VAX TDMS
Reference Manual

Order No. AA-HU17A-TE

August 1986

This manual describes the commands, instructions, and
synchronous and asynchronous routine calls of VAX
TDMS.

OPERATING SYSTEM: VMS
MicroVMS
SOFTWARE VERSION: VAX TDMS V1.6

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1986 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER’S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS MicroVMS VAXcluster

CDD PDP VAXinfo

DATATRIEVE Rdb/ELN VAX Information Architecture
DEC Rdb/VMS VIDA

DECnet TDMS VMS

DECUS UNIBUS VT

MicroVAX VAX

Engﬂnan)

1

How to Use This Manual
Technical Changes and New Features

Form Definition Utility (FDU) Commands

1.1 Common FDU Qualifier,/AUDIT
1.2 @filespecCommand.
1.3 COPYFORMCommand0c.....
1.4 CREATEFORMCommand
1.5 CTRL/ICCommand.uuuueeene..
1.6 CTRL/YCommand.¢cououiuuunene..
1.7 CTRL/ZCommand.ot uueeueeno.
1.8 DELETEFORMCommand
1.9 EDITCommand0tviueeenen..
1.10 EXITCommand.00t ueenen..
1.11 HELPCommandvttiueeenn.
1.12 LISTFORMCommando.vveuu...
1.13 MODIFYFORMCommand.
1.14 REPLACEFORMCommand.
1.15 SAVECommand00vuuu...
1.16 SETDEFAULTCommand.................
1.17 SET[NOJLOGCommand.
1.18 SET[NOJVERIFYCommand
1.19 SHOWDEFAULTCommand
1.20 SHOWLOGCommandcv....
1.21 SHOWVERSIONCommand.

Request Definition Utility (RDU) Commands

2.1 Common RDU Qualifier,/AUDIT
2.2 @EfileespecCommand.
23 BUILDLIBRARYCommand
24 COPYLIBRARYCommand.................
2.5 COPYREQUESTCommand
2.6 CREATE LIBRARYCommand...............
2.7 CREATE REQUESTCommand
28 CTRL/ICCommand.c.uutiuenunnenn
29 CTRL/YCommand.c.uuoteeunennnen..

Contents

vii

X1

iii

iv

2.12 DELETEREQUESTCommand. 2-35

2.13 EDITCommand. ittt ittt ettt ieenean 2-37
2,14 EXITCommand.ttt ittt ittt et 2-40
215 HELPCommandttt eenennn. 2-41
2.16 LISTLIBRARYCommand.............uuoueeeennn. 2-43
2.17 LISTREQUESTCommand0uouuuueeenen. 2-45
2.18 MODIFYLIBRARYCommandc00c.v... 2-47
2.19 MODIFYREQUESTCommand.couuoo... 2-51
2.20 REPLACELIBRARYCommandc.o.o.v.... 2-56
2.21 REPLACEREQUESTCommand.0... 2-61
2.22 SAVECommandttt ittt 2-67
223 SETDEFAULTCommand.uuuieeueennen. 2-69
2.24 SET[NOJLOGCommand...............covcuttunnn. 2-71
2.25 SET[NOJVALIDATECommandouueueenn. 2-73
2.26 SET[NOJVERIFYCommandouoviiuunnnn. 2-76
2.27 SHOWDEFAULTCommandot eennnnn 2-17
228 SHOWLOGCommandoiv ... 2-78
2.29 SHOWVERSIONCommand.t uuueenenn. 2-79
2.30 VALIDATELIBRARYCommand.cuouveu... 2-80
2.31 VALIDATEREQUESTCommand0oueuu.n. 2-84
Request and Request Library Instructions
3.1 [NOJBLINKFIELDInstruction.ueeeee... 3-2
3.2 [INOJBOLDFIELDInstructiono veuueeneenenn 3-4
3.3 [NOJCLEARSCREENInstruction.c0ovve... 3-6
3.4 CONTROLFIELDISInstruction. ouuueunenen. 3-7
3.5 [INO]JDEFAULTFIELDInstruction v ueuenen. 3-12
3.6 DESCRIPTIONInstruction i it i vt veennnn 3-14
3.7 DISPLAYFORMInstructiont eneenenenn 3-16
3.8 ENDDEFINITIONINStruction. v v v v v v v v v v v v e v e v 3-18
3.9 FILEISINStruction i ittt it ittt eeneenean 3-19
3.10 FORMISInstruction.ttt eennenn 3-21
3.11 %INCLUDEInstructionciuuueueeneenon 3-25
3.12 INPUTTOInstruction. v v it it ittt et eeneenn 3-27
3.13 KEYPADMODEISInstruction. ovuuueneen.. 3-31
3.14 [NOJLIGHTLISTInstruction e v it vt i v e ennn. 3-33
3.15 MESSAGELINEISInstruction.00 uuen... 3-34
3.16 OUTPUTTOInstruction uv i eenennnnas 3-36
3.17 PROGRAMKEYISInstruction.uuueeneunen.. 3-41
3.18 RECORDISInstruction.ottt teeeneennen. 3-46
3.19 REQUESTISInstruction.o v ie et ennennnn. 3-48
3.20 [NOJRESETFIELDInstruction.ccuuueeneennn 3-50

3.21 RETURNTOInstructiono i i i ittt it ienn v 3-52

3.22 [NOJREVERSE FIELD Instruction. 3-57
3.23 [NOJRINGBELLInstructiono uuueuennunen. 3-59
3.24 SIGNALMODEISInstructionc....... 3-60
3.25 [NOJSIGNALOPERATORInstruction 3-62
3.26 [NOJUNDERLINE FIELD Instruction. 3-63
3.27 USEFORMInstruction.ttt teenenenn.. 3-65
3.28 [NOJWAITInstructiono, 3-67

TDMS Synchronous Programming Calls

4.1 NotationUsedinThisChapter. 4-2
4.2 TSS$CANCELCall i it i ie e e 4-3
4.3 TSSSCLOSECall it ittt en e 4-5
4.4 TSS$CLOSE_RLBCall., 4-8
4.5 TSS$COPY_SCREENCall, 4-10
4.6 TSSSDECL_AFKCall.ttt 4-13
4.7 TSSSOPENCall i ittt ieee e 4-19
4.8 TSSSOPEN RLBCall.ttt i 4-22
4.9 TSSSREAD MSG_LINECall........................ 4-25
4,10 TSSSREQUESTCallttt 4-29
411 TSS$SIGNALCall. it 4-34
4.12 TSS$TRACE OFFCall. 4-36
413 TSS$TRACE_ONCall. 4-38
4.14 TSSSUNDECL_AFKCall. 4-40
4.15 TSS$WRITE_BRKTHRUGCall. 4-42
4.16 TSS$WRITE_MSG_LINECall 4-45

TDMS Asynchronous Programming Calls

5.1 Notation UsedinThisChapter. 5-2
5.2 TSSSCLOSE_ACall. ittt ittt ee e 5-4
5.3 TSS$COPY_SCREEN_ACall........ 5-8
5.4 TSS$DECL_AFK ACall. e, 5-13
5.5 TSSSOPEN_ACall ittt et ie e e 5-20
5.6 TSSSREAD_MSG_LINE_ ACall 5-24
57 TSSSREQUEST ACall e, 5-29
58 TSSSUNDECL_AFK_ACall. 5-36
5.9 TSS$SWRITE_BRKTHRU_ACall. 5-40
5.10 TSS$WRITE_MSG_LINE_ACall. 5-44

6

vi

Rules for Resolving Ambiguous Field References
6.1 How to Make Field ReferencesUnique
6.1.1 UsingGroupFieldNames
6.1.2 UsingtheRecordName
6.1.3 Changing the Record Definition to Make References Unique . .

Instruction Execution Order

VAX TDMS Input and Output Mapping Tables
8.1 DeterminingDataTypes
8.2 DeterminingFieldLengths.
8.3 HowtoUseTheseTables,

FDU AND FIELD VALIDATOR ERROR MESSAGES
A.l1 FDU-LevelErrorMessagest eeuenen..
A.2 Field Validator ErrorMessageso v et v

RDU ERROR MESSAGES

TDMS Run-Time Error Messages
TDMS/DATATRIEVE Error Messages
Index

Figures
6-1 Referring to Record Fields withthe SameName
6-2 Using Record Names to Make Field References Unique

Tables

4-1 ParameterPassingNotation
4-2 Error Severity Codes for ReturnStatus
4-3 TDMS Application FunctionKeys(AFKs).
4-4 TDMS Synchronous Programming Callsin VAXBASIC
4-5 TDMS Synchronous Programming Callsin VAXCOBOL
4-6 TDMS Synchronous Programming Callsin VAX FORTRAN
5-1 Parameter PassingNotation
5-2 Error Severity Codes for Return Status and Completion Status
5-3 TDMS Application FunctionKeys(AFKs)
5-4 TDMS Asynchronous Programming Callsin VAXBASIC
5-5 TDMS Asynchronous Programming Callsin VAXCOBOL.
5-6 TDMS Asynchronous Programming Callsin VAX FORTRAN.
8-1 TDMS Input Mappings (Form Fields to Record Fields)
8-2 TDMS Output Mappings (Record Fieldsto Form Fields)

How to Use This Manual

This manual describes the commands, instructions, and routine calls for the VAX
Terminal Data Management System (VAX TDMS). The VAX TDMS software is
also referred to as TDMS in this manual.

All programming languages referred to in this manual are VAX programming
languages.

Intended Audience

This manual is intended for experienced TDMS users who need specific
information on a particular command, instruction, or progamming call. It is not
intended as a learning tool.

If you are new to TDMS, you should read Chapters 1 and 2 of the VAX TDMS
Forms Manual for an introduction to the product and its components.

Similarly, if you want to learn how to perform a particular task using TDMS, you
should read the other manuals in this documentation set:

e For creating forms — VAX TDMS Forms Manual
e For creating requests — VAX TDMS Request and Programming Manual

e For writing application programs — VAX TDMS Request and Programming
Manual

vii

Operating System Information
To verify which versions of your operating system are compatible with this

version of VAX TDMS, check the most recent copy of the VAX System Software
Order Table/Optional Software Cross Reference Table, SPD 28.98.xx.

Structure

This manual has eight chapters, four appendixes, and an index:

Chapter 1 Describes the commands for the Form Definition Utility (FDU).

Chapter 2 Describes the commands for the Request Definition Utility
(RDU).

Chapter 3 Describes the instructions used for defining requests and request
libraries in RDU.

Chapter 4 Describes the synchronous calls used for invoking TDMS from
an application program.

Chapter 5 Describes the asynchronous calls used for invoking TDMS from
an application program.

Chapter 6 Describes the rules for resolving ambiguous field references in a
TDMS request.

Chapter 7 Describes the order in which request instructions are processed

at run time.

Chapter 8 Describes the rules for converting data types in TDMS input and
output mapping instructions.

Appendix A Lists FDU error messages, an explanation of the error, and the
action the user should take to correct the error.

Appendix B Lists RDU error messages, an explanation of the error, and the
action the user should take to correct the error.

Appendix C Lists TDMS run-time error messages, an explanation of the
error, and the action the user should take to correct the error.

Appendix D TDMS error message codes that can be issued in a VAX
DATATRIEVE application that uses TDMS.

viii

Related Documents

As you use this book, you may find the following manuals helpful:
VAX TDMS Forms Manual
VAX TDMS Request and Programming Manual

VAX Common Data Dictionary Data Definition Language Reference Manual

VAX Common Data Dictionary Utilities Reference Manual

VAX Run-Time Library Routines Reference Manual

Conventions

This section explains the special symbols used in this book:

(1]

{}

{11}

()

UPPERCASE

FDU>

RDU>

Square brackets in syntax diagrams enclose optional items from
which you can choose one or none.

Braces enclose items from which you must choose one and only
one alternative.

Bars in braces indicate that you must choose one or more of the
items enclosed.

Horizontal ellipses indicate that you can repeat the previous
item one or more times.

Vertical ellipses in an example indicate that information
unrelated to the example has been omitted.

In RDU syntax, matching parentheses enclose lists of receiving
fields in mapping instructions and CDD passwords.

An uppercase word indicates a command or instruction
keyword. Keywords are required unless otherwise indicated. Do
not use keywords as variable names.

The FDU> prompt indicates the utility is at command level and
ready to accept FDU commands.

The RDU> prompt indicates the utility is at command level and
ready to accept RDU commands.

ix

RDUDFN>

Color

The RDUDFN> prompt indicates that the RDU utility is at the
instruction level and ready to accept request or request library
instructions.

The dollar sign prompt indicates that you are at DIGITAL
Command Language (DCL) level and can enter the RDU or
FDU utilities. From the DCL prompt, you can also enter RDU
or FDU commands if you precede them with the RDU or FDU
symbol. (It is possible to change the DCL prompt. However, in
this manual the examples use the default prompt, the dollar

sign.)

This key combination indicates that you press both the CTRL
(control) key and the specified key simultaneously.

This key symbol indicates the RETURN key. Unless otherwise
stated, end all example lines by pressing the RETURN key.

Colored text in examples shows what you enter.

Technical Changes and New Features

This section summarizes the changes to VAX TDMS that are described in this
manual.

+ In addition to its regular date formats, TDMS now includes the standard
VMS date format: DD-MMM-YYYY.

The new date format is Date format 5 and was added to the Input and
Output Mapping Tables.

¢ The default listing file name now contains up to 39 characters and can
include the dollar sign ($) and underscore (_). This file name is generated in
FDU by using the /OUTPUT qualifier and in RDU by using the /OUTPUT
and /LIST qualifiers. The name is not truncated and includes any dollar signs
and underscores.

e The LIST FORM command in FDU now lists all field attributes, including
Must Fill and Response Required.

e Various errors in the Input and Output Mapping Tables have been corrected.

* You can now map signed numeric form fields to NL and NR record fields and
not get data type conversion errors from RDU. The lengths of the form and
record fields must be compatible.

For more information, see Chapter 4 of the VAX TDMS Request and
Programming Manual

e TDMS has a predefined set of run-time function keys that operators can use
to perform various operations on the screen such as moving from field to
field, refreshing the screen, and getting help. These predefined keys are
listed in Table 11-1 in the VAX TDMS Request and Programming Manual in
the chapter called Program Request Keys.

Xi

Xil

TDMS can now be used with VT200-series terminals set to VT200 mode. The
following function keys from the LK201 keyboard used by VT200-series ter-
minals are supported:

The F12 (BS) key performs the BACK SPACE key function.

The F13 (LF) key performs the LINE FEED key function.
- The HELP key performs the PF2 or HELP key function.

Information about these keys has been included where appropriate through-
out the documentation set.

Form Definition Utility (FDU) Commands 1

This chapter provides information for all the commands in the Form Definition

Utility (FDU). The command keywords are listed at the top of each page and are

in alphabetical order.

Each section contains the following categories, as applicable:

Format Provides the syntax for the command.

Prompts Shows the prompts for each command.
Command Parameters Explains each parameter.

Command Qualifiers Explains each qualifier and how to use it. Always

specify a qualifier following a command and its
parameters (at the end of a command line) unless
otherwise indicated.

Notes Provides information about using the command.

Examples Gives examples on using the command.

1.1 Common FDU Qualifier, /AUDIT

Many FDU commands let you use the optional qualifier /AUDIT. To avoid
repetition, this information is explained fully here and then mentioned in the
description of each command that uses it.

The /AUDIT qualifier stores audit text with the form definition. The forms of the
qualifier are:

/AUDIT

Includes the date and time you performed the specified command operation
on the form definition and the name of the utility (FDU). /AUDIT is the
default.

/NOAUDIT

Does not store audit text with the form definition. /AUDIT is the default.

/AUDIT = audit-string

1-2

Stores, with the form definition, an audit string that consists of one or more
single words, quoted strings, text from a file, or a combination of these three
items. The optional audit string can indicate, among other things, when the
form definition is created, accessed, or changed.

Each item in the audit string (and each line of text in a file) creates one line
of audit text. If the audit string is longer than one line, you must specify the
hyphen (-) continuation character as the last character on each line you are
continuing. When you include more than one item, enclose the list of items in
parentheses.

If you specify more than 64 lines of audit text, FDU issues a warning
message and truncates the audit text to 64 lines.

/AUDIT is the default.
/AUDIT =single-word

Stores a single word with the form definition. The word need not be enclosed
in quotation marks. If you specify a series of single words, enclose the words
in parentheses and separate them with commas, for example,

/AUDIT =(WORD1, WORD2, WORDS3).

/AUDIT = quoted-string

Stores the string with the form definition. The string can be a single line of
text between quotation marks. If you specify a series (up to 64 lines) of
quoted strings, enclose the strings in parentheses and separate them by
commas, for example, /AUDIT = (“first string”,“second string”,“third string”).

/AUDIT = @file-spec i

Stores, with the form definition, the text from the specified file or files. If you
specify more than one file, enclose each @file-spec in parentheses and
separate by commas. The audit text in the files need not be enclosed in
quotation marks. You can specify a total of up to 64 lines of text.

Use the standard VMS file specification. The default file type is .DAT.

Form Definition Utility (FDU) Commands

/AUDIT={ | single-word, quoted-string, @file-spec, ... |}

Stores, with the form definition, a combination of one or more of the following
items: a single word, text from a file, or a quoted string. The list of items
must be enclosed in parentheses and separated by commas.

FDU stores up to 64 lines of audit text. Each item (and each line of text in a
file) creates one line in the audit text.

Form Definition Utility (FDU) Commands 1-3

@file-spec

1.2 @file-spec Command
Executes a command file that includes FDU commands.

Format

@file-spec

Prompts
FDU>

$

Command Parameter

file-spec
The name of the file containing a command procedure. The default file type is

.COM.
Notes

The file can contain commands to process (CREATE, REPLACE, COPY,
MODIFY) a form definition as well as other FDU commands.

When FDU executes an indirect command file, it displays any output on
SYS$OUTPUT. FDU also displays error messages on SYSSERROR if
SYS$ERROR is different from SYS$OUTPUT.

FDU does not display the FDU commands it is executing from a command file
unless the FDU command SET VERIFY is in effect.

1-4 Form Definition Utility (FDU) Commands

@file-spec

Note

When you start FDU, it executes a command file pointed to by the
logical FDUINI (if such a file is present in your current default VMS
directory).

By default, the logical FDUINI points to the command file named
FDUINI.COM. You create this file and can place in it startup
commands that you wish FDU to execute each time you call the utility.
You can define FDUINI to point to any file you wish. If you name the
file something other than FDUINI.COM, define the logical FDUINI to
point to the new file.

Examples

FDU: EBPROCEDURE

Executes the commands in the file PROCEDURE.COM. For example, assume
that PROCEDURE.COM contains:

SHOW VERSION

LIST FORM THISWEEK_PAYROLL/OUTPUT=LCPAYROLLIJULY14.LIS
COPY FORM THISWEEK_PAYROLL LASTWEEK_PAYROLL

DELETE FORM THISWEEK_PAYROLL

EXIT

When you execute the command file, FDU:
o Displays the version of FDU on your terminal

e Writes a listing of the form definition to a file named JULY14.LIS in VMS
directory [PAYROLL]

Copies the form definition named THISWEEK _PAYROLL in your default
CDD directory to a new form definition named LASTWEEK _ PAYROLL

Deletes the form definition THISWEEK _ PAYROLL

Exits from FDU

Form Definition Utility (FDU) Commands 1-5

@file-spec

FDU automatically executes FDUINI.COM if it is present in your current default
directory. The file may contain commands such as:

SET LOG
SET VERIFY

1-6 Form Definition Utility (FDU) Commands

COPY FORM

1.3 COPY FORM Command

Copies a form definition from one location in the CDD to another location.

Format
COPY FORM original-form-path-name new-form-path-name
Command Qualifiers Defaults
/[NOJACL /ACL
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJLOG /NOLOG

Prompts

FDU>

$

Command Parameters

original-form-path-name
The CDD path name (given, relative, or full) of an existing form.

new-form-path-name

The CDD path name (given, relative, or full) of the new location in the CDD
to which the form is to be copied. The new name must not already exist.

Command Qualifiers

/ACL

Stores the form definition with a default CDD access control list (ACL). The
ACL can grant or deny access to the form definition based on information
contained in the list. For more information about the CDD access control list,
refer to the VAX Common Data Dictionary documentation set. /ACL is the
default.

Form Definition Utility (FDU) Commands 1-7

COPY FORM

/NOACL
Stores the form definition without an access control list. /ACL is the default.

/AUDIT

Stores audit text with the form definition. The standard default audit text
includes the date and time you copy the form definition and the name of the
utility (FDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the form is created, accessed, or changed.

If you specify more than 64 lines of audit text, FDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LOG

Displays a message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

/NOLOG
Displays no message on the terminal indicating that FDU has successfully

completed the operation. /NOLOG is the default.
Note

The original form definition remains unchanged and in the original place. The
new form definition may have the same given name but must not have the same
full path name. The content of the new form definition is the same as the original
except that the date and time stamp is updated.

Examples

FDU:> COPY FORM ACCOUNTING.LOGIN_FORM PAYROLL.LOGIN_FORM

Copies the form definition ACCOUNTING.LOGIN _FORM in your default CDD
directory to a form definition PAYROLL.LOGIN _FORM, also in your default
CDD directory. The form in ACCOUNTING.LOGIN _FORM remains unchanged.

1-8 Form Definition Utility (FDU) Commands

COPY FORM

FDU: COPY FORM CDD$TOP.EXAMPLES.EMPLOYEE_FORM EMPLOYEE_FORM

Copies the form definition in CDD$TOP.EXAMPLES.EMPLOYEE _FORM to a
form named EMPLOYEE _FORM in your default CDD directory. The form in
CDD$TOP.EXAMPLES.EMPLOYEE _FORM remains unchanged.

Form Definition Utility (FDU) Commands 1-9

CREATE FORM

1.4 CREATE FORM Command

Creates a new form definition in the CDD, either by using the TDMS form editor
to generate a form or by using an existing FMS form file.

Format
CREATE FORM form-path-name
Command Qualifiers Defaults
/[NOJACL /ACL
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/FORM_FILE =file-spec None
/FORM_FILE =file-spec/V1 None
/[NOILOG /NOLOG

Prompts

FDU >

$

Command Parameter

form-path-name

The CDD path name (given, relative, or full) of a form definition. The new
name must not already exist.

1-10 Form Definition Utility (FDU) Commands

CREATE FORM

Command Qualifiers

/ACL

Stores the form definition with a default CDD access control list. The ACL
can grant or deny access to the form definition based on information
contained in the list. For more information about the CDD access control list,
refer to the VAX Common Data Dictionary documentation set. /ACL is the
default. :

/NOACL
Stores the form definition without an access control list. /ACL is the default.

/AUDIT

Stores audit text with the form definition. The standard default audit text
includes the date and time you create the form definition and the name of the
utility (FDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the form is created, accessed, or changed.

If you specify more than 64 lines of audit text, FDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/FORM _FILE =file-spec

The name of the file, generated using VAX FMS V2, that contains the form
definition you want to store in the CDD. The default file type is .FRM. The
file must contain a valid form.

/FORM _FILE =file-spec/V1
The name of the file, generated using the VAX FMS V1 form editor (FED),
that contains the form definition you want to store in the CDD. The default
file type is .FRM. The file must contain a valid form.

/LOG

Displays a message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

Form Definition Utility (FDU) Commands 1-11

CREATE FORM

/INOLOG

Displays no message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

Notes

If you do not use the /FORM_FILE qualifier, the form editor creates a new
form. :

If you use the /FORM _FILE qualifier and the form definition includes any
nonsupported features, those features are removed when the form definition is
stored in the CDD, and FDU issues an informational message. When you use the
/FORM _FILE qualifier, FDU stores the form without entering the form editor.

You cannot issue the CREATE FORM command from a batch file if you attempt
to enter the form editor. If you issue the CREATE FORM command from a batch
file, you must include the /FORM _FILE qualifier.

An error message is displayed in your output file or device defined as
SYS$OUTPUT if you try to create a form that already exists in the CDD.

Examples

FDU> CREATE FORM FINANCE.LOGIN

Allows you to enter the form editor and define a new form that will be stored in
the previously nonexistent location FINANCE.LOGIN in your default CDD
directory.

FDU:> CREATE FORM CDD$TOP.PAYROLL.SALARY_FORM-
FDU:>_/AUDIT="Form for maintaining emplovee salarv information"

Allows you to enter the form editor to define a new form that will be stored in
CDD location CDD$TOP.PAYROLL.SALARY _FORM. When the form definition
is created and stored in the CDD, the specified audit string is stored with the
form definition.

FDU> CREATE FORM BILLING_FORM/AUDIT=(BTEXT1.,BTEXTZ,BTEXT3)

Allows you to enter the form editor to define a new form named
BILLING_FORM that will be stored in your default CDD directory. When the
form definition is created and stored in the CDD, the audit strings from the files
TEXT1.DAT, TEXT2.DAT, and TEXT3.DAT are stored with the form definition.

1-12 Form Definition Utility (FDU) Commands

CREATE FORM

FDU>» CREATE FORM ACCOUNTS_FORM/AUDIT=EBLJONESITEXTd

Allows you to enter the form editor to define a new form named

ACCOUNTS _FORM that will be stored in your default CDD directory. When
the form definition is created and stored in the CDD, the audit string from the
file TEXT4.DAT, located in directory JONES, is stored with the form definition.

Form Definition Utility (FDU) Commands 1-13

CTRL/C

1.5 CTRL/C Command

Cancels the current command but keeps you at FDU level.

Format

CTRL/C

Prompts
FDU>

%

Notes

Pressing CTRL/C at the FDU> prompt or at any point on the command line at
the FDU> prompt cancels the current command line.

Pressing CTRL/C at a prompt for required parameters cancels the outstanding
command.

Example

FDU> MODIFY FORM PAYROLL (CTRL/C
Cancel

#“FDU-E-CTRLCABORT s opPeration terminated with Control C
FDU:

FDU cancels the MODIFY FORM command, displays a message, and returns you
to the FDU> prompt.

1-14 Form Definition Utility (FDU) Commands

1.6 CTRL/Y Command

Causes an immediate exit from FDU.

Format

CTRL/Y

CTRL/Y

Prompts
FDU>

$

Note

Pressing CTRL/Y at any time causes an immediate exit from FDU, whether you
are at FDU command level or in the form editor. If logging is enabled, the log file
remains intact; however, it may not include the last command.

Example

FDU> CREATE (CTRLY

Interruprt

¢

FDU cancels the CREATE command, displays a message, and returns you to

DCL level.

Form Definition Utility (FDU) Commands

1-15

CTRL/Z

1.7 CTRL/Z Command

Causes FDU to stop accepting commands and to either return to DCL level or
continue processing the previous command stream.

Format

CTRL/Z

Prompts

FDU>

$

Notes

Pressing CTRL/Z at the FDU> prompt returns you to DCL level.

Pressing CTRL/Z after entering a valid command at FDU level causes the
command to be executed.

Pressing CTRL/Z while using the form editor results in an error.

Do not use CTRL/Z in either indirect command files or batch command files. In
these cases, FDU (or DCL) attempts to process CTRL/Z as a command and
returns an error message.

Examples

FDU> (CTRLZ
&

Entering CTRL/Z at FDU level returns you to DCL level.

FDU:> MODIFY FORM BILLING_FORM

When you press CTRL/Z, FDU stops taking instructions and checks the portion
of the command entered prior to the CTRL/Z for errors. In this case, because the
command is valid, FDU places BILLING _FORM in the form editor and displays
it on the terminal. When you leave the form editor, you return to DCL level.

1-16 Form Definition Utility (FDU) Commands

DELETE FORM

1.8 DELETE FORM Command
Deletes a form from the CDD.

Format

DELETE FORM form-path-name

Command Qualifiers Defaults

/[NOJCONFIRM /NOCONFIRM

/[NOJLOG /NOLOG
Prompts

FDU:

$

Command Parameter

form-path-name

The CDD path name (given, relative, or full) of an existing form definition.

Command Qualifiers

/CONFIRM

Instructs FDU to ask for confirmation before deleting the form definition.
/NOCONFIRM is the default.

/NOCONFIRM

Instructs FDU to delete the form definition without asking for confirmation.
/NOCONFIRM is the default.

/LOG

Displays a message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

Form Definition Utility (FDU) Commands 1-17

DELETE FORM

/NOLOG

Displays no message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

Note

If the form does not exist, FDU issues an error message and returns you to the
FDU> prompt or to DCL level. .

Examples

FDU>» DELETE FORM ACCOUNTING.LOGIN

Deletes the form ACCOUNTING.LOGIN in your default CDD directory.

FDU:> DELETE FORM CDD$TOP.PAYROLL.SALARY_FORM/CONFIRM
Delete form CDD$TOP.PAYROLL.SALARY_FORM (v or m)? ¥
FDU>

Asks you to confirm that you wish to delete the form definition SALARY _FORM
from the CDD directory CDD$TOP.PAYROLL; if you do, it deletes the form and
returns you to the FDU> prompt.

1-18 Form Definition Utility (FDU) Commands

EDIT

1.9 EDIT Command

Allows you to edit and resubmit the previous FDU command.

Format

EDIT

Prompts

FDU »

%

Notes

The EDIT command lets you edit, with a text editor, the last command that you
entered at FDU level; it does not give direct access to the form editor. To
understand how to use the form editor, see the CREATE FORM, MODIFY
FORM, and REPLACE FORM commands.

You can type the EDIT command as soon as you invoke FDU at either DCL level
or the FDU> prompt.

If you enter the EDIT command before typing an FDU command, FDU provides
an edit buffer, and you can enter FDU commands using the features of your
editor. You do not see the FDU> prompt or error messages as you enter the
commands.

When you issue the EDIT command, TDMS executes the system-defined logical
TDMSS$EDIT, which invokes the system command procedure
SYS$COMMON:[SYSEXE]TDMSEDIT.COM. That command procedure invokes
the EDT editor and your EDT startup file EDTINL.EDT, if any exists.

You can change the FDU command EDIT to invoke a personal command
procedure that invokes a particular editor or a particular set of editor startup
commands. To do so, define the process logical FDUSEDIT to call a command
procedure that you create, which in turn invokes the editor of your choice.

Form Definition Utility (FDU) Commands 1-19

EDIT

Example

FDU>» CREATE FORM ACCOUNTING_FORM/FORM_FILE=[LSMITH.FORMSIPAY.FRM
FDU» EDIT

In this sequence, the text editor is called and the previous command (CREATE
FORM ...) is placed in the edit buffer. You can then change the name of the form
file (for example, from PAY.FRM to PROJECT.FRM), and the new command is
submitted to FDU when you leave the text editor.

1-20 Form Definition Utility (FDU) Commands

EXIT

1.10 EXIT Command

Causes FDU to stop accepting commands and to either return to DCL level or
continue processing the previous command stream. It also causes an exit from a
command file.

Format

EXIT

Prompt

FDU>

Note
FDU exits from either the utility or the command file.

Examples
FDU> EXIT
$

FDU stops taking commands and returns to DCL level.

FDU:*EBPROCEDURE
SET DEFAULT CDD$TOP.EMPLOYEE
SET LOG
XIT

FDU>

FDU stops taking commands from an indirect command file and returns to the
FDU> prompt.

Form Definition Utility (FDU) Commands 1-21

HELP

1.11 HELP Command
Provides online help for FDU commands.

Format

HELP [topic [subtopic]]

Command Qualifier Default
/[NOJPROMPT /PROMPT
Prompts
FDU>

$

Command Parameters

topic
The FDU topic for which help is desired.

subtopic
The FDU parameters and qualifiers for which help is desired.

Command Qualifiers

/PROMPT

Prompts you for the topic and optionally, the subtopic for which you want
help. Unlike all other FDU commands, you specify the HELP command
qualifiers immediately after the command rather than at the end of the
command line. The default is /PROMPT.

/NOPROMPT

Lets you obtain help on an FDU command without being prompted. Unlike
all other FDU commands, you specify the HELP command qualifiers
immediately after the command rather than at the end of the command line.
The default is /PROMPT.

1-22 Form Definition Utility (FDU) Commands

HELP

Notes

The form editor has its own Help facility. For help while using the form editor,
press the HELP key (PF2 or F15).

When you issue the HELP command, you can obtain help on all the FDU
commands, their qualifiers, and other FDU topics. To obtain a display of all the
information under help in FDU, enter the following:

FDU> HELP *...

To obtain a hardcopy of the help information, you must assign SYS$OUTPUT at
DCL level to be a line printer or other printing device. For example:

$ DEFINE SY¥S$0OUTPUT LP:
$ FDU
FDU> HELP %...

The first command assigns the line printer to be SYS$OUTPUT; the second calls
FDU; and the third requests a display of all help in FDU. The output is queued
to the system printer.

To obtain a display of all TDMS help at DCL level, type the following:

$ HELP TDMS...
Example

FDU> HELP

Information available:

@ COPY CREATE DELETE EDIT EXIT
form-editor HELP LIST MODIFY REPLACE SAVE
SET SHOMW specify

Toric? (CTRLZ

FDU>

Enters help at FDU level.

Form Definition Utility (FDU) Commands 1-23

LIST FORM

1.12 LIST FORM Command
Provides a listing that shows background text, field data, and attribute
information about the form definition. You can display the listing on a terminal

or direct it to a file or line printer.

Format

LIST FORM form-path-name

Command Qualifiers Defaults
/OUTPUT] =file-spec] /OUTPUT =SYS$SOUTPUT
/[NOJPRINT /NOPRINT

Prompts

FDU:>

%

Command Parameter

form-path-name
The CDD path name (given, relative, or full) of an existing form definition.

Command Qualifiers

/OUTPUT] = file-spec]
Lists form definition information in a file with the specified file name.

If you do not specify a name following the /OUTPUT qualifier, FDU takes
the given name of the full form definition path name up to 39 characters
including dollar signs ($) and underscores (_). If that results in a legal file
name, then FDU uses that file name with a file type .LIS. If not, FDU uses
the file name FDULIS.LIS.

If you do specify a name following the /OUTPUT qualifier, then that name
can be any standard VMS file name up to 39 characters long. An illegal file
name will cause the command to fail.

1-24 Form Definition Utility (FDU) Commands

LIST FORM

The default is /OUTPUT =SYS$OUTPUT.

/PRINT

Prints a listing of the form definition on the system printer. If you use the
/PRINT qualifier without the /OUTPUT qualifier, FDU creates a temporary
listing file and deletes it after the print operation is completed. /NOPRINT is
the default.

/NOPRINT
Does not print a listing of the form definition. /NOPRINT is the default.
Notes

If you do not use the /OUTPUT or the /PRINT qualifier, FDU writes the form
listing to SYS$OUTPUT but creates no permanent listing file, unless
SYS$OUTPUT is defined as a permanent file.

The information provided by the LIST FORM command is particularly useful
when writing requests and records.

Examples

FDU> LIST FORM ACCOUNTING.PAYROLL

Lists all the information about the form definition ACCOUNTING.PAYROLL on
your terminal (SYS$OUTPUT).

FDU» LIST FORM ACCOUNTING.PAYROLL/OUTPUT

Lists all information about the form definition ACCOUNTING.PAYROLL in a file
named PAYROLL.LIS in your VMS default directory.

FDU> LIST FORM SALARY_FORM/OUTPUT=FORM1G.XYZ/PRINT

Lists the information about form definition SALARY _FORM in a file named
FORM16.XYZ and prints the information on the system printer.

Form Definition Utility (FDU) Commands 1-25

MODIFY FORM

1.13 MODIFY FORM Command

Allows you to edit an existing form definition with the form editor.

Format
MODIFY FORM form-path-name
Command Qualifiers Defaults
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJLOG /NOLOG
Prompts
FDU>

$

Command Parameter

form

-path-name
The CDD path name (given, relative, or full) of an existing form definition.

Command Qualifiers

/AUDIT

1-26

Stores audit text with the form definition. The standard default audit text
includes the date and time you modify the form definition and the name of
the utility (FDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the form is created, accessed, or changed.

If you specify more than 64 lines of audit text, FDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

Form Definition Utility (FDU) Commands

MODIFY FORM

/LOG

Displays a message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

/NOLOG

Displays no message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

Notes

FDU places an existing form definition in the form editor. When you modify and
save the form definition, the original form definition is deleted. If you choose not
to save the modified form definition when you leave the form editor, the original
remains in the CDD.

You cannot issue the MODIFY FORM command from a batch file.
Example

FDU> MODIFY FORM PAYROLL.LOGIN_FORM

Places the form definition PAYROLL.LOGIN _FORM, which is in your default
CDD directory, in the form editor.

Form Definition Utility (FDU) Commands 1-27

REPLACE FORM

1.14 REPLACE FORM Command

Replaces a form definition in the CDD with a new form definition.

Format
REPLACE FORM form-path-name
Command Qualifiers Defaults
/[NOJACL /ACL
/[NO]JAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJCREATE /CREATE
/FORM_FILE =file-spec None
/FORM_FILE =file-spec/V1 None
/[NOJLOG /NOLOG

Prompts

FDU>

$

Command Parameter

form-path-name
The CDD path name (given, relative, or full) of a form definition.

Command Qualifiers

/ACL

Stores the form definition with a default CDD access control list. The ACL
can grant or deny access to the form definition based on information
contained in the list. For more information about the CDD access control list,
refer to the VAX Common Data Dictionary documentation set.

1-28 Form Definition Utility (FDU) Commands

REPLACE FORM

/ACL applies only when the REPLACE FORM command defaults to the
CREATE FORM command. /ACL is the default.

/NOACL
Stores the form definition without an access control list. /ACL is the default.

/AUDIT

Stores audit text with the form definition. The standard default audit text
includes the date and time you replace the form definition and the name of
the utility (FDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the form is created, accessed, or changed.

If you specify more than 64 lines of audit text, FDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/CREATE

Enables FDU to treat the REPLACE FORM command as though it were the
CREATE FORM command when it cannot find a form definition with the
specified name in the CDD. /CREATE is the default.

/NOCREATE

Prevents FDU from treating the REPLACE FORM command as though it
were the CREATE FORM command. Instead of creating a new form
definition, FDU issues an error message and returns you to the FDU>
prompt. /CREATE is the default.

/FORM _FILE =file-spec

The name of the file, generated using VAX FMS V2, that contains the form
definition you want to store in the CDD. The default file type is .FRM. The
file must contain a valid form.

/FORM _FILE =file-spec/V1

The name of the file, generated using the VAX FMS V1 form editor (FED),
that contains the form definition you want to store in the CDD. The default
file type is .FRM. The file must contain a valid form.

Form Definition Utility (FDU) Commands 1-29

REPLACE FORM

/LOG

Displays a message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

/NOLOG

Displays no message on the terminal indicating that FDU has successfully
completed the operation. /NOLOG is the default.

Notes

If a form definition of the name you specify does not already exist in the CDD,
FDU treats the REPLACE FORM command as if it were the CREATE FORM
command. If you want to be sure that you are replacing an existing form
definition, use the /NOCREATE qualifier.

If you do not use the /FORM _FILE qualifier, FDU places you in the form editor
buffer to create an entirely new form definition. No existing information is placed
in the form editor buffer. If you save the new form definition in the Exit phase of
the form editor, the original form definition is deleted. If you do not save the new
form definition when you leave the form editor, the original form definition
remains in the CDD.

You cannot issue the REPLACE FORM command from a batch file if you attempt
to enter the form editor. If you issue the REPLACE FORM command from a
batch file, you must include the /FORM_FILE qualifier.

When you use the /FORM _FILE qualifier, FDU stores the form without
entering the form editor. If you use the /FORM _FILE qualifier and the form
definition includes any features that TDMS does not support, those features are
removed when the form definition is stored in the CDD. FDU issues an
informational message indicating that the nonsupported features have been
removed.

1-30 Form Definition Utility (FDU) Commands

REPLACE FORM

Example

FDU. REPLACE FORM ACCOUNTING.LOGIN

Calls the form editor. Because you are replacing a form, no existing information
is placed in the form editor buffer. If you choose to save the new form definition
(in the Exit phase of the form editor), it is stored in the CDD object
ACCOUNTING.LOGIN. If you exit from the form editor without saving the form
definition, the original form definition in ACCOUNTING.LOGIN remains

unchanged.

Form Definition Utility (FDU) Commands 1-31

SAVE

1.15 SAVE Command
Saves in a file the most recent command you entered in FDU.

Format

SAVE file-spec

Prompt

FDU:x

Command Parameter

file-spec
The name of the file in which you want to save the last FDU command. You
may use any standard VMS file specification up to 39 characters in length. If
you do not specify a directory, FDU files it in the directory in which you are
currently working. The default file type is .SAV.

Example

FDU: CREATE FORM TESTFORM._FORM

+

(Form displaved here)

.

FDU> SAVE

Save to file : TESTFORM.TXT

ZFDU-I-SAVETOFIL, Previous command SAVEd to file DUA1:[JONES.WORKITESTFORM.TXT
FDU» EXIT

¢ TY TESTFORM.TXT
CREATE FORM TESTFORM_FORM

FDU prompts you for a file name (if you do not specify it following the SAVE
command). It writes the CREATE FORM command to the file you specify,
TESTFORM.TXT, in the directory [JONES.WORK]. The example shows the file
contents that FDU saves.

1-32 Form Definition Utility (FDU) Commands

SET DEFAULT

1.16 SET DEFAULT Command

Sets FDU to point to a CDD directory for as long as you are in FDU or until you
set FDU to point to a new directory.

Format

SET DEFAULT CDD-directory-path-name

Prompt

FDU>

Command Parameter
CDD-directory-path-name

The CDD path name (given, relative, or full) of the default CDD directory.
Notes

Once you specify a default CDD directory, all path names are interpreted as
starting at that level. You can override this default directory setting by specifying
the full path name beginning with CDD$TOP.

The CDD default directory setting ends when you exit FDU. You must reset the
CDD default directory when you reenter FDU.

If you want to create a CDD directory setting that exists every time you enter
FDU or until you reset it, you can either:

e Enter the SET DEFAULT command in your startup command file
FDUINI.COM. (See the @file-spec command.)

e Use the DCL DEFINE command to define the logical name CDD$DEFAULT in
your login command file. (See Chapter 2 of the VAX TDMS Forms Manual.)

Form Definition Utility (FDU) Commands 1-33

SET DEFAULT

Examples

FDU> SET DEFAULT CDD$TOP.PERSONNEL.ACCOUNTING.SMITH

Sets the CDD default directory to
CDD$TOP.PERSONNEL.ACCOUNTING.SMITH

$ EDIT FDUINI.COM .
SET DEFAULT CDD$TOP.YOUR_HOME_DIRECTORY
*EXIT
$ FDU
FDU> SHOW DEFAULT
current CDD default path is ‘CDD$TOP.YOUR_HOME_DIRECTORY '

Places the SET DEFAULT command in the startup command file that is
executed each time you invoke FDU.

1-34 Form Definition Utility (FDU) Commands

SET [NOJLOG

1.17 SET [NOJLOG Command
Creates a log and writes further output to a default or specified log file.

Format

SET [NOJLOG [file-spec]

Prompt

FDU*

Command Parameter

file-spec
The name of the file to which you want FDU to log. Use the standard VMS
file specification.

If you specify the name previously given in the current FDU session, FDU
creates a new version of that log file. If you specify a different name, FDU
closes the first log file and opens the new one.

(If you do not specify a file, FDU logs to a default file specification as
described in the Notes section.)

Notes

FDU logs the following data to the log file:

e An exact copy of each of the commands you enter or a copy of the commands
executed by FDU from an indirect command file (if the indirect command file is
executed in Set Verify mode)

e FDU messages preceded by an exclamation point (!) comment character

You can issue the SET LOG command without specifying a file name. FDU
creates a default file in one of three ways:

e FDU creates a default log file by translating the logical name FDULOG.

e If the system does not have an equivalent name for FDULOG, FDU uses the
file name FDULOG.LOG.

Form Definition Utility (FDU) Commands 1-35

SET [NOJLOG

e If a current log file already exists when you issue the SET LOG command
without naming a file, FDU issues a warning and continues to use the current
log file.

The SET LOG command remains in effect for the entire session. If you exit FDU
and reenter, you must issue the SET LOG command again. FDU opens a new log
file.

The SET NOLOG command deactivates logging in FDU. SET NOLOG is the
default. If you want SET LOG to be the default, you can include a SET LOG
command in your FDUINI.COM startup command file.

Examples

FDU> SET LOG [SMITH.FORMSIFORMLOG

Enables logging and writes information about the commands issued and system
responses to the file FORMLOG.LOG in the VMS directory [SMITH.FORMS].
(The default file type is .LOG)

FDU> SET NOLOG

Turns off logging. It is unnecessary to identify the file to which the information
was logged.

$ ASSIGN [SMITH.FORMSIFORMLOG FDULOG
$ RUN SYS$SYSTEM:FDU
FDU> SET LOG

Assigns the logical name FDULOG to the file [SMITH.FORMS]FORMLOG.LOG,
enters FDU, and enables logging. The log file is
[SMITH.FORMSJFORMLOG.LOG.

1-36 Form Definition Utility (FDU) Commands

SET [NO]JVERIFY

1.18 SET [NO]JVERIFY Command

Enables the display (on a terminal) or printing of the contents of FDU command
procedures.

Format

SET [NOJVERIFY

Prompt

FDU>

Notes
By default, FDU is set to:

e Noverify in Interactive mode. When FDU executes commands from an indirect
command file, it does not display those commands to SYS$OUTPUT.

e Verify in Batch mode. In Batch mode, FDU writes the command it is executing
to the batch log file.

Note that the FDU default can be changed by a SET [NOJVERIFY command in
either the command procedure being invoked or your FDUINI.COM file.

Examples

FDU> SET VERIFY
FDU» @PROCEDURE

As FDU executes the commands in the file PROCEDURE.COM, the commands
are displayed on the terminal (or SYS$OUTPUT).

FDU> SET NOVERIFY
FDU:> BACCTREQ

Places FDU in Noverify mode. When you pass the command file ACCTREQ.COM
to FDU, it does not display the commands it executes from that file.

Form Definition Utility (FDU) Commands 1-37

SHOW DEFAULT

1.19 SHOW DEFAULT Command
Displays the current CDD default directory.

Format

SHOW DEFAULT

Prompts
FDU>

%

Note

Shows the current CDD default directory. You can define the default in FDU
using the SET DEFAULT command or, at DCL level using the DEFINE
command, to define CDD$DEFAULT to point to the desired CDD directory.

Example

FDU> SHOW DEFAULT
current CDD default Ppath is ‘CDD$TOP.PERSONNEL‘
FDU >

Indicates that the current default directory setting is CDD$TOP.PERSONNEL.
When you process (create, list, etc.) form definitions using the given name or a
relative path name, FDU looks for or stores the definitions in
CDD$TOP.PERSONNEL.

1-38 Form Definition Utility (FDU) Commands

SHOW LOG

1.20 SHOW LOG Command
Displays information about the current logging status of FDU.

Format

SHOW LOG

Prompt

FDU>

Note

The SHOW LOG command tells whether logging is taking place, and, if so, the
name of the file to which the log is written. If logging is not taking place, FDU
indicates that logging is not taking place to FDULOG.

Examples

FDU> SHOW LOG
not logding to file FDULOG

FDU indicates no logging is taking place.

FDU> SET LOG
FDU> SHOW LOG

logging to file DBA1:[JONESIFDULOG.LOG1

FDU

FDU indicates it is logging to default FDULOG.LOG in the current VMS
directory.

Form Definition Utility (FDU) Commands 1-39

SHOW VERSION

1.21 SHOW VERSION Command

Displays the current version of FDU.

Format

SHOW VERSION

Prompts
T
$

Example

FDU> SHOW VERSION
UAX FDU V1.6-0
FDU

FDU shows the version of FDU.

1-40 Form Definition Utility (FDU) Commands

Request Definition Utility (RDU) Commands 2

This chapter provides complete information for all the commands in the Request

Definition Utility (RDU). The command keywords are listed at the top of each
page and are in alphabetical order.

Each section contains the following categories, as applicable:

Format Provides the syntax for the command.

Prompts Shows the prompts for each command.
Command Parameters Explains each parameter.

Command Qualifiers Explains each qualifier and how to use it. Always

specify a qualifier following a command and its
parameters (at the end of a command line) unless
otherwise indicated.

Note Provides information about using the command.

Examples Gives examples on using the command.

2.1 Common RDU Qualifier, /AUDIT

Many RDU commands allow you to use the optional qualifier /AUDIT. To avoid

repetition, the qualifier is explained fully here and then mentioned in the
description of each command that uses it.

The /AUDIT qualifier stores audit text with the request or request library
definition. The forms of the qualifier are:

/AUDIT

The standard default audit text includes the date and time you perform the
specified operation on the request or request library definition and the name
of the utility (RDU). /AUDIT is the default.

/NOAUDIT

Does not store audit text with the request or request library definition.
/AUDIT is the default.

/AUDIT = audit-string

Stores, with the request or request library definition, an audit string that
consists of one or more single words, one or more quoted strings, text from a
file, or a combination of these three items. The optional audit string can
indicate, among other things, when the request or request library definition
is created, accessed, or changed.

Each item in the audit string (and each line of text in a file) creates one line
of audit text. If the audit string is longer than one line, you must specify the
hyphen (-) continuation character as the last character on each line you are
continuing. When you include more than one item, enclose the list of items in
parentheses.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

/AUDIT is the default.
/AUDIT = single-word

Stores a single word with the request or request library definition. The word
need not be enclosed in quotation marks. If you specify a series of single
words, enclose the words in parentheses and separate them with commas, for
example, /AUDIT=(WORD1, WORD2, WORD?3).

/AUDIT = quoted-string

Stores the string with the request or request library definition. The string
can be a single line of text between quotation marks. If you specify a series
(up to 64 lines) of quoted strings, enclose the strings in parentheses and

separate them by commas, for example, /AUDIT = (“first string”,“second
string”,“third string”).

2-2 Request Definition Utility (RDU) Commands

/AUDIT = @file-spec

Stores, with the request or request library definition, the text from the
specified file or files. If you specify more than one file, enclose each @file-spec
parameter in parentheses and separate by commas. The audit text in the
files need not be enclosed in quotation marks. You can specify a total of up to
64 lines of text.

Use the standard VMS file specification. The default file type is .DAT.
/AUDIT ={ single-word, quoted-string, @file-spec, ... | }

Stores, with the request or request library definition, a combination of one or
more of the following items: a single word, text from a file, or a quoted string.
The list of items must be enclosed in parentheses and separated by commas.

RDU stores up to 64 lines of audit text. Each item (and each line of text in a
file) creates one line in the audit text.

Request Definition Utility (RDU) Commands 2-3

@file-spec

2.2 (@file-spec Command

Executes the specified indirect command file that contains RDU commands and
associated request or request library definition instructions.

Format

(@file-spec

Prompts
RDU >

%

Command Parameter

file-spec

The name of a command file for RDU to execute. Use the standard VMS file
specification format. If you do not specify a file type, RDU looks for a file
with a .COM file type, which is the default.

Notes

The file can contain commands to process a request or request library definition
(CREATE, REPLACE, COPY, MODIFY) as well as other RDU commands.

When RDU executes an indirect command file, it displays any output on
SYS$OUTPUT. RDU also displays error messages on SYS$SERROR if
SYS$SERROR is different from SYS$OUTPUT.

RDU does not display the RDU commands it is executing from a command file
unless the RDU command SET VERIFY is in effect.

2-4 Request Definition Utility (RDU) Commands

@file-spec

Note

When you start RDU, it executes a command file pointed to by the
logical name RDUINI (if such a file is present in your current default
VMS directory).

By default, the logical name RDUINTI points to the command file
named RDUINI.COM. You create this file and can place in it startup
commands that you wish RDU to execute each time you call the utility.
You can define RDUINI to point to any file you wish. If you name the
file something other than RDUINI.COM, define the logical name
RDUINI to point to the new file.

Examples

RDU> BACCTAPP

RDU executes the file ACCTAPP.COM, which can contain, for instance, the
commands and request text to create several requests associated with a TDMS
accounting application.

$ RDU BACCTAPP

You can type the @file-spec command at DCL level.

$ RDU
RDU >

RDU automatically executes RDUINI.COM if it is present in your current default
directory. The file may contain commands such as:

SET NOVALIDATE
SET LOG
SET VERIFY

Request Definition Utility (RDU) Commands 2-5

BUILD LIBRARY

2.3 BUILD LIBRARY Command

Creates a request library file that contains the requests and the form and record
information necessary to execute these requests.

Format

BUILD LIBRARY request-library-path-name [request-library-file]

Command Qualifiers Defaults
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJLIST /NOLIST
/LIST =file-spec /NOLIST
/[NOILOG /NOLOG
/[NOJPRINT /NOPRINT

Prompts

RDU *

$

Command Parameters

request-library-path-name

The CDD path name (given, relative, or full) of the request library definition
that contains the names of the requests to be included in the request library

file.

request-library-file

The VMS file that RDU builds to contain the requests and the form and
record information necessary to execute these requests. Use the standard
VMS file specification format. If you assign no file type, RDU supplies the

.RLB file type.

2-6 Request Definition Utility (RDU) Commands

BUILD LIBRARY

Specify the request library file name only if the CDD request library
definition does not contain a FILE IS instruction.

If you specify both the request-library-file parameter and a FILE IS
instruction in a request library definition, the request-library-file parameter
takes precedence.

Command Qualifiers

/AUDIT

Stores audit text with the request library definition. The standard default
audit text includes the date and time you build the request library definition
and the name of the utility (RDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request library definition is created,
accessed, or changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LIST
Creates a listing file in your default or specified VMS directory that contains:

e Information about the build operation

e Incorrect request instructions and warning or error level messages
resulting from the build operation

When the /LIST qualifier is used with the /LOG qualifier, the listing file
contains information and warning level messages indicating the %ALL
mappings that were created and those that were not created and why. (An A
in the left column of a listing line indicates that the line gives information
about a %ALL mapping.)

If you do not specify a name following the /LIST qualifier, RDU takes the
given name of the full request library definition path name up to 39
characters including dollar signs ($) and underscores (_). If that results in a
legal file name, then RDU uses that file name with a file type of .LIS. If not,
RDU uses the file name RDULIS.LIS.

Request Definition Utility (RDU) Commands ~ 2-7

BUILD LIBRARY

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/NOLIST

Specifies that no listing ﬁleibe created.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/LIST =file-spec

Creates a listing file with the given file specification. You may use any
standard VMS file name up to 39 characters in length. An illegal file name
will cause the command to fail.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/LOG

2-8

Displays on the terminal screen messages that indicate:

e The request names and the form and record definition names that are
referred to in the request library definition

o Whether or not the operation successfully completed

In addition, if the request was created with the /NOSTORE qualifier, or if
the request changed since the request binary was created, the following
messages are displayed:

o The mappings that are correct for all the %#ALL mapping instructions in
the request

e The mappings that are incorrect for all the %ALL mapping instructions in
the request

No matter what the /LOG setting, RDU displays explicit mappings that are
incorrect and the associated error messages. RDU does not generate
messages about the individual explicit mappings that are correct.

/NOLOG is the default.

Request Definition Utility (RDU) Commands

BUILD LIBRARY

/NOLOG
Displays no messages on the terminal indicating RDU has successfully
completed the operation. Also does not display information about request
names and form and record definition names or mapping messages. /NOLOG
is the default.

/PRINT

Prints a listing of the request library definition on the system printer. If not
used with the /LIST qualifier, /PRINT creates a temporary listing file and
deletes it after printing. /NOPRINT is the default.

/NOPRINT

Does not print a listing of the request library definition on the system
printer. /NOPRINT is the default.

Notes

If the request has an associated request binary structure, RDU checks that any
related forms and records have not changed. If they have not changed, the
request binary structure is written to the request library file.

If the request does not have an associated request binary structure, or if any
related forms or records have changed, RDU builds the request binary structure
and writes it to the request library file.

RDU does not build a request library file if:
e The requests named in the request library definition are not in the CDD.

e You did not specify a request library file name.

The form names and record names referred to in the requests are not in the
CDD.

The form field names explicitly specified in the requests do not match the form
field names in the CDD form definitions.

o The record field names explicitly specified in the requests do not match the
record field names in the CDD record definitions.

Request Definition Utility (RDU) Commands 2-9

BUILD LIBRARY

e The explicit mappings in the requests are incorrect. The mappings are
incorrect if:

- The data types and lengths of fields you map to each other are not
compatible

- The structures of the form and record fields you map are not compatible

In the case of incorrect %ALL mappings or field references, RDU builds the
request library file unless all the mappings implied by a %ALL instruction are
incorrect.

If the BUILD LIBRARY command fails, RDU:

e Returns an error message to tell you which reference or mapping is incorrect

e Returns you to the RDU> prompt (or the DCL prompt if you entered the
BUILD LIBRARY command at DCL level)

e Does not attempt to build a request library file
You must correct mappings or references before a BUILD command can succeed.
Examples

RDU> BUILD LIBRARY CDD$TOP.SAMPLE.EMPLOYEE_LIBRARY

Builds a request library file using the requests listed in the CDD request library
definition EMPLOYEE _ LIBRARY. This request library is in the CDD directory
CDD$TOP.SAMPLE.

The name of the request library file is not shown. It is contained in the CDD
request library.

RDU BUILD LIBRARY SAMPLE.EMPLOYEE_LIBRARY EMPLOYEE.RLB

Builds a request library file using the requests named in the CDD request library
EMPLOYEE _LIBRARY.

The request library file, EMPLOYEE.RLB, is specified as a parameter to the
BUILD LIBRARY command.

2-10 Request Definition Utility (RDU) Commands

BUILD LIBRARY

$ RDU BUILD LIBRARY PERSONNEL_LIB PERSON.RLB/LOG

Builds a request library file, PERSON.RLB, and displays a success level message
indicating the library file has been built and shows the mappings RDU placed in
the file. Note that the command is entered at DCL level.

Request Definition Utility (RDU) Commands 2-11

COPY LIBRARY

2.4 COPY LIBRARY Command

Copies a request library definition from one location in the CDD to another

location.

Format

COPY LIBRARY original-request-library-path-name
new-request-library-path-name

Command Qualifiers Defaults
/[NOJACL /ACL
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/INOJLOG /NOLOG
Prompts
RDU >

$

Command Parameters

original-request-library-path-name

The CDD path name (given, relative, or full) of an existing request library

definition.

new-request-library-path-name

The CDD path name (given, relative, or full) of the new location in the CDD
to which RDU is copying the request library definition. The new name must

not already exist.

2-12 Request Definition Utility (RDU) Commands

COPY LIBRARY

Command Qualifiers

/ACL

Stores the request library definition with a default CDD access control list
(ACL). The ACL can grant or deny access to the request library definition
based on information contained in the list. For more information about the
CDD access control list, refer to the VAX Common Data Dictionary
documentation set. /ACL is the default.

/NOACL

Stores the request library definition without an access control list. /ACL is
the default.

/AUDIT

Stores audit text with the request library definition. The standard default
audit text includes the date and time you copy the request library definition
and the name of the utility (RDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request library definition is created,
accessed, or changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LOG

Displays a message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

/NOLOG

Displays no message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

Request Definition Utility (RDU) Commands 2-13

COPY LIBRARY

Note

The original request library definition remains unchanged and in the original
place. The new request library definition may have the same given name but
must not have the same full path name. The content of the new request library
definition is the same as the original except that the date and time stamp is
updated.

Examples

RDU> COPY LIBRARY EMPLOYEE_LIBRARY -
RDU>_CDD$TOP.ACCOUNTING.PERSONNEL .EMPLOYEE_LIBRARY

Copies the request library definition EMPLOYEE _ LIBRARY from your default
CDD directory to the CDD directory CDD$TOP.ACCOUNTING.PERSONNEL.
The given names of both request library definitions remain the same.

RDU> COPY LIBRARY CDD$TOP.SAMPLE.EMPLOYEE_BASIC -
RDU:>_. CDD$TOP.PERSONNEL.EMPLOYEE_BASIC

Copies the request library definition EMPLOYEE _ BASIC from
CDD$TOP.SAMPLE to directory CDD$TOP.PERSONNEL. The given names
remain the same.

$ RDU COPY LIBRARY PERSONNEL _ADD_LIBRARY -
$_ PERSONNEL_CHANGE_LIBRARY

Copies the request library definition PERSONNEL _ADD__ LIBRARY to the new
library definition PERSONNEL _ CHANGE _LIBRARY. Both library definitions
are in the same CDD directory. The given names are different. Note that you
must type the symbol RDU to enter the COPY LIBRARY command at DCL level.

214 Request Definition Utility (RDU) Commands

2.5 COPY REQUEST Command

COPY REQUEST

Copies a request from one location in the CDD to another location.

Format

COPY REQUEST original-request-path-name new-request-path-name

Command Qualifiers Defaults
/[NOJACL /ACL
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOILOG /NOLOG
Prompts
RDU >

%

Command Parameters

original-request-path-name

The CDD path name (given, relative, or full) of an existing request.

new-request-path-name

The path name (given, relative, or full) of the new location in the CDD to
which RDU is copying the request. The new name must not already exist.

Command Qualifiers

/ACL

Stores the request with a default CDD access control list. The ACL can grant
or deny access to the request based on information contained in the list. For
more information about the CDD access control list, refer to the VAX
Common Data Dictionary documentation set. /ACL is the default.

Request Definition Utility (RDU) Commands 2-15

COPY REQUEST

/NOACL
Stores the request without an access control list. /ACL is the default.

/AUDIT

Stores audit text with the request. The standard default audit text includes
the date and time you copy the request and the name of the utility (RDU).
/AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request is created, accessed, or
changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LOG

Displays a message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

/NOLOG

Displays no message on the terminal indicating that RDU has successfully
completed the operation.

Note

The original request remains unchanged and in the original place. The new
request can have the same given name but must not have the same full path
name. The content of the new request is the same as the original except that the
date and time stamp is updated. Any associated request binary structure is also
copied.

Examples

rRDU> COPY REQUEST EMPLOYEE_REQUEST -
RDU>_ CDD$TOP.ACCOUNTING.PERSONNEL.EMPLOYEE_REQUEST

Copies the request EMPLOYEE _REQUEST from your default CDD directory to
the CDD directory CDD$TOP. ACCOUNTING.PERSONNEL. The given name of
both requests is the same.

2-16 Request Definition Utility (RDU) Commands

COPY REQUEST

RDU> COPY REQUEST CDD$TOP.SAMPLE.EMPLOYEE_BASIC -
RDU>_ CDD$TOP.PERSONNEL.EMPLOYEE_BASIC

Copies the request EMPLOYEE _BASIC from the CDD$TOP.SAMPLE CDD
directory to the CDD$TOP.PERSONNEL CDD directory. The given names of
both requests are the same.

$ RDU COPY REQUEST PERSONNEL_ADD_REQUEST -
$_ PERSONNEL _CHANGE _REQUEST

Copies the request PERSONNEL_ADD_ REQUEST to the request
PERSONNEL _ CHANGE _REQUEST in the same CDD directory. Note that you
must type the symbol RDU when you enter RDU commands at DCL level.

Request Definition Utility (RDU) Commands 217

CREATE LIBRARY

2.6 CREATE LIBRARY Command

Allows you to enter request library definition text in RDU and, if it is error-free,
stores the request library definition in the CDD.

Format
CREATE LIBRARY request-library-path-name [file-spec]
Command Qualifiers Defaults
/INOJACL /ACL
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJLIST /NOLIST
/LIST =file-spec /NOLIST
/[NOJLOG /NOLOG
/[INOJPRINT /NOPRINT

Prompts

RDU

$

Command Parameters

request-library-path-name
The CDD path name (given, relative, or full) of the request library definition
that you want to create.

file-spec

The text file containing the request library definition text that you pass to
RDU to check and store in the CDD. If you do not specify a file type, RDU
looks for the default file type .LDF.

2-18 Request Definition Utility (RDU) Commands

CREATE LIBRARY

If you do not specify a file-spec parameter, RDU expects you to enter the
request library definition text from the default file or device defined as
SYS$INPUT.

e In Interactive mode, the default is the terminal. You enter the text at the
RDUDFN> prompt.

e In Batch mode, the default is the current command stream.

Command Qualifiers

/ACL

Stores the request library definition with a default CDD access control list.
The ACL can grant or deny access to the request library definition based on
information contained in the list. For more information about the CDD access
control list, refer to the VAX Common Data Dictionary documentation set.
/ACL is the default.

/NOACL
Stores the request library definition without an aecess control list. /ACL is
the default.

/AUDIT

Stores audit text with the request library definition. The standard default
audit text includes the date and time you create the request library definition
and the name of the utility (RDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request library definition is created,
accessed, or changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LIST

Creates a listing file in your default or specified VMS directory. The listing
file contains the request library definition text and error messages generated
by RDU.

Request Definition Utility (RDU) Commands 2-19

CREATE LIBRARY

If you do not specify a name following the /LIST qualifier, RDU takes the
given name of the full request library definition path name up to 39
characters including dollar signs ($) and underscores (__). If that results in a
legal file name, then RDU uses that file name with a file type of .LIS. If not,
RDU uses the file name RDULIS.LIS.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/NOLIST
Specifies that no listing file be created. /LIST is the default in Batch mode;
/NOLIST is the default in Interactive mode.

/LIST =file-spec

Creates a listing file in your default or specified VMS directory with the
given file specification. You may use any standard VMS file name up to 39
characters in length. An illegal file name will cause the command to fail.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/LOG
Displays a message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

/NOLOG
Displays no message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

/PRINT
Prints a listing of the request library definition on the system printer. If not
used with the /LIST qualifier, /PRINT creates a temporary listing file and
deletes it after printing. /NOPRINT is the default.

/NOPRINT

Does not print a listing of the request library definition on the system
printer. /NOPRINT is the default.

2-20 Request Definition Utility (RDU) Commands

CREATE LIBRARY

Notes
You can enter the request library definition text in one of two ways:
e Type it directly into RDU following the CREATE LIBRARY command.

e Type it into a text or command file and pass the file to RDU either at DCL
level or at the RDU> prompt.

RDU does not create the request library definition in the CDD if:

e The CDD already contains a request library definition or other CDD object
with the same path name

e RDU is in Validate mode and the request library definition specifies requests
that are not in the CDD

¢ RDU finds syntax errors in the request library definition text

Instead, after checking the request library definition text and writing any errors
to SYS$OUTPUT, RDU returns to the RDU> prompt (or the DCL prompt if the
command was entered at DCL level).

If RDU is in Novalidate mode, it creates the request library definition without
checking for the requests at the CDD locations you specify.

Examples

RDU> CREATE LIBRARY CDD$TOP.EMPLOYEE_DIR.PERSONNEL_EMFLOYEE

Creates the request library definition PERSONNEL _ EMPLOYEE in the CDD
directory CDD$TOP.EMPLOYEE _DIR.

RDU - CREATE LIBRARY
COMPONENT-NAME: CDD$TOP.SAMPLE_DIR.PERSONNEL_EMPLOYEE

Creates the request library definition PERSONNEL__ EMPLOYEE in the
directory CDD$TOP.SAMPLE __DIR.

Request Definition Utility (RDU) Commands 2-21

CREATE LIBRARY

$ RDU:> CREATE LIBRARY YOUR_NAME_DIR.STATUS_LIBRARY -
$_ DBA1:[PERSONNEL.DIRIEMPLOYEE.DAT

Creates the request library definition STATUS _LIBRARY in the CDD directory
YOUR _NAME _DIR by checking and storing the request library definition text
contained in the file EMPLOYEE.DAT. Note that when you enter the CREATE
LIBRARY command at DCL level, you must type the symbol RDU.

$ RDU EGCRELIBEMP.COM

Executes the CREATE command in the command procedure file
CRELIBEMP.COM and creates and stores the request library definition
contained in that command file.

RDU> CREATE LIBRARY PERSONNEL_EMPLOYEE/LIST-
RDU>_=EMPLOYEE.LIS

Creates the request library definition PERSONNEL _ EMPLOYEE and generates
a listing file named EMPLOYEE.LIS in the default VMS directory.

2-22 Request Definition Utility (RDU) Commands

CREATE REQUEST

2.7 CREATE REQUEST Command

Allows you to enter request instructions in RDU and, if they are error free,
creates a request in the CDD. If RDU is in Store mode, the CREATE REQUEST
command also creates a request binary structure and stores it in the CDD with
the request.

Format
CREATE REQUEST request-path-name [file-spec]
Command Qualifiers Defaults
/[NOJACL /ACL
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJLIST /NOLIST
/LIST =file-spec /NOLIST
/[NOJLOG /NOLOG
/[NOIPRINT /NOPRINT
/[NOJSTORE /STORE

Prompts

RDU
$
Command Parameters

request-path-name

A CDD path name (given, relative, or full) of the request that you want to
create.

Request Definition Utility (RDU) Commands 2-23

CREATE REQUEST

file-spec
The file containing the request text that you pass to RDU to check and store

in the CDD. If you do not specify a file type, RDU looks for the default file
type .RDF.

If you do not specify a file-spec parameter, RDU expects you to enter the
request text from the default file or device defined as SYS$INPUT:

o In Interactive mode, the default is the terminal. You enter the text at the
RDUDFN> prompt.

e In Batch mode, the default is the current command stream.

Command Qualifiers

/ACL

Stores the request with a default CDD access contrc' list. The ACL can grant
or deny access to the request based on information contained in the list. For
more information about the CDD access control list, refer to the VAX
Common Data Dictionary documentation set. /ACL is the default.

/NOACL
Stores the request without an access control list. /ACL is the default.

/AUDIT

Stores audit text with the request. The standard default audit text includes
the date and time you create the request and the name of the utility (RDU).
/AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request is created, accessed, or
changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LIST

Creates a listing file in your default or specified VMS directory. The listing
file contains the request text and error messages generated by RDU.

2-24 Request Definition Utility (RDU) Commands

CREATE REQUEST

When used with the /LOG qualifier, the /LIST qualifier creates a listing file
that contains information and warning level messages indicating the %ALL
mappings that were created and those that were not created and why. (An A
in the left column of a listing line indicates that the line gives information
about a %ALL mapping.)

If you do not specify a name following the /LIST qualifier, RDU takes the
given name of the full request path name up to 39 characters including dollar
signs ($) and underscores (_). If that results in a legal file name, then RDU
uses that file name with a file type of .LIS. If not, RDU uses the file name
RDULIS.LIS.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/NOLIST
Specifies that no listing file be created. /LIST is the default in Batch mode;
/NOLIST is the default in Interactive mode.

/LIST =file-spec

Creates a listing file in your default or specified VMS directory with the
given file specification. You may use any standard VMS file name up to 39
characters in length. An illegal file name will cause the command to fail.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/LOG

Displays on the terminal screen a message that indicates that RDU has
successfully completed the operation. If the request is created while in
Validate mode, it also displays messages that indicate:

e The request names and the form and record definition names that RDU
uses to build the request library file

e The mappings RDU creates for %2ALL
e The mappings RDU does not create for %2ALL
/NOLOG is the default.

Request Definition Utility (RDU) Commands 2-25

CREATE REQUEST

/NOLOG

Displays no message on the terminal indicating that RDU has successfully
completed the operation. Also does not display information about request
names and form and record definition names or mapping messages. /NOLOG
is the default.

/PRINT

Prints a listing of the request on the system printer. If not used with the
/LIST qualifier, /PRINT creates a temporary listing file and deletes it after
printing. /NOPRINT is the default.

/NOPRINT

Does not print a listing of the request on the system printer. /NOPRINT is
the default.

/STORE

Stores the request binary structure in the CDD. /STORE is the default in
Validate mode.

/NOSTORE

Does not store the request binary structure in the CDD. /STORE is the
default in Validate mode.

Notes
You can enter the request in one of two ways:
» Type it directly into the RDU following the CREATE REQUEST command.

e Type it into a text or command file and pass the file to RDU either at DCL
level or at the RDU> prompt.

If RDU is in Validate mode and the /NOSTORE qualifier is not used, the request
binary structure is stored in the CDD with the request.

RDU does not create the request in the CDD if:

o The CDD already contains a request or any other CDD object with the same
path name

e RDU finds syntax errors in the request

2-26 Request Definition Utility (RDU) Commands

CREATE REQUEST

e RDU is in Validate mode and the request:

_ Refers to form and/or record definitions that do not exist in the CDD
— Contains incorrect mapping instructions

Instead, after checking the request text and writing syntax or mapping error
messages to SYS$OUTPUT, RDU returns you to the RDU> prompt (or the DCL
prompt if you entered the CREATE REQUEST command at DCL level). In RDU,
you can use the EDIT or SAVE command to correct or save the request text or
commands.

If RDU is in Novalidate mode, it creates the request without checking for valid
mapping references.

The default for the /[NOJSTORE qualifier depends on the Validate mode. If SET
VALIDATE is in effect, the default is /STORE. If SET NOVALIDATE is in effect,
the default is /NOSTORE. If the request binary structure is stored with the
request, then the BUILD LIBRARY command revalidates the request only if an
associated form or record has changed since the request binary structure was
created.

Examples

In all of the following examples, the request binary structure is stored with the
request in the CDD if RDU is in Store mode.

RDU: CREATE REQUEST CDD$TOP.EMPLOYEE_DIR.PERSONNEL_EMPLOYEE

Creates the request PERSONNEL _ EMPLOYEE in the CDD directory
CDD$TOP.EMPLOYEE _DIR.

RDU> CREATE REQUEST
COMPONENT-NAME: CDD$TOF.SAMPLE_DIR.PERSONNEL_EMPLOYEE

Creates the request PERSONNEL _ EMPLOYEE in the CDD directory
CDD$TOP.SAMPLE _DIR.

$ RDU CREATE REQUEST YOUR-NAME_DIR.STATUS_REQUEST -
$_ DBA1:[PERSONNEL.DIRIEMPLOYEE.DAT

Creates the request STATUS_REQUEST in the CDD directory
YOUR_NAME _DIR by translating and storing the request text contained in
the EMPLOYEE.DAT file.

Request Definition Utility (RDU) Commands 2-27

CREATE REQUEST

$ RDU BCREREQEMP.COM

Executes the CREATE REQUEST command in the command procedure file
CREREQEMP.COM and creates and stores the request contained in that
command file. Note that you type the RDU symbol when you enter any RDU
command at DCL level.

RDU> CREATE REQUEST PERSONNEL_EMPLOYEE/LIST=EMPLOYEE.LIS

Creates the request PERSONNEL_ EMPLOYEE and generates a listing file
named EMPLOYEE.LIS in the default directory.

2-28 Request Definition Utility (RDU) Commands

CTRL/C

2.8 CTRL/C Command

Cancels the current command but remains at the current command level (either
RDU or DCL).

Format

CTRL/C

Prompts

RDU
$

RDUDFN

Note

Entering CTRL/C outside of an editor cancels the current command and prompts
for additional command input.

Example

RDU > CREATE REQUEST (CTRL/IC

#RDU-E-CTRLCABORT: oprPeration terminated with Control C
RDU

RDU cancels the CREATE REQUEST command, displays a message, and returns
you to the RDU> prompt.

Request Definition Utility (RDU) Commands 2-29

CTRL/Y

2.9 CTRL/Y Command

Causes an immediate exit from RDU.

Format

CTRL/Y

Prompts

RDU >
$

RDUDFN

Note

If you press CTRL/Y while the SET LOG command is enabled, the log file may
or may not contain the last command and the associated request or request
library definition text.

Example

RDU> CREATE (CTRLY
$

RDU cancels the current command, exits RDU, and returns you to the DCL
prompt.

2-30 Request Definition Utility (RDU) Commands

CTRL/Z

2.10 CTRL/Z Command
Exits from RDU or RDUDFN and returns to the previous command stream.

Format

CTRL/Z

Prompts

RDU +
$

RDUDFN =

Notes

RDU exits from the current command stream (RDU, RDUDFN) and reverts to
the previous command stream or exits the program.

Do not use the CTRL/Z command in either indirect command files or batch
command files. In these cases, RDU (or DCL) attempts to process CTRL/Z as a
command and returns an error message.

Examples

RDU> CREATE REQUEST STATUS_REQUEST
RDUDFN: FORM IS EMPLOYEE_FORM3
RDUDFN:> RECORD IS EMPLOYEE_RECORDS
RDUDFN> CLEAR SCREEN;

0003 CLEAR SCREENS
QOOO00000QQQ'OQ'#OOOQOOOQOOOQOOl
%“RDU-E-SYNTAXERR s Found end-of-file when expecting TDMS-Kevword
%“RDU-E-ERRDPARs Error during instruction Processing
“RDU-E-NOREQCRE: no request created
RDU

RDU stops taking instructions, exits from the RDUDFN> prompt, and checks
the portion of the request that you entered prior to the CTRL/Z for errors. Since
the partial request text is not valid (it lacks an END DEFINITION instruction),
RDU issues error messages and returns you to command (RDU>) level.

Request Definition Utility (RDU) Commands 2-31

CTRL/Z

¢ RDU (CTRLZ
3

Entering CTRL/Z at DCL level returns you to DCL level.

2-32 Request Definition Utility (RDU) Commands

DELETE LIBRARY

2.11 DELETE LIBRARY Command

Deletes a request library definition from the CDD.

Format

DELETE LIBRARY request-library-path-name

Command Qualifiers Defaults

/[NO]JCONFIRM /NOCONFIRM

/[NOJLOG /NOLOG
Prompts

RDU™

$

Command Parameter

request-library-path-name
The CDD path name (given, relative, or full) of the request library definition
that you want to delete from the CDD.

Command Qualifiers

/CONFIRM

Instructs RDU to ask for confirmation before it deletes the request library
definition. /NOCONFIRM is the default.

/NOCONFIRM

Allows RDU to delete the request library definition without asking for
confirmation. /NOCONFIRM is the default.

/LOG

Displays a message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

Request Definition Utility (RDU) Commands 2-33

DELETE LIBRARY

/NOLOG
Displays no message on the terminal indicating that RDU has successfully

completed the operation. /NOLOG is the default.
Note
If the request library definition named does not exist, RDU issues an error
message and returns you to the; RDU> or DCL prompt.
Examples

RDU> DELETE LIBRARY ACCOUNTING.EMPLOYEE

Deletes the request library definition EMPLOYEE from a CDD directory. RDU
determines which directory it should delete the library from by appending the
CDD directory ACCOUNTING to your CDD default directory.

¢ RDU DELETE LIBRARY PERSON_EMPLOYEE/CONFIRM/LOG
Delete library CDD$TOP.TEST.PERSON_EMPLOYEE (v or n)? Y

%RDU-S-RLBDELETE:s librarvy CDD$TOP,.TEST.PERSON_EMPLOYEE deleted

Deletes the CDD directory PERSON _ EMPLOYEE from the CDD directory
CDDS$TOP.TEST.

2-34 Request Definition Utility (RDU) Commands

DELETE REQUEST

2.12 DELETE REQUEST Command

Deletes a request from the CDD.

Format

DELETE REQUEST request-path-name

Command Qualifiers Defaults

/[NOJCONFIRM /NOCONFIRM

/[NOJLOG /NOLOG
Prompts

RDUZ

%

Command Parameter

request-path-name

The CDD path name (given, relative, or full) of the request that you want to
delete.

Command Qualifiers

/CONFIRM

Instructs RDU to ask for confirmation before it deletes the request.
/NOCONFIRM is the default.

/NOCONFIRM

Allows RDU to delete the request without asking for confirmation.
/NOCONFIRM is the default.

/LOG

Displays a message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

Request Definition Utility (RDU) Commands 2-35

DELETE REQUEST

/NOLOG
Displays no message on the terminal indicating that RDU has successfully

completed the operation. /NOLOG is the default.
Notes

If the request does not exist, RDU issues an error message and returns you to
the RDU> or DCL prompt.

Deleting a request also deletes the binary structure associated with the request.
Examples

RDU> DELETE REQUEST ACCOUNTING.EMPLOYEE

Deletes the request EMPLOYEE from a CDD directory. RDU identifies the CDD
directory by adding the CDD directory ACCOUNTING to your default CDD
directory name.

¢ RDU DELETE REQUEST PERSON_EMPLOYEE/CONFIRM/LOG
Delete request CDD$TOP.SAMPLE.PERSON_EMPLOYEE (v or n)? Y

4“RDU-S-REQDELETEs reauest CDD$TOP.SAMPLE.PERSON_EMPLOYEE deleted

Deletes the request PERSON_EMPLOYEE from the CDD directory
CDDS$TOP.SAMPLE when you respond by typing Y to the confirm prompt. RDU
displays a success message indicating the request is deleted.

2-36 Request Definition Utility (RDU) Commands

EDIT

2.13 EDIT Command

Allows you to edit the most recent command and associated request or request
library text that you entered in RDU. Also allows you to create an edit buffer
into which you can enter RDU commands and request or request library text.

Format

EDIT

Prompts
RDU >

k]

Notes
You can use the EDIT command in two ways:

e Within RDU, you can issue the EDIT command after you enter an RDU

command (such as CREATE REQUEST, REPLACE REQUEST, and so on) and
the associated request or request library definition text.

RDU places the command and all the text you entered following the command
in the edit buffer. You can correct or change the RDU command or the text
using your editor’s features.

e You can enter the EDIT command as soon as you invoke RDU at either the
DCL level or the RDU> prompt.

If you enter the EDIT command before typing an RDU command, RDU
provides an edit buffer, and you can enter RDU commands and request or
request library text using the features of your editor. You do not see the RDU>
prompts or error messages as you enter the text.

When you exit the editor, RDU executes the commands in the file.

If you quit the editing session without creating an output file, RDU returns you
to the RDU> prompt (or the DCL prompt if you are at DCL level) and discards
the request or request library definition text.

Request Definition Utility (RDU) Commands 2-37

EDIT

When you issue the EDIT command, TDMS executes the system-defined logical
TDMSS$EDIT, which invokes the system command procedure
SYS$COMMON:[SYSEXE]JTDMSEDIT.COM. That command procedure invokes
the EDT editor and your EDT startup file EDTINLEDT, if any exists.

You can change the RDU command EDIT to invoke a personal command
procedure that invokes a particular editor or a particular set of editor startup
commands. To do so, define the process logical RDUSEDIT to call a command
procedure that you create, which in turn invokes the editor of your choice.

Examples

RDU> CREATE REQUEST EMPLOYEE_REQUEST

RDUDFN: FORM IS5 EMPLOYEE_FORM]J
RDUDFN: DISPLAY FORM EMPLOYEE_FORM
RDUDFN END DEFINITION;S

0003 END DEFINITION;

P T S |

#RDU-E-NOSEMICLNs Missing ‘3’ at end of Previous inmstruction
“RDU-E-ERRDPAR Error duringd instruction Processing
#“RDU-E-NOREQCRE+ mo request created
RDU* EDIT
CREATE REQUEST EMPLOYEE_REQUEST
FORM IS EMPLOYEE_FORM}
DISPLAY FORM EMPLOYEE_FORM
END DEFINITIONS
*SUB/EMPLOYEE_FORM/EMPLOYEE_FORM3/ 3
3 DISPLAY FORM EMPLOYEE_FORM;:
1 substitution
* EXIT
RDU =

RDU puts the last command, CREATE REQUEST EMPLOYEE _ REQUEST, and
the associated request text in an edit buffer so you can edit the request or
command using the features of your editor. When you exit the editor, RDU
checks the request text for errors and creates a request in the CDD.

2-38 Request Definition Utility (RDU) Commands

EDIT

$ RDU EDIT

CREATE REQUEST EMPLOYEE_REQUEST/LOG
FORM IS5 EMPLOYEE_FORM;3

RECORD IS EMPLOYEE_REC:

DISPLAY FORM EMPLOYEE_FORM3;

END DEFINITION;:

* EXIT

¢

The EDIT command is entered at the DCL prompt. RDU provides an edit buffer
into which you can enter the RDU commands and request text. When you exit
the file, RDU executes the commands in the file.

Request Definition Utility (RDU) Commands 2-39

EXIT

2.14 EXIT Command
Causes RDU to stop accepting commands and either return to DCL level or
continue processing the previous command stream. It also causes an exit from a

command file.

Format

EXIT

Prompt

RDU >

Note
RDU exits from either the utility or the command file.

Examples
RDU> EXIT
$

RDU stops taking commands and returns to the DCL prompt.

RDU> BEMPREQ
SET VALIDATE !These lines are in the file EMPREQ.COM
SET LOG
EXIT

RDU>

RDU stops taking commands from an indirect file and returns to the RDU>
prompt.

2-40 Request Definition Utility (RDU) Commands

2.15 HELP Command

Provides online help for RDU commands.

Format

HELP

HELP [topic [subtopic]]

Command Qualifier Default
/[NOJPROMPT /PROMPT
Prompts
RDU >

$

Command Parameters

topic
The RDU subject for which you want help.

subtopic
The RDU parameter or qualifier for which you want help.

Command Qualifiers

/PROMPT

Prompts you for the topic and optionally the subtopic for which you want
help. Unlike all other RDU commands, you specify the HELP command
qualifiers immediately after the command rather than at the end of the

command line. /PROMPT is the default.
/NOPROMPT

Lets you obtain help on an RDU command without being prompted. Unlike

all other RDU commands, you specify the HELP command qualifiers

immediately after the command rather than at the end of the command line.

/PROMPT is the default.

Request Definition Utility (RDU) Commands

2-41

HELP

Notes

When you issue the HELP command, you can obtain help on all the RDU
commands, their qualifiers, and other RDU topics.

To obtain a display of all the information under help in RDU, enter the following:

RDU* HELP *...

To obtain a hardcopy of the help information, you must assign SYS$OUTPUT to
be a line printer or other printing device at DCL level. For example:

$ DEFINE SYS$0OUTPUT LP:
$ RDU
RDU> HELP *...

The first command assigns the line printer to be SYS$OUTPUT; the second calls
RDU; and the third requests a display of all help in RDU. The output is queued
to the system printer.

To obtain a display of all TDMS help at VMS level, type the following:

$ HELP TDMS...

Example

RDU> HELP
Information available:
e BUILD COPY CREATE DELETE EDIT EXIT
HELP LIST MODIFY REPLACE SAVE SET SHOW

specify UALIDATE

Torpic? (CTRLZ
RDU

Enters Help at RDU level.

2-42 Request Definition Utility (RDU) Commands

LIST LIBRARY

2.16 LIST LIBRARY Command

Provides a listing that shows the source text of the request library definition. You
can display the listing on a terminal or direct it to a file or line printer.

Format

LIST LIBRARY request-library-path-name

Command Qualifiers Defaults
/OUTPUT] = file-spec] /OUTPUT =SYS$OUTPUT
/[NOJPRINT /NOPRINT

Prompts

RDU>

$

Command Parameter

request-library-path-name

The CDD path name (given, relative, or full) of the request library definition
to be listed.

Command Qualifiers

/OUTPUT][=file-spec]
Lists request library definition information to a file with the specified file
name.
If you do not specify a name following the /OUTPUT qualifier, RDU takes
the given name of the full request library definition path name up to 39
characters including dollar signs ($) and underscores (_). If that results in a
legal file name, then RDU uses that file name with a file type of .LIS. If not,
RDU uses the file name RDULIS.LIS.

Request Definition Utility (RDU) Commands 2-43

LIST LIBRARY

If you specify a name following the /OUTPUT qualifier, then that name can
be up to 39 characters in length. An illegal file name will cause the command
to fail.

/PRINT

Prints a listing of the request library definition on the system printer. If you
use the /PRINT qualifier without the /OUTPUT qualifier, RDU creates a
temporary listing file and deletes it after the print operation is completed.
/NOPRINT is the default.

/NOPRINT

Does not print a listing of the request library definition on the system
printer. /NOPRINT is the default.

Note

If you use neither the /OUTPUT nor the /PRINT qualifier, RDU writes the
request library listing to SYSSOUTPUT but creates no permanent listing file,
unless SYS$OUTPUT is defined as a permanent file.

Examples
RDU> LIST LIBRARY ACCOUNTING_LIB/OUTPUT=ACCTLIB.LIS

Lists the request library definition ACCOUNTING _LIB in the file
ACCTLIB.LIS.

$ RDU LIST LIBRARY EMPLOYEE_STATUS_LIB/OUTPUT

Lists the request library definition EMPLOYEE _ STATUS_LIB in the default
file EMPLOYEE _STATUS__LIB.LIS.

2-44 Request Definition Utility (RDU) Commands

LIST REQUEST

2.17 LIST REQUEST Command

Provides a listing that shows the source text of the request. You can display the
listing on a terminal or direct it to a file or line printer.

Format

LIST REQUEST request-path-name

Command Qualifiers Defaults
/OUTPUT][=file-spec] /OUTPUT =SYS$SOUTPUT
/[NOJPRINT /NOPRINT

Prompts

RDU

$

Command Parameter

request-path-name
The CDD path name (given, relative, or full) of the request to be listed.

Command Qualifiers

/OUTPUT] =file-spec]
Lists request information to a file with the specified file name.

If you do not specify a name following the /OUTPUT qualifier, RDU takes
the given name of the full request path name up to 39 characters including
dollar signs ($) and underscores (_). If that results in a legal file name, then
RDU uses that file name with a file type of .LIS. If not, RDU uses the file
name RDULIS.LIS.

If you do specify a name following the /OUTPUT qualifier, then that name
can be up to 39 characters in length. An illegal file name will cause the
command to fail.

Request Definition Utility (RDU) Commands 2-45

LIST REQUEST

/PRINT

Prints a listing of the request on the system printer. If you use the /PRINT
qualifier without the /OUTPUT qualifier, RDU creates a temporary listing

file and deletes it after the prmt operation is completed. /NOPRINT is the

default.

/NOPRINT

Does not print a listing of the request on the system printer. /NOPRINT is
the default.

Note

If you use neither the /OUTPUT nor the /PRINT qualifier, RDU writes the
request to SYS$OUTPUT but creates no listing file, unless SYS$OUTPUT is
defined as a permanent file.

Examples

RDU> LIST REQUEST ACCOUNTING_REQ/OUTPUT=ACCTREG.LIS

Lists the request ACCOUNTING _REQ in the specified file ACCTREQ.LIS in
your default VMS directory.

$ RDU LIST REQUEST EMPLOYEE_ADD_REQUEST/OUTPUT

Lists the request EMPLOYEE _ADD_ REQUEST in the default file
EMPLOYEE _ADD__REQUEST.LIS.

2-46 Request Definition Utility (RDU) Commands

MODIFY LIBRARY

2.18 MODIFY LIBRARY Command

Allows you to edit a request library definition that is stored in the CDD.

Format
MODIFY LIBRARY request:library-path-name
Command Qualifiers Defaults
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJLIST /NOLIST
/LIST =file-spec /NOLIST
/[NOJLOG /NOLOG
/[NO]JPRINT /NOPRINT

Prompts

RDU >

%

Command Parameter

request-library-path-name

The CDD path name (given, relative, or full) of the request library definition
that you want to modify.

Command Qualifiers

/AUDIT

Stores audit text with the request library definition. The standard default
audit text includes the date and time you modify the request library
definition and the name of the utility (RDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of itemns must be

Request Definition Utility (RDU) Commands 2-47

MODIFY LIBRARY

enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request library definition is created,
accessed, or changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LIST

Creates a listing file in your default or specified VMS directory. The listing
file contains the request library definition text and error messages generated
by RDU.

If you do not specify a name following the /LIST qualifier, RDU takes the
given name of the full request library definition path name up to 39
characters including dollar signs ($) and underscores (_). If that results in a
legal file name, then RDU uses that file name with a file type of .LIS. If not,
RDU uses the file name RDULIS.LIS.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/NOLIST

Specifies that no listing file be created. /LIST is the default in Batch mode;
/NOLIST is the default in Interactive mode.

/LIST =file-spec

Creates a listing file in your default or specified VMS directory with the
given file specification. You may use any standard VMS file name up to 39
characters in length. An illegal file name will cause the command to fail.

J/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/LOG
Displays a message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

/NOLOG

Displays no message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

2-48 Request Definition Utility (RDU) Commands

MODIFY LIBRARY

/PRINT
Prints a listing of the request library definition on the system printer. If not
used with the /LIST qualifier, /PRINT creates a temporary listing file and
deletes it after the print operation is completed. /NOPRINT is the default.
/NOPRINT

Does not print a listing of the request library definition on the system
printer. /NOPRINT is the default.

Notes

When you type the MODIFY LIBRARY command, RDU invokes the system-
defined logical TDMSS$EDIT, which points to the command procedure
SYS$COMMON:[SYSEXE]JTDMSEDIT.COM by default. The command procedure
invokes the editor EDT. If you wish to use a different editor, you can define the
logical RDUSEDIT to point to a command procedure file that invokes the text
editor of your choice.

When you issue the MODIFY LIBRARY command, RDU:
1. Copies the text of the request library definition into a file

2. Invokes the command procedure defined by RDUSEDIT and displays the
text for editing

3. Checks and stores the edited request library definition (if it is error free)
when you exit the editor, replacing the old CDD request library definition
with the modified one

RDU does not modify a request library definition if:

e The request library definition you specify in the MODIFY LIBRARY command
does not already exist in the CDD

e You exit the editor without creating an output file

e RDU finds a syntax error when it is checking the new request library
definition text

e RDU is in Validate mode and finds references to requests that are not in the
CDD

Request Definition Utility (RDU) Commands 2-49

MODIFY LIBRARY

If RDU cannot modify a request library definition, it displays error messages and
does not store the modified request library definition. Instead, it prompts you to
check if you want to edit the request library definition again. For example:

RDU-E-ERRFNDNODs error finding node ‘ACCOUNT_REQUEST’: Protocol
'CDD$REQUEST '
-CDD-E-NODNOTFND s Node not found

Do vou want to re-try the MODIFY (v or n)?

If you enter Y, RDU returns you to the editor. RDU continues to return you to
the edit buffer until the request library definition text is correct or you enter N
at the prompt.

If RDU is in Novalidate mode, you can modify a request library definition that
includes references to requests that are not in the CDD.

Examples

RDU> MODIFY LIBRARY EMPLOYEE_LIBRARY

Extracts the text of the request library definition EMPLOYEE _ LIBRARY from
the CDD and places it in the edit buffer for editing. When you exit the edit
buffer, if the EMPLOYEE __LIBRARY is error free, RDU stores it in the CDD.

$ RDU MODIFY LIBRARY EMPLOYEE_LIBRARY/PRINT/LOG

Extracts the text of the request library definition EMPLOYEE _ LIBRARY and
places it in your edit buffer for editing. When you exit the edit buffer, RDU
checks the text for errors, creates a temporary listing file, and sends a copy of
that file to the system printer. If the request library definition is error free, RDU
stores it in the CDD and displays a success level message on the screen
indicating the request library definition was modified.

2-50 Request Definition Utility (RDU) Commands

2.19 MODIFY REQUEST Command

MODIFY REQUEST

Allows you to edit a request that is stored in the CDD. If RDU is in Store mode,
the MODIFY REQUEST command also creates a request binary structure and

stores it in the CDD with the request.

Format

MODIFY REQUEST request-path-name

Command Qualifiers Defaults
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NO]LIST /NOLIST
/LIST =file-spec /NOLIST
/[NOJLOG /NOLOG
/[NOJPRINT /NOPRINT
/[NOJSTORE /STORE
Prompts

RDU>

$

Command Parameter

request-path-name

The CDD path name (given, relative, or full) of the request that you want to

modify.

Request Definition Utility (RDU) Commands

2-51

MODIFY REQUEST

Command Qualifiers

/AUDIT

Stores audit text with the request. The standard default audit text includes
the date and time you modify the request and the name of the utility (RDU).
/AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request is created, accessed, or
changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LIST

Creates a listing file in your default or specified VMS directory. The listing
file contains the request text and error messages generated by RDU.

When used with the /LOG qualifier, the /LIST qualifier creates a listing file
that contains information and warning level messages indicating the %ALL
mappings that were created and those that were not created and why.

If you do not specify a name following the /LIST qualifier, RDU takes the
given name of the full request path name up to 39 characters including dollar
signs ($) and underscores (_). If that results in a legal file name, then RDU
uses that file name with a file type of .LIS. If not, RDU uses the file name
RDULIS.LIS.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/NOLIST
Specifies that no listing file be created. /LIST is the default in Batch mode;
/NOLIST is the default in Interactive mode.

/LIST =file-spec

Creates a listing file in your default or specified VMS directory with the
given file specification. You may use any standard VMS file name up to 39
characters in length. An illegal file name will cause the command to fail.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

2-52 Request Definition Utility (RDU) Commands

MODIFY REQUEST

/LOG

Displays on the terminal screen a message indicating that RDU has
successfully completed the operation. If the request is created while in
Validate mode, it also displays messages that indicate:

o The request names and the form and record definition names that RDU
uses to build the request library file

e The mappings RDU creates for %ALL
e The mapping RDU does not create for %ALL

/NOLOG is the default.

/NOLOG

Displays no message on the terminal indicating that RDU has successfully
completed the operation. Also does not display information about request
names and form and record definition names or mapping messages. /NOLOG
is the default.

/PRINT

Prints a listing of the request on the system printer. If the /LIST qualifier is
not used, RDU creates a temporary listing file and deletes it after the print
operation is completed. /NOPRINT is the default.

/NOPRINT
Does not print a listing of the request on the system printer. /NOPRINT is
the default.

/STORE
Stores the request binary structure in the CDD. /STORE is the default in
Validate mode.

/NOSTORE

Does not store the request binary structure in the CDD. /STORE is the
default in Validate mode.

Notes

When you enter the MODIFY REQUEST command, RDU invokes the system-
defined logical TDMS$EDIT, which points to the command procedure
SYS$COMMON:[SYSEXEITDMSEDIT.COM by default. The command procedure

Request Definition Utility (RDU) Commands 2-53

MODIFY REQUEST

invokes the editor EDT. You can define the logical RDUS$EDIT to point to a
command procedure file that invokes an editor of your choice.

When you issue the MODIFY REQUEST command, RDU:
1. Copies the text of the request into a file

2. Invokes the command procedure defined by RDUSEDIT and displays the
text for editing 4

3. Checks the text for errors and stores the edited request, if it is error free,
when you exit the editor, replacing the old CDD request with the modified
one

If RDU is in Validate mode and the /NOSTORE qualifier is not used, the request
binary structure is stored in the CDD with the request.

RDU does not modify a request if:
e The request does not already exist in the CDD

You exit the editor without creating an output file

RDU finds a syntax error in the modified request text

RDU is in Validate mode and finds incorrect references to form and record
definitions or incorrect mapping instructions

If RDU cannot modify a request, it displays error messages and does not store
the modified request. Instead, it prompts you to indicate whether you want to
edit the request again. For example:

-RDU-E-MISPELKWD, misspelled Kevword "DIPLAY" should he "DISPLAY"

Do vou want to re-try the MODIFY (v or n)"?

If you enter Y, RDU returns you to the editor. RDU continues to return you to
the editor until the request text is correct or you enter N at the prompt.

If RDU is in Novalidate mode, it will modify a request containing reference or
mapping errors.

The default for the /[NOJSTORE qualifier is dependent on the Validate mode. If
SET VALIDATE is in effect, the default is /STORE. If SET NOVALIDATE is in
effect, the default is /NOSTORE. If the request binary structure is stored with

2-54 Request Definition Utility (RDU) Commands

MODIFY REQUEST

the request, then the BUILD LIBRARY command revalidates the request only if
an associated form or record has changed since the request binary structure was
created.

Examples

In all of the following examples, the request binary structure is stored with the
request in the CDD if RDU is in Store mode.

rRDU- MODIFY REQUEST EMPLOYEE_REQUEST

Copies the text of the request EMPLOYEE _REQUEST into an edit buffer and
allows you to modify the request using the features of your editor.

$ RDU MODIFY REQUEST EMPLOYEE_REQUEST/PRINT/LOG

Copies the text of the request EMPLOYEE _REQUEST into an edit buffer and
allows you to change the request using the features of your editor. When you exit
the edit buffer, if the request is error free, RDU stores it in the CDD, displays a
message indicating the request was modified, and sends a temporary listing file
to the system printer.

Request Definition Utility (RDU) Commands 2-55

REPLACE LIBRARY

2.20 REPLACE LIBRARY Command

Replaces a request library definition in the CDD or, if the request library
definition does not exist, creates a new request library definition.

Format
REPLACE LIBRARY request-library-path-name [file-spec]
Command Qualifiers Defaults
/[NOJACL /ACL
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJCREATE /CREATE
/[NOJLIST /NOLIST
/LIST =file-spec /NOLIST
/[NOJLOG /NOLOG
/[NO]JPRINT /NOPRINT

Prompts

RDU>

$

Command Parameters

request-library-path-name
The CDD path name (given, relative, or full) of the request library definition
that you want to replace.

file-spec

The text file containing the request library definition text that you want to
replace. If you do not specify a file type, RDU looks for a file with the default
file type .LDF.

2-56 Request Definition Utility (RDU) Commands

REPLACE LIBRARY

If you do not specify a file-spec parameter, RDU expects you to enter the request
library definition text from the default file or device defined as SYS$INPUT:

e In Interactive mode, the default is the terminal. You enter the text at the
RDUDFN> prompt.

e In Batch mode, the default is the current command stream.

Command Qualifiers

/ACL

Replaces the request library definition with a default CDD access control list.
The ACL can grant or deny access to the request library definition based on
information contained in the list. For more information about the CDD access
control list, refer to the VAX Common Data Dictionary documentation set.

/ACL applies only when the REPLACE LIBRARY command defaults to the
CREATE LIBRARY command. /ACL is then the default.

/NOACL

Replaces a request library definition without an access control list. /NOACL
applies only when the REPLACE LIBRARY command defaults to the
CREATE LIBRARY command. /ACL is the default.

/AUDIT

Stores audit text with the request library definition. The standard default
audit text includes the date and time you replace the request library
definition and the name of the utility (RDU). /AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request library definition is created,
accessed, or changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

Request Definition Utility (RDU) Commands 2-57

REPLACE LIBRARY

/CREATE

Enables RDU to treat the REPLACE LIBRARY command as though it were
the CREATE LIBRARY command when it cannot find a request library
definition with the specified name in the CDD. /CREATE is the default.

/NOCREATE

Prevents RDU from treating the REPLACE LIBRARY command as though it
were the CREATE LIBRARY command. Instead of creating a new request
library definition, RDU issues an error message and returns you to the
RDU> prompt. /CREATE is the default.

/LIST

Creates a listing in your default or specified VMS directory. The listing file
contains the request library definition text and error messages generated by
RDU.

If you do not specify a name following the /LIST qualifier, RDU takes the
given name of the full request library definition path name up to 39
characters including dollar signs ($) and underscores (_). If that results in a
legal file name, then RDU uses that file name with a file type of .LIS. If not,
RDU uses the file name RDULIS.LIS.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/NOLIST
Specifies that no listing file be created. /LIST is the default in Batch mode;
/NOLIST is the default in Interactive mode.

/LIST =file-spec

Creates a listing file in your default or specified VMS directory with the
given file specification. You may use any standard VMS file name up to 39
characters in length. An illegal file name will cause the command to fail.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.
/LOG

Displays a message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

2-58 Request Definition Utility (RDU) Commands

REPLACE LIBRARY

/NOLOG

Displays no message on the terminal indicating that RDU has successfully
completed the operation. /NOLOG is the default.

/PRINT

Prints a listing of the request library definition on the system printer. If you
do not use the /LIST qualifier with /PRINT, RDU creates a temporary listing
file and deletes it after the print operation is completed. /NOPRINT is the
default.

/NOPRINT

Does not print a listing of the request library definition on the system
printer. /NOPRINT is the default.

Notes
You can replace the request library definition in one of two ways:

e Type the text directly into RDU following the command:
REPLACE LIBRARY resuest-librarv-path-name

e Type the text into a text or command file and pass the file to RDU. You can
pass the file to RDU either at DCL level or at the RDU> prompt.

RDU performs the following on a REPLACE LIBRARY command:

1. Finds the request library definition with the name you specified in the
command

2. Checks the new request library definition text for errors

3. Deletes the old CDD request library definition and replaces it with the
new request library definition

RDU does not replace a request library definition if:

e It finds syntax errors in the request library definition text

e It is in Validate mode and finds errors in the new request library definition’s
references to requests

Request Definition Utility (RDU) Commands 2-59

REPLACE LIBRARY

If RDU does not replace a request library definition, it issues an error message
and returns you to the RDU> prompt (or the DCL prompt if you enter the
REPLACE LIBRARY command at DCL level).

In Novalidate mode, RDU replaces the old request library definition with the new
one without checking references to requests.

If RDU cannot find a request library definition with the name you specified in
the REPLACE LIBRARY command, it treats the REPLACE LIBRARY command
as a CREATE LIBRARY command by default and creates a new request library
definition. The /ACL and /NOACL qualifiers apply.

You must specify the /NOCREATE qualifier to prevent RDU from creating a new
request library definition if there is no existing request library definition.

Examples
RDU> REPLACE LIBRARY EMPLOYEE_LIBRARY EMPLIB.LDF/LOG

RDU finds the existing request library definition EMPLOYEE _ LIBRARY and
replaces it with the library definition text in the file EMPLIB.LDF. When it has
successfully replaced the library in the CDD, it displays a success message on the
terminal screen.

RDU: REPLACE LIBRARY CDD$TOP.PERSONNEL_LIB/PRINT
RDUDFN> REQUEST IS PERSONNEL_REQ;

RDUDFN> REQUEST IS EMPLOYEE _ADD_REQ}

RDUDFN> END DEFINITION;S

RDU finds the existing CDD request library definition PERSONNEL __LIB and
replaces it with the library definition text you enter following the RDUDFN>
prompt. RDU creates a temporary listing file, prints it on the system printer, and
deletes the temporary file.

$ RDU REPLACE LIBRARY INVENTORY _REPORT INVENLIB.LDF

Replaces the request library definition INVENTORY _ REPORT with the request
library definition contained in the file INVENLIB.LDF.

2-60 Request Definition Utility (RDU) Commands

REPLACE REQUEST

2.21 REPLACE REQUEST Command

Replaces a request in the CDD or, if the request does not exist, creates a new
request. If RDU is in Store mode, the REPLACE REQUEST command also
creates a request binary structure and stores it in the CDD with the request.

Format
REPLACE REQUEST request-path-name [file-spec]
Command Qualifiers Defaults
/[NOJACL /ACL
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJCREATE /CREATE
/[NO]JLIST /NOLIST
/LIST =file-spec /NOLIST
/[NOILOG /NOLOG
/[NOJPRINT /NOPRINT
/[NOJSTORE /STORE

Prompts

RDU >
$
Command Parameters

request-path-name

The CDD path name (given, relative, or full) of the request that you want to
replace.

Request Definition Utility (RDU) Commands 2-61

REPLACE REQUEST

file-spec
The text file containing the request text that you want to replace. If you do
not specify a file type, RDU looks for the default file type .RDF.

If you do not specify a file-spec parameter, RDU expects you to enter the
request text from the default file or device defined as SYS$INPUT:

e In Interactive mode, the default is the terminal. You enter the text at the
RDUDFN> prompt.

e In Batch mode, the default is the current command stream.

Command Qualifiers

/ACL

Replaces the request with a default CDD access control list. The ACL can
grant or deny access to the request based on information contained in the
list. For more information about the CDD access control list, refer to the VAX
Common Data Dictionary documentation set.

/ACL applies only when the REPLACE REQUEST command defaults to
CREATE REQUEST. /ACL is then the default.

/NOACL

Replaces a request without an access control list. /NOACL applies only when
the REPLACE REQUEST command defaults to CREATE REQUEST. /ACL is
the default.

/AUDIT

Stores audit text with the request. The standard default audit text includes
the date and time you replace the request and the name of the utility (RDU).
/AUDIT is the default.

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request is created, accessed, or
changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

2-62 Request Definition Utility (RDU) Commands

REPLACE REQUEST

/CREATE

Enables RDU to treat the REPLACE REQUEST command as though it were
the CREATE REQUEST command when it cannot find a request with the
specified name in the CDD. /CREATE is the default.

/NOCREATE

Prevents RDU from treating the REPLACE REQUEST command as though
it were the CREATE REQUEST command. Instead of creating a new request,
RDU issues an error message and returns you to the RDU> prompt.
/CREATE is the default.

/LIST

Creates a listing in your default or specified VMS directory. The listing file
contains the request text and error messages generated by RDU.

When the /LIST qualifier is used with the /LOG qualifier, the listing file
contains information and warning level messages indicating the %ALL
mappings that were created and those that were not created and why. (An
“A” in the left column of a listing line indicates that the line gives
information about a %ALL mapping.)

If you do not specify a name following the /LIST qualifier, RDU takes the
given name of the full request path name up to 39 characters including dollar
signs ($) and underscores (_). If that results in a legal file name, then RDU
uses that file name with a file type of .LIS. If not, RDU uses the file name
RDULIS.LIS.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

/NOLIST
Specifies that no listing file be created. /LIST is the default in Batch mode;
/NOLIST is the default in Interactive mode.

ILIST =file-spec

Creates a listing file in your default or specified VMS directory with the
given file specification. You may use any standard VMS file name up to 39
characters in length. An illegal file name will cause the command to fail.

/LIST is the default in Batch mode; /NOLIST is the default in Interactive
mode.

Request Definition Utility (RDU) Commands 2-63

REPLACE REQUEST

/LOG

Displays on the terminal screen a message indicating that RDU has
successfully completed the operation. If the request is created while in
Validate mode, it also displays messages that indicate:

e The request names and the form and record definition names that RDU
uses to build the request library file

e The mappings RDU creatés for %ALL
e The mapping RDU does not create for %ALL
/NOLOG is the default.

/NOLOG

Displays no message on the terminal indicating that RDU has successfully
completed the operation. Also does not display information about request
names and form and record definition names or mapping messages. /NOLOG
is the default.

/PRINT

Prints a listing of the request on the system printer. If you do not use the
/LIST qualifier with the /PRINT qualifier, RDU creates a temporary listing
file and deletes it after the print operation is completed. /NOPRINT is the
default.

/NOPRINT
Does not print a listing of the request on the system printer. /NOPRINT is
the default.

/STORE
Stores the request binary structure in the CDD. /STORE is the default in
Validate mode.

/NOSTORE

Does not store the request binary structure in the CDD. /STORE is the
default in Validate mode.

2-64 Request Definition Utility (RDU) Commands

REPLACE REQUEST

Notes

You can replace the request text in one of two ways:

e Type it directly into RDU following the command:
REPLACE REQUEST request-path-name

e Type it into a text or command file and pass the file to RDU at either DCL or
RDU level.

RDU performs the following on a REPLACE REQUEST command:
1. Finds the request with the name you specified in the command
2. Checks the new text for syntax or mapping errors

3. Deletes the old CDD request and replaces it with the new request
If RDU is in Validate mode and the /NOSTORE qualifier is not used, the request
binary structure is stored in the CDD with the request.

RDU does not replace a request if:

o It finds syntax errors in the request text

e It is in Validate mode and finds errors in the new request’s references to form
or record definitions or mapping instructions

If RDU does not replace a request, it issues an error message and returns you to
the RDU> prompt (or the DCL prompt if you type the REPLACE REQUEST at
DCL level).

In Novalidate mode, RDU replaces the new request without checking form or
record references.

If RDU cannot find a request with the name you specified in the REPLACE
REQUEST command, it treats the REPLACE REQUEST command as a CREATE
REQUEST command and creates a new request. The /ACL and /NOACL
qualifiers apply.

You must specify the /NOCREATE qualifier if you want to prevent RDU from
creating a new request if there is no existing request.

Request Definition Utility (RDU) Commands 2-65

REPLACE REQUEST

The default for the /[NOIJSTORE qualifier is dependent on the Validate mode. If
SET VALIDATE is in effect, the default is /STORE. If SET NOVALIDATE is in
effect, the default is /NOSTORE. If the request binary structure is stored with
the request, then the BUILD LIBRARY command revalidates the request only if
an associated form or record has changed since the request binary structure was
created.

Examples

In all of the following examples, the request binary structure is stored with the
request in the CDD if RDU is in Store mode.

RDU» REPLACE REQUEST EMPLOYEE_-REQUEST/LIST/AUDIT
RDUDFN* FORM IS EMPLOYEE_FORMS

RDUDFN> CLEAR SCREEN]:

RDUDFN» DISPLAY FORM EMPLOYEE_FORM3

RDUDFN> END DEFINITIONS

RDU finds the request EMPLOYEE _REQUEST in the CDD and replaces it with
the request following the REPLACE REQUEST command. RDU also creates a
listing file and places the standard audit string with the replaced request text.

$ RDU REPLACE REQUEST PERSONNEL_REQUEST PERSON.RDF/PRINT

RDU finds the PERSONNEL _REQUEST in the CDD and replaces the request
with the text in the file PERSON.RDF. RDU also sends a listing of the file to the
system printer.

2-66 Request Definition Utility (RDU) Commands

SAVE

2.22 SAVE Command

Saves in a file the most recent command you entered in RDU and its associated
text.

Format

SAVE file-spec

Prompt

RDU »

Command Parameter

file-spec

The name of the file in which you want to save the last command and the
associated text. You can use any standard VMS file name up to 39 characters
in length. If you do not specify a directory, RDU puts it in the directory in
which you are currently working. The default file type is .SAV.

Note

You can use this command to save a request or library text you create and want
to place in a file for printing or editing.

Request Definition Utility (RDU) Commands 2-67

SAVE

Example

RDU> CREATE REQUEST EMPLOYEE_TEST

RDUDFN: FORM IS TEST13

RDUDFN: RECORD IS TESTZ23

RDUDFN> DISPLAY FORM TEST13

RDUDFN> END DEFINITIONS

RDU> SAVE

Save to file : EMPLOYEE.EDT

%RDU-I-SAVETOFIL,» previous command SAVE4d to file DUAZ:L[SMITH.WORKIEMPLOYEE.EDT31
RDU: EXIT

$ Y EMPLOYEE.EDT

CREATE REQUEST EMPLOYEE_TEST
FORM IS TEST13

RECORD IS TESTZ;

DISPLAY FORM TEST1i

END DEFINITIONS

RDU prompts you for a file name if you do not specify it following the SAVE
command. It writes the CREATE REQUEST command and the text following the
command to the file you specify, EMPLOYEE.EDT in the directory
[SMITH.WORK]. The example shows the file contents that RDU saves.

2-68 Request Definition Utility (RDU) Commands

SET DEFAULT

2.23 SET DEFAULT Command

Sets RDU to point to a CDD directory for as long as you are in RDU or until you
set RDU to point to a new directory.

Format

SET DEFAULT CDD-directory-path-name

Prompt

RDU >

Command Parameter
CDD-directory-path-name

The CDD path name (given, relative, or full) of the default CDD directory.
Notes

Once you specify a default CDD directory, all path names are interpreted as
starting at that level. You can override this default directory setting by specifying
the full path name beginning with CDD$TOP.

The CDD default directory setting ends when you exit RDU. You must reset the
CDD default directory when you reenter RDU.

If you want to create a CDD directory setting that exists every time you enter
RDU or until you reset it, you can either:

¢ Enter the SET DEFAULT command in your startup command file RDUINI-
.COM. (See the @file-spec command.)

e Use the DCL DEFINE command to define the logical name CDD$DEFAULT in
your login command file. (See Chapter 2 of the VAX TDMS Request and
Programming Manual for more information.)

Request Definition Utility (RDU) Commands 2-69

SET DEFAULT

Examples

RDU> SET DEFAULT CDD$TOP.PERSONNEL.ACCOUNTING.SMITH

Sets the CDD default directory to CDD$TOP.PERSONNEL.ACCOUNTING.SMITH.

¢ EDIT RDUINI.COM
SET DEFAULT CDD$TOP.YOUR_HOME_DIRECTORY
*EXIT
$ RDU
RDU> SHOW DEFAULT
current CDD default path is ‘CDD$TOP.YOUR_HOME_DIRECTORY '

Places the SET DEFAULT command in the startup command file that is
executed each time you invoke RDU.

2-70 Request Definition Utility (RDU) Commands

SET [NOJLOG

2.24 SET [NO]JLOG Command

Creates a log and writes further output to a default or specified log file.

Format

SET [NOILOG ([file-spec]

Prompt

RDU >

Command Parameter

file-spec

The name of the file to which you want RDU to log. Use the standard VMS
file specification.

If you specify the name previously specified in the current RDU session, RDU
creates a new version of that log file. If you specify a different name, RDU
closes the first log file and opens the new one.

(If you do not specify a file, RDU logs to a default file specification as
described in the following Notes section.)

Notes

RDU logs the following data in the log file:

e An exact copy of each of the commands you enter or a copy of the commands
executed by RDU from an indirect command file (if the indirect command file
is executed in Set Verify mode)

e All request or request library instructions that follow those commands

e RDU messages preceded by an exclamation point (!) comment character

Request Definition Utility (RDU) Commands 2-7

SET [NOJLOG

You can issue the SET LOG command without specifying a file name. RDU
creates a default file in one of three ways:

e RDU creates a default log file by translating the logical name RDULOG.

e If the system does not have an equivalent name for RDULOG, RDU uses the
file name RDULOG.LOG.

e If a current log file already exists when you issue the SET LOG command
without naming a file, RDU issues a warning and continues to use the current
log file.

The SET LOG command remains in effect for the entire session. If you exit RDU
and reenter, you must issue the SET LOG command again. RDU opens a new log
file.

The SET NOLOG command deactivates logging in RDU. SET NOLOG is the
default. If you want SET LOG to be the default, you can include a SET LOG
command in your RDUINI.COM startup command file.

Examples

rRDU> SET LOG

RDU automatically logs to the RDULOG.LOG file or to the logical translation of
RDULOG.

RDU> SET LOG EMPLREQ.LOG

RDU logs to the EMPLREQ.LOG file.

2-72 Request Definition Utility (RDU) Commands

SET [NO]JVALIDATE

2.25 SET [NO]JVALIDATE Command
Places RDU in Validate or Novalidate mode.

Format

SET [NOJVALIDATE

Prompt
RDU>
Notes

Validate Mode:

By default, RDU is in Validate mode. It checks requests and request library
definitions for valid references to form definitions, record definitions, and
requests.

If you create, replace, or modify a request in Validate mode, RDU checks that:
e The form names and record names you refer to are in the CDD

e The form field names you specify in the request match the form field names in
the CDD form definition

e The record field names you specify in the request match the record field names
in the CDD record definitions

¢ In a %ALL mapping, at least one form field on the active form has an
identically named record field

e The mappings you define in the request are valid mappings:
- The data types and lengths of fields you map to each other are compatible.

- The types of the form and record fields you map are compatible.

If a request is valid, RDU allows you to create, modify, or replace a request in
the CDD. Otherwise, if a single explicit mapping instruction is not valid, RDU
issues error or warning level messages indicating it cannot validate the request.

Request Definition Utility (RDU) Commands 2-73

SET [NO]JVALIDATE

If the request contains only %ALL mappings, RDU creates only those mappings
that are valid and stores the request in the CDD.

If you create, modify, or replace a request library definition in Validate mode,
RDU checks that the requests you specify are in the CDD.

If they are in the CDD, RDU allows you to create, modify, or replace a request
library definition. Otherwise RDU displays an error level message indicating why
it cannot create, modify, or replace the request library definition.

You can create, modify, and replace requests or library definitions in Validate
mode only if they contain correct references and mappings.

In Validate mode, if you use the /STORE qualifier with a CREATE REQUEST,
MODIFY REQUEST, REPLACE REQUEST, or VALIDATE REQUEST command,
RDU will store the corresponding request binary structure in the CDD. If you use
the /STORE qualifier in Validate mode with a VALIDATE LIBRARY command,
RDU will store the request binary structure for each request contained in the
request library definition.

Once the request binary structures are stored in the CDD, RDU will revalidate
the requests during execution of a BUILD LIBRARY command only when any
related forms or records have changed. This process decreases the amount of time
needed to build a request library file.

/STORE is the default for Validate mode.
Novalidate Mode:

If RDU is in Novalidate mode, you can create, modify, or replace requests and
request library definitions in the CDD, and RDU does not check for correct
mappings or references to forms, records, or requests.

After you issue a SET NOVALIDATE command, RDU remains in Novalidate
mode until the SET VALIDATE command is issued or you exit RDU.

In Novalidate mode, if you use the /STORE qualifier with a CREATE REQUEST,
MODIFY REQUEST, REPLACE REQUEST, or VALIDATE REQUEST command,
RDU will signal an error and will not perform the appropriate operation.

If you use the /NOSTORE qualifier when RDU is in Validate mode, RDU will not
store any request binary structures in the CDD. The size of the CDD will
decrease, but the time needed to build a request library file will increase.

2-74 Request Definition Utility (RDU) Commands

SET [NO]JVALIDATE

You should use the /NOSTORE qualifier only when RDU is in Novalidate mode
or CDD space is limited.

/NOSTORE is the default in Novalidate mode.
Examples

RDU> SET VALIDATE

Places RDU in the Validate mode. RDU checks all requests or request library
definitions you create, modify, or replace in this mode for valid references and
mapping instructions.

RDU> SET NOVALIDATE

Places RDU in the Novalidate mode. RDU does not check all requests or request
library definitions you create in this mode for valid references and mapping
instructions. If a request does contain incorrect mappings or references, you
cannot build a request library file until you correct those errors.

Request Definition Utility (RDU) Commands 2-75

SET [NO]VERIFY

2.26 SET [NO]JVERIFY Command

Enables the display (on a terminal) or printing of the contents of RDU command
procedures.

Format

SET [NOJVERIFY

Prompt

RDU>

Notes

By default, RDU is set to:

e Noverify in Interactive mode. When RDU executes commands from an indirect
command file, it does not display those commands to SYS$OUTPUT.

e Verify in Batch mode. In Batch mode, RDU writes the command it is executing
to the batch log file.

The RDU default can be changed by a SET [NOJVERIFY command in either a
command procedure you explicitly invoke or in your RDUINI.COM file.

Examples

RDU> SET YERIFY
RDU> BEMPREQ

Places RDU in Verify mode. When you pass the command file EMPREQ.COM to
RDU, it displays the commands it executes from that file.

RDU>» SET NOVERIFY
rRDU> BACCTREQ

Places RDU in Noverify mode. When you pass the command file ACCTREQ.COM
to RDU, it does not display the commands it executes from that file.

2-76 Request Definition Utility (RDU) Commands

SHOW DEFAULT

2.27 SHOW DEFAULT Command
Displays the current CDD default directory.

Format

SHOW DEFAULT

Prompts
RDU >

%

Note

Shows the current CDD default directory. You can define the default in RDU by
using the SET DEFAULT command or at DCL level by using the DEFINE
command to set CDD$DEFAULT to the desired CDD directory.

Example

RDU:> SHOW DEFAULT
current CDD default path is ‘CDD$TOP.TEST’

Indicates that the current default directory setting is CDD$TOP.TEST. When
you process (create, list, and so on) requests or request library definitions using
the given name or a relative path name, RDU will look for or store the
definitions in CDD$TOP.TEST.

Request Definition Utility (RDU) Commands 2-77

SHOW LOG

2.28 SHOW LOG Command

Displays information about the current logging status of RDU.

Format

SHOW LOG

Prompt
RDU:
Note

The SHOW LOG command tells whether logging is taking place, and, if so, the
name of the file to which the log is written. If logging is not taking place, RDU
indicates that logging is not taking place to RDULOG.

Example

RDU> SHOW LOG
not lodgind to file RDULOG

RDU indicates it is not logging to a default file.

2-78 Request Definition Utility (RDU) Commands

SHOW VERSION

2.29 SHOW VERSION Command
Displays information about the current version of RDU to SYS$OUTPUT.

Format

SHOW VERSION

Prompt

RDU>
Example

RDU> SHOW YERSION
UAX RDU V1.6-0

RDU shows the version of the utility you are running.

Request Definition Utility (RDU) Commands 2-79

VALIDATE LIBRARY

2.30 VALIDATE LIBRARY Command

Determines whether a request library definition in the CDD is valid. If RDU is in
Store mode, the VALIDATE LIBRARY command also creates a request binary
structure in the CDD for each request in the request library definition.

Format
VALIDATE LIBRARY request-library-path-name
Command Qualifiers Defaults
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOJLOG /NOLOG
/[NO]JSTORE /STORE
Prompts

RDU

$

Command Parameter

request-library-path-name

The CDD path name (given, relative, or full) of the request library definition
that you want to validate.

Command Qualifiers

/AUDIT

Stores audit text with the request library definition. The standard default
audit text includes the date and time you validate the request library
definition and the name of the utility (RDU). /AUDIT is the default.

2-80 Request Definition Utility (RDU) Commands

VALIDATE LIBRARY

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can indicate
information such as when the request library definition is created, accessed, or
changed.

If you specify more than 64 lines of audit text, RDU issues a warning message
and truncates the audit text.to 64 lines.

For more information, see the beginning of this chapter.
/LOG
Displays on the terminal screen messages that indicate:

e The request names and the form and record definition names that are
referenced in the request library definition

e The mappings that are correct for all the %ALL mapping instructions in
the request

o The mappings that are incorrect for all the %ALL mapping instructions in
the request

o Whether or not the operation successfully completed

RDU does not generate messages about the individual explicit mappings that
are correct. /NOLOG is the default.
/NOLOG

Displays no messages on the terminal indicating that RDU has successfully
completed the operation. Also does not display informnation about request
names and form and record definition names or mapping messages. /NOLOG
is the default.

/STORE

Creates a request binary structure for each of the requests that the request
library refers to and stores these request binary structures in the CDD.
/STORE is the default in Validate mode.

/NOSTORE

Does not store the request binary structures in the CDD. /STORE is the
default in Validate mode.

Request Definition Utility (RDU) Commands 2-81

VALIDATE LIBRARY

Notes

You can use this command to determine whether a request library definition that
you have created is valid, that is, whether the requests named in the library
definition:

e Exist in the CDD

e Contain correct references to CDD forms and records and specify legal
mappings (are valid requests)

If the requests do not exist or if they contain reference or mapping errors (are
invalid requests), RDU displays error messages. RDU indicates which, if any,
requests are not valid. See VALIDATE REQUEST for further explanation about

valid requests.

You can use this command to determine if a request library is valid and points to
valid requests without having to build a request library file.

You can issue this command when RDU is in either Novalidate or Validate mode.
In either case, RDU performs full validation.

Validation of a request proceeds in three phases:

1. If the request was validated previously, RDU checks that any related
forms or records have not changed. If so, the request is valid.

2. If the request has not been validated previously, or if any related forms or
records have changed, RDU validates the request.

3. RDU stores the request binary structure in the CDD. This third phase
occurs only if:

o The second phase was necessary
e The validation process completed successfully
e RDU is in Store mode

When you use the VALIDATE LIBRARY command, RDU is in Validate mode and
the default is /STORE. If the request binary structure is stored with the request,
then the BUILD LIBRARY command revalidates the request only if an
associated form or record has changed since the request binary structure was
created.

2-82 Request Definition Utility (RDU) Commands

VALIDATE LIBRARY

Examples

RDU» VALIDATE LIBRARY EMPLOYEE_LIBRARY

RDU checks EMPLOYEE _LIBRARY in your default CDD directory for correct
references to requests, forms, and records and for correct mapping instructions. If
RDU is in Store mode, the VALIDATE LIBRARY command also creates a request
binary structure for each request in the request library definition.

$ RDU VALIDATE LIBRARY CDD$TOP.SAMPLE.EMPLOYEE_LIBRARY

RDU checks EMPLOYEE _LIBRARY in the CDD directory CDD$TOP.SAMPLE
for correct references to requests, forms, and records and for correct mapping
instructions. If RDU is in Store mode, the VALIDATE LIBRARY command also
creates a request binary structure for each request in the request library
definition.

Request Definition Utility (RDU) Commands 2-83

VALIDATE REQUEST

2.31 VALIDATE REQUEST Command

Checks a request for correct references to form and record definitions and for
legal mappings. If RDU is in Store mode, the VALIDATE REQUEST command
also creates a request binary structure and stores it in the CDD with the request.

Format

VALIDATE REQUEST request-path-name

Command Qualifiers Defaults

/[NOJAUDIT /AUDIT

/AUDIT = audit-string /AUDIT

/[NOJLOG /NOLOG

/INOJSTORE /STORE
Prompts

RDU >

3

Command Parameter

request-path-name

The CDD path name (given, relative, or full) of the request that you want to

validate.

Command Qualifiers

/AUDIT

Stores audit text with the request. The standard default audit text includes
the date and time you validate the request and the name of the utility

(RDU). /AUDIT is the default.

2-84 Request Definition Utility (RDU) Commands

VALIDATE REQUEST

The optional audit string consists of one or more single words, quoted strings,
text from a file, or a combination of these three items. A list of items must be
enclosed in parentheses and separated by commas. The audit string can
indicate information such as when the request is created, accessed, or
changed.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

For more information, see the beginning of this chapter.

/LOG
Displays on the terminal screen messages that indicate:

e The request names and the form and record definition names that are
referenced in the request library definition

e The mappings that are correct for all the %ALL mapping instructions in
the request

¢ The mappings that are incorrect for all the %ALL mapping instructions in
the request

o Whether or not the request is valid

(RDU does not generate messages about the individual explicit mappings
that are correct.) /NOLOG is the default.

/NOLOG
Displays no messages on the terminal indicating that RDU has successfully
completed the operation. Also does not display information about request
names and form and record definition names or mapping messages. /NOLOG
is the default.

/STORE
Stores the request binary structure in the CDD. /STORE is the default in
Validate mode.

/NOSTORE

Does not store the request binary structure in the CDD. /STORE is the
default in Validate mode.

Request Definition Utility (RDU) Commands 2-85

VALIDATE REQUEST

Notes

You can use this command to determine if a request you create is valid. The
VALIDATE REQUEST command verifies that:

o The form names and record names you refer to are in the CDD

o The form field names you specify in a request match the form field names in
the CDD form definition '

e The record field names you specify in a request match the record field names
and structures in the CDD record definition

e The mappings you define in the request are correct:

- The data types and lengths of fields you map to each other are compatible.
- The types of the form and record fields you map are compatible.

You use this command if you wish to validate requests before you issue a BUILD
command.

You can issue this command when RDU is in either Validate or Novalidate mode.
In either case, RDU performs full validation.

Validation of a request proceeds in three phases:

1. If the request was validated previously, RDU checks that the related forms
and records have not changed. If they have not, the request is valid.

2. If the request has not been validated previously, or if any related forms or
records have changed, RDU validates the request.

3. RDU stores the request binary structure in the CDD. This third phase
occurs only if:

e The second phase was necessary
e The validation process completed successfully

e RDU is in Store mode

2-86 Request Definition Utility (RDU) Commands

VALIDATE REQUEST

When you use the VALIDATE REQUEST command, RDU is in Validate mode
and the default is /STORE. If the request binary structure is stored with the
request, then the BUILD LIBRARY command revalidates the request only if an
associated form or record has changed since the request binary structure was
created.

Examples

RDU> VALIDATE REQUEST EMPLOYEE_REQUEST

RDU checks that EMPLOYEE _REQUEST in your default CDD directory
contains correct references to forms and records and correct mapping instruc-
tions. If RDU is in Store mode, the VALIDATE REQUEST command also creates
a request binary structure for the request.

$ RDU VALIDATE REQUEST CDD$TOP.ACCOUNTING.EMPLOYEE_REQUEST

Checks that EMPLOYEE _REQUEST in the CDD directory
CDD$TOP.ACCOUNTING contains correct references to forms and records and
correct mapping instructions. If RDU is in Store mode, the VALIDATE
REQUEST command also creates a request binary structure for the request.

Request Definition Utility (RDU) Commands 2-87

Request and Request Library Instructions

This chapter provides complete information on the syntax and use of all the
request and request library definition instructions. The instructions are in
alphabetical order.

Each section contains the following categories, as applicable:

Format Provides the syntax for the instruction.

Prompts. Shows the prompts for each command.
Instruction Parameters Explains each parameter.

Instruction Modifiers Explains each modifier and how to use it.

Notes Provides information about using the instruction.
Examples Provides examples of the instruction.

Note that instruction keywords (required words) should not be used in requests

or libraries for names of requests, forms, records, request library definitions,
record or field names, or any other variable names.

[NO] BLINK FIELD

3.1 [NO] BLINK FIELD Instruction

Sets or clears the blinking video attribute of a field on an active form.

Format

form-field[,...] .
[NO] BLINK FIELD { %ALL } ;

Prompt

RDUDFN

Instruction Parameters

form-field

The name assigned to the form field. The field must be on the active form.
You can specify one form field or a list of form fields separated by commas.

%ALL
All the fields on the active form.
Notes
If you specify the BLINK or NO BLINK instruction in a request, it overrides:
e A Blink or No Blink attribute assigned in a form definition.

e A BLINK or NO BLINK instruction that is still active from a previous request
call. A video instruction is still active when:

- A form is still on the screen from a previous request call

— The current call to a request uses that same form with a USE FORM
instruction

At run time, a BLINK or NO BLINK instruction used within a conditional
instruction supersedes one in a base request or any outer conditional instruction.

3-2 Request and Request Library Instructions

[NO] BLINK FIELD

Only the Blink or No Blink attribute of the form field is affected. All other video
attributes of the field and the content of the field remain unchanged. For

instance, if you specify a BOLD instruction in addition to a BLINK instruction,
the field is both bolded and blinking.

The BLINK instruction is ignored if you run a TDMS application on a VT52
terminal.

Examples

RDUDFN:> NO BLINK FIELD DEPARTMENT]

Sets the form field DEPARTMENT to no blinking.

RDUDFN> BLINK FIELD NAME:. BADGE:s SEX3

Sets the form fields NAME, BADGE, and SEX to blinking.

RDUDFN:> BLINK FIELD Z%ALL:

Sets all the fields on the active form to blinking.

Request and Request Library Instructions 3-3

[NO] BOLD FIELD

3.2 [NO] BOLD FIELD Instruction
Sets or clears the bolding video attribute of a field in an active form.

Format

form-field[,...] .
[NO] BOLD FIELD { %ALL } ;

Prompt

RDUDFN:

Instruction Parameters

form-field

The name assigned to the form field. The field must be on the active form.
You can specify one form field or a list of form fields separated by commas.

%ALL
All the fields on the active form.
Notes
If you specify the BOLD or NO BOLD instruction in a request, it overrides:
e A Bold or No Bold attribute assigned in a form definition.

e A BOLD or NO BOLD instruction that is still active from a previous request
call. A video instruction is still active when:

— A form is still on the screen from a previous request call

- The current call to a request uses that same form with a USE FORM
instruction

At run time, a BOLD or NO BOLD instruction used within a conditional
instruction supersedes one in a base request or any outer conditional instruction.

3-4 Request and Request Library Instructions

[NO] BOLD FIELD

Only the Bold or No Bold attribute of the form field is affected. All other video
attributes of the field and the content of the field remain unchanged. For
instance, if you specify a BLINK instruction in addition to a BOLD instruction,
the field will be both bolded and blinking.

The BOLD instruction is ignored if you run a TDMS application on a VT52
terminal.

Examples

RDUDFN:> BOLD FIELD NAME: BADGE, SEXj

Bolds the form fields NAME, BADGE, and SEX.

RDUDFN:> NO BOLD FIELD NAMES

Clears the Bold attribute for the form field NAME.

RDUDFN> BOLD FIELD %ALLS

Bolds all the fields on the active form.

Request and Request Library Instructions 3-5

[NO] CLEAR SCREEN

3.3 [NO] CLEAR SCREEN Instruction
Clears or does not clear the terminal screen before displaying a form.

Format

[NO] CLEAR SCREEN;

Prompt

RDUDFN

Notes

The CLEAR SCREEN instruction ensures that the screen is clear of system
messages or other information before TDMS displays a form on the screen.

TDMS executes a CLEAR SCREEN or NO CLEAR SCREEN instruction before
executing any form usage or mapping instructions.

You might want to use this instruction at the beginning of every request, before
TDMS displays a form specified in the USE FORM or DISPLAY FORM
instruction. Note that the CLEAR SCREEN instruction repaints the entire screen
and can be very slow.

At run time, a CLEAR SCREEN or NO CLEAR SCREEN instruction used within
a conditional instruction supersedes one in a base request or any outer
conditional instruction.

Examples

RDUDFN> CLEAR SCREENS

Clears the terminal screen.

RDUDFN> NO CLEAR SCREEN3

Does not clear the terminal screen.

3-6 Request and Request Library Instructions

CONTROL FIELD IS

3.4 CONTROL FIELD IS Instruction

Specifies that request instructions be executed only if specific conditions exist in
an application program.

Format

CONTROL FIELD IS record-field

quoted-string : match-instruction;

[...]

[ANYMATCH : match-instruction;
]

[..

[NOMATCH : match-instruction;
]

[..
END CONTROL FIELD;

Prompt

RDUDFN

Instruction Parameters

record-field

A record field in the CDD record definition used by the request. The record
field you specify is called the control value. It can be a simple field or an
array field and must have a data type of TEXT.

If the control value is an array (with a range of contiguous subscript values),
the set of subscript values is called a dependent range. The dependent range
determines the values of two variable subscripts (dependent names): %LINE
and %ENTRY. (See Chapter 9 in the VAX TDMS Request and Programming
Manual, Using an Array as a Control Value, for more information.)

Note that the words “CONTROL FIELD IS record-field” are not followed by a
semicolon.

Request and Request Library Instructions 3-7

CONTROL FIELD IS

quoted-string

Any text string enclosed in double or single quotation marks. TDMS tests the
quoted string value against the control value. If the values match, TDMS
executes the match instructions following the quoted string. The quoted
string must be followed by a colon. The string must be no longer than the
matching control field and it cannot exceed a single line.

If you embed single or double quotation marks within a quoted string, obey
the following rules:

e If the string is enclosed within single quotation marks, use either:
— Double quotation marks within the string:
‘system “down” at 5:00 p.m.’
- Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
e If the string is enclosed within double quotation marks, use either:
- Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
- Two sets of double quotation marks within the string:
“system ““down”” at 5:00 p.m.”

TDMS does not distinguish between uppercase and lowercase letters in case
values. For example, TDMS treats the following as equal: “yes”, “YeS”,
“YES”.

ANYMATCH:

A keyword. TDMS executes the match instructions following the
ANYMATCH keyword if the value in a control value matches any quoted
string case value associated with that CONTROL FIELD IS instruction.

You must use a colon (:) after the ANYMATCH keyword.

NOMATCH:

3-8

A keyword. TDMS executes the match instructions following the NOMATCH
keyword if the value in a control value does not match any quoted string case
value associated with that CONTROL FIELD IS instruction.

Request and Request Library Instructions

CONTROL FIELD IS

You must use a colon (:) after the NOMATCH keyword.

match-instruction
Any legal request instruction except request header instructions:

e FORM IS
e RECORD IS

Notes

When an application program calls a request containing a conditional instruction
(CONTROL FIELD IS), TDMS evaluates the case values you specify. If any of
these case values match the value in the control value, TDMS executes the match
instructions following the case value.

The value in the control value is typically placed there by the action of the
program. However, you can design a request that maps values to the control
value, either directly from the operator or from literals within the request.

You can specify any number of CONTROL FIELD IS instructions in a single
request. However, if you do use more than one CONTROL FIELD IS instruction,
you must make sure there are no conflicting instructions. For example, the
following conditional request would give unpredictable results: two literal
messages are mapped to a single form field depending on previous operator
input. In this example, only one of the messages is sent to the form, and the
other message is ignored.

CONTROL FIELD IS CONTROL_EMPLOYEE_GENDER

"M": OUTPUT "MALE" TO GENDER_FRM_FIELD3;
"F": OUTPUT "FEMALE" TO GENDER_FRM_FIELDS?

END CONTROL FIELD;:
CONTROL FIELD IS CONTROL_-EMPLOYEE_DEPENDENT

"¥*: QUTPUT "YES" TO GENDER_FRM_FIELD;
"N": OUTPUT "NO" TO GENDER_FRM_FIELD3;

END CONTROL FIELD;S

You can also nest conditional instructions; that is, you can specify an inner
CONTROL FIELD IS instruction following a case value. If you do nest
conditional instructions, TDMS executes the inner conditional instruction only if
the outer case value and control field value match.

Request and Request Library Instructions 3-9

CONTROL FIELD IS

TDMS executes the request instructions within conditional requests in the
following order:

1. Output instructions in the base request
2. Output instructions in the outer control field

3. QOutput instructions in the nested control field

After executing the output instructions, TDMS executes the input instructions in
the same order, proceeding from the base request to the innermost nested control
field.

You can nest conditional instructions as many times as you want (unless your
control field is an array). As with multiple control fields, you must be careful to
avoid conflicting nested mapping instructions. Because TDMS executes nested
instructions last, if there is a run-time conflict, the inner instructions supersede.
At run time, then, in the case of conflicting mappings, the operator sees only the
innermost output or input mappings.

If the control field is an array with a dependent range (rather than a single
subscript or a series of single subscript values) you cannot nest another array
control field. See Chapter 9 in the VAX TDMS Request and Programming
Manual on Using an Array As a Control Value, for more information on
dependent ranges.

You can use conditional instructions to:

o Reduce the number of requests you write for a single application

¢ Remove conditional expressions such as IF-THEN-ELSE or SELECT-CASE OF,
and the resulting statement execution, from program code and place them
within a request

o Simplify maintaining and developing an application by placing all the terminal
1/0 instructions and logic within a single request

e Provide a convenient way to validate data from each form field and display
error messages relating to operator input

3-10 Request and Request Library Instructions

CONTROL FIELD IS

Examples
RDUDFN: FORM IS CDD$TOP.EMPLOYEE_INITIAL_FORM;
RDUDFN> FORM IS CDD$TOP.EMPLOYEE_MENU_FORM3

RDUDFN:> RECORD IS CDD$TOP.EMPLOYEE_RECORD:
RDUDFN> RECORD IS COD$TOP.EMPLOYEE_COND_WORKSPACE

RDUDFN >

RDUDFN CLEAR SCREEN3

RDUDFN '

RDUDFN* CONTROL FIELD IS START_PROGRAM

RDUDFN

RDUDFN "FIRST":

RDUDFN DISPLAY FORM EMPLOYEE_INITIAL_FORM;
RDUDFN RETURN " " TO START_PROGRAMS
RDUDFN WAITS

RDUDFN >

RDUDFN > NOMATCH:

RDUDFN DISPLAY FORM EMPLOYEE_MENU_FORM3
RDUDFN > INPUT SELECTION TO SELECTIONS
RDUDFN INPUT EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER}:
RDUDFN >

RDUDFN> END CONTROL FIELD3

RDUDFN:> END DEFINITION;S

When the application program calls this request the first time, because the string
“FIRST” is in the control value, TDMS executes the instructions following the
case value “FIRST”. The RETURN TO instruction clears the control value
START _PROGRAM. The second time the program calls the request, because the
control value no longer matches “FIRST”, TDMS executes the instructions
following the NOMATCH case value. It displays the employee menu form and
collects a menu selection and employee number from the operator.

RDUDFN> CONTROL FIELD IS JOB.CODE

RDUDFN "H": OUTPUT "Hourlv" TO WAGE_FIELD;

RDUDFN "§": QUTPUT "Salaried" TO WAGE_FIELDS

RDUDFN *

RDUDFN = CONTROL FIELD IS BENEFIT_CODE

RDUDFN = "S§": DUTPUT "Participating in stocK option" TO BENEFITS_FIELD:
RDUDFN = NOMATCH: OUTPUT “No benefits" TO BENEFITS_FIELD;

RDUDFN > END CONTROL FIELD]H

RDUDFN =

RDUDFN: END CONTROL FIELD:

When the application program calls this request, TDMS executes the outer
output instruction first, displaying either “Hourly” or “Salaried” in the form field
WAGE _FIELD. It executes the nested output instruction second, displaying
either “Participating in stock option” or “No benefits” in the form field
BENEFITS _FIELD. Note that you can specify either lowercase or uppercase
characters as case values.

Request and Request Library Instructions 3-11

[NO] DEFAULT FIELD

3.5 [NO] DEFAULT FIELD Instruction
Displays the default field contents specified in the form definition.

Format

’

[NO] DEFAULT FIELD { form-field(,...] }

%ALL

Prompt

RDUDFN

Instruction Parameters

form-field
The name of the form field you want to be displayed with default values. The
field must be on the active form. You can specify a single form field or a list
of form fields separated by commas.

%ALL
All the fields on the active form.

Notes

Only the contents of the named fields are reset, not the video attributes.

You may want to use this instruction in conjunction with the USE FORM
instruction to display the form with previously entered field contents except for
particular fields.

At run time, a DEFAULT FIELD or NO DEFAULT FIELD instruction used
within a conditional instruction supersedes one in a base request or any outer
conditional instruction.

3-12 Request and Request Library Instructions

[NO] DEFAULT FIELD

Examples

RDUDFN> USE FORM EMPLOYEE_FORM3
RDUDFN: DEFAULT FIELD EMPLOYEE:

Displays EMPLOYEE _FORM with the contents from the immediately previous
request call, except for the field EMPLOYEE. Resets the contents of the form
field EMPLOYEE to dlsplay the contents in the form definition for the field
EMPLOYEE.

RDUDFN: NO DEFAULT FIELD EMPLOYEE: BADGEs DEPT3

Specifies that the contents of the form fields EMPLOYEE, BADGE, and DEPT
not be the defaults specified in the form definition.

Request and Request Library Instructions 3-13

DESCRIPTION

3.6 DESCRIPTION Instruction

Specifies comment text that is stored with the source text of the request in the
CDD.

Format
/™ describtive-text *..
DESCRIPTION /™ descriptive-text
descriptive-text
*/
Prompt
RDUDFN >

Instruction Parameter

descriptive-text

Text you wish to store with the request or request library definition in the
CDD. The text must be enclosed between each slash and asterisk
combination:

/* and */

Notes

You can use the DESCRIPTION instruction anywhere in the body of the request
or request library definition except embedded in a request instruction or a
request library definition instruction. The text may describe the purpose of a
request or request library definition or some special feature you wish to
document.

You must use a semicolon (;) at the end of a DESCRIPTION instruction.

The text is printed out if you use the LIST command to list a request or request
library definition.

You can also use an exclamation mark (!) anywhere within the request to
indicate a comment.

3-14 Request and Request Library Instructions

DESCRIPTION

Examples

RDUDFN> FORM IS EMPLOYEE_EORM;

RDUDFN* DESCRIPTION /% This form collects all

RDUDFN™ operator input data for EMPLOYEE_REC. The
RDUDFN* badde number of an emplovee is displaveds» and
RDUDFN. all other form fields (NAME, ADDRESS, DEPARTMENT)
RDUDFN: are input fields.x/3

The descriptive text on the form is stored after the FORM IS instruction. The
DESCRIPTION instruction cannot be embedded in another instruction.

RDUDFN'* DESCRIPTION
RDUDFN* /% This request library definition names all
RDUDFN> the requests used in the Emplovee application /3

The descriptive text can span several lines.

Request and Request Library Instructions 3-15

DISPLAY FORM

3.7 DISPLAY FORM Instruction

Displays the specified form with its form-defined defaults. Sets the active form
for the request.

Format

DISPLAY FORM form-name [WITH OFFSET offset-value];

Prompt

RDUDFN

Instruction Parameter

form-name
The form name can be either:

e The given name of an existing form definition.

e The unique form name specified in the WITH NAME clause of the FORM
IS instruction. If the WITH NAME clause is specified in the FORM IS
instruction, you must use this parameter.

Instruction Modifier

WITH OFFSET offset-value

The keywords WITH OFFSET and a number that specifies a beginning line
at which the form is displayed on the screen. The offset value is added to the
number of the line where the form would be displayed without the WITH
OFFSET modifier. The offset value is a number between 0 and +22. The
plus sign preceding the number is optional.

When you validate the request or build the request library file, if the offset
value you specify would cause any portion of the form to be displayed past
the 23rd line of the screen, RDU issues an error level message and does not
build the request library file.

3-16 Request and Request Library Instructions

DISPLAY FORM

Notes

The form you specify in the DISPLAY FORM instruction is the active form; that
is, it is the only form to and from which data can be mapped during that call to
the request.

If the form you specify already appears on the screen from a previous request
call, TDMS discards all the data on the form and resets the field contents and
field video to the form-defined defaults.

If you specify output mappings or video changes with a DISPLAY FORM
instruction, the output instructions override the form-defined defaults.

Examples

RDUDFN> DISPLAY FORM EMPLOYEE_STATUS_FORM WITH OFFSET Z3

Displays the form EMPLOYEE _ STATUS_FORM beginning on line 3 of the
screen. That is, WITH OFFSET 2 causes the form to be displayed two lines below
where it would be displayed if no WITH OFFSET modifier were used.

RDUDFN: FORM IS EMPLOYEE_STATUS_FORM WITH NAME EMP_FORM]
RDUDFN: DISPLAY FORM EMP_FORM3

Displays the form EMPLOYEE _ STATUS_FORM, using the unique name
EMP _FORM specified in the FORM IS instruction.

Request and Request Library Instructions 3-17

END DEFINITION

3.8 END DEFINITION Instruction

Indicates the end of a request or a request library definition.

Format

END DEFINITION;

Prompt

RDUDFN

Notes

The END DEFINITION instruction must be the last instruction in every request
and request library definition. It must always be followed by a semicolon.

In a request, the END DEFINITION instruction causes RDU to stop accepting
request instructions and checking for syntax errors. In Validate mode, RDU then
begins checking for mapping errors. In Novalidate mode, RDU does not check for
mapping errors.

When the error checking is done, RDU returns you to the RDU> prompt (or to
the DCL prompt if you are at DCL level).

In a request library definition, the END DEFINITION instruction causes RDU to
stop accepting request library definition instructions and checking for syntax
errors.

When the error checking is done, RDU returns you to the RDU> prompt (or to
the DCL prompt if you are at DCL level).

Example

RDUDFN: END DEFINITIONS
RDU

Ends the current request definition (assuming this is a request). If there are no
syntactic errors in the request source text and the mappings are valid (if RDU is
in Validate mode), RDU stores the request in the CDD and returns to the RDU>
prompt.

3-18 Request and Request Library Instructions

FILE IS

3.9 FILE IS Instruction

Identifies the name of a request library file that RDU creates if you issue the
BUILD LIBRARY command.

Format

FILE IS “file-spec”;

Prompt

RDUDFN

Instruction Parameter

“file-spec”

The standard VMS file specification format. It must be enclosed in matched
double or single quotation marks. You can include the full file specification
using the format:

“node::device:[directory]filename.type;version”

You can use defaults for any element of the file specification other than the
file name. The default file type is .RLB.

The file specification can also be a logical name that RDU translates when
the request library file is built.

Notes
You can use no more than one FILE IS instruction in a request library definition.

If you do not use the FILE IS instruction, RDU looks for a request library file
specification in the BUILD command when it builds a request library file.

If you do not specify a file in either the request library definition with a FILE IS
instruction or in the BUILD command, RDU issues an error message and does
not build a request library file.

Use this instruction only when creating, modifying, or replacing a request library
definition in the CDD.

Request and Request Library Instructions 3-19

FILE IS

Examples

RDUDFN> FILE IS "DBA1:[SMITHIPERSONNEL .RLB"}

Specifies that RDU name a request library file PERSONNEL.RLB on disk DBA1,
directory SMITH.

RDUDFN:» FILE IS ‘DEPARMT.RLB’;

Specifies that RDU name a request library file DEPARMT.RLB in your VMS
default directory.

3-20 Request and Request Library Instructions

FORM IS

3.10 FORM IS Instruction

Identifies a form or forms to be used in a request or included in a request library
definition.

' Format

{ FORM IS

FORMS ARE } form-path-name [WITH NAME unique-form-namel],...;

Prompt

RDUDFN

Instruction Parameter

form-path-name
The CDD path name (given, relative, or full) of an existing form definition.

Note that the name you use in a request is usually the same as the path
name stored in the CDD directory. You can, however, use a logical name
different from the CDD path name.

Two forms, or a record and a form, cannot use the same name within the
body of a request or a request library definition. If two form given names, or
a form given name and a record given name are the same, you must specify a
unique name using the WITH NAME modifier. Otherwise, RDU displays an
error message and does not process the request or request library definition.

Instruction Modifier

WITH NAME unique-form-name

The keywords WITH NAME and a name which no other form or record can
have within the request or request library definition. You must use the
WITH NAME modifier to specify a unique form name if two forms, or a form
and a record, in your request have the same given name, or if two forms, two
requests, or a form and a request in your request library definition have the
same given name. The unique form name must conform to the rules for a
CDD given name.

Request and Request Library Instructions 3-21

FORM IS

The unique form name, if specified, is the one you use in subsequent
DISPLAY FORM and USE FORM instructions within the body of a request.
If the unique name is not specified, use the given name.

Notes

The form named in the FORM IS instruction must exist in the CDD if you are
running RDU in Validate mode (the default mode). If RDU is not in Validate
mode, it does not check for the existence of the specified form definition.

The FORM IS instruction can be used in both a request and a request library
definition.

If the FORM IS instruction is used in a request, it must appear in the header
portion of a request. You cannot define mappings to a form unless you identify
that form in a FORM IS instruction and either a DISPLAY FORM or a USE
FORM instruction.

You can specify many FORM IS instructions in a single request. However, you
cannot specify Help forms, and you must specify only forms that are used in the
DISPLAY FORM or USE FORM instructions within a request.

There is no restriction on the number of FORM IS instructions in a request
library definition.

TDMS, however, can map data to and from, or manipulate the contents or video
attributes of, only one form during a single call to a request. That is, only one
form is active during a single request call. You indicate which form is active by
using the DISPLAY FORM or USE FORM instruction.

3-22 Request and Request Library Instructions

FORM IS

For example, a request can contain the following instructions:

FORMS ARE EMPLOYEE_FORM;:
ACCOUNTING_FORM
PERSONNEL_FORM 3

RECORD IS EMPLOYEE_RECORD?

CONTROL FIELD IS SELECT_FORM_CODE

"EMPL": USE FORM EMPLOYEE_FORM3
INPUT EMPLOYEE_BADGE TO EMPLOYEE_BADGE]

"ACCT": USE FORM ACCOUNTING_FORM3
INPUT SALARY_CLASS TO SALARY_CLASSS

"PERS": USE FORM PERSONNEL_FORM3
INPUT DEPARTMENT_NO TO DEPARTMENT_NOS

END CONTROL FIELDS

END DEFINITIONS

When an application program calls this request, TDMS selects only one of the
forms to map data to and from, depending on the value in the control value.

To use TDMS forms with DATATRIEVE, you include a FORM IS instruction in a
request library definition. For more information, see the chapter on using forms
with DATATRIEVE in the VAX TDMS Forms Manual.

Examples

RDUDFN» FORM IS EMPLOYEE_FORM3

Specifies a form, EMPLOYEE _FORM, using the given name.

RDUDFN: FORM IS CDD$TOP.ACCOUNTING.PAYROLL.EMPLOYEE_FORM]

Specifies a form, CDD$TOP.ACCOUNTING.PAYROLL.EMPLOYEE _FORM,
using the full path name.

Request and Request Library Instructions 3-23

FORM IS

RDUDFN> FORM IS CDD$TOP.ACCOUNTING.EMPLOYEE WITH NAME ACCOUNT_FORM;
RDUDFN: FORM IS CDD$TOP.FINANCE.EMPLOYEE WITH NAME FINANCE_FORMS3

Specifies two forms, CDD$TOP.ACCOUNTING.EMPLOYEE and
CDD$TOP.FINANCE.EMPLOYEE, using the full path names and the WITH
NAME modifier. In subsequent references to these forms within this request, you
must use the unique names ACCOUNT _FORM and FINANCE _FORM.

RDUDFN* FORMS ARE EMPLOYEE_-FORM: ACCOUNTING_FORM, PERSONNEL_FORM3;

Specifies several forms using the given names.

3-24 Request and Request Library Instructions

%INCLUDE

3.11 %INCLUDE Instruction

Extracts all the text from the specified file and includes it in the current request
or request library definition.

Format

%INCLUDE “file-spec’[;]

Prompt

RDUDFN

Instruction Parameter

“file-spec”

The standard VMS file specification format. It must be enclosed in matched
double or single quotation marks. You can include the full file specification
using the format:

“node::device:[directory]filename.type;version”

You can use defaults for any element of the file specification other than file
name. The default file type is .COM.

The file specification can also be a logical name that RDU translates before it
extracts the text from the file.

Notes

You can issue the ZINCLUDE instruction:

e After you issue an RDU command, such as CREATE REQUEST, and want to
include a file containing source text

e From within a text file that you pass to RDU

The need for a semicolon at the end of the instruction is based on the contents of
the INCLUDE file. If the file ends with a semicolon, you do not need a
semicolon after %INCLUDE. Otherwise, you must use a semicolon after
%INCLUDE.

Request and Request Library Instructions 3-25

%INCLUDE

The text in the %ZINCLUDE file must have the same syntax as if it were entered
directly in RDU. After RDU includes the text from the %INCLUDE file, it
returns to the RDUDFN> prompt (or to the RDU> prompt if an END
DEFINITION instruction is in the INCLUDE file).

The %INCLUDE instruction can be nested to any depth.

The text of a %ZINCLUDE file is not stored in the CDD. If you process a request
or request library definition stored in the CDD that contains a %INCLUDE
instruction, RDU looks for the %INCLUDE file in the VMS directory specified in
the %INCLUDE instruction.

The text of the %INCLUDE file is:

e Displayed to the output file or device defined as SYS$OUTPUT, if SET
VERIFY is in effect

o Placed in the log file preceded by the !%INC> prompt, if SET LOG and SET
VERIFY are in effect

Examples

RDU> CREATE REQUEST EMPLOYEE_REQUEST
RDUDFN: FORM IS EMP_FORM]

RDUDFN: RECORD IS EMP_REC}:

RDUDFN: ZINCLUDE "EMPLOYEE.DAT"]}
RDUDFN: END DEFINITION]

The %INCLUDE file EMPLOYEE.DAT contains the mapping instructions for the
request EMPLOYEE _REQUEST.

RDU>» CREATE REQUEST EMPLOYEE_REQUEST EMPLOYEE.DAT

EMPLOYEE.DAT contains a %INCLUDE instruction that points to a file
containing the request text. For example:

$ TYPE EMPLOYEE.DAT
FORM IS EMP_FORM3;
RECORD IS EMP_REC:
%“INCLUDE "DEPEND.DAT"3
END DEFINITION;

RDU checks the text in the %#INCLUDE file for correct syntax and mapping
instructions. When the EMPLOYEE _ REQUEST is stored in the CDD, it
contains the ZINCLUDE instruction but not the text from the %INCLUDE file.

3-26 Request and Request Library Instructions

INPUT TO

3.12 INPUT TO Instruction

Collects data from one or more form fields and returns it to one or more record
fields.

Format

record-field }

INPUT form-field TO { (record-field[,...])

[,---1;

INPUT %ALL;

Prompt

RDUDFN

Instruction Parameters

form-field

The name of a field on the active form.

record-field

The name of a record field to which TDMS returns the form field data. You
must specify preceding group field names only if they are necessary to make
the reference unique. If you specify a list of record fields, you must enclose
them in matching parentheses and separate the field names with commas.

In RDU, the record name is treated as the top-level group field name. Any
record name you use must be specified in the RECORD IS instruction. If a
unique name is specified in the WITH NAME modifier of the RECORD IS
instruction, you must use the unique name.

RDU always searches all the records you specify in the RECORD IS
instruction for a record field, whether or not you specify the record name.

Even when you use a record name, you cannot always access a record field
name. For more information, see Chapter 6, Rules for Resolving Ambiguous
Field References.

Request and Request Library Instructions 3-27

INPUT TO

%ALL
All the fields on the active form that have identically named record fields.
Notes

INPUT TO is one of three request instructions that move data between a form
and record; the others are OUTPUT TO and RETURN TO.

If the operator does not enter data in a field mapped for input, TDMS returns
one of the following to the receiving record field:

e Data mapped for output during the current request call

e Data in the form field from the immediately previous request call (if no data is
output to the field during the current request call)

e Data associated with the form field by a form definition default (if no other
data is in the field)

TDMS performs input mappings after it executes all output mappings.

When you use explicit syntax, RDU checks the form and record fields you specify
in the INPUT TO instruction to see that:

e The fields exist in the records or forms used by a request
e The fields do not exist more than once in the records or form used by a request

e The mappings defined are valid (in the default Validate mode); that is, that the
data types, structures, lengths, sign conditions, scale factors, and so on, of the
fields are compatible

If RDU finds errors (in the default Validate mode), it returns an error level
message and does not create (or replace, modify, or validate) a request.

You can use the INPUT %ALL instruction if you want to collect data from all the
fields on an active form and return the data to identically named record fields.

3-28 Request and Request Library Instructions

INPUT TO

In a %ALL mapping, RDU does not create the individual mappings if:

e A form field does not have an identically named record field in the records used
by a request

¢ An identically named record field exists more than once in the records used by
a request

e The mapping is not valid; that is, the data types, structures, lengths, scale
factors, sign conditions, and so on of the fields are not compatible

RDU does, however, create (or replace, modify, or validate) the request, unless all
the mappings implied by the %ALL syntax are incorrect.

If /LOG is specified, %ALL mappings will appear:
e In the listing file (if any)
e In the output file or device defined as SYS$OUTPUT

%ALL mappings also appear in the log file if both the SET LOG command and
the /LOG qualifier are specified.

Examples

RDUDFN> INPUT NAME TO BUFFER1.EMPLOYEE_NAMES

Allows the operator to enter data into the form field NAME and to return the
data to the record field EMPLOYEE __NAME within the record BUFFERI.

RDUDFN> RECORDS ARE RECORD_1, RECORD_Z}

RDUDFN INPUT NAME TO RECORD_Z2.EMPLOYEE_NAME
RDUDFN BADGE TO EMPLOYEE_BADGE »
RDUDFN SEX TO EMPLOYEE_SEX;

Collects data from form fields NAME, BADGE, and SEX and returns it to record
fields EMPLOYEE _NAME, EMPLOYEE _BADGE, and EMPLOYEE _ SEX. The
record field EMPLOYEE _NAME is in the record RECORD _2. The other two
record fields may be in RECORD _2 or RECORD__1; RDU searches both records.
The elements in the list of INPUT instructions are separated by commas. The list
is terminated by a semicolon.

Request and Request Library Instructions 3-29

INPUT TO

RDUDFN>» FORM IS STATUS_FORM3
RDUDFN DISPLAY FORM STATUS_FORM;
RDUDFN = INPUT %ALL:

Collects data from all the fields (that have identically named record fields) on the
form STATUS _FORM and returns it to record fields of the same name.

3-30 Request and Request Library Instructions

KEYPAD [MODE] IS

3.13 KEYPAD [MODE] IS Instruction

Specifies whether the terminal keypad is in Application mode or Numeric mode.
This instruction is used in conjunction with the PROGRAM KEY IS instruction.

Format

NUMERIC })

KEYPAD [MODE] IS { APPLICATION

Prompt

RDUDFN =

Instruction Parameters

NUMERIC

When you specify the KEYPAD MODE IS NUMERIC instruction in a
request, the keypad is set to Numeric. Data entered on a keypad when the
keypad is in Numeric mode cannot be received as a PRK. When an operator
presses a key on the keypad, an application program receives the data from
that key as either digits (0-9) or a punctuation mark (period, comma, and
hyphen keys).

APPLICATION
In Application mode, you can use the keypad in program request keys.

Keys you can define as program request keys in Application mode include:
¢ Digits 0-9, comma (,), period (.), hyphen (-)

o The combination of keystrokes: PF1 and any key on the main keyboard
that represents a printable character (except the TAB key)

See the PROGRAM KEY IS instruction.

Notes

Once a keypad mode is set by a call to a request, it remains in that mode for the
life of the TDMS application or until another KEYPAD MODE IS instruction is
executed.

Request and Request Library Instructions 3-31

KEYPAD [MODE] IS

If you define a keypad key as a PRK when TDMS is in Numeric mode, TDMS
does not issue a warning message when it treats the data returned by a program
request key as numeric data.

In a PRK, a key name phrase that begins with KEYPAD can be enabled only if
you place the terminal keypad in Application mode with a KEYPAD IS
APPLICATION instruction.

Examples

RDUDFN> KEYPAD IS NUMERIC:

Places the keypad in Numeric mode for the duration of the application or until
TDMS executes another KEYPAD IS instruction.

RDUDFN> KEYPAD MODE IS APPLICATION;

Places the keypad in Application mode for the duration of the application or until
TDMS executes another KEYPAD IS instruction.

3-32 Request and Request Library Instructions

[NO] LIGHT LIST

3.14 [NO] LIGHT LIST Instruction

Turns keyboard lights off or on.

Format

[NO] LIGHT LIST number-list;

Prompt

RDUDFN

Instruction Parameter

number-list

A list of numbers between 1 and 4, inclusive, separated by commas. Each
number corresponds to one of four lights on the keyboard.

Notes

Specifies that one light, all lights, or a particular set of lights be turned off or on
until you specify another LIGHT LIST or NO LIGHT LIST instruction.

You must specify the number of each light explicitly. To turn off all the lights, for
instance, you must specify the numbers for all of the lights.

If a request turns a light on and does not turn it off again, it stays on even after
the request completes.

Example

RDUDFN: LIGHT LIST i, Z+ 33
RDUDFN: NO LIGHT LIST 4

Lights keyboard lights 1,2,3 and then turns off light number 4. The operator sees
lights 1, 2, and 3.

Request and Request Library Instructions 3-33

MESSAGE LINE IS

3.15 MESSAGE LINE IS Instruction
Writes the specified data to line 24 of the terminal.

Format

MESSAGE LINE Is] record-field }
quoted-string

Prompt

RDUDFN

Instruction Parameters

record-field

The name of a record field from which TDMS copies data. You must specify
preceding group field names only if they are necessary to make the reference
unique.

In RDU, the record name is treated as the top-level group field name. Any
record name you use must be specified in the RECORD IS instruction. If a
unique name is specified in the WITH NAME modifier of the RECORD IS
instruction, you must use the unique name.

RDU always searches all the records you specify in the RECORD IS
instruction for a record field, whether or not you specify the record name.

Even when you use a record name, you cannot always access a record field
name. For more information, see Chapter 6, Rules for Resolving Ambiguous
Field References.

quoted-string

Any string of characters enclosed in either single or double quotation marks.
A quoted string cannot extend beyond a single line. Therefore, it cannot be
over 80 characters long. You must use matching punctuation at the beginning
and end of the string (“text” or ‘text’ but not “text’ or ‘text”).

3-34 Request and Request Library Instructions

MESSAGE LINE IS

If you embed single or double quotation marks within a quoted string, obey
the following rules:

o If the string is enclosed within single quotation marks, use either:
- Double quotation marks within the string:
‘system “down” at 5:.00 p.m.
- Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
e If the string is enclosed within double quotation marks, use either:
- Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
- Two sets of double quotation marks within the string:

“system ““down”” at 5:00 p.m.”

Notes

You can use this instruction within the body of a request to display error
information or inform the operator of events (system shutdown and so on).

TDMS displays the data on line 24 (or line 14 if the terminal is currently set in
132-column mode and has no Advanced Video Option).

See the PROGRAM KEY IS instruction for how to use the MESSAGE LINE IS
instruction within a PRK.

Examples

RDUDFN> MESSAGE LINE IS "Svstem shutdown at 5 p.m."3

A system message is displayed on the message line of the terminal.

RDUDFN» MESSAGE LINE IS "Emplovee wnumber does not exist"j

An application-specific message is displayed on the message line of the terminal.

Request and Request Library Instructions 3-35

OUTPUT TO

3.16 OUTPUT TO Instruction

Displays the specified data in one or more form fields.

Format

record-field form-field
ouTPUT {quoted-string} T0 {(form-field[,...])}

[..] [WITH video-attribute[,...]];

OUTPUT %ALL;

Prompt

RDUDFN:

Instruction Parameters

record-field
The name of a record field from which TDMS copies data. You must specify
preceding group field names only if they are necessary to make the reference
unique.
In RDU, the record name is treated as the top-level group field name. Any
record name you use must be specified in the RECORD IS instruction. If a
unique name is specified in the WITH NAME modifier of the RECORD IS
instruction, you must use the unique name.

RDU always searches all the records you specify in the RECORD IS
instruction for a record field, whether or not you specify the record name.

Even when you use a record name, you cannot always access a record field
name. For more information, see Chapter 6, Rules for Resolving Ambiguous
Field References.

quoted-string

Any string of characters enclosed in either single or double quotation marks.
The length of the string cannot be greater than the size of the receiving
form field or extend beyond a single line. Therefore, it cannot be over

3-36 Request and Request Library Instructions

OUTPUT TO

80 characters long. You must use matching punctuation at the beginning and
end of the string (“text” or ‘text’ but not “text’ or ‘text”).

If you embed single or double quotation marks within a quoted string, obey
the following rules:

e If the string is enclosed within single quotation marks, use either:
— Double quotation marks within the string:
‘system “down” at 5:00 p.m.’
- Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
e If the string is enclosed within double quotation marks, use either:
- Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
- Two sets of double quotation marks within the string:
“system ““down”” at 5:00 p.m.”

form-field
The name of a field on the active form. If you specify a list of form fields, you
must enclose them in matching parentheses and separate the field names
with commas.

%ALL

All the record fields that have identically named form fields on the active
form.

Request and Request Library Instructions 3-37

OUTPUT TO

Instruction Modifier

WITH video-attribute

The keyword WITH and one or more video attributes that you can specify for
the form field, including:

e [NO] BLINK

¢ [NO] BOLD

e [NO] REVERSE

e [NO] UNDERLINE

You can specify video attributes only when you use the simplest format of the
OUTPUT TO instruction. For example:

RDUDFN:> OUTPUT EMPLOYEE TO EMPLOYEE WITH UNDERLINE;

If you specify more than one video attribute, they must be separated by
commas.

The video modifier is ignored if you run a TDMS application on a VT52
terminal.

Notes

OUTPUT TO is one of three request instructions that move data between a form
and record; the others are INPUT TO and RETURN TO.

TDMS executes all OUTPUT TO instructions before it executes any other
mapping instructions.

In an explicit mapping, RDU checks (in the default Validate mode) the record
and form fields you specify to see that:

o All the fields exist in the record and form definitions in the CDD
e The fields do not exist more than once in the records or form used by a request

e The mappings defined are valid (field data types, structures, lengths, sign
conditions, and so on, are compatible)

If RDU finds errors (in the default Validate mode), it returns an error level
message and does not create (or replace, modify, or validate) a request.

3-38 Request and Request Library Instructions

OUTPUT TO

You can use the OUTPUT %ALL instruction if you want to display data in all
the form fields on an active form that have identically named record fields.

In a %ALL mapping, RDU does not create the individual mapping if:

e A form field does not have an identically named record field in the records used
by a request

e An identically named matching record field exists more than once in the
records used by a request

e The mapping is not valid (field data types, structures, lengths, sign conditions,
scale factors, and so on are not compatible)

RDU does, however, create (replace, modify, or validate) the request, unless all
the mappings implied by the %ALL are incorrect.

If the /LOG qualifier is used, %ALL mappings will appear:

e In the listing file (if any)
e In the output file or device defined as SYS$OUTPUT

%ALL mappings will also occur in the log file if both the SET LOG command and
the /LOG qualifier are specified.

See the PROGRAM KEY IS instruction for how to use the OUTPUT TO
instruction within a PRK.

Examples

RDUDFN:> OQOUTPUT EMPLOYEE_NAME TO NAME.
RDUDFN EMP_BADGE TO (NUMBER: BADGE)

Maps data from the EMPLOYEE _ NAME record field to the form field NAME
and data from the EMP__BADGE record field to the form fields NUMBER and
BADGE.

Request and Request Library Instructions 3-39

OUTPUT TO

RDUDFN> OUTPUT EMP_NAME TO NAME.
RDUDFN EMP_BADGE TO BADGE s
RDUDFN EMP_SEX TO SEX;

Displays record fields EMP_NAME, EMP__ BADGE, EMP _SEX in their
respective form fields, NAME, BADGE, and SEX. Note that the list of record to
form fields is separated by commas and terminated with a semicolon.

RDUDFN> OUTPUT "BADGE_NO INCORRECT" TO (FIELD1s FIELDZ, FIELD3)3

Displays the text string in the three form fields named. Note that the receiving
list of form fields is enclosed in parentheses.

RDUDFN> OUTPUT EMP_REC!.NAME_FIELD TO NAME:
RDUDFN BUFFER.ACCOUNTS_FIELDC3 TO 351 TO ACCOUNTL1 TO 313

Outputs the record subfield NAME _FIELD within the record (or group field)
EMP _REC1 to the form field NAME. Outputs the contents of entries 3 to 5 in
the record array ACCOUNTS_FIELD to the first three fields in the form array
or indexed form field ACCOUNT.

RDUDFN> OUTPUT HIST_CHANGES.HIST_DEPTL1] TO DEPTL11:
RDUDFN HIST_CHANGES.HIST_DEPTLS]1 TO DEPTLSI13

RDUDFN> INPUT DEPTL11 TO HIST_DEPTL131:
RDUDFN DEPTLZ] TO HIST_DEPTLS13

TDMS executes the OUTPUT mappings first. Note that you can refer to the field
HIST__DEPT two ways, either by using the preceding group field name or by
just specifying the field name.

RDUDFN:> DOUTPUT CALENDAR_DAYSLS .41 TO CALENDARLS 413

TDMS displays a single element in the two-dimensional simple array
CALENDAR_DAYS within the horizontally-indexed scrolled form field
CALENDAR.

RDUDFN:> DISPLAY FORM PROJECT_FORMS]

RDUDFN X DUTPUT ¥%ALLS

RDUDFN > DESCRIPTION /xdisplavs data in all fields
RDUDFN > on the form PROJECT_FORM
RDUDFN > (PROJECT_NDO s+ PROJECT_LEADER:
RDUDFN > PROJECT_STATUS %/}

Maps data from those record fields in the records used by a request that have
identically named form fields on the active form.

3-40 Request and Request Library Instructions

PROGRAM KEY IS

3.17 PROGRAM KEY IS Instruction

Specifies a program request key (PRK) and the resulting instructions for TDMS
to execute when the operator presses the PRK.

Format

GOLD

PROGRAM KEY IS { KEYPAD

} “prk-name” [[NO] CHECK;]

OUTPUT quoted-string TO form-field [WITH video-attribute,...];
MESSAGE LINE IS quoted-string;
RETURN quoted-string TO record-field;

END PROGRAM KEY;

Prompt

RDUDFN

Instruction Parameters

prk-name

The name of the program request key that you specify. You can choose one of
the following:

e The word KEYPAD followed by any of these keypad keys:

Digits 0-9
Comma
Period
Hyphen

The key must be enclosed in quotation marks.

Request and Request Library Instructions 3-41

PROGRAM KEY IS

e The word GOLD followed by any of the printable keyboard keys except the
TAB key, including:

A-Z
a-z
0-9
The space bar

Any of the set:

Ampersand (&) Angle brackets (< >) Asterisk (+)

At sign (@) Caret (") Colon (3)

Comma (,) Exclamation mark (1) Dollar sign ($)
Equals sign (=) Hyphen (-) Parentheses (())
Percent sign (%) Period (.) Plus sign (+)

Pound sign (#) Question mark (?) Quotation marks (”,’)
Semicolon (;) Slash (/) Tilde (~)

Underscore (_)

The key must be enclosed in quotation marks. Note that uppercase and
lowercase letters are received as the same key.

OUTPUT quoted-string TO form-field

Specifies a text string to be written to a form field when the operator presses
the PRK named. You cannot specify both an OUTPUT text string and a
MESSAGE LINE IS text string.

WITH video-attribute

The keyword WITH and one or more video attributes you can specify for the
form field, including:

[NO] BOLD
[NO] REVERSE

[NO] UNDERLINE
[NO] BLINK

Use a comma to separate each video attribute in a list.

MESSAGE LINE IS quoted-string

A text string to be written to the message line of the terminal when the
operator types the PRK named. You cannot specify both a MESSAGE LINE
IS quoted-string and an OUTPUT quoted-string. If you do, RDU will signal
an error.

3-42 Request and Request Library Instructions

PROGRAM KEY IS

RETURN quoted-string TO record-field

A text string written to a program record field when an operator enters the
program request key named in the PROGRAM KEY IS instruction.

quoted-string

Any string of characters enclosed in either single or double quotation marks.
The string cannot be larger than the form field to which it is output. In
addition, it cannot extend beyond a single line within your request.
Therefore, it cannot be over 80 characters long. You must use matching
punctuation at the beginning and end of the string (“text” or ‘text’ but not
‘text” or “text’).

If you embed single or double quotation marks within a quoted string, obey
the following rules:

o If the string is enclosed within single quotation marks, use either:
— Double quotation marks within the string:
‘system “down” at 5:00 p.m.
- Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
e If the string is enclosed within double quotation marks, use either:
- Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
~ Two sets of double quotation marks within the string:
“system ““down”” at 5:00 p.m.”

form-field
The name of the form field in which the text string is displayed when the
operator presses the PRK.

record-field

The name of one field in a program record. Only one record field can be
specified. It must be large enough to contain the text string it is to receive.

Request and Request Library Instructions 3-43

PROGRAM KEY IS

Instruction Modifiers

CHECK
You can specify the modifier CHECK or NO CHECK to the PROGRAM KEY
IS instruction. The default is CHECK.

When the operator enters a PRK, TDMS checks to see that all fields defined
as Response Required in the form definition (that are also mapped for input)
do indeed have data entered in them. If a Response Required field does not
have data in it, TDMS ignores the PRK.

If the PRK is pressed while the cursor is in a field, TDMS also checks that, if
the field is a Must Fill field, the operator has filled the field. TDMS also
checks any field validators associated with the field.

When TDMS terminates the request, it returns data from all the form fields
that are mapped for input to the record. That data may be either:
e Data entered in the form fields during the current call to the request

e Data mapped to the form fields by the current or previous call to the
request

e Data associated with the form fields by form definition defaults (if no other
data is in the fields)
NO CHECK

Allows you to specify that TDMS terminate a request call without checking if
Response Required fields have data in them.

If you assign the NO CHECK modifier, TDMS executes only the instructions
within the PROGRAM KEY IS instruction and terminates the request. The
only data TDMS returns, therefore, is the data specified in a RETURN TO
instruction within the PROGRAM KEY IS instruction. It does not return any
data from other INPUT TO or RETURN TO instructions in the request.

Notes
You can use a PRK to:
e Qutput a text string to a form field on an active form

e Modify the video attributes of the form field to which you output data in an
active form

3-44 Request and Request Library Instructions

PROGRAM KEY IS

e Return a fixed string to a field in the program record

e Write a fixed string to the message line of a terminal

The OUTPUT TO, MESSAGE LINE IS, and INPUT TO instructions within a
PROGRAM KEY IS instruction are referred to as PRK instructions.

You cannot specify both an OUTPUT TO instruction and a MESSAGE LINE IS
instruction in a single PROGRAM KEY IS instruction. When an application
program runs and when the operator enters a key defined as a program request
key, TDMS executes the program request key instructions and terminates the
request call.

You must specify Application mode for TDMS to execute a program request key
using a keypad key. (See the KEYPAD MODE IS instruction.)

Note that you do not specify a semicolon at the end of the PROGRAM KEY IS
prk-name instruction line except when you use the [NO] CHECK modifier.

Examples

RDUDFN:> PROGRAM KEY IS GOLD "C"

RDUDFN: NO CHECK3

RDUDFN > MESSAGE LINE IS "Cancel Operation";3
RDUDFN: END PROGRAM KEY3

When the operator presses the key sequence GOLD-C, TDMS displays the text
string “Cancel Operation” on line 24 of the terminal and terminates the call to
the request.

RDUDFN> KEYPAD MODE IS APPLICATIONS
RDUDFN> PROGRAM KEY IS KEYPAD "9"

RDUDFN > QUTPUT "Cawncelinsg Urdate" TO MESSAGE_FIELD
RDUDFN » WITH BOLD,BLINKS
RDUDFN > RETURN "“Cancel" TO RECORD1.ACTION;

RDUDFN> END PROGRAM KEY3

When the operator presses the keypad key 9 at run time, TDMS checks that all
Response Required fields on the active form have data entered in them. If they
do, TDMS outputs a message to the form field MESSAGE _FIELD and bolds and
blinks that field. It also returns the message “Cancel” to the record field ACTION
and then terminates the request.

Note that you can specify a list of video field attributes in the OUTPUT TO
instruction within a PROGRAM KEY IS instruction.

Request and Request Library Instructions 3-45

RECORD IS

3.18 RECORD IS Instruction

Identifies the CDD record or records to and from which you map data.

Format

{ RECORD IS

RECORDS ARE } record-path-name [WITH NAME unique-record-namel]....;

Prompt

RDUDFN*

Instruction Parameter

record-path-name

The CDD path name (given, relative, or full) of an existing record definition.
Note that the name you use in a request is usually the same as the path
name stored in the CDD directory. You can, however, use a logical name
different from the CDD path name.

Two records, or a record and a form, cannot use the same name within the
body of a request. If two record given names, or a record given name and a
form given name, are the same, you must specify a unique name using the
WITH NAME modifier. Otherwise, RDU displays an error message and does
not process the request.

Instruction Modifier

WITH NAME unique-record-name

The keywords WITH NAME and a name which no other record or form can
have within the request. You must use the WITH NAME clause to specify a
unique record name if two records, or a record and a form, in your request
have the same given name. The unique record name must conform to the
rules for a CDD given name.

The unique record name, if specified, is the one you must use in subsequent
mapping instructions within the body of a request. If the unique name is not
specified, you use the given name.

3-46 Request and Request Library Instructions

RECORD IS

Notes

The records named must exist in the CDD if you are running RDU in Validate
mode (the default mode). If RDU is not in Validate mode, it does not check for
the existence of the specified record definition.

The RECORD IS instruction, if used, must appear in the header portion of a
request.

You cannot define mappings to a record unless you identify that record in a
RECORD IS instruction.

No two records in the RECORD IS instruction can have the same given name. If
you want to use two record definitions in the CDD that have identical given
names, you must specify a unique name using the WITH NAME phrase.

Note that the order of the record definition path names specified in the RECORD
IS instruction must match the order of the parameters specified in the
TSS$REQUEST call in the application program.

Examples

RDUDFN: RECORD IS EMPLOYEE_RECORDS

Specifies a record, EMPLOYEE _RECORD, using the given name.

RDUDFN> RECORD IS CDD$TOP.ACCOUNT.PAYROLL.EMPLOYEE_RECORDS
Specifies a record, CDD$TOP.ACCOUNT.PAYROLL.EMPLOYEE _RECORD,
using the full path name.

RDUDFN* RECORD IS5 CDD$TOP.ACCOUNT.EMPLOYEE WITH NAME ACC_RECORD:
RDUDFN* RECORD IS CDD$TOP.FINANCE.EMPLOYEE WITH NAME FIN_RECORD;:

Specifies two records, CDD$TOP.ACCOUNT.EMPLOYEE and
CDD$TOP.FINANCE.EMPLOYEE, using the full path names and the WITH

NAME modifier. In subsequent references to these records within this request,
use the unique names ACC_RECORD and FIN_RECORD.

RDUDFN* RECORDS ARE EMPLOYEE_RECs ACCOUNTING_REC, PERSONNEL_REC3

Specifies several records using the given names.

Request and Request Library Instructions 3-47

REQUEST IS

3.19 REQUEST IS Instruction

Identifies the request or requests RDU will place in a request library file during
the build operation.

Format

{ REQUEST IS

REQUESTS ARE } request-path-name [WITH NAME unique-request-namej,...;

Prompt

RDUDFN:

Instruction Parameter

request-path-name

The CDD path name (given, relative, or full) of an existing request definition.
Note that the name you use for a request is usually the same as the path
name stored in the CDD directory. You can, however, use a logical name
different from the CDD path name.

Two requests, or a request and a form, cannot use the same name within the
body of a request library definition. If two request given names, or a request
given name and a form given name, are the same, you must specify a unique
name using the WITH NAME modifier. Otherwise, RDU displays an error
message and does not process the request.

Instruction Modifier

WITH NAME unique-request-name

The keywords WITH NAME and a request name which no other request or
form can have within the library. You must use the WITH NAME modifier to
specify a unique request name if two requests, or a request and a form, in
your request library definition have the same given name. The unique
request name must conform to the rules for a CDD given name.

The unique request name, if specified, is the one the TDMS application
program must use in the TSSSREQUEST call. If the unique name is not
specified, you use the given name.

3-48 Request and Request Library Instructions

REQUEST IS

Notes

The REQUEST IS instruction is one of two instructions that usually make up the
text of a request library definition; the only required instruction is END
DEFINITION. You can also include a FILE IS instruction and one or more
FORM IS instructions in a request library definition.

The REQUEST IS instruction specifies the request that RDU extracts from the
CDD and places in the request library file during the build operation.

If the specified request does not exist in the CDD and RDU is in Validate mode,
RDU does not create a request library definition in the CDD. Instead, it issues
an error message. You must create the request or set RDU to Novalidate mode.

Examples

RDUDFN> REQUEST IS ACCOUNTING_REQ 3
RODUDFN:> REQUEST IS EMPLOYEE_REQ;
RDUDFN: FILE IS "EMPINFO.RLB"S
RDUDFN> END DEFINITION;S

Specifies two requests to be placed in the request library file EMPINFO.RLB.

RDUDFN:> REQUEST IS FINANCE.PAYROLL_EMPLOYEE WITH NAME FIN_REQUESTS
RDUDFN> REQUEST IS ACCOUNTING.PAYROLL_EMPLOYEE WITH NAME ACCT_REQUEST:
RDUDFN> END DEFINITIONS

Specifies two requests to place in a request library file. Note that although these
two requests have different CDD path names, the given names are the same. By
using the WITH NAME modifier, you provide a way to refer to these requests
uniquely within an application program. The TDMS application uses these
unique names to refer to these requests.

Request and Request Library Instructions 3-49

[NO] RESET FIELD

3.20 [NO] RESET FIELD Instruction

Allows you to reset the video attributes of a field in an active form to the defaults
in the form definition.

Format

form-.field[,...] })

[NO] RESET FIELD { %ALL

Prompt

RDUDFN »

Instruction Parameters

form-field

The name assigned to the form field. The field must be on the active form.
You can specify one form field or a series of form fields separated by commas.

%ALL
All the fields on the active form.

Notes
If you specify the RESET or NO RESET instruction in a request, it overrides:
e Any video instruction executed in the base or outer conditional instruction.

e Any video instruction that is still active from a previous request call. A video
instruction is still active when both of these conditions are present:

- A form is still on the screen from a previous request call.

- The current call to a request uses that same form, with a USE FORM
instruction.

Only the video attributes are changed, not the text in the fields.

3-50 Request and Request Library Instructions

[NO] RESET FIELD

Example

RDUDFN:> RESET FIELD NAME, BADGE: SEX3

Resets form fields NAME, BADGE, and SEX to their form-defined video defaults.

Request and Request Library Instructions 3-51

RETURN TO

3.21 RETURN TO Instruction

Returns data to one or more record fields. TDMS does not place the cursor in the
form field named or allow the operator to enter data in that field.

Format

RETURN { form-field } { target-record-field }

guoted-string (target-record-field[,...])

[,---];

RETURN 9%ALL;

Prompt

RDUDFN

Instruction Parameters

form-field
The name of the field on the active form.

quoted-string

The string is identified within the body of a request and is returned to the
record field. It cannot be larger than the size of the record fields to which it
is returned. A quoted string cannot extend beyond a single line. Therefore, it
cannot be over 80 characters long. You must use matching punctuation at the
beginning and end of the string (“text” or ‘text’ but not ‘text” or “text’).

3-52 Request and Request Library Instructions

RETURN TO

If you embed single or double quotations marks within a quoted string, obey
the following rules:

o If the string is enclosed within single quotation marks, use either:
- Double quotation marks within the string:
‘system “down” at 5:00 p.m.’
- Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
o If the string is enclosed within double quotation marks, use either:
- Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
- Two sets of double quotation marks within the string:
“system ““down”” at 5:00 p.m.”

target-record-field

The name of one or more record fields to which TDMS returns data. If you
specify a list of record fields, you must enclose the list in matching
parentheses and separate the fields with commas.

In RDU, the record name is treated as the top-level group field name. Any
record name you use must be specified in the RECORD IS instruction. If a
unique name is specified in the WITH NAME modifier of the RECORD IS

instruction, you must use the unique name.

RDU always searches all the records you specify in the RECORD IS
instruction for a record field, whether or not you specify the record name.

Even when you use a record name, you cannot always access a record field
name. For more information, see Chapter 6, Rules for Resolving Ambiguous
Field References.

%ALL
All the fields on the active form that have identically named record fields.

Request and Request Library Instructions 3-53

RETURN TO

Notes

RETURN TO is one of three request instructions that move data between a form
and record; the others are OUTPUT TO and INPUT TO.

Unlike the INPUT TO instruction, the RETURN TO instruction does not open
the field for input by the operator. If you specify a form field, the RETURN TO
instruction returns one of the following:

e The data output to the field in the current call to a request
o The form field contents from the immediately previous request call

o The form field défault assigned in the form definition (if no other data is in the
field)

If a form field is mapped by both a RETURN TO and INPUT TO instruction in
the same request, the data returned to the program is the result of the INPUT
TO instruction.

TDMS executes all other instructions in the request before it executes the
RETURN TO instruction.

In an explicit mapping, RDU checks (in the default Validate mode) that:

o The form and record fields you specify exist in the record and form definitions
in the CDD

o The fields do not exist more than once in the records used by a request

o The mappings defined are valid (field data types, structures, lengths, sign
conditions, scale factors, and so on, are compatible)

If RDU finds errors (in the default Validate mode), it returns an error level
message and does not create (or replace, modify, or validate) a request.

You can use the RETURN %ALL instruction if you want to return data from all
the fields on an active form to identically named record fields.

3-54 Request and Request Library Instructions

RETURN TO

In a %ALL mapping, RDU does not create the individual mapping if:

e A form field does not have an identically named record field in the records used
by a request

e An identically named record field exists more than once in the records used by
a request

e The mappings defined are not valid (field data types, structures, lengths, sign
conditions are not compatible)

RDU does, however, create the request, unless all the mappings implied by the
%ALL syntax are incorrect.

If /LOG is specified, %ALL mappings will appear:

o In the listing file (if any)
e In the output file or device defined as SYS$OUTPUT

%ALL mappings will appear in the log file if the SET LOG command and the
/LOG qualifier are specified.

Examples

RDUDFN> RETURN “"Gone" TO WK_MSG_RECORD.MESSAGE_FIELD];

Copies the contents of the quoted string to the record field MESSAGE _FIELD in
the record or group field WK_MSG_RECORD after completing all other
instructions in the request.

RDUDFN> RETURN NAME TO EMP_NAME
RDUDFN BADGE TO (EMP_BADGE., EMP_NUMBER) 3

Returns the contents of the form field NAME to the record field EMP_NAME
and the contents of the form field BADGE to two record fields, EMP_BADGE
and EMP_NUMBER. The contents will be either the form-defined default or the
data collected from the immediately previous request call.

Request and Request Library Instructions 3-55

RETURN TO

RDUDFN:> FORM IS5 PERSONNEL_FORMS3

RDUDFN: RECORD IS PERSONNEL_RECORDS
RDUDFN DISPLAY FORM PERSONNEL_FORM;
RDUDFN RETURN ZALLS

Returns the data in all the form fields on the PERSONNEL _ FORM that have
identically named record fields in the record PERSONNEL _RECORD to those

record fields.

3-56 Request and Request Library Instructions

[NO] REVERSE FIELD

3.22 [NO] REVERSE FIELD Instruction

Sets or clears the reverse video attribute of a field on an active form.

Format

[NO] REVERSE FIELD { form-field[....] } :

%ALL

Prompt

RDUDFN

Instruction Parameters

form-field

The name assigned to the form field. The field must be on the active form.
You can specify a single field or a list of form fields separated by commas.

%ALL
All the fields on the active form.
Notes

Reverse affects the video screen background of a form field and changes it to the
opposite of the previous setting. If the field is dark, TDMS reverses it to light. If
it is light, TDMS reverses it to dark.

If you specify the REVERSE FIELD or NO REVERSE FIELD instruction in a
request, it overrides:

e A Reverse or No Reverse attribute assigned in a form definition.

o A REVERSE FIELD or NO REVERSE FIELD instruction that is still active
from a previous request call. A video instruction is still active when:

- A form is still on the screen from a previous request call

- The current call to a request uses that same form with a USE FORM
instruction

Request and Request Library Instructions 3-57

[NO] REVERSE FIELD

At run time, a REVERSE or NO REVERSE instruction used within a conditional
instruction supersedes one in a base request or any outer conditional instruction.

Only the Reverse or No Reverse attribute of the form field is affected. All other
video attributes of the field and the content of the field remain unchanged. For
instance, if you specify a BLINK instruction in addition to a REVERSE
instruction, the form field is both reversed and blinking.

The REVERSE instruction is ignored if you run a TDMS application on a VT52
terminal.

Example

RDUDFN:> REVERSE FIELD EMPLOYEE_NAME3

Reverses the screen background of the form field EMPLOYEE _NAME.

3-58 Request and Request Library Instructions

[NO] RING BELL

3.23 [NO] RING BELL Instruction

Signals the operator when TDMS begins executing a request.

Format

[NO] RING BELL [number-of-rings];

Prompt

RDUDFN >

Instruction Parameter

number-of-rings

The number of times you want TDMS to ring the terminal bell. The number
must be a positive integer and cannot exceed 255.

Notes

If you do not specify a number following the RING BELL instruction, TDMS
rings the bell once when it begins to execute a request.

If you specify a number following the NO RING BELL instruction, RDU will
signal a syntax error.

Examples

RDUDFN: RING BELL 23

Rings the terminal bell twice when TDMS begins executing the request.

RDUDFN:> RING BELLS

Rings the terminal bell once when TDMS begins executing the request.

Request and Request Library Instructions 3-59

SIGNAL [MODE] IS

3.24 SIGNAL [MODE] IS Instruction

Specifies that the terminal use its bell or a reverse screen to signal the operator.

Format
BELL .
SIGNAL [MODE] IS { REVERSE }
Prompt
RDUDFN 3

Instruction Parameters

BELL
The terminal bell.

REVERSE
The reverse video screen.
Notes
Use this instruction in conjunction with the SIGNAL OPERATOR instruction.

When you specify the instruction SIGNAL OPERATOR or when the operator
makes an error, TDMS either:

e Reverses the video of the screen momentarily (if the Signal mode is set to
REVERSE)

e Rings the terminal bell to signal the operator (by default or if the Signal mode
is set to BELL)

Once the Signal mode is set to either BELL or REVERSE, the Signal mode
remains the same until it is explicitly changed by another request.

Note that on VT52 terminals, all signals to the operator ring the terminal bell,
regardless of how you set the Signal mode.

3-60 Request and Request Library Instructions

SIGNAL [MODE] IS

Examples

RDUDFN> SIGNAL MODE IS REVYERSE}:

Sets the Signal mode so that TDMS will reverse the screen video when the
operator makes an error or when the operator is signaled by a SIGNAL
OPERATOR instruction.

RDUDFN: SIGNAL IS BELL:

Sets the Signal mode so that TDMS will ring a bell when the operator makes an
error or when the operator is signaled by a SIGNAL OPERATOR instruction.

Request and Request Library Instructions 3-61

[NO] SIGNAL OPERATOR

3.25 [NO] SIGNAL OPERATOR Instruction

Signals the operator by ringing the terminal bell or reversing the screen video
when TDMS begins executing a request.

Format

[NO] SIGNAL OPERATOR;

Prompt

RDUDFN:

Notes

Use the SIGNAL MODE IS instruction to determine whether the reversed screen
or the terminal bell is used to signal the operator.

Note that on VT52 terminals, all signals to the terminal operator ring the
terminal bell, regardless of how you set Signal mode in a request.

Examples

RDUDFN> SIGNAL MODE IS REVERSES
RDUDFN> SIGNAL OPERATORS

Signals the beginning of request execution by reversing the screen momentarily.

RDUDFN> NO SIGNAL OPERATOR:

Stops TDMS from ringing the terminal bell that signals the beginning of request
execution.

3-62 Request and Request Library Instructions

[NO] UNDERLINE FIELD

3.26 [NO] UNDERLINE FIELD Instruction

Sets or clears the underline video attribute of a field on an active form.

Format

[NO] UNDERLINE FIELD { form-field]....] } :

%ALL

Prompt

RDUDFN

Instruction Parameters

form-field

The name assigned to the form field. The field must be on the active form.
You can specify one form field or a list of form fields separated by commas.

%ALL
All the fields on the active form.

Notes

If you specify the UNDERLINE FIELD or NO UNDERLINE FIELD instruction
in a request, it overrides:

e An Underline or No Underline attribute assigned in a form definition.

e An UNDERLINE FIELD or NO UNDERLINE FIELD instruction that is still
active from a previous request call. A video instruction is still active when:

- A form is still on the screen from a previous request call

- The current call to a request uses that same form with a USE FORM
instruction

At run time, an UNDERLINE or NO UNDERLINE instruction used within a
conditional instruction supersedes one in a base request or any outer conditional
instruction.

Request and Request Library Instructions 3-63

[NO] UNDERLINE FIELD

Only the Underline or No Underline attribute of the form field is affected. All
other video attributes of the field and the content of the field remain unchanged.
For instance, if you specify an UNDERLINE instruction in addition to a BLINK
instruction, the field is both underlined and blinking.

The UNDERLINE instruction is ignored if you run a TDMS application on a
VT52 terminal.

Examples

RDUDFN> UNDERLINE FIELD NAME.,» SEX, BADGES

Underlines the form fields NAME, SEX, and BADGE.

RDUDFN> UNDERLINE FIELD ZALLS

Underlines all the form fields on the active form.

3-64 Request and Request Library Instructions

USE FORM

3.27 USE FORM Instruction

Displays a form using the form background and field contents from the
immediately previous request call. Sets the active form for the request.

Format

USE FORM form-name [WITH OFFSET offset-value];

Prompt

RDUDFN

Instruction Parameters

form-name

The form name can be either:
e The given name of an existing form definition.

e The unique form name specified in the WITH NAME clause of the FORM
IS instruction. If the WITH NAME clause is specified in the FORM IS
instruction, you must use it in the USE FORM instruction.

WITH OFFSET offset-value

The keywords WITH OFFSET and a number that specifies a beginning line
at which the form is displayed on the screen. The offset value is added to the
number of the line where the form would be displayed without the WITH
OFFSET modifier. The offset value is a value between 0 and +22. The plus
sign preceding the number is optional.

When you validate the request or build the request library file, if the offset
value you specify would cause any portion of the form to be displayed past
the twenty-third line of the screen, RDU issues an error level message and
does not build the request library file.

Notes

The form you specify in the USE FORM instruction is the active form; that is, it
is the only form to and from which data can be mapped during that call to the
request.

Request and Request Library Instructions 3-65

USE FORM

TDMS displays the form context (background and field contents) from the
previous request call only if the form was used in that request call in a DISPLAY
FORM or USE FORM instruction.

If you did not use that form, TDMS has no form context and executes the USE
FORM instruction as though it were a DISPLAY FORM instruction.

If you specify output mappings or video changes with a USE FORM instruction,
the output mappings override the form context from the previous request call.

Examples

RDUDFN> USE FORM EMPFORM WITH OFFSET 23}

TDMS displays the form EMPFORM, beginning at line 3, with the contents and
field attributes from the immediately previous request call. If EMPFORM was
not used in the immediately previous request call, TDMS displays the form with
its form definition defaults.

RDUDFN: USE FORM EMPLOYEE_FORM3
RDUDFN> OUTPUT NAME TO NAMES

TDMS displays the form EMPLOYEE _FORM with the contents and field
attributes from the immediately previous request call. The data output to the
form field NAME, however, overrides the contents saved from the previous call to
the request.

3-66 Request and Request Library Instructions

[NO] WAIT

3.28 [NO] WAIT Instruction

Displays a form until the operator presses any request termination key.

Format

[NO] WAIT;

Prompt

RDUDFN

Notes

TDMS does not complete the request and return to the program until the
operator presses a request termination key. The request termination key can be:

e The ENTER or RETURN key
e APRK

Use the WAIT instruction if the request contains no input mappings. If you do
not use the WAIT instruction, TDMS may display the output mappings so
quickly that the operator does not see the data displayed on the form.

The WAIT instruction is not necessary if a request contains an INPUT
instruction. If you use a WAIT instruction in a request containing this
instruction, TDMS ignores the WAIT instruction.

Example

RDUDFN: DISPLAY FORM EMPLOYEES
RDUDFN>: OUTPUT %ALLS
RDUDFN: WAITS

TDMS displays all the data to the fields on the EMPLOYEE form and waits until
the operator presses a request termination key.

Request and Request Library Instructions 3-67

TDMS Synchronous Programming Calls 4

This chapter provides a complete description of all the TDMS synchronous
programming calls. Calls are listed in alphabetical order.

The discussion of each call includes:

Format The generic description of the call. See Table 4-1 for an
explanation of the notation.

Call Parameters The description of the arguments passed.

Return Status A general explanation of return status and a list of the

codes that can be returned on that call. In addition, you see
the error severity code associated with the return status.
See Table 4-2 for the error severity codes and their

explanations.
Note Additional information on using the call.
Examples In VAX BASIC, VAX COBOL, and VAX FORTRAN.

At the end of this chapter, there are table summaries of all TDMS calls by
language:

e Table 4-4 in VAX BASIC
e Table 4-5 in VAX COBOL
e Table 4-6 in VAX FORTRAN

4-1

4.1 Notation Used in This Chapter

Table 4-1 gives a complete list of the data types and passing mechanisms used
for TDMS programming calls.

Table 4-1: Parameter Passing Notation

Notation Explanation

mz.r Modifiable unspecified type, by reference

rlu.r Read-only unsigned longword logical type, by reference
rlu.v Read-only unsigned longword logical type, by value
rt.dx Read-only character string, class type in descriptor

szem.r Call without stack unwinding, procedure entry mask, by reference
wle.v Write-only longword return status, by value

wlu.r Write-only unsigned longword logical type, by reference

wt.dx Write-only character string, class type in descriptor

wwu.r Write-only unsigned word logical type, by reference

All TDMS programming calls return a standard VAX/VMS status code. Each
status code has an associated severity level. Table 4-2 explains the possible
severity levels of the status codes that TDMS programming calls return.

Table 4-2: Error Severity Codes for Return Status

Error Severity

Explanation

Successful completion
Information only

Indicates a Severe error; execution of the program does not continue,
and the procedure does not produce any output

4-2 TDMS Synchronous Programming Calls

TSS$CANCEL

4.2 TSS$CANCEL Call

Cancels all input/output operations in progress on a channel.

Format

ret-status.wic.v = TSS$CANCEL (channel.rlu.r)

Call Parameter

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN call; you pass this parameter by reference.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes the TSS$CANCEL call can return are:

TSS$ _BUGCHECK

Fatal internal software error (F)

TSS$_ CANINPROG

Cancel in progress on channel (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$_INVCHN

Invalid channel (F)
TSS$ _NOIO

No I/O in progress (I)
TSS$ _NORMAL

Normal successful completion (S)

TDMS Synchronous Programming Calls 4-3

TSS$CANCEL

Notes

The TSS$CANCEL call is the only way in a TDMS application to cancel a TDMS
input/output call in progress. For example, if you have an application control
mailbox that receives messages from an asynchronous $QIO system service call,
the AST routine could then cancel a TDMS call that is in progress.

If you cancel a TDMS input/output call, no further characters typed on the
terminal are processed until you issue another call to TSSSREQUEST or
TSS$READ _ MSG _LINE.

The cancel is complete when the canceled call returns to the application program,
not when TSS$CANCEL returns to the application program.

Calls that can be canceled are:

e TSS$COPY _SCREEN and TSS$COPY _SCREEN_A

e TSS$READ _MSG _LINE and TSS$READ _MSG_LINE _A

o TSS$REQUEST and TSS$REQUEST _A

e TSS$WRITE _MSG _LINE and TSS$WRITE _MSG_LINE _A

Note that TSS$CANCEL is the only synchronous TDMS call that can be used
at the asynchronous system trap (AST) level without causing an error. Note
also that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK_A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_status = TSS$CANCEL(Channel)

COBOL

CALL "TSS$CANCEL"
USING BY REFERENCE Channels
GIVING Return-status.

FORTRAN

Return_status = TSS$CANCEL(ZREF(Channell)

4-4 TDMS Synchronous Programming Calls

TSS$CLOSE

4.3 TSS$CLOSE Call

Closes the channel to the terminal and optionally clears the screen.

Format

ret-status.wic.v = TSS$CLOSE(channel.rlu.r
[,clear-screen.rlu.r])

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN call; you pass this parameter by reference.

clear-screen

The address of the longword that specifies whether or not the screen is to be
cleared; you pass this parameter by reference. If the value of this parameter
is 1, TDMS clears the screen. The clear-screen parameter is optional and, if it
is omitted or if the parameter is 0, the screen is not cleared.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_ BADFLAGS

Flag parameter has invalid value (F)

TSS$_BUGCHECK

Fatal internal software error (F)
TSS$__ CANINPROG

Cancel in progress on channel (F)
TSS$_INSVIRMEM

Insufficient virtual memory (F)

TDMS Synchronous Programming Calls 4-5

TSS$CLOSE

TSS$ _INVARG

Invalid arguments (F)
TSS$ _INVCHN

Invalid channel (F)
TSS$ _IOINPROG

I/0 in progress on channel (F)
TSS$ _NORMAL

Normal successful completion (S)
TSS$_SYNASTLVL

Synchronous calls may not be called at AST level (F)

Notes

You should close the TDMS channel when you are finished using TDMS for
input/output on that terminal. As a result:

e TDMS resources associated with that terminal are released.

Screen video characteristics are reset.

The cursor is returned to the bottom left hand corner of the terminal screen.

The keypad is reset to Numeric mode.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK_ A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_.status = TES5$CLOSE(Channels &
Clear_screen)

4-6 TDMS Synchronous Programming Calis

TSS$CLOSE

CcOoBOL

CALL "TSS$CLOSE"
USING BY REFERENCE Channel:
BY REFERENCE Clear-screern:
GIVING Return-status.,

FORTRAN

Return_status = TSS$CLOSE(ZREF(Channel)
1 “REF(Clear_screen))

TDMS Synchronous Programming Calls 4-7

TSS$CLOSE _RLB

4.4 TSSSCLOSE_RLB Call

Closes a request library file that is currently open.

Format

ret-status.wic.v = TSS$CLOSE _ RLB(library-id.rlu.r)

Call Parameter
library-id
The address of the longword containing the unique number that identifies the

library to close; you pass this parameter by reference. It must be the same
number that was assigned by TSS$OPEN _RLB.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$ _BUGCHECK

Fatal internal software error (F')

TSS$__INVARG
Invalid arguments (F)
TSS$ _INVRLBID
Invalid request library 1D (F)
TSS$ _NORMAL
Normal successful completion (S)
TSS$ _RLBINUSE
Request library in use (F)
TSS$ _SYNASTLVL
Synchronous calls may not be called at AST level (F)

4-8 TDMS Synchronous Programming Calls

TSS$CLOSE_RLB

Notes
You can close and reopen the same request library file in a program, as needed.

You can have multiple request library files open at the same time. Each request
library file requires its own TSS$OPEN _RLB and TSS$CLOSE _RLB calls.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _ A with TSS$CLOSE, or TSS$DECL _AFK _A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_status = TSS$CLOSE_RLB(Librarv_id)

COBOL

CALL "TSS$CLOSE_RLB"
USING BY REFERENCE Librarv-id:
GIVING Return-status.

FORTRAN

Return_status = TSS$CLOSE_RLB(ZREF(Librarvy_id))

TDMS Synchronous Programming Calls 4-9

TSS$COPY_SCREEN

4.5 TSSSCOPY_SCREEN Call

Copies the current contents of the screen to the file specified or the file defined
by the logical TSSSHARDCOPY.

Format

ret-status.wic.v = TSS$COPY _SCREEN(channel.rlu.r
J[file-spec.rt.dx]
[,append-flag.riu.r])

Call Parameters

channel
The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN call; you pass this parameter by reference.
file-spec

The address of a string descriptor pointing to the VMS file specification to
which the contents of the screen will be directed. You pass this optional
parameter by descriptor.

If this parameter is not specified, the value of the logical TSS$HARDCOPY is
used to determine where the contents of the screen are directed.

If this parameter is not specified and the logical TSS$HARDCOPY is not
defined, this call does nothing. The return status is TSS$_NOOUTFILE, an
informational status.

append-flag

The address of a longword that specifies whether to create a new version of
the file or to append the copy of the screen contents to the latest version of
the file. You pass this optional parameter by reference. If present, this
parameter must have a value of either 0 or 1.

A new version of the output file will be created if:
e The parameter is not present
e The flag has a value of 0

e There is no existing version of the file

4-10 TDMS Synchronous Programming Calls

TSS$COPY _SCREEN

Otherwise, the current contents of the screen will be appended to the latest

version of an existing VMS file.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$ _BADFLAGS

Flag parameter has invalid value (F)

TSS$_BUGCHECK
" Fatal internal software error (F)

TSS$_ CANCEL

Call canceled by TSS$CANCEL (F)
TSS$ _ CANINPROG

Cancel in progress on channel (F)
TSS$ _COPYOUTERR

TSS$COPY _SCREEN output error (F)
TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$ _INVCHN

Invalid channel (F)
TSS$_INVDSC

Invalid descriptor (F)
TSS$_IOINPROG

I/0 in progress on channel (F)

TDMS Synchronous Programming Calls 4-11

TSS$COPY _SCREEN

TSS$_NOOUTFILE

No output file definition found (I)
TSS$ _NORMAL

Normal successful completion (S)
TSS$_SYNASTLVL

Synchronous calls may not be called at AST level (F)

Notes

TSS$COPY _SCREEN supplies a callable PF4 (hardcopy) function to the
program. You cannot issue a TSS$COPY _SCREEN call while input or output is
active on the specified channel, such as with an outstanding TSS$REQUEST or
TSS$WRITE _MSG_LINE call.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK_A with
TSS$UNDECL _AFK.

Examples
BASIC
Return_status = TSS$COPY_SCREEN(Chanmnel s &

File_srecs &
Arpend_flag)

coBOL

CALL "TSS$COPY_SCREEN"
USING BY REFERENCE Channel
BY DESCRIPTOR File-spec
BY REFERENCE Arrend-flasg:
GIVING Return-status.

FORTRAN

Return_.status = TSS$COPY_SCREEN(ZREF(Channel)
1 #DESCR(File_srec)
2 4REF(ArPend_flagd))

4-12 TDMS Synchronous Programming Calls

TSS$DECL _AFK

4.6 TSS$SDECL _AFK Call

Enables the operator’s use of an application function key (AFK) by specifying the
AFK and associating it with a service routine and/or event flag.

Format

ret-status.wic.v = TSS$DECL _ AFK(channel.rlu.r
,key-id.rlu.r

key-efn.rlu.r

,key-astadr.szem.r
[key-astprm.riu.v])

Call Parameters

channel
The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN call; you pass this parameter by reference.
key-id

The address of a longword that contains a code representing the AFK; you
pass this parameter by reference. When the operator presses the key
represented by the key-id parameter, the application program is notified.

Because the key-id parameter is a code, each call to TSS$DECL _AFK can
activate only one key. Table 4-3 lists the TDMS application function keys.

TDMS Synchronous Programming Calls ~ 4-13

TSS$SDECL _AFK

Table 4-3: TDMS Application Function Keys (AFKs)

Key Id Control Key Key Id Control Key
0 CTRL/space bar 15 CTRL/O
1 CTRL/A .16 CTRL/P
2 CTRL/B 18 CTRL/R
3 CTRL/C 20 CTRL/T
4 CTRL/D 21 CTRL/U
5 CTRL/E 22 CTRL/V
6 CTRL/F 23 CTRL/W
7 CTRL/G 24 CTRL/X
8 CTRL/H 25 CTRL/Y
9 CTRL/I 26 CTRL/Z
10 CTRL/J 27 CTRL/[
11 CTRL/K 28 CTRL/backslash
12 CTRL/L 29 CTRL/]
13 CTRL/M 30 CTRL/~
14 CTRL/N 31 CTRL/?
key-efn

The address of a longword containing the number of the event flag that is set
when the operator presses the AFK; you pass this parameter by reference. If
the parameter is not present, TDMS does not set an event flag when the
operator presses the key.

You may use the event flag by itself or together with an AST service routine.

4-14 TDMS Synchronous Programming Calls

TSSSDECL _AFK

key-astadr

The address of a routine in the application program; you pass this parameter
by reference. When the operator presses a declared AFK, TDMS will call this
routine at AST level. The user routine must have the following calling

sequence:

status.wlc.v = ROUTADR (key-astprm.rlu.v
,channel.rlu.r
Jkey-id.rlu.r)

You may use the AST service routine with or without an AST parameter. You
may also use the AST service routine with an event flag.

key-astprm

The longword that contains the AST parameter to be passed to the AFK
service routine; you pass this optional parameter by value. If the AST
parameter is not present, and a service routine is, TDMS will pass an AST
parameter of O to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)

TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$ _INVCHN

Invalid channel (F)

TDMS Synchronous Programming Calls 4-15

TSS$SDECL _AFK

TSS$ _INVKEYID

Invalid key id (F)
TSS$ _NORMAL

Normal successful completion (S)
TSS$_SYNASTLVL

Synchronous calls may not be called at AST level (F)

Notes

Application function keys (AFKs) provide exception notification services for
terminal-related events. During execution of a TDMS application, the operator
can press AFK keys in order to initiate actions outside the context of the current
input to the active form.

AFKs are asynchronous function keys; that is, they operate independently of
requests. As asynchronous function keys, AFKs initiate asynchronous processing
in the user’s application program.

You can enable and disable the operator’s use of AFKs by issuing
TSS$DECL__AFK and TSS$UNDECL _AFK calls in the application program.
The TSS$DECL _AFK call specifies the AFK by the key-id parameter and
associates that key with a service routine, an event flag, or both. After the
program has made a TSS$DECL _AFK call, the operator can press the enabled
AFK whenever he wishes to invoke a special function, until the key is disabled:

e When the application program issues a matching TSS§UNDECL _ AFK or
TSS$UNDECL _AFK__A call

e When the application program closes the channel with a TSS$CLOSE or
TSS$CLOSE _A call

e Automatically, when the application program ends

4-16 TDMS Synchronous Programming Calls

TSS$SDECL _AFK

When an AFK is pressed, TDMS does one of the following:

e Sets the event flag specified for this AFK (if any)

e Calls the service routine (if any) at AST level and passes it:

— The AST parameter

— The TDMS channel on which it was pressed

— The key-id parameter of the AFK that was pressed
e Both sets the event flag and calls the service routine

In this case, TDMS sets the event flag before it calls the service routine.

TDMS calls the service routine whether or not there is an outstanding request,
as soon as the VMS terminal driver processes the key stroke.

All the control keys except CTRL/Q and CTRL/S may be defined as AFKs.

Note that some control keys (for example, CTRL/H or BACK SPACE, CTRL/I or
TAB, CTRL/dJ or LINE FEED, and CTRL/M or RETURN) may be defined as
AFKs. You should be careful when designing functions for AFKs that already
have a special meaning for TDMS; otherwise, unexpected results might be
generated. For example, if you define CRTL/M (RETURN) as an AFK, then you
must provide another way of terminating the request.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK _A with
TSS$UNDECL _AFK.

Examples

BASIC

EXTERNAL LONG Kev_ast_routine

+

Return_status = TSS5$DECL_AFK(Channel s &

Kev_ids &
Kev_event_flag_numbers &
Kev_ast_routine &

Kev_ast_rparameter BY VALUE)

TDMS Synchronous Programming Calls 4-17

TSS$DECL _AFK

CcoBOL

CALL "TSS$DECL_AFK"
USING BY REFERENCE Channel.
BY REFERENCE Kev-id,
BY REFERENCE Kev-event-flad-number:
BY REFERENCE Kev-ast-routine;
BY VALUE Kev-ast-Parameter:
GIVING Return-status.

FORTRAN

Return_status = TSS$DECL_AFK(ZREF(Channel)
AREF (Key_id)»
WREF(Kev_event_flad_number) s
“REF(Kev_ast_routine)
Kev_ast_Parameter)

N % I A

4-18 TDMS Synchronous Programming Calls

TSS$SOPEN

4.7 TSS$SOPEN Call

Opens a channel to a terminal for input and output.

Format

ret-status.wic.v = TSS$OPEN(channel.wiu.r
[,device.rt.dx])

Call Parameters

channel

The address of a longword to receive the TDMS channel number; you pass
this parameter by reference.

device

The address of a string descriptor pointing to the device name of the
terminal; you pass this optional parameter by descriptor. This can be a
logical name or a physical device specification. This parameter is optional;
the default is SYS$INPUT.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)

TSS$ _ERROPNDEV

Error opening device (F)
TSS$ _ILLDEVCHAR

Illegal device characteristics (F)
TSS$_INSVIRMEM

Insufficient virtual memory (F)

TDMS Synchronous Programming Calls ~ 4-19

TSS$SOPEN

TSS$ _INVARG
Invalid arguments (F)
TSS$ _INVDSC
Invalid descriptor (F)
TSS$_NORMAL
Normal successful completion (S)
TSS$_SYNASTLVL
Synchronous calls may not be called at AST level (F)

Notes

TDMS assigns a unique channel number to identify the terminal. You use this
channel number as a parameter in other TDMS calls to identify what terminal to
use for the operation.

Input and output must be performed on the same terminal; therefore, the
input/output streams cannot be split between two terminals. For example, if you
open a channel to SYS$INPUT, and you redefine SYS$OUTPUT as some other
device, both input and output still occur on SYS$INPUT.

The channel number returned is not the VAX/VMS channel number returned by
the SYS$ASSIGN service. Input/output calls to other systems (such as VAX RMS
or $QIO0) should not be issued to the terminal. If you try to issue calls to other
systems, you might generate unexpected results.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK__ A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_status = TSS540PEN(Channel 8
Device_name)

4-20 TDMS Synchronous Programming Calls

TSS$SOPEN

coBOL

CALL "TSS$0PEN"
USING BY REFERENCE Channel
BY DESCRIPTOR Device-name:
GIVING Return-status.

FORTRAN

Return_status = TSS$0PEN(ZREF(Channel) s
1 #DESCR(Device_name))

TDMS Synchronous Programming Calls ~ 4-21

TSS$OPEN_RLB

4.8 TSSSOPEN_RLB Call

Opens a request library file containing the requests to be used in the application
program.

Format

ret-status.wic.v = TSS$OPEN _ RLB(rlb-file-spec.rt.dx
Jibrary-id.wlu.r)

Call Parameters

rib-file-spec

The address of a string descriptor pointing to the VMS file specification of the
request library file; you pass this parameter by descriptor. The file
specification may include logical names. The default file type is .RLB.

library-id
The address of the longword to receive the unique number identifying the
request library file; you pass this parameter by reference.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$ _BUGCHECK

Fatal internal software error (F)

TSS$ _ERROPNRLB

Error opening request library (F)
TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)

4-22 TDMS Synchronous Programming Calls

TSS$SOPEN_RLB

TSS$ _INVDSC
Invalid descriptor (F)
TSS$ _NORMAL
Normal successful completion (S)
TSS$_ SYNASTLVL
Synchronous calls may not be called at AST level (F)

Notes

TDMS assigns a unique library ID to identify the request library file. You use
this library ID as a parameter in TDMS calls that require a library ID.

Request library files, built with RDU, contain a group of requests to use for a
particular application.

A request library file must be open before you can issue a successful
TSS$SREQUEST call. You can have multiple request library files open at the
same time. Each request library file requires its own TSS$OPEN _RLB and
TSS$CLOSE _RLB calls.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _ A with TSS$CLOSE, or TSS$DECL _AFK _ A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_status = TSS$0PEN_RLB(Reaquest_librarv_file, &
Library_id?}

coBOL

CALL "TSS$0PEN_RLB"
USING BY DESCRIPTOR Reauest-librarv-file:
BY REFERENCE Librarv-id
GIVING Return-status.

TDMS Synchronous Programming Calls 4-23

TSSSOPEN_RLB

FORTRAN

Return_status = TSS$0PEN_RLB(ZDESCR(Request_librarv_file),
1 AREF(Librarv_id))

4-24 TDMS Synchronous Programming Calls

TSSSREAD _MSG_LINE

4.9 TSSSREAD_MSG_LINE Call

Writes a prompt on the terminal on the reserved message line (optionally), and
reads a line of input from the operator.

Format

ret-status.wic.v = TSS$READ _MSG _LINE(channel.rlu.r
,response-text.wt.dx
,[message-prompt.rt.dx]
[,response-length.wwu.r])

Call Parameters

channel
The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN call; you pass this parameter by reference.
response-text

The address of a static or dynamic string descriptor pointing to the buffer
that receives the text entered by the operator; you pass this parameter by
descriptor.

message-prompt
The address of a string descriptor pointing to the prompt you want to display
on the message line; you pass this optional parameter by descriptor.
response-length

The address of a word to receive the length of the message line read into the
buffer; you pass this optional parameter by reference.

This parameter is useful for setting the length of the response text so that it
can be compared with other strings within the application program. If you
use a static string descriptor for the response-text parameter and omit the
response-length parameter, you cannot tell how long the response text is. A
comparison might fail because the two strings are unequal in length.

TDMS Synchronous Programming Calls 4-25

TSS$READ_MSG _LINE

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$ _BUGCHECK

Fatal internal software error (F)

TSS$_ CANCEL

Call canceled by TSS$CANCEL (F)
TSS$_ CANINPROG

Cancel in progress on channel (F)
TSS$_INSVIRMEM

Insufficient virtual memory (F)
TSS$_INVARG

Invalid arguments (F)
TSS$ _INVCHN

Invalid channel (F)
TSS$ _INVDSC

Invalid descriptor (F)
TSS$ __INVIXTLEN

Invalid text length (F)
TSS$ _IOINPROG

1/0 in progress on channel (F)
TSS$_NONPRICHA

Field contains non-printable characters (F)

4-26 TDMS Synchronous Programming Calls

TSS$SREAD_MSG_LINE

TSS$_NORMAL
Normal successful completion (S)
TSS$ _ SYNASTLVL
Synchronous calls may not be called at AST level (F)

Notes
The reserved message line is usually the last line on the screen.

If you are displaying a 132-column form on a terminal without the AVO option,
the reserved message line is line 14.

Messages are limited to 80 characters unless a form with 132 columns is
currently displayed. The message can then be up to 132 characters. When the
operator presses the RETURN key or any other request processing key, the
message line is cleared.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _ A with TSS$CLOSE, or TSS$DECL_AFK _ A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_status = TSS$READ_MSG_LINE(Channel, &
Response_text &
Messagde_Prompts &
Response_lendgth)

coBOL

CALL "TSS$READ_MSG_LINE"
USING BY REFERENCE Channel:
BY DESCRIPTOR Response-text:
BY DESCRIPTOR Messade-Prompt s
BY REFERENCE Response-length:
GIVING Return-status.

TDMS Synchronous Programming Calls 4-27

TSS$SREAD _MSG_LINE

FORTRAN

Return_status = TSS$READ_MSG_LINE(ZREF(Channel)
ZDESCR(ResPonse_text)
LDESCR(Messade_Prompt) s
4ZREF(Response_lendth))

7 g I

4-28 TDMS Synchronous Programming Calls

TSSSREQUEST

4.10 TSSSREQUEST Call

Executes the request named in the call.

Format

ret-status.wic.v = TSS$REQUEST(channel.rlu.r
Jibrary-id.riu.r
,request-name.rt.dx
[,record1.mz.r
[,record2.mz.r

[,récordn.mz.r]]])

Call Parameters

channel
The address of the longword containing the unique TDMS channel number
assigned by the TSS$OPEN call; you pass this parameter by reference.
library-id

The address of the longword containing the unique number that identifies the
library containing the desired request; you pass this parameter by reference.
It must be the same number that was assigned by TSS$OPEN _RLB.

request-name
The address of a string descriptor pointing to the name of the request to use;
you pass this parameter by descriptor.

record(s)

The address of the record(s) that the request uses for mapping data between
the form and the program record; you pass this optional parameter by
reference. If you specify more than one record, the order of the records must
be the same as in the RECORD IS instruction(s) in the request.

TDMS Synchronous Programming Calls 4-29

TSSSREQUEST

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)

TSS$_ CANCEL

Call canceled by TSS$CANCEL (F)
TSS$_ CANINPROG

Cancel in progress on channel (F)
TSS$_CONVERR

Data type conversion error (F)
TSS$ _DISFORERR

Form display failed (F)
TSS$_ILLDEVCHAR

Illegal device characteristics (F)
TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$_INVARG

Invalid arguments (F)
TSS$ _INVCHN

Invalid channel (F)
TSS$_INVDSC

Invalid descriptor (F)

4-30 TDMS Synchronous Programming Calls

TSS$SREQUEST

TSS$ _MULTFORM

Multiple active forms are illegal (F)
TSS$ _NORMAL

Normal successful completion (S)
TSS$ _PRKCHECK

Request was terminated by a check PRK (I)
TSS$_ PRKNOCHECK

Request was terminated by a nocheck PRK (I)
TSS$ _REQMAJVERMIS

Request binary version mismatch on major id (F)
TSS$ _REQMINVERMIS

Request binary version mismatch on minor id (F)
TSS$ _REQNOTFOU

Request definition not found (F)
TSS$ _SYNASTLVL

Synchronous calls may not be called at AST level (F)

Notes
The request must be in a currently open request library file.

If your programming language supports the extraction of records from the CDD,
record structure should not be a problem because you can use the same record
definition in your program that was used when the request library file was built.
Note that if you use CDDL or DATATRIEVE to define your records, you must
pass a variable name to TSSSREQUEST that corresponds to the top level
structure name in the record definition. With languages that do not support the
CDD, you must be careful to define your records so that they are compatible with
your programming language. Otherwise you will generate unexpected results.

The order of the records passed to TDMS must match the order of the records in
the RECORD IS instruction in the request.

TDMS Synchronous Programming Calls ~ 4-31

TSSSREQUEST

Because you pass records by reference, TDMS has no way of validating that you
are passing the correct records.

The order in which instructions are specified in the request has no effect on the
order in which TDMS executes the instructions. TDMS executes request
instructions in the following order (if they are present in the request):

1. Control field evaluation.

2. Output mappings from the program record to the form, including data type
conversion to text format for display, default field instructions, and video
instructions.

3. Display of the form.

4. Input mappings from the terminal to the program, including data type
conversion from text to the data type of the record fields.

5. Return operations.

The following form definition features cannot be used on a VT52 terminal:

e 132-column screen

e Scrolled region

You will generate a run-time error only when you try to display a form definition
containing one of those features. For example, if you run an application on a
VT52 and use form definitions without those features for the first five request
calls, all of those calls will be successful. But if the sixth request call contains a
form definition with one of those features, it will fail with the message:

%TSS-F-ILLDEVCHAR, illegal device characteristics

You should either change the form definition or run the application on a
VT100-compatible terminal.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK_A with
TSS$UNDECL _AFK.

4-32 TDMS Synchronous Programming Calls

TSS$SREQUEST

Examples
BASIC

Return_status = TSS$REQUEST(Channels &
Librarv_id,s &
Reauest_name s &
Record_1: &
Record_2, &
Record_n)

coBOL

CALL "TSS$REQUEST"
USING BY REFERENCE Channel
BY REFERENCE Librarv-id:
BY DESCRIPTOR Reauest-name
BY REFERENCE Record-1:
BY REFERENCE Record-Z2:
BY REFERENCE Record-mn:
GIVING Return-status.

FORTRAN

Return_status = TSS$REQUEST(ZREF(Channel) s
#REF(Librarv_id)
#DESCR(Reauest_name) s
“REF(Record_1)
#REF(Record_2)
4REF(Record_n))

B W

TDMS Synchronous Programming Calls 4-33

TSS$SIGNAL

4.11 TSS$SIGNAL Call

Signals the return status and any extended status from the immediately
preceding TDMS call.

Format

ret-status.wlc.v = TSS$SIGNAL

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_INVARG
Invalid arguments (F)
TSS$ _INVCHN
Invalid channel (F) - (You must pass a null parameter list)
TSS$ _NORMAL
Normal successful completion (S)
TSS$ _SYNASTLVL
Synchronous calls may not be called at AST level (F)

4-34 TDMS Synchronous Programming Calls

TSS$SIGNAL

Notes

This call refers to the immediately preceding TDMS call in an application
program. If you issue TSS$SIGNAL as the first call in your program, it will
signal TSS$ _ NORMAL.

Note

If you use a programming language that does not let you pass 0
parameters to a procedure when you use it as a function call, you must
include the null parameter list at the end of the call. See the
FORTRAN example in this section.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK _A with
TSS$UNDECL _AFK.

Examples
BASIC

Return.status = TSS$S5IGNAL

COBOL

CALL "TSS$SIGNAL" GIVING Return-status.

FORTRAN

Return.status = TSS5$SIGNAL()

TDMS Synchronous Programming Calls 4-35

TSS$STRACE _OFF

4.12 TSS$STRACE_OFF Call
Turns off the TDMS Trace facility.

Format

ret-status.wic.v. = TSS$TRACE _ OFF

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)

TSS$__INVARG
Invalid arguments (F)
TSS$_NORMAL
Normal successful completion (S)
TSS$ _SYNASTLVL
Synchronous calls may not be called at AST level (F)
TSS$ _TRAOFF
Trace already off (I)

4-36 TDMS Synchronous Programming Calls

TSS$STRACE _OFF

Notes

A message is written to the trace output file, indicating that the Trace facility is
turned off.

Note

If you use a programming language that does not let you pass 0
parameters to a procedure when you use it as a function call, you must
include the null parameter list at the end of the call. See the
FORTRAN example in this section.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK__A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_status = TSS$TRACE_OFF

coBOL

CALL "TSS$TRACE_OFF" GIVING Return-status.

FORTRAN

Return_status = TSS$TRACE_DOFF ()

TDMS Synchronous Programming Calls ~ 4-37

TSS$TRACE_ON

4.13 TSSSTRACE _ON Call

Turns on the TDMS Trace facility, which traces the execution of a request at run
time and traces TDMS calls.

Format

ret-status.wilc.v = TSS$TRACE _ON

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)

TSS$ _ERROPNTRA
Error opening trace log file (F)
TSS$ _INVARG
Invalid arguments (F)
TSS$ _NORMAL
Normal successful completion (S)
TSS$_ SYNASTLVL
Synchronous calls may not be called at AST level (F)
TSS$_TRAON

Trace already on (I)

Notes

If the logical name TSS$TRACE _ OUTPUT is defined, messages are written to a
trace output file, which can be any file specification. The default file type is
.LOG.

4-38 TDMS Synchronous Programming Calls

TSS$STRACE_ON

Otherwise, the trace output defaults to DBG$OUTPUT, which in turn defaults to
SYS$OUTPUT.

You can define the logical name, TSS$TRACE _ OUTPUT, before you run an
application program. If you do, the Trace facility is automatically turned on when
the first TDMS call is issued in the application program.

Note

If you use a programming language that does not let you pass 0
parameters to a procedure when you use it as a function call, you must
include the null parameter list at the end of the call. See the
FORTRAN example at the end of this section.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK _A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_status = TSS$TRACE_ON

CcOBOL

CALL "TSS$TRACE-ON" GIVING Return-status.

FORTRAN

Return.status = TSS$TRACE_ONC()

TDMS Synchronous Programming Calls 4-39

TSSSUNDECL _AFK

4.14 TSSSUNDECL _AFK Call

Disables an application function key (AFK) and its associated service routine
and/or event flag.

Format

ret-status.wic.v = TSS$SUNDECL _ AFK(channel.rlu.r
key-id.rlu.r)

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN call; you pass this parameter by reference.

key-id
The address of a longword containing the code that represents the AFK that

is no longer needed by the application program. You pass this parameter by
reference.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)

TSS$_INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$ _INVCHN

Invalid channel (F)

4-40 TDMS Synchronous Programming Calls

TSSSUNDECL _AFK

TSS$ _INVKEYID

Invalid key id (F)
TSS$ _NORMAL

Normal successful completion (S)
TSS$_SYNASTLVL

Synchronous calls may not be called at AST level (F)

Notes

You use this call to deactivate asynchronous notification of an AFK. After the
TSS$UNDECL _AFK call is issued, TDMS no longer calls the service routine
specified in the matching TSS$DECL _ AFK call. That is, after the
TSS$UNDECL _AFK call, the program is no longer notified when the
operator presses the key.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK__A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_status = TSS$UNDECL_AFK(Channels &
Key_id)}

COoBOL

CALL "TSS$UNDECL_AFK"
USING BY REFERENCE Channel s
BY REFERENCE Kev-id:
GIVING Return-status.

FORTRAN

Return_status = TSS$UNDECL_AFK(ZREF(Channel) s
1 AREF (Key_id))

TDMS Synchronous Programming Calls ~ 4-41

TSS$WRITE _BRKTHRU

4.15 TSSSWRITE _BRKTHRU Call

Writes a message to the reserved message line on the screen, interrupting the
current request or message line operation in order to do so.

Format

ret-status.wilc.v = TSS$WRITE _BRKTHRU(channel.rlu.r
,message-text.rt.dx
[,bell-flag.rlu.r])

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN call; you pass this parameter by reference.

message-text

The address of a string descriptor pointing to the text to be displayed on the
message line; you pass this parameter by descriptor.

bell-flag

The address of a longword containing a flag for the terminal bell; you pass
this optional parameter by reference. If the parameter is set to 1, the flag
causes the terminal bell to ring when the message text is displayed. If you do
not pass this parameter or if this parameter has a value of 0, TDMS does not
ring the bell.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$ _BADFLAGS

Flag parameter has invalid value (F)

TSS$ _BUGCHECK

Fatal internal software error (F)

4-42 TDMS Synchronous Programming Calls

TSSSWRITE _BRKTHRU

TSS$ _INSVIRMEM
Insufficient virtual memory (F)
TSS$ _INVARG
Invalid arguments (F)
TSS$ _INVCHN
Invalid channel (F)
TSS$ _INVDSC
Invalid descriptor (F)
TSS$ _NONPRICHA
Field contains non-printable characters (F)
TSS$ _NORMAL
Normal successful completion (S)
TSS$_SYNASTLVL
Synchronous calls may not be called at AST level (F)

Notes

The message text for this call is truncated if its length is greater than the
current terminal line size.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK_ A with
TSS$UNDECL _AFK.

Examples
BASIC

Return_.status = TSS$WRITE_BRKTHRU(Channel, &
Messade_texts &
Bell_flasg)

TDMS Synchronous Programming Calls 4-43

TSSSWRITE_BRKTHRU

coBOL

CALL "TSS$WRITE_BRKTHRU"
USING BY REFERENCE Charnnel
BY DESCRIPTOR Messade-text:
BY REFERENCE Bell-flasg:
GIVING Return-status.

FORTRAN

Return_status = TSS$WRITE_BRKTHRU(ZREF(Channel)
1 #ZDESCR(Messade_text)
2 #REF(Bell_flag))

4-44 TDMS Synchronous Programming Calls

TSSSWRITE_MSG _LINE

4.16 TSSSWRITE_MSG _LINE Call

Writes a message to the reserved message line on the terminal.

Format

ret-status.wic.v = TSS$WRITE _MSG _LINE(channel.rlu.r
,message-text.rt.dx)

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN call; you pass this parameter by reference.

message-text

The address of a string descriptor pointing to the text to be displayed on the
message line; you pass this parameter by descriptor.

Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)

TSS$_ CANCEL

Call canceled by TSS$CANCEL (F)
TSS$ _ CANINPROG

Cancel in progress on channel (F)
TSS$_INSVIRMEM

Insufficient virtual memory (F)

TDMS Synchronous Programming Calls 4-45

TSSSWRITE_MSG _LINE

TSS$ _INVARG
Invalid arguments (F)
TSS$ _INVCHN
Invalid channel (F)
TSS$ _INVDSC
Invalid descriptor (F)
TSS$ _INVITXTLEN
Invalid text length (F)
TSS$ _NONPRICHA
Field contains non-printable characters (F)
TSS$ _NORMAL
Normal successful completion (S)
TSS$_SYNASTLVL
Synchronous calls may not be called at AST level (F)

Notes

TDMS clears the reserved message line before it displays the message on the
terminal. You can use this line to let the operator know about the status of
AFKs.

TDMS uses the message line to display error messages; therefore, it is uncertain
how long the line will be displayed. The cases when the message line is cleared
are:

o If the operator makes an error on input
e If the operator exits the current input field

o When the screen is cleared

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _ A with TSS$CLOSE, or TSS$DECL _AFK _A with
TSS$UNDECL _AFK.

4-46 TDMS Synchronous Programming Calls

TSSSWRITE_MSG _LINE

Examples
BASIC

Return_status = TSS$WRITE_MSG_LINE(Channels &
Messade_text)

CcoBOL

CALL "TSS$WRITE_MSG_LINE" -
USING BY REFERENCE Channel:
BY DESCRIPTOR Messade-text:
GIVING Return-status.

FORTRAN

Return_status = TSS$WRITE_MSG_LINE(ZREF(Channel) s
1 Z“DESCR(Messade_text))

TDMS Synchronous Programming Calls 4-47

Table 4-4 lists the VAX TDMS synchronous calls in VAX BASIC. The calls are in

alphabetical order.

Table 4-4: TDMS Synchronous Programming Calls in VAX BASIC

Call Example
TSS$CANCEL RET_STATUS = TSS$CANCEL (CHANNEL)
TSS$CLOSE RET_STATUS = TSS$CLOSE &

(CHANNEL + &
CLEAR_SCREEN)

TSS5$CLOSE_RLB

RET_STATUS

TSS$CLOSE_RLB &
(LIBRARY_ID)

TS54$COPY_SCREEN

RET_.STATUS

TSS$COPY_SCREEN &
(CHANNEL +» &
FILE_.SPEC, &
APPEND_FLAG)

TSS$DECL_AFK %

RET_STATUS

TSS$DECL_AFK &

(CHANNEL +» &

KEY_ID, &
KEY_EVENT_FLAG_NUMBER: &
KEY_AST_ROUTINE: &
KEY_AST_PARAMETER BY VALUE)

TSS$0PEN RET_.STATUS TSS$0PEN(CHANNEL » &
DEVICE)
TSS$0PEN_RLB RET_STATUS TSS$0PEN_RLB &

(REQUEST_LIBRARY_FILE: &
LIBRARY_.ID)

TSS$READ_MSG_LINE

RET_STATUS

TSS$READ_MSG_LINE &
(CHANNEL » &
RESPONSE_TEXT s &
MESSAGE_PROMPT , &
RESPONSE_LENGTH)

TSS$REQUEST

RET_STATUS

TSS$REQUEST &
(CHANNEL + &
LIBRARY_IDs &
REQUEST_NAME: &
RECORD_-1, &
RECORD_2: &
RECORD_n)

4-48

(continued on next page)

TDMS Synchronous Programming Calls

Table 4-4: TDMS Synchronous Programming Calls in VAX BASIC (Cont.)

Call

Example

TSS$SIGNAL

RET_STATUS

TS5$SIGNAL

TSS$TRACE_OFF

RET_STATUS

TSS$TRACE_OFF

TSS$TRACE_ON

RET_STATUS

TSS$TRACE_ON

TSS$UNDECL _AFK

RET_STATUS

TSS$UNDECL_AFK &
(CHANNEL » &
KEY _ID)

TSS$WRITE_BRKTHRU

RET_STATUS

TSS$WRITE_BRKTHRU &
(CHANNEL » &
MESSAGE_TEXT ., &
BELL_FLAG)

TSS$WRITE_MSG_LINE

RET_STATUS

TSS$WRITE-MSG_LINE &
(CHANNEL + &
MESSAGE_TEXT)

Notes to Table 4-4:

* Requires the following declaration at the beginning of your BASIC program:

EXTERNAL LONG Key_ast__routine

TDMS Synchronous Programming Calls

4-49

Table 4-5 lists the VAX TDMS synchronous calls in VAX COBOL. The calls are
in alphabetical order.

Table 4-5: TDMS Synchronous Programming Calls in VAX COBOL

Call Example

TSS$CANCEL CALL "TSS$CANCEL" USING

BY REFERENCE CHANNEL »
GIVING RET-STATUS.

TSS$CLOSE CALL "TSS$CLOSE" USING

BY REFERENCE CHANNEL »
BY REFERENCE CLEAR-SCREEN,
GIVING RET-STATUS.

TSS$CLOSE_RLB CALL "TSS$CLOSE_RLB" USING

BY REFERENCE LIBRARY-ID:
GIVING RET-STATUS.

TSS5$COPY_SCREEN CALL "TSS$COPY_SCREEN" USING

BY REFERENCE CHANNEL

BY DESCRIPTOR FILE-SPEC:
BY REFERENCE APPEND-FLAG:
GIVING RET-STATUS.

TSS$DECL_AFK CALL "TSS#DECL_AFK" USING

BY REFERENCE CHANNEL .
BY REFERENCE KEY-ID:

GIVING RET-STATUS.

BY REFERENCE KEY-EVENT-FLAG-NUMBER s
BY REFERENCE KEY-AST-ROUTINE:
BY VALUE KEY-AST-PARAMETER .

TSS$0PEN CALL "TSS$0PEN" USING

BY REFERENCE CHANNEL
BY DESCRIPTOR DEVICE:
GIVING RET-STATUS.

TSS$0PEN_RLB CALL "TSS#OPEN_RLB" USING
BY DESCRIPTOR REQUEST-LIBRARY-FILE:

BY REFERENCE LIBRARY-ID.
GIVING RET-STATUS.

4-50

TDMS Synchronous Programming Calls

(continued on next page)

Table 4-5: TDMS Synchronous Programming Calls in VAX COBOL (Cont.)

Call Example

TSS$READ_MSG_LINE CALL "TSS$READ_MSG_LINE" USING

BY REFERENCE CHANNEL s

BY DESCRIPTOR RESPONSE-TEXT.

BY DESCRIPTOR MESSAGE-PROMPT .
.BY REFERENCE RESPONSE-LENGTH:
GIVING RET-STATUS.

TSS$REQUEST CALL ""TSS$REQUEST" USING

BY REFERENCE CHANNEL »

BY REFERENCE LIBRARY-ID:

BY DESCRIPTOR REQUEST-NAME .
BY REFERENCE RECORD-1:.

BY REFERENCE RECORD-2:

BY REFERENCE RECORD-n:
GIVING RET-STATUS.

TSS$5IGNAL CALL "TSS$SIGNAL"
GIVING RET-STATUS.

TSS$TRACE_OFF CALL "TSS$TRACE_OFF"
GIVING RET-STATUS.

TSS$TRACE_ON CALL "TSS$TRACE_ON"
GIVING RET-STATUS.

TSS$UNDECL _AFK CALL "TSS$UNDECL_AFK" USING
BY REFERENCE CHANNEL »
BY REFERENCE KEY-ID:
GIVING RET-STATUS.

TSS$WRITE_BRKTHRU CALL "TSS$WRITE_BRKTHRU" USING
BY REFERENCE CHANNEL »

BY DESCRIPTOR MESSAGE-TEXT .,
BY REFERENCE BELL-FLAG:
GIVING RET-STATUS.

TSS$WRITE_MSG_LINE] CALL "TSS$WRITE_MSG_LINE" USING
BY REFERENCE CHANNEL »

BY DESCRIPTOR MESSAGE-TEXT.
GIVING RET-STATUS.

TDMS Synchronous Programming Calls 4-51

Table 4-6 lists the VAX TDMS synchronous calls in VAX FORTRAN. The calls

are in alphabetical order.

Table 4-6: TDMS Synchronous Programming Calls in VAX FORTRAN

1

Call Example
TSS$CANCEL RET_.STATUS = TSS$CANCEL (%ZREF (CHANNEL))
TSS$CLOSE RET_STATUS = TSS$CLOSE(%REF (CHANNEL) »

AREF (CLEAR_SCREEN))

RET_STATUS
1

TSS$CLOSE_RLB

TSS$CLOSE_RLB
(ZREF(LIBRARY_ID))

TSS8$COPY_SCREEN RET_STATUS

W) o

TSS$COPY_SCREEN
(%REF (CHANNEL) »
ZDESCR(FILE_SPEC)
AREF (APPEND_FLAG))

TSS$DECL_AFK RET_STATUS

[s2 L I S SN

TSS$DECL_AFK

(ZREF (CHANNEL) »
AREF(KEY_ID) »
AREF(KEY_EVENT_FLAG_NUMBER) »
AREF(KEY_AST_ROUTINE) »
KEY_AST_PARAMETER)

RET_STATUS
1

TSS$0PEN

TSS$0PEN (%4REF (CHANNEL) »
ZDESCR(DEVICE))

RET_STATUS
1

b
<

TSS$0PEN_RLB

TSS$0PEN_RLB
(ZDESCR(REQUEST_LIBRARY_FILE) »
ZREF(LIBRARY_ID))

TSS$READ_MSG_LINE RET_STATUS

S WM -

TSS$READ_MSG_LINE

(%4REF (CHANNEL) »
4DESCR(RESPONSE_TEXT) »
4DESCR (MESSAGE_PROMPT) »
AREF (RESPONSE_LENGTH))

TSS$REQUEST RET_STATUS

Lo I ST % I S I

m

TSS$REQUEST

(ZREF (CHANNEL) »
AREF(LIBRARY_ID) »
4DESCR(REQUEST_NAME) »
AREF (RECORD_-1) »
AREF(RECORD-Z2) »

AREF (RECORD_m))

4-52

(continued on next page)

TDMS Synchronous Programming Calis

Table 4-6: TDMS Synchronous Programming Calls in VAX FORTRAN (Cont.)

Call

Example

TS5$SIGNAL

RET_STATUS

TSS$SIGNAL ()

TSE5$TRACE_OFF

RET_STATUS

TSS$TRACE_OFF ()

TSS$TRACE_ON

RET_STATUS

TSS$TRACE_ON()

TSS$UNDECL_AFK

RET_STATUS

]

TSS$UNDECL_AFK
(ZREF (CHANNEL) »
AREF(KEY_ID))

TSS$WRITE_BRKTHRU

RET_STATUS

W R -

TSS$WRITE_BRKTHRU
(ZREF (CHANNEL) »
Z“DESCR{MESSAGE_TEXT) »
AREF(BELL_FLAG))

TSS$WRITE_MSG_LINE

RET_STATUS

—

-

TSS$WRITE_MSG_LINE
(ZREF (CHANNEL)
4#DESCR(MESSAGE_TEXT))

TDMS Synchronous Programming Calls

4-53

TDMS Asynchronous Programming Calls 5

This chapter provides a complete description of all the TDMS asynchronous
programming calls. Calls are listed in alphabetical order.

The discussion of each call includes:

Format

Call Parameters

Return Status

Completion Status

Notes

Examples

The generic description of the call. See Table 5-1 for an
explanation of the notation.

The description of the arguments passed.

A general explanation of return status and a list of the
codes that can be returned on that call. In addition, you
see the error severity code associated with the return
status. See Table 5-2 for the error severity codes and
their explanation.

A general explanation of completion status and a list of
the codes that can be returned on that call. In addition,
you see the error severity code associated with the
completion status. See Table 5-2 for the error severity
codes and their explanation.

Additional information on using the call.

In VAX BASIC, VAX COBOL, and VAX FORTRAN.

At the end of this chapter, there are table summaries of all TDMS asynchronous
programming calls by language:

o Table 5-4 in VAX BASIC
e Table 5-5 in VAX COBOL
e Table 5-6 in VAX FORTRAN

5.1 Notation Used in This Chapter

Table 5-1 gives a complete list of the data types and passing mechanisms used
for TDMS programming calls.

Table 5-1: Parameter Passing Notation

Notation Explanation

mz.r Modifiable unspecified type, by reference

rlu.r Read-only unsigned longword logical type, by reference

rlu .v Read-only unsigned longword logical type, by value

rt.dx Read-only character string, class type in descriptor

szem.r Call without stack unwinding, procedure entry mask, by reference
wlc.v Write-only longword return status, by value

wlu.r Write-only unsigned longword logical type, by reference

wt.dx Write-only character string, class type in descriptor

wwu.r Write-only unsigned word logical type, by reference

All TDMS programming calls return a standard VAX/VMS status code. Each
status code has an associated severity level. Table 5-2 explains the possible
severity levels of the status codes that TDMS programming calls return.

5-2 TDMS Asynchronous Programming Calls

Table 5-2: Error Severity Codes for Return Status and Completion Status

Error Severity Explanation
S Successful completion
I Information only
F Indicates a Severe error; execution of the program does not
continue, and the procedure does not produce any output

TDMS Asynchronous Programming Calls 5-3

TSS$SCLOSE_A

5.2 TSS$SCLOSE _A Call

Closes the channel to the terminal and optionally clears the screen. Initiates this
operation and then returns control immediately to the application program.

Format

ret-status.wic.v = TSS$CLOSE _ A(channel.rlu.r
J[rsb.wiu.r]

efn.riu.r

,astadr.szem.r
,[astprm.riu.v]

[,clear-screen.rlu.r])

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN or TSSSOPEN _A call; you pass this parameter
by reference.

rsb

The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.

efn

The address of the longword containing the number of the event flag set at
call completion; you pass this parameter by reference. If the parameter is not
present, it is passed as 0 and TDMS does not set an event flag for this call.

Either the event flag parameter or the AST routine parameter must be
present for the call.

5-4 TDMS Asynchronous Programming Calls

TSSSCLOSE_A

astadr

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

Either the event flag parameter or the AST routine parameter must be
present for the call.
astprm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present, and a service routine is, TDMS will pass
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

clear-screen

The address of the longword specifying whether or not the screen is cleared;
you pass this parameter by reference. If the value of this parameter is 1, then
the screen is cleared. The clear-screen parameter is optional, and if it is
omitted or if the parameter is 0, the screen is not cleared.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$_BADFLAGS

Flag parameter has invalid value (F)

TSS$_BUGCHECK

Fatal internal software error (F)

TDMS Asynchronous Programming Calls 5-5

TSS$CLOSE_A

TSS$ _ CANINPROG

Cancel in progress on channel (F)
TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$_INVARG

Invalid arguments (F)
TSS$_INVCHN

Invalid channel (F)
TSS$ _IOINPROG

I/0 in progress on channel (F)
TSS$_NORMAL

Normal successful completion (S)

Notes

You should close the TDMS channel when you are finished using TDMS for
input/output on that terminal. As a result:

e TDMS resources associated with that terminal are released
e Screen video attributes are reset
o The cursor is returned to the bottom left hand corner of the terminal screen

e The keypad is reset to Numeric mode

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine

e Setting an event flag specified by the user

5-6 TDMS Asynchronous Programming Calls

TSSSCLOSE_A

e Both declaring the user’s AST routine and setting the event flag specified by
the user.

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine will cause an error to
be returned.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL_AFK__A with
TSS$UNDECL _AFK.

Examples
BASIC

KTERNAL LONG Ast_routine

+

Return_status = TSS4CLOSE_A(Channel &
Return-status_blocks &
Event_flag_numbers &
Ast_routines &
Ast_rParameter BY VALUE, &
Clear_screen)

CcOBOL

CALL "TSS$CLOSE_A"

USING BY REFERENCE Channel
Y REFERENCE Return-status-block:
BY REFERENCE Event-flad-number:
BY REFERENCE Ast-routine:
BY VALUE Ast-Pparameter:
BY REFERENCE Clear-screen:

GIVING Return-status.

FORTRAN

Return_status = TS8$CLOSE_A(ZREF(Channel)
WREF(Return_.status_blocKk)
AREF{(Event_flad_number)
WREF(Ast_routine)
Ast-Parameter:
ZREF(Clear_screen))

Lo % B

TDMS Asynchronous Programming Calls 5-7

TSSSCOPY_SCREEN_A

5.3 TSS$SCOPY_SCREEN_A Call

Copies the current contents of the screen to the file specified or the file defined
by the logical TSSSHARDCOPY. Initiates this operation and then returns control
immediately to the application program.

Format

ret-status.wlc.v = TSS$COPY _SCREEN _A(channel.rlu.r
J[rsb.wlu.r]

efn.riu.r

,astadr.szem.r
J[astprm.riu.v]

J[file-spec.rt.dx]
[,append-flag.riu.r])

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN or TSS$OPEN _A call; you pass this parameter
by reference.

rsb

The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.

efn

The address of the longword containing the number of the event flag set at
call completion; you pass this parameter by reference. If the parameter is not
present, it is passed as 0 and TDMS does not set an event flag for this call.

Either the event flag parameter or the AST routine parameter must be
present for the call.

5-8 TDMS Asynchronous Programming Calls

TSSSCOPY_SCREEN_A

astadr

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

Either the event flag parameter or the AST routine parameter must be
present for the call.
astprm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present, and a service routine is, TDMS passes
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

file-spec

The address of a string descriptor pointing to the VMS file specification to
which the contents of the screen will be directed. You pass this optional
parameter by descriptor.

If this parameter is not specified, the value of the logical TSS$HARDCOPY is
used to determine where the contents of the screen are directed.

If this parameter is not specified and the logical TSS$HARDCOPY is not
defined, this call does nothing. The return status is TSS$_NOOUTFILE, an
informational status.

append-flag

The address of a longword specifying whether to create a new version of the
file or to append the copy of the screen to the latest version of the file. You
pass this optional parameter by reference. If present, this parameter must
have a value of either O or 1.

A new version of the output file will be created if:
e The parameter is not present
e The flag has a value of 0

e There is no existing version of the file

TDMS Asynchronous Programming Calls 5-9

TSSSCOPY_SCREEN_A

Otherwise, the current contents of the screen will be appended to the latest
version of an existing VMS file.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$_BADFLAGS
Flag parameter has invalid value (F)

TSS$_BUGCHECK

Fatal internal software error (F)
TSS$_CANCEL

Call canceled by TSS$CANCEL (F)
TSS$ _ CANINPROG

Cancel in progress on channel (F)
TSS$ _ COPYOUTERR

TSS$COPY _SCREEN output error (F)
TSS$_INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$_INVCHN

Invalid channel (F)

5-10 TDMS Asynchronous Programming Calls

TSS$COPY_SCREEN_A

TSS$_INVDSC

Invalid descriptor (F)
TSS$ _IOINPROG

I/0 in progress on channel)
TSS$_NOOUTFILE

No output file definition found (I)
TSS$ _NORMAL

Normal successful completion (S)

Notes

TSS$COPY _SCREEN _A supplies a callable PF4 (hardcopy) function to the
program. You cannot issue a TSS$COPY _SCREEN _A call while input or
output is active on the specified channel, such as with an outstanding
TSS$REQUEST or TSS$WRITE _MSG _LINE call.

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

e Both declaring the user’s AST routine and setting the event flag specified by
the user

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine will cause an error to
be returned.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _ A with TSS$CLOSE, or TSS$DECL _AFK _ A with
TSS$UNDECL _AFK.

TDMS Asynchronous Programming Calls 5-11

TSS$COPY_SCREEN_A

Examples
BASIC

EXTERNAL LONG Ast_routine

+

Return_status = TSS$COPY_SCREEN_A(Charmnel s &
Return_status_blocK, &
Event_flad_numbers &
Ast_routines &
Ast_prparameter BY VALUE, &
File_specs &
Append_flag)

COBOL

CALL "TSS$COPY_SCREEN_A"

USING BY REFERENCE Channel
BY REFERENCE Return-status-hblocK:
BY REFERENCE Event-flag-number.
BY REFERENCE Ast-routine:
BY VALUE Ast-parameter:
BY DESCRIPTOR File-srec:
BY REFERENCE Aprend-flag:

GIVING Return-status.

FORTRAN

Return_status = TSS5$COPY_SCREEN_A(%REF(Channel)
ZREF(Return_status_hblock) s
AREF(Event_flag_number)
AREF(Ast_routine) s
Ast_rarameter,
4DESCR(File_srec) s
ALREF(APPend_flag))

[sp LS. I SO % B O\ I

5-12 TDMS Asynchronous Programming Calls

TSSSDECL_AFK_A

5.4 TSSSDECL_AFK_A Call

Enables the operator’s use of an application function key (AFK) by specifying the
AFK and associating it with a service routine and/or event flag. Initiates this
operation and then returns control immediately to the application program.

Format

ret-status.wlc.v = TSS$DECL _ AFK_A(channel.rlu.r
J[rsb.wlu.r]

efn.riu.r

,astadr.szem.r
Jastprm.riu.v]

key-id.rlu.r
key-efn.riu.r

,key-astadr.szem.r
[,key-astprm.riu.v])

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN or TSS$OPEN __A call; you pass this parameter
by reference.

rsb

The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.

efn

The address of the longword containing the number of the event flag set at
call completion; you pass this parameter by reference. If the parameter is not
present, it is passed as 0 and TDMS does not set an event flag for this call.

TDMS Asynchronous Programming Calls 5-13

TSSSDECL _AFK_A

Either the event flag parameter or the AST routine parameter must be
present for the call.

astadr

astp

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

Either the event flag parameter or the AST routine parameter must be
present for the call.
rm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present and a service routine is, TDMS passes
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

key-id

5-14

The address of a longword containing a code that represents the AFK; you
pass this parameter by reference. When the operator presses the key
represented by this key-id parameter, the application program is notified.

Because the key-id parameter is a code, each call to TSS$DECL_AFK_A
can activate only one key. Table 5-3 is a list of TDMS application function
keys.

TDMS Asynchronous Programming Calls

TSSSDECL_AFK_A

Table 5-3: TDMS Application Function Keys (AFKS)

Key Id Control Key Key id Control Key
0 CTRL/spacebar | 15 CTRL/O
1 CTRL/A , 16 CTRL/P
2 CTRL/B 18 CTRL/R
3 CTRL/C 20 CTRL/T
4 CTRL/D 21 CTRL/U
5 CTRL/E 22 CTRL/V
6 ‘CTRL/F 23 CTRL/W
7 CTRL/G 24 CTRL/X
8 CTRL/H 25 CTRL/Y
9 CTRL/I 26 CTRL/Z
10 CTRL/J 27 CTRL/[
11 CTRL/K 28 CTRL/backslash
12 CTRL/L 29 CTRL/]
13 CTRL/M 30 CTRL/~
14 CTRL/N 31 CTRL/?

key-efn

The address of a longword containing the number of the event flag that is to
be set when the AFK is pressed; you pass this parameter by reference. If the
parameter is not present, TDMS does not set an event flag when the operator
presses the key.

You may use the event flag by itself or together with an AST service routine.

TDMS Asynchronous Programming Calls 5-15

TSSSDECL_AFK_A

key-astadr

The routine in the application program; you pass this parameter by
reference. When the operator presses a declared AFK, VAX TDMS calls this
routine at AST level. The user routine must have the following calling

sequence:

status.wilc.v = ROUTADR (key-astprm.riu.v
,channel.rlu.r
Jkey-id.rlu.r)

You may use the AST service routine with or without an AST parameter. You
may also use the AST service routine with an event flag.

key-astprm
The longword containing the AST parameter to be passed to the AFK service
routine; you pass this optional parameter by value. If the AST parameter is
not present and a service routine is, TDMS passes an AST parameter of 0 to
the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters

by reference).

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$ _BUGCHECK

Fatal internal software error (F)

TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)

5-16 TDMS Asynchronous Programming Calls

TSSSDECL _AFK_A

TSS$ _INVCHN
Invalid channel (F)
TSS$ _INVKEYID
Invalid key id (F)
TSS$ _NORMAL

Normal successful completion (S)

Notes

Application function keys (AFKs) provide exception notification services for
terminal-related events. During execution of a TDMS application, an operator
can press AFK keys in order to initiate actions outside the context of the current
input to the active form.

AFKs are asynchronous function keys; that is, they operate independently of
requests. As asynchronous function keys, AFKs initiate asynchronous processing
in the application program.

You can enable and disable the operator’s use of AFKs by issuing

TSS$DECL _AFK _A and TSS$UNDECL _AFK _A calls in the application
program. The TSS$DECL _AFK _A call specifies the AFK by the key-id
parameter and associates that key with a service routine and/or event flag. After
the program has made a TSS$DECL _AFK __A call, the operator can press the
enabled AFK whenever he wishes to invoke a special function, until the key is
disabled:

e When the application program issues a matching TSSSUNDECL __AFK or
TSS$UNDECL _AFK _A call

e When the application program closes the channel with a TSS$CLOSE or
TSS$CLOSE _A call

e Automatically, when the application program ends

TDMS Asynchronous Programming Calls 5-17

TSSSDECL_AFK_A

When an AFK is pressed, TDMS does one of the following:

e Sets the event flag specified for this AFK (if any)

e Calls the service routine (if any) at AST level and passes it:

- The AST parameter

- The TDMS channel on which it was pressed

— The key-id parameter of the AFK that was pressed
e Both sets the event flag and calls the service routine

In this case, TDMS sets the event flag before it calls the service routine.

TDMS calls the service routine whether or not there is an outstanding request,
as soon as the VMS terminal driver processes the keystroke.

All the control keys except CTRL/Q and CTRL/S may be defined as AFKs.

Note that some control keys (for example, CTRL/H or BACK SPACE, CTRL/I or
TAB, CTRL/J or LINE FEED, and CTRL/M or RETURN) may also be defined as
AFKs. You should be careful when designing functions for AFKs that already
have a special meaning for TDMS; otherwise, unexpected results might be
generated. For example, if you define CTRL/M (RETURN) as an AFK, you must
provide another way of terminating the request.

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

e Both declaring the user’s AST routine and setting the event flag specified by
the user

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine will cause an error to
be returned.

5-18 TDMS Asynchronous Programming Calls

TSS$DECL _AFK

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK _A with
TSS$UNDECL _AFK.

Examples
BASIC

EXTERNAL LONG Ast_routine
EXTERNAL LONG Kev_ast_routine

+

Return_status = TSS$DECL_AFK_A(Channel &
Return_status_blocK: &
Event_flag_number: &
Ast_routines &
Ast_rarameter BY VALUE, &
Kev_ids &
Kev_event_flag_numbers &
Kev_ast_routine, &
Key_ast_parameter BY VALUE)

COBOL

CALL "TSS$DECL_AFK_A"

USING BY REFERENCE Channel
BY REFERENCE Return-status-block:
BY REFERENCE Event-flad-number:
BY REFERENCE Ast-routine:
BY VALUE Ast-rparameter:
BY REFERENCE Kev-id,
BY REFERENCE Kev-event-flag-number:
BY REFERENCE Kev-ast-routine:
BY VALUE Kev-ast-parameter:

GIVING Return-status.,

FORTRAN

Return_status = TSS$DECL_AFK_A(ZREF(Channel) s
ZREF(Return_status_blocK)
ZREF(Event_flag_number) s
ZREF(Ast_routine)
Ast_Parameter:
ZREF(Kev_id) »
AREF(Kev_event_flag_number)
AREF(Kev_ast_routine) s
Kev_ast_parameter)

(1 BENN oy I I R 7 B B

TDMS Asynchronous Programming Calls

_A

5-19

TSSSOPEN_A

5.5 TSSSOPEN_A Call

Opens a channel to a terminal for input and output. Initiates this operation and
then returns control immediately to the application program.

Format

ret-status.wlc.v = TSS$OPEN _A(channel.wlu.r
J[rsb.wlu.r]

efn.rlu.r

,astadr.szem.r
Jastprm.riu.v]

[,device.rt.dx])

Call Parameters

channel
The address of a longword to receive the TDMS channel number; you pass
this parameter by reference.

rsb

The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.

efn

The address of the longword containing the number of the event flag set at
call completion; you pass this parameter by reference. If the parameter is not
present, it is passed as 0 and TDMS does not set an event flag for this call.

Either the event flag parameter or the AST routine parameter must be
present for the call.
astadr

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

5-20 TDMS Asynchronous Programming Calls

TSSSOPEN_A

Either the event flag parameter or the AST routine parameter must be
present for the call.

astprm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present, and a service routine is, TDMS passes
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

device

The address of a string descriptor pointing to the device name of the
terminal; you pass this optional parameter by descriptor. This can be a
logical name or a physical device specification. This parameter is optional;
the default is SYSSINPUT.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$_BUGCHECK

Fatal internal software error (F)

TSS$ _ERROPNDEV

Error opening device (F)
TSS$ _ILLDEVCHAR

Illegal device characteristics (F)
TSS$ _INSVIRMEM

Insufficient virtual memory (F)

TDMS Asynchronous Programming Calls 5-21

TSSSOPEN_A

TSS$ _INVARG

Invalid arguments (F)
TSS$_INVDSC

Invalid descriptor (F)
TSS$_NORMAL

Normal successful completion (S)

Notes

TDMS assigns a unique channel number to identify the terminal. You use this
channel number as a parameter in other TDMS calls to identify what terminal to
use for the operation.

Input and output must be performed on the same terminal; therefore, the
input/output streams cannot be split between two terminals. For example, if you
open a channel to SYS$INPUT and you redefine SYS$OUTPUT as some other
device, both input and output still occur on SYS$INPUT.

The channel number returned is not the VMS channel number returned by the
SYS$ASSIGN service. Input/output calls to other systems (such as VAX RMS or
$QIO0) should not be issued to the terminal. If you try to issue calls to other
systems, you might generate unexpected results.

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

o Both declaring the user’s AST routine and setting the event flag specified by
the user

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine will cause an error to
be returned.

5-22 TDMS Asynchronous Programming Calls

TSS$SOPEN

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN __ A with TSS$CLOSE, or TSS$DECL _AFK _ A with
TSS$UNDECL _AFK.

Examples
BASIC

EXTERNAL LONG Ast_routine

.

Return_status = TSS$OPEN_A(Channel
Return_status_block:s &
Event_flad_numbers &
Ast_routines &
Ast_parameter BY VALUE,» &
Device_name)

COBOL

CALL "TSS$DPEN_A"

USING BY REFERENCE Channel:
BY REFERENCE Return-status-blocK:
BY REFERENCE Event-fladg-number:
BY REFERENCE Ast-routine:
BY VALUE Ast-pParameter:
BY DESCRIPTOR Device-name:

GIVING Return-status.

FORTRAN

Return_status = TSS$0PEN_A(ZREF(Channel) s
WREF(Return_status_bklocK)
#REF(Event_flad_number)
ZREF(Ast_routine)
Ast_Parameter:
%“DESCR(Device_name))

L I = % G R

TDMS Asynchronous Programming Calls

_A

5-23

TSSSREAD_MSG _LINE_A

5.6 TSSSREAD_MSG_LINE_A Call

Writes a prompt on the screen on the reserved message line (optionally), and
reads a line of input from the operator. Initiates this operation and then returns
control immediately to the application program.

Format

ret-status.wlc.v = TSS$READ _MSG _LINE _A(channel.rlu.r
,[rsb.wlu.r]

efn.riu.r

,astadr.szem.r
Jastprm.riu.v]

,response-text.wt.dx
,[message-prompt.rt.dx]
[,response-length.wwu.r])

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN or TSS$OPEN _A call; you pass this parameter
by reference.

rsb

The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.

efn

The address of the longword containing the number of the event flag set at
call completion; you pass this parameter by reference. If the parameter is not
present, it is passed as 0 and TDMS does not set an event flag for this call.

Either the event flag parameter or the AST routine parameter must be
present for the call.

5-24 TDMS Asynchronous Programming Calls

TSSSREAD_MSG _LINE_A

astadr

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

Either the event flag parameter or the AST routine parameter must be
present for the call.
astprm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present, and a service routine is, TDMS passes
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

response-text

The address of a static or dynamic string descriptor pointing to the buffer to
receive the text entered by the operator; you pass this optional parameter by
descriptor.

message-prompt
The address of a string descriptor pointing to the prompt you want to display
on the message line; you pass this optional parameter by descriptor.
response-length

The address of a word to receive the length of the message line read into the
buffer; you pass this optional parameter by reference.

This parameter is useful for setting the length of the response-text parameter
so that it can be compared with other strings within the application program.
If you use a static string descriptor for the response-text parameter and omit

the response-length parameter, you cannot tell how long the response text is.

A comparison might fail because the two strings are unequal in length.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

TDMS Asynchronous Programming Calls 5-25

TSSSREAD_MSG_LINE_A

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$_BUGCHECK

Fatal internal software error (F)

TSS$_ CANCEL

Call canceled by TSS$CANCEL (F)
TSS$_ CANINPROG

Cancel in progress on channel (F)
TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$ _INVCHN

Invalid channel (F)
TSS$ _INVDSC

Invalid descriptor (F)
TSS$ _INVIXTLEN

Invalid text length (F)
TSS$_IOINPROG

I/0 in progress on channel (F)
TSS$ _NONPRICHA

Field contains non-printable characters (F)
TSS$ _NORMAL

Normal successful completion (S)

5-26 TDMS Asynchronous Programming Calls

TSSSREAD_MSG _LINE_A

Notes

The reserved message line is usually the last line on the screen. If you are
displaying a 132-column form on a terminal without the AVO option, the
reserved message line is line 14. Messages are limited to 80 characters unless a
form with 132 columns is currently displayed. The message can then be 132
characters. When the operator presses the RETURN key or any other request
processing key, the message line is cleared.

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

e Both declaring the user’s AST routine and setting the event flag specified by
the user

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine will cause an error to
be returned.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _ A with TSS$CLOSE, or TSS$DECL_AFK _A with
TSS$UNDECL _AFK.

TDMS Asynchronous Programming Calls 5-27

TSSSREAD _MSG_LINE_A

Examples
BASIC

AXTERNAL LONG Ast_routine

+

Reutrn_status = TSS$READ_MSG_LINE_A(ZREF(Channel) &
Return_status_block, &
Event_flad_numbers &
Ast_routine s &
Ast_parameter BY VALUE: &
Response_texts &
Messade_PrompPts &
Response_lendth)

COBOL

CALL "TSS$READ_MSG_LINE_A"
USING BY REFERENCE Channel
BY REFERENCE Return-status-block,
BY REFERENCE Event-flag-number:
BY REFERENCE Ast-routine:
BY VALUE Ast-Parameter:
BY DESCRIPTOR Response-text:
BY DESCRIPTOR Messade-Promet
BY REFERENCE Response-lendth:
GIVING Return-status.

FORTRAN

Return_status = TSS$READ_MSG_LINE_A(ZREF(Channel) s
AREF(Return_status_block) s
WREF(Event_flag_number),
WREF(Ast_routine) s
Ast_Parameter:
4ZDESCR(ResPonse_text)
4DESCR(Message_Prompt) s
#REF(Response_lendgth))

N R W e

5-28 TDMS Asynchronous Programming Calls

TSSSREQUEST_A

5.7 TSSSREQUEST _A Call

Executes the request named in the call. Initiates this operation and then returns
control immediately to the application program.

Format

ret-status.wlc.v = TSS$REQUEST _ A(channel.rlu.r
Jrsb.wlu.r]

efn.rlu.r

,astadr.szem.r
Jastprm.riu.v]

Jibrary-id.riu.r
,request-name.rt.dx
[,record1.mz.r
[,record2.mz.r

[,r(-::cordn.mz.r]]])

. Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN or TSS$OPEN _A call; you pass this parameter
by reference.

rsb

The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.

efn

The address of the longword containing the number of the event flag set at
call completion; you pass this parameter by reference. If the parameter is not
present, it is passed as 0 and TDMS does not set an event flag for this call.

TDMS Asynchronous Programming Calls 5-29

TSSSREQUEST_A

Either the event flag parameter or the AST routine parameter must be
present for the call.

astadr

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

Either the event flag parameter or the AST routine parameter must be
present for the call.

astprm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present, and a service routine is, TDMS passes
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

library-id
The address of the longword containing the unique number that identifies the
library containing the desired request; you pass this parameter by reference.
It must be the same number that was assigned by TSS$OPEN _RLB.

request-name

The address of a string descriptor pointing to the name of the request to use;
you pass this parameter by descriptor.

record(s)

The address of the record(s) the request refers to for mapping data between
the form and the program record; you pass this optional parameter by
reference. If you specify more than one record, the order of the records must
be the same as in the RECORD IS instruction(s) in the request.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

5-30 TDMS Asynchronous Programming Calls

The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)
TSS$_ CANCEL

Call canceled by TSS$CANCEL (F)
TSS$__ CANINPROG |

Cancel in progress on channel (F)
TSS$_CONVERR

Data type conversion error (F)
TSS$_DISFORERR

Form display failed (F)
TSS$ _ILLDEVCHAR

Illegal device characteristics (F)
TSS$__INSVIRMEM

Insufficient virtual memory (F)
TSS$__INVARG

Invalid arguments (F)
TSS$_INVCHN

Invalid channel (F)
TSS$_INVDSC

Invalid descriptor (F)
TSS$ _MULTFORM

Multiple active forms are illegal (F)

TSSSREQUEST_A

TDMS Asynchronous Programming Calls 5-31

TSSSREQUEST_A

TSS$ _NORMAL

Normal successful completion (S)
TSS$ _PRKCHECK

Request was terminated by a check PRK (I)
TSS$ _PRKNOCHECK

Request was terminated by a nocheck PRK (I)
TSS$ _REQMAJVERMIS

Request binary version mismatch on major id (F)
TSS$ _REQMINVERMIS

Request binary version mismatch on minor id (F)
TSS$ _REQNOTFOU

Request definition not found (F)

Notes
The request must be in a currently open request library file.

If your programming language supports the extraction of records from the CDD,
record structure should not be a problem because you can use the same record
definition in your program that was used to build the request library file. Note
that if you use CDDL or DATATRIEVE to define your records, you must pass a
variable name to TSSSREQUEST _A that corresponds to the top level structure
name in the record definition. With languages that do not support the CDD, you
must be careful to define your records so that they are compatible with your
programming language. Otherwise you will generate unexpected results.

The order of the records passed to TDMS must match the order of the records in
the RECORD IS instructions in the request.

Because you pass records by reference, TDMS has no way of validating that you
are passing the correct records.

5-32 TDMS Asynchronous Programming Calls

TSSSREQUEST_A

The order in which instructions are specified in the request has no effect on the
order in which TDMS executes the instructions. TDMS executes request
instructions in the following order (if they are present in the request):

1. Control field evaluation

2. Output mappings from the program record to the form, including data type
conversion to text format for display, default field instructions, and video
instructions

3. Display of the form

4. Input mappings from the terminal to the program, including data type
conversion from text to the data type of the record field(s)

5. Return operations

The following form definition features cannot be used on a VI'52 terminal:

e 132-column screen

e Scrolled region

You generate a run-time error only when you try to display a form definition
containing one of those features. For example, if you run an application on a
VT52 and use form definitions without those features for the first five request
calls, all of those calls will be successful. However, if the sixth request call
contains a form definition with one of those features, it fails with the message:

%TSS-F-ILLDEVCHAR, illegal device characteristics

You should either change the form definition or run the application on a
VT100-compatible terminal.

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

e Both declaring the user’s AST routine and setting the event flag specified by
the user

TDMS Asynchronous Programming Calls 5-33

TSSSREQUEST_A

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS§CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine causes an error to be
returned.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _ A with TSS$CLOSE, or TSS$DECL _AFK _A with
TSS$UNDECL _AFK.

Examples
BASIC

EXTERNAL LONG Ast_routine

+
+

+

Return_status = TSS$REQUEST_A(Channels &
Return_status_blocks &
Event_flag_number, &
Ast_routines &
Ast_Parameter BY VALUE, &
Librarv_id, &
Request_name s &
Record_14 &
Record_2, &
Record_m)

CcOBOL

CALL "TSS$REQUEST_A"

USING BY REFERENCE Channel s
BY REFERENCE Return-status-block;
BY REFERENCE Event-flag-number,
BY REFERENCE Ast-routine:
BY WALUE Ast-pParameter:
BY REFERENCE Librarv-id:
BY DESCRIPTOR Resuest-name:
BY REFERENCE Record-1:
BY REFERENCE Record-2:
BY REFERENCE Record-n:

GIVING Return-status,

5-34 TDMS Asynchronous Programming Calls

TSSSREQUEST

FORTRAN

Return_status = TSS$REQUEST_A(LREF(Channel)
ZREF(Return_status_blocK)
4REF(Event_flad_number)
AREF(Ast_routine) s
Ast_Parameter:
AREF(Librarv_id)
“DESCR(Request_name) »
#REF(Record_1)
“REF(Record_2)»
*“REF(Record_n))

VONOUDWR -

TDMS Asynchronous Programming Calls

_A

5-35

TSSSUNDECL _AFK_A

5.8 TSSSUNDECL _AFK_A Call

Disables an application function key (AFK) and its associated service routine
and/or event flag. Initiates this operation and then returns control immediately
to the application program.

Format

ret-status.wic.v = TSS$SUNDECL _ AFK _A(channel.rlu.r
[rsb.wlu.r]

efn.riu.r

,astadr.szem.r
J[astprm.riu.v]

key-id.rlu.r)

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN or TSS$OPEN _A call; you pass this parameter
by reference.

rsb

The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.

efn

The address of the longword containing the number of the event flag set at
call completion; you pass this parameter by reference. If the parameter is not
present, it is passed as 0 and TDMS does not set an event flag for this call.

Either the event flag parameter or the AST routine parameter must be
present for the call.

5-36 TDMS Asynchronous Programming Calls

TSSSUNDECL _AFK_A

astadr

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

Either the event flag parameter or the AST routine parameter must be
present for the call.

astprm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present, and a service routine is, TDMS passes
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

key-id
The address of a longword containing the code representing the AFK that is

no longer needed by the application program. You pass this parameter by
reference.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$_BUGCHECK

Fatal internal software error (F)

TSS$_INSVIRMEM

Insufficient virtual memory (F)
TSS$_INVARG

Invalid arguments (F)

TDMS Asynchronous Programming Calls 5-37

TSSSUNDECL _AFK_A

TSS$ _INVCHN
Invalid channel (F)
TSS$ _INVKEYID
Invalid key id (F)
TSS$ _NORMAL

Normal successful completion (S)

Notes

You use this call to deactivate asynchronous notification of an AFK. After the
TSS$UNDECL _AFK __A call is issued, TDMS no longer calls the service routine
specified in the matching TSS$DECL _AFK _A call. That is, after the
TSS$UNDECL _AFK__A call, the program no longer is notified when the

operator presses the key.

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

e Both declaring the user’s AST routine and setting the event flag specified by
the user

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine causes an error to be
returned.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL _AFK _ A with
TSS$UNDECL _AFK.

5-38 TDMS Asynchronous Programming Calls

TSSSUNDECL _AFK_A

Examples
BASIC

EXTERNAL LONG Ast_routine

.

Return_status = TSS$UNDECL_AFK_A(Channel) &
Return_status_blocK, &
Event_flad_numbers &
Ast_routines &
Ast_parameter BY VALUE: &
Key_id)

coBOL

CALL "TSS$UNDECL_AFK_A"

USING BY REFERENCE Channel
BY REFERENCE Return-status-blocK:
BY REFERENCE Event-flag-number:
BY REFERENCE Ast-routine:
BY VALUE Ast-parameter:
BY REFERENCE Kev-id:

GIVING Return-status.

FORTRAN

Return_status = TSS$SUNDECL_AFK_A(ZREF(Channel) s
4#REF(Return_.status_blocK)
%REF(Event_flad_number)
ZREF(Ast_routine)
Ast_Parameter:
AZREF (Kevy_id))

s W) -

TDMS Asynchronous Programming Calls ~ 5-39

TSS$SWRITE_BRKTHRU_A

5.9 TSSSWRITE_BRKTHRU_A Call

Writes a message to the reserved message line on the screen, interrupting the
current request or message line operation in order to do so. Initiates this
operation and then returns control immediately to the application program.

Format

ret-status.wilc.v = TSS$WRITE _BRKTHRU _ A(channel.rlu.r
[rsb.wlu.r]

efn.riu.r

,astadr.szem.r
Jastprm.riu.v]

,message-text.rt.dx
[,bell-flag.rlu.r])

Call Parameters

channel
The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN or TSS$OPEN _A call; you pass this parameter
by reference.
rsb
The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.
efn
The address of the longword containing the number of the event flag set at

call completion; you pass this parameter by reference. If the parameter is not

present, it is passed as 0 and TDMS does not set an event flag for this call.

Either the event flag parameter or the AST routine parameter must be
present for the call.

5-40 TDMS Asynchronous Programming Calls

TSSSWRITE_BRKTHRU_A

astadr

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

Either the event flag parameter or the AST routine parameter must be
present for the call.
astprm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present, and a service routine is, TDMS passes
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

message-text
The address of a string descriptor pointing to the text to be displayed on the
message line; you pass this parameter by descriptor.

bell-flag

The address of a longword containing a flag for the terminal bell; you pass
this optional parameter by reference. If this parameter is set to 1, the flag
causes the terminal bell to ring when any message text is displayed. If you do
not pass this parameter or if this parameter has a value of 0, TDMS does not
ring the bell.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$_BADFLAGS

Flag parameter has invalid value (F)

TDMS Asynchronous Programming Calls 5-41

TSSSWRITE_BRKTHRU_A

TSS$_BUGCHECK

Fatal internal software error (F)
TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$__INVCHN

Invalid channel (F)
TSS$ _INVDSC

Invalid descriptor (F)
TSS$ _NONPRICHA

Field contains non-printable characters (F)
TSS$ _NORMAL

Normal successful completion (S)

Notes

The message text for this call is truncated if its length is greater than the
current terminal line size.

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

e Both declaring the user’s AST routine and setting the event flag specified by
the user

Asynchronous calls can be made from AST level as well as non-AST level.

5-42 TDMS Asynchronous Programming Calls

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.

TSS$SWRITE_BRKTHRU_A

Making a synchronous call to TDMS from an AST routine causes an error to be

returned.

Note that you can mix synchronous and asynchronous calls. For example, you

can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL_AFK_A with
TSS$UNDECL _AFK.

Examples
BASIC

EXTERNAL LONG Ast_routine

.
+

+

Return_status

cOoBOL

= TSS$WRITE_BRKTHRU_A(Channel s &
Return_status_blocKs &
Event_flag_number, &
Ast_routines &
Ast_rparameter BY VALUE, &
Messade_texts &
Bell_flag)

CALL "TSS$WRITE_BRKTHRU_A"

USING BY
BY
BY
BY
BY
BY
BY

REFERENCE Channel s

REFERENCE Return-status-blocK:
REFERENCE Event-flag-number:
REFERENCE Ast-routine

VALUE Ast-rparameter:
DESCRIPTOR Messagde-text
REFERENCE Bell-flag:

GIVING Return-status.

FORTRAN

Return_status

[I B % I S R

= TSS$WRITE_BRKTHRU_A(ZREF(Channel) »
ZREF(Return_status_blockK) s
“REF(Event_flagd_number)
ZREF(Ast_routine) s
Ast_Parameter:
#ZDESCR(Messade_text)
ZREF(Bell_flag))

TDMS Asynchronous Programming Calls

TSSSWRITE_MSG_LINE_A

5.10 TSSSWRITE_MSG_LINE_A Call

Writes a message to the reserved message line on the screen. Initiates this
operation and then returns control immediately to the application program.

Format

ret-status.wic.v = TSS$WRITE _MSG _LINE _A(channel.rlu.r
J[rsb.wlu.r]

efn.rlu.r

,astadr.szem.r
Jastprm.riu.v]

,message-text.rt.dx)

Call Parameters

channel

The address of the longword containing the unique TDMS channel number
assigned on the TSS$OPEN or TSS$OPEN _A call; you pass this parameter
by reference.

rsb

The address of the longword to receive the completion status for the call; you
pass this optional parameter by reference. If the parameter is not present, it
is passed as a 0.

efn

The address of the longword containing the number of the event flag set at
call completion; you pass this parameter by reference. If the parameter is not
present, it is passed as 0 and TDMS does not set an event flag for this call.

Either the event flag parameter or the AST routine parameter must be
present for the call.

5-44 TDMS Asynchronous Programming Calls

TSSSWRITE_MSG_LINE_A

astadr

The address of a routine in the application program; you pass this parameter
by reference. If the parameter is present, an AST is declared for this service
routine at call completion.

Either the event flag parameter or the AST routine parameter must be
present for the call.

astprm

The longword containing the AST parameter to be passed to the AST routine
upon call completion; you pass this optional parameter by value.

If the AST parameter is not present, and a service routine is, TDMS passes
an AST parameter of 0 to the service routine.

TDMS treats this parameter as a value: you can pass any type of parameter
you would like your AST routine to receive, including addresses (parameters
by reference).

message-text

The address of a string descriptor pointing to the text to be displayed on the
message line; you pass this parameter by descriptor.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$_BUGCHECK

Fatal internal software error (F)

TSS$ _CANCEL
Call canceled by TSS$CANCEL (F)
TSS$ _ CANINPROG

Cancel in progress on channel (F)

TDMS Asynchronous Programming Calls 5-45

TSSSWRITE_MSG_LINE_A

TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$_INVCHN

Invalid channel (F)
TSS$_INVDSC

Invalid descriptor (F)
TSS$_INVIXTLEN

Invalid text length (F)
TSS$ _NONPRICHA

Field contains non-printable characters (F)
TSS$ _NORMAL

Normal successful completion (S)

Notes

TDMS clears the reserved message line before it displays the message on the
screen. You can use this call to let the operator know about the status of AFKs.

TDMS uses the message line to display error messages; therefore, it is uncertain
how long the line will be displayed. The cases when the message line is cleared
are:

o If the operator makes an error on input
o If the operator exits the current input field

o When the screen is cleared

5-46 TDMS Asynchronous Programming Calls

TSSSWRITE_MSG_LINE_A

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

o Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

e Both declaring the user’s AST routine and setting the event flag specified by
the user

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine will cause an error to
be returned.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _A with TSS$CLOSE, or TSS$DECL_AFK__ A with
TSS$UNDECL_AFK.

Examples
BASIC

EXTERNAL LONG Ast_routine

+

Return_status = TSS$WRITE_MSG_LINE_A(Channels &
Return_status_hklocks &
Event_flag_numbers &
Ast_routines &
Ast_rarameter BY VALUE, &
Message_text)

COBOL

CALL "TSS$WRITE_MSG_LINE_A"

USING BY REFERENCE Channel s
BY REFERENCE Return-status-blocK:
BY REFERENCE Event-flag-number:
BY REFERENCE Ast-routine:
BY VALUE Ast-parameter:
BY DESCRIPTOR Messade-text:s

GIVING Return-status.

TDMS Asynchronous Programming Calls 5-47

TSSSWRITE_MSG_LINE_A

FORTRAN

Return_status = TSS$WRITE_MSG_LINE_A(ZREF(Channel)
AREF(Return_status_blocK)
WREF(Event_fladg_rniumber)
4#REF(Ast_routine) s
Ast_Parameter:
“DESCR(Messade_text))

S we) -

5-48 TDMS Asynchronous Programming Calls

Table 5-4 lists the VAX TDMS asynchronous programming calls in VAX BASIC.
The calls are in alphabetical order.

Table 5-4: TDMS Asynchronous Programming Calls in VAX BASIC

Call Example

TSS$CLOSE_A + RET_STATUS

TSS$CLOSE_A &

(CHANNEL » &
RETURN_STATUS_BLOCK, &
EVENT_FLAG_NUMBER s &
AST_ROUTINE, &
AST_PARAMETER BY VALUE, &
CLEAR_SCREEN)

TSS$COPY_SCREEN_A + RET_STATUS

TSS$COPY_SCREEN_A &
(CHANNEL » &
RETURN_STATUS_BLOCK: &
EVENT_FLAG_NUMBER: &
AST_ROUTINE, &
AST_PARAMETER BY VALUE,» &
FILE_SPEC, &

APPEND_FLAG)

TSS$DECL_AFK_A * + RET_.STATUS = TESS$DECL_AFK_A &

(CHANNEL » &
RETURN_STATUS_BLOCK, &
EVENT_FLAG_NUMBER &
AST_ROUTINE, &
AST_PARAMETER BY VALUE, &
KEY_ID: &
KEY_EVENT_FLAG_NUMBER: &
KEY_AST_ROUTINE, &
KEY_AST_PARAMETER BY VALUE)

TSS$0PEN_A + RET_STATUS = TSS$0PEN_A &

(CHANNEL » &
RETURN_STATUS_BLOCK» &
EVENT_FLAG_NUMBER &
AST_ROUTINE, &
AST_PARAMETER BY VALUE: &
DEVICE)

(continued on next page)

TDMS Asynchronous Programming Calls 5-49

Table 5-4: TDMS Asynchronous Programming Calls in VAX BASIC (Cont.)

Call Example

TSS$READ_MSG_LINE_A + RET_.STATUS = TSS$READ_MSG_LINE_A &
(CHANNEL » &
RETURN_STATUS_BLOCK» &
EVENT_FLAG_NUMBER: &
AST_ROUTINE» &
AST_PARAMETER BY VALUE, &
RESPONSE_TEXT: &
MESSAGE_PROMPT » &
RESPONSE_LENGTH)

TSS$REQUEST_A + RET_STATUS = TSS$REQUEST_A &
(CHANNEL » &
RETURN_STATUS_BLOCK: &
EVENT_FLAG_NUMBER s &
AST_ROUTINE s+ &
AST_PARAMETER BY VALUE: &
LIBRARY_ID: &
REQUEST_NAME s &
RECORD_1+ &

RECORD_Z, &

RECORD_n)

TSS$UNDECL_AFK_A &
(CHANNEL » &
RETURN_STATUS_BLOCK : &
EVENT_FLAG_NUMBER: &
AST_ROUTINE, &
AST_PARAMETER BY VALUE, &
KEY_.ID)

TSS$UNDECL_AFK_A + RET_STATUS

TSS$WRITE_BRKTHRU_A &
(CHANNEL » &
RETURN_STATUS_BLOCK, &
EVENT_FLAG_NUMBER: &
AST_ROUTINE s &
AST_PARAMETER BY VALUE: &
MESSAGE_TEXT ., &
BELL_FLAG)

TSS$WRITE_BRKTHRU_A + RET_STATUS

TSS$WRITE_MSG_LINE_A +| RET_STATUS = TSS$WRITE_MSG_LINE_A &
(CHANNEL + &
RETURN_STATUS_BLOCK » &
EVENT_FLAG_NUMBER: &
AST_ROUTINE: &
AST_PARAMETER BY VALUE: &
MESSAGE_TEXT)

5-50 TDMS Asynchronous Programming Calis

Notes to Table 5-4:

* Requires the following declaration at the beginning of your BASIC program:
EXTERNAL LONG Key__ast__routine

+ Requires the following declaration at the beginning of your BASIC program:

EXTERNAL LONG Ast__routine

Table 5-5 lists the VAX TDMS asynchronous programming calls in VAX COBOL.
The calls are in alphabetical order.

Table 5-5: TDMS Asynchronous Programming Calls in VAX COBOL

Call Example
TS5S$CLOSE_A CALL "TSS$CLOSE_A" USING
BY REFERENCE CHANNEL,
BY REFERENCE RETURN-STATUS-BLOCK
BY REFERENCE EVENT-FLAG-NUMBER
BY REFERENCE AST-ROUTINE,
BY VALUE AST-PARAMETER.
BY REFERENCE CLEAR-SCREEN:
GIVING RET-STATUS.
TSS$COPY_SCREEN_A CALL "TSS$COPY_SCREEN_A" USING
BY REFERENCE CHANNEL »
BY REFERENCE RETURN-STATUS-BLOCK,
BY REFERENCE EVENT-FLAG-NUMBER :
BY REFERENCE AST-ROUTINE,
BY VALUE AST-PARAMETER
BY DESCRIPTOR FILE-SPEC,
BY REFERENCE APPEND-FLAG:
GIVING RET-STATUS.
TES$DECL_AFK_A CALL "TSS$DECL_AFK_A" USING

BY
BY
BY
BY
BY
BY
BY

v

BY

GIVING RET-STATUS.

REFERENCE CHANNEL »

REFERENCE RETURN-STATUS-BLOCK
REFERENCE EVENT-FLAG-NUMBER »
REFERENCE AST-ROUTINE

VALUE AST-PARAMETER:

REFERENCE KEY-ID»

REFERENCE KEY-EVENT-FLAG-NUMBER »
REFERENCE KEY-AST-ROUTINE:

VALUE KEY-AST-PARAMETER s

(continued on next page)

TDMS Asynchronous Programming Calls - 5-51

Table 5-5: TDMS Asynchronous Programming Calls in VAX COBOL (Cont.)

Call

Example

TES$0PEN_A

CALL

"TSS$0PEN_A" USING

¥ REFERENCE CHANNEL s

BY REFERENCE RETURN-STATUS-BLOCK s
BY REFERENCE EVENT-FLAG-NUMBER s
BY REFERENCE AST-ROUTINE

BY VALUE AST-PARAMETER

BY DESCRIPTOR DEVICE

GIVING RET-STATUS.

TSS$READ_MSG_LINE_A

CALL

"TSS$READ_MSG_LINE_A" USING

BY REFERENCE CHANNEL

BY REFERENCE RETURN-STATUS-BLOCK .
BY REFERENCE EVENT-FLAG-NUMBER
BY REFERENCE AST-ROUTINE.

BY WALUE AST-PARAMETER

BY DESCRIPTOR RESPONSE-TEXT.

BY DESCRIPTOR MESSAGE-PROMPT .

BY REFERENCE RESPONSE-LENGTH:

GIVING RET-STATUS.

TSS$REQUEST_A

CALL

TS5$REQUEST_A" USING

BY REFERENCE CHANNEL »

BY REFERENCE RETURN-STATUS-BLOCK
BY REFERENCE EVENT-FLAG-NUMBER
BY REFERENCE AST-ROUTINE

BY UVALUE AST-PARAMETER s

BY REFERENCE LIBRARY-ID:

BY DESCRIPTOR REQUEST-NAME .

BY REFERENCE RECDRD-1.

BY REFERENCE RECORD-2.

BY REFERENCE RECORD-vn»

GIVING RET-STATUS.

TSS$UNDECL _AFK_A

CALL

"TSS$UNDECL_AFK_A" USING

BY REFERENCE CHANNEL.

BY REFERENCE RETURN-STATUS-BLOCK
BY REFERENCE EVENT-FLAG-NUMBER :
BY REFERENCE AST-ROUTINE,

BY VALUE AST-PARAMETER:

BY REFERENCE KEY-ID:

GIVING RET-STATUS.

5-52

(continued on next page)

TDMS Asynchronous Programming Calls

Table 5-5: TDMS Asynchronous Programming Calls in VAX COBOL (Cont.)

Call

Example

TSS$WRITE_BRKTHRU_A

CALL

"TES$WRITE_BRKTHRU_A" USING

BY
BY
BY
BY
BY
BY
BY

REFERENCE CHANNEL -

REFERENCE RETURN-STATUS-BLOCK
REFERENCE EVENT-FLAG-NUMBER .
REFERENCE AST-ROUTINE .

VALUE AST-PARAMETER
DESCRIPTOR MESSAGE-TEXT:
REFERENCE BELL-FLAG:

GIVING RET-STATUS.

TSE$WRITE_MSG_LINE_A

CALL

"TS

B
B
BY
B
BY
B

SEWRITE_MSG_LINE_A" USING
REFERENCE CHANNEL

REFERENCE RETURN-STATUS-BLOCK +
REFERENCE EVENT-FLAG-NUMBER .
REFERENCE AST-ROUTINE

VALUE AST-PARAMETER
DESCRIPTOR MESSAGE-TEHT s

CIVING RET-STATUS.

Table 5-6 lists the VAX TDMS asynchronous programming calls in VAX
FORTRAN. The calls are in alphabetical order.

Table 5-6: TDMS Asynchronous Programming Calls in VAX FORTRAN

Call

Example

TSE4CLOSE_A

RET_STATUS

J O P o

£n

m

"

TES5¢CLOSE_A

(4REF (CHANNEL +
AREF{(RETURN_STATUS_BLOCK? »
AREF(EVENT_FLAG_NUMBER »
AREF(AST_ROUTINE?} +
AST_PARAMETER »

AZREF (CLEAR_SCREEN}:

TES$COPY_SCREEN_A

RET_STATUS = TES5$COPY_SCREEN_A

[P N

oI

m

el

(4REF (CHANNEL? »

AREF (RETURN_STATUS_BLOCK]) 4
AREF(EVENT_FLAG_NUMBER)
AREF(AST_ROUTINE) »
AST_FARAMETER :
AODESCR(FILE_SFEC! »
AREF(APPEND_FLAG)}

(continued on next page)

TDMS Asynchronous Programming Calls

5-53

Table 5-6: TDMS Asynchronous Programming Calls in VAX FORTRAN (Cont.)

Call

Example

TSS$DECL_AFK_A

RET_STATUS =

LO) I % B SV I

O mdm

TSS4DECL_AFK_A

(ZREF (CHANNEL)

ZREF (RETURN_STATUS_BLOCK)
AREF (EVENT_FLAG_NUMBER) »
ZREF (AST_ROUTINE) »
AST_PARAMETER »

AREF(KEY_ID) »
AREF(KEY_EVENT_FLAG_NUMBER) »
AREF (KEY_AST_ROUTINE) »
KEY_AST_PARAMETER)

TSS$0PEN_A

RET_STATUS =

G W)

TSS$0PEN_A

(ZREF (CHANNEL) »
AREF(RETURN_STATUS_BLOCK) »
AREF (EVENT_FLAG_NUMBER) »
WREF(AST_ROUTINE) »
AST_PARAMETER +
4DESCR(DEVICE))

TS84READ_MSG_LINE-A

RET_STATUS =

W e

[ss RN)]

TSS$READ_MSG_LINE_A

(ZREF (CHANNEL? »
AREF(RETURN_STATUS_BLOCK)
AREF (EVENT_FLAG_NUMBER) »
WREF(AST_ROUTINE)
AST_PARAMETER »
ADESCR(RESPONSE_TEXT) »
4DESCR(MESSAGE_PROMPT) +
%REF (RESPONSE_LENGTH))

TSS$REQUEST_A

RET_STATUS =

LV 1 I g % B %

o Om-~ o

TSS$REQUEST_A

(ZREF (CHANNEL) »
AREF(RETURN_STATUS_BLOCK)
AREF(EVENT_FLAG_NUMBER) »
AZREF(AST_ROUTINE) +
AST_PARAMETER »
ZREF(LIBRARY_ID)
ZDESCR(REGUEST_NAME) »
AREF (RECORD_-1) »

AREF (RECORD_Z)
AREF(RECORD_m))

5-54

TDMS Asynchronous Programming Calls

(continued on next page)

Table 5-6: TDMS Asynchronous Programming Calls in VAX FORTRAN (Cont.)

Call

Example

TSS$UNDECL_AFK_A

LY I S ¥ B O I

(0]

RET_STATUS

TSS$UNDECL_AFK_A

(ZREF (CHANNEL) »
ZREF(RETURN_STATUS_BLOCK) »
4REF(EVENT_FLAG_NUMBER) »
AREF (AST_ROUTINE) »
AST_PARAMETER +
AREF(KEY_ID))

TSS$WRITE_BRKTHRU_A

NV R WM -

RET_STATUS = TSS$WRITE_BRKTHRU_A

(ZREF (CHANNEL) »
#REF(RETURN_STATUS_BLOCK) »
AREF (EVENT_FLAG_NUMBER) »
AREF (AST_ROUTINE) »
AST_PARAMETER »
%“DESCR(MESSAGE_TEXT) »

ZREF (BELL_FLAG))

TSS$WRITE_MSG_LINE_A

e WM -

o

RET_STATUS = TSS$WRITE_MSG_LINE_A

(ZREF (CHANNEL) »
AREF(RETURN_STATUS_BLOCK) »
AREF (EVENT_FLAG_NUMBER) »
AREF (AST_ROUTINE) »
AST_PARAMETER »

ZDESCR (MESSAGE_TEXT))

TDMS Asynchronous Programming Calls

5-55

Rules for Resolving Ambiguous Field References 6

The record field and form field names that you use in a request must:

e Exist in a record definition or form definition you refer to in the request

e Be unique within each record definition and form definition the request uses

In addition, in a %ALL mapping, at least one form field must have an identically
named record field.

6.1 How to Make Field References Unique

Form field names are always unique because FDU does not allow the same name
for two fields on a form. Because a request can use only one form in any
particular request call, a form field name is always unique. If there is no active
form or if the field you name is not in the active form, RDU displays an error
message.

You must refer to record field names uniquely in a request. When you use a
record field name in a request, RDU searches all of the records named in the
RECORD IS instructions to find the field. Usually, a field name occurs only once
in the set of records used by a request.

In some cases, however, a single record can contain fields with the same name.
Or your request may use different records that have fields with the same name.
For example, in Figure 6-1, the fields LAST, FIRST, and MID _INIT occur twice.

DEFINE RECORD EMP_INFO_RECORD.
EMP_FAM_RECORD STRUCTURE.
FAMILY_INFORMATION STRUCTURE.
FAM_NUM DATATYPE UNSIGNED LONGWORD.
SPOUSE_INFO STRUCTURE.
SPOUSE_NUM DATATYPE LONGWORD.
NAME STRUCTURE.

LAST DATATYPE TEXT 20. Fields with
FIRST DATATYPE TEXT 10. <« duplicate names
MID_INIT DATATYPE TEXT 1. (LAST, FIRST, MID_INIT)

END NAME STRUCTURE.
END SPOUSE_INFO STRUCTURE.

CHILD_INFO STRUCTURE.
CHILD_NUM DATATYPE LONGWORD.
NAME STRUCTURE.

LAST DATATYPE TEXT 20. Fields with
FIRST DATATYPE TEXT 10. <« duplicate names
MID_INIT DATATYPE TEXT 1. (LAST, FIRST, MID_INIT)

END NAME STRUCTURE.
END CHILD_INFO STRUCTURE.
END FAMILY_INFORMATION STRUCTURE.
END EMP_FAM_RECORD STRUCTURE.
END EMP_INFO_RECORD.

Figure 6-1: Referring to Record Fields with the Same Name

If a record contains fields with the same name, you must refer to them uniquely
in your request. If you do not, RDU generates a message indicating that you have
specified an ambiguous field reference. RDU does not create a mapping that
contains ambiguous field references.

You can usually access fields that occur more than once in a single record, or
more than once in a set of records used by a request, by qualifying the name
with:

e One or more preceding group field names

e The record name

6.1.1 Using Group Field Names

You need specify only as many preceding group field names as necessary to make
the reference unique. Each group field name must be followed by a period. For
example, you can refer to the spouse’s last name in EMP__INFO_RECORD as:

SPOUSE_INFO.LAST

6-2 Rules for Resolving Ambiguous Field References

You can also refer to the same field by using all the preceding group names:

EMP_FAM_RECORD.FAMILY_INFORMATION.SPOUSE_INFO.NAME.LAST

As long as the reference is unique, you can delete intervening group names. For
instance, you can delete any intervening group names except SPOUSE _INFO:

SPOUSE_INFO.NAME.LAST

FAMILY_INFORMATION.SPOUSE_INFO.LAST

Note that using either the group field names EMP_FAM__RECORD

or FAMILY _ INFORMATION does not make the field reference to

SPOUSE _INFO.LAST unique. For instance, the following references would be
ambiguous because RDU cannot tell if you are referring to the child’s name or
the spouse’s name:

EMP_FAM_RECORD.FAMILY_INFORMATION.LAST

FAMILY_INFORMATION.LAST

6.1.2 Using the Record Name

If you use a record name, it must be the first name in a field reference and must
be followed by a period. RDU treats the record name as the top-level group field
name.

Whether you specify the record name or not, RDU still searches all the records
used by a request for a field reference.

You cannot use a record name to make a field reference within a single record
unique. A record name, when used, qualifies all the fields under it in that record.
For instance, in Figure 6-1, EMP__INFO_RECORD.LAST refers to both the

child’s and spouse’s last names.

Using the record name to uniquely qualify fields can help, however, when you
have two fields in separate records that have the same name. For example, the
field LAST in Figure 6-2 is in two separate records used by a request.

Rules for Resolving Ambiguous Field References 6-3

DEFINE RECORD FAMILY_RECORD.
FAMILIES_RECORD STRUCTURE.
NAME STRUCTURE.
LAST DATATYPE TEXT 20,

+

END FAMILY_RECORD.

DEFINE RECORD DEPENDENT_RECORD.
FAMILIES_RECORD STRUCTURE.
NAME STRUCTURE.
LAST DATATYPE TEXT Z20.

+

END DEPENDENT_RECORD.

Figure 6-2: Using Record Names to Make Field References Unique

You can refer to the two different fields named LAST by using the record names
FAMILY_RECORD and DEPENDENT _RECORD:

DEPENDENT_RECORD.LAST
FAMILY_RECORD.LAST

If the record name is used, it must be the first qualifying name. The record name
you use is either:

¢ The given name assigned in the RECORD IS instruction

e The unique name assigned by the WITH NAME modifier in the RECORD IS
instruction

If you use the WITH NAME modifier in the RECORD IS instruction and you use
a record name to refer to fields, you must use the unique name in field
references. For instance, consider a request containing the following RECORD IS
instruction:

RECORD IS CDD$TOP.OTHER_-DIRECTORY.FAMILY_RECORD WITH NAME FAMS3

RECORD IS FAMILY_RECORD;:

6-4 Rules for Resolving Ambiguous Field References

To refer to a field named LAST that resides in each record:

e Use the unique name FAM to refer to the field in the record
OTHER _DIRECTORY.FAMILY_RECORD

e Use the given record name FAMILY _RECORD to refer to the field in the
record FAMILY _RECORD that resides in your default CDD directory

For example:

INPUT LAST TO (FAMILY_RECORD.LAST: FAM.LAST)

When you qualify a field name with a record name, as with any group field
names, RDU allows you to delete intervening group name fields that are not
necessary to make the reference unique. For example, you can refer to LAST as
either:

FAMILY_RECORD.NAME.LAST

FAMILY_RECORD.LAST

6.1.3 Changing the Record Definition to Make References Unique

Because RDU does not require that you specify intervening fields, there are some
fields RDU cannot access even when you use qualifying group field or record
names.

For example, in the following record, there is no way to uniquely identify the
first set of fields LAST, FIRST, and MID _ INIT. Neither the record name
EMP_ INFO _RECORD nor the group name EMP_FAM_ RECORD uniquely
qualifies the first occurrence of the names LAST, FIRST, or MID _INIT.

DEFINE RECORD EMP_INFO_RECORD. A
EMP_FAM_RECORD STRUCTURE.

NAME STRUCTURE. First occurrence
LAST DATATYPE TEXT 20. of fields with
FIRST DATATYPE TEXT 10. |- duplicate names
MID_INIT DATATYPE TEXT 1. (LAST, FIRST, MID_INIT)

END NAME STRUCTURE.
CHILD_INFO STRUCTURE.
NAME STRUCTURE.

LAST DATATYPE TEXT 20. Fields with
FIRST DATATYPE TEXT 10. |- duplicate names
MID_INIT DATATYPE TEX 1, (LAST, FIRST, MID_INIT)

END NAME STRUCTURE.

END CHILD_-INFO STRUCTURE.
END EMP_FAM_RECORD STRUCTURE.
END EMP_INFO_RECORD.

Rules for Resolving Ambiguous Field References 6-5

The following field specifications refer to both occurrences of the name LAST:

EMP_INFO_RECORD.LAST

EMP_FAM_RECORD.LAST

That is, both names refer to the first and second occurrences of the record field
name LAST:

EMP_FAM_RECORD .NAME .LAST

EMP_FAM_RECORD.CHILD_INFO.NAME.LAST

To refer to the first occurrence of LAST, you can either:

e Change the name of one of the preceding group fields or the field itself to be
unique:

DEFINE RECORD EMP_INFO_RECORD.
EMP_FAM_RECORD STRUCTURE.

EMP_NAME STRUCTURE. <« Change group
LAST DATATYPE TEXT 20. name from NAME
FIRST DATATYPE TEXT 10, to EMP_NAME

MID_INIT DATATYPE TEXT 1.
END EMP_NAME STRUCTURE.
CHILD_INFO STRUCTURE.

NAME STRUCTURE.
LAST DATATYPE TEXT 20,

+

END EMP_INFO_RECORD.

Then refer to the employee name using the new group structure name:

EMP_NAME.LAST

6-6 Rules for Resolving Ambiguous Field References

e Insert a new group name field in the record to allow you to make the reference

unique:

DEFINE RECORD EMP_INFO_RECORD.
EMP_FAM_RECORD STRUCTURE.
EMPLOYEE_INFD STRUCTURE.

NAME STRUCTURE.

LAST DATATYPE TEXT 20,
FIRST DATATYPE TEXT 10,
MID_INIT DATATYPE TEXT 1.

END NAME STRUCTURE.
END EMPLOYEE_INFO STRUCTURE.
CHILD_INFO STRUCTURE.
NAME STRUCTURE.
LAST DATATYPE

+

TEXT 20.

+

+

END EMP_INFO_RECORD.

<« |Inserted
group field
EMPLOYEE _ INFO
<« Duplicate
names(LAST,
FIRST, MID _INIT)

Then refer to the employee name using the new group field name:

EMPLOYEE_INFO.LAST

Since RDU treats a record name as a preceding group field name, it is also
possible that a field reference can be ambiguous because a record name exists
also as a field name in the set of records used by a request.

For instance, in the following two records, the name FAMILY _ RECORD is used
first as a record name and second as a group field name. The following field

reference is ambiguous:

FAMILY_RECORD.LAST

Because RDU searches all records even if you specify a record name, it finds the
reference FAMILY _RECORD.LAST in both records.

DEFINE RECORD FAMILY_RECORD.

FAMILY_RECORD STRUCTURE.

NAME STRUCTURE.
LAST DATATYPE TEXT Z0,

+

+

END FAMILY_RECORD.

(continued on next page)

Rules for Resolving Ambiguous Field References 6-7

DEFINE RECORD DEPENDENT_RECORD.
FAMILY_RECORD STRUCTURE.
NAME STRUCTURE.

LAST DATATYPE TEXT Z0.

+

END DEPENDENT_RECORD.

In this case, even though you preface a field name with a record name, RDU is
unable to resolve the reference: You must do one of the following:

1. Change the name of the first group field in the record definition
2. Change the name of the record in the record definition

3. Assign one of the record definitions a new name using the WITH NAME
modifier in the RECORD IS instruction in the request that uses the record

6-8 Rules for Resolving Ambiguous Field References

Instruction Execution Order 7

The order in which instructions are specified in the request has no effect on the
order in which TDMS executes the instructions.

First, TSS$REQUEST evaluates all CONTROL FIELD IS instructions. It
attempts to match all control field values with the case values specified under
the CONTROL FIELD IS instruction. It then gathers all request instructions
that are to be executed during a request call.

Then TDMS evaluates and executes all OUTPUT operations:

e Request-wide operations (CLEAR SCREEN, SIGNAL MODE IS, KEYPAD
MODE IS, and so on)

e Form field setup operations (output mappings, DEFAULT FIELD, RESET
FIELD, video change operations such as Bold field)

e DISPLAY FORM or USE FORM
Next, TDMS evaluates and executes all INPUT operations:

e All form fields mapped for input are opened for operator input.

Note that any program request keys can be pressed during any input
operations.

e WAIT instruction.

Finally, TDMS evaluates and executes all RETURN operations.

7-1

VAX TDMS Input and Output Mapping Tables 8

8.1 Determining Data Types

The tables in this chapter show the validity of all possible combinations of input
and output mappings for VAX TDMS applications. The input table shows
mapping for data sent from a record field to a form field; the output table shows
mapping for data sent from a record field to a form field.

Record field data types are determined by explicit statements of data types in the
record definition. Form field data types are determined by:

e The picture characters of the form field

o Size field validators (for example, BYTE or UNSIGNED LONGWORD), if any,
assigned to UNSIGNED NUMERIC fields

8.2 Determining Field Lengths

The length of a form field is determined by the number of picture characters in
the field; field constants do not affect the length of a form field. For all record
fields except those with a PACKED DECIMAL data type, the length of the record
field is the number of bytes allocated for the field. For PACKED DECIMAL
record fields, the length of the field is the number of digits in the field.

Any scale factors that are assigned to numeric form and record fields affect the
length of a field for the purpose of determining the validity of mapping. Add the
value of the scale factor to the length of a form or record field when using the
input and output mapping tables. For example, if a 5-digit UNSIGNED
NUMERIC form field (picture of 99999, regardless of any field constants) has a
scale factor of 4, the field is considered to have a length of 9 characters. If a
5-digit SIGNED NUMERIC form field (picture of NNNNN) has a scale factor of
-3, the field is considered to have a length of 2 characters.

8.3 How to Use These Tables

To use these tables, determine whether you want to verify the validity of an
input mapping or an output mapping. Make sure that you know the data types
and lengths of both the form and record fields between which you want to map
data.

The validity code for each potential mapping is at the intersection of the form
and record field data types on the tables. If the code is Y, the mapping is always
permitted; if the code is N, the mapping is never permitted. The explanation of
numeric codes is shown following each table.

8-2 VAX TDMS Input and Output Mapping Tables

‘anowr dnoad 's934q 6T 95€9] e Jo Yjdua[sey p[ay pIodal JI A[uo pejluLidd — g
U0 JI0LI3 UOISI9AU0D o[qissod afessauwt Sutuiem e sonssi os[e Y ‘PlEY W10} '5934q 1T 98€9] Je jo Yj3us| sey p[olj piodal ji A[uo pajpiwidd — 4,
Jo y18uaf 07 [enba Jo uey) 19jea1T SI p[ol} P102al Jo YI3ua i A[uo pajpruiiad — G '8934q 9 18€9] Je Jo YjSua[sey p[ay P10odaa Ji A[U0 pepPIwIdd — 9
‘SIejoeieyd g¢ UBY) 910Ul OU Sey oy} ULio} JT A[uo papiueidd — 1 '8914q % sea] Je Jo ydus| sey p[ey pIoddl Ji A[uo pajpiuLIdg — G
'sIajoeIRYd @] UBY) 910Ul OU SBY P[oY ULL0} Ji A[uo pajpiwiiad — g1 's934q T 15€9] 7B Jo Y33ua| sey p[ey piodal Ji A[uo pajuisd — ¥
‘s19joRIRYD G UBY) 910W OU SBY P[ol} WLIo} JT A[uo pajjiwasd — g1 '§334q g 9sea] e Jo Yjdua| sey p[ay pI0d3al JI A[uo pajjiuLIdd — ¢
'SI9)0BIRYD § URY) SI0W OU SBY P[oy waoj Ji Ajuo pajyiuridd — 11 's994q g 7ses] Je Jo Yj3ua] sey p[oy plodal ji A[uo pojjiutdd — g
'SI9J0BIBYD g UBYY) 2I0W OU SBY P8y ULI0] JI Ajuo pajjrulidd — 01 ‘PI8Y wi10j jo
's914q (g ISE€9[e Jo Yr3us| sey p[ey paodad ji {uo pajpwisd — 6 y13uaf 03 [enba Jo uey) Jejeaid st p[ey p102ad Jo Y33ud[J1 A[uo pajypruntad — |

:sbuyddepy induj 10} Aoy

OIYHINNN AIHONNJYIAO JJ4AT — O'IN LXAL - L YOMDNOT ANDIS - 1T
4aLva - 1av OIYHNNN ALVIVdES LAdT — "IN ODNILVOTd™ H - H J40OM QAINDIS - M
TVINIOHd ddOvVd — d OTYHINNN @INDISNA — AN ONILVOTd™ D - D dLAd QINDIS — qd
(udis pauoz) DIYAWNN AANDIS — ZN (uroyt AxEjUdWIR-UoU) ONILVOTd ™ d - d JYOMODNOTUINDISNA - 0T
OIYANNN AFHONNJYIAO LHOIY — O¥N ILX4L dNn0o¥D - 1D ONILLVOTd— d - 4 ayoMm QIANDISNN — OM
OIYINNN HLVUVJIS LHOIY — dUN IXAL ONIAYVA - LA qdoMavnd aandis - d ALAd QINDISNN - Nd
:sadA] ejeq piaid p102ay
A N N N N N N N T T T N N N N N N N N N N N (g yewrroq) HINLL
X T N N N N N T T T T N N N N N N N N N N N (T yewuroq) JNLL
A N N N N N N N T T 1 N N N N N N N N N N N (G rewiog) VA
X I N N N N N T T T I N N N N N N N N N N N (¥ yewto) JLVA
X 1 N N N N N 1 1 T 1 N N N N N N N N N N N (g yewrrod) ALVA
X N N N N N N N 1 1 1 N N N N N N N N N N N (g rewioy) ALVA
X N N N N N N N 1 1 1 N N N N N N N N N N N (T yewro) JLVA
N 1 1 1 T ‘T T N Q1 T T X A 14} 4} 14 (4} 11 01 N N N OIYHANWNN AANDIS
N 1 1 1 1 1 1 T ST 1 T X X ¥ ¥ €1 gt 1 Ol gt 1T 0T OIYHAWNN TIANDISNN
N N N N N N N N 1 1 1 N N N N N N N N N N N LXAL
N 8 8 8 6 8 6 N 1 6 6 A X A A X N N N N N N ayomavnd aanNvis
N 14 4 14 L 14 L N T L L A A A A X A N N N N N AYOMDNOT dANDIS
N € € € 9 € 9 N T 9 9 A A A A X . A N N N N d4OMm dANDIS
N (4 [4 4 g 4 G N 1 g g X X X A X X X X N N N HLAY QANDIS
N 14 4 14 i4 4 4 14 1 4 4 X .8 A A X N N N X N N JYOMODNOT FANDISNN
N € € € € 4 € € 1 4 € X X X X A A N N A X N YoM dIANDISNN
N 4 4 14 14 4 4 4 1 4 14 X X X X X X A N X X X ALAL AINDISNN
1av d ZN OUN UN OIN N NN 19 IA L H 9 a 4 V] q M g N nm ng
sadA)] eyeq piaid piooay adA} ejeq pidi4 wio4

(‘uoryeue|dxs 10J s[qe) ay) Suimo[|o] 4oy 993G)
‘SUOIIPU0D 0} Joofqns ‘pajjruted Surddep = gI-1 ‘pepiwad teasu Suiddewr gnduy = N paypuwniad sfempe Surddew jnduy = &

(spleiq piodey o} spjel4 wio4) sbBuiddew indu] swal :1-8 aiqelL

8-3

VAX TDMS Input and Output Mapping Tables

‘Burrys ainjoid pey uLioy
Ym juajsisuooul aq Aew wLioj 03 yndino ejep ‘efessew Sutuaem sansst NJY — 63
*10449 dwilj-unt seonpoad
P2y P10da1 ul anjea aAljedap ‘(MO[J1aA0 aqissod) p[ay urioj jo yidua|
uey) 19eald st p[oy paodsa Jo yj3ua ji ofessowr Jururem e sensst Y — 8%
“10118 aWI}-und saonpoad pyay pl1odal ul anjea aAljedoN
'$914q T ueYj) 210w SI poy paodal ji afessowr Suiurem e sansst A — L3
*10449 dwj-unt seonpold poy paodad ul anjea aAljedeN
'$914q § uBY) 210Ul SI P[dY P10dal Ji 9Fessour Jururem e sonsst (Y — 9%
*10449 awil}-und seonpold paly paodal ul anjea aAljedaN
'$91£q g Uey) 210w SI p|al} paodal Ji afessow Juiurem e sonsst NAY — GT
‘PI8Y pa029a uey) 1a3uoj
I9j0BIRYD T JSEI] JB J0U SI P[aY) uLioj ji aFessowr Juiurem e sonsst NAY — ¥3
“10119 dull}-und sadnpoxd p1odal ul snfea aAljedaN pley wioj uey) 1e3uof
I1930BIRYD T UBRY) SI0W SI p[oy paodad ji adessow Juiurem e sensst NJY - €2
's914q 8¢ UBY) aI0wW Si pjoy piodal Ji edessowr Jururem e sensst AY — 23
'$934q §T UeY) aIoul S1 pJol) pa0odal Ji afessour Fururem e sansst (Y — 13
'$37Aq 6 URY) 210w SI P[al) pI0dai ji adessawr Juiuaem e sansst A — 03
'$914q ¥ uey) 210w SI p|ay paodal Ji adessowr Jururem e sansst NAY — 61
'$914q g UBY) 210Ul SI p[aly paooal Ji afessawr Jutuaem e sonssi Y — 81
‘Uo1jBIOU JYIJUSIIS UT ST
jeunioj Aefdsip ‘Y38us] ul siejorIBYD § SBI[1€ S1 P[OY WLIO] JI A[UO pajjiuLiad — LT
*J0.149 dwl}-unt
soonpoad p[ay p10dal ut anjea aaljedeu ‘efessow Jurutem e sansst NAY — 91
‘(moyxaao alqissod) aFessow Jururem e sensst Y — G1
- ‘(eaowr dnoa8 uo 10119 a[qissod ‘mopjreao a|qissod) p[oy Loy jo yrdus|
uey) 1978943 S1 p[aly paodal Jo yidus| ji ofessawr Jututem e sansst NAY — H1

‘(mopj19a0 a[qissod) p[ay wLioj jo yidua|
uBy} J9jea.Usd S1 p[ey paodal Jo Yiduaf ji edessew Juruiem € sansst Y — €T
‘(mopjaaao aqissod)
sI9jorIRYD ()Z URY) SSO[SI p[oy uLioj J1 9fessauwr Jururem e sonsst NAY — 21
‘afessoul Sururem e sanssi ()Y 10410 aull}-unt ssonpod paodal ut
anjea aA1jedau s19j0RIRYD G URYY) SSO] SI P[BY WLIO) JI MO[JIdA0 J[qISsod — [T
‘afessow Jututem e sonsst (Y 10419 suIl}-un.t saonpoad paoda ut
anjeA aA1jedau (s1ojoeIRYD (T URY) SSO] SI P[9L) ULIO) JI MO[J13A0 J[qISSOd — O
‘a8essow Juruaem e sonssi ()Y 10419 duIl}-unt sadnpoid paodsad
ui anfea aAneSau (S19j0eIBYD G UBY) SSI[SI P[OL} ULIOJ JI MO[JI9A0 J[qISS0d — 6
‘agessowl Jururem e sanssi (Y ‘10418 dwil)-uni seonpoid prodsi
ul anjea sAljedau ‘s19jdeIeyd ¢ UBY) SSI] SI P[OY ULIOJ JI MOJJI9A0 J[qISSO] — §
*(mojasa0 sjqissod)
sa9j0RIRYD [UBY) SS9 SI p[oy uLio) Ji oFessow Juiuiem e sansst NAY — L
‘(sopja940 d[qissod)
sI9j0BIRYD 9 UBY} SSO] SI p[oy wLloj Ji adessowr Jururem e sensst (Y — 9
‘(mO[jI940 9[qissod)
siajorIRYD § URY)} SSO[SI p[oy uLioj j1 aFessow Suiurem e sensst NAY — G
‘(mopja9a0 a[qissod)
sI9joeaRYd O UBY) SS9 SI p[ay wiloj Ji 9dessouwr ururem e sansst NAY — ¥
‘(mopya8A0 a[qissod)
sI9j0BARYD G UBY) SS9 SI p[ol) uLIo} Ji afessouwt Sutuiem e senssi (Y — €
‘(mopjaaao 3[qissod)
sI9j0eIRYD ¢ URY) SS9 SI p[oyy wiio} Ji afessowr Jururem e sensst NAY — 3
‘a3essowl Jururem sanssi NAY
“J0LI9 dUII)-UnJ seonpoad p[ay pa0oaa ul anjea aAlje3au ‘MO[JI9A0 JqIssod — |

:sbuiddepy indinQ 40} Aay

OIYHINNN AFHONAJYIAO LJdT — O'IN LXAL - L UOMODNOT @ANDIS — 1T
qLva - Lav OTYINNN ALVIVJES LAdT — 1IN ONILVOTd—H - H dUOM @ANDIS -~ M
TVINIOHEA AMIDVd — d OIYHINON ANDISNA — AN ONILVOTdI— D - D ALAY ANDIS — d
(uds pauoz) DIYHINNN AANDIS - ZN (ureyt Axejuswore-uou) ONILVOTd —d - d (JQYOMDNOTAINDISNA — N7
OIYINNN AIHONNdYIAO LHOIY — 04N IXAL dNo¥H - 1LY ONILVOTd ™ 4 - A dgom @INDISNN - OM
OIYANNN HLVEVJIS LHOIY - 4N IXHAL ONIAYVA - IA q4omavnd aianNois - b LAY ANDISNN — Nd
:sadA] ejeq piaid pioday
A N N N N N N N 91 € €1 N N N N N N N N N N N (g yewio) FNLL
A g1 N N N N N €1 14 €1 €1 N N N N N N N N N N N (1 jewio) JWLL
A N N N N N N N 14! €1 €1 N N N N N N N N N N N (g rewio) JILVA
X €1 N N N N N € %I €1 €I N N N N N N N N N N N (¥ yewro) HLVA
X g1 N N N N N g1 4} g1 €1 N N N N N N N N N N N (¢ yewio]) HILVA
X N N N N N N N % € €I N N N N N N N N N N N (g yewio) 4ILVA
X N N N N N N N %I € €I N N N N N N N N N N N (1 yeunio) JLVA
N 144 i44 144 €1 144 €1 €1 14! 66 63 N N N N (4} L 9 g 4 € 14 OIYHINNN TANDIS
N 8 8 8 € 8 € € ¥l 62 63 N N N N 11 o1 6 8 14 € 4 OTYANNN dINDISNN
N 144 144 Ve el 144 e1 er €1 el g1 LT LT LT LT (41 L 9 S 14 € 14 LXAL
N 12 1¢ 12 12 13 12 12 148 N N N N N N A X A X A A X qaomavnd aaNonis
N 03 (114 02 0% 0% (114 02 149 N N N N N N Q1 A A A Q1 X A AYOMDNOT AANDIS
N 61 61 61 6I 61 6T 61 ¥#I N N N N N N ¢ ST X A ST 41 A a4om TQANDIS
N 81 81 81 81 81 8T 8T 148 N N N N N N qr q1 48 A ar ST q1 ALAL AANDIS
N L2 Lz L L Lg Lg 0z ¥ N N N N N N 1 91 91 91 A X A TYOMDNOT QIANDISNN
N 92 92 92 92 92 92 61 ¥l N N N N N N 1 1 91 91 61 A X ayOoMm QINDISNN
N 414 14 14 4 14 14 81 V1 N N N N N N I T 1 91 q1 ST X HLAE GIANDISNN
1av d 2ZN OHN HN OIN N NN 19 1A 1 H 9 a 4 o q M g N1 nm ng

sadA] ejeq plai4 pi1oaay

‘suorIpuod 0} 3afqns ‘peypiwntad Suiddey = 6g-1

adA) eyeq piai4 wio4
(‘uorjeueidxa 10j a[qe} 8y} Suimo[[o} LY 39G)
‘poyjtuniad aossu Surddew ding = N "peptunied sfemie Suiddew jnding = x

(spield wio4 0} spial4 piodey) sbuiddew indino SWaAL :g-g alqel

VAX TDMS Input and Output Mapping Tables

8-4

FDU and Field Validator Error Messages A

This appendix lists error messages that FDU generates for FDU commands and
the field validator portion of the form editor.

A.1 FDU-Level Error Messages

This section lists the error messages alphabetically by the mnemonic. The %FDU
is not shown and the severity level code is called out separately for your conve-
nience. For example, the error message %FDU-E-BAD_TERMINAL is listed
under BAD_TERMINAL, the first message in the list. The text that immediately
follows the error message mnemonic (for example, “unable to display form on this
terminal”) represents the actual text that appears in the message at run time.

The error message format is:

%FDU-N-mnemonic, message

FDU Is the facility name.
N Is a letter indicating the severity of the error, as follows:
S Successful completion.
I Information only. The request is created and stored in
the CDD.

w Warning. The request is created and stored in the
CDD, but it might contain instructions that cause
run-time errors.

E Error. The request is not created and stored in the
CDD.

A-1

F Fatal severe error. The request is not created and
stored in the CDD.

mnemonic Is a three- to nine- character string that identifies the error.

message Identifies the error.

Note

Most error messages are prefixed by %FDU. However, some %FDU
messages are followed by messages with a %CMU prefix. These mes-
sages provide additional information about the cause of the error.
Messages with a prefix other than %FDU or %CMU reflect errors
detected by some standard VMS facility which the application program
uses. For example, a message prefixed by the %2RMS facility code was
generated by the RMS facility. For information about these messages,
please see the VMS System Messages and Recovery Procedures

Manual
BAD_TERMINAL unable to display form on this terminal
Severity: Error (E)
Explanation: FDU is unable to display a form from the CDD onto
the terminal.
User Action: Make sure that the terminal is a type supported by

VAX TDMS.

CDD_FORM_EMPTY CDD Form contains no valid information

Severity: Error (E)
Explanation: The form definition contains no information.
User Action: Recreate the form definition with background text

and/or at least one field.

A-2 FDU and Field Validator Error Messages

FMS_FIELD_UAR Field UAR information has been ignored for this form
Severity: Information (I)

Explanation: The FMS version 2 form file contains User Action
Routine information that TDMS does not support.
This information has been ignored.

User Action: None (informational message).

FMS_HELPUAR Form HELP UAR information has been ignored for
this form

Severity: Information (I)

Explanation: The FMS version 2 form file contains User Action

Routine information that TDMS does not support.
This information has been ignored.

User Action: None (informational message).

FMS_KEYUAR Key UAR information has been ignored for this form
Severity: Information (I)

Explanation: The FMS version 2 form file contains User Action

Routine information that TDMS does not support.
This information has been ignored.

User Action: None (informational message).

FMS_NAMEDATA NAMED DATA information has been ignored for this
form

Severity: Information (I)

Explanation: The FMS version 2 form file contains named data

information that TDMS does not support. This infor-
mation has been ignored.

User Action: None (informational message).

FDU and Field Validator Error Messages A-3

FMS_SUP_ONLY

Severity:

Explanation:

User Action:

FRMCOPIED
Severity:

Explanation:

User Action:

FRMCREATE
Severity:

Explanation:

User Action:

FRMDELETE
Severity:

Explanation:

User Action:

FRMMODIFY
Severity:

Explanation:

User Action:

SUPERVISOR-ONLY information has been ignored
for this form

Information (I)

The FMS version 2 form file contains Supervisor Only
information that TDMS does not support. This infor-
mation has been ignored.

None (informational message).

Form <formname> copied to < new formname >
Success (S)

Logging was enabled and the form was successfully
copied.

None (success message).

Form <formname > created
Success (S)

Logging was enabled and the form was successfully
created.

None (success message).

Form <formname > deleted
Success (S)

Logging was enabled and the form was successfully
deleted.

None (success message).

Form < formname > modified
Success (S)

Logging was enabled and the form was successfully
modified.

None (success message).

A-4 FDU and Field Validator Error Messages

FRMREPLAC
Severity:

Explanation:

User Action:

ILLWINDOW
Severity:

Explanation:

User Action:

NAMEDATA

Severity:

Explanation:

User Action:

NO_BFDHEAD
Severity:
Explanation:

User Action:

Form < formname > replaced
Success (S)

Logging was enabled and the form was successfully
replaced.

None (success message).

Illegal window attribute value
Error (E)

Attempted to list a form with an invalid form size (for
example, first line, last line or column width).

Recreate the form definition.

Named data information has been ignored for this
form

Information (I)

The FMS version 1 form file contains named data
information that TDMS does not support. This infor-
mation has been ignored.

None (informational message).

Format of Input .FRM file invalid
Error (E)
The FMS V2 form file is invalid.

Make sure that the file that you specified is a valid
VAX FMS V2 form file.

FDU and Field Validator Error Messages A-5

NO_CDD_REQD
Severity:
Explanation:

User Action:

NO_FDV_WORKSPACE
Severity:

Explanation:

User Action:

NO_FEDIO
Severity:

Explanation:

User Action:

NO_FED_WORKSPACE
Severity:

Explanation:

User Action:

NO_FIELD_NAME
Severity:

Explanation:

User Action:

Form not entered into CDD - not required by user
Error (E)
The form is not being stored in the CDD.

None.

Unable to set up Forms Driver work-area
Error (E)

An error occurred trying to allocate memory for the
form driver internal work area.

Ask your system manager to increase your page fault
quota or the virtual page count system parameter.

Unable to activate Form Editor 1/O
Error (E)

Either the terminal is not a VT100-compatible termi-
nal or the VMS assign channel system service failed.

Make sure that the terminal that you are using is a
supported terminal type.

Unable to set up Form Editor work-area
Error (E)

An error occurred trying to allocate memory for the
form editor internal work area.

Ask your system manager to increase your page fault
quota or the virtual page count system parameter.

An unnamed field has been detected in this form
Severe (F)

A field on the form has not been assigned a field
name.

Recreate the form definition, and make sure to give a
unique name to each field.

A-6 FDU and Field Validator Error Messages

NOFORM

Severity:

Explanation:

User Action:

NO_FORM_IMAGE

Severity:

Explanation:

User Action:

NOFRMCOP
Severity:

Explanation:

User Action:

NOFRMCRE
Severity:

Explanation:

User Action:

Form file must be specified on CREATE or
REPLACE a form

Error (E)

A form file name was not specified with the /v1
qualifier.

Reenter the command and include the name of a valid
form file with the FORM_FILE = qualifier.

No Screen Image has been created for this form
Error (E)

Attempted to store a form definition with neither
background text nor fields.

Recreate the form. You must use the Layout phase to
include at least one character that is background text,
a field, or a video attribute.

Form < formname > not copied
Error (E)

An error occurred while copying the form. The form
has not been copied.

This message follows one or more other FDU error
messages. Check the other error messages to deter-
mine the recommended user action.

Form <formname > not created
Error (E)

An error occurred while creating the form. The form
has not been created.

This message follows one or more other FDU error
messages. Check the other error messages to deter-
mine the recommended user action.

FDU and Field Validator Error Messages A-7

NOFRMDEL
Severity:

Explanation:

User Action:

NOFRMMOD
Severity:

Explanation:

User Action:

NOFRMREP
Severity:

Explanation:

User Action:

NO_INBFD
Severity:

Explanation:

User Action:

Form <formname > not deleted
Error (E)

An error occurred while deleting the form. The form
has not been deleted.

This message follows one or more other FDU error
messages. Check the other error messages to deter-
mine the recommended user action.

Form <formname > not modified
Error (E)

An error occurred while modifying the form. The form
has not been modified.

This message follows one or more other FDU error
messages. Check the other error messages to deter-
mine the recommended user action.

Form <formname > not replaced
Error (E)

An error occurred while replacing the form. The form
has not been replaced.

This message follows one or more other FDU error
messages. Check the other error messages to deter-
mine the recommended user action.

Unable to set up Form Editor data structures
Error (E)

An error occurred while attempting to allocate mem-
ory for internal data structures.

Ask your system manager to increase your page fault
quota or the virtual page count system parameter.

A-8 FDU and Field Validator Error Messages

NO_OUTBFD
Severity:

Explanation:

User Action:

REQATTNFND
Severity:

Explanation:

User Action:

SUPERMOD
Severity:

Explanation:

User Action:

SUPERPROT
Severity:

Explanation:

User Action:

Unable to get memory for Qutput .FRM file build
Error (E)

An error occurred trying to allocate memory for inter-
nal structures for the form that was being created,
modified, or replaced.

Ask your system manager to increase your page fault
quota or the virtual page count system parameter.

Required attribute <attribute name > not found
Error (E)

An internal error occurred attempting to create the
form to be stored in the CDD.

Send in an SPR with the problem description and a
DMU backup of the form that caused this error.
Recreate the form definition.

Supervisor modification has been ignored for this form
Information (I)

The FMS version 1 form file contains supervisor only
information that TDMS does not support. This infor-
mation has been ignored.

None (informational message).

Supervisor protection has been ignored for field
Information (I)

The FMS version 1 form file contains supervisor only
information that TDMS does not support. This infor-
mation has been ignored.

None (informational message).

FDU and Field Validator Error Messages A-9

A.2 Field Validator Error Messages

The following are error messages that can occur when assigning a field validator

to a field:

"Cannot have abbrev. char. equal to fill char”

Explanation:

Attempted to assign the abbreviation character for
the choice validator to be the same as the fill
character.

”Cannot have abbreviation length AND character”

Explanation:

"field already has an fvp”

Explanation:

"field is not numeric”

Explanation:

Attempted to assign an abbreviation length and abbre-
viation character for the choice validator.

Attempted to add a field validator to a field that
already has a field validator.

Attempted to add a size validator or check digit
validator on a field that is not numeric (picture of all
9’s or all N’s).

"field is not unsigned numeric”

Explanation:

"field is too small for fvp”

Explanation:

Attempted to assign a check digit validator on a field
that is not unsigned numeric (picture of all 9’s).

Attempted to assign a size validator to a field that is
not large enough for the validator (for example,
attempting to assign the UNSIGNED BYTE
validator to a numeric field picture with fewer than 3
digits.)

A-10 FDU and Field Validator Error Messages

"high range is less than low range”

Explanation: Attempted to specify a Range validator with a high
range that is less than the low range.

"illegal input--enter 1-14”

Explanation: Attempted to enter an invalid selection number in the
field validator menu form.

“internal range conversion”

Explanation: An internal error occurred while attempting to deter-
mine if the low range is less than the high range. The
low range must be less than or equal to the high
range.

"Low range must be specified”

Explanation: A low range must always be assigned on a field with a
range field validator.

"Too many choice values”

Explanation: Attempted to assign more than 255 choices to a field.

"Too many range values”

Explanation: Attempted to assign more than 127 range values to a
field.

FDU and Field Validator Error Messages A-11

RDU Error Messages B

RDU checks request text for syntax errors and displays error messages when it
encounters an error. It usually continues to take additional request instructions
until you enter the final instruction END DEFINITION followed by a semicolon.
RDU then makes a second check of the text for mapping errors.

Under some circumstances, RDU may encounter syntax errors in your request
text from which it cannot recover. In this case, it returns to the RDU > prompt
and does not check for mapping errors.

The error message format is:

%RDU-N-mnemonic, message

RDU Is the facility name.
N Is a letter indicating the severity of the error, as follows:
S Successful completion.
I Information only. The request is created and stored in
the CDD.
w Warning. The request is created and stored in the

CDD, but it might contain instructions that cause
run-time errors.

E Error. The request is not created and stored in the
CDD.

F Fatal severe error. The request is not created and
stored in the CDD.

mnemonic Is a three- to nine- character string that identifies the error.

message Identifies the error.

This appendix lists the error messages alphabetically by the mnemonic. The
%RDU is not shown and the severity level code is called out separately for your
convenience. For example, the error message %RDU-E-ACTDEPRNG is listed
under ACTDEPRNG, the first message in the list. The explanation indicates
whether the error is a syntax message or whether it is mapping message. Text
enclosed in angle brackets (for example, <text-of-message> or <number >) repre-
sents the actual text or number that appears in the message at run time.

Note

Most error messages are prefixed by %2RDU. A few continuation mes-
sages will appear with the prefix %2CMU. These messages provide addi-
tional information about the cause of the error. Messages prefixed with
a facility name other than %ZRDU and %CMU reflect errors detected
by some standard VMS facility that the program uses. For example, a
message prefixed by the %RMS facility code is generated by the RMS
facility. For information about these messages, see the VAX/VMS
System Messages and Recovery Procedures Manual

ACTDEPRNG too many active dependent ranges
Severity: Error (E)
Explanation: A syntax message. More than two active dependent ranges

are specified within a control field or nested control fields.

User Action: Reduce the number of dependent ranges within the control
field or nested control fields to two.

B-2 RDU Error Messages

ACTFRMILL
Severity:

Explanation:

User Action:

AMBFLDSPC

Severity:

Explanation:

User Action:

BITFLDUNS

Severity:

Explanation:

User Action:

CHNGBND

Severity:

Explanation:

form isnotin the FORM IS list
Error (E)

A syntax and mapping message. The form used ina USE
FORM or DISPLAY FORM instruction has not been
declared in a FORM IS instruction in the header part of
the request.

Declare the form using a FORM IS instruction in the
header part of the request.

ambiguous field specification

Explicit: Error (E)
%ALL: Information (I)

A mapping message. A record field named in an OUTPUT,
INPUT, or RETURN mapping instruction matches more
than one record field within the records used by the
request.

Make the record field name unique by using as many pre-
ceding group names as are necessary or by using the record
name.

field is a bit-field - not supported

Explicit: Error (E)
%ALL: Information (I)

A mapping message. The field is defined as a bit-field,
which is not valid in TDMS.

Redefine the field to be one of the data types valid in
TDMS.

changing the subscript bounds of the array from <n:m > to
<nm>

Explicit: Warning (W)

A syntax message. The lower bound of a record array has
some value other than 1. RDU has adjusted both the lower

RDU Error Messages B-3

User Action:

CNDNEGSRC
Severity:

Explanation:

User Action:

CONDCONVN

Severity:

Explanation:

User Action:

CONDOVFLW

Severity:

Explanation:

User Action:

and upper bounds of this dimension so that the lower
bound is 1. The array contains the same number of
elements.

None necessary. In the request reference to the array, you
always reference the first element using a subscript value
of 1.

mapping may produce conversion error if source is negative
Explicit: Error (E) Input or return mappings
Warning (W) Output mappings

%ALL: Information (I)

A mapping message. The mapping may produce a data
conversion error if the source is negative.

Make the signs of the sending and receiving fields
compatible.

mapping may produce a data conversion error on group
move

Explicit: Error (E)
%ALL: Information (I)

A mapping message. A data conversion error may result at
run time if you are mapping a group field.

Check your mapping instructions that map group fields to
make sure they are correct.

mapping may produce overflow condition during data
conversion

Explicit: Error (E) Input or return mappings
Warning (W) Output mappings

%ALL: Information (I)

A mapping message. The mapping may produce an over-
flow condition during data conversion.

Make the sending and receiving field data types, lengths
(including scale factor), and sizes compatible.

B-4 RDU Error Messages

CTLNOTTEX control field is not a text field

Severity: Error (E)

Explanation: A mapping message. The control field isnot a TEXT or
VARYING TEXT data type.

User Action: Make the control field data type text.

DECOVF packed decimal overflow error

Severity: Explicit: Error (E) Input or return mappings

Warning (W) Output mappings
%ALL: Information (I)
Explanation: A mapping message. A data type conversion error occurs

when mapping a literal string to a form or record field
because of a packed decimal overflow.

User Action: Make the sending and receiving field lengths and sizes
compatible.

DEPNAMACT dependent name is already active

Severity: Error (E)

Explanation: A syntax message. You made an attempt to explicitly

assign a dependent name to a dependent range (by using a
%LINE= or %ENTRY = in the CONTROL FIELD IS
phrase). The attempt fails because the dependent range of
the control field array is already assigned.

User Action: Assign to the dependent range a dependent name that is
not active, or assign the dependent name in another control
field.
DEPREFINV dependent name is referenced outside a conditional request
Severity: Error (E)
Explanation: A syntax message. You attempted to use a dependent

name, %LINE or %ZENTRY, in a mapping instruction that

RDU Error Messages B-5

User Action:

DSTLENGEQ

Severity:

Explanation:

User Action:

DSTMORDIM

Severity:

Explanation:

User Action:

DSTMORENT
Severity:

Explanation:

is outside a conditional instruction (that uses an array with
a dependent range as a control field).

Remove the dependent name from the field reference or
move the mapping instruction inside of a conditional
instruction that uses an array with a dependent range.

Destination length must be greater than or equal to
<number >

Explicit: Error (E) Input or return mappings
Warning (W) Qutput mappings

%ALL: Information (I)

A mapping message. A data type conversion error occurred
because the length of the receiving field (including the scale
factor) is insufficient to hold the largest sending value. The
message states how long the receiving field must be.

Change the length of the receiving field (including the
scale factor) to be equal to or greater than the length speci-
fied in the message.

destination field has more dimensions than source

Explicit: Error (E)
%ALL: Information (I)

A mapping and syntax message. The receiving field of an
OUTPUT, INPUT, or RETURN mapping instruction has
more dimensions than the sending field.

Make the number of dimensions in the receiving field of
the mapping instruction the same number as in the
sending field.

destination field has more entries than source
Error (E)

A mapping and syntax message. The receiving field refer-
ence contains a greater number of elements than the send-
ing field reference.

B-6 RDU Error Messages

User Action:

ERRCLSINCL
Severity:

Explanation:

User Action:

ERRDPAR
Severity:

Explanation:

User Action:

ERROPNINCL
Severity:

Explanation:

User Action:

ERRRLBFIL
Severity:

Explanation:

User Action:

Adjust the receiving field reference to contain the same
number of elements as the sending field reference.

error closing include file
Error (E)

A syntax message. An error occurred when TDMS
attempted to close a %INCLUDE file or to continue check-
ing the request text from a %INCLUDE file. The message
is output with other messages explaining the problem.

Correct the error specified in the accompanying message.

error during instruction processing
Error (E)

A syntax message. This message appears with other syn-
tax messages explaining the specific error.

Correct the syntax error specified in the accompanying
message.

error opening include file
Error (E)

A syntax message. A VAX RMS error occurred when RDU
attempted to open the %INCLUDE file. This message
appears with other messages explaining the specific error.

Correct the error explained in the accompanying error
message.

error on library file
Error (E)

A mapping message. A VAX RMS error occurred when

RDU attempted to write to or read from the request library
file. This message is followed immediately by a VAX RMS
message.

See the VAX RMS documentation for a description of the
error and user action.

RDU Error Messages B-7

FLTOVF floating overflow error

Severity: Explicit: Error (E)
%ALL: Information (I)

Explanation: A mapping message. A data type conversion error occurred
due to floating overflow when you mapped a literal string
to a form or record field.

User Action: Make the sizes and lengths of sending and receiving fields
compatible. See the documentation on LIB$CVT_DX_DX
in the VAX/VMS Run-Time Library Routines Reference

Manual.
FLTUND floating underflow error
Severity: Explicit: Error (E)

%ALL: Information (I)

Explanation: A mapping message. A data type conversion error occurred
due to floating underflow when mapping a literal string to a
form or record field. See the documentation on
LIB$CVT_DX_DX in the VAX/VMS Run-Time Library
Routines Reference Manual

User Action: Make the lengths and sizes of sending and receiving fields
compatible.

FNDSYNTER incorrect syntax <incorrect-instruction >

Severity: Error (E)

Explanation: A syntax message. An instruction contains incorrect
syntax.

User Action: Correct the syntax error.

B-8 RDU Error Messages

FRMNOFLDS
Severity:

Explanation:

User Action:

FRMNOINP

Severity:

Explanation:

User Action:

HLPFRMNOT
Severity:

Explanation:

User Action:

ILLCHAR
Severity:

Explanation:

User Action:

form has no fields
Error (E)

A mapping message. Mappings reference a form that has
no fields.

Check to make sure that the form name is correct, or
redefine the form to contain fields.

form field isa DISPLAY-ONLY field - input mappings
illegal

Explicit: Error(E)
%ALL: Information (I)

A mapping message. Input mappings reference a field that
has been defined as Display Only in the form definition.

Remove the Display Only attribute from the field or
remove the mapping instructions.

help form will not be available in the request library
Warning (W)

A mapping message. Some error occurred when RDU
accessed a help form in the CDD for inclusion in the
request library file. This help form will not be included in
the request library file. This message is preceded by a mes-
sage giving the precise problem.

Correct the problem identified by the accompanying mes-
sage or remove the help form name from the form which
calls the HELP forms.

illegal character in text
Error (E)

A syntax message. An illegal character or escape sequence
(for example, line feed or form feed) appears somewhere in
a request instruction line.

Remove the illegal character from the request instruction
line.

RDU Error Messages B-9

ILLDEPRNG
Severity:

Explanation:

User Action:

ILLDESCCHR
Severity:

Explanation:

User Action:

ILLDSTDAT

Severity:

Explanation:

User Action:

illegal nested dependent range
Error (E)

A mapping message. A second array with a dependent
range is used within a single CONTROL FIELD IS
instruction.

End the first CONTROL FIELD IS instruction with an
END CONTROL FIELD phrase before declaring a second
CONTROL FIELD IS instruction which uses an array as a
control field.

illegal character in description
Error (E)

A syntax message. An illegal character or escape sequence
(for example, form feed or line feed) is in the text of a
DESCRIPTION instruction.

Remove the illegal character from the descriptive text.

unsupported datatype in destination of mapping

Explicit: Error (E)
%ALL: Information (I)

A mapping message. The data type of the receiving field is
not supported by TDMS, or the data types of the sending
and receiving fields are incompatible.

Change the data type of the receiving field to one that
TDMS supports, or make the data types of the sending and
receiving fields compatible.

B-10 RDU Error Messages

ILLDSTLEN

Severity:

Explanation:

User Action:

ILLFLDDAT

Severity:

Explanation:

User Action:

ILLKBDKEY
Severity:

Explanation:

User Action:

ILLKEYLEN
Severity:

Explanation:

User Action:

destination length must be greater than 8

Explicit: Error (E)
%ALL: Information (I)

A mapping error. A data type conversion error occurred
because the length of a receiving field is less than 8 (too
short for the mapping to be valid).

Make the length of the receiving field greater than 8.

illegal field datatype

Explicit: Error (E)
% ALL: Information (I)

A mapping message. The data type of the field is not sup-
ported by TDMS.

Define the field to have a valid TDMS data type.

program key < key-name > is not a legal keyboard key
Error (E)

A syntax message. APROGRAM KEY IS GOLD instruc-
tion specifies a program request key that is not one of the
valid keys.

Specify one of the valid keys as the program request key in
the PROGRAM KEY IS GOLD instruction.

program key can be only 1 character long
Error (E)

A mapping message. You defined a program request key
that is more than one character long.

Specify a program request key that is one character in
length, for example, GOLD "T” instead of GOLD "TZ".

RDU Error Messages B-11

ILLKPDKEY
Severity:

Explanation:

User Action:

ILLLEDNO
Severity:

Explanation:

User Action:

ILLLITNUM
Severity:

Explanation:

User Action:

ILLMSGLIN
Severity:

Explanation:

User Action:

program key < key-name > is not a legal keypad key
Error (E)

A syntax message. A PROGRAM KEY IS KEYPAD
instruction specifies as the program request key a keypad
key that is not one of the valid keys on the keypad.

Specify one of the digits 0 - 9, comma, period, or hyphen as
the program request key in the PROGRAM KEY IS
KEYPAD instruction.

LED number must be between 1 and 4
Error (E)

A syntax message. You specified a LED numberin a
LIGHT LIST instruction that is less than 1 or greater
than 4.

Specify a LED number that is between 1 and 4 in the
LIGHT LIST instruction.

light number <number > is invalid
Error (E)

A mapping message. You specified a LED number in a
LIGHT LIST instruction that is less than 1 or greater
than 4.

Specify a LED number that is between 1 and 4 in the
LIGHT LIST instruction.

multiple message lines declared
Error (E)

A syntax message. More than one MESSAGE LINE IS
instruction appears in the base part of a request or within a
single case value in a CONTROL FIELD IS instruction.

Specify only one MESSAGE LINE IS instruction.

B-12 RDU Error Messages

ILLNAME
Severity:

Explanation:

User Action:

ILLOFFSET
Severity:

Explanation:

User Action:

ILLPASSCHR
Severity:

Explanation:

User Action:

ILLPERCENT
Severity:

Explanation:

User Action:

Form name or field name < text> is not valid CDD name
Error (E)

A mapping message. The name of the form or form field is
not in the CDD.

Check that the form definition is in the CDD and/or con-
tains the field name you use in the mapping reference.

display offset number must be between 0 and +22
Error (E)

A syntax message. An offset ina USE FORM WITH
OFFSET or DISPLAY FORM WITH OFFSET instruction
is less than 0 or greater than +22.

Specify an offset number in the USE FORM or DISPLAY
FORM instruction that is between 0 and +22.

illegal character in CDD password
Error (E)

A syntax message. An illegal character or escape sequence
is in a password associated with a path name in a FORM
IS, RECORD IS, or REQUEST IS instruction.

Remove the illegal character from the password.

illegal percent character in text
Error (E)

A syntax message. The first character in anitemis a
percent sign, and the item is not a %INCLUDE,
%ENTRY, or %LINE instruction.

Remove the illegal percent character from the instruction.

RDU Error Messages B-13

ILLPTHNAM
Severity:

Explanation:

User Action:

ILLPRKNAM
Severity:

Explanation:

User Action:

ILLSLSHCHR
Severity:

Explanation:

User Action:

ILLSRCDAT

Severity:

path name <text> is not alegal CDD name
Error (E)

A syntax message. The relative path name specified in the
message is not a legal CDD name. For example:

. The name has move than than 31 characters.
e The first character is not alphabetic.

¢ The remaining characters are not alphanumeric char-
acters or a dollar sign ($) or an underscore (_).

* The last character is a dollar sign ($) or an
underscore (_).

Make the relative path name conform to the rules for a
legal CDD name.

illegal key name for PROGRAM KEY
Error (E)

A mapping message. You specified a program request key
that is not one of the keys valid in a PROGRAM KEY IS
instruction.

Specify a program request key that is one of the keys valid
in a PROGRAM KEY IS instruction.

illegal slash character in text
Error (E)

A syntax message. A slash character appears as part of an
instruction on the instruction line.

Remove the illegal slash character.

unsupported datatype in source of mapping

Explicit: Error (E)
%ALL: Information (I)

B-14 RDU Error Messages

Explanation:

User Action:

ILLSTRGCHR
Severity:

Explanation:

User Action:

ILLSUBVAL
Severity:

Explanation:

User Action:

ILLUNQNAM
Severity:

Explanation:

User Action.

ILLWLDCRD
Severity:

Explanation:

User Action:

A mapping message. The data type of the sending field is
not supported by TDMS.

Change the data type of the sending field to one that is
supported by TDMS.

illegal character in quoted string
Error (E)

A syntax message. An illegal character or escape sequence
is in the quoted string (for example, a line feed or form
feed).

Remove the illegal character from the quoted string.

Subscript values must be greater than zero
Error (E)

A syntax message. A mapping contains a subscript value
that is less than or equal to zero. All subscripts in a request
must be greater than zero.

Change the subscript to be greater than zero.

illegal character in given name or unique name < text>
Error (E)

A syntax message. The given name or unique name speci-
fied in the message is not a legal CDD name.

Make the relative path name conform to the rules for a
legal CDD name.

illegal wildcard character in file specification
Error (E)

A syntax message. A wildcard character appears in the file
specification on a FILE IS instruction in a request library
definition.

Remove the wildcard character from the file specification.

RDU Error Messages B-15

INPOPNPMT

Severity:

Explanation:

User Action:

INTOVF
Severity:

Explanation:

User Action:

INVCONFLD
Severity:

Explanation:

User Action:

INVCVT

Severity:

Explanation:

Mapping may introduce invalid data during datatype con-
version

Explicit: Error(E)
%ALL: Information (I)

A mapping message. In an INPUT or RETURN mapping,
the data type of the record field is TEXT (T or VT) and the
data type of the form field is NUMERIC MIX (NX) or
UNSIGNED NUMERIC (NU). This mapping is not valid.

Change the data type of the form field and/or the record
field in the INPUT or RETURN mapping.

integer overflow error
Explicit: Error (E)

A mapping message. A data type conversion error occurred
due to integer overflow when you mapped a literal string to
a form or record field. See the documentation on
LIB$CVT_DX_DX in the VAX/VMS Run-Time Library
Routines Reference Manual

Make the sending and receiving field lengths and sizes
compatible.

invalid CONTROL FIELD specification
Error (E)

A mapping message. This is a general message stating that
there is something wrong with a control field specification.
It appears with other control field error messages.

Check the control field specification to make sure it is
correct.

negative source value and unsigned destination datatype in
mapping

Explicit: Error (E)
%ALL: Information (I)

A mapping message. A data type conversion error occurred
when mapping a literal string to a form or record field,

B-16 RDU Error Messages

because the sending field value is negative and the receiv-
ing field data type is unsigned. See the documentation on
LIB$CVT_DX_DX in the VAX/VMS Run-Time Library
Routines Reference Manual.

User Action: Make the signs of the sending and receiving fields
compatible.

INVFLDREF invalid field reference

Severity: Error (E)

Explanation: A mapping message. A field reference contains syntactic

errors (for example, an incorrect number of dimensions or
subscript limits). This message is always displayed with
other field reference messages that provide more informa-
tion about the specific error.

User Action: Check the field reference to make sure that it is legal.
INVFRMDEF invalid form definition

Severity: Error (E)

Explanation: A mapping message. The form definitionina FORM IS

instruction has some characteristic that prevents RDU
from processing it. This message appears with other mes-
sages that indicate the particular problem with the form.

User Action: Fix the error in the form indicated by the accompanying
error message and replace the form in the CDD.

INVFRMOFF invalid form OFFSET value - form takes lines <n tom >

Severity: Error (E)

Explanation: A mapping message. The WITH OFFSET value givenin a

USE FORM or DISPLAY FORM instruction would put
part of the form off the terminal screen.

User Action: Adjust the OFFSET value so that no part of the form is off
the terminal screen.

INVNBDS invalid Numeric Byte Data String (NBDS)

Severity: Explicit: Error (E)
%ALL: Information (I)

RDU Error Messages B-17

Explanation:

User Action:

INVRECDEF
Severity:

Explanation:

User Action:

KEYMAYNOT
Severity:

Explanation:

User Action:

KPMNOTSET

Severity:

Explanation:

A mapping message. A data type conversion error occurred
when you mapped a literal string to a form or record field,
because there was an invalid character in the string or the
value was outside the range that can be contained by the
receiving field. See the documentation on
LIB$CVT_DX_DX in the VAX/VMS Run-Time Library
Routines Reference Manual

Remove the invalid character from the string or make the
sizes and lengths of the sending and receiving fields com-
patible.

invalid record definition
Error (E)

A mapping message. The record definition used in a
RECORD IS instruction has some characteristic that pre-
vents RDU from processing it. For example, if the record
contains an array with a variable lower bound, RDU cannot
process the record. This message appears with other mes-
sages (for example, LOWBNDMIS) that indicate the par-
ticular problem with the record.

Correct the problem in the record.

this key may not execute as expected
Warning (W)

A mapping message. The program request key may not
execute as expected because the request contains no
KEYPAD IS instruction. This message appears with the
KPMNOTSET message.

Include a KEYPAD IS instruction in your request specify-
ing that the keypad should be set to Application mode.

keypad mode has not been set to Application mode in this
request

Warning (W)

A mapping message. APROGRAM KEY IS KEYPAD
instruction was used in a request without a KEYPAD

B-18 RDU Error Messages

User Action:

LOWBNDMIS

Severity:

Explanation:

User Action:

MISPELKWD

Severity:

Explanation:

User Action:

MULPRKINP
Severity:

Explanation:

User Action:

MULPRKOUT

Severity:

Explanation:

(MODE) IS Application instruction. This message appears
with the KEYMAYNOT message.

Include a KEYPAD MODE IS instruction in your request.

lower bound for dimension is missing - dimension has vari-
able lower bound

Error (E)

A mapping message. The lower bound of a record field defi-
nition is. missing.

RDU cannot process record definitions that have arrays
with variable lower bounds. Add the lower bound to the
field reference.

misspelled keyword < incorrect-keyword > ; should be
< correct-keyword >

Error (E)

A syntax message. A keyword (a required word in an
instruction) was misspelled.

Correct the spelling of the keyword.

more than one RETURN action for PROGRAM KEY
Error (E)

A mapping message. APROGRAM KEY IS instruction
contains more than one RETURN instruction.

Reduce the number of RETURN instructions in the
PROGRAM KEY IS instruction to one.

more than one OUTPUT or MESSAGE LINE action for
PROGRAM KEY

Error (E)

A mapping message. APROGRAM KEY IS instruction
contains more than one OUTPUT or MESSAGE LINE IS
instruction.

RDU Error Messages B-19

User Action:

MULTFILIS
Severity:

Explanation:

User Action:

NAMNOTACT
Severity:

Explanation:

User Action:

NOACTFRM
Severity:

Explanation:

User Action:

NOBELLNUM
Severity:

Explanation:

Specify only one OUTPUT or MESSAGE LINE IS
instruction in the PROGRAM KEY IS instruction.

multiple FILE IS instructions found - ignoring instruction
Warning (W)

A syntax message. The request library definition contains
more than one FILE IS instruction. Only the first FILE IS
instruction is executed.

Remove the excess FILE IS instructions from your
request library definition.

dependent name is not active
Error (E)

A syntax message. A mapping instruction uses a depen-
dent name (%LINE or %2ENTRY) that has not been
assigned to a dependent range.

Assign the dependent name to a dependent range by using
a control field array with a dependent range or remove the
dependent name from the field reference that is in error.

no active form declared with DISPLAY FORM or USE
FORM

Error (E)

A mapping message. The request specifies a reference to a
form field, but the request has not specified an active form
in the current context.

Make sure the request declares an active form in the cur-
rent context.

cannot specify a number of bells with NO BELL syntax
Error (E)

A syntax message. A number of bells is specified with the
NO RING BELL instruction.

B-20 RDU Error Messages

User Action:

NODEFRLB
Severity:

Explanation:

User Action:

NOINCLFIL
Severity:

Explanation:

User Action:

NOKEYPUNC

Severity:

Explanation:

User Action:

NOMAPCRE
Severity:

Explanation:

Remove the number of bells from the NO RING BELL
instruction.

no default .RLB file defined for library
Error (E)

A mapping message. You did not specify a request library
file name when you issued the BUILD LIBRARY com-
mand and the request library definition does not contain a
FILE IS instruction.

Specify the library file name in the FILE IS instruction in
the request library definition or issue the BUILD
LIBRARY command using the file-name parameter.

no include file specified
Error (E)

A syntax message. The file name in a %INCLUDE instruc-
tion is not enclosed in quotation marks or the file name is
missing.

Enclose the file name in the %INCLUDE instruction in
quotation marks or supply the file name.

missing < keyword or punctuation > before <keyword or
punctuation>

Error (E)

A syntax message. A keyword or punctuation is missing in
an instruction.

Include the missing keyword or punctuation in the
instruction.

no mappings created
Error (E)

A mapping message. An error occurred when a request
library file was built. One or more mappings failed. This

RDU Error Messages B-21

User Action:

NORLBEXT
Severity:

Explanation:

User Action:

NOSEMICLN
Severity:

Explanation:

User Action:

NOSUCHFLD

Severity:

Explanation:

User Action:

NOTINCTL

Severity:

message appears with other messages that provide more
information about the error.

Use the /LOG qualifier on the BUILD, CREATE, or
MODIFY commands to determine which mappings failed.

no requests specified for this library
Error (E).

A mapping message. The request library definition con-
tains no REQUEST IS instructions specifying the names
of the requests to be placed in the request library file or it
contains no FORM IS instructions.

Include REQUEST IS or FORM IS instructions in the
request library definition, naming the requests or forms to
be built into the request library file.

missing <;> at end of instruction
Error (E)

A syntax message. A semicolon is missing at the end of an
instruction.

Insert a semicolon at the end of the instruction.

no such field

Explicit: Error (E)
%ALL: Information (I)

A mapping message. A mapping instruction or a
CONTROL FIELD IS instruction references a field that is
not on the active form or in a record used in the request.

Make sure that the field name in the mapping instruction
is correct and that the field is in a record or on the active
form used in the request.

not within the scope of a control field

Error (E)

B-22 RDU Error Messages

Explanation:

User Action:

OUTSTRTRU

Severity:

Explanation:

User Action:

POSINVDAT
Severity:

Explanation:

User Action:

PRKNOACTS
Severity:

Explanation:

A mapping message. You tried to perform some action that
is valid only within a control field (for example, referencing
dependent names).

If the action is not within a control field, delete the condi-
tional instruction syntax, or perform the action within a
control field.

output string truncated

Explicit: Error (E) Input or return mappings
Warning (W) Output mappings

%ALL: Information (I)

A mapping message. A data type conversion error occurred
due to length of character-coded Text data or Numeric
Byte Data String (NBDS) when you mapped a literal string
to a form or record field. See the documentation on
LIB$CVT_DX_DX in the VAX/VMS Run-Time Library
Routines Reference Manual

Make the source and destination field lengths and sizes
compatible.

mapping may introduce invalid data into form field

Explicit: Error (E)
%ALL: Information (I)

A mapping message. An output mapping may introduce
invalid data into the form field during data type conversion.
This warning occurs when the record field is of data type
TEXT (T or VT) and the form field is of data type
NUMERIC MIX (NX) or UNSIGNED NUMERIC (NU).

Check to make sure that the data in the record field will
map correctly to the form field.

PROGRAM KEY definition does not specify any actions
Error (E)

A mapping message. APROGRAM KEY IS instruction
contains no OUTPUT, RETURN, or MESSAGE LINE IS
instruction.

RDU Error Messages B-23

User Action:

PSWDTLONG

Severity:

Explanation:

User Action:

REFFEWSS

Severity:

Explanation:

User Action:

REFINDIM
Severity:

Explanation:

User Action:

REFLOWLRG

Severity:

Include an OUTPUT TO, RETURN TO, or MESSAGE
LINE IS instruction in the PROGRAM KEY IS instruc-
tion.

illegal CDD password - longer than 64 characters
Error (E)

A syntax message. The CDD password ina FORM IS,
RECORD IS, or REQUEST IS instruction is longer than
64 characters.

Reduce the length of the CDD password to 64 characters.

field reference specifies fewer dimensions < number > than
the field definition <number >

Explicit: Error (E)
%ALL: Information (I)

A mapping message. The form or record field reference
specifies fewer dimensions than are in the form or record
definition.

Adjust the dimensions in the field reference to correspond
to the number specified in the form or record definition for
the field.

in dimension < number >
Error (E)

A mapping message. This message appears with other field
reference error messages. It indicates which dimension is
in error.

Correct the dimension in the reference that is in error.

low limit < number > of reference is larger than high limit
<number >

Error(E)

B-24 RDU Error Messages

Explanation:

User Action:

REFMANSS

Severity:

Explanation:

User Action:

REFMAXDIM
Severity:

Explanation:

User Action:

REFSSOUT

Severity:

Explanation:

User Action:

A mapping message. The low limit of the subscript range
specified in the array reference is greater than the high
limit of the range.

Adjust the limits in the subscript range reference so that
the low limit is less than or equal to the high limit.

field reference specifies more dimensions < number > than
the field definition <number >

Explicit: Error (E)
%ALL: Information (I)

A mapping message. The form or record field reference
specifies more dimensions than are in the form or record
definition for the field.

Adjust the dimensions of the form or record field reference
to correspond to the number specified in the form or record
definition for the field.

reference specifies more than 255 dimensions for a field
Error (E)

A mapping message. A field reference specifies more than
255 dimensions.

Specify fewer than 255 dimensions for the field reference.

reference subscripts < number to number > out of range of
field subscripts <number to number >

Error (E)

A mapping message. The field reference specifies subscript
limits that are out of range of the lower and upper bound of
the record or form field referenced.

Adjust the subscripts of the sending or receiving field ref-
erence so they are within range of the field definition.

RDU Error Messages B-25

SRCLENLEQ

Severity:

Explanation:

User Action:

SRCMORDIM

Severity:

Explanation:

User Action:

SRCMORENT

Severity:

Explanation:

User Action:

SOURCE LENGTH must be less than or equal to
<number >

Explicit: Error (E) Input or return mappings
Warning (W) Output mappings

“%ALL: Information (I)

A mapping message. A data type conversion error occurred
because the length (including scale factor) of the sending
field is incompatible with the data type of the receiving
field.

Change the length of the sending field (including scale fac-
tor) to be less than or equal to the length specified in the
message.

source field has more dimensions than destination

Explicit: Error (E)
% ALL: Information (I)

A mapping and syntax message. The sending field of an
OUTPUT, INPUT, or RETURN mapping instruction has
more dimensions than the receiving field.

Make the number of dimensions in the sending field of the
mapping instruction the same number as in the receiving
field.

source field has more entries than destination

Explicit: Error(E)
%ALL: Information (I)

A mapping and syntax message. The sending field refer-
ence contains a greater number of elements than the
receiving field reference.

Adjust the sending field reference to contain the same
number of elements as the receiving field reference.

B-26 RDU Error Messages

STRMIS

Severity:

Explanation:

User Action:

SYNTAXERR
Severity:

Explanation:

User Action:

TOOMANACT
Severity:

Explanation:

User Action:

TOOMNYBEL
Severity:

Explanation:

User Action:

stride value for dimension is missing - dimension has
variable stride

Error (E)

A mapping message. The stride value for a dimensionin a
record field definition is missing. The stride is the differ-
ence between the addresses of successive elements in the
same dimension of an array.

RDU can not process record definitions that have arrays
with variable stride. Add a stride to the field definition.

found <syntax-error > when expecting < correct-syntax >
Error (E)

A syntax message. The message identifies the error and
the syntax that was expected.

Correct the syntax error.

too many active forms specified in request
Error (E)

A mapping message. You used more than one USE FORM
or DISPLAY FORM in a base or conditional portion of a
request. TDMS will attempt to display more than one form
during a single call to a request. Only one form can be
active during any single request call, or at any one level in
the request.

Have only one USE FORM or DISPLAY FORM instruc-
tion that is active during any single request call.

number of bells cannot be greater than 255
Error (E)

A syntax message. The number of bellsin a RING BELL
instruction exceeds 255.

Change the number of bells to between 0 and 255.

RDU Error Messages B-27

UNTERMDESC
Severity:

Explanation:

User Action:

UNTERMPASS
Severity:

Explanation:

User Action:

UNTERMSTRG

Severity:

Explanation:

User Action:

UPPBNDMIS

Severity:

Explanation:

User Action:

unterminated description text
Error (E)

A syntax message. An END-OF-FILE has been reached
before a DESCRIPTION instruction has been terminated
with a ¥/,

End the DESCRIPTION instruction with a */.

unterminated CDD password
Error (E)

A syntax message. The password on a path namein a
FORM IS, RECORD IS, or REQUEST IS instruction is
not terminated with a right parenthesis before the end of
the line.

Terminate the password in the FORM IS, RECORD IS, or
REQUEST IS instruction with a right parenthesis before
the end-of-line is reached.

unterminated quoted string - assuming string termination
at end of line

Error (E)

A syntax message. You specified a quoted string that was
longer than a single line.

Terminate the quoted string before the end of the line.

upper bound for dimension is missing - dimension has vari-
able upper bound

Error (E)
A mapping message. The upper bound of a record field defi-
nition is missing.

RDU cannot process record definitions that have arrays
with variable upper bounds. Add the upper bound to the
field reference.

B-28 RDU Error Messages

TDMS Run-Time Error Messages C

This appendix lists all TDMS run-time error message codes alphabetically by
mnemonic. With each code there is an explanation of the severity of the error, an
explanation of the message, and recommended user action.

TDMS returns run-time error messages during the execution of a program. If you
use TSS$SIGNAL to signal an error from a TDMS call, TDMS also reports
extended status (where applicable) from other subsystems.

The error message format is:

%TSSFDV-N-mnemonic, message

TSS Is the facility name.
N Is a letter indicating the severity of the error, as follows:
S Successful completion.
I Information only.
w Warning.
E Error.
F Fatal severe error. Execution of the program

does not continue and the procedure does not
produce any output.

mnemonic Is a three- to nine- character string that identifies the error.

message Identifies the error.

Note that if there is a problem with the TDMS software, a call might return the
following error:

%SYSTEM-F-ACCVIO, access violation, reason mask=XX,
virtual address=XXXXXXXX, PC=XXXXXXXX, PSL=XXXXXXXX

X can be any hexadecimal number. For recommended user action and
explanation, see BUGCHECK.

BUGCHECK fatal internal software error

Severity: Severe (F)

Explanation: An unexpected, fatal internal software error occurred in
VAX TDMS. This usually means a bug in the TDMS
software.

User Action: Collect as much information as possible and submit a

Software Performance Report (SPR). To do so, use
TSS$SIGNAL to report extended status. See the VAX
TDMS Release Notes for information on what additional
data should be submitted with a VAX TDMS SPR.

CANINPROG cancel in progress on channel
Severity: Severe (F)
Explanation: A TSS$CANCEL was issued on the channel while a call

that is being cancelled was in progress, and the cancel
operation is still underway.

User Action: Check your program to be sure that:

e TSS$CANCEL has returned to the program.

e The call that was cancelled by TSS$CANCEL has
returned to the program.

C-2 TDMS Run-Time Error Messages

CONVERR
Severity:

Explanation:

A cancel is complete only whenthe cancelled call returns to
the program. You can add source code to set a flag in the
program when a call returns TSS$_CANCEL to indicate
the cancel is complete. You can then issue another TDMS
call.

data type conversion error
Severe (F)

A run-time data type conversion error occurred during the
execution of a request. The reasons why this may occur
are:

1. The source field length is greater than the destina-
tion field length on an output mapping. In this and
similar instances, RDU builds request library files
with warnings that certain mappings may cause a
data type conversion error.

2. The record parameter(s) on the TSSSREQUEST call
is incorrect because:

e Something other than the record was passed as
a parameter

e The order of the records that were passed as
parameters is not the same order as the records
specified in the RECORD IS instruction in the
request

3. The CDD record definition referenced in the request
changed and either the request library file was rebuilt
or the program was recompiled. As a result, the
record definition in the request library file is not the
same as the record definition in the program.

TDMS Run-Time Error Messages C-3

User Action:

DISFORERR
Severity:

Explanation:

User Action:

Use TSS$SIGNAL toreport extended status. The

extended status includes which field is in error and the spe-
cific conversion error that occurred (for example, access
violation). Also, use the Trace Facility to see what mapping
instruction is in error. The trace log shows the list of suc-
cessful mappings. Depending on the reason for the error as
listed under Explanation, take the following action:

1. Correct the request or the program logic to change
the value of the field that is in error. Or, increase the
range or size of the field in error.

2. Examine the record(s) passed on the
TSS$REQUEST call to see if they are the correct
addresses of the records, and are in the same order
as the RECORD IS instructions in the request.

3. Make sure that the request library file and the pro-
gram use the same CDD record definition. You may
have to rebuild the request library file or recompile
and relink the program. Check:

¢ The CDD record definition
* The request library file
e The program

If you still get a data type conversion error when you are
sure that you are passing the record parameter(s) correctly
and that the request library file and application program
were both built against the same CDD record definition,
submit an SPR.

display form failed
Severe (F)

A request was executed that included an instruction to dis-
play a 132-column form of more than 13 lines on a VT100-
compatible terminal that does not have the Advanced
Video option (AVO).

Use a terminal with AVO to execute the request or change
the form. If you change the form, you must rebuild the
request library file. 132-column forms with more than 13
lines require the Advanced Video feature.

C-4 TDMS Run-Time Error Messages

ERROPNDEV
Severity:

Explanation:

User Action:

ERROPNRLB
Severity:

Explanation:

User Action:

ERROENTRA
Severity:

Explanation:

User Action:

error opening device
Severe (F)

An error occurred opening the device specified on a
TSS$OPEN call.

Use TSS$SIGNAL to report extended status and see what
specific error occurred when you tried to open the device
(for example, device already allocated). Check the device
name parameter on the TSS$OPEN call; correct the source
program.

error opening request library
Severe (F)

An error occurred opening the request library fileon a
TSS$OPEN_RLB call.

Use TSS$SIGNAL to report extended status and see what
specific error occurred when trying to open the request
library file (for example, file not found). Check the request
library file parameter on the TSS$OPEN_RLB call; correct
the source program.

error opening trace log file
Severe (F)

An error occurred opening the trace log file during a
TSS$TRACE_ON call.

Use TSS$SIGNAL to report extended status and see what
specific error occurred when trying to open the file. Also,
verify that the trace log file logical name is correctly
defined (issue the command SHOW LOGICAL
TSS$TRACE_OUTPUT). If it is not defined, check the
translation of the default trace log file logical name,
DBG$OUTPUT.

TDMS Run-Time Error Messages C-5

ILLDEVCHAR
Severity:

Explanation:

User Action:

INSVIRMEM
Severity:

Explanation:

User Action:

illegal device characteristics
Severe (F)

For TSSSOPEN, the device specified is not a valid termi-
nal device that TDMS can open. For TSS$REQUEST this
error occurs if you are running the application on a VT52
terminal and the form specified in the DISPLAY FORM
instruction in the request contains one or both of the fol-
lowing features:

. 132-column form

¢ Scrolled region

Check the device name parameter if the error occurred on
the TSS$SOPEN call. Correct the source program to open a
valid terminal device. Check the form definition using the
FDU LIST FORM command if the error occurred on the
TSS$REQUEST call. You should either change the form
definition or run the application on a VT100 compatible ter-
minal. Note that if you change the form definition, you
must rebuild the request library file.

insufficient virtual memory
Severe (F)

An attempt to allocate dynamic storage during the execu-
tion of a TDMS call failed.

Check the following:

1. The virtual memory usage by the application pro-
gram. You can do this by:

e Linking your program with the /DEBUG qualifi-
ers and with SYSSLIBRARY:STARLET.

* Running the program and issuing the following
command at the DBG > prompt:

CALL LIB$SHOW_VM
This call shows the number of bytes of virtual mem-

ory still allocated. You can also issue this comand
before and after a TDMS call to be sure you have

C-6 TDMS Run-Time Error Messages

INVARG

Severity:

Explanation:

User Action:

INVCHN

Severity:

Explanation:

User Action:

enough virtual memory available for the TDMS call.
Also step through the application program and be
sure the program or its subprograms or subroutines
are deallocating virtual memory when the subroutine
or subprogram returns to the calling program. In the
debugger, you can set breakpoints at LIBSGET_VM;
when you reach a breakpoint, you can issue the com-
mand SHOW CALLS to determine the caller of
LIB$SGET_VM.

2. The VIRTUALPAGECNT SYSGEN parameter. If it
is-too small, see your system manager.

If you still get this error message, it may be a TDMS bug.
You should submit an SPR.

invalid arguments
Severe (F)

One or more of the parameters passed to a TDMS call is
incorrect or you passed too many or too few arguments on
the call. Check the individual call in the reference section
to determine the correct way to pass the parameters.

Verify and fix the parameters for the call (check the order
of parameters passed, the passing mechanism for each
parameter, and the number of parameters for the call).
Correct the source program.

invalid channel
Severe (F)

An invalid channel number was passed. The channel
parameter must be the channel number returned by the
TSS$OPEN call.

Check the channel parameter on the call that failed and
correct the source program.

TDMS Run-Time Error Messages C-7

INVDSC
Severity:

Explanation:

User Action:

INVRLBID
Severity:

Explanation:

User Action:

INVTXTLEN
Severity:

Explanation:

User Action:

invalid descriptor
Severe (F)

The descriptor used to pass a string parameter toa TDMS
call is invalid. Usually, this means that your parameters
are out of order or you have passed something by reference
that should be passed by descriptor.

Check all parameters to the TDMS call that should be
passed by descriptor to make sure that they are being
passed correctly. Correct the source program.

invalid request library id
Severe (F)

The library-id parameter on a TSSSREQUEST or
TSS$CLOSE_RLB call was invalid. The request library id
must be 2 number returned by a successful
TSS$OPEN_RLB call.

Verify that the request library id passed was the same
number returned by the TSS$OPEN_RLB call. Also check
the order of arguments passed and the passing mechanism
for each argument. Correct the source program.

invalid text length
Severe (F)

For TSSSREAD_MSG_LINE, the message prompt is too
long (it must be less than 80 or 132 characters, depending
on whether an 80 or 132-column form is displayed). For
TSS$WRITE_MSG_LINE, the message text is too long (it
must conform to the same restrictions as the message
prompt).

Check the message prompt parameter if the error occurred
on the read message line call. Check the message text
parameter if the error occurred on the write message line
call. Correct the source program.

C-8 TDMS Run-Time Error Messages

MULTFORM
Severity:

Explanation:

User Action:

NOIO
Severity:

Explanation:

User Action:

NONPRICHA
Severity:

Explanation:

multiple active forms are illegal
Severe (F)

More than one DISPLAY FORM or USE FORM instruc-
tion was encountered during the execution of a conditional
request. For example, if two parts of a conditional request
are evaluated as true, and each part contains a DISPLAY
FORM or USE FORM instruction, this error occurs.

Use the Trace Facility to check the execution of request,
including control field values. Correct the request and/or
the program logic so that only one DISPLAY FORM or
USE FORM instruction is executed after control field
evaluation.

no IO in progress on channel
Informational (I)

The caller attempted to cancel I/O on a TDMS channel, but
there was no call in progress.

Check your program logic to make sure that you should be
issuing the TSS$CANCEL call at the time you are doing
S0.

field contains non-printable characters
Severe (F)

A TDMS call attempted to output non-printable characters.
This error can occur on three calls:

1. The message prompt on the
TSSSREAD_MSG_LINE call

2. The message text on the TSS$WRITE_MSG_LINE
call

3. An output instruction in a request on the
TSSSREQUEST call

TDMS Run-Time Error Messages C-9

User Action:

NORMAL
Severity:
Explanation:

User Action:

PRKCHECK
Severity:

Explanation:

User Action:

Depending on the reason for the error as listed under
Explanation, you can: '

1. Check the prompt string on
TSS$READ_MSG_LINE to be sure you are passing
printable characters.

2. Check the message line text on
TSS$SWRITE_MSG_LINE to be sure you are passing
printable characters.

3. Use TSS$SIGNAL to report extended status follow-
ing the TSSSREQUEST call to see the form field
that is in error. Usually, you can correct this problem
by initializing the record fields before a call to
TSSSREQUEST.

In all cases, correct the source program to pass a valid
string.

normal successful completion
Success (S)
The TDMS call completed successfully.

None. This message is informational.

request was terminated by a check PRK
Informational (I)

The operator terminated the request input by using a pro-
gram request key defined in the request. The PROGRAM
KEY IS instruction defined the PRK as CHECK.

None. This is an informational return status to notify the
program that the PRK was used by the operator and that
the instruction(s) contained within the PROGRAM KEY IS
instruction were executed. Note: a CHECK PRK means
that you can be sure only that input-required form fields
were completed by the operator.

C-10 TDMS Run-Time Error Messages

PRKNOCHECK
Severity:

Explanation:

User Action:

REQNOTFOU
Severity:

Explanation:

User Action:

RLBOBS
Severity:
Explanation:

User Action:

request was terminated by a nocheck PRK
Informational (I)

The operator terminated the request input by using a pro-
gram request key defined in the request. The PROGRAM
KEY IS instruction defined the PRK as NOCHECK.

None. This is an informational return status to notify the
program that the PRK was used by the operator and that
the RETURN instruction(s) contained within the
PROGRAM KEY IS instruction were executed.

NOTE: ANOCHECK PRK means that the request input is
terminated without any check on whether or not form
fields mapped for input were completed. Therefore, no data
is returned to the program buffer except a value returned
from a RETURN instruction associated with the PRK.

request not found
Severe (F)

The request specified by the request-name parameter on
the TSSSREQUEST call was not found in the request
library file specified by the library-id parameter.

Use the Trace Facility to see which request name was

passed as a parameter on the TSSSREQUEST call. Check
that request name with the request library definition in the
CDD to be sure that the request name you are passing is
included in the request library file. If you cannot find the
request name in the request library definition, the request
is not included in the request library file.

RLB is obsolete, rebuild
Severe (F)
The request library file you are using is no longer valid.

Rebuild the request library file.

TDMS Run-Time Error Messages C-11

SYNASTLVL
Severity:

Explanation:

User Action:

TRAOFF
Severity:

Explanation:

User Action:

TRAON
Severity:

Explanation:

User Action:

synchronous calls may not be called at AST level
Severe (F)

A TDMS call was made from an AST routine (a routine
running at AST level).

TDMS calls cannot be issued from an AST routine. Correct
the source program.

trace already off
Informational (I)

A call to TSS$TRACE_OFF was made when the Trace
Facility was already turned off.

None. This is an informational return status only. You can
check your source program to see why trace was already off
when you made your call to TSS$TRACE_OFF.

trace already on
Informational (I)

A call to TSS$TRACE_ON was made when the Trace
Facility was already turned on. For example, you see this
message if the logical TSS$TRACE_OUTPUT was defined
before the application program was run and the program
issued its own TSS$TRACE_ON call.

None. This is an informational return status only. You can
check your source program and/or the definition of
TSS$STRACE_OUTPUT to see why Trace was already on.

C-12 TDMS Run-Time Error Messages

TDMS/DATATRIEVE Error Messages D

This appendix lists the TDMS error messages that can be issued when a VAX
DATATRIEVE application uses TDMS. After each message, there is an explana-
tion of the severity of the error, an explanation of the message, and a recommen-
dation of the action the user should take to correct the problem.

The error message format is:

%TSSFDV-N-mnemonic, message

TSSFDV Is the facility name.

N Is a letter indicating the severity of the error, as follows:

S Successful completion

I Information only
W Warning

E Error

F Fatal severe error

mnemonic Is a three- to nine- character string that identifies the error.

message Identifies the error.

D-1

FLD
Severity:

Explanation:

User Action:

FRM

Severity:

Explanation:

User Action:

IOL

Severity:

Explanation:

User Action:

invalid field specification
Error (E)
TDMS cannot find the specified field name on the form.

Make sure that the form and field names specified to
DATATRIEVE are correct.

invalid form description
Error (E)

TDMS cannot find the specified form in the .RLB file. This
message usually appears when the form has been copied
from one CDD location to another (either by an FDU
COPY FORM command, a DMU COPY command, or a
DMU BACKUP command) without being modified. This
message can also be generaged when the form was created
from an FMS form that had a different form name.

Run FDU to modify the form. Note that no changes need
to be made to the form. Simply enter the form editor and
save the form in the CDD to solve this problem.

I/O error on form library
Error (E)

The DATATRIEVE application is trying to get a form from
an .RLB file, but TDMS cannot open that .RLB file. This
problem can occur if you specify the incorrect .RLB file, or
if you are trying to reference an .RLB file with a version of
DATATRIEVE that has not been linked with TDMS.

Make sure the .RLB file specified is correct. Also make
sure that DATATRIEVE has been linked with TDMS.

D-2 TDMS/DATATRIEVE Error Messages

IOR
Severity:

Explanation:

User Action:

ITT
Severity:

Explanation:

User Action:

terminal I/O error
Error (E)

TDMS has issued a call to the $QIO system service and
the QIO has failed. This problem can occur when TDMS
initializes the terminal, does input or output to the termi-
nal, or completes operations to the terminal.

Re-try the DATATRIEVE operation.

invalid terminal type
Error (E)

TDMS has found that the terminal type is not supported or
that a feature is not supported on the terminal. For exam-
ple, VT52 terminals do not support scrolled regions and
cannot display forms wider than 80 columns.

Make sure the terminal is a supported terminal type. Refer
to the TDMS SPD for a complete list of the supported ter-
minal. Also make sure that the terminal is set to the appro-
priate type. You can check the terminal type by issuing the
SHOW TERMINAL command at the DCL prompt. If the
terminal is not set to the appropriate type, issue the SET
TERMINAL/INQUIRE command at the DCL prompt.

TDMS/DATATRIEVE Error Messages D-3

In this index, a page number followed
by a “t” indicates a table reference.
A page number followed by an "f”
indicates a figure reference.

* (asterisk)

See Asterisk (*)
@ (at sign)

See @file-spec command
! (exclamation point)

See Exclamation point (!)
- (hyphen)

See Hyphen (-)
; (semicolon)

See Semicolon (;)

A

@file-spec command (FDU), 1-4
@file-spec command (RDU), 2-4
Access control lists
form definitions, 1-7, 1-11, 1-28
request definitions, 2-15, 2-24, 2-62
request library definitions, 2-13,
2-19, 2-57
/ACL qualifier

Index

in COPY FORM command, 1-7
in COPY LIBRARY command,
2-13
in COPY REQUEST command,
2-15
in CREATE FORM command, 1-11
in CREATE LIBRARY command,
2-19
in CREATE REQUEST command,
2-24
in REPLACE FORM command,
1-28
restrictions, 1-29
in REPLACE LIBRARY command,
2-57
restrictions, 2-57
in REPLACE REQUEST com-
mand, 2-62
restrictions, 2-62
AFKs
See Application function keys
%ALL syntax
BUILD LIBRARY command
errors, 2-10
in Validate mode, 2-74
INPUT TO instruction
errors, 3-29
LOG qualifier, 3-29
OUTPUT TO instruction, 3-37
errors, 3-39

Index-1

/LOG qualifier, 3-39
RETURN TO instruction, 3-54
errors, 3-55
LOG qualifier, 3-55
validating, 2-73
Ambiguous names, 3-27, 3-34, 3-36,
3-53
ANYMATCH case value, colons with,
3-8
Application function keys
AST routines, 4-15, 5-16
control keys as, 5-18
deassigning, 4-40, 5-36
declaring, 4-13, 5-13
event flags, 4-14, 5-15
execution of, 4-17, 5-18
key-id values, 4-14t, 5-15t
using, 4-16, 5-17
Application keypad mode
PROGRAM KEY IS instruction,
3-45
program request keys in, 3-32
setting, 3-31
Application programs
canceling 1/0O operations, 4-4
closing
I/O channels, 4-5, 5-4
request library files, 4-8, 4-9
copying current form, 4-10, 5-8
declaring AFKs, 4-13, 5-13
enabling Trace facility, 4-39
opening
1/O channels, 4-19, 5-20
request library files, 4-22
request mappings, 4-29, 5-30
signalling status, 4-34, 4-35
specifying record names in, 3-47
using application function keys,
4-16, 5-17
video attributes, resetting, 4-6, 5-6
Arrays
as control values, 3-7
in nested conditional requests,
3-10
OUTPUT TO instruction, 3-40

Index-2

AST routines

TDMS$DECL_AFK_A, 5-14, 5-18
TSS$CANCEL, 4-4
TSS$CLOSE_A, 5-5, 5-6
TSS$COPY_SCREEN_A, 5-9, 5-11
TSS$OPEN_A, 5-20, 5-22
TSSSREAD_MSG_LINE_A, 5-25,
5-27
TSS$SREQUEST_A, 5-30, 5-33
TSSSUNDECL_AFK_A, 5-37, 5-38
TSS$WRITE_BRKTHRU_A, 5-41,
5-42
TSS$SWRITE_MSG_LINE_A, 5-45,
5-47
with application function keys,
4-15, 5-16

At sign (@)

{AUDIT qualifier, 1-2, 2-3
FDU, 14
RDU, 2-4

Attributes

field
Must Fill, 3-44
Response Required, 3-44
video
See also Video attributes
resetting, 3-50, 4-6, 5-6

{AUDIT qualifier, 1-1 to 1-3, 2-1 to 2-3

defaults, 1-2, 2-2

in BUILD LIBRARY command, 2-7

in COPY FORM command, 1-8

in COPY LIBRARY command,
2-13

in COPY REQUEST command,
2-16

in CREATE FORM command, 1-11

in CREATE LIBRARY command,
2-19

in CREATE REQUEST command,
2-24

in MODIFY FORM command, 1-26

in MODIFY LIBRARY command,
2-47

in MODIFY REQUEST command,
2-52

in REPLACE FORM command,
1-29

in REPLACE LIBRARY command,
2-57

in REPLACE REQUEST com-
mand, 2-62

in VALIDATE LIBRARY com-
mand, 2-80

in VALIDATE REQUEST com-
mand, 2-84

Audit text

default, 1-2
RDU, 2-2

file specifications, 1-2, 2-3

form definitions, 1-2, 1-8, 1-11, 1-26,
1-29

request definitions, 2-16, 2-24, 2-52,
2-62, 2-84

request library definitions, 2-7,
2-18, 2-19, 2-47, 2-57, 2-80

specifying, 2-2

storing, 2-2

BASIC syntax

of asynchronous calls, 5-49t
of synchronous calls, 4-48t

Batch mode

CREATE FORM command, 1-12
CREATE LIBRARY command,
2-19
CTRL/Z command, 1-16, 2-31
defaults
/LIST qualifier, 2-58
MODIFY FORM command, 1-27
REPLACE FORM command, 1-30
REPLACE LIBRARY command,
2-57
SET VERIFY command, 1-37

Bell, ringing

TSS$SWRITE_BRKTHRU, 4-42
TSS$WRITE_BRKTHRU_A, 5-41

Binary structures

creating, 2-9, 2-26, 2-80

deleting, 2-36
MODIFY REQUEST command,
2-53
INOSTORE qualifier, 2-26
rebuilding, 2-27, 2-55, 2-87
replacing, 2-64, 2-65, 2-66
storing, 2-54, 2-86
in the CDD, 2-74
VALIDATE LIBRARY command,
2-81, 2-82
VALIDATE REQUEST command,
2-84, 2-85
BLINK FIELD instruction, 3-2
in conditional requests, 3-2
VT52 terminal, 3-3
BOLD FIELD instruction, 3-4
in conditional requests, 3-4
VT52 terminal, 3-5
BUILD LIBRARY command (RDU),
2-6
after VALIDATE REQUEST com-
mand, 2-87
and FILE IS instruction, 2-7
IAUDIT qualifier, 2-7
errors, 2-10
[LIST qualifier, 2-7
ILOG qualifier, 2-8
offset errors, 3-16, 3-65
path names in, 2-6
[PRINT qualifier, 2-9
Building request libraries, 2-6

c

Calls
See TDMS programming calls
Canceling
FDU, 1-15
FDU commands, 1-14
form editor, 1-15
1/O operations, 4-3
RDU, 2-30
RDU commands, 2-29
TDMS calls, 4-3
CDD

Index-3

access control lists, 1-7, 1-11, 1-28,
2-13, 2-15, 2-19, 2-24, 2-57,
2-62
copying
form definitions, 1-7
request library definitions, 2-12
requests, 2-15
default directory, 2-69
CDD$DEFAULT, 2-69
showing, 1-38, 2-77
deleting requests, 2-35
extracting record definitions, 4-31,
5-32
modifying
request library definitions, 2-47
requests, 2-51
path names

duplicate name errors, 3-21, 3-46,

3-48

in BUILD LIBRARY command,

2-6
in COPY FORM command, 1-7
in COPY LIBRARY command,

1-26

in MODIFY LIBRARY com-
mand, 2-47

in MODIFY REQUEST com-
mand, 2-51

in RECORD IS instruction, 3-46

in REPLACE FORM command,
1-28

in REPLACE LIBRARY com-
mand, 2-56

in REPLACE REQUEST com-
mand, 2-61

in REQUEST IS instruction,
3-48

in SET DEFAULT command,
1-33, 2-69

in VALIDATE LIBRARY com-
mand, 2-80

in VALIDATE REQUEST com-
mand, 2-84

replacing

request library definitions, 2-56
requests, 2-61

2-12 storing
in COPY REQUEST command, audit text, 2-2
2-15 binary structures, 2-54, 2-74,
in CREATE FORM command, 2-80, 2-82, 2-84, 2-86, 2-87
1-10 comment text, 3-14
in CREATE LIBRARY com- FMS forms, 1-11, 1-29
mand, 2-18 %INCLUDE text, 3-26
in CREATE REQUEST com- request library definitions, 2-18
mand, 2-23 requests, 2-26
in DELETE FORM command, CDD$DEFAULT logical name
1-17 defining
in DELETE LIBRARY com- in FDU, 1-33
mand, 2-33 in RDU, 2-69
in DELETE REQUEST com- showing, 1-38
mand, 2-35 Channels

in FORM IS instruction, 3-21
in LIST FORM command, 1-24
in LIST LIBRARY command,

canceling 1/O operations, 4-3
closing, 4-5, 5-4
clearing screen, 4-5, 5-5

2-43 opening, 4-19, 5-20
in LIST REQUEST command, CHECK modifier

2-45 PROGRAM KEY IS instruction,
in MODIFY FORM command, 3-44

Index-4

field validators, 3-44
returned values, 3-44
CLEAR SCREEN instruction, 3-6
in conditional requests, 3-6
order of execution, 3-6

Clearing screen when closing channel,

4-5, 5-5
Closing
I/O channels, 4-5
asynchronously, 5-4
clearing screen, 4-5, 5-5
log files, 2-72 f
request library files, 4-8, 4-9
COBOL syntax
of asynchronous calls, 5-51t
of synchronous calls, 4-50t
Colon (:)
ANYMATCH case value, 3-8
in CONTROL FIELD IS instruc-
tion, 3-8
NOMATCH case value, 3-9
Command files
CTRL/Z command, 1-16, 2-31
displaying commands in, 2-76
editing, 1-21
EXIT command, 2-40
exiting, 2-40
FDU, 1-4
default file type, 1-4
startup, 1-5, 1-33, 1-36
indirect
RDU, 2-4
RDU, 2-4
default file type, 2-4
startup, 2-4, 2-5, 2-69, 2-72
RDUSEDIT, 2-49
TDMSEDIT.COM, 2-38, 2-49, 2-53
Verify mode, 2-76
Commas
separating form fields, 3-2, 3-4,
3-12, 3-37, 3-50, 3-57, 3-63
separating video attributes, 3-42
Comment characters, 3-14
in log files, 1-35, 2-71
Comments

CDD audit text, 2-1
descriptive text, 3-14
exclamation point, 3-14
printing, 3-14
Common Data Dictionary
See CDD
Conditional requests
See also CONTROL FIELD IS
instruction
BLINK FIELD instruction in, 3-2
BOLD FIELD instruction in, 3-4
CLEAR SCREEN instruction in,
3-6
DEFAULT FIELD instruction in,
3-12
order of execution, 3-10
RESET FIELD instruction in, 3-50
REVERSE FIELD instruction in,
3-58
UNDERLINE FIELD instruction
in, 3-63
/ICONFIRM qualifier
in DELETE FORM command, 1-17
in DELETE LIBRARY command,
2-33
in DELETE REQUEST command,
2-35
CONTROL C
See CTRL/C command
CONTROL FIELD IS instruction, 3-7
colons in, 3-9
evaluation of, 3-9
match instructions in, 3-9
multiple, 3-9
nested, 3-9
order of execution, 3-10
semicolons in, 3-7
Control fields
order of execution, 4-32, 5-33
Control keys
as application function keys, 4-17,
5-18
Control values
arrays, 3-7
case of, 3-8

Index-5

data type of, 3-7
multiple forms with, 3-23
quoted strings, 3-8
specifying in CONTROL FIELD IS
instruction, 3-7
CONTROL Y
See CTRL/Y command
CONTROL Z
See CTRL/Z command
COPY FORM command (FDU), 1-7
IACL qualifier, 1-7
/AUDIT qualifier, 1-8
/ILOG qualifier, 1-8
path names in, 1-7
COPY LIBRARY command (RDU),
2-12
IACL qualifier, 2-13
JAUDIT qualifier, 2-13
/LOG qualifier, 2-13
path names in, 2-12
COPY REQUEST command (RDU),
2-15
{ACL qualifier, 2-15
IAUDIT qualifier, 2-16
/LOG qualifier, 2-16
path names in, 2-15
Copying
form contents, 4-10, 5-8
form definitions, 1-7
request library definitions, 2-12
requests, 2-15
Correcting
FDU commands, 1-19
RDU commands, 2-37
CREATE FORM command (FDU),
1-10
/ACL qualifier, 1-11
/AUDIT qualifier, 1-11
errors, 1-12
/FORM_FILE qualifier, 1-11
in batch mode, 1-12
/LOG qualifier, 1-11
path names in, 1-10
CREATE LIBRARY command
(RDU), 2-18

Index-6

IACL qualifier, 2-19
{AUDIT qualifier, 2-19
errors, 2-21
in batch mode, 2-19
[LIST qualifier, 2-19
/LOG qualifier, 2-20
path names in, 2-18
[PRINT qualifier, 2-20
ICREATE qualifier
in REPLACE FORM command,
1-29
REPLACE LIBRARY command,
2-58
REPLACE REQUEST command,
2-63
CREATE REQUEST command
(RDU), 2-23
[ACL qualifier, 2-24
IAUDIT qualifier, 2-24
errors, 2-26
/LIST qualifier, 2-24
/LOG qualifier, 2-25
Novalidate mode, 2-27
path names in, 2-23
[PRINT qualifier, 2-26
/ISTORE qualifier, 2-26
Creating
binary structures, 2-26, 2-53, 2-64,
2-81, 2-85
form definitions
audit text, 1-11
from FMS files, 1-11, 1-29
REPLACE FORM command,
1-29
forms, 1-10
log files, 2-71
request libraries, 2-6
request library definitions, 2-18
REPLACE LIBRARY command,
2-58
requests, 2-23
CTRL/C command (FDU), 1-14
CTRL/C command (RDU), 2-29
CTRL/Y command (FDU), 1-15
effect on log files, 1-15

CTRL/Y command (RDU), 2-30
effect on log files, 2-30
CTRL/Z command (FDU), 1-16
in batch mode, 1-16
in command files, 1-16
CTRL/Z command (RDU), 2-31
in batch mode, 2-31
in command files, 2-31

D

Data type
effect on field length, 8-1
Data types
determining, 8-1
input mapping, 8-3t
of control values, 3-7
output mapping, 8-4t
scale factor, 8-1
TDMS programming calls, 4-2t
notation, 5-2t
DBG$OUTPUT logical name, 4-39
DCL commands
DEFINE, 1-33, 1-38, 2-69
CDD$DEFAULT, 2-77
Declaring application function keys,
4-13, 5-13
DEFAULT FIELD instruction, 3-12
in conditional requests, 3-12
USE FORM instruction, 3-12
Defaults
audit text, 2-2
CDD directory
displaying, 1-38
setting, 1-33, 2-69
showing, 2-77
field contents, 3-12
file names
BUILD LIBRARY listing file,
2-7
CREATE LIBRARY listing file,
2-20
CREATE REQUEST listing file,
2-25
log files, 1-35, 2-72

MODIFY LIBRARY listing file,
2-48
MODIFY REQUEST listing file,
2-52
REPLACE LIBRARY listing
file, 2-58
REPLACE REQUEST listing
file, 2-63
file types
audit text, 1-2, 2-3
command files, 1-4, 2-4
FMS form files, 1-11, 1-29
include files, 3-25
LIST FORM command output
file, 1-24
LIST LIBRARY command out-
put file, 2-43
LIST REQUEST command out-
put file, 2-45
log files, 1-36
request library definitions, 2-18,
2-56
request library files, 2-6, 3-19,
4-22
requests, 2-24, 2-62
SAVE command, 1-32, 2-67
trace file, 4-38
1/0 channels, 4-19
asynchronous calls, 5-21
LIST FORM command output file,
1-25
LIST LIBRARY command output
file, 2-44
/LIST qualifier, 2-58
LIST REQUEST command output
file, 2-45
MODIFY REQUEST command
store mode, 2-54
REPLACE FORM command, 1-29
REPLACE REQUEST command
store mode, 2-66
RING BELL instruction, 3-59
SET LOG command, 1-35, 2-72
startup files, 1-5, 2-4, 2-5
store mode, 2-54

Index-7

text editor, 1-19, 2-38, 2-49, 2-54
TSS$COPY_SCREEN output, 4-10
TSS$COPY_SCREEN_A output,
5-9
Validate mode, 2-73
Verify mode, 1-37, 2-76
video attributes
overriding, 3-38, 3-63
resetting, 3-17, 3-50, 4-6, 5-6
DEFINE command (DCL), 1-38
CDD$DEFAULT, 1-33, 2-69, 2-77
Defining
CDD directory, 2-69
CDDS$DEFAULT
in FDU, 1-33
in RDU, 2-69
default editor, 1-19, 2-38, 2-49, 2-54
program request keys
See PROGRAM KEY IS
instruction
See Program request keys
RDUINI logical name, 2-5
request libraries, 2-18
requests, 2-23
SYS$OUTPUT, 1-23, 2-42
TSS$TRACE_OUTPUT, 4-39
DELETE FORM command (FDU),
1-17
/ICONFIRM qualifier, 1-17
errors, 1-18
/LOG qualifier, 1-17
path names in, 1-17
DELETE LIBRARY command
(RDU), 2-33
ICONFIRM qualifier, 2-33
errors, 2-34
/LOG qualifier, 2-33
path names in, 2-33
DELETE REQUEST command
(RDU), 2-35
/ICONFIRM qualifier, 2-35
errors, 2-36
/ILOG qualifier, 2-35
path names in, 2-35
Deleting

Index-8

binary structures, 2-36
form definitions, 1-17
request library definitions, 2-33
requests, 2-35
Dependent ranges
control values, 3-7
in nested conditional requests, 3-10
DESCRIPTION instruction, 3-14
semicolons in, 3-14
Disabling
logging, 2-72
trace facility, 4-36
DISPLAY FORM instruction, 3-16
clearing the screen before, 3-6
offset errors, 3-16
overriding default video attributes,
3-17
WITH NAME clause of FORM IS
instruction, 3-16
Displaying
CDD directory
default, 1-38, 2-77
commands in command files, 1-4,
1-37, 2-4, 2-76
in log files, 1-35, 2-71
current version
FDU, 1-40
RDU, 2-79
default field contents, 3-12
error messages, 4-46, 5-46
forms, 3-16, 3-65
order of execution, 4-32, 5-33
logging status
FDU, 1-39
RDU, 2-78
messages
LOG qualifier, 2-53
MESSAGE LINE IS instruction,
3-34, 3-35
on screen, 2-85
request library definitions, 2-43
requests, 2-45

E

EDIT command (FDU), 1-19
EDIT command (RDU), 2-37
Editing
FDU commands, 1-19
RDU commands, 2-37
request library definitions, 2-47
requests, 2-51
Editor
default, 2-38, 2-54
defining, 2-38
EDT, 2-38, 2-49, 2-54
EDTINLEDT file, 1-19
EDTINLEDT file, 2-38
Enabling
logging, 2-71
trace facility, 4-38
Validate mode, 2-73
Verify mode, 2-76
END DEFINITION instruction, 3-18
execution of, 3-18
in request library definitions, 3-18
in requests, 3-18
semicolons in, 3-18
%ENTRY lexical function
in CONTROL FIELD IS instruc-
tion, 3-7
Error messages
displaying, 3-35, 5-46
FDU
prefixes, A-2
severity, A-1
field validator, A-13 to A-14
information level, A-2
RDU
prefixes, B-3
severity, B-1
run-time
format of, C-2
Errors
building request library files, 2-9
building request library files com-
mand, 2-10
building requests, 2-26

by operator
clearing reserved message line,
4-46, 5-46
signalling, 3-60
CREATE FORM command, 1-12
CREATE LIBRARY command,
2-21
CREATE REQUEST command,
2-27
CTRL/Z command, 1-16
DELETE FORM command, 1-18
DELETE LIBRARY command,
2-34
DELETE REQUEST command,
2-36
displaying, 4-46, 5-46
messages, 3-35
FILE IS instruction, 3-19
FORM IS instruction, 3-21
in FDU command files, 1-4
in Novalidate mode, 2-74
in RDU command files, 2-4
input mappings, 3-28
INPUT TO instruction
%ALL syntax, 3-29
Validate mode, 3-28
logging, 2-71
MODIFY LIBRARY command,
2-49, 2-50
modifying requests, 2-54
OUTPUT TO instruction, 3-38
%ALL syntax, 3-39
Validate mode, 3-38
RECORD IS instruction, 3-46
REPLACE FORM command, 1-30
REPLACE LIBRARY command,
2-59, 2-60
replacing requests, 2-65
REQUEST IS instruction, 3-48,
3-49
RETURN TO instruction, 3-54
%ALL syntax, 3-55
Validate mode, 3-54
RING BELL instruction, 3-59
run-time

Index-9

listed, C-1
VT52 terminal, 4-32, 5-33
SET LOG command, 1-36, 2-72
severity, 4-2t, 5-3t, A-1, B-1, C-1,
D-1
signalling, 4-34, 4-35
VALIDATE LIBRARY command,
2-82
Validate mode, 2-73
WITH OFFSET modifier, 3-16,
3-65
Event flags :
TDMSS$DECL_AFK_A, 5-13, 5-18
TSS$CLOSE_A, 5-4, 5-6
TSSSCOPY_SCREEN_A, 5-8, 5-11
TSSSOPEN_A, 5-20, 5-22
TSSSREAD_MSG_LINE_A, 5-24,
5-27
TSSSREQUEST_A, 5-29, 5-33
TSSSUNDECL_AFK_A, 5-36, 5-38
TSS$WRITE_BRKTHRU_A, 5-40,
5-42
TSS$SWRITE_MSG_LINE_A, 5-44,
5-47
with application function keys,
4-14, 5-15
Exclamation point (!) comment
character
in log files, 1-35, 2-71
in requests, 3-14
Executing a request, 4-29, 5-29
EXIT command (FDU), 1-21
EXIT command (RDU), 2-40
Exiting
command files, 1-21
FDU, 1-21
RDU, 2-30, 2-31, 2-40
Explicit mappings
errors, 3-28, 3-38, 3-54
validating, 2-73

F

FDU
canceling, 1-15

Index-10

displaying logging status of, 1-39
error messages
See Error messages
exiting, 1-21
showing version, 1-40
startup files, 1-33
FDU commands
canceling, 1-14
COPY FORM, 1-7
CREATE FORM, 1-10
CTRL/C, 1-14
CTRL/Y, 1-15
CTRL/Z, 1-16
DELETE FORM, 1-17
EDIT, 1-19
editing, 1-19
EXIT, 1-21
HELP, 1-22
LIST FORM, 1-24
MODIFY FORM, 1-26
REPLACE FORM, 1-28
SAVE, 1-32
SET DEFAULT, 1-33
SET LOG, 1-35
SET VERIFY, 1-37
SHOW DEFAULT, 1-38
SHOW LOG, 1-39
SHOW VERSION, 1-40
FDUSEDIT logical name, 1-19
FDUINT logical name, 1-5
FDUINI.COM file, 1-5
enabling logging in, 1-36
setting default CDD directory in,
1-33
FDULIS.LIS file, 1-24
FDULOG logical name, 1-35
Field attributes
checking with PRKs, 3-44
Field validators
checkign with PRKs, 3-44
error messages, A-13 to A-14
size, 8-1
Fields
data types of, 8-1
length of

determining, 8-1
PACKED DECIMAL data type,
8-1
UNSIGNED NUMERIC data
type, 8-1
Must Fill in PRKs, 3-44
referencing, 6-1
Response Required in PRKs, 3-44

FILE IS instruction, 3-19

BUILD LIBRARY command, 2-7
errors, 3-19
file names in, 3-19

File specifications

audit text files, 1-2, 2-3

BUILD LIBRARY listing file, 2-7

command files, 1-4, 1-5, 2-4, 2-5

CREATE LIBRARY listing file,
2-20

CREATE REQUEST listing file,
2-25

FMS form files, 1-11, 1-29

in %INCLUDE instruction, 3-25

in FILE IS instruction, 3-19

LIST FORM command output, 1-24

LIST LIBRARY command output,
2-43

LIST REQUEST command output,
2-45

log files

FDU, 1-35
RDU, 2-71

MODIFY LIBRARY listing file,
2-48

MODIFY REQUEST listing file,
2-52

REPLACE LIBRARY listing file,
2-58

REPLACE REQUEST listing file,
2-63

request library files, 2-6, 4-22

SAVE command, 1-32, 2-67

trace facility output file, 4-38

TSS$COPY_SCREEN output, 4-10

TSS$COPY_SCREEN_A output,
5-9

@file-spec command, 1-4
@file-spec command (FDU), 1-4
errors, 1-4
@file-spec command (RDU), 2-4
errors, 2-4
Files
defaults
audit text, 1-2, 2-3
command files, 1-4, 2-4
FMS form files, 1-11, 1-29
SAVE command, 1-32, 2-67
startup, 1-5, 2-5
%INCLUDE, 3-25
naming conventions, 3-25
nesting, 3-26
syntax of, 3-26
indirect command, 2-4
LIST FORM command, 1-24
LIST LIBRARY command, 2-43
LIST REQUEST command, 2-45
listing
BUILD LIBRARY command, 2-7
CREATE LIBRARY command,
2-19
CREATE REQUEST command,
2-24
MODIFY LIBRARY command,
2-48
MODIFY REQUEST command,
2-52
REPLACE LIBRARY command,
2-58
REPLACE REQUEST com-
mand, 2-63
log, 2-71
contents of, 1-35, 2-71
defaults, 1-35, 1-36, 2-72
specifications, 1-35, 2-71
request definitions, 2-24, 2-62
request library, 2-6
request library definitions, 2-18,
2-56
requests, 2-62
trace facility, 4-37
FMS forms

Index-11

file specifications, 1-11, 1-29
storing in CDD, 1-11, 1-29
Form definitions
access control lists for, 1-7, 1-11,
1-28
audit text for, 1-2, 1-8, 1-11, 1-26,
1-29
copying, 1-7
creating, 1-10
from FMS files, 1-11, 1-29
REPLACE FORM command,
1-29
deleting, 1-17
displaying
default field contents, 3-12
LIST FORM command, 1-24
listing, 1-24
modifying, 1-26
overriding video attributes, 3-57
replacing, 1-28
VALIDATE REQUEST command,
2-84
VT52 limitations, 4-32, 5-33
Form editor
canceling, 1-15
CREATE FORM command, 1-12
CTRL/Z command, 1-16
FMS, 1-11, 1-29
help for, 1-23
MODIFY FORM command, 1-27
modifying form definitions, 1-26
REPLACE FORM command, 1-30
Form fields
INPUT TO instruction, 3-27
names
BLINK FIELD, 3-2
BOLD FIELD, 3-4
DEFAULT FIELD, 3-12
in PRK instructions, 3-43
INPUT TO instruction, 3-27
OUTPUT TO, 3-37
PROGRAM KEY IS, 3-43
RESET FIELD, 3-50
RETURN TO, 3-52
REVERSE FIELD, 3-57

Index-12

UNDERLINE FIELD, 3-63
validating, 2-73
FORM IS instruction, 3-21
forms for VAX DATATRIEVE,
3-23
in Validate mode, 3-22
making names unique, 3-21
multiple, 3-22
path names in, 3-21
[FORM_FILE qualifier
in CREATE FORM command, 1-11
batch mode, 1-12
in REPLACE FORM command,
1-29
in batch mode, 1-30
Forms
active
DISPLAY FORM instruction,
3-17
field names, 3-2, 3-4, 3-12, 3-27,
3-37, 3-43, 3-50, 3-52, 3-57,
3-63
FORM IS instruction, 3-22
resetting video attributes, 3-50
setting, 3-16
copying, 4-10, 5-8
definitions, 1-7
creating definitions, 1-10
deleting definitions, 1-17
displaying
offset, 3-16, 3-65
order of execution, 4-32, 5-33
listing definition, 1-24
modifying definitions, 1-26
names
specifying, 3-16, 3-65
uniqueness, 3-21
replacing definitions, 1-28
specifying in request, 3-21
validating, 2-73
VAX DATATRIEVE, 3-23
Forms Definition Utility
See FDU
FORTRAN syntax
of asynchronous calls, 5-53t

of synchronous, 4-52t

H

Header instructions
FORM IS, 3-22

in CONTROL FIELD IS, 3-9

RECORD IS, 3-47
Help
at DCL level, 1-23, 2-42 -
in FDU, 1-22
in form editor, 1-23
in RDU, 2-41, 2-42

obtaining hardcopy, 1-23, 2-42

HELP command (FDU), 1-22
obtaining hardcopy, 1-23
/[PROMPT qualifier, 1-22

HELP command (RDU), 2-41
obtaining hardcopy, 2-42
/PROMPT qualifier, 2-41

HELP key, 1-23, 2-42

Hyphen (-)
in audit text, 1-2, 2-2

I/O channels
canceling operations, 4-3
channel numbers, 4-20, 5-22
closing, 4-5
opening, 4-19, 5-20
default, 4-19, 5-21
Implicit mappings
See %ALL syntax
%INCLUDE instruction, 3-25
execution of, 3-26
file names in, 3-25
in CDD, 3-26
nesting, 3-26
semicolons, 3-25
SET LOG command, 3-26
Indirect command files
exiting, 2-40
RDU, 24
Initialization files, 2-4
Input mappings

checking
Must Fill fields, 3-44
Response Required fields, 3-44
order of execution, 4-32, 5-33
table, 8-3t
INPUT TO instruction, 3-27
%ALL syntax
errors, 3-29
logging, 3-29
errors
in Validate mode, 3-28
mapping, 3-28
execution of, 3-28
form fields in, 3-27
RETURN TO instruction, 3-54
returned values, 3-28
specifying record fields, 3-27
WITH NAME modifier of
RECORD IS instruction, 3-27
Invoking
log files, 2-71
text editor, 1-19, 2-37

K

Keyboard lights
controlling, 3-33
Keypad mode
resetting
TSS$CLOSE, 4-6
TSS$CLOSE_A, 5-6
setting
Application, 3-31
Numeric, 3-31
KEYPAD MODE IS instruction, 3-31
APPLICATION parameter, 3-31
NUMERIC parameter, 3-31
Keys
See also Application function keys
control, 5-18
HELP, 1-23, 2-42

L

Lexical functions
%ENTRY

Index-13

in CONTROL FIELD IS instruc-
tion, 3-7
%LINE
in CONTROL FIELD IS instruc-
tion, 3-7
LIGHT LIST instruction, 3-33
%LINE lexical function
in CONTROL FIELD IS instruc-
tion, 3-7
LIST FORM command (FDU), 1-24
IOUTPUT qualifier, 1-24
path names in, 1-24
[PRINT qualifier, 1-25
LIST LIBRARY command (RDU),
2-43
comment text in, 3-14
[OUTPUT qualifier, 2-43
path names in, 2-43
/[PRINT qualifier, 2-44
/LIST qualifier
in BUILD LIBRARY command, 2-7
file name for, 2-7
ILOG qualifier, 2-7
in CREATE LIBRARY command,
2-19
file name for, 2-20
/ILOG qualifier, 2-20
in CREATE REQUEST command,
2-24
file name for, 2-25
ILOG qualifier, 2-25
in MODIFY LIBRARY command,
2-48
file name for, 2-48
/LOG qualifier, 2-48
in MODIFY REQUEST command,
2-52
file name for, 2-52
/ILOG qualifier, 2-52
in REPLACE LIBRARY command,
2-58
defaults, 2-58
file name for, 2-58
/LOG qualifier, 2-58

Index-14

in REPLACE REQUEST com-
mand, 2-63
file name for, 2-63
ILOG qualifier, 2-63
LIST REQUEST command (RDU),
2-45
comment text in, 3-14
IOUTPUT qualifier, 2-45
path names in, 2-45
/PRINT qualifier, 2-46
Listing
form definitions, 1-24
request library definitions, 2-43
requests, 2-45
Listing files
in BUILD LIBRARY command
contents of, 2-7
in CREATE LIBRARY command
contents of, 2-20
in CREATE REQUEST command
contents of, 2-25
in MODIFY LIBRARY command
contents of, 2-48
in MODIFY REQUEST command
contents of, 2-52
in REPLACE LIBRARY command
contents of, 2-58
in REPLACE REQUEST
command
contents of, 2-63
Log files
after CTRL/Y command, 1-15, 2-30
contents of, 1-35, 2-71
defaults
file names, 2-72
file types, 1-36
disabling, 1-35, 2-71, 2-72
enabling, 1-35, 2-71
in FDU startup file, 1-36
in RDU startup file, 2-72
mappings in, 3-29, 3-39, 3-55
showing status, 1-39, 2-78
specifications, 1-35, 2-71
defaults, 1-35, 2-72

ILOG qualifier
in BUILD LIBRARY command, 2-8
in COPY FORM command, 1-8
in COPY LIBRARY command,
2-13
in COPY REQUEST command,
2-16
in CREATE FORM command, 1-11
in CREATE LIBRARY command,
2-20 ’
in CREATE REQUEST command,
2-25 :
in DELETE FORM command, 1-17
in DELETE LIBRARY command,
2-33
in DELETE REQUEST command,
2-35
in MODIFY FORM command, 1-27
in MODIFY LIBRARY command,
2-48
in MODIFY REQUEST command,
2-53
in REPLACE FORM command,
1-30
in REPLACE LIBRARY command,
2-58
in REPLACE REQUEST com-
mand, 2-64
in VALIDATE LIBRARY com-
mand, 2-81
in VALIDATE REQUEST com-
mand, 2-85
Logging
commands in command files, 1-37
Logical names
CDD$DEFAULT
setting, 1-33, 2-69
showing, 1-38
FDUSEDIT, 1-19
FDUINI, 1-5
FDULOG, 1-35
RDUSEDIT, 2-38, 2-49, 2-54
RDUINI, 2-4, 2-5
RDULOG, 2-72

SYSSINPUT
entering request definitions,
2-24, 2-62
entering request library defini-
tions, 2-19, 2-21, 2-57
TSS$OPEN, 4-19
TSS$OPEN_A call, 5-21
SYS$SOUTPUT
LIST LIBRARY command, 2-44
LIST REQUEST command, 2-45
to get hardcopy help text, 1-23,
2-42
TSS$OPEN, 4-20
TSS$OPEN_A, 5-22
TDMSS$EDIT, 2-49, 2-53
TSS$HARDCOPY, 4-10, 5-9
TSS$TRACE_OUTPUT, 4-38

M
Mapping tables
input, 8-3t
output, 8-4t
Mappings
errors
CREATE REQUEST command,
2-27
in BUILD LIBRARY command,
2-10
reporting, 2-73
VALIDATE LIBRARY com-
mand, 2-82
order of execution, 3-28, 3-38, 3-54,
5-33

validating, 2-73
Match instructions, 3-9
Message line
See also Reserved message line
reading, 4-25, 5-24
displaying prompt, 4-25, 5-25
writing, 4-42, 5-40, 5-44
MESSAGE LINE IS instruction, 3-34
specifying record fields, 3-34

Index-15

WITH NAME modifier of
RECORD IS instruction, 3-34
Messages
displaying, 3-34, 3-35
errors, 4-46, 5-46
ILOG qualifier, 2-53
on screen, 2-85
in log files, 1-35, 2-71
in trace output file, 4-37
maximum length, 4-27
TSS$WRITE_BRKTHRU, 4-43
TSS$WRITE_BRKTHRU_A,
5-42
reading reserved message line,
4-25, 5-24
writing
MESSAGE LINE IS instruction,
3-35
reserved message line, 4-45
Messasge line
writing, 4-45
MODIFY FORM command (FDU),
1-26
[AUDIT qualifier, 1-26
in batch mode, 1-27
/LOG qualifier, 1-27
path names in, 1-26
MODIFY LIBRARY command
(RDU), 2-47
IAUDIT qualifier, 2-47
errors, 2-49, 2-50
/LIST qualifier, 2-48
/LOG qualifier, 2-48
Novalidate mode, 2-50
path names in, 2-47
/[PRINT qualifier, 2-49
MODIFY REQUEST command
(RDU), 2-51
[AUDIT qualifier, 2-52
/LIST qualifier, 2-52
ILOG qualifier, 2-53
Novalidate mode, 2-54
path names in, 2-51
/PRINT qualifier, 2-53
ISTORE qualifier, 2-53

Index-16

Validate mode, 2-54
Modifying
form definitions, 1-26
request library definitions, 2-47
requests, 2-51
Must Fill fields
PRKs, 3-44

N

Names
ambiguous
resolving, 3-27, 3-34, 3-36, 3-53
of form fields, 6-1
in PRK instructions, 3-43
in request instructions, 3-2, 3-4,
3-12, 3-27, 3-317, 3-50, 3-52,
3-57, 3-63
of forms, 3-16, 3-21, 3-65
of include files, 3-25
of program request keys, 3-41
of record definitions, 3-46
of record fields, 3-27, 3-34, 3-36,
3-53, 6-1
of records, 3-46
of request definitions, 3-48
of request library files, 3-19
of requests, 3-48
NOMATCH case value
colons with, 3-9
example, 3-11
INOSTORE qualifier
in MODIFY REQUEST command
defaults, 2-54
Validate mode, 2-54
Notation for TDMS calls, 4-2t, 5-2t
Novalidate mode, 2-74
creating
request library definitions, 2-21
requests, 2-27
effect of END DEFINITION
instruction, 3-18
errors, 2-74
FORM IS instruction, 3-22

MODIFY LIBRARY command,
2-50

MODIFY REQUEST command,
2-54

RECORD IS instruction, 3-47

REPLACE LIBRARY command,
2-60

REPLACE REQUEST command,
2-65

REQUEST IS instruction, 3-49

setting, 2-74

ISTORE qualifier, 2-74

VALIDATE LIBRARY command
in, 2-82

VALIDATE REQUEST command,
2-86

Numeric keypad mode, 3-31
program request keys in, 3-32

o)

Opening
channels, 4-19, 5-20
log files, 2-71
request library files, 4-22
Output mappings
order of execution, 4-32, 5-33
table, 8-4t
USE FORM instruction, 3-66
/IOUTPUT qualifier
in LIST FORM command, 1-24
in LIST LIBRARY command, 2-43
in LIST REQUEST command, 2-45
OUTPUT TO instruction, 3-36
%ALL syntax
errors, 3-39
logging, 3-39
errors, 3-38
in Validate mode, 3-38
execution of, 3-38
returned values, 3-38
specifying record fields, 3-36
WITH modifier, 3-38
WITH NAME modifier of
RECORD IS instruction, 3-36

P

PACKED DECIMAL data type
length of fields, 8-1
Parameter passing notation, 4-2t, 5-2t
Passing mechanisms
notation for, 4-2t, 5-2t
Path names
in BUILD LIBRARY command, 2-6
in COPY FORM command, 1-7
in COPY LIBRARY command,
2-12
in COPY REQUEST command,
2-15
in CREATE FORM command, 1-10
in CREATE LIBRARY command,
2-18
in CREATE REQUEST command,
2-23
in DELETE FORM command, 1-17
in DELETE LIBRARY command,
2-33
in DELETE REQUEST command,
2-35
in FORM IS instruction, 3-21
in LIST FORM command, 1-24
in LIST LIBRARY command, 2-43
in LIST REQUEST command, 2-45
in MODIFY FORM command, 1-26
in MODIFY LIBRARY command,
2-47
in MODIFY REQUEST command,
2-51
in RECORD IS instruction, 3-46
in REPLACE FORM command,
1-28
in REPLACE LIBRARY command,
2-56
in REPLACE REQUEST com-
mand, 2-61
in REQUEST IS instructicn, 3-48
in SET DEFAULT command, 1-33,
2-69
in VALIDATE LIBRARY com-
mand, 2-80

Index-17

in VALIDATE REQUEST com-
mand, 2-84
Picture characters, 8-1
/PRINT qualifier
in BUILD LIBRARY command, 2-9
in CREATE LIBRARY command,
2-20
in CREATE REQUEST command,
2-26
in LIST FORM command, 1-25
in LIST LIBRARY command, 2-44
in LIST REQUEST command, 2-46
in MODIFY LIBRARY command,
2-49
in MODIFY REQUEST command,
2-53
in REPLACE LIBRARY command,
2-59
in REPLACE REQUEST com-
mand, 2-64
Printing
form definitions, 1-25
help text, 1-23, 2-42
request definitions, 2-26, 2-46, 2-53,
2-64
request library definitions, 2-9,
2-20, 2-44, 2-49, 2-59
PRK instructions, 3-45
form field names in, 3-43
MESSAGE LINE IS, 3-42
OUTPUT TO, 3-42
quoted strings in, 3-43
RETURN TO, 3-43
PROGRAM KEY IS instruction, 3-41
CHECK modifier, 3-44
keypad mode with, 3-45
OUTPUT TO instruction, 3-42
quoted strings in, 3-43
returned values, 3-44
semicolons in, 3-45
specifying record fields, 3-43
WITH modifier, 3-42
Program request keys
Application mode, 3-31
case of, 3-42

Index-18

KEYPAD MODE IS instruction,
3-32
Must Fill fields, 3-44
names of, 3-41
Numeric mode, 3-31
output mappings, 3-67
PROGRAM KEY IS instruction,
3-41
Response Required fields, 3-44
Programming calls
See TDMS programming calls
PROMPT qualifier
in HELP command, 1-22, 2-41

Q

Quotation marks
audit text, 2-2
embedded, 3-8, 3-34, 3-36, 3-43,
3-52
in audit files, 2-3
in audit text, 1-2
Quoted strings
as control values, 3-8
audit text, 1-2, 2-2

punctuation of, 3-8, 3-34, 3-36, 3-43,

3-52

R

RDU
command files, 2-4
default CDD directory, 2-69
error messages
See also Error messages
format of, B-1
exiting, 2-30, 2-31, 2-40
getting help on, 2-41
logging commands, 2-71
showing
current version, 2-79
logging status, 2-78
startup files, 2-4, 2-69
Verify mode, 2-76
RDU commands
{AUDIT qualifier, 2-1

BUILD LIBRARY, 2-6
canceling, 2-29
COPY LIBRARY, 2-12
COPY REQUEST, 2-15
CREATE LIBRARY, 2-18
CREATE REQUEST, 2-23
CTRL/C, 2-29
CTRL/Y, 2-30
CTRL/Z, 2-31
DELETE LIBRARY, 2-33
DELETE REQUEST, 2-35
EDIT, 2-37 .
ending the current, 2-31
EXIT, 2-40
@file-spec, 2-4
HELP, 2-41
LIST LIBRARY, 2-43
LIST REQUEST, 2-45
MODIFY LIBRARY, 2-47
MODIFY REQUEST, 2-51
REPLACE LIBRARY, 2-56
REPLACE REQUEST, 2-61
SAVE, 2-67
SET DEFAULT, 2-69
SET LOG, 2-71
SET VALIDATE, 2-73
SET VERIFY, 2-76
SHOW DEFAULT, 2-77
SHOW LOG, 2-78
SHOW VERSION, 2-79
using command files, 2-4
startup, 2-4
VALIDATE LIBRARY, 2-80
VALIDATE REQUEST, 2-84
RDUSEDIT logical name, 2-38, 2-49,
2-54
RDUINI logical name, 2-4, 2-5
RDUINI.COM file, 2-5
enabling logging, 2-72
setting default CDD directory in,
2-69
RDULIS.LIS file, 2-43, 2-45
RDULOG logical name, 2-72
RDULOG.LOG file, 2-72
Reading

reserved message line, 4-25, 5-24
Record definitions
CDD, 4-31, 5-32
VALIDATE REQUEST command,
2-84
validating, 2-73
Record fields
See also Control values
ambiguous references, 3-27, 3-34,
3-36, 3-53
INPUT TO instruction, 3-27
MESSAGE LINE IS instruction,
3-34
OUTPUT TO instruction, 3-36
PROGRAM KEY IS instruction,
3-43
RETURN TO instruction, 3-53
RECORD IS instruction, 3-46
making names unique, 3-46
path names in, 3-46
TSSSREQUEST, 3-47, 4-31
TSS$SREQUEST_A, 5-32
Validate mode, 3-47
with TSSSREQUEST, 4-29
with TSSS$REQUEST_A, 5-30
Record names
uniqueness, 3-46, 6-3, 6-4f, 6-5
Records
in TSSSREQUEST, 4-29
in TSSSREQUEST_A, 5-30
Referencing
form fields, 6-1
record fields
when field names are the same,
6-2
when field names are unique, 6-1
Removing
binary structures, 2-36
request library definitions, 2-33
requests, 2-35
REPLACE FORM command (FDU),
1-28
IACL qualifier, 1-28
restrictions, 1-29
IAUDIT qualifier, 1-29

Index-19

{CREATE qualifier, 1-29
erorrs, 1-30
/FORM_FILE qualifier, 1-29
in batch mode, 1-30
/LOG qualifier, 1-30
path names in, 1-28
REPLACE LIBRARY command
(RDU), 2-56
/ACL qualifier, 2-57
{AUDIT qualifier, 2-57
{CREATE qualifier, 2-58
entering request library definition,
2-59
errors, 2-59, 2-60
in batch mode, 2-57
/LIST qualifier, 2-58
/LOG qualifier, 2-58
path names in, 2-56
/PRINT qualifier, 2-59
Validate mode, 2-59
REPLACE REQUEST command
(RDU), 2-61
/ACL qualifier, 2-62
{AUDIT qualifier, 2-62
/{CREATE qualifier, 2-63
/LIST qualifier, 2-63
LOG qualifier, 2-64
Novalidate mode, 2-65
path names in, 2-61
/PRINT qualifier, 2-64
ISTORE qualifier, 2-64, 2-66
Replacing
form definitions, 1-28
request library definitions, 2-56
requests, 2-61
Request Definition Utility
See RDU
Request definitions
access control lists for, 2-15, 2-24,
2-62
audit text for, 2-52
default file type, 2-24, 2-62
entering, 2-24, 2-62
printing, 2-26, 2-46, 2-53, 2-64
Request instructions

Index-20

BLINK FIELD, 3-2
BOLD FIELD, 3-4
CLEAR SCREEN, 3-6
CONTROL FIELD IS, 3-7
DEFAULT FIELD, 3-12
DESCRIPTION, 3-14
DISPLAY FORM, 3-16
END DEFINITION, 3-18
FILE IS, 3-19
form field names in, 3-2, 3-4, 3-12,
3-27, 3-317, 3-50, 3-52, 3-57,
3-63
FORM IS, 3-21
%INCLUDE, 3-25
INPUT TO, 3-27
KEYPAD MODE IS, 3-31
LIGHT LIST, 3-33
MESSAGE LINE IS, 3-34
order of execution, 3-6, 3-10, 3-28,
3-38, 3-54, 4-32, 5-33
OUTPUT TO, 3-36
PROGRAM KEY IS, 3-41
RECORD IS, 3-46
REQUESTIS, 3-48
RESET FIELD, 3-50
RETURN TO, 3-52
REVERSE FIELD, 3-57
RING BELL, 3-59
SIGNAL MODE IS, 3-60
SIGNAL OPERATOR, 3-62
UNDERLINE FIELD, 3-63
USE FORM, 3-65
WAIT, 3-67
REQUEST IS instruction, 3-48
in request library definition, 3-49
making names unique, 3-48
path names in, 3-48
Validate mode
errors, 3-49
WITH NAME modifier
TSSSREQUEST call, 3-48
Request libraries
audit text for, 2-7, 2-13, 2-19, 2-47,
2-57, 2-80
building, 2-6

defining, 2-18
listing files for, 2-7, 2-20, 2-48, 2-58
validating, 2-80

Request library definitions

access control lists for, 2-13, 2-19,
2-57
audit text, 2-2
building, 2-6
command files, 2-18, 2-56
copying, 2-12
creating, 2-18
REPLACE LIBRARY command,
2-58
default file type, 2-18, 2-56
deleting, 2-33
END DEFINITION instruction,
3-18
entering, 2-19, 2-21, 2-57, 2-59
FORM IS instruction, 3-22
including forms, 3-21
including text, 3-25
listing, 2-43
modifying, 2-47
errors, 2-49, 2-50
Validate mode, 2-49
Novalidate mode, 2-21
printing, 2-9, 2-20, 2-44, 2-49, 2-59
replacing, 2-56
Novalidate mode, 2-60
REQUEST IS instruction, 3-49
Validate mode, 2-21, 2-59
disabling, 2-74
enabling, 2-73
validating, 2-74, 2-80

Request library files

building, 2-6
closing, 4-8, 4-9
creating binary structures, 2-9
default file type, 2-6
errors, 2-9
file specification, 4-22
multiple, 4-23
names
errors, 3-19
in FILE IS instruction, 3-19

offset errors, 3-16, 3-65
opening, 4-22

specifying, 2-6

specifying requests, 3-48, 3-49

Requests

audit text for, 2-2, 2-16, 2-24, 2-52,
2-62, 2-84
binary structures, 2-26, 2-53, 2-64,
2-81, 2-85
storing, 2-74
copying, 2-15
creating, 2-23
binary structures, 2-26
listing files for, 2-25
deleting, 2-35
binary structure, 2-36
editing, 2-51
END DEFINITION instruction,
3-18
entering, 2-26, 2-65
errors, 2-26, 2-54, 2-65
executing
See TSSSREQUEST
See TSSSREQUEST_A
FORM IS instruction, 3-22
multiple, 3-22
in request libraries, 2-9
including forms, 3-21
including text, 3-25
listing, 2-45
mappings, 4-29, 5-30
modifying, 2-51
errors, 2-54
listing files for, 2-52
names
uniqueness, 3-48
order of execution, 4-32, 5-33
printing definitions, 2-26, 2-46,
2-53, 2-64
replacing, 2-61, 2-65
errors in validate mode, 2-65
listing files for, 2-63
revalidating, 2-87
source files, 2-62
specifying, 3-48

Index-21

Validate mode, 2-27
disabling, 2-74
enabling, 2-73
errors, 2-54
validating, 2-73, 2-84
Reserved message line
clearing, 4-27, 5-46
displaying errors, 4-46, 5-46
location, 4-27, 5-27
maximum length, 4-27
reading, 4-25, 5-24
displaying prompt, 5-25
writing, 4-42, 4-45, 5-40, 5-44
ringing bell, 4-42, 5-41
RESET FIELD instruction, 3-50
in conditional requests, 3-50
Response Required fields
PRKs, 3-44
Return operations
order of execution, 4-32, 5-33
Return status
severity, 4-2t, 5-3t
RETURN TO instruction, 3-52
%ALL syntax
errors, 3-55
logging, 3-55
errors
in Validate mode, 3-54
mapping, 3-54
execution of, 3-54
INPUT TO instruction, 3-54
returned values, 3-54
specifying record fields, 3-53
WITH NAME modifier of
RECORD IS instruction, 3-53
REVERSE FIELD instruction, 3-57
in conditional requests, 3-58
VT52 terminal, 3-58
RING BELL instruction, 3-59
defaults, 3-59
errors, 3-59
RLB files
See Request library files
Run-time library parameter passing
notation

Index-22

See Parameter passing notation

S

SAVE command (FDU), 1-32
SAVE command (RDU), 2-67
Saving
FDU commands, 1-32
RDU commands, 2-67
Scale factor, 8-1
Screens
clearing, 4-5, 5-5
copying contents, 4-10, 5-8
reversing background, 3-57
Semicolon (;)
END DEFINITION instruction,
3-18
in %INCLUDE instruction, 3-25
in CONTROL FIELD IS instruc-
tion, 3-7
in DESCRIPTION instruction, 3-14
in PROGRAM KEY IS instruction,
3-45
SET DEFAULT command (FDU),
1-33
path names in, 1-33
SET DEFAULT command (RDU),
2-69
path names in, 2-69
SET LOG command (FDU), 1-35
defaults, 1-35
file type, 1-36
errors, 1-36
SET LOG command (RDU), 2-71
defaults, 2-72
errors, 2-72
included text, 3-26
input mappings, 3-29
output mappings, 3-39
return mappings, 3-55
SET VALIDATE command (RDU),
2-73
defaults, 2-73
errors, 2-73
SET VERIFY command (FDU), 1-37

defaults, 1-37
FDU command files, 1-4
in batch mode, 1-37
SET VERIFY command (RDU), 2-76
included text, 3-26
RDU command files, 2-4
Setting
CDD directory, 1-33, 2-69
default editor, 2-38, 2-54
log files, 1-35
Validate mode, 2-73
Verify mode, 1-37 v
SHOW DEFAULT command (FDU),
1-38
SHOW DEFAULT command (RDU),
2-77
SHOW LOG command (FDU), 1-39
SHOW LOG command (RDU), 2-78
SHOW VERSION command (FDU),
1-40
SHOW VERSION command (RDU),
2-79
Showing
CDD directory
default, 1-38, 2-77
current version
FDU, 1-40
RDU, 2-79
logging status, 1-39
RDU, 2-78
SIGNAL MODE IS instruction, 3-60
SIGNAL OPERATOR instruction,
3-60
VT52 terminal, 3-60
SIGNAL OPERATOR instruction,
3-62
SIGNAL MODE IS instruction,
3-60
VT52 terminal, 3-62
Signalling errors, 4-34, 4-35
Source files for request library defini-
tions, 2-57
Startup files
EDT, 2-38
FDU, 1-5, 1-19

enabling logging, 1-36
setting default CDD directory,
1-33
RDU, 2-4, 2-5
enabling logging, 2-72
setting default CDD directory,
2-69
Status codes
severity, 4-2t, 5-3t
Store mode
CREATE REQUEST command,
2-26, 2-27
defaults
MODIFY REQUEST command,
2-54
VALIDATE LIBRARY command,
2-82
ISTORE qualifier
CREATE REQUEST command,
2-26
defaults, 2-64
REPLACE REQUEST com-
mand, 2-66
errors, 2-74
MODIFY REQUEST command,
2-53
Novalidate mode, 2-74
REPLACE REQUEST command,
2-64
VALIDATE LIBRARY command,
2-81
defaults for, 2-82
Validate mode, 2-26, 2-53, 2-64,
2-65, 2-74, 2-81, 2-85
VALIDATE REQUEST command,
2-85
Storing
audit text in the CDD, 2-2
binary structures, 2-9, 2-26, 2-54,
2-65, 2-74
request library definitions, 2-18
SYSS$INPUT logical name
CREATE LIBRARY command,
2-19, 2-21, 2-57

Index-23

CREATE REQUEST command,
2-24, 2-62

TSS$OPEN, 4-19

TSS$OPEN_A call, 5-21
SYS$OUTPUT logical name

assigning 1/O channels, 4-20, 5-22

defining, 1-23, 2-42

in trace facility, 4-39

LIST FORM command, 1-25

LIST LIBRARY command, 2-44

LIST REQUEST command, 2-45

T

TDMS programming calls
asynchronous
in BASIC syntax, 5-49t
in COBOL syntax, 5-51t
in FORTRAN syntax, 5-53t
TSS$CLOSE_A, 5-4
TSS$COPY_SCREEN_A, 5-8
TSSSDECL_AFK_A, 5-13
TSS$OPEN_A, 5-20
TSSSREAD_MSG_LINE_A,
5-24
TSSSREQUEST_A, 5-29
TSS$UNDECL_AFK_A, 5-36
TSS$WRITE_BRKTHRU_A,
5-40
TSSSWRITE_MSG_LINE_A,
5-44
canceling, 4-3
data type notation, 5-2t
data types used, 4-2t
notation, 4-2t, 5-2t
passing mechanisms, 4-2t, 5-2t
return status
severity, 4-2t, 5-3t
synchronous
in BASIC syntax, 4-48t
in COBOL syntax, 4-50t
in FORTRAN syntax, 4-52t
TSS$CANCEL, 4-3
TSS$CLOSE, 4-5
TSS$CLOSE_RLB, 4-8

index-24

TSS$COPY_SCREEN, 4-10
TSS$DECL_AFK, 4-13
TSS$OPEN, 4-19
TSS$OPEN_RLB, 4-22
TSSSREAD_MSG_LINE, 4-25
TSS$REQUEST, 4-29
TSS$SIGNAL, 4-34, 4-35
TSS$TRACE_OFF, 4-36
TSS$STRACE_ON, 4-38
TSSSUNDECL_AFK, 4-40
TSS$WRITE_BRKTHRU, 4-42
TSS$WRITE_MSG_LINE, 4-45

TDMS$DECL_AFK_A, 5-13

AST routines, 5-14, 5-18
event flags, 5-13, 5-18
key-id values, 5-15

TDMSSEDIT logical name, 2-49, 2-53
TDMSEDIT.COM file, 2-38, 2-49,

2-53

Terminals

clearing screen, 3-6
TSS$CLOSE, 4-5
TSS$CLOSE_A, 5-5

displaying messages on, 3-34

reserved message line
location, 4-27, 5-27
reading, 4-25, 5-24

resetting attributes, 5-6

reversing screen, 3-57

ringing bell, 3-59
TSS$WRITE_BRKTHRU, 4-42
TSS$SWRITE_BRKTHRU_A,

5-41
VT52
BLINK FIELD instruction, 3-3
BOLD FIELD instruction, 3-5
invalid features, 4-32, 5-33
REVERSE FIELD instruction,
3-58

SIGNAL MODE IS instruction,
3-60

SIGNAL OPERATOR instruc-
tion, 3-62

UNDERLINE FIELD instruc-
tion, 3-64

video instructions on, 3-38
Text editors
EDT, 1-19
invoking
from FDU, 1-19
from RDU, 2-37
RDU default, 2-38
Trace facility
default output file, 4-38 .
defining SYS$OUTPUT, 4-39
defining TSS$TRACE_OUTPUT,
4-39 .
disabling, 4-36
enabling, 4-38
TSS$CANCEL, 4-3
completion, 4-4
examples of, 4-4
TSS$CLOSE
clearing screen, 4-5
examples of, 4-7
execution of, 4-6
TSS$CLOSE_A
AST routines, 5-5, 5-6
clearing screen, 5-5
event flags, 5-4, 5-6
examples of, 5-7
execution of, 5-6
resetting keypad mode, 5-6
TSS$CLOSE_RLB, 4-8, 4-9
TSS$COPY_SCREEN, 4-10
examples of, 4-12
output file
default name, 4-10
versions, 4-10
TSS$COPY_SCREEN_A, 5-8
AST routines, 5-9, 5-11
event flags, 5-8, 5-11
examples of, 5-12
output file
default name, 5-9
versions, 5-9
TSS$DECL_AFK, 4-13
examples of, 4-18
execution of, 4-17
return status codes, 4-16

TSSSDECL_AFK_A
examples of, 5-19
execution of, 5-18
TSS$HARDCOPY logical name, 4-10,
5-9
TSS$OPEN, 4-19
examples of, 4-21
format, 4-19
TSS$OPEN_A, 5-20
AST routines, 5-20, 5-22
event flags, 5-20, 5-22
examples of, 5-23
TSS$OPEN_RLB, 4-22
examples of, 4-23, 4-24
file specifications, 4-22
TSS$SREAD_MSG_LINE, 4-25
examples of, 4-27, 4-28
TSSSREAD_MSG_LINE_A, 5-24
AST routines, 5-25, 5-27
event flags, 5-24, 5-27
examples of, 5-28
TSSSREQUEST, 4-29
examples of, 4-33
format, 4-29
record definitions, 4-31
RECORD IS instruction, 4-31
order of parameters, 3-47
specifying request names, 3-48
with RECORD IS instruction, 4-29
TSSSREQUEST_A, 5-29
AST routines, 5-30, 5-33
event flags, 5-29, 5-33
examples of, 5-35
record definitions, 5-32
RECORD IS instruction, 5-32
with RECORD IS instruction, 5-30
TSS$SIGNAL, 4-34, 4-35
examples of, 4-35
TSS$TRACE_OFF, 4-36
examples of, 4-37
TSS$TRACE_ON, 4-38
examples of, 4-39
TSS$TRACE_OUTPUT logical name,
4-38
TSS$UNDECL_AFK, 4-40

Index-25

examples of, 4-41
TSS$UNDECL_AFK_A, 5-36
AST routines, 5-37, 5-38
event flags, 5-36, 5-38
examples of, 5-39
TSS$WRITE_BRKTHRU, 4-42
examples of, 4-43, 4-44
maximum message length, 4-43
TSS$WRITE_BRKTHRU_A, 5-40
AST routines, 5-41, 5-42
event flags, 5-40, 5-42
examples of, 5-43 :
maximum message length, 5-42
TSS$WRITE_MSG_LINE, 4-45
examples of, 4-47
TSS$WRITE_MSG_LINE_A, 5-44
AST routines, 5-45, 5-47
event flags, 5-44, 5-47
examples of, 5-48
Turning Trace off, 4-36
Turning Trace on, 4-38

U

UNDERLINE FIELD instruction,
3-63

in conditional requests, 3-63
VT52 terminal, 3-64

UNSIGNED NUMERIC data type
scale factor, 8-1

USE FORM instruction, 3-65
clearing the screen before, 3-6
offset errors, 3-65

WITH NAME clause of FORM IS

instruction, 3-65

\'

V1 qualifier
in CREATE FORM/FORM_FILE
command, 1-11

in REPLACE FORM/FORM_FILE

command, 1-29
VALIDATE LIBRARY command
(RDU), 2-80
IAUDIT qualifier, 2-80

Index-26

errors, 2-82
ILOG qualifier, 2-81
path names in, 2-80
ISTORE qualifier, 2-81, 2-82
storing binary structures, 2-82
Validate mode, 2-21
%ALL syntax, 2-74
CREATE REQUEST command
errors, 2-27
defaults, 2-73
ISTORE qualifier, 2-64
disabling, 2-74
FORM IS instruction, 3-22
INPUT TO instruction, 3-28
MODIFY LIBRARY command,
2-49
MODIFY REQUEST command
errors, 2-54
INOSTORE qualifier, 2-54
OUTPUT TO instruction, 3-38
RECORD IS instruction, 3-47
REPLACE LIBRARY command,
2-59
REPLACE REQUEST command
errors, 2-65
REQUEST IS instruction, 3-49
RETURN TO instruction, 3-54
SET VALIDATE command
errors, 2-73
setting, 2-73
ISTORE qualifier, 2-26, 2-53, 2-64,
2-65, 2-74, 2-81, 2-85

VALIDATE REQUEST command

(RDU), 2-84
/AUDIT qualifier, 2-84
ILOG qualifier, 2-85
offset errors, 3-16, 3-65
path names in, 2-84
ISTORE qualifier, 2-85
Validate mode in, 2-86

Validating

request library definitions, 2-74,
2-80
requests, 2-73, 2-84

Verify mode, 1-37, 2-76

defaults, 1-37
FDU command files, 1-4
in batch mode, 1-37
RDU command files, 2-4
Version number
showing current
FDU, 1-40
RDU, 2-79
Video attributes
active, 3-2, 3-4, 3-57
blinking field, 3-2
defaults
overriding, 3-38, 3-63
resetting, 3-17
output mappings
WITH modifier, 3-38
overriding, 3-57
USE FORM instruction, 3-66
PROGRAM KEY IS instruction,
3-42
resetting, 3-12, 3-50, 4-6, 5-6
reversing background, 3-57
underlining field, 3-63
Video instructions
active, 3-50
in conditional requests, 3-2, 3-4,
3-58, 3-63
interaction of, 3-3, 3-5, 3-38, 3-58,
3-62, 3-64

VT52 terminal, 3-38

w

WAIT instruction, 3-67
INPUT TO instruction, 3-67
WITH modifier
OUTPUT TO instruction, 3-38
PROGRAM KEY IS instruction,
3-42
WITH NAME modifier
FORM IS instruction, 3-21
DISPLAY FORM instruction,
3-16
USE FORM instruction, 3-65
making names unique, 3-21, 3-46,
3-48
RECORD IS instruction, 3-27,
3-34, 3-36, 3-46, 3-53
REQUEST IS instruction, 3-48
WITH OFFSET modifier
DISPLAY FORM instruction, 3-16
errors, 3-16, 3-65
USE FORM instruction, 3-65
Writing
reserved message line, 4-45, 5-40,
5-44

Index-27

How to Order Additional Documentation

If you live in: Call: or Write:

New Hampshire, 603-884-6660 Digital Equipment Corp.

Alaska ' P.O. Box CS2008
Nashua, NH 03061-2698

Continental USA, 1-800-258-1710 Same as above.

Puerto Rico, Hawaii

Canada 613-234-7726 Digital Equipment Corp.

(Ottawa-Hull) 940 Belfast Road

Ottawa, Ontario K1G 4C2
Attn: P&SG Business
Manager or approved

distributor

Canada 1-800-267-6146 Same as above.

(British Columbia)

Canada 112-800-267-6146 Same as above.

(All other)

All other areas — Digital Equipment Corp.
Peripherals & Supplies
Centers
P&SG Business Manager
c/o DIGITAL'’s local
subsidiary

Note: Place prepaid orders from Puerto Rico with the local DIGITAL subsid-
iary (phone 809-754-7575).

Place internal orders with the Software Distribution Center, Digital Drive,
Westminster, MA 01473-0471.

VAX TDMS
Reference Manual
AA-HU17A-TE

Reader’s Comments

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company’s discretion. If you require a writ-
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[0 Assembly language programmer
(0 Higher-level language programmer
[0 Occasional programmer (experienced)
[0 User with little programming experience
(0 Student programmer
O Other (please specify)
Name Date
Organization
Street
City State Z‘pog ode

Country

. i No Postage
a t Necessary
, if Mailed in the
- United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: DISG Documentation
ZK02-2/N53

Digital Equipment Corporation
110 Spit Brook Road

Nashua, NH 03062-2698

RN S,

- - — —— . S G = . ———— — — G e = . G . G = e S . e - = -

Cut Along Dotted Line

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

