
Software
Product
Description
PRODUCT NAME: HP Fortran for OpenVMS

SPD 56.18.18

DESCRIPTION

This is the Software Product Description (SPD) for
HP Fortran (formerly Compaq Fortran) Version 8.0 for
OpenVMS™ Alpha Systems, and HP Fortran Version
8.1 for OpenVMS Integrity Servers (I64). HP Fortran on
OpenVMS Alpha contains the HP Fortran 95/90 Version
8.0 software and the HP Fortran 77 Version 8.0 software
as well as the HP Extended Math Library (CXML). In
the following description, HP Fortran refers to HP For-
tran 95/90 unless a specific reference to the 95/90 or
77 product is needed to distinguish between the two
software products.

HP Fortran is an implementation of the Fortran program-
ming language that supports the FORTRAN 66, FOR-
TRAN 77, Fortran 90, and Fortran 95 standards. HP
Fortran 95/90 and HP Fortran 77 fully support the fol-
lowing standards:

• ANSI X3.9-1966 (FORTRAN 66)

• ANSI X3.9-1978 (FORTRAN 77)

• ISO 1539-1980(E) (FORTRAN 77)

• MIL-STD-1753

• FIPS-69-1 (HP Fortran meets the requirements of
this standard by conforming to the ANSI Standard
and by including a flagger. The flagger optionally
produces diagnostic messages for compile-time el-
ements that do not conform to the Full-Level ANSI
Fortran Standard.)

HP Fortran 95/90 supports all of the standards that HP
Fortran 77 supports plus the following new standards:

• ANSI X3.198-1992 (Fortran 90)

• ISO/IEC 1539-1:1997(E) (Fortran 95)

HP FORTRAN

HP Fortran supports extensions to the ISO and ANSI
standards, including a number of extensions defined by
HP Fortran for the various HP Fortran platforms (operat-
ing system/architecture pairs). In addition to HP Open-
VMS Alpha and I64 systems, HP Fortran platforms in-
clude:

• HP Fortran and HP Fortran 77 on HP Tru64™ UNIX®
Alpha systems

• HP Fortran 77 for OpenVMS VAX™ systems

Major additions to the FORTRAN 77 standard intro-
duced by the Fortran 90 standard include:

• Array operations

• Improved facilities for numeric computation

• Parameterized intrinsic data types

• User-defined data types

• Facilities for modular data and procedure definitions

• Pointers

• The concept of language evolution

• Support for DATE_AND_TIME intrinsic for obtaining
dates using a four-digit year format

HP Fortran contains full support for the Fortran 95 stan-
dard, including the following features:

• FORALL statement and construct

• Automatic deallocation of ALLOCATABLE arrays

• DIM argument to MAXLOC and MINLOC

• PURE user-defined subprograms

June 2006

HP Fortran for OpenVMS

• ELEMENTAL user-defined subprograms (a restricted
form of a pure procedure)

• Pointer initialization (initial value)

• The NULL intrinsic to nullify a pointer

• Derived-type structure initialization

• CPU_TIME intrinsic subroutine

• KIND argument to CEILING and FLOOR intrinsics

• Nested WHERE constructs, masked ELSEWHERE
statement, and named WHERE constructs

• Comments allowed in namelist input

• Generic identifier in END INTERFACE statements

• Minimal width field editing using a numeric edit de-
scriptor with 0 width

• Detection of Obsolescent and/or Deleted features
listed in the Fortran 95 standard. HP Fortran flags
these obsolescent and deleted features, but fully sup-
ports them.

HP Fortran includes the following features and enhance-
ments:

• CDD (Common Data Dictionary) support and DML
(Data Manipulation Language) support, formerly only
available in the old Fortran 77 (/old_f77) compiler, are
now available in the Fortran 90/95 compiler

• Full support for 64-bit address space, including 64-bit
static space

• Support for providing cross-reference information to
the DEC Source Code Analyzer component of DEC-
set for OpenVMS

• Support for linking against static and shared libraries

• Support for creating shareable code to be put into a
shared library

• Support for stack-based storage

• Support for dynamic memory allocation

• Support for reading and writing binary data files in
nonnative formats, including IEEE® (little-endian and
big-endian), VAX, IBM® System\360, and CRAY®
integer and floating point formats

• User control over IEEE floating point exception han-
dling, reporting, and resulting values

• Control for memory boundary alignment of items in
COMMON and fields in structures and warnings for
unaligned data

• Directives to control listing page titles and subtitles,
object file identification field, COMMON and record
field alignment, and some attributes of COMMON
blocks

• Ability to CALL an external function subprogram

• 7200 Character Statement Length

• Free form unlimited line length

• Mixing Subroutines/Functions in Generic Interfaces

• Composite data declarations using STRUCTURE,
END STRUCTURE, and RECORD statements, and
access to record components through field refer-
ences

• Explicit specification of storage allocation units for
data types such as:

INTEGER*4
LOGICAL*4
REAL*4
REAL*8
COMPLEX*8

• Support for 64-bit signed integers using INTEGER*8
and LOGICAL*8

• Support for 128-bit floating-point real numbers (reals)
using REAL*16 and COMPLEX*32

• A set of data types:

— BYTE

— LOGICAL*1, LOGICAL*2, LOGICAL*4, LOGI-
CAL*8

— INTEGER*1, INTEGER*2, INTEGER*4, INTE-
GER*8

— REAL*4, REAL*8, REAL*16

— COMPLEX*8, COMPLEX*16, DOUBLE COM-
PLEX, COMPLEX*32

— POINTER (CRAY style)

• Data statement style initialization in type declaration
statements

• AUTOMATIC and STATIC statements

• Bit constants to initialize LOGICAL, REAL, and INTE-
GER values and participate in arithmetic and logical
expressions

• Built-in functions %LOC, %REF, %VAL, and %DE-
SCR

• VOLATILE statement

• Bit manipulation functions

• Binary, hexadecimal, and octal constants and Z and
O format edit descriptors applicable to all data types

• I/O unit numbers that can be any nonnegative INTE-
GER*4 value

• Variable amounts of data can be read from and writ-
ten to ˆSTREAM˜ files, which contain no record de-
limiters

• ENCODE and DECODE statements

2

HP Fortran for OpenVMS

• ACCEPT, TYPE, and REWRITE input/output state-
ments

• DEFINE FILE, UNLOCK, and DELETE statements

• USEROPEN subroutine invocation at file OPEN time

• Support for reading nondelimited character strings as
input for character NAMELIST items

• Debug statements in source

• Generation of a source listing file with optional ma-
chine code representation of the executable source

• Variable format expressions in a FORMAT statement

• Optional run-time bounds checking of array sub-
scripts and character substrings

• 31-character identifiers that can include dollar sign
($) and underscore (_)

• Support for executing in-line assembler code using
the ASM intrinsics (Alpha only)

• Support for the supercomputer intrinsics POPCNT,
POPPAR, LEADZ, TRAILZ, and MULT_HIGH

• Language elements that support the various ex-
tended range and extended precision floating point
architectural features:

— 32-bit VAX F_floating data type, with an 8-bit ex-
ponent and 24-bit mantissa, which provides a
range of 0.293873588E-38 to 1.7014117E38 and
a precision of typically 7 decimal digits. Calcu-
lations with F_floating data on I64 are performed
using the S_floating data type..

— 64-bit VAX D_floating data type, with an 8-
bit exponent and 56-bit mantissa, which pro-
vides a range of 0.2938735877055719D-38 to
1.70141183460469229D38 and a precision of typ-
ically 16 decimal digits. Calculations with D_
floating data on Alpha systems use G_floating
precision (53-bit instead of 56-bit mantissa). Cal-
culations with D_floating data on I64 are per-
formed using the T_floating data type.

— 64-bit VAX G_floating data type, with an 11-
bit exponent and 53-bit mantissa, which pro-
vides a range of 0.5562684646268004D-308 to
0.89884656743115785407D308 and a precision
of typically 15 decimal digits. Calculations with
G_floating data on I64 are performed using the
T_floating data type.

— 32-bit IEEE S_floating data type, with an 8-
bit exponent and 24-bit mantissa, which pro-
vides a range of 1.17549435E-38 (normalized) to
3.40282347E38 (the IEEE denormalized limit is
1.40129846E-45) and a precision of typically 7
decimal digits

— 64-bit IEEE T_floating data type, with an 11-bit
exponent and 53-bit mantissa, which provides
a range of 2.2250738585072013D-308 (normal-
ized) to 1.7976931348623158D308 (the IEEE de-
normalized limit is 4.94065645841246544D-324)
and a precision of typically 15 decimal digits

— 128-bit IEEE extended Alpha X_floating data type,
with a 15-bit exponent and a 113-bit mantissa,
which provides a range of approximately 6.48Q-
4966 to 1.18Q4932 and a precision of typically 33
decimal digits

— The following combinations of floating types may
be specified:

— F, G and X (the default on Alpha)

— F, D and X (VAX)

— S, T and X (IEEE) (the default on I64)

• Command line control for:

— The size of default INTEGER, REAL, and DOU-
BLE PRECISION data items

— The levels and types of optimization to be applied
to the program

— The directories to search for INCLUDE files

— Inclusion or suppression of various compile-time
warnings

— Inclusion or suppression of run-time checking for
various I/O and computational errors

— Control over whether compilation terminates after
a specific number of errors has been found

— Choosing whether executing code will be thread-
reentrant

• Internal procedures can be passed as actual argu-
ments to procedures

• Kind types for all of the hardware-supported data
types:

— For 1-, 2-, 4-, and 8-byte LOGICAL data:

LOGICAL (KIND=1)
LOGICAL (KIND=2)
LOGICAL (KIND=4)
LOGICAL (KIND=8)

— For 1-, 2-, 4-, and 8-byte INTEGER data:

INTEGER (KIND=1)
INTEGER (KIND=2)
INTEGER (KIND=4)
INTEGER (KIND=8)

— For 4-, 8-, and 16-byte REAL data:

REAL (KIND=4)
REAL (KIND=8)
REAL (KIND=16)

3

HP Fortran for OpenVMS

— For single precision, double precision, and quad-
precision COMPLEX data:

COMPLEX (KIND=4)
COMPLEX (KIND=8)
COMPLEX (KIND=16)

HP Fortran takes advantage of OpenVMS facilities to
include the following features and enhancements in both
HP Fortran 95/90 and HP Fortran 77:

• Language elements for keyed and sequential access
to OpenVMS RMS indexed organization files

• The ability to specify an OpenVMS text library mod-
ule in an INCLUDE statement

• Support for calls to OpenVMS system service and
Run-Time Library procedures

• Generation of symbol tables for the OpenVMS Sym-
bolic Debugger

• LIB$ESTABLISH and LIB$REVERT are provided as
intrinsic functions for compatibility with HP Fortran
exception handling

• Support for providing error diagnostics to the DEC
Language-Sensitive Editor component of DECset for
OpenVMS

• FDML (Fortran Data Manipulation Language) support
(I64 only)

HP Fortran 77 contains the following extensions to the
FORTRAN 77 standard: (Alpha only)

• Support for recursive subprograms

• IMPLICIT NONE statements

• INCLUDE statement

• NAMELIST-directed I/O

• DO WHILE and ENDDO statements

• Use of exclamation point (!) for end of line comments

• Generation of Cross Reference Listings

• Support for NTT Technical Requirement TR550001,
Multivendor Integration Architecture (MIA) Version
1.1, Division 2, Part 3-2, Programming Language
FORTRAN

• Support for automatic arrays

• Support for the SELECT CASE - CASE - CASE DE-
FAULT - END SELECT statements

• Support for the EXIT and CYCLE statements and for
construct names on DO - END DO statements

• Reporting of unused and uninitialized variables

• Support for DATE_AND_TIME intrinsic for obtaining
dates using a four-digit year format

HP Fortran 77 takes advantage of OpenVMS facilities
to include the following features and enhancements:

• Support for translation of CDD/Repository records
into Fortran records for Fortran F77 on OpenVMS
Alpha and Fortran F90 on OpenVMS I64

• Support for the extraction of program design infor-
mation in comments using the DEC Source Code
Analyzer component of DECset for OpenVMS

HP Fortran provides a multiphase optimizer that is capa-
ble of performing optimizations across entire programs.
Specific optimizations performed by both HP Fortran
95/90 and Compaq Fortran 77 include:

• Constant folding

• Optimizations of arithmetic IF, logical IF, and block
IF-THEN-ELSE

• Global common subexpression elimination

• Removal of invariant expressions from loops

• Global allocation of general registers across program
units

• In-line expansion of statement functions and routines

• Optimization of array addressing in loops

• Value propagation

• Deletion of redundant and unreachable code

• Loop unrolling

• Thorough dependence analysis

• Software pipelining to rearrange instructions between
different unrolled loop iterations

• Optimized interface to intrinsic functions

• Loop transformation optimizations that apply to array
references within loops, including:

— Loop blocking

— Loop distribution

— Loop fusion

— Loop interchange

— Loop scalar replacement

— Outer loop unrolling

Specific optimizations performed by HP Fortran 95/90
include:

• Array temporary elimination

Both HP Fortran 95/90 and HP Fortran 77 are share-
able, re-entrant compilers that operate under the Open-
VMS operating system. They globally optimize source
programs while taking advantage of the native instruc-
tion set and the OpenVMS virtual memory system.

4

HP Fortran for OpenVMS

HP EXTENDED MATH LIBRARY (CXML) ALPHA
ONLY

HP Extended Math Library (CXML) for OpenVMS Alpha
is a set of mathematical subprograms that are optimized
for HP architectures. Included subprograms cover the
areas of:

• Basic Linear Algebra

• Linear System and Eigenproblem Solvers

• Sparse Linear System Solvers

• Sorting

• Random Number Generation

• Signal Processing

The Basic Linear Algebra library includes the industry-
standard Basic Linear Algebra Subprograms (BLAS)
Level 1, Level 2, and Level 3. Also included are sub-
programs for BLAS Level 1 Extensions, Sparse BLAS
Level 1, and Array Math Functions (VLIB).

The Linear System and Eigenproblem Solver library pro-
vides the complete LAPACK v2 package developed by
a consortium of university and government laboratories.
LAPACK is an industry-standard subprogram package
offering an extensive set of linear system and eigenprob-
lem solvers. LAPACK uses blocked algorithms that are
better suited to most modern architectures, particularly
ones with memory hierarchies. LAPACK will supersede
LINPACK and EISPACK for most users.

The Sparse Linear System library provides both direct
and iterative sparse linear system solvers. The direct
solver package supports both symmetric and nonsym-
metric sparse matrices stored using the skyline storage
scheme. The iterative solver package contains a basic
set of storage schemes, preconditioners, and iterative
solvers. The design of this package is modular and
matrix-free, allowing future expansion and easy modifi-
cation by users.

The Signal Processing library provides a basic set of sig-
nal processing functions. Included are one-, two-, and
three-dimensional Fast Fourier Transforms (FFT), group
FFTs, Cosine/Sine Transforms (FCT/FST), Convolution,
Correlation, and Digital Filters.

Many CXML subprograms are optimized for the sup-
ported hardware platforms. Optimization techniques in-
clude traditional optimizations such as loop unrolling and
loop reordering. CXML subprograms also provide effi-
cient management of the hierarchical memory system,
using techniques such as the following:

• Reuse of data within registers to minimize memory
accesses

• Efficient cache management

• Use of blocked algorithms that minimize translation
buffer misses and unnecessary paging

Since CXML routines can be called from all languages
that support the OpenVMS calling standard, the library
provides optimized computation for applications written
in these languages. Where appropriate, most subpro-
grams are available in both real and complex versions,
as well as in both single and double precision. CXML for
OpenVMS Alpha supports both IEEE and VAX floating-
point formats.

Basic Linear Algebra Subprograms

Linear algebra operations are fundamental to many
mathematical applications, and several libraries of linear
algebra subprograms exist throughout the computer in-
dustry. The CXML BLAS library contains the most com-
monly used linear algebra subprograms.

The CXML linear algebra library contains five groups of
subprograms at three levels:

• Basic Linear Algebra Subprograms (BLAS) Level 1

• BLAS Level 1 Extensions

• BLAS Level 1 Sparse Extensions

• BLAS Level 2

• BLAS Level 3

BLAS Level 1 (Scalar/Vector and Vector/Vector
Operations)

BLAS Level 1 provides a set of elementary vector func-
tions, operating on one or two vectors. These are typ-
ically very small routines, and they make less efficient
use of the computing resources of modern computer ar-
chitectures than the Level 2 and 3 operations.

CXML provides the 15 standard BLAS Level 1 opera-
tions:

• The index of the element of a vector having maximum
absolute value

• The sum of the absolute values of the elements of a
vector

• Inner product of two real vectors

• Scalar plus the extended precision inner product of
two real vectors

• Conjugated inner product of two complex vectors

• Unconjugated inner product of two complex vectors

• Square root of the sum of squares (norm) of the el-
ements of a vector

• Scalar times a vector plus a vector

5

HP Fortran for OpenVMS

• Copy one vector to another

• Apply a Givens rotation

• Apply a modified Givens plane rotation

• Generate elements for a Givens plane rotation

• Generate elements for a modified Givens plane ro-
tation

• Product of a vector times a scalar

• Swap the elements of two vectors

BLAS Level 1 Extensions (Vector/Vector
Operations)

When developing mathematical algorithms using the
BLAS Level 1, scientists and engineers found that sev-
eral additional constructs were used on a regular basis.
These constructs are well known throughout the com-
puter industry as BLAS Level 1 Extensions.

CXML contains 13 BLAS Level 1 Extension operations:

• Index of element having the minimum absolute value

• Index of element having the maximum value

• Index of element having the minimum value

• Largest value of the elements of a vector

• Smallest value of the elements of a vector

• Largest absolute value of the elements of a vector

• Smallest absolute value of the elements of a vector

• Sum of the values of the elements of a vector

• Set all elements of a vector equal to a scalar

• Constant times a vector set to another
vector (y = a�x)

• Euclidean norm with no intermediate scaling

• Sum of the squares of the elements of a vector

• Constant times a vector plus a vector set to another
vector (z = a�x + y)

BLAS Level 1 Sparse Extensions (Vector/Vector
Operations)

This group of operations is similar to the BLAS Level
1 routines, but is designed to work on sparse vectors
(vectors in which most of the elements are zero). Six of
the routines are from industry standard Sparse BLAS 1,
and the remaining three are enhancements.

The nine sparse BLAS Level 1 operations are:

• Scalar times a sparse vector plus a vector

• Sum of a sparse vector and a full vector

• Inner product of a sparse vector and a full vector

• Gather a sparse vector from a full vector

• Gather a sparse vector from the scaled elements of
a full vector

• Gather a sparse vector from a full vector and zero
corresponding elements of full vector

• Apply Givens rotation to a sparse vector and a full
vector

• Scatter a sparse vector into a full vector

• Scale and scatter a sparse vector into a full vector

BLAS Level 2 (Matrix/Vector Operations)

The BLAS Level 2 codes make more effective use of
the data in the registers, reducing the number of reg-
ister loads and stores required. In addition, loop un-
rolling techniques are used to minimize cache misses
and page faults. The BLAS Level 2 subprograms use
the following types of operations:

• Matrix/vector products

• Rank-1 and rank-2 matrix updates

• Solutions of triangular systems of equations

Six types of matrices are supported by these BLAS
Level 2 routines:

• General

• General band

• Symmetric/Hermitian

• Symmetric/Hermitian band

• Triangular

• Triangular band

BLAS Level 3 (Matrix/Matrix Operations)

The BLAS Level 3 routines operate at a level that makes
the most efficient use of machine resources. CXML opti-
mizes these routines by partitioning matrices into blocks
and computing matrix/matrix operations on each block.
This approach avoids excessive memory accesses by
providing full reuse of data while each block is in the
cache or the registers. BLAS Level 3 routines provide
this kind of blocking for three basic types of operations:

• Matrix/matrix products

• Rank-k and rank-2k updates of a symmetric matrix

• Solving triangular systems of equations with multiple
right-hand sides

6

HP Fortran for OpenVMS

Three types of matrices are supported by these BLAS
Level 3 routines:

• General

• Symmetric/Hermitian

• Triangular

A set of additional matrix-matrix routines is provided:

• Add two matrices

• Subtract one matrix from another

• Transpose a matrix, in-place or out-of-place

Array Math Functions

The Array Math Functions provide a set of basic math
functions that operate on arrays of numbers rather than
on scalars. On vector and superscalar architectures,
such functions have a performance advantage over a
loop of scalar operations. The library includes the fol-
lowing array functions for double precision numbers:

• Sine of array

• Cosine of array

• Cosine and sine of array

• Exponent of array

• Logarithm of array

• Square root of array

• Reciprocal of array

LAPACK Library Contents

LAPACK is a library of linear algebra subprograms in-
tended to solve a wide range of problems in linear alge-
bra. LAPACK can be used to solve dense systems of
linear equations, linear least squares problems, eigen-
value problems, and singular value problems. It is also
useful in doing other computations such as matrix fac-
torizations and estimations of condition numbers.

The CXML LAPACK library provides the complete LA-
PACK v2 package. CXML´s version of LAPACK is pro-
vided as a packaged library, compiled, tested, and ready
to use. Combined with the optimized BLAS Level 3 rou-
tines, the CXML LAPACK will provide optimal perfor-
mance on all supported platforms. LAPACK should be
used in place of LINPACK and EISPACK, because it is
more efficient, accurate, and robust.

LAPACK supports both real and complex, single and
double precision data. It operates on the following types
of matrices:

• Bidiagonal

• General band

• General unsymmetric

• General tridiagonal

• Hermitian

• Hermitian, packed storage

• Upper Hessenberg, generalized problem

• Upper Hessenberg

• Orthogonal

• Orthogonal, packed storage

• Symmetric/Hermitian positive definite band

• Symmetric/Hermitian positive definite

• Symmetric/Hermitian positive definite, packed stor-
age

• Symmetric/Hermitian positive definite tridiagonal

• Symmetric band

• Symmetric, packed storage

• Symmetric tridiagonal

• Symmetric

• Triangular band

• Triangular, generalized problem

• Triangular, packed storage

• Triangular

• Trapezoidal

• Unitary

• Unitary, packed storage

LAPACK provides the following operations:

• Triangular factorization

• Unblocked triangular factorization

• Solve a system of linear equations (based on trian-
gular factorization)

• Compute the inverse (based on triangular factoriza-
tion)

• Compute a split Cholesky factorization of a symmet-
ric/Hermitian positive definite band matrix

• Unblocked computation of inverse

• Estimate condition number

• Refine initial solution returned by solver

• Perform QR factorization without pivoting

• Unblocked QR factorization

• Solve linear least squares problem (based on QR
factorization)

7

HP Fortran for OpenVMS

• Solve the linear equality constrained least squares
(LSE) problem

• Solve the Gauss-Markov linear model problem

• Perform LQ factorization without pivoting

• Unblocked LQ factorization

• Solve underdetermined linear system (based on LQ
factorization)

• Generate a real orthogonal or complex unitary matrix
as a product of Householder matrices

• Unblocked generation of real orthogonal or unitary
matrix

• Multiply a matrix by a real orthogonal or complex uni-
tary matrix by applying a product of Householder ma-
trices

• Unblocked version of multiplication of a matrix by a
real orthogonal or complex unitary matrix by applying
a product of Householder matrices

• Reduce a square matrix to upper Hessenberg form

• Unblocked version of square matrix reduction

• Reduce a symmetric matrix to real symmetric tridiag-
onal form

• Reduce a band matrix to bidiagonal form

• Unblocked version of symmetric matrix reduction

• Reduce a rectangular matrix to bidiagonal form

• Reduce a band symmetric/Hermitian matrix to tridi-
agonal form

• Reduce a symmetric/Hermitian-definite banded gen-
eralized eigenproblem to standard form

• Compute various norms of a complex Hermitian tridi-
agonal matrix

• Compute eigenvalues and optional Schur factoriza-
tion or eigenvectors using QR algorithm

• Compute selected eigenvectors by inverse iteration

• Compute eigenvectors from Schur factorization

• Compute eigenvectors using the Pal-Walker-Kahan
variant of the QL or QR algorithm

• For a pair of N-by-N real nonsymmetric matrices,
compute the generalized eigenvalues, the real Schur
form, and the left and/or right Schur vectors

• For a pair of N-by-N real nonsymmetric matrices,
compute the generalized eigenvalues, and the left
and/or right generalized eigenvectors

• Solve the generalized nonsymmetric eigenproblem
Ax = lambda Bx

• Solve the generalized definite banded eigenproblem
Ax = lambda Bx

• Solve the generalized symmetric/Hermitian-definite
banded eigenproblem

• Solve the symmetric eigenproblem using divide-and-
conquer algorithm

• Compute singular values and, optionally, singular
vectors using the QR algorithm

• Compute the generalized (quotient) singular value
decomposition

• Compute the generalized singular value decompo-
sition (GSVD) on the M-by-N matrix A and P-by-N
matrix B

• Solve a generalized linear regression model problem

Sparse System Solver Subprograms

The CXML Sparse System Solver library contains a set
of subprograms that can be used to solve sparse linear
systems of equations. Two packages providing direct
and iterative methods are supported.

Direct Method Sparse Solver Package:

The direct solver package includes skyline (profile)
solvers for symmetric and nonsymmetric matrices. Sep-
arate factorization and solver routines are provided to
allow repeated use of the solver for multiple right hand
sides, without repeating the factorization. To make
the subprograms easier to use, both simple and ex-
pert driver routines are provided. Functions provided
include:

• LDU factorization

• Solve

• Norm evaluation

• Condition number estimation

• Iterative refinement

• Simple and expert drivers

These storage schemes are supported for symmetric
and nonsymmetric matrices:

• Profile-in storage

• Structurally symmetric, profile-in storage (for non-
symmetric only)

• Diagonal-out storage

Iterative Method Sparse Solver Package:

For the iterative method, the library provides a modular
set of storage schemes, preconditioners, and solvers.
These solvers and preconditioners are easily accessed
through an integrated driver routine.

8

HP Fortran for OpenVMS

Six iterative sparse solvers for real, double precision
data are supplied:

• Preconditioned conjugate gradient method

• Preconditioned least squares conjugate gradient
method

• Preconditioned biconjugate method

• Preconditioned conjugate gradient squared method

• Preconditioned generalized minimum residual method

• Preconditioned transpose free QMR method

Routines for three storage schemes are provided, or the
user can develop routines to employ a custom storage
scheme. The supplied storage schemes include:

• Symmetric diagonal

• Unsymmetric diagonal

• General storage by rows

Three preconditioners are supplied, which can be selec-
tively applied to the data. Users can also supply custom
preconditioners. The preconditioners supplied include:

• Diagonal

• Polynomial (Neumann)

• Incomplete LU with zero diagonals added

Sorting Subprograms

Two sort subprograms using the Quicksort algorithm
and two general purpose radix sort subprograms are
provided, as follows:

• Sort elements of a vector using the Quicksort algo-
rithm

• Sort an indexed vector of data using the Quicksort
algorithm

• Sort data using a radix sort algorithm

• Sort an indexed vector of data using a radix sort al-
gorithm

All of the above sorts operate on data stored in memory.

Random Number Subprograms

CXML provides four random number generator subpro-
grams:

• Produce a vector of uniform [0,1], long-period ran-
dom numbers using the L´Ecuyer multiplicative
method. Two auxiliary input routines are provided
to allow this subprogram to be called from within a
parallel section of a program.

• Produce a vector of N(0,1), normally-distributed ran-
dom numbers. Two auxiliary input routines are pro-
vided to allow this subprogram to be called from
within a parallel section of a program.

• Produce single precision random numbers using a
linear multiplicative algorithm

• Produce single precision random numbers using a
Lehmer multiplicative generator

Signal Processing Subprograms

The CXML Signal Processing library contains a set of
subprograms in four basic areas of signal processing:

• Fast Fourier Transforms (FFT)

• Fast Cosine and Fast Sine Transforms (FCT and
FST)

• Convolution and correlation

• Digital filters

Fast Fourier Transforms and Cosine and Sine
Transforms

CXML provides one-dimensional, two-dimensional,
three-dimensional, and group FFT routines and one-
dimensional FCT/FST routines. Each routine is supplied
in two forms:

• The first form computes the transform in one unit
operation. This is convenient for programs requiring
speed on only one or a few operations.

• The second form is provided for programs requiring
speed on repeated operations. With this form, each
routine is subdivided into three routines. One routine
builds the rotation factors, a second routine applies
them to perform the transform, and a third routine
deallocates any virtual memory allocated in the first
routine. Thus, for repeated operations, the rotation
factors need to be built only once.

Convolution and Correlation

CXML provides routines for computing one-dimensional
discrete convolutions and correlations. These routines
can process both periodic and nonperiodic data.

Digital Filters

CXML provides support for one-dimensional, nonrecur-
sive digital filtering. Based on the Kaisers Sinh-Bessel
algorithm, these routines allow programming of band-
pass, bandstop, low-pass, and high-pass filters.

9

HP Fortran for OpenVMS

Cray SciLib Portability Support

SCIPORT is an HP implementation of v7 of the Cray
Research scientific numerical library, SciLib. SCIPORT
provides 64 bit single-precision and 64-bit integer in-
terfaces to underlying CXML routines for Cray users
porting programs to Alpha systems running OpenVMS.
SCIPORT also provides equivalent versions of almost
all Cray Math Library and CF77 (Cray Fortran 77) Math
intrinsic routines.

In order to be completely source code compatible with
SciLib, the SCIPORT library calling sequence supports
64-bit integers passed by reference. However, inter-
nally, SCIPORT uses 32 bit integers. Consequently,
some run-time uses of SciLib are not supported by SCI-
PORT.

SCIPORT provides the following:

• 64-bit versions of all Cray SciLib single-precision
BLAS Level 1, Level 2, and Level 3 routines

• All Cray SciLib LAPACK routines

• All Cray SciLib Special Linear System Solver routines

• All Cray SciLib Signal Processing routines

• All Cray SciLib Sorting and Searching routines

These routines are completely interchangeable with
their Cray SciLib counterparts up to the runtime limit
on integer size, and with the exception of the ORDERS
routine, require no program changes to function cor-
rectly. Owing to endian differences of machine architec-
ture, special considerations must be given when the OR-
DERS routine is used to sort multibyte character strings.

RUN-TIME LIBRARY REDISTRIBUTION

The HP Fortran kit may include updated Run-Time Li-
brary shareable images. HP grants the user a nonexclu-
sive royalty-free worldwide right to reproduce and dis-
tribute the executable version of the Run-Time Library
(the ˆRTLs˜), provided that the user does all of the fol-
lowing:

• Distributes the RTLs only in conjunction with and as
a part of the user´s software application product that
is designed to operate in the OpenVMS environment.

• Does not use the name, logo, or trademarks of HP
to market the user´s software application product.

• Includes the copyright notice of HP Fortran on the
user´s product disk label and/or on the title page of
the documentation for software application product.

• Agrees to indemnify, hold harmless, and defend HP
from and against any claims or lawsuits, including
attorney´s fees, that arise or result from the use or
distribution of the software application product.

Except as expressly provided herein, HP grants no im-
plied or express license under any of its patents, copy-
rights, trade secrets, trademarks, or any license or other
proprietary interests and rights.

The RTL image is designated as DEC$FORRTL.EXE.
HP Fortran may include a separate installation kit for the
purpose of installing the HP Fortran Run-Time Library.
This kit, installable with the POLYCENTER® Software
Installation Utility (a component of OpenVMS), must be
used to install the RTL image on other systems.

HARDWARE REQUIREMENTS

Processors Supported:

Any Alpha system that is capable of running OpenVMS
Alpha Version 7.3-2 or later.

OpenVMS I64 Version 8.2-1 supports all Integrity
Servers.

Refer to the OpenVMS Operating System’s Software
Product Description (SPD 82.35.xx) for details.

Table 2

Disk Space Requirements on OpenVMS
Alpha (Block Cluster Size = 1)

TASK SIZE

Compiler Installa-
tion:

50,000 blocks (25.0 MB)

Compiler Perma-
nent:

40,200 blocks (20.1 MB)

CXML Installation: 150,000 blocks (75.0 MB)

CXML Permanent: 150,000 blocks (75.0 MB)

Table 2

Disk Space Requirements on
OpenVMS I64 (Block Cluster Size = 1)

TASK SIZE

Compiler Installa-
tion:

62,000 blocks (31 MB)

Compiler Perma-
nent:

60,000 blocks (30 MB)

These counts refer to the disk space required on the
system disk. The sizes are approximate; actual sizes
may vary depending on the user´s system environment,
configuration, and software options.

10

HP Fortran for OpenVMS

CLUSTER ENVIRONMENT

This layered product is fully supported when installed on
any valid and licensed VMScluster* configuration with-
out restrictions. The HARDWARE REQUIREMENTS
sections of this product´s Software Product Description
and System Support Addendum detail any special hard-
ware required by this product.

* VMScluster configurations are fully described in
the VMScluster Software Product Description (SPD
42.18.xx) and include CI, Ethernet, DSSI, FDDI,
SCSI and Mixed Interconnect configurations.

SOFTWARE REQUIREMENTS

For All Systems Using Terminals DECwindows Inter-
face:

• OpenVMS Alpha Operating System V7.3-2 & higher

• OpenVMS I64 Operating System V8.2-1 & higher

For All Workstations Running DECwindows:

• OpenVMS Alpha Operating System V7.3-2 & higher

OpenVMS Optional Components

The OpenVMS operating system can be configured to
include or omit certain components. HP Fortran requires
the following components to be included:

• Programming Support

• Utilities

The default for OpenVMS Alpha installation is to include
all components.

SOFTWARE LICENSING INFORMATION

A software license is required in order to use HP
Fortran software. For VAX and Alpha platforms, HP
Fortran is offered with Concurrent Use, Personal Use
and Traditional ’capacity’ licenses. For I64, it is of-
fered with Concurrent Use licenses. Version update li-
censes are not available for the I64 platform. Rights
to use future revisions of HP Fortran are available
only through a Support Agreement or through a new
license purchase. For more information about Open-
VMS license terms and policies, contact your local HP
sales office, or reference the Software Licensing site at:
<http://licensing.hp.com/swl/view.slm?page=index>

LICENSE MANAGEMENT FACILITY SUPPORT

HP Fortran supports the License Management Facility
of HP.

License units for HP Fortran on Alpha is allocated on an
Unlimited System Use plus Concurrent Use basis. For
HP Fortran on I64 is allocated on Concurrent Use basis.

Each Concurrent Use license allows any one individual
at a time to use the layered product.

OPTIONAL SOFTWARE

• DECset V11.1-V12.7 for OpenVMS Alpha

• CDD/Repository V5.3 for OpenVMS Alpha

• DECset V12.7 for OpenVMS I64

GROWTH CONSIDERATIONS

The minimum hardware/software requirements for any
future version of this product may be different from the
requirements for the current version.

DISTRIBUTION MEDIA

This product is available on the HP CD-ROM Software
Library for OpenVMS Alpha (QA-03XAA-H8). Docu-
mentation in printed format can be ordered separately
(see the HP Fortran ˆread first˜ cover letter or the online
release notes).

HP Fortran OpenVMS I64 ONLY:

HP Fortran for OpenVMS I64 is available on the Open-
VMS Layered Product Library. The library package in-
cludes media and documentaion on CD-ROM.

SOFTWARE WARRANTY

This software is provided by HP with a 90 day con-
formance warranty in accordance with the HP warranty
terms applicable to the license purchase.

The above information is valid at time of release. Please
contact your local HP office for the most up-to-date in-
formation.

ORDERING INFORMATION

When purchasing HP Fortran both a license and me-
dia must be ordered. The license deliverable provides
the LMF PAK required to run the HP Fortran software.
The VMS Operating System or Operating Environment
(license and media) is a prerequisite to running HP For-
tran.

Software Licenses:

Unlimited System Use: QL-MV1A*-AA
Concurrent Use: QL-100AA-3B
Concurrent 5 Pack: QL-100AA-3C

11

HP Fortran for OpenVMS

Concurrent 10 Pack: QL-100AA-3D

Software Documentation:

HP Fortran 95/90 Documentation: QA-MV1AA-GZ
HP Fortran 77 Documentation: QA-MV1AB-GZ

HP Fortran for OpenVMS I64 ONLY:

Software Licenses:
Concurrent Use: BA368AC

Software Media:
Foundation Operating Media, BA322AA or
Enterprise Operating Media, BA323AA or
Mission Critical Media, BA324AA

Software Documentation (Hard Copy): BA368MN

An example of a new order for HP Fortran:

Concurrent Use License - BA368AC
Binaries: Operating Environment Media - BA32*A
Hardcopy Documentation Kit (Optional) BA368MN

For more information on the Operating Environments,
please see the HP Operating Environments for Open-
VMS I64 SPD: 82.34.**

* Denotes variant fields. For additional information on
available licenses, services, and media, refer to the
appropriate price book.

The above information is valid at time of release. Please
contact your local HP office for the most up-to-date in-
formation.

SOFTWARE PRODUCT SERVICES

A variety of service options are available from HP. For
more information, contact your local HP account repre-
sentative or distributor. Information is also available on
www.hp.com/hps/software.

TRADEMARK INFORMATION

© 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP
and/or its subsidiaries required for possession, use, or
copying. Consistent with FAR 12.211 and 12.212, Com-
mercial Computer Software, Computer Software Docu-
mentation, and Technical Data for Commercial use.

The information contained herein is subject to change
without notice. The only warranties for HP products and
services are set forth in the express warranty statements
accompanying such products and services. Nothing
here in should be construed as constituting an addi-
tional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

12

