
VAX DATATRIEVE
User’s Guide
Order Number: AA–K080G–TE

May 1992

This manual is a guide to the interactive use of VAX DATATRIEVE.
It describes how to use DATATRIEVE to manipulate data. It also
describes how to use DATATRIEVE with DECwindows, forms
products, and database management products. It also includes
information on improving performance and working with data on
remote nodes.

Operating System: VMS Version 5.4 or higher

Software Version: VAX DATATRIEVE Version 6.0

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1991.

The following are trademarks of Digital Equipment Corporation:

ACMS DECUS RT
ALL–IN–1 DECwindows TDMS
CDD/Repository DECwrite ULTRIX
DATATRIEVE DIBOL UNIBUS
DBMS FMS VAX
DEC MASSBUS VAX CDD
DEC/CMS P/OS VAX FMS
DEC/MMS PDP VAXcluster
DECchart Professional VAXstation
DECdecision Rainbow VIDA
DECdesign RALLY VMS
DECforms Rdb/ELN VT
DECintact Rdb/VMS Work Processor
DECmate ReGIS WPS/Plus
DECnet RSTS
DECpresent RSX �™

The following are third-party trademarks:

IBM is a registered trademark of IBM Corp.

PostScript is a registered trademark of Adobe Systems Corp.

LOTUS 1-2-3 is a registered trademark of Lotus Development Corp.

This document was prepared using VAX DOCUMENT, Version 2.0.

Contents

Preface . xix

Part I General VAX DATATRIEVE Concepts

1 Introduction to VAX DATATRIEVE

What Is DATATRIEVE? . 1–1
Commands and Statements . 1–3
Command Files and DATATRIEVE Procedures 1–4
Character Set . 1–5
Keywords . 1–5
Names . 1–6
Termination and Continuation Characters 1–6
Entering Long Command Lines . 1–7
Comments . 1–8
Current Objects . 1–8
Using Help . 1–8

Getting Help on Errors . 1–9
Using DATATRIEVE Help in a DECwindows Environment . . . 1–10

Guide Mode . 1–11
Using Editors Within DATATRIEVE . 1–12

Changing the default editor . 1–12
Using the DATATRIEVE EDIT Command 1–13

Editing a Dictionary Object Specified by Path Name 1–14
Editing by Types of Objects Within DATATRIEVE 1–14
Using EDIT to Recover from a System Failure 1–15

Editing in a DECwindows Environment . 1–16
Setting up a CDD/Repository Environment 1–17
Improving Screen Displays and Controlling Output 1–18

Adjusting Screen Width and the Columns Page Setting 1–18
Using the LIST Statement . 1–19
Writing a Simple Procedure to Segment Record Display 1–19

iii

Using Concatenation Characters to Conserve Line Space 1–21
Using the Computer Based Training Package 1–22

Part II Data Definitions (Describing Data)

2 Record Definitions

Defining a Record . 2–1
Field Levels . 2–2
Level Numbers . 2–2
Elementary and Group Fields . 2–3
Field Classes . 2–3
Field Names . 2–4
Differences Between Record Name and Top-Level Field 2–5

Using Column Headers . 2–5
Using FILLER Fields . 2–6
Overriding Column Header Defaults with the PRINT
Statement . 2–7

The Important Field Definition Clauses . 2–8
Specifying a PIC Clause . 2–8

Defining Alphanumeric (X) and Alphabetic (A) Fields 2–9
Defining Numeric Fields . 2–10

The USAGE Clause . 2–11
Date Fields . 2–11
Virtual (Computed) Fields . 2–12
Using COMPUTED BY Fields . 2–12
Using the REDEFINES Clause . 2–15
Specifying Fixed and Variable Occurrence Lists 2–16
Defining Sublists . 2–18

Formatting Field Values Using the EDIT_STRING Clause 2–19
Defining Data with DATATRIEVE and CDD/Repository 2–20

Including Validation Requirements . 2–24
Initializing Field Values . 2–25

Specifying Values to Be Ignored in Statistical Computations 2–25
Including CDO-Defined Field-Level Definitions 2–25
Editing Record Definitions . 2–27

iv

3 Defining Domains

Reviewing the Requirements . 3–1
Analyzing the Data . 3–3
Grouping Fields into Domains and Tables 3–5
Defining a Domain . 3–8
Naming the Domain . 3–9
Specifying the Record Name . 3–10
Specifying the Data File . 3–10

Determining Which Parts of the File Specification to
Include . 3–10
Avoiding Problems When Naming Files 3–11

Using the WITH RELATIONSHIPS Clause 3–11

4 Defining Data Files

Organizing Files . 4–2
Selecting the Primary Key . 4–2
Selecting Alternate Keys . 4–3
Selecting Group Field Keys . 4–3

Defining Indexed Files . 4–4
Defining Sequential Files . 4–5
Designing Files . 4–5

Using EDIT/FDL to Design Your File 4–7
Creating the Data File . 4–8

Planning for File Maintenance . 4–8
Using RMS Utilities to Load and Maintain Files 4–8

Defining Data Files for CDO Format Domains 4–9
Restructuring Data . 4–10

Changing Only File Organization, Storage Options, and
Keys . 4–10
Changing Fields Defined in the Record Definition 4–12
Restructuring a Domain . 4–12

A Sample Domain . 4–15
Adding Fields to a Record Definition . 4–16
Entering Data in the New File . 4–16
Creating Record Subsets . 4–17
Combining Data from Two or More Domains 4–17
Using the Alias Clause to Restructure a Domain 4–19
Changing the Organization of a Data File 4–21

v

5 Defining Tables

Creating Dictionary Tables . 5–2
Modifying the Table . 5–3
Creating Domain Tables . 5–5
Using Tables . 5–6
Using DATATRIEVE Tables . 5–7

Accessing Values in Tables . 5–7
Validating Values with Tables . 5–9
Using Domain Tables Based on Relational Sources 5–10

Choosing Between Dictionary and Domain Tables 5–10

Part III Data Management (Storing, Managing, Reading,
Erasing, RSEs)

6 Starting and Ending Access to Data

Readying Domains . 6–3
Readying Domains Defined with Relationships 6–4
Readying a CDD$RMS_DATABASE . 6–5
Defining Your Own Default Access . 6–5

Finishing Domains . 6–6
Controlling the Input of Dates and Currency 6–7

7 Record Selection Expressions

The RSE Format . 7–2
Specifying the Source of Records . 7–3

Domains as Sources of Record Streams 7–3
Collections as Sources of Record Streams 7–4
Lists as Sources of Record Streams . 7–5
Using Relations and VAX DBMS Records as Sources of Record
Streams . 7–6
MEMBER Clause . 7–7
OWNER Clause . 7–8
WITHIN Clause . 7–9

Displaying All the Records in a Domain . 7–10
Limiting the Number of Records in the Record Stream 7–11
Joining Records from Two or More Sources 7–12

Using CROSS to Combine Two Domains 7–12
Joining Records from Collections Based on the Same
Domain . 7–14
Using CROSS to Cross a Domain with Itself 7–16

vi

Identifying the Records That Meet a Test 7–17
Comparing Records by Pattern Recognition 7–18
Grouping Records When Values Fall Within a Range 7–19
Grouping Records Based on a MISSING VALUE Clause 7–21
Grouping Records by Reference to a Table 7–21
Setting Up Multiple Tests with Compound Booleans 7–22

Finding a Unique Field Value in a Record Stream 7–23
Sorting the Record Stream by Field Values 7–24

8 Maintaining Data

Using the STORE Statement . 8–1
The Effect of TAB on Prompts from STORE Statements 8–2
Using Direct Assignments . 8–3
Using DATATRIEVE Prompts . 8–4
Modifying Data . 8–6
Modifying Records in the CURRENT Collection 8–8

Modifying a Selected Record in the CURRENT Collection 8–8
Modifying All Records in the CURRENT Collection 8–9

Modifying All Records in a Record Selection Expression 8–11
Modifying Records Controlled by a FOR Statement 8–16
Including the RSE Within the MODIFY Statement 8–18

Ensuring Valid Values . 8–18
Erasing Records . 8–19

9 Compound Statements

Using the REPEAT Statement . 9–2
Using the FOR Statement . 9–2
Using a BEGIN-END Block . 9–2
Using the Keyword THEN . 9–3
Using the WHILE Statement . 9–3
Using IF-THEN and IF-THEN-ELSE Statements 9–4
Using the CHOICE Statement . 9–5

RUNNING COUNT and RUNNING TOTAL Used with
Conditional Statements and Expressions 9–6

Avoiding Looping Mistakes . 9–8

vii

10 Using DATATRIEVE Procedures

Defining a Procedure . 10–1
Editing a Procedure . 10–2
Invoking a Procedure . 10–2
Contents of a Procedure . 10–3

Commands and Statements . 10–4
Arguments and Clauses . 10–4
Comments . 10–5

Turning Off the ‘‘Looking for...’’ Messages 10–5
Aborting Procedures . 10–5
Executing a Procedure Repeatedly . 10–6
Generalizing Procedures . 10–8
Protecting Procedures . 10–8
Getting a Procedure to Work the Way You Want 10–8

Writing a Session Log to a File . 10–10
Invoking a Command File from DATATRIEVE 10–10

11 Accessing Data the Easy Way: Using Collections

Specifying Records in a Collection . 11–3
Forming and Naming Collections . 11–4
Choosing a Target Record for an Operation 11–5
Restricting Record Fields in a Collection . 11–7
Sorting Records in a Collection . 11–9
Forming a Collection from Two or More Record Sources 11–10
Removing Records from a Collection . 11–11
Removing Collections from Your Workspace 11–12
Disadvantages of Using Collections . 11–13

12 Accessing Data the Expert Way: Using RSEs and View
Domains

Ensuring Fast Access . 12–1
Creating RSEs . 12–3
Working with Multiple Records . 12–5

Lists: Using the ‘‘Record’’ Within the Record 12–5
FOR Statement Looping Errors . 12–7
CROSS Clause Looping Errors . 12–8

Creating View Domains . 12–9
Views Using Subsets of Records . 12–10
Views Using Subsets of Fields . 12–12
Views Using More Than One Domain . 12–13

viii

Creating Hierarchies With View Domains 12–15
Using Views with Remote Domains . 12–16
Access Privileges Needed for Using Views 12–16

Restrictions on Views with No Physical Record Source 12–17

13 Reporting Hierarchical Records

Retrieving Values from Repeating Fields . 13–2
Using FIND and SELECT . 13–3
Using Nested FOR Loops . 13–5
Using Inner Print Lists . 13–6
Using Context Searcher . 13–8
Flattening Hierarchies . 13–9
Using the CROSS Clause . 13–11
Using Inner Print Lists . 13–14
Using Nested FOR Statements . 13–15

Modifying Values Stored in Repeating Fields 13–17
Modifying Repeating Field Values with FIND and
SELECT . 13–17
Modifying Repeating Field Values with FOR and MODIFY . . . 13–18
Modifying Every Repeating Field Value with OF 13–20
Changing the Length of a Variable-Length List 13–21

Creating Hierarchies with Multiple RSEs 13–22
Using Nested FOR Statements to Create Dynamic
Hierarchies . 13–23

Flat Versus Hierarchical Records . 13–24
Restructuring a Hierarchical File to a Flat File 13–27
Defining Several Smaller Related Records 13–28
Restructuring Large Records into Smaller Ones 13–30

Part IV Data Presentation

14 Using the Report Writer

What the Report Writer Can Do . 14–1
Designing a Report with the Report Writer 14–2
Identifying the Data and Invoking the Report Writer 14–4

Exiting from the Report Writer . 14–5
Setting Up the Report Heading . 14–6
Printing Detail Lines and Column Headers 14–7

Column Headers for Print Items . 14–8
Creating Title Pages and Other Special Headings 14–8

ix

Creating a Title Page . 14–8
Creating End-of-page or End-of-report Summaries 14–11

Creating Special Page Headings . 14–13
Producing Row Totals . 14–14
Developing a Procedure for a Report . 14–16

15 Report Writer Formats

Report Writer Formats . 15–1
Page-based or Table-based Formats . 15–3
Digital’s Compound Document Architecture (CDA) 15–3

Producing High-quality Printouts . 15–4
Changing Font Attributes in a Report 15–4
Proportionally-spaced Fonts . 15–8
Changing Paper Size . 15–9
Formatting for DDIF and PostScript™ 15–9

Using the TEXT format . 15–10
Formatting TEXT Reports . 15–11
Changing the Default Page Width and Length 15–11

Reporting data for spreadsheets . 15–11
Formatting spreadsheets . 15–12

16 Report Writer Advanced Techniques

Dividing Data Records into Control Groups 16–1
Developing Levels of Control Groups Using Multiple Sort
Keys . 16–2

Reporting Data Grouped by Date . 16–3
Reporting Group Summaries Only . 16–5
Summarizing Data . 16–7

COUNT, AVERAGE, and TOTAL . 16–7
Maximum Value, Minimum Value, and Standard Deviation . . 16–8

Changing the Content of the Detail Line . 16–10
Field Values . 16–10
Value Expressions . 16–10
Format of Fields in the Detail Lines . 16–12
Column Position of Print Items . 16–12
Edit String Format of Print Items . 16–13

Printing a Variety of Detail Lines in One Report 16–13
CHOICE Value Expression in COMPUTED BY Fields 16–15
CHOICE Value Expression Within a PRINT Statement 16–19

Using Report Writer to Flatten Hierarchies 16–20
Accessing List Items with the SET SEARCH Command 16–20

x

Using the REPORT Statement to Report List Data 16–22
Using Report Writer with Other Database Products 16–22

Accessing VAX DBMS Data with DATATRIEVE 16–23
Writing a Simple Report with VAX DBMS Data 16–23

Accessing VAX Relational Databases with DATATRIEVE 16–25
Writing a Simple Report with Relational Data 16–28

17 Using DATATRIEVE Plots

Hardcopy Output Devices . 17–2
Steps to Take Before Using DATATRIEVE Plots 17–2
Changing from a PRINT Statement to a Plot Statement 17–3

Plot Statement Using Data from a Collection 17–3
Plot Statement Using Data from RSE 17–4
Same Plot Produced by FIND Statement and RSE 17–4

Five Types of Relationship . 17–5
Time Comparisons (Line, Scatter, Bar Charts) 17–5
Parts of the Whole (Pie, Bar Chart) . 17–6
Comparing Several Items (Bar, Pie Chart) 17–7
Comparing Multiple Values (Line, Scatter, Bar Chart) 17–7
Frequency Distribution (Histogram) . 17–7

Designing and Improving Plots . 17–8
Guidelines for Designing Plots . 17–8

Labels with DATATRIEVE Plots . 17–9
Default Labels . 17–9
Specifying Label Strings . 17–11
Eliminating Scientific Notation . 17–11

Using DATATRIEVE Plots with Other Database Products 17–12
Using DATATRIEVE Plots with VAX DBMS 17–12
Using DATATRIEVE with Relational Databases 17–15

18 DATATRIEVE Plot Types

Bar charts . 18–1
PLOT BAR . 18–2
PLOT BAR_AVERAGE . 18–2
PLOT HISTO . 18–2
PLOT MULTI_BAR . 18–3
PLOT MULTI_BAR_GROUP . 18–5
PLOT NEXT_BAR . 18–7
PLOT RAW_BAR . 18–8
PLOT STACKED_BAR . 18–10

Line graphs . 18–12

xi

PLOT MULTI_LINE . 18–13
PLOT MULTI_LR . 18–14
PLOT MULTI_SHADE . 18–15

Scattergraphs . 18–16
PLOT DATE_LOGY . 18–17
PLOT DATE_Y . 18–17
PLOT LOGX_LOGY . 18–18
PLOT LOGX_Y . 18–20
PLOT X_LOGY . 18–21
PLOT X_Y . 18–22

Pie charts . 18–23
PLOT PIE . 18–24
PLOT RAW_PIE . 18–25
PLOT VALUE_PIE . 18–27

Utilities . 18–28
PLOT BAR_ASCENDING . 18–28
PLOT BIG . 18–29
PLOT CONNECT . 18–29
PLOT CROSS_HATCH . 18–30
PLOT HARDCOPY . 18–30
PLOT LEGEND . 18–31
PLOT LIMITS_X and PLOT LIMITS_Y 18–32
PLOT LR . 18–34
PLOT MONITOR . 18–34
PLOT PAUSE . 18–35
PLOT REFERENCE_X and PLOT REFERENCE_Y 18–35
PLOT RE_PAINT . 18–37
PLOT SHADE . 18–38
PLOT SORT_BAR . 18–39
PLOT TITLE . 18–40
PLOT WOMBAT . 18–42

Using Utilities with other Plot Statements 18–42

Part V Advanced Topics

xii

19 Using DATATRIEVE with the CDD/Repository
Dictionary System

What is the CDD/Repository Dictionary System? 19–1
The CDD/Repository Dictionary System Structure 19–1

CDO Format Dictionaries . 19–2
DMU Format Dictionaries . 19–2
Distinguishing CDO Objects from DMU Objects in SHOW
Command . 19–2

The Compatibility Dictionary . 19–3
DATATRIEVE and CDD/Repository . 19–4
Integrating CDO and DMU Definitions in Applications 19–5
How DATATRIEVE Determines Dictionary Destination 19–5
Converting DMU Definitions to CDO Format Definitions 19–6

Using the DATATRIEVE EDIT Command to Convert
Definitions . 19–7
Using the DATATRIEVE EXTRACT Command to Convert
Definitions . 19–7

Choosing a Dictionary Format . 19–8
Creating and Using CDD/Repository Path Names 19–8

Rules for Naming CDD/Repository Objects and Directories . . . 19–10
Abbreviating CDD/Repository Path Names 19–11
Using Logical Names . 19–12

Logical Names in Dictionary Path Names 19–12
Using Logicals for Search Lists . 19–13

Setting Dictionary Location . 19–15
Deleting, Purging, and Extracting Definitions 19–16

20 Using DATATRIEVE with a CDO Format Dictionary

Organization of a CDO Format Dictionary 20–1
Displaying Information About Directories, Objects, and Session
Defaults . 20–3
Creating Dictionaries and Dictionary Directories 20–3
Deleting CDO Dictionaries and Dictionary Directories 20–5
Defining DATATRIEVE Objects for CDO Format Dictionaries 20–7

Defining DATATRIEVE Domains in CDO Format 20–10
Defining DATATRIEVE Records in CDO Format 20–10
Defining Data Files for CDO Format Domains 20–12

Readying CDO Format Domains . 20–12
The DATATRIEVE CDO Command . 20–14

xiii

21 Using DATATRIEVE with a DMU Format Dictionary

Organization of the DMU Format Dictionary 21–1
Creating DMU Format Dictionary Directories 21–3
Deleting Dictionary Directories . 21–4
Using CDD/Repository to Design Department-Wide or
System-Wide Applications . 21–5

22 Improving DATATRIEVE Performance

Redesign and Maintenance . 22–1
Adding Data to the File . 22–1

Using the OPTIMIZE Qualifier to Improve Performance 22–2
Choosing Optimal Queries . 22–3

Using EQUAL Rather Than CONTAINING 22–3
Using STARTING WITH Rather Than CONTAINING 22–4
Using Domains Rather Than Collections in an RSE 22–4
Using the CROSS Clause and Nested FOR Loops 22–5
Choosing Domains or Collections as Record Sources 22–6
Choosing the Order of Domain Names in the CROSS
Clause . 22–6
Order of Domains in Nested FOR Loops 22–8
Nested FOR Loops Followed by a Conditional Statement 22–9

Performance Enhancements for Certain CDD/Repository
Dictionary Operations . 22–9
Performance Enhancements for Databases 22–11
Timing Procedures to Improve Efficiency . 22–11
DATATRIEVE Evaluation of Compound Boolean Expressions 22–12
Summary of Rules . 22–13

23 Access Control Lists and DATATRIEVE Protection

Access Control Lists . 23–1
An Overview of ACL Entries . 23–2
Displaying an Access Control List . 23–2
Hierarchical Protection in the DMU Dictionary 23–3
Accumulation of Privileges in the DMU Dictionary 23–4
Combinations of DMU ACL Entries . 23–6
Protection in the CDO Dictionary . 23–9
Summary of ACL Results . 23–10

The Parts of an ACL Entry . 23–11
User Identification Criteria . 23–11
Identifying Users by User name . 23–12

xiv

Identifying Users by the UIC . 23–12
Identifying Users by Rights Identifiers 23–13
Identifying Users by the Password . 23–14
Identifying Users by the Terminal Number or Job Class 23–15
DATATRIEVE and CDD/Repository Privilege Specification . . . 23–16

Creating ACL Entries . 23–16
Suggestions for Assigning Privileges . 23–17
Sequence Number in the DEFINEP Command 23–18

Removing Entries from an ACL . 23–20

A Name Recognition and Single Record Context

Establishing the Context for Name Recognition A–1
The Right Context Stack . A–2

The Content of a Context Block . A–3
Global Variables . A–4
Collections . A–5
Record Streams . A–6
Local Variables . A–8
VERIFY Clause in the STORE Statement A–8
VALID IF Clause in a Record Definition A–9

Using Context Variables and Qualified Field Names A–9
Context Variables as Field Name Qualifiers A–9
Other Field Name Qualifiers . A–10
The Effect of the CROSS Clause on Name Recognition . . . A–13

The Left Context Stack for Assignment Statements A–14
Single Record Context . A–17

The SELECT Statement and the Single Record Context A–18
The CURRENT Collection as Target Record Stream A–24
The OF rse Clause and Target Record Streams A–26
FOR Statements and Target Record Streams A–27

B DATATRIEVE Restrictions and Usage Notes

VAX DATATRIEVE Usage and VMS Disk Quota
Considerations . B–1
Restriction on Concatenating Double-Precision Numbers B–2
Errors During STORE and MODIFY Statement Execution B–3
Restriction on Missing Values and Default Values B–4
Restriction on Modifying Facility-Specific Definitions B–5
Spurious Divide-by-Zero Errors . B–5
Execution out of Sequence in Procedures B–6
Interactive Users Can Set Stack Size . B–7

xv

Clarification About Using Prompting Value Expressions B–8

Glossary

Index

Examples

2–1 Level Numbers in the YACHT Record Definition 2–3
2–2 Sample DATATRIEVE Record Definition 2–22
3–1 Defining a Sample Domain . 3–8
4–1 Defining a Data File . 4–1
4–2 Restructuring a Domain to Change File

Organization . 4–10
4–3 Restructuring a Domain to Change the Record

Definition . 4–14
5–1 Defining a Dictionary Table . 5–2
5–2 Defining a Domain Table . 5–5
5–3 Using Keywords to Access Values in Tables 5–8
6–1 Starting and Ending Access to Data 6–1
8–1 Modifying Records by First Creating a Collection 8–12
8–2 Modifying Records in a FOR Statement RSE 8–14
8–3 Erasing Records by First Creating a Collection 8–20
11–1 Creating and Using a Collection 11–1
11–2 PRINT ALL Example . 11–5
11–3 Restricting Record Fields . 11–7
11–4 Using the SORT Statement . 11–9
12–1 Including RSEs in Statements 12–2
12–2 Accessing Values in List Fields 12–5
13–1 PRINT Statement with Inner Print List 13–7
14–1 Control Group Report Based on One Sort Key 14–12
15–1 Example Report Changing Font Types for the

Output . 15–5
16–1 Control Group Report Based on Two Sort Keys 16–3
16–2 Accounts Payable Report by Month 16–5

xvi

Figures

2–1 Structure of CURRENT_REC 2–13
3–1 Domains and Tables in Sample Personnel System 3–7
4–1 Flat File Structure . 4–6
4–2 A File with Two Levels of Index 4–7
7–1 Joining Records from Two Domains 7–14
13–1 Field Structure of EMP_REC . 13–1
13–2 Structure of a Hierarchical Record 13–25
13–3 The Structure of a Flat Record 13–26
13–4 Joining FOLKS and CHILDREN with CROSS 13–30
14–1 Boardroom-quality Report . 14–2
14–2 Sample Title Page for a Report 14–10
14–3 Example PostScript™ Report Header 14–14
14–4 Field Structure of WAGES_REC 14–15
15–1 Sample PostScript™ Output . 15–7
16–1 Field Structure of PERSONNEL_REC 16–1
16–2 Field Structure of PAYABLES_REC 16–4
16–3 Field Structure of SALES_REC 16–8
16–4 Field Structure of PAYABLES_REC 16–11
16–5 Field Structure of SALES_REC 16–14
16–6 Revised Field Structure of SALES_REC 16–16
16–7 Control Group Report with Variety of Detail Lines . . . 16–18
16–8 Sample Relational Database . 16–27
17–1 Plot Produced by FIND Statement or RSE 17–4
18–1 Relationship Between Utilities and Plots 18–43
20–1 Sample CDO Format Dictionary 20–2
21–1 Sample DMU Format Dictionary 21–2
23–1 DMU Privileges Passed from Higher Directories 23–4
23–2 DMU Privilege Inheritance in a Four-Level

Hierarchy . 23–7
A–1 Duplicate Field Names in YACHTS and OWNERS . . . A–2

xvii

Tables

1–1 Default File Types for Journal Files 1–15
2–1 Field Classes . 2–4
2–2 Picture String Characters . 2–9
2–3 Relating Numeric Picture Strings to Stored Values . . . 2–10
2–4 CDD/Repository and DATATRIEVE Data Types 2–21
3–1 Fields for Personnel System . 3–4
6–1 Defining the Logical Name DTR$DATE_INPUT 6–7
6–2 Currency Symbols . 6–7
12–1 Advantages and Disadvantages of Data Access

Options . 12–18
14–1 Summary of Report Writer Statements 14–3
16–1 Commission Schedule for the Sales Division 16–14
17–1 Five Types of Relationships . 17–5
17–2 Bar Charts for Time Comparisons 17–6
20–1 Names for DATATRIEVE CDO Objects 20–9

xviii

Preface

This manual explains the concepts and terminology of VAX DATATRIEVE. It
discusses how to define domains, records, tables, and procedures and how to
catalog them in the CDD/Repository Dictionary system. It describes various ways
of managing data stored in RMS files, VAX Rdb/VMS, VAX Rdb/ELN, VIDA, and
VAX DBMS databases and how to retrieve information from them.

Intended Audience
This manual is intended for people who have no prior experience with
DATATRIEVE. It provides information on the basic tasks of managing
information with DATATRIEVE and can help you get started with DATATRIEVE
applications.

Operating System Information
Information about the versions of the operating system and related software
that are compatible with this version of VAX DATATRIEVE is included in the
VAX DATATRIEVE media kit, in either the VAX DATATRIEVE Installation Guide
or the Before You Install VAX DATATRIEVE Version 6.0 letter.

For information on the compatibility of other software products with this version
of VAX DATATRIEVE, refer to the System Support Addendum (SSA) that comes
with the Software Product Description (SPD). You can use the SPD/SSA to verify
which versions of your operating system are compatible with this version of
VAX DATATRIEVE.

Related Documents
For further information on the topics covered in this manual, you can refer to:

• VAX DATATRIEVE Installation Guide

Describes the installation procedure for VAX DATATRIEVE. The manual
also explains how to run User Environment Test Packages (UETPs),
which test DATATRIEVE product interfaces, such as the interface between
DATATRIEVE and Rdb/VMS.

xix

• VAX DATATRIEVE Guide to Interfaces

Includes information on using VAX DATATRIEVE to manipulate data and
on using VAX DATATRIEVE with forms, relational databases, and database
management systems.

• VAX DATATRIEVE Release Notes

Includes specific information about the current DATATRIEVE release and
contains material added too late for publication in the other DATATRIEVE
documentation.

• VAX DATATRIEVE Reference Manual

Contains reference information for DATATRIEVE.

• VAX DATATRIEVE Guide to Programming and Customizing

Explains how to use the DATATRIEVE Call Interface. The manual also
describes how to create user-defined keywords and user-defined functions
to customize DATATRIEVE and how to customize DATATRIEVE help and
message texts.

References to Products
The VAX DATATRIEVE documentation to which this manual belongs often refers
to the following products by their abbreviated names:

• VAX CDD/Repository software is referred to as CDD/Repository.

• VAX DATATRIEVE software is referred to as DATATRIEVE.

• VAX Rdb/ELN software is referred to as Rdb/ELN.

• VAX Rdb/VMS software is referred to as Rdb/VMS.

• VAX TDMS software is referred to as TDMS.

• VAX FMS software is referred to as FMS.

• DECforms software is referred to as DECforms.

• VIDA software is referred to as VIDA.

This manual uses the terms relational database or relational source to refer to all
three of these products:

• VAX Rdb/ELN

• VAX Rdb/VMS

• VIDA

xx

Part I
General VAX DATATRIEVE Concepts

1
Introduction to VAX DATATRIEVE

The VAX DATATRIEVE language is designed to simplify the tasks of data
definition, management, and retrieval. This chapter introduces the basic
elements of the DATATRIEVE language.

What Is DATATRIEVE?
DATATRIEVE is an interactive language and report-writing tool for managing
information organized as collections of interrelated data (databases). You use
DATATRIEVE to query and report on a database. DATATRIEVE can access three
types of databases:

• File-structured databases that you set up with DATATRIEVE, Record
Management Services (RMS), or a programming language

• Databases that you create using VAX Rdb/VMS, VAX Rdb/ELN, or VIDA

• Databases that you create using VAX DBMS

DATATRIEVE is a fourth-generation language. Its syntax is more ‘‘English-
like’’ than that of COBOL and BASIC, and it has a strong nonprocedural
aspect. It executes commands as you type them, and you can often simply tell
DATATRIEVE what information you want by name, instead of specifying how to
obtain that information.

DATATRIEVE lets you define records and store record definitions separately from
the procedures that use them. You can then write any number of procedures that
use the records you have defined, without redefining the record each time.

DATATRIEVE also lets you create data definitions, called view domains, that
can access either a subset of the fields in one data file or a combination of fields
from more than one file. View domains can help you reduce the number of
statements that you have to write when retrieving data.

DATATRIEVE provides the same data storage capabilities that you have with
other languages. It can store and retrieve data using existing data files of most
types that are supported by VAX Record Management Services (RMS). It can also
create sequential and multikey indexed files, but not relative files.

Introduction to VAX DATATRIEVE 1–1

Introduction to VAX DATATRIEVE
What Is DATATRIEVE?

DATATRIEVE also handles other common language functions automatically,
without the need for language statements. For instance, DATATRIEVE:

• Finds data files, opens them, and performs input/output operations

• Labels columns in an output display

• Converts data types

• Formats data for output

• Handles conditions such as end-of-file and matching

As a result, you can save many lines of code, get applications running quickly,
and have code that is more readable than languages such as COBOL or BASIC.

Using the DATATRIEVE Call Interface, you can include DATATRIEVE functions
in a program written in another language. The Call Interface is used most often
in two ways:

• You can use the linkage section of your program to do file access entirely
through DATATRIEVE. In this way, the calling program does not need to
specify the structure of the data, and you do not need to relink programs
when the data files change.

• You can write a program that passes commands and statements to
DATATRIEVE. The program can present the user with a customized
interface, such as a menu. In this way, you can ‘‘hide’’ DATATRIEVE from
users who do not know how to use its commands and statements.

DATATRIEVE does not give you all the options available with other languages.
For example:

• DATATRIEVE lets you set up data hierarchies such as the repeating fields
generated by a COBOL OCCURS clause, although retrieving data from
repeating fields is not as easy as retrieving data from other types of fields.
DATATRIEVE does not have a system of subscripts or indexes that lets you
explicitly specify an occurrence in a repeating field. Be sure you consider this
fact before you decide to use the DATATRIEVE OCCURS clause.

• The DATATRIEVE language does not contain clauses such as BLOCK SIZE
and CONTIGUOUS BEST TRY that let you optimize files for best response
time. If you are setting up or maintaining large data files, therefore, you
should use the utilities provided by VAX RMS to load and maintain these
files. See Chapter 22 for more information on optimizing DATATRIEVE
performance.

1–2 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
What Is DATATRIEVE?

• DATATRIEVE procedures are not compiled when they are stored. Every
time you execute a DATATRIEVE procedure, DATATRIEVE processes each
statement or command in sequential order, as if you were entering each one
interactively. The advantage in using procedures, therefore, is more a matter
of convenience than speed of execution.

The VAX DATATRIEVE Guide to Programming and Customizing explains how
you can use DATATRIEVE with other languages and provides more information
about how you can customize DATATRIEVE features for your installation.

Examples in this manual show you how to create your own file-structured
databases and how to access data stored in VAX DBMS and relational databases.
The term database is sometimes used in other documentation to refer only to
data stored by database management systems such as VAX DBMS or the VAX
relational database products. For the remainder of this book, database is used to
refer to data stored in files.

Commands and Statements
During an interactive VAX DATATRIEVE session, you control DATATRIEVE
operations by entering a series of commands and statements:

• Commands let you define the DATATRIEVE basic data structures, such as
domains, records, files, tables, and procedures. DATATRIEVE stores this
information in the CDD/Repository dictionary. You can assign appropriate
access privileges to different types of users to control access to dictionary
data.

• Statements, on the other hand, let you manage data by storing, modifying,
and erasing records. You also use statements to retrieve and display selected
data through precise queries.

Besides this difference in function, commands and statements also differ in
structure:

• A command consists of a keyword, which is the command name (such as
READY or SHOW), and may include other elements, such as additional
keywords, dictionary path names, and definition clauses. You can enter
commands only at DATATRIEVE command level, when you see the DTR>
prompt. You cannot combine a command with another command or with a
statement to form a compound command.

• A statement also consists of a keyword, which is the statement name, and
may include other elements such as additional keywords, record selection
expressions, value expressions, and Boolean expressions. Unlike commands,
statements can be combined to form compound statements.

Introduction to VAX DATATRIEVE 1–3

Introduction to VAX DATATRIEVE
Commands and Statements

• Statements and commands cannot use path names in place of given names.
The FINISH command is the only exception to this rule.

A compound statement is two or more statements you combine in a BEGIN-
END statement or a THEN statement. You can use a compound statement
anywhere you can use a simple statement. DATATRIEVE executes each
statement of a compound statement in consecutive order.

Every DATATRIEVE command and statement consists of one or more of the
following elements:

• Command or statement name

• Other keywords

• Names, which identify items associated with values

• Expressions, which specify values or create record streams

• A terminator, which signals the end of a command or statement

• A continuation character, which allows a command or statement to be
continued on the next input line

• A comment, which allows you to enter text with a command or statement

You can perform complex or repetitive tasks by nesting statements within other
statements. With the REPEAT, FOR, and WHILE statements, you can form
repeating loops. With the IF-THEN-ELSE and CHOICE statements, you can do
conditional transfers or branching.

The VAX DATATRIEVE Reference Manual contains complete descriptions of the
commands and statements of DATATRIEVE.

Command Files and DATATRIEVE Procedures
Most applications of DATATRIEVE involve sequences of commands and
statements that recur regularly.

You can use VMS command files in DATATRIEVE in much the same way you use
DATATRIEVE procedures. There are three major differences between the two.

• Procedures are stored in the data dictionary, and command files are stored in
a VMS directory.

• Procedures are invoked by entering a colon and the procedure name, and
command files are invoked by entering ‘‘@’’ followed by the file name

1–4 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Command Files and DATATRIEVE Procedures

• Command file invocations are parsed by DATATRIEVE as commands and
therefore cannot be included in BEGIN-END, IF-THEN-ELSE, or other
compound statements.

Character Set
Every element of a DATATRIEVE command or statement must be constructed of
characters from the DATATRIEVE character set. The Sort Order Appendix in the
VAX DATATRIEVE Reference Manual lists the characters in the DATATRIEVE
character set.

Note

DATATRIEVE accepts lowercase letters as input but converts them
to uppercase letters before analyzing the syntax of your input.
DATATRIEVE preserves lowercase letters only in character string
literals enclosed in quotation marks.

Similarly, DATATRIEVE treats hyphens as lowercase underscores. It
accepts hyphens as input characters but converts them to underscores
before analyzing the syntax of your input. To use the hyphen (-) as a
minus sign, you must separate the two expressions in the subtraction
with spaces. Otherwise, DATATRIEVE treats ‘‘-’’ as a hyphen.

Keywords
Most keywords are elements of commands or statements. In this manual,
DATATRIEVE keywords are printed in uppercase letters.

Keywords are restricted to the positions shown in syntax formats of commands
and statements. Do not use keywords as names of domains, records, fields,
dictionary tables, domain tables, views, databases, database instances, collections,
procedures, or variables.

You can create a unique set of custom-tailored keywords. You can define these
keywords to be synonyms for DATATRIEVE keywords or to create your own.

See the DECLARE SYNONYM section in the VAX DATATRIEVE Reference
Manual for more information about these methods of defining synonyms. Refer to
the VAX DATATRIEVE Guide to Programming and Customizing for information
about how to create your own keywords.

Introduction to VAX DATATRIEVE 1–5

Introduction to VAX DATATRIEVE
Names

Names
A DATATRIEVE name is a character string used to identify one of the following
items:

Collection Dictionary table Field Procedure Variable

Database Domain Plot Record View domain

Database instance Domain table Port Table

A DATATRIEVE name can be from 1 through 31 characters long and can contain
letters, digits, hyphens (-), underscores (_) and dollar signs ($). DATATRIEVE
names, however, must conform to the following set of restrictions:

• must begin with a letter.

• must end with a letter or digit.

• cannot be a keyword.

You can continue a name from one input line to another by typing a hyphen
(-) and pressing RETURN. The following list shows some valid DATATRIEVE
names:

TOTAL_SALARY
YACHTS
PRICE_PER_POUND
YEAR-TO-DATE_EARNINGS_FOR_1980

The following list some invalid DATATRIEVE names:

TOTAL (Duplicates a keyword)

1980_EARNINGS (Does not begin with a letter)

PRICE-PER-POUND($/LB) (Contains illegal characters)

YEAR-TO-DATE_EARNINGS_FOR_FY_1980 (Contains too many characters)

Termination and Continuation Characters
DATATRIEVE has two termination characters, the semicolon (;) and the carriage
return (RETURN), and a continuation character, the hyphen (-).

A terminator signals the end of a command or statement. The formal terminator
in DATATRIEVE is the semicolon (;). You can enter several commands on the
same input line if you separate each from the next with a semicolon. If you
enter more than one command on an input line, DATATRIEVE does not begin
processing those commands until you press the RETURN key.

1–6 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Termination and Continuation Characters

Note

The semicolon is also used as part of the dictionary path name to denote
versions of dictionary objects. The semicolon in the dictionary path name
is always followed by the version number. An example of this format is
CDD$TOP.HOLMES.YACHTS;1.

You can enter SET NO SEMICOLON to turn off the semicolon requirement.

You can terminate commands and statements, except the DEFINE and DELETE
commands and the DECLARE statement, by pressing the RETURN key when the
syntax of the command or statement is complete.

If the SET PROMPT command is in effect and you press the RETURN key before
the syntax of a statement or command is complete, DATATRIEVE prompts you
for the next element in the syntax.

Entering Long Command Lines
You can make sure you will be able to continue your command by pressing the
RETURN key at the following points in your command line:

• After a comma

• In the middle of a string of required keywords

• In the middle of value expressions and Boolean expressions

• After a hyphen (-) which is used as a continuation character.

You can use the hyphen (-) at the end of an input line to continue your command
or statement on the next input line. DATATRIEVE does not check the syntax of
your input until you press the RETURN key at the end of a line that does not
end with a hyphen. Therefore, if the command line you are entering ends in a
hyphen, you must end the command line with a semicolon.

If an input line ends with a complete word, enter a space before typing the
hyphen and pressing the RETURN key. If you do not enter a space after the
complete word or at the beginning of the next line, DATATRIEVE considers the
characters at the end of the first line and those at the beginning of the next to be
one string of characters.

If you have to change input lines in the middle of a name, keyword, or any other
character string, you must use a hyphen to shift your input to the next line. The
maximum number of characters in an input line extended by hyphens is 255.

Introduction to VAX DATATRIEVE 1–7

Introduction to VAX DATATRIEVE
Comments

Comments
You can include a comment in an input line by preceding the comment with
an exclamation point (!) and ending it by pressing the RETURN key. The
comment can include any characters on your keyboard except escape and control
characters.

You can also use the exclamation point in procedures and command files to
document their functions. When you invoke a procedure that contains comments,
DATATRIEVE suppresses the comments. The comments in procedures, however,
are stored in the data dictionary as part of the procedure definition.

When you invoke a command file, DATATRIEVE displays the comment lines
in the command file if the SET VERIFY command is in effect. To suppress the
display, enter a SET NO VERIFY or SET NOVERIFY command. See the section
on the SET command in the VAX DATATRIEVE Reference Manual for more
information.

Current Objects
The current DATATRIEVE object is the last collection established using the
FIND command, no matter what you have readied in the meantime.

The current collection is known as CURRENT, so this name can be used in place
of the name allotted (if there is one). Statements expecting a collection name will
assume CURRENT if nothing else is provided.

Using Help
The DATATRIEVE HELP command provides on-line information about the use of
DATATRIEVE commands, statements, and language elements.

When you enter HELP or a question mark (?) in response to the DTR> prompt,
DATATRIEVE displays a list of topics to choose from.

If you already know which topic you want, you can enter it on the same line as
the HELP command. For example, if you want information on defining a domain,
enter the HELP command as follows:

DTR> HELP DEFINE DOMAIN

Note

HELP ERROR follows somewhat different rules. See Getting Help on
Errors for information on how to use HELP ERROR.

1–8 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Using Help

When you are in the help facility, press the PF2 key on the auxiliary keypad or
enter VIDEO as the topic. This displays information on the screen-oriented Help
facility and explains how to scan the DATATRIEVE help messages. You can move
through the text by using the arrow keys:

• Press the up and down arrows to scroll the help text backward and forward.

• Press the left and right arrows to display the previous or next complete help
screen.

You can type a question mark (?) to redisplay the current help topics.

If you enter HELP HELP, DATATRIEVE displays more detailed information on
the HELP command.

When the topic you have selected contains subtopics, DATATRIEVE asks if you
want information on a subtopic.

If you are at one of the subtopic levels of help, you can press the RETURN key to
move up a level. The prompt displayed tells you at what level of help you are.

Enter CTRL/Z to exit from help. This returns you to the DATATRIEVE prompt
DTR>.

Getting Help on Errors
When DATATRIEVE displays an error message, you can type HELP ERROR and
DATATRIEVE displays the help text pertaining to that error. For example:

DTR> FIND PERSONNEL
"PERSONNEL" is not a readied source, collection, or list.
DTR> HELP ERROR
"PERSONNEL" is not a readied source, collection, or list.

ERROR

NOTDOMAIN

EXPLANATION:

The source for a DATATRIEVE collection must be a
readied domain, relation, or DBMS record; a collection;
or a list.

USER ACTION:

Check that you have spelled all names correctly. Ready the
appropriate record source, if necessary, and reenter
the statement.

Topic? CTRL/Z

Introduction to VAX DATATRIEVE 1–9

Introduction to VAX DATATRIEVE
Using Help

DTR>

Note

DATATRIEVE always gives you information on the last error you made,
even if it was many commands ago.

If you have not made any error during a DATATRIEVE session, entering HELP
ERROR gives you a display of all the error topics. To get the same display after
you have made an error, you may enter ERROR when you are at the Topic?
prompt in help.

Using DATATRIEVE Help in a DECwindows Environment
DATATRIEVE provides several ways of obtaining help in a DECwindows
environment:

• You can get help on any of the objects displayed in the main application
window by following these steps:

1. Press MB1 and drag the pointer to the object on which you want help.

2. Hold down the HELP key on the keyboard.

3. Release MB1.

This spawns a separate DECwindows help window on your screen. You
can select the Help menu for information on using help in a DECwindows
environment and for information on each of the menus, objects, and menu
items in the DATATRIEVE main application window.

• You can get help on DATATRIEVE terms by typing the HELP command
at the DTR> prompt. If you invoke help this way, DATATRIEVE spawns
a separate DECterm window that displays a list of the DATATRIEVE help
topics.

Before you can perform any help-related operations in the window, you may
find that you have to set input focus to your help window by clicking on the
window.

The DECterm window that contains your DATATRIEVE help can remain on
your screen throughout your DATATRIEVE session.

Note that you cannot use the resize button in the DECterm help window. If
you want to adjust the size of this help window display, you must use the SET
HELP_LINES command. See the VAX DATATRIEVE Reference Manual for
more information.

1–10 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Using Help

To dismiss the help window, perform one of the following operations:

Select the Quit item from the Commands menu in the DATATRIEVE Help
facility.

Press RETURN until you have exited from help.

Enter CTRL/Z.

Guide Mode
Guide Mode is a self-documenting aid available whenever you are at the DTR>
prompt. Guide Mode has two functions:

• To complete typing an entry for you

• To prompt you for a legitimate entry

To enter Guide Mode, type:

DTR> SET GUIDE

Note

If you are using anything but a VT100, VT200, VT300, or compatible
terminal, or a DECterm window, DATATRIEVE displays an error message
that tells you your terminal type is invalid. DATATRIEVE then returns
you to the DTR> prompt.

As you enter each word of a command or statement, you can still enter the word
as you usually do. As soon as you have typed enough letters to uniquely identify
a command or statement, you can press the space bar and Guide Mode completes
the entry for you and prompts you for the next word. At the end of a line, press
the RETURN key and Guide Mode goes to the next line.

When Guide Mode is waiting for your input, you can press the question mark (?)
key. Guide Mode then displays a list of all the words you can use at that point.

DATATRIEVE also supplies you with Advanced Guide Mode which functions like
Guide Mode except that more words are available as prompts. To enter this type
of Guide Mode, enter the following command:

DTR> SET GUIDE ADVANCED

Introduction to VAX DATATRIEVE 1–11

Introduction to VAX DATATRIEVE
Guide Mode

The choice of words provided by Advanced Guide Mode is made when
DATATRIEVE is installed. By default, the PLOT and REPORT statements,
and the use of a colon (:) to invoke a procedure, are available in Advanced Guide
Mode only. The following words are available at both levels by default:

FIND MODIFY PRINT
READY SELECT SET
SHOW SORT STORE

The easiest way to learn about Guide Mode is to use it. You may find it
particularly helpful when you are starting to use DATATRIEVE. Experiment with
it and use it the way it helps you the most.

Using Editors Within DATATRIEVE
Within DATATRIEVE, you can use one of the following editors:

• EDT, which provides a basic editing interface and a predefined keypad
with a variety of useful editing functions. EDT is the default editor within
DATATRIEVE in the command line interface. The EDT editor cannot be used
in a DECwindows environment.

• VAX Text Processing Utility (VAXTPU), which allows multiple buffers
and windows. VAXTPU allows you to tailor your editing interface to your
individual editing style. VAXTPU is the default editor for DATATRIEVE in a
DECwindows environment.

• VAX Language-Sensitive Editor (LSE), which has all the features of VAXTPU
but also allows you to use DATATRIEVE LSE templates. These templates
guide you to enter correct DATATRIEVE commands and statements. (LSE
may not be available on all systems.)

Note that you can also edit from the DCL and at CDD/Repository levels. At the
DCL level, you can use your choice of editors depending on what is installed
on your system. At the CDD/Repository level, you can use the Dictionary
Management Utility (DMU) or the Common Dictionary Operator (CDO) to edit
dictionary objects. See the documentation for your particular editor and for
CDD/Repository for further information.

Changing the default editor
EDT is the default editor for DATATRIEVE when it is used as a command line
interface. VAXTPU is the default editor for DATATRIEVE in a DECwindows
environment. (EDT cannot be used in a DECwindows environment.)

To change the default editor, use the ASSIGN command: You must use a
three-character acronym, (EDT, TPU, or LSE) when you assign an editor to
DTR$EDIT.

1–12 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Using Editors Within DATATRIEVE

You can assign an editor to DTR$EDIT in one of two ways:

• Use the function FN$CREATE_LOG from within DATATRIEVE:

DTR> FN$CREATE_LOG ("DTR$EDIT", "LSE")

When you assign DTR$EDIT with FN$CREATE_LOG, the assignment lasts
only during that DATATRIEVE session. After you exit from DATATRIEVE,
the previous default editor is again the default editor.

• Use the DEFINE command at the DCL level:

$ DEFINE DTR$EDIT LSE

When you assign DTR$EDIT with the DCL DEFINE command, the
assignment lasts only until you log out. After you log out, the previous
default editor is again the default editor.

To assign an editor as your default editor whenever you use DATATRIEVE,
include the DEFINE command in your LOGIN.COM file.

In addition to DTR$NOWINDOWS and DTR$EDIT, you can define other
logical names for the DATATRIEVE environment. For more details see the
VAX DATATRIEVE Reference Manual.

Using the DATATRIEVE EDIT Command
You can enter the EDIT command within DATATRIEVE without specifying a
dictionary path name. DATATRIEVE then invokes your default editor and loads
the previous command or statement into the main text buffer of the editor.

This feature is most useful if the previous command or statement contains an
error. The following list shows how you can use EDIT to correct such an error:

1. Enter the EDIT command with no argument; DATATRIEVE loads the
previous command or statement into the main text buffer.

2. Edit the previous command or statement to correct the error.

3. Enter the EXIT command; DATATRIEVE executes the commands and
statements that are in the editor’s main buffer.

In the following example, assume you did not want to include the argument
BEAM:

DTR> FIND YACHTS WITH BUILDER = "GRAMPIAN"
DTR> PRINT ALL LOA,
CON> BEAM,
CON> DISP/2000 ("DISP/2000")
DTR>

Introduction to VAX DATATRIEVE 1–13

Introduction to VAX DATATRIEVE
Using the DATATRIEVE EDIT Command

To correct the mistake, type the EDIT command without an argument at the
DTR> prompt; this recalls all the lines of the previous PRINT statement. Next,
edit the statement, eliminating the BEAM argument. After you exit from the
editor, DATATRIEVE executes the corrected statement.

You can use the EDIT command and the arrow keys to recall and edit the
previous line. However, when you recall nonhyphenated commands or statements
that are continued over more than one line, the EDIT command and the arrow
keys function differently:

• The EDIT command recalls the entire last command or statement even if it
spans more than one line.

• The arrow keys recall only a single line of a nonhyphenated, continued
command or statement; they do not recall the entire command or statement.

If you are working in a DECwindows environment, you can use the Last
Command item of the Edit menu of the main application window to edit your
most recently executed command. If you do, DATATRIEVE loads the command or
statement into its default editing window.

Editing a Dictionary Object Specified by Path Name
To create new dictionary definitions, you can use the DEFINE command either
within an editor or at the DTR> prompt. You can also use the Application Design
Tool (ADT).

To modify existing dictionary objects from within DATATRIEVE, enter the EDIT
command followed by the dictionary path name of the object:

DTR> EDIT CDD$TOP.DTR$LIB.DEMO.YACHTS

The editor then loads the specified definition into a text buffer, which is a
temporary storage area where editing operations take place.

Editing by Types of Objects Within DATATRIEVE
You can specify one or more types of object definitions with the DATATRIEVE
EDIT command. This allows you to edit all the domains, plots, procedures,
records, or tables from your current default dictionary directory.

DATATRIEVE places the object types in the edit buffer in the order you specify.
You can then edit all the objects using your assigned editor. In the following
example, DATATRIEVE places the record object definitions in the edit buffer
before the domain object definitions:

DTR> EDIT ALL RECORDS, DOMAINS

1–14 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Using the DATATRIEVE EDIT Command

Using EDIT to Recover from a System Failure
If you exit an editing session abnormally (if you enter a CTRL/Y or if the
operating system fails), DATATRIEVE places a journal file for the editing session
in your default VMS directory. You can then recover the editing session by using
the EDIT command with the RECOVER clause of the EDIT command. The last
several keystrokes may be missing.

DTR> EDIT YACHTS_CDO RECOVER;

To recover an aborted session, enter exactly the same line you entered when you
started the session but add the RECOVER argument at the end of the line:

DTR> EDIT CDD$TOP.DTR$LIB.DEMO.YACHTS
.
.
.! System failure
.
.

DTR> EDIT CDD$TOP.DTR$LIB.DEMO.YACHTS RECOVER

Journal files have default file types, depending on which editor you are using.
You do not need to specify the journal file type when you are recovering an
aborted session. You should know what the file type is, though, so you do not
inadvertently delete the journal file before you recover the session. Table 1–1
shows the default file types for each of the editors:

Table 1–1 Default File Types for Journal Files

Editor Default Journal File Type

EDT .JOU

LSE .TJL

VAXTPU .TJL

If you are editing more than one type of object, DATATRIEVE creates a journal
file using the name of the first object type:

DTR> EDIT ALL DOMAINS, RECORDS

In the preceding example, DATATRIEVE creates a journal file called
DOMAINS.JOU.

The VAX DATATRIEVE Reference Manual contains complete information on the
EDIT command.

Introduction to VAX DATATRIEVE 1–15

Introduction to VAX DATATRIEVE
Editing in a DECwindows Environment

Editing in a DECwindows Environment
With the DECwindows interface, you can only use the VAXTPU or LSE editor
(you cannot use the EDT editor). You can invoke the editor in any of the following
ways:

• By using the EDIT command at the DTR> prompt, as you do when you use
DATATRIEVE as a command line interface

• By choosing the Edit item of the Actions menu of the Dictionary Navigator
window

• By choosing the Last Command item of the Edit menu, to invoke the editor
for editing the previous command or statement

You can then use the editor to edit dictionary objects or the previous command or
statement.

After you complete your editing session, you can exit from the editor or you can
retain your VAXTPU or LSE editing window for future editing sessions, thus
avoiding the overhead of activating the editing window each time. To retain the
editing window, perform the following steps:

1. Select the File menu and choose the Save option. The changes you made will
be written to a temporary file.

2. Click on the DATATRIEVE application window. DATATRIEVE reads in your
changes from the temporary file. The editing window will remain on the
screen.

The next time you invoke the editor, perform the following steps:

1. Issue the edit command, either at the DTR> prompt or from the Dictionary
Navigator Actions menu.

2. Leaving the DATATRIEVE window selected, click on the File menu in the
editing window, and choose Open Selected. The editor reads the temporary
file into your editing buffer.

If you accidentally click on the LSE or VAXTPU window before choosing Open
Selected, you will break the connection between DATATRIEVE and the editing
window. To reestablish the connection, you must reset input focus on the
DATATRIEVE or Dictionary Navigator window, and reinvoke the editor by
reentering your edit command.

While you are editing using LSE or VAXTPU, you can set input focus on your
DATATRIEVE main application window and enter commands. This does not
affect your editing session.

1–16 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Setting up a CDD/Repository Environment

Setting up a CDD/Repository Environment
Before you use DATATRIEVE for the first time, create a VMS subdirectory for
your DATATRIEVE data files. Next, run the NEWUSER program. This program
performs the following tasks:

• Copies sample data files into the VMS directory you are currently using

• Defines a dictionary directory

• Copies record and domain definitions for the sample data files into that
dictionary directory

• Assigns the editor of your choice, and sets your preference for whether
DATATRIEVE should be invoked as a command-line or a DECwindows
interface

To run the NEWUSER program, make sure you are using the VMS subdirectory
you just created then enter the following command:

$ @DTR$LIBRARY:NEWUSER

The program responds with the following information:

NEWUSER helps new users to get started with DATATRIEVE. It gives
you the necessary files to perform the introductory examples
in the VAX DATATRIEVE User’s Guide and VAX DATATRIEVE Reference Manual.

NEWUSER is working... It will take a few minutes.
All data copied successfully.

The following commands have been defined for you but you will need to
add them to your LOGIN.COM file for the next time you log in:

$ define/process cdd$default "cdd$top.dtr$users.<user>"
$ define dtr$edit <editor>
$ define decw$display <node>::0

<user> is your user name
<editor> is your choice of EDT, LSE, or TPU editor
<node> is your node-name

If you need help, see the person responsible for DATATRIEVE on your system.

The results you get when you run the NEWUSER program may differ slightly
from those in the previous example. If the display shows that NEWUSER has
run successfully, add the indicated line to your LOGIN.COM file.

Introduction to VAX DATATRIEVE 1–17

Introduction to VAX DATATRIEVE
Improving Screen Displays and Controlling Output

Improving Screen Displays and Controlling Output
When you display records, you might find that the fields from each record do not
all fit on one display line on your terminal screen. The result is that some fields
wrap to the next line and that headers for some fields either do not appear at all
or are inserted in available space between other headers. A display like this is
not very attractive and often difficult to read.

If you are interested in seeing only a subset of the fields in a record, you can try
listing the names of the fields you want to see following the PRINT command. If
these fit on one line, your problem is solved. If they do not, or if you want to see
the entire record, see the following sections, which discuss some other things you
can try.

Adjusting Screen Width and the Columns Page Setting
If your terminal screen width is set to 80 characters (the default setting most
people have), you can increase this to 132 characters if you are working on a
character-cell terminal or to 255 characters if you are using DATATRIEVE with
DECwindows. The extra columns might be enough to accommodate what you
want to look at.

Changing screen width on a character-cell terminal is a 2-step process. You
use the function FN$WIDTH to tell the operating system to adjust your screen
display, and you use the command SET COLUMNS_PAGE to tell DATATRIEVE
to space its output across the specified number of columns. The order in which
you do the steps does not matter:

DTR> FN$WIDTH (132)
DTR> SET COLUMNS_PAGE=132

The reduced character size that comes with the 132-character setting is not
to everyone’s liking. In addition, some record displays require more than 132
columns. If you want to set your screen width back to 80 columns, use the
FN$WIDTH function and the SET COLUMNS_PAGE command again, specifying
80 in place of 132.

If you are running DATATRIEVE with DECwindows, you can allow for up
to 255 characters to be displayed on one line of output. Your work station
terminal cannot display all 255 characters at any one time, but you can use the
horizontal scrolling feature of DECwindows to let you see that area of text that
extends beyond the limits of the screen. To set column width in a DECwindows
environment, use the COLUMNS_PAGE item of the SETUP pull-down menu. For
information on using DATATRIEVE with DECwindows, see Using DATATRIEVE
Help in a DECwindows Environment.

1–18 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Improving Screen Displays and Controlling Output

Using the LIST Statement
The LIST statement displays each field from the record on a separate line. Rather
than displaying a column header for each field, it prints the field name followed
by a colon (:) and then the field contents. The LIST statement can improve the
readability of long record displays:

DTR> FIND EMPLOYEES WITH EMPLOYEE_ID = "00181"
[1 record found]
DTR> SELECT
DTR> PRINT

ADDRESS
SOCIAL LAST FIRST
ID NAME NAME INIT DATA ZIP SEX
SECURITY

00181 Reynolds Louis E Apartment 78C
63 Derry Rd. Milton NH 03851 M 393 98 1984
12/11/52
DTR> LIST

EMPLOYEE_ID : 00181
LAST_NAME : Reynolds
FIRST_NAME : Louis
MIDDLE_INITIAL : E
ADDRESS_DATA : Apartment 78C
STREET : 63 Derry Rd.
TOWN : Milton
STATE : NH
ZIP : 03851
SEX : M
SOCIAL_SECURITY : 393 98 1984
BIRTHDAY : 12/11/52

DTR>

Writing a Simple Procedure to Segment Record Display
If you plan to print an entire record from a domain or view frequently, you can
write a short procedure to display the record neatly on more than one line.
The following example shows a simple procedure, followed by its output. The
procedure prints a string literal of 80 underscores to set off each line. The last
hyphen in the first line of the literal is a continuation character, which tells
DATATRIEVE that the literal is continued on the next line.

Introduction to VAX DATATRIEVE 1–19

Introduction to VAX DATATRIEVE
Improving Screen Displays and Controlling Output

DTR> SHOW PRINT_EMP
PROCEDURE PRINT_EMP
BEGIN

PRINT "___-
___________"
PRINT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL
PRINT "___-

___________"
PRINT ADDRESS_DATA, STREET, TOWN, STATE, ZIP
PRINT "___-

___________"
PRINT SEX, SOCIAL_SECURITY, BIRTHDAY
PRINT "___-

___________"
END
END_PROCEDURE

DTR> FIND EMPLOYEES WITH EMPLOYEE_ID = "00181"
[1 record found]
DTR> SELECT
DTR> PRINT

ADDRESS SOCIAL
ID LAST FIRST INIT DATA ZIP SEX SECURITY

NAME NAME

00181 Reynolds Louis E Apartment 78C
63 Derry Rd. Hudson NH 03851 M 393 98 1984
12/11/52
DTR> :PRINT_EMP

ID LAST FIRST INIT
NAME NAME

00181 Reynolds Louis E

ADDRESS
DATA STREET TOWN STATE ZIP

Apartment 78C 63 Derry Rd. Hudson NH 03851

SOCIAL
SEX SECURITY BIRTHDAY

M 393 98 1984 12/11/52

DTR>

1–20 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Improving Screen Displays and Controlling Output

This method is effective when you are displaying one record at a time. It is
not very helpful when you want to print more than one record with a single
statement. In this case, DATATRIEVE only prints the column headers for the
first record displayed.

Using Concatenation Characters to Conserve Line Space
Sometimes you can conserve space in a display line by using the concatenation
characters (| , | | , and | | |) to join fields and literals into a continuous text
string. The difference between the three concatenation characters is the way they
treat trailing spaces in the value that precedes them and whether they add any
spaces between values they join:

• A single bar (|) does nothing to the values except join them.

• A double bar (| |) suppresses any trailing spaces in the value that precedes
it and does nothing to the value that follows it.

• A triple bar (| | |) suppresses any trailing spaces in the value that precedes
it, inserts one space, and does nothing to the value that follows it.

When you join fields and literals this way, you form a concatenation value
expression. As is the case with any value expression that is neither a field name
nor a statistical value expression based on one field name, DATATRIEVE does
not supply a default header for the result. If you want one, you must supply a
column header in your PRINT statement. In the following example, a procedure
using concatenation value expressions logically groups fields from each record in
EMPLOYEES so that groups of records display in more readable form:

DTR> SHOW CONCATENATE
PROCEDURE CONCATENATE
BEGIN
PRINT SKIP
PRINT EMPLOYEE_ID|||FIRST_NAME|||MIDDLE_INITIAL|||LAST_NAME,
PRINT SKIP
PRINT ADDRESS_DATA||" "|STREET||", "|TOWN||",
PRINT "|STATE|||ZIP,
PRINT SKIP
PRINT SEX (-), SOCIAL_SECURITY (-) USING XXX_XX_XXXX,
PRINT BIRTHDAY (-)
END

END_PROCEDURE

DTR> FOR FIRST 3 EMPLOYEES :CONCATENATE

00164 Alvin A Toliver

146 Parnell Place, Chocorua, NH 03817

M 763-08-0064 3/28/47

00165 Terry D Smith

Introduction to VAX DATATRIEVE 1–21

Introduction to VAX DATATRIEVE
Improving Screen Displays and Controlling Output

120 Tenby Dr., Chocorua, NH 03817

M 179-97-8016 5/15/54
00166 Rick Dietrich

19 Union Square, Boscawen, NH 03301

M 902-87-8080 3/20/54

DTR>

You can also use concatenation characters to create text literals that are longer
than 253 characters. Because you are allowed to enter only up to 255 characters
in a DATATRIEVE command or statement, most of the values you are joining
should be entered as field names rather than text literals. When you display
the combined values, you must tell DATATRIEVE how many characters of the
string you want on each display line. Use the T edit-string character followed by
a repeat count to do this:
DTR> DECLARE A PIC X(80).
DTR> DECLARE B PIC X(80).
DTR> DECLARE C PIC X(80).
DTR> DECLARE D PIC X(80).
DTR> DECLARE E PIC X(80).
DTR> !
DTR> PRINT *.A|||_*.B|||_*.C|||_*.D USING T(40)
Enter A: When DATATRIEVE joins the values in A, B, C, D,
Enter B: and E, it suppresses any trailing spaces in
Enter C: A, B, C, and D and inserts one space. It
Enter D: displays their combined values using up to 40
Enter E: characters per line and without breaking words.
When DATATRIEVE joins the values in A,
B, C, D, and E, it suppresses any
trailing spaces in A, B, C, and D and
inserts one space. It displays their
combined values using up to 40
characters per line and without breaking
words.
DTR>

Using the Computer Based Training Package
For new users, DATATRIEVE provides a bundled CBT package, which explains
the basic concepts required both to use DATATRIEVE and to understand the
terminology used in the documentation. Before running the training, the
following symbol definitions must be added to your LOGIN.COM:

EASY :== $EASY$PROGRAM:SOLORPT.EXE
LOADDRAW :== $EASY$PROGRAM:LOADDRAW.EXE

1–22 Introduction to VAX DATATRIEVE

Introduction to VAX DATATRIEVE
Using the Computer Based Training Package

Then run the following command file:

$ @EASY$PROGRAM:SETUP.COM

To run the training, enter the command:

$ EASY

The course is entirely self-explanatory, so no further instruction is needed here.

Introduction to VAX DATATRIEVE 1–23

Part II
Data Definitions (Describing Data)

2
Record Definitions

In DATATRIEVE, you define a record and the logical relationships between
fields with the DEFINE RECORD command. To define the logical record, you
combine field definition clauses that specify the characteristics of each field. This
combination of fields determines the structure of the record and represents the
relationships between the items of data you store in the fields.

You can have DATATRIEVE write the record definition if you use the interactive
Application Design Tool (ADT). However, because ADT does not provide all the
available field definition clauses, you cannot define all types of records.

This chapter explains the various elements of a record definition and the record
and field definition clauses you use to define records for DATATRIEVE domains.
See the VAX DATATRIEVE Reference Manual for detailed descriptions of these
clauses.

Defining a Record
After you decide what fields you want to associate with a domain, you can create
a record definition to describe them. There are several reasons why you might
want to know the explicit way to define a record:

• If you want to create a record definition to use with a data file that already
exists, you have to match field definitions to the way they are stored.

• If you want to include field-level definitions defined using the CDO utility of
CDD/Repository, you cannot use ADT to include such definitions.

• If you want to use DATATRIEVE clauses such as VALID IF and COMPUTED
BY in your definition, you cannot use ADT.

A record definition consists of one or more field definitions. Each field definition
describes the field and its relationship to other fields in the record. Every field
definition contains at least three parts:

• A level number, which specifies the relationship between the field and other
fields in the record

• A field name, which identifies the field

Record Definitions 2–1

Record Definitions
Defining a Record

• A period (.), which signals the end of the field definition

Most field definitions also contain one or more field definition clauses.

The relationship between the fields in the record is made explicit by the level
numbers assigned to the fields in the record definition. These numbers help to
determine the field levels.

Field Levels
Every field in a record definition has a level number which specifies its
relationship to the other fields in the record. A group field that contains all
other fields in a record is at the first (top) level. In the YACHT record, BOAT
contains all other fields in the record and is at the top level.

TYPE and SPECIFICATIONS are both at the second level because they are
subordinate to BOAT. Any field subordinate to a second-level field is at the third
level, and so on. Thus, MANUFACTURER and MODEL are at the third level.

Level Numbers
DATATRIEVE recognizes the levels of fields in a record definition according to
the level numbers you assign to each field. The level number is the first element
of a field definition. Level numbers are 1- or 2-digit numbers, ranging from 1 to
65. The number of the highest possible level is 01, and the number of the lowest
possible level is 65. Leading zeroes, as in 01 and 05, do not affect the value of the
level number.

The level number of the top-level field must be the smallest one assigned to any
field in the record definition, and no other field can have the same level number
as the top-level field. The level number usually assigned to the top-level field
is 01. Any field with a higher-level number is subordinate to the top-level field.
Example 2–1 shows the use of level numbers for fields in the YACHT record
definition.

2–2 Record Definitions

Record Definitions
Defining a Record

Example 2–1 Level Numbers in the YACHT Record Definition
01 BOAT

03 TYPE
06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
06 RIG
06 LENGTH_OVER_ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

In the record definition for YACHTS, BOAT is the top-level field and is thus
the only field with the level number 01. TYPE and SPECIFICATIONS are
group fields at the same level and have the same 03 level number. The seven
elementary fields are all at the 06 level. Notice that level numbers need not be
consecutive. Only the relative value of level numbers determines the relationship
between fields.

Elementary and Group Fields
An elementary field is a basic unit of data. It contains no other field within it.
A group field, on the other hand, contains one or more other fields. Every record
definition must meet the following requirements for including elementary and
group fields:

• A record definition must contain at least one elementary field.

• If a record contains more than one elementary field, it must contain a group
field that includes all other fields in the record.

• A group field must contain at least one other field—either elementary or
group.

• A group field can contain both elementary and group fields.

The CDO format dictionary treats group fields as records. For more information
on CDO and group fields, see Chapter 20.

Field Classes
DATATRIEVE classifies every field by the type of data it contains or the way in
which it stores data. Table 2–1 summarizes the field classes and their content for
elementary and group fields:

Record Definitions 2–3

Record Definitions
Defining a Record

Table 2–1 Field Classes

Field Type Class Content

Elementary Alphabetic Uppercase and lowercase letters and spaces.

Alphanumeric Any combination of characters.

Numeric Any combination of digits and an optional sign (+ or -).

DATE A date.

COMPUTED
BY

None; the field definition specifies a value expression,
but no value is stored in the record.

Group Alphanumeric The values of the fields contained in the group field.

Field Names
In addition to a level number, every field in a record must have a field name. You
use the field name to identify the field in DATATRIEVE statements. A field name
must conform to the DATATRIEVE rules for names, described in the Names
section in Chapter 1.

DATATRIEVE uses the field name when printing the field’s content. If you
include the QUERY_HEADER clause in the field definition, DATATRIEVE uses
the query header, instead of the field name, to make the column header. You can
override the printing of the field name or query header by specifying a column
header modifier as part of a print list element in PRINT, SUM, and REPORT
statements.

The same field name can appear more than once in a record definition. Duplicate
field names, however, must belong to different group fields.

Note

When you specify a duplicate field name in your DATATRIEVE
statements, you have to qualify it so that DATATRIEVE knows which
of the fields in the record you want. A record could contain two fields
called NAME, for example. If one were in the group field DEPT and
the other in the group field PROJECT, you would have to type PRINT
DEPT.NAME or PRINT PROJECT.NAME.

2–4 Record Definitions

Record Definitions
Defining a Record

Differences Between Record Name and Top-Level Field
The name you type following DEFINE RECORD specifies the name under which
the definition is stored in a dictionary directory. The only time you use the record
name is when you want to do something with the definition itself—look at it,
edit it, delete it, and so forth. You never use a record name in the DATATRIEVE
statements that handle data.

The first field name in a record definition is always the top-level field, a field that
includes all the other fields in the record. In most statements that handle data,
you rarely need to specify the top-level field; specifying the domain name usually
gets you all the fields in the record. In some complex statements, however, you
might want to specify all the fields in the record when the syntax requires a field
name. Typing the name of the top-level field in this situation can save you many
keystrokes.

This means that you should specify the same name for the top-level field as you
want for the record definition. You do not have to do this, but it makes it easy to
avoid mistakes later on. Field names should be descriptive of the data stored in
the field rather than abbreviations that are easy to type. That makes the record
definition easy to follow and maintain.

DATATRIEVE lets you both describe fields adequately and also abbreviate names
for speed and ease of use. Add a QUERY_NAME clause to an elementary field
definition to specify a shorter name you can use in place of the field name when
typing DATATRIEVE statements. Example 2–2 has several examples of the
QUERY_NAME clause. The keyword IS is optional when you type a QUERY_
NAME clause.

When you define a query name for a field, you can use the query name as a
replacement for the field name in any DATATRIEVE statements or clauses that
refer to the field.

Using Column Headers
When you display data, DATATRIEVE uses the names you choose for the
elementary fields in the record definition as default column headers for the
stored values. If you segment the field name with underscores or hyphens,
DATATRIEVE automatically uses multiple lines for the column header. This way,
each segment in the name appears on a separate line in the display.

You can change the default column headers by adding a QUERY_HEADER clause
to your elementary field definition. Example 2–2 contains several examples of
a QUERY_HEADER clause. The keyword IS is optional. You must enclose the
header you select in quotation marks; use a slash (/) to indicate that the following
header segment should appear on the next line, for example ‘‘EMP’’/‘‘ID’’.

Record Definitions 2–5

Record Definitions
Using Column Headers

As long as your field names are descriptive of the data in the field, the main
reason you want to add a QUERY_HEADER clause to the record definition is
to optimize use of line space in your display. Some descriptive field names are
longer than the values in the field. In Example 2–2, MIDDLE_INITIAL is an
example of such a field.

The following example illustrates how several fields from EMPLOYEES_REC
would display without the QUERY_HEADER clauses in Example 2–2:

DTR> READY EMPLOYEES
DTR> PRINT ID, NAME, TOWN, STATE OF FIRST 5 EMPLOYEES

EMPLOYEE LAST FIRST MIDDLE
ID NAME NAME INITIAL TOWN STATE

00164 Toliver Alvin A Chocorua NH
00165 Smith Terry D Chocorua NH
00166 Dietrich Rick Boscawen NH
00167 Kilpatrick Janet Marlow NH
00168 Nash Norman Meadows NH

DTR>

Now the same display with the QUERY_HEADER clauses in Example 2–2:

DTR> PRINT ID, NAME, TOWN, STATE OF FIRST 5 EMPLOYEES

EMP
ID LAST NAME FIRST NAME I TOWN STATE

00164 Toliver Alvin A Chocorua NH
00165 Smith Terry D Chocorua NH
00166 Dietrich Rick Boscawen NH
00167 Kilpatrick Janet Marlow NH
00168 Nash Norman Meadows NH

DTR>

Using FILLER Fields
You can specify the keyword FILLER as the name of an elementary or group field.
You might want to specify FILLER if you:

• Do not need certain fields in a data file for a particular application

• Want to control record display to mask certain data (not for security reasons,
just for display purposes)

• Want to reserve space in the physical record of the data file for future use

The rules for defining fields named FILLER are the same as those for other fields.
Unlike other fields, however, you can use the name FILLER for more than one
field in the same group field.

2–6 Record Definitions

Record Definitions
Using Column Headers

Like other fields, a field named FILLER must have a level number. It can
also contain field definition clauses. When you use the PRINT, LIST, MODIFY,
STORE, REPORT, and SUM statements to retrieve, update, or store the contents
of a record, values in FILLER fields are not affected.

The DISPLAY statement, however, displays all the contents of a group field,
regardless of the field names in the record definition. As a result, you should not
use the name FILLER as a means of protecting sensitive information stored in
physical records. (Use view domains for this purpose.)

If FILLER is the name of a group field, you cannot gain access to the data in the
physical record by either of the following two methods:

• Using a name for that group field. DATATRIEVE does not recognize FILLER
as a field name.

• Retrieving for output whole records or group fields containing the group field
named FILLER. DATATRIEVE stops its access of fields in a group when it
encounters the name FILLER, and it moves to the next field at the same level
or at a higher level.

You can, however, retrieve values from the elementary and group fields included
in a group field named FILLER. Each of those fields has its own valid name,
and you can retrieve the value by specifying that name in a record selection
expression, a print list, or a field list.

Note

You can create unnamed fields in the Common Data Dictionary Data
Definition Language using the ‘‘*’’ construct. DATATRIEVE treats these
unnamed fields as FILLER fields.

Overriding Column Header Defaults with the PRINT Statement
If the column header DATATRIEVE uses is longer than the largest value that can
appear in a field, you can conserve some space in your display line by doing one
of three things:

• Edit the record definition to include a QUERY_HEADER clause that specifies
a header no longer than the length of the field.

• Specify another header for the field in your PRINT statement.

If the field REVIEW_CODE were a 1-character field, for example, you could
enter PRINT REVIEW_CODE (‘‘C’’) or PRINT REVIEW_CODE (‘‘R’’/‘‘C’’) to
make sure the header for the field is also one character in length.

Record Definitions 2–7

Record Definitions
Using Column Headers

• Specify in your PRINT statement that the field values are displayed without
a header.

You do this by typing the field name followed by a hyphen enclosed in
parentheses, (-); for example, PRINT REVIEW_CODE (-).

The Important Field Definition Clauses
This section explains how you tell DATATRIEVE about storage criteria; that
is, what kind of characters are stored in a field and the maximum number of
characters allowed in that field.

Every time you define an elementary field in your record definition, you must
specify either a PICTURE (PIC, for short) or USAGE clause to tell DATATRIEVE
what kind of characters are stored in the field and how many characters can fit.

Specifying a PIC Clause
A PIC clause starts with the keyword PIC and ends with a string of picture
characters. Although you type a space after the word PIC, you cannot put a space
anywhere in the string of picture characters that follows.

Example 2–2 shows that all the PIC clauses contain the character X, sometimes
followed by a number in parentheses. The X indicates that the field can contain
any text character, roughly equivalent to any character you can type with a
typewriter keyboard. The number in parentheses is a repeat count. For
example, X(20) means that a maximum of 20 text characters can be stored in
the field. A repeat count is an option generally used when defining fields longer
than three characters. When defining shorter fields, most people type a picture
string character for each character in the field; for example, PIC X, PIC XX, or
PIC XXX.

Table 2–2 lists and describes all the characters you can use in a PIC clause except
the parentheses and number to designate repeat count. You can use the X or A
characters to define fields, such as names, that need to contain a wide range of
characters. You use the characters 9, V, and maybe S or P to define fields, such
as salary amount, on which you want to perform arithmetic operations.

2–8 Record Definitions

Record Definitions
The Important Field Definition Clauses

Table 2–2 Picture String Characters

Field Class
PIC
Char Meaning

Alphabetic A Represents one alphabetic character in the field.

Alphanumeric X Represents one character in the field.

Numeric 9 Represents one digit in the field. You can specify from 1 to 31
digits for a numeric field.

S Indicates that a sign (+ or -) is stored in the field. A picture
string can have only one S and it must be the leftmost
character.

V Indicates an implied decimal point. The decimal point does
not occupy a character position in the field, but DATATRIEVE
uses its location to align data in the field. A picture string can
contain only one V.

P Specifies a decimal scaling position. Each P represents a
distance in digits from an implied decimal point. A P can
appear at the right or left of the picture string. A V is
unnecessary for any picture string containing a P.

Defining Alphanumeric (X) and Alphabetic (A) Fields
Alphanumeric (X) fields are best for just about all fields, unless you want to use
the field values in arithmetic calculations.

Most people avoid defining alphabetic (A) fields. You cannot store hyphens,
commas, periods, or numbers in alphabetic fields. Notice, however, that some
names contain these characters:

SMITH-JONES

ARCO, INC.

TEA-FOR-2 CATERING

DATATRIEVE has three relational operators especially designed for accessing text
field values: CONTAINING, NOT CONTAINING, and STARTING WITH. You can
also use the standard operators such as EQUALS, BETWEEN, GREATER_THAN,
LESS_THAN, and so forth to access text field values in a range.

Record Definitions 2–9

Record Definitions
The Important Field Definition Clauses

Defining Numeric Fields
As you can see by looking at Table 2–2, you can be more specific about the format
of fields that contain only numbers. Depending on what characters you combine
in the string, the field can contain only positive values or both positive and
negative values. It can contain only integers or both integers and numbers with
fractions. Table 2–3 explains how to use numeric picture strings.

Table 2–3 Relating Numeric Picture Strings to Stored Values

Picture String You Cannot Store:
You Can
Store: Resulting Output:

999 1000, -2.1, 2.5, ‘‘2 ’’ 1
10
999

001
010
999

S9(4) 10000, 2.5, -3.41, A_B 1000
-1000
21

1000
-1000
0021

9(4)V99 -2, 1.314, 99999, 50% 1000
3.5
9999.99

1000.00
0003.50
9999.99

V99 1.5, -.45, 22, . 2 .15
.9
.80

.15

.90

.80

S9V9(4) -78, .78902, $2.45 -1.5347
2
.7

-1.5347
2.0000
0.7000

9(5)PPP 123450000, 21123.999 12345000
2112123

12345000
02112000

PPP9(5) 12345, 1.3 .00012345

.0003999

.00012345

.00039990

The picture character 9 represents places where significant digits can appear.
The picture character P represents a digit you consider nonsignificant. Only zero
can logically occupy a P position. If someone stores 12345 in a field defined as
PIC 99PPP, the value is stored as 12000.

As you can see from Table 2–3, you use either V or P as a character to mark the
position of the decimal point, but V is the only character you can use to insert a
decimal point between 9s in the string.

You can define numeric picture strings from 1 to 31 digits long. Length in digits
is the sum of all the 9s (and Ps, if any) in the picture string.

2–10 Record Definitions

Record Definitions
The Important Field Definition Clauses

The USAGE Clause
Every field definition has a USAGE clause, even if you do not explicitly specify
one. USAGE DISPLAY is the default. It is the only usage that can apply to
alphabetic and alphanumeric fields, and the one that applies to numeric fields
unless you tell DATATRIEVE otherwise.

When the storage criteria for a numeric field are defined only with a PIC clause
(PIC S99V99, for example), that field has display usage. You can do arithmetic
calculations on a numeric field with display usage with no loss of precision, as
long as any resulting values can be represented by 31 or fewer digits.

All the other USAGE options exist to give greater precision when defining and
handling fields that contain numbers. Some of these options define fields that a
variety of languages can process. This is important when you plan to create a
data file that will be accessed not only by DATATRIEVE, but also by programs
written in languages such as COBOL, BASIC, and FORTRAN.

A table in the USAGE clause section of the VAX DATATRIEVE Reference Manual
lists and describes all the USAGE types supported by DATATRIEVE.

For more detailed information about data types, refer to the CDD/Repository
documentation. Remember, however, that DATATRIEVE does not support
USAGE OCTAWORD or unsigned value ranges for fixed point binary fields.

Date Fields
If you are defining a field to store dates, specify USAGE DATE for that field.
DATATRIEVE, for example, correctly stores any of the following entries in a
USAGE DATE field:

28/MAR/1946

MAR 28 1946

March 28, 1946

3/28/46

When you display a date value, DATATRIEVE formats it by default as DD-Mmm-
YYYY. Any of the preceding entries would be displayed as 28-Mar-1946, unless
you specified an EDIT_STRING clause to change this default.

Record Definitions 2–11

Record Definitions
The Important Field Definition Clauses

Virtual (Computed) Fields
When a field you are defining can be calculated by other field values or by values
stored in a DATATRIEVE table, you can define it as a virtual field. A virtual
field does not occupy any space in storage and so can reduce the size of your data
files. The field value is calculated each time you access it with a DATATRIEVE
statement.

Define a virtual field with the COMPUTED BY clause. (Do not confuse the
DATATRIEVE COMPUTED BY clause with the COMPUTED BY clause of other
products such as CDD/Repository.) The value computation can include the
name of one or more fields in the record definition or it might be accessed in a
DATATRIEVE table.

In the following example, GROSS_SALARY and DEDUCTIONS are fields that
appear in the same record definition as NET_SALARY:

05 NET_SALARY COMPUTED BY GROSS_SALARY - DEDUCTIONS.

The following example specifies a value using STATES_TABLE, a dictionary table
that pairs the 2-character state code with the full name of the state (MA with
Massachusetts, for example):

10 STATE_NAME COMPUTED BY STATE VIA STATES_TABLE.

You can use the COMPUTED BY clause only to describe elementary fields.

Many COMPUTED BY fields are better defined as variables that use the values
in a record rather than as fields in the record definition. (A variable is a field you
can define as necessary to get a particular value you need for a display or report.)
This is especially true if the value you want to calculate uses a constant (such
as tax rate) that is likely to change. It is also important when using DECforms,
because DECforms cannot handle DATATRIEVE COMPUTED BY fields.

Consider doing the calculation outside the record definition if you find you are
adding fields to your record that are likely to change, in order to satisfy the needs
of a virtual field you want to compute.

Using COMPUTED BY Fields
You can also use COMPUTED BY fields to compute a fiscal quarter from a date
value. The following examples use the domain CURRENT_SALES. The record
includes a field for the salesperson’s ID, the date of the sale, and the amount of
the sale. Figure 2–1 illustrates the structure of the record.

2–12 Record Definitions

Record Definitions
The Important Field Definition Clauses

Figure 2–1 Structure of CURRENT_REC

01 CURRENT_REC

03 ID 03 SALES_DATE 03 AMOUNT

The record definition is as follows:

DTR> SHOW CURRENT_REC
RECORD CURRENT_REC USING
01 CURRENT_REC.

03 ID PIC IS 9(5).
03 SALES_DATE USAGE DATE.
03 AMOUNT PIC IS 9(5)V99

EDIT_STRING IS $$$,$$$.99.
03 QTR COMPUTED BY

(FORMAT SALES_DATE USING NN) VIA QTR_TABLE
EDIT_STRING IS "Q"9.

;

DTR>

The QTR field calculates the fiscal quarter from the date field SALES_DATE
through a dictionary table:

The FORMAT value expression in QTR returns the numerical value for the month
of SALES_DATE. DATATRIEVE evaluates the COMPUTED BY clause, looking
up this value in a table and finding the numerical value for the fiscal quarter.
DATATRIEVE then displays this value, preceding the quarter number with the
letter Q. The table QTR_TABLE is defined as follows:
DTR> SHOW QTR_TABLE
TABLE QTR_TABLE

QUERY_HEADER IS "QTR"
EDIT_STRING IS 9
1 : 3
2 : 3
3 : 3
4 : 4
5 : 4
6 : 4
7 : 1
8 : 1
9 : 1
10 : 2
11 : 2
12 : 2

END_TABLE

Record Definitions 2–13

Record Definitions
The Important Field Definition Clauses

The preceding table assumes that the first quarter begins on July 1, the second
on September 1, and so on.

The CHOICE or IF-THEN-ELSE value expressions increase the flexibility of
COMPUTED BY fields because you can assign values based on conditional tests.
You might want to display the sales amounts for each quarter in a separate
column. You could define the following four virtual fields for the sales of different
quarters:

05 Q1_SALES COMPUTED BY IF QTR EQ 1 THEN AMOUNT ELSE 0.

05 Q2_SALES COMPUTED BY IF QTR EQ 2 THEN AMOUNT ELSE 0.

05 Q3_SALES COMPUTED BY IF QTR EQ 3 THEN AMOUNT ELSE 0.

05 Q4_SALES COMPUTED BY IF QTR EQ 4 THEN AMOUNT ELSE 0.

The values of the virtual fields for quarterly sales are either 0 or the sales
amount, depending on the value for QTR.

You can also include a COMPUTED BY field in the record to calculate total sales
based on the information in the quarterly summaries:

05 TOTAL_SALES COMPUTED BY
(Q1_SALES + Q2_SALES + Q3_SALES + Q4_SALES).

Now you can produce the desired output by entering a SUM statement:

DTR> SHOW SUMMING
PROCEDURE SUMMING
READY CURRENT_SALES
FIND CURRENT_SALES
SUM Q1_SALES ("Q1") USING $$$$,$$$.$$,

Q2_SALES ("Q2") USING $$$$,$$$.$$,
Q3_SALES ("Q3") USING $$$$,$$$.$$,
Q4_SALES ("Q4") USING $$$$,$$$.$$,
TOTAL_SALES ("TOTAL") USING $$$$,$$$.$$ BY ID

END_PROCEDURE

DTR> :SUMMING

ID Q1 Q2 Q3 Q4 TOTAL

2–14 Record Definitions

Record Definitions
The Important Field Definition Clauses

11111 $2,150.91 $2,807.11 $2,748.39 $2,389.90 $10,096.31
12345 $7,805.69 $3,801.44 $9,973.94 $8,672.99 $30,254.06
22222 $5,693.29 $3,836.24 $7,274.76 $6,325.88 $23,130.17
23456 $10,311.18 $1,447.40 $13,175.40 $11,456.87 $36,390.85
33333 $7,679.00 $6,854.45 $9,812.05 $8,532.22 $32,877.72
34567 $2,338.91 $14,294.89 $2,988.61 $2,598.79 $22,221.20
44444 $8,868.17 $10,890.45 $11,331.55 $9,853.52 $40,943.69
45678 $8,999.99 $11,339.01 $11,499.99 $9,999.99 $41,838.98
55555 $23,288.42 $1,979.92 $29,757.42 $25,876.02 $80,901.78
56789 $11,111.06 $14,197.04 $14,197.46 $12,345.62 $51,851.18
66666 $9,000.01 $21,832.99 $11,500.01 $10,000.01 $52,333.02
77777 $6,593.10 $30,463.98 $8,424.52 $7,325.67 $52,807.27
88888 $4,500.00 $38,694.00 $5,750.00 $5,000.00 $53,944.00
99999 $4,499.99 $44,249.51 $5,749.99 $4,999.99 $59,499.48

$112,839.72 $206,688.43 $144,184.09 $125,377.47 $589,089.71

DTR>

Note that this procedure uses the SUM statement to generate totals across each
row for the different ID numbers.

Using the REDEFINES Clause
The COMPUTED BY clause defines a field that occupies no space in a record.
The REDEFINES clause takes another look at storage space that already exists.
In the following example, CODE_FOR_SOMETHING is a value that is generally
displayed and stored as a unit; however, users sometimes need to identify sections
of the field:

03 CODE_FOR_SOMETHING PIC X(6).
03 SEGMENT_THE_CODE REDEFINES CODE_FOR_SOMETHING.

06 FIELD1 PIC X(3).
06 FIELD2 PIC X(3).

Note that a field redefining another must follow the field it is redefining. Both
fields must have the same level number. In addition, the REDEFINES clause
must immediately follow the field name in the field definition.

DATATRIEVE always considers group fields to be alphanumeric. This means
when you use a group field name in a statement, DATATRIEVE looks at all the
fields in the group as though you had defined them with Xs. This is true even if
you used 9s or a numeric USAGE clause to define every subordinate item. If you
want to define a field as numeric, but also want it to contain subordinates, you
must redefine the field. In the following example, PART_NUMBER is a numeric
field that has been redefined in two ways to identify subordinate fields:

Record Definitions 2–15

Record Definitions
The Important Field Definition Clauses

05 PART_NUMBER PIC 9(10).
05 PART_NUMBER_PARTS REDEFINES PART_NUMBER.

10 PRODUCT_GROUP PIC 99.
10 PRODUCT_YEAR PIC 99.
10 ASSEMBLY_CODE PIC 9.
10 SUB_ASSEMBLY PIC 99.
10 PART_DETAIL PIC 999.

05 PART_NUMBER_GROUPS REDEFINES PART_NUMBER.
10 PRODUCT_GROUP_ID PIC 9(4).
10 PART_DETAIL_ID PIC 9(6).

If you change the record definition later on to add new clauses or fields, you
have to be very careful not to disrupt the relationship between a field and its
redefinitions.

Specifying Fixed and Variable Occurrence Lists
You can define a list field to specify multiple occurrences of its subordinate field or
fields. Records containing such repeating fields are called hierarchical records.
In DATATRIEVE syntax, repeating fields are also called lists. Fields subordinate
to the list are called list items. A record storing information about a family,
for example, can define a list field to store information about children. In the
following record definition, KIDS is a list field:

DTR> SHOW FAMILY_REC
RECORD FAMILY_REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 AGE PIC 99 EDIT_STRING IS Z9.

;

DTR>

If you display records defined this way, you can see that records vary in the
number of values stored in the fields KID_NAME and AGE:

DTR> READY FAMILIES
DTR> PRINT FIRST 3 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

2–16 Record Definitions

Record Definitions
The Important Field Definition Clauses

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JOHN JULIE 2 ANN 29
JEAN 26

DTR>

The field KIDS is a variable occurrence list because the number of values in
each record for fields subordinate to KIDS depends on a value stored in another
field in the record (NUMBER_KIDS). Variable occurrence list fields must be
the last set of fields in the record definition. Therefore, you can define only one
variable occurrence list field in a record definition.

You can also define a fixed occurrence list. In this case, the number of values
in each record for fields subordinate to the list field is specified explicitly in the
OCCURS clause itself. If FAMILY_REC were altered to define a fixed occurrence
list, the definition for KIDS would be as follows:

03 KIDS OCCURS 10 TIMES.

If you display records containing a fixed-length list, ‘‘empty’’ occurrences occupy
space in the display. This can take the form of blank lines between records (if
all the list subordinates are text fields) or columns of zeros (under fields defined
as numeric). The advantage of defining a list that is fixed-length rather than
variable-length is that it does not have to be the last set of fields in the record
definition. While it is not recommended, you can also define any number of
fixed-length lists within a variable-length list.

Accessing fields subordinate to an OCCURS field takes time to master. It is also
difficult to restructure a domain when you want to add to or reorganize the fields
subordinate to a list field.

DATATRIEVE sees each set of list values as an inner record within the record.
You must treat the field defined with the OCCURS clause as you would a domain
name. If you tried to specify KIDS, for example, in a DATATRIEVE statement
where you normally specify a field name, DATATRIEVE might tell you that
KIDS is undefined or used out of context. The following example illustrates this
problem and one way to get around it:

Record Definitions 2–17

Record Definitions
The Important Field Definition Clauses

DTR> READY FAMILIES
DTR> PRINT FATHER, KID_NAME OF FAMILIES
"KID_NAME" is undefined or used out of context.
DTR> PRINT ALL FATHER, ALL KID_NAME OF KIDS OF FAMILIES

KID
FATHER NAME

JIM URSULA
RALPH

JIM ANNE
JIM
ELLEN
DAVID
ROBERT

JOHN ANN
JEAN

JOHN CTRL/C

^C
Execution terminated by operator.

DTR>

You may have to specify list fields in a record definition if you are trying to create
a DATATRIEVE record definition for a data file that already exists. If you do
specify an OCCURS field and it contains more than one subordinate item, be sure
you specify a top group subordinate to the OCCURS item itself. EACH_KID is an
example of such a field in FAMILY_REC. This gives you a group field name that
you can use like a field name. Chapter 12 provides more information on accessing
fields subordinate to list fields.

When setting up your own database, however, you should avoid list fields. The set
of domains for the personnel system in Chapter 3 provides an example of how to
do this. Each salary history and job history entry for an employee is stored as a
separate record. These entries are kept out of the record in the central employee
domain by putting them in separate domains. If you are wondering how you can
uniquely identify each record from the SALARY_HISTORY and JOB_HISTORY
domains, the answer is to define a group field key for the data file. Chapter 4
gives you more information on this topic.

Defining Sublists
Although you can use only one OCCURS DEPENDING clause in a record
definition, you can define any number of fixed-length lists within a variable-length
list.

2–18 Record Definitions

Record Definitions
The Important Field Definition Clauses

The sample record definition PET_REC is an extension of the FAMILY record
that illustrates sublists. The repeating field PET occurs twice for each child, so
each child in each family can record the data for two pets they own:

DTR> SHOW PETS
DOMAIN PETS USING PET_REC ON PET.DAT;
DTR> SHOW PET_REC
RECORD PET_REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 KID_AGE PIC 99 EDIT_STRING IS Z9.
09 PET OCCURS 2 TIMES.

13 PET_NAME PIC X(10).
13 PET_AGE PIC 99.

;

DTR> READY PETS
DTR> PRINT FIRST 2 PETS

NUMBER KID KID PET PET
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM LORAINE 2 GARY 24 POP 03
SODA 04

SUE 23 MOUSE 03
SHORTY 08

JIM ANN 2 URSULA 7 SQUEEKY 03
FRANK 07

RALPH 3 00
00

DTR>

See Chapter 13 for details on hierarchies, in particular the section Retrieving
Values from Repeating Fields.

Formatting Field Values Using the EDIT_STRING Clause
You can always specify the output format of an elementary field value by
including an edit string in a PRINT statement. If you want this information in
a record definition, you use the EDIT_STRING clause. Example 2–2 includes an
edit string for the field SOCIAL_SECURITY (EDIT_STRING IS XXXBXXBXXXX)
to display the value with a space between segments of the field. It also includes
an edit string for the field BIRTHDAY to replace the DATATRIEVE default of
DD-Mmm-YYYY (EDIT_STRING IS NN/DD/YY). This is how those fields would
display without the edit string:

Record Definitions 2–19

Record Definitions
Formatting Field Values Using the EDIT_STRING Clause

DTR> READY EMPLOYEES
DTR> PRINT NAME, SOCIAL_SECURITY,
CON> BIRTHDAY OF FIRST 1 EMPLOYEES

SOCIAL
LAST NAME FIRST NAME I SECURITY BIRTHDAY

Toliver Alvin A 763080064 28-Mar-1947

DTR>

This is how those same fields display with the edit strings in Example 2–2:

DTR> READY EMPLOYEES
DTR> PRINT NAME, SOCIAL_SECURITY,
CON> BIRTHDAY OF FIRST 1 EMPLOYEES

SOCIAL
LAST NAME FIRST NAME I SECURITY BIRTHDAY

Toliver Alvin A 763 08 0064 3/28/47

DTR>

If you do not supply an EDIT_STRING clause for a numeric field, DATATRIEVE
uses the PIC clause to format the field value. If the PIC clause contains a V or
P, DATATRIEVE displays the value with a decimal point in the correct position.
You usually want to include an EDIT_STRING clause for numeric fields that:

• Include a fractional component and that do not indicate decimal point position
in the PIC clause

• Include a sign that you want to display (even if there is one in the PIC clause)

• Store money values

Tables in the EDIT_STRING section of the VAX DATATRIEVE Reference Manual
illustrate examples of using editing characters for text, numeric, and date fields.

Defining Data with DATATRIEVE and CDD/Repository
Field definition clauses identify the data type of the values to be stored in the
field. With few exceptions, data types are equivalent for DATATRIEVE, the
Common Data Dictionary Data Definition Language Utility (CDDL), and the
Common Dictionary Operator Utility (CDO). Table 2–4 lists both sets of data
types.

2–20 Record Definitions

Record Definitions
Defining Data with DATATRIEVE and CDD/Repository

Table 2–4 CDD/Repository and DATATRIEVE Data Types

CDD/Repository Data Type DATATRIEVE Data Type

BYTE1 BYTE2

WORD1 WORD2

LONGWORD1 LONGWORD2

QUADWORD1 QUAD2

OCTAWORD1 —

F_FLOATING REAL (COMP-1)

D_FLOATING DOUBLE (COMP-2)

G_FLOATING G_FLOATING

H_FLOATING H_FLOATING

COMPLEX —

UNSIGNED NUMERIC PIC 9(n)

LEFT OVERPUNCHED NUMERIC PIC S9(m)V9(n) SIGN LEADING

LEFT SEPARATE NUMERIC PIC S9(m)V9(n) SIGN LEADING
SEPARATE

RIGHT OVERPUNCHED NUMERIC PIC S9(m)V9(n) SIGN TRAILING

RIGHT SEPARATE NUMERIC PIC S9(m)V9(n) SIGN TRAILING
SEPARATE

PACKED DECIMAL PIC 9(m)V9(n) PACKED

ZONED NUMERIC PIC S9(n) ZONED

BIT —

DATE DATE

TEXT PIC A(n), PIC X(n)

UNSPECIFIED PIC X(n) name FILLER

VARIANTS3 REDEFINES

VARYING STRING —

COMPUTED BY DATATRIEVE4 COMPUTED BY

1Can be unsigned (default) or signed.
2Can only be signed.
3For CDDL only.
4CDO omits the word ‘‘DATATRIEVE’’.

(continued on next page)

Record Definitions 2–21

Record Definitions
Defining Data with DATATRIEVE and CDD/Repository

Table 2–4 (Cont.) CDD/Repository and DATATRIEVE Data Types

CDD/Repository Data Type DATATRIEVE Data Type

DEFAULT_VALUE FOR DATATRIEVE3 DEFAULT VALUE

EDIT_STRING FOR DATATRIEVE5 EDIT_STRING

MISSING_VALUE FOR DATATRIEVE5 MISSING VALUE

— PICTURE

QUERY_HEADER FOR DATATRIEVE5 QUERY_HEADER

QUERY_NAME FOR DATATRIEVE5 QUERY_NAME

VALID FOR DATATRIEVE IF5 VALID IF

ALIGNED ALLOCATION

ARRAY —

BASE —

DIGITS ... FRACTIONS6 SCALE n

INITIAL_VALUE —

OCCURS OCCURS n TIMES

OCCURS ... DEPENDING OCCURS n TO m TIMES
DEPENDING ON7

SCALE SCALE n

3For CDDL only.
5CDO omits the words ‘‘FOR DATATRIEVE’’.
6FRACTIONS is only available in CDDL.
7No other field definition can follow the last elementary field in the group field containing this clause.

Note that the CDDL keyword STRUCTURE is analogous in function to
DATATRIEVE level numbers for fields.

You cannot extract and edit a record definition defined using the VARIANT field
of the CDDL unless each VARIANT field has a STRUCTURE statement. If the
CDDL record definition includes a STRUCTURE field description statement
for each VARIANT field, you can extract and edit the record definition. See
Example 2–2 for a sample record definition.

Example 2–2 Sample DATATRIEVE Record Definition

(continued on next page)

2–22 Record Definitions

Record Definitions
Defining Data with DATATRIEVE and CDD/Repository

Example 2–2 (Cont.) Sample DATATRIEVE Record Definition
DTR> DEFINE RECORD EMPLOYEES_REC USING
DFN> ! ^ ^ ^
DFN> ! required name of optional
DFN> ! keywords definition keyword
DFN> !
DFN> 01 EMPLOYEES_REC .
DFN> ! ^ ^ ^
DFN> ! level name of end of field
DFN> ! number top-level field definition
DFN> !
DFN> 05 EMPLOYEE_ID PIC X(5)
DFN> ! ^ ^ ^
DFN> ! level name of field defini-
DFN> ! number field tion clause
DFN> !
DFN> QUERY_NAME IS ID
DFN> ! ^
DFN> ! field defini-
DFN> ! tion clause
DFN> !
DFN> QUERY_HEADER IS "EMP"/"ID" .
DFN> ! ^ ^
DFN> ! field defini- end of field
DFN> ! tion clause definition
DFN> !
DFN> 05 EMPLOYEE_NAME QUERY_NAME IS NAME.
DFN> ! ^
DFN> ! This group field contains the three elementary fields
DFN> ! that follow it.
DFN> !
DFN> 10 LAST_NAME PIC X(14)
DFN> QUERY_NAME IS L-NAME
DFN> QUERY_HEADER IS "LAST NAME".
DFN> 10 FIRST_NAME PIC X(10)
DFN> QUERY_NAME IS F-NAME
DFN> QUERY_HEADER IS "FIRST NAME".
DFN> 10 MIDDLE_INITIAL PIC X
DFN> QUERY_NAME IS INIT
DFN> QUERY_HEADER IS "I".
DFN> ! ^
DFN> ! Note that all fields subordinate to EMPLOYEE_NAME
DFN> ! have level numbers with larger values.
DFN> !
DFN> 05 EMPLOYEE_ADDRESS.
DFN> 10 ADDRESS_DATA PIC X(20).
DFN> 10 STREET PIC X(25).
DFN> 10 TOWN PIC X(20).

(continued on next page)

Record Definitions 2–23

Record Definitions
Defining Data with DATATRIEVE and CDD/Repository

Example 2–2 (Cont.) Sample DATATRIEVE Record Definition
DFN> 10 STATE PIC X(2).
DFN> 10 ZIP PIC X(5).
DFN> 05 SEX PIC X
DFN> VALID IF SEX = "M" OR
DFN> SEX = "F".
DFN> 05 SOCIAL_SECURITY PIC X(9)
DFN> QUERY_NAME IS SS
DFN> EDIT_STRING XXXBXXBXXXX
DFN> VALID IF SS BETWEEN
DFN> "1" AND "999999999".
DFN> 05 BIRTHDAY USAGE DATE
DFN> EDIT_STRING IS NN/DD/YY.
DFN> ;
DTR> ! ^
DTR> ! end of record definition
DTR> !
DTR>

Many of the field definitions in this record are probably used by other applications
in the company. Fields like LAST_NAME and FIRST_NAME can be used
in many applications. By storing and using only one field-level definition
for items with company-wide application, you can ensure data consistency
throughout the company. The CDO utility of CDD/Repository offers field-level
definition capability for records you want to store in a CDO format dictionary.
DATATRIEVE lets you take advantage of this CDD/Repository feature by letting
you include CDO-defined field level definitions in your DATATRIEVE record
definition.

DATATRIEVE performs best if you choose key fields for indexed records wisely.
This is especially important when you use the CROSS clause. Chapter 22 has
information on key optimization.

Including Validation Requirements
You can specify a VALID IF clause to make sure a value is correct before
it is stored in a record field. Example 2–2 includes VALID IF clauses for
the fields SEX and SOCIAL_SECURITY to limit the values these fields can
contain. Because these fields are text fields, the acceptable values are enclosed
in quotation marks. Values for numeric fields would not be enclosed in quotation
marks.

You can specify a VALID IF clause only for an elementary field.

2–24 Record Definitions

Record Definitions
Defining Data with DATATRIEVE and CDD/Repository

Initializing Field Values
DATATRIEVE automatically initializes a text field to spaces and a numeric field
to zero if you do not assign it a value when storing a record. If you want a field
initialized to any other value, use the DEFAULT VALUE clause to specify your
preference. Example 2–2 does not contain this clause.

One way to use DEFAULT VALUE is with date fields. If the field should reflect
the date a record is stored, you can specify the value expression ‘‘TODAY’’ as its
default value:

03 DATE_IN USAGE DATE DEFAULT "TODAY".

As you can see from the example, the word VALUE is an optional keyword.

Specifying Values to Be Ignored in Statistical
Computations
You can define a MISSING VALUE clause to mark that no value is stored in a
field. DATATRIEVE ignores fields containing the missing value marker when
computing averages, standard deviations, and minimum and maximum values.

Numeric fields are automatically initialized to zero if no value is stored in them.
It is fairly common for records to be stored in incomplete form. If a field storing a
salary contains zero, for example, it usually means that the salary data has not
been stored, not that the employee is working solely for fun. If you are averaging
the salaries of all current employees in a given job category, you do not want
records with these ‘‘empty’’ salary fields to affect your results. You can include
the MISSING VALUE clause in the field definition to make sure that salaries
equal to zero are ignored:

05 SALARY_AMOUNT PIC 9(6)V99
EDIT_STRING IS $$$$,$$$.$$
MISSING VALUE IS 0.

Do not use the DEFAULT VALUE clause along with the MISSING VALUE
clause unless they specify the same value. If they specify different values,
DATATRIEVE initializes an empty field to the default value and includes that
value in statistical computations.

Including CDO-Defined Field-Level Definitions
You can create the CDO field definitions in one of two ways:

• By exiting DATATRIEVE and using the CDO utility to define the definitions
you want

• By using the DATATRIEVE CDO command to pass commands to the CDO
utility

Record Definitions 2–25

Record Definitions
Including CDO-Defined Field-Level Definitions

You should note that you can only define elementary fields in CDO. If you want to
make use of group fields, you use the CDO DEFINE RECORD command to create
a record that includes the elementary fields that you would use in a group field
definition. You can include the CDO record definition in a DATATRIEVE record
definition as a group field.

An example in Chapter 20 shows a CDO_ADDRESSES domain that points to
the record ADDRESSES_REC. ADDRESSES_REC uses the FROM clause of the
DATATRIEVE DEFINE RECORD command to include the CDO-defined objects
LAST_NAME, FIRST_NAME, and ADDRESS_GROUP_FIELD.

DTR> SET DICTIONARY DISK$1:[KIRK.DTR]SAMPLE
DTR> SHOW ADDRESSES_REC
RECORD ADDRESSES_REC
01 ADDRESSES_REC.

03 FULL_NAME.
05 FROM FIELD LAST_NAME.
05 FROM FIELD FIRST_NAME.
05 MIDDLE_INIT PIC X.

03 FROM GROUP ADDRESS_GROUP_FIELD.
;
DTR>

ADDRESSES_REC is composed of two group fields: FULL_NAME and
ADDRESSES_GROUP_FIELD. The group field FULL_NAME includes three
elementary fields, two of which were defined using CDO. The CDO-defined fields
are LAST_NAME and FIRST_NAME. You can display their CDO definitions in
DATATRIEVE using the DATATRIEVE CDO command:

DTR> CDO SHOW FIELD LAST_NAME, FIRST_NAME
Definition of field LAST_NAME
| Data type text size is 20 characters

Definition of field FIRST_NAME
| Data type text size is 15 characters

DTR>

The field MIDDLE_INIT is not defined in CDO. It is local to DATATRIEVE and
exists only as part of a record definition. The group field FULL_NAME consists
of a mix of CDO-defined fields and the local field MIDDLE_INIT.

The group field ADDRESS_GROUP_FIELD is actually defined in CDO as a
record. It contains the elementary fields displayed in the following example:

2–26 Record Definitions

Record Definitions
Including CDO-Defined Field-Level Definitions

DTR> CDO SHOW RECORD ADDRESS_GROUP_FIELD
Definition of record ADDRESS_GROUP_FIELD
| Contains field STREET_NUMBER
| Contains field STREET
| Contains field CITY
| Contains field STATE
| Contains field ZIP_CODE

DTR>

The terms FIELD and GROUP used in the syntax of the FROM clause are
required DATATRIEVE keywords. The term FIELD indicates that the CDO
object specified in the clause is an elementary field. The term GROUP indicates
that the CDO record definition is used in DATATRIEVE as a group field.

Note that if you define a new version of the field or record referred to in the
FROM clause, your record will still point to the original version. You must
redefine your record if you want it to access the new version.

Editing Record Definitions
When you edit a record definition, you see the keyword REDEFINE where
DEFINE used to be. The REDEFINE RECORD command follows the same rules
as DEFINE RECORD. REDEFINE RECORD, however, automatically creates a
new version of an existing record definition.

The DEFINE RECORD command works only when the dictionary directory
contains no record definition with the specified name.

If you want to modify a record definition that is being used with an existing data
file, read the section on restructuring domains in Chapter 4.

When you use the DATATRIEVE EDIT command to edit a data definition stored
in a CDD/Repository dictionary, DATATRIEVE extracts the CDD/Repository
definition or definitions to an editing buffer. You can then edit the definition
using the default editor specified by the logical DTR$EDIT.

You can use the EDIT command in DATATRIEVE to update a CDO format
domain definition to have it point to the newest version of a particular record
definition. This is particularly important because if a domain was defined with
relationships, those relationships point to specific versions of dictionary objects.
Relationships are not automatically propagated to new versions of objects. When
a newer version of a record is created, the owner domain (if it was defined with
the RELATIONSHIPS clause of the DEFINE DOMAIN command) still points to
the old version of the record.

Record Definitions 2–27

Record Definitions
Editing Record Definitions

For example, the domain YACHTS_CDO owns record YACHT_CDO_REC;2.
After YACHT_CDO_REC is redefined to create YACHT_CDO_REC;3, the domain
YACHTS_CDO still points to the definition YACHT_CDO_REC;2. To update the
relationship so that the domain YACHTS_CDO now points to YACHT_CDO_
REC;3, you must redefine YACHTS_CDO. You can update the relationship by
entering the DATATRIEVE command EDIT YACHTS_CDO. Remove the version
number before exiting the editor.

2–28 Record Definitions

3
Defining Domains

This chapter helps you analyze the requirements for a DATATRIEVE application
so that you can translate those requirements into DATATRIEVE code. The
sample application is a personnel system for an engineering firm.

Reviewing the Requirements
The following pages contain the "Data Requirements Study" for the sample
personnel system referred to in this book.

Data Requirements Study

Personnel System

Purpose
Like any other personnel system, this one must maintain employee data, answer
on-line inquiries and create reports.

System Requirements
System requirements relate to the devices that your application will be receiving
data from and sending data to. System requirements also take into account
whether or not your application will be receiving and sending information across
a computer network:

• For data entry: All data will be entered at the terminal.

• For reports: Reports will be displayed at a video terminal or printed at a
hardcopy terminal or printer.

• For distributed processing: This system will be autonomous. It will not share
data with other computer systems.

Defining Domains 3–1

Defining Domains
Reviewing the Requirements

Report Requirements
What information your database contains depends to a large extent on the reports
you want it to produce. This personnel system must generate the following
reports:

• Individual employee report: Given an employee, list the detailed data
pertaining to him or her.

• Employee listings: Given a field or combination of fields in the employee
record, list all the employees by that field. For example, list all employees by
department, manager, or job title.

• Job category report: List all the job categories. Show the following
information:

Job code and job title

Salary range

Average actual salary for employees in the category

Names of employees in the category

Actual salary and wage class for each employee

• Department report: List employees, job titles, salaries, and dates of last
performance reviews by department. This report is intended for department
managers.

• Salary and job history: List employees, all the jobs they have held in the
company, and the dates of their performance reviews.

• Educational background: List the college training completed by an employee,
colleges attended, degrees and the dates they were received, and degree fields.

• Miscellaneous reports: Provide small, ad hoc reports generated from the
personnel list format, such as address lists.

On-line Inquiry Requirements
On-line inquiry to a personnel database must be restricted to information that
the person making the inquiry has a right to see. In this system, the following
employees can access the information listed:

• Supervisors and department managers can access data that applies to their
subordinates.

• Other employees can access only the names, job titles, and departments of
company personnel.

3–2 Defining Domains

Defining Domains
Reviewing the Requirements

Database Updating Requirements
Requirements for data update include how the data is maintained and how
the system ensures the data is valid. This personnel system has the following
updating requirements:

• On-line maintenance: Personnel department employees will add, delete,
or modify employee records on-line. The system does not need to process
transaction files to update the information stored in the domains.

• Automatic validation: The system must provide a way to make sure that
department codes are valid and there are no duplicate employee identification
numbers.

Analyzing the Data
At this stage of your application, you want to generate a list of the pieces of
information your database should contain. There are a number of ways you can
do this, but you might find it easiest to follow these steps:

1. Sketch out what you expect the reports to look like. The fields in the reports
determine to a large extent the fields you will store in records.

2. Some fields depend on other fields. That is, there is a one-to-one
correspondence between them. For example, every job code is associated
with only one job title. Identify these fields. You might be better off storing
these paired values in a DATATRIEVE table and putting only the smallest or
key value in a record.

3. Some fields can be calculated from other fields. For example, age can be
calculated from birth date. Fields like average salary and salary midpoints
for a job category can be calculated from existing salaries and minimum and
maximum salaries.

You can specify a field calculated from others in the same record as a
COMPUTED BY field in the record definition. COMPUTED BY fields do not
take up storage space because their values are calculated at the time you
access a record. (COMPUTED BY fields are discussed in Defining a Record).
If the calculated field appears in only one report, however, you might decide
to create it as part of the procedure that produces the report rather than
specifying it in a record definition.

Your goal at this point is to determine the minimum number of fields that you
want to put in a record definition and which fields you want to take up space
in storage.

Defining Domains 3–3

Defining Domains
Analyzing the Data

4. Compile a list of data fields. Next to each field you might note the following
information (if it applies to that field):

Any field with which it has a one-to-one correspondence

Any fields from which it can be calculated

Whether each value stored in the field must be unique

What makes values for the field valid ones

5. Determine the most efficient way to organize the fields into domains and
tables.

Table 3–1 shows a list of fields you might start with when creating a personnel
system. A number of fields would appear in more than one report. Some of them
would probably never appear in the same report together. At this point, you want
to know how many pieces of data you have to work with rather than how you are
going to group them.

Table 3–1 Fields for Personnel System

Field Unique? Depends On Valid If: Calculated?

EMPLOYEE_ID Yes - 5 digits -

LAST_NAME - - - -

FIRST_NAME - - - -

MIDDLE_INITIAL - - - -

ADDRESS_DATA - - - -

EMP_STREET - - - -

EMP_TOWN - - - -

EMP_STATE - - - -

EMP_ZIP - - - -

SEX - - M or F -

SOCIAL_SECURITY Yes - - -

BIRTHDAY - - Valid date -

JOB_CODE Yes - - -

JOB_TITLE - JOB_CODE - -

MINIMUM_SALARY - - - -

(continued on next page)

3–4 Defining Domains

Defining Domains
Analyzing the Data

Table 3–1 (Cont.) Fields for Personnel System

Field Unique? Depends On Valid If: Calculated?

MAXIMUM_SALARY - - - -

SALARY_MIDPOINT - - - Min and Max
Salary

WAGE_CLASS - - - -

DEPARTMENT_CODE Yes - - -

DEPARTMENT_NAME - DEPARTMENT_
CODE

- -

JOB_START - - Valid date -

JOB_END - - Valid date -

REVIEW_CODE - - - -

SALARY_AMOUNT - - - -

SALARY_START - - Valid date -

SALARY_END - - Valid date -

REVIEW_DATE - - Valid date -

SUPERVISOR_ID - - - -

DEGREE - - - -

DEGREE_FIELD - - - -

DATE_GIVEN - - Valid date -

COLLEGE_NAME - - - -

Expect that field requirements will change as you think about organizing
them into domains or tables. This list of fields does not take into account, for
example, special fields to indicate whether a record contains current or historical
information.

Grouping Fields into Domains and Tables
After you know what fields you will need for your application, you have to decide
how best to group them.

DATATRIEVE gives you a variety of methods to look at data stored in different
locations. You should therefore pay special attention to ease of maintenance and
logical grouping of fields when you put together a record.

Defining Domains 3–5

Defining Domains
Grouping Fields into Domains and Tables

Aim to put a field in only one place, unless you plan to use it as a link to related
information stored somewhere else. Employee names, for example, are best
stored in only one place. Employee ID numbers, however, probably need to be
stored in several locations.

When you group fields together, consider grouping fields that contain generic data
apart from fields that contain specific data. Job information, for example, can be
generic (the same for each job code) or employee-specific. Generic information,
such as wage class and minimum salary, can go in one domain. Employee-specific
information, such as start date and review code, can go in another domain. If you
keep generic data apart from specific data, you save storage space. If job entries
for employees include wage class and minimum salary, values for these fields will
be stored in many records when they need to be stored in only a few.

Figure 3–1 shows one way you could organize the fields in the sample personnel
system. Above each grouping is the domain name that will eventually associate
the record definition describing the fields with the data file that will store them.

3–6 Defining Domains

Defining Domains
Grouping Fields into Domains and Tables

Figure 3–1 Domains and Tables in Sample Personnel System

Denotes key fields*

DEPARTMENTS_TABLE

DEPARTMENT_CODE
DEPARTMENT_NAME

JOBS_TABLE

JOB_CODE
JOB_TITLE

SALARY_HISTORY

EMPLOYEE_ID
SALARY_START
SALARY_END
REVIEW_CODE
SALARY_AMOUNT

*

JOB_HISTORY

DEPARTMENT_CODE
EMPLOYEE_ID
JOB_START
JOB_END
JOB_CODE
REVIEW_DATE
SUPERVISOR_ID

*
*

*

JOBS

JOB_CODE
MINIMUM_SALARY
MAXIMUM_SALARY
WAGE_CLASS

*

EMPLOYEES

EMPLOYEE_ID
LAST_NAME
FIRST_NAME
MIDDLE_INITIAL
ADDRESS_DATA
STREET
TOWN
STATE
ZIP
SEX
SOCIAL_SECURITY
BIRTHDAY

*

COLLEGES

COLLEGE_CODE
COLLEGE_NAME
CONTACT_NAME
ADDRESS_DATA
STREET
TOWN
ZIP

*

DEGREES

EMPLOYEE_ID
COLLEGE_CODE
DEGREE
DEGREE_FIELD
DATE_GIVEN

*
*

The fields preceded by an asterisk (*) indicate fields that you can use in
DATATRIEVE statements to link data in one domain with data in the other
domains. When grouping fields into domains for your own applications, you
should note the following points about pivotal fields like these:

• They are the only fields that are stored in more than one place.

• They are codes that can easily be made unique (and, unlike names, can stay
that way). Many are likely to be primary keys for the data files to which they
correspond. You cannot modify the value of primary key fields.

• Their values can be a set number of characters. It is easier to write
statements that can check for valid values in fields that are always a set
number of ordered characters.

Defining Domains 3–7

Defining Domains
Defining a Domain

Defining a Domain
A domain is the heart of the DATATRIEVE process. It performs the following
functions:

• Relates a record definition to a data file

• Gives a name to that relationship (domain name)

After you create the record and domain definitions and define the data file, you
use the domain name to access the file.

You can also create domain definitions that point to data stored on other
computer systems and in VAX DBMS and relational databases. Refer to the
VAX DATATRIEVE Guide to Interfaces for information on using DATATRIEVE
with distributed data and with VAX DBMS and relational databases.

Example 3–1 illustrates the process for creating a domain definition. The
definition relates the sample record definition from (EMPLOYEES_REC) with
the file EMPLOYEES.DAT. The domain name EMPLOYEES identifies this
relationship.

Example 3–1 Defining a Sample Domain
DTR> ! Set dictionary location to the directory that will store
DTR> ! the domain definition.
DTR> !
DTR> SET DICTIONARY CDD$TOP.PERSONNEL
DTR> !
DTR> ! Define the domain.
DTR> !
DTR> DEFINE DOMAIN EMPLOYEES USING
DFN> EMPLOYEES_REC ON EMPLOYEES.DAT;
DTR> !
DTR> ! Display the listing of domains in
DTR> ! the directory PERSONNEL.
DTR> !
DTR> SHOW DOMAINS
Domains:

* EMPLOYEES;1

DTR> ! Display the domain definition.
DTR> !
DTR> SHOW EMPLOYEES
DOMAIN EMPLOYEES USING EMPLOYEES_REC ON EMPLOYEES.DAT;

(continued on next page)

3–8 Defining Domains

Defining Domains
Defining a Domain

Example 3–1 (Cont.) Defining a Sample Domain

DTR> ! Decide to make the file specification more complete.
DTR> !
DTR> EDIT EMPLOYEES

. . .

. . .

. . .
DTR> SHOW EMPLOYEES
DOMAIN EMPLOYEES USING EMPLOYEES_REC ON DBA2:[BELL]EMPLOYEES.DAT;

DTR>

As you can see from the example, you use the DEFINE DOMAIN command to
begin a domain definition. The following sections provide rules and suggestions
for naming the domain and specifying the record and file.

Naming the Domain
The name you choose for a domain must follow the rules that apply to any given
name in the dictionary. The domain name:

• Must begin with a letter

• Must end with a letter or digit

• Can contain 1 to 31 characters

• Can contain only letters, digits, dollar signs ($), underscores (_), and
hyphens (-)

When you enter a name, DATATRIEVE interprets lowercase letters as uppercase
and a hyphen as an underscore. DATATRIEVE displays names in this format.

If you prefer, you can specify a full dictionary path name for a domain name.
This lets you store a domain definition in a directory other than the one at
which you are currently located. In Example 3–1, the user had the option of
using the full path name CDD$TOP.PERSONNEL.EMPLOYEES in place of the
partial path name EMPLOYEES to store the definition in the PERSONNEL
dictionary directory. If the user had set the default dictionary setting to a
dictionary directory other than PERSONNEL, a full path name, such as
CDD$TOP.PERSONNEL.EMPLOYEES, or a relative path name would be
necessary for storing the definition in the PERSONNEL dictionary directory.
Because DATATRIEVE stored the EMPLOYEES definition in PERSONNEL, you
know the user must have at least P (PASS_THRU) and E (EXTEND) privileges in
the ACL associated with that DMU format dictionary directory.

Defining Domains 3–9

Defining Domains
Naming the Domain

A full path name is part of the definition, however, and has to be edited if you
or someone else moves the definition later on. Most people define a domain
using only the given name. Using Logical Names in Chapter 19 describes how to
abbreviate path names using logicals.

Specifying the Record Name
The rules that apply to the record name are the same as those for the domain
name. If the record definition is (or will be) in a dictionary directory other than
the one where you are storing the domain definition, you must specify a full path
name for the record definition. Otherwise, you can specify the given name.

If you are specifying a full path name for a record definition in a directory that is
not in your private branch of the dictionary, make sure you have P (PASS_THRU)
and S (SEE) access privileges to that record definition if the definition is in
a DMU format dictionary or S (SHOW) privilege if the definition is in a CDO
format dictionary. You do not need these privileges to put the path name in your
definition, but you need them in order to ready the domain.

Specifying the Data File
The name of the data file is a VMS file specification. File names are not governed
by the CDD/Repository rules for naming things; they follow VMS rules.

Determining Which Parts of the File Specification to Include
The shortest form you can use for a file specification in a domain definition
is a file name (EMPLOYEES, for example). When you use this short form,
DATATRIEVE appends the file type .DAT to the name. When you ready a
domain whose definition includes only a file name (or only a file name and type),
DATATRIEVE expects to find the data file in your default VMS directory.

If you include a full file specification in place of the short form, you can ready
the domain without first setting your VMS directory default to the directory
containing the file.

Note

If your installation uses more than one computer system, a file
specification can start with a node name. If you want to use a data
file on another system, do not append a node name along with user name
and password criteria to your file specification. DATATRIEVE works very
slowly when you access distributed data this way.

Using Logical Names in Chapter 19 describes how to abbreviate file specifications
using logicals.

3–10 Defining Domains

Defining Domains
Specifying the Data File

Avoiding Problems When Naming Files
If you break one of the VMS rules governing file specifications, you can still store
the domain definition. When you try to create the file with the DEFINE FILE
command, however, you will get an error message from RMS telling you about
the problem.

If you are creating the domain in order to use a data file that already exists and
the file specification is incorrect, you will get an error message when you try
to ready the domain. If the file is in a directory other than your own, you will
need the appropriate VMS access privileges to both the directory where the file is
located and to the file itself before you can ready the domain.

Using the WITH RELATIONSHIPS Clause
One of the key differences between a domain defined for a DMU format dictionary
and one defined for a CDO format dictionary is that you can define CDO format
objects with relationships. The WITH RELATIONSHIPS clause is part of the
syntax of the DATATRIEVE DEFINE DOMAIN command. (The syntax of the
DEFINE DOMAIN command varies for the type of domain you are defining:
RMS domain, view domain, relational domain, or remote domain. See the
VAX DATATRIEVE Reference Manual for specific information on defining specific
types of domains.)

When you add the WITH RELATIONSHIPS clause to the definition of a CDO
format domain, DATATRIEVE sets up relationships among relevant dictionary
objects. The following list describes the relationships set up for each type of
domain:

• RMS domain

Relationships are set up between the domain and the record definition
specified for the domain in the domain definition.

• View domain

Relationships are set up between the view domain and any domains that are
listed in the view domain definition and the records, fields, and databases
referred to by those domains.

• Relational domain

Relationships can be used only on relational domains which directly refer
to a relational database. The relationship that is created is between the
relational domain and the CDD$DATABASE created when the relational
database definition was integrated in a CDO format dictionary and the
relation referred to by the domain.

• Remote domain

Defining Domains 3–11

Defining Domains
Using the WITH RELATIONSHIPS Clause

Relationships are set up between the domain being defined and the domain
on the remote node.

DATATRIEVE does not currently support relationships with VAX DBMS domains.

When you define a domain using the WITH RELATIONSHIPS clause, you must
be sure that you define objects in a particular order. In a relationship, one object
is an owner and one is a member of the relationship. An owner object uses or
depends on another object. A member object is used by another object.

When defining an object with relationships, the member object must exist
before the owner object can be defined. Keep in mind, too, that all objects of
a relationship must be stored in a CDO format dictionary. The following list
identifies specific requirements for each type of domain:

• An RMS domain definition requires that the record referred to in the domain
definition exist at the time the domain is defined.

• A relational domain requires that the relational database referred to in the
domain definition exist at the time the domain is defined.

• A view domain requires that the domain or domains referred to in the view
definition exist in a CDO format dictionary at the time the view is defined. If
a view definition refers to a domain in the DMU, then DATATRIEVE performs
the definition, but issues a warning message indicating that domains in the
DMU format will not be part of the relationship.

• A remote domain requires that the remote node referred to in the definition
be accessible, that CDD/Repository be installed on the remote node, and
that the domain referred to in the definition already exist in a CDO format
dictionary.

You should also note that relationships between objects are version specific;
relationships are not automatically propagated to newer versions of member
objects. When you create a new version of a record, the owner domain still points
to the old version of the record.

To update the relationship, you can redefine the owner (domain) definition by
editing the domain definition and removing the version number following the
record (or member) name. Exit the editing buffer immediately. DATATRIEVE
updates the version numbers for you.

If a domain definition includes a partial (or relative) record path name and
contains a WITH RELATIONSHIPS clause, DATATRIEVE treats it differently
than a similar domain defined without relationships. If a domain is defined
without relationships, the record that is used depends upon your default
dictionary setting at the time you ready the domain.

3–12 Defining Domains

Defining Domains
Using the WITH RELATIONSHIPS Clause

The default dictionary directory is DISK$1:[KIRK.DTR]PERSONNEL_
CDO.SALARIED when the domain in the following example is defined:

DTR> DEFINE DOMAIN EMPLOYEES USING -
CON> SALARIED.EMPLOYEE_REC -
CON> ON EMP.DAT;

In this case, only the partial path name SALARIED.EMPLOYEE_REC, not the
full path name, is stored in the domain definition. If the default directory is set
to DISK$1:[KIRK.DTR]PERSONNEL_CDO.CONTRACT before the EMPLOYEES
domain is readied, DATATRIEVE looks for the following record definition:
DISK$1:[KIRK.DTR]PERSONNEL_CDO.CONTRACT.SALARIED.EMPLOYEE_
REC. This occurs because without relationships, DATATRIEVE resolves the path
name when it readies the domain rather than when it defines it.

If the EMPLOYEES domain is defined using the WITH RELATIONSHIPS
clause, then DATATRIEVE establishes the relationships with the record
when the domain is defined rather than when the domain is readied. For
example, if the default directory is set to DISK$1:[KIRK.DTR]PERSONNEL_
CDO.SALARIED and the DEFINE DOMAIN command is used, then no matter
where the default directory is set to, the domain definition for the domain
DISK$1:[KIRK.DTR]SALARIED.EMPLOYEES always points to the record
definition DISK$1:[KIRK.DTR]SALARIED.EMPLOYEES_REC.

DTR> DEFINE DOMAIN EMPLOYEES -
CON> USING SALARIED.EMPLOYEE_REC ON EMP.DAT -
CON> WITH RELATIONSHIPS ;

DTR>

As mentioned earlier, when you define a domain with relationships,
DATATRIEVE creates the relevant CDD/Repository objects (CDD$DATABASE,
CDD$RMS_DATABASE, MCS_BINARY, and CDD$FILE_DEFINITION) for
you. You have the option of creating some of these objects yourself, using the
CDO utility. If you do, you can then define a DATATRIEVE domain based on
the CDD$DATABASE object you created through CDO. To do so, you must
first define and store the record in a CDO format directory, then define the
CDD$RMS_DATABASE object and the CDD$DATABASE object with the CDO
utility (see the CDD/Repository documentation for specific information). See the
VAX DATATRIEVE Reference Manual for more information.

Defining Domains 3–13

4
Defining Data Files

Once you store domain and record definitions in a dictionary directory, you can
create a file in a VMS directory to contain your data. You omit this step, of
course, if you created domain and record definitions to access a data file that
already exists.

You use the DEFINE FILE command to create a data file. Example 4–1 first
displays domain and record definitions (EMPLOYEES and EMPLOYEES_REC)
and then creates the data file (EMPLOYEES.DAT).

Example 4–1 Defining a Data File
DTR> SHOW EMPLOYEES
DOMAIN EMPLOYEES USING EMPLOYEES_REC ON DBA2:[BELL]EMPLOYEES.DAT;

DTR> SHOW EMPLOYEES_REC
RECORD EMPLOYEES_REC USING
01 EMPLOYEES_REC.

05 EMPLOYEE_ID PIC X(5)
QUERY_NAME IS ID
QUERY_HEADER IS "ID".

05 EMPLOYEE_NAME QUERY_NAME IS NAME.
10 LAST_NAME PIC X(14)

QUERY_NAME IS L_NAME
QUERY_HEADER IS "LAST NAME".

10 FIRST_NAME PIC X(10)
QUERY_NAME IS F_NAME
QUERY_HEADER IS "FIRST NAME".

10 MIDDLE_INITIAL PIC X
QUERY_NAME IS INIT
QUERY_HEADER IS "I".

05 EMPLOYEE_ADDRESS QUERY_NAME IS ADDRESS.
10 ADDRESS_DATA PIC X(20).

. . .

. . .

. . .

(continued on next page)

Defining Data Files 4–1

Defining Data Files

Example 4–1 (Cont.) Defining a Data File

DTR> DEFINE FILE FOR EMPLOYEES KEY = ID (NO DUP)
DTR>

Unlike the other DEFINE commands, DEFINE FILE is not creating a definition.
It does not, therefore, specify the name of the file, but points to the domain
definition that does (EMPLOYEES). It also does not require the semicolon or
END_ clause that must terminate other DEFINE commands. The keyword FOR
is optional.

Example 4–1 creates an indexed file because it specifies a field in the record
(ID) as a key. If the command were simply DEFINE FILE FOR EMPLOYEES,
it would have created a sequential file. The differences between indexed and
sequential files are discussed in Organizing Files and Defining Indexed Files.

Organizing Files
DATATRIEVE allows you to define indexed or sequential files for your data.
Sequential files require less storage, but DATATRIEVE must search records one
by one according to their physical order in the file. This organization may be
optimal in certain cases. For example, a domain’s records may contain a field for
the current date, and so records are physically arranged in the order in which
they are stored. If you access groups of records in chronological order, you may
find this organization efficient.

Selecting the Primary Key
The field you select for a primary key should be one whose values do not change.
Thus primary key fields are often a code of some kind: ID number, invoice
number, customer code, product code, and so forth. The codes can remain
constant even if someone decides to change the name or other characteristics
associated with the record. In fact, using when using RMS files DATATRIEVE
does not allow users modify values in primary key fields. So if you must change a
primary key value, you have to erase the whole record and store it again with the
changed key value.

The primary key for a file should be able to uniquely identify each record. This
means you should avoid the DUP characteristic for the primary key field even
though DATATRIEVE lets you use it. There are two reasons for this guideline:

• If at any time in the future you want to modify the records in the file based
on information contained in another data file (transaction file processing), you
will probably need a record-to-record match. This is impossible to get if you
cannot specify a field or group of fields that is common to both files and that
identifies only one record that is in the file you are changing.

4–2 Defining Data Files

Defining Data Files
Organizing Files

• Retrieving data using a key field that contains many duplicate values can
slow DATATRIEVE response time. The primary key is the one you will be
using most often to associate records stored in more than one file. You will
want this operation to proceed as quickly as possible.

If your application is limited to one small data file, choose any field you want for
a primary key and allow duplicate values if that is necessary.

Records are stored in ascending order according to the value of the primary key.
The DEFINE FILE command in Example 4–1 specifies that records are stored so
that the record with the lowest value for EMPLOYEE_ID is positioned first in the
file and the record with the highest value for EMPLOYEE_ID is last in the file.

The order of the values in the primary key field is the default sort order for
the data file. This is the order in which records are displayed when you enter
the PRINT command followed by the domain name. Chapter 11 and Chapter 12
discuss how you can change the sort order of records for a particular operation.

Selecting Alternate Keys
If you expect to frequently ask DATATRIEVE to search for records based on
values in fields other than the primary key field, you can define those fields
as alternate keys. A name associated with a record (LAST_NAME from the
EMPLOYEES domain, for example) is one field often selected as an alternate key.

Do not specify as a key any field that may contain many duplicate values. A
field such as SEX is an example of a poor key choice. When DATATRIEVE has
to process many duplicate values, a key-based search can sometimes take longer
than a sequential one.

Confine your alternate key choices to fields you expect to use frequently when
retrieving records. From the file maintenance point of view, the fewer keys you
define, the better.

Selecting Group Field Keys
You might want to select a group field key when no single elementary field can
uniquely identify each record in the file.

Suppose that your file stores information about products manufactured by a
number of vendors. For each vendor, there is more than one product and you
cannot be sure that different vendors select differing product codes. If you need
to ensure that one field identifies only one product, you can specify as a primary
key a group field (PRODUCT_ID) that contains both vendor and product codes:

05 PRODUCT_ID.
10 VENDOR_CODE PIC X(5).
10 PRODUCT_CODE PIC X(20).

Defining Data Files 4–3

Defining Data Files
Organizing Files

The following restrictions apply when you specify group field keys:

• When you access the file using the key name, DATATRIEVE uses only the
first elementary field in the key for indexed access.

Using the PRODUCT_ID example, DATATRIEVE directly finds the records
with the matching VENDOR_CODE, and then sequentially searches those
records to find the matching PRODUCT_CODE. The partial sequential search
through records means that access by group field key proceeds more slowly
than access by elementary field key. The performance difference is only
significant when trying to pull together large numbers of records.

• The first elementary field in the group must be alphanumeric, or
DATATRIEVE does not perform key-based searching.

If you defined VENDOR_CODE as PIC 9(5), for example, DATATRIEVE
would sort through records one by one to find the records you ask for. This
performance lag could become problematic.

• You cannot specify a list field as a key.

Defining Indexed Files
In almost all cases, it is better to define an indexed file because:

• You can delete records only from an indexed file.

• Only indexed files have keys.

Record access is faster when you can specify a key field to help DATATRIEVE
find a record. When DATATRIEVE cannot use a key field, it has to perform
an exhaustive search through the file for the record or records you want.

You can define more than one key for an indexed file. If you do, the first key you
specify is the primary key and the others are alternate keys.

You cannot change the value of a primary key field. For each alternate key,
however, you can choose whether or not users can modify the value in the key
field after a record is stored (CHANGE or NO CHANGE). CHANGE is a default
key characteristic for alternate keys.

For both primary and alternate keys, you can choose whether or not users can
store more than one record with the same value in the key field (DUP or NO
DUP). NO DUP is a default key characteristic for primary keys and DUP is the
default for alternate keys.

4–4 Defining Data Files

Defining Data Files
Defining Indexed Files

The following command explicitly specifies all key characteristics, although the
characteristics specified are the DATATRIEVE defaults for primary and alternate
keys:

DEFINE FILE FOR EMPLOYEES KEY = ID (NO CHANGE, NO DUP),
KEY = L_NAME (CHANGE, DUP)

Defining Sequential Files
Records in a sequential file are positioned in the order they are written to the file.
If you enter the PRINT command followed by the domain name, the first record
displayed is the first one stored in the file. The last record displayed is the last
one stored.

Sequential files have the advantage that report-writing procedures sometimes
work more quickly when DATATRIEVE is processing records stored in a
sequential file.

On the other hand, you cannot delete records from sequential files. You can
approximate a delete operation for a sequential file by modifying all elementary
field values to contain nothing but spaces or zeros. The ‘‘pseudo-erase’’ you must
use with a sequential file, however, is time-consuming, wastes storage space, and
can show up in displays and reports as a blank line. Also, record update and data
retrieval operations proceed more slowly because DATATRIEVE must always
exhaustively search the file for each record you need.

Designing Files
You create sequential or indexed RMS files in DATATRIEVE with the DEFINE
FILE command. If a file is large and randomly accessed, you may want to
optimize the file for better performance by using the format of the DEFINE FILE
command that includes the USING fdl-file-spec clause. The USING fdl-file-spec
clause specifies that the file attributes included in an existing file, defined using
File Definition Language (FDL), be used to create the RMS file. Such attributes
can tune your RMS file for better performance. (See Using EDIT/FDL to Design
Your File for more information on using EDIT/FDL.)

If you do not use the USING fdl-file-spec clause, DATATRIEVE uses a default for
an RMS file with the following parameters:

• A bucket size of 2 (512-byte) disk blocks

• A contiguous allocation of 3 blocks

• Global buffer count of 0

Defining Data Files 4–5

Defining Data Files
Designing Files

• File extent of 0 blocks

These RMS defaults can cause data in a large indexed file to become scattered
over your disk, requiring time-consuming I/O operations.

Two important considerations are bucket size and index structure. These two
file attributes are related; that is, the smaller the bucket size, typically the deeper
the index structure. Frequently, a major problem is that bucket size is too large,
and the resulting index structure is too flat.

A bucket is the unit of transfer between storage devices and I/O buffers in
memory. Bucket size is the number of blocks in a bucket. A bucket size can be
from 1 to 63 blocks (each block containing 512 bytes). As a general rule, a small
bucket size is optimal for randomly accessed records. (However, buckets must
contain enough room for record insertion or else bucket splitting occurs. Bucket
splitting fragments your data and increase I/O overhead and time.)

A flat file has an index structure with only one level. If your file contains more
than a few hundred records, a single level index bucket (also called a root
bucket) can be very large. A large root bucket results in slow access time for a
particular data record. Figure 4–1 shows the structure of a flat file.

Figure 4–1 Flat File Structure

DATA DATA
Data

Buckets

ROOT
BUCKET

Index
Bucket

Flat file structure and nonoptimal bucket size may be the most significant reasons
for slow access time. A file with two or three levels of index structure and smaller
bucket size allows you to access data much more quickly. Figure 4–2 shows a file
with two index levels.

4–6 Defining Data Files

Defining Data Files
Designing Files

Figure 4–2 A File with Two Levels of Index

BUCKET
INDEX

BUCKET
DATA

DATA
BUCKET

DATA

DATA
BUCKET

DATA

DATA
BUCKET

DATA

DATA
BUCKET

DATA

DATA
BUCKET

DATA

DATA

BUCKET
INDEX

BUCKET
INDEX

BUCKET
INDEX

INDEX
BUCKET

ROOT

The following sections describe RMS utilities that help you design a file with
more optimal bucket size and index depth. They also explain how to optimize
other file attributes such as global buffers.

Using EDIT/FDL to Design Your File
The RMS Edit/FDL Utility (EDIT/FDL) creates and modifies files that contain
specifications for RMS data files. The specifications are written in File Definition
Language (FDL), and the files are called FDL files.

Using EDIT/FDL, you can experiment with attributes that are critical to the
record-processing performance of your DATATRIEVE file. This is especially
useful with large, indexed DATATRIEVE files. EDIT/FDL calculates the file
allocation, file extent, and bucket size, thus optimizing I/O operations and
minimizing file fragmentation. The Edit/FDL Utility is described in detail in the
VMS documentation on file applications.

Defining Data Files 4–7

Defining Data Files
Designing Files

Creating the Data File
After you exit the Edit/FDL Utility, EDIT/FDL creates a file definition containing
the attributes you described. The file has the default type .FDL. When you create
a DATATRIEVE data file, you can specify that the attributes you include in the
FDL file be applied to your DATATRIEVE data file. You can do this from within
DATATRIEVE using a variation of the DEFINE FILE command in the following
format:

DEFINE FILE [FOR] domain-name USING fdl-file-spec

From outside of DATATRIEVE, you can use the Create/FDL Utility to specify that
the attributes included in an existing FDL file be used in the creation of your
RMS file, for example:

CREATE/FDL = fdl-file-spec file-spec.dat

File-spec.dat is the empty data file you are creating using the RMS Create/FDL
Utility. The utility uses the file and record attributes you defined in the FDL file
specification to create this data file.

Planning for File Maintenance
The term file maintenance in this section refers to the methods you employ to
optimize file storage requirements and to improve DATATRIEVE response time.
The discussion provides an overview of the topic and is not a detailed explanation.
For more information, refer to Chapter 22 and to the documentation on Record
Management Services.

Using RMS Utilities to Load and Maintain Files
If you are creating large data files or indexed files that contain many keys,
you should use Record Management Services (RMS) utilities to create and
load your files and to periodically maintain them. Doing this can improve
DATATRIEVE response time. Using RMS utilities, you can accomplish the
following maintenance tasks:

• Consolidate disk storage of data and indexes.

Fewer read operations are required to a disk when the data and indexes are
not scattered among many sections of the disk. (Data and indexes can get
scattered as you update and add to the file.)

• Adjust parameters for input-output operations so that they best accommodate
the size of the record.

The transfer of more than one record at a time is often better for input-output
operations. One record at a time is the DATATRIEVE default.

4–8 Defining Data Files

Defining Data Files
Defining Data Files for CDO Format Domains

Defining Data Files for CDO Format Domains
You can determine the storage space assigned to your file by specifying one
or more of the following arguments with the DEFINE FILE command: When
you use the DEFINE FILE command to create a data file for a domain that
is stored in a CDO format dictionary and that is defined with the WITH
RELATIONSHIPS clause, DATATRIEVE creates a special CDD/Repository entity
called a CDD$FILE_DEFINITION file. This entity contains information on the
characteristics of your data file. (A CDD$FILE_DEFINITION definition can also
be created using the CDO utility’s DEFINE RMS_DATABASE command.)

When you enter a DEFINE FILE command for a domain defined using the WITH
RELATIONSHIPS clause, you should be aware of the following information on
how DATATRIEVE uses the information on the DEFINE FILE command line:

• If the DEFINE FILE command line contains no arguments other than
the domain name, DATATRIEVE checks to see if there is a CDD$FILE_
DEFINITION entity already associated with the domain. If DATATRIEVE
finds a CDD$FILE_DEFINITION entity, DATATRIEVE uses the RMS file
parameters stored in that entity when it defines the file. If DATATRIEVE
does not find a CDD$FILE_DEFINITION entity, it creates the data file using
the default RMS file parameters and then creates a CDD$FILE_DEFINITION
entity to reflect those parameters.

• If the DEFINE FILE command line contains one or more of the arguments
listed in the DEFINE FILE syntax (ALLOCATION, SUPERSEDE, MAX, KEY,
USING fdl-file-spec) and a CDD$FILE_DEFINITION is already associated
with the specified domain, DATATRIEVE compares the arguments with the
contents of the CDD$FILE_DEFINITION entity. If the argument you listed
was an FDL file specification, DATATRIEVE compares the RMS parameters
of the FDL file with the contents of the existing CDD$FILE_DEFINITION
entity.

If the new arguments and the CDD$FILE_DEFINITION entity do not
match or if the domain does not own a CDD$FILE_DEFINITION entity,
DATATRIEVE creates a CDD$FILE_DEFINITION that reflects the new
DEFINE FILE (or FDL) arguments.

DATATRIEVE also creates a new version of the domain that points to the
new CDD$FILE_DEFINITION. If the domain is a CDD$DATABASE domain,
DATATRIEVE uses the file parameters you specified when defining the
RMS_DATABASE using the CDO utility. DATATRIEVE does not update the
CDD$FILE_DEFINITION entity of a CDD$DATABASE domain and it ignores
any arguments on the DEFINE FILE command line for a CDD$DATABASE
domain.

Defining Data Files 4–9

Defining Data Files
Defining Data Files for CDO Format Domains

The following example of a DEFINE FILE command contains all but the
MAX option from this section. (The domain definition specifies the file
DBA2:[BELL]FAMILY.DAT;1.) Note that you specify a KEY clause last:

DTR> DEFINE FILE FOR FAMILIES ALLOCATION = 30,
SUPERSEDE,
KEY = FATHER (DUP)

For more information on CDO format dictionaries, see Chapter 20.

Restructuring Data
You might want to create new domains with data from existing ones in order to:

• Add new fields to the record definition associated with the domain

• Change field definitions to affect the values stored in the data file

• Rearrange the fields in the record definition

• Combine data from two or more domains

• Create a copy of a domain for testing

• Change the file organization

• Change the index structure (key fields)

• Create a domain that contains a subset of records contained in another
domain

Changing Only File Organization, Storage Options, and Keys
Example 4–2 illustrates a procedure to follow when you want to make the
following changes but do not want to lose data you have already stored:

• Change file organization from sequential to indexed or the reverse.

• Add, delete, or change keys for an indexed file.

• Reserve more storage space for future file expansion (ALLOCATION clause).

• Reserve maximum storage space for each variable-length record (MAX
clause).

Example 4–2 changes the file EMPLOYEES.DAT from indexed to sequential.
Comment lines explain the next input line.

Example 4–2 Restructuring a Domain to Change File Organization

(continued on next page)

4–10 Defining Data Files

Defining Data Files
Restructuring Data

Example 4–2 (Cont.) Restructuring a Domain to Change File Organization
DTR> ! Set up READ access to the original domain. Use an alias
DTR> ! to identify the relationship between the record definition and
DTR> ! the old file. (OLD is the alias in this example.)
DTR> !
DTR> READY EMPLOYEES AS OLD
DTR> !
DTR> ! Create an empty file with the DEFINE FILE command of your
DTR> ! choice.
DTR> !
DTR> DEFINE FILE FOR EMPLOYEES
DTR> !
DTR> ! Set up WRITE access to your restructured domain. Use an alias
DTR> ! to identify the relationship between the record definition and
DTR> ! the new file. (NEW is the alias in this example.)
DTR> !
DTR> READY EMPLOYEES AS NEW WRITE
DTR> !
DTR> ! Store records in the new file with a Restructure statement.
DTR> !
DTR> NEW = OLD
DTR> !
DTR> ! End access to NEW and OLD.
DTR> !
DTR> FINISH NEW, OLD
DTR> !
DTR> ! You can now ready the domain with its given name and can
DTR> ! access records in the new file.
DTR>

The file the domain uses depends on how it is specified in the domain definition:

• If no version number is included on the file specification in the domain
definition (usually it is not), then the domain uses the file of that name with
the highest version number in the directory where it is stored.

• If a version number is included in the file specification in the domain
definition, note the version number. Restructuring a domain that contains
a file specification with a version number involves a step not included in
Example 4–2. After you ready OLD for READ access but before you define a
new file, edit the domain definition to remove the version number from the
file specification. Then continue with the DEFINE FILE command.

Defining Data Files 4–11

Defining Data Files
Restructuring Data

Changing Fields Defined in the Record Definition
You can make some record definition changes without performing a restructure
operation. You can:

• Add, change, or remove QUERY_HEADER, QUERY_NAME and EDIT_
STRING clauses.

• Change field names

If you have any procedures stored that use the old field or query names,
remember to change these names in the procedures.

• Add DEFAULT or MISSING VALUE clauses.

It is your responsibility, however, to make sure the value you specify agrees
with any default values already stored in the file.

• Add group fields.

Be careful when adding group fields if the record contains REDEFINES fields.
Before adding group fields, you might want to review the rules that apply to
the REDEFINES clause. See the VAX DATATRIEVE Reference Manual for
more information.

Restructuring a Domain

You must restructure a domain if you want to do any of the following:

• Add new fields to the record.

• Change the order of the fields in the record.

• Increase the size of a field.

• Eliminate some fields from the record.

• Decrease the size of a field or change its data type.

If you decrease the size of a field or change the type of data it stores, the
existing values in records for that field can be truncated or stored incorrectly.
This is just a warning. You can still decrease field size if you:

Plan to store new values for that field in all the records

Intend to decrease the size a text field (a field with Xs or As in the PIC
clause) that has too many character positions for any values it needs to
store

4–12 Defining Data Files

Defining Data Files
Restructuring Data

How you create the new domain depends on whether you want to keep the old
domain. To keep the old domain when creating the new domain:

1. Define the new domain, its record, and its data file.

2. Ready the new domain for WRITE access and the old domain for READ
access.

3. Use the DATATRIEVE Restructure statement to transfer field values from
the old data file to the new one.

If you want to use any existing procedures on the new domain, you must edit
them if they refer to fields not included in the new domain.

If the existing procedures refer only to fields included in the new domain, you
need not change the procedures; you can ready the new domain with the old
domain name as an alias (READY NEW AS OLD) and execute the existing
procedures.

If you do not want to keep the old domain, you can still use the old procedures:

1. Define the new domain (NEW), record (NEW_REC), and file (NEW.DAT).

2. Use the Restructure statement to transfer the data from the old domain
(OLD) to the new one (NEW).

3. Delete the definition of the old domain (OLD).

4. Enter another domain definition that uses the old domain name (OLD), the
new record definition (NEW_REC), and the new data file (NEW.DAT):

DTR> DEFINE DOMAIN OLD USING NEW_REC ON NEW.DAT;
DTR>

5. Check the old procedures for any references to field names not included in the
new record definition and edit where necessary.

Note

You cannot use DATATRIEVE to restructure VAX DBMS or relational
domains. You must use RDO or the SQL interface to Rdb/VMS to
restructure relational domains. You must use the VAX DBMS DDL
compilers and the DBO utility to restructure databases. However, you can
store data from VAX DBMS or relational domains in RMS domains.

Defining Data Files 4–13

Defining Data Files
Restructuring Data

Example 4–3 illustrates the steps you follow to change the size of the ZIP field in
EMPLOYEES_REC from 5 to 9 characters.

Example 4–3 Restructuring a Domain to Change the Record Definition
DTR> ! If NO EDIT_BACKUP is in effect during your DATATRIEVE
DTR> ! session (SHOW EDIT will tell you if it is),
DTR> ! the following command will ensure that the old version
DTR> ! of your record definition is not deleted.
DTR> !
DTR> SET EDIT_BACKUP
DTR> !
DTR> ! Set up READ access to the original domain. Use an alias
DTR> ! to identify the relationship between the record definition and
DTR> ! the old file. (OLD is the alias in this example.)
DTR> !
DTR> READY EMPLOYEES AS OLD
DTR> !
DTR> ! Edit the record definition. Do not change any field names.
DTR> ! If you do, DATATRIEVE will not be able to store the field
DTR> ! values. You can edit the record definition to change field
DTR> ! names after the restructure operation is completed.
DTR> !
DTR> EDIT EMPLOYEES_REC

. . .

. . .

. . .
DTR> !
DTR> !
DTR> ! Create an empty file with the DEFINE FILE command of your
DTR> ! choice.
DTR> !
DTR> DEFINE FILE FOR EMPLOYEES KEY = EMPLOYEE_ID
DTR> !
DTR> ! Set up WRITE access to the restructured domain. Use an alias
DTR> ! to identify the relationship between the record definition and
DTR> ! the new file. (NEW is the alias in this example.)
DTR> !
DTR> READY EMPLOYEES AS NEW WRITE
DTR> !
DTR> ! Store records in the new file with a Restructure statement.
DTR> !

(continued on next page)

4–14 Defining Data Files

Defining Data Files
Restructuring Data

Example 4–3 (Cont.) Restructuring a Domain to Change the Record Definition

DTR> NEW = OLD
DTR> !
DTR> ! End access to OLD and NEW.
DTR> !
DTR> FINISH OLD, NEW
DTR> !
DTR> ! You can now ready the domain with its given name and
DTR> ! DATATRIEVE accesses records in the new file.
DTR>

The data file and the record definition the domain uses depends on how it is
specified in the domain definition.

A Sample Domain
PROJECTS is a sample domain supplied in the CDD$TOP.DTR$LIB.DEMO
dictionary.

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
DTR> SHOW PROJECTS, PROJECT_REC
DOMAIN PROJECTS USING PROJECT_REC ON PROJECT;
RECORD PROJECT_REC
01 PROJECT_REC.

03 PROJ_CODE PIC 9(3) QUERY_NAME IS CODE.
03 PROJ_NAME PIC X(10) QUERY_NAME IS NAME.
03 MANAGER_NUM PIC 9(5) QUERY_NAME IS NUM.

;

The data file PROJECT.DAT is a sequential file and contains these records:

DTR> PRINT PROJECTS

PROJ PROJ MANAGER
CODE NAME NUM

002 GROUNDS 00006
005 BUILDING 2 00003
008 SHED 00002
018 RESEARCH 00006
037 PUB REL 00008
073 MATERIALS 00002

The following sections use this sample domain to illustrate ways to restructure
data.

Defining Data Files 4–15

Defining Data Files
Adding Fields to a Record Definition

Adding Fields to a Record Definition
To create a new domain with two fields added to PROJECT_REC:

1. Define a new domain:

DTR> DEFINE DOMAIN NEW_PROJECTS
DFN> USING NEW_PROJECT_REC ON NEWPROJ;

2. Edit the record definition to change the name of the record and add the
desired field definitions.

DTR> EDIT PROJECT_REC

3. After you exit the editor, define a new data file for NEW_PROJECTS. This
example creates an indexed file to replace the sequential file associated with
PROJECTS:

DTR> DEFINE FILE FOR NEW_PROJECTS KEY=PROJ_CODE

You are now ready to transfer the data from the old domain to the new one.

Entering Data in the New File
To transfer data from the old domain to the new one, you must first ready both
domains. Ready the new domain for WRITE or EXTEND access, and ready the
old one for READ access. Then use the Restructure statement to transfer the
data:

DTR> READY NEW_PROJECTS WRITE
DTR> READY PROJECTS
DTR> NEW_PROJECTS = PROJECTS
DTR>

For each field name in NEW_PROJECT_REC that matches a field name in
PROJECTS_REC, the Restructure statement transfers field values from each
record in PROJECTS to a record in NEW_PROJECTS. For a field in the new
record definition that does not match a field in the old one, DATATRIEVE
initializes the field according to its data type and its field definition. For more
information see the section on Restructure Statement in the VAX DATATRIEVE
Reference Manual.

The data file associated with your new domain now has records in it. When you
display the contents of the new domain on your terminal, you can see the two
new fields and the same values contained in the PROJECTS domain:

4–16 Defining Data Files

Defining Data Files
Entering Data in the New File

DTR> PRINT NEW_PROJECTS

PROJ PROJ PROJ MANAGER MGR
NUM NAME COST NUM NAME

002 GROUNDS $0.00 00006
005 BUILDING 2 $0.00 00003
008 SHED $0.00 00002
018 RESEARCH $0.00 00006
037 PUB REL $0.00 00008
073 MATERIALS $0.00 00002

DTR>

Creating Record Subsets
You can create the new domain from a subset of the old domain’s records. You
specify the limiting conditions in the RSE of the Restructure statement. For
example, you can limit a domain to the projects of two managers:

DTR> READY NEW_PROJECTS WRITE
DTR> READY PROJECTS
DTR> NEW_PROJECTS = PROJECTS WITH MANAGER_NUM EQ 2, 6
DTR> PRINT NEW_PROJECTS

PROJ PROJ PROJ MANAGER MGR
NUM NAME COST NUM NAME

002 GROUNDS $0.00 00006
008 SHED $0.00 00002
018 RESEARCH $0.00 00006
073 MATERIALS $0.00 00002

DTR>

Note that the Restructure statement relies on record definitions having the same
field names. If you want to change field names, you can either edit the record
definition after the restructure operation or use a STORE USING statement
instead of the Restructure statement. Chapter 13 contains an example of using
STORE USING to restructure data.

Combining Data from Two or More Domains
Another reason for creating a new domain is to combine the data from two or
more existing domains. If you frequently use the same CROSS clause to form
record streams and you cannot use a view domain because you need to store
records in the domain, you can define a new domain to meet your needs. For
example, when you enter data in the file of NEW_PROJECTS, you can also
include the names of the managers from another domain, MANAGERS:

Defining Data Files 4–17

Defining Data Files
Combining Data from Two or More Domains

DTR> SHOW MANAGERS, MANAGER_REC
DOMAIN MANAGERS USING MANAGER_REC ON MGR;
RECORD MANAGER_REC USING
01 MANAGER.

03 MANAGER_NUM PIC 9(5).
03 MGR_NAME PIC X(8).

;
DTR>

Displaying the records from MANAGERS shows that values in the field
MANAGER_NUM correspond to the values in the MANAGER_NUM field in
the domain PROJECTS.

DTR> READY MANAGERS; PRINT MANAGERS

MANAGER MGR
NUM NAME

00002 BLOUNT
00003 GERBLE
00005 GORFF
00006 PUFFNER
00008 FEBNELL

DTR>

Using a CROSS clause in the RSE of the Restructure statement, you can
match MANAGERS records with the corresponding PROJECTS records. The
OVER clause allows you to match those records with matching values in the
MANAGER_NUM fields. You must ready all three domains to transfer the data
from PROJECTS and MANAGERS to NEW_PROJECTS:

DTR> READY NEW_PROJECTS WRITE
DTR> READY PROJECTS
DTR> READY MANAGERS
DTR> NEW_PROJECTS = PROJECTS CROSS
CON> MANAGERS OVER MANAGER_NUM
DTR>

Displaying the records in NEW_PROJECTS shows the result of the Restructure
with a CROSS clause in the RSE. Notice that the value of PROJ_COST in each
record is 0; the field did not exist in either of the source domains:

DTR> PRINT NEW_PROJECTS

PROJ PROJ PROJ MANAGER MGR
NUM NAME COST NUM NAME
002 GROUNDS $0.00 00006 PUFFNER
005 BUILDING 2 $0.00 00003 GERBLE
008 SHED $0.00 00002 BLOUNT
018 RESEARCH $0.00 00006 PUFFNER
037 PUB REL $0.00 00008 FEBNELL
073 MATERIALS $0.00 00002 BLOUNT

4–18 Defining Data Files

Defining Data Files
Combining Data from Two or More Domains

DTR>

Sometimes you might need to merge records from two domains that store the
same data using different field names. In this case, you cannot simply ready the
two domains and use a Restructure statement (domain-name1 = domain-name2)
to store the records from one data file into the other. You must use the FOR
statement and a STORE statement that explicitly stores each elementary field. If
the two domains you are merging have the same names, you have to use an alias
clause when you ready them.

In the following example, the domains have different names, so the alias clause
is unnecessary. All the records from EMPLOYEES_BOSTON are being stored in
EMPLOYEES_ALL. In the STORE statement, the field names for EMPLOYEES_
ALL are left of the equal sign (=) and the field names for EMPLOYEES_BOSTON
are on the right:

DTR> READY EMPLOYEES_BOSTON
DTR> READY EMPLOYEES_ALL SHARED WRITE
DTR> FOR EMPLOYEES_BOSTON
CON> STORE EMPLOYEES_ALL USING
CON> BEGIN
CON> EMPLOYEE_ID = EMP_ID
CON> LAST_NAME = NAME_LAST
CON> FIRST_NAME = NAME_FIRST
CON> MIDDLE_INITIAL = INIT

. . .

. . .

. . .

CON> END

This operation uses statements that have not been discussed so far in this book.
You can refer to Chapter 8 for more information about the STORE statement.

Using the Alias Clause to Restructure a Domain
You can use the Alias clause to restructure a domain. When you use this method,
you can make use of the difference between the record definition in the dictionary
and the record definition controlling a readied domain in your workspace. For
example, when you ready YACHTS as OLD_YACHTS, the record definition
YACHT is associated with the data file YACHT.DAT.

If you then edit and redefine the format of the record definition YACHT, this
change to the record is not associated with the readied domain (OLD_YACHTS);
it is only associated with YACHTS the next time you ready the domain.

Defining Data Files 4–19

Defining Data Files
Using the Alias Clause to Restructure a Domain

This method lets you make use of the difference between the record definition
in the dictionary and the record definition controlling a readied domain in your
workspace. The change in the record definition does not take effect until you use
the FINISH command to finish the domain and the READY command to ready
it again. Simply readying the domain again does not activate the new record
definition.

You can make use of this fact if you want to change a record definition or change
the type of file organization of a domain’s data file. The following steps show you
how to change the record definition or file type without redefining the domain. In
both cases, you define a new data file and transfer the data with the Restructure
statement:

1. Ready the domain as an alias:

DTR> READY YACHTS AS OLD_YACHTS
DTR> SHOW READY
Ready sources:

OLD_YACHTS: Domain, RMS sequential, protected read
<CDD$TOP.INVENTORY.YACHTS;1>

No loaded tables.

DTR>

2. Change the record definition with the EDIT record-path-name command,
creating a later version of the same record definition.

3. Define a new data file for the domain. This creates a new version of the
file associated with the readied domain but does not interfere with the link
between the domain you already readied and the original version of the data
file. Do not use the SUPERSEDE option of the DEFINE FILE command:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE
DTR>

4. Ready the domain as a different alias and specify the WRITE access mode.
The READY command uses the new version of the record definition and opens
the new data file created by the DEFINE FILE command.

DTR> READY YACHTS AS NEW_YACHTS WRITE
DTR> SHOW READY
Ready sources:

NEW_YACHTS: Domain, RMS indexed, protected write
<CDD$TOP.INVENTORY.YACHTS;1>

OLD_YACHTS: Domain, RMS sequential, protected read
<CDD$TOP.INVENTORY.YACHTS;1>

No loaded tables.

DTR>

4–20 Defining Data Files

Defining Data Files
Using the Alias Clause to Restructure a Domain

5. Now use the Restructure statement to move the data from the original data
file to the new one. DATATRIEVE transfers data from fields in the original
data file into fields with the same names in the new data file.

DTR> NEW_YACHTS = OLD_YACHTS
DTR>

Changing the Organization of a Data File
You can use the Alias clause of the READY command to change the organization
of a data file associated with a domain. The following example replaces the
indexed data file associated with YACHTS with a sequential data file:

DTR> READY YACHTS AS OLD
DTR> DEFINE FILE FOR YACHTS
DTR> READY YACHTS AS NEW WRITE
DTR> NEW = OLD
DTR> FIND NEW
[113 records found]
DTR>

Defining Data Files 4–21

5
Defining Tables

This chapter explains how to create and use dictionary tables and domain tables.
Dictionary and domain table definitions can be stored either in the DMU or in
the CDO format dictionary of the CDD/Repository dictionary system.

Both types of DATATRIEVE tables associate pairs of values. A dictionary table
might pair zip codes with corresponding towns and states, for example. A domain
table might associate employee identification numbers with employee names.

To save storage space, store the shorter of the two values in several domains
in your database and store the longer value only in a dictionary table or in one
domain that is the base for a domain table. You can access the longer values
through the table with simple clauses that are easy to remember.

You can also validate field values by using a table. This table function is useful
when you need to store the same field in more than one domain. Using a table,
you can make sure that the employee identification number for a particular
employee is the same in all the places it is stored.

You create both types of DATATRIEVE tables with the DEFINE TABLE
command. The syntax for the command differs, depending on the kind of table
you want to create. The name you choose for a table definition cannot duplicate
the name of another object in the compatibility dictionary. Table names must
conform to the following conventions:

• Must begin with a letter

• Can consist only of letters, digits, hyphens, and underscores

• Must not duplicate a DATATRIEVE keyword

• Must not contain blanks

• Must be from 1 to 31 characters long

• Must end with a letter or digit

Defining Tables 5–1

Defining Tables

The examples that follow refer to definitions created specifically for the
sample personnel system described in Chapter 3. These definitions are not
included as part of the sample definitions that DATATRIEVE provides in either
NEWUSER.COM or CDD$TOP.DTR$LIB.DEMO. You cannot duplicate the
results described in this chapter using the sample PERSONNEL database that is
included in the CDD$TOP.DTR$LIB.DEMO.RDB directory.

Creating Dictionary Tables
DATATRIEVE responds faster when you use a dictionary table than when you
use a domain table. That is because the table definition itself specifies all the
value pairs you want to access.

Example 5–1 creates the dictionary table AREA_CODE_TABLE. This table pairs
telephone area code values with corresponding state codes. The comment lines
give you information about the next requirement or option in the command.

Example 5–1 Defining a Dictionary Table
DTR> ! Start your definition with the keywords DEFINE TABLE,
DTR> ! followed by the name you want for the table.
DTR> !
DTR> DEFINE TABLE AREA_CODE_TABLE
DFN> !
DFN> ! You can include the optional QUERY_HEADER clause to specify
DFN> ! a column header for table values when you display them.
DFN> !
DFN> QUERY_HEADER IS "STATE"
DFN> !
DFN> ! You should include the optional EDIT_STRING clause to specify
DFN> ! how you want table values displayed. If you omit this clause
DFN> ! and do not include an edit string in a PRINT statement,
DFN> ! DATATRIEVE uses X(80) to display the values.
DFN> !
DFN> EDIT_STRING IS X(20)
DFN> !
DFN> ! Now enter the value pairs. The colon (:) is required to
DFN> ! separate values in the pair. Any spaces before and after
DFN> ! the colon are optional. You need the quotation marks to
DFN> ! preserve lowercase values or to enter values that are more
DFN> ! than one word (General Sales, for example).
DFN> !
DFN> "603" : "NH"
DFN> "617" : "MA"
DFN> "201" : "NJ"
DFN> !
DFN> ! The ELSE clause is optional. If you include it, DATATRIEVE

(continued on next page)

5–2 Defining Tables

Defining Tables
Creating Dictionary Tables

Example 5–1 (Cont.) Defining a Dictionary Table
DFN> ! substitutes it for any values it finds in a domain and cannot
DFN> ! find in the table. If you omit it, DATATRIEVE displays an
DFN> ! error message when it cannot find the value in the table.
DFN> !
DFN> ELSE "OOPS"
DFN> !
DFN> ! You must end your definition with the keyword END_TABLE.
DFN> !
DFN> END_TABLE
DTR>

You can see how your table works with some simple PRINT statements that
include a VIA clause. Note how the value associated with the ELSE clause tells
you when an area code value is not listed in the table:

DTR> PRINT "603" VIA AREA_CODE_TABLE

STATE

NH

DTR> PRINT "111" VIA AREA_CODE_TABLE

STATE

OOPS

As you define a dictionary table, DATATRIEVE checks for syntax errors.
For example, if you enter a semicolon (;) in place of the required colon (:),
DATATRIEVE prints an error message on your terminal and aborts the DEFINE
TABLE command. To correct the error, type EDIT and press the RETURN key.
(You cannot follow EDIT with the name of the table until your definition is
stored.) Remember that while you are using the editor, DATATRIEVE does not
check for syntax errors. If you get an error message when you exit the editor, you
can immediately type EDIT and press the RETURN key to try again.

Modifying the Table
Now modify your PHONES records to include some area codes, making sure that
you include at least one area code that is not in the table. The last time you
modified data in PHONES, you only wanted to change one record. The following
example includes a FOR statement (read it as ‘‘FOR every PHONES record’’), so
DATATRIEVE lets you add all the area codes:

Defining Tables 5–3

Defining Tables
Modifying the Table

DTR> READY PHONES MODIFY
DTR> FOR PHONES
CON> BEGIN
CON> PRINT
CON> MODIFY USING AREA_CODE = *.AREA_CODE
CON> PRINT
CON> END

LAST FIRST AREA PHONE
NAME NAME CODE NUMBER

BELL LISA 555-8275
Enter AREA_CODE: 603

LAST FIRST AREA PHONE
NAME NAME CODE NUMBER

BELL LISA 603 555-8275
CLERC PHYLLIS 555-9907
Enter AREA_CODE: 603
CLERC PHYLLIS 603 555-9907
LINTE JANE 555-5678
Enter AREA_CODE: 603
LINTE JANE 603 555-5678
SCHUTZ BONNIE 555-8712
Enter AREA_CODE: 617
SCHUTZ BONNIE 617 555-8712
WINTLOW JOHN 555-6789
Enter AREA_CODE: 205
WINTLOW JOHN 205 555-6789

You can now use a VIA AREA_CODE_TABLE expression to display the state that
corresponds to the area code for each record. PHONES_REC, as it appears in
the PRINT statement of the following example, refers to the top-level field in the
record definition rather than the record name as it is stored in the dictionary:

DTR> FOR FIRST 5 PHONES
CON> PRINT ALL PHONES_REC, AREA_CODE VIA AREA_CODE_TABLE

LAST FIRST AREA PHONE
NAME NAME CODE NUMBER STATE

BELL LISA 603 555-8275 NH
CLERC PHYLLIS 603 555-9907 NH
LINTE JANE 603 555-5678 NH
SCHUTZ BONNIE 617 555-8712 MA
WINTLOW JOHN 205 555-6789 OOPS

Tables can save you a great deal of storage redundancy when they contain data
that you use with more than one domain. Tables also help you validate fields
that must be stored in more than one domain. (In a set of domains used by the
personnel department in a company, for example, the employee number would
need to be stored in more than one domain.)

5–4 Defining Tables

Defining Tables
Creating Domain Tables

Creating Domain Tables
A domain table definition contains a pair of field names; it does not contain
all the value pairs you want to associate. The values for the fields are stored in
the data files associated with domains. Usually several domains contain values
for the shorter field and only one domain contains values for the longer field. In
the sample personnel system used in this book, for example, several domains
contain EMPLOYEE_ID values but only the EMPLOYEES domain contains
EMPLOYEE_NAME values.

Example 5–2 defines the domain table WHO_IS_IT that associates EMPLOYEE_
ID with EMPLOYEE_NAME.

Example 5–2 Defining a Domain Table
DTR> ! Start your definition with DEFINE TABLE, followed by the
DTR> ! name of your table. Then enter FROM, followed by the name
DTR> ! of the domain containing both fields you want to relate.
DTR> !
DTR> DEFINE TABLE WHO_IS_IT FROM EMPLOYEES
DFN> !
DFN> ! You can include the optional QUERY_HEADER clause to specify
DFN> ! a column header for table values when you display them. If
DFN> ! the column header uses fewer character positions than the
DFN> ! associated table value, you can include spaces to position
DFN> ! the header where you want it.
DFN> !
DFN> QUERY_HEADER IS " EMPLOYEE NAME "
DFN> !
DFN> ! You should include the optional EDIT_STRING clause to specify
DFN> ! how you want table values displayed. If you omit this clause
DFN> ! and do not include an edit string in a PRINT statement,
DFN> ! DATATRIEVE uses X(80) to display the values.
DFN> !
DFN> EDIT_STRING IS X(36)
DFN> !
DFN> ! Now enter the field names. The colon (:) is required to
DFN> ! separate them. Any spaces before and after the colon are
DFN> ! optional. The keyword USING is also optional.
DFN> !
DFN> USING EMPLOYEE_ID : EMPLOYEE_NAME
DFN> !
DFN> ! The ELSE clause is optional. If you include it, DATATRIEVE
DFN> ! substitutes it for any values it finds in one domain and cannot
DFN> ! find in the other (table) domain. If you omit it, DATATRIEVE
DFN> ! displays an error message when it cannot find the value in the
DFN> ! domain on which the table is based. Use quotation marks to pre-

(continued on next page)

Defining Tables 5–5

Defining Tables
Creating Domain Tables

Example 5–2 (Cont.) Defining a Domain Table
DFN> ! serve lowercase letters or if the ELSE value contains spaces.
DFN> !
DFN> ELSE "ID not in EMPLOYEES."
DFN> !
DFN> ! You must end your definition with the keyword END_TABLE.
DFN> !
DFN> END_TABLE
DTR>

Using Tables
Tables are useful in record definitions both for validation and for saving storage
space. The record for PERSONNEL can be improved by using tables. The current
definition of PERSONNEL_REC contains the following field definition:

05 EMPLOYEE_STATUS PIC IS X(11)
QUERY_NAME IS STATUS
QUERY_HEADER IS "STATUS"
VALID IF STATUS EQ "TRAINEE","EXPERIENCED".

EMPLOYEE_STATUS is an 11-byte field that takes only two values: TRAINEE
or EXPERIENCED. Rather than storing the 11 bytes for each record, you could
use a table to translate the value for a 1-byte status code. This technique saves
10 bytes of storage per record and reduces time for data entry.

The following example shows the definition for the dictionary table STATUS_
TABLE:

DTR> DEFINE TABLE STATUS_TABLE
DFN> E : EXPERIENCED
DFN> T : TRAINEE
DFN> END_TABLE

You can now edit PERSONNEL_REC, deleting the EMPLOYEE_STATUS field
and adding two new fields that reference the table. EMP_STATUS_CODE
validates entries for the status code by checking the table. EMP_STATUS,
a virtual field, translates these code entries to either ‘‘EXPERIENCED’’ or
‘‘TRAINEE’’:

05 EMP_STATUS_CODE PIC X
QUERY_NAME IS S_CODE
VALID IF EMP_STATUS_CODE IN STATUS_TABLE.

05 EMP_STATUS COMPUTED BY
EMP_STATUS_CODE VIA STATUS_TABLE.

5–6 Defining Tables

Defining Tables
Using Tables

Because the new definition defines a record with 10 fewer bytes, you need to
define a new file for PERSONNEL. The following procedure illustrates how to
define a new file for PERSONNEL and restructure the data to match the new
record definition with the STORE USING statement:

DTR> SHOW RESTRUCTURE_PERSONNEL
PROCEDURE RESTRUCTURE_PERSONNEL
READY PERSONNEL AS OLD
DEFINE FILE FOR PERSONNEL KEY = ID
READY PERSONNEL AS NEW WRITE
FOR O IN OLD STORE N IN NEW USING

BEGIN
N.ID = O.ID
CHOICE

O.EMPLOYEE_STATUS = "EXPERIENCED" THEN
N.EMP_STATUS_CODE = "E"
O.STATUS = "TRAINEE" THEN
N.EMP_STATUS_CODE = "T"

END_CHOICE
N.FIRST_NAME = O.FIRST_NAME
N.LAST_NAME = O.LAST_NAME
N.DEPT = O.DEPT
N.START_DATE = O.START_DATE
N.SALARY = O.SALARY
N.SUP_ID = O.SUP_ID

END
END_PROCEDURE

DTR>

Using DATATRIEVE Tables
Table definitions, like all dictionary objects created by DATATRIEVE, have
associated ACLs that determine who can use them. For more information on
ACLs, see the appendix on Access Privileges Tables in the VAX DATATRIEVE
Reference Manual.

Accessing Values in Tables
When you access a table, it is loaded into your DATATRIEVE workspace where
it remains until you either remove it or exit the session. The SHOW READY
command displays the names of any tables currently in your workspace.

If the table is loaded into your DATATRIEVE workspace at the time you edit
the definition, you must remove the table from your workspace and access it
again before the changes you made can take effect. To remove a table from your
workspace, enter RELEASE followed by the table name.

Defining Tables 5–7

Defining Tables
Using DATATRIEVE Tables

You use the DATATRIEVE keywords IN, NOT IN, and VIA to access table values.
Example 5–3 illustrates how these keywords work.

Example 5–3 Using Keywords to Access Values in Tables
DTR> READY JOB_HISTORY
DTR> ! Form a collection of all records in JOB_HISTORY whose
DTR> ! department codes are not in the table.
DTR> !
DTR> FIND ALL JOB_HISTORY WITH DEPARTMENT_CODE NOT IN
CON> DEPARTMENTS_TABLE
[705 records found]
DTR> !
DTR> ! Print values for two fields in the collection’s records
DTR> ! and append a related field to each record by accessing the
DTR> ! table. Note that the value in the ELSE clause of the table
DTR> ! definition appears.
DTR> !
DTR> PRINT ALL EMPLOYEE_ID, DEPARTMENT_CODE,
CON> DEPARTMENT_CODE VIA DEPARTMENTS_TABLE

EMPLOYEE DEPARTMENT DEPARTMENT
ID CODE NAME

00164 MBMN Invalid Dept.
00164 MCBM Invalid Dept.
00165 ELGS Invalid Dept.
00165 PHRN Invalid Dept.
00166 MB CTRL/C

^C
Execution terminated by operator.

DTR> !
DTR> ! Assume these values are valid department codes that you
DTR> ! need to add to the table. By reducing the current collection
DTR> ! to unique department code values and then printing the
DTR> ! reduced collection, you get a list of what needs to be
DTR> ! added to DEPARTMENTS_TABLE.
DTR> !
DTR> REDUCE TO DEPARTMENT_CODE
DTR> PRINT ALL

DEPARTMENT
CODE

(continued on next page)

5–8 Defining Tables

Defining Tables
Using DATATRIEVE Tables

Example 5–3 (Cont.) Using Keywords to Access Values in Tables

ELEL
ELGS
ELMC
MBMF
MBMN
.
.
.

DTR>

You edit your table definition by entering EDIT followed by the table name. Your
table definition is copied to an editing buffer, where you can make the changes
you want.

Validating Values with Tables
By referring to a dictionary or domain table in a VALID IF clause in a record
definition, you can validate data entered for a field before it is stored in a record:

DTR> SHOW JOB_HISTORY_REC
RECORD JOB_HISTORY_REC USING
01 JOB_HISTORY_REC.

05 DEPARTMENT_CODE PIC X(4)
VALID IF DEPARTMENT_CODE IN
DEPARTMENTS_TABLE.

05 EMPLOYEE_ID PIC X(5)
VALID IF EMPLOYEE_ID IN
WHO_IS_IT.

05 JOB_CODE PIC X(4).
05 JOB_START USAGE DATE.
05 JOB_END USAGE DATE.
05 REVIEW_DATE USAGE DATE.
05 SUPERVISOR_ID PIC X(5).

;

Defining Tables 5–9

Defining Tables
Using DATATRIEVE Tables

DTR> ! When users store or modify records in the
DTR> ! JOB_HISTORY domain, DATATRIEVE checks a
DTR> ! value entered for DEPARTMENT_CODE against
DTR> ! codes in DEPARTMENTS_TABLE and a value entered
DTR> ! for EMPLOYEE_ID against codes in WHO_IS_IT.
DTR> !
DTR> READY JOB_HISTORY WRITE
DTR> STORE JOB_HISTORY
Enter DEPARTMENT_CODE: XXXX
Validation error for field DEPARTMENT_CODE.
Re-enter DEPARTMENT_CODE: SALE
Enter EMPLOYEE_ID: 00000
Validation error for field EMPLOYEE_ID.
Re-enter EMPLOYEE_ID: 00168
Enter JOB_CODE:

. . .

. . .

. . .
DTR>

Using Domain Tables Based on Relational Sources
Before you issue any command that call a domain table based on a relational
source, you must end access to the relational source. This is a restriction that
exists with relational sources, for more information see the chapter on relational
databases in the VAX DATATRIEVE Guide to Interfaces.

Choosing Between Dictionary and Domain Tables
To decide which type of table to use, keep the following guidelines in mind:

• Dictionary tables lend themselves to interactive updates. You add or change
entries to the table directly by editing the table definition. In addition,
DATATRIEVE works faster with dictionary tables than with domain tables.

• Because a domain table does not contain the pairs of values it relates, it is
automatically updated when the associated fields of its domain are changed.
For applications where the values associated by a table change often, a
domain table can be easier to maintain. Any statement that changes or adds
records to the domain that is the basis for the table will also update the table
itself.

5–10 Defining Tables

Part III
Data Management (Storing, Managing,

Reading, Erasing, RSEs)

6
Starting and Ending Access to Data

This chapter explains data access when you are using domains associated with
VAX RMS (Record Management Services) data files.

Note

If you are accessing data managed by VAX DBMS or any of the VAX
relational database products, refer to the chapters on those products in
the VAX DATATRIEVE Guide to Interfaces. If you are accessing data
stored on remote systems, refer to the chapter in the same manual on
defining and accessing distributed domains. In these cases, there are
READY command options and access default differences that are not
discussed in this book.

You access data with a READY command, which contains the name of the domain
or domains associated with the records you want to see. The SHOW READY
command tells you what domains are currently readied and what options were
selected for their use. You end access to data with a FINISH command or by
exiting your DATATRIEVE session.

Example 6–1 shows some sample READY and FINISH commands for a
DATATRIEVE session. Example 6–1 shows how a user who needs to store data
for a new employee might first check information stored in the JOBS domain and
JOBS_TABLE table.

Example 6–1 Starting and Ending Access to Data

(continued on next page)

Starting and Ending Access to Data 6–1

Starting and Ending Access to Data

Example 6–1 (Cont.) Starting and Ending Access to Data
DTR> SHOW DOMAINS
Domains:

* COLLEGES;1 * DEGREES;1 * EMPLOYEES;1 * JOBS;1
* JOB_HISTORY;1 * SALARY_HISTORY;1

DTR> READY JOBS
DTR> SHOW FIELDS FOR JOBS
JOBS

JOB
JOB_CODE <Character string, primary key>
MINIMUM_SALARY <Number>
MAXIMUM_SALARY <Number>
WAGE_CLASS <Character string>

DTR> PRINT JOB_CODE, JOB_CODE VIA JOBS_TABLE, MINIMUM_SALARY,
CON> MAXIMUM_SALARY, WAGE_CLASS OF JOBS WITH JOB_CODE CONTAINING
CON> "GM"

JOB JOB MINIMUM MAXIMUM WAGE
CODE TITLE SALARY SALARY CLASS

APGM Associate Programmer $15,000.00 $24,000.00 4
PRGM Programmer $20,000.00 $35,000.00 4
SPGM Systems Programmer $25,000.00 $50,000.00 4

DTR> READY EMPLOYEES SHARED WRITE, JOB_HISTORY SHARED WRITE,
CON> SALARY_HISTORY SHARED WRITE
DTR> SHOW READY
Ready sources:

SALARY_HISTORY: Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.SALARY_HISTORY;1>

JOB_HISTORY: Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.JOB_HISTORY;1>

EMPLOYEES: Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.EMPLOYEES;1>

JOBS: Domain, RMS indexed, protected read
<CDD$TOP.PERSONNEL.JOBS;1>

Loaded tables:
JOBS_TABLE: Dictionary table

<CDD$TOP.PERSONNEL.JOBS_TABLE;2>

(continued on next page)

6–2 Starting and Ending Access to Data

Starting and Ending Access to Data

Example 6–1 (Cont.) Starting and Ending Access to Data

DTR> FINISH JOBS
DTR> RELEASE JOBS_TABLE
DTR> SHOW READY
Ready sources:

SALARY_HISTORY: Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.SALARY_HISTORY;1>

JOB_HISTORY: Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.JOB_HISTORY;1>

EMPLOYEES: Domain, RMS indexed, shared write
<CDD$TOP.PERSONNEL.EMPLOYEES;1>

No loaded tables.

DTR> STORE EMPLOYEES; STORE JOB_HISTORY; -
CON> STORE SALARY_HISTORY

. . .

. . .

. . .
DTR> FINISH
DTR> SHOW READY
No ready sources.
No loaded tables.

DTR>

Readying Domains
When you ready a domain, DATATRIEVE loads the record definition associated
with the domain into your workspace and opens the associated data file. In
addition to the domain name, a READY command can include the following:

• An alternate name (alias) for the domain while you are using it

• The access options other users have to a domain while you are using it
(PROTECTED, SHARED, or EXCLUSIVE)

• The access mode you need for the operation you want to perform (READ,
WRITE, MODIFY, or EXTEND)

You have to specify an alias only if two domains with the same given name will
be ready at the same time. This situation can occur when you are accessing
domains stored in different dictionary directories and when you are restructuring
your database. (In the command READY EMPLOYEES AS NEW WRITE, NEW
is an alias.) When you ready a domain under an alias, you must use the alias
rather than the domain’s given name in any subsequent statements or commands
during that session. DATATRIEVE does not recognize the readied domain if you
use the given name.

Starting and Ending Access to Data 6–3

Starting and Ending Access to Data
Readying Domains

PROTECTED is the access option that applies if you do not specify one.
PROTECTED means that if other users ready the domain while you are using it,
they can use it only to retrieve and display data. They cannot modify, erase, or
add records.

READ is the access mode that applies if you do not specify one. READ means
that you can use the domain only to retrieve and display data. You cannot store,
erase, or modify records without readying the domain again to specify a new
access mode.

In addition to the domain definition privileges, you also need privileges to an
associated record definition.

For more information on access modes and options, see the VAX DATATRIEVE
Reference Manual.

Readying Domains Defined with Relationships
When you ready a domain, DATATRIEVE determines the dictionary source of the
domain through the path name used in the READY command. If you use only
the domain’s given name, DATATRIEVE searches the contents of your default
directory. If you use a relative path name, DATATRIEVE searches the directory
relative to your default directory.

If a CDO format domain was defined using the WITH RELATIONSHIPS clause of
the DATATRIEVE DEFINE DOMAIN command, you may receive informational
messages when you ready that domain. CDD/Repository flags an object with
a message if the object has been affected by a change to another object. For
example, if you modify a record definition, CDD/Repository attaches a message
to any domain definition that refers to that record. When you go to ready that
domain, DATATRIEVE displays the message.

Suppose, for example, that the domain YACHTS_CDO was originally defined
with the relationships clause using the record YACHT_CDO_REC;1, which was
later redefined to produce YACHT_CDO_REC;2. If you ready YACHTS_CDO you
receive a message as in the following example:

DTR> READY YACHTS_CDO
"YACHTS_CDO" uses an entity which has new versions,
triggered by RECORD entity "DISK$1:[KIRK.DTR]SAMPLE.YACHT_CDO_REC;2".
[Record is 41 bytes long.]
DTR>

This message is informational. It lets you know that a discrepancy may exist
between versions of the objects. While you may be able to continue working in
DATATRIEVE, this is unwise until you have checked the update to determine
whether it created a discrepancy between the actual layout of the data and that
expected by DATATRIEVE. because you may find that your data is invalid.

6–4 Starting and Ending Access to Data

Starting and Ending Access to Data
Readying Domains

You might also receive messages in situations like the following:

• The domain YACHTS_CDO is defined using the record YACHT_CDO_REC.
It contains a field PRICE;1, which was changed through CDO with the CDO
CHANGE command (which modifies an object, but does not create a new
version). This would generate a message indicating that the record YACHT_
CDO_REC may be invalid because of the change to the PRICE field.

• The view domain SAILBOATS_CDO refers to the domain YACHTS_CDO,
which refers to the record YACHT_CDO_RECDATATRIEVE, described in the
previous example (in which the PRICE field was changed). When you ready
SAILBOATS_CDO, you receive the same message you received when you
readied YACHTS_CDO.

Readying a CDD$RMS_DATABASE
If you use the CDO utility to define a CDD$DATABASE based upon a CDD$RMS_
DATABASE and a record defined using the CDO utility, DATATRIEVE lets
you ready that database directly. For example, the CDO utility was used
to define the record CDO_REC. The CDO utility was then used to define a
CDD$RMS_DATABASE called CDO_RMS based on CDO_REC; the CDO DEFINE
DATABASE command was used to define the database CDO_DB. To ready this
database in DATATRIEVE, the following command would be used:

DTR> READY CDO_DB

For more information on the CDD$DATABASE and CDD$RMS_DATABASE, see
Chapter 20. See also the CDD/Repository documentation.

Defining Your Own Default Access
DATATRIEVE provides the following access options by default, depending on the
source you are readying, if you do not supply an access option on the READY
command line:

• PROTECTED (RMS sources)

• SNAPSHOT (Relational sources)

• SHARED (VAX DBMS sources)

If you want to define your own default access option, use the logical name
DTR$READY_MODE.

DATATRIEVE checks the definition of DTR$READY_MODE only when an access
option is not found on the READY command line. You can assign a default to
DTR$READY_MODE as follows:

Starting and Ending Access to Data 6–5

Starting and Ending Access to Data
Readying Domains

• Use the DATATRIEVE function FN$CREATE_LOG. The following example
changes the READY access of the RMS domain YACHTS from its default,
PROTECTED, to SHARED access:

DTR> FN$CREATE_LOG ("DTR$READY_MODE", "SHARED")
DTR> FINISH
DTR> READY YACHTS
DTR> SHOW READY
Ready sources:

YACHTS: Domain, RMS indexed, shared read
<_CDD$TOP.DTR32.DAB.YACHTS;3>

• Use the DCL DEFINE command as follows:

$ DEFINE DTR$READY_MODE "SHARED"

• Use a combination of a synonym and a logical assignment:

DTR> DECLARE SYNONYM EXCL FOR EXCLUSIVE
DTR> FN$CREATE_LOG ("DTR$READY_MODE", "EXCL")
DTR> READY YACHTS
DTR> SHOW READY
Ready sources:

YACHTS: Domain, RMS indexed, exclusive read
<CDD$TOP.DTR32.DAB.YACHTS;3>

If you define DTR$READY_MODE using FN$CREATE_LOG, the definition lasts
only until the end of the DATATRIEVE session. You can change the definition
during the session, however.

See the VAX DATATRIEVE Reference Manual for information about access option
error handling.

Finishing Domains
Use the FINISH command to end your control over one or more domains. If you
specify more than one domain name in the FINISH command, enter commas to
separate the domain names. If you enter the keyword FINISH by itself, or if you
enter FINISH ALL, you end your control over all the domains you have readied.

Finishing domains is especially important if you have readied any domains with
the PROTECTED or EXCLUSIVE access option and other users access those
domains. The PROTECTED option keeps other users from updating the data file.
The EXCLUSIVE access option locks out other users entirely. In addition, if you
ready a domain with the EXCLUSIVE access option and that domain is the base
for a domain table, you must finish the domain before you can use the domain
table.

6–6 Starting and Ending Access to Data

Starting and Ending Access to Data
Controlling the Input of Dates and Currency

Controlling the Input of Dates and Currency
You can define VMS logical names to control the way DATATRIEVE handles
the interpretation of dates and currency symbols. You can control the format
DATATRIEVE uses to interpret the input of dates by defining the logical name
DTR$DATE_INPUT. This logical name affects only the interpretation of the input
of dates and has nothing to do with the edit strings used for the output of dates.

You define DTR$DATE_INPUT with a three-character string containing one D for
day, one M for month, and one Y for year. Enclose the three-character string in
quotation marks.

The command DEFINE DTR$DATE_INPUT ‘‘MDY’’ defines a date input of
03/12/09 as March 12, 1909. (MDY is the default interpretation DATATRIEVE
uses for input of dates if you do not define DTR$DATE_INPUT.)

Table 6–1 shows the different combinations you can use.

Table 6–1 Defining the Logical Name DTR$DATE_INPUT

Format Input Definition

‘‘MDY’’ 03/12/09 March 12 1909

‘‘DMY’’ 03/12/09 December 3 1909

‘‘YDM’’ 03/12/09 September 12 1903

‘‘YMD’’ 03/12/09 December 9 1903

‘‘DYM’’ 03/12/09 September 3 1912

‘‘MYD’’ 03/12/09 March 9 1912

The format you choose also controls the format DATATRIEVE uses to convert
six-digit numeric strings (such as 810210) to dates.

You can define DTR$DATE_INPUT at the DCL command level, or you can put
the appropriate DEFINE command in your login command file. Table 6–2 shows
the three logical names you can define to control the currency defaults of the
VMS operating system.

Table 6–2 Currency Symbols

Logical Name Default

SYS$CURRENCY $

SYS$DIGIT_SEP ,

SYS$RADIX_POINT .

Starting and Ending Access to Data 6–7

Starting and Ending Access to Data
Controlling the Input of Dates and Currency

The following examples demonstrate the effects of redefining these logical names.
In the first example, you redefine the default values:

$ DEFINE SYS$CURRENCY "# "
$ DEFINE SYS$DIGIT_SEP "."
$ DEFINE SYS$RADIX_POINT ","

In the next example, you can see the results of the changed definitions:

DTR> DECLARE NUM PIC 9(6)V99.
DTR> NUM = 12345.67
DTR> PRINT NUM USING $$$,$$$.99

NUM

12.345,67

6–8 Starting and Ending Access to Data

7
Record Selection Expressions

The following list shows typical operations you perform when you access data:

• Displaying a group of records (PRINT, LIST, REPORT, or PLOT statements)

• Forming a temporary collection of records (FIND statement)

• Updating or changing a group of records (MODIFY statement)

Before performing any operations, you must select target records using a record
selection expression (RSE). The RSE identifies which records you want to
work with and forms a record stream, that is, a group of records from a domain
or collection. DATATRIEVE performs the specified operation on every record in
the record stream.

The selected records can come from any of the following sources:

• Domains

• Collections

• Lists

• Relational database sources

• VAX DBMS records

• Access member or owner records of a VAX DBMS set, (MEMBER, OWNER,
or WITHIN clauses)

This chapter illustrates all these operations. In addition, a form of the RSE
allows you to access list items from hierarchical records. This is discussed in
Chapter 13.

Record Selection Expressions 7–1

Record Selection Expressions
The RSE Format

The RSE Format
A record selection expression has the following format:

�
FIRST n
ALL

�
[context-var IN] rse-source

[CROSS [context-var IN] rse-source [OVER field-name]] [. . .]

[WITH boolean-expression] [REDUCED TO reduce-key [, . . .]]

[SORTED BY sort-key [, . . .]]

The format for rse-source is as follows:������������
�����������

domain-name
collection-name
list
rdb-relation-name

dbms-record-name

�
�	

 MEMBER

OWNER
WITHIN

�
[OF] [context-name.]set-name

�

�

������������
�����������

The domain-name includes VAX DBMS domains, relational domains, VAX Record
Management System (RMS) domains, view domains, and network domains. Note
that the MEMBER, OWNER, and WITHIN set-name syntax is used only with a
VAX DBMS domain name or VAX DBMS record name.

You can use RSEs in all of the following DATATRIEVE statements:

• ERASE

• FIND

• FOR

• LIST

• MATCH

• MODIFY

• PLOT

• PRINT

• REPORT

• Restructure

In addition, you can use RSEs to specify subsets of records when you define
view domains. See Chapter 12 for more information on RSEs in view domain
definitions.

7–2 Record Selection Expressions

Record Selection Expressions
The RSE Format

The format diagram shows that the RSE contains one required element and seven
optional elements. The following sections describe each element.

Specifying the Source of Records
The name of the record source is the only required element in an RSE. You must
specify one of the five possible sources of the record stream:

• Domain name

• Collection name

• List name

• Rdb relation name

• VAX DBMS record name

This element tells DATATRIEVE which RMS, relational database, or VAX DBMS
domain, collection, list, relation, or VAX DBMS record contains the records to
search when forming a record stream.

You can use record selection expressions to access remote data, but the RSEs
cannot contain expressions that DATATRIEVE must evaluate on the remote node.

Domains as Sources of Record Streams
You can use the given name of a domain in an RSE to specify the source of
records DATATRIEVE searches when forming a record stream. Do not use a full
or relative dictionary path name for the domain. Use the given name of any type
of DATATRIEVE domain or alias you specify in the READY command.

Before you can use a domain name in an RSE, you must ready the domain with a
READY command. For example:

DTR> READY YACHTS
DTR> PRINT YACHTS

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $35,000
ALBIN 79 SLOOP 26 4,200 10 $17,900

. . .

. . .

. . .

DTR>

Record Selection Expressions 7–3

Record Selection Expressions
Specifying the Source of Records

Collections as Sources of Record Streams
You can use the name of a collection in an RSE to specify the source of records
DATATRIEVE searches when forming a record stream. Before you can use a
collection in an RSE, you must establish the collection with a FIND statement.

The following example uses the keyword CURRENT to refer to the collection you
most recently formed:

DTR> READY YACHTS
DTR> FIND YACHTS
[113 records found]
DTR> PRINT CURRENT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $35,000
ALBIN 79 SLOOP 26 4,200 10 $17,900

. . .

. . .

. . .

DTR>

The following example uses the name of a named collection to specify the source
of records:

DTR> FIND BIG_ONES IN YACHTS WITH LOA > 40
[8 records found]
DTR> PRINT BIG_ONES WITH PRICE NE 0

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFSTAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500

DTR>

7–4 Record Selection Expressions

Record Selection Expressions
Specifying the Source of Records

Lists as Sources of Record Streams
You can use the name of the list in an RSE to retrieve, modify, and report data in
the items of a list in a hierarchical domain. By using a list name to specify the
source of records for an RSE, you can form a record stream from the list items in
a single record.

The following example uses a SELECT statement to pick out the particular record
containing the list. The RSE, FIRST 1 KIDS, then identifies the first item from
the KIDS list of the selected record:

DTR> READY FAMILIES
DTR> FIND FAMILIES
[14 records found]
DTR> SELECT
DTR> PRINT AGE OF FIRST 1 KIDS

AGE

7

DTR>

The following example uses a FOR statement to form a stream of target records
containing the list. The RSE, KIDS WITH AGE GT 20, then identifies the
children who are older than 20:

DTR> FOR FAMILIES WITH NUMBER_KIDS = 2
CON> PRINT KID_NAME, AGE OF KIDS WITH AGE GT 20

KID
NAME AGE

ANN 29
JEAN 26
MARTHA 30
TOM 27

DTR>

You cannot establish a valid record context in a MODIFY statement by using an
RSE containing only an OF clause and a list name. For example:

DTR> READY FAMILIES WRITE
DTR> MODIFY EACH_KID OF FIRST 1 KIDS
"KIDS" is undefined or used out of context
DTR>

If you include the MODIFY statement in a FOR statement, you establish context
and DATATRIEVE modifies the record. For example:

DTR> READY FAMILIES WRITE
DTR> FOR FAMILIES MODIFY EACH_KID OF FIRST 1 KIDS
Enter KID_NAME:

Record Selection Expressions 7–5

Record Selection Expressions
Specifying the Source of Records

You cannot erase from an OCCURS list. You must use the MODIFY statement to
change or erase fields from a list. For example:

DTR> ERASE ALL OF KIDS
"KIDS" is undefined or used out of context
DTR>

You can reduce the complexity of working with lists by entering the SET SEARCH
command. This command invokes the DATATRIEVE Context Searcher, thereby
simplifying the job of providing the context for referring to items within lists. See
Chapter 13 for more information about using hierarchical records.

If you establish a valid record context with a SELECT statement or a FOR
statement, you can specify a MODIFY statement using an RSE clause containing
a list name. For example:

DTR> FOR FIRST 2 FAMILIES
[Looking for statement]
CON> MODIFY EACH_KID OF KIDS
Enter KID_NAME: CTRL/Z

Execution terminated by operator
DTR> FIND FIRST 2 FAMILIES
[2 records found]
DTR> SELECT
DTR> MODIFY EACH_KID OF KIDS
Enter KID_NAME: CTRL/Z

Execution terminated by operator
DTR>

Using Relations and VAX DBMS Records as Sources of Record
Streams
You can use the given name of a relation or VAX DBMS record to specify the
source of records DATATRIEVE searches when forming a record stream. Do not
use a full or relative dictionary path name for the relation or VAX DBMS record.
Use the given name.

Before you can use a relation or VAX DBMS record name in an RSE, you must
ready the database with a READY command. For example:

DTR> READY PARTS_DB

Three optional clauses of the RSE, MEMBER, OWNER, and WITHIN, specify
access to records in VAX DBMS sets on the basis of set relationships. You can
use the MEMBER, OWNER, and WITHIN clauses only to refer to VAX DBMS
domains and VAX DBMS views.

7–6 Record Selection Expressions

Record Selection Expressions
Specifying the Source of Records

Restrictions

• When you use a context variable in a MEMBER, OWNER, or WITHIN clause,
that context variable cannot refer to a record stream of items in a list or to a
collection of such items. Lists are repeating fields in hierarchical records or
hierarchical views.

• The VAX DBMS record type associated with the VAX DBMS domain or
collection specified in the RSE must be a valid member type of the specified
set type.

• You must use a valid context variable or the name of a collection with a
selected record. The context variable must identify a record occurrence of a
domain with a VAX DBMS record type that participates in the specified set
type.

If the SYSTEM owns the set, you do not need to establish a context for the
set. If the set is not owned by the SYSTEM and the context name is not
present, DATATRIEVE determines the set occurrence for evaluating the rest
of the RSE by using the most recent single record context of a domain with a
record type that participates in the specified set type.

MEMBER Clause
The MEMBER clause lets you access the member records of a set. Conceptually,
you are telling DATATRIEVE to ‘‘look down’’ from your current position and find
the members of the set that are linked to that record.

Examples
The following example selects a record from the domain DIVISIONS and prints
all the records from the domain EMPLOYEES owned by that selected record
through the set CONSISTS_OF:

DTR> FIND DIVISIONS
DTR> SELECT 3
DTR> PRINT EMPLOYEES MEMBER CONSISTS_OF

Phone
Ident Last Name----------- First Name Number Loc

99998 PAYNE RONALD 8902345 23456

DTR>

The following example creates a collection from EMPLOYEES and PART_S. Each
record in the collection contains all the fields from a record in EMPLOYEES and
all the fields from a record in PART_S. DATATRIEVE joins each record from
EMPLOYEES with each PART_S record that the record in EMPLOYEES owns
through the set RESPONSIBLE_FOR:

Record Selection Expressions 7–7

Record Selection Expressions
Specifying the Source of Records

DTR> FIND EMPLOYEES CROSS PART_S MEMBER RESPONSIBLE_FOR
DTR> PRINT EMP_LAST_NAME, PART_DESC OF CURRENT

[66 records found]
DTR>

The following example defines a hierarchical VAX DBMS view using one field
from the VAX DBMS domain DIVISIONS and two fields from the VAX DBMS
domain EMPLOYEES:

DTR> DEFINE DOMAIN WHOLE_DIVISION
DEF> OF DIVISIONS, EMPLOYEES USING
DEF> 01 DIV OCCURS FOR DIVISIONS.
DEF> 02 DIV_NAME FROM DIVISIONS.
DEF> 02 WORKERS OCCURS FOR EMPLOYEES MEMBER CONSISTS_OF.
DEF> 04 EMP_ID FROM EMPLOYEES.
DEF> 04 EMP_NAME FROM EMPLOYEES.
DEF> ;
DTR>

OWNER Clause
In contrast to the MEMBER clause, the OWNER clause instructs DATATRIEVE
to "look up" from your current position in the database to find the owner record of
a set.

Restrictions
If you try to access the owner record of a set owned by the SYSTEM,
DATATRIEVE displays an error message.

Examples
The following example creates a collection. Each record in the collection has data
from three records:

• A component record

• The part record that owns the component record in the set PART_USED_ON

• The part record that owns the component record in the set PART_USES

DTR> FIND A IN COMPONENTS CROSS
CON> PART_S OWNER PART_USED_ON CROSS
CON> PART_S OWNER OF A.PART_USES
[119 records found]
DTR>

The following example prints the field DIV_NAME from DIVISIONS and the field
EMP_NAME from EMPLOYEES. For each record in DIVISIONS, the example
lists the EMPLOYEES record that owns the MANAGES set and the DIVISIONS
record that is a member of that set. The print list item ALL EMP_NAME OF
EMPLOYEES is an inner print list and has the following general form:

7–8 Record Selection Expressions

Record Selection Expressions
Specifying the Source of Records

ALL print-list OF rse

The inner print list contains an RSE, and you can use it to create a context for
the items in a list of a hierarchical record or a hierarchical view. For example:

DTR> FOR DIVISIONS
CON> PRINT DIV_NAME, ALL EMP_LAST_NAME OF
CON> EMPLOYEES OWNER OF MANAGES

Division Name------- Last Name-----------

LA34 DEVELOPMENT ZAHAN
SOFTWARE SCHATZEL
RM05 DEVELOPMENT ZOPF
ENG BUILD & TEST THOMPSON
VT100 DEVELOPMENT DALE

.

.

.
DTR>

WITHIN Clause
The WITHIN clause gives you access to the member records or the owner record
of a VAX DBMS set.

You can use a WITHIN clause to replace a MEMBER clause or an OWNER
clause. You can also replace a WITHIN clause with a MEMBER clause or an
OWNER clause, depending on the relationship between the record and the set in
which it participates. Use WITHIN when you do not need to specify whether you
are looking for an OWNER or MEMBER.

Examples
The following example uses the CROSS clause of the RSE and prints data from
PART_S, SUPPLIES, and VENDORS. DATATRIEVE uses the sets PART_INFO
and VENDOR_SUPPLY to associate PART_S records with SUPPLY and VENDOR
records:

DTR> PRINT PART_S CROSS SUP IN SUPPLIES WITHIN
CON> PART_INFO CROSS
CON> VENDORS WITHIN SUP.VENDOR_SUPPLY

Part Unit
Number ------------Part Description---------- St Price

Record Selection Expressions 7–9

Record Selection Expressions
Specifying the Source of Records

CE-3556-78 VT100 NON REFLECTIVE SCREEN G $26
$20 NO G MEMO 14 02321332

U.S. SEALS R.R. BINGHAM
132 MAIN ST.
MOLINE, ILL

816,884,5398
AS-1110-85 1N970B DIODE G $20

$17 NO G REPR 2 12345678
HIGH ENERGY CORP GIADONE ALEX
500 DOVER RD.
MAYNARD, MA

617,555,6666
.
.
.

DTR>

The following example prints the name of each group next to the name of each
employee in that group:

DTR> FOR DIVISIONS
CON> FOR EMPLOYEES WITHIN CONSISTS_OF
CON> PRINT DIV_NAME, EMP_LAST_NAME

Division Name------- Last Name-----------

LA34 DEVELOPMENT FRATUS
SOFTWARE HUTCHINGS
SOFTWARE IACOBONE
SOFTWARE PASCAL
RM05 DEVELOPMENT PAYNE
ENG BUILD & TEST FRASER
ENG BUILD & TEST HORYMSKI
ENG BUILD & TEST HUMPHRY
ENG BUILD & TEST MASE
ENG BUILD & TEST PARVIA

.

.

.
DTR>

Displaying All the Records in a Domain
If a domain does not contain many records, you may want to display all of the
records. In that case, you use the simplest form of an RSE, the domain name by
itself. Because you want DATATRIEVE to print all of the records in that domain,
you do not use any clauses of the RSE to select specific records, for example:

7–10 Record Selection Expressions

Record Selection Expressions
Displaying All the Records in a Domain

DTR> READY PERSONNEL
DTR> PRINT PERSONNEL

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
00891 EXPERIENCED FRED HOWL F11 9-Apr-1976 $59,594 00012
02943 EXPERIENCED CASS TERRY D98 2-Jan-1980 $29,908 39485
12643 TRAINEE JEFF TASHKENT C82 4-Apr-1981 $32,918 87465
32432 TRAINEE THOMAS SCHWEIK F11 7-Nov-1981 $26,723 00891
34456 TRAINEE HANK MORRISON T32 1-Mar-1982 $30,000 87289
38462 EXPERIENCED BILL SWAY T32 5-May-1980 $54,000 00012
38465 EXPERIENCED JOANNE FREIBURG E46 20-Feb-1980 $23,908 48475
39485 EXPERIENCED DEE TERRICK D98 2-May-1977 $55,829 00012
48475 EXPERIENCED GAIL CASSIDY E46 2-May-1978 $55,407 00012
48573 TRAINEE SY KELLER T32 2-Aug-1981 $31,546 87289
49001 EXPERIENCED DAN ROBERTS C82 7-Jul-1979 $41,395 87465
49843 TRAINEE BART HAMMER D98 4-Aug-1981 $26,392 39485
78923 EXPERIENCED LYDIA HARRISON F11 19-Jun-1979 $40,747 00891
83764 EXPERIENCED JIM MEADER T32 4-Apr-1980 $41,029 87289
84375 EXPERIENCED MARY NALEVO D98 3-Jan-1976 $56,847 39485
87289 EXPERIENCED LOUISE DEPALMA G20 28-Feb-1979 $57,598 00012
87465 EXPERIENCED ANTHONY IACOBONE C82 2-Jan-1973 $58,462 00012
87701 TRAINEE NATHANIEL CHONTZ F11 28-Jan-1982 $24,502 00891
88001 EXPERIENCED DAVID LITELLA G20 11-Nov-1980 $34,933 87289
90342 EXPERIENCED BRUNO DONCHIKOV C82 9-Aug-1978 $35,952 87465
91023 TRAINEE STAN WITTGEN G20 23-Dec-1981 $25,023 87289
99029 EXPERIENCED RANDY PODERESIAN C82 24-May-1979 $33,738 87465

DTR>

After you ready the domain, the PRINT PERSONNEL statement displays all the
records in the PERSONNEL domain. The source for the RSE is PERSONNEL,
the name of the domain.

To indicate clearly that you want the record stream to include all the records, you
can include the keyword ALL before the source of the RSE. Because the ALL is
optional, PRINT ALL PERSONNEL is equivalent to PRINT PERSONNEL.

Limiting the Number of Records in the Record Stream
There are several ways to limit the number of records in the record stream.
One way is to restrict the record stream to the first n records in the domain or
collection. This type of RSE is useful when you know the order of records and the
exact number of records you wish to access.

Record Selection Expressions 7–11

Record Selection Expressions
Limiting the Number of Records in the Record Stream

To specify the number of records in the record stream, type FIRST followed by a
number before typing the source for the RSE, for example:

DTR> PRINT FIRST 5 PERSONNEL

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
00891 EXPERIENCED FRED HOWL F11 9-Apr-1976 $59,594 00012
02943 EXPERIENCED CASS TERRY D98 2-Jan-1980 $29,908 39485
12643 TRAINEE JEFF TASHKENT C82 4-Apr-1981 $32,918 87465
32432 TRAINEE THOMAS SCHWEIK F11 7-Nov-1981 $26,723 00891

DTR>

In this case, the RSE is FIRST 5 PERSONNEL. DATATRIEVE displays the first
five records in PERSONNEL, according to their order in the data file. An RSE
can have the form FIRST n domain-name or FIRST n collection-name. If n is
larger than the number of records in the domain or collection, DATATRIEVE
displays all the records in that source.

Joining Records from Two or More Sources
RSEs let you work with records from different sources. The CROSS clause of the
RSE lets you form record streams by combining data from two or more sources
of records. It forms temporary relationships between records stored in different
data files based on the relationship between field values in the different files.
Joining records with the CROSS clause allows you to treat the data as though it
derived from one data file.

With the CROSS clause, you can perform the following tasks:

• Combine records from several domains, collections, or both.

• Compare and combine records from one domain.

• Substitute a single statement for nested FOR loops when comparing records.

• Flatten hierarchical domains to ease access to the items in hierarchical lists.
The Chapter 13 discusses hierarchical domains.

Using CROSS to Combine Two Domains
Suppose you want to find the prices of individual boats in the YACHTS domain
that belong to boat owners stored in the OWNERS domain. You want to combine
OWNERS records with YACHTS records that have the same MODEL and
MANUFACTURER. The RSE that forms this temporary combination of records
is on the second input line of the following PRINT statement. The group field
TYPE, which includes both MANUFACTURER and MODEL, is the primary key

7–12 Record Selection Expressions

Record Selection Expressions
Joining Records from Two or More Sources

for the YACHT.DAT file. It is defined as NO DUP; as a result, no two boats can
have the same value for TYPE.

DTR> PRINT NAME, TYPE, PRICE OF
CON> YACHTS CROSS OWNERS OVER TYPE

NAME MANUFACTURER MODEL PRICE

STEVE ALBIN VEGA $18,600
HUGH ALBIN VEGA $18,600
JIM C&C CORVETTE
ANN C&C CORVETTE
JIM ISLANDER BAHAMA $6,500
ANN ISLANDER BAHAMA $6,500
STEVE ISLANDER BAHAMA $6,500
HARVEY ISLANDER BAHAMA $6,500
TOM PEARSON 10M
DICK PEARSON 26
JOHN RHODES SWIFTSURE

DTR>

The OVER TYPE phrase takes the place of WITH OWNERS.TYPE =
YACHTS.TYPE. This RSE forms a record stream of 11 records.

Figure 7–1 illustrates the way DATATRIEVE joins records from two domains.
DATATRIEVE reads each record from the first source trying to find matches
on the TYPE field. When DATATRIEVE finds a match, it joins the record from
OWNERS with the record from YACHTS.

Record Selection Expressions 7–13

Record Selection Expressions
Joining Records from Two or More Sources

Figure 7–1 Joining Records from Two Domains

OWNER_REC

TYPEBOAT_NAME

YACHT

TYPE SPECS

OWNERS CROSS YACHTS OVER TYPE

SPECSNAME TYPEBOAT_NAME

NAME

You can use CROSS to join two domains on the same remote node. However, you
cannot join domains on different nodes.

Joining Records from Collections Based on the Same Domain
In many cases, you will want to combine and compare records from the same
domain. For instance, you may want to find those yachts built by different
builders but with the same kind of rigging, or you may want to find any trainees
who make more than experienced employees. In crosses like these, you must
distinguish separate record selection expressions that refer to the same domain.

DATATRIEVE provides several ways to perform such crosses. One way is to use
an alias to rename a domain. This operation temporarily creates two domains
from one so you can ready and join them as if they were two separate sources.

When you use the CROSS clause to form and combine two collections from
the same domain, you must establish context for both collections. In order for
DATATRIEVE to join records from collections based on a single domain, you must
ready the domain twice, once using an alias. Otherwise, DATATRIEVE does not
include records from both sources in the join.

7–14 Record Selection Expressions

Record Selection Expressions
Joining Records from Two or More Sources

The following example shows what happens when you ready YACHTS once,
form two collections, AMERICAN_YACHTS and ALBIN_YACHTS, and join the
collections with a CROSS clause:

DTR> READY YACHTS
DTR> FIND AMERICAN_YACHTS IN YACHTS WITH
CON> BUILDER = "AMERICAN"
[2 records found]
DTR> FIND ALBIN_YACHTS IN YACHTS WITH BUILDER = "ALBIN"
[3 records found]
DTR> LIST AMERICAN_YACHTS CROSS ALBIN_YACHTS OVER RIG

MANUFACTURER : ALBIN
MODEL : 79
RIG : SLOOP
LENGTH_OVER_ALL : 26
DISPLACEMENT : 4,200
BEAM : 10
PRICE : $17,900
MANUFACTURER : ALBIN
MODEL : 79
RIG : SLOOP
LENGTH_OVER_ALL : 26
DISPLACEMENT : 4,200
BEAM : 10
PRICE : $17,900

.

.

.

DATATRIEVE does not include the records with BUILDER = ‘‘AMERICAN’’ in
the join.

If you ready the source domain twice, once under an alias, DATATRIEVE
correctly joins the records from both sources. In the following example,
DATATRIEVE treats each collection as though it originated from a different
domain:

DTR> READY YACHTS, YACHTS AS EXTRA
DTR> FIND AMERICAN_YACHTS IN YACHTS WITH
CON> BUILDER = "AMERICAN"
[2 records found]
DTR> FIND ALBIN_YACHTS IN EXTRA WITH BUILDER = "ALBIN"
[3 records found]
DTR> LIST AMERICAN_YACHTS CROSS ALBIN_YACHTS OVER RIG

Record Selection Expressions 7–15

Record Selection Expressions
Joining Records from Two or More Sources

MANUFACTURER : AMERICAN
MODEL : 26
RIG : SLOOP
LENGTH_OVER_ALL : 26
DISPLACEMENT : 4,000
BEAM : 08
PRICE : $9,895
MANUFACTURER : ALBIN
MODEL : 79
RIG : SLOOP
LENGTH_OVER_ALL : 26
DISPLACEMENT : 4,200
BEAM : 10
PRICE : $17,900

.

.

.

If at any time you forget how you have used an alias, use the SHOW READY
command to see the domain name behind the alias. For example:

DTR> READY YACHTS, YACHTS AS EXTRA
DTR> SHOW READY
Ready sources:

EXTRA: Domain, RMS sequential, protected read
<CDD$TOP.DTR$LIB.DEMO.YACHTS;1>

YACHTS: Domain, RMS sequential, protected read
<CDD$TOP.DTR$LIB.DEMO.YACHTS;1>

No loaded tables.

Using CROSS to Cross a Domain with Itself
Another way to compare and combine records from the same source is to use the
CROSS clause (without aliases), nested FOR loops, or view domains. See the
FOR statement section in the VAX DATATRIEVE Reference Manual for more
information about nested FOR loops. View domains are discussed Chapter 12.
This section explains how to use CROSS to compare records from the same
domain.

Consider the question of how to find the yachts whose manufacturers make boats
with more than one type of rigging. To do this, you need to loop through the
YACHTS domain twice. First, you must search through all yachts and group
them by manufacturer. Then, you must search through these collections to find
those yachts with different riggings.

You can cross and compare the necessary record streams in a single RSE
containing a CROSS clause:

7–16 Record Selection Expressions

Record Selection Expressions
Joining Records from Two or More Sources

DTR> PRINT BUILDER, A.RIG, RIG OF A IN YACHTS CROSS
[Looking for name of domain, collection, or list]
CON> YACHTS OVER BUILDER WITH A.RIG GT RIG

MANUFACTURER RIG RIG

AMERICAN SLOOP MS
CHALLENGER SLOOP KETCH
CHALLENGER SLOOP KETCH
GRAMPIAN SLOOP KETCH

.

.

.
PEARSON SLOOP KETCH

DTR>

The variable A (A IN YACHTS) is called a context variable. A context variable
is a temporary name that identifies a record stream to DATATRIEVE. See
Appendix A for detailed information about how DATATRIEVE establishes and
interprets context variables.

In the previous example, DATATRIEVE establishes two sources, one called
A IN YACHTS and the other called YACHTS. The OVER clause controls the
comparison of records from the two sources. For each record from the source A IN
YACHTS, DATATRIEVE retrieves only the records from the source YACHTS that
have the same BUILDER value as the record from A IN YACHTS. The Boolean
expression WITH A.RIG GT RIG selects from the record stream the pairs of
records that have different values for RIG. The resulting record stream contains
information only about builders who make more than one type of rig.

You could use the Boolean expression WITH A.RIG NE RIG to select the records
with two different RIG values. However, if you use NE instead of GT, you get two
combinations for every pair of records that meet the criteria of the RSE. Using
the GT operator eliminates this duplication.

One advantage this method has over nested FOR loops is that the statement with
the CROSS clause is shorter than an equivalent statement with a FOR loop. (The
two methods take approximately the same amount of time to process.)

Identifying the Records That Meet a Test
Often you are interested in grouping similar records together, regardless of their
physical position in the data file. You can restrict the record stream to those
records that satisfy a specific condition by using the WITH clause of the RSE.
Different types of WITH clauses reflect different types of relationships among the
values of the same field for different records. Records can be grouped if they are
related by the following conditions:

Record Selection Expressions 7–17

Record Selection Expressions
Identifying the Records That Meet a Test

• There is a pattern to the characters comprising the field values

• The field values fall into a specified range

• The value for a field is or is not missing

• A field value can or cannot be found in a table

Comparing Records by Pattern Recognition
You can group records if the characters of a field value match or do not match a
specified value. For example:

DTR> PRINT YACHTS WITH RIG = "MS"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 26-MS MS 26 5,500 08 $18,895
EASTWARD HO MS 24 7,000 09 $15,900
FJORD MS 33 MS 33 14,000 11
LINDSEY 39 MS 39 14,500 12 $35,900
ROGGER FD M/S MS 35 17,600 11

DTR>

This statement causes DATATRIEVE to examine each record of the YACHTS
domain, displaying only those records with the value MS for the RIG field.

When you use EQUAL (or = or EQ), NOT EQUAL (NE), or CONTAINING
(CONT), you can list more than one value expression in the same Boolean
expression. The following queries specify a group of value expressions for
DATATRIEVE to compare with each field value:

DTR> PRINT YACHTS WITH BUILDER = "ALBIN", "ALBERG"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> PRINT YACHTS WITH RIG NE "SLOOP", "KETCH"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

7–18 Record Selection Expressions

Record Selection Expressions
Identifying the Records That Meet a Test

AMERICAN 26-MS MS 26 5,500 08 $18,895
EASTWARD HO MS 24 7,000 09 $15,900
FJORD MS 33 MS 33 14,000 11
LINDSEY 39 MS 39 14,500 12 $35,900
ROGGER FD M/S MS 35 17,600 11

DTR>

Note that the EQUAL (=) and NOT_EQUAL operators are case-sensitive:

DTR> FIND YACHTS WITH BUILDER = "Albin"
[0 records found]
DTR> FIND YACHTS WITH BUILDER NOT_EQUAL "Albin"
[113 records found]

However, the CONT or CONTAINING operator is indifferent to the case of the
letters and searches only for a particular sequence of letters. This operator also
finds matches if there is agreement with a substring derived from the field value.
The CONT operator finds the ‘‘ALBIN’’ records if you specify ‘‘Albin’’ or ‘‘bin’’ (a
three-letter substring) or any other string of letters unique to ALBIN:

DTR> FIND YACHTS WITH BUILDER CONT "Albin"
[3 records found]
DTR> FIND YACHTS WITH BUILDER CONT "bin"
[3 records found]

When you want to find records with a field value starting with a particular
substring, use the STARTING WITH relational operator. For example, you might
want to display data on all builders beginning with the substring ‘‘Al’’:

DTR> PRINT YACHTS WITH BUILDER STARTING WITH "AL"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

Note that the STARTING WITH relational operator is also case-sensitive.

Grouping Records When Values Fall Within a Range
DATATRIEVE lets you use the following relational operators to test if a field
value for a record falls within a specified range:

• GREATER_THAN (>, GT, or AFTER)

• GREATER_EQUAL (GE)

• LESS_THAN (<, LT, or BEFORE)

Record Selection Expressions 7–19

Record Selection Expressions
Identifying the Records That Meet a Test

• LESS_EQUAL (LE)

• BETWEEN (BT)

• AFTER

• BEFORE

The following example uses the GREATER_EQUAL operator:

DTR> PRINT PERSONNEL WITH SALARY GREATER_EQUAL 54000

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
00891 EXPERIENCED FRED HOWL F11 9-Apr-1976 $59,594 00012
38462 EXPERIENCED BILL SWAY T32 5-May-1980 $54,000 00012
39485 EXPERIENCED DEE TERRICK D98 2-May-1977 $55,829 00012
48475 EXPERIENCED GAIL CASSIDY E46 2-May-1978 $55,407 00012
84375 EXPERIENCED MARY NALEVO D98 3-Jan-1976 $56,847 39485
87289 EXPERIENCED LOUISE DEPALMA G20 28-Feb-1979 $57,598 00012
87465 EXPERIENCED ANTHONY IACOBONE C82 2-Jan-1973 $58,462 00012

The BETWEEN operator is the equivalent of the GREATER_EQUAL and LESS_
EQUAL operators combined. It searches for records with field values that
are within the range specified or equal to either of the value expressions that
determine the range.

DTR> PRINT PERSONNEL WITH SALARY BETWEEN 30000 AND 54000

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

12643 TRAINEE JEFF TASHKENT C82 4-Apr-1981 $32,918 87465
34456 TRAINEE HANK MORRISON T32 1-Mar-1982 $30,000 87289
38462 EXPERIENCED BILL SWAY T32 5-May-1980 $54,000 00012
48573 TRAINEE SY KELLER T32 2-Aug-1981 $31,546 87289
49001 EXPERIENCED DAN ROBERTS C82 7-Jul-1979 $41,395 87465
78923 EXPERIENCED LYDIA HARRISON F11 19-Jun-1979 $40,747 00891
83764 EXPERIENCED JIM MEADER T32 4-Apr-1980 $41,029 87289
88001 EXPERIENCED DAVID LITELLA G20 11-Nov-1980 $34,933 87289
90342 EXPERIENCED BRUNO DONCHIKOV C82 9-Aug-1978 $35,952 87465
99029 EXPERIENCED RAINED PODERESIAN C82 24-May-1979 $33,738 87465

Two additional relational operators that separate records according to ranges are
BEFORE and AFTER. These operators are useful for comparing values for date
fields. BEFORE can be used interchangeably with LESS_THAN, and AFTER can
be substituted for GREATER_THAN. For example:

7–20 Record Selection Expressions

Record Selection Expressions
Identifying the Records That Meet a Test

DTR> PRINT PERSONNEL WITH START_DATE
CON> AFTER "1-Jan-1981"

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

12643 TRAINEE JEFF TASHKENT C82 4-Apr-1981 $32,918 87465
32432 TRAINEE THOMAS SCHWEIK F11 7-Nov-1981 $26,723 00891
34456 TRAINEE HANK MORRISON T32 1-Mar-1982 $30,000 87289
48573 TRAINEE SY KELLER T32 2-Aug-1981 $31,546 87289
49843 TRAINEE BART HAMMER D98 4-Aug-1981 $26,392 39485
87701 TRAINEE NATHANIEL CHONTZ F11 28-Jan-1982 $24,502 00891
91023 TRAINEE STAN WITTGEN G20 23-Dec-1981 $25,023 87289

DTR>

This query finds all employees who started after January 1, 1981. If an employee
had started on that date, the record would not have been included.

Grouping Records Based on a MISSING VALUE Clause
If a missing value for a field is defined in the record definition using the MISSING
VALUE IS field definition clause, you can search for records that either have or
do not have the missing value.

For example, in the PERSONNEL domain, a MISSING VALUE clause has been
included in the record definition of the SUP_ID field. That missing value is set
as zero. You can form an RSE that asks DATATRIEVE to search for any records
containing the MISSING VALUE:

DTR> FIND PERSONNEL WITH SUP_ID MISSING
[0 records found]

You can also ask DATATRIEVE to search for records in which a field does not
contain the MISSING VALUE you specified in the record definition:

DTR> FIND PERSONNEL WITH SUP_ID NOT MISSING
[23 records found]
DTR>

Grouping Records by Reference to a Table
Some domains are associated with domain or dictionary tables that refer to one of
the fields in the record. You can form an RSE that causes DATATRIEVE to look
up the field value in the table. If the field value is in the table, DATATRIEVE
includes the record in the record stream. The following example shows a table-
based RSE:

PERSONNEL WITH SUP_ID IN SUP_TABLE

Records with supervisor identification numbers in the SUP_TABLE are included
in the record stream.

Record Selection Expressions 7–21

Record Selection Expressions
Identifying the Records That Meet a Test

Setting Up Multiple Tests with Compound Booleans
To set up multiple tests for records, you can join two or more Boolean expressions
using the Boolean operators (AND, OR, NOT, BUT).

The following examples show the use of Boolean operators. The first query shows
that Bruno Donchikov is the only employee who started before January 1, 1979
and is earning less than $36,000:

DTR> PRINT PERSONNEL WITH START_DATE BEFORE
CON> "1-Jan-1979" AND SALARY LT 36000

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

90342 EXPERIENCED BRUNO DONCHIKOV C82 9-Aug-1978 $35,952 87465

The next query displays data on all employees who are either in the TOP
department or earning more than $54,000:

DTR> PRINT PERSONNEL WITH DEPT = "TOP" OR SALARY > 54000

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
00891 EXPERIENCED FRED HOWL F11 9-Apr-1976 $59,594 00012
39485 EXPERIENCED DEE TERRICK D98 2-May-1977 $55,829 00012
48475 EXPERIENCED GAIL CASSIDY E46 2-May-1978 $55,407 00012
84375 EXPERIENCED MARY NALEVO D98 3-Jan-1976 $56,847 39485
87289 EXPERIENCED LOUISE DEPALMA G20 28-Feb-1979 $57,598 00012
87465 EXPERIENCED ANTHONY IACOBONE C82 2-Jan-1973 $58,462 00012

DTR>

The next query displays data on all employees who earn more than $54,000 but
who also are in the department TOP:

DTR> PRINT PERSONNEL WITH SALARY > 54000 BUT DEPT = "TOP"

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012

DTR>

7–22 Record Selection Expressions

Record Selection Expressions
Finding a Unique Field Value in a Record Stream

Finding a Unique Field Value in a Record Stream
Frequently, a record stream contains several records that have the same values
for a specific field. To find the unique field values (that is, to eliminate duplicate
field values from the record stream), use the REDUCED TO clause of the RSE.

Up to this point, the RSE clauses have let you limit the number of records in the
record stream. The REDUCED TO clause of the RSE lets you limit the fields
within each record in the record stream. For example, if you want to know the
names of all of the departments in the PERSONNEL domain, you can use the
following query:

DTR> FIND PERSONNEL REDUCED TO DEPT
[7 records found]
DTR> PRINT CURRENT

DEPT

C82
D98
E46
F11
G20
T32
TOP

To process the RSE, DATATRIEVE searches the values for DEPT and finds seven
unique values. DATATRIEVE then generates a collection of seven records with
values for the DEPT field only.

Sometimes you want to know all the unique combinations of values for several
fields in the record. To find the combinations of values for DEPT and STATUS,
use the RSE ‘‘PERSONNEL REDUCED TO DEPT, STATUS’’:

DTR> FIND PERSONNEL REDUCED TO DEPT, STATUS
[12 records found]
DTR> PRINT CURRENT

DEPT STATUS

C82 EXPERIENCED
C82 TRAINEE
D98 EXPERIENCED
D98 TRAINEE
E46 EXPERIENCED
F11 EXPERIENCED
F11 TRAINEE
G20 EXPERIENCED
G20 TRAINEE
T32 EXPERIENCED
T32 TRAINEE
TOP EXPERIENCED

Record Selection Expressions 7–23

Record Selection Expressions
Finding a Unique Field Value in a Record Stream

The REDUCED TO clause is a powerful tool for forming relational queries. For
example, the following query uses two RSEs to display the names of all the
supervisors and the departments they manage:

DTR> FOR A IN PERSONNEL REDUCED TO SUP_ID
[Looking for statement]
CON> PRINT DEPT, NAME, ID OF PERSONNEL WITH ID = A.SUP_ID

FIRST LAST
DEPT NAME NAME ID

TOP CHARLOTTE SPIVA 00012
F11 FRED HOWL 00891
D98 DEE TERRICK 39485
E46 GAIL CASSIDY 48475
G20 LOUISE DEPALMA 87289
C82 ANTHONY IACOBONE 87465

DTR>

This query finds every employee who is a supervisor, that is, whose ID equals
one of the values specified by the REDUCED TO clause. The RSE ‘‘A IN
PERSONNEL REDUCED TO SUP_ID’’ asks DATATRIEVE to develop a
record stream (A) with all of the supervisor IDs. Then for each supervisor ID,
DATATRIEVE searches through all the PERSONNEL records again for matches
on the ID field. When DATATRIEVE finds a match, it displays the ID, NAME,
and DEPT of the employee.

To do this, the RSE must include a context variable, A, to refer to the SUP_ID
of the first record stream. The context variable is then used in the Boolean
expression ID = A.SUP_ID.

If you used the Boolean expression ID = SUP_ID, DATATRIEVE would consider
SUP_ID to be a field in the records of the second record stream. DATATRIEVE
would then find all employees whose personal ID is the same as their supervisor’s
ID (that is, all employees who supervise themselves). The value expression
A.SUP_ID unambiguously refers to a field value from records in the first record
stream.

See Appendix A for more information about context variables.

Sorting the Record Stream by Field Values
When you use a PRINT statement to display a record stream, the order of the
records is determined by the keys defined for the data file. However, you can use
the SORTED BY clause of the RSE to impose a different sort order on the record
stream.

7–24 Record Selection Expressions

Record Selection Expressions
Sorting the Record Stream by Field Values

For example, the records in PERSONNEL are already sorted by ID, the primary
key for the data file. However, if you are interested in the employees for each
department, you can sort the records by DEPT.

To break down each department into experienced workers and trainees, specify
STATUS as an additional sort key. The following query sorts the first nine
PERSONNEL records according to DEPT and STATUS:

DTR> PRINT FIRST 9 PERSONNEL SORTED BY DEPT, STATUS

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

87465 EXPERIENCED ANTHONY IACOBONE C82 2-Jan-1973 $58,462 00012
90342 EXPERIENCED BRUNO DONCHIKOV C82 9-Aug-1978 $35,952 87465
99029 EXPERIENCED RAINED PODERESIAN C82 24-May-1979 $33,738 87465
49001 EXPERIENCED DAN ROBERTS C82 7-Jul-1979 $41,395 87465
12643 TRAINEE JEFF TASHKENT C82 4-Apr-1981 $32,918 87465
02943 EXPERIENCED CASS TERRY D98 2-Jan-1980 $29,908 39485
39485 EXPERIENCED DEE TERRICK D98 2-May-1977 $55,829 00012
84375 EXPERIENCED MARY NALEVO D98 3-Jan-1976 $56,847 39485
49843 TRAINEE BART HAMMER D98 4-Aug-1981 $26,392 39485

DTR>

The SORTED BY clause overrides the order of the records in the data file, but it
does not change the physical order of the records in the data file.

You can also sort a record stream according to a value expression based on a field
value. For example, you could sort by the year of START_DATE by using the
value expression FN$YEAR (START_DATE) as a sort key.

DTR> READY PERSONNEL
DTR> FIND FIRST 9 PERSONNEL SORTED BY
CON> FN$YEAR (START_DATE)
DTR> PRINT ALL ID, NAME, SALARY,
CON> (FN$YEAR (START_DATE))
CON> ("EMPLOYED"/"SINCE") USING 9999

FIRST LAST EMPLOYED
ID NAME NAME SALARY SINCE

00012 CHARLOTTE SPIVA $75,892 1972
87465 ANTHONY IACOBONE $58,462 1973
84375 MARY NALEVO $56,847 1976
00891 FRED HOWL $59,594 1976
39485 DEE TERRICK $55,829 1977
48475 GAIL CASSIDY $55,407 1978
90342 BRUNO DONCHIKOV $35,952 1978
99029 RAINED PODERESIAN $33,738 1979
87289 LOUISE DEPALMA $57,598 1979

DTR>

Record Selection Expressions 7–25

Record Selection Expressions
Sorting the Record Stream by Field Values

The SORTED BY clause lets you produce reports with data records divided into
groups. In the last example, using the value expression FN$YEAR (START_
DATE) as a sort key lets you report on employees grouped by the year they were
first employed. For more information on creating such control group reports, see
Chapter 14. For information on DATATRIEVE functions such as FN$YEAR, see
the VAX DATATRIEVE Reference Manual.

7–26 Record Selection Expressions

8
Maintaining Data

This chapter discusses storing, erasing, and modifying records stored in
VAX RMS (Record Management Services) data files. Refer to the following
chapters for advanced topics (the first in this manual, the others all in the
VAX DATATRIEVE Guide to Interfaces):

• Chapter 13—for information on modifying records with repeating fields (fields
defined with an OCCURS clause in the record definition)

• Using Forms with DATATRIEVE—for information on storing data with forms

• Using DATATRIEVE with VAX DBMS—for information on storing data in
VAX DBMS databases

• Using DATATRIEVE with Rdb/VMS, Rdb/ELN, or VIDA—for information on
storing data in relational databases

Using the STORE Statement
You can create a record in the data file with the STORE statement. You can
also use the STORE statement to assign values to fields. When you enter a
STORE statement followed by a domain name, DATATRIEVE prompts you for the
values of each field in the record. If you enter a field list or the USING clause,
DATATRIEVE prompts you to enter only the specified fields. DATATRIEVE does
not prompt you to enter REDEFINES or COMPUTED BY fields.

To store records in a domain, you must first ready it for either write or extend
access. If you choose write access, you can also print and modify records in the
domain. Ready the domain with the shared option if you know other users might
be storing, modifying, or erasing records in that domain at the same time you
are. For example:

Maintaining Data 8–1

Maintaining Data
Using the STORE Statement

DTR> READY EMPLOYEES SHARED WRITE
DTR>

DTR> READY OWNERS WRITE
DTR> STORE OWNERS
Enter NAME: BILL
Enter BOAT_NAME: GLOOM
Enter BUILDER: DOWN EAST
Enter MODEL: 32T
DTR> FIND OWNERS WITH BOAT_NAME = "GLOOM"
[1 record found]
DTR> SELECT; PRINT

BOAT
NAME NAME BUILDER MODEL

BILL GLOOM DOWN EAST 32T

DTR>

When you respond to a DATATRIEVE prompt, you must supply a value, a space,
or a TAB character, not a value expression. You cannot supply the name of a
variable or a field and expect DATATRIEVE to use the value associated with
the variable or the value associated with the field. DATATRIEVE interprets the
name in either case as a character string literal and uses the literal as the value
when making the assignment.

The Effect of TAB on Prompts from STORE Statements
DATATRIEVE takes the following actions when you respond with a TAB and
RETURN to a prompt from a STORE statement:

• If the field has a default value specified in its field definition, DATATRIEVE
uses the default value to initialize the field.

• If the field has a missing value but not a default value specified in its field
definition, DATATRIEVE uses the missing value to initialize the field.

• If the field has a default value and a missing value specified in its field
definition, DATATRIEVE uses the default value to initialize the field.

• If the field has neither a default value nor a missing value specified in its
field definition, DATATRIEVE initializes numeric fields as zero and alphabetic
and alphanumeric fields as spaces.

8–2 Maintaining Data

Maintaining Data
Using Direct Assignments

Using Direct Assignments
In the USING clause you specify only those fields you want to change. When
you store values in the fields of a new record DATATRIEVE uses the values you
assign to initialize the fields specified in the USING clause. To initialize the
fields that you do not include in the USING clause, DATATRIEVE acts as if you
responded with a TAB and RETURN to a prompt from a STORE statement. The
following example shows the different actions DATATRIEVE takes when you
assign a limited number of values with the USING clause of a STORE statement:

DTR> SHOW TEST_1
DOMAIN TEST_1 USING TEST_REC ON TEST1.DAT;

DTR> SHOW TEST_REC
RECORD TEST_REC USING
01 TOP.

03 DEF_VAL1 PIC X(7)
DEFAULT VALUE IS "DEFAULT".

03 MISS_VAL1 PIC X(7)
MISSING VALUE IS "MISSING".

03 BOTH_1 PIC X(7)
DEFAULT VALUE IS "DEFAULT"
MISSING VALUE IS "MISSING".

03 NEITHER_STR PIC X(3).
03 NEITHER_NUM PIC 999.
03 DEF_VAL2 PIC X(7)

DEFAULT VALUE IS "DEFAULT".
03 MISS_VAL2 PIC X(7)

MISSING VALUE IS "MISSING".
03 BOTH_2 PIC X(7)

DEFAULT VALUE IS "DEFAULT"
MISSING VALUE IS "MISSING".

;

DTR> READY TEST_1 WRITE
DTR> STORE TEST_1 USING
[Looking for statement]
CON> BEGIN
[Looking for statement]
CON> DEF_VAL1 = "ONE"
CON> MISS_VAL1 = "TWO"
CON> BOTH_1 = "THREE"
CON> END
DTR> FIND TEST_1
[1 record found]
DTR> PRINT ALL

DEF MISS BOTH NEITHER NEITHER DEF MISS BOTH
VAL1 VAL1 1 STR NUM VAL2 VAL2 2

ONE TWO THREE 000 DEFAULT MISSING DEFAULT

Maintaining Data 8–3

Maintaining Data
Using Direct Assignments

DTR> STORE TEST_1
Enter DEF_VAL1: FOUR
Enter MISS_VAL1: FIVE
Enter BOTH_1: SIX
Enter NEITHER_STR: TAB

Enter NEITHER_NUM: TAB

Enter DEF_VAL2: TAB

Enter MISS_VAL2: TAB

Enter BOTH_2: TAB

DTR> FIND TEST_1;SELECT LAST; PRINT

DEF MISS BOTH NEITHER NEITHER DEF MISS BOTH
VAL1 VAL1 1 STR NUM VAL2 VAL2 2

FOUR FIVE SIX 000 DEFAULT MISSING DEFAULT

DTR>

Using DATATRIEVE Prompts
There are two ways you can get DATATRIEVE to prompt you for values:

• Using forms of the MODIFY statement that do not require a USING clause

• Including a prompting value expression in the Assignment statements within
the USING clause (for example, USING LAST_NAME = *.‘‘last name’’)

Having DATATRIEVE prompt you to enter values has the following advantages:

• You do not have to type in all the Assignment statements.

• If you enter an invalid value or one that is too large for the field,
DATATRIEVE displays an error message and reprompts so you can try
again.

• You do not have to enter nonnumeric values in quotation marks. In fact,
DATATRIEVE treats quotation marks as part of the value, so you should not
use them unless they are actually part of the field value.

• If you press TAB and then the RETURN key in response to a prompt for a
field value, DATATRIEVE leaves the value of the field unchanged, regardless
of any DEFAULT or MISSING values defined for the field. This can be useful
if you are prompted to enter values for fields you decide not to change.

• If you respond with CTRL/Z to a prompt for a field value, DATATRIEVE does
not change any field in the record you are currently changing. This is useful
if you realize you made a mistake entering earlier values for that record.

Remember, however, that entering CTRL/Z does not affect records you have
finished modifying, only the one you are working with when you enter
CTRL/Z. CTRL/Z also aborts the statement being executed.

8–4 Maintaining Data

Maintaining Data
Using DATATRIEVE Prompts

Using prompting value expressions within the USING clause of a MODIFY
statement is a very flexible method for assigning values to fields.

In the following example, the double asterisk prompt means that the user is
prompted to enter one field value that applies to all the records in the collection.
The single asterisk prompt means that the user is prompted to enter a field value
for each record:

DTR> SET NO PROMPT
DTR> READY YACHTS MODIFY
DTR> FIND YACHTS WITH BEAM = 0
[5 records found]
DTR> FOR CURRENT MODIFY USING
CON> BEGIN
CON> PRINT SPECS
CON> LOA = **.LOA
CON> DISP = *.WEIGHT
CON> BEAM = *.BEAM
CON> PRICE = PRICE * 1.1
CON> END

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

SLOOP 32 9,500 00
Enter LOA: 33
Enter WEIGHT: 12000
Enter BEAM: 10
SLOOP 32 11,000 00 $29,500
Enter WEIGHT: TAB

Enter BEAM: 11
SLOOP 31 13,600 00 $32,500
Enter WEIGHT: 15000
Enter BEAM: 12
SLOOP 35 23,200 00
Enter WEIGHT: TAB

Enter BEAM: 13
SLOOP 32 14,900 00 $34,480
Enter WEIGHT: TAB

Enter BEAM: 9
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

METALMAST GALAXY SLOOP 33 12,000 10
O’DAY 32 SLOOP 33 11,000 11 $32,450
RYDER S. CROSS SLOOP 33 15,000 12 $35,750
TA CHIAO FANTASIA SLOOP 33 23,200 13
WRIGHT SEAWIND II SLOOP 33 14,900 09 $37,928

Maintaining Data 8–5

Maintaining Data
Using DATATRIEVE Prompts

DTR>

You must respond to a prompt with a value rather than a value expression. For
example, if you want to increase a price field by ten percent and let DATATRIEVE
do the calculation, you must use direct assignment.

DATATRIEVE will not let you enter PRICE * 1.1 in response to a prompt. If
you are writing a procedure that needs this flexibility, you can prompt for part
of the value expression. For example, you can prompt for the price increase and
include the arithmetic calculation of the new value for PRICE in your Assignment
statement (PRICE = PRICE * *.‘‘price increase’’).

In the USING clauses of STORE, you can use prompting value expressions to
control the input to records in data files. You can use two forms of prompting
value expressions: *.prompt and **.prompt. These value expressions let you
control DATATRIEVE prompts for input.

Both forms of prompting value expressions require you to respond by entering
values, not value expressions. You cannot enter the names of variables or fields,
and you cannot enter expressions from DATATRIEVE tables or arithmetic,
statistical, or concatenated expressions. You must enter numeric or character
string literals appropriate to the data type of the field for which you are supplying
a value. Do not enclose character string literals in quotation marks when you
supply a value to a prompt. If you do, DATATRIEVE treats the quotation marks
as part of the value.

If a *.prompt is part of a USING clause in a STORE statement, DATATRIEVE
prompts you for a value each time it executes the statement. If the STORE
statement is in a REPEAT, FOR, or WHILE loop, DATATRIEVE prompts you
each time it executes the loop.

With the **.prompt, DATATRIEVE prompts you only once, regardless of how
many times it executes the loop. The **.prompt is useful for assigning one value
to a number of records when you have to assign unique values to other fields in
each of those records.

Modifying Data
When you modify records, you must ready the associated domain for modify or
write access. Then perform the following five steps:

• Decide on a record source (domain or collection).

• Specify the records you want from the record source.

• Specify the fields whose values you want to change.

• Assign new values to those fields.

8–6 Maintaining Data

Maintaining Data
Modifying Data

• Optionally, specify any validation requirements that are not part of the record
definition.

The following example shows you how to change one DEPT value in the
PERSONNEL domain. In this case, you work with records directly from the
domain and change all records containing the value. Note that you specify the
record source and the record you want in the MODIFY statement itself:

DTR> READY PERSONNEL MODIFY
DTR> PRINT LAST_NAME, DEPT OF PERSONNEL WITH
DEPT = "F11"

LAST
NAME DEPT

HOWL F11
SCHWEIK F11
HARRISON F11
CHONTZ F11

DTR> MODIFY PERSONNEL - 1
CON> WITH DEPT = "F11" 2
CON> USING DEPT = 3
CON> "F12" 4
DTR>
DTR> PRINT LAST_NAME, DEPT OF PERSONNEL WITH
DEPT = "F12"

LAST
NAME DEPT

HOWL F12
SCHWEIK F12
HARRISON F12
CHONTZ F12

1 Specifies the record source

2 Selects records

3 Specifies the field

4 Assigns a value

Note that you cannot modify the value of an indexed key field if either of the
following conditions exist:

• The indexed field is the primary key.

• The indexed field is an alternate key defined with the NO CHANGE attribute.

Maintaining Data 8–7

Maintaining Data
Modifying Records in the CURRENT Collection

Modifying Records in the CURRENT Collection
Forming a collection and then using that collection as the record source for a
modify operation is generally easier than trying to include the record selection
syntax in the same DATATRIEVE statement that specifies fields and assigns
values. The FIND statement forming the collection specifies the record source
and does most of the work to select the records you want.

You can then use PRINT ALL to check the contents of the entire collection before
and after the modify operation. You can also select a record and then use PRINT
to display the same information for a particular record.

Note

While it may be easier to use a collection as a record source,
DATATRIEVE generally works more slowly when retrieving records from
collections. For more information on optimizing DATATRIEVE queries,
see Chapter 22. See Chapter 11 for a discussion on disadvantages of
using collections.

Modifying a Selected Record in the CURRENT Collection
After you form a collection and display the records it contains, use the SELECT
statement to pick the record to be modified. SELECT 1 specifies the first record
displayed, SELECT 2 specifies the second record displayed, and so forth. After
you enter your SELECT statement, print the results to make sure you have
the record you want. If you discover you picked the wrong record, you can
enter SELECT NONE and reenter a SELECT statement with a corrected record
occurrence value.

You have a choice of the following formats to modify the selected record:

MODIFY [VERIFY [USING] validation-statement]

DATATRIEVE prompts you once for each elementary field in the record definition
and changes the field values to the ones you enter. You can simply type MODIFY
and press the RETURN key, and DATATRIEVE gives you the opportunity to
change each field in the selected record.

MODIFY field [,...] [VERIFY [USING] validation-statement]

8–8 Maintaining Data

Maintaining Data
Modifying Records in the CURRENT Collection

DATATRIEVE prompts you once for each elementary field that you name and
once for each elementary field that is subordinate to each group field you name.
The values of those fields are changed to the ones you enter. For example, if
you want to change only LAST_NAME and ZIP in a PERSONNEL record, you
can enter MODIFY LAST_NAME, ZIP. Then DATATRIEVE prompts you only for
those fields.

MODIFY USING assignment-statement

[VERIFY [USING] validation-statement]

The Assignment statement in the USING clause may be a series of PRINT and
Assignment statements that you include in a BEGIN-END block.

If you name an elementary field in an Assignment statement, DATATRIEVE
changes its value to the one you specify. For example:

DTR> MODIFY USING FIRST_NAME = "CASSANDRA"
DTR>

If you name a group field, DATATRIEVE gives you an error message stating
‘‘illegal assignment to a group field.’’

You are prompted to enter a value for a field only when the Assignment statement
contains a prompting value expression for the field value.

FIND list-field

SELECT n

MODIFY item-field [VERIFY [USING] validation-statement]

Use this format to modify fields subordinate to a field defined with an OCCURS
clause in a record definition or a view definition. Chapter 13 describes this format
in detail.

MODIFY [ALL] list-item OF list

Use this format to modify all occurrences of fields subordinate to a field defined
with an OCCURS clause in a record definition or a view definition. Chapter 13
describes this format in detail.

Modifying All Records in the CURRENT Collection
If you want to change values in all the records of the CURRENT collection, you
have the choice of the following formats:

MODIFY ALL [VERIFY [USING] validation-statement]

Maintaining Data 8–9

Maintaining Data
Modifying Records in the CURRENT Collection

DATATRIEVE prompts you once for each field in the record definition. The values
you enter for fields change those fields in every record in the collection. Use this
format with care when your collection contains more than one record. Rarely do
you want to make every field in every record identical.

MODIFY ALL field [, . . .]

[VERIFY [USING] validation-statement]

DATATRIEVE prompts you once for each elementary item specified or implied by
the field name or names you specify. The values you enter for fields change those
fields in every record in the collection.

Use this format with care when the CURRENT collection contains more than one
record. If you enter the statement MODIFY ALL LAST_NAME and respond to
the DATATRIEVE prompt by entering SMITH, every record in the CURRENT
collection then contains SMITH in the LAST_NAME field. You use this format
only to change values that you want to be identical among records in the
collection. For example, you might want to modify a field like SUPERVISOR_ID
in a collection of records for employees who share the same supervisor.

MODIFY ALL USING assignment-statement

[VERIFY [USING] validation-statement]

The Assignment statement in this format can be a series of PRINT and
Assignment statements in a BEGIN-END block.

If you name an elementary field in an Assignment statement, DATATRIEVE
changes its value in every record in the collection. If you name a group field,
DATATRIEVE changes the value of each elementary field in the group in every
record in the collection.

You are prompted to enter a value for a field only when the Assignment statement
contains a prompting value expression.

This format of the MODIFY statement has the same effect as the preceding
format. For example, if you enter the statement MODIFY ALL USING LAST_
NAME = ‘‘SMITH’’, every record in the CURRENT collection contains SMITH in
the LAST_NAME field.

8–10 Maintaining Data

Maintaining Data
Modifying All Records in a Record Selection Expression

Modifying All Records in a Record Selection Expression
Modifying Records in the CURRENT Collection showed that when you work with
the CURRENT collection or a selected record, the MODIFY statement does not
need to contain a record source or to identify which particular records to modify.
You can display records and change values using relatively few keystrokes.

When you do not want the MODIFY statement to assume a CURRENT collection
or a selected record for the modify operation, you have to specify both the
record source and exactly which records you want to change as an RSE. You
must include the RSE either in the MODIFY statement itself or in the FOR
statement component of a compound statement that also includes the MODIFY
statement. If you plan for a display of records before and after the modify
operation (definitely a good idea), you must include PRINT statements as well.

Modifying records in an RSE is the best method to use when writing procedures.
Usually procedures contain compound statements, and you cannot use the
DATATRIEVE statements that create and manipulate collections in compound
statements. Writing compound statements that modify data is not difficult if you
keep in mind the logical steps to a modify operation and make sure you include
all of them in the statements you form.

You must first ready a domain with either modify or write access before you can
modify any records it contains. Use the shared option if you want to let other
users store, erase, or modify records in the domain at the same time you are
accessing it.

There are three methods you can use to modify records. You can modify:

• All of the records in the CURRENT collection

• A selected record in a collection

• All of the records in an RSE

Using any of these methods, you can specify the fields you want to change. If
you do not specify the fields to be changed, DATATRIEVE prompts you for all the
record fields.

Note

Use care when modifying record fields pulled from more than one domain,
when you are modifying records in a view based on more than one domain
or in an RSE containing a CROSS clause. In these cases, if the field you
are changing is stored in more than one data file, you are updating only
one of those files for each field value you enter.

Maintaining Data 8–11

Maintaining Data
Modifying All Records in a Record Selection Expression

In the sample personnel system used in this book, the domains are set
up to minimize duplicate fields. If, however, you are modifying a field
that needs to be changed in nine domains, you cannot escape entering the
change nine times without some fairly complex statements.

Example 8–1 illustrates how to modify records using a collection.

Example 8–1 Modifying Records by First Creating a Collection
DTR> ! Change the value of the field CONTACT_NAME in one record
DTR> ! from the COLLEGES domain.
DTR> !
DTR> READY COLLEGES MODIFY
DTR> FIND COLLEGES WITH CONTACT_NAME CONTAINING "LYNCH"
[2 records found]
DTR> LIST ALL

COLLEGE_CODE : QUIN
COLLEGE_NAME : Quinnipiac College
CONTACT_NAME : George C. Lynch
ADDRESS_DATA :
STREET :
TOWN : Hamden
STATE : NH
ZIP : 06152

COLLEGE_CODE : STAN
COLLEGE_NAME : Stanford Univ.
CONTACT_NAME : Carol Lynch
ADDRESS_DATA :
STREET :
TOWN : Stanford
STATE : CA
ZIP :
DTR> !
DTR> ! Select the record to be modified from the collection.
DTR> !
DTR> SELECT 1
DTR> !

(continued on next page)

8–12 Maintaining Data

Maintaining Data
Modifying All Records in a Record Selection Expression

Example 8–1 (Cont.) Modifying Records by First Creating a Collection

DTR> ! If you want to be prompted to enter a value for every field
DTR> ! in the record, simply enter the keyword MODIFY. If you
DTR> ! want to be prompted to enter values only for specific fields,
DTR> ! follow the keyword MODIFY with the names of those fields.
DTR> ! Remember to include a comma between field names if there is
DTR> ! more than one of them.
DTR> !
DTR> MODIFY CONTACT_NAME
Enter CONTACT_NAME: Hayward C. Dublin
DTR> LIST

COLLEGE_CODE : QUIN
COLLEGE_NAME : Quinnipiac College
CONTACT_NAME : Hayward C. Dublin
ADDRESS_DATA :
STREET :
TOWN : Hamden
STATE : NH
ZIP : 06152

DTR> !
DTR> ! Create a collection in which all records should have the
DTR> ! same values for a field. In the following example, two
DTR> ! JOB_HISTORY records have missing values in the SUPERVISOR_ID
DTR> ! field. Both records are for employees who have the same
DTR> ! supervisor, and you want to enter one value for DATATRIEVE
DTR> ! to store in both records.
DTR> !
DTR> FIND JOB_HISTORY WITH
CON> DEPARTMENT_CODE = "ELEL" AND JOB_CODE = "EENG" AND
CON> JOB_END MISSING
[2 records found]
DTR> PRINT ALL

EMPLOYEE JOB JOB JOB DEPARTMENT SUPERVISOR
ID CODE START END CODE ID

00238 EENG 2-Feb-1982 ELEL
00428 EENG 10-Jan-1982 ELEL

DTR> !
DTR> ! In this case, enter MODIFY ALL followed by the field name or
DTR> ! names you want to change. DATATRIEVE prompts you once for
DTR> ! each field you specify and changes all the records in the
DTR> ! collection.
DTR> !
DTR> MODIFY ALL SUPERVISOR_ID
Enter SUPERVISOR_ID: 00356
DTR> PRINT ALL

(continued on next page)

Maintaining Data 8–13

Maintaining Data
Modifying All Records in a Record Selection Expression

Example 8–1 (Cont.) Modifying Records by First Creating a Collection

EMPLOYEE JOB JOB JOB DEPARTMENT SUPERVISOR
ID CODE START END CODE ID

00238 EENG 2-Feb-1982 ELEL 00356
00428 EENG 10-Jan-1982 ELEL 00356

If you modify records in collections, be careful when using the keyword ALL.
As shown in Example 8–1, you enter MODIFY ALL only when you want all the
records in the collection to contain identical values in one or more fields. If you
include an RSE in a MODIFY statement (MODIFY ... OF EMPLOYEES, for
example), you get the same results for that RSE as you do for collections with
MODIFY ALL—you are asking DATATRIEVE to store identical values in all the
records.

If you want to put different field values in each collection record (without selecting
each record in turn), you must set up a FOR loop. In the following sample
statement, the keyword PRINT allows you to look at each record before and after
you enter changes. Depending on what you want to display and change, you can
specify field names following the keywords PRINT and MODIFY:

FOR CURRENT
BEGIN

PRINT
MODIFY
PRINT

END

Example 8–2 modifies records directly from a domain rather than a collection
using a FOR statement RSE.

Example 8–2 Modifying Records in a FOR Statement RSE

(continued on next page)

8–14 Maintaining Data

Maintaining Data
Modifying All Records in a Record Selection Expression

Example 8–2 (Cont.) Modifying Records in a FOR Statement RSE
DTR> SHOW CHANGE_SUPERS
!
! This procedure allows a user to change supervisor IDs for one
! or more current records in JOB_HISTORY. The user is prompted
! to enter the outdated supervisor ID and the department code.
! DATATRIEVE then displays a record, prompts the user to enter
! a new supervisor ID, and displays the changed record. The user
! is returned to the DTR> prompt if DATATRIEVE cannot find any
! records that meet the requirements in the FOR statement RSE.
!
PROCEDURE CHANGE_SUPERS
READY JOB_HISTORY SHARED MODIFY
FOR JOB_HISTORY WITH SUPERVISOR_ID = *."old supervisor" AND
DEPARTMENT_CODE = *."department code" AND JOB_END MISSING
BEGIN

PRINT EMPLOYEE_ID, EMPLOYEE_ID VIA WHO_IS_IT, SUPERVISOR_ID
MODIFY USING SUPERVISOR_ID = *."new supervisor"
PRINT EMPLOYEE_ID, EMPLOYEE_ID VIA WHO_IS_IT, SUPERVISOR_ID
PRINT SKIP

END
FINISH JOB_HISTORY
END_PROCEDURE

DTR> :CHANGE_SUPERS
Enter department code: SALE
Enter old supervisor: 00200

EMPLOYEE SUPERVISOR
ID EMPLOYEE NAME ID

00208 Sciacca Joe V 00200
Enter new supervisor: 00504

EMPLOYEE SUPERVISOR
ID EMPLOYEE NAME ID

00208 Sciacca Joe V 00504

00233 Mathias Susan N 00200
Enter new supervisor: 00497
00233 Mathias Susan N 00497

. . .

. . .

. . .

Maintaining Data 8–15

Maintaining Data
Modifying All Records in a Record Selection Expression

Modifying Records Controlled by a FOR Statement
The FOR statement lets you modify each record in a record stream. The FOR
statement creates a stream of records that are processed, one by one, by the next
statement. In a modify operation, that next statement can be either a MODIFY
statement or a BEGIN-END block that includes a MODIFY statement.

For example, if you enter FOR YACHTS WITH BUILDER = ‘‘ALBIN’’
MODIFY, you can change every field in every record that specifies Albin as
the manufacturer.

If you enter FOR YACHTS WITH BUILDER = ‘‘ALBIN’’ MODIFY PRICE, for
example, you can change only the price field in every record that specifies Albin
as the manufacturer.

If you enter FOR PERSONNEL WITH ID = EMPLOYEE_VARIABLE MODIFY
USING, for example, you can change values in every record for as many fields
as have Assignment statements. The statement in the USING clause can be a
BEGIN-END block that contains the PRINT and Assignment statements you
want DATATRIEVE to apply to each record in the record stream. DATATRIEVE
does not prompt for values unless you include prompting value expressions in the
Assignment statements.

The following statement uses this format:

FOR PERSONNEL WITH ID = EMPLOYEE_VARIABLE
MODIFY USING
BEGIN

PRINT ID, EMPLOYEE_NAME, DEPT, SUP_ID, SKIP
FIRST_NAME = *."first name (all caps) or TAB character"
LAST_NAME = *."last name (all caps) or TAB character"
DEPT = *."department code (all caps) or TAB character"
SUP_ID = *."supervisor ID number or TAB character"
PRINT SKIP, ID, EMPLOYEE_NAME, DEPT, SUP_ID

END

The FOR rse limits the record stream to the record that has an ID field matching
the contents of a variable called EMPLOYEE_VARIABLE. The statements inside
the BEGIN-END block within the USING clause do the following:

Print the values of the fields that are being changed

Prompt the user to modify only certain fields of the record

Print the new values of the fields that were modified

8–16 Maintaining Data

Maintaining Data
Modifying All Records in a Record Selection Expression

The procedure FOR_RSE_MODIFY, which includes this statement, uses
EMPLOYEE_VARIABLE to check that the user entered an existing employee
ID:

DTR> SHOW FOR_RSE_MODIFY
PROCEDURE FOR_RSE_MODIFY
SET ABORT
DECLARE EMPLOYEE_VARIABLE PIC 9(5).
EMPLOYEE_VARIABLE = *."employee ID number"
WHILE NOT ANY PERSONNEL WITH ID = EMPLOYEE_VARIABLE
BEGIN

PRINT SKIP
PRINT "Invalid employee number."
DECLARE GET_OUT PIC X(5).
GET_OUT = *."any letter if you want to stop, TAB to try again"
IF GET_OUT NOT = "" THEN
ABORT "Exit from procedure" ELSE
EMPLOYEE_VARIABLE = *."employee ID number"

END
READY PERSONNEL MODIFY
SET NO ABORT
FOR PERSONNEL WITH ID = EMPLOYEE_VARIABLE
MODIFY USING
BEGIN

PRINT ID, EMPLOYEE_NAME, DEPT, SUP_ID, SKIP
FIRST_NAME = *."first name (all caps) or TAB character"
LAST_NAME = *."last name (all caps) or TAB character"
DEPT = *."department code (all caps) or TAB character"
SUP_ID = *."supervisor ID number or TAB character"
PRINT SKIP, ID, EMPLOYEE_NAME, DEPT, SUP_ID

END
FINISH PERSONNEL
END_PROCEDURE

DTR>

See Chapter 10 for information on procedures, Chapter 9 for information on
compound statements, and Chapter 13 for more information on using hierarchies.

If you include the CURRENT collection as the RSE in a FOR statement, you can
display all the records that are changed by entering PRINT ALL. This is useful
when the RSE that gathers the records to be modified can no longer locate them
after the modify operation.

Refer to Chapter 22 for more detailed information about improving DATATRIEVE
response time.

Maintaining Data 8–17

Maintaining Data
Modifying All Records in a Record Selection Expression

Including the RSE Within the MODIFY Statement
Including the records to be modified as part of the MODIFY statement is
somewhat trickier than specifying the same information in FIND, FIND and
SELECT, or FOR statements. Depending on what you want to do, you must
specify the RSE immediately after the keyword MODIFY (or MODIFY ALL), or
you must write the RSE at the end of the statement. It is, therefore, easier to
make syntax errors when you try to include an RSE in the MODIFY statement.

You should not include an RSE within a MODIFY statement that changes
hierarchical records (records that contain a list field or records from a view
domain that accesses more than one simple domain). If you do, DATATRIEVE
may trap you in an endless loop of ‘‘Re-enter’’ prompts for the repeating field
values.

You cannot specify different field values for each record in the MODIFY statement
RSE as you can when you modify records using a FOR statement RSE. The
MODIFY statement RSE means you supply only one value for each elementary
field you specify by name or imply with a group field name. The value you enter
applies to every record. Therefore, make sure you specify records that should
contain identical values for the field or fields you are changing.

Keeping these cautions in mind, you can choose among the following formats:

� MODIFY [ALL] [VERIFY [USING] validation-statement] OF rse

Use with care. If you simply enter a domain name, you can make every record
in the domain identical.

� MODIFY [ALL] field [, . . .] [VERIFY [USING] validation-statement] OF rse

� MODIFY [ALL] rse USING assignment-statement [VERIFY [USING] validation-statement]

� MODIFY [ALL] USING assignment-statement [VERIFY [USING] validation-statement] OF rse

The Assignment statement in these formats can also be a series of Assignment
and PRINT statements in a BEGIN-END block.

Ensuring Valid Values
DATATRIEVE always checks the record definition that applies to the record you
are changing to ensure that new field values have the correct length and data
type. It also applies any VALID IF clauses in the record definition to the changed
field values. DATATRIEVE displays an error message and leaves the existing
field value untouched if a modify operation tries to enter a value that the record
definition does not allow.

8–18 Maintaining Data

Maintaining Data
Ensuring Valid Values

The VERIFY clause of the MODIFY statement lets you supplement the validation
requirements in the record definition. It can also help you enforce security
measures for modification procedures. The validation statement can be a series of
statements within a BEGIN-END block.

The VERIFY clause in the following example ensures that the first and last
names entered for an employee begin with a capital letter:

DTR> FOR PERSONNEL WITH
CON> ID = *."ID number for record being changed"
CON> MODIFY VERIFY USING
CON> BEGIN
CON> WHILE FIRST_NAME NOT BT "A" AND "Z"
CON> BEGIN
CON> PRINT SKIP, "Invalid first name"
CON> FIRST_NAME = *."first name using CAPS"
CON> END
CON> WHILE LAST_NAME NOT BT "A" AND "Z"
CON> BEGIN
CON> PRINT SKIP, "Invalid last name"
CON> LAST_NAME = *."last name using CAPS"
CON> END

.

.

.

CON> END
DTR>

Note that DATATRIEVE does all verification only after all the data is entered for
the record being modified.

Erasing Records
You must first ready a domain with write access before you can erase any records
it contains.

There are three ways you can erase records:

• A selected record in a collection

• All of the records in the CURRENT collection

• All of the records in an RSE

You cannot erase records in a view based on more than one domain or records
specified by an RSE that contains a CROSS clause. Although you can erase
records in a view that contains a subset of fields from more than one domain,
remember that you are erasing all the fields in those records, not just the ones
you see in the view. The same holds true for a collection record that results from
a REDUCED TO clause or a REDUCE statement.

Maintaining Data 8–19

Maintaining Data
Ensuring Valid Values

If you want to delete only one or a few records, it is easiest to isolate records in a
collection. Example 8–3 illustrates how to erase records using a collection.

Example 8–3 Erasing Records by First Creating a Collection
DTR> ! Erase one of the DEGREES records for the employee with
DTR> ! ID number 00183.
DTR> !
DTR> READY DEGREES SHARED WRITE
DTR> FIND DEGREES WITH EMPLOYEE_ID = "00183"
[5 records found]
DTR> PRINT
No record selected, printing whole collection.

EMPLOYEE COLLEGE DEGREE DATE
ID CODE DEGREE FIELD GIVEN

00183 Associates Arts 3-Jul-1964
00183 Masters Elect. Engrg. 16-Aug-1965
00183 Masters Applied Math 3-Jul-1965
00183 Bachelors Arts 14-Jun-1965
00183 MIT Ph.D. Elect. Engrg. 20-May-1965

DTR> !
DTR> ! The first record in the collection is the one to be erased.
DTR> !
DTR> SELECT 1
DTR> PRINT

EMPLOYEE COLLEGE DEGREE DATE
ID CODE DEGREE FIELD GIVEN

00183 Associates Arts 3-Jul-1964

DTR> ERASE
DTR> !
DTR> ! The SHOW CURRENT command indicates the selected record
DTR> ! has been erased. Remember, however, the address pointer
DTR> ! value for that record is still part of the collection.
DTR> ! Therefore, the value for "number of records" in the
DTR> ! collection always stays the same, no matter how many
DTR> ! records you erase from the data file.
DTR> !
DTR> SHOW CURRENT
Collection CURRENT

Domain: DEGREES
Number of Records: 5
Selected Record: 1 (Erased)

DTR> PRINT ALL

(continued on next page)

8–20 Maintaining Data

Maintaining Data
Ensuring Valid Values

Example 8–3 (Cont.) Erasing Records by First Creating a Collection

EMPLOYEE COLLEGE DEGREE DATE
ID CODE DEGREE FIELD GIVEN

00183 Masters Elect. Engrg. 16-Aug-1965
00183 Masters Applied Math 3-Jul-1965
00183 Bachelors Arts 14-Jun-1965
00183 MIT Ph.D. Elect. Engrg. 20-May-1965

DTR> !
DTR> ! The first record in the PRINT ALL display is still
DTR> ! ordinal position 2 in the collection. Ordinal position 1
DTR> ! still belongs to the erased record. This is important to
DTR> ! remember if you are working with collections from which
DTR> ! you have erased records. If your SELECT statement
DTR> ! specifies an ordinal position that belongs to an erased
DTR> ! record, DATATRIEVE tells you it cannot find the record.
DTR> !
DTR> SELECT 1
Selected record not found.
DTR> !
DTR> ! If you want to erase all the records in the CURRENT
DTR> ! collection, simply enter ERASE ALL.
DTR> !
DTR> FIND DEGREES WITH EMPLOYEE_ID = "00489"
[3 records found]
DTR> PRINT
No record selected, printing whole collection.

EMPLOYEE COLLEGE DEGREE DATE
ID CODE DEGREE FIELD GIVEN

00489 Bachelors Arts 11-Jun-1983
00489 Masters Elect. Engrg. 9-Mar-1983
00489 MIT Masters Applied Math 11-Jun-1983

DTR> ERASE ALL
DTR> PRINT ALL
DTR>

Maintaining Data 8–21

9
Compound Statements

There are two kinds of statements: simple statements and compound statements.
While a simple statement specifies an elementary operation, a compound
statement contains one or more subordinate statements and a control structure.

If you begin a statement with any of the following keywords, DATATRIEVE
recognizes it as a compound statement:

• REPEAT

• FOR

• BEGIN

• IF

• CHOICE

• WHILE

When you use the keyword THEN to join two statements, you also create a
compound statement.

You use compound statements to process one or more records in an RSE.

The following template illustrates a compound statement. By substituting a
phrase for a real statement, the templates make it easier for you to focus on
which statements are subordinate to others.

IF this-condition-is-true THEN BEGIN Do-task-1 ... Do-task-2 And-finally ... END ELSE
Do-task-10 ...

As shown in the template, a compound statement can contain other compound
statements. The template uses indentation to show which statements are
contained in others. DATATRIEVE does not require indentation, but you will find
that compound statements are easier to read if you include it.

Compound Statements 9–1

Compound Statements

Note

Even if compound statements can contain other compound statements,
they can never contain commands or FIND, SELECT, DROP, SORT,
or REDUCE statements. DATATRIEVE accepts these only as simple
statements.

The following sections discuss each type of compound statement.

Using the REPEAT Statement
A REPEAT statement causes DATATRIEVE to execute the next statement a
specified number of times. In response to the following statement, DATATRIEVE
prompts you to enter field values for each of five records:

REPEAT 5 STORE EMPLOYEES

The number of times DATATRIEVE executes the subordinate statement can be
specified as an expression rather than an integer; for example, REPEAT (FIELD1
* 4). If you use an expression, it must result in a positive whole number when
DATATRIEVE evaluates it.

Using the FOR Statement
A FOR statement causes DATATRIEVE to execute the next statement on each
of the records in an RSE. The following FOR statement causes DATATRIEVE to
print each of the records in DEGREES that contain PRDU in the COLLEGE_
CODE field:

FOR DEGREES WITH COLLEGE_CODE = "PRDU"
PRINT

Using a BEGIN-END Block
A BEGIN-END statement (also called a BEGIN-END block) causes DATATRIEVE
to treat several statements as one statement. A BEGIN-END block defines the
set of statements that must execute for each record in an RSE or each time a
condition is true:

FOR EMPLOYEES WITH EMPLOYEE_ID = *."employee number"
BEGIN

LIST EMPLOYEE_ID, EMPLOYEE_NAME, EMPLOYEE_ADDRESS
MODIFY EMPLOYEE_NAME, EMPLOYEE_ADDRESS
LIST EMPLOYEE_ID, EMPLOYEE_NAME, EMPLOYEE_ADDRESS

END

9–2 Compound Statements

Compound Statements
Using a BEGIN-END Block

A BEGIN-END block inside a REPEAT statement causes DATATRIEVE to
repeat an entire sequence of statements. If you want to store numerous records
using selected fields, you can use a BEGIN-END block to repeat the sequence of
prompting statements:

REPEAT 20 STORE JOBS USING
BEGIN

JOB_CODE = *.JOB_CODE
JOB_TITLE = *.JOB_TITLE

END

Using the Keyword THEN
The keyword THEN joins two statements; it is most useful when you have two or
three simple operations to perform in a loop:

FOR JOB_HISTORY WITH EMPLOYEE_ID = "00205"
PRINT THEN MODIFY THEN PRINT

Using the WHILE Statement
A WHILE statement tells DATATRIEVE to repeat the subordinate statement as
long as a specified condition is true.

The condition specified in the WHILE statement takes the form of a Boolean
(relational) expression. DATATRIEVE Evaluation of Compound Boolean
Expressions tells you more about creating simple and complex Boolean
expressions and using variables. In the following example NUM LE 4 is a
Boolean expression.

DTR> DECLARE NUM PIC 99.
DTR> DECLARE ITS_SQUARE COMPUTED BY NUM * NUM.
DTR> WHILE NUM LE 4
CON> BEGIN
CON> PRINT NUM, ITS_SQUARE
CON> NUM = NUM + 1
CON> END

ITS
NUM SQUARE

00 0
01 1
02 4
03 9
04 16

DTR>

Compound Statements 9–3

Compound Statements
Using the WHILE Statement

Note that NUM is a variable field name. You cannot specify a record field name
on the left side of a Boolean expression when setting up a condition in a WHILE
statement. If you need to put a record field name in that position, you must
prompt the user to enter one (WHILE *.‘‘field name’’ ...).

Using IF-THEN and IF-THEN-ELSE Statements
An IF-THEN-ELSE statement causes DATATRIEVE to execute one of two
statements, depending on whether a condition is true or not. The THEN
component contains the simple or compound statement to be executed when the
expression is true. The ELSE component is optional and it specifies the simple or
compound statement to be executed when the expression is false.

When you combine statements with IF-THEN-ELSE, you can omit the keyword
THEN because DATATRIEVE knows an IF component is always incomplete.
When you include an ELSE component, however, you cannot omit the keyword
ELSE or put it on a line following the THEN statement. Type ELSE on the same
line as the last part of the THEN statement. This is how you tell DATATRIEVE
that you are not entering a simple IF-THEN statement.

The following example illustrates how to include an IF-THEN-ELSE statement in
a procedure:

DTR> SHOW REVIEW_DATES
PROCEDURE REVIEW_DATES
READY JOB_HISTORY
!
DECLARE CUT_OFF_DATE USAGE DATE.
CUT_OFF_DATE = *."date six months ago"
!
FOR JOB_HISTORY WITH SUPERVISOR_ID = *."supervisor ID" AND

JOB_END MISSING SORTED BY REVIEW_DATE
!
IF REVIEW_DATE < CUT_OFF_DATE
THEN PRINT EMPLOYEE_ID, EMPLOYEE_ID VIA WHO_IS_IT,

REVIEW_DATE, " Needs a review" ELSE
PRINT EMPLOYEE_ID, EMPLOYEE_ID VIA WHO_IS_IT,

REVIEW_DATE, " Review up-to-date"
!
FINISH JOB_HISTORY
RELEASE WHO_IS_IT, CUT_OFF_DATE
END_PROCEDURE

DTR> :REVIEW_DATES
Enter date six months ago: 1/9/83
Enter supervisor ID: 00267

EMPLOYEE REVIEW
ID EMPLOYEE NAME DATE

9–4 Compound Statements

Compound Statements
Using IF-THEN and IF-THEN-ELSE Statements

00497 Weist Robert 30-Sep-1982 Needs a review
00419 Clarke Aruwa Q 15-Dec-1982 Needs a review
00355 Gutierrez Joe 1-Jan-1983 Needs a review
00184 Frydman Louie T 5-Jan-1983 Needs a review
00464 Aaron Alvin 9-Jan-1983 Review up-to-date
00216 Lobdell Arleen Y 13-Apr-1983 Review up-to-date
00244 Boyd Ann B 24-Apr-1983 Review up-to-date
00283 Dallas Paul 4-May-1983 Review up-to-date
00200 Ziemke Al F 21-May-1983 Review up-to-date
00501 Gramby Terry 7-Jun-1983 Review up-to-date
00241 Keisling Edward 3-Jul-1983 Review up-to-date

DTR>

Using the CHOICE Statement
A CHOICE statement causes DATATRIEVE to execute one of a series of
statements depending on the evaluation of a Boolean expression associated with
each statement.

The CHOICE statement is a good substitute for nested IF-THEN-ELSE
statements:

IF A > B THEN PRINT "A’s bigger" ELSE
IF A = B THEN PRINT "A’s the same size" ELSE

IF A < B THEN PRINT "A’s smaller" ELSE
PRINT "A’s a strange duck"

CHOICE
A > B THEN PRINT "A’s bigger"
A < B THEN PRINT "A’s smaller"
ELSE PRINT "A’s the same"

END_CHOICE

The ELSE clause is optional in a CHOICE statement. You can also omit the
keyword THEN, although doing so makes the statement more difficult to read.

The following example illustrates the use of a CHOICE statement in a procedure.

Compound Statements 9–5

Compound Statements
Using the CHOICE Statement

DTR> SHOW REVIEW_DATES_TWO
PROCEDURE REVIEW_DATES_TWO
READY JOB_HISTORY
!
DECLARE CURRENT_DATE USAGE DATE.
CURRENT_DATE = "TODAY"
!
FOR JOB_HISTORY WITH SUPERVISOR_ID = "00267" AND

JOB_END MISSING SORTED BY REVIEW_DATE
CHOICE

!
! GE 210 days is 7 months or more...
!
CURRENT_DATE - REVIEW_DATE GE 210 THEN

PRINT EMPLOYEE_ID, REVIEW_DATE,
"At least one month overdue"

!
! BT 209 AND 180 days is between 7 and 6 months...
!
CURRENT_DATE - REVIEW_DATE BT 209 AND 180 THEN

PRINT EMPLOYEE_ID, REVIEW_DATE,
"A few weeks overdue"

!
! BT 179 AND 150 days is between 6 and 5 months...
!
CURRENT_DATE - REVIEW_DATE BT 179 AND 150 THEN

PRINT EMPLOYEE_ID, REVIEW_DATE,
"Not overdue, but schedule"

!
! No one else needs a performance review...
!
ELSE PRINT EMPLOYEE_ID, REVIEW_DATE,

"Reviewed recently"
END_CHOICE

!
FINISH JOB_HISTORY
END_PROCEDURE

DTR>

RUNNING COUNT and RUNNING TOTAL Used with Conditional
Statements and Expressions
You must be careful when using the RUNNING COUNT and RUNNING TOTAL
statistical operators within conditional statements or expressions, which in turn
are embedded inside of loops or compound statements. Using these statistical
operators in a CHOICE statement or expression or in an IF-THEN-ELSE
statement or expression could produce unexpected results in the RUNNING
COUNT or RUNNING TOTAL accumulator.

9–6 Compound Statements

Compound Statements
Using the CHOICE Statement

The key reason for this is that each reference to RUNNING COUNT or
RUNNING TOTAL causes DATATRIEVE to maintain a separate internal
accumulator for that reference.

If the CHOICE alternatives or the IF-THEN-ELSE alternatives include separate
accumulators and if these alternatives are not evaluated an equal number of
times, the accumulated values may not match, and can produce unexpected
results.

The following example illustrates the problem.

DTR>SHOW RTT
PROCEDURE RTT
READY YACHTS
FOR FIRST 3 YACHTS BEGIN

PRINT CHOICE
RUNNING COUNT NE 2 "NOT EQUAL 2"
RUNNING COUNT EQ 2 "EQUAL 2"
ELSE "NO MATCH"
END_CHOICE

END
END_PROCEDURE

DTR>:RTT
NOT EQUAL 2
NO MATCH
NOT EQUAL 2

In the previous example, the first time the CHOICE expression is evaluated, it
finds a condition that matches the requirements of the first CHOICE alternative,
therefore it does not evaluate the second condition. The RUNNING COUNT
value for the first CHOICE alternative is set to 1.

The second time CHOICE expression is evaluated, the first CHOICE condition is
not met and the second CHOICE alternative is considered. However, since the
second CHOICE alternative is also based on a RUNNING COUNT statistical
operator, a separate accumulator is used and the value in this accumulator is now
set to 1.

DATATRIEVE is now maintaining two separate accumulators; one for each of
the RUNNING COUNT statistical operators listed in the CHOICE statement
alternatives. The first accumulator has a value of 2 at this point and the second
accumulator has a value of 1.

Depending on the sequencing of the CHOICE statement alternatives, it is possible
that the alternatives are not evaluated an identical number of times. It is for
this reason that the second CHOICE condition in the previous example is not met
either, and the condition in the ELSE clause is executed.

Compound Statements 9–7

Compound Statements
Using the CHOICE Statement

The following example provides a workaround to the problem. In this case, the
use of a variable forces DATATRIEVE to use a single accumulator:

DTR>SHOW RTT_WORKAROUND
PROCEDURE RTT_WORKAROUND
READY YACHTS
DECLARE X PIC 99.
FOR FIRST 3 YACHTS BEGIN

X = RUNNING COUNT
PRINT CHOICE

X NE 2 "NOT EQUAL 2"
X EQ 2 "EQUAL 2"
ELSE "NO MATCH"

END_CHOICE
END

END_PROCEDURE

DTR>:RTT_WORKAROUND
NOT EQUAL 2
EQUAL 2
NOT EQUAL 2

Avoiding Looping Mistakes
You can create an infinite loop by setting up a condition that is always true. The
following is a simple example:

WHILE 0 < 1
PRINT "This is an infinite loop. Enter CTRL/C to stop it."

You can create the same sort of situation when you use expressions that contain
variables whose values you do not control. Refer back to the examples for the
WHILE statement earlier in this chapter. If the values of the condition variables
(MORE_RECORDS and NUM) were changed outside the BEGIN-END block
subordinate to the WHILE statement, an infinite loop would result.

9–8 Compound Statements

10
Using DATATRIEVE Procedures

A procedure is a fixed sequence of DATATRIEVE commands and statements
you create, name, and store in a DMU or CDO format dictionary. Procedures
are useful when you plan to execute a series of DATATRIEVE commands and
statements frequently.

Defining a Procedure
To define a procedure, enter the DEFINE PROCEDURE command at
DATATRIEVE command level:

DEFINE PROCEDURE DTRUSR$DISK:[DTRUSERS]ROSSI.procedure-name

DATATRIEVE then prompts with DFN> to indicate that it expects a procedure
definition. Enter the commands or statements that form the procedure definition.
DATATRIEVE continues to prompt with DFN> until you enter the keyword
END_PROCEDURE on a line by itself.

DTR> DEFINE PROCEDURE BIG_YACHTS
DFN> READY YACHTS
DFN> FIND BIGGIES IN YACHTS -
DFN> WITH LOA GT 40 SORTED BY BUILDER
DFN> PRINT ALL
DFN> END_PROCEDURE
DTR>

DATATRIEVE procedure definitions can be stored either in the DMU or in the
CDO format dictionary. When defining a procedure, you must set default to a
CDD/Repository dictionary directory, or you must specify a full dictionary path
name in your procedure definition.

Using DATATRIEVE Procedures 10–1

Using DATATRIEVE Procedures
Editing a Procedure

Editing a Procedure
Some errors may occur during execution of the procedure. A typing error,
for instance, can result in a syntax error in an otherwise correctly formatted
command. If an error occurs during execution, DATATRIEVE prints an error
message and terminates the procedure. You can correct the error by using an
editor. Invoke the editor with the following command:

EDIT procedure-name

The EDIT command puts your entire DEFINE command in the edit buffer. You
may have to repeat this process several times to take care of all the syntax
mistakes in your procedure definition.

Creating procedures in stages can save you the frustration of searching through a
large number of lines of input to find a missing quotation mark or period.

Note

Once you have stored a procedure for the first time, you must specify
the name of the procedure the next time you enter the EDIT command.
This is because the EDIT command calls the last command you entered,
which in this case is the DEFINE PROCEDURE command. However,
the DEFINE command produces an error when the named object already
exists in the dictionary directory.

By specifying the procedure name with the EDIT command, a REDEFINE
PROCEDURE command is placed at the top of the definition copied to
your edit buffer. If your last command was REDEFINE PROCEDURE,
entering the EDIT command by itself causes no problems.

Invoking a Procedure
You invoke a procedure by preceding its name with the keyword EXECUTE or
with a colon (:).

To invoke a procedure stored in the DMU format dictionary, you must have P
(PASS_THRU), S (SEE), and E (EXECUTE_EXTEND) access to it. To invoke a
procedure stored in the CDO format dictionary, you must have S (SHOW) access
to the dictionary and to the procedure definition. You cannot invoke a procedure
during an ADT, EDIT, or Guide Mode session. You cannot include a procedure in
a domain, record, or table definition.

10–2 Using DATATRIEVE Procedures

Using DATATRIEVE Procedures
Invoking a Procedure

The content of a procedure determines where you can invoke it. In general,
you can invoke a procedure anywhere you can use the commands or statements
contained in the procedure. For example, if the procedure contains DATATRIEVE
commands and statements, you can invoke it at the DATATRIEVE command
level:

DTR> :BIG_YACHTS

You can invoke a procedure from the VMS command level. For example:

$ DATATRIEVE "EXECUTE BIG_YACHTS

After DATATRIEVE executes the last command or statement in the file, you are
automatically returned to the system prompt.

You can use the colon to execute a procedure from the VMS level, but you must
precede it with a double quote:

$ DATATRIEVE ":BIG_YACHTS

If you are running DATATRIEVE in a DECwindows environment and you want to
invoke a DATATRIEVE procedure, you may want to use the DCL DATATRIEVE
command with the /INTERFACE = CHARACTER_CELL qualifier. The benefit
of doing this is that the DATATRIEVE main application window will not be
displayed on your screen while the procedure is being executed.

The following example shows how the DATATRIEVE command would be used in
the command file:

$ TYPE STOREEMP.COM
$ DATATRIEVE/INTERFACE=CHARACTER_CELL -
"EXECUTE CDD$TOP.PERSONNEL.STORE_EMPLOYEES"
$ PRINT/QUEUE=SYS$PRINT AUDIT.LOG
$ @STOREEMP.COM

. . .

. . .

. . .
$

Contents of a Procedure
A procedure can contain any number of the following DATATRIEVE elements:

• Full DATATRIEVE commands and statements

• Command and statement clauses and arguments

• Comments

Using DATATRIEVE Procedures 10–3

Using DATATRIEVE Procedures
Contents of a Procedure

Commands and Statements
When you execute BIG_YACHTS, the result is the same as entering the READY
command and the FIND and PRINT statements at command level.

DTR> :BIG_YACHTS

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFSTAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SWAN 41 SLOOP 41 17,750 12
NEWPORT 41 S SLOOP 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
PEARSON 419 KETCH 42 21,000 13

DTR>

Arguments and Clauses
Besides full commands and statements, a procedure can contain a single
argument or clause from a command or statement. For example, it can contain a
record selection expression:

DTR> DEFINE PROCEDURE BIG_YACHTS_RSE
DFN> BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDER
DFN> END_PROCEDURE
DTR>

Having separated the PRINT keyword from the record selection expression, you
can invoke the procedure to complete a PRINT statement:

DTR> PRINT ALL :BIG_YACHTS_RSE

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFSTAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SWAN 41 SLOOP 41 17,750 12
NEWPORT 41 S SLOOP 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
PEARSON 419 KETCH 42 21,000 13

You can use this procedure in any command or statement containing an RSE
argument.

10–4 Using DATATRIEVE Procedures

Using DATATRIEVE Procedures
Contents of a Procedure

Comments
When you define a procedure, you can include comments, which DATATRIEVE
stores in the dictionary.

Include comments that are not displayed during execution by placing an
exclamation point (!) at the beginning of each comment line.

Turning Off the ‘‘Looking for...’’ Messages
If you use the RETURN key to hold DATATRIEVE back from processing the
input, rather than the hyphen continuation character (see Entering Long
Command Lines in Chapter 1.), you can turn off (but still get a CON> prompt) by
entering the SET NO PROMPT command:

DTR> READY FAMILIES
DTR> PRINT FAMILIES WITH
[Looking for Boolean expression]
CON> FATHER = "JIM" AND
[Looking for Boolean expression]
CON> MOTHER = "ANN"

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

DTR> SET NO PROMPT
DTR> PRINT FAMILIES WITH
CON> FATHER = "JIM" AND
CON> MOTHER = "ANN"

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

DTR>

Aborting Procedures
You can use the SET ABORT or SET NO ABORT commands to control what
happens if DATATRIEVE encounters an error condition when processing a
procedure.

When SET ABORT is in effect, DATATRIEVE exits a procedure when either of
the following conditions is true:

• It finds an error condition, specified by the ABORT statement, when trying to
execute one of the statements or commands in the procedure

Using DATATRIEVE Procedures 10–5

Using DATATRIEVE Procedures
Aborting Procedures

• It processes a CTRL/Z or CTRL/C entered by the user who invokes the
procedure

If either of these conditions is true and SET NO ABORT is in effect,
DATATRIEVE does not exit the procedure. It does abort the statement it is
executing but continues processing any remaining statements and commands.

You may want SET ABORT in effect when your procedure readies domains that
contain the data you want to access. If those domains cannot be readied, there
is no point in continuing with the rest of the procedure. If SET NO ABORT
were in effect, DATATRIEVE would produce error messages as it processed any
statements referring to the domains. The default setting in DATATRIEVE is
SET NO ABORT. You can ensure that SET ABORT is in effect by including that
statement in the procedure definition.

On the other hand, SET NO ABORT should be in effect if your procedure prompts
users to enter values for more than one record. In this case, you can expect
someone to enter CTRL/Z to keep an entry for one of the records from being
stored. You want users to reenter the looping cycle so they can store or change
more records. If SET ABORT is in effect, DATATRIEVE aborts the remainder of
a procedure or command file when you enter CTRL/Z.

The ABORT statement lets you specify an error condition appropriate for the
operation you are performing. The ABORT statement terminates execution of
the compound statement or statements containing it and can print a message
explaining the termination.

Statements to control and specify error conditions can be numerous and complex
in large scale applications. This section is designed only to introduce you to the
topic. Some restrictions that apply to the ABORT statement are not listed here.
For more detailed information on handling error conditions, read the sections
on the SET command and the ABORT statement in the VAX DATATRIEVE
Reference Manual.

Executing a Procedure Repeatedly
You can invoke a procedure in a REPEAT statement to execute it a number of
times or in a FOR statement to apply it to a record stream.

To repeat the entire procedure, enclose the procedure call or the procedure
definition in a BEGIN-END block. For example, the following sequence of
statements puts a procedure call in a BEGIN-END block and repeats the
procedure five times:

10–6 Using DATATRIEVE Procedures

Using DATATRIEVE Procedures
Executing a Procedure Repeatedly

DTR> REPEAT 5 BEGIN
[Looking for statement]
CON> :HEAVY_SLOOP
CON> END
DTR>

The following example includes a FOR statement and a BEGIN-END block in a
procedure definition and invokes the procedure in a REPEAT statement:

DTR> SHOW HEAVY_SLOOP
PROCEDURE HEAVY_SLOOP
FOR YACHTS WITH BUILDER = *."MANUFACTURER"

BEGIN
IF RIG = "SLOOP" AND DISP GE 10000
PRINT BOAT

END
END_PROCEDURE
DTR> REPEAT 3 :HEAVY_SLOOP
Enter MANUFACTURER: CAL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CAL 3-30 SLOOP 30 10,500 10
CAL 35 SLOOP 35 15,000 11
Enter MANUFACTURER: PEARSON
PEARSON 10M SLOOP 33 12,441 11
PEARSON 35 SLOOP 35 13,000 10
PEARSON 36 SLOOP 37 13,500 11
PEARSON 39 SLOOP 39 17,000 12
Enter MANUFACTURER: NAUTOR
NAUTOR SWAN 41 SLOOP 41 17,750 12

DTR>

If you invoke a procedure in a FOR statement, you must use the same technique:
enclose the call or the procedure definition in a BEGIN-END block. For example:

FOR rse BEGIN :procedure-name END

If you use a procedure in a compound statement, do not include any commands
or a FIND, SELECT, DROP, SORT, or REDUCE statement in that procedure.
DATATRIEVE does not accept commands or any of these statements in BEGIN-
END blocks or other compound statements; it accepts them only as simple
statements.

In addition, when a FIND statement is in a procedure, DATATRIEVE does
not display a message to tell you how many records it found for the collection.
If DATATRIEVE finds no records that meet the specifications in the FIND
statement RSE, a subsequent SELECT statement will produce an error message.

Using DATATRIEVE Procedures 10–7

Using DATATRIEVE Procedures
Generalizing Procedures

Generalizing Procedures
You can generalize procedures so that they operate on numerous domains. Be
sure that the generalized procedure refers to an alias rather than to the domain
name.

For example, you might want to keep separate domains for boats from different
geographical areas, perhaps the domains WEST_YACHTS, EAST_YACHTS, and
SOUTH_YACHTS (which of course have the same record definition and data file
format).

When you ready each domain, rename it with an alias, using the AS clause
in the READY command. To create the alias ALL_YACHTS for the domain
WEST_YACHTS, respond to the DTR> prompt with this READY command:

DTR> READY WEST_YACHTS AS ALL_YACHTS
DTR>

Protecting Procedures
When you define a procedure, DATATRIEVE stores the procedure definition
in your default dictionary directory and creates an access control list for the
procedure. DATATRIEVE automatically stores one access control list entry that
specifies your user name as the only valid identification and grants you DMU
or CDO access privileges. The DMU access privileges are: C (CONTROL), D
(LOCAL_DELETE), E (EXTEND/EXECUTE), H (HISTORY), M (MODIFY), R
(READ), S (SEE), U (UPDATE), and W (WRITE) access privileges. The CDO
access privileges are: R (READ), W (WRITE), M (MODIFY), E (EXTEND), S
(SHOW), U (CHANGE+DEFINE), D (DELETE), C (CONTROL), OPERATOR, and
ADMINISTRATOR.

You can modify the access control list to give various types of access privilege to
other users. To execute the procedure, a user must have the following privileges:
for DMU, P (PASS_THRU), S (SEE), and E (EXTEND/EXECUTE); for CDO, S
(SHOW) access to the dictionary and to the procedure.

Getting a Procedure to Work the Way You Want
The SET VERIFY and OPEN commands are useful when you are troubleshooting
problems with procedures.

The SET VERIFY command displays input from VMS command files and the
editing buffer as they are processed. The SET NO VERIFY command turns
off this input display. (The SHOW SET_UP command tells you whether SET
VERIFY or SET NO VERIFY is in effect during your DATATRIEVE session.)
The SET VERIFY and SET NO VERIFY commands are also DCL settings. The

10–8 Using DATATRIEVE Procedures

Using DATATRIEVE Procedures
Getting a Procedure to Work the Way You Want

default for your DATATRIEVE session is whichever one is in effect at DCL level
when you invoke DATATRIEVE.

The SET VERIFY command does not display statements and commands from
DATATRIEVE procedures as they are processed. You can, however, create your
DATATRIEVE procedure as a VMS command file so you can take advantage of
the SET VERIFY command. To do so, take the following actions:

1. Write your procedure definition to a command file using the following format:

EXTRACT procedure-name ON filename.COM

2. Exit DATATRIEVE and edit the command file to remove the following lines:

DELETE procedure-name; REDEFINE procedure-name END_PROCEDURE

3. Invoke DATATRIEVE again and execute the command file:

@filename

When SET VERIFY is active, you will then be able to see where errors occur in
the procedure code. With this method you can also check the correct execution of
loops and compound statements. When you have finished editing the command
file and it works the way you want, you can edit it one more time to insert the
following:

1. REDEFINE procedure-name as the first line of the file.

2. END_PROCEDURE as the last line of the file.

At the DATATRIEVE command level, you can then execute the command file a
final time to create it as a new version of your DATATRIEVE procedure.

Although you can use command files rather than procedures, there are
disadvantages to using command files. For example:

• You cannot execute command files inside a compound statement, such as a
FOR statement.

• You lose advantages, such as history and access control lists, that are
available for dictionary objects.

Using DATATRIEVE Procedures 10–9

Using DATATRIEVE Procedures
Getting a Procedure to Work the Way You Want

Writing a Session Log to a File
You can use the OPEN command to create a log file of your DATATRIEVE session
in your VMS directory. After you execute a command file, you can close this file
with a close command and exit DATATRIEVE to print it. This is useful when you
are troubleshooting a long command file or one that produces much output. In
the following example, PROBLEMS.LOG is the log file name:

DTR> OPEN PROBLEMS.LOG
DTR> SET VERIFY
DTR> @MYFILE

. . .

. . .

. . .
DTR> CLOSE ! Do not enter the file name after CLOSE.
DTR> SET NO VERIFY
DTR> EXIT
$ PRINT/QUEUE=SYS$PRINT PROBLEMS.LOG

If in your log session you make calls to other products or if you use a function
like the FN$DCL to request information from another product, that information
is not written to the file specified by the OPEN command. A listing of your log
session displays your DATATRIEVE commands, but does not include the output
generated by the other product.

Invoking a Command File from DATATRIEVE
From within DATATRIEVE, you invoke a command file stored in a VMS directory
by preceding the file specification with an at sign (@). To invoke a command file,
you must enter it on a line by itself, for example:

DTR> @BIGBOAT.COM

You need not enter DATATRIEVE to invoke a command file. You can invoke
a command file from the DCL level. This is particularly useful if you are
working in a DECwindows environment and you do not want to display the
DATATRIEVE main application window while the command file is executing. To
invoke PRT.COM in this manner, you would enter the following command:

$ DATATRIEVE/INTERFACE=CHARACTER_CELL "@PRT"

After DATATRIEVE executes the last command or statement in the file, you are
automatically returned to the system prompt.

10–10 Using DATATRIEVE Procedures

11
Accessing Data the Easy Way: Using

Collections

This chapter looks at the advantages and disadvantages of retrieving data using
collections. (Chapter 12 explains how to retrieve data without using collections.)
A DATATRIEVE collection is a group of records you gather from one or more
sources with a FIND statement. Usually, record sources are readied domains. A
collection stays in your workspace until it is superseded by another collection or
until you remove it.

DATATRIEVE considers that most statements apply to a record selected from a
collection unless you say otherwise. There are also some statements that apply
only to collections. Working with collections, therefore, usually means that your
statements can be simple and short. You do not always have to tell DATATRIEVE
where to look for data and can focus on what you want to do with it.

Example 11–1 illustrates creating a collection and some of the things you can do
with it.

Example 11–1 Creating and Using a Collection
DTR> ! To find out how many employees have been willing to commute
DTR> ! from Massachusetts, create a collection of employee
DTR> ! records with MA listed as the state.
DTR> !
DTR> READY EMPLOYEES
DTR> FIND EMPLOYEES WITH STATE = "MA"
[36 records found]
DTR> !
DTR> ! DATATRIEVE groups these records in a collection named
DTR> ! CURRENT.
DTR> !
DTR> SHOW COLLECTIONS

(continued on next page)

Accessing Data the Easy Way: Using Collections 11–1

Accessing Data the Easy Way: Using Collections

Example 11–1 (Cont.) Creating and Using a Collection
Collections:

CURRENT

DTR> !
DTR> ! You can type PRINT ALL to display the records in CURRENT.
DTR> !
DTR> !)
DTR> PRINT ALL

ADDRESS SOCIAL
ID LAST NAME FIRST NAME INIT DATA ZIP SEX SECURITY

00174 Myotte Daniel V
95 Princeton Rd. Bennington MA 03442 M 246 68 2816
1/17/48
00175 Siciliano George
109 Old New Boston Rd. Farmington MA 03835 M 136 17 0800
5/25/41
00191 Pfeiffer Karen I
143 Hudson Rd. Marlborough

. . .

. . .

. . .

DTR> !
DTR> ! You do not need all the information in the record. You can use
DTR> ! the REDUCE statement to specify a combination of field
DTR> ! values that makes each record unique and to eliminate fields
DTR> ! you are not interested in. (You would include ID if you
DTR> ! suspect there might be employees with the same name living
DTR> ! in the same town.)
DTR> !
DTR> REDUCE TO NAME, TOWN, STATE
DTR> !
DTR> ! Order the records in the collection according to
DTR> ! town.
DTR> !)
DTR> SORT BY TOWN
DTR> !
DTR> ! Display the reordered records so only town and name
DTR> ! print on your screen.
DTR> !
DTR> PRINT ALL TOWN, NAME

TOWN LAST NAME FIRST NAME INIT

(continued on next page)

11–2 Accessing Data the Easy Way: Using Collections

Accessing Data the Easy Way: Using Collections

Example 11–1 (Cont.) Creating and Using a Collection

Bennington Delano Al F
Bennington Comstock Frederick E
Bennington Mistretta Kathleen G
Bennington Rodrigo Lisa
Bennington Turner Alan
Bennington Lynch Mary F
Bennington Chandler Christine E
Bennington Boutin Janis S
Bennington Rothwell Dean
Bennington Myotte Daniel V
Bennington Siciliano Jesse W
Boston Harrison Lisa
Boston Staples Jerry Z
Boston Roberts Joseph V

. . .

. . .

. . .

DTR>

Specifying Records in a Collection
Example 11–1 uses the statement FIND EMPLOYEES WITH STATE = ‘‘MA’’ to
form a collection. EMPLOYEES WITH STATE = ‘‘MA’’ is a record selection
expression (RSE). The simplest RSE specifies only a record source. The
statement, FIND EMPLOYEES, for example, creates a collection that contains all
the records in the EMPLOYEES domain, rather than only those that specify MA
in the STATE field.

You can include six options in an RSE to specify the records you want. When you
include more than one option, you must specify them in the order they appear in
the following list, in which a FIND statement example illustrates each option:

• Record number restriction

DTR> FIND FIRST 5 EMPLOYEES

• A name for the group of records from each record source

DTR> FIND A IN EMPLOYEES

• A match of records from more than one source

DTR> FIND EMPLOYEES CROSS JOB_HISTORY
DTR> OVER EMPLOYEE_ID

• Record contents restriction

DTR> FIND JOB_HISTORY WITH JOB_END MISSING

Accessing Data the Easy Way: Using Collections 11–3

Accessing Data the Easy Way: Using Collections
Specifying Records in a Collection

• Field restriction

DTR> FIND SALARY_HISTORY REDUCED TO EMPLOYEE_ID,
CON> DEPARTMENT_CODE, JOB_CODE

• Record order

DTR> FIND EMPLOYEES SORTED BY LAST_NAME

The following FIND statement shows you the order of these options when all
of them appear in the same RSE. Using data from the EMPLOYEE and JOB_
HISTORY domains, the statement creates a collection that contains current job
information for 10 employees:

DTR> FIND FIRST 10 A IN EMPLOYEES CROSS
CON> B IN JOB_HISTORY OVER
CON> EMPLOYEE_ID WITH JOB_END MISSING REDUCED TO
CON> EMPLOYEE_ID, LAST_NAME, DEPARTMENT_CODE,
CON> JOB_CODE SORTED BY DEPARTMENT_CODE, LAST_NAME

When using collections, you do not have to enter statements like that one;
instead, you can start out with a collection that contains more records than
you need. You can then order the records and fields, eliminate fields, or remove
records from the collection in separate steps until you get exactly the data you
want.

The following sections explain in more detail how you create and work with
collections.

Forming and Naming Collections
You must ready a domain (using any access mode other than EXTEND) before
you can form a collection from it.

When the FIND statement executes, DATATRIEVE creates a collection consisting
of the records specified in the RSE and names the collection CURRENT. Unless
the FIND statement executes inside a procedure, DATATRIEVE also tells you
how many records it finds.

If you specify a name for the group of records in the FIND statement RSE, the
collection has two names: CURRENT and the name you specify. You can refer to
the collection by the name CURRENT or by the name you specify:

11–4 Accessing Data the Easy Way: Using Collections

Accessing Data the Easy Way: Using Collections
Forming and Naming Collections

DTR> READY SALARY_HISTORY
DTR> FIND BIG_WIGS IN SALARY_HISTORY WITH
CON> SALARY_END MISSING AND SALARY_AMOUNT GT 50000
[38 records found]
DTR> SHOW CURRENT
Collection BIG_WIGS

Domain: SALARY_HISTORY
Number of Records: 38
No Selected Record

DTR> SHOW COLLECTIONS
Collections:

BIG_WIGS (CURRENT)

When you use a FIND statement to form another collection, the new collection
becomes the CURRENT collection. You can refer to the old collection only by the
name you gave it. If you did not name the old collection, DATATRIEVE deletes it
when the new one is formed.

Choosing a Target Record for an Operation
You can use the SELECT statement to establish a target record for an operation.
This is useful when you want to erase or modify one or a few records from a
data file. When you establish a selected record, you can type PRINT, ERASE, or
MODIFY, and DATATRIEVE will know you are referring to the selected record.
If you want to do something to the whole collection rather than the selected
record, include the keyword ALL (PRINT ALL, MODIFY ALL, or ERASE ALL,
for example):

Example 11–2 PRINT ALL Example
DTR> READY EMPLOYEES MODIFY
DTR> FIND EMPLOYEES WITH LAST_NAME CONTAINING "SMITH"
[2 records found]
DTR> PRINT ALL LAST_NAME, ID, STREET, TOWN, STATE

LAST NAME ID STREET TOWN STATE

Smith 00165 120 Tenby Dr. Chocorua NH
Smith 00209 163 Lowell Rd. Bristol NH

DTR> SELECT
DTR> PRINT LAST_NAME, ID

LAST NAME ID

Smith 00165

(continued on next page)

Accessing Data the Easy Way: Using Collections 11–5

Accessing Data the Easy Way: Using Collections
Choosing a Target Record for an Operation

Example 11–2 (Cont.) PRINT ALL Example

DTR> MODIFY LAST_NAME
Enter LAST_NAME: Overton
DTR> PRINT LAST_NAME, ID

LAST NAME ID

Overton 00165

DTR> PRINT ALL LAST_NAME, ID

LAST NAME ID

Overton 00165
Smith 00209

DTR>

A complete list of SELECT options with an example for each follows:

• Select the first record in the collection

SELECT FIRST

• Select the record in the collection positioned immediately after the current
selected record

SELECT NEXT

This is the default. When you type SELECT, DATATRIEVE selects the
next record in the collection. If you have not established a selected record,
DATATRIEVE selects the first record in the collection when you type SELECT
or SELECT NEXT (see Example 11–2).

• Select the record in the collection positioned immediately before the current
selected record

SELECT PRIOR

• Select the last record in the collection

SELECT LAST

• Select the record whose ordinal position you specify

SELECT 5

The example specifies the fifth record in the collection. You can use an
expression in place of an integer as long as the expression resolves to an
integer value (COUNTER_FIELD + 1, for example, where COUNTER_FIELD
contains 0 or an integer).

• ‘‘Unselect’’ a record for a collection

11–6 Accessing Data the Easy Way: Using Collections

Accessing Data the Easy Way: Using Collections
Choosing a Target Record for an Operation

SELECT NONE

This option releases your control over your current selected record so that
other users can access it.

• Name the collection from which you want to select (or unselect) a record

SELECT 2 MY_COLLECTION

The example specifies the second record in the collection named MY_
COLLECTION. If you do not name a collection in a SELECT statement,
DATATRIEVE selects the record from the CURRENT collection.

• Specify a WITH clause

SELECT FIRST MY_COLLECTION WITH LAST_NAME = ‘‘SMITH’’

The example specifies the first record in MY_COLLECTION that has SMITH
in the LAST_NAME field.

You can establish more than one selected record but only one for each collection.
When you enter a statement that applies to a selected record, DATATRIEVE
carries out the requested operation on the record you most recently selected. If
your statement cannot apply to the most recently selected record, DATATRIEVE
tries to carry out the operation on a selected record for another collection.
DATATRIEVE continues to check selected records you have available, in reverse
order of their selection, until it can either execute the statement or determine an
error condition.

Restricting Record Fields in a Collection
As an alternative to putting a REDUCED TO clause in the FIND statement RSE,
you can use a REDUCE statement to keep only the fields you want to work with
in a collection. Example 11–3 illustrates the use of the REDUCE statement.

Example 11–3 Restricting Record Fields
DTR> READY EMPLOYEES
DTR> FIND EMPLOYEES WITH SEX = "F"
[105 records found]

DTR> ! You can control record display by specifying fields in the
DTR> ! PRINT statement. This does not change the records in the
DTR> ! collection.
DTR> !)
DTR> PRINT ALL EMPLOYEE_ID, NAME, STATE

ID LAST NAME FIRST NAME INIT STATE

(continued on next page)

Accessing Data the Easy Way: Using Collections 11–7

Accessing Data the Easy Way: Using Collections
Restricting Record Fields in a Collection

Example 11–3 (Cont.) Restricting Record Fields

00167 Kilpatrick Janet NH
00169 Gray Susan O NH
00171 D’Amico Aruwa NH
00172 Peters Janis K NH
00179 Vermouth Meg NH
00185 Stadecker Hope E NH
00186 Watters Cora NH
00188 Clarke Karen G NH
00191 Pfeiffer Karen I MA
00192 Connolly Christine NH
00194 Morrison Mary Lou U NH
00196 Clarke Mary NH
00197 CTRL/C

^C
Execution terminated by operator.

DTR> !
DTR> ! The REDUCE statement changes the records in the collection
DTR> ! to unique combinations of the fields you specify.
DTR> ! Duplicate values, if any exist, no longer appear in the
DTR> ! collection. The first REDUCE statement that follows does not
DTR> ! change the number of records in the collection. Its purpose
DTR> ! is to reduce the number of fields each record contains. The
DTR> ! second REDUCE statement that follows does change the number
DTR> ! of records in the collection. It illustrates the power of
DTR> ! reducing a collection to unique values.
DTR> !
DTR> REDUCE TO EMPLOYEE_ID, NAME, STATE
DTR> PRINT ALL

ID LAST NAME FIRST NAME INIT STATE

00167 Kilpatrick Janet NH
00169 Gray Susan O NH
00171 D’Amico Aruwa NH
00172 Peters Janis K NH
00179 Vermouth Meg NH
00185 Stadecker Hope E NH
00 CTRL/C

^C
Execution terminated by operator.

DTR> REDUCE TO STATE
DTR> PRINT ALL

STATE

(continued on next page)

11–8 Accessing Data the Easy Way: Using Collections

Accessing Data the Easy Way: Using Collections
Restricting Record Fields in a Collection

Example 11–3 (Cont.) Restricting Record Fields

MA
NH

DTR>

The REDUCE statement is useful handy when your collection data results from
crossing records from two or more domains. A cross operation produces records
with one or more duplicate fields. You can use the REDUCE statement to make
sure that all fields are unique. See Forming a Collection from Two or More
Record Sources for more information.

Sorting Records in a Collection
As an alternative to putting a SORTED BY clause in a FIND or PRINT statement
RSE, you can use the SORT statement to put collection records in the order you
want. Example 11–4 illustrates the use of the SORT statement:

Example 11–4 Using the SORT Statement
DTR> ! Assume you want to find out the employee distribution within
DTR> ! job codes in each department.
DTR> !
DTR> READY JOB_HISTORY
DTR> FIND JOB_HISTORY WITH JOB_END MISSING
[338 records found]
DTR> PRINT ALL

EMPLOYEE JOB JOB JOB DEPARTMENT SUPERVISOR REVIEW
ID CODE START END CODE ID DATE

00164 DMGR 21-Sep-1981 MBMN 00359 14-Jul-1983
00165 DGFR 8-Mar-1981 MBMF 00358 1-Jan-1983
00166 APGM 12-Aug-1981 MBMS 00229 7-Feb-1983
00167 APGM 26-Aug-1981 MBMN 00359 21-Feb-1983
00168 SPGM 18-Feb-1982 MGVT 00267 15-Jun-1983
00169 SPGM 28-Mar-1981 SUNE 00354 17-Jul-1983
00170 SCTR 26-Nov-1980 CTRL/C

^C
Execution terminated by operator.

(continued on next page)

Accessing Data the Easy Way: Using Collections 11–9

Accessing Data the Easy Way: Using Collections
Sorting Records in a Collection

Example 11–4 (Cont.) Using the SORT Statement

DTR> !
DTR> ! Usually, you want your records displayed according to the way
DTR> ! you sorted them. The following PRINT statement does this. It
DTR> ! also retrieves the name for each employee from the domain table
DTR> ! WHO_IS_IT.
DTR> !
DTR> PRINT ALL DEPARTMENT_CODE, JOB_CODE, EMPLOYEE_ID,
CON> EMPLOYEE_ID VIA WHO_IS_IT

DEPARTMENT JOB EMPLOYEE
CODE CODE ID EMPLOYEE NAME

ADMN DSUP 00472 Delano Al F
ADMN EENG 00300 Gramby Marjorie
ADMN EENG 00188 Clarke Karen G
ADMN JNTR 00330 Williams Christine B

. . .

. . .

. . .
ADMN VPSD 00415 Mistretta Kathleen G
ELEL APGM 00377 Lobdell Lawrence V
ELEL EENG 00238 Flynn Peter
ELEL EENG 00428 Augusta Thomas
ELEL GFER 00231 Clairmont Rick
ELEL GFER 00240 Johnson Bill R
ELEL GFER 00461 Boutin George
ELEL GFER 00222 Lasch Norman

. . .

. . .

. . .

DTR>

If you specify more than one field by which you want to sort the records,
remember always to include a comma to separate the fields in your list.

Forming a Collection from Two or More Record Sources
You form a collection from two or more record sources by including a CROSS
clause in a FIND statement RSE:

11–10 Accessing Data the Easy Way: Using Collections

Accessing Data the Easy Way: Using Collections
Forming a Collection from Two or More Record Sources

DTR> ! Assume you want to find out which jobs one employee has
DTR> ! held in the company.
DTR> !
DTR> READY EMPLOYEES, JOB_HISTORY
DTR> FIND EMPLOYEES CROSS JOB_HISTORY
DTR> OVER EMPLOYEE_ID WITH
CON> EMPLOYEE_ID = "00472"
[1 record found]
DTR> PRINT
No record selected, printing whole collection.

ADDRESS SOCIAL
ID LAST NAME FIRST NAME INIT DATA ZIP SEX SECURITY

00472 Delano Al F
114 Princeton Rd. Bennington MA 03442 M 005 89 7164
3/03/29 00472 DSUP 27-Apr-1981 ADMN 00225

DTR> ! This is tough to read, a normal occurrence when you are
DTR> ! crossing records. Note that the value 00472 appears twice.
DTR> ! That is because each record in the collection results from
DTR> ! crossing two records, each of which has a value for EMPLOYEE_ID.
DTR> ! You can use the REDUCE statement to get rid of duplicate values
DTR> ! and pare the data down to the fields which interest you.
DTR> !
DTR> REDUCE TO EMPLOYEE_ID, NAME, DEPARTMENT_CODE,
DTR> JOB_CODE, JOB_START
DTR> PRINT
No record selected, printing whole collection.

DEPARTMENT JOB JOB
ID LAST NAME FIRST NAME INIT CODE CODE START

00472 Delano Al F ADMN DSUP 27-Apr-1981

DTR>

The sources for the records you want to cross can be either domains or other
collections. Read Disadvantages of Using Collections on the disadvantages of
using collections, however, before you decide to cross collections.

Removing Records from a Collection
Take the following steps for each record you want to remove from a collection:

1. Select the record

2. Type PRINT to make sure you selected the right record

3. Type DROP to remove that record

Accessing Data the Easy Way: Using Collections 11–11

Accessing Data the Easy Way: Using Collections
Removing Records from a Collection

The DROP statement does not erase the record from storage, only from the
collection:

DTR> FIND EMPLOYEES WITH LAST_NAME CONTAINING "BURTON"
[2 records found]
DTR> PRINT ALL ID, LAST_NAME, FIRST_NAME

ID LAST NAME FIRST NAME

00237 Burton Frederick
00417 Burton Kathleen

DTR> SELECT 2
DTR> PRINT ID, LAST_NAME, FIRST_NAME

ID LAST NAME FIRST NAME

00417 Burton Kathleen

DTR> DROP
DTR> SHOW CURRENT
Collection CURRENT

Domain: EMPLOYEES
Number of Records: 2
Selected Record: 2 (Dropped)

DTR> PRINT ALL ID, LAST_NAME, FIRST_NAME

ID LAST NAME FIRST NAME

00237 Burton Frederick

DTR>

Removing Collections from Your Workspace
The RELEASE command removes collections from your workspace. The
RELEASE ALL command removes all collections. The RELEASE command,
followed by one or more collection names, removes the collections you specify:

DTR> SHOW COLLECTIONS
Collections:

COLL (CURRENT)
DEG
EMP

DTR> RELEASE DEG
DTR> SHOW COLLECTIONS
Collections:

COLL (CURRENT)
EMP

DTR>

11–12 Accessing Data the Easy Way: Using Collections

Accessing Data the Easy Way: Using Collections
Removing Collections from Your Workspace

Remember that RELEASE ALL removes more than just collections; it also
removes from your workspace all declared variables, all loaded tables, and any
forms product definitions you have accessed. You load table and form definitions
simply by accessing them but variables have to be declared again.

In addition, when you finish a domain from which a collection is formed, you also
release the collection. If you need to change the access mode to a domain in order
to do something to the records in a collection, ready the domain again with a new
access mode. Do not finish it first.

Disadvantages of Using Collections
There are two disadvantages to using collections:

• There are restrictions that apply to the use of collection-oriented statements
in compound statements.

This means that your options are limited when designing procedures that
manipulate collections and selected records. You cannot use FIND, SORT,
REDUCE, and DROP statements in FOR, REPEAT, THEN, WHILE, or
BEGIN-END statements.

As an alternative to the SORT and REDUCE statements, you can use the
REDUCED TO and SORTED BY clauses in the RSE of the FIND statement
that creates the collection. There is no equivalent for DROP, however. In
addition, the SELECT statement can produce unexpected results when
included in a compound statement.

• DATATRIEVE does not use keyed access when a collection is the record
source. This means that all search, cross, and sort operations that manipulate
records in collections are done sequentially, even when you base them on
fields that are index keys for a data file. If you are processing a collection of
50 or fewer records, the slower performance of sequential searches might not
bother you. If you are doing complicated operations on a collection of 500 or
more records, the response time might be unacceptable.

To get around this problem, put your key-based operations in the RSE of any
FIND statement that creates a large collection from a domain. In addition,
avoid creating collections from other collections when the latter contain
thousands of records.

For cross operations, use only key-based access. Crossing records in
collections can be time consuming, even when the collections each contain
fewer than 50 records.

Accessing Data the Easy Way: Using Collections 11–13

12
Accessing Data the Expert Way: Using

RSEs and View Domains

This chapter explains how to specify records in a compound statement beginning
with FOR or in a statement, such as PRINT, that carries out the operation you
want to perform.

The chapter also tells you how to define and use view domains. A view
domain is a data definition that contains a subset of fields from one domain or a
combination of fields from two or more domains. Using a view domain, you can
get results that otherwise require complex statements.

You might want to work with records directly from domains for one or both of the
following reasons:

• You are working with large numbers of records and want fast access.

• You are using compound statements to process records.

In the absence of these conditions, the use of collections might be preferable.

Ensuring Fast Access
When you use the FIND statement to create a collection, you are not removing
records from files or copying records to a temporary storage area. The FIND
statement creates pointer values for each record in the collection indicating where
its data is located in a file (or files, if the collection record resulted from a cross
operation). Whenever DATATRIEVE must search through records in a collection,
it must process every pointer value and look at all the places where associated
data is stored.

You can often get DATATRIEVE to respond more quickly when you work directly
with domains. You achieve faster response time by specifying a readied domain
as the record source and an index key field as the criteria for any searching,
sorting, and crossing that you want done. In this case, DATATRIEVE can use the
indexes associated with data files to find the records you want. It does not have
to check every record in the data file to see which ones meet your needs.

Accessing Data the Expert Way: Using RSEs and View Domains 12–1

Accessing Data the Expert Way: Using RSEs and View Domains
Ensuring Fast Access

Example 12–1 contrasts two ways to perform the same operation. The operation
retrieves records for current employees in a manufacturing department, sorts the
records by job code, and displays selected fields from the records.

Example 12–1 Including RSEs in Statements
DTR> READY JOB_HISTORY
DTR> !
DTR> !The next input illustrates data retrieval by first
DTR> ! forming a collection and then manipulating and displaying
DTR> ! the data it contains. The first FIND statement uses
DTR> ! key-based access. The second FIND statement and the SORT
DTR> ! statement access records using collection pointer values.
DTR> ! WHO_IS_IT is a domain table that links EMPLOYEE_ID with
DTR> ! EMPLOYEE_NAME.
DTR> !
DTR> FIND JOB_HISTORY WITH DEPARTMENT_CODE = "MBMN"
[36 records found]
DTR> FIND CURRENT WITH JOB_END MISSING
[13 records found]
DTR> SORT BY JOB_CODE
DTR> PRINT ALL JOB_CODE, EMPLOYEE_ID,
CON> EMPLOYEE_ID VIA WHO_IS_IT

JOB EMPLOYEE
CODE ID EMPLOYEE NAME

APGM 00275 DuBois Alvin Q
APGM 00449 Leger Carol
APGM 00167 Kilpatrick Janet
DGFR 00349 Chandler Christine E
DMGR 00164 Toliver Alvin A
DSUP 00344 Kawell Edward H
EENG 00198 Gehr Leslie
EENG 00447 Potter Beverly O
GFER 00329 Rodrigo Jerry D
MENG 00410 Klein Walter X
SANL 00366 Harrington Russ J
SANL 00433 Glackemeyer Jodie
SPGM 00217 Siciliano James X

(continued on next page)

12–2 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Ensuring Fast Access

Example 12–1 (Cont.) Including RSEs in Statements

DTR> !
DTR> ! The following input includes everything you need to do in
DTR> ! one PRINT statement. Note that when you do this, the record
DTR> ! selection and sorting is specified last, following the
DTR> ! keyword OF. You always specify record selection clauses
DTR> ! last when you put them inside the statement that carries out
DTR> ! the operation you want to perform.
DTR> !
DTR> PRINT JOB_CODE, EMPLOYEE_ID,
CON> EMPLOYEE_ID VIA WHO_IS_IT OF
CON> JOB_HISTORY WITH DEPARTMENT_CODE = "MBMN" AND
CON> JOB_END MISSING SORTED BY JOB_CODE

JOB EMPLOYEE
CODE ID EMPLOYEE NAME

APGM 00275 DuBois Alvin Q
APGM 00449 Leger Carol

. . .

. . .

. . .

SPGM 00217 Siciliano James X

DTR>

Creating RSEs
Chapter 11 listed and described the options you have when including a record
selection expression (RSE) in a FIND statement. These options and the order in
which you can specify them are the same for any statement that can contain an
RSE.

Here are some examples of RSEs in FOR, PRINT, and MODIFY statements. So
that you can focus on the position of an RSE in the statement, the RSEs are
highlighted in color or bold typeface:

PRINT FIRST 10 DEGREES

FOR DEGREES SORTED BY DEGREE_FIELD PRINT
DEGREE_FIELD, DEGREE, COLLEGE_CODE

PRINT DEGREES WITH COLLEGE_CODE = "STAN"

FOR SAMPLE IN FIRST 10 DEGREES WITH COLLEGE_CODE = "STAN"
PRINT EMPLOYEE_ID, DEGREE, DEGREE_FIELD

PRINT NAME, ADDRESS OF FIRST 2 EMPLOYEES

Accessing Data the Expert Way: Using RSEs and View Domains 12–3

Accessing Data the Expert Way: Using RSEs and View Domains
Creating RSEs

MODIFY JOB_END OF JOB_HISTORY WITH JOB_END MISSING AND
EMPLOYEE_ID = "00192"

The following example includes all the RSE options in one PRINT statement.
The statement joins records stored in three different places to display information
about past jobs and salaries for an employee. When you include an RSE in a
PRINT statement, as in the example, the order of fields listed in a REDUCED TO
clause also specifies the order in which fields are displayed. When you include
a REDUCED TO clause in a FOR statement RSE, any subordinate PRINT
statement must specify the field display order when it differs from the way those
fields are stored in records.

The WITH clause restricts the data to one employee and also matches salary
data to a job. The section on value expressions and boolean expressions in the
VAX DATATRIEVE Reference Manual tells you more about using the BETWEEN
operator and including more than one condition in a WITH clause.

The SORTED BY clause ensures that the most recent job and salary data
displays first:

PRINT EMPLOYEES CROSS JOB_HISTORY OVER EMPLOYEE_ID CROSS
SALARY_HISTORY OVER EMPLOYEE_ID WITH
(EMPLOYEE_ID = "00168") AND (SALARY_START BETWEEN JOB_START AND
JOB_END) REDUCED TO LAST_NAME, DEPARTMENT_CODE, JOB_CODE,
JOB_START, SALARY_START, SALARY_AMOUNT SORTED BY
DECREASING JOB_START, DECREASING SALARY_START

Here is the data that the PRINT statement displays:

DEPARTMENT JOB JOB SALARY SALARY
LAST NAME CODE CODE START START AMOUNT

Nash SUWE PRGM 23-Feb-1979 10-Oct-1981 $27,126.00
Nash SUWE PRGM 23-Feb-1979 15-Oct-1980 $25,057.00
Nash SUWE PRGM 23-Feb-1979 21-Oct-1979 $23,919.00
Nash SUWE PRGM 23-Feb-1979 23-Feb-1979 $23,605.00
Nash ENG PRGM 30-Oct-1977 26-Aug-1978 $21,520.00
Nash ENG PRGM 30-Oct-1977 30-Oct-1977 $20,883.00
Nash ELMC APGM 1-Jul-1975 21-Apr-1977 $15,977.00
Nash ELMC APGM 1-Jul-1975 24-Aug-1976 $15,851.00
Nash ELMC APGM 1-Jul-1975 1-Jul-1975 $15,179.00

Creating View Domains shows you how to use a view domain to display this data
in a more readable format.

12–4 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Working with Multiple Records

Working with Multiple Records
Example 12–1 specifies operations that can be performed on more than one
record. When you specify iterative operations, you are creating what is
sometimes called a loop. In Example 12–2, you specify a group of records
and tell DATATRIEVE to do a print operation for each record in the group. The
RSE defines a loop because it specifies more than one record for an operation.
In Example 12–2, the WHILE statement defines a loop even though the RSE
specifies one record. All operations contained in the WHILE statement can
execute more than once depending on a variable value under the control of the
person executing the procedure.

In these examples, the loops are intentional and help get work done more quickly
and efficiently; however, the record processing loops in the following areas can
cause problems:

• List fields

• FOR statements

• CROSS clauses

The following sections discuss these areas in more detail.

Lists: Using the ‘‘Record’’ Within the Record
Working with Multiple Records discussed looping problems that you should learn
to avoid. This section discusses looping you must learn to include.

When a record definition includes a list field (defined by the OCCURS clause), it
means that fields subordinate to the list field can contain more than one value
(or occurrence) per record. If you need to access a particular value in a list field,
you must create a loop to get at it. You do this by treating the list field as you
would a record source, so that DATATRIEVE can recognize and process the fields
it contains.

Example 12–2 uses the FAMILIES domain in
CDD$TOP.DTR$LIB.DEMO to illustrate how you can access values in list fields:

Example 12–2 Accessing Values in List Fields

(continued on next page)

Accessing Data the Expert Way: Using RSEs and View Domains 12–5

Accessing Data the Expert Way: Using RSEs and View Domains
Working with Multiple Records

Example 12–2 (Cont.) Accessing Values in List Fields
DTR> READY FAMILIES MODIFY
DTR> PRINT FIRST 5 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JOHN JULIE 2 ANN 29
JEAN 26

JOHN ELLEN 1 CHRISTOPHR 1
ARNIE ANNE 2 SCOTT 20

BRIAN 20

DTR> !
DTR> ! The SHOW FIELDS command reveals that the group field
DTR> ! EACH_KID and the elementary fields KID_NAME and AGE
DTR> ! are subordinate to the list field KIDS.
DTR> !
DTR> SHOW FIELDS FOR FAMILIES
FAMILIES

FAMILY
PARENTS

FATHER <Character string>
MOTHER <Character string>

NUMBER_KIDS <Number>
KIDS <List>

EACH_KID
KID_NAME (KID) <Character string>
AGE <Number>

DTR> !
DTR> ! If you want to put an RSE in a PRINT statement, you can
DTR> ! set up a double loop by putting two RSEs at the end of
DTR> ! the statement--the first for the list field and the second
DTR> ! for the domain. For each OF RSE clause, put an ALL before
DTR> ! the field name (or list of field names) that you want to
DTR> ! display.
DTR> !
DTR> PRINT ALL ALL EACH_KID OF KIDS OF FIRST 1 FAMILIES

KID
NAME AGE

(continued on next page)

12–6 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Working with Multiple Records

Example 12–2 (Cont.) Accessing Values in List Fields

URSULA 7
RALPH 3

DTR> !
DTR> ! You can also set up a list field loop when you use the
DTR> ! FOR statement. In this case, after the first FOR statement
DTR> ! that contains the RSE for the domain, enter a second FOR
DTR> ! statement that contains the RSE for the list. (If you were
DTR> ! trying to get at an item in a list field subordinate to
DTR> ! another list field, you would need three FOR statements--
DTR> ! one for the domain, one for the outer list, and one for the
DTR> ! inner list.)
DTR> !
DTR> FOR FIRST 1 FAMILIES
CON> FOR KIDS
CON> PRINT EACH_KID

KID
NAME AGE

URSULA 7
RALPH 3

DTR>

FOR Statement Looping Errors
When you include an RSE in a FOR statement, make sure you do not put an
RSE in a statement subordinate to the FOR statement. In the following example,
the user forgot to enter a SORTED BY clause in the FOR statement RSE and
thought the clause could go in a PRINT statement RSE to make up for the
oversight. In this case, DATATRIEVE uses the PRINT statement RSE as the
record specification and the FOR statement RSE as a counter. It displays the
requested information but repeats the display as many times as there are records
in COLLEGES.

DTR> FOR COLLEGES
CON> PRINT COLLEGE_NAME, TOWN,
ZIP OF COLLEGES SORTED BY ZIP

Accessing Data the Expert Way: Using RSEs and View Domains 12–7

Accessing Data the Expert Way: Using RSEs and View Domains
Working with Multiple Records

Bates College Lewiston 04240
Colby College Waterville 04563
University of Maine Orono 04913

. . .

. . .

. . .
U. of Southern California San Diego 98431
Bates College Lewiston 04240
Colby College Waterville 04563
University of Maine Orono 04913

. . .

. . .

. . .
U. of Southern California San Diego 98431
Bates College Lewiston 04240

. . .

. . .

. . .

Either of the following statements would have produced correct results:

DTR> FOR COLLEGES SORTED BY ZIP
CON> PRINT COLLEGE_NAME, TOWN, ZIP

DTR> PRINT COLLEGE_NAME, TOWN, ZIP OF
CON> COLLEGES SORTED BY ZIP

CROSS Clause Looping Errors
For each CROSS clause that joins data stored in different locations, include an
OVER clause to specify a field DATATRIEVE can use to match records for the
join. When you want to limit the values that fields can contain, include a WITH
clause:

EMPLOYEES CROSS JOB_HISTORY OVER EMPLOYEE_ID CROSS
SALARY_HISTORY OVER EMPLOYEE_ID WITH EMPLOYEE_ID = "00168"

If you omit the first OVER clause in the example, you are telling DATATRIEVE
to take the first record from EMPLOYEES and join it to each record in JOB_
HISTORY, then take the second record from EMPLOYEES and join it to each
record in JOB_HISTORY, and so forth. If EMPLOYEES contains 350 records
and JOB_HISTORY contains 800 records, DATATRIEVE produces 280,000 hybrid
records for the first cross operation. It then takes each of those 280,000 records
and uses them for the second cross operation. If you also omit the second OVER
clause and SALARY_HISTORY contains 1200 records, DATATRIEVE produces a
total of 280,000 times 1200 hybrid records.

12–8 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Working with Multiple Records

DATATRIEVE interprets the clause OVER EMPLOYEE_ID as WITH
EMPLOYEE_ID = EMPLOYEE_ID. In fact, the RSEs in the following example
are equivalent to the one in the previous example. The first RSE names each
record source (A, B, and C) and uses these names to qualify the EMPLOYEE_ID
fields in each component of the WITH clause. The second RSE uses the top-level
field names in each record source to qualify the EMPLOYEE_ID fields.

A IN EMPLOYEES CROSS B IN JOB_HISTORY CROSS
C IN SALARY_HISTORY WITH (B.EMPLOYEE_ID = A.EMPLOYEE_ID) -
AND (C.EMPLOYEE_ID = B.EMPLOYEE_ID)

EMPLOYEES CROSS JOB_HISTORY CROSS SALARY_HISTORY WITH
(JOB_HISTORY_REC.EMPLOYEE_ID = EMPLOYEES_REC.EMPLOYEE_ID) -
AND (SALARY_HISTORY_REC.EMPLOYEE_ID =
JOB_HISTORY_REC.EMPLOYEE_ID)

Before you enter an RSE that includes one or more CROSS clauses, check your
input to make sure you included a corresponding number of OVER clauses
or a corresponding number of equivalent conditions in a WITH clause. If you
inadvertently start a runaway cross operation, you can enter CTRL/C to stop it.

Creating View Domains
A view is a special type of domain that lets you select some (or all) fields in some
(or all) records from one or more domains. Using a view, you can refer to fields
and field values in different domains without duplicating their records or data.

You define a view by creating a domain definition for it in the dictionary. A view
lets you read and modify selected field values. Because there is no data stored for
a view, you cannot store or erase the records you retrieve with a view. Although
you can combine records from various domains with the CROSS clause of the
RSE, a view is the only type of domain that you can define in the dictionary for
working with data in more than one domain.

You define a view with the DEFINE DOMAIN command.

Because you can define a view with any RSE that you might type interactively,
view domains are convenient substitutes for typing complex record selection
expressions you use often.

One of the greatest advantages of a view is that you can use it to combine fields
from a relational database with fields from RMS (file-structured) domains and
VAX DBMS domains. You can have a single view that brings together data from
these different types of databases.

Accessing Data the Expert Way: Using RSEs and View Domains 12–9

Accessing Data the Expert Way: Using RSEs and View Domains
Creating View Domains

A view domain is also a convenient way to create a dynamic hierarchy. By using
the OCCURS FOR clause, you can create temporary list fields. You then have
the ability to display data in hierarchical form without being tied to hierarchical
records for other tasks.

You can define a view so that users can access a subset of fields from a long
record. You might want to do this for one of two reasons:

• The records you want to access contain more fields than you want to use.
Without a view, you must include a list of fields in PRINT and MODIFY
statements to restrict data display and access. After you define the view, you
can use the view name in READY and PRINT statements to get the access
you need.

• You want users to be able to access a file that contains some data they have
no right to see. In this case, you can define a view that specifies the fields
these users are allowed to see.

You can also define a view so that you or other users can access data stored
in more than one place. In this case, the view performs what would otherwise
require one or more CROSS clauses in a fairly complex statement.

Views Using Subsets of Records
A view lets you work with a specific subset of records from another domain. For
instance, you may want to work with the records for yachts that are ketches only
and no other rig type. The following example shows a view definition that allows
you to work with four fields of the yachts that are ketches:

DTR> DEFINE DOMAIN KETCHES
DFN> OF YACHTS BY
DFN> 01 KETCH OCCURS FOR YACHTS WITH RIG EQ "KETCH".
DFN> 03 TYPE FROM YACHTS.
DFN> 03 LOA FROM YACHTS.
DFN> 03 PRICE FROM YACHTS.
DFN> ;
DTR> READY KETCHES
DTR> PRINT FIRST 4 KETCHES

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

ALBERG 37 MK II 37 $36,951
CHALLENGER 41 41 $51,228
FISHER 30 30
FISHER 37 37

DTR>

12–10 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Views Using Subsets of Records

The view domain KETCHES, which is based on the single domain YACHTS, is
not hierarchical because there is only one OCCURS FOR clause.

You cannot store or erase records in a view, but in all other aspects you can use a
view just as you would any other domain. For example:

DTR> READY KETCHES MODIFY
DTR> FIND KETCHES WITH PRICE EQ 0
[4 records found]
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

FISHER 30 30
FISHER 37 37
PEARSON 365 36
PEARSON 419 42

DTR> FOR CURRENT PRINT THEN MODIFY PRICE

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

FISHER 30 30
Enter PRICE: $30,000
FISHER 37 37
Enter PRICE: 45,000
PEARSON 365 36
Enter PRICE: 32000
PEARSON 419 42
Enter PRICE: 54000
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

FISHER 30 30 $30,000
FISHER 37 37 $45,000
PEARSON 365 36 $32,000
PEARSON 419 42 $54,000

DTR> FINISH
DTR>

Views using a subset of records are also useful with VAX DBMS domains
and relational domains. See VAX DATATRIEVE Guide to Interfaces for more
information on how to use DATATRIEVE with VAX DBMS databases or relational
databases.

Accessing Data the Expert Way: Using RSEs and View Domains 12–11

Accessing Data the Expert Way: Using RSEs and View Domains
Views Using Subsets of Fields

Views Using Subsets of Fields
One type of view lets you refer to a subset of fields from the records of
another domain. For example, the record definition for YACHTS contains
seven elementary fields and three group fields:

DTR> SHOW YACHT
RECORD YACHT USING
01 BOAT.
03 TYPE.

06 MANUFACTURER PIC X(10)
QUERY_NAME IS BUILDER.

06 MODEL PIC X(10).
03 SPECIFICATIONS

QUERY_NAME SPECS.
06 RIG PIC X(6)

VALID IF RIG EQ "SLOOP","KETCH","MS","YAWL".
06 LENGTH_OVER_ALL PIC XXX

VALID IF LOA BETWEEN 15 AND 50
QUERY_NAME IS LOA.

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS "WEIGHT"
EDIT_STRING IS ZZ,ZZ9
QUERY_NAME IS DISP.

06 BEAM PIC 99 MISSING VALUE IS 0.
06 PRICE PIC 99999

MISSING VALUE IS 0
VALID IF PRICE>DISP*1.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

;
DTR>

If you want to work with only a few fields of the record, you can define a view
that lets you look at just the fields in YACHTS that you need, without duplicating
field values.

DTR> DEFINE DOMAIN MAKERS
DFN> OF YACHTS BY
DFN> 01 BOAT OCCURS FOR YACHTS.
DFN> 03 TYPE FROM YACHTS.
DFN> 03 RIG FROM YACHTS.
DFN> ;
DTR> READY MAKERS
DTR> PRINT FIRST 10 MAKERS

MANUFACTURER MODEL RIG

12–12 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Views Using Subsets of Fields

ALBERG 37 MK II KETCH
ALBIN 79 SLOOP
ALBIN BALLAD SLOOP
ALBIN VEGA SLOOP
AMERICAN 26 SLOOP
AMERICAN 26-MS MS
BAYFIELD 30/32 SLOOP
BLOCK I. 40 SLOOP
BOMBAY CLIPPER SLOOP
BUCCANEER 270 SLOOP

DTR>

Views Using More Than One Domain
Views can also use more than one domain. There are two general ways different
domains can be combined in a view:

• Combine record streams by using more than one OCCURS FOR clause.
Each OCCURS FOR clause has its own RSE, and DATATRIEVE creates
a hierarchical relationship between the record streams specified in each
RSE. For example, the sample domain SAILBOATS uses two OCCURS FOR
clauses to create a hierarchical relationship between two record streams:

DTR> SHOW SAILBOATS
DOMAIN SAILBOATS OF YACHTS, OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE = BOAT.TYPE.

05 NAME FROM OWNERS.
;

See Chapter 13 for more information on using hierarchies.

• Use a CROSS clause in the RSE of the OCCURS FOR clause to refer to more
than one domain. The remainder of this section discusses using the CROSS
clause in a view domain.

To illustrate how to use the CROSS clause in a view to combine records from
more than one domain, recall the CROSS example in Chapter 7. Recall that this
PRINT statement displays the NAME field from the OWNERS domain and the
TYPE and PRICE fields from the corresponding records in the YACHTS domain:

DTR> PRINT NAME, YACHTS.TYPE, PRICE OF YACHTS CROSS
DTR> OWNERS OVER TYPE

OWNER
NAME MANUFACTURER MODEL PRICE

Accessing Data the Expert Way: Using RSEs and View Domains 12–13

Accessing Data the Expert Way: Using RSEs and View Domains
Views Using More Than One Domain

STEVE ALBIN VEGA $18,600
HUGH ALBIN VEGA $18,600
JIM C&C CORVETTE
ANN C&C CORVETTE
JIM ISLANDER BAHAMA $6,500
ANN ISLANDER BAHAMA $6,500
STEVE ISLANDER BAHAMA $6,500
HARVE ISLANDER BAHAMA $6,500
TOM PEARSON 10M
DICK PEARSON 26
JOHN RHODES SWIFTSURE

DTR>

You can define a view domain, CROSS_SAILBOATS, to get the same results:

1. Include the RSE YACHTS CROSS OWNERS OVER TYPE after the OCCURS
FOR clause.

2. Specify the fields you want to include in the domain—NAME, TYPE, and
PRICE—in the FROM clauses of the view domain.

The following example shows the definition for CROSS_SAILBOATS. It shows
how a simple PRINT statement produces the same results as the previous PRINT
statement that used the CROSS clause.

DTR> SHOW CROSS_SAILBOATS
DOMAIN CROSS_SAILBOATS OF YACHTS, OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS CROSS OWNERS OVER TYPE.

03 NAME FROM OWNERS.
03 TYPE FROM YACHTS.
03 PRICE FROM YACHTS.

;
DTR> READY CROSS_SAILBOATS
DTR> PRINT CROSS_SAILBOATS

OWNER
NAME MANUFACTURER MODEL PRICE

STEVE ALBIN VEGA $18,600
HUGH ALBIN VEGA $18,600
JIM C&C CORVETTE
ANN C&C CORVETTE
JIM ISLANDER BAHAMA $6,500
ANN ISLANDER BAHAMA $6,500
STEVE ISLANDER BAHAMA $6,500
HARVE ISLANDER BAHAMA $6,500
TOM PEARSON 10M
DICK PEARSON 26
JOHN RHODES SWIFTSURE

DTR>

12–14 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Views Using More Than One Domain

Creating Hierarchies With View Domains
You can also use a view domain to display data in the FOLKS and CHILDREN
domains. By using two OCCURS FOR clauses in the view domain definition,
you create a hierarchical relationship between FOLKS and CHILDREN. Printing
the records in the view domain gives a display similar to the original FAMILIES
domain.

The following example shows a view domain, FAMILY_VIEW, that simulates the
structure of the original hierarchical domain FAMILIES using the flat domains
FOLKS and CHILDREN:

DTR> SHOW FAMILY_VIEW
DOMAIN FAMILY_VIEW OF FOLKS, CHILDREN USING
01 PARENTS OCCURS FOR FOLKS.

03 FATHER FROM FOLKS.
03 MOTHER FROM FOLKS.
03 KIDS OCCURS FOR CHILDREN WITH ID = FOLK_REC.ID.

05 KID_NAME FROM CHILDREN.
05 AGE FROM CHILDREN.

;
DTR> PRINT FAMILY_VIEW

KID
FATHER MOTHER NAME AGE

ARNIE ANNE SCOTT 2
BRIAN 0

BASIL MERIDETH BEAU 28
BROOKS 26
ROBIN 24
JAY 22
WREN 17
JILL 20

EDWIN TRINITA ERIC 16
SCOTT 11

.

.

.

ROB DIDI 0
SHEARMAN SARAH DAVID 0
TOM ANNE PATRICK 4

SUZIE 6
TOM BETTY MARTHA 30

TOM 27

DTR>

Accessing Data the Expert Way: Using RSEs and View Domains 12–15

Accessing Data the Expert Way: Using RSEs and View Domains
Using Views with Remote Domains

Using Views with Remote Domains
The use of views with remote domains is not recommended because certain
operations, such as the use of collections, will not work with remote domains. To
avoid possible problems with views, you should be sure that the view definition
and all domains mentioned in the view definition reside on the same node. (A
similar restriction applies to the use of operations involving CROSS clauses.)

You can accomplish this in one of two ways:

• Be sure that the view and the domains mentioned in the view definition all
reside on the remote node. Then, on your local node, define a remote (or
network) domain that points to the view at the remote location.

• If the source file subsystem you are using (RMS, VAX DBMS, or Rdb/VMS)
supports remote access, you may instead be able to use the subsystem
distributed access facility to accomplish the desired results.

For example, you can define the view and all the domains on the local node;
however, to access a remote RMS file, the domain definitions would specify
the full VMS file specification of the RMS file on the remote node, as in the
following example:

DTR>DEFINE DOMAIN LOCAL_DOM_EX USING LOCAL_REC_EX
CON>ON REMNOD::DISK:[REMOTE_DIR]REMOTE_FILE.DAT;

In this case, you would not be using DATATRIEVE remote access at all, but
the remote access provided by RMS.

Access Privileges Needed for Using Views
To ready a view for any task, you need the appropriate ACL privileges from the
following list:

• The view itself

• The directory in which the view is located

• Each domain that the view accesses

You also need the appropriate VMS privileges for all data files associated with
the domains on which the view is based and for the VMS directories storing those
files.

In short, you cannot ready the view if they do not have sufficient privileges to
ready the domains on which the view is based.

Chapter 19 discusses access privileges in greater detail.

12–16 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Access Privileges Needed for Using Views

Restrictions on Views with No Physical Record Source
VAX DATATRIEVE cannot perform operations involving collections nor can it
execute MODIFY or DELETE statements, if such collections or statements refer
to relational database views that have no underlying physical record source in
the relational database. Specifically, these views include the following:

• Views defined by the SQL interface to Rdb/VMS that include GROUP BY or
UNION clauses

• Views defined by either the Relational Database Operator (RDO) or the
SQL interface to Rdb/VMS that include functions such as SUM in the view
definition.

Such views are formed by creating a temporary table of data grouped together
from one or more input streams and by any associated functions that are referred
to in the definition; they are not formed by combining physical records.

Such relational views have no database keys because they do not represent
specific physical records in the database. DATATRIEVE uses database keys for
operations involving collections. Such operations include the following:

• Performing a PRINT or LIST command on a collection.

• Using MODIFY or DELETE statements. Such MODIFY or DELETE
statements may or may not refer to collections.

Because these relational views do not have a database key, DATATRIEVE cannot
perform such operations on them.

If an operation cannot be performed on a relational view of this type, Rdb/VMS
returns the following error message:

RDMS-F-VIEWNORET, view cannot be retrieved by database key.

In addition, the VAX DATATRIEVE statement referring to the view is not
executed.

When VAX DATATRIEVE is run with a future release of Rdb/VMS you will
no longer receive the RDMS message; instead, DATATRIEVE will produce the
following error message:

Illegal operation for relational view source <...>.

Once this future release of Rdb/VMS becomes available, all VAX DATATRIEVE
statements that do not directly require a database key should execute
successfully. PRINT and LIST commands that refer directly to this type of
view, rather than to a collection, will succeed. FIND statements will also succeed,
however, operations based on collections formed from the FIND statement will
fail.

Accessing Data the Expert Way: Using RSEs and View Domains 12–17

Accessing Data the Expert Way: Using RSEs and View Domains
Access Privileges Needed for Using Views

Table 12–1 Advantages and Disadvantages of Data Access Options

Option Pros Cons

Collections (statements that begin with the keywords FIND, SELECT, SORT, REDUCE,
and DROP.)

When you create a
collection the RSE in the
FIND statement is still
at your disposal after the
FIND statement executes.
Therefore, the RSE does
not have to be exact and
you can refine it with other
statements after you take
a look at the records it
specifies.

You do not have the advantage of indexed access
to records in a collection. If the collection contains
many records and you need to perform complex
operations on those records, DATATRIEVE
performance is going to be slower than if you
used key-based access to a domain. On the other
hand, if the collection gathers together only a few
records from a domain that contains thousands
of records, you might get faster performance
using one or more collections as the basis for your
operations.

The performance factor aside, you either cannot
or should not use collection-oriented statements in
compound statements. In most procedures, this
limits what you can do with collections.

RSEs in statements other than FIND

This option gives you the
greatest flexibility. You
can specify the records
you want to process in
compound statements.
You can specify either
collections or domains
as the record sources
in the RSE. To get the
best response time from
DATATRIEVE, include
in the RSE key-based
access to a domain or use
a small collection when
its records come from very
large domains.

You must learn to tell DATATRIEVE what records
you want in one RSE. Remember, however, you
can type EDIT immediately after an incorrect
statement to correct your mistakes. This takes
much of the pain out of learning to enter complex
RSEs.

Defining and using views

(continued on next page)

12–18 Accessing Data the Expert Way: Using RSEs and View Domains

Accessing Data the Expert Way: Using RSEs and View Domains
Access Privileges Needed for Using Views

Table 12–1 (Cont.) Advantages and Disadvantages of Data Access Options

Option Pros Cons

You can also use a view to
mask the data in certain
fields from users who do not
need to see it. Select the
fields you want the user to
see from each underlying
domain and define a view
that uses only those fields.

Because users must also have access to the
underlying domains, views cannot keep users
from retrieving sensitive data directly from those
domains.

One important disadvantage of using views lies
in the danger of modifying records from multiple
sources. You must be careful when you modify
values in a view based on more than one domain.
If the field you are changing is stored in more
than one data file, you are updating only one of
those files for each field value you enter.

If the view refers to a second domain based on
the value of a field in the first domain, a change
to a field value in the first domain can cause
DATATRIEVE to select an unexpected record
from the second domain. When you use a form
to modify such a view, the field value you see on
the screen may not be the value you are actually
modifying. For an example of this problem in
modifying a view, see the chapter on forms in the
VAX DATATRIEVE Guide to Interfaces.

Observe the following cautions and restrictions when you use views that refer to
more than one domain:

• Try to avoid updating with a view.

• Set up view domains that minimize duplicate fields.

• Remember that when a view contains more than one OCCURS FOR clause,
each OCCURS FOR clause after the first creates a list field. All the rules and
restrictions for handling hierarchical data apply to those fields.

• Do not modify a field in a view that uses the FORM IS clause when that field
forms the basis for selecting records from a second domain. (See the chapter
on forms in the VAX DATATRIEVE Guide to Interfaces for an example of this
restriction.

Accessing Data the Expert Way: Using RSEs and View Domains 12–19

13
Reporting Hierarchical Records

This chapter describes various methods for retrieving and manipulating the data
stored in hierarchical records. Hierarchical records are records that contain a list
(repeating) field. The list field specifies the number of items in the list with an
OCCURS clause. Each list item is subordinate to the list field. The list items are
on a lower logical level than the other fields of the record.

Figure 13–1 illustrates the structure of the hierarchical record EMP_REC. Each
record contains data on the previous jobs held by a particular employee. Data on
each job is stored as an item of the JOB_HISTORY list.

Figure 13–1 Field Structure of EMP_REC

01 EMP_REC

03 NAME 03 NUMBER_JOBS

05 FIRST_NAME 05 LAST_NAME

03 JOB_HISTORY

05 OLD_JOB 05 OLD_DATE

05 OLD_JOB 05 OLD_DATE

05 OLD_JOB 05 OLD_DATE

.

.

.

.

.

.

.

.

.

DEPENDING ON NUMBER_JOBS
OCCURS 0 TO 9 TIMES

The OCCURS clause of a hierarchical record designates either a fixed-length or
a variable-length list. For variable-length lists, the list field’s definition includes
an OCCURS DEPENDING clause. This indicates that the number of items in the
list depends on the value of another field. For example, the length of the JOB_
HISTORY list in EMP_REC depends on the value stored in NUMBER_JOBS.

Reporting Hierarchical Records 13–1

Reporting Hierarchical Records

If you have a domain like EMPLOYEE with hierarchical records, you may
want access to individual items from the list to compare their values or to find
associated values in a table. In this example, each list item has two components:
the code for the old job (OLD_JOB) and the date the job began (OLD_DATE). The
domain table JOB_TITLE_TABLE contains translations for job codes stored in
OLD_JOB. (For more information on using DATATRIEVE tables, see Chapter 5.)

Retrieving Values from Repeating Fields
When you retrieve a value from a record containing a repeating field, you cannot
always apply the same statements you do for other records.

Using the FAMILY record described in Chapter 2, if you form a collection, you
can print information on fathers and mothers but not children:

DTR> FIND FAMILIES
[13 records found]
DTR> PRINT ALL FATHER

FATHER

JIM
JIM
.
.
.
DTR> PRINT ALL MOTHER

MOTHER

ANN
LOUISE
.
.
.
DTR> PRINT ALL EACH_KID
"EACH_KID" is undefined or used out of context
DTR> PRINT ALL KIDS
"KIDS" is undefined or used out of context
DTR> PRINT ALL KIDS OF FAMILIES
PRINT ALL KIDS OF FAMILIES

^
Expected end of statement, encountered "OF".

To retrieve information about the children, you can apply one of the following
methods to set up a DATATRIEVE context:

• Use a FIND statement to establish a context for the list. Then use a SELECT
statement to identify one record in the collection.

13–2 Reporting Hierarchical Records

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

• Use nested FOR loops with RSEs. The outer FOR loop forms a target stream
of hierarchical records and the inner FOR loop forms a stream of list items
within a hierarchical record.

• Use inner print lists (ALL print-list OF rse) to form a stream of list items
within a record stream.

The following sections describe these methods for retrieving items from lists.

Using FIND and SELECT
You use the FIND statement to find all the records in the file that meet your
specifications. Then you can use the SELECT statement to request any one of
these records:

DTR> READY FAMILIES
DTR> FIND FAMILIES
[14 records found]
DTR> SELECT 3; PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JOHN JULIE 2 ANN 29
JEAN 26

When you have selected a record that contains a list, you can treat the list as
though it were a source of records like a domain or collection. You can continue
as follows:

DTR> PRINT KIDS

KID
NAME AGE

ANN 29
JEAN 26

You can also combine the FIND and SELECT statements to single out one list
item. Then the context of the selected list item allows you to use the list item
name by itself in a PRINT statement. Continue the previous example by forming
a collection of the KIDS list field and selecting a list item from the collection:

DTR> FIND KIDS
[2 records found]
DTR> SELECT 2; PRINT

KID
NAME AGE

JEAN 26

Reporting Hierarchical Records 13–3

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

You can use the same technique to get at nested repeating fields, such as the PET
field in the hierarchical record PET_REC:

DTR> READY PETS
DTR> ! Form a collection of the records
DTR> ! in the PETS domain:
DTR> FIND PETS
[3 records found]
DTR> SELECT 3; PRINT

NUMBER KID KID PET PET
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM LOUISE 5 ANNE 31 FRANK 14
FRANK 14

JIM 29 00
00

ELLEN 26 00
00

DAVID 24 00
00

ROBERT 16 00
00

DTR> ! Next, form a collection of the "records" in the
DTR> ! KIDS repeating field:
DTR> FIND KIDS
[5 records found]
DTR> SELECT 1; PRINT

KID KID PET PET
NAME AGE NAME AGE

ANNE 31 FRANK 14
FRANK 14

DTR> ! Third, form a collection of the "records"
DTR> ! in the PET repeating field:
DTR> FIND PET
[2 records found]
DTR> ! Finally, you can print a field subordinate to
DTR> ! the nested repeating field PET:
DTR> SELECT 1; PRINT PET_AGE

PET
AGE

14

You cannot retrieve the value of repeating fields from more than one record using
only FIND and SELECT statements.

13–4 Reporting Hierarchical Records

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

Using Nested FOR Loops
To retrieve values from list items by nesting FOR loops, start from the top of the
hierarchy and work toward the list items you want to retrieve.

The FOR statement preceding the PRINT statement in the following example
loops through all the records in FAMILIES. For each of those records, the RSE in
the PRINT statement retrieves only the first child whose age is less than 10:

DTR> FOR FAMILIES
[Looking for statement]
CON> PRINT KID_NAME OF FIRST 1 KIDS WITH AGE < 10

KID
NAME

URSULA
CHRISTOPHR
SCOTT
DAVID
PATRICK

DTR>

The OF rse clause in the PRINT statement serves the same purpose as a nested
FOR rse statement. The inner RSE (FIRST 1 KIDS WITH AGE < 10) identifies
items from the list field KIDS that are included within a FAMILIES record
identified by the outer FOR rse statement.

The equivalent statement using nested FOR rse statements is as follows:

FOR FAMILIES FOR FIRST 1 KIDS WITH AGE < 10 PRINT KID_NAME

For nested repeating fields, use the same technique, but nest FOR statements
more than one level. The following example uses the hierarchical domain PETS
as the record source for the outer FOR loop. The repeating field KIDS is the
source for the second FOR loop, and the nested repeating field PET is the source
for the innermost FOR loop. The example prints the MOTHER and KID_NAME
fields to show which PET record and KIDS occurrence the PET occurrence comes
from:

DTR> FOR PETS WITH ANY KIDS
CON> BEGIN
CON> PRINT MOTHER
CON> FOR KIDS WITH ANY PET
CON> BEGIN
CON> PRINT COL 10, KID_NAME
CON> FOR PET WITH PET_AGE GT 2
CON> PRINT COL 20, PET_NAME, PET_AGE
CON> END
CON> END

MOTHER

Reporting Hierarchical Records 13–5

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

LORAINE

KID
NAME

GARY

PET PET
NAME AGE

POP 03
SODA 04

SUE
MOUSE 03
SHORTY 08

ANN
URSULA

SQUEEKY 03
FRANK 07

RALPH

LOUISE
ANNE

FRANK 14
FRANK 14

JIM
ELLEN
DAVID
ROBERT

DTR>

Using Inner Print Lists
The simplest way to print a repeating field is to print the entire record containing
the repeating field:

DTR> READY FAMILIES
DTR> PRINT FIRST 1 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

DTR>

To print selected fields from the record, you must specify a print list in the
PRINT statement. (Print lists consist of field names or other value expressions
and modifiers.) To specify a list item in a print list, you must use an inner print
list, which has the following format:

ALL print-list OF rse

13–6 Reporting Hierarchical Records

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

In the print-list clause of the inner print list, you include the list items you want
to display. The OF rse clause of the inner print list creates a context for the
item in the hierarchical list. Example 13–1 prints the name of the mother and
information about her children for the first FAMILIES record.

Example 13–1 PRINT Statement with Inner Print List

DTR> ! ________________________________
DTR> ! | print-list |
DTR> ! | _______________________ |
DTR> ! | | Inner Print List ||
DTR> ! | | ___________ ||
DTR> ! | | |print-list | ||
DTR> ! | | | | ||
DTR> PRINT MOTHER, ALL KID_NAME, AGE OF KIDS OF FIRST 1 FAMILIES

KID
MOTHER NAME AGE

ANN URSULA 7 !All children from first family
RALPH 3

In this example, ALL KID_NAME, AGE OF KIDS is an inner print list. It is also
an element of the outer print list that includes the field MOTHER as another
element. This outer print list is associated with the target record stream formed
by the OF FIRST 1 FAMILIES clause.

If the inner print list is the first element in the outer print list, you must precede
the inner print list with another mandatory keyword, ALL. The following example
is similar to the previous one. However, it displays information about children in
the first FAMILIES record first, then prints the mother’s name:

DTR> PRINT ALL ALL KID_NAME, AGE OF KIDS,
CON> MOTHER OF FIRST 1 FAMILIES

KID
NAME AGE MOTHER

URSULA 7 ANN
RALPH 4

DTR>

There is only one difference between this format and the previous one: you need
an extra ALL when the first print list element in the outer print list is an inner
print list.

Reporting Hierarchical Records 13–7

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

There are two important points to remember when working with inner print lists.

• To DATATRIEVE, an inner print list is just another print-list element in the
outer print list.

• An inner print list establishes context for items in a list.

While inner print lists can complicate statements, they allow you to control
completely how DATATRIEVE displays repeating fields. By using the repeating
field as the source for an RSE in an inner print list, you can specify which
occurrences of the repeating field DATATRIEVE displays.

The following example retrieves only the information from the first occurrence of
the repeating field KIDS from a single record. It uses a third print list to display
information from the nested repeating field PET:

DTR> PRINT MOTHER, !Print list for rse-3
CON> ALL KID_NAME, KID_AGE, !Print list for rse-2
CON> ALL PET_NAME, PET_AGE - !Print list for rse-1
CON> OF FIRST 1 PET - !rse-1, uses PET as record source
CON> OF FIRST 1 KIDS - !rse-2, uses KIDS as record source
CON> OF PETS WITH MOTHER = "ANN" !rse-3, uses PETS as record source

KID KID PET PET
MOTHER NAME AGE NAME AGE

ANN URSULA 7 SQUEEKY 03 !First pet of first child of
!family whose mother is Ann

DTR>

Using nested inner print lists may require nesting the keyword ALL as well.
If the inner print list is the first element in the outermost print list, you must
precede it with as many ALL keywords as there are OF RSE phrases in the
PRINT statement.

Using Context Searcher
You can save yourself the difficulty of typing complex inner print lists when
dealing with lists and sublists. The VAX DATATRIEVE Context Searcher helps
you get access to list items. It constructs inner print lists for you once you
establish a single record context for it to work on. When you use the name of a
list or sublist item (even sublist items at the sixth level of a hierarchical record),
it searches through the names of list items, constructing the inner print lists
needed to retrieve the value.

You activate the Context Searcher with the SET SEARCH command. When you
invoke DATATRIEVE, SET NO SEARCH is in effect unless you have a SET
SEARCH command in your DTR$STARTUP file.

13–8 Reporting Hierarchical Records

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

The following example shows how the Context Searcher simplifies one of the
previous examples that used inner print lists:

DTR> SET SEARCH
DTR> READY FAMILIES
DTR> ! Compare with results from
DTR> ! PRINT MOTHER, ALL KID_NAME OF KIDS, FATHER OF FIRST 1 FAMILIES
DTR> PRINT MOTHER, KID_NAME, FATHER OF FIRST 1 FAMILIES
Not enough context. Some field names resolved by Context Searcher.

KID
MOTHER NAME FATHER

ANN URSULA JIM
RALPH JIM

Flattening Hierarchies
Another way to simplify retrieving values from repeating fields is to ‘‘flatten’’ the
hierarchical structure of the record. To flatten a hierarchy means to repeat all
fields in the record for each occurrence of the repeating field.

There are several ways to search the repeating (list) fields of a hierarchical
record:

• Use nested FOR statements to access list items in the same way as other
elementary fields.

• Use the CROSS clause to join the domain with the field controlling the list.
This puts every field on the same logical level and creates virtual records with
one list item per record.

• Use SET SEARCH to activate the DATATRIEVE Context Searcher and then
report on that data.

• Use the REPORT statement, providing context by means of inner print lists
in the PRINT statement. (See Using the REPORT Statement to Report List
Data in Chapter 16.)

The following sections describe each of these in more detail.

Flattening the hierarchical domain FAMILIES would mean repeating the
FATHER, MOTHER, NUMBER_KIDS, and the entire list within KIDS fields for
each occurrence of the KIDS repeating field. The next two examples compare how
the first two records of FAMILIES look when first displayed normally and then
flattened.

Reporting Hierarchical Records 13–9

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

The normal display is as follows:

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

The flattened display is as in the following example:

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3

JIM LOUISE 5 ANNE 31 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JIM LOUISE 5 ANNE 31 JIM 29
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JIM LOUISE 5 ANNE 31 ELLEN 26
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JIM LOUISE 5 ANNE 31 DAVID 24
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JIM LOUISE 5 ANNE 31 ROBERT 16
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

All the fields repeat, including the entire KIDS list, for each occurrence of the
repeating field KIDS. The repetition of the KIDS list in the flattened display
makes it cumbersome and hard to read. For a more readable display, you can
limit the fields to only those you want to see, as shown in the next sections.

13–10 Reporting Hierarchical Records

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

You can flatten hierarchies in three different ways to achieve the same results:

• With the CROSS clause

• With inner print lists

• With nested FOR loops

The following sections discuss these methods.

Using the CROSS Clause
To create the flattened display in the previous example, use a PRINT statement
with the CROSS clause.

DTR> PRINT FAMILIES CROSS KIDS

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3
.
.
.

EDWIN TRINITA 2 ERIC 16 ERIC 16
SCOTT 11

EDWIN TRINITA 2 ERIC 16 SCOTT 11
SCOTT 11

DTR>

DATATRIEVE treats KIDS as a domain in this statement. For each record in the
KIDS domain, DATATRIEVE prints the corresponding record from the FAMILIES
domain (including the list field KIDS in those records) and the KIDS record.

You can limit the flattened FAMILIES records displayed by the CROSS clause by
using the same techniques you use with two separate domains. DATATRIEVE
joins the appropriate KIDS records with the corresponding FAMILIES record.
Limit the display to joining FAMILIES to the first two records of the KIDS
domain:

DTR> PRINT FIRST 2 FAMILIES CROSS KIDS ! FIRST 2 in this
! statement refers to the KIDS
! domain, not FAMILIES.

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

Reporting Hierarchical Records 13–11

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3

DTR>

Limit the display to joining FAMILIES with the KIDS record containing
‘‘URSULA’’:

DTR> PRINT FAMILIES CROSS KIDS WITH KID_NAME CONTAINING "URSULA"

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

DTR>

The preceding displays included the KIDS repeating field and all the list items
it contained. To keep from seeing the entire KIDS list for each KIDS record
displayed, specify only the fields you want displayed in the PRINT statement.

DTR> PRINT FATHER, MOTHER, NUMBER_KIDS, KID_NAME,
DTR> AGE OF FAMILIES CROSS KIDS

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
JIM ANN 2 RALPH 3

.

.

.

EDWIN TRINITA 2 ERIC 16
EDWIN TRINITA 2 SCOTT 11

DTR>

You can nest CROSS clauses to retrieve records from nested repeating fields. The
following statement uses the PETS domain, which has the nested repeating field
PET within the repeating field KIDS. It prints the first four records in the PET
domain joined with KIDS domain, which is itself joined with the PETS domain.
The statement prints only the elementary fields of the flattened PETS record,
omitting the list fields.

DTR> PRINT FATHER, MOTHER, NUMBER_KIDS, -
CON> KID_NAME, KID_AGE, PET_NAME, PET_AGE
CON> OF FIRST 4 PETS CROSS KIDS CROSS PET

NUMBER KID KID PET PET
FATHER MOTHER KIDS NAME AGE NAME AGE

13–12 Reporting Hierarchical Records

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

JIM LORAINE 2 GARY 24 POP 03
JIM LORAINE 2 GARY 24 SODA 04
JIM LORAINE 2 SUE 23 MOUSE 03
JIM LORAINE 2 SUE 23 SHORTY 08

DTR>

If you often need to retrieve values in a repeating field of the same domain, you
can set up a view domain that contains the flattened records. For instance, you
could define a view, FLAT_FAMILY_VIEW, that uses a CROSS clause to flatten
the FAMILIES records:

DTR> SHOW FLAT_FAMILY_VIEW
DOMAIN FLAT_FAMILY_VIEW

OF FAMILIES USING
01 FLAT_FAMILY OCCURS FOR FAMILIES CROSS KIDS.

03 FATHER FROM FAMILIES.
03 MOTHER FROM FAMILIES.
03 NUMBER_KIDS FROM FAMILIES.
03 KID_NAME FROM FAMILIES.
03 AGE FROM FAMILIES.

;

DTR>

You can then use simple PRINT statements to retrieve the repeating field values
you need:

DTR> READY FLAT_FAMILY_VIEW
DTR> PRINT FIRST 2 FLAT_FAMILY_VIEW

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
JIM ANN 2 RALPH 3

DTR> PRINT FLAT_FAMILY_VIEW WITH AGE GT 30

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM LOUISE 5 ANNE 31
JEROME RUTH 4 ERIC 32
HAROLD SARAH 3 CHARLIE 31
HAROLD SARAH 3 HAROLD 35

DTR>

Reporting Hierarchical Records 13–13

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

Using Inner Print Lists
For any PRINT statement you use with the CROSS clause, there is an equivalent
PRINT statement using inner print lists that produces the same results. The
PRINT statements in the following example show the inner print lists that
duplicate the results of examples in the previous section:

DTR> ! Duplicate the PRINT FAMILIES CROSS KIDS statement:
DTR> PRINT ALL ALL FAMILY, EACH_KID OF KIDS OF FAMILIES

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3
.
.
.

EDWIN TRINITA 2 ERIC 16 ERIC 16
SCOTT 11

EDWIN TRINITA 2 ERIC 16 SCOTT 11
SCOTT 11

DTR> ! Duplicate the PRINT FIRST 2 FAMILIES CROSS KIDS statement:
DTR> PRINT ALL ALL FAMILY, EACH_KID OF FIRST 2 KIDS OF FIRST 1 FAMILIES

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3

DTR> ! Duplicate the PRINT FAMILIES CROSS KIDS WITH
DTR> ! KID_NAME CONTAINING "URSULA" statement:
DTR> PRINT ALL ALL FAMILY, EACH_KID -
CON> OF KIDS WITH KID_NAME CONTAINING "URSULA" OF FAMILIES

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

DTR> ! Duplicate the PRINT FATHER, MOTHER, NUMBER_KIDS,
DTR> ! KID_NAME, AGE OF FAMILIES CROSS KIDS statement:
DTR> PRINT ALL ALL FATHER, MOTHER, NUMBER_KIDS, KID_NAME, AGE -
CON> OF KIDS OF FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

13–14 Reporting Hierarchical Records

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

JIM ANN 2 URSULA 7
JIM ANN 2 RALPH 3

.

.

.

EDWIN TRINITA 2 ERIC 16
EDWIN TRINITA 2 SCOTT 11

DTR> ! Duplicate the PRINT FATHER, MOTHER, NUMBER_KIDS, KID_NAME, KID_AGE,
DTR> ! PET_NAME, PET_AGE OF FIRST 4 PETS CROSS KIDS CROSS PET statement
DTR> PRINT ALL ALL ALL FATHER, MOTHER, NUMBER_KIDS, KID_NAME, KID_AGE, -
CON> PET_NAME, PET_AGE OF FIRST 4 PET OF KIDS OF FIRST 1 PETS

NUMBER KID KID PET PET
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM LORAINE 2 GARY 24 POP 03
JIM LORAINE 2 GARY 24 SODA 04
JIM LORAINE 2 SUE 23 MOUSE 03
JIM LORAINE 2 SUE 23 SHORTY 08

DTR>

Using Nested FOR Statements
For any PRINT statement you use with the CROSS clause, there are equivalent
nested FOR statements that produce the same results. The nested FOR
statements in the following example duplicate the results of CROSS statements
in the previous section:

DTR> ! Duplicate the PRINT FAMILIES CROSS KIDS statement:
DTR> FOR FAMILIES FOR KIDS PRINT FAMILY, EACH_KID

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3
.
.
.

EDWIN TRINITA 2 ERIC 16 ERIC 16
SCOTT 11

EDWIN TRINITA 2 ERIC 16 SCOTT 11
SCOTT 11

DTR> ! Duplicate the PRINT FIRST 2 FAMILIES CROSS KIDS statement:
DTR> FOR FIRST 1 FAMILIES FOR FIRST 2 KIDS PRINT FAMILY, EACH_KID

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

Reporting Hierarchical Records 13–15

Reporting Hierarchical Records
Retrieving Values from Repeating Fields

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3

DTR> ! Duplicate the PRINT FAMILIES CROSS KIDS WITH
DTR> ! KID_NAME CONTAINING "URSULA" statement:
DTR> FOR FAMILIES FOR KIDS WITH KID_NAME CONTAINING "URSULA" -
CON> PRINT FAMILY, EACH_KID

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

DTR> ! Duplicate the PRINT FATHER, MOTHER, NUMBER_KIDS, KID_NAME, AGE
DTR> ! OF FAMILIES CROSS KIDS statement:
DTR> FOR FAMILIES FOR KIDS PRINT FATHER, MOTHER,
DTR>) NUMBER_KIDS, KID_NAME, AGE

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
JIM ANN 2 RALPH 3

.

.

.

EDWIN TRINITA 2 ERIC 16
EDWIN TRINITA 2 SCOTT 11

DTR> ! Duplicate the
DTR> ! PRINT FATHER, MOTHER, NUMBER_KIDS,
DTR> ! KID_NAME, KID_AGE, PET_NAME, PET_AGE -
DTR> ! OF FIRST 4 PETS CROSS KIDS CROSS PET statement
DTR> FOR FIRST 1 PETS FOR KIDS FOR FIRST 4 PET -
CON> PRINT FATHER, MOTHER, NUMBER_KIDS,
CON> KID_NAME, KID_AGE, PET_NAME, PET_AGE

NUMBER KID KID PET PET
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM LORAINE 2 GARY 24 POP 03
JIM LORAINE 2 GARY 24 SODA 04
JIM LORAINE 2 SUE 23 MOUSE 03
JIM LORAINE 2 SUE 23 SHORTY 08

DTR>

13–16 Reporting Hierarchical Records

Reporting Hierarchical Records
Modifying Values Stored in Repeating Fields

Modifying Values Stored in Repeating Fields
The techniques used to retrieve data from repeating fields can be adapted for
modifying data. This section shows two methods of modifying data stored in
repeating fields:

• Use FIND and SELECT statements to establish context, and then use the
MODIFY statement.

• Use FOR statements in combination with the MODIFY statement to establish
context with nested record streams.

Modifying Repeating Field Values with FIND and SELECT
When you try to change the values stored in repeating fields, you encounter the
same complications that occur when retrieving data from repeating fields. For
instance, you cannot directly modify a field subordinate to a repeating field. Once
you have selected a record that contains a repeating field, follow these steps:

1. Use the FIND statement to create a collection of the occurrences of the
repeating field.

2. Use the SELECT statement to single out one of those occurrences.

3. Use the MODIFY statement to change the value of the desired field of the
occurrence you selected.

The following example uses this method. It modifies the AGE field in the
repeating field KIDS in the FAMILIES domain.

DTR> ! Create a named collection from FAMILIES domain:
DTR> FIND FIRST 1 FAM IN FAMILIES
[1 record found]
DTR> PRINT ALL

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 3

DTR> ! Select a record from the named collection:
DTR> SELECT
DTR> MODIFY AGE ! But AGE is subordinate to KIDS list field, so:
"AGE" is undefined or used out of context.
DTR> ! So, create another collection from the list field KIDS:
DTR> FIND KIDS
[2 records found]
DTR> ! Now select an occurrence of the list field,
DTR> ! in this case the second:
DTR> SELECT 2
DTR> PRINT

Reporting Hierarchical Records 13–17

Reporting Hierarchical Records
Modifying Values Stored in Repeating Fields

KID
NAME AGE

RALPH 3

DTR> MODIFY AGE ! Now you can modify the AGE field
Enter AGE: 4
DTR> ! Check to see that the field was really modified:
DTR> PRINT

KID
NAME AGE

RALPH 4

DTR> RELEASE CURRENT
DTR> PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

DTR>

Note that when you modify a selected record, the field you specify following
MODIFY can never be the OCCURS field itself. In the preceding example, this
means that you cannot enter MODIFY KIDS. If you want to modify all the fields
in each occurrence of the repeating field, you can enter the name of a top-level
group field subordinate to the OCCURS field (not all record definitions contain
such a field), or you can specify all the elementary fields subordinate to the
OCCURS field. In the context of the preceding example, this means that you can
enter MODIFY EACH_KID (group field) or MODIFY KID_NAME, AGE (list of
elementary fields) in order to enter a value for each elementary field in the list
occurrence.

Modifying Repeating Field Values with FOR and MODIFY
You can modify values stored in repeating fields without using collections by
nesting record streams with the FOR and MODIFY statements.

Remember that you can treat the repeating field, or list, as a source of records
like a domain or collection. Two formats for nesting record streams based on
repeating fields have different results in modifying values:

FOR rse MODIFY list-rse USING assignment-statement

In this format, list-rse is a record selection expression that uses the repeating
field as the record source. The first RSE specifies the record source and specific
records to be modified. The list-rse specifies the repeating field and the particular
occurrences in the list to be modified.

13–18 Reporting Hierarchical Records

Reporting Hierarchical Records
Modifying Values Stored in Repeating Fields

You supply only one value for each field you specify in the USING clause. If the
list-rse specifies more than one occurrence in the list, each field value you supply
applies to them all. The following example modifies the name of one child in the
FAMILIES domain:

DTR> ! Use SET NO PROMPT to turn off the
DTR> ! "[Looking for...]" prompts
DTR> SET NO PROMPT
DTR> ! The outer RSE specifies a single record
DTR> ! from the FAMILIES domain:
DTR> FOR FAMILIES WITH FATHER = "TOM" AND MOTHER = "ANNE"
CON> ! The inner RSE within the MODIFY statement uses the
CON> ! repeating field KIDS as a record source and
CON> ! specifies a single occurrence of KIDS. Had it
CON> ! specified more occurrences, they all would be
CON> ! modified with the value specified in the USING clause:
CON> MODIFY KIDS WITH KID_NAME = "PATRICIA" USING
CON> BEGIN
CON> ! Print the occurrence of KIDS specified:
CON> PRINT
CON> ! Change the value of the subordinate field KID_NAME:
CON> KID_NAME = "PATRICK"
CON> ! Print the modified occurrence of KIDS:
CON> PRINT
CON> END

KID
NAME AGE

PATRICIA 4

KID
NAME AGE

PATRICK 4

DTR>

With this format, you can modify only a single occurrence of a repeating field
or give all occurrences specified in the list-rse the same value. The next format
shows how to process independently more than one occurrence in the same
statement.

FOR rse FOR list-rse MODIFY [field-name [,...]]

Use this format to independently process more than one occurrence of a repeating
field in the same statement. When you use this format, DATATRIEVE prompts
you to enter field values for as many times as there are occurrences of the
repeating field.

If you do not specify field names, DATATRIEVE prompts you to enter values for
all fields subordinate to the repeating field.

Reporting Hierarchical Records 13–19

Reporting Hierarchical Records
Modifying Values Stored in Repeating Fields

The following example uses this format to change the value of all the occurrences
of the KIDS repeating field in the first FAMILIES record:

DTR> FOR FIRST 1 FAMILIES
! The RSE in the outer FOR statement
CON> ! specifies a single record in
CON> ! FAMILIES. If it specified more,
CON> ! DATATRIEVE would prompt for
CON> ! values for repeating fields in each
CON> ! record.
CON>
CON> FOR KIDS ! The inner FOR statement specifies
CON> ! all occurrences of KIDS in the
CON> ! record or records in the outer
CON> ! FOR statement. It could have
CON> ! limited the RSE to a single
CON> ! occurrence of the repeating field.
CON> BEGIN
CON> PRINT
CON> MODIFY AGE ! The MODIFY statement specifies that
CON> ! only the AGE field subordinate to
CON> ! the KIDS repeating field will be
CON> ! changed.
CON> PRINT
CON> END

KID
NAME AGE

URSULA 7
Enter AGE: 8

KID
NAME AGE

URSULA 8
RALPH 3
Enter AGE: 4
RALPH 4

DTR>

Modifying Every Repeating Field Value with OF
If you want to change the values of all occurrences of fields subordinate to
a repeating field, you can add the keyword OF, followed by the name of the
repeating field. Use this general format:

MODIFY [ALL] list-item OF list

DATATRIEVE prompts you to enter a value for the field you specify following
the MODIFY statement or for each of its elementary items if you specify a group
field.

13–20 Reporting Hierarchical Records

Reporting Hierarchical Records
Modifying Values Stored in Repeating Fields

Note that this format differs from the preceding one by including the OF list
clause. When you include this clause, you modify all occurrences in the list at
once. The following example illustrates this condition.

DTR> FIND FAMILIES WITH FATHER = "ARNIE"
[1 record found]
DTR> PRINT
No record selected, printing whole collection.

NUMBER KID
FATHER MOTHER KIDS NAME AGE

ARNIE ANNE 2 SCOTT 2
BRIAN 0

DTR> ! Oops... Scott and Brian are twenty-year-old twins!
DTR> SELECT
DTR> MODIFY AGE
"AGE" is undefined or used out of context.
DTR> MODIFY AGE OF KIDS
Enter AGE: 20
DTR> PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

ARNIE ANNE 2 SCOTT 20
BRIAN 20

Changing the Length of a Variable-Length List
If you define a repeating field with the OCCURS DEPENDING clause, you may
be able to change the number of list items (the number of times a repeating field
repeats), depending on how you define the data file for the domain:

• The most restrictive case is a data file that you define without the MAX or
KEY clauses. This creates a sequential file with variable-length records. In
such a file, you can change only the number of list items up to the value you
first store in the field referred to in the OCCURS DEPENDING clause. You
cannot exceed that number because DATATRIEVE determines the length of
each record when you first store it.

• If you specify the MAX clause when defining the data file (whether the file
is indexed or sequential), you create a file with fixed-length records. In a
domain based on such a file, you can change the number of list items only up
to the maximum value specified in the OCCURS DEPENDING clause. You
cannot exceed that value, because the MAX clause in the file definition causes
DATATRIEVE to create a fixed-length RMS file based on the maximum value
in the OCCURS DEPENDING clause.

Reporting Hierarchical Records 13–21

Reporting Hierarchical Records
Modifying Values Stored in Repeating Fields

• The least restrictive case is a data file you define using the KEY clause but
not the MAX clause. This creates an indexed file with variable-length records.
In such a file, you can change the number of list items to any number you
want. The following example shows how to increase the number of list items
for a domain based on an indexed file with variable-length records:

DTR> READY INDEXED_FAMILIES WRITE
DTR> FIND FIRST 1 INDEXED_FAMILIES
[1 Record found]
DTR> PRINT
No record selected, printing whole collection

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

DTR> SELECT
DTR> MODIFY NUMBER_KIDS
Enter NUMBER_KIDS: 4
DTR> FIND KIDS
[4 records found]
DTR> SELECT 3
DTR> MODIFY
Enter KID_NAME: NICKY
Enter AGE: 2
DTR> SELECT 4
DTR> MODIFY
Enter KID_NAME: TAM
Enter AGE: 1
DTR> PRINT FIRST 1 INDEXED_FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 4 URSULA 7
RALPH 3
NICKY 2
TAM 1

DTR>

Creating Hierarchies with Multiple RSEs
The complications that occur when you have to retrieve or modify data stored in
repeating fields make it a good idea to avoid using hierarchical records. However,
you can have the benefits of hierarchical records without the disadvantages
by creating hierarchies from flat records. There are several advantages to
hierarchies based on flat records:

13–22 Reporting Hierarchical Records

Reporting Hierarchical Records
Creating Hierarchies with Multiple RSEs

• Because they are based on flat records, you avoid the complications of
retrieving and modifying data stored in records with repeating fields. You can
simply print or modify fields directly in domains based on the flat records.

• Like records with repeating fields, they let you display a parent/child
relationship between data when you want to.

• They offer more flexibility because the parent/child relationship is not
imposed by the record definition.

• There is no limit to the number of occurrences of the child record stream. In
records with repeating fields, the OCCURS clause limits how many values a
repeating field can store.

There are three techniques for combining record streams to form hierarchies:

• View domains

• Inner print lists

• Nested FOR statements

Each of the techniques creates a hierarchical relationship without using repeating
fields in a record definition. Instead, they nest record streams from separate
domains to create the one-to-many relationship characteristic of a hierarchy.

Using Nested FOR Statements to Create Dynamic Hierarchies
You can also create dynamic hierarchies by nesting FOR statements. Although
nested FOR statements are logically equivalent to inner print lists or view
domains with nested OCCURS clauses, DATATRIEVE displays the data
differently.

The following example uses nested FOR statements to retrieve the same
information that printing the SAILBOATS view domain retrieves:

DTR> FOR YACHTS
CON> BEGIN
CON> PRINT BOAT
CON> FOR OWNERS WITH TYPE = BOAT.TYPE
CON> PRINT NAME
CON> END

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

Reporting Hierarchical Records 13–23

Reporting Hierarchical Records
Creating Hierarchies with Multiple RSEs

OWNER
NAME

STEVE
HUGH
AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895

.

.

.

DTR>

You can control the printing format to make the display similar to that produced
by printing the SAILBOATS view domain:

DTR> FOR YACHTS
CON> BEGIN
CON> PRINT BOAT
CON> FOR OWNERS WITH TYPE = BOAT.TYPE
CON> PRINT COL 60, NAME (-)
CON> END

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

STEVE
HUGH

AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895

DTR>

Flat Versus Hierarchical Records
When defining a record, you can choose to use lists (hierarchies) or to break
off each list item into separate records (flat files). It is usually easier to access
data in flat files than in hierarchical files. This point can be illustrated with the
sample domain FAMILIES.

The data stored in FAMILIES could be organized in flat records or in hierarchical
records. FAMILIES happens to use a hierarchical record organization, a record
containing the repeating list field KIDS. Figure 13–2 illustrates the structure of
the record FAMILY.

13–24 Reporting Hierarchical Records

Reporting Hierarchical Records
Flat Versus Hierarchical Records

Figure 13–2 Structure of a Hierarchical Record

01 FAMILY

03 PARENTS 03 NUMBER_KIDS

06 FATHER 06 MOTHER

09 KID_NAME 09 AGE

03 KIDS OCCURS 1 TO 10 TIMES

06 EACH_KID

06 EACH_KID

09 KID_NAME 09 AGE

06 EACH_KID
09 KID_NAME 09 AGE

.

.

.

.

.

.

.

.

.

VAX DATATRIEVE supports lists or hierarchies created using the OCCURS
clause in record definitions. You can consider the list field to be a small domain
within each record of the large domain. For example, you can view each record
in FAMILIES as containing several KIDS records. To access one of the KIDS
records, you must do two things:

• Identify a specific record in FAMILIES.

• Identify the KIDS record within that FAMILIES record.

In the following example, two FOR loops are required to modify ELLEN’s age:

DTR> FOR FAMILIES WITH FATHER = "JIM" -
CON> AND MOTHER = "LOUISE"
CON> FOR KIDS WITH KID_NAME = "ELLEN"
CON> MODIFY AGE
Enter AGE: 26
DTR>

Sometimes nested FOR loops are not sufficient to access data stored in a list. If
you want to sort all the records in FAMILIES by the age of the children, you must
first flatten the records in FAMILIES with the CROSS clause:

Reporting Hierarchical Records 13–25

Reporting Hierarchical Records
Flat Versus Hierarchical Records

DTR> FOR FAMILIES CROSS KIDS SORTED BY AGE
CON> PRINT PARENTS, KID_NAME, AGE

KID
FATHER MOTHER NAME AGE

SHEARMAN SARAH DAVID 0
JOHN ELLEN CHRISTOPHR 0
ARNIE ANNE BRIAN 0
ARNIE ANNE SCOTT 2
JIM ANN RALPH 3
TOM ANNE PATRICK 4

.

.

.
DTR>

An alternative to this complex syntax and high performance overhead is to
organize the records in a flat file to begin with, as Figure 13–3 shows.

Figure 13–3 The Structure of a Flat Record

01 FAMILY_FLAT_REC

03 PARENTS 03 EACH_KID

05 FATHER 05 MOTHER 05 KID_NAME 05 AGE

The complete record definition of the FAMILY_FLAT_REC record follows:

DTR> SHOW FAMILY_FLAT_REC
RECORD FAMILY_FLAT_REC USING
01 FAMILY_REC.

03 PARENTS.
05 FATHER PIC X(10).
05 MOTHER PIC X(10).

03 EACH_KID.
05 KID_NAME PIC X(10).
05 AGE PIC 99

EDIT_STRING IS Z9.
;

DTR>

13–26 Reporting Hierarchical Records

Reporting Hierarchical Records
Flat Versus Hierarchical Records

Each record of FAMILY_FLAT has elementary fields for FATHER, MOTHER,
KID_NAME, and AGE. This simplifies the task of modifying a child’s age. For
example, to modify Ellen’s age, enter the following:

DTR> MODIFY AGE OF FAMILY_FLAT WITH FATHER = "JIM" AND
CON> KID_NAME = "ELLEN"

To sort by the age of children, enter the following:

DTR> PRINT FAMILY_FLAT SORTED BY AGE

Because FAMILY_FLAT does not have hierarchical records like FAMILIES,
DATATRIEVE does not have to flatten records before sorting them. This gives
you better performance along with easier access to data. There are additional
costs, however, for storing the same parent information with each child in the
family. This issue is discussed in Chapter 22.

Restructuring a Hierarchical File to a Flat File
You can use a Restructure statement to convert the records in FAMILIES to
FAMILY_FLAT. After defining the domain, record, and file for FAMILY_FLAT,
enter the following statements:

DTR> READY FAMILIES
DTR> READY FAMILY_FLAT WRITE
DTR> FAMILY_FLAT = FAMILIES CROSS KIDS

The Restructure statement contains a CROSS clause so that each child is in a
separate record, paralleling the structure of FAMILY_FLAT. A PRINT statement
displays the records of FAMILY_FLAT:

DTR> PRINT FAMILY_FLAT

KID
FATHER MOTHER NAME AGE

JIM ANN URSULA 7
JIM ANN RALPH 3
JIM LOUISE ANNE 31
JIM LOUISE JIM 29
JIM LOUISE ELLEN 26
JIM LOUISE DAVID 24
JIM LOUISE ROBERT 16
JOHN JULIE ANN 29

.

.

.
HAROLD SARAH HAROLD 35
HAROLD SARAH SARAH 27
EDWIN TRINITA ERIC 16
EDWIN TRINITA SCOTT 11

Reporting Hierarchical Records 13–27

Reporting Hierarchical Records
Flat Versus Hierarchical Records

DTR>

Now all of the data for parents and their children has been stored in FAMILY_
FLAT, but one problem remains. In joining FAMILIES on the list field KIDS, you
leave out any records in FAMILIES of couples with no children. In fact, there is
one such record in FAMILIES:

DTR> PRINT FAMILIES WITH NOT ANY KIDS

NUMBER KID
FATHER MOTHER KIDS NAME AGE

ROB DIDI 0

This record from FAMILIES is not included in the record stream formed by
FAMILIES CROSS KIDS because the KIDS list is empty. As a result, the
Restructure statement does not store the data about ROB and DIDI in FAMILY_
FLAT:

DTR> FIND FAMILY_FLAT WITH FATHER = "ROB"
[0 records found]
DTR>

To include records of parents without children in FAMILY_FLAT, you need a
separate storing operation:

DTR> FOR A IN FAMILIES WITH NOT ANY KIDS
[Looking for statement]
CON> STORE FAMILY_FLAT USING PARENTS = A.PARENTS

Now the transfer of data from FAMILIES to FAMILY_FLAT is complete:

DTR> PRINT FAMILY_FLAT WITH FATHER = "ROB"

KID
FATHER MOTHER NAME AGE

ROB DIDI

DTR>

Defining Several Smaller Related Records
Though DATATRIEVE lets you define very large records, you may be better off
dividing a large record into several smaller related records. If you include all the
fields in one large record, you can access any portion of the data by readying only
one domain. However, if you need information from only one field, DATATRIEVE
still must read through the large record.

Another problem with large, all-inclusive records is that several records can
duplicate the same information. Not only is this expensive to store, but you may
have problems when updating data if you do not change the information in all the
relevant records.

13–28 Reporting Hierarchical Records

Reporting Hierarchical Records
Flat Versus Hierarchical Records

This problem could occur with the FAMILY_FLAT records discussed in the
previous section. Parent information is stored in each child’s record. If the
marital status of the parents should change, each of the children’s records would
have to be updated. You can avoid this problem by storing parent data in one
domain (FOLKS) and children’s data in a second domain (CHILDREN).

The two domains could each have an ID field, representing an ID assigned to
each set of parents. In the FOLKS domain, you store the ID along with the
parents’ names. In the CHILDREN domain, you store the parent ID along with
the children’s names. The record definitions of FOLK_REC and CHILD_REC
follow:

DTR> SHOW FOLK_REC
RECORD FOLK_REC USING
01 FOLK_REC.

03 ID PIC 99
EDIT_STRING IS Z9.

03 PARENTS.
05 FATHER PIC X(10).
05 MOTHER PIC X(10).

;

DTR> SHOW CHILD_REC
RECORD CHILD_REC USING
01 CHILD_REC.

03 ID PIC 99
EDIT_STRING IS Z9.

03 KID_NAME PIC X(10).
03 AGE PIC 99

EDIT_STRING IS Z9.
;

DTR>

When you need information about both parents and children, you can join
the FOLKS records with the CHILDREN records over the common ID field.
Figure 13–4 illustrates the result of this relational join. The boldface lines
enclose the suggested key fields.

Reporting Hierarchical Records 13–29

Reporting Hierarchical Records
Flat Versus Hierarchical Records

Figure 13–4 Joining FOLKS and CHILDREN with CROSS

FOLK_REC

FATHER MOTHER ID

CHILD_REC

AGEKID_NAMEID

FOLKS CROSS CHILDREN OVER ID

FATHER MOTHER ID AGEKID_NAME

Restructuring Large Records into Smaller Ones
DATATRIEVE simplifies the conversion of large records to several smaller
records. This point is illustrated by converting the larger records of FAMILY_
FLAT to the smaller records of FOLKS and CHILDREN.

Both FOLKS and CHILDREN have an ID field that indicates a unique set of
parents. Because FAMILY_FLAT has duplicate occurrences for sets of parents
(one for each of their children), you need to determine the unique sets of parents
in the records of FAMILY_FLAT before assigning ID values. Use the REDUCED
TO clause in the record selection expression to find the unique values. Then use a
STORE USING statement to store values in FOLKS, assigning values for ID with
RUNNING COUNT. The following DATATRIEVE session uses these statements:

DTR> READY FAMILY_FLAT
DTR> READY FOLKS WRITE
DTR> FOR A IN FAMILY_FLAT REDUCED TO PARENTS
CON> STORE FOLKS USING
CON> BEGIN
CON> ID = RUNNING COUNT
CON> FATHER = A.FATHER
CON> MOTHER = A.MOTHER
CON> END

13–30 Reporting Hierarchical Records

Reporting Hierarchical Records
Flat Versus Hierarchical Records

As this example shows, the STORE USING statement is another way to
restructure a domain. A PRINT statement displays the records in the new
domain FOLKS:

DTR> PRINT FOLKS

ID FATHER MOTHER

1 ARNIE ANNE
2 BASIL MERIDETH
3 EDWIN TRINITA
4 GEORGE LOIS
5 HAROLD SARAH
6 JEROME RUTH
7 JIM ANN
8 JIM LOUISE
9 JOHN ELLEN
10 JOHN JULIE
11 ROB DIDI
12 SHEARMAN SARAH
13 TOM ANNE
14 TOM BETTY

To store records in the related CHILDREN domain, you need the ID and parent
data from FOLKS and the children data from FAMILY_FLAT. The record
selection expression FAMILY_FLAT CROSS FOLKS OVER PARENTS gives you
all the necessary information. You can use this RSE as the right-hand part of a
Restructure statement for the CHILDREN domain:

DTR> READY FAMILY_FLAT, FOLKS
DTR> READY CHILDREN WRITE
DTR> CHILDREN = FAMILY_FLAT CROSS FOLKS OVER PARENTS

A PRINT statement displays the records in the new CHILDREN domain:

DTR> PRINT CHILDREN

KID
ID NAME AGE

Reporting Hierarchical Records 13–31

Reporting Hierarchical Records
Flat Versus Hierarchical Records

1 SCOTT 2
1 BRIAN 0
2 BEAU 28
2 BROOKS 26
2 ROBIN 24

.

.

.
11 0
12 DAVID 0
13 PATRICK 4
13 SUZIE 6
14 MARTHA 30
14 TOM 27

Note that for ID number 11, a record was stored without a child’s name. This is
the record for ROB and DIDI, the only couple in the database without children.
Because this record is stored in CHILDREN, DATATRIEVE is able to match
a FOLKS record and a CHILDREN record for ROB and DIDI. As a result,
DATATRIEVE includes information about ROB and DIDI when the FOLKS and
CHILDREN domains are joined over the ID field:

DTR> FOR FOLKS CROSS CHILDREN OVER ID
CON> PRINT FATHER, MOTHER, ID, KID_NAME, AGE

KID
FATHER MOTHER ID NAME AGE

ARNIE ANNE 1 SCOTT 2
ARNIE ANNE 1 BRIAN 0
BASIL MERIDETH 2 BEAU 28

.

.

.

ROB DIDI 11 0
.
.
.

DTR>

13–32 Reporting Hierarchical Records

Part IV
Data Presentation

14
Using the Report Writer

The DATATRIEVE Report Writer helps you display and accurately summarize
data managed by VAX DATATRIEVE. You can define DATATRIEVE procedures
to produce these reports whenever they are needed, and in a variety of output
formats (which are discussed in Chapter 15).

Note that definitions for VAX DBMS or relational database examples are included
in special subdictionaries of CDD$TOP.DTR$LIB.DEMO. For more information
on how to use the Report Writer with VAX DBMS and relational databases, see
Accessing VAX DBMS Data with DATATRIEVE.

What the Report Writer Can Do
The Report Writer helps you organize your data in a clear, readable format and
present it in the form of boardroom-quality documents. It can do the following:

1 Print a report name centered at the top of the page

2 Set up column headings

3 Print the current date at the upper right

4 Print page numbers at the upper right

5 Allow a choice of print attribute for every report element

6 Print a detail line for each record

7 Print a summary line for a group of data (for example, yachts by the same
builder)

8 Allow the use of different typefaces for totals, averages and statistics

9 Print a summary line for the entire report (for example, yachts by several
builders)

Using the Report Writer 14–1

Using the Report Writer
What the Report Writer Can Do

The report in Figure 14–1 was produced with the Report Writer. Each number
corresponds to one of the features in the previous list.

Figure 14–1 Boardroom-quality Report

Yachts by Alberg, 30-Mar-1992

Albin and American Page 1

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

Boat count: 1 Average price: $36,951

**

ALBIN VEGA SLOOP 27 5,070 08 $18,600
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500

Boat count: 3 Average price: $21,333

**

AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895

Boat count: 2 Average price: $14,395

**

Total boat count: 6 Overall average price: $21,624

1

2

3

4

5

6

7

98

The Report Writer can also produce character-cell reports and formats compatible
with database and spreadsheet applications such as DECwrite, DECdesign or
DECchart.

Designing a Report with the Report Writer
You create a DATATRIEVE report with a series of Report Writer statements
called a report specification. A report specification controls the format and
determines the content of a report. Some types of statement are required for a
valid report specification, and others are optional:

• A report specification must begin with a REPORT statement, in which you
can specify the data for the report, the file or device to which DATATRIEVE
writes the report and the format of the report.

• A report specification may contain DECLARE_ATT statements to control text
elements (font family, character size, weight, slant, underline), complementing
or overriding the default attributes.

14–2 Using the Report Writer

Using the Report Writer
Designing a Report with the Report Writer

• A report specification may contain SET statements to control page formats
and assign column and report headings. The Report Writer uses its built-in
default assignments for the SET statements you do not include.

• A report specification can include a single PRINT statement in a report
specification as well as several AT statements. The PRINT statement
indicates detail lines to be printed in the report. AT statements indicate
summary or header lines.

Note

The Report Writer PRINT statement is different from the regular PRINT
statement in DATATRIEVE. In the Report Writer, you list the fields
or value expressions that you want to display. You cannot say PRINT
CURRENT or PRINT YACHTS, because CURRENT and YACHTS are not
field names or value expressions. To find out the field names and query
names in the record definition, use the SHOW FIELDS command. For
example:

DTR> SHOW FIELDS FOR YACHTS
YACHTS

BOAT
TYPE <Primary key>

MANUFACTURER (BUILDER) <Character string, primary key>
MODEL <Character string, alternate key>

SPECIFICATIONS (SPECS)
RIG <Character string>
LENGTH_OVER_ALL (LOA) <Character string>
DISPLACEMENT (DISP) <Number>
BEAM <Number>
PRICE <Number>

• A report specification must end with an END_REPORT statement.

Table 14–1 identifies the Report Writer statements.

Table 14–1 Summary of Report Writer Statements

Statement Function

AT BOTTOM Displays summary lines at the bottom of a report, page, or control
group.

AT TOP Displays header lines at the top of a report, page, or control group.

(continued on next page)

Using the Report Writer 14–3

Using the Report Writer
Designing a Report with the Report Writer

Table 14–1 (Cont.) Summary of Report Writer Statements

Statement Function

DECLARE_ATT Specifies text attributes used by the ATT argument of PRINT and SET
statements.

END_REPORT Indicates the end of a report specification.

PRINT Displays value expressions for each detail line of a report.

REPORT Invokes the Report Writer and specifies the data you want to report
and the output device.

SET Sets the page format for a report.

Identifying the Data and Invoking the Report Writer
Reports usually highlight only a portion of the available information. To report
specific data, you must identify it to DATATRIEVE and invoke the Report Writer.
Follow these steps:

1. Ready the domains containing the data you wish to report. For example:

DTR> READY YACHTS
DTR>

2. Identify the data within the domain on which you will report. This enables
you to limit the number of records in the report and to sort the records if you
desire. You can identify the data in one of two ways: with a FIND statement
or with a record selection expression (RSE) in a REPORT statement. As a
general rule, use a FIND statement when you need the collection of data for
other purposes during a DATATRIEVE session. However, if you need the set
of data only for the report, identify the data with an RSE in the REPORT
statement.

The following example shows a FIND statement that forms a sorted collection
from the YACHTS domain:

DTR> FIND YACHTS WITH LOA > 40 SORTED BY BEAM
[8 records found]
DTR>

3. Enter the REPORT statement to invoke the Report Writer. The following are
valid REPORT statements:

• REPORT—When you omit the RSE from the REPORT statement, the
Report Writer reports on the records in the CURRENT collection and
writes the report on your terminal:

14–4 Using the Report Writer

Using the Report Writer
Identifying the Data and Invoking the Report Writer

DTR> REPORT
RW>

• REPORT ON file-spec—The following REPORT statement asks the Report
Writer to report on the CURRENT collection and to write the report to a
file named BIGYAT.LIS:

DTR> REPORT ON BIGYAT
RW>

• REPORT rse—If you did not form a collection with a FIND statement, you
must identify a record stream with the REPORT statement, for example:

DTR> REPORT YACHTS WITH LOA > 40 SORTED BY BEAM
RW>

Exiting from the Report Writer
You invoke the Report Writer with a REPORT statement, and you normally exit
with an END_REPORT statement. The following example represents such a
report:

DTR> REPORT YACHTS WITH BUILDER = "ALBIN"
RW> PRINT BOAT
RW> END_REPORT

12-Apr-1992
Page 1

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 09 $15,000
ALBIN BALLAD SLOOP 30 7,276 09 $27,500
ALBIN VEGA SLOOP 27 5,070 09 $18,600

DATATRIEVE processes the report specification and produces the report if there
are no errors. If the report specification contains any prompts, the Report Writer
prompts you for the needed information before producing the report.

If DATATRIEVE detects an error in your Report Writer statements, it displays an
error message and returns you to DATATRIEVE command level.

To force an exit from the Report Writer and return to DATATRIEVE command
level, you can enter CTRL/C as a response to a RW> prompt or in the middle of
an input line:

Using the Report Writer 14–5

Using the Report Writer
Identifying the Data and Invoking the Report Writer

DTR> READY YACHTS
DTR> REPORT YACHTS
DTR> CTRL/C

Execution terminated by operator
DTR>

Setting Up the Report Heading
The report heading consists of the report name, date, and page number. You can
let the Report Writer use the default format, or you can specify a report heading
with SET statements.

The Report Writer provides the following default format for the report heading:

• Report Name—The Report Writer produces a report without a name unless
you include a SET REPORT_NAME statement.

• Date—The Report Writer prints the current system date in the upper
right corner of the page. It uses the format DD-Mmm-YYYY (for example,
21-Jan-1992).

• Page number—The Report Writer prints the page number of the report
directly under the date. Regardless of the lengths of the date string and the
page number, the Report Writer aligns the first character of the page number
under the first character of the date. It uses the format Page n. For example:

21-Jan-1992
Page 2

Use the SET REPORT_NAME statement to name your report. Be sure to enclose
the name in quotation marks. The Report Writer centers this name on the first
printed line at the top of the page. For example:

RW> SET REPORT_NAME =
RW> "ACCOUNTS PAYABLE FOR BOCK’S YACHTS"
RW> END_REPORT
DTR>

ACCOUNTS PAYABLE FOR BOCK’S YACHTS 21-Jan-1992
Page 1

You are not limited to report names of one line. To produce a report name of two
or more lines, enclose each segment of the report name in quotation marks and
separate each segment from the next with a slash (/). For example:

RW> SET REPORT_NAME =
RW> "ACCOUNTS PAYABLE"/"FOR BOCK’S YACHTS"

14–6 Using the Report Writer

Using the Report Writer
Setting Up the Report Heading

This statement produces the following report heading:

ACCOUNTS PAYABLE 18-Apr-1992
FOR BOCK’S YACHTS Page 1

The SET statement can also be used to set printing attributes for individual
elements of the header. You can also use the SET options for controlling output
onto paper, for example the number of lines to a page, or the paper size. See
Chapter 15 for further details.

Printing Detail Lines and Column Headers
Detail lines are the formatted lines of data in a report. Each detail line contains
information about an individual record from a domain. The Report Writer
arranges the data in columns, and the column headers indicate what the data
items represent.

The Report Writer PRINT statement produces a detail line in the report for every
record in the current collection or in the specified record stream. A detail line can
cover several lines on the report page, depending on the content and format you
specify. You can include only one PRINT statement in a report specification.

Print-list elements include field names, numeric and character-string literals,
and arithmetic and statistical expressions. You can also specify horizontal and
vertical spacing (SPACE, TAB n, COL n, SKIP, NEW_PAGE), as well as edit
strings, print attributes (ATT) and column headers.

With the Report Writer PRINT statement, you can specify three characteristics of
the detail lines:

• The content of the detail lines:

Values of fields from records identified either by a FIND or by a record
selection expression in the REPORT statement

Value expressions

• The format of the print items in the detail lines:

Order of each print item

Column position of each print item

Edit string format for each print item

Text attributes for each print item

• The column headings for each print item

Changing the Content of the Detail Line in Chapter 16 provides further
information on detail lines.

Using the Report Writer 14–7

Using the Report Writer
Printing Detail Lines and Column Headers

Column Headers for Print Items
DATATRIEVE displays column headers at the top of the report and at the top of
each page. If a query header has been defined for a field or variable, the Report
Writer uses the query header as the default column header; otherwise, the Report
Writer uses the field or variable name as the default.

DATATRIEVE allows you to override this default by suppressing the column
header (by using the hyphen (-) character), or by specifying a new column header.
To include a two-line column header, use the slash (/) between quoted strings.
For example:

DTR> REPORT FIRST 1 YACHTS
RW> PRINT MANUFACTURER("BOAT"/"BUILDER"),

MODEL (-), LOA,
RW> RIG, PRICE (-)
RW> END_REPORT
DTR>

This statement produces the following report:

5-May-1992
Page 1

LENGTH
BOAT OVER
BUILDER ALL RIG

ALBERG 37 MK II 37 KETCH $36,951

Creating Title Pages and Other Special Headings
You can enhance your reports with attractive title pages and headings. Use the
AT TOP OF REPORT and AT TOP OF PAGE statements to produce these effects.

Creating a Title Page
The AT TOP OF REPORT statement allows you to produce a title page before any
detail lines are printed. When you use this statement, you suppress the default
report heading on the first page of the report. This enables you to design the
first page as a special title page without detail lines. The next page includes the
report and column headers and is numbered Page 1.

The following example shows how to produce a title page for a report as well
as create the report that shows the salaries of employees at Bock’s Yachts from
departments D98, E46, and T32. The title page includes the company name,
the warning CONFIDENTIAL: FOR OFFICIAL EYES ONLY, and the company
motto. In the example, the date and page number do not appear until the next
page of the report.

14–8 Using the Report Writer

Using the Report Writer
Creating Title Pages and Other Special Headings

Follow these steps:

1 Identify the data for the report in the REPORT statement.

2 Include NEW_PAGE as the last print item of your AT TOP OF REPORT
statement. This ensures that the first detail lines do not appear until the
next page.

DTR> SET NO PROMPT
DTR> REPORT PERSONNEL WITH DEPT = "D98", "E46", "T32" 1
RW> AT TOP OF REPORT PRINT SKIP 15, COL 20,
RW> "* * * * * * * * * * * * * * * * * * *", SKIP,
RW> COL 20, "*", COL 56, "*", SKIP,
RW> COL 20, "*", COL 56, "*", SKIP,
RW> COL 20, "*", COL 32, "SALARY REPORT", COL 56, "*", SKIP,
RW> COL 20, "*", COL 56, "*", SKIP,
RW> COL 20, "*", COL 30, "FOR BOCK’S YACHTS", COL 56, "*", SKIP,
RW> COL 20, "*", COL 56, "*", SKIP,
RW> COL 20, "*", COL 56, "*", SKIP, COL 20,
RW> "* * * * * * * * * * * * * * * * * * *", SKIP 3,
RW> COL 32, "CONFIDENTIAL:", SKIP,
RW> COL 32, "FOR OFFICIAL", SKIP,
RW> COL 33, "EYES ONLY", SKIP 5,
RW> COL 20, "--------------------------------------", SKIP 3,
RW> COL 22, "OUR MOTTO: A YACHT FOR EVERY WORKER", SKIP 3,
RW> COL 20, "--------------------------------------", NEW_PAGE 2
RW> SET COLUMNS_PAGE = 70
RW> PRINT ID, STATUS, FIRST_NAME|||LAST_NAME ("NAME"),
RW> DEPT, SALARY
RW> END_REPORT

Figure 14–2 illustrates the title page. The body of the report follows the title
page.

Using the Report Writer 14–9

Using the Report Writer
Creating Title Pages and Other Special Headings

Figure 14–2 Sample Title Page for a Report

* * * * * * * * * * * * * * * * * * *
* *
* *
* SALARY REPORT *
* *
* FOR BOCK’S YACHTS *
* *
* *
* * * * * * * * * * * * * * * * * * *

CONFIDENTIAL:
FOR OFFICIAL
EYES ONLY

OUR MOTTO: A YACHT FOR EVERY WORKER

14-May-1992
Page 1

ID STATUS NAME DEPT SALARY

02943 EXPERIENCED CASS TERRY D98 $29,908
34456 TRAINEE HANK MORRISON T32 $30,000
38462 EXPERIENCED BILL SWAY T32 $54,000
38465 EXPERIENCED JOE FREIBURG E46 $23,908
39485 EXPERIENCED DEE TERRICK D98 $55,829
48475 EXPERIENCED GAIL CASSIDY E46 $55,407
48573 TRAINEE SY KELLER T32 $31,546
49843 TRAINEE BART HAMMER D98 $26,392
83764 EXPERIENCED JIM MEADER T32 $41,029
84375 EXPERIENCED MARY NALEVO D98 $56,847

DTR>

14–10 Using the Report Writer

Using the Report Writer
Creating End-of-page or End-of-report Summaries

Creating End-of-page or End-of-report Summaries
You can instruct the Report Writer to calculate summary statistics for any column
in the report. Use the AT BOTTOM OF PAGE or the AT BOTTOM OF REPORT
statement for end-of-page or end-of-report summaries. (An AT BOTTOM OF
field-name statement can generate summaries on groups within the report.)

In the following example, an AT BOTTOM OF DEPT statement groups records
according to department. Within this statement, you can use one or more of the
DATATRIEVE statistical operators to summarize data about the employees in
each department.

The example shows how Bock’s Yachts keeps salary records for employees in
various departments with the PERSONNEL domain. The firm groups the data
according to departments so that it can make financial comparisons.

The report displays information on all employees in departments D98, E46, and
T32 within the company. It indicates the total salary for each department and
keeps a running total for the salary for the three departments combined.

Follow these steps:

1 Sort the records according to the sort key DEPT.

2 Use an AT TOP OF DEPT statement to print the value for DEPT at the
beginning of each DEPT control group.

3 Indicate the values to be printed in each detail line. Use a concatenation
expression, indicated by three vertical lines, to allow exactly one space
between the values of FIRST_NAME and LAST_NAME. Specify a header
("NAME").

4 Summarize salary information on each department with an AT BOTTOM OF
DEPT statement. TOTAL SALARY gives the total salary for a department.
RUNNING TOTAL (TOTAL SALARY) gives the total thus far for all the
departments. Specify a column position so that this value is displayed in the
SALARY column rather than in a separate RUNNING TOTAL column.

DTR> SHOW SALARY_REPORT

Using the Report Writer 14–11

Using the Report Writer
Creating End-of-page or End-of-report Summaries

PROCEDURE SALARY_REPORT
REPORT PERSONNEL WITH DEPT = "D98","E46","T32" SORTED BY DEPT1
SET REPORT_NAME = "SALARY REPORT"
SET COLUMNS_PAGE = 60
AT TOP OF DEPT PRINT DEPT 2
PRINT ID, FIRST_NAME|||LAST_NAME ("NAME"), SALARY 3
AT BOTTOM OF DEPT PRINT SKIP, 4

COL 36, DEPT|||"TOTAL:",
TOTAL SALARY USING $$$$,$$$, SKIP, COL 13,
"***********************************",
SKIP, COL 32, "OVERALL TOTAL:", COL 50,
RUNNING TOTAL (TOTAL SALARY) USING $$$$,$$$, SKIP

END_REPORT
END_PROCEDURE

Example 14–1 shows the report produced by this specification.

Example 14–1 Control Group Report Based on One Sort Key
DTR> :SALARY_REPORT

SALARY REPORT 14-May-1992
Page 1

DEPT ID NAME SALARY

D98
02943 CASS TERRY $29,908
39485 DEE TERRICK $55,829
49843 BART HAMMER $26,392
84375 MARY NALEVO $56,847

D98 TOTAL: $168,976

OVERALL TOTAL: $168,976

E46
38465 JOE FREIBURG $23,908
48475 GAIL CASSIDY $55,407

E46 TOTAL: $79,315

OVERALL TOTAL: $248,291

T32
34456 HANK MORRISON $30,000
38462 BILL SWAY $54,000
48573 SY KELLER $31,546
83764 JIM MEADER $41,029

(continued on next page)

14–12 Using the Report Writer

Using the Report Writer
Creating End-of-page or End-of-report Summaries

Example 14–1 (Cont.) Control Group Report Based on One Sort Key

T32 TOTAL: $156,575

OVERALL TOTAL: $404,866

Creating Special Page Headings
The AT TOP OF PAGE statement lets you print special headings for your report.
You are not limited to the two line heading at the top of the page. But when you
use this statement, you are suppressing the default report and column headings
on every page. If you want either of these headings on the page, you must include
REPORT_HEADER or COLUMN_HEADER in the print list for the AT TOP OF
PAGE statement.

The following example produces the salary report for Bock’s yachts without a title
page but with the report heading: ‘‘SALARY REPORT FOR BOCK’S YACHTS,’’
surrounded by asterisks. It includes the date and page number, as well as the
appropriate column headings:

DTR> REPORT PERSONNEL WITH DEPT = "D98", "E46", "T32" ON BOCKS.PS FORMAT PS
RW> DECLARE_ATT ATT1 FAMILY=COURIER, SIZE=14, BOLD, NO ITALIC
RW> DECLARE_ATT ATT2 FAMILY=AVANTGARDE, SIZE=14, BOLD, ITALIC
RW> DECLARE_ATT ATT3 BOLD
RW> SET COLUMN_HEADER = ATT ATT3
RW> AT TOP OF PAGE PRINT
RW> REPORT_HEADER, SKIP 2,
RW> COL 20, ATT ATT1, "* * * * * * * * * * * * * * * * *", SKIP,
RW> COL 20, "*", COL 66, "*", SKIP,
RW> COL 20, "*", COL 66, "*", SKIP,
RW> COL 20, "*",
RW> COL 35, ATT ATT2, "SALARY REPORT",
RW> COL 66, ATT ATT1, "*", SKIP,
RW> COL 20, "*",
RW> COL 32, ATT ATT2, "FOR BOCK’S YACHTS",
RW> COL 66, ATT ATT1, "*", SKIP,
RW> COL 20, "*", COL 66, "*", SKIP,
RW> COL 20, "*", COL 66, "*", SKIP,
RW> COL 20, "* * * * * * * * * * * * * * * * *", SKIP 2,
RW> COLUMN_HEADER
RW> PRINT ID, STATUS, FIRST_NAME|||LAST_NAME ("NAME"), DEPT, SALARY
RW> END_REPORT

Figure 14–3 shows the report produced by this specification.

Using the Report Writer 14–13

Using the Report Writer
Creating End-of-page or End-of-report Summaries

Figure 14–3 Example PostScript™ Report Header

23-Mar-1992
Page 1

* * * * * * * * * * * * * * * * *
* *
* *
* SALARY REPORT *
* FOR BOCK’S YACHTS *
* *
* *
* * * * * * * * * * * * * * * * *

ID STATUS NAME DEPT SALARY

02943 EXPERIENCED CASS TERRY D98 $29,908
34456 TRAINEE HANK MORRISON T32 $30,000
38462 EXPERIENCED BILL SWAY T32 $54,000
38465 EXPERIENCED JOANNE FREIBURG E46 $23,908
39485 EXPERIENCED DEE TERRICK D98 $55,829
48475 EXPERIENCED GAIL CASSIDY E46 $55,407
48573 TRAINEE SY KELLER T32 $31,546
49843 TRAINEE BART HAMMER D98 $26,392
83764 EXPERIENCED JIM MEADER T32 $41,029
84375 EXPERIENCED MARY NALEVO D98 $56,847

Note that the REPORT_HEADER print item produces both the date and page
number. There is no report name on the same line as the date because the SET
REPORT_NAME statement is not used. Then, after skipping two lines, the
Report Writer prints the special heading as specified in the AT TOP OF PAGE
statement. If this were a multipage report, each successive page would have this
heading.

Using this technique, you can design a special billing form with the company
heading, with labels for charges and charge descriptions. If the data for each bill
is in a single record, you can include NEW_PAGE as the last print item in the
PRINT statement. Then each page contains one customer’s bill.

You can also apply this technique to replicate an existing standard form. Specify
the appropriate character strings, column numbers, and field values as print list
items. Finally, include NEW_PAGE as the last print-list item.

Producing Row Totals
Sometimes reports require totals across the fields of a detail line. For example,
you might have a payroll record indicating gross salary and deductions. You want
to design a payroll report to print a detail line for each employee, indicating gross
salary, deductions, and net salary. To compute net salary, you need to subtract
the deductions from the gross salary for each detail line.

14–14 Using the Report Writer

Using the Report Writer
Producing Row Totals

Though DATATRIEVE does not have an operator to total rows, as it does for
columns, it is often possible to write a report specification that generates row
totals. Specify an additional print item for the detail line by indicating the
formula for net salary. The Report Writer then produces a column of totals for
each row.

Figure 14–4 shows the structure of the record WAGES_REC for the WAGES
domain. WAGES is used in the example that follows.

Figure 14–4 Field Structure of WAGES_REC

01 WAGE

05 LAST_NAME 05 STATE_TAX05 GROSS_PAY 05 FICA 05 FEDERAL_TAX

The following example shows how the Famous Circus Trainer School uses the
WAGES domain to display a report showing each employee’s weekly wages,
deductions, and net pay. The totals of each of the following are displayed at the
bottom of the report: gross pay, FICA, state tax, federal tax, and net pay.

To solve this problem, follow these steps:

1 Use this formula for the net pay column:

GROSS_PAY - (FICA + FEDERAL_TAX + STATE_TAX))

2 Compute the totals of the field values with an AT BOTTOM OF REPORT
statement.

DTR> SET NO PROMPT
DTR> REPORT WAGES
RW> SET REPORT_NAME = "FAMOUS CIRCUS TRAINER SCHOOL"/
RW> "WEEKLY WAGE REPORT"
RW> SET COLUMNS_PAGE = 70
RW> PRINT LAST_NAME, GROSS_PAY, FICA,
RW> FEDERAL_TAX, STATE_TAX,
RW> GROSS_PAY - (FICA + FEDERAL_TAX + STATE_TAX)
RW> ("NET PAY") USING $$,$$$.99 1
RW> AT BOTTOM OF REPORT PRINT SKIP 2,
RW> COL 1, "TOTAL:", 2
RW> TOTAL GROSS_PAY USING $$$,$$$.99,
RW> TOTAL FICA USING $$$,$$$.99,
RW> TOTAL FEDERAL_TAX USING $$$,$$$.99,
RW> TOTAL STATE_TAX USING $$$,$$$.99,
RW> TOTAL (GROSS_PAY - (FICA + FEDERAL_TAX + STATE_TAX))
RW> USING $$$,$$$.99
RW> END_REPORT

Using the Report Writer 14–15

Using the Report Writer
Producing Row Totals

FAMOUS CIRCUS TRAINER SCHOOL 19-Apr-1992
WEEKLY WAGE REPORT Page 1

LAST GROSS FEDERAL STATE
NAME PAY FICA TAX TAX NET PAY

BLAKESLEY $1,000.00 $103.86 $204.77 $.01 $691.36
JAMES $1,500.00 $145.87 $297.98 $54.32 $1,001.83
HILLS $500.00 $52.93 $79.75 $32.98 $334.34
JONES $999.99 $103.85 $204.76 $57.90 $633.48
MEADE $1,900.98 $145.87 $375.98 $75.90 $1,303.23
NAPRAVA $9,500.00 $145.87 $999.84 $106.90 $8,247.39

TOTAL: $15,400.97 $698.25 $2,163.08 $328.01 $12,211.63

DTR>

An alternate solution is to edit the record definition to define a new COMPUTED
BY field, NET_PAY. Then include NET_PAY as one of the print items in the
PRINT statement. The following is a sample field definition:

10 NET_PAY COMPUTED BY
(GROSS_PAY - (FICA + FEDERAL_TAX + STATE_TAX))

EDIT_STRING IS $$$,$$$.99.

This approach saves typing if you need the value for the net salary in several
different reports. Then if the formula changes, you have to change it in only one
place—the record definition.

Developing a Procedure for a Report
Report statements are usually stored as procedures. A report that is defined as a
procedure lets you generate a required report whenever you want, without having
to type in a new report statement. Defining procedures for reports with relational
databases becomes especially important, as the RSEs can become very complex.
The following report takes data from six domains in the PERSONNEL database
to create a report. Follow these steps:

1 Define a procedure using the DEFINE PROCEDURE statement.

2 Ready all the domains that contain the data needed in your report.

3 Declare a global variable to contain the value Y. Your procedure prompts the
user to indicate how many departments the report should contain.

4 Invoke the Report Writer and create an RSE containing records from all the
domains you readied.

Note that you use the CROSS and OVER clauses with each domain to
indicate an additional domain and the field on which you want the records
matched.

14–16 Using the Report Writer

Using the Report Writer
Developing a Procedure for a Report

5 Use the WITH Boolean expression only after you cross all the required
domains. The WITH clause lets you restrict the record stream to just those
records desired.

The prompting value expression lets the user specify the department or
departments contained in the report.

Note that, by specifying JOB_END MISSING and SALARY_END MISSING,
you can select just the latest records of those employees currently working.

6 Assign the output of the Report Writer to a file in the desired directory.

7 Give the report a name.

8 Prompt the user to enter a request for information on another employee.

DTR> DEFINE PROCEDURE ACTIVE_EMPLOYEES_REPORT 1
DFN> READY EMPLOYEES, JOB_HISTORY, SALARY_HISTORY, 2
DFN> JOBS, DEPARTMENTS,WORK_STATUS
DFN> DECLARE MORE_DEPT PIC X. 3
DFN> MORE_DEPT = "Y"
DFN> WHILE MORE_DEPT= "Y"
DFN> BEGIN
DFN> REPORT EMPLOYEES - 4
CON> CROSS SALARY_HISTORY OVER EMPLOYEE_ID -
CON> CROSS JOB_HISTORY OVER EMPLOYEE_ID -
CON> CROSS JOBS OVER JOB_CODE -
CON> CROSS DEPARTMENTS OVER DEPARTMENT_CODE -
CON> CROSS WORK_STATUS OVER STATUS_CODE -
CON> WITH FN$UPCASE(DEPARTMENT_CODE) =
DFN> *."Department Code" AND 5
DFN> JOB_END MISSING AND
DFN> SALARY_END MISSING AND
DFN> WORK_STATUS.STATUS_CODE EQ "1" AND
DFN> SALARY_AMOUNT > 15000 -
CON> SORTED BY DEPARTMENT_CODE, LAST_NAME, -
CON> SALARY_AMOUNT ON DB2:[DEPT]DEPT.LIS 6
DFN> SET REPORT_NAME = "Current Employees by Dept" 7
DFN> AT TOP OF DEPARTMENT_CODE PRINT SKIP, COL 1,
DFN> FN$UPCASE(DEPARTMENT_NAME) (-), SKIP
DFN> AT TOP OF EMPLOYEE_ID PRINT SKIP, COL 1,
DFN> FIRST_NAME|||LAST_NAME (-)
DFN> PRINT COL 1, JOB_TITLE,JOB_START,
DFN> WAGE_CLASS, SALARY_AMOUNT, STATUS_CODE
DFN> AT BOTTOM OF DEPARTMENT_CODE PRINT
DFN> "**"
DFN> END_REPORT
DFN> MORE_DEPT =
DFN> *."Y to see more Departments , N to end report" 8
DFN> MORE_DEPT = FN$UPCASE(MORE_DEPT)
DFN> END

Using the Report Writer 14–17

Using the Report Writer
Developing a Procedure for a Report

DFN> END_PROCEDURE
DTR> :ACTIVE_EMPLOYEE_REPORT
Enter Department Code: ADMN
Enter Y to see more Departments, N to end report: N

DTR> exit
$ TYPE Dept.lis

Current Employees by Dept 3-May-1992
Page 1

JOB JOB WAGE SALARY STATUS
TITLE START CLASS AMOUNT CODE

CORPORATE ADMINISTRATION

Karen Clarke
Electrical Engineer 8-Apr-1982 4 $21,093.00 1

Al Delano
Dept. Supervisor 27-Apr-1981 4 $39,531.00 1

Marjorie Gramby
Electrical Engineer 11-Feb-1982 4 $23,856.00 1

Karen Gramby
Vice President 8-Jun-1980 4 $75,113.00 1

Lisa Harrison
Vice President 2-Jul-1980 4 $77,307.00 1

James Herbener
Vice President 26-Jun-1980 4 $83,905.00 1

Johanna MacDonald
Vice President 17-Nov-1980 4 $84,147.00 1
**

You can customize the report by using one or more prompting value expressions
or prompts. The prompt consists of an asterisk and a period, followed by a
character string enclosed in quotation marks. For example, you could include the
statement:

SET REPORT_NAME = *."report name enclosed in quot. marks"

After the user invokes the procedure, the terminal displays the following prompt:

Enter report name enclosed in quot. marks:

DATATRIEVE does not finish processing the report until the user enters a report
name.

14–18 Using the Report Writer

Using the Report Writer
Developing a Procedure for a Report

You can also include prompts for page width and length, maximum report size,
output device, and other features relating to the report. See Chapter 15 for more
details on designing a report with the Report Writer.

The following example shows how to define a procedure (YACHT_PER_LB) to
produce a report on all yachts by a selected builder. The report includes columns
for these fields: MANUFACTURER, MODEL, DISP ("WEIGHT"), and PRICE.
In addition, there is a special column indicating the price per pound of each
yacht. Note that the procedure is set up to allow the user to select at the time
of execution: the builder, output device, name of the report, page width, page
length, and the maximum number of pages in the report.

Follow these steps:

1 Use DEFINE PROCEDURE to define a procedure YACHT_PER_LB.

2 Ready the domain YACHTS.

3 Identify the data you wish to report within the REPORT statement. Include
prompts so that the user can select the builder’s name and the output device.

4 Allow the user to name the report by including a prompt with the SET
REPORT_NAME statement. Indicate that the report name must be enclosed
with quotation marks.

5 Control the page width with a SET COLUMNS_PAGE statement. Use the
prompt option.

6 Control the page length with a SET LINES_PAGE statement. Use the prompt
option.

7 Limit the overall length of the report with a SET MAX_PAGES statement.
Use the prompt option.

8 Specify the items in each detail line with a PRINT statement. These become
the columns for the report. Create a column for price per pound by including
PRICE/DISP as one of the items. (The slash indicates division.) The USING
$$.99 clause indicates that you want the price per pound to be printed as
a monetary value and that you expect the price per pound to be less than
$10.00.

9 End with an END_REPORT statement.

1 0 Clear your workspace with a FINISH command.

1 1 End the procedure with an END_PROCEDURE statement.

1 2 To invoke the procedure, type the following:

DTR> :YACHT_PER_LB

Using the Report Writer 14–19

Using the Report Writer
Developing a Procedure for a Report

The following DATATRIEVE statements produce the report. The number after
each statement corresponds to one of the steps:

DTR> DEFINE PROCEDURE YACHT_PER_LB 1
DFN> READY YACHTS 2
DFN> REPORT YACHTS WITH BUILDER =
CON> *."the builder" ON *."device" 3
DFN> SET REPORT_NAME =
CON> *."report name in quotes"4
DFN> SET COLUMNS_PAGE = *."the columns per page" 5
DFN> SET LINES_PAGE = *."the lines per page" 6
DFN> SET MAX_PAGES =
CON> *."the maximum pages for the report" 7
DFN> PRINT TYPE, DISP, PRICE, 8
DFN> PRICE/DISP ("PRICE/LB") USING $$.99
DFN> END_REPORT 9
DFN> FINISH YACHTS 1 0
DFN> END_PROCEDURE 1 1

DTR> :YACHT_PER_LB 1 2
Enter the columns per page: 60
Enter the lines per page: 55
Enter the maximum pages for the report: 10
Enter report name in quotes: "YACHTS BY AMERICAN"
Enter the builder: AMERICAN
Enter device: TT:

YACHTS BY AMERICAN 17-Apr-1992
Page 1

MANUFACTURER MODEL WEIGHT PRICE PRICE/LB

AMERICAN 26 4,000 $9,895 $2.47
AMERICAN 26-MS 5,500 $18,895 $3.44

14–20 Using the Report Writer

15
Report Writer Formats

The Report Writer allows you to produce reports in different formats. This
chapter provides you with information on how to:

• select different formats to fulfill your presentation needs

• control the layout of your report in different formats

• select the print characteristics within your report

• use the RW to export your data to a spreadsheet

Report Writer Formats
By default the Report Writer displays the report on your terminal (or exports
it to a specified file), using the standard character-cell text format. This is a
page-based format encoded as a sequence of characters, without applying printing
attributes such as font type, underlining etc. This format is suitable for a wide
range of applications, particularly when simple reports are required for viewing
on the screen, or on systems that have limited capabilities. However, by using
the FORMAT clause, several other output formats are available, making it
possible to pass report data to a variety of other applications. These formats
include PostScript™ for high-quality printout, and DTIF (a CDA format) which
by using suitable converters will allow Report Writer output to be imported by, for
example, LOTUS 1-2-3™. The table provides a list of all the formats available:

Report Writer Formats 15–1

Report Writer Formats
Report Writer Formats

Format Explanation Output type

DDIF1 The CDA format for page-based documents. DDIF allows
files produced by the Report Writer to be processed directly,
for example, by DECwrite, DECpresent, or conversion to
other formats.

page

PS PostScript™, produced by conversion from DDIF to obtain
high quality printout.

page

null The default ASCII format produced by the Report Writer.
Format encoded as ASCII characters.

page

TEXT Format encoded as ASCII characters, with ANSI escape
sequences that produce certain attributes on terminals and
printers.

page

DTIF1 The CDA format for tables. DTIF allows files produced by
the Report Writer to be processed directly, for example, by
DECdecision, DECchart, or conversion to other formats.

table

1DDIF and DTIF output can be converted to a multitude of different formats using the CDA converter.
See the CDA documentation for further details.

In order to make the production of reports in the different formats as easy as
possible, the syntax of the REPORT statement is the same for all the formats.
This means that the same REPORT statement that is used to produce a report
in a particular format may be re-used in its entirety to produce a report in a
different format by simply changing the value of the FORMAT clause. Of course,
some statements within the REPORT procedure may assume different meanings,
or be ignored altogether, when using different formats. For example, the AT
BOTTOM OF PAGE statement is ignored in a DTIF report, as there is no concept
of page in a table-based report.

All the techniques described for creating reports in general work perfectly well for
any of the output formats. The only difference is that where a format allows it,
the DECLARE_ATT statement can be added to change the font attributes of the
headers and body text listed by PRINT or SET statements in page-based reports
(see Changing Font Attributes in a Report).

For all formats (except TEXT) it is compulsory to provide the ON clause in the
REPORT statement, specifying the output file for the report, because formats
produced using CDA will not be output to the terminal. The ON clause is
required even if the REPORT statement is contained within an ON statement.

15–2 Report Writer Formats

Report Writer Formats
Report Writer Formats

Page-based or Table-based Formats
DATATRIEVE is capable of producing a variety of formats; these formats fulfill a
variety of user needs: passing the output data to a spreadsheet, presenting the
data in a professional-looking fashion, or interacting with publishing tools.

Because they may be addressing different needs, not all formats will contain
the same information. For example, a format that outputs to a spreadsheet
will contain no pagination information, and may have its data encoded to the
highest degree of accuracy and separately from the edit string. On the other
hand, a format that prints on a laser printer will structure the data in pages,
in a form that is ready for presentation and carrying print attributes that are
not contained in a format that is suitable for character-cell devices. The most
important distinction to make is between Page-based and Table-based reports.

Page-based reports are used to print on paper, or to export to editors and word-
processors (such as DECwrite or VAXTPU). The report is therefore formatted
according to the paper size you specify, the size of the various fields and their
printing attributes. The Report Writer will format columns and introduce page
breaks as appropriate. Data is presented in its printable format, just like in the
output of a DATATRIEVE PRINT statement.

Table-based reports are used when data is to be used as input to other
applications, most commonly to spreadsheets (such as DECdecision or
LOTUS 1-2-3™) or charting applications (such as DECchart). In these reports,
data is stored as a matrix, arranged in rows (corresponding to record fields) and
columns (corresponding to records). There is no concept of pages, and layout in
not very significant; on the other hand, data is coded in its "raw" form, so that
maximum accuracy in calculations is guaranteed, and edit strings are coded
separately.

Digital’s Compound Document Architecture (CDA)
The variety of report formats produced by DATATRIEVE is a result of
DATATRIEVE’s support of the Compound Document Architecture (CDA). This
architecture, which is supported by a wide range of products (Digital and third-
party), allows the encoding of documents that are made up of text content,
images, graphics, table data or document layout information. This architecture
is implemented across a range of operating systems and hardware, and therefore
allows the documents produced to be interchangeable on different platforms.

Another important feature of CDA is its Converter Architecture, which uses DDIF
and DTIF as its intermediate format and allows transformation of documents
from one format to another: for example, an SGML file can be converted to
PostScript™, passing via DDIF. This implies that, if the CDA Converter Library

Report Writer Formats 15–3

Report Writer Formats
Report Writer Formats

is installed on your system, the DDIF report produced by DATATRIEVE may be
converted to a very wide range of formats.

It is important to note that, for a DDIF or DTIF report, some of the contents
(for example, layout or edit string information) is subject to interpretation by
the receiving application. An application such as DECwrite may therefore
represent a document making different choices from those of a third-party
converter. DATATRIEVE tries to make its output as general-purpose as possible,
but it cannot predict how the user will subsequently process the file; some
inconsistencies may unfortunately arise, due to the extreme flexibility of these
formats.

Producing High-quality Printouts
When you use a format such as PostScript™ or DDIF, you have the capability
to select the font family, size and attributes you want to apply to a particular
field or range of fields. This control, combined with the use of suitable printers or
software applications, results in professional-looking output. These formats also
allow different paper sizes to be used, while the report is still correctly laid out.

Changing Font Attributes in a Report
All text printed in a report is created by either a SET statement (for example
SET DATE) or by a PRINT statement. You can change the font attributes (size,
type, underline, and so on) for each of these by using DECLARE_ATT statements.

The application of print attributes takes place in two stages: first, a DECLARE_
ATT statement specifies a name for a set of attributes that specify the typeface;
then an ATT clause is inserted before the item to be printed using this typeface.

DTR> REPORT YACHTS ON YACHT.PS FORMAT PS
RW> DECLARE_ATT PRICE_ATT FAMILY=AVANTGARDE, SIZE=14, UNDERLINE
RW> PRINT MODEL, ATT PRICE_ATT, PRICE
RW> END_REPORT

This example results in the field MODEL being printed using the default
attributes (a plain 10-point Helvetica font), while the field PRICE is printed using
an underlined 14-point Avantgarde font. Note that attributes only change the
print characteristics that are specified in the DECLARE_ATT statements, and
leave the others unchanged.

DTR> REPORT YACHTS ON YACHT.PS FORMAT PS
RW> DECLARE_ATT MODEL_ATT BOLD
RW> DECLARE_ATT PRICE_ATT SIZE=14, UNDERLINE
RW> PRINT BUILDER, ATT MODEL_ATT, MODEL, ATT PRICE_ATT, PRICE
RW> END_REPORT

15–4 Report Writer Formats

Report Writer Formats
Producing High-quality Printouts

This example results in the field BUILDER being printed using the default
attributes, the field MODEL using a bold 10-point Helvetica font and the field
PRICE using and underlined 14-point Helvetica font.

Attributes can be set for page header elements by specifying an ATT clause in the
relevant SET statement (see Example 15–1).

With this simple but powerful mechanism, DATATRIEVE provides its users (even
those with only a character-cell terminal at their disposal) with control over
printing quality, in a way which is normally only available from applications with
a specialized graphical interface. For example, the user has the possibility of
highlighting whole columns (by putting an ATT clause inside a detail print list) or
singling out totals (by using an ATT clause in an AT BOTTOM statement). The
report in Example 15–1 shows a number of DECLARE_ATT statements used to
define all the elements needed to print out the example used in Figure 15–1.

Example 15–1 Example Report Changing Font Types for the Output
DTR> REPORT PAYABLES WITH INVOICE_DUE NOT MISSING -
RW> SORTED BY AGE ON AGING_REPORT.PS FORMAT PS
RW>
RW> DECLARE_ATT TITLE FAMILY = TIMES, SIZE = 24, BOLD, NO ITALIC
RW> DECLARE_ATT DATE_PAGE FAMILY = TIMES, SIZE = 14, NO BOLD, ITALIC
RW> DECLARE_ATT COL_HDR FAMILY = TIMES, SIZE = 12, BOLD, ITALIC
RW> DECLARE_ATT DETAIL FAMILY = NC_SCHOOLBOOK, SIZE = 10
RW> DECLARE_ATT TOT_ACCNTS FAMILY = HELVETICA, SIZE = 12, NO BOLD
RW> DECLARE_ATT TOTAL FAMILY = HELVETICA, SIZE = 14, BOLD
RW> DECLARE_ATT ULINE UNDERLINE
RW> DECLARE_ATT NO_ULINE NO UNDERLINE
RW> DECLARE_ATT GRAND_TOTAL FAMILY = HELVETICA, SIZE = 14,
RW> BOLD, ITALIC

(continued on next page)

Report Writer Formats 15–5

Report Writer Formats
Producing High-quality Printouts

Example 15–1 (Cont.) Example Report Changing Font Types for the Output
RW>
RW> SET COLUMNS_PAGE = 70
RW> SET REPORT_NAME = ATT TITLE, "ACCOUNTS PAYABLE"/ "Aging Report"
RW> SET DATE = ATT DATE_PAGE, "3-JUN-1991"
RW> SET NUMBER = ATT DATE_PAGE
RW> SET COLUMN_HEADER = ATT COL_HDR
RW>
RW> PRINT ATT DETAIL, AGE ("A"/"G"/"E"), INVOICE_DUE,
RW> TYPE, WHSLE_PRICE
RW>
RW> AT BOTTOM OF PAGE PRINT
RW> SKIP, COL 20, ATT TOT_ACCNTS, "Number of accounts:",
RW> SPACE, COUNT (-) USING Z9,
RW> COL 53, ATT TOTAL, "Total:",
RW> ATT ULINE, TOTAL WHSLE_PRICE USING $$$$,$$$, SKIP
RW>
RW> AT BOTTOM OF REPORT PRINT
RW> ATT GRAND_TOTAL, COL 15, "Total number of accounts:",
RW> SPACE, ATT ULINE, COUNT (-) USING Z9, ATT NO_ULINE,
RW> COL 53, "Total:", ATT ULINE, TOTAL WHSLE_PRICE USING $$$$,$$$
RW> END_REPORT

The example output Figure 15–1 shows how a normal report has been altered to
take advantage of the attributes defined by the DECLARE_ATT statements.

15–6 Report Writer Formats

Report Writer Formats
Producing High-quality Printouts

Figure 15–1 Sample PostScript™ Output

 ACCOUNTS PAYABLE 3-Jun-1991

Aging Report Page 1

A
G INVOICE WHSLE
E DUE VENDOR ITEM_TYPE PRICE

1 4/06/91 BAYFIELD 30/32 $13,000
1 4/20/91 ALBIN VEGA $14,250
1 4/06/91 IRWIN 37 MARK II $29,999

Number of accounts: 3 Total: $57,249

2 3/19/91 ALBIN BALLAD $23,850
2 3/30/91 ALBIN FLAGPOLES $48
2 3/19/91 BOMBAY CLIPPER $18,150
2 3/07/91 ISLANDER BAHAMA $4,950

Number of accounts: 4 Total: $46,998

3 2/17/91 WINDPOWER IMPULSE $1,500
3 2/19/91 AMERICAN 26 $9,000
3 2/05/91 AMERICAN 26-MS $15,150
3 2/20/91 ALBIN 79 $13,500

Number of accounts: 4 Total: $39,150

4 1/07/91 ALBERG 37 MK II $28,500
4 1/30/91 SALT 19 $4,850

Number of accounts: 2 Total: $33,350

5 12/06/90 GRAMPIAN 34 $25,250
5 1/04/91 CAPE DORY TYPHOON $3,150

Number of accounts: 2 Total: $28,400

Total number of accounts: 15 Total: $205,147

Header

Body

Individual
Fields

The defaults for header and body font attributes can be changed by defining
the logical names DTR$RW_BODY_ATTRIBUTES or DTR$RW_HEADER_
ATTRIBUTES, which use the same syntax as the DECLARE_ATT statement.
Note that the defaults are reapplied at the start of each new line. Thus, to use a

Report Writer Formats 15–7

Report Writer Formats
Producing High-quality Printouts

24-point italic Courier font as the default for titles, the following definition should
be applied before invoking DATATRIEVE:

$ define DTR$RW_HEADER_ATTRIBUTES "FAMILY=COURIER, SIZE=24, ITALIC"

It is also important to note that ATT clauses only override the specific attributes
that they list (Family, Size and Italic in the example above), and that the defaults
are reapplied at the beginning of each new record.

Proportionally-spaced Fonts
When producing text-format reports, it was customary to assume that all
characters occupy the same amount of space (that is, we use monospaced text).
This assumption, which is true for the DATATRIEVE PRINT statement, works
well on character-cell devices such as terminals, but does not necessarily hold
true for all reports. When you use a format such as PostScript™ or DDIF,
DATATRIEVE allows you to choose font families, which are proportionally spaced,
in which different characters take up different amounts of space.

When proportionally-spaced fonts are used, it is difficult to predict how much
space a printable string will occupy. A given string will take up 20% more space
when printed with a 12-point font that with a 10-point font, even if the font
family is the same. Furthermore, a field that is defined by a PIC X(5) can contain
"WWWWW" and "iiiii" as values, and these will take up very different amounts of
space when printed using a proportionally spaced font.

Since a DATATRIEVE report’s layout is resolved before the actual data is read,
estimates of the amount of space occupied by the various fields are made on
the basis of their PIC or EDIT_STRING, as well as on the attributes and fonts
selected. In the cases where the value is known (a text constant), the exact
amount of space is calculated. If, on the other hand, you are printing a record
field of which only the edit string is known, an algorithm will work out the
average width for an arbitrary value for this field, using the given font and
attributes.

It is important to note that it may be difficult to predict the exact width of a
column under these conditions, and some experimenting may be required in
order to achieve optimum results. This is particularly true for reports written in
text format but which you now want to produce in DDIF or PostScript™ output
formats from the same procedure. Discrepancies in the layout must be expected,
but can be corrected by using different fonts and positioning fields differently. In
some cases, use of a different edit string may be desirable.

15–8 Report Writer Formats

Report Writer Formats
Producing High-quality Printouts

The character alignment methods used for monospaced fonts (COLUMNS_PAGE
and LINES_PAGE) are not applicable for proportional fonts because the size
of the font and the width of the characters affects the physical size of the line.
In the case of non-TEXT formats, use the paper size attributes (PAPER_SIZE,
PAPER_HEIGHT and PAPER_WIDTH) instead. DATATRIEVE will automatically
adjust the number of lines or characters to fit within these values. Specifying
PAPER_HEIGHT and PAPER_WIDTH allows you to adjust the format on the
page, but require you to know the dimensions of the paper you are printing onto.

Changing Paper Size
Specifying a paper size is often convenient, because the Report Writer
automatically fits the report onto the specified paper. The SET statement is
used for this purpose. Most common paper sizes are available, and a chart
showing all the options is provided in the SET (Report Writer) section of the
VAX DATATRIEVE Reference Manual.

The order of SET statements is important, as they override each other. For
example, the following results in the paper dimensions being set to 7 by 10
inches, because the PAPER_WIDTH argument overrides the (9 inch) value for
width set by the PAPER_SIZE argument.

DTR> SET PAPER_SIZE = SEVEN_BY_NINE
DTR> SET PAPER_WIDTH = 10 IN

Formatting for DDIF and PostScript™
There are some other factors to keep in mind when using DDIF or PostScript™
formats. In these formats, a page is no longer viewed as a matrix of column and
lines to be determined with SET COLUMNS_PAGE and SET LINES_PAGE, as
in a TEXT report. Instead, think of the page as a physical object: a rectangular
sheet of paper, whose size is determined by using SET PAPER_HEIGHT and SET
PAPER_WIDTH, or SET PAPER_SIZE if you are using a standard paper size.
Note that the report writer allows for a margin all around the page perimeter
when formatting the report. The SET PAPER_ORIENTATION statement allows
the user to choose between landscape and portrait format. SET COLUMNS_
PAGE and SET LINES_PAGE are ignored.

Since SET COLUMNS_PAGE is ignored, the interpretation of formatting clauses
such as COL, SPACE and TAB is also different. Imagine that the page is divided
in 80 "columns" of equal width if the orientation is PORTRAIT, or 132 "columns"
if LANDSCAPE. These "columns" do not necessarily represent the width of a
character, but rather a reference grid used to specify a horizontal position on the
line.

• the COL n clause will print the next print object starting on the nth column
of the grid

Report Writer Formats 15–9

Report Writer Formats
Producing High-quality Printouts

• the SPACE n clause will print the next print object starting on the nth
column of the grid, counting from the end of the last print object

• the TAB n clause will print the next object starting n tab stops from the end
of the last printed object. Tab stops are those columns whose number is a
multiple of 8.

The use of different fonts may also affect the height of the printed lines: for a
print list, the line height is determined by the height of the largest field. For this
reason, the number of lines on the page cannot be set by the user: it is calculated
by the report writer on the basis of the page size and the space taken up by the
different lines.

Using the TEXT format
When the FORMAT clause is not specified, a character-cell report is produced,
which simply encodes ASCII text (which assumes a monospaced font is used),
the page size being determined by the SET COLUMNS_PAGE and SET LINES_
PAGE statement. Attributes set by ATT clauses are ignored, and the formatting
clauses TAB, COL and SPACE have the same meaning as in a PRINT statement.

Certain print attributes have however been made available to the character-cell
terminal users too. When TEXT is selected as the format for the report, the
user may set print attributes using the DECLARE_ATT mechanism previously
described. Clearly, different font families and sizes cannot be applied in a
character-cell environment, and these will be ignored; but you can set the print
attributes BOLD, UNDERLINE and REVERSE.

In this format, output is identical to that of the default format, except that
ANSI escape sequences are inserted in the ASCII text, in order to produce the
desired output on terminals and printers that support ANSI escape sequences.
The VT200, VT300, VT400 and DECterm series of terminals all support these
attributes. If the output is viewed on a device or application that does not process
escape sequences, it will appear to be filled with spurious characters. In this
case, the default format should be used. Both TEXT formats ignore the SET
PAPER_WIDTH, SET PAPER_HEIGHT, SET PAPER_SIZE and SET PAPER_
ORIENTATION statements.

It is also important to note that not all output devices support all ANSI escape
sequences. In some cases, it may therefore seem that DATATRIEVE does not
process print attributes correctly, but they are simply ignored by the output
device. For example, a number of printers do not support the REVERSE
attribute.

15–10 Report Writer Formats

Report Writer Formats
Using the TEXT format

Formatting TEXT Reports
One of the main advantages of the Report Writer is its ease of formatting. You
can include SET statements to specify the number of columns and lines per page
(for a TEXT format), or you can specify a standard paper size (for any format),
within which the Report Writer will fit the report. It is also possible to set the
maximum number of lines or pages in a report.

Changing the Default Page Width and Length
The Report Writer provides the following default page dimensions for character-
cell reports:

• Page width: 80 columns

• Page length: 60 lines

For example, if you do not want the default format of 80 columns per page,
you can specify the number of columns by including a SET COLUMNS_PAGE
statement within your report specification. To set the page width at 60 columns,
enter the following command:

RW> SET COLUMNS_PAGE = 60

If you specify a width that is greater than 80, it is advisable to adjust the column
width of your terminal screen. For VT100-, VT200-, VT300-, VT400-family or
DECterm terminals, use FN$WIDTH(n) at the DATATRIEVE command level to
specify the number of columns that can be shown across the terminal screen. For
this function, n can be as large as 132. For example:

DTR> FN$WIDTH(132)
.
.
.
RW> SET COLUMNS_PAGE = 132

Reporting data for spreadsheets
In a DTIF report, the Report Writer assumes that the data is to be presented as
a table rather than as a printable document, and therefore simplifies the layout;
there are therefore some considerations that the user must keep in mind. It is
always best to design a simple report, without sophisticated presentation styles.

Report Writer Formats 15–11

Report Writer Formats
Reporting data for spreadsheets

Formatting spreadsheets
The main issue for a DTIF report is that one record should, as far as possible,
occupy one row only, and all contents within any one column should be
homogeneous. This means that the SKIP clause is ignored, and totals and
statistics are aligned with their corresponding fields. Sometimes a record is
forced to occupy more that one row by the order in which the fields are specified
in the printlists. For example:

DTR> REPORT FIRST 6 YACHTS SORTED BY BUILDER ON YACHT.TABLE FORMAT DTIF
RW> PRINT MODEL, PRICE
RW> AT BOTTOM OF BUILDER PRINT
RW> "Average price for "|||BUILDER, AVERAGE PRICE
RW> END_REPORT

This example might yield a table such as this:

MODEL PRICE

37 MK II $36,951
Average price for ALBERG

$36,951
79 $17,900
BALLAD $27,500
VEGA $18,600

Average price for ALBIN
$21,333

26 $9,895
26-MS $18,895

Average price for AMERICAN
$14,395

In the above report, columns were assigned for MODEL and PRICE. Since the
string "Average price..." could not fall under either of the two columns, it was
assigned to a third column. The fact that the string was followed by the PRICE
field, which was assigned to a previous column, causes the Report Writer to create
a new row.

The above example may seem to indicate that layout in DTIF format is hard to
manage, and that this problem is compounded by the fact that the formatting
clauses COL, SPACE, TAB are also ignored and have no effect on the report.
However, when designing a report for output to a spreadsheet, you must always
keep in mind the final use of the report: while DATATRIEVE will attempt to
make the most of what it is given, it is best to leave out sophisticated presentation
styles from a DTIF report, and produce reports that contain all the data required
using a simple and effective layout.

15–12 Report Writer Formats

16
Report Writer Advanced Techniques

You may often need to report not only on a body of data but also on the groups
within it. For example, you could report on employees sorted by department,
with summary totals for each department as well as for all employees. Groups of
sorted records are called control groups. A control group is a series of sorted
data records that have the same value in one or more fields.

Dividing Data Records into Control Groups
When you sort a group of records, you choose at least one field as the sort key.

Control groups are formed by sorting on a key where the number of unique
values for a sort key is smaller than the number of sorted records. For example,
a company of 500 employees may have only 10 departments (10 unique values for
DEPT). When you sort the employee records by the department code (DEPT), you
create 10 control groups.

Figure 16–1 shows the logical structure of the record PERSONNEL_REC for the
PERSONNEL domain. PERSONNEL is used in the example that follows.

Figure 16–1 Field Structure of PERSONNEL_REC

01 PERSON

05 NAME05 STATUS05 ID 05 DEPT 05 SALARY

_NAME
10 FIRST

_NAME
10 LAST

05 SUP

_ID_DATE
05 START

The following REPORT statement identifies all records from three specific
departments and establishes DEPT as the sort key for the records. DATATRIEVE
then sorts the records according to the department code:

Report Writer Advanced Techniques 16–1

Report Writer Advanced Techniques
Dividing Data Records into Control Groups

DTR> REPORT PERSONNEL WITH DEPT = "D98", "E46",
RW> "T32" SORTED BY DEPT
RW> SET COLUMNS_PAGE = 70
RW> PRINT ID, DEPT, FIRST_NAME, LAST_NAME, SALARY
RW> END_REPORT

14-May-1992
Page 1

FIRST LAST
ID DEPT NAME NAME SALARY

02943 D98 CASS TERRY $29,908
39485 D98 DEE TERRICK $55,829
49843 D98 BART HAMMER $26,392
84375 D98 MARY NALEVO $56,847
38465 E46 JOANNE FREIBURG $23,908
48475 E46 GAIL CASSIDY $55,407
34456 T32 HANK MORRISON $30,000
38462 T32 BILL SWAY $54,000
48573 T32 SY KELLER $31,546
83764 T32 JIM MEADER $41,029

DTR>

If the desired field is the primary key for the records, or if you have formed and
sorted a collection, you do not need to sort the records again within the REPORT
statement. If the records are not already sorted, you can sort them within the
REPORT statement. Once the records are sorted, you can use an AT TOP OF
field-name or an AT BOTTOM OF field-name statement to create control groups
based on the values of the field specified.

Remember that to form control groups based on a sort key, you must sort the
records by a field and use the same field name in the AT TOP OF or AT BOTTOM
OF statement. The field name you use must be either a field name specified in
the record description or a variable name created in a DECLARE statement. See
Chapter 2 for more information on variables.

Developing Levels of Control Groups Using Multiple Sort Keys
It is possible for one control group to contain other control groups based on
the values of other sort keys. For example, you could sort a personnel file by
department and by type of employee as specified in the STATUS field. Each
department group contains several control groups for the types of employees
within that department.

The following example also uses the PERSONNEL domain. It shows the two
types of employees that work at Bock’s Yachts: experienced workers and trainees.
The STATUS field takes one of two values: EXPERIENCED or TRAINEE. The
report shows salaries for each department and for each type of employee within a
given department.

16–2 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Dividing Data Records into Control Groups

Follow these steps:

• Sort the records according to two sort keys, DEPT and STATUS.

• Print the field values of the detail line. Use a concatenation expression
(| | |) to allow exactly one space between FIRST_NAME and LAST_NAME.
Specify a header for the full name ("NAME"). See Example 16–1.

Example 16–1 Control Group Report Based on Two Sort Keys
DTR> READY PERSONNEL
DTR> FIND PERSONNEL WITH DEPT = "D98","T32" SORTED

BY DEPT, STATUS
[8 records found]
DTR> PRINT ID, FIRST_NAME|||LAST_NAME ("NAME"), SALARY
OF CURRENT

ID NAME SALARY

02943 CASS TERRY $29,908
84375 MARY NALEVO $56,847
39485 DEE TERRICK $55,829
49843 BART HAMMER $26,392
83764 JIM MEADER $41,029
38462 BILL SWAY $54,000
34456 HANK MORRISON $30,000
48573 SY KELLER $31,546

Reporting Data Grouped by Date
There are several ways to develop reports grouped by date. One simple way is
to edit the record definition to form a new field, called, for example, AGE, which
gives the age of an account in months. Then produce a control group report
sorted by AGE.

Another way to produce the accounts payable report is to form control groups
where all INVOICE_DUE fields contain the same month and year. For example,
you might want information on all accounts due in April of 1992, in May of 1992,
and so on. Figure 16–2 shows the logical structure of the record PAYABLES_REC
for the PAYABLES domain used in the example that follows.

Report Writer Advanced Techniques 16–3

Report Writer Advanced Techniques
Reporting Data Grouped by Date

Figure 16–2 Field Structure of PAYABLES_REC

01 PAYABLE

10 MANUFACTURER 10 MODEL

05 TYPE

NUM
05 ORDER_

 RECEIVED
05 ITEMS_

 DUE
05 INVOICE_

 PAID
05 BILL_

 PRICE
05 WHSLE_

Producing this report requires a different technique. You identify the month
and year portion from each value of INVOICE_DUE with the FORMAT value
expression. Then, group records with the same value for the month and year of
INVOICE_DUE. Follow these steps:

1 Declare a variable (ACCT_MONTH) to compute the month and year for each
value of INVOICE_DUE with a FORMAT value expression.

2 Identify the data with a REPORT rse statement, sorting the records according
to the value for INVOICE_DUE.

3 Begin each month’s report on a new page numbered 1 with the NEW_
SECTION element in the print list of the AT TOP statement.

4 Indicate the content of the detail lines with a PRINT statement.

5 Summarize each month’s accounts with an AT BOTTOM OF ACCT_MONTH
statement.

The procedure MONTHLY_ACCT_RPT generates one report for each month’s
accounts payable:

DTR> SHOW MONTHLY_ACCT_RPT
PROCEDURE MONTHLY_ACCT_RPT
DECLARE ACCT_MONTH COMPUTED BY 1

FORMAT INVOICE_DUE USING YYMM.
REPORT PAYABLES WITH INVOICE_DUE NOT MISSING SORTED BY2

INVOICE_DUE
SET COLUMNS_PAGE = 70
SET REPORT_NAME = "ACCOUNTS PAYABLE"
AT TOP OF ACCT_MONTH PRINT NEW_SECTION 3
PRINT INVOICE_DUE, TYPE, WHSLE_PRICE 4
AT BOTTOM OF ACCT_MONTH PRINT SKIP 2, COL 15, 5

"NUMBER OF ACCOUNTS:", SPACE,
COUNT(-) USING Z9, COL 53, "TOTAL:",
TOTAL WHSLE_PRICE USING $$$,$$$

END_REPORT
END_PROCEDURE

16–4 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Reporting Data Grouped by Date

Running the procedure produces a multipage report. Each month’s accounts
payable begins on a new Page 1. Example 16–2 shows three pages from the
report. To save space, the pages are printed together here.

Example 16–2 Accounts Payable Report by Month
ACCOUNTS PAYABLE 3-Nov-1991

Page 1

INVOICE WHSLE
DUE VENDOR ITEM_TYPE PRICE

12/01/91 GRAMPIAN 34 $25,250
12/30/91 CAPE DORY TYPHOON $3,150

NUMBER OF ACCOUNTS: 2 TOTAL: $28,400

ACCOUNTS PAYABLE 3-Nov-1991
Page 1

INVOICE WHSLE
DUE VENDOR ITEM_TYPE PRICE

1/02/92 ALBERG 37 MK II $28,500
1/25/92 SALT 19 $4,850
1/31/92 AMERICAN 26-MS $15,150

NUMBER OF ACCOUNTS: 3 TOTAL: $48,500
.
.
.

ACCOUNTS PAYABLE 3-Nov-1991
Page 1

INVOICE WHSLE
DUE VENDOR ITEM_TYPE PRICE

4/01/92 BAYFIELD 30/32 $13,000
4/01/92 IRWIN 37 MARK II $29,999
4/15/92 ALBIN VEGA $14,250

NUMBER OF ACCOUNTS: 3 TOTAL: $57,249

Reporting Group Summaries Only
Control groups allow you to separate groups of detail lines and to print group
summaries. However, sometimes you may want only the summary information
for the groups. You can produce a report with summary lines and no detail lines
using either the Report Writer or the SUM statement described in Chapter 2.

You can produce a report consisting only of summary lines for control groups with
the AT BOTTOM OF field-name statement.

Report Writer Advanced Techniques 16–5

Report Writer Advanced Techniques
Reporting Group Summaries Only

The following example creates a report showing salary information for each
department in Bock’s Yachts. It includes the number of employees in each
department, the total salary, and the average salary. Finally, for the entire
company, it indicates total number of employees, total salary, and average salary.

Follow these steps:

1 Use AT BOTTOM OF DEPT to print each line of the body of the report. Each
line summarizes a different department. Do not use the PRINT statement.
(You are reporting on group totals, not on the individual members of the
group.)

2 Use COUNT as a print item for the number of employees.

3 Use AT BOTTOM OF REPORT for the aggregate summaries. COUNT
provides the total of all employees because it represents the total of all
records processed.

The following report specification is enclosed in the procedure SALARY_TOTALS.
(To create this procedure, use a DEFINE PROCEDURE command.)

DTR> SHOW SALARY_TOTALS
PROCEDURE SALARY_TOTALS
READY PERSONNEL
REPORT PERSONNEL SORTED BY DEPT
SET REPORT_NAME = *."a report name"
SET COLUMNS_PAGE = 60
AT BOTTOM OF DEPT PRINT COL 10, DEPT, 1
COL 20, COUNT ("NUMBER"/"EMPLOYEES"), 2
COL 35, TOTAL SALARY ("TOTAL"/"SALARY") USING $,$$$,$$$,
COL 50, AVERAGE SALARY ("AVERAGE"/"SALARY") USING $$$,$$$
AT BOTTOM OF REPORT PRINT SKIP 2, COL 10, 3
"***",
SKIP 2, COL 10, "CORPORATE:", COL 20, COUNT,
COL 35, TOTAL SALARY USING $,$$$,$$$,
COL 50, AVERAGE SALARY USING $$$,$$$
END_REPORT
END_PROCEDURE

DTR> :SALARY_TOTALS
Enter a report name: "SALARY REPORT BY DEPARTMENT"

SALARY REPORT BY DEPARTMENT 14-May-1992
Page 1

NUMBER TOTAL AVERAGE
DEPT EMPLOYEES SALARY SALARY

16–6 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Reporting Group Summaries Only

C82 5 $202,465 $40,493
D98 4 $168,976 $42,244
E46 2 $79,315 $39,658
F11 4 $151,566 $37,892
G20 3 $117,554 $39,185
T32 4 $156,575 $39,144
TOP 1 $75,902 $75,902

CORPORATE: 23 $952,353 $41,407

DTR>

Summarizing Data
As a general rule, it is best not to use AT TOP statements for summarizing data.
These statements are for printing special headings in the report.

The following functions are available for summary lines:

• AVERAGE

• COUNT

• Maximum value (MAX)

• Minimum value (MIN)

• Standard deviation (STD_DEV)

• TOTAL

Two other functions, RUNNING COUNT and RUNNING TOTAL, provide
running summaries within each detail line. They can be included in a PRINT
statement. See Value Expressions on value expressions for more information.
They can also be used to compute running summaries of the groups within the
report in an AT BOTTOM of field-name statement.

COUNT, AVERAGE, and TOTAL
Figure 16–3 shows the logical structure of the record SALES_REC for the SALES
domain, used in the example that follows.

Report Writer Advanced Techniques 16–7

Report Writer Advanced Techniques
Summarizing Data

Figure 16–3 Field Structure of SALES_REC

01 SALESREC

05 ID 05 SALES_NAME 05 START_DATE 05 MONTHS_EMP 05 AMOUNT

MONTHS_EMP has the following field definition:

05 MONTHS_EMP COMPUTED BY ("TODAY" - START_DATE)/30
EDIT_STRING IS ZZ9.

MONTHS_EMP is a COMPUTED BY field based on the value of START_DATE
and the date value expression "TODAY", representing the current system date.
See the VAX DATATRIEVE Reference Manual for more information on the date
value expression "TODAY".

In the example of Maximum Value, Minimum Value, and Standard Deviation,
the Acme Computer Company has a SALES domain that stores data about the
members of its sales force. The report shows the name, starting date, months
employed, and amount sold for each salesperson at Acme Computer. The bottom
of the report indicates the number of salespeople, the total amount sold, and the
average amount sold.

Summary reports using DATATRIEVE statistical functions are useful for financial
analysis. The AT BOTTOM statement lets you produce summary lines with
the total number of salespeople (COUNT), and the AVERAGE and TOTAL
amounts sold (AVERAGE and TOTAL). The AVERAGE and TOTAL of AMOUNT
automatically print in the AMOUNT column with the edit string you indicated.

Maximum Value, Minimum Value, and Standard Deviation
To show the maximum and minimum values of selected fields, use the statistical
operators MAX and MIN on the field names. You can also print the standard
deviation of numeric fields. Use the operator STD_DEV with an AT BOTTOM
statement.

The following example also indicates the maximum amount sold, the minimum
amount sold, and the standard deviation of the amount sold.

16–8 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Summarizing Data

DTR> READY SALES
DTR> REPORT SALES
RW> SET REPORT_NAME = "ACME COMPUTER"/

"DETAILED SALES REPORT"
RW> SET COLUMNS_PAGE = 60
RW> PRINT SALES_NAME, START_DATE, MONTHS_EMP, AMOUNT
RW> AT BOTTOM OF REPORT PRINT SKIP 2,
RW> COL 10, "SALES FORCE:", SPACE, COUNT (-) USING Z9,
RW> COL 38, "TOTAL:", TOTAL AMOUNT USING $$$$,$$$.99,
RW> COL 38, "AVERAGE:", AVERAGE AMOUNT USING $$,$$$.99

RW> END_REPORT

ACME COMPUTER 2-Jul-1991
DETAILED SALES REPORT Page 1

SALES START MONTHS
NAME DATE EMP AMOUNT

ANNE DINNAN 1-Apr-1990 3 $2,389.90
NANCY ROTHBLATT 1-May-1990 2 $6,325.88
LINDA REINE 15-Dec-1989 7 $8,532.22
WAYNE SMITH 1-Feb-1990 5 $9,853.52
JAMES STORER 15-May-1989 14 $25,876.02
SANDY LEVINE 15-Nov-1989 8 $10,000.01
SEYMOUR KIMMELMAN 15-Feb-1990 5 $7,325.67
JOSEPH FREDERICK 1-Mar-1990 4 $5,000.00
RICK LANGHART 15-Mar-1990 4 $4,999.99
WILLIAM SULLIVAN 15-Oct-1991 9 $8,672.99
DAN DERRICK 16-Nov-1989 8 $11,456.87
LYDIA BARNET 1-Jun-1990 1 $2,598.79
HENRY MAILER 15-Dec-1989 7 $9,999.99
DENNIS MCADOO 1-Aug-1989 11 $12,345.62

SALES FORCE: 14 TOTAL: $125,377.47
AVERAGE: $8,955.53
MAXIMUM: $25,876.02
MINIMUM: $2,389.90
STD DEV: $5,153.85

The example uses AT BOTTOM statements to produce overall page and report
summaries. AT BOTTOM statements can also be used to divide your data records
into groups. You can then compile statistics about groups of records, as well as
the entire report.

Report Writer Advanced Techniques 16–9

Report Writer Advanced Techniques
Changing the Content of the Detail Line

Changing the Content of the Detail Line
A detail line can have two types of print items. The first type is the value
of a field from the record. One example is the value of the PRICE field from
YACHTS. The second type is a value expression. Value expressions may be
derived from field values, or they may be literals or variables. Some examples of
value expressions derived from field values are PRICE/DISP (price per pound) or
PRICE * 1.1 (10% markup on price).

Field Values
You determine the content of the detail line by indicating which fields from the
record should be printed. You can specify either elementary fields or group fields.
In the case of a group field, each of its elementary fields is printed in a separate
column.

Value Expressions
You can create additional detail line items computed from other field values
with arithmetic or statistical operators. In addition, you can include other value
expressions such as literals or variables.

The following example displays the model, current price, and a new price 10%
higher than the current price for the first five records in the YACHTS domain. It
includes the literal "BARGAIN" on each detail line. It also specifies appropriate
column headers:

DTR> REPORT FIRST 5 YACHTS
RW> SET COLUMNS_PAGE = 60
RW> SET REPORT_NAME = "BOCK’S YACHTS"/"PRICE LIST"
RW> PRINT TYPE, PRICE ("CURRENT"/"PRICE"),
RW> PRICE * 1.1 ("SUGGESTED"/"PRICE") USING $$$,$$$,
RW> "BARGAIN" ("COMMENT")
RW> END_REPORT

BOCK’S YACHTS 27-Apr-1987
PRICE LIST Page 1

CURRENT SUGGESTED
MANUFACTURER MODEL PRICE PRICE COMMENT

ALBERG 37 MK II $36,951 $40,646 BARGAIN
ALBIN 79 $17,900 $19,690 BARGAIN
ALBIN BALLAD $27,500 $30,250 BARGAIN
ALBIN VEGA $18,600 $20,460 BARGAIN
AMERICAN 26 $9,895 $10,885 BARGAIN

16–10 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Changing the Content of the Detail Line

The edit string clause, USING $$$,$$$, specifies the output format for the PRICE
* 1.1 field. You need to use one more dollar sign than the maximum number
of digits for the field value. See Edit String Format of Print Items for more
information on edit string format.

You can also maintain running statistics. It is possible to keep a running count of
the detail lines or a running total of the values of selected fields.

Figure 16–4 shows the logical structure of the record PAYABLES_REC for the
PAYABLES domain. PAYABLES is used in the example that follows.

Figure 16–4 Field Structure of PAYABLES_REC

01 PAYABLE

10 MANUFACTURER 10 MODEL

05 TYPE

NUM
05 ORDER_

 RECEIVED
05 ITEMS_

 DUE
05 INVOICE_

 PAID
05 BILL_

 PRICE
05 WHSLE_

In the following example, Bock’s Yachts has an accounts payable domain to
collect data on unpaid bills. When the company orders goods, it stores a record
indicating the manufacturer, the wholesale price of the goods, and the order
number. It leaves the fields for INVOICE_DUE and BILL_PAID blank. (A
MISSING VALUE has been defined in the record for these fields, along with a
string that is printed when the value is missing.)

When an invoice for the goods is received, the company modifies the record to
indicate the invoice date. After Bock’s Yachts pays the bill, it modifies the record
to indicate the payment date. The report shows all unpaid bills for which invoices
have been received, sorted by the invoice date. It keeps a running count of bills
and a running total of the amount owed:

DTR> REPORT PAYABLES WITH BILL_PAID MISSING AND
RW> ITEMS_RECEIVED NOT MISSING AND
RW> INVOICE_DUE NOT MISSING SORTED BY INVOICE_DUE
RW> SET REPORT_NAME = "BOCK’S YACHTS"/"ACCOUNTS PAYABLE"
RW> SET COLUMNS_PAGE = 65
RW> PRINT RUNNING COUNT ("COUNT"),
RW> MANUFACTURER, ITEMS_RECEIVED,
RW> INVOICE_DUE, BILL_PAID, WHSLE_PRICE, COL 55,
RW> RUNNING TOTAL WHSLE_PRICE ("TOTAL"/"OWED")

USING $$$,$$$
RW> END_REPORT

Report Writer Advanced Techniques 16–11

Report Writer Advanced Techniques
Changing the Content of the Detail Line

BOCK’S YACHTS 19-Apr-1991
ACCOUNTS PAYABLE Page 1

ITEMS INVOICE BILL WHSLE TOTAL
COUNT VENDOR RECEIVED DUE PAID PRICE OWED

1 CAPE DORY 2/15/91 12/30/90 NOT PAID $3,150 $3,150
2 SALT 3/01/91 1/25/91 NOT PAID $4,850 $8,000
3 AMERICAN 11/05/90 2/14/91 NOT PAID $9,000 $17,000
4 ALBIN 6/21/90 2/15/91 NOT PAID $13,500 $30,500
5 ALBIN 8/22/90 3/14/91 NOT PAID $23,850 $54,350
6 BAYFIELD 8/04/90 4/01/91 NOT PAID $13,000 $67,350
7 IRWIN 3/01/91 4/01/91 NOT PAID $29,999 $97,349

Format of Fields in the Detail Lines
The Report Writer determines a default format for each print item based on
the edit string or picture clauses in the record definition or variable declaration.
However, you can, at your option, control the format within the PRINT statement.

Column Position of Print Items
The Report Writer automatically sets up the column spacing, based on field,
header, and page widths. If you want to change the default spacing, you can
specify the print position of any or all of the print items. In either case, if you do
not leave enough room for the column headers and data items, the Report Writer
wraps the detail line. That is, it prints some items on a second line, including
column headers as space permits.

If you choose to specify print positions, you can do the following:

• Specify the column number where the Report Writer begins to print each item

• Require spacing between columns by including a SPACE n element in the
PRINT statement

The following example uses the first option to display the same fields from
PAYABLES; however, each field begins at 15 space intervals because the column
number is specified:

RW> PRINT COL 1, WHSLE_PRICE, COL 16, ITEMS_RECEIVED,
RW> COL 31, INVOICE_DUE, COL 45, BILL_PAID

.

.

.
WHSLE ITEMS INVOICE BILL
PRICE RECEIVED DUE PAID

16–12 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Changing the Content of the Detail Line

$40,000 NO GOODS NO INVCE NOT PAID
$28,500 5/24/90 1/02/91 6/15/90
$13,500 6/21/90 2/15/91 NOT PAID

The following example displays the same fields but uses a SPACE n element to
specify only three spaces between columns:

RW> PRINT WHSLE_PRICE , SPACE 3, ITEMS_RECEIVED,
RW> SPACE 3, INVOICE_DUE, SPACE 3, BILL_PAID

.

.

.
WHSLE ITEMS INVOICE BILL
PRICE RECEIVED DUE PAID

$40,000 NO GOODS NO INVCE NOT PAID
$28,500 5/24/90 1/02/91 6/15/90
$13,500 6/21/90 2/15/91 NOT PAID

Edit String Format of Print Items
If you declare an edit string for a field in the record definition, the Report Writer
uses that edit string to format the print item. If you are setting up print items
derived from field values, the Report Writer sets up its own edit string.

Printing a Variety of Detail Lines in One Report
Sometimes you may want to print different types of detail lines in the same
report. For example, you might want to print a column indicating whether a
salesperson is experienced or a trainee, depending on the number of months on
the sales force. A logical approach would be to test the value of MONTHS_EMP.
If MONTHS_EMP is greater than 6, DATATRIEVE should print an ‘‘experienced
worker’’ detail line. Otherwise, DATATRIEVE should print a ‘‘trainee’’ detail
line. But you cannot include conditional statements or more than one PRINT
statement within a report specification.

To generate this type of report with the DATATRIEVE Report Writer, you must
take a different approach. This section presents two ways to solve this type of
problem, each using the CHOICE value expression.

Figure 16–5 shows the logical structure of the record SALES_REC for the SALES
domain. SALES is used in the example that follows.

Report Writer Advanced Techniques 16–13

Report Writer Advanced Techniques
Printing a Variety of Detail Lines in One Report

Figure 16–5 Field Structure of SALES_REC

01 SALESREC

05 ID 05 SALES_NAME 05 START_DATE 05 MONTHS_EMP 05 AMOUNT

In the following example, the Acme Computer Company divides its sales force
into two categories. Trainees are those who have been employed for fewer than
six months. Experienced workers have been employed for six months or more.
Each salesperson’s commission depends on how long he or she has been employed,
as well as the amount sold, as illustrated in Table 16–1

Table 16–1 Commission Schedule for the Sales Division

Months
Employed

Amount
Sold

Commission
Percent Rating

GT 6 GT 10000 12% Above quota

GT 6 LE 10000 7% Below quota

LE 6 GT 5000 10% Above quota

LE 6 LE 5000 5% Below quota

The report displays the name, months employed, total sales, commission
percentage, total commission, and rating (above quota or below quota) for each
salesperson.

An analysis of the report requirements shows that you need six values for each
detail line of the report:

• Three desired values are field values contained in the input record: the
salesperson’s name (SALES_NAME), months employed (MONTHS_EMP), and
amount sold (AMOUNT).

• Two other values must be assigned depending on the months employed and
sales amount: the salesperson’s rating (above quota or below quota) and the
commission percentage.

• The final value (total commission) can be computed from the values for
AMOUNT and COMM_PCT by using the following formula: (AMOUNT
* COMM_PCT) / 100. You can either add a new COMPUTED BY field or
variable (COMMISSION), or you can include the formula directly in the
PRINT statement.

16–14 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Printing a Variety of Detail Lines in One Report

In effect, you can print a detail line for a salesperson only after testing for
months employed and total sales. This problem is representative of a common
need within report writing: testing field values to derive new values and printing
both the field and the derived values on the same detail line.

To solve this type of problem, use the CHOICE value expression to conduct a
series of tests for each record based on values of MONTHS_EMP and AMOUNT.
You can do this in either of two ways:

• Edit the original record definition to set up two new COMPUTED BY fields
for COMM_PCT and RATING. Use the CHOICE value expression in the
COMPUTED BY clause.

• Use the CHOICE value expression within the PRINT statement. DATATRIEVE
tests for the values of MONTHS_EMP and AMOUNT while processing each
record.

CHOICE Value Expression in COMPUTED BY Fields
One way to solve the testing problem is to edit the record definition before
invoking the Report Writer. You need to add two new COMPUTED BY fields:
COMM_PCT and RATING. Use the CHOICE value expression within the
COMPUTED BY clause. (For more information on the CHOICE value expression,
see the VAX DATATRIEVE Reference Manual).

Because these are virtual fields whose values are not actually stored, you are not
changing the size of the record. Therefore, there is no need to restructure the
domain. The following shows the resulting change in SALES_REC:

DTR> SHOW SALES_REC
RECORD SALES_REC USING

Report Writer Advanced Techniques 16–15

Report Writer Advanced Techniques
Printing a Variety of Detail Lines in One Report

01 SALESREC.
05 ID PIC IS 9(5).
05 SALES_NAME PIC IS X(20).
05 START_DATE USAGE IS DATE.
05 MONTHS_EMP COMPUTED BY ("TODAY" - START_DATE)/30

EDIT_STRING IS ZZ9.
05 AMOUNT PIC IS 9(5)V99

QUERY_NAME IS AMT
EDIT_STRING IS $$$,$$$.99.

05 COMM_PCT COMPUTED BY
CHOICE
(MONTHS_EMP LE 6 AND AMOUNT > 5000) THEN 10
(MONTHS_EMP LE 6) THEN 05
(AMOUNT > 10000) THEN 12
ELSE 07

END_CHOICE
EDIT_STRING IS Z9% .

05 RATING COMPUTED BY
CHOICE
(MONTHS_EMP LE 6 AND AMOUNT > 5000) THEN "ABOVE QUOTA"
(AMOUNT > 10000) THEN "ABOVE QUOTA"
ELSE "BELOW QUOTA"

END_CHOICE
EDIT_STRING IS X(11).

;

Figure 16–6 shows the new structure of SALES_REC with the addition of the two
COMPUTED BY fields.

Figure 16–6 Revised Field Structure of SALES_REC

01 SALESREC

05 ID 05 MONTHS_EMP05 SALES_NAME 05 START_DATE 05 COMM_PCT 05 RATING05
AMOUNT

Follow these steps to produce a control group report on sales commission:

1 Declare a variable to compute the commission.

2 Report the records in SALES and sort them by the new field COMM_PCT.
Choosing COMM_PCT as the sort key enables you to break up the detail
lines into four groups. This corresponds to the four possible commission
percentages.

3 Name the report.

4 At the top of each group, print the values for COMM_PCT and RATING.

5 Print the field values, specifying appropriate column headers where necessary.

16–16 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Printing a Variety of Detail Lines in One Report

6 Summarize the data about the sales personnel in each commission-percentage
category with an AT BOTTOM OF COMM_PCT statement.

7 Summarize the data about the entire sales force with an AT BOTTOM OF
REPORT statement.

The following is the procedure COMM_REPORT that produces the desired report:

DTR> SHOW COMM_REPORT
PROCEDURE COMM_REPORT
READY SALES
DECLARE COMMISSION COMPUTED BY 1

((AMOUNT * COMM_PCT) / 100)
EDIT_STRING IS $$$,$$$.99.

REPORT SALES SORTED BY COMM_PCT 2
SET REPORT_NAME = "SALES COMMISSION REPORT" 3
SET COLUMNS_PAGE = 70
AT TOP OF COMM_PCT PRINT RATING, COMM_PCT 4
PRINT SALES_NAME, MONTHS_EMP, AMOUNT, -

COMMISSION ("COMMISSION") 5
AT BOTTOM OF COMM_PCT PRINT SKIP, COL 19, 6

"NUMBER:", SPACE, COUNT(-) USING Z9,
COL 35, "TOTAL SALES:", TOTAL AMOUNT USING
$$$,$$$.99, TOTAL COMMISSION USING $$$,$$$.99, SKIP 2

AT BOTTOM OF REPORT PRINT COL 5, 7
"***",
SKIP 2, COL 14, "SALES FORCE:", SPACE, COUNT(-) -

USING Z9, COL 35,
"TOTAL SALES:", TOTAL AMOUNT USING $$$$,$$$.99,
TOTAL COMMISSION USING $$$$,$$$.99

END_REPORT
END_PROCEDURE

Figure 16–7 shows the report produced by COMM_REPORT.

Report Writer Advanced Techniques 16–17

Report Writer Advanced Techniques
Printing a Variety of Detail Lines in One Report

Figure 16–7 Control Group Report with Variety of Detail Lines
SALES COMMISSION REPORT 2-Jul-1990

Page 1

COMM SALES MONTHS
RATING PCT NAME EMP AMOUNT COMMISSION

BELOW QUOTA 5%
ANNE DINNAN 3 $2,389.90 $119.50
RICK LANGHART 4 $4,999.99 $250.00
LYDIA BARNET 1 $2,598.79 $129.94
JOSEPH FREDERICK 4 $5,000.00 $250.00

NUMBER: 4 TOTAL SALES: $14,988.68 $749.53

BELOW QUOTA 7%
WILLIAM SULLIVAN 9 $8,672.99 $607.11
LINDA REINE 7 $8,532.22 $597.26
HENRY MAILER 7 $9,999.99 $700.00

NUMBER: 3 TOTAL SALES: $27,205.20 $1,904.36

ABOVE QUOTA 10%
NANCY ROTHBLATT 2 $6,325.88 $632.59
WAYNE SMITH 5 $9,853.52 $985.35
SEYMOUR KIMMELMAN 5 $7,325.67 $732.57

NUMBER: 3 TOTAL SALES: $23,505.07 $2,350.51

ABOVE QUOTA 12%
DAN DERRICK 8 $11,456.87 $1,374.82
JAMES STORER 14 $25,876.02 $3,105.12
SANDY LEVINE 8 $10,000.01 $1,200.00
DENNIS MCADOO 11 $12,345.62 $1,481.47

NUMBER: 4 TOTAL SALES: $59,678.52 $7,161.42

**

SALES FORCE: 14 TOTAL SALES: $125,377.47 $12,165.73

DTR>

Note that if you try to duplicate this report, the results may differ because the
COMM_PCT field is based on length of employment, which is in turn dependent
on the date the report is produced.

16–18 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Printing a Variety of Detail Lines in One Report

CHOICE Value Expression Within a PRINT Statement
If you do not edit the record definition, you can still produce a sales commission
report by using the CHOICE value expression in the Report Writer PRINT
statement. You need to use it three times: for determining the rating, the
commission percentage, and the commission. Because these are not fields in the
record definition, you must also specify appropriate headings and edit strings.

When you use the CHOICE value expression to calculate the commission, you
use a slightly different formula than before. You can multiply AMOUNT by the
decimal equivalent of the commission percentage. Hence, there is no need to
divide the result by 100.

Because you have not defined a field for commission percentage, you cannot
produce a control group report sorted by the values for commission percentage.
Therefore, the report specification does not have an AT BOTTOM OF field-name
statement. However, you can still generate the same detail lines as before with
the PRINT statement.

The following procedure SALES_RPT uses the CHOICE value expression three
separate times in the same PRINT statement:

DTR> SHOW SALES_RPT
PROCEDURE SALES_RPT
READY SALES
REPORT SALES
SET REPORT_NAME = "SALES COMMISSION REPORT"
PRINT SALES_NAME, MONTHS_EMP, AMOUNT,

CHOICE
(MONTHS_EMP LE 6 AND AMOUNT > 5000) THEN 10
(MONTHS_EMP LE 6) THEN 05
(AMOUNT > 10000) THEN 12
ELSE 07

END_CHOICE ("COMM"/"PCT") USING Z9%,
CHOICE
(MONTHS_EMP LE 6 AND AMOUNT > 5000) THEN (.1 * AMOUNT)
(MONTHS_EMP LE 6) THEN (.05 * AMOUNT)
(AMOUNT > 10000) THEN (.12 * AMOUNT)
ELSE (.07 * AMOUNT)

END_CHOICE ("COMMISSION") USING $$,$$$.99,
CHOICE
(MONTHS_EMP LE 6 AND AMOUNT > 5000) THEN "ABOVE QUOTA"
(AMOUNT > 10000) THEN "ABOVE QUOTA"
ELSE "BELOW QUOTA"

END_CHOICE ("RATING")
END_REPORT
FINISH SALES
END_PROCEDURE

Report Writer Advanced Techniques 16–19

Report Writer Advanced Techniques
Printing a Variety of Detail Lines in One Report

Running SALES_RPT produces the report:
DTR> :SALES_RPT

SALES COMMISSION REPORT 2-Jul-1990
Page 1

SALES MONTHS COMM
NAME EMP AMOUNT PCT COMMISSION RATING

ANNE DINNAN 3 $2,389.90 5% $119.50 BELOW QUOTA
NANCY ROTHBLATT 2 $6,325.88 10% $632.59 ABOVE QUOTA
LINDA REINE 7 $8,532.22 7% $597.26 BELOW QUOTA
WAYNE SMITH 5 $9,853.52 10% $985.35 ABOVE QUOTA
JAMES STORER 14 $25,876.02 12% $3,105.12 ABOVE QUOTA
SANDY LEVINE 8 $10,000.01 12% $1,200.00 ABOVE QUOTA
SEYMOUR KIMMELMAN 5 $7,325.67 10% $732.57 ABOVE QUOTA
JOSEPH FREDERICK 4 $5,000.00 5% $250.00 BELOW QUOTA
RICK LANGHART 4 $4,999.99 5% $250.00 BELOW QUOTA
WILLIAM SULLIVAN 9 $8,672.99 7% $607.11 BELOW QUOTA
DAN DERRICK 8 $11,456.87 12% $1,374.82 ABOVE QUOTA
LYDIA BARNET 1 $2,598.79 5% $129.94 BELOW QUOTA
HENRY MAILER 7 $9,999.99 7% $700.00 BELOW QUOTA
DENNIS MCADOO 11 $12,345.62 12% $1,481.47 ABOVE QUOTA

DTR>

These sales commission reports illustrate the flexibility of COMPUTED BY
fields and PRINT statements that include the CHOICE value expression. As
you consider more complex reports, you may need to test each record to generate
detail line items. Using the CHOICE value expression is the most direct way to
produce this type of report.

Using Report Writer to Flatten Hierarchies
You can use the Report Writer to report hierarchical records by activating the
Context Searcher (using the SET SEARCH command) or by using inner print
lists for the list items.

Accessing List Items with the SET SEARCH Command
The Context Searcher is able to locate each OLD_JOB entry, even though each
entry is embedded within a list. Here is the procedure HIER_REPORT that
produces the report:

16–20 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Using Report Writer to Flatten Hierarchies

DTR> SHOW HIER_REPORT
PROCEDURE HIER_REPORT
READY EMPLOYEE
SET SEARCH
REPORT EMPLOYEE
SET COLUMNS_PAGE = 70
SET REPORT_NAME = "EMPLOYEE HISTORY REPORT"
PRINT NAME, OLD_JOB,
(OLD_JOB VIA JOB_TITLE_TABLE)("JOB"/"TITLE"), OLD_DATE

END_REPORT
FINISH EMPLOYEE
END_PROCEDURE

Running the procedure produces a message from the Context Searcher, followed
by the report:

DTR> :HIER_REPORT
Not enough context. Some field names
resolved by Context Searcher.

EMPLOYEE HISTORY REPORT 28-Apr-1990
Page 1

LAST FIRST OLD JOB EFFECTIVE
NAME NAME JOB TITLE DATE

FOSTER DANA A03 SENIOR ACCOUNTANT 12-Dec-1989
A02 INTERNAL AUDITOR 11-Dec-1988
A01 ACCOUNTANT 10-Dec-1987
MOODY JOAN M03 MANUFACTURING MGR 12-Nov-1989
M03 MANUFACTURING MGR 14-Nov-1988
M03 MANUFACTURING MGR 12-Oct-1987
M02 ASSEMBLER 11-Nov-1986
M01 APPRENTICE 21-Oct-1985
M01 APPRENTICE 22-Oct-1984
CASADAY JULIAN A02 INTERNAL AUDITOR 10-Jan-1990
A01 ACCOUNTANT 9-Jan-1989
DENN RONALD M03 MANUFACTURING MGR 12-Dec-1989
M02 ASSEMBLER 14-Dec-1988
M01 APPRENTICE 11-Dec-1987
M01 APPRENTICE 10-Dec-1986
DEPALMA LOUISE S03 MARKETING ANALYST 11-Jan-1990
S02 SALES MANAGER 10-Jan-1989
S02 SALES MANAGER 11-Dec-1987

DTR>

This approach differs from the first solution because it does not flatten the
hierarchy. Each name appears just once. Only the fields within the list have
multiple occurrences, depending on the entry made for NUMBER_JOBS.

Report Writer Advanced Techniques 16–21

Report Writer Advanced Techniques
Using Report Writer to Flatten Hierarchies

The Context Searcher provided DATATRIEVE with the proper context. For more
information about context in DATATRIEVE, see Appendix A.

Using the REPORT Statement to Report List Data
You can produce the employee history report with the REPORT statement
without invoking the Context Searcher or flattening the hierarchy. However, you
must provide the proper context for DATATRIEVE within the PRINT statement
by using inner print lists for the list items.

The following PRINT statement uses inner print lists to specify the relationship
between the list items and the list field:

PRINT NAME, ALL OLD_JOB, OLD_JOB VIA JOB_TITLE_TABLE,
OLD_DATE OF JOB_HISTORY

HIER_REPORT2, which includes this PRINT statement, contains the report
specification for the employee history report:

DTR> SHOW HIER_REPORT2
PROCEDURE HIER_REPORT2
READY EMPLOYEE
REPORT EMPLOYEE
SET COLUMNS_PAGE = 70
SET REPORT_NAME = "EMPLOYEE HISTORY REPORT"
PRINT NAME, ALL OLD_JOB, OLD_JOB VIA JOB_TITLE_TABLE,

OLD_DATE OF JOB_HISTORY
END_REPORT
END_PROCEDURE
DTR>

The output is the same as the previous report.

Using Report Writer with Other Database Products
DATATRIEVE provides you with an easy-to-use query language and Report
Writer for the Digital family of relational database management systems. If VAX
Rdb/VMS, VAX Rdb/ELN, or VIDA is installed on your system, you can use the
same DATATRIEVE commands and statements for most tasks whether you are
working with data stored in RMS files or in the relational databases.

See Chapter 7 for more basic information about using DATATRIEVE to access
records in VAX DBMS databases.

The following command sets the default dictionary directory to the directory that
contains the database domain definitions used in this section:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.DBMS

16–22 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Using Report Writer with Other Database Products

Accessing VAX DBMS Data with DATATRIEVE
To demonstrate accessing and reporting VAX DBMS data with DATATRIEVE,
this chapter uses the PARTS sample database included with both VAX DBMS
and VAX DATATRIEVE. See the documentation that accompanies VAX DBMS for
more details on the PARTS database.

The VAX DBMS domains defined in the specified dictionary directory were
created when the UETP (User Environment Test Package) which tests the
DATATRIEVE interface to VAX DBMS was run. Perform a SHOW command to
see what was defined by the UETP:

DTR> SHOW PARTS_DB
DATABASE PARTS_DB
USING SUBSCHEMA DTR_SUBSCHEMA
OF SCHEMA PARTS

ON DTR$LIBRARY:DTRPARTDB;
DTR>

You can ready the database directly and use VAX DBMS records as sources in
your DATATRIEVE queries, or you can ready VAX DBMS domains individually.

There are several VAX DBMS domains that are associated with PARTS_DB.
These are CLASSES, COMPONENTS, DIVISIONS, EMPLOYEES, PART_S,
QUOTES, SUPPLIES, and VENDORS. You can use several SHOW commands to
see how these domains were defined. Each of the definitions refers to PARTS_DB.

The examples in this section use VAX DBMS domains. If the VAX DBMS
database definition or domains are not in the specified dictionary directory, see
the person responsible for VAX DATATRIEVE at your site.

Writing a Simple Report with VAX DBMS Data
The DATATRIEVE Report Writer is a useful tool for writing reports with data
stored through VAX DBMS. You can define VAX DBMS domains based on
records in a VAX DBMS database. Then use the DATATRIEVE data access and
formatting capabilities to report on the data.

The following example uses the EMPLOYEES and DIVISIONS domains,
defined in DATATRIEVE from the PARTS database. For further information
on VAX DBMS domains, see the VAX DATATRIEVE Guide to Interfaces.

The example shows how to develop a procedure to report personnel information
on all the employees in a given division. The total number of employees working
in that division is displayed at the bottom of the report.

Report Writer Advanced Techniques 16–23

Report Writer Advanced Techniques
Using Report Writer with Other Database Products

The information on divisions can be found in the DIVISIONS domain. All
personnel information on all employees in all divisions can be found in the
EMPLOYEES domain. First, ready the two domains. Second, with a SHOW
FIELDS command, display the field structure of the records in these domains:

DTR> READY EMPLOYEES, DIVISIONS
DTR> SHOW FIELDS FOR EMPLOYEES, DIVISIONS
EMPLOYEES

EMPLOYEE
EMP_ID (ID) <Number>
EMP_LAST_NAME (LAST_NAME) <Character string>
EMP_FIRST_NAME (FIRST_NAME) <Character string>
EMP_PHONE (PHONE_NUMBER) <Number>
EMP_LOC (LOCATION) <Character string>

DIVISIONS
DIVISION

DIV_NAME <Character string>
DTR>

In the definition of the procedure to locate employees in a particular division,
follow these steps:

1 Use a FIND statement to establish a current collection from DIVISIONS.
With a prompt, you can let the user enter the name of the particular division
when the procedure is run.

2 Select the record to give DATATRIEVE the proper context for further queries.

3 Report all records of EMPLOYEES connected to that selected record as
members of the set CONSISTS_OF.

4 Use a prompt with SET REPORT_NAME to let the user supply an
appropriate name for the report.

5 Print each record in the specified record stream from EMPLOYEES by
indicating the field names and appropriate edit strings.

6 Summarize the number of records with an AT BOTTOM OF REPORT
statement.

7 End with an END_REPORT statement.

Here is the procedure EMPLOYEE_RPT:

16–24 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Using Report Writer with Other Database Products

DTR> SHOW EMPLOYEE_RPT
PROCEDURE EMPLOYEE_RPT
READY DIVISIONS, EMPLOYEES
FIND DIVISIONS WITH DIV_NAME = *."the division" 1
SELECT 2
REPORT EMPLOYEES MEMBER CONSISTS_OF 3
SET REPORT_NAME = *."report name enclosed in quotes" 4
SET COLUMNS_PAGE = 70
PRINT EMP_ID ("Ident"), 5

LAST_NAME ("Last"/"Name") USING X(10),
FIRST_NAME ("First"/"Name") USING X(10),
EMP_PHONE ("Phone"/"Number") USING XXX_XXXX,
EMP_LOC ("Loc")

AT BOTTOM OF REPORT SKIP 2, 6
COL 30, "TOTAL EMPLOYEES:", SPACE,
COUNT (-) USING Z9

END_REPORT 7
FINISH
END_PROCEDURE
DTR>

To produce the report, invoke the procedure and respond to the prompts:

DTR> :EMPLOYEE_RPT
Enter the division: VT100 DEVELOPMENT
Enter report name: "VT100 DEVELOPMENT EMPLOYEES"

VT100 DEVELOPMENT EMPLOYEES 19-May-1992
Page 1

Ident Last First Phone
Name Name Number Loc

65437 FRANK BEBI 456-8901 89012
12333 HOFFMAN MIKE 456-8901 89012
54332 IGLESIAS RAFAEL 234-6789 67890

TOTAL EMPLOYEES: 3

DTR>

Accessing VAX Relational Databases with DATATRIEVE
To demonstrate accessing and reporting relational source data with
DATATRIEVE, this chapter uses the PERSONNEL sample database installed
with VAX DATATRIEVE. This database is similar to the sample PERSONNEL
database installed with VAX Rdb/VMS but contains only a subset of the relations
and records in that database.

Report Writer Advanced Techniques 16–25

Report Writer Advanced Techniques
Accessing VAX Relational Databases with DATATRIEVE

The relational domains defined in the specified dictionary directory were created
by the DATATRIEVE installation procedure. To see the sample data, set your
default to the proper dictionary and perform a SHOW command:

DTR> SHOW ALL
Domains:
COLLEGES;1 DEGREES;1 DEPARTMENTS;1 DEPARTMENT_STAFF;1
EMPLOYEES;1 EMPLOYEE_EDUCATION;1 JOBS;1
JOB_HISTORY;1 SALARY_HISTORY;1 WORK_STATUS;1

Procedures:
EMPLOYEE_INFO;1 READY_PERSONNEL;1 READY_PERSONNEL_WRITE;1
SALARY_REPORT;1

Tables:
DEPARTMENT_TABLE;1 NAME_TABLE;1

Databases:
PERSONNEL

The default directory is CDD$TOP.DTR$LIB.DEMO.RDB
No established collections.
No ready sources.
No loaded tables.

Note that the sample directory contains domain definitions for each relation in
the PERSONNEL database. To access data in a relational database, you can
define and ready domains for each relation. The following example shows the
contents of a single domain definition and then readies all the domains in the
PERSONNEL database.

DTR> SHOW COLLEGES
DOMAIN COLLEGES

USING COLLEGES OF DATABASE PERSONNEL;

DTR> READY COLLEGES, DEGREES, DEPARTMENTS, EMPLOYEES, -
JOBS, JOB_HISTORY, SALARY_HISTORY, WORK_STATUS

Figure 16–8 shows the relations and fields for the sample PERSONNEL database
for which DATATRIEVE domains are defined. Some examples in this chapter
refer to the relations and field names in the PERSONNEL database.

16–26 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Accessing VAX Relational Databases with DATATRIEVE

Figure 16–8 Sample Relational Database

EMPLOYEES

EMPLOYEE_ID
LAST_NAME
FIRST_NAME
MIDDLE_INITIAL
ADDRESS_DATA
STREET
TOWN
STATE
ZIP
SEX
BIRTHDAY
SOCIAL_SECURITY
STATUS_CODE

DEGREES

EMPLOYEE_ID
COLLEGE_CODE
YEAR_GIVEN
DEGREE
DEGREE_FIELD

JOB_HISTORY

EMPLOYEE_ID
DEPARTMENT_CODE
JOB_CODE

JOBS

JOB_CODE
WAGE_CLASS
JOB_TITLE
MINIMUM_SALARY
MAXIMUM_SALARY

COLLEGES

COLLEGE_CODE
COLLEGE_NAME
ADDRESS_DATA
STREET
TOWN
STATE
ZIP

JOB_START
JOB_END
SUPERVISOR_ID

SALARY_HISTORY

EMPLOYEE_ID
SALARY_AMOUNT
SALARY_START
SALARY_END

DEPARTMENTS WORK_STATUS

DEPARTMENT_CODE
DEPARTMENT_NAME
MANAGER_ID
BUDGET_PROJECTED
BUDGET_ACTUAL

STATUS_CODE
STATUS_NAME
STATUS_TYPE

Rather than define domains for each relation, you can define a DATATRIEVE
database definition for the relational database and then ready that database
definition. The following example shows a database definition and the results of
the READY database command. Notice that the relations are readied directly by
the READY database command; there are no domain definitions:

Report Writer Advanced Techniques 16–27

Report Writer Advanced Techniques
Accessing VAX Relational Databases with DATATRIEVE

DTR> DEFINE DATABASE PERSONNEL ON DTR$LIBRARY:PERSONNEL;
DTR> SHOW DATABASES
Databases:

PERSONNEL;1

DTR> READY PERSONNEL
DTR> SHOW READY
Ready sources:
WORK_STATUS: Relation, Rdb, snapshot read, consistency

<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>
SALARY_HISTORY: Relation, Rdb, snapshot read, consistency

<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>
JOB_HISTORY: Relation, Rdb, snapshot read, consistency

<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>
JOBS: Relation, Rdb, snapshot read, consistency

<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>
EMPLOYEES: Relation, Rdb, snapshot read, consistency

<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>
DEPARTMENTS: Relation, Rdb, snapshot read, consistency

<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>
DEGREES: Relation, Rdb, snapshot read, consistency

<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>
COLLEGES: Relation, Rdb, snapshot read, consistency

<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>
No loaded tables.

DTR>

For more information on how to access relational databases and the advantages or
disadvantages of defining domains for each relation, see the VAX DATATRIEVE
Guide to Interfaces. If the relational database definition or domains are not in the
specified dictionary directory, see the person responsible for VAX DATATRIEVE
at your site.

Writing a Simple Report with Relational Data
The DATATRIEVE Report Writer is a useful tool for generating reports with
data stored in one of the Digital relational database products. You can define
relational domains based on relations in a relational database or access the
relations directly. Then you can use the DATATRIEVE data access and formatting
capabilities to report on the data.

The following example uses the JOB_HISTORY and EMPLOYEES domains
to print all those employees who work in selected departments. Notice with
relational databases that you frequently use the CROSS clause to combine
related data stored in one or more relations.

Follow these steps to create this report:

1 Ready the JOB_HISTORY and EMPLOYEES domains.

16–28 Report Writer Advanced Techniques

Report Writer Advanced Techniques
Writing a Simple Report with Relational Data

2 Invoke the Report Writer and form an RSE of all the employees in the
EMPLOYEES domain who currently work in selected departments:

• The EMPLOYEES domain gives you the employee name and employee
ID.

• The CROSS and OVER clauses combine each employee record with a
matching record in the JOB_HISTORY domain. DATATRIEVE forms a
new record stream for each employee containing the data from both those
relations matched on the EMPLOYEE_ID field.

• The Boolean expression, WITH JOB_END MISSING, restricts the record
stream to only those employees who are currently employed. The JOB_
HISTORY record that has no data in the JOB_END field is the current
JOB_HISTORY record.

• The Boolean expression, WITH DEPARTMENT = "ADMN", "ELEL"
further restricts the record stream to the specified departments.

3 Sort the record stream alphabetically by department name.

4 Give the report a name with the SET REPORT_NAME statement.

5 At the top of each department grouping, print the department code from the
JOB_HISTORY domain.

6 For each employee in each department, print the employee id, the name, and
the start date for the current job.

7 End the report specification with an END_REPORT statement.

DTR> READY JOB_HISTORY, EMPLOYEES 1
DTR> REPORT EMPLOYEES CROSS JOB_HISTORY OVER 2
RW> EMPLOYEE_ID -
RW> WITH JOB_END MISSING AND
RW> DEPARTMENT_CODE = "ELEL", "ADMN" - 3
RW> SORTED BY DEPARTMENT_CODE
RW> SET REPORT_NAME = "EMPLOYEES BY DEPARTMENT" 4
RW> SET COLUMNS_PAGE = 60
RW> AT TOP OF DEPARTMENT_CODE PRINT SKIP, COL 1, 5
RW> DEPARTMENT_CODE
RW> PRINT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, 6
RW> JOB_START
RW> END_REPORT 7
DTR>

EMPLOYEES BY DEPARTMENT 9-Jul-1985
Page 1

Report Writer Advanced Techniques 16–29

Report Writer Advanced Techniques
Writing a Simple Report with Relational Data

DEPARTMENT EMPLOYEE FIRST LAST JOB
CODE ID NAME NAME START

ADMN
00271 Karen Gramby 8-Jun-1988
00228 Lisa Harrison 2-Jul-1988
00190 Rick O’Sullivan 25-Feb-1990
00300 Marjorie Gramby 11-Feb-1990
00330 Christine Williams 6-Feb-1989
00359 Jesse Crain 28-Dec-1988
00204 Charles Myotte 24-Jan-1990
00267 Roger Saninocencio 28-Feb-1990
00415 Kathleen Mistretta 10-Jun-1989
00225 Mary Lou Jackson 3-Jan-1991
00435 Johanna MacDonald 17-Nov-1988
00438 Mark Wilkins 25-Apr-1988
00439 Mary Lou Smoot 26-Nov-1990
00188 Karen Clarke 8-Apr-1990
00494 Barbara Raiola-Paul 28-Dec-1987
00480 Tom McGrath 6-Mar-1990
00472 Al Delano 27-Apr-1989
00471 James Herbener 26-Jun-1988

ELEL
00458 Peter Mambelli 5-Nov-1988
00460 Adele Meckl 5-Feb-1990
00461 George Boutin 17-Jun-1988
00211 Ernest Gutierrez 25-Jan-1990
00443 James Piche 5-Sep-1989
00488 Cora Jones 14-Jan-1990
00238 Peter Flynn 2-Feb-1990
00489 Ellen Morin 28-Oct-1988
00428 Thomas Augusta 10-Jan-1990
00222 Norman Lasch 28-Dec-1987
00240 Bill Johnson 18-Aug-1989
00231 Rick Clairmont 22-Aug-1989
00393 Jesse Siciliano 1-Nov-1988
00206 Marty Stornelli 17-Oct-1988
00377 Lawrence Lobdell 26-Jan-1990
00296 Adele Leger 7-Mar-1990
00273 Daniel Iacobone 31-Jan-1990
00172 Janis Peters 28-Oct-1988

DTR>

16–30 Report Writer Advanced Techniques

17
Using DATATRIEVE Plots

To use DATATRIEVE plots, you must have a Digital terminal that supports
ReGIS graphics. Check your owner’s manual to determine if your terminal
supports ReGIS graphics.

DATATRIEVE graphics can be used on character cell terminals or on
workstations that are running DECwindows software.

If you are running DATATRIEVE in a DECwindows environment, you should note
that when you invoke the graphics utility with a plot statement, DATATRIEVE
spawns a separate DECterm window from the main application window to
display the plot. You enter a plot statement at the command line of the main
application window. If you want to enter additional plot statements, they are also
entered at the DTR> prompt in the command line area of the main application
window. All plots are displayed in the same DECterm window. The display
created by the plot statement remains in the DECterm window until you perform
one of the following actions:

• Dismiss the window by selecting the Quit option of the Commands menu of
the DECterm window in which the plot is displayed.

• Exit DATATRIEVE.

Your terminal may have either a monochrome monitor or a color monitor. If you
have a monochrome monitor, you should set it so it displays light characters on a
dark background screen. All plots will then be completely visible.

You can also use a color monitor for a color representation of the plots. The
owner’s manual for your color monitor tells you how to connect the terminal.

Invoke VAX DATATRIEVE and enter the following DATATRIEVE command:

DTR> SET PLOTS CDD$TOP.DTR$LIB.PLOTS

The SET PLOTS command points to the CDD/Repository dictionary directory
that contains the plot definitions. DATATRIEVE uses these plot definitions
to produce plots, graphs, and charts from your data. You must issue the SET
PLOTS command before using any DATATRIEVE plot statements.

Using DATATRIEVE Plots 17–1

Using DATATRIEVE Plots

Next, enter the PLOT MONITOR statement:

DTR> PLOT MONITOR

The PLOT MONITOR statement displays the word GREEN in green, RED in
red, and BLUE in blue. The word SYNC appears on the screen to indicate that
DATATRIEVE has reset the terminal to its default color settings after the red,
green, and blue have been displayed.

If the names of the colors do not correspond to the color in which they are
displayed (for example, if the word RED is displayed in the color green), you have
incorrectly attached the cables. Refer to the owner’s manual for your monitor to
make sure the cables from the video terminal match the proper connectors on the
monitor.

To change the colors of plots on a color monitor, invoke the procedure, PALETTE,
from the dictionary directory CDD$TOP.DTR$LIB.PLOTS.

Hardcopy Output Devices
To produce hardcopy output of DATATRIEVE plots, use a Digital hardcopy device
that supports ReGIS graphics.

See the owner’s manual for information on ReGIS printers and how to attach the
printer to your terminal. The owner’s manual documents typical operations, such
as connecting cables and checking the status of communication switches, baud
rate (speed), and parity value for the printer.

Steps to Take Before Using DATATRIEVE Plots
To use DATATRIEVE plots, invoke DATATRIEVE and specify the dictionary
directories that contain the domains and record definitions you want to use and
the DATATRIEVE plots:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
DTR> SET PLOTS CDD$TOP.DTR$LIB.PLOTS

The DATATRIEVE installation procedure contains questions about storing the
necessary information to produce plots. If your site uses DATATRIEVE plots,
your installer responded to these questions to store the information in the
dictionary directory CDD$TOP.DTR$LIB.PLOTS. See your system manager if you
cannot access the plot information in CDD$TOP.DTR$LIB.PLOTS.

If you use the same dictionary directory for plots each time you enter
DATATRIEVE, you can include a SET PLOTS command in your DATATRIEVE
startup command file. (See Chapter 4) for more information on startup command
files.) After you have issued the SET PLOTS command, you can access any of the
plots, regardless of the dictionary directory you specify in the SET DICTIONARY
command.

17–2 Using DATATRIEVE Plots

Using DATATRIEVE Plots
Steps to Take Before Using DATATRIEVE Plots

Note

Do not delete any of the plots in CDD$TOP.DTR$LIB.PLOTS.

All of the plots described in this manual call one or more plots to perform
functions such as clearing the screen and labeling axes. If you delete any
of the plots from the PLOTS dictionary directory, plots calling the deleted
plots will not work.

Changing from a PRINT Statement to a Plot Statement
The DATATRIEVE PRINT statement allows you to display data in a tabular
format. Plots produced with the DATATRIEVE plot statements help you present
the same data in a more manageable and accessible format. This format can
clarify the relationship among data, enhancing your reports and presentations.

Thus, with the PRINT statement you must first decide how you will specify the
data that the plot statement will use. You have two options:

• Form a collection using the FIND statement.

• Specify the record stream using a record selection expression (RSE) in the
plot statement.

This section uses ANNUAL_REPORT (a sample domain installed during the
DATATRIEVE installation procedure). Set your dictionary default to the DEMO
directory in the dictionary. Ready the ANNUAL_REPORT domain:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
DTR> READY ANNUAL_REPORT

Plot Statement Using Data from a Collection
The plot statement consists of the keyword PLOT, the name of a plot, and the
optional word USING. The word ALL is required when you plot data contained in
the current collection.

The following example shows a finished plot statement for a shaded line graph.
The statement works on the data in the current collection formed by the FIND
statement:

DTR> FIND ANNUAL_REPORT SORTED BY DATE
DTR> PLOT MULTI_SHADE USING ALL FORMAT
CON> DATE USING Y(4),
CON> REVENUE ("Gross Revenue"),
CON> EQUIPMENT_SALES ("Equipment Sales"),
CON> SERVICES ("Software and Support") THEN
CON> PLOT CROSS_HATCH

Using DATATRIEVE Plots 17–3

Using DATATRIEVE Plots
Changing from a PRINT Statement to a Plot Statement

Plot Statement Using Data from RSE
The following plot statement consists of the keyword PLOT, the name of a plot,
and the optional word USING. The word ALL is optional because you are using
the RSE, not data from the current collection.

This plot statement uses the identical data used in the previous plot statement.
Instead of using the data from the current collection, however, this statement
uses the data formed by the RSE:

DTR> PLOT MULTI_SHADE USING ALL FORMAT
CON> DATE USING Y(4),
CON> REVENUE ("Gross Revenue"),
CON> EQUIPMENT_SALES ("Equipment Sales"),
CON> SERVICES ("Software and Support") OF
CON> ANNUAL_REPORT SORTED BY DATE THEN
CON> PLOT CROSS_HATCH

Same Plot Produced by FIND Statement and RSE
The Plot Statement Using Data from a Collection and Plot Statement Using Data
from RSE sections showed plot statements that used the same data; one formed
the data using the FIND statement to form a current collection, the other used
an RSE. Both plot statements produce the plot shown in Figure 17–1.

Figure 17–1 Plot Produced by FIND Statement or RSE

17–4 Using DATATRIEVE Plots

Using DATATRIEVE Plots
Changing from a PRINT Statement to a Plot Statement

Note

Some plot statements, such as PLOT STACKED_BAR and PLOT MULTI_
SHADE, require relative shading of various fields. Printers cannot
reproduce all the different shades produced by your terminal. The
PLOT CROSS_HATCH statement converts the different gray levels
into crosshatched shadings.

Five Types of Relationship
There are five basic types of plot relationships. In Table 17–1, the recommended
type of plot for each relationship is listed first.

Table 17–1 Five Types of Relationships

Type of Relationship Suggested Plots

Time comparisons Line, Scatter, Bar, Histogram

Parts of the whole Pie, Bar

Comparison of several items Bar, Pie

Comparison of two sets of values Line, Scatter, Bar, Log Scale

Number of times a value occurs
across a range of possibilities

Histogram

The following sections discuss each of these relationships and the recommended
plots to use.

Time Comparisons (Line, Scatter, Bar Charts)
Time comparisons illustrate the relationship between a period of time and
changes in your data. These changes include:

• Increases/Decreases

• Trends

Use a line graph or bar chart to illustrate time comparisons. For example, these
sentences illustrate relationships best plotted in time comparison plots:

• Annual figures for revenue and inventory have increased for the past ten
years.

• The number of employees in our company has decreased during the past six
months.

Using DATATRIEVE Plots 17–5

Using DATATRIEVE Plots
Five Types of Relationship

Use PLOT MULTI_LINE to portray trends of up to three sets of values over time.

If you want to emphasize trends, use PLOT MULTI_SHADE, which shades the
areas beneath the lines with different shades or patterns.

The PLOT DATE_Y statement creates a scattergraph that shows a chronological
trend. The PLOT DATE_LOGY statement also creates a time-related
scattergraph, but uses a logarithmic scale for the vertical (Y) axis.

Bar charts are also useful to illustrate time comparisons. Table 17–2 shows the
types of charts you can use for various applications.

Table 17–2 Bar Charts for Time Comparisons

Type of Chart Application

Simple Bar Trend of one factor over time

Clustered Bars Trends of two factors over time

Stacked Bar Totals or sums of totals (not percentages)

Histogram Changes over time

Parts of the Whole (Pie, Bar Chart)
A plot showing parts of a whole may indicate:

• Percentages

• Portions

• Market shares

Use a pie or bar chart to illustrate the relationship of parts to a whole. For
example, these sentences describe relationships illustrating parts of the whole:

• What percentage do trainees and experienced employees represent in
department C82?

• What percentage of total employees earn less than $30,000 annually?
Between $30,000 and $45,000? Greater than $45,000?

17–6 Using DATATRIEVE Plots

Using DATATRIEVE Plots
Five Types of Relationship

Comparing Several Items (Bar, Pie Chart)
You can compare several items to illustrate differences within a particular group.
For example, you might want to compare differences within each of the following
topics:

• Corporations

• People

• Projections

This type of comparative relationship does not include the element of time.

Use a bar chart or pie chart to illustrate the comparison of several items. For
example, these sentences describe the comparison of several items:

• What is the salary of each employee, by employee name, in department T32?

• What are the average prices of the yachts that each manufacturer builds?

• What are the total salaries of all employees in each department, by
department name?

Comparing Multiple Values (Line, Scatter, Bar Chart)
A comparison of two or more sets of values illustrates how the changes in one set
are related to the changes in the other set.

Use the line graph, scattergraph, or bar chart to portray the relationship between
values. For example, these sentences illustrate the relationship between two sets
of values:

• What is the displacement of each yacht relative to its price?

• What is the overall length of each yacht relative to its beam?

• What are the annual report figures for research relative to those for revenue?

If the relationship shows relative changes that are drastically different, use the
logarithmically scaled scattergraphs.

Frequency Distribution (Histogram)
Frequency distribution shows the number of times a value occurs across a
range of possibilities. The Y axis totals the number of times a value occurs (the
frequency). The X axis lists the range of possibilities.

Frequency represents the number of occurrences of related values within a
specified range. Distribution is a range of continuous variables, such as salaries,
ages, or types of yachts.

Using DATATRIEVE Plots 17–7

Using DATATRIEVE Plots
Five Types of Relationship

Use the PLOT HISTO statement to plot frequency distribution. For example,
these sentences illustrate frequency distribution:

• What is the distribution of annual salaries among the number of employees
working in department T32?

• What is the distribution of yachts in each length-over-all category?

Designing and Improving Plots
Once you choose which type of plot is appropriate for your purpose, you can
improve your plots by correctly designing and controlling the appearance of the
final display.

Guidelines for Designing Plots
The following guidelines provide the basic framework for a successful design and
presentation. These guidelines apply to both oral and written presentations:

• Define your audience.

The purpose of any presentation, including one using plots, is to convey
information clearly and accurately to a specific audience. You should first
define the audience who will be using your plot. Consider the following
questions:

What is the technical level of the people reading the plots? Does your
audience understand the terminology of the subject matter? Should you
use more common synonyms?

Does your audience understand logarithms in plot scales? Avoid
logarithmic scales if you are not sure of your audience. If you feel
you must use logarithmic scales, plan to explain how they function.

• Be explicit.

Each plot should be self-explanatory. Provide explicit labels and titles to
describe the information displayed in the plot.

• Keep the format simple.

Convey your graphic message simply and clearly. Choose the important
points you want to make and emphasize only those key points in your plots.

• Follow the standards of your business or audience.

Be aware of the standards used by your profession or audience and follow
them.

17–8 Using DATATRIEVE Plots

Using DATATRIEVE Plots
Designing and Improving Plots

In general, the sequence of the fields that you plot is important, especially with
line graphs and bar charts:

• Line graphs

Because of the way DATATRIEVE ‘‘paints’’ the screen with PLOT MULTI_
SHADE, you should place the field with the highest values first, the field with
the second highest values next, and the field with the lowest values last. Such
sequencing allows DATATRIEVE to paint the screen without overwriting any
values.

See PLOT MULTI_SHADE for more information.

• Bar charts

Unlike line graph values, the values in bar charts are not overwritten. You
may, however, want to sort the bars of the chart.

If your bar chart was produced by the PLOT BAR, PLOT BAR_AVERAGE,
PLOT RAW_BAR, or PLOT HISTO statement, take one of the following
actions:

Use the PLOT BAR_ASCENDING statement to sort and replot the bars
in ascending order.

Use the PLOT SORT_BAR statement to sort and replot the bars in
descending order.

If your bar chart was produced using the PLOT MULTI_BAR statement, you
may want to place the field with the lowest value first. Edit the statement
in the former example to reorder the fields and to insert a PLOT CROSS_
HATCH statement.

Labels with DATATRIEVE Plots
There are several different types of labels used with DATATRIEVE plots.
DATATRIEVE produces default labels for plots; in addition, you can specify and
alter particular labels. The following sections discuss default, specified, and
altered labels.

Default Labels
DATATRIEVE produces two different types of default labels: those for plots with
X and Y axes, and those for pie charts.

• For plots with X and Y axes, DATATRIEVE labels the axes using the field
name or other value expression from the arguments. For example, the
following PLOT BAR statement uses the arguments BEAM and PRICE. The
resulting plot has the label BEAM on the X axis and the label PRICE on the
Y axis.

Using DATATRIEVE Plots 17–9

Using DATATRIEVE Plots
Labels with DATATRIEVE Plots

DTR> PLOT BAR ALL BEAM, PRICE OF
CON> YACHTS WITH PRICE NE 0

In addition to the labels that summarize the X and Y axes, DATATRIEVE
supplies reference points in the plot:

In the preceding plot, DATATRIEVE supplies reference points for the bars
on the X axis. The reference points show each bar’s width in feet: 12, 10,
8, 11, 7, and 9.

DATATRIEVE also supplies the reference points on the Y axis showing
the increasing price: 50000, .100E+06, .150E+06, .200E+06, .250E+06,
.300E+06.

Notice that these prices use scientific notation. DATATRIEVE uses
scientific notation to display reference points greater than 100,000. See
Eliminating Scientific Notation for information on customizing these
labels.

• DATATRIEVE produces various labels for pie charts:

For a PLOT PIE or PLOT VALUE_PIE statement, DATATRIEVE prints
the percentage and a label for groups with a large enough slice to
accommodate these labels. Groups with a small percentage (and thus a
small slice) might not have a label or percentage displayed.

17–10 Using DATATRIEVE Plots

Using DATATRIEVE Plots
Labels with DATATRIEVE Plots

For the PLOT RAW_PIE statement, the field name or other value
expressions you specified as arguments are used in the labels:

• If you use value expressions for arguments, you specify the label by
including a label string with the argument. (See Specifying Label
Strings for more information on specifying label strings.)

• If you use field names for the arguments, DATATRIEVE uses the field
name for the label.

In both of the preceding cases, DATATRIEVE then prints the percentage
and a label for arguments with a large enough slice to accommodate these
labels. Arguments with a small percentage (and thus a small slice) might
not have a label or percentage displayed.

Specifying Label Strings
Instead of using the default labels for plots with an X and Y axis, you can
specify a label string with the argument of the plot statement. To specify a label
string, put a quoted string inside parentheses after the field name or other value
expression. For example, you can specify the label Width instead of BEAM:

DTR> PLOT BAR ALL BEAM ("Width"), PRICE OF
CON> YACHTS WITH PRICE NE 0

The result is displayed in the example plot in Eliminating Scientific Notation.

Eliminating Scientific Notation
By default, DATATRIEVE uses scientific notation when labeling reference points
greater than 100,000. To eliminate this scientific notation, divide the argument
by either 100 or 1000. (Which number you divide by is your choice and depends
on the situation. For example, prices are generally shown in thousands instead of
hundreds. Follow the standards of your profession or business.)

Be sure to supply a label string showing what the new gradations represent:

DTR> PLOT BAR ALL BEAM ("Width"),
CON> PRICE/1000 ("Price in 1000s") OF
CON> YACHTS WITH PRICE NE 0

Using DATATRIEVE Plots 17–11

Using DATATRIEVE Plots
Labels with DATATRIEVE Plots

Using DATATRIEVE Plots with Other Database Products
This section demonstrates the use of DATATRIEVE plots with the following
Digital database products:

• VAX DBMS

• VAX Rdb/VMS

• VAX Rdb/ELN

• VIDA

Using DATATRIEVE Plots with VAX DBMS
You can use DATATRIEVE graphics with any VAX DBMS database. For more
information about using a VAX DBMS database with DATATRIEVE, see the
VAX DATATRIEVE Guide to Interfaces.

Using DATATRIEVE with Relational Databases uses the sample VAX DBMS
PARTS database and the associated VAX DBMS domains that are located in the
dictionary directory CDD$TOP.DTR$LIB.DEMO.DBMS. (See the sample database
definitions and procedures in the VAX DATATRIEVE Guide to Interfaces for a list
of all procedures and domains provided with the database.)

With DATATRIEVE graphics, you can plot data from the VAX DBMS PARTS
database to display graphic representations of information pertaining to the
usage, ordering, and cost of various parts and supplies.

17–12 Using DATATRIEVE Plots

Using DATATRIEVE Plots
Using DATATRIEVE Plots with Other Database Products

Set the dictionary default to the directory that contains the database definitions
used in this section:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.DBMS

Once your database or any of its records have been properly defined, you have the
option of readying the database directly or of readying any of the domains created
from its records.

The following commands establish a collection of all departments involved in
product development:

DTR> READY EMPLOYEES, DIVISIONS
DTR> FIND DIVISIONS WITH DIV_NAME CONT "DEVELOPMENT"
[7 records found]
DTR>

Next, entering the PLOT VALUE_PIE statement gives you a pie chart. Each
section of the chart represents the percentage of employees associated with each
product:

DTR> PLOT VALUE_PIE ALL DIV_NAME ("Department"),
CON> COUNT OF EMPLOYEES MEMBER CONSISTS_OF

21%

7%

7%

7%

14%

21%

21%

In addition to common hierarchies such as EMPLOYEES and DIVISIONS,
VAX DBMS also lets you model more complex relationships. For example the
records SUPPLIES, VENDORS, and PART_S might contain a large amount of
data about the parts and the vendors who supply the parts. The PART_S record

Using DATATRIEVE Plots 17–13

Using DATATRIEVE Plots
Using DATATRIEVE Plots with Other Database Products

contains a field that specifies the price for each part. A PRINT statement can tell
you what the price is for each part, but a plot statement allows you to compare
at a glance the relative price of each supplier. To plot the relative price of each
supplier, perform the following tasks:

1. Ready all three VAX DBMS domains. These READY statements also ready
the set relationships between the records:

DTR> READY SUPPLIES, VENDORS, PART_S
DTR>

2. Flatten the VAX DBMS hierarchy using the CROSS clause. Because the
record PART_S links the SUPPLIES and VENDORS records, you must flatten
two different hierarchies. You can use a FIND statement with two CROSS
clauses:

DTR> FIND SUPPLIES CROSS VENDORS OWNER
CON> VENDOR_SUPPLY CROSS PART_S OWNER PART_INFO
[65 records found]
DTR>

3. Plot the average part price by supplier:

DTR> PLOT BAR_AVERAGE ALL VEND_NAME, PART_PRICE THEN
CON> PLOT SORT_BAR

The previous plot statements produce two successive displays because of the
THEN clause. The second of these displays, the PLOT SORT_BAR, shows the
average price of parts for each supplier sorted in descending order by price.

17–14 Using DATATRIEVE Plots

Using DATATRIEVE Plots
Using DATATRIEVE Plots with Other Database Products

Using DATATRIEVE with Relational Databases
You can use DATATRIEVE graphics with the Digital family of relational database
management products. These include Rdb/VMS, Rdb/ELN, and the VIDA facility.
For information about using the relational databases with VAX DATATRIEVE,
see the VAX DATATRIEVE Guide to Interfaces.

The examples and references in this section refer to the sample Rdb/VMS
PERSONNEL database installed with DATATRIEVE. You can use the Rdb/VMS
PERSONNEL sample database to plot data from personnel records to display
graphic representations of a corporate personnel structure.

Set the dictionary default to the directory that contains the database definitions
used in this section:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.RDB

Once you have set the dictionary default to the appropriate directory, you can
begin using the Rdb/VMS PERSONNEL database and the various domains that
have been created from the relations of the database.

To begin, you must ready the database, either directly or, if the database or any
of its relations have been defined as DATATRIEVE domains, you can ready the
relevant domains.

In the following example, the information being plotted is contained in a single
relation, JOBS, which has been defined as a DATATRIEVE domain. The example
uses PLOT MULTI_BAR to create a chart showing the minimum and maximum
salaries for each job code. Note that dividing by 1000 eliminates the default
scientific notation labeling on the vertical (Y) axis.

DTR> READY JOBS
DTR> PLOT MULTI_BAR ALL JOB_CODE ("Job Code"),
DTR> MINIMUM_SALARY/1000 ("Minimum in 1000’s"),
DTR> MAXIMUM_SALARY/1000 ("Maximum in 1000’s") OF
DTR> JOBS SORTED BY JOB_CODE THEN
DTR> PLOT CROSS_HATCH

Using DATATRIEVE Plots 17–15

Using DATATRIEVE Plots
Using DATATRIEVE Plots with Other Database Products

You can also use DATATRIEVE plot statements to plot data from more than one
relation or domain by using the DATATRIEVE CROSS clause. The CROSS clause
of the record selection expression joins the relations or domains that share a
common field name. You could also create a view domain of fields from two or
more frequently used relations or domains.

The relations used in the following example are JOB_HISTORY and JOBS; both
are defined as domains. They share a common field name, JOB_CODE, through
which you can link the two domains using the CROSS clause. Using the PLOT
VALUE_PIE statement, you can create a pie chart showing the percentage of
employees that work at a given type of job.

DTR> READY JOB_HISTORY, JOBS
DTR> FIND JOB_HISTORY CROSS JOBS OVER JOB_CODE
DTR> PLOT VALUE_PIE ALL JOB_TITLE, EMPLOYEE_ID

Note that when a percentage is below a certain minimum, DATATRIEVE does not
display a label. This avoids overwriting when pie wedges are small.

17–16 Using DATATRIEVE Plots

Using DATATRIEVE Plots
Using DATATRIEVE Plots with Other Database Products

5%

7%

7%

9%

12%

14%

15%

17%

Using DATATRIEVE Plots 17–17

18
DATATRIEVE Plot Types

DATATRIEVE provides five basic types of plots. You should be
familiar with these types and your options before choosing a plot
to present your data.

The five basic types of plots are:

• Bar charts

• Scattergraphs

• Line graphs

• Pie charts

• Utility plots

Bar charts
DATATRIEVE bar charts represent quantities as rectangular bars
with heights proportional to the values of the fields or expressions
represented. You can use a bar chart to compare values of fields
or expressions.

The PLOT BAR statements generally require two arguments. The
arguments can be either field names or other value expressions:

• The first argument provides the values for the horizontal (X)
axis and groups all records that share the same value for the
argument.

• The second argument provides the values for the vertical (Y)
axis. Values are totaled for each group of records specified by
the first argument.

DATATRIEVE Plot Types 18–1

DATATRIEVE Plot Types
Bar charts

VAX DATATRIEVE produces bar charts of up to six bars. If
there are more than six bars, DATATRIEVE breaks the data into
separate charts containing a maximum of six bars. The notice
(More...) appears at the bottom right of the screen if additional
bars remain to be plotted. To display the additional charts, type
PLOT NEXT_BAR.

Use the PLOT SORT_BAR statement to sort and replot bars in
descending order. Use the PLOT BAR_ASCENDING statement to
sort and replot bars in ascending order.

PLOT BAR
The PLOT BAR statement produces a simple bar chart.

Examples
Create a collection from the PERSONNEL domain. Then create
a bar chart showing the salary of each employee. Note that the
keyword ALL is required because the plot statement refers to the
collection created by the first statement.

DTR> FIND PERSONNEL SORTED BY DEPT, LAST_NAME
DTR> PLOT BAR ALL LAST_NAME, SALARY

PLOT BAR_AVERAGE
The PLOT_BAR_AVARAGE Statement creates a simple bar
chart showing the average value of a particular field or value
expression. The resulting chart shows the average value of each
group identified on the horizontal (X) axis.

Examples
Using the PERSONNEL domain, create a bar chart showing the
average salary of each department.

DTR> PLOT BAR_AVERAGE ALL DEPT, SALARY OF PERSONNEL

PLOT HISTO
The PLOT HISTO statement produces a histogram showing
the frequency distribution of values in a given field or value
expression. The horizontal (X) axis identifies the different values
found in the field or value expression for a group of records. The
vertical (Y) axis shows the number of records that contain the
value.

18–2 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Bar charts

Arguments and Notes
The PLOT HISTO statement takes one argument. That argument
can be a field name or other value expression. The argument
provides the values for the horizontal (X) axis and groups the
records according to the value or field specified by the argument.

Examples
Use data from the YACHTS domain to plot a histogram showing
the total number of yachts for each beam size.

DTR> PLOT HISTO BEAM OF YACHTS SORTED BY BEAM

PLOT MULTI_BAR
Creates a chart with bars grouped in clusters. Each bar in
the cluster represents a field name or other value expression.
Each cluster can contain as many as three bars. Unlike most
bar charts, the PLOT MULTI_BAR statement does not specify
a limit on the number of records or clusters it will group on a
single chart. It tries to plot all of the records or clusters onto a
single graph. If there is room, the PLOT MULTI_BAR statement
prints a legend identifying what values each bar in the cluster
represents. (If there is not enough space, you must use the PLOT
LEGEND statement to display the legend separately.)

Arguments and Notes
The PLOT MULTI_BAR statement takes from two to four
arguments. Arguments can be field names or other value
expressions:

• The first argument provides the common value that groups
the clustered bars. It also labels the bars along the horizontal
(X) axis.

• The remaining arguments provide the values for the vertical
(Y) axis. These values determine the height of each bar.
These arguments must evaluate to numbers.

The difference between the PLOT MULTI_BAR and PLOT
MULTI_BAR_GROUP statements is the first argument, which
also labels the horizontal (X) axis:

With the PLOT MULTI_BAR_GROUP group, each bar or
cluster of bars represents the totals from a number of records.
The PLOT MULTI_BAR_GROUP statement groups the values
of the subsequent arguments based on the first argument.

DATATRIEVE Plot Types 18–3

DATATRIEVE Plot Types
Bar charts

Unlike the PLOT MULTI_BAR_GROUP statement, the PLOT
MULTI_BAR statement uses the first argument to produce a
bar or cluster of bars for each unique record. In Example 1,
each year corresponds to only one value for SERVICES, one
value for EQUIPMENT_SALES, and one value for REVENUE.

The PLOT MULTI_BAR statement does not group the records or
sort the bars. If you want a specific order, sort the record stream
(for example, FIND domain-name SORTED BY field-name).

The PLOT STACKED_BAR statement is a related plot that plots
data similar to that used with the PLOT MULTI_BAR statement
in a stacked bar format.

PLOT MULTI_BAR is restricted in the number of records it can
plot. If the statement contains two arguments, DATATRIEVE can
plot approximately 450 records; for three arguments, it can plot
approximately 250 records; and for four arguments, it can plot
approximately 175 records. Before using the PLOT MULTI_BAR
statement with a large number of records or clusters, consider the
effect this will have on the chart readability.

Examples
Create a collection from the ANNUAL_REPORT domain. Then
use the PLOT MULTI_BAR statement to display a plot that
shows the revenue from equipment sales and services and the
total revenue for each year. Then use the PLOT CROSS_HATCH
statement to clearly differentiate bars in each cluster.

DTR> FIND ANNUAL_REPORT SORTED BY DATE
DTR> PLOT MULTI_BAR ALL FORMAT
CON> DATE USING Y(4),
CON> SERVICES, EQUIPMENT_SALES, REVENUE THEN
CON> PLOT CROSS_HATCH

Example 2

Using the PERSONNEL domain, plot a multibar chart showing
the value of each salary record and its corresponding department.
The resulting bar chart shows the salary for each employee
without using the employee’s name. It allows you to see the
ranges of employees’ salaries.

DTR> PLOT MULTI_BAR ALL DEPT ("Department"),
CON> SALARY/1000 ("Salary in 1000s") OF
CON> PERSONNEL WITH DEPT = "C82", "F11", "T32"

18–4 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Bar charts

Compare this example to the similar example in the PLOT
MULTI_BAR_GROUP section. The PLOT MULTI_BAR_GROUP
statement plots the same data but groups and totals the salaries
for each department.

Plot for Example 2.

PLOT MULTI_BAR_GROUP
Creates a chart with bars grouped in clusters. Each cluster
can contain up to three bars. The PLOT MULTI_BAR_GROUP
statement groups the records according to the argument you
specify for the horizontal (X) axis. It plots the sum of each of the
subsequent arguments along the vertical (Y) axis.) The PLOT
MULTI_BAR_GROUP statement does not sort the bars. If you
want a specific order, sort the record stream (for example, FIND
domain-name SORTED by field-name). If there is room, the PLOT
MULTI_BAR_GROUP statement prints a legend identifying what
values each bar in the cluster represents. (If there is not enough
space, you must use the PLOT LEGEND statement to display the
legend separately.)

DATATRIEVE Plot Types 18–5

DATATRIEVE Plot Types
Bar charts

Arguments and Notes
The PLOT MULTI_BAR_GROUP statement takes up to four
arguments. These arguments can be field names or other value
expressions:

• The first argument labels the horizontal (X) axis. This
argument is used to group records that share the same value
for this argument.

• Each of the next three arguments is totaled and plotted as a
bar. The total values are represented along the vertical (Y)
axis.

These arguments must evaluate to numbers.

See PLOT MULTI_BAR for an explanation of the differences
between PLOT MULTI_BAR and PLOT MULTI_BAR_GROUP.

Most bar charts plot a maximum of six bars per chart. The
PLOT MULTI_BAR_GROUP statement, however, plots all the
bars in one chart. Before using the PLOT MULTI_BAR_GROUP
statement with a large number of records, consider the effect this
will have on the readability of the chart.

The PLOT MULTI_BAR_GROUP statement is restricted in the
number of records it can plot. If the statement contains two
arguments, DATATRIEVE can plot approximately 450 records;
for three arguments, it can plot approximately 250 records; and
for four arguments, it can plot approximately 175 records. Again,
plots generated with the PLOT MULTI_BAR_GROUP statement
with a large number of records would be very difficult to read.

Examples
Use the PERSONNEL domain and the PLOT MULTI_BAR_
GROUP statement to plot the total salaries of employees who
report to the departments F11, C82, and T32.

DTR> FIND PERSONNEL WITH DEPT = "F11", "C82", "T32"
DTR> PLOT MULTI_BAR_GROUP ALL DEPT ("Department"),
CON> SALARY / 1000 ("Salaries / 1000") THEN
CON> PLOT CROSS_HATCH

Compare this example to the similar example in the PLOT
MULTI_BAR section:

• The PLOT MULTI_BAR_GROUP statement plots the same
data but groups and totals the salaries for each department.

18–6 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Bar charts

• The PLOT MULTI_BAR statement produces a bar showing the
value of each salary record and its corresponding department.
The bars show each employee’s salary without using the
employee’s name.

Example 2

Use the YACHTS domain and establish a collection of the first
20 yachts. Then use the PLOT MULTI_BAR_GROUP statement
to plot the total prices of those yachts according to their builder.
Divide the total prices by 1000 to avoid scientific notation. The
keyword ALL is required because the plot statement refers to the
collection created by the first statement.

DTR> FIND FIRST 20 YACHTS WITH PRICE NE 0
DTR> PLOT MULTI_BAR_GROUP ALL BUILDER,
CON> PRICE/1000 ("Price in 1000s") THEN
CON> PLOT CROSS_HATCH

PLOT NEXT_BAR
A bar chart can contain up to six bars. The PLOT NEXT_BAR
statement plots the next six bars. The notice (More...) appears in
the lower right corner of a chart if additional bars remain to be
plotted.

DATATRIEVE Plot Types 18–7

DATATRIEVE Plot Types
Bar charts

Arguments and Notes
The PLOT NEXT_BAR statement takes no argument.

To see all the remaining bars, continue entering the PLOT NEXT_
BAR statement after each chart is plotted. The bars have all been
charted when the notice (More...) no longer appears.

If you use the PLOT NEXT_BAR statement with the PLOT TITLE
statement and either the PLOT SORT_BAR or PLOT BAR_
ASCENDING statements, enter the statements in this sequence:

1. PLOT BAR

2. PLOT TITLE

3. PLOT SORT_BAR (or PLOT BAR_ASCENDING)

4. PLOT NEXT_BAR

If you enter the PLOT TITLE statement after the PLOT SORT_
BAR statement (or the PLOT BAR_ASCENDING statement), the
sorting will not appear in the subsequent plots produced by the
PLOT NEXT_BAR statement.

PLOT RAW_BAR
Creates a simple bar chart from value expressions you supply.
The PLOT RAW_BAR statement evaluates each argument and
plots its value as the height of a bar.

Arguments and Notes
The PLOT RAW_BAR statement takes from 1 to 24 arguments:

• You can provide data values for arguments, as shown in the
Examples section.

• The PLOT RAW_BAR statement does not use field values
from a stream of records. You can select a record and use
field names as value expressions, or you can use variables,
numbers, and arithmetic expressions. If you include value
expressions that are not field names, you should provide a
label string with each one.

18–8 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Bar charts

Examples
Example 1

Plot a bar chart by supplying specific data values for arguments.
The resulting bar chart plots the values you supplied:

DTR> PLOT RAW_BAR 200 ("Food"), 80 ("Utilities"),
CON> 450 ("Rent"), 175 ("Car Loan")

Example 2

Using the YACHTS domain and the PLOT RAW_BAR statement,
count and plot the number of yachts according to their length
(LOA). The resulting bar chart shows the count of yachts
according to length. It labels each bar with the labels you
supplied.

DTR> PLOT RAW_BAR COUNT OF YACHTS -
CON> WITH LOA LT 25 ("Basic Yachts"),
CON> COUNT OF YACHTS WITH -
CON> LOA BT 25 AND 35 ("Midsize Yachts"),
CON> COUNT OF YACHTS WITH LOA GT 35 ("Luxury Liners")

Plot for Example 2

Example 3

DATATRIEVE Plot Types 18–9

DATATRIEVE Plot Types
Bar charts

The following example shows how you can select a record with the
PLOT RAW_BAR statement. Using ANNUAL_REPORT, select
the first record in the collection and plot the services, equipment
sales, and revenue for that record. The resulting bar chart shows
the values for each of those arguments.

DTR> FIND ANNUAL_REPORT
DTR> SELECT 1
DTR> PLOT RAW_BAR ALL SERVICES,
CON> EQUIPMENT_SALES, REVENUE

PLOT STACKED_BAR
The PLOT STACKED_BAR statement creates a bar chart with
one to three shaded values stacked on top of each other.

If there is room, DATATRIEVE prints a legend explaining which
bars represent which values. If DATATRIEVE does not print
the legend, you can produce it by subsequently typing PLOT
LEGEND.

Arguments and Notes
The PLOT STACKED_BAR statement takes two to four
arguments, which can be field names or other value expressions:

• The first argument labels the bars on the horizontal (X) axis.

• Each of the next three arguments must evaluate to numbers.
The values of each argument are plotted in a unique shade in
the stacked bars and determine the height on the vertical (Y)
axis.

Most bar charts plot a maximum of six bars per chart. However,
the PLOT STACKED_BAR statement plots all the bars in one
chart. Before using the PLOT STACKED_BAR statement with a
large number of records, consider the effect this will have on the
chart’s readability.

The PLOT STACKED_BAR statement is restricted in the number
of records it can plot. If the statement contains two arguments,
DATATRIEVE can plot up to approximately 480 records; for three
arguments, it can plot approximately 260 records; and for four
arguments, it can plot approximately 180 records. Again, plots
generated with the PLOT STACKED_BAR statement with a large
number of records would be very difficult to read.

18–10 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Bar charts

The PLOT STACKED_BAR statement is similar to the PLOT
MULTI_BAR statement. Both statements plot three values. The
PLOT MULTI_BAR statement plots the values in clusters, side-
by-side, while the PLOT STACKED_BAR statement plots the
values on top of each other.

The PLOT STACKED_BAR statement does not group the records
or sort the bars. You can specify a particular order by sorting
the record stream (for example, FIND domain-name SORTED by
field-name).

The PLOT STACKED_BAR statement only accepts positive or zero
numeric numbers. If you enter negative numbers, DATATRIEVE
returns incorrect results or error messages.

Examples
Example 1

Establish a collection from the domain YACHTS. Enter LOA as
the first argument to label the horizontal (X) axis. Enter the
arguments BEAM and DISP to be plotted as stacked bars. The
values of these last two arguments determine the height of the
bars on the vertical (Y) axis. The keyword ALL is required
because the plot statement refers to the collection created by the
first statement.

In the resulting plot, the scale on the vertical (X) axis applies to
both arguments you supplied. For example, the first bar shows
the figures for a 34-foot long Grampian. The lower crosshatch
pattern for the bar indicates the yacht is 10 feet wide. The upper
crosshatch pattern indicates the yacht weighs 6 tons:

DTR> FIND YACHTS WITH BUILDER EQ "GRAMPIAN"
DTR> PLOT STACKED_BAR ALL LOA ("Length in Feet"),
CON> BEAM ("Width in Feet"),
CON> DISP / 2000 ("Weight in Tons") THEN
CON> PLOT CROSS_HATCH

Example 2

Using the domain ANNUAL_REPORT, enter DATE as the first
argument to label the horizontal (X) axis. Enter the arguments
EQUIPMENT_SALES, SERVICE, and NET_INCOME to be
plotted as stacked bars. The last three arguments determine the
height of the bars on the vertical (Y) axis.

DATATRIEVE Plot Types 18–11

DATATRIEVE Plot Types
Bar charts

The resulting plot shows the annual figures for equipment sales,
services, and net income. Each figure is plotted in a unique
crosshatched pattern, with the figures for each year stacked on
top of each other. The plot includes a legend identifying each
crosshatch pattern.

DTR> PLOT STACKED_BAR ALL DATE,
CON> EQUIPMENT_SALES, SERVICES, NET_INCOME OF
CON> ANNUAL_REPORT SORTED BY DATE THEN
CON> PLOT CROSS_HATCH

Plot for Example 2

Line graphs
Line graphs plot points and also connect the points with lines.
You can use a scattergraph or line graph to compare values in
fields or expressions.

The LINE statements take two to four arguments. The arguments
can be field names or other value expressions and must be
numeric:

• The first argument is used to label the horizontal (X) axis.

18–12 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Line graphs

• The values for each of the next three arguments determine
location of the points on the horizontal (X) and vertical (Y)
axis. These points are connected, determining the lines of the
graph.

The LINE statements do not sort the records. You can specify a
particular order by sorting the record stream (for example, FIND
domain-name SORTED by field-name).

If there is room, DATATRIEVE prints a legend identifying what
each line represents. If DATATRIEVE does not print the legend,
you can produce it by subsequently typing the PLOT LEGEND
statement.

PLOT MULTI_LINE
The PLOT MULTI_LINE statement produces a line graph that
plots up to three uniquely marked lines.

Arguments and Notes
The PLOT MULTI_SHADE statement produces a shaded
multiline graph.

Examples
Example 1

Use ANNUAL_REPORT to plot a 2-line graph without a legend.
Specify DATE as the first argument to label the horizontal (X)
axis. Specify SERVICES and NET_INCOME as the last two
arguments; they will be plotted as uniquely marked lines. The
keyword ALL is required because the plot statement refers to the
collection created in the first line.

The resulting plot shows how NET_INCOME and SERVICES
increase over time.

DTR> FIND ANNUAL_REPORT SORTED BY DATE
DTR> PLOT MULTI_LINE ALL FORMAT
CON> DATE USING Y(4),
CON> SERVICES, NET_INCOME

Example 2

Create a collection using the ANNUAL_REPORT domain sorted
by date. Specify DATE as the first argument to label the
horizontal (X) axis. Specify REVENUE, INVENTORIES, and
EQUIPMENT_SALES as the last three arguments. These will
each be plotted as uniquely marked lines. The keyword ALL is

DATATRIEVE Plot Types 18–13

DATATRIEVE Plot Types
Line graphs

required because the plot statement refers to the collection created
by the first statement.

The resulting graph shows the increases in revenue, inventories,
and equipment sales between 1971 and 1980. The lines of the
graph emphasize the trends.

DTR> FIND ANNUAL_REPORT SORTED BY DATE
DTR> PLOT MULTI_LINE ALL FORMAT
CON> DATE USING Y(4),
CON> REVENUE, INVENTORIES, EQUIPMENT_SALES

Plot for Example 2

PLOT MULTI_LR
The PLOT MULTI_LR statement plots a line graph with up to
three linear regression lines.

The PLOT MULTI_LR statement plots points based on the
arguments you provided. Those points are uniquely marked. The
PLOT MULTI_LR statement then uses these points and draws
linear regression lines using the least squares method, which
determines a straight line through a set of points so that the sum
of the squares of the distances of the points from the line is a
minimum.)

18–14 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Line graphs

Arguments and Notes
The PLOT MULTI_LR statement takes two to four arguments.
These arguments can be field names or other value expressions
and must be numeric:

• The first argument is used to label the horizontal (X) axis.

• The values for each of the next three arguments determine
location of the points on the horizontal (X) and vertical (Y)
axis.

The PLOT MULTI_LR statement does not sort the records. You
can specify a particular order by sorting the record stream (for
example, FIND domain-name SORTED by field-name).

Example
Using the ANNUAL_REPORT domain, plot a 3-line linear
regression graph with a legend.

The resulting plot shows the increase in equipment sales, services,
and net income between 1971 and 1980. The linear regression
lines help to emphasize trends.

DTR> PLOT MULTI_LR ALL FORMAT DATE USING Y(4),
CON> EQUIPMENT_SALES, SERVICES, NET_INCOME OF
CON> ANNUAL_REPORT

PLOT MULTI_SHADE
The PLOT MULTI_SHADE statement creates a shaded multiple
line graph with up to three unique shades.)

Rather than actually plotting points and lines like the PLOT
MULTI_LINE statement, the PLOT MULTI_SHADE statement
fills in the area below where the line would appear. The PLOT
MULTI_SHADE statement performs the following sequence:

1. Produces a unique shaded area below the line of the values for
the second argument

2. Overwrites the first shaded area with a uniquely shaded area
for the third argument

3. Overwrites the first and second shaded areas with a uniquely
shaded area for the fourth argument

DATATRIEVE Plot Types 18–15

DATATRIEVE Plot Types
Line graphs

Arguments and Notes
DATATRIEVE plots the shaded area for the last three arguments
in the order you enter them.

To avoid completely overwriting the smaller shaded areas, you
should first determine the size of the values in the fields. (Use the
PRINT statement to print the fields and look at the data.) You
should then enter the arguments in decreasing order of size.

The PLOT MULTI_SHADE statement then plots the arguments
with the larger values first. It subsequently plots the arguments
with smaller values over the larger values. You can then see all
the shaded areas, not just the largest.

The PLOT MULTI_SHADE statement does not sort the records.
If you want a specific order, sort the record stream (for example,
FIND domain-name SORTED by field-name).

Example
Using the ANNUAL_REPORT domain, specify DATE as the first
argument, labeling the horizontal (X) axis. Enter the remaining
arguments in decreasing order.

The PLOT MULTI_SHADE statement uses the values for the last
three arguments to shade the area below each line. It produces
the shaded areas in the order you entered the arguments. Because
you entered the arguments in decreasing order, all shaded areas
appear in the plot:

DTR> PLOT MULTI_SHADE ALL FORMAT DATE USING Y(4),
CON> REVENUE, EQUIPMENT_SALES, SERVICES OF
CON> ANNUAL_REPORT SORTED BY DATE THEN
CON> PLOT CROSS_HATCH

Scattergraphs
Scattergraphs plot points based on their horizontal and vertical
coordinates.

The scattergraphs statements take two arguments. The
arguments can be field names or other value expressions:

• The first argument is plotted on the horizontal (X) axis. It
must contain a date value.

• The second argument is plotted on the vertical (Y) axis.

Each pair of value expressions in the scattergraph is represented
by a plus sign (+).

18–16 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Scattergraphs

With logarithmic scaling, each successive unit of length on the
scaled axis covers a wider range of numbers. This helps to make
trends more apparent.

PLOT DATE_LOGY
The PLOT DATE_LOGY statement creates a scattergraph using
date values on the horizontal (X) axis and a logarithmic scale on
the vertical (Y) axis.

The PLOT DATE_LOGY statement sorts the records in ascending
order by date before plotting them.

Arguments and Notes
The Y argument of the PLOT DATE_LOGY statement must
contain a value expression greater than zero for each record in
the record stream. DATATRIEVE uses a logarithmic scale to plot
these values on the vertical (Y) axis.

Example
This example uses the DATE and REVENUE fields from
ANNUAL_REPORT to show the trend that total revenue has
increased in the period from 1971 to 1980. In this case the
keyword ALL is optional because the RSE is specified in the OF
clause.

DTR> PLOT DATE_LOGY ALL DATE, REVENUE OF ANNUAL_REPORT

PLOT DATE_Y
The PLOT DATE_Y statement creates a scattergraph that shows
a chronological trend.

The statement sorts the records by date before plotting them.

Arguments and Notes
The Y argument must contain a value expression greater than
zero for each record in the record stream or collection.

Example
Example 1

Create a scattergraph using the PLOT DATE_Y statement and the
ANNUAL_REPORT domain. The resulting plot emphasizes the
trend that the number of employees has increased over a period of
time.

DATATRIEVE Plot Types 18–17

DATATRIEVE Plot Types
Scattergraphs

DTR> PLOT DATE_Y ALL DATE, EMPLOYEES OF
CON> ANNUAL_REPORT WITH EMPLOYEES GT 0

Example 2

Use the PLOT DATE_Y statement with an RSE to create a
scattergraph using the START_DATE and SALARY fields from
PERSONNEL. The resulting plot emphasizes the trend that
employees who have been with the company for a longer period of
time have higher salaries.

In this case the keyword ALL is optional because the RSE is
specified in the OF clause.

DTR> PLOT DATE_Y ALL START_DATE,
CON> SALARY OF PERSONNEL WITH SALARY GT 0

Plot for Example 2

PLOT LOGX_LOGY
The PLOT LOGX_LOGY statement produces a scattergraph that
uses logarithmic scaling for both the horizontal (X) and vertical
(Y) axes.

Arguments and Notes
Both X and Y arguments must contain numeric values greater
than zero for each record in the plot.

18–18 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Scattergraphs

Examples
Example 1

Using a collection from the YACHTS domain, create a scatter-
graph that shows the relationship between weight and cost for all
yachts. The resulting scattergraph demonstrates the trend that
heavy boats cost more than light ones.

The keyword ALL is required because the plot statement refers
to the collection created by the first statement. Note that you can
ensure that values for the plot arguments are greater than zero by
including appropriate relational operators in the FIND statement.

DTR> FIND YACHTS WITH PRICE GT 0 AND DISP GT 0
DTR> PLOT LOGX_LOGY ALL DISP -
CON> ("Weight in Pounds"), PRICE ("Price")

Example 2

Using YACHTS, create a scattergraph that shows the relationship
between length and width (beam size) for all yachts in the
collection. The keyword ALL is required because the plot
statement refers to the collection created by the first statement.

DTR> FIND YACHTS WITH PRICE GT 0 AND BEAM GT 0
DTR> PLOT LOGX_LOGY ALL LOA, BEAM

Plot for Example 2

DATATRIEVE Plot Types 18–19

DATATRIEVE Plot Types
Scattergraphs

PLOT LOGX_Y
The PLOT LOGX_Y statement produces a scattergraph that uses
logarithmic scaling for the horizontal (X) axis.

Arguments and Notes
The X argument must contain numeric values greater than zero
for all records in the collection or record stream.

Examples
Example 1

Using the YACHTS domain, create a scattergraph using the
PLOT LOGX_Y statement that shows the relationship between
weight and length for all yachts. The resulting scattergraph
demonstrates the trend that as weight increases so does length:

DTR> PLOT LOGX_Y ALL DISP ("Weight"),
CON> LOA ("Length") OF YACHTS WITH DISP GT 0

Example 2

Create a collection from the YACHTS domain. Use the PLOT
LOGX_Y statement to create a scattergraph showing the
relationship between weight and beam. Add a linear regression
line with the PLOT LR statement to emphasize the trend that
heavier yachts have wider beams. Note that you can ensure that
values for the plot arguments are greater than zero by including
relational operators in the RSE:

DTR> FIND YACHTS WITH DISP GT 0 AND BEAM GT 0
DTR> PLOT LOGX_Y ALL DISP, BEAM THEN
DTR> PLOT LR

Plot for Example 2

18–20 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Scattergraphs

PLOT X_LOGY
The PLOT X_LOGY statement plots points according to their
values on the horizontal (X) and vertical (Y) axes.

Arguments and Notes
Note the vertical (Y) axis uses a logarithmic scale. The second (Y)
argument must be numeric and greater than zero for each record.

Example
Establish a collection using YACHTS. Use the PLOT X_LOGY
statement to plot the beam sizes and prices. The keyword ALL is
required because the plot statement refers to the collection created
by the first statement.

The resulting plot shows how prices increase as beam size
increases. It includes a linear regression line to emphasize the
trend.

DTR> FIND YACHTS WITH PRICE GT 0 AND BEAM GT 0
DTR> PLOT X_LOGY ALL BEAM,
CON> PRICE/1000 ("Price in 1000s") THEN
CON> PLOT LR

Example 2

Use the PLOT X_LOGY statement to plot research funding and
revenue from the ANNUAL_REPORT domain.

DATATRIEVE Plot Types 18–21

DATATRIEVE Plot Types
Scattergraphs

The resulting plot shows how revenue increases as research
funding increases. The points are connected to emphasize the
trend.

DTR> PLOT X_LOGY ALL RESEARCH, REVENUE OF
CON> ANNUAL_REPORT THEN
CON> PLOT CONNECT

Plot for Example 2

PLOT X_Y
The PLOT X_Y statement plots points according to their values on
the horizontal (X) and vertical (Y) axis.

Arguments and Notes
The second argument must be numeric and greater than zero for
each record.

Example
Establish a collection using YACHTS. Use the PLOT X_Y
statement to plot the displacement and prices. The keyword
ALL is required because the plot statement refers to the collection
created by the first statement. Dividing the PRICE argument by
1000 eliminates the default scientific notation that DATATRIEVE
uses to display large numbers.

18–22 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Scattergraphs

The resulting plot shows how the prices increase as displacement
increases. It includes a linear regression line to emphasize the
trend.

DTR> FIND YACHTS WITH PRICE GT 0 AND BEAM GT 0
DTR> PLOT X_Y ALL DISP,
CON> PRICE/1000 ("Price in 1000s") THEN
CON> PLOT LR

Plot for Example 1

Pie charts
DATATRIEVE pie charts represent quantities as slices of a pie
proportional to the whole pie. You can use a pie chart to compare
values of fields or expressions.

The label and percentage represented by the portion is printed
for groups where the slice is large enough to accommodate these
labels. Groups with a small percentage (and thus a small slice)
might not have a label or percentage displayed.

The PLOT PIE statement groups and counts the number of
occurrences for each unique field value or value expression.
It then calculates what percentage of the whole each group
represents. It plots these percentages as slices of a pie chart with
each slice proportional to the sum of the slices.

DATATRIEVE Plot Types 18–23

DATATRIEVE Plot Types
Pie charts

In contrast, the PLOT VALUE_PIE statement groups records,
calculates the total value of the field name or other value
expression (value, not number or count), and then plots this total
value as a percentage of the whole pie.

PLOT PIE

20%

80%

The PLOT PIE statement groups records according to the
argument you provide. It then calculates what percentage of
the whole each group represents.

Arguments and Notes
The PLOT PIE statement takes one argument, which can be a
field name or other value expression.

You can specify a title other than the default title by using the
PLOT TITLE statement.

You can also customize the title by including a label string
following the field name or other value expression:

DTR> PLOT PIE DEPT ("Department") OF PERSONNEL

Examples
Use the PLOT PIE statement to plot a pie chart using the
PERSONNEL domain.

The total count of records for each department is calculated.
These totals are plotted as percentages proportional to the total of
all departments.

DTR> PLOT PIE DEPT OF PERSONNEL

Plot for Example 1

18–24 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Pie charts

 22%

4%
9%

 13%

17%

17%

17%

Example 2

Using the PERSONNEL domain, use the PLOT PIE statement to
plot the employees in department C82 according to status.

DATATRIEVE calculates the total count of employees for each
status (TRAINEE and EXPERIENCED). These totals are plotted
as percentages relative to the total of all employees in department
C82.

DTR> PLOT PIE ALL STATUS OF
CON> PERSONNEL WITH DEPT = C82

PLOT RAW_PIE

26%

39%

35%

The PLOT RAW_PIE statement evaluates each argument,
then calculates what percentage of the whole each argument
represents.

DATATRIEVE Plot Types 18–25

DATATRIEVE Plot Types
Pie charts

Arguments and Notes
The PLOT RAW_PIE statement takes from 1 to 24 arguments:

• You can provide data values for arguments, as shown in the
Examples section.

• The PLOT RAW_PIE statement does not use field names
from a stream of records. You can select a record and use
field names as value expressions, or you can use variables,
numbers, and arithmetic expressions. If you include value
expressions that are not field names, you should provide a
label string with each one.

Examples
Example 1

Using the PERSONNEL domain and the PLOT RAW_PIE
statement, count and plot the number of employees according
to the salary groupings you specify.

The resulting pie chart shows the count of employees according to
the salary groupings you specified. The slices are labeled with the
label strings you supplied.

DTR> PLOT RAW_PIE COUNT OF PERSONNEL WITH
CON> SALARY LT 30000("Underpaid"),
CON> COUNT OF PERSONNEL WITH
CON> SALARY BT 30000 45000 ("Not Starving"),
CON> COUNT OF PERSONNEL WITH
CON> SALARY GT 45000 ("Need Tax Shelters")

Example 2

Plot a pie chart by supplying specific data values and labels for
arguments. The resulting pie chart plots the values you supplied.
Note that the percentages and labels are printed only for the slices
large enough to accommodate these labels:

DTR> PLOT RAW_PIE 70 ("Seventy"), 20 ("Twenty"),
CON> 4 ("Four"), 3 ("Three"), 2 ("Two"), 1 ("One")

Plot for Example 2

18–26 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Pie charts

 20%

70%

PLOT VALUE_PIE

21%

 8%

 8%

12%

16%

16%

18%

After grouping records according to the first argument, the PLOT
VALUE_PIE statement totals the values specified by the second
argument. Each total value is plotted as a percentage (slice) of
the pie proportional to the total of the other slices.

The PLOT VALUE_PIE statement produces a default title for the
entire plot showing ‘‘argument-2 by argument-1.’’

Arguments and Notes
The PLOT VALUE_PIE statement takes two arguments, which
can be field names or other value expressions:

• The first argument groups the records.

• The second argument specifies which values will be totaled.

You can specify a title other than the default title by using the
PLOT TITLE statement.

You can also customize the title by including a label string
following the field name or other value expression:

DTR> PLOT VALUE_PIE DEPT ("Department"),
CON> SALARY ("Salary Distribution") OF PERSONNEL

DATATRIEVE Plot Types 18–27

DATATRIEVE Plot Types
Pie charts

Example
Using the domain ANNUAL_REPORT, plot what percentage the
total salaries of each department represent proportional to the
total salaries of the whole company. Specify DEPT as the first
argument and SALARY as the second argument.

The PLOT VALUE_PIE statement plots the total salaries of each
department as separate pie slices. Each pie slice represents a
percentage proportional to the total salaries of all departments.

DTR> PLOT VALUE_PIE ALL DEPT, SALARY OF PERSONNEL

Utilities
DATATRIEVE utility plot statements let you enhance and
manipulate other plots. For example, the PLOT TITLE statement
lets you add a title for your plot. The PLOT HARDCOPY
statement produces hardcopy output of a plot you have already
produced (if your terminal is connected to a Digital-supported
ReGIS hardcopy output device). The PLOT BIG statement also
lets you produce hardcopy output, but the output is four times
larger than PLOT HARDCOPY output.

Unless otherwise stated, Utility statements take no arguments.

PLOT BAR_ASCENDING
The PLOT BAR_ASCENDING statement uses the data from the
bar chart you have just created and sorts bars in ascending order.

Arguments and Notes
If you use the PLOT BAR_ASCENDING statement with the PLOT
TITLE and PLOT NEXT_BAR statements, enter the statements
in the following sequence:

1. PLOT BAR

2. PLOT TITLE

3. PLOT BAR_ASCENDING

4. PLOT NEXT_BAR

If you enter the PLOT TITLE statement after the PLOT BAR_
ASCENDING statement, the sorting will not appear in the
subsequent plots produced by PLOT NEXT_BAR.

18–28 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Utilities

PLOT BIG
The PLOT BIG statement prints an enlarged version of the most
recent plot on the graphics printer attached to your terminal.
This plot is four times the size of a plot printed with the PLOT
HARDCOPY statement.

DATATRIEVE prints a separate legend for each plot created with
a PLOT BIG statement after it prints the plot. This occurs even if
the plot already includes the legend.

Arguments and Notes
If you plan to use a PLOT MULTI_BAR, PLOT MULTI_SHADE,
or PLOT STACKED_BAR statement, then use the PLOT CROSS_
HATCH statement before using the PLOT BIG statement.
Otherwise, all plotted elements print out as solid black.

If you are using a printer with fan-fold (continuous) paper (not
individual pages), the PLOT BIG statement does not advance the
paper after printing the plot. Before issuing another PLOT BIG
statement, you should advance the paper feed of your printer.

Once you have entered the PLOT BIG statement, the terminal
will not respond to any additional commands or statements until
the printer is almost finished printing the plot.

The PLOT BIG statement can be used only with a VT125 terminal
connected to a compatible printer. You cannot use PLOT BIG with
VT240, VT330, and VT340 terminals. (To get large plots with
VT240, VT330, or VT340 terminals, change the graphics set-up
option Compressed Print to Expanded Print and use the PLOT
HARDCOPY statement.)

PLOT CONNECT
The PLOT CONNECT statement takes the scattergraph you have
just created and connects the points.

The statement connects points in the order DATATRIEVE
processed them.

Arguments and Notes
If you want to control the order in which the points are plotted,
use a SORT statement or a SORTED BY expression in the RSE
you use to form the collection of data to be plotted.

Use the PLOT SHADE statement to shade the area below the
points.

DATATRIEVE Plot Types 18–29

DATATRIEVE Plot Types
Utilities

Example
See PLOT X_LOGY for an example.

PLOT CROSS_HATCH
The PLOT CROSS_HATCH statement is the only way to
differentiate bar elements and shaded areas in hardcopy printouts
of multiple bar charts.

The PLOT CROSS_HATCH statement changes each of the
shading variations in multiple bar charts to a unique crosshatch
pattern. The crosshatching enhances the distinction among the
displays of different field names or other value expressions.

From one to three different crosshatch patterns are assigned to
each of the arguments plotted against the vertical (Y) axis of a
multiple bar chart.

Arguments and Notes
The PLOT CROSS_HATCH statement can assign no more than
three pattern variations. It is therefore not appropriate for raw
bar charts or pie charts, which can plot more than three elements.

Examples
See example for PLOT STACKED_BAR and PLOT MULTI_
SHADE.

PLOT HARDCOPY
The PLOT HARDCOPY statement produces a hardcopy printout
of the most recently generated plot.

The statement prints a separate legend for the plot after it prints
the plot. This occurs even if the plot already includes the legend
as output.

Arguments and Notes
Your terminal does not respond to any commands or statements
until the printer is almost finished printing the plot.

If you are using a printer with fan-fold (continuous) paper (not
individual pages), the PLOT HARDCOPY statement does not
advance the paper feed after printing the plot. Before issuing
another PLOT HARDCOPY statement, you should advance the
paper feed of your printer.

18–30 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Utilities

If you want to use the PLOT HARDCOPY statement with one
of the following plots, you should use the PLOT CROSS_HATCH
statement before issuing the PLOT HARDCOPY statement:

PLOT MULTI_BAR

PLOT MULTI_BAR_GROUP

PLOT MULTI_SHADE

PLOT STACKED_BAR

The PLOT CROSS_HATCH statement differentiates bars or
shaded areas that are otherwise indistinguishable when printed.

The PLOT BIG statement produces a hardcopy printout with
a plot four times the size of the plot produced using the PLOT
HARDCOPY statement.

Example
Create a multiple bar chart using data from the ANNUAL_
REPORT domain. Note that on the terminal screen, the bars
are differentiated by varying shades. This differentiation is not
present in a hardcopy of the plot. Next, use the PLOT CROSS_
HATCH statement to differentiate the bars for the hardcopy
printout.

DTR> FIND FIRST 5 ANNUAL_REPORT SORTED BY DATE
DTR> PLOT MULTI_BAR ALL DATE, REVENUE,
CON> EQUIPMENT_SALES, SERVICES THEN
CON> PLOT CROSS_HATCH
DTR> PLOT HARDCOPY

PLOT LEGEND
When you issue a PLOT LEGEND statement, DATATRIEVE
clears the screen to display the legend for the plot.

DTR> PLOT LEGEND

Displays the legend for certain plots that do not have enough room
for the legend. The PLOT LEGEND statement takes the most
recently created plot, creates a legend for the plot, and displays
the legend on a cleared screen.

DATATRIEVE Plot Types 18–31

DATATRIEVE Plot Types
Utilities

Arguments and Notes
The PLOT BIG and PLOT HARDCOPY statements automatically
send the plot and a separate legend to the printer as output.

If you are creating a multiple bar, multishade, or stacked bar
plot, use the PLOT CROSS_HATCH statement to provide unique
crosshatch patterns to differentiate the elements in each plot. The
crosshatch patterns appear in the legend, further enhancing the
distinction among the plotted elements.

PLOT LIMITS_X and PLOT LIMITS_Y
Lets you specify the minimum and maximum range limits of
the data to be plotted on the horizontal (X) axis (LIMITS_X), or
on the vertical (Y) axis (LIMITS_Y). DATATRIEVE replots the
most recent plot using a subset of the original data. This subset
is determined by the low and high values specified in the plot
statement.

Arguments and Notes
Low-value is the value expression, based on the values on the
horizontal (LIMITS_X) axis, or on the vertical (LIMITS_Y) axis, of
the base plot, that determines the lowest value of the data to be
plotted. High-value is the value expression, based on the values
on the axis of the base plot, that determines the highest value of
the data to be plotted.

If you use zero as either your low or high value, the corresponding
statement returns the value plotted in the original base plot.

If you omit either argument, the statement uses the corresponding
argument from the previous PLOT LIMITS_X or PLOT LIMITS_Y
statement.

• By default, DATATRIEVE bases the scaling of plot values on
the total range of the data values provided as input for the
plot.

• If no data values fall within the limits you specify,
DATATRIEVE creates a plot with no values plotted.

• The minimum and maximum values specified set the limits
for filtering out the data used in the base plot. The range of
values DATATRIEVE replots on the X axis reflects the actual
high and low values of the data that get through the filter, not
the high and low limits specified as parameters.

18–32 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Utilities

• You can use the PLOT LIMITS_X statement repeatedly to vary
the subset of data DATATRIEVE uses to replot the previous
plot.

• The following examples show the syntax variations common to
the PLOT LIMITS_X statement.

DTR> FIND YACHTS WITH PRICE NE 0
DTR> PLOT X_Y ALL LOA, PRICE
DTR> !
DTR> ! Original range limits for this example are 15 and 45.
DTR> ! Examples are cumulative.
DTR> !
DTR> PLOT LIMITS_X 20, 40
DTR> ! DATATRIEVE ignores LOA values less than 20 and greater
DTR> ! than 40 when it replots the base plot data.
DTR> !
DTR> PLOT LIMITS_X 25
DTR> ! The minimum LOA value for the data plotted is 25;
DTR> ! the maximum value stays the same (40).
DTR> !
DTR> PLOT LIMITS_X ,35
DTR> ! The minimum LOA value for the data plotted stays the
DTR> ! same (25); the maximum value is 35.
DTR> !

DTR> PLOT LIMITS_Y 15000
DTR> ! The minimum LOA value for the data plotted is 15000;
DTR> ! the maximum value stays the same (50000).
DTR> !
DTR> PLOT LIMITS_Y ,40000
DTR> ! The minimum LOA value for the data plotted stays the
DTR> ! same (15000); the maximum value is 40000.
DTR> !
DTR> PLOT LIMITS_Y 20000,0
DTR> ! The minimum LOA value is 20000; the maximum value
DTR> ! returns to the original value of the base plot
DTR> ! (100000).
DTR> !
DTR> PLOT LIMITS_Y 0,0
DTR> ! Both minimum and maximum values are returned to the
DTR> ! values plotted by the original PLOT X_Y statement
DTR> ! (0, 100000).

DATATRIEVE ignores date values unless they are expressed as a
year both in the base plot and in the PLOT LIMITS_X statement.
For example, you can use YYYY for a date field, but not DD_
MMM_YYYY.

You cannot use scientific notation for the low and high values.

DATATRIEVE Plot Types 18–33

DATATRIEVE Plot Types
Utilities

The PLOT LIMITS_X or LIMITS_Y statement must be placed
before any other utility plot statements or you will lose the
characteristics added with those plot statements. The statement
replots the previous plot using the data limits you specify. Any
utility plots used to enhance the old base plot are ignored. The
only exceptions are the PLOT TITLE statement and the other
PLOT LIMITS statement. If you use the PLOT LIMITS statement
after the PLOT TITLE statement, DATATRIEVE retains the title
specified in the PLOT TITLE statement. If you use the statement
after the other PLOT LIMITS statement, the line specified in that
previous PLOT LIMITS statement remains in the final plot.

PLOT LR
The PLOT LR statement plots a linear regression line on the
scattergraph you have just created. The linear regression plot
uses the least squares method to determine the regression line.
The least squares method determines a straight line through a
set of points so that the sum of the squares of the distances of the
points from the line is a minimum. The resulting line is the ‘‘best
fit’’ for a set of points.

Examples
See PLOT X_Y for example.

PLOT MONITOR

GREEN

RED

BLUE
SYNC

DTR>

ZK−7282−GE

Displays the words RED, GREEN, and BLUE on your color
monitor with their appropriate colors. You use it to verify that the
red, green, and blue cable connectors are correctly attached to the
back of the color monitor. The words are listed vertically on the
color monitor.

The word SYNC appears on the screen to indicate that
DATATRIEVE has reset the terminal to the terminal’s default
color settings after the words RED, GREEN, and BLUE have been
displayed.

Arguments and Notes
If the names of the colors do not correspond to the color in which
they are displayed (for example, the word RED is displayed in the
color green), you may not have attached the color cable connectors
correctly. Make sure the cables from the video terminal match
the proper connectors on the monitor. See Chapter 17 for more
information on how to get started with DATATRIEVE plots.

18–34 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Utilities

Use the PLOT MONITOR statement only with a color terminal.
If you use the PLOT MONITOR statement with a monochrome
terminal that has light lettering and a dark background, the
light lettering may change to the color of the dark background,
essentially blacking out your screen.

PLOT PAUSE
The PLOT PAUSE statement delays processing the next statement
for several seconds during your DATATRIEVE plots session.

Arguments and Notes
Even though this plot appears to be very simple, you must still
use a Digital-supported ReGIS terminal with the PLOT PAUSE
statement.

Example
The following example shows how you can use the PLOT PAUSE
statement to view one plot before DATATRIEVE processes the
next plot statement:

1. DATATRIEVE executes the PLOT X_Y statement. It then
produces the scattergraph plot:

DTR> PLOT X_Y ALL EQUIPMENT_SALES,
CON> INVENTORIES OF ANNUAL_REPORT THEN
CON> PLOT PAUSE THEN
CON> PLOT CONNECT

2. Because of the PLOT PAUSE statement, DATATRIEVE
now pauses several seconds. It then executes the next plot
statement, PLOT CONNECT.

PLOT REFERENCE_X and PLOT REFERENCE_Y
The PLOT REFERENCE_X statement adds a solid line at the
point you specify on the horizontal (X) axis of the most recently
generated plot.

The PLOT REFERENCE_Y statement adds a similar line at the
point you specify on the vertical (Y) axis.

DATATRIEVE adds to the existing plot when you plot a reference
line; it does not replot it. DATATRIEVE adds a reference line
to the most recently generated plot for each use of the PLOT
REFERENCE statement.

DATATRIEVE Plot Types 18–35

DATATRIEVE Plot Types
Utilities

DATATRIEVE returns an error message for entries that
fall outside the range of values for the horizontal (PLOT
REFERENCE_X) or vertical (PLOT REFERENCE_Y) axis.

Arguments and Notes
The PLOT REFERENCE statements take an argument: n, which
is a value expression identifying the value of the relevant axis
where you want DATATRIEVE to draw a solid reference line. The
value of n must be within the range of the X or Y values on the
plot.

• Be sure that the values on the relevant axis are numeric.

• Look at the X labels on the existing plot to see what units are
used for X values. Use the same units for the n value in the
PLOT REFERENCE statement.

• Use the PLOT REFERENCE statements repeatedly to add
multiple reference lines along the relevant axis of an existing
plot.

• You cannot draw reference lines for date values or string
values.

• You cannot specify a scientific notation value for the coordinate
of a reference line.

• DATATRIEVE uses scientific notation for labels with integer
values greater than 100,000. In addition, DATATRIEVE
rounds some real number values from the vertical (Y) axis or
uses scientific notation values rounded to three digits.

You can avoid this scientific notation by dividing the argument
for the Y axis by 1000.

Example
Create a collection from the YACHTS domain. Use the PLOT X_Y
statement to create a scattergraph showing the trend that as LOA
increases, so does price. Then select a value from the range of
values along the horizontal (X) axis at which you want to draw a
solid reference line. Use that value as the argument of the PLOT
REFERENCE_X statement. Next select a value from the vertical
(Y) axis and use it with the PLOT REFERENCE_Y statement to
plot a reference line along the vertical (Y) axis.

18–36 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Utilities

DTR> FIND YACHTS WITH PRICE NE 0
DTR> PLOT X_Y ALL LOA, PRICE THEN
CON> PLOT REFERENCE_X 33 THEN
CON> PLOT REFERENCE_Y 33000

This example produces a base scattergraph, plots a reference line
on top of the base graph for the horizontal (X) axis, then plots a
reference line on top of that for the vertical (Y) axis.

PLOT RE_PAINT
Restores the most recent plot to your screen. After you generate a
plot, it can become distorted for a number of reasons:

• DATATRIEVE scrolls up the existing plot with each new
command or statement you issue other than a plot statement.

• On some terminals, if the plot is large enough (such as a pie
chart), typing a subsequent command can overwrite the plot
displayed on your screen.

In each of the previous situations, the PLOT RE_PAINT statement
restores the most recent plot to your screen.

DATATRIEVE Plot Types 18–37

DATATRIEVE Plot Types
Utilities

Arguments and Notes
DATATRIEVE erases the existing plot from your terminal as soon
as you issue a new plot statement; therefore, in the following
sequence, DATATRIEVE restores the subsequent, most recent
plot, not the first plot:

1. You enter a plot statement

2. You enter a subsequent plot statement

3. You enter a PLOT RE_PAINT statement

PLOT SHADE
After producing a line or scattergraph, enter the PLOT SHADE
statement. The PLOT SHADE statement shades the area beneath
the points in the graph, emphasizing trends.

Arguments and Notes
You can also use the PLOT CONNECT statement to emphasize
trends in your data. It connects the points in a scattergraph.

Example
The following example shows a typical application of the PLOT
SHADE statement:

1. Enter one of the plot statements to generate a scattergraph.
This example uses the PLOT DATE_Y statement.

DTR> PLOT DATE_Y ALL DATE ("Year"),
CON> EQUIPMENT_SALES ("Equipment") OF ANNUAL_REPORT

2. Enter the PLOT SHADE statement. The area below the points
is now shaded for emphasis.

DTR> PLOT SHADE

18–38 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Utilities

PLOT SORT_BAR
The PLOT SORT_BAR statement sorts the bars of the histogram
or bar chart by descending height.

Arguments and Notes
If you use the PLOT TITLE statement with the PLOT NEXT_BAR
and the PLOT SORT_BAR statements, enter the statements in
the following sequence:

1. PLOT BAR

2. PLOT TITLE

3. PLOT SORT_BAR

4. PLOT NEXT_BAR

If you enter the PLOT TITLE statement after PLOT SORT_BAR,
the sorting will not appear in the subsequent plots produced by
the PLOT NEXT_BAR statement.

DATATRIEVE Plot Types 18–39

DATATRIEVE Plot Types
Utilities

Example
The following example shows a typical application of the PLOT
SORT_BAR statement:

1. Use the PERSONNEL domain to plot a simple bar chart
showing the total salaries for the first six departments. The
keyword ALL is required because the plot statement refers
to the collection created by the first statement. Dividing
the SALARY argument by 1000 eliminates default scientific
notation that DATATRIEVE uses to display large numbers:

DTR> FIND FIRST 6 PERSONNEL
DTR> PLOT BAR ALL DEPT, -
CON> SALARY/1000 ("Salary in 1000s")

2. Enter the PLOT SORT_BAR statement to sort the bars of the
chart by descending height:

DTR> PLOT SORT_BAR

PLOT TITLE
The PLOT TITLE statement replots the previous plot and shrinks
the vertical (Y) dimension to make room for a title at the top of
the plot. Additional lines in the title mean more reduction of the
vertical dimension.

The statement centers each line of the plot title.

18–40 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Utilities

Arguments and Notes
The PLOT TITLE statement requires a "text" string, which is
a character string enclosed in matching quotation marks. The
text for a plot title can be up to three lines long, with a slash (/)
separating the lines of text. A single title line cannot exceed 49
characters including blanks. Each segment of a multiple line title
must be enclosed in quotation marks. For example:

PLOT TITLE "text line 1"/"text line 2"/"text line 3"

Use the PLOT TITLE statement before any other utility plot
statements. The PLOT TITLE statement replots the base plot
and adds a title. If you have used a utility plot to add any utility
features (for example, a linear regression line or hatching) to a
base plot, you lose those additions when DATATRIEVE repaints
the base plot to add the title. You can use the PLOT TITLE
statement before or after the PLOT LIMITS_X statement and the
PLOT LIMITS_Y statement, however.

If you use the PLOT TITLE statement with the PLOT NEXT_
BAR statement and either the PLOT SORT_BAR or PLOT BAR_
ASCENDING statements, enter the statements in this sequence:

1. PLOT BAR

2. PLOT TITLE

3. PLOT SORT_BAR (or PLOT BAR_ASCENDING)

4. PLOT NEXT_BAR

If you enter the PLOT TITLE statement after PLOT SORT_BAR
or PLOT BAR_ASCENDING, the sorting will not appear in the
subsequent plots produced by PLOT NEXT_BAR.

Example
Using the PERSONNEL domain and the PLOT BAR statement,
create a base plot showing the total salary for each department.
Dividing the SALARY argument by 1000 eliminates the default
scientific notation that DATATRIEVE uses to display large
numbers.

Use the PLOT TITLE statement to add a title that also helps label
the units of measure.

DATATRIEVE Plot Types 18–41

DATATRIEVE Plot Types
Utilities

DTR> PLOT BAR ALL DEPT, SALARY/1000 OF
CON> PERSONNEL SORTED BY DEPT
DTR> PLOT TITLE "Salaries"/ -
CON> "by Department"/"(in Thousands)"

PLOT WOMBAT
Displays a picture of a wombat.

Arguments and Notes
Type HELP WOMBAT for more information about wombats.

Using Utilities with other Plot Statements
Figure 18–1 shows which utility plot can be used with each
plot, and vice versa. The columns list the plots, while the rows
represent the utilities. Each number corresponds to a plot type,
which are listed below.

18–42 DATATRIEVE Plot Types

DATATRIEVE Plot Types
Using Utilities with other Plot Statements

Figure 18–1 Relationship Between Utilities and Plots

BAR_ASCENDING

NEXT_BAR

BIG

CONNECT

CROSS_HATCH

HARDCOPY

LEGEND

LIMITS_X

LIMITS_Y

LR

PAUSE

REFERENCE_X

REFERENCE_Y

RE_PAINT

SHADE

SORT_BAR

TITLE

UTILITY

PLOTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

BAR CHARTS LINEGRAPHS SCATTERGRAPHS PIE CHARTS

Notice that PLOT NEXT_BAR is a bar plot, but behaves like a
utility plot. Therefore it is in a row, not in a column.

N° Corresponding Plot N° Corresponding Plot N° Corresponding Plot

1 PLOT BAR 8 PLOT MULTI_LINE 15 PLOT X_LOGY

2 PLOT BAR_AVERAGE 9 PLOT MULTI_LR 16 PLOT X_Y

3 PLOT HISTO 10 PLOT MULTI_SHADE 17 PLOT PIE

4 PLOT MULTI_BAR 11 PLOT DATE_LOGY 18 PLOT RAW_PIE

5 PLOT MULTI_BAR_GROUP 12 PLOT DATE_Y 19 PLOT VALUE_PIE

6 PLOT RAW_BAR 13 PLOT LOGX_LOGY

7 PLOT STACKED_BAR 14 PLOT LOGX_Y

DATATRIEVE Plot Types 18–43

Part V
Advanced Topics

19
Using DATATRIEVE with the

CDD/Repository Dictionary System

What is the CDD/Repository Dictionary System?
CDD/Repository is a central repository for DATATRIEVE data definitions. The
CDD/Repository system:

• Ensures the integrity of shared metadata

• Keeps information about the location of each definition

• Controls the access to each definition

• Keeps track of what happens to each definition

• Provides access to both CDO and DMU format dictionaries and definitions

The CDD/Repository dictionary system can be used by traditional VAX
programming languages such as BASIC, COBOL, or FORTRAN, as well as
by DATATRIEVE. CDD/Repository does not deal with data, instead it keeps
central data definitions (metadata) that a variety of languages can use.

The CDD/Repository Dictionary System Structure
The CDD/Repository dictionary system provides you with access to a single
logical dictionary. The logical dictionary can be composed of one or more physical
dictionaries that can be distributed on one device, on different devices on a single
node, on different nodes on a VAX cluster, and on local or wide area networks.
DATATRIEVE lets you store data definitions in the CDD/Repository dictionary
system using DATATRIEVE commands. However, you should be familiar with
the dictionary formats available to you.

CDD/Repository allows you to store your definitions in one of two dictionary
formats: CDO or DMU. Although CDO format definitions are all coded differently
from DMU format definitions, this difference is not apparent to you as a
DATATRIEVE user. The sections that follow describe the features of both of these
formats.

Using DATATRIEVE with the CDD/Repository Dictionary System 19–1

Using DATATRIEVE with the CDD/Repository Dictionary System
The CDD/Repository Dictionary System Structure

CDO Format Dictionaries
Through DATATRIEVE, you can store definitions for DATATRIEVE record,
domain, table, procedure, database, and port definitions in a CDO format
dictionary. CDO format dictionaries let you store definitions and information
about how some of those definitions are related. Using CDO, you can also
store field-level definitions, which you can include in your DATATRIEVE record
definitions using a special FROM clause.

If you define DATATRIEVE records and domains in a CDO format dictionary,
you can take advantage of the CDD/Repository feature that lets you establish
relationships between certain dictionary objects. (Note that DATATRIEVE uses
the term objects to refer to definitions stored in the dictionary; CDD/Repository
documentation uses the term entities to refer to the same definitions.)
Relationships track how data descriptions are shared. You can use the CDO
utility to display the names of objects that may be affected by any changes that
you make to metadata if relationships have been created for those objects. If you
use the CDO utility of CDD/Repository to define metadata, these relationships
are created automatically. If you define your metadata through DATATRIEVE,
you must use the RELATIONSHIPS clause of the DEFINE DOMAIN command or
the FROM clause of the DEFINE RECORD command to establish relationships.
See Chapter 20 for examples of this feature.

CDO keeps track of dictionary definition usage. Through CDO, you can show
which dictionary objects make use of a particular definition so that you can
identify which definitions are affected when you or someone else changes a
definition. You can store these definitions only in DMU format dictionary
directories. See Chapter 21 for more information.

DMU Format Dictionaries
DMU format dictionaries let you store the definitions of DATATRIEVE
records, domains, tables, procedures, databases, ports, and plots. Outside of
DATATRIEVE, you can manipulate the DMU format definitions with the DMU,
CDDL, or CDDV utilities that are supplied with CDD/Repository .

Distinguishing CDO Objects from DMU Objects in SHOW
Command
DATATRIEVE uses an asterisk (*) to differentiate DMU objects from CDO objects
when they are displayed in response to a SHOW DOMAINS, SHOW RECORDS,
or SHOW ALL command. The asterisk appears in front of the name of each DMU
object.

19–2 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
The CDD/Repository Dictionary System Structure

The following example displays all of the domains found in the dictionary
directory CDD$TOP.DTR$LIB.DEMO:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
DTR> SHOW DOMAINS
Domains:

* ACCOUNT_BALANCES;1 * ANNUAL_REPORT;1
* FAMILIES;1 * KETCHES;1 * OWNERS;1 * OWNERS_SEQUENTIAL;1
* PAYABLES;1 * PERSONNEL;1 * PETS;1 * PROJECTS;1
* SAILBOATS;1 * SALES;1 * YACHTS;1 * YACHTS_SEQUENTIAL;1

DTR>

Differentiation is particularly important when you are using the compatibility
dictionary. If your default dictionary directory is set to a compatibility dictionary
directory that includes both CDO definitions and DMU definitions, the DMU
definitions would be differentiated from CDO definitions by the asterisk.

You may want to suppress the asterisk in some instances where one of your
existing applications uses callable DATATRIEVE. For example, you may have
an application that calls DATATRIEVE to display the names of DMU format
domains and records. If that application is not formatted to handle the asterisks,
you can use the DTR$SHOW logical to suppress the asterisk. You can do this by
assigning a value of SUPPRESS_STAR to the DTR$SHOW logical using either
the DCL DEFINE or ASSIGN command as follows:

$ DEFINE DTR$SHOW SUPPRESS_STAR

You cannot assign a value to DTR$SHOW using the FN$CREATE_LOG function.
To be sure the logical is properly defined, you must assign a value to DTR$SHOW
before you invoke DATATRIEVE.

The Compatibility Dictionary
CDD/Repository also provides a special CDO format dictionary, called the
compatibility dictionary, which coordinates DMU format definitions and CDO
format definitions. The compatibility dictionary provides a logical view of two
physically separate dictionaries: the DMU format dictionary and the CDO
format dictionary (usually located in SYS$COMMON:[CDDPLUS]). Both of these
dictionaries are created when CDD/Repository is installed on your system. The
compatibility dictionary lets you:

• Continue to use your DMU format dictionary definitions

• Create new CDO format definitions that can be read by products that support
DMU format dictionaries only

• Create new definitions that can be accessed by products that support CDO
format dictionaries

Using DATATRIEVE with the CDD/Repository Dictionary System 19–3

Using DATATRIEVE with the CDD/Repository Dictionary System
The Compatibility Dictionary

Definitions created in the compatibility dictionary can be read by products that
support either the DMU format dictionary or the CDO format dictionary.

Your DMU format dictionary structure is mapped to the directory structure in
the compatibility dictionary, and vice versa. For example, when you create a new
directory in the compatibility dictionary, the new directory is listed in your DMU
hierarchy, just as your DMU format dictionary structure is visible from the CDO
utility. A translation utility provided by CDD/Repository translates CDD$TOP to
be the equivalent of the anchor of your compatibility dictionary. For example, if
your compatibility dictionary is stored in SYS$COMMON:[CDDPLUS] and you
create a directory called PERSONNEL, you can refer to this directory with either
of the following naming conventions:

• CDD$TOP.PERSONNEL

• SYS$COMMON:[CDDPLUS]PERSONNEL

Because the compatibility dictionary is a CDO format dictionary, you can create
and store CDO format definitions in it. However, because of the overlapping of
DMU dictionary structure and compatibility dictionary structure, you cannot
store a new definition in the compatibility dictionary that has a path name that
is identical to the path name of an object in the DMU.

To access the compatibility dictionary, you can use the system logical name
CDD$COMPATIBILITY to represent the anchor for the compatibility dictionary.
You can confirm where your compatibility dictionary is located by using the
SHOW LOGICAL command at the DCL prompt:

$ SHOW LOGICAL CDD$COMPATIBILITY
"CDD$COMPATIBILITY" = "SYS$COMMON:[CDDPLUS] (LNM$SYSTEM_TABLE)

DATATRIEVE and CDD/Repository
DATATRIEVE provides both read and write access to objects stored in CDO.
Using DATATRIEVE commands, you can define objects in the CDO format
dictionary. By defining record and domain definitions in CDO, you can create
relationships between a record and a domain. (You cannot create relationships for
port definitions.) Using the CDO utility, you can use these relationships to track
which records or domains will be affected by any changes to a definition.

You can also use the FROM clause of the DATATRIEVE DEFINE RECORD
command to take advantage of the CDO utility’s field level definition capability.
A field defined using the CDO utility can be included in a DATATRIEVE record
definition with the FROM clause. When you include a FROM clause in a record
definition stored in a CDO format dictionary, relationships are also created
between the field definition and the record. (For more information on the FROM
clause, see Chapter 20 and the VAX DATATRIEVE Reference Manual.)

19–4 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
DATATRIEVE and CDD/Repository

DATATRIEVE also provides access to the CDO utility through the CDO
command. The argument of the DATATRIEVE CDO command is a text string
that represents a CDO command. When you invoke the DATATRIEVE CDO
command, DATATRIEVE passes the command line in the argument to CDO. See
Chapter 20 for more information.

Although CDD/Repository allows you to change Digital supplied protocols,
changing DATATRIEVE protocols is not recommended. If an unknown element
is found while parsing data returned by CDD/Repository, DATATRIEVE may
display the DTR$_INVBUF (Invalid Metadata Buffer) error message.

Integrating CDO and DMU Definitions in Applications
One of the features of using DATATRIEVE with CDD/Repository is that you can
integrate definitions from both dictionaries in your applications. By integrating
definitions from CDO and DMU format dictionaries, you can take advantage of
CDO features such as pieces tracking and field-level definitions, while using your
existing DMU definitions.

How DATATRIEVE Determines Dictionary Destination
DATATRIEVE generally determines the destination or location of a given
definition based upon the format of a path name specified in a command,
statement, or existing definition.

A path name uniquely identifies a dictionary directory or dictionary object in
the CDD/Repository hierarchy. A full path name, or fully qualified path name,
starts with the name of a top-level CDD/Repository directory (either CDD$TOP
or an anchor) and includes the names of all directories that lead to the object
or directory you want to specify. The name of each object or directory in the
path name is separated from another object or directory name by a period.
CDD$TOP.DTR$LIB.DEMO.YACHTS is an example of a fully qualified DMU
format path name. MYNODE::DISK1:[KIRK.DTR]SAMPLE.YACHTS_CDO is an
example of a full path name for a CDO format definition.

A relative path name, also called a partial path name, is a shortened form of a full
path name. It includes only those directory names that are needed to uniquely
identify an object or directory, relative to your default dictionary location. See
Chapter 20 and Chapter 21 for specific information on how DATATRIEVE treats
relative path names in CDO and DMU format dictionaries.

A given name is the name of the object itself, not a full or partial path name.

In a DEFINE command, the path name determines in which dictionary the object
is defined. If the object being referred to in the definition contains an anchor in
its path name, DATATRIEVE uses the CDO format dictionary specified by the
anchor. If the object’s path name begins with CDD$TOP, DATATRIEVE uses the

Using DATATRIEVE with the CDD/Repository Dictionary System 19–5

Using DATATRIEVE with the CDD/Repository Dictionary System
How DATATRIEVE Determines Dictionary Destination

DMU format dictionary. If the object is referred to by a relative or partial path
name or by a given name, DATATRIEVE determines the target dictionary based
upon your current default dictionary setting.

DATATRIEVE fetches objects from both DMU and CDO format dictionaries of the
compatibility dictionary, regardless of the format of the path name you enter.

Converting DMU Definitions to CDO Format Definitions
Existing DMU format definitions are not automatically converted to CDO format
when you install CDD/Repository ; however, you can convert DMU format
definitions to CDO using one of the following methods:

• The DATATRIEVE EDIT command

• The DATATRIEVE EXTRACT command

You can essentially convert a definition from DMU format to CDO format by
moving your DMU format definition to a CDO format dictionary directory. If, for
example, you extract a definition from a DMU format dictionary to a command
file and then execute that command file in a CDO format dictionary, the new
object in the CDO format dictionary is in CDO format. If you performed a SHOW
of the object in the CDO format dictionary, however, it would appear identical
to the old DMU definition. It is the internal representations of DMU format
definitions and CDO format definitions that are different. These differences are
not reflected in the source text of the definition that you see when you display the
definition. Understanding this is important when you convert your definitions.

When you convert your definitions, you should be sure that references to other
objects are clearly defined. By converting the definition from DMU format to
CDO format, you have moved the definition to a new dictionary directory. You
may also want to update references to all objects mentioned in the definition to be
sure that DATATRIEVE will recognize the location of these objects relative to the
dictionary directory setting of your converted definition. This is especially true of
objects identified by relative or partial path names.

Also when you convert your definitions, you should keep in mind that you cannot
store a definition in the compatibility dictionary if it has a path name identical
to a definition in the DMU format dictionary. You must either provide a new
name for the object being converted or delete the object stored in the DMU format
dictionary.

If you choose to delete the object stored in the DMU format dictionary, you should
purge the DMU dictionary before you extract or edit the definition. If you are
editing the definition, be sure to add the DELETE dmu-object-name command
to your edit buffer. This command should be placed on the line preceding the
REDEFINE command. If you are extracting the definition, the EXTRACT

19–6 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
Converting DMU Definitions to CDO Format Definitions

command adds the DELETE command to the source text it produces, which can
then be used as a DATATRIEVE command procedure.

You should note that Digital does not recommend that you convert all of the
record and domain definitions in your DMU format dictionary to CDO format at
one time. It is better to create new applications using definitions in CDO format
and convert definitions in existing applications to CDO format in cases where a
new application uses part of an existing one.

The following sections describe the methods for converting definitions in more
detail.

Using the DATATRIEVE EDIT Command to Convert Definitions
The DATATRIEVE EDIT command copies the source text of the object or objects
you specify into an editing buffer. It also invokes your default editor to let you
edit the definitions. You can then change the DMU path name of the object to
a CDO format path name. You can also update references to any other objects
mentioned in the definition to be sure that DATATRIEVE will correctly identify
the location of the object. When you exit the editor, DATATRIEVE stores the
definition in the dictionary directory specified by the CDO format path name.

The EDIT command is recommended for editing one or two definitions at a time.
If you want to convert a large number of definitions at one time, you should
use the EXTRACT command (Using the DATATRIEVE EXTRACT Command to
Convert Definitions).

Using the DATATRIEVE EXTRACT Command to Convert
Definitions
Another way to convert one or more definitions is to use the DATATRIEVE
EXTRACT command to load all of the definitions you specify into a command file
in your VMS directory. The EXTRACT command is recommended for converting
multiple definitions at a single time.

With the EXTRACT command you can load multiple definitions into the command
file using one of the following methods:

• Specifying the path names of one or more objects, separating each object with
a comma (,)

• Specifying all objects of a given type (DOMAINS, RECORDS), separating
each object type with a comma (,)

Using DATATRIEVE with the CDD/Repository Dictionary System 19–7

Using DATATRIEVE with the CDD/Repository Dictionary System
Converting DMU Definitions to CDO Format Definitions

Once your definitions are stored in the command file you can edit the file or
you can print out the file to examine the definitions more closely for necessary
changes. When you edit the command file, you should check the path names of
the definitions to be sure that the definitions are identified as you want them to
be listed in the new CDO dictionary directory. When you have finished editing the
definitions, execute the command file in an appropriate CDO format dictionary
directory.

Choosing a Dictionary Format
If you want to take advantage of the CDD/Repository features offered by the
CDO utility, you should store new object definitions in the CDO format dictionary.
You may also want to convert existing DMU format object definitions to CDO
format. You can convert DMU definitions either through CDO or through
DATATRIEVE. CDO can only convert record and domain definitions. Moreover,
neither DATATRIEVE nor CDO can change references to other objects that may
be contained in the definition. For example:

DTR> DEFINE DOMAIN YACHTS USING
CON> CDD$TOP.DTR$LIB.DEMO_YACHT ON YACHT.DAT

The domain definition can be converted, but the reference to the record definition
in DMU is left unchanged.

You may want to continue using DMU format definitions if the following
conditions exist:

• Your existing DMU format dictionary contains a large number of applications
that you do not want to convert to CDO format immediately.

• Your applications refer to products that use only DMU format definitions.

If you choose to work with CDO format definitions, read Chapter 20, which
describes how DATATRIEVE works with the CDO format dictionary.

If you want to work with DMU format definitions, read Chapter 21, which
describes how DATATRIEVE works with DMU format definitions.

Creating and Using CDD/Repository Path Names
Every dictionary definition has a full name that uniquely identifies it. The full
name of each definition includes three parts: the dictionary origin, the path, and
the version number. The following list describes these parts:

• The dictionary origin is the root of the dictionary. In CDO format dictionaries,
the dictionary origin is represented by an anchor. An anchor specifies
the VMS directory where the CDO dictionary hierarchy is stored. It can
optionally consist of node, device, and directory components. If you are
referring to a directory or an object on a remote node, you might choose to use

19–8 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
Creating and Using CDD/Repository Path Names

a fully translated anchor, which contains all three components; otherwise, you
need only use as much of the anchor as is necessary to determine the relative
location of your target directory or object. MYNODE::DISK$1:[KIRK.DTR] is
an example of a fully qualified anchor. If your default directory is already set
to node MYNODE::DISK$1, then you need not include the node name or the
device.

In DMU format dictionaries, the dictionary origin is represented by the
CDD$TOP node. The CDD$TOP directory is found at the top of every DMU
format node and is created when CDD/Repository is installed. You specify the
path name of a directory or object by linking together the names of all the
directories starting with CDD$TOP and ending with the given name of the
target directory or object. Each name in the path name is separated from the
others by a period.

In the compatibility dictionary, the dictionary origin is represented by an
anchor, usually called SYS$COMMON:[CDDPLUS].

• A path name consists of one or more directory names separated by periods
and ending with an object name. Path names reflect the hierarchy of your
dictionary. You can have two or more objects with the same given name;
however, they must reside in different directories or have different version
numbers. Note, however that you cannot store a new definition in the DMU
format dictionary that has a path name identical to the full path name of an
object in the CDD/Repository compatibility dictionary. The definitions in the
DMU format dictionary and the compatibility dictionary overlap and therefore
definitions stored in each of those dictionaries must have unique names.

• The version number is similar to a VMS file version. It is separated from the
path name by a semicolon (;). CDD/Repository allows you to create multiple
versions of object definitions (but not directory definitions). The version
number uniquely identifies the specific version of the object definition you are
referring to.

The version number can be an absolute version number or a relative version
number. With an absolute version number, DATATRIEVE operates on the
object with the specified version number; for example, YACHTS_CDO;3. With
a relative version number, DATATRIEVE operates on the object at a specified
number below the highest version; for example, YACHTS_CDO;-1 (you cannot
use this specification with either the DEFINE command or the REDEFINE
command).

If you do not include a version number, DATATRIEVE operates on the highest
version of the object. (Note, however, that if you omit the version number, but
include the semicolon, DATATRIEVE considers the semicolon the end of the
command or statement.)

Using DATATRIEVE with the CDD/Repository Dictionary System 19–9

Using DATATRIEVE with the CDD/Repository Dictionary System
Creating and Using CDD/Repository Path Names

Rules for Naming CDD/Repository Objects and Directories
The following list identifies the rules to which CDD/Repository names must
conform:

• An anchor can contain up to either 205 or 235 characters. The maximum
number of characters is determined by the length of the longest CDO
directory name. For example, the anchor can contain no more than:

205 characters—if the longest CDO directory name contains 31
characters.

235 characters—if the longest CDO directory name contains 1 character.

• In a dictionary path name, the maximum number of characters in each
element is 31. Elements in dictionary path names may be either directory
names or object names. Note that for CDO format dictionaries, the maximum
total number of characters in a path name, including version number, is
either 65,300 or 65,330, depending on the length of the longest CDO directory
name in the anchor, as mentioned previously.

For individual directories and objects in path names, the following rules
apply:

Dictionary directory names must begin with a letter (A-Z).

Directory names can contain only letters, digits, dollar signs ($),
underscores (_), or hyphens (-).

Directory names must end with either a letter or a digit (A-Z, 0-9).

Object names can include alphanumeric characters from the DIGITAL
Multinational Character Set (DMCS), including underscores (_), hyphens
(-), and dollar signs ($).

Object names should not begin with three letters and a dollar sign ($).
You should especially avoid using DTR$, which is reserved for use by
DATATRIEVE.

DATATRIEVE converts lowercase letters in names to uppercase. DATATRIEVE
also treats an underscore and a hyphen as the same character. If you type
yachts-cdo for the name of an object, DATATRIEVE interprets the string as
YACHTS_CDO and that is how the name is displayed. Note, however, that
DATATRIEVE does not perform case conversion on actual data stored in
individual fields. DATATRIEVE stores field values as you typed them. You
should therefore understand the distinction between the names you give data
definitions (metadata) and actual values stored in data files (data).

19–10 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
Creating and Using CDD/Repository Path Names

Abbreviating CDD/Repository Path Names
You do not always need to use fully qualified dictionary path names to identify
directories and objects in your CDD/Repository dictionary. The form of the
abbreviated path name you use depends on where the target directory or object
is relative to your current position in the CDD/Repository dictionary system.
Relative path name is the proper term for abbreviated path names.

In an anchor, you need to specify the node name or device name only when the
object or the directory you want is located in a dictionary on a different node
or device than yours. If you are working on node MYNODE and the device
DISK$1, then you can use the VMS directory name [KIRK.DTR] as the anchor.
Note, however, that if you do not use an anchor at all, DTR uses the anchor that
specifies your default directory.

Looking down the tree structure from the dictionary directory where you have
set your default, you need to specify only the portion of the path name below the
level of your current directory location. If the full path name of the object is:

NODE::DISK$1:[KIRK.DTR]PERSONNEL.SALARIED.EMP

and you have set your default to:

NODE::DISK$1:[KIRK.DTR]PERSONNEL

you can refer to the object EMP with either of the following path names:

[KIRK.DTR]PERSONNEL.SALARIED.EMP

SALARIED.EMP

If you are looking downward in the DMU format dictionary tree structure (away
from CDD$TOP), you have to specify only the portion of the path name below the
level of your current dictionary location.

If you have to ‘‘back up’’ toward CDD$TOP to get to your target directory or
object, you can substitute a hyphen (-) in your path name for each directory name
leading to CDD$TOP until you have entered one for the first dictionary directory
common to both your current location and the path name you want to specify.
(Remember that if the command line you are entering ends in the hyphen, you
should end the command line with a semicolon (;). DATATRIEVE interprets a
hyphen at the end of a command as a continuation character.)

See Setting Dictionary Location for examples on using relative path names and
on using hyphens in path names to ‘‘back up’’ toward the anchor or CDD$TOP to
get to your target directory

Using DATATRIEVE with the CDD/Repository Dictionary System 19–11

Using DATATRIEVE with the CDD/Repository Dictionary System
Creating and Using CDD/Repository Path Names

Using Logical Names
Another way to abbreviate path names is to use logical names in dictionary path
names to refer to objects or directories. You can also use logical names to create
search lists.

You can define logicals at DCL level or use the DATATRIEVE function
FN$CREATE_LOG. At the DCL level, you create logical names for your session
using the ASSIGN command or the DEFINE command. You can add those
commands to your LOGIN.COM file to create the logical names each time you
log in to your account. You can also create logical names through DATATRIEVE
using the FN$CREATE_LOG function; logical names defined in this way are in
effect only for the length of your DATATRIEVE session. See VAX DATATRIEVE
Reference Manual for details on using the FN$CREATE_LOG function.

Logical Names in Dictionary Path Names
You can use logical names as a shorthand way of specifying files or directories
that you use frequently. You may have a command in your LOGIN.COM that
defines CDD$DEFAULT as the dictionary directory setting that DATATRIEVE
sets for you when you invoke DATATRIEVE. You may also have used the system
logical CDD$COMPATIBILITY as a logical name for the directory of your system
compatibility dictionary. CDD/Repository creates this logical in its startup
command procedure.

You may want to create logicals to represent anchors, or to represent the full path
names of dictionary directories that you use often.

To define a logical for a dictionary directory with the fully qualified name
URNODE::DISK$2:[BRUN.DATA]BUDGET, you could use the following
command:

$ DEFINE BUDGET_DICT "URNODE::DISK$2:[BRUN.DATA]BUDGET"

You can include the definition in your LOGIN.COM so that the logical is defined
each time you log in. Then, whenever you want to change your default directory
to URNODE::DISK$2:[BRUN.DATA]BUDGET, use the DATATRIEVE SET
DICTIONARY command as follows:

DTR> SET DICTIONARY BUDGET_DICT
DTR> SHOW DICTIONARY
The default directory is BUDGET_DICT

=URNODE::DISK$2:[BRUN.DATA]BUDGET

DTR>

19–12 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
Creating and Using CDD/Repository Path Names

To change back to your CDD$DEFAULT directory, enter the following command:

DTR> SET DICTIONARY CDD$DEFAULT
DTR> SHOW DICTIONARY
The default directory is CDD$DEFAULT

=MYNODE::DISK$1:[KIRK.DTR]PERSONNEL_CDO

DTR>

You can form valid dictionary path names by combining logical names with the
names of dictionary directories and objects. You must put the logical name first,
followed by the given names. For example, if your CDD$DEFAULT directory is
set to MYNODE::DISK$1:[KIRK.DTR]PERSONNEL_CDO and you want to ready
the EMPLOYEES domain cataloged in the SALARIED directory, but you do not
want to change default directories, you can enter the following READY command:

DTR> READY CDD$DEFAULT.SALARIED.EMPLOYEES
DTR> SHOW READY
Ready sources:

EMPLOYEES: Domain, RMS indexed, protected read
<=DISK$1:[KIRK.DTR]PERSONNEL_CDO.SALARIED.EMPLOYEES;1>

No loaded tables.

DTR> SHOW DICTIONARY
The default directory is DISK$1:[KIRK.DTR]PERSONNEL_CDO

DTR>

You must not define your own logical names to begin with three letters and
a dollar sign ($). You especially must avoid defining your own logical names
beginning with DTR$, which is reserved for use by DATATRIEVE.

Using Logicals for Search Lists
You can also use logicals to access more than one physical dictionary by using
search list logical names to identify physical dictionary areas that you want to
treat as a single dictionary. You create a search list when you assign one or more
dictionary areas to a logical name. The following example shows how a search
list is created:

$ DEFINE MY_DICT DISK$1:[KIRK.DTR]-
_$ PERSONNEL_CDO.SALARIED,-
_$ DISK$1:[KIRK.DTR]PERSONNEL_CDO.CONTRACT.CONTRACT_EMP,-
_$ URNODE::DISK$2:[BRUN.DATA]BUDGET

If you specify the logical name for your search list in the SET DICTIONARY
command, the first area specified in the search list becomes your default
dictionary area. Commands that directly affect definitions, such as DEFINE,
affect only definitions in the first dictionary area in the search list.

Using DATATRIEVE with the CDD/Repository Dictionary System 19–13

Using DATATRIEVE with the CDD/Repository Dictionary System
Creating and Using CDD/Repository Path Names

Searching commands such as SHOW, search through all areas in the search list,
as in the following example:

DTR> SET DICTIONARY MY_DICT
DTR> SHOW DICTIONARY
The default dictionary is MY_DICT

= DISK$1:[KIRK.DTR]PERSONNEL_CDO.SALARIED
= DISK$1:[KIRK.DTR]PERSONNEL_CDO.CONTRACT.CONTRACT_EMP
= URNODE::DISK$2:[BRUN.DATA]BUDGET

DTR> SHOW DOMAINS
Domains:

EMPLOYEES;1 CONTRACT_EMPLOYEES;1 ENG_BUDGET;1
MIS_BUDGET;1 WRIT_BUDGET;1 EQUIP_ACC;1 PURC_ACC;1
SALES_ACC;1

DTR>

In this example, DATATRIEVE searched the list of domain definitions in all four
of the directories listed in the search list. The order in which DATATRIEVE
displays the names is determined by the order of the directories listed in the
search list definition. For example, the domain EMPLOYEES is located in the
following dictionary directory:

DISK$1:[KIRK.DTR]PERSONNEL_CDO.SALARIED;

the domain CONTRACT_EMPLOYEES is located in

DISK$1:[KIRK.DTR]PERSONNEL_CDO.CONTRACT.CONTRACT_EMP

and so on.

You can associate a search list with the logical name CDD$DEFAULT. First you
should assign a search list to a logical name, then assign the logical name to
CDD$DEFAULT. Your initial default is the first dictionary area specified in the
search list. You can also assign a search list to CDD$DEFAULT.

Note

Search lists are designed primarily for use with CDO format dictionaries.
If you mix both CDO and DMU format dictionary definitions in a search
list, you may get unexpected results.

19–14 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
Setting Dictionary Location

Setting Dictionary Location
When you invoke DATATRIEVE, your location is the dictionary directory
assigned to the logical name CDD$DEFAULT. If you do not have an assignment
for CDD$DEFAULT, then when you invoke DATATRIEVE your dictionary location
is CDD$TOP.

To move from one dictionary directory to another, use the DATATRIEVE SET
DICTIONARY command. You can use either a full or a relative path name to
specify the dictionary destination or you can use a properly defined logical name.
You can also use the logical name CDD$DEFAULT to return to the directory you
assigned to it.

DTR> SET DICTIONARY DISK$1:[KIRK.DTR]SAMPLE
DTR> SHOW DICTIONARY
The default dictionary is DISK$1:[KIRK.DTR]SAMPLE

DTR> SET DICTIONARY CDD$DEFAULT
DTR> SHOW DICTIONARY
The default dictionary is DISK$1:[KIRK.DTR]PERSONNEL_CDO

DTR> SET DICTIONARY CONTRACT.CONTRACT_EMP
DTR> SHOW DICTIONARY
The default dictionary is
DISK$1:[KIRK.DTR]PERSONNEL_CDO.CONTRACT.CONTRACT_EMP

You can use a hyphen in your path name for each directory name leading to the
top-level directory in the dictionary until you have entered a hyphen for the first
dictionary directory common to both your current location and the path name
you want to specify. Remember, if the command line you are entering ends in
a hyphen, you must end the command line with a semicolon. DATATRIEVE
interprets a hyphen at the end of a command line as a continuation character.
Remember, too, you cannot use a hyphen in an anchor.

DTR> SHOW DICTIONARY
The default dictionary is
DISK$1:[KIRK.DTR]PERSONNEL_CDO.CONTRACT.CONTRACT_EMP
DTR> SET DICTIONARY -.-.SALARIED
DTR> SHOW DICTIONARY
The default dictionary is DISK$1:[KIRK.DTR]PERSONNEL_CDO.SALARIED

DTR> SET DICTIONARY -;
DTR> SHOW DICTIONARY
The default dictionary is DISK$1:[KIRK.DTR]PERSONNEL_CDO

You can also use search list logicals when setting your default dictionary
directory. In the following example, MY_DICT is a logical name that represents a
search list.

Using DATATRIEVE with the CDD/Repository Dictionary System 19–15

Using DATATRIEVE with the CDD/Repository Dictionary System
Setting Dictionary Location

DTR> SET DICTIONARY MY_DICT
DTR> SHOW DICTIONARY
The default dictionary is MY_DICT

= DISK$1:[KIRK.DTR]PERSONNEL_CDO.SALARIED
= DISK$1:[KIRK.DTR]PERSONNEL_CDO.CONTRACT.CONTRACT_EMP
= URNODE::DISK$2:[BRUN.DATA]BUDGET

DTR>

You should note that the DATATRIEVE SET DICTIONARY command controls
the default dictionary directory setting used by the CDO command. When you
enter a SET DICTIONARY command, the default dictionary used by the CDO
command is also changed. However, a CDO SET DEFAULT command does not
change your current DATATRIEVE default dictionary directory setting. For more
information on the CDO command, see The DATATRIEVE CDO Command.

Deleting, Purging, and Extracting Definitions
Use the DELETE command to erase definitions from dictionary directories. When
you delete a definition stored in the DMU format dictionary, you must always
include an explicit version number and a semicolon to end the command. This
means that the DELETE command contains two semicolons:

DTR> SHOW RECORDS
Records:

* PHONES_REC;3 * PHONES_REC;2 * PHONES_REC;1

DTR> DELETE PHONES_REC;1;
DTR> SHOW RECORDS
Records:

* PHONES_REC;3 * PHONES_REC;2

DTR>

However, when you delete a definition stored in the CDO format dictionary, you
can chose not to include a version number. In this case DATATRIEVE deletes the
highest version number of the named object. Such a command requires only a
semicolon:

DTR> SHOW RECORDS
Records:

YACHT_CDO_REC;5 YACHT_CDO_REC;4 YACHT_CDO_REC;3
YACHT_CDO_REC;2 YACHT_CDO_REC;1

DTR> DELETE YACHT_CDO_REC;
DTR> SHOW RECORDS
Records:

YACHT_CDO_REC;4 YACHT_CDO_REC;3 YACHT_CDO_REC;2
YACHT_CDO_REC;1

DTR>

19–16 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
Deleting, Purging, and Extracting Definitions

To delete dictionary definitions you need DELETE access to the dictionary.
See the VAX DATATRIEVE Reference Manual for more information on access
privileges and protection.

You can get rid of outdated versions of definitions using one of two methods:

• You can explicitly delete each version of the definition you do not want to
keep.

• You can use the PURGE command to delete all but the highest version or
specified versions of the definition.

To purge CDD/Repository objects, set your dictionary location to the directory
containing the definitions you want to purge. Enter the PURGE command or
the PURGE command with the KEEP argument to delete outdated versions of
definitions. Note, however, that you cannot purge a definition that is member
of a relationship. (To determine whether an object is a member in an existing
relationship, you can use the CDO command in DATATRIEVE to call the CDO
utility’s SHOW USES command. This CDD/Repository command displays a
list of any objects that own the specified definition. See Chapter 20 for more
information.)

The following example shows how to purge all but the two highest versions of
PHONES_REC in the PRACTICE directory:

DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS.BELL

DTR> SET DICTIONARY CDD$TOP.DTR$USERS.BELL.PRACTICE
DTR> SHOW RECORDS
Records:

* PHONES_REC;4 * PHONES_REC;3 * PHONES_REC;2

DTR> PURGE PHONES_REC KEEP = 2
DTR> SHOW RECORDS
Records:

* PHONES_REC;4 * PHONES_REC;3

If you want to move a definition to another dictionary directory or send it to
another user on your system, you can use the EXTRACT command to copy the
definition into a VMS file that you can execute or send. You (or the other user)
can then use the at sign (@) to store the definition at a new dictionary location.

Note that you should check to be sure there is nothing in the new directory with
the same name as the definition you want to copy. If there were, you would edit
one of the definitions to change the object name. Note, too, that if the record
definition is stored in a CDO format dictionary and it contains a CDO field-level
definition in a FROM clause, you may have to edit the definition to point to the
correct location of the field-level definition.

Using DATATRIEVE with the CDD/Repository Dictionary System 19–17

Using DATATRIEVE with the CDD/Repository Dictionary System
Deleting, Purging, and Extracting Definitions

The following example shows how to copy the definition SALES_REC in the
directory CDD$TOP.DTR$LIB.DEMO to the file TEMP.COM; set the dictionary
location; and store the SALES_REC definition in the new dictionary directory.
Note the use of the SHOW ALL command to be sure there is nothing in the
directory with the same name as the definition in TEMP.COM.

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
DTR> SHOW RECORDS
Records:

* ACCOUNT_BALANCES_REC;1 * ANNUAL_REC;1 * DAB;1
* FAMILY_REC;1 * OWNER_RECORD;1 * PAYABLES_REC;1 * PERSONNEL_REC;1
* PET_REC;1 * PROJECT_REC;1 * SALES_REC;1 * YACHT;1

DTR> EXTRACT SALES_REC ON TEMP.COM
DTR> SET DICTIONARY CDD$TOP.DTR$USERS.BELL
DTR> SHOW ALL
Domains:

* ACCOUNT_BALANCES;1 * FAMILIES;1 * OWNERS;1
* PERSONNEL;1 * PETS;1 * PROJECTS;1 * YACHTS;1

Records:
* ACCOUNT_BALANCES_REC;1 * FAMILY_REC;1 * OWNER_RECORD;1
* PERSONNEL_REC;1 * PET_REC;1 * PROJECT_REC;1 * YACHT;1

The default directory is CDD$TOP.DTR$USERS.BELL
No established collections.
No ready sources.
No loaded tables.

DTR> @TEMP.COM
Element "SALES_REC" not found in dictionary.
[Record is 35 bytes long.]
Element to be redefined not found in dictionary - new element defined.
DTR> SHOW RECORDS
Records:

* ACCOUNT_BALANCES_REC;1 * FAMILY_REC;1 * OWNER_RECORD;1
* PERSONNEL_REC;1 * PET_REC;1 * PROJECT_REC;1 * SALES_REC;1

YACHT;1

DTR>

The messages resulting from the store operation at the new location are
informational and do not indicate a problem. The extract operation automatically
puts DELETE and REDEFINE commands before the definition in TEMP.COM. In
the directory BELL, nothing can be deleted or redefined as a new version, which
DATATRIEVE reports. The REDEFINE command still stores the definition for
you.

You should note that if you use the EXTRACT command to move record
definitions from one directory to another, you could be affecting any domain
definitions that refer to the record you are moving. When you define a domain,
DATATRIEVE stores a full path name of the record specified in the domain
definition. If you extract a record and move it to a new directory, the existing

19–18 Using DATATRIEVE with the CDD/Repository Dictionary System

Using DATATRIEVE with the CDD/Repository Dictionary System
Deleting, Purging, and Extracting Definitions

domain definition no longer points to the location of the record. You must edit
the domain definition to specify the correct path name of the record in its new
location.

Also, if you use the EXTRACT command to move record definitions, you should
check those definitions for CDO field-level definitions in FROM clauses. If
the extracted record does include a FROM clause, be sure that the field-level
definition to which the record points is also stored in the new dictionary directory
or that you specify a full path name for the field in the FROM clause.

Using DATATRIEVE with the CDD/Repository Dictionary System 19–19

20
Using DATATRIEVE with a CDO Format

Dictionary

The CDD/Repository dictionary system offers you a single logical dictionary that
provides access to one or more physical CDO dictionaries. These dictionaries
can be distributed on different devices on a single node, on different nodes of a
VAXcluster, or on local or wide area networks.

CDO format dictionaries offer you the ability to store data definitions in any one
of a number of user-created CDO dictionaries set up anywhere on the system
or network. You can also store definitions in the CDO compatibility dictionary,
which is created automatically when CDD/Repository is installed on your system.

DATATRIEVE lets you store record, domain, procedure, table, database, and port
definitions in CDO format dictionaries. Using CDO with DATATRIEVE, you
can take advantage of the CDD/Repository feature that allows you to establish
relationships between some CDO dictionary objects. These relationships track
how data descriptions are shared. You can use this feature to see what data
definitions are affected when you or someone else makes changes to a definition.

CDO format dictionaries also allow for field-level definitions. DATATRIEVE
lets you use a special FROM clause in record definitions to include field level
definitions defined through the CDO utility in your DATATRIEVE record.

Organization of a CDO Format Dictionary
The structure of an individual CDO format dictionary and the DMU format
dictionary is similar. Each dictionary is organized as a hierarchy of dictionary
directories and dictionary entities. (DATATRIEVE refers to dictionary entities
as objects. These terms are used interchangeably throughout the DATATRIEVE
documentation.) Dictionary directories are similar to VMS directories in that
they organize information within the hierarchy. Data definitions are dictionary
objects. Each dictionary can have a number of dictionary directories and any
number of objects. As in DMU format dictionaries, dictionary directories are
parents. Children of dictionary directories can include other directories or objects.

Using DATATRIEVE with a CDO Format Dictionary 20–1

Using DATATRIEVE with a CDO Format Dictionary
Organization of a CDO Format Dictionary

Figure 20–1 illustrates a sample user-created CDO format dictionary. Text in
boxes indicates directories. Text without boxes indicates object names.

Figure 20–1 Sample CDO Format Dictionary

CONTRACT

YACHTS_CDO

SAMPLE

YACHTS_CDO
_RECBOOK_REC

CATALOG

BOOK INVENTORY

PERSONNEL_CDO

MYNODE::DISK$1:[KIRK.DTR]

SALARIED

EMPLOYEESEMPLOYEE
_REC

SALARY
HISTORY

EMPLOYEES

. . .

. . .

. . .

. . .

.

..

.
..
.

..

.
..
.

CONTRACT_EMP CONTRACTOR

All directories and objects are descendants of a user-created dictionary
MYNODE::DISK$1:[KIRK.DTR], which was created using the CDO utility.

20–2 Using DATATRIEVE with a CDO Format Dictionary

Using DATATRIEVE with a CDO Format Dictionary
Displaying Information About Directories, Objects, and Session Defaults

Displaying Information About Directories, Objects, and
Session Defaults
The DATATRIEVE SHOW command displays information about data definitions
stored in dictionary directories. (The DATATRIEVE PRINT and LIST statements,
on the other hand, display actual data, not data definitions.) For more
information on the SHOW command, see the VAX DATATRIEVE Reference
Manual.

Creating Dictionaries and Dictionary Directories
On installation, CDD/Repository creates a DMU dictionary for you. It also creates
a CDO compatibility dictionary. You can use the compatibility dictionary to store
your own CDO definitions or you can create another physical CDO dictionary on
your own system or on another device on a VAXcluster. To define a new physical
CDO dictionary, you must take the following actions:

1. Create a new VMS directory.

2. Create a CDO dictionary using the DEFINE DICTIONARY command of the
CDO utility in CDD/Repository .

You can create the new VMS directory at DCL level, or you can spawn a
subprocess from DATATRIEVE using either the FN$SPAWN function or the
FN$DCL function to create the VMS directory. You should not store any other
files in the directory that contains your CDO dictionary. If you should delete a
CDO dictionary using the DELETE DICTIONARY command of the CDO utility,
all files in the VMS anchor directory are deleted.

To define the new dictionary, you must use the CDO utility. You can access the
CDO utility through DATATRIEVE with the DATATRIEVE CDO command, or
you can invoke the CDO utility at the DCL level. Be sure that you invoke CDO
from a VMS directory that does not contain a dictionary. (A VMS directory that
contains an entry for CDD$PROTOCOLS indicates that a CDO dictionary is
stored there.)

In the following example, the new VMS directory is created at DCL level. To
create the new dictionary, the user invoked DATATRIEVE and then used the
CDO command to create the new dictionary in that VMS directory.

$ SET DEFAULT DISK$3:[CORPORATE]
$ CREATE/DIRECTORY [.CDO_LIBRARY]
$ DATATRIEVE/INTERFACE=CHARACTER_CELL
VAX DATATRIEVE V6.0
DEC Query and Report System
Type HELP for help

Using DATATRIEVE with a CDO Format Dictionary 20–3

Using DATATRIEVE with a CDO Format Dictionary
Creating Dictionaries and Dictionary Directories

DTR> SHOW DICTIONARY
The default dictionary is DISK$1:[KIRK.DTR]PERSONNEL_CDO

DTR> CDO DEFINE DICTIONARY DISK$3:[CORP.CDO_LIB]
DTR> CDO DIRECTORY DISK$3:[CORP.CDO_LIB]

Directory DISK$3:[CORP.CDO_LIB]

CDD$PROTOCOLS DIRECTORY

DTR> SET DICTIONARY DISK$3:[CORP.CDO_LIB]
DTR> SHOW DICTIONARY
The default dictionary is DISK$3:[CORP.CDO_LIB]

DTR> SHOW ALL
Domains:
Records:
Procedures:
Tables:
Dictionaries:

CDD$PROTOCOLS
The default dictionary is DISK$3:[CORP.CDO_LIB]
No established collections.
No ready sources.
No loaded tables.

DTR>

CDD/Repository creates the directory CDD$PROTOCOLS automatically when
you create a new CDO dictionary. It contains definitions that describe the types
of objects and attributes that you use in your data descriptions. These definitions
are essential to the functioning of your dictionary and should not be changed
or deleted. See the CDD/Repository documentation for more information on the
directory CDD$PROTOCOLS and its contents.

To create dictionary directories to append to your new dictionary or to an existing
dictionary, use the DATATRIEVE DEFINE DICTIONARY command.

Note

The CDO DEFINE DICTIONARY command is used to create new CDO
format dictionaries. The DATATRIEVE DEFINE DICTIONARY command
is used to create dictionary directories. If you want to create dictionary
directories through the CDO utility, use the CDO DEFINE DIRECTORY
command.

20–4 Using DATATRIEVE with a CDO Format Dictionary

Using DATATRIEVE with a CDO Format Dictionary
Creating Dictionaries and Dictionary Directories

You can define the new dictionary directory by using either a full path name or
the directory’s given name. If you define the directory using a full path name,
then you need not set your default directory to the directory from which you want
to create your new directory. If you use just the given name, then DATATRIEVE
appends the new directory to your default directory.

The following example uses a given name to append the directory CATALOG to
the dictionary anchor DISK$1:[KIRK.DTR].

DTR> SHOW DICTIONARY
The default directory is DISK$3:[CORP.CDO_LIB]

DTR> DEFINE DICTIONARY CATALOG
DTR> SHOW DICTIONARIES
Dictionaries:

CDD$PROTOCOLS CATALOG

DTR>

Because CDD/Repository allows for multiple CDO format dictionaries, you may
accidentally try to create a directory in a dictionary that does not exist. In such
a case, the DEFINE DICTIONARY command fails and you receive a message
saying that the CDO dictionary in which you tried to define the directory does not
exist.

Deleting CDO Dictionaries and Dictionary Directories
You cannot delete any of your CDO dictionaries or dictionary directories with
the DATATRIEVE DELETE command. You must use the DATATRIEVE CDO
command to access the CDO utility or you must exit DATATRIEVE and invoke
the CDO utility. Then you can use the CDO DELETE DIRECTORY and DELETE
DICTIONARY commands to delete the appropriate definition.

You must be the owner of a directory or the system manager to delete a directory
definition. Before you delete a dictionary directory, you must empty the directory
of its contents. You may want to delete existing definitions in the directory or to
move the definitions to other directories. (If you choose to move the definitions,
be sure that definitions of other dictionary objects that point to the object you are
moving are changed to point to the new location.)

The following example uses the DATATRIEVE CDO command to access the
CDO utility, and then uses the CDO DELETE command to delete the directory
CATALOG. The CDO utility’s /LOG qualifier displays an informational message
to indicate that the directory is deleted.

Using DATATRIEVE with a CDO Format Dictionary 20–5

Using DATATRIEVE with a CDO Format Dictionary
Deleting CDO Dictionaries and Dictionary Directories

DTR> SHOW DICTIONARY
The default dictionary is DISK$3:[CORP.CDO_LIB]CATALOG

DTR> SHOW ALL
Domains:

BOOK;1 INVENTORY;1
Records:

BOOK_REC;1
Procedures:
Tables:
Dictionaries:
The default directory is DISK$3:[CORP.CDO_LIB]CATALOG
No established collections.
No ready sources.
No loaded tables.

DTR> DELETE BOOK;1;
DTR> DELETE BOOK_REC;1;
DTR> DELETE INVENTORY;1;
DTR> SHOW ALL
Domains:
Records:
Procedures:
Tables:
Dictionaries:
The default directory is DISK$3:[CORP.CDO_LIB]CATALOG
No established collections.
No ready sources.
No loaded tables.

DTR> SET DICTIONARY DISK$3:[CORP.CDO_LIB]
DTR> CDO DELETE DIRECTORY/LOG CATALOG
%CDO-I-DIRDEL, directory CATALOG deleted

DTR>

You cannot delete a CDO dictionary if it has an object that is used by a definition
in a different dictionary. For example, you cannot delete a dictionary if it contains
a record definition that is used by a domain in a different dictionary. If you are
uncertain whether any objects in the dictionary have relationships, you can
use the SHOW USED_BY, SHOW USES, and SHOW WHAT_IF commands of
the CDO utility to display a list of objects affected by relationships. You can
access these commands through DATATRIEVE with the DATATRIEVE CDO
command. For more information on the DATATRIEVE CDO command, see The
DATATRIEVE CDO Command.

Before you delete a dictionary, be sure you know whether any of the objects
in that dictionary had relationships to objects in other dictionaries. The CDO
DELETE DICTIONARY command deletes all objects in the dictionary as well as
any relationships between objects in the dictionary and in other dictionaries.

20–6 Using DATATRIEVE with a CDO Format Dictionary

Using DATATRIEVE with a CDO Format Dictionary
Deleting CDO Dictionaries and Dictionary Directories

Note, too, that the CDO DELETE DICTIONARY command deletes all files in the
specified VMS anchor directory, including any files unrelated to the dictionary
that you may have stored there.

The following example displays the contents of the anchor directory to be sure
that all elements have been appropriately moved or deleted. It then deletes the
dictionary DISK$3:[CORP.CDO_LIB] using the CDO utility.

DTR> SET DICTIONARY DISK$3:[CORP.CDO_LIB]
DTR> SHOW ALL
Domains:
Records:
Procedures:
Tables:
Dictionaries:
The default directory is DISK$3:[CORP.CDO_LIB]
No established collections.
No ready sources.
No loaded tables.

DTR> EXIT

$ DICTIONARY OPERATOR
CDO>DELETE DICTIONARY/LOG DISK$3:[CORP.CDO_LIB].
%CDO-I-DICDEL, dictionary DISK$3:[CORP.CDO_LIB] deleted
CDO> EXIT
$

When you use the CDO utility’s /LOG qualifier, a message is issued indicating
that the dictionary has been deleted.

Defining DATATRIEVE Objects for CDO Format
Dictionaries
You can store DATATRIEVE record, domain, procedure, table, database, and port
definitions in a CDO format dictionary. If you choose to store these definitions
in CDO format, you can automatically create a CDO format definition by setting
your default dictionary to a CDO format dictionary and defining an object using
the given name of the object you want to create. (A given name is the name of
the object itself, not a full or partial path name.)

If your default is set to a CDO format dictionary directory, you can also use a
relative path name to store a definition in a directory relative to your default
CDO directory.

If you are in the compatibility dictionary, you can specify a CDO format definition
by using a CDO style path name in your object definition, or by using an anchor
in a SET DICTIONARY command before defining new objects.

Using DATATRIEVE with a CDO Format Dictionary 20–7

Using DATATRIEVE with a CDO Format Dictionary
Defining DATATRIEVE Objects for CDO Format Dictionaries

DATATRIEVE determines the dictionary format of your definition by reading
the path name or by looking at your default dictionary directory. If your default
dictionary directory is in a CDO format dictionary and the path name stored
in the definition is a given name or a relative path name, then DATATRIEVE
defines the object in CDO format.

You can define most CDO format domains either with or without the optional
WITH RELATIONSHIPS clause. (You cannot define DATATRIEVE port
definitions with relationships.)

If you use the WITH RELATIONSHIPS clause in your DATATRIEVE
domain definition, you can take advantage of the pieces tracking feature of
CDD/Repository. To take full advantage of this feature, you should be aware of
some of the work that DATATRIEVE does for you when it creates and stores CDO
format definitions.

When you define an RMS domain with relationships, DATATRIEVE creates the
necessary CDO objects that let you take advantage of the relationships feature.
These objects include the following:

• CDD$DATABASE

• MCS_BINARY

• CDD$RMS_DATABASE

• CDD$FILE_DEFINITION

The CDD$DATABASE object points to the MCS_BINARY object that contains the
name of the file used by your DATATRIEVE domain definition. Remember that
a DATATRIEVE domain definition links the description of the data (a record)
to the file containing the actual data. The CDD$DATABASE also points to a
CDD$RMS_DATABASE object. The CDD$RMS_DATABASE object points to the
record definition specified in the domain definition.

The CDD$RMS_DATABASE object may also point to a CDD$FILE_DEFINITION
object (although the CDD$FILE_DEFINITION object is not created until you
define the data file with the DATATRIEVE DEFINE FILE command). The
CDD$FILE_DEFINITION object describes an RMS file. It lists attributes for
the RMS file as specified in the DEFINE FILE command. If your DATATRIEVE
DEFINE FILE command refers to an FDL file, DATATRIEVE builds the
CDD$FILE_DEFINITION file based on the attributes listed in the FDL file. (For
more information on using FDL files in DATATRIEVE, see Chapter 4.)

20–8 Using DATATRIEVE with a CDO Format Dictionary

Using DATATRIEVE with a CDO Format Dictionary
Defining DATATRIEVE Objects for CDO Format Dictionaries

If you use DATATRIEVE to define a domain with relationships, you should note
that while DATATRIEVE creates the CDD$DATABASE, CDD$RMS_DATABASE,
MCS_BINARY, and CDD$FILE_DEFINITION objects, it does not make entries
for these objects in the CDO directory. If you invoke the CDO DIRECTORY
command, the display that it creates does not include an entry for the objects
created by the DATATRIEVE DEFINE DOMAIN command. You can make
entries for these objects using the CDO ENTER command. However, to make
these directory entries, you must know the name of the object for which you are
creating an entry. DATATRIEVE names these objects by appending a suffix to
the given name of the domain. The suffix consists of two to four letters preceded
by a dollar sign ($). These are displayed in Table 20–1.

Table 20–1 Names for DATATRIEVE CDO Objects

Object Created
by DATATRIEVE

Suffix Appended
by DATATRIEVE Example

CDD$DATABASE $DB YACHTS_CDO$DB

CDD$RMS_DATABASE $RMS YACHTS_CDO$RMS

MCS_BINARY $FILE YACHTS_CDO$FILE

CDD$FILE_DEFINITION $FD YACHTS_CDO$FD

See the CDD/Repository documentation for more details on making directory
entries for new objects with the CDO ENTER command.

If you are defining a domain based upon a relational database source, then the
CDD$DATABASE for that object was created by the utility used to create that
database.

You can create a CDD$DATABASE using the CDO utility rather than letting
DATATRIEVE create it for you. If you do, you can then use DATATRIEVE to
define a domain based upon that CDD$DATABASE. In such a case, the WITH
RELATIONSHIPS clause is a required part of the domain definition.

Defining domains and records without the WITH RELATIONSHIPS clause is very
similar to defining objects as you would for a DMU format dictionary; however,
these definitions are written in CDO format and stored in CDO dictionaries.

See the CDD/Repository documentation for more information.

Defining DATATRIEVE Domains in CDO Format, Defining DATATRIEVE
Records in CDO Format, and Defining Data Files for CDO Format Domains
discuss concerns and features specific to individual DATATRIEVE define
commands.

Using DATATRIEVE with a CDO Format Dictionary 20–9

Using DATATRIEVE with a CDO Format Dictionary
Defining DATATRIEVE Objects for CDO Format Dictionaries

Defining DATATRIEVE Domains in CDO Format
One of the key differences between a domain defined for a DMU format dictionary
and one defined for a CDO format dictionary is that you can define CDO format
objects with relationships. The WITH RELATIONSHIPS clause is part of the
syntax of the DATATRIEVE DEFINE DOMAIN command. (The syntax of the
DEFINE DOMAIN command varies for the type of domain you are defining:
RMS domain, view domain, relational domain, or remote domain. (See Using
the WITH RELATIONSHIPS Clause for information on defining specific types of
domains.)

Defining DATATRIEVE Records in CDO Format
When you define a record in DATATRIEVE, that record is made up of a
combination of group or elementary fields. Fields, in essence, are part of the
record definition, and do not exist independently of it. The record PHONES_REC
shows a typical DATATRIEVE record definition:

DTR> SHOW PHONES_REC
RECORD PHONES_REC
01 PHONES_REC.

05 FULL_NAME QUERY_NAME IS NAME.
10 LAST_NAME PIC X(20)

QUERY_NAME IS L.
10 FIRST_NAME PIC X(15)

QUERY_NAME IS F.
05 AREA_CODE PIC X(3)

QUERY_NAME IS AREA.
05 PHONE_NUMBER PIC X(8)

QUERY_NAME IS NUMBER.
;

DTR>

Each of the fields in PHONES_REC is part of the record. These fields are defined
as part of the DATATRIEVE DEFINE RECORD command.

The CDO utility of CDD/Repository offers you field-level definition capability.
With the CDO utility, you can define individual fields that exist apart from
any record definition. When you define records using either the CDO utility or
DATATRIEVE, you can use these CDO-defined fields in your record definition.
This allows you to store just one copy of a particular field-level definition that can
be used by a number of different products or programs.

A company may have many applications that include the fields FULL_NAME,
FIRST_NAME, and LAST_NAME. To ensure that each translation of those
fields is consistent throughout the company, you may want to have a single
company-wide definition for each of those definitions. CDD/Repository offers this
capability.

20–10 Using DATATRIEVE with a CDO Format Dictionary

Using DATATRIEVE with a CDO Format Dictionary
Defining DATATRIEVE Objects for CDO Format Dictionaries

In the following example, the CDO utility is used to define the fields FIRST_
NAME and LAST_NAME. In CDO, only elementary fields can be defined at
field level. The group field FULL_NAME is defined as a record and includes
the FIRST_NAME and LAST_NAME fields. At the DCL level, the command
DICTIONARY OPERATOR invokes the CDO utility.

$ DICTIONARY OPERATOR
CDO> DEFINE FIELD FIRST_NAME
cont> DATA TYPE IS TEXT SIZE IS 15.
CDO> DEFINE FIELD LAST_NAME
cont> DATA TYPE IS TEXT SIZE IS 20.
CDO> DEFINE RECORD FULL_NAME.
cont> FIRST_NAME.
cont> LAST_NAME.
cont> END FULL_NAME RECORD.
CDO> EXIT
$

In DATATRIEVE, you can take advantage of this CDD/Repository feature by
using the FROM clause of the DATATRIEVE DEFINE RECORD command. With
the FROM clause, you can create a record PHONES_REC_CDO that uses the
individual field definitions FIRST_NAME and LAST_NAME. The word GROUP
is a DATATRIEVE keyword; it indicates that the CDO record definition FULL_
NAME is used in DATATRIEVE as a group field definition. Note that because
FULL_NAME is stored in the default directory, neither a device nor a directory
specification need be included in the field name.

DTR> DEFINE RECORD PHONES_REC_CDO USING
DFN> 01 PHONES_REC_CDO.
DFN> 05 FROM GROUP FULL_NAME.
DFN> 05 AREA_CODE PIC X(3)
DFN> QUERY_NAME IS AREA.
DFN> 05 PHONE_NUMBER PIC X(8)
DFN> QUERY_NAME IS NUMBER.
DFN> ;

DTR>

The following example uses the CDO-defined field-level definitions FIRST_NAME
and LAST_NAME. It also uses MIDDLE_INIT, which is a field that is local to
DATATRIEVE. Because MIDDLE_INIT is defined in DATATRIEVE, you cannot
use the FULL_NAME group field used in the previous example. Instead, this
record definition uses the group field NAME, which is also local to DATATRIEVE.
To complete the record definition, this example includes the ADDRESS_GROUP_
FIELD record that was created in The DATATRIEVE CDO Command with the
CDO utility.

Using DATATRIEVE with a CDO Format Dictionary 20–11

Using DATATRIEVE with a CDO Format Dictionary
Defining DATATRIEVE Objects for CDO Format Dictionaries

DTR> DEFINE RECORD ADDRESSES_REC USING
DFN> 01 ADDRESSES_REC.
DFN> 03 NAME.
DFN> 05 FROM FIELD LAST_NAME.
DFN> 05 FROM FIELD FIRST_NAME.
DFN> 05 MIDDLE_INIT PIC X.
DFN> 03 FROM GROUP ADDRESS_GROUP_FIELD.
DFN> ;

DTR>

Note that if you should update a version of a field-level definition, you may also
have to update the record definition to reflect the field’s new version number. You
can do this by editing the record definition and then immediately exiting from the
editor.

When you use a FROM clause to include field-level definitions in your
DATATRIEVE record definition, you are also establishing relationships between
the field definition and the record definition. You can then perform pieces
tracking on these objects using the CDO utility’s SHOW USES and SHOW
USED_BY commands.

Defining Data Files for CDO Format Domains
DATATRIEVE checks each DEFINE FILE command for special arguments that
affect the characteristics of your data file regardless of which dictionary your
domain is stored in. When you define a data file for a DATATRIEVE domain that
is defined in a CDO format dictionary but without relationships, the process for
defining the data file is similar to defining a data file for a DMU format domain.

Readying CDO Format Domains
When you ready a domain, DATATRIEVE determines the dictionary source of the
domain through the path name used in the READY command. If you use only
the domain’s given name, DATATRIEVE searches the contents of your default
directory. If you use a relative path name, DATATRIEVE searches the directory
relative to your default directory.

If a CDO format domain was defined using the WITH RELATIONSHIPS clause of
the DATATRIEVE DEFINE DOMAIN command, you may receive informational
messages when you ready that domain. CDD/Repository flags an object with
a message if the object has been affected by a change to another object. For
example, if you modify a record definition, CDD/Repository attaches a message
to any domain definition that refers to that record. When you go to ready that
domain, DATATRIEVE displays the message.

20–12 Using DATATRIEVE with a CDO Format Dictionary

Using DATATRIEVE with a CDO Format Dictionary
Readying CDO Format Domains

For example, the domain YACHTS_CDO was originally defined with the
relationships clause using the record YACHT_CDO_REC;1. Later, YACHT_CDO_
REC is redefined to produce YACHT_CDO_REC;2. If you ready YACHTS_CDO,
you receive a message as in the following example:

DTR> READY YACHTS_CDO
"YACHTS_CDO" uses an entity which has new versions,
triggered by RECORD entity
"DISK$1:[KIRK.DTR]SAMPLE.YACHT_CDO_REC;2".
[Record is 41 bytes long.]
DTR>

This message is informational. It lets you know that there may be some
discrepancy between versions of the objects. You should check that all your
definitions are consistent before going on, otherwise you may find that your data
is invalid.

You might also receive messages in situations like the following if the domain
was defined with relationships:

• YACHTS_CDO is defined using the record YACHT_CDO_REC. It contains
a field PRICE;1, which was changed through CDO with the CDO CHANGE
command (which modifies an object, but does not create a new version). This
would generate a message indicating that the record YACHT_CDO_REC may
be invalid because of the change to the PRICE field.

• The view domain SAILBOATS_CDO refers to the domain YACHTS_CDO,
which refers to YACHT_CDO_REC described in the previous example (in
which the PRICE field was changed). When you ready SAILBOATS_CDO,
you receive the same message you received when you readied YACHTS_CDO.

You can use the CDO utility’s SHOW NOTICES command to display messages
that may be attached to any specified object. If you want to clear the messages
after you display them, use the CDO utility’s CLEAR NOTICES command. See
the CDD/Repository documentation for more information.

If you use the CDO utility to define a CDD$DATABASE based upon a CDD$RMS_
DATABASE and a record defined using either the CDO utility or DATATRIEVE,
you can ready that database directly. For instance, a previous example used
the CDO utility to define the record CDO_REC. The CDO utility was then used
to define a CDD$RMS_DATABASE called CDO_RMS based on CDO_REC. The
CDO utility’s CDO DEFINE DATABASE command was then used to define the
database CDO_DB. To ready this database in DATATRIEVE, you would enter the
following command:

DTR> READY CDO_DB

Using DATATRIEVE with a CDO Format Dictionary 20–13

Using DATATRIEVE with a CDO Format Dictionary
Readying CDO Format Domains

For more information on the CDD$DATABASE and CDD$RMS_DATABASE,
see Defining DATATRIEVE Objects for CDO Format Dictionaries. See also the
CDD/Repository documentation.

The DATATRIEVE CDO Command
Although you can create CDO format definitions using DATATRIEVE, some of the
benefits of CDO format definitions can only be seen by directly manipulating the
CDO utility. DATATRIEVE lets you do this with its CDO command, which lets
you communicate directly with the CDO utility.

The DATATRIEVE CDO command takes as an argument a text string that
represents a CDO utility command. The command is then sent to the CDO utility
and any output generated by the command is displayed on your terminal.

The DATATRIEVE CDO command is useful if you have defined domains with
the WITH RELATIONSHIPS clause. When you establish relationships between
certain DATATRIEVE objects, you can perform pieces-tracking on those objects.
This lets you see what objects might be affected by any changes that you or
another user may make to an object that is part of a relationship.

With the DATATRIEVE CDO command you can define new CDO dictionaries and
field-level definitions without leaving your DATATRIEVE session.

In the following examples, the DATATRIEVE CDO command creates field-level
definitions of address elements. It then creates a record definition ADDRESS_
GROUP_FIELD that will be used later as a group field in a DATATRIEVE record
definition. (Field-level definitions are a feature of CDD/Repository . You can
use CDO-created field-level definitions when you define a DATATRIEVE record.
Group fields must be defined as records in CDO. See Defining DATATRIEVE
Records in CDO Format for more information.)

20–14 Using DATATRIEVE with a CDO Format Dictionary

Using DATATRIEVE with a CDO Format Dictionary
The DATATRIEVE CDO Command

DTR> CDO DEFINE FIELD STREET_NUMBER -
CON> DATA TYPE IS TEXT -
CON> SIZE IS 5.
DTR> CDO DEFINE FIELD STREET -
CON> DATA TYPE IS TEXT -
CON> SIZE IS 25.
DTR> CDO DEFINE FIELD CITY -
CON> DATA TYPE IS TEXT -
CON> SIZE IS 25.
DTR> CDO DEFINE FIELD STATE -
CON> DATA TYPE IS TEXT -
CON> SIZE IS 2.
DTR> CDO DEFINE FIELD ZIP_CODE -
CON> DATA TYPE IS TEXT -
CON> SIZE IS 9.
DTR> CDO DEFINE RECORD ADDRESS_GROUP_FIELD. -
CON> STREET_NUMBER. -
CON> STREET. -
CON> CITY. -
CON> STATE. -
CON> ZIP_CODE. -
CON> END RECORD.
DTR>

You can also display these definitions using the DATATRIEVE CDO command
with the text of the CDO utility’s SHOW RECORD command:

DTR> CDO SHOW RECORD ADDRESS_GROUP_FIELD
Definition of record ADDRESS_GROUP_FIELD
| Contains field STREET_NUMBER
| Contains field STREET
| Contains field CITY
| Contains field STATE
| Contains field ZIP_CODE

DTR>

The following example uses DATATRIEVE to define a record that uses the
ADDRESS_GROUP_FIELD record. (The definitions LAST_NAME and FIRST_
NAME are defined in Defining DATATRIEVE Records in CDO Format.) The
next step is to use the DATATRIEVE DEFINE DOMAIN command using the
WITH RELATIONSHIPS clause to provide a domain definition upon which
pieces-tracking can be performed:

DTR> DEFINE RECORD ADDRESSES_REC USING
DFN> 01 ADDRESSES_REC.
DFN> 03 FULL_NAME.
DFN> 05 FROM FIELD LAST_NAME.
DFN> 05 FROM FIELD FIRST_NAME.
DFN> 05 MIDDLE_INIT PIC X.
DFN> 03 FROM GROUP ADDRESS_GROUP_FIELD.
DFN> ;

Using DATATRIEVE with a CDO Format Dictionary 20–15

Using DATATRIEVE with a CDO Format Dictionary
The DATATRIEVE CDO Command

DTR> DEFINE DOMAIN CDO_ADDRESSES USING ADDRESSES_REC -
CON> ON ADDRESSES.DAT WITH RELATIONSHIPS ;

The DATATRIEVE CDO command can now be used to take advantage of the
CDO utility’s SHOW USES, SHOW USED_BY, and SHOW WHAT_IF commands
to display information on how objects are related. In the following example, the
SHOW USES and SHOW USED_BY commands are used to display information
on the CDO fields and the record defined earlier in this section:

DTR> CDO SHOW USES STREET_NUMBER
Owners of DISK$1:[KIRK.DTR]SAMPLE.STREET_NUMBER;1
| DISK$1:[KIRK.DTR]SAMPLE.ADDRESS_GROUP_FIELD;1 (Type : RECORD)
| | via CDD$DATA_AGGREGATE_CONTAINS
| ADDRESS_GROUP_FIELD (Type : RECORD)
| | via CDD$DATA_AGGREGATE_CONTAINS

DTR> CDO SHOW USED_BY ADDRESS_GROUP_REC
Members of DISK$1:[KIRK.DTR]SAMPLE.ADDRESS_GROUP_REC;1
| DISK$1:[KIRK.DTR]SAMPLE.STREET_NUMBER;1 (Type : FIELD)
| | via CDD$DATA_AGGREGATE_CONTAINS
| DISK$1:[KIRK.DTR]SAMPLE.STREET;1 (Type : FIELD)
| | via CDD$DATA_AGGREGATE_CONTAINS
| DISK$1:[KIRK.DTR]SAMPLE.CITY;1 (Type : FIELD)
| | via CDD$DATA_AGGREGATE_CONTAINS
| DISK$1:[KIRK.DTR]SAMPLE.STATE;1 (Type : FIELD)
| | via CDD$DATA_AGGREGATE_CONTAINS
| DISK$1:[KIRK.DTR]SAMPLE.ZIP_CODE;1 (Type : FIELD)
| | via CDD$DATA_AGGREGATE_CONTAINS

DTR>

You should note that the DATATRIEVE SET DICTIONARY command controls
the default dictionary directory setting used by the CDO command. When you
enter a SET DICTIONARY command, the default dictionary directory used by the
CDO command is also changed. However, a CDO SET DEFAULT command does
not change your current DATATRIEVE default dictionary directory setting.

See the CDD/Repository documentation for more ways to make use of the
DATATRIEVE CDO command.

20–16 Using DATATRIEVE with a CDO Format Dictionary

21
Using DATATRIEVE with a DMU Format

Dictionary

When you create data definitions (metadata), DATATRIEVE stores those
definitions in the CDD/Repository data dictionary. Prior to DATATRIEVE Version
5.0, all DATATRIEVE data definitions were stored in a DMU format dictionary.

If no DMU format dictionary exists on your system, CDD/Repository creates
one; if a DMU format dictionary does exist, CDD/Repository uses the existing
dictionary. You can have only one DMU format dictionary on your system.

Your DMU format dictionary lets you store the definitions of DATATRIEVE
records, domains, tables, procedures, databases, ports, and plots. You can
manipulate these definitions through DATATRIEVE or through the DMU Utility.
To access the DMU Utility, you can spawn a subprocess while in DATATRIEVE
using the DATATRIEVE FN$SPAWN or FN$DCL function or you can exit
DATATRIEVE and invoke the DMU Utility. (See Chapter 23 for information on
setting protection for DMU as well as CDO format dictionaries.)

Organization of the DMU Format Dictionary
The DMU format dictionary is organized as a hierarchy of dictionary directories
and dictionary objects. Dictionary directories are similar to VMS directories
in that they organize information within the hierarchy. Data definitions are
dictionary objects. The definitions are contained in the directories just as files are
contained in VMS directories, and they are located at the ends of the branches in
the hierarchy.

The DMU hierarchical structure is like a family tree. Dictionary directories are
the parents, and their children include other directories, as well as dictionary
objects.

Figure 21–1 illustrates a sample DMU format dictionary. Text in boxes indicates
directories and text without boxes indicates objects. An ellipsis (...) indicates that
the branching continues, but is not shown in the figure. (Few DMU directories
are small and symmetrical enough to fit neatly on one page of a book.) Many

Using DATATRIEVE with a DMU Format Dictionary 21–1

Using DATATRIEVE with a DMU Format Dictionary
Organization of the DMU Format Dictionary

of the examples in this book are drawn from this sample dictionary and its
associated data definitions.

Figure 21–1 Sample DMU Format Dictionary

PERSONNEL

EMPLOYEES SALARY_HISTORY

DEPARTMENTS_TABLE

JOB_HISTORY STORE_EMPLOYEE

. . .

EMPLOYEES_REC

PRACTICE

BELL

DTR$USERS

YACHTS YACHT

CDD$TOP

. . .

.

DEMO ADT PLOTS

..

.
..
.

..

.
..
.

..

.
..
.

DTR$LIB

. . .

PHONES PHONES_REC PHONES_REPORT AREA_CODE_TABLE

You can see that all DMU directories and objects are descendants of CDD$TOP.
The CDD$TOP directory is found at the top of every DMU format dictionary and
is created when CDD/Repository is installed.

DTR$USERS is a directory under CDD$TOP that can be created during
DATATRIEVE installation as a parent directory for the private directories
of DATATRIEVE users. BELL is a directory created by the DATATRIEVE
NEWUSER program. It contains the sample definitions copied into it by the
NEWUSER program, as well as the PRACTICE directory created by user Bell to
store the definitions PHONES and PHONES_REC.

DTR$LIB is a directory under CDD$TOP that, along with its subdirectories
and the definitions they contain, is always created by the DATATRIEVE
installation procedure. Later on, you might want to use the DATATRIEVE
SET DICTIONARY and SHOW commands to become familiar with what the
DTR$LIB branch of the DMU format dictionary contains. You should never create
a dictionary directory or store your own definitions anywhere in the DTR$LIB
branch of the DMU format dictionary. DTR$LIB and all of its descendants are
deleted and rebuilt each time a DATATRIEVE installation takes place.

21–2 Using DATATRIEVE with a DMU Format Dictionary

Using DATATRIEVE with a DMU Format Dictionary
Organization of the DMU Format Dictionary

In this sample DMU dictionary, PERSONNEL is a directory under CDD$TOP
that contains the definitions for the personnel system examples used in this book.

Note

This PERSONNEL directory is not included with the sample domains
and databases provided with DATATRIEVE or with the NEWUSER
program. Although the structure of the sample database described here
is similar to the sample Rdb/VMS database, PERSONNEL, found in
DTR$LIB.DEMO.RDB, you cannot reproduce the examples in this book
by using that database.

Creating DMU Format Dictionary Directories
You can append new directories to your branch of the DMU format dictionary
with the DEFINE DICTIONARY command.

Depending on the privileges you have, you might find that you can create
directories in other branches of the DMU format dictionary; check with
your CDD/Repository manager before you do this. For best CDD/Repository
management, users on a system should coordinate where they create directories
and store definitions. In addition, some branches of the DMU format dictionary,
especially those created by Digital products, are periodically deleted and rebuilt.
If you store definitions in these branches, you could eventually lose them. The
DATATRIEVE installation creates the DTR$LIB branch of the DMU format
dictionary, for example, and you should not store definitions there.

If you specify only the given name of the new directory, DATATRIEVE appends
the directory to the one at which you are currently located:

DTR> SHOW DICTIONARY
The default directory is CDD$TOP.DTR$USERS.BELL

DTR> DEFINE DICTIONARY SALES
DTR> SHOW DICTIONARIES
Dictionaries:

PRACTICE SALES

DTR>

Using DATATRIEVE with a DMU Format Dictionary 21–3

Using DATATRIEVE with a DMU Format Dictionary
Deleting Dictionary Directories

Deleting Dictionary Directories
You cannot delete any of your DMU directories directly from the DATATRIEVE
command level. To delete a DMU dictionary directory, you can perform one of the
following actions:

• Use the FN$SPAWN function to invoke the DMU utility and use the DMU
DELETE command.

• Exit DATATRIEVE, invoke the DMU Utility, and use the DMU DELETE
command.

The following example shows how to delete the PRACTICE directory by exiting
DATATRIEVE and invoking the DMU utility:

$ RUN SYS$SYSTEM:DMU
DMU> SHOW DEFAULT
CDD$TOP.DTR$USERS.BELL
DMU> SET DEFAULT PRACTICE
DMU> LIST

AREA_CODE_TAB;1 <CDD$TABLE>
PHONES;1 <DTR$DOMAIN>
PHONES_REC;4 <CDD$RECORD>
PHONES_REPORT;9 <DTR$PROCEDURE>

DMU> DELETE *;*
DMU> LIST
%DMU-E-NONODFND, no directories or objects found
DMU> SET DEFAULT CDD$TOP.DTR$USERS.BELL
DMU> LIST/TYPE=DIRECTORY

PRACTICE
SALES

DMU> DELETE PRACTICE
DMU> LIST/TYPE=DIRECTORY

SALES
DMU> EXIT
$

Note that the directory was emptied of all its contents before being deleted. If the
directory had contained subdirectories, those too would have had to be deleted
before the directory could be deleted.

The DMU Utility also has a DELETE/ALL command that can wipe out an entire
branch of the DMU format dictionary in one line of input. A user needs a special
DMU privilege (GLOBAL_DELETE) to be able to use this command. The average
CDD/Repository user does not get this privilege by default and usually is not
assigned it by the person who manages the CDD/Repository dictionary system.
See Chapter 19 for more information on DMU and CDO dictionary privileges.

21–4 Using DATATRIEVE with a DMU Format Dictionary

Using DATATRIEVE with a DMU Format Dictionary
Using CDD/Repository to Design Department-Wide or System-Wide Applications

Using CDD/Repository to Design Department-Wide or
System-Wide Applications
The CDD/Repository utilities provide more options than DATATRIEVE
for directory organization and maintenance and for access control. Using
CDD/Repository utilities, for example, you can organize a branch of the DMU
format dictionary as a subdictionary and assign it to a disk that you can remove
from a disk drive for maximum security. You must also use CDD/Repository
utilities to inspect and maintain auditing information (history lists). The
CDD/Repository DMU utility also has an Access Control List (ACL) editor that
simplifies creation and maintenance of ACLs.

When you are designing applications that other people will use, refer to
the CDD/Repository documentation for a complete explanation of dictionary
organization and use.

Using DATATRIEVE with a DMU Format Dictionary 21–5

22
Improving DATATRIEVE Performance

DATATRIEVE performance depends on many factors. Among them are file
organization, selection of keys, optimizing record definitions, and forming queries
that take advantage of key optimization. This chapter explains techniques you
can use to reduce DATATRIEVE response time.

Redesign and Maintenance
It is important to maintain files you use in DATATRIEVE applications,
particularly if they are large indexed files. If you have added or deleted many
records, changed the number of indexed keys, or adjusted the size of your records,
you may have a badly fragmented file or a file bucket size or global buffer count
that may be causing poor I/O performance.

The easiest way to maintain your files is to invoke the following command on the
data file:

$ ANALYZE/RMS_FILE/FDL

ANALYZE will create an FDL file for the data file, containing some analysis
sections. Then invoke the command:

$ EDIT/FDL/ANALYSIS=fdl_file_spec

This command begins an interactive session in which the analysis information in
the input file is used to obtain an optimized output file.

Adding Data to the File
After you redesign your file, you will want to move data from the existing file into
a new data file. It is best to use the RMS CONVERT utility to load large files. It
is much faster than DATATRIEVE and loads data more optimally.

Use the following command line to create a data file using your new .FDL file to
describe the new file and to load that new file with data from the old file:

CONVERT/FDL=filespec.fdl oldfile.dat newfile.dat

For more information on file tuning and RMS utilities, refer to the VMS
documentation on RMS.

Improving DATATRIEVE Performance 22–1

Improving DATATRIEVE Performance
Using the OPTIMIZE Qualifier to Improve Performance

Using the OPTIMIZE Qualifier to Improve Performance
The OPTIMIZE qualifier allows you to optimize record definitions. This greatly
reduces the CPU time needed to ready a domain that refers to the record.

When you specify the OPTIMIZE qualifier with the DEFINE RECORD or
REDEFINE RECORD command, DATATRIEVE stores its internal representation
of the record (called the field tree) in the dictionary. This means DATATRIEVE
does not have to reconstruct the field tree each time you ready a domain that
refers to the record. DATATRIEVE constructs a new field tree only when the
record is redefined using the OPTIMIZE qualifier.

DATATRIEVE does not perform this optimization by default. When defining a
new record, you must specify the OPTIMIZE qualifier to optimize a record. To
optimize existing record definitions, you must redefine the records (using the
EDIT or EXTRACT command) and include the OPTIMIZE qualifier.

If you use CDDL or CDO records, you can also take advantage of the OPTIMIZE
qualifier. You can use the DATATRIEVE EDIT or EXTRACT command to convert
CDDL or CDO record definitions to the DATATRIEVE format. To do this, use
the EDIT or EXTRACT command, then add the OPTIMIZE qualifier to each
occurrence of the REDEFINE RECORD command line.

It is possible that a new version of DATATRIEVE may require the field tree to be
stored in a different format and will no longer be able to use the field tree stored
by previous versions of DATATRIEVE. If this occurs, DATATRIEVE will ignore
the older version field tree when you enter a READY command and will display
the following message:

Record <...> uses old record format. Processing will
continue, but for optimization you must redefine the record.

You can restore optimization to your record by redefining the record using the
EDIT or EXTRACT commands.

There are performance and storage tradeoffs you should consider before using the
OPTIMIZE qualifier.

As previously mentioned, the major benefit of the OPTIMIZE qualifier is the
decrease in CPU time when readying a domain with an optimized record.
Records with a greater number of fields tend to show a greater amount of
improvement.

Using the OPTIMIZE qualifier increases the CPU time necessary to define a
record. The elapsed CPU time for a DEFINE RECORD command increases
anywhere from a few percentage points to nearly double the time. The smaller
percentage increases occur for records with a smaller number of fields.

22–2 Improving DATATRIEVE Performance

Improving DATATRIEVE Performance
Using the OPTIMIZE Qualifier to Improve Performance

You can avoid increased record definition time by not using the OPTIMIZE
qualifier while designing a record. Instead, edit the final version of the record
and add the OPTIMIZE qualifier. This way you still benefit from the READY
performance improvements. Note also that the increase in definition time is
essentially a one-time occurrence. Once you define your record, you experience
the improved performance each time you ready a domain that uses that record.

When a record is optimized, the space used by the record definition in the
dictionary may increase. In general, records with a greater number of fields will
have a greater percentage increase. Note, too, that the DEFINE FILE command
also needs to build a field tree from record definitions. Its performance will also
improve by optimizing records.

Choosing Optimal Queries
Once you establish the file organization, you should try to choose queries that are
most efficient. A query is a request for DATATRIEVE to identify all the records
that satisfy a specified condition. The following sections indicate guidelines for
optimal queries.

Using EQUAL Rather Than CONTAINING
One way to optimize a query is to select a more efficient Boolean expression. A
Boolean expression that tests records with the EQUAL (=) relational operator
is more efficient than a Boolean with CONTAINING (CONT). This rule is most
significant if the Boolean expression references a key field:

DTR> PRINT YACHTS WITH BUILDER = "PEARSON"
DTR> PRINT YACHTS WITH BUILDER CONT "PEARSON"

Although both queries yield the same results, the first query is about twice as
fast as the second one.

DATATRIEVE gives optimal performance in the first case because the query
specifies an exact match for the MANUFACTURER (BUILDER) field, the first
elementary field of the key field TYPE. DATATRIEVE conducts a fast search
through the index to retrieve the desired records.

In the second case, DATATRIEVE must search sequentially through all values
of BUILDER looking for matches with the string following CONT. DATATRIEVE
must check all substrings of each BUILDER value that are equal in length to the
string specified in the Boolean expression.

To take advantage of the increased efficiency of EQUAL (=), you must specify
a value that matches the field value exactly. EQUAL (=) is case-sensitive,
but CONT is not case-sensitive. In the last example, if a record had the value
‘‘Pearson’’ for BUILDER, only the second query would find the record.

Improving DATATRIEVE Performance 22–3

Improving DATATRIEVE Performance
Choosing Optimal Queries

To get around the case-sensitivity problem, you can use the DATATRIEVE
function FN$UPCASE in procedures that store data to ensure that all text fields
are entered as uppercase. Then you can be sure a search using the EQUAL
operator will find all the records you want to locate. Otherwise, to use the
EQUAL operator you must remember the case of each character of a field value.

Using STARTING WITH Rather Than CONTAINING
To improve performance, you can sometimes substitute the STARTING WITH
relational operator for CONTAINING. This operator allows you to find records
in which the beginning substring of the field value exactly matches the specified
value expression. If you name a key field in the query, DATATRIEVE is able to
use a key-based index. Remember that this operator is case-sensitive.

Of the following two queries, the first query is more efficient because of the keyed
access. DATATRIEVE does not have to check all possible substrings of each
BUILDER value:

DTR> PRINT YACHTS WITH BUILDER STARTING WITH "ALB"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR> PRINT YACHTS WITH BUILDER CONTAINING "ALB"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

Using Domains Rather Than Collections in an RSE
DATATRIEVE cannot use indexes to retrieve records from a collection. In
general, then, to get the best performance on key-based queries, use a domain
rather than a collection as the source for the RSE.

22–4 Improving DATATRIEVE Performance

Improving DATATRIEVE Performance
Choosing Optimal Queries

The section on Using STARTING WITH Rather Than CONTAINING noted that
DATATRIEVE can do a keyed retrieval if you use the STARTING WITH relational
operator. The potential gain in performance is lost if you form a collection. For
example, the following queries use STARTING WITH, but DATATRIEVE uses the
key-based index only in the first case:

DTR> PRINT YACHTS WITH BUILDER STARTING WITH "AL"
DTR> FIND YACHTS; PRINT CURRENT WITH BUILDER -
CON> STARTING WITH "AL"

The first query is substantially faster for two reasons. In the first case
DATATRIEVE needs to access the physical data once, while in the latter case
it needs to get the record keys first, and then go back to the physical data to
evaluate the RSE. The second reason is that DATATRIEVE must do a search
through the index of YACHTS. DATATRIEVE must do an exhaustive search in
the second case.

Using the CROSS Clause and Nested FOR Loops
If you have two domains that share a common field, you can relate their records
either with the CROSS clause or with nested FOR loops. For example, the
YACHTS and PAYABLES domains share the field TYPE. The following queries
search for records from these two sources:

DTR> PRINT PAYABLES CROSS YACHTS OVER TYPE

The query has the form PRINT rse. The same results can be achieved with
nested FOR loops. For example:

DTR> FOR A IN PAYABLES
CON> FOR YACHTS WITH TYPE = A.TYPE
CON> PRINT A.PAYABLE, BOAT

This query is processed about as fast as the previous example with CROSS.
DATATRIEVE is able to use the key-based index to YACHTS. Note these features
of the two queries:

• Domains are used rather than collections as record sources, so that
DATATRIEVE can use its key-based index to the records of YACHTS.

• The OVER clause uses TYPE, a key field only for YACHTS. Because TYPE is
not a key field in PAYABLES, the queries specify PAYABLES before YACHTS.

• The YACHTS record stream contains many more records than PAYABLES
and is best placed in the second position in each query.

The next sections explain why these principles affect DATATRIEVE performance.

Improving DATATRIEVE Performance 22–5

Improving DATATRIEVE Performance
Choosing Optimal Queries

Choosing Domains or Collections as Record Sources
To form a query that relates two record sources, you can use either collections or
domains. Keep in mind that DATATRIEVE can do keyed access only for domains
and only if the domain is other than the first record source specified.

In other words, when you use CROSS or nested FOR loops to access two domains
and you relate those domains through a common key field, DATATRIEVE can use
keyed access for searching the second domain in the CROSS clause or the domain
in the second FOR loop.

If all other conditions are equal, it is better to use a domain name rather than a
collection name in the second position of a key-based relational query. There is
one more factor to consider, however: collections are efficient to use if you need
to refer back to the same group of records in the same DATATRIEVE session. In
such a case, you may get better performance by forming and naming a collection,
so that DATATRIEVE does not have to retrieve the same group of records over
and over again.

Be aware of this tradeoff when choosing a record source. You gain efficiency with
a domain when you can use keyed access. On the other hand, you gain efficiency
with a collection if you reduce the number of times DATATRIEVE must isolate
the same small group from a large body of records. A collection can also reduce
the number of records in the record stream and help improve the performance of
CROSS.

Choosing the Order of Domain Names in the CROSS Clause
DATATRIEVE can use a key-based index only for the second domain specified in
the CROSS clause.

When using the CROSS clause, you can relate two domains that have a common
field. You can specify this field in the OVER clause or in a Boolean expression
that is part of the WITH clause. If this field is a key for only one of the domains,
you get a faster response if you specify that domain second in the CROSS clause.
In the following example, the clause OVER TYPE is equivalent to WITH TYPE =
TYPE:

DTR> PRINT PAYABLES CROSS YACHTS OVER TYPE
DTR>

YACHTS is listed second because TYPE is a key field only for YACHTS, not for
PAYABLES. If PAYABLES had been listed second, DATATRIEVE response would
have been substantially slower. The query as shown is more than ten times faster
than if you list PAYABLES after YACHTS.

22–6 Improving DATATRIEVE Performance

Improving DATATRIEVE Performance
Choosing Optimal Queries

A second guideline is to specify the smaller record stream first in the CROSS
clause:

DTR> PRINT BOAT, NAME, BOAT_NAME OF OWNERS -
CON> CROSS YACHTS OVER TYPE

This query is more than twice as fast as the same query with the order of the
domains reversed. Because the YACHTS record stream is much larger than the
OWNERS record stream, you can save time by allowing DATATRIEVE to use
the key-based index for YACHTS. DATATRIEVE gets each record in OWNERS,
a relatively small number, and then evaluates the OVER clause by means of the
index to YACHTS.

If the reverse order is used, DATATRIEVE gets each record in YACHTS (113 in
all) and then evaluates the OVER clause by means of the index to OWNERS.
Because there are only 10 OWNERS records, a search through the key-based
index does not save much time. In the other case, a search through the YACHTS
index saves a search through all 113 YACHTS records.

What is crucial is the number of records in each record stream, not the records
in the record source. If you are only interested in Alberg’s yachts, it is more
efficient to place YACHTS WITH BUILDER = ‘‘ALBERG’’ in the first position.
DATATRIEVE evaluates the Boolean expression using the index to BUILDER and
finds one record. Then DATATRIEVE loops through the OWNERS records only
once to join the two record streams. Although the record source (the YACHTS
domain) has many records, the record stream based on the source is very small.

These principles are important when you use CROSS with more than two
domains. Assume that you have domains A, B, and C and you relate them in the
following expression:

PRINT A CROSS B OVER X CROSS C OVER Y

If X is a key for B, and Y is a key for C, DATATRIEVE uses both keys in
evaluating the entire expression. DATATRIEVE does not use the keys if X is a
key only for A, and Y is a key only for B.

For example, you could relate the three domains PAYABLES, OWNERS,
and YACHTS. OWNERS and YACHTS both have TYPE as a key field, so
DATATRIEVE is able to use both the index to OWNERS and the index to
YACHTS in evaluating the following expression:

DTR> FOR PAYABLES CROSS OWNERS OVER TYPE CROSS YACHTS OVER TYPE
DTR> PRINT TYPE, RIG, NAME, BOAT_NAME, PRICE, WHSLE_PRICE

BOAT WHSLE
MANUFACTURER MODEL RIG NAME NAME PRICE PRICE

Improving DATATRIEVE Performance 22–7

Improving DATATRIEVE Performance
Choosing Optimal Queries

ALBIN VEGA SLOOP STEVE DELIVERANCE $18,600 $14,250
ALBIN VEGA SLOOP HUGH IMPULSE $18,600 $14,250
ISLANDER BAHAMA SLOOP JIM POTEMKIN $6,500 $4,950
ISLANDER BAHAMA SLOOP ANN POTEMKIN $6,500 $4,950
ISLANDER BAHAMA SLOOP STEVE POTEMKIN $6,500 $4,950
ISLANDER BAHAMA SLOOP HARVEY MANANA $6,500 $4,950

DTR>

Order of Domains in Nested FOR Loops
Nested FOR loops can produce the same results as CROSS clauses, and rules
similar to those for the CROSS clause apply to nested FOR loops. When using
nested FOR loops, you should place the domain with the key field in the second
or inner FOR loop; for example:

DTR> FOR A IN PAYABLES
CON> FOR YACHTS WITH TYPE = A.TYPE
CON> PRINT A.ORDR_NUM, BOAT, A.INVOICE_DUE,
CON> A.BILL_PAID

This query is about ten times faster than the query in the following example:

DTR> FOR A IN YACHTS
CON> FOR PAYABLES WITH TYPE = A.TYPE
CON> PRINT ORDR_NUM, A.BOAT, INVOICE_DUE, BILL_PAID

In the first case, DATATRIEVE knows that the YACHTS records are ordered
according to TYPE. DATATRIEVE can do a fast search through the index to
YACHTS for matches on TYPE before executing the PRINT statement. This
makes the process in the first case substantially faster than the process in the
second case.

In the second case, DATATRIEVE must evaluate the Boolean expression ‘‘WITH
TYPE = A.TYPE’’ without the benefit of a key-based index because TYPE is not
a key field for PAYABLES. For each record in YACHTS, DATATRIEVE must do a
search through all of the PAYABLES records to find matches on TYPE.

The same rule holds concerning the relative size of the two record streams. If one
record stream has many more records than the other and both have the same key
field, you should place the larger record stream in the second (inner) FOR loop.

22–8 Improving DATATRIEVE Performance

Improving DATATRIEVE Performance
Choosing Optimal Queries

Nested FOR Loops Followed by a Conditional Statement
Try to avoid using nested FOR loops to control the execution of a conditional
statement. The following example removes the Boolean expression from the RSE
and places it within an IF-THEN statement. It is extremely inefficient:

DTR> FOR A IN PAYABLES
CON> FOR YACHTS
CON> BEGIN
CON> IF TYPE = A.TYPE AND LOA > 40 THEN
CON> PRINT A.PAYABLE, BOAT
CON> END

DATATRIEVE gets one record from YACHTS and one from PAYABLES. It tests
for the truth of the condition ‘‘TYPE = A.TYPE’’ AND LOA > 40. Because
PAYABLES contains 30 records and YACHTS contains 113, DATATRIEVE must
go through this procedure 30 X 113 (3390) times. Because DATATRIEVE is
evaluating the conditions for every record of YACHTS individually, the index to
YACHTS based on TYPE is not used.

The query is improved when the test is part of the WITH clause of the RSE (or in
the OVER clause of CROSS). DATATRIEVE does not have to get every record of
YACHTS 30 times. For each of the 30 PAYABLES records, DATATRIEVE can do
a fast search through the index to YACHTS.

Wherever possible, you should include conditional tests as Boolean expressions
within the RSE. This effectively limits the number of records that DATATRIEVE
has to process; for example:

DTR> FOR A IN PAYABLES CROSS YACHTS OVER
CON> TYPE WITH LOA > 40
CON> PRINT A.PAYABLE, BOAT

Performance Enhancements for Certain CDD/Repository
Dictionary Operations
DATATRIEVE determines which dictionary interface it will use based on the
use of full dictionary path names that specify which dictionary interface is to
be accessed or on the default dictionary path name. In general, you can achieve
better performance when the dictionary interface call matches the dictionary
format of the object you are accessing.

In all cases, DATATRIEVE will operate correctly no matter which interface you
use. However, you can influence the performance of these operations by using the
full path name or by appropriately setting the default path name.

Improving DATATRIEVE Performance 22–9

Improving DATATRIEVE Performance
Performance Enhancements for Certain CDD/Repository Dictionary Operations

For example, if YACHTS is a DMU format object, then the command READY
CDD$TOP.DTR$LIB.DEMO.YACHTS will achieve better performance than the
command READY SYS$COMMON:[CDDPLUS]DTR$LIB.DEMO.YACHTS.

The commands affected by the new strategy are READY, DELETE, PURGE, and
SHOW. The conditions that effect performance improvements include dictionary
organization, the use of full dictionary path names in commands or statements,
and appropriate use of SET DICTIONARY command or the CDD$DEFAULT
value.

However, note that there are some additional considerations in the behavior
of the SHOW command that do not apply to the commands mentioned in the
previous note. These considerations apply only to the use of a DMU format path
name for a dictionary that may also contain certain CDO format objects. These
considerations represent differences from the Version 5.0 behavior; however, they
are similar to the DATATRIEVE Version 4.2 behavior:

• If your default dictionary path name is in DMU format and if there are any
CDD$DATABASE objects in your dictionary (databases which have been
defined using the CDO utility), then the CDD$DATABASE objects will not be
shown when you do a SHOW DATABASES or a SHOW ALL.

You must use a default dictionary path name in CDO format to SHOW these
objects; you can also display these objects by using an appropriate CDO
SHOW command .

• If your default dictionary path name is in DMU format and if there are
shareable fields in your dictionary (fields which have been defined using the
CDO utility), then these fields will be included as records when you do a
SHOW RECORDS or in the records section of the SHOW ALL command.

Although these shareable fields may be shown as records, you will not be
allowed to manipulate these objects as records within DATATRIEVE.

You must use a default dictionary path name in CDO format if you want to
filter these shareable fields from the SHOW RECORDS display.

Both of these differences are due to limitations in the use of the DMU call
interface itself. These are the only situations where the use of two different
dictionary style path names give you different results.

22–10 Improving DATATRIEVE Performance

Improving DATATRIEVE Performance
Performance Enhancements for Databases

Performance Enhancements for Databases
When using DATATRIEVE to work with VAX DBMS databases, keep in mind the
following considerations:

• Unless you specify otherwise, DATATRIEVE always starts reading database
areas at page one, line one. VAX DBMS is designed to optimize access paths
to records through set chain pointers, indexes, and hashing algorithms. Use
a set name whenever possible to optimize your database access paths and
prevent sequential reads of database areas.

• To minimize record locking, be sure to issue COMMIT or ROLLBACK
statements regularly to explicitly end database transactions. Locks prevent
other users from accessing a record and can prevent access to other records
because that record contains pointer information that also gets locked.

When using DATATRIEVE with a relational database or DATATRIEVE with
Report Writer statements or both, additional database buffers can improve
performance significantly. The number of buffers can be adjusted by defining
RDM$BIND_BUFFERS prior to readying a relational database.

Timing Procedures to Improve Efficiency
The recommendations in the previous sections were verified by timing alternative
procedures with DATATRIEVE timing functions, FN$INIT_TIMER and
FN$SHOW_TIMER. The first of these functions initializes a timer, and the
second calculates the elapsed time. A good comparative measure is the CPU
time expended by several alternative procedures that produce the same output.
You may find that the extra effort needed to time procedures may be repaid by
improved performance.

If you will be invoking a procedure frequently and have a choice between two
queries, you can time each query to see which one is most efficient. To save CPU
time, you might include only a subset of the records in your tests.

For example, suppose you want to display information on manufacturers who
make boats with more than one type of rig. This kind of query requires that
you compare records within the same domain, YACHTS. The following inefficient
solution, which uses nested FOR loops followed by a conditional, requires
DATATRIEVE to search and compare the 113 records in YACHTS 113 times.

Improving DATATRIEVE Performance 22–11

Improving DATATRIEVE Performance
Timing Procedures to Improve Efficiency

DTR> SHOW TIME1E
PROCEDURE TIME1E
FN_$INIT_TIMER
FOR A IN YACHTS
FOR B IN YACHTS

IF B.BUILDER = A.BUILDER AND B.RIG GT A.RIG
THEN PRINT B.BUILDER, A.RIG, B.RIG

FN_$SHOW_TIMER
END_PROCEDURE

However, a PRINT statement with a CROSS clause in an RSE achieves the same
result and reduces the amount of the CPU time to about one-sixteenth of the
time required by the previous example. The following procedure shows the more
efficient solution:

DTR> SHOW TIME1B
PROCEDURE TIME1B
FN_$INIT_TIMER
PRINT BUILDER, A.RIG, RIG OF A IN YACHTS CROSS

B IN YACHTS OVER BUILDER WITH A.RIG GT B.RIG
FN_$SHOW_TIMER
END_PROCEDURE

In these procedures, FN$INIT_TIMER starts timing the processing of the records
and FN$SHOW_TIMER displays the elapsed time following completion of the
processing.

DATATRIEVE Evaluation of Compound Boolean
Expressions
DATATRIEVE sets up a priority when it evaluates compound Boolean expressions
that include key fields. For any domain, the key that is chosen depends on the
following three factors in order of priority:

• Exact or range retrieval:

Exact retrievals use EQUAL or STARTING WITH.

Bounded range retrievals use BT.

Range retrievals use GT, GE, LE, or LT.

• Key is NO DUP or DUP

• Primary or alternate key

Keyed retrieval is performed on Boolean expressions that use the relational
operators EQUAL, STARTING WITH, BEFORE, AFTER, GT, GE, LE, LT, or BT.

22–12 Improving DATATRIEVE Performance

Improving DATATRIEVE Performance
DATATRIEVE Evaluation of Compound Boolean Expressions

Note that with range or bounded range retrievals, DATATRIEVE cannot use
keyed retrieval if the data type specified in the DATATRIEVE field definition has
no corresponding data type in RMS. For example, RMS has no direct equivalent
for the DATATRIEVE COMP-5 data type. In such cases, DATATRIEVE searches
the file sequentially and does its own key value comparisons.

Summary of Rules
The following guidelines can help you take advantage of the ability of
DATATRIEVE to use a key-based index to retrieve records:

• When defining data, make the field most commonly used in queries the
primary key. If that field does not uniquely determine a record, combine
it with another field so the combined fields uniquely determine a record.
Allowing duplicate values of a primary key slows performance.

• If you decide to make a group field the primary key, the order of the
subordinate elementary fields is important. The field most commonly
used in queries should be the first elementary field listed. Remember that
DATATRIEVE cannot do keyed access on group field keys that contain
numeric items.

• If other fields will often be used with the primary key in queries, you can
designate them as alternate keys.

• Use EQUAL (=) instead of CONTAINING (CONT) in the Boolean expression
of an RSE when searching for records based on a key field value.

• When searching for field values beginning with a specified substring, use
STARTING WITH instead of CONTAINING (CONT). This rule is most
important when your search is based on a key field.

DATATRIEVE allows you to relate records from the same domain or from two
different domains with the CROSS clause or nested FOR loops. When the
relationship is based on a key field of at least one of the domains, keep the
following guidelines in mind:

• If the field is a key for only one of the domains, make sure that domain is not
specified first in the CROSS clause or included in the first FOR loop.

• Use a domain rather than a collection as the second record source.
DATATRIEVE cannot do keyed access on collections. A collection, however,
can help performance when it greatly reduces the number of records that
DATATRIEVE must evaluate in a relational query. In addition, forming and
naming a collection is useful if you need to use the same subset of records
several times within a DATATRIEVE session.

Improving DATATRIEVE Performance 22–13

Improving DATATRIEVE Performance
Summary of Rules

• Try not to use a conditional statement following nested FOR loops or following
a FOR loop that contains an RSE with a CROSS clause. A better approach is
to include the conditional test in a Boolean expression within the RSE in the
CROSS clause or in the second FOR loop.

• When relating two or more record streams, do not specify the largest record
stream in the first position of the CROSS clause or in the first FOR loop.

22–14 Improving DATATRIEVE Performance

23
Access Control Lists and DATATRIEVE

Protection

The VAX CDD/Repository dictionary system provides a mechanism for controlling
access to the definitions you store in it. However, the data dictionary is designed
to protect data definitions and procedures from browsing and unauthorized use; it
is not designed to intercept and prevent intentional, determined assaults.

You should use the access control lists of the dictionary with the VMS access and
file security mechanisms to augment the overall security strategy for your data
processing system.

Access Control Lists
The key to the CDD/Repository system of protection is the access control list
(ACL). An ACL controls access to the information within data dictionaries.
CDD/Repository provides DATATRIEVE users with access privileges that control
the type of access a user or class of users can have to the objects in a data
dictionary. For example, you can control whether a user can create, modify,
delete, or show a dictionary object, or use it in procedures. You can also control
manipulation of dictionaries using an ACL.

The Dictionary Management Utility (DMU) format dictionary and the Common
Dictionary Operator (CDO) format dictionary differ in their implementation of
ACL protections. The major difference is that the CDO ACL protection applies
only to objects and dictionary directories. The CDO concept of protection does not
involve path name levels. The DMU concept of protection includes a hierarchical
path name structure. In the DMU dictionary, the ACL of a dictionary directory
can also control what access users can have to the descendants of that directory.

Other differences between the CDO and DMU implementations of ACL
protections are noted throughout this chapter and in the applicable command
sections.

Access Control Lists and DATATRIEVE Protection 23–1

Access Control Lists and DATATRIEVE Protection
Access Control Lists

An Overview of ACL Entries
Every directory and object in the DMU format dictionary and every CDO format
dictionary and object can have an access control list. An ACL consists of zero or
more ACL entries. Each entry in an access control list performs two functions:

• It identifies individual users or classes of users to whom the ACL entry
applies.

• It specifies the access privileges of the individual users or classes of users to
whom the ACL entry applies.

An ACL entry affects your access privileges to a directory or object only if all the
entry’s user identification criteria match the characteristics of your process. A
CDO ACL can identify you by your VMS user name or your user identification
code (UIC). A DMU ACL can identify you by your VMS user name, your UIC,
a password, your terminal number, or your job class. See User Identification
Criteria for further details about user identification criteria.

You can make the user identification criteria specific or general. In one ACL
entry, you can control the access privileges of a single user or all users, depending
on the user identification criteria you include in the entry.

A user’s process must match all of the user identification criteria specified in the
ACL. If some of the user identification criteria apply to a process but some do not,
then the process will not be given access.

Displaying an Access Control List
Use the SHOWP command to display the contents of an ACL.

You can use the SHOWP command to display the ACL for any DMU object or
directory to which you have C (CONTROL) and P (PASS_THRU) access. You
can use the SHOWP command to display the ACL for any CDO object to which
you have S (SHOW) access. For example, when user Jones enters a SHOWP
command for CDD$TOP, DATATRIEVE displays the ACL of CDD$TOP:

DTR> SHOWP CDD$TOP
1: [*,*], Username: " JONES"

Grant - CPSX, Deny - DEHMRUW, Banish - FG

DTR>

As the ACL indicates, Jones has four privileges at CDD$TOP: C (CONTROL), P
(PASS_THRU), S (SEE), and X (EXTEND).

23–2 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
Access Control Lists

When Jones enters the SHOWP command in the following example,
DATATRIEVE displays the ACL of the requested CDO format dictionary:

DTR> SHOWP SYS$COMMON:[CDDPLUS.PERSONNEL]
1: [*,*], Username: "CASADAY"

Grant - RWMESUDC, Deny - none
ACCESS=READ+WRITE+MODIFY+EXTEND+SHOW+DEFINE

+CHANGE+DELETE+CONTROL
2: [*,*]

Grant - S, Deny - RWMEUDC
ACCESS=SHOW

DTR>

As the ACL indicates, CASADAY has eight DATATRIEVE privileges to this CDO
dictionary: R (READ), W (WRITE), M (MODIFY), E (EXTEND), S (SHOW), U
(CHANGE + DEFINE), D (DELETE), and C (CONTROL). All other users only
have the S (SHOW) privilege.

Alternatively, you can show your privileges by using the SHOW PRIVILEGES
command. In the following example, Jones’ privileges to CDD$TOP are shown:

DTR> SHOW PRIVILEGES FOR CDD$TOP
Privileges for CDD$TOP
C (CONTROL) - may issue DEFINEP, SHOWP, DELETEP commands
P (PASS_THRU) - may use given name of directory or object

in pathname
S (SEE) - may see (read) dictionary
X (EXTEND) - may create directory or object within

directory

DTR>

You can use SHOW PRIVILEGES only to display your privileges for a given
dictionary path name. If there are ACL entries for other users, use the SHOWP
command to display the information.

Hierarchical Protection in the DMU Dictionary
The access to every directory or object in the DMU dictionary (except the root
directory, CDD$TOP) can be controlled by more than one Access control lists —
its own and the access control lists of its ancestors.

In the DMU data dictionary, every directory and object has a full dictionary path
name that begins with CDD$TOP, contains all the directories (in hierarchical
order) that are ancestors of the directory or object in question, and ends with the
given name of that directory or object.

Access Control Lists and DATATRIEVE Protection 23–3

Access Control Lists and DATATRIEVE Protection
Access Control Lists

Each segment of a dictionary path name has an ACL associated with it. Each
of those ACLs can change your access privileges because your access privileges
accumulate as you move along a hierarchical path in the DMU dictionary.
In effect, you inherit the access privileges from the ancestors of an object or
directory, modified by the ACL of the dictionary or object you are trying to access.

Accumulation of Privileges in the DMU Dictionary
DMU privileges are passed on from higher directories to lower directories.
Figure 23–1 illustrates a sample DMU path that shows how access privileges can
accumulate. It is the path for the YACHTS domain in the INFO directory. The
column on the right entitled ‘‘Cumulative’’ indicates the privileges in effect at
different levels of the data dictionary.

Figure 23–1 DMU Privileges Passed from Higher Directories

CDD$TOP

INVENTORY

INFO

Privileges for JONES

Inherit

CEMPRSUWX

CEMPRS WX

C P S X

_

FU

EMRW

CPSX

Grant

_

_

DEHMRUW

Deny Banish

_

_

_

FG

CEMPRSUWX

CEMPRS WX

Cumulative

YACHTS _ U CEMPRS WX

C P S X

Each of the four segments of this path name has an ACL. In the following
example, Jones uses the SHOWP command to display the ACL for a given path
name. The example specifies only one user identification criterion: the VMS user
name, Jones. Each ACL has only one entry.

23–4 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
Access Control Lists

Following each ACL is the list of privileges that Jones has for each segment
of the path name. The list of privileges expands or shrinks according to the
distribution of privileges in each ACL. DATATRIEVE and CDD/Repository
Privilege Specification about CDD/Repository privilege specification explains
the meaning of the various privileges.

DTR> SHOWP CDD$TOP
1: [*,*], Username: "JONES"

Grant - CPSX, Deny - DEHMRUW, Banish - FG

The ACL indicates that Jones has four privileges at CDD$TOP: C (CONTROL), P
(PASS_THRU), S (SEE), and X (EXTEND).

DTR> SHOWP CDD$TOP.INVENTORY
1: [*,*], Username: "JONES"

Grant - EMRW, Deny - none, Banish - none

For INVENTORY, Jones has eight privileges: the four privileges from CDD$TOP
and E (DTR_EXTEND/EXECUTE), M (DTR_MODIFY), R (DTR_READ), and W
(DTR_WRITE) from INVENTORY.

DTR> SHOWP CDD$TOP.INVENTORY.INFO
1: [*,*], Username: "JONES"

Grant - FU, Deny - none, Banish - none

For INFO, Jones has nine privileges: the four privileges from CDD$TOP, the four
privileges from INVENTORY, and U (UPDATE) from INFO. However, Jones does
not have F (FORWARD) privilege. Even though the ACL for INFO tries to grant
Jones the F (FORWARD) privilege, the grant has no effect because F (FORWARD)
was one of the privileges banished by the ACL for CDD$TOP. Once a privilege is
banished, it can never be granted by any descendant of the directory whose ACL
banished it.

DTR> SHOWP CDD$TOP.INVENTORY.INFO.YACHTS
1: [*,*], Username: "JONES"

Grant - none, Deny - U, Banish - none

For YACHTS, Jones has only eight privileges: the four privileges from CDD$TOP
and the four privileges from INVENTORY. Jones does not have U (UPDATE)
access to YACHTS. Even though the ACL for INFO granted it, the ACL for
YACHTS denied it. The SHOW PRIVILEGES command can also be used to
display Jones’ privileges for the YACHTS directory as follows:

Access Control Lists and DATATRIEVE Protection 23–5

Access Control Lists and DATATRIEVE Protection
Access Control Lists

DTR> SHOW PRIVILEGES
Privileges for CDD$TOP.INVENTORY.INFO.YACHTS;1
R (DTR_READ) - may ready for READ, use SHOW and EXTRACT
W (DTR_WRITE) - may ready for READ, WRITE, MODIFY, or EXTEND
M (DTR_MODIFY) - may ready for READ, MODIFY
E (DTR_EXTEND_EXECUTE) - may ready to EXTEND, or access table or procedure
C (CONTROL) - may issue DEFINEP, SHOWP, DELETEP commands
P (PASS_THRU) - may use given name of directory or object in pathname
S (SEE) - may see (read) dictionary
X (EXTEND) - may create directory or object within directory

DTR>

When you use the SHOW PRIVILEGES command, DATATRIEVE displays your
privileges according to the path name specified. DATATRIEVE takes into account
the applicable ACL entries of the parent directories.

Combinations of DMU ACL Entries
In Figure 23–2, the ACL for the four segments of
CDD$TOP.PERSONNEL.SERVICE.SALARY_RECORD demonstrates how
combinations of user identification criteria at different levels of the dictionary
hierarchy control access to data descriptions. The user identification criteria in
these ACL entries match the characteristics of four individual users: Casaday,
Kellerman, Foster, and Jones. Figure 23–2 illustrates the privileges at each level
of the dictionary for each of the four users. The explanation following each set
of ACL entries describes which ACL at a given level applies to each of the four
users.

The following example shows the privileges at CDD$TOP for user CASADAY:

DTR> SHOWP CDD$TOP
1: [*,*], Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*]

Grant - P, Deny - CDEHMRSUWX, Banish - FG

DTR>

Casaday, the system manager, is responsible for organizing and maintaining
the data dictionary, and so retains all the access privileges granted by default.
Casaday inherits these privileges at each hierarchy level.

To protect the data dictionary against modification or redundancy, Casaday grants
only PASS_THRU to all other users, including Kellerman, Foster, and Jones. In
addition, Casaday banishes FORWARD and GLOBAL_DELETE to ensure that no
other user can create subdictionary files or delete large portions of the dictionary.
For example:

23–6 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
Access Control Lists

Figure 23–2 DMU Privilege Inheritance in a Four-Level Hierarchy

These privileges apply only if the user specifies the password. For access to PERSONNEL, all users except for CASADAY must
use the password "SEMISECRET".

*

These privileges apply only if the user specifies the password. For access to SERVICE, all users except for CASADAY must use
the password "SECRET". They must also use the password for PERSONNEL.

**

JONES is not covered by an ACL entry for SALARY_RECORD. But she has no access privileges, because she does not know the
passwords to either of the higher directories, PERSONNEL and SERVICE.

CDD$TOP

PERSONNEL

SERVICE

SALARY
RECORD

CASADAY
KELLERMAN
FOSTER
JONES

CASADAY
KELLERMAN
FOSTER
JONES

CASADAY
KELLERMAN
FOSTER
JONES

CASADAY
KELLERMAN
FOSTER
JONES

USER

_
_
_
_

P

CDHPSX
P
P

CDHPSX
HPS
HPS
_

CDHPSX
HPS
HPS
_

Inherit

CDHPSX
H
H
_

P

CDHPSX
P
P

CDEHMRSUW
DE

E R
_

CDHPSX
H
H
_

Grant

_

CDEHMRSUWX
CDEHMRSUWX
CDEHMRSUWX

_

CDEFGMRUWX
CDEFGMRUWX

_

_

DEMRUWE
DEMRUWE

_

_
_

_
_

Deny

_

_

FG
FG
FG

_

CDEFGHMPRSUWX

_

C
C
CDEFGHMPRSUWX

_
_
_
_

Banish

CDEHMPRSUWX
DEHMPRSUW

EH PRS_

CDHPSX
HPS
HPS
_

CDHPSX
HPS
HPS
_

CDHPSX
P
P
P

Cumulative

S
SX

MR UW

S
S

**
**

*
*

DTR> SHOWP CDD$TOP.PERSONNEL
1: [*,*], Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*], Password: "SEMISECRET"

Grant - HS, Deny - CDEFGMRUWX, Banish - none
3: [*,*]

Grant - none, Deny - none, Banish - CDEFGHMPRSUWX

DTR>

Because the record definitions in the PERSONNEL subdictionary are sensitive,
Casaday included a password, ‘‘SEMISECRET,’’ as a user identification criterion
to restrict access. Kellerman, who is responsible for all the records in the
personnel department, and Foster, an applications programmer who uses
personnel record definitions, know the password and so have PASS_THRU
(inherited from CDD$TOP), HISTORY, and SEE privileges to the subdictionary.
Jones, who works in sales, does not know the password and so has no access to
PERSONNEL or any of its children. Only the third ACL entry applies to Jones,
and this entry banishes all the access privileges.

Access Control Lists and DATATRIEVE Protection 23–7

Access Control Lists and DATATRIEVE Protection
Access Control Lists

The relative position of Access control lists entries is significant. CDD/Repository
stops searching the user identification criteria in the ACL entries as soon as
it finds a match. In the following example, if entries 2 and 3 were reversed,
only Casaday would have any access privileges at PERSONNEL. All other
processes would match the second entry, which banishes all privileges. Therefore,
CDD/Repository would discontinue the user identification search before reaching
entry 3, the one granting access to those using the password.

DTR> SHOWP CDD$TOP.PERSONNEL.SERVICE
1: [*,*], Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*], Password: "SECRET"

Grant - HS, Deny - DEMRUWX, Banish - C
3: [*,*]

Grant - none, Deny - none, Banish - CDEFGHMPRSUWX

DTR>

Confidential employee record definitions are stored in the SERVICE directory.
Casaday has added a new password, ‘‘SECRET,’’ to limit the number of personnel
department users with access to this directory. Authorized users like Kellerman
and Foster now have access to this directory only when they include the
appropriate passwords in the dictionary path name:

CDD$TOP.PERSONNEL(SEMISECRET).SERVICE(SECRET)

Failure to include either password results in the banishment of all privileges,
because the Access control lists entry 3 for CDD$TOP.PERSONNEL or
CDD$TOP.PERSONNEL.SERVICE applies. Users are unable to proceed further,
even if the next level grants all privileges to all users. Unauthorized users,
like Jones, have no access to this directory because ACL entry 3 banishes all
privileges.

Unlike CDD$TOP, PERSONNEL, or SERVICE, SALARY_RECORD is a
dictionary object that holds a record definition. This difference is reflected in
the new default privileges that the SHOWP command indicates for Casaday in
the following example:

DTR> SHOWP CDD$TOP.PERSONNEL.SERVICE.SALARY_RECORD
1: [*,*], Username: "CASADAY"

Grant - CDEHMRSUW, Deny - none, Banish - none
2: [*,*], Username: "KELLERMAN"

Grant - DEMRUW, Deny - none, Banish - none
3: [*,*], Username: "FOSTER"

Grant - ER, Deny - none, Banish - none

DTR>

23–8 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
Access Control Lists

ACL entry 2 grants Kellerman the privileges needed to maintain the SALARY_
RECORD definition. Foster, whose process matches the third access control list
entry, inherits PASS_THRU, HISTORY, and SEE from SERVICE. Foster also
receives DTR_EXTEND and DTR_READ, which allow Foster to ready the domain
associated with SALARY_RECORD.

Unauthorized users, such as Jones, are not covered by any of the ACL entries.
Jones still has no privileges, having inherited none from the parent directory
SERVICE.

Protection in the CDO Dictionary
The DATATRIEVE CDO protection concept includes protection of dictionaries and
dictionary objects. DATATRIEVE handles ACLs for the CDO format dictionary
much as it handles ACLs for the DMU format dictionary, with two important
conceptual differences:

• There is no equivalent to the DATATRIEVE DMU privilege PASS_THRU in
the CDO format dictionary. Suppose you have two CDO format dictionaries,
one in the main directory [CDDPLUS] and one in the subdirectory
[CDDPLUS.PUBLIC]. If you have S (SHOW) privilege to the dictionary
in [CDDPLUS.PUBLIC] but not to the dictionary in [CDDPLUS], you will be
able to access the data dictionary in [CDDPLUS.PUBLIC]. You do not need
any DATATRIEVE ACL privileges to pass through the main directory as long
as the VMS directory protections on the main directory and subdirectory
allow you access.

• Unlike the DMU format dictionary, there is no concept of inheritance or
accumulation of privileges in the CDO format dictionary. You have only the
privileges listed in the ACL of each dictionary or object.

The only type of ACL that can restrict access to another object is an ACL on
a data dictionary. You must have the S (SHOW) privilege on a CDO format
dictionary to see its contents. You must have the U (CHANGE) privilege on a
dictionary to define or delete its objects.

Like DMU ACL entries, the relative position of Access control lists entries
is significant. CDD/Repository searches the user identification criteria in the
ACL in order. As soon as a match is found, CDD/Repository stops searching
the list. In the following example, only Casaday has access privileges to
SYS$COMMON:[CDDPLUS.PERSONNEL]. All other processes match the
second entry, which denies all privileges. CDD/Repository would discontinue the
user identification search before reaching entry 3, which grants access to users
with the UIC [100,*].

Access Control Lists and DATATRIEVE Protection 23–9

Access Control Lists and DATATRIEVE Protection
Access Control Lists

DTR> SHOWP SYS$COMMON:[CDDPLUS.PERSONNEL]
1: [*,*], Username: "CASADAY"

Grant - RWMESUDC, Deny - none
ACCESS=READ+WRITE+MODIFY+EXTEND+SHOW+DEFINE

+CHANGE+DELETE+CONTROL
2: [*,*]

Grant - none, Deny - RWMESUDC
ACCESS=none

3: [100,*]
Grant - S, Deny - RWMEUDC
ACCESS=SHOW

DTR>

Summary of ACL Results
The following list summarizes the effects of ACLs on access to DMU format
dictionaries and objects:

• Users have all DATATRIEVE privileges unless the privileges are specifically
denied or banished by an entry in the ACL of a segment of a dictionary path
name used in a DATATRIEVE command, in a procedure invocation, or in a
DATATRIEVE table invocation.

• A user’s access privileges to an object or directory are inherited from its
ancestors as modified by its own ACL.

• If an access privilege is banished by an entry in the ACL of a dictionary
directory, that privilege cannot be restored to a user by any entry in the
Access control lists of any descendant of that directory.

• An ACL entry applies to a user only if all the user identification criteria
match the characteristics of the user’s process.

• CDD/Repository begins its search of an Access control lists with entry 1 and
ends its search as soon as it finds the first entry for which the characteristics
of the user’s process match all the user identification criteria.

The following list summarizes the effects of ACLs on access to CDO format
dictionaries and objects:

• If only the GRANT clause is specified, a user has the privileges listed. All
other privileges are denied.

• If only the DENY clause is specified, a user is denied all privileges listed. All
other privileges are granted.

• If both GRANT and DENY clauses are specified, privileges are granted and
denied in the order in which they appear. For example, a privilege which is
granted and then denied will be denied. Any privileges not listed are denied.

23–10 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
Access Control Lists

• An ACL entry applies to a user only if all the user identification criteria
match the characteristics of the user’s process.

• CDD/Repository begins its search of an Access control lists with entry 1 and
ends its search as soon as it finds the first entry for which the characteristics
of the user’s process match all the user identification criteria.

• If one or more ACL entries exist and none of them match the characteristics
of the user’s process, the user is denied access.

• If no ACL entries exist, all users are granted all access privileges.

The Parts of an ACL Entry
An entry in the ACL of a dictionary object or directory has two parts:

• The user identification criteria

• The privilege specification

The user identification criteria determine the user or class of users to whom the
entry applies. CDD/Repository compares the user identification criteria with the
characteristics of the user’s process and with any passwords appended to the
given name of the object or directory.

The privilege specification can grant, deny, or banish (in a DMU ACL) the access
privileges of the user or class of users to whom the entry applies.

The following sections discuss identification criteria and access privileges.

User Identification Criteria
An ACL entry applies to a user only if all the user identification criteria are
satisfied. CDD/Repository searches the ACL from the beginning and uses the first
entry whose user identification criteria are satisfied.

If the user identification criteria in all entries of an ACL are specific, none of the
entries might apply to a user. If no entry matches and the object is in a DMU
dictionary, the user has the same privileges to the object or directory as to the
parent of the object or directory. If the object is in a CDO dictionary, the user has
no access to it.

The last entry in an ACL should apply to all users and assign as few privileges
as are consistent with user needs and the integrity of the data definitions those
privileges affect.

You can use four criteria for identifying users:

• VMS user name

• VMS User Identification Code (UIC)

Access Control Lists and DATATRIEVE Protection 23–11

Access Control Lists and DATATRIEVE Protection
The Parts of an ACL Entry

• Password (DMU dictionary only)

• Terminal number (DMU dictionary only) or job class

In a DMU ACL entry, you can specify one option from each of these four
categories. You can include a user name, a UIC, a password, and a terminal
number or job class. You do not have to specify all four criteria, but you must
specify at least one option from any of the four categories.

In a CDO ACL entry, you can specify a user name, a UIC, or a job class.
Passwords and terminal numbers have no equivalence in the CDO dictionary.

You must include at least one user identification criterion per ACL entry in either
a DMU or a CDO ACL.

Identifying Users by User name

Each ACL entry can contain one identification criterion based on the VMS user
name. Specifying a user name in an ACL entry limits the entry to one user or to
a group of users who log in with the same user name. For example:

USER = KELLERMAN

If you specify a user name in an ACL entry on an object in a CDO format
dictionary, the user name is translated to the UIC and not retained. When you
show the ACL entry, you will see the UIC.

Identifying Users by the UIC
In an ACL entry, you can specify the UIC in several ways:

• By specifying all the digits or characters of both parts of the UIC, you can
identify one or more users who log in with the same UIC associated with their
process. For example:

UIC = [240,240]

• For numeric UICs, you can use the asterisk (*) wildcard in place of the group
number to identify all group numbers and in place of the member number
group to identify all member numbers.

The following example identifies users with the numeric UICs [240,101],
[240,300], [240,544], [240,777]:

UIC = [240,*]

• By using asterisks in place of both groups of digits in the numeric UIC, you
identify all users, regardless of their UICs, as follows:

UIC = [*,*]

23–12 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
The Parts of an ACL Entry

• For alphanumeric UICs, you can use the asterisk (*) wildcard in place of the
member name in an alphanumeric UIC but not in place of the group name.

The following example uses the alphanumeric UICs [MYGROUP,MYSELF].
MYGROUP is equivalent to [212,*] and MYSELF is equivalent to [212,370].
The valid UIC specifications are as follows:

UIC = [MYGROUP,MYSELF]
UIC = [MYGROUP]
UIC = [MYSELF]
UIC = [MYGROUP,*]
UIC = [212,370]
UIC = [212,*]
UIC = [*,*]

You must include the comma and enclose the UIC specification in brackets or
angle brackets. If you specify no UIC for an ACL entry, CDD/Repository supplies
[*,*] as a default.

Identifying Users by Rights Identifiers
Rights identifiers are another basic concept in the VMS operating system. A
rights identifier is a single text string enclosed in brackets. The system manager
defines a rights identifier in the system rights database. The identifier can
indicate individuals or members of a particular group. For example, your system
manager might define the following rights identifier to indicate the members of
an accounting division of your company:

[ACCTGID]

When you specify a rights identifier with the DEFINEP command, you can use
only identifiers that are currently in the system rights database. Your system
manager can check a valid identifier using the Authorize Utility:

$ RUN AUTHORIZE

UAF> SHOW/ID ACCTGID

In an ACL entry, you can specify a rights identifier just as you specify a UIC. For
example, you can specify the rights identifier ACCTGID as follows:

UIC = [ACCTGID]

Access Control Lists and DATATRIEVE Protection 23–13

Access Control Lists and DATATRIEVE Protection
The Parts of an ACL Entry

Identifying Users by the Password
If an ACL entry for a directory or object in the DMU format dictionary defines a
password, the password can be specified as part of the given name of the directory
or object. Using a password identifies the user or group of users who know the
password.

When you need access privileges to a directory or object granted by an ACL entry
containing a password, you can specify the password in two ways:

• Enclose the password in parentheses and place it after the given name or
full path name of the directory or object. For example, to enter the password
‘‘SAILOR’’:

YACHTS;1(SAILOR)

CDD$TOP.INVENTORY(SECRET).YACHTS;1(SAILOR)

• Enter an asterisk in parentheses after the given name of the directory or
object. This asterisk in place of the password causes DATATRIEVE to prompt
for the password. For example:

DTR> SHOWP YACHTS (*)
Enter password for YACHTS:

When editing objects that require passwords, remember that you must also edit
the REDEFINE command and explicitly enter the password. For example, you
enter the following EDIT command with the password SECRET:

DTR> EDIT SECRET_REC (SECRET)

DATATRIEVE places the record definition (SECRET_REC) in the editing buffer.
It then inserts a REDEFINE command at the top of the record definition. For
example:

REDEFINE RECORD SECRET_REC USING
01 TOP.

.

.

.
;

The REDEFINE command would fail, however, unless you explicitly entered the
password when you edited it. For example:

REDEFINE RECORD SECRET_REC (SECRET) USING
01 TOP.

.

.

.
;

23–14 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
The Parts of an ACL Entry

Note that once the password is part of the source definition, you do not have
to explicitly enter it in subsequent edits. DATATRIEVE places it in the editing
buffer automatically. However, the password will also be visible when you use the
SHOW command to show the object (unless you use the asterisk in parentheses
as described in this section).

Identifying Users by the Terminal Number or Job Class
You can identify users by their terminal line numbers in an ACL entry in the
DMU format dictionary, and by their job class in an ACL entry in either format
dictionary. You can specify users in the following ways:

• In the DMU format dictionary, you can identify users who work from a
particular terminal line. You specify the terminal number in the format
TTnn[:] as follows:

TERMINAL = TTH6

• You can identify all users whose terminal lines are hard-wired to your local
system. Use the keyword LOCAL:

TERMINAL = LOCAL

• You can identify all users whose processes are running on anything other
than a hard-wired line. By using the keyword NONLOCAL you can identify
all processes using dial-up lines, running in batch mode, using DECnet and
running as remote terminals, and using the Distributed Data Manipulation
Facility to run DATATRIEVE from a remote node in a network of VAX
computers. For example:

TERMINAL = NONLOCAL

• You can identify all batch processes by using the keyword BATCH:

TERMINAL = BATCH

• You can identify all processes using the Distributed Data Manipulation
Facility to run DATATRIEVE from a remote node in a network of VAX
computers. Use the keyword NETWORK:

TERMINAL = NETWORK

Access Control Lists and DATATRIEVE Protection 23–15

Access Control Lists and DATATRIEVE Protection
The Parts of an ACL Entry

DATATRIEVE and CDD/Repository Privilege Specification
The second part of an ACL entry determines the access allowed to a user who
matches the user identification criteria.

In ACL entries on objects or directories in the DMU format dictionary, the
privilege specification controls changes to the access privileges the user inherits
from the parent of the object or directory. CDD/Repository can make three types
of changes to a user’s list of inherited privileges in the DMU format dictionary:

• The GRANT clause can add any privileges that have not previously been
banished.

• The DENY clause can remove any privileges the user had to the parent
directory.

• The BANISH clause can deny a privilege to a directory or object. A privilege
banished by the ACL of a directory can never be granted by any entry in the
ACL of any descendant of that directory. The BANISH clause is only valid in
ACL entries for DMU format dictionaries.

If no entry in the ACL of an object or directory matches the user, CDD/Repository
makes no changes to the privileges the user has to the parent directory.

CDD/Repository can either grant or deny privileges to dictionaries or objects in
the CDO format dictionary:

• The GRANT clause can give any privilege. You must grant a right for the
user to have that right. Any privilege not specifically granted is denied.

• The DENY clause can specifically deny any privilege. Because the user is
denied all access rights not specifically granted, you do not have to specify
this clause.

If an ACL exists and no match is found for the user, CDD/Repository denies
access to the user. If no ACL exists, the user is granted all access rights. One
of the appendixes in the VAX DATATRIEVE Reference Manual contains tables
listing the access privileges.

Creating ACL Entries
You can create ACL entries for dictionary objects and directories in four ways:

• DATATRIEVE DEFINEP command. See Sequence Number in the DEFINEP
Command about the DEFINEP command for detailed information.

• DEFINE PROTECTION command of the CDO.

23–16 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
Creating ACL Entries

• SET PROTECTION/EDIT command of the DMU. This feature allows you to
edit ACLs from VT100-, VT200-, or VT300-family terminals with single-stroke
keypad commands. See the documentation on CDD/Repository for detailed
information.

• SET PROTECTION command of the DMU. See the documentation on
CDD/Repository for detailed information.

Suggestions for Assigning Privileges
For many applications, users need only DTR_READ, PASS_THRU, and SEE to
access the data definitions in the DMU format dictionary. In the CDO format
dictionary, many users need only the READ and SHOW privileges. Consider
restricting most users to these privileges to safeguard the data dictionary. The
following list offers additional suggestions:

• Restricting full access at the top level of the DMU format dictionary hierarchy,
CDD$TOP, to the system manager or data administrator responsible for
organizing and maintaining the directory hierarchy. Limit all other users to
PASS_THRU.

• Distributing control over the next level in the DMU format dictionary
hierarchy. If, for example, your dictionary is organized by department, give
each department manager the privileges needed to manage his or her portion
of the hierarchy.

• Organizing your DMU format dictionaries so that each dictionary directory
is owned by the people who need to use it. Use VMS security along with
CDD/Repository ACL protection to safeguard both CDO and DMU dictionary
directories.

• Making full access more widespread at the second level below CDD$TOP,
where some data definitions are stored and where some users have personal
directories assigned to them. Grant DTR_READ, PASS_THRU, SEE, and
HISTORY or their CDO equivalents, READ and SHOW, to those users who
need only to access record definitions and record audit trail information in
history list entries. For those users with personal directories, you can include
CONTROL, LOCAL_DELETE, and EXTEND as well.

• Denying access privileges to all other users. Create a last ACL entry for users
with a UIC = [*,*] to deny all privileges (DENY = ALL). By taking this action,
you prevent other users from inheriting privileges from higher directories.
This catch-all entry ensures that only the users specified in the other ACL
entries have access to that part of the dictionary.

Access Control Lists and DATATRIEVE Protection 23–17

Access Control Lists and DATATRIEVE Protection
Creating ACL Entries

You should be especially careful about granting CONTROL, FORWARD, and
GLOBAL_DELETE privileges.

• CONTROL allows users to use the DEFINEP command. Therefore,
CONTROL is equivalent in effect to having all access privileges. At the
top levels of the hierarchy, limit CONTROL to the system manager or data
administrator.

• FORWARD (DMU only) allows users to create subdictionary files.
Subdictionaries can be more secure than dictionary directories, but they
require more time for I/O operations, and they are charged against FILLM,
your VMS open file limit. Whether or not you choose to use subdictionaries,
you should limit the ability to create them to the system manager or data
administrator.

• GLOBAL_DELETE (DMU only) allows users to delete a directory or
subdictionary and all of its descendants. You should deny GLOBAL_DELETE
to all users except the system manager or data administrator.

As a general rule, you should grant users only those privileges they need to work
in their portions of the data dictionary. Remember, however, that CDD/Repository
access privileges do not block access when a user has VMS BYPASS privilege;
such users have full access to the entire data dictionary.

For more information on CDD/Repository access privileges and the DMU
commands to establish the privileges, see the documentation on CDD/Repository.

Sequence Number in the DEFINEP Command
The sequence number of an ACL entry indicates its position in the ACL. Entry 1
is at the top of the ACL, and the entry with the largest number is at the bottom.
The position of entries in the ACL can be important. Illogical orders of entries
can create serious problems for all users of a dictionary object or directory. For
example, if the first entry in a DMU ACL denies P (PASS_THRU) access to all
users, no one can use the directory or object, and no one without a privileged
VMS account can change the ACL to correct the faulty entry.

In the DEFINEP command, the sequence number indicates the position in the
ACL you want the entry to have. The sequence number of an ACL entry is not
absolute, but only relative to the position of the entry in the ACL. When ACL
entries are added or deleted, the sequence numbers of the remaining entries
can change. Specifying a sequence number in the DEFINEP command has the
following effects:

• If the sequence number in the DEFINEP command is smaller than the
number of entries already in the ACL, CDD/Repository changes the sequence

23–18 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
Creating ACL Entries

numbers of entries whose number is equal to or greater than the number
specified in the DEFINEP command. For example, if the ACL has four
entries and you enter a sequence number of 3 in the DEFINEP command, the
sequence numbers of the original entries numbered 3 and 4 change to 4 and
5.

• If the sequence number in the DEFINEP command is larger than the number
of entries in the ACL, CDD/Repository changes the sequence number of the
new entry to 1 greater than the previous number of entries in the ACL. For
example, if the ACL has four entries in it and you enter a sequence number of
7 in the DEFINEP command, CDD/Repository changes the sequence number
of the entry to 5 because it is now the fifth entry in the ACL.

The following example illustrates using the DEFINEP command to add an ACL
entry to the middle of a DMU ACL list:

DTR> SHOWP FOR PERSONNEL
1: [*,*], Username: "JONES"

Grant - RSW, Deny - none, Banish - none
2: [*,*], Password: "SECRET", Username: "DENN"

Grant - C, Deny - none, Banish - none
3: [*,*]

Grant - none, Deny - P, Banish - none

DTR> DEFINEP FOR CDD$TOP.PERSONNEL 2
[Looking for define privilege option]
CON> PW = JUNCO, USER = METES, TERMINAL = NONLOCAL,
[Looking for define privilege option]
CON> GRANT = EMPRSWUX, BANISH = G

DTR> SHOWP FOR CDD$TOP.PERSONNEL
1: [*,*], Username: "JONES"

Grant - RSW, Deny - none, Banish - none
2: [*,*], Password: "JUNCO", Terminal: "NONLOCAL",

Username: "METES"
Grant - EMPRSUWX, Deny - none, Banish - G

3: [*,*], Password: "SECRET", Username: "DENN"
Grant - C, Deny - none, Banish - none

4: [*,*]
Grant - none, Deny - P, Banish - none

DTR>

Refer to User Identification Criteria and DATATRIEVE and CDD/Repository
Privilege Specification for a discussion of the user identification criteria and the
privilege specifications.

For more information about the DEFINEP command, see the DEFINEP section
in the VAX DATATRIEVE Reference Manual.

Access Control Lists and DATATRIEVE Protection 23–19

Access Control Lists and DATATRIEVE Protection
Removing Entries from an ACL

Removing Entries from an ACL
You can remove entries from an ACL by using one of the following commands:

• DATATRIEVE DELETEP command. For more information about the
DEFINEP command, see the DEFINEP section in the VAX DATATRIEVE
Reference Manual.

• DELETE PROTECTION command of the CDD/Repository CDO.

• SET PROTECTION/EDIT command of the DMU. This feature, available
only from the DMU prompt, allows you to edit ACLs from VT100-, VT200-,
or VT300-family terminals with single-stroke keypad commands. See the
documentation on VAX Utilities for detailed information.

• DELETE/PROTECTION command of the DMU. See the documentation on
VAX CDD/Repository for detailed information.

To remove a DMU ACL entry with the DELETEP command, you must have at
least P (PASS_THRU) and C (CONTROL) access to the object or directory whose
ACL you want to change. To remove a CDO ACL entry you must have at least S
(SHOW) and C (CONTROL) access to the object or dictionary.

The DELETEP command has the following format:

DELETEP path-name sequence-number

The path-name is the given name, full dictionary path name, or relative path
name of the object or dictionary whose ACL you want to change. The sequence-
number is the sequence number of the entry in the ACL. To be sure you remove
the correct entry from the ACL, enter a SHOWP command before entering a
DELETEP command.

When you remove an ACL entry from any position but the last in the list, the
sequence numbers of all the entries between the one removed and the end of the
list are reduced by 1. The DELETEP command in the following example removes
the second entry from the DMU ACL for CDD$TOP.PERSONNEL:

DTR> SHOWP CDD$TOP.PERSONNEL(SECRET)
1: [*,*], Username: "JONES"

Grant - RSW, Deny - none, Banish - none
2: [*,*], Password: "JUNCO", Terminal: "NONLOCAL",

Username: "METES"
Grant - EMPRSUWX, Deny - none, Banish - G

3: [*,*], Password: "SECRET", Username: "DENN"
Grant - C, Deny - none, Banish - none

4: [*,*]
Grant - none, Deny - P, Banish - none

23–20 Access Control Lists and DATATRIEVE Protection

Access Control Lists and DATATRIEVE Protection
Removing Entries from an ACL

DTR> DELETEP CDD$TOP.PERSONNEL(SECRET) 2
DTR> SHOWP CDD$TOP.PERSONNEL(SECRET)
1: [*,*], Username: "JONES"

Grant - RSW, Deny - none, Banish - none
2: [*,*], Password: "SECRET", Username: "DENN"

Grant - C, Deny - none, Banish - none
3: [*,*]

Grant - none, Deny - P, Banish - none

DTR>

When entry number 2 is removed, entry 3 becomes 2 and entry 4 becomes 3.
Because the sequence numbers are relative to the position of the entries in
the ACL, the numbers adjust to close any gaps and preserve the sequential
numbering of the entries.

For more information about the DEFINEP command, see the DEFINEP section
in the VAX DATATRIEVE Reference Manual.

Access Control Lists and DATATRIEVE Protection 23–21

A
Name Recognition and Single Record

Context

When you use a field name as a value expression and you display, modify, or
erase one or more records, DATATRIEVE determines exactly which record or
records are the targets of the action you propose.

For each of these actions, DATATRIEVE must first determine the context within
which the action occurs. The context is the set of conditions that govern the
way DATATRIEVE recognizes field names and determines which records are
the targets of DATATRIEVE statements. Understanding the way DATATRIEVE
manages context is especially important when you begin nesting DATATRIEVE
statements.

Establishing the Context for Name Recognition
DATATRIEVE does not require that every field name be unique. You can use
the same name in several record definitions. You can even use the same name
several times in the same record definition, as long as the fields with identical
names do not have the same level number in one group field.

For example, both the YACHTS and OWNERS domains have group fields named
TYPE, and both group fields contain elementary fields to which you can refer
with the names BUILDER and MODEL. (In YACHTS, DATATRIEVE recognizes
the query name BUILDER as equivalent to MANUFACTURER. Other query
names for YACHTS are SPECS, LOA, and DISP.) Figure A–1 shows the fields in
both domains and points out the duplicate names.

When you work with several record streams from the same domain, the field
names in all record streams are identical. Whether you form collections or record
streams of records from the YACHTS domain, DATATRIEVE has a mechanism
for identifying which record to act on when you want to retrieve or change data
from only one field of one record.

Name Recognition and Single Record Context A–1

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

Figure A–1 Duplicate Field Names in YACHTS and OWNERS

OWNER
NAME
BOAT_NAME
TYPE

BUILDER
MODEL

BOAT
TYPE

MANUFACTURER (BUILDER)
MODEL

SPECIFICATIONS (SPECS)
RIG
LENGTHOVERALL (LOA)
DISPLACEMENT (DISP)
BEAM
PRICE

YACHTSOWNERS

When you understand the way DATATRIEVE establishes the context for
recognizing names, you can use the names of domains, fields, collections, and
variables to form the simple and the complex relationships DATATRIEVE
provides. One of the keys to mastering the use of context is understanding
the two DATATRIEVE context stacks.

The Right Context Stack
When you issue a statement, DATATRIEVE builds a context stack: a linked
list that controls the DATATRIEVE search for names to match the ones you use
in statements. The context stack consists of context blocks, or lists of names.
These context blocks are linked together by pointers that control the sequence
of the DATATRIEVE search for values to associate with the names you use in
statements.

DATATRIEVE searches the right context stack for values to associate with names
you use in print lists, Boolean expressions, and the right side of Assignment
statements such as x = y. The left context stack is discussed later in this
appendix.

A–2 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

The Content of a Context Block
When you use a record selection expression, DATATRIEVE creates a context block
to establish a context for name recognition. That context block contains, among
other things, a list of names.

At the top of the list is a slot for the name of a context variable (see Context
Variables as Field Name Qualifiers). Next is the name of the domain referred
to in the record selection expression. The rest of the list contains the names
of fields in the record associated with that domain. Those field names are
arranged according to the field tree associated with that record. The field tree
contains the names of all the group fields, elementary fields, COMPUTED BY
fields, REDEFINES fields, and lists in the record and preserves the hierarchical
relationships among them.

When DATATRIEVE searches for a name in the context stack, it looks for a
value to associate with that name. The search ends, and DATATRIEVE takes
the associated value when it finds the first name that matches the one in your
statement.

A DATATRIEVE name can consist of several names joined together. (See Other
Field Name Qualifiers.) They resemble dictionary path names in form and
function. To be recognized, these compound or qualified names you supply must
represent a valid path through the hierarchy of a context block and the field tree
it contains.

When DATATRIEVE encounters a name, it begins its search in the context
block on top of the stack. DATATRIEVE first looks at the slot in the context
block reserved for a collection name or the name of a context variable. For
unnamed CURRENT collections, this slot contains the name CURRENT. For
named CURRENT collections, the name CURRENT and the collection name are
equivalent. Named collections that are not the CURRENT collection have the
collection name in this slot.

If the top block on the context stack refers to a record stream, this slot is empty
unless you use a context variable in the RSE that forms the record stream. The
context variable gives a record stream a temporary name; this name fills the first
slot in the context block for these named record streams.

If DATATRIEVE finds that the first segment of a qualified name matches the
name in the collection name/context variable slot, it continues its search in that
block for a match for the rest of the name. If the name in your statement does
not match the name in the collection name/context variable slot, or if that slot is
empty, DATATRIEVE continues to look through the first context block to find a
match.

Name Recognition and Single Record Context A–3

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

Next in the context block is the name of the source of the records to which that
block refers. For collections and record streams, that source can be the domain
name or the name of a list for hierarchical records. The source can also be the
name of a collection if you use the collection as the basis for a record stream in a
FOR statement and use a context variable.

If the source name does not match the name in your statement, DATATRIEVE
next looks for the name in the slot reserved for names.

Next DATATRIEVE looks at the name of the top-level (the 01 level) field name. If
no match occurs, DATATRIEVE looks at each succeeding field name in the order
they are displayed when you enter a SHOW FIELDS command. That order can
take you through the entire hierarchy of the field tree, traversing first the left
branch and then the right wherever there is a branching point in the hierarchy.

If DATATRIEVE finds no match in the first block on the context stack, it goes to
the next context block on the stack and begins its search there.

DATATRIEVE stops its search as soon as it finds an exact match for the name in
your statement. Then it associates the value assigned to the name on the context
stack with the name of the field in your statement.

If DATATRIEVE finds no match for the name in any of the context blocks, it
displays a message on your terminal that the field name is either undefined or
used out of context. The only remedies are to change the context so that the name
in your statement resolves properly or to remove any ambiguity by qualifying the
name further with group field names or context variables.

For the sake of clarity, the following description of the various types of context
blocks starts with the bottom of the context stack, that is, with the context block
that DATATRIEVE checks last.

Global Variables
The bottom context block contains the names of any global variables you have
established and have not released. This block is different from the others on
the stack because its content is not determined by a record selection expression.
Nevertheless, DATATRIEVE treats the name of a global variable as though it
were the name of a field in a simple record. Just as DATATRIEVE associates the
value of a field with the field name, DATATRIEVE associates the value of a global
variable with its name.

DATATRIEVE looks at the global variables last when trying to find a name to
match one in your statement. No two global variables can have the same name.
When you issue a DECLARE statement at command level (indicated by the
DTR> prompt), DATATRIEVE checks the names of the global variables you have
declared. If it finds one with the same name, it releases the old variable and
its value and replaces it with the new one. DATATRIEVE initializes the new

A–4 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

variable with a default value, a missing value, a zero, or a space depending on
the clauses you include in the DECLARE statement.

Collections
The next higher set of blocks in the context stack refers to existing collections.
Each collection with a block on the context stack must have one record singled
out as a selected record. Although a collection can have a number of records in
it, only one of those records can be used in the search for the context of a name.
DATATRIEVE can assign only one value to the name. Consequently, that one
value can come from only one of the records in the collection.

Remember, the reason for resolving the context of a name you use in a statement
is to assign to the name a value for use in the statement. For an existing
collection, you can designate one record at a time as the selected record for
that collection. The SELECT statement lets you designate the selected record
in a collection by relative reference (FIRST, NEXT, PRIOR, LAST, and WITH
Boolean) or by absolute reference to the position number of the record in the
collection. A collection has a block on the context stack only if it has a selected
record.

If you have more than one existing collection with a selected record, the block
immediately above the one for global variables refers to a named collection with
a selected record. That collection is the one you formed with a FIND statement
before you formed any of the other collections that have selected records.

The rest of the context blocks for the collections with selected records are ordered
according to the sequence in which you formed them, not the order in which you
entered the SELECT statements to establish the selected records.

If the CURRENT collection has a selected record, the context stack contains a
block referring to the CURRENT collection. That block is above the blocks of
all other collections; that is, DATATRIEVE searches for names in the context
block of the CURRENT collection before it searches the context block of any other
collection.

The key to understanding the way DATATRIEVE recognizes names is that except
for the global variables, the context stack is ordered on a ‘‘last-in, first-out’’ basis.
The most recently formed context block is the one DATATRIEVE searches first.

You do not have to rely on your memory to recall the order in which you
formed your existing collections. You need only issue a SHOW COLLECTIONS
command. DATATRIEVE displays the most recently formed collection (always the
CURRENT collection, whether it has a name or not) at the top of the list and the
‘‘oldest’’ one at the bottom.

Name Recognition and Single Record Context A–5

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

With the SHOW collection-name command, you can inspect each existing
collection to see how many records are in the collection, whether it has a selected
record, and, if it does, what the position number of the selected record is in the
collection.

If DATATRIEVE searches the context stack and does not find a match for the
name in your statement, it displays an error message that may seem puzzling
unless you understand the way DATATRIEVE forms the context stack:

Field "name" is undefined or used out of context

You may know the name has been defined and that it is the name of a field in a
record associated with one or more existing collections. If, however, none of the
collections containing that field have selected records, DATATRIEVE cannot tell if
the field is defined or not.

If a collection containing the named field has no selected record, that collection
has no block on the context stack. Consequently, DATATRIEVE neither finds
a match for the field name nor has a way of discovering from the search of the
context stack if the field name is defined at all.

The order of context blocks at the higher levels of the context stack depends on
the order in which DATATRIEVE encounters the elements containing names
associated with values. The order of the following sections does not imply any
relative position on the stack. Only the order in which DATATRIEVE encounters
those elements determines their order on the stack.

Record Streams
Before DATATRIEVE looks at the context block of the most recently formed
collection with a selected record, it looks at the context blocks created explicitly
in the statement. One type of context block created by a statement refers to the
field names of a record stream formed by a statement.

Context blocks of record streams act differently from those of collections. The
context block for a collection stays on the stack as long as the collection has a
selected record. The context block of a collection is removed from the stack only if
you release the collection or remove its selected record with a DROP statement.

The context block for a record stream, however, stays on the stack only as long
as the statement containing it is being executed. When DATATRIEVE finishes
processing the statement, the block added to the stack is removed from the
context stack and is not available when DATATRIEVE rebuilds the stack after it
encounters the next statement.

Only three statements make lasting changes to the context stack:

• FIND

A–6 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

The FIND statement can remove the CURRENT collection from the context
stack by forming a new CURRENT collection. The new CURRENT collection
releases the old collection but does not put a block on the context stack
because a newly formed collection has no selected record.

• SELECT

The SELECT statement puts a collection on the context stack by establishing
a selected record. SELECT cannot change the relative order of collections on
the stack. That order is determined by the relative order in which you formed
the collections with the FIND statement.

• DROP

The DROP statement removes collections from the context stack by dropping
the selected record from the collection. The SHOW collection-name command
still notes the position number of the previously selected record, but a
parenthetical note points out that the record has been dropped:

DTR> SHOW CURRENT
Collection CURRENT

Domain: YACHTS
Number of Records: 113
Selected Record: 57 (Dropped)

DTR>

The selected record has been removed from the collection and cannot be
retrieved unless you form a new collection that contains it.

These three statements, however, share a restriction that separates them from
all other statements: You cannot use FIND, SELECT, or DROP statements in
compound statements. They must be entered at command level by themselves.
Furthermore, these statements do not form temporary record streams; they affect
only collections.

You can, however, have several context blocks for record streams on the context
stack at one time. The block for a record stream stays on the context stack
until DATATRIEVE finishes the statement. Because you can nest statements in
FOR loops, BEGIN-END blocks, IF-THEN-ELSE statements, THEN statements,
and WHILE statements, the inner statements can form record streams before
DATATRIEVE finishes the outermost statement.

DATATRIEVE has to keep the context of outer statements separate from that of
inner ones. It keeps them separate by putting a block on the context stack when
it encounters an element that requires one. DATATRIEVE begins processing
compound statements with the outermost statement and works progressively
toward the innermost one. The context blocks it forms for elements in the
innermost statement are at the top of the stack when the innermost statement is
being processed.

Name Recognition and Single Record Context A–7

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

When DATATRIEVE finishes processing the innermost statements, it removes the
blocks created by that statement. DATATRIEVE works its way back out toward
the outermost statement, removing blocks created by statements as soon as it
finishes processing the statement.

For example, in the case of nested FOR loops, the context block for the innermost
FOR loop is higher in the stack than the blocks for the outer loops. When
DATATRIEVE completes the execution of the innermost loop, it removes the
context block of that FOR statement, leaving those of the outer FOR statements
on the stack. As DATATRIEVE completes each loop, the context block for that
loop is removed from the stack. This same pattern of events applies to statements
in BEGIN-END blocks.

When a statement that forms a record stream is followed by a second statement
that is not contained in the first, DATATRIEVE removes the context block created
for the first statement from the stack and puts a context block for the second
statement in its place.

For example, in a BEGIN-END block, one PRINT statement containing an OF rse
clause follows another. The context block of the first statement is in effect only
during the execution of that first statement. That block is replaced by the one for
the second PRINT statement when DATATRIEVE begins processing the second
statement.

DATATRIEVE handles the context block of a FOR loop the same way it handles
statements containing an OF rse clause.

DATATRIEVE creates four other types of context blocks that affect the order of
the context stack: those for local variables, VERIFY clauses, VALID IF clauses,
and context variables.

Local Variables
Local variables are variables defined in compound statements. A local variable
and its effect on the context stack last only from the DECLARE statement that
defines it until DATATRIEVE completes the execution of the statement containing
the DECLARE statement.

VERIFY Clause in the STORE Statement
Like the context for local variables, the context for resolving field names in a
VERIFY clause of the STORE statement is short-lived. The STORE statement
does not access or change any existing record. Consequently, for each STORE
statement DATATRIEVE creates a context block to associate the field names
with the values in the new record. DATATRIEVE executes the VERIFY clause
after you have assigned values to all the fields prescribed by the syntax of the
statement, but before DATATRIEVE stores the record in the data file.

A–8 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

VALID IF Clause in a Record Definition
When you assign a value to a field name in either a STORE or MODIFY
statement, DATATRIEVE looks in the appropriate record definition for a VALID
IF clause. If the value is unacceptable according to the conditions specified in
the VALID IF clause, DATATRIEVE displays a message on your terminal and
reprompts you for an acceptable value. It uses the same context to associate the
field name with your response to the reprompt. The context for resolving field
names in the VALID IF clause is established in one of two ways:

• By the context block set up for the STORE statement

• By the context block set up for the MODIFY statement

In either case, the value associated with the field name is the one just assigned
to it by your response to a prompt or by an Assignment statement in the USING
clause of the STORE or MODIFY statement.

DATATRIEVE executes the VERIFY clause only after the values you assign meet
the conditions of VALID IF clauses in the record definition. As a result, there
can be no conflict between the context established for these two clauses. The
context for the VALID IF clause no longer exists when DATATRIEVE executes
the VERIFY clause.

Using Context Variables and Qualified Field Names
The ways of establishing context discussed to this point deal with resolving the
connections between names and values by finding the first instance of a valid
field name or variable name. When several context blocks on the stack contain
fields with the same names, you need a way to skip over some instances of the
name to get to the field that contains the value you want to retrieve.

DATATRIEVE gives you two methods of forcing name recognition: context
variables and qualified field names. Although they require different actions from
you, these two methods have an underlying similarity.

Context Variables as Field Name Qualifiers
A context variable is a dummy variable specified in a record selection expression
for the purpose of name recognition. When DATATRIEVE encounters a context
variable, it puts a new block on the context stack. That new block connects the
name of the context variable with the field names and values of the records
identified by the record selection expression.

The context established by the context variable lasts until DATATRIEVE
completes the execution of the statement containing the record selection
expression in which the context variable occurs. However, that context does
not affect any outer loops or nesting statements that contain the statement in
which you use the context variable.

Name Recognition and Single Record Context A–9

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

A context variable, however, does affect all inner statements nested in the
statement that contains the record selection expression in which the context
variable occurs. You can use the context variable as a prefix for each field name
of the records identified by the record selection expression. Citing a field name
with a context variable prefix can make a field name unique, even when the
domains and field trees of a record in a record stream are identical.

Putting a prefix on a field name produces a qualified field name. The context
variable must be the first prefix added to a field name.

Other Field Name Qualifiers
Using other qualifiers as prefixes to field names is the second method of
overriding the DATATRIEVE default of name recognition.

Although DATATRIEVE does not require that each field name be unique, each
fully qualified field name must be unique. The fully qualified field name consists
of the domain name, the top-level group field name, the names of any group field
to which the elementary field belongs, and the elementary field name. You must
separate each element of the fully qualified name from the next with a period.

For example, in the domain YACHTS, the fully qualified field name of MODEL is
as follows:

YACHTS.BOAT.TYPE.MODEL

You can use these elements in any combination that preserves their hierarchical
order to distinguish the MODEL field in YACHTS from the MODEL field in
another domain, such as OWNERS.

When DATATRIEVE encounters a qualified field name, it searches the context
stack for the first match of the name you specify. For example, if you use
BOAT.MODEL in a record selection expression, DATATRIEVE searches the
context stack for the first valid occurrence of the name BOAT and searches the
branches of the hierarchy under BOAT for the first valid occurrence of the name
MODEL.

The success of the search is not jeopardized because you omit the group field
name TYPE from the qualified name of MODEL. DATATRIEVE searches the
entire hierarchy under BOAT until it finds the first valid occurrence of TYPE.
When an intermediary group field name is omitted, DATATRIEVE searches the
hierarchy according to the order in which the fields of the record were defined.

Fully qualified field names are adequate when working with two or more domains
that share elementary or group field names, or both. However, when you work
with two record streams from the same domain, you must further qualify the field
name with a context variable. This extra qualification is especially necessary
when dealing with lists in hierarchical records.

A–10 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

Suppose you want to display information about all builders who build boats with
more than one type of rig. YACHT is the given name of the record associated
with the domain YACHTS. The field tree of YACHT has the following structure:

YACHTS
01 BOAT
03 TYPE

06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
06 RIG
06 LENGTH_OVER_ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

You can print the desired information with nested FOR loops. For each boat from
the outer FOR statement, you want DATATRIEVE to loop through all the boats
and find all the ones with the same builder. For each one it finds, you want it
to compare its rig with the rig of the boat from the outer loop. Then you want
to separate the ones for which the rigs are not the same. At first, you might be
tempted to use the following statement to produce the desired list:

DTR> SET NO PROMPT
DTR> FOR YACHTS
CON> FOR YACHTS WITH BUILDER = BUILDER AND
CON> RIG NE RIG
CON> PRINT BUILDER, RIG, RIG
DTR>

After a long search for records, DATATRIEVE displays no records. The problem
is that the syntax in the previous example asks DATATRIEVE to look for a boat
with a rig that is not equal to itself—an obvious contradiction. Both of the fields
named RIG resolve to the record stream formed by the second FOR statement.
The name BUILDER also resolves to the same record stream.

What happens when you enter the previous example is that DATATRIEVE takes
the first record from YACHTS but does not look at any of the values in its fields.
Then it looks at every record in YACHTS and discovers that for every one of
them, the name of the builder equals itself, but that no rig is not equal to itself.
Thus every record in YACHTS fails to meet the condition set by the statement.

DATATRIEVE then takes the second record in YACHTS and once again goes
through all the boats, finding that the two values are always equal to themselves
and thus fail to meet the impossible demands of the statement. And so it goes
for each record: two comparisons for 113 times 113 records, and no records meet
the self-contradictory conditions. The problem is how to get DATATRIEVE to look

Name Recognition and Single Record Context A–11

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

at the builder and rig of the outer FOR statement when making the comparison.
The context variable provides one solution:

DTR> FOR A IN YACHTS
CON> FOR YACHTS WITH BUILDER = A.BUILDER

AND RIG NE A.RIG
CON> PRINT BUILDER, A.RIG, RIG

MANUFACTURER RIG RIG

AMERICAN SLOOP MS
AMERICAN MS SLOOP
CHALLENGER SLOOP KETCH

.

.

.
PEARSON KETCH SLOOP
PEARSON KETCH SLOOP

DTR>

In this case, the use of the context variable A forces DATATRIEVE to look
to the record stream formed by the outer FOR statement. At the same time,
DATATRIEVE recognizes the unqualified names, RIG and BUILDER, in the
context established by the most recent RSE, the one in the second FOR statement.
The conditions in the second FOR statement are no longer impossible and
information from 62 records is displayed.

The way DATATRIEVE treats the unqualified names in this example illustrates
another rule for context resolution: The left-hand member of a Boolean expression
must resolve to the record selection expression of which it is a part. If you start
the Boolean in the second FOR statement with A.BUILDER, DATATRIEVE tells
you that A.BUILDER is undefined or used out of context.

You can add a second context variable in the previous example to make sure the
resolution of the names is explicitly stated:

DTR> FOR A IN YACHTS
CON> FOR B IN YACHTS WITH B.BUILDER = A.BUILDER AND

B.RIG NE A.RIG
CON> PRINT B.BUILDER, A.RIG, B.RIG

You gain two advantages by specifying the second context variable. The first
advantage is clarity of representation. The second advantage is the certainty of
getting an error message from DATATRIEVE if you make a syntax error. Using
the second context variable, however, does not allow you to violate the rule for
resolving field names on the left side of Boolean expressions.

A–12 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

The Effect of the CROSS Clause on Name Recognition
You can use the CROSS clause of the record selection expression to produce the
same record stream as the nested FOR statements in the previous example. The
CROSS clause, however, is not constrained by the rule for resolving field names
on the left side of Boolean expressions.

With the CROSS clause, you can establish more than one context variable (and,
hence, more than one context block) in a record selection expression. This is the
syntax of the CROSS clause:

[CROSS [context-var IN] rse-source [OVER field-name]] [...]

The format for rse-source is:������������
�����������

domain-name
collection-name
list
rdb-relation-name

dbms-record-name

�
�	

 MEMBER

OWNER
WITHIN

�
[OF] [context-name.]set-name

�

�

������������
�����������

DATATRIEVE creates a context block for each source in the CROSS clause. The
names in all such context blocks resolve to the same record selection expression.
Consequently, adequately qualified names in the Booleans of the record selection
expression can appear on either the right-hand or left-hand side of any of the
Booleans. For example, any of the following statements produces the same result
as the nested FOR statements of the previous example:

DTR> FOR A IN YACHTS CROSS B IN YACHTS WITH
CON> B.BUILDER = A.BUILDER AND B.RIG NE A.RIG_
CON> PRINT B.BUILDER, A.RIG, B.RIG

DTR> FOR A IN YACHTS CROSS B IN YACHTS WITH
CON> A.BUILDER = B.BUILDER AND A.RIG NE B.RIG
CON> PRINT B.BUILDER, A.RIG, B.RIG

DTR> FOR A IN YACHTS CROSS YACHTS WITH
CON> BUILDER = A.BUILDER AND RIG NE A.RIG
CON> PRINT BUILDER, A.RIG, RIG

DTR> FOR A IN YACHTS CROSS YACHTS WITH
CON> A.BUILDER = BUILDER AND A.RIG NE RIG
CON> PRINT BUILDER, A.RIG, RIG

Name Recognition and Single Record Context A–13

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

In cases where the sources specified in the CROSS clause share a field name,
you can use the OVER clause to simplify the context specification. The field
name specified in the OVER clause must exist in the records of all the sources
specified in the CROSS clause. The following two statements are equivalent to
the preceding ones:

DTR> FOR A IN YACHTS CROSS YACHTS OVER BUILDER WITH
CON> RIG NE A.RIG
CON> PRINT BUILDER, A.RIG, RIG

DTR> FOR A IN YACHTS CROSS YACHTS OVER BUILDER WITH
CON> A.RIG NE RIG
CON> PRINT BUILDER, A.RIG, RIG

To resolve field names in a record selection expression containing a CROSS
clause, DATATRIEVE looks first at the context block for the last source specified
in the CROSS clause. If that block contains no match for the field name, it begins
looking at the context blocks for the other sources, working its way toward the
block for the first source in the clause.

Consequently, when referring to fields from two or more identical sources, only
those fields from the last source in the CROSS clause can remain unqualified. In
such cases, you must use context variables to establish the appropriate context
for fields from the other sources in the clause.

The Left Context Stack for Assignment Statements
When you make Assignment statements at the DATATRIEVE command level or
as part of STORE or MODIFY statements, DATATRIEVE must assign values to
the field or variable you intend. It uses the left context stack to associate the
values you supply with the fields and variables to which you want the values
assigned. Blocks on the left context stack are for records and variables that you
can update.

Whenever DATATRIEVE begins to process a statement, the left context stack
contains the global variables you have declared and not released. Any local
variables you declare in compound statements are also on the left context stack.
The local variables are removed when the statement in which you declared them
ends.

Local and global variables are on both stacks. Each type of variable has a value
that can be assigned to a field or another variable; hence, they are on the right
context stack. Both can be updated with new values you assign them; hence, they
are on the left context stack.

A–14 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

Context blocks for a record you want to modify are also on both context stacks.
The record has a value you can use in Boolean expressions and Assignment
statements. In a MODIFY statement you can update that value. Because a
field is on both stacks at the same time, you can use the old value of the field to
calculate the new value. You can use the following form of Assignment statement:

DTR> MODIFY USING PRICE = PRICE * 1.1
DTR>

DATATRIEVE retrieves the old value of PRICE associated with the name on the
right context stack and multiplies the old PRICE by a constant. It then associates
that value with the name PRICE on the left context stack and updates the value
of the PRICE field.

When you enter a STORE statement, the only context block for the new record
is on the left context stack. No record exists yet, and, of course, no values are
associated with its fields. The fields can only receive values.

However, as soon as DATATRIEVE associates a value with a field, you can move
that value to the right context stack and use it on the right side of Assignment
statements. You can make this shift before you finish assigning values to all the
fields of the new record. In fact, you can use the values of new fields to calculate
the values DATATRIEVE stores in other new fields in the same record.

To shift newly stored values to the right context stack, include a context variable
with the domain name when you enter the STORE statement:

DTR> STORE A IN YACHTS USING . . .

Then, in the USING clause, use the context variable to qualify the names of any
field whose value you want to use on the right side of an Assignment statement:

DTR> STORE A IN YACHTS USING
CON> BEGIN
CON> F1 = value-expression
CON> F2 = value-expression
CON> F3 = A.F1 + A.F2
CON> END
DTR>

The context variable allows you to associate a field name on the right context
stack with its new value as soon as you assign the value to the field. You cannot,
however, use a field name on the right side of an Assignment statement until you
have assigned a value to the field.

You can combine STORE and MODIFY statements to keep an audit trail of
changes made to records in a domain and to change statistical records when you
store new records.

Name Recognition and Single Record Context A–15

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

To form an audit trail, you need a domain for the audit records. This domain can
use the same record definition as the original domain but it must have its own
domain definition and its own data file. Here is a simple example:

DTR> SHOW AUDIT_YACHTS
DOMAIN AUDIT_YACHTS USING
YACHT ON AUD_YACHT;

DTR> FOR A IN YACHTS MODIFY USING
CON> BEGIN
CON> BUILDER = *.BUILDER
CON> MODEL = *.MODEL
CON> RIG = *.RIG
CON> LOA = *.LOA
CON> DISP = *.WEIGHT
CON> BEAM = *.BEAM
CON> PRICE = *.PRICE
CON> STORE B IN AUDIT_YACHTS USING
CON> B.BOAT = A.BOAT
CON>END
Enter BUILDER:

If you have a VERIFY USING clause in the MODIFY statement, you should put
the STORE statement as the last statement in the VERIFY clause. If you put
the VERIFY clause after the STORE statement and the VERIFY clause aborts
the change, you have a record of the change but you have not changed the record.
You can also embed a MODIFY statement in a STORE statement.

In the following example, the embedded MODIFY statement updates a record of
the last date a new record was added to the data file and records the TYPE field
of the record stored. The file LAST.DAT is a sequential file with one record in it.

A–16 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Establishing the Context for Name Recognition

DTR> SHOW LAST_ENTRY
DOMAIN LAST_ENTRY USING LAST_REC ON LAST.DAT;
DTR> SHOW LAST_REC
RECORD LAST_REC USING
01 TOP.
03 LAST_DATE USAGE DATE.
03 TYPE PIC X(20).
;
DTR> STORE A IN YACHTS USING
CON> BEGIN
CON> BUILDER = *.BUILDER
CON> MODEL = *.MODEL
CON> RIG = *.RIG
CON> LOA = *.LOA
CON> DISP = *.DISP
CON> BEAM = *.BEAM
CON> PRICE = *.PRICE
CON> MODIFY B IN LAST_ENTRY USING
CON> BEGIN
CON> LAST_DATE = "TODAY"
CON> B.TYPE = A.TYPE
CON> END
CON> END
Enter BUILDER:

With the proper use of context variables, you can also store or change data in
fields shared by two or more domains.

Single Record Context
The DATATRIEVE statements PRINT, MODIFY, and ERASE can act on one
record at a time or on an entire record stream or collection. The records on
which they act are called target records. You can identify target records for these
statements in four ways:

• A SELECT statement identifies one target record in a collection.

• The keyword ALL in a statement, without an OF rse clause, makes all
records in a collection the targets of the statement.

• An OF rse clause in the statement forms a target record stream.

• The RSE clause in a FOR statement forms a stream of target records for the
statement contained in the FOR loop.

Name Recognition and Single Record Context A–17

Name Recognition and Single Record Context
Single Record Context

The SELECT Statement and the Single Record Context
Before discussing the SELECT statement and context, a short review of facts
about collections is in order.

DATATRIEVE keeps a list of the collections you form with the FIND statement.
The most recent one formed is always at the top of the list and is called the
CURRENT collection. The only other collections on the list are the ones to which
you assign a name when you form them. If you do not assign a name to the
CURRENT collection, the next collection you form becomes the new CURRENT
collection. DATATRIEVE discards the old CURRENT collection unless you give it
a name when you form it.

With the RELEASE command, you can remove a collection from that list. If you
release the CURRENT collection, the next one on the list becomes the CURRENT
collection.

No collection on this list, however, is represented by a block on the context
stack unless you use the SELECT statement to single out one record in the
collection. When you select a record in a collection, DATATRIEVE puts a block
for that collection on the context stack. If every existing collection has a selected
record, then DATATRIEVE keeps a block on the context stack for each of those
collections.

The relative ages of the collections with selected records determine the order of
context blocks for collections. The ‘‘oldest’’ collection with a selected record is
the bottom of the context stack. Because the CURRENT collection is always the
‘‘youngest,’’ its context block, if it has one, is nearest the top.

This order of context blocks for collections establishes the order DATATRIEVE
uses not only for recognizing field names, as previously described, but also for
identifying single target records. When you enter the most abbreviated forms of
the PRINT, MODIFY, and ERASE statements, DATATRIEVE looks on the context
stack for the first valid single record context to carry out the specified action. It
looks for the ‘‘youngest’’ collection with a selected record and either prints the
record, erases it, or changes it.

The following sequence of examples illustrates the effect of the SELECT and
DROP statements on single record context and the subsequent actions of the
PRINT, MODIFY, and ERASE statements. Form a collection of records from the
YACHTS domain, call it BIGGIES, select the third record as the target record,
and display it:

A–18 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Single Record Context

DTR> READY YACHTS WRITE
DTR> FIND BIGGIES IN YACHTS WITH LOA > 40
[8 records found]
DTR> SELECT 3
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

GULFSTAR 41 KETCH 41 22,000 12 $41,350

DTR>

Store a new record in the YACHTS domain and form a collection that consists of
that one record. Later, you can modify and erase this record:

DTR> STORE YACHTS
Enter MANUFACTURER: HINKLEY
Enter MODEL: BERMUDA 40
Enter RIG: YAWL
Enter LENGTH_OVER_ALL: 40
Enter DISPLACEMENT: 20000
Enter BEAM: 12
Enter PRICE: 82,000
DTR> FIND YACHTS WITH BUILDER = "HINKLEY"
[1 record found]
DTR>

You now have two collections, CURRENT (the younger) and BIGGIES (the older):

DTR> SHOW COLLECTIONS
Collections:

CURRENT
BIGGIES

DTR> SHOW CURRENT
Collection CURRENT

Domain: YACHTS
Number of Records: 1
No Selected Record

DTR> SHOW BIGGIES
Collection BIGGIES

Domain: YACHTS
Number of Records: 8
Selected Record: 3

DTR>

Name Recognition and Single Record Context A–19

Name Recognition and Single Record Context
Single Record Context

The CURRENT collection has no selected record, but BIGGIES still does.
Consequently, when you type PRINT and press the RETURN key again,
DATATRIEVE prints the record in the first valid single record context, that
is, the selected record in BIGGIES:

DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

GULFSTAR 41 KETCH 41 22,000 12 $41,350

DTR>

When you type SELECT and press the RETURN key, DATATRIEVE selects the
first and only record in the CURRENT collection. Now when you type PRINT and
press the RETURN key, the single record context has changed. Now the selected
record in the CURRENT collection is the target record of the PRINT statement:

DTR> SELECT
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

HINKLEY BERMUDA 40 YAWL 40 20,000 12 $82,000

DTR> SHOW CURRENT
Collection CURRENT

Domain: YACHTS
Number of Records: 1
Selected Record: 1

Now modify the price of the target record and display the result. The MODIFY
and PRINT statements both act on the record in the first valid single record
context, that is, the selected record in the CURRENT collection:

DTR> MODIFY PRICE
Enter PRICE: 75,000
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

HINKLEY BERMUDA 40 YAWL 40 20,000 12 $75,000

DTR>

A–20 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Single Record Context

Now type ERASE and press the RETURN key. The ERASE statement also
acts on the record in the first valid single record context, and the record for the
HINKLEY boat is removed from the data file YACHT.DAT. Even though you erase
the only record in the collection, DATATRIEVE does not discard the collection.
It takes note that you have erased the selected record and removes the context
block for the CURRENT collection from the context stack.

You can verify the change in single record context by typing PRINT and pressing
RETURN. The selected record from BIGGIES is again in the first valid single
record context:

DTR> ERASE
DTR> SHOW CURRENT
Collection CURRENT

Domain: YACHTS
Number of Records: 1
Selected Record: 1 (Erased)

DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

GULFSTAR 41 KETCH 41 22,000 12 $41,350

DTR>

If you type MODIFY or ERASE and press the RETURN key and no existing
collection has a selected record, DATATRIEVE displays a message that there is
no target record for the action you propose:

DTR> ERASE
No target record for ERASE.
DTR> MODIFY
No target record for MODIFY.
DTR>

However, if you type PRINT and press the RETURN key and no existing
collection has a selected record, DATATRIEVE displays a message that there
is no selected record and then prints out the whole collection:

DTR> FIND YACHTS WITH BUILDER = "ALBIN"
[3 records found]
DTR> PRINT
No record selected, printing whole collection

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

Name Recognition and Single Record Context A–21

Name Recognition and Single Record Context
Single Record Context

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

You can change the single record context with the DROP statement. The DROP
statement removes the selected record from a collection but does not erase the
record from the data file. When you type DROP and press the RETURN key,
and the CURRENT collection has no selected record, DATATRIEVE displays a
message on your terminal:

DTR> FIND BIGGIES IN YACHTS WITH LOA > 40
[8 records found]
DTR> DROP
No collection with selected record for DROP.

If the CURRENT collection has a selected record, the DROP statement removes
that record from the collection when you type DROP and press the RETURN key.
If other collections have selected records, you must specify the collection name in
the DROP statement.

The CURRENT collection is BIGGIES. Select and display the first record in
BIGGIES and form a new CURRENT collection of boats built by Albin:

DTR> SELECT; PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228

DTR> FIND YACHTS WITH BUILDER = "ALBIN"
[3 records found]
DTR>

Now select, display, and drop the first record of the CURRENT collection. Then
enter a SHOW CURRENT command to see how DATATRIEVE records the results
of your actions. The SELECT creates a single record context for the current
collection; thus, the target record of the PRINT statement is the selected record
in the CURRENT collection, not in BIGGIES:

DTR> SELECT
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900

A–22 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Single Record Context

DTR> DROP
DTR> SHOW CURRENT
Collection CURRENT

Domain: YACHTS
Number of Records: 3
Selected Record: 1 (Dropped)

DTR>

When you drop a selected record from a collection, you change the single record
context. The context block for that collection is removed from the context stack.

Consequently, when you type PRINT and press the RETURN key again,
DATATRIEVE displays the selected record in BIGGIES, the record in the first
valid single record context:

DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228

DTR>

Unlike PRINT, MODIFY, and ERASE, the DROP statement does not act on the
record in the first valid single record context. You have already dropped the
selected record in the CURRENT collection. When you type DROP and press the
RETURN key again, DATATRIEVE displays a message on your terminal and does
not drop the selected record in BIGGIES. Because BIGGIES is not the CURRENT
collection, you have to specify its name in the DROP statement:

DTR> DROP
Target record has already been dropped.
DTR> DROP BIGGIES
DTR> SHOW BIGGIES
Collection BIGGIES

Domain: YACHTS
Number of Records: 8
Selected Record: 1 (Dropped)

DTR>

Now you have no valid single record context. When you type PRINT and press
RETURN, DATATRIEVE displays the whole CURRENT collection because there
is no selected record in either of the two existing collections. Because you dropped
one record from the CURRENT collection, it contains only two records now:

Name Recognition and Single Record Context A–23

Name Recognition and Single Record Context
Single Record Context

DTR> PRINT
No record selected, printing whole collection

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

To show that you have not erased the record dropped from the CURRENT
collection, form and display a new CURRENT collection of boats by Albin:

DTR> FIND YACHTS WITH BUILDER = "ALBIN"
[3 records found]
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

The CURRENT Collection as Target Record Stream
The preceding example shows the effect of the keyword ALL on a PRINT
statement that does not contain an OF rse clause.

Although DATATRIEVE acts on only one record at a time, you can identify more
than one record for a single DATATRIEVE statement to act on. With the keyword
ALL, you can make every record in the CURRENT collection the target of a single
PRINT, MODIFY, or ERASE statement. Such a statement, however, cannot also
contain an OF rse clause.

If you have a CURRENT collection and type PRINT ALL and press the RETURN
key, DATATRIEVE displays the whole CURRENT collection. If you have no
CURRENT collection, DATATRIEVE displays a message on your terminal. To
illustrate this effect, release all collections and enter the statement PRINT ALL:

DTR> SHOW COLLECTIONS
Collections:

CURRENT
BIGGIES

A–24 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Single Record Context

DTR> RELEASE CURRENT, BIGGIES
DTR> SHOW COLLECTIONS
No established collections.
DTR> PRINT ALL
A current collection has not been established.
DTR>

DATATRIEVE displays the same message on your terminal when you have no
CURRENT collection and you enter either an ERASE ALL or a MODIFY ALL
statement.

When you have a CURRENT collection and you enter an ERASE ALL statement,
DATATRIEVE removes every record in the CURRENT collection from the data
file. Although frequently useful, this operation can jeopardize valuable data if
you use it carelessly.

The various forms of the MODIFY ALL statement change the data in each
record of the CURRENT collection. (See the MODIFY statement in the
VAX DATATRIEVE Reference Manual.) Make a collection of the first three
yachts with no listed price. Display the CURRENT collection, modify the PRICE
to $30,000, display the results of the change, and change the price back to zero
using a different form of the MODIFY ALL statement:

DTR> FIND FIRST 3 YACHTS WITH PRICE = 0
[3 records found]
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR> MODIFY ALL PRICE
Enter PRICE: 30,000
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39 18,500 12 $30,000
BUCCANEER 270 SLOOP 27 5,000 08 $30,000
BUCCANEER 320 SLOOP 32 12,500 10 $30,000

DTR> MODIFY ALL USING PRICE = 0; PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

Name Recognition and Single Record Context A–25

Name Recognition and Single Record Context
Single Record Context

BLOCK I. 40 SLOOP 39 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR>

If your collection contains many records and you mistakenly enter an ERASE
ALL or MODIFY ALL statement, you can enter a CTRL/C to prevent all the
records in the CURRENT collection from being erased or changed. How many
records get erased or changed under such circumstances depends on the speed
with which you enter the CTRL/C, the processing load on your system, and the
priority of your process.

The OF rse Clause and Target Record Streams
The OF rse clause in a PRINT, ERASE, or MODIFY statement lets you create
a new context for that statement. The OF rse clause specifies a target record
stream that overrides any context established for your existing collections. For
each such OF rse clause, DATATRIEVE puts a new block on the context stack.
When DATATRIEVE completes execution of the statement, it removes that block
from the context stack.

The following example contrasts the effect of PRINT, PRINT ALL, and PRINT
OF rse. (When the PRINT statement does not include a list of fields, you can
omit the OF from the statement.) The record selection expression here is FIRST
3 YACHTS WITH PRICE = 0. This RSE identifies a new target record stream for
the PRINT statement that overrides the CURRENT collection as a target record
stream. It also overrides the single record context of the selected record in the
CURRENT collection:

DTR> FIND FIRST 3 YACHTS
[3 records found]
DTR> SELECT; PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500

DTR> PRINT FIRST 3 YACHTS WITH PRICE = 0

A–26 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Single Record Context

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

BLOCK I. 40 SLOOP 39 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR>

To reduce the risk to your data, DATATRIEVE forces you to include both
keywords ALL and OF when using the OF rse clause in MODIFY and ERASE
statements. Although the results are not shown here, you must type MODIFY
and ERASE statements to resemble the following examples. The record selection
expression used in these statements is PHONES WITH DEPT = ‘‘32T’’:

DTR> MODIFY ALL OF PHONES WITH DEPT = "32T"

DTR> MODIFY ALL DEPT OF PHONES WITH DEPT = "32T"

DTR> MODIFY ALL USING DEPT = *."NEW DEPT" OF
PHONES WITH DEPT = "32T"

DTR> ERASE ALL OF PHONES WITH DEPT = "32T"

Unless you include Assignment statements in the USING clause of a MODIFY
statement, DATATRIEVE prompts you once to supply a value for each elementary
field specified or implied in the statement. After you respond to the last of the
prompts, DATATRIEVE begins to change each of the records in the CURRENT
collection to correspond to the values you supplied to the prompts. You can
prevent any changes from taking effect by entering CTRL/Z when responding to
any of the prompts.

FOR Statements and Target Record Streams
You can use FOR statements to create target record streams for the
DATATRIEVE statements that use single record context. Using FOR loops
has an advantage over using target record streams formed by the OF rse clause
and the target record stream formed of the CURRENT collection by the keyword
ALL.

The FOR statement lets you work with each record individually; you do not have
to perform the same operation on all target records. By putting STORE and
MODIFY statements and prompting value expressions in a FOR loop, you can act
on each member of a record stream or collection one at a time.

When you put a MODIFY statement in a FOR statement, DATATRIEVE prompts
you once for each field in the record if you do not specify a field list or a USING
clause in the MODIFY statement.

Name Recognition and Single Record Context A–27

Name Recognition and Single Record Context
Single Record Context

This FOR statement creates a record stream of boats that have no price listed.
The MODIFY statement prompts you to supply a price for each record in the
record stream. You can put a unique value in the PRICE field for each boat:

DTR> READY YACHTS MODIFY
DTR> FOR YACHTS WITH PRICE MISSING MODIFY PRICE
Enter PRICE: 12900
Enter PRICE: 15600
Enter PRICE:

Another valuable feature of FOR loops is the complex relationships you create
between record streams when you include one FOR loop inside another. Each
FOR statement puts a block on the context stack. As a result, you can use the
context mechanism to transfer values between records.

By putting a MODIFY statement inside two FOR statements, you can
automatically update master records with the data from periodic transaction
records:

DTR> FOR A IN DAILY_TRANSACTIONS
CON> FOR B IN MASTER_DATA WITH B.ACCOUNT = A.ACCOUNT
CON> MODIFY USING
CON> BEGIN
CON> MASTER_BAL = MASTER_BAL - WITHDRAW + DEPOSIT
CON> TOT_WITHDRAW = TOT_WITHDRAW + WITHDRAW
CON> TOT_DEPOSIT = TOT_DEPOSIT + DEPOSIT
CON> END
DTR>

The Boolean expression in this example limits the record stream for the inner
FOR statement to one record.

You can also create nested FOR statements in which DATATRIEVE executes a
series of statements at each level of nesting. For each owner record in the next
example, DATATRIEVE asks you if you want to modify the SPECS field of every
boat in the YACHTS inventory built by the manufacturer of the owner’s boat.
The third time through the outer loop, DATATRIEVE again begins the cycle
of prompting for the boats by Albin because the third person in the OWNERS
domain also owns a boat by Albin. Notice that the record changed during the
second loop appears during the third:

A–28 Name Recognition and Single Record Context

Name Recognition and Single Record Context
Single Record Context

DTR>FOR OWNERS
CON>BEGIN
CON> PRINT SKIP, BUILDER, SKIP
CON> FOR YACHTS WITH BOAT.BUILDER = OWNER.BUILDER
CON> BEGIN
CON> PRINT SPECS
CON> IF *."DO YOU WANT TO CHANGE THIS" CONT "Y"
CON> THEN MODIFY SPECS
CON> END
CON>END

BUILDER

ALBERG

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE
KETCH 37 20,000 12 $36,000
Enter DO YOU WANT TO CHANGE THIS: N
ALBIN
SLOOP 26 4,200 10 $17,900
Enter DO YOU WANT TO CHANGE THIS: N
SLOOP 30 7,276 10 $27,500
Enter DO YOU WANT TO CHANGE THIS: N
SLOOP 27 5,070 08 $18,600
Enter DO YOU WANT TO CHANGE THIS: Y
Enter RIG: KETCH
Enter LENGTH_OVER_ALL: 35
Enter DISPLACEMENT: 17000
Enter BEAM: 12
Enter PRICE: 33000

ALBIN

SLOOP 26 4,200 10 $17,900
Enter DO YOU WANT TO CHANGE THIS: N
SLOOP 30 7,276 10 $27,500
Enter DO YOU WANT TO CHANGE THIS: N
KETCH 35 17,000 12 $33,000
Enter DO YOU WANT TO CHANGE THIS: N

C&C
SLOOP 31 8,650 09
Enter DO YOU WANT TO CHANGE THIS: CTRL/Z

Execution terminated by operator
DTR>

Name Recognition and Single Record Context A–29

B
DATATRIEVE Restrictions and Usage

Notes

This appendix contains information on restrictions and usage notes of interest to
advanced users of DATATRIEVE.

VAX DATATRIEVE Usage and VMS Disk Quota
Considerations
VAX DATATRIEVE needs several workfiles to maintain internal information.
These workfiles are defined as RMS temporary, delete-on-close files. (One of the
workfiles is SYS$SCRATCH:DTRWORK.TMD.) The workfiles were designated as
temporary for two reasons:

• They are always deleted when closed and are therefore usually invisible to
the user.

• They allow VAX DATATRIEVE to be run from an account where the user does
not have WRITE access to the directory. That is, temporary files do not have
directory entries created; therefore, the user does not need WRITE access to a
particular directory to create this type of temporary file.

Using such files has a disadvantage. If disk quotas are used, VMS must charge
the use of the temporary file to some resource. The algorithm used by the file
system is to try to charge it to the parent directory. However, because there is no
parent directory for temporary files, VMS then charges it to the default UIC for
the process.

Therefore, when you add entries to the quota file, you must also add an entry for
each default UIC that a DATATRIEVE user will use. Otherwise, invocation of
DATATRIEVE fails and a %SYSTEM-F-ABORT message is generated.

DATATRIEVE Restrictions and Usage Notes B–1

DATATRIEVE Restrictions and Usage Notes
Restriction on Concatenating Double-Precision Numbers

Restriction on Concatenating Double-Precision Numbers
DATATRIEVE may truncate floating-point numbers when you concatenate
them with string values. DATATRIEVE uses a different default size for string
representation of floating-point numbers than it uses for manipulating floating-
point numbers. DATATRIEVE uses 18 digits to internally store a double precision
number. However, when DATATRIEVE represents a floating-point number as a
string, it uses 10 digits. The following example illustrates how DATATRIEVE
uses 10 characters for the string representation of the floating-point number N2:

DTR> DECLARE N2 DOUBLE.
DTR> N2 = 1.1
DTR> PRINT N2

N2

1.1000E+00

You can specify more than 10 digits by using an edit string. (To get DATATRIEVE
to use 20 digits, for example, use an edit string in the PRINT statement: DTR>
PRINT N2 USING X(20).)

This difference between string representation and internal storage of
floating-point numbers can lead to confusion when you use concatenation
expressions. When you concatenate the floating-point number and a string value,
DATATRIEVE treats the floating-point number as a string and uses 10 digits for
the number. This is shown in the following example:

DTR> PRINT ’A’ || N2 || ’B’

A1.1000000000

DATATRIEVE first determines how many characters to allow for the completed
concatenation. In this example, DATATRIEVE calculates an edit string of 13
characters for the entire concatenation string (10 for the string representation of
the floating-point number, 1 for a potential sign value, 1 for the A character and
1 for the B character).

For the purpose of calculating the length of the concatenation, DATATRIEVE
has treated the floating-point number as a 10-character string. For intermediate
calculations, however, DATATRIEVE maintains a length of 18 for the floating-
point pieces. When DATATRIEVE prints each part of the concatenated
expression, it allows a character for A, then 18 characters for the floating-
point number. The result in this case is a concatenated string of length 20.
Because DATATRIEVE allowed only 13 characters for the whole concatenation, it
truncates the remaining zeros in N2 and the string B.

B–2 DATATRIEVE Restrictions and Usage Notes

DATATRIEVE Restrictions and Usage Notes
Restriction on Concatenating Double-Precision Numbers

DATATRIEVE must use 18 digits for the floating-point number to maintain
precision for any possible intermediate calculations. That is, in order to maintain
precision so that a concatenation such as PRINT ’A’ | | (N2 + N2 + N2) | |
’B’ results in an accurate value for N2 + N2 + N2, DATATRIEVE uses the 18
digits internally while calculating the intermediate results.

You can force DATATRIEVE to fit all the characters in the 13-character
concatenation string that it initially allowed when it calculated the total
space. To do this, use a FORMAT value expression to specify 11 characters for
the floating-point number:

DTR> PRINT ’A’ || (FORMAT N2 USING X(11)) || ’B’

A1.100000000B

To force DATATRIEVE to allow enough characters for a completed concatenation
that includes all 18 digits of the floating-point number, use an edit string that
allows 20 characters for the entire concatenated string:

DTR> PRINT ’A’ || N2 || ’B’ USING X(20)

A1.1000000000000000B

Errors During STORE and MODIFY Statement Execution
When an error occurs during the processing of STORE or MODIFY statements
with either prompted input or Assignment statements, DATATRIEVE sets the
value of the field being stored or modified to 0.

In the following example, a data conversion overflow error causes this unexpected
change in the value of the DISPLACEMENT field shown under the query header
WEIGHT.

DTR> FIND FIRST 1 YACHTS
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> MODIFY CURRENT USING DISPLACEMENT =
CON> DISPLACEMENT * 0.83333333333333333333
Data conversion overflow.
Field "DISPLACEMENT" may contain an incorrect value due
to error during STORE or MODIFY.

DATATRIEVE Restrictions and Usage Notes B–3

DATATRIEVE Restrictions and Usage Notes
Errors During STORE and MODIFY Statement Execution

Even though there is a data conversion error, DATATRIEVE continues to process
the modify operation and sets the value of DISPLACEMENT to 0:

DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 0 12 $36,951

In some cases, using a VALID IF clause prevents the incorrect assignment of 0 to
the field being stored or modified. For example, define X in your record definition
as follows:

03 X PIC 9(5)
VALID IF X > 0.

Then, when an error occurs during a modification, the VALID IF clause traps the
assignment of 0 to the field and causes the modify operation to stop:

DTR> MODIFY CURRENT USING X = X * 0.83333333333333333333
Validation error for field X.
DTR>

Then you can reissue the MODIFY statement so that the data conversion error
does not occur.

Restriction on Missing Values and Default Values
VAX DATATRIEVE stores missing and default values in the dictionary as
character strings or integers. If you specify a value in exponent notation in a
MISSING VALUE or DEFAULT VALUE clause, DATATRIEVE treats it as an
integer.

The following field definition does not specify a character string, so DATATRIEVE
attempts to store it as an integer:

03 ZZZ REAL MISSING IS 1E+30.

DATATRIEVE cannot store this value as an integer because any value with an
exponent greater than 17 exceeds the space allotted for integers. Therefore,
DATATRIEVE returns an error message.

In early versions of DATATRIEVE, the attempt to store a missing or a default
value with such a large exponent resulted in an access violation. Since Version
3.2, DATATRIEVE does not return an access violation error but stores the value
in the dictionary as a very large integer. There is no error at definition time,
but DATATRIEVE does return an error at run time. When you attempt a store
operation involving this missing value, DATATRIEVE returns the error message

B–4 DATATRIEVE Restrictions and Usage Notes

DATATRIEVE Restrictions and Usage Notes
Restriction on Missing Values and Default Values

‘‘Illegal ASCII numeric’’ or ‘‘Data conversion overflow’’ for MISSING VALUE or
DEFAULT VALUE fields defined with large exponents.

If you wish to specify a number with an exponent as a missing or a default value,
Digital recommends that you specify that number as a character string:

03 ZZZ REAL MISSING IS "1E+30".

Restriction on Modifying Facility-Specific Definitions
DATATRIEVE and a number of other Digital products store definitions in the
CDD/Repository dictionary system. However, clauses used by one facility may
not always be used by another facility. For example, COBOL 88 level definitions
and INDEXED FOR COBOL are facility-specific clauses which are ignored by
DATATRIEVE.

If your definitions include such facility-specific clauses, you must be sure that
those definitions are edited or redefined using only a facility which supports the
clauses included in the definition. You must not, for example, use DATATRIEVE
to edit or redefine a record definition that includes COBOL 88 level field clauses.
If you do, the facility-specific clauses will not be included in the redefined version
of the definition.

Spurious Divide-by-Zero Errors
Sometimes DATATRIEVE gives unwarranted divide-by-zero error messages.
For performance optimization, DATATRIEVE evaluates invariant expressions
outside of any loops that contain them. You can create some loops that cause
DATATRIEVE to treat a division operation as an invariant expression that is
not related to the test you enter to prevent division by zero. In such loops,
DATATRIEVE performs the division before the test and divides by zero anyway.

The following example results in an unwarranted divide-by-zero error. Even
though there is an explicit test to prevent a divide-by-zero error, the calculation is
performed before that test is made. In this case, DATATRIEVE sees the PRINT
statement, rather than the division operation, as dependent on the test:

FOR A IN YACHTS
FOR YACHTS WITH TYPE EQ A.TYPE

IF BEAM NE 0
THEN PRINT A.LOA/A.BEAM

The following example illustrates a way to work around this problem. In this
case, DATATRIEVE recognizes that the division operation is dependent on the
test:

DATATRIEVE Restrictions and Usage Notes B–5

DATATRIEVE Restrictions and Usage Notes
Spurious Divide-by-Zero Errors

DECLARE H H_FLOATING.
FOR A IN YACHTS
BEGIN

IF BEAM NE 0
THEN H = A.LOA / A.BEAM

FOR YACHTS WITH TYPE = A.TYPE
PRINT H

END

Execution out of Sequence in Procedures
When you invoke command files or specify editing commands in a DATATRIEVE
procedure, the sequence of execution is as follows:

1. The statements of the procedure.

2. Command files. Changes resulting from an EDIT command do not become
effective until after the procedure statements execute.

The following example illustrates how DATATRIEVE evaluates and executes the
statements of a procedure before the command file:

PRINT "first one"
@PROC2
PRINT "third one"

! The command file PROC2 contains: PRINT "second one"

The result is:

first one
third one

second one

In the next example, the procedure includes edit commands and an invocation of
an edited procedure:

DEFINE PROCEDURE TESTEDIT
PRINT "start"
Edit TEST1

.

.

.
:TEST1
Print "end"
END_PROCEDURE

In this case, the editing changes are not effective until after the word ‘‘end’’ has
been printed. The invocation of TEST1 would use the version of TEST1 before
any changes were made.

B–6 DATATRIEVE Restrictions and Usage Notes

DATATRIEVE Restrictions and Usage Notes
Interactive Users Can Set Stack Size

Interactive Users Can Set Stack Size
Interactive users can change their VAX DATATRIEVE stack size by using a
logical name. Assign the stack size value to the logical name DTR$STACK_SIZE
using the DCL DEFINE command:

$ DEFINE DTR$STACK_SIZE "200"

Assign the stack size before you invoke DATATRIEVE. Changes to the stack size
must be made before DATATRIEVE is initialized. (Initialization takes place after
you invoke DATATRIEVE and before you see the DATATRIEVE prompt on the
screen.) Do not use the DATATRIEVE FN$CREATE_LOG function to assign the
stack size because the function is executed after the initialization.

Stack sizes cannot be smaller than 100 pages or larger than 500 pages. The
default stack size is 100 pages; this is used if you do not assign the logical or if
the assignment is invalid. If you assign a value of less than 100 to the logical
name DTR$STACK_SIZE, a stack size of 100 is used. The stack size of 500 is
used if you assign a value greater than 500 to the logical name DTR$STACK_
SIZE.

DATATRIEVE may return an access violation error in situations where a stack
size of 100 pages is not sufficient. Such situations may occur if you:

• Have more than 293 elements in a PRINT statement

• Use more than 400 operands with the EQUAL operator in a Boolean
expression

• Define a very large record, such as a record definition whose source is in a
very large RMS file (greater than 900 blocks)

• Define a very complex record, such as one containing many REDEFINE
clauses or many levels of nested COMPUTED BY clauses

• Define an optimized record with a large number of fields

The items in the previous list are instances where you might want to increase the
stack size.

After entering the DCL DEFINE command, you can verify the stack size by
invoking DATATRIEVE with the /DEBUG qualifier, as shown in the following
example. DATATRIEVE displays an informational message showing the current
stack size:

DATATRIEVE Restrictions and Usage Notes B–7

DATATRIEVE Restrictions and Usage Notes
Interactive Users Can Set Stack Size

$ DEFINE DTR$STACK_SIZE "150"
$ DATATRIEVE/INTER=CHAR/DEB
VAX DATATRIEVE stack size is 150.

VAX DATATRIEVE V6.0
DEC Query and Report System
Type HELP for help

DTR>

Raise the stack size only when necessary. Increasing the stack size
proportionately increases the virtual memory allocated by your process.

Clarification About Using Prompting Value Expressions
You cannot use a prompting value expression in place of a field name in
DATATRIEVE statements. When you use a prompting value expression,
DATATRIEVE treats the input as a character string literal. In the following
example, DATATRIEVE prints all the yachts but treats LOA as a string literal
and does not sort on the basis of values in the field LOA:

DTR> PRINT YACHTS SORTED BY *."FIELD"
Enter FIELD: LOA

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
NORTHERN 29 SLOOP 29 7,250 09 $20,975
CHRIS-CRAF CARIBBEAN SLOOP 35 18,000 11 $37,850

.

.

.

B–8 DATATRIEVE Restrictions and Usage Notes

Glossary

Access Control List (ACL)

A list that determines which users are granted access to a dictionary directory
(such as CDD$TOP.DTR$LIB.DEMO) or to an object (such as a domain or record
definition).

Application Design Tool (ADT)

A DATATRIEVE utility that aids you in creating domains, record definitions, and
files.

ASCII (American Standard Code for Information Interchange)

A set of 8-bit binary numbers representing the alphabet, punctuation, numerals,
and other special symbols used in text representation and communications
protocol.

Boolean Expression

A string of symbols that specifies a condition that is either true or false. In
the statement PRINT PERSONNEL WITH STATUS = "TRAINEE",STATUS =
"TRAINEE" is a Boolean expression.

Boolean Operator

A symbol or word that enables you to join two or more Boolean expressions.
Boolean operators are AND, OR, NOT, and BUT. For example, the following
expression STATUS = TRAINEE AND SALARY > 20000 contains the Boolean
operator AND.

Bucket

In operations on RMS files, the unit of transfer between storage devices and I/O
buffers in memory.

Bucket Size

The number of blocks in a bucket. A bucket size can be from 1 to 63 blocks (each
block containing 512 bytes).

Glossary–1

Call Interface

The part of DATATRIEVE that provides access to DATATRIEVE’s data
management services. There are three modes of access.

• Through the Terminal Server

• Through the Remote Server

• From a calling program

Calling Program

A program written in a VAX programming language that uses DATATRIEVE to
execute certain operations within the program.

Captive Account

A type of VAX/VMS account that limits the activities of the user. Typically, the
user is restricted to using certain command procedures or commands or both.

CDA (Compound Document Architecture)

An architecture that allows the encoding of documents that are made up of
text content, images, graphics, table data or document layout information. This
architecture is supported by a wide range of products, and therefore allows the
documents produced to be interchangeable on different platforms.

CDDL (Common Data Dictionary Data Definition Language)

The language used to define CDD/Repository metadata in DMU format, and its
compiler.

CDO (Common Dictionary Operator)

A CDO dictionary is a CDD/Repository dictionary that supports metadata that
can be manipulated by the Common Dictionary Operator (CDO) utility.

Collection

A type of record stream formed with the FIND statement. You can name
a collection in order to have several collections available at once. See also
CURRENT.

Column Header

The heading that labels a column of data in a report or in the output of a PRINT
statement.

Glossary–2

Command

A DATATRIEVE verb that usually deals with the Common Data Dictionary and
performs data description functions. Commands cannot be joined and cannot be
used in statements. See also Statements.

CDD/Repository

The VAX Common Data Dictionary (CDD) is a central repository for definitions
stored hierarchically and accessed by reference to dictionary path names. The
CDD/Repository system ensures the integrity of shared metadata and it can be
used by traditional VAX programming languages such as BASIC, COBOL, or
FORTRAN, as well as by DATATRIEVE. The CDD/Repository system provides
access to both CDO and DMU format dictionaries and definitions.

Compatibility Dictionary

It provides a logical view of two physically separate dictionaries: the DMU format
dictionary and a special CDO format dictionary. For example, your compatibility
dictionary should be stored in SYS$COMMON:[CDDPLUS]. If you create in it a
directory called PERSONNEL, you can refer to this directory with either of the
following naming conventions:

• CDD$TOP.PERSONNEL

• SYS$COMMON:[CDDPLUS]PERSONNEL

The compatibility dictionary is a CDO format dictionary, you can create and store
CDO format definitions in it. You cannot store a definition with a DMU path
name.

Compound Statement

A group of two or more statements combined in a BEGIN-END statement or a
THEN statement.

COMPUTED BY Field

A virtual field that appears in the record definition but not in the physical record.
For example, you could add a field called WEEKLY_SALARY to PERSONNEL_
REC by adding the following to the record definition:

05 WEEKLY_SALARY COMPUTED BY SALARY/52
EDIT_STRING IS $$,$$$.

The value of a COMPUTED BY field is computed every time it is referenced, so it
occupies no space in the record.

Glossary–3

Context

The set of conditions that govern the way DATATRIEVE recognizes field names
and determines which records are the targets of DATATRIEVE statements.

Context Block

When you use a record selection expression, DATATRIEVE creates a context
block to establish a context for name recognition. The context block contains,
among other things, a list of names.

Context Stack

A linked list that controls the DATATRIEVE search for names to match the ones
you use in statements. The context stack consists of context blocks, or lists of
names.

CURRENT

The keyword that identifies the most recently formed collection.

Data Manipulation Facility

The part of DATATRIEVE that parses, optimizes, and executes all commands and
statements entered to DATATRIEVE.

Database

A collection of records maintained on a computer storage device and organized to
facilitate quick and accurate inquiry and update.

DBO (VAX DBMS Database Operator)

A utility that allows you to create, maintain, modify, monitor, and delete
VAX DBMS databases.

DDIF (DIGITAL Document Interchange Format)

The CDA format for page-based documents.

DECforms

The Digital implementation of a proposed ANSI and ISO standard for a Form
Interface Management System (FIMS) prepared by the CODASYL Form Interface
Management System Committee.

DECnet

The Digital software facility that enables a user to access information on
a remote computer via telecommunications lines. DECnet–VAX enables a
VAX/VMS operating system to function as a network node.

Glossary–4

DECwindows

An interface to the VMS operating system. DECwindows lets you divide your
workstation screen into windows and design a working environment to suit your
needs.

Default Dictionary Directory

The directory of the Common Data Dictionary that you are currently using.
You can find out the name of you default dictionary directory by typing SHOW
DICTIONARY in response to the DTR> prompt.

Detail Lines

The formatted data lines in a report or PRINT statement.

Dictionary Navigator

A navigation tool that you can invoke when using DATATRIEVE with the
DECwindows interface. It lets you perform the following operations:

• Navigate through theCDD/Repository dictionary hierarchy

• Select individual objects upon which you can perform some operations.

Distributed Domain

A domain located at a remote node.

DMU (Dictionary Management Utility)

A DMU dictionary is a CDD/Repository dictionary that supports metadata that
can be manipulated with the Dictionary Management Utility (DMU).

Domain

A data structure that associates a name with the relationship between a file
and a record definition. Using the domain name gives access to information in
the data file as interpreted by the record definition. For example, the domain
PERSONNEL associates the file PERSON.DAT and the record definition
PERSONNEL_REC.

DTIF (DIGITAL Table Interchange Format)

The CDA format for tables.

Edit String

A character or group of characters that directs DATATRIEVE to format a field in
a specified way.

Glossary–5

EDT

The Digital standard interactive text editor.

Elementary Field

A record segment containing one item of information. It might contain a
department number, an address, or any other information you want to define as a
single item.

Exchange Record

The CDD/Repository path name of a record used to send and receive data with
DECforms.

FDL (File Definition Language)

The RMS Edit/FDL Utility (EDIT/FDL) creates and modifies files that contain
specifications for RMS data files. The specifications are written in FDL (File
Definition Language), and the files are called FDL files.

Field

A segment of data record. See also Elementary field and Group field.

Field Tree

A hierarchical model of the fields in a record, based on the record definition
stored in the Common Data Dictionary.

File

A collection of related data records. PERSON.DAT is the name of a file.

Fixed Occurrence List

A list field in which the number of values in each record for its subordinate fields
is specified in an OCCURS clause.

Form

A terminal screen image used to display and collect information.

Function

A word you define and add to the DATATRIEVE language, extending the
capability of DATATRIEVE to perform specific tasks.

Glossary–6

Group Field

A record segment containing one or more elementary fields. A group field may
also contain other group fields. In the record definition PERSONNEL_REC,
the group field NAME contains two elementary fields, LAST_NAME and
FIRST_NAME.

Guide Mode

A self-teaching facility. To invoke it, issue the SET GUIDE command. Guide
Mode helps you through a DATATRIEVE session with a series of prompts.

Hierarchical Record

A record containing one or more repeating fields.

Indexed File

A file that includes one or more indexes access to records by key.

Index Key

A field that determines the order of records in an indexed file. You can define a
primary index key and secondary index keys. You can also specify whether the
value of an indexed key field can be changed or duplicated. An index key for the
record definition PERSONNEL_REC is the field ID.

Interactive Processing

A mode of computer operation in which the commands and data that control the
actions of the computer are entered by a person at a terminal rather than by a
programmed script.

Keyword

A word (such as PRINT, DEFINE, or USING) reserved by DATATRIEVE for use
in certain specified syntax formats, usually in a command or a statement.

List Field

A field that specifies multiple occurrences of its subordinate field or fields. See
Repeating field.

Literal

A value expression that is either a character string enclosed in quotes or a
number.

Glossary–7

Logical Name

A shorthand way of making applications independent from characteristics of the
system such as directory structures or file locations on disks. You can also use
logical names to create search lists.

Loop

A series of iterative operations.

Metadata

The definition of data stored in a database. See also Record.

Monospaced Font

A font family in which all characters occupy the same amount of space.

Name

A DATATRIEVE name is a character string used to identify one of the following
items:

Collection Dictionary table Field Procedure Variable

Database Domain Plot Record View Domain

Database instance Domain table Port Table

Network Domain

A domain defined at your local node containing a network address.

Path Name

A name that specifies a certain directory or object in the CDD/Repository. A path
name can be:

• Full, beginning with CDD$TOP

• Relative, beginning with the name of a child of your default dictionary
directory

• Logical, a name you have defined for a full or relative path name

Plot

A statement that invokes a DATATRIEVE graphic.

Primary Key

The main index key whose value determines the order of records in an indexed
file. You cannot modify or erase the value in a primary key field.

Glossary–8

Print List

One or more value expressions (including the names of elementary and group
fields) whose values you want DATATRIEVE to display on your terminal. A print
list can also include optional formatting specifications.

Privilege

Access to data and data definitions for a specific purpose. There are 13 privileges
to a directory or object in the CDD/Repository, including R (READ), W (WRITE),
and M (MODIFY). There are 4 VAX/VMS access privileges to a file, R (READ), W
(WRITE), E (EXECUTE), and D (DELETE).

Procedure

A fixed sequence of DATATRIEVE commands, statements, clauses, or arguments
that you create, name, and store in the CDD/Repository.

Prompting Expression

An expression that directs DATATRIEVE to ask the user to supply a value when
a statement is executed.

Proportionally-Spaced Font

A font family in which different characters occupy different amounts of space.

Query

A request for DATATRIEVE to identify all the records that satisfy a specified
condition.

Query Header

A substitute column header that replaces the field name when DATATRIEVE
displays values from a field. For example, STATUS appears at the top of the
column listing values from the field EMPLOYEES_STATUS.

Query Name

A synonym you give to a field name in order to make input easier to type and
remember. For example, you can type L_NAME instead of LAST_NAME when
using the PERSONNEL domain.

RDO (Relational Database Operator)

An interactive interface for defining, maintaining and manipulating access to the
VAX Rdb/VMS relational database.

Glossary–9

Realm

One or more schema areas grouped to allow subschema access in a VAX DBMS
database.

Record

A body of related information that is the basic unit for storing data. For example,
the eight items of data about an individual in the PERSONNEL domain make up
a record for that person.

Record Definition

A description of a record, stored in the CDD/Repository.

Record Selection Expression (RSE)

A phrase defining specific conditions individual records must meet before they
are included in a record stream. For example, PERSONNEL WITH STATUS =
"TRAINEE" is an RSE in the statement PRINT PERSONNEL WITH STATUS =
"TRAINEE".

Record Stream

A temporary group of related records formed by a record selection expression.
This group lasts only during the execution of the statement that forms it.

Relational Database

A database in which data is organized into relations.

Relational Operator

Symbol or phrase you can use to compare values. For example, the DATATRIEVE
statement FIND PERSONNEL WITH SALARY > 10000 contains the relational
operator ">" (greater than).

Relationship

You can establish a relationship between certain dictionary objects. A
relationship tracks how data descriptions are shared.

Remote Domain

You can define domains as remote, so record definitions and data files can exist
on one system and be accessed from another.

Glossary–10

Remote Server

The part of DATATRIEVE that enables you to access data on other computers.
If you are using the computer MARSUP and you type READY PERSONNEL AT
COMET, DATATRIEVE logs on to an account on COMET. The Remote Server
processes your statement at the remote computer COMET.

Repeating Field

(Also known as a List Field.) A field containing subordinate fields. When a
record definition contains a repeating field, it means that there can be multiple
occurrences of any field that is subordinate to the repeating field.

Report Header

The heading of a Report Writer report, consisting of these optional elements: a
centered report name and, at the top right corner of the report, a date and page
number.

Report Specification

A series of Report Writer statements that creates a report and specifies its
format.

Report Writer

A subsystem of DATATRIEVE that allows you to create reports that display data
in an easy-to-read format.

Restriction Clause

A phrase in the record selection expression that allows you to specify the
maximum number of records making up a record stream.

Schema

The definition of the logical structure of a VAX DBMS database.

Selected Record

In a collection, the one record marked by the SELECT statement and available
for display or modification without specifying a record selection expression.

Sequential File

A file whose records are physically stored next to each other in a computer’s
storage device. A sequential file does not have an index; records are stored in
the order in which they are entered. In DATATRIEVE, you cannot delete records
from a sequential file.

Glossary–11

Set

A VAX DBMS data structure that establishes a relationship among records.

SGML (Standard Generalized Markup Language)

A standard markup language that allows you to describe a document in terms
of its structure rather than in terms of its appearance. A document containing
this markup information can be processed in several different ways to produce
different final form outputs.

Single Record Occurrence

The data of a single record in a VAX DBMS database.

Single Set Occurrence

A VAX DBMS data structure containing the information that relates a single
record occurrence to others.

Sort Key

A field that forms the basis for sorting. For example, you can rearrange the
records in DATATRIEVE’s sample domain PERSONNEL according to seniority by
typing PRINT PERSONNEL SORTED BY START_DATE.

SQL

An ANSI and ISO standard interface for accessing relational databases. The SQL
interface included with Rdb/VMS provides full access to Rdb/VMS databases and,
through VIDA, read-only access to relational databases on IBM systems.

Statement

A DATATRIEVE verb that performs query, report, or data manipulation
functions. Two or more statements can be joined. See also Command.

Storage Area

A VAX DBMS unit contained in single files.

Subschema

A user view of a VAX DBMS database.

Glossary–12

Substitution Directive

An expression in a command or statement passed to DATATRIEVE from a calling
program. The substitution directive is replaced by parameters given in the
program. For example, the program can prompt for the name of a domain and
read it in:

READ (5, 40) DOMAIN
40 FORMAT (A)

You can then pass the name of the domain with the !CMD substitution directive:

CALL DTR$COMMAND (DAB, ’READY !CMD’, DOMAIN)

Summary Line

Information you can display in a Report Writer report with the AT TOP and AT
BOTTOM statements.

Table

A table stores sets of paired values separately from other data definitions.
DATATRIEVE lets you create domain tables and dictionary tables. A domain
table is a file stored in your database or RMS directory. A dictionary table is a
CDD/Repository object, therefore stored in the CDD/Repository dictionary.

Terminal Server

The part of DATATRIEVE that gives you access to DATATRIEVE’s interactive
data management services.

UETP (User Environment Test Package)

A program which tests the DATATRIEVE interface to optional related products
such as VAX DBMS or VAX RDB/VMS.

Value Expression

A string of symbols that specifies a value DATATRIEVE can use when executing
statements.

Variable

A value expression created in a DECLARE statement. For example, the following
statement creates a variable, X, which can be assigned any two-digit numerical
value:

DECLARE X PIC 99.

Glossary–13

Variable Occurrence List

A list field in which the number of values of its subordinate fields depends on a
value stored in another field in the same record.

VAX DBMS (Database Management System)

The CODASYL-compliant Digital facility for organizing and maintaining data.

VAX FMS (Forms Management System)

A Digital software facility that allows you to create forms and use them to display
and collect information.

VAX LSE (Language Sensitive Editor)

A multi-language advanced text editor specifically designed for software
development.

VAX RMS (Record Management System)

The Digital record/file management facility that allows DATATRIEVE to create,
define, store, and maintain files and records within files.

VAX TDMS (Terminal Display Management System)

A Digital data management product that enables you to use forms to collect and
display information.

VAXTPU (Text Processing Utility)

A text-editor that allows multiple buffers and windows.

View Domain

A special type of domain that allows you to select some (or all) fields in some (or
all) records from one or more domains.

Glossary–14

Index

! (exclamation point)
see exclamation point (!)

* (asterisk)
see asterisk(*)

- (hyphen)
see continuation character (-)

: (colon)
see colon (:)

: (EXECUTE) procedure_name, 10–2
; (semicolon)

see semicolon (;)
= (Equal sign)

see also EQUAL relational operator
? (question mark)

see question mark (?)

A
A (alphabetic) picture string character,

2–8t
abbreviating

CDO path names, 19–11
DMU path names, 19–11

ABORT statement, 10–6
procedures, 10–5

absolute version numbers, 19–9
access control lists, 23–1

see also DEFINEP command
see also DELETEP command
access privileges, 23–10
accumulating privileges, 23–4
creating, 23–16 to 23–17
defining entries, 23–16

access control lists (cont’d)
deleting entries, 23–20
differences between CDO and DMU,

23–1
displaying, 23–2
DMU hierarchical protections, 23–3
entries, 23–2
in DMU format dictionaries, 21–5
in procedures, 10–8
parts of an entry, 23–11
passwords, 23–7, 23–14
privilege specification, 23–16
protecting CDO format dictionaries,

23–9
relative position of entries, 23–8
sample, 23–2 to 23–9
SHOW PRIVILEGES command, 23–6
SHOWP command, 23–2, 23–6

access options
default, 6–5

access privileges
see also access control lists
assigning, 23–17 to 23–18
in multiuser environments, 6–4
needed to use

tables, 5–7
views, 12–16

record definitions, 3–10
specifying, 23–11

accessing data, 7–1, 12–18
CDO utility through DATATRIEVE,

20–14
in other databases

see databases, accessed by
in RMS files, 6–1

Index–1

accessing data (cont’d)
restrictions in database design, 3–2

ACL
see access control lists

ADT, 2–1
restrictions, 2–1

AFTER relational operator, 7–20
aliases, 6–3, 7–14

restructuring domains, 4–13, 4–19
using to restructure domains, 4–11

alphabetic fields, 2–9
alternate keys, 4–4

changes to, 4–5
choosing, 4–3
duplicate values in, 4–5

anchors, 19–4, 19–11
definition, 19–8
fully qualified, 19–9
in CDD/Repository path names, 19–8
rules for naming, 19–10

AND Boolean operator, 7–22
ANNUAL_REPORT domain

CDD$TOP.DTR$LIB.DEMO, 17–3
Application Design Tool

see ADT
arrow keys

scroll through Help, 1–9
AS clause, 4–19

generalizing procedures, 10–8
restructuring domains, 4–19

ascending order of bars
see BAR_ASCENDING

ASCII_TABULAR output format, 15–1
asterisk (*)

as password prompt, 23–14
as wildcard in UIC, 23–12
to indicate DMU definitions, 19–3

DTR$SHOW logical, 19–3
suppressing, 19–3

AT BOTTOM statement, 14–11 to 14–14,
16–2 to 16–7

see also control groups
summary elements, 14–11

at sign (@)
invoking command files, 1–4

at sign(@)
invoking command files, 10–10

AT TOP statement, 14–8 to 14–14, 16–7
see also control groups
summary elements, 16–7

ATT clause, 15–8
auditing

including time in, 8–15
writing to a file, 8–11

average of bars
see BAR_AVERAGE

AVERAGE statistical operator, 16–7 to
16–8

avoiding context errors
with context variables, A–9
with qualified field names, A–10 to

A–12
with the CROSS clause, A–13 to A–14

axes (X and Y), 18–12

B
BANISH clause, 23–16
bar charts, 18–1 to 18–12

ascending order of bars, 18–28
comparing items, 17–7
comparing multiple values, 17–7
continuing, 18–7
for parts of a whole, 17–6
for time comparisons, 17–6
PLOT MULTI_BAR_GROUP, 18–5
sorting, 18–39

BAR statements, 18–1 to 18–2
BAR_ASCENDING statement, 18–28
BAR_AVERAGE statement, 18–2
BEFORE relational operator, 7–20
BEGIN-END statement, 9–2

in record streams, A–7
modifying records, 8–16
validating data, 8–19
with procedures, 10–6

BETWEEN relational operator, 7–20

Index–2

BIG statement, 18–29
Boolean expressions

compound, 22–12t
optimization of in queries, 22–3

Boolean operators, 7–22
break character

see CTRL
BT

see BETWEEN relational operator
bucket size, 4–6
buckets

data, 4–6
index, 4–6
root, 4–6

BUT Boolean operator, 7–22

C
call interface

description of, 1–2
case

CDO format path names, conversion of,
19–10

sensitivity, 1–5
see also FN$UPDATE

CDA, 15–2, 15–3
CDD$COMPATIBILITY logical name,

19–4
CDD$DATABASE object, 20–8

naming convention, 20–9
CDD$DEFAULT logical name, 1–17,

19–15
CDD$FILE_DEFINITION entity, 4–9
CDD$FILE_DEFINITION object, 20–8

naming convention, 20–9
CDD$PROTOCOLS directory, 20–4
CDD$RMS_DATABASE object, 20–8

naming convention, 20–9
CDD$TOP

definition, 19–9
in CDD/Repository path names, 19–9

CDD$TOP dictionary directory, 19–4,
21–2

CDDL, 2–1, 2–20, 2–22, 19–2

CDDL (cont’d)
(Common Data Dictionary Data

Definition Language)
record conversion, 22–2

CDD/Repository
see also CDO format dictionaries
anchors, 19–4
and DATATRIEVE, 19–4
CDD$TOP.DTR$LIB.DEMO.DBMS

examples with VAX DBMS
domains, 17–13

CDD$TOP.DTR$LIB.DEMO.RDB
examples with relational domains,

17–15
CDD$TOP.DTR$LIB.PLOTS

deleting plot directory, 17–2
CDO format dictionaries

editing definitions, 2–27
choosing dictionary format, 19–8
compatibility dictionary, 19–3
determining dictionary destination,

19–5
dictionary

data types, 2–20t
formats, 19–1

differences, 19–1
origin, 19–8
security, 23–1
system

description of, 19–1
dictionary directories, 17–2, 17–13,

17–15
CDD$TOP.DTR$LIB.DEMO, 17–2,

17–3
CDD$TOP.DTR$LIB.PLOTS, 17–1

DMU and CDO definition integration,
19–5

DMU format dictionaries, 19–1, 21–1
advantages of, 19–2

entities
as used in DATATRIEVE, 19–2

invoking CDO utility, 20–11
logical dictionaries, 19–1
multiple dictionaries, 19–1
objects

Index–3

CDD/Repository
objects (cont’d)

CDD$DATABASE, 3–13
CDD$FILE_DEFINITION, 3–13
CDD$RMS_DATABASE, 3–13
MCS_BINARY, 3–13

path names, 19–8
performance enhancements, 22–9
physical dictionaries, 19–1
structure of, 19–1
translation utility, 19–4
using with DATATRIEVE, 19–1

CDD/Repository dictionary, 21–1
CDDV, 19–2
CDO command

in DATATRIEVE, 19–5, 20–14
CDO format dictionaries, 2–20, 19–1,

23–1, 23–16
abbreviating path names, 19–11
advantages of, 19–2
anchors, 19–8
CDD$PROTOCOLS directory, 20–4
converting DMU definitions to, 19–6
creating directories, 20–4
creating new dictionaries, 20–3
data types, 2–20
DATATRIEVE CDO command, 20–14
DEFINE DICTIONARY command

compared with DTR DEFINE
DICTIONARY command,
20–4

defining
CDO format definitions, 20–3
data files for CDO domains, 4–9
DATATRIEVE objects, 20–7
DATATRIEVE records, 20–10
domains, 20–10
domains with relationships, 3–11

defining data files, 20–12
deleting

definitions in, 19–16
deleting dictionaries, 20–5
differences from DMU, 19–2
editing definitions, 2–27
field-level definitions, 19–2

CDO format dictionaries (cont’d)
naming, 19–10
organization of, 20–1
readying CDO domains, 20–12
reasons for using, 19–8
record conversion, 22–2
relationships, 19–2
restrictions, 19–2
search lists, 19–13
setting default dictionary, 19–15
using DATATRIEVE with, 20–1
using logical names, 19–12
version numbers in path names, 19–9

CDO utility, 20–5
accessing through DATATRIEVE,

20–14
invoking, 20–11

changing
font attributes, 15–4
record definitions, 4–10

character cell terminals, 17–1
character set, 1–5, 1–6t

continuation character, 1–7
character strings

stored in fields, 2–9
CHOICE statement, 9–5
CHOICE value expression, 16–19 to

16–20
in record definitions, 16–15 to 16–20

clauses
see specific clause type

CLEAR NOTICES command, 20–13
CLOSE command, 10–10
COL print list element, 14–7
collections, 11–1, A–5

advantages of, 12–18
as record source, 22–6
changing access mode for, 11–13
choosing target record from, 11–5
CURRENT, 1–8, 11–4
disadvantages of, 11–13, 12–18, 22–4
displaying

information about, 11–5
names of, 11–5

dropping records from, 11–11

Index–4

collections (cont’d)
effect on performance, 11–13
erasing records from, 8–19
how they work, 12–1
joining records in, 11–10
modifying records in

to assign different values, 8–14
to assign one value per field, 8–12

to 8–14
naming, 11–4
performance issues, 22–6
reducing number of fields in, 11–7
removing from workspace, 11–12
revision of, A–18
sorting records in, 11–9
source element in RSE, 7–4

colon (:)
in LIST statements, 1–19
invoking procedures with, 1–4, 1–12,

10–2, 10–3
separating field names, 5–5
separating pair values, 5–2, 5–3

color video output
PLOT MONITOR, 18–34

column headers, 14–7, 14–8
QUERY_HEADER clause, 2–5
specifying, 14–8, 16–10
to optimize line space, 2–7
width, 16–12

COLUMN HEADERS
see also headers

COLUMN_HEADER element, 14–13
command files

command execution sequence, B–6
converting to procedures, 10–9
correcting problems in

using log files, 10–10
using SET VERIFY, 10–8

created with EXTRACT, 19–17
definition of, 1–4
disadvantages of, 10–9
invoking, 1–4

from outside DATATRIEVE, 10–10
from within DATATRIEVE, 10–10
reports, 16–8 to 16–9

command files
invoking (cont’d)

restrictions, 10–10
command recall

in DECwindows environment, 1–14
long commands and statements, 1–14

commands
see also statements
CDO command in DATATRIEVE, 19–5
definition of, 1–3
elements, 1–4
function, 1–3
structure, 1–3

comments
display of during program execution,

1–8
in input lines, 1–7
in procedures, 10–5

Common Dictionary Operator
See CDO

COMP data types, 2–20t, 2–21t, 22–13
compatibility dictionary

CDD$COMPATIBILITY logical name,
19–4

defined, 19–3
reading definitions from, 19–4
uses, 19–3

compound statements
see statements, compound

COMPUTED BY clause, 2–12
example using, 2–13, 2–14, 16–8
restriction when nesting, B–7
with CHOICE value expression, 16–15

to 16–20
COMPUTED BY field, 3–3, A–3
COMPUTED BY fields, 2–12 to 2–15
CON> prompt

see also prompts
concatenation

characters, 1–21, 14–11
double-precision numbers, B–2 to B–3
example using, 1–21
value expressions, 1–21

Index–5

conditional statements, 9–6
conditional value expressions

IF-THEN-ELSE, 2–14
CONNECT statement, 18–29 to 18–30
CONTAINING relational operator, 7–18

optimizing queries, 22–3
context, A–1

block
ordering, A–5
searching, A–3 to A–4

errors
avoiding, A–9 to A–14
when accessing list fields, 12–5
with FIND and SELECT, 13–2

searcher, 7–6
SET SEARCH command, 13–8

single record, A–17
stack, A–2
variables, 7–17, A–9

definition, A–9
example using, A–11

continuation character (-), 1–6, 1–7, 1–19
continuing

bar charts, 18–7
literals, 1–19

CONTROL C,Y,Z
see CTRL

control groups, 16–1 to 16–9
group summaries

Report Writer, 16–5 to 16–7
multiple levels, 16–2 to 16–3
sample report, 14–11 to 14–13
sort keys, 16–1 to 16–2

CONTROL privilege, 23–18
CONVERT/FDL utility, 22–1
copying

definitions to files, 19–17
COUNT statistical operator, 16–7 to 16–8
Create/FDL Utility, 4–8
creating

CDO format directories, 20–4
domain definitions, 3–8
files, 4–1

indexed, 4–4
sequential, 4–5

creating (cont’d)
new CDO dictionaries, 20–3
record definitions, 2–1
tables

dictionary, 5–2 to 5–3
domain, 5–5 to 5–6

CROSS clause, 7–12, 7–16, 7–17, 11–3,
16–29

see VAX DBMS domains
see relational databases
cannot erase records created by, 8–19
choice of domain name order, 22–6
crossing a domain with itself, 7–16
crossing two domains, 7–12
defining views, 12–13
effect of on name recognition, A–13
FIND statement RSE, 11–10
flattening hierarchies, 13–9, 13–11
looping errors in, 12–8 to 12–9
modifying records created by, 8–11
optimizing queries with, 22–5 to 22–9
remote domains, 7–14
with more than two domains, 22–7

CROSS_HATCH statement, 18–30
CTRL/C

effect on procedure execution, 10–6
to exit Report Writer, 14–5

CTRL/Z
effect on procedure execution, 10–6

currency
see also CURRENT collection
symbol interpretation, 6–7

CURRENT collection, 1–8, 8–8
see collections

customizing keywords, 1–5

D
data

accessing, 6–1
column alignment, 15–8
combining from multiple domains,

4–17
ending access to, 6–6
modifying, 8–6

Index–6

data
modifying (cont’d)

FOR statement, 8–16
retrieving with FIND statement, 11–1
summary of access options, 12–18 to

12–19
transfer between domains, 4–16

data buckets, 4–6
data dictionary, 23–6, 23–9, 23–18

see CDD/Repository dictionary
see DMU format dictionaries

data files
see also indexed files
see also sequential files
accessing using domain definitions,

3–8
adjusting I/O parameters for, 4–8
changing organization of, 4–10
consolidating storage for, 4–8
creating with

DEFINE FILE command, 4–1
RMS utilities, 4–8

for CDO domains, 4–9, 20–12
maintaining, 1–2

effect of key structure on, 4–3
with RMS utilities, 4–8

sample, copying with NEWUSER
program, 1–17

specifying in domain definitions, 3–10
version number, 4–11

data types
assigning with PIC clause, 2–8
CDD/Repository and DATATRIEVE,

2–20t
databases

see VAX DBMS reports
see relational database reports
accessed by DATATRIEVE

Rdb/VMS databases, 1–1
Rdb/ELN databases, 1–1
Relational databases, 1–1
VAX DBMS databases, 1–1
VIDA databases, 1–1

design
access restrictions in, 3–2

databases
design (cont’d)

data entry requirements, 3–1
deciding on fields in, 3–3 to 3–5
grouping fields in, 3–5 to 3–7
key fields in, 3–7
report requirements, 3–1
system requirements, 3–1

distributed or local access, 3–1
informational messages, 6–5
maintenance requirements, 3–3
restructure of, 4–13

DATATRIEVE
data types, 2–20t
differences from other languages, 1–1

to 1–3
editors

assigning default editor, 1–12
storage capabilities, 1–1
with /INTERFACE= qualifier, 10–3

date fields
default display of, 2–11
defining, 2–11
size of, 2–11

dates, 14–6
default, 14–6
formatting, 6–7
symbol interpretation, 6–7

DATE_LOGY statement, 18–17
DATE_Y statement, 18–17 to 18–18
DBMS

see VAX DBMS
DBO utility, 4–13
DDIF format, 15–3
DDIF output format, 15–1, 15–4
decimal point

specifying position of
P character, 2–10
SCALE clause, 2–10
V character, 2–10

DECLARE SYNONYM command, 1–5
DECLARE SYNONYM statement, 1–5
DECLARE_ATT statement, 14–2, 15–2,

15–4, 15–10

Index–7

DECREASING
see DESCENDING

DECwindows
dictionary navigator, 1–16
editing in, 1–16
invoking Plots, 17–1
using help in, 1–10

DEFAULT VALUE clause, 2–25
defaults

access mode, 6–4
access option, 6–4
for column headers, 2–5
for data types, 2–11
for displaying dates, 2–11
for editor, 1–12
for field value displays, 2–20
for index keys, 4–5
for order of records in indexed files,

4–3
location

of data files, 3–10
of record definitions, 3–10

restriction in values, B–4
DEFINE

command, 1–14, 19–5
DICTIONARY command, 21–3

compared with CDO DEFINE
DICTIONARY command,
20–4

creating CDO format directories,
20–4

DOMAIN command, 3–8, 12–9
for CDO domains, 3–11
using WITH RELATIONSHIPS

clause, 20–14
with CDO format domains, 20–10
with relationships, 3–11, 20–10
WITH RELATIONSHIPS clause,

20–12
FILE command, 4–1, 4–3, 4–5, 4–8

ending, 4–2
KEY clause options, 4–4
with CDO format domains, 20–12

PROCEDURE command, 10–1, 10–2,
10–5

DEFINE (cont’d)
PROTECTION command, 23–16
RECORD command, 2–1

OPTIMIZE qualifier, 22–2
using FROM clause, 20–11
with CDO format domains, 20–10

RMS_DATABASE command, 4–9
TABLE command, 5–1

EDIT_STRING clause, 5–3, 5–6
ELSE clause, 5–3, 5–6
END_TABLE requirement, 5–3,

5–6
for dictionary tables, 5–2 to 5–3
for domain tables, 5–5 to 5–6
QUERY_HEADER clause, 5–3,

5–6
DEFINE command, 1–13
DEFINEP command, 23–16

syntax, 23–18 to 23–19
defining

CDO format domains, 20–10
CDO format records, 20–10
data files for CDO format domains,

20–12
dynamic hierarchies, 13–23
hierarchies, 13–22
objects for CDO format domains, 20–7
records, 2–1 to 2–15
tables, 5–1
views, 12–9
views with CROSS clause, 12–13
your audience, 17–8

DELETE command, 19–16
DMU, 21–4
performance enhancement, 22–10

DELETE DICTIONARY command, 20–3
DELETE PROTECTION command,

23–20
DELETEP command, 23–20

format, 23–20
deleting

CDO format dictionaries, 20–5
CDO format directories, 20–5
definitions

all earlier versions of, 19–17

Index–8

deleting (cont’d)
plot directory, 17–2
records

see erasing records
DENY clause, 23–16
designing files, 4–5
detail lines, 14–7 to 14–8

content, 16–10 to 16–12
edit strings

see edit strings
field values, 16–10
format, 16–12
print item position, 16–12
value expressions, 16–10
varying, 16–13 to 16–20

determining dictionary destination, 19–5
DFN> prompt

see also prompts
dictionary

creating in CDO format, 20–3
deleting in CDO format, 20–5
destinations, 19–5
formats, 19–1
navigator, 1–16
objects

editing, 1–14
path name

see path name
tables

creation of, 5–2
storing definitions, 5–3

Dictionary Management Utility
see DMU format dictionaries

DIGITAL Command Language
see DCL

directories
CDD/Repository

assigning CDD$DEFAULT to,
1–17

creating, 21–3
deleting, 21–4

deleting CDO directories, 20–5
disk quotas, B–1

DISPLAY statement, 2–7
displaying

command files as they execute, 10–8
concatenation characters, 1–21
field, 1–18
information

about a collection, 11–5
stored in CDO dictionary, 20–3

line, 1–18
names of

collections, 11–5
domains, 3–9
loaded tables, 5–7
readied domains, 6–1

procedures as they execute, 10–8
records

longer than 80 characters, 1–18
records on more lines, 1–19
subset, 1–18

distributed data, 3–8
accessing, 3–10
domains with relationships, 3–12

DMU format dictionaries, 19–1, 21–1,
23–17

abbreviating path names, 19–11
ACL, 21–5, 23–3
CDD$TOP, 19–9
converting to CDO, 19–6
creating directories in, 21–3
DELETE PROTECTION command,

23–20
deleting

definitions in, 19–16
directories in, 21–4

differences from CDO, 19–2
naming, 19–10
organization of, 21–1
reasons for using, 19–2, 19–8
SET PROTECTION/EDIT command,

23–20
setting default dictionary, 19–15
used in examples, 21–2
using logical names, 19–12
utilities for manipulating, 19–2
version numbers in path names, 19–9

Index–9

domain tables
creation of, 5–5
VIA clause, 5–3

domains
accessing

data from two or more with view,
12–10

data in two or more with CROSS
clause, 12–8

subsets of fields in, 12–10
as record source, 22–6
as source of record stream, 7–3
combining, 7–12
combining data from multiple domains,

4–17
creating, 3–8 to 3–9
crossing with itself, 7–16
defining in CDO format, 20–10
definition of, 3–8
displaying readied, 6–1
finishing, 6–6
improving performance with, 22–4
purpose of, 3–8
readying, 6–3

CDO format, 20–12
informational messages, 6–4
with the same name, 6–3

relational, 3–11
remote, 3–11
restructuring, 4–10, 4–12, 4–15, 4–19

back up for, 4–11
file organization, 4–10
keys for indexed files, 4–10
record definition, 4–12
using aliases, 4–19
when, and when not required,

4–12
RMS, 3–11
rules for naming, 3–9
table

based on relational sources, 5–10
transfer data between, 4–16
transferring data, 4–16
view, 3–11

double-precision numbers
concatenating, B–2

DROP statement, 11–11, A–7
effects on single record context, A–18

DTIF format, 15–3
DTIF output format, 15–1, 15–11
DTR$DATE_INPUT logical name, 6–7
DTR$EDIT logical name, 1–12
DTR$LIB dictionary directory, 21–2
DTR$READY_MODE logical name, 6–5
DTR$RW_BODY_ATTRIBUTES

logical name, 15–7
DTR$RW_HEADER_ATTRIBUTES

logical name, 15–7
DTR$SHOW logical, 19–3
DTR$STACK_SIZE logical name, B–7
DTR$USERS dictionary directory, 21–2
DTR32 logical symbol

including in LOGIN.COM, 1–17
DTR> prompt

see also prompts
DX output format, 15–1
dynamic hierarchies, 13–23

E
EDIT command, 1–13

editing CDO format definitions, 2–27
RECOVER argument, 1–15
specifying dictionary path name, 1–14
specifying object types, 1–14
to convert dictionary definitions, 19–7

edit strings, 16–11
to format print item, 16–13

Edit/FDL Utility, 4–7
editing

CDO format definitions, 2–27
procedures, 10–2
record definitions, 2–27
table definitions, 5–9

editors
see also editing
assigning default, 1–12
EDT, 1–12
exiting from, 1–13

Index–10

editors (cont’d)
LSE, 1–12
VAXTPU, 1–12

EDIT_STRING clause, 2–19
EDT editor, 1–12

DECwindows restriction, 1–12
journal files, 1–15

elapsed time calculation
see FN$SHOW_TIMER

elementary fields
see also fields
with FROM clause, 2–26

enabling DATATRIEVE plots, 17–2
SET PLOTS command, 17–2

END_REPORT statement, 14–3, 14–5
ENTER command, 20–9
entities

as used in DATATRIEVE, 19–2
EQUAL relational operator, 7–18

optimizing queries, 22–3
equipment

optional, 17–1
required, 17–1

erasing
definitions

see DELETE command
dictionary directories

see DELETE command
records, 8–19

from a collection, 8–20 to 8–21
in a FOR statement RSE, 8–21

error conditions
in procedures

with SET ABORT, 10–5
specifying, 10–6

error messages
getting help for, 1–9

errors
see also context errors
dividing by zero, B–5
trapping with procedures, 10–2
with MODIFY statement, B–3
with STORE statement, B–3

example(S) of
context variables, A–11
MODIFY statement, 8–7
restructuring domains, 4–15

exclamation point (!)
in comments, 1–8

EXIT command
leaving an editor, 1–13

exiting
DATATRIEVE on-line help, 1–9
Report Writer, 14–5 to 14–6

EXTRACT command, 10–9, 19–17
records defined with VARIANT field,

2–22
to convert dictionary definitions, 19–7

F
facility-specific clauses

restrictions, B–5
FDL

see File Definition Language
field definitions

field levels, 2–2
level numbers, 2–2
QUERY_NAME clause, 2–4

FIELD keyword
of FROM clause, 2–27

field levels
see fields, definition

field names, 2–4 to 2–7
abbreviating, 2–5
FILLER, 2–7

field-level definitions
CDO format dictionaries, 19–2
using CDO, 2–24

fields
see also key fields
see also list fields
see specific field type
adding in record, 4–12
adding to record definition, 4–15, 4–16
alphabetic, 2–9
alphanumeric, 2–9
assigning values

Index–11

fields
assigning values (cont’d)

using MODIFY, 8–18
using STORE, 8–1

changing order in record, 4–12
classes and contents, 2–3t
classification of, 2–3
defining CDO format, 20–10
defining data, 2–20
definition, 2–1

level numbers, 2–2
deletion of in record, 4–12
display of, 1–18
elementary, 2–3

see elementary fields
establishing context, A–1
filler, 2–6
formatting values of, 2–19
group, 2–3, 2–26, 3–5

see also group fields
increasing size in record, 4–12
initializing values in, 2–25
joining in display, 1–21
key, 3–7
level number, 2–2
name qualifiers, A–10
nul value, 2–25
numeric, 2–10
record

alphabetic, 2–9
alphanumeric, 2–9
display headers for, 2–5
duplicate, 2–4
formatting values of, 2–19
numeric, 2–10
redefining other fields, 2–15
restricting characters allowed in,

2–8
size of, 2–8
specifying decimal point in, 2–10
storing dates, 2–11
type of data in, 2–8
using tables to validate, 5–9

repeating, 2–16
disadvantages of, 1–2

fields
repeating (cont’d)

modifying values, 13–17
retrieving values, 13–2
retrieving values from, 13–3

top-level, 2–5
trees, 22–2, A–3, A–11
updating level definitions, 20–12
validation of value

see also VALID_IF clause
value assignment, 8–3
variable

computed, 2–12
virtual

See Virtual fields
File Definition Language (FDL)

CONVERT/FDL utility, 22–1
Create/FDL Utility, 4–8
Edit/FDL Utility, 4–7
using, 4–7

file specifications
errors in, 3–11
in domain definitions, 3–10

files
see also indexed files
see also sequential files
see data files
adding data to, 22–1
bucket size, 4–6
changing organization of, 4–5, 4–21
creating, 4–1
defining using FDL, 4–6 to 4–7
designing, 4–5
flat, 4–6
for CDO domains, 4–9
journal, 1–15

JOU, 1–15
TJL, 1–15

maintenance, 4–8
more than one index level, 4–7
naming, 3–10
optimization, 4–5

determining fill factor, 22–1
moving data from old file to new

file, 22–1

Index–12

files (cont’d)
recovering, 1–15
restructure of, 4–16
RMS, 6–1
sequential, 4–5
sequential versus indexed, 4–2
starting and ending access, 6–1

FILLER
see field names

FILLER field name
uses for, 2–6

FIND statement, 7–4, 17–3, A–7
advantages of using, 12–18
avoiding context errors, 13–2
disadvantages of, 12–18, 22–4
displays no message in procedure,

10–7
establishing context for a list, 13–2
example, 12–11
performance issues, 22–6
using to modify records in repeating

fields, 13–17
using to retrieve records in repeating

fields, 13–3
FINISH command, 4–20, 6–1

effect of, 6–6
finishing domains, 6–6
FIRST clause of RSE, 11–3
fixed occurrence lists, 2–17
flattening hierarchies

see hierarchies, flattening
FN$CREATE_LOG function, 1–13, 6–5
FN$DCL function

requesting input from other products,
10–10

FN$INIT_TIMER, 22–11
FN$SHOW_TIMER, 22–11
FN$SPAWN function, 21–4
FN$UPDATE function, 22–4
FN$WIDTH

using to set screen width, 15–11
FN$WIDTH function, 1–18
fonts

aligning data for proportional, 15–8
attribute changing, 15–4

fonts (cont’d)
proportional or monospaced, 15–8

FOR loops
nested

flattening hierarchies, 13–11
order of domain in, 22–8
use of nested, 22–5
with conditional statement, 22–9

FOR statement
creating hierarchies, 13–23
erasing records specified in a, 8–21
flattening hierarchies, 13–15
looping errors in a, 12–7 to 12–8
modifying data, 8–16
modifying list items, 13–18
results, 9–2
retrieving list items, 13–5
used in a modify operation, 8–11 to

8–17
FORMAT clause, 15–1
formats

DDIF, 15–3
DTIF, 15–3
TEXT, 15–10

formatting
dates, 6–7
page size

see page formats
Report types, 15–9

FORWARD (F) privilege, 23–18
fractions

ensuring display of, 2–20
frequency distribution

PLOT HISTO, 17–7
FROM clause, 19–2

FIELD keyword, 2–27
for field-level definitions, 19–2
GROUP keyword, 2–27
relationships created with, 20–12
with CDO format records, 19–2

functions
FN$INIT_TIMER, 22–11
FN$SHOW_TIMER, 22–11

Index–13

G
GE

see GREATER_EQUAL relational
operator

global variables, 14–16
GLOBAL_DELETE privilege, 23–18
GRANT clause, 23–16
graphics

optional equipment, 17–1
required equipment, 17–1

GREATER_EQUAL relational operator,
7–19

GREATER_THAN relational operator,
7–19

group fields
see also fields
are always alphanumeric, 2–15
as index keys, 4–3

restrictions on, 4–4
CDO use of, 2–26
with FROM clause, 2–26

GROUP keyword
of FROM clause, 2–27

GT relational operator
see GREATER_THAN relational

operator
Guide Mode

description of, 1–11
entering, 1–11
using advanced, 1–11

guidelines for plot design, 17–8

H
hardcopy output, 17–2

attaching a device, 17–2
PLOT BIG, 18–29
PLOT HARDCOPY, 18–30

HARDCOPY statement, 18–30 to 18–31
headers, 14–6 to 14–8

see also column headers
see column headers
default format, 14–6

headers (cont’d)
naming the report, 14–6 to 14–7
page, 14–13 to 14–14
printing, 14–7

help
DATATRIEVE on-line

accessing, 1–8
controlling displays in, 1–9
exiting, 1–9
for error messages, 1–9
topic levels for, 1–9

DECwindows, 1–10
use of, 1–8

HELP ERROR command, 1–9
hierarchical records

see also list fields
see hierarchies

hierarchies, 12–13, 13–2
create with view domains, 12–15
creating with

FOR statements, 13–23
creation, 13–22
definition of, 13–1
dynamic, 13–23
flattening, 13–11, 13–24 to 13–28

CROSS clause, 13–9
FOR statement, 13–15
inner print list, 13–14
using Report Writer, 16–20

HISTO statement, 18–2 to 18–3
histograms

see HISTO
history lists, 21–5
horizontal (X) axis, 18–12
hyphen (-)

as continuation character, 1–7
as input character, 1–5
as lowercase underscore, 1–5
as minus sign, 1–5
in path names, 19–11, 19–15
to suppress column headers, 2–8

Index–14

I
IF-THEN-ELSE expression, 2–14
IF-THEN-ELSE statement, 9–4
indentation

in compound statements, 9–1
index buckets, 4–6
index keys

database design, 3–7
indexed files

advantages of, 4–2
and collections, 12–1
changing keys for, 4–10
defining, 4–4
for transaction file processing, 4–2
optimization, 4–2 to 4–5
primary keys, 4–2
specifying

alternate keys for, 4–3
group field keys for, 4–3

versus sequential files, 4–2
informational messages, 6–5
inner print lists

see print lists
invoking

procedures, 10–2
Report Writer, 14–4 to 14–5

J
job class

see UIC
joining records, 11–10
JOU file type

see also files, journal, 1–15

K
KEY clause, 13–22
key fields, 2–24

in databases, 3–7
key-based index

use of to retrieve records, 22–12

keyed retrieval
on boolean expressions, 22–12

keys
see also key-based index
see also keyed retrieval
changing value in primary, 4–4
choice of alternate, 4–3
optimization

summary, 22–13
primary, 4–2, 4–4

allowing duplicate values in, 4–5
cannot allow changes to, 4–5

keywords, 1–5
customizing, 1–5
definition of, 1–5
restrictions, 1–5
synonyms for, 1–5

L
labeling plots, 18–31, 18–40

label strings, 17–11
Language-Sensitive Editor (LSE)

see editors, 1–12
LE

see LESS_EQUAL relational operator
LEGEND statement, 18–31 to 18–32
LESS_EQUAL relational operator, 7–20
LESS_THAN relational operator, 7–19
level numbers, 2–2

for redefining fields, 2–15
LIMITS_X statement, 18–32 to 18–34
LIMITS_Y statement, 18–32 to 18–34
line

display of, 1–18
line graphs, 18–12 to 18–16

comparing multiple values, 17–7
connecting plots, 18–29
for time comparisons, 17–6

line recall
see command recall

linear regression plots, 18–14
see also line graphs
PLOT LR, 18–34

Index–15

list fields
cannot be index keys, 4–4
creating loops to process, 12–5 to 12–7
creation of temporary, 12–10
defining, 2–16
disadvantages of, 2–17
fixed occurrence, 2–17
group field names for, 2–18
reporting data from, 13–1, 16–22
source element in RSE, 7–5 to 7–6
using SET SEARCH, 16–20 to 16–22
variable occurrence, 2–17

LIST statement, 1–19
lists

see also repeating fields
changing length, 13–21
modifying values, 13–17
retrieving values, 13–2
sublist definition, 2–18

literals
continuing to next line, 1–19
longer than 253 characters, 1–22

log files
creating, 10–10

logarithmic plots
PLOT DATE_LOGY, 18–17
PLOT LOGX-LOGY, 18–18
PLOT LOGX_Y, 18–20
PLOT X_LOGY, 18–21

logical name
DTR$RW_BODY_ATTRIBUTES, 15–7
DTR$RW_HEADER_ATTRIBUTES,

15–7
DTR$STACK_SIZE, B–7

logical names
CDD$COMPATIBILITY, 19–4
CDD$DEFAULT, 1–17, 19–15
DTR$DATE_INPUT, 6–7
DTR$EDIT, 1–12
DTR$READY_MODE, 6–5
DTR$SHOW, 19–3
for search lists, 19–13
in path names, 19–12
SYS$CURRENCY, 6–7
SYS$DIGIT_SEP, 6–7

logical names (cont’d)
SYS$RADIX_POINT, 6–7

LOGIN.COM file
assigning CDD$DEFAULT, 1–17
including DTR32 symbol, 1–17

LOGX_LOGY statement, 18–18 to 18–19
LOGX_Y statement, 18–20 to 18–21
"Looking for" messages

turning on and off, 10–5
loops

avoiding errors when creating, 9–8
conditions for executing, 9–3
errors when creating

CROSS clause, 12–8 to 12–9
FOR statement, 12–7 to 12–8

infinite, 9–8
processing

lists with, 12–5 to 12–7
multiple records with, 12–5

LOTUS 1-2-3™ output format, 15–1
lowercase letter

automatic translation to uppercase,
1–5

preservation of, 1–5
LR statement, 18–34
LSE

see also editors
journal files, 1–15

LT
see LESS_THAN relational operator

M
marsupial

see WOMBAT
MAX clause, 13–21
MAX statistical operator, 16–7, 16–8 to

16–9
MCS_BINARY object, 20–8

naming convention, 20–9
MEMBER clause of RSE for VAX DBMS,

7–7
see also sets

messages
"Looking for", 10–5

Index–16

metadata
see records

MIN statistical operator, 16–7, 16–8 to
16–9

minus sign (-), 1–5
see also hyphens

MISSING VALUE clause, 2–25, 7–21
missing values

restriction, B–4
MODIFY statement, 8–11

ALL option, 8–10
assigning field values, 8–18
examples, 8–7
execution errors, B–3
including the RSE, 8–18
modifying repeating fields, 13–17
restrictions, 7–5
USING clause with Assignment

statement, 8–9
using prompting expressions, 8–18
VALID IF clause, A–9
VERIFY clause, 8–9, 8–19
VERIFY USING clause, A–16

modifying data
in repeating fields, 13–17

modifying records
collection

to assign different values, 8–14
to assign one value per field, 8–12

to 8–14
created by CROSS clause, 8–11
FOR statement loop, 8–14 to 8–17
in views, 8–11
MODIFY statement RSE, 8–14
readying domains when, 8–11
using a transaction file, 8–14 to 8–17

MONITOR statement, 18–34 to 18–35
monitors

monochrome display, 17–1
ReGIS color, 17–1
ReGIS monochrome, 17–1

monospacing, 15–8, 15–10
multiple line graphs

see line graphs

MULTI_BAR statement, 18–3 to 18–5
MULTI_BAR_GROUP statement, 18–5 to

18–7
MULTI_LINE statement, 18–13 to 18–14
MULTI_LR statement, 18–14 to 18–15
MULTI_SHADE statement, 18–15 to

18–16

N
names

conventions for
tables, 5–1
top-level field, 2–5

definition of, 1–6
duplicate field, 2–4
examples, 1–6
for reports, 14–6 to 14–7
naming conventions, 1–5

rules, 1–6
of

domains, 3–9
qualifying field, 2–4
recognition of, A–5
record

related to top-level field, 2–5
restrictions, 1–6

navigator, 1–16
NE

see NOT EQUAL relational operator
nested FOR loops

optimization, 22–5 to 22–9
NEWUSER program, 1–17
NEW_PAGE print list element, 14–7,

14–9, 14–14
NEXT_BAR statement, 18–7 to 18–8
(NO)CHANGE key characteristic, 4–4
(NO)DUP key characteristic, 4–4
NOT Boolean operator, 7–22
NOT EQUAL relational operator, 7–18
NOW value expression

used in a procedure, 8–15
numeric fields

allowing negative values in, 2–10
calculations with, 2–11

Index–17

numeric fields (cont’d)
defining

PIC clause, 2–10
the easy way, 2–10

maximum number of digits in, 2–10
that need edit strings, 2–20

9 (numeric)
picture string character, 2–8t

O
object types

specifying with EDIT command, 1–14
occurrence list

see also OCCURS clause
fixed, 2–17
variable, 2–17

OCCURS clause, 2–16, 13–25
define record with list field, 12–5
disadvantages of, 1–2

OCCURS DEPENDING clause, 13–21
OCCURS FOR clause

to create temporary list fields, 12–10
ON statement

used to print auditing information,
8–11

OPEN command, 10–10
OPTIMIZE qualifier

benefits of, 22–2
READY command, 22–2

optimizing
see also file optimization
see also performance
see also query optimization
data files, 1–2
indexed files, 4–2 to 4–5
keys, 22–13
nested FOR loops, 22–5 to 22–9

optional equipment for producing plots,
17–1

OR Boolean operator, 7–22
ordering

of expressions
PLOT MULTI_BAR, 17–9
PLOT MULTI_SHADE, 17–9

ordering (cont’d)
records

in RSEs, 11–4
SORT statement, 11–9

output
formats, 1–18, 15–1, 15–4, 15–11
selecting the output medium, 14–2 to

14–6
multiple outputs, 14–2 to 14–6

to a printer
PLOT BIG, 18–29
PLOT HARDCOPY, 18–30

OVER clause, 11–3, 12–8, 16–29, 22–5,
22–9

OWNER clause of RSE for VAX DBMS,
7–8

see also sets

P
P (decimal scaling) picture string

character, 2–8t
page

headers, 14–13 to 14–14
numbering, 14–6

default, 14–6
page formats, 15–315–9, 15–11

default, 15–11
headers

see also headers
numbers

see page numbering
page width, 15–11

paper
printing reports on, 15–9

parts of a whole, 17–6
bar charts, 17–6
pie charts, 17–6

passwords
in access control lists, 23–7, 23–14
prompts for, 23–14
user identification criteria, 23–14

path names, 23–3, 23–4
abbreviating in CDO format names,

19–11

Index–18

path names (cont’d)
abbreviating in DMU format names,

19–11
anchors, 19–8
CDD$TOP, 19–9
CDO format, 3–13
CDO format dictionaries, 19–8
DMU format dictionaries, 19–9
full, 19–5

in domain definitions, 3–9, 3–10
in CDO format dictionaries

rules for naming, 19–10
in DELETEP command, 23–20
in DMU format dictionaries

rules for naming, 19–10
in SHOW PRIVILEGES command,

23–6
in SHOWP command, 23–2
of records in domain definitions, 3–12
protection with ACLs, 23–1
relative, 3–12, 19–5

in CDO format dictionaries, 19–11
in DMU format dictionaries,

19–11
SYS$COMMON:[CDDPLUS], 19–9
using hyphens in, 19–11
using logical names, 19–12

PAUSE statement, 18–35
performance, 22–9

as affected by
data file maintenance, 4–8
duplicate alternate keys, 4–3
duplicate primary keys, 4–3

checking with DTR timing functions,
22–12

choosing optimal queries, 22–3 to
22–12

compound Boolean considerations,
22–12

domain order in CROSS clause, 22–6
improving, 22–1
OPTIMIZE qualifier, 22–2
timing procedures, 22–11
use of domains, 22–4
use of indexed records, 2–24

performance (cont’d)
using domains to improve, 12–1
when using

collections, 11–13, 12–18
domains directly, 12–18
tables, 5–2

PIC
see fields

characters in
PICTURE (PIC) clause, 2–8
picture string characters, 2–8t
pie charts, 18–23 to 18–28

comparing items, 17–7
for parts of a whole, 17–6

PIE statement, 18–24 to 18–25
pieces tracking, 20–12

see relationships
CDO feature, 20–8

plot statements
BAR, 18–2
PLOT BAR_AVERAGE

with VAX DBMS domains, 17–14
PLOT CROSS_HATCH

with relational databases, 17–15
PLOT HISTO, 17–7
PLOT MONITOR

attaching a color monitor, 17–2
PLOT MULTI_BAR

ordering of expressions, 17–9
with relational databases, 17–15

PLOT MULTI_SHADE
developed from PRINT statement,

17–3, 17–4
ordering of expressions, 17–9

PLOT NEXT_BAR
with VAX DBMS domains, 17–14

PLOT SORT_BAR
with VAX DBMS domains, 17–14

PLOT VALUE_PIE
with VAX DBMS domains, 17–13
with relational databases, 17–16

plots
bar charts, 18–1 to 18–12
changing shading to hatching, 18–30
connecting plots, 18–29

Index–19

plots (cont’d)
data from relational databases, 17–15
design guidelines, 17–8
enabling with SET PLOTS, 17–2
hardcopy output, 17–2
improving, 17–8
labelling, 18–31
line graphs, 18–12 to 18–16
pie charts, 18–23 to 18–28
restoring, 18–37
scattergraphs, 18–16 to 18–23
shading, 18–38
similarities to PRINT statement, 17–3
table of, 17–12t
types of, 18–1
using data from a collection, 17–3
using data from RSE, 17–4
utilities, 18–28 to 18–42
VAX DBMS data, 17–12

PostScript™ output format, 15–1, 15–4
precision in arithmetic operations

with PIC fields, 2–11
primary keys

see keys
print

attributes, 15–4
column headers, 2–7, 14–7
detail line, 14–7
page headings, 14–13

print lists
elements

COL, 14–7
NEW_PAGE, 14–7
SKIP, 14–7
SPACE, 14–7
TAB, 14–7

inner, 13–6, 16–22
flattening hierarchies, 13–11,

13–14
outer, 13–7

PRINT statement, 14–3
see also detail lines
ALL keyword, A–24
format, 14–7
print list elements, 14–7

PRINT statement (cont’d)
similarities to plot statements, 17–3
using CHOICE, 16–19
using OF rse clause, A–26

printing
plots

PLOT BIG, 18–29
PLOT HARDCOPY, 18–30

reports on paper, 15–9
table-based formats, 15–9
totals of rows, 14–14 to 14–16

privileges
see access control lists

procedures, 1–6, 10–1
aborting, 10–5
advantages of, 1–3
arguments and clauses in, 10–4
cannot invoke themselves, 9–8
commands and statements in, 10–4
comments in, 10–5
contents of, 10–3
controlling error conditions in, 10–5
converting to command files, 10–9
correcting problems in, 10–8

using log files, 10–10
using SET VERIFY, 10–8

defining, 10–1
definition of, 1–4
displaying during execution, 10–8
editing, 10–2
ending definitions of, 10–2
erasing records with, 8–21
error conditions in

specifying, 10–6
executing repeatedly, 10–6
for VAX DBMS reports, 16–25
for relational database reports, 14–16

to 14–18
for reports, 14–16 to 14–20
generalizing, 10–8
invoking, 10–2
modifying records with, 8–14 to 8–17
not compiled when stored, 1–3
protection, 10–8
timing to improve efficiency, 22–11

Index–20

procedures (cont’d)
using collections in, 11–13
using in compound statements, 10–6
using to trap errors, 10–2
with editing commands

sequence of execution, B–6
programming in DATATRIEVE

comparison with other languages, 1–2
prompts

DFN>, 10–1
during report processing, 14–5
expressions

in MODIFY statement, 8–18
in STORE statement, 8–4

for input, 8–4
in a modify operation, 8–15

for value expressions, B–8
in reports, 14–19 to 14–20
password, 23–14
using in STORE statements, 8–2

proportional spacing, 15–8
data alignment, 15–8

protecting
and security, 23–1
CDD/Repository directories

in multiuser applications, 21–5
definitions

in multiuser applications, 21–5
protocols

extension of, 19–5
PS output format, 15–1
PURGE command, 19–17

performance enhancement, 22–10
purging

definitions, 19–17

Q
qualified field names, 2–4, A–10
quarterly summaries, 2–12 to 2–15
query

definition of, 22–3
names, 2–5
optimization, 22–3

CONTAINING relational operator,
22–3

query
optimization (cont’d)

CROSS clause, 22–5 to 22–9
EQUAL relational operator, 22–3
STARTING WITH relational

operator, 22–4
QUERY_HEADER clause, 2–5, 5–5

to reduce size of column headers, 2–7
QUERY_NAME clause, 2–4, 2–5
question mark (?)

entering for on-line help, 1–8

R
RAW_BAR statement, 18–8 to 18–10
RAW_PIE statement, 18–25 to 18–27
Rdb/VMS databases, 1–1

see also relational databases
report writing, 16–25

Rdb/ELN databases, 1–1
see also relational databases

RDO interface, 4–13
READY command, 6–1

alias clause, 6–3
OPTIMIZE qualifier, 22–2
performance enhancement, 22–10
with CDO format domains, 20–12

readying domains
see domains, readying

recalling
lines versus commands and statements,

1–14
previous command or statement, 1–13

record definitions, 2–1 to 2–15
accessing using domain definitions,

3–8
adding

clauses to, 4–12
fields to, 4–12
group field names to, 4–12

adding fields, 4–15
alphabetic fields in, 2–9
CDD/Repository data types, 2–20t
changing, 4–10

field names in, 4–12

Index–21

record definitions
changing (cont’d)

field order in, 4–12
size of fields in, 4–12

column headers in, 2–5
computed fields in, 2–12
DATATRIEVE data types, 2–20t
date fields in, 2–11
defining data, 2–20
deleting, 19–16
editing, 2–27
elementary fields, 2–3
field classes, 2–3t
field levels, 2–2
field names, 2–4
FILLER field name, 2–7
FILLER fields in, 2–6
flat versus hierarchical records, 13–24

to 13–28
formatting field values in, 2–19
group fields, 2–3
in domain definitions, 3–10
large versus small records, 13–28 to

13–32
level numbers, 2–2
numeric fields in

PIC clause, 2–10
parts of, 2–1
PIC clause in, 2–8
query names in, 2–5
redefining fields in, 2–15
repeating fields in, 2–16
scaled values in, 2–10
top-level fields in, 2–5

record fields
see fields

Record Management Services
see RMS

record name, 2–5
record selection expressions

see RSE
record streams, 7–1, A–6

collections, 7–4
creating hierarchies, 13–22 to 13–24
creating, using FOR statement, A–27

record streams (cont’d)
domains, 7–3
finding correct values, 7–17
joining records, 7–12
lists, 7–5
number of records in, 7–11
reducing to unique field values, 7–23
relational databases, 7–6
sorting by field values, 7–24
specifying records, 7–1
VAX DBMS records, 7–6

records
accessing subsets of fields in, 12–10
adding field to, 4–16
combining, 7–14
comparing, 7–17
converting large records to small,

13–30
defined using VARIANT field, 2–22
defining data, 2–20
defining in CDO format, 20–10
definition of, 2–1
display control, 2–7
displaying, 7–10
erasing, 8–19
flat, 13–24
grouping, 7–17

by reference to a table, 7–21
hierarchical, 13–24
joining, 7–12
metadata, 21–1
modifying, 8–6, 8–8
naming, 3–10
OPTIMIZE qualifier, 22–2
removing from collection, 11–11
selecting, 7–1
sorting, 7–24, 16–1
sources of, 7–3
space reservation, 2–7
storing, 8–1
subsets creating, 4–17
testing with boolean operator, 7–22
values validation, 8–18

RECOVER argument
EDIT command, 1–15

Index–22

REDEFINE command, 2–27
REDEFINE RECORD command

OPTIMIZE qualifier, 22–2
REDEFINES clause, 2–15
REDUCE statement, 8–19, 11–7

advantages of using, 12–18
disadvantages of, 12–18

REDUCED TO clause, 7–23, 8–19, 11–4
record selection expressions, 7–23,

13–30
reference lines

in plots, 18–35
REFERENCE_X statement, 18–35 to

18–37
REFERENCE_Y statement, 18–35 to

18–37
ReGIS graphics, 17–1

hardcopy output devices, 17–2
monitors, 17–1

relational database reports, 14–1, 16–22
to 16–30

CROSS clause, 16–29
defining a database, 16–27 to 16–28
OVER clause, 16–29
PERSONNEL sample database, 16–26
procedures, 14–16 to 14–18
relations, 16–26, 16–27 to 16–28
samples

employee history, 16–28 to 16–30
relational databases, 1–1, 17–15

CROSS clause, 17–16
examples, 17–15
PLOT CROSS_HATCH, 17–15
PLOT MULTI_BAR, 17–15
PLOT VALUE_PIE, 17–16
report data, 16–28
report writing, 16–25

relational domains
restructure of, 4–13
with relationships, 3–12

relational operators, 7–20
containing, 22–3
equal, 22–3
STARTING WITH, 22–4

relational query, 7–24
relationships, 17–5t, 19–2

see also DEFINE DOMAIN command,
using WITH RELATIONSHIPS
clause

CDO format definitions, 19–2
CDO object created for, 20–8

naming convention, 20–9
comparing items, 17–7
comparing multiple values, 17–7
comparing parts of a whole, 17–6
created by FROM clause, 20–12
defining CDO domains with, 20–8
defining domains with, 3–11
effect on readying domains, 20–12
frequency distribution, 17–7
relational domains, 3–12
remote domains, 3–12
RMS domains, 3–12
time comparisons, 17–5
update, 3–12
view domains, 3–12
with DEFINE DOMAIN command,

20–10
RELATIONSHIPS clause, 19–2
relative path names, 3–12

see path names
relative version numbers, 19–9
RELEASE command, 5–7

to remove collections, 11–12
remote data

see distributed data
remote domains, 3–12
Remote Graphics Instruction Set

see ReGIS graphics
repeat count

for picture string characters, 2–8
REPEAT statement, 10–6

results, 9–2
repeating fields, 2–16

see fields, repeating
report specifications, 14–2

AT BOTTOM statement
see also AT BOTTOM statement

Index–23

report specifications (cont’d)
AT TOP statement

see also AT TOP statement
column headers

see column headers
complex, 16–13 to 16–20
detail lines

see detail lines
END_REPORT statement, 14–5
headers, 14–6 to 14–7

see also column headers
optional statements, 14–2
page size, 15–11
print list elements, 14–7
PRINT statement, 14–7 to 14–8,

16–10 to 16–12
REPORT statement, 14–4 to 14–5
required statements, 14–2 to 14–4
selecting the output medium, 14–2 to

14–6
multiple outputs, 14–2 to 14–6

SET statement, 14–6, 15–11
statistical operators, 16–7 to 16–9
summary lines, 14–11 to 14–14

REPORT statement, 14–2, 14–4 to 14–5
format, 14–4
reporting list data, 16–22
selecting the output medium, 14–2 to

14–6
multiple outputs, 14–2 to 14–6

Report Writer
see also sample reports
capabilities, 14–1
exiting, 14–5 to 14–6
flattening hierarchical records, 16–20
formats, 15–1
introduction, 14–1
invoking, 14–4 to 14–5
page formatting, 15–11
printing special headings, 14–8
printing title pages, 14–8
printing totals of rows, 14–14
relational database reports, 16–25
reporting hierarchical records, 13–1
sample output, 16–11

Report Writer (cont’d)
summary of statements, 14–3t
using VAX DBMS data, 16–23

reports
design, 3–2, 15–8
formats, 15–1
naming, 14–6
syntax, 15–2
text-format, 15–8

REPORT_HEADER element, 14–13,
14–14

required equipment for producing plots,
17–1

response time
see performance

restoring a plot
PLOT RE_PAINT, 18–37

restricting data access
by creating a view, 12–10

restrictions
see also accessing data
default values, B–4
in data access, 3–2
missing values, B–4

restructure statements, 4–16, 13–27
restructuring domains, 4–10, 4–13

adding fields to, 4–15
creating record subsets, 4–17
example, 4–15
restructure statement, 13–27, 13–31
STORE USING, 5–7, 13–31
to combine data, 4–17
using aliases, 4–13, 4–19

RETURN key
as termination character, 1–7

RE_PAINT statement, 18–37 to 18–38
rights identifiers, 23–13
RMS, 1–2
RMS utilities, 4–8

accessing data files, 6–1
domains with relationships, 3–12

root buckets, 4–6
RSE, 7–1, 7–10, 17–4

see also collections
see also record streams

Index–24

RSE (cont’d)
and loops, 12–5
creating, 12–3
creating hierarchies, 13–22 to 13–24
CROSS clause, 13–27
defined, 7–1
FIND statement, 11–3
FOR statement, 12–3 to 12–4
format, 7–2
MODIFY statement, 8–14, 8–18, 12–3

to 12–4
naming groups of records, 11–3
PRINT statement, 12–3 to 12–4
REDUCED TO clause, 7–23, 13–30
restricting

fields from records, 11–4
number of records, 11–3
records from source, 11–3

SORTED BY clause, 7–24
sorting records in, 11–4
source element, 7–1 to 7–6
specifying records from more than one

source, 11–3
use of in statements, 7–2
VAX DBMS clauses, 7–6 to 7–10

RUNNING COUNT statistical operator,
9–6, 13–30, 16–7, 16–11 to 16–12

RUNNING TOTAL statistical operator,
9–6, 16–7, 16–11 to 16–12

RW> prompt
see also prompts

S
S (sign) picture string character, 2–8t
sample applications, 3–1
sample data

copying with NEWUSER program,
1–17

sample reports
accounts payable, 16–11 to 16–12
bill-of-materials, 16–25
boats, 14–2
employee history, 16–28 to 16–30
personnel, 16–23 to 16–25

sample reports (cont’d)
sales, 16–13 to 16–20

SCALE clause, 2–10
scattergraphs, 18–16 to 18–23

comparing multiple values, 17–7
connecting plots, 18–29
limiting X or Y axis, 18–32
linear regression, 18–34
shading, 18–38
with logarithmic scale, 18–18

screen display
customizing, 1–18

screen width
setting, 1–18, 15–11

search lists
setting default dictionary for, 19–15
using logical names, 19–13
with CDD/Repository dictionaries,

19–13
SELECT statement, A–7

advantages of using, 12–18
avoiding context errors, 13–2
disadvantages of, 12–18
effects on single record context, A–18
identifying a particular record, 13–2
naming collection in, 11–7
options

FIRST, 11–6
LAST, 11–6
NEXT, 11–6
NONE, 11–6
PRIOR, 11–6
record position number, 11–6
WITH clause, 11–7

restricting records in, 11–7
uses for, 11–5
using to modify records in repeating

fields, 13–17
using to retrieve records in repeating

fields, 13–3
selected records

releasing control over, 11–7
restrictions for the, 11–7
that cannot be found, 8–21

Index–25

semicolon (;)
as continuation characters, 1–6
as dictionary object version, 1–6
at end of DELETE command, 19–16
termination character, 1–6

sequence numbers
in DEFINEP command, 23–18, 23–19

sequential files
advantages of, 4–5
cannot erase records from, 4–5
effect on performance, 4–5
versus indexed files, 4–2

SET
font attributes, 15–4

SET COLUMNS_PAGE statement, 15–11
SET commands

ABORT, 10–5
COLUMNS_PAGE, 1–18
DEFAULT, 20–16
DICTIONARY, 19–16

default CDO dictionary, 20–16
with DMU format dictionaries,

21–2
GUIDE, 1–11
GUIDE ADVANCED, 1–11
HELP_LINES, 1–10
NO ABORT, 10–5
NO PROMPT, 10–5
NO VERIFY, 1–8
(NO)SEMICOLON, 1–7
PLOTS, 17–2

attaching a color monitor, 17–1
enabling DATATRIEVE plots,

17–2
PROTECTION (DMU), 23–17
PROTECTION/EDIT (DMU), 23–17
SEARCH, 7–6, 13–8, 16–20
SET DATE, 15–4
SET SEARCH

RMS domains, 13–8
VERIFY, 1–8, 10–8

SET REPORT_NAME statement, 14–6
SET statement, 14–3, 15–9

COLUMNS_PAGE, 15–11
PAPER_SIZE, 15–9

SET statement (cont’d)
REPORT_NAME, 14–6 to 14–7

sets
MEMBER clause of RSE, 7–7
OWNER clause of RSE, 7–8
WITHIN clause of RSE, 7–9, 7–10

setting screen width, 1–18
SGML output format, 15–1
SHADE statement, 18–38 to 18–39
shading

PLOT CROSS_HATCH, 17–5
PLOT MULTI_SHADE, 17–3, 17–4
plot statements, 18–15

SHOW
COLLECTIONS, A–5
NOTICES, 20–13
PRIVILEGES, 23–3, 23–6
READY

displaying readied domains, 6–1
displaying tables in workspace,

5–7
USED_BY, 20–12, 20–16
USES, 20–12, 20–16
WHAT_IF, 20–16

SHOW commands, 20–3
performance enhancement, 22–10

SHOWP command, 23–2
signs

minus (-), 2–20
plus (+), 2–20

single record context, A–17
SKIP print list element, 14–7
sort keys, 16–1

use of multiple, 16–2
sort order, 4–3
SORT statement, 11–9

advantages of using, 12–18
disadvantages of, 12–18

SORTED BY clause, 7–24, 11–4
sorting

bar charts, 18–39
group of records, 16–1

sorting bars
PLOT BAR_ASCENDING, 18–28

Index–26

sorting field values in record streams,
7–24

sorting records, 7–24
in RSEs, 11–4
SORT statement, 11–9, 12–18

SORT_BAR statement, 18–39 to 18–40
SPACE print list element, 14–7, 16–13
spaces

suppressing trailing, 1–21
specifying object types

EDIT command, 1–14
SQL interface, 4–13
stack size

setting with DTR$STACK_SIZE, B–7
STACKED_BAR statement, 18–10 to

18–12
starting

DATATRIEVE Help, 1–8
Guide Mode, 1–11

STARTING WITH relational operator,
7–19

optimizing queries, 22–4
startup command files, 17–2
statements

see also commands
compound, 1–4, 9–6, 11–13, 12–18,

A–7, A–8, A–14
BEGIN-END, 9–2
cannot execute command files,

10–9
CHOICE, 9–5
contents of, 9–1
definition of, 1–4
FOR, 9–2
IF, 9–4
indentation in, 9–1
keywords that define, 9–1
REPEAT, 9–2
restrictions, 10–7
specifying records in, 12–1
template, 9–1
THEN, 9–3
using procedures in, 10–6
WHILE, 9–3

conditional, 9–6

statements (cont’d)
definition of, 1–3
elements, 1–4
function, 1–3
structure, 1–3

statistical operators, 16–7 to 16–9
AVERAGE, 16–7 to 16–8
COUNT, 16–7 to 16–8
MAX, 16–7, 16–8 to 16–9
MIN, 16–7, 16–8 to 16–9
RUNNING COUNT, 16–7, 16–11 to

16–12
RUNNING TOTAL, 16–7, 16–11 to

16–12
STD_DEV, 16–7 to 16–9
TOTAL, 16–7 to 16–8

STD_DEV statistical operator, 16–7,
16–8 to 16–9

storage space
conserving with tables, 5–1

STORE statement
assigning field values, 8–1
direct assignments, 8–2
execution errors, B–3
prompting expressions, 8–4
prompts, 8–2
USING clause, 13–30
VALID IF clause, A–9
VERIFY clause, A–8

storing records
readying domains for, 8–1

subdictionaries, 21–5
SUM statement, 2–14
summary lines, 14–11 to 14–14
suppressing display character, 19–3
symbol interpretation

currency, 6–7
date, 6–7

symbols
DTR32, 1–17

synonyms
customizing keywords, 1–5

SYS$COMMON:[CDDPLUS]
in CDD/Repository path names, 19–9

Index–27

SYS$CURRENCY, 6–7
SYS$DIGIT_SEP, 6–7
SYS$RADIX_POINT, 6–7
system failure

recovering files edited during, 1–15

T
T (text) edit string character, 1–22
TAB

effect of on prompts, 8–2
TAB print list element, 14–7
table of plots, 17–12t
table-based formats, 15–3

printing, 15–9
tables, 5–4, 5–6 to 5–7

see also dictionary tables
see also domain tables
access privileges, 5–7
associating values with, 5–1
choosing between dictionary and

domain, 5–10
conserving storage space, 5–1
creating

dictionary, 5–2 to 5–3
domain, 5–5 to 5–6

defining, 5–1
dictionary, 2–13, 5–6
domain

based on relational sources, 5–10
editing definitions of, 5–9
for validating field values, 5–9
in computed fields, 2–12
naming conventions, 5–1
privileges needed, 5–7
referencing with

IN and NOT IN clauses, 5–8
VALID IF clause, 5–7
VIA clause, 5–8

specifying
display format for values from,

5–3, 5–6
headers for values from, 5–3, 5–6

types of in DATATRIEVE, 5–1
validating values with, 5–1

target records, A–17
Terminal number

see UIC
terminals

character cell, 17–1
work stations, 17–1

termination characters, 1–6
RETURN key, 1–7
semicolon, 1–6

text fields, 2–9
TEXT format, 15–10
TEXT output format, 15–1
text-format reports, 15–8
THEN statement, 9–3
time

defining fields to store, 2–11
including in auditing information,

8–15
size of fields that store, 2–11

time comparisons, 17–5
bar charts, 17–6
line graphs, 17–6

time-related scattergraphs
PLOT DATE_LOGY, 18–17
PLOT DATE_Y, 18–17

timer initialization
see FN$INIT_TIMER

title page, 14–8 to 14–10
TITLE statement, 18–40 to 18–42
TJL file type

see also files, journal, 1–15
top-level fields, 2–5
TOTAL statistical operator, 16–7 to 16–8
transaction files

using to modify records, 8–15
transfer unit

see bucket size
translation utility

of CDD/Repository, 19–4
types of plots

bar charts, 18–1 to 18–12
line graphs, 18–12 to 18–16
pie charts, 18–23 to 18–28
scattergraphs, 18–16 to 18–23
utilities, 18–28 to 18–42

Index–28

U
UETP

(User Environment Test Package),
16–23

UIC
(User Identification Code)
alphanumeric, 23–12
identification criteria, 23–11, 23–12
in access control lists, 23–11, 23–12
numeric, 23–12
password, 23–14
terminal number or job class, 23–15

update file
using to modify records, 8–15

USAGE clause
DATE option, 2–11
DISPLAY default for, 2–11

User Environment Test Package (UETP),
16–23

User Identification Code
see UIC

user identification criteria
see UIC

user name
in access control lists, 23–12
user identification criteria, 23–12

USING clause
MODIFY statement, 8–9
STORE statement, 8–2

utility plots, 18–28 to 18–42

V
V (decimal point) picture string character,

2–8t
VALID IF clause with tables, 5–9
validating data, 8–19

VALID IF clause of field definition,
2–24

VERIFY clause of MODIFY, 8–15
with tables, 5–1

VALID_IF clause, 2–24

value expressions, 16–10
concatenation, 1–21

values
see also restrictions

VALUE_PIE statement, 18–27 to 18–28
variable occurrence lists, 2–17
variables

computed, 2–12
context, A–9
global, A–4
local, A–8
use of in context stack, A–14
using date, 9–5

VAX DBMS databases, 1–1
clauses in RSE, 7–6
DDL compiler, 4–13
domains

CROSS clause, 17–14
examples, 17–13
PLOT BAR_AVERAGE, 17–14
PLOT NEXT_BAR, 17–14
PLOT SORT_BAR, 17–14
PLOT VALUE_PIE, 17–13

MEMBER clause, 7–7
OWNER clause, 7–8
reports, 14–1, 16–22 to 16–25

example dictionary directory,
16–22

examples, 16–23 to 16–25
PARTS_DB sample database,

16–23
procedures, 16–25
writing, 16–23

WITHIN clause, 7–9
VAX Text Processing Utility

see VAXTPU editor
VAXTPU editor, 1–12

see also editors
journal files, 1–15

VERIFY clause
in a MODIFY statement, 8–15
MODIFY statement, 8–9, 8–19

version numbers
absolute numbers, 19–9
in CDO format path names, 19–9

Index–29

version numbers (cont’d)
in DMU format path names, 19–9
relative numbers, 19–9

vertical (Y) axis, 18–12
vertical bars

see concatenation characters
VIA clause, 5–3

see also domain tables
VIDA

see relational databases
VIDA databases, 1–1
view domains, 12–9

access privileges needed, 12–16
cannot store records in, 12–9
defining, 12–1
definition of, 1–1
erasing records in, 8–19
modifying records in, 8–11
reasons for creating, 12–9
using more than one domain, 12–13
using subsets of fields, 12–12
using subsets of records, 12–10
using with remote domains, 12–16
with relationships, 3–12

virtual fields, 2–12

W
WHILE statement, 9–3

Boolean expressions in, 9–4
WITH clause, 22–9

RSE, 11–3
SELECT statement, 11–7
using to restrict lists, 7–17

WITH RELATIONSHIP clause, 3–11, 6–4
WITHIN clause

see also sets
using in the FIND statement for

VAX DBMS sets, 7–9, 7–10
WK1 output format, 15–1
WOMBAT statement, 18–42
workstation terminals, 17–1
WPS/Plus output format, 15–1
writing reports

see Report Writer

X
X (alphanumeric)

picture string character, 2–8t
X axis, 18–12
X_LOGY statement, 18–21 to 18–22
X_Y statement, 18–22 to 18–23

Y
Y axis, 18–12

Index–30

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

