
HP C
User’s Guide for OpenVMS Systems
Order Number: AA–PUNZM–TK

January 2005

This guide describes using the HP C compiler on OpenVMS systems.
It contains information on HP C program development in the OpenVMS
environment, HP C features specific to OpenVMS systems, and cross-system
portability concerns.

Revision/Update Information: This revised guide supersedes the
Compaq C User’s Guide for OpenVMS
Systems Order No. AA–PUNZL–TK,
Version 6.5.

Operating System and Version: OpenVMS I64 Version 8.2 or higher
OpenVMS Alpha Version 7.3-2 or higher

Software Version: HP C Version 7.1 for OpenVMS Systems

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

UNIX is a registered trademark of The Open Group.

X/Open is a registered trademark of X/Open Company Ltd. in the UK and other countries.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

This document is available on CD-ROM.

ZK5492

This document was prepared using DECdocument, Version 3.3-1n.

Contents

Preface . xxi

1 Developing HP C Programs

1.1 DCL Commands for Program Development 1–1
1.2 Creating an HP C Program . 1–3
1.2.1 Using TPU . 1–4
1.2.2 The EVE Interface to TPU . 1–4
1.3 Compiling an HP C Program . 1–4
1.3.1 The CC Command . 1–5
1.3.1.1 Including Header Files . 1–6
1.3.1.2 Listing Header Files . 1–8
1.3.2 Compilation Modes . 1–9
1.3.3 Microsoft Compatibility Compilation Mode 1–12
1.3.3.1 Unnamed Nested struct or union Members 1–12
1.3.3.2 Block Scope Declaration of static Functions 1–12
1.3.3.3 Treat &* as Having No Effect . 1–12
1.3.3.4 char is Not Treated as a Unique Type 1–13
1.3.3.5 Double Semicolons in Declarations 1–13
1.3.3.6 Declaration without a Type . 1–13
1.3.3.7 Enumerators in an Enumeration Declaration 1–13
1.3.3.8 Useless Typedefs . 1–13
1.3.3.9 Unrecognized Pragmas Accepted 1–14
1.3.4 CC Command Qualifiers . 1–14
1.3.5 Compiler Diagnostic Messages . 1–83
1.4 Linking an HP C Program . 1–84
1.4.1 The LINK Command . 1–85
1.4.2 LINK Command Qualifiers . 1–86
1.4.3 Linker Input Files . 1–87
1.4.4 Linker Output Files . 1–88
1.4.5 Linking Against Object Module Libraries and Shareable

Images . 1–88
1.4.6 Object Module Libraries . 1–89

iii

1.4.7 Linker Error Messages . 1–90
1.5 Running an HP C Program . 1–91
1.6 Passing Arguments to the main Function 1–93
1.7 64-bit Addressing Support . 1–95
1.7.1 Qualifiers and Pragmas . 1–96
1.7.1.1 The /POINTER_SIZE Qualifier . 1–96
1.7.1.2 The _ _INITIAL_POINTER_SIZE Macro 1–97
1.7.1.3 The /CHECK=POINTER_SIZE Qualifier 1–97
1.7.1.4 Pragmas . 1–98
1.7.2 Determining Pointer Size . 1–98
1.7.2.1 Special Cases . 1–100
1.7.2.2 Mixing Pointer Sizes . 1–101
1.7.3 Header File Considerations . 1–101
1.7.4 Prologue/Epilogue Files . 1–102
1.7.4.1 Rationale . 1–102
1.7.4.2 Using Prologue/Epilogue Files . 1–103
1.7.5 Avoiding Problems . 1–104
1.7.6 Examples . 1–105

2 Using OpenVMS Record Management Services

2.1 RMS File Organization . 2–2
2.1.1 Sequential File Organization . 2–2
2.1.2 Relative File Organization . 2–3
2.1.3 Indexed File Organization . 2–3
2.2 Record Access Modes . 2–4
2.3 RMS Record Formats . 2–5
2.4 RMS Functions . 2–5
2.5 Writing HP C Programs Using RMS . 2–7
2.5.1 Initializing File Access Blocks . 2–9
2.5.2 Initializing Record Access Blocks . 2–10
2.5.3 Initializing Extended Attribute Blocks 2–10
2.5.4 Initializing Name Blocks . 2–11
2.6 RMS Example Program . 2–12

3 Using HP C in the Common Language Environment

3.1 Basic Calling Standard Conventions . 3–2
3.1.1 Register and Stack Usage . 3–3
3.1.2 Return of the Function Value . 3–5
3.1.3 The Argument List . 3–5
3.2 Specifying Parameter-Passing Mechanisms 3–7
3.2.1 Passing Arguments by Immediate Value 3–8

iv

3.2.2 Passing Arguments by Reference . 3–12
3.2.3 Passing Arguments by Descriptor . 3–14
3.2.4 HP C Default Parameter-Passing Mechanisms 3–20
3.3 Interlanguage Calling . 3–20
3.3.1 Calling HP FORTRAN . 3–21
3.3.2 Calling VAX MACRO . 3–26
3.3.3 Calling HP BASIC . 3–30
3.3.4 Calling HP Pascal . 3–33
3.4 Sharing Global Data . 3–39
3.4.1 Sharing Program Sections with FORTRAN Common

Blocks . 3–40
3.4.2 Sharing Program Sections with PL/I Externals 3–42
3.4.3 Sharing Program Sections with MACRO Programs 3–44
3.5 OpenVMS Run-Time Library Routines . 3–45
3.6 OpenVMS System Services Routines . 3–46
3.7 Calling Routines . 3–47
3.7.1 Determining the Type of Call . 3–47
3.7.2 Declaring an External Routine and Its Arguments 3–47
3.7.3 Calling the External Routine . 3–48
3.7.4 System Routine Arguments . 3–48
3.7.5 Symbol Definitions . 3–52
3.7.6 Condition Values . 3–52
3.7.7 Checking System Service Return Values 3–53
3.8 Variable-Length Argument Lists in System Services 3–55
3.9 Return Status Values . 3–57
3.9.1 Format of Return Status Values . 3–57
3.9.2 Manipulating Return Status Values . 3–59
3.9.3 Testing for Success or Failure . 3–61
3.9.4 Testing for Specific Return Status Values 3–62
3.10 Examples of Calling System Routines . 3–63

4 Data Storage and Representation

4.1 Storage Allocation . 4–1
4.2 Standard-Conforming Method of Controlling External

Objects . 4–3
4.3 Global Storage Classes . 4–4
4.3.1 The globaldef and globalref Specifiers 4–4
4.3.2 Comparing the Global and the External Storage Classes 4–7
4.3.3 The globalvalue Specifier . 4–9
4.4 Storage-Class Modifiers . 4–10
4.4.1 The noshare Modifier . 4–10
4.4.2 The readonly Modifier . 4–11

v

4.4.3 The _align Modifier . 4–12
4.5 Floating-Point Numbers (float, double, long double) 4–12
4.6 Pointer Conversions . 4–15
4.7 Structure Alignment . 4–15
4.7.1 Bit-Field Alignment . 4–17
4.7.2 Bit-Field Initialization . 4–17
4.7.3 Variant Structures and Unions . 4–18
4.8 Program Sections . 4–21
4.8.1 Attributes of Program Sections . 4–21
4.8.2 Program Sections Created by HP C 4–22

5 Preprocessor Directives

5.1 CDD/Repository Extraction (#dictionary) 5–2
5.2 File Inclusion (#include) . 5–2
5.2.1 Inclusion Using Angle Brackets . 5–2
5.2.2 Inclusion Using Quotation Marks . 5–5
5.2.3 Inclusion of Text Modules . 5–6
5.2.4 Macro Substitution in #include Directives 5–7
5.3 Changing the Default Object Module Name and Identification

(#module) . 5–8
5.4 Implementation-Specific Preprocessor Directive (#pragma) 5–8
5.4.1 #pragma assert Directive . 5–9
5.4.1.1 #pragma assert func_attrs . 5–9
5.4.1.2 #pragma assert global_status_variable 5–11
5.4.1.3 Usage Notes . 5–11
5.4.1.4 #pragma assert non_zero . 5–12
5.4.2 #pragma builtins Directive . 5–13
5.4.3 #pragma dictionary Directive . 5–14
5.4.4 #pragma environment Directive . 5–16
5.4.5 #pragma extern_model Directive . 5–18
5.4.5.1 Syntax . 5–20
5.4.5.2 #pragma extern_model common_block 5–22
5.4.5.3 #pragma extern_model relaxed_refdef 5–23
5.4.5.4 #pragma extern_model strict_refdef 5–24
5.4.5.5 #pragma extern_model globalvalue 5–25
5.4.5.6 #pragma extern_model save . 5–26
5.4.5.7 #pragma extern_model restore . 5–26
5.4.5.8 Effects on the HP C Run-Time Library and User

Programs . 5–26
5.4.5.9 Example . 5–28
5.4.6 #pragma extern_prefix Directive . 5–30
5.4.7 #pragma function Directive . 5–32

vi

5.4.8 #pragma [no]include_directory Directive 5–32
5.4.9 #pragma [no]inline Directive . 5–33
5.4.10 #pragma intrinsic Directive . 5–35
5.4.11 #pragma linkage Directive (Alpha only) 5–36
5.4.12 #pragma linkage Directive (I64 only) . 5–40
5.4.12.1 #pragma linkage Format . 5–40
5.4.12.1.1 Register Mapping . 5–40
5.4.12.1.2 Mapping Diagnostics . 5–42
5.4.12.2 #pragma linkage_ia64 Format . 5–43
5.4.13 #pragma [no]member_alignment Directive 5–44
5.4.14 #pragma message Directive . 5–45
5.4.14.1 #pragma message option1 . 5–45
5.4.14.2 #pragma message option2 . 5–49
5.4.14.3 #pragma message (quoted-string) 5–49
5.4.15 #pragma module Directive . 5–49
5.4.16 #pragma names Directive . 5–50
5.4.17 #pragma optimize Directive . 5–52
5.4.18 #pragma pack Directive . 5–54
5.4.19 #pragma pointer_size Directive . 5–56
5.4.20 #pragma required_pointer_size Directive 5–57
5.4.21 #pragma [no]standard Directive . 5–58
5.4.22 #pragma unroll Directive . 5–58
5.4.23 #pragma use_linkage Directive . 5–59

6 Predefined Macros and Built-In Functions

6.1 Predefined Macros . 6–1
6.1.1 CC$gfloat (G_Floating Identification Macro) 6–1
6.1.2 System Identification Macros . 6–1
6.1.2.1 The _ _DECC_VER Macro . 6–4
6.1.2.2 The _ _VMS_VER Macro . 6–5
6.1.3 Standards Conformance Macros . 6–7
6.1.4 Floating-Point Macros . 6–8
6.1.5 Compiler-Mode Macros . 6–9
6.1.6 Pointer-Size Macro . 6–9
6.1.7 The _ _HIDE_FORBIDDEN_NAMES Macro 6–9
6.2 Built-In Functions . 6–10
6.2.1 Built-In Functions for OpenVMS Alpha Systems (Alpha

only) . 6–11
6.2.1.1 Translation Macros for VAX C Built-in Functions 6–12
6.2.1.2 In-line Assembly Code—ASMs . 6–12
6.2.1.3 Absolute Value (_ _ABS) . 6–15
6.2.1.4 Acquire and Release Longword

vii

Semaphore (_ _ACQUIRE_SEM_LONG,
_ _RELEASE_SEM_LONG) . 6–16

6.2.1.5 Add Aligned Word Interlocked (_ _ADAWI) 6–16
6.2.1.6 Add Atomic Longword (_ _ADD_ATOMIC_LONG) 6–17
6.2.1.7 Add Atomic Quadword (_ _ADD_ATOMIC_QUAD) 6–18
6.2.1.8 Allocate Bytes from Stack (_ _ALLOCA) 6–19
6.2.1.9 AND Atomic Longword (_ _AND_ATOMIC_LONG) 6–19
6.2.1.10 AND Atomic Quadword (_ _AND_ATOMIC_QUAD) 6–20
6.2.1.11 Atomic Add Longword (_ _ATOMIC_ADD_LONG) 6–20
6.2.1.12 Atomic Add Quadword (_ _ATOMIC_ADD_QUAD) 6–21
6.2.1.13 Atomic AND Longword (_ _ATOMIC_AND_LONG) 6–22
6.2.1.14 Atomic AND Quadword (_ _ATOMIC_AND_QUAD) 6–23
6.2.1.15 Atomic OR Longword (_ _ATOMIC_OR_LONG) 6–24
6.2.1.16 Atomic OR Quadword (_ _ATOMIC_OR_QUAD) 6–24
6.2.1.17 Atomic Increment Longword

(_ _ATOMIC_INCREMENT_LONG) 6–25
6.2.1.18 Atomic Increment Quadword

(_ _ATOMIC_INCREMENT_QUAD) 6–26
6.2.1.19 Atomic Decrement Longword

(_ _ATOMIC_DECREMENT_LONG) 6–27
6.2.1.20 Atomic Decrement Quadword

(_ _ATOMIC_DECREMENT_QUAD) 6–27
6.2.1.21 Atomic Exchange Longword

(_ _ATOMIC_EXCH_LONG) . 6–28
6.2.1.22 Atomic Exchange Quadword

(_ _ATOMIC_EXCH_QUAD) . 6–29
6.2.1.23 Compare Store Longword (_ _CMP_STORE_LONG) 6–29
6.2.1.24 Compare Store Quadword (_ _CMP_STORE_QUAD) 6–30
6.2.1.25 Convert G_Floating to F_Floating Chopped

(_ _CVTGF_C) . 6–30
6.2.1.26 Convert G_Floating to Quadword (_ _CVTGQ) 6–30
6.2.1.27 Convert IEEE T_Floating to IEEE S_Floating Chopped

(_ _CVTTS_C) . 6–31
6.2.1.28 Convert IEEE T_Floating to Quadword (_ _CVTTQ) 6–31
6.2.1.29 Convert X_Floating to Quadword (_ _CVTXQ) 6–31
6.2.1.30 Convert X_Floating to IEEE T_Floating Chopped (

_ _CVTXT_C) . 6–31
6.2.1.31 Copy Sign Built-in Functions . 6–32
6.2.1.32 Cosine (_ _COS) . 6–32
6.2.1.33 Double-Precision, Floating-Point Arithmetic Built-in

Functions . 6–33
6.2.1.34 Floating-Point Absolute Value (_ _FABS) 6–33
6.2.1.35 _leadz . 6–33

viii

6.2.1.36 Long Double-Precision, Floating-Point Arithmetic
Built-in Functions . 6–34

6.2.1.37 Longword Absolute Value (_ _LABS) 6–34
6.2.1.38 Lock and Unlock Longword (_ _LOCK_LONG,

_ _UNLOCK_LONG) . 6–34
6.2.1.39 Memory Barrier (_ _MB) . 6–35
6.2.1.40 Memory Copy and Set Functions (_ _MEMCPY,

_ _MEMMOVE, _ _MEMSET) . 6–35
6.2.1.41 OR Atomic Longword (_ _OR_ATOMIC_LONG) 6–36
6.2.1.42 OR Atomic Quadword (_ _OR_ATOMIC_QUAD) 6–36
6.2.1.43 Privileged Architecture Library Code Instructions 6–37
6.2.1.44 _ _PAL_BPT . 6–37
6.2.1.45 _ _PAL_BUGCHK . 6–37
6.2.1.46 _ _PAL_CFLUSH . 6–38
6.2.1.47 _ _PAL_CHME . 6–38
6.2.1.48 _ _PAL_CHMK . 6–38
6.2.1.49 _ _PAL_CHMS . 6–38
6.2.1.50 _ _PAL_CHMU . 6–39
6.2.1.51 _ _PAL_DRAINA . 6–39
6.2.1.52 _ _PAL_GENTRAP . 6–39
6.2.1.53 _ _PAL_HALT . 6–39
6.2.1.54 _ _PAL_INSQHIL . 6–39
6.2.1.55 _ _PAL_INSQHILR . 6–40
6.2.1.56 _ _PAL_INSQHIQ . 6–41
6.2.1.57 _ _PAL_INSQHIQR . 6–41
6.2.1.58 _ _PAL_INSQTIL . 6–42
6.2.1.59 _ _PAL_INSQTILR . 6–42
6.2.1.60 _ _PAL_INSQTIQ . 6–43
6.2.1.61 _ _PAL_INSQTIQR . 6–43
6.2.1.62 _ _PAL_INSQUEL . 6–44
6.2.1.63 _ _PAL_INSQUEL_D . 6–44
6.2.1.64 _ _PAL_INSQUEQ . 6–45
6.2.1.65 _ _PAL_INSQUEQ_D . 6–45
6.2.1.66 _ _PAL_LDQP . 6–46
6.2.1.67 _ _PAL_STQP . 6–46
6.2.1.68 _ _PAL_MFPR_XXXX . 6–46
6.2.1.69 _ _PAL_MTPR_XXXX . 6–47
6.2.1.70 _ _PAL_PROBER . 6–47
6.2.1.71 _ _PAL_PROBEW . 6–48
6.2.1.72 _ _PAL_RD_PS . 6–48
6.2.1.73 _ _PAL_REMQHIL . 6–49
6.2.1.74 _ _PAL_REMQHILR . 6–49
6.2.1.75 _ _PAL_REMQHIQ . 6–50

ix

6.2.1.76 _ _PAL_REMQHIQR . 6–50
6.2.1.77 _ _PAL_REMQTIL . 6–51
6.2.1.78 _ _PAL_REMQTILR . 6–51
6.2.1.79 _ _PAL_REMQTIQ . 6–52
6.2.1.80 _ _PAL_REMQTIQR . 6–53
6.2.1.81 _ _PAL_REMQUEL . 6–53
6.2.1.82 _ _PAL_REMQUEL_D . 6–54
6.2.1.83 _ _PAL_REMQUEQ . 6–54
6.2.1.84 _ _PAL_REMQUEQ_D . 6–55
6.2.1.85 _ _PAL_SWPCTX . 6–55
6.2.1.86 _ _PAL_SWASTEN . 6–55
6.2.1.87 _ _PAL_WR_PS_SW . 6–56
6.2.1.88 _popcnt . 6–56
6.2.1.89 _poppar . 6–56
6.2.1.90 Read Process Cycle Counter (_ _RPCC) 6–56
6.2.1.91 Sine (_ _SIN) . 6–56
6.2.1.92 Single-Precision, Floating-Point Arithmetic Built-in

Functions . 6–57
6.2.1.93 Test for Bit Clear then Clear Bit Interlocked

(_ _INTERLOCKED_TESTBITCC_QUAD) 6–57
6.2.1.94 Test for Bit Clear then Clear Bit Interlocked

(_ _TESTBITCCI) . 6–58
6.2.1.95 Test for Bit Set Then Set Bit Interlocked

(_ _INTERLOCKED_TESTBITSS_QUAD) 6–58
6.2.1.96 Test for Bit Set then Set Bit Interlocked

(_ _TESTBITSSI) . 6–59
6.2.1.97 _trailz . 6–60
6.2.1.98 Trap Barrier Instruction (_ _TRAPB) 6–60
6.2.1.99 Unsigned Quadword Multiply High (_ _UMULH) 6–60
6.2.2 Built-In Functions for I64 Systems (I64 only) 6–60
6.2.2.1 Builtin Differences on I64 Systems 6–61
6.2.2.2 Built-in Functions Specific to I64 Systems 6–62
6.2.2.3 Get Hardware Register Value (_ _getReg) 6–63
6.2.2.4 Set Hardware Register Value (_ _setReg) 6–65
6.2.2.5 Get Index Register Value (_ _getIndReg) 6–65
6.2.2.6 Set Index Register Value (_ _setIndReg) 6–66
6.2.2.7 Generate Break Instruction (_ _break) 6–66
6.2.2.8 Serialize Data (_ _dsrlz) . 6–66
6.2.2.9 Flush Cache Instruction (_ _fc) . 6–67
6.2.2.10 Flush Write Buffers (_ _fwb) . 6–67
6.2.2.11 Invalidate ALAT (_ _invalat) . 6–67
6.2.2.12 Invalidate ALAT (_ _invala) . 6–67
6.2.2.13 Execute Serialize (_ _isrlz) . 6–67

x

6.2.2.14 Insert Data Address Translation Cache (_ _itcd) 6–67
6.2.2.15 Insert Instruction Address Translation Cache (_ _itci) . . 6–68
6.2.2.16 Insert Data Translation Register (_ _itrd) 6–68
6.2.2.17 Insert Instruction Translation Register (_ _itri) 6–68
6.2.2.18 Purge Translation Cache Entry (_ _ptce) 6–69
6.2.2.19 Purge Global Translation Cache (_ _ptcg) 6–69
6.2.2.20 Purge Local Translation Cache (_ _ptcl) 6–69
6.2.2.21 Purge Global Translation Cache and ALAT (_ _ptcga) . . . 6–69
6.2.2.22 Purge Data Translation Register (_ _ptrd) 6–70
6.2.2.23 Purge Instruction Translation Register (_ _ptri) 6–70
6.2.2.24 Reset System Mask (_ _rsm) . 6–70
6.2.2.25 Reset User Mask (_ _rum) . 6–71
6.2.2.26 Set System Mask (_ _ssm) . 6–71
6.2.2.27 Set User Mask (_ _sum) . 6–71
6.2.2.28 Enable Memory Synchronization (_ _synci) 6–71
6.2.2.29 Translation Hashed Entry Address (_ _thash) 6–71
6.2.2.30 Translation Hashed Entry Tag (_ _ttag) 6–72
6.2.2.31 Atomic Compare and Exchange (

_InterlockedCompareExchange_acq) 6–72
6.2.2.32 Atomic Compare and Exchange (

_InterlockedCompareExchange64_acq) 6–73
6.2.2.33 Atomic Compare and Exchange (

_InterlockedCompareExchange_rel) 6–73
6.2.2.34 Atomic Compare and Exchange (

_InterlockedCompareExchange64_rel) 6–73
6.2.2.35 Conditional Atomic Compare and Exchange Longword

(_ _CMP_SWAP_LONG) . 6–73
6.2.2.36 Conditional Atomic Compare and Exchange Quadword

(_ _CMP_SWAP_QUAD) . 6–74
6.2.2.37 Conditional Atomic Compare and Exchange

Longword with Acquire Semantics (
_ _CMP_SWAP_LONG_ACQ) . 6–74

6.2.2.38 Conditional Atomic Compare and Exchange
Quadword with Acquire Semantics (
_ _CMP_SWAP_QUAD_ACQ) . 6–75

6.2.2.39 Conditional Atomic Compare and Exchange
Longword with Release Semantics (
_ _CMP_SWAP_LONG_REL) . 6–76

6.2.2.40 Conditional Atomic Compare and Exchange
Quadword with Release Semantics (

xi

_ _CMP_SWAP_QUAD_REL) . 6–76
6.2.2.41 Return Address (_ _RETURN_ADDRESS) 6–77
6.2.2.42 Implement Alpha _ _PAL_GENTRAP and

_ _PAL_BUGCHK Builtins (_ _break2) 6–77
6.2.2.43 Flush Register Stack (_ _flushrs) 6–78
6.2.2.44 Load Register Stack (_ _loadrs) . 6–78
6.2.2.45 Probe Read-Access Permission (_ _prober) 6–78
6.2.2.46 Probe Write-Access Permission (_ _probew) 6–78
6.2.2.47 Translation Access Key (_ _tak) . 6–79
6.2.2.48 Translate to Physical Address (_ _tpa) 6–79
6.2.3 Built-In Functions for OpenVMS VAX Systems (VAX only) 6–79
6.2.3.1 Allocate Bytes from Stack (_ _ALLOCA) 6–79
6.2.3.2 Add Aligned Word Interlocked (_ADAWI) 6–80
6.2.3.3 Branch on Bit Clear-Clear Interlocked (_BBCCI) 6–80
6.2.3.4 Branch on Bit Set-Set Interlocked (_BBSSI) 6–81
6.2.3.5 Find First Clear Bit (_FFC) . 6–81
6.2.3.6 Find First Set Bit (_FFS) . 6–82
6.2.3.7 Halt (_HALT) . 6–83
6.2.3.8 Insert Entry into Queue at Head Interlocked (

_INSQHI) . 6–83
6.2.3.9 Insert Entry into Queue at Tail Interlocked (

_INSQTI) . 6–84
6.2.3.10 Insert Entry in Queue (_INSQUE) 6–84
6.2.3.11 Locate Character (_LOCC) . 6–85
6.2.3.12 Move from Processor Register (_MFPR) 6–85
6.2.3.13 Move Character 3 Operand (_MOVC3) 6–86
6.2.3.14 Move Character 5 Operand (_MOVC5) 6–86
6.2.3.15 Move from Processor Status Longword (_MOVPSL) 6–87
6.2.3.16 Move to Processor Register (_MTPR) 6–88
6.2.3.17 Probe Read Accessibility (_PROBER) 6–88
6.2.3.18 Probe Write Accessibility (_PROBEW) 6–89
6.2.3.19 Read General-Purpose Register (_READ_GPR) 6–89
6.2.3.20 Remove Entry from Queue at Head Interlocked (

_REMQHI) . 6–90
6.2.3.21 Remove Entry from Queue at Tail Interlocked (

_REMQTI) . 6–90
6.2.3.22 Remove Entry from Queue (_REMQUE) 6–91
6.2.3.23 Scan Characters (_SCANC) . 6–92
6.2.3.24 Skip Character (_SKPC) . 6–92
6.2.3.25 Span Characters (_SPANC) . 6–93

xii

A Migrating from VAX C

A.1 Features Affecting the Compiler . A–2
A.1.1 HP C Qualifiers . A–2
A.1.2 Comment Processing . A–4
A.1.3 String Literal Concatenation . A–5
A.1.4 Recursive main() Function . A–5
A.1.5 Trigraph Sequences . A–5
A.1.6 Alert Escape Sequence . A–6
A.1.7 Hexadecimal Escape Sequence . A–6
A.1.8 Invalid Escape Sequences . A–6
A.1.9 $ in Macro Names . A–6
A.1.10 Null Arguments to Macros . A–6
A.1.11 Standard C Name Space Conformance A–7
A.1.11.1 Nonstandard Keywords . A–7
A.1.11.2 Nonstandard Predefined Macros A–8
A.1.11.3 Nonstandard Identifiers in Standard-Specified Header

Files . A–9
A.1.12 HP C Predefined Macros . A–9
A.1.13 HP C Types . A–9
A.1.13.1 signed Reserved Word . A–10
A.1.13.2 Removal of the long float Type . A–10
A.1.13.3 Addition of the long double Type A–10
A.1.13.4 Addition of Processor-Specific Integer Data Types A–10
A.1.14 Type Compatibility . A–12
A.1.15 Composite Types . A–13
A.1.16 Enumerations Have Type int . A–13
A.1.17 long double Constants . A–13
A.1.18 Implicit Unsigned Integer Constants A–14
A.1.18.1 OpenVMS VAX Systems . A–14
A.1.18.2 OpenVMS Alpha Systems . A–14
A.1.19 Multibyte and Wide Character Support A–14
A.1.19.1 The Wide Character Type . A–15
A.1.19.2 Multibyte Characters in Comments, Character

Constants, and String Literals . A–15
A.1.19.3 Wide Character Constants . A–15
A.1.19.4 Wide String Literals . A–15
A.1.20 Usual Arithmetic Conversions . A–16
A.1.21 Indexing as a Commutative Operator A–16
A.1.22 Cast Operators . A–16
A.1.23 Function Calls . A–16
A.1.23.1 Assignment Compatibility Argument Checking A–16
A.1.23.2 Passing Narrow Types to Old Syntax Functions A–17

xiii

A.1.24 ‘‘Address of’’ Operator . A–17
A.1.25 Unary Plus . A–17
A.1.26 Relational Operators . A–17
A.1.27 Assignment Compatibility . A–18
A.1.28 Declarations . A–18
A.1.28.1 Implementation Limits . A–18
A.1.28.2 Identifier Name Length . A–18
A.1.28.3 Diagnosing Empty Declarations A–18
A.1.28.4 Restriction on Placement of Storage-Class Specifiers A–19
A.1.28.5 Diagnosing Old-Style Function Declarations A–19
A.1.28.6 Function Definitions Using typedef-names A–19
A.1.28.7 Initialization . A–19
A.1.29 Bit-Field Initialization . A–19
A.1.30 The Preprocessor . A–19
A.1.30.1 White Space Appearing Before the # A–20
A.1.30.2 The #define Directive and Macro Substitution A–20
A.1.30.3 The #line Directive . A–21
A.1.30.4 The #error Directive . A–21
A.1.30.5 The #pragma builtins Directive . A–21
A.1.30.6 The #pragma dictionary Directive A–21
A.1.30.7 The #pragma extern_model Directive A–22
A.1.30.8 The #pragma linkage Directive (Alpha only) A–22
A.1.30.9 The #pragma use_linkage Directive (Alpha only) A–22
A.1.30.10 The #pragma message Directive A–22
A.1.30.11 The #pragma module Directive . A–22
A.2 Features Affecting the HP C Run-Time Library and Include

Files . A–22
A.2.1 <stddef.h> . A–22
A.2.2 <ctype.h> . A–22
A.2.3 <fp_class.h> . A–23
A.2.4 <locale.h> . A–23
A.2.5 <math.h> . A–23
A.2.6 <signal.h> . A–23
A.2.7 <stdio.h> . A–23
A.2.8 <stdlib.h> . A–24
A.2.9 <string.h> . A–24
A.2.10 <time.h> . A–24
A.3 Unsupported Features . A–25

xiv

B Common Pitfalls

C Programming Tools

C.1 OpenVMS Debugger . C–1
C.1.1 Compiling and Linking to Prepare for Debugging C–2
C.1.2 Starting and Terminating a Debugging Session C–2
C.1.3 Notes on HP C Support . C–3
C.1.3.1 Debugger Command-Line Options C–4
C.1.3.2 Accessing Scalar Variables . C–4
C.1.3.3 Accessing Arrays . C–6
C.1.3.4 Accessing Character Strings . C–7
C.1.3.5 Accessing Structures and Unions C–9
C.1.3.6 Sample Debugging Session . C–14
C.2 OpenVMS Text Processing Utility . C–18
C.3 Language-Sensitive Editor and the Source Code Analyzer C–18
C.3.1 Preparing an SCA Library . C–20
C.3.2 Starting and Terminating an LSE or an SCA Session C–21
C.3.3 Programming Language Placeholders and Tokens C–21
C.3.4 Compiling Source Code . C–24
C.3.5 LSE Examples . C–24
C.3.5.1 Compilation Unit . C–25
C.3.5.2 Preprocessor Lines . C–25
C.4 CDD/Repository . C–26
C.4.1 Using CDD/Repository . C–26
C.4.2 Accessing CDD/Repository from HP C Programs C–27
C.4.3 Support for CDD/Repository Data Types C–27

D HP C Compiler Messages

E HP C Limits

E.1 Contents of <float.h> . E–1
E.2 Contents of <limits.h> . E–8

xv

HP C Glossary

Index

Examples

1–1 Echo Program Using Command-Line Arguments 1–94
1–2 Watch Out for Pointers to Pointers (**) 1–106
1–3 Trivial 64-Bit Exploitation . 1–107
1–4 Preceding Example No Longer Trivial 1–108
2–1 External Data Declarations and Definitions 2–14
2–2 Main Program Section . 2–16
2–3 Function Initializing RMS Data Structures 2–18
2–4 Internal Functions . 2–20
2–5 Utility Function: Adding Records . 2–23
2–6 Utility Function: Deleting Records . 2–25
2–7 Utility Function: Typing the File . 2–26
2–8 Utility Function: Printing the File . 2–28
2–9 Utility Function: Updating the File . 2–30
3–1 Passing Floating-Point Arguments by Immediate Value 3–11
3–2 Passing Arguments by Reference . 3–13
3–3 Passing Arguments by Descriptor . 3–18
3–4 Passing Compile-Time String Descriptors 3–19
3–5 HP C Function Calling a HP FORTRAN Subprogram 3–22
3–6 HP FORTRAN Subprogram Calling a HP C Function 3–23
3–7 HP C Function Emulating a HP FORTRAN

CHARACTER*(*) Function . 3–25
3–8 VAX MACRO Program Calling a HP C Function 3–27
3–9 HP C Program Calling a VAX MACRO Program 3–29
3–10 HP C Function Calling a HP BASIC Function 3–31
3–11 HP BASIC Program Calling a HP C Function 3–32
3–12 HP C Function Calling a HP Pascal Routine 3–34
3–13 HP Pascal Program Calling a HP C Function 3–37
3–14 Sharing Data with a FORTRAN Program in Named Program

Sections . 3–40
3–15 Sharing Data with a FORTRAN Program in a HP C

Structure . 3–41

xvi

3–16 Sharing Data with a PL/I Program in Named Program
Sections . 3–42

3–17 Sharing Data with a PL/I Program in a HP C Structure 3–43
3–18 Sharing Data with a MACRO Program in a HP C

Structure . 3–44
3–19 Checking System Service Return Values 3–54
3–20 Using Variable-Length Argument Lists 3–56
3–21 Testing for Success . 3–61
3–22 Testing for Specific Return Status Values 3–63
3–23 Passing Arguments to System Services 3–64
3–24 Determining $QIO Completion . 3–65
3–25 Using Time Routines . 3–66
4–1 Using Global Variables . 4–5
5–1 #pragma extern_model Example . 5–29
C–1 Debugging Sample Program SCALARS.C C–4
C–2 Debugging Sample Program ARRAY.C C–6
C–3 Debugging Sample Program STRING.C C–8
C–4 Debugging Sample Program STRUCT.C C–10
C–5 Debugging Sample Program ARSTRUCT.C C–13
C–6 Debugging Sample Program POWER.C C–15
C–7 A Sample Debugging Session . C–15

Figures

1–1 DCL Commands for Developing Programs 1–2
3–1 The Call Stack . 3–5
3–2 Structure of an OpenVMS VAX Argument List 3–6
3–3 Example of an OpenVMS VAX Argument List 3–7
3–4 Passing Arguments by Immediate Value 3–10
3–5 Bit Fields Within a Return Status Value 3–58
3–6 Internal Representation of a Status Value 3–60
4–1 VAX Structure Alignment . 4–16
4–2 OpenVMS Bit-Field Alignment . 4–17

xvii

Tables

1 Conventions Used in this Guide . xxiv
1–1 /ACCEPT Qualifier Options . 1–16
1–2 /ANNOTATIONS Qualifier Options . 1–18
1–3 /ARCHITECTURE Qualifier Options 1–20
1–4 /ASSUME Qualifier Options . 1–22
1–5 /CHECK=POINTER_SIZE Qualifier Options 1–33
1–6 /COMMENTS Qualifier Options . 1–36
1–7 Debugger Compilation Options . 1–37
1–8 /EXTERN_MODEL Qualifier Options 1–42
1–9 /FLOAT Qualifier Options . 1–44
1–10 /IEEE_MODE Options . 1–47
1–11 /MACHINE_CODE Qualifier Options (VAX only) 1–54
1–12 /MMS_DEPENDENCIES Qualifier Options 1–55
1–13 /NAMES Qualifier Option1 Values . 1–56
1–14 /NAMES Qualifier Option2 Values . 1–57
1–15 /NESTED_INCLUDE_DIRECTORY Qualifier Options 1–58
1–16 /OPTIMIZE Qualifier Options . 1–59
1–17 /PDSC_MASK Qualifier Options . 1–67
1–18 /POINTER_SIZE Qualifier Options . 1–68
1–19 /PRECISION Qualifier Options . 1–69
1–20 /PREFIX_LIBRARY_ENTRIES Qualifier Options 1–70
1–21 /PROTOTYPE Qualifier Options . 1–72
1–22 /REENTRANCY Qualifier Options . 1–73
1–23 /SHOW Qualifier Options . 1–75
1–24 /STANDARD Qualifier Options . 1–77
1–25 /WARNINGS Qualifier Options . 1–81
1–26 OpenVMS Linker Default File Types for Input Files 1–88
2–1 Common RMS Run-Time Processing Functions 2–6
2–2 HP C RMS Header Files . 2–7
2–3 RMS Data Structures . 2–8
3–1 VAX Register Usage . 3–3
3–2 Alpha Register Usage . 3–3
3–3 Status Values of SYS$SETEF . 3–9
3–4 Status Values of SYS$READEF . 3–12
3–5 Valid Class Codes . 3–15

xviii

3–6 Atomic Data Types . 3–16
3–7 Status Values of SYS$SETPRN . 3–17
3–8 Valid Parameter-Passing Mechanisms in HP C 3–20
3–9 Default Passing Mechanisms . 3–21
3–10 OpenVMS Run-Time Library Facilities 3–45
3–11 OpenVMS System Services . 3–46
3–12 HP C Implementation . 3–48
3–13 Possible Severity Values . 3–59
3–14 Facility Codes . 3–62
4–1 Location, Lifetime, and the Storage-Class Keywords 4–2
4–2 Floating-Point Formats . 4–15
4–3 Program-Section Attributes . 4–22
4–4 External Models and Definitions . 4–24
4–5 Combinations of Storage-Class Specifiers and Modifiers (Alpha,

I64) . 4–26
4–6 Combinations of Storage-Class Specifiers and Modifiers (VAX

only) . 4–26
4–7 Combination Attributes . 4–27
5–1 Comparison of Mixing Different extern_models 5–27
5–2 Integer Register Mapping . 5–41
5–3 Floating-Point Register Mapping . 5–42
6–1 Predefined System Identification Macros 6–2
6–2 _ _DECC_VER Version-Type Encodings 6–5
6–3 Standards Macros—All platforms . 6–7
A–1 Trigraphs . A–5
A–2 Nonstandard Keywords . A–7
A–3 New and Traditional Spellings of Macros A–8
C–1 Commands to Manipulate Tokens and Placeholders C–22
C–2 Mapping Between CDD/Repository and HP C Data Types . . . C–28

xix

Preface

This guide contains the information necessary for developing and debugging
HP C (formerly Compaq C) programs on the OpenVMS operating system.
HP C provides a conforming implementation of ISO/IEC 9899:1990 [1994],
sometimes informally called C89, C90, ANSI C, or standard C. It also provides
complete language support for ISO/IEC 9899:1999, informally called C99,
although not all run-time library routines are currently implemented, floating-
point environment access controls are not effective, and Annex F (the optional
_ _STDC_IEC_559_ _ extension) is not supported.

HP C is a standard-conforming C compiler for the OpenVMS operating system
on VAX, Alpha, and Intel® Itanium® processors and for the Tru64 UNIX®
operating system on Alpha processors. HP OpenVMS Industry Standard 64 for
Integrity Servers is the full product name of the OpenVMS operating system
on Intel Itanium processors. The shortened forms, OpenVMS I64 and I64, are
also used throughout this manual.

Through use of command-line options, HP C is compatible with older dialects
of C, including common usage C and VAX C.

This guide also includes HP C language features specific to OpenVMS systems,
as well as information about porting C programs to and from OpenVMS and
other operating systems. For more information about porting programs to
and from other operating systems, see the HP C Run-Time Library Reference
Manual for OpenVMS Systems.

You may send comments or suggestions regarding this guide or any HP C
document by sending electronic mail to the following Internet address:

c_docs@hp.com

xxi

Intended Audience
This guide is intended for experienced programmers who need to develop HP C
programs on OpenVMS systems, for users who need to know the difference
between HP C and other implementations, and for experienced C users
who need to reference language information specific to OpenVMS systems.
You should be familiar with one high-level language and should have some
familiarity with the Digital Command Language (DCL). If you are not familiar
with or need to reference information about the DCL, see Chapter 1.

Document Structure
This guide has the following chapters and appendixes:

• Chapter 1 shows how to create, compile, link, and run a HP C program.

• Chapter 2 describes VAX Record Management Services (RMS).

• Chapter 3 describes interlanguage calling, and OpenVMS System Services,
Run-Time Library (RTL) routines, and calling standard conventions.

• Chapter 4 describes data storage and representation on OpenVMS systems.

• Chapter 5 describes the preprocessor directives.

• Chapter 6 describes the predefined macros and the built-in functions.

• Appendix A documents the features that distinguish HP C for OpenVMS
Systems from VAX C Version 3.2.

• Appendix B describes common pitfalls when using HP C.

• Appendix C provides an overview of the OpenVMS Debugger, Text
Processing Utility (TPU), Language-Sensitive Editor (LSE), Source Code
Analyzer (SCA), and CDD/Repository.

• Appendix D lists HP C compiler messages.

• Appendix E describes implementation-specific limits and parameters for
HP C on OpenVMS systems.

• The glossary provides an alphabetical listing of key terms.

xxii

Associated Documents
You may find the following documents useful when programming in HP C:

• DEC C Migration Guide for OpenVMS VAX Systems—To help OpenVMS
VAX application programmers migrate from VAX C to HP C. (VAX only)

• HP C Installation Guide for OpenVMS VAX Systems—For OpenVMS
system programmers who install the HP C software on VAX systems. (VAX

only)

• HP C Installation Guide for OpenVMS Alpha Systems—For OpenVMS
system programmers who install the HP C software on Alpha systems.
(Alpha only)

• HP C Language Reference Manual—Provides language reference
information for HP C on HP systems.

• HP C Run-Time Library Reference Manual for OpenVMS Systems—
Provides information on using the HP C Run-Time Library (RTL) functions
and macros, and information about porting programs to and from other
operating systems.

• The C Programming Language by Ritchie —Provides an excellent tutorial
of the C language. Because HP C contains features and enhancements to
the standard C language, use the HP C User’s Guide for OpenVMS Systems
and the HP C Language Reference Manual as the reference books for the
full description of HP C.

• HP OpenVMS Calling Standard—Describes the concepts used by all
OpenVMS languages to invoke routines and pass data between them. It
also describes the differences between the OpenVMS VAX, Alpha, and I64
parameter-passing mechanisms.

Conventions Used in this Document
Table 1 lists the conventions used in this guide.

xxiii

Table 1 Conventions Used in this Guide

Convention Meaning

HP OpenVMS Industry Standard 64
for Integrity Servers, OpenVMS I64,
I64

The variant of the OpenVMS operating system
that runs on the Intel Itanium architecture.

OpenVMS systems Refers to the OpenVMS operating system
on all supported platforms, unless otherwise
specified.

Return The symbol Return represents a single stroke
of the Return key on a terminal.

Ctrl/X The symbol Ctrl/X, where the letter X
represents a terminal control character, is
generated by holding down the Ctrl key while
pressing the key of the specified terminal
character.

switch statement
fprintf function
auto storage class

In syntax definitions, items appearing in
monospaced type identify language keywords
and the names of OpenVMS and HP C Run-
Time Library functions.

arg1 Italic type indicates a placeholder, such as
an argument or parameter name, and the
introduction of new terms.

$ RUN CPROG Return Interactive examples show user input in
boldface type.

float x;
.
.
.

x = 5;

A vertical ellipsis indicates that not all of
the text of a program or program output is
illustrated. Only relevant material is shown in
the example.

option, . . . A horizontal ellipsis indicates that additional
parameters, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

(continued on next page)

xxiv

Table 1 (Cont.) Conventions Used in this Guide

Convention Meaning

[output-source, . . .] Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional. Square brackets are
not optional, however, when used to delimit
a directory name in an OpenVMS file
specification or when used to delimit the
dimensions of an array in HP C source code.

sc-specifier ::=
auto
static
[extern]
register

In syntax definitions, items appearing
on separate lines are mutually exclusive
alternatives.

{a | b} Braces surrounding two or more items
separated by a vertical bar (|) indicate
a choice; you must choose one of the two
syntactic elements.

Platform Labels
A platform is a combination of operating system and hardware that provides
a distinct environment. This guide contains information applicable to the HP
OpenVMS operating system on VAX, Alpha, and Intel Itanium processors.

The information in this guide applies to all of these processors, except when
specifically labeled as follows:

Label Explanation

(Alpha only) Specific to an Alpha processor running the OpenVMS
operating system.

(VAX only) Specific to a VAX processor running the OpenVMS operating
system.

(I64 only) Specific to an Intel Itanium processor running the OpenVMS
operating system. On this platform, the product name of
the operating system is OpenVMS Industry Standard 64 (or
its abbreviated forms, OpenVMS I64 or I64).

xxv

New and Changed Features
HP C Version 7.1 runs on OpenVMS Alpha and OpenVMS Industry Standard
64 systems. The compiler behaves much the same on both systems, with some
differences, primarily in the support for #pragma linkage, built-in functions,
default floating-point representation, and predefined macros. These differences
are noted in the relevant sections of this manual.

xxvi

1
Developing HP C Programs

This chapter describes the following information about developing HP C
programs on an OpenVMS system:

• Overview of the DIGITAL Command Language (DCL) commands used for
program development (Section 1.1)

• Creating HP C programs (Section 1.2)

• Compiling HP C programs (Section 1.3)

• Linking HP C programs (Section 1.4)

• Running HP C programs (Section 1.5)

• Passing arguments to the main function (Section 1.6)

• Using 64-bit addressing (Section 1.7)

1.1 DCL Commands for Program Development
This section provides a brief overview of the DCL commands used for program
development. The following sections provide more detailed information about
these topics.

Figure 1–1 shows the basic steps in HP C program development.

Developing HP C Programs 1–1

Figure 1–1 DCL Commands for Developing Programs

COMMANDS

$ EDIT AVERAGE.C
Use the file type of to
indicate that the file

C

The command assumes
 RUN AVERAGE

RUN
that the file type of an image

EXE

$

$ CC AVERAGE
CC

assumes that the file type
The command

of an input file is C

/LIST
qualifier, the compiler
(If you use the

creates a listing file)

$ LINK AVERAGE
LINKThe command assumes

that the file type of an input
OBJfile is

(If you use the qualifier,/MAP
the linker creates a map file)

ACTION

executable
Run the

image

Link the
object module

Compile the
source program

Create a
source program

INPUT/OUTPUT FILES

AVERAGE.EXE
 (AVERAGE.MAP)

AVERAGE.C

AVERAGE.OBJ
 (AVERAGE.LIS)
libraries

is

ZK−5167−GE

contains an HP C program

To create an HP C source program at DCL level, you must invoke a text editor.
In Figure 1–1, the EDIT command invokes the default editor TPU (OpenVMS
Text Processing Utility) to create the source program AVERAGE.C. You can
use another editor, such as EDT or the HP Language-Sensitive Editor (LSE).
(LSE is a product that must be purchased separately; see Appendix C for more

1–2 Developing HP C Programs

information.) A file type of C is used to indicate that you are creating an HP C
source program. C is the conventional file type for all HP C source programs.

When you compile your program with the CC command, you do not have to
specify the file type; by default, HP C searches for files with a file type of C.

If your source program compiles successfully, the HP C compiler creates an
object file with the file type OBJ.

However, if the HP C compiler detects errors in your source program, the
system displays each error on your screen and then displays the DCL prompt.
You can then reinvoke your text editor to correct each error.

You can specify command qualifiers on the CC command. Command qualifiers
cause the HP C compiler to perform additional actions. In the following
example, the /LIST qualifier causes the HP C compiler to produce the listing
file AVERAGE.LIS:

$ CC/LIST AVERAGE

For a complete description of all CC command qualifiers, see Section 1.3.4.

After your program has compiled successfully, invoke the OpenVMS Linker to
create an executable image file. For example:

$ LINK AVERAGE

The linker uses the object file produced by HP C as input to produce an
executable image file as output. (The executable image is a file containing
program code that can be run on the system.)

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with the
LINK command, see Section 1.4.2.

After producing the executable image file, use the RUN command to execute
your program.

1.2 Creating an HP C Program
To create and modify an HP C program, you must invoke a text editor. The
OpenVMS system provides you with two text editors: EDT and the OpenVMS
Text Processing Utility (TPU). The following section discusses TPU. See the
OpenVMS EDT Reference Manual for more information on EDT.

Developing HP C Programs 1–3

1.2.1 Using TPU
TPU is a high-performance, programmable utility. It provides two editing
interfaces: the Extensible VAX Editor (EVE), described in the following section,
and the TPU EDT Keypad Emulator. You can also create your own interfaces.

Like EDT, TPU provides you with an online help facility that you can access
during your editing session. When you invoke TPU to create a file, a journal
file is automatically created. You can use this journal file to recover your edits
if the system fails during an editing session. To recover your edits, enter the
EVE/RECOVER command.

Unlike EDT, TPU provides multiple windows. This feature allows you to view
two files on your screen at the same time.

1.2.2 The EVE Interface to TPU
EVE is an interactive text editor that allows you to execute common editing
functions using the EVE keypad or to execute more advanced functions by
entering commands on the EVE command line. The following command line
invokes the EVE editor and creates the file PROG_1.C:

$ EDIT/TPU PROG_1.C

You can define a global symbol for the EDIT/TPU command by placing a
symbol definition in your LOGIN.COM file. For example:

$ EVE == "EDIT/TPU"

After this command line is executed, you can type EVE at the DCL prompt
followed by the name of the file you want to modify or create.

For more information on using EVE, see the Guide to VMS Text Processing.

1.3 Compiling an HP C Program
The HP C compiler performs the following functions:

• Detects errors in your source program

• Displays each error on your screen or writes the errors to a file

• Generates machine-language instructions from the source
statements

• Groups these machine-language instructions into an object module for the
linker

The following sections discuss the CC command and its qualifiers.

1–4 Developing HP C Programs

1.3.1 The CC Command
To invoke the HP C compiler, enter the CC command at the DCL prompt ($).
The CC command has the following format:

CC[/qualifier...][file-spec [/qualifier...]],...

Note (VAX only)

This note applies to OpenVMS VAX systems that have both HP C and
VAX C installed.

The CC command is used to invoke either the VAX C or HP C compiler.
If the HP C installation procedure detects that your system already
has a VAX C compiler installed on it, the installer is given the option
to specify which compiler gets invoked by default whenever the CC
command verb is used. To invoke the compiler that is not the default,
use the CC command with the appropriate qualifier: CC/DECC for the
HP C compiler, or CC/VAXC for the VAX C compiler. Where the CC
command appears in examples in this manual, CC/DECC is assumed to
be the default.

/qualifier
An action to be performed by the compiler on all files or specific files listed.
When a qualifier appears directly after the CC command, it affects all the files
listed. When a qualifier appears after a file specification, it affects only the
file that immediately precedes it. However, when files are concatenated, these
rules do not apply.

file-spec
An input source file that contains the program or module to be compiled. You
are not required to specify a file type if you give your file a .C file extension;
the HP C compiler adopts the default file type C.

You can include more than one file specification on the same command line
by separating the file specifications with either a comma (,) or a plus sign
(+). If you separate the file specifications with commas, you can control which
source files are affected by each qualifier. In the following example, the HP C
compiler creates an object file for each source file but creates only a listing file
for the source files PROG_1 and PROG_3:

$ CC /LIST PROG_1, PROG_2/NOLIST, PROG_3

Developing HP C Programs 1–5

If you separate file specifications with plus signs, the HP C compiler
concatenates each of the specified source files and creates one object file
and one listing file. In the following example, only one object file is created,
PROG_1.OBJ, and only one listing file is created, PROG_1.LIS. Both of these
files are named after the first source file in the list, but contain all three
modules.

$ CC PROG_1 + PROG_2/LIST + PROG_3

Any qualifiers specified for a single file within a list of files separated with plus
signs affect all the files in the list. See the description of the /PLUS_LIST_
OPTIMIZE qualifier for its affect on file concatenation.

Note

Concatenating source files without using the /PLUS_LIST_OPTIMIZE
qualifier is not recommended because potential conflicts in the name
space of declared objects can result in compilation errors or incorrect
run-time behavior.

A more common use of plus-list concatenation is for specifying text libraries.
You can specify the name of a text library on the CC command line to compile
a source program. A text library is a file that contains text organized into
modules indexed by a table. Text libraries have a .TLB default file extension.
In the following example, text libraries A.TLB and B.TLB are made available
for searching for text library modules during the compilation of source file
TEST.C:

$ CC TEST.C + A.TLB/LIB + B.TLB/LIB

1.3.1.1 Including Header Files
Header files are pieces of source code that typically contain declarations shared
among C programs. A header file often declares a set of related functions, as
well as defining any types and macros needed for their use.

To make the contents of a header file available to your program, include the
header file using the #include preprocessor directive.

The #include directive has three forms. Two of the forms are defined by the C
standard and are portable:

• Inclusion using angle brackets to delimit the file to be included:

#include <file-spec>

1–6 Developing HP C Programs

• Inclusion using quotation marks to delimit the file to be included:

#include "file-spec"

The third form is the text-module form. It is specific to OpenVMS systems and
is not portable. See Section 5.2.3 for more information on the text-module form
of inclusion.

The form of the #include directive used determines where the compiler
will look to find the file to be included. Generally, the compiler looks in the
following places, in the order listed:

1. Places named on the command line with the /INCLUDE_DIRECTORY
qualifier or the /LIBRARY qualifier

2. Places identified through logical names, such as DECC$USER_
INCLUDE, DECC$SYSTEM_INCLUDE, DECC$LIBRARY_INCLUDE,
and DECC$TEXT_LIBRARY

3. System-defined places such as the SYS$COMMON:[DECC$LIB.INCLUDE.*]
directory and the SYS$LIBRARY:DECC$RTLDEF.TLB and
SYS$LIBRARY:SYS$STARLET_C.TLB text libraries

You can use the UNUSED message group described in the #pragma
message description in Section 5.4.14 to enable messages that report
apparently unnecessary #include files (and CDD records). Unlike any
other messages, these messages must be enabled on the command line
(/WARNINGS=ENABLE=UNUSED), rather than with #pragma message, to
be effective.

The HP C preprocessor is usually able to determine if a particular #include
file that has already been processed once was guarded by the conventional
sequence: #ifndef FILE_SEEN, #define FILE_SEEN, #endif.

When the compiler detects this pattern of use the first time a particular file is
included, it remembers that fact as well as the name of the macro. The next
time the same file is included, the compiler checks to see if the "FILE_SEEN"
macro is still defined and, if so, it does not reopen and reread the file. Note
that if the initial test is in the form #if !defined instead of #ifndef, then the
pattern is not recognized. In a listing file, #include directives that are skipped
because of this processing are marked with an "X" just as if the #include line
itself were excluded.

See the /INCLUDE_DIRECTORY qualifier in Section 1.3.4 for a more complete
description of the search-order rules that HP C uses to locate included files.

Developing HP C Programs 1–7

See the HP C Run-Time Library Reference Manual for OpenVMS Systems for
information on the header files required to use HP C Run-Time Library (RTL)
functions and macros.

1.3.1.2 Listing Header Files
To list the names of system header files, use the following commands:

$ LIBRARY/LIST SYS$LIBRARY:SYS$STARLET_C.TLB
(OpenVMS Version 7.1 and higher)

$ LIBRARY/LIST SYS$LIBRARY:DECC$RTLDEF.TLB

$ DIR SYS$COMMON:[DECC$LIB.REFERENCE.SYS$STARLET_C]*.H;

$ DIR SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]*.H;

$ DIR SYS$LIBRARY:*.H;

These commands list, respectively:

• The names of the text-module header files for the OpenVMS system
interfaces

• The names of the text-module header files for the HP C language interfaces

• *.h header files for the OpenVMS system interfaces

• *.h header files for the HP C language interfaces

• *.h header files for layered products and other applications

Note

The SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]
and SYS$COMMON:[DECC$LIB.REFERENCE.SYS$STARLET_C]
directories are only reference areas for your viewing. They are created
during the compiler installation from the content of the text libraries.
By default, the compiler searches only the text library files for headers;
it does not search these reference directories.

Be aware that OpenVMS VAX operating systems prior to Version 7.1 do not
have a file named SYS$LIBRARY:SYS$STARLET_C.TLB. For these older
versions of the operating system, the STARLET header files are generated
during HP C installation and placed in SYS$LIBRARY:DECC$RTLDEF.TLB
and also in both SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]
and SYS$COMMON:[DECC$LIB.REFERENCE.SYS$STARLET_C].

1–8 Developing HP C Programs

1.3.2 Compilation Modes
HP C has two complementary qualifiers that control which dialect of C is to be
recognized by the compiler, and which messages are generated:

• The /STANDARD qualifier controls what language features and extensions
are recognized by the compiler.

• The /[NO]WARNINGS qualifier enables or disables the generation of
warning and/or informational messages.

The /STANDARD qualifier causes the compiler to issue only those warnings
appropriate for the dialect of C being compiled. For example, VAX C
compatibility mode (/STANDARD=VAXC) does not issue warnings against
VAX C extensions, while ANSI C mode does.

To generate a list of all messages that are in effect at the start of
compilation, specify /LIST/SHOW=MESSAGES. For each message, the
identifier, severity, and message text are shown. To also show the
message description and user action for each message listed, specify
/LIST/SHOW=MESSAGES/WARN=VERBOSE.

The HP C compiler for OpenVMS systems provides several dialects of C, which
are controlled by the /STANDARD qualifier:

• Strict ANSI C: Only the ANSI C Standard 89 (C89) language dialect is
recognized. This mode is enabled by specifying /STANDARD=ANSI89 on
the CC command line.

/STANDARD=ANSI89 issues all diagnostics required by the ANSI C
standard as well as a number of optional diagnostics that help detect
source code constructs that are not portable under the C89 standard.
Digraph recognition from the 1994 Amendment is also supported in this
mode.

You can use /STANDARD=ANSI89 with /[NO]WARNINGS to control
issuance of informational or warning messages. However, since the
compiler does not recognize many VAX C or common C extensions when
in strict ANSI mode (for example, VAX C keywords not beginning with
two underscores), many of the messages normally associated with flagging
VAX C and common C extensions are not produced.

• Strict C99 : Only the ISO C99 dialect is recognized. This mode is enabled
by specifying /STANDARD=C99 on the CC command line.

Developing HP C Programs 1–9

/STANDARD=C99 accepts just the C99 language without extensions,
and diagnoses violations of the C99 standard. /STANDARD=C99 defines
the _ _STDC_VERSION_ _ macro to the C99-specified value of 199901L,
because C99 is a superset of Amendment 1 to the C89 standard, and the
default mode of RELAXED is a superset of C99.

Only when the ISOC94 keyword is specified alone or with the ANSI89,
MIA, RELAXED, MS, COMMON, or PORTABLE modes does the
_ _STDC_VERSION_ _ macro take on the Amendment 1 value of 199409L.

The _ _STDC_VERSION_ _ macro is undefined for the VAXC keyword or for
keywords ANSI89, MIA, or COMMON without ISOC94 specified.

/STANDARD=C99 also defines the _ _STDC_HOSTED_ _ macro to 1. This
macro is defined only for /STANDARD=LATEST and /STANDARD=C99.

Note

/STANDARD=C99 is not fully supported on VAX systems. Specifying
/STANDARD=C99 on OpenVMS VAX systems produces a warning and
puts the compiler into /STANDARD=RELAXED mode.

• Latest C standard dialect . /STANDARD=LATEST is currently equivalent
to /STANDARD=C99, but is subject to change when newer versions of the
C standard are released.

• Relaxed: This is the default mode on OpenVMS systems, and is specified
by /NOSTANDARD or /STANDARD=RELAXED on the CC command line.
The /STANDARD=RELAXED mode accepts C89 and C99 features, as well
as nearly all language extensions (such as additional HP C keywords and
predefined macros that do not begin with an underscore). It excludes
only K&R (COMMON mode), VAX C, and Microsoft features that conflict
with standard C. The purpose of the /STANDARD=RELAXED mode is to
support everything from the most current C standard, in addition to all
extensions that do not specify different semantics for the same constructs.

/STANDARD=RELAXED defines the _ _STDC_VERSION_ _ macro to the
C99-specified value of 199901L.

• Microsoft compatibility: This mode interprets source programs according
to certain language rules followed by the C compiler provided with the
Microsoft Visual C++ compiler product. This mode is enabled by specifying
/STANDARD=MS on the CC command line. /STANDARD=MS defines the
_ _STDC_VERSION_ _ macro to the C99-specified value of 199901L. See
Section 1.3.3 for more information about Microsoft compatibility mode.

1–10 Developing HP C Programs

• ISO C 94: This mode is enabled by specifying /STANDARD=ISOC94. It
can be specified alone or with any other /STANDARD option except VAXC.
If it is specified alone, the default major mode is RELAXED.

Specifying /STANDARD=ISOC94 enables digraph processing. Also,
as specified by Amendment 1 to the C89 standard, it defines the
_ _STDC_VERSION_ _ macro to 199409L if specified alone or in
combination with any of the following /STANDARD keywords: ANSI89,
MIA, RELAXED, MS, COMMON, or PORTABLE.

The _ _STDC_VERSION_ _ macro is undefined for the VAXC keyword or for
keywords ANSI89, MIA, or COMMON without ISOC94 specified.

• VAX C compatibility: This mode is enabled by specifying /STANDARD=VAXC.
It allows the same language as the C standard, but also supports VAX C
extensions that are incompatible with the C standard and that change the
language semantics. This mode provides compatibility for programs that
depend on old VAX C behavior.

• Portable: This mode is enabled by specifying /STANDARD=PORTABLE.
It places the compiler in RELAXED mode and enables the issuance of
diagnostics that warn about any nonportable usages encountered.

/STANDARD=PORTABLE is supported for VAX C compatibility
only. It is equivalent to the recommended combination of qualifiers
/STANDARD=RELAXED/WARNINGS=ENABLE=PORTABLE.

• Common usage C: This mode is enabled by specifying
/STANDARD=COMMON. It enforces K & R programming style; that is,
compatibility with older UNIX compilers such as pcc and gcc. This mode
is close to a subset of /STANDARD=VAXC mode.

• MIA conformance: This mode is enabled by specifying /STANDARD=MIA.
This is strict ANSI C with some differences required by the Multivendor
Integration Architecture (MIA) standard. Compiling a program with
/STANDARD=MIA sets the _ _MIA predefined macro to 1.

With one exception, the /STANDARD qualifier options are mutually
exclusive. Do not combine them. The exception is that you can specify
/STANDARD=ISOC94 with any other option except VAXC.

HP C modules compiled in different modes can be linked and executed together.

The /STANDARD qualifier is further described in Section 1.3.4.

Also see the _ _HIDE_FORBIDDEN_NAMES predefined macro (Section 6.1.7).

Developing HP C Programs 1–11

1.3.3 Microsoft Compatibility Compilation Mode
The /STANDARD=MS qualifier instructs the HP C compiler to interpret
your source code according to certain language rules followed by the C
compiler provided with the Microsoft Visual C++ compiler product. However,
compatibility with this implementation is not complete. The following sections
describe the compatibility situations that HP C recognizes. In most cases,
these situations consist of relaxing a standard behavior and suppressing a
diagnostic message.

1.3.3.1 Unnamed Nested struct or union Members
Allow a declaration of a structure with no name within another structure. You
can reference all members of the inner structure as members of the named
outer structure. This is similar to the C++ treatment of nested unions lacking
a name, but extended to both structures and unions. A similar capability is
provided by the VAX C variant_struct and variant_union types.

For example:

struct{
struct{

int a;
int b;

}; /*No name here */
int c;

}d; /* d.a, d.b, and d.c are valid member names. */

1.3.3.2 Block Scope Declaration of static Functions
Allow a static function declaration in block scope (that is, inside another
function).

For example:

f(){
static int a(int b);

}

1.3.3.3 Treat &* as Having No Effect
Standard C does not allow the & operator to produce an lvalue expression. The
Microsoft relaxation allows & to produce an lvalue in certain cases.

For example:

int *a, *b;

f() {

&*a=b;

}

1–12 Developing HP C Programs

1.3.3.4 char is Not Treated as a Unique Type
Treat the char type as either signed char or unsigned char, depending on the
default in effect.

For example, a pointer to char can be assigned to a pointer to signed char,
assuming the command-line default of /NOUNSIGNED_CHAR:

signed char *a;
char *b;

f() {
b=a;
}

1.3.3.5 Double Semicolons in Declarations
Suppress warning messages for declarations that contain two semicolons.
(That is, allow completely empty declarations at file scope.)

For example:

int a;;

1.3.3.6 Declaration without a Type
Suppress warning messages for declarations that contain a variable name but
no type.

For example:

b;

1.3.3.7 Enumerators in an Enumeration Declaration
Ignore any extra comma at the end of the last enumerator in an enumeration
declaration.

For example:

enum E {a, b, c,}; /* Ignore the comma after "c". */

1.3.3.8 Useless Typedefs
Allow typedefs that have a type specifier but no identifier name declaring the
new type.

For example:

typedef struct { int a; };

Developing HP C Programs 1–13

1.3.3.9 Unrecognized Pragmas Accepted
Suppress warning messages when one of the following unsupported Microsoft
pragmas is encountered:

#pragma code_seg
#pragma warning

1.3.4 CC Command Qualifiers
The following list shows all the command qualifiers and their defaults available
with the CC command. A description of each qualifier follows the list.

You can place command qualifiers either on the CC command line itself or on
individual file specifications (with the exception of the /LIBRARY qualifier). If
placed on a file specification, the qualifier affects only the compilation of the
specified source file and all subsequent source files in the compilation unit.
If placed on the CC command line, the qualifier affects all source files in all
compilation units unless it is overridden by a qualifier on an individual file
specification.

Command Qualifiers Default

/ACCEPT=(option[,option]) See text.
/[NO]ANALYSIS_DATA[=file-spec] /NOANALYSIS_DATA
/[NO]ANNOTATIONS[=(option,...)] /NOANNOTATIONS
/[NO]ANSI_ALIAS See text.
/ARCHITECTURE=option /ARCHITECTURE=GENERIC
/ASSUME=(option[, . . .]) See text.
/[NO]CHECK[=(option,...)] /NOCHECK
/[NO]COMMENTS=option See text.
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG[=(option[, . . .])] /DEBUG=(TRACEBACK,

NOSYMBOLS)
/DEBUG=(TRACEBACK,NOINLINE,
NOSYMBOLS) (VAX only)

/DECC See text.
/[NO]DEFINE=(identifier[=definition][, . . .]) /NODEFINE
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS
/ENDIAN=option /ENDIAN=LITTLE
/[NO]ERROR_LIMIT[=n] /ERROR_LIMIT=30
/EXTERN_MODEL=option /EXTERN_MODEL=RELAXED_REFDEF
/[NO]FIRST_INCLUDE=(file[, . . .]) /NOFIRST_INCLUDE
/FLOAT=option /FLOAT=G_FLOAT (Alpha only)

/FLOAT=IEEE_FLOAT (I64 only)

/FLOAT=D_FLOAT (VAX only)

/GRANULARITY=option /GRANULARITY=QUADWORD
/[NO]INCLUDE_DIRECTORY=(pathname[, . . .]) /NOINCLUDE_DIRECTORY
/IEEE_MODE[=option] /IEEE_MODE=FAST (Alpha only)

1–14 Developing HP C Programs

/IEEE_MODE=DENORM_RESULTS (I64 only)

/L_DOUBLE_SIZE=option /L_DOUBLE_SIZE=128
/LIBRARY See text.
/[NO]LINE_DIRECTIVES /LINE_DIRECTIVES
/[NO]LIST[=file-spec] /NOLIST (interactive mode)

/LIST (batch mode)
/[NO]MACHINE_CODE[=option] /NOMACHINE_CODE
/[NO]MAIN=POSIX_EXIT /NOMAIN
/[NO]MEMBER_ALIGNMENT /MEMBER_ALIGNMENT

/NOMEMBER_ALIGNMENT (VAX only)

/[NO]MMS_DEPENDENCIES=option /NOMMS_DEPENDENCIES
/NAMES=(option1,option2) /NAMES=UPPERCASE,TRUNCATED
/NESTED_INCLUDE_DIRECTORY[=option] /NESTED_INCLUDE_DIRECTORY

=INCLUDE_FILE
/[NO]OBJECT[=file-spec] /OBJECT
/[NO]OPTIMIZE[=(option[, . . .])] /OPTIMIZE
/PDSC_MASK=option See text.
/[NO]PLUS_LIST_OPTIMIZE /NOPLUS_LIST_OPTIMIZE
/[NO]POINTER_SIZE=option /NOPOINTER_SIZE
/PRECISION[=option] See text.
/[NO]PREFIX_LIBRARY_ENTRIES
[=(option[, . . .])] See text.
/[NO]PREPROCESS_ONLY[=filename] /NOPREPROCESS_ONLY
/[NO]PROTOTYPES[=(option[, . . .])] /NOPROTOTYPES
/PSECT_MODEL=[NO]MULTILANGUAGE /NOMULTILANGUAGE
/REENTRANCY=option /REENTRANCY=TOLERANT
/REPOSITORY=option /See text.
/ROUNDING_MODE=option /ROUNDING_MODE=NEAREST
/[NO]SHARE_GLOBALS /NOSHARE_GLOBALS
/SHOW[=(option[, . . .])] /SHOW=(NOBRIEF,

NOCROSS_REFERENCE,
NODICTIONARY,
NOEXPANSION,
NOINCLUDE,
NOINTERMEDIATE,
NOMESSAGE,
NOSTATISTICS,
NOSYMBOLS,
NOTRANSLATION,
SOURCE,
TERMINAL)

/[NO]STANDARD[=(option[, . . .])] /NOSTANDARD (equivalent to
/STANDARD=RELAXED)

/[NO]TIE /NOTIE
/[NO]UNDEFINE=(identifier[, . . .]) /NOUNDEFINE
/[NO]UNSIGNED_CHAR /NOUNSIGNED_CHAR
/VAXC (VAX only) See text.

Developing HP C Programs 1–15

/[NO]VERSION /NOVERSION
/[NO]WARNINGS[=(option[, . . .])] /WARNINGS

/ACCEPT=(option[,option])
Allows the compiler to accept C language syntax that it might not normally
accept.

HP C accepts slightly different syntax depending upon the compilation mode
specified with the /STANDARD qualifier. The /ACCEPT qualifier can fine tune
the language syntax accepted by each /STANDARD mode.

The following qualifier options can be specified:

Table 1–1 /ACCEPT Qualifier Options

Option Usage

[NO]C99_KEYWORDS Controls whether or not the C99 Standard keywords inline
and restrict (which are are in the C89 namespace for user
identifiers) are accepted without double leading underscores.
The spelling with two leading underscores (__inline,
__restrict) is in the namespace reserved to the compiler
implementation and is always recognized as a keyword
regardless of this option.

[NO]GCCINLINE The gcc compiler implements an inline function qualifier
for functions with external linkage that gives similar
capabilites as the C99 extern inline feature for
functions, but the usage details are somewhat different:
the combination of extern and inline keywords makes an
inline definition, instead of the exlusive use of the inline
keyword without the extern keyword. This option controls
which variation of the feature is implemented. The default
in all compiler modes is NOGCCINLINE.

[NO]RESTRICT_
KEYWORD

Controls whether or not the compiler recognizes the C99
standard restrict keyword regardless of the /STANDARD
mode used.

This only affects recognition of the spelling of the keyword
as proposed for inclusion in the C99 standard. The spelling
with two leading underscores, __restrict, is in the
namespace reserved to the compiler implementation and is
always recognized as a keyword regardless of this option.

Note that [NO]RESTRICT_KEYWORD is a subset of
[NO]C99_KEYWORDS. They have the same compiler-mode
defaults.

(continued on next page)

1–16 Developing HP C Programs

Table 1–1 (Cont.) /ACCEPT Qualifier Options

Option Usage

[NO]TRIGRAPHS Turns trigraph processing on or off. In COMMON and
VAXC modes, trigraphs are disabled by default. In all other
modes, they are enabled by default.

[NO]VAXC_KEYWORDS Controls whether or not the compiler recognizes the VAX C
keywords (such as "readonly") regardless of the /STANDARD
mode used.

The default values are based upon the settings of the /STANDARD qualifier:

• For /STANDARD=RELAXED, the default is:

/ACCEPT=(VAXC_KEYWORDS,C99_KEYWORDS,NOGCCINLINE,TRIGRAPHS)

• For /STANDARD=VAXC, the default is:

/ACCEPT=(VAXC_KEYWORDS,NOC99_KEYWORDS,NOGCCINLINE,NOTRIGRAPHS)

• For /STANDARD=COMMON, the default is:

/ACCEPT=(NOVAXC_KEYWORDS,NOC99_KEYWORDS,NOGCCINLINE,NOTRIGRAPHS)

• For /STANDARD=C99 or /STANDARD=LATEST, the default is:

/ACCEPT=(NOVAXC_KEYWORDS,C99_KEYWORDS,NOGCCINLINE,TRIGRAPHS)

• In all other modes, the default is:

/ACCEPT=(NOVAXC_KEYWORDS,NOC99_KEYWORDS,NOGCCINLINE,TRIGRAPHS)

/[NO]ANALYSIS_DATA[=file-spec]
Generates a file of source-code analysis information. The default file name
is the file name of the primary source file; the default file type is .ANA.
The .ANA file is reserved for use with HP layered products. The default is
/NOANALYSIS_DATA. For more information, see Appendix C.

/[NO]ANNOTATIONS[=option]
Controls whether or not the source listing file is annotated with indications
of specific optimizations performed or, in some cases, not performed. These
annotations can be helpful in understanding the optimization process.

If annotations are requested (and the /LISTING qualifier appears on the
command line), the source listing section is shifted to the right and annotation
numbers are added to the left of source lines. These numbers refer to brief
descriptions that appear later in the source listing file.

Developing HP C Programs 1–17

Select one or more of the /ANNOTATIONS qualifier options shown in
Table 1–2.

Table 1–2 /ANNOTATIONS Qualifier Options

Option Usage

ALL Selects all annotations. This output can be
quite verbose because it includes detailed
output for all annotations. For more concise
output for each kind of annotation, use
/ANNOTATIONS=(ALL,NODETAIL), or just
/ANNOTATIONS with no qualifier options.

[NO]CODE Annotates the machine-code listing with
descriptions of special instructions used
for prefetching, alignment, and so on. The
/MACHINE_CODE qualifier must also be
specified for /ANNOTATION=CODE to have
any visible effect.

[NO]DETAIL Provides additional level of annotation detail,
where available.

[NO]FEEDBACK Indicates use of profile-directed feedback
optimizations. Feedback optimizations are
not implemented on OpenVMS systems, so
this keyword has no visible effect.

[NO]INLINING Indicates where code for a called procedure
was expanded inline.

[NO]LOOP_TRANSFORMS Indicates optimizations such as loop
reordering and code hoisting.

[NO]LOOP_UNROLLING Indicates where advanced loop nest
optimizations have been applied to improve
cache performance (unroll and jam, loop
fusion, loop interchange, and so on).

[NO]PREFETCHING Indicates where special instructions were
used to reduce memory latency.

[NO]SHRINKWRAPPING Indicates removal of code establishing
routine context when it is not needed.

[NO]SOFTWARE_PIPELINING Indicates where loops have been scheduled to
hide functional unit latency.

[NO]TAIL_CALLS Indicates an optimization where a call from
routine A to B can be replaced by a jump.

(continued on next page)

1–18 Developing HP C Programs

Table 1–2 (Cont.) /ANNOTATIONS Qualifier Options

Option Usage

[NO]TAIL_RECURSION Indicates an optimization that eliminates
unnecessary routine context for a recursive
call.

NONE Same as /NOANNOTATIONS.

The default is /NOANNOTATIONS.

Specifying /ANNOTATIONS with no keywords is the same as specifying
/ANNOTATIONS=(ALL,NODETAIL).

/[NO]ANSI_ALIAS
Directs the compiler to assume the standard C aliasing rules. By so doing, the
compiler has the freedom to generate better optimized code.

The aliasing rules referred to are explained in Section 3.3, paragraphs 20 and
25 of the C Standard, reprinted as follows:

An object shall have its stored value accessed only by an lvalue
that has one of the following types:

• the declared type of the object,

• a qualified version of the declared type of the object,

• a type that is the signed or unsigned type corresponding to
the declared type of the object,

• a type that is the signed or unsigned type corresponding to
a qualified version of the declared type of the object,

• an aggregate or union type that includes one of the
aforementioned types among its members (including,
recursively, a member of a subaggregate or contained
union), or

• a character type.

If your program does not access the same data through pointers of a different
type (and for this purpose, signed and qualified versions of an otherwise same
type are considered to be the same type), then assuming standard C aliasing
rules allows the compiler to generate better optimized code.

Developing HP C Programs 1–19

If your program does access the same data through pointers of a different type
(for example, by a "pointer to int" and a "pointer to float"), then you must not
allow the compiler to assume standard C aliasing rules. Otherwise, incorrect
code might be generated.

The default is /NOANSI_ALIAS for the /STANDARD=VAXC and
/STANDARD=COMMON compiler modes. The default is /ANSI_ALIAS for all
other modes.

/ARCHITECTURE
Determines the Alpha or Intel processor instruction set to be used by the
compiler. The /ARCHITECTURE qualifier uses the same keyword options
(keywords) as the /OPTIMIZE=TUNE qualifier.

Where the /OPTIMIZE=TUNE qualifier is primarily used by certain higher-
level optimizations for instruction scheduling purposes, the /ARCHITECTURE
qualifier determines the type of code instructions generated for the program
unit being compiled.

OpenVMS Version 7.1 and subsequent releases provide an operating system
kernel that includes an instruction emulator. This emulator allows new
instructions, not implemented on the host processor chip, to execute and
produce correct results. Applications using emulated instructions will run
correctly, but may incur significant software emulation overhead at runtime.

All Alpha processors implement a core set of instructions. Certain Alpha
processor versions include additional instruction extensions.

Select one of the /ARCHITECTURE qualifier options shown in Table 1–3.

Table 1–3 /ARCHITECTURE Qualifier Options

Option Usage

GENERIC Generates code that is appropriate for all Alpha and Itanium
processor generations. This is the default.

HOST Generates code for the processor generation in use on the system
being used for compilation.

Running programs compiled with this option on other imple-
mentations of the Alpha or Itanium architecture may encounter
instruction-emulation overhead.

(continued on next page)

1–20 Developing HP C Programs

Table 1–3 (Cont.) /ARCHITECTURE Qualifier Options

Option Usage

EV4 (Alpha only) Generates code for the 21064, 21064A, 21066, and 21068
implementations of the Alpha architecture.

Running programs compiled with the EV4 option will run without
instruction-emulation overhead on all Alpha processors.

EV5 (Alpha only) Generates code for some 21164 chip implementations of the Alpha
architecture that use only the base set of Alpha instructions (no
extensions).

Running programs compiled with the EV5 option will run without
instruction-emulation overhead on all Alpha processors.

EV56 (Alpha only) Generates code for some 21164 chip implementations that use the
byte and word-manipulation instruction extensions of the Alpha
architecture.

Running programs compiled with the EV56 option might incur
emulation overhead on EV4 and EV5 processors, but will still run
correctly on OpenVMS Version 7.1 (or higher) systems.

PCA56 (Alpha only) Generates code for the 21164PC chip implementation that uses
the byte- and word-manipulation instruction extensions and
multimedia instruction extensions of the Alpha architecture.

Running programs compiled with the PCA56 option might incur
emulation overhead on EV4, EV5, and EV56 processors, but will
still run correctly on OpenVMS Version 7.1 (or higher) systems.

EV6 (Alpha only) Generates code for the first-generation 21264 implementation of
the Alpha architecture.

EV67 (Alpha only) Generates code for the second-generation 21264 implementation of
the Alpha architecture.

ITANIUM2 (I64
only)

Generates code for the Intel Itanium 2 processor.

/ASSUME=(option,...)
Controls compiler assumptions. You can select one or more of the qualifier
options described in Table 1–4.

Developing HP C Programs 1–21

Table 1–4 /ASSUME Qualifier Options

Option Usage

[NO]ACCURACY_SENSITIVE Specifies whether certain code transforma-
tions that affect floating-point operations
are allowed. These changes may or may
not affect the accuracy of the program’s
results.

[NO]ALIGNED_OBJECTS Controls an optimization for dereferencing
pointers.

[NO]CLEAN_PARAMETERS Controls compiler assumptions about short-
integer formal parameters.

[NO]EXACT_CDD_OFFSETS Controls the alignment of Control Data
Dictionary records.

[NO]HEADER_TYPE_DEFAULT Controls whether or not the default file-
type mechanism for header files is enabled.

[NO]MATH_ERRNO Controls whether or not intrinsic code is
generated for math functions that set the
errno variable.

[NO]POINTERS_TO_GLOBALS Controls whether or not the compiler can
safely assume that global variables have
not had their addresses taken in code that
is not visible to the current compilation.

[NO]WEAK_VOLATILE Affects the generation of code for
assignments to objects that are less than
or equal to 16 bits in size that have been
declared as volatile.

[NO]WHOLE_PROGRAM Asserts to the compiler that except for
"well-behaved library routines," the whole
program consists only of the single object
module being produced by this compilation.

[NO]WRITABLE_STRING_LITERALS Stores string constants in a writable psect.
Otherwise, such constants are placed in a
nonwritable psect.

The following sections describe these options in greater detail.

[NO]ACCURACY_SENSITIVE
The default is ACCURACY_SENSITIVE.

If you specify NOACCURACY_SENSITIVE, the compiler is free to reorder
floating-point operations based on algebraic identities (inverses, associativity,
and distribution). This allows the compiler to move divide operations outside of
loops, which improves performance.

1–22 Developing HP C Programs

The default, ACCURACY_SENSITIVE, directs the compiler to use only certain
scalar rules for calculations. This setting can prevent some optimizations.

If you use the /ASSUME=NOACCURACY_SENSITIVE qualifier, HP C
might reorder code (based on algebraic identities) to improve performance.
The results can be different from the default (/ASSUME=ACCURACY_
SENSITIVE) because of how the intermediate results are rounded. However,
the NOACCURACY_SENSITIVE results are not categorically less accurate
than those gained by the default.

[NO]ALIGNED_OBJECTS
The default is /ASSUME=ALIGNED_OBJECTS.

On OpenVMS Alpha and I64 systems, dereferencing a pointer to a longword-
or quadword-aligned object is more efficient than dereferencing a pointer to
a byte- or word-aligned object. Therefore, the compiler can generate more
optimized code if it makes the assumption that a pointer object of an aligned
pointer type does point to an aligned object.

Since the compiler determines the alignment of the dereferenced object from
the type of the pointer, and the program is allowed to compute a pointer
that references an unaligned object (even though the pointer type indicates
that it references an aligned object), the compiler must assume that the
dereferenced object’s alignment matches or exceeds the alignment indicated
by the pointer type. Specifying /ASSUME=ALIGNED_OBJECTS (the default)
allows the compiler to make such an assumption. With this assumption made,
the compiler can generate more efficient code for pointer dereferences of aligned
pointer types.

To prevent the compiler from assuming the pointer type’s alignment for objects
that it points to, use the /ASSUME=NOALIGNED_OBJECTS qualifier.

Before deciding whether to specify /ASSUME=NOALIGNED_OBJECTS or
/ASSUME=ALIGNED_OBJECTS, you need to know what programming
practices will affect your decision.

The compiler assumes that pointers point to objects that are aligned at least as
much as the alignment of the pointer type. For example:

• A pointer of type short points to objects that are at least short-aligned.

• A pointer of type int points to objects that are at least int-aligned.

• A pointer of type struct foo points to objects that have an alignment
of struct foo (that is, the alignment of the strictest member alignment,
or byte alignment if you have specified #pragma nomember_alignment for
struct foo).

Developing HP C Programs 1–23

If your module breaks this rule, your program will suffer alignment faults at
runtime that can seriously degrade performance. If you can identify the places
in your code where the rule is broken, use the _ _unaligned type qualifier.
Otherwise, the /ASSUME=NOALIGNED_OBJECTS qualifier effectively treats
all dereferences as if they were unaligned.

On OpenVMS Alpha and I64 systems, HP C aligns all nonmember declarations
on natural boundaries, so by default all objects do comply with the previous
assumption. Also, the standard library routine malloc on OpenVMS systems
returns quadword-aligned heap memory.

A program can violate the previous assumption in any of the following ways:

• By explicitly specifying a lesser alignment for an object than the pointer
type’s alignment

• By casting a pointer to a pointer type of stricter alignment

• By enclosing a member-aligned object inside a nonmember-aligned object

The following example explicitly specifies a lesser alignment for an object than
the pointer type’s alignment, which occurs when the address of an unaligned
int member of a struct with #pragma nomember_alignment is used in a pointer
dereference:

#pragma nomember_alignment
struct foo {

char C;
int i; /* i is unaligned because of char C */

};

struct foo st;
int *i_p;

i_p = &st.i;

... *i_p ... /* An expression containing a dereferenced i_p */

This example casts a pointer to a pointer type with stricter alignment:

int *i_p;
char *c_p;

.......

.......

i_p = (int *)c_p;

... *i_p ... /* An expression containing a dereferenced i_p */

1–24 Developing HP C Programs

The following example encloses a member-aligned object inside a nonmember-
aligned object:

#pragma member_alignment
struct inside {

int i; /* this type asserts that its objects have at least
longword alignment (int is a longword)... */

};

#pragma nomember_alignment
struct outside {

char C;
struct inside s; /* ...but foo_ptr -> s is only byte-aligned! */

} *foo_ptr;

The expression foo_ptr -> s has a type whose alignment is explicitly specified
to be longword (because longword is the strictest alignment of the structure’s
members), but the expression type is only guaranteed to be byte-aligned.

Also note that just as the pointer type information can direct the compiler to
generate the appropriate code to dereference the pointer (code that does not
cause alignment faults), it can also direct the compiler to generate even better
code if it indicates that the object is at least longword-aligned.

[NO]CLEAN_PARAMETERS
The default is /ASSUME=CLEAN_PARAMETERS.

The OpenVMS Alpha and I64 Calling Standards require integers less than
64 bits long that are passed by value to have their upper bits either zeroed
or sign-extended to make full 64-bit values. These are referred to as clean
parameters. Some old code does not follow this convention. This can cause
problems if the called program assumes that the caller followed the Calling
Standard by passing only clean parameters.

Specifying /ASSUME=NOCLEAN_PARAMETERS allows a program to be
called by old code that might pass unclean integer parameters. It directs the
compiler to generate run-time code to clean the short integers so they comply
with the Calling Standard.

[NO]EXACT_CDD_OFFSETS
The default is /ASSUME=NOEXACT_CDD_OFFSETS.

If /ASSUME=EXACT_CDD_OFFSETS is specified, the records input from the
CDD are given the exact alignment (relative to the start of the record) specified
by the CDD definition. This alignment is independent of the current compiler
member-alignment setting.

Developing HP C Programs 1–25

If /ASSUME=NOEXACT_CDD_OFFSETS is specified, the compiler may
modify the offsets specified in a CDD record according to the current member-
alignment setting.

[NO]HEADER_TYPE_DEFAULT
The default is /ASSUME=HEADER_TYPE_DEFAULT.

In past versions of the C compiler, the #include directive always supplied a
default file type of .h for C compilations. Similarly, the C++ compiler supplied
a default file type of .hxx for C++ compilations.

However, the C++ standard requires that, for example, #include <iostream>
be distinguishable from #include <iostream.hxx>. This is not possible with
the header file-type default mechanism in effect.

You can disable the type default mechanism for either HP C or HP C++ by
specifying /ASSUME=NOHEADER_TYPE_DEFAULT.

With /ASSUME=NOHEADER_TYPE_DEFAULT specified, an #include
directive written with the standard syntax for header name (enclosed in
quotes or angle brackets) will use the filename as specified, without supplying
a default file type. More precisely stated, the default file type will be empty
(just ".").

For example, a directory might contain three files named IOSTREAM.,
IOSTREAM.HXX, and IOSTREAM.H. By default, the C++ compiler processes
#include <iostream> such that the file IOSTREAM.HXX is found, while the C
compiler would find IOSTREAM.H.

However, if /ASSUME=NOHEADER_TYPE_DEFAULT is specified, the same
directive causes the file IOSTREAM. to be found by both compilers, and the
only way to include the file named IOSTREAM.HXX or IOSTREAM.H is to
specify the .hxx or .h file type explicitly in the #include directive. Be aware
that while the OpenVMS operating system treats filenames as case-insensitive
and normally displays them in uppercase, filenames in #include directives
should use lowercase for best portability. This is more in keeping with other C
and C++ implementations.

[NO]MATH_ERRNO
The default is /ASSUME=MATH_ERRNO, which does not allow intrinsic code
for such math functions to be generated, even if /OPTIMIZE=INTRINSICS is
in effect. Their prototypes and call formats, however, are still checked.

1–26 Developing HP C Programs

[NO]POINTERS_TO_GLOBALS
The default is /ASSUME=POINTER_TO_GLOBALS, which directs the compiler
to assume that global variables have had their addresses taken in separately
compiled modules and that, in general, any pointer dereference could be
accessing the same memory as any global variable. This is often a significant
barrier to optimization.

The /ANSI_ALIAS command-line qualifier allows some resolution based on
data type, but /ASSUME=NOPOINTER_TO_GLOBALS provides significant
additional resolution and improved optimization in many cases.

/ASSUME=NOPOINTER_TO_GLOBALS tells the compiler that any global
variable accessed through a pointer in the compilation must have had its
address taken within that compilation. The compiler can see any code that
takes the address of an extern variable. If it does not see the address of the
variable being taken, the compiler can assume that no pointer points to the
variable.

Consider the following code sequence:

extern int x;
...
int *p;
...
*p = 3;

Under /ASSUME=NOPOINTERS_TO_GLOBALS, the compiler can assume
that x is not changed by the assignment through p when generating code. This
can lead to faster code.

In combination with the /PLUS_LIST_OPTIMIZE qualifier, several source
modules can be treated as a single compilation for the purpose of this analysis.
Because run-time libraries such as the HP C RTL do not take the addresses
of global variables defined in user programs, source modules can often be
combined into a single compilation that allows /ASSUME=NOPOINTER_TO_
GLOBALS to be used effectively.

Be aware that /ASSUME=NOPOINTERS_TO_GLOBALS does not tell the
compiler that the compilation never uses pointers to access global variables
(which is seldom true of real C programs).

[NO]WEAK_VOLATILE
This option affects the generation of code for assignments to objects that are
less than or equal to 16 bits in size (for example: char, short) that have been
declared as volatile.

Developing HP C Programs 1–27

Specifying /ASSUME=WEAK_VOLATILE directs the compiler to generate code
for volatile assignments to single bytes or words without using the load-locked
store-conditional sequences that, in general, are required to assure volatile
data integrity when direct byte or word memory-access instructions are not
being used.

This option is intended for use in special I/O hardware access situations, and
should not generally be used.

The default is /ASSUME=NOWEAK_VOLATILE, which uses interlocked
instructions for sub-longword volatile accesses when byte or word instructions
are not enabled.

[NO]WHOLE_PROGRAM
The default is /ASSUME=NOWHOLE_PROGRAM.

The optimizations enabled by /ASSUME=WHOLE_PROGRAM include all those
enabled by /ASSUME=NOPOINTER_TO_GLOBALS, and possibly additional
optimizations as well.

[NO]WRITABLE_STRING_LITERALS
For /STANDARD=VAXC or /STANDARD=COMMON, the default is
/ASSUME=WRITABLE_STRING_LITERALS.

For all other compiler modes, the default is /ASSUME=NOWRITABLE_
STRING_LITERALS.

/[NO]CHECK[=ALL | NONE | ([NO]UNINITIALIZED_VARIABLES,[NO]BOUNDS
[NO]POINTER_SIZE[=(option,...)],[NO]FP_MODE (I64 only), [NO]ARG_INFO (I64

only))]
This qualifier is for use as a debugging aid.

/CHECK=NONE | ALL
/CHECK=NONE is equivalent to /NOCHECK.

For OpenVMS Alpha systems, /CHECK=ALL is equivalent to
/CHECK=(UNINITIALIZED_VARIABLES,BOUNDS,POINTER_SIZE=ALL).

For OpenVMS I64 systems, /CHECK=ALL is equivalent to
/CHECK=(UNINITIALIZED_VARIABLES,BOUNDS,POINTER_SIZE=ALL,
FP_MODE,ARG_INFO).

1–28 Developing HP C Programs

/CHECK=UNINITIALIZED_VARIABLES
/CHECK=UNINITIALIZED_VARIABLES initializes all automatic variables
to the value 0x7ff580057ff58005. This value is a double signaling NaN
and, if used as a floating-point value in certain double operations, causes a
floating-point trap if traps are enabled. Traps are not enabled if the program is
compiled /FLOAT=IEEE and the /IEEE value is something other than FAST.

On I64 systems:

• Traps are not caused when values are converted to an integer type.

• The float type does not trap.

/CHECK=BOUNDS
/CHECK=BOUNDS enables run-time checking of array bounds. Array-bounds
processing is performed in the following way:

• Checks are done only when accessing an array.

• Checks are not done when accessing a pointer, even if that access is done
using the subscript operator. This means that checks are not done on
arrays declared as formal parameters because they are considered pointers
in the C language. If a formal parameter is a multi-dimension array, all
bounds except the first are checked.

• If an array is accessed using the subscript operator (as either the left or
right operand), and the subscript operator is not the operand of an address-
of operator, the check is for the index to be between 0 and the number of
array elements minus one, inclusive.

• If an array is accessed using the subscript operator (as either the left or
right operand), and the subscript operator is the operand of the address-of
operator, the check is for the index to be between 0 and the number of
elements in the array, inclusive.

The reason for treating the address-of case differently is that it is common
programming practice to have a loop such as:

int a[10];
int *b;
for (b = a ; b < &a[10] ; b++) { }

In this case, access to &a[10] is allowed even though it is outside the range
of the array.

• If the array is being accessed using pointer addition, the check is for the
value being added to be between 0 and the number of elements in the
array, inclusive.

Developing HP C Programs 1–29

• If the array is being accessed using pointer subtraction (that is, the
subraction of an integer value from a pointer, not the subtraction of
one pointer from another), the check is for the value being subtracted
to be between the negation of the number of elements in the array and 0,
inclusive.

• In the previous three cases, an optional compile-time message (ident
SUBSCRBOUNDS2) can be enabled to detect the case where an array
has been accessed using either a constant subscript or constant pointer
arithmetic, and the element accessed is exactly one past the end of the
array.

• Bounds checking is not done for arrays declared with one element.
(Because standard C does not allow arrays without dimensions inside
structs, it is common practice to declare such arrays with a bounds
specifier of 1.)

In this case, an optional compile-time message (ident SUBSCRBOUNDS1)
can be enabled to detect the case where an array declared with a single
element is accessed using either a constant subscript or constant pointer
arithmetic, and the element accessed is not part of the array.

• HP C emits run-time checks for arrays indexed by constants, even though
the compiler can and does detect this situation at compile-time. An
exeption is that no run-time check is made if the compiler can determine
that the access is valid.

• Here are examples of some array references:

int a[10];
int *b;
int c;

int *d;
int vla[c];
int one[1];

1–30 Developing HP C Programs

a[c] = 1; // check c is from 0-9
b[c] = 1; // no check
c[a] = 1; // check c is from 0-9
b = &a[c] // check c is from 0-10
*(a + c) = 1; // check c is from 0-10
*(a - c) = 1; // check c is from -10 to 0
d = a + c; // check that c is from 0-10
d = b + c; // no check
a[1] = 1; // no run-time check - know access is valid
vla[1] = 1; // run-time check
a[10] = 1; // run-time check (and compiler diagnostic)
d = a + 10; // no run-time check, optional SUBSCRBOUNDS2

// message can be enabled
c = one[5]; // no run-time check, optional SUBSCRBOUNDS1

// message can be enabled

• If a multi-dimension array is accessed, the compiler performs checks
on each of the subscript expressions, making sure each is within the
corresponding bound. So for the following code, the compiler checks that
both x and y are between 0 and 9. It does not check that 10 * x + y is
between 0 and 99:

int a[10][10];
int x,y,z;

x = a[x][y];

Notes

• Because of operating system differences, the behavior of the run-
time array-bounds checking is different on Tru64 UNIX systems
than on OpenVMS systems.

If there is no handler, an OpenVMS program fails with:

%SYSTEM-F-SUBRNG, arithmetic trap, subscript out of range at
PC=xxx, PS=xxx
%TRACE-F-TRACEBACK, symbolic stack dump follows

On Tru64 UNIX systems, the output would be:

Trace/BPT trap (core dumped)

Furthermore, to trap the error on OpenVMS systems, a user needs
to write:

signal(SIGFPE, handler);

While on Tru64 UNIX systems, the equivalent line would be:

Developing HP C Programs 1–31

signal(SIGTRAP, handler);

• When run-time checking is enabled, the HP C compiler emits a bad
check in certain cases. These cases arise when an array is accessed
using pointer arithmetic and run-time array-bounds checking is
enabled. In such a case, the compiler can output only the checking
code for the first pointer-arithmetic operation performed on the
array. This can result in an incorrect check if the resulting pointer
value is again operated on by pointer arithmetic.

Consider the following expression where a is a pointer, b is an
array, and c and d are integers:

a = b + c - d;

When bounds checking is enabled, the compiler outputs a check to
verify that c is within the bounds of the array. This leads to an
incorrect run-time trap in cases where c is outside the bounds of
the array and c - d is not.

In these cases, the compiler outputs a diagnostic noting that the
check code it produced is bad. You can then recode the pointer
expression so that the integer part is in parentheses. In this way,
the expression will contain only one pointer-arithmetic operation,
and the compiler will output the correct check. In the previous
example, the expression would be changed to:

a = b + (c - d);

/CHECK=POINTER_SIZE
/CHECK=POINTER_SIZE directs the compiler to generate code that checks
64-bit pointer values (used in certain contexts where 32-bit pointers are also
present) to make sure they will fit in a 32-bit pointer. If such a value cannot
be represented by a 32-bit pointer, the run-time code signals a range error
(SS$_RANGEERR).

To control the types of pointer-size checks you want made, use one or more of
the POINTER_SIZE option keywords shown in Table 1–5.

1–32 Developing HP C Programs

Table 1–5 /CHECK=POINTER_SIZE Qualifier Options

Option Usage

[NO]ASSIGNMENT Check whenever a 64-bit pointer is assigned to a 32-bit
pointer (including use as an actual argument).

[NO]CAST Check whenever a 64-bit pointer is cast to a 32-bit pointer.

[NO]INTEGER_CAST Check whenever a long pointer is cast to a 32-bit integer.

[NO]PARAMETER Check all formal parameters at function startup to make sure
that all formal parameters declared to be 32-bit pointers are
32-bit values.

ALL Do all checks.

NONE Do no checks.

Specifying /CHECK=POINTER_SIZE defaults to /CHECK=POINTER_
SIZE=(ASSIGNMENT,PARAMETER).

For information about compiler features that affect pointer size, see the
following:

• /POINTER_SIZE

• #pragma pointer_size

• #pragma required_pointer_size

• _ _INITIAL_POINTER_SIZE predefined macro

The following contrived program contains a number of pointer assignments.
The comment on each line indicates what /CHECK=POINTER_SIZE keyword
to specify to enable checking for that line.

#pragma required_pointer_size long
int *a;
char *b;
typedef char * l_char_ptr;

#pragma required_pointer_size short
char *c;
int *d;

Developing HP C Programs 1–33

foo(int * e) /* Check e if PARAMETER is specified. */
{

d = a; /* Check a if ASSIGNMENT is specified. */
c = (char *) a; /* Check a if CAST is specified. */
c = (char *) d; /* No checking ever. */
foo(a); /* Check a if ASSIGNMENT is specified. */
bar(a); /* No checking ever - no prototype */
b = (l_char_ptr) a; /* No checking ever. */
c = (l_char_ptr) a; /* Check a if ASSIGNMENT is specified */
b = (char *) a; /* Check if CAST is specified. */

}

/CHECK=[NO]ARG_INFO (I64 only)

/CHECK=ARG_INFO generates code to verify the input parameters to
functions defined in the compiled source. This code checks for datatype
consistency between the caller and its called function.

When the runtime does parameter-type checking, only the following types are
considered:

VAX single-precision floating-point
VAX double-precision floating-point - D_floating
VAX double-precision floating-point - G_floating
IEEE single-precision floating-point
IEEE double-precision floating-point
none-of-the-above "bucket"

It is only a mismatch of these types that is considered. So while the run-time
code will catch a case of a VAX D_floating number passed to a function that
expects a VAX single-precision number, it will not detect the case of an int
passed to a function that expects a long double type (because both int and
long double are viewed as the same type - that is, they both fall into the
none-of-the-above bucket).

When a mismatch is found, a %SYSTEM-I-ARGTYP1 message is output at
runtime for each argument slot whose type does not match the expected type.

This checking applies only to arguments passed in the first eight argument
slots, and does not check that the number of arguments passed matches the
number expected.

/CHECK=[NO]FP_MODE (I64 only)

/CHECK=FP_MODE generates code in the prologue of every function defined
in the compilation to compare the current values of certain fields in the
processor’s floating-point status register (FPSR) with the values expected
in those fields based on the command-line qualifiers with which the function
was compiled.

1–34 Developing HP C Programs

The values checked are the rounding mode and the trap-enable bits:

• If the rounding mode is not consistent with the value of the /ROUNDING_
MODE qualifier specified at compile time, an informational message
SYSTEM-I-FPMODERC is issued at runtime, citing the current
mode and the compile-time specified mode (Note that /ROUNDING_
MODE=DYNAMIC is treated the same as /ROUNDING_MODE=NEAREST
for this purpose).

• If the trap-enable flags are not consistent with the setting of the /IEEE
qualifier (for /FLOAT=IEEE_FLOAT compilations) or with the setting used
to implement VAX floating types (for /FLOAT=G_FLOAT or /FLOAT=D_
FLOAT compilations), an informational message SYSTEM-I-FPMODECTL
is issued at run time, citing the current trap-enable flags as well as the
trap-enable flags expected by the compilation. To identify the point of
failure, you need to rerun the program under DEBUG and issue "SET
BREAK/EXCEPTION".

Note that the checking code generated for /CHECK=FP_MODE includes a
standard call to OTS$CHECK_FP_MODE within the prologue of each function,
and OTS$CHECK_FP_MODE itself assumes the standard calling conventions
(described in the OpenVMS Calling Standard). Because of this, it is not
possible to use this checking option when compiling function definitions that
have a nonstandard linkage (see #pragma linkage and #pragma use_linkage)
specifying conventional scratch registers with the PRESERVED or NOTUSED
attribute. Doing so will cause the compiler to issue the "REGCONFLICT"
E-level diagnostic at the opening brace of such function definitions. To compile
such functions successfully, the FP_MODE keyword must be removed from the
list of /CHECK= keywords.

Defaults
Omitting this qualifier defaults to /NOCHECK, which equates to
/CHECK=(NOUNINITIALIZED_VARIABLE,NOBOUNDS,NOPOINTER_
SIZE,NOFP_MODE,NOARGINFO).

Specifying /CHECK defaults to /CHECK=(UNINITIALIZED_VARIABLES,BOUNDS,
POINTER_SIZE=(ASSIGNMENT,PARAMETER),FP_MODE,ARG_INFO).

/[NO]COMMENTS=option
Governs whether or not comments appear in preprocess output files and, if
they are to appear, whether they appear themselves or are replaced by a single
space.

Developing HP C Programs 1–35

Table 1–6 shows the /COMMENTS qualifier options.

Table 1–6 /COMMENTS Qualifier Options

Option Usage

AS_IS Specifies that the comment appears in the output file.

SPACE Specifies that a single space replaces the comment in the output file.

/NOCOMMENTS specifies that nothing replaces the comment in the output
file. This can result in inadvertent token pasting.

The HP C preprocessor might replace a comment at the end of a line or on a
line by itself with nothing, even if /COMMENTS=SPACE is specified. Doing so
does not change the meaning of the program.

The default is /COMMENTS=SPACE for the ANSI89, RELAXED, and MIA
modes of the compiler. The default is /NOCOMMENTS for all other compiler
modes.

Specifying /COMMENTS on the command line defaults to /COMMENTS=AS_IS.

/[NO]CROSS_REFERENCE
Specifies whether the compiler generates cross-references for variable names.

If you specify /CROSS_REFERENCE, the compiler lists, for each variable
referenced in the procedure, the line numbers of the lines on which the variable
is referenced.

This qualifier has no effect unless you also specify /LIST and either
/SHOW=SYMBOLS or /SHOW=BRIEF. The default is /NOCROSS_REFERENCE.

/[NO]DEBUG[=(option[, . . .])]
Includes information in the object module for use by the OpenVMS Debugger.

If the /DEBUG qualifier is not specified, the default is:

• /DEBUG=(TRACEBACK,NOSYMBOLS) on Alpha systems.

• /DEBUG=(TRACEBACK,NOINLINE,NOSYMBOLS) on VAX systems.

Specifying /DEBUG with no keywords is equivalent to specifying /DEBUG=ALL.

Table 1–7 describes the debugger options.

1–36 Developing HP C Programs

Table 1–7 Debugger Compilation Options

Option Usage

ALL Includes symbol table records and traceback records for both
VAX and Alpha systems. On VAX systems, this also selects
the behavior of the INLINE keyword.

On Alpha and I64 systems, /DEBUG=ALL is equivalent to
/DEBUG=(TRACEBACK,SYMBOLS).

On VAX systems, /DEBUG=ALL is equivalent to
/DEBUG=(TRACEBACK,SYMBOLS,INLINE).

INLINE (VAX only) Generates debug information to cause a STEP command to
STEP/INTO an inlined function call.

NOINLINE (VAX only) Generates debug information to cause a STEP command to
STEP/OVER an inlined function call.

NONE Does not include any debugging information. This is
equivalent to /NODEBUG.

NOTRACEBACK Suppresses generation of traceback records.

NOSYMBOLS Suppresses generation of symbol table records.

SYMBOLS Generates symbol table records.

TRACEBACK Generates traceback records.

/DECC
Invokes the HP C compiler.

On OpenVMS VAX systems, the CC command is used to invoke either the VAX
C or HP C compiler. If your system has a VAX C compiler already installed
on it, the HP C installation procedure provides the option of specifying which
compiler will be invoked by default when just the CC command is used. To
invoke the compiler that is not the default, use the CC command with the
appropriate qualifier: CC/DECC for the HP C compiler, or CC/VAXC for the
VAX C compiler. If your system does not have a VAX C compiler installed on
it, the CC command will invoke the HP C compiler.

On OpenVMS Alpha and I64 systems, specifying /DECC is equivalent to not
specifying it; this qualifier is supported to provide compatibility with HP C on
OpenVMS VAX systems.

/[NO]DEFINE=(identifier[=definition][, . . .])
/[NO]UNDEFINE=(identifier[, . . .])
Performs the same functions as the #define and #undef preprocessor
directives. The /DEFINE qualifier defines a macro to be substituted for
every occurrence of a given identifier in the compilation unit or units. The

Developing HP C Programs 1–37

/UNDEFINE qualifier cancels a previous definition (but not subsequent ones).
When both /DEFINE and /UNDEFINE are present in a compilation unit or on
the CC command line, /DEFINE is evaluated before /UNDEFINE.

Since /DEFINE and /UNDEFINE are not part of the source file, they are not
associated with a listing line number or source line number. Therefore, when
an error occurs in a command-line definition, the message displayed at the
terminal does not indicate a line number. In the listing file, these diagnostic
messages are placed before the source listing in the order that they were
encountered. When the expansion of a definition causes an error at a specific
source line in the program, the diagnostics—both at the terminal and in the
listing file—are associated with that source line.

A command line containing the /DEFINE and the /UNDEFINE qualifiers can
be long. Continuation characters cannot appear within quotes or they will be
included in the macro stream. The length of a CC command line cannot exceed
the maximum length allowed by DCL.

The /NODEFINE and /NOUNDEFINE qualifiers are provided for compatibility
with other DCL qualifiers. You can use these qualifiers to cancel /DEFINE
or /UNDEFINE qualifiers that you have specified in a symbol that you use to
compile HP C programs.

The defaults are /NODEFINE and /NOUNDEFINE.

Usage and Examples
Since the CC command line must be compatible with DCL, the syntax of the
/DEFINE and /UNDEFINE qualifiers differs from the syntax of the #define
and #undef preprocessor directives in the following way:

• An equal sign is required after /DEFINE; a space is required after #define.
For example, the following are equivalent:

$ CC/DEFINE=TRUE

#define TRUE 1

Note that the value of TRUE on the /DEFINE qualifier is automatically set
to 1. Any other value must be specified. For example, the following are
equivalent:

$ CC/DEFINE=MAYBE=2

#define MAYBE 2

1–38 Developing HP C Programs

• DCL converts all input to uppercase unless it is enclosed in quotation
marks. For example, the following are equivalent:

$ CC/DEFINE=true

#define TRUE 1

• The macro defined on the /DEFINE qualifier must be enclosed in quotation
marks if at least one of the following is true:

– You want to preserve lowercase

– The macro definition contains spaces or characters that would not be
valid on the DCL command line.

– The macro is a function-like macro

For example:

$ CC/DEFINE="true" ! Preserves lowercase
$ CC/DEFINE="blank=’ ’" ! Contains and preserves the blank
$ CC/DEFINE="f1=a+b" ! Contains a ’+’ character
$ CC/DEFINE="funct(a)=2" ! Defines a function-like macro

• Within a macro definition and inside quotation marks, a delimiter can be
either an equal sign or a space, whichever comes first. If an equal sign is
the delimiter, the following examples are equivalent:

$ CC/DEFINE="true=1"

#define true 1

If a space is the delimiter, the following examples are equivalent:

$ CC/DEFINE="true =1"

#define true =1

In this example, the space, preserved by the quotation marks, serves as the
delimiter, assigning true a value of =1, which is clearly not intended.

• Within a definition and outside quotation marks, the only allowed
delimiter is an equal sign; a space terminates the definition. The following
definitions, for example, are not recognized by DCL:

$ CC/DEFINE= TRUE
$ CC/DEFINE=(FALSE 0)

In the first example, DCL interprets TRUE as a file specification; in the
second, DCL flags an invalid value specification.

Developing HP C Programs 1–39

• When more than one /DEFINE is present on the CC command line or in a
single compilation unit, only the last /DEFINE is used. Similarly, only the
last /UNDEFINE on the CC command line or the compilation unit is used.

You can pass an equal sign to the compiler in any of the following ways:

$ CC/DEFINE=(EQU==,"equ =","equal==")

In the first definition, the first equal sign is removed by DCL as the delimiter;
the second equal sign is passed to the compiler. In the second example, the
space is recognized as a delimiter because the definition is inside quotes;
therefore, only one equal sign is required. In the third definition, the first
equal sign is recognized as the delimiter and is removed; the second equal sign
is passed to the compiler.

You can pass quotation marks in any of the following ways:

$ CC/DEFINE=(QUOTES="""","funct(b)=printf(")")

In both examples, DCL removes the first and last quotation marks before
passing the definition to the compiler.

Here is a simple use of the /UNDEFINE qualifier to cancel a previous definition
of TRUE:

$ CC/UNDEFINE=TRUE

The /UNDEFINE qualifier is useful for undefining the predefined HP C
preprocessor constants. For example, if you use a preprocessor system
identification macro (such as _ _vaxc, _ _VAXC, _ _DECC, or _ _vms) to
conditionally compile segments of HP C specific code, you can undefine that
constant to see how the portable sections of your program execute. Consider
the following program:

main()
{
#if ____DECC
printf("I’m being compiled with HP C on an OpenVMS system.");
#else
printf("I’m being compiled on some other compiler.");
#endif
}

This program produces the following output:

1–40 Developing HP C Programs

$ CC EXAMPLE.C Return

$ LINK EXAMPLE.OBJ Return

$ RUN EXAMPLE.EXE Return

I’m being compiled with HP C on an OpenVMS system.

$ CC/UNDEFINE="____DECC" EXAMPLE Return

$ LINK EXAMPLE.OBJ Return

$ RUN EXAMPLE.EXE Return

I’m being compiled on some other compiler.

/[NO]DIAGNOSTICS[=file-spec]
Creates a file containing compiler messages and diagnostic information. The
default file extension for a diagnostics file is .DIA. The diagnostics file is
used with the HP Language-Sensitive Editor (LSE). To display a diagnostics
file, enter the command REVIEW/FILE=file-spec while in LSE. For more
information, see Appendix C. The default is /NODIAGNOSTICS.

/ENDIAN=option
This qualifier takes the options BIG or LITTLE.

It controls whether big or little endian ordering of bytes is carried out in
character constants. For example, consider the following declaration:

int foo = ’ABCD’;

Specifying /ENDIAN=LITTLE places ’A’ in the first byte, ’B’ in the second byte,
and so on.

Specifying /ENDIAN=BIG places ’D’ in the first byte, ’C’ in the second byte,
and so on.

The default is /ENDIAN=LITTLE.

/[NO]ERROR_LIMIT[=n]
This qualifier limits the number of Error-level diagnostic messages that are
acceptable during program compilation. Compilation terminates when the
limit n is exceeded. /NOERROR_LIMIT specifies that there is no limit on error
messages.

The default is /ERROR_LIMIT=30, which specifies that compilation terminates
after 31 error messages.

/EXTERN_MODEL=option
In conjunction with the /[NO]SHARE_GLOBALS qualifier, controls the initial
compiler model for external objects. Conceptually, the compiler behaves as if
the first line of the program being compiled was a #pragma extern_model with
the model and psect name, if any, specified by the /EXTERN_MODEL qualifier

Developing HP C Programs 1–41

and with the shr or noshr keyword specified by the /[NO]SHARE_GLOBALS
qualifier.

For example, assume the command line contains the following qualifiers:

/EXTERN_MODEL=STRICT_REFDEF="MYDATA"/NOSHARE

The compiler will behave as if the program begins with the following line:

#pragma extern_model strict_refdef "MYDATA" noshr

Table 1–8 describes the /EXTERN_MODEL qualifier options.

Table 1–8 /EXTERN_MODEL Qualifier Options

Option Usage

COMMON_BLOCK Sets the compiler’s extern_model to the common_block
model. This is the model traditionally used for extern data by
VAX C.

RELAXED_REFDEF Sets the compiler’s extern_model to the relaxed_refdef
model. Some declarations are references and some are
definitions. Multiple uninitialized definitions for the same
object are allowed and are resolved into one by the linker.
However, a reference requires that at least one definition exist.

This is the model used by the portable C compiler (pcc) on
UNIX systems.

STRICT_REFDEF
[="name"]

Sets the compiler’s extern_model to the strict_refdef
model. Some declarations are references and some are
definitions. There must be exactly one definition in the
program for any symbol referenced. The optional name, in
quotation marks, is the name of the psect for any definitions.

This is the model specified by standard C. Use it in a program
that is to be a strict standard-conforming program.

This model is the preferred alternative to the nonstandard
storage-class keywords globaldef and globalref.

(continued on next page)

1–42 Developing HP C Programs

Table 1–8 (Cont.) /EXTERN_MODEL Qualifier Options

Option Usage

GLOBALVALUE Sets the compiler’s extern_model to the globalvalue model.
This model is similar to the strict_refdef model except that
these global objects have no storage; instead, they are link-time
constant values. There are two cases:

• If the declaration is a standard C reference, the same
object file records are produced as VAX C would produce
for an uninitialized globalvalue.

• If the declaration is a standard C definition, the same
object records are produced as VAX C would produce for an
initialized globalvalue.

This model is the preferred alternative to the nonstandard
storage-class keyword globalvalue.

The default is /EXTERN_MODEL=RELAXED_REFDEF. This is different from
VAX C, which uses the common block model for external objects.

/[NO]FIRST_INCLUDE=(file[, . . .])
Includes the specified files before any source files. This qualifier corresponds to
the Tru64 UNIX -FI switch.

This qualifier is useful if you have command lines to pass to the C compiler
that are exceeding the DCL command-line length limit. Using the /FIRST_
INCLUDE qualifier can help solve this problem by replacing lengthy /DEFINE
and /WARNINGS qualifiers with #define and #pragma message preprocessor
directives placed in a /FIRST_INCLUDE file.

When /FIRST_INCLUDE=file is specified, file is included in the source as if the
line before the first line of the source was:

#include "file"

If more than one file is specified, the files are included in their order of
appearance on the command line.

The default is /NOFIRST_INCLUDE.

/FLOAT=option
Controls the format of floating-point variables.

Developing HP C Programs 1–43

Table 1–9 describes the /FLOAT qualifier options.

Table 1–9 /FLOAT Qualifier Options

Option Usage

D_FLOAT double variables are represented in D_floating format.
The _ _D_FLOAT macro is predefined.

G_FLOAT double variables are represented in G_floating format.
The _ _G_FLOAT macro is predefined.

IEEE_FLOAT float and double variables are represented in IEEE
floating-point format (S_float and T_float, respectively).
The _ _IEEE_FLOAT macro is predefined. Use the /IEEE_
MODE qualifier for controlling the handling of IEEE
exceptional values. If /IEEE_MODE is not specified, the
default behavior is /IEEE_MODE=FAST for Alpha systems
and /IEEE_MODE=DENORM_RESULTS for I64 systems.

OpenVMS VAX Systems (VAX only)

On OpenVMS VAX systems, representation of double variables defaults
to D_floating format if not overridden by another format specified with
the /FLOAT or /[NO]G_FLOAT qualifier. There is one exception: if
/STANDARD=MIA is specified, G_floating is the default. If you are linking
against object-module libraries, a program compiled with G_floating format
must be linked with the object library DECCRTLG.OLB. (VAX only)

OpenVMS Alpha Systems (Alpha only)

On OpenVMS Alpha systems, representation of double variables defaults
to G_floating format if not overridden by another format specified with the
/FLOAT or /[NO]G_FLOAT qualifier.

If you are linking against object-module libraries, and /PREFIX=ALL is not
specified on the command line, then a program compiled with:

• G_FLOAT format must be linked with the object library VAXCRTL.OLB

• D_FLOAT format must be linked with VAXCRTLD.OLB

• IEEE_FLOAT format must be linked with VAXCRTLT.OLB

The VAXCRTLX.OLB, VAXCRTLDX.OLB, and VAXCRTLTX.OLB libraries are
used for the same floating-point formats, respectively, but include support for
X_FLOAT format (/L_DOUBLE_SIZE=128).

If /PREFIX=ALL is specified, then there is no need to link to the above-
mentioned *.OLB object libraries. All the symbols you need are in
STARLET.OLB.

1–44 Developing HP C Programs

I64 Systems (I64 only)

This section describes floating-point support and application porting
considerations for I64 systems.

On OpenVMS I64 systems, /FLOAT=IEEE_FLOAT is the default floating-
point representation. IEEE format data is assumed and IEEE floating-
point instructions are used. There is no hardware support for floating-point
representations other than IEEE, although you can specify the /FLOAT=D_
FLOAT or /FLOAT=G_FLOAT compiler option. These VAX floating-point
formats are supported in the I64 compiler by generating run-time code that
converts VAX floating-point formats to IEEE format to perform arithmetic
operations, and then converts the IEEE result back to the appropriate VAX
floating-point format. This imposes additional run-time overhead and some loss
of accuracy compared to performing the operations in hardware on Alpha and
VAX systems. The software support for the VAX formats is provided to meet
an important functional compatibility requirement for certain applications that
need to deal with on-disk binary floating-point data.

On I64 systems, the default for /IEEE_MODE is DENORM_RESULTS, which
is a change from the default of /IEEE_MODE=FAST on Alpha systems. This
means that by default, floating-point operations may silently generate values
that print as Infinity or Nan (the industry-standard behavior), instead of
issuing a fatal run-time error as they would when using VAX floating-point
format or /IEEE_MODE=FAST. Also, the smallest-magnitude nonzero value in
this mode is much smaller because results are allowed to enter the denormal
range instead of being flushed to zero as soon as the value is too small to
represent with normalization.

The conversion of VAX floating-point formats to IEEE single and IEEE double
floating-point types on the Intel Itanium architecture is a transparent process
that will not impact most applications. All you need to do is recompile your
application. Because IEEE floating-point format is the default, unless your
build explicitly specifies VAX floating-point format options, a simple rebuild for
I64 systems will use the native IEEE formats directly. For the large class of
programs that do not directly depend on the VAX formats for correct operation,
this is the most desirable way to build for I64 systems.

When you compile an OpenVMS application that specifies an option to use
VAX floating-point on an I64 system, the compiler automatically generates code
for converting floating-point formats. Whenever the application performs a
sequence of arithmetic operations, this code does the following:

1. Converts VAX floating-point formats to either IEEE single or IEEE double
floating-point formats.

2. Performs arithmetic operations in IEEE floating-point arithmetic.

Developing HP C Programs 1–45

3. Converts the resulting data from IEEE formats back to VAX formats.

Where no arithmetic operations are performed (VAX float fetches followed by
stores), no conversion will occur. The code handles such situations as moves.

VAX floating-point formats have the same number of bits and precision as their
equivalent IEEE floating-point formats. For most applications the conversion
process will be transparent and thus a non-issue.

In a few cases, arithmetic calculations might have different results because of
the following differences between VAX and IEEE formats:

• Values of numbers represented

• Rounding rules

• Exception behavior

These differences might cause problems for applications that do any of the
following:

• Depend on exception behavior

• Measure the limits of floating-point behaviors

• Implement algorithms at maximal processor-specific accuracy

• Perform low-level emulations of other floating-point processors

• Use direct equality comparisons between floating-point values, instead of
appropriately ranged comparisons (a practice that is extremely vulnerable
to changes in compiler version or compiler options, as well as architecture)

You can test an application’s behavior with IEEE floating-point values
by compiling it on an OpenVMS Alpha system using /FLOAT=IEEE_
FLOAT/IEEE_MODE=DENORM. If that produces acceptable results, then
simply build the application on the OpenVMS I64 system using the same
qualifier.

If you determine that simply recompiling with an /IEEE_MODE qualifier is
not sufficient because your application depends on the binary representation of
floating-point values, then first try building for your I64 system by specifying
the VAX floating-point option that was in effect for your VAX or Alpha build.
This causes the representation seen by your code and on disk to remain
unchanged, with some additional run-time cost for the conversions generated
by the compiler. If this is not an efficient approach for your application, you
can convert VAX floating-point binary data in disk files to IEEE floating-point
formats before moving the application to an I64 system.

1–46 Developing HP C Programs

/GRANULARITY=option

Controls the size of shared data in memory that can be safely accessed from
different threads. The possible size values are BYTE, LONGWORD, and
QUADWORD.

Specifying BYTE allows single bytes to be accessed from different threads
sharing data in memory without corrupting surrounding bytes. This option
will slow run-time performance.

Specifying LONGWORD allows naturally aligned 4-byte longwords to be
accessed safely from different threads sharing data in memory. Accessing data
items of 3 bytes or less, or unaligned data, may result in data items written
from multiple threads being inconsistently updated.

Specifying QUADWORD allows naturally aligned 8-byte quadwords to be
accessed safely from different threads sharing data in memory. Accessing data
items of 7 bytes or less, or unaligned data, might result in data items written
from multiple threads being inconsistently updated. This is the default.

/IEEE_MODE=option
Selects the IEEE floating-point mode to be used if /FLOAT=IEEE_FLOAT is
specified.

Table 1–10 describes the /IEEE_MODE options.

Table 1–10 /IEEE_MODE Options

Option Usage

FAST During program execution, only finite values (no
infinities, NaNs, or denorms) are created. Underflows
and denormal values are flushed to zero. Exceptional
conditions, such as floating-point overflow, divide-by-zero,
or use of an IEEE exceptional operand are fatal.

UNDERFLOW_TO_ZERO Generate infinities and NaNs. Flush denormalized
results and underflow to zero without exceptions.

DENORM_RESULTS Same as UNDERFLOW_TO_ZERO, except that denorms
are generated.

(continued on next page)

Developing HP C Programs 1–47

Table 1–10 (Cont.) /IEEE_MODE Options

Option Usage

INEXACT Same as DENORM_RESULTS, except that inexact
values are trapped. This is the slowest mode, and
is not appropriate for any sort of general-purpose
computations.

On Alpha systems, the default is /IEEE_MODE=FAST.

On I64 systems, the default is /IEEE_MODE=DENORM_RESULTS.

The INFINITY and NAN macros defined in <math.h> are available to programs
compiled with /FLOAT=IEEE and /IEEE_MODE={anything other than FAST},
and in a compiler mode that enables C99 extensions in the headers (any mode
other than COMMON or VAXC).

On Alpha sytems, the /IEEE_MODE qualifier generally has its greatest effect
on the generated code of a compilation. When calls are made between functions
compiled with different /IEEE_MODE qualifiers, each function produces the
/IEEE_MODE behavior with which it was compiled.

On I64 systems, the /IEEE_MODE qualifier primarily affects only the setting
of a hardware register at program startup. In general, the /IEEE_MODE
behavior for a given function is controlled by the /IEEE_MODE option specified
on the compilation that produced the main program: the startup code for
the main program sets the hardware register according the command-line
qualifiers used to compile the main program.

When applied to a compilation that does not contain a main program, the
/IEEE_MODE qualifier does have some effect: it might affect the evaluation
of floating-point constant expressions, and it is used to set the EXCEPTION_
MODE used by the math library for calls from that compilation. But the
qualifier has no effect on the exceptional behavior of floating-point calculations
generated as inline code for that compilation. Therefore, if floating-point
exceptional behavior is important to an application, all of its compilations,
including the one containing the main program, should be compiled with the
same /IEEE_MODE setting.

Even on Alpha systems, the particular setting of /IEEE_MODE=UNDERFLOW_
TO_ZERO has this characteristic: its primary effect requires the setting of a
run-time status register, and so it needs to be specified on the compilation
containing the main program in order to be effective in other compilations.

1–48 Developing HP C Programs

/[NO]INCLUDE_DIRECTORY=(pathname[, . . .])
Provides similar functionality to the -I option of the cc command on Tru64
UNIX systems. This qualifier allows you to specify additional places to search
for include files. A place can be one of the following:

• OpenVMS file-spec to be used as a default file-spec to RMS file services
(example: DISK$:[directory])

• UNIX style pathname in quotation marks (example: "/sys")

• Empty string ("")

If one of the places is specified as an empty string, the compiler does not search
any of its conventionally-named places:

DECC$USER_INCLUDE
DECC$SYSTEM_INCLUDE
DECC$LIBRARY_INCLUDE
SYS$COMMON:[DECC$LIB.INCLUDE.*]
DECC$TEXT_LIBRARY
SYS$LIBRARY:DECC$RTLDEF.TLB
SYS$LIBRARY:SYS$STARLET_C.TLB

Instead, it searches only places specified explicitly on the command line by
the /INCLUDE_DIRECTORY and /LIBRARY qualifiers (or by the location of
the primary source file, depending on the /NESTED_INCLUDE_DIRECTORY
qualifier). This behavior is similar to that obtained by specifying -I without a
directory name to the Tru64 UNIX cc command.

The basic search order depends on the form of the header-file name (after
macro expansion). Additional aspects of the search order are controlled by
other command-line qualifiers and the presence or absence of logical name
definitions.

Only the portable forms of the #include directive are affected by the
pathnames specified on an /INCLUDE_DIRECTORY qualifier:

• In quotes (example: #include "stdio.h")

• In angle brackets (example: #include <stdio.h>)

However, an empty string also affects the text-module form specific to
OpenVMS systems (example: #include stdio).

Except where otherwise specified, searching a "place" means that the string
designating the place is used as the default file-spec in a call to an RMS system
service (for example, $SEARCH/$PARSE). The file-spec consists of the name
in the #include directive without enclosing delimiters. The search terminates
successfully as soon as a file can be opened for reading.

Developing HP C Programs 1–49

Note

Prior to OpenVMS VAX Version 7.1, the operating system did not
provide a SYS$LIBRARY:SYS$STARLET_C.TLB nor the headers
contained therein. Instead, the compiler installation generated these
headers and placed them in SYS$LIBRARY:DECC$RTLDEF.TLB.

Quoted Form
For the quoted form of inclusion, the search order is:

1. One of the following:

• If /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (the default) is
in effect, search the directory containing the file in which the #include
directive itself occurred. The directory containing means the RMS
resultant string obtained when the file in which the #include occurred
was opened, except that the filename and subsequent components
are replaced by the default file type for headers (".h", or just "." if
/ASSUME=NOHEADER_TYPE_DEFAULT is in effect). The resultant
string will not have translated any concealed device logical.

• If /NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is in effect,
search the default file type for headers using the context of the primary
source file. This means that just the file type (".h" or ".") is used for the
default file-spec but, in addition, the chain of "related file-specs" used
to maintain the sticky defaults for processing the next top-level source
file is applied when searching for the include file. This most closely
matches the behavior of the VAX C compiler.

• If /NESTED_INCLUDE_DIRECTORY=NONE is in effect, this entire
step (Step 1) is bypassed.

2. Search the places specified in the /INCLUDE_DIRECTORY qualifier, if any.
A place that can be parsed successfuly as an OpenVMS file-spec and that
does not contain an explicit file type or version specification is edited to
append the default header file type specification (".h" or ".").

A place containing a "/" character is considered to be a UNIX-style name.
If the name in the #include directive also contains a "/" character that is
not the first character and is not preceded by a "!" character (it is not an
absolute UNIX-style pathname), then the name in the #include directive is
appended to the named place, separated by a "/" character, before applying
the decc$to_vms pathname translation function. The result of the decc$to_
vms translation is then used as the filespec to try to open.

1–50 Developing HP C Programs

3. If DECC$USER_INCLUDE is defined as a logical name, search
DECC$USER_INCLUDE:.H, or just DECC$USER_INCLUDE:. if
/ASSUME=NOHEADER_TYPE_DEFAULT is in effect.

4. If the file is not found, follow the steps for the angle-bracketed form of
inclusion.

Angle-Bracketed Form
For the angle-bracketed form of inclusion, the search order is:

1. Search the place "/". This is a UNIX-style name that can combine only
with UNIX names specified explicitly in the #include directive. It causes a
specification like <sys/types.h> to be considered first as /sys/types.h, which
is translated by decc$to_vms to SYS:TYPES.H.

2. Search the places specified in the /INCLUDE_DIRECTORY qualifier,
exactly as in Step 2 for the quoted form of inclusion.

3. If DECC$SYSTEM_INCLUDE is defined as a logical name, search
DECC$SYSTEM_INCLUDE:.H, or just DECC$SYSTEM_INCLUDE:. if
/ASSUME=NOHEADER_TYPE_DEFAULT is in effect.

4. If DECC$LIBRARY_INCLUDE is defined as a logical name and
DECC$SYSTEM_INCLUDE is not defined as a logical name, search
DECC$LIBRARY_INCLUDE:.H, or just DECC$LIBRARY_INCLUDE:.
if /ASSUME=NOHEADER_TYPE_DEFAULT is in effect.

5. If neither DECC$LIBRARY_INCLUDE nor DECC$SYSTEM_INCLUDE
are defined as logical names, then search the default list of places for plain
text-file copies of compiler header files as follows:

SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF]*.H
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET_C]*.H

Note

The compiler installation does not create these directories of
header files. Instead, it creates [DECC$LIB.REFERENCE] for
your convenience. But if you choose to create and populate
SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF] or
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET_C], the
compiler will search them.

If the file is not found, perform the text library search described in the next
step.

Developing HP C Programs 1–51

6. Extract the simple filename and file type from the #include specification
and use the filename as the module name to search a list of text libraries
associated with that file type.

For any file type, the initial text libraries searched consist of those named
on the command line with /LIBRARY qualifiers, searched in left-to-right
order.

If the /INCLUDE_DIRECTORY qualifier contained an empty string, no
further text libraries are searched. Otherwise, DECC$TEXT_LIBRARY is
searched for all file types.

If DECC$LIBRARY_INCLUDE is defined as a logical name, then no
further text libraries are searched. Otherwise, the subsequent libraries
searched for each file type are:

• For a file type of ".h" or ".":

SYS$LIBRARY:DECC$RTLDEF.TLB
SYS$LIBRARY:SYS$STARLET_C.TLB

• For a file type other then ".h" or ".":

SYS$LIBRARY:SYS$STARLET_C.TLB

7. If the previous step fails, search the following:

SYS$LIBRARY:.H

Under /ASSUME=NOHEADER_TYPE_DEFAULT, the default file type is
modified as usual.

Text-Module Form
For the text-module (nonportable) form of inclusion, the name can only be an
identifier. It, therefore, has no associated file type.

The identifier is used as a module name to search the following:

1. The text libraries named on the command line with /LIBRARY qualifiers,
in left-to-right order.

2. The following list of text libraries in the order shown (unless the
/INCLUDE_DIRECTORY qualifier contains an empty string, in which
case no further text libraries are searched):

DECC$TEXT_LIBRARY
SYS$LIBRARY:DECC$RTLDEF.TLB
SYS$LIBRARY:SYS$STARLET_C.TLB

The default for this qualifer is /NOINCLUDE_DIRECTORY.

1–52 Developing HP C Programs

/L_DOUBLE_SIZE=option
Determines how the compiler interprets the long double type. The qualifier
options are 64 and 128.

Specifying /L_DOUBLE_SIZE=64 treats all long double references as
G_FLOAT, D_FLOAT, or T_FLOAT, depending on the value of the /FLOAT
qualifier.

Specifying /L_DOUBLE_SIZE=128 treats all long double references as
X_FLOAT.

The default is /L_DOUBLE_SIZE=128.

/LIBRARY
Indicates that the associated input file is a library containing modules of HP C
source text. If the library specification does not include a file extension, the CC
command line assumes the .TLB default type. You must join the /LIBRARY
qualifier with a file specification in a compilation unit using a plus sign (+);
you cannot place the qualifier at other places on the CC command line. No
matter where you place the /LIBRARY qualifier in a compilation unit, all files
in the unit may make reference to modules within that library. Consider the
following example:

$ CC ONE + TWO + THREE/LIBRARY Return

Files ONE.C and TWO.C can contain references to modules in THREE.TLB.
Consider the following example:

$ CC ONE + TWO + THREE/LIBRARY, FOUR Return

The file FOUR.C cannot contain references to modules in THREE.TLB since
FOUR.C is located in a separate compilation unit separated by a comma.
The placement of the library file specification does not matter. The following
command lines are equivalent:

$ CC THREE/LIBRARY + ONE + TWO Return

$ CC ONE + THREE/LIBRARY + TWO Return

$ CC ONE + TWO + THREE/LIBRARY Return

/[NO]LINE_DIRECTIVES
Governs whether or not #line directives appear in preprocess output files.

The default is /LINE_DIRECTIVES.

/[NO]LIST[=file-spec]
Produces a source program listing. You must specify this qualifier to get a
listing. None of the other qualifiers use /LIST by default.

Developing HP C Programs 1–53

By default, /LIST creates a listing file with the same name as the source file
and with a file extension of .LIS. If you include a file specification with the
/LIST qualifier, the compiler uses that specification to name the listing file.

In interactive mode, the default is /NOLIST. In batch mode, the default is
/LIST. See the descriptions of the qualifiers /[NO]MACHINE_CODE, and
/SHOW for related information. (For example, to suppress compiler messages
to the terminal or to a batch log file, use the /SHOW=NOTERMINAL qualifier.)

/[NO]MACHINE_CODE[=option]
Lists the generated machine code in the listing file. To produce the listing file,
you must also specify /LIST.

On OpenVMS VAX systems, several formats exist to list machine code.
Table 1–11 describes the /MACHINE_CODE qualifier options.

Table 1–11 /MACHINE_CODE Qualifier Options (VAX only)

Option Usage

AFTER Causes the lines of machine code produced during compilation
to print after all the source code in the listing.

BEFORE Causes lines of machine code produced during compilation to
print before any source code in the listing.

INTERSPERSED Produces a listing consisting of lines of source code followed by
the corresponding lines of machine code. This is the default
option.

On OpenVMS Alpha sytems, the format of the generated machine code listing
is similar to what you would get using the AFTER keyword on OpenVMS VAX
systems.

The default is /NOMACHINE_CODE.

/[NO]MAIN=POSIX_EXIT
Directs the compiler to call _ _posix_exit instead of exit when returning from
main.

The default is /NOMAIN.

/[NO]MEMBER_ALIGNMENT
Controls whether the compiler naturally aligns data structure members.
Natural alignment means that data structure members are aligned on the
next boundary appropriate to the type of the member, rather than on the next
byte. For instance, a long variable member is aligned on the next longword
boundary; a short variable member is aligned on the next word boundary.

1–54 Developing HP C Programs

Any use of the #pragma member_alignment or #pragma nomember_alignment
directives within the source code overrides the setting established by this
qualifier. Specifying /NOMEMBER_ALIGNMENT causes data structure
members to be byte-aligned (with the exception of bit-field members).

On OpenVMS Alpha systems, the default is /MEMBER_ALIGNMENT.

On OpenVMS VAX systems, the default is /NOMEMBER_ALIGNMENT.

See the description of #pragma [no]member_alignment in Section 5.4.13.

/[NO]MMS_DEPENDENCIES[=(option[, . . .])]
Directs the compiler to produce a dependency file. Dependency files list all
source files and included files for each object module. Note that the /OBJECT
qualifier has no impact on the dependency file. The dependency file format is:

object_file_name :<tab><source file name>)
object_file_name :<tab><full path to first include file>)
object_file_name :<tab><full path to second include file>)

Table 1–12 shows the /MMS_DEPENDENCIES qualifier options.

Table 1–12 /MMS_DEPENDENCIES Qualifier Options

Option Usage

FILE[=filespec] Specifies where to save the dependency file. The
default file extension for a dependency file is .mms.
Other than using this different default extension,
/MMS_DEPENDENCY uses the same procedure that
the /OBJECT and /LIST qualifiers do for determining
the name of the output file.

[NO]SYSTEM_INCLUDE_
FILES

Specifies whether or not to include dependency
information about system include files (those included
with #include <filename>.) If omitted, this option
defaults to including dependency information about
system include files.

(continued on next page)

Developing HP C Programs 1–55

Table 1–12 (Cont.) /MMS_DEPENDENCIES Qualifier Options

Option Usage

TARGET=string Specifies the target that appears in the output .mms
file. The default is TARGET="" in which case the
target is the source file name with a .OBJ extension,
as in previous versions of the compiler. If you specify
any string other than .OBJ, that string is used as
the target. For the special case of .OBJ, the compiler
uses the name of the object file (stripped of any
version number and path) for the MMS target.

Examples:

1. $ CC/MMS/OBJ=OUTPUT T.C
This command produces an .mms file with a
target of T.OBJ :

2. $ CC/MMS=(TARGET=FOO)/OBJ=OUTPUT T.C
This command produces an .mms file with a
target of FOO :

3. $ CC/MMS=(TARGET=.OBJ)/OBJ=OUTPUT T.C
This command produces an .mms file with a
target of OUTPUT.OBJ :

The default is /NOMMS_DEPENDENCY.

/NAMES=(option1,option2)
Option1 converts all definitions and references of external symbols and psects
to the case specified. Table 1–13 lists the option1 case values.

Table 1–13 /NAMES Qualifier Option1 Values

Option Usage

UPPERCASE Converts to uppercase.

AS_IS Leaves the case as specified in the source.

Option2 controls whether or not external names greater than 31 characters get
truncated or shortened. Table 1–14 lists the option2 values.

1–56 Developing HP C Programs

Table 1–14 /NAMES Qualifier Option2 Values

Option Usage

/NAMES=TRUNCATED (default) Truncates long external names.

/NAMES=SHORTENED Shortens long external names.

A shortened name consists of the first 23 characters
of the name followed by a 7-character Cyclic
Redundancy Check (CRC) computed by looking
at the full name, and then a "$".

The CRC is generated by calling lib$crc as follows:

long initial_crc = -1;
crc_result = lib$crc(good_crc_table,

&initial_crc,
<descriptor of string to CRC>);

where good_crc_table is:

/*
** Default CRC table:
**
** This table was taken from Ada’s
** generalized name generation algorithm.
** It represents a commonly used CRC
** polynomial known as AUTODIN-II.
** For more information see the VAX
** Macro OpenVMS documentation under the
** CRC VAX instruction.
*/

static const unsigned int good_crc_table[16] =

{0x00000000, 0x1DB71064, 0x3B6E20C8, 0x26D930AC,

0x76DC4190, 0x6B6B51F4, 0x4DB26158, 0x5005713C,

0xEDB88320, 0xF00F9344, 0xD6D6A3E8, 0xCB61B38C,

0x9B64C2B0, 0x86D3D2D4, 0xA00AE278, 0xBDBDF21C};

The default is /NAMES=(UPPERCASE,TRUNCATED), which provides the
same conversion-to-uppercase behavior as VAX C, and truncates the name to
31 characters.

Notes

On OpenVMS VAX systems, the /NAMES qualifier does not affect the
names of the $CODE and $DATA psects.

Developing HP C Programs 1–57

On OpenVMS Alpha systems, the /NAMES qualifier does not affect the
names of the ABS, BSS, $CODE$, $DATA$, $LINK$, $LITERAL$,
and $READONLY$ psects.

Specifying /NAMES=SHORTENED turns on the /REPOSITORY
qualifier.

/NESTED_INCLUDE_DIRECTORY[=option]
Controls the first step in the compiler’s search algorithm for finding files that
are included using the quoted form of the #include preprocessing directive:

#include "file-spec"

Table 1–15 describes the /NESTED_INCLUDE_DIRECTORY qualifier
options.

Table 1–15 /NESTED_INCLUDE_DIRECTORY Qualifier Options

Option Usage

PRIMARY_FILE Directs the compiler to search the default file type for headers
using the context of the primary source file (the .C file). This
means that just the file type (".h" or ".") is used for the default
file-spec, but the chain of "related file-specs" used to maintain
the sticky defaults for processing the next top-level source file
is also applied when searching for the include file. This most
closely matches the behavior of VAX C.

INCLUDE_FILE Directs the compiler to first search the directory of the source
file containing the #include directive. If the file to be included
is not found, the compiler continues searching by following
normal inclusion rules.

NONE Directs the compiler to skip the first step of processing
#include "file.h" directives. The compiler starts its search
for the include file in the /INCLUDE_DIRECTORY directories.
It does not start by looking in the directory containing the
including file or in the directory containing the top level source
file.

The default is /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE.

/[NO]OBJECT[=file-spec]
Produces an object module. By default, /OBJECT creates an object module file
with the same name as that of the first source file of a compilation unit and
with the .OBJ file extension. If you include a file specification with /OBJECT,
the compiler uses that specification instead.

1–58 Developing HP C Programs

The compiler executes faster if it does not have to produce an object module.
Use the /NOOBJECT qualifier when you need only a listing of a program or
when you want the compiler to check a source file for errors. The default is
/OBJECT.

Note that the /OBJECT qualifier has no impact on the output file of the /MMS_
DEPENDENCIES qualifier.

/[NO]OPTIMIZE[=(option[, . . .])]
Determines whether HP C performs code optimizations.

You can specify the options described in Table 1–16.

Table 1–16 /OPTIMIZE Qualifier Options

Option Usage

[NO]DISJOINT (VAX only) Optimizes the generated machine code. For example, the
compiler eliminates common subexpressions, removes
invariant expressions from loops, collapses arithmetic
operations into 3-operand instructions, and places local
variables in registers.

When debugging HP C programs, use the
/OPTIMIZE=NODISJOINT option if you need minimal
optimization; if optimization during debugging is not
important, use the /NOOPTIMIZE qualifier.

[NO]INLINE[=keyword] Provides inline expansion of functions that yield optimized
code when they are expanded. You can specify one of the
following keywords to control inlining:

NONE No inlining is done, even if requested by
the language syntax.

MANUAL Inlines only those function calls for
which the program explicitly requests
inlining.

AUTOMATIC Inlines all of the function calls in the
MANUAL category, plus additional
calls that the compiler determines are
appropriate on this platform. On Alpha
systems, this is the same as SIZE; on
I64 systems, this is the same as SPEED.
AUTOMATIC is the default.

(continued on next page)

Developing HP C Programs 1–59

Table 1–16 (Cont.) /OPTIMIZE Qualifier Options

Option Usage

SIZE Inlines all of the function calls in the
MANUAL category plus any additional
calls that the compiler determines would
improve run-time performance without
significantly increasing the size of the
program.

SPEED Performs more aggressive inlining for
run-time performance, even when it
might significantly increase the size of
the program.

ALL Inlines every call that can be inlined
while still generating correct code.
Recursive routines, however, will not
cause an infinite loop at compile time.

Note that /OPT=INLINE=ALL is not
recommended for general use, because
it performs very aggressive inlining
and can cause the compiler to exhaust
virtual memory or take an unacceptably
long time to compile.

The #pragma noinline preprocessor directive can be
used to prevent inlining of any particular functions under
the compiler-selected forms of inlining (SPEED, SIZE, or
AUTOMATIC).

The #pragma inline preprocessor directive (or the
__inline storage-class modifier for OpenVMS Alpha
systems) can be used to request inlining of specific
functions under the AUTOMATIC or MANUAL forms
of inlining.

(continued on next page)

1–60 Developing HP C Programs

Table 1–16 (Cont.) /OPTIMIZE Qualifier Options

Option Usage

[NO]INTRINSICS Controls whether or not certain functions are handled
as intrinsic functions without explicitly enabling each of
them as an intrinsic through the #pragma intrinsic
preprocessor directive. An intrinsic function is an
apparent function call that could be handled as an actual
call to the specified function, or could be handled by the
compiler in a different manner. By treating the function as
an intrinsic, the compiler can often generate faster code.
(Contrast with a built-in function, which is an apparent
function call that is never handled as an actual function
call. There is never a function with the specified name.)

See Section 5.4.10 for a list of functions that can be
handled as intrinsics.

The /OPTIMZE=INTRINSICS qualifier works together
with /OPTIMIZE=LEVEL=n and some other qualifiers to
determine how intrinsics are handled:

• If the optimization level specified is less than 4, the
intrinsic-function prototypes and call formats are
checked, but normal run-time calls are still made.

• If the optimization level is 4 or higher, intrinsic code
is generated.

• If /STANDARD=ANSI89 is specified, nonstandard
functions are not automatically intrinsic and do
not even have their prototypes checked. They are
only checked if the nonstandard functions are made
intrinsic through #pragma intrinsic.

• Intrinsic code is not generated for math functions that
set the errno variable unless /ASSUME=NOMATH_
ERRNO is specified. Such math functions, however,
do have their prototypes and call formats checked.

The default is /OPTIMIZE=INTRINSICS, which turns on
this handling.

To turn it off, specify /NOOPTIMIZE or
/OPTIMIZE=NOINTRINSICS, or specify an optimization
level less than 4.

(continued on next page)

Developing HP C Programs 1–61

Table 1–16 (Cont.) /OPTIMIZE Qualifier Options

Option Usage

LEVEL=n Selects the level of optimization. Specify an integer from 0
(no optimization) to 4 (full optimization):

0 Disables all optimizations. Does not check for
unassigned variables.

1 Enables local optimizations and recognition of
some common subexpressions. The call graph
determines the order of compilation of procedures.

2 Includes level 1 optimizations. Enables global
optimization. This includes data-flow analysis,
code motion, strength reduction and test
replacement, split lifetime analysis, and code
scheduling.

3 Includes level 2 optimizations. Enables additional
global optimizations that improve speed (at the
cost of extra code size), for example: integer
multiplication and division expansion (using
shifts), loop unrolling, and code replication to
eliminate branches.

4 Includes level 3 optimizations. Enables
interprocedural analysis and automatic inlining
of small procedures (with heuristics limiting the
amount of extra code). This is the default.

5 Includes level 4 optimizations. Activates software
pipelining, which is a specialized form of loop
unrolling that in certain cases improves run-time
performance. Software pipelining uses instruction
scheduling to eliminate instruction stalls within
loops, rearranging instructions between different
unrolled loop iterations to improve performance.

Loops chosen for software pipelining are always
innermost loops and do not contain branches or
procedure calls. To determine whether using level
5 benefits your particular program, you should
time program execution for the same program
compiled at levels 4 and 5. For programs that
contain loops that exhaust available registers,
longer execution times may result with level 5.

(continued on next page)

1–62 Developing HP C Programs

Table 1–16 (Cont.) /OPTIMIZE Qualifier Options

Option Usage

[NO]PIPELINE Controls Activation of the software pipelining optimiza-
tion.

The software pipelining optimization applies instruction
scheduling to certain innermost loops, allowing
instructions within a loop to "wrap around" and execute
in a different iteration of the loop. This can reduce the
impact of long-latency operations, resulting in faster loop
execution.

Software pipelining can be more effective when you
combine /OPTIMIZE=PIPELINE with the appropriate
/OPTIMIZE=TUNE keyword for the target Alpha processor
generation.

Software pipelining also enables the prefetching of data to
reduce the impact of cache misses.

Software pipelining is a subset of the optimizations
activated by optimization level 5.

To determine whether using /OPTIMIZE=PIPELINE
benefits your particular program, you should time program
execution for the same program (or subprogram) compiled
with and without software pipelining.

For programs containing loops that exhaust available reg-
isters, longer execution times can result with optimization
level 5, requiring use of /OPTIMIZE=UNROLL=n to limit
loop unrolling.

UNROLL=n Controls loop unrolling done by the optimizer. UNROLL=n
means to unroll loop bodies n times, where n is between 0
and 16. UNROLL=0 means the optimizer will use its own
default unroll amount. Specify UNROLL only at level 3 or
higher.

TUNE=keyword Selects processor-specific instruction tuning for imple-
mentations of the Alpha architecture. Regardless of the
setting of the /OPTIMIZE=TUNE flag, the generated code
will run correctly on all implementations of the Alpha
architecture. Tuning for a specific implementation can
provide improvements in run-time performance. Code
tuned for a specific target might run slower on another
target.

You can specify one of the following keywords:

(continued on next page)

Developing HP C Programs 1–63

Table 1–16 (Cont.) /OPTIMIZE Qualifier Options

Option Usage

GENERIC Selects instruction tuning that is
appropriate for all implementations of
the Alpha and Itanium architecture. This
option is the default.

HOST Selects instruction tuning that is
appropriate for the machine on which
the code is being compiled.

EV4 (Alpha
only)

Selects instruction tuning for the 21064,
21064A, 21066, and 21068 implementations
of the Alpha architecture.

EV5 (Alpha
only)

Selects instruction tuning for the 21164
implementation of the Alpha architecture.

EV56 (Alpha
only)

Selects instruction tuning for the 21164
chip implementations that use the byte- and
word-manipulation instruction extensions of
the Alpha architecture.

Running programs compiled with the EV56
keyword might incur emulation overhead
on EV4 and EV5 processors, but will still
run correctly on OpenVMS Version 7.1 (or
higher).

PCA56
(Alpha only)

Selects instruction tuning for the 21164PC
implementation that uses the byte- and
word-manipulation instruction extensions
and multimedia instruction extensions of
the Alpha architecture.

Running programs compiled with the
PCA56 keyword might incur emulation
overhead on EV4, EV5, and EV56
processors, but will still run correctly on
OpenVMS Version 7.1 (or higher).

EV6 (Alpha
only)

Selects instruction tuning for the first-
generation 21264 implementation of the
Alpha architecture.

EV67 (Alpha
only)

Selects instruction tuning for the second-
generation 21264 implementation of the
Alpha architecture.

(continued on next page)

1–64 Developing HP C Programs

Table 1–16 (Cont.) /OPTIMIZE Qualifier Options

Option Usage

ITANIUM2
(I64 only)

Selects instruction tuning for the Intel
Itanium 2 processor.

For OpenVMS VAX systems the default, /OPTIMIZE, is equivalent to
/OPTIMIZE=(DISJOINT,INLINE).

For OpenVMS Alpha systems the default, /OPTIMIZE, is equivalent to
/OPTIMIZE=(INLINE=AUTOMATIC,LEVEL=4,UNROLL=0,TUNE=GENERIC).

Use /NOOPTIMIZE or /OPTIMIZE=LEVEL=0 for a debugging session to
ensure that the debugger has sufficient information to locate errors in the
source program.

In most cases, using /OPTIMIZE will make the program execute faster. As
a side effect of getting the fastest execution speeds, using /OPTIMIZE can
produce larger object modules and longer compile times than /NOOPTIMIZE.

Loop Unrolling
At optimization level 3 or above, HP C attempts to unroll certain loops to
minimize the number of branches and group more instructions together to
allow efficient overlapped instruction execution (instruction pipelining). The
best candidates for loop unrolling are innermost loops with limited control flow.

As more loops are unrolled, the average size of basic blocks increases. Loop
unrolling generates multiple loop code iterations in a manner that allows
efficient instruction pipelining.

The loop body is replicated a certain number of times, substituting index
expressions. An initialization loop may be created to align the first reference
with the main series of loops. A remainder loop may be created for leftover
work.

The number of times a loop is unrolled can be determined by the op-
timizer or the user can specify the limit for loop unrolling using the
/OPTIMIZE=UNROLL qualifier. Unless the user specifies a value, the
optimizer unrolls a loop 4 times for most loops or 2 times for certain loops
(large estimated code size or branches out the loop).

Developing HP C Programs 1–65

Software Pipelining
Software pipelining and additional software dependence analysis are enabled
by using /OPTIMIZE=LEVEL=5, which in certain cases improves run-time
performance.

Loop unrolling (enabled at /OPTIMIZE=LEVEL=3 or higher) is constrained in
that it cannot schedule across iterations of a loop. Because software pipelining
can schedule across loop iterations, it can perform more efficient scheduling
that eliminates instruction stalls within loops, by rearranging instructions
between different unrolled loop iterations to improve performance.

For example, if software dependence analysis of data flow reveals that certain
calculations can be done before or after that iteration of the unrolled loop,
software pipelining reschedules those instructions ahead of or behind that
loop iteration, at places where their execution can prevent instruction stalls or
otherwise improve performance.

Loops chosen for software pipelining:

• Are always innermost loops (those executed the most)

• Do not contain branches or procedure calls

By modifying the unrolled loop and inserting instructions as needed before
and/or after the unrolled loop, software pipelining generally improves run-
time performance, except for cases where the loops contain a large number of
instructions with many existing overlapped operations. In this case, software
pipelining may not have enough registers available to effectively improve
execution performance, and run-time performance using level 5 may not
improve as compared to using level 4.

To determine whether using level 5 benefits your particular program, time
program execution for the same program compiled at levels 4 and 5. For
programs that contain loops that exhaust available registers, longer execution
times may result with level 5.

In cases where performance does not improve, consider compiling using
/OPTIMIZE=(UNROLL=1, LEVEL=5) to possibly improve the effects of
software pipelining.

/PDSC_MASK=option
Forces the compiler to set the PDSC$V_EXCEPTION_MODE field of the
procedure descriptor for each function in the compilation unit to the specified
value, regardless of the setting of any other qualifiers.

1–66 Developing HP C Programs

Ordinarily the PDSC$V_EXCEPTION_MODE field gets set automatically by
the compiler, depending on the /IEEE_MODE qualifier setting. The /PDSC_
MASK qualifier overrides the /IEEE_MODE qualifier setting of this field.

Note

This qualifier is a low-level systems-programming feature that is
seldom necessary. Its usage can produce object modules that do not
conform to the VMS common language environment and, within C,
it can produce nonstandard and seemingly incorrect floating-point
behaviors at runtime.

As shown in Table 1–17, the qualifier option keywords are exactly the allowed
values defined in the OpenVMS Calling Standard for this field, stripped of the
PDSC$V_EXCEPTION_MODE prefix (for example, /PDSC_MASK=SIGNAL
sets the field to PDSC$V_EXCEPTION_MODE_SIGNAL).

Table 1–17 /PDSC_MASK Qualifier Options

Option Maps to Meaning

SIGNAL PDSC$K_EXCEPTION_
MODE_SIGNAL

Raise exceptions for all except
underflow (which is flushed to 0).

SIGNAL_ALL PDSC$K_EXCEPTION_
MODE_SIGNAL_ALL

Raise exceptions for all.

SILENT PDSC$K_EXCEPTION_
MODE_SILENT

Raise no exceptions. Create only finite
values: no infinities, no denorms, no
NaNs.

FULL_IEEE PDSC$K_EXCEPTION_
MODE_FULL_IEEE

Raise no exceptions except as
controlled by separate IEEE exception-
enabling bits. Create exceptional
values according to the IEEE standard.

CALLER PDSC$K_EXCEPTION_
MODE_CALLER

Emulate the same mode as the caller.
This is useful primarily for writing
libraries that can be called from
languages other than C.

In the absence of the /PDSC_MASK qualifier, the compiler sets the PDSC$V_
EXCEPTION_MODE field automatically, depending on the /IEEE_MODE
qualifier setting:

• If /IEEE_MODE is specified with UNDERFLOW_TO_ZERO, DENORM_
RESULTS, or INEXACT, then /PDSC_MASK is set to FULL_IEEE.

Developing HP C Programs 1–67

• In all other cases, /PDSC_MASK is set to SILENT. This setting differs
from the calling-standard-specified default of SIGNAL used by FORTRAN,
and is largly responsible for the standard-conforming behavior of the math
library when called from C or C++ programs.

/[NO]PLUS_LIST_OPTIMIZE
Provides improved optimization and code generation across file boundaries that
would not be available if the files were compiled separately.

When you specify /PLUS_LIST_OPTIMIZE on the command line in conjunction
with a series of file specifications separated by plus signs, the compiler does
not concatenate each of the specified source files together; such concatenation
is generally not correct for C code because a C source file defines a scope.

Instead, each file is treated separately for purposes of parsing, except that the
compiler issues diagnostics about conflicting external declarations and function
definitions that occur in different files. For purposes of code generation, the
compiler treats the files as one application and can perform optimizations
across the source files.

The default is /NOPLUS_LIST_OPTIMIZE.

/[NO]POINTER_SIZE=option
Controls whether or not pointer-size features are enabled and whether pointers
are 32-bits or 64 bits.

The default is /NOPOINTER_SIZE, which disables pointer-size features, such
as the ability to use #pragma pointer_size, and directs the compiler to assume
that all pointers are 32-bit pointers. This default represents no change over
previous versions of HP C.

Table 1–18 shows the /POINTER_SIZE qualifier options.

Table 1–18 /POINTER_SIZE Qualifier Options

Option Usage

{SHORT | 32} The compiler assumes 32-bit pointers.

{LONG[=ARGV]}The compiler assumes 64-bit pointers. If the ARGV option to LONG or
64 is present, the main argument argv will be an array of long pointers
instead of an array of short pointers.

{64[=ARGV]} Same as LONG.

Specifying /POINTER_SIZE=32 enables pointer-size features and directs the
compiler to assume that all pointers are 32-bit pointers.

1–68 Developing HP C Programs

Specifying /POINTER_SIZE=64 enables pointer-size features and directs the
compiler to assume that all pointers are 64-bit pointers.

Specifying the /POINTER_SIZE qualifier enables the following pointer-size
features:

• Enables processing of #pragma pointer_size.

• Sets the initial default pointer size.

• Predefines the preprocessor macro _ _INITIAL_POINTER_SIZE to 32 or 64. If
/POINTER_SIZE is omitted from the command line, _ _INITIAL_POINTER_SIZE
is 0, which allows you to use #ifdef _ _INITIAL_POINTER_SIZE to test
whether or not the compiler supports 64-bit pointers.

• For /POINTER_SIZE=64, the HP C RTL name mapping table is changed
to select the 64-bit versions of malloc, calloc, and other RTL routines by
default.

For information about other compiler features that affect pointer size or warn
about potential pointer size conflicts, see the following:

• /CHECK=POINTER_SIZE

• #pragma pointer_size

• #pragma required_pointer_size

• _ _INITIAL_POINTER_SIZE predefined macro

The /POINTER_SIZE qualifier must be specified for any program that uses
64-bit pointers.

/PRECISION[=option]
Controls whether floating-point operations on float variables are performed
in single or double precision. Table 1–19 shows the /PRECISION qualifier
options.

Table 1–19 /PRECISION Qualifier Options

Option Usage

SINGLE Performs floating-point operations in single precision.

DOUBLE Performs floating-point operations in double precision.

Your code may execute faster if it contains float variables and is compiled with
/PRECISION=SINGLE. However, the results of your floating-point operations
will be less precise. See the HP C Language Reference Manual for more
information on floating-point variables.

Developing HP C Programs 1–69

The default is /PRECISION=DOUBLE for /STANDARD=VAXC and
/STANDARD=COMMON compiler modes.

The default is /PRECISION=SINGLE for /STANDARD=ANSI89 and
/STANDARD=RELAXED compiler modes.

/[NO]PREFIX_LIBRARY_ENTRIES[=(option[, . . .])]
The HP C Run-Time Library (RTL) shareable image, DECC$SHR.EXE, resides
in SYS$LIBRARY with a DECC$ prefix for its entry points. The linker
searches IMAGELIB.OLB to locate the shareable image. Every external name
in IMAGELIB.OLB has a DECC$ prefix, and, therefore, has an OpenVMS
conformant name space (a requirement for inclusion in IMAGELIB).

The /[NO]PREFIX_LIBRARY_ENTRIES qualifier lets you control the HP C
RTL name prefixing. Table 1–20 describes the /PREFIX_LIBRARY_ENTRIES
qualifier options.

Table 1–20 /PREFIX_LIBRARY_ENTRIES Qualifier Options

Option Usage

EXCEPT = (name,...) The names specified are not prefixed.

ALL_ENTRIES All HP C RTL names, as well as C99 names not
supported by the underlying C RTL, are prefixed.

ANSI_C89_ENTRIES Only C Standard 89 (C89) library names are prefixed.

C99_ENTRIES Only C Standard 99 (C99) library names are prefixed.
These are a superset of the external names prefixed
under /PREFIX=ANSI_C89_ENTRIES and a subset
of those prefixed under /PREFIX=ALL_ENTRIES.

The compiler will prefix C99 entries based on their
inclusion in the standard, not on the availability
of their implementations in the run-time library.
So calling functions introduced in C99 that are not
yet implemented in the HP C RTL will produce
unresolved references to symbols prefixed by DECC$
when the program is linked. In addition, the compiler
will issue a CC-W-NOTINCRTL message when it
prefixes a name that is not in the current C RTL.

(continued on next page)

1–70 Developing HP C Programs

Table 1–20 (Cont.) /PREFIX_LIBRARY_ENTRIES Qualifier Options

Option Usage

RTL="name" Generates references to the C RTL indicated by the
name keyword. (The name keyword has a length
limit of 24 characters for OpenVMS VAX systems
and 1017 characters for OpenVMS Alpha systems.) If
no keyword is specified, then references to the HP C
RTL are generated by default. To use an alternate
RTL, see its documentation for the name to use.

If you want no names prefixed, specify /NOPREFIX_LIBRARY_ENTRIES.

For /STANDARD=ANSI89, the default is /PREFIX=ANSI_C89_ENTRIES.

For /STANDARD=C99, the default is /PREFIX=C99_ENTRIES.

For all other compiler modes, the default is /PREFIX=ALL.

/[NO]PREPROCESS_ONLY[=filename]
Gives the same functionality as the -E qualifier on UNIX C compilers. When
specified, it performs only the actions of the preprocessor phase and writes the
resulting processed text to a file. No semantic or syntax processing is done.
Furthermore, no object file or analysis file can be produced.

If you do not specify a file name for the preprocessor output, the name of the
output file defaults to the file name of the input file with a .I file type.

The default is /NOPREPROCESS_ONLY.

/[NO]PROTOTYPE[=(option[, . . .])]
Creates an output file containing function prototypes for all global functions
defined in the module being compiled.

Standard-style prototypes are created even for functions defined with
Kernighan and Ritchie style syntax.

This qualifier can be used to convert to Standard-sytle prototypes or just to
ensure that every function definition has a compatible explicit declaration,
thereby avoiding implicit declarations that can sometimes produce surprising
results.

Table 1–21 describes the /PROTOTYPE qualifier options.

Developing HP C Programs 1–71

Table 1–21 /PROTOTYPE Qualifier Options

Option Usage

[NO]IDENTIFIERS Indicates that identifier names are to be included in
the prototype declarations that appear in the output
file. The default is NOIDENTIFIERS.

[NO]STATIC_FUNCTIONS Indicates that prototypes for static function
definitions are to be included in the output file.
The default is NOSTATIC_FUNCTIONS.

FILE=filename Specifies the output file name. When not specified,
the output file name has the same defaults as the
listing file, except that the file extension is .CH
instead of .LIS.

The default is /NOPROTOTYPES.

/PSECT_MODEL=[NO]MULTILANGUAGE
Controls whether the compiler allocates the size of overlaid psects to ensure
compatibility when the psect is shared by code created by other HP compilers.

The problem this switch solves can occur when a psect generated by a
FORTRAN COMMON block is overlaid with a psect consisting of a C struct.
Because FORTRAN COMMON blocks are not padded, if the C struct is padded,
the inconsistent psect sizes can cause linker error messages.

Compiling with /PSECT_MODEL=MULTILANGUAGE ensures that HP C uses
a consistent psect size allocation scheme. The corresponding FORTRAN switch
is /ALIGN=COMMON=[NO]MULTILANGUAGE.

The default is /PSECT=NOMULTILANGUAGE, which is the old default
behavior of the compiler, and is sufficient for most applications.

/REENTRANCY=option
Controls the type of reentrancy that reentrant HP C RTL routines will exhibit.
(See the decc$set_reentrancy RTL routine.)

This qualifier is for use only with a module containing the main routine.

The reentrancy level is set at runtime according to the /REENTRANCY
qualifier specified while compiling the module containing the main routine.

Table 1–22 describes the /REENTRANCY qualifier options.

1–72 Developing HP C Programs

Table 1–22 /REENTRANCY Qualifier Options

Option Usage

AST Uses the _ _TESTBITSSI built-in function to perform
simple locking around critical sections of RTL code,
and may additionally disable asynchronous system
traps (ASTs) in locked region of codes. This type of
locking should be used when AST code contains calls
to HP C RTL I/O routines.

MULTITHREAD Designed to be used in conjunction with the
DECthreads product. It performs DECthreads
locking and never disables ASTs.

NONE Gives optimal performance in the RTL, but does
absolutely no locking around critical sections of RTL
code. It should only be used in a single threaded
environment when there is no chance that the thread
of execution will be interrupted by an AST that would
call the HP C RTL.

TOLERANT Uses the _ _TESTBITSSI built-in function to perform
simple locking around critical sections of RTL code,
but ASTs are not disabled. This type of locking
should be used when ASTs are used and must be
delivered immediately.

The default is /REENTRANCY=TOLERANT.

/REPOSITORY=option
Specifies a repository for the compiler to store shortened external name
information. When /NAMES=SHORTENED is specified, the compiler stores to
the repository any external names that were shortened. The demangler utility
can then be used to map the shortened names back to the names used in the
original C program.

By default, the qualifier is not active unless /NAMES=SHORTENED has been
specified, in which case the default is /REPOSITORY=[.CXX_REPOSITORY].

The default name of the repository is the same as that used by the HP C++
compiler for decoding mangled names. This is intentional. A C++ mangled
name cannot match a shortened name, so a single repository can be used by
both the HP C and HP C++ compilers.

/ROUNDING_MODE=option
If /FLOAT=IEEE_MODE is specified, the /ROUNDING_MODE qualifier lets
you select one of the following IEEE rounding modes:

Developing HP C Programs 1–73

Option Usage

NEAREST Sets the normal rounding mode (unbiased round to nearest). This is
the default.

DYNAMIC Sets the rounding mode for IEEE floating-point instructions
dynamically, as determined from the contents of the floating-point
control register.

MINUS_
INFINITY

Rounds toward minus infinity.

CHOPPED Rounds toward 0.

If /FLOAT=G_FLOAT or /FLOAT=D_FLOAT is specified, then rounding
defaults to /ROUNDING_MODE=NEAREST, with no other choice of rounding
mode.

/[NO]SHARE_GLOBALS
Controls whether the compiler will treat declarations of objects with the
globaldef keyword as shared or not shared.

Also, in conjunction with the /EXTERN_MODEL qualifier, controls whether
the initial extern_model is shared or not shared (for those extern_models
where it is allowed). The initial extern_model of the compiler is a fictitious
pragma constructed from the settings of the /EXTERN_MODEL and /SHARE_
GLOBALS qualifiers.

The default value is /NOSHARE_GLOBALS. This default value is different
from VAX C, which treats external objects as shared by default. As a result,
you may experience the following impact:

• Linking old object files or object libraries with newly produced object files
might generate ‘‘conflicting attributes for psect’’ messages. As long as you
are not building shareable libraries, you can safely ignore these messages.

• Building shareable libraries will be easier.

• On OpenVMS VAX systems, when linking external symbols against
FORTRAN common blocks, you should specify /SHARE_GLOBALS to
suppress ‘‘conflicting attributes for psect’’ messages; although they can
otherwise be ignored. (VAX only)

/SHOW[=(option[, . . .])]
Sets or cancels listing options. You must use the /LIST qualifier with the
/SHOW qualifier to use any of the /SHOW options. Table 1–23 describes the
/SHOW qualifier options.

1–74 Developing HP C Programs

Table 1–23 /SHOW Qualifier Options

Option Usage

ALL Prints all listing information.

[NO]BRIEF Creates the same listing as the option SYMBOLS
except that BRIEF eliminates from the list any
identifiers that are not referenced in the program,
and are not members of a structure or union that
is referenced in the program.

The NOBRIEF option is the default.

[NO]CROSS_REFERENCE Specifies whether the compiler generates cross-
references. If you specify /SHOW=CROSS_
REFERENCE, the compiler lists, for each variable
referenced in the procedure, the line numbers of
the lines on which the variable is referenced.

You may use /SHOW=CROSS_REFERENCE
with /SHOW=SYMBOLS. Otherwise, specifying
/SHOW=CROSS_REFERENCE also gives
you /SHOW=BRIEF. To obtain any type of
listing, you must specify /LIST. Specifying
/SHOW=[NO]CROSS_REFERENCE is the same
as specifying /[NO]CROSS_REFERENCE.

The NOCROSS_REFERENCE option is the
default.

[NO]DICTIONARY Places CDD/Repository definitions—included in
the program with the #pragma dictionary
preprocessor directive—into the listing file. These
data definitions are marked in the listing file with
an uppercase letter D in the listing margin.

The NODICTIONARY option is the default.

[NO]EXPANSION Places final macro expansions in the program
listing. However, expansion text for preprocessing
directives is not shown. When you specify
this option, the number printed in the margin
indicates the maximum depth of macro
substitutions that occur on each line.

The NOEXPANSION option is the default.

[NO]HEADER Produces the header lines at the top of each page
of a listing.

The HEADER option is the default.

(continued on next page)

Developing HP C Programs 1–75

Table 1–23 (Cont.) /SHOW Qualifier Options

Option Usage

[NO]INCLUDE Places the contents of #include files and modules
in the program listing.

The NOINCLUDE option is the default.

[NO]INTERMEDIATE (VAX only) Places all intermediate and final macro
expansions in the program listing.

The NOINTERMEDIATE option is the default.

[NO]MESSAGES Lists all messages that are in effect at
compilation (based on the settings of /STANDARD,
/WARNINGS, and #pragma message).

The NOMESSAGE option is the default.

NONE Creates an empty listing file with only the header.
If you specify this option on a CC command line
that contains /LIST and /MACHINE_CODE, the
compiler places machine code in the listing file.

[NO]SOURCE Places the source program statements in the
program listing.

The SOURCE option is the default.

[NO]STATISTICS Places compiler performance statistics in the
program listing.

The NOSTATISTICS option is the default.

[NO]SYMBOLS Places the symbol table of the compiled program
in the program listing. The symbol table includes
a list of all functions, the sizes and attributes of
all variables referenced in the program, and a
program section summary and function definition
map.

The NOSYMBOLS option is the default.

(continued on next page)

1–76 Developing HP C Programs

Table 1–23 (Cont.) /SHOW Qualifier Options

Option Usage

[NO]TERMINAL (VAX only) Displays compiler messages to the terminal. Use
/SHOW=NOTERMINAL to suppress compiler
messages to the terminal or to a batch log file.

The TERMINAL option is the default.

[NO]TRANSLATION (VAX only) Places into the listing file all UNIX system file
specifications that the compiler translates to
OpenVMS file specifications. See the HP C Run-
Time Library Reference Manual for OpenVMS
Systems for more information on file translation.

The NOTRANSLATION option is the default.

/[NO]STANDARD[=(option[, . . .])]
Defines the compilation mode, directing the compiler to flag certain HP C-
specific constructs and HP C relaxations of conventional C language constructs
and rules. For example, the conversions from pointer to integer and back again
are subject to more stringent tests when you specify /STANDARD=ANSI89.

Table 1–24 describes the /STANDARD qualifier options.

Table 1–24 /STANDARD Qualifier Options

Option Usage

ANSI89 Places the compiler in strict C Standard mode.

C99 Places the compiler in strict ISO/IEC C99 Standard
mode. Note that /STANDARD=C99 is not fully sup-
ported on VAX systems. Specifying /STANDARD=C99
on OpenVMS VAX systems produces a warning and
puts the compiler into /STANDARD=RELAXED mode.

LATEST Places the compiler in the latest ISO C standard
dialect. /STANDARD=LATEST is currently equivalent
to /STANDARD=C99, but is subject to change when
newer versions of the ISO C standard are released.

RELAXED Places the compiler in relaxed C Standard mode.

MS Interprets source programs according to certain
language rules followed by Microsoft’s Visual C++
compiler.

(continued on next page)

Developing HP C Programs 1–77

Table 1–24 (Cont.) /STANDARD Qualifier Options

Option Usage

ISOC94 Places the compiler in ISO C 94 mode, which
enables digraph processing and defines the macro
__STDC_VERSION__=199409L.

Digraphs are pairs of characters that translate into
a single character, much like trigraphs, except that
trigraphs get replaced inside string literals, but
digraphs do not. The digraphs are:

Digraph Character Represented

<: [

:>]

<% {

%> }

%: #

%:%: ##

The ISOC94 option can be specified alone or in
combination with any other option except VAXC. If
specified alone, ISOC94 provides a default major mode
of RELAXED.

COMMON Places the compiler in common C mode. This
mode enforces K & R programming style; that is,
compatibility with older UNIX compilers such as pcc
and gcc.

VAXC Places the compiler in VAX C mode.

PORTABLE Places the compiler in RELAXED mode, and enables
the issuance of diagnostics that warn about any
nonportable usages encountered.

/STANDARD=PORTABLE is supported for VAX C
compatibility only. It is equivalent to the recommended
combination of qualifiers /STANDARD=
RELAXED/WARNINGS=ENABLE=PORTABLE.

(continued on next page)

1–78 Developing HP C Programs

Table 1–24 (Cont.) /STANDARD Qualifier Options

Option Usage

MIA Places the compiler in strict C Standard mode with
some behavior differences, as required by the MIA
standard:

• On OpenVMS VAX systems, G_floating becomes
the default floating-point format for double
variables. (VAX only)

On OpenVMS Alpha systems, G_floating is the
default in any case. (Alpha only)

• In structures, zero-length bit fields cause the next
bit field to start on an integer boundary, rather
than on a character boundary.

Compiling a program with /STANDARD=MIA sets the
__MIA predefined macro to 1.

The default is /NOSTANDARD, which is equivalent to /STANDARD=RELAXED.

If you specify /STANDARD, you must supply at least one option.

With one exception, the /STANDARD qualifier options are mutually
exclusive. Do not combine them. The exception is that you can specify
/STANDARD=ISOC94 with any other option except VAXC.

HP C modules compiled in different modes can be linked and executed together.

Also see the _ _HIDE_FORBIDDEN_NAMES predefined macro (Section 6.1.7).

/[NO]TIE
Enables the compiled code to be used in combination with translated images,
either because the code might call into a translated image or might be called
from a translated image. The default is /NOTIE.

/[NO]UNDEFINE=(identifier[, . . .])
See /[NO]DEFINE in this section.

/[NO]UNSIGNED_CHAR
By default, char is a signed character type. The /UNSIGNED_CHAR qualifier
lets you change this default to an unsigned character type, which causes all
plain char declarations to have the same representation and set of values as
unsigned char declarations. The default is /NOUNSIGNED_CHAR.

Developing HP C Programs 1–79

/VAXC (VAX only)

Invokes the VAX C compiler.

The CC command is used to invoke either the VAX C or HP C compiler. If your
system has a VAX C compiler installed on it, the HP C installation procedure
provides the option of specifying which compiler will be invoked by default
when just the CC command is used. To invoke the compiler that is not the
default, use the CC command with the appropriate qualifier: CC/DECC for the
HP C compiler, or CC/VAXC for the VAX C compiler.

If your system does not have a VAX C compiler installed on it, the CC
command will invoke the HP C compiler, and the /VAXC qualifier is not
supported.

/[NO]VERSION
Directs the compiler to print out the compiler version and platform. The
compiler version is the same as in the listing file.

This qualifier makes it easier for you to report what compiler you are using.

Note

To display the compiler version and platform when issuing the CC
command for a source file that does not exist, enter:

CC/DECC/VERSION NL:

/[NO]WARNINGS[=(option[, . . .])]
Controls the issuance of compiler diagnostic messages or groups of messages.
It also allows for the severity of messages to be modified. The default qualifier,
/WARNINGS, enables all warning and informational messages for the compiler
mode you are using. The /NOWARNINGS qualifier suppresses the warning and
informational messages. Also see the #pragma message preprocessor directive.

Table 1–25 describes the /WARNING qualifier options.

For a description of what to specify for the message-list, see the #pragma
message preprocessor directive (Section 5.4.14).

1–80 Developing HP C Programs

Table 1–25 /WARNINGS Qualifier Options

Option Usage

DISABLE=message-list Suppresses the issuance of the specified messages.

Only messages of severity Warning (W) or
Information (I) can be disabled. If the message
has severity of Error (E) or Fatal (F), it is issued
regardless of any attempt to disable it.

ENABLE=message-list Enables issuance of the specified messages.

NOINFORMATIONALS Suppresses informational messages.

EMIT_ONCE=message-list Emits the specified messages only once per
compilation.

Certain messages are emitted only the first time the
compiler encounters the causal condition. When the
compiler encounters the same condition later in the
program, no message is emitted. Messages about
the use of language extensions are an example of
this kind of message. To emit one of these messages
every time the causal condition is encountered, use
the EMIT_ALWAYS option.

Errors and Fatals are always emitted. You cannot
set them to EMIT_ONCE.

EMIT_ALWAYS=message-list Emits the specified messages at every occurrence of
the causal condition.

ERRORS=message-list Sets the severity of the specified messages to Error.

Supplied Error messages and Fatal messages
cannot be made less severe. (Exception: A message
can be upgraded from Error to Fatal, then later
downgraded to Error again, but it can never be
downgraded from Error.)

Warnings and Informationals can be made any
severity.

FATALS=message-list Sets the severity of the specified messages to Fatal.

INFORMATIONALS=message-
list

Sets the severity of the specified messages to
Informational. Note that Fatal and Error messages
cannot be made less severe.

WARNINGS=message-list Sets the severity of the specified messages to
Warning. Note that Fatal and Error messages
cannot be made less severe.

(continued on next page)

Developing HP C Programs 1–81

Table 1–25 (Cont.) /WARNINGS Qualifier Options

Option Usage

VERBOSE Displays the full message information for every
compiler message encountered. This information
includes the message description and user action,
as well as the identifier, severity, and message text.

When /WARNINGS=VERBOSE is used with
/LIST/SHOW=MESSAGES, a list of all messages in
effect at compilation are added to the listing file,
showing the full information for each message.

Notes

• If a message is on both the enabled and disabled list, it is disabled.

• If a message is on both the EMIT_ONCE and the EMIT_ALWAYS
list, it is considered to be on the EMIT_ONCE list.

• If a message is on more than one of the FATALS, ERRORS,
WARNINGS, or INFORMATIONALS lists, the message is given
the least severe level.

• The NOINFORMATIONALS option is not the negation of
INFORMATIONALS=msg-list. It is valid to specify:

/WARNINGS=(INFORMATIONALS=message_list,NOINFORMATIONALS)

This has the effect of making the messages on the message_
list informationals, and causing the compiler to suppress any
informational messages.

• One of the message groups described in the #pragma message
description in Section 5.4.14 is UNUSED, which enables messages
that report apparently unnecessary #include files and CDD
records.

However, unlike any other messages, these messages must be
enabled on the command line (/WARNINGS=ENABLE=UNUSED)
to be effective. Any #pragma message directives within the source
have no effect on these messages; their state is determined only by
processing the command line.

The default is /WARNINGS=ENABLE=LEVEL3.

1–82 Developing HP C Programs

1.3.5 Compiler Diagnostic Messages
If there are errors in your source file when you compile your program, the HP C
compiler signals these errors and displays diagnostic messages. Reference the
message, locate the error, and, if necessary, correct the error. See Appendix D
or the online help for a description of all compiler diagnostic messages.

You can control the issuance of specific compiler diagnostic messages or groups
of messages with the /[NO]WARNINGS command-line qualifier (Section 1.3.4)
and the #pragma message preprocessor directive (Section 5.4.14).

To display a particular compiler diagnostic message online, enter the following
command:

$ HELP CC/DECC MESSAGE mnemonic Return (VAX only)
$ HELP CC MESSAGE mnemonic Return (Alpha, I64)

To display a list of all message mnemonics, enter the following command:

$ HELP CC/DECC MESSAGE Return (VAX only)
$ HELP CC MESSAGE Return (Alpha, I64)

Diagnostic messages have the following format:

%CC-s-ident, message-text
Listing line number m
At line number n in name

%CC
The facility or program name of the HP C compiler. This portion indicates that
the message is being issued by HP C.

s
The severity of the error, represented in the following way:

F Fatal error. The compiler stops executing when a fatal error occurs and does not
produce an object module. You must correct the error before you can compile
the program.

E Error. The compiler continues, but does not produce an object module. You
must correct the error before you can successfully compile the program.

W Warning. The compiler produces an object module. It attempts to correct the
error in the statement, but you should verify that the compiler’s action is
acceptable. Otherwise, your program may produce unexpected results.

I Information. This message usually appears with other messages to inform you
of specific actions taken by the compiler. No action is necessary on your part.

Developing HP C Programs 1–83

ident
The message identification. This is a descriptive abbreviation (mnemonic) of
the message text.

message-text
The compiler’s message. In many cases, it consists of more than one line
of output. A message generally provides you with enough information to
determine the cause of the error so that you can correct it.

Listing line number m
The integer m, which gives you the line number in the listing file where the
error occurs. This information is given when you specify the /LIST qualifier.

At line number n in name
The integer n, which gives you the number of the line where the error occurs.
The number is relative to the beginning of the file or text library module
specified by name. You can use the #line directive to change both the line
number and name that appear in the message.

1.4 Linking an HP C Program
After you compile an HP C source program or module, use the DCL command
LINK to combine your object modules into one executable image, which can
then be executed by the OpenVMS system. A source program or module cannot
run on the OpenVMS system until it is linked.

When you execute the LINK command, the linker performs the following
functions:

• Resolves local and global symbolic references in the object code

• Assigns values to the global symbolic references

• Signals an error message for any unresolved symbolic reference

• Allocates virtual memory space for the executable image

When using the LINK command on development systems, use the /DEBUG
qualifier to link your program module. The /DEBUG qualifier appends to the
image all the symbol and line number information appended to the object
modules plus information on global symbols, and causes the image to run
under debugger control when it is executed.

1–84 Developing HP C Programs

The LINK command produces an executable image by default. However,
you can also use the LINK command to obtain shareable images and system
images. The /SHAREABLE qualifier directs the linker to produce a shareable
image; the /SYSTEM qualifier directs the linker to produce a system image.
See Section 1.4.2 for a complete description of these and other LINK command
qualifiers.

For a complete discussion of the OpenVMS Linker, see the HP OpenVMS
Linker Utility Manual.

1.4.1 The LINK Command
The LINK command has the following format:

LINK[/command-qualifier]... {file-spec[/file-qualifier...]},...

/command-qualifier...
Output file options.

file-spec
The input files to be linked.

/file-qualifier...
Input file options.

If you specify more than one input file, you must separate the input file
specifications with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input
file specified and the file type EXE. If you link more than one file, you should
specify the file containing the main program first. Then, the name of your
output file will have the same name as your main program module.

The execution of a program will begin at the function whose identifier is main,
or, if there is no function with this identifier, at the first function seen by the
VMS linker.

Note

Unexpected results might occur if you don’t have a function called main.

The following command line links the object files MAINPROG.OBJ,
SUBPROG1.OBJ, and SUBPROG2.OBJ to produce one executable image
called MAINPROG.EXE:

Developing HP C Programs 1–85

$ LINK MAINPROG.OBJ, SUBPROG1.OBJ, SUBPROG2.OBJ

Note

Unlike VAX C, HP C does not require you to define any LNK$LIBRARY
logicals.

1.4.2 LINK Command Qualifiers
You can use the LINK command qualifiers to modify the linker’s output, as
well as to invoke the debugging and traceback facilities. Linker output consists
of an image file and an optional map file.

The following list summarizes some of the most commonly used LINK
command qualifiers. A brief description of each qualifier follows this list.
For a complete list of LINK qualifiers, see the HP OpenVMS Linker Utility
Manual.

Command Qualifiers Default

/BRIEF None.
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG /NODEBUG
/[NO]EXECUTABLE[=file-spec] /EXECUTABLE=name.EXE
/FULL None.
/[NO]MAP /MAP (batch) /NOMAP (interactive)
/[NO]SHAREABLE[=file-spec] /NOSHAREABLE
/[NO]TRACEBACK /TRACEBACK

/BRIEF
Produces a summary of the image’s characteristics and a list of contributing
modules. This qualifier is mutually exclusive with /FULL.

/[NO]CROSS_REFERENCE
Produces cross-reference information for global symbols; /NOCROSS_
REFERENCE suppresses cross-reference information. The default is
/NOCROSS_REFERENCE.

/[NO]DEBUG
Includes the OpenVMS Debugger in the executable image and generates a
symbol table; /NODEBUG causes the linker to prevent debugger control of the
program. The default is /NODEBUG.

1–86 Developing HP C Programs

/[NO]EXECUTABLE [=file-spec]
Produces an executable image. /NOEXECUTABLE suppresses production of an
image file. The default is /EXECUTABLE.

/FULL
Produces a summary of the image’s characteristics, a list of contributing
modules, listings of global symbols by name and by value, and a summary of
characteristics of image sections in the linked image. This qualifier is mutually
exclusive with /BRIEF.

/[NO]MAP
Generates a map file; /NOMAP suppresses the map. The default is /MAP in
batch mode and /NOMAP in interactive mode.

/[NO]SHAREABLE[=file-spec]
Creates a shareable image. /NOSHAREABLE generates an executable image.
The default is /NOSHAREABLE.

/[NO]TRACEBACK
Generates symbolic traceback information when error messages are
produced; NOTRACEBACK suppresses traceback information. The default
is /TRACEBACK.

1.4.3 Linker Input Files
You can specify the object modules to be included in an executable image in
any of the following ways:

• Specify input file specifications for the object modules.

If no file type is specified, the linker searches for an object file with the file
type OBJ.

• Specify one or more object module library files.

You can specify either the name of an object module library with the
/LIBRARY qualifier or the names of the object modules contained in an
object module library with the /INCLUDE qualifier. Section 1.4.6 describes
the uses of object module libraries.

• Specify an options file.

An options file can contain additional file specifications for the LINK
command, as well as special linker options. You must use the /OPTIONS
qualifier to specify an options file. For more information on options files,
see the HP OpenVMS Linker Utility Manual.

Developing HP C Programs 1–87

Table 1–26 shows the default input file types for the linker.

Table 1–26 OpenVMS Linker Default File Types for Input Files

File Type File

OBJ Object module

OLB Library

OPT Options file

1.4.4 Linker Output Files
When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as that of the first object module
specified with a file type of EXE.

In a batch job, the linker creates both an executable image file and storage
map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file or to specify an
alternative output directory or device, you can include a file specification on
the /MAP or /EXECUTABLE qualifier. In the following example, the LINK
command creates the image file [PROJECT.EXE]UPDATE.EXE and the map
file [PROJECT.MAP]UPDATE.MAP:

$ LINK UPDATE/EXECUTABLE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

1.4.5 Linking Against Object Module Libraries and Shareable Images
Linking against object modules (stored in object module libraries) or against
shareable images are ways of allowing your program to access data and
routines outside of your compilation units. You can either create the object
module libraries and the shareable images or use the ones provided by HP.
To access data in object modules and shareable images, you can use LINK
command qualifiers, OpenVMS logical names, and options files. For more
information about object module libraries, see the HP OpenVMS Linker Utility
Manual.

The HP C Run-Time Library (RTL) for OpenVMS systems also provides
two formats for you to choose from: shareable images or object module
libraries. Depending on which type of RTL you want to use and on which
type of functions you plan on calling from your programs, you need to supply
information to the linker that specifies which versions of the functions to
access.

1–88 Developing HP C Programs

When you use the HP C RTL and its corresponding header files, remember
that the HP C RTL ships with the OpenVMS operating system and the header
files ship with the HP C compiler. Since the releases of the compiler and of the
operating system are not synchronized, there may be compatibility issues that
you need to consider to use the RTL properly. See the HP C release notes (by
entering HELP CC/DECC RELEASE_NOTES on the DCL command line) for
information that may pertain to this issue.

For a description of the various ways to link with the HP C RTL, see the HP C
Run-Time Library Reference Manual for OpenVMS Systems.

1.4.6 Object Module Libraries
You can make program modules accessible to other users by storing them
in an object module library. To link modules contained in an object module
library, use the /INCLUDE qualifier and specify the modules you want to link.
The following example links the subprogram modules EGGPLANT, TOMATO,
BROCCOLI, and ONION with the main program module GARDEN:

$ LINK GARDEN, VEGGIES/INCLUDE=(EGGPLANT,TOMATO,BROCCOLI,ONION)

An object module library can also contain a symbol table with the names of
each global symbol in the library, and the name of the module in which they
are defined. You specify the name of the object module library containing
symbol definitions with the /LIBRARY qualifier. When you use the /LIBRARY
qualifier during a linking operation, the linker searches the specified library
for all unresolved references found in the included modules during compilation.

The following example uses the library RACQUETS to resolve undefined
symbols in BADMINTON, TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using
the DCL command DEFINE LNK$LIBRARY. The linker searches default user
libraries for unresolved references after it searches modules and libraries
specified in the LINK command. For more information about the DEFINE
command, see the HP OpenVMS DCL Dictionary.

For more information about object module libraries, see the HP OpenVMS
Linker Utility Manual.

Developing HP C Programs 1–89

1.4.7 Linker Error Messages
If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur (that is, errors with severities of E or F), the linker does
not produce an image file.

The messages produced by the linker are descriptive, and you do not usually
need additional information to determine the specific error. Some common
errors that occur during linking are as follows:

• An object module has compilation errors.

This occurs when you try to link a module that produced warning messages
during compilation. You can usually link compiled modules for which the
compiler generated messages, but verify that the modules will produce the
output you expect.

• The input file has a file type other than OBJ and no file type was specified
on the command line.

If you do not specify a file type, the linker searches for a file that has
a file type of OBJ by default. If the file is not an object file and you do
not identify it with the appropriate file type, the linker signals an error
message and does not produce an image file.

• You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the
command line or if the compilation contains fatal diagnostics.

• A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names from
the command line and the linker cannot locate the definition for a
specified global symbol reference. Consider, for example, the following
LINK command for a main program module, OCEAN.OBJ, that calls the
subprogram modules REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ:

$ LINK OCEAN, REEF, SHELLS

Because SEAWEED is not linked, the linker issues the following error
messages:

%LINK-W-NUDFSYMS, 1 undefined symbol
%LINK-I-UDFSYMS, SEAWEED
%LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
%LINK-W-DIAGISUED, completed but with diagnostics

1–90 Developing HP C Programs

If an error occurs when you link modules, you can often correct it by reentering
the command and specifying the correct modules or libraries. If an error
indicates that a program module cannot be located, you may be linking the
program with the wrong RTL.

For a complete list of linker messages, see the OpenVMS System Messages and
Recovery Procedures Reference Manual.

1.5 Running an HP C Program
After you link your program, you can use the DCL command RUN to execute
it. The RUN command has the following format:

RUN [/[NO]DEBUG] file-spec [/[NO]DEBUG]

/[NO]DEBUG
An optional qualifier. Specify the /DEBUG qualifier to invoke the debugger if
the image was not linked with it. You cannot use /DEBUG on images linked
with the /NOTRACEBACK qualifier. If the image was linked with the /DEBUG
qualifier and you do not want the debugger to prompt you, use the /NODEBUG
qualifier. The default action depends on whether the file was linked with the
/DEBUG qualifier.

file-spec
The file you want to run.

The execution of a program begins at the function whose identifier is main, or,
if there is no function with this identifier, at the first function seen by the VMS
linker.

Note

Unexpected results might occur if you don’t have a function called main.

The following example executes the image SAMPLE.EXE without invoking the
debugger:

$ RUN SAMPLE/NODEBUG

For more information on debugging programs, see Section C.1.

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an error
message. Run-time errors can also be issued by the operating system or by
utilities.

Developing HP C Programs 1–91

When an error occurs during the execution of a program, the program
is terminated and the OpenVMS condition handler displays one or more
messages on the currently defined SYS$ERROR device.

A message is followed by a traceback. For each module in the image that has
traceback information, the condition handler lists the modules that were active
when the error occurred, which shows the sequence in which the modules were
called.

For example, if an integer divide-by-zero condition occurs, a run-time message
like the following appears:

%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero
at PC=00000FC3, PSL=03C00002

This message is followed by a traceback message similar to the following:

%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC
A C 8 00000007 00000FC3
B main 1408 000002F7 00000B17

The information in the traceback message follows:

module name
The name or names of an image module that was active when the error
occurred.

The first module name is that of the module in which the error occurred.
Each subsequent line gives the name of the caller of the module named on the
previous line. In this example, the modules are A and B; main called C.

routine name
The name of the function in the calling sequence.

line
The compiler-generated line number of the statement in the source program
where the error occurred, or at which the call or reference to the next procedure
was made. Line numbers in these messages match those in the listing file (not
the source file).

rel PC
The value of the PC (program counter). This value represents the location in
the program image at which the error occurred or at which a procedure was
called. The location is relative to the virtual memory address that the linker
assigned to the code program section of the module indicated by module name.

1–92 Developing HP C Programs

abs PC
The value of the PC in absolute terms; that is, the actual address in virtual
memory representing the location at which the error occurred.

Traceback information is available at runtime only for modules compiled and
linked with the traceback option in effect. The traceback option is in effect by
default for both the CC and LINK commands. You may use the CC command
qualifier /NODEBUG and the LINK command qualifier /NOTRACEBACK to
exclude traceback information. However, traceback information should be
excluded only from thoroughly debugged program modules.

1.6 Passing Arguments to the main Function
The main function in an HP C program can accept arguments from the
command line from which it was invoked. The syntax for a main function is:

int main(int argc, char *argv[], char *envp[])

{ . . . }

argc
The number of arguments in the command line that invoked the program.

argv
A pointer to an array of character strings that contain the arguments.

envp
The environment array. It contains process information such as the user
name and controlling terminal. It has no bearing on passing command-line
arguments. Its primary use in HP C programs is during exec and getenv
function calls. (For more information, see the HP C Run-Time Library
Reference Manual for OpenVMS Systems).

In the main function definition, the parameters are optional. However, you can
access only the parameters that you define. You can define the main function in
any of the following ways:

int main()
int main(int argc)
int main(int argc, char *argv[])
int main(int argc, char *argv[], char *envp[])

To pass arguments to the main function, you must install the program as a DCL
foreign command. When a program is installed and run as a foreign command,
the argc parameter is always greater than or equal to 1, and argv[0]always
contains the name of the image file.

Developing HP C Programs 1–93

The procedure for installing a foreign command involves using a DCL
assignment statement to assign the name of the image file to a symbol that
is later used to invoke the image. For example:

$ ECHO == "DSK:COMMARG.EXE" Return

The symbol ECHO is installed as a foreign command that invokes the image
in COMMARG.EXE. The definition of ECHO must begin with a dollar sign ($)
and include a device name, as shown.

For more information about the procedure for installing a foreign command,
see the HP OpenVMS DCL Dictionary.

Example 1–1 shows a program called COMMARG.C, which displays the
command-line arguments that were used to invoke it.

Example 1–1 Echo Program Using Command-Line Arguments

/* This program echoes the command-line arguments. */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int i;
/* argv[0] is program name */

printf("program: %s\n",argv[0]);

for (i = 1; i < argc; i++)
printf("argument %d: %s\n", i, argv[i]);

exit (EXIT_SUCCESS);
}

You can compile and link the program using the following DCL command lines:

$ CC COMMARG Return

$ LINK COMMARG Return

A sample output for Example 1–1 follows:

$ ECHO Long "Day’s" "Journey into Night" Return

program: db7:[oneill.plays]commarg.exe;1
argument 1: long
argument 2: Day’s
argument 3: Journey into Night

1–94 Developing HP C Programs

DCL converts most arguments on the command line to uppercase letters.
HP C internally parses and modifies the altered command line to make HP C
argument access compatible with C programs developed on other systems. All
alphabetic arguments in the command line are delimited by spaces or tabs.
Arguments with embedded spaces or tabs must be enclosed in quotation marks
(" "). Uppercase characters in arguments are converted to lowercase, but

arguments within quotation marks are left unchanged.

1.7 64-bit Addressing Support
OpenVMS 64-bit virtual addressing support makes the 64-bit virtual address
space defined by the Alpha and Itanium architectures available to the
OpenVMS operating system and its users. It also allows per-process virtual
addressing for accessing dynamically mapped data beyond traditional 32-bit
limits.

The HP C compiler supports 64-bit pointers on all hardware platforms where
the OpenVMS operating system supports 64-bit pointers; that is, on the Alpha
and Itanium processors.

This support is provided through command-line qualifiers and pragma
preprocessor directives that control the size of the C pointer because:

• Typical C usage involves many objects accessed through pointers rather
than single monolithic arrays or structures.

• Huge declared objects would have an impact on object-module format and
the linker.

Note

Single objects larger than 2 gigabytes are not fully supported, even
with 64-bit virtual addressing in effect.

• Minimal source-code edits are required to exploit the 64-bit space where
needed. Because the pragmas affect a region of source code, it is not
necessary to modify every declaration.

No changes are required for existing 32-bit applications that do not need to
exploit 64-bit addressing.

Developing HP C Programs 1–95

1.7.1 Qualifiers and Pragmas
The following qualifiers, pragmas, and predefined macro control pointer size:

• /[NO]POINTER_SIZE={LONG | SHORT | 64 | 32}

• /[NO]CHECK=[NO]POINTER_SIZE=(option,...)

• #pragma pointer_size

• #pragma required_pointer_size

• _ _INITIAL_POINTER_SIZE predefined macro

1.7.1.1 The /POINTER_SIZE Qualifier
The /POINTER_SIZE qualifier lets you specify a value of 64 or 32 (or LONG
or SHORT) as the default pointer size within the compilation unit. You can
compile one set of modules using 32-bit pointers and another set using 64-bit
pointers. Take care when these two separate groups of modules call each other.

The default is /NOPOINTER_SIZE, which:

• Disables pointer-size features, such as the ability to use #pragma
pointer_size

• Directs the compiler to assume that all pointers are 32-bit pointers.

This default represents no change over previous versions of HP C.

Specifying /POINTER_SIZE with a keyword value (32, 64, SHORT, or LONG)
has the following effects:

• Enables processing of #pragma pointer_size.

• Sets the initial default pointer size to 32 or 64, as specified.

• Predefines the preprocessor macro _ _INITIAL_POINTER_SIZE to 32 or
64, as specified. If /POINTER_SIZE is omitted from the command
line, _ _INITIAL_POINTER_SIZE is 0, which allows you to use #ifdef
_ _INITIAL_POINTER_SIZE to test whether or not the compiler supports
64-bit pointers.

• For /POINTER_SIZE=64, the HP C RTL name mapping table is changed
to select the 64-bit versions of malloc, calloc, and other RTL routines by
default.

Use of the /POINTER_SIZE qualifier also influences the processing of HP C
RTL header files:

• For those functions that have both 32-bit and 64-bit implementations,
specifying /POINTER_SIZE enables function prototypes to access both
functions, regardless of the actual value supplied to the qualifier. The

1–96 Developing HP C Programs

value specified to the qualifier determines the default implementation to
call during that compilation unit.

• Functions that require a second interface to be used with 64-bit pointers
reside in the same object libraries and shareable images as their 32-bit
counterparts. Because no new object libraries or shareable images are
introduced, using 64-bit pointers does not require changes to your link
command or link options files.

See the HP C Run-Time Library Reference Manual for OpenVMS Systems
for more information on the impact of 64-bit pointer support on HP C RTL
functions.

See Section 1.3.4 for more information about /POINTER_SIZE.

1.7.1.2 The _ _INITIAL_POINTER_SIZE Macro
The _ _INITIAL_POINTER_SIZE preprocessor macro is useful for header-file
authors to determine:

• If the compiler supports 64-bit pointers.

• If the application expects to use 64-bit pointers.

Header-file code can then be conditionalized using the following preprocessor
directives:

#if defined (____INITIAL_POINTER_SIZE) /* Compiler supports 64-bit pointers */
#if ____INITIAL_POINTER_SIZE > 0 /* Application uses 64-bit pointers */
#if ____INITIAL_POINTER_SIZE == 32 /* Application uses some 64-bit pointers,

but default RTL routines are 32-bit.*/

#if ____INITIAL_POINTER_SIZE == 64 /* Application uses 64-bit pointers and
default RTL routines are 64-bit. */

1.7.1.3 The /CHECK=POINTER_SIZE Qualifier
Use the /CHECK=POINTER_SIZE qualifier to generate code that checks 64-bit
pointer values at runtime to make sure they can fit in a 32-bit pointer. If such
a value cannot be represented by a 32-bit pointer, the run-time code signals a
range error (SS$_RANGEERR).

Be aware that the compiler generates the same kinds of warning messages for
pointer-size mismatches whether or not this qualifier is specified. The run-time
checks can detect problems that cannot be detected at compile time, and can
help determine whether or not certain warnings are safe to suppress.

See Section 1.3.4 for more information about /CHECK=POINTER_SIZE,
including defaults and an example.

Developing HP C Programs 1–97

1.7.1.4 Pragmas
The #pragma pointer_size and #pragma required_pointer_size preprocessor
directives can be used to change the pointer size currently in effect within a
compilation unit. You can default pointers to 32-bits and then declare specific
pointers within the module as 64-bits. In this case, you also need to specifically
call the _malloc64 form of malloc to obtain memory from the 64-bit memory
area.

These pragmas have the following format:

#pragma pointer_size keyword

#pragma required_pointer_size keyword

The keyword is one of the following:

{short| 32} 32-bit pointer

{long| 64} 64-bit pointer

save Saves the current pointer size

restore Restores the current pointer size to its last saved state

The #pragma pointer_size and #pragma required_pointer_size directives
work essentially the same way, except that #pragma required_pointer_size
always takes effect regardless of command-line qualifiers, while #pragma
pointer_size is only in effect when the /POINTER_SIZE command-line
qualifier is used.

The #pragma pointer_size behavior allows a program to be built using 64-bit
features as purely as a 32-bit program, just by changing the command-line
qualifier.

The #pragma required_pointer_size is intended for use in header files where
interfaces to system data structures must use a specific pointer size regardless
of how the program is compiled.

See Sections 5.4.19 and 5.4.20 for more information on the pointer-size
pragmas.

1.7.2 Determining Pointer Size
The pointer-size qualifiers and pragmas affect only a limited number of
constructs in the C language itself. At places where the syntax creates a
pointer type, the pointer-size context determines the size of that type. Pointer-
size context is defined by the most recent pragma (or command-line qualifier)
affecting pointer size.

1–98 Developing HP C Programs

Here are examples of places in the syntax where a pointer type is created:

• The * in a declaration or cast:

int **p; // Declaration
ip = (int **)i; // Cast

• The outer (leftmost) brackets [] in a formal parameter imply a *:

void foo(int ia[10][20]) {}

// Means the following:

void foo(int (*ia)[20]) {}

• A function declarator as a formal parameter imply a *:

void foo (int func()):

// Means the following:

void foo (int (*)() func);

• Any formal parameter of array or function type implies a *, even when
bound in a typedef:

typedef int a_type[10];

void foo (a_type ia);

// Means the following:

void foo (int *ia);

Note that a typedef binds the meaning of pointer syntax while a macro does
not. Even though both constructs can contain a * used in a declaration, the
* in the macro definition is not affected by any pointer-size controls until the
point at which the macro is expanded. For example:

#pragma pointer_size 64
typedef int * j_ptr; // * is 64-bit
#define J_PTR int * // * is not analyzed

#pragma pointer_size 32
j_ptr j; // j is a 64-bit pointer.
J_PTR J; // J is a 32-bit pointer.

Developing HP C Programs 1–99

1.7.2.1 Special Cases
The following special cases are not affected by pointer-size context:

• Formal parameters to main are always treated as if they were in a
#pragma pointer_size system_default context, which is 32-bit pointers for
OpenVMS systems. However, using /POINTER_SIZE=LONG=ARGV will
allow argv to be a pointer to long pointers.

For example, regardless of the #pragma pointer_size 64 directive, argv[0]
is a 32-bit pointer:

#pragma pointer_size 64

main(int argc, char **argv)
{ ASSERT(sizeof(argv[0]) == 4); }

• A string literal produces a 32-bit pointer when used as an rvalue:

#pragma pointer_size 64

ASSERT(sizeof("x" + 0) == 4);

• The & operator yields a 32-bit pointer unless it is applied to pointer
dereference, in which case it is the size of the dereferenced pointer type:

sizeof(&foo) == 32

sizeof(&s ->next) == sizeof(s)

• An rvalue cast to a 32-bit pointer type does not modify the high-order 32
bits of a 64-bit operand. sizeof yields 4 bytes, but the high bits are not
lost unless a 4-byte assignment occurs:

#pragma pointer_size 64
typedef int * ip64;

#pragma pointer_size 32
typedef int * ip32;

ip64 a,b;
ip32 c;

a = (ip32)b; // No high-order bits are lost
c = (ip32)b; // High-order bits are lost

1–100 Developing HP C Programs

1.7.2.2 Mixing Pointer Sizes
An application can use both 32-bit and 64-bit addresses. The following
semantics apply when mixing pointers:

• Assignments (including arguments) silently promote a 32-bit pointer rvalue
to 64 bits if other type rules are met. Promotion means sign extension.

• A warning is issued for an assignment of a 64-bit rvalue to a 32-bit lvalue
(without an explicit cast).

• For purposes of type compatibility, a different size pointer is a different
type (for example, when matching a prototype to a definition, or other
contexts involving redeclaration).

• The debugger knows the difference between pointers of different sizes.

1.7.3 Header File Considerations
The following general header-file considerations should be kept in mind:

• Header files usually define interfaces with types that must match the
layout used in library modules.

• Header files often do not bind "top-level" pointer types. Consider, for
example:

fprintf(FILE *, const char *, ...);

A "FILE * fp;" in a declaration in a different area of source code might be a
different size.

• All pointer parameters occupy 64 bits in the OpenVMS Alpha and I64
calling sequence, so a top-level mismatch of this kind is all right if the
called function does not lose the high bits internally.

• Routines dealing with pointers to pointers)or data structures containing
pointers) cannot be enabled to work simply by passing them both 32-bit
and 64-bit pointers. You need to have separate 32-bit and 64-bit variants
of the routine.

• The HP C RTL header files and the compiler cooperatively provide dual
implementations of functions that need to know the pointer size used by
the caller. They have different names. The compiler automatically calls the
appropriate name within the pointer-size context if the source code calls
the simple name. For example, a call to malloc becomes:

_malloc64 if /POINTER_SIZE=64.

_malloc32 if /POINTER_SIZE=32.

malloc if /POINTER_SIZE is omitted.

Developing HP C Programs 1–101

If /POINTER_SIZE is specified alone or with a value, _malloc64 or
_malloc32 can be called explicitly. If /POINTER_SIZE is not specified,
the program is compiled to be unaware of 64-bit pointers, and so the
declarations of these alternate variants are suppressed.

Be aware that pointer-size controls are not unique in the way they affect
header files; other features that affect data layout have similar impact. For
example, most header files should be compiled with 32-bit pointers regardless
of pointer-size context. Also, most system header files (on OpenVMS Alpha
and I64 systems) must be compiled with member_alignment regardless of user
pragmas or qualifiers.

To address this issue more generally, the pragma environment directive can be
used to save context and set header defaults at the beginning of each header
file, and then to restore context at the end. See Section 5.4.4 for a description
of pragma environment.

For header files that have not yet been upgraded to use #pragma environment,
the /POINTER_SIZE=64 qualifier can be difficult to use effectively. For such
header files that are not 64-bit aware, the compiler automatically applies user-
defined prologue and epilogue files before and after the text of the included
header file. See Section 1.7.4 for more information on prologue/epilogue files.

1.7.4 Prologue/Epilogue Files
HP C automatically processes user-supplied prologue and epilogue header files.
This feature is an aid to using header files that are not 64-bit aware within an
application that is built to exploit 64-bit addressing.

1.7.4.1 Rationale
HP C header files typically contain a section at the top that:

1. Saves the current state of the member_alignment, extern_model,
extern_prefix, and message pragmas.

2. Sets these pragmas to the default values for the system.

A section at the end of the header file then restores these pragmas to their
previously-saved state.

Mixed pointer sizes introduce another kind of state that typically needs to be
saved, set, and restored in header files that define fixed 32-bit interfaces to
libraries and data structures.

The #pragma environment preprocessor directive allows headers to control all
compiler states (message suppression, extern_model, member_alignment, and
pointer_size) with one directive.

1–102 Developing HP C Programs

However, for header files that have not yet been upgraded to use #pragma
environment, the /POINTER_SIZE=64 qualifier can be difficult to use
effectively. In this case, the automatic mechanism to include prologue/epilogue
files allows you to protect all of the header files within a single directory (or
modules within a single text library). You do this by copying two short files
into each directory or library that needs it, without having to edit each header
file or library module separately.

In time, you should modify header files to either exploit 64-bit addressing
(like the HP C RTL), or to protect themselves with #pragma environment.
Prologue/epilogue processing can ease this transition.

1.7.4.2 Using Prologue/Epilogue Files
Prologue/epilogue file are processed in the following way:

1. When the compiler encounters an #include preprocessing directive, it
determines the location of the file or text library module to be included. It
then checks to see if one or both of the two following specially named files
or modules exist in the same location as the included file:

____DECC_INCLUDE_PROLOGUE.H
____DECC_INCLUDE_EPILOGUE.H

The location is the OpenVMS directory containing the included file or the
text library file containing the included module. (In the case of a text
library, the .h is stripped off.)

The directory is the result of using the $PARSE/$SEARCH system services
with concealed device name logicals translated. Therefore, if an included
file is found through a concealed device logical that hides a search list, the
check for prologue/epilogue files is still specific to the individual directories
making up the search list.

2. If the prologue and epilogue files do exist in the same location as the
included file, then the content of each is read into memory.

3. The text of the prologue file is processed just before the text of the file
specified by the #include.

4. The text of the epilogue file is processed just after the text of the file
specified by the #include.

5. Subsequent #includes that refer to files from the same location use the
saved text from any prologue/epilogue file found there.

Developing HP C Programs 1–103

The prologue/epilogue files are otherwise treated as if they had been included
explicitly: #line directives are generated for them if /PREPROCESS_ONLY
output is produced, and they appear as dependencies if /MMS_DEPENDENCY
output is produced.

To take advantage of prologue/epilogue processing for included header
files, you need to create two files, _ _DECC_INCLUDE_PROLOGUE.H and
_ _DECC_INCLUDE_EPILOGUE.H, in the same directory as the included file.

Suggested content for a prologue file is:

____DECC_INCLUDE_PROLOGUE.H:

#ifdef ____PRAGMA_ENVIRONMENT
#pragma environment save
#pragma environment header_defaults
#else
#error "____DECC_INCLUDE_PROLOGUE.H: This compiler does not support
pragma environment"
#endif

Suggested content for an epilogue file is:

____DECC_INCLUDE_EPILOGUE.H:

#ifdef ____PRAGMA_ENVIRONMENT
#pragma ____environment restore
#else
#error "____DECC_INCLUDE_EPILOGUE.H: This compiler does not support
pragma environment"
#endif

1.7.5 Avoiding Problems
Consider the following suggestions to avoid problems related to pointer size:

• Write code to work with either 32-bit or 64-bit pointers by using only the
/POINTER_SIZE qualifier.

• Do bit manipulation on unsigned int and unsigned _ _int64, and carefully
cast pointers to and from them.

• Heed compile-time warnings, using casts only where you are sure that
pointers are not truncated.

• Enable the optional compile-time warning
(/WARN=ENABLE=MAYHIDELOSS).

• Do thorough testing when compiling with /CHECK=POINTER_SIZE.

1–104 Developing HP C Programs

1.7.6 Examples
The following examples illustrate the use and misuse of 64-bit pointers.

Developing HP C Programs 1–105

Example 1–2 Watch Out for Pointers to Pointers (**)

/* CC/NAME=AS_IS/POINTER_SIZE=64 */

#include <stdio.h>

#pragma pointer_size 64
char *C[2] = {"AB", "CD"}; /* sizeof(C) = 16 */
char **CPTRPTR = C;
char **CPTR;

#pragma pointer_size 32
char *c[2] = {"ab", "cd"}; /* sizeof(C) = 8 */
char **cptrptr = c;
char **cptr;

int main (void)
{

CPTR = cptr; /* No problem. */
cptr = CPTR; /* %CC-W-MAYLOSEDATA */

CPTRPTR = cptrptr; /* %CC-W-PTRMISMATCH */
cptrptr = CPTRPTR; /* MAYLOSEDATA & PTRMISMATCH */
puts(cptrptr[0]); /* ab */
puts(cptrptr[1]); /* cd */
puts(CPTRPTR[0]); /* Bad address passed. */
puts(CPTRPTR[1]); /* Fetch off end of c. */

}

Compiling Example 1–2 produces:

$ cc example1/name=as_is/pointer_size
cptr = CPTR; /* %CC-W-MAYLOSEDATA */

....^
%CC-W-MAYLOSEDATA, In this statement, "CPTR" has a larger
data size than "short pointer to char". Assignment may
result in data loss.)

CPTRPTR = cptrptr; /* %CC-W-PTRMISMATCH */
....^
%CC-W-PTRMISMATCH, In this statement, the referenced type
of the pointer value "cptrptr" is "short pointer to char",
which is not compatible with "long pointer to char".

cptrptr = CPTRPTR; /* MAYLOSEDATA & PTRMISMATCH */
....^
%CC-W-MAYLOSEDATA, In this statement, "CPTRPTR" has a
larger data size than "short pointer to short pointer
to char". Assignment may result in data loss.)

1–106 Developing HP C Programs

cptrptr = CPTRPTR; /* MAYLOSEDATA & PTRMISMATCH */
....^
%CC-W-PTRMISMATCH, In this statement, the referenced type
of the pointer value "CPTRPTR" is "long pointer to char",
which is not compatible with "short pointer to char".

Example 1–3 Trivial 64-Bit Exploitation

#include <stdio.h>
#include <stdlib.h>
____int64 limit, count;
size_t bytes;
char *cp, *prevcp;

int main(int argc, char **argv)
{

sscanf(argv[1], "%d", &bytes);
sscanf(argv[2], "%Ld", &limit);
printf("bytes %d, limit %Ld, tot %Ld\n",

bytes, limit, bytes * limit);
for (count=0; count < limit; count++) {

if (!(cp = malloc(bytes))) {
printf("Max %Ld bytes.\n", bytes * (count + 1));
break;

} else if (!prevcp)
printf("First addr %Lx.\n", cp);

}
prevcp = cp;
printf("Last addr %Lx.\n", prevcp);

}

Compiling, linking, and running Example 1–3 produces:

$ cc example2
$ link example2

$ example2:==syslogin:[.john]example2 ! << set up a symbol
$ example2 65536 1234567890123456
bytes 65536, limit 1234567890123456, tot 7121664952292605952
First addr 610b0.
First addr 730b0.
First addr 850b0.
First addr 970b0.
First addr a90b0.

.

.

.

Developing HP C Programs 1–107

First addr f1c30b0.
First addr f1d50b0.
First addr f1e70b0.
First addr f1f90b0.
First addr f20b0b0.
Max 225378304 bytes.
Last addr 0.

$
$ cc/pointer_size=64 example2
$ link example2
$ example2 65536 1234567890123456
bytes 65536, limit 1234567890123456, tot
7121664952292605952
First addr 1c0010010.
Max 42532864 bytes.
Last addr 1c2d8e010.

Example 1–4 Preceding Example No Longer Trivial

#include <stdio.h>
#include <stdlib.h>
____int64 limit, count;
size_t bytes;
char *cp, *prevcp;

static void do_args(char **args)
{

sscanf(argv[1], "%d", &bytes);
sscanf(argv[2], "%Ld", &limit);
printf("bytes %d, limit %Ld, tot %Ld\n",

bytes, limit, bytes * limit);
}

int main(int argc, char **argv)
{

do_args(argv);
for (count=0; count < limit; count++) {

if (!(cp = malloc(bytes))) {
printf("Max %Ld bytes.\n", bytes * (count + 1));
break;

} else if (!prevcp) {
printf("First addr %Lx.\n", cp);

}
prevcp = cp;
printf("Last addr %Lx.\n", prevcp);

}

1–108 Developing HP C Programs

Compiling Example 1–4 produces:

$ cc/pointer_size=64 example3
do_args(argv);
....^
%CC-W-PTRMISMATCH, In this statement, the referenced type
of the pointer value "argv" is "short pointer to char",
which is not compatible with "long pointer to char".

Developing HP C Programs 1–109

2
Using OpenVMS Record Management

Services

HP C for OpenVMS systems provides a set of run-time library functions and
macros to perform I/O. Some of these functions perform in the same manner as
I/O functions found on C implementations running on UNIX systems. Other
HP C functions take full advantage of the functionality of the OpenVMS
file-handling system. You can also access the OpenVMS file-handling system
from your HP C program without using the HP C Run-Time Library (RTL)
functions. In any case, the system that ultimately accesses files on OpenVMS
systems is OpenVMS Record Management Services (RMS).

This chapter introduces you to the following RMS topics:

• RMS file organization (Section 2.1)

• Record access modes (Section 2.2)

• RMS record formats (Section 2.3)

• RMS functions (Section 2.4)

• Writing HP C programs using RMS (Section 2.5)

• RMS example program (Section 2.6)

The file-handling capabilities of HP C fall into two distinct categories:

• The HP C RTL functions which, with little or no modification, are portable
to other C implementations

• The RMS functions, which are not portable to other C implementations,
but do provide more methods of file organization and more record access
modes

Using OpenVMS Record Management Services 2–1

This chapter briefly reviews the basic concepts and facilities of RMS and
shows examples of their application in HP C programming. Because this is
an overview, the chapter does not explain all RMS concepts and features. For
language-independent information about RMS, see the following manuals in
the OpenVMS documentation set:

• Guide to OpenVMS File Applications

This guide contains a general description of the record management
services of the OpenVMS operating system, and the file creation and
run-time options available.

• OpenVMS Record Management Services Reference Manual

This manual describes the user interface to RMS. It includes introductory
information on RMS programming and detailed definitions of all RMS
control block structures and macro instructions.

2.1 RMS File Organization
RMS supports three types of file organization:

• Sequential

• Relative

• Indexed

The following sections describe these types of file organization.

The organization of a file determines how a file is stored on the media
and, consequently, the possible operations on records. You specify the file’s
organization when you create the file; it cannot be changed.

However, you can use the File Definition Language Editor (FDL) and the
CONVERT utility to define the characteristics of a new file, and then fill
the new file with the contents of the old file of a different format. For more
information, see the OpenVMS Utility Routines Manual.

2.1.1 Sequential File Organization
Sequential files have consecutive records. There are no empty records
separating records that contain data. This organization allows the following
operations on the file:

• Positioning the file at a particular record, generally by sequentially moving
from one record to the next.

2–2 Using OpenVMS Record Management Services

Direct access is also possible, either by key (relative record number) or
by the record file address (RFA). However, although allowed for any file
organization, access by RFA is limited to files on disk devices, and access
by key is limited to disk files that also have fixed-length records. These
access modes are unusual because most application programs do not keep
track of record positions in sequential files.

• Reading data from any record.

• Writing data by adding records at the end of the file.

Sequential organization is the only kind permitted for magnetic tape files and
other nondisk devices.

2.1.2 Relative File Organization
Relative files have records that occupy numbered, fixed-length cells. The
records themselves need not have the same length. Cells can be empty or can
contain records so the following operations are permitted:

• Positioning the file at a particular record, usually by direct access.

In direct access, RMS uses the relative record number—the number of a
cell—as a key to locate the cell and its record; there is no need to reference
other cells. RMS can also access the records sequentially by ignoring empty
cells, or RMS can access the file directly with the record file address (RFA).
RMS returns the RFA in a parameter block whenever it writes a record,
and you can access and use the RFA to locate the appropriate record. You
can access any file organization with the RFA.

• Reading a record from any cell.

• Deleting a record from any cell.

• Writing a record into any cell.

Relative file organization is possible only on disk devices.

2.1.3 Indexed File Organization
Indexed files have records that contain, in addition to data and carriage-control
information, one or more keys. Keys can be character strings, packed decimal
numbers, and 16-bit, 32-bit, or 64-bit signed or unsigned integers. Every record
has at least one key, the primary key, whose value in each record cannot be
changed. Optionally, each record can have one or more alternate keys, whose
key values can be changed.

Using OpenVMS Record Management Services 2–3

Unlike relative record numbers used in relative files, key values in indexed
files are not necessarily unique. When you create a file, you can specify that a
particular key have the same value in different records (these keys are called
duplicate keys). Keys are defined for the entire file in terms of their position
within a record and their length.

In addition to maintaining its records, RMS builds and maintains indexes for
each of the defined keys. As records are written to the file, their key values
are inserted in order of ascending value in the appropriate indexes. This
organization allows the following operations:

• Positioning the file at a particular record by direct access.

In direct access reads, you use either a primary or alternate key, plus a
specified key value, to locate the record. In direct access writes (given
a record that contains key values in the predefined positions), RMS
automatically adds the record to the file and adds the primary and
alternate key values to the appropriate indexes. You can also access
records sequentially, where the sequence is defined by the index for a
specified key. Finally, you can access records directly by RFA; RMS returns
the RFA in a parameter block whenever it writes a record, and you can
access and use the RFA to locate the appropriate record. You can access
any file organization with the RFA.

• Reading any record, including sequential reads controlled by a key’s index.

• Deleting any record.

• Updating an alternate key’s value, if the key’s definition permits its value
to change.

• Writing records selectively, based on the value of a key and, when allowed
in the key’s definition, based on duplicate values. If duplicate values are
permitted, you can write records containing key values that are present
in the key’s index. If duplicate values are not permitted, such write
operations are rejected.

Indexed organization is possible only on disk devices.

2.2 Record Access Modes
The record access modes are sequential, direct by key, and direct by record file
address. The direct access modes are possible only with files that reside on
disks.

2–4 Using OpenVMS Record Management Services

Unlike a file’s organization, the record access mode is not a permanent
attribute of the file. During the processing of a file, you can switch from one
access mode to any other permitted for that file organization. For example,
indexed files are often processed by locating a record directly by key, and
then using that key’s index to sequentially read all the indexed records in
ascending order of their key values; this method is sometimes called the
indexed-sequential access method (ISAM).

2.3 RMS Record Formats
Records in RMS files can have the following formats:

• Fixed-length format, where the length of every record is defined at the time
of the file’s creation. This format is permitted with any file organization.

• Variable-length format, where the maximum length of every record is
defined at the time of the file’s creation. This format is permitted with any
file organization.

• Variable-length format with a fixed-length control area (VFC), where every
record is prefixed by a fixed-length field. This format is permitted only
with sequential and relative files.

• Stream format, where records are delimited by special characters called
terminators. Terminators are part of the record they delimit. The three
types of stream formatting are as follows:

Stream, where records can be delimited with a form feed, vertical tab,
new-line character, or carriage-return/new-line character.

Stream_cr, where records are delimited with the carriage-return
character.

Stream_lf, where records are delimited with the line-feed character.
This format variation is the default format when you create files using
the Standard I/O functions.

2.4 RMS Functions
RMS provides a number of functions that create and manipulate files. These
functions use RMS data structures to define the characteristics of a file and its
records. The data structures are used as indirect arguments to the function
call.

The RMS data structures are grouped into four main categories, as follows:

• File Access Block (FAB)—Defines the file’s characteristics, such as file
organization and record format.

Using OpenVMS Record Management Services 2–5

• Record Access Block (RAB)—Defines the way in which records are
processed, such as the record access mode.

• Extended Attribute Block (XAB)—Various kinds of extended attribute
blocks contain additional file characteristics, such as the definition of keys
in an indexed file. Extended attribute blocks are optional.

• Name Block (NAM)—Defines all or part of a file specification to be used
when an incomplete file specification is given in an OPEN or CREATE
operation. Name blocks are optional.

RMS uses these data structures to perform file and record operations.
Table 2–1 lists some of the common functions.

Table 2–1 Common RMS Run-Time Processing Functions

Category Function Description

File
Processing

sys$create Creates and opens a new file of any organization.

sys$open Opens an existing file and initiates file processing.

sys$close Terminates file processing and closes the file.

sys$erase Deletes a file.

Record
Processing

sys$connect Associates a file access block with a record access
block to establish a record access stream; a call to
this function is required before any other record-
processing function can be used.

sys$get Retrieves a record from a file.

sys$put Writes a new record to a file.

sys$update Rewrites an existing record to a file.

sys$delete Deletes a record from a file.

sys$rewind Positions the record pointer to the first record in the
file.

sys$disconnect Disconnects a record access stream.

All RMS functions are directly accessible from HP C programs. The syntax for
any RMS function has the following form:

int sys$name(struct rms_structure *pointer);

In this syntax, name is the name of the RMS function (such as OPEN or
CREATE); rms_structure is the name of the structure being used by the
function.

2–6 Using OpenVMS Record Management Services

The file-processing functions require a pointer to a file access block as an
argument; the record-processing functions require a pointer to a record access
block as an argument. Since sys$create is a file-processing function, its syntax
is as follows:

int sys$create(struct FAB *fab);

These syntax descriptions do not show all the options available when you
invoke an RMS function. For a complete description of the RMS calling
sequence, see the OpenVMS Record Management Services Reference Manual.

Finally, all the RMS functions return an integer status value. The format of
RMS status values follows the standard format described in Chapter 3. Since
RMS functions return a 32-bit integer, you do not need to declare the type of
an RMS function return before you use it.

2.5 Writing HP C Programs Using RMS
The HP C Run-Time Library (RTL) supplies a number of header files that
describe the RMS data structures and status codes. Table 2–2 describes these
header files.

Table 2–2 HP C RMS Header Files

Header File
Structure
Tag(s) Description

<fab.h> FAB Defines the file access block structure.

<rab.h> RAB Defines the record access block structure.

<nam.h> NAM Defines the name block structure.

<xab.h> XAB Defines all the extended attribute block structures.

<rmsdef.h> – Defines the completion status codes that RMS returns
after every file- or record-processing operation.

<rms.h> all tags Includes all the previous header files.

Most HP C programmers include the <rms.h> header file, which includes all
the other header files.

These header files define all the data structures as structure tag names.
However, they perform no allocation or initialization of the structures; these
header files describe only a template for the structures. To use the structures,
you must create storage for them and initialize all the structure members as
required by RMS. Note that these include files are part of HP C for OpenVMS
systems. RMS is part of the OpenVMS environment and may contain other
included header files not described here.

Using OpenVMS Record Management Services 2–7

To assist in the initialization process, the HP C RTL provides initialized RMS
data structure variables. You can copy these variables to your uninitialized
structure definitions with a structure assignment. You can choose to take the
default values for each of the structure members, or you can tailor the contents
of the structures to fit your requirements. In either case, you must use the
structure types to allocate storage for the structure and to define the members
of the structure.

The initialized variables supply the RMS default values for each member in
the structure; they specify none of the optional parameters. To determine
what default values are supplied by the initialized variables, see the OpenVMS
Record Management Services Reference Manual.

Table 2–3 lists the initialized RMS data structure variables and the structures
that they initialize.

Table 2–3 RMS Data Structures

Variable Structure Type Initialize Structure

cc$rms_fab struct FAB File access block

cc$rms_rab struct RAB Record access block

cc$rms_nam struct NAM Name block

cc$rms_xaball struct XABALL Allocation extended attribute block

cc$rms_xabdat struct XABDAT Date and time extended attribute block

cc$rms_xabfhc struct XABFHC File header characteristics extended
attribute block

cc$rms_xabkey struct XABKEY Indexed file key extended attribute block

cc$rms_xabpro struct XABPRO Protection extended attribute block

cc$rms_xabrdt struct XABRDT Revision date and time extended attribute
block

cc$rms_xabsum struct XABSUM Summary extended attribute block

cc$rms_xabtrm struct XABTRM Terminal extended attribute block

The declarations of these structures are contained in the appropriate header
file.

The names of the structure members conform to the following RMS naming
convention:

typ$s_fld

2–8 Using OpenVMS Record Management Services

The identifier typ is the abbreviation for the structure, the letter s is the size
of the member (such as l for longword or b for byte), and the identifier fld
is the member name, such as sts for the completion status code. The dollar
sign ($) is a character used in OpenVMS system logical names. See the
OpenVMS Record Management Services Reference Manual for a description of
the members in each structure.

2.5.1 Initializing File Access Blocks
The file access block defines the attributes of the file. To initialize a file access
block, assign the values in the initialized data structure cc$rms_fab to the
address of the file access block defined in your program. Consider the following
example:

/* This example shows how to initialize a file access block. */

#include <rms.h> /* Declare all RMS data structs */

struct FAB fblock; /* Define a file access block */

main()
{

fblock = cc$rms_fab; /* Initialize the structure */
.
.
.

}

Any of these RMS structures may be dynamically allocated. For example,
another way to allocate a file access block is as follows:

/* This program shows how to dynamically allocate RMS structures. */

#include <rms.h> /* Declare all RMS data structs */

main()
{

/* Allocate dynamic storage */
struct FAB *fptr = malloc(sizeof (struct FAB));
fptr = cc$rms_fab; / Initialize the structure */

.

.

.
}

To change the default values supplied by a data structure variable, you must
reinitialize the members of the structure individually. You initialize a member
by giving the offset of the member and assigning a value to it. Consider the
following example:

fblock.fab$l_xab = &primary_key;

Using OpenVMS Record Management Services 2–9

This statement assigns the address of the extended attribute block named
primary_key to the fab$l_xab member of the file access block named fblock.

2.5.2 Initializing Record Access Blocks
The record access block specifies how records are processed. You initialize
a record access block the same way you initialize a file access block. For
example:

/* This example shows how to initialize a file access block. */

#include <rms.h>
struct FAB fblock;

struct RAB rblock; /* Define a record access block */

main()
{

fblock = cc$rms_fab; /* Initialize the structure */
rblock = cc$rms_rab;

/* Initialize the FAB member */
rblock.rab$l_fab = &fblock;

.

.

.
}

2.5.3 Initializing Extended Attribute Blocks
There is only one extended attribute block structure (XAB), but there are
seven ways to initialize it. The extended attribute blocks define additional
file attributes that are not defined elsewhere. For example, the key extended
attribute block is used to define the keys of an indexed file.

All extended attribute blocks are chained off a file access block in the following
manner:

1. In a file access block, you initialize the fab$l_xab field with the address of
the first extended attribute block.

2. You designate the next extended attribute block in the chain in the xab$l_
nxt field of any subsequent extended attribute blocks. You chain each
subsequent extended attribute block in order by the key of reference (first
the primary key, then the first alternate key, then the second alternate key,
and so forth).

3. You initialize the xab$l_nxt member of the last extended attribute block in
the chain with the value 0 (the default) to indicate the end of the chain.

2–10 Using OpenVMS Record Management Services

You go through the same steps to declare extended attribute blocks as you
would to declare the other RMS data structures:

1. Define the structures by including the appropriate header file.

2. Assign a specific data structure variable to the structure in your program.

3. Initialize the members of the structure with the desired values.

The following example declares two extended attribute block structures. They
are initialized as key extended attribute blocks with the cc$rms_xabkey data
structure variable. The xab$l_nxt member of the primary key is initialized
with the address of the alternate_key extended attribute block.

/* This example shows how to initialize the extended *
* attribute block. */

#include <rms.h>
struct XABKEY primary_key,alternate_key;

main()
{

primary_key = cc$rms_xabkey;
alternate_key = cc$rms_xabkey;
primary_key.xab$l_nxt = &alternate_key;

.

.

.
}

2.5.4 Initializing Name Blocks
The name block contains default file name values, such as the directory or
device specification, file name, or file type. If you do not specify one of the
parts of the file specification when you open the file, RMS uses the values in
the name block to complete the file specification and places the complete file
specification in an array.

You create and initialize name blocks in the same manner used to initialize the
other RMS data structures. Consider the following example:

/* This example shows how to initialize a name block. */

#include <rms.h>

struct NAM nam;
struct FAB fab;

main()
{

fab = cc$rms_fab;
nam = cc$rms_nam;

Using OpenVMS Record Management Services 2–11

/* Define an array for the *
* expanded file specification */

char expanded_name[NAM$C_MAXRSS];

/* Initialize the appropriate *
* members */

fab.fab$l_nam = &nam;
nam.nam$l_esa = &expanded_name;
nam.nam$b_ess = sizeof expanded_name;

.

.

.
}

2.6 RMS Example Program
The example program in this section uses RMS functions to maintain a simple
employee file. The file is an indexed file with two keys: social security number
and last name. The fields in the record are character strings defined in a
structure with the tag record.

The records have the carriage-return attribute. Individual fields in each record
are padded with blanks for two reasons. First, because RMS requires that the
key fields be a fixed length and occur in a fixed position in each record, key
fields must be padded in some way. The example program pads short fields;
its use of the space character for padding is arbitrary. Second, the choice of
blank padding (as opposed to null padding) allows the file to be printed or
typed without conversion. Note that both the position and size of the key are
attributes of the file, not of each I/O that gets done.

The program does not perform range or bounds checking. Only the error
checking that shows the mapping of HP C to RMS is performed. Any other
errors are considered fatal.

The program is divided into the following sections:

• External data declarations and definitions

• Main program section

• Function to initialize the RMS data structures

• Internal functions to open the file, display HELP information, pad the
records, and process fatal errors

• Utility functions

ADD

DELETE

2–12 Using OpenVMS Record Management Services

TYPE

PRINT

UPDATE

To run this program, perform the following steps:

1. Create a source file. The name of the source file in this example is
RMSEXP.C. For more information about creating source files, see
Chapter 1.

2. Compile the source file with the following command:

$ CC RMSEXP Return

For more information about the compiling process, see Chapter 1.

3. Link the program with the following command:

$ LINK RMSEXP Return

For more information about the linking process, see Chapter 1.

4. Because the program expects command-line arguments, it must be defined
as a foreign command. You can do this with the following command line:

$ RMSEXP :== $device:[directory]RMSEXP Return

The identifier device is the logical or physical name of the device containing
your directory; the identifier directory is the name of your directory. The
device name must be preceded by the dollar sign ($) to be recognized as a
foreign command by the DCL interpreter.

5. Run the program using the following foreign command:

$ RMSEXP filename Return

The complete listing of the sample program follows. The listing is broken into
sections and shown in Examples 2–1 through 2–9. Notes on each section are
keyed to the numbers in the listing.

Example 2–1 shows the external data declarations and definitions.

Using OpenVMS Record Management Services 2–13

Example 2–1 External Data Declarations and Definitions

/* This segment of RMSEXP.C contains external data *
* definitions. */

1 #include <rms.h>
#include <stdio.h>
#include <ssdef.h>
#include <string.h>
#include <stdlib.h>
#include <starlet.h>

2 #define DEFAULT_FILE_EXT ".dat"

#define RECORD_SIZE (sizeof record)
#define SIZE_SSN 15
#define SIZE_LNAME 25
#define SIZE_FNAME 25
#define SIZE_COMMENTS 15
#define KEY_SIZE \
(SIZE_SSN > SIZE_LNAME ? SIZE_SSN: SIZE_LNAME)

3 struct FAB fab;
struct RAB rab;
struct XABKEY primary_key,alternate_key;

4 struct
{

char ssn[SIZE_SSN], last_name[SIZE_LNAME];
char first_name[SIZE_FNAME],

comments[SIZE_COMMENTS];
} record;

5 char response[BUFSIZ],*filename;

6 int rms_status;

void open_file(void);
void type_options(void);
void pad_record(void);
void error_exit(char *);
void add_employee(void);
void delete_employee(void);
void type_employees(void);
void print_employees(void);
void update_employee(void);
void initialize(char *);

Key to Example 2–1:

1 The <rms.h> header file defines the RMS data structures. The <stdio.h>
header file contains the Standard I/O definitions. The <ssdef.h> header
file contains the system services definitions.

2–14 Using OpenVMS Record Management Services

2 Preprocessor variables and macros are defined. A default file extension
.DAT is defined.

The sizes of the fields in the record are also defined. Some (such as the
social security number field) are given a constant length. Others (such as
the record size) are defined as macros; the size of the field is determined
with the sizeof operator. HP C evaluates constant expressions, such as
KEY_SIZE, at compile time. No special code is necessary to calculate this
value.

3 Static storage for the RMS data structures is declared. The file access
block, record access block, and extended attribute block types are defined
by the <rms.h> header file. One extended attribute block is defined for the
primary key and one is defined for the alternate key.

4 The records in the file are defined using a structure with four fields of
character arrays.

5 The BUFSIZ constant is used to define the size of the array that will be used
to buffer input from the terminal. The file-name variable is defined as a
pointer to char.

6 The variable rms_status is used to receive RMS return status information.
After each function call, RMS returns status information as an integer.
This return status is used to check for specific errors, end-of-file, or
successful program execution.

The main function, shown in Example 2–2, controls the general flow of the
program.

Using OpenVMS Record Management Services 2–15

Example 2–2 Main Program Section

/* This segment of RMSEXP.C contains the main function *
* and controls the flow of the program. */

1 main(int argc, char **argv)
{

2 if (argc < 1 || argc > 2)
printf("RMSEXP - incorrect number of arguments");

else
{

printf("RMSEXP - Personnel Database \
Manipulation Example\n");

3 filename = (argc == 2 ? *++argv : "personnel.dat");
4 initialize(filename);
5 open_file();

for(;;)
{

6 printf("\nEnter option (A,D,P,T,U) or \
? for help :");

gets(response);
if (feof(stdin))

break;
printf("\n\n");

7 switch(response[0])
{

case ’a’: case ’A’: add_employee();
break;

case ’d’: case ’D’: delete_employee();
break;

case ’p’: case ’P’: print_employees();
break;

case ’t’: case ’T’: type_employees();
break;

case ’u’: case ’U’: update_employee();
break;

default: printf("RMSEXP - \
Unknown Operation.\n");

case ’?’: case ’\0’:
type_options();

}
}

(continued on next page)

2–16 Using OpenVMS Record Management Services

Example 2–2 (Cont.) Main Program Section

8 rms_status = sys$close(&fab);

9 if (rms_status != RMS$_NORMAL)
error_exit("$CLOSE");

}
}

Key to Example 2–2:

1 The main function is entered with two parameters. The first is the number
of arguments used to call the program; the second is a pointer to the first
argument (file name).

2 This statement checks that you used the correct number of arguments
when invoking the program.

3 If a file name is included in the command line to execute the program, that
file name is used. If a file extension is not given, .DAT is the file extension.
If no file name is specified, then the file name is PERSONNEL.DAT.

4 The file access block, record access block, and extended attribute blocks are
initialized.

5 The file is opened using the RMS sys$open function.

6 The program displays a menu and checks for end-of-file (the character
Ctrl/Z).

7 A switch statement and a set of case statements control the function to be
called, which is determined by the response from the terminal.

8 The program ends when Ctrl/Z is entered in response to the menu. At that
time, the RMS sys$close function closes the employee file.

9 The rms_status variable is checked for a return status of RMS$_NORMAL.
If the file is not closed successfully, then the error-handling function
terminates the program.

Example 2–3 shows the function that initializes the RMS data structures.
See the RMS documentation for more information about the file access block,
record access block, and extended attribute block structure members.

Using OpenVMS Record Management Services 2–17

Example 2–3 Function Initializing RMS Data Structures

/* This segment of RMSEXP.C contains the function that *
* initializes the RMS data structures. */

void initialize(char *fn)
{

1 fab = cc$rms_fab; /* Initialize FAB */
fab.fab$b_bks = 4;
fab.fab$l_dna = DEFAULT_FILE_EXT;
fab.fab$b_dns = sizeof DEFAULT_FILE_EXT -1;
fab.fab$b_fac = FAB$M_DEL | FAB$M_GET |

FAB$M_PUT | FAB$M_UPD;
fab.fab$l_fna = fn;
fab.fab$b_fns = strlen(fn);

2 fab.fab$l_fop = FAB$M_CIF;
fab.fab$w_mrs = RECORD_SIZE;
fab.fab$b_org = FAB$C_IDX;

3 fab.fab$b_rat = FAB$M_CR;
fab.fab$b_rfm = FAB$C_FIX;
fab.fab$b_shr = FAB$M_NIL;
fab.fab$l_xab = &primary_key;

4 rab = cc$rms_rab; /* Initialize RAB */

rab.rab$l_fab = &fab;

5 primary_key = cc$rms_xabkey; /* Initialize Primary *
* Key XAB */

primary_key.xab$b_dtp = XAB$C_STG;
primary_key.xab$b_flg = 0;

6 primary_key.xab$w_pos0 = (char *) &record.ssn -
(char *) &record;

primary_key.xab$b_ref = 0;
primary_key.xab$b_siz0 = SIZE_SSN;
primary_key.xab$l_nxt = &alternate_key;
primary_key.xab$l_knm = "Employee Social Security \

Number ";

(continued on next page)

2–18 Using OpenVMS Record Management Services

Example 2–3 (Cont.) Function Initializing RMS Data Structures

7 alternate_key = cc$rms_xabkey; /* Initialize Alternate *
* Key XAB */

alternate_key.xab$b_dtp = XAB$C_STG;
8 alternate_key.xab$b_flg = XAB$M_DUP | XAB$M_CHG;

alternate_key.xab$w_pos0 = (char *) &record.last_name -
(char *) &record;

alternate_key.xab$b_ref = 1;
alternate_key.xab$b_siz0 = SIZE_LNAME;

9 alternate_key.xab$l_knm = "Employee Last Name \
";

}

Key to Example 2–3:

1 The data structure variable cc$rms_fab initializes the file access block
with default values. Some members have no default values; they must be
initialized. Such members include the file-name string address and size.
Other members can be initialized to override the default values.

2 This statement initializes the file-processing options member with the
create-if option. A file is created if one does not exist.

3 This statement initializes the record attributes member with the carriage-
return control attribute. Records are terminated with a carriage return/line
feed when they are printed on the printer or displayed at the terminal.

4 The data structure variable cc$rms_rab initializes the record access block
with the default values. In this case, the only member that must be
initialized is the rab$l_fab member, which associates a file access block
with a record access block.

5 The data structure variable cc$rms_xabkey initializes an extended
attribute block for one key of an indexed file.

6 The position of the key is specified by subtracting the offset of the member
from the base of the structure.

7 A separate extended attribute block is initialized for the alternate key.

8 This statement specifies that more than one alternate key can contain the
same value (XAB$M_DUP), and that the value of the alternate key can be
changed (XAB$M_CHG).

Using OpenVMS Record Management Services 2–19

Note

RMS constants shown here are in the form xxx$M_yyy (for example,
RAB$M_FIX) or xxx$C_yyy (for example, RAB$C_FIX). The OpenVMS
RMS documentation cites the constants in the form xxx$V_yyy (for
example, rab$v_fix), the difference being:

• The $M type constant signifies a bit mask, and should be OR’ed
to an existing value.

• The $V type constant represents the bit position of a constant,
and a shift operation is necessary for setting the appropriate
bit.

Using a $V type constant the same way as a $M type constant is a
common problem.

9 The key-name member is padded with blanks because it is a fixed-length,
32-character field.

Example 2–4 shows the internal functions for the program.

Example 2–4 Internal Functions

/* This segment of RMSEXP.C contains the functions that *
* control the data manipulation of the program. */

void open_file(void)
{

1 rms_status = sys$create(&fab);
if (rms_status != RMS$_NORMAL &&

rms_status != RMS$_CREATED)
error_exit("$OPEN");

if (rms_status == RMS$_CREATED)
printf("[Created new data file.]\n");

2 rms_status = sys$connect(&rab);
if (rms_status != RMS$_NORMAL)

error_exit("$CONNECT");
}

(continued on next page)

2–20 Using OpenVMS Record Management Services

Example 2–4 (Cont.) Internal Functions

3 void type_options(void)
{

printf("Enter one of the following:\n\n");
printf("A Add an employee.\n");
printf("D Delete an employee specified by SSN.\n");
printf("P Print employee(s) by ascending SSN on \

line printer.\n");

printf("T Type employee(s) by ascending last name \
on terminal.\n");

printf("U Update employee specified by SSN.\n\n");
printf("? Type this text.\n");
printf("^Z Exit this program.\n\n");

}

4 void pad_record(void)
{

int i;

for(i = strlen(record.ssn); i < SIZE_SSN; i++)
record.ssn[i] = ’ ’;

for(i = strlen(record.last_name); i < SIZE_LNAME; i++)
record.last_name[i] = ’ ’;

for(i = strlen(record.first_name); i < SIZE_FNAME; i++)
record.first_name[i] = ’ ’;

for(i = strlen(record.comments);i < SIZE_COMMENTS; i++)
record.comments[i] = ’ ’;

}

/* This subroutine is the fatal error-handling routine. */

5 void error_exit(char *operation)
{

printf("RMSEXP - file %s failed (%s)\n",
operation, filename);

exit(rms_status);
}

Key to Example 2–4:

1 The open_file function uses the RMS sys$create function to create the file,
giving the address of the file access block as an argument. The function
returns status information to the rms_status variable.

2 The RMS sys$connect function associates the record access block with the
file access block.

Using OpenVMS Record Management Services 2–21

3 The type_options function, called from the main function, prints help
information. Once the help information is displayed, control returns to the
main function, which processes the response that is typed at the terminal.

4 For each field in the record, the pad_record function fills the remaining
bytes in the field with blanks.

5 This function handles fatal errors. It prints the function that caused
the error, returns an OpenVMS error code (if appropriate), and exits the
program.

Example 2–5 shows the function that adds a record to the file. This function is
called when ’a’ or ’A’ is entered in response to the menu.

2–22 Using OpenVMS Record Management Services

Example 2–5 Utility Function: Adding Records

/* This segment of RMSEXP.C contains the function that *
* adds a record to the file. */

void add_employee(void)
{

1 do
{

printf("(ADD) Enter Social Security Number:");

gets(response);

}
while(strlen(response) == 0);

strncpy(record.ssn,response,SIZE_SSN);

do
{

printf("(ADD) Enter Last Name:");

gets(response);
}

while(strlen(response) == 0);

strncpy(record.last_name,response,SIZE_LNAME);

do
{

printf("(ADD) Enter First Name:");

gets(response);
}

while(strlen(response) == 0);

strncpy(record.first_name,response,SIZE_FNAME);

do
{

printf("(ADD) Enter Comments:");

gets(response);
}

while(strlen(response) == 0);

strncpy(record.comments,response,SIZE_COMMENTS);

2 pad_record();

3 rab.rab$b_rac = RAB$C_KEY;
rab.rab$l_rbf = (char *) &record;
rab.rab$w_rsz = RECORD_SIZE;

(continued on next page)

Using OpenVMS Record Management Services 2–23

Example 2–5 (Cont.) Utility Function: Adding Records

4 rms_status = sys$put(&rab);
5 if (rms_status != RMS$_NORMAL && rms_status !=

RMS$_DUP && rms_status != RMS$_OK_DUP)
error_exit("$PUT");

else
if (rms_status == RMS$_NORMAL || rms_status ==

RMS$_OK_DUP)
printf("[Record added successfully.]\n");

else
printf("RMSEXP - Existing employee with same SSN, \

not added.\n");
}

Key to Example 2–5:

1 A series of do loops controls the input of information. For each field in the
record, a prompt is displayed. The response is buffered and the field is
copied to the structure.

2 When all fields have been entered, the pad_record function pads each field
with blanks.

3 Three members in the record access block are initialized before writing
the record. The record access member (rab$b_rac) is initialized for keyed
access. The record buffer and size members (rab$l_rbf and rab$w_rsz) are
initialized with the address and size of the record to be written.

4 The RMS sys$put function writes the record to the file.

5 The rms_status variable is checked. If the return status is normal, or
if the record has a duplicate key value and duplicates are allowed, the
function prints a message stating that the record was added to the file.
Any other return value is treated as a fatal error causing error_exit to be
called.

Example 2–6 shows the function that deletes records. This function is called
when ’d’ or ’D’ is entered in response to the menu.

2–24 Using OpenVMS Record Management Services

Example 2–6 Utility Function: Deleting Records

/* This segment of RMSEXP.C contains the function that *
* deletes a record from the file. */

void delete_employee(void)
{

int i;
1 do

{
printf("(DELETE) Enter Social Security Number ");
gets(response);
i = strlen(response);

}
while(i == 0);

2 while(i < SIZE_SSN)
response[i++] = ’ ’;

3 rab.rab$b_krf = 0;
rab.rab$l_kbf = response;
rab.rab$b_ksz = SIZE_SSN;
rab.rab$b_rac = RAB$C_KEY;

4 rms_status = sys$find(&rab);

5 if (rms_status != RMS$_NORMAL && rms_status != RMS$_RNF)
error_exit("$FIND");

else
if (rms_status == RMS$_RNF)

printf("RMSEXP - specified employee does not \
exist.\n");

else
{

6 rms_status = sys$delete(&rab);
if (rms_status != RMS$_NORMAL)

error_exit("$DELETE");
}

}

Key to Example 2–6:

1 A do loop prompts you to type a social security number at the terminal and
places the response in the response buffer.

2 The social security number is padded with blanks.

3 Some members in the record access block must be initialized before the
program can locate the record. Here, the key of reference (0 specifies the
primary key), the location and size of the search string (this is the address
of the response buffer and its size), and the type of record access (in this
case, keyed access) are given.

Using OpenVMS Record Management Services 2–25

4 The RMS sys$find function locates the record specified by the social
security number entered from the terminal.

5 The program checks the rms_status variable for the values RMS$_
NORMAL and RMS$_RNF (record not found). A message is displayed if
the record cannot be found. Any other error is a fatal error.

6 The RMS sys$delete function deletes the record. The return status is
checked only for success.

Example 2–7 shows the function that displays the employee file at the
terminal. This function is called from the main function when ’t’ or ’T’ is
entered in response to the menu.

Example 2–7 Utility Function: Typing the File

/* This segment of RMSEXP.C contains the function that *
* displays a single record at the terminal. */

void type_employees(void)
{

1 int number_employees;

2 rab.rab$b_krf = 1;

3 rms_status = sys$rewind(&rab);
if (rms_status != RMS$_NORMAL)

error_exit("$REWIND");

4 printf("\n\nEmployees (Sorted by Last Name)\n\n");
printf("Last Name First Name SSN \

Comments\n");

printf("--------- ---------- ---------\
--------\n\n");

5 rab.rab$b_rac = RAB$C_SEQ;
rab.rab$l_ubf = (char *) &record;
rab.rab$w_usz = RECORD_SIZE;

6 for(number_employees = 0; ; number_employees++)
{

rms_status = sys$get(&rab);
if (rms_status != RMS$_NORMAL && rms_status !=

RMS$_EOF)
error_exit("$GET");

else
if (rms_status == RMS$_EOF)

break;

(continued on next page)

2–26 Using OpenVMS Record Management Services

Example 2–7 (Cont.) Utility Function: Typing the File

printf("%.*s%.*s%.*s%.*s\n",
SIZE_LNAME, record.last_name,
SIZE_FNAME, record.first_name,
SIZE_SSN, record.ssn,
SIZE_COMMENTS, record.comments);

}

7 if (number_employees)
printf("\nTotal number of employees = %d.\n",

number_employees);
else

printf("[Data file is empty.]\n");
}

Key to Example 2–7:

1 A running total of the number of records in the file is kept in the
number_employees variable.

2 The key of reference is changed to the alternate key so that the employees
are displayed in alphabetical order by last name.

3 The file is positioned to the beginning of the first record according to the
new key of reference, and the return status of the sys$rewind function is
checked for success.

4 A heading is displayed.

5 Sequential record access is specified, and the location and size of the record
is given.

6 A for loop controls the following operations:

• Incrementing the number_employees counter

• Locating a record and placing it in the record structure, using the RMS
sys$get function

• Checking the return status of the RMS sys$get function

• Displaying the record at the terminal

7 This if statement checks for records in the file. The result is a display of
the number of records or a message indicating that the file is empty.

Using OpenVMS Record Management Services 2–27

Example 2–8 shows the function that prints the file on the printer. This
function is called by the main function when ’p’ or ’P’ is entered in response
to the menu.

Example 2–8 Utility Function: Printing the File

/* This segment of RMSEXP.C contains the function that *
* prints the file. */

void print_employees(void)
{

int number_employees;
FILE *fp;

1 fp = fopen("personnel.lis", "w", "rat=cr",
"rfm=var", "fop=spl");

if (fp == NULL)
{

perror("RMSEXP - failed opening listing \
file");

exit(SS$_NORMAL);
}

2 rab.rab$b_krf = 0;

3 rms_status = sys$rewind(&rab);
if (rms_status != RMS$_NORMAL)

error_exit("$REWIND");

4 fprintf(fp,"\n\nEmployees (Sorted by SSN)\n\n");
fprintf(fp,"Last Name First Name SSN \
Comments\n");

fprintf(fp,"--------- ---------- ---------\
--------\n\n");

5 rab.rab$b_rac = RAB$C_SEQ;
rab.rab$l_ubf = (char *) &record;
rab.rab$w_usz = RECORD_SIZE;

6 for(number_employees = 0; ; number_employees++)
{

rms_status = sys$get(&rab);
if (rms_status != RMS$_NORMAL &&

rms_status != RMS$_EOF)
error_exit("$GET");

else
if (rms_status == RMS$_EOF)

break;

(continued on next page)

2–28 Using OpenVMS Record Management Services

Example 2–8 (Cont.) Utility Function: Printing the File

fprintf(fp, "%.*s%.*s%.*s%.*s",
SIZE_LNAME,record.last_name,
SIZE_FNAME,record.first_name,
SIZE_SSN,record.ssn,
SIZE_COMMENTS,record.comments);

}
7 if (number_employees)

fprintf(fp, "Total number of employees = %d.\n",
number_employees);

else
fprintf(fp,"[Data file is empty.]\n");

8 fclose(fp);
printf("[Listing file\"personnel.lis\"spooled to \

SYS$PRINT.]\n");
}

Key to Example 2–8:

1 This function creates a sequential file with carriage-return carriage-control,
variable-length records. It spools the file to the printer when the file is
closed. The file is created using the standard I/O library function fopen,
which associates the file with the file pointer, fp.

2 The key of reference for the indexed file is the primary key.

3 The RMS sys$rewind function positions the file at the first record. The
return status is checked for success.

4 A heading is written to the sequential file using the standard I/O library
function fprintf.

5 The record access, user buffer address, and user buffer size members of the
record access block are initialized for keyed access to the record located in
the record structure.

6 A for loop controls the following operations:

• Initializing the running total and then incrementing the total at each
iteration of the loop

• Locating the records and placing them in the record structure with the
RMS sys$get function, one record at a time

• Checking the rms_status information for success and end-of-file

• Writing the record to the sequential file

Using OpenVMS Record Management Services 2–29

7 The number_employees counter is checked. If it is 0, a message is printed
indicating that the file is empty. If it is not 0, the total is printed at the
bottom of the listing.

8 The sequential file is closed. Since it has the spl record attribute, the file
is automatically spooled to the printer. The function displays a message at
the terminal stating that the file was successfully spooled.

Example 2–9 shows the function that updates the file. This function is called
by the main function when ’u’ or ’U’ is entered in response to the menu.

Example 2–9 Utility Function: Updating the File

/* This segment of RMSEXP.C contains the function that *
* updates the file. */

void update_employee(void)
{

int i;
1 do

{
printf("(UPDATE) Enter Social Security Number\

");

gets(response);
i = strlen(response);

}
while(i == 0);

2 while(i < SIZE_SSN)
response[i++] = ’ ’;

3 rab.rab$b_krf = 0;
rab.rab$l_kbf = response;
rab.rab$b_ksz = SIZE_SSN;
rab.rab$b_rac = RAB$C_KEY;
rab.rab$l_ubf = (char *) &record;
rab.rab$w_usz = RECORD_SIZE;

4 rms_status = sys$get(&rab);

(continued on next page)

2–30 Using OpenVMS Record Management Services

Example 2–9 (Cont.) Utility Function: Updating the File

if (rms_status != RMS$_NORMAL && rms_status != RMS$_RNF)
error_exit("$GET");

else
if (rms_status == RMS$_RNF)

printf("RMSEXP - specified employee does not \
exist.\n");

5 else
{

printf("Enter the new data or RETURN to leave \
data unmodified.\n\n");

printf("Last Name:");
gets(response);
if (strlen(response))

strncpy(record.last_name, response,
SIZE_LNAME);

printf("First Name:");
gets(response);
if (strlen(response))

strncpy(record.first_name, response,
SIZE_FNAME);

printf("Comments:");
gets(response);
if (strlen(response))

strncpy(record.comments, response,
SIZE_COMMENTS);

6 pad_record();

7 rms_status = sys$update(&rab);
if (rms_status != RMS$_NORMAL)

error_exit("$UPDATE");

printf("[Record has been successfully \
updated.]\n");

}
}

Key to Example 2–9:

1 A do loop prompts for the social security number and places the response
in the response buffer.

2 The response is padded with blanks so that it will correspond to the field
in the file.

Using OpenVMS Record Management Services 2–31

3 Some of the members in the record access block are initialized for the
operation. The primary key is specified as the key of reference, the location
and size of the key value are given, keyed access is specified, and the
location and size of the record are given.

4 The RMS sys$get function locates the record and places it in the record
structure. The function checks the rms_status value for RMS$_NORMAL
and RMS$_RNF (record not found). If the record is not found, a message
is displayed. If the record is found, the program prints instructions for
updating the record.

5 If you press the Return key, the record is placed in the record structure
unchanged. If you make a change to the record, the new information is
placed in the record structure.

6 The fields in the record are padded with blanks.

7 The RMS sys$update function rewrites the record. The program then
checks that the update operation was successful. Any error causes the
program to call the fatal error-handling routine.

2–32 Using OpenVMS Record Management Services

3
Using HP C in the Common Language

Environment

This chapter discusses the following topics:

• OpenVMS calling standard conventions (Section 3.1)

• Parameter-passing mechanisms (Section 3.2)

• Interlanguage calling (Section 3.3)

• Sharing global data (Section 3.4)

• OpenVMS Run-Time Library (RTL) routines (Section 3.5)

• OpenVMS system services routines (Section 3.6)

• Calling routines (Section 3.7)

• Variable-length argument lists in system services (Section 3.8)

• Return status values (Section 3.9)

• Examples of calling system routines (Section 3.10)

The HP C compiler is part of the OpenVMS common language environment.
This environment defines certain calling procedures and guidelines that allow
you to call routines written in different languages from HP C programs, to call
HP C functions from programs written in other languages, or to call prewritten
system routines from HP C programs. You can call any one of the following
routine types from HP C:

• Routines written in other OpenVMS languages

• OpenVMS RTL routines

• OpenVMS system services

• OpenVMS utility routines

Using HP C in the Common Language Environment 3–1

The terms routine, procedure, and function are used throughout this chapter.
A routine is a closed, ordered set of instructions that performs one or more
specific tasks. Every routine has an entry point (the routine name), and
optionally an argument list. Procedures and functions are specific types of
routines: a procedure is a routine that does not return a value; a function is a
routine that returns a value by assigning that value to the function’s identifier.

System routines are prewritten OpenVMS routines that perform common tasks,
such as finding the square root of a number or allocating virtual memory. You
can call any system routine from your program, provided that HP C supports
the data structures required to call the routine. The system routines used
most often are OpenVMS RTL routines and system services. System routines,
which are discussed later in this chapter, are documented in detail in the VMS
Run-Time Library Routines Volume and the HP OpenVMS System Services
Reference Manual.

3.1 Basic Calling Standard Conventions
The HP OpenVMS Calling Standard describes the concepts used by all
OpenVMS languages to invoke routines and pass data between them. It
also describes the differences between the VAX and Alpha parameter-passing
mechanisms. The OpenVMS calling standard specifies the following attributes:

• Register usage

• Stack usage

• Function return value

• Argument list

The following sections discuss these attributes in more detail for OpenVMS
VAX systems. For more detail on OpenVMS Alpha systems, see the HP
OpenVMS Calling Standard.

The calling standard also defines such attributes as the calling sequence,
the argument data types and descriptor formats, condition handling, and
stack unwinding. These attributes are discussed in detail in the OpenVMS
Programming Interfaces: Calling a System Routine.

3–2 Using HP C in the Common Language Environment

3.1.1 Register and Stack Usage
The calling standard defines several registers and their uses, as listed in
Table 3–1 for VAX systems and Table 3–2 for Alpha systems.

Table 3–1 VAX Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Current stack frame pointer

AP Argument pointer

R1 Environment value (when necessary)

R0, R1 Function return value registers

Table 3–2 Alpha Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Frame pointer for current procedure

R25 Argument information register

R16 to R21,
F16 to F21

Argument list registers

R0 Function return value register

By definition, any called routine can use registers R2 through R11 for
computation, and the AP register as a temporary register.

In the calling standard, a stack is defined as a last-in/first-out (LIFO)
temporary storage area that the system allocates for every user process.
The system keeps information about each routine call in the current image
on the call stack. Then, each time you call a routine, the system creates a
structure on this call stack, known as the call frame. The call frame for each
active process contains the following data:

• A pointer to the call frame of the previous routine call. This pointer
corresponds to the frame pointer (FP).

• The argument pointer (AP) of the previous routine call.

Using HP C in the Common Language Environment 3–3

• The storage address of the point at which the routine was called; that is,
the address of the instruction following the call to the current routine. This
address is called the program counter (PC).

• The contents of other general registers. Based on a mask specified in
the control information, the system restores the saved contents of these
registers to the calling routine when control returns to it.

When a routine completes execution, the system uses the frame pointer in the
call frame of the current routine to locate the frame of the previous routine.
The system then removes the call frame of the current routine from the stack.

Figure 3–1 shows the call stack and several call frames for VAX processors.
Function A calls function B, which calls function C. When a function reaches a
return statement or when control reaches the end of the function, the system
uses the frame pointer in the call frame of the current function to locate the
frame of the previous function. It then removes the call frame of the current
function from the stack.

3–4 Using HP C in the Common Language Environment

Figure 3–1 The Call Stack

C

ZK−0090−GE

A

31

0

0

PSWMask

AP

FP

PC

R2

R11

B

predefined exception

hardware): set to non−
zero if routine either
has exception handler
or can generate a

0 −

for function A
AP −

FP −

which B was invoked
PC −

registers R2 through R11
R2

R11

−

Initial zero value (set by

Copy of argument pointer

Pointer to A’s call frame

Memory location in A at

Contents of A’s general

3.1.2 Return of the Function Value
A function is a routine that returns a single value to the calling routine. The
function value represents the value of the expression in the return statement.
According to the calling standard, a function value may be returned as either
an actual value or a condition value that indicates success or failure.

3.1.3 The Argument List
The HP OpenVMS Calling Standard also defines a data structure called the
argument list. You use an argument list to pass information to a routine and
receive results.

On OpenVMS Alpha systems, an argument list is formed using registers R16
to R21 or F16 to F21, and a collection of quadwords in memory (depending on
the number and type of the arguments).

Using HP C in the Common Language Environment 3–5

On OpenVMS VAX systems, an argument list is a collection of longwords
in memory that represents a routine parameter list and possibly includes a
function value. Figure 3–2 shows the structure of a typical OpenVMS VAX
argument list.

Figure 3–2 Structure of an OpenVMS VAX Argument List

0 n

arg1

arg2

argn

ZK−5503−GE

.

.

.

The first longword must be present; this longword stores the number of
arguments (the argument count: n) as an unsigned integer value in the low
byte of the longword with a maximum of 255 arguments. The remaining 24
bits of the first longword are reserved for use by HP and should be 0. The
longwords labeled arg1 through argn are the actual parameters, which can be
any of the following addresses or value:

• An uninterpreted 32-bit value that is passed by value

• An address that is passed by reference

• An address of a descriptor that is passed by descriptor

The argument list contains the parameters that are passed to the routine.
Depending on the passing mechanisms for these parameters, the forms of
the arguments contained in the argument list vary. For example, if you pass
three arguments, the first by value, the second by reference, and the third by
descriptor, the argument list would contain the value of the first argument,
the address of the second, and the address of the descriptor of the third.
Figure 3–3 shows this argument list.

3–6 Using HP C in the Common Language Environment

Figure 3–3 Example of an OpenVMS VAX Argument List

0 3

ZK−5504−GE

value of the first parameter

address of the second parameter

address of descriptor of the third parameter

For additional information on the OpenVMS calling standard, see the HP
OpenVMS Calling Standard.

3.2 Specifying Parameter-Passing Mechanisms
When you pass data between routines that are not written in the same
OpenVMS language, you have to specify how you want that data to be
represented and interpreted. You do this by specifying a parameter-passing
mechanism.

The calling standard defines three ways to pass data in an argument list.
When you code a reference to a non-HP C procedure, you must know how to
pass each argument and write the function reference accordingly.

The following list describes the three argument-passing mechanisms:

• By immediate value

When an argument is passed by immediate value, the actual value
of the argument is present in the argument list. This is the default
argument-passing mechanism for all function references written in HP C.

• By reference

When an argument is passed by reference, the address of the argument is
present in the argument list. Use the C ampersand operator (&) to pass
the address of an argument, or pass a pointer to the argument by value.

• By descriptor

When an argument is passed by descriptor, the address of a data structure
describing the argument is present in the argument list. From a HP C
program, you pass a descriptor first by creating a structure (struct) that
meets the descriptor requirements of the called procedure and then by

Using HP C in the Common Language Environment 3–7

passing the structure’s address with the ampersand operator or by passing
a pointer to that structure by value.

The following sections outline each of these parameter-passing mechanisms in
more detail.

3.2.1 Passing Arguments by Immediate Value
By default, all values or expressions in a HP C function’s argument list are
passed by immediate value (except for X_FLOATING on OpenVMS Alpha
systems, which is passed by reference). The expressions are evaluated and the
results placed directly in the argument list of the CALL machine instruction.

The following statement declares the entry point of the Set Event Flag
SYS$SETEF system service, which is used to set a specific event flag to 1:

/* Declare the function as a function returning type int. */

int SYS$SETEF();

The SYS$SETEF system service call requires one argument—the number of
the event flag to be set—to be passed by immediate value. HP C for OpenVMS
Systems converts linker-resolved variable names (such as the entry-point
names of system service calls) to uppercase. You do not have to declare
them in uppercase in your program (unless you compile your module with
/NAMES=AS_IS). However, linker-resolved variable names must be declared
and used with identical cases in each module. The documentation uses
uppercase as a convention for referring to system service calls to highlight
them in the text and examples.

HP C does not require you to declare a function or to specify the number or
types of the function’s arguments. However, if you call a function without
declaring it or without providing argument information in the declaration,
HP C does not check the types of the arguments in a call to that function. If
you declare a function prototype, the compiler does check the arguments in
a call to make sure that they have the same type. (See the HP C Language
Reference Manual for more information on function prototypes.)

Like all system services, SYS$SETEF returns an integer value (the return
status of the service) in register 0. Most system services return an integer
completion status; therefore, the system service does not always have to be
declared before it is used. The examples in this chapter declare system services
for completeness.

3–8 Using HP C in the Common Language Environment

In the HP OpenVMS System Services Reference Manual, you can find the
specification of each service’s arguments. SYS$SETEF, for example, takes one
argument, an event flag number. It returns one of four status values, which
are represented by the symbolic constants shown in Table 3–3.

Table 3–3 Status Values of SYS$SETEF

Returned Status Description

SS$_WASCLR Success Flag was previously clear

SS$_WASSET Success Flag was previously set

SS$_ILLEFC Failure Illegal event flag number

SS$_UNASEFC Failure Event flag not in associated cluster

The system services manual also defines event flags as integers in the range
0 to 127, grouped in clusters of 32. Clusters 0 and 1, comprising flags 0 to 31
and 32 to 63, respectively, are local clusters available to any process, with the
restriction that flags 24 to 31 are reserved for use by the OpenVMS system.
There are many ways of passing valid event flag numbers from your HP C
program to SYS$SETEF. One way is to use enum to define a subset of integers,
as follows:

enum cluster0 {completion, breakdown, beginning} event;

After the flag numbers are defined, call the SYS$SETEF service with the
following code:

.

.

.
int status;
event = completion;

.

.

.
status = SYS$SETEF(event); /* Set event flag. */

.

.

.

Figure 3–4 shows an argument being passed by immediate value; in this case,
the event flag number passed to SYS$SETEF.

Using HP C in the Common Language Environment 3–9

Figure 3–4 Passing Arguments by Immediate Value

main()

SYS$SETEF (4) ;
4

1number of arguments:

first argument:

Argument pointer (AP)

ZK−0092−GE

.

.

.

Since argument lists consist of longwords, the calling standard dictates that
immediate-value arguments be expressed in 32 bits. A single-precision,
floating-point (F_floating) value is only 32 bits long, but the compiler promotes
all arguments of type float to double (64 bits on a VAX processor) unless a
function prototype declaration is used for the called function. This double-
precision value is passed as two immediate values (two longwords).

Note

The passing of double-precision immediate values is a violation of
the calling standard for OpenVMS VAX systems, but is an allowed
exception for HP C.

On rare occasions, the float-to-double promotion requires some additional
programming. For instance, the function OTS$POWRJ, in the VAX Common
Run-Time Procedure Library, computes the value of a floating-point number
raised to the power of a signed longword (in C terms, a float to the power
of an int). This function (and others like it) is called implicitly by high-
level OpenVMS languages that have an exponentiation operator as part of
the language. It requires that both its arguments be passed as immediate
values, and it returns a single-precision (float) result. To pass a floating-point
base to the procedure, you must use some method to avoid promoting float
arguments. The recommended method is to declare the procedure using a
function prototype declaration, as shown in Example 3–1.

3–10 Using HP C in the Common Language Environment

Example 3–1 Passing Floating-Point Arguments by Immediate Value

/* This program shows how to pass a floating-point value, *
* using prototypes to avoid promoting floating *
* arguments to arguments of type double. */

#include <stdio.h>

/* This declared function returns a value of type float. It *
* should be called as follows: OTS$POWRJ(base, power), *
* where base is of type float and power is of type int. */

float OTS$POWRJ(float, int);

main(void)
{

/* To hold result of *
* OTS$POWRJ */

float result;
int power; /* Power argument */

float base;

base = 3.145; /* Assign constant to base */
power = 2;
result = OTS$POWRJ(base, power);

printf("Result= %f\n", result);
}

Note

To get the correct results on I64 systems, compile the preceding
example with /FLOAT=G_FLOAT.

The example does not show the methods for handling arithmetic errors that
result from the operation performed. For more information on error handling
in this context, and on the run-time library in general, see the VMS Run-Time
Library Routines Volume.

When you pass a parameter by value, you pass a copy of the parameter value
to the routine instead of passing its address. Because the actual value of the
parameter is passed, the routine does not have access to the storage location of
the parameter; therefore, any changes that you make to the parameter value
in the routine do not affect the value of that parameter in the calling routine.

Using HP C in the Common Language Environment 3–11

3.2.2 Passing Arguments by Reference
Some system services and run-time library procedures expect arguments
passed by reference. This means that the argument list contains the address
of the argument rather than its value. This mechanism is also used by default
by some programming languages, such as PL/I, and is available as an option in
others, such as Pascal.

In C, you can use the ampersand operator (&) to pass an argument by
reference; that is, the ampersand operator causes the argument’s address to be
passed. Note that an array name without brackets or a function name without
parentheses in an argument list always results in passing the address of the
array or function; the ampersand is unnecessary. You can also pass a pointer
by value, which is the same as passing the item it points to by reference.

In the special case of argument lists, HP C in VAX C mode allows the
ampersand operator to be used on constants as well. You should limit this
use of the ampersand solely to calls to OpenVMS system functions to ensure
portability of your HP C programs to other C compilers.

For example, the Read Event Flags (SYS$READEF) system service requires
that its first argument be passed by immediate value and its second argument
be passed by reference. SYS$READEF returns the status of all the event flags
in a particular cluster. (Event flags are numbered from 0 to 127 and arranged
in clusters of 32, such that flags 0 to 31 comprise cluster 0, flags 32 to 63,
cluster 1, and so forth.)

The first SYS$READEF argument is any event flag number in the cluster of
interest. The second argument is the address of a longword that receives the
status of all 32 event flags in that cluster. In addition to the event-flag status
value, the system service returns one of the status values shown in Table 3–4
expressed as a global symbol.

Table 3–4 Status Values of SYS$READEF

Returned Status Description

SS$_WASCLR Success Specified event flag was clear

SS$_WASSET Success Specified event flag was set

SS$_ACCVIO Failure Could not write to status longword

SS$_ILLEFC Failure Event flag number was illegal

(continued on next page)

3–12 Using HP C in the Common Language Environment

Table 3–4 (Cont.) Status Values of SYS$READEF

Returned Status Description

SS$_UNASEFC Failure Cluster of interest not accessible

Example 3–2 shows a call to the SYS$READEF system service from a HP C
program.

Example 3–2 Passing Arguments by Reference

/* This program shows how to call system service SYS$READEF. */

#include <ssdef.h>
#include <stdio.h>

int SYS$READEF();

main(void)
{

/* Longword that receives *
* the status of the *
* event flag cluster. */

unsigned cluster_status;

int return_status; /* Status: SYS$READEF. */

/* Argument values for *
* SYS$READEF. */

enum cluster0
{

completion, breakdown, beginning
} event;
.
.
.

event = completion; /* Event flag in cluster 0. */

/* Obtain status of *
* cluster 0. Pass value *
* of event and address *
* of cluster_status. */

(continued on next page)

Using HP C in the Common Language Environment 3–13

Example 3–2 (Cont.) Passing Arguments by Reference

return_status = SYS$READEF(event, &cluster_status);

/* Check for successful *
* call */

if (return_status != SS$WASCLR && return_status != SS$WASSSET)
{

/* Handle the error here. */
.
.
.

}
else

{
/* Check bits of interest in cluster_status here. */

.

.

.
}

}

3.2.3 Passing Arguments by Descriptor
A descriptor is a structure that describes the data type, size, and address
of a data structure. According to the HP OpenVMS Calling Standard, you
must pass a descriptor by placing its address in the argument list. To pass an
argument by descriptor from a HP C program, perform the following steps:

1. Write a structure declaration that models the required descriptor. This
involves including the <descrip.h> header file to define struct tags for all
the forms of descriptors.

2. Assign appropriate values to the structure members.

3. Use the structure name, with an ampersand operator (&) in the function
reference, to put the structure’s address in the argument list.

HP C never passes arguments by descriptor by default; you must take explicit
action to pass an argument by descriptor. Also, if you write structure or
union names in a function’s argument list without the ampersand operator,
the structure or union is passed by immediate value to the called function.
You pass arguments by descriptor only when the called function is written in
another language and explicitly requires this mechanism.

3–14 Using HP C in the Common Language Environment

Note

The passing of structures as immediate values can be a violation of
the OpenVMS calling standard if the entire structure is larger than
one longword of memory. This type of argument passing is an allowed
exception for HP C.

There are several classes of descriptor. Each class requires that certain bits
be set in the first longword of the descriptor. For more information about
the descriptors and their formats, see the OpenVMS Programming Interfaces:
Calling a System Routine. You can model descriptors in HP C as follows:

struct dsc$descriptor
{

unsigned short dsc$w_length; /* Length of data */
char dsc$b_dtype /* Data type code */
char dsc$b_class /* Descriptor class code */
char *dsc$a_pointer /* Address of first byte */

};

In this model, the variable dsc$w_length is a 16-bit word containing the length
of the entire data; the unit (for example, bit or byte) in which the length is
measured depends on the descriptor class. The member dsc$b_dtype is a byte
containing a numeric code; the code denotes the data type of the data. The
class member dsc$b_class is another byte code giving the descriptor class.
Table 3–5 shows the valid class codes.

Table 3–5 Valid Class Codes

Class Code Symbolic Name Descriptor Class

1 DSC$K_CLASS_S Scalar, string

2 DSC$K_CLASS_D Dynamic string descriptor

3 — Reserved by HP

4 DSC$K_CLASS_A Array

5 DSC$K_CLASS_P Procedure

6 DSC$K_CLASS_PI Procedure incarnation

7 DSC$K_CLASS_J Reserved by HP

8 DSK$K_CLASS_JI This is obsolete

(continued on next page)

Using HP C in the Common Language Environment 3–15

Table 3–5 (Cont.) Valid Class Codes

Class Code Symbolic Name Descriptor Class

9 DSC$K_CLASS_SD Decimal scalar string

10 DSC$K_CLASS_NCA Noncontiguous array

11 DSC$K_CLASS_VS Varying string

12 DSC$K_CLASS_VSA Varying string array

13 DSC$K_CLASS_UBS Unaligned bit string

14 DSC$K_CLASS_UBA Unaligned bit array

15 DSC$K_CLASS_SB String with bounds descriptor

16 DSC$K_CLASS_UBSB Unaligned bit string with bounds
descriptor

17-190 — Reserved by HP

191 DSC$K_CLASS_BFA Basic file array

192-255 — Reserved for customer applications

The atomic data types shown in Table 3–6 are supported by HP C; all others
are not directly supported by the language. See the OpenVMS Programming
Interfaces: Calling a System Routine manual for a complete list of atomic class
codes.

Table 3–6 Atomic Data Types

Class Code Symbolic Name Descriptor Class

2 DSC$K_DTYPE_BU Byte (unsigned)

3 DSC$K_DTYPE_WU Word (unsigned)

4 DSC$K_DTYPE_LU Longword (unsigned)

6 DSC$K_DTYPE_B Byte integer (signed)

7 DSC$K_DTYPE_W Word integer (signed)

8 DSC$K_DTYPE_L Longword integer (signed)

10 DSC$K_DTYPE_F F_floating

11 DSC$K_DTYPE_D D_floating

14 DSC$K_DTYPE_T Character string

(continued on next page)

3–16 Using HP C in the Common Language Environment

Table 3–6 (Cont.) Atomic Data Types

Class Code Symbolic Name Descriptor Class

27 DSC$K_DTYPE_G G_floating

52 DSC$K_DTYPE_FS IEEE S_floating

53 DSC$K_DTYPE_FT IEEE T_floating

The last member of the structure model, dsc$a_pointer, points to the first
byte of the data.

To pass an argument by descriptor, you define and assign values to the data
following normal C programming practices. You must define a dsc$descriptor
structure and assign the data’s address to the dsc$a_pointer member.
You must also assign appropriate values to the members dsc$w_length,
dsc$b_dtype, and dsc$b_class. For the specific requirements of each
descriptor class, see the OpenVMS Programming Interfaces: Calling a System
Routine manual.

For example, the Set Process Name (SYS$SETPRN) system service, which
enables a process to establish or change its process name, accepts a process
name as a fixed-length character string passed by descriptor. The character
string can have from 1 to 15 characters. The system service returns status
values that are represented by the symbolic constants shown in Table 3–7.

Table 3–7 Status Values of SYS$SETPRN

Returned Status Description

SS$_NORMAL Success Normal completion

SS$_ACCVIO Failure Inaccessible descriptor

SS$_DUPLNAM Failure Duplicate process name

SS$_IVLOGNAM Failure Invalid length

Example 3–3 shows a call to this system service from a HP C program.

Using HP C in the Common Language Environment 3–17

Example 3–3 Passing Arguments by Descriptor

/* This program shows a call to system service SYS$SETPRN. */

#include <ssdef.h>
#include <stdio.h>

/* Define structures for *
* descriptors */

#include <descrip.h>

int SYS$SETPRN();

int main(void)
{

int ret; /* Define return status of *
* SYS$SETPRN */

/* Name the descriptor */
struct dsc$descriptor_s name_desc;

char *name = "NEWPROC"; /* Define new process name */
.
.
.

/* Length of name WITHOUT *
* null terminator */

name_desc.dsc$w_length = strlen(name);

/* Put address of *
* shortened string in *
* descriptor */

name_desc.dsc$a_pointer = name;

/* String descriptor class */
name_desc.dsc$b_class = DSC$K_CLASS_S;

/* Data type: ASCII string */
name_desc.dsc$b_dtype = DSC$K_DTYPE_T;

.

.

.
ret = SYS$SETPRN(&name_desc);

if (ret != SS$_NORMAL) /* Test return status */
fprintf(stderr, "Failed to set process name\n"),
exit(ret);
.
.
.

}

In Example 3–3, the call to SYS$SETPRN must use the ampersand operator;
otherwise, name_desc, rather than its address, is passed.

3–18 Using HP C in the Common Language Environment

Although this example explicitly sets individual fields in its name_desc string
descriptor, in practice, the run-time initialization of compile-time constant
string descriptors is not performed in this manner. Instead, the fields of
compile-time constant descriptors are usually initialized with initialized
structures of storage class static.

For the purpose of string descriptor initialization, HP C provides a simple
preprocessor macro in the <descrip.h> header file. This macro is named
$DESCRIPTOR. It takes two arguments, which it uses in a standard HP C
structure declaration. The first argument is an identifier specifying the name
of the descriptor to be declared and initialized. The second argument is a
pointer to the data byte to be used as the value of the descriptor. Since a
character-string constant is interpreted as an initialized pointer to char, you
may specify the second argument as a simple string constant. You may use the
$DESCRIPTOR macro in any context where a declaration may be used. The
scope of the declared string descriptor identifier name is identical to the scope
of a simple struct definition as expanded by the macro.

Example 3–4 shows a variant of the program in Example 3–3. Here, the
$DESCRIPTOR macro is used to create a compile-time string descriptor and
to pass it to the SYS$SETPRN system service routine. In Example 3–4, the
program returns the status value returned by SYS$SETPRN to DCL for
interpretation.

Example 3–4 Passing Compile-Time String Descriptors

/* This program returns the status value returned by *
* SYS$SETPRN. */

#include <descrip.h> /* Define $DESCRIPTOR macro. */

int SYS$SETPRN();

int main(void)
{

/* Initialize structure name_desc *
* as string descriptor. */

static $DESCRIPTOR(name_desc,"NEWPROC");

return SYS$SETPRN(&name_desc);
}

To test the results of the preceding example, do the following:

$ SHOW PROCESS ! Note the process name.

$ RUN example ! Run the example.

$ SHOW PROCESS ! Note that the process name has changed.

Using HP C in the Common Language Environment 3–19

The $DESCRIPTOR macro is used in further examples in this chapter.

3.2.4 HP C Default Parameter-Passing Mechanisms
There are default parameter-passing mechanisms established for every data
type you can use with HP C. Table 3–8 lists the HP C data types you can use
with each parameter-passing mechanism. Asterisks appear next to the default
parameter-passing mechanism for that particular data type.

Table 3–8 Valid Parameter-Passing Mechanisms in HP C

Data Type By Reference By Descriptor By Value

Variables Yes Yes Yes*

Constants Yes (VAX C mode
only)

Yes Yes*

Expressions No No Yes*

Array elements Yes Yes Yes*

Entire array Yes* Yes No

String constants Yes* Yes No

Structures and
unions

Yes Yes Yes*

Functions Yes* Yes No

You must use the appropriate parameter-passing mechanisms whenever you
call a routine written in some other OpenVMS language or some prewritten
system routine.

3.3 Interlanguage Calling
In HP C, you can call external routines written in other languages or HP C
routines from routines written in other languages as either functions or
subroutines. When you call an external routine as a function, a single value is
returned. When you call an external routine as a subroutine (a void function),
any values are returned in the argument list.

By default, HP C passes all arguments by immediate value with the exception
of arrays and functions; these are passed by reference. Table 3–9 lists the
default passing mechanisms for other OpenVMS languages.

3–20 Using HP C in the Common Language Environment

Table 3–9 Default Passing Mechanisms

Language Arrays
Numeric
Data Character Data

MACRO No default No default No default

Pascal Reference Reference Descriptor

BASIC Descriptor Reference Descriptor

COBOL N/A Reference Reference

FORTRAN Reference Reference Descriptor

The following sections describe the methods involved in using HP C with
routines written in other OpenVMS languages.

3.3.1 Calling HP FORTRAN
When calling HP FORTRAN from HP C or vice versa, note these
considerations. HP FORTRAN argument lists and argument descriptors
are usually allocated statically. When it is possible, and to optimize space and
time, the HP FORTRAN compiler pools the argument lists and initializes them
at compile time. Sometimes several calls may use the same argument list.

In HP C, you often use arguments as local variables, and modify them at will.
If a HP C routine that modifies an argument is called from a HP FORTRAN
routine, unintended and incorrect side effects may occur.

The following example shows a HP C routine that is invalid when called from
HP FORTRAN:

void f(int *x) /* x is a FORTRAN INTEGER passed by reference */

{
/* The next assignment is OK. It is permitted to modify what a
* FORTRAN argument list entry points to. */
x = 0; / ok */

/* The next assignment is invalid. It is not permitted to modify
* a FORTRAN argument list entry itself. */
x = x + 1; /* Invalid */

}

Another problem is the semantic mismatch between strings in C and strings
in HP FORTRAN. Strings in C vary in length and end in a null character.
Strings in HP FORTRAN do not end in a null character and are padded with
spaces to some fixed length. In general, this mismatch means that strings
may not be passed between HP C and HP FORTRAN unless you do additional
work. You may make a HP FORTRAN routine add a null character to a

Using HP C in the Common Language Environment 3–21

CHARACTER string before calling a HP C function. You may also write code
that explicitly gets the length of a HP FORTRAN string from its descriptor
and carefully pads the string with spaces after modifying it. An example later
in this section shows a C function that carefully produces a proper string for
HP FORTRAN.

Example 3–5 shows a HP C function calling a HP FORTRAN subprogram
with a variety of data types. For most scalar types, HP FORTRAN expects
arguments to be passed by reference but character data is passed by
descriptor.

Example 3–5 HP C Function Calling a HP FORTRAN Subprogram

/*
* Beginning of HP C function:
*/

#include <stdio.h>
#include <descrip.h> /* Get layout of descriptors */

extern int fort(); /* Declare FORTRAN function */

main(void)
{

int i = 508;
float f = 649.0;
double d = 91.50;
struct {

short s;
float f;

} s = {-2, -3.14};
auto $DESCRIPTOR(string1, "Hello, FORTRAN");
struct dsc$descriptor_s string2;

/* "string1" is a FORTRAN-style string declared and initialized using the
* $DESCRIPTOR macro. "string2" is also a FORTRAN-style string, but we are
* declaring and initializing it by hand. */
string2.dsc$b_dtype = DSC$K_DTYPE_T; /* Type is CHARACTER */
string2.dsc$b_class = DSC$K_CLASS_S; /* String descriptor */
string2.dsc$w_length = 3; /* Three characters in string */
string2.dsc$a_pointer = "bye"; /* Pointer to string value */

printf("FORTRAN result is %d\n", fort(&i, &f, &d, &s, &string1, &string2));
} /* End of HP C function */

(continued on next page)

3–22 Using HP C in the Common Language Environment

Example 3–5 (Cont.) HP C Function Calling a HP FORTRAN Subprogram
C
C Beginning of FORTRAN subprogram:
C

INTEGER FUNCTION FORT(I, F, D, S, STRING1, STRING2)
INTEGER I
REAL F
DOUBLE PRECISION D
STRUCTURE /STRUCT/
INTEGER*2 SHORT
REAL FLOAT
END STRUCTURE
RECORD /STRUCT/ S

C You can tell FORTRAN to use the length in the descriptor
C as done here for STRING1, or you can tell FORTRAN to ignore the
C descriptor and assume the string has a particular length as done
C for STRING2. This choice is up to you.

CHARACTER*(*) STRING1
CHARACTER*3 STRING2

WRITE(5, 10) I, F, D, S.SHORT, S.FLOAT, STRING1, STRING2
10 FORMAT(1X, I3, F8.1, D10.2, I7, F10.3, 1X, A, 2X, A)

FORT = -15
RETURN
END

C End of FORTRAN subprogram

Example 3–5 produces the following output:

508 649.0 0.92D+02 -2 -3.140 Hello, FORTRAN bye
FORTRAN result is -15

Example 3–6 shows a HP FORTRAN subprogram calling a HP C function.
Since the HP C function is called from HP FORTRAN as a subroutine and not
as a function, the HP C function is declared to have a return value of void.

Example 3–6 HP FORTRAN Subprogram Calling a HP C Function

C
C Beginning of FORTRAN subprogram:
C

INTEGER I
REAL F(3)
CHARACTER*10 STRING

(continued on next page)

Using HP C in the Common Language Environment 3–23

Example 3–6 (Cont.) HP FORTRAN Subprogram Calling a HP C Function

C Since this program does not have a C main program and you want
C to use HP C RTL functions from the C subroutine, you must call
C DECC$CRTL_INIT to initialize the run-time library.

CALL DECC$CRTL_INIT

I = -617
F(1) = 3.1
F(2) = 0.04
F(3) = 0.0016
STRING = ’HELLO’

CALL CSUBR(I, F, STRING)
END

C End of FORTRAN subprogram

/*
* Beginning of HP C function:
*/
#include <stdio.h>
#include <descrip.h> /* Get layout of descriptors */

void csubr(int *i, /* FORTRAN integer, by reference */
float f[3], /* FORTRAN array, by reference */
struct dsc$descriptor_s *string) /* FORTRAN character, by descriptor */

{
int j;

printf("i = %d\n", *i);

for (j = 0; j < 3; ++j)
printf("f[%d] = %f\n", j, f[j]);

/* Since FORTRAN character data is not null-terminated, you must use
* a counted loop to print the string.
*/
printf("string = \"");
for (j = 0; j < string->dsc$w_length; ++j)

putchar(string->dsc$a_pointer[j]);
printf("\"\n");

} /* End of HP C function */

Example 3–6 produces the following output:

i = -617
f[0] = 3.100000
f[1] = 0.040000
f[2] = 0.001600
string = "HELLO "

3–24 Using HP C in the Common Language Environment

Example 3–7 shows a C function that acts like a CHARACTER*(*) function in
HP FORTRAN.

Example 3–7 HP C Function Emulating a HP FORTRAN CHARACTER*(*) Function

C
C Beginning of FORTRAN program:
C

CHARACTER*9 STARS, C

C Call a C function to produce a string of three "*" left-justified
C in a nine-character field.

C = STARS(3)

WRITE(5, 10) C
10 FORMAT(1X, ’"’, A, ’"’)

END
C End of FORTRAN program

/*
* Beginning of HP C function:
*/

#include <descrip.h> /* Get layout of descriptors */

/* Routine "stars" is equivalent to a FORTRAN function declared as
* follows:
*
* CHARACTER*(*) FUNCTION STARS(NUM)
* INTEGER NUM
*
* Note that a FORTRAN CHARACTER function has an extra entry added to
* the argument list to represent the return value of the CHARACTER
* function. This entry, which appears first in the argument list,
* is the address of a completely filled-in character descriptor. Since
* the C version of a FORTRAN character function explicitly uses this
* extra argument list entry, the C version of the function is void!
*
* This example function returns a string that contains the specified
* number of asterisks (or "stars").
*
*/

void stars(struct dsc$descriptor_s *return_value, /* FORTRAN return value */
int *num_stars) /* Number of "stars" to create */

{
int i, limit;

(continued on next page)

Using HP C in the Common Language Environment 3–25

Example 3–7 (Cont.) HP C Function Emulating a HP FORTRAN CHARACTER*(*)
Function

/* A FORTRAN string is truncated if it is too large for the memory area
* allocated, and it is padded with spaces if it is too short. Set limit
* to the number of stars to put in the string given the size of the area
* used to store it. */
if (*num_stars < return_value->dsc$w_length)

limit = *num_stars;
else

limit = return_value->dsc$w_length;

/* Create a string of stars of the specified length up to the limit of the
* string size. */
for (i = 0; i < limit; ++i)

return_value->dsc$a_pointer[i] = ’*’;

/* Pad rest of string with spaces, if necessary. */
for (; i < return_value->dsc$w_length; ++i)

return_value->dsc$a_pointer[i] = ’ ’;
} /* End of HP C Function */

Example 3–7 produces the following output:

"*** "

3.3.2 Calling VAX MACRO
You can call a VAX MACRO routine from HP C or vice versa. However, like
all interlanguage calls, it is necessary to make sure that the actual arguments
correspond to the expected formal parameter types. Also, it is necessary to
remember that C strings are null-terminated and to take special action in
either the MACRO routine or the C routine to allow for this.

Example 3–8 shows a MACRO routine that calls a C routine with three
arguments, passing one by value, one by reference, and one by descriptor. It is
followed by the source for the called C routine.

3–26 Using HP C in the Common Language Environment

Example 3–8 VAX MACRO Program Calling a HP C Function

;---
; Beginning of MACRO program
;---

.extrn dbroutine ; The C routine
;---
; Local Data
;---

.psect data rd,nowrt,noexe

ft$$t_part_num: .ascii /WidgitGadget/
ft$$t_query_mode: .ascii /I/
ft$$s_query_mode = <. - ft$$t_query_mode>
ft$$l_protocol_buff: .blkl 1
ft$$kd_part_num_dsc:

.word 12

.word 0

.address ft$$t_part_num

;---
; Entry Point
;---

.psect ft_code rd,nowrt,exe

.entry dbtest ^m<r2,r3,r4,r5,r6,r7,r8>

;+
; call C routine for data base lookup
;-

movl #1,r3
pushal ft$$kd_part_num_dsc ; Descriptor for part number
pushal ft$$t_query_mode ; Mode to call
pushl #1 ; Status
calls #3, dbroutine ; Check the data base

99$:
ret

.end dbtest
;---
; End of MACRO program
;---

(continued on next page)

Using HP C in the Common Language Environment 3–27

Example 3–8 (Cont.) VAX MACRO Program Calling a HP C Function

/*
* Beginning of HP C code for dbroutine:
*/

#include <stdio.h>
#include <descrip.h>

#include <stdlib.h>
#include <string.h>

/* Structure pn_desc is the format of the descriptor
passed by the macro routine. */

extern struct
mydescript {

short pn_len;
short pn_zero;
char *pn_addr;
};

int dbroutine (int status, /* Passed by value */
char *action, /* Passed by reference */
struct mydescript *name_dsc) /* Passed by descriptor */

{
char *part_name;

/* Allocate space to put the null-padded name string. */
part_name = malloc(name_dsc->pn_len + 1);
memcpy(part_name,name_dsc -> pn_addr ,name_dsc -> pn_len);

/* Remember that C array bounds start at 0 */
part_name[name_dsc -> pn_len] = ’\0’;

printf (" Status is %d\n", status);
printf (" Length is %d\n",name_dsc -> pn_len);
printf (" Part_name is %s\n",part_name);
printf (" Request is %c\n",*action);
status = 1;
return(status);

} /* End of HP C code for dbroutine */

Example 3–8 produces the following output:

Status is 1
Length is 12
Part_name is WidgitGadget
Request is I

3–28 Using HP C in the Common Language Environment

Example 3–9 shows a HP C program that calls a VAX MACRO program.

Example 3–9 HP C Program Calling a VAX MACRO Program

/* Beginning of HP C function */

#include <stdio.h>
#include <descrip.h>

int zapit(int status, int *action, struct dsc$descriptor_s *descript);

main(void)
{

int status=255, argh = 99;
int *action = &argh;
$DESCRIPTOR(name_dsc,"SuperEconomySize");

printf(" Before calling ZAPIT: \n");
printf(" Status was %d \n",status);
printf(" Action contained %d and *action contained %d \n" ,action, *action);
printf(" And the thing described by the descriptor was %s\n",

name_dsc.dsc$a_pointer);

if (zapit(status,action,&name_dsc) && 1)
{
printf(" Ack, the world has been zapped! \n");
printf(" Status is %d \n",status);
printf(" Action contains %d and *action contains %d \n" ,action, *action);
printf(" And the address of the thing described by the descriptor is %d\n",

name_dsc.dsc$a_pointer);

}

} /* End of HP C function */

;---
; Beginning of VAX MACRO source code for zapit
;---
; Entry Point
;---

.psect ft_code rd,nowrt,exe

.entry zapit ^m<r2,r3,r4,r5,r6,r7,r8>

;+
; Maliciously change parameters passed by the C routine.
;
; The first parameter is passed by value, the second by
; reference, and the third by descriptor.
;-

(continued on next page)

Using HP C in the Common Language Environment 3–29

Example 3–9 (Cont.) HP C Program Calling a VAX MACRO Program

movl 4(ap), @8(ap) ;Change the by-reference parameter
;to the first parameter’s value.

movl 12(ap), r2
movl #0,4(r2) ;Zap address of string in descriptor.

; Return -1 to signal successful destruction.
movl #-1,r0
ret

.end
;---
; End of VAX MACRO source code for zapit
;---

Example 3–9 produces the following output:

Before calling ZAPIT:
Status was 255
Action contained 2146269556 and *action contained 99
And the thing described by the descriptor was SuperEconomySize
Ack, the world has been zapped!
Status is 255
Action contains 2146269556 and *action contains 255
And the address of the thing described by the descriptor is 0

3.3.3 Calling HP BASIC
Calling routines written in HP BASIC from HP C programs or vice versa is
straightforward. By default, HP BASIC passes arguments by reference, except
for arrays and strings, which are passed by descriptor. In some cases, these
defaults may be overridden by explicitly specifying the desired parameter-
passing mechanisms in the HP BASIC program. However, if an argument is a
constant or an expression, the actual argument passed refers to a local copy of
the specified argument’s value.

Strings in HP BASIC are not terminated by a null character, which is done
by HP C. As a result, passing strings between HP BASIC and HP C routines
requires you to do additional work. You may choose to add an explicit null
character to a HP BASIC string before passing it to a HP C routine, or you
may prefer to code the HP C routine to obtain the string’s length from its
descriptor.

Example 3–10 shows a HP C program that calls a HP BASIC function with a
variety of argument data types.

3–30 Using HP C in the Common Language Environment

Example 3–10 HP C Function Calling a HP BASIC Function

/*
* Beginning of HP C function:
*/

#include <stdio.h>
#include <descrip.h>

extern int basfunc ();

main(void)
{

int i = 508;
float f = 649.0;
double d = 91.50;
struct
{

short s;
float f;

} s = { -2, -3.14 };
$DESCRIPTOR (string1, "A C string");

printf ("BASIC returned %d\n",
basfunc (&i, &f, &d, &s, &string1, "bye"));

} /* End of HP C function */

! Beginning of the BASIC program

FUNCTION INTEGER basfunc (INTEGER i, REAL f, DOUBLE d, x s, &
STRING string1, &
STRING string2 = 3 BY REF)

RECORD x
WORD s
REAL f

END RECORD x

PRINT ’i = ’; i
PRINT ’f = ’; f
PRINT ’d = ’; d
PRINT ’s::s = ’; s::s
PRINT ’s::f = ’; s::f
PRINT ’string1 = ’; string1
PRINT ’string2 = ’; string2

END FUNCTION -15

! End of the BASIC program

Using HP C in the Common Language Environment 3–31

Example 3–10 produces the following output:

i = 508
f = 649
d = 91.5
s::s = -2
s::f = -3.14
string1 = A C string
string2 = bye
BASIC returned -15

Example 3–11 shows a HP BASIC program that calls a HP C function.

Example 3–11 HP BASIC Program Calling a HP C Function

! Beginning of the BASIC program:

PROGRAM example

EXTERNAL STRING FUNCTION cfunc (INTEGER BY VALUE, &
INTEGER BY VALUE, &
STRING BY DESC)

s$ = cfunc (5, 3, "abcdefghi")
PRINT "substring is "; s$

END PROGRAM

! End of the BASIC program

/*
* Beginning of HP C function:
*/

#include <descrip.h>

int str$copy_dx();

/*
* This routine simulates a BASIC function whose return
* value is a STRING. It returns the substring that is ‘length’
* characters long, starting from the offset ‘offset’ (0-based)
* in the input string described by the descriptor pointed to
* by ‘in_str’.
*/

(continued on next page)

3–32 Using HP C in the Common Language Environment

Example 3–11 (Cont.) HP BASIC Program Calling a HP C Function

void cfunc (struct dsc$descriptor_s *out_str,
int offset,
int length,
struct dsc$descriptor_s *in_str)

{
/* Declare a string descriptor for the substring. */
struct dsc$descriptor temp;

/* Check that the desired substring is wholly
within the input string. */

if (offset + length > in_str -> dsc$w_length)
return;

/* Fill in the substring descriptor. */
temp.dsc$w_length = length;
temp.dsc$a_pointer = in_str -> dsc$a_pointer + offset;
temp.dsc$b_dtype = DSC$K_DTYPE_T;
temp.dsc$b_class = DSC$K_CLASS_S;

/* Copy the substring to the return string. */
str$copy_dx (out_str, & temp);

} /* End of HP C function */

Example 3–11 produces the following output:

substring is fgh

3.3.4 Calling HP Pascal
Like HP FORTRAN and HP BASIC, there are certain considerations that you
must take into account when calling HP Pascal from HP C and vice versa.
When calling HP Pascal from HP C, HP Pascal expects all parameters to be
passed by reference. In HP Pascal, there are two different types of semantics:
value and variable. The value semantics in HP Pascal are different from
passing by value in HP C. Because they are different, you must specify the
address of the C parameter.

HP Pascal also expects all strings to be passed by descriptor. If you use the
CLASS_S descriptor, the string is passed by using HP Pascal semantics. If the
content of the string is changed, it is not reflected back to the caller.

Example 3–12 is an example of how to call a HP Pascal routine from HP C.

Using HP C in the Common Language Environment 3–33

Example 3–12 HP C Function Calling a HP Pascal Routine

/*
* Beginning of HP C function:
*/

#include <descrip.h>

/* This program demonstrates how to call a Pascal routine
from a C function. */

/* A Pascal routine called by a C function. */
extern void Pascal_Routine ();

main()
{

struct dsc$descriptor_s to_Pascal_by_desc;
char *Message = "The_Max_Num";
int to_Pascal_by_value = 100,
to_Pascal_by_ref = 50;

/* Construct the descriptor. */
to_Pascal_by_desc.dsc$a_pointer = Message;
to_Pascal_by_desc.dsc$w_length = strlen (Message);
to_Pascal_by_desc.dsc$b_class = DSC$K_CLASS_S;
to_Pascal_by_desc.dsc$b_dtype = DSC$K_DTYPE_T;

/* Pascal expects a calling routine to pass parameters by reference. */

Pascal_Routine(&to_Pascal_by_value, &to_Pascal_by_ref, &to_Pascal_by_desc);

printf ("\nWhen returned from Pascal:\nto_Pascal_by_value is still \
%d\nBut to_Pascal_by_ref is %d\nand Message is still %s\n",

to_Pascal_by_value, to_Pascal_by_ref,
to_Pascal_by_desc.dsc$a_pointer);

} /* End of HP C function */
{
Beginning of Pascal routine

}

MODULE C_PASCAL(OUTPUT);

(continued on next page)

3–34 Using HP C in the Common Language Environment

Example 3–12 (Cont.) HP C Function Calling a HP Pascal Routine

{ This Pascal routine calls the Pascal MAX function
to determine the maximum value between
’from_c_by_value‘ and ’from_c_by_ref‘, and then
assigns the result back to ’from_c_by_ref‘.
It also tries to demonstrate the results of passing
a by-descriptor mechanism.
It is called from a C main function.

}
[GLOBAL]PROCEDURE Pascal_Routine

(from_c_by_value :INTEGER;
VAR from_c_by_ref :INTEGER;

from_c_by_desc :[CLASS_S] PACKED ARRAY [l1..u1:INTEGER] OF CHAR
);

VAR
today_is : PACKED ARRAY [1..11] OF CHAR;

BEGIN

{ Display the contents of formal parameters. }
WRITELN;
WRITELN (’Parameters passed from C function: ’);
WRITELN (’from_c_by_value: ’, from_c_by_value:4);
WRITELN (’from_c_by_ref: ’, from_c_by_ref:4);
WRITELN (’from_c_by_desc: ’, from_c_by_desc);

{ Assign the maximum value into ’from_c_by_ref‘ }
from_c_by_ref := MAX (from_c_by_value, from_c_by_ref);

{ Change the content of ’from_Pascal_by_value‘ --
to show that the value did not get
reflected back to the caller.
}
from_c_by_value := 20;

(continued on next page)

Using HP C in the Common Language Environment 3–35

Example 3–12 (Cont.) HP C Function Calling a HP Pascal Routine

{ Put the results of DATE into ’from_c_by_desc‘
to show that the CLASS_S is only valid with
comformant strings passed by value.
}
DATE (today_is);
from_c_by_desc := today_is;
WRITELN (’***********************’);
WRITELN (’from_c_by_desc is changed to today’’s date: "’,

from_c_by_desc, ’"’);
WRITELN (’BUT, this will not reflect back to the caller.’);

END;
END.
{
End of Pascal routine

}

Example 3–12 produces the following output:

from_c_by_value: 100
from_c_by_ref: 50
from_c_by_desc: The_Max_Num

from_c_by_desc is changed to today’s date "26-MAY-1992"
BUT, this will not reflect back to the caller.

When returned from Pascal:
to_Pascal_by_value is still 100
to_Pascal_by_ref is 100
and Message is still The_Max_Num

There are also some considerations when calling HP C from HP Pascal. For
example, you can use mechanism specifiers such as %IMMED, %REF, and
%STDESCR in HP Pascal. When you use the %IMMED mechanism specifier,
the compiler passes a copy of a value rather than an address. When you
use the %REF mechanism specifier, the address of the actual parameter is
passed to the called routine, which is then allowed to change the value of the
corresponding actual parameter. When you use the %STDESCR mechanism
specifier, the compiler generates a fixed-length descriptor of a character-string
variable and passes its address to the called routine. For more information on
these mechanism specifiers and others, see the HP Pascal documentation.

Another consideration is that HP Pascal does not null-pad strings. Therefore,
you must add a null character to make the string a C string. Also, when
passing a string from HP Pascal to HP C, you can declare a structure
declaration in HP C that corresponds to the HP Pascal VARYING TYPE
declaration.

3–36 Using HP C in the Common Language Environment

Example 3–13 shows an example of how to call HP C from HP Pascal.

Example 3–13 HP Pascal Program Calling a HP C Function

{
Beginning of Pascal function:

}

PROGRAM PASCAL_C (OUTPUT);

CONST
STRING_LENGTH = 80;

TYPE
STRING = VARYING [STRING_LENGTH] OF CHAR;

VAR
by_value : INTEGER;
by_ref : STRING;
by_desc: PACKED ARRAY [1..10] OF CHAR;

[EXTERNAL]
PROCEDURE DECC$CRTL_INIT; EXTERN;

[EXTERNAL]
PROCEDURE c_function
(%immed by_value : INTEGER;

%ref by_ref : STRING ;
%stdescr by_desc: PACKED ARRAY [l1..u1:INTEGER] OF CHAR

); EXTERN;

BEGIN

{ Establish the appropriate HP C RTL environment for
calling the HP C RTL from Pascal.

}
DECC$CRTL_INIT;

by_value := 1;

{ NOTE
Pascal does not null pad a string.
Therefore, the LENGTH built-in function counts
the null pad character while the HP C library function strlen
does not include the terminating null character.

}

by_ref := ’TO_C_BY_REF’(0)’’;
by_desc := ’TERM’(0)’’;

(continued on next page)

Using HP C in the Common Language Environment 3–37

Example 3–13 (Cont.) HP Pascal Program Calling a HP C Function

{ Call a C function by passing parameters
using foreign semantics.

}
c_function (by_value, by_ref, by_desc);

WRITELN;
WRITELN;
WRITELN (’*************************’);
WRITELN (’After calling C_FUNCTION: ’);
WRITELN;
WRITELN (’by_value is still ’,by_value:3);
WRITELN (’however, by_ref contains ’,by_ref,

’ (aka Your Terminal Type)’);
WRITELN (’and, by_desc still contains ’,by_desc);

END.
{
End of Pascal program

}

/*
* Beginning of HP C function:
*
*
* A C function called from the Pascal routine.
* The parameters are passed to a C function
* by value, by reference, and by descriptor,
* respectively.
*/
#include <descrip.h>

/* A Pascal style of VARYING data type. */
struct Pascal_VARYING
{

unsigned short length;
char string[80];

};

/* This C function calls the HP C RTL function getenv() and puts
* your terminal type in ’from_Pascal_by_ref‘.
* It is called from a Pascal program.
*/
void c_function (unsigned char from_Pascal_by_value,

struct Pascal_VARYING *from_Pascal_by_ref,
struct dsc$descriptor_s *from_Pascal_by_desc
)

{
char *term;

(continued on next page)

3–38 Using HP C in the Common Language Environment

Example 3–13 (Cont.) HP Pascal Program Calling a HP C Function

/* Display the contents of formal parameters. */
printf ("\nParameters passed from Pascal:\n");
printf ("from_Pascal_by_value: %d\nfrom_Pascal_by_ref: %s\n\

from_Pascal_by_desc: %s\n", from_Pascal_by_value,
from_Pascal_by_ref -> string,
from_Pascal_by_desc -> dsc$a_pointer);

if ((term = getenv(from_Pascal_by_desc -> dsc$a_pointer)) != 0)
{

/* Fill ’from_Pascal_by_ref‘ with new value. */
strcpy (from_Pascal_by_ref -> string, term);
from_Pascal_by_ref -> length = strlen (term);

/* Change the contents of ’from_Pascal_by_value‘ --
* to demonstrate that the value did not get
* reflected back to the calling routine.
*/
from_Pascal_by_value = from_Pascal_by_desc -> dsc$w_length

+ from_Pascal_by_ref -> length;
}

else
printf ("\ngetenv\(\"TERM\"\) is undefined.");

} /* End of HP C function */

Example 3–13 produces the following output:

Parameters passed from Pascal:
from_Pascal_by_value: 1
from_Pascal_by_ref: TO_C_BY_REF
from_Pascal_by_desc: TERM

After calling C_FUNCTION:

by_value is still 1
however, by_ref contains vt200-80 (aka Your Terminal Type)
and, by_desc still contains TERM

3.4 Sharing Global Data
The following sections describe the methods involved in sharing HP C program
sections with data declared in other OpenVMS languages.

Using HP C in the Common Language Environment 3–39

3.4.1 Sharing Program Sections with FORTRAN Common Blocks
In a FORTRAN program, separately compiled procedures can share data in
declared common blocks, which specify the names of one or more variables to
be placed in them. Each named common block represents a separate program
section. Each procedure that declares the common block with the same name
can access the same variable.

Example 3–14 shows a HP C extern variable that corresponds to a FORTRAN
common block with the same name.

Example 3–14 Sharing Data with a FORTRAN Program in Named Program
Sections

C FORTRAN program PRSTRING.FOR contains the following lines of code:

SUBROUTINE PRSTRING
CHARACTER*20 STRING
COMMON /XYZ/ STRING

TYPE 20, STRING
20 FORMAT (’ ’,A20)

RETURN
END

C End of FORTRAN program

/* HP C program STRING.C contains the following lines of *
* code: */

main(void)
{
#pragma extern_model common_block // Alpha only. On VAX systems, use

// #pragma extern_model common_block shr
extern char xyz[20];

strncpy(xyz,"This is a string ", sizeof xyz);
prstring();

}

In Example 3–14, the HP C extern variable xyz corresponds to the FORTRAN
common block named XYZ. The FORTRAN procedure displays the data in
the block. When sharing program sections, both programs should declare
corresponding variables to be of the same type.

3–40 Using HP C in the Common Language Environment

Note the #pragma extern_model common_block preprocessor directive. This
directive sets the model for external variables to the common_block model,
which is the one used by VAX C. The default external model for HP C is the
relaxed_refdef model. For more information on the #pragma extern_model
common_block preprocessor directive, see Section 5.4.5.

To share data in more than one variable in a program section with a FORTRAN
program, the HP C variables must be declared within a structure, as shown in
Example 3–15.

Example 3–15 Sharing Data with a FORTRAN Program in a HP C Structure

C FORTRAN program FNUM.FOR contains the following lines of code:

SUBROUTINE FNUM
INTEGER*4 INUM,JNUM,KNUM
COMMON /NUMBERS/ INUM,JNUM,KNUM

TYPE 10, (INUM,JNUM,KNUM)

10 FORMAT (3I8)

RETURN
END

C End of FORTRAN program

/* HP C program NUMBERS.C contains the following lines of *
* code: */
struct xs

{
int first;
int second;
int third;

};

#pragma extern_model common_block

main()
{

extern struct xs numbers;

numbers.first = 1;
numbers.second = 2;
numbers.third = 3;
fnum();

}

In Example 3–15, the int variables declared in the HP C structure numbers
correspond to the FORTRAN INTEGER*4 variables in the COMMON of the
same name.

Using HP C in the Common Language Environment 3–41

Also, note the #pragma extern_model common_block preprocessor directive.
This directive sets the model for external variables to the common_block model,
which is the one used by VAX C. The default external model for HP C is the
relaxed_refdef model. For more information on the #pragma extern_model
common_block preprocessor directive, see Section 5.4.5.

3.4.2 Sharing Program Sections with PL/I Externals
A HP PL/I variable with the EXTERNAL attribute corresponds to a FORTRAN
common block and to a HP C extern variable in the common_block external
model. Example 3–16 and Example 3–17 show how a program section is
shared between HP C and HP PL/I.

A PL/I EXTERNAL CHARACTER attribute corresponds to a HP C extern
char variable, but PL/I character strings are not necessarily null-terminated.
In Example 3–16, HP C and HP PL/I use the same variable to manipulate the
character string that resides in a program section named XYZ.

Example 3–16 Sharing Data with a PL/I Program in Named Program Sections

/* PL/I program PRSTRING.PLI contains the following lines of code: */

PRSTRING: PROCEDURE;

DECLARE XYZ EXTERNAL CHARACTER(20);

PUT SKIP LIST(XYZ);
RETURN;

END PRSTRING;

/* End of PL/I program */

/* HP C program STRING.C contains the following lines of *
* code: */

main(void)
{

extern char xyz[20];

strncpy(xyz,"This is a string ", sizeof xyz);
prstring();

}

The PL/I procedure PRSTRING writes out the contents of the external variable
XYZ.

3–42 Using HP C in the Common Language Environment

PL/I also has a structure type similar (in its internal representation) to the
struct keyword in HP C. Moreover, HP PL/I can output aggregates, such as
structures and arrays, in fairly simple stream-output statements; consider
Example 3–17.

Example 3–17 Sharing Data with a PL/I Program in a HP C Structure

/* PL/I program FNUM.PLI contains the following lines of code: */

FNUM: PROCEDURE;
/* EXTERNAL STRUCTURE CONTAINING THREE INTEGERS */
DECLARE 1 NUMBERS EXTERNAL,

2 FIRST FIXED(31),
2 SECOND FIXED(31),
2 THIRD FIXED(31);

PUT SKIP LIST(’Contents of structure:’,NUMBERS);
RETURN;

END FNUM;

/* End of PL/I program */

/* HP C program NUMBERS.C contains the following lines of *
* code: */

struct xs
{

int first;
int second;
int third;

};

main()
{

extern struct xs numbers;

numbers.first = 1;
numbers.second = 2;
numbers.third = 3;
fnum();

}

The PL/I procedure FNUM writes out the complete contents of the external
structure NUMBERS; the structure members are written out in the order of
their storage in memory, which is the same as for a HP C structure.

Using HP C in the Common Language Environment 3–43

3.4.3 Sharing Program Sections with MACRO Programs
In a MACRO program, the .PSECT directive sets up a separate program
section that can store data or MACRO instructions. The attributes in the
.PSECT directive describe the contents of the program section.

Example 3–18 shows how to set up a psect in a MACRO program that allows
data to be shared with a HP C program.

Example 3–18 Sharing Data with a MACRO Program in a HP C Structure

; MACRO source file SET_VALUE.MAR contains the following lines of code:

.entry set_value,^M<>

movl #1,first
movl #2,second
movl #3,third
ret

.psect example pic,usr,ovr,rel,gbl,noshr,-
noexe,rd,wrt,novec,long

first: .blkl
second: .blkl
third: .blkl

.end

; End of MACRO source file

/* HP C program NUMBERS.C contains the following lines of *
* code: */

#pragma extern_model common_block

struct xs
{

int first;
int second;
int third;

} example;

main()
{

set_value();

printf("example.first = %d\n", example.first);
printf("example.second = %d\n", example.second);
printf("example.third = %d\n", example.third);

}

3–44 Using HP C in the Common Language Environment

The MACRO program initializes the locations first, second, and third in the
psect named example and passes these values to the HP C program. The
locations are referenced in the HP C program as members of the external
structure named example.

Also, note the #pragma extern_model common_block preprocessor directive.
This directive sets the model for external variables to the common_block model,
which is the one used by VAX C. The default external model for HP C is the
relaxed_refdef model. For more information on the #pragma extern_model
common_block preprocessor directive, see Section 5.4.5.

3.5 OpenVMS Run-Time Library Routines
The OpenVMS Run-Time Library (RTL) is a library of prewritten, commonly
used routines that perform a wide variety of functions. These routines are
grouped according to the types of tasks they perform, and each group has a
prefix that identifies those routines as members of a particular OpenVMS RTL
facility. Table 3–10 lists all the language-independent, run-time library facility
prefixes and the types of tasks each facility performs.

Table 3–10 OpenVMS Run-Time Library Facilities

Facility Prefix Types of Tasks Performed

LIB$ Library routines that obtain records from devices, manipulate
strings, convert data types for I/O, allocate resources, obtain system
information, signal exceptions, establish condition handlers, enable
detection of hardware exceptions, and process cross-reference data.

MTH$ Mathematics routines that perform arithmetic, algebraic, and
trigonometric calculations.

OTS$ General-purpose routines that perform tasks such as data-type
conversions as part of a compiler’s generated code.

SMG$ Screen management routines that are used in designing, composing,
and keeping track of complex images on a video screen.

STR$ String manipulation routines that perform such tasks as searching
for substrings, concatenating strings, and prefixing and appending
strings.

The OpenVMS run-time library routines are documented in detail in the
following operating system documentation:

• OpenVMS RTL Library (LIB$) Manual

• OpenVMS VAX RTL Mathematics (MTH$) Manual

• HP Portable Mathematics Library

Using HP C in the Common Language Environment 3–45

• OpenVMS RTL General Purpose (OTS$) Manual

• OpenVMS RTL Screen Management (SMG$) Manual

• OpenVMS RTL String Manipulation (STR$) Manual

3.6 OpenVMS System Services Routines
System services are prewritten system routines that perform a variety of
tasks, such as controlling processes, communicating among processes, and
coordinating I/O.

Unlike the OpenVMS Run-Time Library (RTL) routines, which are divided into
groups by facility, all system services share the same facility prefix (SYS$).
However, these services are logically divided into groups that perform similar
tasks. Table 3–11 describes these groups.

Table 3–11 OpenVMS System Services

Group Types of Tasks Performed

AST Allows processes to control the handling of asynchronous
system traps (ASTs).

Change mode Changes the access mode of particular routines.

Condition handling Designates condition handlers for special purposes.

Event flag Clears, sets, reads, and waits for event flags, and associates
with event flag clusters.

Information Returns information about the system, queues, jobs, processes,
locks, and devices.

Input/Output Performs I/O directly without going through RMS.

Lock management Enables processes to coordinate access to shareable system
resources.

Logical names Provides methods of accessing and maintaining pairs of
character-string logical names and equivalence names.

Memory manage-
ment

Increases or decreases available virtual memory, controls
paging and swapping, and creates and accesses shareable files
of code or data.

Process control Creates, deletes, and controls execution of processes.

Security Enhances the security of OpenVMS systems.

Time and Timing Schedules events and obtains and formats binary time values.

System services are documented in detail in the HP OpenVMS System Services
Reference Manual.

3–46 Using HP C in the Common Language Environment

The routines that provide a programming interface to various OpenVMS
utilities are described in the OpenVMS Utility Routines Manual.

3.7 Calling Routines
The basic steps for calling routines are the same whether you are calling a
routine written in HP C, a routine written in some other OpenVMS language,
a system service, or an OpenVMS Run-Time Library (RTL) routine. The
following sections outline the procedures for calling non-HP C routines.

3.7.1 Determining the Type of Call
Before calling an external routine, you must first determine whether the call
should be a procedure call or a function call. Call a routine as a procedure if it
does not return a value. Call a routine as a function if it returns any type of
value.

3.7.2 Declaring an External Routine and Its Arguments
To call an external routine or system routine, you need to declare it as
an external function and to declare the names, data types, and passing
mechanisms of its arguments. Arguments can be either required or optional.

Include the following information in a routine declaration:

• The name of the external routine

• The data types of all the routine parameters (optional)

• The data type of the return value if it is a function

• The void keyword if it is a procedure

The following example shows how to declare an external routine and its
arguments:

char func_name (int x, char y);

Header files are available to declare commonly used external routines. Using
them will save you a lot of work. See Sections 1.3.1.1 and 1.3.1.2 in this
manual for information on listing and including header files.

Using HP C in the Common Language Environment 3–47

3.7.3 Calling the External Routine
After declaring an external routine, you can invoke it. To invoke a function,
you must specify the name of the routine being invoked and all arguments
required for that routine. Make sure the data types for the actual arguments
you are passing coincide with those of the parameters you declared earlier, and
with those declared in the routine. The following example shows how to invoke
the function declared in Section 3.7.2:

ret_status = func_name(1,’a’);

3.7.4 System Routine Arguments
All system routine arguments are described in terms of the following
information:

• OpenVMS usage

• Data type

• Type of access allowed

• Passing mechanism

OpenVMS usages are data structures that are layered on the standard
OpenVMS data types. For example, the OpenVMS usage mask_longword
signifies an unsigned longword integer that is used as a bit mask, and the
OpenVMS usage floating_point represents any OpenVMS floating-point data
type. Table 3–12 lists all the OpenVMS usages and the HP C types you need
to implement them.

Table 3–12 HP C Implementation

OpenVMS Data Type HP C Declaration

access_bit_names user-defined1

access_mode unsigned char

address int *pointer2�4

1The declaration of a user-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.
2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object is
often user-defined.
4The data type specified can be changed to any valid HP C data type.

(continued on next page)

3–48 Using HP C in the Common Language Environment

Table 3–12 (Cont.) HP C Implementation

OpenVMS Data Type HP C Declaration

address_range int *array [2] 2�3�4

arg_list user-defined1

ast_procedure pointer to a function2

boolean unsigned long int

byte_signed char

byte_unsigned unsigned char

channel unsigned short int

char_string char array[n]3�5

complex_number user-defined1

cond_value unsigned long int

context unsigned long int

date_time user-defined1

device_name char array[n]3�5

ef_cluster_name char array[n]3�5

ef_number unsigned long int

exit_handler_block user-defined1

fab #include fab from text library
struct FAB

file_protection unsigned short int, or user-defined1

floating_point float or double

function_code unsigned long int or user-defined1

identifier int *pointer2�4

io_status_block user-defined1

item_list_2 user-defined1

1The declaration of a user-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.
2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object is
often user-defined.
3The term array denotes the syntax of a HP C array declaration.
4The data type specified can be changed to any valid HP C data type.
5The size of the array must be substituted for n.

(continued on next page)

Using HP C in the Common Language Environment 3–49

Table 3–12 (Cont.) HP C Implementation

OpenVMS Data Type HP C Declaration

item_list_3 user-defined1

item_list_pair user-defined1

item_quota_list user-defined1

lock_id unsigned long int

lock_status_block user-defined1

lock_value_block user-defined1

logical_name char array[n]3�5

longword_signed long int

longword_unsigned unsigned long int

mask_byte unsigned char

mask_longword unsigned long int

mask_quadword user-defined1

mask_word unsigned short int

null_arg unsigned long int

octaword_signed user-defined1

octaword_unsigned user-defined1

page_protection unsigned long int

procedure pointer to function2

process_id unsigned long int

process_name char array[n]3�5

quadword_signed user-defined1

quadword_unsigned user-defined1

rights_holder user-defined1

rights_id unsigned long int

1The declaration of a user-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.
2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object is
often user-defined.
3The term array denotes the syntax of a HP C array declaration.
5The size of the array must be substituted for n.

(continued on next page)

3–50 Using HP C in the Common Language Environment

Table 3–12 (Cont.) HP C Implementation

OpenVMS Data Type HP C Declaration

rab #include rab
struct RAB

section_id user-defined1

section_name char array[n]3�5

system_access_id user-defined1

time_name char array[n]3�5

uic unsigned long int

user_arg user-defined1

varying_arg user-defined1

vector_byte_signed char array[n]3�5

vector_byte_unsigned unsigned char array[n]3�5

vector_longword_signed long int array[n]3�5

vector_longword_unsigned unsigned long int array[n]3�5

vector_quadword_signed user-defined1

vector_quadword_unsigned user-defined1

vector_word_signed short int array[n]3�5

vector_word_unsigned unsigned short int array[n]3�5

word_signed short int

word_unsigned unsigned short int

1The declaration of a user-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.
3The term array denotes the syntax of a HP C array declaration.
5The size of the array must be substituted for n.

If a system routine argument is optional, it will be indicated in the format
section of the routine description in one of two ways, as follows:

• [,optional-argument]

• ,[optional-argument]

If the comma appears outside the brackets, you must pass a 0 by value to
indicate the place of the omitted argument. If the comma appears inside the
brackets, you can omit the argument if it is the last argument in the list.

Using HP C in the Common Language Environment 3–51

For more information, see the OpenVMS Programming Interfaces: Calling a
System Routine manual. This manual describes the OpenVMS programming
interface and defines the standard conventions to call an OpenVMS system
routine from a user procedure. The Alpha and VAX data type implementations
for various high-level languages are also presented.

3.7.5 Symbol Definitions
Many system routines depend on values that are defined in separate symbol
definition files. OpenVMS RTL routines require you to include symbol
definitions when you are calling a Screen Management facility routine or
a routine that is a jacket to a system service. A jacket routine provides an
interface to the corresponding system service. For example, the routine
LIB$SYS_ASCTIM is a jacket routine for the $ASCTIM system service.

If you are calling a system service, you must include the <ssdef.h> header file
to check the status. Many system services require other symbol definitions as
well. To determine whether you need to include other symbol definitions for
the system service you want to use, see the documentation for that particular
system service. If the documentation states that values are defined in a macro,
you must include those symbol definitions in your program.

For example, the description for the flags parameter in the SYS$MGBLSC
(Map Global Section) system service states that ‘‘Symbolic names for the
flag bits are defined by the $SECDEF macro.’’ Therefore, when you call
SYS$MGBLSC you must include the definitions provided in the $SECDEF
macro by including the <secdef.h> header file.

In HP C, a header file is included as follows:

#include <ssdef.h>

To obtain a list of all HP C header files, see Section 1.3.1.2.

3.7.6 Condition Values
Many system routines return a condition value that indicates success or
failure; this value can be either returned or signaled. If a condition value is
returned, then you must check the returned value to determine whether the
call to the system routine was successful. Otherwise, the condition value is
signaled to your program instead of being written to a storage location.

Condition values indicating success appear first in the list of condition values
for a particular routine, and success codes have odd values. A success code
that is common to many system routines is the condition value SS$_NORMAL,
which indicates that the routine completed normally and successfully. If the
condition value is returned, then you can test for SS$_NORMAL as follows:

3–52 Using HP C in the Common Language Environment

if (ret_status != SS$_NORMAL)
LIB$STOP();

Because all success codes have odd values, you can check a return status for
any success code. For example, you can cause execution to continue only if a
success code is returned by including the following statements in your program:

if ((ret_status & 1) != 0)
LIB$STOP (ret_status);

In general, you can check a return status for a particular success or failure
code or you can test the condition value returned against all success codes or
all failure codes.

3.7.7 Checking System Service Return Values
It is customary in OpenVMS programming to compare the return status of a
system service with a global symbol, not with the literal value associated with
a particular return status. Consequently, a high-level language program should
define the possible return status values for a service as symbolic constants. In
HP C, you can do this by including the <ssdef.h> header file; Example 3–19
shows how this is done.

Using HP C in the Common Language Environment 3–53

Example 3–19 Checking System Service Return Values

/* This program shows how to compare the status of a system *
* service with a global symbol. */

#include <stdlib.h>

/* Define system service *
* status values */

#include <ssdef.h>
#include <stdio.h>

/* Declaration of the *
* service (not required) */

int SYS$SETEF();

int main(void)
{

/* To hold the status of *
* SYS$SETEF */

int efstatus;
/* Argument values for *
* SYS$SETEF */

enum cluster0
{

completion, breakdown, beginning
} event;
.
.
.

event = completion;

/* Set the event flag */
efstatus = SYS$SETEF(event);

/* Test the return status */
if (efstatus == SS$_WASSET)

fprintf (stderr,"Flag was already set\n");
else

if (efstatus == SS$_WASCLR)
fprintf(stderr, "Flag was previously clear\n");

else
fprintf(stderr,

"Could not set completion event flag.\n \
Possible programming error.\n");

exit(efstatus);
}

The system service return status values (SS$_WASSET and SS$_WASCLR) in
Example 3–19 are defined by the <ssdef.h> header file.

3–54 Using HP C in the Common Language Environment

Error handling in Example 3–19 is typical of programs running on OpenVMS
systems. Using the following statements, the example program attempts to
provide a program-specific error message and then passes the offending error
status to the caller:

else
fprintf(stderr,

"Could not set completion event flag.\n \
Possible programming error.\n");

exit(efstatus);

If you execute the program with DCL, it interprets any status value the
program returns. DCL prints a standard error message on the terminal
to provide you with more information about the failure. For example, if
the program encounters the SS$_ILLEFC return status, DCL displays the
following messages:

Could not set completion event flag.
Possible programming error.
%SYSTEM-F-ILLEFC, illegal event flag cluster.

3.8 Variable-Length Argument Lists in System Services
Most system services and other external procedures require a specific number
of arguments, but some accept a variable number of optional arguments.
Because HP C function declarations do not show the number of parameters
expected by external functions unless a function prototype is used, the way you
call an external function from a HP C program depends on the semantics of the
called function. You must supply the number of arguments that the external
function expects. The rules are as follows:

• When optional arguments occur between required arguments, they cannot
be omitted. If omitting such an argument is necessary—for example, to
select a default action—the argument must be written as a zero.

• When optional arguments occur at the end of an argument list, the format
of the function reference depends on the action of the called function as
follows:

If the called function checks the number of arguments passed, you can
omit optional trailing arguments from the function reference. System
services generally do not check the length of the argument list.

If the called function does not check the number of arguments passed,
all arguments must be present in the function reference.

Using HP C in the Common Language Environment 3–55

For example, the function STR$CONCAT, in the Common Run-Time Library,
concatenates from 2 to 254 strings into a single string. It has the following call
format:

ret = STR$CONCAT(dst, src1, src2[, src3, . . . src254]);

For more information about the STR$CONCAT function, see the VMS
Run-Time Library Routines Volume.

The identifier dst is the destination for the concatenated string, and src1,
src2, . . . src254 are the source strings. All arguments are passed by descriptor.
All but the first two source strings are optional. The function checks to see how
many arguments are present in the call; if fewer than three (the destination
and two sources) are present, the function returns an error status value.
Example 3–20 shows a call to the STR$CONCAT function from HP C.

Example 3–20 Using Variable-Length Argument Lists

/* This example shows a call to STR$CONCAT. */

#include <stdlib.h>

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

int STR$CONCAT();

int main(void)
{

int ret; /* Return status of *
* STR$CONCAT */

/* Destination array of *
* concatenated strings */

char dest[21];

/* Create compile-time *
* descriptors: */

$DESCRIPTOR(dst, dest);
static $DESCRIPTOR(src1, "abcdefghij");
static $DESCRIPTOR(src2, "klmnopqrst");

/* Concatenate strings */
ret = STR$CONCAT(&dst, &src1, &src2);

/* Test return status value */
if (ret != SS$_NORMAL)

fprintf(stderr,"Failed to concatenate strings.\n"),
exit(ret);

(continued on next page)

3–56 Using HP C in the Common Language Environment

Example 3–20 (Cont.) Using Variable-Length Argument Lists

/* Process string */
else

dest[20] = ’\0’,
printf("Resultant string: %s\n",dest);

}

3.9 Return Status Values
The status values from OpenVMS system service procedures are returned in
general register R0. This return status value indicates the success or failure
of the operation performed by the called procedure. In HP C, passing a return
status value in R0 is equivalent to a function returning int.

To obtain a return status value from any system procedure, declare the
procedure as a function, as shown in the following example:

int SYS$SETEF();

After declaring a procedure in this way, you can invoke the procedure as a
function and obtain a return status value. In HP C, such a declaration is
needed only as program documentation; SYS$SETEF can be called without
explicit declaration and will be interpreted by default as a function returning
int.

This section describes the following topics:

• The format of a return status value, that is, the meaning of particular bits
within the value

• The way to manipulate return status values

• The recommended techniques for testing a return status value for success
or failure or for a specific condition

3.9.1 Format of Return Status Values
All OpenVMS system procedures and programs use a longword value to
communicate return status information. When a HP C main function executing
under the control of the DCL interpreter executes a return statement to return
control to the command level, the command interpreter uses the return status
value to conditionally display a message on the current output device.

Using HP C in the Common Language Environment 3–57

To provide a unique means of identifying every return condition in the system,
bit fields within the value are defined as shown in Figure 3–5.

Figure 3–5 Bit Fields Within a Return Status Value

27

16 15 3

31 28

27

3 2 0

number
facility message

number

control bits severity

condition identification

ZK−0283−GE

The following list describes the division of this bit field:

control bits (31-28)
Define special action(s) to be taken. At present, only bit 28 is used. When set,
it inhibits the printing of the message associated with the return status value
at image exit. Bits 29 through 31 are reserved for future use by HP and must
be 0.

facility number (27-16)
A unique value assigned to the system component, or facility, that is returning
the status value. Within this field, bit 27 has a special significance. If bit 27 is
clear, the facility is a HP facility: the remaining value in the facility number
field is a number assigned by the operating system. If bit 27 is set, the number
indicates a customer-defined facility.

message number (15-3)
An identification number that specifically describes the return status or
condition. Within this field, bit 15 has a special significance. If bit 15 is set,
the message number is unique to the facility issuing the message. If bit 15 is
clear, the message is issued by more than one system facility.

severity (2-0)
A numeric value indicating the severity of the return status. Table 3–13 shows
the possible values in these three bits, and their meanings.

3–58 Using HP C in the Common Language Environment

Table 3–13 Possible Severity Values

Value Meaning

0 Warning

1 Success

2 Error

3 Informational

4 Severe error, FATAL

5-7 Reserved

Odd values indicate success (an informational condition is considered a
successful status) and even values indicate failures (a warning is considered an
unsuccessful status).

The following names are associated with these fields:

control bits
bit 28 (inhibit message)

CONTROLINHIB_MSG

facility number
bit 27 (customer facility)

FAC_NOCUST_DEF

message number
bit 15 (facility specific)

MSG_NOFAC_SP

severity
bit 0 (success)

SEVERITYSUCCESS

When testing return values in a HP C program, either you can test only for
successful completion of a procedure or you can test for specific return status
values.

3.9.2 Manipulating Return Status Values
You can construct a structure or union that describes a return status value,
but this method of manipulating return status values is not recommended. A
status value is usually constructed or checked using bitwise operators. HP C
provides the <stsdef.h> header file, which contains preprocessor definitions to
make this job easier. All the preprocessor symbols are named according to the
following OpenVMS naming convention:

STS$type_name

Using HP C in the Common Language Environment 3–59

STS
Identifies standard return status values.

type
One of the following characters denoting the type of the constant:

K Represents a constant value

M Represents a bit mask

S Represents the bit size of a field

V Defines the bit offset to the field

name
An abbreviation for the field name.

For example, the following constants are defined in <stsdef.h> for the facility
number field, FAC_NO, which spans bits 16 through 27:

/* Size of field in bits */
#define STS$S_FAC_NO 12

/* Bit offset to the *
* beginning of the field */

#define STS$V_FAC_NO 16

/* Bit mask of the field */
#define STS$M_FAC_NO 0xFFF0000

Figure 3–6 shows how the status value is represented internally.

Figure 3–6 Internal Representation of a Status Value

00001111 11111111 00000000 00000000

31 27 16 0

STS$S_FAC_NO STS$V_FAC_NO

STS$M_FAC_NO

ZK−0528−GE

Use the following expression to extract the facility number from a particular
status value contained in the variable named status:

(status & STS$M_FAC_NO) >> STS$V_FAC_NO

3–60 Using HP C in the Common Language Environment

In the previous example, the parentheses are required for the expression to be
evaluated properly; the relative precedence of the bitwise AND operator (&) is
lower than the precedence of the binary shift operator (>>).

3.9.3 Testing for Success or Failure
To test a return status value for success or failure, you need only test the
success bit. A value of true in this bit indicates that the return value is a
successful value.

Example 3–21 shows a program that checks the success bit.

Example 3–21 Testing for Success

/* This program shows how to test the success bit. */

#include <stdio.h>
#include <descrip.h>
#include <stsdef.h>
#include <starlet.h>
#include <stdlib.h>

int main(void)
{

int status;
$DESCRIPTOR(name, "student");

status = sys$setprn(&name);

if (status & STS$M_SUCCESS)
/* Success code */

fprintf(stderr, "Successful completion");

else
/* Failure code */

fprintf(stderr, "Failed to set process name.\n");
exit(status);

}

The failure code in Example 3–21 causes the printing of a program-specific
message indicating the condition that caused the program to terminate. The
error status is passed to the DCL by the exit function, which then interprets
the status value.

Using HP C in the Common Language Environment 3–61

3.9.4 Testing for Specific Return Status Values
Each numeric return status value defined by the system has a symbolic name
associated with it. The names of these values are defined as system global
symbols, and you can access their values by referring to their symbolic names.

The global symbol names for OpenVMS return status values have the following
format:

facility$_code

facility
An abbreviation or acronym for the system facility that defined the global
symbol.

code
A mnemonic for the specific status value.

Table 3–14 shows some examples of facility codes used in global symbol names.

Table 3–14 Facility Codes

Facility Description

SS System services; these status codes are listed in the HP OpenVMS
System Services Reference Manual.

RMS File system procedures; these status codes are listed in the OpenVMS
Record Management Services Reference Manual.

SOR SORT procedures; these status codes are listed in the VMS
Sort/Merge Utility Manual.

The definitions of the global symbol names for the facilities listed are located
in the default HP C object module libraries, so they are automatically located
when you link a HP C program that references them.

When you write a HP C program that calls system procedures and you want
to test for specific return status values using the symbol names, you must
perform the following tasks:

1. Determine, from the documentation of the procedure, the status values
that can be returned, and choose the values for which you want to provide
specific tests.

3–62 Using HP C in the Common Language Environment

2. Declare the symbolic name for each value of interest. The <ssdef.h> and
<rmsdef.h> header files define the system service and RMS return status
values, respectively. If you are checking return status values from other
facilities, such as the SORT utility, you must explicitly declare the return
values as globalvalue int. Consider the following example:

globalvalue int SOR$_OPENIN;

3. Reference the symbols in your program.

Example 3–22 shows a program that checks for specific return status values
defined in the <ssdef.h> header file.

Example 3–22 Testing for Specific Return Status Values

/* This program checks for specific return status values. */

#include <stdlib.h>

#include <ssdef.h>
#include <stdio.h>
#include <descrip.h>

$DESCRIPTOR(message,"\07**Lunch_time**\07");

int main(void)
{

int status = SYS$BRDCST(&message,0);

if (status != SS$_NORMAL)
{

if (status == SS$_NOPRIV)
fprintf(stderr, "Can’t broadcast; requires OPER \

privilege.");

else
fprintf(stderr, "Can’t broadcast; some fatal \

error.");

exit(status);
}

}

3.10 Examples of Calling System Routines
This section provides complete examples of calling system routines from HP C.
Example 3–23 shows the three mechanisms for passing arguments to system
services and also shows how to test for status return codes. Example 3–24
shows various ways of testing for successful $QIO completion. Example 3–25
shows how to use time conversion and set timer routines.

Using HP C in the Common Language Environment 3–63

In addition to the examples provided here, the VMS Run-Time Library
Routines Volume and the HP OpenVMS System Services Reference Manual also
provide examples for selected routines. See these manuals for help on using a
specific system routine.

Example 3–23 Passing Arguments to System Services

/* GETMSG.C
This program is an example showing the three mechanisms
for passing arguments to system services. It also
shows how to test for specific status return
codes from a system service call. */

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <lib$routines.h>

int main(void)
{
int message_id;
short message_len;
char text[133];
$DESCRIPTOR(message_text, text);
register status;

while (printf("\nEnter a message number <Ctrl/Z to quit>: "),
scanf("%d", &message_id) != EOF)

{
/* Retrieve message associated with the number. */
status = SYS$GETMSG(message_id, &message_len,

&message_text, 15, 0);

/* Check for status conditions. */
if (status == SS$_NORMAL)

printf("\n%.*s\n", message_len, text);
else if (status == SS$_BUFFEROVF)

printf("\nBUFFER OVERFLOW -- Text is: %.*s\n",
message_len, text);

else if (status == SS$_MSGNOTFND)
printf("\nMESSAGE NOT FOUND.\n");

else
{
printf("\nUnexpected error in $GETMSG call.\n");
LIB$STOP(status);
}

}
}

3–64 Using HP C in the Common Language Environment

Example 3–24 Determining $QIO Completion

/* ASYNCH.C
This program shows various ways to determine
$QIO completion. It also shows the use of an
IOSB to obtain information about the I/O operation. */

#include <iodef.h>
#include <ssdef.h>
#include <descrip.h>
#include <lib$routines.h>
#include <stdio.h>
#include <starlet.h>
#include <string.h>

typedef struct
{
short cond_value;
short count;
int info;
} io_statblk;

main(void)
{
char text_string[] = "This was written by the $QIO.";
register status;
short chan;
io_statblk status_block;
int AST_PROC();
$DESCRIPTOR (terminal, "SYS$COMMAND");

/* Assign I/O channel. */
if (((status = SYS$ASSIGN (&terminal, &chan,0,0)) & 1) != 1)

LIB$STOP (status);

/* Queue the I/O. */
if (((status = SYS$QIO (1, chan, IO$_WRITEVBLK, &status_block,

AST_PROC, &status_block, text_string,
strlen(text_string),0,32,0,0)) & 1) != 1)

LIB$STOP (status);

/* Wait for the I/O operation to complete. */
if (((status = SYS$SYNCH (1, &status_block)) & 1) != 1)

LIB$STOP (status);
if ((status_block.cond_value &1) != 1)

LIB$STOP(status_block.cond_value);

printf ("\nThe I/O operation and AST procedure are done.");
}

AST_PROC (*write_status)
io_statblk *write_status;

(continued on next page)

Using HP C in the Common Language Environment 3–65

Example 3–24 (Cont.) Determining $QIO Completion

/* This function is called as an AST procedure. It uses
the AST parameter passed to it by $QIO to determine
how many characters were written to the terminal. */

{
printf("\nNumber of characters output is %d", write_status->count);
printf("\nI/O completion status is %d", write_status->cond_value);
}

Example 3–25 Using Time Routines

/* ALARM.C
This program shows the use of time conversion
and set timer routines. */

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

#include <lib$routines.h>
#include <starlet.h>

main(void)
{
#define event_flag 2
#define timer_id 3

typedef int quadword[2];

quadword delay_int;
$DESCRIPTOR(offset, "0 ::15.00");
char cur_time[24];
$DESCRIPTOR(cur_time_desc, cur_time);
int i;
unsigned state;
register status;

/* Convert offset from ASCII to binary format. */
if (((status=SYS$BINTIM(&offset, delay_int)) &1) != 1)

LIB$STOP(status);

/* Output current time. */
if (((status=LIB$DATE_TIME(&cur_time_desc)) &1) != 1)

LIB$STOP(status);
cur_time[23] = ’\0’;
printf("The current time is : %s\n", cur_time);

(continued on next page)

3–66 Using HP C in the Common Language Environment

Example 3–25 (Cont.) Using Time Routines

/* Set the timer to expire in 15 seconds. */
if (((status=SYS$SETIMR(event_flag, &delay_int,

0, timer_id)) &1) != 1)
LIB$STOP(status);

/* Count to 1000000. */
printf("beginning count\n");
for (i=0; i<=1000000; i++)

;

/* Check if the timer expired. */
switch (status = SYS$READEF(event_flag, &state))
{
case SS$_WASCLR : /* Cancel timer */

if (((status=SYS$CANTIM(timer_id, 0)) &1) != 1)
LIB$STOP(status);

printf("Count completed before timer expired.\n");
printf("Timer canceled.\n");
break;

case SS$_WASSET : printf("Timer expired before count completed.\n");
break;

default : LIB$STOP(status);
break;

}
}

Using HP C in the Common Language Environment 3–67

4
Data Storage and Representation

This chapter presents the following topics concerning HP C data storage and
representation on OpenVMS systems:

• Storage allocation (Section 4.1)

• Standard-conforming method of controlling external objects (Section 4.2)

• Global storage classes (Section 4.3)

• Storage-class modifiers (Section 4.4)

• Floating-point numbers (Section 4.5)

• Pointer conversions (Section 4.6)

• Structure alignment (Section 4.7)

• Program sections (Section 4.8)

4.1 Storage Allocation
When you define a HP C variable, the storage class determines not only its
scope but also its location and lifetime. The lifetime of a variable is the length
of time for which storage is allocated. For OpenVMS systems, storage for a
HP C variable can be allocated in the following locations:

• On the run-time stack

• In a machine register

• In a program section (psect)

Variables that are placed on the stack or in a register are temporary. For
example, variables of the auto and register storage classes are temporary.
Their lifetimes are limited to the execution of a single block or function. All
declarations of the internal storage classes (auto and register) are also
definitions; the compiler generates code to establish storage at this point in the
program.

Data Storage and Representation 4–1

Program sections, or psects, are used for permanent variables; the lifetime
of identifiers extends through the course of the entire program. A psect
represents an area of virtual memory that has a name, a size, and a series
of attributes that describe the intended or permitted usage of that portion of
memory. For example, the compiler places variables of the static, external,
and global storage classes in psects; you have some control as to which psects
contain which identifiers. All declarations of the static storage class are also
definitions; the compiler creates the psect at that point in the program. In
HP C, the first declaration of the external storage class is also a definition; the
linker initializes the psect at that point in the program.

Note

The compiler does not necessarily allocate distinct variables to
memory locations according to the order of appearance in the source
code. Furthermore, the order of allocation can change as a result
of seemingly unrelated changes to the source code, command-line
options, or from one version of the compiler to the next; it is essentially
unpredictable. The only way to control the placement of variables
relative to each other is to make them members of the same struct
type or, on OpenVMS Alpha and I64 systems, by using the noreorder
attribute on a named #pragma extern_model strict_refdef.

Table 4–1 shows the location and lifetime of a variable when you use each of
the storage-class keywords.

Table 4–1 Location, Lifetime, and the Storage-Class Keywords

Storage Class Location Lifetime

(Internal null) Stack or register Temporary

[auto] Stack or register Temporary

register Stack or register Temporary

static Psect Permanent

extern Psect Permanent

globaldef1 Psect Permanent

1The globaldef, globalref, and globalvalue storage-class specifiers are available only
when compiling in VAX C compatibility mode.

(continued on next page)

4–2 Data Storage and Representation

Table 4–1 (Cont.) Location, Lifetime, and the Storage-Class Keywords

Storage Class Location Lifetime

globalref1 Psect Permanent

globalvalue1 No storage allocated Permanent

1The globaldef, globalref, and globalvalue storage-class specifiers are available only
when compiling in VAX C compatibility mode.

For a comparison between the global and external storage classes, see
Section 4.3.2.

For more information about psects, see Section 4.8.

4.2 Standard-Conforming Method of Controlling External
Objects

Sections 4.3 and 4.4 describe the following external linkage storage-class
specifiers and modifiers that are specific to HP C for OpenVMS Systems:

globaldef
globalref
globalvalue
noshare
readonly
_align

These keywords are supported by the HP C compiler for compatibility
purposes, and are available only in VAX C mode (/STANDARD=VAXC) and
relaxed mode (/STANDARD=RELAXED).

However, the HP C compiler also provides an alternative, standard-conforming
method of controlling objects that have external linkage. To take advantage
of this method, use the #pragma extern_model preprocessor directive and the
/EXTERN_MODEL and /[NO]SHARE_GLOBALS command-line qualifiers.

The pragma and command-line qualifiers replace the VAX C mode storage-class
specifiers (globaldef, globalref, globalvalue) and storage-class modifiers
(noshare and readonly). They allow you to select the implementation model
of external data and control the psect usage of your programs. The _align
storage-class modifier is still used to ensure object alignment.

Data Storage and Representation 4–3

The pragma and command-line qualifier approach also has these advantages:

• Since the VAX C mode keywords do not follow standard C spelling rules,
they cannot be provided in strict ANSI C mode. The pragma and qualifiers,
however, can be used in any mode of the HP C compiler.

• The pragma and qualifiers allow extern on OpenVMS systems to function
in a manner more similar to other systems.

• The pragma and qualifiers make it easier for you to write OpenVMS
shareable images with HP C. Previously, that task required you to add an
additional keyword to every declaration of external data.

For a description of the #pragma extern_model preprocessor directive and its
relationship to the external storage classes it replaces, see Section 5.4.5.

For a description of the _align storage-class modifier, see Section 4.4.3.

For a description of the /EXTERN_MODEL and /[NO]SHARE_GLOBALS
command-line qualifiers, see Section 1.3.4.

4.3 Global Storage Classes
In addition to the storage-class specifiers described in the HP C Language
Reference Manual, the VAX C compatibility mode of HP C provides the
globaldef, globalref, and globalvalue storage-class specifiers. These
specifiers allow you to assign the global storage classes to identifiers. The
global storage classes are specific to HP C for OpenVMS Systems and are not
portable.

4.3.1 The globaldef and globalref Specifiers
Use the globaldef specifier to define a global variable. Use the globalref
specifier to refer to a global variable defined elsewhere in the program.

When you use the globaldef specifier to define a global symbol, the symbol is
placed in one of three program sections: the $DATA (VAX only) or $DATA$ (Alpha,

I64) psect using globaldef alone, the $CODE (VAX only) or $READONLY$ (Alpha,

I64) psect using globaldef with readonly or const, or a user-named psect.
You can create a user-named psect by specifying the psect name as a string
constant in braces immediately following the globaldef keyword, as shown in
the following definition:

globaldef{"psect_name"} int x = 2;

4–4 Data Storage and Representation

This definition creates a program section called psect_name and allocates the
variable x in that psect. You can add any number of global variables to this
psect by specifying the same psect name in other globaldef declarations. In
addition, you can specify the noshare modifier to create the psect with the
NOSHR attribute. Similarly, you can specify the readonly or const modifier
to create the psect with the NOWRT attribute. For more information about
the possible combinations of specifiers and modifiers, and the effects of the
storage-class modifiers on program section attributes, see Section 4.8.

Variables declared with globaldef can be initialized; variables declared with
globalref cannot, because these declarations refer to variables defined, and
possibly initialized, elsewhere in the program. Initialization is possible only
when storage is allocated for an object. This distinction is especially important
when the readonly or const modifier is used; unless the global variable is
initialized when the variable is defined, its permanent value is 0.

Note

In the VAX MACRO programming language, it is possible to give a
global variable more than one name. However, in HP C, only one global
name can be used for a particular variable. HP C assumes that distinct
global variable names denote distinct objects; the storage associated
with different names must not overlap.

Example 4–1 shows the use of global variables.

Example 4–1 Using Global Variables

/* This example shows how global variables are used *
* in HP C programs. */

#include <stdlib.h>

#include <stdio.h>
extern void fn();

1 int ex_counter = 0;
2 globaldef double velocity = 3.0e10;
3 globaldef {"distance"} long miles = 100;

(continued on next page)

Data Storage and Representation 4–5

Example 4–1 (Cont.) Using Global Variables

int main()
{

printf(" *** FIRST COMP UNIT ***\n");
printf("counter:\t%d\n", ex_counter);
printf("velocity:\t%g\n", velocity);
printf("miles:\t\t%d\n\n", miles);
fn();
printf(" *** FIRST COMP UNIT ***\n");
printf("counter:\t%d\n", ex_counter);

4 printf("velocity:\t%g\n", velocity);
printf("miles:\t\t%d\n\n", miles);

exit (EXIT_SUCCESS);
}

/* -- *
* The following code is contained in a separate *
* compilation unit. *
* -- */

#include <stdio.h>

static ex_counter;
5 globalref double velocity;

globalref long miles;

fn(void)
{

++ex_counter;
printf(" *** SECOND COMP UNIT ***\n");
if (miles > 50)

velocity = miles * 3.1 / 200 ;
printf("counter:\t%d\n", ex_counter);
printf("velocity:\t%g\n", velocity);
printf("miles:\t\t%d\n", miles);

}

Key to Example 4–1:

1 In the first compilation unit, the ex_counter integer variable has a
storage class of extern. In the second compilation unit, a variable named
ex_counter is of storage class static. Even though they have the same
identifier, the two ex_counter variables are different variables represented
by two separate memory locations. The link-time scope of the second
ex_counter is the module created from the second compilation unit. When
control returns to the main function, the ex_counter external variable
retains its original value.

4–6 Data Storage and Representation

2 The variable velocity has storage class globaldef and is stored in the
$DATA psect (VAX only) or $DATA$ psect (Alpha, I64).

3 The miles variable also has storage class globaldef but is stored in the
user-specified psect "distance".

4 When the velocity variable prints after the function fn executes, the
value will have changed. Global variables have only one storage location.

5 When you reference global variables in another module, you must declare
those variables in that module. In the second module, the global variables
are declared with the globalref keyword.

Sample output from Example 4–1 is as follows:

$ RUN EXAMPLE.EXE Return

*** FIRST COMP UNIT ***
counter: 0
velocity: 3.000000e+10
miles: 100

*** SECOND COMP UNIT ***
counter: 1
velocity: 1.55
miles: 100

*** FIRST COMP UNIT ***
counter: 0
velocity: 1.55
miles: 100

4.3.2 Comparing the Global and the External Storage Classes
The global storage-class specifiers define and declare objects that differ from
external variables both in their storage allocation and in their correspondence
to elements of other languages. Global variables provide a convenient and
efficient way for a HP C function to communicate with assembly language
programs, with OpenVMS system services and data structures, and with other
high-level languages that support global symbol definition, such as HP PL/I.
For more information about multilanguage programming, see Chapter 3.

HP C imposes no limit on the number of external variables in a single program.

There are other functional differences between the external and global
variables. For example:

• If you have a limited amount of storage available, you may use the
globalvalue specifier (see Section 4.3.3) since an object defined as a
globalvalue does not occupy storage in your program; the external
variables create program sections.

Data Storage and Representation 4–7

• You can declare a global variable, using globaldef, inside a function or
block, and by using a globalref specifier, access the identifier from another
compilation unit. With external variables, you must define the variable
outside all functions and blocks, and then access that variable in other
compilation units by using extern declarations.

• The global variables correspond to global symbols declared in assembly
language programs, but external variables (extern) correspond with
FORTRAN common blocks.

• A globalref declaration causes the linker to load the module containing
the corresponding globaldef into the image (unless the globalref is not
referenced, in which case HP C optimizes it away). An extern declaration
does not cause the linker to do so. An extern declaration causes an
overlaying of a psect (see Section 4.8 for details about psects).

In programming environments other than the OpenVMS environment,
C programmers may be accustomed to extern declarations causing the
loading of a module into the program’s executable image. If transportability
is an issue, you can define the following symbols—at the compilation-unit
level, outside of all functions—to allocate storage differently depending on
the system you are using:

#ifdef __DECC
#define EXPORT globaldef
#define IMPORT globalref
#else
#define EXPORT
#define IMPORT extern
#endif

.

.

.
IMPORT int foo;
EXPORT int foo = 53;

One similarity between the external and global storage classes is in the
way the compiler recognizes these variables internally. External and global
identifiers are not case-sensitive. No matter how the external and global
identifiers appear in the source code, the compiler converts them to uppercase
letters. For ease in debugging programs, express all global and external
variable identifiers in uppercase letters.

Another similarity between the external and global storage classes is that
you can place the external variables and the global variables (optionally) in
psects with a user-defined name and, to some degree, user-defined attributes.
The compiler places external variables in psects of the same name as the
variable identifier, viewed by the linker in uppercase letters. The compiler

4–8 Data Storage and Representation

places globaldef{‘‘name’’} variables in psects with names specified in quotation
marks, delimited by braces, and located directly after the globaldef specifier
in a declaration. Again, the linker considers the psect name to be in uppercase
letters.

The compiler places a variable declared using only the globaldef specifier and
a data-type keyword into the $DATA (VAX only) or $DATA$ (Alpha, I64) psect. For
more information about the possible combinations of specifiers and modifiers,
and the effects of the storage-class modifiers on program section attributes, see
Section 4.8.

4.3.3 The globalvalue Specifier
A global value is an integral value whose identifier is a global symbol.
Global values are useful because they allow many programmers in the same
environment to refer to values by identifier, without regard to the actual value
associated with the identifier. The actual values can change, as dictated by
general system requirements, without requiring changes in all the programs
that refer to them. If you make changes to the global value, you only have
to recompile the defining compilation unit (unless it is defined in an object
library), not all of the compilation units in the program that refer to those
definitions.

Note

You can use the globalvalue specifier only with identifiers of type
enum, int, or with pointer variables.

An identifier declared with globalvalue does not require storage. Instead,
the linker resolves all references to the value. If an initializer appears with
globalvalue, the name defines a global symbol for the given initial value. If
no initializer appears, the globalvalue construct is considered a reference to
some previously defined global value.

Predefined global values serve many purposes in OpenVMS system
programming, such as defining status values. It is customary in OpenVMS
system programming to avoid explicit references to such values as those
returned by system services, and to use instead the global names for those
values.

Data Storage and Representation 4–9

4.4 Storage-Class Modifiers
HP C for OpenVMS Systems provides support for the storage-class modifiers
noshare, readonly, and _align as VAX C keywords. The recognition of
these three storage-class modifiers as keywords (along with the other VAX C
specific keywords) is controlled by a combination of the compiler mode and
the /ACCEPT command-line qualifier. The default behavior on OpenVMS
systems is for the compiler to recognize these storage-class modifiers as
keywords in the VAX C compatibility mode and relaxed mode (assuming
that /ACCEPT=NOVAXC_KEYWORDS is not also specified.) Conversely,
they are not recognized by default in all other modes unless overridden by
/ACCEPT=VAXC_KEYWORDS.

HP C also provides the _ _inline, _ _forceinline and _ _align storage-class
modifiers. These are recognized as valid keywords in all compiler modes on
all platforms. They are in the namespace reserved to the C implementation,
so it is not necessary to allow them to be treated as user-declared identifiers.
They have the same effects on all platforms, except that on VAX systems, the
_ _forceinline modifier does not cause any more inlining than the _ _inline
modifier does.

HP C also provides the inline storage-class modifier. This modifier is
supported in relaxed mode (/STANDARD=RELAXED) or if the /ACCEPT=C99_
KEYWORDS or /ACCEPT=GCCINLINE qualifier is specified.

For additional information about the _ _inline, _ _forceinline, _ _align, and
inline storage-class modifiers, see the HP C Language Reference Manual.

You can use a storage-class specifier and a storage-class modifier in any order;
usually, the modifier is placed after the specifier in the source code. For
example:

extern noshare int x;

/* Or, equivalently . . . */

int noshare extern x;

The following sections describe each of the HP C storage-class modifiers.

4.4.1 The noshare Modifier
The noshare storage-class modifier assigns the attribute NOSHR to the
program section of the variable. Use this modifier to allow other programs,
used as shareable images, to have a copy of the variable’s psect without the
shareable images changing the variable’s value in the original psect.

4–10 Data Storage and Representation

When a variable is declared with the noshare modifier and a shared image
that has been linked to your program refers to that variable, a copy is made
of the variable’s original psect to a new psect in the other image. The other
program may alter the value of that variable within the local psect without
changing the value still stored in the psect of the original program.

For example, if you need to establish a set of data that will be used by several
programs to initialize local data sets, then declare the external variables using
the noshare specifier in a HP C program. Each program receives a copy of the
original data set to manipulate, but the original data set remains for the next
program to use. If you define the data as extern without the noshare modifier,
a copy of the psect of that variable is not made; each program would be allowed
access to the original data set, and the initial values would be lost as each
program stores the values for the data in the psect. If the data is declared as
const or readonly, each program is able to access the original data set, but
none of the programs can then change the values.

You can use the noshare modifier with the static, extern, globaldef, and
globaldef{‘‘name’’} storage-class specifiers. For more information about
the possible combinations of specifiers and modifiers, and the effects of the
storage-class modifiers on program-section attributes, see Section 4.8.

You can use noshare alone, which implies an external definition of storage
class extern. Also, when declaring variables using the extern and
globaldef{‘‘name’’} storage-class specifiers, you can use noshare, const,
and readonly, together, in the declaration. If you declare variables using the
static or the globaldef specifiers, and you use both of the modifiers in the
declaration, the compiler ignores noshare and accepts const or readonly.

4.4.2 The readonly Modifier
The readonly storage-class modifier, like the const data-type qualifier, assigns
the NOWRT attribute to the variable’s program section; if used with the static
or globaldef specifier, the variable is stored in the $CODE psect, which has
the NOWRT attribute by default.

You can use both the readonly and const modifiers with the static, extern,
globaldef, and globaldef {‘‘psect’’} storage-class specifiers.

In addition, both the readonly modifier and the const modifier can be used
alone. When you specify these modifiers alone, an external definition of storage
class extern is implied.

The const modifier restricts access to data in the same manner as the
readonly modifier. However, in the declaration of a pointer, the readonly
modifier cannot appear between the asterisk and the pointer variable to which
it applies.

Data Storage and Representation 4–11

The following example shows the similarity between the const and readonly
modifiers. In both instances, the point variable represents a constant pointer
to a nonconstant integer.

readonly int * point;

int * const point;

Note

For new program development, HP recommends that you use the const
modifier, because const is standard-conforming and readonly is not.

4.4.3 The _align Modifier
The _align and _ _align storage-class modifiers have the same semantic
meaning. The difference is that _ _align is a keyword in all compiler modes
while _align is a keyword only in modes that recognize VAX C keywords. For
new programs, using _ _align is recommended.

The _align and _ _align storage-class modifiers align objects of any of the
HP C data types on a specified storage boundary. Use these modifiers in a data
declaration or definition.

See the HP C Language Reference Manual for a detailed description of _ _align
and _align.

4.5 Floating-Point Numbers (float, double, long double)
When declaring floating-point variables, you determine the amount of
precision needed for the stored object. In HP C, you can have single-precision,
double-precision, and extended double-precision variables.

The float keyword declares a single-precision, floating-point variable. A float
variable is represented internally in the VAX compatible, F_floating-point
binary format.

For double-precision variables, you can choose D_floating or G_floating. On
Alpha and I64 systems, you can also choose single- and double-precision IEEE
formats (S_floating and T_floating, respectively), and extended double-precision
format (X_floating).

The double keyword declares a double-precision, floating-point variable.
HP C provides two VAX C compatible formats for specifying double variables:
D_floating or G_floating.

4–12 Data Storage and Representation

The G_floating precision of approximately 15 digits is less than that of
variables represented in D_floating format. Although there are more bits
allocated to the exponent in G_floating precision, fewer bits are allocated to the
mantissa, which determines precision (see Table 4–2).

Note

When the compiler is run with the /STANDARD=VAXC qualifier, the
use of the long float keyword, which is interchangeable with the
double keyword, is allowed but elicits a warning that this is obsolete
usage. The long float keyword is not allowed when the compiler is
run with the /STANDARD=ANSI89 qualifier.

In VAX C, the default representation of double variables is D_floating. To
select the G_floating representation, compile with the /G_FLOAT qualifier.

In HP C, the /FLOAT qualifier replaces the /G_FLOAT qualifier, but /G_FLOAT
is retained for compatibility.

When compiling with HP C on OpenVMS VAX systems, if you omit both
/G_FLOAT and /FLOAT, the default representation of double variables is
D_floating (unless /MIA is specified, in which case the default is G_floating).

When compiling with HP C on OpenVMS Alpha systems, if you omit both
/G_FLOAT and /FLOAT, the default representation of double variables is
G_floating.

When compiling with HP C on OpenVMS I64 systems, the default
representation of single and double variables is IEEE_floating. See the
/FLOAT qualifier for more information on floating-point representation on I64
systems.

For OpenVMS Alpha and I64 systems, the /FLOAT qualifier accepts the
additional option IEEE_FLOAT. If you specify /FLOAT=IEEE_FLOAT, single
and double variables are represented in IEEE_floating format (S_floating for
single float, and T_floating for double float).

You cannot specify both the /FLOAT and /G_FLOAT qualifiers on the command
line.

Note

The VAX D_floating double-precision floating-point type is minimally
supported on OpenVMS Alpha and I64 systems. When compiling

Data Storage and Representation 4–13

with this type, all data transfer is done with the data in D_floating
format, but for each arithmetic operation the data is converted first
to G_floating and then back to D_floating format when the operation
is complete. Therefore, it is possible to lose three binary digits of
precision in arithmetic operations. This floating-point type is provided
for compatibility with VAX systems.

Modules compiled with the D_floating representation should not be linked
with modules compiled with the G_floating representation. Since there are
no functions in the HP C Run-Time Library (RTL) that perform floating-point
format conversions on files, use the OpenVMS RTL functions MTH$CVT_D_G,
MTHCVT_G_D, MTHCVT_DA_GA, and MTH$CVT_GA_DA if you do
not wish to recompile the program. For more information about using the
OpenVMS RTL, see the VMS Run-Time Library Routines Volume.

On VAX systems, HP C maps the standard C defined long double type to the
G_floating or D_floating format.

On OpenVMS Alpha and I64 systems, long double variables are represented
by default in the software-emulated X_floating format. If you specify /L_
DOUBLE_SIZE=64, long double variables are represented as G_floating,
D_floating, or T_floating, depending on the value of the /FLOAT or /G_FLOAT
qualifier.

Note

Modules must be linked to the appropriate run-time library. For more
information about linking against the HP C RTL shareable image and
object libraries, see the HP C Run-Time Library Reference Manual for
OpenVMS Systems.

Table 4–2 shows the supported floating-point formats, and their approximate
sizes and range of values.

4–14 Data Storage and Representation

Table 4–2 Floating-Point Formats

Data type
Floating-Point
Format

Length of
Variable Range of Values

Precision
(decimal
digits)

float F_floating 32-bit ��� � ���39
�� ��� � ��38 6

double D_floating 64-bit ��� � ���39
�� ��� � ��38 16

double G_floating 64-bit ��� � ���309
�� ��� � ��307 15

float S_floating (Alpha, I64) 32-bit ��� � ���38
�� ��	 � ��38 6

double T_floating (Alpha, I64) 64-bit ��� � ���308
�� ��
 � ��308 15

long double X_floating (Alpha, I64) 128-bit ��	 � ���4932
�� ��� � ��4932 33

4.6 Pointer Conversions
When running the compiler in VAX C mode, relaxed pointer and pointer/integer
compatibility is allowed. That is, all pointer and integer types are compatible,
and pointer types are compatible with each other regardless of the type of
the object they point to. Therefore, in VAX C mode, a pointer to float is
compatible with a pointer to int. This is not true in ANSI C mode.

Although pointer conversions do not involve a representation change when
compiling in VAX C mode, because of alignment restrictions on some machines,
access through an unaligned pointer can result in much slower access time, a
machine exception, or unpredictable results.

4.7 Structure Alignment
The alignment and size of a structure is affected by the alignment
requirements and sizes of the structure components for each HP C platform.
A structure can begin on any byte boundary and occupy any integral number
of bytes. However, individual architectures or operating systems can specify
particular alignment and padding requirements.

HP C on VAX processors does not require that structures or structure members
be aligned on any particular boundaries.

The components of a structure are laid out in memory in the order they are
declared. The first component has the same address as the entire structure.
On VAX processors, each additional component follows its predecessor in the
immediately following byte.

Data Storage and Representation 4–15

For example, the following type is aligned as shown in Figure 4–1:

struct {char c1;
short s1;
float f;
char c2;
}

Figure 4–1 VAX Structure Alignment

ZK−5432A−GE

31

short s1

24 23 8 7 0

float f

char c2

char c1

float f

The alignment of the entire structure can occur on any byte boundary, and
no padding is introduced. The float variable f may span longwords, and the
short variable s1 may span words.

The following pragma can be used to force specific alignments:

#pragma member_alignment

Structure alignment for HP C for OpenVMS Systems on VAX processors is
achieved by the default, #pragma nomember_alignment, which causes data
structure members to be byte-aligned (with the exception of bit-field members).

Structure alignment for HP C for OpenVMS Systems on Alpha and Itanium
processors is achieved by the default, #pragma member_alignment, which
causes data structure members to be naturally aligned. This means that data
structure members are aligned on the next boundary appropriate to the type of
the member, rather than on the next byte.

For more information on the #pragma member_alignment preprocessor directive,
see Section 5.4.13.

4–16 Data Storage and Representation

4.7.1 Bit-Field Alignment
Bit fields can have any integral type. However, the compiler issues a warning
if /STANDARD=ANSI89 is specified, and the type is something other than int,
unsigned int, or signed int. Bit fields are allocated within the unit from low
order to high order. If a bit field immediately follows another bit field, the
bits are packed into adjacent space, even if this overflows into another byte.
However, if an unnamed bit field is specified to have length 0, filler is added so
the bit field immediately following starts on the next byte boundary.

For example, the following type is aligned as shown in Figure 4–2:

struct {int i:2;
int ii:2;
unsigned int ui: 30;
}

Figure 4–2 OpenVMS Bit-Field Alignment

ZK−5431A−GE

31

ui ii i

ui

4 3 2 1 0

Bit field ii is positioned immediately following bit field i. Because there are
only 28 bit positions remaining and ui requires 30 bits, the first 28 bits of ui
are put into the first longword, and the remaining two bits overflow into the
next longword.

4.7.2 Bit-Field Initialization
The HP C compiler initializes bit fields in structs differently than VAX C does.
The following program compiles without error using both compilers but the
results are different. HP C skips over unnamed bits but VAX C does not.

#include <stdio.h>

Data Storage and Representation 4–17

int t()
{

static struct bar {unsigned :1;
unsigned one : 1;
unsigned two : 1;
};

struct bar foo = {1,0};
printf("%d %d\n",foo.one,foo.two);
return 1;

}

When compiled with HP C, this example produces the following output:

1 0

When compiled with VAX C, this example produces the following output:

0 0

4.7.3 Variant Structures and Unions
Variant structures and unions are HP C extensions available in VAX C
compatibility mode only, and they are not portable.

Variant structure and union declarations allow you to refer to members of
nested aggregates without having to refer to intermediate structure or union
identifiers. When a variant structure or union declaration is nested within
another structure or union declaration, the enclosed variant aggregate ceases
to exist as a separate aggregate, and HP C propagates its members to the
enclosing aggregate.

Variant structures and unions are declared using the variant_struct and
variant_union keywords. The format of these declarations is the same as that
for regular structures or unions, with the following exceptions:

• Variant aggregates must be nested within other valid structure or union
declarations.

• A tag cannot be used in a variant aggregate declaration.

• At least one declarator must be declared in the variant aggregate
declaration, and it must not be declared as a pointer or an array.

Initialization of a variant structure or union is the same as that for a normal
structure or union.

As with regular structures and unions, in VAX C compatibility mode, variant
structures and unions in an assignment operation need only have the same
size in bits, rather than requiring the same members and member types.

4–18 Data Storage and Representation

To show the use of variant aggregates, consider the following code example
that does not use variant aggregates:

/* The numbers to the right of the code represent the byte offset *
* from the enclosing structure or union declaration. */
struct TAG_1
{

int a; /* 0-byte enclosing_struct offset */
char *b; /* 4-byte enclosing_struct offset */
union TAG_2 /* 8-byte enclosing_struct offset */
{

int c; /* 0-byte nested_union offset */
struct TAG_3 /* 0-byte nested_union offset */
{

int d; /* 0-byte nested_struct offset */
int e; /* 4-byte nested_struct offset */

} nested_struct;
} nested_union;

} enclosing_struct;

If you want to access nested member d, then you need to specify all the
intermediate aggregate identifiers:

enclosing_struct.nested_union.nested_struct.d

If you try to access member d without specifying the intermediate identifiers,
then you would access the incorrect offset from the incorrect structure.
Consider the following example:

enclosing_struct.d

The compiler uses the address of the original structure (enclosing_struct),
and adds to it the assigned offset value for member d (0 bytes), even though
the offset value for d was calculated according to the nested structure
(nested_struct). Consequently, the compiler accesses member a (0-byte
offset from enclosing_struct) instead of member d.

The following code example shows the same code using variant aggregates:

Data Storage and Representation 4–19

/* The numbers to the right of the code present the byte offset *
* from enclosing_struct. */
struct TAG_1
{

int a; /* 0-byte enclosing_struct offset */
char *b; /* 4-byte enclosing_struct offset */
variant_union
{

int c; /* 8-byte enclosing_struct offset */
variant_struct
{

int d; /* 8-byte enclosing_struct offset */
int e; /* 12-byte enclosing_struct offset */

} nested_struct;
} nested_union;

} enclosing_struct;

The members of the nested_union and nested_struct variant aggregates are
propagated to the immediately enclosing aggregate (enclosing_struct). The
variant aggregates cease to exist as individual aggregates.

Since the nested_union and nested_struct variant aggregates do not exist
as individual aggregates, you cannot use tags in their declarations, and you
cannot use their identifiers (nested_union, nested_struct) in any reference
to their members. However, you are free to use the identifiers in other
declarations and definitions within your program.

To access member d, use the following notation:

enclosing_struct.d

Using the following notation causes unpredictable results:

enclosing_struct.nested_union.nested_struct.d

If you use normal structure or union declarations within a variant aggregate
declaration, the compiler propagates the structure or union to the enclosing
aggregate, but the members remain a part of the nested aggregate. For
example, if the nested structure in the last example was of type struct, the
following offsets would be in effect:

4–20 Data Storage and Representation

struct TAG_1
{

int a; /* 0-byte enclosing_struct offset */
char *b; /* 4-byte enclosing_struct offset */
variant_union
{

int c; /* 8-byte enclosing_struct offset */
struct TAG_2 /* 8-byte enclosing-struct offset */
{

int d; /* 0-byte nested_struct offset */
int e; /* 4-byte nested_struct offset */

} nested_struct;
} nested_union;

} enclosing_struct;

In this case, to access member d, use the following notation:

enclosing_struct.nested_union.nested_struct.d

4.8 Program Sections
The following sections describe program-section attributes and program
sections created by HP C for OpenVMS Systems.

4.8.1 Attributes of Program Sections
As the HP C compiler creates an object module, it groups data into contiguous
program sections, or psects. The grouping depends on the attributes of the data
and on whether the psects contain executable code or read/write variables.

The compiler also writes into each object module information about the
program sections contained in it. The linker uses this information when it
binds object modules into an executable image. As the linker allocates virtual
memory for the image, it groups together program sections that have similar
attributes.

Table 4–3 lists the attributes that can be applied to program sections.

Data Storage and Representation 4–21

Table 4–3 Program-Section Attributes

Attribute Meaning

PIC or NOPIC The program section or the data these attributes refers to
does not depend on any specific virtual memory location (PIC),
or else the program section depends on one or more virtual
memory locations (NOPIC).1

CON or OVR The program section is concatenated with other program
sections with the same name (CON) or overlaid on the same
memory locations (OVR).

REL or ABS The data in the program section can be relocated within virtual
memory (REL) or is not considered in the allocation of virtual
memory (ABS).

GBL or LCL The program section is part of one cluster, is referenced by the
same program section name in different clusters (GBL), or is
local to each cluster in which its name appears (LCL).

EXE or NOEXE The program section contains executable code (EXE) or does
not contain executable code (NOEXE).

WRT or NOWRT The program section contains data that can be modified (WRT)
or data that cannot be modified (NOWRT).

RD or NORD These attributes are reserved for future use.

SHR or NOSHR The program section can be shared in memory (SHR) or cannot
be shared in memory (NOSHR).

USR or LIB These attributes are reserved for future use.

VEC or NOVEC The program section contains privileged change mode vectors
(VEC) or does not contain those vectors (NOVEC).

COM or NOCOM The program section is a conditionally defined psect associated
with a conditionally defined symbol. This is the type of psect
created when you declare an uninitialized definition with
extern_model relaxed_refdef.

1HP C programs can be bound into PIC or NOPIC shareable images. NOPIC occurs if declarations
such as the following are used: char *x = &y;. This statement relies on the address of variable y to
determine the value of the pointer x.

4.8.2 Program Sections Created by HP C
If necessary, HP C creates the following program sections:

• $CODE (VAX only)—Contains all executable code and constant data (including
variables defined with the readonly modifier or const type qualifier).

• $CODE$ (Alpha, I64)—Contains all executable code.

4–22 Data Storage and Representation

• $READONLY$ (Alpha, I64)—Contains all constant data defined with the
readonly modifier or const type qualifier.

• $DATA (VAX only) or $DATA$ (Alpha, I64)—Contains all static variables, as
well as global variables defined without the readonly modifier or const
type qualifier. $DATA also contains character-string constants when
/ASSUME=WRITABLE_STRING_LITERALS is specified.

• $LITERAL$ (Alpha, I64)—Contains character-string constants when
/ASSUME=NOWRITABLE_STRING_LITERALS is specified.

• HP C also creates additional program sections for variables declared with
the globaldef keyword if the optional psect name in braces is specified,
or for variables declared with the extern storage class, depending on the
external model.

All program sections created by HP C have the PIC, REL, RD, USR, and
NOVEC attributes. On VAX systems, the $CODE psect is aligned on a
byte boundary; all other psects generated by HP C are aligned on longword
boundaries. On OpenVMS Alpha and I64 systems, all psects generated by
HP C are aligned on octaword boundaries. Note that use of the _align storage-
class modifier can cause a psect to be aligned on greater than a longword
boundary on OpenVMS VAX systems. The $CHAR_STRING_CONSTANTS
psect has the same attributes as the $DATA (VAX only) and $DATA$ (Alpha, I64)

psects.

Tables 4–4, 4–5, 4–6, and 4–7 summarize the differences in psects created by
different declarations:

• Table 4–4, Table 4–5 (Alpha, I64), and Table 4–6 (VAX only) show different cases
of variable definitions and assign to them a storage-class code number:

– Table 4–4 shows the effect of each #pragma extern_model preprocessor
directive on the storage-class code number for external variable
definitions that have an extern storage class.

– Table 4–5 shows the storage-class code number for variable definitions
that do not have the extern storage class on OpenVMS Alpha and I64
systems.

– Table 4–6 shows the storage-class code number for variable definitions
that do not have the extern storage class on VAX systems.

• Table 4–7 shows the psect name and attributes associated with each
storage-class code number from Tables 4–4, 4–5, and 4–6.

Data Storage and Representation 4–23

Table 4–4 External Models and Definitions

Storage-
Class
Code External Object Definition Interpretation

External Model: #pragma extern_model common_block noshr

1 int name; /* uninitialized definition */

1 int name = 1; /* initialized definition */

1 extern int name; /* treated as an uninitialized
definition */

2 const int name; /* uninitialized definition */

2 const int name = 1; /* initialized definition */

2 extern const int name; /* treated as an uninitialized
definition */

External Model: #pragma extern_model common_block shr

3 int name; /* uninitialized definition */

3 int name = 1; /* initialized definition */

3 extern int name; /* treated as an uninitialized
definition */

4 const int name; /* uninitialized definition */

4 const int name = 1; /* initialized definition */

4 extern const int name; /* treated as an uninitialized
definition */

External Model: #pragma extern_model relaxed_refdef noshr

5 int name; /* uninitialized definition */

1 int name = 1; /* initialized definition */

6 const int name; /* uninitialized definition */

2 const int name = 1; /* initialized definition */

(continued on next page)

4–24 Data Storage and Representation

Table 4–4 (Cont.) External Models and Definitions

Storage-
Class
Code External Object Definition Interpretation

External Model: #pragma extern_model relaxed_refdef shr

7 int name; /* uninitialized definition */

3 int name = 1; /* initialized definition */

8 const int name; /* uninitialized definition */

4 const int name = 1; /* initialized definition */

External Model: #pragma extern_model strict_refdef

9 (Alpha, I64) int symbol; /* uninitialized definition */

10 (VAX only) int symbol; /* uninitialized definition */

10 int symbol = 1; /* initialized definition */

11 const int symbol; /* uninitialized definition */

11 const int symbol = 1; /* initialized definition */

External Model: #pragma extern_model strict_refdef "name" noshr

12 int symbol; /* uninitialized definition */

12 int symbol = 1; /* initialized definition */

13 const int symbol; /* uninitialized definition */

13 const int symbol = 1; /* initialized definition */

External Model: #pragma extern_model strict_refdef "name" shr

14 int symbol; /* uninitialized definition */

14 int symbol = 1; /* initialized definition */

15 const int symbol; /* uninitialized definition */

15 const int symbol = 1; /* initialized definition */

Data Storage and Representation 4–25

Table 4–5 Combinations of Storage-Class Specifiers and Modifiers (Alpha, I64)

Storage-
Class
Code

Storage-Class Keyword
Combination

/SHARE or
/NOSHARE

Initialized or
Not

9 static Either No

10 static Either Yes

11 static const1 Either Either

9 globaldef Either No

10 globaldef Either Yes

11 globaldef const1 Either Either

14 globaldef{"name"} /SHARE Either

12 globaldef{"name"} /NOSHARE Either

15 globaldef{"name"} const1 /SHARE Either

13 globaldef{"name"} const1 /NOSHARE Either

1Using readonly in place of const produces the same results.

Table 4–6 Combinations of Storage-Class Specifiers and Modifiers (VAX only)

Storage-
Class
Code

Storage-Class Keyword
Combination /SHARE or /NOSHARE

10 static Either

11 static const1 Either

10 globaldef Either

11 globaldef const1 Either

14 globaldef{"name"} /SHARE

12 globaldef{"name"} /NOSHARE

15 globaldef{"name"} const1 /SHARE

13 globaldef{"name"} const1 /NOSHARE

1Using readonly in place of const produces the same results.

Table 4–7 shows the psect name and psect attributes for the storage-class code
numbers from Table 4–4, Table 4–5, and Table 4–6. Where name is used for
the psect name in Table 4–7, the name of the psect is the same as name in the

4–26 Data Storage and Representation

declarations or pragmas in Table 4–4, or the quoted brace-enclosed names in
Tables 4–5 and 4–6.

Table 4–7 Combination Attributes

Storage-
Class
Code

Program
Section
Name Program Attributes

1 name OVR, GBL, NOSHR, NOEXE, WRT, NOCOM

2 name OVR, GBL, NOSHR, NOEXE, NOWRT, NOCOM

3 name OVR, GBL, SHR, NOEXE, WRT, NOCOM

4 name OVR, GBL, SHR, NOEXE, NOWRT, NOCOM

5 name OVR, GBL, NOSHR, NOEXE, WRT, COM

6 name OVR, GBL, NOSHR, NOEXE, NOWRT, COM

7 name OVR, GBL, SHR, NOEXE, WRT, COM

8 name OVR, GBL, SHR, NOEXE, NOWRT, COM

9 BSS CON, LCL, NOSHR, NOEXE, WRT, NOCOM

10 $DATA (VAX only) CON, LCL, NOSHR, NOEXE, WRT, NOCOM

10 $DATA$ (Alpha, I64) CON, LCL, NOSHR, NOEXE, WRT, NOCOM

11 $CODE (VAX only) CON, LCL, SHR, EXE, NOWRT, NOCOM

11 $READONLY$ (Alpha,
I64)

CON, LCL, SHR, NOEXE, NOWRT, NOCOM

12 "name" CON, GBL, NOSHR, NOEXE, WRT, NOCOM

13 "name" CON, GBL, NOSHR, NOEXE, NOWRT, NOCOM

14 "name" CON, GBL, SHR, NOEXE, WRT, NOCOM

15 "name" CON, GBL, SHR, NOEXE, NOWRT, NOCOM

The combined use of the readonly and noshare modifiers is ignored by the
compiler in the following declarations:

readonly noshare static int x;
readonly noshare globaldef int x;

When it encounters a situation as shown in the previous example, the compiler
ignores the noshare modifier and accepts readonly. The order of the storage-
class specifier, the storage-class modifier, and the data-type keyword within a
declaration is not significant.

Data Storage and Representation 4–27

The HP C compiler does static (global) initialization of pointers by using
the .ADDRESS directive. By using this mechanism, the compiler efficiently
generates position-independent code. The linker makes image sections that
contain such initialization nonshareable.

4–28 Data Storage and Representation

5
Preprocessor Directives

The HP C preprocessor provides the ability to perform macro substitution,
conditional compilation, and inclusion of named files. Preprocessor directives,
lines beginning with # and possibly preceded by white space, are used to
communicate with the preprocessor. The HP C Language Reference Manual
describes the standard-conforming preprocessor directives available with
the HP C compiler. This chapter describes the preprocessor directives that
are either specific to HP C on OpenVMS systems, or that are used in an
implementation-specific way:

• The #dictionary directive, used for CDD/Repository extraction
(Section 5.4.3, Section 5.1)

• The #include directive, used for file inclusion (Section 5.2)

• The #module directive, for specifying an alternative name and identification
for the object module (Section 5.3, Section 5.4.15)

• The #pragma directive and pragmas specific to OpenVMS systems
(Section 5.4)

If you plan to port programs to and from other C implementations, take
care in choosing which preprocessor directives to use within your programs.
See the HP C Language Reference Manual for more information about using
preprocessor directives for conditional compilation. For a complete discussion
of portability concerns, see the HP C Run-Time Library Reference Manual for
OpenVMS Systems.

Preprocessor directives are independent of the usual scope rules; they remain
in effect from their occurrence until the end of the compilation unit. For more
information about the compilation unit, see Chapter 1.

Preprocessor Directives 5–1

5.1 CDD/Repository Extraction (#dictionary)
The #dictionary directive is retained for compatibility with VAX C, and is
supported only when running HP C in VAX C mode (/STANDARD=VAXC).
See Section 5.4.3 for information on using the standard C equivalent #pragma
dictionary directive.

5.2 File Inclusion (#include)
The #include directive inserts external text into the source stream delivered
to the compiler. This directive is often used to include global definitions for use
with HP C functions and macros in the program text.

The #include directive is supported on all HP C implementations, but the
syntax and semantics vary. For example, the directory search algorithm
for locating included files on OpenVMS systems differs from that on Tru64
UNIX systems, primarily because of differences in the native file systems
and conventions on the two platforms. Nevertheless, by choosing the lowest
common denominator of plain text files in directories to contain header files,
you can define command-line options for both platforms to cause searching to
be done in the same way. HP C for OpenVMS Systems also provides a form of
the #include directive specifically for including text modules from OpenVMS
text library files. The following sections describe the #include directive as
implemented on OpenVMS systems.

The #include directives may be nested to a depth determined by the FILLM
process quota and by virtual memory restrictions. The HP C compiler imposes
no inherent limitation on the nesting level of inclusion.

OpenVMS and most UNIX style file specifications can be included in HP C
source programs.

The following sections describe the different forms of the #include directive.

5.2.1 Inclusion Using Angle Brackets
The first form of the #include preprocessor directive uses angle brackets (<>)
to delimit the file specification:

#include <file-spec>

The file-spec is a valid file specification or a logical name. A file specification
may be up to 255 characters long.

5–2 Preprocessor Directives

If the file-spec contains "/" or "!" characters, it is assumed to be a UNIX style
name, and the compiler attempts to combine it with other UNIX style names
from the /INCLUDE_DIRECTORY command-line qualifier and translate the
result to an OpenVMS file specification using RTL functions. Otherwise, the
file-spec is treated as an OpenVMS file specification with defaults supplied
from command-line qualifiers and logical names in a prescribed search order.

When specifying the names of files to be included in your source program,
avoid directory specifications of the following form:

DBA0:[.dir-name . . .]

Depending on device logical names is not good practice. Instead, try to use
only simple file names complete with the .h file type, and use the /INCLUDE_
DIRECTORY qualifier to specify the directories to search.

For the angle-bracket form of inclusion, the compiler searches directories in
the following order for the file to be included:

1. Any directories specified with the /INCLUDE_DIRECTORY qualifier.

2. The directory or search list of directories specified in the logical name
DECC$SYSTEM_INCLUDE, if DECC$SYSTEM_INCLUDE is defined.

3. If DECC$SYSTEM_INCLUDE is not defined, then the directory or search
list of directories specified by DECC$LIBRARY_INCLUDE.

4. If neither DECC$SYSTEM_INCLUDE nor DECC$LIBRARY_INCLUDE
are defined as logical names, the compiler searches the following directories
for plain text-file copies of compiler header files:

SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF]
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET_C]

Normally, the compiler installation does not put any files in these
directories, but the compiler will search them if they exist.

5. If the file is still not found, all directories and the file extension are
stripped off and the steps for including a module from a text library are
followed.

6. If the file is still not found, SYS$LIBRARY is searched.

You can define DECC$SYSTEM_INCLUDE to be a valid directory specification
or a search list of valid directory specifications. Before each compilation of
your program, you can redefine DECC$SYSTEM_INCLUDE to be any valid
directory or list of directories you choose.

Preprocessor Directives 5–3

Avoid defining DECC$SYSTEM_INCLUDE to be a rooted directory or
subdirectory of the following form:

DBA0:[dir-name.]

When defining DECC$SYSTEM_INCLUDE, use complete directory
specifications.

If DECC$SYSTEM_INCLUDE translates to a directory or a search list of
directories, and if the compiler cannot locate the specified file, the compiler
generates an error message. If DECC$SYSTEM_INCLUDE is undefined,
the compiler then searches the DECC$LIBRARY_INCLUDE or SYS$LIBRARY
directory for the specified file; if the file cannot be found, the compiler generates
an error message. For more information about search lists, see the DCL
command DEFINE in the HP OpenVMS DCL Dictionary.

Note

The purpose of DECC$LIBRARY_INCLUDE is to identify an
alternative location for all header files normally provided by the
compiler installation. Therefore, if this logical is defined, the compiler
does not search the SYS$COMMON directories, the SYS$LIBRARY
text libraries, or header files it would normally search.

The purpose of DECC$SYSTEM_INCLUDE is to define the order for
searching directories of plain-text files for the angle-bracketed form
of #include. Defining this logical does not suppress the search of the
SYS$LIBRARY text libraries where the compiler-supplied header files
normally reside.

When porting programs to the OpenVMS environment, your programs may
contain #include directives of the following form:

#include <sys/file.h>

The HP C compiler translates this line, common in programs that run on UNIX
systems, to the following UNIX style file specification:

/sys/file.h

The compiler then translates the UNIX style file specification to the OpenVMS
file specification as follows:

SYS:FILE.H

5–4 Preprocessor Directives

If you port programs containing such directives, define the SYS logical to be
the proper name of the OpenVMS directory containing the files to be included.

Another way to use UNIX style directories is to specify them on the
/INCLUDE_DIRECTORY command-line qualifier. They must contain a "/"
character and must, therefore, be in quotation marks.

5.2.2 Inclusion Using Quotation Marks
The second form of the #include preprocessor directive uses quotation marks
to delimit the file specification:

#include "file-spec"

The file-spec is a valid OpenVMS or UNIX style file specification.

For this form of file inclusion, the compiler searches directories in the following
order for the file to be included:

1. One of the following directories:

• If /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (the default) is
specified, the directory where the immediately containing include file is
located (that is, the directory containing the file in which the #include
directive occurred).

• If /NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is specified,
the directory containing the top-level source file (that is, the directory
containing the .C file being compiled, which is not necessarily the
current default directory). This is most similar to the behavior of the
VAX C compiler.

• If /NESTED_INCLUDE_DIRECTORY=NONE is specified, then skip
this step and begin at step 2.

2. Any directories specified with the /INCLUDE_DIRECTORY qualifier.

3. The directory or search list of directories specified in the logical name
DECC$USER_INCLUDE, if DECC$USER_INCLUDE is defined.

4. If the file is still not found, the steps for angle-bracketed files are followed.

Note that when /NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is
specified, the directory containing the top-level source file is not necessarily the
current RMS default device and directory.

For example, given the current directory, DBA0:[CURRENT], and the following
CC command line, the compiler searches DBA0:[OTHERDIR] for any included
files delimited by quotation marks, even though the current RMS default is the
directory, DBA0:[CURRENT]:

Preprocessor Directives 5–5

$ CC DBA0:[OTHERDIR]EXAMPLE.C Return

If the compiler cannot locate the specified file, it searches any directories
specified by the /INCLUDE_DIRECTORY qualifier.

If the compiler still cannot locate the specified file, it translates the logical
name DECC$USER_INCLUDE. If DECC$USER_INCLUDE translates to a
valid directory specification or a search list of directories, the compiler searches
that directory or directories for the specified file. Before each compilation
of your program, you can redefine DECC$USER_INCLUDE to be any valid
directory or list of directories you choose.

As with DECC$SYSTEM_INCLUDE, do not define DECC$USER_INCLUDE
to be a rooted directory or subdirectory. Use complete directory specifications
when defining DECC$USER_INCLUDE.

If you defined DECC$USER_INCLUDE, and the compiler cannot locate the
specified file in that directory or search list of directories, the file-spec is treated
as if it were enclosed in angle brackets instead of quotation marks.

5.2.3 Inclusion of Text Modules
The third form of the #include preprocessor directive is used for including
module names:

#include module-name

The module-name is the name of a module in a text library.

This method of inclusion is not portable unless module-name is a macro that
expands to either the angle-bracket or quoted form. This module-name syntax
is provided for compatibility with VAX C and other OpenVMS compilers only,
and should generally be avoided.

HP C text libraries on OpenVMS systems are specified and searched in the
following manner:

1. A text library can be created with the LIBRARY command and specified
with the /LIBRARY qualifier on the CC command line.

2. If you compile more than one compilation unit using a single CC command,
you must specify the library within each of the compilation units, if needed.
For example:

$ CC sourcea+mylib/LIBRARY, sourceb+mylib/LIBRARY

5–6 Preprocessor Directives

3. If you specify more than one library to the HP C compiler, and if the
#include directives are not nested (see the note in Section 5.2.2), then
the libraries are searched in the specified order each time an #include
directive is encountered. Consider the following example:

$ CC sourcea+mylib/LIBRARY+yourlib/LIBRARY

In this example, the compiler searches for modules referenced in #include
directives first in MYLIB.TLB and then in YOURLIB.TLB.

4. If no library is specified on the CC command line, or if the specified module
cannot be found in any of the specified libraries, the following actions are
taken:

If you defined an equivalence name for DECC$TEXT_LIBRARY that
names a text library, that library is searched.

The compiler searches for any remaining unresolved module names in
the following location, which contains the HP C RTL header files:

SYS$LIBRARY:DECC$RTLDEF.TLB

For OpenVMS Version 7.1 and higher, the compiler then searches the
following location, which contains the STARLET header files:

SYS$LIBRARY:SYS$STARLET_C.TLB

5.2.4 Macro Substitution in #include Directives
HP C allows macro substitution within the #include preprocessor directive.

For example, if you want to include a file name, you can use the following two
directives:

#define macro1 "file.ext"
#include macro1

If you use defined macros in #include directives, the macros must evaluate
to one of the three following acceptable #include file specifications or the use
generates an error message:

<file-spec>
"file-spec"
module-name

Preprocessor Directives 5–7

5.3 Changing the Default Object Module Name and
Identification (#module)

The #module directive is retained for compatibility with VAX C and is
supported only when running HP C in VAX C mode (/STANDARD=VAXC). See
Section 5.4.15 for information on using the standard C equivalent #pragma
module directive.

5.4 Implementation-Specific Preprocessor Directive
(#pragma)

The #pragma directive is a standard method for implementing features that
vary from one compiler to the next. This section describes the implementation-
specific pragmas that are available on the HP C compiler for OpenVMS
systems. Pragmas supported by all implementations of HP C are described in
the HP C Language Reference Manual.

Some #pragma directives are subject to macro expansion in the preprocessor
before being translated. A macro reference can occur anywhere after the
keyword pragma. The following example demonstrates this feature using the
#pragma inline directive:

#define opt inline
#define f func
#pragma opt(f)

The #pragma directive becomes #pragma inline (func) after both macros are
expanded.

The following pragmas are subject to macro expansion:

builtins inline linkage standard
dictionary noinline module nostandard
extern_model member_alignment message use_linkage
extern_prefix nomember_alignment

Note

An _nm suffix can be appended to any of the above-listed macros to
prevent macro expansion. For example, to prevent macro expansion on
#pragma inline, specify it as #pragma inline_nm.

Also, to provide macro-expansion support to those pragmas not listed
above, all pragmas (including those that are already specified as
undergoing macro expansion) have an alternative pragma-name_m
version, which makes the pragma subject to macro expansion. For

5–8 Preprocessor Directives

example, #pragma assert is not subject to macro expansion, but
#pragma assert_m is. Another example: #pragma module and #pragma
module_m are equivalent and both subject to macro expansion.

The following sections describe the #pragma directives.

5.4.1 #pragma assert Directive
The #pragma assert directive lets you specify assertions that the compiler can
make about a program to generate more efficient code. The pragma can also
be used to verify that certain compile-time conditions are met; this is useful in
detecting conditions that could cause run-time faults.

The #pragma assert directive is never needed to make a program execute
correctly, however if a #pragma assert is specified, the assertions must be valid
or the program might behave incorrectly.

The #pragma assert directive has the following formats:

#pragma assert func_attrs(identifier-list)function-assertions
#pragma assert global_status_variable(variable-list)
#pragma assert non_zero(constant-expression) string-literal

5.4.1.1 #pragma assert func_attrs
Use this form of the pragma to make assertions about a function’s attributes.

The identifier-list is a list of function identifiers about which the compiler can
make assumptions. If more than one identifier is specified, separate them by
commas.

The function-assertions specify the assertions to the compiler about the
functions. Specify one or more of the following, separating multiple assertions
with white space:

noreturn
nocalls_back
nostate
noeffects
file_scope_vars(option)
format (style, format-index, first-to-check-index)

noreturn asserts to the compiler that any call to the routine will never return.

nocalls_back asserts to the compiler that no routine in the source module will
be called before control is returned from this function.

Preprocessor Directives 5–9

nostate asserts to the compiler that the value returned by the function and
any side-effects the function might have are determined only by the function’s
arguments. If a function is marked as having both noeffects and nostate, the
compiler can eliminate redundant calls to the function.

noeffects asserts to the compiler that any call to this function will have no
effect except to set the return value of the function. If the compiler determines
that the return value from a function call is never used, it can remove the call.

file_scope_vars(option) asserts to the compiler how a function will access
variables declared at file scope (with either internal or external linkage).

The option is one of the following:

none - The function will not read nor write to any file-scope variables
except those whose type is volatile or those listed in a #pragma assert
global_status_variable.

noreads - The function will not read any file-scope variables except
those whose type is volatile or those listed in a #pragma assert
global_status_variable.

nowrites - The function will not write to any file-scope variables except
those whose type is volatile or those listed in a #pragma assert
global_status_variable.

format (style, format-index, first-to-check-index) asserts to the compiler
that this function takes printf- or scanf-style arguments to be type-checked
against a format string. Specify the parameters as follows:

style - printf or scanf.

This determines how the format string is interpreted.

format-index - {1 | 2 | 3 | ...}

This specifies which argument is the format-string argument (starting from
1).

first-to-check-index - {0 | 1 | 2 | ...}

This is the number of the first argument to check against the format string.
For functions where the arguments are not available to be checked (such as
vprintf), specify the third parameter as 0. In this case, the compiler only
checks the format string for consistency.

5–10 Preprocessor Directives

The following declaration causes the compiler to check the arguments in calls
to your_printf for consistency with the printf-style format-string argument
your_format:

extern int
your_printf (void *your_object, const char *your_format, ...);
#pragma assert func_attrs(your_printf) format (printf, 2, 3)

The format string (your_format) is the second argument of the function
your_printf, and the arguments to check start with the third argument,
so the correct parameter values for format-index and first-to-check-index are 2
and 3, respectively.

The format attribute of #pragma assert func_attrs allows you to identify your
own functions that take format strings as arguments, so that the compiler
can check the calls to these functions for errors. The compiler checks formats
for the library functions printf, fprintf, sprintf, snprintf, scanf, fscanf,
and sscanf whenever these functions are enabled as intrinsics (the default).
You can use the format attribute to assert that the compiler should check the
formats of these functions when they are not enabled as intrinsics.

5.4.1.2 #pragma assert global_status_variable
Use this form of the pragma to specify variables that are to be considered
global status variables, which are exempt from any assertions given to
functions by #pragma assert func_attrs file_scope_vars directives.

The variable-list is a list of variables.

5.4.1.3 Usage Notes
The following notes apply to the #pragma assert func_attrs and #pragma
assert global_status_variable forms of the #pragma assert directive:

• The #pragma assert directive is not subject to macro replacement.

• The variables in the variable-list and the identifiers in the identifier-list
must have declarations that are visible at the point of the #pragma assert
directive.

• The #pragma assert directive must appear at file scope.

• A function can appear on more than one #pragma assert func_attrs
directive as long as each directive specifies a different assertion about the
function. For example, the following is valid:

#pragma assert func_attrs(a) nocalls_back
#pragma assert func_attrs(a) file_scope_vars(noreads)

Preprocessor Directives 5–11

But the following is not valid:

#pragma assert func_attrs(a) file_scope_vars(noreads)
#pragma assert func_attrs(a) file_scope_vars(nowrites)

5.4.1.4 #pragma assert non_zero
This form of the #pragma assert directive is supported on both VAX and Alpha
platforms.

When the compiler encounters this directive, it evaluates the constant-
expression. If the expression is zero, the compiler generates a message that
contains both the specified string-literal and the compile-time constant-
expression. For example:

#pragma assert non_zero(sizeof(a) == 12) "a is the wrong size"

In this example, if the compiler determines that sizeof a is not 12, the
following diagnostic message is output:

CC-W-ASSERTFAIL, The assertion "(sizeof(a) == 12)" was not true.
a is the wrong size.

Unlike the #pragma assert options func_attrs and global_status_variable,
#pragma assert non_zero can appear either inside or outside a function
body. When used inside a function body, the pragma can appear wherever
a statement can appear, but the pragma is not treated as a statement. When
used outside a function body, the pragma can appear anywhere a declaration
can appear, but the pragma is not treated as a declaration.

Because macro replacement is not performed on #pragma assert, you might
need to use the #pragma assert_m directive to obtain the results you want.
Consider the following program that verifies both the size of a struct and the
offset of one of its elements:

#include <stddef.h>
typedef struct {

int a;
int b;

} s;
#pragma assert non_zero(sizeof(s) == 8) "sizeof assert failed"
#pragma assert_m non_zero(offsetof(s,b) == 4) "offsetof assert failed"

Because offsetof is a macro, the second pragma must be #pragma assert_m so
that offsetof will expand correctly.

5–12 Preprocessor Directives

5.4.2 #pragma builtins Directive
The #pragma builtins directive enables the HP C built-in functions that
directly access processor instructions. This directive is provided for VAX C
compatibility.

The #pragma builtins directive has the following format:

#pragma builtins

HP C implements #pragma builtins by including the <builtins.h> header
file, and is equivalent to #include <builtins.h> on OpenVMS systems.

This header file contains prototype declarations for the built-in functions
that allow them to be used properly. By contrast, VAX C implemented this
pragma with special-case code within the compiler, which also supported a
#pragma nobuiltins preprocessor directive to turn off the special processing.
Because declarations cannot be "undeclared", HP C does not support #pragma
nobuiltins.

Furthermore, the names of all the built-in functions use a naming convention
defined by the C standard to be in a namespace reserved to the C language
implementation. (For more details, see the following Note.)

Note

VAX C implemented both #pragma builtins and #pragma nobuiltins.
Under #pragma builtins, the names of the built-in functions were
given special treatment. Under #pragma nobuiltins, the names of
the built-in functions were given no special treatment; as such, a user
program was free to declare its own functions or variables with the
same names as the builtins and have them behave as if they had
ordinary names.

The HP C implementation relies on the standard C reserved
namespace, which states that any name matching the pattern described
above is reserved for the exclusive use of the C implementation (that is,
the compiler and RTL), and if a user program tries to declare or define
such a name for its own purposes, the behavior is undefined.

So in HP C, the #pragma builtins directive includes a set of
declarations that makes the built-in functions operate as documented.
But in the absence of the #pragma builtins directive, you cannot
declare your own functions with these names. Code that tries to do
anything with these names other than use them as documented, and
in the presence of #pragma builtins, will likely encounter unexpected
problems.

Preprocessor Directives 5–13

5.4.3 #pragma dictionary Directive
The #pragma dictionary directive allows you to extract CDD/Repository data
definitions and include these definitions in your program.

The standard-conforming #pragma dictionary directive is equivalent to the
VAX C compatible #dictionary directive (Section 5.1), but is supported in all
compiler modes. (The #dictionary directive is retained for compatibility and
is supported only when compiling with the /STANDARD=VAXC qualifier.)

The #pragma dictionary directive has the following format:

#pragma dictionary CDD_path [null_terminate] [name (structure_name)] [text1_to_array | text1_to_char]

The CDD_path is a character string that gives the path name of a
CDD/Repository record, or a macro that expands to the path name of the
record.

The optional null_terminate keyword can be used to specify that all string
data types should be null-terminated.

The optional name() can be used to supply an alternate tag name or
declarator(struct_name) for the outer level of a CDD/Repository structure.

The optional text1_to_char keyword forces the CDD/Repository type "text" to
be translated to char, rather than "array of char" if the size is 1. This is the
default when null_terminate is not specified.

The optional text1_to_array keyword forces the CDD/Repository type "text"
to be translated to type "array of char" even when the size is 1. This is the
default when null_terminate is specified.

Here’s a sample #pragma dictionary directive:

#pragma dictionary "CDD$TOP.personnel.service.salary_record"

This path name describes all subdirectories, beginning with the root directory
(CDD$TOP), that lead to the salary_record data definition.

You can use the logical name CDD$DEFAULT to define a default path name
for a dictionary directory. This logical name can specify part of the path name
for the dictionary object. For example, you can define CDD$DEFAULT as
follows:

$ DEFINE CDD$DEFAULT CDD$TOP.PERSONNEL

5–14 Preprocessor Directives

When this definition is in effect, the #pragma dictionary directive can contain
the following:

#pragma dictionary "service.salary_record"

Descriptions of data definitions are entered into the dictionary in a special-
purpose language called CDO (Common Dictionary Operator), which replaces
the older interface called CDDL (Common Data Dictionary Language).

CDD definitions written in CDDL are included in a dictionary with the CDDL
command. For example, you can write the following definition for a structure
containing someone’s first and last name:

define record cdd$top.doc.cname_record.
cname structure.

first datatype is text
size is 20 characters.

last datatype is text
size is 20 characters.

end cname structure.
end cname_record record.

If a source file named CNAME.DDL needs to use this definition, you can
include the definition in the CDD subdirectory named doc by entering the
following command:

$ CDDL cname

After executing this command, a HP C program can reference this definition
with the #pragma dictionary directive. If the #pragma dictionary directive
is not embedded in a HP C structure declaration, then the resulting structure
is declared with a tag name corresponding to the name of the CDD/Repository
record. Consider the following example:

#pragma dictionary "cdd$top.doc.cname_record"

This HP C preprocessor statement results in the following declarations:

struct cname
{

char first [20];
char last [20];

};

You can also embed the #pragma dictionary directive in another HP C
structure declaration as follows:

Preprocessor Directives 5–15

struct
{

int id;

#pragma dictionary "cname_record"

} customer;

These lines of code result in the following declaration, which uses cname as an
identifier for the embedded structure:

struct
{

int id;
struct
{

char first [20];
char last [20];

} cname;
} customer;

If you specify /LIST and either /SHOW=DICTIONARY or /SHOW=ALL in the
compilation command line, then the translation of the CDD/Repository record
description into HP C is included in the listing file and marked with the letter
D in the margin.

For information on HP C support for CDD/Repository data types. see
Section C.4.3.

5.4.4 #pragma environment Directive
The #pragma environment directive offers a global way to set, save, or restore
the states of context pragmas. This directive protects include files from
contexts set by encompassing programs, and protects encompassing programs
from contexts that could be set in header files that they include.

The #pragma environment directive affects the following context pragmas:

#pragma extern_model
#pragma extern_prefix
#pragma member_alignment
#pragma message
#pragma names
#pragma pointer_size
#pragma required_pointer_size

5–16 Preprocessor Directives

This pragma has the following syntax:

#pragma environment command_line
#pragma environment header_defaults
#pragma environment restore
#pragma environment save

The command_line keyword sets the states of all the context pragmas
as specified on the command line (by default or by explicit use of the
/[NO]MEMBER_ALIGNMENT, /[NO]WARNINGS, /EXTERN_MODEL, and
/POINTER_SIZE qualifiers). You can use #pragma environment command_line
within header files to protect them from any context pragmas that take effect
before the header file is included.

The header_defaults keyword sets the states of all the context pragmas to
their default values. This is almost equivalent to the situation in which a
program with no command-line options and no pragmas is compiled, except
that this pragma sets the pragma message state to #pragma nostandard, as is
appropriate for header files.

The save keyword saves the current state of every pragma that has an
associated context.

The restore keyword restores the current state of every pragma that has an
associated context.

Without requiring further changes to the source code, you can use #pragma
environment to protect header files from things like language extensions and
enhancements that might introduce additional contexts.

A header file can selectively inherit the state of a pragma from the including
file and then use additional pragmas as needed to set the compilation to non-
default states. For example:

#ifdef ____pragma_environment
#pragma ____environment save 1
#pragma ____environment header_defaults 2
#pragma member_alignment restore 3
#pragma member_alignment save 4
#endif
.
. /* contents of header file */
.
#ifdef ____pragma_environment
#pragma ____environment restore
#endif

Preprocessor Directives 5–17

In this example:

1 Saves the state of all context pragmas

2 Sets the default compilation environment

3 Pops the member alignment context from the #pragma member_alignment
stack that was pushed by #pragma _ _environment save [restoring the
member alignment context to its pre-existing state]

4 Pushes the member alignment context back onto the stack so that the
#pragma _ _environment restore can pop the entry off.

Thus, the header file is protected from all pragmas, except for the member
alignment context that the header file was meant to inherit.

5.4.5 #pragma extern_model Directive
The #pragma extern_model directive controls how the compiler interprets
objects that have external linkage. With this pragma, you can choose one of
the following global symbol models to be used for external objects:

• Common block model

All declarations are definitions, and the linker combines all definitions with
the same name into one definition. This is the model traditionally used for
extern data by VAX C on OpenVMS VAX systems.

• Relaxed ref/def model

Some declarations are references and some are definitions. Multiple
uninitialized definitions for the same object are allowed and resolved into
one by the linker. However, a reference requires that at least one definition
exists. This model is used by C compilers on UNIX systems.

• Strict ref/def model

Some declarations are references and some are definitions. There must
be exactly one definition in the program for any symbol referenced. This
model is the only one guaranteed to be acceptable to all standard C
implementations. It is also the one used by VAX C for globaldef and
globalref data. The relaxed ref/def model is the default model on HP C.

• Globalvalue model

This is like the strict ref/def model, except that these global objects have no
storage; they are, instead, link-time constant values. This model is used by
VAX C globalvalue symbols.

5–18 Preprocessor Directives

After a global symbol model is selected with the extern_model pragma, all
subsequent declarations of objects having external storage class are treated
according to the specified model until another extern_model pragma is
specified.

For example, consider the following pragma:

#pragma extern_model strict_refdef

After this pragma is specified, the following file-level declarations are treated
as declaring global symbols according to the strict ref/def model:

int x = 0;
extern int y;

Regardless of the external model, the compiler uses standard C rules to
determine if a declaration is a definition or a reference, although that
distinction is not used in the common block model. An external definition
is a file-level declaration that has no storage-class keyword, or that contains
the extern storage-class keyword, and is also initialized. A reference is a
declaration that uses the extern storage-class keyword and is not initialized.
In the previous example, the declaration of x is a global definition and the
declaration of y is a global reference.

The extern_model pragma does not affect the processing of declarations that
contain the VAX C keywords globaldef, globalref, or globalvalue.

HP C also supports the command-line qualifiers /EXTERN_MODEL and
/SHARE_GLOBALS to set the external model when the program starts to
compile. Pragmas in the program being compiled supersede the command-line
qualifier.

A stack of the compiler’s external model state is kept so that #pragma
extern_model can be used transparently in header files and in small regions of
program text. See Sections 5.4.5.6 and 5.4.5.7 for more information.

The compiler issues an error message if the same object has two different
external models specified in the same compilation unit, as in the following
example:

#pragma extern_model common_block
int i = 0;
#pragma extern_model strict_refdef
extern int i;

Preprocessor Directives 5–19

Notes

• The global symbols and psect names generated under the control
of this pragma obey the case-folding rules of the /NAME qualifier.
This behavior is consistent with VAX C.

• While #pragma extern_model can be used to allocate several
variables in the same psect, the placement of variables relative
to each other within that psect cannot be controlled: the compiler
does not necessarily allocate distinct variables to memory locations
according to the order of appearance in the source code.

Furthermore, the order of allocation can change as a result of
seemingly unrelated changes to the source code, command-line
options, or from one version of the compiler to the next; it is
essentially unpredictable. The only way to control the placement
of variables relative to each other is to make them members
of the same struct type or, on OpenVMS Alpha systems, by
using the noreorder attribute on a named #pragma extern_model
strict_refdef.

See Section 5.4.5.8 to determine what combinations of external models are
compatible for successfully compiling and linking your programs.

The following sections describe the various forms of the #pragma extern_model
directive.

5.4.5.1 Syntax
The #pragma extern_model directive has the following syntax:

#pragma extern_model model_spec [attr[,attr]...]

model_spec is one of the following:

common_block
relaxed_refdef
strict_refdef "name"
strict_refdef (No attr specifications allowed)
globalvalue (No attr specifications allowed)

[attr[,attr]...] are optional psect attribute specifications chosen from the
following (at most one from each line):

gbl lcl (Not allowed with relaxed_refdef)
shr noshr

5–20 Preprocessor Directives

wrt nowrt
pic nopic (Not meaningful for Alpha)
ovr con
rel abs
exe noexe
vec novec
For OpenVMS Alpha systems: 0 byte 1 word 2 long 3 quad 4 octa 5 6 7 8 9
10 11 12 13 14 15 16 page
For OpenVMS VAX systems: 2 long 3 quad 4 octa 9 page

The last line of attributes are numeric alignment values. When a numeric
alignment value is specified on a section, the section is given an alignment of
two raised to that power.

On OpenVMS Alpha and I64 systems, the strict_refdef "name" extern_model
can also take the following psect attribute specifications:

• noreorder — causes variables in the section to be allocated in the order
they are defined.

• natalgn — has no effect on OpenVMS systems.

It does, however, change the behavior on Tru64 UNIX systems: when
specified, natalgn causes the global variables defined within the section
to be allocated on their natural boundary. Currently, all global variables
on Tru64 UNIX systems are allocated on a quadword boundary. When the
natalgn attribute is specified, the compiler instead allocates the variable
on an alignment that is natural for its type (chars on byte boundaries, ints
on longword boundaries, and so on).

Specifying the natalgn attribute also enables the noreorder attribute.

Note

Use of the natalgn attribute can cause a program to violate the
Tru64 UNIX Calling Standard. The calling standard states that all
global variables must be aligned on a quadword boundary. Therefore,
variables declared in a natalgn section should only be referenced in the
module that defines them.

See Table 4–3 for a description of the other attributes. See the OpenVMS
Linker Utility Manual for more complete information on each.

The default attributes are: noshr, rel, noexe, novec, nopic.

For strict_refdef, the default is con. For common_block and relaxed_refdef,
the default is ovr.

Preprocessor Directives 5–21

The default for wrt/nowrt is determined by the first variable placed in the
psect. If the variable has the const type qualifier (or the readonly modifier),
the psect is set to nowrt. Otherwise, it is set to wrt.

Restrictions on Setting Psect Attributes
Be aware of the following restriction on setting psect attributes.

The #pragma extern_model directive does not set psect attributes for variables
declared as tentative definitions in the relaxed_refdef model. A tentative
definition is one that does not contain an initializer. For example, consider the
following code:

#pragma extern_model relaxed_refdef long
int a;
int b = 6;
#pragma extern_model common_block long
int c;

Psect A is given octaword alignment (the default) because a is a tentative
definition. Psect B is correctly given longword alignment because it is
initialized and is, therefore, not a tentative definition. Psect C is also given
longword alignment because it is declared in an extern_model other than
relaxed_refdef.

Note

The psect attributes are normally used by system programmers who
need to perform declarations normally done in macro. Most of these
attributes are not needed in normal C programs. Also, notice that the
setting of attributes is supported only through the #pragma mechanism,
and not through the /EXTERN_MODEL command-line qualifier.

5.4.5.2 #pragma extern_model common_block
This pragma sets the compiler’s model of external data to the common block
model, which is the one used by VAX C.

The #pragma extern_model common_block directive has the following format:

#pragma extern_model common_block [attr[,attr]...]

In this model, every declaration of an object with the extern storage class
causes a global overlaid psect to be created. Both standard C definition
declarations and reference declarations create the same object file records.

The psect has the same name as the object itself. There is no global symbol in
addition to the psect name.

5–22 Preprocessor Directives

The object file records generated are the same as those generated by VAX C for
extern objects.

See Section 4.8 for a description of how definitions using each external model
are interpreted, what psect they would reside in, and what psect attributes are
assigned. Also note the effect of the const type specifier for these definitions.

Note

The C language permits objects declared with the const type qualifier
to be allocated in read-only memory, and when the C compiler allocates
a psect for a const object, it marks that section as read-only.

This is not compatible with the C++ conventions because the C++
language permits objects with static storage duration to be initialized
with values computed at run-time (before the main function gains
control). When the C++ compiler allocates a psect for such a
declaration, it marks the psect writable. Normally, only one compilation
(the one responsible for initialization) will allocate a psect for a const
object, and there is no problem.

But under the common_block extern model, the compilers will always
allocate a psect for such a declaration, leading to a "conflicting
attributes" warning from the linker if the same const-qualified
declaration is processed by both C and C++. It is best to avoid use
of the common_block extern model when const objects with external
linkage are shared between C and Keep>(C++). If the common_block
model must be used, then the const type qualifier should be removed
(for example, by preprocessor conditionals) from the declaration
processed by the C compiler.

5.4.5.3 #pragma extern_model relaxed_refdef
This pragma sets the compiler’s model of external data to the relaxed ref/def
model, which is the one used by pcc on UNIX systems.

The #pragma extern_model relaxed_refdef directive has the following format:

#pragma extern_model relaxed_refdef [attr[,attr]...]

Be aware that an attr keyword of gbl or lcl is not allowed on the
relaxed_refdef model.

Preprocessor Directives 5–23

With this model, three different types of object-file records can be produced,
depending on the declaration of the object:

• If the declaration is a standard C reference, the same type of object records
are produced as VAX C would produce for a globalref; that is, a global
symbol reference subrecord.

• If the declaration is a standard C definition that is initialized, a psect
definition and global symbol definition subrecord are produced. The name
of the psect and symbol is the same as the name of the data object. This is
equivalent to what VAX C would produce for the declaration. For example:

globaldef "FOO" int FOO = 1;

• If the declaration is a standard C definition that is not initialized, then
a conditional global symbol definition subrecord and conditional psect
definition subrecord are produced. Except for the conditional aspect and
the omission of an initializer, these object records resemble those produced
with the #pragma extern_model common_block directive.

See Section 4.8 for a description of how definitions using each external model
are interpreted, what psect they would reside in, and what psect attributes are
assigned. Also note the effect of the const type specifier for these definitions.

5.4.5.4 #pragma extern_model strict_refdef
This pragma is the preferred alternative to the nonstandard storage-class
keywords globaldef and globalref.

This pragma sets the compiler’s model of external data to the strict ref/def
model. Use this model for a program that is to be a standard C strictly-
conforming program.

The #pragma extern_model strict_refdef directive has the following formats:

#pragma extern_model strict_refdef
#pragma extern_model strict_refdef "name" [attr[,attr]...]

The name in quotes, if specified, is the name of the psect for any definitions.

Note that attr keywords cannot be specified for the strict_refdef model
unless a name is given for the psect.

This model provides two different cases:

• If the declaration is a standard C reference, the same type of object records
are produced as VAX C would produce for a globalref; that is, a global
symbol reference subrecord.

5–24 Preprocessor Directives

• If the declaration is a standard C definition, the same type of object records
are produced as VAX C would produce for a globaldef; that is, a global
symbol definition subrecord.

See Section 4.8 for a description of how definitions using each external model
are interpreted, what psect they would reside in, and what psect attributes are
assigned. Also note the effect of the const type specifier for these definitions.

Note

In VAX C, the globaldef and globalref keywords interact with enum
definitions in the following way:

• If an enum variable is declared with the globaldef keyword, the
enum literals of the type of the variable automatically become
globalvalue constant definitions.

• If an enum variable is declared with the globalref keyword, the
enum literals of the type of the variable automatically become
globalvalue constant references.

This behavior, does not occur with #pragma extern_model strict_refdef.

5.4.5.5 #pragma extern_model globalvalue
This pragma sets the compiler’s external model to the globalvalue model,
and is the preferred alternative to the nonstandard storage-class keyword
globalvalue.

This pragma has the following format:

#pragma extern_model globalvalue

Notice that this model does not accept attr keywords.

This model provides two different cases:

• If the declaration is a standard C reference, the same object file records are
produced as VAX C would produce for an uninitialized globalvalue.

• If the declaration is a standard C definition, the same object records are
produced as VAX C would produce for an initialized globalvalue.

Note

Only objects with a type of integer, enum, or pointer can have this
external model. If this external model is used and the compiler

Preprocessor Directives 5–25

encounters a declaration of an external object whose type is not one
these, an error message is issued.

5.4.5.6 #pragma extern_model save
This pragma pushes the current external model of the compiler onto a stack.
The stack records all information associated with the external model, including
the shr/noshr state and any quoted psect name.

This pragma has the following format:

#pragma extern_model save

The number of entries allowed in the #pragma extern_model stack is limited
only by the amount of memory available to the compiler.

5.4.5.7 #pragma extern_model restore
This pragma pops the external model stack of the compiler. The external
model is set to the state popped off the stack. The stack records all information
associated with the external model, including the shr/noshr state and any
quoted psect name. This pragma has the following format:

#pragma extern_model restore

On an attempt to pop an empty stack, a warning message is issued and the
compiler’s external model is not changed.

5.4.5.8 Effects on the HP C Run-Time Library and User Programs
Using different HP C external models can introduce mutually incompatible
object files. An object file compiled with one extern model may not link against
an object file compiled with a different model.

Table 5–1 compares what happens when a reference or definition in an
object file compiled with one external model is linked against a reference
or definition in an object file compiled with a different external model. Note
that the table is symmetric about the diagonal. For example, to look up what
happens when you mix a relaxed_refdef reference with a strict_refdef
definition, you can locate either the relaxed_refdef reference row and the
strict_refdef definition column or the relaxed_refdef reference column and
the strict_refdef definition row.

Table 5–1 contains no entries for mixing globalvalue symbols with other
external models because globalvalue symbols are used only in special cases;
they are not used as a general-purpose external model. For the other external
models, there is a row and column for every different case. The common_block
model only has one case because all symbols are definitions in that model;

5–26 Preprocessor Directives

the relaxed_refdef model has three cases because it distinguishes between
references, uninitialized definitions, and initialized definitions.

Table 5–1 Comparison of Mixing Different extern_models

common_
block def

relaxed_
refdef ref

relaxed_
refdef def

relaxed_
refdef
initialized
def

strict_
refdef ref

strict_
refdef def

common_block
def

Works Fails Works Works Fails Fails

relaxed_refdef
ref

Fails Works Works Works Works Works

relaxed_refdef
uninitialized def

Works Works Works Works Works Works

relaxed_refdef
initialized def

Works Works Works Multi Works Multi

strict_refdef ref Fails Works Works Works Works Works

strict_refdef def Fails Works Works Multi Works Multi

Notes

ref means reference; def means definition.

In the common_block model, all external symbols are considered to be defs.

A ref works with a ref if they both refer to the same thing.

A def works with a ref if the def fulfills the ref.

A def works with a def if they are combined into one by the linker.

Multi means that the linker issues a multiply defined symbol error. This indicates a user error, not a
mismatch between external models.

As Table 5–1 shows, the common_block model mixes poorly with the
strict_refdef model, but the relaxed_refdef model works well with the
common_block model and the strict_refdef model. The relaxed_refdef
model fails only when a relaxed_refdef reference is linked against a
common_block definition.

The fact that the external models are not all compatible with each other
can be an issue for providers of general-purpose object libraries. One
goal for such a library should be to work when linked with client code
compiled with any of the external models. Otherwise, the provider of the
object library might be forced to provide one copy of the library compiled
with /EXTERN_MODEL=COMMON_BLOCK, another compiled with

Preprocessor Directives 5–27

/EXTERN_MODEL=STRICT_REFDEF, and another compiled with /EXTERN_
MODEL=RELAXED_REFDEF to let anyone link with the library.

The best way to accomplish the goal of allowing an object library to be linked
with any code regardless of the external model used, is to provide header files
that describe the interface to the object library. The header files can declare the
global variables used by the object library after using #pragma extern_model to
set the external model to the one used by the library. Programmers who want
to use the library could then include these header files to get the required
declarations. In order to avoid altering the external model used by the
including program, header files should start with a #pragma extern_model
save directive and end with a #pragma extern_model restore directive. The
HP C RTL uses this approach.

If header files are not provided, an object library should use the re-
laxed_refdef external model since it will link successfully with either
common_block compiled code or strict_refdef compiled code. The only
restriction is that the library must not reference an external symbol that is
not defined in the library but is defined only in the user program. This avoids
the common_block case that fails. Note that the relaxed_refdef model allows
both the library and the user code to contain definitions for any symbol, as long
as both do not attempt to initialize the symbol.

5.4.5.9 Example
Example 5–1 shows the use of #pragma extern_model in a sample module.
Assume that the module is compiled with the /EXTERN_MODEL=COMMON
and /SHARE_GLOBALS qualifiers.

5–28 Preprocessor Directives

Example 5–1 #pragma extern_model Example

#pragma extern_model save
1 globaldef {"BAR1"} int FOO1; /* strict_refdef shr def */
2 extern int com1; /* common_block shr def */
3 int com2; /* common_block shr def */

#pragma extern_model common_block noshr
4 globaldef {"BAR2"} int FOO2; /* strict_refdef shr def */
5 extern int com3 = 23; /* common_block noshr def */

#pragma extern_model globalvalue
6 int gv1; /* globalvalue def */
7 extern int gv2; /* globalvalue ref */
8 int gv3 = 5; /* globalvalue def */
9 extern int gv4 = 42; /* globalvalue def */

#pragma extern_model strict_refdef {"BAR1"} shr
1 0 int FOO1A; /* strict_refdef shr def */
1 1 extern int FOO1B; /* strict_refdef ref */
1 2 globaldef {"BAR3"} noshare int foo3;

#pragma extern_model relaxed_refdef
1 3 int rrd1; /* relaxed_refdef noshr def */
1 4 extern rrd2; /* relaxed_refdef ref */

#pragma extern_model restore
1 5 int com4; /* common_block shr def */

Key to Example 5–1:

1 FOO1 has the strict_refdef model with the share attribute (because of
/SHARE). It resides in psect BAR1.

2 com1 has the common_block model with the share attribute. Like all
common_block globals, com1 is a definition.

3 com2 has the common_block model with the share attribute. Like all
common_block globals, com2 is a definition.

4 FOO2 has the strict_refdef model with the share attribute. The
/SHARE qualifier overrides the noshr keyword on the preceding
#pragma extern_model. FOO2 resides in psect BAR2.

5 com3 has the common_block model with the noshare attribute.

6 gv1 has the globalvalue model. It is a definition. Since it lacks an explicit
initializer, gv1 is implicitly initialized to 0. Therefore, it is a globalvalue
with a link-time value of 0.

7 gv2 has the globalvalue model. It is a reference.

8 gv3 has the globalvalue model. It is a definition with a link-time value
of 5.

Preprocessor Directives 5–29

9 gv4 has the globalvalue model. It is a definition with a link-time value
of 42.

1 0 FOO1A has the strict_refdef model with the noshare attribute. It is a
definition and resides in the psect BAR1.

1 1 FOO1B has the strict_refdef model and is a reference. Since it is a
reference, it will reside in whatever psect is specified by the definition.

1 2 foo3 has the strict_refdef model with the noshare attribute. It is a
definition and resides in the psect BAR3.

1 3 rrd1 has the relaxed_refdef model with the noshare attribute. It is a
definition.

1 4 rrd2 has the relaxed_refdef model and is a reference.

1 5 com4 has the common_block model with the share attribute, because the
preceding line popped the external model back to its command-line state.

5.4.6 #pragma extern_prefix Directive
The #pragma extern_prefix directive controls the compiler’s synthesis of
external names, which the linker uses to resolve external name requests.

When you specify #pragma extern_prefix with a string argument, the compiler
attaches the string to the beginning of all external names produced by the
declarations that follow the pragma specification.

This pragma is useful for creating libraries where the facility code can be
attached to the external names in the library.

The #pragma extern_prefix directive has the following format:

#pragma extern_prefix "string" [(id[,id]...)]
#pragma extern_prefix {NOCRTL | RESTORE_CRTL} (id[,id]...)
#pragma extern_prefix save
#pragma extern_prefix restore

The quoted "string" is attached to external names in the declarations that
follow the pragma specification.

You can also specify an extern prefix for specific identifiers using the optional
list [(id[,id]...)].

The NOCRTL and RESTORE_CRTL keywords control whether or not the compiler
applies its default RTL prefixing to the names specified in the id-list, which
is required for this form of the pragma. The effect of NOCRTL is like that

5–30 Preprocessor Directives

of the EXCEPT=keyword of the /PREFIX_LIBRARY_ENTRIES command-
line qualifier. The effect of RESTORE_CRTL is to undo the effect of a #pragma
extern_prefix NOCRTL or a /PREFIX=EXCEPT= on the command line.

The save and restore keywords can be used to save the current pragma prefix
string and to restore the previously saved pragma prefix string, respectively.

The default external prefix, when none has been specified by a pragma, is the
null string.

The recommended use is as follows:

#pragma extern_prefix save
#pragma extern_prefix "prefix-to-prepend-to-external-names"
. . . some declarations and definitions . . .
#pragma extern_prefix restore

When an extern_prefix is in effect and you are using #include to include
header files, but do not want the extern_prefix to apply to extern declara-
tions in the header files, use the following code sequence:

#pragma extern_prefix save
#pragma extern_prefix ""
#include . . .
#pragma extern_prefix restore

Otherwise, external prefix is attached to the beginning of external identifiers
for definitions in the included files.

All external names prefixed with a nonnull string using #pragma extern_prefix
are converted to uppercase letters, regardless of the setting of the /NAMES
qualifier.

Notes

The following notes apply when specifying optional identifiers on
#pragma extern_prefix:

• When an id-list follows a quoted "string", then for each id there
must not be a declaration of that id visible at the point of the
pragma, otherwise a warning is issued, and there is no affect on
that id.

• Each id affected by a pragma with a non-empty prefix is expected
to be subsequently declared with external linkage in the same
compilation unit. The compiler issues a default informational if
there is no such declaration made by the end of the compilation.

Preprocessor Directives 5–31

• It is perfectly acceptable for the id-list form of the pragma or
declarations of the id’s listed, to occur within a region of source
code controlled by the other form of the pragma. The two forms do
not interact; the form with an id list always supersedes the other
form.

• There is no interaction between the save/restore stack and the id
lists.

• If the same id appears in more than one pragma, then a default
informational message is issued, unless the prefix on the second
pragma is either empty ("") or matches the prefix from the previous
pragma. In any case, the behavior is that the last-encountered
prefix supersedes all others.

5.4.7 #pragma function Directive
Specifies that calls to the specified functions are not intrinsic but are, in fact,
function calls. This pragma has the opposite effect of #pragma intrinsic.

The #pragma function directive has the following format:

#pragma function (function1[, function2, ...])

5.4.8 #pragma [no]include_directory Directive
The effect of each #pragma include_directory is as if its string argument
(including the quotes) were appended to the list of places to search that is
given its initial value by the /INCLUDE_DIRECTORY qualifier, except that an
empty string is not permitted in the pragma form.

The #pragma include_directory directive has the following format:

#pragma include_directory <string-literal>

This pragma is intended to ease DCL command-line length limitations when
porting applications from POSIX-like environments built with makefiles
containing long lists of -I options specifying directories to search for headers.
Just as long lists of macro definitions specified by the /DEFINE qualifier can
be converted to #define directives in a source file, long lists of places to search
specified by the /INCLUDE_DIRECTORY qualifier can be converted to #pragma
include_directory directives in a source file.

5–32 Preprocessor Directives

Note that the places to search, as described in the help text for the /INCLUDE_
DIRECTORY qualifier, include the use of POSIX-style pathnames, for example
"/usr/base". This form can be very useful when compiling code that contains
POSIX-style relative pathnames in #include directives. For example, #include
<subdir/foo.h> can be combined with a place to search such as "/usr/base"
to form "/usr/base/subdir/foo.h", which will be translated to the filespec
"USR:[BASE.SUBDIR]FOO.H"

This pragma can appear only in the main source file or in the first file specified
on the /FIRST_INCLUDE qualifier. Also, it must appear before any #include
directives.

5.4.9 #pragma [no]inline Directive
Function inlining is the inline expansion of function calls; it replaces the
function call with the function code itself. Inline expansion of functions
reduces execution time by eliminating function-call overhead and allowing
the compiler’s general optimization methods to apply across the expanded
code. Compared with the use of function-like macros, function inlining has the
following advantages:

• Arguments are evaluated only once.

• The overuse of parentheses is not necessary to avoid problems with
precedence.

• The actual expansion can be controlled from the command line.

Also, the semantics are exactly the same as if inline expansion had not
occurred. You cannot get this behavior using macros.

Use the following preprocessor directives to control function inlining:

#pragma inline (id, . . .)

#pragma noinline (id, . . .)

The id is a function identifier.

If a function is named in an inline directive, calls to that function will be
expanded as inline code, if possible.

If a function is named in a noinline directive, calls to that function will not be
expanded as inline code.

If a function is named in both an inline and a noinline directive, an error
message is issued.

Preprocessor Directives 5–33

For calls to functions named in neither an inline nor a noinline directive,
HP C expands the function as inline code whenever appropriate as determined
by a platform-specific algorithm.

Use of the #pragma inline directive causes inline expansion, regardless of the
size or number of times the specified functions are called.

In the following example of function inlining, the functions push and pop are
expanded inline throughout the module in which the #pragma inline appears:

void push(int);
int pop(void);

#pragma inline(push, pop)

int stack[100];
int *stackp = &stack;

void push(int x)
{

if (stackp == &stack)
*stackp = x;

else
*stackp++ = x;

}

int pop()
{

return *stackp--;
}

main()
{

push(1);
printf("The top of stack is now %d \n",pop());

}

By default, HP C for OpenVMS Systems attempts to provide inline expansion
for all functions, and uses the following function characteristics to determine if
it can provide inline expansion:

• Size

• Number of times the function is called

• Conformance to the following restrictions:

The function does not take the address of a parameter.

The function does not use an index expression that is not a compile-
time constant in an array that is a field of a struct argument. An
argument that is a pointer to a struct is not restricted.

5–34 Preprocessor Directives

The function does not use the varargs or stdarg package to access the
function’s arguments because they require arguments to be in adjacent
memory locations, and inline expansion may violate that requirement.

The function does not declare an exception handler.

If a function is to be expanded inline, you must place the function definition in
the same module as the function call. The definition can appear either before
or after the function call.

5.4.10 #pragma intrinsic Directive
The #pragma intrinsic preprocessor directive specifies that calls to the
specified functions are intrinsic. An intrinsic function is an apparent function
call that could be handled as an actual call to the specified function, or could be
handled by the compiler in a different manner. By treating the function as an
intrinsic, the compiler can often generate faster code. (Contrast with a built-in
function, which is an apparent function call that is never handled as an actual
function call. There is never a function with the specified name.)

This pragma has the opposite effect of #pragma function.

The #pragma intrinsic directive has the following format:

#pragma intrinsic (function1[,function2, . . .])

Functions that can be handled as intrinsics are:

Main Group - Standard C:

abs atan2 ceilf cosl floorl memset sinl
atan atan2f ceill fabs labs sin strcpy
atanf atan2l cos floor memcpy sinf strlen
atanl ceil cosf floorf memmove

Main Group - Nonstandard:

alloca atand atand2 bcopy bzero cosd sind

Printf functions:

fprintf printf sprintf

Printf Nonstandard:

snprintf

Standard math functions that set errno,

thereby requiring /ASSUME=NOMATH_ERRNO:

Preprocessor Directives 5–35

acos asinl expf log10 powl sqrtf tanh
acosf cosh expl log10f sinh sqrtl tanhf
acosl coshf log log10l sinhf tan tanhl
asin coshl logf pow sinhl tanf
asinf exp logl powf sqrt tanl

Nonstandard math functions that set errno,

thereby requiring /ASSUME=NOMATH_ERRNO:

log2
tand

Also see Section 1.3.4 for a description of the [NO]INTRINSICS option of the
/OPTIMIZE qualifier, which controls whether or not certain functions are
handled as intrinsic functions without explicitly enabling each of them as an
intrinsic through the #pragma intrinsic directive.

Also, the asm, fasm, and dasm functions are intrinsics and require use of
#pragma intrinsic. See Section 6.2.1.2 for a description of these functions.

5.4.11 #pragma linkage Directive (Alpha only)

This section describes the behavior of the #pragma linkage directive on
OpenVMS Alpha systems.

The #pragma linkage preprocessor directive allows you to specify special
linkage types for function calls. This pragma is used with the #pragma
use_linkage directive, described in Section 5.4.23, to associate a previously
defined special linkage with a function.

For OpenVMS Alpha systems, the #pragma linkage directive has the following
formats:

#pragma linkage linkage-name = (characteristics)
#pragma linkage_alpha linkage-name = (characteristics)

Both formats behave identically on OpenVMS Alpha systems. On I64 systems,
however, register mapping occurs for the pragma linkage format, as described
in Section 5.4.12.

The linkage-name is the name to be given to the linkage type being defined.
It has the form of a C identifier. Linkage types have their own name space,
so their names will not conflict with other identifiers or keywords in the
compilation unit.

The characteristics specify information about where parameters will be passed,
where the results of the function are to be received, and what registers are
modified by the function call. Specify these characteristics as a parenthesized
list of comma-separated items of the following forms:

5–36 Preprocessor Directives

parameters (register-list)
result (simple-register-list)
preserved (simple-register-list)
nopreserve (simple-register-list)
notused (simple-register-list)
notneeded (ai, lp)
standard_linkage

If the standard_linkage keyword is specified, it must be the only option in the
parenthesized list following the linkage name. For example:

#pragma linkage special1 = (standard_linkage)

The standard_linkage keyword tells the compiler to use the standard linkage
appropriate to the target platform. This can be useful to confine conditional
compilation to the pragmas that define linkages, without requiring the
corresponding #pragma use_linkage directives to be conditionally compiled
as well.

Code written to use linkage pragmas as intended, treating them as target-
specific without implicit mapping, might have a form like this:

#if defined(__alpha)
#pragma linkage_alpha special1 = (__preserved(__r1,__r2))
#elif defined(__ia64)
#pragma linkage_ia64 special1 = (__preserved(__r9,__r28))
#else
#pragma message ("unknown target, assuming standard linkage")
#pragma linkage special1 = (standard_linkage)
#endif

If the standard_linkage keyword is not specified, you can supply the
parameters, result, preserved, nopreserve, notused, and notneeded
keywords in any order.

A simple-register-list is a comma-separated list of register names, either Rn or
Fn, where n is a valid register number. A register-list is similar to a simple-
register-list except that it can contain parenthesized sublists.

For OpenVMS Alpha systems, valid registers for the preserved, nopreserve,
and notused options are:

• General-purpose registers R0 through R30

• Floating-point registers F0 through F30

Valid registers for the result and parameters options are:

• General-purpose registers R0 through R25

Preprocessor Directives 5–37

• Floating-point registers F0 through F30

For example, the following characteristics specify a simple-register-list
containing two elements, registers F3 and F4; and a register-list containing
two elements, the register R5 and a sublist containing the registers F5 and F6:

nopreserve(f3, f4)
parameters(r5, (f5, f6))

The following example shows a linkage using such characteristics:

#pragma linkage my_link=(nopreserve(f3,f4), parameters(r5,(f5,f6)), notneeded (ai))

The parenthesized notation in a register-list is used to describe arguments and
function return values of type struct, where each member of the struct is
passed in a single register. In the following example, sample_linkage specifies
two parameters: the first is passed in registers R5, R6, and R7; the second is
passed in F6:

struct sample_struct_t {
int A, B;
short C;
} sample_struct;

#pragma linkage sample_linkage = (parameters ((r5, r6, r7), f6))

void sub (struct sample_struct_t p1, double p2) { }

main()
{

double d;

sub (sample_struct, d);
}

You can pass arguments to the parameters of a routine in specific registers.
To specify this information, use the following form, where each item in the
register-list describes one parameter that is passed to the routine:

parameters (register-list)

You can pass structure arguments by value, with the restriction that each
member of the structure is passed in a separate parameter location. Doing
so, however, may produce code that is slower because of the large number of
registers used. The compiler does not diagnose this condition.

HP C does not support unions as parameters or function return types for a
function with a special linkage.

5–38 Preprocessor Directives

When a function associated with a linkage type is declared or defined, the
compiler checks that the size of any declared parameters is compatible with the
number of registers specified for the corresponding parameter in the linkage
definition.

The compiler needs to know the registers that will be used to return the value
for the function. To specify this information use the following form, where the
register-list must contain only a single register, or a parenthesized group of
registers if the routine returns a struct:

result (register-list)

If a function does not return a value (that is, the function has a return type of
void), then do not specify result as part of the linkage.

The compiler needs to know which registers are used by the function and
which are not, and of those used, whether or not they are preserved across the
function call. To specify this information, use the following forms:

preserved (register-list)
nopreserve (register-list)
notused (register-list)

A preserved register contains the same value after a call to the function as it
did before the call.

A nopreserve register does not necessarily contain the same value after a call
to the function as it did before the call.

A notused register is not used in any way by the called function.

The notneeded characteristic indicates that certain items are not needed by
the routines using this linkage. You can specify one or both of the following
keywords:

• ai—Specifies that the Argument Information register (R25) does not need
to be set up when calling the specified functions.

• lp—Specifies that the Linkage Pointer register (R27 for Alpha systems)
does not need to be set up when calling the specified functions. The linkage
pointer is required when the called function accesses global or static data.
For I64 systems, there is no linkage pointer, so this setting is accepted but
does not change the behavior of the pragma.

You must determine whether or not it is valid to specify that the ai or lp
registers are not needed.

Preprocessor Directives 5–39

The #pragma linkage directive has the restriction that structures containing
nested substructures are not supported as parameters or function return types
with special linkages. Also, functions that use the _ _RETURN_ADDRESS
built-in function or va_count C RTL function cannot be called with a special
linkage.

5.4.12 #pragma linkage Directive (I64 only)

The #pragma linkage directive behaves much the same on I64 systems as it
does on OpenVMS Alpha systems, with some important differences.

On I64 systems, the #pragma linkage directive has the following formats:

#pragma linkage linkage-name = (characteristics)
#pragma linkage_ia64 linkage-name = (characteristics)

5.4.12.1 #pragma linkage Format
On I64 systems, the #pragma linkage format of this directive accepts Alpha
register names and conventions and automatically maps them, where possible,
to specific I64 registers. So whenever HP C for I64 encounters a #pragma
linkage directive, it attempts to map the Alpha registers specified in the
linkage to corresponding I64 registers, and emits a SHOWMAPLINKAGE
informational message showing the I64 specific form of the directive, #pragma
linkage_ia64, with the I64 register names that replaced the Alpha register
names. The SHOWMAPLINKAGE message is suppressed under the #pragma
nostandard directive, normally used within system header files.

Code compiled on I64 systems that deliberately relies on the register mapping
performed by #pragma linkage should either ignore the SHOWMAPLINKAGE
informational, or disable it.

5.4.12.1.1 Register Mapping Table 5–2 shows the mapping that HP C
applies to the Alpha integer register names used in #pragma linkage directives
when they are encountered on an I64 system. Note that the six standard
parameter registers on Alpha (R16-R21) are mapped to the first six (of eight)
standard parameter registers on I64 systems, which happen to be stacked
registers (see Section 5.4.12.2).

5–40 Preprocessor Directives

Table 5–2 Integer Register Mapping

Alpha � I64 Alpha � I64

R0 R8 R16 R321

R1 R9 R17 R331

R2 R28 R18 R341

R3 R3 R19 R351

R4 R4 R20 R361

R5 R5 R21 R371

R6 R6 R22 R22

R7 R7 R23 R23

R8 R26 R24 R24

R9 R27 R25 R25

R10 R10 R26 no mapping

R11 R11 R27 no mapping

R12 R30 R28 no mapping

R13 R31 R29 R29

R14 R20 R30 R12

R15 R21 R31 R0

1In parameters or result; else ignored

Table 5–3 shows the mapping that HP C applies to the Alpha floating-point
register names used in #pragma linkage directives when they are encountered
on an I64 system:

Preprocessor Directives 5–41

Table 5–3 Floating-Point Register Mapping

Alpha � I64 Alpha � I64

F0 F8 F16 F8

F1 F9 F17 F9

F2 F2 F18 F10

F3 F3 F19 F11

F4 F4 F20 F12

F5 F5 F21 F13

F6 F16 F22 F22

F7 F17 F23 F23

F8 F18 F24 F24

F9 F19 F25 F25

F10 F6 F26 26

F11 F7 F27 27

F12 F20 F28 28

F13 F21 F29 F29

F14 F14 F30 F30

F15 F15

5.4.12.1.2 Mapping Diagnostics In some cases, the HP C compiler on Alpha
systems silently ignores linkage registers if, for example, a standard parameter
register like R16 is specified in a preserved option. When you compile on
an I64 system, this situation emits an MAPREGIGNORED informational
message, and the SHOWMAPLINKAGE output might not be correct. If there
is no valid mapping to I64 registers, the NOMAPPOSSIBLE error message
is output. There are two special situations that can arise when floating-point
registers are specified in a linkage:

• Only IEEE-format values are passed in floating-point registers under
the OpenVMS Calling Standard for I64: VAX format values are passed
in integer registers. Therefore, a compilation that specifies /FLOAT=D_
FLOAT or /FLOAT=G_FLOAT produces an error for any linkage that
specifies floating-point registers. Note that this includes use in options that
do not involve passing values, such as the preserved and notused options.

• The mapping of floating-point registers is many-to-one in two cases:

Alpha registers F0 and F16 both map to I64 register F8

5–42 Preprocessor Directives

Alpha F1 and F17 both map to I64 register F9.

A valid Alpha linkage may well specify uses for both F0 and F16, and/or
both F1 and F17. Such a linkage cannot be mapped on an I64 system.
But because of the way this situation is detected, the MULTILINKREG
warning message that is produced can only identify the second occurrence
of an Alpha register that got mapped to the same I64 register as some
previous Alpha register. The actual pair of Alpha registers in the source
is not identified, and so the message can be confusing. For example, an
option like preserved(F1,F17) gets a MULTILINKREG diagnostic saying
that F17 was specified more than once.

5.4.12.2 #pragma linkage_ia64 Format
The #pragma linkage_ia64 format requires register names to be specified in
terms of an I64 system. The register names will never be mapped to a different
architecture. This form of the pragma always produces an error if encountered
on a different architecture.

For this format of the pragma, valid registers for the preserved, nopreserve,
notused, parameters, and result options are:

• Integer registers R3 through R12 and R19 through R31

• Floating-point registers F2 through F31

Valid registers for the parameters and result are:

• Integer registers R3 through R12, and R19 through R31

• Integer registers R32 through R39 (according to the convention described
below)

• Floating-point registers F2 through F31

The parameters and result options permit integer registers R32 through
R39 to be specified according to the following convention: On IA64, the first
eight integer input/output slots are allocated to stacked registers, and thus the
calling routine refers to them using different names than the called routine.
The convention for naming these registers in either the parameters or result
option of a #pragma linkage_ia64 directive is always to use the hardware
names as they would be used within the called routine: R32 through R39. The
compiler automatically compensates for the fact that within the calling routine
these same registers are designated using different hardware names.

Preprocessor Directives 5–43

5.4.13 #pragma [no]member_alignment Directive
By default, HP C for OpenVMS VAX systems does not align structure members
on natural boundaries; they are stored on byte boundaries (with the exception
of bit-field members).

By default, HP C for OpenVMS Alpha systems does align structure members
on natural boundaries.

The #pragma member_alignment preprocessor directive can be used to
force natural-boundary alignment of structure members. The #pragma
nomember_alignment preprocessor directive restores byte-alignment of
structure members.

This pragma has the following formats:

#pragma member_alignment
#pragma member_alignment save
#pragma member_alignment restore
#pragma nomember_alignment [base_alignment]

When #pragma member_alignment is used, the compiler aligns structure
members on the next boundary appropriate to the type of the member, rather
than on the next byte. For example, a long variable is aligned on the next
longword boundary; a short variable is aligned on the next word boundary.

Consider the following example:

#pragma nomember_alignment

struct x {
char c;
int b;
};

#pragma member_alignment

struct y {
char c; /*3 bytes of filler follow c */
int b;
};

main ()

{
printf("The sizeof y is: %d\n", sizeof (struct y));
printf("The sizeof x is: %d\n", sizeof (struct x));

}

When this example is executed, it shows the difference between #pragma
member_alignment and #pragma nomember_alignment.

5–44 Preprocessor Directives

Once used, the member_alignment pragma remains in effect until the
nomember_alignment pragma is encountered; the reverse is also true.

The optional base_alignment parameter can be used to specify the base-
alignment of the structure. Use one of the following keywords for the base_
alignment:

• byte (1 byte)

• word (2 bytes)

• longword (4 bytes)

• quadword (8 bytes)

• octaword (16 bytes)

The #pragma member_alignment save and #pragma member_alignment restore
directives can be used to save the current state of the member_alignment and
to restore the previous state, respectively. This feature is necessary for writing
header files that require member_alignment or nomember_alignment, or that
require inclusion in a member_alignment that is already set.

5.4.14 #pragma message Directive
The #pragma message directive controls the issuance of individual diagnostic
messages or groups of messages. Use of this pragma overrides any command-
line options that may affect the issuance of messages.

The #pragma message directive has the following formats:

#pragma message option1 (message-list)
#pragma message option2
#pragma message (quoted-string)

5.4.14.1 #pragma message option1
The parameter option1 must be one of the following keywords:

• enable—Enables issuance of the messages specified in the message-list

• disable—Disables issuance of the messages specified in the message-list

• emit_once—Emits the specified messages only once per compilation.

Certain messages are emitted only the first time the compiler encounters
the causal condition. When the compiler encounters the same condition
later in the program, no message is emitted. Messages about the use of
language extensions are an example of this kind of message. To emit one
of these messages every time the causal condition is encountered, use the
EMIT_ALWAYS option.

Preprocessor Directives 5–45

Errors and Fatals are always emitted. You cannot set them to emit_once.

• emit_always—Emits the specified messages at every occurrence of the
condition.

• error—Sets the severity of the specified messages to Error.

Supplied Error messages and Fatal messages cannot be made less severe.
(Exception: A message can be upgraded from Error to Fatal, then later
downgraded to Error again, but it can never be downgraded from Error.)

Warnings and Informationals can be made any severity.)

• fatal—Sets the severity of the specified messages to Fatal.

• informational—Sets the severity of the specified messages to Informational.
Note that Fatal and Error messages cannot be made less severe.

• warning—Sets the severity of each message in the message-list to Warning.
Note that Fatal and Error messages cannot be made less severe.

The message-list can be any one of the following:

• A single message identifier (within parentheses, or not). The message
identifier is the name following the severity at the start of a line when a
message is issued. For example, in the following message, the message
identifier is GLOBALEXT:

%CC-W-GLOBALEXT, a storage class of globaldef, globalref, or globalvalue
is a language extension.

• The name of a single message group (within parentheses, or not). Message-
group names are:

ALL—All the messages in the compiler

ALIGNMENT—Messages about unusual or inefficient data alignment.

C_TO_CXX—Messages reporting the use of C features that would be
invalid or have a different meaning if compiled by a C++ compiler.

CDD—Messages about CDD (Common Data Dictionary) support.

CHECK—Messages reporting code or practices that, although correct
and perhaps portable, are sometimes considered ill-advised because
they can be confusing or fragile to maintain. For example, assignment
as the test expression in an "if" statement.

The check group gets defined by enabling LEVEL5 messages.

DEFUNCT—Messages reporting the use of obsolete features: ones that
were commonly accepted by early C compilers but were subsequently
removed from the language.

5–46 Preprocessor Directives

NEWC99—Messages reporting the use of the new C99 Standard
features.

NOANSI—This is a deprecated message group. It is an obsolete
synonym for NOC89. Also see message groups NEWC99, NOC89,
NOC99.

NOC89—Messages reporting the use of non-C89 Standard features.

NOC99—Messages reporting the use of non-C99 Standard features.

OBSOLESCENT—Messages reporting the use of features that are valid
in Standard C, but which were identified in the standard as being
obsolescent and likely to be removed from the language in a future
version of the standard.

OVERFLOW—Messages that report assignments and/or casts that can
cause overflow or other loss of data significance.

PERFORMANCE—Messages reporting code that might result in poor
run-time performance.

PORTABLE—Messages reporting the use of language extensions or
other constructs that might not be portable to other compilers or
platforms.

PREPROCESSOR—Messages reporting questionable or non-portable
use of preprocessing constructs.

QUESTCODE—Messages reporting questionable coding practices.
Similar to the CHECK group, but messages in this group are more
likely to indicate a programming error rather than just a non-robust
style.

Note

Enabling the QUESTCODE group provides lint-like checking.

RETURNCHECKS—Messages related to function return values.

UNINIT—Messages related to using uninitialized variables.

UNUSED—Messages reporting expressions, declarations, header files,
CDD records, static functions, and code paths that are not used.

Note, however, that unlike any other messages, these messages must
be enabled on the command line (/WARNINGS=ENABLE=UNUSED) to
be effective.

Preprocessor Directives 5–47

• A single message-level name (within parentheses, or not).

Message-level names are:

LEVEL1—Important messages. These are less important than the
level 0 core messages, because messages in this group are not displayed
if #pragma nostandard is active.

LEVEL2—Moderately important messages.

LEVEL3—Less important messages.

LEVEL3 is the default message level for HP C for OpenVMS systems.

LEVEL4—Useful check/portable messages.

LEVEL5—Not so useful check/portable messages.

LEVEL6—Additional "noisy" messages.

Be aware that there is a core of very important compiler messages that
are enabled by default, regardless of what you specify with /WARNINGS or
#pragma message. Referred to as message level 0, it includes all messages
issued in header files, and comprises what is known as the nostandard
group. All other message levels add additional messages to this core of
enabled messages.

You cannot modify level 0 (You cannot disable it, enable it, change its
severity, or change its EMIT_ONCE characteristic). However, you can
modify individual messages in level 0, provided such modification is allowed
by the action. For example, you can disable a Warning or Informational in
level 0, or you can change an error in level 0 to a Fatal, and so on. (See
restrictions on modifying individual messages.)

Enabling a level also enables all the messages in the levels lower than
it. So enabling LEVEL3 messages also enables messages in LEVEL2 and
LEVEL1.

Disabling a level also disables all the messages in the levels higher than
it. So disabling LEVEL4 messages also disables messages in LEVEL5 and
LEVEL6.

• A comma-separated list of message identifiers, group names, and messages
levels, freely mixed, enclosed in parentheses.

5–48 Preprocessor Directives

5.4.14.2 #pragma message option2
The parameter option2 must be one of the following keywords:

• save—Saves the current state of which messages are enabled and disabled.

• restore—Restores the previous state of which messages are enabled and
disabled.

The save and restore options are useful primarily within header files.

5.4.14.3 #pragma message (quoted-string)
This form of #pragma message is provided for compatibility with Microsoft’s
#pragma message directive.

The #pragma message (quoted-string) form of this directive emits the specified
string as a compiler message. For example, when the compiler encounters the
following line in the source file:

#pragma message ("hello")

It emits:

#pragma message ("hello")
................^
%CC-I-SIMPLEMESSAGE, hello
at line number 1 in file DISK1$:[SMITH]TEST.C;1

This form of the pragma is subject to macro replacement. For example, the
following is allowed:

#pragma message ("Compiling file " __FILE__)

5.4.15 #pragma module Directive
When you compile source files to create an object file, the compiler assigns
the first of the file names specified in the compilation unit to the name of
the object file. The compiler adds the .OBJ file extension to the object file.
Internally, the OpenVMS system (the debugger and the librarian) recognizes
the object module by the file name; the compiler also gives the module a
version number of 1. For example, given the object file EXAMPLE.OBJ, the
debugger recognizes the EXAMPLE object module.

To change the system-recognized module name and version number, use the
#pragma module directive. The #pragma module directive is specific to HP C for
OpenVMS systems and is not portable.

You can find the module name and the module version number listed in the
compiler listing file and the linker load map.

Preprocessor Directives 5–49

The #pragma module directive is equivalent to the VAX C compatible #module
directive. The #pragma module directive may be used when compiling in
any mode. Use #module only when compiling with the /STANDARD=VAXC
qualifier.

The #pragma module directive has the following formats:

#pragma module identifier identifier
#pragma module identifier string

The first parameter must be a valid HP C identifier. It specifies the module
name to be used by the linker. The second parameter specifies the optional
identification that appears on listings and in the object file. It must be either a
valid HP C identifier of 31 characters or less, or a character-string constant of
31 characters or less.

Only one #pragma module directive can be processed per compilation unit, and
that directive must appear before any C language text. The #pragma module
directive can follow other directives, such as #define, but it must precede any
function definitions or external data definitions.

The parameters in a #pragma module directive are subject to text replacement
and can, therefore, contain references to identifiers defined in previous #define
directives. The replacement occurs before the parameters are processed.

5.4.16 #pragma names Directive
The #pragma names preprocessor directive provides the same kinds of control
over the mapping of external identifiers’ object-module symbols as does the
/NAMES command-line qualifier, and it uses the same keywords. But as a
pragma, the controls can be applied selectively to regions of declarations.

This pragma should only be used in header files and is intended for use by
developers who supply libraries and/or header files to their customers.

The pragma has a save/restore stack that is also managed by #pragma
environment, and so it is well-suited for use in header files. The
effect of #pragma environment header_defaults is to set NAMES to
uppercase,truncated, which is the compiler default.

The #pragma names directive has the following format:

#pragma names stack-option
#pragma names case-option[, length-option]
#pragma names length-option[, case-option]

Where stack-option is one of the following keywords:

• save - save the current names state

5–50 Preprocessor Directives

• restore - restore a saved names state

case-option is one of the following keywords:

• uppercase - uppercase external names

• as_is - do not change case

length-optionis one of the following keywords:

• truncated - truncate at 31 characters

• shortened - shorten to 31 using CRC

An important use for this feature is to make it easier to use the command-line
option /NAMES=AS_IS. Both the C99 standard and the C++ standard require
that external names be treated as case-sensitive, and 3rd party libraries and
Java native methods are starting to rely on case-sensitivity (C99 requires
a minimum of 31 characters significant, while C++ requires all characters
significant). Therefore, the use of /NAMES=AS_IS is expected to become more
widespread.

The HP C run-time library is implemented with all symbols duplicated, spelled
both in uppercase and lowercase, to allow C programs compiled with any of
the /NAMES= settings to work. But traditional practice on OpenVMS systems,
combined with compiler defaults of /NAMES=UPPER, has resulted in nearly
all existing object libraries and shared images to contain all uppercase names
(both in references and in definitions), even though C source code using these
libraries typically declares the names in lowercase or mixed case. Usually,
the header files to access these libraries contain macro definitions to replace
lowercase names by uppercase names to allow client programs to be compiled
/NAMES=AS_IS. But macro definitions are problematic because every external
name has to have a macro.

The new pragma allows header files to specify just once that the external
names they declare are to be uppercased in the object module, regardless
of the NAMES setting used in the rest of the compilation. The NAMES
setting in effect at the first declaration of an external name is the one that
takes effect; therefore, the setting specified in a header file is not overridden
by a subsequent redeclaration in the user’s program (which might specify a
different NAMES setting). Note that the automatic Prologue/Epilogue header-
file inclusion feature described in Section 1.7.4 (in connection with pointer_size
pragmas) can also be used to specify the NAMES setting for all headers in a
given directory or text library, without having to edit each header directly.

Preprocessor Directives 5–51

5.4.17 #pragma optimize Directive
The #pragma optimize preprocessor directive sets the optimization
characteristics of function definitions that follow the directive. It allows
optimization-control options that are normally set on the command line for the
entire compilation to be specified in the source file for individual functions.

The #pragma optimize directive has the following format:

#pragma optimize settings
#pragma optimize save
#pragma optimize restore
#pragma optimize command_line

Where settings is any combination of the following:

• level settings

These set the optimization level. Specify the level as follows:

level=n

Where n is an integer from 0 to 5.

• unroll settings

These control loop unrolling. Specify as follows:

unroll=n

Where n is a nonnegative integer.

• ansi-alias settings

These control ansi-alias assumptions. Specify one of the following:

ansi_alias=on
ansi_alias=off

• intrinsic settings

These control recognition of intrinsics: Specify one of the following:

intrinsics=on
intrinsics=off

White space is optional between the setting clauses and before and after the
"=" in each clause. The pragma is not subject to macro replacement.

For more information on the optimization settings, see Table 1–16 in the
description of the /OPTIMIZE qualifier in Section 1.3.4.

5–52 Preprocessor Directives

Example:

#pragma optimize level=5 unroll=6

Usage Notes

• If the level=0 clause is present, it must be the only clause present.

• The #pragma optimize directive must appear at file scope, outside
any function body.

• If #pragma optimize does not specify a setting for one of the
optimization states, that state remains unchanged.

• When a function definition is encountered, it is compiled using the
optimization settings that are current at that point in the source.

• When a function is compiled under level=0, the compiler will not
inline that function. In general, when functions are inlined, the
inlined code is optimized using the optimization controls in effect at
the call site instead of using the optimization controls specified for
the function being inlined.

• When the OpenVMS command line specifies /NOOPT (or /OPTIMIZE=

LEVEL=0), the #pragma optimize directive has no effect (except
that its arguments are still validated).

• The #pragma optimize directive controls most, but not all,
optimizations performed by the compiler. Therefore, there can be
some differences between setting the optimization using the pragma
compared with using the /OPTIMIZE command-line qualifier.

The save and restore options save and restore the current optimization state
(level, unroll count, ansi-alias setting, and intrinsic setting).

The command_line option sets the optimization settings to what was specified
on the command line.

Preprocessor Directives 5–53

5.4.18 #pragma pack Directive
The #pragma pack preprocessor directive specifies the byte boundary for
packing members of C structures.

The #pragma pack directive has the following format:

#pragma pack n
#pragma pack ()

The n specifies the new alignment restriction in bytes:

1 align to byte

2 align to word

4 align to longword

8 align to quadword

16 align to octaword

A structure member is aligned to either the alignment specified by #pragma
pack or the alignment determined by the size of the structure member,
whichever is smaller. For example, a short variable in a structure gets byte-
aligned if #pragma pack 1 is specified, but word-aligned if #pragma pack 2, 4, or
8 is specified.

When #pragma pack is specified without a value or with a value of 0, packing
reverts to the /[NO]MEMBER_ALIGNMENT qualifier setting (either explicitly
specified or by default) on the command line. Note that when specifying
#pragma pack without a value, you must use parentheses: #pragma pack ().

HP C also supports the Microsoft Visual C++ enhanced syntax of this pragma:

#pragma pack ({ [{push | pop} [,identifier] [,n]] | [n] })

With this enhanced syntax, you can save and restore packing alignment values
across program components. This allows you to combine components into a
single translation unit even if they specify different packing alignments:

• Every occurrence of pragma pack with a push argument stores the current
packing alignment value on an internal compiler stack. If you provide a
value for n, that value becomes the new packing value. If you specify an
identifier, a name of your choosing, it is associated with the new packing
value.

• Every occurrence of a pragma pack with a pop argument retrieves the
value at the top of the stack and makes that value the new packing
alignment. If an empty stack is popped, the alignment value defaults to
the /[NO]MEMBER_ALIGNMENT command-line setting, and a warning

5–54 Preprocessor Directives

is issued. If you specify a value for n, that value becomes the new packing
value.

If you specify an identifier, all values stored on the stack are removed from
the stack until a matching identifier is found. The packing value associated
with the identifier is also removed from the stack, and the packing value
that was in effect just before the identifier was pushed becomes the new
packing value. If no matching identifier is found, the packing value reverts
to the command-line setting, and a warning is issued.

The enhanced syntax of pragma pack lets you write header files that ensure
that packing values are the same before and after the header file is encoun-
tered. Consider the following example:

// File name: myinclude.h
//
#pragma pack(push, enter_myinclude)
// Your include-file code ...
#pragma pack(pop, enter_myinclude)
// End of myinclude.h

In this example, the current packing value is associated with the identifier
enter_myinclude and pushed on entry to the header file. Your include code
is processed. The #pragma pack at the end of the header file then removes all
intervening packing values that might have occurred in the header file, as well
as the packing value associated with enter_myinclude, thereby preserving the
same packing value after the header file as before it.

The enhanced pragma pack syntax also lets you include header files that might
set packing alignments different from the ones set in your code. Consider the
following example:

#pragma pack(push, before_myinclude)
#include <myinclude.h>
#pragma pack(pop, before_myinclude)

In this example, your code is protected from any changes to the packing value
that might occur in <myinclude.h> by saving the current packing alignment
value, processing the include file (which may leave the packing alignment with
an unknown setting), and restoring the original packing value.

Preprocessor Directives 5–55

5.4.19 #pragma pointer_size Directive
The #pragma pointer_size preprocessor directive can be used throughout a
program to control whether pointers are 32-bit pointers or 64-bit pointers.

This directive has the same effect as the #pragma required_pointer_size
directive, except that #pragma pointer_size is enabled only when the
/POINTER_SIZE command-line qualifier is specified. If /POINTER_SIZE
is omitted from the command line, #pragma pointer_size is ignored. (The
#pragma required_pointer_size directive always takes effect, whether or not
/POINTER_SIZE is specified.)

The #pragma pointer_size directive has the following format:

#pragma pointer_size keyword

The keyword is one of the following:

{short| 32} 32-bit pointer

{long| 64} 64-bit pointer

system_default 32-bit pointers on OpenVMS systems; 64-bit pointers on
Tru64 UNIX systems

save Saves the current pointer size

restore Restores the current pointer size to its last saved state

Notes

• The #pragma pointer_size and #pragma required_pointer_size
directives only affect the meaning of the pointer-declarator (*) in
declarations, casts, and the sizeof operator.

• The size of a pointer is the property of the type, and so it is bound
in a typedef declaration, but not in a preprocessor macro definition.

• The size of a pointer produced by the & operator, or by an array
name or function name in a context where it is converted to an
explicit pointer, is 32 bits unless the & operator is applied to an
object designated by a dereference of a pointer having a 64-bit
pointer type.

5–56 Preprocessor Directives

5.4.20 #pragma required_pointer_size Directive
The #pragma required_pointer_size preprocessor directive is intended for use
by developers of header files to control the size of pointers within a header file
in those cases where the pointers are architecturally required to be a particular
size, and must not be altered by the user’s use of pointer-size controls.

This directive has the same effect as the #pragma pointer_size directive,
except that a #pragma required_pointer_size always takes effect, even
if /POINTER_SIZE is omitted from the command line. (The #pragma
pointer_size directive is ignored if /POINTER_SIZE is omitted.)

The #pragma required_pointer_size directive has the following format:

#pragma required_pointer_size keyword

The keyword is one of the following:

{short| 32} 32-bit pointer

{long| 64} 64-bit pointer

system_default 32-bit pointers on OpenVMS systems; 64-bit pointers on
Tru64 UNIX systems

save Saves the current pointer size

restore Restores the current pointer size to its last saved state

Notes

• The #pragma pointer_size and #pragma required_pointer_size
directives only affect the meaning of the pointer-declarator (*) in
declarations, casts, and the sizeof operator.

• The size of a pointer is the property of the type, and so it is bound
in a typedef declaration, but not in a preprocessor macro definition.

• The size of a pointer produced by the & operator, or by an array
name or function name in a context where it is converted to an
explicit pointer, is 32 bits unless the & operator is applied to an
object designated by a dereference of a pointer having a 64-bit
pointer type.

Preprocessor Directives 5–57

5.4.21 #pragma [no]standard Directive
Use the nostandard and standard pragmas together to define regions of source
code where portability diagnostics are not to be issued.

This pragma has the following format:

#pragma [no]standard

Use #pragma nostandard to suppress diagnostics about nonstandard
extensions, regardless of the /STANDARD qualifier specified.

Use #pragma standard to direct the compiler to reinstate the setting of the
/STANDARD qualifier that was in effect before the last #pragma nostandard
was encountered. Every #pragma standard directive must be preceded by a
corresponding #pragma nostandard directive.

The following example demonstrates the use of these pragmas:

#include <stdio.h>
#pragma nostandard
extern noshare FILE *stdin, *stdout, *stderr;
#pragma standard

In this example, nostandard prevents the NOSHAREEXT diagnostic from
being issued against the noshare storage-class modifier, which is specific to
HP C for OpenVMS systems.

Note

This pragma does not change the current mode of the compiler or
enable any extensions not already supported in that mode.

5.4.22 #pragma unroll Directive
Use the #pragma unroll preprocessor directive to unroll the for loop that
follows it by the number of times specified in unroll_factor. The #pragma
unroll directive must be followed by a for statement.

This pragma has the following format:

#pragma unroll (unroll_factor)

The unroll_factor is an integer constant in the range of 0 to 255. If a value of
0 is specified, the compiler ignores the directive and determines the number of
times to unroll the loop in its normal way. A value of 1 prevents the loop from
being unrolled. The directive applies only to the for loop that follows it, not to
any subsequent for loops.

5–58 Preprocessor Directives

5.4.23 #pragma use_linkage Directive
After defining a special linkage using the #pragma linkage directive, described
in Section 5.4.11, use the #pragma use_linkage directive to associate the
linkage with a function.

This pragma has the following format:

#pragma use_linkage linkage-name (id1, id2, ...)

The linkage-name is the name of a linkage previously defined by the #pragma
linkage directive.

id1, id2, ... are the names of functions, or typedef names of function type, that
you want associated with the specified linkage.

If you specify a typedef name of function type, then functions or pointers to
functions declared using that type will have the specified linkage.

The #pragma use_linkage directive must appear in the source file before
any use or definition of the specified routines. Otherwise, the results are
unpredictable.

Examples

1.
#pragma linkage example_linkage = (parameters(r16, r17, r19), result(r16))
#pragma use_linkage example_linkage (sub)
int sub (int p1, int p2, short p3);

main()
{

int result;

result = sub (1, 2, 3);
}

This example defines a special linkage and associates it with a routine that
takes three integer parameters and returns a single integer result in the
same location where the first parameter was passed.

The result (r16) option indicates that the function result will be returned
in R16 rather than the usual location (R0). The parameters option
indicates that the three parameters passed to sub should be passed in
R16, R17, and R19.

Preprocessor Directives 5–59

2.
#pragma linkage foo = (parameters(r1), result(r4))
#pragma use_linkage foo(f1,t)

int f1(int a);
typedef int t(int a);

t *f2;

#include <stdio.h>

main() {
f2 = f1;
b = (*f2)(1);

}

In this example, both the function f1 and the function type t are given the
linkage foo. The invocation through the function pointer f2 will correctly
invoke the function f1 using the special linkage.

5–60 Preprocessor Directives

6
Predefined Macros and Built-In Functions

This chapter describes the following topics:

• Predefined macros (Section 6.1)

• Built-in functions (Section 6.2)

For OpenVMS Alpha systems (Alpha only) (Section 6.2.1)

For OpenVMS I64 Systems (I64 only) (Section 6.2.2)

For OpenVMS VAX systems (VAX only) (Section 6.2.3)

Predefined macros and built-in functions are extensions to the C Standard and
are specific to HP C for OpenVMS Systems. The macros assist in transporting
code and performing simple tasks that are common to many programs. The
built-in functions allow you to efficiently access processor instructions.

6.1 Predefined Macros
In addition to the standard-conforming, implementation-independent macros
described in the HP C Language Reference Manual, HP C for OpenVMS
Systems provides the predefined macros described in the following sections.

6.1.1 CC$gfloat (G_Floating Identification Macro)
This macro is provided for compatibility with VAX C. The _ _G_FLOAT
predefined macro should be used instead. See Section 6.1.4.

6.1.2 System Identification Macros
Each implementation of the HP C compiler automatically defines macros that
can be used to identify the system on which the program is running. These
macros can assist in writing code that executes conditionally, depending on the
architecture or operating system on which the program is running.

Predefined Macros and Built-In Functions 6–1

Table 6–1 lists the traditional (nonstandard) and new (standard) spellings of
these predefined macro names for HP C for OpenVMS Systems. Both spellings
are defined for each macro unless strict ANSI C mode (/STANDARD=ANSI89)
is in effect, in which case only the new spellings are defined.

Table 6–1 Predefined System Identification Macros

Traditional
Spelling New Spelling

Operating system name: vms __vms

VMS __VMS

vms_version __vms_version

VMS_VERSION __VMS_VERSION

__VMS_VER

__DECC_VER

Architecture name: vax (VAX only) __vax (VAX only)

VAX (VAX only) __VAX (VAX only)

__alpha (Alpha only)

__ALPHA (Alpha only)

__Alpha_AXP (Alpha only)

__32BITS

__ia64 (I64 only)

__ia64__ (I64 only)

Product name: vaxc __vaxc

VAXC __VAXC

vax11c __vax11c

VAX11C __VAX11C

__DECC

Standard C version of the
compiler:

__STDC__1

1_ _STDC_ _ is defined to 1 for /STANDARD keywords ANSI89, C99, LATEST and MIA. It is
defined to 2 for /STANDARD=RELAXED and to 0 for /STANDARD=MS. It is not defined for
/STANDARD keywords VAXC and COMMON.

(continued on next page)

6–2 Predefined Macros and Built-In Functions

Table 6–1 (Cont.) Predefined System Identification Macros

Traditional
Spelling New Spelling

Compiler is a hosted implemen-
tation

__STDC_HOSTED__=1
for /STANDARD=c99 and
/STANDARD=LATEST.
__STDC_HOSTED__ not
defined for all other
/STANDARD keywords.

C99 or ISOC94 version of the
compiler

__STDC_VERSION__=199901L
for /STANDARD key-
words C99, LATEST,
RELAXED, MS, PORTABLE.
__STDC_VERSION__=199409L
when the ISOC94 keyword
is specified alone or with the
ANSI89, MIA, RELAXED, MS,
PORTABLE, or COMMON
modes.2

ISO/IEC 10646 __STDC_ISO_10646__=yyyymmL3

MIA version of the compiler: __MIA4

2Because C99 is a superset of Amendment 1 to the C89 standard, and the default mode of
RELAXED is a superset of C99, _ _STDC_VERSION_ _ is defined with the C99-specified value
of 199901L. Only when the ISOC94 keyword is added to the strict ANSI89, MIA, RELAXED, MS,
COMMON, or PORTABLE modes does the macro take on the Amendment 1 value of 199409L. In
the absence of the ISOC94 keyword, ANSI89, MIA, and COMMON modes do not define the macro
at all.
3_ _STDC_ISO_10646_ _ evaluates to an integer constant of the form yyyymmL (for example,
199712L), intended to indicate that values of type wchar_t are the coded representations of the
characters defined by ISO/IEC 10646, along with all amendments and technical corrigenda as of
the specified year and month.
4_ _MIA is defined only in MIA mode.

Most of these macros are defined as 1 or 0, as appropriate to the processor and
compilation qualifiers. Refer to the end of the compiler’s source listing to see
the names and values of all the macros that are defined prior to processing
the first line of source code. The listing shows all macros predefined by the
compiler, as well as those defined on the command line by the /DEFINE
qualifier, but omits any that were undefined by the /UNDEFINE qualifier.

Note

Some users have tried defining the macro _ _ALPHA explicity with
a /DEFINE qualifier or in a header file as a quick hack to deal with
source-code conditionals that were written to assume that if _ _ALPHA

Predefined Macros and Built-In Functions 6–3

is not defined, then the target must be a VAX. Doing this causes the
CRTL headers and other OpenVMS headers to take the wrong path
for I64 systems. Never define any of the Alpha architecture predefined
macros when using the compiler on I64 systems.

You can use these system identification macros to separate portable and
nonportable code in any of your HP C programs or to conditionally compile
HP C programs used on more than one operating system to take advantage of
system-specific features. For example:

#ifdef VMS
#include rms /* Include RMS definitions. */
#endif

See the HP C Language Reference Manual for more information about using
the preprocessor conditional-compilation directives.

6.1.2.1 The _ _DECC_VER Macro
The _ _DECC_VER macro provides an integer encoding of the compiler version-
identifier string that is suitable for use in a preprocessor #if expression, such
that a larger number corresponds to a more recent version.

The format of the compiler version-identifier string is:

TMM.mm-eee

Where:

• T is the version type (letter).

• MM is the major version number.

• mm is the update (minor version number).

• eee is the edit suffix number.

The format of the integer encoding for _ _DECC_VER is:

vvuuteeee

Where:

• vv is the major version number.

• uu is the update (minor version number).

• t is the numerical encoding of the alphabetic version type from the version-
identifier string.

6–4 Predefined Macros and Built-In Functions

Table 6–2 lists the possible version types and their encodings:

Table 6–2 _ _DECC_VER Version-Type Encodings

Type
Numerical
Encoding Description

T 6 Field-test version

S 8 Customer special

V 9 Officially supported version

• eeee is the edit suffix number.

The following describes how the _ _DECC_VER integer value is calculated from
the compiler version-identifier string:

1. The major version is multiplied by 10000000.

2. The minor version (the digits between the ’.’ and any edit suffix) is
multiplied by 100000 and added to the suffix value (The suffix value
has a range of 0-999).

3. If the character immediately preceding the first digit of the major version
number is one of the ones listed in Table 6–2, its numerical encoding is
multiplied by 10000.

4. The preceding values are added together.

The following examples show how different compiler version-identifier strings
map to _ _DECC_VER encodings:

ident ____DECC_VER
string vvuuteeee

T5.2-003 --> 50260003
V6.0-001 --> 60090001

6.1.2.2 The _ _VMS_VER Macro
The _ _VMS_VER macro provides an integer encoding of the OpenVMS version-
identifier string that is suitable for use in a preprocessor #if expression, such
that a larger number corresponds to a more recent version.

The format of the OpenVMS version-identifier string is:

TMM.mm-epp

Where:

• T is the version type (letter).

Predefined Macros and Built-In Functions 6–5

• MM is the major version number.

• mm is the update (minor version number).

• ee is the edit number.

• pp is the patch letter.

The format of the integer encoding for _ _VMS_VER is:

vvuuepptt

Where:

• vv is the major version.

• uu is the update (minor version)

• e is the edit number.

• pp is the patch letter (A = 01, ..., Z = 26)

• tt is the alphabetic ordinal of the version type from the version-identifier
string (E = 05, ..., V = 22)

Note that there are no version-type letters A - D and W - Z.

The following describes how the _ _VMS_VER integer value is calculated from the
OpenVMS version-identifier string:

1. The major version is multiplied by 10000000.

2. The minor version (the digits between the ’.’ and any edit/patch suffix) is
multiplied by 100000 and added to the suffix value.

The suffix value is the optional edit number multiplied by 10000, added to
the optional patch letter’s alphabetic ordinal multiplied by 100.

3. The preceding values are added together, along with the alphabetic ordinal
of the version type.

The following examples show how different OpenVMS version-identifier strings
map to _ _VMS_VER encodings:

ident ____VMS_VER
string vvuuepptt

6–6 Predefined Macros and Built-In Functions

V6.1 --> 60100022
V6.1-1H --> 60110822
E6.2 --> 60200005 ("IFT")
F6.2 --> 60200006 ("FT1")
G6.2 --> 60200007 ("FT2")
V6.2 --> 60200022
T6.2-1H --> 60210820
V6.2-1I --> 60210922
V5.5-1H1 --> 50510822 (extra trailing digit ignored)

6.1.3 Standards Conformance Macros
The HP C RTL contains functions whose support and syntax conform to
various industry standards or levels of product or operating system support.

Table 6–3 lists macros that you can explicitly define (using the /DEFINE
qualifier or the #define preprocessor directive) to control which HP C RTL
functions are declared in header files and to obtain standards conformance
checking.

Table 6–3 Standards Macros—All platforms

Macro Standard

_XOPEN_SOURCE_EXTENDED XPG4-UNIX

_XOPEN_SOURCE XPG4

_POSIX_C_SOURCE POSIX

_ANSI_C_SOURCE Standard C

_VMS_V6_SOURCE OpenVMS Version 6 compatibility

_DECC_V4_SOURCE DEC C Version 4.0 compatibility

_BSD44_CURSES 4.4BSD Curses

_VMS_CURSES VAX C Curses

_SOCKADDR_LEN 4.4BSD sockets

These macros, with the exception of _POSIX_C_SOURCE, can be defined to 0 or 1.

The _POSIX_C_SOURCE macro can be defined to one of the following values:

0
1
2
199506

See the HP C Run-Time Library Reference Manual for OpenVMS Systems for
more information about these feature-test macros.

Predefined Macros and Built-In Functions 6–7

6.1.4 Floating-Point Macros
HP C for OpenVMS Systems automatically defines the following macros that
pertain to the format of floating-point variables. They can be used to identify
the format with which you are compiling your program.

• _ _D_FLOAT

• _ _G_FLOAT

• _ _IEEE_FLOAT

• _IEEE_FP

• _ _X_FLOAT

One of the first three macros listed is defined to have a value of 1 when the
corresponding option of the /FLOAT qualifier is specified, or the appropriate
/[NO]G_FLOAT qualifier is used. (The /G_FLOAT qualifier is kept only for
compatibility with VAX C.) If the corresponding option was not specified, the
associated macro is defined to have a value of 0.

The _IEEE_FP macro is defined in any IEEE floating-point mode except FAST.

On OpenVMS Alpha and I64 systems, the _ _X_FLOAT macro is defined to have
a value of 1 when /L_DOUBLE_SIZE=128 (the default), and a value of 0 when
/L_DOUBLE_SIZE=64.

These macros can assist in writing code that executes conditionally, depending
on whether the program is running using D_floating, G_floating, or IEEE_
floating precision.

For example, if you compiled using G_floating format, then _ _D_FLOAT and
_ _IEEE_FLOAT are predefined to be 0, and _ _G_FLOAT is predefined as if the
following were included before every compilation unit:

#define ____G_FLOAT 1

You can conditionally assign values to variables of type double without causing
an error and without being certain of how much storage was allocated for the
variable. For example, you may assign values to external variables as follows:

#ifdef ____G_FLOAT
double x = 0.12e308; /* Range to 10 to the 308th power */
#else
double x = 0.12e38; /* Range to 10 to the 38th power */
#endif

All predefined macro names, such as _ _G_FLOAT, are reserved by HP.

6–8 Predefined Macros and Built-In Functions

You can remove the effect of predefined macro definitions by explicitly
undefining the conflicting name. For more information about undefining
macros, see the #undefine directive in the HP C Language Reference Manual.
For more information about the G_floating representation of the double data
type, see Chapter 4.

6.1.5 Compiler-Mode Macros
The following predefined macros are defined if the corresponding compiler
mode is selected:

• _ _DECC_MODE_STRICT

• _ _DECC_MODE_RELAXED

• _ _DECC_MODE_VAXC

• _ _DECC_MODE_COMMON

• _ _DECC_MODE_MS

• _ _MS

6.1.6 Pointer-Size Macro
The following predefined macro is defined if the /POINTER_SIZE command-line
qualifier is specified:

_ _INITIAL_POINTER_SIZE

Specifying /POINTER_SIZE, /POINTER_SIZE=32, or /POINTER_
SIZE=SHORT defines _ _INITIAL_POINTER_SIZE to 32.

Specifying /POINTER_SIZE=64, or /POINTER_SIZE=LONG defines
_ _INITIAL_POINTER_SIZE to 64.

If /POINTER_SIZE is not specified, _ _INITIAL_POINTER_SIZE is defined to
0. This lets you use #ifdef _ _INITIAL_POINTER_SIZE to test whether or not
the compiler supports 64-bit pointers, because compilers lacking pointer-size
controls will not define this macro at all.

6.1.7 The _ _HIDE_FORBIDDEN_NAMES Macro
The C standard specifies exactly what identifiers in the normal name space
are declared by the standard header files. A compiler is not free to declare
additional identifiers in a header file unless the identifiers follow defined rules
(the identifier must begin with an underscore followed by an uppercase letter
or another underscore).

Predefined Macros and Built-In Functions 6–9

When you compile with HP C using any values of /STANDARD that set strict
C standard conformance (ANSI89, MIA, C99, and LATEST), versions of the
standard header files are included that hide many identifiers that do not
follow the rules. The header file <stdio.h>, for example, hides the definition
of the macro TRUE. The compiler accomplishes this by predefining the macro
_ _HIDE_FORBIDDEN_NAMES for the above-mentioned /STANDARD values.

You can use the /UNDEFINE="_ _HIDE_FORBIDDEN_NAMES" command-line
qualifier to prevent the compiler from predefining this macro and, thereby,
including macro definitions of the forbidden names.

The header files are modified to only define additional VAX C names if
_ _HIDE_FORBIDDEN_NAMES is undefined. For example, <stdio.h> might contain
the following:

#ifndef ____HIDE_FORBIDDEN_NAMES
#define TRUE 1
#endif

6.2 Built-In Functions
Sections 6.2.1, Section 6.2.2, and 6.2.3 describe the HP C built-in functions
available in all compiler modes on OpenVMS Alpha, I64, and VAX systems.

These functions allow you to directly access hardware and machine instructions
to perform operations that are cumbersome, slow, or impossible in other C
compilers.

These functions are very efficient because they are built into the HP C
compiler. This means that a call to one of these functions does not result in a
reference to a function in the HP C Run-Time Library (RTL) or to a function
in your program. Instead, the compiler generates the machine instructions
necessary to carry out the function directly at the call site. Because most of
these built-in functions closely correspond to single VAX or Alpha machine
instructions, the result is small, fast code.

Some of these built-in functions (such as those that operate on strings or bits)
are of general interest. Others (such as the functions dealing with process
context) are of interest if you are writing device drivers or other privileged
software. Some of the functions discussed in the following sections are
privileged and unavailable to user mode programs.

Be sure to include the <builtins.h> header file in your source program to
access these built-in functions. VAX C required you to place the #pragma
builtins preprocessor directive, rather than #include <builtins.h>, in your
source file before using one or more built-in functions. HP C supports #pragma

6–10 Predefined Macros and Built-In Functions

builtins for compatibility with VAX C, but using #include <builtins.h> is
recommended.

Note

HP C implements #pragma builtins as if it were #include
<builtins.h>; if you get an error from #pragma builtins, it is
the same kind of error you would get if you specified #include
<builtins.h>.

Also see Section 5.4.2.

Some of the built-in functions have optional arguments or allow a particular
argument to have one of many different types. To describe all valid
combinations of arguments, the following built-in function descriptions
list several different prototypes for the function. As long as a call to a built-in
function matches one of the prototypes listed, the call is valid. Furthermore,
any valid call to a built-in function behaves as if the corresponding prototype
were in scope of the call. The compiler, therefore, performs the argument
checking and conversions specified by that prototype.

The majority of the built-in functions are named after the processor instruction
that they generate. The built-in functions provide direct and unencumbered
access to those VAX instructions. Any inherent limitations to those instructions
are limitations to the built-in functions as well. For instance, the MOVC3
instruction and the _MOVC3 built-in function can move at most 65,535
characters.

For more information on these built-in functions, see the corresponding
machine instruction in the VAX MACRO and Instruction Set Reference Manual,
Alpha Architecture Handbook, or Alpha Architecture Reference Manual. In
particular, refer to the structure of queue entries manipulated by the built-in
queue functions.

6.2.1 Built-In Functions for OpenVMS Alpha Systems (Alpha only)

The following sections describe the HP C built-in functions available on
OpenVMS Alpha systems.

Predefined Macros and Built-In Functions 6–11

6.2.1.1 Translation Macros for VAX C Built-in Functions
On HP C for OpenVMS Alpha Systems, the <builtins.h> header file
contains macro definitions that translate some VAX C built-in functions to
the equivalent HP C for OpenVMS Alpha built-in functions. Consequently, the
following VAX C built-in functions are effectively supported:

_BBCCI
_BBSSI
_INSQHI
_INSQTI
_INSQUE
_REMQHI
_REMQTI
_REMQUE
_PROBER
_PROBEW

For more detail on any of these functions, see <builtins.h> or the description
of the corresponding native Alpha function in this chapter. For example, for a
description of _INSQHI, see _ _PAL_INSQHIL.

6.2.1.2 In-line Assembly Code—ASMs
HP C supports in-line assembly code, commonly referred to as ASMs on UNIX
platforms.

Like built-in functions, ASMs are implemented with a function-call syntax.
But unlike built-in functions, to use ASMs you must include the <c_asm.h>
header file containing prototypes for the three types of ASMs, and the #pragma
intrinsic preprocessor directive.

These functions have the following format:

_ _int64 asm (const char *, . . .); /* for integer operations, like MULQ */
float fasm (const char *, . . .); /* for single precision float instructions, like MULS */
double dasm (const char *, . . .); /* for double precision float instructions, like MULT */

#pragma intrinsic (asm, fasm, dasm)

const char *
The first argument to the asm, fasm, or dasm function contains the instruction(s)
to be generated inline and the metalanguage that describes the interpretation
of the arguments.

. . .
The source and destination arguments (if any) for the instruction being
generated, and any other values used in the generated instructions.

6–12 Predefined Macros and Built-In Functions

These values are made available to the instructions through the normal
argument passing conventions of the calling standard (the first integer
argument is available in register R16).

The #pragma intrinsic directive in the <c_asm.h> header file is required when
using ASMs. It notifies the compiler that:

• These functions are not user-defined functions.

• The special ASM processing should be applied to analyze at compile time
the first argument and generate machine-code instructions as specified by
the contents of the string.

The metalanguage for the argument references has the following form:

<metalanguage_sequence> : <register_alias>
| <register_number>
| <register_macro>
;

<register_number> : "$" number
;

<register_macro> : "%" <macro_sequence>
;

<macro_sequence> : number
| <register_name>
| "f" number | "F" number
| "r" number | "R" number
;

<register_name> : /* argument registers: R16-R21 */
"a0" | "a1" | "a2" | "a3" | "a4" | "a5"

/* return value: R0 or F0, depending on type */
| "v0"

/* scratch registers: R1, R22-R24, R28 */
| "t0" | "t1" | "t2" | "t3" | "t4"

/* save registers: R2-R15 */
| "s0" | "s1" | "s2" | "s3" | "s4" | "s5" | "s6" | "s7"
| "s8" | "s7" | "s8" | "s9" | "s10" | "s11" | "s12" | "s13"

/* stack pointer: R30 */
| "sp" | "SP" | "$sp" | "$SP"

| "RA" | "ra" /* return addr: R26 */
| "PV" | "pv" /* procedure value: R27 */
| "AI" | "ai" /* arg info: R25 */
| "FP" | "fp" /* frame pointer: R29 */
| "RZ" | "rz" | "zero" /* sink/source: R31 == zero */

Predefined Macros and Built-In Functions 6–13

Syntactically, the metalanguage can appear anywhere within an instruction
sequence.

The literal string that contains instructions, operands, and metalanguage must
follow the general form:

<string_contents> : <instruction_seq>
| <string_contents> ";" <instruction_seq>
| error
| <string_contents> error
;

<instruction_seq> : instruction_operand
| directive
;

An instruction_operand is generally recognized as an assembly language
instruction separated by white space from a sequence of comma-separated
operands.

You can code multiple instruction sequences into one literal string, separating
them by semicolons.

Since the C language concatentates adjacent string literals into a single string,
successive instructions can be written as separate strings, one per line (as is
normally done in assembly language) as long as each instruction is terminated
by a semicolon (as shown in the examples).

There are semantic and syntax rules associated with ASMs:

• The first argument to an ASM call is interpreted as the instructions to
be assembled in the metalanguage, and must be fully understood by the
compiler at compile time. Therefore, it must be a literal string (or a macro
expanding to a literal string) and must not be a run-time value containing a
string. Therefore, the following are not allowed: indirections, table lookups,
structure dereferences, and so on.

• The remaining arguments are loaded into the argument registers like
normal function arguments, except that the second argument to the ASM
call is treated as the first argument for purposes of the calling standard.

For example, in the following test, the six arguments are loaded into arg
registers a0 through a5, and the result of each subexpression is stored in
the value return register v0. Since v0 is the calling standard’s return value
register (R0 for an integer function), the result of the final MULQ is the
value returned by the "call":

6–14 Predefined Macros and Built-In Functions

if (asm("mulq %a0, %a1, %v0;"
"mulq %a2, %v0, %v0;"
"mulq %a3, %v0, %v0;"
"mulq %a4, %v0, %v0;"
"mulq %a5, %v0, %v0;", 1, 2, 3, 4, 5, 6) != 720){

error_cnt++;
printf ("Test failed\n");

}

The following example does not work. There is no value loaded into the
floating-point return register. Furthermore, it results in a compile-time
warning stating that r2 is used before it is set, because the arguments are
loaded into the arg registers and not into r2:

z = fasm("mulq %r2, %a1, %r5", x=10, y=5);

The correct way of doing this is to specify an argument register number in
place of r2. A correct version of the above would be:

z = fasm("mulq %a0, %a1, %a1;"
"stq %a1, 0(%a2);"
"ldt %f0, 0(%a2);"
"cvtqf %f0, %f0;", x=10, y=5, &temp);

Note that the memory location used for the transfer from integer to
floating-point register is made available to the asm code by passing as
an argument the address of a variable allocated in the C code for that
purpose.

• A return register must be specified in the metalanguage for the result to
appear in the expected place.

• For instructions that do not take any argument and do not have a return
type, leave out the arguments. For example:

asm("MB");

6.2.1.3 Absolute Value (_ _ABS)
The _ _ABS built-in is functionally equivalent to its counterpart, abs, in the
standard header file <stdlib.h>.

Its format is also the same:

#include <stdlib.h>
int _ _ABS (int x);

This built-in does, however, offer performance improvements because there is
less call overhead associated with its use.

If you include <stdlib.h>, the built-in is automatically used for all occurrences
of abs. To disable the built-in, use #undef abs.

Predefined Macros and Built-In Functions 6–15

6.2.1.4 Acquire and Release Longword Semaphore (_ _ACQUIRE_SEM_LONG,
_ _RELEASE_SEM_LONG)
The _ _ACQUIRE_SEM_LONG and _ _RELEASE_SEM_LONG functions
provide a counted semaphore capability where the positive value of a longword
is interpreted as the number of resources available.

The _ _ACQUIRE_SEM_LONG function loops until the longword has a positive
value and then decrements it within a load-locked/store-conditional sequence;
it then issues a memory barrier. This function returns 1 if the resource count
was successfully decremented within the specified number of retries, and 0
otherwise. With no explicit retry count, the function does not return until it
succeeds.

The _ _RELEASE_SEM_LONG function issues a memory barrier and then does
an _ _ATOMIC_INCREMENT_LONG on the longword.

The _ _ACQUIRE_SEM_LONG function has the following formats:

int _ _ACQUIRE_SEM_LONG (volatile void *address);
int _ _ACQUIRE_SEM_LONG_RETRY (volatile void *address, int retry);

The _ _RELEASE_SEM_LONG function has the following format:

int _ _RELEASE_SEM_LONG (volatile void *address);

address
The longword-aligned address of the resource count.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

6.2.1.5 Add Aligned Word Interlocked (_ _ADAWI)
The _ _ADAWI function adds its source operand to the destination. This
function is interlocked against similar operations by other processors or devices
in the system.

This function has the following format:

int _ _ADAWI (short src, volatile short *dest);

6–16 Predefined Macros and Built-In Functions

src
The value to be added to the destination.

dest
A pointer to the destination. The destination must be aligned on a word
boundary. (You can achieve alignment using the _align or _ _align storage-
class modifier.)

The _ _ADAWI function returns a simulated VAX processor status longword
(PSL), the lower 4 bits of which are significant. These 4 bits are the condition
codes and are defined as follows:

• Bit 3 is the negative condition code (N bit).

In general, it is set by negative result instructions. The bit is cleared by
positive result or zero instructions. For those instructions that affect the
bit according to a stored result, the N bit reflects the actual result even if
the sign of the result is algebraically incorrect as a result of overflow.

• Bit 2 is the zero condition code (Z bit).

Typically it is set by instructions that store an exactly zero result and
cleared if the result is not zero. Again, this reflects the actual result even
if overflow occurs.

• Bit 1 is the overflow condition code (V bit).

In general, it is set after arithmetic operations in which the magnitude
of the algebraically correct result is too large to be represented in the
available space, and cleared after operations whose result fits. Instructions
in which overflow is impossible or meaningless either clear the bit or leave
it unaffected. Note that all overflow conditions that set the V bit can also
cause traps if the appropriate trap enable bits are set.

• Bit 0 is the carry condition code (C bit).

Usually it is set after arithmetic operations in which a carry out of, or
borrow into, the most significant bit occurred. The bit is cleared after
arithmetic operations that had no carry or borrow, and is either cleared or
unaffected by other instructions.

6.2.1.6 Add Atomic Longword (_ _ADD_ATOMIC_LONG)
The _ _ADD_ATOMIC_LONG function adds the specified expression
to the aligned longword pointed to by the address parameter within a
load-locked/store-conditional code sequence.

This function has the following format:

int _ _ADD_ATOMIC_LONG (void *address, int expression, ...);

Predefined Macros and Built-In Functions 6–17

address
The address of the aligned longword.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It either returns a value of 1 upon successful
completion, or hangs in an endless failure loop.

6.2.1.7 Add Atomic Quadword (_ _ADD_ATOMIC_QUAD)
The _ _ADD_ATOMIC_QUAD function adds the specified expression to
the aligned quadword pointed to by the address parameter within a
load-locked/store-conditional code sequence.

This function has the following format:

int _ _ADD_ATOMIC_QUAD (void *address, int expression, ...);

address
The address of the aligned quadword.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

6–18 Predefined Macros and Built-In Functions

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It either returns a value of 1 upon successful
completion, or hangs in an endless failure loop.

6.2.1.8 Allocate Bytes from Stack (_ _ALLOCA)
The _ _ALLOCA function allocates n bytes from the stack.

This function has the following format:

void *_ _ALLOCA (unsigned int n);

n
The number of bytes to be allocated.

A pointer to the allocated memory is returned.

6.2.1.9 AND Atomic Longword (_ _AND_ATOMIC_LONG)
The _ _AND_ATOMIC_LONG function performs a bit-wise or arithmetic AND
of the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int _ _AND_ATOMIC_LONG (void *address, int expression, ...);

address
The longword-aligned address of the data segment.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never

Predefined Macros and Built-In Functions 6–19

return a failure value. It either returns a value of 1 upon successful
completion, or hangs in an endless failure loop.

6.2.1.10 AND Atomic Quadword (_ _AND_ATOMIC_QUAD)
The _ _AND_ATOMIC_QUAD function performs a bit-wise or arithmetic AND
of the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int _ _AND_ATOMIC_QUAD (void *address, int expression, ...);

address
The address of the aligned quadword.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It either returns a value of 1 upon successful
completion, or hangs in an endless failure loop.

6.2.1.11 Atomic Add Longword (_ _ATOMIC_ADD_LONG)
The _ _ATOMIC_ADD_LONG function adds the specified expression to
the aligned longword pointed to by the address parameter within a load-
locked/store-conditional code sequence and returns the value of the longword
before the addition was performed.

This function has the following formats:

int _ _ATOMIC_ADD_LONG (volatile void *address, int expression);

int _ _ATOMIC_ADD_LONG_RETRY (volatile void *address, int expression, int retry, int *status);

6–20 Predefined Macros and Built-In Functions

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6.2.1.12 Atomic Add Quadword (_ _ATOMIC_ADD_QUAD)
The _ _ATOMIC_ADD_QUAD function adds the specified expression to
the aligned quadword pointed to by the address parameter within a load-
locked/store-conditional code sequence and returns the value of the quadword
before the addition was performed.

This function has the following formats:

_ _int64 _ _ATOMIC_ADD_QUAD (volatile void *address, _ _int64 expression);

_ _int64 _ _ATOMIC_ADD_QUAD_RETRY (volatile void *address, _ _int64 expression, int retry, int
*status);

address
The quadword-aligned address of the data segment.

expression
An integer expression.

Predefined Macros and Built-In Functions 6–21

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6.2.1.13 Atomic AND Longword (_ _ATOMIC_AND_LONG)
The _ _ATOMIC_AND_LONG function performs a bit-wise or arithmetic AND
of the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the longword before the operation was performed.

This function has the following formats:

int _ _ATOMIC_AND_LONG (volatile void *address, int expression);

int _ _ATOMIC_AND_LONG_RETRY (volatile void *address, int expression, int retry, int *status);

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6–22 Predefined Macros and Built-In Functions

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6.2.1.14 Atomic AND Quadword (_ _ATOMIC_AND_QUAD)
The _ _ATOMIC_AND_QUAD function performs a bit-wise or arithmetic AND
of the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the quadword before the operation was performed.

This function has the following formats:

_ _int64 _ _ATOMIC_AND_QUAD (volatile void *address, _ _int64 expression);

_ _int64 _ _ATOMIC_AND_QUAD_RETRY (volatile void *address, _ _int64 expression, int retry, int
*status);

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

Predefined Macros and Built-In Functions 6–23

6.2.1.15 Atomic OR Longword (_ _ATOMIC_OR_LONG)
The _ _ATOMIC_OR_LONG function performs a bit-wise or arithmetic OR of
the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the longword before the operation was performed.

This function has the following formats:

int _ _ATOMIC_OR_LONG (volatile void *address, int expression);

int _ _ATOMIC_OR_LONG_RETRY (volatile void *address, int expression, int retry, int *status);

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6.2.1.16 Atomic OR Quadword (_ _ATOMIC_OR_QUAD)
The _ _ATOMIC_OR_QUAD function performs a bit-wise or arithmetic OR of
the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the quadword before the operation was performed.

6–24 Predefined Macros and Built-In Functions

This function has the following formats:

_ _int64 _ _ATOMIC_OR_QUAD (volatile void *address, _ _int64 expression);

_ _int64 _ _ATOMIC_OR_QUAD_RETRY (volatile void *address, _ _int64 expression, int retry, int
*status);

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6.2.1.17 Atomic Increment Longword (_ _ATOMIC_INCREMENT_LONG)
The _ _ATOMIC_INCREMENT_LONG function increments by 1 the aligned
longword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the longword before the
operation was performed.

This function has the following formats:

int _ _ATOMIC_INCREMENT_LONG (volatile void *address);

int _ _ATOMIC_INCREMENT_LONG_RETRY (volatile void *address, int retry, int *status);

Predefined Macros and Built-In Functions 6–25

address
The longword-aligned address of the data segment.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6.2.1.18 Atomic Increment Quadword (_ _ATOMIC_INCREMENT_QUAD)
The _ _ATOMIC_INCREMENT_QUAD function increments by 1 the aligned
quadword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the quadword before the
operation was performed.

This function has the following formats:

_ _int64 _ _ATOMIC_INCREMENT_QUAD (volatile void *address);

_ _int64 _ _ATOMIC_INCREMENT_QUAD (volatile void *address, int retry, int *status);

address
The quadword-aligned address of the data segment.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6–26 Predefined Macros and Built-In Functions

6.2.1.19 Atomic Decrement Longword (_ _ATOMIC_DECREMENT_LONG)
The _ _ATOMIC_DECREMENT_LONG function decrements by 1 the aligned
longword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the longword before the
operation was performed.

This function has the following formats:

int _ _ATOMIC_DECREMENT_LONG (volatile void *address);

int _ _ATOMIC_DECREMENT_LONG (volatile void *address, int retry, int *status);

address
The longword-aligned address of the data segment.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6.2.1.20 Atomic Decrement Quadword (_ _ATOMIC_DECREMENT_QUAD)
The _ _ATOMIC_DECREMENT_QUAD function decrements by 1 the aligned
quadword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the quadword before the
operation was performed.

This function has the following formats:

_ _int64 _ _ATOMIC_DECREMENT_QUAD (volatile void *address);

_ _int64 _ _ATOMIC_DECREMENT_QUAD (volatile void *address, int retry, int *status);

address
The quadword-aligned address of the data segment.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

Predefined Macros and Built-In Functions 6–27

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6.2.1.21 Atomic Exchange Longword (_ _ATOMIC_EXCH_LONG)
The _ _ATOMIC_EXCH_LONG function stores the value of the specified
expression into the aligned longword pointed to by the address parameter
within a load-locked/store-conditional code sequence and returns the value of
the longword before the operation was performed.

This function has the following formats:

int _ _ATOMIC_EXCH_LONG (volatile void *address, int expression);

int _ _ATOMIC_EXCH_LONG_RETRY (volatile void *address, int expression, int retry, int *status);

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6–28 Predefined Macros and Built-In Functions

6.2.1.22 Atomic Exchange Quadword (_ _ATOMIC_EXCH_QUAD)
The _ _ATOMIC_EXCH_QUAD function stores the value of the specified
expression into the aligned quadword pointed to by the address parameter
within a load-locked/store-conditional code sequence and returns the value of
the quadword before the operation was performed.

This function has the following formats:

_ _int64 _ _ATOMIC_EXCH_QUAD (volatile void *address, _ _int64 expression);

_ _int64 _ _ATOMIC_EXCH_QUAD_RETRY (volatile void *address, _ _int64 expression, int retry, int
*status);

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6.2.1.23 Compare Store Longword (_ _CMP_STORE_LONG)
The _ _CMP_STORE_LONG function has the following format:

int _ _CMP_STORE_LONG (volatile void *source, int old_value, int new_value, volatile void *dest);

This function performs a conditional atomic compare and update operation
involving one or two longwords in the same lock region. The value pointed
to by source is compared with the longword old_value. If they are equal, the
longword new_value is conditionally stored into the value pointed to by dest.

Predefined Macros and Built-In Functions 6–29

The store will not complete if the compare yields unequal values or if there is
an intervening store to the lock region involved. To be in the same lock region,
source and dest must point to aligned longwords in the same naturally aligned
16-byte region.

The function returns 0 if the store does not complete, and returns 1 if the store
does complete.

6.2.1.24 Compare Store Quadword (_ _CMP_STORE_QUAD)
The _ _CMP_STORE_QUAD function has the following format:

int _ _CMP_STORE_QUAD (volatile void *source, int64 old_value, int64 new_value,
volatile void *dest);

This function performs a conditional atomic compare and update operation
involving one or two quadwords in the same lock region. The value pointed
to by source is compared with the quadword old_value. If they are equal, the
quadword new_value is conditionally stored into the value pointed to by dest.

The store will not complete if the compare yields unequal values or if there is
an intervening store to the lock region involved. To be in the same lock region,
source and dest must point to aligned quadwords in the same naturally aligned
16-byte region.

The function returns 0 if the store does not complete, and returns 1 if the store
does complete.

6.2.1.25 Convert G_Floating to F_Floating Chopped (_ _CVTGF_C)
The _ _CVTGF_C function converts a double-precision, VAX G_floating-point
number to a single-precision, VAX F_floating-point number. This conversion
chops to single-precision; then the 8-bit exponent range is checked for overflow
or underflow.

This function has the following format:

float _ _CVTGF_C (double operand);

operand
A double-precision, VAX floating-point number.

6.2.1.26 Convert G_Floating to Quadword (_ _CVTGQ)
The _ _CVTGQ function rounds a double-precision, VAX floating-point number
to a 64-bit integer value and returns the result.

This function has the following format:

int64 _ _CVTGQ (double operand);

6–30 Predefined Macros and Built-In Functions

operand
A double-precision, VAX floating-point number.

6.2.1.27 Convert IEEE T_Floating to IEEE S_Floating Chopped (_ _CVTTS_C)
The _ _CVTTS_C function converts a double-precision, IEEE T_floating-point
number to a single-precision, IEEE S_floating-point number. This conversion
chops to single-precision; then the 8-bit exponent range is checked for overflow
or underflow.

This function has the following format:

float _ _CVTTS_C (double operand);

operand
A double-precision, IEEE floating-point number.

6.2.1.28 Convert IEEE T_Floating to Quadword (_ _CVTTQ)
The _ _CVTTQ function rounds a double-precision, IEEE T_floating-point
number to a 64-bit integer value and returns the result.

This function has the following format:

int64 _ _CVTTQ (double operand);

operand
A double-precision, IEEE T_floating-point number.

6.2.1.29 Convert X_Floating to Quadword (_ _CVTXQ)
The _ _CVTXQ function converts an X_floating-point number to a 64-bit integer
value and returns the result.

This function has the following format:

int64 _ _CVTXQ (long double operand);

operand
An X_floating-point number.

6.2.1.30 Convert X_Floating to IEEE T_Floating Chopped (_ _CVTXT_C)
The _ _CVTXT_C function converts an X_floating-point number to an IEEE
T_floating-point number and returns the result.

This function has the following format:

double _ _CVTXT_C (long double operand);

Predefined Macros and Built-In Functions 6–31

operand
An X_floating-point number.

6.2.1.31 Copy Sign Built-in Functions
Built-in functions are provided to copy selected portions of single- and double-
precision, floating-point numbers.

These built-in functions have the following format:

float _ _CPYSF (float operand1, float operand2);
double _ _CPYS (double operand1, double operand2);

float _ _CPYSNF (float operand1, float operand2);
double _ _CPYSN (double operand1, double operand2);

float _ _CPYSEF (float operand1, float operand2);
double _ _CPYSE (double operand1, double operand2);

The copy sign built-ins (_ _CPYSF and _ _CPYS) fetch the sign bit in operand1,
concatenate it with the exponent and fraction bits from operand2, and return
the result.

The copy sign negate built-ins (_ _CPYSNF and _ _CPYSN) fetch the sign bit
in operand1, complement it, concatenate it with the exponent and fraction bits
from operand2, and return the result.

The copy sign exponent built-ins (_ _CPYSEF and _ _CPYSE) fetch the sign
and exponent bits from operand1, concatenate them with the fraction bits from
operand2, and return the result.

6.2.1.32 Cosine (_ _COS)
The _ _COS built-in function is functionally equivalent to its counterpart, cos,
in the standard header file <math.h>.

Its format is also the same:

#include <math.h>
double _ _COS (double x);

x
A radian value.

This built-in offers performance improvements because there is less call
overhead associated with its use.

If you include <math.h>, the built-in is automatically used for all occurrences of
cos. To disable the built-in, use #undef cos.

6–32 Predefined Macros and Built-In Functions

6.2.1.33 Double-Precision, Floating-Point Arithmetic Built-in Functions
The following built-in functions provide double-precision, floating-point chopped
arithmetic:

_ _ADDG_C _ _ADDT_C _ _SUBG_C _ _SUBT_C

_ _MULG_C _ _MULT_C _ _DIVG_C _ _DIVT_C

They have the following format:

double _ _op{G,T}_C (double operand1, double operand2);

Where op is one of ADD, SUB, MUL, DIV, and {G,T} represents VAX or IEEE
floating-point arithmetic, respectively.

The result of the arithmetic operation is returned.

6.2.1.34 Floating-Point Absolute Value (_ _FABS)
The _ _FABS built-in function is functionally equivalent to its counterpart,
fabs, in the standard header file <math.h>.

Its format is also the same:

#include <math.h>
double _ _FABS (double x);

x
A floating-point number.

This built-in offers performance improvements because there is no call
overhead associated with its use.

If you include <math.h>, the built-in is automatically used for all occurrences of
fab. To disable the built-in, use #undef fab.

6.2.1.35 _leadz
The _leadz built-in function returns the number of leading zeroes (starting
at the most significant bit position) in its argument. For example, _leadz(1)
returns 63, and _leadz(0) returns 64.

This function has the following format:

int64 _leadz (unsigned int64);

Predefined Macros and Built-In Functions 6–33

6.2.1.36 Long Double-Precision, Floating-Point Arithmetic Built-in Functions
The following built-in functions provide long double-precision, floating-point
chopped arithmetic:

_ _ADDX_C _ _SUBX_C

_ _MULX_C _ _DIVX_C

They have the following format:

long double _ _opX_C (long double operand1, long double operand2);

Where op is one of ADD, SUB, MUL, DIV.

The result of the arithmetic operation is returned.

6.2.1.37 Longword Absolute Value (_ _LABS)
The _ _LABS built-in is functionally equivalent to its counterpart, labs, in the
standard header file <stdlib.h>.

Its format is also the same:

#include <stdlib.h>
long int _ _LABS (long int x);

x
An integer.

This built-in offers performance improvements because there is less call
overhead associated with its use.

If you include <stdlib.h>, the built-in is automatically used for all occurrences
of labs. To disable the built-in, use #undef labs.

6.2.1.38 Lock and Unlock Longword (_ _LOCK_LONG, _ _UNLOCK_LONG)
The _ _LOCK_LONG and _ _UNLOCK_LONG functions provide a binary
spinlock capability based on the low-order bit of a longword.

The _ _LOCK_LONG function executes in a loop waiting for the bit to be
cleared and then sets it within a load-locked/store-conditional sequence; it then
issues a memory barrier. The _ _UNLOCK_LONG function issues a memory
barrier and then zeroes the longword.

The _ _LOCK_LONG_RETRY function returns 1 if the lock was acquired in the
specified number of retries and 0 if the lock was not acquired.

6–34 Predefined Macros and Built-In Functions

The _ _LOCK_LONG function has the following formats:

int _ _LOCK_LONG (volatile void *address);

int _ _LOCK_LONG_RETRY (volatile void *address, int retry);

The _ _UNLOCK_LONG function has the following format:

int _ _UNLOCK_LONG (volatile void *address);

address
The quadword-aligned address of the longword used for the lock.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

6.2.1.39 Memory Barrier (_ _MB)
The _ _MB function directs the compiler to generate a memory barrier
instruction.

This function has the following format:

void _ _MB (void);

6.2.1.40 Memory Copy and Set Functions (_ _MEMCPY, _ _MEMMOVE, _ _MEMSET)
The _ _MEMCPY, _ _MEMMOVE, and _ _MEMSET built-ins are functionally
equivalent to their run-time routine counterparts in the standard header file
<string.h>.

Their format is also the same:

#include <string.h>
void *_ _MEMCPY (void *s1, const void *s2, size_t size);
void *_ _MEMMOVE (void *s1, const void *s2, size_t size);
void *_ _MEMSET (void *s, int value, size_t size);

These built-ins offer performance improvements because there is less call
overhead associated with their use.

If you include <string.h>, the built-ins are automatically used for all
occurrences of memcpy, memmove, and memset. To disable the built-ins, use
#undef memcpy, #undef memmove, and #undef memset.

Predefined Macros and Built-In Functions 6–35

6.2.1.41 OR Atomic Longword (_ _OR_ATOMIC_LONG)
The _ _OR_ATOMIC_LONG function performs a bit-wise or arithmetic OR of
the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int _ _OR_ATOMIC_LONG (void *address, int expression, ...);

address
The address of the aligned longword.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It can either return a value of 1 upon successful
completion, or it can hang in an endless failure loop.

6.2.1.42 OR Atomic Quadword (_ _OR_ATOMIC_QUAD)
The _ _OR_ATOMIC_QUAD function performs a bit-wise or arithmetic OR of
the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int _ _OR_ATOMIC_QUAD (void *address, int expression, ...);

address
The address of the aligned quadword.

expression
An integer expression.

6–36 Predefined Macros and Built-In Functions

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It can either return a value of 1 upon successful
completion, or it can hang in an endless failure loop.

6.2.1.43 Privileged Architecture Library Code Instructions
The following sections describe the Privileged Architecture Library Code
(PALcode) instructions that are available as built-in functions.

6.2.1.44 _ _PAL_BPT
This function is provided for program debugging. It switches the processor to
kernel mode and pushes registers R2 through R7, the updated PC, and PS onto
the kernel stack. It then dispatches to the address in the breakpoint vector,
which is stored in a control block.

This function has the following format:

void _ _PAL_BPT (void);

6.2.1.45 _ _PAL_BUGCHK
This function is provided for error reporting. It switches the processor to kernel
mode and pushes registers R2 through R7, the updated PC, and PS onto the
kernel stack. It then dispatches to the address in the bugcheck vector, which is
stored in a control block.

This function has the following format:

void _ _PAL_BUGCHK (unsigned _ _int64 code);

Predefined Macros and Built-In Functions 6–37

6.2.1.46 _ _PAL_CFLUSH
This function flushes at least the entire physical page specified by the page
frame number value from any data caches associated with the current
processor. After a CFLUSH is done, the first subsequent load on the same
processor to an arbitrary address in the target page is fetched from physical
memory.

This function has the following format:

void _ _PAL_CFLUSH (int value);

value
A page frame number.

6.2.1.47 _ _PAL_CHME
This function allows a process to change its mode to Executive in a controlled
manner. The change in mode also results in a change of stack pointers: the
old pointer is saved and the new pointer is loaded. Registers R2 through R7,
PS, and PC are pushed onto the selected stack. The saved PC addresses the
instruction following the CHME instruction.

This function has the following format:

void _ _PAL_CHME (void);

6.2.1.48 _ _PAL_CHMK
This function allows a process to change its mode to kernel in a controlled
manner. The change in mode also results in a change of stack pointers: the
old pointer is saved and the new pointer is loaded. Registers R2 through R7,
PS, and PC are pushed onto the kernel stack. The saved PC addresses the
instruction following the CHMK instruction.

This function has the following format:

void _ _PAL_CHMK (void);

6.2.1.49 _ _PAL_CHMS
This function allows a process to change its mode to Supervisor in a controlled
manner. The change in mode also results in a change of stack pointers: the
old pointer is saved and the new pointer is loaded. Registers R2 through R7,
PS, and PC are pushed onto the selected stack. The saved PC addresses the
instruction following the CHMS instruction.

This function has the following format:

void _ _PAL_CHMS (void);

6–38 Predefined Macros and Built-In Functions

6.2.1.50 _ _PAL_CHMU
This function allows a process to call a routine using the change mode
mechanism. Registers R2 through R7, PS, and PC are pushed onto the
current stack. The saved PC addresses the instruction following the CHMU
instruction.

This function has the following format:

void _ _PAL_CHMU (void);

6.2.1.51 _ _PAL_DRAINA
This function stalls instruction issuing until all prior instructions are
guaranteed to complete without incurring aborts.

This function has the following format:

void _ _PAL_DRAINA (void);

6.2.1.52 _ _PAL_GENTRAP
This function is used for reporting run-time software conditions.

This function has the following format:

void _ _PAL_GENTRAP (uint64 encoded_software_trap);

encoded_software_trap
The particular software condition that has occurred.

6.2.1.53 _ _PAL_HALT
This function halts the processor when executed by a process running in kernel
mode. This is a privileged function.

This function has the following format:

void _ _PAL_HALT (void);

6.2.1.54 _ _PAL_INSQHIL
This function inserts an entry at the front of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
header and queue entries. The pointers to head and new_entry must not be
equal.

This function has the following format:

int _ _PAL_INSQHIL (void *head, void *new_entry); /* At head, interlocked */

Predefined Macros and Built-In Functions 6–39

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
longword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

6.2.1.55 _ _PAL_INSQHILR
This function inserts an entry into the front of a longword queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system. This function must have write
access to the header and queue entries. The pointers to head and new_entry
must not be equal. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_INSQHILR (void *head, void *new_entry); /* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

6–40 Predefined Macros and Built-In Functions

6.2.1.56 _ _PAL_INSQHIQ
This function inserts an entry at the front of a quadword queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system. This function must have write
access to header and queue entries. The pointers to head and new_entry must
not be equal.

This function has the following format:

int _ _PAL_INSQHIQ (void *head, void *new_entry); /* At head, interlocked */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

6.2.1.57 _ _PAL_INSQHIQR
This function inserts an entry into the front of a quadword queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system. This function must have write
access to the header and queue entries. The pointers to head and new_entry
must not be equal. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_INSQHIQR (void *head, void *new_entry); /* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

Predefined Macros and Built-In Functions 6–41

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

6.2.1.58 _ _PAL_INSQTIL
This function inserts an entry at the end of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
header and queue entries. The pointers to head and new_entry must not be
equal.

This function has the following format:

int _ _PAL_INSQTIL (void *head, void *new_entry); /* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

6.2.1.59 _ _PAL_INSQTILR
This function inserts an entry at the end of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. The pointers to head and new_entry must not be
equal. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_INSQTILR (void *head, void *new_entry); /* At tail, interlocked resident */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

6–42 Predefined Macros and Built-In Functions

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

6.2.1.60 _ _PAL_INSQTIQ
This function inserts an entry at the end of a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
header and queue entries. The pointers to head and new_entry must not be
equal.

This function has the following format:

int _ _PAL_INSQTIQ (void *head, void *new_entry); /* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

6.2.1.61 _ _PAL_INSQTIQR
This function inserts an entry at the end of a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. The pointers to head and new_entry must not be
equal. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_INSQTIQR (void *head, void *new_entry); /* At tail, interlocked resident */

Predefined Macros and Built-In Functions 6–43

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

6.2.1.62 _ _PAL_INSQUEL
This function inserts a new entry after an existing entry into a longword
queue. This function must have write access to header and queue entries.

This function has the following format:

int _ _PAL_INSQUEL (void *predecessor, void *new_entry);

predecessor
A pointer to an existing entry in the queue.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

6.2.1.63 _ _PAL_INSQUEL_D
This function inserts a new entry after an existing entry into a longword queue
deferred. This function must have write access to header and queue entries.

This function has the following format:

int _ _PAL_INSQUEL_D (void **predecessor, void *new_entry); /* Deferred */

6–44 Predefined Macros and Built-In Functions

predecessor
A pointer to a pointer to the predecessor entry.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

6.2.1.64 _ _PAL_INSQUEQ
This function inserts a new entry after an existing entry into a quadword
queue. The entries must be octaword-aligned. This function must have write
access to header and queue entries.

This function has the following format:

int _ _PAL_INSQUEQ (void *predecessor, void *new_entry);

predecessor
A pointer to an existing entry in the queue.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

6.2.1.65 _ _PAL_INSQUEQ_D
This function inserts a new entry after an existing entry into a quadword
queue deferred. The entries must be octaword-aligned. This function must
have write access to header and queue entries.

This function has the following format:

int _ _PAL_INSQUEQ_D (void **predecessor, void *new_entry); /* Deferred */

predecessor
A pointer to a pointer to the predecessor entry.

new_entry
A pointer to the new entry to be inserted.

Predefined Macros and Built-In Functions 6–45

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

6.2.1.66 _ _PAL_LDQP
This function returns the quadword-aligned memory object specified by
address.

This function has the following format:

uint64 _ _PAL_LDQP (void *address);

address
A pointer to the quadword-aligned memory object to be returned.

If the object pointed to by address is not quadword-aligned, the result is
unpredictable.

6.2.1.67 _ _PAL_STQP
This function writes the quadword value to the memory location pointed to by
address.

This function has the following format:

void _ _PAL_STQP (void *address, uint64 value);

address
Memory location to be written to.

value
Quadword value to be stored.

If the location pointed to by address is not quadword-aligned, the result is
unpredictable.

6.2.1.68 _ _PAL_MFPR_XXXX
These privileged functions return the contents of a particular processor
register. The XXXX indicates the processor register to be read.

These functions have the following format:

unsigned int _ _PAL_MFPR_ASTEN (void); /* AST Enable */
unsigned int _ _PAL_MFPR_ASTSR (void); /* AST Summary Register */
void *_ _PAL_MFPR_ESP (void); /* Executive Stack Pointer */
int _ _PAL_MFPR_FEN (void); /* Floating-Point Enable */
int _ _PAL_MFPR_IPL (void); /* Interrupt Priority Level */
int _ _PAL_MFPR_MCES (void); /* Machine Check Error Summary */

6–46 Predefined Macros and Built-In Functions

void *_ _PAL_MFPR_PCBB (void); /* Privileged Context Block Base */
int64 _ _PAL_MFPR_PRBR (void); /* Processor Base Register */
int _ _PAL_MFPR_PTBR (void); /* Page Table Base Register */
void *_ _PAL_MFPR_SCBB (void); /* System Control Block Base */
unsigned int _ _PAL_MFPR_SISR (void); /* Software Interrupt Summary Register */
void *_ _PAL_MFPR_SSP (void); /* Supervisor Stack Pointer */
int64 _ _PAL_MFPR_TBCHK (void *address); /* Translation Buffer Check */
void *_ _PAL_MFPR_USP (void); /* User Stack Pointer */
void *_ _PAL_MFPR_VPTB (void); /* Virtual Page Table */
int64 _ _PAL_MFPR_WHAMI (void); /* Who Am I */

6.2.1.69 _ _PAL_MTPR_XXXX
These privileged functions load a value into one of the special processor
registers. The XXXX indicates the processor register to be loaded.

These functions have the following format:

void _ _PAL_MTPR_ASTEN (unsigned int mask); /* AST Enable */
void _ _PAL_MTPR_ASTSR (unsigned int mask); /* AST Summary Register */
void _ _PAL_MTPR_DATFX (int value); /* Data Alignment Trap Fixup */
void _ _PAL_MTPR_ESP (void *address); /* Executive Stack Pointer */
void _ _PAL_MTPR_FEN (int value); /* Floating-Point Enable */
void _ _PAL_MTPR_IPIR (int64 number); /* Interprocessor Interrupt Request */
int _ _PAL_MTPR_IPL (int value); /* Interrupt Priority Level */
void _ _PAL_MTPR_MCES (int value); /* Machine Check Error Summary */
void _ _PAL_MTPR_PRBR (int64 value); /* Processor Base Register */
void _ _PAL_MTPR_SCBB (void *address); /* System Control Block Base */
void _ _PAL_MTPR_SIRR (int level); /* Software Interrupt Request Register */
void _ _PAL_MTPR_SSP (int *address); /* Supervisor Stack Pointer */
void _ _PAL_MTPR_TBIA (void); /* User Stack Pointer */
void _ _PAL_MTPR_TBIAP (void); /* Translation Buffer Invalidate All Process */
void _ _PAL_MTPR_TBIS (void *address); /* Translation Buffer Invalidate Single */
void _ _PAL_MTPR_TBISD (void *address); /* Translation Buffer Invalidate Single Data */
void _ _PAL_MTPR_TBISI (void *address); /* Translation Buffer Invalidate Single Instruction */
void _ _PAL_MTPR_USP (void *address); /* User Stack Pointer */
void _ _PAL_MTPR_VPTB (void *address); /* Virtual Page Table */

6.2.1.70 _ _PAL_PROBER
This function checks the read accessibility of the first and last byte of the given
address and offset pair.

This function has the following format:

int _ _PAL_PROBER (const void *base_address, int offset, char mode);

Predefined Macros and Built-In Functions 6–47

base_address
The pointer to the memory segment to be tested for read access.

offset
The signed offset to the last byte in the memory segment.

mode
The processor mode used for checking access.

There are two possible return values:

• 0 if one or both bytes are not accessible

• 1 if both bytes are accessible

6.2.1.71 _ _PAL_PROBEW
This function checks the write accessibility of the first and last byte of the
given address and offset pair.

This function has the following format:

int _ _PAL_PROBEW (const void *base_address, int offset, char mode);

base_address
The pointer to the memory segment to be tested for write access.

offset
The signed offset to the last byte in the memory segment.

mode
The processor mode used for checking access.

There are two possible return values:

• 0 if one or both bytes are not accessible

• 1 if both bytes are accessible

6.2.1.72 _ _PAL_RD_PS
This function returns the Processor Status (PS).

This function has the following format:

uint64 _ _PAL_RD_PS (void);

6–48 Predefined Macros and Built-In Functions

6.2.1.73 _ _PAL_REMQHIL
This function removes the first entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries.

This function has the following format:

int _ _PAL_REMQHIL (void *head, void **removed_entry); /* At head, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

6.2.1.74 _ _PAL_REMQHILR
This function removes the first entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_REMQHILR (void *head, void **removed_entry); /* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

Predefined Macros and Built-In Functions 6–49

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

6.2.1.75 _ _PAL_REMQHIQ
This function removes the first entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries.

This function has the following format:

int _ _PAL_REMQHIQ (void *head, void **removed_entry); /* At head, interlocked */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

6.2.1.76 _ _PAL_REMQHIQR
This function removes the first entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_REMQHIQR (void *head, void **removed_entry); /* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

6–50 Predefined Macros and Built-In Functions

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

6.2.1.77 _ _PAL_REMQTIL
This function removes the last entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries.

This function has the following format:

int _ _PAL_REMQTIL (void *head, void **removed_entry); /* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

6.2.1.78 _ _PAL_REMQTILR
This function removes the last entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_REMQTILR (void *head, void **removed_entry); /* At tail, interlocked resident */

Predefined Macros and Built-In Functions 6–51

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

6.2.1.79 _ _PAL_REMQTIQ
This function removes the last entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries.

This function has the following format:

int _ _PAL_REMQTIQ (void *head, void **removed_entry); /* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

6–52 Predefined Macros and Built-In Functions

6.2.1.80 _ _PAL_REMQTIQR
This function removes the last entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_REMQTIQR (void *head, void **removed_entry); /* At tail, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

6.2.1.81 _ _PAL_REMQUEL
This function removes an entry from a longword queue. This function must
have write access to header and queue entries.

This function has the following format:

int _PAL_REMQUEL (void *entry, void **removed_entry);

entry
A pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

Predefined Macros and Built-In Functions 6–53

6.2.1.82 _ _PAL_REMQUEL_D
This function removes an entry from a longword queue deferred. This function
must have write access to header and queue entries.

This function has the following format:

int _ _PAL_REMQUEL_D (void **entry, void **removed_entry); /* Deferred */

entry
A pointer to a pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

6.2.1.83 _ _PAL_REMQUEQ
This function removes an entry from a quadword queue. This function must
have write access to header and queue entries.

This function has the following format:

int _ _PAL_REMQUEQ (void *entry, void **removed_entry);

entry
A pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

6–54 Predefined Macros and Built-In Functions

6.2.1.84 _ _PAL_REMQUEQ_D
This function removes an entry from a quadword queue deferred. This function
must have write access to header and queue entries.

This function has the following format:

int _ _PAL_REMQUEQ_D (void **entry, void **removed_entry); /* Deferred */

entry
A pointer to a pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

6.2.1.85 _ _PAL_SWPCTX
This function returns ownership of the data structure that contains the current
hardware privileged context (the HWPCB) to the operating system and passes
ownership of the new HWPCB to the processor.

This function has the following format:

void _ _PAL_SWPCTX (void *address);

address
A pointer to the new HWPCB.

6.2.1.86 _ _PAL_SWASTEN
This function swaps the previous state of the Asynchronous System Trap (AST)
enable bit for the new state. The new state is supplied in bit 0 of new_state_
mask. The previous state is returned, zero-extended.

A check is made to determine if an AST is pending. If the enabling conditions
are present for an AST at the completion of this instruction, the AST occurs
before the next instruction.

This function has the following format:

unsigned int _ _PAL_SWASTEN (int new_state_mask);

Predefined Macros and Built-In Functions 6–55

new_state_mask
An integer whose 0 bit is the new state of the AST enable bit.

6.2.1.87 _ _PAL_WR_PS_SW
This function writes the low-order three bits of mask into the Processor Status
software field (PS<SW>).

This function has the following format:

void _ _PAL_WR_PS_SW (int mask);

mask
An integer whose low-order three bits are written into PS<SW>.

6.2.1.88 _popcnt
The _popcnt built-in function returns the number of "1" bits (0 to 64) in its
argument. For example, _popcnt(12) returns 2.

This function has the following format:

int64 _popcnt (unsigned int64);

6.2.1.89 _poppar
The _poppar built-in function returns 1 if the number of "1" bits in its
argument is odd; otherwise it returns 0. For example, _poppar(12) returns
0.

This function has the following format:

int64 _poppar (unsigned int64);

6.2.1.90 Read Process Cycle Counter (_ _RPCC)
The _ _RPCC function reads the current process cycle counter.

This function has the following format:

uint64 _ _RPCC (void);

6.2.1.91 Sine (_ _SIN)
The _ _SIN built-in is functionally equivalent to its counterpart, sin, in the
standard header file <math.h>.

Its format is also the same:

#include <math.h>
double _ _SIN (double x);

6–56 Predefined Macros and Built-In Functions

x
A radian value.

This built-in offers performance improvements because there is less call
overhead associated with its use.

If you include <math.h>, the built-in is automatically used for all occurrences of
sin. To disable the built-in, use #undef sin.

6.2.1.92 Single-Precision, Floating-Point Arithmetic Built-in Functions
The following built-in functions provide single-precision, floating-point chopped
arithmetic:

_ _ADDF_C _ _ADDS_C _ _SUBF_C _ _SUBS_C

_ _MULF_C _ _MULS_C _ _DIVF_C _ _DIVS_C

They have the following format:

float _ _op{F,S}_C (float operand1, float operand2);

Where op is one of ADD, SUB, MUL, DIV, and {F,S} represents VAX or IEEE
floating-point arithmetic, respectively.

The result of the arithmetic operation is returned.

6.2.1.93 Test for Bit Clear then Clear Bit Interlocked
(_ _INTERLOCKED_TESTBITCC_QUAD)
The _ _INTERLOCKED_TESTBITCC_QUAD function performs the following
functions in interlocked fashion:

1. Returns the complement of the specified bit before being cleared.

2. Clears the bit.

This function has the following formats:

int _ _INTERLOCKED_TESTBITCC_QUAD (volatile void *address, int bit_position);

int _ _INTERLOCKED_TESTBITCC_QUAD_RETRY (volatile void *address, int bit_position, int retry,
int *status);

address
The quadword-aligned base address of the bit field.

bit_position
The position within the field of the bit that you want cleared, in the range of 0
to 63.

Predefined Macros and Built-In Functions 6–57

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6.2.1.94 Test for Bit Clear then Clear Bit Interlocked (_ _TESTBITCCI)
The _ _TESTBITCCI function performs the following operations in interlocked
fashion:

• Returns the complement of the specified bit before being cleared

• Clears the bit

This function has the following format:

int _ _TESTBITCCI (void *address, int position, ...);

address
The base address of the field.

position
The position within the field of the bit that you want cleared.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even if
the count argument is 0).

6.2.1.95 Test for Bit Set Then Set Bit Interlocked
(_ _INTERLOCKED_TESTBITSS_QUAD)
The _ _INTERLOCKED_TESTBITSS_QUAD function performs the following
functions in interlocked fashion:

1. Returns the value of the specified bit before being set.

2. Sets the bit.

This function has the following formats:

int _ _INTERLOCKED_TESTBITSS_QUAD (volatile void *address, int bit_position);

int _ _INTERLOCKED_TESTBITSS_QUAD_RETRY (volatile void *address, int expression, int retry,
int *status);

6–58 Predefined Macros and Built-In Functions

address
The quadword-aligned base address of the bit field.

bit_position
The position within the field of the bit that you want cleared, in the range of 0
to 63.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6.2.1.96 Test for Bit Set then Set Bit Interlocked (_ _TESTBITSSI)
The _ _TESTBITSSI function performs the following operations in interlocked
fashion:

• Returns the value of the specified bit before being set

• Sets the bit

This function has the following format:

int _ _TESTBITSSI (void *address, int position, ...);

address
The base address of the field.

position
The position within the field of the bit that you want set.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even if
the count argument is 0).

Predefined Macros and Built-In Functions 6–59

6.2.1.97 _trailz
The _trailz built-in function returns the number of trailing zeros (counting
after the least significant set bit to the least significant bit position) in its
argument. For example, _trailz(2) returns 1, and _trailz(0) returns 64.

This function has the following format:

int64 _trailz (unsigned int64);

6.2.1.98 Trap Barrier Instruction (_ _TRAPB)
The _ _TRAPB function allows software to guarantee that, in a pipeline
implementation, all previous arithmetic instructions will be completed without
incurring any arithmetic traps before any instructions after the TRAPB
instruction are issued.

This function has the following format:

void _ _TRAPB (void);

6.2.1.99 Unsigned Quadword Multiply High (_ _UMULH)
The _ _UMULH function performs a quadword multiply high instruction.

This function has the following format:

uint64 _ _UMULH (uint64 operand1, uint64 operand2);

operand1
A 64-bit unsigned integer.

operand2
A 64-bit unsigned integer.

The two operands are multiplied as unsigned integers to produce a 128-bit
result. The high-order 64 bits are returned. Note that uint64 is a typedef for
the Alpha data type unsigned _ _int64.

6.2.2 Built-In Functions for I64 Systems (I64 only)

The HP C built-in functions available on OpenVMS Alpha systems are also
available on I64 systems, with some differences, as described in this section.
This section also describes built-in functions that are specific to I64 systems.

6–60 Predefined Macros and Built-In Functions

6.2.2.1 Builtin Differences on I64 Systems
The <builtins.h> header file contains comments noting which built-in
functions are not available or are not the preferred form for I64 systems.
The compiler issues diagnostics where using a different built-in function for
I64 systems would be preferable.

Note

The comments in <builtins.h> reflect only what is explicitly present
in that header file itself, and in the compiler implementation. You
should also consult the content and comments in <pal_builtins.h>
to determine more accurately what functionality is effectively
provided by including <builtins.h>. For example, if a program
explicitly declares one of the Alpha built-in functions and invokes
it without having included <builtins.h>, the compiler might issue
the BIFNOTAVAIL error message, regardless of whether or not the
function is available through a system service. If the compilation
does include <builtins.h>, and BIFNOTAVAIL is issued, then either
there is no support at all for the built-in function or a new version of
<pal_builtins.h> is needed.

Here is a summary of these differences on I64 systems:

• There is no support for the asm, fasm, and dasm intrinsics (declared in the
<c_asm.h> header file).

• The functionality provided by the special-case treatment of R26 in an Alpha
system asm, as in asm("MOV R26,R0"), is provided by a new built-in function
for I64 systems:

__int64 __RETURN_ADDRESS(void);

This built-in function produces the address to which the function containing
the built-in call will return (the value of R26 on entry to the function on
Alpha systems; the value of B0 on entry to the function on I64 systems).
This built-in function cannot be used within a function specified to use
nonstandard linkage.

• The only PAL function calls implemented as built-in functions within the
compiler are the 24 queue-manipulation builtins. The queue manipulation
builtins generate calls to new OpenVMS system services SYS$<name>,
where <name> is the name of the builtin with the leading underscores
removed.

Predefined Macros and Built-In Functions 6–61

Any other OpenVMS PAL calls are supported through macros defined in
the <pal_builtins.h> header file included in the <builtins.h> header
file. Typically, the macros in <pal_builtins.h> transform an invocation of
an Alpha system builtin into a call to a system service that performs the
equivalent function on an I64 system. Two notable exceptions are _ _PAL_
GENTRAP and _ _PAL_BUGCHK, which instead invoke the I64 specific
compiler builtin _ _break2.

• There is no support for the various floating-point built-in functions used by
the OpenVMS math library (for example, operations with chopped rounding
and conversions).

• For most built-in functions that take a retry count, the compiler issues
a warning message, evaluates the count for possible side effects, ignores
it, and then invokes the same function without a retry count. This is
necessary because the retry behavior allowed by Alpha load-locked/store-
conditional sequences does not exist on I64 systems. There are two
exceptions to this: _ _LOCK_LONG_RETRY and _ _ACQUIRE_SEM_
LONG_RETRY; in these cases, the retry behavior involves comparisons of
data values, not just load-locked/store-conditional.

• The _ _CMP_STORE_LONG and _ _CMP_STORE_QUAD built-in functions
produce either a warning or an error, depending on whether or not the
compiler can determine if the source and destination addresses are
identical. If the addresses are identical, the compiler treats the builtin
as the new _ _CMP_SWAP_ form and issues a warning. Otherwise it is an
error.

6.2.2.2 Built-in Functions Specific to I64 Systems
The <builtins.h> header file contains a section at the top conditionalized
to just _ _ia64 with the support for built-in functions specific to I64 systems.
This includes macro definitions for all of the registers that can be specified
to the _ _getReg, _ _setReg, _ _getIndReg, and _ _setIndReg built-in functions.
Parameters that are const-qualified require an argument that is a compile-
time constant.

The following sections describe the HP C built-in functions available on
OpenVMS I64 systems.

6–62 Predefined Macros and Built-In Functions

6.2.2.3 Get Hardware Register Value (_ _getReg)
The _ _getReg function gets the value from a hardware register based on
the register index specified. This function produces a corresponding mov = r
instruction.

This function has the following format:

unsigned _ _int64 _ _getReg (const int whichReg);

whichReg
The index of the hardware register from which the value is obtained. The
_ _getReg and _ _setReg functions can access the following registers:

Register Name whichReg
_IA64_REG_IP 1016
_IA64_REG_PSR 1019
_IA64_REG_PSR_L 1019

General Integer Registers:

Register Name whichReg
_IA64_REG_GP 1025
_IA64_REG_SP 1036
_IA64_REG_TP 1037

Application Registers:

Register Name whichReg
_IA64_REG_AR_KR0 3072
_IA64_REG_AR_KR1 3073

Predefined Macros and Built-In Functions 6–63

_IA64_REG_AR_KR2 3074
_IA64_REG_AR_KR3 3075
_IA64_REG_AR_KR4 3076
_IA64_REG_AR_KR5 3077
_IA64_REG_AR_KR6 3078
_IA64_REG_AR_KR7 3079
_IA64_REG_AR_RSC 3088
_IA64_REG_AR_BSP 3089
_IA64_REG_AR_BSPSTORE 3090
_IA64_REG_AR_RNAT 3091
_IA64_REG_AR_FCR 3093
_IA64_REG_AR_EFLAG 3096
_IA64_REG_AR_CSD 3097
_IA64_REG_AR_SSD 3098
_IA64_REG_AR_CFLAG 3099
_IA64_REG_AR_FSR 3100
_IA64_REG_AR_FIR 3101
_IA64_REG_AR_FDR 3102
_IA64_REG_AR_CCV 3104
_IA64_REG_AR_UNAT 3108
_IA64_REG_AR_FPSR 3112
_IA64_REG_AR_ITC 3116
_IA64_REG_AR_PFS 3136
_IA64_REG_AR_LC 3137
_IA64_REG_AR_EC 3138

Control Registers:

Register Name whichReg
_IA64_REG_CR_DCR 4096
_IA64_REG_CR_ITM 4097
_IA64_REG_CR_IVA 4098
_IA64_REG_CR_PTA 4104
_IA64_REG_CR_IPSR 4112
_IA64_REG_CR_ISR 4113
_IA64_REG_CR_IIP 4115
_IA64_REG_CR_IFA 4116
_IA64_REG_CR_ITIR 4117
_IA64_REG_CR_IIPA 4118
_IA64_REG_CR_IFS 4119
_IA64_REG_CR_IIM 4120
_IA64_REG_CR_IHA 4121
_IA64_REG_CR_LID 4160
_IA64_REG_CR_IVR 4161 *
_IA64_REG_CR_TPR 4162
_IA64_REG_CR_EOI 4163
_IA64_REG_CR_IRR0 4164 *
_IA64_REG_CR_IRR1 4165 *
_IA64_REG_CR_IRR2 4166 *
_IA64_REG_CR_IRR3 4167 *
_IA64_REG_CR_ITV 4168

6–64 Predefined Macros and Built-In Functions

_IA64_REG_CR_PMV 4169
_IA64_REG_CR_CMCV 4170
_IA64_REG_CR_LRR0 4176
_IA64_REG_CR_LRR1 4177

* getReg only

6.2.2.4 Set Hardware Register Value (_ _setReg)
The _ _setReg function sets the value for a hardware register based on the
register index specified. This function produces a corresponding mov = r
instruction.

This function has the following format:

void _ _setReg (const int whichReg, unsigned _ _int64 value);

whichReg
The index of the hardware register whose value is being set. See the _ _getReg
functions for the list of registers that can be accessed.

value
The value to which the register is set.

6.2.2.5 Get Index Register Value (_ _getIndReg)
The _ _getIndReg function returns the value of an indexed register. The
function accesses a register (index) in a register file (whichIndReg) of 64-bit
registers.

This function has the following format:

unsigned _ _int64 _ _getIndReg (const int whichIndReg, _ _int64 index);

whichIndReg
The register file.

index
The index in the register file of the hardware register whose value is being
requested. See the _ _getReg functions for the list of registers that can be
accessed.

Indirect Registers for getIndReg and setIndReg:

Predefined Macros and Built-In Functions 6–65

Register Name whichReg

_IA64_REG_INDR_CPUID 9000 *
_IA64_REG_INDR_DBR 9001
_IA64_REG_INDR_IBR 9002
_IA64_REG_INDR_PKR 9003
_IA64_REG_INDR_PMC 9004
_IA64_REG_INDR_PMD 9005
_IA64_REG_INDR_RR 9006
_IA64_REG_INDR_RESERVED 9007

* getIndReg only

6.2.2.6 Set Index Register Value (_ _setIndReg)
The _ _setIndReg function copies a value into an indexed register. The function
accesses a register (index) in a register file (whichIndReg) of 64-bit registers.

This function has the following format:

void _ _setIndReg (const int whichIndReg, _ _int64 index, unsigned _ _int64 value);

whichIndReg
The register file.

index
The index in the register file of the hardware register to be set. See the
_ _getIndReg function for the list of registers that can be accessed.

value
The value to which the register is set.

6.2.2.7 Generate Break Instruction (_ _break)
The _ _break function generates a break instruction with an immediate.

This function has the following format:

void _ _break (const int _ _break_arg);

_ _break_arg
An immediate value for the _ _break instruction to use.

6.2.2.8 Serialize Data (_ _dsrlz)
The _ _dsrlz function serializes data. Maps to the srlz.d instruction.

This function has the following format:

void _ _dsrlz (void);

6–66 Predefined Macros and Built-In Functions

6.2.2.9 Flush Cache Instruction (_ _fc)
The _ _fc function flushes a cache line associated with the address given by the
argument. Maps to the fcr instruction.

This function has the following format:

void _ _fc (_ _int64 _ _address);

_ _address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.10 Flush Write Buffers (_ _fwb)
The _ _fwb function flushes the write buffers. Maps to the fwb instruction.

This function has the following format:

void _ _fwb (void);

6.2.2.11 Invalidate ALAT (_ _invalat)
The _ _invalat function invalidates ALAT. Maps to the invala instruction.

This function has the following format:

void _ _invalat (void);

6.2.2.12 Invalidate ALAT (_ _invala)
The _ _invala function is the same as the _ _invalat function.

6.2.2.13 Execute Serialize (_ _isrlz)
The _ _isrlz function executes the serialize instruction. Maps to the srlz.i
instruction.

This function has the following format:

void _ _isrlz (void);

6.2.2.14 Insert Data Address Translation Cache (_ _itcd)
The _ _itcd function inserts an entry into the data translation cache. Maps to
the itc.d instruction.

This function has the following format:

void _ _itcd (_ _int64 pa);

Predefined Macros and Built-In Functions 6–67

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.15 Insert Instruction Address Translation Cache (_ _itci)
The _ _itci function inserts an entry into the instruction translation cache.
Maps to the itc.i instruction.

This function has the following format:

void _ _itci (_ _int64 pa);

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.16 Insert Data Translation Register (_ _itrd)
The _ _itrd function maps to the itr.d instruction.

This function has the following format:

void _ _itrd (_ _int64 whichTransReg, _ _int64 pa);

whichTransReg
The data translation register to be used by the itr.d instruction.

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.17 Insert Instruction Translation Register (_ _itri)
The _ _itri function maps to the itr.i instruction.

This function has the following format:

void _ _itri (_ _int64 whichTransReg, _ _int64 pa);

whichTransReg
The data translation register to be used by the itr.i instruction.

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6–68 Predefined Macros and Built-In Functions

6.2.2.18 Purge Translation Cache Entry (_ _ptce)
The _ _ptce function maps to the ptc.e instruction.

This function has the following format:

void _ _ptce (_ _int64 va);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.19 Purge Global Translation Cache (_ _ptcg)
The _ _ptcg function purges the global translation cache. Maps to the ptc.g r,r
instruction.

This function has the following format:

void _ _ptcg (_ _int64 va, _ _int64 pagesz);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

6.2.2.20 Purge Local Translation Cache (_ _ptcl)
The _ _ptcl function purges the local translation cache. Maps to the ptc.l r,r
instruction.

This function has the following format:

void _ _ptcl (_ _int64 va, _ _int64 pagesz);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

6.2.2.21 Purge Global Translation Cache and ALAT (_ _ptcga)
The _ _ptcga function purges the global translation cache and ALAT. Maps to
the ptc.ga r,r instruction.

This function has the following format:

void _ _ptcga (_ _int64 va, _ _int64 pagesz);

Predefined Macros and Built-In Functions 6–69

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

6.2.2.22 Purge Data Translation Register (_ _ptrd)
The _ _ptrd function purges the data translation register. Maps to the ptr.d r,r
instruction.

This function has the following format:

void _ _ptrd (_ _int64 va, _ _int64 pagesz);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

6.2.2.23 Purge Instruction Translation Register (_ _ptri)
The _ _ptri function purges the instruction translation register. Maps to the
ptr.i r,r instruction.

This function has the following format:

void _ _ptri (_ _int64 va, _ _int64 pagesz);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

6.2.2.24 Reset System Mask (_ _rsm)
The _ _rsm function resets the system mask bits of the PSR. Maps to the rsm
imm24 instruction.

This function has the following format:

void _ _rsm (int mask);

6–70 Predefined Macros and Built-In Functions

mask
An integer value inserted into the instruction as a 24-bit immediate value.

6.2.2.25 Reset User Mask (_ _rum)
The _ _rum function resets the user mask.

This function has the following format:

void _ _rum (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

6.2.2.26 Set System Mask (_ _ssm)
The _ _ssm function sets the system mask.

This function has the following format:

void _ _ssm (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

6.2.2.27 Set User Mask (_ _sum)
The _ _sum function sets the user mask bits of the PSR. Maps to the sum
imm24 instruction.

This function has the following format:

void _ _sum (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

6.2.2.28 Enable Memory Synchronization (_ _synci)
The _ _synci function enables memory synchronization. Maps to the sync.i
instruction.

This function has the following format:

void _ _synci (void);

6.2.2.29 Translation Hashed Entry Address (_ _thash)
The _ _thash function generates a translation hash entry address. Maps to the
thash r = r instruction.

This function has the following format:

void _ _thash(_ _int64 _ _address);

Predefined Macros and Built-In Functions 6–71

_ _address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.30 Translation Hashed Entry Tag (_ _ttag)
The _ _ttag function generates a translation hash entry tag. Maps to the ttag
r=r instruction.

This function has the following format:

void _ _ttag(_ _int64 _ _address);

_ _address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.31 Atomic Compare and Exchange (_InterlockedCompareExchange_acq)
The _InterlockedCompareExchange_acq function atomically compares and
exchanges the value specified by the first argument (a 64-bit pointer). This
function maps to the cmpxchg4.acq instruction with appropriate setup.

This function has the following format:

unsigned _ _int64 _InterlockedCompareExchange_acq (volatile unsigned int *Destination,
unsigned _ _int64 Newval, unsigned _ _int64 Comparand);

The value at *Destination is compared with the value specified by Comparand.
If they are equal, Newval is written to *Destination, and Oldval is returned.
The exchange will have taken place if the value returned is equal to the
Comparand. The following algorithm is used:

ar.ccv = Comparand;
Oldval = *Destination; //Atomic
if (ar.ccv == *Destination) //Atomic

*Destination = Newval; //Atomic
return Oldval;

Those parts of the algorithm that are marked "Atomic" are performed
atomically by the cmpxchg4.acq instruction. This instruction has acquire
ordering semantics; that is, the memory read/write is made visible prior to
all subsequent data memory accesses of the Destination by other processors.

Destination
The value to be compared with Comparand and, if equal, replaced with the
value of Newval.

Newval
The new value to replace the value in Destination.

6–72 Predefined Macros and Built-In Functions

Comparand
The value with which to compare Destination.

6.2.2.32 Atomic Compare and Exchange (_InterlockedCompareExchange64_acq)
The _InterlockedCompareExchange64_acq function is the same as the _
InterlockedCompareExchange_acq function, except that those parts of the
algorithm that are marked "Atomic" are performed by the cmpxchg8.acq
instruction.

This function has the following format:

unsigned _ _int64 _InterlockedCompareExchange64_acq (volatile unsigned _ _int64 *Destination,
unsigned _ _int64 Newval, unsigned _ _int64 Comparand);

6.2.2.33 Atomic Compare and Exchange (_InterlockedCompareExchange_rel)
This function is the same as the _InterlockedCompareExchange_acq function
except that those parts of the algorithm that are marked "Atomic" are
performed by the cmpxchg4.rel instruction with release ordering semantics;
that is, the memory read/write is made visible after all previous memory
accesses of the Destination by other processors.

This function has the following format:

unsigned _ _int64 _InterlockedCompareExchange_rel (volatile unsigned int *Destination,
unsigned _ _int64 Newval, unsigned _ _int64 Comparand);

6.2.2.34 Atomic Compare and Exchange (_InterlockedCompareExchange64_rel)
This function is the same as the _InterlockedCompareExchange_rel function,
except that those parts of the algorithm that are marked "Atomic" are
performed by the cmpxchg8.rel instruction.

This function has the following format:

unsigned _ _int64 _InterlockedCompareExchange64_rel (volatile unsigned _ _int64 *Destination,
unsigned _ _int64 Newval, unsigned _ _int64 Comparand);

6.2.2.35 Conditional Atomic Compare and Exchange Longword
(_ _CMP_SWAP_LONG)
The _ _CMP_SWAP_LONG function performs a conditional atomic compare and
exchange operation on a longword. The longword pointed to by source is read
and compared with the longword old_value. If they are equal, the longword
new_value is written into the longword pointed to by source. The read and
write is performed atomically, with no intervening access to the same memory
region.

The function returns 1 if the write occurs, and 0 otherwise.

Predefined Macros and Built-In Functions 6–73

This function has the following format:

int _ _CMP_SWAP_LONG (volatile void *source, int old_value, int new_value);

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

6.2.2.36 Conditional Atomic Compare and Exchange Quadword
(_ _CMP_SWAP_QUAD)
The _ _CMP_SWAP_QUAD function performs a conditional atomic compare and
exchange operation on a quadword. The quadword pointed to by source is read
and compared with the quadword old_value. If they are equal, the quadword
new_value is written into the quadword pointed to by source. The read and
write is performed atomically, with no intervening access to the same memory
region.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_QUAD (volatile void *source, int old_value, int new_value);

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written to source if source and old_value are equal.

6.2.2.37 Conditional Atomic Compare and Exchange Longword with Acquire
Semantics (_ _CMP_SWAP_LONG_ACQ)
The _ _CMP_SWAP_LONG_ACQ function performs a conditional atomic
compare and exchange operation with acquire semantics on a longword. The
longword pointed to by source is read and compared with the longword old_
value. If they are equal, the longword new_value is written into the longword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

6–74 Predefined Macros and Built-In Functions

Acquire memory ordering guarantees that the memory read/write is made
visible before all subsequent data accesses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_LONG_ACQ (volatile void *source, int old_value, int new_value);

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

6.2.2.38 Conditional Atomic Compare and Exchange Quadword with Acquire
Semantics (_ _CMP_SWAP_QUAD_ACQ)
The _ _CMP_SWAP_QUAD_ACQ function performs a conditional atomic
compare and exchange operation with acquire semantics on a quadword.
The quadword pointed to by source is read and compared with the quadword
old_value. If they are equal, the quadword new_value is written into the
quadword pointed to by source. The read and write is performed atomically,
with no intervening access to the same memory region.

Acquire memory ordering guarantees that the memory read/write is made
visible before all subsequent memory data accesses to the same memory
location by other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_QUAD_ACQ (volatile void *source, int old_value, int new_value);

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written into source if source and old_value are equal.

Predefined Macros and Built-In Functions 6–75

6.2.2.39 Conditional Atomic Compare and Exchange Longword with Release
Semantics (_ _CMP_SWAP_LONG_REL)
The _ _CMP_SWAP_LONG_REL function performs a conditional atomic
compare and exchange operation with release semantics on a longword. The
longword pointed to by source is read and compared with the longword old_
value. If they are equal, the longword new_value is written into the longword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

Release memory ordering guarantees that the memory read/write is made
visible after all previous data memory acceses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_LONG_REL (volatile void *source, int old_value, int new_value);

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

6.2.2.40 Conditional Atomic Compare and Exchange Quadword with Release
Semantics (_ _CMP_SWAP_QUAD_REL)
The _ _CMP_SWAP_QUAD_REL function performs a conditional atomic
compare and exchange operation with release semantics on a quadword. The
quadword pointed to by source is read and compared with the quadword old_
value. If they are equal, the quadword new_value is written into the quadword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

Release memory ordering guarantees that the memory read/write is made
visible after all previous data memory acceses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_QUAD_REL (volatile void *source, int old_value, int new_value);

6–76 Predefined Macros and Built-In Functions

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written into source if source and old_value are equal.

6.2.2.41 Return Address (_ _RETURN_ADDRESS)
The _ _RETURN_ADDRESS function produces the address to which the
function containing the built-in call will return as a 64-bit integer (on Alpha
systems, the value of R26 on entry to the function; on I64 systems, the value of
B0 on entry to the function).

This built-in function cannot be used within a function specified to use
nonstandard linkage.

This function has the following format:

_ _int64 _ _RETURN_ADDRESS (void);

6.2.2.42 Implement Alpha _ _PAL_GENTRAP and _ _PAL_BUGCHK Builtins
(_ _break2)
The _ _break2 function is used to implement the Alpha _ _PAL_GENTRAP and
_ _PAL_BUGCHK built-in functions on OpenVMS I64 systems.

The _ _break2 function is equivalent to the _ _break function with the second
parameter passed in general register 17:

R17 = ____R17_value; ____break (____break_code);

This function has the following format:

void _ _break2 (_ _Integer_Constant _ _break_code, unsigned _ _int64 _ _r17_value);

_ _breakcode
The particular software condition that has occurred.

_ _r17_value
The value of R17, a volatile general register reserved by the OpenVMS Itanium
calling standard for use by compiled code to communicate with specialized
compiler support routines that require out-of-band information passing.

Predefined Macros and Built-In Functions 6–77

6.2.2.43 Flush Register Stack (_ _flushrs)
The _ _flushrs function flushes the register stack.

This function has the following format:

void _ _flushrs (void);

6.2.2.44 Load Register Stack (_ _loadrs)
The _ _loadrs function loads the register stack.

This function has the following format:

void _ _loadrs (void);

6.2.2.45 Probe Read-Access Permission (_ _prober)
The _ _prober function determines whether read access to the virtual address
specified by _ _address bits {60:0} and the region register indexed by _ _address
bits {63:61} is permitted at the privilege level given by _ _mode bits {1:0}. It
returns 1 if the access is permitted, and 0 otherwise.

This function can probe only with equal or lower privilege levels. If the
specified privilege level is higher (lower number), then the probe is performed
with the current privilege level.

This function is the same as the Intel _ _probe_r function.

This function has the following format:

int _ _prober (_ _int64 _ _address, unsigned int _ _mode);

_ _address
Virtual address for which read-access permission is being checked.

_ _mode
Privilege level for which read-access permission is being checked.

6.2.2.46 Probe Write-Access Permission (_ _probew)
The _ _probew function determines whether write access to the virtual address
specified by _ _address bits {60:0} and the region register indexed by _ _address
bits {63:61}, is permitted at the privilege level given by _ _mode bits {1:0}. It
returns 1 if the access is permitted, and 0 otherwise.

This function can probe only with equal or lower privilege levels. If the
specified privilege level is higher (lower number), then the probe is performed
with the current privilege level.

This function is the same as the Intel _ _probe_w function.

6–78 Predefined Macros and Built-In Functions

This function has the following format:

int _ _probew (_ _int64 _ _address, unsigned int _ _mode);

_ _address
Virtual address for which write-access permission is being checked.

_ _mode
Privilege level for which write-access permission is being checked.

6.2.2.47 Translation Access Key (_ _tak)
The _ _tak function returns the translation access key.

This function has the following format:

unsigned int _ _tak (_ _int64 _ _address);

_ _address
Virtual address for translation key is being returned.

6.2.2.48 Translate to Physical Address (_ _tpa)
The _ _tpa function translates a virtual address to a physical address.

This function has the following format:

_ _int64 _ _tpa(_ _int64 _ _address);

_ _address
Virtual address to be translated.

6.2.3 Built-In Functions for OpenVMS VAX Systems (VAX only)

The following sections describe the HP C built-in functions available on
OpenVMS VAX systems.

The HP C built-in functions use enumerated typedefs to define possible
return values. We recommend that you use the enumerated types to store and
compare return values.

6.2.3.1 Allocate Bytes from Stack (_ _ALLOCA)
The _ _ALLOCA function allocates n bytes from the stack.

This function has the following format:

void *_ _ALLOCA (unsigned int n);

Predefined Macros and Built-In Functions 6–79

n
The number of bytes to be allocated.

A pointer to the allocated memory is returned.

6.2.3.2 Add Aligned Word Interlocked (_ADAWI)
The _ADAWI function adds its source operand to the destination. This function
is interlocked against similar operations by other processors or devices in the
system.

The _ADAWI function has the following format:

typedef enum { _adawi_sum_neg=–1, _adawi_sum_zero, _adawi_sum_pos} _ADAWI_STATUS;

_ADAWI_STATUS _ADAWI (short _ _src, short *_ _dest);

_ _src
The value to be added to the destination.

_ _dest
A pointer to the destination. The destination must be aligned on a word
boundary. (You can achieve alignment using the _align or _ _align storage-
class modifier.)

There are three possible return values:

• adawi_sum_neg (–1) if the sum when considered to be a signed number is
negative

• adawi_sum_zero (0) if the sum is 0

• adawi_sum_pos (1) if the sum is positive

6.2.3.3 Branch on Bit Clear-Clear Interlocked (_BBCCI)
The _BBCCI function performs the following functions in interlocked fashion:

• Returns the complement of the bit specified by the two arguments

• Clears the bit specified by the two arguments

The _BBCCI function has the following format:

typedef enum { _bbcci_oldval_1, _bbcci_oldval_0} _BBCCI_STATUS;

_BBCCI_STATUS _BBCCI (int _ _position, void *_ _address);

6–80 Predefined Macros and Built-In Functions

_ _position
The position of the bit within the field.

_ _address
The base address of the field.

The return value of _bbcci_oldval_1 (0) or _bbcci_oldval_0 (1) is the
complement of the value of the specified bit before being cleared.

6.2.3.4 Branch on Bit Set-Set Interlocked (_BBSSI)
The _BBSSI function performs the following functions in interlocked fashion:

• Returns the status of the bit specified by the two arguments

• Sets the bit specified by the two arguments

The _BBSSI function has the following format:

typedef enum { _bbssi_oldval_0, _bbcci_oldval_1} _BBSSI_STATUS;

_BBSSI_STATUS _BBSSI (int _ _position, void *_ _address);

_ _position
The position of the bit within the field.

_ _address
The base address of the field.

The return value of _bbssi_oldval_0 (0) or _bbssi_oldval_1 (1) is the value
of the specified bit before being set.

6.2.3.5 Find First Clear Bit (_FFC)
The _FFC function finds the position of the first clear bit in a field. The bits
are tested for clear status starting at bit 0 and extending to the highest bit in
the field.

The _FFC function has the following format:

typedef enum { _ff_bit_not_found, _ff_bit_found} _FF_STATUS;

_FF_STATUS _FFC (int _ _start, char _ _size, const void *_ _base, int *_ _position);

_ _start
The start position of the field.

_ _size
The size of the field, in bits. The size must be a value from 0 to 32 bits.

Predefined Macros and Built-In Functions 6–81

_ _base
The address of the field.

_ _position
The address of an integer to receive the position of the clear bit. If no bit is
clear, the integer is set to the position of the first bit past the last bit tested.

There are two possible return values:

• _ff_bit_not_found (0) if all bits in the field are set

• _ff_bit_found (1) if a bit with value 0 is found

6.2.3.6 Find First Set Bit (_FFS)
The _FFS function finds the position of the first set bit in a field. The bits are
tested for set status starting at bit 0 and extending to the highest bit in the
field.

The _FFS function has the following format:

typedef enum { _ff_bit_not_found, _ff_bit_found} _FF_STATUS;

_FF_STATUS _FFS (int _ _start, char _ _size, const void *_ _base, int *_ _position);

_ _start
The start position of the field.

_ _size
The size of the field, in bits. The size must be a value from 0 to 32 bits.

_ _base
The address of the field.

_ _position
The address of an integer to receive the position of the set bit. If no bit is set,
the integer is set to the position of the first bit past the last bit tested.

There are two possible return values:

• _ff_bit_not_found (0) if all bits in the field are clear

• _ff_bit_found (1) if a bit with value 1 is found

6–82 Predefined Macros and Built-In Functions

6.2.3.7 Halt (_HALT)
The _HALT function halts the processor when executed by a process running
in kernel mode. This is a privileged function.

The _HALT function has the following format:

void _HALT (void);

6.2.3.8 Insert Entry into Queue at Head Interlocked (_INSQHI)
The _INSQHI function inserts an entry into the front of a queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system.

The _INSQHI function has the following format:

typedef enum {_insqi_inserted_many, _insqi_not_inserted, _insqi_inserted_only} _INSQI_STATUS;

_INSQI_STATUS _INSQHI (void *_ _new_entry, void *_ _head);

_ _new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary. (You can achieve alignment using the _align or _ _align
storage-class modifier.)

_ _head
A pointer to the queue header. The header must be aligned on a quadword
boundary. (You can achieve alignment using the _align or _ _align storage-
class modifier.)

There are three possible return values:

• _insqi_inserted_many (0) if the entry was inserted, but it was not the only
entry in the list

• _insqi_not_inserted (1) if the entry was not inserted because the
secondary interlock failed

• _insqi_inserted_only (2) if the entry was inserted and it was the only
entry in the list

Predefined Macros and Built-In Functions 6–83

6.2.3.9 Insert Entry into Queue at Tail Interlocked (_INSQTI)
The _INSQTI function inserts an entry at the end of a queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system.

The _INSQTI function has the following format:

typedef enum {_insqi_inserted_many, _insqi_not_inserted, _insqi_inserted_only} _INSQI_STATUS;

_INSQI_STATUS _INSQTI (void *_ _new_entry, void *_ _head);

_ _new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary. (You can achieve alignment using the _align or _ _align
storage-class modifier.)

_ _head
A pointer to the queue header. The header must be aligned on a quadword
boundary. (You can achieve alignment using the _align or _ _align storage-
class modifier.)

There are three possible return values:

• _insqi_inserted_many (0) if the entry was inserted, but it was not the only
entry in the list

• _insqi_not_inserted (1) if the entry was not inserted because the
secondary interlock failed

• _insqi_inserted_only (2) if the entry was inserted and it was the only
entry in the list

6.2.3.10 Insert Entry in Queue (_INSQUE)
The _INSQUE function inserts a new entry into a queue following an existing
entry.

The _INSQUE function has the following format:

typedef enum { _insque_inserted_only, _insque_inserted_many} _INSQUE_STATUS;

_INSQUE_STATUS _INSQUE (void *_ _new_entry, void *_ _predecessor);

6–84 Predefined Macros and Built-In Functions

_ _new_entry
A pointer to the new entry to be inserted.

_ _predecessor
A pointer to an existing entry in the queue.

There are two possible return values:

• _insque_inserted_only (0) if the entry was the only entry in the queue

• _insque_inserted_many (1) if the entry was not the only entry in the queue

6.2.3.11 Locate Character (_LOCC)
The _LOCC function locates the first character in a string matching the target
character.

The _LOCC function has the following format:

unsigned short _LOCC (char _ _target, unsigned short _ _length, const char *_ _string, ...);

_ _target
The character being searched.

_ _length
The length of the searched string. The length must be a value from 0 to 65,535.

_ _string
A pointer to the searched string.

. . .
An optional position argument, which is a pointer to a pointer to char. If the
searched character is found, this output argument is updated to point to the
character found. If the character is not found, this argument is set to the
address one byte beyond the string.

If the target character is found, the return value is the number of bytes
remaining in the string; otherwise, the return value is 0.

6.2.3.12 Move from Processor Register (_MFPR)
The _MFPR function returns the contents of a processor register. This is a
privileged function.

The _MFPR function has the following formats:

void _MFPR (int register_num, int *destination);
void _MFPR (int register_num, unsigned int *destination);

Predefined Macros and Built-In Functions 6–85

register_num
The number of the privileged register to be read.

destination
A pointer to the location receiving the value from the register. This location
can be a signed or unsigned int.

6.2.3.13 Move Character 3 Operand (_MOVC3)
The _MOVC3 function copies a block of memory.

The _MOVC3 function has the following format:

void _MOVC3 (unsigned short _ _length, const char *_ _src, char *_ _dest, ...);

_ _length
The length of the source string, in bytes. The length must be a value from 0 to
65,535.

_ _src
A pointer to the source string.

_ _dest
A pointer to the destination memory.

. . .
One or two optional arguments:

• endscr

A pointer to a pointer to char. The _MOVC3 function sets this output
argument to the address of the byte beyond the source string. Although
this is an optional argument, it is required if enddest is specified.

• enddest

A pointer to a pointer to char. The _MOVC3 function sets this output
argument to the address of the byte beyond the destination string.

6.2.3.14 Move Character 5 Operand (_MOVC5)
The _MOVC5 function allows the source string specified by the pointer and
length pair to be moved to the destination string specified by the other pointer
and length pair. If the source string is smaller than the destination string, the
destination string is padded with the specified character.

The _MOVC5 function has the following format:

void _MOVC5 (unsigned short _ _srclen, const char *_ _src, char _ _fill,
unsigned short _ _destlen, char *_ _dest, ...);

6–86 Predefined Macros and Built-In Functions

_ _srclen
The length of the source string, in bytes. The length must be a value from 0 to
65,535.

_ _src
A pointer to the source string.

_ _fill
The fill character to be used if the source string is smaller than the destination
string.

_ _destlen
The length of the destination string, in bytes. The length must be a value from
0 to 65,535.

_ _dest
A pointer to the destination string.

. . .
One to three optional arguments:

• unmoved_src

A pointer to an unsigned short integer. The _MOVC5 function sets this
output argument to the number of unmoved bytes remaining in the source
string. This argument is optional if the endscr argument is not specified.

• endscr

A pointer to a pointer to char. The _MOVC5 function sets this output
argument to the address of the byte beyond the source string. Although
this is an optional argument, it is required if enddest is specified.

• enddest

A pointer to a pointer to char. The _MOVC5 function sets this output
argument to the address of the byte beyond the destination string.

6.2.3.15 Move from Processor Status Longword (_MOVPSL)
The _MOVPSL function stores the value of the Processor Status Longword
(PSL).

The _MOVPSL function has the following format:

void _MOVPSL (void *_ _psl);

Predefined Macros and Built-In Functions 6–87

_ _psl
The address of the location for storing the value of the PSL.

6.2.3.16 Move to Processor Register (_MTPR)
The _MTPR function loads a value into one of the special processor registers.
It is a privileged function.

The _MTPR function has the following format:

int _MTPR (int src, int register_num);

src
The value to store into the processor register.

register_num
The number of a privileged register to be updated.

The return value is the V condition flag from the Processor Status Longword
(PSL).

6.2.3.17 Probe Read Accessibility (_PROBER)
The _PROBER function checks to see if you can read the first and last byte of
the given address and length pair.

The _PROBER function has the following format:

typedef enum { _probe_not_accessible, _probe_accessible} _PROBE_STATUS;

_PROBE_STATUS _PROBER (char _ _mode, unsigned short _ _length, const void *_ _
address);

_ _mode
The processor mode used for checking the access.

_ _length
The length of the memory segment, in bytes. The length must be a value from
0 to 65,535.

On OpenVMS Alpha systems, this parameter is the offset to the last byte in
the memory segment, and not the memory segment length.

_ _address
The pointer to the memory segment to be tested for read access.

There are two possible return values:

• _probe_not_accessible (0) if one or both bytes are not accessible

6–88 Predefined Macros and Built-In Functions

• _probe_accessible (1) if both bytes are accessible

6.2.3.18 Probe Write Accessibility (_PROBEW)
The _PROBEW function checks the write accessibility of the first and last byte
of the given address and length pair.

The _PROBEW function has the following format:

typedef enum { _probe_not_accessible, _probe_accessible} _PROBE_STATUS;

_PROBE_STATUS _PROBEW (char _ _mode, unsigned short _ _length, const void *_ _
address);

_ _mode
The processor mode used for checking the access.

_ _length
On OpenVMS VAX systems, the length of the memory segment, in bytes. The
length must be a value from 0 to 65,535.

On OpenVMS Alpha systems, this parameter is the offset to the last byte in
the memory segment, and not the memory segment length.

_ _address
The pointer to the memory segment to be tested for write access.

There are two possible return values:

• _probe_not_accessible (0) if one or both bytes are not accessible

• _probe_accessible (1) if both bytes are accessible

6.2.3.19 Read General-Purpose Register (_READ_GPR)
The _READ_GPR function returns the value of a general-purpose register.

The _READ_GPR function has the following format:

int _READ_GPR (int register_num);

register_num
An integer constant expression giving the number of the general-purpose
register to be read.

The return value is the value of the general-purpose register.

Predefined Macros and Built-In Functions 6–89

6.2.3.20 Remove Entry from Queue at Head Interlocked (_REMQHI)
The _REMQHI function removes the first entry from the queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system.

The _REMQHI function has the following format:

typedef enum { _remqi_removed_more, _remqi_not_removed, _remqi_removed_empty,
_remqi_empty} _REMQI_STATUS;

_REMQI_STATUS _REMQHI (void *_ _head, void *_ _removed_entry);

_ _head
A pointer to the queue header. The header must be aligned on a quadword
boundary. (You can achieve alignment using the _align or _ _align storage-
class modifier.)

_ _removed_entry
A pointer that _REMQHI sets to point to the removed entry.

There are four possible return values:

• _remqi_removed_more (0) if the entry was removed and the queue has
remaining entries

• _remqi_not_removed (1) if the entry could not be removed because the
secondary interlock failed

• _remqi_removed_empty (2) if the entry was removed and the queue is now
empty

• _remqi_empty (3) if the queue was empty

6.2.3.21 Remove Entry from Queue at Tail Interlocked (_REMQTI)
The _REMQTI function removes the last entry from the queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system.

The _REMQTI function has the following format:

typedef enum { _remqi_removed_more, _remqi_not_removed, _remqi_removed_empty,
_remqi_empty} _REMQI_STATUS;

_REMQI_STATUS _REMQTI (void *_ _head, void *_ _removed_entry);

6–90 Predefined Macros and Built-In Functions

_ _head
A pointer to the queue header. The header must be aligned on a quadword
boundary. (You can achieve alignment using the _align or _ _align storage-
class modifier.)

_ _removed_entry
A pointer to a pointer that _REMQTI sets to point to the removed entry.

There are four possible return values:

• _remqi_removed_more (0) if the entry was removed and the queue has
remaining entries

• _remqi_not_removed (1) if the entry could not be removed because the
secondary interlock failed

• _remqi_removed_empty (2) if the entry was removed and the queue is now
empty

• _remqi_empty (3) if the queue was empty

6.2.3.22 Remove Entry from Queue (_REMQUE)
The _REMQUE function removes an entry from a queue.

The _REMQUE function has the following format:

typedef enum { _remque_removed_more, _remque_removed_empty,
_remque_empty} _REMQUE_STATUS;

_REMQUE_STATUS _REMQUE (void *_ _entry, void *_ _removed_entry);

_ _entry
A pointer to the queue entry to be removed.

_ _removed_entry
A pointer to a pointer that _REMQUE sets to the address of the entry removed
from the queue.

There are three possible return values:

• _remque_removed_more (0) if the entry was removed and the queue has
remaining entries

• _remque_removed_empty (1) if the entry was removed and the queue is now
empty

• _remque_empty (2) if the queue was empty

Predefined Macros and Built-In Functions 6–91

6.2.3.23 Scan Characters (_SCANC)
The _SCANC function locates the first character in a string with the desired
attributes. The attributes are specified through a table and a mask.

The _SCANC function has the following format:

unsigned short _SCANC (unsigned short _ _length, const char *_ _string,
const char *_ _table, char _ _mask, ...);

_ _length
The length of the string to be scanned, in bytes. The length must be a value
from 0 to 65,535.

_ _string
A pointer to the string to be scanned.

_ _table
A pointer to the table.

_ _mask
The mask.

. . .
An optional match argument, which is a pointer to a pointer to char. The
_SCANC function sets this output argument to the address of the byte that
matched. (If no match occurs, this argument is set to the address of the byte
following the string.)

The return value is the number of bytes remaining in the string if a match was
found; otherwise, the return value is 0.

6.2.3.24 Skip Character (_SKPC)
The _SKPC function locates the first character in a string that does not match
the target character.

The _SKPC function has the following format:

unsigned short _SKPC (char _ _target, unsigned short _ _length, const char *_ _string, ...);

_ _target
The target character.

_ _length
The length of the string, in bytes. The length must be a value from 0 to 65,535.

_ _string
A pointer to the string to be scanned.

6–92 Predefined Macros and Built-In Functions

. . .
An optional position argument, which is a pointer to a pointer to char. The
_SKPC function sets this output argument to the address of the nonmatching
character. (If all the characters in the string match, this argument is set to the
address of the first byte beyond the string.)

The return value is the number of bytes remaining in the string if an unequal
byte was located; otherwise, the return value is 0.

6.2.3.25 Span Characters (_SPANC)
The _SPANC function locates the first character in a string without certain
attributes. The attributes are specified through a table and a mask.

The _SPANC function has the following format:

unsigned short _SPANC (unsigned short _ _length, const char *_ _string,
const char *_ _table, char _ _mask, ...);

_ _length
The length of the string, in bytes. The length must be a value from 0 to 65,535.

_ _string
A pointer. It points to the string to be scanned.

_ _table
A pointer to the table.

_ _mask
The mask.

. . .
An optional position argument, which is a pointer to a pointer to char. The
_SPANC function sets this output argument to the address of the nonmatching
character. (If all the characters in the string match, this argument is set to the
address of the first byte beyond the string.)

The return value is the number of bytes remaining in the string if a match was
found; otherwise, the return value is 0.

Predefined Macros and Built-In Functions 6–93

A
Migrating from VAX C

This appendix documents many features that distinguish HP C for OpenVMS
Systems from VAX C Version 3.2.

This appendix was written for the first ANSI C Standard conforming release
of the HP C (originally DEC C) compiler as a guide for installations migrating
from VAX C to HP C. It is not intended as a compendium of new features for
all HP C versions. For a summary of new features for the current version
of the compiler, see the release notes and the New and Changed Features
section in the Preface of this and the other HP C manuals. For additional help
migrating from VAX C to HP C, see the DEC C Migration Guide for OpenVMS
VAX Systems (VAX only).

The major focus of HP C for OpenVMS Systems is to bring it into full
conformance with the C Standard. The language described by the C Standard
differs in many ways from the language originally implemented by VAX C.
These differences include additional language features and constructs, the
removal of obsolete features and usages, and a number of other changes that
generally involve a tightening up of semantic rules.

Some of the new C standard features have already been implemented in
previous versions of VAX C. Some of these are: support for function prototypes,
the const and volatile type qualifiers, and the void type specifier.

Although every attempt has been made to maintain compatibility with
earlier versions of the VAX C compiler, many of the changes required to
bring the compiler into conformance with the C Standard would introduce
unavoidable incompatibilities with these earlier versions. For example, VAX
C supports a number of language and semantic extensions that are not
standard-conformant.

Therefore, to provide compatibility with previous versions of the compiler,
HP C for OpenVMS Systems supports several modes of operation:

• Strict ANSI C Standard mode, in which all nonstandard constructs and
usages (including VAX C extensions) are diagnosed

Migrating from VAX C A–1

• Relaxed mode (the default on OpenVMS systems), in which the compiler
follows the ANSI C standard but also accepts additional HP keywords and
predefined macros that do not begin with an underscore

• VAX C mode, in which as many previously supported features as possible
continue to be supported

• Common mode, in which extensions to the ULTRIX portable C compiler
(pcc) are supported

Note that some of the language changes dictated by the C Standard are
present in VAX C mode. Some of these changes are quiet changes; that is,
they cannot be detected as such by the compiler, so no diagnostic messages
are issued. Also note that some extensions are permitted in the strict ANSI
C mode. These extensions are diagnosed, but with no greater severity than
Warning. Both types of changes are included in the following sections that
describe all new and changed features.

A.1 Features Affecting the Compiler
This section describes HP C compiler features. (Section A.2 describes features
that affect the HP C run-time library and include files.)

A.1.1 HP C Qualifiers
Qualifiers new to HP C:

• /[NO]ANSI_ALIAS (Alpha only)—Directs the compiler to assume the ANSI C
aliasing rules. By so doing, the compiler has the freedom to generate better
optimized code.

• /ASSUME=(option,...)—Controls compiler assumptions.

• /DECC—Invokes the HP C compiler. For OpenVMS VAX systems, the
default is set to either /DECC or /VAXC during installation.

For OpenVMS Alpha systems, specifying /DECC is equivalent to not
specifying it; it is supported to provide compatibility with HP C on
OpenVMS VAX systems.

• /ENDIAN=option (Alpha only)—Controls whether big or little endian ordering
of bytes is carried out in character constants.

• /EXTERN_MODEL—In conjunction with the /[NO]SHARE_GLOBALS
qualifier, controls the initial extern model of the compiler. Also see #pragma
extern_model.

• /FLOAT—Controls the format of floating-point variables. It replaces the
/[NO]G_FLOAT qualifier, which is retained for compatibility.

A–2 Migrating from VAX C

• /GRANULARITY (Alpha only)—Determines how much memory to effectively
cache for memory reference, by the combination of the compiler and the
underlying system.

• /IEEE_MODE=option (Alpha only)—Selects the IEEE floating-point mode to be
used if /FLOAT=IEEE_FLOAT is specified.

• /L_DOUBLE_SIZE=option (Alpha only)—Determines how the compiler
interprets the long double type.

• /[NO]MEMBER_ALIGNMENT—Controls alignment of data structure
members. For OpenVMS Alpha systems, the default is /MEMBER_
ALIGNMENT, which aligns structure members on the next boundary
appropriate to the type of the member. For OpenVMS VAX systems, the
default is /NOMEMBER_ALIGNMENT, which aligns structure members on
byte boundaries.

• /NAMES—Converts all definitions and references of external symbols and
psects to the specified case (UPPERCASE or AS_IS).

• /NESTED_INCLUDE_DIRECTORY[=option]—Controls the directories
that the compiler searches when looking for nested include files that are
included using the quoted form of the #include preprocessor directive.

• /OPTIMIZE—Determines whether HP C performs various code
optimizations.

• /[NO]PLUS_LIST_OPTIMIZE (Alpha only)—Provides improved optimization
and code generation across file boundaries that would not be available if
the files were compiled separately.

• /[NO]PREFIX_LIBRARY_ENTRIES=(option,...)—Controls the HP C Run-
Time LIbrary (RTL) name prefixing.

• /REENTRANCY[=option] (Alpha only)—Controls the type of reentrancy
that reentrant HP C RTL routines will exhibit. (See also the
decc$set_reentrancy RTL routine.)

• /ROUNDING_MODE=option (Alpha only)—Lets you select an IEEE rounding
mode, if /FLOAT=IEEE_MODE is specified.

• /[NO]SHARE_GLOBALS—Specifies whether external objects are to be
marked share or noshare. Used in conjunction with /EXTERN_MODEL
to control the initial extern model of the compiler. Also see the #pragma
extern_model preprocessor directive.

Migrating from VAX C A–3

• /[NO]STANDARD—Enhanced to include the following options (in addition
to /STANDARD=PORTABLE):

ANSI89

RELAXED

COMMON

VAXC

MIA

• /[NO]TIE (Alpha only)—Enables the compiled code to be used in combination
with translated images, either because the code might call into a translated
image or might be called from a translated image.

• /[NO]UNSIGNED_CHAR—By default, char is a signed character type. The
/UNSIGNED_CHAR qualifier lets you change this default to an unsigned
character type, which causes all plain char declarations to have the same
representation and set of values as unsigned char declarations. The
default is /NOUNSIGNED_CHAR.

• /VAXC (VAX only)—Invokes the VAX C compiler. The default is set to either
/DECC or /VAXC during installation.

A.1.2 Comment Processing
VAX C treats a comment in a macro definition as if the comment were replaced
with no characters. This allows comments to paste tokens together, as in the
following example:

#define PASTE(X) X/* */1
int PASTE(VAR);

This example declares the variable VAR1. Standard C requires that comments
be treated as if they were replaced by a single space. In HP C, therefore,
comments cannot be used to concatenate tokens when /STANDARD=ANSI89
or /STANDARD=RELAXED is specified. (The new operator ## is provided to
allow token concatenation in macros.)

HP C for OpenVMS Systems continues to replace comments with no characters
when /STANDARD=VAXC or /STANDARD=COMMON is specified; and
/WARN=ENABLE=CHECK provides a diagnostic to flag comments that are
used to concatenate tokens.

For /STANDARD=COMMON and /STANDARD=RELAXED, C++ style
comments (//) are supported.

A–4 Migrating from VAX C

A.1.3 String Literal Concatenation
HP C introduces a new ANSI-conforming feature that allows convenient
continuation of string literals. If string literals are separated only by white
space, the string literals are concatenated to form one string literal. For
example:

fputs("This is really "
"one string literal", stderr);

String literal concatenation works for both normal string literals and wide
string literals.

A.1.4 Recursive main() Function
In VAX C, main, or any function using the VAX C main_program option, is not
recursively reentrant.

As required by standard C, the main function in HP C can now be called
recursively.

A.1.5 Trigraph Sequences
Standard C defines an additional representation of some of the special
characters in the C language source abstract character set. These additional
representations are sequences of three characters called trigraphs. Table A–1
lists the trigraphs and the character each is mapped to.

Table A–1 Trigraphs

Trigraph Replacement

??= #

??([

??/ \

??)]

??’ ^

??< {

??! |

??> }

??- ~

Conceptually, every trigraph is removed from the file and its replacement is
substituted. Each ? that does not begin one of the trigraphs is not changed.

Migrating from VAX C A–5

Trigraph processing occurs before tokenization takes place. Thus, even
trigraphs in string constants have their replacements substituted.

Trigraph support has the potential to change the meaning of existing C code
that unintentionally contains a trigraph in a string literal. However, since such
conflicts will be quite rare, there is no facility for disabling trigraph support.

Trigraph support is available in strict and relaxed mode.

A.1.6 Alert Escape Sequence
As specified by standard C, HP C defines a new escape sequence for the
alert character. The escape sequence \a represents the ASCII BEL (Ctrl/G)
character.

A.1.7 Hexadecimal Escape Sequence
VAX C limits hexadecimal escape sequences to at most 3 hex digits, but
standard C allows an unlimited number of digits. HP C removes the limit
imposed by VAX C.

This can cause some programs to behave differently. The string "\x0012" is
currently interpreted by VAX C as a string with two characters in it: a Ctrl/A
followed by the character ‘‘2’’. Under standard C rules, the string consists of a
single character whose character code is hexadecimal 12 (Ctrl/R). However, this
problem is unlikely to occur in practice.

A.1.8 Invalid Escape Sequences
HP C issues a warning message if it encounters an invalid escape sequence.
VAX C did not diagnose such usage.

A.1.9 $ in Macro Names
The dollar sign ($) is not an element of the minimum basic character set
allowed by the C standard. By a systemwide convention, the dollar sign
identifies HP reserved identifiers. HP C for OpenVMS Systems supplies
header files containing many macros with dollar signs in their names, and the
VAX C compiler predefines some macros with dollar signs in their names. In
strict ANSI C mode, such macros trigger a warning.

A.1.10 Null Arguments to Macros
In HP C, null arguments to a macro produce a BUGCHECK. VAX C allowed
macro arguments to be null.

A–6 Migrating from VAX C

A.1.11 Standard C Name Space Conformance
Standard C strictly controls the name space of C programs, and prohibits
compilers or their standard-specified header files from intruding on the name
space reserved for user programs. Specifically, the C Standard requires that
compiler extensions begin with an underscore followed by an uppercase letter
or another underscore.

This affects VAX C extensions involving additional keywords and predefined
macros. It also affects the freedom of HP C to add additional macros, variables,
and functions to the standard-specified header files, such as <stdio.h>.

The following sections describe how HP C solves the reserved name space
problem for extensions involving keywords, predefined macros, and header file
contents.

A.1.11.1 Nonstandard Keywords
VAX C has several keywords that intrude into the user name space. The HP C
compiler in strict ANSI C mode (/STANDARD=ANSI89) does not recognize
keywords that are VAX C-specific extensions to the language. They are
recognized instead as identifier names. As a result, programs that use these
extensions as keywords cannot be compiled in strict ANSI C mode without
eliciting syntax errors.

Similarly, the HP C compiler in VAX C mode and relaxed ANSI C mode
does recognize keywords that are VAX C-specific extensions to the language.
Therefore, programs that use these names as identifiers cannot be compiled
in VAX C or relaxed mode without eliciting syntax errors. In relaxed
mode, the compiler generates a warning for these keywords. When the
/STANDARD=ANSI89 qualifier is used, the compiler strictly follows the
ANSI C rules about the name space, and does not recognize the old spellings
as keywords.

Table A–2 shows the traditional spelling and the new spelling of the keywords
affected, as well as their corresponding standard-conforming pragmas.

Table A–2 Nonstandard Keywords

Keyword Corresponding Standard-Conforming Pragma

globaldef #pragma extern_model

globalref #pragma extern_model

(continued on next page)

Migrating from VAX C A–7

Table A–2 (Cont.) Nonstandard Keywords

Keyword Corresponding Standard-Conforming Pragma

globalvalue #pragma extern_model

noshare #pragma extern_model

readonly #pragma extern_model

A.1.11.2 Nonstandard Predefined Macros
Alternate spellings that follow standard C rules are added to HP C for all VAX
C predefined macros. For compatibility, both the old spellings of the predefined
macros and the new spellings are recognized by the compiler. However, when
the /STANDARD=ANSI89 qualifier is used, the compiler strictly follows the
C standard’s rules about the name space, and does not recognize the old
spellings as predefined macros. You are encouraged to use the new standard C
conformant spelling of the macros.

Table A–3 shows the traditional spelling and the new spelling of the predefined
macros affected

Table A–3 New and Traditional Spellings of Macros

Traditional Spelling New Spelling

vax _ _vax

vax11c _ _vax11c

vaxc _ _vaxc

VAX _ _VAX

VAX11C _ _VAX11C

VAXC _ _VAXC

vms _ _vms

VMS _ _VMS

vms_version _ _vms_version

VMS_VERSION _ _VMS_VERSION

A–8 Migrating from VAX C

A.1.11.3 Nonstandard Identifiers in Standard-Specified Header Files
The C standard specifies exactly what identifiers in the normal name space
are declared by the standard header files. A compiler is not free to declare
additional identifiers in a header file unless the identifiers follow defined rules
(the identifier must begin with an underscore followed by an uppercase letter
or another underscore).

When running the HP C compiler on OpenVMS systems in strict ANSI C mode
(/STANDARD=ANSI89), versions of the standard header files are included that
hide many identifiers that do not follow the rules. The <stdio.h> header file,
for example, hides the definition of the macro TRUE. The compiler accomplishes
this by predefining the macro _ _HIDE_FORBIDDEN_NAMES in strict ANSI C mode.

You can use the command-line qualifier /UNDEFINE="_ _HIDE_FORBIDDEN_
NAMES" to prevent the compiler from predefining this macro, thus including
macro definitions of the forbidden names.

The header files are modified to only define additional VAX C names if
_ _HIDE_FORBIDDEN_NAMES is undefined. For example, <stdio.h> might contain
the following:

#ifndef ____HIDE_FORBIDDEN_NAMES
#define TRUE 1
#endif

A.1.12 HP C Predefined Macros
HP C for OpenVMS Systems supports the following new system-identification
macros:

_ _DECC
_ _alpha
_ _ALPHA
_ _Alpha_AXP
_ _32BITS
_ _mia
_ _STDC_ _

A.1.13 HP C Types
The following sections describe changes to the data types supported by HP C.

Migrating from VAX C A–9

A.1.13.1 signed Reserved Word
HP C supports the new reserved word signed to complement unsigned. The
signed keyword may be used with the char, short, int, and long keywords
to specify the types signed char, signed short, signed int, and signed long.
(These types are already supported by VAX C.) The signed keyword can also be
used when declaring bit fields to specify explicitly that the bit field is signed.

Standard C specifies that signed short, signed int, and signed long are the
same types as short, int, and long, respectively. However, signed char is not
the same type as char, even though HP C uses the same representation for
both of them. This does not affect normal mixing of the two types, but it does
mean that in HP C a pointer to signed char is not compatible with a pointer
to char. Note that programs that previously used signed as an identifier will
now be in error, even in VAX C mode. The /[NO]UNSIGNED_CHAR qualifier
can be used to specify whether char is signed or unsigned.

A.1.13.2 Removal of the long float Type
In VAX C, long float is a synonym for double. Since the C Standard retires
the long float specification, HP C in strict ANSI C mode diagnoses any use
of long float as an error. The long float type is still accepted as a synonym
for double in VAX C mode, but it elicits a warning diagnostic to the effect that
this is an obsolete usage.

A.1.13.3 Addition of the long double Type
On OpenVMS VAX systems, HP C maps the standard C defined long double
type to the G_floating or D_floating format, depending on the /FLOAT (or
/[NO]G_FLOAT) qualifier used. (VAX only)

On OpenVMS Alpha systems, the long double type defaults to X_floating
(/L_DOUBLE_SIZE=128). If /L_DOUBLE_SIZE=64 is specified, the long
double type is mapped to G_floating, D_floating, or T-floating, depending on
the /FLOAT (or /[NO]G_FLOAT) qualifier used. (Alpha only)

The <float.h> header file is modified to define the appropriate values to
describe the characteristics of this new data type.

A.1.13.4 Addition of Processor-Specific Integer Data Types
HP C for OpenVMS Systems supports the following processor-specific integer
data types:

• _ _int16

• _ _int32

• _ _int64 (Alpha only)

A–10 Migrating from VAX C

These data types are intended for applications that need integer data types of
a specific size across platforms that support the data type.

The <ints.h> header file contains typedefs for the signed and unsigned
variations of these integer data types. For increased portability, use these
typedefs rather than using the built-in data types directly.

Note that the 64-bit integer types are available on OpenVMS Alpha systems
but not on OpenVMS VAX systems.

The contents of <ints.h> are:

#ifndef __INTS_LOADED
#define __INTS_LOADED 1
/**
**
** <ints.h> - Definitions for platform specific integer types
**

** Header is nonstandard

#pragma __nostandard

/*
** Ensure that the compiler will not emit diagnostics about "signed"
** keyword usage when in /STAND=VAXC mode (the reason for the diagnostics
** is that VAX C does not support the signed keyword).
*/
#if ((__DECC_VER >= 50600000) && !defined(__DECCXX))
pragma __message __save
pragma __message __disable (__SIGNEDKNOWN)

typedef signed char int8;
typedef unsigned char uint8;

pragma __message __restore
#else

typedef signed char int8;
typedef unsigned char uint8;

#endif

Migrating from VAX C A–11

/*
** Define 16 and 32 bit integer types
*/
#if defined(__DECC) || (defined(__DECCXX) && defined(__ALPHA))

typedef __int16 int16;
typedef unsigned __int16 uint16;
typedef __int32 int32;
typedef unsigned __int32 uint32;

#else
typedef short int int16;
typedef unsigned short int uint16;
typedef int int32;
typedef unsigned int uint32;

#endif

/*
** Define 64 bit integer types only on Alpha
*/
#ifdef __ALPHA

typedef __int64 int64;
typedef unsigned __int64 uint64;

#endif

#pragma __standard
#endif /* __INTS_LOADED */

A.1.14 Type Compatibility
HP C for OpenVMS Systems in strict and relaxed mode uses different rules
than HP C in VAX C mode to determine if two types are identical:

• VAX C mode treats int and long as exactly the same type. ANSI C mode
differentiates between int and long even if both types use the same
underlying representation.

• VAX C mode treats char and signed char as exactly the same type.
ANSI C mode differentiates between char and signed char, even though
the same underlying representation is used for both types.

• VAX C mode treats two structure or union types as the same type if they
have the same size in bytes. In ANSI C mode, a structure or union type is
compatible only with itself.

• VAX C mode, by default, treats all pointer types as if they were compatible.
ANSI C mode defines two pointer types as being compatible only if they are
identically qualified pointers to compatible types.

These rules cause the strict and relaxed modes to be much more strict than
VAX C mode about type checking.

A–12 Migrating from VAX C

A.1.15 Composite Types
As required by the C standard, HP C merges type information from two
declarations of the same object in the same scope. The declarations are
required to be type-compatible and the linkage of the declarations must be
such that multiple declarations in the same scope are allowed.

The composite type (the merged type) can be formed only from array or
function types. Array types can have their array bounds specified, and function
types can have their arguments specified.

For example, consider the following two declarations in the same scope:

extern int f(int (*)(), double (*)[3]);
extern int f(int (*)(char *), double (*)[]);

The resulting type for f is:

extern int f(int (*)(char *), double (*)[3]);

The VAX C compiler did not support composite types, although it might have
appeared to do so. For example, in VAX C, what appears to be a second
declaration of a composite function type, is actually a redeclaration of the
function. This might have an effect on the compilation. For example, if
the first declaration has ellipses and the second declaration does not, a
composite type cannot be formed (not allowed by the C Standard). However, a
redeclaration is done.

Since the composite type feature of the C standard is important even to those
programming in VAX C mode, it is supported in VAX C mode. Therefore, it is
possible to encounter declaration combinations that compile under VAX C but
not under HP C in VAX C mode.

A.1.16 Enumerations Have Type int
For type-checking purposes, VAX C previously considered enumeration types
to be distinct from each other, and from the integer types, even though
enumeration constants and variables have always been usable as ordinary
integers. Since the VAX C model of enumerations was overly restrictive even
from the strong typing point of view, and since such checking is not common in
modern C, HP C does not treat enumerations as a special type.

A.1.17 long double Constants
As specified by standard C, HP C floating-point constants suffixed by l or L
have type long double. (Currently, VAX C gives such constants type double).

Migrating from VAX C A–13

A.1.18 Implicit Unsigned Integer Constants
A.1.18.1 OpenVMS VAX Systems

The type of an unsuffixed decimal integer constant is the first type in the
following list that can represent its value: int, long int, or unsigned long
int. (VAX only)

The type of an unsuffixed octal or hex constant is the first type in the following
list that can represent its value: int, unsigned int, long int, or unsigned
long int. (VAX only)

A.1.18.2 OpenVMS Alpha Systems
The type of an unsuffixed decimal integer constant is the first type in the
following list that can represent its value: int, long int, unsigned long int
(only in VAXC, COMMON, ANSI89, and MIA modes), long long int, unsigned
long int. (Alpha only)

The type of an unsuffixed octal or hex constant is the first type in the following
list that can represent its value: int, unsigned int, long int, unsigned long
int, long long int, unsigned long long int. (Alpha only)

For more information, see the Integer Constants section in Chapter 1 of the
HP C Language Reference Manual.

A.1.19 Multibyte and Wide Character Support
To meet the needs of non-European languages with large character sets, the
C standard includes a framework to support characters encoded in multiple
bytes. This framework is general enough to support character-processing
extensions and character-set encodings already used in Asia, and allows for
support for the draft proposed ISO Standard 10646, a multiple octet-coded
character set that supports dozens of natural languages.

Standard C supports natural languages with large character sets by
recognizing that normal character constants and string literals can be used
to represent multibyte characters. A multibyte character is an encoding
of variable-length characters where one, two, or more bytes in the string
represents a single character in the natural language. The encoding is allowed
to support locking shift states that change the encoding of characters for as
long as the shift state holds.

Multibyte characters can occur in comments, character constants, and string
literals.

A–14 Migrating from VAX C

Because string manipulation is very difficult when the character size
varies from character to character, Standard C supports a fixed-size
representation where each character is stored in the same number of bytes.
This representation is called wide character support. HP C supports a new
form of wide character constant and wide string literal.

A.1.19.1 The Wide Character Type
Standard C requires that wide characters be represented by an integral type,
and that there be a typedef named wchar_t for that type in the header
<stddef.h>.

HP C defines wchar_t to be unsigned int. This allows all character sets
supported by ISO 10646 to be supported simultaneously.

A.1.19.2 Multibyte Characters in Comments, Character Constants, and String Literals
Full multibyte support requires that the compiler be able to determine whether
an individual byte in a multibyte string is a single byte character or part of a
multiple byte character. For example, the compiler must be able to distinguish
between the single byte quote ending a string literal and a quote that is
embedded in a multiple byte character and does not end the string literal.

A.1.19.3 Wide Character Constants
As required by standard C, HP C supports wide character constants. The form
of such a constant is the uppercase letter L, followed by a single quote, followed
by a multibyte character, followed by a single quote.

The compiler collects the bytes making up the multibyte character into a
string, and then calls the HP C RTL mbtowc function to convert the multibyte
character into a wide character. The resulting value has type wchar_t.

A.1.19.4 Wide String Literals
As required by the C Standard, HP C supports wide string literals. The form of
such a literal is the same as a normal string literal prefixed by the uppercase
letter L.

The compiler collects the bytes making up the wide string literal into a string,
and then calls the HP C RTL mbstowcs function to convert the multibyte
characters into wide characters. The resulting wide character string literal has
type array of wchar_t.

Migrating from VAX C A–15

A.1.20 Usual Arithmetic Conversions
In HP C, the usual arithmetic conversions now support the long double type:
if either operand of a binary operator that uses these conversions is long
double, then the other operand is converted to long double.

A.1.21 Indexing as a Commutative Operator
As required by the C Standard, HP C now defines the array indexing operator,
[], as commutative. Thus, if a is an array and i is an integer, both a[i] and
i[a] are valid.

A.1.22 Cast Operators
Standard C specifies that result of the cast operator is not an lvalue. However,
VAX C does allow the cast operator to produce an lvalue.

The HP C compiler in VAX C mode allows the cast operator to produce an
lvalue.

A.1.23 Function Calls
The following sections describe changes to function calls.

A.1.23.1 Assignment Compatibility Argument Checking
Standard C defines a function call made with a prototype in scope as assigning
the arguments to the parameters of the function. This means that all of the
normal type checking and implied conversions that occur during an assignment
take place when calling a function.

VAX C currently follows this model with two exceptions. First, it only performs
the required type checking if /STANDARD=PORTABLE is given. Second, the
assignment compatibility rules used by VAX C are not as stringent as the rules
required by standard C. For example, two structs are assignment-compatible in
VAX C only if they are the same size.

The HP C compiler in VAX C mode and common mode is compatible with VAX
C in assignment compatibility rules. Other modes follow the stricter standard
C rules, documented in Section A.1.27 of this guide, and issue the required
messages even when /STANDARD=PORTABLE is not specified.

A–16 Migrating from VAX C

A.1.23.2 Passing Narrow Types to Old Syntax Functions
Traditionally, a function written in C was always called with widened argument
types. (Arguments of narrow types like char, short, or float were passed
as the widened types int, int, and double, respectively.) The C Standard
preserves this calling mechanism for functions declared using the old syntax.
Functions declared using the new prototype syntax may be called with narrow
argument types.

Tradition, however, did not specify how the compiler was to interpret a function
definition that declared formal arguments of narrow type. One interpretation
was that the widened types actually passed should be converted to the narrow
type of the formal declaration by the function in its prologue. Another
interpretation was that the compiler should rewrite the formal declarations
to match the type of the argument actually passed. For example, under this
second interpretation, the compiler would change a declaration of a formal
argument of type float to a declaration of type double.

Standard C has standardized the first interpretation of a function with formal
arguments of narrow types. HP C for OpenVMS Systems uses the standard C
interpretation in all modes.

A.1.24 ‘‘Address of’’ Operator
In HP C, if the argument of the unary & operator is an array, the result now
has the type ‘‘pointer to array’’. Previously, in VAX C, the result would have
the type ‘‘pointer to the element type of the array’’.

A.1.25 Unary Plus
HP C supports the new standard C operator, unary plus (+). This operator
returns the value of its operand (possibly widened by the integral promotions).

A.1.26 Relational Operators
As required by standard C, HP C issues a warning (in all modes except VAX C
mode) to diagnose a constraint violation if one of the operands of a relational
operator is a pointer to a function. For example, the following code would issue
a warning:

int (*f)();
if (f > NULL)

Note that it is valid to use the equality operators to compare function pointers.

Migrating from VAX C A–17

A.1.27 Assignment Compatibility
Standard C has tighter assignment compatibility rules than those previously
enforced by VAX C. (Note that assignment compatibility rules also control
function argument passing.) HP C assignment compatibility differs from that
of VAX C in the following ways:

• An error is issued if a structure or union type is assigned to a different
structure or union type, except in VAX C mode where it is allowed if the
structure or union types have the same size.

• An error is issued if a non-void pointer type is assigned to a different
non-void pointer type, except in VAX C mode where it is allowed.

• An error is issued if a void pointer type (except for a null constant pointer)
is assigned to a pointer to a function (or vice versa), except in VAX C mode
where it is allowed.

A.1.28 Declarations
Function prototype support, the new const and volatile type qualifiers, and
the void type, were already implemented in VAX C. The following sections
describe the additional HP C support that affects declarations. References are
to the relevant sections in the C Standard.

A.1.28.1 Implementation Limits
The C Standard requires that an implementation support certain minimum
requirements; these are listed in the referenced section. In those cases
where VAX C imposes a fixed limit, that limit has always met or exceeded the
Standard’s requirements, and programs that exceed any of these limits elicit
the appropriate errors. In strict ANSI C mode, HP C now issues diagnostics
against any source program constructs that exceed any of the Standard limits
as well.

A.1.28.2 Identifier Name Length
In strict ANSI C mode, HP C now issues diagnostic messages against
declarations of external names in excess of six characters, or external names
that are intended to denote different objects but that have the same spelling,
and ignores alphabetical case.

A.1.28.3 Diagnosing Empty Declarations
The C Standard invalidates empty declarations, except for two special cases:
one involving structure/union tags and the other involving the enumeration
type. In strict ANSI C mode, HP C issues an error message against any
declaration that does not declare at least one of the following: a declarator, a
tag, or the members of an enumeration.

A–18 Migrating from VAX C

A.1.28.4 Restriction on Placement of Storage-Class Specifiers
The C Standard specifies that allowing the placement of any storage-class
specifier other than at the beginning of a declaration is an obsolete feature. In
strict ANSI C mode, HP C now issues an informational diagnostic to that effect
when appropriate.

A.1.28.5 Diagnosing Old-Style Function Declarations
The C Standard specifies that old-style function declarations and definitions
(that is, those not using the function prototype format) are obsolete. Old-style
function declarations and definitions cause an informational message to be
issued in all modes except VAX C.

A.1.28.6 Function Definitions Using typedef-names
The C Standard restricts the form of the declarator in a function definition:
the function type itself may not be inherited from a typedef-name; that is, the
declarator must explicitly contain a (possibly empty) parenthesized parameter
list. If not, HP C in strict ANSI C mode issues an error message.

A.1.28.7 Initialization
HP C for OpenVMS Systems supports the initialization of unions.

In VAX C, an aggregate initializer consisting of a single item does not have to
have the outer braces. The outer braces are required by the C Standard.

HP C allows this case in VAX C mode.

A.1.29 Bit-Field Initialization
The HP C compiler initializes bit-field structure members differently than
VAX C does. See Section 4.7.2.

A.1.30 The Preprocessor
The following sections describe the differences between the VAX C and the
HP C preprocessors. Most of these differences reflect the HP C preprocessor’s
conformance to the C Standard. References are to the relevant sections in the
C Standard.

Note that most VAX C-specific preprocessor extensions are unaffected by these
changes. These extensions continue to be supported quietly in VAX C mode,
but elicit appropriate diagnostics in strict ANSI C mode.

Migrating from VAX C A–19

A.1.30.1 White Space Appearing Before the #
The C Standard removes the VAX C restriction that requires the # character
introducing a preprocessor directive to always appear in column 1 of the source
line. In HP C, white space and comments can now precede the # on the same
line.

A.1.30.2 The #define Directive and Macro Substitution
Before the C Standard, the lack of a precise definition of the behavior of
macro expansion led to a number of inconsistencies among different C
implementations. HP C, in adhering to the C Standard, removes these and
many other discrepancies by specifying precisely how macro substitution is to
be performed:

• Except when running in VAX C or common mode, macro arguments are not
allowed to replace parameters appearing within character strings in the
macro definition.

• Except when running in VAX C or common mode, tokens within a macro
definition are not concatenated if they were separated only by a comment;
embedded comments are replaced by a blank.

• In all modes, keywords are allowed to be defined as macros.

• Macros are not replaced recursively in any mode except VAX C mode.

As required by the C Standard, HP C supports two new operators that can
appear only within macro definitions:

• The # operator takes a macro parameter as its operand and creates a
character string from it. Combined with the new rule that adjacent
character strings are implicitly concatenated into a single string, this
provides the same capability as allowing substitution within strings.

• The ## operator concatenates the tokens on either side of it into a single
token.

The C Standard also makes specific the sequence in which rescanning and
further substitution is to take place, and under what conditions substitution
does not take place. The C Standard also specifies under what circumstances
a macro may be redefined: only benign redefinition is allowed, permitting a
macro to be redefined only if the new definition is token-wise identical to the
old definition.

A–20 Migrating from VAX C

A.1.30.3 The #line Directive
The C Standard specifies that macro substitution can occur on the operands
of the #line directive, that the line number operand is restricted to the range
1 to 32,767, and that the file name operand must be treated as any character
string literal. VAX C did not support macro substitution on this directive,
performed no range checking on the line number, and restricted the length of
the character string to 255.

HP C supports macro substitution on the #line directive, diagnoses an out-of-
range line number (in strict ANSI C mode only), and allows the file name
character string to be as long as the maximum length supported by the
compiler for ordinary strings. (Note that the C Standard requires support
for a minimum of 509 characters in a string, and that HP C supports strings
up to 65,535 characters.)

A.1.30.4 The #error Directive
HP C in both strict ANSI C mode and VAX C mode supports the new #error
directive required by the C Standard.

A.1.30.5 The #pragma builtins Directive
The #pragma builtins directive is provided for VAX C compatibility.
HP C implements #pragma builtins by including the <builtins.h> header
file, and is equivalent to #include <builtins.h> on OpenVMS systems.

This header file contains prototype declarations for the built-in functions
that allow them to be used properly. By contrast, VAX C implemented this
pragma with special-case code within the compiler, which also supported a
#pragma nobuiltins preprocessor directive to turn off the special processing.
Because declarations cannot be "undeclared," HP C does not support #pragma
nobuiltins. Furthermore, the names of all the built-in functions use a naming
convention defined by standard C to be in a namespace reserved to the C
language implementation.

A.1.30.6 The #pragma dictionary Directive
The #pragma dictionary preprocessor directive replaces the #dictionary
directive, but the latter is still supported in VAX C mode for compatibility.

The #pragma dictionary and #dictionary preprocessor directives now
allow you to specify whether all string data type variables should be null-
terminated.

Migrating from VAX C A–21

A.1.30.7 The #pragma extern_model Directive
The #pragma extern_model directive is added to control the compiler’s
interpretation of objects that have external linkage. This pragma lets you
choose the global symbol model to be used for external variables.

A.1.30.8 The #pragma linkage Directive (Alpha only)

The #pragma linkage preprocessor directive allows you to specify special
linkage types for function calls.

A.1.30.9 The #pragma use_linkage Directive (Alpha only)

The #pragma use_linkage directive associates a previously defined special
linkage with a function.

A.1.30.10 The #pragma message Directive
The #pragma message directive controls the issuance of individual diagnostic
messages or groups of messages. Use of this pragma overrides any command-
line options that may affect the issuance of messages.

A.1.30.11 The #pragma module Directive
The #pragma module preprocessor directive replaces the #module directive, but
the latter is still supported in VAX C mode for compatibility.

A.2 Features Affecting the HP C Run-Time Library and
Include Files

This section describes new features pertaining to the standard header files in
the HP C Run-Time Library (RTL).

A.2.1 <stddef.h>
The wchar_t type is now added to this header file. The declaration of errno is
also removed.

A.2.2 <ctype.h>
Because the C Standard refers to the macros in <ctype.h> as functions, the
<ctype.h> header file now includes function prototypes for functions in the
HP C RTL that perform the same operations as the macros currently defined
in this header file. These functions have been added to the HP C RTL.

The nonstandard toascii macro remains because, according to the C Standard,
Section 4.14.2, names beginning with ‘‘to’’ are reserved by the C Standard when
<ctype.h> is included.

A–22 Migrating from VAX C

A.2.3 <fp_class.h>
This header file containing IEEE floating-point class constants has been added
to support the new HP C RTL functions fp_class, fp_classf, and fp_classl
available on OpenVMS Alpha systems.

A.2.4 <locale.h>
The new standard header file <locale.h> is now supported and includes
prototypes for the functions setlocale and localeconv, which have been
added to the HP C RTL.

A.2.5 <math.h>
The functions cabs and hypot are no longer defined in the <math.h> header file
when the compiler is run in strict ANSI C mode.

A.2.6 <signal.h>
The SIGABRT signal is implemented and defined in the <signal.h> header file.
SIG_ATOMIC_T is now defined as char. In strict ANSI C mode, the following
are not declared: ssignal, gsignal, kill, pause, sleep, sigvec, sigblock,
sigsetmask, sigstack, and sigpause.

In strict ANSI C mode, the names of the ILL_* and FPE_* macros are changed
to begin with ‘‘SIG’’ (for example, SIGILL_RESAD_FAULT, SIGFPE_INTOVF_TRAP,
and so on) or be removed.

The BADSIG macro is renamed to SIG_ERR.

A.2.7 <stdio.h>
The <stdio.h> header file now defines the type size_t and no longer includes
<stdarg.h>. The v*printf functions are now prototyped using the type that
va_list is defined to be (that is, char *).

In strict ANSI C mode, the following macros are not visible: TRUE, FALSE,
SEEK_EOF, OPEN_MAX, L_ctermid, L_cuserid, L_lcltmpnam, L_nettmpnam, and
FILE_TYPE. In strict ANSI C mode, the following functions are not visible:
fgetname, fdopen, getw, and putw.

The rename function is added.

The fflush function is modified so that a null argument causes it to flush all
files.

The printf function is modified to provide the following support:

• The %i conversion is supported.

Migrating from VAX C A–23

• The "0" flag works properly in conjunction with other flags and with all
conversion specifiers. The long double type and the h modifier are now
supported.

• The %d and %i specifiers interpret the precision specification.

The scanf function is modified to handle white space as specified by the C
Standard. The %p specifier is added. The L flag for long double is added.

The clearerr, feof, and ferror macros are now provided as both macros
and functions. By default, they are accessed as macros. To access them as
functions, perform an #undef on the macro of the same name. For example:

#undef clearerr

A.2.8 <stdlib.h>
The <stdlib.h> header file is modified to define size_t and wchar_t directly,
rather than including <stddef.h>. The names of the DIV_T and LDIV_T
structures now begin with underscores.

The MB_CUR_MAX macro is added.

The multibyte character and string functions mblen, mbtowc, wctomb, mbstowcs
and wcstombs are added as specified in Sections 4.10.7 and 4.10.8 of the C
Standard.

The abort() function is changed to only raise a SIGABRT signal.

A.2.9 <string.h>
The strcoll and strxfrm functions are added as specified in the C Standard,
Sections 4.11.4.3 and 4.11.4.5.

A.2.10 <time.h>
In strict and relaxed modes, the following changes apply to the <time.h>
header file:

• CLOCKS_PER_SEC is defined instead of CLK_TCK.

• The size_t and time_t types are defined, and the <types.h> and
<timeb.h> header files are not included.

• The times and ftime functions, and the struct tbuffer, tbuffer_t, and
tm_t types must not be defined in your source code.

The mktime and strftime functions are added as specified in the C Standard,
Sections 4.12.2.3 and 4.12.3.5, respectively.

A–24 Migrating from VAX C

A.3 Unsupported Features
HP C for OpenVMS Systems does not support parallel processing on either
OpenVMS VAX or OpenVMS Alpha systems and, therefore, does not support
the following qualifiers and preprocessor directives:

/[NO]PARALLEL
/SHOW=NODECOMPOSITION
#pragma ignore_dependency
#pragma safe_call
#pragma sequential_loop

Migrating from VAX C A–25

B
Common Pitfalls

This appendix contains some of the most common pitfalls you might encounter
while using HP C. Symptoms, examples, and solutions are described.

Symptom:
The compiler generates an "Insufficient Virtual Memory" error.

Solution:
Increase the PAGEFILEQUO process quota and/or the VIRTUALPAGCNT
sysgen parameter.

Symptom:
The compiler does not recognize expected routine entry points.

Example:
$ type main.c
main()
{
exit(1);

}
$ cc main.c
exit(1);
..^
%CC-I-IMPLICITFUNC, In this statement, the identifier
exit is implicitly declared as a function.

Solutions:

1. In ANSI mode, include function prototypes (such as #include <stdlib.h>)
in this example.

2. Compile using the /STANDARD=VAXC qualifier.

Symptom:
The compiler generates a %CC-E-NOTCOMPAT error message for seemingly
correct code.

Common Pitfalls B–1

Example:
$ type main.c
void foo(short a);
void foo(a)
short a;

{}
$ cc main.c

void foo(a)
.....^

%CC-E-NOTCOMPAT, In this declaration, the type of foo is not compatible
with the types of previous declarations of foo.

This example represents a mixing of new-style function prototypes and old-
style function declarations. In the following declaration, the argument a gets
widened to int on entry to foo before being converted to type short:

void foo(a)
short a;

Consequently the compiler detects a type mismatch. The example can be
generalized to float variables, or any combination of (unsigned) char or short
arguments.

Solutions:

1. Replace the new-style function prototype with an old-style function
definition:

void foo();
void foo(a)
short a;
{}

2. Replace the old-style function declaration with a new-style function
declaration:

void foo(short a);
void foo(short a)
{}

Symptom:
Include-file lookups do not include the anticipated files.

B–2 Common Pitfalls

Example:
By default, HP C for OpenVMS Systems first searches the directory containing
the top-level source file. Consider the following files and the #include
statements they contain:

[]main.c
#include "[.sub1]a.h"

[.sub1]a.h
#include "b.h"

[.sub1]b.h
"In [.sub1]"

[.sub2]b.h
"In [.sub2]"

Compiling with the following command includes the [.sub2]b.h header file:

cc/include=[.sub2]main.c

Solution:
Specify /NESTED_INCLUDE_DIRECTORY in order to first search the
directory containing the top-level source file (not the directory of the source
file containing the #include directive).

Symptom:
VAX C extensions to the language are not accepted by the compiler.

Example:
int _align (word) w1;
....^
%CC-W-ALIGNEXT, _align is a language extension.

Solution:
Compile using the /STANDARD=VAXC qualifier.

Symptom:
The compiler generates a ADDRCONSTEXT (warning in /STANDARD=RELAXED
mode and error in /STANDARD=ANSI mode) for seemingly correct code.

Common Pitfalls B–3

Example:
$ type main.c
struct dsc$descriptor_s
{
unsigned short dsc$w_length;
unsigned char dsc$b_dtype;
unsigned char dsc$b_class;
char *dsc$a_pointer;

};

main()
{
char name[5];
struct dsc$descriptor_s name_dsc = {
sizeof(name)-1, 14, 1, name };

}

$ cc main.c

sizeof(name)-1, DSCK_DTYPE_T, DSCK_CLASS_S, name };
..^
%CC-W-ADDRCONSTEXT, In the initializer for name_dsc.dsc$a_pointer,
"name" does not have a constant address, but occurs in a context that
requires an address constant. This is an extension of the language.

Solution:
Section 3.5.7 of the C Standard restricts allowable automatic aggregate initial-
izion. The HP C compiler does not have this restriction in /STANDARD=VAXC
mode. Use any of the following solutions.

• Declare the array name to be static:

static char name[5];

• Compile in /STANDARD=VAXC mode.

• Compile with /WARNING=DISABLE=ADDRCONSTEXT.

• Insert the #pragma [no]standard preprocessor directive to suppress the
warning message:

#pragma __nostandard
struct dsc$descriptor_s name_dsc = {

sizeof(name)-1, DSCK_DTYPE_T, DSCK_CLASS_S, name };
}

#pragma __standard

B–4 Common Pitfalls

C
Programming Tools

This appendix provides information on tools that you can use to develop and
to refine your HP C programs. Some of the products described ship with
the OpenVMS operating system; others must be purchased separately. The
following products are described in this appendix:

• OpenVMS Debugger (Section C.1)

• OpenVMS Text Processing Utility (Section C.2)

• Language-Sensitive Editor and Source Code Analyzer (Section C.3)

• CDD/Repository (Section C.4)

C.1 OpenVMS Debugger
A debugger is a tool to help you locate run-time errors quickly. It enables you
to observe and manipulate the program’s execution interactively, step by step,
until you locate the point at which the program stopped working correctly.

The OpenVMS Debugger (provided with the OpenVMS operating system) is a
symbolic debugger. You can refer to program locations by the symbols (names)
you used for those locations in your program: the names of variables, routines,
labels, and so on. You do not have to use virtual addresses to refer to memory
locations.

If your program is written in more than one language, you can change from
one language to another in the course of a debugging session. The current
source language determines the format used for entering and displaying data,
as well as other features that have language-specific settings (for example,
comment characters, operators and operator precedence, and case sensitivity or
insensitivity).

For information on the debugger, see the OpenVMS Debugger Manual.

The following sections provide language-specific information on the
OpenVMS Debugger.

Programming Tools C–1

C.1.1 Compiling and Linking to Prepare for Debugging
The following example shows how to compile and link a HP C program
(consisting of a single compilation unit named INVENTORY) so that you will
be able to use the debugger:

$ CC/DEBUG/NOOPTIMIZE INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the CC command causes the compiler to write the
debug symbol records associated with INVENTORY.C into the object module,
INVENTORY.OBJ. These records allow you to use the names of variables and
other symbols declared in INVENTORY with debugger commands. (If your
program has several compilation units, you must compile each unit that you
want to debug with the /DEBUG qualifier.)

You should use the /NOOPTIMIZE qualifier when you compile in preparation
for debugging. Without this qualifier, the resulting object code is optimized,
which may cause the contents of some program locations to be inconsistent
with what you might expect from the source code. (After the program has been
debugged, you will probably want to recompile it without the /NOOPTIMIZE
qualifier, because optimization might reduce a program’s size and increase the
execution speed.)

The /DEBUG qualifier on the LINK command causes the linker to include all
symbol information that is contained in INVENTORY.OBJ in the executable
image. The qualifier also causes the OpenVMS image activator to start the
debugger at run time. (If your program has several object modules, you might
need to specify other modules in the LINK command.)

C.1.2 Starting and Terminating a Debugging Session
Before you invoke the debugger, enter the following command to check the
current debugger configuration:

$ SHOW LOGICAL DBG$PROCESS
%SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

If DBG$PROCESS has a value other than undefined (as in the previous
example) or DEFAULT, enter the following command to change this value:

$ DEFINE DBG$PROCESS DEFAULT

Enter the DCL command RUN to invoke the debugger. The following message
appears on your screen:

C–2 Programming Tools

$ RUN INVENTORY

OpenVMS DEBUG Version 6.n

%DEBUG-I-INITIAL, language is C, module set to ’INVENTORY’
DBG>

You can now enter debugger commands at the DBG> prompt. At this point, if
you enter the GO command, program execution begins and continues until it is
forced to pause or stop (for example, if the program prompts you for input, or
an error occurs).

To interrupt a debugging session and return to the debugger prompt, press
Ctrl/C. This is useful if, for example, your program loops or you want to
interrupt a debugger command that is still in progress. For example:

DBG> GO
.
.
.

(infinite loop)
Ctrl/C

Interrupt
%DEBUG-W-ABORTED, command aborted by user request
DBG>

The following message indicates that your program has completed successfully:

%DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG>

To end a debugging session, enter the EXIT command at the DBG> prompt or
press Ctrl/Z:

DBG> EXIT
$

C.1.3 Notes on HP C Support
In general, the OpenVMS Debugger supports the data types and operators of
HP C and of the other debugger-supported languages. To get information on
the supported data types and operators of any of the languages, enter the
HELP LANGUAGE command at the DBG> prompt.

The following sections present HP C specific debugging examples.

Programming Tools C–3

C.1.3.1 Debugger Command-Line Options
HP C provides a set of debugger options that you can specify to the /DEBUG
qualifier to the CC command. These options alter the types of information that
the compiler places in the object module for use by the OpenVMS Debugger.
The debugger options include using traceback records, using the symbol table,
and enabling the debugger to step into inline functions. For information about
these options, see Section 1.3.4.

C.1.3.2 Accessing Scalar Variables
The EXAMINE command displays scalar variables of any HP C data type.
Reference scalar variables in the same case that you declare them, using the
HP C syntax for such references.

Example C–1 shows the HP C program SCALARS.C used in the examples that
follow.

Example C–1 Debugging Sample Program SCALARS.C

/* SCALARS.C This program defines a large number of *
* variables to demonstrate the effect *
* of the various STEP debugger commands. */

main()
{

static float light_speed; /* Define the variable. */
static double speed_power;
static unsigned ui;
static long li;
static char ch;
static enum primary { red, yellow, blue } color;

static long *ptr;

light_speed = 3.0e10;
speed_power = 3.1234567890123456789e10;
ui = -438394;
li = 790374270;
ch = ’A’;
color = blue;
ptr = &li;

}

The following debugging examples are based on executing SCALARS.EXE and
show the commands used to access variables of scalar data type.

C–4 Programming Tools

The debugger command SHOW SYMBOL/TYPE displays the data type of one
variable:

DBG> show symbol/type color
data SCALARS\main\color

enumeration type (primary, 3 elements), size: 4 bytes

The following debugging commands set a breakpoint before the end of
the program and execute the program up to the breakpoint. The program
initializes the variables declared in main:

DBG> set break %line 22
DBG> go
break at SCALARS\main\%LINE 22

22: }

The EXAMINE command displays the contents of the variables listed. The
char variables are interpreted by the debugger as byte integers, not ASCII
characters:

DBG> examine li, ui, light_speed, speed_power, ch, color, *ptr
SCALARS\main\li: 790374270
SCALARS\main\ui: 4294528902
SCALARS\main\light_speed: 3.0000001E+10
SCALARS\main\speed_power: 31234567890.12346
SCALARS\main\ch: 65
SCALARS\main\color: blue
*SCALARS\main\ptr: 790374270

To display the contents of ch as a character, you must use the /ASCII qualifier:

DBG> examine/ascii ch
SCALARS\main\ch: "A"

The DEPOSIT command loads the value single_quote>z’ in the variable ch;
the EXAMINE command shows that single_quote>z’ has replaced the previous
contents of the variable ch. Again, use the /ASCII qualifier to translate the
byte integer into its ASCII equivalent:

DBG> deposit/ascii ch = ’z’
DBG> examine/ascii ch
SCALARS\main\ch: "z"
DBG>

Programming Tools C–5

C.1.3.3 Accessing Arrays
With the EXAMINE command, you can look at the values in arrays using
HP C syntax for array references. You can examine an entire array by giving
the array identifier. You can examine individual elements of the array using
the array operator ([]). Array elements can have any data type.

Consider the following declaration:

int arr[10];

This declares an array of 10 elements, arr[0] through arr[9].

Example C–2 shows the HP C program ARRAY.C used in the examples that
follow.

Example C–2 Debugging Sample Program ARRAY.C

/* ARRAY.C This program increments an array to *
* demonstrate the access of arrays in HP C. */

main()
{

int i;
static int arr[10];
for (i=0; i<10; i++)

arr[i]=i;
}

The examples that follow are based on executing ARRAY.EXE and show the
commands used to access variable arrays. (Note: Compile ARRAY.C with the
/NOOPT qualifier for the examples to work as described.)

The following commands set a breakpoint at the last line in the program and
execute the program to that point:

DBG> set br %line 10
DBG> go
break at ARRAY\main\%LINE 10

10: }

By specifying the variable identifier, you can look at the entire array:

C–6 Programming Tools

DBG> examine arr
ARRAY\main\arr

[0]: 0
[1]: 1
[2]: 2
[3]: 3
[4]: 4
[5]: 5
[6]: 6
[7]: 7
[8]: 8
[9]: 9

You can examine individual elements of the array by using the bracket operator
to specify the subscript of the element. Pressing Return (the debugger’s
address reference operator) in an EXAMINE command displays the next
element of the array. Using the up-arrow address reference operator (^)
displays the previous member of the array:

DBG> examine arr[5]
ARRAY\main\arr[5]: 5
DBG> examine Return

ARRAY\main\arr[6]: 6
DBG> examine ^
ARRAY\main\arr[5]: 5

C.1.3.4 Accessing Character Strings
Character strings are implemented in HP C as null-terminated ASCII strings
(ASCIZ strings). To examine and deposit data in an entire string, use the
/ASCIZ qualifier (abbreviated /AZ) so that the debugger can interpret the end
of the string properly. You can examine and deposit individual characters in
the string using the C array subscripting operators ([]). When you examine
and deposit individual characters, use the /ASCII qualifier.

Example C–3 shows the HP C program STRING.C used in the examples that
follow.

Programming Tools C–7

Example C–3 Debugging Sample Program STRING.C

/* STRING.C This program establishes a string to *
* demonstrate the access of strings in HP C. */

main()
{

static char *s = "vaxie";
static char **t = &s;

}

The following examples are based on executing STRING.EXE and show the
commands used to manipulate C strings.

The EXAMINE/AZ command displays the contents of the character string
pointed to by *s and **t:

DBG> step
stepped to STRING\main\%LINE 8

8: }
DBG> examine/az *s
*STRING\main\s: "vaxie"
DBG> examine/az **t
**STRING\main\t: "vaxie"

The DEPOSIT/AZ command deposits a new ASCIZ string in the variable
pointed to by *s. The EXAMINE/AZ command displays the new contents of the
string:

DBG> deposit/az *s = "HP C"
DBG> examine/az *s, **t
*STRING\main\s: "HP C"
**STRING\main\t: "HP C"

You can use array subscripting to examine individual characters in the
string and deposit new ASCII values at specific locations within the string.
When accessing individual members of a string, use the /ASCII qualifier. A
subsequent EXAMINE/AZ command shows the entire string containing the
deposited value:

examine/ascii s[2]
STRING\main\s[2]: ’ ’
DBG> deposit/ascii s[2] = "-"
DBG> examine/az *s, **t
*STRING\main\s: "HP-C"
**STRING\main\t: "HP-C"

C–8 Programming Tools

C.1.3.5 Accessing Structures and Unions
You can examine structures in their entirety or on a member-by-member basis,
and deposit data into structures one member at a time.

To reference members of a structure or union, use the usual C syntax for such
references. That is, if variable p is a pointer to a structure, you can reference
member y of that structure with the expression p ->y. If variable x refers to
the base of the storage allocated for a structure, you can refer to a member of
that structure with the x.y expression.

The debugger uses the HP C type-checking rules that follow to reference
members of a structure or union. For example, in the case of x.y, y need not
be a member of x; it is treated as an offset with a type. When such a reference
is ambiguous—when there is more than one structure with a member y—the
debugger attempts to resolve the reference according to the rules that follow.
The same rules for resolving the ambiguity of a reference to a member of a
structure or union apply to both x.y and p ->y.

• If only one of the members, y, belongs in the structure or union, x, that is
the one that is referenced.

• If only one of the members, y, is in the same scope as x, then that is the
one that is referenced.

You can always give a path name with the reference to x to narrow the scope
that is used and to resolve the ambiguity. The same path name is used to look
up both x and y.

Example C–4 shows the HP C program STRUCT.C used in the examples that
follow.

Programming Tools C–9

Example C–4 Debugging Sample Program STRUCT.C

/* STRUCT.C This program defines a structure and union *
* to demonstrate the access of structures and *
* unions in HP C. */

main()
{

static struct
{

int im;
float fm;
char cm;
unsigned bf : 3;

} sv, *p;

union
{

int im;
float fm;
char cm;

} uv;

sv.im = -24;
sv.fm = 3.0e10;
sv.cm = ’a’;
sv.bf = 7; /* Binary: 111 */

p = &sv;

uv.im = -24;
uv.fm = 3.0e10;
uv.cm = ’a’;

}

The following examples are based on executing STRUCT.EXE and show the
commands used to access structures and unions.

The SHOW SYMBOL command shows the variables contained in the user-
defined function main:

C–10 Programming Tools

DBG> show symbol * in main
routine STRUCT\main
type STRUCT\main\char
data STRUCT\main__func__
record component STRUCT\main\<generated_name_0002>.im
record component STRUCT\main\<generated_name_0002>.fm
record component STRUCT\main\<generated_name_0002>.cm
record component STRUCT\main\<generated_name_0002>.cm
data STRUCT\main\sv
data STRUCT\main\p
record component STRUCT\main\<generated_name_0001>.im
record component STRUCT\main\<generated_name_0001>.fm
record component STRUCT\main\<generated_name_0001>.cm

data STRUCT\main\uv

Set a breakpoint at line 29 and enter a GO command to initialize the variables
declared in the structure sv:

DBG> set break %line 29
DBG> go
break at STRUCT\main\%LINE 29

29: uv.im = -24;

Use the EXAMINE command with the name of the structure to display
all structure members. Note that sv.cm has the char data type, which is
interpreted by the debugger as a byte integer. The debugger also displays the
value of bit fields in decimal:

DBG> examine sv
STRUCT\main\sv

im: -24
fm: .3000000E+11
cm: 97
bf: 7

To display the ASCII representation of a char data type, use the /ASCII
qualifier on the EXAMINE command. To display bit fields in their binary
representation, use the /BINARY qualifier:

DBG> examine/ascii sv.cm
STRUCT\main\sv.cm: "a"
DBG> examine/binary sv.bf
STRUCT\main\sv.bf: 111

You deposit data into a structure one member at a time. To deposit data into
a member of type char, use the /ASCII qualifier and enclose the character in
either single or double quotation marks. To deposit a new binary value in a bit
field, use the %BIN keyword:

Programming Tools C–11

DBG> deposit sv.im = 99
DBG> deposit sv.fm = 3.14
DBG> deposit/ascii sv.cm = ’z’
DBG> deposit sv.bf = %BIN 010
DBG> examine sv
STRUCT\main\sv

im: 99
fm: 3.140000
cm: 122
bf: 2

You can also access members of structures (and unions) by pointer, as shown in
*p and p ->bf:

DBG> examine *p
*STRUCT\main\p

im: 99
fm: 3.140000
cm: 122
bf: 2

DBG> examine/binary p ->bf
STRUCT\main\p ->bf: 010

A union contains only one member at a time, so the value for uv.im is the
only valid value returned by the EXAMINE command; the other values are
meaningless:

DBG> step
stepped to STRUCT\main\%LINE 30

30: uv.fm = 3.0e10;
DBG> examine uv
STRUCT\main\uv
[Displaying union member number 1]

im: -24
fm: -1.5485505E+38
cm: -24

This series of STEP and EXAMINE commands shows the content of the union
as the different members are assigned values:

DBG> step
stepped to STRUCT\main\%LINE 31

31: uv.cm = ’a’;
DBG> examine uv.fm
STRUCT\main\uv.fm: .3000000E+11
DBG> step
stepped to STRUCT\main\%LINE 32

33: }
DBG> examine/ascii uv.cm
STRUCT\main\uv.cm: "a"

C–12 Programming Tools

Example C–5 shows the HP C program ARSTRUCT.C used in the examples
that follow.

Example C–5 Debugging Sample Program ARSTRUCT.C

/* ARSTRUCT.C This program contains a structure definition *
* and a for loop to demonstrate the debugger’s *
* support for HP C operators. */

main()
{

int count, i = 1;
char c = ’A’;

struct
{

int digit;
char alpha;

} tbl[27], *p;

for (count = 0; count <= 26; count++)
{

tbl[count].digit = i++;
tbl[count].alpha = c++;

}
}

The following examples are based on executing ARSTRUCT.EXE and show
the use of C expressions on the debugger command line. (Note: Compile
ARSTRUCT.C with the /NOOPT qualifier for the examples to work as
described.)

Relational operators can be used in expressions (such as count �� 2) in a
WHEN clause to set a conditional breakpoint:

DBG> set break %line 20 when (count == 2)
DBG> go
break at ARSTRUCT\main\%LINE 20

20: }

The first EVALUATE command that follows uses C syntax to refer to the
address of a variable. It is equivalent to the second command, which uses the
/ADDRESS qualifier to obtain the address of the variable. The addresses of
these variables might not be the same every time you execute the program if
you relink the program.

DBG> evaluate &tbl
2146736881
DBG> evaluate/address tbl
2146736881

Programming Tools C–13

Individual members of an aggregate can be evaluated; the debugger returns
the value of the member:

DBG> evaluate tbl[2].digit
3

When you perform pointer arithmetic, the debugger displays a message
indicating the scale factor that has been applied. It then returns the address
resulting from the arithmetic operation. A subsequent EXAMINE command at
that address returns the value of the variable:

DBG> evaluate tbl + 4
%DEBUG-I-SCALEADD, pointer addition: scale factor of 5 applied to
right argument
2146736901
DBG> examine 2146736901
ARSTRUCT\main\tbl[4].digit: 5

The EVALUATE command can perform arithmetic operations on program
variables:

DBG> evaluate tbl[4].digit * 2
10

The EVALUATE command can also perform arithmetic calculations that may
or may not be related to your program. In effect, this command can be used as
a calculator that uses C syntax for arithmetic expressions:

DBG> evaluate 7 % 3
1

The debugger enters a message when you use an unsupported operator:

DBG> evaluate count++
%DEBUG-W-SIDEFFECT, operators with side effects not supported (++, --)

C.1.3.6 Sample Debugging Session
Example C–6 shows the HP C program POWER.C to be used in the sample
debugging session shown in Example C–7.

C–14 Programming Tools

Example C–6 Debugging Sample Program POWER.C

/* POWER.C This program contains two functions: "main" and *
* "power." The main function passes a number to *
* "power", which returns that number raised to the *
* second power. */

main()
{

static int i, j;
int power(int);

i = 2;
j = power(i);

}
power(int j)

{
return (j * j);

}

Although this program contains no errors, Example C–7 shows some simple
debugger commands that can be used to evaluate its execution. The callout
numbers in this sample debugging session are keyed to the notes that follow.

Example C–7 A Sample Debugging Session

1 $ CC/DEBUG/NOOPTIMIZE POWER
$ LINK/DEBUG POWER
$ RUN POWER
%DEBUG-I-NOGLOBALS, some or all global symbols not accessible

OpenVMS I64 Debug64 Version E8.0

2 %DEBUG-I-INITIAL, Language: C, Module: ’POWER’
%DEBUG-I-NOTATMAIN, Type GO to reach MAIN program

(continued on next page)

Programming Tools C–15

Example C–7 (Cont.) A Sample Debugging Session

3 DBG> set break %LINE 13
4 DBG> go

break at routine POWER\main
12: i = 2;

DBG> go
5 break at POWER\main\%LINE 13
6 13: j = power(i);
7 DBG> step/into
8 stepped to routine POWER\power

16: int j;
DBG> step
stepped to POWER\power\%LINE 18

18: return (j * j);
9 DBG> examine J
1 0 %DEBUG-W-NOSYMBOL, symbol ’J’ is not in the symbol table

DBG> examine j
1 1 POWER\power\j: 2

DBG> step
stepped to POWER\main\%LINE 13+46

13: j = power(i);
DBG> step
stepped to POWER\main\%LINE 14

14: }
DBG> examine j

1 2 POWER\main\j: 4
DBG> go

1 3 %DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful
completion’

1 4 DBG> exit
$

Key to Example C–7:

1 To execute a program with the debugger, you must compile and link the
program with the /DEBUG qualifier. The HP C compiler compiles the
source file with the /DEBUG=TRACEBACK qualifier by default. However,
unless you compile your program with the /DEBUG qualifier, you cannot
access all of the program’s variables. Use the /NOOPTIMIZE qualifier to
turn off compiler optimization that might interfere with debugging.

2 The OpenVMS Image Activator passes control to the debugger on execution
of the image. The debugger displays the current programming language
and the name of the object module that contains the main function, or the
first function to be executed. Remember that the linker converts the names
of object modules to uppercase letters.

C–16 Programming Tools

3 You enter debugger commands at the following prompt:

DBG>

The SET BREAK command defines a point in the program where the
debugger must suspend execution. In this example, SET BREAK tells
the debugger to stop execution before execution of line number 13. After
the debugger processes the SET BREAK command, it responds with the
debugger prompt.

4 The GO command begins execution of the image.

5 The debugger indicates that execution is suspended at line 13 of the main
function. The debugger specifies sections of the program by displaying the
object module it is working in, delimited by a backslash character (\),
followed by the name of the C function. The linker converted the name of
the object module to uppercase letters but the debugger specifies the name
of the function exactly as it is found in the source text.

6 The debugger displays the line of source text where it suspended execution.
Refer to the source code listing in Example C–6 to follow the debugger
as it steps through the lines of the program in this interactive debugging
example.

7 The STEP/INTO command executes the first executable line in a function.
The STEP command tells the debugger to execute the next line of code, but
if the next line of code is a function call, the debugger will not step through
the function code unless you use the /INTO qualifier. Use STEP/INTO to
step through a user-defined or HP C RTL function.

8 When stepping through a function, the debugger specifies line numbers by
displaying the object module, the C function, and %LINE followed by the
line number in the source text, each delimited by a backslash. The code at
that line number is then displayed.

9 The EXAMINE command displays the contents of a variable.

1 0 The debugger does not recognize the variable J as existing in the scope of
the current module.

1 1 Because the debugger supports the case sensitivity of C variables, variable
j exists but variable J does not. Refer to Example C–6 to review the
program variables.

In response to the EXAMINE command, the debugger displays the value of
the variable j (2).

Programming Tools C–17

1 2 The value of variable j in function main is different from the local variable
j in the power function. The power function executes properly, returning
the value
22 (4).

1 3 When execution is completed, the debugger displays the execution status
(successful, in this example).

1 4 The EXIT command terminates the debugging session and returns to the
DCL prompt.

C.2 OpenVMS Text Processing Utility
The OpenVMS Text Processing Utility (TPU) (provided with the OpenVMS
operating system) is a high-performance, programmable utility. TPU provides
a number of special features, such as multiple buffers and windows, definable
keys and key sequences, a procedural language, and a callable interface.

TPU serves as a base on which to layer other text processing applications, for
example, text editors. The Extensible VAX Editor (EVE) is the editor provided
with TPU. To invoke EVE, enter the following command at the DCL prompt:

$ EDIT/TPU USER.C

To exit from EVE, press the Do key to get the Command: prompt. If you want
to save modifications to your file, enter the EXIT command. If you do not want
to save the file or any modification to the file, enter the QUIT command.

For information on TPU and EVE, see the Guide to VMS Text Processing.

C.3 Language-Sensitive Editor and the Source Code
Analyzer

The HP Language-Sensitive Editor (LSE) and the HP Source Code Analyzer
(SCA) must be purchased separately from the OpenVMS operating system.
LSE is a text editor intended specifically for software development. SCA is an
interactive tool for program analysis.

These products are closely integrated; generally, SCA is invoked through LSE.
LSE provides additional editing features that make SCA program analysis
more efficient. In addition, LSE and SCA, in conjunction with the HP C
compiler, provide a set of new enhancements supporting source code design
and review.

C–18 Programming Tools

In addition to text editing features, LSE provides the following software
development features:

• Formatted language constructs, or templates, for most HP programming
languages, including HP C. These templates include the keywords and
punctuation used in source programs, and use placeholders to indicate
locations in the source code where additional text is optional or required.

• Commands to compile, review, and correct compilation errors from within
the editor.

• Integration with the DEC/Code Management System (CMS) for OpenVMS
Systems. You can enter CMS commands from within the editor to make
source file management more efficient.

SCA performs the following types of program analysis:

• Cross-referencing, which supplies information about program symbols and
source files.

• Static analysis, which provides information on how subprograms, symbols,
and files are related.

LSE and SCA together, in conjunction with HP language compilers, provide the
following software design features:

• Pseudocode support, which includes a new LSE placeholder for delimiting
pseudocode. Pseudocode is text that describes algorithms or design
decisions. This feature allows you to write source code in shorthand,
returning later to fill in code details.

• Placeholder processing, in which language compilers accept LSE
placeholders and pseudocode as valid program elements during
compilation. This feature allows you to test the validity of algorithms
while programs are still in shorthand form.

• Comment processing, which includes design comment information in the
SCA library. SCA performs cross-referencing and static analysis on this
information in response to user queries.

• View support, which provides a reverse-design facility. LSE commands
compress program code into overview line summaries. If you choose to
edit these overview lines, the modifications you make are reflected in the
program code.

• A report tool, callable through LSE, that can print views, standard design
reports, and customized reports.

Programming Tools C–19

The following sections provide entry, exit, and language-specific information
on the combined use of LSE and SCA. For more information on LSE and SCA,
see the Guide to Language-Sensitive Editor for VMS Systems and the Guide to
Source Code Analyzer for VMS Systems. For more information on CMS, see the
Guide to Code Management System for VMS Systems.

C.3.1 Preparing an SCA Library
SCA stores data generated by the HP C compiler in an SCA library. The data
in an SCA library contains information about all symbols, modules, and files
encountered during a specific compilation of the source. You must prepare this
library before you enter LSE to invoke SCA. This preparation involves the
following steps:

1. Create an OpenVMS directory for your SCA library. For example:

$ CREATE/DIRECTORY PROJ:[USER.LIB1]

2. Initialize and set the library with the SCA CREATE LIBRARY command.
For example:

$ SCA CREATE LIBRARY [.LIB1]

If you have an existing SCA library that has been initialized, you make
its contents visible to SCA by setting it with the SCA SET LIBRARY
command. For example:

$ SCA SET LIBRARY [.EXISTING_SCA_LIBARAY]

A message appears in the message buffer, at the bottom of your screen,
indicating whether your SCA library selection succeeded.

3. Direct the HP C compiler to generate data analysis files by appending the
/ANALYSIS_DATA qualifier to the CC command. For example:

$ CC/ANALYSIS_DATA PG1,PG2,PG3

This command line compiles the input files PG1.C, PG2.C, and PG3.C and
generates corresponding output files for each input file, with the file types
OBJ and ANA. HP C puts these files in your current default directory.

4. Load the information in the data analysis files into your SCA library with
the SCA LOAD command. For example:

$ SCA LOAD PG1,PG2,PG3

This command loads your library with the modules contained in the data
analysis files PG1.ANA, PG2.ANA, and PG3.ANA.

C–20 Programming Tools

5. Once the SCA library has been prepared, enter LSE to begin an SCA
session. Within this context, the integration of LSE and SCA provides
commands that can be used only within LSE.

C.3.2 Starting and Terminating an LSE or an SCA Session
To invoke LSE, enter the following command at the DCL prompt:

$ LSEDIT USER.C

To end an LSE session, press Ctrl/Z to get the LSE> prompt. If you want to
save modifications to your file, enter the EXIT command. If you do not want to
save the file or any modification to the file, enter the QUIT command.

To invoke SCA from the LSE prompt, enter the SCA command that you want
to execute using the following syntax:

LSE> command [parameter] [/qualifier...]

To invoke SCA from the DCL command line for the execution of a single
command, use the following syntax:

$ SCA command [parameter] [/qualifier...]

If you have several SCA commands to invoke, you might want to first invoke
the SCA subsystem and then enter SCA commands:

$ SCA
SCA> command [parameter] [/qualifier...]

Typing EXIT (or pressing Ctrl/Z) ends an SCA subsystem session and returns
you to the DCL level.

C.3.3 Programming Language Placeholders and Tokens
The LSE language-sensitive features simplify the tasks of developing and
maintaining software systems. These features include language-specific
placeholders and tokens, aliases, comment and indentation control, and
templates for subroutine libraries.

You can use LSE as a traditional text editor. In addition, you can use the power
of LSE’s tokens and placeholders to step through each program construct and
supply text for those constructs that need it.

Placeholders are markers in the source code that indicate where you can
provide program text. These placeholders help you to supply the appropriate
syntax in a given context. You do not need to type placeholders; they are
inserted for you by LSE. Placeholders are surrounded by brackets or braces
and at (@) signs.

Programming Tools C–21

Placeholders are either optional or required. Required placeholders, indicated
by braces ({}), represent places in the source code where you must provide
program text. Optional placeholders, indicated by brackets ([]), represent
places in the source code where you can either provide additional constructs or
erase the placeholder.

You can move forward or backward from placeholder to placeholder. In
addition, you can delete or expand placeholders as needed.

Tokens typically represent keywords in HP C. When expanded, tokens provide
additional language constructs. You can type tokens directly into the buffer.
You use tokens in situations, such as modifying an existing program, where
you want to add additional language constructs and there are no placeholders.
For example, typing IF and entering the EXPAND command causes a template
for an IF construct to appear on your screen. You can also use tokens to
bypass long menus in situations where expanding a placeholder, such as
{@statement@}, will result in a lengthy menu.

You can use tokens to insert text when editing an existing file by typing the
name for a function or keyword and entering the EXPAND command.

LSE provides commands for manipulating tokens and placeholders. Table C–1
shows these commands and their default key bindings.

Table C–1 Commands to Manipulate Tokens and Placeholders

Command Key Binding Function

EXPAND Ctrl/E Expands a place-
holder.

UNEXPAND PF1-Ctrl/E Reverses the effect
of the most recent
placeholder expansion.

GOTO PLACEHOLDER/FORWARD Ctrl/N Moves the cursor
forward to the next
placeholder.

GOTO PLACEHOLDER/REVERSE Ctrl/P Moves the cursor
backward to the next
placeholder.

ERASE PLACEHOLDER/FORWARD Ctrl/K Erases a placeholder.

(continued on next page)

C–22 Programming Tools

Table C–1 (Cont.) Commands to Manipulate Tokens and Placeholders

Command Key Binding Function

UNERASE PLACEHOLDER PF1-Ctrl/K Restores the most
recently erased
placeholder.

� Down-arrow Moves the indicator
downward through a
screen menu.

� Up-arrow Moves the indicator
upward through a
screen menu.

Enter

Return

�
ENTER
RETURN

� Selects a menu option.

To display a list of all the defined tokens provided by HP C, enter the following
LSE command:

LSE> SHOW TOKEN

To display a list of all the defined placeholders provided by HP C, enter the
following LSE command:

LSE> SHOW PLACEHOLDER

To put either list into a separate file, first enter the appropriate SHOW
command to put the list into the $SHOW buffer. Then enter the following
commands:

LSE> GOTO BUFFER $SHOW
LSE> WRITE filename

To obtain a hard copy of the list, use the PRINT command at DCL level to
print the file you created.

To obtain information about a particular token or placeholder, specify
a token name or placeholder name after the SHOW TOKEN or SHOW
PLACEHOLDER command.

Programming Tools C–23

C.3.4 Compiling Source Code
To compile your source code and to review compilation errors without leaving
the editing session, use the LSE commands COMPILE and REVIEW. The
COMPILE command issues a DCL command in a subprocess to invoke the
HP C compiler. The compiler then generates a file of compile-time diagnostic
information that LSE uses to review compilation errors. The diagnostic
information is generated with the /DIAGNOSTICS qualifier that LSE appends
to the compilation command.

For example, if you enter the COMPILE command while in the buffer USER.C,
the following DCL command is executed:

$ CC USER.C/DIAGNOSTICS=USER.DIA

LSE supports all the HP C compiler’s command qualifiers as well as user-
supplied command procedures.

The REVIEW command displays any diagnostic messages that result from
a compilation. LSE displays the compilation errors in one window and the
corresponding source code in a second window. This multiwindow capability
allows you to review your errors while examining the associated source code.

To compile a HP C program that contains placeholders and design comments,
include the following qualifiers to the COMPILE command:

LSE> COMPILE $/ANALYSIS_DATA/DESIGN

The /ANALYSIS_DATA qualifier generates a data analysis file containing
source code analysis information. This information is provided to the SCA
library.

The /DESIGN qualifier instructs the compiler to recognize placeholders
and design comments as valid program elements. If the /ANALYSIS_DATA
qualifier is also specified, the compiler includes information on placeholders
and design comments in the data analysis file.

C.3.5 LSE Examples
The following examples show the expansions of HP C tokens and placeholders.
The intent is to show the formats and guidelines that LSE provides, not to
fully expand all tokens and placeholders. An arrow (�) indicates where in the
example an action occurred.

To invoke LSE and the HP C language, use the following syntax:

LSEDIT [/qualifier . . .] filename.C

C–24 Programming Tools

C.3.5.1 Compilation Unit
When you use the editor to create a new HP C program, the initial string
{@compilation unit@} appears at the top of the screen:

-> {@compilation unit@}
[End of file]

Use Ctrl/E to expand this initial string. The following is displayed:

-> [@#module@]
[@module level comments@]
[@include files@]
[@macro definitions@]

[@preprocessor directive@]...

[@data type or declaration@]...;

[@function definition@]...;

C.3.5.2 Preprocessor Lines
Erase the [@#module@], [@module level comments@], [@include files@], and
[@macro definitions@]. The cursor is then positioned on [@preprocessor
directive@]. Expand [@preprocessor directive@] to duplicate it and display
a menu. Then select the #include option:

1. Use the up and down arrows on the keypad to position the displayed
selection arrow next to #include.

2. Press Return.

The following display results:

-> #include
[@preprocessor directive@]...

[@data type or declaration@]...;

[@function definition@]...;

After selecting the #include option, another menu appears that lists the types
of #include statements. Select the option #include {@module name@}. Your
display now looks like this:

-> #include {@module name@}
[@preprocessor directive@]...

[@data type or declaration@]...;

[@function definition@]...;

Type the value stdio over the placeholder {@module name@}.

Programming Tools C–25

Experiment with the LSE editor to expand other placeholders, such as [@data
type or declaration@], [@function definition@], and so on.

C.4 CDD/Repository
CDD/Repository is an optional OpenVMS software product available under
a separate license. The CDD/Repository product allows you to maintain
shareable data definitions (language-independent structure declarations) that
are defined by a data or repository administrator.

Note

CDD/Repository supports both the Common Data Dictionary (Version
3) and CDD/Plus (Version 4) interfaces. Older dictionary versions need
to be converted to repository (CDD/Repository) format using a supplied
conversion utility. For detailed information about CDD/Repository, see
the CDD/Repository documentation.

C.4.1 Using CDD/Repository
CDD/Repository data definitions are organized hierarchically in the same way
files are organized in directories and subdirectories. For example, a repository
for defining personnel data might have separate directories for each employee
type.

Descriptions of data definitions are entered into the dictionary in a special-
purpose language called CDO (Common Dictionary Operator, which replaces
the older interface called CDDL, Common Data Dictionary Language).
CDD/Repository converts the data descriptions to an internal form—making
them independent of the language used to access them—and inserts them into
the repository.

To extract data definitions from CDD/Repository, include the #pragma
dictionary preprocessor directive in your HP C source program. If the
data attributes of the data definitions are consistent with HP C requirements,
the data definitions are included in the HP C program during compilation. See
Section 5.4.3 for information about using #pragma dictionary.

CDD/Repository data definitions, in the form of HP C source code, appear in
source program listings if you specify the /SHOW=DICTIONARY qualifier on
the CC command line.

The advantage in using CDD/Repository instead of HP C source for structure
declarations is that CDD/Repository record declarations are language-
independent and can be used with several supported OpenVMS languages.

C–26 Programming Tools

C.4.2 Accessing CDD/Repository from HP C Programs
A repository or data administrator uses CDO to create repositories, define
directory structures, and insert record and field definitions into the repository.
Many repositories can be linked together to form one logical repository. If the
paths are set up correctly, users can access definitions as if they were in a
single repository regardless of physical location.

CDO also creates the record paths. Once established, records can be extracted
from the repository by means of the #pragma dictionary preprocessor directive
in HP C programs. At compile time, the record definition and its attributes
are extracted from the designated repository. Then the compiler converts the
extracted record definition into a HP C structure declaration and includes it in
the object module.

The #pragma dictionary preprocessor directive incorporates CDD/Repository
data definitions into the HP C source file during compilation. The #pragma
dictionary directive can be embedded in a HP C structure declaration. See
Section 5.4.3 for sample usage of #pragma dictionary.

C.4.3 Support for CDD/Repository Data Types
CDD/Repository supports all OpenVMS data types. HP C can translate all the
OpenVMS data types when they are declared in CDD/Repository records. Data
types that do not occur naturally in the HP C language are handled in the
following way:

• HP C never attempts to approximate a data type that is not supported by
the C language.

• Instead of approximating a data type, HP C uses its own structure data
type to represent all types (except for excessively long bit strings) not
supported by the C language; specifically, HP C creates structures of arrays
of type char that are large enough to represent the data structure.

• Bit strings (aligned or unaligned) can be up to 32 bits long, as defined
by the HP C language. Bit strings longer than 32 bits are broken into
increments of 32-bit strings or smaller so that the structure is correct with
respect to size. However, the long bit string cannot be accessed as one unit.

• All row-major arrays are represented as zero-origin arrays of the
appropriate size. An informational message is issued if the record
description specifies nonzero-origin dimension bounds. The compiler
adjusts the upper bound appropriately to maintain the correct number
of elements relative to a lower bound of zero. Column-major arrays are
converted to one-dimensional arrays containing the same total number of
elements.

Programming Tools C–27

The compiler applies various consistency checks to the record attributes
extracted from CDD/Repository, particularly the field data-type attributes. An
error message is issued when a record description does not pass the consistency
checks. An informational message is issued when HP C is confronted with
facility-independent attributes that are not supported. An error message is
issued when an attribute that is required by HP C is not present, even if the
attribute is optional in CDD/Repository record protocol.

The compiler synthesizes names for unnamed and filler fields. If
CDD/Repository does not specify a name and a name is required by the
syntax of the HP C language, the compiler synthesizes the name cc_cdd$_
unnamed_nnnnn. When CDD/Repository specifies a filler or a name that HP C
does not support, the compiler synthesizes the name cc_cdd$_filler_#nnnnn,
which includes the pound sign character (#). The string nnnnn represents a
unique integer. The # is not a valid character in an identifier, so you cannot
reference these fields.

Unsupported data types are mapped into HP C as structures of character
arrays of the appropriate size. The declaration of these data types uses the
following format:

struct { char Cname [s]; } CDDname;

The CDDname is the name of the member in the CDD/Repository record.
Cname is an identifier of the form cc_cdd_$_unsupported_#nnnnn, where
nnnnn is a unique integer, and s is the size of the data item, in bytes.

HP C generates variant_struct or variant_union declarations for unnamed
CDD/Repository structures and unions, so you do not have to specify these
references.

Table C–2 summarizes the mapping between CDD/Repository data types and
HP C data types.

Table C–2 Mapping Between CDD/Repository and HP C Data Types

CDD/Repository Data Type C Data Type

Unspecified
Unsigned byte
Unsigned word
Unsigned longword
Unsigned quadword
Unsigned octaword

Unsupported
unsigned char
unsigned short
unsigned int
Unsupported
Unsupported

(continued on next page)

C–28 Programming Tools

Table C–2 (Cont.) Mapping Between CDD/Repository and HP C Data Types

CDD/Repository Data Type C Data Type

Signed byte
Signed word
Signed longword
Signed quadword
Signed octaword

char
short
int
Unsupported
Unsupported

F_floating
D_floating
G_floating
H_floating

float1

double1

double1

Unsupported

F_floating complex
D_floating complex
G_floating complex
H_floating complex

Unsupported
Unsupported
Unsupported
Unsupported

Text
Varying text2

char [n]
Unsupported

Numeric string:
Unsigned
Left separate
Left overpunch
Right separate
Right overpunch
Zoned sign

Unsupported
Unsupported
Unsupported
Unsupported
Unsupported
Unsupported

Packed decimal string Unsupported

Bit
Bit unaligned

Bit field3

Bit field3

Date and time Unsupported

1If the specification of the /FLOAT or /[NO]G_FLOAT qualifier conflicts with the data type of the
CDD/Repository record member, an informational message is issued and the member is represented
as struct { char [8]} instead of double.

This would occur if the data type of the CDD/Repository record member is
D_floating, and G_floating format (the default) was specified on the CC command
line; or if the data type of the record member is G_floating, and either D_floating or
IEEE_floating (Alpha only) was specified on the command line; or if the data type of
the record member is F_floating, and IEEE_floating (Alpha only) was specified on the
command line.

2For these data types, the length of the structure is two bytes longer than the string to allow for
the length field.
3A message is issued if the bit-string length is greater than 32.

(continued on next page)

Programming Tools C–29

Table C–2 (Cont.) Mapping Between CDD/Repository and HP C Data Types

CDD/Repository Data Type C Data Type

Date
Virtual field
Varying string2

Unsupported
Ignored
Unsupported

2For these data types, the length of the structure is two bytes longer than the string to allow for
the length field.

C–30 Programming Tools

D
HP C Compiler Messages

This appendix lists the HP C compiler diagnostic messages.

For each message, this appendix gives the mnemonic and the message text,
an explanation of the message, and suggested actions to be taken to avoid
the message. For more information about the format of compiler diagnostic
messages, see Section 1.3.5.

To display a particular compiler message online, enter the following command:

$ HELP CC MESSAGE mnemonic Return (Alpha, I64)
$ HELP CC/DECC MESSAGE mnemonic Return (VAX only)

To display a list of all compiler message mnemonics, enter the following
command:

$ HELP CC MESSAGE Return (Alpha, I64)
$ HELP CC/DECC MESSAGE Return (VAX only)

Some messages substitute information from the program into the message text.
In this appendix, the portion of the text to be substituted is shown in italics.

Often, the same message is issued in different contexts within a program. In
this appendix, the message context is indicated by the italicized word context
within the message. The actual message issued by the compiler will contain
one of the following phrases substituted for context:

• In this declaration,

• In the initializer for

• In the declaration of "name",

• In the definition of the function "name",

• In the declaration of an unnamed object,

• In this statement,

HP C Compiler Messages D–1

You can control the messages issued with the /[NO]WARNINGS command-line
qualifier (Section 1.3.4) and the #pragma message preprocessor directive
(Section 5.4.14).

DECDEC, In this declaration,

DECINITVR, In the initializer for

DECNAMDEC, In the declaration of "name",

DECNAMFUNDEF, In the definition of the function "name",

DECUNDEC, In the declaration of an unnamed object,

PASSTA, In this statement,

ABSTRACTDCL, Invalid abstract declarator.
Description: An identifier was encountered in an abstract declarator. An
abstract declarator is used to specify a type only and must not contain an
identifier that specifies a declarator.
User Action: Correct the abstract declarator.

ADDRARRAY, context& before array "expression" is ignored.
Description: In certain modes, HP C will ignore an address-of operator
used on an entire array. This is for compatibility with other compilers that
have this behavior.
User Action: Remove the address-of operator.

ADDRCONSTEXT, context"name" does not have a constant address, but
occurs in a context that requires an address constant. This is an extension
of the language.
Description: The C89 standard requires that an initializer for a
pointer-type member of an automatic aggregate or union-type object have
an initializer that is an address constant. Other C compilers might not
successfully compile a program that uses this extension.
User Action: Be aware of this if you wish to port the program.

D–2 HP C Compiler Messages

ADDRESSOFVOID, contexttaking the address of a void type is a language
extension.
Description: The HP C compiler will allow taking the address of a void
type for compatibility with other compilers. This is an extension to the
standard. Other compilers may reject this.
User Action: Be aware of this if you plan to port this source to another
compiler.

ADDRSUBCONST, contextaccepting the expression "expr" as a constant is a
language extension.
Description: In many cases HP C accepts the subtraction of two
addresses within the same array or struct/union as a constant. The C
standard does not consider such an expression to be a constant. Therefore,
this program does not conform to the standard and may be rejected by
other compilers.
User Action: Change the expression to be a constant.

ALIGNCONFLICT, contextthe address "expr" has alignment of align which
is less than the alignment requirements of the destination pointer.
Dereferencing the destination pointer may cause an alignment fault.
Description: The compiler has detected a situation where a pointer to an
aligned data type is being assigned an address that may not be properly
aligned. A later dereference of this pointer could cause an alignment fault.
User Action: There are a number of possible actions. The best is
to correct the condition that is causing the source to have the wrong
alignment, as access to an unaligned data structure involves additional
run-time overhead. Other options would be to modify the declaration of the
destination pointer such that its referenced type has the _ _unaligned type
qualifier, or use the compiler option that tells the compiler to assume all
pointer references are unaligned. It is also possible to cast the source to
the destination type to silence this message. However, that solution will
not correct any unaligned access.

ALIGNCONFLICT1, contextthe address "expr" has alignment of align which
is less than the alignment requirements of the pointer type it is cast to.
Dereferencing the resulting pointer may cause an alignment fault.
Description: The compiler has detected a situation where an address is
being cast to a pointer type with a greater alignment requirement than the

HP C Compiler Messages D–3

type of the address expression implies. A later dereference of this pointer
type value could cause an alignment fault.
User Action: There are a number of possible actions. The best is
to correct the condition that is causing the source to have the wrong
alignment, as access to an unaligned data structure involves additional
run-time overhead. Other options would be to change the type of the
pointer used in the cast such that its referenced type has the _ _unaligned
type qualifier, or use the compiler option that tells the compiler to assume
all pointer references are unaligned. It is also possible to cast the address
expression to (void *) before casting it to the specified type to silence this
message. However, that solution will not correct any unaligned access.

ALIGNCONST, Integer constant alignment number is not necessarily
supported on all platforms.
Description: Although the specified alignment value is valid on this
system, it might not be valid on other systems. For example, 16 is a valid
alignment value on Alpha systems but would not be valid on VAX systems.
User Action: Be aware of this potential portability issue.

ALIGNEXT, _align is a language extension.
Description: The _align storage class modifier is a language extension of
HP C. Other C compilers might not successfully compile a program that
uses the extension.
User Action: Be aware of this extension if you wish to port the code.

ALIGNPOP, This "restore" has underflowed the member alignment’s stack.
No corresponding "save" was found.
Description: The member_alignment stack, managed by the #pragma
member_alignment and #pragma environment directives, contains more
restores than saves. This could signify a coding or logic error in the
program.
User Action: Make sure each restore has a corresponding save.

ALREADYTLS, The identifier "name" has already appeared in an omp
threadprivate directive.
Description: The same identifier appears more than once in a single omp
threadprivate directive, or appears in more than one omp threadprivate
clause.
User Action: Remove the duplicate identifiers

D–4 HP C Compiler Messages

ANSIALIASCAST, contexta pointer to type1 is being cast to a pointer to type2.
Using ANSI aliasing rules, the compiler may subsequently assume that the
two pointer types are pointing to different storage locations.
Description: The C standard allows a compiler to assume that these two
pointer types will point to different storage locations. The compiler will
make this assumption whenever ansi aliasing is enabled on the command
line, either directly or via another switch. The cast in itself does not violate
aliasing rules, e.g. you might cast the pointer value back to an allowed
type before you use it to access memory. But the compiler cannot generally
determine whether or not you do that. If your code accesses the memory
designated by this pointer value using both of these pointer types, you may
get unexpected results when ansi aliasing is enabled.
User Action: Casting through pointer to void will silence this message.
But if the end result is that the same memory still gets accessed through
different types that are not permitted under the aliasing rules, you may
still get unexpected results. If compiling without ansi aliasing corrects the
behavior of your program, your code almost certainly violates the aliasing
rules in a way that the compiler cannot detect.

ARGADDR, contexttaking the address of the constant expression "expression"
in an argument list is a language extension.
Description: The HP C compiler will allow the address of a constant to be
passed as an argument to a function call. This is an extension to standard
C. Other C compilers might not successfully compile a program that uses
this extension.
User Action: Assign the constant to a variable, and pass the address of
the variable.

ARGLISGTR255, contextthe function call specifies an argument list whose
length exceeds maximum specified by the calling standard. Any use of
va_count by the called function will be wrong.
Description: The OpenVMS calling standard uses a byte-sized field to
specify the size of the argument list. The argument list to this function call
requires more storage than can be represented in this size. As a result, any
use of va_count in the called function will return inaccurate information.
User Action: Either reduce the size of the argument list, or do not use
va_count in the called function.

HP C Compiler Messages D–5

ARGSIZE, context the argument being passed to this function is too small.
Description: A function parameter of array type has been declared
with the keyword "static" in its outermost bound to indicate that the
function may generate code that assumes that when it is called the
actual argument will have at least as many elements as specified in the
parameter declaration. The argument provided in this call has fewer array
elements than specified in the parameter declaration with static bound.
User Action: Check the size of the argument passed to the function
and/or modify or remove the static bound on the function parameter.

ARRAYBRACE, context a required set of braces is missing.
Description: The initializer for this array was not enclosed in braces.
While some compilers allow this, standard C requires braces around the
initializer.
User Action: Enclose the initializer in braces.

ARRAYLIMITSUP, contextHP C provides only limited support for array types
larger than n bytes.
Description: This array type is larger than can be represented by size_t.
While HP C will allow a type declared to be this size, uses of the type are
not fully supported and may cause unpredictable behavior.
User Action: Reduce the size of the array type. It may be possible to use
a pointer type instead of a large array. The storage can still be accessed
using array syntax.

ARRAYOVERFLOW, Integer overflow occurred when computing the size of an
array type.
Description: An array type is larger than allowed on this platform.
User Action: Reduce the size of the array type. It may be possible to use
a pointer type instead of a large array. The storage can still be accessed
using array syntax.

ARRNOTLVALUE, contextaccepting a non-lvalue array in a subscript operator
is an extension to the C89 standard.
Description: The C89 standard states that one of the operands to the
subscript operator must be a pointer. However, the array used in this
operator could not be converted to a pointer because it is not an lvalue.
Therefore this code does not conform to the C89 standard and may not

D–6 HP C Compiler Messages

be accepted by other compilers. Note that the C99 standard allows this
because all arrays are converted to pointers, not just lvalue arrays.
User Action: Be aware of this difference if you plan to port this source to
another compiler.

ASMCOMEXP, Comma expected while processing text instruction
Description: The asm directive parser was expecting a comma, but one
was not found.
User Action: Correct the asm directive.

ASMENDEXP, Semicolon or asm end expected while processing text
instruction
Description: The asm directive parser was expecting a semicolon to end
an instruction, but one was not found.
User Action: Correct the asm directive.

ASMFIMMDOTS, Floating point load-immediate instructions require a .s file
Description: Using a floating point load immediate instruction in this
asm directive will require the compiler to produce an .s file and invoke the
assembler to process this source.
User Action: Do not use floating point load immediate instructions in asm
directives.

ASMFREGEXP, Float register expected while processing text instruction
Description: The asm directive parser was expecting a valid floating
register, but one was not found.
User Action: Correct the asm directive.

ASMHINTDOTS, Hint on text instruction requires a .s file
Description: Using a hint in a transfer instruction in this asm directive
will require the compiler to produce an .s file and invoke the assembler to
process this source.
User Action: Do not use hints in asm directives.

ASMICONEXP, Integer constant expected while processing text instruction
Description: The asm directive parser was expecting a valid integer
constant, but one was not found.
User Action: Correct the asm directive.

HP C Compiler Messages D–7

ASMIDEXP, Identifier expected while processing text instruction
Description: The asm directive parser was expecting an identifier, but
one was not found.
User Action: Correct the asm directive.

ASMINSTEXP, Instruction mnemonic expected (found text)
Description: The asm directive parser was expecting an instruction
mnemonic, but one was not found.
User Action: Correct the asm directive.

ASMLABEXP, Label expected while processing text instruction
Description: The asm directive parser was expecting a label, but one was
not found.
User Action: Correct the asm directive.

ASMLABMULDEF, Multiple definitions of label in asm (text)
Description: The asm directive parser has detected the same label
defined more than once.
User Action: Change one of the label names.

ASMLABUNDEF, Reference to undefined label in asm (text)
Description: The asm directive parser has detected a reference to an
undefined label.
User Action: Correct the asm directive.

ASMLDGPDOTS, Unusual ldgp requires a .s file
Description: This indicates that a ldgp pseudo-instruction was
encountered in an unusual place or with unusual arguments. The
assembler will be invoked on the .s file.
User Action: Correct the asm directive.

ASMLPAREXP, Left paren expected while processing text instruction
Description: The asm directive parser was expecting a left paren, but one
was not found.
User Action: Correct the asm directive.

ASMNOTAVAIL, In-line assembly code directive name is not available on this
platform.
Description: In-line assembly code is not available on the IA64 platform.
User Action: See documentation for alternatives.

D–8 HP C Compiler Messages

ASMNOTINST, text instruction is not supported in asms on text
Description: The asm directive parser does not recognizes a pseudo-
opcode on this platform.
User Action: Correct the asm directive.

ASMNOTREG, text is not a register name on text
Description: The asm directive parser has noticed that a special register
used in the directive is not valid on this platform.
User Action: Correct the asm directive.

ASMNOTSUP, Support for text (text) in asms is not implemented on text
Description: The asm directive parser does not support the feature in
question on this platform.
User Action: Rewrite the asm so that the feature is not used.

ASMPALTRUNC, PALcode function has been truncated to number
Description: The asm directive call_pal instruction is followed by an
integer beyond the range of call_pal values expected by the compiler.
User Action: Use a valid call_pal argument.

ASMRAWREG, text uses text before it is defined
Description: The asm directive parser has noticed that an instruction
uses a register as a source before it is given a value.
User Action: Correct the asm directive.

ASMREGEXP, Fixed register expected while processing text instruction
Description: The asm directive parser was expecting a valid integer
register, but one was not found.
User Action: Correct the asm directive.

ASMREGOVRLAPSC, Destination register overlaps input for text (software
completion) instruction
Description: An asm directive contains an instruction that may require
a software completion routine in case of a runtime exception. Such an
instruction requires that the result register be different than any input
register.
User Action: Modify the asm so that the destination register is different
than the sources.

HP C Compiler Messages D–9

ASMRPAREXP, Right paren expected while processing text instruction
Description: The asm directive parser was expecting a right paren, but
one was not found.
User Action: Correct the asm directive.

ASMSYMDOTS, Use of symbolic addresses with text instruction requires a .s
file
Description: Using a symbolic operand in this asm directive will require
the compiler to produce an .s file and invoke the assembler to process this
source.
User Action: Do not use symbolic operands in asm directives.

ASMUNKNOWNARCH, Unknown architecture (text) specified in text
assembler directive
Description: The asm directive parser has detected an unexpected
argument to a .tune or .arch directive.
User Action: Correct the asm directive.

ASMUNKSETOPT, Unsupported or illegal .set option (text)
Description: The asm directive parser has detected an unexpected
argument to a .set directive.
User Action: Correct the asm directive.

ASSERTFAIL, The assertion "assertion" was not true, reason.
Description: The expression in a #pragma assert non_zero(expression)
directive was found to be zero.
User Action: Correct the condition that caused the expression to be zero.

ASSERTION, text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

D–10 HP C Compiler Messages

ASSIGNEXT, contextrelaxed struct or union type compatibility is a language
extension.
Description: In certain modes, the compiler will allow assignments or
comparisons between structs or unions of different types if their sizes are
the same. This is an extension to standard C. Other C compilers might not
successfully compile a program that uses this extension.
User Action: Recode the operation to use one of the memxxx run-time
library functions.

ASSUMEONEELEM, The type of the tentatively-defined array "name" is
incomplete at the end of the compilation unit. The compiler will assume
one array element.
Description: The C standard requires that the type of all tentative
definitions must be completed before the end of the compilation unit. For
compatibility with some other C compilers, HP C will give the array one
element.
User Action: Complete the type.

AUTOEXTERNAL, contexta storage class of "auto" or "register" is illegal at
file scope.
Description: The storage classes auto and register can only be used in
a declaration that appears inside a function. They cannot be used in a
declaration at file scope.
User Action: Remove the storage class specifier or move the declaration
inside a function body.

BADALIAS, Reference through restricted pointer text uses a pointer value
based on different restricted pointer, text
Description: The C language requires that restricted pointers always
point to different storage. The compiler has detected a case where an
access using a restricted pointer is referencing memory pointed to a
different restricted pointer. This may cause unexpected behavior.
User Action: Make sure restricted pointers point at unique storage.

BADALIGN, Invalid alignment boundary.
Description: The _align storage class modifier was given an invalid value.
See documentation for valid values on each platform.
User Action: Supply a correct value or remove the _align storage class
modifier.

HP C Compiler Messages D–11

BADANSIALIAS, This statement accesses an object frag1. The statement at
loc accesses the same storage location frag2.
Description: The standard allows a compiler to assume that since
these two statements use different types, these two statements reference
different storage locations. The HP C compiler does so whenever ansi
aliasing is enabled. Since your code relies on these two statements
accessing the same storage location you should disable ansi aliasing. If you
do not do so, optimization may cause your program to behave unexpectedly.
User Action: Specify noansi_alias on the command line.

BADBOUNDCHK, contextpointer arithmetic was performed more than once
in computing an array element. The bounds checking code output by the
compiler will only verify the "expr" expression.
Description: When an array is accessed using pointer arithmetic
and run-time array bounds checking is enabled, the HP C compiler is
only able to output the checking code for the first pointer arithmetic
operation performed on the array. This can result in an incorrect check
if the resulting pointer value is again operated on by pointer arithmetic.
Consider the expression a = b + c - d; where a is a pointer, b an array,
and c and d integers. When bounds checking is enabled the compiler will
output a check to verify that c within the bounds of the array. This will
lead to an incorrect runtime trap in cases where c is outside the bounds of
the array and c - d is not.
User Action: Recode the pointer expression so that the integer part is
in parenthesis. This way the expression will contain only one pointer
arithmetic operation. In the earlier example the expression would be
changed to a = b + (c - d);

BADBOUNDS, contextthe array bounds are incorrectly specified.
Description: A multi-dimensional array declaration contains a missing
dimension specifier in a dimension other than the first.
User Action: Correct the declaration.

BADBREAK, This break statement is not within a for, while, do, or switch
statement.
Description: A break statement can only appear inside a for, while, do, or
switch statement.
User Action: Remove the break statement, or replace it with a goto
statement.

D–12 HP C Compiler Messages

BADC99PRAGOP, Invalid syntax for the C99 _Pragma operator, its operands
cannot be recognized.
Description: After macro expansion and whitespace has been removed,
the C99 _Pragma keyword must be followed by exactly three tokens:
left-parenthesis, string-literal (or wide-string), right-parenthesis. Any
other sequence cannot be processed, and will likely produce other spurious
compile-time diagnostics.
User Action: Correct the syntax, or compile in a language mode that does
not recognize the C99_Pragma operator (e.g. if your code has used this
reserved identifier for some other purpose).

BADCHARSINHDR, Illegal characters after header name.
Description: While processing an #include directive whose argument
did not start with either a ’<’ or ’"’ character, the compiler encountered
a character it did not expect. This most often occurs when the directive
argument is a macro and there is an error during the expansion of that
macro.
User Action: Correct the argument to the #include directive.

BADCMMNTPSTNG, Token concatenation with comments might not be
portable—use ## operator.
Description: A macro body contains a comment between two tokens with
no white space either before or after the comment. Older C compilers
allowed this as a form of token pasting. This type of token pasting might
not give the desired results with newer compilers.
User Action: Use the standard C form of token pasting by replacing the
comment with the ## token pasting operator.

BADCOMLITTYPE, contextthe type "type" cannot be used to specify the type
of a compound literal.
Description: The type of a compound literal must be an object type or an
array of unknown size.
User Action: Use a valid type.

BADCOMPLEXTYPE, context"spelling" is an invalid complex type specifier.
Description: The valid complex type specifiers are float _Complex, double
_Complex, and long double _Complex.
User Action: Use on of the valid complex type specifiers.

HP C Compiler Messages D–13

BADCONDIT, contexta common type could not be determined for the 2nd
and 3rd operands ("true expression" and "false expression") of a conditional
operator.
Description: The types of the second and third operands of the
conditional operator must conform to a set of rules that define what the
type of the result of the conditional operator itself will be. If the types
of these operands do not conform to those rules, the compiler cannot
determine the type of the result, which is an error. Refer to the language
documentation for a complete list of valid combinations of types for the
second and third operands of the conditional operator.
User Action: Modify the conditional expression so that the types of the
second and third operands conform to the language rules.

BADCONSTEXPR, Syntax error in constant expression.
Description: A preprocessing constant expression contained a syntax
error. The preprocessor was expecting to find a constant value or a
left parenthesis. The preprocessor will assume a value of zero was
encountered.
User Action: Correct the preprocessing constant expression.

BADCONTINUE, This continue statement is not within a for, while, or do
statement.
Description: A continue statement can only appear inside a for, while, or
do statement.
User Action: Remove the continue statement, or replace it with a goto
statement.

BADCONVSPEC, contextthis argument to function name contains a bad
conversion specification "incorrect conversion" that will cause unpredictable
behavior.
Description: The compiler has detected an illformed conversion
specification (flags, width, precision, length modifier) or an unknown
conversion specifier (not diouxefgcspn...) that will cause unpredictable
behavior. This might not have been what you intended.
User Action: Review the documentation for this function and modify the
conversion specification as appropriate.

BADDCL, The name "name" cannot be undefined.
Description: The code has tried to #undef a macro that is predefined by
the C standard. This is not allowed. The #undef will be ignored.
User Action: Remove the #undef directive.

D–14 HP C Compiler Messages

BADDECLSPEC, Invalid argument to _ _declspec. Valid arguments are
"thread" or "_ _thread".
Description: The only valid arguments to the _ _declspec storage class
modifier are "thread" or "_ _thread".
User Action: Either use one of the valid arguments, or remove the storage
class modifier.

BADDEFARG, Bad argument for "defined" operator.
Description: The defined preprocessing operator was given an invalid
argument. The operator expects an identifier optionally enclosed in
parenthesis. The value of the operator is undefined.
User Action: Supply a valid argument to the preprocessing operator.

BADENUM, Invalid enumerator.
Description: While processing an enumerator list, the compiler was
expecting to encounter an identifier, but it found something else instead.
User Action: Correct the program syntax.

BADENUMREDECL, contextthe enum "tag" cannot be given a type other than
signed int because the tag was declared earlier at where.
Description: This enum tag would normally be given a type other than
signed int because the enumeration constants used in the declaration
exceed the range of signed int. The compiler cannot use the extended type
because the enum tag was declared earlier, and given signed int type at
that point.
User Action: Remove the earlier tag declaration.

BADEXPR, Invalid expression.
Description: An invalid expression was encountered.
User Action: Correct the program syntax.

BADFATCOMMENT, The compiler cannot recover.
Description: In certain cases, the compiler cannot proceed after an
unterminated comment. In these cases this message will be issued. Note
that this message is always output after the opencomment error has been
output.
User Action: Terminate the comment before the end-of-file.

HP C Compiler Messages D–15

BADFBDAT, text contains invalid feedback data
Description: A feedback file contains data, but it was corrupt and could
not be used.
User Action: Create a new feedback file.

BADFBFILE, Invalid feedback file: text
Description: The compiler was unable to read information from the
specified feedback file.
User Action: Make sure the feedback file contains valid feedback
information.

BADFBTYP, Unexpected file type for feedback file text
Description: The file specified in the -feedback option does not have the
file type expected by the compiler.
User Action: Use a valid feedback file.

BADFLOATTYPE, contextthis floating point type "type" is not supported on
this platform.
Description: The IEEE floating types _ _s_float and _ _t_float are not
supported on the VAX platform.
User Action: Change the type to a floating type that is supported on VAX,
or compile the application on a platform that does support IEEE floating.

BADFORMALPARM, This token may not appear in a formal parameter list.
Description: While processing the formal parameter list of a macro
definition, the compiler encountered an invalid formal parameter specifier.
The macro will be be defined and this token will ignored, but that may not
have been what you intended.
User Action: Correct the formal parameter list so that it consists of a
comma separated list of identifiers.

BADFORSTOCLS, The declaration in a for loop can only have storage class
auto or register.
Description: The declaration in a for loop contains a storage class
specifier other than auto or register. This is not allowed.
User Action: Correct the storage class.

D–16 HP C Compiler Messages

BADFUNCSTOCLS, The storage class of function name cannot be storage_
class. This storage class has been changed to ’extern’.
Description: The globalref storage class cannot be used with a function
declaration. The compiler will use the storage class extern.
User Action: Remove the globalref storage class from the function
declaration.

BADGLOBALTYPE, This declaration has type "type", which is invalid for a
globalvalue. The extern_model strict_refdef will be used instead.
Description: An object with globalvalue storage class can only have a
type of integer, enum, or pointer type. In other cases, the compiler will
change the storage class from globalvalue to strict_refdef.
User Action: Change the data type to be one that is valid for a
globalvalue.

BADHEADERNM, Invalid include file or header name specification.
Description: An #include directive was not followed by a valid argument.
The directive will be ignored. The #include directive should be followed
by either a file specification enclosed in angle brackets, a file specification
enclosed in quotes, or an identifier that specifies a text module (OpenVMS
only), or a macro to be expanded.
User Action: Supply a valid argument to the #include directive.

BADHEXCONST, Hex constant value too large.
Description: A hex constant used in a preprocessor directive is too large.
The value of the constant will be undefined.
User Action: Decrease the value of the constant.

BADIDENTUCN, Invalid UCN encountered in an identifier.
Description: An identifier contained a Universal Character Name (UCN)
that did not conform to the requirements of C99 Annex D for use of UCNs
in identifiers.
User Action: Specify a valid UCN sequence.

BADIFDEF, An #ifdef or #ifndef is not followed by an identifier.
Description: An #ifdef or #ifndef preprocessing directive was not followed
by an identifier. The compiler will consider the preprocessor argument to
be an identifier that is not defined. Therefore, in these cases an #ifdef will
always be FALSE, and an #ifndef will always be TRUE.
User Action: Supply a valid identifier to the directive.

HP C Compiler Messages D–17

BADIFNDEFARG, #ifndef argument is not an identifier.
Description: An #ifndef preprocessing directive was not followed by an
identifier. The compiler will consider this to be a TRUE condition.
User Action: Supply a valid identifier to the directive.

BADINCLDIR, The #pragma include_directory must not appear after an
#include directive or in a /FIRST_INCLUDE file after the first /FIRST_
INCLUDE file has been processed. The directive will be ignored.
Description: There are several restrictions on the placement of the
#pragma include_directory directive. It must not appear after any #include
directive has been encountered. Also, if /FIRST_INCLUDE is specified on
the command line, all #pragma include_directory directives must be placed
in the first file in the /FIRST_INCLUDE list (if there is more than one in
the list) or in the the main source before any #include directives (if there is
only one file in the /FIRST_INCLUDE list).
User Action: Place the directive in a valid location.

BADINCLDIRSIZE, The include_directory string length must be at least one
and must be less than max. The directive will be ignored.
Description: The #pragma include_directory directive does not support
an empty string argument. Also the directory must not exceed the longest
directory specification supported on this platform.
User Action: Specify a valid length string.

BADINCLUDE, An #include directive has illegal syntax.
Description: An #include directive was not followed by a valid argument.
This message occurs when the argument starts with a ’<’ or ’"’ character,
but does not end with a matching delimiter. In this case the compiler will
add the matching delimiter to the end of the argument and process the
directive normally.
User Action: Correct the argument to the #include directive.

BADLINEDIR, Missing argument for #line directive.
Description: An argument was not supplied to a #line preprocessing
directive. This directive must be followed by a digit sequence that specifies
the line number or a macro that expands to a digit sequence. The directive
will be ignored.
User Action: Supply a valid argument to the directive.

D–18 HP C Compiler Messages

BADLINEDIRTV, Illegal token in #line directive.
Description: A #line directive was followed by an invalid argument. The
#line directive should be followed by either a digit sequence or a digit
sequence followed by a string literal. The #line directive will be ignored.
User Action: Supply a valid argument to the #line directive.

BADLINKREG, Invalid register "register" for linkage pragma. Pragma is
ignored.
Description: The compiler encountered bad register specifier in a
#pragma linkage directive. The message should point at the offending
specifier. The compiler will ignore the entire pragma.
User Action: Correct the directive.

BADLINNUM, Ignoring the line number for the #line directive—too small.
Description: A #line preprocessing directive specified a line value that
is either zero or less than zero. This is not valid. The directive will be
ignored.
User Action: Either remove the directive or supply a positive value to the
line specifier.

BADLOCALE, The compiler could not set its locale to either the locale-specific
native environment or the "C" locale.
Description: During start-up, the compiler was unable to set its
locale. As part of its initialization, the compiler will issue the call
setlocale(LC_ALL, ""). If this call fails, the compiler will try to issue the
call setlocale(LC_ALL, "C"). If this call also fails, the compiler will issue
this message and abort.
User Action: The best way to determine why the compiler is failing is to
write a small program that contains the same library calls the compiler is
making and then examine the return values.

BADMACROINLN, Illegal token from macro call in #line directive.
Description: A #line directive was followed by a macro whose expansion
did not form a valid argument to the directive. The #line directive should
be followed by either a digit sequence or a digit sequence followed by a
string literal. The #line directive will be ignored.
User Action: Supply a valid argument to the #line directive.

HP C Compiler Messages D–19

BADMACRONAME, "directive" directive is not followed by an identifier and is
being ignored.
Description: A #define or #undef preprocessing directive was not followed
by an identifier. The first argument to these directives must be an
identifier that specifies the macro to define or undefine. The compiler will
ignore the directive.
User Action: Correct the argument to the preprocessing directive.

BADMBCOMMENT, An invalid multibyte character was encountered in a
comment.
Description: An invalid multibyte character was found in a comment.
While this will not affect the program execution, it might not have been
what you intended.
User Action: Correct the multibyte character.

BADMCRORECURS, Recursive expansion of macro "name" exceeded num
levels and was terminated.
Description: In certain cases, the compiler will allow a macro to be
recursively expanded. In these cases, the compiler limits the level of
the recursion to prevent the compiler from looping to the point where it
consumes all available memory. When this level has been reached, this
message is output.
User Action: Rewrite either the macro definition or the macro invocation
so that the recursion ends before the compiler limit is reached. Note that
the use of recursive macros is not a feature of the C standard, and most
other C compilers will not support this.

BADMEMBER, Invalid member declaration.
Description: A struct or union contains an invalid member declaration.
In most cases this error occurs when a semi-colon was omitted from the
previous member declaration.
User Action: Correct the declaration.

BADMEMOFF, contextmultiple definitions of member "name" found with
different offsets.
Description: In certain modes, the compiler will allow a struct or union
reference whose right operand is not a member of the struct or union type
of the left operand. This is allowed for compatibility with other compilers.
However, in these cases the right operand must specify a member name
that is declared with the same type and at the same offset in every struct
or union type that declares it. This message is issued when the compiler

D–20 HP C Compiler Messages

finds member name it is looking for declared with a different offset in more
than one struct or union type.
User Action: HP recommends that the left operand or a struct or union
reference specify a member that is a member of the type of the struct or
union specified by the right operand. If this modification cannot be made
then the member specified by the left operand must be declared at the
same offset and with the same data type in all struct or union declarations
that declare that member.

BADMEMTYP, contextmultiple definitions of member "name" found with
different types.
Description: In certain modes, the compiler will allow a struct or union
reference whose right operand is not a member of the struct or union type
of the left operand. This is allowed for compatibility with other compilers.
However, in these cases the right operand must specify a member name
that is declared with the same type and at the same offset in every struct
or union type that declares it. This message is issued when the compiler
finds a member name it is looking for declared at the same offset but with
different types in more than one struct or union type.
User Action: HP recommends that the left operand or a struct or union
reference specify a member that is a member of the type of the struct or
union specified by the right operand. If this modification cannot be made
then the member specified by the left operand must be declared at the
same offset and with the same data type in all struct or union declarations
that declare that member.

BADMODULEID, Invalid identifier found immediately following "#pragma
module" or "#module" directive.
Description: The #pragma module or #module directive must be followed
by an identifier that specifies the module name used by the linker.
User Action: Correct the directive.

BADMULTIBYTE, An invalid multibyte character was encountered in type of
construction.
Description: An invalid multibyte character was encountered. The
message will provide additional information about the location and
attempted use of the character.
User Action: Correct the multibyte character.

HP C Compiler Messages D–21

BADNUM, text Qualifier value ’text’ is not an integer
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

BADOCTCONST, Octal constant value too large.
Description: An octal constant used in a preprocessor directive is too
large. The value of the constant will be undefined.
User Action: Decrease the value of the constant.

BADOPCCAP, text instruction used is not in the selected instruction set
Description: The compiler has output an instruction that is not in the
instruction set selected on the command line. One way this can happen
is to compile a program which contains a floating point operation and
specifying that no floating point instructions should be generated.
User Action: Either modify the source so the instruction will not be
necessary, or use a different instruction set.

BADOPENBRACE, This open brace may be missing a close brace and causing
the syntax error at location.
Description: This message is always output to the terminal after another
syntax error. It is intended to provide the programmer with additional
information that may identify the cause of the syntax error. This message
may, or may not, provide useful information. In general, the more
consistent the coding style in the source function, the more likely this
message will be accurate.
User Action: Correct the program syntax.

BADPARSEDECL, In this declaration, "id" must specify a type.
Description: In processing a declaration, the type of the declarator has
not been declared as a typedef.
User Action: Either declare the type as a typedef, or correct the spelling
of the type specifier in this declaration.

D–22 HP C Compiler Messages

BADPARSEPARAM, In this parameter list, "param" must either be a type or
must be followed by a ",".
Description: In processing a function declaration, the compiler has found
a case where the parameter list begins with two identifiers not separated
by a comma and where the first identifier is not a type specifier. If this is
an old-style declaration the two identifiers must be separated by a comma.
If this is a prototype declaration, the first identifier must specify a type.
User Action: Correct the function parameter specifiers.

BADPPDIR, File ends in an unfinished pp directive.
Description: An unexpected end-of-file was encountered during a
preprocessing directive.
User Action: Correct the directive.

BADPRAGMAARG, Unexpected or missing argument to #pragma pragma
name. Pragma is ignored.
Description: An argument to a #pragma preprocessing directive is either
missing or is not correct. The compiler will ignore the directive.
User Action: Correct the directive.

BADPRAGMAARG1, Unexpected token encountered in pragma. Found
"found" when expecting expecting. The pragma will be ignored.
Description: While parsing a #pragma directive, the compiler has
encountered something unexpected. The message will contain information
about what the compiler was expecting as well as what it found.
User Action: Correct the offending directive.

BADPRAGMALINK, A bad linkage pragma was specified. Pragma is ignored.
Description: The compiler encountered a bad #pragma linkage directive.
The error message should point to the place in the pragma that the
compiler considers bad. The compiler will ignore the entire pragma.
User Action: Correct the directive.

BADPRAGNAMES, Invalid argument to the pragma names directive. Pragma
is ignored.
Description: An invalid argument has been specified for the #pragma
names preprocessing directive.
User Action: Correct the argument to the pragma.

HP C Compiler Messages D–23

BADPREFIX, Argument to extern_prefix is not a recognized keyword or a
quoted string. Pragma is ignored.
Description: An invalid argument has been specified for the #pragma
extern_prefix preprocessing directive. The directive expects either the
identifiers "save", "_ _save", "restore", "_ _restore", or a string constant that
specifies the external prefix to use. The compiler will ignore the pragma.
User Action: Correct the argument to the pragma.

BADPROTYP, Unexpected file type for profile file text
Description: The file specified in the -feedback option does not have the
file type expected by the compiler.
User Action: Use a valid feedback file.

BADPTRARITH, contextperforming pointer arithmetic on a pointer to void or
a pointer to function is not allowed. The compiler will treat the type as if it
were pointer to char.
Description: Pointer arithmetic is not allowed on pointers to function or
void types For compatibility with some other compilers, an output file is
still created. The result produced will be the same as if the pointer were a
pointer to char. This may or may not be compatible with other compilers
that accept this syntax.
User Action: Cast the pointer type to a pointer to object type before
performing the arithmetic.

BADREGISTER, context"name" has register storage class, but occurs in a
context that precludes register storage. The storage class has been changed
to auto.
Description: An object that was declared with register storage class has
been referenced in a way that is not valid for a register. The most common
example is taking the address of an object declared with register storage
class. As certain array accesses also require taking the address of an array,
this message can also be output for accessing the element of an array
declared with register storage class. The compiler will change the storage
class from register to auto.
User Action: Either remove the register storage class from the
declaration, or change the reference to be one that is valid for objects with
register storage class.

D–24 HP C Compiler Messages

BADRETURNTYPE, contexta function cannot return type type.
Description: A function return type cannot be an array or function type.
User Action: Correct the function declaration so that the return type is
valid.

BADSEVERITY, The severity of message id name cannot be made less severe.
The severity for this message was not changed.
Description: The severities of the compiler’s error and fatal messages
cannot be changed to a severity that is less severe. The compiler’s fatal
messages cannot be changed to any other severity. The compiler’s error
messages can only be changed to fatals.
User Action: Remove the pragma or compiler option that tried to change
the severity.

BADSTATICCVT, contextthe address cannot be converted to the destination
type.
Description: A static initialization tried to convert a link-time address to
another type. However, the linker on this platform will not support such a
conversion.
User Action: Rewrite the static initialization, or perform the initialization
using runtime code.

BADSTDLINKAGE, If standard_linkage is used, it must be the only
characteristic specified.
Description: The standard_linkage characteristic cannot be used with
any other linkage characteristic.
User Action: Correct the pragma.

BADSTMT, Invalid statement.
Description: An invalid statement was encountered. The most common
cause of this error is when a declaration appears after the first statement
in a compound statement.
User Action: Correct the program syntax.

BADSTMT1, Invalid statement. This condition may have been caused by an
open brace without a matching close brace. The compiler will attempt to
identify open braces that might be missing a close brace.
Description: An invalid statement was encountered. This condition may
have been caused missing close brace. This message is followed by some
number of additional messages that attempt to identify
User Action: Correct the program syntax.

HP C Compiler Messages D–25

BADSUBSCRIPT, contextan array subscript expression is either less than
zero or greater than the largest value that can be represented by the size_t
type.
Description: The compiler has detected an array subscript expression
that is outside the bounds of any valid array. The array access might cause
unpredictable behavior.
User Action: Specify a valid array subscript.

BADTARGMACRO, The target macro "name" does not match the compiler’s
target. This will likely cause incorrect code paths to be taken.
Description: On OpenVMS I64, some users have tried defining the macro
_ _ALPHA explicitly using /DEFINE or a #define in a /FIRST_INCLUDE
file as a quick way to deal with source code conditionals that assume
that if _ _ALPHA is not defined then the target must be a VAX. Defining
_ _ALPHA will cause many of the CRTL and other OpenVMS headers to
take the wrong path for I64.
User Action: Remove any definitions of Alpha target macros, and if
necessary correct the preprocessor conditionals that seemed to require an
Alpha target macro to get the desired effect. E.g. change "#ifdef _ _ALPHA"
to "#ifndef _ _VAX" or "#if defined(_ _ALPHA) | | defined(_ _ia64)".

BADTKEN, Lexically invalid token.
Description: An invalid token was encountered in a preprocessing
directive.
User Action: Correct the preprocessing directive.

BADUNKNOWNVLA, contexta "*" bounds specifier is invalid. Using a "*" to
specify a variable-length array of unknown size is only valid in declarations
with function prototype scope.
Description: Using a "*" as a bounds specifier to designate a variable-
length array with unknown size is only valid in declarations with function
prototype scope.
User Action: Supply a valid bound specifier.

BADUNROLLVAL, The #pragma unroll directive takes a value from zero to
255. The value "val" is outside that range. The directive will be ignored.
Description: The value supplied to a #pragma unroll is outside the range
allowed for the directive. The #pragma directive will be ignored.
User Action: Use a valid value for the unroll count.

D–26 HP C Compiler Messages

BADUSELINK, A bad use_linkage pragma was specified. Pragma is ignored.
Description: The compiler encountered a bad #pragma use_linkage
directive. The error message should point to the place in the pragma that
the compiler considers bad. The compiler will ignore the entire pragma.
User Action: Correct the directive.

BADUSERMACRO, The name "name" cannot be a user-defined macro.
Description: The code has tried to #define either a macro that is
predefined by the C standard or the DEFINED preprocessing keyword.
This is not allowed. The #define will be ignored.
User Action: Remove the #define directive.

BADVASTART, contextold-style parameter "name", with type that requires
default argument promotion, cannot be used with va_start.
Description: It is invalid for the parameter specified in va_start to be one
that requires default argument promotion.
User Action: The recommended fix is to recode the function definition
to use a prototype-format definition. It is also possible to change the
parameter declaration to use one of the default types, for example double.

BIFENABLED, The function "routine name" is a builtin function reserved to
the compiler, and does not require a #pragma intrinsic. The function will
continue to be treated as a builtin.
Description: A function identifier specified in a #pragma function
intrinsic is the name of a builtin function. These functions cannot be
explicitly enabled, they are always handled as builtin functions.
User Action: Remove the inappropriate use of the pragma.

BIFNEEDSSTD, contextuse of "function" is not allowed in a function with a
non-standard linkage. This function was given the linkage "name" by a
#pragma use_linkage directive.
Description: Certain built-ins that return information about a function
call require that the function be called with standard linkage. Because this
function appears in a #pragma use_linkage directive naming a linkage that
specifies attributes other than standard_linkage, these builtins cannot be
called from this function.
User Action: Use a standard linkage on this function, remove the calls
to the builtins, or move them to a different function that is called with
standard linkage.

HP C Compiler Messages D–27

BIFNOTAVAIL, Built-in function name is not available on this platform.
Description: This Alpha built-in function is not available on the IA64
platform.
User Action: See documentation for alternatives.

BIFPROTO, contextthe built-in function, "name", requires a prototype
declaration from filename.
Description: Invoking a built-in function requires that the function be
declared before it is invoked. This should be done by including the header
file noted in the message.
User Action: Include the header file before the function is invoked.

BITARRAY, The CDD description for name specifies that it is an array of
bitfields; It has been converted to a scalar bitfield.
Description: HP C does not allow arrays of bitfields. The resulting C
declaration will be a bitfield of the same total size as that specified in the
CDD description.
User Action: If a bitfield type is acceptable, then no user action is
necessary. If, however, the bitfield type is not acceptable, then the CDD
description should be altered.

BITBADREP, contextthe bitfield type is not an integral type.
Description: A bitfield has been declared with a non-integral type.
Standard C requires that all bitfields be declared with either int, unsigned
int, or signed int type.
User Action: Change the type of the bitfield.

BITCONSTSIGN, contextthe integer constant "constant" does not have the
same sign as the 1-bit bitfield it is being converted to.
Description: Either an unsigned 1-bit bitfield was assigned -1, or a signed
1-bit bitfield was assigned 1. This may not be what you intended.
User Action: Change the constant to be the appropriate sign.

BITFIELDSIZE, The CDD description for bitfield name specifies a size greater
than 32; The excess is declared separately.
Description: HP C does not allow individual bitfields larger than 32. As
a result, a series of bitfields have been declared whose total size matches
that of the CDD definition.
User Action: If the generated definitions are acceptable, then no
user action is necessary. If, however, the generated definitions are not
acceptable, then the CDD description should be altered.

D–28 HP C Compiler Messages

BITNOTINT, contextthe bitfield type is not an int, signed int, unsigned int or
_Bool.
Description: A bitfield has been declared with a type other than int,
signed int, unsigned int or _Bool. This is not allowed by the C standard.
User Action: Change the declaration to use one of the allowed types or
compile with a standard mode that allows this behavior.

BITWIDTH, contextthe bitfield width expression "expression" is outside the
range lower to upper.
Description: A bitfield width specifier was either less than zero, or is
greater than the number of bits in an int. In some modes, the compiler will
assume a width specifier equal to the number of bits in an int.
User Action: Use a valid bitfield width specifier.

BITWIDTHTYP, contextthe bitfield width expression "expression" does not
have an integral type.
Description: A bitfield width specifier does not have an integral type. A
bitfield width specifier must be an integral constant expression.
User Action: Correct the width specifier.

BLOCKEXTVLA, contextthe block scope identifier "name" cannot be declared
with a variably modified type because it has extern storage class.
Description: Only ordinary identifiers with block scope and without
storage class extern, or ordinary identifiers with function prototype scope
can be declared with a variably modified type.
User Action: Correct the declaration.

BLOCKINL, Block level declarations of inline functions are not allowed.
Description: In C99 standard, block level declaration of inline functions
are prohibited.
User Action: Move the inline function declaration to file scope.

BLTINARGCNT, contextan incorrect number of arguments were passed to the
builtin function, "function expression".
Description: This message is output on OpenVMS systems when the
number of arguments passed to the builtin function is not one.
User Action: Correct the call to the builtin function.

HP C Compiler Messages D–29

BLTINIMPLRET, contextfor the function "name", the implicit return type of
"type" is not consistent with the expected type of "type". It will be treated
as an ordinary implicitly defined external function.
Description: A function that could be handled internally by the compiler
has not been declared, so an implicit declaration has been created for the
function. The return value for the function is being used, and the implicit
return type does not agree with what the compiler expected to see. In such
cases, the function will not be handled internally, but will instead be called
at run time in the usual manner. This could result in a performance loss,
or possibly incorrect results if the implicit return type is incorrect.
User Action: If the function is intended to refer to the runtime library
routine, the appropriate header file should be included in the source.
Alternatively, a correct prototype could be provided privately in the source
file. If the function is intended to be a replacement for the runtime
library routine, disable the intrinsic version by specifying "#pragma
function(function_name)" in the source file.

BOOLEXT, The _Bool data type is a new feature in the C99 standard. Other
C compilers may not support this feature.
Description: This is a new language feature in C99. While having a
standard specification for portability, the feature may not yet be available
in all of the compilers you use.
User Action: Determine whether or not the use of this feature will cause
portability problems for this code.

BOOLNA, The _Bool keyword is not supported in this language mode. It will
be treated as an identifier in this compilation.
Description: Support for the _Bool keyword is only available in certain
language modes. Support is not present when the compiler is in VAX C, K
& R (common), or strict ANSI89 standard modes. In these language modes
_Bool will be treated as an identifier.
User Action: Compile using one of the other compilation modes.

BOUNDADJ, The CDD description for name specifies non-zero-origin
dimension bound(s); The bound(s) are adjusted to zero-origin.
Description: The CDD description specifies lower bounds(s) for an array
that is non-zero. The resulting C definition will have the upper bound(s)
adjusted for lower bound(s) of zero.
User Action: Verify that all subscript expressions are referencing the
correct array element(s).

D–30 HP C Compiler Messages

BOUNDNOTINT, contextthe array bound "expression" does not have an
integral type.
Description: The compiler has encountered an array-bounds specifier that
is not an integral type. Array-bounds specifiers must be positive integer
constants.
User Action: Correct the array-bounds specifier

BUGCHECK, Compiler bugcheck. Submit a problem report with a problem
description.
Description: An unexpected condition occurred in the compiler. This is
most likely caused by a compiler bug.
User Action: Reduce the program that is causing the failure as much as
possible. This often leads to a small test case. Please submit a problem
report containing enough information for Engineering to reproduce the
problem. The problem report should include the small test case.

CALLNEEDSFUNC, context"expression" is not a function.
Description: In what appears to be a function call, the expression
denoting the the function to call is neither the identifier for a function nor
an expression of type pointer to function.
User Action: Correct the expression denoting the function. If the
expression is a simple identifier, perhaps a function-like macro definition is
missing.

CANNOTREDEF, Cannot #define a macro that is currently expanding.
Description: The program is trying to #define the same macro it is
currently expanding. The #define will be ignored.
User Action: Remove the #define, or move it after the expansion of the
macro.

CANNOTUNDEF, Cannot #undef a macro that is currently expanding.
Description: The program is trying to #undef the same macro it is
currently expanding. The #undef will be ignored.
User Action: Remove the #undef, or move it after the expansion of the
macro.

CANTDISABLE, The message id name cannot be disabled.
Description: The compiler’s error and fatal messages cannot be disabled.
User Action: Remove this message id from the list of messages being
disabled on the command line or in the #pragma message line.

HP C Compiler Messages D–31

CANTMKRPSTORY, Attempt to create repository "string" for shortend names
failed; OpenVMS status: reason.
Description: A compilation that used the /NAMES=SHORTENED
qualifier could not open the repository used to store the shortened names.
This could be because an invalid name was specified in the /REPOSITORY
qualifier. The message will give additional information about the failure.
User Action: Correct whatever caused the failure.

CDDATTR, One or more field descriptions in this CDD record specify an
attribute that is being ignored.
Description: The CDD description specifies an attribute that is not
supported in HP C. The attribute is ignored.
User Action: No action is required.

CDDBADID, An invalid identifier, name, is being ignored in the dictionary
directive.
Description: An unexpected identifier follows the dictionary pathname in
a dictionary preprocessing directive. The identifier is ignored.
User Action: Remove the invalid identifier(s) in the dictionary directive.

CDDEXT, #dictionary is a language extension.
Description: The #dictionary directive is an extension of HP C on
OpenVMS. The program might not compile with other compilers or on
other platforms.
User Action: Be aware of this if you wish to port the program.

CDDPATH, A valid CDD pathname was not found. The CDD directive has
been ignored.
Description: The #dictionary preprocessing directive was not followed by
an argument. The directive must be followed by a character string that
gives the path name of a CDD record, or a macro that expands to the path
name of the record.
User Action: Supply a valid argument to #dictionary. HP also
recommends that the #dictionary preprocessing directive be replaced by the
#pragma dictionary operator.

CDDTOODEEP, The attributes for the Common Data Dictionary record
description name exceed the implementation’s limit for record complexity.
Description: The CDD description specifies more attributes than the
interface between the CDD and the compiler can handle.
User Action: Simplify the record description.

D–32 HP C Compiler Messages

CHARCONST, Ill-formed character constant.
Description: An invalid character constant was encountered.
User Action: Correct the character constant.

CHAROVERFL, A character constant value requires more than sizeof(int)
bytes of storage.
Description: A character constant is too long to fit in an int. The compiler
will ignore the extra characters.
User Action: Remove the extra characters from the character constant.

CHKEXPAND, number integrity check error(s) after IL expansion of routine
text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

CHKINIT, number integrity check error(s) in initial IL & ST for module text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

CHKOPT, number integrity check error(s) after text optimization phase for
routine text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

CLASSNOINIT, contextthe struct or union object "name" is uninitialized and
has a const member.
Description: An object of struct or union type has a const member and
has not been initialized. This might not have been what you intended. HP
recommends that you initialize all objects with the const attribute. The
missing initializer will make this an invalid declaration in C++.
User Action: Initialize the struct or union object.

HP C Compiler Messages D–33

CLOSBRACKET, Missing "]".
Description: The compiler was expecting a closing bracket, but one was
not found.
User Action: Correct the program syntax.

CLOSEBRACE, Missing "}".
Description: The compiler was expecting a closing brace, but one was not
found.
User Action: Correct the program syntax.

CLOSECOMMENT, This unmatched comment delimiter is ignored.
Description: An unmatched comment delimiter (*/) is an illegal
combination of unary indirection and binary division operators that would
have caused your compilation to fail.
User Action: Remove the comment delimiter.

CLOSEPAREN, Missing ")".
Description: The compiler was expecting a closing parenthesis, but one
was not found.
User Action: Correct the program syntax.

CMPPTRFUNVOID, contextaccepting the [in]equality comparison of a pointer
to void and a pointer to function type is a language extension.
Description: Under the C standard, it is a constraint violation to perform
an [in]equality comparison between a pointer to void and a pointer to
function type. Therefore this code may not be accepted by other compilers.
User Action: Cast one of the pointers to the type of the other.

COLMAJOR, The CDD description for name specifies that it is a column-
major array; It has been converted to a one-dimensional array.
Description: The HP C compiler supports only row-major arrays.
Therefore the column-major array description in the CDD has been
converted to a one-dimensional array of the same total size and with the
same total number of elements.
User Action: Verify that all subscript references to the array reference
the correct array element.

D–34 HP C Compiler Messages

COMMANDMACRO, Extraneous text "text" at the end of the command line
macro "macro" is ignored.
Description: A command line macro define contains an invalid macro
name. The compiler will define the macro name listed in the message.
User Action: Correct the command line invocation.

COMPILERBUG, Bug found in compiler: bug.
Description: This message indicates that the compiler detected a bug
within itself.
User Action: Please report the compiler bug and include an example
program that reproduces the problem.

COMPLEXEXT, The complex data type is a new feature in the C99 standard.
Other C compilers may not support this extension.
Description: This is a new language feature in the C99 revision of the
standard. While having a standard specification for portability, the feature
may not yet be available in all of the compilers you use.
User Action: Determine whether or not the use of this feature will cause
portability problems for this code.

COMPLEXNA, The complex data types are not supported in this language
mode. This will be treated as an identifier in this compilation.
Description: Support for the complex data types is only available in
certain language modes. Support is not present when the compiler is
in VAX C, K & R (common), or strict ANSI89 standard modes. In these
language modes _Complex and _Complex_I will be treated as identifiers.
User Action: Compile using one of the other compilation modes.

COMPLEXNA1, The complex data types are not supported on this platform.
This will be treated as an identifier in this compilation.
Description: The complex data type is not supported on the VAX
platform.
User Action: Remove use of the complex types or compile the application
on a platform that does support the complex data types.

CONFLICTHINTS, contextthis hint value contridicts a related hint at where.
The hints will be ignored.
Description: This program has supplied hints for either both branches of
an if/else or both the second and third operand of a conditional operator. In
these cases the two hint values must add to one.
User Action: Correct the hints.

HP C Compiler Messages D–35

CONLINKREG, Conflicting register usage between "first set" and "second set".
Pragma is ignored.
Description: The same register was specified in two different register
lists of a #pragma linkage directive. The compiler will ignore the entire
pragma.
User Action: Correct the directive.

CONPSECTATTR, Conflicting psect attribute overrides previous attribute.
Description: A psect attribute specified in a #pragma extern_model
directive contradicts an attribute specified earlier in the directive. This
attribute will override the one specified earlier.
User Action: Remove one of the contradictory psect attributes.

CONSTCOMPLIT, contextaccepting a compound literal as a constant is
a language extension. The compound literal will be treated as a cast
expression.
Description: A compound literal appears in a context where a constant
expression is required. The C standard does not list compound literals
as a form of operand that is allowed in a constant expression, so using a
compound literal in this context is not maximally portable. The compiler
will treat the compound literal as if it were a cast expression, which is
a form of operand that the standard lists as being allowed in constant
expressions.
User Action: For maximum portability, replace the compound literal with
a cast expression.

CONSTFOLDNS, contextthe libraries on this platform do not yet support
compile-time evaluation of the constant expression "expression".
Description: Compile-time evaluation of constant expressions requires
underlying support in the libraries available to the compiler at compile-
time, and this expression contains an operator that is not yet implemented
in those libraries.
User Action: If possible, replace part of the constant expression with a
variable of the same value.

CONSTFUNC, Ignoring const type qualifier in declaration of name.
Description: The const type qualifier cannot be used with a function type.
The compiler will ignore the type qualifier.
User Action: Remove the type qualifier.

D–36 HP C Compiler Messages

CONSTINWRT, Const variable resides in wrt extern model.
Description: The current extern model places all external objects in a
modifiable section. Placing an object with a const type qualifier in such a
section means that there is no run-time protection against writing to the
object. This might not have been what you intended.
User Action: Place const objects in sections that cannot be modified.

CONSTNOINIT, contextthe const object "name" is uninitialized.
Description: A defined or tentatively-defined const object has not been
initialized. This would not be valid in C++. It is also considered good
programming practice to initialize all const objects with their value.
User Action: Either remove the const type modifier, or supply an
initializer for the object.

CONSTSTOCLS, contextthe const object "name" has no explicit storage class.
In C, its storage class defaults to "extern"; in C++, it defaults to "static".
Add an explicit "extern" or "static" keyword.
Description: One of the more signifcant and confusing differences
between C and C++ is their treatment of file scope const objects declared
without a storage class. C will give the object extern storage class, making
the object visible in other compilation units. C++ will give the object
static storage class. This can cause an undefined symbol error when other
compilation units try to reference the symbol.
User Action: Add an explicit "extern" or "static" keyword to the
declaration.

CONTFILE, A file ends with a continuation character.
Description: All source files, even those included via the #include
preprocessing directive, must not end with a backslash continuation
character.
User Action: Either remove the continuation character or add an
additional line to the source program that does not end in a continuation
character.

HP C Compiler Messages D–37

CONTROLASSIGN, contextthe assignment expression "expression" is used as
the controlling expression of an if, while or for statement.
Description: A common user mistake is to accidentally use assignment
operator "=" instead of the equality operator "= =" in an expression that
controls a transfer. For example saying if (a = b) instead of if (a = = b).
While using the assignment operator is valid, it is often not what was
intended. When this message is enabled, the compiler will detect these
cases at compile-time. This can often avoid long debugging sessions needed
to find the bug in the user’s program.
User Action: Make sure that the assignment operator is what is expected.

CONVARASLIT, context the use of the const variable "name" in place of a
literal constant is a language extension.
Description: HP C will allow a non-volatile const variable that has
been initialized to be used in contexts where a constant is required. For
example, as the bounds specifier to a file scope array. This is an extension
to standard C. Other C compilers might not successfully compile a program
that uses this extension.
User Action: Use the constant value instead of the variable.

CRXCOND, Common Data Dictionary description extraction condition.
Description: Something went wrong while trying to get the CDD record
description from the CDD. The error message that follows gives more
information about the nature of the problem.
User Action: If necessary, correct the indicated condition in the CDD
record description or with the user environment.

CVIDXOVFL, module uses more than 65536 CodeView type indices
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

CVTDIFTYPES, context"expression" of type "type", is being converted to "target
type".
Description: In certain modes, the compiler will allow assignments or
comparisons between pointer and integer types. This is an extension to
standard C. Other C compilers might not successfully compile a program
that uses this extension.
User Action: Use a cast operator to convert one operand to the other.

D–38 HP C Compiler Messages

CVTU32TO64, contextan unsigned 32-bit integer constant that has its high-
order bit set has been converted to a signed 64-bit type. The conversion
will not sign-extend.
Description: This message indicates a conversion that may produce
unexpected results on this platform because the destination type is a 64-bit
type instead of a 32-bit type.
User Action: If this is the intended behavior, first cast the constant to an
unsigned 64-bit type.

CXXCOMMENT, C++ style comments (//) may not be portable.
Description: C++ style comments have been detected on this line.
Although they have been accepted by HP C in this language mode, they
will not be accepted by all compilers or by HP C in strict C89 standard
mode.
User Action: Replace C++ style line comments (//) with equivalent C
comments (/* ... */) if portability is a concern.

CXXKEYWORD, "C++ keyword" is a keyword in C++. Using it as an identifier
in your C program will prevent porting your program to C++.
Description: This identifier is a keyword in C++. The program is,
therefore, not a valid C++ program.
User Action: Choose a different name for the identifier.

CXXPRAGMANA, The HP C++ pragma "pragma name" is not supported by
HP C. The pragma will be ignored.
Description: The compiler has encountered a pragma that is supported
by HP C++ but is not supported by HP C. The compiler will ignore the
pragma.
User Action: Remove the pragma or compile the program with HP C++.

DCLMISMATLNK, The declaration of "name" has number parameter(s) but
its linkage "name" has number. Standard linkage will be used.
Description: The number of parameters specified in a declaration does
not match the number of parameters specified by the special linkage
associated with this function or typedef. The special linkage was specified
via the #pragma use_linkage directive. Because of this mismatch, the
compiler will ignore the special linkage and use the standard linkage
instead.
User Action: Make sure the number of parameters specified by the special
linkage match the number of parameters in the function.

HP C Compiler Messages D–39

DCLMISMATLNK0, The declaration of "name" has an unknown number of
parameters and cannot be used with the linkage "name". Standard linkage
will be used.
Description: If a special linkage specifies parameter information,
the declaration must not specify an unknown or variable number of
parameters. The special linkage was specified via the #pragma use_linkage
directive. Because of this mismatch, the compiler will ignore the special
linkage and use the standard linkage instead.
User Action: Make sure the number of parameters specified by the special
linkage match the number of parameters in the function type.

DCLMISMATLNK1, where "name" modifierhas a floating type but its linkage
"name" specifies an integer register. Standard linkage will be used.
Description: A parameter or return value of a function type is a floating
type, but the corresponding parameter or return value in the special
linkage specifies an integer register. The special linkage was specified via
the #pragma use_linkage directive. Because of this mismatch, the compiler
will ignore the special linkage and use the standard linkage instead.
User Action: Make sure the register specified by the special linkage
matches the type of of the corresponding parameter and return value of the
function type.

DCLMISMATLNK2, where "name" modifierrequires an integer register but its
linkage "name" specifies a floating register. Standard linkage will be used.
Description: A parameter or return value of a function type is an integer
type, but the corresponding parameter or return value in the special
linkage specifies a floating register. The special linkage was specified via
the #pragma use_linkage directive. Because of this mismatch, the compiler
will ignore the special linkage and use the standard linkage instead.
User Action: Make sure the register specified by the special linkage
matches the type of of the corresponding parameter and return value of the
function type.

DCLMISMATLNK3, where "name" has a size that is incompatible with the
number of registers specified by its linkage "name". Standard linkage will
be used.
Description: The size of a parameter or return value of a function type
is incompatible with the size specified by the special linkage. The special
linkage was specified via the #pragma use_linkage directive. Because of

D–40 HP C Compiler Messages

this mismatch, the compiler will ignore the special linkage and use the
standard linkage instead.
User Action: Make sure the number of registers specified by the special
linkage match the type of the corresponding parameter and return value.

DCLMISMATLNK4, where "name" modifierhas a type that is not allowed
because the it has the linkage "name". Standard linkage will be used.
Description: Using a special linkage places certain restrictions on the
type of a function’s parameters and return value. In general, the type must
be a scalar type that can be represented by a register or registers on this
platform. In cases where some other type is used, the compiler will ignore
the special linkage and use the standard linkage instead.
User Action: Either remove the name from the #pragma use_linkage
directive that specified the special linkage, or modify the type to be
acceptable to the special linkage.

DCLMISMATLNK5, "name" has a void return type but its linkage "name"
specifies a return location. Standard linkage will be used.
Description: If a special linkage specifies return value information, the
declaration must not specify a void return type. The special linkage was
specified via the #pragma use_linkage directive. Because of this mismatch,
the compiler will ignore the special linkage and use the standard linkage
instead.
User Action: Make sure the return value specified by the special linkage
matches the return type.

DCLMISMATLNK6, where "name" modifierhas float _Complex or double _
Complex type. The corresponding floating point registers in linkage "name"
must be consecutive. Standard linkage will be used.
Description: Using a special linkage places certain restrictions on
the type of a function’s parameters and return value. Whenever float
_Complex or double _Complex types are used, they linkage must specify
two consecutive floating point registers. The compiler will ignore the
special linkage and use the standard linkage instead.
User Action: Either remove the name from the #pragma use_linkage
directive that specified the special linkage, or modify the linkage to use
consecutive floating point registers.

HP C Compiler Messages D–41

DECCONSTLARGE, Decimal constant value too large.
Description: A decimal constant used in a preprocessor directive is too
large. The value of the constant will be undefined.
User Action: Decrease the value of the constant.

DECLAFTERSTMT, Placing a declaration after a statement is a new feature
in the C99 standard. Other C compilers may not support this feature.
Description: This is a new language feature in the C99 revision of the
standard. While having a standard specification for portability, the feature
may not yet be available in all of the compilers you use.
User Action: Determine whether or not the use of this feature will cause
portability problems for this code.

DECLARATOR, Invalid declarator.
Description: A declaration did not contain an identifier that specifies the
item to be declared.
User Action: Specify a declarator in the declaration.

DECLINFOR, Placing a declaration in a for loop is a new feature in the C99
standard. Other C compilers may not support this extension.
Description: This is a new language feature in the C99 revision of the
standard. While having a standard specification for portability, the feature
may not yet be available in all of the compilers you use.
User Action: Determine whether or not the use of this feature will cause
portability problems for this code.

DECLSPECEXT, _ _declspec is a language extension.
Description: The _ _declspec storage class modifier is a language
extension of HP C. Other C compilers might not successfully compile a
program that uses the extension.
User Action: Be aware of this extension if you wish to port the code.

DEFINOTHER, Another file in this compilation contains an external
definition of a function named "name", or declares it as a variable with
external linkage, at where.
Description: In a compilation where interfile optimization has been
selected (-ifo on UNIX, /PLUS_LIST_OPTIMIZE on OpenVMS), the
compiler has detected more than one definition of a function using the
same external name, or has found that a function and a variable have
the same external name. An external function can have only a single

D–42 HP C Compiler Messages

definition. And a given identifier with external linkage can refer either to
a function or to a variable, but not both.
User Action: Remove or rename one of the names.

DEFINOTHER1, The external variable "name" was defined as an external
function in another module of this compilation at where.
Description: In a compilation where interfile optimization has been
selected (-ifo on UNIX, /PLUS_LIST_OPTIMIZE on OpenVMS), the
compiler has detected a name with external linkage defined as a variable
in one compilation unit and a function in another.
User Action: Remove or rename one of the definitions.

DEFINOTHER2, This declaration of "name" specifies a different type than the
declaration in another module of this compilation at where.
Description: In a compilation where interfile optimization has been
selected (-ifo on UNIX, /PLUS_LIST_OPTIMIZE on OpenVMS), the
compiler has detected a name with external linkage declared with different
types in two different modules. Although the runtime behavior may be
as intended and match the behavior when the modules are separately
compiled without interfile optimization, the behavior is not well defined
unless the types are compatible.
User Action: Modify one or more of the declarations to make the types
compatible.

DEFINOTHER3, This declaration of "name" specifies a different thread-local
attribute than a declaration in another module of this compilation at where.
Description: In a compilation where interfile optimization has been
selected (-ifo on UNIX, /PLUS_LIST_OPTIMIZE on OpenVMS), the
compiler has detected a name with external linkage declared thread-local
in one module and not thread-local in another. This can lead to unexpected
results at runtime.
User Action: Modify one the declarations to make the thread-local
attributes match.

DEFPARMTYPE, There is no declaration for the old-style function parameter
"name". Type defaulted to int. This is a violation of the C99 standard.
Description: The parameter of an old-style function definition was not
declared. It will default to int type. Omitting the type specifier is not valid
in C99, and is often considered poor programming practice.
User Action: Declare the parameter. HP also recommends that old-style
function definitions be replaced by prototype-format definitions.

HP C Compiler Messages D–43

DEFRETURNTYPE, The type of the function name defaults to "int".
Description: A function definition did not include a type specifier for the
function’s return value. It will default to int. This might not be what you
intend. This is also a violation of the C99 Standard.
User Action: It is a good programming practice to give all function
definitions explicit return types.

DESIGBADARR, context, a struct/union designator cannot be used with an
object of array type.
Description: An initialization designator must match the type of the
object being initialized. In this initialization, the current object is an array
so a struct/union designator is not allowed.
User Action: Correct the initialization.

DESIGBADCOMP, context, an array designator cannot be used with an object
of struct or union type.
Description: An initialization designator must match the type of the
object being initialized. In this initialization, the current object is a struct
or union, so an array designator is not allowed.
User Action: Correct the initialization.

DESIGBADIND, context, the constant expression "expression" in an array
element designator is not a positive integer.
Description: An array-element designator must be an constant expression
that yields a positive integer value.
User Action: Correct the element designator.

DESIGBADIND1, context, the array element designator "[expression]" specifies
an element beyond the end of the array.
Description: An array element designator must specify a valid array
element.
User Action: Correct the element designator.

DESIGNATIONNA, The use of a designation in an initializer list is not
supported in this compilation mode.
Description: Initializer lists that contain designations are a new feature
in the C99 revision of the C standard. HP C will only support this
extension in relaxed mode and strict c99 mode.
User Action: Use a compilation mode that supports the use of
designations.

D–44 HP C Compiler Messages

DESIGNATORUSE, The use of a designation in an initializer list is a new
feature in the C99 standard.
Description: Initializer lists that contain designations are a new feature
in the C99 revision of the C standard. Other compilers may not support
this feature.
User Action: Be aware of this portablility issue.

DESIGNOMEMB, context, the component designator "name" is not a member
of the current structure or union object being initialized.
Description: An initialization designator specifies a struct or union
member that is not a member of the current struct or union object.
User Action: Correct the initialization.

DESIGSCALAR, context, a designator cannot be used with an object of scalar
type.
Description: An initialization designator can only be used on objects of
array, structure, or union type. In this initialization, the current object
being initialized is a scalar type so a designator is not allowed.
User Action: Correct the initialization.

DIFFEXMODEL, This redeclaration of "name" specifies a different extern
model than a previous declaration of the variable at location.
Description: Two declarations of the same variable use different extern
models. The extern model is specified by a #pragma extern_model directive
that appears before the declaration in the source. This redeclaration may
cause unexpected behavior.
User Action: All declarations of a variable should use the same extern
model.

DIFFTYPEQUALS, contextthe type of "name" has different type qualifiers
than the previous declaration at location. The resulting type will be the
composite of the two types.
Description: The C standard permits redeclaration and formation of a
composite type only when the two types being considered are compatible,
and types with different type qualifiers are not compatible. HP C allows
this redeclaration for consistency with some other C compilers, and will
form a composite type with all of the type qualifiers from both declarations.
Be aware that these declarations may not be accepted by other C compilers.
User Action: Modify the declarations so that they use identically qualified
types.

HP C Compiler Messages D–45

DIRECTVNOCPP, "Directive text" is not recognized as a preprocessing
directive in nopreprocessing mode, and is being ignored.
Description: An invalid preprocessing directive was encountered in a
compilation performed with the -nocpp option. When using the -nocpp
option, only a limited number of preprocessing directives, such as #pragma
and #line, can appear in the program. The compiler will ignore the rest of
the line.
User Action: Either remove the directive or compile without the -nocpp
option.

DISREDECL, contextthe type of the external "name" is not compatible with
the type of a declaration of "name" in another name scope at location.
Description: The same external identifier has been declared in different
scopes with incompatible types. This might not have been what you
intended.
User Action: Change all declarations of the same external identifier to
use the same type.

DOLLARID, Extension: A ’$’ was encountered in an identifier.
Description: Accepting a "$" character in an identifier is an extension of
HP C. The program might not compile with other C compilers.
User Action: Be aware of this if you wish to port the program.

DONOTAPPLY, linkage, assert or hint information for built-in function name
is ignored.
Description: A built-in function is always handled specially. There is no
actual function call to which linkage, assert or hint information could be
applied.
User Action: Remove the name of the built-in function from this pragma.

DUPCASE, The switch statement containing this case label already has a
case label for "number".
Description: A switch statement contains more than one case label for
the same case value.
User Action: Remove the duplicate case label.

DUPDEFAULT, The switch statement containing this default label already
has a default label.
Description: A switch statement can contain only one default label.
User Action: Remove the duplicate default label.

D–46 HP C Compiler Messages

DUPENUM, contextthe enumerator "name" is not unique.
Description: An enumerator constant is declared more than once with
the same value. While this is accepted by HP C, it is not allowed by the C
standard.
User Action: Either use a different enumerator name or remove the
previous declaration of the name.

DUPEXTERN, The declaration of "name1" will map to the same external
name as the declaration of "name2" at where.
Description: The compiler has detected a case where two different names
in a program will map to the same external name in the output object
file. This can cause unpredictable results at runtime. This will most often
happen when the /NAMES=UPPERCASE or /NAMES=LOWERCASE
qualifier causes two names with different case spellings to map to the same
external name.
User Action: Either use the /NAMES=AS_IS qualifier, or modify one of
the names.

DUPLABEL, The label "name" is already defined in this procedure at location.
Description: A label has already been defined. Each function can define
each label only once.
User Action: Remove the duplicate label definition.

DUPLINK, Duplicate linkage pragmas for linkage name "linkage name".
Description: The same linkage specifier has been defined in more than
one #pragma linkage directive.
User Action: Declare each linkage only once.

DUPLPRAGASS, #pragma assert directive specified for the function name
name while different #pragma assert was specified for its type.
Description: Duplicate assertion can’t be specified for a function. Check
whether #pragma assert was mistakenly specified for the same function
more than once, or function’s type is declared in a typedef which in turn
has its own #pragma assert directive.
User Action: Either remove duplicate #pragma assert directive, or change
assertions, or fix spelling of the function name or typedef.

HP C Compiler Messages D–47

DUPPARM, context"name" is a duplicate parameter name.
Description: The parameter identifier list of an old-style function
definition uses the same identifier more than once.
User Action: Each identifier in the parameter list must be unique.
HP also recommends that old-style function definitions be replaced by
prototype-format definitions.

DUPSTATIC, There is a redundant use of the keyword "static" in this array
declaration.
Description: In C99 the keyword "static" may appear at most once in
the outermost array-bounds specifier of a function parameter in a function
prototype.
User Action: Remove redundant occurrences(s) of "static" from the array
declaration

DUPSTORCLS, contextthe same storage class modifier occurs more than once.
Description: This declaration specifies the same storage class modifier
more than once.
User Action: Remove the extra uses of the storage class modifier.

DUPTYPEDEF, context"name" has a duplicate typedef at where. This might
not be portable.
Description: The same typedef has been declared to the same type more
than once. Standard C does not allow this and other compilers might not
accept it.
User Action: Remove the redundant declaration.

DUPTYPESPEC, contextthe same type specifier occurs more than once.
Description: The same type specifier appears more than once in the same
declaration. The redundant specifier will be ignored.
User Action: Remove the duplicate type specifier.

DUPTYPQUAL, contextthere is a redundant use of type qualifier "const or
volatile".
Description: The same type qualifier appears more than once in a type
specifier. This violates the C89 standard. Other compilers may not accept
this program. Note that C99 will allow redundant qualifiers.
User Action: Remove the redundant type qualifier.

D–48 HP C Compiler Messages

ELIFIGNORED, Out of place #elif directive ignored.
Description: An #elif preprocessing directive was encountered outside of
an #if/#endif body. The directive will be ignored.
User Action: Remove the directive.

ELLIPSEARG, Standard C does not permit the use of an ellipsis as an only
argument.
Description: Standard C requires at least one formal parameter be
declared before the ellipses. This declaration might not be portable to other
C compilers.
User Action: Recode the function declaration to contain at least one
formal parameter.

ELLIPSEPARM, contexta parameter with type "type" matches an ellipsis in
previous declaration at location.
Description: A function that has been previously declared as taking
variable arguments is now redeclared as using a different number of
formal parameters before the start of the variable argument list. This
redeclaration might not be portable to other C compilers.
User Action: Recode the function declarations to match each other.

ELLIPSISEND, No tokens may follow ... in a formal parameter list.
Description: The ellipsis may only appear at the end of a formal
parameter list. Everything after that is being ignored.
User Action: Remove the unexpected token.

ELSEIGNORED, Out of place #else directive ignored.
Description: An #else preprocessing directive was encountered outside of
an #if/#endif body. The directive will be ignored.
User Action: Remove the directive.

EMBEDCOMMENT, A comment is neither preceded nor followed by white
space.
Description: A comment is neither preceded nor followed by white space.
In certain modes the compiler will paste the tokens before and after the
comment together to form a single token. This behavior is not valid in
standard C. Writing programs that rely on this behavior might prevent the
program from being compiled on other platforms.
User Action: Add white space before or after the comment, or use the ##
operator to paste tokens together.

HP C Compiler Messages D–49

EMPTYCHARCONST, Empty character constant.
Description: In some modes the HP C compiler will allow a null character
constant. The compiler will give this constant a value of zero. Accepting
an empty character constant is a language extension. Empty character
constants are not valid in standard C. Writing programs that rely on
this behavior might prevent the program from being compiled on other
platforms.
User Action: Replace the empty character constant with ’\0’.

EMPTYFILE, Source file does not contain any declarations.
Description: This source file contains no declarations. This might not
have been what you intended. For example, perhaps a necessary macro
was not defined.
User Action: Every source program should contain at least one
declaration.

EMPTYINIT, An initializer list without an expression is not valid. The
compiler will replace the empty expression with the constant 0.
Description: The C standard requires that an initializer list contain an
expression. The compiler has encountered one without an expression. The
compiler will treat the empty list ({}) as if it contained a single zero ({0}).
This is for compatibility with some other C compilers. Be aware that this
syntax may not be accepted by other C compilers.
User Action: Supply an expression to the initializer.

EMPTYOBJ, Empty object file due to errors.
Description: An earlier condition will cause an empty object module to be
created.
User Action: Correct the condition that was reported earlier.

EMPTYSTRUCT, Allowing struct/union type with no members is a language
extension.
Description: The C standard requires that a struct/union type have at
least one member. The HP C compiler will accept this for compatibility
with older compilers. The struct/union type will be treated as if it were
declared { : 0; }
User Action: Provide at least one member for the struct/union.

D–50 HP C Compiler Messages

ENUM16BIT, contextthe enumeration constant name is out of the range
-32768 to 32767. This might not be portable.
Description: An enum constant is larger than can be represented in 16
bits. This would not be portable to a system with an int size of 16 bits.
User Action: Be aware of this if you wish to port to a system with an int
size of 16 bits.

ENUMCALC, contextthe enum variable "expression" is used in an arithmetic
operation.
Description: An enumerated type variable was used in an arithmetic
operation. While this is valid in C, it might not have been what you
intended.
User Action: Verify the use of the enum variable.

ENUMINIT, contextthe enumerator "name" is initialized to the nonintegral
value "expression".
Description: An enum declaration contains an enumeration constant
initializer that does not have an integer type. The initializer for an
enumeration constant must be an integral constant expression.
User Action: Correct the initializer.

ENUMRANGE, contextthe enumeration constant "name" is out of range INT_
MIN to INT_MAX and will be truncated.
Description: An enumeration constant must be representable as an int
type. The specified value is outside the range of an int. In modes where
this is a warning, the compiler will use the low-order bits to form the int
value.
User Action: Use a valid constant value.

ENUMSANDINT, contextallowing an enumeration type and a signed int to be
compatible may not be portable.
Description: The standard states that enumeration types shall be
compatible with an integer type. HP C, along with most other C compilers,
has chosen the signed int type to be compatible with enumeration types.
Other compilers may chose another type such as unsigned int (the C
standard even allows an implementation to choose different integer types
depending on the values of the enumeration constants defined for the type).
Therefore this program may not be accepted by other C compilers.
User Action: Insert a cast to make the types the same.

HP C Compiler Messages D–51

ENUMSNOTCOMPAT, contextallowing two different enumeration types to be
compatible is a language extension.
Description: The HP C compiler allows two objects of different
enumeration types to be compatible. The C standard specifies that
enumeration types are distinct types. Therefore this program is not
standard compliant and other C compilers may not accept it.
User Action: Use the same enumeration type or cast one type to the
other.

ENUMUSED, contextthe enumerator name "name" has been used previously.
Description: The specified enumerator name has been previously declared
as something other than an enumerator.
User Action: Either use a different enumerator name or remove the
previous declaration of the name.

ENVIRSTKDIRTY, At the end of the compilation the pragma name stack was
not empty. This may indicate a coding error.
Description: The program being compiled has saved the named pragma
state more often than it has restored it. Good coding practice calls for
the pragma state to be restored some point after it has been saved. This
condition may indicate the accidental failure to restore the state.
User Action: Make sure each pragma save has a corresponding pragma
restore.

ERRORLIM, diagnostic message limit exceeded
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

ERRORMESSAGE, #errorerrormsg
Description: An #error directive was encountered. This message will
include the text that follows the directive in the source program.
User Action: Remove the #error directive, or supply the proper macro
definitions so that the compiler will skip the directive.

ESCOVERFL, Invalid escape sequence encountered.
Description: An escape sequence in a character or string literal specifies
a value outside the range of a character or wide character.
User Action: Specify a valid escape sequence.

D–52 HP C Compiler Messages

EXPANDEDDEFINED, Macro expansion includes the token "defined", which
will be treated as an operator. This might not be portable.
Description: A macro expanded during the processing of a preprocessor
#if directive included the token "defined". The HP C compiler will treat
this as the defined preprocessing operator. Other compilers might treat
this differently.
User Action: Rewrite the macro not to use the "defined" operator.

EXPNOTRES, expression does not contribute to result
Description: The compiler has detected a source expression that does not
contribute to the result. This may not be what you expected.
User Action: Verify the expression is what you intend.

EXPRCVTINT, The expression "expression" has been converted to integer.
Description: In certain modes, HP C will allow switch expressions or
case constants to be non-integer types. The expression or constant will be
converted to int. In one of these cases, this warning will be issued.
User Action: Cast the switch expression to an integer type or use an
integer case constant.

EXPRNOTINT, The expression "expression" has type type, which is not
integral.
Description: An expression that is required to have an integer type had
a type that is not integral. This is not valid. An example of a situation
where an integer is required is that in most modes HP C requires that the
switch control expression have integer type.
User Action: Modify or cast the expression so that it has integer type.

EXPRNOTUSED, contextthe expression "expr" is never used.
Description: The compiler has detected an expression that is not used,
and might not have a side-effect. This might not have been what you
intended.
User Action: If the expression has a desired side-effect, the message
can be ignored. Otherwise, you might want to consider removing the
expression.

EXTENDTYPE, This platform specific type is a language extension.
Description: The use of the types _ _int8, _ _int16, _ _int32, _ _int64, or
other type specifiers beginning with leading double underscores might not
be portable to other platforms or to other C compilers.
User Action: Be aware of this portability concern.

HP C Compiler Messages D–53

EXTERNINIT, HP C allows the initialization of a variable with extern storage
class. This differs from the VAX C behavior.
Description: VAX C does not allow a variable with extern storage class to
be initialized. HP C will allow this, even in vaxc mode.
User Action: Be aware of this difference if you plan to compile the source
with VAX C.

EXTERNPOP, This "restore" has underflowed the extern model’s stack. No
corresponding "save" was found.
Description: The extern_model stack, managed by the #pragma extern_
model and #pragma environment directives, contains more restores than
saves. This could signify a coding or logic error in the program.
User Action: Make sure each restore has a corresponding save.

EXTPREAFTER, This directive will not set the extern_prefix of "name"
because there is a previous declaration of the identifer with external
linkage at where.
Description: When an identifier is specified in a #pragma extern_prefix,
the declaration of that identifier must appear after the #pragma.
User Action: Reorder the declaration and the #pragma so that the
#pragma comes first.

EXTPREAGAIN, This directive overrides the extern_prefix for "name"
specified by an earlier #pragma extern_prefix at where.
Description: Two #pragma extern_prefix directives have specified
different non-empty extern_prefixes for the same identifier. In such cases
the later directive will set the extern_prefix for the identifier.
User Action: If it is necessary to respecify the extern_prefix for an
identifier, first remove the prefix (by setting it to an empty string) and then
specify the new prefix in a subsequent #pragma.

EXTPRENODECL, There is no identifier named "name" with external linkage
declared in this compilation unit.
Description: A #pragma extern_prefix directive specifies an extern
prefix for an identifier that is not declared with external linkage in the
compilation unit. This may not have been what you intented.
User Action: Remove the identifier from the #pragma extern_prefix, or
declare it with external linkage, or set the prefix for this identifier to an
empty string.

D–54 HP C Compiler Messages

EXTRABRACES, context, the value is enclosed within too many pairs of
braces.
Description: An initializer contains too many open braces for the object
being initialized.
User Action: Reduce the number of braces.

EXTRAMODULE, Redundant "#pragma module" or "#module" directive
ignored.
Description: A compilation unit can contain only one #pragma module or
#module directive. All subsequent directives will be ignored.
User Action: Remove the extra directives.

EXTRAPRAGARGS, Extra pragma arguments to #pragma pragma were
found. Pragma is ignored.
Description: Unexpected arguments were found at the end of a #pragma
directive. The directive will be ignored.
User Action: Remove the extra arguments.

EXTRASEMI, Extraneous semicolon.
Description: An extra semicolon was found at the end of a declaration. It
will be ignored.
User Action: Remove the extra semicolon.

FALLOFFEND, The last statement in non-void function "name" is not a
return statement.
Description: A function that returns a value does not end with a return
statement. If function execution reaches the end of the function, the
implied return statement that executes will return an undefined value.
This might not have been what you intended.
User Action: End the function with a return statement that specifies a
return value.

FBFILENOTFOUND, Feedback file not found: text
Description: The specified feedback file could not be found by the
compiler.
User Action: Specify the correct file name.

HP C Compiler Messages D–55

FILECLOSE, An error occurred while attempting to close a source file:
problem.
Description: An unexpected error occurred while closing a source file.
The message text will contain additional information about the failure.
User Action: Correct the condition that caused the failure.

FILENOTFOUND, File not found: text
Description: The specified file could not be found by the compiler.
User Action: Specify the correct file name.

FILEREAD, An error occurred while attempting to read a source file:
problem.
Description: An unexpected error occurred while reading a source file.
The message text will contain additional information about the failure.
User Action: Correct the condition that caused the failure.

FILESCOPEVLA, contextthe file-scope identifier "name" cannot be declared
with a variably modified type.
Description: Only ordinary identifiers with block scope and without
storage class extern, or ordinary identifiers with function prototype scope
can be declared with a variably modified type.
User Action: Correct the declaration.

FINBRANCH, A goto to the label "label" branches into a finally handler.
Description: A goto statement tried to transfer into a finally handler.
This is illegal.
User Action: Modify the goto or move the label outside the handler.

FLEXARRAYELEM, contextallowing an array element to be a struct with a
flexible array member is a language extension.
Description: The C99 standard allows the final element of a struct with
more than one named member to have incomplete array type. Such a
member is called a flexible array member. The standard does not allow
such a struct (and any union containing, possibly recursively, a member
that is such a struct) to be an array element. Other C compilers may not
support this extension.
User Action: Be aware of this extension if you wish to port the code.

D–56 HP C Compiler Messages

FLEXARRAYMEM, contextallowing the struct member, "name" to be a struct
with a flexible array member is a language extension.
Description: The C99 standard allows the final element of a struct with
more than one named member to have incomplete array type. Such a
member is called a flexible array member. The standard does not allow
such a struct (and any union containing, possibly recursively, a member
that is such a struct) to be a member of another structure. Other C
compilers may not support this extension.
User Action: Be aware of this extension if you wish to port the code.

FLOATCONSQUAL, The float_const_qual is not valid in strict ANSI mode
and will be ignored.
Description: The -float_const option cannot be used in strict ANSI mode.
The option will be ignored.
User Action: Either remove the -float_const option or use a different
mode.

FLOATCONST, Ill-formed floating constant.
Description: An invalid floating constant was encountered.
User Action: Correct the floating constant.

FLOATERR, contexta floating point error occurs in evaluating the expression
"expression".
Description: A floating-point error occurred while evaluating a constant
expression. This is often caused by an invalid floating-point number. The
value of the expression is undefined.
User Action: Correct the floating-point constant expression.

FLOATOVERFL, contextfloating-point overflow occurs in evaluating the
expression "expression".
Description: A floating-point overflow occurred while evaluating a
constant expression. The value of the expression is undefined.
User Action: Correct the floating-point constant expression.

HP C Compiler Messages D–57

FLOATTOINT, context"expr" is being converted from type type to int type.
Description: The C language requires that this expression be of integer
type. In most cases the compiler will emit an error for this case. In VAX C
mode, the compiler emits this warning and converts the expression to int
type. This matches the behavior of VAX C.
User Action: If the VAX C behavior is what you intended, cast the
expression to int to silence the diagnostic. Otherwise, recode the
expression to reflect your intent.

FMTNOTSTR, argument number of this function is not of type char * but
corresponds to the format string specified by the #pragma assert directive
at location. The format func_attr will be ignored.
Description: The format attribute causes the format string to be checked
if it is a string constant. The format parameter can’t be a format string
because it is not declared as a char * type. The format attribute will be
ignored.
User Action: Either remove the format assertion from the directive,
correct the position of the format argument in the assertion, or declare
the format argument as a "char *" in the proper position in the function
prototype.

FNAMETOOLONG, The file name "name" in this directive is too long.
Description: A preprocessing directive has specified a file name that is
too long for this platform.
User Action: Supply a valid file name

FORMATATTR, contextthe arguments to function name do not match the
assertions of its format attribute. The format argument or the argument
preceeding the first argument to check is missing.
Description: The format attribute of this function asserts that the format
argument exists and will be checked if it is a string constant. The first
argument to check, if non-zero, identifies the argument corresponding
to the ellipsis in the function declaration and asserts that the argument
preceeding it exists.
User Action: Modify either the function call or the format attribute so
that they match.

D–58 HP C Compiler Messages

FOUNDCR, A carriage-return character was encountered; it is being treated
as white space.
Description: The compiler encountered a carriage-return character some
place other than inside a character or string constant. The compiler will
treat the carriage-return as white space.
User Action: The source might have been created by some non-standard
means. If possible, replace all carriage-return characters outside of
character or string constants with white space.

FREGNEEDSIEEE, Use of the floating register "regnum" in a #pragma
linkage directive requires the /FLOAT=IEEE_FLOAT qualifier.
Description: On IA64, VAX floating-point data is passed in general
registers. HP C requires that any program that uses a floating point
register in a linkage directive must be compiled with IEEE floating-point.
User Action: Compile with IEEE floating-point. Another option would be
to remove the floating point registers from the linkage.

FUNCELEMENT, contextthe element type of an array type is a function type.
Description: The compiler has encountered an array with an element
type of function. An array element must be an object type.
User Action: Change the type of the array element.

FUNCIDLIS, contextthe identifier "id" is not the name of a type. All
parameter information in this declaration will be ignored.
Description: The declaration is most likely a malformed prototype-style
function declaration. In a prototype-style declaration, each parameter must
have a type. The identifier named in the message might be intended to be
the (optional) name of a formal parameter and the type specification was
mistakenly omitted, or it might be intended to be the name of a type but no
typedef declaration for it is visible. Alternatively, the declaration might be
intended to correspond to an old-style function definition, and mistakenly
contains a formal parameter name in the declaration. Old-style function
definitions list the names of formal parameters (without types) inside the
parentheses, but old-style function declarations contain nothing inside the
parentheses.
User Action: Correct the declaration.

FUNCINIT, The declaration of the function "name" includes an initializer.
Description: A function declaration cannot contain an initializer.
User Action: Remove the initializer from the declaration.

HP C Compiler Messages D–59

FUNCMEM, The member name has a function type.
Description: A struct or union member is declared with function type.
This is not valid.
User Action: Correct the member declaration.

FUNCMIXPTR, contextfunction types differ because this declaration specifies
"type1" and a previous declaration specifies "type2".
Description: A function redeclaration differs from an earlier declaration
of the same function because the pointer size of one of the arguments or
the return result is different.
User Action: Use the same pointer size for all declarations of the function.

FUNCNOTDEF, The function "name" has non-extern storage class, occurs in a
context that requires its definition, and has no definition. The storage class
has been changed to extern.
Description: In certain modes, the compiler will allow a static function
to be declared within the scope of another function. If this function is
referenced, then it must also be defined in the compilation unit. If the
function is not defined, this message will be output, and the earlier static
declaration will be changed to extern.
User Action: Define the static function with compilation unit.

FUNCNOTFUNC, In this function definition, "name" has type type instead of
a function type.
Description: A function definition does not have a function type. This can
occur if the definition did not contain an open/close parenthesis pair.
User Action: Change the definition to specify a function type.

FUNCREDECL, contextfunction types differ because one has no argument
information and the other has an ellipsis.
Description: Two function types, used in an operation or a redeclaration
of a function, are different because one uses ellipses and the other does
not. Older compilers will accept this, but it is not valid standard C.
User Action: If used in an operation, a cast should be inserted. If used in
a redeclaration, the redeclaration should be removed or modified.

D–60 HP C Compiler Messages

FUNCSTORCLS, contexta function has an explicit storage class other than
"static" or "extern".
Description: This declaration specifies a storage class that is not valid for
a function. If an explicit storage class is used in a function declaration, it
must be either static or extern.
User Action: Either remove the storage class specifier, or use one of the
valid storage classes.

FUNCSTORMOD, contexta function cannot have this storage class modifier.
Modifier ignored.
Description: A function cannot be declared with this storage class
modifier. The only valid storage class modifier for a function declaration is
_ _inline. The modifier is ignored by the compiler.
User Action: Remove the storage class modifier from the function
declaration.

FUNCSTRCLS, The block-level declaration of the function "name" specifies an
explicit storage class other than extern.
Description: A block-level declaration of a function has specified an
explicit storage class other than extern. HP C will change the storage class
to extern.
User Action: Either remove the storage-class specifier, or change it to
extern.

FUTUREKEYWD2, "inline" is a keyword in the C99 revision of the C
standard. Using it as an identifier will prevent your program from
conforming to that standard.
Description: The token inline has been selected as a keyword in the C99
release of the C standard. Because the program uses it as an identifier, the
program will not conform to that standard.
User Action: Change the name of the identifier.

FUTUREKEYWORD, "restrict" is a keyword in the C99 revision of the
C standard. Using it as an identifier will prevent your program from
conforming to that standard.
Description: The token restrict has been selected as a keyword in the C99
release of the C standard. Because the program uses it as an identifier, the
program will not conform to that standard.
User Action: Change the name of the identifier.

HP C Compiler Messages D–61

GBLOUTSIDEINT, context the globalvalue constant value is outside the range
of type int. This may cause unexpected results.
Description: The C compiler does not support globalvalue constants
larger than int. The compiler preserves only the low-order 32 bits of the
value, which will be sign-extended by the linker if the symbol is used in
a certain contexts requiring a 64-bit value. This may cause unexpected
results.
User Action: Use constants within the range of type int to initialize
globalvalues, or use more portable constructs such as macro definitions or
global const-qualified variables to share constant values among compilation
units.

GBLREFINIT, The declaration of "name" specifies the globalref storage class
and includes an initializer.
Description: A declaration with storage class globalref cannot include an
initializer.
User Action: Either remove the initializer or use a storage class that will
allow an initializer.

GCCINLINE, The inline and _ _inline keywords will be interpreted with GCC
style semantics. To get C99 semantics, please specify -accept nogccinline.
Description: The C99 standard has a slightly different interpretation of
the keyword inline than in GCC. The GCC _ _inline keyword also differs
from the HP C _ _inline keyword.
User Action: Use the command line specifier -accept nogccinline.

GEMARGSIZE, contextthe size of "expression" exceeds the implementation’s
limit of 2147483647 bytes on the size of a function argument.
Description: The size of a function argument exceeds the HP C
implementation limit.
User Action: Either reduce the size of the argument or consider passing
it by reference.

GLOBALEXT, A storage class of globaldef, globalref, or globalvalue is a
language extension.
Description: These storage classes are language extensions of HP C.
Other C compilers might not successfully compile a program that uses the
extension.
User Action: These storage classes can be recoded using the more
portable #pragma extern model.

D–62 HP C Compiler Messages

globaldef int var1; globalref int var2; globalvalue int var3;

Can be written as:

#pragma extern_model save
#pragma extern_model strict_refdef
int var1;
extern int var2;
#pragma extern_model globalvalue
extern int var3;
#pragma extern_model restore

For more information, consult the #pragma extern_model documentation.

GOTSZOVFL, GOT table overflow for module text
Description: The object file required for this module is too complex.
User Action: Break the source program into several pieces so the
individual objects will be simpler.

HEXOCTSIGN, In VAX C mode, the compiler will give this constant a signed
type for compatibility with VAX C. This differs from the behavior specified
in the C standard, which would give this constant an unsigned type.
Description: The C standard specifies that an octal or hexadecimal
integer constant has an unsigned type when its value cannot be
represented in a signed integer type, but can be represented in the
corresponding unsigned integer type. Some older compilers, such as VAX
C, will treat this constant as having a signed type. In VAX C mode, the
compiler matches the behavior of VAX C. In other modes the compiler
matches the behavior specified in the standard.
User Action: Be aware that this difference may cause porting problems
if this program is compiled in a mode other than VAX C mode, or with a
compiler that does not support this old behavior.

HEXOCTUNSIGN, The HP C compiler conforms to the C standard and will
give this constant an unsigned type. Some older compilers may give this
constant a signed type.
Description: The C standard specifies that an octal or hexadecimal
integer constant has an unsigned type when its value cannot be
represented in a signed integer type, but can be represented in the
corresponding unsigned integer type. Some older compilers will treat this
constant as having a signed type.
User Action: Be aware of this difference if you plan to port this source to
an older compiler.

HP C Compiler Messages D–63

HINTNOTFUNC, The identifier "ident" is not a declared function. It will be
ignored in this #pragma hint func_attrs list.
Description: The identifiers in a #pragma hint func_attrs must be
declared functions.
User Action: Either declare the function prior to the pragma or remove
the identifier from the pragma.

HINTTOOBIG, contextthis hint value must not be greater than one. The hint
will be ignored.
Description: This #pragma hint directives must take positive floating
point values which is not greater than one.
User Action: Correct the hint.

IDEXPECTED, Identifier expected but not found.
Description: The compiler was expecting an identifier, but one was not
found.
User Action: Correct the program syntax.

IDINPARENSEXT, contextaccepting an identifier enclosed in parentheses as
the second argument to va_start is a language extension.
Description: The C standard states that the second argument to va_start
must be an identifier. For compatibility with other C compilers, HP C will
accept an identifier enclosed in parentheses. Be aware that this program
does not conform to the standard and may be rejected by other compilers.
User Action: Remove the parentheses.

IDPACKPOPPRAG, The identifier name from the pragma pack pop directive
was not found on the top of the pragma pack stack.
Description: The identifier specified in the #pragma pack (pop,
<identifier>) directive was not found on the top of the pragma pack stack.
A previous #pragma pack pop or #pragma member_alignment restore may
have already popped this identifier off the stack, the identifier may not
have been previously pushed onto the stack, or extra elements are pushed
on the stack on the top of element with the identifier, or the identifer may
be spelled incorrectly.
User Action: Check the spelling of the identifier. Verify that the identifier
was previously pushed onto the pack stack and not popped off by another
#pragma pack pop or #pragma member_alignment restore, and all
elements pushed on the top of the identifier are popped. Correct the
directive(s).

D–64 HP C Compiler Messages

IEEEASSUMED, Use of /ROUNDING_MODE qualifier implies /FLOAT=IEEE.
Compilation will be performed as if /FLOAT=IEEE were specified on the
command line.
Description: This compilation has specified an IEEE floating-point
rounding mode without specifying /FLOAT=IEEE on the command line.
The compiler will set the floating-point type to IEEE floating.
User Action: Specify /FLOAT=IEEE on the command line.

IEEEASSUMED1, Use of /IEEE_MODE qualifier implies /FLOAT=IEEE.
Compilation will be performed as if /FLOAT=IEEE were specified on the
command line.
Description: This compilation has specified an IEEE floating-point mode
without specifying /FLOAT=IEEE on the command line. The compiler will
set the floating-point type to IEEE floating.
User Action: Specify /FLOAT=IEEE on the command line.

IGNORECALLVAL, contextthe value returned from the function "expression"
is not used - if this is intended, it should be cast to "void".
Description: A function that returns a value has been invoked, yet the
value was not used. This might not have been what you intended.
User Action: Cast the function to void to suppress the message.

IGNOREEXTRA, Spurious token(s) ignored on preprocessor directive line.
Description: A preprocessing directive was supplied more arguments
than it expects. The extra arguments will be ignored.
User Action: Remove the extra arguments.

IGNORETAG, contextthe tag "name" is redeclared, but will be ignored.
Description: The "struct" or "union" before the tag used in this
declaration does not match that in the declaration of the tag. The
"struct" or "union" at the earlier declaration of the tag will be used in this
declaration.
User Action: Either change the current declaration to match the
declaration of the tag, or create a new tag containing the different type.

IGNORETOKENS, # not in column 1 is ignored, skipping to end of line.
Description: In K & R mode, white space is not allowed before a
preprocessing directive. The compiler will ignore this source line.
User Action: Either remove the white space or compile in a mode other
than K & R.

HP C Compiler Messages D–65

IGNORSYSREG, Ignoring system register specified in routine’s linkage.
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

IMAGINARYNA, The _Imaginary keyword is not supported by HP C. It will
be treated as an identifier in this compilation.
Description: Support for the _Imaginary keyword is an optional extension
to the C standard. HP C does not support this extension. All occurrences
of _Imaginary will be treated as an identifier.
User Action: Do not use the _Imaginary type.

IMPFNCFALLOFF, The last statement in non-void function "name" is not a
return statement.
Description: This message indicates that a function with an implicit
return type of it does not end with a return statement. If function
execution reaches the end of the function, the implied return statement
that executes will return an undefined value. This might not have been
what you intended.
User Action: Consider declaring the function to be a void function. If it
is supposed to return a value, add a return statement with the value the
function is to return.

IMPFNCMSSNGRET, Non-void function "name" with implicit return type int
does not contain a return statement.
Description: This message indicates that a function with an implicit
return type of int does not contain a return statement. This message
is not issued for functions with an explicit return type. See message
MISSINGRETURN.
User Action: Consider declaring the function to be a void function. If it
is supposed to return a value, add a return statement with the value the
function is to return.

IMPLICITFUNC, contextthe identifier "name" is implicitly declared as a
function.
Description: A expression contained a reference to a function that has
not been declared. The C99 standard requires that all referenced functions
must be declared before they are referenced.
User Action: Declare the function before it is referenced.

D–66 HP C Compiler Messages

INCARGTYP, Type of actual argument inconsistent with formal parameter
declaration in text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

INCARRAYPARM, contextusing array syntax to declare a parameter that is a
pointer to an incomplete array type may not be portable.
Description: Although this array parameter declaration conforms to the
C standard (since it is equivalent to a pointer to the inner array), other C
compilers may not accept it.
User Action: Be aware of this difference if you plan to port this source to
another compiler.

INCARRAYPARM1, contextallowing an array parameter that has more than
two unspecified element counts is a language extension.
Description: Because this parameter declaration will cause an array
of incomplete types to be created, it does not conform to the C standard.
Although some other C compilers will accept this declaration, many
compilers will reject it.
User Action: Be aware of this difference if you plan to port this source to
another compiler.

INCLUDENOPEA, A non-default pointer size or member alignment is
specified, and the header files in directory are not protected. This might
yield unpredictable results. The protect_headers_setup script can help. See
the protect_headers_setup(8) man page for details.
Description: Using a non-default pointer size or member alignment can
cause unpredictable results for system header files that are not protected
and that rely on the default pointer size or alignment.
User Action: Examine the man page referenced in the message for more
information.

INCLUDEOPEN, An error occurred while attempting to open the include file
name: problem.
Description: An unexpected error occurred during the opening of an
include file. The message text will contain additional information about
the failure.
User Action: Correct the condition that caused the failure.

HP C Compiler Messages D–67

INCLUDEPROEPI, Cannot include files in a prologue or epilogue file.
Description: It is not possible for a prologue or epilogue file to perform an
#include directive. This might lead to nested inclusion.
User Action: Remove the #include directive from the prologue/epilogue
file.

INCOMPARRY, contextthe member name has incomplete array type. This is
not strictly conformant with the C standard and might not be portable.
Description: The compiler has detected an array without a bounds
specifier to be part of a struct or union type. The C89 standard does not
allow members of this type. The C99 standard will allow only the final
member of a struct with more than one named member to be of this type.
Other C compilers might not successfully compile a program that uses this
extension.
User Action: Specify the bounds if possible.

INCOMPARRY1, contextthe last member of a union, or a struct with only
one named member, name, has incomplete array type. This is not strictly
conformant with the C standard and might not be portable.
Description: The compiler has detected an array without a bounds
specifier to be part of a struct or union type. The C89 standard does not
allow members of this type. The C99 standard will allow only the final
member of a struct with more than one named member to be of this type.
Other C compilers might not successfully compile a program that uses this
User Action: Be aware of this extension if you wish to port the code.

INCOMPARRY2, contextthe last member of a struct with more than one
named member, name, has incomplete array type. This does not conform to
the C89 standard.
Description: The C89 standard does not allow struct members to be an
array without a bounds specifier. The C99 standard will allow the final
member of a struct with more than one named member to be an incompete
type. Other C compilers may not support this C99 extension.
User Action: Be aware of this if you wish to port the code to a compiler
that does not support C99.

INCOMPCALL, contextthe return type of "expression" is incomplete.
Description: A function with an incomplete return type other than void
cannot be invoked.
User Action: Complete the function return type before the function is
invoked.

D–68 HP C Compiler Messages

INCOMPDEREF, context"expression" is a pointer to an incomplete struct or
union and should not be used as the left operand of a member dereference.
Description: In certain modes, HP C will allow the struct or union
specifier of a member dereference operator (->) to specify a struct or union
that does not contain the element specified by the right operand. While
this is considered poor programming practice, it was common with older
C compilers. In cases where the left operand is a pointer to an incomplete
type, the practice is considered even worse. While HP C will accept the
construct in certain modes, the code should be modified. Further, this
program does not conform to the C standard and might not be accepted by
other C compilers.
User Action: Be aware of this if you wish to port the program.

INCOMPELINIT, context, an array’s element type is incomplete, which
precludes its initialization.
Description: In order to initialize an array, the array element type must
not be incomplete.
User Action: Either remove the initializer or complete the array element
type before this point in the program.

INCOMPELMNT, contextthe element type of an array type is incomplete.
Description: The element type of an array type is incomplete at the point
in the program where the array is declared. While HP C will allow this if
the element type is completed later, other compilers might require the type
to be complete at this point in the program.
User Action: Either complete the type before the array declaration, or be
aware of this if you wish to port the program.

INCOMPMEM, The member "name" has an incomplete type.
Description: A struct or union member must not have an incomplete
type. An exception is that HP C will accept a member that is an array with
unspecified bounds, although warnings are often generated for this case.
User Action: Complete the type before it is used in as a member of a
struct or union.

HP C Compiler Messages D–69

INCOMPNOLINK, In this declaration, "name" has no linkage and is of an
incomplete type.
Description: A declaration with no linkage cannot specify an incomplete
type. Incomplete types can only be used for identifiers with external or
internal linkage.
User Action: Either complete the type before the declaration or modify
the declaration to specify an external or internal linkage.

INCOMPPARM, In the definition of the function "function name", the
parameter "parameter name" has an incomplete type.
Description: This function definition contains a parameter with an
incomplete type other than an array whose bounds are not specified. This
is not valid.
User Action: Complete the type before the function definition.

INCOMPRETURN, In the definition of the function "name", the return type is
an incomplete type other than void.
Description: A function definition cannot specify a return type that is an
incomplete type except for the void type.
User Action: Complete the type before the function definition.

INCOMPSTAT, The static declaration of "name" is a tentative definition and
specifies an incomplete type.
Description: This file scope static declaration declares an identifier with
incomplete type. This is not valid because a static declaration will allocate
storage for the object, but the object’s size is not known at this point in the
compilation.
User Action: Complete the type before the static declaration.

INCOMPSTATARR, Allowing the declaration of a static array with an
incomplete type is a language extension.
Description: The HP C compiler will allow an incomplete array type
to appear in a static file scope declaration for compatibility with other
compilers. This is an extension to the standard. Other compilers may
reject this declaration.
User Action: Either use a complete type in this declaration, or change the
storage class to extern.

D–70 HP C Compiler Messages

INCOMPTENT, The type of the tentatively-defined variable "name" is
incomplete at the end of the compilation unit.
Description: This file-scope declaration with no storage-class specifier
declares an identifier with incomplete type. The type must be completed
before the end of the compilation unit.
User Action: Complete the type.

INCOMPVALUE, context"expression" has incomplete type, and so cannot be
used as an rvalue.
Description: It is not possible to get the value of an expression with
incomplete type.
User Action: Complete the type before its value is used.

INCOMPVOID, contextthe element type of an array type is incomplete. The
void type cannot be completed.
Description: The compiler has encountered an array with an element
type of void. An array element must be an object type.
User Action: Change the type of the array element.

INCONSASSFUN, A function "name" appeared in more than one #pragma
assert/hint func_attrs specifying the same assertion/hints.
Description: A function can appear on more than one #pragma assert
or #pragma hint func_attrs as long as each #pragma specifies a different
assertion/hint about the function. The assertion will be ignored.
User Action: Either remove the #pragma, or remove the function name
from the pragma, or correct its spelling.

INITCONFLICT, Overlapping static storage initializations detected at Psect
text + number
Description: The compiler back-end as detected a case where the same
storage location has been initialized to more than one value. This can
occur when inter-file optimization has been enabled.
User Action: Remove one of the initializers.

INITOVERLAP1, context, this initializer list will provide a value for a
subobject that was initialized by the earlier initializer "init".
Description: This initializer list will provide a value for a subobject that
has already been initialized. While this is valid, it might not have been
what was intended.
User Action: Initialize each subobject only once.

HP C Compiler Messages D–71

INITVLA, A variable-length array declaration cannot contain an initializer.
The initializer will be ignored.
Description: A variable-length array declaration cannot contain an
initializer.
User Action: Initialize the array using assignment statements after the
declaration.

INLINEIG, An inline specifier may only be used to declare an identifier for a
function. The inline keyword will be ignored.
Description: The inline, _ _inline or _ _forceinline keywords have been
used on a non-function type. Or a non-function type has been listed in a
#pragma inline or #pragma forceinline directive
User Action: Remove the keyword or remove the identifier from the
pragma.

INLINESTOCLSMOD, The _ _inline or _ _forceinline storage class modifier is
a language extension and might not be portable.
Description: The _ _inline and _ _forceinline storage class modifiers are
an extension of HP C. Other C compilers might not successfully compile a
program that uses the extension.
User Action: Be aware of this extension if you wish to port the code.

INPTRTYPE, contextthis argument to function name is of "type name" type
and is not appropriate for the conversion specifier "incorrect conversion".
The value may overwrite other data or produce unexpected results.
Description: The compiler has detected an input conversion specifier that
does not match its corresponding argument. The corresponding argument
may not be a pointer or may point to data that is wider or narrower than
that specified by the conversion specifier. This might not have been what
you intended.
User Action: Modify either the argument or the conversion specifier so
that they match.

INSUFALN, Alignment specified for extern model is insufficient for variable.
Extern model alignment updated.
Description: The current extern model places all external objects in a
section whose alignment is not sufficient for the alignment of an object
being placed in that section. The compiler will update the alignment of the
section so that it is adequate for the object.
User Action: Either increase the alignment of the section or move the
object to another section.

D–72 HP C Compiler Messages

INTBADLINKAGE, #pragma use_linkage was applied to the intrinsic function
"routine name". The function will be treated as an ordinary external
function.
Description: Trying to optimize a pointer argument passed to an intrinsic
function, the compiler discovered that #pragma use_linkage had been
applied to the function declaration. The intrinsic function of this name
that is understood by the compiler does not allow you specify a linkage.
Therefore the compiler must assume that you are supplying your own
function definition, and treat this as a call to an external function with no
special properties.
User Action: If you want to call the intrinsic function, remove the
#pragma use_linkage directive. If you are supplying your own function
definition, you may want to rename the function or add a #pragma function
directive for it.

INTCONCASTSGN, contextcasting of the constant "constant" to type type will
cause a change in sign.
Description: Either a negative constant value has been cast to an
unsigned type, or a positive value has been cast to a signed type and will
be treated as a negative number after the cast.
User Action: Change the constant so that the sign will match the type of
the cast.

INTCONCASTTRU, contextcasting of the constant "constant" to type type will
cause data loss.
Description: A constant is cast to a type that is too small to hold the
constant value. Data will be lost in the conversion.
User Action: Remove the cast, or use a smaller constant.

INTCONST, Ill-formed integer constant.
Description: An invalid integer constant was encountered.
User Action: Correct the integer constant.

INTCONSTSIGN, contextconversion of the constant "constant" to type type
will cause a change in sign.
Description: Either an unsigned type was assigned a negative constant
value, or a signed type was assigned a positive contant value which will
be evalated as a negative number after the assignment. Note that this

HP C Compiler Messages D–73

message is not output for assignments to 1-bit bitfields. The message
bitconstsign is generated in that case.
User Action: If this is what you intended, cast the constant to the desired
type. You might also want to change the constant to the correct signed or
unsigned value in order to avoid the optional message intconcastsgn, which
reports sign changes caused by casts.

INTCONSTSIGNED, This integer constant value will be given the type long
long int. This is compatible with the C99 standard. Older versions of the
compiler would have given this unsigned long int type.
Description: With the introduction of the long long int type, the C99
standard changed the rules for how the type of certain integer constants
are determined. Unsuffixed decimal constants which are too large for long
int, but could fit in an unsigned long int are given the type long long int in
C99. Prior to C99 these would be given unsigned long int type.
User Action: Be aware of this difference.

INTCONSTTOOBIG, This integer constant is too large for the long long type.
It will be given the unsigned long long type.
Description: The C99 standard specifies that a decimal constant must fit
in a signed type. This constant is too large for the long long int type. For
compatibility with older versions of the compiler, the constant will be given
the unsigned long long type.
User Action: Append a ’U’ suffix to the constant. This will force it to be
unsigned.

INTCONSTTRUNC, contextconversion of the constant "constant" to type type
will cause data loss.
Description: A constant is converted to a type that is too small to hold
the constant value. Data will be lost in the conversion.
User Action: If this is what you intended, cast the constant to the desired
type. You might also want to mask off the high-order bits before casting
in order to avoid optional message intconcasttru, which reports data loss
caused by casts.

D–74 HP C Compiler Messages

INTCONSTUNSIGN, This integer constant value will be given the type
unsigned long int. This is compatible with the C89 standard and older
compilers. The C99 standard requires this to be a signed long long int.
Description: With the introduction of the long long int type, the C99
standard changed the rules for how the type of certain integer constants
are determined. Unsuffixed decimal constants which are too large for long
int, but could fit in an unsigned long int are given the type long long int in
C99. Prior to C99 these would be given unsigned long int type.
User Action: Be aware of this difference.

INTERNALPRAGMA, This is an internal pragma which should only be used
by the compiler development team. It should not appear in user programs
as it may cause unexpected behavior.
Description: This pragma exists only to allow the compiler developers to
test certain functionality of the compiler. Its use outside the development
team is unsupported.
User Action: Remove the pragma.

INTIMPLIED, In the declaration of "name", no type was specified. Type
defaulted to int. This is a violation of the C99 standard.
Description: The declaration contains a storage-class specifier, but no
type was specified. The compiler will assume a type of int. Omitting the
type specifier is not valid in C++ or in C99, and is often considered poor
programming practice.
User Action: Add a type specifier to the declaration.

INTOVERFL, contextinteger overflow occurs in evaluating the expression
"expression".
Description: An integer overflow occurred while evaluating a constant
expression. The value of the expression is undefined.
User Action: Correct the constant expression so that it does not overflow.

INTRINSICCALL, contextan apparent invocation of intrinsic function "name",
problem. It will be treated as an ordinary external call.
Description: A function that could be handled internally by the compiler
has been called in a manner that is inconsistent with expected usage. In
such a case, the compiler will generate a run-time call to the function. This
could result in performance loss.
User Action: If the function is intended to refer to the runtime library
routine, the appropriate header file should be included in the source to
provide the full function prototype and allow certain types of argument

HP C Compiler Messages D–75

conversions. Alternatively, call arguments could be type cast as specified
in the error message, or the function prototype could be added by hand.
If the function is not intended to refer to the runtime library routine,
the intrinsic version can be disabled by means of the "#pragma function
(function_name)" directive.

INTRINSICDECL, contextthe declaration for intrinsic function "name"
referenced at location, problem. It will be treated as an ordinary external
function.
Description: A function that could be handled internally by the compiler
has been declared with a prototype that does not agree with what the
compiler expected to see, or has been declared at block scope instead of file
scope. The function might in fact be a similarly-named replacement for
the expected function, or the prototype might be incorrect or misplaced. In
such cases, the function will not be handled internally, but will instead be
called at run time in the usual manner. This could result in a performance
loss.
User Action: If the function is intended to refer to the runtime library
routine, the appropriate header file should be included in the source (note
that it is not portable to include standard headers at other than file scope).
Alternatively, the prototype could be modified as specified in the error
message. If the function is intended to be a replacement for the runtime
library routine, disable the intrinsic version by specifying "#pragma
function(function_name)" in the source file.

INTRINSICDECLER, contextthe declaration for the prototyped intrinsic
function "name" is incorrect: problem.
Description: A function that could be handled internally by the compiler
and requires a prototype, has been declared with a prototype that does
not agree with what the compiler expected to see. The function might
be intended as a similarly-named replacement for the compiler-known
function, or the prototype might be incorrect. The source must be modified
to specify the intended behavior.
User Action: If the function is intended to refer to the compiler-known
routine, the appropriate header file should be included in the source.
Alternatively, the prototype could be modified as specified in the error
message. If the function is intended to be a replacement for the compiler-
known routine, disable the intrinsic version by specifying "#pragma
function(function_name)" in the source file.

D–76 HP C Compiler Messages

INTRINSICINT, contextthe place type for intrinsic "name" is being changed
from "size_t" to "int".
Description: A function that is handled internally by the compiler expects
an argument type or return type of "size_t", but the prototype for the
function uses "int". The compiler will use "int" in this case.
User Action: Declare the function by including the appropriate header
file. Alternatively, provide a private declaration (or modify an existing
private declaration) with "size_t" in the appropriate location(s), and with
"size_t" defined as it is in the standard system header files. If the function
is not intended to refer to the runtime library routine, the intrinsic version
can be disabled by means of the "#pragma function (function_name)"
directive.

INTUNDFUN, There is no function declaration visible for the identifier
"name" at the point of this #pragma pragma type.
Description: An identifier specified in a #pragma intrinsic or #pragma
function directive must refer to a function declaration visible at the point
of the pragma. The identifier will be ignored.
User Action: Either remove the identifer from the pragma, correct its
spelling, or reorder the source to ensure that a declaration of the identifier
as a function is visible at the point of the pragma.

INVALIDARG, Invalid argument to pragma pragma. Pragma is ignored.
Description: An invalid argument has been specified for a pragma
directive. The compiler will ignore the directive.
User Action: Correct the directive.

INVALIDSTR, The # operator produced an invalid string.
Description: During the expansion of a macro, the # stringize operator
produced a token that is not a valid string. The operand to the stringize
operator must contain characters that form a valid string.
User Action: Correct the operand to the stringize operator.

INVALTOKEN, Invalid token discarded.
Description: An unexpected token was encountered by the compiler. The
token has been ignored. An example is the preprocessing operator "#"
appearing outside a macro body (int #a;).
User Action: Remove the unexpected token.

HP C Compiler Messages D–77

INVCPPINARGS, Possible directive "#directive" within a macro argument
list. The directive is treated as part of the argument list, and not as a
preprocessing directive.
Description: The compiler has encountered a directive as part of the
argument list of a macro invocation. This directive will be treated as part
of the argument list, and not as a preprocessing directive. The behavior
might be different than other compilers.
User Action: Rewrite the macro invocation so that it does not include the
directive.

INVDUPENUM, contextthe value of the enumerator "name" conflicts with a
previous declaration.
Description: The specified enumerator name has been previously declared
with a different value.
User Action: Either use a different enumerator name or remove the
previous declaration of the name.

INVNOMEMPRAG, Invalid argument to nomember_alignment pragma.
Pragma is ignored.
Description: The compiler was unable to parse a #pragma nomember_
alignment directive. The directive will be ignored.
User Action: Correct the directive.

INVPACKPRAG, Invalid pack pragma. Pragma is ignored.
Description: The compiler was unable to parse a #pragma pack directive.
The directive will be ignored.
User Action: Correct the directive.

INVPPDIRPEA, The preprocessor directive name is not allowed in a prologue
or epilogue file. The directive is ignored.
Description: It is not possible for a prologue or epilogue file to have this
preprocessor directive in it.
User Action: Remove the offending preprocessor directive from the
prologue/epilogue file.

D–78 HP C Compiler Messages

INVSTATIC1, context the keyword "static" and/or type qualifiers may appear
only in the outermost array-bounds specifier of a function parameter.
Keyword/qualifier ignored.
Description: The keyword "static" or a type specifier appeared in an
array-bound specifier that was either not part of the declarator for a
function parameter or it was not the outermost array-bound specifier of a
function parameter.
User Action: Remove the keywords or confine them to use in the
outermost array-bound specifier of a function parameter.

INVSTATIC3, The keyword "static" may not appear in an array-bound
specifier for a declaration of an array of unknown size. Keyword ignored.
Description: The keyword "static" appeared in the declaration of an array
whose size was not known, either because array has in incomplete type or
because the array has a star bounds specifier.
User Action: Remove the keyword.

INVSTATIC4, An expression specifying the bound is required when the
keyword "static" is used in an array-bounds specifer. Keyword ignored.
Description: The keyword "static" appeared in an array-bounds specifier
that did not have an expression describing the array bound. The keyword
tells the compiler that actual arguments passed to this parameter
will always have at least as many elements as specified in the formal
parameter. It is inconsistent to specify the keyword without also supplying
a value for the bound.
User Action: Remove the keyword or supply a value for the bound.

INVSTATIC5, context the static bound value differs from the static bound
value in another declaration at location. The smaller static bound value
will be used.
Description: In a previous declaration of a function one or more
parameters with array type were declared with a different static bound
value than in the current declaration. This can occur if one of the sizes of
the corresponding static arrays differ between the two declarations.
User Action: Remove the keyword "static" from the declarations, or give
all function declarations the same static bound value.

HP C Compiler Messages D–79

INVSTATIC6, context neither the keyword "static" nor a type qualifier may be
used in array-bounds for old-style function parameters. Keyword/qualifiers
ignored.
Description: Use of the keyword "static" or a type specifier within the
outermost array bound specifier of a formal parameter is a new feature in
the C99 statndard. It cannot be used in old-style function definitions.
User Action: Remove the keywords or convert the code to use
prototype-style function declarations and definitions.

IVDEPNOFOR, This #pragma directive was not followed by a for statement.
The directive will be ignored.
Description: The #pragma ivdep and #pragma unroll directives modify
the for loop which follows them. The compile has encoutered one of the
directives without a following for loop. The directive will be ignored.
User Action: Remove the directive.

KEYCOMB, Illegal combination of keywords.
Description: An invalid combination of Microsoft keywords was
encountered during a declaration. In most cases this is because the
keywords contradict each other. One example would be using the _ _fastcall
and _ _stdcall modifiers in the same function declaration. This message is
only output when the compiler is in Microsoft mode.
User Action: Remove one of the contradictory modifiers.

KNRFUNC, The function "name" is defined using the old style K&R syntax.
The C standard has marked this syntax as obsolescent, and it is not
supported in C++. Consider using the standard C prototype syntax.
Description: The function uses an old style function definition.
HP recommends that old style function definitions be replaced by
prototype-format definitions.
User Action: Recode the function definition to use the recommended
prototype-format definition.

LABELWOSTMT, Accepting a label without a following statement is a
language extension.
Description: The C standard states that a label must be followed by a
statement. For compatibility with other C compilers, HP C will accept a
label without a statement. Be aware that this program does not conform to
the standard and may be rejected by other compilers.
User Action: Add a semicolon after the label to create a null statement.

D–80 HP C Compiler Messages

LCRXCOND, Common Data Dictionary description extraction condition. msg.
Description: Something went wrong while trying to get the CDD record
description from the CDD. The error message that follows gives more
information about the nature of the problem.
User Action: If necessary, correct the indicated condition in the CDD
record description or with the user environment.

LDCOMPLEXNYI, contextthe type long double _Complex is not fully
supported on this platform. The type is only accepted when the compilation
specifies the option to make the long double type 64-bits in size.
Description: On some platforms HP C does not support the long double
_Complex type where the real and imaginary component are 128-bits in
size. As HP C requires that each component of a long double _Complex be
the same size as a long double, this compilation must specify the option to
treat long double as 64-bits.
User Action: Either specify the correct compiler option or use the double
_Complex type instead of the long double _Complex type.

LEXNESTPAR, Lexically nested parallel at scope text is not supported
Description: Nested parallel directives are not supported.
User Action: Remove the nested parallel directive.

LISTOPEN, An error occurred while attempting to open the listing file:
reason.
Description: An unexpected error occurred during the creation of the
listing file. The message text will contain additional information about the
failure.
User Action: Correct the condition that caused the failure.

LOCALEXTINI, The block-level declaration of "name" includes an initializer
and specifies storage class extern.
Description: A block-level declaration with extern storage class cannot
contain an initializer.
User Action: Remove the initializer from the declaration or move the
declaration to file scope.

HP C Compiler Messages D–81

LONGDEBUG, The identifier name exceeds number characters; name passed
to the debugger will be truncated to "truncated spelling".
Description: On some platforms, the name length supported by the
compiler is greater than the length supported by the debugger. In this case
the compiler must truncate the name when it is output to the debugger
symbol table for this compilation.
User Action: Reduce the size of the name.

LONGDOUBLENY1, contexttype long double has the same representation as
type double on this platform and is treated as a synonym for type double in
this compilation mode.
Description: HP C does not support the long double type on this platform.
In this compilation mode, the compiler will treat the long double type as a
synonym for the double type.
User Action: Be aware of this.

LONGDOUBLENYI, contexttype long double has the same representation as
type double on this platform.
Description: Although HP C will recognize the long double type as a
different type than double in this compilation mode, on this platform they
will both use the same representation. Using long double will not provide
any additional precision or range.
User Action: Be aware of this.

LONGEXTERN, The external identifier name exceeds number characters;
truncated to "truncated spelling".
Description: The length of an identifier with external linkage exceeds the
maximum allowed on this platform. The name used in an output object file
will be truncated to meet the platform restrictions. Note that the debugger
name will be unchanged.
User Action: Reduce the size of the name. On OpenVMS platforms the
/NAMES=SHORTENED qualifier can also be used. When the qualifier
is specified, the compiler will encode long external names instead of
truncating them.

LONGFLOATEXT, contextlong float as a synonym for double is a language
extension.
Description: Certain standard modes allow the use of the long float type
as a synonym for double. This is not allowed by the C standard. This
message indicates this use of long float as a potential portability problem.
User Action: Change long float to double.

D–82 HP C Compiler Messages

LONGLINE, A type source line longer than number characters was
encountered.
Description: The length of a source line has exceeded the maximum
length supported by the HP C compiler.
User Action: Reduce the size of the line.

LONGLONGSUFX, The integer constant is of type "type", which is a new
feature of C99 might not be portable.
Description: The use of the suffix ULL or LL on an integer constant does
not conform to the C89 standard and might not be accepted by other C
compilers.
User Action: Be aware of this if you wish to port the program.

LONGLONGTYPE, contexttype "type" is a new feature in C99.
Description: On some platforms, HP C will accept the [unsigned] long
long type as a way to declare [unsigned] 64-bit integers. The long long int
type is a new feature of C99 and other compilers might not accept this
declaration.
User Action: Be aware of this portability concern.

LONGMODULEID, Identifier "name" in a #pragma module or #module
directive exceeds 31 characters.
Description: A module or identification name specified in the #pragma
module or #module directive must be less than 32 characters. The compiler
will truncate the name to the first 31 characters specified.
User Action: Shorten the module or identification name.

LONGMODULESTR, The identification string string in a #pragma module
or #module directive exceeds 31 characters. The compiler will ignore the
directive.
Description: An identification string specified in the #pragma module
or #module directive must be less than 32 characters. The compiler will
ignore the directive.
User Action: Shorten the identification string.

LONGPREFIX, Prefix string too long. Truncated to "newprefix".
Description: The specified prefix to the #pragma extern_prefix directive is
too large for this platform. The prefix will be truncated.
User Action: Reduce the size of the specified extern prefix.

HP C Compiler Messages D–83

LONGPSECT, Psect name is too long (maximum is 31 characters).
Description: The psect name specified in a globaldef declaration was
longer than 31 characters. This exceeds the maximum allowed length.
User Action: Either reduce the psect name to 31 characters or remove the
psect specifier.

LONGTOKEN, An individual token longer than number characters was
encountered.
Description: The length of an individual token has exceeded the
maximum length supported by the HP C compiler.
User Action: Reduce the size of the token; perhaps it can be converted
into two or more smaller tokens.

LVALUECAST, contextthe result of the cast "cast" is used as an lvalue.
Description: The result of a cast has been used as an lvalue. This is
a language extension of HP C. The program does not conform to the C
standard, and might not be accepted by other compilers.
User Action: Remove the cast.

MACROREDEF, The redefinition of the macro "name" conflicts with a current
definition because reason. The redefinition is now in effect.
Description: A macro has been redefined with either different formal
parameters and/or a different body than a previous definition of the macro.
User Action: Either make all definitions of the same macro identical, or
undefine the macro using the #undef preprocessing directive before it is
redefined.

MACROREDEFIN, Macro redefined.
Description: A #define preprocessing directive has redefined a macro
whose previous definition contained an error or warning. Normally, the
compiler will issue a warning if a macro is redefined to something other
than the previous definition. However, if the previous definition caused
a warning or error to be generated, this informational message is output
instead.
User Action: Do not redefine a macro without first undefining it.

D–84 HP C Compiler Messages

MAINNOTINT, Strict standard C extension: The declaration of the "main"
function has a return type other than int.
Description: Standard C requires that the "main" function be defined
with a return type of int. HP C will accept other return types, but the
program does not conform to the C standard. The status value returned to
the environment may not be what you expect, and other C compilers may
not accept the definition as written.
User Action: Define the "main" function with a return type of int for
maximal portability.

MAINPARM, Strict standard C extension: The declaration of the "main"
function has more than two parameters.
Description: Standard C requires that the "main" function takes no more
than two parameters. HP C will accept more, but the program does not
conform to the C standard.
User Action: Modify the declaration if you want the program to be
standard conformant.

MAINPROGEXT, MAIN_PROGRAM is a language extension.
Description: The use of MAIN_PROGRAM to designate a function as the
main program is a language extension of HP C. Other C compilers might
not successfully compile a program that uses the extension.
User Action: The main program should be declared by naming the
function main.

MAPREGIGNORED, The linkage register "registers" has no effect on Alpha
and will not be mapped to any register on IA64. This condition may cause
the SHOWMAPLINKAGE message output for this directive to be incorrect.
Description: The use of an Alpha argument register (R16-R21) in a
linkage characteristic other than "parameters" or "results" has no effect on
Alpha. No mapping to an IA64 register will be done for this register. This
may cause the mapped linkage shown in the showmaplinkage message to
be incorrect.
User Action: Remove the register from the characteristic.

HP C Compiler Messages D–85

MATHERRNO, contextfunction name is defined to set errno when a domain
error or range error occurs. As an intrinsic, it may not be able to do so.
Description: Any code that tests the value of errno set by this function
may not work properly due to the optimizations that are possible when this
function is an intrinsic.
User Action: If the value of errno set by this function is ignored, tell
the compiler via its command line qualifiers to assume nomath_errno.
Otherwise, disable the intrinsic by using a #pragma function(func-name).

MAYHIDELOSS, context"expression" has a larger data size than "target type".
The use of a cast operator can suppress the message that this assignment
might result in data loss.
Description: In a cast of a pointer to one of the integer types, or a cast
of one of the integer types to a pointer, or a cast of one pointer type to
another, the size of the source is greater than the size of the type being
cast to. This cast could result in a loss of data if it is used as the source
of an assignment. This potential loss of data can be verified by removing
the cast and seeing if the compiler emits a loss of data message on the
assignment.
User Action: If the cast cannot lose precision, it is safe to ignore this
warning.

MAYLOSEDATA, context"expression" has a larger data size than "target type".
Assignment can result in data loss.
Description: In an assignment of a pointer to one of the integer types, or
one of the integer types to a pointer, the size of the source is greater than
the size of the destination. The assignment can result in a loss of data.
This might not have been what you intended.
User Action: If this was the intended operation, cast the source to the
type of the destination before the assignment.

MAYLOSEDATA2, context"expression" has a larger data size than "target
type". Assignment can result in data loss.
Description: In an assignment of two pointers, the size of the source is
greater than the size of the destination. The assignment can result in a
loss of data. This might not have been what you intended.
User Action: If this was the intended operation, cast the source to the
type of the destination before the assignment.

D–86 HP C Compiler Messages

MECHMISMATCH, Argument passing mechanism does not match formal
parameter mechanism for text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

MEMBERVLA, contextthe struct or union member "name" cannot be declared
with a variably modified type.
Description: Only ordinary identifiers with block scope and without
storage class extern, or ordinary identifiers with function prototype scope
can be declared with a variably modified type.
User Action: Correct the declaration.

MISALGNDMEM, This member is at offset offset, which is not a multiple of
the member’s alignment of align. Consider padding before this member,
rearranging the order of member declarations, or using #pragma member_
alignment.
Description: A member of a struct or union requires an alignment for
efficient access but will be allocated at an offset that is not a multiple of
that alignment.
User Action: Use one of the suggestions made in the message.

MISALGNDSTRCT, This member requires align1 alignment for efficient
access, but is contained in a struct containing align2 alignment. Consider
using #pragma nomember_alignment align1.
Description: A member of a struct or union requires an alignment for
efficient access that is more strict than the alignment of the enclosing
struct or union. Even though this member is correctly aligned within the
struct or union, if the struct or union is enclosed within another type, the
member in question might be placed at a position with incorrect alignment
for its type.
User Action: Use either the #pragma member_alignment directive or
#pragma nomember_alignment directive with an argument equal to or
greater than the alignment of the member.

MISDEFARG, Missing argument for "defined" operator.
Description: The defined preprocessing operator was not supplied with
an argument. The operator expects an identifier optionally enclosed in
parenthesis. The value of the operator is undefined.
User Action: Supply a valid argument to the preprocessing operator.

HP C Compiler Messages D–87

MISDEFPAR, Missing right parenthesis for "defined" operator.
Description: The defined preprocessing operator began with a left
parenthesis, but no matching right parenthesis was found. The value of
the operator is undefined.
User Action: Add the right parenthesis after the preprocessing operator
argument.

MISMATPARAM, contextparameter number has a different type than specified
in an earlier declaration of this function.
Description: A function has been redeclared with a parameter whose type
is different than the type specified in a previous declaration of the function.
This generally leads to additional errors.
User Action: Correct the function declarations so that the parameter
information is the same in each declaration.

MISMATPRSRET, "name" has a non-void return type but its linkage "name"
preserves the return register(s). Standard linkage will be used.
Description: The function or typedef ’s special linkage specifies that the
register(s) used to return the function value are to be preserved. This is
invalid as the register can either be preserved, or hold the return value,
but not both.
User Action: Modify the #pragma linkage directive to either remove the
register from the preserved list or to specify another register to hold the
return value.

MISMATTHREAD, contextthe _ _declspec(thread) storage class modifier of
"name" is different from a previous declaration of "name" at location.
Description: If an object is declared with thread-local storage, then all
declarations of that object must declare it with thread-local storage.
User Action: Either remove the invalid redeclaration or modify it to
match the previous declaration.

MISPARAMCOUNT, contextthe number of parameters differs from an earlier
declaration of this function.
Description: A function has been redeclared with a different number
of parameters than a previous declaration of the function. This message
generally proceeds additional errors.
User Action: Correct the function declarations so that the parameter
information is the same in each declaration.

D–88 HP C Compiler Messages

MISSINGCASE, Was the ’case’ keyword omitted? Within a switch statement,
"label" defines an unreferenced label that matches an enumeration
constant.
Description: This user label has been defined, but there are no references
to it. As the label is defined inside a switch statement, and the label name
matches an enumumeration constant name, there is a chance you intended
this to be a case label.
User Action: Remove the label or add the ’case’ keyword before it.

MISSINGCOMMA, This parameter is not preceded by a comma.
Description: The compiler has encountered a parameter specifier that is
missing a preceding comma. The parameter will be defined anyway, though
this may not have been what you intended.
User Action: Correct the formal parameter list so that it consists of a
comma separated list of identifiers (possibly followed by ", ...").

MISSINGFUNC, The function "name" has internal linkage, occurs in a context
that requires its definition, and has no definition.
Description: The program has referenced a function declared with static
storage class, but the function is not defined in the compilation unit. If a
program references a static function, the function must be defined in the
compilation unit.
User Action: Either define the function or change the function declaration
to have extern storage class.

MISSINGLABEL, The label "label name" is the target of a goto statement
within the function "function name", but has no definition within "function
name".
Description: Every label referenced in a goto statement must be defined
in the same function.
User Action: Either change the name of the label in the goto statement,
or define the label.

MISSINGRETURN, Non-void function "name" does not contain a return
statement.
Description: This message indicates that a function with an explicit
return type does not contain a return statement. This message is not

HP C Compiler Messages D–89

issued for functions with an implicit return type of int. See message
IMPFNCMSSNGRET.
User Action: Consider declaring the function to be a void function. If it
is supposed to return a value, add a return statement with the value the
function is to return.

MISSINGTYPE, Missing type specifier or type qualifier.
Description: The compiler was expecting a type specifier or type qualifier,
but one was not found.
User Action: Correct the program syntax.

MISSPELLDEF, The user label "label", defined within a switch statement, is
never referenced.
Description: This user label has been defined, but there are no references
to it. As the label is defined inside a switch statement, there is a chance
this is a misspelling of "default".
User Action: Remove the label or correct the spelling.

MIXALLOCAVLA, contextthis call to _ _ALLOCA occurs in a block that
contains vlaallocafrag1. The storage allocated by this _ _ALLOCA call
will vlaallocafrag2vla or aligned automatic declaration was at where.
Description: Storage allocated for arrays of variable length and for
automatics whose alignment is greater than octaword have their storage
deallocated when the block they are declared in exits. Storage allocated by
_ _ALLOCA is not normally deallocated until function exit. HP C cannot
support both types of deallocation in the same block. Therefore, when both
appear in the same block, the storage for both will be deallocated with the
block exits.
User Action: Be aware of this. If the storage allocated for _ _ALLOCA
must remain allocated until function exit, move the _ _ALLOCA call
outside the block declaring the vla or the aligned auto.

MIXFUNCVOID, contextcompatibility of a pointer to void and a pointer to a
function is not portable under the C standard.
Description: The C standard defines pointer to void as being assignment
compatible only with pointers to object or incomplete types. An
implementation may represent function pointers in a way that cannot

D–90 HP C Compiler Messages

be stored in a pointer to void (or vice-versa). Thus even an explicit cast
between a function pointer and a pointer to void is not portable.
User Action: If a generic pointer to function is needed, declare a typedef
for some pointer to function type, and always use explicit casts to assign to
and from that type.

MIXINLINE, The function name is declared both this and that.
Description: A function is declared with more than one of the forceinline,
inline, or noinline attributes. It will be given the attribute that will provide
the most optimization.
User Action: Make sure each function has only one of the attributes.

MIXLINKAGE, context"name" is declared with both internal and external
linkage. The previous declaration is at location.
Description: This warning is output in certain cases when the linkage of
a declaration conflicts with the linkage specified in an earlier declaration.
User Action: Change one of the declarations so that the linkages match.

MIXLINKAGE1, context"name" is declared with both internal and external
linkage. The previous declaration is at location.
Description: This informational is output when a function previously
declared to have extern storage class is redeclared to have internal storage
class and the mode of the compiler is common (K & R) mode.
User Action: Change one of the declarations so that the linkages match.

MIXOLDNEW, The definition of the function name includes both a prototype
and a declaration list.
Description: A function has been defined using both a declaration list
and a prototype. This is not valid.
User Action: Correct the declaration.

MIXSTORCLS, contexta storage class has already been specified. This storage
class is ignored.
Description: The same declaration contains more than one storage class
specifier. The compiler will ignore all storage class specifiers after the first
one.
User Action: Change the declaration to use only one storage class
specifier.

HP C Compiler Messages D–91

MIXVLAALLOCA, Declaring vlaallocafrag1 in the same block as a call to
_ _ALLOCA will cause the storage allocated by any _ _ALLOCA call to
vlaallocafrag2previous call to _ _ALLOCA was at where.
Description: Storage allocated for arrays of variable length and for
automatics whose alignment is greater than octaword have their storage
deallocated when the block they are declared in exits. Storage allocated by
_ _ALLOCA is not normally deallocated until function exit. HP C can not
support both types of deallocation in the same block. Therefore, when both
appear in the same block, the storage for both will be deallocated with the
block exits.
User Action: Be aware of this. If the storage allocated for _ _ALLOCA
must remain allocated until function exit, move the _ _ALLOCA call
outside the block declaring the vla or the aligned auto.

MODNOIDSTR, Invalid identifier or character-string constant specification.
Description: If specified, the second argument to the #pragma module or
#module directive must be either an identifier or a string constant.
User Action: Correct the directive.

MODSTORCLS, Storage class modifier noshare has no meaning with this
storage class. Modifier is ignored.
Description: The storage class modifier noshare is only valid for variables
with a storage class of static, extern, or globaldef. It is ignored for other
storage classes.
User Action: Remove the noshare storage class modifier.

MODULEFIRST, "#pragma module" or "#module" directive must precede any
language text.
Description: The #pragma module or #module directive must appear
before any declarations. The directive will be ignored.
User Action: Move the directive to the top of the compilation unit.

MSGPOP, This "restore" has underflowed the message stack. No correspond-
ing "save" was found.
Description: The message stack, managed by the #pragma message and
#pragma environment directives, contains more restores than saves. This
could signify a coding or logic error in the program.
User Action: Make sure each restore has a corresponding save.

D–92 HP C Compiler Messages

MSGSFRMEXLCODE, Enabling this message may cause additional messages
from excluded code to be output.
Description: This message is never output by the compiler. Instead it
is used to control whether other messages will be output. Normally, the
compiler will not output some messages when it is processing code that it
knows will never be executed. One example of this would be the second
operand of the conditional operator when the first operand is FALSE. This
suppression of these messages can be overridden by enabling this message.
User Action: Decide if you want the additional messages.

MULTICHAR, A character constant includes more than one character or wide
character.
Description: A character constant includes more than one character.
While this is valid, it might not have been what you intended.
User Action: Verify that the constant should contain more than one
character.

MULTILINK, Multiple linkage pragmas specified for "routine name".
Description: The same routine appeared in more than one #pragma
use_linkage directive. Each routine can only be given one linkage.
User Action: Remove the routine from all but one #pragma use_linkage
directive.

MULTILINKREG, The register "register" is specified more than once in the
linkage pragma. Pragma is ignored.
Description: The same register was specified more than once in the same
register list in a #pragma linkage directive. The compiler will ignore the
entire pragma.
User Action: Correct the directive.

MULTIMAIN, More than one main program has been defined.
Description: The compiler has encountered more than one main program
in this compilation unit. Each program can have only one main program.
User Action: Remove one of the main programs.

HP C Compiler Messages D–93

MULTIPSECTNAME, Multiple psect_type names specified. The name "new_
name" supersedes "old_name".
Description: More than one #pragma code_psect or #pragma linkage_
psect was encountered. The psect specified by the later #pragma
supersedes the one specified earlier. This message is only output for C
compilers on OpenVMS Alpha.
User Action: Each program should contain at most one #pragma
code_psect and one #pragma linkage_psect.

NAMESHORTENED, The external identifier or module name "name" exceeds
31 characters. The name has been shortened to "shortened spelling".
Description: A compilation that used the /NAMES=SHORTENED
qualifier or #pragma names shortened directive has encountered a
name that needs to be shortened. The external name will be different
than the internal name. Also, because the external name exceeds the
length specified by standard C as the minimum external length an
implementation must support, this program does not strictly conform to
standard C and might not be accepted by other C compilers.
User Action: Be aware of these items.

NAMESLOWER1, The /NAMES=LOWERCASE qualifier is no longer
supported. The qualifier /NAMES=AS_IS will be used.
Description: While the C language has always required identifiers
with internal linkage to be treated case sensitively. It traditionally
permitted implementations to monocase identifiers with external linkage.
Modern standards require C/C++ implementations to preserve the case of
identifiers with external linkage. As VMS and other operating systems
that traditionally implemented monocasing chose uppercase as the
convention, /NAMES=LOWERCASE runs contrary both to the C and C++
standards and to traditional conventions. Continued support for this option
interferes with support for compatibility between old code compiled with
/NAMES=UPPERCASE and new code compiled with /NAMES=AS_IS.
User Action: Use /NAMES=AS_IS, making source code changes as
needed.

D–94 HP C Compiler Messages

NEEDADDRCONT, context"name" does not have a constant address, but
occurs in a context that requires an address constant.
Description: A variable with static storage has been initialized to the
address of an object whose address is not constant. This can happen if a
static pointer variable is initialized to the address of an automatic variable.
User Action: Either make the initialize a constant, or, if possible,
initialize the static storage using a run-time assignment.

NEEDARITH, context"expression" has type type, which is not arithmetic.
Description: An expression that must be an arithmetic type was not an
arithmetic type. For example, the operands of an arithmetic operator such
as * must be arithmetic type.
User Action: Modify the expression so that it is an arithmetic type.

NEEDCONSTEXPR, context"name" is not constant, but occurs in a context
that requires a constant expression.
Description: An expression that must evaluate to a compile-time is not a
constant.
User Action: Modify the constant expression so that it will evaluate as a
compile-time constant.

NEEDCONSTEXT, context"name" is not constant, but occurs in a context that
requires a constant expression. This is an extension of the language.
Description: The C89 standard requires that an initializer for an
automatic aggregate or union type object have an initializer that is a list
of constant expressions. HP C allows non-constants in these initializers.
This is an extension to C89. Although this is allowed by the C99 standard,
other C compilers might not successfully compile a program that uses this
extension.
User Action: Be aware of this if you wish to port the program.

NEEDDFLOAT, The CDD description for name specifies the D_Floating data
type. The data can only be represented when compiling with /FLOAT=D_
FLOAT.
Description: The /FLOAT command-line qualifier specified a floating
type other than D_floating format. The CDD description specified was
D_floating type, which did not match the floating type specified on the
command line.
User Action: Specify the correct command-line qualifier, or change the
description of the item in the CDD.

HP C Compiler Messages D–95

NEEDFUNCPTR, context"expression" points to type type, but occurs in a
context that requires a pointer to a function type.
Description: An expression that must be a pointer to a function type
is a pointer to an object or incomplete type. For example, if a function
invocation expression is a pointer, it must be a pointer to a function type.
User Action: Modify the expression so that it is a pointer to a function
type.

NEEDGFLOAT, The CDD description for name specifies the G_Floating data
type. The data can only be represented when compiling with /FLOAT=G_
FLOAT.
Description: The /FLOAT command-line qualifier specified a floating
type other than G_floating format. The CDD description specified was
G_floating type, which did not match the floating type specified on the
command line.
User Action: Specify the correct command line qualifier, or change the
description of the item in the CDD.

NEEDIEEE, The CDD description for name specifies a VAX floating data
type. The data cannot be represented when compiling with /FLOAT=IEEE_
FLOAT.
Description: The command-line qualifier /FLOAT=IEEE_FLOAT was
specified, indicating that all floating-point data should be represented
in IEEE-floating format, yet the CDD description specified a non-IEEE_
floating type.
User Action: Specify the correct command-line qualifier, or change the
description of the item in the CDD.

NEEDIEEE1, The CDD description for name specifies an IEEE floating
data type. The data can only be represented when compiling with
/FLOAT=IEEE_FLOAT.
Description: The CDD description for an item specifies an IEEE
floating point type. However this module was not compiled with the
/FLOAT=IEEE_FLOAT qualifier.
User Action: Specify the correct command-line qualifier, or change the
description of the item in the CDD.

NEEDINTEXPR, context"expression" has type type, which is not integral.
Description: An expression that must be an integer type was not integral.
For example, an array-index specifier must be an integral type.
User Action: Modify the expression so that it is an integral type.

D–96 HP C Compiler Messages

NEEDLVALUE, context"expression" is not an lvalue, but occurs in a context
that requires one.
Description: An expression that must be an lvalue was not an lvalue.
For example, the operand of the address-of operator must be an lvalue.
User Action: Modify the expression so that it is an lvalue.

NEEDMEMBER, context"name" is not a member of "struct or union
expression".
Description: The second operand of a . or -> operator specifies a member
name that is not a member of the struct or union type specified by the
first operand. Note that in certain modes, HP C will search all other
visible struct/union types for a matching member name. If it finds one, a
diagnostic will be issued, and the offset of that name will be used.
User Action: Specify a valid member name.

NEEDNONBLTIN, context"name" is a builtin and cannot be used in this
context.
Description: A program has used a builtin function in a way that is
invalid for builtin functions. For example, a program cannot take the
address of a builtin.
User Action: Remove the improper use of the builtin.

NEEDNONCONST, context"expression" has const-qualified type, but occurs in
a context that requires a modifiable lvalue.
Description: The code has attempted to modify an object that is either a
const-qualified type or has been declared with the readonly storage-class
modifier. This is not valid. A typical example is assigning a value to a
const variable.
User Action: Either remove the const qualifier from the object’s type,
remove the readonly storage-class modifier from the object declaration, or
rework the code so that the object is not written to.

NEEDNONVOID, context"expression" has void type, but occurs in a context
that requires a non-void result.
Description: An expression that must not be a void type was void. For
example, the control expression for an if statement must not have void
type.
User Action: Modify the expression so that it has the required type.

HP C Compiler Messages D–97

NEEDPOINTER, context"expression" has type type, but occurs in a context
that requires a pointer.
Description: An expression that must be a pointer type was not a pointer
type. For example, the operand of the dereference operator must be a
pointer type.
User Action: Modify the expression so that it has a pointer type.

NEEDPTROBJ, context"expression" does not point to an object type.
Description: An expression that must be a pointer to an object type is a
pointer to a function or incomplete type. For example, if a pointer is the
operand of the postincrement operator, it must point to an object type.
User Action: Modify the expression so that it is a pointer to an object
type.

NEEDSCALAR, context"expression" has type type, which is not scalar.
Description: An expression that must be a scalar type was not scalar.
For example, only scalars can be cast to other types.
User Action: Modify the expression so that it is a scalar type.

NEEDSCALARTYP, context"source type" is type type, which is not scalar.
Description: In a cast expression, the destination type of the cast is not
a scalar type. This is not valid. Both the source and target type of a cast
must be scalars.
User Action: Modify the cast destination type so that it is a scalar type.

NEEDSIMPLEASM, This asm is unsupported or illegal.
Description: The argument to the asm intrinsic is invalid.
User Action: Supply a valid argument to the asm instrinsic.

NEEDSTRCONST, context"name" is not a legal asm string, a string constant
is required.
Description: The argument to the asm intrinsic must be a string
constant.
User Action: Change the argument to be a string constant.

NEEDSTRUCT, context"expression" has type type, but occurs in a context that
requires a union or struct.
Description: The left operand of the . or -> operator does not have struct
or union type.
User Action: Correct the operand.

D–98 HP C Compiler Messages

NEGATIVEHINT, contexta negative hint value is not allowed. The hint will
be ignored.
Description: All #pragma hint directives must take positive floating point
values.
User Action: Correct the hint.

NESTEDCOMMENT, Opening comment delimiter found inside a delimited
comment; a previous comment may be missing its closing delimiter.
Description: C comments delimited by /* */ do not nest. When /* is
encountered inside a delimited comment it usually means that the previous
comment is missing its terminating */ or that the user has ill-advisedly
attempted to "comment out" a section of code that contains a delimited
comment.
User Action: It is traditional in C to use #if 0 to conditionalize out large
sections of code. You may also want to consider //-style comments if the
compiler modes you care about recognize them.

NESTEDENUM, The type "type" is declared nested within "enclosing type".
In C, the nesting is ignored and type and its enumerator constants can be
accessed as if they were not nested. However, the type and its enumerators
are members in C++. Fix.
Description: C allows types to be declared within other types. For
example: struct S { int a; enum E { first, second, third} b; int c; }; In C++
the enum E would not be accessible without using the :: operator.
User Action: Declare the nested type before declaring the enclosing type.

NESTEDTYPE, The type "type" is declared nested within "enclosing type". In
C, the nesting is ignored and type can be accessed as if it were not nested.
However, the type is a member in C++. Fix.
Description: C allows types to be declared within other types. For
example: struct S { int x; struct S1 { int a; int b; } y; }; In C++ the struct S1
would not be accessible without using the :: operator.
User Action: Declare the nested type before declaring the enclosing type.

NESTINCL, Files included by this file are referenced. However nothing else
appears to be referenced from this file.
Description: When compiling with the current set of compilation options,
to improve compilation efficiency, you may wish to include the files which
this file includes directly, rather than including them from this file.
User Action: For compilation efficiency, you may exclude this include file
when compiling with the current set of compilation options.

HP C Compiler Messages D–99

NEWLOCALE, The compiler could not set its locale to the locale-specific
native environment. This problem might be caused by an incorrect value
for a name defined in your process environment such as "LC_ALL" or
"LANG". The "C" locale will be used.
Description: During start-up, the compiler was unable to set its locale to
the locale-specific environment. As part of its initialization, the compiler
will issue the call setlocale(LC_ALL, ""). If this call fails, the compiler will
set its locale to the "C" locale. In general, this message is output because
the locale-specific native environment has been set incorrectly.
User Action: The best way to determine why the compiler was unable
to set the locale is to write a small program that contains the library call
setlocale(LC_ALL, "") and then examine the return value from the call.

NLCHAR, An unexpected newline character is present in a character
constant.
Description: An end of line was encountered during the scanning of a
character constant.
User Action: Terminate the character constant with a closing single quote
character before the end of line.

NLHEADER, A newline occurs inside of a header name.
Description: An end of line was encountered before the closing double
quote or angle bracket of an #include directive.
User Action: Terminate the directive argument properly.

NLSTRING, An unexpected newline character is present in a string literal.
Description: An end of line was encountered during the scanning of a
string literal.
User Action: Terminate the string constant with a closing double quote
character before the end of line, or continue the line with a continuation
character.

NOADD, context"expression1" and "expression2" cannot be added.
Description: Because of their types, the two expressions cannot be used
as the operands of the addition operator. Either both operands must be
arithmetic type, or one operand must be a pointer to an object type and the
other must be an integral type.
User Action: Modify the addition to use valid types.

D–100 HP C Compiler Messages

NOBIFDISABLE, The function "routine name" is a builtin function reserved
to the compiler, and cannot be used with #pragma function. The function
will continue to be treated as a builtin.
Description: A function identifier specified in a #pragma function
directive is the name of a builtin function. These functions cannot be
explicitly disabled, they are always handled as builtin functions.
User Action: Remove the inappropriate use of the pragma, and change
the name of the function in order to have it treated as an ordinary callable
function.

NOBITFIELD, context"expression" is a bitfield, but occurs in a context that
precludes bitfields.
Description: An expression that must not be a bitfield was a bitfield. For
example, the operand of the address-of operator must not be a bitfield.
User Action: Modify the expression so that its type is not a bitfield type.

NOCASEHERE, This case label occurs outside of any switch statement.
Description: A case label can only occur inside of a switch statement.
User Action: Remove the case label.

NOCDDHERE, CDD is not available on this platform. The #dictionary
directive has been ignored.
Description: The #dictionary directive requires CDD to be present on the
platform. This directive will only be recognized on OpenVMS systems.
User Action: Remove the directive.

NOCOLON, Missing ":".
Description: The compiler was expecting a colon, but one was not found.
User Action: Correct the program syntax.

NOCOLONINEXPR, Missing colon for conditional expression.
Description: A conditional expression that occurs as part of a
preprocessing expression was missing the ":" that separates the second
from the third operand. The value of the resulting expression is undefined.
User Action: Correct the conditional expression.

NOCOMMA, Missing ",".
Description: The compiler was expecting a comma, but one was not
found.
User Action: Correct the program syntax.

HP C Compiler Messages D–101

NOCONDEXPR, Missing #if conditional expression.
Description: An argument was not supplied to an #if or #elif
preprocessing directive. The missing argument will cause the compiler to
consider these as FALSE conditionals.
User Action: Supply a valid argument to the directive.

NOCONVERT, context"expression" is of type "type", and cannot be converted to
"target type".
Description: An expression of one type cannot be converted to the type
required by this expression. This most often occurs when the source type
of an assignment or cast cannot be converted to the destination type. The
rules for which types can be converted are rather complicated and differ
based upon the compiler mode. Refer to the language documentation for a
complete list of valid combinations.
User Action: Modify the conversion to use valid types.

NOCONVERTCLS, context"expression" is of type "type", and cannot be
converted to a different "type" type.
Description: A struct or union of one type cannot be converted to a
different struct or union type.
User Action: Modify the conversion to use valid types.

NODCL, contextnothing is declared.
Description: The C standard requires that a declaration must declare
at least a tag, an enumeration constant, or a declarator. This declaration
contains none of these. This might not have been what you intended.
User Action: Correct or remove the declaration.

NODEFAULTHERE, This default label occurs outside of any switch
statement.
Description: A case default label can only occur inside of a switch
statement.
User Action: Remove the case default label.

NOENDIF, Missing #endif directive.
Description: The compiler encountered an #if, #ifdef, or #ifndef
preprocessing directive without a matching #endif. This might not have
been what you intended. The compiler will add the necessary #endif
directive at the end of the compilation unit.
User Action: Make sure every #if, #ifdef and #ifndef has a matching
#endif.

D–102 HP C Compiler Messages

NOEQUAL, Missing "=".
Description: The compiler was expecting to see an "=" after the
secondary_name specification of a #pragma weak or #pragma external_
name directive. This message is only output on UNIX.
User Action: Correct the #pragma directive.

NOEQUALITY, context"expression1" and "expression2" cannot be compared for
equality or inequality.
Description: Because of their types, the two expressions cannot be
compared for equality or inequality. The rules for which types can be
compared are rather complicated and differ based upon the compiler
mode. Refer to the language documentation for a complete list of valid
combinations.
User Action: Modify the comparison to use valid types. This can often be
done by casting one of the expressions to the type of the other.

NOEXCEPTFLTR, context this exception handling call is not within an
exception filter of a try block.
Description: The exception handling call must appear within an
exception filter of a try statement block.
User Action: Either remove the exception handling call, or place it in a
try statement block.

NOFBDAT, text does not contain feedback data
Description: The file indicated by the -feedback switch exists, but does
not contain feedback data. This is probably an error on the users part,
although it might be seen as part of the bootstrapping process.
User Action: Create a valid feedback file

NOFBFIL, Feedback file text does not exist
Description: The file specified after the -feedback option does not exist.
This is normal during the bootstrapping process.
User Action: Either correct the spelling of the feedback option, or create
the required feedback file.

NOFBOPT, Compilation will proceed without feedback optimizations
Description: A condition has occurred that has prevented the compiler
from using feedback optimizations. This message is most often preceded by
another message that will provide additional information.
User Action: Correct the condition that prevented the feedback
optimizations.

HP C Compiler Messages D–103

NOFBRTN, Feedback inactive for text in this compilation
Description: Feedback information has gone stale for a particular routine
(the source for the routine has changed). Feedback optimizations will not
be applied to this routine.
User Action: Create a new feedback file

NOFIFILE, Cannot find include file filename specified on the command line.
Description: The header file name specified in the UNIX -FI command
line option or the OpenVMS /FIRST_INCLUDE qualifier was not found
using the search rules in effect for the quoted form of #include directives.
User Action: Either change the name of the file following the option or
create the file.

NOFNTPDEFDECL, There is no identifier named "name" declared as a
function or function typedef in this compilation unit.
Description: A #pragma assert and/or #pragma linkage directive(s)
contains an identifier that is not declared as a function or function typedef
in the compilation unit. This may not have been what you intented.
User Action: Remove the identifier from the #pragma assert and/or
#pragma linkage, or declare it as a function or function typedef. empty
string.

NOFORMALPARM, Missing formal parameter specifier.
Description: While processing the formal parameter list of a macro
definition, the compiler encountered a missing formal parameter specifier.
The macro will be be defined and this parameter ignored, but that may not
have been what you intended.
User Action: Correct the formal parameter list so that it consists of a
comma separated list of identifiers.

NOFUNC, There is no function named name defined in this compilation unit.
Description: A function that appears in a #pragma weak and is not
defined in the compilation unit.
User Action: Either define the function or remove the function name from
the pragma.

D–104 HP C Compiler Messages

NOFUNC1, There is no definition for the inline function named name in this
compilation unit.
Description: A function that appears in a #pragma inline or #pragma
noinline, or is declared with the _ _inline or _ _forceinline storage class
modifier, is not defined in the compilation unit.
User Action: Either define the function or remove the function name from
the pragma, or remove the storage class modifier or the function specifier
from the declaration.

NOIDFOUND, contextan identifier was expected but not found.
Description: The compiler was expecting an identifier, but one was not
found.
User Action: Correct the program syntax.

NOIDINPACKPOP, pragma pack pop directive has no identifier name which
was found on the top of the pack stack.
Description: The #pragma pack (pop) directive has no identifier specified
while the top element of the pack stack has one. Either this #pragma
pack pop should have the identifier found on the stack, or this is an
extra pragma pack pop, or the identifier should not be pushed by the
corresponding #pragma pack push.
User Action: Check whether the pragma pack pop should have the
identifier. Verify that there’s no extra #pragma pack pop or #pragma
member_alignment restore which popped the identifier to the top of the
pack stack. Correct the directive(s).

NOINCLFILE, Cannot find file filename specified in #include directive.
Description: The specified include file does not exist.
User Action: Either change the name of the file in the #include
preprocessing directive, or create the include file.

NOINCLFILEF, Cannot find file filename specified in #include directive.
Description: The specified include file does not exist.
User Action: Either change the name of the file in the #include
preprocessing directive, or create the include file.

NOINCLUDEARG, #include directive missing argument.
Description: An argument was not supplied to an #include preprocessing
directive. The directive will be ignored.
User Action: Supply a valid argument to the directive.

HP C Compiler Messages D–105

NOINIT, The type of variable does not permit initialization.
Description: This type cannot be initialized. Only objects and arrays of
unknown size can be initialized.
User Action: Remove the initializer.

NOINLFUNC, There is no definition for the inline function named name in
this compilation unit.
Description: A function is declared with an _ _inline or inline keyword
and is not defined in the compilation unit.
User Action: Either define the function or remove the _ _inline or inline
keyword from the declaration.

NOINLINEM, The main function cannot be inlined.
Description: The C99 standard prohibits the inline keyword from being
used on the main function.
User Action: Remove the inline keyword.

NOINLINEREF, context "name" has internal linkage and is referenced from
an an inline auxiliary function. This is a violation of the C99 Standard.
Description: A function declared with the inline keyword and without a
declaration containing the keyword, extern, or without a declaration which
lacks the inline keyword and the static keyword declares an auxiliary
inline declaration. A definition of an auxiliary inline shall not contain a
definition of a modifiable object with static storage duration, and shall not
contain a reference to an identifier with internal linkage.
User Action: Remove the inline keyword from all declarations of the
parent function, or if it is appropriate, change the declaration of the
referenced item to a declaration which has something other than internal
linkage.

NOINLINEST, In an inline auxiliary function, the modifiable object "name"
is declared with static storage duration. This is a violation of the C99
standard.
Description: A function declared with the inline keyword and without a
declaration containing the keyword, extern, or without a declaration which
lacks the inline keyword and the static keyword declares an auxiliary
inline declaration. A definition of an auxiliary inline shall not contain a

D–106 HP C Compiler Messages

definition of a modifiable object with static storage duration, and shall not
contain a reference to an identifier with internal linkage.
User Action: Remove the inline keyword from all declarations of the
parent function, or if it is appropriate, add the const keyword to the
declaration to create an non-modifiable object.

NOLEAVETARG, This leave statement is not within a try statement.
Description: The exception handling statement leave must appear within
a try statement block.
User Action: Either remove the leave statement, or place it in a try
statement block.

NOLEFTOPERND, Token pasting operator missing left operand.
Description: The preprocessing token pasting operator "##" appears in a
macro body without the preceeding token argument.
User Action: Either remove the operator or supply it with two tokens
that will be pasted together.

NOLINKAGE, context"name" has no linkage and has a prior declaration in
this scope at where.
Description: A declaration within a function body redeclares an identifier
declared earlier in the current scope, and both declarations did not have
the extern storage class.
User Action: Either remove the extra declarations, or have all
declarations for the identifier use the extern storage class.

NOMACRONAME, #define directive is missing macro name identifier.
Description: The #define preprocessing directive was not supplied with
an argument. The directive should be followed with an identifier that
specifies the macro name to be defined. The directive will be ignored.
User Action: Supply a valid argument to the preprocessing directive.

NOMAINUFLO, No main function encountered within module. /IEEE_
MODE=UNDERFLOW_TO_ZERO is ignored.
Description: Use of the /IEEE_MODE=UNDERFLOW_TO_ZERO is
only meaningful for compilation units that contain a main program. The
compiler will ignore the qualifier.
User Action: Remove the qualifier from the command line.

HP C Compiler Messages D–107

NOMAPPOSSIBLE, The register "register" cannot be mapped to a register on
the target platform.
Description: The pragma linkage directive contains architecture-specific
information. The Alpha register conventions are different from the IA64
registers conventions. The compiler will normally try to map the Alpha
registers to the corresponding registers on IA64. In this case this register
cannot be mapped because there is no corresponding IA64 register.
User Action: Update the linkage to use a register that can be mapped, or
specify the linkage to use the linkage_ia64 directive.

NONAMEMEMBERS, contexta struct or union has no named members. This
is undefined behavior according to the C standard.
Description: The C standard requires that a struct or union contain at
least one named member. Because this struct/union contains no named
members, it does not conform to the C standard and might not be portable.
User Action: Make sure at least one member has a name.

NONATOMIC, Unable to generate code for atomic access
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

NONEWTYPE, The type "type" is being declared as part of context. C++ does
not permit a new type to be declared in this context. Fix.
Description: C++ does not allow types to be declared in certain contexts
that are valid in C. One example is the declaration of a type within a
function prototype.
User Action: Declare the type before its use.

NONGRNACC, Unable to generate code for requested granularity
Description: The compiler has generated a call a routine that performs
longword operations on some data that is requested to be accessed with
byte granularity. Because of this, the requested granularity will not be
met for this data access. This routine may be generated for a memory copy
routine (such as memcpy). The call can also be generated for certain struct
assignments.
User Action: If the data must be accessed with byte granularity then
write your own routine that does the required action using byte objects. If
byte granularity is not needed at this point, the message can be ignored.

D–108 HP C Compiler Messages

NONINTENUM, contextthe enumeration type, and all associated enumeration
constants will have type type because at least one enumeration constant
had a value that could not be represented in the type signed int.
Description: The standard requires that enumeration constants have a
value representable as an int. Other C compilers will allow enumeration
constants to have values outside this range. In some modes the HP C
compiler will allow this extension. To identify exactly which constants are
outside the range, enable the nonintenumcon message.
User Action: Be aware that other compilers may not support this
extension.

NONINTENUMCON, contextallowing an enumeration constant outside the
range of signed int is a language extension.
Description: The standard requires that enumeration constants have a
value representable as an int. Other C compilers will allow enumeration
constants to have values outside the range. In some modes the HP C
compiler will allow this extension.
User Action: Be aware that other compilers may not support this
extension.

NONINTENUMCON1, contextthis enumeration constant and its associated
enumeration type will not have the type signed int. This behavior differs
from earlier versions of the compiler.
Description: This message will only be output when the "enumrange"
message is disabled. This version of the HP C compiler will allow enum
constants to have a type other than signed int. This is for compatibility
with other compilers. Programs that rely on the compiler to truncate enum
constants may not work as expected. For more information, enable the
nonintenum message.
User Action: If your program relies on this truncation, cast the constant
to int.

NONLBEFOREEOF, File does not end in unescaped newline.
Description: The final character of a file was not a newline character.
This could indicate that the file has been corrupted. The compiler will
insert a newline character at this point in the input stream.
User Action: Update the source file so that it ends with a newline.

HP C Compiler Messages D–109

NONMULTALIGN, The size of this structure is size bytes, which is not a
multiple of its alignment of align. Respecify the alignment of the structure
or add bytes bytes of additional padding.
Description: The size of a struct or union is not a multiple of its
alignment. This could cause unaligned accesses if an array of these structs
or unions is declared.
User Action: Modify the struct/union or the alignment so that the size of
the struct or union is a multiple of the alignment.

NONOCTAL, An octal constant contains non-octal digits.
Description: An octal constant contains a non-octal digit. The compiler
will convert this non-octal digit to its corresponding octal value and use
that value instead. For example, 0190 will be converted to 0210 (decimal
136) as the non-octal digit 9 is converted to the octal 11.
User Action: Correct the octal constant to use only octal digits.

NONPORTDEFINED, "defined" is treated as an identifier here, not an
operator.
Description: For compatibility with older C compilers, in certain modes
the compiler will treat #ifdef defined(foo) as #ifdef defined, and #ifndef
defined(foo) as #ifndef defined. This might not have been what you
intended.
User Action: Do not mix #ifdef/#ifndef with the defined operator.

NONPORTLINEDIR, Non-standard #line directive.
Description: Accepting the line directive without the "line" preprocessing
keyword is an extension of HP C. The program does not conform to the C
standard, and might not be accepted by other compilers.
User Action: Add the "line" preprocessing keyword to the directive.

NONSTANDCAST, context"expression" of type "type", is being converted to
"target type". Such a cast is not permitted by the standard.
Description: The standard only permits casts from a pointer to an object
incomplete type to another pointer to an object or incomplete type, or from
a pointer to function type to another pointer to function type. Note that
void is considered an incomplete type, so casts between pointer to void and
pointer to function types are not permitted by the C standard.
User Action: Be aware of this difference if you plan to port this source to
another compiler.

D–110 HP C Compiler Messages

NONULINIT, context, there is no room for the terminating ’\0’. Standard C
allows this, but C++ does not.
Description: This declaration initializes an object to a strict literal.
Although the object is large enough to hold the characters in the literal, it
is not large enough to hold the terminating null character. This might not
have been what you intended. This practice is also not valid in C++.
User Action: Increase the size of the object, or reduce the size of the
initializer.

NOOPERAND, Stringization operator missing operand.
Description: The preprocessing stringization operator "#" appears in a
macro body without a token argument after the operator.
User Action: Either remove the operator or supply it with a token that
will be stringized.

NOOPERANDS, Token pasting operator missing both operands.
Description: The preprocessing token pasting operator "##" appears in a
macro body without either the preceeding or following token arguments.
User Action: Either remove the operator or supply it with two tokens
that will be pasted together.

NOPARENARGLST, Missing right parenthesis for macro argument list.
Description: A macro invocation’s argument list did not end in a right
parenthesis.
User Action: Correct the program syntax.

NOPARM, This declaration does not declare a parameter.
Description: The parameter declaration list of an old-style function
definition included a type but no parameter identifier.
User Action: Replace the old-style function definition with the
recommended prototype-format declaration. If this is not possible, include
the correct identifier after the parameter type.

NOPARMLIST, The declaration of function has an empty parameter list. If
the function has parameters, they should be declared here; if it has no
parameters, "void" should be specified in the parameter list.
Description: The recommended way to declare a function that takes no
parameters is to use "void" in the parameter list.
User Action: Make the recommended change.

HP C Compiler Messages D–111

NOPRAGARG, No argument for #pragma pragma was found. Pragma is
ignored.
Description: A #pragma directive was not followed by one of the expected
arguments. The directive will be ignored.
User Action: Supply all required arguments to the directive.

NOPSECT, Missing psect name.
Description: The psect specifier in a globaldef declaration must be a
string constant.
User Action: Either make the psect a string constant or remove the psect
specifier.

NOREGAVAIL, Unable to satisfy program register allocation requirements.
Description: The compiler is unable to allocate all the registers requested
by the program. This most often happens when asm directives require too
many registers.
User Action: Rework the asm directives so they use fewer registers

NORELATIONAL, context"expression1" and "expression2" cannot be compared
with a relational operator.
Description: Because of their types, the two expressions cannot be used
as the operands of a relational operator. The rules for which types can
be used in a relational are rather complicated and differ based upon the
compiler mode. Refer to the language documentation for a complete list of
valid combinations.
User Action: Modify the relational to use valid types. This can often be
done by casting one of the expressions to the type of the other.

NORETNONVOID, noreturn assertion of #pragma assert directive can’t be
specified for non-void function.
Description: noreturn assertion was specified in #pragma assert directive
for non-void function; the noreturn assertion will be ignored.
User Action: Either remove noreturn assertion from the directive, or
change return type for the function to void.

NORETURNVAL, The function "name" returns a value, but no value is given
in this return statement.
Description: A function that returns a value contains a return statement
that is missing a return value. Therefore, the returned value will be
undefined. This might not have been what you intended.
User Action: Supply a return value for the return statement.

D–112 HP C Compiler Messages

NORETURNVAL1, The function "name" has an implicit return type of int, but
no value is given in this return statement.
Description: A function that has an implicit return type of int contains a
return statement that is missing a return value. Therefore, the returned
value will be undefined. This might not have been what you intended.
User Action: Supply a return value for the return statement or define the
function with a void return type.

NORETVAL, routine text does not return a value
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

NORGHTPAREN, No right parenthesis for parameter list.
Description: A macro definition’s formal parameter list did not end in a
right parenthesis. A right parenthesis has been assumed.
User Action: End the formal parameter list with a right parenthesis.

NORIGHTOPERND, Token pasting operator missing right operand.
Description: The preprocessing token pasting operator "##" appears in a
macro body without a token argument after the operator.
User Action: Either remove the operator or supply it with two tokens
that will be pasted together.

NORIGHTPAREN, Missing ")".
Description: A right parenthesis was expected at this point in the
program, but none was found.
User Action: Correct the program syntax.

NOSEHHAND, Missing exception handler.
Description: The _ _builtin_try clause must specify an exception handler
of either _ _builtin_finally or _ _builtin_except. This message is only
generated on UNIX systems.
User Action: Correct the _ _builtin_try clause.

NOSEMI, Missing ";".
Description: The compiler was expecting a semicolon, but one was not
found.
User Action: Correct the program syntax.

HP C Compiler Messages D–113

NOSEMI1, Missing ";". This condition may have been caused by an open
brace without a matching close brace. The compiler will attempt to identify
open braces that might be missing a close brace.
Description: The compiler was expecting a semicolon, but one was not
found. This condition may have been caused missing close brace. This
message is followed by some number of additional messages that attempt
to identify the bad open brace.
User Action: Correct the program syntax.

NOSEMISTRUCT, Missing ";" after last structure or union member.
Description: Accepting a struct/union type without a semicolon after
the last member specifier is a language extension of HP C provided for
compatiblity with older C compilers. This syntax is not valid in standard
C, and may not be accepted by other C compilers.
User Action: Add the semicolon at the end of the last member.

NOSFILE, Cannot create .s file: overlapping static storage initializations at
Psect text + number
Description: When producing an output assembly file, the compiler back-
end as detected a case where the same storage location has been initialized
to more than one value. This can occur when inter-file optimization has
been enabled.
User Action: Remove one of the initializers.

NOSHAREEXT, noshare is a language extension.
Description: The noshare storage class modifier is a language extension
of HP C. Other C compilers might not successfully compile a program that
uses the extension.
User Action: Be aware of this extension if you wish to port the code.

NOSHRINSHR, Noshare variable resides in shr extern model - noshare
ignored.
Description: The current extern model places all external objects in a
shareable section. Placing an object with a noshare type qualifier in such a
section is invalid. The compiler will ignore the noshare type qualifier
User Action: Place noshare objects in sections with the noshare attribute.

NOSTRING, Missing string literal.
Description: The compiler was expecting a string literal, but one was not
found.
User Action: Correct the program syntax.

D–114 HP C Compiler Messages

NOSUBTRACT, context"expression2" cannot be subtracted from "expression1".
Description: Because of their types, the two expressions cannot be used
as the operands of the subtraction operator. Either both operands must
be arithmetic type, or both operands must be pointers to qualified or
unqualified versions of compatible object types, or the left operand must be
a pointer type and the right operand must be an integral type.
User Action: Modify the subtraction to use valid types.

NOTADDRCAST, contextthe address constant "expression" can be cast only to
a pointer type, but "type" is type class type.
Description: An address constant can only be cast to a pointer type.
User Action: Correct the cast.

NOTAREDUCTION, bad reduction path from fetch of text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

NOTCOMPAT, contextthe type of "name" is not compatible with the type of a
previous declaration of "name" at location.
Description: The same identifier has been redeclared with a type that
is incompatible with the type given in a previous visible declaration. In
some modes, the compiler will use the redeclared type as the type of the
identifier.
User Action: Change the declarations to use compatible types.

NOTCOMPATIMP, contextthe type of the function "name" is not compatible
with the earlier implicit declaration of "name" at location.
Description: The declared type of a function does not match the type
given to the function by its earlier implicit declaration. This may cause
unexpected behavior.
User Action: Make sure that a valid function declaration is visible at the
point in the source where the function is first called.

HP C Compiler Messages D–115

NOTCOMPFUNC, context an invalid redeclaration of "name" to or from a
function type is being ignored.
Description: In certain modes, the compiler will allow an identifier to be
redeclared with a different type. In this case, the type of the redeclaration
is used. However, in cases where the identifier is redeclared to or from a
function type, the redeclaration is ignored.
User Action: Remove the redeclaration of the identifier.

NOTCONSTQUAL, contextthe referenced type of the pointer value
"expression" is const, but the referenced type of the target of this
assignment is not.
Description: In an assignment of two pointer types, the type pointed
to by the destination operand must have all the type qualifiers of the
type pointed to by the source operand. In this case, the type pointed to
by the source has the const type qualifier, but the type pointed to by the
destination does not.
User Action: Correct the assignment to use compatible types. This can be
done by inserting a cast operand.

NOTEXPECTING, Error parsing what. Found "found" when expecting
expecting.
Description: While parsing the program, the compiler has encountered
something unexpected. The message will detail what the compiler was
trying to parse and the item that was invalid, and will also produce a list
of those items it was expecting to find.
User Action: Correct the offending section of the program.

NOTINCRTL, Identifier "id" is reserved by the C89 | C99 | C2010... standard
and will be mapped to "name" although it is not available in the CRTL
available to the compiler.
Description: The specified identifier is reserved for use as an identifer
with external lingage in the specified version of the C standard. But
according to the CRTL mapping table available to the compiler, that
identifier is not defined in the CRTL you expect to link against. This may
be because the function or object is not yet implemented in the current
DECC$SHR, or because you have used logical DECC$CRTLMAP to specify
a CRTL mapping table for a version of the CRTL that does not implement
it.
User Action: If you intended to use the identifier as defined by the C
standard, and you have not defined the logical DECC$CRTLMAP, then
the identifier is not defined in the DECC$SHR available to the compiler.

D–116 HP C Compiler Messages

If this is the latest released DECC$SHR, then the identifier is not yet
implemented and you need to consider workarounds; otherwise you should
upgrade to the latest available CRTL that does implement it. If you did
not intend to use the identifier as defined by the C standard (i.e. it is
an identifier you expected to be defined by your application), then you
have a name clash with the specified version of the standard and you
should change the spelling of the identifier; alternatively, you could disable
prefixing for it using /PREFIX=EXCEPT=, or specify an older version of the
standard with either /PREFIX= or /STANDARD=.

NOTINTRINSIC, The function "routine name" is not a known intrinsic
function and cannot be used with #pragma function. The function is
unaffected by this pragma.
Description: A function identifier specified in a #pragma function
directive is not a valid intrinsic function on this platform. The function is
thus never treated as an intrinsic, and so #pragma function can never be
applicable to it. Perhaps the name was misspelled, or perhaps the function
was thought to be intrinsic, possibly because it is intrinsic on some other
platform. In the latter case, the desired result, that the function not be
treated as intrinsic, would happen with or without the pragma.
User Action: Either correct the identifier spelling or remove the use of
the pragma.

NOTLOCALPARM, context"identifier" is not a local parameter.
Description: The second argument to the variable argument list va_start
macro is not a formal parameter of the current function. The second
argument to va_start should be the rightmost parameter in the function
definition.
User Action: Correct the second argument to va_start.

NOTONEORZERO, contextthe value of "expression" is neither 0 nor 1.
Description: The _ _builtin_va_start macro has been used incorrectly.
User Action: Correct the use of the macro.

NOTPARM, contextname is not a parameter.
Description: The identifier name in the parameter declaration does not
match a name in the identifier list of an old-style function definition.
User Action: Correct either the identifier in the declaration or in the
identifier list so that they match. HP also recommends that old-style
function definitions be replaced by prototype-format definitions.

HP C Compiler Messages D–117

NOTPOSINT, contextthe array bound "expression" is not a positive integer.
Description: The compiler has encountered an array-bounds specifier that
is either zero or negative. Array-bounds specifiers must be positive integer
constants.
User Action: Correct the array-bounds specifier

NOTRESTQUAL, contextthe referenced type of the pointer value "expression"
is restrict, but the referenced type of the target of this assignment is not.
Description: In an assignment of two pointer types, the type pointed to
by the destination operand must have all the type qualifiers of the type
pointed to by the source operand. In this case, the type pointed to by
the source has the restrict type qualifier, but the type pointed to by the
destination does not.
User Action: Correct the assignment to use compatible types. This can
be done by inserting a cast operand. Note that care should be taken in
assigning to a restricted pointer type.

NOTRIGHTMOST, context"identifier" is not the rightmost parameter to
"function".
Description: The second argument to va_start was not the rightmost
parameter in the variable parameter list in the function definition. This
is an invalid argument to va_start. Other compilers might not accept this
program.
User Action: Update the second argument to va_start to use the
rightmost parameter.

NOTSCALARCTRL, The controlling expression "expression" has type type,
which is not scalar.
Description: An execution control expression does not have scalar type.
This is not valid. An example of an execution control expression is the
expression following the while keyword in a while statement.
User Action: Change the control expression to have scalar type.

NOTTYPEDEF, context"name" does not name a type.
Description: This message is output when the compiler encounters an
identifier that it believes is a typedef and no valid typedef by this name is
defined in the current scope. This most often occurs when there was an
error in the declaration of the typedef name.
User Action: Correct the declaration of typedef.

D–118 HP C Compiler Messages

NOTUNALQUA, contextthe referenced type of the pointer value "expression"
is _ _unaligned, but the referenced type of the target of this assignment is
not.
Description: In an assignment of two pointer types, the type pointed to
by the destination operand must have all the type qualifiers of the type
pointed to by the source operand. In this case, the type pointed to by the
source has the _ _unaligned type qualifier, but the type pointed to by the
destination does not.
User Action: Correct the assignment to use compatible types. This can be
done by inserting a cast operand.

NOTVOLQUAL, contextthe referenced type of the pointer value "expression" is
volatile, but the referenced type of the target of this assignment is not.
Description: In an assignment of two pointer types, the type pointed to
by the destination operand must have all the type qualifiers of the type
pointed to by the source operand. In this case, the type pointed to by
the source has the volatile type qualifier, but the type pointed to by the
destination does not.
User Action: Correct the assignment to use compatible types. This can be
done by inserting a cast operand.

NOTYPES, Declaration has no type or storage class.
Description: A file-scope declaration contains no type and no storage-class
specifier. In some modes, the HP C compiler will treat this as a tentative
definition of an int variable. Accepting this declaration is an extension to
standard C provided for compatibility with other compilers.
User Action: Rewrite the declaration to contain a data type and/or
storage class.

NOUNIQFORMALS, Non-unique formal parameter definition.
Description: The same name has been used for more than one formal
parameter in a macro definition. Any occurrence of the name in the macro
body will correspond to the last formal parameter given this name.
User Action: Each macro formal parameter should have a unique name.

NOWHILE, Missing "while".
Description: While processing a do statement, the compiler did not find a
while clause.
User Action: Supply a while clause for the do statement.

HP C Compiler Messages D–119

NOWRTWRITTEN, Readonly psect text is written
Description: The compiler has detected an attempt to write to read-only
storage.
User Action: Either remove the write or make the storage read/write.

OBJECTTOOBIG, The size of "name" exceeds the maximum size of an object
allowed on this platform which is size bytes.
Description: An object has been declared with a size that is too large for
this platform.
User Action: Reduce the size of the object.

OKCPPINARGS, "#directive" directive within a macro argument list is not
portable.
Description: HP C will allow certain directives to appear within the
argument list of a macro invocation. This might not be portable.
User Action: If possible, rewrite the macro invocation.

OPENBRACE, Missing "{".
Description: The compiler was expecting an open brace, but one was not
found.
User Action: Correct the program syntax.

OPENCOMMENT, A comment is not terminated.
Description: The end of a file was reached while within a comment.
The message will indicate the start of the comment. All source files, even
those included via the #include preprocessing directive, must not end in a
pending comment.
User Action: Terminate the comment before the end of the source file.

OPENPAREN, Missing "(".
Description: The compiler was expecting an open parenthesis, but one
was not found.
User Action: Correct the program syntax.

OPTIMIZEPOP, This "restore" has underflowed the pragma optimize stack.
No corresponding "save" was found.
Description: The optimize stack, managed by the #pragma optimize and
#pragma environment directives, contains more restores than saves. This
could signify a coding or logic error in the program.
User Action: Make sure each restore has a corresponding save.

D–120 HP C Compiler Messages

OPTLEVEL, Invalid optimization level number, defaulted to number.
Description: An optimization level that is outside the range of valid
optimization levels has been specified. The compiler will default to the
stated level.
User Action: Supply a valid optimization level on the command line.

OTHERDECLUSED, context"name" is not declared in a scope active at this
point in the compilation. However, there is a declaration of this identifer
with extern storage class in another scope at where. This declaration will
be used.
Description: In some modes, if the compiler cannot find the declaration
of an object in the current scope, it will search other scopes for extern
declarations of that object. If it finds such a declaration, it will be used.
Note that this is a language extension provided for compatibility with other
compilers.
User Action: Declare the object so that it is visible at all places it is
referenced.

OTHERMEMBER, context"name" is a member of another struct or union.
Description: In certain modes, the compiler will allow a struct or union
reference whose right operand is not a member of the struct or union type
of the left operand. This is allowed for compatibility with other compilers.
User Action: Correct the struct or union reference so that the member
specifier is a member of the type of the left operand.

OUTARGPREC, contextthe type of this argument to function name is not
appropriate for the precision argument of the conversion specifier "incorrect
conversion". Behavior can be unpredictable.
Description: This argument corresponds to an output precision
specification. C requires that this argument have integer type, and it does
not.
User Action: Cast the argument to an int type.

OUTARGWIDTH, contextthe type of this argument to function name is not
appropriate for the width argument of the conversion specifier "incorrect
conversion". Behavior can be unpredictable.
Description: This argument corresponds to an output width specifier. C
requires that this argument have integer type, and it does not.
User Action: Cast the argument to an int type.

HP C Compiler Messages D–121

OUTFLOATINT, contextthis argument to function name and conversion
specifier "incorrect conversion" combine integer and floating-point types.
Behavior can be unpredictable.
Description: The compiler has detected an output conversion specifier
whose data type does not match its corresponding argument in a way that
will cause unpredictable behavior.
User Action: Modify either the argument or the conversion specifier so
that they match.

OUTSTRINGTYPE, contextthis argument to function name is of "type
name" type and is not appropriate for the conversion specifier "incorrect
conversion". The value will be formatted in an unintended manner.
Description: The compiler has detected a string conversion specifier that
does not match its corresponding argument. This might not have been
what you intended.
User Action: Modify either the argument or the conversion specifier so
that they match.

OUTTOOFEW, contextthe number of conversion specifiers to function name
exceeds the number of values to be converted. Conversion specifiers from
"last valid conversion" onward will process meaningless and perhaps
invalid data.
Description: The number of conversion specifiers is greater than the
number of values to be converted as specified in the parameter list. This is
probably not what you intended.
User Action: Make sure the number of conversion specifiers match the
values to be converted.

OUTTOOMANY, contextadditional arguments to function name are provided
for which there are no conversion specifiers in the format string.
Arguments from "last expression" onward will be evaluated, but not
processed by function name.
Description: The number of conversion specifiers is less than the number
of values to be converted as specified in the parameter list. This is
probably not what you intended.
User Action: Make sure the number of conversion specifiers match the
values to be converted.

D–122 HP C Compiler Messages

OUTTYPELEN, contextthis argument to function name is of "typeclass" type
and is not appropriate for the conversion specifier "incorrect conversion".
The value might be truncated or formatted in an unintended manner.
Description: The compiler has detected an output conversion specifier
that does not match its corresponding argument. This might not have been
what you intended.
User Action: Modify either the argument or the conversion specifier so
that they match.

OUTVARORDER, contextvariable ordering is used in a conversion specifier
for function name. If variable ordering is used, it must be specified for all
conversions.
Description: A conversion specification can contain only one type of
conversion specification - % or %n$. Mixing them will cause unpredictable
behavior.
User Action: Change the format specification to use only one type of
conversion specification.

PACKSTACKPOP, This "pop" has underflowed the pragma stack name stack.
No corresponding "push" was found.
Description: The member_alignment/pack stack, managed by the
#pragma pack and #pragma member_alignment directives, contains more
pops/restores than pushes/saves, This could signify a coding or logic error
in the program.
User Action: Make sure each pop/restore has a corresponding push/save.

PARAMREDECL, context"name" overrides a formal parameter declared at
where.
Description: A declaration within a function body redeclares a formal
parameter.
User Action: Change the name of either the formal parameter or the
declared variable.

PARENLITERAL, contextaccepting a string literal in parentheses as the
initializer for a character array is a language extension.
Description: The compiler accepts this kind of initializer for compatibility
with many other C compilers. According to the C standard, a string literal
in parentheses is a character pointer. Therefore, this program does not
conform to the standard and may be rejected by other compilers.
User Action: Remove the parentheses.

HP C Compiler Messages D–123

PARMINCOMP, contextthe parameter name has an incomplete type.
Description: The parameter of an old-style function definition has an
incomplete type. This is not valid.
User Action: Complete the type before the declaration of the parameter.
HP also recommends that old-style function definitions be replaced by
prototype-format definitions.

PARMINIT, contexta parameter declaration cannot include an initializer.
Description: The parameter declaration list of an old-style function
definition included an initializer. This is not valid.
User Action: Remove the initializer from the declaration and initialize
the parameter in the function body. HP also recommends that old-style
function definitions be replaced by prototype-format definitions.

PARMSTORCLS, contexta parameter has an explicit storage class other than
"register".
Description: The only storage class that can be specified for a formal
parameter is "register".
User Action: Either remove the storage class or use "register" if that is
desired.

PARMSTORMOD, contexta parameter cannot have a storage class modifier.
Description: A formal parameter cannot be declared with a storage class
modifier.
User Action: Remove the storage class modifier.

PARMTYPLIST, Ill-formed parameter type list.
Description: While processing a function declaration, an invalid
parameter type list was encountered.
User Action: Correct the program syntax.

PARNOIDENT, Missing identifier.
Description: While processing an old-style function definition, the
compiler was expecting an identifier, but one was not found.
User Action: Correct the program syntax. HP also recommends that
old-style function definitions be replaced by prototype-format definitions.

D–124 HP C Compiler Messages

PDBOPERR, Error opening PDB file text: text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

PDBTYPERR, Error adding type record to PDB file: text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

PDOINDEXNOTPRIV, index variable of PDO text is not a private variable
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

PDONEINSTATIC, pdone text in statically-scheduled PDO will be ignored
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

PDONENOTINPDO, pdone text is not nested in a PDO
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

PLUSWSTOCLS, The use of the spelling option has prevented this
redeclaration of "variable" from changing its linkage. The linkage will
be that specified by the earlier declaration at location.
Description: In many cases, the compiler will allow a redeclaration of
an item to change its linkage. For example, in most modes, if an object is
declared with extern linkage and later with static linkage, the compiler will
give it static linkage. This changing of linkage usually causes a warning to
be issued. However, in cases where interfile optimization has been selected
(-ifo on UNIX, /PLUS_LIST_OPTIMIZE on OpenVMS), the compiler cannot
allow a later declaration to modify the linkage of a previous declaration.
User Action: Change all declarations to use the same linkage.

HP C Compiler Messages D–125

POINTERINTCAST, contextthe 64-bit pointer "expression" is being cast to an
integer type that is only size bits in size. This behavior is undefined.
Description: Casting a 64-bit pointer to a shorter integer type is
undefined behavior. This also could indicate code that relies on pointers
and integers being the same size. The code will cause an unexpected loss
of data on 64-bit platforms.
User Action: If this is the intended behavior, first cast the pointer to a
64-bit integer, then cast the result to the desired integer type.

POPMISMATCH, The member alignment popped/restored with pragma
pragma name was saved using pragma pragma name. The member
alignment restored will take effect.
Description: HP C supports two forms of the member alignment
directives. One begins with #pragma pack, the other with #pragma
member_alignment. A program has mixed the pack and the member_
alignment form of the directives in a way that is not recommended. This
might indicate a programming error.
User Action: If a member alignment has been saved by one form of the
member-alignment directive, it should be restored by the same form of the
directive.

PRAGIGNORE, The pointer size control name pragma is not active. Pragma
is ignored.
Description: Either one of the pragmas that used to control pointer size
has been specified on a platform that does not support mixed pointer
sizes, or the #pragma pointer_size directive has been used without the
appropriate command-line option or qualifier. In all cases, the directive is
ignored.
User Action: Either remove the directive or add the appropriate
command-line option.

PRAGMA, Strict standard C extension: A #pragma directive was encountered.
Description: As the purpose of a #pragma directive is to specify
implementation-defined behavior, it is likely that other C compilers will not
treat this pragma in the same way HP C will.
User Action: Be aware of this if you wish to port the program.

D–126 HP C Compiler Messages

PRAGMAIDENT, Please use the preferred "#pragma ident" directive in place
of the "#ident" directive.
Description: The #ident directive is a language extension. Other C
compilers might not accept it.
User Action: Use the portable #pragma ident directive instead.

PRAGMAINBLK, The pragma name cannot be used inside a function block.
Description: This #pragma directive is only permitted at file scope,
outside of all function definitions.
User Action: Move the directive to file scope, preceding the function
definition that is to be affected. To limit the pragma to just that particular
function, sandwich the #pragma and the function definition between a pair
of matching pragmas with the save and restore keywords.

PRAGMAMOD, Please use the preferred "#pragma module" directive in place
of the "#module" directive.
Description: The #module directive is a language extension. Other C
compilers are unlikely to accept it.
User Action: Use the portable #pragma module directive instead.

PRAGMAOPTDUP, This #pragma optimize has already modified this
optimization setting. This setting will replace the old.
Description: A #pragma optimize has specified the same optimization
setting more than once. The later setting will replace the previous one.
User Action: Remove the earlier setting.

PRAGMAOPTLVL, The level set by a #pragma optimize directive must be
between 0 and 5. Pragma is ignored.
Description: A #pragma optimize has tried to set the optimization level
to a value outside the valid range. The compiler will ignore the directive.
User Action: Set the optimization level to a number from 0 to 5.

PRAGMAOPTSPEC, Setting speculation control is not available on this
platform. The setting will be ignored.
Description: Setting speculation control in only available on certain
platforms. Trying to modify the setting on other platforms will have no
effect.
User Action: Remove the speculation setting.

HP C Compiler Messages D–127

PRAGMAOPTZERO, If a #pragma optimize specifies level=0, that must be the
only optimization setting specified by the pragma. Pragma is ignored.
Description: If a #pragma optimize specifies level=0, that must be the
only optimization setting specified by the pragma. The compiler will ignore
the directive.
User Action: Remove the other settings specified by the directive.

PREOPTE, An error was detected in the processing of a option spelling option:
#define or #undefine problem
Description: An error was encountered during the processing of a macro
definition specified on the command line. The message should provide
additional information about the error.
User Action: Correct the command line argument.

PREOPTW, A problem was detected in the processing of a option spelling
option: #define or #undefine problem
Description: A problem was encountered during the processing of a macro
definition specified on the command line. The message should provide
additional information about the problem.
User Action: Correct the command-line argument.

PREPROCOUT, An error occurred while attempting to open either the
preprocessor output file or the dependency file: problem.
Description: An unexpected error occurred during the creation of a
preprocessor output file or a dependency file. The message text will contain
additional information about the failure.
User Action: Correct the condition that caused the failure.

PRIVATENOTSHARE, variable text on a local or lastlocal list is not declared
in a shared scope.
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

D–128 HP C Compiler Messages

PROMOTMATCH, contextthe promoted type of name is incompatible with the
type of the corresponding parameter in a prior declaration.
Description: The promoted type of a parameter of an old-style function
declaration does not match the type given earlier in a prototype declaration
of the function.
User Action: Correct the data types so they match. HP also recommends
that old-style function definitions be replaced by prototype-format
definitions.

PROMOTMATCHW, contextthe promoted type of name is incompatible with
the type of the corresponding parameter in a prior declaration.
Description: The promoted interger or floating type of a parameter of an
old-style function declaration does not match the integer or floating type
given earlier in a prototype declaration of the function.
User Action: Correct the data types so they match. HP also recommends
that old-style function definitions be replaced by prototype-format
definitions.

PROTOF, An error occurred while attempting to open the prototype output
file: problem.
Description: An unexpected error occurred during the creation of a
prototype output file. The message text will contain additional information
about the failure.
User Action: Correct the condition that caused the failure.

PROTOSCOPE, The type "type" has been declared within and is limited to a
function prototype scope. It will not be compatible with an identical type
declared in another scope. This might not be what you intended.
Description: A type is declared within a function prototype. The type is
local to the function prototype and will not be visible outside the prototype.
This might cause unexpected errors later in the compilation.
User Action: Declare the type before the function prototype.

PROTOSCOPE2, contextthe struct type was previously declared with
prototype scope in this function. Now it is declared with a different
prototype scope.
Description: This function declaration contains a parameter that is a
pointer to a type that has prototype scope, and an earlier declaration of
the function contains a parameter that is also a pointer to a type that has

HP C Compiler Messages D–129

a different prototype scope. In most compiler modes this will cause the
function redeclarations to differ.
User Action: Avoid declaring types with function prototype scope.

PROTOSCOPE3, contextthe struct type was previously declared in this
function with prototype scope. Now it is declared with file scope.
Description: This message is generated when the compiler first
encounters a function prototype that declares a type with prototype scope,
and then later sees a second declaration or definition of that same function
with the parameter declared using the same type declared at file scope.
For example: void foo(struct S { int a; int b;} *s); struct S { int a; int b;} s;
void foo(struct S *s);
User Action: Declare the type at file scope before the first prototype
declaration.

PROTOSTATIC, The extracted header file contains prototypes for static
functions, which should be removed before including the header in a source
file other than the originator.
Description: When extracting function prototype declarations, the
compiler has encountered a static function. The prototype declaration
placed in the output .H file should be removed if the .H file is included in
any source other than that used to create the .H file. This is because those
static functions may not be declared in the other files. This message can
only be generated when the compiler has been invoked with the option
to extract function prototype declarations, and the suboption to generate
prototypes for static functions has also been specified.
User Action: Be aware of this if you wish to use the output .H file in a
file other than the one from which the .H file was generated.

PROTOTAG, The extracted header file contains prototypes with tag names,
which should be moved to after the tag name declaration.
Description: When extracting function prototype declarations, the
compiler has encountered a parameter type specifier that references a
tag. Because the created prototype will use this tag, it should be moved
after the tag declaration in the final compilation source. This message can
only be generated when the compiler has been invoked with the option to
extract function prototype declarations.
User Action: Be aware of this if you wish to use the output .H file.

D–130 HP C Compiler Messages

PROTOTYPEDEF, The extracted header file contains prototypes with
typedefs, which should be moved to after the typedef declaration.
Description: When extracting function prototype declarations, the
compiler has encountered a parameter type specifier that is defined by a
typedef. Because the created prototype will use this typedef, it should be
moved after the typedef declaration in the final compilation source. This
message can only be generated when the compiler has been invoked with
the option to extract function prototype declarations.
User Action: Be aware of this if you wish to use the output .H file.

PROTOVLA, The extracted header file contains prototypes for functions which
have formal parameters with variably modified type. All variable length
bound specifiers have been replaced by a "*" signifying a variable length
array of unspecified size.
Description: When extracting function prototype declarations, the
compiler has encountered a function or functions which have a formal
parameter with variably modified type. The compiler is unable to recreate
the source that specified the number of array elements. Instead, the output
prototype will use the "*" bounds specifier. Note that the output prototype
is valid for the function.
User Action: Be aware that the compiler has made this minor change to
the function declaration.

PSECTFIRST, "#pragma psect_type" directive must precede any declarations.
Description: The #pragma code_psect or #pragma linkage_psect directives
must appear before any function or external data definitions.
User Action: Place the directive earlier in the source program.

PSECTTOOLONG, Psect name is too long (maximum is 31 characters).
Pragma is ignored.
Description: A psect name specified in a #pragma code_psect, #pragma
linkage_psect, or #pragma extern_model directive must be less than 32
characters in length. The compiler will ignore the directive.
User Action: Shorten the psect name.

HP C Compiler Messages D–131

PTRINTTOLONG, context"expression", a pointer to a 32-bit integer, is being
cast to a pointer to a 64-bit integer. This may lead to unintended results.
Description: On many platforms long integers are the same size as
integers, and casting a pointer to int to a pointer to long int is not a
problem. On this platform long integers are 64-bits. This cast could
indicate a potential porting problem.
User Action: Verify that this is the intended behavior.

PTRLONGTOINT, context"expression", a pointer to a 64-bit integer, is being
cast to a pointer to a 32-bit integer. This may lead to unintended results.
Description: On many platforms long integers are the same size as
integers, and casting a pointer to long int to a pointer to int is not a
problem. On this platform long integers are 64-bits. This cast could
indicate a potential porting problem.
User Action: Verify that this is the intended behavior.

PTRMISMATCH, contextthe referenced type of the pointer value "expression"
is "type", which is not compatible with "target type".
Description: In a pointer assignment, the type pointed to by the source
pointer is different than the type pointed to by the destination pointer.
User Action: Correct the assignment to use compatible types. This can be
done by inserting a cast operand.

PTRMISMATCH1, contextthe referenced type of the pointer value "expression"
is "type", which is not compatible with "target type" because they differ by
signed/unsigned attribute.
Description: In a pointer assignment, the type pointed to by the source
pointer is different than the type pointed to by the destination pointer. In
this case the types differ because the signed/unsigned type attributes are
different.
User Action: Correct the assignment to use compatible types. This can be
done by inserting a cast operand.

QUALAFTCOMMA, Type qualifier(s) after a comma ignored.
Description: In Microsoft mode, the compiler used to accept a type
qualifier after a comma used for separating declarators. Because Microsoft
no longer accepts this type of declaration, HP C will no longer accept it.
The type qualifier is ignored.
User Action: Remove the type qualifier.

D–132 HP C Compiler Messages

QUALFUNCRET, The return type of "name" is a qualified type. Type
qualifiers have no meaning for function return values.
Description: A type qualifier has been used as part of the type of a
function return value. The type qualifiers have no meaning for function
return values.
User Action: Remove the type qualifier.

QUALISPTR, context"expression" has a pointer type, but occurs in a context
that expects a struct or union.
Description: The left operand of the struct/union member operator (.) is a
pointer type instead of a struct or union type.
User Action: Specify the correct struct or union type object as the left
operand. In cases where the left operand is a pointer to a struct or union,
it might be possible to use the struct/union pointer operator (->) instead of
the member operator.

QUALNA, The qualifier name qualifier is not available on this platform and
will be ignored.
Description: The specified qualifier is not supported on this platform.
User Action: Remove the qualifier from the command line.

QUALNOTUS, contextthe qualifier for "name" is not a struct or union.
Description: In certain modes, the compiler will allow the left operand
of a struct/union member reference to be certain types other than a struct
or union type. In these cases the compiler will issue a warning that this
non-standard syntax is being accepted.
User Action: Modify the left operand to be a struct or union type.

QUESTCOMPARE, contextthe unsigned expression "expr" is being compared
with a relational operator to a constant whose value is not greater than
zero. This might not be what you intended.
Description: An ordered comparison between an unsigned value and a
constant that is less than or equal to zero often indicates a programming
error. Humans consider an unsigned value to be larger than any negative
value. But in C a negative value is converted to an unsigned value before
the comparison, so any negative value compares larger than most unsigned
values. An ordered comparison of an unsigned value to zero suggests a
programming error because the value can only be greater than or equal to

HP C Compiler Messages D–133

zero. If the code is correct, the comparison could be more clearly coded by
testing for equality with zero.
User Action: Cast (or otherwise rewrite) one of the operands of the
compare to match the signedness of the other operand, or compare for
equality with zero.

QUESTCOMPARE1, contextthe unsigned expression "expr" is being compared
with an equality operator to a constant whose value is negative. This
might not be what you intended.
Description: An unsigned value and a signed constant whose value is
negative are being compared for equality. Logically, these value would
never be equal. But in C the negative constant value is converted to an
unsigned value before the comparison, and may well compare equal.
User Action: Cast (or otherwise rewrite) one of the operands of the
compare to match the signedness of the other operand.

QUESTCOMPARE2, contextthe unsigned expression "expr" is being tested to
see if it is greater than zero. This might not be what you intended.
Description: An ordered comparison between an unsigned value and
a constant that is zero may indicate a programming error. Often C
programmers do not realize that an expression has an unsigned type. If
the code is correct, the comparison could be more clearly coded by testing
for equality with zero.
User Action: Cast (or otherwise rewrite) one of the operands of the
compare to match the signedness of the other operand, or compare for
equality with zero.

READONLYEXT, readonly is a language extension.
Description: The readonly storage class modifier is a language extension
of HP C. Other C compilers might not successfully compile a program that
uses the extension.
User Action: Be aware of this extension if you wish to port the code.

REDECLNOPARAM, contextthe declaration of the function "name" containing
no parameter information replaces an earlier declaration of "name" at
location.
Description: A function which was previously declared with a function
prototype has been redeclared without parameter information. This is
a violation of the C standard. The HP C compiler will accept this for
compatibility with older compilers.
User Action: Remove one of the declarations.

D–134 HP C Compiler Messages

REDEF, This declaration contains a redefinition of "name". The previous
declaration is at location.
Description: This declaration has tried to redefine an identifier that was
defined earlier. This is not valid.
User Action: Remove one of the definitions.

REDEFSTRUCT, contextthe struct "name" is redefined.
Description: The struct tag declared in this declaration is already
declared as a struct tag by another declaration.
User Action: Change the name of the struct tag.

REDEFTAG, contextthe tag "name" is redeclared.
Description: The tag declared in this declaration is already declared.
User Action: Change the name of the tag.

REDEFUNION, contextthe union "name" is redefined.
Description: The union tag declared in this declaration is already
declared as a union tag by another declaration.
User Action: Change the name of the union tag.

REFBEFORETLS, contextthe reference to the variable "var" lexically precedes
its use in a #pragma omp threadprivate directive. This is not allowed.
Description: An OpenMP threadprivate directive must lexically precede
all references to any varible in its variable list. The compiler had detected
a reference to a variable which appears in a subsequent threadprivate
directive.
User Action: Move the threadprivate directive before the reference.

REGCONFLICT, Conflicting required uses of register(s): text
Description: The special linkage associated with a function has specified
that one of the standard calling convention registers be used in a
nonstandard way without also replacing its standard use with another
register. An example would be a function that returns an int value using
a special linkage that states R0 is not used, and does not specify another
register to hold the return value.
User Action: Correct the #pragma linkage directive that specifies the
special linkage.

HP C Compiler Messages D–135

REGNOSHARE, contextnoshare cannot be used with the register storage
class. Modifier noshare is ignored.
Description: The storage class modifier noshare is meaningless for objects
declared with register storage class. The compiler ignores the noshare.
User Action: Remove the noshare storage class modifier.

RELOCALIGNMENT, An initialization requiring relocation is not correctly
aligned at Psect text + number
Description: On some platforms, initializing an object to an address
requires that the object be aligned on a natural boundary.
User Action: Either remove the static initializer or align the object being
initialized.

RESMISMATCH, The pointer size restored with pragma pragma name was
saved using pragma pragma name. The pointer size restored will take
effect.
Description: HP C supports two forms of the pointer-size directives.
One begins with #pragma pointer_size, the other with #pragma required_
pointer_size. A program has mixed the required_pointer_size and the
pointer_size form of the pointer-size directives in a way that is not
recommended. This might indicate a programming error.
User Action: If a pointer size has been saved by one form of the
pointer-size directive, it should be restored by the same form of the
directive.

RESTRICTEXT, The _ _restrict type qualifier is a language extension.
Description: The use of the _ _restrict type qualifier might not be portable
to other C compilers.
User Action: Be aware of this portability concern.

RESTRICTEXT1, Placement of the _ _restrict qualifier within the array-bound
specifier of a formal parameter declaration is a language extension.
Description: The use of the restrict type qualifier within the array bound
specifier of a formal parameter is a language extension supported by HP C.
Other C compilers might not successfully compile a program that uses this
extension.
User Action: Be aware of this if you wish to port the program.

D–136 HP C Compiler Messages

RESTRICTEXT2, The restrict type qualifier is a new feature in C99. Other C
compilers might not successfully compile a program that uses this feature.
Description: The use of the restrict type qualifier might not be portable
to other C compilers.
User Action: Be aware of this portability concern.

RESTRICTNOP, The restrict type qualifier can only be applied to a pointer
type that points to an object or incomplete type. Qualifier is ignored.
Description: The restrict type qualifier has been used with an invalid
type. Only pointers to object or incomplete types can have the restrict type
qualifier. The compiler will ignore the type qualifier in all other cases.
User Action: Remove the type qualifier or change the type to one that
accepts the qualifier.

RETLOCALADDR, This return statement returns the address of a local
variable. The address returned cannot be used by the caller in any
meaningful way.
Description: The storage for all local variables is undefined after a
function has returned. Returning the address of a local variable will cause
undefined behavior when the return value is used in the calling program.
User Action: Either change the variable to have static storage duration,
use malloc to allocate the storage (and free it after its use), or change
the interface to have the caller pass in the address at which data is to be
stored.

RETRYCONV, Built-in function retry-name is not available on this platform.
It has been converted to nonretry-name by ignoring the retry count and
setting the retry status to 1.
Description: The version of this built-in function with retry capability is
not available on the IA64 platform.
User Action: Use the non-retry version of this built-in function.

RETRYNOTAVAIL, Built-in function name with retry count is not available on
this platform. The retry count is ignored.
Description: The retry capability of this built-in function is not available
on the IA64 platform.
User Action: Remove retry count from built-in function call.

HP C Compiler Messages D–137

RETVALTOOBIG, The size of return value of "name" exceeds the maximum
size of an object allowed on this platform which is size bytes.
Description: A function’s return value is too large for this platform.
User Action: Reduce the size of the return value.

RIGHTSHIFTOVR, contextthe right shift count "number" is greater than or
equal to the size of the unpromoted operand "expression".
Description: The compiler has detected a right shift count that is greater
than or equal to the size of the operand to be shifted (before application
of the integral promotions). This might not be what you intended, as the
result contains none of the original bits of the operand. For an unsigned
operand, the result is always 0. For a signed operand, the result is either 0
or -1, depending on whether or not the operand had a negative value. The
same result would be achieved by shifting a signed operand one fewer bits.
User Action: Correct the shift count (or replace the expression by 0 if
appropriate).

RTEXCEPT, contextthe floating-point constant named "name" will cause an
exception at runtime.
Description: The IEEE trap mode of this program will cause an exception
at runtime if this floating-point constant is used in an expression.
User Action: If you do not choose to cause a runtime exception, replace
the named constant with a conventional floating point constant. The
HUGE_VAL macros defined by <math.h> may be used in place of IEEE
Infinities with any floating-point representation.

RTLMAPNOTFOUND, C RTL mapping information for RTL name not found.
Could not access image_name.
Description: In most cases, the HP C compiler will automatically map
names of C standard library functions to their corresponding names in
the HP C RTL shareable image. In many cases, this is done simply by
adding a "DECC$" prefix to the name. In order for this mapping to work,
the compiler accesses an RTL mapping table. This message is issued if the
compiler was unable to open the mapping table. In these cases, no name
mapping will be performed. The most common cause of this message is
specifying bad name in the /PREFIX=RTL="name" compiler qualifier.
User Action: Specify a valid RTL on the /PREFIX=RTL qualifier. If no
qualifier was used, it might be necessary to reinstall the compiler and/or
RTL. For more information consult the HP C Run-time Library Manual for
OpenVMS Systems.

D–138 HP C Compiler Messages

RTLMISMATCH, HP C RTL prefix table version mismatch: RTL table is
Vmajor.minor, compiler needs Vmajor.minor.
Description: In most cases, the HP C compiler will automatically map
names of C standard library functions to their corresponding names in the
HP C RTL shareable image. In many cases, this is done simpl by adding
a "DECC$" prefix to the name. In order for this mapping to work, the
compiler accesses an RTL mapping table. The compiler also requires that
the version of the RTL mapping table be compatible with the version of
the compiler. In cases where the versions are incompatible, this message
is generated. In these cases, no name mapping will be performed. The
most common cause of this message is specifying an old RTL name in the
/PREFIX=RTL="name" compiler qualifier.
User Action: Specify a new RTL on the /PREFIX=RTL qualifier. If no
qualifier was used, it might be necessary to reinstall the compiler and/or
RTL. For more information, consult the HP C Run-time Library Manual
for OpenVMS Systems.

SAMEASTYPEDEF, contextthe extern has the same name as a file-scope
typedef. This is a language extension.
Description: The program has declared an extern inside a function whose
name matches a file-scope typedef. This is not allowed by the C standard,
but is accepted for compatibility with other C compilers.
User Action: Change the name of the variable or the typedef.

SCACALL, This function contains too many parameters for SCA to handle.
Function parameter info will be truncated.
Description: The parameter information for this function contains more
data than SCA can process. The compiler will truncate the parameter
information. Be aware that the parameter information will be incomplete.
User Action: Simplify the parameter information.

SCAID2LONG, The identifier exceeds the SCA limit of number characters. In
the SCA file the name will be truncated to "truncated spelling".
Description: The length of an identifier supported by SCA is less than
the length of an identifier supported by the HP C compiler. Because of
this, the compiler will truncate an identifier name to fit the SCA limits.
User Action: Either reduce the identifier name, or be aware of this when
using SCA.

HP C Compiler Messages D–139

SCALEFACTOR, The CDD description for name specifies a scale factor of
number. The scale factor is being ignored.
Description: HP C does not support scaled arithmetic.
User Action: Verify that all computations involving this item are correctly
scaled.

SCAOVFLO, Compiler Internal Error: SCA event buffer overflowed. Please
submit a problem report.
Description: When building SCA information, the compiler overflowed its
internal buffer. This should not happen.
User Action: Please submit a problem report detailing the failure.

SEQUENCEEXT, contextallowing a comma operator is a language extension.
Description: In this context the C standard does not allow the comma
(sequence) operator. HP C allows this syntax for compatibility with some
other C compilers. Be aware that this syntax may not be accepted by other
C compilers.
User Action: If the intent is to use an expression that is not necessarily
a constant expression, then enclose it in parentheses. But if the intent of
the declaration is to use a constant expression, then the comma operator
cannot be used.

SESEMULTIEXITS, parallel directive scope text has multiple exits
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

SESEMULTIPREDS, parallel directive scope text has multiple entry paths
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

SESEVFLOW, parallel directive scope text is crossed by a VBRANCH
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

D–140 HP C Compiler Messages

SHARECONST, In this declaration, noshare has been ignored due to the
presence of const or readonly.
Description: A variable declared with the readonly storage class modifier,
or the const type modifier cannot also have the noshare storage class
modifier. The compiler will ignore the noshare storage class modifier.
User Action: Remove either the noshare storage class modifier or the
const or readonly modifiers.

SHIFTCOUNT, contextthe shift count "number" is negative or is greater than
or equal to the promoted size of the operand "expression".
Description: The compiler has detected a shift count that is negative or
is greater than or equal to the promoted size of the operand to be shifted.
This behavior is undefined.
User Action: Correct the shift count.

SHORTCIRCUIT, contextpotential side effects from the evaluation of
"operand" will not take place. This is because the first operand of a logical
operator is a constant whose value requires that this expression must not
be evaluated.
Description: The C language requires that if the first operand of a logical
| | or && operator determines the result of the expression, the second
operand must not be evaluated. This behavior is different from other
operators. The compiler has noticed that the second operand will generate
code that may produce side effects that the programmer expects to take
place. This message is to inform the user that the code generated for the
second operand will not be executed.
User Action: Replace the logical expression with its first operand.

SHOWMAPLINKAGE, The linkage has been mapped to: #pragma linkage_
ia64 name = (stuff).
Description: The pragma linkage directive contains architecture-specific
information. The Alpha register conventions are different from the IA64
register conventions. The compiler will try to map the Alpha registers to
the corresponding registers on IA64. This message details the mapping.
User Action: Replace the linkage directive with the linkage_ia64 directive
that appears in the message.

HP C Compiler Messages D–141

SIGNEDKNOWN, contextHP C recognizes the standard keyword "signed".
This differs from the VAX C behavior.
Description: VAX C does not recognize the "signed" keyword. HP C will
allow this, even in vaxc mode.
User Action: Be aware of this difference if you plan to compile the source
with VAX C.

SIGNEDMEMBER, contextHP C recognizes the standard C keyword "signed"
in member declarations. The VAX C compiler does not and would treat the
member as unsigned.
Description: VAX C does not recognize the "signed" keyword in a member
declaration. VAX C will treat the member as an unsigned type. HP C will
recognize the keyword and declare the member as a signed type.
User Action: Be aware of this difference if you plan to compile the source
with VAX C.

SIMPLEMESSAGE, user text
Description: The compiler has encountered a #pragma message (<quoted
string>)directive. It will output the message in the quoted string.
User Action: Remove the pragma message.

SIZEBIT, context"expression" is a bitfield, and so has no size.
Description: A bitfield expression cannot be used as the argument to the
sizeof operator or the _ _builtin_alignof builtin.
User Action: Pass an expression with a valid type to the operator or
builtin.

SIZEINCOMP, context"expression" is of an incomplete type, and so has no size.
Description: An expression that has incomplete type has no size and
therefore cannot be used as the argument to the sizeof operator.
User Action: Pass an expression with a valid type to the sizeof operator.

SIZEINCOMPTYP, context"type" is an incomplete type, and so has no size.
Description: A incomplete type has no size and therefore cannot be used
as the argument to the sizeof operator.
User Action: Pass a valid type to the sizeof operator.

D–142 HP C Compiler Messages

SIZFUNVOIDTYP, context"type" has function or void type and may not appear
in this context. The compiler will treat the type as if it were char.
Description: A function or void type cannot be used as the argument of
the sizeof operator or the _ _builtin_alignof builtin. For compatibility with
some other compilers, an output file is still created. The result produced
will be the same as if a char type was passed. This may or may not be
compatible with other compilers that accept this syntax.
User Action: Pass a valid type to the operator or builtin.

STACKPOP, This "restore" has underflowed the pragma stack name stack. No
corresponding "save" was found.
Description: One of the pointer-size stacks, managed by the #pragma
pointer_size, #pragma require_pointer_size, #pragma required_vptr_size,
and #pragma environment directives, contains more restores than saves.
This could signify a coding or logic error in the program.
User Action: Make sure each restore has a corresponding save.

STATICIFLOAT, contextconversion of a link-time address constant to a
floating type is required. This is not allowed.
Description: The initialization of an object with static extent requires
a value that is a link-time constant expresion. Link-time constant
expressions cannot involve values of floating types (other than floating
constants that are the immediate operands of casts).
User Action: Remove the floating point types from the initialization.

STATICVLA, contextthe static object "name" cannot be a variable length array.
Description: Only ordinary identifiers with block scope and without
storage class extern or static, or ordinary identifiers with function
prototype scope can be declared as variable-length arrays.
User Action: Correct the declaration.

STATINITWARN, contextthe linker will be unable to perform this static
initialization if the initializer is defined in a sharable image.
Description: A static initialization will require that a link-time constant
be truncated. If the constant is resolved in a sharable image, the linker
will issue a diagnostic and be unable to perform the initialization. This
message is output on OpenVMS systems only.
User Action: Rewrite the static initialization so that the link-time
constant will not be truncated.

HP C Compiler Messages D–143

STDARG, contextstdarg.h macros might be required if the address of the
parameter name is used to index through a parameter list.
Description: Some older C programs will traverse a function’s parameter
list by taking the address of one of the parameters and then adjusting it
to get to subsequent parameters. In most cases, this technique will not
produce the desired results on Alpha. This message is specific to UNIX,
and is only output if -varargs option is specified.
User Action: If the address is used to walk the parameter list, recode the
function to use the standard stdarg.h macros.

STKALLEXC, Allocations to stack exceeded maximum stack size
Description: A routine uses more stack space than is available on this
platform. This is most often caused by declaring too many large automatic
variables.
User Action: Reduce the size required by the automatic variables.

STOALNERR, Psect text alignment is insufficient for allocation of text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

STONOTFIRST, The placement of a storage-class specifier other than at the
beginning of the declaration specifiers in a declaration is an obsolescent
feature.
Description: The standard states that this style of declaration is
obsolescent.
User Action: Place the storage-class specifier first in the declaration.

STORCLSDCL, contexta storage class without a declarator is meaningless.
Description: This message is generated when the compiler encounters
certain declarations that contain a storage class but no declarator. For
example: extern struct S { int a;};
User Action: Either remove the storage class or add a declarator to the
declaration.

STOREBIF, Built-in function store-bif is not available on this platform. It may
be converted to swap-bif if the source and dest parameters are identical.
Description: The STORE version of this built-in function is not available
on the IA64 platform.
User Action: Use the SWAP version of this built-in function.

D–144 HP C Compiler Messages

STOREQEXC, Allocations to text section exceeded growth bounds
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

STORISSTAT, This redeclaration of the static initialized variable "name"
will have static storage class that differs from the VAX C behavior. The
previous declaration is at location.
Description: In VAX C mode, if a variable is first declared static and
then declared extern, the variable will be given extern storage class. This
matches the VAX C behavior. If, however, the static variable is initialized,
the storage class will remain static.
User Action: Be aware of this difference.

STORMODDCL, contexta storage class modifier without a declarator is
meaningless.
Description: This message is generated when the compiler encounters
certain declarations that contain a storage class modifier but no declarator.
For example: readonly struct S { int a;};
User Action: Either remove the storage class modifier or add a declarator
to the declaration.

STRCTPADDING, An additional number bytes of padding have been implicitly
inserted prior to this member for proper alignment of this member.
Description: The compiler has added pad bytes before a member so that
it will be accessed efficiently. This might not have been what you intended.
User Action: Consider rearranging the order of member declarations.

STRINGCONST, Ill-formed string constant.
Description: An invalid string constant was encountered.
User Action: Correct the string constant.

STRUCTBRACE, context a required set of braces is missing.
Description: The initializer for this struct was not enclosed in braces.
While some compilers allow this, standard C requires braces around the
initializer.
User Action: Enclose the initializer in braces.

HP C Compiler Messages D–145

STRUCTLIMITSUP, contextHP C provides only limited support for
struct/union types larger than n bytes.
Description: This struct/union type is larger than can be represented by
size_t. While HP C will allow a type declared to be this size, uses of the
type are not fully supported and may cause unpredictable behavior.
User Action: Reduce the size of the type.

STRUCTOVERFLOW, Integer overflow occurred when computing the size of a
struct or union type.
Description: An struct or union type is larger than allowed on this
platform. Note that as the compiler computes the size of the type in bits,
the limit on the size of struct/union types is eight times smaller than the
size of other types.
User Action: Reduce the size of the struct/union type.

SUBINVALIDCHR, Parameter substitution produced an invalid character
constant.
Description: In certain modes, the compiler will replace identifiers found
within a character constant if they match a macro argument name. This
form of "old-style stringization" is provided for compatibility with older C
compilers. This message is output if this replacement forms an invalid
character constant.
User Action: Modify the macro argument so that a valid character
constant is formed.

SUBINVALIDSTR, Parameter substitution produced an invalid string literal.
Description: In certain modes, the compiler will replace identifiers
found within a string literal if they match a macro argument name. This
form of "old-style stringization" is provided for compatibility with older C
compilers. This message is output if this replacement forms an invalid
string literal.
User Action: Modify the macro argument so that a valid string is formed.
HP also recommends that the macro body be rewritten to use the standard
C stringize operator (#).

D–146 HP C Compiler Messages

SUBSCRBOUNDS, contextan array is being accessed outside the bounds
specified for the array type.
Description: The compiler has detected an array access that is outside the
bounds of the array. The array access might cause unpredictable behavior.
Note that in C, an array is declared using the number of elements, but
the first element has subscript 0. It is a common coding error to attempt
to access the last element of an array of "n" elements using a subscript
of "n" instead of "n - 1". However, there are two common practices that
intentionally employ out-of-bounds subscripts to useful/correct effects that
are not reported by this message, but have separate optional messages.
First, taking the address of an array element that is exactly one beyond the
last element of an array is completely valid in standard C as long as the
address is not used to access memory. The optional subscrbounds2 message
can be enabled to report taking the address of the array element exactly
one beyond the last element. Second, it is a somewhat common practice
to declare the last member of a struct as an array with one element, and
then allocate such structs at runtime with different sizes, recording the
actual size in an earlier member of the struct. The optional subscrbounds1
message can be enabled to report subscripts greater than zero applied to
arrays declared with only one element.
User Action: Specify an array subscript that is within the bounds of the
array type.

SUBSCRBOUNDS1, contextan array type declared with one element is being
accessed beyond the end of the array.
Description: An array declared with one element is being accessed
beyond the end of the array. The array access can cause unpredictable
behavior. Note that in C, an array is declared using the number of
elements, but the first element has subscript 0. It is a common coding
error to attempt to access the last element of an array of "n" elements
using a subscript of "n" instead of "n - 1".
User Action: Specify an array subscript that is within the bounds of the
array type.

SUBSCRBOUNDS2, contextaccessing the address of an array element that is
exactly one beyond the end of the array might not be what you intended.
Description: Accessing the address of an array element that is exactly
one beyond the end of the array might be a coding error (e.g. if the address
is then used to access memory), or it might be fully correct (e.g. to compute
a pointer value to be used as the upper bound on a loop).
User Action: Specify an array addressthat is within the bounds of the
array type.

HP C Compiler Messages D–147

SWAPBIF, Built-in function store-bif is not available on this platform. The
compiler was able to convert it to swap-bif because the source and dest
parameters are identical.
Description: The STORE version of this built-in function is not available
on the IA64 platform.
User Action: Use the SWAP version of this built-in function.

SWITCHLONG, The signed or unsigned long expression "expression" is used
in a switch statement.
Description: A switch value has an integer type of signed or unsigned
long int. While this is perfectly portable under the C standard, the original
K&R definition of C required that the expression have type int. HP C
accepts this usage in all modes, but there may be older C compilers that
require type int in this context.
User Action: Be aware that older, non-standard compilers might not
accept this construct, or force the result to type int.

SYSREGUSED, System register specified as external register.
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

SYSTEM, text
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

TAGDIFFER, contextthe tag "name" differs from the tag "name" used in an
earlier declaration of this function.
Description: This function declaration contains a parameter that is a
pointer to a struct or union type whose tag differs from the tag of the
struct or union type referenced by a pointer type in an earlier declaration
of this function. In most modes of the compiler, this will cause the function
declarations to be incompatible.
User Action: Multiple declarations of a function should use exactly the
same parameter types.

D–148 HP C Compiler Messages

TAGORBRACE, Missing tag or "{".
Description: The enum, struct, and union keywords must be followed by
either an open brace or a tag.
User Action: Correct the program syntax.

TENTREDEF, This definition or tentative definition of "name" is redefining
the definition or tentative definition on location. This is not allowed in C++.
compiler_ _declare_tent_redef1.
Description: C will allow a tentative definition to be redefined later in the
compilation unit. C++ does not have the concept of a tentative definition.
Therefore this redefinition is invalid in C++.
User Action: Either remove the previous tentative definition, or modify it
to match the later redefinition.

TEXTARRAY, The CDD description for name specifies that it is text 1; It has
been translated into an array of char.
Description: When the CDD type "TEXT" is of length one, HP C will
normally convert this to type "char" in order to be compatible with VAX C.
If however, the nullterminate or text1toarray keywords are specified in a
HP C dictionary directive, the CDD type TEXT will be converted to type
"array of char".
User Action: No action is necessary as long as the type "array of char" is
the desired datatype.

TEXTARRAYN, The CDD description for name specified that it is text 1; It
has been translated into an array of char because null_terminate was used.
Description: The CDD type "TEXT" is of length 1 and has been converted
to the C type "array of char" of size 2 because the null_terminate keyword
was specified on the dictionary directive.
User Action: No action is necessary as long as the type "array of char" of
size two is the desired C datatype.

TEXTCHAR, The CDD description for name specified that it is text 1; It has
been translated into a type char.
Description: When the CDD type "TEXT" is of length one, HP C will
normally convert this to type "char" in order to be compatible with VAX C.
However, when the length of the CDD type "TEXT" is greater than one, the
C type "array of char" is generated. This means that CDD type "TEXT"

HP C Compiler Messages D–149

will result in different C datatypes depending upon the length of the TEXT
stored in the dictionary.
User Action: No action is necessary as long as the type "char" is the
desired datatype.

TEXTMODULE, The text library module form of #include is an extension.
Description: On OpenVMS systems, an #include directive whose file
specifier is not enclosed in either quotation marks or angle brackets
denotes an include from a text library. This is an extension of HP C. This
directive will not work as expected on non-VMS systems.
User Action: Be aware of this if you wish to port the program.

THREADFUNC, contextthe _ _declspec(thread) storage class modifier cannot
be used with a function type. Modifier is ignored.
Description: Only objects can be declared with thread-local storage. The
storage class modifier is ignored when applied to an identifier with function
type.
User Action: Either remove the storage class modifier or change the type
to one that is valid for _ _declspec(thread).

THREADNYI, contextthe _ _declspec(thread) storage class modifier is not
implemented on this platform. It will be ignored except to verify correct
compile-time usage.
Description: Thread-local storage is only supported on UNIX platforms.
The compiler will ignore the storage class modifier except to verify that it
is correctly used.
User Action: Remove the _ _declspec(thread) storage class modifier or
compile the program on a platform that supports the modifier.

THREADSTO1, contextthe _ _declspec(thread) storage class modifier requires
a storage class of extern, static, or none. Modifier is ignored.
Description: Declaring a file-scope object with thread-local storage
requires that the object have a storage class of extern, static or none. In
other cases, the compiler will ignore the _ _declspec(thread) storage class
modifier.
User Action: Either remove the storage class modifier or change the
storage class to one that is valid for _ _declspec(thread).

D–150 HP C Compiler Messages

THREADSTO2, contextthe _ _declspec(thread) storage class modifier requires
a storage class of extern, or static. Modifier is ignored.
Description: Declaring a local object with thread-local storage requires
that the object have a storage class of extern, or static. In other cases, the
compiler will ignore the _ _declspec(thread) storage class modifier.
User Action: Either remove the storage class modifier or change the
storage class to one that is valid for _ _declspec(thread).

TLSANDSTATIC, contextthe storage class modifier _ _declspec(thread) cannot
be used with the -static option. The storage class modifier is ignored.
Description: Thread-local storage cannot be declared in compilations
that are performed with the -static option. The compiler will ignore the
_ _declspec(thread) storage class modifier.
User Action: Either remove the _ _declspec(thread) storage class modifier
or do not compile with the -static option.

TOOFEWACTUALS, Too few actual parameters in the invocation of the macro
"name".
Description: A macro invocation supplied fewer actual arguments than
the macro expects. The macro arguments not specified in the call will be
given a null value.
User Action: Supply all arguments in the macro invocation.

TOOFEWARGS, context"function expression" expects correct number
arguments, but actual number are supplied.
Description: A function has been invoked with fewer arguments than
it expects. In some modes this is a warning message, and the compiler
will compile the program. In this case, the function being called might not
produce the expected results.
User Action: Make sure the number of arguments passed to a function
match those specified in the function declaration.

TOOFEWARGSO, context"function expression", which was declared with an
old-style function definition, expects correct number arguments, but actual
number are supplied.
Description: A function that was declared with an old-style function
definition has been invoked with fewer arguments than it expects. While
this is valid C, it might not have been what you intended.
User Action: Make sure the number of arguments passed to a function
match those specified in the function declaration. If the function is to be
called with a variable number of arguments, it should use the facilities

HP C Compiler Messages D–151

of <varargs.h> for old-style definitions. HP generally recommends that
old-style function definitions be replaced by prototype-format definitions, in
which case variable argument lists are specified using the ... notation and
the definition uses the facilities of <stdarg.h>.

TOOLONG, context, "expression" is too long by count character(s).
Description: A string initializer for a char array contains more characters
than the array can hold. This is not valid.
User Action: Reduce the number of characters to be less than or equal to
the number of elements in the char array.

TOOMANY, context, there are actual number elements, which is extra number
too many. The extra initializers will be ignored.
Description: An initializer list contains more initializers than there are
objects to be initialized. This is not valid.
User Action: Reduce the number of initializers to be less than or equal to
the number of objects being initialized.

TOOMANYACTLS, Too many actual parameters in the invocation of the
macro "name".
Description: A macro invocation supplied more actual arguments than
the macro expects. The additional arguments will be ignored.
User Action: Remove the extra arguments from the macro invocation.

TOOMANYARGS, context"function expression" expects correct number
arguments, but actual number are supplied.
Description: A function has been invoked with more arguments than it
expects. In some modes this is a warning message, and the compiler will
compile the program.
User Action: Make sure the number of arguments passed to a function
match those specified in the function declaration.

TOOMANYARGSO, context"function expression", which was declared with an
old-style function definition, expects correct number arguments, but actual
number are supplied.
Description: A function that was declared with an old-style function
definition has been invoked with more arguments than it expects. While
this is valid C, it might not have been what you intended.
User Action: Make sure the number of arguments passed to a function
match those specified in the function declaration. If the function is to be
called with a variable number of arguments, it should use the facilities

D–152 HP C Compiler Messages

of <varargs.h> for old-style definitions. HP generally recommends that
old-style function definitions be replaced by prototype-format definitions, in
which case variable argument lists are specified using the ... notation and
the definition uses the facilities of <stdarg.h>.

TOOMANYERR, More than number errors were encountered in the course of
compilation.
Description: After emitting a certain number of errors, the compiler will
stop the compilation and issue this message. The number of errors output
before the compilation stops can be changed using the /ERROR_LIMIT
qualifier on OpenVMS systems, or the -error_limit option on UNIX
systems.
User Action: Either reduce the number of errors generated by the
program or give a larger value for the error limit.

TOOMANYGATES, only 64 gates maybe be used within a parallel region
Description: For each parallel region there is a limit of 64 different gates
that can be specified in a #pragma enter gate/#pragma exit gate pair.
User Action: Reduce the number of gates

TOOMANYTOKENS, Too many tokens in macro expansion.
Description: An argument to the #line preprocessing directive contained
a macro whose expansion generated more tokens than the #line directive
expects.
User Action: Either modify the macro definition or change the arguments
to the #line directive.

TOOMANYTXTLIB, Too many text libraries. Library library name and
subsequent will not be searched.
Description: The compiler has tried to open more text libraries than it
can support in its internal data structures. The specified library, and all
subsequent libraries will not be opened.
User Action: Reduce the number of text libraries the compilation
requires.

TOOMNYREL, Object file section text has number relocations; maximum
allowed is number
Description: This message is emitted by the code generator. It should
never be output when compiling a C program.
User Action: Please submit a problem report if you encounter this
message when compiling a C program.

HP C Compiler Messages D–153

TRAILCOMMA, Trailing comma found in enumerator list.
Description: Accepting an enumerator list that contains a trailing comma
is an extension of HP C provided for compatibility with other C compilers.
An enumerator list with a trailing comma is not valid in C89, nor in C++.
The C99 standard does permit this syntax.
User Action: Remove the trailing comma.

TRUNCFLTASN, context"expression" has more precision than "target type".
Assignment might result in loss of precision and/or range.
Description: The destination of a floating-point assignment has less range
and/or precision than the expression being assigned to the destination.
Because of this, the assignment might cause a loss of range and/or
precision.
User Action: Verify that no unexpected data can be lost by the
assignment. If not, cast the expression to the type of the destination.

TRUNCFLTINT, context"expression" is a floating-point type being assigned to
an integer type. The assignment might result in data loss.
Description: A floating-point expression is being assigned to an integer
type. This assignment might cause a loss of range and/or precision.
User Action: Verify that no unexpected data can be lost by the
assignment. If not, cast the expression to the type of the destination.

TRUNCINTASN, context"expression" has a larger data size than "target type".
Assignment might result in data loss.
Description: The destination of an integer or pointer assignment is
smaller than the expression being assigned to the destination. Because of
this, the assignment might cause data to be lost.
User Action: Verify that no unexpected data can be lost by the
assignment.

TRUNCINTCAST, context"expression" has a larger data size than "target type".
Cast might result in data loss.
Description: An integer or pointer expression is being cast to a size that
is smaller than the expression. Because of this, the cast might cause data
to be lost.
User Action: Verify that no unexpected data can be lost by the cast.

D–154 HP C Compiler Messages

TRUNCLONGCAST, context"expression", a 64-bit integer, is being cast to a
32-bit integer. The cast might result in data loss.
Description: On many platforms long integers are the same size as
integers. On this platform long integers are 64-bits. This cast could
indicate a potential porting problem.
User Action: Verify that no unexpected data can be lost by the cast.

TRUNCLONGINT, context"expression", a 64-bit integer, is being assigned to a
32-bit integer. Assignment might result in data loss.
Description: On many platforms long integers are the same size as
integers. On this platform long integers are 64-bits. This assignment could
indicate a potential porting problem.
User Action: Verify that no unexpected data can be lost by the
assignment.

TUNEOVERRIDE, tune setting text overridden by arch setting text, tune
forced to text
Description: The program has specified a tune architecture that is older
than the arch setting. The arch setting is the oldest architecture that the
code should ever run on. Asking the compiler to tune for an even older
architecture is not reasonable. The compiler will use the arch setting for
the tune option as well
User Action: Specify a tune architecture that is at least as new as the
arch architecture.

TYPEALIGN, context_align cannot be used with the typedef storage class.
Modifier _align is ignored.
Description: The storage class modifier _align is meaningless for
typedefs. The compiler ignores the _align.
User Action: Remove the _align storage class modifier.

TYPECONFLICT, context"typespec1" cannot be combined with "typespec2".
Description: Two type keywords used in the same type specifier cannot be
combined. In some modes, the compiler will use the most recent keyword
as the type specifier.
User Action: Correct the type specifier.

HP C Compiler Messages D–155

TYPEDEFFUNC, In this function definition, "name" acquires its type from a
typedef.
Description: A function definition acquires its type from a typedef. This
is not allowed.
User Action: Correct the function definition.

TYPEDEFINIT, The declaration of the typedef "name" contains an initializer.
The initializer is ignored.
Description: A typedef declaration must not contain an initializer.
User Action: Remove the initializer from the declaration.

TYPEDEFNA, Accepting an old-style parameter name that matches a typedef
is a language extension.
Description: The HP C compiler will allow old-style parameters to have
the same name as a typedef. Many other compilers will not allow this.
User Action: Recode the function definition to use the standard C
prototype syntax.

TYPEDEFNOTDEF, In this declaration, "name" appears to be used as if it
named a type, but there is no declared type of that name visible.
Description: The compiler has encountered what appears to be a typedef
declaration that provides a new name for an existing type, but the
identifier used to specify the existing type is not the name of a type that is
visible.
User Action: Declare the identifier for the first type, or correct its
spelling.

TYPEEXPR, context"name" is declared as a label, tag, or typedef, and so
cannot occur as an expression.
Description: An identifier declared as a typedef has been used in an
expression when an object or function was required.
User Action: Correct the expression.

TYPEOFEXT, The use of _ _typeof_ _ is a language extension.
Description: Support for _ _typeof_ _ is a language extension provided
for compatibilty with some other C compilers. Although some other C
compilers will accept this syntax, many compilers will reject it.
User Action: Be aware of this difference if you plan to port this source to
another compiler.

D–156 HP C Compiler Messages

TYPQUALNOT, A type qualifier is not allowed in this context.
Description: In Microsoft mode, the compiler used to accept a type
qualifier after a comma used to separate declarators. This was refered to
as a local type qualifier. This message is output when a local type qualifier
is applied to a declarator that can not be qualified.
User Action: Remove the local type qualifier because this is no longer
accepted.

TYPQUALNOT2, Use of the keyword "static" or a type qualifier within the
outermost array-bounds specifier of a formal parameter declaration is a
new feature in the C99 standard.
Description: The C99 construct may not be available in other compilers
you use to build your application, in which case they will likely report it as
a syntax error.
User Action: You may want to conditionalize your code with the
preprocessor so that you can take advantage of the feature on platforms
that support it, without getting syntax errors from older compilers or
language modes that do not support it.

TYPQUALNOT3, Use of the keyword "static" or a type qualifier in an array-
bounds specifier is invalid in this compilation mode. Keyword/qualifier
ignored.
Description: Use of the keyword "static" or a type qualifier within the
outermost array bound specifier of a formal parameter is a new feature in
the C99 standard and is not supported in this language mode.
User Action: Either compile in a mode that supports C99 features, or
remove the construct from your code.

TYPQUALNOT4, Use of this type qualifier in an array-bounds specifier is
invalid. Qualifier ignored.
Description: Use of this type qualifier is not a permitted in the array
bound specifier of a formal parameter.
User Action: Remove the keyword.

UABORT, Compilation terminated by user.
Description: This message is often output when the compilation was
aborted by the user by hitting Control C.
User Action: Do not abort the compilation.

HP C Compiler Messages D–157

UCNICONVOPN, The call iconv_open(CODESET, "UCS-4") failed because:
STRERROR. UCNs will not be mapped to the native character set.
Description: To translate Universal Character Name escape sequences to
the codeset of the current locale, the compiler needs to call the iconv_open
library routine with the specified parameters. This call failed, for the
reason shown. Thus no UCN escape sequences in this program can be
translated.
User Action: Make sure your system has the specified codeset converter
installed, or set your locale to use a codeset for which a converter from
UCS-4 is available. Alternatively, change your code to avoid the use of
UCNs, e.g. using hexadecimal escape sequences.

UCNNOMAP, A UCN escape sequence was recognized, but there was no
translation for it into the current codeset. The escape sequence will be
used verbatim.
Description: A Universal Character Name (UCN) escape sequence was
recognized, but there was no translation for it into the current codeset
using the iconv library routine. The complete escape sequence itself,
including the backslash, will be used in the object module.
User Action: Make sure your locale is set at compile-time to use a codeset
for which a converter from UCS-4 is available, and which supports all of
the characters that are expressed as UCNs in your program. Alternatively,
change your code to avoid the use of UCNs, e.g. using hexadecimal escape
sequences.

UCNUNSUPP, An apparent UCN escape sequence was encountered, but
UCNs are not supported in this language mode. The backslash will be
ignored.
Description: Universal Character Name (UCN) escape sequences were
added to C in the C99 standard. The language mode of the current
compilation does not process UCNs, so they will be treated as unrecognized
escape sequences, which ignore the backslash.
User Action: Compile in a mode that processes UCNs (C99, or the default
"relaxed" mode), or remove the backslash. Relying on apparent escape
sequences to be unrecognized is not good practice.

D–158 HP C Compiler Messages

UCNUSED, A UCN escape sequence was encountered.
Description: Universal Character Name (UCN) escape sequences were
added to C in the C99 standard, and are processed in this language mode.
C compilers and dialects that do not specifically process UCNs will treat
them as unrecognized escape sequences, and may silently ignore the
backslash.
User Action: Be aware of this if you wish to port the program.

UNALIGNEDFUNC, Ignoring _ _unaligned type qualifier in declaration of
name.
Description: The _ _unaligned type qualifier has no meaning for function
types. It is being ignored.
User Action: Remove the type qualifier.

UNALIGNEXT, The _ _unaligned type qualifier is a language extension.
Description: The use of the _ _unaligned type qualifier might not be
portable to other C compilers.
User Action: Be aware of this portability concern.

UNAVAILPRAGMA, The pragma "pragma name" is not available on this
platform.
Description: The compiler has encountered a pragma that is not
currently supported on this platform. The compiler will ignore the pragma.
User Action: Compile the program on a platform that does support the
pragma. Otherwise, understand that this pragma will have no effect.

UNAVOLACC, volatile access appears unaligned, but must be aligned at
run-time to ensure atomicity and byte granularity
Description: The compiler has detected an unaligned access to a volatile
variable. In order to meet atomicity and granularity requirements of
volatile, the access will be done using an aligned instruction. This may
cause an alignment fault at runtime if the access is unaligned.
User Action: Make sure volatile objects are aligned on a natural
boundary.

UNCALLED, routine text can never be called
Description: The compiler has detected a static function that is never
referenced.
User Action: Remove the unused function.

HP C Compiler Messages D–159

UNDECLARED, context"name" is not declared.
Description: An identifier used in an expression has not been declared.
The only time an identifier can be used and not previously declared is
when the identifier specifies the function name in a function call.
User Action: Either declare the identifier or remove its use.

UNDECLFUN, There is no function declaration for the identifier "name" at
the point of this #pragma pragma type attributes.
Description: An identifier specified in a #pragma assert/hint func_attrs
directive must refer to a function declaration at the point of the pragma.
User Action: Either remove the identifer from the pragma, correct its
spelling, or reorder the source to ensure that a declaration of the identifier
as a function is visible at the point of the pragma. Identifier must be a
function declaration; no other kind of declaration (i.e. typedef, var, etc.) is
allowed for func_attrs.

UNDECLVAR, There is no global declaration visible for the variable "name" at
the point of this #pragma assert global_status_variable.
Description: An identifier specified in a #pragma assert directive must
refer to a global variable declaration visible at the point of the pragma.
The identifier will be ignored.
User Action: Either remove the identifer from the pragma, correct its
spelling, or reorder the source to ensure that a declaration of the identifier
as a global_variable is visible at the point of the pragma.

UNDEFENUM, contextthe enum "name" is not defined.
Description: The enum tag used to declare an enum variable is not
defined at this point in the compilation.
User Action: Define the enum tag before using it.

UNDEFESCAP, An undefined escape sequence was encountered; the
backslash is being ignored.
Description: The character or characters following a backslash do not
form a valid escape sequence. The compiler will ignore the backslash.
User Action: Correct the escape sequence.

D–160 HP C Compiler Messages

UNDEFINEDTYPE, The compiler was expecting a "token", but one was not
found. This condition could have occured because "id" is used in what
might be a type cast, but there is no declared type of that name visible.
Description: The compiler has discoverd a syntax error. This error may
have been caused because a cast operator used an unknown type.
User Action: Correct the syntax error.

UNDEFVARFETCH, contextthe expression "expr" modifies "var", and fetches
its value in a computation that is not used to produce the modified value
without an intervening sequence point. This behavior is undefined.
Description: The compiler has detected a case where the same variable
has been modified and fetched in a computation that does not later modify
that same variable. Because the order of the variable fetch and store is
not defined, this expression might produce different results on different
platforms.
User Action: Rewrite the expression so that if a variable is stored to, it is
fetched only to determine the value to be stored.

UNDEFVARMOD, contextthe expression "expr" modifies the variable "var"
more than once without an intervening sequence point. This behavior is
undefined.
Description: The compiler has detected a case where the same variable
has been modified more than once in an expression without a sequence
point between the modifications. Because what modification will occur last
is not defined, this expression might produce different results on different
platforms.
User Action: Rewrite the expression so that each variable is modified only
once.

UNDERFLOW, contextunderflow occurs in evaluating the expression
"expression".
Description: A floating-point underflow occurred while evaluating a
constant expression. The value of the expression is undefined.
User Action: Correct the floating-point constant expression.

HP C Compiler Messages D–161

UNINIT1, The scalar variable "var"declared in is fetched but not initial-
izedinlineinfo. And there may be other such fetches of this variable that
have not been reported in this compilation.
Description: A variable’s value has been used without being set. This
might not have been what you intended. The algorithms that detect this
situation only report it once for a given variable, and not necessarily at the
first use of the uninitialized value.
User Action: Provide the variable with a value before the variable is used.
If you only provide a value for the use reported here, you may find that
when you recompile your program another uninitialized use is detected. It
is best to initialize variables as close as possible to the point of declaration.

UNINIT2, Part or all of the non-scalar variable "var"declared in is fetched
but not initializedinlineinfo. And there may be other such fetches of this
variable that have not been reported in this compilation.
Description: A non-scalar variable has had its value used and some or all
of the variable has not been given a value. This might not have been what
you intended. The algorithms that detect this situation only report it once
for a given variable, and not necessarily at the first use of the uninitialized
value.
User Action: Provide the variable with a value before the variable is used.
If you only provide a value for the use reported here, you may find that
when you recompile your program another uninitialized use is detected. It
is best to initialize variables as close as possible to the point of declaration.

UNINIT3, Variable "var"declared in is fetched but not initializedinlineinfo.
And there may be other such fetches of this field that have not been
reported in this compilation.
Description: The specified member of a struct variable has been used
without being set. This might not have been what you intended. The
algorithms that detect this situation only report it once for a given field,
and not necessarily at the first use of the uninitialized value.
User Action: Provide the struct member with a value before the variable
is used. If you only provide a value for the use reported here, you may
find that when you recompile your program another uninitialized use is
detected. It is best to initialize variables as close as possible to the point of
declaration.

D–162 HP C Compiler Messages

UNINIT4, Byte offsets start to end of "var"declared in are fetched but not
initializedinlineinfo. And there may be other such fetches of this field that
have not been reported in this compilation.
Description: The specified byte offsets of a variable have been used
without being set. This might not have been what you intended. The
algorithms that detect this situation only report it once for a given field,
and not necessarily at the first use of the uninitialized value.
User Action: Provide the full variable with values before the variable
is used. If you only provide a value for the use reported here, you may
find that when you recompile your program another uninitialized use is
detected. It is best to initialize variables as close as possible to the point of
declaration.

UNINIT5, fragment uninit5ainlineinfo. Also the variable itself is not
initialized. And there may be other fetches of this variable that have
not been reported in this compilation.
Description: The specified storage location has been used without being
set. This might not have been what you intended. In addition, as this fetch
is outside the storage allocated to the variable, the behavior is undefined.
User Action: First verify that the fetch is correct(code that uses the
address of a declared object to access memory outside the address range
allocated to that object is not likely to be reliable). Then initialize the
storage being fetched and, if necessary, the variable noted in the message.
If you only provide a value for the use reported here, you may find that
when you recompile your program another uninitialized use is detected,
since the algorithms that detect this situation only report it once for a
given variable, and not necessarily at the first use of the uninitialized
value. It is best to initialize variables as close as possible to the point of
declaration.

UNIONBRACE, context a required set of braces is missing.
Description: The initializer for this union was not enclosed in braces.
While some compilers allow this, standard C requires braces around the
initializer.
User Action: Enclose the initializer in braces.

UNKEXTMOD, Unknown extern model. Pragma is ignored.
Description: The compiler was unable to parse a #pragma extern_model
directive. The extern_model must be an identifier that specifies one of the
valid extern models. The directive will be ignored.
User Action: Correct the directive.

HP C Compiler Messages D–163

UNKINTRIN, The function "routine name" is not a known intrinsic function
and cannot be used with #pragma intrinsic. Pragma not applied to this
function.
Description: A function identifier specified in a #pragma intrinsic
directive is not a valid intrinsic function on this platform. The pragma
will not be applied to this identifier, leaving it to be treated as an ordinary
function.
User Action: Either correct the function name to specify an intrinsic
supported for this platform, or remove it from the pragma.

UNKMSGCMD, Bad or missing command in pragma message. Pragma is
ignored.
Description: The #pragma message directive must be followed by an
identifier that specifies message-related action for the compiler to perform.
Either something other than an identifier was found, or the identifier did
not specify one of the valid actions. The compiler will ignore the pragma.
User Action: Specify a valid action for #pragma message.

UNKMSGID, Unknown message id or group "id" is ignored.
Description: A message identifier in a #pragma message directive did not
specify a valid message id or message group. The identifier will be ignored.
User Action: Update the identifier so that it specifies a valid message id
or message group.

UNKNOWNLINK, The specified linkage is undefined. Pragma is ignored.
Description: The linkage specified in a #pragma use_linkage directive
has not been defined by an earlier #pragma linkage directive. The compiler
will ignore the entire pragma.
User Action: Either define the linkage first or change the linkage name.

UNKNOWNMACRO, "name" is not currently defined as a macro. It has been
replaced by the constant zero.
Description: An identifier found in an #if or #elif is not defined. This
might not have been what you intended. The compiler will replace the
identifier with the constant zero.
User Action: Verify the use of the identifier.

D–164 HP C Compiler Messages

UNKNOWNPRAGMA, The pragma "pragma text" is unrecognized.
Description: A pragma that has no meaning to HP C was encountered.
The pragma will be ignored.
User Action: Make sure that you did not misspell the pragma. Also,
make certain you are running the correct version of HP C. If the spelling
and compiler version are correct, understand that this pragma will have no
effect.

UNKNOWNPRGMA, Unrecognized #pragma directive.
Description: This #pragma preprocessing directive is not recognized by
HP C. The directive will be ignored.
User Action: Make sure that this is the intended behavior.

UNKPSECTATTR, Unknown psect attribute for extern model. Attribute is
ignored.
Description: A psect attribute specified in a #pragma extern_model is
invalid. In general, the psect attributes accepted by HP C match those
accepted by the assembler. The psect attribute will be ignored.
User Action: Correct the psect attribute.

UNMATCHENDIF, Out of place #endif directive ignored.
Description: An #endif preprocessing directive was encountered without
a previous #if directive. The directive will be ignored.
User Action: Remove the directive.

UNNAMEDMEM, An unnamed member does not have a bitfield, struct, or
union type. Member is ignored.
Description: An unnamed member of a struct or union type has no
meaning unless it is a bitfield or a struct/union type. The compiler will
ignore this member.
User Action: If the member is desired, give it a name. Otherwise remove
the unnamed member.

UNNAMEPARM, In the definition of the function name, a parameter has no
name.
Description: This function declaration contained a parameter type but no
parameter name.
User Action: Provide a name for the formal parameter.

HP C Compiler Messages D–165

UNNECCDD, It is not necessary to include this dictionary directive, if other
unused dictionary directives and unused include directives are removed.
Description: There is some reference to this file from an unused include
file or from an unused dictionary directive when using the current set of
compilation options. If you remove the unused include files and unused
dictionary directives, this dictionary directive could also be eliminated
when compiling with the current set of compilation options.
User Action: When compiling with the current set of compilation options,
to increase compilation efficiency you may exclude this dictionary directive
if you also remove other unused files.

UNNECINCL, It is not necessary to include this file, if other unused include
directives are removed.
Description: There is some reference to this file from another include
file or dictionary directive that is not used when using the current set of
compilation options. If you remove the unused include files and unused
dictionary directives, this include file could also be eliminated when
compiling with the current set of compilation options.
User Action: When compiling with the current set of compilation options,
to increase compilation efficiency you may exclude this include file if you
also remove other unused files.

UNREACHCODE, Code at or just after this location can never be exe-
cutedinline info.
Description: The compiler has detected code that can never be executed.
Often unreachable code represents a real coding error such as a label that
is incorrectly spelled, or a statement that was inserted on the wrong line.
But sometimes it occurs in good code as a result of logical expressions
that depend only on the values of constants (typically through macro
expansion).
User Action: Usually any code correction is obvious. And often it is
straightforward to rewrite compile-time logical expressions in terms of
preprocessing constructs to avoid this diagnostic. But in some programs
it may be necessary to suppress this informational message explicitly in
order to obtain a diagnostic-free compilation of production code, since
rewriting the expression not to be evaluated at compile time would impact
performance.

D–166 HP C Compiler Messages

UNREFADECL, This local identifier is declared but not referenced in this
module.
Description: A declaration was found for an identifier which is not
referenced in this module
User Action: Examine your code to determine if this declaration is needed
in this module.

UNREFDECL, This identifier is declared but not defined or referenced in this
module.
Description: A declaration was found for an identifier which is not
defined or referenced in this module
User Action: Examine your code to determine if this declaration is needed
in this module.

UNREFLABEL, The user label "label" is never referenced.
Description: This user label has been defined, but there are no references
to it.
User Action: Remove the label.

UNREFSDECL, A static variable is declared but never referenced in this
module.
Description: This identifier is defined but never referenced when using
the current set of compilation options.
User Action: Examine your code to determine if this definition is needed
in this module.

UNREFSFUNC, A static function definition or prototype is found, but never
referenced.
Description: A static function declaration was found in this module, but
is unused when compiling with the current settings.
User Action: Examine your code to determine if this function is needed in
this module.

UNREFTYP, This type is never referenced in this module.
Description: A type is declared but never referenced when using the
current set of compilation options.
User Action: Examine your code to determine if this declaration is needed
in this module.

HP C Compiler Messages D–167

UNRLINKATTR, Unrecognized attribute for linkage pragma. Pragma is
ignored.
Description: The compiler encountered an attribute in a #pragma linkage
directive that it did not recognize. The message should point to the
offending attribute. The compiler will ignore the entire pragma.
User Action: Correct the directive.

UNSIGNEDPRES, contextthe conversion of the unsigned char/short value
"expression" to unsigned int shows one example of this program’s use
of unsigned-preserving integral promotion. This differs from the value-
preserving semantics of standard C compilers.
Description: This expression shows one of possibly many places where
this compilation uses unsigned-preserving semantics for small integer
promotions rather than value-preserving semantics required of standard
C compilers. In cases where an unsigned char or unsigned short int is
promoted to an integer, there are two different ways the convert could
happen. Standard C requires that the type be converted to a signed int
(value-preserving semantics) while some older compilers will convert to
an unsigned int (unsigned-preserving semantics). The difference in the
choice of int or unsigned int can have an impact on results of expressions
that use the converted value. The compiler cannot determine whether or
not a particular instance of this usage will cause an observable behavior
difference in the program. For more information, consult Section 3.2.1.1 of
the Rationale for ANSI C.
User Action: Be aware that standard compilers might interpret this
expression differently.

UNSTRUCTMEM, The declaration of a member that is an unnamed struct or
union type is an extension and might not be portable.
Description: HP C allows a member of a struct or union to be an
unnamed struct or union type. This is an extension of HP C that other
compilers might not support. In addition this behavior does not conform to
the C standard.
User Action: If portability is desired, provide a name for the struct/union
member.

UNSUPCONV, Hexadecimal floating point constants are not yet implemented.
Description: Hexadecimal floating point constants are a new C99 feature
that is not yet supported on this platform.
User Action: Please use traditional syntax for floating point numbers.

D–168 HP C Compiler Messages

UNSUPCONVSPEC, contextthis argument to function name has a conversion
specification "incorrect conversion" that is not supported or not fully
supported on this platform.
Description: The compiler has detected a conversion specification that
will not work as specified on this platform.
User Action: Review the documentation for this function and modify the
conversion specification as necessary to accomplish your objective.

UNSUPCONVV, Hexadecimal floating point constants are not supported on
this platform.
Description: Hexadecimal floating point constants are a new feature in
C99 that is not being implemented on the VAX platform.
User Action: Please use traditional syntax for floating point numbers.

UNSUPIEEE, The _FASTMATH version of this function has been specified,
but _FASTMATH routines do not support the IEEE behaviors requested
and will simply trap and terminate when given arguments or computing
values outside the normal range.
Description: The compiler has recognized a math intrinsic function that
has a _FASTMATH version and the compilation has defined the macro
_FASTMATH, but command line options have also specified IEEE trapping
behaviors other than the default of flushing underflow to zero and aborting
on all others.
User Action: If the body of your code relies on IEEE denormals, infinities,
or nans, but is careful to condition the arguments to math library functions
to avoid passing or computing these values, you may ignore or suppress
this warning. Otherwise, you should either remove the options specifying
non-default IEEE behavior or else undefine the _FASTMATH macro.

UNSUPPTYPE, The CDD description for name specifies a data type not
supported in C.
Description: There is no HP C datatype to exactly represent this type.
HP C has created a declaration of the same total size as the unsupported
data type.
User Action: If the type provided by the HP C compiler is not satisfactory,
change the CDD description to one that the compiler can represent more
exactly.

HP C Compiler Messages D–169

UNUSEDCDD, This CDD record appears to be unused.
Description: The contents of this CDD record are not used by the rest of
the compilation.
User Action: For compilation efficiency, you can exclude this dictionary
directive when compiling with the current set of compilation options.

UNUSEDINCL, This nested include file appears to be unused.
Description: The contents of this include file are not used by the rest of
the compilation.
User Action: For compilation efficiency, you can exclude this include file
when compiling with the current set of compilation options.

UNUSEDTOP, This include directive does not contribute to the compilation,
perhaps because the file has already been included.
Description: The contents of this top-level include file are not used by the
rest of the compilation. This message can occur when the include file has
already been included, perhaps by a nested include file.
User Action: For compilation efficiency, you can exclude this include file
when compiling with the current set of compilation options.

USELESSALIGN, context_align cannot be used with the class storage class.
Modifier _align is ignored.
Description: The storage class modifier _align is meaningless for objects
declared with register, globalref, or globalvalue storage class. The compiler
ignores the _align.
User Action: Remove the _align storage class modifier.

USELESSSTOMOD, contextnoshare or readonly cannot be used with the
typedef storage class. Modifier is ignored.
Description: The storage class modifiers noshare and readonly are
meaningless for typedefs. The compiler ignores the storage class modifier.
User Action: Remove the storage class modifier.

USELESSTYPED, This typedef declaration is useless because it does not
declare a typedef name.
Description: This typedef declaration does not declare a typedef name.
This case can occur when a declaration tries to declare both a tag and a
typedef, but the name of the typedef is not included.
User Action: Either remove the typedef keyword or add a typedef name.

D–170 HP C Compiler Messages

USELESSTYPEQUAL, contextthis type qualifier will have no effect.
Description: A type qualifier is applied only to the declarators in a
declaration. Declarations that lack declarators are permitted if they
declare a tag or an enumeration constant, but in such cases type qualifiers
are not useful.
User Action: Remove the type qualifier, or change this to a typedef
declaration that declares a name for the type and use that typedef name to
refer to the qualified type.

VAARGSBODY, _ _VA_ARGS_ _ may not appear except in a function-like
macro that uses the ellipsis notation in the parameters.
Description: The identifier _ _VA_ARGS_ _ may only appear in the
replacement list of a function-like macro definion that uses ellipsis notation
in the parameters.
User Action: Either remove _ _VA_ARGS_ _ or change its spelling.

VAARGSFORMAL, _ _VA_ARGS_ _ may not be used as a formal parameter.
Description: The identifier _ _VA_ARGS_ _ may only appear in the
replacement list of a function-like macro definion that uses ellipsis notation
in the parameters.
User Action: Rename the formal parameter.

VALUENOTSUP, contextthe floating-point constant named "name" is not
supported in "fpmode" representation.
Description: The representation of an IEEE Infinity or NaN has no
special meaning when used with non-IEEE floating-point operations.
User Action: Replace the named constant with a conventional floating
point constant. The HUGE_VAL macros defined by <math.h> may be used
in place of IEEE Infinities with any floating-point representation.

VALUEPRES, contextthe conversion of the unsigned char/short value
"expression" to signed int shows one example of this program’s use of value-
preserving integral promotion. This differs from the unsigned-preserving
semantics of some older C compilers.
Description: This expression shows one of possibly many places where
this compilation uses value-preserving semantics for small integer
promotions rather than unsigned-preserving semantics used by some
older compilers. In cases where an unsigned char or unsigned short int
is promoted to an integer, there are two different ways the convert could
happen. Standard C requires that the type be converted to a signed int
(value-preserving semantics) while some older compilers will convert to

HP C Compiler Messages D–171

an unsigned int (unsigned-preserving semantics). The difference in the
choice of int or unsigned int can have an impact on results of expressions
that use the converted value. The compiler cannot determine whether or
not a particular instance of this usage will cause an observable behavior
difference in the program. For more information, consult Section 3.2.1.1 of
the Rationale for ANSI C.
User Action: Be aware that older, non-standard compilers might interpret
this expression differently.

VARIANTDCL, A declaration of a variant struct or variant union must have a
single declarator that is an identifier.
Description: A variant_struct or variant_union member was either not
followed by a declarator or followed by more than one declarator. This is
not valid.
User Action: Declare the variant_struct or variant_union member with a
single identifier.

VARIANTDUP, The anonymous struct or union member "member name"
duplicates the name of a member in the enclosing struct or union.
Description: As members of an anonymous structure or union are
promoted to membership of the enclosing struct/union type, the names of
each element of the anonymous struct/union must not match an element
name in the enclosing struct/union. This message can also be output
when the variant_struct or variant_union syntax is used instead of the
anonymous struct/union.
User Action: Choose a new name for either the offending anonymous
struct/union member or the matching member of the enclosing type.

VARIANTEXT, variant struct or union is a language extension.
Description: Declaring a member to be a variant_struct or variant_union
is a language extension of HP C. Other C compilers might not successfully
compile a program that uses the extension.
User Action: Consider using an anonymous struct or union (one without
a tag or declarator) instead: anonymous structs/unions are supported by
HP C and some other vendors’ C compilers.

VARIANTTAG, A variant struct or union cannot have a tag.
Description: A variant_struct or variant_union declaration specified a tag
name. This is not allowed.
User Action: Either remove the tag or change the declaration to be a
regular struct or union instead of a variant struct or union.

D–172 HP C Compiler Messages

VARNOMEM, A variant struct or variant union can occur only as a member
of a struct or union.
Description: A declaration contained a variant_struct or variant_union in
some place other than a member of a struct or union. This is not valid.
User Action: Correct the offending declaration.

VERTICALSPDIR, Vertical whitespace within pp directive.
Description: Unexpected vertical white space as been encountered within
a preprocessing directive.
User Action: Remove the vertical white space from the directive.

VLAEXTENSION, contextvariable length arrays are a new feature in the C99
standard. Other C compilers may not support this extension.
Description: This is a new language feature in the C99 revision of the
standard. While having a standard specification for portability, the feature
may not yet be available in all of the compilers you use.
User Action: Determine whether or not the use of this feature will cause
portability problems for this code.

VOIDRETURN, The function "name" has return type void, and so must not
contain a return statement with an expression.
Description: The current function was declared with a void return type.
The expression specified in the return value will be evaluated but will not
be returned to the caller.
User Action: Either change the return type in the function declaration or
remove the return value from the return statement.

VOIDRETURN1, The function "name" has return type void. The return
statement must not specify a return value even if the return expression
has void type.
Description: The current function was declared with a void return
type. Although some C compilers allow such a function to return a void
expression, this is a violation of the C standard and may not be portable.
User Action: Modify the program so that the return statement does not
specify a return value.

VOLATILEFUNC, Ignoring volatile type qualifier in declaration of name.
Description: The volatile type qualifier cannot be used with a function
type. The compiler will ignore the type qualifier.
User Action: Remove the type qualifier.

HP C Compiler Messages D–173

WCHARCAT, A character string literal was concatenated with a wide string
literal.
Description: The C99 standard defines the behavior of adjacent string
concatenation between character string literals and wide string literals,
basically promoting the character string to a wide string before forming the
wide string result. The older C90 standard gave this construct undefined
behavior - it only defined concatenation between adjacent strings of the
same kind (all character or all wide). Although this version of HP C
always gives the C99 behavior with diagnostics optional, some compilers
(including previous versions of HP C) may give more severe diagnostics
and/or different behaviors.
User Action: Be aware of this if you wish to port the program.

WRTINNOWRT, Writable variable resides in nowrt extern model.
Description: The current extern model places all external objects in a
read-only section. An object without a const type qualifier in such a section
means that while the compiler will not diagnose writes to the object, any
attempt to modify the object at runtime will cause the program to fail.
This might not have been what you intended.
User Action: Place non-const objects in sections that can be modified.

XFERINTOVLA, This statement performs an invalid transfer into a block
that declares a variably modified type or object. The identifier "name" is
variably modified, and declared at where.
Description: It is invalid to transfer control into a block after that block
declares a variably modified type.
User Action: Either remove the transfer, or move the declaration of the
variably modified type.

XTRALARGE, Line number is greater than the 32767 specified by the C
standard and might not be portable.
Description: A #line preprocessing directive specified a line value
that is greater than 32767. While the value is supported by HP C, the
C89 standard specifies that the value must not be greater than 32767.
Therefore, this program does not conform to the C89 standard, and the
directive might not be accepted by other C compilers.
User Action: Be aware of this if you wish to port the program.

D–174 HP C Compiler Messages

ZERODIV, contextdivision by zero occurs in evaluating the expression
"expression".
Description: A divide by zero occurred while evaluating a constant
expression. The value of the expression is undefined.
User Action: Correct the constant expression so that it does not contain a
division by zero.

ZERODIVIDE, Division by zero in expression.
Description: A divide by zero occurs in a preprocessor constant
expression. The result of the divide will be zero.
User Action: Correct the preprocessor constant expression.

ZEROELEMENTS, contextzero cannot be used as an element count specifier.
The specifier will be ignored, (leaving the member/parameter with an
incomplete array type) in this context.
Description: The C standard states that if an element count specifier is
a constant expression then it shall have a value greater than zero. For
compatibility with some other C compilers, HP C will accept a zero element
count specifier. When appearing in a struct/union member or a parameter,
the specifier will be ignored.
User Action: Remove the zero.

ZEROELEMENTS1, contextzero cannot be used as an element count specifier.
It will be replaced with the constant one in this context.
Description: The C standard states that if an element count specifier
is a constant expression then it shall have a value greater than zero.
For compatibility with some other C compilers, HP C will accept a zero
element count specifier. When appearing outside a struct/union member or
a parameter, the compiler will replace the zero with the value one. This
may or may not be compatible with the behavior of other C compilers.
User Action: Use a valid element count specifier.

HP C Compiler Messages D–175

E
HP C Limits

The <float.h> and <limits.h> header files define several macros that expand
to various implementation-specific limits and parameters. This appendix
contains the contents of these header files for HP C for OpenVMS Systems.

E.1 Contents of <float.h>
The <float.h> header file has the following contents:

#ifndef ____FLOAT_LOADED
#define ____FLOAT_LOADED 1
/**
**
** <float.h> - Characteristics of floating types
**

** Header introduced by the ANSI C Standard

**
** Copyright 2001, 2004 Hewlett-Packard Development Company, L.P.
**
** Confidential computer software. Valid license from HP required for
** possession, use or copying. Consistent with FAR 12.211 and 12.212,
** Commercial Computer Software, Computer Software Documentation, and
** Technical Data for Commercial Items are licensed to the U.S. Government
** under vendor’s standard commercial license.
**
**
*/

#include <decc$types.h>
#pragma ____nostandard
#ifdef ____cplusplus

extern "C" {
#endif

HP C Limits E–1

/*
** The following literals and routines are available on OpenVMS for
** Alpha, but only after OpenVMS V7.1 or with C++.
*/
#if defined ____ALPHA && !defined _ANSI_C_SOURCE
if (defined(____DECCXX) || (____CRTL_VER >= 70100000))

/*
** Values for the IEEE Rounding Modes (IEEE ANSI Values)
**
** RZ = Round toward zero (chopped)
** RN = Round toward nearest (default, normal)
** RP = Round toward plus infinity
** RM = Round toward minus infinity
*/

define FP_RND_RZ 0
define FP_RND_RN 1
define FP_RND_RP 2
define FP_RND_RM 3

/*
** IEEE Constants
*/

ifdef _IEEE_FP
pragma ____extern_model ____save
pragma ____extern_model ____strict_refdef

extern double decc$gt_dinfinity;
extern double decc$gt_dqnan;
extern double decc$gt_dsnan;
extern float decc$gs_sinfinity;
extern float decc$gs_sqnan;
extern float decc$gs_ssnan;

if __X_FLOAT
if (__CRTL_VER >= 60200000)

extern long double decc$gx_long_dbl_infinity;
endif

extern long double decc$gx_long_dbl_qnan;
extern long double decc$gx_long_dbl_snan;

endif
pragma ____extern_model ____restore
define DBL_INFINITY decc$gt_dinfinity
define LDBL_INFINITY DBL_INFINITY
define DBL_QNAN decc$gt_dqnan
define DBL_SNAN decc$gt_dsnan
define FLT_INFINITY decc$gs_sinfinity
define FLT_QNAN decc$gs_sqnan
define FLT_SNAN decc$gs_ssnan
if __X_FLOAT
if (__CRTL_VER >= 60200000)
define LDBL_INFINITY decc$gx_long_dbl_infinity
else
define LDBL_INFINITY DBL_INFINITY

E–2 HP C Limits

endif
define LDBL_QNAN decc$gx_long_dbl_qnan
define LDBL_SNAN decc$gx_long_dbl_snan
else
define LDBL_INFINITY DBL_INFINITY
define LDBL_QNAN DBL_QNAN
define LDBL_SNAN DBL_SNAN
endif
endif

/*
** Macros to get decc$ names
*/

if (____CRTL_VER < 70100000)
define write_rnd(____p1) decc$write_rnd(____p1)
define read_rnd decc$read_rnd
endif

/*
** Functions to read and write floating point rounding mode
*/
unsigned int write_rnd(unsigned int ____rnd);
unsigned int read_rnd(void);

endif
#endif

/*
** Rounding mode for floating point addition:
*/
#ifdef ____BIASED_FLT_ROUNDS
define FLT_ROUNDS (____BIASED_FLT_ROUNDS-1) /* use compiler generated

value, if present */
#else
define FLT_ROUNDS 1
#endif

/*
** Radix of exponent representation:
*/
#define FLT_RADIX 2

/*
** Number of FLT_RADIX digits in the mantissa including the hidden bit:
*/
#define ____F_FLT_MANT_DIG 24
#define ____G_DBL_MANT_DIG 53
#ifdef ____ALPHA
#define ____S_FLT_MANT_DIG 24
#define ____T_FLT_MANT_DIG 53
#define ____X_FLT_MANT_DIG 113
#endif

HP C Limits E–3

/*
** Number of decimal digits of precision:
*/
#define ____F_FLT_DIG 6
#define ____G_FLT_DIG 15
#ifdef ____ALPHA
#define ____S_FLT_DIG 6
#define ____T_FLT_DIG 15
#define ____X_FLT_DIG 33
#endif

/*
** Minimum negative integer such that FLT_RADIX raised to that power
** minus 1 is a normalized floating-point number:
*/
#define ____F_FLT_MIN_EXP (-127)
#define ____G_FLT_MIN_EXP (-1023)
#ifdef ____ALPHA
#define ____S_FLT_MIN_EXP (-125)
#define ____T_FLT_MIN_EXP (-1021)
#define ____X_FLT_MIN_EXP (-16381)
#endif

/*
** Minimum negative integer such that 10 raised to that power is in the
** range of normalized floating-point numbers:
*/
#define ____F_FLT_MIN_10_EXP (-38)
#define ____G_FLT_MIN_10_EXP (-308)
#ifdef ____ALPHA
#define ____S_FLT_MIN_10_EXP (-37)
#define ____T_FLT_MIN_10_EXP (-307)
#define ____X_FLT_MIN_10_EXP (-4931)
#endif

/*
** Maximum integer such that FLT_RADIX raised to that power minus 1 is a
** representable finite floating point number:
*/
#define ____F_FLT_MAX_EXP 127
#define ____G_FLT_MAX_EXP 1023
#ifdef ____ALPHA
#define ____S_FLT_MAX_EXP 128
#define ____T_FLT_MAX_EXP 1024
#define ____X_FLT_MAX_EXP 16384
#endif

E–4 HP C Limits

/*
** Maximum integer such that 10 raised to that power is in the range of
** representable finite floating-point numbers:
*/
#define ____F_FLT_MAX_10_EXP 38
#define ____G_FLT_MAX_10_EXP 307
#ifdef ____ALPHA
#define ____S_FLT_MAX_10_EXP 38
#define ____T_FLT_MAX_10_EXP 308
#define ____X_FLT_MAX_10_EXP 4932
#endif

/*
** Maximum representable finite floating-point number:
*/
#define ____F_FLT_MAX 1.7014117e+38f
#define ____G_FLT_MAX 8.98846567431157854e+307
#ifdef ____ALPHA
#define ____S_FLT_MAX 3.40282347e+38f
#define ____T_FLT_MAX 1.79769313486231570e+308
#define ____X_FLT_MAX 1.189731495357231765085759326628007016196477e4932l
#endif

/*
** The difference between 1.0 and the least value greater than 1.0 that
** is representable in the given floating-point type
** (i.e. 1.0 + epsilon != 1.0):
*/
#define ____F_FLT_EPSILON ((float)(1.0 / (1 << 23)))
#define ____G_FLT_EPSILON (1.0 / (1 << 30) / (1 << 22))
#ifdef ____ALPHA
#define ____S_FLT_EPSILON 1.19209290e-07f
#define ____T_FLT_EPSILON 2.2204460492503131e-16
#define ____X_FLT_EPSILON 1.9259299443872358530559779425849273185381e-34l
#endif

/*
** Minimum normalized positive floating-point number:
*/
#define ____F_FLT_MIN ((float) 2.93873587705571877e-39)
#define ____G_FLT_MIN 5.56268464626800346e-309
#ifdef ____ALPHA
#define ____S_FLT_MIN 1.17549435e-38f
#define ____T_FLT_MIN 2.2250738585072014e-308
#define ____X_FLT_MIN ((long double)

3.3621031431120935062626778173217526025981e-4932l)
#endif

HP C Limits E–5

/*
** Define the FLT values to be either the ____S or ____F values based on IEEE
*/
#if ____IEEE_FLOAT
define FLT_MANT_DIG ____S_FLT_MANT_DIG
define FLT_DIG ____S_FLT_DIG
define FLT_MIN_EXP ____S_FLT_MIN_EXP
define FLT_MIN_10_EXP ____S_FLT_MIN_10_EXP
define FLT_MAX_EXP ____S_FLT_MAX_EXP
define FLT_MAX_10_EXP ____S_FLT_MAX_10_EXP
define FLT_MAX ____S_FLT_MAX
define FLT_EPSILON ____S_FLT_EPSILON
define FLT_MIN ____S_FLT_MIN
#else
define FLT_MANT_DIG ____F_FLT_MANT_DIG
define FLT_DIG ____F_FLT_DIG
define FLT_MIN_EXP ____F_FLT_MIN_EXP
define FLT_MIN_10_EXP ____F_FLT_MIN_10_EXP
define FLT_MAX_EXP ____F_FLT_MAX_EXP
define FLT_MAX_10_EXP ____F_FLT_MAX_10_EXP
define FLT_MAX ____F_FLT_MAX
define FLT_EPSILON ____F_FLT_EPSILON
define FLT_MIN ____F_FLT_MIN
#endif

/*
** Define the DBL values to be either the ____S or ____F values based on IEEE
*/
#if ____IEEE_FLOAT
define DBL_MANT_DIG ____T_FLT_MANT_DIG
define DBL_DIG ____T_FLT_DIG
define DBL_MIN_EXP ____T_FLT_MIN_EXP
define DBL_MIN_10_EXP ____T_FLT_MIN_10_EXP
define DBL_MAX_EXP ____T_FLT_MAX_EXP
define DBL_MAX_10_EXP ____T_FLT_MAX_10_EXP
define DBL_MIN ____T_FLT_MIN
#elif ____G_FLOAT
define DBL_MANT_DIG ____G_DBL_MANT_DIG
define DBL_DIG ____G_FLT_DIG
define DBL_MIN_EXP ____G_FLT_MIN_EXP
define DBL_MIN_10_EXP ____G_FLT_MIN_10_EXP
define DBL_MAX_EXP ____G_FLT_MAX_EXP
define DBL_MAX_10_EXP ____G_FLT_MAX_10_EXP
define DBL_MIN ____G_FLT_MIN
#else
define DBL_MANT_DIG 56
define DBL_DIG 16
define DBL_MIN_EXP ____F_FLT_MIN_EXP
define DBL_MIN_10_EXP ____F_FLT_MIN_10_EXP
define DBL_MAX_EXP ____F_FLT_MAX_EXP
define DBL_MAX_10_EXP ____F_FLT_MAX_10_EXP

E–6 HP C Limits

define DBL_MIN 2.93873587705571877e-39
#endif

#if ____IEEE_FLOAT
define DBL_MAX ____T_FLT_MAX
#elif ____G_FLOAT
define DBL_MAX ____G_FLT_MAX
#else
ifndef ____ALPHA
define DBL_MAX 1.70141183460469229e+38
else
define DBL_MAX 1.70141183460469213e+38
endif
#endif

#if ____IEEE_FLOAT
define DBL_EPSILON ____T_FLT_EPSILON
#elif ____G_FLOAT || (____D_FLOAT && defined(____ALPHA))
define DBL_EPSILON (1.0 / (1 << 20) / (1 << 16) / (1 << 16))
#else
define DBL_EPSILON (1.0 / (1 << 23) / (1 << 16) / (1 << 16))
#endif

/*
** Define the LDBL values based on ____X_FLOAT
*/
#if ____X_FLOAT
define LDBL_MANT_DIG ____X_FLT_MANT_DIG
define LDBL_DIG ____X_FLT_DIG
define LDBL_MIN_EXP ____X_FLT_MIN_EXP
define LDBL_MIN_10_EXP ____X_FLT_MIN_10_EXP
define LDBL_MAX_EXP ____X_FLT_MAX_EXP
define LDBL_MAX_10_EXP ____X_FLT_MAX_10_EXP
define LDBL_MAX ____X_FLT_MAX
define LDBL_EPSILON ____X_FLT_EPSILON
define LDBL_MIN 3.3621031431120935062626778173217526025981e-4932l
#else
define LDBL_MANT_DIG DBL_MANT_DIG
define LDBL_DIG DBL_DIG
define LDBL_MIN_EXP DBL_MIN_EXP
define LDBL_MIN_10_EXP DBL_MIN_10_EXP
define LDBL_MAX_EXP DBL_MAX_EXP
define LDBL_MAX_10_EXP DBL_MAX_10_EXP
define LDBL_MAX DBL_MAX
define LDBL_EPSILON DBL_EPSILON
define LDBL_MIN DBL_MIN
#endif

#ifdef ____cplusplus
}

#endif

HP C Limits E–7

#pragma ____standard
#endif /* ____FLOAT_LOADED */

E.2 Contents of <limits.h>
The <limits.h> header file has the following contents:

#ifndef ____LIMITS_LOADED
#define ____LIMITS_LOADED 1
/**
**
** <limits.h> - Sizes of integral types
**

** Header introduced by the ANSI C Standard

**
** Copyright 2001, 2004 Hewlett-Packard Development Company, L.P.
**
** Confidential computer software. Valid license from HP required for
** possession, use or copying. Consistent with FAR 12.211 and 12.212,
** Commercial Computer Software, Computer Software Documentation, and
** Technical Data for Commercial Items are licensed to the U.S. Government
** under vendor’s standard commercial license.
**
**
** Note
**
**
** Section 2.2.4.2 of the Rationale states "The limits for the maxima and
** minima of unsigned types are specified as unsigned constants..."
**
** The alert reader will notice there are no minima for the unsigned types,
** but we will follow the Rationale’s advice anyway.
**
**
** Implementors Note
**
**
** Some constants in this file such as INT_MIN is defined in terms of an
** expression involving an INT_MAX which is a constant value. Please do
** not be tempted to speed processing up by evaluating those expressions
** into constant values. This will cause things to not work correctly.
**
*/

#include <decc$types.h>
#pragma ____nostandard

E–8 HP C Limits

/*
** Number of bits for the smallest object that is not a bit-field (byte)
*/
#define CHAR_BIT 8

/*
** Minimum and maximum values for "signed/unsigned char"
*/
#define UCHAR_MAX 255u
#define SCHAR_MAX 127
#define SCHAR_MIN (-SCHAR_MAX - 1)

/*
** Minimum and maximum values for "char" affected by /unsigned_char qualifier
*/
#ifdef ____UNSIGNED_CHAR
#define CHAR_MIN 0
#define CHAR_MAX UCHAR_MAX
#else
#define CHAR_MIN SCHAR_MIN
#define CHAR_MAX SCHAR_MAX
#endif

/*
** Minimum and maximum values for "signed/unsigned short int"
*/
#define USHRT_MAX 65535u
#define SHRT_MAX 32767
#define SHRT_MIN (-SHRT_MAX - 1)

/*
** Minimum and maximum values for "signed/unsigned int"
*/
#define UINT_MAX 4294967295u
#define INT_MAX 2147483647
#define INT_MIN (-INT_MAX - 1)

/*
** Minimum and maximum values for "signed/unsigned long int"
*/
#define ULONG_MAX 4294967295u
#define LONG_MAX 2147483647
#define LONG_MIN (-LONG_MAX - 1)

/*
** Minimum and maximum values for "signed/unsigned ____intxx"
*/
#define ____UINT16_MAX 65535u
#define ____INT16_MAX 32767
#define ____INT16_MIN (-____INT16_MAX - 1)

HP C Limits E–9

#define ____UINT32_MAX 4294967295u
#define ____INT32_MAX 2147483647
#define ____INT32_MIN (-____INT32_MAX - 1)

#ifdef ____ALPHA
#define ____UINT64_MAX 18446744073709551615u
#define ____INT64_MAX 9223372036854775807
#define ____INT64_MIN (-____INT64_MAX - 1)
#endif

#if ____CRTL_VER < 60200000
define MB_LEN_MAX 1 /* Before OpenVMS V6.2 */
#else
define MB_LEN_MAX 8 /* After OpenVMS V6.2 */
#endif

/*
** Limits which changed beginning with OpenVMS V6.2
*/
if defined(_XOPEN_SOURCE) || !defined(_ANSI_C_SOURCE)
define COLL_WEIGHTS_MAX 5 /* Max collate weights */
define NL_TEXTMAX 8192
define NL_SETMAX 65535
define NL_MSGMAX 65535
define CHARCLASS_NAME_MAX 14
define NL_ARGMAX 9
define NL_LANGMAX 14
define TZNAME_MAX 15
define SSIZE_MAX INT_MAX

/*
** Limits needed to support *conf() functions.
*/

define BC_BASE_MAX -1 /* Max ibase and obase values
** for bc not implemented */

define BC_DIM_MAX -1 /* Max num elements in array
** for bc not implemented */

define BC_SCALE_MAX -1 /* Max scale value allowed by
** bc not implemented */

define BC_STRING_MAX -1 /* Max len of string constant
** by bc not implemented */

define EXPR_NEST_MAX (-1) /* Max num expression nested
for expr */

define LINE_MAX (-1) /* Max len of utility input
** line */

define RE_DUP_MAX (-1) /* Max num repeated reg for
** interval */

define NGROUPS_MAX 0 /* User can be in no extra groups */
define PASS_MAX 31 /* Max bytes in a password */
define ARG_MAX 4096 /* Max len of arg to exec rtns */

E–10 HP C Limits

/*
** These are used by pathconf() as well as others
*/

define LINK_MAX 1 /* Only 1 link to a file */
define MAX_CANON 511 /* Max bytes in terminal canonical

** input */
define MAX_INPUT 511 /* Max bytes required as input

** before reading */
define NAME_MAX 255 /* Max bytes in filename */
define PATH_MAX 255 /* Max bytes in pathname */
define PIPE_BUF 512 /* Max atomic bytes on write to pipe */

/*
** New limits with DEC C V5.2
*/

define _POSIX_PIPE_BUF 512

#endif /* XOPEN_SOURCE */

#if defined(_XOPEN_SOURCE_EXTENDED) || !defined(_ANSI_C_SOURCE)
define ATEXIT_MAX 32767 /* Max number of functions that

** may be registered with atexit().
** essentially unlimited
*/

define IOV_MAX (-1) /* Maximum number of iovec
** structures that one process
** has available for use with
** readv() or writev() */

#endif

/*
** Macros defined by the POSIX 1003.1c-1995 formally approved at
** the June 1995 meeting of the IEEE Standards Board. The correct
** feature test macro for strictly conforming POSIX 1003.1c-1995
** applications is:
**
** #define _POSIX_C_SOURCE 199506L
*/
#if _POSIX_C_SOURCE >= 199506 || !defined _ANSI_C_SOURCE

ifndef _POSIX_THREAD_DESTRUCTOR_ITERATIONS
define _POSIX_THREAD_DESTRUCTOR_ITERATIONS 4
endif

ifndef _POSIX_THREAD_KEYS_MAX
define _POSIX_THREAD_KEYS_MAX 128
endif

ifndef _POSIX_THREAD_THREADS_MAX
define _POSIX_THREAD_THREADS_MAX 64
endif

HP C Limits E–11

ifndef PTHREAD_DESTRUCTOR_ITERATIONS
define PTHREAD_DESTRUCTOR_ITERATIONS

_POSIX_THREAD_DESTRUCTOR_ITERATIONS
endif

ifndef PTHREAD_KEYS_MAX
define PTHREAD_KEYS_MAX 255
endif

ifndef PTHREAD_STACK_MIN
if defined ____ALPHA
define PTHREAD_STACK_MIN 8192
else
define PTHREAD_STACK_MIN 1024
endif
endif

#endif /* _POSIX_C_SOURCE >= 199506 */

#pragma ____standard

#endif /* ____LIMITS_LOADED */

E–12 HP C Limits

HP C Glossary

additive operator

An operator that performs addition (+) or subtraction (–). These operators
perform arithmetic conversion on each of the operands, if necessary. See also
arithmetic conversion rules.

aggregate

A data structure (array, structure, or union) composed of segments called
members. You declare the members to be of either a scalar or aggregate data
type. Members of an array are called elements and must be of the same data
type. A structure has named members that can be of different data types. A
union is a structure that is as long as its longest declared member and that
contains the value of only one member at a time.

ampersand (&)

As a unary operator, computes the address of its operand. As a binary
operator, performs a bitwise AND on two operands; both must be of an integral
type. As an assignment operator (&=), performs a bitwise AND on two
expressions and assigns the result to the left object. The double ampersand
(&&), a binary operator, performs a logical AND on two operands. See also
binary operator, bitwise operator, logical operator, and unary operator.

argument

An expression that appears within the parentheses of a function call. The
expression is evaluated and the result is copied into the corresponding
parameter of the called function. See also argument passing and parameter.

Glossary–1

argument passing

The mechanism by which the value of the argument in a function call is copied
to a parameter in the called function. In C, all arguments are passed by value;
that is, the parameter receives a copy of the argument’s value. Therefore, a
function called in C cannot modify the value of an argument except by using
its address. In general, addresses are passed using the ampersand operator
(see ampersand (&)) in the function call or by passing a pointer variable.
In addition, using an array or function name (an array with no brackets or
function identifier with no parentheses) as an argument results in the passing
of the address of the array or function.

arithmetic conversion rules

The set of rules that govern the changing of a value of an operand from one
data type to another in arithmetic expressions. Conversions take place in
assignments by changing the type of the right operand’s result to that of the
object referred to by the left operand; the resultant type also applies to the
assignment expression. Conversions are also performed when arguments are
passed to functions.

arithmetic operator

A C operator that performs a mathematical operation. In an expression,
certain operations take precedence (are performed first) over other operations.
The unary minus operator (–) is at the highest level of precedence. At the
next level are the binary operators for multiplication (*), division (/), and mod
(%). At the next level are addition (+) and subtraction (–). There is no unary
plus operator, and there is no exponentiation operator. If necessary, all the
binary operators perform the arithmetic conversions on their operands. See
also arithmetic conversion rules.

arithmetic type

One of the integral data types, enumerated types, float, or double.

array

An aggregate data type consisting of subscripted members, called elements, all
of the same type. Elements of an array can be one of the fundamental types or
can be structures, unions, or other arrays (to form multidimensional arrays).

Glossary–2

assignment expression

An expression that has the following form:

E1 asgnop E2

Expression E1 must evaluate to an lvalue, the asgnop operator is an
assignment operator, and E2 is an expression. The type of an assignment
expression is that of its left operand. The value of an assignment expression
is that of the left operand after the assignment takes place. If the operator is
of the form op=, then the operation E1 op (E2) is performed, and the result is
assigned to the object referred to by E1; E1 is evaluated once.

assignment operator

The combination of an arithmetic or bitwise operator with the assignment
symbol (=); also, the assignment symbol by itself. See also assignment
expression.

asterisk (*)

As a unary operator, treats its operand as an address and results in the
contents of that address. As a binary operator, multiplies two operands,
performing the arithmetic conversions, if necessary. As an assignment operator
(*=), multiplies an expression by the value of the object referred to by the left
operand, and assigns the product to that object. See also binary operator and
unary operator.

binary operator

An operator that is placed between two operands. The binary operators include
arithmetic operators, shift operators, relational operators, equality operators,
bitwise operators (AND, OR, and XOR), logical connectives, and the comma
operator, in that order of precedence. All binary operators group from left to
right. HP C has no exponentiation operator. The exp library function must be
used instead.

bitwise operator

An operator that performs Boolean algebra on the binary values of two
operands, which must be integral. If necessary, the operators perform the
arithmetic conversions. Both operands are evaluated. All bitwise operators
are associative, and expressions using them may be rearranged. The operators
include, in order of precedence, the single ampersand (&) (bitwise AND), the
circumflex (^) (bitwise exclusive OR), and the single bar (|) (bitwise inclusive
OR).

Glossary–3

block

See compound statement.

block activation

The run-time activation of a block or function, in which local auto and
register variables are allocated storage and, if they are declared with
initializers, given initial values. Variables of storage class static, extern,
globaldef, and globalvalue are allocated and initialized at link time. The
block activation precedes the execution of any executable statements in the
function or block. Functions are activated when they are called. Internal
blocks (compound statements) are activated when the program control flows
into them. Internal blocks are not activated if they are entered by a goto
statement, unless the goto target is the label of the block rather than the label
of some statement within the block. If a block is entered by a goto statement,
references to auto and register variables declared in the block are still valid
references, but the variables may not be properly initialized. Blocks that
make up the body of a switch statement are not activated; auto or register
variables declared in the block are not initialized.

built-in functions

The function definitions that are part of the HP C compiler for OpenVMS
systems. A call to one of these functions does not call a function in a run-time
library or in your program. Most of the built-in functions access the VAX
hardware instructions to perform operations quickly that are cumbersome,
slow, or impossible in the C language.

cast

An expression preceded by a cast operator of the form (type_name). The
cast operator forces the conversion of the evaluated expression to the given
type. The expression is assigned to a variable of the specified type, which is
then used in place of the whole construction. The cast operator has the same
precedence as the other unary operators.

CDD/Repository

An optional OpenVMS software product, available under a separate license,
that maintains a set of data structure definitions that many programs on a
system, written in many languages, can access. The language-independent
definitions are translated into the target language when they are included
in the program stream. You can include the CDD records in HP C programs
using the #dictionary preprocessor directive. This directive is specific to HP
C for OpenVMS Systems, and is not portable.

Glossary–4

character

• A member of the ASCII character set.

• An object of type char, which is stored in a single byte of memory. An
object of type char always represents a single character, not a string.

• A constant of type char consisting of up to four ASCII characters enclosed
in apostrophes (’ ’) not quotation marks (" ").

See also string.

comma operator

A C operator used to separate two expressions as follows:

E1, E2

The expressions E1 and E2 are evaluated left to right, and the value of E1 is
discarded. The type and value of the comma expression are those of E2.

comment

A sequence of characters introduced by the pair /* and terminated by */.
Comments are ignored during compilation. They may not be nested.

Common Data Dictionary (CDD)

See CDD/Repository.

compilation unit

All the source files compiled to form a single object module. In other C
documentation, the term source file is synonymous with the OpenVMS
compilation unit, which is not necessarily a single source file. Declarations and
definitions within a compilation unit determine the lexical scope of functions
and variables.

compound statement

Valid C statements enclosed in braces ({ }). Compound statements can also
include declarations. The scope of these variables is local to the compound
statement. A compound statement, when it is not the body of a function, is
called a block.

Glossary–5

conditional operator

The C operator (?:), which is used in conditional expressions of the following
form:

E1 ? E2 : E3

E1, E2, and E3 are valid C expressions. E1 is evaluated, and if it is nonzero,
the result is the value of E2; otherwise, the result is the value of E3. Either
E2 or E3 is evaluated, but not both.

constant

A primary expression whose value does not change. A constant may be literal
or symbolic.

constant expression

An expression involving only constants. Constant expressions are evaluated at
compile time so they may be used wherever a constant is valid.

conversion

The changing of a value from one data type to another. Conversions take place
in assignments by changing the type of the right operand’s result to that of
the object referred to by the left operand; the resultant type also applies to the
assignment expression. Conversions are also performed when arguments are
passed to functions: char and short become int; unsigned char and unsigned
short become unsigned int if no function prototype is in scope; float becomes
double. Conversions can also be forced by means of a cast. Conversions are
performed on operands in arithmetic expressions by the arithmetic conversions.

conversion characters

A character used with the HP C RTL Standard I/O functions that is preceded
by a percent sign (%) and specifies an input or output format. For example,
letter d instructs the function to input/output the value in a decimal format.

Curses

A screen management package comprised of HP C RTL functions and macros
that create and modify defined sections of the terminal screen, and optimize
cursor movement. Curses defines rectangular regions on the terminal display
that you may write upon, rearrange, move to new positions on the screen,
and delete from the screen. These rectangular regions are called windows. To
use any of the Curses functions or macros, you must include the <curses.h>
header file using the #include preprocessor directive.

Glossary–6

data definition

The syntax that both declares the data type of an object and reserves its
storage. For variables that are internal to a function, the data definition is the
same as the declaration. For external variables, the data definition is external
to any function (an external data definition).

data-type modifier

Keywords that affect the allocation or access of data storage. The two
data-type modifiers are const and volatile.

declaration

A statement that gives the data type and possibly the storage class of one or
more variables.

DEC/Shell

An optional OpenVMS software product available under a separate license that
is a command-language interpreter based on the UNIX Version 7.0 Bourne
Shell with commands for interactive program development, device and data file
manipulation, and interactive and batch execution. DEC/Shell RTL functions
were added to the HP C RTL so that valid DEC/Shell file specifications could
be used in HP C for OpenVMS source programs. See also file specification.

dictionaries

A hierarchical organization, similar to the organization of directories and
subdirectories, of data structure definitions in the CDD/Repository. See also
CDD/Repository.

directives

See preprocessor directives.

elements

Members of an array. See also aggregate.

enumerated type

A type defined (with the enum keyword) to have an ordered set of integer
values. The integer values are associated with constant identifiers named in
the declaration. Although enum variables are stored internally as integers,
use them in programs as if they have a distinct data type named in the enum
declaration.

Glossary–7

equality operator

One of the operators equal to (��) or not equal to (!=). They are similar to
the relational operators, but at the next lower level of precedence.

exponentiation operator

The C language does not have an exponentiation operator. Use the HP C RTL
function exp.

expression

A series of characters that the compiler can use to produce a value.
Expressions have one or more operands and, usually, one or more operators.
An identifier with no operator is an expression that yields a value directly.
Operands are either identifiers (such as variable names) or other expressions,
which are sometimes called subexpressions. See also operator and macro.

external storage class

A storage class that permits identifiers to have a link-time scope that can
possibly span object modules. Identifiers of this storage class are defined
outside of functions using no storage-class specifier, and are declared,
optionally, throughout the program using the extern specifier. External
variables provide a means other than argument passing for exchanging data
between the functions that comprise a C program. See also link-time scope.

file descriptor

In the UNIX environment, the integer that identifies a file.

file specification

An identifier that specifies an existing file. There are two types of valid file
specifications in HP C: OpenVMS specifications and DEC/Shell specifications.
DEC/Shell specifications are a subset of UNIX specifications.

floating type

One of the data types float or double, representing a single- or double-
precision, floating-point number. There are two implementations of the
data type double: D_floating and G_floating. The range of values for the
D_floating variables is the same as that for float variables, but the precision
is 16 decimal digits, as opposed to 7. Programs that use G_floating variables
must use the /FLOAT=G_FLOAT (or /G_FLOAT) command-line qualifier. A
G_floating variable has considerably greater range, but has less precision.

Glossary–8

function

The primary unit from which C programs are constructed. A function
definition begins with a name and parameter list, followed by the declarations
of the parameters (if any) and the body of the function enclosed in braces ({ }).
The function body consists of the declarations of any local variables and the set
of statements that perform its action. Functions do not have to return a value
to the caller. All C functions are external; that is, a function may not contain
another function. See also function call.

function call

A primary expression, usually a function identifier followed by parentheses,
that is used to invoke the function. The parentheses contain a (possibly empty)
comma-separated list of expressions that are the arguments to the function.
Any previously undeclared identifier followed immediately by parentheses is
declared as a function returning int. Any function may call itself recursively.

function inline expansion

A replacement of a function call with code that performs the actions of the
defined function. This process reduces execution time. By default, HP C
attempts to expand inline all functions. You can use the #pragma inline
directive to provide inline expansion for functions that HP C does not expand
inline by default. See also pragma.

function unrolling

See function inline expansion.

fundamental type

The set of arithmetic data types plus pointers. In general, the fundamental
types comprise those data types that can be represented naturally on a VAX
processor; usually, this means integers and floating-point numbers of various
machine-dependent sizes, and machine addresses.

global storage class

A storage class that permits identifiers to have a link-time scope that can
possibly span object modules. Identifiers of this storage class are defined using
the globaldef storage-class specifier, and are declared, optionally, throughout
the program using the globalref specifier. You can use the globalvalue
specifier to define a global symbol, or constant. Global variables provide a
means other than argument passing for exchanging data between the functions
that comprise a HP C program. See also link-time scope.

Glossary–9

identifier

A sequence of letters and digits, the first 255 of which must be unique. The
underscore (_) and dollar sign ($) are letters in this context. The first
character of an identifier must be a letter. Upper- and lowercase letters specify
different identifiers in HP C. However, all external names are converted to
uppercase to be consistent with the OpenVMS environment and are only 31
characters in length.

initializer

The part of a declaration that gives the initial value(s) for the preceding
declarator. An initializer consists of an equal sign (=) followed by either a
single expression or a comma-separated list of one or more expressions in
braces.

inline expansion

See function inline expansion.

integral type

One of the data types char or int (all sizes, signed or unsigned).

internal storage class

A storage class that permits identifiers declared inside of a function body to be
recognized only from the declaration to the end of the immediately enclosing
block. Identifiers of the internal storage class are declared using the auto and
register storage-class specifiers. See also scope.

keyword

A character string that is reserved by the C language and cannot be used as an
identifier. Keywords identify statements, storage classes, data types, and the
like. Library function names are not C keywords; you may redefine function
names.

lexical scope

The area in which the compiler recognizes a declared identifier within a given
compilation unit. See also scope.

License Management Facility (LMF)

A process by which you register and use some HP software products. See your
HP C installation guide for more information.

Glossary–10

lifetime

The length of time for which storage for a variable is allocated. See also
external storage class, internal storage class, and program section (psect).

link libraries

The libraries searched by the OpenVMS Linker to resolve external references.
Depending on the needs of your program, you have to specify certain libraries
in a specific order so that your program links properly. For more information,
see Chapter 1.

link-time scope

The area in which the OpenVMS Linker recognizes an identifier within a given
program. See also scope.

literal

A constant whose value is written explicitly in the program. Literal values
have type int or double, depending on their forms. Character constants have
type int. Floating constants have type double. Character-string constants
have type array of char.

local variable

A variable declared inside a function body. See also internal storage class.

logical expression

An expression made up of two or more operands separated by a logical
operator. Each operand must be a fundamental type or must be a pointer or
other address expression. Operands do not have to be the same type. Logical
expressions always return 1 or 0 (type int) to indicate a true or false value,
respectively. Logical expressions are always evaluated from left to right, and
the evaluation stops as soon as the result is known.

logical operator

One of the binary operators logical AND (&&) and logical OR (| |).

loop

A construct that executes a single statement or a block repeatedly until a
given expression evaluates to false. The single statement or block is called
the loop body. The C language has three types of loops: one that evaluates
the expression before executing the loop body (the while statement), one that
evaluates the expression after executing the loop body (the do statement),

Glossary–11

and one that executes the loop body a specified number of times (the for
statement).

lvalue

The address in memory that is the location of an object whose contents can
be assigned or modified. In this guide, the term describes a category in C
grammar. An expression evaluating to an lvalue is required on the left side
of an assignment operator (hence its name) and as the operand of certain
other operators, such as the increment (++) and decrement (��) operators. A
variable name is an example of an expression evaluating to an lvalue, since its
address can be taken (with &), and values can be assigned to it. A constant is
an example of an expression that is not an lvalue. See also rvalue.

macro

A text substitution that is defined with the #define preprocessor directive
and can include a list of parameters. The parameters in the #define directive
are replaced at compile time with the corresponding arguments from a macro
reference encountered in the source text.

main_program option

A tag that can be placed on a separate line between the function parameter
list and the rest of a function definition to tell the OpenVMS image activator
to begin program execution with this function. You can use the main_program
identifier when there is no function named main; it is not a keyword; it can
be spelled in upper- or lowercase; and it is specific to HP C for OpenVMS
Systems.

members

Segments of the aggregate data structures (arrays, structures, or unions) that
are declared to be of either scalar or aggregate data type. See also aggregate.

module

• The object code produced and placed into a file with a .OBJ extension
after a compilation unit has been compiled. The object file is the file name
with the .OBJ extension; the object module is the system-recognized name
(usually the same as the object-file name without an extension).

• A segment of object code located in an object library.

Glossary–12

multiplication operator

An operator that performs multiplication (*), division (/), or modular
arithmetic (%). If necessary, it performs the arithmetic conversions on its
operands. The mod operator (%) yields the remainder of the first operand
divided by the second.

null pointer

A pointer variable that has not been assigned an lvalue and whose value
has been initialized to 0. If you use a null pointer in an expression that
needs a value, the compiler will let you try to access memory location 0,
which will cause the ACCVIO hardware error. The NULL macro can be used
when comparing for a null pointer. It is defined in both the <stdio.h> and
<stddef.h> header files as follows:

(void *) 0

null character

The escape sequence (\0) that HP C uses to terminate all character strings.
The NULL macro can be used when comparing for null characters. It is defined
in both the <stdio.h> and <stddef.h> header files as follows:

(void *) 0

object

Data stored at a location in memory represented by an identifier. Objects
are one of the basic elements that the language can manipulate; that is, the
elements to which operators can be applied. In C, objects include data (such as
integers, real numbers, or characters), data structures (arrays, structures, or
unions), and functions.

occlude

In the Curses Screen Management package, when the area of one defined
window overlaps the area of another defined window on the terminal screen.
See also Curses.

operator

A character that performs an operation on one or more operands. In order of
precedence (high to low), operators are classified as the primary-expression
operators, unary operators, binary operators, the conditional operator,
assignment operators, and the comma operator.

Glossary–13

parameter

A variable listed in the parentheses and declared between the function
identifier and body in the function definition. The parameter receives a copy of
the value of an associated argument when the function is called. The items in
parentheses in a macro definition are also called parameters, but the semantics
are different from C function calls.

pointer

A variable that contains the address (lvalue) of another variable or function. A
pointer is declared with the unary asterisk operator (*).

portability

The ability to compile an unaltered C source program on several operating
systems and machines; in this guide particularly, between UNIX and
OpenVMS systems.

pragma

A preprocessor directive that produces implementation-specific results. Certain
pragmas may not be portable, but other compilers may support pragmas
that are supported by HP C for OpenVMS Systems. See also preprocessor
directives.

precedence of operators

The order in which operations are performed. If an expression contains
several operators, the operations are executed in the following order: primary
expression operators, unary operators, binary operators, the conditional
operator, assignment operators, and the comma operator.

preprocessor directives

Lines of text in a C source file that change the order or manner of subsequent
compilation. The directives are #define, for macro substitution and other
replacements; #undef, to cancel a previous #define; #include, to include
an external source text; #line, to specify a line number to the compiler;
#module, to specify a module name to the linker; #dictionary, to extract data
structures from the Common Data Dictionary; #pragma, to give the compiler
implementation-specific information; and #if, #ifdef, #ifndef, #else, #elif,
#endif, to place conditions on the compilation of sections of a program. In
HP C, these directives are processed by an early phase of the compiler, not by
a separate program.

Glossary–14

primary expression

An expression that contains only a primary-expression operator or no operator.
Primary expressions include previously declared identifiers, constants, strings,
function calls, subscripted expressions, and references to structure or union
members.

primary-expression operator

An operator that qualifies a primary expression. The set of such operators
consists of paired brackets ([]) to enclose a single subscript; paired
parentheses (()) to enclose an argument list or to change the associative
precedence of operators; a period (.) to qualify a structure or union name with
the name of a member; and an arrow (–>) to qualify a structure or union
member with a pointer or other address-valued expression.

program section (psect)

An area of virtual memory that has a name, a size, and a series of attributes
that describe the intended or permitted usage of that permanent variable.
Variables of type static, and of all external and global types are placed in
psects. See also lifetime.

refresh

A Curses Screen Management term describing the updating of the terminal
screen so that the latest contents of defined windows are placed on the screen.
No edits made to any window can appear on the terminal screen until you
refresh the window on the screen using refresh, wrefresh, or touchwin. See
also Curses.

relational operator

One of the operators less than (<), greater than (>), less than or equal to
(<=), or greater than or equal to (>=). The result (which is of type int) is 1 or
0, indicating a true or false relation, respectively. If necessary, the arithmetic
conversions are performed on the two operands. Relational operators group
from left to right.

run-time library

In HP C for OpenVMS Systems, the group of common functions and macros
that accompany the compiler that may be called to perform I/O tasks,
character-string manipulation, math tasks, system calls, and various other
tasks. The C language includes no facilities to administer I/O, so compilers
include run-time libraries to provide this service. The HP C Run-Time Library
(RTL) is shipped with the OpenVMS operating system. You can access the
HP C RTL by receiving a copy of the function module in your program’s image,

Glossary–15

or by sharing the function image with your program so that control is passed to
the function image and then back to your program. See also shareable image.

rvalue

The object stored at a location in memory represented by an identifier. The
rvalue of a variable is the variable’s object. See also lvalue and object.

scalar

Single objects, including pointers, that can be manipulated in their entirety, in
an arithmetic expression. See also object and aggregate.

scope

The portion of a program in which a particular name has meaning. The
link-time scope of names declared in external definitions possibly extends
from the point of the definition’s occurrence to the end of the program. The
scope of the names of function parameters is the function itself. The scope of
names declared in any block (that is, after the brace beginning any compound
statement) is restricted to that block. Names declared in a block supersede
any other declaration of the name, including external definitions, for the extent
of that block. Tags within struct, union, typedef, and enum declarations are
identifiers that are subject to the same scope rules as any identifiers. Member
names in structure or union references are not subject to the same scope rules
(see uniqueness). The scope of a label is the entire function containing the
label.

shareable image

An OpenVMS image that passes control to another image that passes control
back to the original program. You can access the HP C Run-Time Library
(RTL) as a shared image; control is passed to the HP C RTL and then back to
your program instead of a copy of the function’s object module being copied into
your program’s image.

shift operator

One of the binary operators (<<) or (>>). Both operands must have integral
types. The value of the expression E1<< E2 is the result of expression E1
(interpreted as a bit pattern) left-shifted by E2 bits. The value of E1 >>E2 is
E1 right-shifted by E2 bits.

Glossary–16

statement

The language elements that perform the action of a function. Statements
include expression statements (an expression followed by a semicolon), null
statements (the semicolon by itself), compound statements (blocks), and an
assortment of statements identified by keywords (such as return, switch, and
do).

static storage class

A storage class that permits identifiers to be recognized possibly from the point
of the declaration to the end of the compilation unit. Identifiers of the static
storage class are declared using the static storage-class specifier. See also
scope.

stderr

The predefined file pointer associated with the terminal to report run-time
errors. The pointed file is equivalent to the OpenVMS logical SYS$ERROR and
the file descriptor 2. To use this definition, include the stdio definition module
in your source code using the #include preprocessor directive.

stdin

The predefined file pointer associated with the terminal to perform input. The
pointed file is equivalent to the OpenVMS logical SYS$INPUT and the file
descriptor 0. For example, if you specify stdin as the pointer to the file to
read from in the getc macro, the macro reads from the terminal. To use this
definition, include the stdio definition module in your source code using the
#include preprocessor directive.

stdout

The predefined file pointer associated with the terminal to perform output.
The pointed file is equivalent to the OpenVMS logical SYS$OUTPUT and the
file descriptor 1. For example, if you specify stdout as the pointer to the file
to write to in the putc macro, the macro writes to the terminal. To use this
definition, include the definition module stdio in your source code using the
#include preprocessor directive.

storage class

The attribute that, with its type, determines the location, lifetime, and scope of
an identifier’s storage. Examples are static, external, and auto.

Glossary–17

storage-class modifier

Keywords used with the storage-class and data-type keywords to change
program section attributes of variables, which restricts access to them. The
two storage-class modifiers are noshare and readonly.

string

• An array of type char.

• A constant consisting of a series of ASCII characters enclosed in quotation
marks. Such a constant is declared implicitly as an array of char,
initialized with the given characters, and terminated by a null character
(ASCII 0, HP C escape sequence \0).

structure

An aggregate type consisting of a sequence of named members. Each member
may have either a scalar or an aggregate type. A structure member may also
consist of a specified number of bits called a bit field.

symbolic constant

An identifier assigned a constant value by a #define directive. You may use a
symbolic constant wherever a literal is valid.

tags

Identifiers that represent a declaration of the data types struct, union, or
enum. You may use tags in declarations from that point onward in the program
to declare other variables of the same type without having to key in the
lengthy declaration again.

tokens

The fundamental elements making up the text of a C program. Tokens are
identifiers, keywords, constants, strings, operators, and other separators.
White space (such as spaces, tabs, new lines, and comments) is ignored except
where it is necessary to separate tokens.

type

The attribute that, with its storage class, determines the meaning of the values
found in the identifier’s storage. Types include the integral and floating types,
pointers, enumerated types, the void data type, and the derived types array,
function, structure, and union.

Glossary–18

type name

The declaration of an object of a given type that omits the object identifier. A
type name is used as the operand of the cast and sizeof operators.

unary operator

An operator that takes a single operand. In C, unary operators either precede
or follow the operand. The set includes the asterisk (indirection), ampersand
(address of), minus (arithmetic unary minus), exclamation (logical negation),
tilde (one’s complement), double plus (increment), double minus (decrement),
cast (force type conversion), and sizeof (yields the size, in bytes, of its
operand) operators.

union

A union is an aggregate type that can be considered a structure, all of whose
members begin at offset 0 from the base, and whose size is sufficient to contain
any of its members. A union can only contain the value of one member at a
time.

uniqueness

A property of the names used for certain structure and union members. A
name is unique if either of the following conditions is true:

• The name is used only once.

• The name is used in two or more different structures (or unions), but each
use denotes a member at the same offset from the base and of the same
data type.

The significance of uniqueness is that a unique member name can possibly
be used to refer to a structure in which the member name was not declared
(although a warning message is issued).

variable

An identifier used as the name of an object.

value

The result of an expression. For example, when a variable on the right side of
an assignment expression is evaluated, the value obtained is the object (rvalue)
of the variable; when a variable on the left side of an assignment expression is
evaluated, the value obtained is the address (lvalue) of the variable.

Glossary–19

white space

Spaces, tabs, new lines, and comments. The compiler defines where you can
and cannot place these characters.

windows

In the Curses Screen Management package, the defined rectangular regions on
the terminal screen that you can write upon, rearrange, move to new positions
on the screen, and delete from the screen. You define windows by specifying
the upper left corner coordinate, the number of lines, and the number of
columns comprising the window. To see the results after editing a window, you
must refresh the window on the terminal screen. See also refresh.

Glossary–20

Index

$
in macro names, A–6

A
_ _ABS built-in function, 6–15
/ACCEPT CC qualifier, 1–16
Access mode

record, 2–4
ACCURACY_SENSITIVE option of

/ASSUME qualifier, 1–22
_ _ACQUIRE_SEM_LONG built-in function,

6–16
_ADAWI built-in function, 6–80
_ _ADAWI built-in function, 6–16
_ _ADDF_C built-in function, 6–57
_ _ADDG_C built-in function, 6–33
Addressing

64-bit, 1–95 to 1–109
‘‘Address of’’ operator

new features, A–17
_ _ADDS_C built-in function, 6–57
_ _ADDT_C built-in function, 6–33
_ _ADDX_C built-in function, 6–34
_ _ADD_ATOMIC_LONG built-in function,

6–17
_ _ADD_ATOMIC_QUAD built-in function,

6–18
Aggregates

debugger access to, C–9
variant, 4–18

Alert escape sequence
new features, A–6

ALIGNED_OBJECTS option of /ASSUME
qualifier, 1–22, 1–23

Alignment
bit field, 4–17
structure, 4–15

_align storage-class modifier, 4–12
__align storage-class modifier, 4–10
_ _ALLOCA built-in function, 6–19, 6–79
Allocation

storage, 4–1
__alpha predefined macro, 6–2
__ALPHA predefined macro, 6–2
__Alpha_AXP predefined macro, 6–2
/ANALYSIS_DATA CC qualifier, 1–17
_ _AND_ATOMIC_LONG built-in function,

6–19
_ _AND_ATOMIC_QUAD built-in function,

6–20
Angle brackets

use with #include preprocessor directive,
5–2

/ANNOTATIONS CC qualifier, 1–17
ANSI C

Name space conformance
new features, A–7

ANSI C compilation mode, 1–9
/ANSI_ALIAS CC qualifier, 1–19
_ANSI_C_SOURCE predefined macro, 6–7
/ARCHITECTURE CC qualifier, 1–20
argc

main function argument, 1–93
Argument list

definition of, 3–5
variable-length lists in system services,

3–55

Index–1

Arguments
command-line, 1–93
DCL command-line, 1–93
optional for system routines, 3–51
passing

by descriptor, 3–7, 3–14
example, 3–18

by immediate value, 3–7, 3–8
floating-point values, 3–10

by reference, 3–7, 3–12
example, 3–13

passing mechanisms in mixed-language
programming, 3–7

system routine, 3–48
argv

main function argument, 1–93
Arithmetic conversions

new features, A–16
Array indexing

new features, A–16
Arrays

bounds checking, 1–29
debugger access to, C–6

/ASCII qualifier, C–7
asm intrinsic function, 6–12
ASMs, 6–12
assert pragma, 5–9
Assignment compatibility

new features, A–18
/ASSUME CC qualifier, 1–21
Atomic data types, 3–16
_ _ATOMIC_ADD_LONG built-in function,

6–20
_ _ATOMIC_ADD_QUAD built-in function,

6–21
_ _ATOMIC_AND_LONG built-in function,

6–22
_ _ATOMIC_AND_QUAD built-in function,

6–23
_ _ATOMIC_DECREMENT_LONG built-in

function, 6–27
_ _ATOMIC_DECREMENT_QUAD built-in

function, 6–27

_ _ATOMIC_EXCH_LONG built-in function,
6–28

_ _ATOMIC_EXCH_QUAD built-in function,
6–29

_ _ATOMIC_INCREMENT_LONG built-in
function, 6–25

_ _ATOMIC_INCREMENT_QUAD built-in
function, 6–26

_ _ATOMIC_OR_LONG built-in function,
6–24

_ _ATOMIC_OR_QUAD built-in function,
6–24

B
_BBCCI built-in function, 6–80
_BBCCI built-in function, 6–12
_BBSSI built-in function, 6–12, 6–81
Bit field

alignment, 4–17
initialization, 4–17

new features, A–19
64-bit pointer support, 1–95 to 1–109
__32BITS predefined macro, 6–2
64-bit support, A–10

__int64 data type, A–10
_ _break built-in function, 6–66
_ _break2 built-in function, 6–77
Built-in functions, 6–10 to 6–93

_ _ABS, 6–15
_ _ACQUIRE_SEM_LONG, 6–16
_ADAWI, 6–80
_ _ADAWI, 6–16
_ _ADDF_C, 6–57
_ _ADDG_C, 6–33
_ _ADDS_C, 6–57
_ _ADDT_C, 6–33
_ _ADDX_C, 6–34
ADD_ATOMIC_LONG, 6–17
ADD_ATOMIC_QUAD, 6–18
_ _ALLOCA, 6–19, 6–79
AND_ATOMIC_LONG, 6–19
AND_ATOMIC_QUAD, 6–20
_ _ATOMIC_ADD_LONG, 6–20
_ _ATOMIC_ADD_QUAD, 6–21

Index–2

Built-in functions (cont’d)
_ _ATOMIC_AND_LONG, 6–22
_ _ATOMIC_AND_QUAD, 6–23
_ _ATOMIC_DECREMENT_LONG, 6–27
_ _ATOMIC_DECREMENT_QUAD, 6–27
_ _ATOMIC_EXCH_LONG, 6–28
_ _ATOMIC_EXCH_QUAD, 6–29
_ _ATOMIC_INCREMENT_LONG, 6–25
_ _ATOMIC_INCREMENT_QUAD, 6–26
_ _ATOMIC_OR_LONG, 6–24
_ _ATOMIC_OR_QUAD, 6–24
_BBCCI, 6–80
_BBCI, 6–12
_BBSSI, 6–12, 6–81
_ _break, 6–66
_ _break2, 6–77
_ _CMP_STORE_LONG, 6–29
_ _CMP_STORE_QUAD, 6–30
_ _CMP_SWAP_LONG, 6–73
_ _CMP_SWAP_LONG_ACQ, 6–74
_ _CMP_SWAP_LONG_REL, 6–76
_ _CMP_SWAP_QUAD, 6–74
_ _CMP_SWAP_QUAD_ACQ, 6–75
_ _CMP_SWAP_QUAD_REL, 6–76
Copy sign functions, 6–32
_ _COS, 6–32
_ _CPYS, 6–32
_ _CPYSE, 6–32
_ _CPYSEF, 6–32
_ _CPYSF, 6–32
_ _CPYSN, 6–32
_ _CPYSNF, 6–32
_ _CVTGF_C, 6–30
_ _CVTGQ, 6–30
_ _CVTTQ, 6–31
_ _CVTTS_C, 6–31
_ _CVTXQ, 6–31
_ _CVTXT, 6–31
_ _DIVF_C, 6–57
_ _DIVG_C, 6–33
_ _DIVS_C, 6–57
_ _DIVT_C, 6–33
_ _DIVX_C, 6–34
Double-precision, floating-point

arithmetic, 6–33

Built-in functions (cont’d)
_ _dsrlz, 6–66
_ _FABS, 6–33
_ _fc, 6–67
_FFC, 6–81
_FFS, 6–82
_ _flushrs, 6–78
_ _fwb, 6–67
_ _getIndReg, 6–65
_ _getReg, 6–63
_HALT, 6–83
_INSQHI, 6–12, 6–83
_INSQTI, 6–12, 6–84
_INSQUE, 6–12, 6–84
_InterlockedCompareExchange64_acq,

6–73
_InterlockedCompareExchange64_rel,

6–73
_InterlockedCompareExchange_acq, 6–72
_InterlockedCompareExchange_rel, 6–73
_ _INTERLOCKED_TESTBITCC_QUAD,

6–57
_ _INTERLOCKED_TESTBITSS_QUAD,

6–58
_ _invala, 6–67
_ _invalat, 6–67
_ _isrlz, 6–67
_ _itcd, 6–67
_ _itci, 6–68
_ _itrd, 6–68
_ _itri, 6–68
_ _LABS, 6–34
_leadz, 6–33
_ _loadrs, 6–78
_LOCC, 6–85
_ _LOCK_LONG, 6–34
Long Double-precision, floating-point

arithmetic, 6–34
_ _MB, 6–35
_ _MEMCPY, 6–35
_ _MEMMOVE, 6–35
_ _MEMSET, 6–35
_MFPR, 6–85
_MOVC3, 6–86
_MOVC5, 6–86

Index–3

Built-in functions (cont’d)
_MOVPSL, 6–87
_MTPR, 6–88
_ _MULF_C, 6–57
_ _MULG_C, 6–33
_ _MULS_C, 6–57
_ _MULT_C, 6–33
_ _MULX_C, 6–34
OR_ATOMIC_LONG, 6–36
OR_ATOMIC_QUAD, 6–36
PALcodes, 6–37
_ _PAL_BPT, 6–37
_ _PAL_BUGCHK, 6–37
_ _PAL_CFLUSH, 6–38
_ _PAL_CHME, 6–38
_ _PAL_CHMK, 6–38
_ _PAL_CHMS, 6–38
_ _PAL_CHMU, 6–39
_ _PAL_DRAINA, 6–39
_ _PAL_GENTRAP, 6–39
_ _PAL_HALT, 6–39
_ _PAL_INSQHIL, 6–39
_ _PAL_INSQHILR, 6–40
_ _PAL_INSQHIQ, 6–41
_ _PAL_INSQHIQR, 6–41
_ _PAL_INSQTIL, 6–42
_ _PAL_INSQTILR, 6–42
_ _PAL_INSQTIQ, 6–43
_ _PAL_INSQTIQR, 6–43
_ _PAL_INSQUEL, 6–44
_ _PAL_INSQUEL_D, 6–44
_ _PAL_INSQUEQ, 6–45
_ _PAL_INSQUEQ_D, 6–45
_ _PAL_LDQP, 6–46
_ _PAL_MFPR_XXXX, 6–46
_ _PAL_MTPR_XXXX, 6–47
_ _PAL_PROBER, 6–47
_ _PAL_PROBEW, 6–48
_ _PAL_RD_PS, 6–48
_ _PAL_REMQHIL, 6–49
_ _PAL_REMQHILR, 6–49
_ _PAL_REMQHIQ, 6–50
_ _PAL_REMQHIQR, 6–50
_ _PAL_REMQTIL, 6–51
_ _PAL_REMQTILR, 6–51

Built-in functions (cont’d)
_ _PAL_REMQTIQ, 6–52
_ _PAL_REMQTIQR, 6–53
_ _PAL_REMQUEL, 6–53
_ _PAL_REMQUEL_D, 6–54
_ _PAL_REMQUEQ, 6–54
_ _PAL_REMQUEQ_D, 6–55
_ _PAL_STQP, 6–46
_ _PAL_SWASTEN, 6–55
_ _PAL_SWPCTX, 6–55
_ _PAL_WR_PS_SW, 6–56
_popcnt, 6–56
_poppar, 6–56
_ _prober, 6–78
_PROBER, 6–12, 6–88
_ _probew, 6–78
_PROBEW, 6–12, 6–89
_ _ptce, 6–69
_ _ptcg, 6–69
_ _ptcga, 6–69
_ _ptcl, 6–69
_ _ptrd, 6–70
_ _ptri, 6–70
_READ_GPR, 6–89
_ _RELEASE_SEM_LONG, 6–16
_REMQHI, 6–12, 6–90
_REMQTI, 6–12, 6–90
_REMQUE, 6–12, 6–91
_ _RETURN_ADDRESS, 6–77
_ _RPCC, 6–56
_ _rsm, 6–70
_ _rum, 6–71
_SCANC, 6–92
_ _setIndReg, 6–66
_ _setReg, 6–65
_ _SIN, 6–56
Single-precision, floating-point arithmetic,

6–57
_SKPC, 6–92
_SPANC, 6–93
_ _ssm, 6–71
_ _SUBF_C, 6–57
_ _SUBG_C, 6–33
_ _SUBS_C, 6–57
_ _SUBT_C, 6–33

Index–4

Built-in functions (cont’d)
_ _SUBX_C, 6–34
_ _sum, 6–71
_ _synci, 6–71
_ _tak, 6–79
_ _TESTBITCCI, 6–58
_ _TESTBITSSI, 6–59
_ _thash, 6–71
_ _tpa, 6–79
_trailz, 6–60
_ _TRAPB, 6–60
_ _ttag, 6–72
_ _UMULH, 6–60
_ _UNLOCK_LONG, 6–34

<builtins.h> header file, 6–10
builtins pragma, 5–13, 6–10

new feature appendix, A–21

C
C++ style comments, A–4
C99 compilation mode, 1–9
Calling standard

OpenVMS, 3–2
Cast operator

new features, A–16
CC$gfloat predefined macro, 6–1
cc$rms_fab

initialized RMS data structure, 2–8
cc$rms_nam

initialized RMS data structure, 2–8
cc$rms_rab

initialized RMS data structure, 2–8
cc$rms_xaball

initialized RMS data structure, 2–8
cc$rms_xabdat

initialized RMS data structure, 2–8
cc$rms_xabfhc

initialized RMS data structure, 2–8
cc$rms_xabkey

initialized RMS data structure, 2–8
cc$rms_xabpro

initialized RMS data structure, 2–8

cc$rms_xabrdt
initialized RMS data structure, 2–8

cc$rms_xabsum
initialized RMS data structure, 2–8

cc$rms_xabtrm
initialized RMS data structure, 2–8

CC DCL command, 1–5
/ACCEPT qualifier, 1–16
/ANALYSIS_DATA qualifier, 1–17
/ANNOTATIONS qualifier, 1–17
/ANSI_ALIAS qualifier, 1–19
/ARCHITECTURE qualifier, 1–20
/ASSUME qualifier, 1–21
/CHECK qualifier, 1–28, 1–97
/COMMENTS qualifier, 1–35
compilation errors, 1–83
/CROSS_REFERENCE qualifier, 1–36
/DEBUG qualifier, 1–36
/DECC qualifier, 1–37
/DEFINE qualifier, 1–37 to 1–41
/DIAGNOSTICS qualifier, 1–41
/ENDIAN qualifier, 1–41
/ERROR_LIMIT qualifier, 1–41
/EXTERN_MODEL qualifier, 1–41, 4–3
/FIRST_INCLUDE qualifier, 1–43
/FLOAT qualifier, 1–43
/GRANULARITY qualifier, 1–47
/IEEE_MODE qualifier, 1–47
/INCLUDE_DIRECTORY qualifier, 1–49
/LIBRARY qualifier, 1–53
/LINE_DIRECTIVES qualifier, 1–53
/LIST qualifier, 1–53
/L_DOUBLE_SIZE qualifier, 1–53
/MACHINE_CODE qualifier, 1–54
/MAIN=POSIX_EXIT qualifier, 1–54
/MEMBER_ALIGNMENT qualifier, 1–54
/MMS_DEPENDENCIES qualifier, 1–55
/NAMES qualifier, 1–56
/NESTED_INCLUDE_DIRECTORY

qualifier, 1–58
/OBJECT qualifier, 1–58
/OPTIMIZE qualifier, 1–59
/PDSC_MASK qualifier, 1–66
/PLUS_LIST_OPTIMIZE qualifier, 1–68
/POINTER_SIZE qualifier, 1–68, 1–96

Index–5

CC DCL command (cont’d)
/PRECISION qualifier, 1–69
/PREFIX_LIBRARY_ENTRIES qualifier,

1–70
/PREPROCESS_ONLY qualifier, 1–71
/PROTOTYPE qualifier, 1–71
/PSECT_MODEL qualifier, 1–72
qualifiers for, 1–14 to 1–82
/REENTRANCY qualifier, 1–72
/REPOSITORY qualifier, 1–73
/ROUNDING_MODE qualifier, 1–73
/SHARE_GLOBALS qualifier, 1–74, 4–3
/SHOW qualifier, 1–74
/STANDARD qualifier, 1–9, 1–77
/TIE qualifier, 1–79
/UNDEFINE qualifier, 1–37 to 1–41
/UNSIGNED_CHAR qualifier, 1–79
/VAXC qualifier, 1–80
/VERSION qualifier, 1–80
/WARNINGS qualifier, 1–9, 1–80

CDD/Repository, 5–2, 5–14, C–26 to C–28
records

including in source listing, C–26
support for data types, C–27

CDDL
relationship to CDO, 5–15, C–26

CDO, 5–15, C–26
Character

multibyte
new feature, A–14

strings
debugger access to, C–7

wide
new feature, A–14

CHAR_STRING_CONSTANTS psect, 4–22
to 4–28

/CHECK CC qualifier, 1–28, 1–97
CLEAN_PARAMETERS option of /ASSUME

qualifier, 1–22, 1–25
$CLOSE RMS function, 2–6
_ _CMP_STORE_LONG built-in function,

6–29

_ _CMP_STORE_QUAD built-in function,
6–30

_ _CMP_SWAP_LONG built-in function,
6–73

_ _CMP_SWAP_LONG_ACQ built-in
function, 6–74

_ _CMP_SWAP_LONG_REL built-in function,
6–76

_ _CMP_SWAP_QUAD built-in function,
6–74

_ _CMP_SWAP_QUAD_ACQ built-in
function, 6–75

_ _CMP_SWAP_QUAD_REL built-in function,
6–76

Code optimization, 1–59
$CODE psect, 4–4, 4–22 to 4–28
Command-line arguments, 1–93

conversion of, 1–95
DCL, 1–93

Command qualifiers
See CC DCL command

Comment processing
new features, A–4

Comments
C++ style, A–4

/COMMENTS CC qualifier, 1–35
Common Data Dictionary

See CDD/Repository
Common usage C compilation mode, 1–11
Commutative

array indexing
new feature, A–16

Compilation mode, 1–9, 1–77
predefined macros, 6–9

Compilation process, 1–4 to 1–84
Compile DCL command

See CC DCL command
Compiler

new features, A–2
Compiler messages, 1–83, D–1 to D–175
Composite types

new feature, A–13

Index–6

Concatenation of string literals
new feature, A–5

Condition values, 3–52
$CONNECT RMS function, 2–6
Constants

long double
new features, A–13

const modifier, 4–4, 4–11
Copy sign built-in functions, 6–32
_ _COS built-in function, 6–32
_ _CPYS built-in function, 6–32
_ _CPYSE built-in function, 6–32
_ _CPYSEF built-in function, 6–32
_ _CPYSF built-in function, 6–32
_ _CPYSN built-in function, 6–32
_ _CPYSNF built-in function, 6–32
$CREATE RMS function, 2–6
/CROSS_REFERENCE CC qualifier, 1–36
C Run-Time Library (RTL)

See Run-Time Library (RTL)
<ctype.h> header file

new features, A–22
_ _CVTGF_C built-in function, 6–30
_ _CVTGQ built-in function, 6–30
_ _CVTTQ built-in function, 6–31
_ _CVTTS_C built-in function, 6–31
_ _CVTXQ built-in function, 6–31
_ _CVTXT built-in function, 6–31
<c_asm.h> header file, 6–12

D
dasm intrinsic function, 6–12
$DATA$ psect, 4–4, 4–7, 4–9, 4–22 to 4–28
Data definitions and scope, 4–7

See also Scope
$DATA psect, 4–4, 4–7, 4–9, 4–22 to 4–28
Data structures

RMS, 2–5
header files, 2–7
initialized structure variables, 2–7

Data type compatibility
new features, A–12

Data types
64-bit support, A–10
composite

new feature, A–13
__int16, A–10
__int32, A–10
__int64, A–10
new/changed, A–9

DCL commands
overview of program development, 1–1

/DEBUG CC qualifier, 1–36
Debugger, C–1 to C–18

access to program variables
arrays, C–6
character strings, C–7
scalars, C–4
structures, C–9
unions, C–9

ASCII representation, C–11
command line options, C–4
compiling and linking for, C–2
HP C support, C–3
sample session, C–14
SHOW SYMBOL command, C–11
starting/terminating debug session, C–2

/DEBUG RUN qualifier, 1–91
DEC/Shell

See UNIX style file specification
DECC$LIBRARY_INCLUDE logical, 5–3,

5–4, 5–6
DECC$LIBRARY_INCLUDE logical name,

1–51, 1–52
DECC$RTLDEF.TLB, 5–7
DECC$RTLDEF.TLB library, 1–6
DECC$SHR.EXE, 1–70
DECC$SYSTEM_INCLUDE logical, 5–4
DECC$SYSTEM_INCLUDE logical name,

1–51, 5–3
DECC$TEXT_LIBRARY logical name, 5–7
DECC$USER_INCLUDE logical name,

1–51, 5–5, 5–6
__DECC__ predefined macro, 6–2
/DECC CC qualifier, 1–37

Index–7

_ _DECC_INCLUDE_EPILOGUE.H file,
1–102

_ _DECC_INCLUDE_PROLOGUE.H file,
1–102

__DECC_MODE_COMMON predefined macro,
6–9

__DECC_MODE_MS predefined macro, 6–9
__DECC_MODE_RELAXED predefined macro,

6–9
__DECC_MODE_STRICT predefined macro,

6–9
__DECC_MODE_VAXC predefined macro, 6–9
_DECC_V4_SOURCE predefined macro, 6–7
__DECC_VER predefined macro, 6–2, 6–4
Declarations

aggregate
variant_struct, 4–18
variant_union, 4–18

new features, A–18
/DEFINE CC qualifier, 1–37
Definitions

See also Declarations
symbol, 3–52

$DELETE RMS function, 2–6
<descrip.h> header file, 3–14
$DESCRIPTOR preprocessor macro, 3–19
Descriptors

defined, 3–7
in mixed-language programming, 3–14
passing arguments by, 3–14
valid class codes, 3–15

Diagnostic messages, 1–83
/DIAGNOSTICS CC qualifier, 1–41
dictionary pragma, 5–14

new feature, A–21
#dictionary preprocessor directive, 5–2
Digraphs, 1–11, 1–78
Direct access modes (RMS), 2–4
Directives

See Preprocessor directives
$DISCONNECT RMS function, 2–6
_ _DIVF_C built-in function, 6–57
_ _DIVG_C built-in function, 6–33

_ _DIVS_C built-in function, 6–57
_ _DIVT_C built-in function, 6–33
_ _DIVX_C built-in function, 6–34
Dollar sign

in macro names, A–6
double data type, 4–12
Double-precision, floating-point arithmetic

built-in functions, 6–33
_ _dsrlz built-in function, 6–66
D_floating representation, 4–12
__D_FLOAT predefined macro, 6–8

E
ECHO DCL command, 1–94
Editing

EVE interface to TPU, 1–4
Language-Sensitive Editor (LSE), 1–2
OpenVMS Text Processing Utility (TPU),

1–4
/ENDIAN CC qualifier, 1–41
Enumeration type

new features, A–13
environment pragma, 5–16
Epilogue/prologue files, 1–102
$ERASE RMS function, 2–6
Error messages

See also Errors
Errors

See also CC DCL command
See also LINK DCL command
compiler messages and descriptions, D–1

to D–175
during compilation, 1–83 to 1–84
link-time, 1–90
run-time, 1–91

/ERROR_LIMIT CC qualifier, 1–41
Escape sequence

Alert
new features, A–6

hexadecimal
new features, A–6

invalid, A–6

Index–8

EVE, 1–4
EXACT_CDD_OFFSETS option of /ASSUME

qualifier, 1–22, 1–25
exponentiation operator, Glossary–8
Extended attribute block–XAB (RMS)

initializing, 2–10
Extensible VAX Editor (EVE)

See Editing
External objects

extern_model pragma, 4–3, 5–18
extern_prefix pragma, 5–30

External routine
calling, 3–48
declaring, 3–47
determining, 3–47

External storage class
compared to global, 4–7 to 4–9
data definitions, 4–7

extern keyword
overlaying psects

table of psect attributes, 4–23, 4–25
[extern] keyword

overlaying psects, 4–8
/EXTERN_MODEL CC qualifier, 1–41, 4–3
extern_model pragma, 4–3, 5–18
extern_prefix pragma, 5–30
Extraction

CDD/Repository, 5–2, 5–14

F
<fab.h> header file, 2–7
FAB RMS data structure, 2–5

initializing, 2–9
_ _FABS built-in function, 6–33
Facility codes

used in global symbol names, 3–62
fasm intrinsic function, 6–12
_ _fc built-in function, 6–67
Features

unsupported, A–25
_FFC built-in function, 6–81
_FFS built-in function, 6–82

File access block—FAB (RMS), 2–5
initializing, 2–9

File inclusion
#include preprocessor directive, 5–2

Files (RMS)
indexed organization, 2–3
organization, 2–2 to 2–4
relative organization, 2–3
sequential organization, 2–2

/FIRST_INCLUDE CC qualifier, 1–43
<float.h> header file, E–1
/FLOAT CC qualifier, 1–43
Floating-point

Alpha Systems, 1–44
I64 Systems, 1–45
passed by immediate value, 3–10
VAX Systems, 1–44

Floating-point arithmetic built-in functions,
6–33, 6–34, 6–57

Floating-point numbers
data type

double, 4–12
D_floating, 4–12
G_floating, 4–12
IEEE_floating, 4–13
long double, 4–14, A–10
precision of, 4–12
X_floating, 4–14

Floating-point predefined macros, 6–8
_ _flushrs built-in function, 6–78
__forceinline storage-class modifier,

4–10
Foreign command

for passing command-line arguments,
1–93

Foreign command, DCL, 2–13
FORTRAN common block

sharing program sections with, 3–40
<fp_class.h> header file

new features, A–23
Function

definition of, 3–2
return value, 3–5

Index–9

Function calls
new features, A–16

function pragma, 5–32
Functions

built-in, 6–10 to 6–93
calls between programs of different

languages, 3–20 to 3–39
parameter-passing mechanisms, 3–7
RMS, 2–5

_ _fwb built-in function, 6–67

G
_ _getIndReg built-in function, 6–65
_ _getReg built-in function, 6–63
$GET RMS function, 2–6
Global data

sharing, 3–39
globaldef specifier, 4–4, 4–7

loading modules with global definitions,
4–8

globalref specifier, 4–4, 4–7
loading modules with global definitions,

4–8
Global storage classes, 4–4 to 4–9

compared to extern, 4–7 to 4–9
variable initialization, 4–5

Global symbol (OpenVMS)
facility codes used in, 3–62
to test status values, 3–62

globalvalue specifier, 4–9
/GRANULARITY CC qualifier, 1–47
G_floating representation, 4–12
__G_FLOAT predefined macro, 6–8

H
_HALT built-in function, 6–83
Header files, 1–6, 1–8

<ctype.h>
new features, A–22

<float.h>, E–1
for RMS structures, 2–7
<fp_class.h>

new features, A–23

Header files (cont’d)
<limits.h>, E–1
listing names of, 1–8
<locale.h>

new feature, A–23
<math.h>

new features, A–23
<signal.h>

new features, A–23
<stddef.h>

new features, A–22
<stdio.h>

new features, A–23
<stdlib.h>

new features, A–24
<string.h>

new features, A–24
<time.h>

new features, A–24
HEADER_TYPE_DEFAULT option of

/ASSUME qualifier, 1–22, 1–26
Hexadecimal escape sequence

new features, A–6
__HIDE_FORBIDDEN_NAMES predefined

macro, 6–9
HP C RTL

See Run-Time Library (RTL)

I
__ia64__ predefined macro, 6–2
__ia64 predefined macro, 6–2
IEEE_floating representation, 4–13
__IEEE_FLOAT predefined macro, 6–8
_IEEE_FP predefined macro, 6–8
/IEEE_MODE CC qualifier, 1–47
IMAGELIB.OLB, 1–70
Immediate value

passing arguments by, 3–7
#include <builtins.h>, 6–10
Include files

new features, A–22
include pragma, 5–32

Index–10

#include preprocessor directive, 5–2 to 5–7
default text libraries, 1–6
<descrip.h> header file, 3–14

/INCLUDE_DIRECTORY CC qualifier, 1–49
Including files, 5–2 to 5–7
Including RMS data-structures, 2–7
Indexed file organization (RMS), 2–3
Initialization

bit field, 4–17
new features, A–19

of global variables, 4–5
of RMS data structures

extended attribute block (XAB), 2–10
file access block (FAB), 2–9
name block (NAM), 2–11
record access block (RAB), 2–10

Initialized RMS data structure
cc$rms_fab, 2–8
cc$rms_nam, 2–8
cc$rms_rab, 2–8
cc$rms_xaball, 2–8
cc$rms_xabdat, 2–8
cc$rms_xabfhc, 2–8
cc$rms_xabkey, 2–8
cc$rms_xabpro, 2–8
cc$rms_xabrdt, 2–8
cc$rms_xabsum, 2–8
cc$rms_xabtrm, 2–8

__INITIAL_POINTER_SIZE predefined
macro, 1–69, 1–96, 1–97, 6–9

In-line assembly code (ASMs), 6–12
inline pragma, 5–33
__inline storage-class modifier, 4–10
Input/output (I/O)

RMS, 2–1
_INSQHI built-in function, 6–12, 6–83
_INSQTI built-in function, 6–12, 6–84
_INSQUE built-in function, 6–12, 6–84
Interlanguage calling, 3–20 to 3–39
_InterlockedCompareExchange64_acq

built-in function, 6–73
_InterlockedCompareExchange64_rel built-in

function, 6–73

_InterlockedCompareExchange_acq built-in
function, 6–72

_InterlockedCompareExchange_rel built-in
function, 6–73

_ _INTERLOCKED_TESTBITCC_QUAD
built-in function, 6–57

_ _INTERLOCKED_TESTBITSS_QUAD
built-in function, 6–58

Intrinsic functions
ASMs, 6–12
enabled through /OPTIMIZE, 1–61

intrinsic pragma, 5–35
INTRINSICS option of /OPTIMIZE, 1–61
_ _invala built-in function, 6–67
_ _invalat built-in function, 6–67
Invalid escape sequence warning

new feature, A–6
ISAM (RMS)

indexed-sequential access method, 2–5
ISO C 94 compilation mode, 1–11
_ _isrlz built-in function, 6–67
_ _itcd built-in function, 6–67
_ _itci built-in function, 6–68
_ _itrd built-in function, 6–68
_ _itri built-in function, 6–68

K
Keywords

_align, 4–12
__align, 4–10
const, 4–11
double, 4–12
__forceinline, 4–10
globaldef, 4–4
globalref, 4–4
globalvalue, 4–9
__inline, 4–10
long float, 4–13
Nonstandard

new features, A–7
noshare, 4–10
readonly, 4–11
use with LSE, C–21
variant_struct, 4–18

Index–11

Keywords (cont’d)
variant_union, 4–18

L
_ _LABS built-in function, 6–34
Language-Sensitive Editor

See LSE
LATEST compilation mode, 1–10
Leading Zeros built-in function, 6–33
_leadz built-in function, 6–33
Libraries

default object-module file types, 1–89
default text-module file type, 1–6
inclusion of text modules, 5–6

/LIBRARY CC qualifier, 1–53
Library facilities (RTL), 3–45
Library routines

See Run-Time Library (RTL)
Lifetime of stored objects, 4–1
Limit of nested #include lines, 5–2
Limits

header file, E–1
<limits.h> header file, E–1
/LINE_DIRECTIVES CC qualifier, 1–53
linkage pragma, 5–36, 5–40
LINK DCL command, 1–85

link-time errors, 1–90 to 1–91
/NOTRACEBACK qualifier, 1–91, 1–93
qualifiers, 1–86

Lint-like checking, 5–47
/LIST CC qualifier, 1–53
_ _loadrs built-in function, 6–78
<locale.h> header file

new feature, A–23
_LOCC built-in function, 6–85
_ _LOCK_LONG built-in function, 6–34
long double constants

new features, A–13
long double data type, 4–14, A–10
Long Double-precision, floating-point

arithmetic built-in functions, 6–34
long float data type, 4–13, A–10

Loop unrolling, 1–62, 1–65
LSE, 1–4, C–18

HP C support of
for keywords or tokens, C–21

starting/terminating a session, C–21
/L_DOUBLE_SIZE CC qualifier, 1–53

M
/MACHINE_CODE CC qualifier, 1–54
MACRO program

sharing program sections with, 3–44
Macros

names
$ in, A–6

null argument, A–6
predefined

__alpha, 6–2
__ALPHA, 6–2
__Alpha_AXP, 6–2
_ANSI_C_SOURCE, 6–7
__32BITS, 6–2
_BSD44_CURSES, 6–7
CC$gfloat, 6–1
__DECC__, 6–2
__DECC_MODE_COMMON, 6–9
__DECC_MODE_MS, 6–9
__DECC_MODE_RELAXED, 6–9
__DECC_MODE_STRICT, 6–9
__DECC_MODE_VAXC, 6–9
_DECC_V4_SOURCE, 6–7
__DECC_VER, 6–2, 6–4
__D_FLOAT, 6–8
floating-point, 6–8
__G_FLOAT, 6–8
__HIDE_FORBIDDEN_NAMES, 6–9
__ia64, 6–2
__ia64__, 6–2
__IEEE_FLOAT, 6–8
_IEEE_FP, 6–8
__INITIAL_POINTER_SIZE, 6–9
__MIA, 6–2
__MS, 6–9
_POSIX_C_SOURCE, 6–7
_SOCKADDR_LEN, 6–7

Index–12

Macros
predefined (cont’d)

__STDC__, 6–2
__STDC_HOSTED__, 6–2
__STDC_ISO_10646__, 6–2
__STDC_VERSION__, 6–2
__vax, 6–2
__vax11c, 6–2
__vaxc, 6–2
__vms, 6–2
_VMS_CURSES, 6–7
_VMS_V6_SOURCE, 6–7
__VMS_VER, 6–2, 6–5
__vms_version, 6–2
_XOPEN_SOURCE, 6–7
_XOPEN_SOURCE_EXTENDED, 6–7
__X_FLOAT, 6–8

substitution within #include directives,
5–7

VAX C built-in translation, 6–12
/MAIN=POSIX_EXIT CC qualifier, 1–54
main function

passing parameters to, 1–93
recursive

new feature, A–5
syntax of, 1–93

<math.h> header file
new features, A–23

MATH_ERRNO option of /ASSUME qualifier,
1–22

_ _MB built-in function, 6–35
Members

variant aggregates, 4–18
/MEMBER_ALIGNMENT CC qualifier,

1–54
member_alignment pragma, 5–44
_ _MEMCPY built-in function, 6–35
_ _MEMMOVE built-in function, 6–35
_ _MEMSET built-in function, 6–35
message pragma, 5–45
Messages

See also Errors
compiler, D–1 to D–175
format of (compiler), 1–83 to 1–84

_MFPR built-in function, 6–85
MIA conformance compilation mode, 1–11
__MIA predefined macro, 6–2
Microsoft compatibility compilation mode,

1–10, 1–12
Migrating from VAX C, A–1
Mixed-language programming

argument list, 3–5
argument passing

by descriptor, 3–14
by immediate value, 3–8

floating-point numbers, 3–10
by reference, 3–12

OpenVMS calling standard, 3–2
register and stack usage, 3–3

return status values, 3–57
format, 3–57
manipulating, 3–59
system service, 3–53
testing, 3–61

variable-length argument lists, 3–55
/MMS_DEPENDENCIES CC qualifier, 1–55
Mode, compilation, 1–9, 1–77

predefined macros, 6–9
Modifiers

storage class, 4–10
module pragma, 5–49
#module preprocessor directive, 5–8
Modules

changing the default name, 5–8, 5–49
default object-library file types, 1–89

_MOVC3 built-in function, 6–86
_MOVC5 built-in function, 6–86
_MOVPSL built-in function, 6–87
__MS predefined macro, 6–9
_MTPR built-in function, 6–88
_ _MULF_C built-in function, 6–57
_ _MULG_C built-in function, 6–33
_ _MULS_C built-in function, 6–57
Multibyte character support

new feature, A–14
_ _MULT_C built-in function, 6–33
_ _MULX_C built-in function, 6–34

Index–13

N
<nam.h> header file, 2–7
Name block—NAM (RMS) data structure,

2–6
initializing, 2–11

/NAMES CC qualifier, 1–56
Name space conformance

new features, A–7
names pragma, 5–50
/NESTED_INCLUDE_DIRECTORY CC

qualifier, 1–58
Nesting of #include lines, 5–2
noinclude pragma, 5–32
noinline pragma, 5–33
nomember_alignment pragma, 5–44
Nonstandard keywords

new features, A–7
noshare storage-class modifier, 4–10
nostandard pragma, 5–58
[NO]MATH_ERRNO option of /ASSUME

qualifier, 1–26
[NO]POINTERS_TO_GLOBALS option of

/ASSUME qualifier, 1–27
Null argument

to macros, A–6

O
/OBJECT CC qualifier, 1–58
Object module

default library file types, 1–89
names provided after run-time errors,

1–92
$OPEN RMS function, 2–6
OpenVMS calling standard, 3–2

parameter-passing mechanisms, 3–7
register and stack usage, 3–3
structure sizes exemption for HP C, 3–15

OpenVMS Debugger
See Debugger

OpenVMS languages
default passing mechanisms, 3–20

OpenVMS operating system
See also Record Management Services

(RMS)
RMS, 2–1

OpenVMS Run-Time Library (RTL), 3–1,
3–45

+ operator
unary

new feature, A–17
& operator

new features, A–17
Operators

exponentiation, Glossary–8
Optimization, 1–59
/OPTIMIZE CC qualifier, 1–59
optimize pragma, 5–52
/OPTIMIZE qualifier

to the CC DCL command, C–16
_ _OR_ATOMIC_LONG built-in function,

6–36
_ _OR_ATOMIC_QUAD built-in function,

6–36

P
pack pragma, 5–54
PALcode built-in functions, 6–37
_ _PAL_BPT built-in function, 6–37
_ _PAL_BUGCHK built-in function, 6–37
_ _PAL_CFLUSH built-in function, 6–38
_ _PAL_CHME built-in function, 6–38
_ _PAL_CHMK built-in function, 6–38
_ _PAL_CHMS built-in function, 6–38
_ _PAL_CHMU built-in function, 6–39
_ _PAL_DRAINA built-in function, 6–39
_ _PAL_GENTRAP built-in function, 6–39
_ _PAL_HALT built-in function, 6–39
_ _PAL_INSQHIL built-in function, 6–39
_ _PAL_INSQHILR built-in function, 6–40
_ _PAL_INSQHIQ built-in function, 6–41
_ _PAL_INSQHIQR built-in function, 6–41
_ _PAL_INSQTIL built-in function, 6–42
_ _PAL_INSQTILR built-in function, 6–42

Index–14

_ _PAL_INSQTIQ built-in function, 6–43
_ _PAL_INSQTIQR built-in function, 6–43
_ _PAL_INSQUEL built-in function, 6–44
_ _PAL_INSQUEL_D built-in function, 6–44
_ _PAL_INSQUEQ built-in function, 6–45
_ _PAL_INSQUEQ_D built-in function, 6–45
_ _PAL_LDQP built-in function, 6–46
_ _PAL_MFPR_XXXX built-in function, 6–46
_ _PAL_MTPR_XXXX built-in function, 6–47
_ _PAL_PROBER built-in function, 6–47
_ _PAL_PROBEW built-in function, 6–48
_ _PAL_RD_PS built-in function, 6–48
_ _PAL_REMQHIL built-in function, 6–49
_ _PAL_REMQHILR built-in function, 6–49
_ _PAL_REMQHIQ built-in function, 6–50
_ _PAL_REMQHIQR built-in function, 6–50
_ _PAL_REMQTIL built-in function, 6–51
_ _PAL_REMQTILR built-in function, 6–51
_ _PAL_REMQTIQ built-in function, 6–52
_ _PAL_REMQTIQR built-in function, 6–53
_ _PAL_REMQUEL built-in function, 6–53
_ _PAL_REMQUEL_D built-in function,

6–54
_ _PAL_REMQUEQ built-in function, 6–54
_ _PAL_REMQUEQ_D built-in function,

6–55
_ _PAL_STQP built-in function, 6–46
_ _PAL_SWASTEN built-in function, 6–55
_ _PAL_SWPCTX built-in function, 6–55
_ _PAL_WR_PS_SW built-in function, 6–56
Parallel processing, A–25
Parameter-passing mechanisms

HP C defaults, 3–20
interlanguage defaults, 3–20
specifying, 3–7

Parameters
main function, 1–93
passing

by descriptor, 3–7
by immediate value, 3–7
by reference, 3–7

passing mechanisms in mixed-language
programming, 3–7

/PDSC_MASK CC qualifier, 1–66
Pipelining, 1–62, 1–63, 1–66
Pitfalls

examples, B–1 to B–4
PL/I externals

sharing program sections with, 3–42
Placeholders

use with LSE, C–21
Plus operator

unary
new feature, A–17

/PLUS_LIST_OPTIMIZE CC qualifier, 1–68
Pointer conversion, 4–15
Pointers

64-bit support, 1–95 to 1–109
in VAX C mode, 4–15
size checking, 1–32, 1–97

POINTERS_TO_GLOBALS option of
/ASSUME qualifier, 1–22

/POINTER_SIZE CC qualifier, 1–68, 1–96
pointer_size pragma, 1–98, 5–56
_popcnt built-in function, 6–56
_poppar built-in function, 6–56
Portability concerns

conversion of command-line arguments,
1–95

global storage classes, 4–4
global system status values, 4–9
#include using angle brackets, 5–4
long float data type, 4–13, A–10
#module directive, 5–8
modules with extern definitions, 4–8
nested #include files, 5–5
passing constants by reference, 3–12
predefined system identification macros,

6–1
preprocessor implementations, 5–1
text modules in the #include

preprocessor directive, 5–6
UNIX file specifications, 5–2

Portable C compilation mode, 1–11
_POSIX_C_SOURCE predefined macro, 6–7

Index–15

#pragma assert preprocessor directive,
5–9

#pragma builtins, 6–10
#pragma builtins preprocessor directive,

5–13
#pragma dictionary preprocessor directive,

5–14
#pragma environment preprocessor

directive, 5–16
#pragma extern_model preprocessor

directive, 5–18
#pragma extern_prefix preprocessor

directive, 5–30
#pragma function preprocessor directive,

5–32
#pragma intrinsic preprocessor directive,

5–35, 6–12
#pragma linkage preprocessor directive,

5–36, 5–40
#pragma message preprocessor directive,

5–45
#pragma module preprocessor directive,

5–49
#pragma names preprocessor directive, 5–50
#pragma optimize preprocessor directive,

5–52
#pragma pack preprocessor directive, 5–54
#pragma pointer_size preprocessor

directive, 1–98, 5–56
#pragma preprocessor directive, 5–8
#pragma required_pointer_size

preprocessor directive, 1–98, 5–57
Pragmas

assert, 5–9
builtins, 5–13, 6–10

new feature appendix, A–21
dictionary, 5–14

new feature, A–21
environment, 5–16
extern_model, 4–3, 5–18
extern_prefix, 5–30
function, 5–32
include, 5–32
inline, 5–33
intrinsic, 5–35

Pragmas (cont’d)
member_alignment, 5–44
message, 5–45
module, 5–49
names, 5–50
optimize, 5–52
pack, 5–54
pointer_size, 1–98, 5–56
#pragma linkage, 5–36, 5–40
#pragma unroll, 5–58
#pragma use_linkage, 5–59
required_pointer_size, 1–98, 5–57
standard, 5–58

#pragma unroll preprocessor directive,
5–58

#pragma use_linkage preprocessor
directive, 5–59

#pragma [no]include preprocessor
directive, 5–32

#pragma [no]inline preprocessor directive,
5–33

#pragma [no]member_alignment
preprocessor directive, 5–44

#pragma [no]standard preprocessor
directive, 5–58

/PRECISION CC qualifier, 1–69
Predefined macros, 6–1 to 6–10
/PREFIX_LIBRARY_ENTRIES CC qualifier,

1–70
Preprocessor

new features, A–19
Preprocessor directives, 5–1 to 5–60

#dictionary, 5–2
#include, 5–2

macro substitution, 5–7
#module, 5–8
#pragma, 5–8
#pragma assert, 5–9
#pragma builtins, 5–13
#pragma dictionary, 5–14
#pragma environment, 5–16
#pragma extern_model, 4–3, 5–18
#pragma extern_prefix, 5–30
#pragma function, 5–32
#pragma intrinsic, 5–35, 6–12

Index–16

Preprocessor directives (cont’d)
#pragma linkage, 5–36, 5–40
#pragma message, 5–45
#pragma module, 5–49
#pragma names, 5–50
#pragma optimize, 5–52
#pragma pack, 5–54
#pragma pointer_size, 1–98, 5–56
#pragma required_pointer_size,

1–98, 5–57
#pragma unroll, 5–58
#pragma use_linkage, 5–59
#pragma [no]include, 5–32
#pragma [no]inline, 5–33
#pragma [no]member_alignment, 5–44
#pragma [no]standard, 5–58
unsupported, A–25

/PREPROCESS_ONLY CC qualifier, 1–71
_ _prober built-in function, 6–78
_PROBER built-in function, 6–12, 6–88
_ _probew built-in function, 6–78
_PROBEW built-in function, 6–12, 6–89
Procedure

definition of, 3–2
Processor Status Longword

See PSL
Program development

DCL commands for, 1–1 to 1–3
Programming tools, C–1 to C–30
Program section (psect)

attribute combinations (table), 4–27
attributes of, 4–21 to 4–28
attributes of (table), 4–23, 4–25
comparing global and external classes,

4–7
created by HP C, 4–22
for global symbols, 4–4
sharing

with FORTRAN common blocks,
3–40

with MACRO programs, 3–44
with PL/I externals, 3–42

Prologue/epilogue files, 1–102

/PROTOTYPE CC qualifier, 1–71
Psect

See Program section
/PSECT_MODEL CC qualifier, 1–72
PSL, 6–88
_ _ptce built-in function, 6–69
_ _ptcg built-in function, 6–69
_ _ptcga built-in function, 6–69
_ _ptcl built-in function, 6–69
_ _ptrd built-in function, 6–70
_ _ptri built-in function, 6–70
$PUT RMS function, 2–6

Q
Qualifiers

CC command, 1–14
LINK command, 1–86
new features, A–2
position of, 1–5
unsupported, A–25

Quotation marks
use with #include preprocessor directive,

5–5

R
<rab.h> header file, 2–7
RAB RMS data structure, 2–5

initializing, 2–10
Reader’s comments, xxi
_READ_GPR built-in function, 6–89
$READONLY$ psect, 4–4, 4–22 to 4–28
readonly modifier, 4–4
readonly storage-class modifier, 4–11
Record access block—RAB (RMS), 2–5

initializing, 2–10
Record access modes (RMS), 2–4

direct by key, 2–4
direct by record file access, 2–4
sequential, 2–4

Record file address (RMS)
access mode, 2–4

Index–17

Record formats (RMS), 2–5
fixed length, 2–5
stream, 2–5
variable length, 2–5

with fixed-length control area (VFC),
2–5

Record Management Services (RMS), 2–1 to
2–32

data structures, 2–5
example program, 2–12
extended attribute blocks, 2–6
file access blocks, 2–5
file organization, 2–2 to 2–4
functions, 2–5

syntax for, 2–6
indexed organization, 2–3
name blocks, 2–6
record access blocks, 2–5
record access modes, 2–4
record formats, 2–5
relative organization, 2–3
return status value, 2–7
sequential organization, 2–2

Recursive main function
new feature, A–5

/REENTRANCY CC qualifier, 1–72
Reference

passing arguments by, 3–7
Register usage

OpenVMS calling standard, 3–3
Relational operators

new features, A–17
Relative file organization (RMS), 2–3
Relaxed compilation mode, 1–10
_ _RELEASE_SEM_LONG built-in function,

6–16
_REMQHI built-in function, 6–12, 6–90
_REMQTI built-in function, 6–12, 6–90
_REMQUE built-in function, 6–12, 6–91
/REPOSITORY CC qualifier, 1–73
required_pointer_size pragma, 1–98,

5–57
Return status (OpenVMS)

severity codes, 3–58
value

Return status (OpenVMS)
value (cont’d)

format of, 3–57
manipulating, 3–59
RMS, 2–7
system service, 3–53
testing for specific value, 3–62
testing for success or failure, 3–61

_ _RETURN_ADDRESS built-in function,
6–77

$REWIND RMS function, 2–6
RMS

See Record Management Services (RMS)
<rms.h> header file, 2–7
<rmsdef.h> header file, 2–7
/ROUNDING_MODE CC qualifier, 1–73
Routines

calling, 3–47
definition of, 3–2

_ _RPCC built-in function, 6–56
_ _rsm built-in function, 6–70
RTL

See Run-Time Library (RTL)
_ _rum built-in function, 6–71
RUN DCL command, 1–91

/DEBUG qualifier, 1–91
run-time errors, 1–91

Run-time errors, 1–91
See also Errors

Run-Time Library (RTL)
linking to, 1–88
new features, A–22
OpenVMS, 3–45

S
SCA, C–18

preparing a library, C–20
starting/terminating a session, C–21

Scalar data types
debugger access to, C–4

_SCANC built-in function, 6–92
Scope

of external data, 4–7

Index–18

Sequential access mode (RMS), 2–4
Sequential file organization (RMS), 2–2
_ _setIndReg built-in function, 6–66
_ _setReg built-in function, 6–65
Shareable image, 1–70
/SHARE_GLOBALS CC qualifier, 1–74, 4–3
/SHOW CC qualifier, 1–74
SHOW SYMBOL command (DEBUG), C–11
<signal.h> header file

new features, A–23
_ _SIN built-in function, 6–56
Single-precision, floating-point arithmetic

built-in functions, 6–57
_SKPC built-in function, 6–92
Software pipelining, 1–62, 1–63, 1–66
Source Code Analyzer

See SCA
_SPANC built-in function, 6–93
SS$_NORMAL

condition value, 3–52
_ _ssm built-in function, 6–71
/STANDARD CC qualifier, 1–9, 1–77
standard pragma, 5–58
Standards conformance predefined macros,

6–7
__STDC__ predefined macro, 6–2
_ _STDC_HOSTED_ _ macro, 1–10
_ _STDC_VERSION_ _ macro, 1–10
__STDC_VERSION__ predefined macro, 6–2
<stddef.h> header file

new features, A–22
<stdio.h> header file

new features, A–23
<stdlib.h> header file

new features, A–24
Storage allocation, 4–1 to 4–3

for program sections, 4–1
attributes of, 4–21

lifetime of variables, 4–1
location of, 4–2
order, 4–2, 5–20
registers, 4–1
run-time stack, 4–1

Storage classes
global, 4–4
modifiers, 4–10 to 4–12

_align, 4–12
__align, 4–10
__forceinline, 4–10
__inline, 4–10
noshare, 4–10
readonly, 4–11

psect attributes (table), 4–23, 4–25
specifiers

globaldef, 4–4
globalref, 4–4
globalvalue, 4–9

Storage-class modifiers
description of, 4–10

Stored objects
lifetime of, 4–1

Strict ANSI C compilation mode, 1–9
<string.h> header file

new features, A–24
String literal

concatenation
new feature, A–5

Structure alignment, 4–15
Structures

debugger access to, C–9
passed by descriptor, 3–14
variant aggregates, 4–18

_ _SUBF_C built-in function, 6–57
_ _SUBG_C built-in function, 6–33
Substitution

within #include directives, 5–7
_ _SUBS_C built-in function, 6–57
_ _SUBT_C built-in function, 6–33
_ _SUBX_C built-in function, 6–34
_ _sum built-in function, 6–71
Symbol definitions, 3–52
_ _synci built-in function, 6–71
Syntax

main function, 1–93
Syntax for RMS functions, 2–6
sys$close RMS function, 2–6

Index–19

sys$connect RMS function, 2–6
sys$create RMS function, 2–6
sys$delete RMS function, 2–6
sys$disconnect RMS function, 2–6
sys$erase RMS function, 2–6
sys$get RMS function, 2–6
SYS$LIBRARY logical, 5–3, 5–6
sys$open RMS function, 2–6
sys$put RMS function, 2–6
sys$rewind RMS function, 2–6
SYS$STARLET_C.TLB, 5–7
sys$update RMS function, 2–6
System identification macros, 6–1
System routine

arguments, 3–48
definition of, 3–2

System service return values, 3–53
System services

variable-length argument lists in, 3–55

T
Text Processing Utility
_ _tak built-in function, 6–79
_ _TESTBITCCI built-in function, 6–58
_ _TESTBITSSI built-in function, 6–59
Text libraries, 1–6

default module file type, 1–6
Text modules

inclusion of, 5–6
use with the #include preprocessor

directive, 5–6
_ _thash built-in function, 6–71
/TIE CC qualifier, 1–79
<time.h> header file

new features, A–24
Tokens

use with LSE, C–21
_ _tpa built-in function, 6–79
TPU, 1–4, C–18
Traceback

See also Debugger
See also Errors
run-time errors, 1–92

Trailing Zeros built-in function, 6–60
_trailz built-in function, 6–60
_ _TRAPB built-in function, 6–60
Trigraph

definition of, A–5
Trigraph sequences

new features, A–5
_ _ttag built-in function, 6–72
Type compatibility

new features, A–12
Types

composite
new feature, A–13

new/changed, A–9

U
_ _UMULH built-in function, 6–60
Unary plus operator

new feature, A–17
/UNDEFINE CC qualifier, 1–37
Unions

debugger access to, C–9
variant aggregates, 4–18

UNIX style file specification, 5–2
_ _UNLOCK_LONG built-in function, 6–34
Unrolling, loop, 1–62, 1–65
unroll pragma, 5–58
/UNSIGNED_CHAR CC qualifier, 1–79
$UPDATE RMS function, 2–6
User-named psects, 4–22 to 4–28
use_linkage pragma, 5–59
Usual arithmetic conversions

new features, A–16

V
Values

condition, 3–52
Variant aggregates, 4–18

members, 4–18
variant_struct keyword, 4–18
variant_union keyword, 4–18

Index–20

__vax11c predefined macro, 6–2
VAX C, A–1
/VAXC CC qualifier, 1–80
VAX C compilation mode, 1–11
VAXCDEF.TLB library

See DECC$RTLDEF.TLB library
__vaxc predefined macro, 6–2
__vax predefined macro, 6–2
/VERSION CC qualifier, 1–80
VMS calling standard

See OpenVMS calling standard
VMS Debugger

See Debugger
VMS languages

See OpenVMS languages
VMS operating system

See OpenVMS operating system
__vms predefined macro, 6–2
VMS Run-Time Library

See OpenVMS Run-Time Library
_VMS_V6_SOURCE predefined macro, 6–7
__VMS_VER predefined macro, 6–2, 6–5

__vms_version predefined macro, 6–2

W
/WARNINGS CC qualifier, 1–9, 1–80
WEAK_VOLATILE option of /ASSUME

qualifier, 1–22, 1–27
White space

to concatenate string literals
new feature, A–5

WHOLE_PROGRAM option of /ASSUME
qualifier, 1–22, 1–28

Wide character support
new feature, A–14

WRITABLE_STRING_LITERALS option of
/ASSUME qualifier, 1–22, 1–28

X
<xab.h> header file, 2–7
XAB RMS data structure, 2–6
_XOPEN_SOURCE predefined macro, 6–7
_XOPEN_SOURCE_EXTENDED predefined

macro, 6–7
X_floating representation, 4–14
__X_FLOAT predefined macro, 6–8

Index–21

