DEC Text Processing Utility
Reference Manual

Order Number: AA-PWCCD-TE

April 2001

This manual describes the elements of the DEC Text Processing Utility
(DECTPU). It is intended as a reference manual for experienced
programmers.

Revision/Update Information: This manual supersedes the DEC Text
Processing Utility Reference Manual,
Version 3.1 for OpenVMS Version 7.2.

Software Version: DEC Text Processing Utility Version
3.1 for OpenVMS Alpha Version 7.3
and OpenVMS VAX Version 7.3

The content of this document has not
changed since OpenVMS Version 7.1.

Compaqg Computer Corporation
Houston, Texas

© 2001 Compag Computer Corporation

COMPAQ, VAX, VMS, and the Compagq logo Registered in U.S. Patent and Trademark Office.
OpenVMS is a trademark of Compaq Information Technologies Group, L.P.

Motif is a trademark of The Open Group.

PostScript is a registered trademark of Adobe Systems Incorporated.

All other product names mentioned herein may be the trademarks or registered trademarks of their
respective companies.

Confidential computer software. Valid license from Compaq or authorized sublicensor required
for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor’s standard commercial license.

Compag shall not be liable for technical or editorial errors or omissions contained herein.

The information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6020

The Compag OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Preface

Contents

1 DECTPU Built-In Procedures Grouped According to Function

2 Descriptions of the DECTPU Built-In Procedures
DECTPU Built-In Procedures

21

ABORT
ADD_KEY_MAP ...
ADJUST_WINDOW .
ANCHOR

ARB

ATTACH
BEGINNING_OF . ..
BREAK
CALL_USER
CHANGE_CASE . ..
COMPILE
CONVERT
COPY_TEXT
CREATE_ARRAY . ..
CREATE_BUFFER .
CREATE_KEY_MAP

CREATE_KEY_MAP_LIST oot

CREATE_PROCESS.
CREATE_RANGE ..
CREATE_WIDGET .
CREATE_WINDOW .
CURRENT_BUFFER

CURRENT_CHARACTER e

CURRENT_COLUMN

CURRENT_DIRECTION e e

CURRENT_LINE. ..
CURRENT_OFFSET
CURRENT_ROW . ..
CURRENT_WINDOW

Xi

2-1

2-2

2-3

2-5

2-9
2-11
2-13
2-15
2-17
2-19
2-21
2-23
2-24
2-28
2-31
2-33
2-36
2-38
2-41
2-46
2-48
2-50
2-52
2-55
2-60
2-63
2-64
266
2-68
2-70
2-72
2-74
2-76

CURSOR_HORIZONTAL . . . e

CURSOR_VERTICAL
DEBUG_LINE
DEFINE_KEY

DEFINE_WIDGET_CLASS e

DELETE

ERASE_CHARACTER
ERASE_LINE
ERROR
ERROR_LINE
ERROR_TEXT
EXECUTE
EXIT
EXPAND_NAME
FAO
FILE_PARSE
FILE_SEARCH
FILL
GET_CLIPBOARD . ..
GET_DEFAULT

GET GLOBAL SELECT ..ottt

GET_INFO.........

GET_INFO (any_keyname)
GET_INFO (any_keyword) e e
GET_INFO (any_variable) i

GET_INFO (ARRAY) .

GET_INFO (array _variable)

GET_INFO (BUFFER)

GET_INFO (buffer_variable)
GET_INFO (COMMAND _LINE) i

GET_INFO (DEBUG).

GET_INFO (DEFINED_KEY) e
GET_INFO (integer_variable)
GET_INFO (KEY_MAP) e
GET_INFO (KEY_MAP_LIST) . . . oo
GET_INFO (marker_variable) i
GET_INFO (mouse_event_keyword)
GET_INFO (PROCEDURES) oo it e
GET_INFO (PROCESS) . . . o\ ot ettt e e
GET_INFO (process_variable)
GET_INFO (range variable)

GET_INFO (SCREEN)

GET_INFO (string_variable)

GET_INFO (SYSTEM)

2-78

2-80

2-82

2-83

2-87

2-89

2-92

2-96

2-98
2-100
2-102
2-104
2-106
2-108
2-110
2-114
2-115
2-118
2-120
2-124
2-127
2-130
2-132
2-134
2-137
2-142
2-144
2-146
2-147
2-148
2-150
2-151
2-157
2-161
2-163
2-164
2-165
2-166
2-167
2-170
2-172
2-173
2-174
2-175
2-176
2-187
2-189

GET_INFO (WIDGET) . . . ot oo e e
GET_INFO (widget variable) i
GET_INFO (WINDOW) . . .ot e e e e
GET_INFO (window _variable)
HELP _TEXT ... e e e e e

INT .

JOURNAL_CLOSE e e
JOURNAL_OPEN . .. e
KEY_NAME

LAST

KEY

LEARN_ABORTo
LEARN_BEGIN and LEARN_END
LENGTH
LINE_BEGIN
LINE_END
LOCATE_MOUSE e e
LOOKUP _KEY . . .

MATCH ..
MESSAGE e
MESSAGE _TEXT ...
MODIFY_RANGE
MOVE_HORIZONTAL e
MOVE _TEXT . .
MOVE_VERTICAL e
NOTANY
PAGE_BREAK . . .

POSIT
QUIT
RAISE

LON .

CWIDGET

READ _CHAR . . .
READ_CLIPBOARD
READ_FILE
READ_GLOBAL_SELECT e
READ _KEY . .
READ _LINE . ..

REALI

ZE WIDGET

RECOVER_BUFFER e
REFRESH

REMA

IN

REMOVE_KEY_MAPot
RETURN .« .ottt e et e e e

2-193
2-198
2-202
2-203
2-212
2-214
2-216
2-218
2-219
2-221
2-224
2-225
2-226
2-230
2-232
2-233
2-234
2-236
2-239
2-240
2-241
2-243
2-246
2-248
2-252
2-255
2-260
2-262
2-265
2-267
2-269
2-270
2-274
2-276
2-277
2-279
2-281
2-283
2-285
2-287
2-290
2-291
2-294
2-296
2-297
2-299
2-300

vi

SEARCH_QUIETLY
SELECT........

SEND_CLIENT_MESSAGE. . . .
SEND EOF
SET
SET (ACTIVE_AREA)
SET (AUTO_REPEAT)
SET(BELL) ...
SET (CLIENT_MESSAGE)

SET (COLUMN_MOVE_VERTICAL)o oo oo
SET (CROSS_WINDOW BOUNDS)o o ooeeeee e

SET (DEBUG)
SET (DEFAULT_DIRECTORY) .
SET (DEFAULT FILE)
SET (DETACHED_ACTION) . . .
SET (DISPLAY_VALUE)
SET (DRM_HIERARCHY)
SET (ENABLE_RESIZE)
SET (EOB_TEXT)oon...
SET (ERASE_UNMODIFIABLE)
SET (FACILITY_NAME)
SET (FIRST_INPUT_ACTION) .
SET (FORWARD)
SET (GLOBAL_SELECT).
SET (GLOBAL_SELECT_GRAB)
SET (GLOBAL_SELECT_READ)
SET (GLOBAL_SELECT_TIME)

SET (GLOBAL_SELECT UNGRAB)t iiiiii i

SET (HEIGHT)
SET (ICON_NAME)
SET (ICON_PIXMAP)
SET (INFORMATIONAL)
SET (INPUT_FOCUS)
SET (INPUT_FOCUS_GRAB) . .
SET (INPUT_FOCUS_UNGRAB)
SET(INSERT) ..o v v vv e
SET (JOURNALING)
SET (KEY_MAP_LIST)
SET (KEYSTROKE_RECOVERY)
SET (LEFT_MARGIN)
SET (LEFT_MARGIN_ACTION)

2-303
2-306
2-309
2-312
2-317
2-322
2-325
2-327
2-329
2-330
2-331
2-334
2-336
2-338
2-340
2-342
2-344
2-345
2-349
2-350
2-351
2-354
2-355
2-357
2-359
2-360
2-363
2-364
2-366
2-367
2-369
2-371
2-373
2-375
2-377
2-378
2-379
2-381
2-382
2-384
2-386
2-388
2-389
2-392
2-394
2-396
2-398

SET (LINE_NUMBER)

SET (MAPPED_WHEN_MANAGED)ottt e

SET (MARGINS)
SET (MAX_LINES)
SET (MENU_POSITION). . .

SET (MESSAGE_ACTION_LEVEL)ot oiee i
SET (MESSAGE_ACTION_ TYPE) . . .\t eteee oo

SET (MESSAGE_FLAGS) . .
SET (MODIFIABLE)
SET (MODIFIED)
SET (MOUSE)

SET (MOVE_VERTICAL_CONTEXT)

SET (NO_WRITE)
SET (OUTPUT FILE)
SET (OVERSTRIKE)
SET(PAD)

SET (PAD_OVERSTRUCK_TABS)o e

SET (PERMANENT)

SET (POST_KEY_PROCEDURE)ttt
SET (PRE_KEY_PROCEDURE)\t ettt e et

SET (PROMPT_AREA)
SET (RECORD_ATTRIBUTE)
SET (RECORD_MODE)
SET (RESIZE_ACTION) ...
SET (REVERSE)
SET (RIGHT_MARGIN). . . .
SET (RIGHT_MARGIN_ACTI
SET (SCREEN_LIMITS) ...
SET (SCREEN_UPDATE) . .
SET (SCROLL BAR)

ON) oo

SET (SCROLL_BAR_AUTO_THUMB)

SET (SCROLLING)
SET (SELF_INSERT).
SET (SHIFT_KEY)........

SET (SPECIAL_ERROR _SYMBOL)o ettt oo

SET (STATUS_LINE).
SET (SUCCESS)
SET (SYSTEM)
SET (TAB_STOPS)........
SET(TEXT) ..o
SET(TIMER)
SET (TRACEBACK)
SET(UID) ..o
SET (UNDEFINED_KEY) . .
SET (VIDEO)o....
SET (WIDGET)
SET (WIDGET_CALLBACK)

2-400
2-402
2-404
2-406
2-407
2-409
2-411
2-412
2-414
2-416
2-418
2-420
2-422
2-424
2-425
2-426
2-428
2-431
2-432
2-435
2-438
2-440
2-444
2-446
2-448
2-449
2-451
2-453
2-455
2-457
2-460
2-462
2-465
2-467
2-469
2-471
2-474
2-475
2-476
2-478
2-480
2-482
2-484
2-486
2-488
2-490
2-492

Vii

SET (WIDGET_CALL _DATA) & ettt
SET (WIDGET_CONTEXT_HELP) ...\t oottt
SET (WIDGET_RESOURCE_TYPES) . ..ot teeeoei i

SET (WIDTH) ..
SHIFT

STR
SUBSTR.......
TRANSLATE . ..
UNANCHOR . ..
UNDEFINE_KEY

UNMANAGE_WIDGET e

UPDATE

WRITE_CLIPBOARD

WRITE_FILE . ..

WRITE_GLOBAL_SELECT e

A Sample DECwindows DECTPU Procedures

Al
A.2
A.3
A4
A5
A.6

Creating a Mouse

Pad e

Implementing an EDT-Style APPEND Command
Testing and Returning a Select Range
Handling Callbacks from a Scroll Bar Widget
Reactivatinga Select Range i
Copying Selected Material from EVE to Another DECwindows

Application

B DECTPU Messages

C DECTPU Cursor Behavior

Cl
C.z2

Index

viii

Cursor Position Compared to Editing Point

Built-In Padding

2-494
2-497
2—-498
2-499
2-501
2-503
2-506
2-508
2-510
2-513
2-515
2-517
2-520
2-522
2-525
2-526
2-528
2-529
2-531
2-533
2-535
2-538

A-10
A-12
A-14

A-16

Examples

A-1
A-2

A-3
A-4
A-5
A—6

Figures

2-1
2-2

Tables

1-1
2-1
2-2
2-3
2-4
2-5
2-6

2—7
2-8
2-9
2-10

2-11
2-12
B-1

Procedure That Createsa Mouse Pad

EVE Procedure That Implements a Variant of the EDT APPEND
CommMaAaNdo

EVE Procedure That Returns a Select Range
EVE Procedure That Handles Callbacks from a Scroll Bar Widget . . .
EVE Procedure That Reactivates a Select Range
EVE Procedure That Implements COPY SELECTION

Screen Layout Before Using ADJUST_WINDOW
Screen Layout After Using ADJUST WINDOW

List of DECTPU Built-In Procedures by Function
CREATE_RANGE Keyword Parameters
OpenVMS File Parse Example,
GET_INFO Built-In Procedures by First Parameter
DECTPU Keywords Representing Mouse Events
Detached Cursor Flag Constants

GET_INFO (Window_Variable): Valid Keywords for the Third
Parameter e

Message Flag Values for MESSAGE
Message Flag Values for MESSAGE TEXT
MODIFY_RANGE Keyword Parameters

Selected Built-In Actions with ERASE_UNMODIFIABLE Turned
Off

Message CodesSottt e
Message Flag Values for SET (MESSAGE_FLAGS)
DECTPU Messages and Their Severity Levels.

A-9
A-10
A-13
A-15
A-16

Preface

Intended Audience

This manual is a reference for experienced programmers who want to program
in the DEC Text Processing Utility (DECTPU). Some features of DECTPU, for
example, the callable interface and the built-in procedure FILE_PARSE, are
intended for system programmers who have a good understanding of Compagq
OpenVMS operating system concepts.

Document Structure
This manual is organized as follows:
e Chapter 1 lists DECTPU built-in features according to their function.
= Chapter 2 contains complete descriptions of the DECTPU built-in functions.
= Appendix A contains sample procedures written in DECwindows DECTPU.
e Appendix B contains DECTPU messages.

= Appendix C discusses cursor behavior in DECTPU applications.

Related Documents

For additional information information about OpenVMS products and services,
access the following World Wide Web address:

http://ww. openvis. conpag. conl

Reader’'s Comments

Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compag.com
Mail Compag Computer Corporation
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698
How To Order Additional Documentation
Use the following World Wide Web address to order additional documentation:
http: // waw. openvis. conpag. com

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Xi

Conventions

The following conventions are used in this manual:

Xii

Ctrl/x

PFn

PF1 x

{}
[]

(1]

O

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PFn indicates that you press the key labeled PFn on the
numeric keypad, where n is 1, 2, 3, or 4.

A lowercase italic x indicates the generic use of a letter. For
example, xxx indicates any combination of three alphabetic
characters.

A lowercase italic n indicates the generic use of a number. For
example, 19nn indicates a 4-digit number in which the last 2
digits are unknown.

A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

In command format descriptions, braces indicate required
elements; you must choose one of the options listed.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

In command format descriptions, vertical bars separating
items inside brackets indicate that you choose one, none, or
more than one of the options.

In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

Quotation marks enclose system messages that are specified in
text.

A horizontal ellipsis in examples indicates one of the following
possibilities:

= Additional optional arguments in a statement have been
omitted.

= The preceding item or items can be repeated one or more
times.

= Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

italic text

bold text

UPPERCASE TEXT
lowercase

Monospace t ext

numbers

mouse

MB1, MB2, MB3

Italic text indicates important information, complete titles

of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HTML version of this document, this convention appears
as italic text.

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

In format descriptions, words in lowercase indicate parameters
or arguments to be specified by the user.

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names

of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

The term mouse refers to any pointing device, such as a mouse,
a puck, or a stylus.

MBL1 indicates the left mouse button. MB2 indicates the
middle mouse button. MB3 indicates the right mouse button.
(Users can redefine the mouse buttons.)

Xiii

1

DECTPU Built-In Procedures Grouped
According to Function

This chapter groups each of the DECTPU built-in procedures in a table according
to the functions that they perform so you can see at a glance which built-in is
related to what task.

When you want to perform editing tasks, use the following table to help you
identify which built-in procedures are related to a particular task.

Chapter 2 lists the built-in procedures alphabetically and describes them in

detail.

Some entries in this manual describe language elements or keywords that are not
built-in procedures. These elements and keywords are included because they are
used in the same way built-ins are used.

Table 1-1 lists all the DECTPU built-in procedures, grouped by the functions
they perform (screen layout, moving the cursor, matching patterns, and so on).

Table 1-1 List of DECTPU Built-In Procedures by Function

Screen Layout

ADJUST_WINDOW
CREATE_WINDOW
MAP

REFRESH

SET (DISPLAY_VALUE)
SET (HEIGHT)

SET (PAD)

SET (PROMPT_AREA)
SET (SCREEN_UPDATE)
SET (SCROLLING)

SET (STATUS_LINE)
SET (TEXT)

SET (VIDEO)
SET (WIDTH)
SHIFT
UNMAP
UPDATE

Moving the Cursor

CURSOR_HORIZONTAL
CURSOR_VERTICAL

SCROLL

SET (COLUMN_MOVE_
VERTICAL)

SET (CROSS_WINDOW_BOUNDS)

SET (DETACHED_ACTION)

SET (MOVE_VERTICAL_
CONTEXT)

Moving the Editing Position

MOVE_HORIZONTAL

MOVE_VERTICAL

POSITION

(continued on next page)

DECTPU Built-In Procedures Grouped According to Function 1-1

Table 1-1 (Cont.) List of DECTPU Built-In Procedures by Function

Manipulating Text

APPEND_LINE
BEGINNING_OF
CHANGE_CASE
COPY_TEXT
CREATE_BUFFER
CREATE_RANGE

ERASE_LINE
FILE_PARSE
FILE_SEARCH
FILL

MARK
MESSSAGE_TEXT

SEARCH_QUIETLY
SELECT

SELECT_RANGE

SET (ERASE_UNMODIFIABLE)
SET (MODIFIABLE)

SET (MODIFIED)

EDIT MODIFY_RANGE SPLIT_LINE
END_OF MOVE_TEXT TRANSLATE
ERASE READ_FILE WRITE_FILE
ERASE_CHARACTER SEARCH

Matching Patterns
ANCHOR MATCH SCANL
ANY NOTANY SPAN
ARB PAGE_BREAK SPANL
LINE_BEGIN REMAIN UNANCHOR
LINE_END SCAN

Status of the Editing Context

CURRENT_BUFFER
CURRENT_CHARACTER
CURRENT_COLUMN
CURRENT_DIRECTION
CURRENT_LINE
CURRENT _OFFSET
CURRENT_ROW
CURRENT_WINDOW
DEBUG_LINE

ERROR

ERROR_LINE
ERROR_TEXT
GET_INFO
LOCATE_MOUSE
RECOVER_BUFFER
SET (AUTO_REPEAT)
SET (BELL)

SET (DEBUG)

SET (DEFAULT DIRECTORY)
SET (FACILITY_NAME)

SET (FORWARD)

SET (INFORMATIONAL)

SET (INSERT)

SET (JOURNALING)

SET (KEYSTROKE_RECOVERY)
SET (LEFT_MARGIN)

SET (LEFT_MARGIN_ACTION)
SET (LINE_NUMBER)

SET (MARGINS)

SET (MAX_LINES)

SET (MESSAGE_ACTION_LEVEL)
SET (MESSAGE_ACTION_TYPE)
SET (MESSAGE_FLAGS)

SET (MOUSE)

1-2 DECTPU Built-In Procedures Grouped According to Function

SET (NO_WRITE)

SET (OUTPUT FILE)

SET (OVERSTRIKE)

SET (PAD_OVERSTRUCK_TABS)
SET (PERMANENT)

SET (RECORD_ATTRIBUTE)
SET (RECORD_MODE)

SET (REVERSE)

SET (RIGHT_MARGIN)

SET (RIGHT_MARGIN_ACTION)
SET (SPECIAL_ERROR_SYMBOL)
SET (SUCCESS)

SET (SYSTEM)

SET (TAB_STOPS)

SET (TIMER)

SET (TRACEBACK)

SHOW

(continued on next page)

Table 1-1 (Cont.) List of DECTPU Built-In Procedures by Function

Defining Keys

ADD_KEY_MAP
CREATE_KEY_MAP
CREATE_KEY_MAP_LIST

LAST KEY
LOOKUP_KEY
REMOVE_KEY_MAP

SET (PRE_KEY_PROCEDURE)
SET (SELF_INSERT)
SET (SHIFT_KEY)

DEFINE_KEY SET (KEY_MAP_LIST) SET (UNDEFINED_KEY)
KEY_NAME SET (POST_KEY_PROCEDURE) UNDEFINE_KEY
Multiple Processing
ATTACH SEND SPAWN
CREATE_PROCESS SEND_EOF
Executing Programs
ABORT COMPILE RETURN
BREAK EXECUTE SAVE

Specific to DECwindows

CREATE_WIDGET
DEFINE_WIDGET_CLASS
GET_CLIPBOARD
GET_DEFAULT
GET_GLOBAL_SELECT

LOWER_WIDGET
MANAGE_WIDGET
RAISE_WIDGET
READ_CLIPBOARD
READ_GLOBAL_SELECT
REALIZE_WIDGET

SEND_CLIENT_MESSAGE
SET (ACTIVE_AREA)
SET (CLIENT_MESSAGE)

SET (DEFAULT_FILE)

SET (DRM_HIERARCHY)

SET (ENABLE_RESIZE)

SET (FIRST_INPUT_ACTION)
SET (GLOBAL_SELECT)

SET (GLOBAL_SELECT GRAB)

SET (GLOBAL_SELECT_READ)
SET (GLOBAL_SELECT_TIME)
SET (GLOBAL_SELECT_UNGRAB)
SET (ICON_NAME)

SET (ICON_PIXMAP)

SET (INPUT_FOCUS)

SET (INPUT_FOCUS_GRAB)
SET (INPUT_FOCUS_UNGRAB)

SET (MAPPED_WHEN_
MANAGED)

SET (MENU_POSITION)
SET (RESIZE_ACTION)

SET (SCREEN_LIMITS)

SET (SCROLL_BAR)

SET (SCROLL_BAR_AUTO_
THUMB)

SET (UID)

SET (WIDGET)

SET (WIDGET_CALLBACK)

SET (WIDGET_CALL_DATA)

SET (WIDGET_CONTEXT_HELP)

SET (WIDGET_RESOURCE_
TYPES)

UNMANAGE_WIDGET
WRITE_CLIPBOARD
WRITE_GLOBAL_SELECT

(continued on next page)

DECTPU Built-In Procedures Grouped According to Function 1-3

Table 1-1 (Cont.) List of DECTPU Built-In Procedures by Function

Miscellaneous

ASCII
CALL_USER
CONVERT
CREATE_ARRAY
DELETE

EXIT
EXPAND_NAME
FAO
HELP_TEXT

INDEX

INT
JOURNAL_CLOSE
JOURNAL_OPEN
LEARN_ABORT
LEARN_BEGIN
LEARN_END
LENGTH
MESSAGE

QUIT
READ_CHAR
READ_KEY
READ_LINE
SET (EOB_TEXT)
SLEEP

STR

SUBSTR

1-4 DECTPU Built-In Procedures Grouped According to Function

2

Descriptions of the DECTPU Built-In
Procedures

This chapter describes the DECTPU built-in procedures. The discussion of each
procedure is divided, as applicable, into the following parts:

= Format

= Parameters

= Description

= Signaled Errors (listing the warnings and errors signaled, if applicable)

= Examples

2.1 DECTPU Built-In Procedures

This section lists the DECTPU built-in procedures in alphabetical order and
describes each in detail.

The descriptions of built-in procedures that return useful values show a return
value in the format section. The built-in procedure descriptions that do not
show a return value in the format section either return 0 or signal TPUS$_
NORETURNVALUE, “Built-in does not return a value.”

Descriptions of the DECTPU Built-In Procedures 2-1

ABORT

ABORT

Format

Parameters

Description

ABORT

None.

The ABORT procedure stops any executing procedures and causes DECTPU to
wait for the next key press. ABORT returns control to DECTPU’s main control
loop. It causes an immediate exit from all invoked procedures.

Although ABORT behaves much like a built-in, it is actually a DECTPU language
element.

ABORT is evaluated for correct syntax at compile time. In contrast, DECTPU
procedures are usually evaluated for a correct parameter count and parameter
types at execution time.

Signaled Errors

Example

ABORT is a language element and has no completion codes.

The following example stops execution of the current procedure and returns to
DECTPU's main loop. The error handler does not try to recover from an error.

ON_ERRCOR

MESSAGE ("Aborting command because of error.");
ABCRT;

ENDON_ERRCR;

2-2 Descriptions of the DECTPU Built-In Procedures

ADD_KEY_MAP

ADD_KEY_MAP

Format
ADD_KEY_MAP (key-map-list-name, { Tg:: } key-map-name [, ...)
Parameters
key-map-list-name
A string that specifies the name of the key map list.
"first"
A string that directs DECTPU to add the key map to the beginning of the key
map list. In cases where a key is defined in multiple key maps, the first definition
found for that key in any of the key maps in a key map list is used.
"last"
A string that directs DECTPU to add the key map to the end of the key map list.
In cases where a key is defined in multiple key maps, the first definition found
for that key in any of the key maps in a key map list is used.
key-map-name
A string that specifies the name of the key map to be added to the key map list.
You can specify more than one key map. Key maps are added to the key map
list in the order specified. The order of a key map in a key map list determines
precedence among any conflicting key definitions.
Description

The ADD_KEY_MAP procedure adds one or more key maps to a key map list.
Key maps are added, in the order specified, to either the top or the bottom of
the key map list. Key map precedence in a key map list is used to resolve any
conflicts between key definitions. The key definition in a preceding key map
overrides any conflicting key definitions in key maps that follow in the key map
list.

See the descriptions of the DEFINE_KEY, CREATE_KEY_MAP, and CREATE_
KEY_MAP_LIST built-in procedures for more information on key definitions, key
maps, and key map lists, respectively. Also, see the description of the REMOVE _
KEY_MAP built-in procedure for information on removing key maps from a key
map list.

Signaled Errors

TPU$_NOKEYMAP WARNING Third argument is not a
defined key map.

TPU$ KEYMAPNTFND WARNING The key map listed in the
third argument is not found.

TPU$ TOOFEW ERROR Too few arguments passed to

the ADD_KEY_MAP built-in.

Descriptions of the DECTPU Built-In Procedures 2-3

ADD_KEY_MAP

TPU$_TOOMANY

TPU$_NOKEYMAPLIST
TPU$_INVPARAM
TPU$_ILLREQUEST

TPU$_BADREQUEST

Examples

ERROR

WARNING

ERROR

WARNING

WARNING

Too many arguments passed
to the ADD_KEY_MAP
built-in.

Attempt to access an
undefined key map list.
Wrong type of data sent to
the ADD_KEY_MAP built-in.
The position string must be
either "first" or "last".

The position string must be
either "first" or "last".

The following example adds the default key map TPUSKEY_MAP to the
default key map list, TPUSKEY_MAP_LIST. Usually (except in the EVE editor)
TPUSKEY_MAP is a member of the default key map list.

1. ADD KEY_MAP ("TPUSKEY MAP_LIST", "last", "TPUSKEY_MAP");

The following example creates a key map called HELP_KEYS and adds it to the
beginning of the default key map list, TPUSKEY_MAP_LIST. Key definitions in
the new key map are invoked over definitions in the key maps already in the list.

2. hel p_keys := CREATE_KEY_MAP ("hel p_keys");

ADD KEY MAP ("TPUSKEY MBP LIST", "Tirst", hel p_keys);

2-4 Descriptions of the DECTPU Built-In Procedures

ADJUST_WINDOW

ADJUST_WINDOW

Format

Parameters

Description

ADJUST_WINDOW (window, integerl, integer2)

window

The window whose size or location you want to change. The window that you
specify becomes the current window, and the buffer mapped to that window
becomes the current buffer.

integerl
The signed integer value that you add to the screen line number at the top of the
window.

integer2
The signed integer value that you add to the screen line number at the bottom of
the window.

The ADJUST_WINDOW procedure changes the size or screen location, or both,

of a window and makes the window that you specify the current window. If you
want to check the visible size or location, or both, of a window before making an
adjustment to it, use any of the following statements:

SHOW (W NDOW ;
SHOW (W NDOWS) ;

top := GET_INFO (wi ndow, "top", VI SIBLE_W NDOW;
MESSAGE (STR (top));

bottom : = GET_|I NFO (wi ndow, "bottont, VI SIBLE W NDOW

MESSAGE (STR (bottom);

There are screen line numbers at both the top and bottom of the visible window.
Adjust the size of a visible window by changing either or both of these screen
line numbers. Make these changes by adding to or subtracting from the current
screen line number, not by specifying the screen line number itself.

You can enlarge a window by decreasing the screen line number at the top of the
window. (Specify a negative value for integerl.) You can also enlarge a window
by increasing the screen line number at the bottom of the window. (Specify a
positive value for integer2.) The following example adds four lines to the current
window, provided that the values fall within the screen boundaries:

ADJUST W NDOW (CURRENT W NDOW -2, +2)

If you specify integers that attempt to set the screen line number beyond the
screen boundaries, DECTPU issues a warning message. DECTPU then sets the
window boundary at the edge (top or bottom, as appropriate) of the screen.

You can reduce a window by increasing the screen line number at the top of the
window. (Specify a positive value for integerl.) You can also reduce a window
by decreasing the screen line number at the bottom of the window. (Specify

a negative value for integer2.) If you attempt to make the size of the window

Descriptions of the DECTPU Built-In Procedures 2-5

ADJUST_WINDOW

smaller than one line (two lines if the window has a status line, three lines if the
window has a status line and a horizontal scroll bar), DECTPU issues an error
message and no adjustment occurs. The following example reduces the current
window by four lines:

ADJUST W NDOW (CURRENT W NDOW +2, -2)

You can also use ADJUST_WINDOW to change the position of the window on the
screen without changing the size of the window. The following command moves
the current window two lines higher on the screen, provided that the values fall
within the screen boundaries:

ADJUST_W NDOW (CURRENT W NDOW -2, -2)

Figure 2-1 shows a screen layout that appears when you invoke DECTPU with
EVE and a user-written command file. In this case, the user-written command
file divides the screen into two windows. The top window has 15 text lines
(including the "End-of-file" message) and a status line. The bottom window has
five text lines and a status line. The two bottom lines of the screen are the
command window and message window, each consisting of one line.

Figure 2—-1 Screen Layout Before Using ADJUST_WINDOW

First line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Minth line
Tenth line
Eleventh line
Twelfth line
Thirteenth line
Fourteenth line
[End of file]
Euffer: MAIN, | Write | Overstrike | Forward

First line

Second line

Third line

Fourth line

Fifth line

Buffer: SECOMD_BUFFER. | Write | Insert | Forward

The user-written command file uses the variable second_window to identify the
bottom window. Figure 2-2 shows the screen layout after you enter ADJUST _
WINDOW (second_window, -5, 0) after the appropriate prompt from EVE. Both
the top and bottom windows now contain 10 lines of text and a status line; the
cursor is located in the bottom window. The command and message windows still
contain one line each.

ADJUST_WINDOW adds (+/-) integerl to the "visible_top" and (+/-) integer2 to
the "visible_bottom" of a window. The mapping of the window to its buffer is not
changed. The new values for the screen line numbers become the values for the
original top and original bottom. See the Guide to the DEC Text Processing Utility
for more information on window dimensions and window values.

2-6 Descriptions of the DECTPU Built-In Procedures

ADJUST_WINDOW

Figure 2—-2 Screen Layout After Using ADJUST_WINDOW

First line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
MNinth line
Tenth line

| Write | Overstrike | Forward

First line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Minth line
Tenth line

Euffer: SECOND_BUFFER. | Write | Insert | Forward

Using ADJUST_WINDOW on a window makes it the current window; that is,
DECTPU puts the cursor in that window if the cursor was not already there, and
DECTPU marks that window as current in DECTPU's internal tracking system.
DECTPU may scroll or adjust the text in the window to keep the current position
visible after the adjustment occurs.

Both ADJUST_WINDOW and MAP may split or occlude other windows.

If you execute ADJUST WINDOW within a procedure, the screen is not
immediately updated to reflect the adjustment. The adjustment is made after the
entire procedure is finished executing and control returns to the screen manager.
If you want the screen to reflect the adjustment to the window before the entire
procedure is executed, you can force the immediate update of a window by adding
an UPDATE statement to the procedure. See the UPDATE built-in procedure for
more information.

If you have defined a top or bottom scroll margin, and the window is adjusted so
that the scroll margins no longer fit, DECTPU signals TPU$_ADJSCROLLREG
and the scroll margins shrink proportionally. For example, if you have a 10-
line window, with an 8-line top scroll margin, shrinking the window to a 5-line
window also reduces the top scroll margin to four lines.

Signaled Errors

TPU$_ADJSCROLLREG INFO The window'’s scrolling region
has been adjusted to fit the
new window.

TPU$_BOTLINETRUNC INFO Bottom line cannot exceed
bottom of screen.

TPU$_TOPLINETRUNC INFO Top line cannot exceed top of
screen.

TPU$_WINDNOTMAPPED WARNING Cannot adjust a window that
is not mapped.

Descriptions of the DECTPU Built-In Procedures 2-7

ADJUST_WINDOW

TPU$_BADWINDADJUST

TPU$ WINDNOTVIS
TPU$ TOOFEW
TPU$_TOOMANY

TPUS$_INVPARAM

Examples

WARNING

WARNING

ERROR

ERROR

ERROR

Cannot adjust window to less
than the minimum number
of lines.

No adjustment if window is
not visible.

You specified less than three
parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong
type.

The following example reduces the current window by removing five lines from
the top of the window. If the top line of the window is screen line number 11, this
statement changes the top line of the window to screen line number 16. (If the
bottom line of the window is less than screen line number 16, DECTPU signals

an error.)

1. ADJUST W NDOW (CURRENT W NDOW +5, 0)

The following example removes five lines from the top of a window and puts a

help window in their place:

2. PROCEDURE user _di spl ay_hel p

top_of window := GET_INFO (CURRENT W NDOW "VI SI BLE_TOP");
|

| Renove the top five lines fromthe current wi ndow
! and replace themwith a hel p wi ndow

!
ADJUST_W NDOW (CURRENT_W NDOW +5, 0);
exanpl e_wi ndow :
exanpl e_buffer :

MAP (exanpl e_wi ndow, exanpl e_buffer);
ENDPROCEDURE,;

2-8 Descriptions of the DECTPU Built-In Procedures

CREATE_W NDOW (t op_of _wi ndow, 5, ON);
CREATE_BUFFER (" EXAMPLE",
"sys$login:tenplate. txt");

ANCHOR

ANCHOR

Format

Parameters

Description

ANCHOR

None.

The ANCHOR procedure forces the next pattern element either to match
immediately or else to fail. When SEARCH fails to find a match for a pattern,

it usually tries the search again. To try again, the SEARCH built-in procedure
moves the starting position one character forward or backward, depending upon
the direction of the search. SEARCH continues this operation until it either finds
a match for the pattern or reaches the end or beginning of the buffer or range
being searched.

If ANCHOR appears as the first element of a complex pattern, the search does not
move the starting position. Instead, the search examines the next (or previous)
character to determine if it matches the next character or element in the complex
pattern. If the pattern does not match starting in the original position, the search
fails. SEARCH does not move the starting position nor try the search again.

When you use the plus sign (+) operator rather than the ampersand (&) operator
to build complex patterns, ANCHOR is useful only as the first element of a
complex pattern. It is legal elsewhere in a pattern but has no effect.

Although ANCHOR behaves much like a built-in, it is actually a keyword.

For more information on patterns or modes of pattern searching, see the Guide to
the DEC Text Processing Utility.

Signaled Errors

Examples

ANCHOR is a keyword and has no completion codes.

The following example creates a pattern that matches the string al23. Because
ANCHOR appears as the first element of the pattern, SEARCH will find a123
only if the string appears at the starting position for the search.

1. patl := ANCHOR + "al23";

Descriptions of the DECTPU Built-In Procedures 2-9

ANCHOR

The following example starts at the beginning of a buffer and searches forward,
removing all comments that begin in column 1. The ANCHOR keyword in this
example ties the search to the first character of a line (the current character).
This prevents the search function from finding and removing exclamation points
in the middle of a line (for example, in the FAO directive !AS).

2. PROCEDURE user _remove_comrent s
LOCAL patl,
nunmber _renoved,
end_nark;
patl := ANCHOR + "!I";
nunber _renoved : = 0;
end_mark := END OF (CURRENT_BUFFER);

POSI TI ON (BEGI NNI NG OF (CURRENT BUFFER)) ;
LOoP

EXI TIF MARK (NONE) = end_mark;

r1 := SEARCH QU ETLY (pafl, FORVARD);

IFri <0
THEN I coment found so erase it
ERASE LI NE;
nunber _removed : = nunber_renoved + 1;
ENDI F;
MOVE_VERTI CAL (1); ! nove to the next line
ENDLOOP;
MESSAGE (FAO ("!ZL comment! %5 renmoved.”, nunber _removed));
ENDPROCEDURE;

2-10 Descriptions of the DECTPU Built-In Procedures

ANY

ANY

Format

Parameters

Return Value

Description

buffer
pattern := ANY range [, integerl T)
string

buffer
An expression that evaluates to a buffer. ANY matches any of the characters in
the resulting buffer.

range
An expression that evaluates to a range. ANY matches any of the characters in
the resulting range.

string
An expression that evaluates to a string. ANY matches any of the characters in
the resulting string.

integerl
A value that indicates how many contiguous characters ANY matches. The
default value for this integer is 1.

A pattern matching one or more characters that appear in the string, buffer, or
range passed as the first parameter to ANY.

The ANY procedure returns a pattern that matches one or more characters from
the set specified. You use ANY to construct patterns.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR ANY must appear in the
right-hand side of an
assignment statement.

TPU$_TOOFEW ERROR ANY requires at least one
argument.

TPU$_TOOMANY ERROR ANY accepts no more than
two arguments.

TPU$_ARGMISMATCH ERROR The argument you passed to
the ANY built-in was of the
wrong type.

Descriptions of the DECTPU Built-In Procedures 2-11

ANY

TPU$_INVPARAM ERROR The argument you passed to
the ANY built-in was of the
wrong type.

TPU$_MINVALUE WARNING The argument you passed

to the ANY built-in was less
than the minimum accepted
value.

TPU$_CONTROLC ERROR You pressed Ctrl/C during
the execution of the ANY
built-in.

Examples

The following example creates a pattern that matches any one of the characters
h, i, j, k,and I:

1. patl := ANY ("hijkl")

The following example creates a pattern that matches any one of the characters
a, b,c x,andy:

2. a_buf := CREATE_BUFFER ("new buffer");
POSI TION (a_buf);
COPY_TEXT ("xy");
SPLIT_LI NE;
COPY_TEXT ("abc");
patl := ANY (a_buf);

The following example finds an ENDPROCEDURE statement that starts in
column 1 and moves the editing point to the end of the statement:

3. PROCEDURE user _find_endprocedure
LOCAL endprocedure pattern,
search_range;
endprocedure_pattern := (LINE BEG N + "ENDPROCEDURE"') +
(LINE_END | ANY (";! " + ASCII (9)));
search_range := SEARCH QU ETLY (endprocedure_pattern, FORWARD);
| F search_range = 0

THEN
MESSAGE ("Endprocedure statenent not found");
ELSE
POSI TION (END_OF (search_range));
ENDI F;
ENDPROCEDURE;

2-12 Descriptions of the DECTPU Built-In Procedures

APPEND_LINE

APPEND _LINE
Format

APPEND_LINE
Parameters

None.
Description

The APPEND_LINE procedure places the current line at the end of the previous
line. You can use APPEND_LINE to delete line terminators.

The editing point in the line that was the current line before APPEND_LINE was
executed becomes the editing point.

Using APPEND_LINE may cause DECTPU to insert padding spaces or blank
lines in the buffer. APPEND_LINE causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a visible
window.

For more information on the distinction between the cursor position and the
editing point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or below the
end of the buffer), DECTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

Signaled Errors

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

TPU$_NOCACHE ERROR There is not enough memory
to allocate a new cache.

TPU$_TOOMANY ERROR APPEND_LINE does not
accept arguments.

TPU$ NOTMODIFIABLE WARNING You cannot modify an
unmodifiable buffer.

TPUS$_LINETOOLONG WARNING DECTPU cannot append the

line because the length of the
resulting line would exceed
DECTPU’s maximum line
length.

Descriptions of the DECTPU Built-In Procedures 2-13

APPEND_LINE

Examples

The following example adds the current line to the end of the previous line:

1. APPEND_LINE

The following example deletes the character to the left of the cursor. If you are at
the beginning of a line, the procedure appends the current line to the end of the
previous line. The procedure works correctly even if the window is shifted.

! The foll owing procedure del etes the character

I tothe left of the cursor. If the cursor is at the
! beginning of aline, it appends the current line

! to the end of the previous line.

|

PROCEDURE user _del ete_char
| F CURRENT_OFFSET = 0
THEN
APPEND LI NE;
ELSE
ERASE_CHARACTER (-1);
ENDI F;
ENDPROCEDURE;

You can bind this procedure to the delete key with the following statement:
DEFI NE_KEY ("user _del ete_char", DEL_KEY);

2-14 Descriptions of the DECTPU Built-In Procedures

ARB

ARB

Format
pattern := ARB (integer)

Parameter
integer
The number of characters in the pattern. This integer must be positive.
Return Value
A pattern that matches an arbitrary sequence of characters starting at the editing
point and extending for the length you specify.
Description

The ARB procedure returns a pattern that matches an arbitrary sequence of
characters starting at the editing point and extending for the length you specify.
You can use ARB for wildcard matches of fixed length.

For more information on patterns, see the Guide to the DEC Text Processing
Utility.
Signaled Errors

TPU$_NEEDTOASSIGN ERROR ARB must appear on
the right-hand side of an
assignment statement.

TPU$_TOOFEW ERROR ARB requires at least one
argument.

TPU$_TOOMANY ERROR ARB accepts no more than
one argument.

TPUS$_INVPARAM ERROR The argument to ARB must
be an integer.

TPU$_MINVALUE WARNING The argument to ARB must
be positive.

Descriptions of the DECTPU Built-In Procedures 2-15

ARB

Examples

The following example creates a pattern that matches the next five characters
starting at the editing point. The characters themselves are arbitrary; it is the
number of characters that is important for a pattern created with ARB.

1. patl := ARB (5)

The following example replaces a prefix of any three characters followed by an
underscore (xxx_) in the current buffer with the string "user_". It does not change
the current position.

2. PROCEDURE user _repl ace_prefix
LOCAL cur _nmde,
here,
pat 1,
found_range;

(LINE_BEG N | NOTANY (" ABCDEFGH JKLMNOPQRSTUWIKYZ $"))
+ ((ARB (3) +"_ ") @found range);

here : = MARK (NONE);

cur_node := GET_INFO (current_buffer, "nmode");

POSI TI ON (BEG NNI NG_OF (CURRENT BUFFER)) ;
LooP
found_range := 0;
SEARCH QUI ETLY (patl, FORWARD);
EXITIF found_range = 0;
ERASE (found_range);
POSI TI ON (END_OF (found_range));
COPY_TEXT ("user_");
ENDLOCP,
PCSI TION (here);
SET (cur_node, current_buffer);
ENDPROCEDURE;

patl :

2-16 Descriptions of the DECTPU Built-In Procedures

ASCII

ASCII

Format

Parameters

Return Value

Description

integerl

integer2 | ._

{stringz }.—ASCII(keyword)
stringl

integerl

The decimal value of a character in the DEC Multinational Character Set.

keyword

Must be a key name. If the key name is the name of a key that produces
a printing character, ASCII returns that character; otherwise it returns the
character whose ASCII value is 0.

stringl
The character whose ASCII value you want. If the string has a length greater
than 1, the ASCII built-in returns the ASCII value of the first character in the
string.

The character with the specified ASCII value (if you specify an integer or keyword
parameter).

The ASCII value of the string you specify (if you specify a string parameter).

The ASCII procedure returns the ASCII value of a character or the character that
has the specified ASCII value. The result of ASCII depends upon its argument. If
the argument is an integer, ASCII returns a string of length 1 that represents the
character of the DEC Multinational Character Set corresponding to the integer
you specify. If the argument is a string, ASCII takes the first character of the
string and returns the integer corresponding to the ASCII value of that character.

If the argument to ASCII is a keyword, that keyword must be a key name.
The KEY_NAME built-in produces key names. In addition, there are several
predefined keywords that are key names. See the Guide to the DEC Text
Processing Utility for a list of these keywords.

If the keyword is a key name and the key produces a printing character, ASCII
returns that character; otherwise, it returns the character whose ASCII value
is 0.

Descriptions of the DECTPU Built-In Procedures 2-17

ASCII

Signaled Errors

TPU$_NEEDTOASSIGN ERROR ASCII must be on the right-
hand side of an assignment
statement.

TPU$_TOOFEW ERROR ASCII requires one
argument.

TPU$_TOOMANY ERROR ASCII accepts only one
argument.

TPU$_ARGMISMATCH ERROR The parameter you passed to
ASCII is of the wrong type.

TPU$_NULLSTRING WARNING You passed a string of length
0 to ASCIL.

Examples

The following example assigns a string of length 1 to the variable my_character.
This string contains the form-feed character because that character has the
ASCII value 12.

1. ny_character := ASCI(12)

The following example assigns the integer value 97 to the variable ascii_value.
The a is specified in quotation marks because it is a parameter of type string.

2. ascii_value := ASCII ("a");

The following example prompts you to press a key. When you do so, the procedure
reads the key. If the key is associated with a printing character, ASCII tells

you what character is produced. If the key is not associated with a printable
character, ASCII informs you of this.

3. PROCEDURE user_test_key
LOCAL key_struck,
key val ue;

MESSAGE ("Press a key");
key struck := READ KEY;
key value := ASCII (key_struck);

| F key_value = ASCII (0)

THEN
MESSAGE ("That is not a typing key");
ELSE
MESSAGE (FAO ("That key produces the letter "!AS".", key value));
ENDI F;
ENDPROCEDURE;

2-18 Descriptions of the DECTPU Built-In Procedures

ATTACH

ATTACH

Format

Parameters

Description

ATTACH [({ isrltriengger })]]

integer

An integer that DECTPU interprets as the process identification (PID) of the
process to which terminal control is to be switched. You must use decimal
numbers to specify the PID to DECTPU.

string
A string that DECTPU interprets as the name of the process to which terminal
control is to be switched.

The ATTACH procedure enables you to switch control from your current process
to another OpenVMS process that you previously created.

To use ATTACH you must have previously created a subprocess. If the process
you specify is not part of the current job or does not exist, an error message
is displayed. For information on creating subprocesses, see the description of
SPAWN.

ATTACH suspends the current DECTPU process and switches context to the
process you use as a parameter. If you do not specify a parameter for ATTACH,
DECTPU switches control to the parent or owner process. A subsequent use of
the DCL ATTACH command (or a logout from any process except the parent
process) resumes the execution of the suspended DECTPU process.

In all cases, DECTPU first deassigns the terminal. If a DECTPU process is
resumed following a SPAWN or ATTACH command, DECTPU reassigns the
terminal and refreshes the screen.

If the current buffer is mapped to a visible window, the ATTACH built-in causes
the screen manager to synchronize the editing point (which is a buffer location)
with the cursor position (which is a window location). This may result in the
insertion of padding spaces or lines into the buffer if the cursor position is before
the beginning of a line, in the middle of a tab, beyond the end of a line, or after
the last line in the file.

ATTACH is not a valid built-in in DECwindows DECTPU. However, if you
are running non DECwindows DECTPU in a DECwindows terminal emulator,
ATTACH works as described.

Descriptions of the DECTPU Built-In Procedures 2-19

ATTACH

Signaled Errors

TPU$_NOPARENT WARNING There is no parent process
to which you can attach.
Your current process is the
top-level process.

TPU$ TOOMANY ERROR Too many arguments passed
to the ATTACH built-in.
TPU$_SYSERROR ERROR Error requesting information

about the process being
attached to.

TPU$ ARGMISMATCH ERROR Wrong type of data sent to
the ATTACH built-in. Only
process name strings and
process IDs are allowed.

TPU$_CREATEFAIL WARNING Unable to attach to the
process.
TPU$ REQUIRESTERM ERROR Feature requires a terminal.

Examples

The following example causes DECTPU to attach to the OpenVMS subprocess
with the PID 97899:

1. ATTACH (97899)

The following example switches the terminal’s control to the OpenVMS
process JONES_2:

2. ATTACH ("JONES 2")

2-20 Descriptions of the DECTPU Built-In Procedures

BEGINNING_OF

BEGINNING_OF
Format

marker := BEGINNING_OF ({f’::geé })

Parameters
buffer
The buffer whose beginning you want to mark.

range
The range whose beginning you want to mark.

Return Value

A marker that points to the first character position of the specified buffer or
range.

Description

The BEGINNING_OF procedure returns a marker that points to the first position
of a buffer or a range. If you use the marker returned by BEGINNING_OF as a
parameter for the POSITION built-in procedure, the editing point moves to the
marker.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR BEGINNING_OF must
appear on the right-hand side
of an assignment statement.

TPU$_TOOFEW ERROR BEGINNING_OF requires
one argument.

TPU$_TOOMANY ERROR BEGINNING_OF accepts
only one argument.

TPU$_ARGMISMATCH ERROR You passed something other

than a range or a buffer to
BEGINNING_OF.

Examples

The following example uses two built-in procedures to move your current
character position to the beginning of my_range. If my_range is in a visible
buffer in which the cursor is located, the cursor position is also moved to the
beginning of my_range.

1. POSITION (BEG NNI NG _OF (ny_range))

Descriptions of the DECTPU Built-In Procedures 2-21

BEGINNING_OF

The following example creates a new buffer, associates the buffer with the main
window, and maps the main window to the screen. It positions to the top of the
buffer, prompts you for the name of a file to include, and reads the file into the
buffer.

2. PROCEDURE user _include_file
I Create scratch buffer
bl : = CREATE_BUFFER ("Scratch Buffer");

I Map scratch buffer to main w ndow
MAP (mai n_wi ndow, bl);
! Read in file nane given
READ FILE (READ LINE ("File to Include:"));

I Gototop of file
POSI TI ON (BEG NNING OF (b1));
ENDPROCEDURE;

2-22 Descriptions of the DECTPU Built-In Procedures

BREAK

BREAK

Format

Parameters

Description

BREAK

None.

The BREAK procedure activates the debugger if DECTPU was invoked with the
/IDEBUG qualifier. If there is no debugger, BREAK causes the following message
to be displayed in the message window:

Breakpoint at |ine xxx

It has no other effect. Although BREAK behaves much like a built-in, it is
actually a DECTPU language element.

BREAK is evaluated for correct syntax at compile time. In contrast, DECTPU
procedures are usually evaluated for a correct parameter count and parameter
types at execution time.

Signaled Errors

Example

BREAK is a language element and has no completion codes.

The following example contains a break statement. If the statement is executed,
DECTPU's debugger is activated, enabling you to debug that section of the code.

PROCEDURE user _not _qui te_worki ng

BREAK:

ENDPROCEDURE:

Descriptions of the DECTPU Built-In Procedures 2-23

CALL_USER

CALL_USER

Format
string2 := CALL_USER (integer, stringl)

Parameters

integer
The integer that is passed to the user-written program.

stringl
The string that is passed to the user-written program.

Return Value

The value returned by the called program.

Description

The CALL_USER procedure calls a program written in another language from
within DECTPU. The CALL_USER parameters are passed to the external routine
exactly as you enter them; DECTPU does not process the parameters in any way.
The integer is passed by reference, and stringl is passed by descriptor. String2 is
the value returned by the external program.

In addition to returning the value string2 to CALL_USER, the external program
returns a status code that tells whether the program executed successfully. You
can trap this status code in an ON_ERROR statement. An even-numbered status
code (low bit in RO clear) causes the ON_ERROR statement to be executed. The
ERROR lexical element returns the status value from the program in the form of
a keyword.

The CALL_USER parameters are input parameters for the external program you
are calling. DECTPU does not process the parameters in any way but passes
them to the external procedure exactly as you enter them. You must supply both
parameters even if the routine you are calling does not require that information
be passed to it. Enter the following null parameters to indicate that you are not
passing any actual values:

CALL_USER (0,"")

For information on the DECTPU callable interface, see the OpenVMS Ultility
Routines Manual.

Signaled Errors

TPU$_REQUIRESVMS ERROR Feature not available on this
operating system.

TPU$_BADUSERDESC ERROR User-written routine
incorrectly filled in the return
descriptor.

TPU$_NOCALLUSER ERROR Could not find a routine to
invoke.

2-24 Descriptions of the DECTPU Built-In Procedures

CALL_USER

TPU$_TOOFEW ERROR Too few arguments passed to
CALL_USER.

TPU$_TOOMANY ERROR Too many arguments passed
to CALL_USER.

TPU$_NEEDTOASSIGN ERROR The call to CALL_USER

must be on the right-hand
side of the assignment

statement.
TPU$_INVPARAM ERROR Wrong type of data sent to

CALL_USER.
TPU$_ARGMISMATCH ERROR Parameter is of the wrong

data type.
TPU$_CALLUSERFAIL WARNING CALL_USER routine failed

with status %X'status’. The
value returned by ERROR
after this type of error will be
the status value reported by
this message.

Examples

The following example calls a program that you wrote. Before invoking DECTPU,
you created a logical name, TPU$CALLUSER, that points to the file containing
the program you want called by CALL_USER. DECTPU passes the first
parameter (6) by reference, and the second parameter ("ABC") by descriptor.

If, for example, you use an integer and a string as input values, the program
processes the integer 6 and the string "ABC". If the program is designed to
return a result, the result is returned in the variable ret_value.

1. ret_value := CALL_USER (6, "ABC')

The following example shows the steps required to use the CALL_USER built-in
procedure. The routine that is called to do floating-point arithmetic is written in
BASIC.

2. Step-by-Step Exanple of Using CALL_USER

1. Wite a programin BASIC that does floating-point arithnetic on the
val ues passed to it:

I' Fil enanme: FLOATARI TH. BAS
1 sub TPUSCALLUSER (some_integer%, input_string$, return_string$)

10 I don’t check sone_integer% because this function only does
I' floating-point arithnetic

Descriptions of the DECTPU Built-In Procedures 2-25

CALL_USER

20 | parse the input string
I find and extract the operation
conmma_| ocation = pos (input_string$, ",", 1%)
if conma_location = 0 then go to all_done
end if

operation$ = seg$(input_string$, 1% comma_location - 1%)
I find and extract the 1st operand

operandl_| ocation = pos (input_string$, ",", comm_location +1)
if operandl_location = 0 then go to all_done
end | f

operandl$ = seg$(input_string$, comma location + 1%, &
operandl | ocation -1)

I find and extract the 2nd operand
operand2_| ocation = pos (input_string$, ",", operandl_|ocation +1)
if operand2_| ocation = 0 then
operand2_|ocation = len(input_string$) + 1
end if

operand2$ = seg$(input_string$, operandl location + 1%, &
operand2_| ocation -1)

sel ect operation$! do the operation

case "+"

result$ = sunB(operandl$, operand2$) !
case "-"

result$ = dif$(operandl$, operand2$) !
case "*"

result$ = nunt$(Val (operandl$) * Val(operand2$))
case "/"

result$ = nunt$(Val (operandl$) / Val(operand2$))
case else

result$ = "unknown operation."”
end sel ect

return_string$ = result$
999 all _done: end sub

2. Conpile the programwith the follow ng statement
$ BASIC/LIST floatarith

3. Create an options file to be used by the Iinker when you link the BASIC
progr am

2-26 Descriptions of the DECTPU Built-In Procedures

CALL_USER

+
File: FLOATARITH. OPT

Options file to link floatarith BASIC programwi th DECTPU

!
!
!
I
I
|
floatarith. obj
|
I
|

For OpenVMS VAX, use the followi ng link option:

UNI VERSAL=TPUSCALLUSER

!
I For OpenVMS Al pha, use the following link option:
!

SYMBOL_VECTOR=(TPUSCALLUSER=PROCEDURE)
!

4. Link the program (using the options file) to create a shareabl e i mage.
$ LINK floatarith/SHARE/ OPT/ MAP/ FULL

5. Define the logical name TPUSCALLUSER to point to the executable imge
of the BASIC program

$ DEFINE TPUSCALLUSER devi ce: [directory]floatarith. EXE

6. Invoke DECTPU.

7. Wite and conpile the follow ng DECTPU procedure;

PROCEDURE ny_cal | _user
I test the built-in procedure call _user

LOCAL out put,
i nput ;
input ;= READ LINE ("Call user >"); ! Provide a paraneter for routine
output ;= CALL_USER (0, input); ! Value this routine returns
MESSAGE (out put);
ENDPROCEDURE;

8. \When you call the procedure ny call _user, you are pronpted
for parameters to pass to the BASIC routine. The order of the paranmeters is
operator, nunber, number. For exanple, if you enter +, 3.33, 4.44
after the pronpt, the result 7.77 is displayed in the nmessage area.

Descriptions of the DECTPU Built-In Procedures 2-27

CHANGE_CASE

CHANGE_CASE

Format
returned_buffer buffer INVERT
returned_range ;:= CHANGE_CASE (¢ range ,{LOWER }
returned_string string UPPER
, IN_PLACE)
, NOT_IN_PLACE
Parameters

buffer
The buffer in which you want DECTPU to change the case. You cannot use the
NOT_IN_PLACE keyword if you specify a buffer for the first parameter.

range
The range in which you want DECTPU to change the case. You cannot use the
NOT_IN_PLACE keyword if you specify a range for the first parameter.

string

The string in which you want DECTPU to change the case. If you specify IN_
PLACE for the third parameter, CHANGE_CASE makes the specified change to
the string specified in the first parameter. If string is a constant, IN_PLACE has
no effect.

INVERT
A keyword that directs DECTPU to change uppercase letters to lowercase and
lowercase letters to uppercase.

LOWER
A keyword that directs DECTPU to change letters to all lowercase.

UPPER
A keyword that directs DECTPU to change letters to all uppercase.

IN_PLACE
A keyword that directs DECTPU to make the indicated change in the buffer,
range, or string specified. This is the default.

NOT_IN_PLACE

A keyword that directs DECTPU to leave the specified string unchanged and
return a string that is the result of the specified change in case. You cannot use
NOT_IN_PLACE if the first parameter is specified as a range or buffer. To use
NOT_IN_PLACE, you must specify a return value for CHANGE_CASE.

2-28 Descriptions of the DECTPU Built-In Procedures

CHANGE_CASE

Return Values

returned_buffer

A variable of type buffer that points to the buffer containing the modified text, if
you specify a buffer for the first parameter. The variable returned_buffer points to
the same buffer pointed to by the buffer variable specified as the first parameter.

returned_range

A range that contains the modified text, if you specify a range for the first
parameter. The returned range spans the same text as the range specified as
a parameter, but they are two separate ranges. If you subsequently change or
delete one of the ranges, this has no effect on the other range.

returned_string
A string that contains the modified text, if you specify a string for the first
parameter. CHANGE_CASE can return a string even if you specify IN_PLACE.

Description

The CHANGE_CASE procedure changes the case of all alphabetic characters in
a buffer, range, or string, according to the keyword that you specify. Optionally,
CHANGE_CASE returns a string, range, or buffer containing the changed text.

Signaled Errors

TPU$_TOOFEW ERROR CHANGE_CASE requires
two parameters.

TPU$_TOOMANY ERROR CHANGE_CASE accepts only
two parameters.

TPU$_ARGMISMATCH ERROR One of the parameters to

CHANGE_CASE is of the
wrong data type.
TPU$_INVPARAM ERROR One of the parameters to
CHANGE_CASE is of the
wrong data type.
TPU$_BADKEY WARNING You gave the wrong keyword
to CHANGE_CASE.

TPU$_NOTMODIFIABLE WARNING You cannot change the case
of text in an unmodifiable
buffer.

TPU$_CONTROLC ERROR You pressed Ctrl/C during
the execution of CHANGE _
CASE.

Descriptions of the DECTPU Built-In Procedures 2-29

CHANGE_CASE

Examples

The following example makes all the characters in the current buffer uppercase.
If you enter this statement on the command line of your interface, you see the
effects immediately. If you use this statement within a procedure, you see the
effect of the statement at the next screen update.

1. CHANGE_CASE (CURRENT_BUFFER, UPPER)

The following example puts the current text object in uppercase:

2. PROCEDURE user _upcase_item
ON_ERROR
I ' In case no string is found during search
MESSAGE ("No current item");

RETURN,
ENDON_ERROR,
delimters =" "+ ASC1(9);
current item:= ANCHOR & SCAN (delimiters);
itemrange SEARCH (current _item FORWARD, NO EXACT);

CHANGE_CASE (it em range, UPPER);
ENDPROCEDURE;

The following example inverts the case of all characters in the string pointed to
by the_string and returns the modified string in the variable returned_value. It
does not change the_string in any way.

3. returned value := CHANGE CASE (the_string, |NVERT, NOT_IN PLACE);

2-30 Descriptions of the DECTPU Built-In Procedures

COMPILE

COMPILE

Format

Parameters

Return Value

Description

buffer
[program := | COMPILE ({ range /)
string
buffer

A buffer that contains only valid DECTPU declarations and statements.

range
A range that contains only valid DECTPU declarations and statements.

string
A string that contains only valid DECTPU declarations and statements.

The program created by compiling the declarations and statements in the string,
range, or buffer. If the program fails to compile, an integer zero is returned.

The COMPILE procedure converts DECTPU procedures and statements into an
internal, compiled format. Valid items for compilation can be represented by a
string, a range, or a buffer. COMPILE optionally returns a program.

The program that COMPILE optionally returns is the compiled form of valid
DECTPU procedures, statements, or both. You can assign the compiled version
of DECTPU code to a variable name. DECTPU statements, as well as procedure
definitions, can be stored by DECTPU in the program returned by COMPILE.
Later in your editing session, you can execute the DECTPU code that you
compiled by using the program as a parameter for the EXECUTE built-in
procedure. You can also use the program as a parameter for the DEFINE_KEY
built-in procedure to define a key to execute the program. Then you can execute
the program by pressing that key.

COMPILE returns a program variable only if the compilation generates
executable statements. COMPILE does not return a program variable if you
compile any of the following:

= Null strings or buffers

= Procedure definitions that do not have any executable statements following
them

= Programs with syntax errors

DECTPU cannot compile a string or line of text in a buffer or range longer
than 256 characters. If DECTPU encounters a longer string or line, DECTPU
truncates characters after the 256th character and attempts to compile the
truncated string.

If necessary, use the SET (INFORMATIONAL, ON) built-in procedure before
compiling a procedure interactively to see the compiler messages.

Descriptions of the DECTPU Built-In Procedures 2-31

COMPILE

To check the results of a compilation to determine whether execution is possible,
use the following statement in a program:

x = COWPILE (ny_range);

l'if the programis nonzero, continue
IFx <0

THEN

ENDI F;

If x = 0, no program is generated because of compilation errors or because there
are no executable statements. The statement “IF x <> 0 THEN" allows your
program to continue as long as a program is generated.

You can also use an ON_ERROR statement to check the result of a compilation.
This statement tells you whether the compilation completed successfully; it does
not tell you whether execution is possible.

Signaled Errors

Examples

TPU$_COMPILEFAIL ERROR Compilation aborted because
of syntax errors.
TPU$_ARGMISMATCH ERROR The data type of a parameter

passed to the COMPILE
built-in is unsupported.

TPU$_TOOFEW ERROR Too few arguments.
TPU$_TOOMANY ERROR Too many arguments.

The following example associates the MOVE_VERTICAL (1) function with
the variable dwn. You can use the variable dwn with the EXECUTE built-in
procedure to move the editing point down one line.

1. dwn ;= COWPILE ("MOVE_VERTICAL (1)")

The following example compiles the contents of the main buffer:

2. user_program := COWPILE (main_buffer)

If the buffer contains executable statements, DECTPU returns a program that
stores these executable commands. If the buffer contains procedure definitions,
DECTPU compiles the procedures and lists them in the procedure definition table
so that you can call them in one of the following ways:

= Enter the name of the procedure after the appropriate prompt from the
interface you are using.

e Call the procedure from within other procedures.

2-32 Descriptions of the DECTPU Built-In Procedures

CONVERT

CONVERT

Format

Parameters

DECW_ROOT_WINDOW
CONVERT ({ SCREEN ,{

CHARACTERS, }
window

COORDINATES,

from_x_integer, from_y_integer,

DECW_ROOT_WINDOW { CHARACTERS, }

SCREEN COORDINATES,
window

to_x_integer, to_y_integer)

DECW_ROOT_WINDOW
Specifies the coordinate system to be that used by the root window of the screen
on which DECTPU is running.

SCREEN
Specifies the coordinate system to be that used by the DECwindows window
associated with DECTPU's top-level widget.

window
Specifies the coordinate system to be that used by the DECTPU window.

CHARACTERS

Specifies a system that measures screen distances in rows and columns, as a
character-cell terminal does. In a character-cell-based system, the cell in the top
row and the leftmost column has the coordinates (1,1).

COORDINATES
Specifies a DECwindows coordinate system in which coordinate units correspond
to pixels. The pixel in the upper left corner has the coordinates (0, 0).

from_x_integer
from_y_integer
Integer values that represent a point in the original coordinate system and units.

to_x_integer

to_y_integer

Variables of type integer that represent a point in the specified coordinate system
and units. The previous contents of the parameters are deleted when DECTPU
places the resulting values in them. You must specify DECTPU variables for
the parameters to_x_integer and to_y_integer. Passing a constant integer, string,
or keyword value causes an error. (This requirement does not apply to the
parameters from_x_integer and from_y_integer.)

Descriptions of the DECTPU Built-In Procedures 2-33

CONVERT

Description

The CONVERT procedure, given the coordinates of a point in one coordinate
system, returns the corresponding coordinates for the point in the coordinate
system you specify. The converted coordinates are returned using the to_x_integer
and to_y integer parameters. Coordinate systems are distinguished both by units

employed and where each places its origin.

Signaled Errors

TPU$_ARGMISMATCH ERROR
TPU$_BADDELETE ERROR
TPUS$_INVPARAM ERROR
TPU$_TOOFEW ERROR
TPU$_TOOMANY ERROR
TPU$_BADKEY WARNING
TPU$_WINDNOTVIS WARNING

Example

The data type of the
indicated parameter is not
supported by CONVERT.

You are attempting to modify
an integer, keyword, or string
constant.

One of the parameters was

specified with data of the
wrong type.

Too few arguments passed to
CONVERT.

Too many arguments passed
to CONVERT.

You specified an invalid
keyword as a parameter.
CONVERT cannot operate on
an invisible window.

The following example converts a point’s location from the current window’s
coordinate system (with the origin in the upper left-hand corner of the window) to
the DECTPU screen’s coordinate system (with the origin in the upper left-hand

corner of the DECTPU screen).

PROCEDURE user _convert

LOCAL source_x,
source._y,
dest x,
dest _y;

1,
1;

source_x :
source_y :
dest x :
dest_y :

ool

CONVERT (CURRENT W NDOW COORDI NATES, source_x, source_y,
SCREEN, COORDI NATES, dest_x, dest_y);

ENDPROCEDURE;

If the current window is not the top window, CONVERT changes the value of the
y coordinate to reflect the difference in the DECTPU screen’s coordinate system.
For more information about the difference between a DECTPU window and the

2-34 Descriptions of the DECTPU Built-In Procedures

CONVERT

DECTPU screen, see the program development chapter in the Guide to the DEC
Text Processing Utility.

Descriptions of the DECTPU Built-In Procedures 2-35

COPY_TEXT

COPY_TEXT
Format
buffer
[range2 :=] COPY_TEXT (< rangel ;)
string
Parameters
buffer

Return Value

Description

The buffer containing the text that you want to copy.

rangel
The range containing the text that you want to copy.

string
A string representing the text that you want to copy.

The range where the copied text has been placed.

The COPY_TEXT procedure makes a copy of the text you specify and places it
in the current buffer. If the current buffer is in insert mode, the text you specify
is inserted before the current position in the current buffer. If the current buffer
is in overstrike mode, the text you specify replaces text starting at the current
position and continuing for the length of the string, range, or buffer.

Note

You cannot add a buffer or a range to itself. If you try to add a buffer to
itself, DECTPU issues an error message. If you try to insert a range into
itself, part of the range is copied before DECTPU signals an error. If you
try to overstrike a range into itself, DECTPU may or may not signal an
error.

Using COPY_TEXT may cause DECTPU to insert padding spaces or blank lines
in the buffer. COPY_TEXT causes the screen manager to place the editing point
at the cursor position if the current buffer is mapped to a visible window. For
more information on the distinction between the cursor position and the editing
point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or below the
end of the buffer), DECTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

2-36 Descriptions of the DECTPU Built-In Procedures

COPY_TEXT

Signaled Errors

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

TPU$_NOCOPYBUF WARNING Trying to copy a buffer to
itself is not allowed.

TPU$_NOCACHE ERROR There is not enough memory
to allocate a new cache.

TPU$_OVERLAPRANGE ERROR You tried to put the contents

of a range into that same
range instead of into another

structure.
TPU$_TOOFEW ERROR COPY_TEXT requires one

argument.
TPU$_TOOMANY ERROR COPY_TEXT accepts only

one argument.
TPU$_ARGMISMATCH ERROR The argument to COPY_

TEXT must be a string,
range, or buffer.

TPU$_NOTMODIFIABLE ERROR You cannot copy text into an
unmodifiable buffer.

TPUS$_LINETOOLONG WARNING The line exceeds DECTPU's
maximum line length.

TPU$_TRUNCATE WARNING Characters have been

truncated because you tried
to add text that would exceed
the maximum line length.

Examples

The following example causes the string “Perseus is near Andromeda” to be
placed just before the current position in the current buffer when the buffer is set
to insert mode:

1. COPY_TEXT ("Perseus is near Androneda")

The following example implements a simple INSERT HERE function. It assumes
that there is a paste buffer and that this buffer contains the most recently deleted
text. The procedure copies the text from that buffer into the current buffer.

2. PROCEDURE user _sinple_insert
| F BEG NNI NG OF (paste _buffer) = END OF (paste_buffer)
THEN
MESSAGE ("Nothing to I NSERT");
ELSE
COPY_TEXT (paste_buffer);
ENDI F;
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-37

CREATE_ARRAY

CREATE_ARRAY

Format

Parameters

Return Value

Description

array :=
CREATE_ARRAY [(integerl [, integer2])]

integerl

The number of integer-indexed elements to be created when the array is created.
DECTPU processes elements specified by this parameter more quickly than
elements created dynamically. You can add integer-indexed elements dynamically,
but they are not processed as quickly as predeclared integer-indexed elements.

integer2

The first predeclared integer index of the array. The predeclared integer indexes
of the array extend from this integer through to integer2 + integerl —1. This
parameter defaults to 1.

The variable that is to contain the newly created array.

The CREATE_ARRAY procedure creates an array. In DECTPU, an array is a
one-dimensional collection of data values that you can consider or manipulate as
a unit.

To create an array variable called bat, use the CREATE_ARRAY built-in as
follows:

bat := CREATE ARRAY;

DECTPU arrays can have a static portion, a dynamic portion, or both. A static
array or portion of an array contains predeclared integer-indexed elements.
These elements are allocated contiguous memory locations to support quick
processing. To create an array with a static portion, specify the number of
contiguous integer-indexed elements when you create the array. You also have
the option of specifying a beginning index number other than 1. For example,
the following statement creates an array with 100 predeclared integer-indexed
elements starting at 15:

bat := CREATE_ARRAY (100, 15);

All static elements of a newly created array are initialized to the data type
unspecified.

A dynamic portion of an array contains elements indexed with expressions
evaluating to any DECTPU data type except unspecified, learn, pattern, or
program. Dynamic array elements are dynamically created and deleted as
needed. To create a dynamic array element, assign a value to an element of an
existing array. For example, the following statement creates a dynamic element
in the array bat indexed by the string "bar" and assigns the integer value 10 to
the element:

bat{"bar"} := 10;

2-38 Descriptions of the DECTPU Built-In Procedures

CREATE_ARRAY

To create an array with both static and dynamic elements, first create the static
portion of the array. Then use assignment statements to create as many dynamic
elements as you wish. For example, the following code fragment creates an array
stored in the variable small_array. The array has 15 static elements and one
dynamic element. The first static element is given the value 10. The dynamic
element is indexed by the string "fred" and contains the value 100.

smal | _array := CREATE ARRAY (15);
smal | _array{1} := 10;
smal | _array{"fred"} := 100;

To delete a dynamic array element, assign to it the constant TPUSK _
UNSPECIFIED, which is of type unspecified.

One array can contain elements indexed with several data types. For example,
you can create an array containing elements indexed with integers, buffers,
windows, markers, and strings. An array element can be of any data type. All
array elements of a newly created array are of type unspecified.

If the same array has been assigned to more than one variable, DECTPU does
not create multiple copies of the array. Instead, each variable points to the array
that has been assigned to it. DECTPU arrays are reference counted, meaning
that each array has a counter keeping track of how many variables point to it.
DECTPU arrays are autodelete data types, meaning that when no variables point
to an array, the array is deleted automatically. You can also delete an array
explicitly by using the DELETE built-in. For example, the following statement
deletes the array bat:

DELETE (bat);

If you delete an array that still has variables pointing to it, the variables receive
the data type unspecified after the deletion.

If you modify an array pointed to by more than one variable, modifications
made using one variable show up when another variable references the modified
element. To duplicate an array, you must write a procedure to create a new array
and copy the old array’s elements to the new array.

To refer to an array element, use the array variable name followed by an index
expression enclosed in braces or parentheses. For example, if bar were a variable
of type marker, the following statement would assign the integer value 10 to the
element indexed by bar:

bat {bar} := 10;

You can perform the same operations on array elements that you can on other
DECTPU variables, with one exception: you cannot make partial pattern
assignments to array elements.

See the Guide to the DEC Text Processing Utility for additional information about
arrays.

Descriptions of the DECTPU Built-In Procedures 2-39

CREATE_ARRAY

Signaled Errors

TPU$_TOOMANY

TPU$_NEEDTOASSIGN

TPU$_INVPARAM

TPU$_MINVALUE

TPU$_MAXVALUE

TPU$_GETMEM

Examples

ERROR

ERROR

ERROR

WARNING

WARNING

ERROR

CREATE_ARRAY accepts no
more than two arguments.
CREATE_ARRAY must
appear on the right-hand side
of an assignment statement.
The arguments to CREATE_
ARRAY must be integers.

The first argument to
CREATE_ARRAY must be
1 or greater.

The first argument to
CREATE_ARRAY must be
no greater than 65,535.
DECTPU could not create

the array because DECTPU
did not have enough memory.

The following example creates an array that has ten predeclared integer-indexed
elements that can be processed quickly by DECTPU. It can also be indexed by
any other DECTPU data type except pattern, program, learn, and unspecified.

1. array2 := CREATE_ARRAY(10);

The following example creates an array that can be indexed by the integers -5
through 5. It can also be indexed by any other DECTPU data type other than

patterns and learn sequences.

2. array3 := CREATE_ARRAY(11, -5);

2-40 Descriptions of the DECTPU Built-In Procedures

CREATE_BUFFER

CREATE_BUFFER

Format

Parameters

[buffer2 :=] CREATE_BUFFER (stringl [,string2 [,buffer1] [,string3] 1)

stringl
A string representing the name of the buffer that you want to create.

string2
A string representing the file specification of an input file that is read into the
buffer.

bufferl
The buffer that you want to use as a template for the buffer to be created. The
information copied from the template buffer includes the following:

= End-of-buffer text

« Direction (FORWARD/REVERSE)

e Text entry mode (INSERT/OVERSTRIKE)
= Margins (right and left)

= Margin action routines

= Maximum number of lines

= Write-on-exit status (NO_WRITE)

= Modifiable status

= Tab stops

e Key map list

DECTPU does not copy the following attributes of the template buffer to the new
buffer:

= Buffer contents

= Marks or ranges

= Input file name

= Mapping to windows

e Cursor position

= Editing point

= Associated subprocesses

= Buffer name

= Permanent status, if that is an attribute of the template buffer

= System status, if that is an attribute of the template buffer

Descriptions of the DECTPU Built-In Procedures 2-41

CREATE_BUFFER

Return Value

Description

string3

The name of the journal file to be used with the buffer. DECTPU does not copy
the journal file name from the template buffer. Instead, CREATE_BUFFER uses
string3 as the new journal file name. If you do not specify string3, DECTPU
names the journal file by using its journal file naming algorithm. For more
information on the naming algorithm, see the Guide to the DEC Text Processing
Utility.

EVE turns on buffer-change journaling by default for each new buffer. However,
the CREATE_BUFFER built-in procedure does not automatically turn on
journaling. If you are layering directly on DECTPU, your application must

use SET (JOURNALING) to turn journaling on.

Caution

Journal files contain a record of all information being edited. Therefore,
when editing files containing secure or confidential data, be sure to keep
the journal files secure as well.

The buffer created by CREATE_BUFFER.

The CREATE_BUFFER procedure defines a new work space for editing text.
You can create an empty buffer or you can associate an input file name with the
buffer. CREATE_BUFFER optionally returns a buffer.

Although you do not have to assign the buffer that you create to a variable, you
need to make a variable assignment if you want to refer to the buffer for future
use. The buffer variable on the left-hand side of an assignment statement is
the item that you must use when you specify a buffer as a parameter for other
DECTPU built-in procedures. For example, to move to a buffer for editing, enter
the buffer variable after the POSITION built-in procedure:

ny_buffer_variabl e : = CREATE_BUFFER ("ny_buffer_name", "ny_file_name");
PCSI TION (ny_buffer_variable);

The buffer name that you specify as the first parameter for the CREATE_
BUFFER built-in procedure (for example, "my_buffer_name") is used by DECTPU
to identify the buffer on the status line. To change the status line, use the SET
(STATUS_LINE) built-in procedure.

If you want to skip an optional parameter and specify a subsequent optional
parameter, you must use a comma as a placeholder for the skipped parameter.

You can create multiple buffers. Buffers can be empty or they can contain text.
The current buffer is the buffer in which any DECTPU commands that you
execute take effect (unless you specify another buffer). Only one buffer can be
the current buffer. See the CURRENT_BUFFER built-in procedure for more
information.

A buffer is visible when it is associated with a window that is mapped to the
screen. A buffer can be associated with multiple windows, in which case any edits
that you make to the buffer are reflected in all of the windows in which the buffer

2-42 Descriptions of the DECTPU Built-In Procedures

CREATE_BUFFER

is visible. To get a list of all the buffers in your editing context, use the SHOW
(BUFFERS) built-in procedure.

When you use the following keywords with the SET built-in procedure, you can
establish attributes for buffers. The text describes the default for the attributes:

e SET (EOB_TEXT, buffer, string)—The default end-of-buffer text is [EOB].

ON
OFF

unmodifiable records can be deleted from buffers by built-ins such as ERASE _
LINE.

e SET (FORWARD, buffer)—The default direction is forward.
= SET (INSERT, buffer)—The default mode of text entry is insert.

- SET (ERASE_UNMODIFIABLE, buffer, { })—By default,

e SET (JOURNALING, buffer, { 8EF })—BYy default, buffer-change

journaling is turned off.
e SET (LEFT_MARGIN, buffer, integer)—The default left margin is 1 (that is,
the left margin is set in column 1).

e SET (LEFT_MARGIN_ACTION, buffer, program_source)—By default, buffers
do not have left margin action routines.

e SET (MARGINS, buffer, integerl, integer2)—The default left margin is 1 and
the default right margin is 80.

e SET (MAX_LINES, buffer, integer)—The default maximum number of lines is
0 (in other words, this feature is turned off).

ON
OFF

Using the OFF keyword makes a buffer unmodifiable.

- SET (MODIFIABLE, buffer, { })—By default, a buffer can be modified.

ON
OFF

that the specified buffer has been modified.

e SET (NO_WRITE, buffer [[,keyword])—By default, when you exit from
DECTPU, the buffer is written if it has been modified.

e SET (OUTPUT_FILE, buffer, string)—The default output file is the input file
specification with the highest existing version number for that file plus 1.

e SET (OVERSTRIKE, buffer)—The default mode of text entry is insert.

= SET (PERMANENT, buffer)—By default, the buffer can be deleted.

e SET (RECORD_ATTRIBUTE, marker, range, buffer)

e SET (REVERSE, buffer)—The default direction is forward.

e SET (RIGHT_MARGIN, buffer, integer)—The default right margin is 80.

e SET (RIGHT_MARGIN_ACTION, buffer, program_source)—By default,
buffers do not have right margin action routines.

e SET (SYSTEM, buffer)—By default, the buffer is a user buffer.

e SET (MODIFIED, buffer, { })—Turns on or turns off the bit indicating

Descriptions of the DECTPU Built-In Procedures 2-43

CREATE_BUFFER

string

e SET (TAB_STOPS, buffer, { -
integer

})—The default tab stops are set every

eight character positions.
See the SET built-in procedure for more information on these keywords.

Signaled Errors

TPU$_DUPBUFNAME WARNING First argument to the
CREATE_BUFFER built-in
must be a unique string.

TPU$_TRUNCATE WARNING A record was truncated to
the maximum record length.
TPUS$_TOOMANY ERROR The CREATE_BUFFER

built-in takes a maximum of
two arguments.

TPU$_TOOFEW ERROR The CREATE_BUFFER
built-in requires at least one
argument.

TPUS$_INVPARAM ERROR The CREATE_BUFFER

built-in accepts parameters
of type string or buffer only.

TPU$_GETMEM ERROR DECTPU ran out of virtual
memory trying to create the
buffer.

TPU$_OPENIN ERROR CREATE_BUFFER could not
open the specified input file.

TPU$_OPENOUT ERROR CREATE_BUFFER could not

open the journal file.

Examples

The following example creates a buffer called NEW_BUFFER and stores a pointer
to the buffer in the variable nb. Use the variable nb when you want to specify
this buffer as a parameter for DECTPU built-in procedures. The file specification
"login.com” reads the input file for NEW_BUFFER from LOGIN.COM.

1. nb := CREATE_BUFFER ("new_buffer", "login.conl)

The first statement in the following example creates a buffer called DEFAULTS
and stores a pointer to the buffer in the variable default_buffer. The second
statement sets the direction of default_buffer to reverse. The third statement
creates a buffer called BUFFER_B and stores a pointer to the buffer in the
variable b. This statement takes default information from default_buffer. Buffer
b does not receive any text, marks, or ranges from the buffer default_buffer.

2. default _buffer := CREATE BUFFER ("defaults");
SET (REVERSE, default buffer);
b := CREATE BUFFER ("buffer_b", "", default_buffer);

2-44 Descriptions of the DECTPU Built-In Procedures

CREATE_BUFFER

The following example creates the help buffer:

3. PROCEDURE user _hel p_buf fer
hel p_buf := CREATE BUFFER("hel p_buf");
SET (EOB_TEXT, help_buf, "[End of HELP]");
SET (NO WRITE, hel p_buf);
SET (SYSTEM hel p_buf);
ENDPROCEDURE;

The following example creates a buffer named scratch. It directs DECTPU

to name the associated buffer-change journal file SCRATCH_JL.JL. You must
use commas as placeholders for the two unspecified optional parameters. Also,
by default DECTPU puts journal files in the directory defined by the logical
name TPU$JOURNAL. TPU$JOURNAL points to the same directory that
SYS$SCRATCH points to. You can reassign TPU$SJOURNAL to point to a
different directory.

4. bufl := CREATE BUFFER ("Scratch",,,"Scratch jl.j1"):;

The following example creates a template buffer called DEFAULTS, changes the
end-of-buffer text for the template buffer, and then creates a user buffer. The
user buffer is created with the same end-of-buffer text that the defaults buffer
has.

5. defaults_buffer := CREATE BUFFER ("Defaults");
SET (EOB_TEXT, defaults_buffer, "[That's all, folks!]");
user_buffer := CREATE BUFFER ("Userl.txt", "", defaults_buffer);

Descriptions of the DECTPU Built-In Procedures 2-45

CREATE_KEY_MAP

CREATE_KEY_MAP

Format
[string2 :=] CREATE_KEY_MAP (stringl)

Parameter

stringl
A string that specifies the name of the key map you create.

Return Value

A string that is the name of the key map created.

Description

The CREATE_KEY_MAP procedure creates and names a key map. CREATE_
KEY_MAP optionally returns a string that is the name of the key map created. A
key map is a set of key definitions. Key maps let you manipulate key definitions
as a group. Key maps and their key definitions are saved in section files. The
default key map for DECTPU is TPU$SKEY_MAP, contained in the default key
map list TPUSKEY_MAP_LIST. See the description on key map lists in CREATE_
KEY_MAP_LIST.

The EVE editor does not use the default key map TPU$SKEY_MAP. In EVE,

the name of a key map is not the same as the variable that contains the key
map. For example, the EVE variable EVE$X_USER_KEYS contains the key map
named EVESUSER_KEYS, which stores your key definitions. EVE stores all

its key maps in the default key map list TPUSKEY_MAP_LIST. However, the
default key map, TPUSKEY_MAP, is removed from the default key map list by
the standard EVE section file.

When you create a key map, its keys are undefined. Each key map can hold
definitions for all characters in the DEC Multinational Character Set and all the
keypad keys and the function keys, in both their shifted and unshifted forms.
Each key map has its own name (a string). This name cannot be the same as
that of either another key map or a key map list.

Signaled Errors

TPU$_DUPKEYMAP WARNING A key map with this name
already exists.

TPU$_TOOFEW ERROR Too few arguments passed
to the CREATE_KEY_MAP
built-in.

TPU$_TOOMANY ERROR Too many arguments passed
to the CREATE_KEY_MAP
built-in.

TPU$_INVPARAM ERROR Wrong type of data sent to
the CREATE_KEY_MAP
built-in.

2-46 Descriptions of the DECTPU Built-In Procedures

CREATE_KEY_MAP

Example

The following example creates a key map and defines two keys in the key map.
The name of the key map is stored in the variable sample_key map.

PROCEDURE i nit_sanpl e_key map
sanpl e_key_map := CREATE_KEY MAP ("sanple_key map");

DEFINE_KEY ("EXIT", Ctrl_Z KEY, "Exit application", sanple_key map);
DEFI NE_KEY (" COPY_TEXT (' XYZZY')", Cirl_B KEY, "Magic Wrd", sanple_key_map);

ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-47

CREATE_KEY_MAP_LIST

CREATE_KEY MAP_LIST

Format
[string3 :=]
CREATE_KEY_MAP_LIST (stringl, string2 [,...I)

Parameters

stringl
A string that specifies the name of the key map list that you create.

string2
A string that specifies the names of the initial key maps within the key map list
you create.

Return Value

A string that is the name of the key map list created.

Description

The CREATE_KEY_MAP_LIST procedure creates and names a key map list,
and also specifies the initial key maps in the key map list it creates. CREATE_
KEY_MAP_LIST optionally returns a string that is the name of the key map
list created. A key map list is an ordered set of key maps. Key map lists let you
change the procedures bound to your keys. To find the definition of a given key,
DECTPU searches through the key maps in the specified or default key map list
until DECTPU either finds a definition for the key or reaches the end of the last
key map in the list.

DECTPU provides the default key map list TPU$SKEY_MAP_LIST, which contains
the default key map TPUSKEY_MAP. See the description of the CREATE_KEY_
MAP built-in procedure for more information on key maps.

The CREATE_KEY_MAP_LIST built-in procedure creates a new key map list,
names the key map list, and specifies the initial key maps contained in the list.

Key map lists store directions on what DECTPU is to do when you press an
undefined key associated with a printable character. By default, a key map list
directs DECTPU to insert undefined printable characters into the current buffer.
To change the default, use the SET (SELF_INSERT) built-in procedure.

A newly created key map list is not bound to any buffer. To bind a key map list
to a buffer, use the SET (KEY_MAP_LIST) built-in procedure. When you use the
POSITION built-in to select a current buffer, the key map list that is bound to
the buffer is automatically activated.

A newly created key map list has no procedure defined to be called when an
undefined key is referenced. You can define such a procedure with the SET
(UNDEFINED_KEY) built-in procedure. The default is to display the message
“key has no definition.”

Key map lists are saved in section files, along with any undefined key procedures
and the SELF_INSERT settings.

2-48 Descriptions of the DECTPU Built-In Procedures

CREATE_KEY_MAP_LIST

Signaled Errors

TPU$_DUPKEYMAP WARNING The string argument is
already defined as a key
map.

TPU$_DUPKEYMAPLIST WARNING The string argument is
already defined as a key map
list.

TPU$_NOKEYMAP WARNING The string argument is not a
defined key map.

TPU$ TOOFEW ERROR Too few arguments passed
to the CREATE_KEY_MAP_
LIST built-in.

TPU$ TOOMANY ERROR Too many arguments passed
to the CREATE_KEY_MAP_
LIST built-in.

TPU$_INVPARAM ERROR Wrong type of data sent to
the CREATE_KEY_MAP_
LIST built-in.

Example

The following example creates two key maps and groups them into a key map
list:

PROCEDURE i nit _hel p_key_map_| i st

hel p_user _keys := CREATE_KEY MAP ("hel p_user_keys");

hel p_keys : = CREATE KEY_MAP ("hel p_keys");

hel p_key list := CREATE KEY MAP_LIST ("hel p_key list", help_user_keys,
hel p_keys);

ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-49

CREATE_PROCESS

CREATE_PROCESS

Format

Parameters

Return Value

Description

process := CREATE_PROCESS (buffer [,string])

buffer
The buffer in which DECTPU stores output from the subprocess.

string

A string that represents the first command that you want to send to the

subprocess. If you do not want to include the first command when you use
the CREATE_PROCESS built-in procedure, see the SEND built-in procedure for
a description of how to send the first or subsequent commands to a subprocess.

The process created.

The CREATE_PROCESS procedure starts a subprocess and associates a buffer
with it. You can optionally specify an initial command to send to the subprocess.
You can create multiple subprocesses. When you exit from DECTPU, any
subprocesses you have created with CREATE_PROCESS are deleted. If you want
to remove a subprocess before exiting, use the DELETE built-in procedure with
the process as a parameter (DELETE (procl)), or set the variable to integer zero,
as follows:

procl :=0

CREATE_PROCESS creates a subprocess of a DECTPU session and all of the
output from the subprocess goes into a DECTPU buffer. You cannot run a
program or utility that takes over control of the screen from a process created
with this built-in procedure. You can, however, use the SPAWN built-in procedure
to create a subprocess that suspends your DECTPU process and places you
directly at the system command prompt. You can then run programs that control
the whole screen.

See the Guide to the DEC Text Processing Utility for a list of subprocess
restrictions.

Signaled Errors

TPU$_DUPBUFNAME WARNING First argument must be a
unique string.

TPU$_CREATEFAIL WARNING Unable to activate the
subprocess.

TPU$_TOOFEW ERROR Too few arguments passed
to the CREATE_PROCESS
built-in.

2-50 Descriptions of the DECTPU Built-In Procedures

TPU$_TOOMANY ERROR
TPU$_NEEDTOASSIGN ERROR
TPU$_INVPARAM ERROR
TPU$_CAPTIVE WARNING
TPU$_NOTMODIFIABLE WARNING
TPU$_NOPROCESS WARNING
TPU$_SENDFAIL WARNING
TPU$_DELETEFAIL WARNING

Example

The following example creates a buffer to hold the
commands executed by the OpenVMS subprocess:

I Create a buffer to hold the output fromthe DCL commands
I "SET NOON' and " DI RECTCRY".

PROCEDURE user _dcl _process
dcl _buffer := CREATE BUFFER ("dcl _buffer");
MAP (mai n_wi ndow, dcl buffer);
my_dcl _process := CREATE_PROCESS (dcl buffer, "SET NOON');
MESSAGE ("Creating DCL subprocess...");
SEND (" DI RECTCRY", ny_dcl process);
ENDPROCEDURE;

CREATE_PROCESS

Too many arguments passed
to the CREATE_PROCESS
built-in.

The CREATE_PROCESS
built-in call must be on

the right-hand side of an
assignment statement.

Wrong type of data sent to
the CREATE_PROCESS
built-in.

Unable to create a subprocess
in a captive account.

Attempt to change
unmodifiable buffer. You can
write only the output of the
subprocess to a modifiable
buffer.

No subprocess to interact
with. The process was
deleted between the time
that it was created and when
DECTPU attempted to send
information to it.

Unable to send data to the
subprocess.

Unable to terminate the
subprocess.

output from the DCL

Descriptions of the DECTPU Built-In Procedures 2-51

CREATE_RANGE

CREATE_RANGE

Format
o markerl marker2
range ;= CREATE_RANGE ({ keyword1 } { keywordl }
[, keyword2)
Parameters

markerl
The marker that indicates the point in the buffer where the range begins.

marker2
The marker that indicates the point in the buffer where the range ends.

keywordl
A keyword that indicates the point in the buffer where you want the range to
begin or end. Table 2—-1 shows the valid keywords and their meanings.

Table 2-1 CREATE_RANGE Keyword Parameters

Keyword Meaning
LINE_BEGIN The beginning of the current buffer’s current line.
LINE_END The end of the current buffer’s current line.

BUFFER_BEGIN Line 1, offset 0 in the current buffer. This is the first position
where a character could be inserted, regardless of whether
there is a character there. This is the same as the point
referred to by BEGINNING_OF (CURRENT_BUFFER).

BUFFER_END The last position in the buffer where a character could be
inserted. This is the same as the point referred to by END_
OF (CURRENT_BUFFER).

keyword2
The video attribute for the range: BLINK, BOLD, NONE, REVERSE, or
UNDERLINE. If you omit the parameter, the default is NONE.

Return Value
The range created by CREATE_RANGE.

Description

The CREATE_RANGE procedure returns a range that includes two delimiters
and all the characters between them, and sets the video attributes for displaying
the characters when they are visible on the screen. A range delimiter can be a
marker, the beginning or end of a line, or the beginning or end of a buffer. The
beginning and ending delimiters do not have to be of the same type but must be
in the same buffer.

CREATE_RANGE establishes a range that is delimited by the markers you
specify. You can create multiple ranges in a buffer. When you apply video
attributes to a range, you can see the range if it is in a visible buffer. A range
may overlap another range.

2-52 Descriptions of the DECTPU Built-In Procedures

CREATE_RANGE

If you clear the contents of a range with the ERASE built-in procedure, the range
structure still exists. The range and its video attributes, if any, move to the next
character or position beyond where the range ended before the range was erased.

To remove the range structure, use the DELETE built-in procedure or set the
variable to which the range is assigned to zero (rl := 0).

In portions of a range that either are associated with nonprintable characters or
are not associated with characters at all, DECTPU does not display any of the
video attributes of the range. However, if you insert new characters into portions
of a range where the video attributes have not been displayed, the new characters
do display the video attributes that apply to the range.

CREATE_RANGE checks whether the markers you specify as parameters are
free markers. A free marker is a marker not bound to a character. For more
information on free markers, see the description of the MARK built-in procedure.

If a marker defining a range is a free marker, DECTPU ties the range to the
character or end-of-line nearest to the free marker to use as the range delimiter.
An end-of-line is not a character but is a point to which a marker can be bound.

Signaled Errors

Examples

1.

ny_range

TPU$_NOTSAMEBUF WARNING First and second marker are
in different buffers.
TPU$_TOOFEW ERROR CREATE_RANGE requires
three parameters.
TPU$_TOOMANY ERROR CREATE_RANGE accepts no
more than three parameters.
TPU$ NEEDTOASSIGN ERROR CREATE_RANGE must

appear on the right-hand side
of an assignment statement.

TPUS$_INVPARAM ERROR One of your arguments to
CREATE_RANGE is of the
wrong type.

TPU$_BADKEY WARNING You specified an illegal
keyword.

The following example creates a range starting at start_ mark and ending at
end_mark. When this range is visible on the screen, the characters in the range
are bolded.

: = CREATE_RANGE (start_mark, end_mark, BOLD)

Descriptions of the DECTPU Built-In Procedures 2-53

CREATE_RANGE

The following example erases the text in the current buffer, starting at the editing
point and erasing text until the end of the buffer is reached:

2. PROCEDURE user _erase_to_eob
LOCAL start_of range,

here_to_eob;
start_of range := MARK (NONE);
here to EOB : = CREATE_RANGE (start_of range,
END_OF (CURRENT_BUFFER),
NONE) ;

ERASE (here to_eob);
ENDPROCEDURE;

The following example creates a range starting at the first point in the buffer
where a character can be inserted and ending at the point marked by mark2. If
the range is visible on the screen, the characters in it are highlighted with the

reverse video attribute.

3. the_range : = CREATE RANGE (BUFFER BEG N, mark2, REVERSE);

2-54 Descriptions of the DECTPU Built-In Procedures

CREATE_WIDGET

CREATE_WIDGET

Format

Format

Parameters

The CREATE_WIDGET built-in procedure has two variants with separate
syntaxes.

parent_widget }

widget := CREATE_WIDGET (widget_class, widget_name, { SCREEN

buffer

learn_sequence
[, < program

range

string

[, closure
[, widget_args... 111)

Low-Level Variant

This variant uses the Intrinsics or Motif Toolkit low-level creation routine to
create and return a widget. Although it has been created, the returned widget is
not managed and therefore not visible. The application must call the MANAGE _
WIDGET built-in procedure to make the widget visible.

widget := CREATE_WIDGET (resource_manager_name, hierarchy id,

{ parent_widget }
SCREEN

buffer

learn_sequence
[, < program

range

string

[, closure 1)

Hierarchy Variant

This variant creates and returns an entire hierarchy of widgets (as defined in a

Motif Resource Manager database) and returns the topmost widget. All children
of the returned widget are also created and managed. The topmost widget is not
managed, so none of the widgets created is visible.

widget_class
The integer returned by DEFINE_WIDGET_CLASS that specifies the class of
widget to be created.

widget_name
A string that is the name to be given to the widget.

parent_widget
The widget that is to be the parent of the newly created widget.

Descriptions of the DECTPU Built-In Procedures 2-55

CREATE_WIDGET

SCREEN
A keyword indicating that the newly created widget is to be the child of
DECTPU's main window widget.

buffer

The buffer that contains the interface callback routine. This code is executed
when the widget performs a callback to DECTPU; all widgets created with a
single CREATE_WIDGET call use the same callback code. If you do not specify
this parameter, DECTPU does not execute any callback code when the widget
performs a callback to DECTPU.

learn_sequence

The learn sequence that is the interface callback routine. This is executed
when the widget performs a callback to DECTPU,; all widgets created with a
single CREATE_WIDGET call use the same callback code. If you do not specify
this parameter, DECTPU does not execute any callback code when the widget
performs a callback to DECTPU.

program

The program that is the interface callback routine. This is executed when
the widget performs a callback to DECTPU; all widgets created with a single
CREATE_WIDGET call use the same callback code. If you do not specify this
parameter, DECTPU does not execute any callback code when the widget
performs a callback to DECTPU.

range

The range that contains the interface callback routine. This is executed when
the widget performs a callback to DECTPU; all widgets created with a single
CREATE_WIDGET call use the same callback code. If you do not specify this
parameter, DECTPU does not execute any callback code when the widget
performs a callback to DECTPU.

string

The string that contains the interface callback routine. This is executed when
the widget performs a callback to DECTPU; all widgets created with a single
CREATE_WIDGET call use the same callback code. If you do not specify this
parameter, DECTPU does not execute any callback code when the widget
performs a callback to DECTPU.

closure

A string or integer. DECTPU passes the value to the application when the widget
performs a callback to DECTPU. For more information about using closures, see
the Guide to the DEC Text Processing Utility.

If you do not specify this parameter, DECTPU passes the closure value (if any)
given to the widget in the User Interface Language (UIL) file defining the widget.
If you specify the closure value with CREATE_WIDGET instead of in the UIL file,
all widgets created with the same CREATE_WIDGET call have the same closure
value.

widget_args

One or more pairs of resource names and resource values. You can specify a
pair in an array or as a pair of separate parameters. If you use an array, you
index the array with a string that is the name of the resource you want to set.
Resource names are case sensitive. The corresponding array element contains the

2-56 Descriptions of the DECTPU Built-In Procedures

CREATE_WIDGET

value you want to assign to that resource. The array can contain any number of
elements. If you use a pair of separate parameters, use the following format:

resource_name_string, resource_value

Arrays and string/value pairs may be interspersed. Each array index and its
corresponding element value, or each string and its corresponding value, must be
valid widget arguments for the class of widget you are creating.

resource_manager_name
A case-sensitive string that is the name assigned to the widget in the UIL file
defining the widget.

hierarchy _id

The hierarchy identifier returned by the SET (UID) built-in procedure. This
identifier is passed to the Motif Resource Manager, which uses the identifier to
find the resource name in the database.

Return Value

The newly created widget.
Description

The CREATE_WIDGET procedure creates a widget. The widget name that you
specify in the User Interface Definition (UID) file must match the case of the
widget name that you specify as a parameter to CREATE_WIDGET. If you specify
case-sensitive widget names in your User Interface Language (UIL) file, you
must use the same widget name case with CREATE_WIDGET as you used in
the UIL file. If you specify case-insensitive widget names in your UIL file, the
UIL compiler translates all widget names to uppercase, so in this instance you
must use uppercase widget names with CREATE_WIDGET. Example 1 in the
Examples section specifies case-insensitive widget names in the UIL file and
specifies an uppercase name for the widget with the CREATE_WIDGET built-in
procedure.

If you specify one or more callback arguments in your UIL file, specify either the
routine TPUSWIDGET_INTEGER_CALLBACK or the routine TPU$SWIDGET _
STRING_CALLBACK. For more information about specifying callbacks, see the
Guide to the DEC Text Processing Utility. For more information about UIL files,
see the VMS DECwindows Guide to Application Programming. DECTPU uses
the Motif Version 1.1-3 compatibility libraries and requires that UID files are
produced using the 1.1-3 UIL compiler and not the version 1.2 UIL compiler
provided with new releases of DECwindows. Procedures for using the 1.1-3 UIL
compiler are described in the DECwindows release notes.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid
keyword as a parameter.

TPU$_UNDWIDCLA WARNING You specified a widget class
integer that is not known to
DECTPU.

Descriptions of the DECTPU Built-In Procedures 2-57

CREATE_WIDGET

TPUS$_INVPARAM

TPU$_NEEDTOASSIGN

TPU$_REQUIRESDECW

TPU$_TOOFEW
TPU$_TOOMANY
TPU$_WIDMISMATCH

TPU$_ARGMISMATCH

TPUS$_COMPILEFAIL

TPU$_NONAMES

TPU$_EXTRANEOUSARGS

TPU$_BADHIERARCHY

Examples

1.

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

WARNING

WARNING

ERROR

ERROR

You specified one of the
parameters with data of the
wrong type.

CREATE_WIDGET must
return a value.

You can use CREATE_
WIDGET only if you
are using DECwindows
DECTPU.

Too few arguments passed to
CREATE_WIDGET.

Too many arguments passed
to CREATE_WIDGET.

You specified a widget whose
class is not supported.

A widget argument was not
an array or a string/value
pair.

Compilation of the widget
interface callback routine
failed due to syntax errors.

A widget argument is not
supported by the specified
widget.

You specified one or

more extraneous widget
arguments.

You specified an invalid
hierarchy identifier.

The following example, eve_display_example, creates a modal dialog box widget
and maps the widget to the DECTPU screen.

The example shows how to use the variant of CREATE_WIDGET that returns
an entire widget hierarchy. To use this variant to create a widget or widget
hierarchy, you must have available the compiled form of a User Interface
Language (UIL) file specifying the characteristics of the widgets you want

to create. Compaq recommends that you use one or more UIL files and the
corresponding variant of CREATE_WIDGET whenever possible. UIL is efficient
and UIL files make it easy to translate your application into other languages.

PROCEDURE eve_di spl ay_exanpl e

LOCAL exanpl e_wi dget,
exanpl e_wi dget _nane,

exanpl e_hi erarchy;

|
|

Variabl e assigned to the created widget.
The nanme of the widget assigned

to this variable must be uppercase

if you specified case insensitive
widget nanes in the UL file.

Resour ce Manager

hierarchy for this exanple.

2-58 Descriptions of the DECTPU Built-In Procedures

CREATE_WIDGET

ON_ERROR
[OTHERW SE] : I Traps errors.
ENDON_ERRCR;

I Set the widget hierarchy. The default file spec is "SYSSLIBRARY: .U D'
exanpl e_hierarchy := SET (U D, "mynode$dua0:[smith]exanple");

! The DECTPU CREATE_W DGET built-in needs the name of the widget
! defined in the UL file.

exanpl e_wi dget _name := "EXAMPLE BOX"; ! The widget EXAMPLE BOX is
I defined in the file EXAVPLE. Ul L.

I Create the widget if it has not already been created.

| F GET_INFO (exanpl e_wi dget, "type") <> WDCGET
THEN
exanpl e_wi dget := CREATE W DGET (exanpl e_wi dget nane, exanpl e_hi erarchy,
SCREEN, eve$kt cal | back_routine);

I EVE defines eve$cal | back_di spatch to be EVE' s cal | back routine.
I You do not need to define it again if you are extending EVE

ENDI F;

I Map "exanpl e_widget" to the screen using MANAGE_W DCET.
MANAGE W DGET (exanpl e_wi dget);

RETURN (TRUE) ;

ENDPRCCEDURE;

The following example shows a sample UIL file describing the modal dialog

box called example_box. The UIL file specifies where the widget appears on the
screen, what label appears on the box’s OK button, and what message the widget
displays.

nodul e exanpl e
version = '\V00- 000’

I Thisis asanple UL file that creates a message box containing
! the nessage "Hello Wrld".

names = case_insensitive

val ue
exanpl e_ok . conpound_string ("CK");
exanpl e_message . conmpound_string ("Hello World");
obj ect
exanpl e_box : XmMessageBox {
argunents {
Xm\def aul t Position = true; ! puts box in center work area
XmNokLabel String = exanpl e_ok;
XmNnessageString = exanpl e_nessage;
b
h
end nodul e;

For an example showing how to use the variant of CREATE_WIDGET that calls
the Toolkit low-level creation routine, see Example A-1.

Descriptions of the DECTPU Built-In Procedures 2-59

CREATE_WINDOW

CREATE_WINDOW

Format

Parameters

Return Value

Description

[window :=]|
CREATE_WINDOW (integerl, integer2,
ON
OFF)
1
0
integerl

The screen line number at which the window starts.

integer2
The number of rows in the window.

ON, 1

A keyword that directs DECTPU to display a status line in the new window.

The status line occupies the last row of a window. By default, the status line is
displayed in reverse video and contains the following information about the buffer
that is currently mapped to the window:

e The name of the buffer that is associated with the window
= The name of the file that is associated with the buffer, if one exists

See SET (STATUS_LINE) for information on changing the video attributes of the
status line, the information displayed on the status line, or both.

OFF, 0
Suppresses the display of the status line.

The window created by CREATE_WINDOW.

The CREATE_WINDOW procedure defines a screen area called a window. You
must specify the screen line number at which the window starts, the length of
the window, and whether the status line is to be displayed. CREATE_WINDOW
optionally returns the newly created window. If you want to use the window
that you create as a parameter for any other built-in procedure, then you should
specify a variable into which the window is returned.

You can create multiple windows on the screen, but only one window can be the
current window. The cursor is positioned in the current window. The current
window and the current buffer are not necessarily the same.

To make a window visible, you must associate a buffer with the window and then
map the window to the screen. The following command maps main_window to
the screen:

MAP (i n_wi ndow, main_buffer)

2-60 Descriptions of the DECTPU Built-In Procedures

CREATE_WINDOW

See the MAP built-in procedure for more information.

The following keywords used with the SET built-in procedure let you establish
attributes for windows. This list shows the defaults for the attributes:

SET (PAD, window, keyword)—By default, there is no blank padding on the
right.

SET (SCROLL_BAR)—BYy default, DECTPU does not create vertical and
horizontal scroll bars for a window in the DECwindows environment.

SET (SCROLL_BAR_AUTO_THUMB)—BY default, DECTPU controls the
slider in any scroll bars in a window.

SET (SCROLLING, window, keyword, integerl, integer2, integer3)—The
default cursor limit for scrolling at the top of the screen is the first line of the
window; the default cursor limit for scrolling at the bottom of the screen is
the bottom line of the window. If the terminal type you are using does not let
you set scrolling regions, the window is repainted.

SET (STATUS_LINE, window, keyword, string)—The status line may be ON
or OFF according to the keyword specified for the CREATE_WINDOW built-in
procedure. See the preceding description of the ON keyword for information
about the default attributes of a status line.

SET (TEXT, window, keyword)—BYy default, the text is set to BLANK_TABS
(tabs are displayed as blank spaces).

SET (VIDEO, window, keyword)—There are no video attributes by default.

SET (WIDTH, window, integer)—By default, the width is the same as the
physical width of the terminal screen when the window is created.

See the SET built-in procedure for more information on these keywords.

Use the SHIFT built-in procedure to display text that lies to the right of the
window’s right edge in an unshifted window. For more information, see the
description of the SHIFT built-in in this chapter.

Signaled Errors

TPU$_TOOFEW ERROR The CREATE_WINDOW
built-in requires exactly
three parameters.

TPU$_TOOMANY ERROR The CREATE_WINDOW
built-in accepts exactly three
parameters.

TPU$_BADKEY ERROR The keyword must be either
ON or OFF.

TPUS$_INVPARAM ERROR One or more of the specified
parameters have the wrong
type.

TPU$_BADWINDLEN WARNING Invalid window length.

TPU$ BADFIRSTLINE WARNING Invalid first line for window.

Descriptions of the DECTPU Built-In Procedures 2-61

CREATE_WINDOW

Examples

The following example creates a window that starts at screen line 11 and is 10
rows long, and assigns the window to the variable new_window:

1. new_w ndow := CREATE_WNDOW (11, 10, ON)

A status line is displayed as the last line of the window. To make this window
visible, you must associate an existing buffer with it and map the window to the
screen with the following command:

2. MAP (new wi ndow, buffer_variable)

The following example creates a window called new_window that starts at screen
line 1 and is 21 lines long. No status line is displayed. Tabs are displayed as
special graphic characters. The buffer new_buffer, which is set to NO_WRITE, is
associated with the window and the window is mapped to the screen.

3. PROCEDURE user _nmake_wi ndow
new w ndow : = CREATE_ WNDOW 1, 21, OFF);
SET (TEXT, new wi ndow, GRAPH C_TABS);
new buf fer := CREATE BUFFER ("user _buffer_nane");
SET (NO WRITE, new buffer);
MAP (new_wi ndow, new buffer);
ENDPROCEDURE;

2-62 Descriptions of the DECTPU Built-In Procedures

CURRENT_BUFFER

CURRENT_BUFFER

Format
buffer := CURRENT_BUFFER

Parameters

None.

Return Value

The buffer in which you are currently positioned.

Description

The CURRENT_BUFFER procedure returns the buffer in which you are
currently positioned. The current buffer is the work space in which any DECTPU
statements you execute take effect. The editing point is in the current buffer.
The editing point is not necessarily the same as the cursor position.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_BUFFER takes
no parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_BUFFER

built-in must be on the right-
hand side of an assignment
statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

Examples

The following example stores a pointer to the current buffer in the variable
my_cur_buf:

1. ny_cur_buf := CURRENT_BUFFER

The following example reverses the direction of the current buffer:

2. PROCEDURE user _toggle_direction
| F CURRENT_DI RECTI ON = FORWARD
THEN
SET (REVERSE, CURRENT BUFFER);
ELSE
SET (FORWARD, CURRENT BUFFER);
ENDI F;
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-63

CURRENT_CHARACTER

CURRENT_CHARACTER

Format
string := CURRENT_CHARACTER

Parameters

None.

Return Value

A string that consists of the character at the editing point in the current buffer.

Description

The CURRENT_CHARACTER procedure returns the character at the editing
point in the current buffer at which most editing operations are carried out. Each
buffer maintains its own editing point, but only the editing point in the current
buffer is the active editing point. An editing point, which always refers to a
character position in a buffer, is not necessarily the same as the cursor position,
which always refers to a location in a window. For more information on the
distinction between the editing point and the cursor position, see Appendix C.

If the editing point is at the end of a line, CURRENT_CHARACTER returns
a null string. If the editing point is at the end of a buffer, CURRENT _
CHARACTER returns a null string and also signals a warning.

Using CURRENT_CHARACTER may cause DECTPU to insert padding spaces or
blank lines in the bufferr CURRENT_CHARACTER causes the screen manager
to place the editing point at the cursor position if the current buffer is mapped
to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or below the
end of the buffer), DECTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_CHARACTER
takes no parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_

CHARACTER built-in must
be on the right-hand side of
an assignment statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.
TPU$_NOEOBSTR WARNING You are positioned at the

EOB (end-of-buffer) mark.

2-64 Descriptions of the DECTPU Built-In Procedures

CURRENT_CHARACTER

Examples
The following example stores the string that represents the editing point in the
variable my_cur_char:

1. my_cur_char := CURRENT_CHARACTER
The following example writes the character that is at the current character
position into the message area:

2. PROCEDURE user _display_current_character

I This procedure returns the ASCIl character in the editing point.

ascii_char := CURRENT CHARACTER;
| F ascii_char <> ""

THEN
MESSAGE ("The current character is '" + ascii_char + "'");
ELSE
MESSAGE ("There is no current character.");
ENDI F;
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-65

CURRENT_COLUMN

CURRENT_COLUMN

Format
integer := CURRENT_COLUMN

Parameters

None.

Return Value

An integer that is the column number of the current cursor position on the screen.

Description

The CURRENT_COLUMN procedure returns an integer that is the current
column number of the cursor position on the screen. The column numbers range
from 1 on the extreme left of the screen to the maximum value allowed for the
terminal type you are using on the extreme right of the screen.

The value returned by CURRENT_COLUMN and the value returned by GET _
INFO (SCREEN, "current_column") are equivalent.

When used in a procedure, CURRENT_COLUMN does not necessarily return the
position where the cursor has been placed by other statements in the procedure.
DECTPU generally does not update the screen until all statements in a procedure
are executed. If you want the cursor position to reflect the actual editing location,
put an UPDATE statement in your procedure immediately before any statements
containing CURRENT_COLUMN, as follows:

UPDATE (CURRENT W NDOW ;

If you do not want to update a window to get the current value for CURRENT _
COLUMN, you can use the GET_INFO built-in procedure (buffer_variable,
"offset_column"). This built-in returns the column number that the current offset
in the buffer would have if it were mapped to a window, and if you were to
force a screen update. This built-in returns an accurate value only if both of the
following conditions are true:

< You are using bound cursor movement (MOVE_VERTICAL,
MOVE_HORIZONTAL) or other built-in procedures that cause cursor
movement because of character movement within a buffer.

e The window is not shifted.

GET_INFO (window_variable, "current_column") does not necessarily return the
column number that the cursor would occupy if you caused an explicit screen
update.

If a window is shifted, CURRENT_COLUMN still returns the current column
number of the cursor on the screen. However, the value returned by x := GET_
INFO (buffer, "offset_column") includes the number of columns by which the
window is shifted. For example, if a window is shifted to the left by eight
columns, CURRENT_COLUMN returns the value 1, while x := GET_INFO
(buffer, "offset_column") returns the value 9.

2-66 Descriptions of the DECTPU Built-In Procedures

CURRENT_COLUMN

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_COLUMN takes
no parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_COLUMN

built-in must be on the right-
hand side of an assignment
statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

Examples

The following example combines three DECTPU built-in procedures. CURRENT _
COLUMN returns the integer that is the current column position, STR converts
the integer to a string, and MESSAGE writes this string to the message buffer.

1. MESSAGE (STR ((CURRENT_COLUWN))

The following example splits a line at the editing point. If the editing point is row
1, column 1, the procedure causes the screen to scroll.

2. PROCEDURE user _split_line
LOCAL ol d_position, new position;

SPLIT_LINE;
|'F (CURRENT_ROWN = 1) AND (CURRENT_COLUWN = 1)
THEN
ol d_position := MARK (NONE);
SCROLL (CURRENT_W NDOW -1);
new position := MARK (NONE);
I'Make sure we scrolled before doing CURSOR_VERTI CAL
I F new position <> ol d_position
THEN
CURSOR_VERTI CAL (1);
ENDI F;
ENDI F;
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-67

CURRENT_DIRECTION

CURRENT_DIRECTION

Format
keyword := CURRENT_DIRECTION

Parameters

None.

Return Value

A keyword (FORWARD or REVERSE) that indicates the current direction of the
current buffer.

Description

The CURRENT_DIRECTION procedure returns a keyword (FORWARD or
REVERSE) that indicates the current direction of the current buffer. See also the
descriptions of the SET (FORWARD) and SET (REVERSE) built-in procedures.

If the FORWARD keyword is returned, the current direction is toward the end of
the buffer. If the REVERSE keyword is returned, the current direction is toward
the beginning of the buffer.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_DIRECTION
takes no parameters.
TPUS$_NEEDTOASSIGN ERROR The CURRENT_DIRECTION

built-in must be on the right-
hand side of an assignment
statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

Examples

The following example stores in the variable my_cur_dir the keyword that
indicates whether the current direction setting for the buffer is FORWARD or
REVERSE:

1. ny_cur_dir ;= CURRENT DI RECTI ON

2-68 Descriptions of the DECTPU Built-In Procedures

2.

CURRENT_DIRECTION

The following example writes to the message buffer a message indicating the
current direction of character movement in the buffer:

PROCEDURE user _show direction
| F CURRENT_DI RECTI ON = FORWARD

THEN
my_nessagel :
ELSE
my_nessage? :
ENDI F;
ENDPROCEDURE;

MESSAGE (" Forward");
MESSAGE ("Reverse");

Descriptions of the DECTPU Built-In Procedures 2-69

CURRENT_LINE

CURRENT_LINE

Format
string := CURRENT_LINE

Parameters

None.

Return Value

A string that represents the current line.

Description

The CURRENT_LINE procedure returns a string that represents the current line.
The current line is the line that contains the editing point. If you are positioned
on a line that has a length of 0, CURRENT _LINE returns a null string. If you
are positioned at the end of the buffer, CURRENT_LINE returns a null string
and also signals a warning.

Using CURRENT_LINE may cause DECTPU to insert padding spaces or blank
lines in the buffer. CURRENT _LINE causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a visible
window. For more information on the distinction between the cursor position and
the editing point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or below the
end of the buffer), DECTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_LINE takes no
parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_LINE built-

in must be on the right-
hand side of an assignment

statement.
TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.
TPU$_NOEOBSTR WARNING You are positioned at or

beyond the EOB (end-of-
buffer) mark.

2-70 Descriptions of the DECTPU Built-In Procedures

CURRENT_LINE

Examples

The following example stores in the variable my_cur_lin the string that
represents the current line. The current line is the line in the current buffer
that contains the editing point.

1. my_cur_lin := CURRENT LI NE

The following example returns true if the current line has the format of a DSR
command (starts with a period followed by an alphabetic character, a semicolon,
or an exclamation point). If not, the procedure returns false. The procedure
assumes that the cursor was at the beginning of the line and moves it back to the
beginning of the line when done.

2. PROCEDURE user _runoff _|ine
| F LENGTH (CURRENT_LINE) < 2

THEN
user _runoff line := 0;
ELSE
| F CURRENT_CHARACTER <> "."
THEN
user_runoff line := 0;
ELSE
MOVE_HORI ZONTAL (1);
| F | NDEX
("abcdef ghi j kI mopgr st uvwxyz ABCDEFCH JKLMNOPQRSTUVWKYZ! ;
CURRENT_CHARACTER) = 0
THEN
user_runoff line := 0;
ELSE
user_runoff line := 1;
ENDI F;
MOVE_HORI ZONTAL (-1);
ENDI F;
ENDI F;
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-71

CURRENT_OFFSET

CURRENT_OFFSET

Format
integer := CURRENT_OFFSET

Parameters

None.

Return Value

An integer that is the offset of the editing point within the current line.

Description

The CURRENT_OFFSET procedure returns an integer for the offset of the
editing point within the current line. The current offset is the number of
positions a character is located from the first character position in the current
line (offset 0). In DECTPU, the leftmost character position is offset 0, and this
offset is increased by 1 for each character position (including the tab character) to
the right. DECTPU numbers columns starting with the leftmost position on the
screen where a character could be placed, regardless of where the margin is. This
leftmost position is numbered 1.

Note

The current offset value is not the same as the position of the cursor on
the screen. See the CURRENT_COLUMN built-in procedure if you want
to determine where the cursor is. For example, if you have a line with a
left margin of 10 and if the cursor is on the first character in that line,
then CURRENT_OFFSET returns 0 while CURRENT_COLUMN returns
10.

Using CURRENT_OFFSET may cause DECTPU to insert padding spaces or
blank lines in the buffer. CURRENT_OFFSET causes the screen manager to
place the editing point at the cursor position if the current buffer is mapped to
a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or below the
end of the buffer), DECTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

If you are using an interface with free cursor motion, when you move beyond
the end of a line CURRENT_OFFSET makes the current cursor position the new
end-of-line.

If the current offset equals the length of the current line, you are positioned at
the end of the line.

2-72 Descriptions of the DECTPU Built-In Procedures

CURRENT_OFFSET

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_OFFSET takes
no parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_OFFSET

built-in must be on the right-
hand side of an assignment
statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

Examples

The following example stores the integer that is the offset position of the current
character in the variable my_cur_off:

1. ny_cur_off := CURRENT OFFSET

The following example uses the CURRENT_OFFSET built-in procedure to
determine whether the editing position is at the beginning of a line. If the
position is at the beginning, the procedure appends the current line to the
previous line; otherwise, it deletes the previous character. Compare this
procedure with the procedure used as an example for the APPEND_LINE
built-in procedure.

2. PROCEDURE user _del ete

| F CURRENT OFFSET = 0
THEN
APPEND_LI NE;
ELSE
ERASE_CHARACTER (-1);
ENDI F:
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-73

CURRENT_ROW

CURRENT_ROW

Format
integer := CURRENT_ROW

Parameters

None.

Return Value

An integer that represents the screen line on which the cursor is located.

Description

The CURRENT_ROW procedure returns an integer that is the screen line on
which the cursor is located. The screen lines are numbered from 1 at the top of
the screen to the maximum number of lines available on the terminal. You can
get the value of the current row by using the GET_INFO (SCREEN, "current_
row") built-in procedure.

When used in a procedure, CURRENT_ROW does not necessarily return the
position where the cursor has been placed by other statements in the procedure.
The value returned by CURRENT_ROW may not be the current value because
DECTPU generally does not update the screen until all statements in a procedure
are executed. If you want the cursor position to reflect the actual editing location,
put an UPDATE statement in your procedure immediately before any statements
containing CURRENT_ROW, as follows:

UPDATE (CURRENT_W NDOW ;
Signaled Errors

TPU$ _NEEDTOASSIGN ERROR The CURRENT_ROW built-
in must be on the right-
hand side of an assignment
statement.

TPUS$_TOOMANY ERROR CURRENT_ROW takes no
parameters.

Examples

The following example causes the cursor to move up the screen:

1. PROCEDURE user_go_up
| F CURRENT_ROW = GET_I NFO (CURRENT_W NDON "vi si bl e_t op")
THEN
SCROLL (CURRENT_W NDOW -1);
ELSE
CURSOR_VERTI CAL (-1);
ENDI F;
ENDPROCEDURE;

The following example causes the cursor to move down the screen. Because
CURSOR_VERTICAL crosses window boundaries, you must use the SCROLL
built-in procedure to keep the cursor motion within a single window if you

2-74 Descriptions of the DECTPU Built-In Procedures

CURRENT_ROW

are using free cursor motion. See CURSOR_HORIZONTAL and CURSOR_
VERTICAL for more information.

If the movement of the cursor would take it outside the window, the preceding

procedures scroll text into the window to keep the cursor visible. You can bind

these procedures to a key so that the cursor motion can be accomplished with a
single keystroke.

2. PROCEDURE user _go_down
| F CURRENT_ROW = GET_I NFO (CURRENT_W NDOW "vi si bl e_bot t ont')
THEN
SCROLL (CURRENT_W NDOW 1);
ELSE
CURSCR_VERTI CAL (1);
ENDI F;
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-75

CURRENT_WINDOW

CURRENT_WINDOW

Format

Parameters

Return Value

Description

window := CURRENT_WINDOW

None.

The window in which the cursor is visible.

The CURRENT_WINDOW procedure returns the window in which the cursor
is visible. The current window is the window on which you have most recently
performed one of the following operations:

= Selection by using the POSITION built-in
= Mapping to the screen by using the MAP built-in
e Adjustment by using the ADJUST_WINDOW built-in

The current window contains the cursor at the screen coordinates current_row
and current_column. The current buffer is not necessarily associated with the
current window.

Signaled Errors

Examples

1.

my_cur_win

TPU$_TOOMANY ERROR CURRENT_WINDOW takes
no parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_WINDOW

built-in must be on the right-
hand side of an assignment
statement.

TPU$ WINDNOTMAPPED WARNING No windows are mapped to
the screen.

The following example stores the window that holds the cursor in the variable
my_cur_win:

: = CURRENT_W NDOW

2-76 Descriptions of the DECTPU Built-In Procedures

CURRENT_WINDOW

The following example determines the length of the current window and then
uses that value as a parameter for the SCROLL built-in procedure.

2. PROCEDURE user _next_screen
LOCAL how nuch_scrol | ;

how_nuch_scrol | := GET_I NFO (CURRENT_W NDON "visible_l ength");
SCROLL (CURRENT_W NDOW how _ruch_scrol |);
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-77

CURSOR_HORIZONTAL

CURSOR_HORIZONTAL

Format
[integer2 :=] CURSOR_HORIZONTAL (integerl)

Parameter

integerl

The signed plus or minus integer value that specifies the number of screen
columns to move the cursor position. A positive value directs DECTPU to move
the cursor to the right; a negative value directs DECTPU to move the cursor to
the left. The value 0 causes DECTPU to synchronize the active editing point with
the cursor position.

Return Value

An integer that represents the number of columns the cursor moved. If DECTPU
cannot move the cursor as many columns as specified by integerl, DECTPU moves
the cursor as many columns as possible. The return value may be negative. This
notation is reserved for future versions of DECTPU. A negative return value
does not denote that the cursor moved to the left. Rather, the integer shows the
number of spaces that the cursor moved right or left. If the cursor did not move,
integer2 has the value 0. If the CURSOR_HORIZONTAL built-in produces an
error, the value of integer2 is indeterminate.

Description

The CURSOR_HORIZONTAL procedure moves the cursor position across

the screen and optionally returns the cursor movement status. You can use
CURSOR_HORIZONTAL to provide free cursor movement in a horizontal
direction. Free cursor movement means that the cursor is not tied to text, but
can move across all available columns in a screen line.

If you move before the beginning of a line, after the end of a line, in the middle of
a tab, or beyond the end-of-file mark, other built-ins may cause padding lines or
spaces to be added to the buffer.

If you use the CURSOR_HORIZONTAL built-in within a procedure, screen
updating occurs in the following manner:

< When you execute a built-in that modifies the buffer or the editing point
before you issue the call to CURSOR_HORIZONTAL, the screen is updated
before CURSOR_HORIZONTAL is executed. This action ensures that the
horizontal movement of the cursor starts at the correct character position.
Otherwise, the screen manager does not update the screen until the procedure
has finished executing and control is returned to the screen manager.

* CURSOR_HORIZONTAL does not move the cursor beyond the left or right
edge of the window in which it is located. You cannot move the cursor outside
the bounds of a window.

e CURSOR_HORIZONTAL has no effect if you use any input device other than
a video terminal supported by DECTPU.

2-78 Descriptions of the DECTPU Built-In Procedures

CURSOR_HORIZONTAL

Signaled Errors

TPU$ TOOFEW ERROR CURSOR_HORIZONTAL
requires one parameter.

TPU$ TOOMANY ERROR CURSOR_HORIZONTAL
accepts only one parameter.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong

type.
Examples

The following example moves the cursor position one screen column to the right:

1. int_x := CURSOR HORI ZONTAL (1)

The following example provides for free cursor motion to the left. You can bind
these procedures to keys (for example, the arrow keys) so that the movement can
be accomplished with a single keystroke.

2. PROCEDURE user _free cursor |eft
move_|eft ;= CURSOR_HORI ZONTAL (-1);
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-79

CURSOR_VERTICAL

CURSOR_VERTICAL

Format
[integer2 :=] CURSOR_VERTICAL (integerl)

Parameter

integerl

The signed integer value that specifies how many screen lines to move the cursor
position. A positive value for integerl moves the cursor position down. A negative
integer moves the cursor position up.

Return Value

An integer that represents the number of rows that the cursor moved up or down.
If DECTPU could not move the cursor as many rows as specified by integerl,
DECTPU moves the cursor as many rows as possible.

If CROSS_WINDOW_BOUNDS is set to ON, CURSOR_VERTICAL may position
the cursor to another window. In this case, CURSOR_VERTICAL returns the
negative of the number of rows the cursor moved. A negative return value does
not denote that the cursor moved upward.

If the cursor did not move, integer2 has the value 0. If the CURSOR_VERTICAL
built-in procedure produced an error, the value of integer2 is indeterminate.

Description

The CURSOR_VERTICAL procedure moves the cursor position up or down
the screen and optionally returns the cursor movement status. You can use
CURSOR_VERTICAL to provide free cursor movement in a vertical direction.
Free cursor movement means that the cursor is not tied to text, but that it can
move up and down to all lines on the screen that can be edited, whether or not
there is text at that column in the new line.

The cursor does not move beyond the top or the bottom edges of the screen.
However, CURSOR_VERTICAL can cross window boundaries, depending upon
the current setting of the CROSS_WINDOW_BOUNDS flag. See SET (CROSS _
WINDOW_BOUNDS) for information on how to set this flag. (Use the POSITION
built-in to move the cursor to a different window on the screen.)

When CROSS WINDOW_BOUNDS is set to ON, CURSOR_VERTICAL can
move the cursor position to a new window. The new window in which the cursor
is positioned becomes the current window. The column position of the cursor
remains unchanged unless vertical movement would position the cursor outside
the bounds of a window narrower than the previous window. In this instance,
the cursor moves to the left until it is positioned within the right boundary of the
narrower window.

When CROSS_WINDOW_BOUNDS is set to OFF, CURSOR_VERTICAL does not
move the cursor outside the current window. If the SET (SCROLLING) built-in
has been used to set scrolling margins, CURSOR_VERTICAL also attempts to
keep the cursor within the scroll margins.

2-80 Descriptions of the DECTPU Built-In Procedures

CURSOR_VERTICAL

CURSOR_VERTICAL positions the cursor only in screen areas in which editing
can occur. For example, CURSOR_VERTICAL does not position the cursor on the
status line of a window, in the prompt area, or in an area of the screen that is
not part of a window. The blank portion of a segmented window is not considered
part of a window for this purpose.

If you use CURSOR_VERTICAL within a procedure, screen updating occurs in
the following manner:

= When you execute a built-in that modifies the buffer or the current character
position before you issue the call to CURSOR_VERTICAL, the screen is
updated before CURSOR_VERTICAL is executed. This action ensures that
the vertical movement of the cursor starts at the correct character position.
Otherwise, the screen manager does not update the screen until the procedure
has finished executing and control is returned to the screen manager.

e CURSOR_VERTICAL has no effect if you use an input device other than a
video terminal supported by DECTPU.

Signaled Errors

TPU$ TOOFEW ERROR CURSOR_VERTICAL
requires at least one
parameter.

TPU$_TOOMANY ERROR CURSOR_VERTICAL
accepts at most one
parameter.

TPUS$_INVPARAM ERROR You did not specify an integer
as the parameter.

Examples

1.

2.

The following example moves the cursor position five lines toward the bottom of
the screen:

int_y := CURSOR _VERTI CAL (5)

The following example provides for free cursor motion up and down the screen.
These procedures can be bound to keys (for example, the arrow keys) so that you
can make the movement with a single keystroke.

PROCEDURE user _free_cursor_down

I F GET_I NFO (CURRENT W NDOW " CURRENT ROW) =
GET_| NFO (CURRENT W NDOW " VI SI BLE_BOTTOM)

THEN
SCROLL (CURRENT W NDOW 1):
ELSE
right_x := CURSOR VERTI CAL (1):
ENDI F:
ENDPROCEDURE;

These examples work regardless of the setting of CROSS_WINDOW_BOUNDS
because the SCROLL built-in procedure keeps the cursor motion within a single
window.

Descriptions of the DECTPU Built-In Procedures 2-81

DEBUG_LINE

DEBUG_LINE

Format
integer := DEBUG_LINE

Parameters

None.

Return Value

An integer that represents the line number of the current breakpoint.

Description

The DEBUG_LINE procedure returns the line number of the current breakpoint.
Use DEBUG_LINE when writing your own DECTPU debugger.

Compaq recommends that you use the debugger provided in
SYS$SHARE: TPU$SDEBUG.TPU.

Signaled Error

TPU$_NEEDTOASSIGN ERROR The DEBUG_LINE built-in
must appear on the right-
hand side of an assignment
statement.

Example

In the following example, the code fragment first uses GET_INFO to request the
line number of the breakpoint in the current procedure. If the line number is 0,
meaning that the breakpoint is not in a procedure, the code uses DEBUG_LINE
to determine the breakpoint’'s line number relative to the buffer.

the line := GET_INFO (DEBUG "line_number");

IFthe line = 0
THEN the |ine := DEBUG LI NE;
ENDI F;

2-82 Descriptions of the DECTPU Built-In Procedures

DEFINE_KEY

DEFINE_KEY
Format
buffer
learn
DEFINE_KEY (< program ;, key-name
range
stringl
[,string2 [,string3] 1)
Parameters
buffer

A buffer that contains the DECTPU statements to be associated with a key.

learn
A learn sequence that specifies the executable code associated with a key.

program
A program that contains the executable code to be associated with a key.

range
A range that contains the DECTPU statements to be associated with a key.

stringl
A string that specifies the DECTPU statements to be associated with a key.

key-name

A DECTPU key name for a key or a combination of keys. See the Guide to the
DEC Text Processing Utility for a list of the DECTPU key names for the LK0201
and LKO0401 series of keyboards. You can also use the SHOW (KEYWORDS)
built-in procedure to display all the DECTPU keywords.

See the Description section of this built-in procedure for information on keys that
you cannot define.

To define a key for which there is no DECTPU key name, use the KEY_NAME
built-in procedure to create your own key name for the key. For example,
KEY_NAME ("A", SHIFT_KEY) creates a key name for the combination of PF1,
the default shift key for DECTPU, and the keyboard character A. For more
information, see the description of the KEY_NAME built-in procedure.

string2

An optional string associated with a key that you define. The string is treated as
a comment that you can retrieve with the LOOKUP_KEY built-in procedure. You
might want to use the comment if you are creating a help procedure for keys that
you have defined.

string3

A key map or a key map list in which the key is to be defined. If a key map

list is specified, the key is defined in the first key map in the key map list. If
neither a key map nor a key map list is specified, the key is defined in the first
key map in the key map list bound to the current buffer. See the descriptions of
the CREATE_KEY_MAP, CREATE_KEY_MAP_LIST, and SET (KEY_MAP_LIST)
built-in procedures for more information on key maps and key map lists.

Descriptions of the DECTPU Built-In Procedures 2-83

DEFINE_KEY

Description

The DEFINE_KEY procedure associates executable DECTPU code with a key or a
combination of keys. DEFINE_KEY compiles the first parameter if it is a string,
buffer, or range.

If you use DEFINE_KEY to change the definition of a key that was previously
defined, DECTPU does not save the previous definition.

You can define all the keys on the LK201 and LK401 keyboards and keypads with
the following exceptions:

< The Compose Character key and Alt function key
= The Shift keys

e The Escape key

e The keys F1 through F5

There are some keys that you can define but that Compaq strongly recommends
you avoid defining. DECTPU does not signal an error when you use them as
keyword parameters. However, on character-cell terminals the definitions you
assign to these key combinations are not executed unless you set your terminal
in special ways at the DCL level. Compag recommends that you do not use the
following special terminal settings. The settings may cause unpredictable results
if you do not understand all the implications of changing the default settings:

e Ctrl/C, Ctrl/O, Ctrl/X, and F6—To execute programs that you bind to these
keys, you must first enter the DCL SET TERMINAL/PASTHRU command.

e Ctrl/T, Ctrl/Y—To execute programs that you bind to these keys, you must
first enter the DCL SET TERMINAL/PASTHRU command, the DCL SET
NOCONTROL command, or both.

= Ctrl/s, Ctrl/Q—To execute programs that you bind to these keys, you must
first enter the DCL SET TERMINAL/NOTTSYNC command.

The PF1 key is the default shift key for the editor. You cannot define PF1 unless
you use either the SET (SHIFT_KEY, keyword) built-in procedure or the EVE
SET GOLD KEY command to define a different key as the shift key for the editor.

Whenever you extend EVE by writing a procedure that can be bound to a key,
the procedure must return true or false, as needed, to indicate whether execution
of the procedure completed successfully. EVE's REPEAT command relies on this
return value to determine whether to halt repetition of a command, a procedure
bound to a key, or a learn sequence.

Signaled Errors

TPU$_NOTDEFINABLE WARNING Second argument is not
a valid reference to a
key.

TPU$_RECURLEARN WARNING This key definition was

used as a part of a learn
sequence. You cannot
use it in this context.

2-84 Descriptions of the DECTPU Built-In Procedures

DEFINE_KEY

TPU$_NOKEYMAP WARNING Fourth argument is not
a defined key map.
TPU$_NOKEYMAPLIST WARNING Fourth argument is not
a defined key map list.
TPU$_KEYMAPNTFND WARNING The key map listed in
the fourth argument is
not found.
TPU$_EMPTYKMLIST WARNING The key map list

specified in the fourth
argument contains no
key maps.

TPU$ TOOFEW ERROR Too few arguments
passed to the DEFINE_
KEY built-in.

TPU$ TOOMANY ERROR Too many arguments
passed to the DEFINE_
KEY built-in.

TPUS$_INVPARAM ERROR Wrong type of data sent
to the DEFINE_KEY
built-in.

TPU$_COMPILEFAIL WARNING Compilation aborted.

TPU$_UNKKEYWORD ERROR An unknown keyword
has been used as an
argument.

TPU$_BADKEY ERROR An unknown keyword
has been used as an
argument.

TPU$_KEYSUPERSEDED INFORMATIONAL Key definition
superseded.

Examples

The following example associates the DECTPU statement POSITION (main_
window) with the key combination Ctrl/B. You must use quotation marks around
the DECTPU statement.

1. DEFINE_KEY ("POSITION (mai n_window", Ctrl_B_KEY)

The following example prompts you for the DECTPU statements to be bound to
the key that you specify:

2. PROCEDURE user _define_key

def := READ LINE ("Definition: ");
key := READ LINE ("Press key to define.",1);

| F LENGTH (key) > 0
THEN

key
ELSE

key :
ENDI F;

DEFI NE_KEY (def, key);
ENDPROCEDURE;

KEY_NAME (key)

LAST_KEY;

Descriptions of the DECTPU Built-In Procedures 2-85

DEFINE_KEY

The following example changes the mode of text entry from insert to overstrike,
or from overstrike to insert:

3. PROCEDURE user _change_node
I Toggl e node between insert and overstrike

| F GET_I NFO (CURRENT_BUFFER, "mpde") = OVERSTRI KE
THEN
SET (I NSERT, CURRENT_BUFFER);
ELSE
SET (OVERSTRI KE, CURRENT_BUFFER);
ENDI F;
ENDPROCEDURE;

I The foll owing statenent binds this procedure to the

I' key conbination Ctrl/A This enulates the QpenVMs key bindi ng
I that toggles between insert and overstrike for text entry

I in conmand |ine editing.

DEFI NE_KEY ("user_change _node", Ctirl_A KEY);

2-86 Descriptions of the DECTPU Built-In Procedures

DEFINE_WIDGET_CLASS

DEFINE_WIDGET_CLASS

Format

Parameters

Return Value

integer := DEFINE_WIDGET_CLASS (class_name
[, creation_routine_name
[, creation_routine_image_name]])

class_name
A string that is the name of the desired widget class record. This string is a
universal symbol exported by the Toolkit or the widget writer.

creation_routine_name
A string that is the name of the low-level widget creation routine for this widget
class.

If you do not specify this parameter, DECTPU uses the X Toolkit XtCreateWidget
routine to create the widget. The routine you specify must have the same calling
sequence as the Motif Toolkit widget creation routines.

You can specify a C-binding or OpenVMS binding name for this parameter, as
follows:

e C-binding name
If you specify a C-binding name for this parameter, be sure not to use a
dollar sign ($) in your binding name. C-binding creation routine names
are case sensitive. For example, XmCreateScrollBar is not identical to

xmcreatescrollbar. To determine the correct case of the string, consult the
documentation for the widget whose class you are defining.

e OpenVMS binding name

If you specify an OpenVMS binding name for this parameter, you can use the
dollar sign ($) character in the name. OpenVMS binding names are not case
sensitive.

creation_routine_image_name

A string that is the name of the shareable image that contains the widget class
record. If you specify a low-level creation routine in the second parameter,
DEFINE_WIDGET_CLASS also looks for the routine in the program image. If
you do not specify an image, DECTPU assumes the widget is defined in the Motif
image SYS$SLIBRARY:DECWS$XMLIBSHR.EXE. This parameter can specify only
the name of the shareable image. If the parameter contains anything else, such
as a device name, directory name, file type, or version number, DECTPU signals
an error.

An integer used by the CREATE_WIDGET built-in to identify the class of widget
to be created.

Descriptions of the DECTPU Built-In Procedures 2-87

DEFINE_WIDGET_CLASS

Description

The DEFINE_WIDGET_CLASS procedure defines a widget class and optional
creation routine for later use in creating widgets of that class.

Defining a class that is already defined returns the existing class integer.
Defining a new class also defines the widget creation routine as the second
parameter, if specified, or the X toolkit routine XtCreateWidget.

Signaled Errors

TPU$ ARGMISMATCH ERROR The data type of the
indicated parameter is not
supported by DEFINE_
WIDGET_CLASS.

TPU$ NEEDTOASSIGN ERROR DEFINE_WIDGET_CLASS
must return a value.

TPU$ TOOFEW ERROR Too few arguments passed to
DEFINE_WIDGET_CLASS.

TPU$ TOOMANY ERROR Too many arguments passed
to DEFINE_WIDGET _
CLASS.

TPU$ REQUIRESDECW ERROR You can use DEFINE_

WIDGET_CLASS only if
you are using DECwindows
DECTPU.

TPU$_SYSERROR ERROR Could not find class record or
creation routine in shareable
image.

TPUS$_INVWIDGETCLASS ERROR The widget class cannot be
defined.

Example

For a sample procedure using the DEFINE_WIDGET_CLASS built-in, see
Example A-1.

2-88 Descriptions of the DECTPU Built-In Procedures

DELETE

DELETE

Format

Parameters

array
buffer
integer
keyword
learn
marker
pattern
process
program
range
string
unspecified
widget
window

DELETE (

array
The array that you want to delete. The memory used by the array is freed for
later use. If some other data structure, such as a pattern, is referenced only in
the array, then that data structure is deleted when the array is deleted.

buffer

The buffer that you want to delete. Any ranges or markers that point to this
buffer, any subprocess that is associated with this buffer, the memory for

the buffer control structure, the pages for storing text, and the memory for
ranges and markers associated with the buffer are deleted also. If the buffer is
associated with a window that is mapped to the screen, the window is unmapped.
Any associated buffer-change journal file is also closed and deleted.

integer

The integer that you want to delete. Integers use no internal structures or
resources, so deleting a variable of type integer simply changes that variable to
type unspecified.

keyword

The keyword that you want to delete. Keywords use no internal structures or
resources, so deleting a variable of type keyword simply assigns to that variable
the type unspecified.

learn
The learn sequence that you want to delete. The memory used by the learn
sequence is freed for later use.

marker
The marker that you want to delete. The memory for the marker control
structure is deleted also.

Descriptions of the DECTPU Built-In Procedures 2-89

DELETE

Description

pattern

The pattern that you want to delete. The memory used by the pattern is freed for
later use. If you delete a pattern that has multiple references to it, the pattern
does not go away. If you delete a pattern that has no other references to it, the
pattern goes away.

process
The process that you want to delete. The memory for the process control structure
and the subprocess are deleted also.

program
The program that you want to delete. The memory for the program control
structure and the memory for the program code are deleted also.

range
The range that you want to delete. The memory for the range control structure is
deleted also. The text in a range does not belong to the range; rather, it belongs
to the buffer in which it is located. A range is merely a way of manipulating
sections of text within a buffer. When you delete a range, the text delimited by
the range is not deleted. See the ERASE built-in procedure for a description of
how to remove the text in a range.

string
The string that you want to delete. The memory used by the string is freed for
later use.

unspecified
Deleting a variable of type unspecified is allowed but does nothing.

widget

The widget that you want to delete. When you use the DELETE (widget) built-in,
all variables and array elements that refer to the widget are set to unspecified. If
an array element is indexed by the deleted widget, the array element is deleted
as well.

window

The window that you want to delete. Along with the window, the memory for the
window control structure and the record history associated with the window are
deleted. If you delete a window that is mapped to the screen, DECTPU unmaps
the window before deleting it. The screen appears just as it does when you use
the UNMAP built-in procedure.

The DELETE procedure removes DECTPU structures from your editing context.
When you delete a structure (for example, a range), all variables that refer to that
structure are reset to unspecified. If the deleted structure had any associated
resources, these resources are returned to the editor. When a buffer is deleted,
the associated journal file (if any) is closed and deleted.

Depending upon how many variables are referencing an entity, or how many other
entities are associated with the entity you are deleting, processing the DELETE
built-in procedure can be time consuming. DELETE cannot be terminated by a
Ctrl/C.

2-90 Descriptions of the DECTPU Built-In Procedures

DELETE

Any variables that reference the deleted entity are set to unspecified and all
other entities that are associated with the deleted entity are also deleted. Use
the DELETE built-in procedure with caution.

Signaled Errors

TPU$_TOOFEW ERROR DELETE requires one
argument.

TPU$_TOOMANY ERROR DELETE accepts only one
argument.

TPU$_BADDELETE ERROR You attempted to delete a
constant.

TPU$_DELETEFAIL WARNING DELETE could not delete the
process.

TPUS$ INVBUFDELETE WARNING You cannot delete a

permanent buffer.

Examples

The following example deletes the main buffer and any associated resources that
DECTPU allocated for the main buffer. As a result of this command, the SHOW
(BUFFERS) command does not list MAIN_BUFFER as one of the buffers in your
editing context.

1. DELETE (main_buffer)

The following example creates a modal dialog box widget and later deletes it.
For purposes of this example, the procedure user_callback_dispatch_routine

is assumed to be a user-written procedure that handles widget callbacks. For a
sample DECwindows User Interface Language (UIL) file to be used with DECTPU
code creating a modal dialog box widget, see the example in the description of the
CREATE_WIDGET built-in procedure.

2. PROCEDURE sanpl e_create_and_del ete

LOCAL exanpl e_wi dget,
exanpl e_wi dget _nare,
exanpl e_hi erar chy;

exanpl e_hierarchy := SET (U D, "mynode$dua0: [snith]exanple. uid");
exanpl e_wi dget _nanme : = "EXAMPLE BOX';
exanpl e_wi dget := CREATE W DGET (exanpl e_wi dget nane,

exanpl e_hi erarchy, SCREEN,

"user _cal | back_di spatch_routine");
|
|
|

DELETE (exanpl e_wi dget);
ENDPRCCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-91

EDIT

EDIT
Format
bufferl buffer2
rangel (:=EDIT (< range2 ;, keywordl[,...] [,keyword2] [,keyword3])
stringl string2
Parameters
buffer2

The buffer in which you want DECTPU to edit text. You cannot use the NOT _
IN_PLACE keyword if you specify a buffer for the first parameter.

range2
The range in which you want DECTPU to edit text. You cannot use the NOT_IN_
PLACE keyword if you specify a range for the first parameter.

string2

The string that you want to modify. If you specify a return value, the returned
string consists of the string you specify for the first parameter, modified in the
way you specify in the second and subsequent parameters. If you specify IN_
PLACE for the third parameter, EDIT makes the specified change to the string
specified in the first parameter. If string2 is a constant, IN_PLACE has no effect.

keyword1
A keyword specifying the editing operation that you want to perform on the
string. The valid keywords and their meaning are as follows.

Keyword Meaning

COLLAPSE Removes all spaces and tabs.

COMPRESS Replaces multiple spaces and tabs with a single space.
TRIM Removes leading and trailing spaces and tabs.
TRIM_LEADING Removes leading spaces and tabs.

TRIM_TRAILING Removes trailing spaces and tabs.

LOWER Converts all uppercase characters to lowercase.
UPPER Converts all lowercase characters to uppercase.
INVERT Changes the current case of the specified characters;

uppercase characters become lowercase and lowercase
characters become uppercase.

keyword2

A keyword specifying whether DECTPU quote characters are used as quote
characters or as regular text. The valid keywords are ON, OFF, 1, or 0. The
integer 1 is equivalent to ON. The integer O is equivalent to OFF. The default is
ON or 1.

keyword3

A keyword indicating where DECTPU is to make the indicated change. The valid
keywords and their meanings are as follows:

2-92 Descriptions of the DECTPU Built-In Procedures

EDIT

Keyword Meaning
IN_PLACE Makes the indicated change in place. This is the default.
NOT_IN_PLACE Leaves the specified string unchanged and returns a

string that is the result of the specified editing. You
cannot use NOT_IN_PLACE if the first parameter is
specified as a range or buffer. To use NOT_IN_PLACE,
you must specify a return value for EDIT.

This keyword is ignored if string2 is a string constant. EDIT never edits string
constants in place. It does return the edited string.

Return Values

Description

bufferl

A variable of type buffer pointing to the buffer containing the modified text, if you
specify a buffer for the first parameter. The variable returned_buffer points to the
same buffer pointed to by the buffer variable specified as the first parameter.

rangel

A range containing the modified text, if you specify a range for the first
parameter. The returned range spans the same text as the range specified

as a parameter, but they are two separate ranges. If you subsequently change or
delete one of the ranges, this has no effect on the other range.

stringl
A string containing the modified text, when you specify a string for the first
parameter. EDIT can return a string even if you specify IN_PLACE.

The EDIT procedure modifies a string according to the keywords you specify.
EDIT is similar (although not identical) to the DCL lexical function F$EDIT.
DECTPU modifies the first parameter of the EDIT built-in in place. EDIT does
not modify a literal string.

By default, EDIT does not modify quoted text that occurs within a string. For
example, the following code does not change the case of WELL:

string_to _change : = 'HE SANG "WELL"’;
edit (string_to _change, LOAER);

The variable string_to_change has the value he sang "WELL".

If you specify more than one of the TRIM keywords (TRIM, TRIM_LEADING,
TRIM_TRAILING), all of the TRIM operations you specify are performed.

If you specify more than one of the case conversion keywords (UPPER, LOWER,
INVERT), the last keyword that you specify determines how the characters in the
string are modified.

If you specify both of the quote recognition keywords (ON, OFF), the last keyword
you specify determines whether EDIT modifies quoted text.

If you specify no keywords, EDIT does nothing to the passed string.

Descriptions of the DECTPU Built-In Procedures 2-93

EDIT

You can disable the recognition of quotation marks and apostrophes as DECTPU
guote characters by using the OFF keyword as a parameter for EDIT. When you
use the OFF keyword, DECTPU preserves any quotation marks and apostrophes
in the edited text and performs the editing tasks you specify on the text within
the quotation marks and apostrophes. OFF may appear anywhere in the keyword
list. It need not be the final parameter.

If the string you specify has opening quotation marks but not closing quotation
marks, the status TPU$ _MISSINGQUOTE is returned. All text starting at
the unclosed opening quotation mark and continuing to the end of the string is
considered to be part of the quoted string and is not modified.

EDIT is similar to the DCL lexical function FSEDIT, with the following
differences:

< EDIT modifies the characters in place, while F$EDIT returns a result.

< EDIT takes keywords as parameters, while FSEDIT requires that the edit
commands be specified by a string.

Signaled Errors

Examples

TPU$_MISSINGQUOTE ERROR Character string is missing
terminating quotation marks.

TPU$ TOOFEW ERROR EDIT requires at least one
parameter.

TPU$ TOOMANY ERROR You supplied keywords that
are the same or contradictory.

TPU$ ARGMISMATCH ERROR One of the parameters to
EDIT is of the wrong data
type.

TPUS$_INVPARAM ERROR One of the parameters to
EDIT is of the wrong data
type.

TPU$_BADKEY WARNING You gave the wrong keyword
to EDIT.

The following example edits the string "PRODUCT NAME" by changing it to
lowercase, and displays the edited string in the message window:

1. pn .= "PRODUCT NAME',
EDIT (pn, LOAER);
MESSAGE (pn);

2-94 Descriptions of the DECTPU Built-In Procedures

EDIT

The following example shows a generalized way of changing any input string to
lowercase:

PROCEDURE user _edit _string (input_string)
is :=input_string;

EDIT (is, LOER);
MESSAGE (is);
ENDPROCEDURE;

After compiling the preceding procedure, you can direct DECTPU to print the
lowercase word zephyr in the message area by entering the following command:

user_edit_string ("ZEPHYR')

Descriptions of the DECTPU Built-In Procedures 2-95

END_OF

END_OF
Format

marker := END_OF ({ ::):rf]'fgeer })
Parameters

buffer
The buffer whose last character position you want to mark.

range
The range whose last character position you want to mark.

Return Value

A marker pointing to the last character position in a buffer or range.

Description

The END_OF procedure returns a marker that points to the last character
position in a buffer or a range. If you use the marker returned by the END_OF
built-in as a parameter for the POSITION built-in procedure, the editing point
moves to this marker.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR END_OF must appear on
the right-hand side of an
assignment statement.

TPU$_TOOFEW ERROR END_OF requires one
argument.

TPU$ TOOMANY ERROR END_OF accepts only one
argument.

TPU$_ARGMISMATCH ERROR You passed something other
than a range or a buffer to
END_OF.

Examples

The following example stores the last position in the current buffer in the variable
the_end:

1. the_end := END_OF (CURRENT BUFFER)

2-96 Descriptions of the DECTPU Built-In Procedures

END_OF

The following example implements a simple INSERT HERE function. The
variable paste_buffer points to a buffer that holds previously cut text.

PROCEDURE user _paste
LOCAL paste_text;

| F (BEG NNING OF (paste_buffer) <> END OF (paste_buffer))
THEN
COPY_TEXT (paste_buffer);
ENDI F;
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-97

ERASE

ERASE
Format
ERASE ({ buffer })
range
Parameters
buffer
The buffer whose contents you want to remove.
range
The range whose contents you want to remove.
Description

The ERASE procedure removes the contents of the buffer or range that you
specify. However, the buffer structure still remains a part of your editing context
and the editing point remains in the buffer even if you remove the contents of the
buffer. The space that was occupied by the contents of the buffer is returned to
the system and is available for reuse. Only the end-of-buffer line remains.

When you erase a range, the contents of the range are removed from the buffer.
The range structure is still a part of your editing context. You can use the range
structure later in your editing session to delimit an area of text within a buffer.

Note that text does not belong to a range; it belongs to a buffer. Ranges
are merely a way of manipulating portions of text within a buffer. For more
information on ranges, see the Guide to the DEC Text Processing Utility.

Signaled Errors

TPU$_TOOFEW ERROR ERASE requires one
argument.

TPU$_TOOMANY ERROR ERASE accepts only one
argument.

TPUS$_INVPARAM ERROR The argument to ERASE is
of the wrong type.

TPU$ NOTMODIFIABLE WARNING You cannot erase text in an

unmodifiable buffer.

Examples

The following example erases all the text in the buffer referenced by main_buffer.
Because the buffer still exists, you can select the buffer by using the POSITION
built-in or by mapping the buffer to a window. The procedure simply removes all
text from the buffer. All markers in the buffer now mark the end of the buffer.

1. ERASE (main_buffer)

2-98 Descriptions of the DECTPU Built-In Procedures

ERASE

The following example deletes embedded carriage-return/line-feed pairs:

PROCEDURE user _renove crlfs

LOCAL crlf,
here,
cr_range;

crif := ASCIl (13) + ASCII (10);
here : = MARK (NONE);
POSI TI ON (BEG NNI NG_OF (CURRENT_BUFFER)) ;

LOoP
cr_range := SEARCH QUIETLY (crlf, FORWARD, EXACT);
EXITIF cr_range = 0;
ERASE (cr_range);
POSI TION (cr_range);
ENDLOCP,

POSI TION (here);
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-99

ERASE_CHARACTER

ERASE_CHARACTER

Format
[string :=] ERASE_CHARACTER (integer)

Parameter

integer
An expression that evaluates to an integer, which may be signed. The value
indicates which characters, and how many of them, are to be erased.

Return Value
A string that represents the characters deleted by ERASE_CHARACTER.

Description

The ERASE_CHARACTER procedure deletes up to the number of characters that
you specify and optionally returns a string that represents the characters you
deleted.

If the argument to ERASE_CHARACTER is a positive integer, ERASE _
CHARACTER deletes that many characters, starting at the current position

and continuing toward the end of the line. If the argument is negative, ERASE
CHARACTER deletes characters to the left of the current character. It uses the
absolute value of the parameter to determine the number of characters to delete.
ERASE_CHARACTER stops deleting characters if it reaches the beginning or the
end of the line before deleting the specified number of characters.

Using ERASE_CHARACTER may cause DECTPU to insert padding spaces or

blank lines in the buffer. ERASE_CHARACTER causes the screen manager to
place the editing point at the cursor position if the current buffer is mapped to
a visible window. For more information on the distinction between the cursor

position and the editing point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or below the
end of the buffer), DECTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

ERASE_CHARACTER optionally returns a string that contains the characters
that it deleted.

Signaled Errors

TPU$_TOOFEW ERROR ERASE_CHARACTER
requires one argument.

TPU$_TOOMANY ERROR ERASE_CHARACTER
accepts only one argument.

TPUS$_INVPARAM ERROR The argument to ERASE_
CHARACTER must be an
integer.

2-100 Descriptions of the DECTPU Built-In Procedures

ERASE_CHARACTER

TPU$_NOCURRENTBUF WARNING There is no current buffer to
erase characters from.
TPU$_NOTMODIFIABLE WARNING You cannot modify an

unmodifiable buffer.

Examples

The following example removes the current character and the nine characters
following it and copies them in the string variable take_out_chars. If there are
only five characters following the current character, then this statement deletes
only the current character and the five following it. It does not also delete
characters on the next line.

1. take_out_chars := ERASE_CHARACTER (10)

The following example deletes the character to the left of the editing point. If the
editing point is at the beginning of a line, the procedure appends the current line
to the previous line.

This procedure del etes the character to the
left of the current character. |If at the
beginning of a line, it appends the current
line to the previous |ine.

PROCEDURE user _del ete_key
LOCAL del eted char;
del eted_char := ERASE CHARACTER (-1);

| F deleted_char = "" ! nothing deleted
THEN
APPEND LI NE;
ENDI F;
ENDPROCEDURE;

|
|
|
|

Descriptions of the DECTPU Built-In Procedures 2-101

ERASE_LINE

ERASE_LINE

Format
[string :=] ERASE_LINE

Parameters

None.

Return Value
A string that contains the text of the deleted line.

Description

The ERASE_LINE procedure removes the current line from the current buffer.
The current position moves to the first character of the line following the deleted
line. ERASE_LINE optionally returns a string containing the text of the deleted
line.

Using ERASE_LINE may cause DECTPU to insert padding spaces or blank lines
in the buffer. ERASE_LINE causes the screen manager to place the editing point
at the cursor position if the current buffer is mapped to a visible window. For
more information on the distinction between the cursor position and the editing
point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or below the
end of the buffer), DECTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

If the screen manager inserts padding spaces, ERASE_LINE deletes these spaces
when it deletes the line. The spaces appear in the returned string. If the screen
manager inserts padding lines into the buffer, ERASE_LINE deletes only the last
of these lines.

Signaled Errors

TPU$_TOOMANY ERROR ERASE_LINE accepts no
arguments.

TPU$ NOTMODIFIABLE WARNING You cannot erase a line in an
unmodifiable buffer.

TPU$ NOCURRENTBUF ERROR You must select a buffer

before erasing a line.

2-102 Descriptions of the DECTPU Built-In Procedures

ERASE_LINE

Examples

The following example removes the current line from the current buffer:

1. ERASE LINE

The following example removes the current line from the current buffer and
stores the string of characters representing that line in the variable take_out_
line:

2. take_out _|ine := ERASE LINE

Descriptions of the DECTPU Built-In Procedures 2-103

ERROR

ERROR

Format
keyword := ERROR

Parameters

None.

Return Value

A keyword that represents the most recent error.

Description

The ERROR procedure returns a keyword for the latest error. The possible error
and warning codes for each built-in procedure are included in the description of
each built-in procedure. The OpenVMS System Messages and Recovery Procedures
Reference Manual includes all the possible completion codes for DECTPU as well
as the appropriate explanations and suggested user actions.

The value returned by ERROR is meaningful only inside an error handler after
an error has occurred. The value outside an error handler is indeterminate.

Although ERROR behaves much like a built-in, it is actually a DECTPU language
element.

ERROR is evaluated for correct syntax at compile time. In contrast, DECTPU
procedures are usually evaluated for a correct parameter count and parameter
types at execution.

Signaled Errors

ERROR is a language element and has no completion codes.

Example

The following example uses the ERROR language element to determine the error
that invoked the error handler. If the error was that SEARCH could not find the
specified string, then the procedure returns normally. If the error was something
else, then the text of the error message is written to the MESSAGES buffer and

any executing procedures are terminated.

PROCEDURE st ri p_bl anks
I Remove trailing blanks fromall the lines in a buffer

LOCAL bl ank_chars,
bl ank_pattern,
bl ank_r ange;

ON_ERRCR
| F ERROR = TPU$ STRNOTFOUND
THEN
RETURN,
ELSE
MESSAGE (ERROR TEXT);
ABCRT;
ENDI F;
ENDON_ERRCR;

2-104 Descriptions of the DECTPU Built-In Procedures

ERROR

+ ASCLL (9):

bl ank_chars := ASCl |)
= (SP bl ank_chars) @bl ank_range) + LINE _END;

bl ank_pattern :

LooP
SEARCH (bl ank_pattern, FORWARD);
POSI TI ON (BEG NNI NG _OF (bl ank_range));
ERASE (bl ank_range);
ENDLOOP;
ENDPROCEDURE;

(32
AN (

Descriptions of the DECTPU Built-In Procedures 2-105

ERROR_LINE

ERROR_LINE

Format
integer := ERROR_LINE

Parameters

None.

Return Value

An integer that represents the line number of the most recent error.

Description

The ERROR_LINE procedure returns the line number at which the latest error

or warning occurs. If a procedure was compiled from a buffer or range, ERROR _
LINE returns the line number within the buffer. This may be different from the
line number within the procedure. If the procedure was compiled from a string,

ERROR_LINE returns 1.

The value returned by ERROR_LINE is meaningful only inside an error handler
after an error has occurred. The value outside an error handler is indeterminate.

Although ERROR_LINE behaves much like a built-in, it is actually a DECTPU
language element.

ERROR_LINE is evaluated for correct syntax at compile time. In contrast,
DECTPU procedures are usually evaluated for a correct parameter count and
parameter types at execution.

Signaled Errors

ERROR is a language element and has no completion codes.

Example

The following example uses the ERROR_LINE built-in procedure to report the
line in which the error occurred:

PROCEDURE strip_bl anks
I Remove trailing blanks fromall the lines in a buffer

LOCAL bl ank_chars,
bl ank_pattern,
bl ank_range;

ON_ERRCR
MESSAGE (ERROR_TEXT);
MESSAGE ("Error on line " + STR (ERROR LINE));
RETURN,

ENDON_ERRCR;

bl ank_chars := AS

(32) + ASCII (9);
bl ank_pattern : (

Cl
(SPAN (bl ank_chars) @bl ank_range) + LI NE_END;

2-106 Descriptions of the DECTPU Built-In Procedures

ERROR_LINE

LooP
SEARCH (bl ank_pattern, FORWARD);
POSI TI ON (bl ank_range) ;
ERASE (bl ank_range);
ENDLOCP,
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-107

ERROR_TEXT

ERROR_TEXT

Format
string := ERROR_TEXT

Parameters

None.

Return Value

A string that contains the text of the most recent error message.

Description

The ERROR_TEXT procedure returns the text of the most recent error or warning
message.

The possible error and warning codes for each built-in procedure are included in
the description of each built-in procedure. The OpenVMS System Messages and

Recovery Procedures Reference Manual includes all the possible completion codes
for DECTPU as well as the appropriate explanations and suggested user actions.

The value returned by ERROR_TEXT is meaningful only inside an error handler
after an error has occurred. The value outside an error handler is indeterminate.

Although ERROR_TEXT behaves much like a built-in, it is actually a DECTPU
language element.

ERROR_TEXT is evaluated for correct syntax at compile time. In contrast,
DECTPU procedures are usually evaluated for a correct parameter count and
parameter types at execution.

Signaled Errors

ERROR_TEXT is a language element and has no completion codes.

Example

The following example uses the ERROR_TEXT built-in procedure to report what
happened and where:

PROCEDURE strip_bl anks
I Remove Trailing blanks fromall the lines in a buffer

LOCAL bl ank_chars,
bl ank_pattern,
bl ank_r ange;

ON_ERRCR
MESSAGE (ERROR_TEXT) ;
MESSAGE ("Error on line " + STR (ERROR LINE));
RETURN,

ENDON_ERRCR;

bl ank_chars := ASCII (32) + ASCII (9);
bl ank_pattern := (SPAN (bl ank_chars) @bl ank_range) + LI NE_END;

2-108 Descriptions of the DECTPU Built-In Procedures

ERROR_TEXT

LooP
SEARCH (bl ank_pattern, FOREWARD);
POSI TI ON (BEG NNI NG_OF (bl ank_range));
ERASE (bl ank_range);
ENDLOCP,
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-109

EXECUTE

EXECUTE

Format

Parameters

buffer

, key-map-list-name
, key-map-name
EXECUTE (9 |earn)
program
range
string

key-name [[

buffer
The buffer that you want to execute.

key-name
The DECTPU key name for a key or a combination of keys. DECTPU locates and
executes the definition bound to the key.

key-map-list-name

The name of the key map list in which the key is defined. This optional
parameter is valid only when the first parameter is a key name. If you specify

a key map list as the second parameter, DECTPU uses the first definition of the
key specified by key _name found in any of the key maps specified by the key map
list. If you do not specify any value for the second parameter, DECTPU uses the
first definition of the key specified by key name found in the key map list bound
to the current buffer.

key-map-name

The name of the key map in which the key is defined. This optional parameter
is valid only when the first parameter is a key name. Use this parameter only
if the key specified by the first parameter is defined in the key map specified as
the second parameter. If you do not specify any value for the second parameter,
DECTPU uses the first definition of the key specified by key name found in the
key map list bound to the current buffer.

learn
The learn sequence that you want to replay.

program
The program that you want to execute.

range
The range that you want to execute.

string
The string that you want to execute.

2-110 Descriptions of the DECTPU Built-In Procedures

EXECUTE

Description
The EXECUTE procedure does one of the following:
= Executes programs that you have previously compiled

= Compiles and then executes any executable statements in a buffer, a range,
or a string

< Replays a learn sequence
= Executes a program bound to a key

EXECUTE performs different actions depending upon the data type of the
parameter.

If the parameter is a string or the contents of a buffer or range, it must contain
only valid DECTPU statements; otherwise, you get an error message and no
action is taken. See the description of the COMPILE built-in procedure for
restrictions and other information on compiling strings or the contents of a buffer
or range. When you pass a string to EXECUTE, the string cannot be longer than
256 characters.

Procedures are usually executed by entering the name of a compiled procedure at
the appropriate prompt from your editing interface, or by calling the procedure
from within another procedure. However, you can execute procedures with the
EXECUTE built-in procedure if the procedure returns a data type that is a valid
parameter.

Signaled Errors

TPU$ _NODEFINITION WARNING There is no definition for this
key.

TPU$ REPLAYWARNING WARNING Inconsistency during
the execution of a learn
sequence . .. sequence is
proceeding.

TPU$_REPLAYFAIL WARNING Inconsistency during
the execution of a learn
sequence . .. execution
stopped.

TPU$_RECURLEARN ERROR You cannot execute learn
sequences recursively.

TPU$_CONTROLC ERROR The execution of the
command terminated because
you pressed Ctrl/C.

TPU$_EXECUTEFAIL WARNING Execution of the indicated
item halted because it
contains an error.

TPU$_COMPILEFAIL WARNING Compilation aborted because
of syntax errors.

TPU$_ARGMISMATCH ERROR A parameter’s data type is
unsupported.

TPU$_TOOFEW ERROR Too few arguments.

Descriptions of the DECTPU Built-In Procedures 2-111

EXECUTE

TPU$_TOOMANY ERROR Too many arguments.
TPU$_NOTDEFINABLE WARNING Key cannot be defined.
TPU$_NOCURRENTBUF WARNING Key map or key map list not

specified, and there is no
current buffer.

TPU$_NOKEYMAP WARNING Key map or key map list not
defined.

TPU$_NOTMODIFIABLE WARNING You cannot copy text into an
unmodifiable buffer.

TPU$_NODEFINITION WARNING Key not defined.

Examples

In the following example, the procedure test returns a program data type. If you
execute a buffer or range that contains the following code, DECTPU compiles and
executes the procedure test. A program data type is then returned, the program
is used as the parameter for the EXECUTE built-in procedure, and the string
"abc" is written to the message area.

1. PROCEDURE t est

I After conpiling the string ' MESSAGE ("abc")’,
I DECTPU returns a programthat is the conpiled
I formof the string.

RETURN COWPI LE (' MESSAGE ("abc")");
ENDPROCEDURE;

' The built-in procedure EXECUTE executes the
I programreturned by the procedure "test."

EXECUTE (test);

The following example compiles the contents of main_buffer and then executes
any executable statements. If you have any text in the main buffer other
than DECTPU statements, you get an error message. If there are procedure
definitions in main_buffer, they are compiled; they are not executed until you
run the procedure (either by entering the procedure name after the appropriate
prompt from your interface or by calling the procedure from within another
procedure).

2. EXECUTE (main_buffer)
The following example prompts you for a DECTPU command to execute and then
executes the command:

3. PROCEDURE user _do

command_string := READ_LINE ("Enter DECTPU conmand to execute: ");
EXECUTE (command_string);
ENDPROCEDURE;

2-112 Descriptions of the DECTPU Built-In Procedures

EXECUTE

The following example executes a command with informational messages turned
on, and then turns the informational messages off after the command is executed.
You must replace the parameter TPU_COMMAND with the DECTPU statement
that you want.

PROCEDURE user _tpu (TPU_COMVAND)

SET (I NFORMATI ONAL, ON);

EXECUTE (TPU_COWVAND) ;

SET (I NFORMATI ONAL, OFF);
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-113

EXIT

EXIT

Format

Parameters

Description

EXIT

None.

The EXIT command terminates the editing session and writes out any modified
buffers that have associated files. DECTPU queries you for a file name for any
buffer that you have modified that does not already have an associated file.

Buffers that have the NO_WRITE attribute are not written out. See SET (NO_
WRITE, buffer).

If you do not modify a buffer, DECTPU does not write out the buffer to a file when
you use EXIT. If you modify a buffer that has an associated file name (because
you specified a file name for the second parameter of CREATE_BUFFER),
DECTPU writes out a new version of the file. DECTPU requires the application
to make backup copies of existing files before using EXIT.

If you modify a buffer that does not have an associated file name, DECTPU asks
you to specify a file name if you want to write the buffer. If you press the Return
key rather than entering a file name, the modified buffer is discarded. DECTPU
gueries you about all modified buffers that do not have associated file names. The
order of the query is the order in which the buffers were created.

DECTPU deletes journal files (if any) upon exiting.

If an error occurs while you are exiting, the exit halts and control returns to the
application.

Signaled Errors

TPUS$_EXITFAIL WARNING The EXIT did not complete
successfully because of
problems writing modified
buffers.

TPU$_TOOMANY ERROR EXIT takes no arguments.

2-114 Descriptions of the DECTPU Built-In Procedures

EXPAND_NAME

EXPAND_NAME

Format

Parameters

Return Value

Description

, ALL

, KEYWORDS)
, PROCEDURES

, VARIABLES

string2 := EXPAND_NAME (stringl

stringl

An expression that evaluates to a string. If the string contains one or more
asterisks (*) or percent signs (%), then the string is a wildcard specification of
the DECTPU names to match. An asterisk matches zero or more characters and
a percent sign matches exactly one character. If the string does not contain any
asterisks or percent signs, then the string is the initial substring of a DECTPU
name.

ALL
A keyword specifying that you want DECTPU to match all names.

KEYWORDS
A keyword specifying that you want DECTPU to match only keyword names.

PROCEDURES
A keyword specifying that you want DECTPU to match only procedure names.

VARIABLES
A keyword specifying that you want DECTPU to match only global variable
names. EXPAND_NAME does not expand the names of local variables.

Returns a string that contains the names that begin with the string you specify.

The EXPAND_NAME procedure returns a string that contains the names of any
DECTPU global variables, keywords, or procedures (built-in or user-written) that
begin with the string that you specify. DECTPU searches its internal symbol
tables to find a match, using your input string as the directive for the match.

If there are no matches for the substring you specify, a null string is returned and
a warning (TPU$_NONAMES) is signaled. If only one DECTPU name matches
the substring you specify, the name is returned with no trailing space. If more
than one DECTPU name matches your substring, all of the matching names

are returned. The matching names are returned as a concatenated string with
words separated by a single space. Multiple names signal a warning (TPU$_
MULTIPLENAMES).

Use EXPAND_NAME in procedures that perform command completion or that
interpret abbreviated names.

EXPAND_NAME does not expand the names of local variables.

Descriptions of the DECTPU Built-In Procedures 2-115

EXPAND_NAME

Signaled Errors

TPU$_NONAMES

TPU$_MULTIPLENAMES

TPU$_NEEDTOASSIGN

TPU$_TOOFEW
TPU$_TOOMANY

TPU$_INVPARAM

TPU$_BADKEY

Examples

WARNING

WARNING

ERROR

ERROR

ERROR

ERROR

WARNING

No names were found
matching the one requested.
More than one name
matching the one requested
was found.
EXPAND_NAME must
appear on the right-hand side
of an assignment statement.
EXPAND_NAME requires
two arguments.
EXPAND_NAME accepts no
more than two arguments.

One of the arguments you
passed to EXPAND_NAME
has the wrong data type.
You specified an invalid

keyword as the second
argument.

In the following example, the assignment statement requests all the keywords
whose names are two characters long:

1. full _name := EXPAND _NAME ("9%%, KEYWORDS)

This assignment statement returns the following DECTPU keyword names in the

string full_name:

ON UP DOE5 F6 E4 F7 F4 F5 E6 E1 F2 F3 E3 F1 E2 F8 F9

The following example uses the string that you enter as the parameter, and puts
the expanded form of a valid DECTPU procedure name that matches the string
in the message area. If the initial string matches multiple procedure names, or if
it is not a valid DECTPU procedure name, an explanatory message is written to

the message area.

2. PROCEDURE user _qui ck_parse (abbreviated_nane)

ON_ERROR
| F ERROR = TPUS_NONAMES
THEN
MESSAGE ("No such procedure.");
ELSE
| F ERROR = TPU$_MULTI PLENAMES

MESSAGE (" Anbi guous abbreviation.");

2-116 Descriptions of the DECTPU Built-In Procedures

EXPAND_NAME

expanded_name := EXPAND NAME (abbreviated_nanme, PROCEDURES);
MESSAGE ("The procedure is " + expanded nane + ".");
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-117

FAO

FAO
Format
. . integerl integer_n
string2 := FAO (string1 [, { stringg3 }[[, { stringg - }]]]])
Parameters

stringl
A string that consists of the fixed text of the output string and Formatted ASCI|I
Output (FAO) directives.

Some FAO directives that you can use as part of the string are the following:

IAS Inserts a string as is

IOL Converts a longword to octal notation

IXL Converts a longword to hexadecimal notation

1ZL Converts a longword to decimal notation

IUL Converts a longword to decimal notation without adjusting for
negative numbers

ISL Converts a longword to decimal notation with negative numbers
converted

I/ Inserts a new line (carriage return/line feed)

I Inserts a tab

1} Inserts a form feed

n Inserts an exclamation mark

1%S Inserts an s if the most recently converted number is not 1

1%T Inserts the current time if you enter 0 as the parameter (you cannot
pass a specific time because DECTPU does not use quadwords)

1%D Inserts the current date and time if you enter 0 as the parameter
(you cannot pass a specific date because DECTPU does not use
guadwords)

integerl ... integer_ n
An expression that evaluates to an integer. $FAO uses these integers as
arguments to the FAO directives in string2 to form stringl.

string3 ... string_ n
An expression that evaluates to a string. $FAO uses these strings as arguments
to the FAO directives in string2 to form stringl.

Return Value
A string that contains the output you specify in ASCII format.

2-118 Descriptions of the DECTPU Built-In Procedures

FAO

Description

The FAO procedure invokes the Formatted ASCII Output ($FAO) system service
to convert a control string to a formatted ASCII output string. By specifying
arguments for FAO directives in the control string, you can control the processing
performed by the $FAO system service. The FAO procedure returns a string that
contains the formatted ASCII output, constructed according to the rules of the
$FAO system service. The control string directs the formatting process, and the
optional arguments are values to be substituted into the control string.

FAO accepts up to 127 parameters. It can return strings of 65535 characters
maximum.

For complete information on the $FAO system service, see the OpenVMS System
Services Reference Manual.

To ensure that you get meaningful results, you should use the !'AS directive for
strings and the !OL, IXL, !ZL, 'UL, or !SL directive for integers.

Signaled Errors

TPU$_INVFAOPARAM WARNING Argument was not a string or
an integer.
TPU$_NEEDTOASSIGN ERROR FAO must appear on the

right-hand side of an
assignment statement.

TPU$_INVPARAM ERROR The first argument to FAO
must be a string.

TPU$_TOOFEW ERROR FAO requires at least one
parameter.

Examples
The following example stores the current date and time in the variable date_and_
time:

1. date_and time := FAO ("!%', 0)

The following example uses the FAO directive ISL in a control string to convert
the number equated to the variable count to a string. The converted string is
stored in the variable report and then written to the message area.

2. PROCEDURE user _fao_conversion (count)

report := FAO ("nunber of forms = ISL", count);
MESSAGE (report);
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-119

FILE_PARSE

FILE_PARSE
Format
string3 := FILE_PARSE (filespec [, stringl
[, string2
[, NODE]
[, DEVICE]

[, DIRECTORY]

[NAME] [, TYPE]
[, VERSION]

[HEAD]

[TAIL] 1D

Parameters

filespec
The file specification to be parsed.

stringl

A default file specification. If you fail to specify a field in filespec and that field
is present in the default file specification, DECTPU substitutes the field from
stringl in the output string.

string2

A related file specification. If you fail to specify a field in filespec and stringl and
that field is present in the related file specification and is not the version field,
DECTPU substitutes the field from string2 in the output string.

NODE

Keyword specifying that FILE_PARSE should return a file specification, including
the node if one of the files specified in filespec, stringl, or string2 contains a
node field. For more information on using the optional keyword parameters to
FILE_PARSE, see the Description section. DECTPU can parse file specifications
that contain a node field, but it cannot search, read, or write them. DECTPU
parses the node field only for compatibility with OpenVMS file specifications.

DEVICE

VMS keyword specifying that FILE_PARSE should return a file specification,
including the device. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

DIRECTORY

Keyword specifying that FILE_PARSE should return a file specification, including
the directory. For more information on using the optional keyword parameters to
FILE_PARSE, see the Description section.

NAME

Keyword specifying that FILE_PARSE should return a file specification, including
the name. For more information on using the optional keyword parameters to
FILE_PARSE, see the Description section.

2-120 Descriptions of the DECTPU Built-In Procedures

Return Value

Description

FILE_PARSE

TYPE

Keyword specifying that FILE_PARSE should return a file specification, including
the type. For more information on using the optional keyword parameters to
FILE_PARSE, see the Description section.

VERSION

Keyword specifying that FILE_PARSE should return a file specification, including
the version. For more information on using the optional keyword parameters to
FILE_PARSE, see the Description section.

HEAD

Keyword specifying that FILE_PARSE should return a file specification, including
the node, device, and directory fields. For more information on using the optional
keyword parameters to FILE_PARSE, see the Description section.

TAIL

Keyword specifying that FILE_PARSE should return a file specification, including
the file name, type, and version fields. For more information on using the optional
keyword parameters to FILE_PARSE, see the Description section.

A string that contains an expanded file specification or the file specification field
that you specify.

The FILE_PARSE procedure parses a file specification and returns a string that
contains the expanded file specification or the field that you specify. If you do not
provide a complete file specification, FILE_PARSE supplies defaults in the return
string.

If an error occurs during the parse, FILE_PARSE returns a null string. With
FILE_PARSE, you can parse file specifications into their individual fields and
merge fields from three file specifications into one file specification.

Specify the first three parameters as strings. The remaining parameters are
keywords. File specifications that include OpenVMS logical names and device
names must terminate with a colon. If you omit optional parameters to the left of
a given parameter, you must include null strings as placeholders for the missing
parameters.

If you omit any fields from the file specified in filespec, FILE_PARSE supplies
defaults, first from stringl and then from string2. The exception to this is that
the version field is not supplied from string2.

If you omit the device, directory, type, or version fields from the files specified in
filespec, stringl, or string2, FILE_PARSE supplies default values. The default
values are the current device and directory, the file type delimiter (.), and the
file version delimiter (;). (The exception to this is that the current device and
directory are not supplied if either stringl or string2 contains a node field.)

You can specify as many of the keywords for field names as you wish as long as
you do not specify fields that are duplicates of fields returned by the head or tail
keywords. For example, you cannot request the head field along with the node,
device, or directory fields; and you cannot request the tail field along with the
name, type, or version fields. If valid keyword combinations are present, FILE_
PARSE returns a string containing only those fields requested. The fields are

Descriptions of the DECTPU Built-In Procedures 2-121

FILE_PARSE

Table 2-2 Ope

returned in normal file specification order. The normal delimiters are included,
but there are no other characters separating the fields. For example, suppose you
direct DECTPU to execute the following statements:

result := FILE_PARSE ("junk.txt", "work::","disk1:", NODE, DEVICE, TYPE);
MESSAGE (result);

When the statements execute, DECTPU displays the following string:
WORK: : DI SK1: . TXT

The FILE_PARSE built-in procedure parses the file specification provided and
returns the portions of the resultant file specification requested. It does not check
that the file exists.

You can use wildcard directives in supplying file specifications.

Table 2-2 gives an example of the parsing of the following OpenVMS file
specification:

nodel: : usera$: [f| am ngo. wor k] eve$section. t pu$section; 12

nVMS File Parse Example

Requested

Element Returned Information Example

NODE Node name, including trailing colons NODEL::

DEVICE Device name, including colon USERAS:

DIRECTORY Entire directory string [FLAMINGO.WORK]

NAME File name EVES$SECTION

TYPE File type, including period .TPUS$SECTION

VERSION File version, including semicolon ;12

HEAD Node, device, and directory NODEL1::USERAS$:[FLAMINGO.WORK]
TAIL Name, type, and version EVE$SECTION.TPU$SECTION;12

Signaled Errors

TPU$_PARSEFAIL WARNING FILE_PARSE detected an
error while parsing the file
specification.

TPU$_NEEDTOASSIGN ERROR FILE_PARSE must appear
on the right-hand side of an
assignment statement.

TPU$_TOOFEW ERROR FILE_PARSE requires at
least one argument.

TPU$_INVPARAM ERROR One of the parameters to
FILE_PARSE has the wrong
data type.

TPU$_BADKEY ERROR You specified an invalid

keyword to FILE_PARSE.

2-122 Descriptions of the DECTPU Built-In Procedures

FILE_PARSE

TPU$_INCKWDCOM WARNING You specified HEAD along
with NODE, DEVICE,
or DIRECTORY; or TAIL
along with NAME, TYPE, or
VERSION.

Example

The following example returns a full file specification for the file PROGRAM.PAS.
The second parameter provides the name of the directory in which the file

can be found. Because the device and version fields are missing from the two
parameters, FILE_PARSE includes the current device and the version delimiter
(;) in the returned file specification.

spec := FILE PARSE ("program pass", "[abbott]")

Descriptions of the DECTPU Built-In Procedures 2-123

FILE_SEARCH

FILE_SEARCH

Format

string3 := FILE_SEARCH (filespec

, stringl

, string2

, NODE]

, DEVICE]

, DIRECTORY]

[, NAME] [, TYPE]
[, VERSION]

[HEAD]

L TAIL] 1D

R

Parameters

filespec
The file specification that you want to find.

stringl

A default file specification. If you fail to specify a field in filespec and that field is
present in the default file specification, DECTPU uses the field from stringl when
searching for the file.

string2

A related file specification. If you fail to specify a field in filespec and stringl and
that field is present in the related file specification and is not the version field,
DECTPU uses the field from string2 when searching for the file.

NODE

Keyword specifying that FILE_SEARCH should return a file specification,
including the node. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

DEVICE

Keyword specifying that FILE_SEARCH should return a file specification,
including the device. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

DIRECTORY

Keyword specifying that FILE_SEARCH should return a file specification,
including the directory. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

NAME

Keyword specifying that FILE_SEARCH should return a file specification,
including the name. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

TYPE

Keyword specifying that FILE_SEARCH should return a file specification,
including the type. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

2-124 Descriptions of the DECTPU Built-In Procedures

FILE_SEARCH

VERSION

Keyword specifying that FILE_SEARCH should return a file specification,
including the version. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

HEAD

Keyword specifying that FILE_SEARCH should return a file specification,
including the node, device, and directory fields. For more information on using
the optional keyword parameters to FILE_SEARCH, see the Description section.

TAIL

Keyword specifying that FILE_SEARCH should return a file specification,
including the file name, type, and version fields. For more information on using
the optional keyword parameters to FILE_SEARCH, see the Description section.

Return Value

A string that contains the partial or full file specification that you request from
$SEARCH.

Description

The FILE_SEARCH procedure searches one or more directories and returns
the partial or full file specification that matches your request. You must use
this built-in procedure multiple times with the same parameter to get all of the
occurrences of a file name in the directories.

Specify the first three parameters as strings. The remaining parameters are
keywords. File specifications that include OpenVMS logical names and device
names must terminate with a colon. If you omit optional parameters to the left of
a given parameter, you must include null strings as placeholders for the missing
parameters.

Unlike the FILE_PARSE built-in, FILE_SEARCH verifies that the file you specify
exists.

If FILE_SEARCH does not find a matching file, or if the built-in finds one or more
matches but is invoked again and does not find another match, FILE SEARCH
returns a null string but not an error status. Thus, the null string can act as

an “end of matching files” indicator. When FILE_SEARCH returns the status
TPU$_SEARCHFAIL, look in the message buffer to see why the search was
unsuccessful.

Refer to the description of the FILE_PARSE built-in for more information on
using the optional parameters to FILE_SEARCH.

Signaled Errors

TPU$_SEARCHFAIL WARNING FILE_SEARCH detected an
error while searching for the
file.

TPU$_TOOFEW ERROR FILE_SEARCH requires at

least one parameter.

Descriptions of the DECTPU Built-In Procedures 2-125

FILE_SEARCH

TPU$_NEEDTOASSIGN

TPU$_INVPARAM

TPU$_BADKEY

TPUS$_INCKWDCOM

Examples

ERROR

ERROR

WARNING

WARNING

FILE_SEARCH must be on
the right-hand side of an
assignment statement.

One of the arguments you
passed to FILE_SEARCH
has the wrong type.

One of the keyword
arguments you specified
is not one of those FILE_
SEARCH accepts.

You specified HEAD along
with NODE, DEVICE,

or DIRECTORY; or TAIL
along with NAME, TYPE, or
VERSION.

In the following example, each time this assignment statement is executed on
OpenVMS systems, it returns a string that contains the resulting file specification
of a file of type .EXE in SYS$SYSTEM. Because no version number is specified,
only the latest version is returned. When executing the statement returns a null
string, there are no more .EXE files in the directory.

1. fil := FILE_SEARCH (" SYS$SYSTEM *. EXE')

The following example is similar to the previous example. It makes use of the
fact that you are looking for files in the current OpenVMS directory and that
FILE_SEARCH can return parts of the file specification to eliminate the call to

FILE_PARSE.

2. PROCEDURE user _col | ect _rnos
LOCAL fil enane;
I Reset the file search context
filenane := FILE_SEARCH ("");
LooP

filename := FILE_SEARCH ("*.RNO', "", "", NAME, TYPE);

EXITIF filespec = "";
CREATE _BUFFER (filenane, filenane);
ENDLOOP;
ENDPROCEDURE;

2-126 Descriptions of the DECTPU Built-In Procedures

FILL

FILL

Format

Parameters

Description

FILL ({ :);:fgeé } [, string [, integerl [, integer2

[, integer3T111D)

buffer
The buffer whose text you want to fill.

range
The range whose text you want to fill.

string
The list of additional word separators. The space character is always a word
separator.

integerl

The value for the left margin. The left margin value must be at least 1 and must
be less than the right margin value. This value defaults to the same value as the
buffer’s left margin.

integer2

The value for the right margin. This value defaults to the same value as the
buffer’s right margin. Integer2 must be greater than the left margin and cannot
exceed the maximum record size for the buffer.

integer3

The value for the first line indent. This value modifies the left margin of the first
filled line. It can be positive or negative. The result of adding the first line indent
to the left margin must be greater than 1 and less than the right margin. This
value defaults to O.

The FILL procedure reformats the text in the specified buffer or range so that
the lines of text are approximately the same length. FILL recognizes two classes
of characters: text characters and word separators. Any character can be a
word separator, and any character other than the space character can be a text
character. The space character is always a word separator, even if it is not
present in the second parameter passed to FILL.

A word is a contiguous sequence of text characters, all of which are included

on the same line, immediately preceded by a word separator or a line break,
and immediately followed by a word separator or line break. If the first or last
character in the specified range is a text character, that character marks the
beginning or end of a word, regardless of any characters outside the range.
Filling a range that starts or ends in the middle of a word may result in the
insertion of a line break between that part of the word inside the filled range and
that part of the word outside the range.

Descriptions of the DECTPU Built-In Procedures 2-127

FILL

When filling a range or buffer, FILL does the following to each line:
= Removes any spaces at the beginning of the line

= Sets the left margin of the line

= Moves text up to the previous line if it fits

= Deletes the line if it contains no text

= Splits the line if it is too long

FILL sets the line’s left margin to the default left margin unless that line is the
first line of the buffer or range being filled. In this case, FILL sets the line’s left
margin to the fill left margin plus the first line indent. However, if you are filling
a range and the range does not start at the beginning of a line, FILL does not
change the left margin of that line.

FILL moves a word up to the previous line if the previous line is in the range to
be filled and if the word fits on the previous line without extending beyond the
fill right margin. Before moving the word up, FILL appends a space to the end
of the previous line if that line ends in a space or a text character. It does not
append a space if the previous line ends in a word separator other than the space
character.

When moving a word up, FILL also moves up any word separators that follow the
word, even if these word separators extend beyond the default right margin. Fill
does not move up any word separator that would cause the length of the previous
line to exceed the buffer’'s maximum record size. If the previous line now ends in
a space, FILL deletes that space. FILL does not delete more than one such space.

FILL moves any word separators at the beginning of a line up to the previous
line. It does this even if the word separators extend beyond the fill right margin.

FILL splits a line into two lines whenever the line contains two or more words
and one of the words extends beyond the fill right margin. FILL splits the line at
the first character of the first word that contains characters to the right of the fill
right margin, unless that word starts at the beginning of the line. In this case,
FILL does not split the line.

When operating on a range that does not begin at the first character of a line but
does begin left of the fill left margin, FILL splits the line at the first character of
the range.

FILL places the cursor at the end of the filled text after completing the previously
described tasks.

Signaled Errors

TPUS$_INVRANGE WARNING You specified an invalid
range enclosure.
TPU$_TOOFEW ERROR FILL requires at least one
argument.
TPU$_TOOMANY ERROR FILL accepts no more than
five arguments.
TPU$_ARGMISMATCH ERROR One of the parameters to

FILL is of the wrong type.

2-128 Descriptions of the DECTPU Built-In Procedures

FILL

TPU$_BADMARGINS WARNING You specified one of the fill
margins incorrectly.
TPU$_INVPARAM ERROR One of the parameters to
FILL is of the wrong type.
TPU$_NOTMODIFIABLE WARNING You cannot fill text in an
unmodifiable buffer.
TPU$_NOCACHE ERROR FILL could not create a new

line because there was no
memory allocated for it.

TPU$_CONTROLC ERROR FILL terminated because you
pressed Ctrl/C.

Examples

The following example fills the current buffer. It uses the buffer’s left and right
margins for the fill left and right margins. The space character is the only word
separator. Upon completion, the current buffer contains no blank lines. All lines
begin with a word. Unless the buffer contains a word too long to fit between the
left and right margins, all text is between the buffer’s left and right margins.
Spaces may appear beyond the buffer’s right margin.

1. FILL (current_buffer)

In the following example, if paragraph_range references a range that contains a
paragraph, this statement fills a paragraph. FILL uses a left margin of 5 and a
right margin of 65. It indents the first line of the paragraph an additional five
characters. The space character and the hyphen are the two word separators.
If the paragraph contains a hyphenated word, FILL breaks the word after the
hyphen if necessary.

2. FILL (paragraph_range, "-", 5, 65, 5)

The next example is like the previous one except that FILL unindents the first
line of the paragraph by three characters. This is useful for filling numbered
paragraphs.

3. FILL (paragraph_range, "-", 10, 65, -3)

Descriptions of the DECTPU Built-In Procedures 2-129

GET_CLIPBOARD

GET_CLIPBOARD

Format
string := GET_CLIPBOARD

Parameters

None.

Return Value

A string that consists of the data read from the clipboard. Line breaks are
indicated by a line-feed character (ASCII (10)).

Description

The GET_CLIPBOARD procedure reads STRING format data from the clipboard
and returns a string that contains this data. DECwindows provides a clipboard
that lets you move data between applications. Applications can write to the
clipboard to replace previous data, and can read from the clipboard to get a copy
of existing data. The data in the clipboard can be in multiple formats, but all the
information in the clipboard must be written at the same time.

DECTPU provides no clipboard support for applications not written for
DECwindows.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR GET_CLIPBOARD must
return a value.

TPU$_TOOMANY ERROR Too many arguments passed
to GET_CLIPBOARD.

TPU$_CLIPBOARDFAIL WARNING The clipboard did not return
any data.

TPU$ CLIPBOARDLOCKED WARNING DECTPU cannot read from
the clipboard because some
other application has locked
it.

TPUS$_CLIPBOARDNODATA WARNING There is no string format
data in the clipboard.

TPU$ TRUNCATE WARNING Characters were truncated
because you tried to add
text that would exceed the
maximum line length.

TPU$_STRTOOLARGE ERROR The amount of data in the
clipboard exceeds 65535
characters.

TPU$_REQUIRESDECW ERROR You can use GET_

CLIPBOARD only if you
are using DECwindows
DECTPU.

2-130 Descriptions of the DECTPU Built-In Procedures

GET_CLIPBOARD

Example

The following statement reads what is currently in the clipboard and assigns it to
new_string:

new string := GET_CLI PBOARD;

Descriptions of the DECTPU Built-In Procedures 2-131

GET_DEFAULT

GET_DEFAULT

Format

{ string3 } := GET_DEFAULT (string1, string2)
integer

Parameters

stringl
The name of the resource whose value you want GET_DEFAULT to fetch.
Resource names are case sensitive.

string2
The class of the resource. Resource class names are case sensitive.

Return Value

The string equivalent of the resource value or O if the specified resource is not
defined. If necessary, the application must convert the string to the data type
appropriate to the resource.

Description
The GET_DEFAULT procedure returns the value of an X resource from the
X resources database. GET_DEFAULT is useful for initializing a layered

application that uses an X defaults file. You can use GET_DEFAULT only in
the DECwindows environment.

If you use the SET (DEFAULT_FILE) built-in to merge a new X resource database
into the display’s database, this affects the values returned by GET_DEFAULT.

Signaled Errors

TPU$_INVPARAM ERROR One of the parameters was
specified with data of the
wrong type.

TPU$ TOOFEW ERROR Too few arguments passed to
GET_DEFAULT.

TPU$ TOOMANY ERROR Too many arguments passed
to GET_DEFAULT.

TPU$_NEEDTOASSIGN ERROR GET_DEFAULT must return
a value.

TPU$_REQUIRESDECW ERROR You can use GET_DEFAULT

only if you are using
DECwindows DECTPU.

2-132 Descriptions of the DECTPU Built-In Procedures

GET_DEFAULT

Example

The following example shows the portion of a module_init procedure directing
DECTPU to fetch the value of a resource from the X resources database. For
more information on module_init procedures, see the Extensible Versatile Editor
Reference Manual.

If you want to create an extension of EVE that enables use of an X defaults
file to choose a keypad setting, you can use a GET_DEFAULT statement in a
module_init procedure.

PROCEDURE appl i cation_nodul e init

LOCAL
keypad_nane;

keypad_nanme := GET_DEFAULT ("user.keypad", "User.Keypad");

EDI T (keypad_nane, UPPER); ! Convert the returned string to uppercase.
| F keypad_nanme <> '0’

T

HEN
CASE keypad_nane

" EDT" . eve_set _keypad_edt ();
" NOEDT" . eve_set_keypad_noedt ();
"WPS' . eve_set_keypad wps ();
" NOWPS' . eve_set_keypad_nowps ();
"NUMERIC' : eve_set keypad numeric ();
"VT100" : eve_set_keypad vt100 ();
[INRANGE, OUTRANGE] : eve_set keypad numeric; ! If you have

I used invalid val ue,
I set the keypad to
' NUMERI C setting.

ENDCASE;
ENDI F;

ENDPROCEDURE;

To provide a value for the GET_DEFAULT statement to fetch, an X defaults file
would contain an entry similar to the following:

User . Keypad : EDT

Descriptions of the DECTPU Built-In Procedures 2-133

GET_GLOBAL_SELECT

GET_GLOBAL_SELECT

Format
arra
imeger PRIMARY
string ;= GET_GLOBAL_SELECT ({ SECONDARY)
unspecified selection_name
selection_property _name)
Parameters
PRIMARY

A keyword indicating that the layered application is requesting information about
a property of the primary global selection.

SECONDARY
A keyword indicating that the layered application is requesting information about
a property of the secondary global selection.

selection_name

A string identifying the global selection whose property is the subject of the
layered application’s information request. Specify the selection name as a string
if the layered application needs information about a selection other than the
primary or secondary global selection.

selection_property_name
A string specifying the property whose value the layered application is requesting.

Return Values

array
An array that passes information about a global selection whose contents describe
information that is not of a data type supported by DECTPU.

DECTPU does not use or alter the information in the array; the application
layered on DECTPU is responsible for determining how the information is used, if
at all. Because the array is used to receive information from other DECwindows
applications, all applications that exchange information whose data type is not
supported by DECTPU must adopt a convention on how the information is to be
used.

The element array {0} contains a string that names the data type of the
information being passed. For example, if the information being passed is a
span, the element contains the string "SPAN". The element array {1} contains
either the integer 8, indicating that the information is passed as a series of
bytes, or the integer 32, indicating that the information is passed as a series
of longwords. If array {1} contains the value 8, the element array {2} contains
a string and there are no array elements after array {2}. The string does not
name anything, but rather is a series of bytes of information. As mentioned, the
meaning and use of the information is agreed upon by convention among the
DECwindows applications. To interpret this string, the application can use the
SUBSTR built-in procedure to obtain substrings one at a time, and the ASCII
built-in procedure to convert the data to integer format if necessary. For more

2-134 Descriptions of the DECTPU Built-In Procedures

GET_GLOBAL_SELECT

information about using these DECTPU elements, see the description of the
SUBSTR and ASCII built-in procedures.

If array {1} contains the value 32, the element array {2} and any subsequent
elements contain integers. The number of integers in the array is determined

by the application that responded to the request for information about the global
selection. The interpretation of the data is a convention that must be agreed
upon by the cooperating application. To determine how many longwords are being
passed, an application can determine the length of the array and subtract 2 to
allow for elements array {0} and array {1}.)

integer
The value of the specified global selection property. The return value is of type
integer if the value of the specified global selection property is of type integer.

string
The value of the specified global selection property. The return value is of type
string if the value of the specified global selection property is of type string.

unspecified
A data type that indicates that the information requested by the layered
application was not available.

Description

The GET_GLOBAL_SELECT procedure supplies information about a global
selection. If an owner for the global selection exists, and if the owner provides the
information requested in a format that DECTPU can recognize, GET_GLOBAL _
SELECT returns the information.

Signaled Errors

TPU$_ARGMISMATCH ERROR Wrong type of data sent to
GLOBAL_SELECT.
TPU$_NEEDTOASSIGN ERROR GLOBAL_SELECT must
return a value.
TPU$_INVPARAM ERROR One of the parameters was
specified with data of the
wrong type.
TPU$_REQUIRESDECW ERROR You can use GLOBAL _

SELECT only if you
are using DECwindows

DECTPU.

TPU$ TOOFEW ERROR Too few arguments passed to
GLOBAL_SELECT.

TPU$ TOOMANY ERROR Too many arguments passed
to GLOBAL_SELECT.

TPU$ GBLSELOWNER WARNING DECTPU owns the global
selection.

TPU$_BADKEY WARNING You specified an invalid

keyword as a parameter.

Descriptions of the DECTPU Built-In Procedures 2-135

GET_GLOBAL_SELECT

TPU$_INVGBLSELDATA WARNING The global selection owner
provided data that DECTPU
cannot process.

TPU$_NOGBLSELDATA WARNING The global selection owner
indicated that it cannot
provide the information
requested.

TPU$_NOGBLSELOWNER WARNING You requested information
about an unowned global
selection.

TPUS_TIMEOUT WARNING The global selection owner
did not respond before the
timeout period expired.

Example
The following example fetches the text in the primary global selection and assigns
it to the variable string_to_paste:
string_to_paste := GET_GLOBAL_SELECT (PRI MARY, "STRING');

For another example of how to use the GET_GLOBAL_SELECT built-in
procedure, see Example A-3.

2-136 Descriptions of the DECTPU Built-In Procedures

GET_INFO

GET_INFO

Description

The GET_INFO procedure returns information about the current status of the

editor.

For information on how to get a screen display of the status of your editor, see
the description of the SHOW built-in procedure.

This description provides general information on the GET_INFO built-in
procedures. Included are descriptions of individual GET_INFO built-ins. The
individual GET_INFO built-ins are grouped according to the value of their first
parameter. For a list of the groups of GET_INFO built-ins, see Table 2-3.

All GET_INFO built-in procedures have the following two characteristics in
common:

They return a value that is the piece of information you have requested.

They consist of the GET_INFO statement followed by at least two parameters,
as follows:

The first parameter specifies the general topic about which you want
information. If you want the GET_INFO built-in to return information on
a given variable, use that variable as the first parameter. For example,

if you want to know what row contains the cursor in a window stored in
the variable command_window, you would specify the variable command_
window as the first parameter. For example:

the_row := GET_INFO (command_wi ndow, "current_row');

Otherwise, the first parameter is a keyword specifying the general subject
about which GET_INFO is to return information. The valid keywords for
the first parameter are as follows:

ARRAY

BUFFER
COMMAND_LINE
DEBUG
DEFINED_KEY
KEY_MAP
KEY_MAP_LIST
mouse_event_keyword
PROCEDURES
PROCESS
SCREEN

SYSTEM
WIDGET
WINDOW

For a list of valid mouse event keywords, see Table 2—4.

Do not confuse a GET_INFO built-in whose first parameter is a keyword
(such as ARRAY) with a GET_INFO built-in whose first parameter is

a variable of a given data type, such as array variable. For example,
the GET_INFO (array_variable) built-in procedure shows what string
constants can be used when the first parameter is an array variable;
the GET_INFO (ARRAY) built-in shows what can be used when the first
parameter is the ARRAY keyword.

Descriptions of the DECTPU Built-In Procedures 2-137

GET_INFO

— The second parameter (a DECTPU string) specifies the exact piece of
information you want.

— The third and subsequent parameters, if necessary, provide additional
information that DECTPU uses to identify and return the requested value
or structure.

Each GET_INFO built-in procedure in this section shows the possible return
values for a given combination of the first and second parameters. For example,
the GET_INFO (any_variable) built-in shows that when you use any variable as
the first parameter and the string "type" as the second parameter, GET_INFO
returns a keyword for the data type of the variable.

Depending upon the kind of information requested, GET_INFO returns any one
of the following:

< An array

* A buffer

= An integer

= A keyword

= A marker

= A process

= Arange

e A string

= A window
DECTPU maintains internal lists of the following items:
= Arrays

= Array elements
< Breakpoints

= Buffers

= Defined keys

< Key maps

e Key map lists
= Processes

= Windows

You can step through an internally maintained list by using "first", "next",
"previous", or "last" as the second parameter to GET_INFO. The order in which
DECTPU maintains these lists is private and may change in a future version.
Do not write code that depends on a list being maintained in a particular order.
When you write code to search a list, remember that DECTPU keeps only one
pointer for each list. If you create nested loops that attempt to search the same
list, the results are unpredictable.

For example, suppose that a program intended to search two key map lists for
common key maps sets up a loop within a loop. The outer loop might contain the
following statement:

2-138 Descriptions of the DECTPU Built-In Procedures

GET_INFO

GET_I NFO (KEY_MAP, "previous", nanme_of second key map)

The inner loop might contain the following statement:

GET_INFO (KEY_MAP, "next", nane_of first_key map)

In DECTPU, the behavior of such a nested loop is unpredictable.

Unless documented otherwise, the order of the internal list is not defined.

The syntax of GET_INFO depends on the kind of information you are trying to
get. For more information on specific GET_INFO built-in procedures, see the
descriptions in this section. GET_INFO built-ins whose first parameter is a
keyword are grouped separately from GET_INFO built-ins whose first parameter
is a variable.

Table 2-3 GET_INFO Built-In Procedures by First Parameter

Variable Keyword Any Keyword or Key Name
GET_INFO (any_variable) GET_INFO (ARRAY) GET_INFO (any_keyname)
GET_INFO (array_variable) GET_INFO (BUFFER) GET_INFO (any_keyword)

GET_INFO (buffer_variable) = GET_INFO (COMMAND_LINE)
GET_INFO (integer_variable) GET_INFO (DEBUG)

GET_INFO (marker_ GET_INFO (DEFINED_KEY)
variable)

GET _INFO (process_variable) GET_INFO (KEY_MAP)
GET_INFO (range_variable) GET_INFO (KEY_MAP_LIST)
GET_INFO (string_variable) GET_INFO (mouse_event_

keyword)
GET_INFO (widget_variable) GET_INFO (PROCEDURES)
GET_INFO (window_ GET_INFO (PROCESS)

variable)
GET_INFO (SCREEN)
GET_INFO (SYSTEM)
GET_INFO (WIDGET)
GET_INFO (WINDOW)

Signaled Errors

TPU$ BADREQUEST WARNING Request represented by second
argument is not understood for
data type of first argument.

TPU$_BADKEY WARNING Bad keyword value or
unrecognized data type is
passed as the first argument.

TPU$_NOCURRENTBUF WARNING Current buffer is not defined.
TPU$_NOKEYMAP WARNING Key map is not defined.
TPU$_NOKEYMAPLIST WARNING Key map list is not defined.

Descriptions of the DECTPU Built-In Procedures 2-139

GET_INFO

TPUS$_INVPARAM

TPU$_NEEDTOASSIGN

TPU$_NOBREAKPOINT
TPU$_NONAMES
TPU$_TOOFEW

TPU$ TOOMANY

TPU$_UNKKEYWORD

Examples

ERROR

ERROR

WARNING

WARNING

ERROR

ERROR

ERROR

One or more of the specified
parameters have the wrong data
type.

The GET_INFO built-in can be
used only on the right-hand side
of an assignment statement.
This string constant is valid
only after a breakpoint.

There are no names matching
the one requested.

Too few arguments passed to the
GET_INFO built-in.

Too many arguments passed to
the GET_INFO built-in.

An unknown keyword was used
as an argument.

The following example stores the pointer to the current buffer in the variable

my_buffer:

1. ny_buffer := GET_INFO (BUFFERS, "current");

The following example stores the integer 1 or O in the variable is_buf mod. A
value of 1 means the current buffer has been modified. A value of 0 means the
current buffer has not been modified.

2. is_buf_mod := GET_INFO (CURRENT BUFFER, "modi

fied");

The following example uses GET_INFO to find the top of the current window. It
then removes the top five lines and replaces them with an example window.

3. PROCEDURE user _getinfo

top_of wi ndow ;= GET_I NFO (CURRENT W NDOW "top", visible w ndow);
I Remove the top five lines fromthe main w ndow

ADJUST W NDOW (CURRENT W NDOW +5, 0);

I Replace removed lines with an exanpl
exanpl e_wi ndow :
exanpl e_buffer :

e w ndow

CREATE_W NDOW (top_of _wi ndow, 5, ON);
CREATE_BUFFER (" EXAMPLE",

"sys$login:tenplate. txt");

MAP (exanpl e_wi ndow, exanple_buffer);
ENDPROCEDURE;

2-140 Descriptions of the DECTPU Built-In Procedures

GET_INFO

The following example shows whether the key map list associated with the
current buffer inserts undefined printable characters:

4. PROCEDURE show sel f_insert
LOCAL key map_list_nanme;
key map_list_nanme := GET_| NFO (CURRENT BUFFER "key map list");

IF GET_INFO (key_map_list_nanme, "self _insert")
THEN

MESSAGE ("Undefined printable characters will be inserted");
ELSE

MESSAGE ("Undefined printable characters will cause an error");

Descriptions of the DECTPU Built-In Procedures 2-141

GET_INFO (any_keyname)

GET_INFO (any_keyname)

Format

Parameters

. "key_modifiers"
integer _ o "
{ keyword } = GET_INFO (any_keyname, { I'key_typg) })
unmodified

"key_modifiers"

Returns a bit-encoded integer that indicates what key modifier or modifiers were
used to create the DECTPU key name specified by the parameter any_keyname.
For more information about the meaning and possible values of key modifiers, see
the description of the KEY_NAME built-in procedure.

DECTPU defines four constants to be used when referring to or testing the
numerical value of key modifiers. The correspondence between key modifiers,
defined constants, and bit-encoded integers is as follows:

Key Modifier Constant Bit-Encoded Integer
SHIFT_MODIFIED TPUS$K _SHIFT_MODIFIED 1
CTRL_MODIFIED TPUS$K _CTRL_MODIFIED 2
HELP_MODIFIED TPU$K_HELP_MODIFIED 4
ALT_MODIFIED TPUSK_ALT _MODIFIED 8

You may have used the SHIFT_KEY keyword to create a DECTPU key name.
SHIFT_KEY is not a modifier; it is a prefix. The Shift key is also called the
GOLD key by the EVE editor. To use the Shift key, press and release it before
you press any other key.

In DECwindows, to use modifying keys (such as Ctrl), press and hold the
modifying key while you press the modified key.

If you use more than one key modifier with the KEY_NAME built-in procedure,
the value of the returned integer is the sum of the integer representations of
the key modifiers. For example, if you create a key name by using the modifiers
HELP_MODIFIED and ALT_MODIFIED, the GET_INFO (any_keyname, "key
modifiers") built-in returns the integer 12.

"key_type"

Returns a keyword that describes the type of key named by any_keyname.

The keywords that can be returned are PRINTING, KEYPAD, FUNCTION,
CONTROL, SHIFT_PRINTING, SHIFT_KEYPAD, SHIFT_FUNCTION, and
SHIFT_CONTROL. Returns 0 if parameterl is not a valid key name. There

are cases in which GET_INFO (any_keyname, "name") returns the PRINTING
keyword but the key described by the key name is not associated with a printable
character. For example, if you use the KEY_NAME built-in to define a key name
as the combination of the character A and the ALT modifier, and if you then use
GET_INFO (any_keyname, "name") to find out how DECTPU classifies the key,
the GET_INFO built-in returns the PRINTING keyword. However, if you use the
ASCII built-in to obtain the string representation of the key, the ASCII built-in
returns a null string because ALT/A is not printable.

2-142 Descriptions of the DECTPU Built-In Procedures

GET_INFO (any_keyname)

"unmodified"

Returns a keyword that describes the key name specified by any_keyname without
any modifiers. For example, if you create a key name for the F20 key with the
ALT_MODIFIED modifier, the GET_INFO (any_keyname, "unmodified") built-in
returns the F20 keyword.

Return Values

Description

Example

integer
Returns requested information about the integer you specify.

keyword
Returns requested information about the keyword you specify.

The GET_INFO (any_keyname) procedure returns a keyword that describes the
type of key named by any_keyname.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

In the following example, the first statement creates a DECTPU key name
for the key sequence produced by pressing the Ctrl key, the Shift key, and
the 4 key on the keypad all at once. The new key name is assigned to the
variable new_key. The second statement fetches the integer equivalent of
this combination of key modifiers. The third statement displays the integer
3 in the message buffer. The IF clause of the fourth statement shows how
to test whether a key name was created using a modifier. (This statement
does not detect whether a key name was created using the SHIFT_KEY
keyword.) The THEN clause shows how to fetch the key modifier keyword or
keywords used to create a key name. The final statement displays the string
KEY_NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED) in the message
buffer.

new key := KEY_NAMVE (KP4, SHIFT_MODIFIED, CTRL_MODIFIED);

modi fier_val ue
MESSAGE (STR (
| F GET_INFO (n
THEN

t he_name

:= CET_INFO (new_key, "key_nodifiers");
nodi fier_value));
ew key, "key nodifiers")

:= GET_INFO (new_key, "nane")

MESSAGE (STR (the_nane));

ENDI F;

Descriptions of the DECTPU Built-In Procedures 2-143

GET_INFO (any_keyword)

GET_INFO (any_keyword)

Format
string := GET_INFO (any_keyword, "name")

Parameter

"name”
Returns the string equivalent of the specified keyword.

You can use GET_INFO (any_keyword, "name") to obtain the string equivalent
of a key name. This is useful for displaying screen messages about keys. For
example, to obtain the string equivalent of the key name PF1, you could use the
following statement:

the string := GET_INFO (PF1, "nane");

If a key name is created using several key modifiers, the built-in returns the
string representations of all the keywords used to create the key name. For
more information on creating key names, see the description of the KEY_NAME
built-in procedure.

Return Value

Returns the requested information about the string you specify.

Description
The GET_INFO (any_keyword) procedure returns the string representation of the
keyword specified in the first parameter to GET_INFO.
For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO. See also the description of GET_INFO (integer_
variable).

Example

The following example shows one possible use of GET_INFO (any_keyword,
"name"). The first statement creates a DECTPU key name for the key sequence
produced by pressing the Ctrl key, the Shift key, and the 4 key on the keypad

all at once. The new key name is assigned to the variable key_name. The IF
clause of the statement shows how to test whether a key nhame was created using
one or more key modifier keywords. (This statement does not detect whether a
key name was created using the SHIFT_KEY keyword. The GET_INFO (any_
keyname, "key_modifiers") built-in returns 0 even if the key name was created
using SHIFT_KEY.) The THEN clause shows how to fetch the key modifier
keyword or keywords used to create a key name. The final statement displays the
string KEY_NAME (KP4, SHIFT_MODIFIED, ALT_MODIFIED) in the message
buffer.

2-144 Descriptions of the DECTPU Built-In Procedures

GET_INFO (any_keyword)

new key := KEY_NAME (KP4, SH FT_MODI FIED, CTRL_MODI FI ED);
|
|
! .
I F GET_INFO (new _key, "key nodifiers") <> 0
THEN

the_name := GET_INFO (new key, "name")
ENDI F;
MESSAGE (STR (the_nane));

Descriptions of the DECTPU Built-In Procedures 2-145

GET_INFO (any_variable)

GET_INFO (any_variable)

Format
keyword := GET_INFO (any_variable, "type")

Parameter

"type”
Returns a keyword that is the data type of the variable specified in any_variable.

Return Value

Returns the requested information about the keyword you specify.

Description
The GET_INFO (any_variable) procedure returns a keyword that specifies the
data type of the variable.
For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Example

The following example tests whether the variable select_popup has been assigned
a value of type widget. If not, the code causes a message to be displayed on the
screen.

|F CGET_INFO (sel ect _popup, "type") <> W DGET
THEN
MESSAGE (" Sel ect _popup wi dget not created.")
ENDI F;

2-146 Descriptions of the DECTPU Built-In Procedures

GET_INFO (ARRAY)

GET_INFO (ARRAY)

Format

Parameters

Return Value

Description

"current”
"first"

array ;= GET_INFO (ARRAY, ¢ "last")
"next"
"previous"

"current”

Returns the current array in DECTPU's internal list of arrays. You must use
either GET_INFO (ARRAY, "first") or GET_INFO (ARRAY, "last") before you can
use GET_INFO (ARRAY, "current”). If you use these built-ins in the wrong order
or if no arrays have been created, GET_INFO (ARRAY, "current”) returns 0.

"first"
Returns the first array in the DECTPU internal list of arrays; returns 0 if no
arrays are defined.

"last"
Returns the last array in the DECTPU internal list of arrays; returns O if no
arrays are defined.

"next"

Returns the next array in DECTPU?’s internal list of arrays. This parameter is
valid whenever GET_INFO (ARRAY, "current”) would return an array. That is,
the intended usage of this parameter is that you use GET_INFO (ARRAY, "first")
before you can use GET_INFO (ARRAY, "next").

Returns 0O if you use this parameter immediately after GET_INFO (ARRAY,
"last™), or if you have not created an array.

"previous"

Returns the previous array in DECTPU’s internal list of arrays. The intended
usage of this parameter is that you use either GET_INFO (ARRAY, "current") or
GET_INFO (ARRAY, "last") before you use GET_INFO (ARRAY, "previous").

Returns 0O if you use this parameter immediately after GET_INFO (ARRAY,
"first"), or if you have not created an array.

Returns the requested information about the array you specify.

The GET_INFO (ARRAY) procedure returns an array in DECTPU'’s internal list
of arrays.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Descriptions of the DECTPU Built-In Procedures 2-147

GET_INFO (array_variable)

GET_INFO (array_variable)

Format

Parameters

array
buffer))
i current
integer eurre
keyword first
marker "high_index"
= GET_INFO (array_variable, { "last")
process) _)
low_index
range) |
i next
string) L
widget previous
window
"current”

Returns the index value of the current element of the specified array, whether
the index is of type integer or some other type. Returns any type except program,
pattern, or learn. Returns the UNSPECIFIED keyword if there is no current
element.

You must use either GET_INFO (array_variable, "first") or GET_INFO (array_
variable, "last") before you can use GET_INFO (array_variable, "current").

"first"

Returns the index value of the first element of the specified array, whether the
index is of type integer or some other type. Returns any type except program,
pattern, or learn. Returns the UNSPECIFIED keyword if there is no first
element.

"high_index"

Returns an integer that is the highest valid integer index for the static
predeclared portion of the array. If the GET_INFO call returns a high index
lower than the low index, the array has no static portion.

lllastll

Returns the index value of the last element of the specified array, whether the
index is of type integer or some other type. Returns any type except program,
pattern, or learn. Returns the UNSPECIFIED keyword if there is no last
element.

"low_index"

Returns an integer that is the lowest valid integer index for the static predeclared
portion of the array. If the GET_INFO call returns a high index lower than the
low index, the array has no static portion.

"next"

Returns the index value of the next element of the specified array, whether the
index is of type integer or some other type. Returns any type except program,
pattern, or learn. Returns the UNSPECIFIED keyword if there is no next
element.

You must use GET_INFO (array_variable, "first") before you can use GET_INFO
(array_variable, "next").

2-148 Descriptions of the DECTPU Built-In Procedures

GET_INFO (array_variable)

"previous"

Returns the index value of the previous element of the specified array, whether
the index is of type integer or some other type. Returns any type except program,
pattern, or learn. Returns the UNSPECIFIED keyword if there is no previous
element.

You must use either GET_INFO (array_variable, "current”) or GET_INFO (array_
variable, "last") before you can use GET_INFO (array_variable, "previous").

Return Values

array
Returns requested information about the array you specify.

buffer
Returns requested information about the buffer you specify.

integer
Returns requested information about the integer you specify.

keyword
Returns requested information about the keyword you specify.

marker
Returns requested information about the marker you specify.

process
Returns requested information about the process you specify.

range
Returns requested information about the range you specify.

string
Returns requested information about the string you specify.

widget
Returns requested information about the widget you specify.

window
Returns requested information about the window you specify.

Description

The GET_INFO (array_variable) procedure returns information about a specified
array.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Descriptions of the DECTPU Built-In Procedures 2-149

GET_INFO (BUFFER)

GET_INFO (BUFFER)

Format

Parameters

Return Value

Description

"current”

"find_buffer", buffer_name
"first"

"last"

"next"

"previous"

buffer := GET_INFO (BUFFER[S]

"current”
Returns the current buffer in DECTPU's internal list of buffers; returns 0O if there
is no current buffer.

GET_INFO (BUFFER[S], "current”) always returns the current buffer, regardless
of whether you have first used GET_INFO (BUFFER[S], "first") or GET_INFO
(BUFFER[S], "last"). Thus, GET_INFO (BUFFER[S], "current") is equivalent to
the CURRENT_BUFFER built-in procedure.

"find_buffer", buffer_name
Returns the buffer whose name you specify (as a string) as the third parameter;
returns O if no buffer with the name you specify is found.

"first"
Returns the first buffer in DECTPU's internal list of buffers; returns 0 if there is
none.

"last”
Returns the last buffer in DECTPU's internal list of buffers; returns O if there is
none.

"next"
The next buffer in DECTPU's internal list of buffers; returns O if there are no
more.

"previous"
Returns the preceding buffer in DECTPU's internal list of buffers; returns 0 if
there is none.

Returns the requested information about the buffer you specify.

The GET_INFO (BUFFER) procedure returns a buffer in DECTPU'’s internal list
of buffers.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-150 Descriptions of the DECTPU Built-In Procedures

GET_INFO (buffer_variable)

GET _INFO (buffer_variable)

Format

integer

keyword
learn_sequence
marker := GET_INFO (buffer_variable,
program
range
string

"before_bol"
"beyond_eob"
"beyond_eol"
"bound"
"character"
"direction"
"eob_text"
"erase_unmodifiable"
"file_name"
"first_marker"
"first_range"
"journaling"
"journal_file"
"journal_name"
"key_map_list"
"left_margin"
"left_margin_action"
"line"
"map_count"
"max_lines"
"middle_of tab"
"mode"
"modifiable"
"modified"
"move_vertical_context"
"name"
"next_marker"
"next_range"
"no_write"
"offset"
"offset_column”
"output_file"

Descriptions of the DECTPU Built-In Procedures 2-151

GET_INFO (buffer_variable)

Parameters

"permanent”

"read_routine", GLOBAL_SELECT
“record_count"

"record_number"

"record_size"

“right_margin")
"right_margin_action"
"safe_for_journaling"
"system”

"tab_stops"
"unmodifiable_records"

"before_bol"
Returns an integer (1 or 0) that indicates whether the editing point is located
before the beginning of a line.

"beyond_eob"
Returns an integer (1 or 0) that indicates whether the editing point is located
beyond the end of a buffer.

"beyond_eol"
Returns an integer (1 or 0) that indicates whether the editing point is located
beyond the end of a line.

"bound"

Returns an integer (1 or 0) that indicates whether the marker that is the
specified buffer’s editing point is bound to text. For more information about
bound markers, see the Guide to the DEC Text Processing Utility.

"character”
Returns a string that is the character at the editing point for the buffer.

"direction”
Returns the FORWARD or REVERSE keyword. Use the SET (FORWARD) and
SET (REVERSE) built-in procedures to establish or change this parameter.

"eob_text"
Returns a string that represents the end-of-buffer text. Use the SET (EOB_
TEXT) built-in procedure to establish or change this parameter.

"erase_unmodifiable"
Returns 1 if unmodifiable records can be erased from the specified buffer and
returns O if the records cannot be erased.

"file_name"
Returns a string that is the name of a file given as the second parameter to
CREATE_BUFFER. Returns the null string if none was specified.

"first_marker"

Returns the first marker in DECTPU's internal list of markers for the buffer.
Returns 0 if there is none. You must use GET_INFO (buffer_variable, "first_
marker" before the first use of GET_INFO (buffer_variable, "next_marker"). If
you do not follow this rule, GET_INFO (buffer_variable, "next_marker") returns 0.

2-152 Descriptions of the DECTPU Built-In Procedures

GET_INFO (buffer_variable)

There is no corresponding "last_marker or "prev_marker" parameter.

Do not write code that relies on DECTPU storing markers in one particular order.
Creating markers or ranges may alter the internal order.

"first_range"

Returns the first range in DECTPU's internal list of ranges for the buffer.
Returns O if there are none. You must use GET_INFO (buffer_variable, "first_
range") before you use GET_INFO (buffer_variable,"next_range") or the "next_
range" parameter returns 0.

There is no corresponding "last_range" or "prev_range" parameter.

Do not write code that relies on DECTPU storing ranges in one particular order.
Creating markers or ranges may alter the internal order.

"journaling"
Returns 1 if the specified buffer is being journaled or returns O if it is not.

"journal_file"
Returns a string that is the name of the journal file for the specified buffer. If the
buffer is not being journaled, the call returns 0.

"journal_name"

Converts a buffer’'s name to a journal file name by using the DECTPU default
journal file name algorithm. DECTPU converts the buffer name to a journal
file name regardless of journaling status. The GET_INFO call does not require
journaling to be turned on for the specified buffer. For more information on this
algorithm, see the Guide to the DEC Text Processing Utility.

"key_map_list"
Returns a string that is the key map list bound to the buffer. Use the SET
built-in procedure to establish or change this parameter.

"left_margin”
Returns an integer that is the current left margin setting. Use the SET (LEFT_
MARGIN) built-in procedure to establish or change this parameter.

"left_margin_action"

Returns a program or learn sequence that specifies what DECTPU should do if
you try to insert text to the left of the left margin. Returns the UNSPECIFIED
keyword if no left margin action routine has been set. Use the SET (LEFT_
MARGIN_ACTION) built-in procedure to establish or change this parameter.

"line"
Returns a string that is the line of text at the editing point for the buffer.

"map_count"
Returns an integer that is the number of windows associated with the buffer.

"max_lines"
Returns an integer that is the maximum number of records (lines) in the buffer.
Use the SET built-in procedure to establish or change this parameter.

"middle_of tab"
Returns an integer (1 or 0) that indicates whether the editing point is located in
the white space within a tab.

Descriptions of the DECTPU Built-In Procedures 2-153

GET_INFO (buffer_variable)

"mode"
Returns the INSERT or OVERSTRIKE keyword. Use the SET (INSERT) and
SET (OVERSTRIKE) built-in procedures to establish or change this parameter.

"modifiable"
Returns an integer (1 or 0) that indicates whether the buffer is modifiable.

"modified"
Returns an integer (1 or 0) that indicates whether the buffer has been modified.

"move_vertical_context"

Returns the encoded integer that describes the column where DECTPU attempts
to position the cursor during MOVE_VERTICAL operations. See the SET
(MOVE_VERTICAL_CONTEXT) built-in procedure for more information.

"name"
Returns a string that is the name given to the buffer when it was created.

"next_marker"

Returns the next marker in DECTPU's internal list of markers for the buffer.
Returns 0 if there are no more. You must use GET_INFO (buffer_variable,
"first_marker") before you use GET_INFO (buffer_variable, "next_marker") or the
"next_marker" parameter returns 0.

There is no corresponding "last_marker" or "prev_marke" parameter.

Do not write code that relies on DECTPU storing markers in one particular order.
Creating markers or ranges may alter the internal order.

"next_range"

Returns the next range in DECTPU's internal list of ranges for the buffer.
Returns 0 if there are no more. You must use GET_INFO (buffer_variable,
"first_range") before you use GET_INFO (buffer_variable, "next_range") or the
"next_range" parameter returns 0.

There is no corresponding "last_range" or "prev_range" parameter.

Do not write code that relies on DECTPU storing ranges in one particular order.
Creating markers or ranges may alter the internal order.

"no_write"

Returns an integer (1 or 0) that indicates whether the buffer should be written to
a file at exit time. DECTPU writes the buffer to a file only if the buffer has been
modified during the editing session. Use the SET (NO_WRITE) built-in procedure
to establish or change this parameter.

"offset"

Returns an integer that is the number of characters between the left margin and
the editing point. The left margin is counted as character 0. A tab is counted
as one character, regardless of width. Window shifts have no effect on the value
returned when you use "offset". The value returned has no relation to the visible
screen column in which a character is displayed.

"offset_column"”

Returns an integer that is the screen column in which DECTPU displays the

character at the editing point. When calculating this value, DECTPU does not
take window shifts into account; DECTPU assumes that any window mapped

to the current buffer is not shifted. The value returned when you use "offset_

2-154 Descriptions of the DECTPU Built-In Procedures

GET_INFO (buffer_variable)

column” reflects the location of the left margin and the width of tabs preceding
the editing point. In contrast, the value returned when you use "offset" is not
affected by the location of the left margin or the width of tabs.

"output_file"

Returns a string that is the name of the file used with the SET (OUTPUT _
FILE) built-in procedure. Returns O if there is no output file associated with the
specified buffer. Use the SET (OUTPUT_FILE) built-in procedure to establish or
change this parameter.

"permanent”

Returns an integer (1 or 0) that indicates whether the buffer is permanent or
can be deleted. Use the SET (PERMANENT) built-in procedure to establish or
change the parameter.

"read_routine"
Use with DECwindows only.

Returns the program or learn sequence that DECTPU executes when it owns a
global selection and another application has requested information about that
selection. If the application has not specified a global selection read routine, O is
returned.

GLOBAL_SELECT is a keyword indicating that the built-in is to return the
global selection read routine. When you use "read_routine" as the second
parameter to this built-in, you must use the GLOBAL_SELECT keyword as
the third parameter, as follows:

GET_INFO (buffer_variable, "read_routine"”, GLOBAL_SELECT)

"record_count"

Returns an integer that is the number of records (lines) in the buffer. GET_INFO
(buffer, "record_count"”) does not count the end-of-buffer text as a record, but
GET_INFO (marker, "record_number") does if the specified marker is on the
end-of-buffer text. Thus, the maximum value returned by GET_INFO (buffer,
"record_count") is one less than the maximum value returned by GET_INFO
(marker, "record_number") if the specified marker is on the end-of-buffer text.

"record_number"
Returns the record number of the editing point.

“"record_size"
Returns an integer that is the maximum length for records (lines) in the buffer.

"right_margin"
Returns an integer that is the current right margin setting. Use the SET
(RIGHT_MARGIN) built-in procedure to establish or change the parameter.

"right_margin_action"

Returns a program or learn sequence that specifies what DECTPU should
do if you try to insert text to the right of the right margin. Returns the
UNSPECIFIED keyword if the buffer does not have a right margin action.

Use the SET (RIGHT_MARGIN_ACTION) built-in procedure to establish or
change the parameter.

Descriptions of the DECTPU Built-In Procedures 2-155

GET_INFO (buffer_variable)

"safe_for_journaling"

Returns 1 if the specified buffer is safe for journaling or returns 0 if it is not.
“Safe for journaling” means that you can use the SET (JOURNALING) built-in
procedure to turn on journaling. A buffer is safe for journaling if it is empty, has
never been modified, or has not been modified since the last time it was written
to a file.

"system”
Returns an integer (1 or 0) that indicates whether the buffer is a system buffer.
Use the SET (SYSTEM) built-in procedure to establish or change the parameter.

"tab_stops"

Returns either an integer or a string. Use the SET (TAB_STOPS) built-in
procedure to determine the data type of the return value. If you specify a
return value of type string, the GET_INFO (buffer_variable, "tab_stops") built-in
procedure returns a string representation of all the column numbers where tab
stops are set. The column numbers are separated by spaces. If you specify a
return value of type integer, the return value is the number of columns between
tab stops.

"unmodifiable_records"
Returns 1 if the specified buffer contains one or more unmodifiable records. The
call returns 0 if no unmodifiable records are present in the specified buffer.

Return Values

Description

integer
Returns requested information about the integer you specify.

keyword
Returns requested information about the keyword you specify.

learn_sequence
Returns requested information about the learn_sequence you specify.

marker
Returns requested information about the marker you specify.

program
Returns requested information about the program you specify.

range
Returns requested information about the range you specify.

string
Returns requested information about the string you specify.

The GET_INFO (buffer_variable) procedure returns information about a specified
buffer.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-156 Descriptions of the DECTPU Built-In Procedures

GET_INFO (COMMAND_LINE)

GET_INFO (COMMAND_LINE)

Format

Parameters

{ Integer }:: GET_INFO (COMMAND_LINE,
string

"character"
"character_set"
"command"
"command_file"
"create"
"display"
"file_name"
"first_file_name
“initialization"
"initialization_file"
"init_file"
"journal”
"journal_file"
"line")
"modify"
"next_file_name
"nomodify"
"output"
"output_file"
"read_only"
"recover"
"section”
"section_file"
"start_character”
"start_record"
"work"
"work_file"
"write"

"character"

Returns an integer that is the column number of the character position specified
by the /ISTART_POSITION qualifier. This parameter is useful in a procedure to
determine where DECTPU should place the cursor at startup time. The default
is 1 if you do not specify the qualifier or option. This parameter is the same as

the "start_character" parameter.

"character_set"

Returns a keyword that indicates the character set that you specified by the
ICHARACTER_SET qualifier. DECTPU can return the following keywords:
DEC_MCS (default), ISO_LATIN1, and GENERAL.

"command"

Returns an integer (1 or 0) that indicates whether the /COMMAND qualifier is
active (either by default or because the qualifier or option was specified when you
invoked DECTPU).

Descriptions of the DECTPU Built-In Procedures 2-157

GET_INFO (COMMAND_LINE)

"command_file"
Returns a string that is the command file specification from the /COMMAND
qualifier.

"create"

Returns an integer (1 or 0) that indicates whether the /CREATE qualifier is
active (either by default or because the qualifier was specified when you invoked
DECTPU).

"display"

Returns an integer (1 or 0) that indicates whether the /DISPLAY or /INTERFACE
qgualifier is active (either by default or because /DISPLAY or /INTERFACE was
specified when you invoked DECTPU).

"file_name"

Returns a string that is the first file specification used as a parameter when you
invoke DECTPU. Returns a null string if you did not specify an input file name
on the command line.

"first_file_name"

Returns a string that is the first file specification used as a parameter when you
invoke DECTPU. Returns 0 if you did not specify any file name on the command
line. There is a single input parameter that can be a list of comma-separated file
specifications. This GET_INFO returns only the first file specification.

“initialization"

Returns an integer (1 or 0) that indicates whether the /INITIALIZATION
qualifier is active (either by default or because the qualifier was specified when
you invoked DECTPU).

“initialization_file"
Returns a string that is the initialization file specification for the
/INITIALIZATION qualifier.

"init_file"
This is a synonym for GET_INFO (COMMAND_LINE, "initialization_file").

“journal”

Returns an integer (1 or 0) that indicates whether the /JJOURNAL qualifier is
active (either by default or because the qualifier was specified when you invoked
DECTPU).

"journal_file"
Returns a string that is the journal file specification for the /JJOURNAL qualifier.

"line"

Returns an integer that is the record number of the line specified by the /START_
POSITION qualifier. This parameter is useful in a procedure to determine where
DECTPU should place the cursor at startup time. The default is 1 if the qualifier
or option is not specified. This parameter is the same as the "start_record"
parameter.

"modify"
Returns an integer (1 or 0) that indicates whether the /MODIFY qualifier was
specified when you invoked DECTPU.

2-158 Descriptions of the DECTPU Built-In Procedures

GET_INFO (COMMAND_LINE)

"next_file_name"

Returns the next file name entered on the command line that invoked TPU.
Returns 0 if no file name was specified on the command line, or if there are no
more file names to return.

"nomodify"
Returns an integer (1 or 0) that indicates whether the /NOMODIFY qualifier was
specified when you invoked DECTPU.

"output"

Returns an integer (1 or 0) that indicates whether the /OUTPUT qualifier is
active (either by default or because the qualifier was specified when you invoked
DECTPU).

"output_file"
Returns a string that is the output file specification for the /OUTPUT qualifier.

"read_only"
Returns an integer (1 or 0) that indicates whether the /READ_ONLY qualifier
was specified when you invoked DECTPU.

"recover"
Returns an integer (1 or 0) that indicates whether the /RECOVER qualifier was
specified when you invoked DECTPU.

"section”

Returns an integer (1 or 0) that indicates whether the /SECTION qualifier is
active (either by default or because the qualifier was specified when you invoked
DECTPU).

"section_file"
Returns a string that is the section file specification for the /SECTION qualifier.

"start_character"

Returns an integer that is the column number of the character position specified
by the /ISTART_POSITION qualifier. This parameter is useful in a procedure to

determine where DECTPU should place the cursor at startup time. The default
is 1 if you do not specify qualifier. This parameter is a synonym for "character".

"start_record"

Returns an integer that is the record number of the line specified by the /START _
POSITION qualifier. This parameter is useful in a procedure to determine where
DECTPU should place the cursor at startup time. The default is 1 if you do not
specify the qualifier. This parameter is a synonym for "line".

"work"

Returns an integer (1 or 0) that indicates whether the /WORK qualifier is active
(either by default or because the qualifier was specified when you invoked
DECTPU).

"work_file"
Returns a string that is the work file specification for the /WORK qualifier.

"write"
Returns an integer (1 or 0) that indicates whether the /WRITE qualifier was
specified when you invoked DECTPU.

Descriptions of the DECTPU Built-In Procedures 2-159

GET_INFO (COMMAND_LINE)

Return Values

integer
Returns requested information about the integer you specify.

string
Returns requested information about the string you specify.

Description

The GET_INFO (COMMAND_LINE) procedure returns information about the
command line used to invoke DECTPU.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-160 Descriptions of the DECTPU Built-In Procedures

GET_INFO (DEBUG)

GET_INFO (DEBUG)

Format

Parameters

contents

integer

parameter ;:= GET_INFO (DEBUG,
string

variable

"breakpoint”

"examine", variable_name
"line_number"

"local"

"next"

"parameter"

"previous"

"procedure”

"breakpoint"

Returns a string that is the name of the first breakpoint. This establishes a
breakpoint context for the next and previous parameters. TPU$_NONAMES is
returned if there are no breakpoints.

"examine", variable_name
Returns the contents of the specified variable. TPU$_NONAMES is returned if
the specified variable cannot be found.

You must specify a string that contains the name of the variable as the third
parameter to GET_INFO (DEBUG, "examine").

"line_number"
Returns an integer that is the line number of the breakpoint within the
procedure. If the procedure is unnamed, 0 is returned.

"local"

Returns the first local variable in the procedure. This establishes a context for
the next and previous parameters. TPU$_NONAMES is returned if there are no
local variables.

"next"
Returns the next parameter, local variable, or breakpoint. Before using GET_
INFO (DEBUG, "next"), you must use one of the following built-ins:

< GET_INFO (DEBUG, "local")

< GET_INFO (DEBUG, "breakpoint")

e GET_INFO (DEBUG, "parameter")
TPU$_NONAMES is returned if there are no more.

Descriptions of the DECTPU Built-In Procedures 2-161

GET_INFO (DEBUG)

"parameter"

Returns the first parameter of the procedure. GET_INFO (DEBUG, "parameter")
causes the DECTPU Debugger to construct a list of all the formal parameters

of the procedure you are debugging. Once this list is constructed, you can use
GET_INFO (DEBUG, "next") and GET_INFO (DEBUG, "previous"). DECTPU
signals TPU$_NONAMES if the procedure you are debugging does not have any
parameters.

"previous"
Returns the previous parameter, local variable, or breakpoint. TPU$_NONAMES
is returned if there are no more.

"procedure”
Returns a string that is the name of the procedure containing the breakpoint.
The null string is returned if the procedure has no name.

Return Values

Description

contents
Returns requested information about the contents you specify.

integer
Returns requested information about the integer you specify.

parameter
Returns requested information about the parameter you specify.

string
Returns requested information about the string you specify.

variable
Returns requested information about the variable you specify.

The GET_INFO (DEBUG) procedure returns information about the status of a
debugging session when you are using the DECTPU Debugger.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-162 Descriptions of the DECTPU Built-In Procedures

GET_INFO (DEFINED_KEY)

GET_INFO (DEFINED_KEY)

Format

Parameters

Return Value

Description

"first"
"last"
"next"
"previous"

keyword := GET_INFO (DEFINED_KEY, , string)

"first"
Returns a keyword that is the key name of the first key in the specified key map
or key map list.

"last"
Returns a keyword that is the key name of the last key in the specified key map
or key map list.

"next"
Returns a keyword that is the key name of the next key in the specified key map
or key map list. Returns 0 if last. Use "first" before "next".

"previous"
Returns a keyword that is the key name of the previous key in the specified key
map or key map list. Returns 0 if first. Use "last" before "previous".

string
The string that specifies the name of either the key map or key map list to be
searched.

Returns the requested information about the keyword you specify.

The GET_INFO (DEFINED_KEY) procedure returns a keyword that is the key
name of a specified key.

"Current" is not valid when the first parameter is DEFINED_KEY or KEY_MAP,
although it is valid when the first parameter is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Descriptions of the DECTPU Built-In Procedures 2-163

GET_INFO (integer_variable)

GET_INFO (integer_variable)

Format
string := GET_INFO (integer, "name")

Parameters

integer

Returns an integer that is the equivalent of a DECTPU keyword. When you use
GET_INFO (integer, "name"), the built-in returns the string representation of the
keyword that is equivalent to the specified integer.

For example, the following statement assigns the string process to the variable
equiv_string:

equiv_string := GET_INFO (10, "nanme");
(The value 10 is the integer equivalent of the PROCESS keyword.)

You should not use the integer equivalents of keywords in DECTPU code.
Compagq does not guarantee that the existing equivalences between integers and
keywords will always remain the same.

"name"
Returns the string equivalent of the specified integer or keyword.

Return Value
Returns the string representation of any integer that is an equivalent of a
keyword.

Description

The GET_INFO (integer_variable) procedure returns the string representation of
any integer that is an equivalent of a keyword.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO. See also the description of GET_INFO (any_
keyword).

2-164 Descriptions of the DECTPU Built-In Procedures

GET_INFO (KEY_MAP)

GET_INFO (KEY_MAP)

Format

Parameters

"first"
{ Sy’ | =CETNFO (kEV.MAR { [name sting)
"previous"

"first"
Returns a string that is the name of the first key map in the key map list; returns
0 if there is none.

"Iast"
Returns a string that is the name of the last key map in the key map list; returns
0 if there is none.

"next"
Returns a string that is the name of the next key map in the key map list;
returns O if there is none. Use "first" before "next".

"previous"
Returns a string that is the name of the previous key map in the key map list;
returns O if there is none. Use "last" before "previous".

name_string
The string that specifies the name of either the key map or key map list to be
searched.

Return Values

Description

integer
Returns requested information about the integer you specify.

string
Returns requested information about the string you specify.

The GET_INFO (KEY_MAP) procedure returns information about a key map
in a specified key map list. GET_INFO (KEY_MAP) takes a string as a third
parameter. The string specifies the name of the key map list to be searched.

The parameter "current” is not valid when the first keyword is DEFINED_KEY or
KEY_MAP, although it is valid when the first keyword is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Descriptions of the DECTPU Built-In Procedures 2-165

GET_INFO (KEY_MAP_LIST)

GET_INFO (KEY_MAP_LIST)

Format

Parameters

"current"
integer “hrst’
{ .g }:: GET_INFO (KEY_MAP_LIST, { "last")
string " "

next

"previous"
"current”

Returns a string that is the name of the current key map list; returns 0 if there
is none.

"first"
Returns a string that is the name of the first key map list; returns 0 if there is
none.

Illastll
Returns a string that is the name of the last key map list; returns 0O if there is
none.

"next"
Returns a string that is the name of the next key map list; returns 0 if there is
none. Use "current” or "first" before "next".

"previous"
Returns a string that is the name of the previous key map list; returns 0 if there
is none. Use "current"” or "last" before "previous".

Return Values

Description

integer
Returns requested information about the integer you specify.

string
Returns requested information about the string you specify.

The GET_INFO (KEY_MAP_LIST) procedure returns information about a key
map list.

The parameter "current” is not valid when the first keyword is DEFINED_KEY or
KEY_MAP, although it is valid when the first keyword is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-166 Descriptions of the DECTPU Built-In Procedures

GET_INFO (marker_variable)

GET_INFO (marker_variable)

Format

Parameters

buffer
integer := GET_INFO (marker_variable,
keyword

"before_bol"
"beyond_eob"
"beyond_eol"
"bound"
"buffer"
"display_value”
"left_margin”
"middle_of tab")
"offset"

"offset_column"
"record_number"
"right_margin"
"unmodifiable_records"
"video"

"within_range", range

marker_variable
The marker for which the information is requested.

"before_bol"
Returns 1 if the specified marker is located before the beginning of a line; returns
0 if it is not.

"beyond_eob"
Returns 1 if the specified marker is located beyond the end of a buffer; returns 0
if it is not.

"beyond_eol"
Returns 1 if the specified marker is located beyond the end of a line; returns O if
it is not.

"bound"”

Returns 1 if the specified marker is attached to a character; returns 0 if the
marker is free. For more information on bound and free markers, see the Guide
to the DEC Text Processing Utility.

"buffer"
Returns the buffer in which the marker is located.

"display_value"

Returns the display value of the record in which the specified marker is located.
For more information about display values, see the descriptions of the SET
(DISPLAY_VALUE) and SET (RECORD_ATTRIBUTES) built-in procedures.

Descriptions of the DECTPU Built-In Procedures 2-167

GET_INFO (marker_variable)

"left_margin"
Returns an integer that is the current left margin setting of the line containing
the marker.

"middle_of tab"
Returns an integer (1 or 0) that indicates whether the marker is located in the
white space created by a tab.

"offset"

Returns an integer that is the number of characters between the left margin
and the marker. The left margin is counted as character 0. A tab is counted as
one character, regardless of width. Window shifts have no effect on the value
returned when you use "offset”. The value returned has no relation to the visible
screen column in which the character bound to the marker is displayed.

"offset_column"

Returns an integer that is the screen column in which DECTPU displays the
character to which the marker is bound. When calculating this value, DECTPU
does not take window shifts into account; DECTPU assumes that any window
mapped to the current buffer is not shifted. The value returned when you use
"offset_column" does reflect the location of the left margin and the width of tabs
preceding the editing point. In contrast, the value returned when you use "offset"
is not affected by the location of the left margin or the width of tabs.

"record_number"
Returns an integer that is the number associated with the record (line) containing
the specified marker.

A record number indicates the location of a record in a buffer. Record numbers
are dynamic. As you add or delete records, DECTPU changes the number
associated with a particular record, as appropriate. DECTPU counts each record
in a buffer, regardless of whether the line is visible in a window or whether

the record contains text. GET_INFO (marker, "record_number") counts the
end-of-buffer text as a record if the specified marker is on the end-of-buffer text,
but GET_INFO (buffer, "record_count") never counts the end-of-buffer text as a
record. Thus, it is possible for the value returned by GET_INFO (buffer, "record_
count”) to be one less than the maximum value returned by GET_INFO (marker,
"record_number").

"right_margin"
Returns an integer that is the current right margin setting of the line containing
the marker.

"unmodifiable_records"
Returns 1 if the record that contains the specified marker is unmodifiable; returns
0 if the record is modifiable.

"video"
Returns a keyword that is the video attribute of the marker; returns O if the
marker is a free marker.

"within_range"

Returns an integer (1 or 0) that indicates whether the marker is in the range
specified by the third parameter.

2-168 Descriptions of the DECTPU Built-In Procedures

GET_INFO (marker_variable)

Return Values

buffer
Returns requested information about the buffer you specify.

integer
Returns requested information about the integer you specify.

keyword
Returns requested information about the keyword you specify.

Description

The GET_INFO (marker_variable) procedure returns information about a
specified marker.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Descriptions of the DECTPU Built-In Procedures 2-169

GET_INFO (mouse_event_keyword)

GET_INFO (mouse_event_keyword)

Format

Parameters

{ integer

— "mouse_button"
window }.— GET_INFO (mouse_event_keyword, { })

"window"

"mouse_button"
Returns an integer that is the number of the mouse button specified with a mouse
event keyword.

Table 2—4 lists the valid keywords for the first parameter when you use "mouse_
button" as the second parameter.

Table 2-4 DECTPU Keywords Representing Mouse Events

M1UP M2UP M3UP M4UP M5UP
M1DOWN M2DOWN M3DOWN M4DOWN M5DOWN
M1DRAG M2DRAG M3DRAG M4DRAG M5DRAG
M1CLICK M2CLICK M3CLICK MACLICK M5CLICK
M1CLICK2 M2CLICK2 M3CLICK2 M4CLICK2 M5CLICK2
M1CLICK3 M2CLICK3 M3CLICKS3 M4CLICK3 M5CLICK3
M1CLICK4 M2CLICK4 M3CLICK4 MA4CLICK4 M5CLICK4
M1CLICK5 M2CLICK5 M3CLICK5 MA4CLICK5 M5CLICK5
"window"

Returns the window in which the downstroke occurred that started the current
drag operation. Returns O if no drag operation is in progress for the specified
mouse button when the built-in is executed.

The valid keywords for the first parameter when you use "window" as the second
parameter are M1IDOWN, M2DOWN, M3DOWN, M4DOWN, and M5DOWN.

Return Values

integer
Returns requested information about the integer you specify.

window
Returns requested information about the window you specify.

Description

The GET_INFO (mouse_event_keyword) procedure returns information about a
mouse event. A mouse_event_keyword is a keyword that represents a single click,
multiple clicks, upstroke, downstroke, or drag of a mouse button.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-170 Descriptions of the DECTPU Built-In Procedures

GET_INFO (mouse_event_keyword)

Examples

In the following example, the statement causes DECTPU to assign the value 3 to
the variable x:

1. X := GET_INFO (MBCLI CK2, "mouse_button");

In the following example, when bound to M1DRAG, that procedure is called by
DECTPU to respond to a drag event by checking whether you have dragged the
mouse across window boundaries; if you have, the procedure displays a message.
If not, the procedure outputs a message that you are dragging the mouse.

2. PROCEDURE sanpl e_nil_drag

LOCAL the_wi ndow,
new w ndow,
col um,
row,

tenp;

the_wi ndow : = GET_INFO (MLDOWN, "wi ndow");
|F the_window =0

RETURN (FALSE)

LOCATE_MOUSE (new_wi ndow, col um, row);
| F the_wi ndow <> new wi ndow

THEN
MESSAGE ("Invalid drag of pointer across w ndow boundaries.");
ENDI F;
MESSACE ("Dragging the nouse...");
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-171

GET_INFO (PROCEDURES)

GET_INFO (PROCEDURES)

Format

Parameters

Return Value

Description

"defined"
integer := GET_INFO (PROCEDURES, < "minimum_parameters" , string)
"maximum_parameters"

"defined"
Returns an integer (1 or 0) that indicates whether the specified procedure is user
defined.

"minimum_parameters"
Returns an integer that is the minimum number of parameters required for the
specified user-defined procedure.

"maximum_parameters"
Returns an integer that is the maximum number of parameters required for the
specified user-defined procedure.

string
A string that is the name of the procedure about which you want information.

Returns the requested information about the integer you specify.

The GET_INFO (PROCEDURES) procedure returns information about a specified
procedure. GET_INFO (PROCEDURES) takes a string as a third parameter.
The string specifies the name of the procedure about which you are requesting
information.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-172 Descriptions of the DECTPU Built-In Procedures

GET_INFO (PROCESS)

GET_INFO (PROCESS)

Format

Parameters

Return Value

Description

"current”
"first"
process := GET_INFO (PROCESS, { "last")
"next"
"previous"

"current”

Returns the current process in DECTPU's internal list of processes. You can
use GET_INFO (PROCESS, "current") only after you have used GET_INFO
(PROCESS, "first") or GET_INFO (PROCESS, "last"). The built-in returns 0 if
you do not use these GET_INFO built-ins in the correct order.

"first"
Returns the first process in DECTPU's internal list of processes; returns 0 if there
is none.

Illastll
Returns the last process in DECTPU's internal list of processes; returns O if there
is none.

"next”
Returns the next process in DECTPU's internal list of processes; returns O if
there are no more processes. Use "first" before "next".

"previous"
Returns the preceding process in DECTPU's internal list of processes; returns O if
there is no previous process. Use "last" before "previous".

Returns the requested information about the process you specify.

The GET_INFO (PROCESS) procedure returns a specified process in DECTPU'’s
internal list of processes.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Descriptions of the DECTPU Built-In Procedures 2-173

GET_INFO (process_variable)

GET_INFO (process_variable)

Format

"buffer" })

npidu

buffer
integer

} = GET_INFO (process_variable, {

Parameters

"buffer”
Returns the buffer associated with the process.

llpidll
Returns an integer that is the process identification number.

Return Values

buffer
Returns requested information about the buffer you specify.

integer
Returns requested information about the integer you specify.

Description

The GET_INFO (process_variable) procedure returns information about a
specified process.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-174 Descriptions of the DECTPU Built-In Procedures

GET_INFO (range_variable)

GET_INFO (range_variable)

Format
buffer _ "buffer"
:= GET_INFO (range_variable, { "unmodifiable_records")
keyword A
video
Parameters
"buffer"

Returns the buffer in which the range is located.

"unmodifiable_records"
Returns 1 if the specified range contains one or more unmodifiable records;
returns O if no unmodifiable records are present in the specified range.

"video"
Returns a keyword that is the video attribute of the range.

Return Values

buffer
Returns requested information about the buffer you specify.

keyword
Returns requested information about the keyword you specify.

Description

The GET_INFO (range_variable) procedure returns information about a specified
range.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Descriptions of the DECTPU Built-In Procedures 2-175

GET_INFO (SCREEN)

GET_INFO (SCREEN)

Format

array
integer
keyword

PRIMARY
program

string

learn_sequence

SECONDARY
selection_name

'= GET_INFO (SCREEN,

"active_area"

"ansi_crt"

"auto_repeat"

"avo"

"client_message"
"client_message_routine"
"cross_window_bounds"
"current_column"”
"current_row"

"dec_crt"

"dec_crt2"

"dec_crt3"

"dec_crt4"

"decwindows"
"default_file"
"detached_action"
"detached_reason"
"edit_mode"

"eightbit"

"event", GLOBAL_SELECT
"first_input"
"first_input_routine"
PRIMARY }

SECONDARY

"global_select", {
selection_name

GLOBAL_SELECT

grab_routine®, { INPUT_FOCUS

"icon_name"
"input_focus"
"jump_scroll"
"length”

"line_editing"

2-176 Descriptions of the DECTPU Built-In Procedures

Parameters

GET_INFO (SCREEN)

"motif"

"mouse”

"new_length"

"new_width"

"old_length"

"old_width"

"original_length"

"original_width"

"pixel_length"

"pixel_width"
"pop_up_parent_widget"
"prompt_length"

"prompt_row"

"read_routine", GLOBAL_SELECT
"screen_limits")
"screen_update”

"scroll"

"time", GLOBAL_SELECT

GLOBAL_SELECT }

ungrab_routine”, { INPUT_FOCUS

"visible_length"
"vk100"

"vt100"

"vt200"

"vt300"

"vt400"
"widget"
"width"

XUl

"active_area"

Returns an array that contains information on the location and dimensions of
the application’s active area; returns the integer O if there is no active area. The
active area is the region in a window in which DECTPU ignores movements

of the pointer cursor for purposes of distinguishing clicks from drags. When
you press down a mouse button, DECTPU interprets the event as a click if the
upstroke occurs in the active area with the downstroke. If the upstroke occurs
outside the active area, DECTPU interprets the event as a drag operation.

A DECTPU layered application can have only one active area at a time, even if
the application has more than one window visible on the screen. An active area
is valid only if you are pressing a mouse button. The default active area occupies
one character cell. By default, the active area is located on the character cell
pointed to by the cursor.

For information on mouse button clicks, which are related to the concept of an
active area, see the OSF/Motif Style Guide.

GET_INFO (SCREEN, "active_area") returns five pieces of information about
the active area in integer-indexed elements of the returned array. You need not
use the CREATE_ARRAY built-in procedure before using GET_INFO (SCREEN,
"active_area"); DECTPU assigns a properly structured array to the return
variable you specify.

Descriptions of the DECTPU Built-In Procedures 2-177

GET_INFO (SCREEN)

The structure of the array is as follows:

Array Element Contents

array {1} Window that contains the active area

array {2} Column that forms the leftmost edge of the active area
array {3} Row that forms the top edge of the active area

array {4} Width of the active area, expressed in columns

array {5} Height of the active area, expressed in rows

"ansi_crt"

Returns an integer (1 or 0) that indicates whether the terminal is an ANSI_CRT.

"auto_repeat"
Returns an integer (1 or 0) that indicates whether the terminal’s autorepeat
feature is on.

avo
Returns an integer (1 or 0) that indicates whether the ADVANCED_VIDEO
attribute has been set for the terminal.

"client_message"

Returns a keyword that indicates whether DECTPU has received a KILL_
SELECTION client message or a STUFF_SELECTION client message. If the call
is used when there is no current client message, the integer O is returned.

GET_INFO (SCREEN, "client_message") is used in a DECTPU layered or
EVE layered application’s client message routine. This routine provides the
application’s response to a client message received from another application.

GET_INFO (SCREEN, "client_message") returns the KILL_SELECTION keyword
when you are copying the primary global selection between DECwindows
applications.

GET_INFO (SCREEN, "client_message") returns the STUFF_SELECTION
keyword when you are copying the secondary global selection between
DECwindows applications. For more information, see SEND_CLIENT_
MESSAGE.

“client_message_routine"
Returns the program or learn sequence designated as an application’s client
message action routine; returns O if none is designated.

"cross_window_bounds"

Returns an integer (1 or 0) that indicates whether the CURSOR_VERTICAL
built-in procedure causes the cursor to cross a window boundary if the cursor is
at the top or bottom of the window.

"current_column"
Returns an integer that is the number of the current column.

"current_row"
Returns an integer that is the number of the current row.

2-178 Descriptions of the DECTPU Built-In Procedures

GET_INFO (SCREEN)

"dec_crt"

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_CRT.
For more information on this terminal characteristic, see the SET TERMINAL
command in your VMS overview documentation.

"dec_crt2"

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_CRT2.
For more information on this terminal characteristic, see the SET TERMINAL
command in your OpenVMS overview documentation.

"dec_crt3"

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_CRT3.
For more information on this terminal characteristic, see the SET TERMINAL
command in your VMS overview documentation.

"dec_crt4"

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_CRTA4.
For more information on this terminal characteristic, see the SET TERMINAL
command in your VMS overview documentation.

"decwindows"

Returns 1 if your system is running the DECwindows Motif updater version

of DECTPU. Returns 0 if you are using the character-cell updater. For more
information about the DECwindows version of DECTPU, see the Guide to the
DEC Text Processing Utility.

"default_file"
Returns the name of the X resource file merged into the display’s database during
editor initialization or by SET (DEFAULT_FILE).

"detached_action"
Returns the current detached action routine. If no such routine is designated,
returns the UNSPECIFIED keyword.

"detached_reason"
Returns a bit-encoded integer indicating which of the five possible detached states
the cursor is in.

Compaq recommends that you use the DECTPU predefined constants rather than
the actual integers to refer to the reasons for detachment. Table 2-5 shows the
correspondence of constants, integers, and reasons.

Table 2-5 Detached Cursor Flag Constants

Constant Value Reason

TPUSK_OFF_LEFT 1 The editing point is off the left side of the
current window.

TPUSK_OFF_RIGHT 2 The editing point is off the right side of the
current window.

TPUSK_INVISIBLE 4 The editing point is on a record that is

invisible in the current window.
(continued on next page)

Descriptions of the DECTPU Built-In Procedures 2-179

GET_INFO (SCREEN)

Table 2-5 (Cont.) Detached Cursor Flag Constants

Constant Value Reason

TPUSK_DISJOINT 8 The current buffer is not mapped to the
current window.

TPUSK_UNMAPPED 16 No current window exists.

TPU$K_NO_UPDATE 32 The current window is a no-update window.

You can set TPUSK_INVISIBLE in combination with either the TPU$K_OFF_
LEFT or TPUSK_OFF_RIGHT flags.

You can set TPU$SK_NO_UPDATE in conjunction with any other detached reason,
with the exception of TPU$K_UNMAPPED. Use of TPUSK_UNMAPPED is a
detached cursor situation because, with its use, the cursor does not accurately
reflect the editing point within the current buffer. Applications that use "no_
update" windows should trap the TPU$K_UNMAPPED detached cursor reason,
and position to a normal window. EVE traps this condition in its detached cursor
action routine and sets its position to the topmost normal window.

"edit_mode"
Returns an integer (1 or 0) that indicates whether the terminal is set to edit
mode.

"eightbit”
Returns an integer (1 or 0) that indicates whether the terminal uses 8-bit
characters.

"event”
Use with DECwindows only.

When you use "event" as the second parameter, you must specify the GLOBAL _
SELECT keyword as the third parameter. GLOBAL_SELECT indicates that
GET_INFO is to supply information about a global selection.

If called from within a global selection grab or ungrab routine, GET_INFO
(SCREEN, "event", GLOBAL_SELECT) identifies the global selection that was
grabbed or lost. GET_INFO (SCREEN, "event", GLOBAL_SELECT) returns a
keyword if the global selection was the primary or secondary selection. The built-
in returns a string naming the global selection if the grab or ungrab involves a
global selection other than the primary or secondary selection.

If called from within a routine that responds to requests for information about
a global selection, GET_INFO (SCREEN, "event", GLOBAL_SELECT) returns
an array. The array contains the information an application needs to respond to
the request for information about the global selection. The array contains the
following information:

array {1} The PRIMARY keyword, the SECONDARY keyword, or a
string. This element identifies the global selection about which
information was requested.

array {2} A string. This element identifies the global selection property
about which information has been requested.

The GET_INFO (SCREEN, "event") built-in returns 0 if the built-in is not
responding to a grab, an ungrab, or a selection information request.

2-180 Descriptions of the DECTPU Built-In Procedures

GET_INFO (SCREEN)

For more information about grabbing and ungrabbing a global selection, see the
VMS DECwindows Guide to Application Programming.

"first_input"
Use with DECwindows only.

Returns integer 1 if DECTPU has received its first key or button event; otherwise
returns 0.

"first_input_routine"
Use with DECwindows only.

Returns the program or learn sequence that implements the application’s first
input action routine. Returns 0 if no input action routine is set.

"global_select"
Use with DECwindows only.

Returns the integer 1 if DECTPU currently owns the specified global selection;
returns O if it does not.

You must specify one of the following parameters as a third parameter to GET_
INFO (SCREEN, "global_select"):

PRIMARY Keyword that directs DECTPU to get information on
the primary global selection

SECONDARY Keyword that directs DECTPU to get information on
the secondary global selection

selection_name String that identifies the global selection about which

DECTPU is to get information

For more information about grabbing and ungrabbing a global selection, see the
VMS DECwindows Guide to Application Programming.

"grab_routine"
Use with DECwindows only.

Returns the program or learn sequence designated as the application’s global
selection or input focus grab routine. Returns the integer O if the requested grab
routine is not present.

You must specify one of the following keywords as a third parameter to GET_
INFO (SCREEN, "grab_routine"):

GLOBAL_SELECT Keyword indicating that GET_INFO is to return the
global selection grab routine
INPUT_FOCUS Keyword indicating that GET_INFO is to return the

input focus grab routine

"icon_name"
Use with DECwindows only.

Returns the string used as the layered application’s name in the DECwindows
icon box.

"input_focus"
Use with DECwindows only.

Returns an integer (1 or 0) that indicates whether DECTPU currently owns the
input focus. Input focus is the ability to process user input from the keyboard.

Descriptions of the DECTPU Built-In Procedures 2-181

GET_INFO (SCREEN)

"jump_scroll"

Returns an integer (1 or 0) that indicates whether the SET (SCROLLING, JUMP)
built-in procedure has been used to direct DECTPU to use the JUMP mode of
scrolling (that is, to perform all currently specified scrolling before repainting the
screen).

"length"
Returns an integer that is the current length of the screen (in rows).

"line_editing"

Returns information that indicates whether you are using the insert or
overstrike method of line editing; returns O if you are using neither method.
In DECwindows DECTPU, this parameter always returns 0.

"motif"
Returns 1 if DECTPU is using the VMS Motif screen updater TPUSMOTIFSHR;
returns O if any other screen updater is in use.

"mouse”
Returns an integer (1 or 0) that indicates whether DECTPU’s mouse support
capability is turned on.

"new_length"
Use with DECwindows only.

Returns an integer that is the length (in rows) of the screen after the resize
action routine is executed.

Resize action routines should use the length returned by GET_INFO (SCREEN,
"new_length") to determine the length of their windows. If the call is made
outside a resize action routine, this length is the same as the current length of
the screen.

"new_width"
Use with DECwindows only.

Returns an integer that is the width (in columns) of the screen after the resize
action routine is executed.

Resize action routines should use the length returned by GET_INFO (SCREEN,
"new_width") to determine the width of their windows. If the call is made outside
a resize action routine, this width is the same as the current width of the screen.

"old_length"
Use with DECwindows only.

Returns an integer that is the length (in rows) of the screen before the most
recent resize event.

The "old_length" value is initially set to the length of the screen at startup.
This value is reset after DECTPU processes a resize event and before DECTPU
executes the resize action routine.

"old_width"
Use with DECwindows only.

Returns the width (in columns) of the screen before the most recent resize event.

2-182 Descriptions of the DECTPU Built-In Procedures

GET_INFO (SCREEN)

The "old_width" value is initially set to the width of the screen at startup. This
value is reset after DECTPU processes a resize event and before DECTPU
executes the resize action routine.

"original_length"
Returns an integer that is the number of lines the screen had when DECTPU
was invoked.

"original_width"
Returns an integer that is the width of the screen when DECTPU was invoked.

"pixel_length"
Use with DECwindows only.

Returns the length (height) of the current display device in pixels. If you use
this parameter on a character-cell terminal, you get the error message TPU$_
REQUIRESDECW.

"pixel_width"
Use with DECwindows only.

Returns the width of the current display device in pixels. If you use this
parameter on a character-cell terminal, you get the error message TPU$
REQUIRESDECW.

"pop_up_parent_widget"
Use with DECwindows only.

Returns the Motif parent widget for application pop-up widgets. You must
specify the parent widget when you create pop-up widgets that use the CREATE_
WIDGET built-in procedure.

"prompt_length"
Returns an integer that is the number of lines in the prompt area.

"prompt_row"
Returns an integer that is the screen line number at which the prompt area
begins.

"read_routine"
Use with DECwindows only.

Returns the program or learn sequence that DECTPU executes when it owns a
global selection and another application has requested information about that
selection. If the application has not specified a global selection read routine, 0 is
returned.

You must specify the GLOBAL_SELECT keyword as the third parameter to GET_
INFO (SCREEN, "read_routine”). GLOBAL_SELECT indicates that GET_INFO
is to return the global selection read routine.

"screen_limits"
Returns an integer-indexed array that specifies the minimum and maximum
screen length and width.

Descriptions of the DECTPU Built-In Procedures 2-183

GET_INFO (SCREEN)

An integer-indexed array uses four elements to specify the minimum and
maximum screen width and length. The array indices and the contents of their
corresponding elements are as follows:

Array Element Contents

array {1} Minimum screen width, in columns. This value must be at least
0 and less than or equal to the maximum screen width. The
default value is 0.

array {2} Minimum screen length, in lines. This value must be at least
0 and less than or equal to the maximum screen length. The
default value is 0.

array {3} Maximum screen width, in columns. This value must be greater
than or equal to the minimum screen width and less than or
equal to 255. The default value is 255.

array {4} Maximum screen length, in lines. This value must be greater
than or equal to the minimum screen length and less than or
equal to 255. The default value is 255.

"screen_update”
Returns an integer (1 or 0) that indicates whether screen updating is turned on.

"scroll"

Returns an integer (1 or 0) that indicates whether the terminal has scrolling
regions. For more information on scrolling regions, see the description of the SET
(SCROLLING) built-in procedure.

“time"
Use with DECwindows only.

Returns a string in OpenVMS delta time format that indicates the amount of
time after requesting global selection information that DECTPU waits for a reply.
When the time has expired, DECTPU assumes the request will not be answered.

You must specify the GLOBAL_SELECT keyword as the third parameter to
GET_INFO (SCREEN, "time").

"ungrab_routine"
Use with DECwindows only.

Returns the program or learn sequence that DECTPU executes when it loses
ownership of a global selection or of the input focus. Returns O if the requested
ungrab routine is not present.

You must specify one of the following keywords as a third parameter to GET_
INFO (SCREEN, "ungrab_routine"):

GLOBAL_SELECT Keyword indicating that GET_INFO is to return the
global selection ungrab routine
INPUT_FOCUS Keyword indicating that GET_INFO is to return the

input focus ungrab routine

"visible_length"
Returns an integer that is the page length of the terminal.

"vk100"
Returns an integer (1 or 0) that indicates whether the terminal is a GIGI.

2-184 Descriptions of the DECTPU Built-In Procedures

GET_INFO (SCREEN)

"vt100"
Returns an integer (1 or 0) that indicates whether the terminal is in the VT100
series.

"vt200"
Returns an integer (1 or 0) that indicates whether the terminal is in the VT200
series.

"vt300"
Returns an integer (1 or 0) that indicates whether the terminal is in the VT300
series.

"vt400"
Returns an integer (1 or 0) that indicates whether the terminal is in the VT400
series.

"widget"
Use with DECwindows only.

Returns DECTPU's top-level widget regardless of the active DECwindows user
interface. In Motif this widget is created by XtAPPCreateShell. In character-cell
environments, this built-in signals the error message TPU$ REQUIRESDECW.

"width"
Returns an integer that is the current physical width of the screen.

"xui"
Returns 0. DECTPU no longer supports the XUI interface.

Return Values
array
Returns requested information about the array you specify.

integer
Returns requested information about the integer you specify.

keyword
Returns requested information about the keyword you specify.

learn_sequence
Returns requested information about the learn sequence you specify.

PRIMARY
Returns requested information about the primary global selection you specify.

program
Returns requested information about the program you specify.

SECONDARY
Returns requested information about the secondary global selection you specify.

selection_name
Returns requested information about the selection name you specify.

Descriptions of the DECTPU Built-In Procedures 2-185

GET_INFO (SCREEN)

string
Returns requested information about the string you specify.

Description

The GET_INFO (SCREEN) procedure returns information about the screen.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-186 Descriptions of the DECTPU Built-In Procedures

GET _INFO (string_variable)

GET_INFO (string_variable)

Format

Parameters

"journal"
array "pre_key_procedure”
integer . . : "post_key procedure"
keyword = GET_INFO (string_variable, "self insert")
program "shift_key"
"undefined_key"
"journal"

Returns an array that contains information about the buffer-change journal file
whose name you specify with the string parameter. If the specified file is not a
journal file, the integer O is returned.

The array indices and the contents of the corresponding elements of the returned
array are as follows (all elements are of type string):

Index Contents of Element

1 Name of the buffer whose contents were journaled.

2 Date and time the journal file was created.

3 Date and time the edit session started.

4 Name of the source file. A source file is a file to which the buffer

has been written. The journal file maintains a pointer to the
source file. This enables the journal file to retrieve from the
source file the buffer contents as they were after the last write
operation. If the buffer has not been written out, or if none

of the source files is available during recovery, this element
contains a null string.

5 Name of the output file associated with the buffer. This is the
file name specified with the SET (OUTPUT_FILE) built-in.
6 Name of the original input file associated with the buffer by

the CREATE_BUFFER built-in. If there is no associated input
file or if the input file is not available during a recovery, this
element contains a null string.

7 Identification string for the version of DECTPU that wrote the
journal file.

"pre_key procedure"

Returns the program (stored in the specified key map or key map list) that is
called before execution of code bound to keys. Returns O if no procedure was
defined by SET (PRE_KEY_PROCEDURE).

"post_key_procedure"

Returns the program (stored in the specified key map or key map list) that is
called before execution of code bound to keys. Returns O if no procedure was
defined by SET (POST_KEY_PROCEDURE).

Descriptions of the DECTPU Built-In Procedures 2-187

GET _INFO (string_variable)

"self_insert"

Returns an integer (1 or 0) that indicates whether printable characters are to be
inserted into the buffer if they are not defined. Use the SET (SELF_INSERT)
built-in procedure to establish or change this parameter.

"shift_key"

Returns a keyword that is the key name for the key currently used as the shift
key. Use the SET (SHIFT_KEY) built-in procedure to establish or change this
parameter.

"undefined_key"

Returns the program that is called when an undefined character is entered.
Returns O if the program issues the default message. Use the SET
(UNDEFINED_KEY) built-in procedure to establish or change this parameter.

Return Values

array
Returns requested information about the array you specify.

integer
Returns requested information about the integer you specify.

keyword
Returns requested information about the keyword you specify.

program
Returns requested information about the program you specify.

Description

The GET_INFO (string_variable) procedure returns information about the
specified string. The string must be the name of a key map or key map list.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-188 Descriptions of the DECTPU Built-In Procedures

GET_INFO (SYSTEM)

GET_INFO (SYSTEM)

Format

Parameters

integer

keyword

learn_sequence = GET_INFO
program

string

"bell"
"column_move_vertical
"default_directory"
"display"
"enable_resize"
"facility_name"
“"informational”
"journaling_frequency"
"journal_file"
"line_number"
"message_action_level"
"message_action_type"
"message_flags"
"operating_system"
"pad_overstruck_tabs"
"record_mode"
"recover"
"resize_action"
"section_file"
"shift_key"

"success"
"system_default”
"timed_message"
“timer"

“"traceback"

"update"

"version"

"work_file"

(SYSTEM,

"bell”

Returns the ALL keyword if the bell is on for all messages. Returns the
BROADCAST keyword if the bell is on for broadcast messages only. Returns

0 if the SET (BELL) feature is off. Use the SET built-in procedure to establish or
change this parameter.

"column_move_vertical"

Returns 1 if the MOVE_VERTICAL built-in procedure is set to keep the cursor in
the same column as the cursor moves from line to line. Returns 0 if the MOVE _
VERTICAL built-in preserves the offset, rather than the column position, from
line to line. Use the SET (COLUMN_MOVE_VERTICAL) built-in procedure to
establish or change this parameter.

Descriptions of the DECTPU Built-In Procedures 2-189

GET_INFO (SYSTEM)

"default_directory"
Returns the name of the current default directory.

"display"
Returns 1 if you have specified the /IDISPLAY qualifier or if it is the default;
otherwise, returns 0.

"enable_resize"

Returns 1 if resize operations are enabled; otherwise returns 0. By default,
resize operations are not enabled. You can turn resizing on or off with the SET
(ENABLE_RESIZE) built-in procedure.

"facility_name"
Returns a string that is the current facility name. Use the SET (FACILITY_
NAME) built-in procedure to establish or change this parameter.

“informational”

Returns an integer (1 or 0) that indicates whether informational messages are
displayed. Use the SET (INFORMATIONAL) built-in procedure to establish or
change this parameter.

"journaling_frequency"

Returns an integer that indicates how frequently records are written to the
journal file. Use the SET (JOURNALING) built-in procedure to establish or
change this parameter.

"journal_file"
Returns a string that is the name of the journal file.

“line_number"

Returns an integer (1 or 0) that indicates whether DECTPU displays the line
number at which an error occurred. Use the SET (LINE_NUMBER) built-in
procedure to establish or change this parameter.

"message_action_level"

Returns an integer that is the completion status severity level at which DECTPU
performs the message action you specify. The valid values, in ascending order of
severity, are as follows: 1 (success), 3 (informational), O (warning), and 2 (error).
Use the SET (MESSAGE_ACTION_LEVEL) built-in procedure to establish or
change this parameter.

"message_action_type"

Returns a keyword describing the action to be taken when DECTPU signals
an error, warning, or message whose severity level is greater than or equal to
the level set with SET (MESSAGE_ACTION_LEVEL). The possible keywords
are NONE, BELL, and REVERSE. Use the SET (MESSAGE_ACTION_TYPE)
built-in procedure to establish or change this parameter.

"message_flags"

Returns an integer that is the current value of the message flag setting. Use
the SET (MESSAGE_FLAGS) built-in procedure to establish or change this
parameter.

2-190 Descriptions of the DECTPU Built-In Procedures

GET_INFO (SYSTEM)

"operating_system"

Returns a DECTPU keyword that indicates which operating system is in use.
When operating on OpenVMS VAX systems, OPENVMS is returned. When
operating on OpenVMS Alpha, OPENVMS_ALPHA is returned. There is no
GET_INFO call to determine the type of CPU being used.

"pad_overstruck_tabs"

Returns an integer (1 or 0) that indicates whether DECTPU preserves the white
space created by a tab character. Use the SET (PAD_OVERSTRUCK_TABS)
built-in procedure to establish or change this parameter.

"record_mode"

Returns a keyword for the default record format and attributes for all files
written from buffers having no input file. To change the default record mode for
the operating system VARIABLE_CR, use the SET (RECORD_MODE, SYSTEM)
built-in procedure. The possible keyword returns, and what record format and
attributes they imply, are as follows:

Keyword Record Format Record Attributes
VARIABLE_NONE fab$c_var 0
VARIABLE_FTN fab$c_var fab$m_ftn
VARIABLE_CR fab$c_var fab$m_cr
STREAM fab$c_stm fab$m_cr
STREAM_LF fab$c_stmlf fab$m_cr
STREAM_CR fab$c_stmcr fab$m_cr
"recover"

Returns an integer (1 or 0) that indicates whether a recovery using a keystroke
journal file is currently in progress. Be careful when using this built-in—
specifying different DECTPU actions during a recovery rather than during an
ordinary editing session may cause DECTPU journaling to fail.

"resize_action"

Returns the program or learn sequence designated as the application’s resize
action routine. Returns the UNSPECIFIED keyword if the requested resize
action routine is not present. You can designate a resize action routine by using
the SET (RESIZE_ACTION) built-in procedure.

"section_file"
Returns a string that is the name of the section file used when you invoked
DECTPU.

"shift_key"
Returns a keyword that is the value of the current shift key set with SET
(SHIFT_KEY) for the current buffer.

"success"

Returns an integer (1 or 0) that indicates whether success messages are
displayed. Use the SET (SUCCESS) built-in procedure to establish or change
this parameter.

Descriptions of the DECTPU Built-In Procedures 2-191

GET_INFO (SYSTEM)

"system_default"
Keyword for the operating system’s default record format and attributes for all
files written from buffers having no input file: VARIABLE_CR for VMS systems.

"timed_message"
Returns a string of text that DECTPU displays at 1-second intervals in the
prompt area if the SET (TIMER) feature is on.

“timer"
Returns the integer 1 if SET (TIMER) has been enabled; otherwise returns 0.

"traceback”

Returns an integer (1 or 0) that indicates whether DECTPU displays the call
stack for DECTPU procedures when an error occurs. Use the SET (TRACEBACK)
built-in procedure to establish or change this parameter.

"update”
Returns an integer that is the update number of this version of DECTPU.

"version"
Returns an integer that is the version number of DECTPU.

"work_file"
Returns a string that is the name of the work file opened during startup.

Return Values

integer
Returns requested information about the integer you specify.

keyword
Returns requested information about the keyword you specify.

learn_sequence
Returns requested information about the learn sequence you specify.

program
Returns requested information about the program you specify.

string
Returns requested information about the string you specify.

Description
The GET_INFO (SYSTEM) procedure returns information about the system.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-192 Descriptions of the DECTPU Built-In Procedures

GET_INFO (WIDGET)

GET_INFO (WIDGET)

Format

Parameters

array
integer
widget
NONE

"callback_parameters", array
“children”, { widget } array
"menu_position”, mouse_down_button)

"widget_id", { parent_widget } widget_name

"widget_resource_types"

'= GET_INFO (WIDGET,

SCREEN

SCREEN

"callback_parameters"

Returns the widget that performs the callback, the closure value associated with
the widget, and the reason for the callback. In DECwindows documentation, the
closure is called the tag.

array

"children"

An array used to return values for the callback, the closure, and
the reason. The array has the following indices of type string:
"widget", "closure”, and "reason_code". GET_INFO (WIDGET,
"callback_parameters") places the corresponding values in the
array elements. DECTPU automatically creates the array in
which the return values are placed.

To use this parameter, specify a variable that has been declared
or initialized before you use it. The initial type and value of
the variable are unimportant. When GET_INFO (WIDGET,
"callback_parameters”) places the return values in the array,
the initial values are lost.

The integer on the left side of the assignment operator indicates
whether GET_INFO was used correctly.

GET_INFO (WIDGET, "callback_parameters") should be used in
a widget callback procedure. If you use this built-in outside a
widget callback procedure, the value returned is indeterminate.
If you use the built-in inside a widget callback procedure and
callback information is available, the built-in returns 1.

For more information about callbacks and closure values
in DECwindows DECTPU, see the Guide to the DEC
Text Processing Utility. For general information about
using callbacks and closure values, see the VMS overview
documentation.

Returns the number of widget children controlled by the specified widget. The
array parameter returns the children themselves. If the SCREEN keyword

is specified instead of a widget, the built-in returns the number of children
controlled by the DECTPU main window widget.

Descriptions of the DECTPU Built-In Procedures 2-193

GET_INFO (WIDGET)

"menu_position"

Returns information about any pop-up widgets that are set for menu positioning
when you press the specified mouse button. If no pop-up widgets are set, returns
the NONE keyword; otherwise, returns an integer-indexed array of all pop-ups
set for menu positioning.

mouse_down_button This keyword (M1DOWN, M2DOWN, M3DOWN,
M4DOWN, or M5DOWN) indicates the mouse button
associated with the pop-up menus.

"widget_id"
Returns the widget whose name matches the specified widget name. The
remaining parameters are as follows:

parent_widget The widget that is an ancestor of the widget returned by the
GET_INFO (WIDGET) built-in procedure.
SCREEN A keyword indicating that DECTPU’s main window widget

is the ancestor of the widget that you want the GET_INFO
(WIDGET) built-in procedure to return.

widget_name A string that is the fully qualified name of the widget
you want the built-in to return. To specify this parameter
correctly, start the string with either the name of the widget's
parent, or the name of a child of the parent. If you used the
SCREEN parameter instead of the parent_widget parameter,
start the string with the name of a child of that widget.

Next, specify the names of the ancestors, if any, that occur in
the widget hierarchy between the widget named above and
the widget itself. Finally, specify the name of the widget you
want the GET_INFO (WIDGET) built-in procedure to return.
Separate all widget names with periods.

The fully qualified widget name is case sensitive.

"widget_resource_types"

Returns an array indexed by strings that are the widget resource data types
supported by DECTPU, such as boolean or callback. Each array element is
another array that is integer-indexed from 0, and contains the names of widget
resources or resource types that are of the specified data type.

For more information on DECwindows concepts such as parent widgets, ancestor
widgets, and the distinction between widget classes and widgets, see the VMS
DECwindows Guide to Application Programming.

Return Values

array
Returns requested information about the array you specify.

integer
Returns requested information about the integer you specify.

widget
Returns requested information about the widget you specify.

2-194 Descriptions of the DECTPU Built-In Procedures

GET_INFO (WIDGET)

Description

The GET_INFO (WIDGET) procedure returns information about DECTPU
widgets in general or about a specific widget whose name you do not know at the
time you use the built-in.

Use the GET_INFO (WIDGET) built-in procedure with DECwindows only.

For general information about using all forms of GET_INFO built-in procedure,
see the description of GET_INFO.

Examples

The following example is a simplified version of the EVE
EVE$CALLBACK_DISPATCH procedure. The original version is in
SYS$SEXAMPLES:EVE$SMENUS.TPU. (For more information about using the
files in SYSSEXAMPLES as examples, see Appendix A.)

1. PROCEDURE eve$cal | back_di spat ch

LOCAL the_program
status,
tenp_array,

ON_ERRCR
[TPUS_CONTROLC] :
eve$$x_state_array {eve$sk_command_line_flag} :
eve$l earn_abort;
ABCRT;
[OTHERW SE] :
eve$sx_state_array {eve$sk_command_line_flag} :
ENDON_ERROR

I F NOT eve$x_decwi ndows_active
THEN

RETURN (FALSE);
ENDI F;

eve$$x_state_array {eve$$k_command_line_flag} := eve$k_i nvoked_by_nmenu;

eve$k _invoked by key;

eve$k i nvoked by key;

status :=

GET_I NFO (W DGET, "cal | back_paraneters”, tenp_array); ! This statement using
I GET_I NFO (W DGET)
I returns the calling
I widget, the closure,
I and the reason code.

I The fol lowing statements make the contents of "tenp_array"
I available to all the eve$$wi dget _xxx procedures

eve$x widget := tenp_ array {"w dget"};

I This array el enment contains the w dget

! that called back.
eve$x_wi dget _tag := tenp_array {"closure"};

I This array el enent contains the widget tag

I that is assigned to the widget inthe UL file.
eve$x_wi dget _reason : = tenp_array {"reason_code"};

I This array el ement contains callback reason code.

! The next statenents get the callback routine fromthe widget arrays.

Descriptions of the DECTPU Built-In Procedures 2-195

GET_INFO (WIDGET)

| oop
exitif an_array = tpu$k_unspecified; ! silence if no widget matches
an_array := eve$$x_widget _arrays {an_array};
the_program:= an_array {eve$x widget tag};
i f the_program <> tpu$k_unspecified

then
execute (the_progranm;
eve$$f ound_post _filter; ! in case menu function noved cursor
endif;
endl oop;

eve$$x_state array {eve$$k_command_|ine flag} := eve$k_invoked by key;
RETURN;

ENDPROCEDURE;

This version of EVE$CALLBACK_DISPATCH handles callbacks from EVE
widgets. The statement GET_INFO (WIDGET, "callback_parameters", temp_
array) copies the following three items into elements of the array temp_array:

= Widget that is calling back
< Widget's integer closure
< Reason why the widget is calling back

The array eve$$x_widget_array contains pointers to all of EVE's callback routines
in elements indexed by the appropriate integer closure values. This procedure
locates the correct index in the array and executes the corresponding callback
routine.

Warning

This simplified version of EVE$CALLBACK_DISPATCH does

not completely replace the version in existing EVE code. This

example is presented solely to illustrate how EVE uses the

GET_INFO (WIDGET, "callback_parameters", array) built-in procedure in
a callback handling procedure.

The following example assigns to the variable the_text widget the widget named
by the string NEW_DIALOG.NEW_TEXT. The name of the parent widget, NEW _
DIALOG, is optional. The returned widget is the child of the widget assigned to
the variable new_dialog.

2. the_text_widget := GET_INFO (WDCET, "widget_id", new dialog,
"NEW DI ALOG. NEW TEXT") ;

The following example shows how to use GET_INFO (WIDGET, "children") to
display the entire hierarchy of widgets known to a DECTPU session:

3. PROCEDURE eve_show wi dgets ! Display the widget hierarchy

[ocal
num t opnost ,
wi dget _array;

wi dget _array := 0;
num topnost := GET_INFO (WDGET, "children", SCREEN, widget_array);

[F numtopnost > 0
THEN

show wi dget tree (widget _array, "");
ENDI F;

2-196 Descriptions of the DECTPU Built-In Procedures

GET_INFO (WIDGET)

ENDPROCEDURE

PROCEDURE show wi dget tree ! Recursively display the widget tree
(the_array, the_string)

LOCAL
child_array,
hi ghest ,
| oop_i ndex
num chi | dren

child_ array := 0

| oop_index :=1

hi ghest := get_info (the_array, "high_index");
LOCP

EXITIF | oop_i ndex > highest;
MESSAGE (the string + GET_INFO (the_array {loop_index}, "name")
+ ASCI | (%11)
+ GET_INFO (the_array {loop_index}, "class"));
num chil dren := GET_INFO (W DGET, "children"
the_array {loop_index}, child_array);
| F numchildren > 0

THEN
show wi dget _tree (child_array, the_string + " "),
ENDI F;
| oop_index := loop_index + 1;
ENDLOOP;
ENDPROCEDURE

Descriptions of the DECTPU Built-In Procedures 2-197

GET_INFO (widget_variable)

GET _INFO (widget_variable)

Format

Parameters

array
integer
IF()arzrgrb?ﬁquence .= GET_INFO (widget_ variable,
string
widget

"callback_routine”

“class"

"input_focus"

"insertion_position"

"is_managed"

"is_subclass", widget_class

"name”)

"parent”

"resources"

"text"

. . .. [arra

widget_info", { arg_):)air [, arg_pair...] }

"callback_routine"

Returns the program or learn sequence designated as the application’s callback
routine for the specified widget. This is the program or learn sequence that
DECTPU should execute when a widget callback occurs for the specified widget.
For more information about callbacks, see the Guide to the DEC Text Processing
Utility.

“class"
Returns the name of the class to which the specified widget belongs.

"input_focus"
Returns 1 if the specified widget has input focus; otherwise, it returns 0.

You cannot set or get the input_focus state of a widget unless that widget is a
shell widget that has a resource named XtNinput.

"insertion_position"

Returns the location of the insertion position in the specified text widget. The
insertion position is between characters in a text widget and starts at position 0
when to the left of the first character. Returns the NONE keyword if the specified
widget is not a text widget.

"is_managed"
Returns 1 if the specified widget is managed; otherwise, it returns 0.

2-198 Descriptions of the DECTPU Built-In Procedures

GET_INFO (widget_variable)

"is_subclass"

Returns 1 if the specified widget belongs to the class referred to by the specified
integer or belongs to a subclass of that class. A 1 value indicates only that the
widget is equal to or is a subclass of the specified class. The value does not
indicate how far down the class hierarchy the widget’s class or subclass is. If the
widget is not in the class, or one of its subclasses, this GET_INFO call returns 0.

widget class The integer specifying the widget class to use in the
subclass test. This value is returned from the DEFINE_
WIDGET_CLASS built-in procedure.

"name”
Returns a string that is the name of the specified widget.

"parent”
Returns the parent of the specified widget. If the widget has no parent, the call
returns O.

"resources"

Returns a string-indexed array in which each index is a valid resource hame for
the specified widget. The corresponding array element is a string that contains
the resource’s data type and class, separated by a line feed (ASCII (10)).

"text"”

Returns a string that is the value of the specified simple text widget. (The value
of a text widget is the text you enter into the text widget in response to a prompt
in a dialog box.)

If the specified widget is not a text widget, DECTPU returns the NONE keyword.

"widget_info"

Returns the current values for one or more resources of the specified widget. The
values are returned in the array or series of argument pairs that is passed as the
third parameter. The integer on the left side of the assignment operator indicates
whether the built-in executed successfully.

The third parameter is either an array or a series of paired arguments, specified
as follows:

array Each array index must be a string that names a valid resource
for the specified widget. Resource names are case sensitive. The
corresponding array element contains the value of the resource.
The array can contain any number of elements.

arg_pair A string that names a valid resource for the widget followed
by a variable to store the value of the resource. Separate the
resource name string from the variable with a comma and a
space, as follows:

resource_name_string, resource_value

You can fetch as many resources as you want by using multiple
pairs of arguments.

If you specify the name of a resource that the widget does not support, DECTPU
signals the error TPU$_ARGMISMATCH.

If the requested resource is a list of items and the list contains no entries, the
GET_INFO call uses either the element of the array parameter or the value
parameter to return an array that has no elements.

Descriptions of the DECTPU Built-In Procedures 2-199

GET_INFO (widget_variable)

For more information about specifying resources, see the Guide to the DEC Text
Processing Utility.

Return Values

array
Returns requested information about the array you specify.

integer
Returns requested information about the integer you specify.

learn_sequence
Returns requested information about the learn sequence you specify.

program
Returns requested information about the program you specify.

string
Returns requested information about the string you specify.

widget
Returns requested information about the widget you specify.

Description
The GET_INFO (widget_variable) procedure returns information about a specified
widget variable.
Use the GET_INFO (widget_variable) built-in procedure with DECwindows only.
For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Examples

The following example executes the callback routine for the widget eve$x_replace_
dialog. The statement is valid only after the Replace dialog box has been used at
least once because EVE does not create any dialog box until you have invoked it.

1. EXECUTE (GET_I NFO (eve$x_repl ace_di al og,
“cal I back_routine"));

The following example displays the name of the widget specified by the variable
eve$x_replace_dialog. To confirm that the widget has been created as expected,
the procedure also displays a message that identifies the data type of the
variable's contents. The procedure is valid only after the Replace dialog box has
been used at least once because EVE does not create any dialog box until you
have invoked it.

A statement that contains the GET_INFO (widget, "name") built-in procedure
is useful in code implementing a debugging command that evaluates DECTPU
statements, expressions, and variables.

2-200 Descriptions of the DECTPU Built-In Procedures

GET_INFO (widget_variable)

PROCEDURE sanpl e_return_nane

LOCAL st at us;

status := GET_INFO (eve$x_repl ace_di al og,
"nane");

MESSAGE

("The data type of status is: ");
MESSAGE (STR (GET_INFQ(status, "type")));
MESSAGE ("The value of status is: ");
MESSAGE (STR (status));

ENDPROCEDURE;

The following example creates an EVE file name dialog box widget and assigns
the widget to the variable eve$x_needfilename_dialog. Next, the fragment assigns
to the variable the _value a string that prompts you for the name of a file to
which the buffer’s contents should be written. The fragment uses the GET_INFO
(WIDGET, "widget_id") built-in procedure to assign the dialog box’s label widget
to the variable child_of box. Finally, the fragment assigns to the label widget's
"labelString" resource the string contained in the _value.

eve$x_needf il ename_dial og : = CREATE W DGET (" NEEDFI LENAVE_DI ALOG',
eve$X wi dget _hi erarchy,
SCREEN,
eve$kt cal | back_routine);

the_value := "Type filename for witing buffer " +
get_info (the_buffer, "nane");

child_of _box := get_info (WDGET, "widget_id",
eve$x_needfil enane_di al og,
" NEEDFI LENAME_DI ALOG. NEEDFI LENAME LABEL");

status := set (WDGET, child of box, "labelString", the value);

Descriptions of the DECTPU Built-In Procedures 2-201

GET_INFO (WINDOW)

GET_INFO (WINDOW)

Format
"current”
"first"
window := GET_INFO (WINDOW[S], ¢ "last")
"next"
"previous"
Parameters

"current”

Returns the current window on the screen; returns 0 if there is none. GET_
INFO (WINDOWIJS], "current") always returns the current window, regardless
of whether you have first used GET_INFO (WINDOWI[S], "first") or GET_INFO
(WINDOWI[S], "last").

"first"
Returns the first window in DECTPU's internal list of windows; returns O if there
is none.

"last"
Returns the last window in DECTPU's internal list of windows; returns 0 if there
iS none.

"next"
Returns the next window in DECTPU's internal list of windows; returns O if there
are no more windows in the list. Use "current” or "first" before "next".

"previous"
Returns the preceding window in DECTPU's internal list of windows; returns
0 if there are no previous windows in the list. Use "current” or "last" before
"previous".

Return Value

Returns the requested information about the window you specify.

Description

The GET_INFO (WINDOW) procedure returns a window from DECTPU'’s internal
list of windows or the current window on the screen.

For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

2-202 Descriptions of the DECTPU Built-In Procedures

GET_INFO (window_variable)

GET_INFO (window_variable)

Format
buffer
integer
keyword := GET_INFO (window_variable,
string
widget
window
"before_bol"
"beyond_eob"
"beyond_eol"
"blink_status"
"blink_video"
"bold_status"
"bold_video"
"bound"
, WINDOW
"bottom" || ’ TEXT
, VISIBLE_WINDOW
, VISIBLE_TEXT
"buffer"

"current_column”
"current_row"
"display_value"

"key_map_list"
, WINDOW
meft ||+ TEXT
, VISIBLE_WINDOW
, VISIBLE_TEXT
, WINDOW
"length" || ’ TEXT
, VISIBLE_WINDOW
, VISIBLE_TEXT
"middle_of tab"
"next"
"no_video"

"no_video_status"
"original_bottom"
"original_length"
"original_top"

Descriptions of the DECTPU Built-In Procedures 2-203

GET_INFO (window_variable)

"oad"
"previous"

"reverse_status"
"reverse_video"

, WINDOW
"right" , TEXT
, VISIBLE_WINDOW
, VISIBLE_TEXT
"screen_update"
"scroll"

"scroll_amount”

! . { HORIZONTAL
I

scroll_bar’, { VERTICAL }

scroll_bar_auto_thumb", { HORIZONTAL }

VERTICAL
"scroll_bottom"

"scroll_top"
"shift_amount"
"special_graphics_status")
"status_line"
"status_video"
"text"
, WINDOW
w [TEXT
top
, VISIBLE_WINDOW
, VISIBLE_TEXT

"underline_status"
"underline_video"
"video"

"visible"
"visible_bottom"
"visible_length"

"visible_top"
, WINDOW

ool TEXT

Width™ 1l " \/|SIBLE. WINDOW
, VISIBLE_TEXT

Parameters

"before_bol"

Returns an integer (1 or 0) that indicates whether the cursor is to the left of the
current line’s left margin. The return value has no meaning if "beyond_eob" is
true. Returns O if the window you specified is not mapped.

"beyond_eob"
Returns an integer (1 or 0) that indicates whether the cursor is below the bottom
of the buffer. Returns 0 if the window you specified is not mapped.

2-204 Descriptions of the DECTPU Built-In Procedures

GET_INFO (window_variable)

"beyond_eol"

Returns an integer (1 or 0) that indicates whether the cursor is beyond the end
of the current line. The return value has no meaning if "beyond_eob" is true.
Returns 0 if the window you specified is not mapped.

"blink_status"

Returns an integer (1 or 0) that indicates whether BLINK is one of the video
attributes of the window’s status line. Use the SET (STATUS_LINE) built-in
procedure to establish or change this parameter.

"blink_video"

Returns an integer (1 or 0) that indicates whether BLINK is one of the video
attributes of the window. Use the SET (VIDEO) built-in procedure to establish or
change this parameter.

"bold_status"

Returns an integer (1 or 0) that indicates whether BOLD is one of the video
attributes of the window's status line. Use the SET (STATUS) built-in procedure
to establish or change this parameter.

"bold_video"

Returns an integer (1 or 0) that indicates whether BOLD is one of the video
attributes of the window. Use the SET (VIDEO) built-in procedure to establish or
change this parameter.

"bound”
Returns an integer (1 or 0) that indicates whether the cursor is located on a
character.

"bottom™

Returns an integer that is the number of the last row or last visible row of the
specified window, or the specified window's text area. The window row whose
number is returned depends on the keyword you specify as the third parameter.
If you do not specify a keyword, the default is TEXT. Valid keywords for the third
parameter when the second parameter is "bottom", "left", "length”, "right", "top",
or "width" are listed in Table 2-6.

Table 2-6 GET_INFO (Window_Variable): Valid Keywords for the Third
Parameter

Keyword Definition

TEXT A keyword that directs the built-in to return the
specified (left, right, top, or bottom) window row or
column or the number of window rows or columns
on which text can be displayed. By specifying TEXT
instead of VISIBLE_TEXT, you obtain information
about a window's rows and columns even if they
are invisible because the window is occluded. If the
window is not occluded, the value returned is the same
as the value returned with VISIBLE_TEXT.

(continued on next page)

Descriptions of the DECTPU Built-In Procedures 2-205

GET_INFO (window_variable)

Table 2-6 (Cont.) GET_INFO (Window_Variable): Valid Keywords for the Third

Parameter
Keyword Definition
VISIBLE_TEXT A keyword that directs the built-in to return the

specified (left, right, top, or bottom) visible window
row or column or the number of visible window rows
or columns on which text can be displayed. When
DECTPU determines a window'’s last visible text row,
DECTPU does not consider the status line or the
bottom scroll bar to be a text row.

VISIBLE_WINDOW A keyword that directs the built-in to return the
specified (left, right, top, or bottom) visible window row
or column or the number of visible window rows or
columns in the window.

WINDOW A keyword that directs the built-in to return the
specified (left, right, top, or bottom) window row or
column or the number of window rows or columns in
the window. By specifying WINDOW instead of TEXT,
you get the window's last row or column, even if it
cannot contain text because it contains a scroll bar or
status line.

By specifying WINDOW instead of VISIBLE_
WINDOW, you get information about a window’s
rows and columns even if they are invisible because
the window is occluded. If the window is not occluded,
the value returned is the same as the value returned
with VISIBLE_WINDOW.

GET_INFO (window_variable, "bottom", TEXT) is a synonym for GET_INFO
(window_variable, "original_bottom"). The call GET_INFO (window_variable,
"bottom”, VISIBLE_TEXT) is a synonym for GET_INFO (window_variable,
"visible_bottom").

"buffer"
Returns the buffer that is associated with the window; returns O if there is none.

"current_column"
Returns an integer that is the column in which the cursor was most recently
located.

"current_row"
Returns an integer that is the row in which the cursor was most recently located.

"display_value"
Returns the display value of the specified window.

"key_map_list"

Returns the string that is the name of the key map list associated with the
window you specify.

2-206 Descriptions of the DECTPU Built-In Procedures

GET_INFO (window_variable)

"left"

Returns an integer that is the number of the leftmost column or leftmost visible
column of the specified window, or the specified window’s text area. The column
whose number is returned depends on the keyword you specify as the third
parameter. If you do not specify a keyword, the default is TEXT. Valid keywords
are shown in Table 2-6.

"length"

Returns an integer that is the number of rows or visible rows in the specified
window or the specified window's text area. The number of rows returned
depends on the keyword you specify as the third parameter. If you do not specify
a keyword, the default is TEXT. Valid keywords are shown in Table 2-6.

"middle_of tab"

Returns an integer (1 or 0) that indicates whether the cursor is in the middle of a
tab. The return value has no meaning if "beyond_eob" is true. This call returns 0
if the window you specified is not mapped.

"next”
Returns the next window in DECTPU's internal list of windows; returns O if there
are no more windows in the list.

"no_video"

Returns an integer (1 or 0) that indicates whether the video attribute of the
window is NONE. Use the SET (VIDEO) built-in procedure to establish or change
this parameter.

"no_video_status"

Returns an integer (1 or 0) that indicates whether the video attribute of the
window’s status line is NONE. Use the SET (STATUS) built-in procedure to
establish or change this parameter.

"original_bottom"

Returns an integer that is the screen line number of the bottom of the window
when it was created or last adjusted (does not include status line or scroll bar).
Compaq recommends that you use GET_INFO (window, "bottom", text) to retrieve
this information.

"original_length"

Returns an integer that is the number of lines in the window when it was created.
The value returned includes the status line. Compag recommends that you use
GET_INFO (window, "length”, window) to retrieve this information.

"original_top"
Returns an integer that is the screen line number of the top of the window when
it was created.

"pad”
Returns an integer (1 or 0) that indicates whether padding blanks have been
displayed from column 1 to the left margin (if the left margin is greater than
1) and from the ends of lines to the right margin. Use the SET (PAD) built-in
procedure to establish or change this parameter.

"previous"
Returns the previous window in DECTPU's internal list of windows; returns 0 if
there are no previous windows in the list.

Descriptions of the DECTPU Built-In Procedures 2-207

GET_INFO (window_variable)

"reverse_status"

Returns an integer (1 or 0) that indicates whether REVERSE is one of the video
attributes of the window's status line. Use the SET (STATUS) built-in procedure
to establish or change this parameter.

"reverse_video"

Returns an integer (1 or 0) that indicates whether REVERSE is one of the video
attributes of the window. Use the SET (VIDEO) built-in procedure to establish or
change this parameter.

"right"

Returns an integer that is the number of the last column or last visible column
of the specified window or the specified window's text area. The window column
whose number is returned depends on the keyword you specify as the third
parameter. If you do not specify a keyword, the default is TEXT. Valid keywords
are shown in Table 2-6.

"screen_update"

Returns the update status of a window. A O indicates that updates are off. A 1
indicates that the window is updated normally. See the SET (SCREEN_UPDATE)
built-in procedure in this chapter for more information.

"scroll"

Returns an integer (1 or 0) that indicates whether scrolling is enabled for the
window. Use the SET (SCROLLING) built-in procedure to establish or change
this parameter.

"scroll_amount"
Returns an integer that is the number of lines to scroll. Use the SET built-in
procedure to establish or change this parameter.

"scroll_bar"
Use with DECwindows only.

Returns the specified scroll bar widget that implements the scroll bar associated
with a window if it exists; otherwise it returns O.

You must specify the HORIZONTAL or VERTICAL keyword as the third
parameter to GET_INFO (window_variable, "scroll_bar"). HORIZONTAL directs
DECTPU to return the window’s horizontal scroll bar; VERTICAL directs
DECTPU to return the window's vertical scroll bar.

"scroll_bar_auto_thumb"
Use with DECwindows only.

Returns an integer (1 or 0) that indicates whether automatic adjustment of
the specified scroll bar slider is enabled. Returns 1 if automatic adjustment is
enabled and O if it is disabled.

You must specify the HORIZONTAL or VERTICAL keyword as the third
parameter to GET_INFO (window_variable, "scroll_bar_auto_thumb").
HORIZONTAL directs DECTPU to return information about the window’s
horizontal scroll bar; VERTICAL directs DECTPU to return information about
the window’s vertical scroll bar.

2-208 Descriptions of the DECTPU Built-In Procedures

GET_INFO (window_variable)

"scroll_bottom"

Returns an integer that is the bottom of the scrolling area, an offset from the
bottom screen line. Use the SET (SCROLLING) built-in procedure to establish or
change this parameter.

"scroll_top"

Returns an integer that is the top of the scrolling area, an offset from the top
screen line. Use the SET (SCROLLING) built-in procedure to establish or change
this parameter.

"shift_amount"
Returns an integer that is the number of columns the window is shifted to the
left.

"special_graphics_status"

Returns an integer (1 or 0) that indicates whether SPECIAL_GRAPHICS is one
of the video attributes of the window’s status line. Use the SET (STATUS_LINE)
built-in procedure to establish or change this parameter.

"status_line"

Returns a string that is the text of the status line; returns O if there is none.
Use the SET (STATUS_LINE) built-in procedure to establish or change this
parameter.

"status_video"

If there is no video attribute or only one video attribute for the window’s
status line, the appropriate video keyword (NONE, BLINK, BOLD, REVERSE,
UNDERLINE, or SPECIAL_GRAPHICS) is returned. If there are multiple video
attributes for the window's status line, the integer 1 is returned. If there is no
status line for the window, the integer O is returned. Use the SET (STATUS
LINE) built-in procedure to establish or change this parameter.

"text"

Returns a keyword that indicates which keyword was used with SET (TEXT).
SET (TEXT) controls text display in a window. Valid keywords are as follows:
BLANK_TABS, GRAPHIC_TABS, or NO_TRANSLATE.

"top”
Returns an integer that is the number of the first row or first visible row of the
specified window or the specified window's text area. The window row whose
number is returned depends on the keyword you specify as the third parameter.
If you do not specify a keyword, the default is TEXT. Valid keywords are shown
in Table 2-6.

"underline_status"

Returns an integer (1 or 0) that indicates whether UNDERLINE is one of the
video attributes of the window’s status line. Use the SET (STATUS LINE)
built-in procedure to establish or change this parameter.

"underline_video"

Returns an integer (1 or 0) that indicates whether UNDERLINE is one of the
video attributes of the window. Use the SET (VIDEO) built-in procedure to
establish or change this parameter.

Descriptions of the DECTPU Built-In Procedures 2-209

GET_INFO (window_variable)

"video"

If there is no video attribute or only one video attribute for the window, the
appropriate video keyword (NONE, BLINK, BOLD, REVERSE, or UNDERLINE)
is returned. If there are multiple video attributes for the window, the integer 1
is returned. If you get the return value 1 and you want to know more about the
window’s video attributes, use the specific parameters, such as "underline_video"
and "reverse_video".

Use the SET (VIDEO) built-in procedure to establish or change this parameter.

"visible"
Returns an integer (1 or 0) that indicates whether the window is mapped to the
screen and whether it is occluded.

"visible_bottom"

Returns an integer that is the screen line number of the visible bottom of the
window (does not include status line). Use the ADJUST_WINDOW built-in
procedure, create other windows, or map a window to change this value.

Compaq recommends that you use GET_INFO (window, "bottom", visible_text) to
retrieve this information.

"visible_length"

Returns an integer that is the visible length of the window (includes status line).
This value differs from the value returned by GET_INFO (window_variable,
"original_length") in that the value returned by "visible_length" is the original
length minus the number of window lines (if any) hidden by occluding windows.
Use the ADJUST_WINDOW built-in procedure, create other windows, or map a
window to change this value.

Compaq recommends that you use GET_INFO (window, "length”, visible_window)
to retrieve this information.

"visible_top"

Returns an integer that is the screen line number of the visible top of the window.
Use the ADJUST _WINDOW built-in procedure, create other windows, or map a
window on top of the current window to change this value.

Compaq recommends that you use GET_INFO (window, "top", visible_window) to
retrieve this information.

"width"

Returns an integer that is the number of columns or the number of visible
columns in the specified window or the specified window's text area. The number
of columns returned depends on the keyword you specify as the third parameter.
If you do not specify a keyword, the default is TEXT. Valid keywords are shown
in Table 2-6.

Use the SET built-in procedure to establish or change this parameter.

Return Values

2-210 Descriptions of the DECTPU Built-In Procedures

GET_INFO (window_variable)

buffer
Returns requested information about the buffer you specify.

integer
Returns requested information about the array you specify.

keyword
Returns requested information about the keyword you specify.

string
Returns requested information about the string you specify.

widget
Returns requested information about the widget you specify.

window
Returns requested information about the window you specify.

Description
The GET_INFO (window_variable) procedure returns information about a
specified window.
For general information about using all forms of GET_INFO built-in procedures,
see the description of GET_INFO.

Examples

The following example returns the last line of the window bottom_window. The
value returned is the line that contains the status line or scroll bar, whichever
comes last, if the window has a status line or scroll bar.

1. last_line := GET_INFO (bottomw ndow, "bottont, WNDOW;

The following example returns the number of the rightmost column in the current
window. The column whose number is returned can be occupied by a vertical
scroll bar if one is present. Also, the returned value changes if you widen the
window, but not if you move the window without widening it.

2. last_colum := GET_I NFO (CURRENT_W NDOWN "right", W NDOW;

The following example returns the number of the first row in the current window.
The row number returned is relative to the top of the DECTPU screen. Thus,

if the current window is not the top window on the DECTPU screen, the row
number returned is not 1.

3. first_row:= GET_INFO (CURRENT W NDOW "top", W NDOW:;

Descriptions of the DECTPU Built-In Procedures 2-211

HELP_TEXT

HELP_TEXT
Format
ON
HELP_TEXT (library-file, topic, OFF ,buffer)
0

Parameters

Description

library-file
A string that is the file specification of the help library. The string can be a
logical name.

topic
A string that is the initial library topic. If this string is empty, the top level of
help is displayed.

ON, 1
A keyword or integer that specifies that the VMS Help utility should prompt you
for input.

OFF, 0
A keyword or integer that specifies that prompting should be turned off.

buffer
The buffer to which the help information is written.

The HELP_TEXT procedure provides help information on the topic you specify.
You must specify the help library to be used for help information, the initial
library topic, the prompting mode for the Help utility, and the buffer to

which DECTPU will write the help information. You can enter a complete

file specification for the help library as the first parameter. However, if you enter
only a file name, the Help utility provides a default device (SYS$HELP) and
default file type (.HLB).

If you do not specify an initial topic as the second parameter, you must enter a
null string as a placeholder. The Help utility then displays the top level of help
available in the specified library.

When the prompting mode is ON for the HELP_TEXT built-in procedure, the
following prompt appears if the help text contains more than one window of
information:

Press RETURN to continue ...

Before DECTPU invokes the Help utility, it erases the buffer specified as the help
buffer. (In EVE, the buffer to which the help information is written is represented
by the variable help_buffer.) If the help buffer is associated with a window that
is mapped to the screen, the window is updated each time DECTPU prompts you
for input. If you set the prompting mode to OFF, the window is not updated.

If help_buffer is not associated with a window that is mapped to the screen, the
information from the Help utility is not visible.

2-212 Descriptions of the DECTPU Built-In Procedures

HELP_TEXT

Signaled Errors

TPU$_BADKEY ERROR Only ON and OFF are
allowed.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong
type.

TPU$_NOTMODIFIABLE WARNING The output buffer is
currently unmodifiable.

TPU$_OPENIN ERROR Error opening help library.

TPU$_SYSERROR ERROR Error activating the help
library.

TPU$_TOOFEW ERROR The HELP_TEXT built-in
requires four parameters.

TPU$_TOOMANY ERROR You specified more than four
parameters.

Examples
The following example causes the top level of help information from the
SYS$HELP:TPUHELP.HLB library to be written to the help buffer. The Help
utility prompting mode is not turned on.

1. HELP_TEXT ("tpuhelp", "", OFF ,help_buffer)
This procedure displays information about getting out of help mode on the status
line, prompts you for input, and maps help_buffer to the screen:

2. ! Interactive HELP

PROCEDURE user _hel p

SET (STATUS_LINE, info_wi ndow, UNDERLI NE,
"Press Ctrl/Z to leave pronpts then Ctrl/F to resune editing");

MAP (info_wi ndow, help_buffer);
HELP_TEXT ("USERHELP", READ LINE ("Topic: "), ON, help_buffer);
ENDPROCEDURE;

Descriptions of the DECTPU Built-In Procedures 2-213

INDEX

INDEX

Format
integer := INDEX (string, substring)

Parameters

string
The string within which you want to find a character or a substring.

substring
A character or a substring whose leftmost character location you want to find
within stringl.

Return Value

An integer that shows the character position within a string of the substring you
specify.

Description

The INDEX procedure locates a character or a substring within a string and
returns its location within the string. INDEX finds the leftmost occurrence of
substring within string. It returns an integer that indicates the character position
in string at which substring was found. If string is not found, DECTPU returns a