you can work around
this restriction. To send output from a node without a line printer, you
must include the node name of the system with the line printer in the LP:
specification. For example, if the cluster’s line printer is on a node named
BIGVAX, the following SUM statement sends output to it:

DTR> SUM 1 ("NUMBER"/"OF YACHTS") USING 9,
CON> PRICE USING $$$$,$$$ BY BUILDER ON BIGVAX::LP

Note that you cannot directly specify the line printer on BIGVAX by using the
cluster device-name BIGVAX$LPA0: in the ON clause.

Results

• DATATRIEVE creates a record stream based on the current collection. It
sorts the records of the record stream according to the specifications in the
sort list. It displays the summary or writes it to the device or file you specify
in the ON clause.

The summary consists of totals for the fields you specify in the print list. For
each control group created by the sort list, there is a total for each field in the
print list. At the end of the summary is a total for each value expression in
the print list of the values for all the records in the record stream.

DATATRIEVE Commands, Statements, and Definition Clauses 4–385

SUM Statement

• The order and format of the data in the report depends on the arguments you
select.

• If you omit the ON clause, DATATRIEVE displays the output.

• If you omit a field in the file specification, DATATRIEVE uses the defaults
specified in Table 4–34.

Table 4–34 Output File Specification Defaults

Field Default

node-spec:: Your local node
device: Your default device
[directory] Your default directory
file-name Null string
.type .LIS
;version 1 or next higher version number

The minimum file specification consists of a period (.). The specification of
such a file stored in your default VMS directory ends with ".;n", where n is
the version number and both the file name and the type are null strings.

Usage Note

Use edit strings to format the output of the totals for items in the print list.

Example

The following example forms a collection of yachts and uses the SUM statement
to summarize the prices of yachts in the collection and to display the number of
yachts built by each builder. Edit strings are used to format the values:

DTR> READY YACHTS; FIND FIRST 6 YACHTS
[6 records found]
DTR> SUM 1 ("NUMBER"/"OF YACHTS") USING 9,
CON> PRICE USING $$$$,$$$ BY BUILDER

NUMBER NUMBER
MANUFACTURER OF YACHTS PRICE OF YACHTS PRICE

ALBERG 1 $36,951
ALBIN 3 $64,000
AMERICAN 2 $28,790

6 $129,741

DTR>

4–386 DATATRIEVE Commands, Statements, and Definition Clauses

SYNCHRONIZED Clause

SYNCHRONIZED Clause
Causes word boundary alignment of an elementary field.

Format� SYNCHRONIZED
SYNC

 � LEFT
RIGHT

�

Arguments

LEFT
Allows compatibility with COBOL record definitions. DATATRIEVE accepts the
argument but ignores the boundary alignment specification that the field begin at
the left boundary of the unit of storage the field occupies.

RIGHT
Allows compatibility with COBOL record definitions. DATATRIEVE accepts the
arguments but ignores the boundary alignment specification that the field end at
the right boundary of the unit of storage the field occupies.

Restriction

The SYNC clause forces word boundary alignment on elementary fields only if
the allocation for the record is MAJOR_MINOR.

Results

• A SYNC clause can force word boundary alignment on an elementary field
and thus increase the amount of memory needed to store the value. For
compatibility with COBOL record definitions, DATATRIEVE accepts the
optional arguments LEFT and RIGHT but ignores the distinction between the
two types of word boundary alignment.

• The filler bytes created by word boundary alignment are added to the length
of any group fields to which the elementary field belongs.

DATATRIEVE Commands, Statements, and Definition Clauses 4–387

SYNCHRONIZED Clause

Example

This example shows the difference in storage allocation a SYNC clause can make.
A field of USAGE type LONG occupies four bytes of storage (the equivalent of one
longword):

DTR> DEFINE RECORD NOSYNC_REC USING
DFN> 01 TOP.
DFN> 03 ONE PIC X.
DFN> 03 TWO LONG.
DFN> ;
[Record is 5 bytes long.]
DTR> DEFINE RECORD SYNC_REC USING
DFN> 01 TOP.
DFN> 03 ONE PIC X.
DFN> 03 TWO SYNC RIGHT LONG.
DFN> ;
[Record is 8 bytes long.]
DTR>

4–388 DATATRIEVE Commands, Statements, and Definition Clauses

THEN Statement

THEN Statement
Joins two or more DATATRIEVE statements into a compound statement.

Format

statement-1 {THEN statement-2} [...]

Argument

statement
Is a DATATRIEVE statement.

Restrictions

• You must observe all restrictions on the statements included in the compound
statement. Restrictions are listed in the descriptions of each statement.

• You cannot use DATATRIEVE commands in a compound statement.

• A procedure you invoke in a compound statement cannot contain
DATATRIEVE commands.

• Do not include FIND and SELECT in the same compound statement.

• Do not include FIND and SORT in the same compound statement.

• Do not include SELECT and DROP in the same compound statement.

Results

• DATATRIEVE executes the individual statements of the compound statement
in the order you enter them.

• If any statement in the compound statement contains a syntax error,
DATATRIEVE does not execute any of the statements in the compound.

Usage Notes

• You can use a compound statement anywhere you can use a single statement.

• Use THEN statements rather than BEGIN-END blocks to form short
compound statements.

• If you use any statement that creates a context in the compound statement,
do not use any other statement in that compound that refers to or depends on
that context information.

DATATRIEVE Commands, Statements, and Definition Clauses 4–389

THEN Statement

Example

The following example uses a THEN statement to join a PRINT statement and a
MODIFY statement in a FOR loop:

DTR> SET NO PROMPT
DTR> READY YACHTS MODIFY
DTR> FOR YACHTS WITH BUILDER EQ "ALBIN"
CON> PRINT THEN MODIFY

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
Enter MANUFACTURER: CTRL/Z

Execution terminated by operator

DTR>

4–390 DATATRIEVE Commands, Statements, and Definition Clauses

USAGE Clause

USAGE Clause
Specifies the internal format of a numeric field or specifies a date field.

Format

USAGE [IS]

���
��

DISPLAY
BYTE
WORD
LONG
QUAD

� COMP
INTEGER

� COMP-1

REAL

� COMP-2

DOUBLE

G_FLOATING

H_FLOATING

COMP-3

� COMP-5
ZONED

DATE

���
���	

Arguments

DISPLAY
Indicates that each digit occupies one byte of storage. DISPLAY is the default if
you do not include a USAGE clause.

BYTE
Indicates that field value is stored in binary format and that the value is stored
in one byte of storage.

DATATRIEVE Commands, Statements, and Definition Clauses 4–391

USAGE Clause

WORD
Indicates that field value is stored in binary format and that the value is stored
in one word (two bytes) of storage.

LONG
Indicates that field value is stored in binary format and that the value is stored
in one longword (four bytes) of storage.

QUAD
Indicates that field value is stored in binary format and that the value is stored
in one quadword (eight bytes) of storage.

COMP
INTEGER
Indicates that the field value is stored in binary format. INTEGER is a synonym
for COMP.

COMP-1
REAL
Indicates that the field value is stored in single-precision real format. REAL is a
synonym for COMP-1.

COMP-2
DOUBLE
Indicates that the field value is stored in double-precision real format. DOUBLE
is a synonym for COMP-2.

G_FLOATING
Indicates that a field is a floating point number with precision to approximately
15 decimal digits.

H_FLOATING
Indicates that a field is a floating point number with precision to 33 decimal
digits.

COMP-3
Indicates that the field value is stored in packed-decimal format.

COMP-5
ZONED
Indicates that the field value is stored in signed decimal format. ZONED is a
synonym for COMP-5.

DATE
Indicates that the field is a date field.

4–392 DATATRIEVE Commands, Statements, and Definition Clauses

USAGE Clause

Restrictions

• This clause is valid for elementary numeric or date fields only.

• A field definition cannot contain both a USAGE clause and a SIGN clause.

Results

• The internal storage format of a numeric field is determined by the USAGE
clause specified. If a numeric field definition does not have a USAGE clause,
each digit in the field value occupies one character position in the record.

• If USAGE IS DATE is specified in a field definition clause, the field is
identified as a DATATRIEVE date field.

Usage Notes

• Use the appropriate form of the USAGE clause when a program written in
COBOL, BASIC-PLUS-2, or other language uses the record and requires a
different internal format.

• The USAGE clause can cause DATATRIEVE to align fields on hardware
storage boundaries. See the section in this chapter on the ALLOCATION
clause.

• In order to avoid the inaccuracies of floating point comparisons, when possible
you should declare fields or variables USAGE INTEGER or QUAD rather
than USAGE REAL, DOUBLE, G_FLOATING, or H_FLOATING.

• A COMP (or INTEGER) field stores its value in binary format. The size of a
COMP (or INTEGER) field depends on the number of digit positions specified
in its PICTURE clause. You can avoid having both a USAGE IS COMP clause
and a PICTURE clause by using the keywords WORD, LONG, and QUAD to
specify the three types of storage allocation available with COMP. Table 4–35
shows the COMP storage allocation types.

Table 4–35 COMP Storage Allocation Types

PIC Clause Size of Field Alternate USAGE Type

9(1) to 9(4) 2 bytes WORD
9(5) to 9(9) 4 bytes LONG
9(10) to 9(18) 8 bytes QUAD

DATATRIEVE Commands, Statements, and Definition Clauses 4–393

USAGE Clause

• VAX DATATRIEVE has always treated fields of the COMP data type as
SIGNED. DATATRIEVE does not support the UNSIGNED data types during
data definition.

For example, a record containing a COMP field with an UNSIGNED data
type might indicate that the record was originally defined using the CDDL
utility of CDD/Repository. If such a record were later edited through
DATATRIEVE, the data type of the COMP field would automatically be
converted to SIGNED.

This is the expected behavior of DATATRIEVE.

To ensure that a COMP field is stored with the proper sign, you should edit
or redefine the field using only the utility with which the definition was
originally created.

COMP-1 (or REAL) Fields
A COMP-1 (or REAL) field stores its value in single-precision real (floating-point)
format. COMP-1 fields are four bytes long.

Example

The following example defines the field SALE_PRICE as a REAL (COMP-1) field:

05 SALE_PRICE PIC 9(5)
USAGE REAL
EDIT_STRING IS $(6).

COMP-2 (or DOUBLE) Fields
A COMP-2 (or DOUBLE) field stores its value in double-precision real (floating-
point) format. COMP-2 fields are eight bytes long.

G_FLOATING Fields
A G_FLOATING field is an extended range 64-bit floating-point number with
precision to approximately 15 decimal digits.

H_FLOATING Fields
An H_FLOATING field is an extended range 128-bit floating-point number with
precision to approximately 33 decimal digits.

COMP-3 Fields
A COMP-3 (packed) field stores its value in packed-decimal format. The value is
stored two digits per byte. The value of a COMP-3 field must contain a sign. The
sign occupies the four low-ordered bits in the rightmost byte. The size of the field
depends on the number of digit positions specified by the field’s PICTURE clause:

���� ��� ������ �
�	�
��� ���������� ��

�

4–394 DATATRIEVE Commands, Statements, and Definition Clauses

USAGE Clause

For example, a field with three digit positions is two bytes long. If the field
contains an even number of digits, the size is rounded up. Thus, a 6-digit field is
stored in four bytes.

COMP-5 (or ZONED) Fields
A COMP-5 (or ZONED) field stores its value in signed decimal format. A value in
a COMP-5 field is stored one digit per byte. Therefore, the size of a COMP-5 field
is the number of digit positions specified in its PICTURE clause.

The sign of a COMP-5 value shares the rightmost byte with the lowest-valued
digit of the value. The lowercase letters P through Y represent a negative sign
for the values 0 through 9.

DATE Fields
A DATATRIEVE date field stores a date as an 8-byte binary value. Other
languages may not interpret the date field correctly. The date is expressed as
the number of clunks (100-nanosecond units) since the base date of 00:00:00 AM
on November 17, 1858.

When you print a date field, DATATRIEVE translates the number of clunks to
the format you specify in the EDIT_STRING clause (or to the default format if no
EDIT_STRING clause is included in the field definition). The default format is
DD-MMM-YYYY.

When you enter a date value, DATATRIEVE translates the input value to clunks
before storing it.

The default edit string for date fields is 11 characters. When you concatenate
two fields defined as USAGE IS DATE, DATATRIEVE converts the date values to
23-character string literals. This results in longer concatenated strings than you
may have expected. To force the use of the default when concatenating date fields,
use a FORMAT value expression or specify an edit string for the concatenated
fields in the PRINT statement.

Example

The following example defines the field SALE_DATE as a date field, to be printed
in the default format for date fields:

06 SALE_DATE USAGE IS DATE.

DATATRIEVE Commands, Statements, and Definition Clauses 4–395

VALID IF Clause

VALID IF Clause
Validates a field value before it is stored in the record.

Format

VALID IF boolean-expression

Argument

boolean-expression
Is a DATATRIEVE Boolean expression.

Restrictions

• A field definition cannot contain both a VALID IF and a COMPUTED BY
clause.

• The Boolean expression of a VALID IF clause cannot refer to a list field from
the same domain.

• When you assign a value to a variable or a field that contains a VALID IF
clause, the variable or field can end up containing an invalid value under the
following conditions:

If you prompt for the value, enter an invalid value, and then stop the
statement execution with CTRL/Z, the invalid value may be stored in the
variable.

If you assign a value directly to a variable and the value is invalid,
DATATRIEVE issues an invalid value message but still assigns the
invalid value.

Result

When a value is entered for the field with a MODIFY or STORE statement,
DATATRIEVE evaluates the Boolean expression. If the Boolean expression is
true, DATATRIEVE stores the value in the field. If it is false, DATATRIEVE
prints an error message and reprompts for the field value.

Usage Note

When a VALID IF clause in one field refers to a list field in another domain, you
must ready the domain with the list field before you ready the domain with the
VALID IF clause. You must finish the domains in the reverse order: the domain
with the VALID IF clause first and the domain with the list field last.

4–396 DATATRIEVE Commands, Statements, and Definition Clauses

VALID IF Clause

Examples

The following example compares the value entered for the RIG field to the
character strings SLOOP, KETCH, MS, and YAWL and stores the value in the
field if it is one of those character strings:

06 RIG PIC X(6)
VALID IF RIG EQ "SLOOP", "KETCH", "MS", "YAWL".

The following example stores a value in the LOA field if it is between 15 and 50:

06 LENGTH_OVER_ALL PIC XXX
VALID IF LOA BETWEEN 15 AND 50
QUERY_NAME IS LOA.

The following example stores a value in the PRICE field if it is greater than 1.3
times the displacement or if it is zero:

06 PRICE PIC 99999
VALID IF PRICE>DISP*1.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

DATATRIEVE Commands, Statements, and Definition Clauses 4–397

WHILE Statement

WHILE Statement
Causes DATATRIEVE to repeat a statement as long as the condition specified in
the Boolean expression is true.

Format

WHILE boolean-expression statement

Arguments

boolean-expression
Is a Boolean expression. (See Chapter 1). In the WHILE statement, Boolean

expressions are limited to the following format:
�

variable-name
*.prompt

�
boolean-

operator value-expression

statement
Is a simple or compound statement you want DATATRIEVE to execute if the
Boolean expression evaluates to true.

Restrictions

• The restrictions for particular statements are documented in this chapter in
the section for each statement. You must observe these restrictions for any
statements you include in the WHILE statement.

• You cannot use a field name as a value expression on the left side of the
Boolean expression of a WHILE statement.

Result

DATATRIEVE repeats the specified statement as long as the Boolean example
evaluates to true. If the relationship between the two values in the Boolean never
changes (for example, if 2 GT 1), the loop repeats infinitely until you end it with
a CTRL/C or CTRL/Z.

Usage Notes

• Use the WHILE statement to form and control the execution of loops.

• You can use a prompting value expression or a variable as the first member of
the Boolean expression.

4–398 DATATRIEVE Commands, Statements, and Definition Clauses

WHILE Statement

Example

The following example groups the boats with LOA less than 35 according to the
value of BEAM and displays the TYPE, LOA, and BEAM of the shortest boat
from each group of boats with the same value for BEAM:

DTR> SHOW WHILE_EX
PROCEDURE WHILE_EX
BEGIN
DECLARE X PIC 99.
X = 0
FOR YACHTS WITH LOA < 35 AND

BEAM NE 0 SORTED BY BEAM, LOA
WHILE X < BEAM
BEGIN

PRINT TYPE, LOA, BEAM, X
X = BEAM

END
END
END_PROCEDURE

DTR> :WHILE_EX

LENGTH
OVER

MANUFACTURER MODEL ALL BEAM X

CAPE DORY TYPHOON 19 06 00
WINDPOWER IMPULSE 16 07 06
ERICSON 23/ SPECIA 23 08 07
EASTWARD HO 24 09 08
ALBIN 79 26 10 09
BOMBAY CLIPPER 31 11 10
IRWIN 25 25 12 11

DTR>

DATATRIEVE Commands, Statements, and Definition Clauses 4–399

WITH_FORM Statement

WITH_FORM Statement
Sends and receives data to and from a DECforms form. Control text items can be
also sent and received.

Format

WITH_FORM form-name IN file-name

SEND FROM datatrieve-source [USING exchange-record] [,]

. . .

. . .

. . .

TO decforms-name

RECEIVE FROM decforms-name

TO datatrieve-destination [USING exchange-record] [,]

. . .

. . .

. . .

[SEND_CONTROL_TEXT send-control-item [,...]]

[RECEIVE_CONTROL_TEXT receive-control-item [,...]]

Arguments

form-name
Is the name of the DECforms form in the form file. The form name is
syntactically required but ignored when the file name is a .FORM file.

file-name
Is the DECforms file name. It can either be a .FORM or a .EXE file (the default
file extension is .EXE).

decforms-name
Is a DECforms record name or list name. A list is a DECforms structure. If a
list name is specified as decforms-name, all the equivalent datatrieve-sources or
datatrieve-destinations must be specified.

4–400 DATATRIEVE Commands, Statements, and Definition Clauses

WITH_FORM Statement

datatrieve-source/datatrieve-destination
Is the name of a DATATRIEVE data element; a data element can be represented
by a DATATRIEVE record, by a group field, by a field, or by a variable. When
datatrieve-source and datatrieve-destination can be used interchangeably,
referred to as "DATATRIEVE data element". The DATATRIEVE data element
can not be a COMPUTED BY field (for more information see the chapter on
DECforms in the VAX DATATRIEVE Guide to Interfaces). When the decforms-
name is a list name, specify a list of DATATRIEVE data elements separated by
commas.

exchange-record
Is the CDD/Repository path name of a record used to send and receive data with
DECforms. It is an optional argument of the datatrieve-source and datatrieve-
destination structures. For more information on the exchange record see the
chapter on DECforms in the VAX DATATRIEVE Guide to Interfaces.

send-control-item
Is the input parameter (variable or string literal) that activates the proper
actions defined by the user inside the .IFDL file. If you specify more than one
input parameter, separate them with commas. Every control-item has to be from
one to five characters long. For more details on how to build and use a SEND_
CONTROL_TEXT see the DECforms documentation.

receive-control-item
Is a DATATRIEVE variable previously declared which receives a text control
item returned by the form. The content of the variable will be loaded by the
form depending on the rules established by the user in the .IFDL file. If you
specify more than one output parameter, separate them with commas. Every
receive-control-item should be five characters long. For more details on how to
build and use a RECEIVE_CONTROL_TEXT see the DECforms documentation.

Restrictions

• The SEND and RECEIVE clauses are both optional, but either one or the
other has to be present in the WITH_FORM statement.

• When both SEND and RECEIVE clauses appear, a DECforms TRANSCEIVE
operation is performed. If you want two distinct SEND and RECEIVE
operations, you must use two distinct WITH_FORM statements, each with
the appropriate clause.

• If you press RETURN after the SEND clause, DATATRIEVE will not allow
you to enter the RECEIVE clause in the WITH_FORM statement, because it
considers the statement as being completed.

DATATRIEVE Commands, Statements, and Definition Clauses 4–401

WITH_FORM Statement

• The records listed in the SEND and RECEIVE clauses and the records
declared inside the form must have the same structure. They should also be
based on the same dictionary definition. It is not required that they have the
same name. If an exchange record is specified, the form record must have the
same structure as the exchange record.

• If there is an exchange record linked to a record in the SEND or RECEIVE
clauses, the field names of the exchange record must be identical to the field
names of the DATATRIEVE record that you want to send or receive.

Usage Notes

• It is not mandatory to define all the record fields of the DATATRIEVE data
element in the related exchange record structure. It is possible to define,
also with different data types, only the fields needed by the form. See the
VAX DATATRIEVE Guide to Interfaces for more information on the use of the
exchange record.

• When executing a WITH_FORM statement, DATATRIEVE does not apply
any data conversion on the data sent to or received from DECforms. Only if
there is an exchange record linked to a record does DATATRIEVE perform the
conversions between the two structures. All the other data conversions must
be done within DECforms.

Example

In the following example the WITH_FORM statement causes DATATRIEVE to
send records contained in the YACHTS domain to the form record named BOAT.
The form responds to the send operation by displaying the form record data (one
record at a time) on the screen.

DTR> READY YACHTS
DTR> FOR X IN YACHTS
CON> WITH_FORM YACHT IN DTR$LIBRARY:FORMS
CON> SEND FROM X TO BOAT;

4–402 DATATRIEVE Commands, Statements, and Definition Clauses

A
VAX DATATRIEVE Keywords

This appendix lists the VAX DATATRIEVE keywords. You should not use these
names when you are naming items.

A.1 DATATRIEVE Keywords
The following list includes all VAX DATATRIEVE keywords.

*#(asterisk)
@#(at sign)
:#(colon)
,#(comma)
**#(double asterisk)
"#(double quotation mark)
=#(equal sign)
!#(exclamation point)
>#(greater than sign)
-#(hyphen or minus sign)
(#(left parenthesis)
<#(less than sign)
.#(period)
+#(plus sign)
?#(question mark)
)#(right parenthesis)
;#(semicolon)
/#(slash)
_#(underscore)
| #(vertical bar)
ABORT
ADT
ADVANCED
AFTER
ALIGNED_MAJOR_MINOR
ALIN_MAJ_MIN
ALL

VAX DATATRIEVE Keywords A–1

VAX DATATRIEVE Keywords
A.1 DATATRIEVE Keywords

ALLOCATION
AND
ANY
APPLICATION_KEYPAD
ARGUMENTS
AS
ASC
ASCENDING
AT
ATT
AVERAGE
BANISH
BATCH
BEFORE
BEGIN
BETWEEN
BLANK
BOOLEAN
BOTTOM
BT
BUT
BY
BYTE
CDO
CHANGE
CHARACTER
CHARACTERS
CHOICE
CLOSE
COL
COLLECTIONS
COLUMN
COLUMN_HEADER
COLUMNS_PAGE
COMMIT
COMP
COMP_1
COMP_2
COMP_3
COMP_5
COMP_6
COMPUTED
CONCURRENCY

A–2 VAX DATATRIEVE Keywords

VAX DATATRIEVE Keywords
A.1 DATATRIEVE Keywords

CONNECT
CONSISTENCY
CONT
CONTAINING
COUNT
CROSS
CURRENCY
CURRENT
DATABASE
DATABASES
DATA TYPE
DATE
DEBUG
DECIMAL
DECLARE
DECLARE_ATT
DECREASING
DEFAULT
DEFINE
DEFINEP
DELETE
DELETEP
DENY
DEPENDING
DESC
DESCENDING
D_FLOATING
DICTIONARY
DICTIONARIES
DIGIT
DIGITS
DISCONNECT
DISPLAY
DISPLAY_FORM
DO
DOMAIN
DOMAINS
DOUBLE
DROP
DUP
EDIT
EDIT_BACKUP
EDIT_STRING

VAX DATATRIEVE Keywords A–3

VAX DATATRIEVE Keywords
A.1 DATATRIEVE Keywords

ELSE
END
END_CHOICE
END_PLOT
END_PROCEDURE
END_REPORT
END_TABLE
ENDING
ENTRY
EQ
EQUAL
ERASE
EXCLUSIVE
EXECUTE
EXIT
EXTEND
EXTRACT
F_FLOATING
FIELD
FIELDS
FILE
FILL
FILLER
FIND
FINISH
FIRST
FOR
FORM
FORMAT
FORMS
FROM
GE
GET_FORM
G_FLOATING
GRANT
GREATER_EQUAL
GREATER_THAN
GROUP
GT
GUIDE
HELP
HELP_LINES
HELP_PROMPT

A–4 VAX DATATRIEVE Keywords

VAX DATATRIEVE Keywords
A.1 DATATRIEVE Keywords

HELP_WINDOW
H_FLOATING
IF
IN
INCR
INCREASING
INIT_VECTOR
INSERT
INTEGER
IS
JUST
JUSTIFIED
JUSTIFY
KEEP
KEY
KEYDEFS
KEYWORD
LAST
LE
LEADING
LEAVE
LEFT
LEFT_RIGHT
LESS_EQUAL
LESS_THAN
LINES_PAGE
LIST
LOCAL
LOCK_WAIT
LONG
LONGWORD
LT
MAJOR_MINOR
MATCH
MAX
MAX_LINES
MAX_PAGES
MEMBER
MIN
MISSING
MODIFY
NE
NETWORK

VAX DATATRIEVE Keywords A–5

VAX DATATRIEVE Keywords
A.1 DATATRIEVE Keywords

NEW_PAGE
NEW_SECTION
NEXT
NO
NONE
NONLOCAL
NOT
NOT_EQUAL
NOVERIFY
NUMBER
NUMERIC
OCCURS
OCTA
OCTAWORD
OF
ON
OPEN
OPTIMIZE
OR
OTHERWISE
OVER
OVERPUNCHED
OWNER
PACKED
PAGE
PATH
PIC
PICTURE
PLOT
PLOTS
PORT
PRINT
PRIOR
PRIVILEGES
PROCEDURE
PROCEDURES
PROMPT
PROTECTED
PURGE
PUT_FORM
PW
QUAD
QUADWORD

A–6 VAX DATATRIEVE Keywords

VAX DATATRIEVE Keywords
A.1 DATATRIEVE Keywords

QUERY_HEADER
QUERY_NAME
READ
READY
REAL
RECEIVE
RECONNECT
RECORD
RECORDS
RECOVER
REDEFINE
REDEFINES
REDUCE
REDUCED
RELATIONSHIPS
RELEASE
REPEAT
REPORT
REPORT_HEADER
REPORT_NAME
RETRIEVE
RIGHT
ROLLBACK
RSE
RUNNING
SCALE
SCHEMA
SCHEMAS
SEARCH
SELECT
SEMICOLON
SEND
SEPARATE
SET
SETS
SET_UP
SHARED
SHOW
SHOWP
SIGN
SIGNED
SIZE
SKIP

VAX DATATRIEVE Keywords A–7

VAX DATATRIEVE Keywords
A.1 DATATRIEVE Keywords

SNAPSHOT
SORT
SORTED
SOURCE
SPACE
STARTING
STD_DEV
STORE
STRING
STRUCTURE
SUBSCHEMA
SUM
SUPERCEDE
SUPERSEDE
SYNC
SYNCHRONIZED
SYNONYM
SYNONYMS
TAB
TABLE
TABLES
TERMINAL
TEXT
THE
THEN
TIMES
TO
TOP
TOTAL
TRAILING
UIC
UNSIGNED
USAGE
USER
USING
VALID
VALUE
VARIABLES
VARYING
VECTOR
VERIFY
VIA
WHEN

A–8 VAX DATATRIEVE Keywords

VAX DATATRIEVE Keywords
A.1 DATATRIEVE Keywords

WHILE
WITH
WITH_FORM
WITHIN
WORD
WRITE
ZERO
ZONED

VAX DATATRIEVE Keywords A–9

B
Access Privileges Tables

The access privileges available to users of DATATRIEVE are listed in the
following tables. Table B–1 gives a brief description of the privileges available
for use in DMU format dictionaries. Table B–2 lists privileges available for use
in CDO format dictionaries. Table B–3 cross-references the DMU and CDO
privileges.

Table B–1 Access Privileges for DMU Format Dictionaries

Privilege Allows you to:

C (CONTROL) Read, create, modify, and delete ACL entries. You
cannot deny yourself CONTROL privilege.

D (LOCAL_DELETE) Delete dictionary objects and directories and
subdictionaries with no children. Also lets you
edit, replace, or recompile definitions stored in the
dictionary.

E (DTR_EXTEND/EXECUTE) Ready a domain for EXTEND access, access a table, or
invoke a procedure.

F (FORWARD) Create subdictionaries.

G (GLOBAL_DELETE) Delete dictionary directories and subdictionaries,
including any children they may have, with a single
command.

H (HISTORY) Add entries to CDD/Repository history lists with the
Dictionary Management Utility (DMU).

M (DTR_MODIFY) Ready a domain for READ and MODIFY access.

P (PASS_THRU) Use a dictionary directory, subdictionary, or object in
a path name. You cannot deny yourself PASS_THRU
privilege.

(continued on next page)

Access Privileges Tables B–1

Access Privileges Tables

Table B–1 (Cont.) Access Privileges for DMU Format Dictionaries

Privilege Allows you to:

R (DTR_READ) Ready a domain for READ access, display dictionary
definitions with a SHOW command, use the EDIT
command, and copy them into a command file with an
EXTRACT command.

S (SEE) See the definition of a dictionary object. SEE access to
a domain definition and its associated record definition
is necessary to define a data file and then to ready the
domain.

U (UPDATE) Update the definition of a dictionary object.

W (DTR_WRITE) Ready a domain for WRITE access.

X (EXTEND) Create children of dictionary directories and
subdictionaries.

Table B–2 Access Privileges for CDO Format Dictionaries

Privilege Allows you to:

ADMINISTRATOR Not used.

CHANGE Change the definition of a dictionary object.
Define new objects or delete objects in the dictionary. 1

CONTROL Create, modify, and delete ACL entries.

DELETE Delete and purge dictionary objects. Delete empty
dictionary directories.

DEFINE Create new definitions and new versions of definitions.
1

EXTEND Ready a domain for EXTEND access. 2

MODIFY Ready a domain for READ and MODIFY access.

OPERATOR Not used.

1DATATRIEVE does not recognize either the CDO CHANGE privilege or the CDO DEFINE privilege
when used alone; they are only recognized when used together. The DATATRIEVE UPDATE privilege
identifies this combination of CHANGE and DEFINE.
2DATATRIEVE renames the CDO privilege ERASE to be EXTEND. If you acquire the EXTEND
privilege through DATATRIEVE or acquire the ERASE privilege through CDO, DATATRIEVE will
include EXTEND in your list of privileges. However, CDO does not convert the name, so if you look at
the same privileges through CDO, you will see ERASE listed.

(continued on next page)

B–2 Access Privileges Tables

Access Privileges Tables

Table B–2 (Cont.) Access Privileges for CDO Format Dictionaries

Privilege Allows you to:

READ Ready a domain for READ access, display dictionary
definitions with a SHOW command, use the EDIT
command, and copy them into a command file with an
EXTRACT command.

SHOW On an object, show the definition of a dictionary object.
SHOW access to a domain is necessary to define a data
file and then ready the domain.
On a dictionary, show the contents of the dictionary.

WRITE Ready a domain for WRITE access.

Table B–3 DMU/CDO ACL Privilege Equivalents

DATATRIEVE
Code

DMU
Dictionary

CDO
Dictionary

C CONTROL [NO]CONTROL

D LOCAL_DELETE [NO]DELETE

E DTR_EXTEND/EXECUTE EXTEND

F FORWARD *** no equivalence ***

G GLOBAL_DELETE *** no equivalence ***

H HISTORY *** no equivalence ***

M DTR_MODIFY [NO]MODIFY

P PASS_THRU *** no equivalence ***

R DTR_READ [NO]READ

S SEE [NO]SHOW

U UPDATE [NO]CHANGE+[NO]DEFINE

W DTR_WRITE [NO]WRITE

X EXTEND *** no equivalence ***

B.1 Access Privilege Requirements
Privileges affect the DATATRIEVE statements and commands you can use.

Table B–4 lists the statements and commands that require privileges, and the
privileges you need to use them. Any statements not listed in the table require no
DMU privileges except P (PASS_THRU) access to a default dictionary directory,
and no CDO privileges except the VMS privileges needed to access the VMS

Access Privileges Tables B–3

Access Privileges Tables
B.1 Access Privilege Requirements

dictionary directory. If you do not have P (PASS_THRU) access to a DMU default
dictionary directory nor VMS directory access to a CDO dictionary directory, you
cannot use VAX DATATRIEVE.

Commands which are not available in the CDO format dictionary are identified
as ‘‘DMU Only.’’

Table B–4 Access Privilege Requirements

Data Description
Commands DMU Privileges Needed CDO Privileges Needed

DEFINE DICTIONARY
DEFINE DOMAIN
DEFINE PORT
DEFINE RECORD

To Parent Directory
P (PASS_THRU)
X (EXTEND)

To Directory
VMS Directory Access

To Dictionary
S (SHOW)

U (CHANGE)

DEFINE PROCEDURE
DEFINE TABLE

To Parent Directory
P (PASS_THRU)
X (EXTEND)

To Directory
VMS Directory Access

To Dictionary
S (SHOW)
U (CHANGE)

REDEFINE DOMAIN
REDEFINE PORT
REDEFINE RECORD

To Parent Directory
P (PASS_THRU)
X (EXTEND)

To Dictionary and To
Highest Existing Version

S (SEE)
P (PASS_THRU)
U (UPDATE)

To Directory and To Highest
Existing Version

S (SHOW)
U (CHANGE+DEFINE)

REDEFINE PROCEDURE

REDEFINE TABLE

To Parent Directory
P (PASS_THRU)
X (EXTEND)

To Highest Existing
Version

S (SEE)
P (PASS_THRU)
U (UPDATE)

To Directory and To Highest
Existing Version

S (SHOW)
U (CHANGE+DEFINE)

(continued on next page)

B–4 Access Privileges Tables

Access Privileges Tables
B.1 Access Privilege Requirements

Table B–4 (Cont.) Access Privilege Requirements

Data Description
Commands DMU Privileges Needed CDO Privileges Needed

DEFINE FILE To Domain Definition
P (PASS_THRU)
S (SEE)
W (DTR_WRITE)
R (DTR_READ)

To Record Definition
P (PASS_THRU)
S (SEE)
W (DTR_WRITE)
R (DTR_READ)
E (DTR_EXTEND/

EXECUTE)

To Dictionary
S (SHOW)

To Domain and Record
Definitions

S (SHOW)
W (WRITE)

Data Protection
Commands DMU Privileges Needed CDO Privileges Needed

DEFINEP
DELETEP

To Dictionary Object or
Directory

P (PASS_THRU)
C (CONTROL)

To Dictionary Containing the
Object

S (SHOW)
U (CHANGE+DEFINE)

To Dictionary Object or
Dictionary

S (SHOW)
U (CHANGE+DEFINE)
C (CONTROL)

SHOWP To Dictionary Object or
Directory

P (PASS_THRU)
C (CONTROL)

To Dictionary Object or
Dictionary

S (SHOW)

(continued on next page)

Access Privileges Tables B–5

Access Privileges Tables
B.1 Access Privilege Requirements

Table B–4 (Cont.) Access Privilege Requirements

Dictionary Manipulation
Commands DMU Privileges Needed CDO Privileges Needed

SET DICTIONARY To Dictionary Directory
P (PASS_THRU)

To Dictionary Directory
S (SHOW)

SHOW path-name To Dictionary Object
P (PASS_THRU)
S (SEE)
R (DTR_READ)

To Dictionary
S (SHOW)
To Dictionary Object

S (SHOW)
R (READ)

EDIT path-name
(if SET NO EDIT_
BACKUP)

To Parent Directory
P (PASS_THRU)
X (EXTEND)

To Dictionary Object
P (PASS_THRU)
S (SEE)
R (DTR_READ)
and either
D (LOCAL_DELETE)
or
G (GLOBAL_DELETE)

To Dictionary
S (SHOW)
U (CHANGE+DEFINE)

To Dictionary Object
S (SHOW)
R (READ)
D (DELETE)
U (CHANGE+DEFINE)

EDIT path-name
(if SET EDIT_BACKUP)

To Parent Dictionary
P (PASS_THRU)
X (EXTEND)

To Dictionary Object
P (PASS_THRU)
S (SEE)
R (DTR_READ)
U (UPDATE)

To Dictionary
S (SHOW)
U (CHANGE+DEFINE)

To Dictionary Object
S (SHOW)
R (READ)
U (CHANGE+DEFINE)

EXTRACT To Dictionary Object
P (PASS_THRU)
S (SEE)
R (DTR_READ)

To Dictionary
S (SHOW)

To Dictionary Object
S (SHOW)
R (READ)

(continued on next page)

B–6 Access Privileges Tables

Access Privileges Tables
B.1 Access Privilege Requirements

Table B–4 (Cont.) Access Privilege Requirements

Dictionary Manipulation
Commands DMU Privileges Needed CDO Privileges Needed

DELETE To Parent Directory
P (PASS_THRU)
X (EXTEND)

To Dictionary Object
P (PASS_THRU)
and either
D (LOCAL_DELETE)
or
G (GLOBAL_DELETE)

To Dictionary
S (SHOW)
U (CHANGE+DEFINE)

To Dictionary Object
S (SHOW)
D (DELETE)

PURGE To Parent Directory
P (PASS_THRU)
X (EXTEND)

To Dictionary Object
P (PASS_THRU)
S (SEE)
R (DTR_READ)
and either
D (LOCAL_DELETE)
or
G (GLOBAL_DELETE)

To Dictionary
S (SHOW)
U (CHANGE+DEFINE)

To Dictionary Object
S (SHOW)
D (DELETE)

Data Manipulation
Commands and
Statements DMU Privileges Needed CDO Privileges Needed

READY for All Modes To Domain, Database,
Relation, and VAX DBMS
Record Definition

P (PASS_THRU)
S (SEE)

To Dictionary
S (SHOW)

To Domain, Database, Relation,
and VAX DBMS Record
Definition

S (SHOW)

To Record Definitions of
RMS Domains

E (DTR_EXTEND/
EXECUTE)

To Record Definitions Of RMS
Domains

E (EXTEND)

for SNAPSHOT Access To Domain Definition
R (DTR_READ)

To Domain Definition
R (READ)

(continued on next page)

Access Privileges Tables B–7

Access Privileges Tables
B.1 Access Privilege Requirements

Table B–4 (Cont.) Access Privilege Requirements

Data Manipulation
Commands and
Statements DMU Privileges Needed CDO Privileges Needed

for READ Access To Domain Definition
R (DTR_READ)
or
W (DTR_WRITE)
or
M (DTR_MODIFY)

To Domain Definition
R (READ)
or W (WRITE)
or M (MODIFY)

for WRITE Access To Domain Definition
W (DTR_WRITE)

To Domain Definition
W (WRITE)

for MODIFY Access To Domain Definition
M (DTR_MODIFY)
or
W (DTR_WRITE)

To Domain Definition
M (MODIFY)
or W (WRITE)

for EXTEND Access To Domain Definition
E (DTR_EXTEND/

EXECUTE)
or
W (DTR_WRITE)

To Domain Definition
E (EXTEND)
or W (WRITE)

(continued on next page)

B–8 Access Privileges Tables

Access Privileges Tables
B.1 Access Privilege Requirements

Table B–4 (Cont.) Access Privilege Requirements

Invocations DMU Privileges Needed CDO Privileges Needed

Procedure To Procedure Definition
P (PASS_THRU)
S (SEE)
E (DTR_EXTEND/

EXECUTE)

To Dictionary
S (SHOW)

To Procedure Definition
S (SHOW)

Dictionary Table To Table Definition
P (PASS_THRU)
S (SEE)
E (DTR_EXTEND/

EXECUTE)

To Dictionary
S (SHOW)

To Table Definition
S (SHOW)

Domain Table To Table Definition
P (PASS_THRU)
S (SEE)
E (DTR_EXTEND/

EXECUTE)
To Domain Definition

P (PASS_THRU)
S (SEE)
and either
R (DTR_READ)
or
W (DTR_WRITE)
or
M (DTR_MODIFY)

To Record Definition
P (PASS_THRU)
S (SEE)
E (DTR_EXTEND/

EXECUTE)

To Dictionary
S (SHOW)

To Table Definition
S (SHOW) To Domain

Definition
R (READ) To Record

Definition
E (EXTEND)

B.2 Default Access Control Lists
When you create a dictionary directory, subdictionary, or object, the default ACL
entry grants privileges to your username. Table B–5 and Table B–6 summarize
these privileges.

Access Privileges Tables B–9

Access Privileges Tables
B.2 Default Access Control Lists

Table B–5 Default Access Control Lists for DMU Format Dictionaries

For Dictionary or
Subdictionary Directories For Dictionary Objects

C (CONTROL) C (CONTROL)

D (LOCAL_DELETE) D (LOCAL_DELETE)

H (HISTORY) E (DTR_EXTEND/EXECUTE)

P (PASS_THRU) H (HISTORY)

S (SEE) M (DTR_MODIFY)

X (EXTEND) R (DTR_READ)

S (SEE)

U (UPDATE)

W (DTR_WRITE)

Table B–6 Default Access Control Lists for CDO Format Dictionaries

For Dictionaries For Dictionary Objects

U (CHANGE+DEFINE) U (CHANGE+DEFINE)

C (CONTROL) C (CONTROL)

D (DELETE) D (DELETE)

S (SHOW) E (EXTEND)

M (MODIFY)

R (READ)

S (SHOW)

W (WRITE)

B–10 Access Privileges Tables

C
Logical Names for the DATATRIEVE

Environment

Table C–1 lists and describes all the logical names you can define for your
DATATRIEVE environment. These logical names must be defined at DCL level,
before invoking the DATATRIEVE image. DATATRIEVE then translates the
logical names at runtime.

Table C–1 Logical Name Assignments

Logical Name Example

CDD$DEFAULT
Default CDD/Repository
directory

$ DEFINE CDD$DEFAULT "CDD$TOP.DTR$LIB"

DTR$CAPTIVE_ALLOWED
Access to DCL and SPAWN
commands by captive accounts

$ DEFINE DTR$CAPTIVE_ALLOWED FN$DCL,
FN$SPAWN

DTR$COMMAND_LINES
Number of command recall lines $ DEFINE DTR$COMMAND_LINES "25"

DTR$DATE_INPUT
Default date input interpreta-
tion; formats: ‘‘MDY’’ ‘‘DMY’’
‘‘YDM’’ ‘‘YMD’’ ‘‘DYM’’ ‘‘MYD’’

$ DEFINE DTR$DATE_INPUT "MDY"

DTR$EDIT
EDT, VAXTPU, or LSE as editor
(Note: Use one of the following
3-letter codes: EDT, TPU, LSE)

$ DEFINE DTR$EDIT "TPU"

DTR$KEYDEFS
File of key definitions $ DEFINE DTR$KEYDEFS

"DSK1:[ROY]KEYDEFS.COM"
DTR$NOWINDOWS

(continued on next page)

Logical Names for the DATATRIEVE Environment C–1

Logical Names for the DATATRIEVE Environment

Table C–1 (Cont.) Logical Name Assignments

Logical Name Example

Use of the DECwindows
interface

$ DEFINE DTR$NOWINDOWS TRUE

DTR$PROMPT_LINES
Number of prompt recall lines $ DEFINE DTR$PROMPT_LINES "30"

DTR$READY_MODE
Default access option $ DEFINE DTR$READY_MODE "SHARED"

DTR$RW_BODY_ATTRIBUTES
Default rendition attributes for
the body of a report

$ DEFINE DTR$RW_BODY_ATTRIBUTES
"FAMILY=NC_SCHOOLBOOK, SIZE=10"

DTR$RW_HEADER_ATTRIBUTES
Default rendition attributes for
the header of a report

$ DEFINE DTR$RW_HEADER_ATTRIBUTES
"FAMILY=COURIER, SIZE=24, ITALIC"

DTR$RW_INITIAL_FF
FF (Form Feed) at the beginning
of TEXT format reports

$ DEFINE DTR$RW_INITIAL_FF TRUE

DTR$STACK_SIZE
DATATRIEVE stack size $ DEFINE DTR$STACK_SIZE "200"

DTR$STARTUP
Startup command file $ DEFINE DTR$STARTUP "DTRSTART.COM"

DTR$SYNONYM
File containing keywords
and their corresponding
abbreviations

$ DEFINE DTR$SYNONYM SYNONYMS_LIST.TXT

DTRADT
New or modified ADT text file $ DEFINE DTRADT "NEWADT.DAT"

DTRHELP
New or modified help library $ DEFINE DTRHELP "NEWDTRLIB.HLB"

DTRMSGS
New or modified message file $ DEFINE DTRMSGS "NEWMSGS.EXE"

C–2 Logical Names for the DATATRIEVE Environment

D
Edit String Characters

Table D–1 lists and describes all the edit string characters you can use in the
EDIT_STRING clause of a field definition or in the USING clause of the PRINT
statement.

The table heading ‘‘Character Type’’ indicates what type of field you can edit
with the character. Do not use editing characters designated for alphabetic or
alphanumeric on numeric fields (or vice versa). If you do, you can get unexpected
results. Remember that field type is determined by the PIC or USAGE clause,
not the value in the field. A field defined as PIC X(10) might contain only
numbers, for example, but you should use only alphanumeric editing characters
to format the way you want to display those numbers.

Table D–1 Edit String Characters

Character Type
Edit String
Character Description

Alphabetic
Replacement

A Each A is replaced by an alphabetic character
from the field’s content. An asterisk is placed
in the position of each digit or nonalphabetic
character in the field’s content.

Alphanumeric
Replacement

X Each X is replaced by one character from the
field’s content.

T Indicates text. Each T reserves a column on a
line for the associated print list element. For
example, PRINT ‘‘1234567890’’ USING T(5)
displays: 12345 in the first five columns of one
line and 67890 in the first five columns of the
next line. Edit strings containing a T cannot
contain other characters.

(continued on next page)

Edit String Characters D–1

Edit String Characters

Table D–1 (Cont.) Edit String Characters

Character Type
Edit String
Character Description

A Each A is replaced by an alphabetic character
from the field’s content. An asterisk is placed
in the position of each digit or nonalphabetic
character in the field’s content.

Numeric
Replacement

9 Each 9 is replaced by one digit from the field’s
content. Nondigit characters are ignored, and
the digits are right justified in the output and
the leading character positions (if any) are filled
with zeros.

Z If a Z matches a leading zero in the field’s
content, it is replaced by a space. If not, Z is
replaced by a digit from the field’s content.

* (asterisk) If an asterisk (*) matches a leading zero in the
field’s content, an asterisk is placed in that
character position. If not, it is replaced by a
digit from the field’s content.

. (period) A period specifies the character position of the
decimal point.

Alphanumeric
Insertion

+ (plus) A plus is inserted in that character position
unless more than one plus sign is specified.

- (hyphen) A hyphen is inserted in that character position.

. (period) A period is inserted in that character position.

, (comma) A comma is inserted in that character position.

Numeric Insertion + (plus) If only one plus sign is specified, it is replaced
by either a plus sign, if the field’s content is
positive, or a minus sign if it is negative.

- (minus) If only one minus sign is specified, it is replaced
by either a blank, if the field’s content is
positive, or a minus sign if it is negative.

. (decimal) A decimal point is inserted in that character
position. Put only one decimal point in a
numeric edit string.

, (comma) If all the digits to the left of the comma are
suppressed zeros, the comma is replaced by
a blank. If not, a comma is inserted in that
character position.

(continued on next page)

D–2 Edit String Characters

Edit String Characters

Table D–1 (Cont.) Edit String Characters

Character Type
Edit String
Character Description

CR If the field’s content is negative, the letters CR
are inserted. If the field’s content is positive, CR
is replaced by two blanks. Put only one CR in
an edit string, either at the far right or the far
left.

DB If the field’s content is negative, the letters DB
are inserted. If the field’s content is positive, DB
is replaced by two blanks. Put only one DB in
an edit string, either at the far right or the far
left.

() (parentheses) If the field’s content is negative, single left and
right parentheses are inserted before and after
the field value.

Alphanumeric and
Numeric Insertion

B A space is inserted in that character position.

0 (zero) A zero is placed in that character position.

$ (dollar sign) If only one dollar sign is specified, it is printed
in that character position.

% (percent) A percent sign is inserted in that character
position.

/ (slash) A slash is inserted in that character position.

‘‘literal’’ The character string literal enclosed in single
or double quotation marks is inserted at that
position. The outer quotation marks are not
inserted in the output.

Numeric Floating
Insertion

$ (dollar sign) If more than one dollar sign is specified to the
left of the other edit string characters, leading
zeros are suppressed and one dollar sign is
displayed to the immediate left of the leftmost
digit.

+ (plus) If more than one plus sign is specified to the
left of the other edit string characters, any
leading zeros are suppressed, and the sign of the
field’s value (plus or minus) is displayed to the
immediate left of the leftmost character position
determined by the other edit string characters.

(continued on next page)

Edit String Characters D–3

Edit String Characters

Table D–1 (Cont.) Edit String Characters

Character Type
Edit String
Character Description

- (minus) If more than one minus sign is specified to the
left of the other edit string characters, any
leading zeros that the minus sign matches are
suppressed. If the value of the field is negative,
a minus sign is displayed to the immediate left
of the leftmost character position determined by
the other edit string characters.

Floating-Point Edit
String

E The E divides the edit string into two parts for
floating-point or scientific notation. The first
part is the mantissa edit string and the second
part is the exponent edit string.

Missing Value Edit
String

? If the field has a MISSING VALUE clause, the
question mark separates two edit strings. If the
field value is not the missing value, the first edit
string controls the output of the field. If the field
value is the missing value, the second edit string
controls the output of the field.

Date Replacement D Each D is replaced by the corresponding digit
of the day of the month, starting with the first
letter. Put no more than two Ds in a date edit
string; the use of DD is recommended.

M Each M is replaced by the corresponding letter
of the name of the month. An edit string of M(9)
prints the entire name of the month.

N Each N is replaced by a digit of the number of
the month. Put no more than two Ns in a date
edit string; the use of NN is recommended.

Y Each Y is replaced by the corresponding digit
of the numeric year. Put no more than four Ys
in a date edit string; the use of YY or YYYY is
recommended.

J Each J is replaced by the corresponding digit of
the Julian date. Put no more than three Js in a
date edit string; the use of JJJ is recommended.

(continued on next page)

D–4 Edit String Characters

Edit String Characters

Table D–1 (Cont.) Edit String Characters

Character Type
Edit String
Character Description

W Each W is replaced by the corresponding letter
from the name of the day of the week, starting
with the first letter. An edit string of W(9)
prints the entire day. Put no more than 9 Ws in
a date edit string.

B Each B is replaced by a space in that character
position.

/ (slash) A slash is inserted in that character position.

- (hyphen) A hyphen is inserted in that character position.

. (period) A period is inserted in that character position.

Edit String Characters D–5

Index

" " (double quotation marks)
See Quotation marks (literals)

! (exclamation point)
See Comments

$ (dollar sign)
See Dollar sign ($)

% (percent sign)
See Percent sign (%)

’ ’ (single quotation marks)
See Quotation marks (literals)

* (asterisk)
See Asterisk (*)

, (comma)
See Comma (,)

- (hyphen)
See Hyphen (-)

: (colon)
See Colon (:)

() (parentheses)
See Parentheses ()

; (semicolon)
See Semicolon (;)

? (question mark)
See Question mark (?)

@ (at sign)
See At sign (@)

| (bar)
See Concatenation characters

A
A (alphabetic)

edit string character, D–1t
picture string character, 4–240

ABORT statement, 4–9 to 4–15, 4–374
Absolute value function, 3–7
Access control list, 4–105 to 4–106, 4–112

defaults, B–9
defining entries, 4–126 to 4–131
deleting entries, 4–135 to 4–137
SHOWP command, 4–364

Access modes
required by DATATRIEVE statements,

4–290t
Access options, 4–276t

defining with DTR$READY_MODE,
4–291

EXCLUSIVE, 4–277
PROTECTED, 4–276
SHARED, 4–277
SNAPSHOT, 4–276

Access privileges, B–1 to B–3
requirements, B–3, B–4t

ADMINISTRATOR privilege, B–2t
ADT command, 4–14, 4–15
AFTER relational operator, 1–31t
Alias clause, 4–275
ALIGNED_MAJOR_MINOR allocation,

4–16
ALL keyword

used with PRINT statement, 4–247
with RELEASE command, 4–310

Index–1

ALLOCATION clause, 4–16 to 4–18,
4–95, 4–109

Alphabetic picture strings, 4–240
Alphanumeric functions, 3–3
Alphanumeric picture strings, 4–241
AND Boolean operator, 1–36, 1–37t
ANY relational operator, 1–33t, 1–35
Application Design Tool, 4–14, 4–15
Application keypad mode

SET APPLICATION_KEYPAD
command, 4–340

Arctangent function, 3–8
Arithmetic expressions, 1–18 to 1–19

print list element, 4–251
Arithmetic operators, 1–18t
AS clause

in READY command, 4–275
ASCENDING keyword

SORT statement, 4–368
ASCII

collating sequence, 1–33
Assignment statement, 4–19 to 4–26

for a variable, 4–24 to 4–26
for elementary fields, 4–19 to 4–22
for group fields, 4–22 to 4–24
PUT_FORM, 4–141

Asterisk (*)
edit string character, D–1t
prompting value expression, 1–10

AT BOTTOM statement, 4–27 to 4–34
format, 4–27
OF field-name, 4–27, 4–31, 4–32
OF REPORT, 4–31
summary elements, 4–27t to 4–30t

AT clause
of READY command, 4–275

At sign (@)
invoke command file, 4–7, 4–8

AT Statements, 4–27
AT TOP statement, 4–27 to 4–34

format, 4–27
header elements, 4–27t to 4–30t
OF field-name, 4–27
OF PAGE, 4–32
OF REPORT, 4–31

AT TOP statement (cont’d)
summary elements, 4–27t to 4–30t

ATT clause, 4–259, 4–349
Audit trail, 4–223
AVERAGE statistical operator, 1–18

in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

B
B (blank)

edit string character, D–1t
BAR

See PLOT statements
Base 10 logarithm function, 3–32
BEFORE relational operator, 1–33t
BEGIN-END statement, 4–35 to 4–39
BETWEEN relational operator, 1–33t
BOLD attribute

DECLARE_ATT statement, 4–63
Boolean expressions, 1–1, 1–30 to 1–37

compound, 1–37t
order of operations, 1–36
relational operators, 1–31 to 1–35

Boolean operators, 1–35 to 1–37
Braces

in syntax diagrams, xiiit
Brackets

in syntax diagrams, xiiit
BT relational operator

See BETWEEN relational operator
BUT Boolean operator, 1–35
BYTE data type, 4–391

C
CAITIFFS, 4–342
Captive accounts, 3–15, 3–45
Case function FN$UPCASE, 3–53
Case-sensitivity, 1–3, 1–33
CDD$DEFAULT, C–1
CDD$RMS_DATABASE

and DEFINE FILE command, 4–98
CDO command, 4–40

Index–2

CHANGE clause
DEFINE FILE command, 4–96

CHANGE privilege, B–2t
Changing fonts

DECLARE_ATT statement, 4–62
Character string literals

See Literals
Character width function, 3–56
CHOICE statement, 4–41 to 4–44
CHOICE value expression, 1–21 to 1–24
CLOSE command, 4–45
COBOL

record definition, 4–387
Code-and-translation pair

DEFINE TABLE command, 4–120
COL print list element, 4–252

in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

Collating sequence, 1–33
Collections

forming with FIND statement, 4–181
to 4–183

no keyed access to, 4–98
qualifying field names, 1–6
releasing, 4–311, 4–312

Colon (:)
EXECUTE, 4–3 to 4–6

Column headers
in PRINT statement, 4–255
print restrictions, 4–250, 4–262

COLUMNS_PAGE
SET command argument, 4–341
SHOW SET_UP command, 4–341
with FN$WIDTH function, 3–56

COLUMN_HEADER element
in AT TOP statement, 4–29t

Comma (,)
edit string character, D–1t

Command files
invoking, 4–7 to 4–8

COMMAND_KEYBOARD function, 3–9
COMMIT statement, 4–46
COMP data type, 4–116, 4–393
COMP-1 data type, 4–394

COMP-2 data type, 4–394
COMP-3 data type, 4–394
COMP-5 data type, 4–395
Compound statements

THEN statement, 4–389
COMPUTED BY clause, 1–5, 4–48 to

4–50, 4–115
variables, 1–7

Concatenated expressions, 1–2, 1–19,
1–20

Concatenation characters, 1–19, 1–20
CONCURRENCY option, 4–275, 4–277
Conditional value expressions, 1–21 to

1–25
CHOICE, 1–21 to 1–24
IF-THEN-ELSE, 1–23, 1–25

CONNECT statement, 4–51
CONSISTENCY option, 4–275, 4–277
CONT relational operator

See CONTAINING relational operator
CONTAINING relational operator, 1–31t,

1–33
Context variables, 2–5 to 2–7

in RSE, 4–52
qualifying field names, 1–6
with STORE statement, 4–376

Context-name
CONNECT statement, 4–51

Control groups
sort keys, 4–27 to 4–34

CONTROL privilege, B–1t, B–2t
Cosine function, 3–10
COUNT statistical operator, 1–13, 1–18

in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

CR (credit)
edit string character, D–1t

CROSS clause, 4–52
crossing domain with itself, 4–53
crossing two domains, 4–53
flattening hierarchies with, 4–54
format, 4–52
more than two domains, 4–54

CTRL/Z
exiting from DATATRIEVE, 4–172

Index–3

Currency symbols
changing defaults, 4–166

D
D (day number)

edit string character, D–1t
DATATRIEVE Command, 4–56 to 4–57
Date

arithmetic, 1–9
functions, 3–3
string function, 3–12
value expressions, 1–8

NOW, 1–8
TODAY, 1–8
TOMORROW, 1–8
YESTERDAY, 1–8

DATE
data type, 4–395

as index keys, 4–97
Day function, 3–13
DB (debit)

edit string character, D–1t
Deadlock, 4–279
DEBUG qualifier

DATATRIEVE command, 4–56
Decimal point

(V) picture string character, 4–240
DECLARE PORT statement, 4–66, 4–68
DECLARE statement, 1–6, 4–58 to 4–61

in BEGIN-END block, 4–59
DECLARE SYNONYM command, 4–69

to 4–71
DECLARE_ATT statement, 4–62

BOLD attribute, 4–63
FAMILY attribute, 4–63
ITALIC attribute, 4–63
REVERSE attribute, 4–63
SIZE attribute, 4–63
UNDERLINE attribute, 4–63

Default access, 4–282
Default access control list, B–9t
DEFAULT VALUE clause, 4–72, 4–73,

4–115
effect on STORE statement, 4–376

DEFINE DATABASE command, 4–74
DEFINE DICTIONARY command, 4–76

to 4–80
access privilege requirements, B–4t,

B–5t
DEFINE DOMAIN command, 4–81

access privilege requirements, B–4t
DEFINE FILE command, 4–95 to 4–101

access privilege requirements, B–5t
DEFINE PORT command, 4–102 to

4–104
access privilege requirements, B–4t

DEFINE privilege, B–2t
DEFINE PROCEDURE command, 4–105

to 4–108
access privilege requirements, B–4t

DEFINE RECORD command, 4–109 to
4–118

access privilege requirements, B–4t
OPTIMIZE qualifier, 4–109

DEFINE TABLE command, 4–119 to
4–125

access privilege requirements, B–4t
DEFINEP command, 4–126 to 4–131
Defining

databases, 4–74
domains, 4–81
files, 4–95
ports, 4–102
procedures, 4–105
records, 4–109
tables, 4–119

Defining keys
multiple keys function, 3–31
single key function, 3–17

DELETE command, 4–132 to 4–134
access privilege requirements, B–7t

DELETE privilege, B–2t
DELETEP command, 4–135 to 4–137,

4–364
access privilege requirements, B–5t

Deleting key definition, 3–18
Deleting logical name, 3–19
DESCENDING keyword

SORT statement, 4–369

Index–4

Dictionary tables, 4–119 to 4–125
DISCONNECT statement, 4–138
DISPLAY data type, 4–391
DISPLAY statement, 4–139 to 4–140
DISPLAY_FORM statement, 4–141 to

4–143
GET_FORM value expression, 4–141
PUT_FORM assignment statement,

4–141
Dollar sign ($)

edit string character, D–1t
Domain

deleting, 4–134
qualifying field names, 1–6
tables, 4–119 to 4–125

DOUBLE data type, 4–394
DROP statement, 4–144 to 4–147
DTR$CAPTIVE_ALLOWED, 3–15, 3–46,

C–1
DTR$COMMAND_LINES, C–1
DTR$DATE_INPUT, C–1
DTR$EDIT, C–1
DTR$KEYDEFS, C–1
DTR$NOWINDOWS, C–2
DTR$PROMPT_LINES, C–2
DTR$READY_MODE, C–2

defining access option, 4–291
DTR$RW_BODY_ATTRIBUTES, C–2
DTR$RW_HEADER_ATTRIBUTES, C–2
DTR$RW_INITIAL_FF, C–2
DTR$STACK_SIZE, C–2
DTR$STARTUP, C–2
DTR$SYNONYM, C–2
DTRADT, C–2
DTRHELP, C–2
DTRMSGS, C–2
DTR_EXTEND/EXECUTE privilege,

B–1t
DTR_MODIFY privilege, B–1t
DTR_READ privilege, B–2t
DTR_WRITE privilege, B–2t
DUP clause

DEFINE FILE command, 4–96

E
E (floating point)

edit string character, D–1t
EDIT command, 4–148 to 4–154

access privilege requirements, B–6t
specifying object types, 4–148

Edit string characters, D–1t
decimal point (.), 4–163
floating, 4–165
quotation marks (literals), 4–164
T (text), 4–158 to 4–159

Edit strings
alphabetic replacement, D–1t
alphanumeric insertion, D–1t
alphanumeric replacement, D–1t
numeric floating insertion, D–1t
numeric insertion, D–1t
numeric replacement, D–1t

EDIT_STRING clause, 4–115, 4–155 to
4–168

alphanumeric fields, 4–157, 4–158
alphanumeric insertion, 4–162
date fields, 4–166 to 4–168
numeric fields, 4–161

Elapsed time function, 3–42
Ellipsis

in syntax diagrams, xiiit
ELSE translation, 4–120
END_PROCEDURE keyword

DEFINE PROCEDURE command,
4–106

END_REPORT statement (Report Writer),
4–169

format, 4–169
END_TABLE keyword

DEFINE TABLE command, 4–120
EQ relational operator, 1–31
EQUAL relational operator, 1–31t
ERASE statement, 4–170 to 4–171
Errors

avoiding when using the MODIFY
statement, 4–225

Index–5

EXCLUSIVE access option, 4–277
EXECUTE procedures, 4–3 to 4–6
EXIT command, 4–172, 4–173
Exiting

Report Writer, 4–169
Exponential value function, 3–20
EXTEND access mode, B–8t
EXTEND privilege, 4–75, 4–76, 4–105,

B–2t
EXTRACT command, 4–174 to 4–180

access privilege requirements, B–6t
specifying object types, 4–174

Extracting
day part of input, 3–13
hour part of input, 3–24
hundredth-of-a-second part of input,

3–25
minute part of input, 3–33
month part of input, 3–35
second (time) part of input, 3–39
substring from input, 3–48
time part of input, 3–51
year part of input, 3–57

F
FAMILY attribute

DECLARE_ATT statement, 4–63
FDL

See File Definition Language
Field

virtual, 1–5
Field definition, 4–114

COMPUTED BY clause, 4–48 to 4–50,
4–115t

DEFAULT VALUE clause, 4–72, 4–73,
4–115t

EDIT_STRING clause, 4–115t
MISSING VALUE clause, 4–115t,

4–208 to 4–210
OCCURS clause, 4–115t, 4–228 to

4–231
PICTURE clause, 4–115t, 4–239 to

4–242

Field definition (cont’d)
QUERY_HEADER clause, 4–115t,

4–270 to 4–271
QUERY_NAME clause, 4–115t, 4–272,

4–273
REDEFINES clause, 4–115t, 4–302,

4–303
rules for use, 4–116, 4–117
SCALE clause, 4–115t, 4–330, 4–331
SIGN clause, 4–116t, 4–366, 4–367
summary of clauses, 4–114t
SYNCHRONIZED clause, 4–116t,

4–387, 4–388
USAGE clause, 4–116t, 4–391 to

4–395
VALID IF clause, 4–116t, 4–396,

4–397
Field names

in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t
print list element, 4–251
qualifying, 1–6

File Definition Language
DEFINE FILE command, 4–97

FIND statement, 4–181 to 4–183
FINISH command, 4–184 to 4–186
FN$ABS function, 3–7
FN$ATAN function, 3–8
FN$COMMAND_KEYBOARD function,

3–9
FN$COS function, 3–10
FN$CREATE_LOG function, 3–11
FN$DATE function, 3–12
FN$DAY function, 3–13
FN$DCL function, 3–14
FN$DEFINE_KEY function, 3–17
FN$DELETE_KEY function, 3–18
FN$DELETE_LOG function, 3–19
FN$EXP function, 3–20
FN$FLOOR function, 3–21
FN$GET_SYMBOL function, 3–22
FN$HEX function, 3–23
FN$HOUR function, 3–24
FN$HUNDREDTH function, 3–25

Index–6

FN$INIT_TIMER function, 3–26
FN$JULIAN function, 3–27
FN$KEYPAD_MODE function, 3–28
FN$KEYTABLE_ID function, 3–29
FN$LN function, 3–30
FN$LOAD_KEYDEFS function, 3–31
FN$LOG10 function, 3–32
FN$MINUTE function, 3–33
FN$MOD function, 3–34
FN$MONTH function, 3–35
FN$NINT function, 3–36
FN$OPENS_LEFT function, 3–37
FN$PROMPT_KEYBOARD function,

3–38
FN$SECOND function, 3–39
FN$SHOW_KEY function, 3–40
FN$SHOW_KEYDEFS Function, 3–41
FN$SHOW_TIMER function, 3–42
FN$SIGN function, 3–43
FN$SIN function, 3–44
FN$SPAWN function, 3–45
FN$SQRT function, 3–47
FN$STR_EXTRACT, 3–48
FN$STR_LOC function, 3–49
FN$TAN function, 3–50
FN$TIME function, 3–51
FN$TRANS_LOG function, 3–52
FN$UPCASE function, 3–53
FN$WEEK function, 3–54
FN$WIDTH function, 3–56
FN$YEAR function, 3–57
Fonts

changing
DECLARE_ATT statement, 4–62

FOR statement, 4–187 to 4–190
controlling PRINT statement, 4–256
controlling STORE statement, 4–375,

4–379
modifying records, 4–218, 4–223

FORMAT value expression, 1–25 to 1–28
Forms

DISPLAY_FORM statement, 4–141 to
4–143

WITH_FORM statement, 4–400 to
4–402

FORWARD privilege, B–1t
FROM clause

in a record definition, 4–110, 4–111,
4–113, 4–114

FROM value expression, 1–28, 1–30
Functions

See also FN$...
alphanumeric, 3–3
date, 3–3
for keypad definitions, 3–4
for timing processes, 3–4
for using logical names, 3–5
for using symbols, 3–5
format, 3–1
listed alphabetically, 3–6
mathematical, 3–5
numeric, 3–2
optimizing execution, 3–58
trigonometric, 3–3
value expressions, 3–2

G
GE relational operator, 1–31
GET_FORM value expression, 4–141
Global variables, 1–7
GLOBAL_DELETE privilege, B–1t
GREATER_EQUAL relational operator,

1–33t
GREATER_THAN relational operator,

1–31t
Group fields

names, 1–6
See also Qualified field names

print list element, 4–251
GT relational operator, 1–31
GUIDE, 4–342
Guide Mode, 4–342
G_FLOATING data type, 4–392, 4–394

Index–7

H
Header elements, 4–27
Headers

AT TOP statement
REPORT_HEADER element,

4–30t
COLUMN_HEADER

in AT TOP statement, 4–29t
SET statement (Report Writer), 4–349
specifying, 4–261

HELP command, 4–191 to 4–194
HELP_LINES, 4–344
HELP_PROMPT, 4–344
HELP_WINDOW, 4–344
Hexadecimal equivalent function, 3–23
HISTORY privilege, B–1t
Hour function, 3–24
Hundredth of second function, 3–25
Hyphen (-)

edit string character, D–1t
H_FLOATING data type, 4–392, 4–394

I
IF-THEN-ELSE statement, 4–195 to

4–197
with ABORT statement, 4–11

IF-THEN-ELSE value expression, 1–23,
1–25

IN relational operator, 1–33t, 1–34
INCREASING keyword

SORT statement, 4–369
Index keys, 4–96

attributes, 4–97t
restrictions for DATE, 4–97
segmented, 4–97
sort order of records, 4–32
using with collections, 4–98

Indexed files
key field attributes, 4–97t
keyed access to, 4–96 to 4–101

Initialize timer function, 3–26

Inner print lists, 4–258, 4–308
print list element, 4–253

INTEGER data type, 4–393
See also COMP data types

INTERFACE qualifier
DATATRIEVE command, 4–56

ITALIC attribute
DECLARE_ATT statement, 4–63

J
J (Julian date)

edit string character, D–1t
Julian date

See J (Julian date)
Julian date function, 3–27

K
KEEP qualifier

with PURGE, 4–267
KEY clause

DEFINE FILE command, 4–96
Key definition

deleting, 3–18
displaying, 3–40, 3–41
multiple keys function, 3–31
single key function, 3–17

Keypad definition functions, 3–4
KEYTABLE_ID field

function returning value, 3–29
Keywords, A–1t

L
Labeling plots

label strings, 4–244
LE relational operator, 1–31
LEADING argument

See SIGN clause
LEFT boundary alignment, 4–387
LEFT_RIGHT allocation, 4–16
LESS_EQUAL relational operator, 1–33t

Index–8

LESS_THAN relational operator, 1–31t,
1–33t

List fields
flattening hierarchies, 4–54
OCCURS clause in definition, 4–228 to

4–231
print list element, 4–251
using SET SEARCH, 4–256

LIST statement, 4–198 to 4–203
Literals, 1–2 to 1–4

character string, 1–2, 1–3
case-sensitivity, 1–2
maximum length, 1–2

numeric, 1–4
print list element, 4–251

Local variables, 1–7
LOCAL_DELETE privilege, B–1t
Locking, 4–279, 4–342
LOCK_WAIT

See SET LOCK_WAIT command
Log files

closing, 4–237
opening, 4–236

Logarithm function, 3–30
Logical name

assignment, C–1t
CDD$DEFAULT, C–1
DTR$CAPTIVE_ALLOWED, 3–15,

3–46, C–1
DTR$COMMAND_LINES, C–1
DTR$DATE_INPUT, C–1
DTR$EDIT, C–1
DTR$KEYDEFS, C–1
DTR$NOWINDOWS, C–2
DTR$PROMPT_LINES, C–2
DTR$READY_MODE, C–2
DTR$RW_BODY_ATTRIBUTES, C–2
DTR$RW_HEADER_ATTRIBUTES,

C–2
DTR$RW_INITIAL_FF, C–2
DTR$STACK_SIZE, C–2
DTR$STARTUP, C–2
DTR$SYNONYM, C–2
DTRADT, C–2
DTRHELP, C–2

Logical name (cont’d)
DTRMSGS, C–2

Logical name functions, 3–5, 3–11, 3–19,
3–52

LONG data type, 4–392
Loops

FOR statement, 4–188
REPEAT statement, 4–317
WHILE statement, 4–398

Lowercase words
in syntax diagrams, xiiit

LT relational operator
See LESS_THAN relational operator

M
M (month letter)

edit string character, D–1t
MAJOR_MINOR allocation, 4–16, 4–116,

4–387
MATCH statement, 4–204 to 4–207
MAX (maximum value) statistical

operator, 1–18
in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t
in DEFINE FILE command, 4–96

Messages
CDO, 4–289

MIN (minimum value) statistical operator,
1–18

in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

Minus sign (-)
edit string character, D–1t

Minute function, 3–33
MISSING relational operator, 1–33t
MISSING VALUE clause, 4–115, 4–208

to 4–210
edit string, 4–326
effect on STORE statement, 4–376
in STORE statement, 4–373

MODIFY access mode, B–8t
MODIFY privilege, B–2t
MODIFY statement, 4–211 to 4–224

avoiding errors, 4–225

Index–9

MODIFY statement (cont’d)
for all records in record stream,

4–217t
for record stream formed by a FOR

loop, 4–218t
for the selected record, 4–215t
with the CHOICE statement, 4–42

Modulus function, 3–34
Month function, 3–35

N
N (month number)

edit string character, D–1t
Natural log function, 3–30
NE relational operator, 1–31
Nearest integer function, 3–36
Network domains

using explicit access, 4–275
NEW_PAGE print list element, 4–252

in AT TOP statement, 4–29t
NEW_SECTION element

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

NEXT
SELECT statement, 4–334

Nine (9)
See 9 (numeric)

NO CHANGE clause
DEFINE FILE command, 4–96

NO DUP clause
DEFINE FILE command, 4–96

Node specification, 4–275
NONE

SELECT statement, 4–332
NOT BETWEEN relational operator,

1–33t
NOT Boolean operator, 1–36, 1–37t
NOT BT relational operator, 1–31
NOT CONTAINING relational operator,

1–31t
NOT IN relational operator, 1–33t
NOT_EQUAL relational operator, 1–31t
NOW value expression, 1–8

Numeric functions, 3–2
Numeric keypad mode

SET APPLICATION_KEYPAD
command, 4–340

Numeric literals
See Literals

Numeric picture strings, 4–241
9 (numeric)

edit string character, D–1t
picture string character, 4–240

O
Object types

specifying with EDIT command, 4–148
specifying with EXTRACT command,

4–174
OCCURS clause, 4–115, 4–228 to 4–231

fixed number of occurrences, 4–228 to
4–230

variable number of occurrences, 4–230
to 4–231

OF clause
ERASE statement, 4–170
LIST statement, 4–199
MODIFY statement, 4–211
PRINT statement, 4–253

ON statement, 4–232 to 4–235
OPEN command, 4–236 to 4–238
OPERATOR privilege, B–2t
OPTIMIZE qualifier

DEFINE RECORD command, 4–109
Optimizing functions, 3–58
OR Boolean operator, 1–36, 1–37t
Order of operations

arithmetic expressions, 1–19
Boolean expressions, 1–36

OTHERWISE clause, 1–28
Output

directing with ON statement, 4–232 to
4–235

file specification defaults, 4–232t,
4–321t

Index–10

P
P (decimal scaling)

picture string character, 4–240
PACKED data type, 4–394
Page formats

SET statement (Report Writer), 4–349
to 4–354

summary, 4–351t
Parentheses ()

arithmetic expressions, 1–19
edit string characters, D–1t
order of operations, 1–19, 1–36
with Boolean expressions, 1–36

Passwords
DEFINEP command, 4–126

PASS_THRU privilege, 4–75, 4–76,
4–105, B–1t, B–4

Percent sign (%)
edit string character, D–1t

Period (.)
edit string character, D–1t

PIC
See PICTURE clause

PICTURE clause, 1–4, 4–115, 4–239 to
4–242

alphabetic fields, 4–240
alphanumeric fields, 4–241
numeric fields (9), 4–241

Picture string characters, 4–240t
A (alphabetic), 4–240
9 (numeric), 4–240
P (decimal scaling), 4–240, 4–242
S (sign), 4–240, 4–241
V (decimal point), 4–240, 4–241
X (alphanumeric), 4–240

PLOT statements, 4–243, 4–245
BAR, 4–245
writing plots to files, 4–244

Plus sign (+)
edit string character, D–1t

Ports
DECLARE PORT command, 4–66
DEFINE PORT command, 4–102

Print list elements, 4–251t
arithmetic expressions, 4–251
ATT, 4–260t
COL, 4–252, 4–260t

in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

field name, 4–251, 4–260t
group field name, 4–251
inner print list, 4–253
list field name, 4–251
literals, 4–251
modifier, 4–260t
NEW_PAGE, 4–252, 4–260t

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–29t,

4–30t
prompting expressions, 4–251
SKIP, 4–252, 4–260t

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

SPACE, 4–251, 4–260t
in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

statistical expressions, 4–251
summary, 4–259t
TAB, 4–252, 4–260t

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

Print list modifiers, 4–260t
edit string, 4–254
header segment, 4–253
hyphen (-), 4–254

PRINT statement, 4–246 to 4–258
PRINT statement (Report Writer), 4–259

to 4–266
differences from DATATRIEVE, 4–261
format, 4–259
print list elements, 4–259 to 4–260t
print list modifiers, 4–260t

PRIOR
SELECT statement, 4–334

Procedures
access privileges for invoking, B–9t
invoking, 4–3 to 4–6

Index–11

Prompting expressions
print list element, 4–251

Prompting value expressions, 1–10, 1–11,
2–5

*.prompt, 1–10
**.prompt, 1–10

Prompts, 4–244
See also Prompting value expressions

PROMPT_KEYBOARD field
function returning value, 3–38

PROTECTED
access option, 4–276

Punctuation
in syntax diagrams, xiiit

PURGE command, 4–267, 4–269
access privilege requirements, B–7t

PUT_FORM assignment statement,
4–141

Q
QUAD data type, 4–392
Qualified field names, 1–4 to 1–6

COMPUTED BY fields, 1–5
elementary fields, 1–4
group field names, 1–5
query names, 1–6
REDEFINES fields, 1–4

Query headers, 1–6
QUERY_HEADER clause, 4–115, 4–270

to 4–271
QUERY_NAME clause, 4–115, 4–272,

4–273
Question mark (?)

edit string character, D–1t
Quotation marks (literals)

edit string character, D–1t

R
Rdb/VMS

readying database, 4–275
readying relation, 4–275

Rdb/ELN
readying database, 4–275

READ access mode, B–8t
READ privilege, B–3t
READY command, 4–274 to 4–297

AS clause, 4–275
AT clause, 4–275
defining access option, 4–291
SNAPSHOT access, 4–284

REAL data type, 4–394
RECEIVE clause

WITH_FORM statement, 4–400
RECONNECT statement, 4–298
Record

qualifying field names, 1–6
Record definitions

COMPUTED BY clause, 4–115t
DEFAULT VALUE clause, 4–115t
EDIT_STRING clause, 4–115t
field definition clauses, 4–114t
MISSING VALUE clause, 4–115t
OCCURS clause, 4–115t
PICTURE clause, 4–115t
QUERY_HEADER clause, 4–115t
QUERY_NAME clause, 4–115t
REDEFINES clause, 4–115t
SCALE clause, 4–115t
SIGN clause, 4–116t
SYNCHRONIZED clause, 4–116t
USAGE clause, 4–116t
VALID IF clause, 4–116t

Record locking, 4–279, 4–342
REDEFINE command, 4–299 to 4–301
REDEFINE DOMAIN command

access privilege requirements, B–4t
REDEFINE PORT command

access privilege requirements, B–4t
REDEFINE PROCEDURE command

access privilege requirements, B–4t
REDEFINE RECORD command, 4–295

access privilege requirements, B–4t
REDEFINE TABLE command

access privilege requirements, B–4t
REDEFINES clause, 1–4, 4–115, 4–302,

4–303
Redefining objects

See REDEFINE command

Index–12

Reduce keys, 4–307
REDUCE statement, 4–304 to 4–309
Relational databases

making changes to databases, 4–46
Relational operators, 1–31t

See also Boolean expressions
RELEASE command, 4–310 to 4–313

collections, 4–311, 4–312
tables, 4–312
variables, 1–7, 4–59, 4–60, 4–311

RELEASE SYNONYM command, 4–314
Remote domains, 4–1
Repeat count

for edit string characters, D–1t
REPEAT statement, 4–316 to 4–319

nesting in procedures, 4–318
with STORE statement, 4–374

Report specifications
END_REPORT statement (Report

Writer), 4–169
field names, 4–29t
headers, 4–29t, 4–261, 4–349
page formats, 4–351t
print list elements, 4–29t, 4–30t,

4–259t
print list modifiers, 4–260t
PRINT statement (Report Writer),

4–259 to 4–266
REPORT statement, 4–320 to 4–322
SET statement (Report Writer), 4–349

to 4–354
statistical operators, 4–29t, 4–30t

REPORT statement, 4–320 to 4–322
format, 4–320
output file specifications, 4–321t

Report Writer
exiting, 4–169
invoking, 4–320

REPORT_HEADER element
in AT TOP statement, 4–30t

Restructure statement, 4–295, 4–324 to
4–327, 4–376

change file structure, 4–327
Restructuring

Restructuring (cont’d)
domains with duplicate elementary

field names, 4–325
lists, 4–204 to 4–207

REVERSE attribute
DECLARE_ATT statement, 4–63

RIGHT boundary alignment, 4–387
RMS

locking, 4–279, 4–342
ROLLBACK statement, 4–329
Rounding

nearest integer function, 3–36
negative input function, 3–21

RSE
in syntax diagrams, 4–244

RUNNING COUNT statistical operator,
1–13, 1–17

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

RUNNING TOTAL statistical operator,
1–18

S
S (sign) picture string character, 4–240
SCALE clause, 4–115, 4–330, 4–331
Scientific notation

specifying, D–1t
Second (time) function, 3–39
SEE privilege, B–2t
SELECT statement, 4–332 to 4–338

DROP statement, 4–334
SEND clause

WITH_FORM statement, 4–400
SEPARATE argument

See SIGN clause
Separators, xiiit
SET ABORT command, 4–9 to 4–10,

4–340
effects of in procedures execution,

4–345
in REPEAT statement, 4–317

SET APPLICATION_KEYPAD command,
4–340

Index–13

SET CAITIFFS command, 4–342
SET COLUMNS_PAGE command, 3–56,

4–341, 4–345
SET commands, 4–339
SET DICTIONARY command, 4–77,

4–341, 4–345
access privilege requirements, B–6t

SET EDIT_BACKUP command, 4–124,
4–341, 4–358

SET FORM command, 4–341
SET GUIDE command, 4–342
SET HELP_LINES command, 4–344
SET HELP_PROMPT command, 4–343
SET HELP_WINDOW command, 4–344
SET LOCK_WAIT command, 4–279,

4–342
SET NO ABORT command, 4–9 to 4–10

effects of in procedures execution,
4–340, 4–345

SET NO APPLICATION_KEYPAD
command, 4–340

SET NO EDIT_BACKUP command,
4–341

SET NO FORM command, 4–142, 4–342
SET NO HELP_PROMPT command,

4–343
SET NO HELP_WINDOW command,

4–344
SET NO LOCK_WAIT command, 4–342
SET NO PROMPT command, 4–343
SET NO SEARCH command, 4–343
SET NO SEMICOLON command, 4–343
SET NO VERIFY command, 4–343
SET PLOTS command, 4–342
SET PROMPT command, 4–342
SET SEARCH command, 4–343

using with lists, 4–256
SET SEMICOLON command, 4–343
SET statement (Report Writer), 4–349 to

4–354
COLUMNS_PAGE, 4–351t
DATE, 4–351t
format, 4–349
LINES_PAGE, 4–351t
MAX_LINES, 4–351t

SET statement (Report Writer) (cont’d)
MAX_PAGES, 4–351t
NO COLUMN_HEADER, 4–351t
NO DATE, 4–351t
NO NUMBER, 4–351t
NO REPORT_HEADER, 4–351t
NUMBER, 4–351t
REPORT_NAME, 4–351t
summary, 4–351t

SET VERIFY command, 4–343
SHARED

access option, 4–277
SHOW ALL command, 4–357
SHOW CAITIFFS command, 4–359
SHOW collection-name command, 4–357
SHOW COLLECTIONS command, 4–311,

4–357, 4–362
SHOW command, 4–336, 4–356 to 4–363
SHOW CURRENT command, 4–357
SHOW database-name command, 4–357
SHOW DATABASES command, 4–357
SHOW DICTIONARIES command, 4–77,

4–357
SHOW DICTIONARY command, 4–357
SHOW domain-name command, 4–358
SHOW DOMAINS command, 4–358
SHOW EDIT command, 4–341, 4–358
SHOW FIELDS command, 4–311, 4–358
SHOW FORMS command, 4–358
SHOW HELP command, 4–358
SHOW path-name command, 4–359,

4–361
access privilege requirements, B–6t

SHOW PLOTS command, 4–359
SHOW privilege, B–3t
SHOW PRIVILEGES command, 4–359,

4–361, 4–364
SHOW procedure-name command, 4–359
SHOW PROCEDURES command, 4–359
SHOW READY command, 4–290, 4–311,

4–359
SHOW record-name command, 4–360
SHOW RECORDS command, 4–360
SHOW SETS command, 4–360

Index–14

SHOW SET_UP command, 4–345, 4–360,
4–362, 4–363

SHOW SYNONYMS command, 4–360
SHOW table-name command, 4–360
SHOW TABLES command, 4–360
SHOW VARIABLES command, 4–311,

4–360
SHOWP command, 4–364, 4–365

access privilege requirements, B–5t
SIGN clause, 4–116, 4–366, 4–367

LEADING, 4–366
SEPARATE, 4–366
TRAILING, 4–366

Sign of number function, 3–43
Sine function, 3–44
SIZE attribute

DECLARE_ATT statement, 4–63
SKIP print list element, 4–252

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

Slash (/)
edit string character, D–1t

SNAPSHOT
access mode, B–7t
access option, 4–276

Sort keys
in SUM statement, 4–384

SORT statement, 4–368 to 4–370
SPACE print list element, 4–251

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

Spaces
in edit strings, D–1t

Spawning processes, 3–14, 3–45
Specifying object types

EDIT command, 4–148
EXTRACT command, 4–174

Square root function, 3–47
Staged output, D–1t
Standard deviation

See STD_DEV (standard deviation)
statistical operator

STARTING WITH relational operator,
1–31t

Statistical expressions
print list element, 4–251

Statistical operators, 1–12t
AVERAGE

in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

COUNT
in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

MAX (maximum value)
in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

MIN (minimum value)
in AT BOTTOM statement, 4–29t
in AT TOP statement, 4–29t

RUNNING COUNT
in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

STD_DEV (standard deviation)
in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

TOTAL
in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

Statistical value expressions, 1–11 to
1–18

STD_DEV (standard deviation) statistical
operator, 1–18

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

STORE statement, 4–205, 4–371 to
4–383

prompts, 4–373
relational databases, 4–381 to 4–383
VAX DBMS, 4–381 to 4–383
VERIFY clause in, 4–374, 4–375,

4–377
Substring

starting position function, 3–49
SUM statement, 4–384 to 4–386
Summary elements, 4–27
SUPERSEDE clause

DEFINE FILE command, 4–95
Symbol functions, 3–5

Index–15

Symbol value function, 3–22
SYNC

See SYNCHRONIZED clause
SYNCHRONIZED clause, 4–116, 4–387,

4–388
Syntax

diagrams
braces in, xiiit
brackets in, xiiit
ellipsis in, xiiit
lowercase words in, xiiit
punctuation in, xiiit
uppercase words in, xiiit

formats
AT BOTTOM statement, 4–27
AT TOP statement, 4–27
END_REPORT statement, 4–169
PRINT statement (Report Writer),

4–259
REPORT statement, 4–320
SET statement (Report Writer),

4–349
overview, 4–1

SYS$OUTPUT logical name
and ON clause or statement, 4–248

T
T (text)

edit string character, D–1t
TAB

in STORE statement, 4–373
print list element, 4–252

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

Table value expressions, 1–11
Tables

access privileges for invoking, B–9t
defining, 4–119 to 4–125
releasing, 4–312

Tangent function, 3–50
Terminal

character width function, 3–56
columns function, 3–56

Terminal mode
function specifying, 3–28

THEN statement, 4–389, 4–390
Time

current time function, 3–51
elapsed time function, 3–42
FN$DATE function, 3–12
initialize time function, 3–26
NOW value expression, 1–8

Timing process functions, 3–4
TODAY value expression, 1–8
TOMORROW value expression, 1–8
TOTAL statistical operator, 1–18

in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t

Totals with SUM statement, 4–385
TRAILING argument

See SIGN clause
Translation, 4–120
Trigonometric functions, 3–3
Truncate decimal function, 3–21

U
UNDERLINE attribute

DECLARE_ATT statement, 4–63
UPDATE privilege, B–2t
Uppercase function, 3–53
Uppercase words

in syntax diagrams, xiiit
USAGE clause, 4–116, 4–391 to 4–395

BYTE, 4–391
COMP, 4–393
COMP-1, 4–394
COMP-2, 4–394
COMP-3, 4–394
COMP-5, 4–395
DATE, 4–395
DISPLAY, 4–391
G_FLOATING, 4–394
H_FLOATING, 4–394
LONG, 4–392
QUAD, 4–392
WORD, 4–392

Index–16

User Identification Code, 4–77, 4–106,
4–112

DEFINEP command, 4–127
Username

DEFINEP command, 4–127
USING clause

FORMAT value expression, 1–25
WITH_FORM statement, 4–401

V
V (decimal point) picture string character,

4–240
VALID IF clause, 4–116, 4–396, 4–397

effect on Assignment statement, 4–20
Value expressions, 1–1, 1–30

arithmetic, 1–18 to 1–19
CHOICE, 1–21 to 1–24
concatenation, 1–19, 1–20
conditional, 1–21 to 1–25
date, 1–8 to 1–10
FORMAT, 1–25 to 1–28
FROM, 1–28, 1–30
GET_FORM, 4–141
IF-THEN-ELSE, 1–23, 1–25
in AT BOTTOM statement, 4–30t
in AT TOP statement, 4–30t
literals

See Literals
NOW, 1–8
prompting, 1–10, 1–11
statistical, 1–11 to 1–18
tables, 1–11
TODAY, 1–8
TOMORROW, 1–8
variable field name, 1–6 to 1–8
YESTERDAY, 1–8

Variables, 1–6 to 1–8, 2–1 to 2–5
assigning values to fields, 2–3 to 2–5
changing the value, 2–5
declaring, 2–1 to 2–2, 4–58 to 4–61
global, 1–7, 2–2, 2–3
local, 1–7, 2–2 to 2–3
releasing, 4–311

VARIANT qualifier
DATATRIEVE command, 4–56

VAX DBMS databases
connecting records to sets, 4–51
making changes to databases, 4–46
readying databases, 4–275
readying record, 4–276

VERIFY clause
in STORE statement, 4–374, 4–377

VIDA
CONCURRENCY option, 4–277
readying database, 4–275

Virtual fields, 1–5

W
W (day letter)

edit string character, D–1t
Week function, 3–54
WHILE statement, 4–398, 4–399

with STORE statement, 4–378
WITH_FORM statement, 4–400

RECEIVE clause, 4–400
SEND clause, 4–400
USING clause, 4–401

WORD data type, 4–392
Workspace

clearing with FINISH command,
4–185

WRITE access mode, B–8t
WRITE privilege, B–3t

X
X (alphanumeric)

edit string character, D–1t
picture string character, 4–240

Y
Y (year)

edit string character, D–1t
Year function, 3–57
YESTERDAY value expression, 1–8

Index–17

Z
Z (numeric)

edit string character, D–1t
Zero (0)

edit string character, D–1t
ZONED data type, 4–395

Index–18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

