
HP C++
Class Library Reference Manual
Order Number: AA-PY3EC-TK

January 2005

This document describes a library of C++ classes.

Revision/Update Information: This is a revised manual.

Software Version: C++ Version 5.3 or higher
C++ Class Library Version 4.0

Hewlett-Packard Company
Palo Alto, California

First Printing, September 1992
Revised, January 2005

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark of X/Open Company Ltd. in the UK and other countries.

Intel® and Itanium® are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

This document is available on CD–ROM.

ZK6026

This document was prepared using DECdocument, Version 3.3-1n.

Contents

Preface . vii

1 Overview

1.1 Thread Safe Programming . 1–1
1.2 Using RMS Attributes with iostreams . 1–2
1.3 Class Library Restrictions . 1–3

2 complex Package

Global Declarations . 2–2
complex class . 2–3
c_exception class . 2–9

3 generic Package

Global Declarations . 3–3

4 iostream Package

Global Declarations . 4–4
filebuf class . 4–11
fstream class . 4–15
IAPP(TYPE) class . 4–18
ifstream class . 4–19
IMANIP(TYPE) class . 4–22
IOAPP(TYPE) class . 4–24
IOMANIP(TYPE) class . 4–25
ios class . 4–27
iostream class . 4–37
iostream_withassign class . 4–38

iii

istream class . 4–40
istream_withassign class . 4–46
istrstream class . 4–48
OAPP(TYPE) class . 4–50
ofstream class . 4–51
OMANIP(TYPE) class . 4–54
ostream class . 4–56
ostream_withassign class . 4–61
ostrstream class . 4–63
SAPP(TYPE) class . 4–65
SMANIP(TYPE) class . 4–66
stdiobuf class . 4–68
stdiostream class . 4–70
streambuf class . 4–72
strstream class . 4–81
strstreambuf class . 4–83

5 Messages Package

Messages class . 5–2

6 Mutex Package

Mutex class . 6–2

7 Objection Package

Global Declaration . 7–2
Objection class . 7–3

8 Stopwatch Package

Stopwatch class . 8–2

iv

9 String Package

String class . 9–2

10 task Package

Global Declarations . 10–3
erand class . 10–7
histogram class . 10–9
Interrupt_handler class . 10–12
object class . 10–15
qhead class . 10–19
qtail class . 10–23
randint class . 10–27
sched class . 10–29
task class . 10–34
timer class . 10–39
urand class . 10–42

11 vector Package

stack(TYPE) class . 11–3
vector(TYPE) class . 11–6

Index

Figures

4–1 Inheritance Diagram for the iostream Package 4–2
10–1 Inheritance Diagram for the task Package 10–2

Tables

1 Conventions Used in this Manual . viii

v

Preface

This manual describes the library of classes supplied with C++ Version 7.1
for OpenVMS systems. It contains detailed information on members of these
classes (including member functions) and information on other associated
functions, variables, and macros.

Intended Audience
This manual is intended for experienced programmers who have a basic
understanding of the C++ language, and who are using C++ with the OpenVMS
operating system in either a single or multiple platform environment. Some
familiarity with the operating system is assumed.

Document Structure
This manual consists of an introductory chapter and 10 chapters describing
each of the packages of predefined classes supplied with the C++ compiler.

Associated Documents
The following documents contain information related to this manual:

• Using HP C++ for OpenVMS

This manual supplies information needed to use C++ on OpenVMS
systems.

• Stroustrup, Bjarne. Stroustrup, The C++ Programming Language, 3rd
Edition, Addison-Wesley, 1997. Reading, Massachusetts. Addison-Wesley,
1997.

This text combines a user guide and language reference manual.

• Stroustrup, Bjarne and Margaret Ellis. The Annotated C++ Reference
Manual. Reading, Massachusetts. Addison-Wesley, 1990.

This text contains the current language definition of C++.

vii

• C Run-Time Library Reference Manual for OpenVMS Systems

This manual describes C run-time library routines that are supported for
C++.

• HP C++ Installation Guide for OpenVMS

This guide supplies information needed to ensure that the C++ Class
Library installs correctly on OpenVMS systems and is accessible to the
C++ compiler.

Conventions
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity Servers

• OpenVMS I64

• I64

All three names (the longer form and the two abbreviated forms) refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

Table 1 lists the conventions used in this manual.

Table 1 Conventions Used in this Manual

Conventions Meaning

class complex {
.
.
.

};

A vertical ellipsis indicates that some
intervening program code or output is not
shown. Only the more pertinent material is
shown in the example.

, . . . A horizontal ellipsis in a syntax description
indicates that you can enter additional
parameters, options, or values. A comma
preceding the ellipsis indicates that successive
items must be separated by commas.

The complex class . . .
The get() function . . .

Monospaced type denotes the names of C++
language elements, and also the names
of classes, members, and nonmembers.
Monospaced type is also used in text to reference
code elements displayed in examples.

(continued on next page)

viii

Table 1 (Cont.) Conventions Used in this Manual

Conventions Meaning

italic Italic type denotes the names of variables
that appear as parameters or in arguments
to functions.

boldface Boldface type in text indicates the first instance
of terms defined in text.

Reader’s Comments
You may send your comments or suggestions regarding this manual, or any
C++ document, by electronic mail to the following Internet address:

c_docs@hp.com.

Changes for C++ Version 7.1 for OpenVMS I64
The following class library changes apply to C++ Version 7.1 and higher for
OpenVMS I64 systems:

• The tasks and complex packages have been removed. The recommended
replacements are the pthreads routines and complex template class,
respectively, from the C++ standard library.

• In the String class, the char*() operator, which converts String to a
pointer to char, has been removed. The String class has a const char*()
operator, which can be used instead of the removed one.

ix

1
Overview

The C++ Class Library is a set of headers and other files implementing a
collection of basic C++ classes. In the library, these classes are arranged in
functionally related groups called packages.

The C++ Class Library makes use of other run-time libraries.

Note

Identifiers beginning with cxxl or CXXL are reserved for the C++
Class Library and should not be used by customer programs except as
specified in this manual.

Error message examples in this manual are displayed without their
OpenVMS facility, error severity, or message identification code
prefixes. You can achieve this result by entering the following DCL
command:

$ set message/nofac/nosev/noid

1.1 Thread Safe Programming
Developers of multithreaded applications should note the following:

• Internal class library data is thread safe; multiple threads can access the
C++ Class Library simultaneously without compromising the integrity of
the internal data.

• The predefined stream objects, cerr, cin, clog, and cout are thread
safe. However, you need to provide synchronization around sequences of
operations on these objects. For more information on synchronizing access
to the predefined stream objects, see Chapter 4.

Overview 1–1

Overview
1.1 Thread Safe Programming

• User-defined objects are not thread safe; users must provide
synchronization for such objects if they are shared between threads.
For more information on synchronizing access to user-defined objects, see
Chapter 6.

• The ios class member function sync_with_stdio() is not thread safe; if
your application calls this function, the call must come before any threads
use the predefined stream objects: cerr, cin, clog, or cout.

• Generation of error messages within the vector package is not thread safe;
the package uses static data members to handle the current error message
and there is no synchronization between threads. HP recommends that you
define a single Mutex object to synchronize all use of the vector package.

• The task package is not thread safe; only one task can execute at a time.

1.2 Using RMS Attributes with iostreams
The Class Library class fstream constructors amd open() member function do
not support different RMS attributes, for example, creating a stream-lf file.

To work around this restriction, use the C library creat() or open() call,
which returns a file descriptor, and then use the fstream constructor, which
accepts a file descriptor as its argument. For example:

#include <fstream.hxx>

int main()
{
int fp;

// use either creat or open
//if (!(fp= creat("output_file.test", 0, "rfm=stmlf")))

if (!(fp= open("output_file.test", O_WRONLY | O_CREAT | O_TRUNC , 0,
"rfm=stmlf")))

perror("open");

ofstream output_file(fp); // use special constructor which takes
// a file descriptor as argument

// ...
}

1–2 Overview

Overview
1.3 Class Library Restrictions

1.3 Class Library Restrictions
The following are restrictions in the C++ Class Library:

• No Class Library support for 128-bit long doubles

The Class Library does not include support for 128-bit long doubles.

• Conflict with redefinition of clear()

If your program includes both <curses.h> and <iostream.hxx>, HP C++
might fail to compile your program because clear() is defined by both
header files. In <curses.h>, clear() is defined as a macro whereas in
<iostream.hxx> clear() is defined as a member function.

Workarounds:

If your program does not use either clear() or uses the <curses.h>
clear(), include the <iostream.hxx> header first, followed by <curses.h>.

If your program uses the ios::clear() function, undefine the clear()
macro directly after the #include <curses.h> statement.

Overview 1–3

2
complex Package

Note

The complex package is supported on VAX and Alpha platforms.
It is not supported on OpenVMS I64 systems. The recommended
replacement is the complex template class from the C++ standard
library.

The complex package provides ways to perform arithmetical operations, such
as initialization, assignment, input, and output, on complex values (that is,
numbers with a real part and an imaginary part). Additionally, this package
supports operations that are unique to complex values, such as principal
argument operations, conjugate operations, and conversions to and from polar
coordinates.

With the c_exception class and its c_exception function, the complex package
also provides a mechanism for reporting and handling complex arithmetical
errors.

complex Package 2–1

Global Declarations

Global Declarations

These declarations are used by the complex package but they are not members
of the complex class.

Header

#include <complex.hxx>

Alternative Header
#include <complex.h>

Declarations

typedef int (*cxxl_p_complex_error_t)(c_exception &error_information);
static const complex_zero (0, 0);
cxxl_p_complex_error_t set_complex_error(cxxl_p_complex_error_t
p_complex_error);

Type

cxxl_p_complex_error_t
Is the type of the complex_error function.

Data

static const complex_zero (0, 0)
Is a constant object of type complex and value 0 created in each module that
uses the complex package.

Function

cxxl_p_complex_error_t set_complex_error (cxxl_p_complex_error_t
p_complex_error)
Causes the function pointed to by p_complex_error to be called instead of
the complex_error function on subsequent complex arithmetical errors. If
set_complex_error() previously has not been called, then it returns 0;
otherwise, it returns the address of the last function passed to it.

See the Other Function section of c_exception class for a description of the
error-handling function.

2–2 complex Package

complex class

complex class

Provides a representation of, and lets you perform operations on, complex
values.

Header

#include <complex.hxx>

Alternative Header
#include <complex.h>

Declaration

class complex
{

friend complex polar(double, double = 0);
friend double abs(const complex &);
friend double norm(const complex &);
friend double arg(const complex &);
friend double arg1(const complex &);
friend complex conj(const complex &);
friend complex sin(const complex &);
friend complex sinh(const complex &); // c_exception OVERFLOW
friend complex cos(const complex &);
friend complex cosh(const complex &); // c_exception OVERFLOW
friend complex tan(const complex &);
friend complex tanh(const complex &);
friend double imag(const complex &);
friend double real(const complex &);
friend complex log(const complex &); // c_exception SING
// c_exception OVERFLOW UNDERFLOW
friend complex exp(const complex &);
friend complex pow(double, const complex &);
friend complex pow(const complex &, int);
friend complex pow(const complex &, double);
friend complex pow(const complex &, const complex &);
friend complex sqrt(const complex &);
friend complex sqr(const complex &);
friend complex operator-(const complex &);
friend complex operator+(const complex &, const complex &);
friend complex operator-(const complex &, const complex &);
friend complex operator*(const complex &, const complex &);
friend complex operator/(const complex &, const complex &);
friend int operator==(const complex &, const complex &);
friend int operator!=(const complex &, const complex &);
friend ostream &operator<<(ostream &, const complex &);

complex Package 2–3

complex class

friend istream &operator>>(istream &, complex &);

public:

complex(double, double = 0);
complex();

inline complex &operator-=(const complex &);
inline complex &operator+=(const complex &);
complex &operator*=(const complex &);
complex &operator/=(const complex &);

};

Description

This class contains methods to perform complex value operations. These
include arithmetical, assignment, and comparison operators for complex values;
Cartesian and polar coordinates; mixed-mode arithmetic; and mathematical
functions for complex values equivalent to standard mathematical functions.

Exception Handling

When a complex arithmetical error is detected, a c_exception object is created
with one of the following values for type:

Value Error Description

OVERFLOW Value too large to be represented
SING Function undefined for argument
UNDERFLOW Value too small to be represented

This object is then passed to the complex_error function (see the c_exception
class).

Constructors and Destructors

complex()
Constructs and initializes a complex value to 0.

complex(double x, double y = 0)
Constructs and initializes a complex value from Cartesian coordinates.

2–4 complex Package

complex class

Overloaded Operators

complex operator + (const complex &z1, const complex &z2)
Returns the arithmetical sum of the complex values z1 and z2.

complex operator – (const complex &z1)
Returns the arithmetical negation of a complex value.

complex operator – (const complex &z1, const complex &z2)
Returns the arithmetical difference of complex values. That is, z2 is subtracted
from z1.

complex operator * (const complex &z1, const complex &z2)
Returns the arithmetical product of the complex values z1 and z2.

complex operator / (const complex &z1, const complex &z2)
Returns the arithmetical quotient of complex values. That is, z1 is divided by
z2.

inline complex &operator += (const complex &z1)
Assigns the arithmetical sum of complex values to the complex object on the
left side of an equation. That is, z1+=z2 is equivalent to z1=z1+z2.

inline complex &operator –= (const complex &z1)
Assigns the arithmetical difference of two complex numbers to the complex
object on the left side of an equation. That is, z1–=z2 is equivalent to z1=z1–z2.

complex &operator *= (const complex &z2)
Assigns the arithmetical product of two complex numbers to the complex object
on the left side of an equation. That is, z1*=z2 is equivalent to z1=z1*z2.

complex &operator /= (const complex &z2)
Assigns the arithmetical quotient of two complex numbers to the complex
object on the left side of an equation. That is, z1/=z2 is equivalent to z1=z1/z2.

ostream &operator << (ostream &s, const complex &z1)
Sends a complex value to an output stream in the format (real,imag). It
returns the left argument s.

istream &operator >> (istream &s, complex &z1)
Takes a complex value from an input stream. The numbers may be of the forms
(real,imag) or (real), where real and imag are what the iostream library
accepts for parameters of type double. The iostream library also determines
how to handle white space. This operator returns the left argument s. The
following input format omissions will cause an error:

complex Package 2–5

complex class

• Parenthesis missing before a complex value

• Comma missing before the imaginary part of a complex value, if any

• Parenthesis missing after the complex value

int operator = = (const complex &z1, const complex &z2)
Compares two complex values and returns a nonzero value if the two numbers
are equal; otherwise, it returns 0.

int operator != (const complex &z1, const complex &z2)
Compares two complex values and returns a nonzero value if the two numbers
are not equal; otherwise, it returns 0.

Other Functions

double abs(const complex &z1)
Returns the absolute value (magnitude) of a complex value.

double arg(const complex &z1)
Returns the angle, in radians, of a complex value. The result is normalized
such that it is greater than or equal to 0, and less than � � �.

double arg1(const complex &z1)
Returns the principal value of the angle, in radians, of a complex value. The
result is normalized such that it is greater than ��, and less than or equal
to �.

complex conj(const complex &z1)
Returns the conjugate of a complex value; that is, if the number is
(real, imag), then the result is (real, -imag).

complex cos(const complex &z1)
Returns the cosine of a complex value.

complex cosh(const complex &z1)
Returns the hyperbolic cosine of a complex value. The value of real(z1) must
be small enough so that exp(real(z1)) does not overflow; otherwise, the
function creates a c_exception object and invokes the complex_error function.

complex exp(const complex &z1)
Returns the value of e (2.71828...) raised to the power of a complex value.
The conditions described for cosh() must be met; otherwise, it creates a
c_exception object and invokes the complex_error function.

2–6 complex Package

complex class

double imag(const complex &z1)
Returns the imaginary part of a complex value.

complex log(const complex &z1)
Returns the natural logarithm (base e, 2.71828...) of a complex value.
The conditions described for cosh() must be met; otherwise, it creates a
c_exception object and invokes the complex_error function.

double norm(const complex &z1)
Returns the square of the absolute value (magnitude) of a complex value.

complex polar(double rho, double theta = 0)
Creates a complex value given a pair of polar coordinates (magnitude rho and
angle theta, in radians).

complex pow(const complex &z1, int i2)
Returns the value of z1 raised to the power of i2.

complex pow(const complex &z1, double x2)
Returns the value of z1 raised to the power of x2.

complex pow(double z1, const complex &z2)
Returns the value of z1 raised to the power of z2.

complex pow(const complex &z1, const complex &z2)
Returns the value of z1 raised to the power of z2.

double real(const complex &z1)
Returns the real part of a complex value.

complex sin(const complex &z1)
Returns the sine of a complex value.

complex sinh(const complex &z1)
Returns the hyperbolic sine of a complex value. The conditions described for
cosh() must be met; otherwise, it creates a c_exception object and invokes
the complex_error function.

complex sqr(const complex &z1)
Returns the square of a complex value.

complex sqrt(const complex &z1)
Returns the square root of a complex value.

complex Package 2–7

complex class

complex tan(const complex &z1)
Returns the tangent of a complex value.

complex tanh(const complex &z1)
Returns the hyperbolic tangent of a complex value. The conditions described
for cosh() must be met; otherwise, it creates a c_exception object and invokes
the complex_error function.

Examples

1. complex zz(3,-5);

Declares zz to be a complex object and initializes it to the value of real
part 3 and imaginary part -5.

2. complex myarray[30];

Declares an array of 30 complex objects, all initialized to (0,0).

3. complex zz;
while (!(cin >> zz).eof())

cout << zz << endl;

Reads a stream of complex values [for example, (3.400000,5.000000)] and
writes them in the default format [for example, (3.4, 5)].

4. complex cc = complex (3.4,5);
cout << real(cc) << "+" << imag(cc) << "*i";

Prints out 3.4 as the real part of a complex object and 5 as the imaginary
part. The result is 3.4+5*i.

2–8 complex Package

c_exception class

c_exception class

Contains information on a complex arithmetical exception.

Header

#include <complex.hxx>

Alternative Header
#include <complex.h>

Declaration

class c_exception
{

friend complex exp(const complex &);
friend complex sinh(const complex &);
friend complex cosh(const complex &);
friend complex log(const complex &);
friend int complex_error(c_exception &);

public:
int type;
char *name;
complex arg1;
complex arg2;
complex retval;

public:
c_exception(char *, const complex &, const
complex & = complex_zero);

};

Description

Objects of this class handle exceptions for complex arithmetic. This includes
information on functions, parameters, error types, and default return values.

complex Package 2–9

c_exception class

Data Members

complex arg1
Is the left argument of the function that incurred the error.

complex arg2
Is the right argument of the function that incurred the error.

char *name
Is the name of the function that incurred the error.

complex retval
Is the value to be returned by the function that incurred the error. You may
use the complex_error(c_exception &) function to change this value.

int type
Is one of these kinds of error: SING, OVERFLOW, or UNDERFLOW.

Constructor

c_exception(char *function_name, const complex &function_arg1, const
complex &function_arg2 = complex_zero)
Constructs a complex arithmetical exception object, with reference to the name
and arguments of the function that incurred the error.

Other Function

int complex_error (c_exception &error_information)
Is the default error-handling function that is called by certain complex
arithmetical functions in this package (namely, cosh, exp, log, and sinh) when
those functions detect an arithmetical error. You may replace this function
with your own function that takes an identical parameter list and returns a
value as specified in the following table:

Return Value from Error-
handling Function Action Taken by Complex Arithmetical Function

0 Set the global value errno; if the error type is
SING, print an error message.

non 0 Do not set errno; do not print an error
message.

2–10 complex Package

c_exception class

To substitute your own error-handling function, pass a pointer to your function
to the set_complex_error function. (See the Function section under Global
Declarations for the complex package.)

The complex arithmetical functions that invoke the error handling function
always return the value specified in error_information.retval. Your error-
handling function may set this value.

complex Package 2–11

3
generic Package

The generic package provides ways to simulate parameterized types by
allowing the instantiation of class declarations using the macro facilities of
the C++ preprocessor. You can use the generic package to construct container
classes. The actual types of the data members are passed at compile time as
parameters to the class when you use the class name.

To declare a generic type:

1. Define a name for the class and specify the number of type parameters:

#define YOUR_CLASS_NAME(TYPE_PARAMETER_NAME)
name2(TYPE_PARAMETER_NAME, YOUR_CLASS_NAME)

To specify two type parameters, use the name3 macro.

2. Define the class body as a macro:

#define YOUR_CLASS_NAMEdeclare(TYPE_PARAMETER_NAME) class { . . . };
#define YOUR_CLASS_NAMEimplement(TYPE_PARAMETER_NAME) . . .

3. Declare the actual class:

declare(YOUR_CLASS_NAME, ACTUAL_TYPE_NAME)

By substituting one or another class of ACTUAL_TYPE_NAME, you can
declare multiple instances of the generic class template with various
component types. For example, depending on the type parameter you use,
you can declare such types as list of ints, list of Strings, or list of lists of
Strings.

If it is not a type name, ACTUAL_TYPE_NAME must be a typedef name.

You must do this in each compilation unit that uses the parameterized type
with a given parameter.

4. Define the functions or static data of the actual class.

implement(YOUR_CLASS_NAME, ACTUAL_TYPE_NAME)

You must do this once in each program that uses the parameterized type
with a given parameter.

generic Package 3–1

5. Declare an instance of the class you have declared by specifying objects of
type YOUR_CLASS_NAME(ACTUAL_TYPE_NAME), as follows:

YOUR_CLASS_NAME(ACTUAL_TYPE_NAME) object1, object2;

3–2 generic Package

Global Declarations

Global Declarations

These declarations are used by the generic package but they are not members
of any class.

Header

#include <generic.hxx>

Alternative Header
#include <generic.h>

Compile-Time Parameters

TYPE, TYPE1, TYPE2—The types for which this class is parameterized; TYPE,
TYPE1, or TYPE2 must be an identifier.
CLASS—The class that is parameterized. For a vector of integers, for example,
CLASS is vector and TYPE is int.

Declarations

typedef int (*GPT)(int, char *);
int genericerror(int n, char *msg);

Type

GPT
Is a pointer to a generic error-handling function.

Function

int genericerror (int n, char *msg)
Is the default error-handling function; it prints an error number (n) and
message (msg) on cerr and calls abort().

Macros

Macros provide preprocessor facilities for simulating parameterized types. The
following macros are defined for the generic package:

generic Package 3–3

Global Declarations

callerror(CLASS, TYPE, N, S)
Calls the current error handler for a given instance of a parameterized class.
CLASS denotes the name of the generic class (for example, vector). TYPE
denotes the type parameter for which to instantiate the generic class (for
example, int to get a vector of integers); the type must be an identifier (for
example, char* is not valid). N denotes the first argument to pass to the error
handler; the default is the function genericerror(int, char*). S denotes the
second argument to pass to the error handler.

declare(CLASS, TYPE)
Declares the class specified by a macro with the name of the generic class. The
word declare follows the class name (for example, vectordeclare). It also
defines the inline member functions of the class. CLASS denotes the name
of the generic class (for example, vector). TYPE denotes the type parameter
for which to instantiate the generic class (for example, int to get a vector of
integers). The type must be an identifier (for example, char* is not valid).

declare2(CLASS, TYPE1,TYPE2)
Declares the class specified by a macro with the name of the generic class. The
name is followed by the word declare2. The declare2 macro differs from the
declare macro only in that you use it to declare two type parameters, TYPE1
and TYPE2.

errorhandler(CLASS, TYPE)
Is the name of the pointer to the error handler for a given instance of a
parameterized class (for example, intvectorhandler to handle errors for a
vector of integers). CLASS denotes the name of the generic class (for example,
vector). TYPE denotes the type parameter for which to instantiate the generic
class (for example, int to get a vector of integers). The type must be an
identifier (for example, char* is not valid).

implement(CLASS, TYPE)
Defines the noninline member functions of a class, specified by a macro with
the name of the generic class. The name is followed by the word implement (for
example, vectorimplement). The implement macro takes the same arguments
as the declare macro.

implement2(CLASS, TYPE1,TYPE2)
Defines the noninline member functions of a class, specified by a macro with
the name of the generic class. The name is followed by the word implement2.
The implement2 macro differs from the implement macro only in that you use
it to declare two type parameters, TYPE1 and TYPE2.

3–4 generic Package

Global Declarations

name2(S1,S2)
Concatenates two identifier segments to form a new identifier using the
operator.

name3(S1,S2,S3)
Concatenates three identifier segments to form a new identifier using the
operator.

name4(S1,S2,S3,S4)
Concatenates four identifier segments to form a new identifier using the
operator.

set_handler(CLASS, TYPE, HANDLER)
Specifies a function as the current error handler for a given instance
of a parameterized class. Initially, the error-handling function is set to
genericerror(int, char*). CLASS denotes the name of the generic class (for
example, vector). TYPE denotes the type parameter for which to instantiate
the generic class (for example, int to get a vector of integers); the type must
be an identifier (for example, char* is not valid). HANDLER denotes a pointer
to the function you want to set to the new error handler. Also, you can use the
set_handler macro in a function declaration or definition.

Example

The following program shows the use of the genericerror function and
associated macros:

extern "C"
{
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
}

#include <generic.hxx>

#define my_vector(T) name2(T, my_vector)

generic Package 3–5

Global Declarations

// Declare a vector of objects of type T (the class and extern data)
#define my_vectordeclare(T) \

class my_vector(T) \
{ \
private: \

int s; \
T *p; \

public: \
my_vector(T)(int); \
~my_vector(T)(); \
T &operator[](int); \

}; \
extern GPT errorhandler(my_vector, T); \
extern GPT set_handler(my_vector, T, GPT);

// Implement a vector of objects of type T
// (Define the functions and global data)
#define my_vectorimplement(T) \

my_vector(T)::my_vector(T)(int size) \
{ \

s = size; \
p = new T[size]; \

} \
my_vector(T)::~my_vector(T)() \
{ \

delete[] p; \
} \
T &my_vector(T)::operator[](int i) \
{ \

if(i < 0 || i >= s) \
{ \

callerror(my_vector, T, i, "Index out of bounds"); \
static T error_object; \
return error_object; \

} \
return p[i]; \

} \
GPT errorhandler(my_vector, T) = &genericerror; \
GPT set_handler(my_vector, T, GPT new_genericerror) \
{ \

GPT old_genericerror = errorhandler(my_vector, T); \
errorhandler(my_vector, T) = new_genericerror; \
return old_genericerror; \

}

// Declare and implement vector of int
declare(my_vector, int)
implement(my_vector, int)

3–6 generic Package

Global Declarations

// Error-handling function
my_handler(

int n,
char *msg
)

{
fflush(stderr);
printf("in my_handler(%d,\"%s\")\n", n, msg);
fflush(stdout);
return 0;

}

int main(int argc, char *argv[])
{

my_vector(int) v1(10);

GPT old_error_handler;

// Set the handler to a function that does not abort
old_error_handler = set_handler(my_vector, int, &my_handler);
v1[12345] = 0;

// Restore the handler and cause an error
// This should abort
old_error_handler = set_handler(my_vector, int, old_error_handler);
v1[12345] = 0;

return EXIT_SUCCESS;
}

See Also

vector Package

generic Package 3–7

4
iostream Package

Classes in the iostream package provide methods to handle input and output
streams, including reading and writing built-in data types. You also can extend
certain methods described here to handle class types.

This package includes, among others, the classes ios and streambuf, and the
subclasses derived from these base classes. Figure 4–1 shows the inheritance
structure of the iostream package. In the diagram, arrows point from the base
classes to derived classes.

The istream (input stream) class supports input operations (extractions); the
ostream (output stream) class supports output operations (insertions). The
iostream class derives from both istream and ostream, and supports both
extractions and insertions.

The following stream objects are predefined:

cin An istream_withassign object linked to standard input

cout An ostream_withassign object linked to standard output

cerr An ostream_withassign object linked to standard error that supports
unbuffered output

clog An ostream_withassign object linked to standard error that supports
buffered output

To generate output, you apply the insertion operator (<<) to cout, as shown in
the following example:

cout << "Hello\n" ;

iostream Package 4–1

Figure 4–1 Inheritance Diagram for the iostream Package

ios

istream ostream

istream_withassign

ZK−3478A−GE

iostream_withassignfstream stdiostream strstream

istrstreamifstream ostrstreamofstream ostream_withassigniostream

streambuf

filebuf strstreambuf stdiobuf

Obtaining input is similar to generating output, except that you apply the
extraction operator (>>) to cin, as shown in the following example:

int eye, jay ;
cin >> eye >> jay ;

If you include these fragments of code in a program, your system expects users
to type in two integer values (for eye and jay) from a terminal. The iostream
package supplies predefined extraction and insertion operators for all built-in
data types, including char*.

This package also supports file manipulation. To connect a specific file to your
program, instantiate one of the following class types:

4–2 iostream Package

ifstream (for file input)
ofstream (for file output)
fstream (for both input and output)

To format within character arrays, the iostream package includes the following
associated class types:

istrstream (for fetching characters from an array)
ostrstream (for storing characters into an array)
strstream (for both fetching and storing characters into an array)

Note

On systems with IEEE floating-point arithmetic, certain values may be
printed as symbols for Infinity (for example, INF) or Not a Number (for
example, NaN).

Deriving Your Own Class from ios
If you derive your own class from the ios class, or from one of its derived
classes, the ios subobject must be initialized properly during instantiation.
Specifically, you must ensure that the streambuf pointer within the ios
subobject is valid.

To do this, you can specify the ios(streambuf *) constructor as a mem-
ber initializer for your class constructor. Optionally, you can call the
ios::init(streambuf *) member function.

Thread Safety
The predefined stream objects, cerr, cin, clog, and cout are thread safe
only for individual calls into the C++ Class Library. You must provide
synchronization around sequences of calls. For more information on
synchronizing access to predefined stream objects, see the section on Global
Declarations in this chapter.

User-defined stream objects are not thread safe, so you must provide
synchronization around individual calls as well as sequences of calls. For more
information on synchronizing access to user-defined objects, see Chapter 6 and
the section on Global Declarations in this chapter.

The ios member function sync_with_stdio() is not thread safe. If your
application calls this function, it must make the call before any threads use
cerr, cin, clog, or cout.

iostream Package 4–3

Global Declarations

Global Declarations

These declarations are used by the iostream package but they are not members
of any class.

Header

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declarations

typedef long streamoff
typedef long streampos

ios &dec(ios &s);
ios &hex(ios &s);
ios &oct(ios &s);
ios &lock(ios &s);
ios &unlock(ios &s);

istream &ws(istream &i);
ostream &endl(ostream &o);
ostream &ends(ostream &o);
ostream &flush(ostream &o);

Types

typedef long streamoff
Is the type representing a character offset into a stream. For more information,
see the description of the seekoff and seekpos functions in the streambuf
class.

typedef long streampos
Is the type representing a character position in a stream. For more
information, see the description of the seekoff and seekpos functions in
the streambuf class.

4–4 iostream Package

Global Declarations

Manipulators

The following functions insert values into a stream, extract values from a
stream, or specify the conversion base format. For more information on the
conversion base format flags, see the ios class.

ios &dec(ios &s)
Sets the conversion base format for s to decimal, essentially clearing the
ios::oct and ios::hex flags and setting the ios::dec flag.

ios &hex(ios &s)
Sets the conversion base format for s to hexadecimal, essentially clearing the
ios::oct and ios::dec flags and setting the ios::hex flag.

ios &oct(ios &s)
Sets the conversion base format for s to octal, essentially clearing the ios::dec
and ios::hex flags and setting the ios::oct flag.

istream &ws(istream &i)
Extracts (skips) white-space characters from i.

ostream &endl(ostream &o)
Ends a line by inserting a new-line character into o and flushing o.

ostream &ends(ostream &o)
Ends a string by inserting a null ’/0’ character into o.

ostream &flush(ostream &o)
Flushes o.

Synchronizing Access to Predefined Stream Objects

The following unparameterized manipulators are for use in synchronizing
access to the predefined stream objects, cerr, cin, clog, and cout:

ios &lock(ios &s)
Locks s if s is one of the predefined stream objects.

ios &unlock(ios &s)
Unlocks s if s is one of the predefined stream objects.

If your application needs to lock two or more of these objects at the same time,
your application must adhere to the following locking order:

iostream Package 4–5

Global Declarations

1. cin

2. cerr

3. clog

4. cout

For example, if your application needs to lock both cerr and cout, lock cerr
first and cout second. The unlocking order is not important.

Keep in mind that when your application calls a member function for a
predefined stream object, the member function will typically lock the object
for the duration of the call. Therefore, if your application has locked one of
the stream objects and then uses another, this use must also adhere to the
predefined locking order. For example, your application should not send output
to cerr while cout is locked.

The locking order necessarily matches the default ties between the stream
objects as follows:

cin is tied to cout
cerr is tied to cout
clog is tied to cout
cout has no ties

Any input/output operation on a stream object causes the iostream package to
flush the object to which it is tied. Thus, an output to cerr flushes cout.

Examples

1. #include <iostream.hxx>
#include <iomanip.hxx>

int main ()
{

int value = 10;

cout << hex << value << ’,’; // Change the base conversion format to
// hexadecimal; note that the default is
// decimal as set by the ios constructors.

cout << value << ’,’; // The base conversion format set in the
// previous line is still active.

4–6 iostream Package

Global Declarations

cout << dec << value << endl; // Change the base conversion format to
// decimal; lastly, insert a new-line
// character into the stream and flush
// cout.

return 0;
}

The output is a,a,10.

2. #include <string.hxx>
#include <iostream.hxx>

void print_name(String &name)
{

cout << lock << "Hello, " << name << endl << unlock;
}

This synchronizes access to the cout object so that the "Hello, ", name,
and new-line character are written to cout as a single unit. If you do not
use the lock and unlock manipulators in this example, another thread
could possibly insert its own text into cout in the midst of your output.

iostream Package 4–7

Global Declarations

Header

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Declarations

SMANIP(long) resetiosflags(long);
SMANIP(long) setiosflags(long);
SMANIP(int) setfill(int);
SMANIP(int) setprecision(int);
SMANIP(int) setw(int w);

SMANIPREF(Mutex) lock(Mutex &m)
SMANIPREF(Mutex) unlock(Mutex &m)

Functions

These functions are used for extending the iostream package with user-defined
parameterized manipulators.

SMANIP(long) resetiosflags(long x)
In the stream (ios or a stream derived from ios), clears the format flags
denoted by x.

SMANIP(int) setfill(int x)
Sets the fill character to be the value specified by x. The fill character is a
data member of the ios class; however, setting it with this function affects only
output streams.

SMANIP(long) setiosflags(long x)
In the stream (ios or a stream derived from ios), turns on the format flags
denoted by x. If you are setting a flag that is part of a collection (for example,
basefield), note that this manipulator does not clear the other flags in the
collection.

SMANIP(int) setprecision(int x)
Sets the variable that controls the number of digits inserted by the floating-
point inserter to be x. This variable is a data member of the ios class; however,
setting it with this function affects only output streams.

4–8 iostream Package

Global Declarations

SMANIP(int) setw(int w)
In the stream (ios or a stream derived from ios), sets the field width of the
stream to w.

Synchronizing Access to User-Defined Stream Objects

The following parameterized manipulators are for use in synchronizing access
to user-defined stream objects. To use these manipulators, you must first
define a Mutex object, which you then pass to the manipulator. The association
of a Mutex object with a stream object is not enforced by the iostream package.
This association is enforced only by you, the programmer. Refer to Chapter 6
for information on the Mutex class.

SMANIPREF(Mutex) lock(Mutex &m)
Locks the recursive Mutex represented by m.

SMANIPREF(Mutex) unlock(Mutex &m)
Unlocks the recursive Mutex represented by m.

Examples

1. char c;
cin >> resetiosflags(ios::skipws)

>> c
>> setiosflags(ios::skipws);

Turns off the flag (resets it to 0) that tells the extractor (>>) to skip leading
white space and then turns that flag back on again (sets it to 1).

2. cout.fill(*)
cout.setf(ios::left,ios::adjustfield);
cout << setw(6) << 23 << "," ;
cout.fill(%);
cout.setf(ios::right,ios::adjustfield);
cout << setw(4) << 34 << "\n" ;

Places padding characters (specified by the fill state variable) after the first
number and before the second number. The output is 23****,%%34.

iostream Package 4–9

Global Declarations

3. #include <string.hxx>
#include <fstream.hxx>
#include <mutex.hxx>
#include <iomanip.hxx>

main ()
{

String name("Henry");
void print_name (String &, ostream &, Mutex &);

ofstream mystream(1);
Mutex mystream_lock;

print_name(name, mystream, mystream_lock);
return 0;

}

void print_name(String &name, ostream &stream, Mutex &stream_lock)
{

stream << lock(stream_lock) << "Hello, " << name << endl
<< unlock(stream_lock);

}

This example associates a Mutex object with a stream object to synchronize
access to the stream. The Mutex is locked before using the stream and
then unlocked afterwards. For the synchronization to work properly, each
thread that uses this stream must perform the same lock/unlock sequence
with the same Mutex.

See Also

IMANIP(TYPE) class
IOMANIP(TYPE) class
OMANIP(TYPE) class
SMANIP(TYPE) class

4–10 iostream Package

filebuf class

filebuf class

Provides a data buffer abstraction for input/output facilities through file
descriptors.

Header

#include <fstream.hxx>

Alternative Header
#include <fstream.h>

Declaration

class filebuf: public streambuf
{
public:

static const int openprot;

filebuf();
filebuf(int fd);
filebuf(int fd, char *p, int len);
~filebuf();

filebuf *attach(int fd);
filebuf *close();
int fd();
int is_open();
filebuf *open(const char *name, int mode,

int prot = openprot);

virtual int overflow(int = EOF);
virtual streampos seekoff(streamoff, seek_dir, int mode);
virtual streampos seekpos(streampos, int mode);
virtual streambuf *setbuf(char *p, int len);
virtual int sync();
virtual int underflow();

};

iostream Package 4–11

filebuf class

Description

This class specializes the streambuf class to use a file as a repository of
characters. Writing to the file consumes characters; reading from the file
produces characters. Files that allow searches are said to be seekable. When
a file is readable and writable, the filebuf object permits character insertion
and extraction.

If your program expects a buffer to be allocated when none was allocated,
then the iostream package allocates a default buffer with a length specified by
BUFSIZ as defined in stdio.h. The package then issues the following warning:

Warning; a null pointer to streambuf was passed to ios::init()

Data Member

const int openprot = 0644
Provides default protection for the open() function. (For an explanation of the
file protection, see the C Run-Time Library Reference Manual.)

Constructors and Destructors

filebuf()
Constructs a filebuf object that is initially closed.

filebuf(int fd)
Constructs a filebuf object connected to file descriptor fd.

filebuf(int fd, char *p, int len)
Constructs a filebuf object connected to file descriptor fd, which is initialized
to use the reserve area (buffer) starting at p and containing len bytes.

~filebuf()
Deletes a filebuf object.

Member Functions

filebuf *attach(int fd)
Connects the filebuf object to an open file whose descriptor is passed through
the fd argument. It normally returns a reference to the filebuf object, but
returns 0 if the filebuf object is connected to an open file.

4–12 iostream Package

filebuf class

filebuf *close()
Flushes any waiting output, closes the file descriptor, and disconnects a
filebuf object. Unless an error occurs, the filebuf object’s error state will
be cleared. The close() function returns the address of the filebuf object
unless errors occur, in which case this function returns 0. Even if errors occur,
close() leaves the file descriptor and filebuf object closed.

int fd()
Returns the file descriptor associated with a filebuf object. If the filebuf
object is closed, fd returns EOF.

int is_open()
Returns a nonzero value when a filebuf object is connected to a file descriptor;
otherwise, it returns 0.

filebuf *open(const char *name, int mode, int prot)
Opens a file with the name specified by name and connects a filebuf object to
it. If the file does not exist, the function tries to create it with the protection
mode prot unless ios::nocreate is specified in mode. By default, prot is
filebuf::openprot.

The function fails if the filebuf object is open. The open() function normally
returns the address of the filebuf object, but returns 0 if an error occurs. The
members of open_mode are bits that may be joined together by or (because
this joining takes an int, open() takes an int rather than an open_mode
argument). For an explanation of the meanings of these bits in open_mode, see
the Enumerated Types section for the ios class.

virtual int overflow(int c)
Called to consume characters in classes derived from streambuf. If c is not
EOF, this function must also either save c or consume it. Although it can be
called at other times, this function usually is called when the put area is full
and an attempt is being made to store a new character. The normal action is to
consume the characters between pbase() and pptr(), call setp() to establish
a new put area, and (if c != EOF) store c using sputc(). A call to overflow(c)
should return EOF to indicate an error; otherwise, it should return something
else.

virtual streampos seekoff(streamoff off, seek_dir dir, int mode)
Moves the get pointer, put pointer, or both as designated by the off and dir
arguments. It may fail if the file does not support seeking, or if the attempted
motion is otherwise invalid (for example, attempting to seek a position before
the beginning of the file). The off argument is interpreted as a count relative to
the place in the file specified by dir. The mode argument is ignored. A call to

iostream Package 4–13

filebuf class

seekoff() returns the new position or EOF if a failure occurs. After a failure,
the position of the file is undefined.

virtual streampos seekpos(streampos pos, int mode)
Moves the file to a position pos. The mode argument is ignored. The function
normally returns pos but it returns EOF on failure.

virtual streambuf *setbuf(char *p, int len)
Sets up the reserve area as the number of bytes specified in the second
argument, beginning at the pointer specified in the first argument. If the
pointer is null, or the number of bytes is less than 1, the filebuf object is
unbuffered. This function normally returns a pointer to the filebuf object;
however, if the filebuf object is open and a buffer is allocated, then no changes
are made to the reserve area and to the buffering status, and setbuf() returns
0.

virtual int sync()
Tries to get the state of the get pointer, the put pointer, or both, to agree
(synchronize) with the state of the file to which the filebuf object is connected.
This means that the function may write characters to the file if some of the
characters have been buffered for output, or the function may try to reposition
(seek) the file if characters have been read and buffered for input. Normally
sync() returns 0, but it returns EOF if synchronization is not possible.

When certain characters must be written together, the program should use
setbuf() (or a constructor) to ensure that the reserve area is at least as large
as the number of characters to be written together. Your program can then call
sync(), store the characters, and then call sync() once again.

virtual int underflow()
Called in classes derived from streambuf to supply characters for fetching; that
is, to create a condition in which the get area is not empty. If the function is
called when characters occupy the get area, it should create a nonempty area
and return the next character (which it should also leave in the get area). If
no more characters are available, underflow() should return EOF and leave an
empty get area.

See Also

ios class
streambuf class

4–14 iostream Package

fstream class

fstream class

Supports formatted and unformatted input from and output to files.

Header File

#include <fstream.hxx>

Alternative Header
#include <fstream.h>

Declaration

class fstream: public iostream
{
public:

fstream();
fstream(const char *name, int mode,

int prot = filebuf::openprot);
fstream(int fd);
fstream(int fd, char *p, int len);
~fstream();

void attach(int fd);
void close();
void open(const char *name, int mode,

int prot = filebuf::openprot) ;
filebuf *rdbuf();
void setbuf(char *p, int len);

};

Description

This class specializes the iostream class to files by using a filebuf object to
do the input and output. Your program can perform common operations, such
as opening and closing files, without explicitly mentioning filebuf objects.

iostream Package 4–15

fstream class

Constructors and Destructors

fstream()
Constructs an unopened fstream object.

fstream(int fd)
Constructs an fstream object connected to the file whose descriptor is passed
through the fd argument. The file must be open.

fstream(int fd, char *p, int len)
Constructs an fstream object connected to a file whose descriptor is passed
through the fd argument, and also initializes the associated filebuf object to
use the len bytes starting at p as the reserve area. If p is null or len is 0, the
filebuf object is unbuffered.

fstream(const char *name, int mode, int prot)
Constructs an fstream object and opens the file specified by the name
argument. The mode and prot arguments specify the file open mode and
protection. By default, prot is filebuf::openprot. If the open action fails, the
error state (io_state) of the constructed fstream object indicates failure.

~fstream()
Deletes an fstream object.

Member Functions

void attach(int fd)
Connects an fstream object to a file whose descriptor is passed through the fd
argument. A failure occurs when the fstream object is connected to a file, in
which case ios::failbit is set in the filebuf object’s error state.

void close()
Closes any associated filebuf object and consequently breaks the connection
of the fstream object to the file. The error state of the fstream object is
cleared except on failure. A failure occurs when the call to the filebuf object’s
close() function fails.

void open(const char *name, int mode, int prot)
Opens a file with the file name specified by name and connects the fstream
object to it. If the file does not exist, the function tries to create it with the
protection specified by the prot argument unless ios::nocreate is set. By
default, prot is filebuf::openprot.

4–16 iostream Package

fstream class

Failure occurs if the fstream object is open or when the call to the filebuf
object’s open() function fails, in which case ios::failbit is set in the filebuf
object error state. The members of open_mode are bits that may be joined
together by or (because this joining takes an int, open() takes an int rather
than an open_mode argument). For an explanation of the meanings of these
bits in open_mode, see the Enumerated Types section for the ios class.

filebuf *rdbuf()
Returns a pointer to the filebuf object associated with the fstream object.
This function has the same meaning as ios::rdbuf(), but has a different type.

void setbuf(char *p, int len)
Calls the associated filebuf object setbuf() function to request space for
a reserve area. A failure occurs if the filebuf object is open or if the call to
rdbuf()->setbuf fails for any other reason.

iostream Package 4–17

IAPP(TYPE) class

IAPP(TYPE) class

For an istream object, declares predefined parameterized applicators.

Header File

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Compile-Time Parameter

TYPE—The type of the istream object. It must be an identifier.

Declaration

class IAPP(TYPE)
{
public:

IAPP(TYPE)(istream &(*f)(istream &, TYPE));
IMANIP(TYPE) operator()(TYPE a);

};

Constructor

IAPP(TYPE) (istream &(*f) (istream &, TYPE))
Creates an applicator; *f is the left operand of the insertion operator.

Operator

IMANIP(TYPE) operator () (TYPE a)
Casts an object of type a into a manipulator function for an istream object.

See Also

IMANIP(TYPE) class

4–18 iostream Package

ifstream class

ifstream class

Supports formatted and unformatted input from files.

Header File

#include <fstream.hxx>

Alternative Header
#include <fstream.h>

Declaration

class ifstream: public istream
{
public:

ifstream();
ifstream(const char *name, int mode = ios::in,

int prot = filebuf::openprot);
ifstream(int fd);
ifstream(int fd, char *p, int len);
~ifstream();

void attach(int fd);
void close();
void open(const char *name, int mode = ios::in,

int prot = filebuf::openprot);
filebuf *rdbuf();
void setbuf(char *p, int len);

};

Description

This class specializes the istream class to files by using a filebuf object to do
the input. Your program can perform common operations, such as opening and
closing files, without explicitly mentioning filebuf objects.

iostream Package 4–19

ifstream class

Constructors and Destructors

ifstream()
Constructs an unopened ifstream object.

ifstream(int fd)
Constructs an ifstream object connected to a file whose descriptor is passed
through the fd argument. The file must already be open.

ifstream(int fd, char *p, int len)
Constructs an ifstream object connected to a file whose descriptor is passed
through the fd argument, and also initializes the associated filebuf object to
use the len bytes starting at p as the reserve area. If p is null or len is 0, the
filebuf object is unbuffered.

ifstream(const char *name, int mode, int prot)
Constructs an ifstream object and opens the file with the file name specified
by name. The mode and prot arguments specify the file open mode and
protection. By default, prot is filebuf::openprot. If the open fails, the error
state (io_state) of the constructed ifstream object indicates failure.

~ifstream()
Deletes an ifstream object.

Member Functions

void attach(int fd)
Connects an ifstream object to a file whose descriptor is passed through the fd
argument. A failure occurs when the ifstream object is connected to a file, in
which case ios::failbit is set in the ifstream object error state.

void close()
Closes any associated filebuf object and consequently breaks the connection
of the ifstream object to the file. The error state of the fstream object is
cleared except on failure. A failure occurs when the call to the filebuf object’s
close() function fails.

void open(const char *name, int mode, int prot)
Opens a file specified by the name argument and connects the ifstream object
to it. If the file does not exist, the function tries to create it with the protection
specified by the prot argument unless ios::nocreate is set. By default, prot is
filebuf::openprot.

4–20 iostream Package

ifstream class

Failure occurs if the ifstream object is open or when the call to the filebuf
object open() function fails, in which case ios::failbit is set in the filebuf
object error state. The members of open_mode are bits that may be joined
together by or (because this joining takes an int, open() takes an int rather
than an open_mode argument). For an explanation of the meanings of these
bits in open_mode, see the Enumerated Types section for the ios class.

filebuf *rdbuf()
Returns a pointer to the filebuf object associated with the ifstream object.
This function has the same meaning as ios::rdbuf() but has a different type.

void setbuf(char *p, int len)
Calls the associated filebuf object setbuf() function to request space for
a reserve area. A failure occurs if the filebuf object is open or if the call to
rdbuf()->setbuf fails for any other reason.

iostream Package 4–21

IMANIP(TYPE) class

IMANIP(TYPE) class

For an istream object, declares the predefined parameterized manipulators
and provides macros for user-defined parameterized manipulators.

Header File

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Compile-Time Parameter

TYPE—The type of the istream object. It must be an identifier.

Declaration

class IMANIP(TYPE)
{
public:

IMANIP(TYPE)(istream &(*f)(istream &, TYPE), TYPE a);
friend istream &operator>>(istream &s, IMANIP(TYPE) &m);

};

Description

These manipulators serve the istream class by producing some useful effect,
such as embedding a function call in an expression containing a series of
insertions and extractions. You also can use manipulators to shorten the long
names and sequences of operations required by the iostream class.

In its simplest form, a manipulator takes an istream& argument, operates on
it in some way, and returns it.

Constructor

IMANIP(TYPE)(istream &(*f)(istream &, TYPE), TYPE a)
Creates a manipulator; *f is the left operand of the extractor operator.

4–22 iostream Package

IMANIP(TYPE) class

Operator

istream &operator >> (istream &s, IMANIP(TYPE) &m)
Takes data from an istream object.

iostream Package 4–23

IOAPP(TYPE) class

IOAPP(TYPE) class

For an iostream object, declares predefined parameterized applicators.

Header File

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Compile-Time Parameter

TYPE—The type of the iostream object. It must be an identifier.

Declaration

class IOAPP(TYPE)
{
public:

IOAPP(TYPE)(iostream &(*f)(iostream &, TYPE));
IOMANIP(TYPE) operator()(TYPE a);

};

Constructor

IOAPP(TYPE)(iostream &(*f)(iostream &, TYPE))
Creates an applicator.

Operator

IOMANIP(TYPE) operator () (TYPE a)
Casts an object of type a into a manipulator function for an iostream object.

See Also

IOMANIP(TYPE) class

4–24 iostream Package

IOMANIP(TYPE) class

IOMANIP(TYPE) class

For an iostream object, declares predefined parameterized manipulators and
provides macros for user-defined parameterized manipulators.

Header File

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Compile-Time Parameter

TYPE—The type of the iostream object. It must be an identifier.

Declaration

class IOMANIP(TYPE)
{
public:

IOMANIP(TYPE)(iostream &(*f)(iostream &, TYPE), TYPE a);
friend istream &operator>>(iostream &s, IOMANIP(TYPE) &m);
friend ostream &operator<<(iostream &s, IOMANIP(TYPE) &m);

};

IOMANIPdeclare(int);
IOMANIPdeclare(long);

Description

These manipulators serve the iostream class by producing some useful effect,
such as embedding a function call in an expression containing a series of
insertions and extractions. You can also use manipulators to shorten the long
names and sequences of operations required by the iostream class.

In its simplest form, a manipulator takes an iostream& argument, operates on
it in some way, and returns it.

Two ios manipulators for using Mutex objects, lock and unlock, come
in both parameterized and unparameterized forms. The parameterized
manipulators let users synchronize iostream objects, the parameter being
a user-defined Mutex object. To use parameterized manipulators, you must
include iomanip.hxx. Unparameterized manipulators let users synchronize the
predefined stream objects: cerr, cin, clog, and cout.

iostream Package 4–25

IOMANIP(TYPE) class

For examples of using the lock and unlock manipulators, see Chapter 6 and
the section on Global Declarations in this chapter.

Constructor

IOMANIP(TYPE)(iostream &(*f)(iostream &, TYPE), TYPE a)
Creates a manipulator.

Macro

IOMANIPdeclare(TYPE)
Declares the manipulators (and the manipulator classes) that have an
operator() member function for type TYPE.

Operators

ostream &operator << (iostream &s, IOMANIP(TYPE) &m)
Sends data to an iostream object.

istream &operator >> (iostream &s, IOMANIP(TYPE) &m)
Takes data from an iostream object.

4–26 iostream Package

ios class

ios class

Contains state variables common to most of the other classes in the iostream
package.

Header

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declaration

class ios
{
public:

enum io_state { goodbit = 0, eofbit = 01,
failbit = 02, badbit = 04 };

enum open_mode { in = 01, out = 02, ate = 04,
app = 010, trunc = 020,
nocreate = 040, noreplace = 0100 };

enum seek_dir { beg = 0, cur = 01, end = 02 };

enum { skipws = 01,
left = 02, right = 04, internal = 010,
dec = 020, oct = 040, hex = 0100,
showbase = 0200, showpoint = 0400,
uppercase = 01000,
showpos = 02000,
scientific = 04000, fixed = 010000,
unitbuf = 020000, stdio = 040000 };

static const long basefield;
static const long adjustfield;
static const long floatfield;

ios(streambuf *);
virtual ~ios();

iostream Package 4–27

ios class

inline int bad() const;
static long bitalloc();
inline void clear(int state = 0);
inline int eof() const;
inline int fail() const;
inline char fill() const;
char fill(char);
inline long flags() const;
long flags(long);
inline int good() const;
long &iword(int);
inline int operator!();
inline operator void *();
inline int precision() const;
int precision(int);
void *&pword(int);
inline streambuf *rdbuf();
inline int rdstate() const;
long setf(long setbits, long field);
long setf(long);
static void sync_with_stdio();
inline ostream *tie() const;
ostream *tie(ostream *);
long unsetf(long);
inline int width() const;
int width(int n);
static int xalloc();

protected:
ios();

void init(streambuf *);
inline void setstate(int state);

};

Description

Classes derived from the ios class provide an interface for transferring
formatted and unformatted information into and out of streambuf objects.

Enumerated Types

io_state
Represents a collection of bits (flags) that describe the internal error states of
an object. The values are as follows:

goodbit No errors occurred.
eofbit End-of-file encountered during an extraction operation.

4–28 iostream Package

ios class

failbit Extraction or conversion failed but the stream is still usable.
badbit A severe error, usually in an operation on the associated

streambuf object, from which recovery is unlikely.

open_mode
Represents a collection of bits (flags) for specifying the mode of the open()
function. Use this data type with objects of the fstream, ifstream, and
ofstream classes. The values are as follows:

app Performs a seek to the end-of-file. This appends to the end
of the file any subsequent data written to the file. ios::app
implies ios::out.

ate Performs a seek to the end-of-file during an open() operation.
ios::ate does not imply ios::out.

in Opens the file for input. Constructions and open operations of
ifstream objects imply ios::in. For fstream objects, ios::in
signifies that input operations should be allowed if possible.
Including ios::in in the modes of an ofstream object is
legal, implying that the original file (if it exists) should not be
truncated.

out Opens the file for output. Constructions and open operations
of ofstream objects imply ios::out. For fstream objects,
ios::out indicates that output operations are allowed.

trunc Truncates (discards) the contents of the file (if it exists).
ios::trunc is implied if ios::out is specified (including
implicit specification for ofstream objects), and neither
ios::app nor ios::ate is specified.

nocreate Causes an open() operation to fail if the file does not exist.
noreplace Causes an open() operation to fail if the file exists.

iostream Package 4–29

ios class

seek_dir
Represents a collection of bits for positioning get and put pointers. Use this
data type with functions of the filebuf, istream, ostream, and streambuf
classes. The values are as follows:

beg Indicates the beginning of the stream
cur Indicates the current position
end Indicates the end of the stream (end-of-file)

Data Members

const long adjustfield
Collectively specifies the flags (bits) that control padding (left, right, and
internal).

const long basefield
Collectively specifies the flags that control base conversion (dec, hex, and oct).

const long floatfield
Collectively specifies the flags that control floating-point value conversion
(fixed and scientific).

Note

When you set a flag that is part of adjustfield, basefield, or
floatfield, you must ensure that the other flags within the collection
are cleared. Only one flag within the collection should be set at any
one time.

Be aware that the setiosflags(flag) manipulator and the setf(flag)
member function set only the flag or flags that you specify. If the flag
you specify is part of a collection, these do not clear the other flags in
the collection.

The setf(flag, field) member function is useful for setting fields
within a collection. Also, the hex, oct, and dec manipulators do ensure
that the other flags within the basefield collection are cleared.

Constructors and Destructors

ios()
Constructs an ios object with the effect undefined. It lets derived classes
inherit the ios class as a virtual base class. The object is initialized with the
following default values:

4–30 iostream Package

ios class

Element Default Value

fill() The space character
flags() ios::dec | ios::skipws

precision() 6
rdstate() ios::goodbit

width() 0

ios(streambuf *b)
Constructs an ios object, associating the constructed ios object with the
streambuf object pointed to by b. The object is initialized with the same
default values as the ios() constructor.

virtual ~ios()
Deletes an ios object.

Overloaded Operators

When defined, the following operators allow convenient checking of the error
state of an ios.

int operator !()
Returns nonzero if failbit or badbit is set in the error state, which allows the
use of such expressions as if (!cin)

int operator void *()
Converts an ios object to a pointer so that it can be compared to 0. The
conversion returns a nonzero value (not meant for further use) if neither
failbit nor badbit is set in the error state. This allows the use of such
expressions as if (cin) . . . and if (cin >> x)

Other Member Functions

int bad() const
Returns a nonzero value if badbit is set in the error state; otherwise, it
returns 0. This usually indicates that some operation on rdbuf() has failed,
and that continued operations on the associated streambuf object may not be
possible.

long bitalloc()
Returns a long integer with a single, previously unallocated bit set. This
gives you an additional flag should you need one (to pass to ios::set(), for
example).

iostream Package 4–31

ios class

void clear(int state)
Stores an integer value as the error state. A 0 value clears all bits.

int eof() const
Returns a nonzero value if eofbit is set in the error state; otherwise, it
returns 0. This bit is usually set during an extraction and when an end-of-file
has been encountered.

int fail() const
Returns a nonzero value if either badbit or failbit is set in the error
state; otherwise, it returns 0. This usually indicates that some extraction
or conversion operation has failed, but that the stream remains usable; once
failbit clears, operations on the stream can usually continue.

char fill() const
Returns the variable currently used as the fill (padding) character.

char fill(char c)
Sets c as the fill (padding) character if one is needed (see width ()) and returns
the previous value. The default fill character is a space. The right, left, and
internal flags determine positioning of the fill character. A parameterized
manipulator, setfill, is also available for setting the fill character.

long flags() const
Returns the current format flags.

long flags(long f)
Resets all the format flags to those specified in f and returns the previous
settings. The flags are as follows:

skipws For scalar operations, instructs the arithmetical extractor to
skip white space before beginning conversion. As a precaution
against looping, arithmetical extractors signal an error if the
next character is white space and the skip variable is not set.

left
right
internal

Control padding of values. The left flag adds a fill character
after a value, right adds a fill character before a value, and
internal adds a fill character after any leading sign or base
indication, but before the value. Right-adjustment is the
default if none of these flags are set. The fields are collectively
identified by the static member ios::adjustfield. The fill
character is controlled by the fill() function and the width
after the padding is controlled by the width() function.

4–32 iostream Package

ios class

dec
oct
hex

Control the conversion base of a value. Insertions are in
decimal if none of these flags are set. Extractions follow
C++ lexical conventions for integral constants. The flags are
collectively identified by the static member ios::basefield.
The manipulators hex, dec, and oct are also available for
setting the conversion base.

showbase Converts insertions to an external form that can be read
according to the C++ lexical conventions for integral constants.
By default, showbase is not set.

showpos Inserts a plus sign (+) into a decimal conversion of a positive
integral value.

uppercase Uses an uppercase X for hexadecimal conversion when
showbase is set, or uses uppercase E to print floating-point
numbers in scientific notation. By default, uppercase is not
set.

showpoint Specifies that trailing zeros and decimal points appear in the
result of a floating-point conversion.

scientific
fixed

Control the format to which a floating-point value is converted
for insertion into a stream. These two flags are collectively
identified by the static member ios::floatfield. The
scientific flag converts the value using scientific notation,
with one digit before the decimal point. Depending on the
uppercase flag, an E or an e introduces the exponent. The
fixed flag converts the value to decimal notation. For both
flags, the precision function determines the number of digits
following the decimal point (6 is the default). If neither flag is
set, then scientific notation is used only if the exponent from
the conversion is less than –4 or greater than the precision. If
showpoint is not set, trailing zeros are removed from the result
and a decimal point appears only if followed by a digit.

unitbuf Causes ostream::osfx() to perform a flush after each
insertion. Unit buffering constitutes a performance
compromise between buffered and unbuffered output.

stdio Causes ostream::osfx() to flush stdout and stderr after
each insertion.

int good() const
Returns a nonzero value if the error state has no bits set; otherwise, it
returns 0.

iostream Package 4–33

ios class

void init(streambuf *b)
Initializes the ios object; intended for use by classes derived from ios.

long& iword(int i)
Returns a reference to the ith user-defined word, where i is an index into an
array of words allocated by ios::xalloc. 1

int precision() const
Returns the precision format state variable.

int precision(int i)
Sets the precision format state variable to i and returns the previous value.
The variable controls the number of significant digits inserted by the floating-
point inserter. The default is 6. A parameterized manipulator, setprecision,
is also available for setting the precision.

void *&ios::pword(int i)
Returns a reference to the ith user-defined word, where i is an index into an
array of words allocated by ios::xalloc. This function differs from iword()
only in type.

streambuf *ios::rdbuf()
Returns a pointer to the streambuf object that was associated with an ios
object when the ios object was constructed.

int rdstate() const
Returns the current error state.

long setf(long setbits)
Makes available to the streambuf object associated with an ios object
the format flags marked in setbits and returns the previous settings. A
parameterized manipulator, setiosflags, performs the same function. If you
are setting a flag that is part of a collection (for example, basefield), note that
this manipulator does not clear the other flags in the collection.

long setf(long setbits, long field)
Clears, in the streambuf object associated with an ios object, the format flags
specified by field, then resets these flags to the settings marked in setbits. It
returns the previous settings. Specifying 0 in setbits clears all the bits specified
in field, as does the parameterized manipulator, resetioflags.

1 This function references a single array that is shared among all instances of ios
objects. This differs from the HP UNIX operating system, where this function
references the array that is specific to the ios instance.

4–34 iostream Package

ios class

void setstate(int state)
Changes only the bits specified in the state argument.

void sync_with_stdio()
Solves problems that arise with mixing stdio and iostream objects. When
first called, the sync_with_stdio() function resets the standard iostream
functions (cin, cout, cerr, and clog) to be streams using stdiobuf objects.
Subsequently, input and output using these streams may be mixed with input
and output using the corresponding FILE parameters (stdin, stdout, and
stderr), and properly synchronized. The sync_with_stdio() function makes
cout and cerr unit buffered (see ios::unitbuf and ios::stdio). Invoking
sync_with_stdio() degrades performance variably; the shorter the strings
being inserted, the greater the degradation.

ostream *ios::tie() const
Returns the tie variable (see the following member function description).

ostream *ios::tie(ostream *osp)
Sets the tie variable to osp and returns its previous value. The tie variable
supports automatic flushing of ios objects. The ios object that the tie variable
points at is flushed if the variable is not null, and an ios object either needs
more characters or has characters to be consumed. By default, cin is initially
tied to cout so that attempts to get more characters from standard input result
in flushing standard output. Additionally, cerr and clog are tied to cout by
default. By default, the tie variable is set to 0 for other ios objects.

long unsetf(long setbits)
Unsets, in the streambuf object associated with an ios object, the bits set in
setbits; it returns the previous settings.

int width() const
Returns the field-width format variable (see the following member function
description). The field width setting within the ios class is ignored during
single character output: operator<<(char) and operator<<(unsigned char).

int width(int n)
Sets the field-width format variable to n and returns the previous value. The
field width specifies a minimum number of characters for inserters. When the
variable is 0 (the default), inserters insert only as many characters as needed
to represent the value being inserted. When the variable is nonzero, and the
value being inserted needs fewer than field-width characters to be represented,
inserters insert at least that many characters using the fill character to pad
the value. Numeric inserters do not truncate values even if the value being
inserted is more than field-width characters. After each insertion or extraction,

iostream Package 4–35

ios class

the field-width format variable resets to 0. A parameterized manipulator, setw,
is also available for setting the field width.

int xalloc()
Returns a previously unused index into an array of words available for use by
derived classes as format state variables. 1

Examples

1. cout.width(6);
cout << x << " " << y;

Outputs x in at least six characters, but uses only as many characters as
needed for the separating space and y.

In the following examples, mystrm is an ios object.

2. mystrm.clear(ios::badbit|s.rdstate())

Sets the badbit member of the io_state enumerated data type without
clearing previously set bits.

3. mystrm.setf(ios::hex,ios::basefield)

Changes the conversion base in mystrm to be hexadecimal.

1 This function references a single array that is shared among all instances of ios
objects. This differs from the HP UNIX operating system, where this function
references the array that is specific to the ios instance.

4–36 iostream Package

iostream class

iostream class

Provides the means to both insert into and extract from a single sequence of
characters.

Header File

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declaration

class iostream: public istream, public ostream
{
public:

iostream(streambuf *);
virtual ~iostream();

protected:
iostream();

};

Description

This class combines the istream and ostream classes. You use it to carry out
bidirectional operations (inserting into and extracting from a single sequence
of characters).

Constructors and Destructors

iostream()
Constructs an iostream object, in undefined form, to enable inheritance by
derived classes.

iostream(streambuf *b)
Constructs an iostream object. It initializes ios state variables and associates
the iostream object with the streambuf object pointed to by b.

virtual ~iostream()
Deletes an iostream object.

iostream Package 4–37

iostream_withassign class

iostream_withassign class

Adds an assignment operator and a constructor with no operands to the
iostream class.

Header File

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declaration

class iostream_withassign: public iostream
{
public:

iostream_withassign();
virtual ~iostream_withassign();

iostream_withassign &operator=(iostream &);
iostream_withassign &operator=(streambuf *);

};

Description

This class adds an assignment operator and a constructor with no operands to
the iostream class.

Constructors and Destructors

iostream_withassign()
Constructs an iostream_withassign object; it does no initialization.

virtual ~iostream_withassign()
Deletes an iostream_withassign object; no user action is required.

Overloaded Operators

iostream_withassign &operator = (iostream &)
Associates iostream->rdbuf() with an iostream_withassign object and
initializes the entire state of that object.

4–38 iostream Package

iostream_withassign class

iostream_withassign &operator = (streambuf *)
Associates streambuf* with an iostream_withassign object and initializes the
entire state of that object.

iostream Package 4–39

istream class

istream class

Supports interpretation of characters extracted from an associated streambuf
object.

Header File

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declaration

class istream : virtual public ios
{
public:

istream(streambuf *);
virtual ~istream();

inline int gcount();
istream &get(char *ptr, int len,

char delim = ’\n’);
istream &get(unsigned char *ptr, int len,

char delim = ’\n’);
istream &get(char &);
inline istream &get(unsigned char &);
istream &get(streambuf &sb, char delim = ’\n’);
int get();
istream &getline(char *ptr, int len,

char delim = ’\n’);
istream &getline(unsigned char *ptr, int len,

char delim = ’\n’);
istream &ignore(int len = 1,

int delim =);
int ipfx(int need = 0);
void isfx();
int peek();
istream &putback(char);
istream &read(char *s, int n);
inline istream &read(unsigned char *s, int n);
istream &seekg(streampos);
istream &seekg(streamoff, seek_dir);
void skipwhite();
int sync();
streampos tellg();
istream &operator>>(char *);

4–40 iostream Package

istream class

istream &operator>>(char &);
istream &operator>>(short &);
istream &operator>>(int &);
istream &operator>>(long &);
istream &operator>>(float &);
istream &operator>>(double &);
istream &operator>>(unsigned char *);
istream &operator>>(unsigned char &);
istream &operator>>(unsigned short &);
istream &operator>>(unsigned int &);
istream &operator>>(unsigned long &);
istream &operator>>(streambuf *);
inline istream &operator>>(istream &(*f)(istream &));
istream &operator>>(ios &(*f)(ios &));

protected:
istream();

};

Description

This class provides facilities for formatted and unformatted extraction from
streambuf objects.

Constructors and Destructors

istream(streambuf *sb)
Constructs an istream object. It initializes ios state variables and associates
the istream object with the buffer pointed to by sb.

virtual ~istream()
Deletes an istream object.

Overloaded Operators

The following operators are all formatted input extractors. Given the
expression ins >> x, these operators extract characters from ins and convert
them to the variable x. The argument to the operator determines the type of x.
Extractions are performed only if a call to ipfx(0) returns a nonzero value.
Errors are indicated by setting the error state of ins. ios::failbit means
that characters in ins did not represent the required type. ios::badbit means
that attempts to extract characters failed. ins is always returned. The details
of conversion depend on the values of the ins object format state flags and
variables, and the type of x. Extractions that use width reset it to 0; otherwise,
the extraction operators do not change the value of the istream object format
state.

iostream Package 4–41

istream class

istream &operator >> (char &x)
istream &operator >> (unsigned char &x)
Extracts a character and stores it in x.

istream &operator >> (char *x)
istream &operator >> (unsigned char *x)
Extracts characters and stores them in the array pointed at by x, until a
white-space character is found in the iostream object. The action leaves the
terminating white-space character in the iostream object. If the iostream
object’s width() is nonzero, it is taken to be the size of the array and no more
than width()–1 characters are extracted. A terminating null character (’\0’)
is always stored, even if nothing else is done because of the iostream object’s
error state. The iostream object’s width() is reset to 0.

istream &operator >> (short &x)
istream &operator >> (int &x)
istream &operator >> (long &x)
istream &operator >> (unsigned short &x)
istream &operator >> (unsigned int &x)
istream &operator >> (unsigned long &x)
Extracts characters and converts them to an integral value according to the
conversion specified in the iostream object’s format flags. Converted values
are stored in x. The first character can be a sign (� or +). After that, the
conversion is octal if ios::oct is set in the iostream object’s flags, decimal if
ios::dec is set, or hexadecimal if ios::hex is set.

The first nondigit that is left in the iostream object terminates the conversion.
If no conversion base flag is set, the conversion proceeds according to C++
lexical conventions: if the first characters (after the optional sign) are 0x or 0X,
the conversion is hexadecimal; if the first character is 0, the conversion is octal;
otherwise, the conversion is decimal. If no digits are available (not counting
the 0 in 0x or 0X during hex conversion), ios::failbit is set.

istream &operator >> (float &x)
istream &operator >> (double &x)
Extracts characters and converts them according to C++ syntax for a float
value or a double value. Converted values are stored in x. If no digits are
available in the iostream object, or if the iostream object does not begin with
a well formed floating-point or double number, ios::failbit is set.

istream &operator >> (streambuf *b)
Keeps getting characters from ios and inserting them into the buffer b until
EOF is reached, if ios::ipfx(0) returns nonzero. Always returns the iostream
object.

4–42 iostream Package

istream class

istream &operator >> (ios &(*f)(ios &))
Calls an ios object manipulator function f for an istream object.

istream &operator >> (istream &(*f)(istream &))
Calls an istream object manipulator function f for an istream object.

Other Member Functions

The unformatted input extractors, get, getline, ignore, and read, are among
these functions. Before performing any extractions, these extractors, plus
the unformatted function peek (which returns the next character without
extracting it), call ipfx(1) and proceed only if a nonzero value is returned.

int gcount()
Returns the number of characters extracted by the last unformatted input
function (get, getline, ignore, and read). Note that formatted input functions
can call unformatted input functions and also reset this number.

int get()
Extracts a character and returns it, or returns EOF if the extraction encounters
the end-of-file. It never sets ios::failbit.

istream &get(char &ptr)
istream &get(unsigned char &ptr)
Extracts a single character and stores it in &ptr.

istream &get(char *ptr, int len, char delim)
istream &get(unsigned char *ptr, int len, char delim)
Extracts characters and stores them in the byte array beginning at ptr and
extending for len bytes. Extraction stops when any of the following conditions
are met:

• The extractor encounters delim (delim is left in the istream object and not
stored.)

• The istream object has no more characters.

• The array has only one byte left.

The function stores a terminating null, even if it does not extract any
characters because of its error status. The extraction sets ios::failbit
only if it reaches an end-of-file before storing any characters.

iostream Package 4–43

istream class

istream &get(streambuf &sb, char delim)
Extracts characters from an istream object rdbuf() function and stores them
into sb. It stops if it encounters the end-of-file, if a store into sb fails, or if it
encounters delim (which it leaves in the istream object). The function sets
ios::failbit if the extraction stops because the store operation into sb fails.

istream &getline(char *ptr, int len, char delim)
istream &getline(unsigned char *ptr, int len, char delim)
Functions the same as get(char *, int, char) except that these extract a
terminating delim character from an istream object. If delim occurs when
exactly len characters have been extracted, a filled array is considered to be the
cause of the termination and the extraction leaves this delim in the istream
object.

istream &ignore(int len, int delim)
Extracts and discards up to len characters. Extraction stops prematurely if
delim is extracted or the end-of-file is reached. If delim is EOF, it can never
cause termination.

int ipfx(int need)
Returns 0 if the error state of an istream object is nonzero. If necessary (and
if it is not null), the function flushes any ios tied to the istream object (see the
description of ios::tie()). Flushing is considered necessary if need is set to 0
or if fewer than need characters are immediately available. If ios::skipws is
set in the istream object’s flags() function, and need is 0, then the function
extracts the leading white-space characters from the istream object. The
function returns 0 if an error occurs while skipping white space; otherwise, it
returns a nonzero value.

void isfx()
Performs input suffix operations (used for internal processing).

int peek()
Begins by calling ipfx(1). If that call returns 0, or if the istream object is
at the end-of-file, the function returns EOF. Otherwise, it returns the next
character without extracting it.

istream &putback(char c)
Tries to back up an istream object rdbuf() function. c must be the character
before the get pointer belonging to the istream object rdbuf(). (Unless
some other activity is modifying the istream object rdbuf(), this is the last
character extracted from the istream object.) If c is not the character before
the get pointer, the effect of the function is undefined; the backup may fail and
set the error state. The putback function is a member of the istream object,

4–44 iostream Package

istream class

but it never extracts characters so it does not call ipfx. However, it returns
without doing anything if the error state is nonzero.

istream &read(char *s, int n)
istream &read(unsigned char *s, int n)
Extracts n characters and stores them in the array begining at s. If it reaches
the end-of-file before extracting n characters, the function stores whatever it
can extract and sets ios::failbit. To determine the number of characters
extracted, use the istream gcount() function.

istream &seekg(streampos)
istream &seekg(streamoff, seek_dir)
Repositions the get pointer of an istream object rdbuf() function.

int sync()
Establishes consistency between internal data structures and the external
source of characters. Calls an istream object rdbuf()->sync(), which is a
virtual function, so the details depend on the derived class. Returns EOF to
indicate errors.

void skipwhite()
Skips extracted white-space characters.

streampos tellg()
Returns the current position of the get pointer of an istream object rdbuf()
function.

Examples

1. char c;
cin.get(c);

Extracts a single character from cin.

2. tmp.seekg(10,ios::cur)

Moves the point in a file from which information is read forward 10 bytes.

See Also

ios class
istream_withassign class
istrstream class

iostream Package 4–45

istream_withassign class

istream_withassign class

Adds an assignment operator and a constructor with no operands to the
istream class.

Header File

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declaration

class istream_withassign: public istream
{
public:

istream_withassign();
virtual ~istream_withassign();

istream_withassign &operator=(istream &);
istream_withassign &operator=(streambuf *);

};

Description

This class adds an assignment operator and a constructor with no operands to
the istream class.

Constructors and Destructors

istream_withassign()
Constructs an istream_withassign object; it does no initialization.

virtual ~istream_withassign()
Deletes an istream_withassign object; no user action is required.

Overloaded Operators

istream_withassign &operator = (istream &s)
Associates an istream object’s rdbuf() function with an istream_withassign
object and initializes the entire state of that object.

4–46 iostream Package

istream_withassign class

istream_withassign &operator = (streambuf *sb)
Associates sb with an istream_withassign object and initializes the entire
state of that object.

iostream Package 4–47

istrstream class

istrstream class

Specializes the istream class to perform extractions from arrays of bytes in
memory.

Header File

#include <strstream.hxx>

Alternative Header
#include <strstream.h>

Declaration

class istrstream: public istream
{
public:

istrstream(char *);
istrstream(char *, int);

strstreambuf *rdbuf();
};

Description

Objects of this class perform in-core extractions from arrays of bytes in
memory.

Constructors and Destructors

istrstream(char *cp)
Constructs an istrstream object and fetches characters from the (null
terminated) string cp. The terminating null character does not become part of
the sequence. Seeks (istream::seekg()) are permitted within the allocated
space.

istrstream(char *cp, int len)
Constructs an istrstream object and fetches characters from the array
beginning at cp and extending for len bytes. Seeks (istream::seekg()) are
permitted anywhere within that array.

4–48 iostream Package

istrstream class

Member Function

strstreambuf *rdbuf()
Returns the strstreambuf object associated with the istrstream object.

iostream Package 4–49

OAPP(TYPE) class

OAPP(TYPE) class

For an ostream object, declares predefined parameterized applicators.

Header File

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Compile-Time Parameter

TYPE—The type of the ostream object. It must be an identifier.

Declaration

class OAPP(TYPE)
{
public:

OAPP(TYPE)(ostream &(*f)(ostream &, TYPE));
OMANIP(TYPE) operator()(TYPE a);

};

Constructor

OAPP(TYPE)(ostream &(*f)(ostream &, TYPE))
Creates an applicator.

Operator

OMANIP(TYPE) operator () (TYPE a)
Casts an object of type a into a manipulator function for an ostream object.

See Also

OMANIP(TYPE) class

4–50 iostream Package

ofstream class

ofstream class

Supports output to files.

Header File

#include <fstream.hxx>

Alternative Header
#include <fstream.h>

Declaration

class ofstream: public ostream
{
public:

ofstream();
ofstream(const char *name, int mode = ios::out,

int prot = filebuf::openprot);
ofstream(int fd);
ofstream(int fd, char *p, int len);
~ofstream();

void attach(int fd);
void close();
void open(const char *name, int mode = ios::out,

int prot = filebuf::openprot);
filebuf *rdbuf();
void setbuf(char *p, int len);

};

Description

This class specializes the ostream class to files using a filebuf object to do the
output. Your program can perform common operations, such as opening and
closing files, without explicitly mentioning filebuf objects.

iostream Package 4–51

ofstream class

Constructors and Destructors

ofstream()
Constructs an unopened ofstream object.

ofstream(int fd)
Constructs an ofstream object connected to a file whose descriptor is passed
through the fd argument. The file must already be open.

ofstream(int fd, char *p, int len)
Constructs an ofstream object connected to a file whose descriptor is passed
through the fd argument, and also initializes the associated filebuf object to
use the len bytes starting at p as the reserve area. If p is null or len is 0, the
filebuf object is unbuffered.

ofstream(const char *name, int mode, int prot)
Constructs an ofstream object and opens the file specified by the name
argument. The mode and prot arguments specify the file open mode and
protection. By default, prot is filebuf::openprot. If the open fails, the error
state (io_state) of the constructed ofstream object indicates failure.

~ofstream()
Deletes an ofstream object.

Member Functions

void attach(int fd)
Connects an ofstream object to a file whose descriptor is passed through the fd
argument. A failure occurs when the ifstream object is connected to a file, in
which case ios::failbit is set in the ofstream object error state.

void close()
Closes any associated filebuf object and consequently breaks the connection
of the ofstream object to the file. The error state of the ofstream object is
cleared except on failure. A failure occurs when the call to the filebuf object
close() function fails.

void open(const char *name, int mode, int prot)
Opens a file specified by the name argument and connects the ofstream object
to it. If the file does not exist, the function tries to create it with the protection
specified by the prot argument unless ios::nocreate is set. By default, prot is
filebuf::openprot.

4–52 iostream Package

ofstream class

Failure occurs if the ofstream object is open or when the call to the filebuf
object open() function fails, in which case ios::failbit is set in the filebuf
object’s error state. The members of open_mode are bits that may be joined
together by or (and because this joining takes an int, open() takes an int
rather than an open_mode argument). For an explanation of the meanings of
these bits in open_mode, see the Enumerated Types section for the ios class.

filebuf *rdbuf()
Returns a pointer to the filebuf object associated with the ofstream object.
This function has the same meaning as ios::rdbuf(), but has a different type.

void setbuf(char *p, int len)
Calls the associated filebuf object setbuf() function to request space for
a reserve area. A failure occurs if the filebuf object is open or if the call to
rdbuf()->setbuf fails for any other reason.

iostream Package 4–53

OMANIP(TYPE) class

OMANIP(TYPE) class

For an ostream object, declares predefined parameterized manipulators and
provides macros for user-defined parameterized manipulators.

Header File

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Compile-Time Parameter

TYPE—The type of the ostream object. It must be an identifier.

Declaration

class OMANIP(TYPE)
{
public:

OMANIP(TYPE)(ostream &(*f)(ostream &, TYPE), T a);
friend ostream &operator<<(ostream & s, OMANIP(TYPE) &m);

};

Description

These manipulators serve the ostream class by producing some useful effect,
such as embedding a function call in an expression containing a series of
insertions and extractions. You also can use manipulators to shorten the long
names and sequences of operations required by the ostream class.

In its simplest form, a manipulator takes an ostream& argument, operates on
it in some way, and returns it.

Constructor

OMANIP(TYPE)(ostream &(*f)(ostream &, TYPE), T a)
Creates a manipulator.

4–54 iostream Package

OMANIP(TYPE) class

Operator

ostream &operator << (ostream & s, OMANIP(TYPE) &m)
Sends data to an ostream object.

iostream Package 4–55

ostream class

ostream class

Supports insertion into streambuf objects.

Header File

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declaration

class ostream : virtual public ios
{
public:

ostream(streambuf *);
virtual ~ostream();

ostream &flush();
int opfx();
void osfx();
ostream &put(char c);
ostream &seekp(streampos);
ostream &seekp(streamoff, seek_dir);
streampos tellp();
ostream &write(const char *ptr, int n);
inline ostream &write(const unsigned char *ptr, int n);
ostream &operator<<(const char *);
ostream &operator<<(char);
inline ostream &operator<<(short);
ostream &operator<<(int);
ostream &operator<<(long);
ostream &operator<<(float);
ostream &operator<<(double);
ostream &operator<<(const unsigned char *);
inline ostream &operator<<(unsigned char);
inline ostream &operator<<(unsigned short);
ostream &operator<<(unsigned int);
ostream &operator<<(unsigned long);
ostream &operator<<(void *);
ostream &operator<<(streambuf *);
inline ostream &operator<<(ostream &(*f)(ostream &));
ostream &operator<<(ios &(*f)(ios &));

4–56 iostream Package

ostream class

protected:
ostream();

};

Description

Objects of this class perform formatted and unformatted insertions into
streambuf objects.

Constructors and Destructors

ostream(streambuf *b)
Constructs an istream object. It initializes ios state variables and associates
the buffer b with the ostream object.

virtual ~ostream()
Deletes an ostream object.

Overloaded Operators

The following operators are all formatted output inserters. Given the
expression outs << x, these operators insert into outs.rdbuf() a sequence
of characters representing x. The argument to the operator determines the
type of x. Insertions are performed after a call to outs.opfx() only if that call
returns nonzero. Errors are indicated by setting the error state of the ostream
object. The ostream object is always returned.

Conversion of x to a sequence of characters depends on the type of x and on the
values of the ostream object’s format state flags and variables. Padding occurs
after this representation is determined. If width() is greater than 0, and
the representation contains fewer than width() characters, then the function
adds enough fill() characters to bring the total number of characters to
ios::width(). If ios::left() is set, the sequence is left-adjusted; that is, the
function puts the padding after the sequence of characters. If ios::right() is
set, the padding is added before the character sequence. If ios::internal()
is set, the padding is added after any leading sign or base indication and
before the characters that represent the value. ios::width() is reset to 0
but all other format variables are unchanged. The full sequence (padding plus
representation) is inserted into the ostream object rdbuf() function.

iostream Package 4–57

ostream class

ostream &operator << (char x)
ostream &operator << (unsigned char x)
Inserts a character x. No special conversion is needed.

ostream &operator << (const char *x)
ostream &operator << (const unsigned char *x)
Inserts a sequence of characters up to (but not including) the terminating null
of the string that x points at.

ostream &operator << (short x)
ostream &operator << (int x)
ostream &operator << (long x)
ostream &operator << (unsigned short x)
ostream &operator << (unsigned int x)
ostream &operator << (unsigned long x)
Inserts characters as follows:

• If x is positive, the representation contains a sequence of octal digits if
ios::oct is set in the ios object format flags, decimal digits if ios::dec is
set, or hexadecimal digits if ios::hex is set. If none of these flags are set,
the conversion defaults to decimal.

• If x is negative, decimal conversion includes a minus sign (–) followed by
decimal digits.

• If x is positive and ios::showpos is set, decimal conversion includes a plus
sign (+) followed by decimal digits.

• Conversions other than decimal treat all values as unsigned.

• If ios::showbase is set, the hexadecimal representation contains 0x
before the hexadecimal digits or 0X if ios::uppercase is set; the octal
representation contains a leading 0.

ostream &operator << (float x)
ostream &operator << (double x)
Converts the arguments according to the current values of the ostream object’s
precision() function, the ostream object’s width() function, and the ostream
object’s format flags: ios::scientific, ios::fixed, and ios::uppercase. The
default value for the ostream object’s precision() function is 6. If neither
ios::scientific nor ios::fixed is set, the value of x determines whether the
representation uses scientific or fixed notation.

ostream &operator << (void *v)
Converts pointers to integral values and then converts them to hexadecimal
numbers as if ios::showbase was set.

4–58 iostream Package

ostream class

ostream &operator << (streambuf *sb)
Given the expression outs << sb, inserts into sb.rdbuf() the sequence of
characters that can be fetched from sb. When no more characters can be
fetched from sb, insertion stops. This function does no padding. It always
returns the ostream object.

ostream &operator << (ios &(*f)(ios &))
Calls an ios object manipulator function f for an ostream object.

ostream &operator << (ostream &(*f)(ostream &))
Calls an ostream object manipulator function f for an ostream object.

Other Member Functions

ostream &flush()
Calls the ostream object’s rdbuf()->sync() function to consume (that is, write
to the external file) any characters that may have been stored into a streambuf
object but are not yet consumed.

int opfx()
Performs output prefix actions. If the error state of the ostream object is
nonzero, it returns immediately. If the value of the ostream object’s tie()
function is not null, it is flushed. The function returns nonzero except when
the error state of the ostream object is nonzero.

void osfx()
Performs output suffix actions before returning from inserters. If ios::unitbuf
is set, this function flushes the ostream object. If ios::stdio is set, the
function flushes stdout and stderr. It is called by all predefined inserters, and
should also be called by user-defined inserters after any direct manipulation of
the streambuf object. It is not called by the binary output functions.

ostream &ostream::put(char c)
Inserts c into the ostream object’s rdbuf() function. It sets the error state if
the insertion fails.

ostream &seekp(streampos)
ostream &seekp(streamoff, seek_dir)
Repositions the put pointer of the ostream object’s rdbuf() function.

streampos tellp()
Returns the current position of the put pointer belonging to the ostream
object’s rdbuf() function.

iostream Package 4–59

ostream class

ostream &write(const char *ptr, int n)
ostream &write(const unsigned char *ptr, int n)
Inserts the n characters starting at ptr into the ostream object’s rdbuf()
function. These characters may include zeros; that is, ptr need not be a
null-terminated string.

Example

char c = ’Z’;
cout.put(c);

Inserts a single character (Z) into cout.

See Also

ostream_withassign class
ostrstream class

4–60 iostream Package

ostream_withassign class

ostream_withassign class

Adds an assignment operator and a constructor with no operands to the
ostream class.

Header File

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declaration

class ostream_withassign: public ostream
{
public:

ostream_withassign();
virtual ~ostream_withassign();

ostream_withassign &operator=(ostream &);
ostream_withassign &operator=(streambuf *);

};

Description

This class adds an assignment operator and a constructor with no operands to
the ostream class.

Constructors and Destructors

ostream_withassign()
Constructs an ostream_withassign object; it does no initialization.

virtual ~ostream_withassign()
Deletes an ostream_withassign object; no user action is required.

Overloaded Operators

ostream_withassign &operator = (ostream &s)
Associates s.rdbuf() with the ostream_withassign object and initializes the
entire state of that object.

iostream Package 4–61

ostream_withassign class

ostream_withassign &operator = (streambuf *sb)
Associates sb with an ostream_withassign object and initializes the entire
state of that object.

4–62 iostream Package

ostrstream class

ostrstream class

Supports the insertion of characters into arrays of bytes in memory.

Header File

#include <strstream.hxx>

Alternative Header
#include <strstream.h>

Declaration

class ostrstream: public ostream
{

public:
ostrstream();
ostrstream(char *, int, int = ios::out);
~ostrstream();

int pcount();
strstreambuf *rdbuf();
char *str();

};

Description

This class specializes the ostream class for in-core operations by providing
members that insert characters into arrays of bytes in memory.

Constructors and Destructors

ostrstream()
Constructs an ostrstream object and dynamically allocates space to hold stored
characters.

ostrstream::ostrstream(char *cp, int n, int mode)
Constructs an ostrstream object and stores characters into the array starting
at cp and continuing for n bytes. If ios::ate or ios::app is set in mode, the
function takes cp to be a null-terminated string and it begins storing at the
null character; otherwise, it begins storing at cp. Seeks are allowed anywhere
in the array.

iostream Package 4–63

ostrstream class

~ostrstream()
Deletes an ostrstream object.

Member Functions

int pcount()
Returns the number of bytes that have been stored into the buffer. This
function is useful when binary data has been stored and the ostrstream object
str() function does not point to a null-terminated string.

strstreambuf *rdbuf()
Returns the strstreambuf associated with the ostrstream object.

char *str()
Returns a pointer to the array being used and freezes the array. After str()
has been called, the effect of storing more characters into the strstream object
is undefined. If the strstream object was constructed with an explicit array,
the function returns a pointer to the array; otherwise, it returns a pointer to
a dynamically allocated area. Until str() is called, deleting the dynamically
allocated area is the responsibility of the strstream object. After str()
returns, dynamic allocation becomes the responsibility of the user program.

Example

char *bptr = bf.str()

Initializes the variable bptr with the address of the array associated with the
ostrstream object bf. This lets you manipulate the array through bptr just as
you would any character array.

4–64 iostream Package

SAPP(TYPE) class

SAPP(TYPE) class

Defines parameterized applicators for an ios object.

Header File

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Compile-Time Parameter

TYPE—The type of the ios object. It must be an identifier.

Declaration

class SAPP(TYPE)

{
public:

SAPP(TYPE)(ios &(*f)(ios &, TYPE));
SMANIP(TYPE) operator()(TYPE a);

};

Constructor

SAPP(TYPE)(ios &(*f)(ios &, TYPE))
Creates an applicator.

Operator

SMANIP(TYPE) operator () (TYPE a)
Casts an object of type a into a manipulator function for an istream or ostream
object.

See Also

SMANIP(TYPE) class

iostream Package 4–65

SMANIP(TYPE) class

SMANIP(TYPE) class

Defines parameterized manipulators for an ios object.

Header File

#include <iomanip.hxx>

Alternative Header
#include <iomanip.h>

Compile-Time Parameter

TYPE—The type of the ios object. It must be an identifier.

Declaration

class SMANIP(TYPE)
{
public:

SMANIP(TYPE)(ios &(*f)(ios &, TYPE), TYPE a);
friend istream &operator>>(istream &i, SMANIP(TYPE) &m);
friend ostream &operator<<(ostream &o, SMANIP(TYPE) &m);

};

Description

These manipulators serve the ios class by producing some useful effect, such
as embedding a function call in an expression containing a series of insertions
and extractions. You also can use manipulators to shorten the long names and
sequences of operations required by the ios class.

In its simplest form, a manipulator takes an ios& argument, operates on it in
some way, and returns it.

Constructor

SMANIP(TYPE)(ios &(*f)(ios &, TYPE), TYPE a)
Creates a manipulator.

4–66 iostream Package

SMANIP(TYPE) class

Operators

ostream &operator << (ostream &o, SMANIP(TYPE) &m)
Sends data to an ostream object.

istream &operator >> (istream &i, SMANIP(TYPE) &m)
Takes data from an istream object.

iostream Package 4–67

stdiobuf class

stdiobuf class

Provides input/output facilities through stdio FILE.

Header File

#include <stdiostream.hxx>

Alternative Header
#include <stdiostream.h>

Declaration

class stdiobuf: public streambuf
{
public:

stdiobuf(FILE *f);

virtual int overflow(int =);
virtual streampos seekoff(streamoff, seek_dir, int mode);
FILE *stdiofile();
virtual int sync();
virtual int underflow();

};

Description

This class specializes the streambuf class for stdio FILE. It uses unbuffered
mode causing all operations to be reflected immediately in the stdio FILE.

Constructor

stdiobuf(FILE *f)
Constructs an empty stdiobuf object and connects it to the stdio FILE that
the argument f points to.

4–68 iostream Package

stdiobuf class

Member Functions

virtual int overflow(int c)
Called to consume characters. If c is not EOF, this function must also either
save c or consume it. Although it can be called at other times, this function
is usually called when the put area is full and an attempt is being made to
store a new character. The normal action is to consume the characters between
pbase() and pptr(), call setp() to establish a new put area, and (if c != EOF)
store c using sputc(). The overflow(c) function should return EOF to indicate
an error; otherwise, it should return something else.

virtual streampos seekoff(streamoff off, seek_dir dir, int mode)
Repositions the abstract get and put pointers (not pptr() and gptr()). mode
specifies whether to modify the put pointer (ios::out bit set), the get pointer,
or both (ios::in bit set). off is interpreted as a byte offset. For the meanings
of dir, see the explanation of the enumerated type seek_dir in class ios.

A class derived from streambuf is not required to support repositioning. If the
derived class does not, then seekoff() should return EOF. If the derived class
does support repositioning, seekoff() should return the new position or EOF
on error.

FILE *stdiofile()
Returns a pointer to the stdio FILE associated with the stdiobuf object.

virtual int sync()
Should consume any characters stored into the put area and, if possible, give
back to the source any characters in the get area that have not been fetched.
When sync() returns, there should be no unconsumed characters and the get
area should be empty. If some kind of failure occurs, the function should return
EOF.

virtual int underflow()
Called to supply characters for fetching; that is, to create a condition in which
the get area is not empty. If this function is called when characters are in the
get area, it should return the first character. If the get area is empty, it should
create a nonempty get area and return the next character (which it should also
leave in the get area). If no more characters are available, underflow() should
return EOF and leave an empty get area.

iostream Package 4–69

stdiostream class

stdiostream class

Specializes the iostream class for stdio FILE.

Header File

#include <stdiostream.hxx>

Alternative Header
#include <stdiostream.h>

Declaration

class stdiostream: public iostream
{
public:

stdiostream(FILE *f);
~stdiostream();

stdiobuf *rdbuf();
};

Description

This class specializes the iostream class for stdio FILE, and causes that class
to use a stdiobuf object as its associated streambuf object.

In most other existing implementations, the stdiostream class is derived
directly from the ios class rather than from the iostream class. Deriving the
stdiostream class from the ios class limits its usefulness and, therefore, can
be considered a historical mistake. Nevertheless, for maximum portability, you
should use only those stdiostream features that originate from the ios class
and avoid the features supplied by the iostream class.

Constructors and Destructors

stdiostream(FILE *f)
Constructs a stdiostream object whose stdiobuf object is associated with the
FILE parameter that the f argument points to.

~stdiostream()
Deletes a stdiostream object and closes the associated stdiobuf object.

4–70 iostream Package

stdiostream class

Member Function

stdiobuf *rdbuf()
Returns a pointer to the stdiobuf object associated with the stdiostream
object.

iostream Package 4–71

streambuf class

streambuf class

Provides the buffer mechanism for streams.

Header File

#include <iostream.hxx>

Alternative Header
#include <iostream.h>

Declaration

class streambuf
{
public:

streambuf();
streambuf(char *p, int len);

virtual ~streambuf();
void dbp();

protected:
int allocate();
char *base();
int blen();

virtual int doallocate();

char *eback();
char *ebuf();
char *egptr();
char *epptr();
void gbump(int n);
char *gptr();
char *pbase();
void pbump(int n);
char *pptr();
void setb(char *b, char *eb, int a = 0);
void setg(char *eb, char *g, char *eg);
void setp(char *p, char *ep);
int unbuffered();
void unbuffered(int n);

4–72 iostream Package

streambuf class

public:
int fd();
void fd(int);
FILE *fp();
void fp(FILE *);
int in_avail();
int out_waiting();

virtual int overflow(int c = EOF);
virtual int pbackfail(int c);

int sbumpc();

virtual streampos seekpos(streampos, int = ios::in
| ios::out);

virtual streampos seekoff(streamoff, seek_dir,
int = ios::in | ios::out);

virtual streambuf *setbuf(char *ptr, int len);

streambuf *setbuf(unsigned char *ptr, int len);
streambuf *setbuf(char *ptr, int len, int i);
int sgetc();
int sgetn(char *ptr, int n);
int snextc();
int sputbackc(char c);
int sputc(int c = EOF);
int sputn(const char *s, int n);
void stossc();

virtual int sync();
virtual int underflow();

};

Description

This class supports buffers into which you can insert (put) or extract (get)
characters. It contains only the basic members for manipulating the
characters. Also, several of its member functions are virtual; to implement
virtual functions, you typically use a class derived from the streambuf class.

The protected members of the streambuf class present an interface to derived
classes organized around the get, put, and reserve areas (arrays of bytes),
which are managed cooperatively by the base and derived classes.

The reserve area is a sequence of characters with an associated get pointer,
put pointer, or both. This area serves mainly as a resource in which to allocate
space for the put and get areas. As characters enter and exit the reserve area,
the put and get areas change but the reserve area remains fixed. A collection
of character pointer values defines the three areas. These pointers infer a
boundary condition; therefore, it may be helpful to consider such pointers as
pointing just before the byte, even though they point directly at it.

iostream Package 4–73

streambuf class

Classes derived from streambuf vary in their handling of the get and put
pointers. The simplest are unidirectional buffers that permit only get and
put operations. Such classes serve as producers and consumers of characters.
Queue-like buffers (such as strstream and strstreambuf) have a put and a
get pointer that move independently of each other. In such buffers, stored
characters are queued until later fetched. File-like buffers (such as filebuf)
allow both get and put operations but have their get and put pointers linked
together, so that when one pointer moves so does the other.

You can call virtual functions to manage the collections of characters in the get
and put areas. Services supplied by virtual functions include fetching more
characters from an ultimate producer and flushing a collection of characters to
an ultimate consumer.

If your program expects a buffer to be allocated when none was allocated, then
the iostream package allocates a default buffer.

Data Member

void dbp()
Writes directly on file descriptor 1 information in ASCII about the state of the
buffer. It is intended for debugging and nothing is specified about the form
of the output. What it prints out can be understood only in relation to the
protected interface, but dbp() is a public domain function so that it can be
called anywhere during debugging.

Constructors and Destructors

streambuf()
Constructs an empty buffer corresponding to an empty sequence.

streambuf(char* base, int length)
Constructs an empty buffer and then sets up the reserve area to be length
bytes long starting at base.

virtual ~streambuf()
Deletes the reserve area if one is allocated.

4–74 iostream Package

streambuf class

Member Functions

int allocate()
Tries to set up a reserve area. If a reserve area already exists or is unbuffered,
it returns 0 without doing anything. If the attempt to allocate space succeeds,
allocate() returns 1; otherwise, it returns EOF. No nonvirtual member
functions of streambuf call allocate().

char *base()
Returns a pointer to the first byte of the reserve area. The space between
base() and ebuf() is the reserve area.

int blen()
Returns the size, in type char, of the current reserve area.

virtual int doallocate()
In streambuf, it tries to allocate a reserve area using the new operator.

In classes derived from streambuf, this function is called when allocate()
determines that space is needed. doallocate() is required to call setb(), to
provide a reserve area, or to return EOF if it cannot. It is called only if both
unbuffered() and base() are 0.

char *eback()
Returns a pointer to a lower bound on gptr(). The space between eback()
and gptr() is available for putback operations.

char *ebuf()
Returns a pointer to the byte after the last byte of the reserve area.

char *egptr()
Returns a pointer to the byte after the last byte of the get area.

char *epptr()
Returns a pointer to the byte after the last byte of the put area.

int fd()
Returns the file descriptor associated with the streambuf object, if any;
otherwise, it returns –1.

void fd(int f)
Sets the file descriptor associated with the streambuf object to f.

iostream Package 4–75

streambuf class

FILE *fp()
Returns the file pointer associated with the streambuf object, if any; otherwise,
it returns 0.

void fp(FILE *f)
Sets the file pointer associated with the streambuf object to f.

void gbump(int n)
Increments gptr() by n, which can be a positive or a negative number. No
checks are made on whether the new value of gptr()is in bounds.

char *gptr()
Returns a pointer to the first byte of the get area. The characters available
are those between gptr() and egptr(). The next character fetched will be
*gptr() unless egptr() is less than or equal to gptr().

int in_avail()
Returns the number of characters immediately available in the get area for
fetching. This number is the number of characters that can be fetched with
confidence that an error will not be reported.

int out_waiting()
Returns the number of characters in the put area that have not been consumed
(by the ultimate consumer).

virtual int overflow(int c)
In streambuf, this function should be treated as if its behavior is undefined;
classes derived from streambuf should always define it.

In classes derived from streambuf, it is called to consume characters. If c is
not EOF, overflow(c) also must either save c or consume it. Although it can be
called at other times, this function is usually called when the put area is full
and an attempt is being made to store a new character. The normal action is to
consume the characters between pbase() and pptr(), call setp() to establish
a new put area, and (if c != EOF) store c using sputc(). overflow(c) should
return EOF to indicate an error; otherwise, it should return something else.

virtual int pbackfail(int c)
In streambuf, this function always returns EOF.

In classes derived from streambuf, this function is called when eback() equals
gptr() and an attempt has been made to put c back. If this situation can be
managed (for example, by repositioning an external file), pbackfail(c) should
return c; otherwise, it should return EOF.

4–76 iostream Package

streambuf class

char *pbase()
Returns a pointer to the put area base. Characters between pbase() and
pptr() are stored into the buffer but are not yet consumed.

void pbump(int n)
Increments pptr() by n, which can be positive or negative. No checks are
made on whether the new value of pptr() is in bounds.

char *pptr()
Returns a pointer to the first byte of the put area. The space between pptr()
and epptr() is the put area.

int sbumpc()
Moves the get pointer forward one character and returns the character it
moved past. The function returns EOF if the get pointer is currently at the end
of the sequence.

virtual streampos seekoff(streamoff off, (ios::)seek_dir dir, int mode)
In streambuf, this function returns EOF.

In classes derived from streambuf, it repositions the abstract get and put
pointers (not pptr() and gptr()). mode specifies whether to modify the put
pointer (ios::out bit set) or the get pointer (ios::in bit set) or both pointers.
off is interpreted as a byte offset (it is a signed value). For the meanings of dir,
see the explanation of the enumerated type seek_dir in class ios.

A class derived from streambuf is not required to support repositioning. If the
derived class does not, then seekoff() should return EOF. If the derived class
does support repositioning, seekoff() should return the new position or EOF
on error.

virtual streampos seekpos(streampos pos, int mode)
In streambuf, this function returns seekoff(streamoff(pos), ios::beg,
mode). To define seeking in a derived class, you can often define seekoff()
and use the inherited streambuf::seekpos.

In classes derived from streambuf, this function repositions the streambuf
get pointer, put pointer, or both, to pos. mode specifies the affected pointers.
seekpos() returns the argument pos or EOF if the class does not support
repositioning or if an error occurs. streampos(0) signifies the beginning of the
file; streampos(EOF) indicates an error.

iostream Package 4–77

streambuf class

void setb(char *b, char *eb, int a)
Sets base() to b and ebuf() to eb. The a argument controls whether the
reserve area will be subject to automatic deletion. If a is nonzero, then b will
be deleted when base() is changed by another call to setb(), or when the
destructor is called for the streambuf object. If b and eb are both null, then
the reserve area effectively does not exist. If b is nonnull, a reserve area exists
even if eb is less than b (in which case the reserve area has 0 length).

virtual streambuf *setbuf(char *ptr, int len)
streambuf *setbuf(unsigned char *ptr, int len)
In streambuf, this function honors the request for a reserve area if there is
none.

In classes derived from streambuf, this function offers for use as a reserve
area the array at ptr with len bytes. Normally, if ptr or len is 0, the action is
interpreted as a request to make the streambuf object unbuffered. The derived
class has the choice of using or not using this area by accepting or ignoring
the request. setbuf() should return a reference to the streambuf object if the
derived class honors the request; otherwise, it should return 0.

streambuf *setbuf(char *ptr, int len, int i)
Offers the len bytes starting at ptr as the reserve area. If ptr is null, or len
is 0 or negative, then the function requests an unbuffered state. Whether the
offered area is used or a request for an unbuffered state is honored depends
on details of the derived class. setbuf() normally returns a reference to the
streambuf object, but if the derived class does not accept the offer or honor the
request, setbuf() returns 0.

void setg(char *eb, char *g, char *eg)
Sets eback() to eb, gptr() to g, and egptr() to eg.

void setp(char *p, char *ep)
Sets base() and pptr() to p and epptr() to ep.

int sgetc()
Returns the character after the get pointer; it does not move the get pointer. It
returns EOF if no character is available.

int sgetn(char *ptr, int n)
Fetches n characters following the get pointer and copies them to the area
starting at ptr. If fewer than n characters occur before the end of the sequence,
sgetn() fetches the characters that remain. It repositions the get pointer after
the fetched characters and returns the number of characters fetched.

4–78 iostream Package

streambuf class

int snextc()
Moves the get pointer forward one character and returns the character after
the new position. If the pointer is at the end of the sequence, either before or
after moving forward, the function returns EOF.

int sputbackc(char c)
Moves the get pointer back one character. c must be the current content of
the sequence just before the get pointer. The underlying mechanism may back
up the get pointer or may rearrange its internal data structures so that c is
saved. The effect is undefined if c is not the character before the get pointer.
The function returns EOF, by calling pbackfail(), when it fails. The conditions
under which it can fail depend on the details of the derived class.

int sputc(int c)
Stores c after the put pointer and moves the put pointer past the stored
character (usually this extends the sequence). The function returns EOF when
an error occurs. Conditions that can cause errors depend on the derived class.

int sputn(const char *s, int n)
Stores after the put pointer the n characters starting at s, and moves the put
pointer past them. It returns the number of characters successfully stored.
Normally n characters are successfully stored, but fewer characters may be
stored when errors occur.

void stossc()
Moves the get pointer ahead one character. If the pointer started at the end of
the sequence, stossc() has no effect.

virtual int sync()
In streambuf this function returns 0 if the get area is empty and no
unconsumed characters are present; otherwise, it returns EOF.

In classes derived from streambuf, this function is called to let derived classes
examine the state of the put, get, and reserve areas, and to synchronize these
areas with any external representation. Normally sync() should consume any
characters stored into the put area and, if possible, give back to the source any
characters in the get area that have not been fetched. When sync() returns,
no unconsumed characters should remain and the get area should be empty. If
some kind of failure occurs, sync() should return EOF.

int unbuffered()
Returns the current buffering state flag, which is independent of the actual
allocation of a reserve area. This function’s primary purpose is to find out if a
reserve area is being allocated automatically by allocate().

iostream Package 4–79

streambuf class

void unbuffered(int n)
Sets the value of the current buffering state flag. If n equals 0, then the
streambuf object is buffered; otherwise it is unbuffered. This function’s
primary purpose is to control whether a reserve area is allocated automatically
by allocate().

virtual int underflow()
In streambuf, this function should be treated as if its behavior is undefined;
classes derived from streambuf must define it.

In classes derived from streambuf, it is called to supply characters for fetching;
that is, to create a condition in which the get area is not empty. If this
function is called when characters are in the get area, it should return the first
character. If the get area is empty, it should create a nonempty get area and
return the next character (which it should also leave in the get area). If no
more characters are available, underflow() should return EOF and leave an
empty get area.

Example

static const int bufsize = 1024;
char buf[bufsize] ;
int p, g ;
do {

in->sgetc() ; 1
g = in->in_avail() ; 2
if (g > bufsize) g = bufsize ; 3
g = in->sgetn(buf,g) ;
p = out->sput(buf,g) ;
out->sync() ; 4
if (p!=g) error("output error");
} while (g > 0)

Provides a way to pass characters into the in and out arrays as soon as the
characters become available (as when someone types them from a terminal) as
follows:

1 Ensures at least one character is immediately available in the in array
(unless the get pointer is at the end of the sequence).

2 Returns the number of characters immediately available.

3 Checks that chunks in which the characters become available are less than
bufsize, and that they fit into the arrays.

4 Sends characters put into the out array to the ultimate consumer.

4–80 iostream Package

strstream class

strstream class

Specializes the iostream class for storing in and fetching from arrays of bytes.

Header File

#include <strstream.hxx>

Alternative Header
#include <strstream.h>

Declaration

class strstream: public iostream
{
public:

strstream();
strstream(char *, int, int);

strstreambuf *rdbuf();
char *str();

};

Description

This class specializes the iostream class for storing in and fetching from arrays
of bytes. It handles all predefined data types, and provides an extensive set of
options for performing input and output on these data types.

Constructors and Destructors

strstream()
Constructs an strstream object and dynamically allocates space to hold stored
characters.

strstream(char *cp, int n, int mode)
Constructs an strstream object. It stores characters into the array starting
at cp and continuing for n bytes. If ios::ate or ios::app is set in mode,
cp is presumed to be a null-terminated string and storing begins at the null
character; otherwise, storing begins at cp. Seeks are permitted anywhere in
the array.

iostream Package 4–81

strstream class

Member Functions

strstreambuf *rdbuf()
Returns a pointer to the strstreambuf object associated with a strstream
object.

char *str()
Returns a pointer to an explicit array, to be used as the associated
strstreambuf object, if the strstream object was constructed with such an
array; otherwise, it returns a pointer to a dynamically allocated area. Until
str() is called, deleting the dynamically allocated area is the responsibility
of the strstream object. After str() returns, dynamic allocation becomes the
responsibility of the user program. After str() has been called, the effect of
storing more characters into the strstream object is undefined.

4–82 iostream Package

strstreambuf class

strstreambuf class

Specializes the streambuf class for input and output performed on arrays of
bytes in memory.

Header File

#include <strstream.hxx>

Alternative Header
#include <strstream.h>

Declaration

class strstreambuf: public streambuf
{
public:

strstreambuf();
strstreambuf(char *, int, char *);
strstreambuf(int);
strstreambuf(unsigned char *, int,
unsigned char *);
strstreambuf(void *(*a)(long),
void (*f)(void *));

void freeze(int n = 1);
virtual int overflow(int);
virtual streambuf *setbuf(char *, int);
char *str();
virtual int underflow();

};

Description

Objects of this class let you use an array of bytes (a string of characters) in
memory as a streambuf object for stream input/output operations on various
kinds of data. Mapping between abstract get and put pointers and char *
pointers is direct in the sense that a char * is interpreted as logically pointing
immediately ahead of the char it actually points to. Moving the pointers
corresponds to incrementing and decrementing the char * values.

To accommodate the need for strings of arbitrary length, this class supports a
dynamic mode. When a strstreambuf object is in dynamic mode, space for the
character is allocated as needed. When the sequence is extended too far, it is
copied to a new array.

iostream Package 4–83

strstreambuf class

If your program expects a buffer to be allocated when none was allocated,
then the iostream package allocates a default buffer, with a length specified by
BUFSIZ as defined in stdio.h. The package then issues the following warning:

Warning; a null pointer to streambuf was passed to ios::init()

Constructors and Destructors

strstreambuf()
Constructs an empty strstreambuf object in dynamic mode. This means
that space is automatically allocated to accommodate characters put into the
strstreambuf object (using the new and delete operators). Because this may
require copying the original characters, programs that have many characters
to insert should use setbuf() to inform the strstreambuf object about the
needed allocation of space, or to use one of the constructors that follow.

strstreambuf(int n)
Constructs an empty strstreambuf object in dynamic mode. The initial
allocation of space is at least n bytes.

strstreambuf(char *ptr, int n, char *pstart)
strstreambuf(unsigned char *ptr, int n, unsigned char *pstart)
Constructs a strstreambuf object to use the bytes starting at ptr. The
strstreambuf object is in static mode; it does not grow dynamically. If n is
positive, then the n bytes starting at ptr are used as the strstreambuf object.
If n is 0, ptr is presumed to point to the beginning of a null-terminated string
and the bytes of that string (not including the terminating null character)
constitute the strstreambuf object. If n is negative, then the strstreambuf
object is presumed to continue indefinitely.

The get pointer is initialized to ptr. The put pointer is initialized to pstart. If
pstart is not null, then the initial sequence for fetching (the get area) consists
of the bytes between ptr and pstart. If pstart is null, then storing operations
are treated as errors and the initial get area consists of the entire array.

strstreambuf(void *(*a)(long n), void (*f)(void *ptr))
Constructs an empty strstreambuf object in dynamic mode. a is used as
the allocator function in dynamic mode. The argument passed to a is a long
denoting the number of bytes to be allocated. If the a argument is null, the new
operator is used. f is used to free (or delete) get, put, or reserve areas returned
by a. The argument to f becomes a pointer to the array allocated by a. If f is
null, the delete operator is used.

4–84 iostream Package

strstreambuf class

Member Functions

void freeze(int n)
Inhibits (freezes) automatic deletion of the current array if n is nonzero, or
permits (unfreezes) automatic deletion if n is 0. Deletion normally occurs when
more space is needed, or when the strstreambuf object is being destroyed.
Only space obtained through dynamic allocation is free. Storing characters
into a strstreambuf that was dynamically allocated and is now frozen causes
an error (the effect is undefined). If you want to resume storing characters in
such a strstreambuf object you can thaw (unfreeze) it.

virtual int overflow(int c)
In classes derived from streambuf, it is called to consume characters. If c is
not EOF, overflow(c) also must either save c or consume it. Although it can be
called at other times, this function is usually called when the put area is full
and an attempt is being made to store a new character. The normal action is to
consume the characters between pbase() and pptr(), call setp() to establish
a new put area, and (if c != EOF) store c using sputc(). overflow(c) should
return EOF to indicate an error; otherwise, it should return something else.

virtual streambuf *setbuf(char *ptr, int n)
Causes the strstreambuf object to remember n (if ptr is 0); this ensures that
at least n bytes are allocated during the next dynamic mode allocation.

char *str()
Returns a pointer to the first character in the current array and freezes the
strstreambuf object. If the strstreambuf object was constructed with an
explicit array, the function returns a pointer to that array. If the strstreambuf
object is in dynamic allocation mode but nothing has been restored yet, the
returned pointer is null.

virtual int underflow()
In classes derived from streambuf, it is called to supply characters for fetching;
that is, to create a condition in which the get area is not empty. If this
function is called when characters are in the get area, it should return the first
character. If the get area is empty, it should create a nonempty get area and
return the next character (which it should also leave in the get area). If no
more characters are available, underflow() should return EOF and leave an
empty get area.

iostream Package 4–85

5
Messages Package

The Messages package provides a way to retrieve messages stored in a catalog
or file that is separate from your program. It consists of a single class,
Messages, that retrieves the text of a message.

Processing a message file on an OpenVMS system requires a message set
number and a message number. A message set number is an OpenVMS
message identification code, including a facility code (bits 16 through 27) and a
facility-specific bit (bit 15); all other bits should be 0. A message number is an
integer from 1 to 8191. To process the message file, use the OpenVMS Message
Utility (see the OpenVMS Message Utility Manual for details) and link the
resulting object code into one of the following:

• Your program

• A shareable image that your program is linked against

• A shareable image that is then specified with the set message command

Messages Package 5–1

Messages class

Messages class

Retrieves message text for a message number.

Header File

#include <messages.hxx>

Alternative Header
None.

Declaration

class Messages
{
public:

Messages(const char *filename_arg, int set_arg = 0,
const char *default_file_location_arg = (const char *)(NULL));

~Messages();

const char *text(int msg_arg, const char *fallback_text_arg,
int set_arg = 0);

};

Constructors and Destructors

Messages(const char *filename_arg, int set_arg, const char *default_file_
location_arg)
Constructs a Messages object. set_arg specifies the message number to set; a
value of 0 specifies that the default set be used. filename_arg and default_file_
location_arg are ignored.

~Messages()
Deletes a Messages object.

Member Function

const char *text(int msg_arg, const char *fallback_text_arg, int set_arg)
Returns the text of the message specified by the msg_arg argument. The
fallback_text_arg argument indicates the text to return if the message cannot
be found. The set_arg argument specifies the message set number; a value of 0
causes the system to use the set number provided to the constructor.

5–2 Messages Package

Messages class

Depending on the process defaults, the facility, error severity, and message
identification code may be appended to the beginning of the message (for
example, %CXXL-W-E_ONEXT, prefixed to Can’t delete an object that is on a
list.).

Example

The following is a sample message source file:

.TITLE MESSAGES_EXAMPLE_MSG Example messages -- VMS message catalog

.IDENT ’1.0’

.FACILITY EXAMPLE, 1 /PREFIX=EXAMPLE_

.BASE 0

.SEVERITY WARNING ! we just want a 0 in the severity field
SET <> ! message set number

.SEVERITY ERROR
EXAMPLE_ERROR <This is an example error message>

.END

Entering the following OpenVMS Message Utility commands set the
appropriate options and compile this file:

$ set message/nofac/nosev/noid
$ message/lis MESSAGES_EXAMPLE_MSG

The following program retrieves the sample error message:

#include <iostream.hxx>
#include <messages.hxx>

const char *message_file_name = (const char *)(NULL);
const char *message_file_location = (const char *)(NULL);
#pragma __extern_model __save
#pragma __extern_model __globalvalue
extern int EXAMPLE_SET;
#pragma __extern_model __restore
int message_set_example = EXAMPLE_SET;

Messages m_example (message_file_name, message_set_example,
message_file_location);

int main()
{

cout <<
"text of example message 1: " <<
m_example.text(1, "fallback message 1") <<
"\n";

Messages Package 5–3

Messages class

cout <<
"text of example message 2: " <<
m_example.text(2, "fallback message 2") <<
"\n";

return 0;
}

The following compiler command compiles the program:

$ cxx/lis MESSAGES_EXAMPLE

Entering the following link and run sequence retrieves the text of the error
message and displays the second fallback message:

$ link MESSAGES_EXAMPLE,MESSAGES_EXAMPLE_MSG

$ run/nodeb messages_example
text of example message 1: This is an example error message
text of example message 2: fallback message 2

5–4 Messages Package

6
Mutex Package

The Mutex package provides a way to synchronize access to user-defined
objects. It consists of a single class, Mutex, that manages the creation, locking
and unlocking of Mutex objects.

Construction of a Mutex object creates a recursive mutex that users can
lock and unlock using the appropriate member functions or parameterized
manipulators. A recursive mutex is a mutex that can be locked many times
by the same thread without causing the thread to enter a deadlock state. To
completely unlock this kind of mutex, the thread must unlock the mutex the
same number of times that the thread locked the mutex. For more information
see the Guide to DECthreads manual.

Note

User-defined objects are not automatically thread safe. Users must
supply synchronization for such objects if they are shared between
threads.

Mutex Package 6–1

Mutex class

Mutex class

Provides a means whereby users can synchronize access to user-defined objects.

Header File

#include <mutex.hxx>

Alternative Header
#include <mutex.h>

Declaration

class Mutex
{
public:

Mutex();
~Mutex();

void lock();
void unlock();
int trylock();

};

Description

The synchronization process consists of locking and unlocking Mutex objects
associated with user-defined objects. HP recommends that users create a
Mutex object for each user-defined object that needs to be synchronized between
threads. Users are then responsible for locking and unlocking the Mutex object
to coordinate access to the associated object.

To do the locking and unlocking, you can use the lock and unlock member
functions (see Example). Alternatively, if a user-defined object is derived
from the istream or ostream classes, you can use the lock and unlock
parameterized manipulators, where the parameter is the Mutex object (see the
Global Declarations section in Chapter 4).

Constructors and Destructors

Mutex()
Constructs a Mutex object, in effect creating but not locking a recursive mutex.

6–2 Mutex Package

Mutex class

~Mutex()
Deletes a Mutex object.

Member Functions

void lock()
Locks a recursive mutex. If the mutex is locked by another thread, the current
thread is blocked until the mutex becomes available.

void unlock()
Unlocks a recursive mutex.

int trylock()
Immediately returns to the caller a value of 0 if the mutex is already locked by
another thread. Otherwise, this function locks the mutex and returns a value
of 1.

Example

#include <string.hxx>
#include <mutex.hxx>

.

.

.
String string1;
Mutex string1_lock;

string1_lock.lock();
string1 = "Hello, ";
string1 += "how are you?";
cout << string1;
string1_lock.unlock();

This example synchronizes a sequence of operations on a String object, using
the lock() and unlock() member functions.

Mutex Package 6–3

7
Objection Package

The Objection package provides a way to implement simple error handling.
You can use this package to catch run-time errors encountered in using classes,
and to change or restore actions associated with such errors.

Objection Package 7–1

Global Declaration

Global Declaration

This typedef is used by, but is not a member of, the Objection class.

Header

#include <objection.hxx>

Alternative Header
#include <Objection.h>

Declaration

typedef int Objection_action(const char*);

Type

Objection_action
Is the type of an action routine that can be called by the function
Objection::raise.

7–2 Objection Package

Objection class

Objection class

Provides the capability to handle and report errors.

Header

#include <objection.hxx>

Alternative Header
#include <Objection.h>

Declaration

class Objection
{

public:
Objection();
Objection(Objection_action *);

int raise(const char * = "");
Objection_action *appoint(Objection_action *);
Objection_action *appoint();
Objection_action *ignore();

};

Description

This class provides ways to handle objections. An objection is a potential
error condition that your program can encounter. The user appoints an
error-handling function. An Objection object’s raise() function invokes the
appointed function by passing it a character string that contains an error
message. At any point in your program, you can appoint a new error-handling
function, reappoint the original function, or specify that an objection be
ignored.

Constructors

Objection()
Constructs an Objection object with no default action (error handler).

Objection(Objection_action *new_action)
Constructs an Objection object with a pointer to the default error handler.
The handler is a function that takes one parameter of type const char *msg
and returns an int. See the raise() member function for more information.

Objection Package 7–3

Objection class

Member Functions

Objection_action *appoint()
Specifies that the handler for the objection is the default error handler (if one
exists) and returns the previous action associated with the specified objection.
Specifies that the objection not be ignored.

Objection_action *appoint(Objection_action *new_action)
Specifies a new handler for the objection and returns the previous action
associated with the specified objection. Specifies that the objection not be
ignored.

Objection_action *ignore()
Specifies that the objection be ignored (no error handler is invoked if the
objection is raised). This function returns the previous action associated with
the specified objection.

int raise(const char *msg = "")
Raises a specified objection, passing a string (error message) to an error
handler (if one exists). If no handler exists, or if the handler returns a 0, the
default handler is called. The raise function returns the value returned by the
last handler it called.

If no default handler exists, then the function returns 0. A 0 is also returned
if the objection is ignored. Generally, the return of a nonzero value means
that the error handling succeeded, and the return of a 0 value means the error
handling failed.

7–4 Objection Package

Objection class

The following example changes the default error handler for the
stack(int)::overflow_error objection:

#include <stdlib.h>
#include <vector.hxx>
#include <objection.hxx>

vectordeclare(int)
stackdeclare(int)

vectorimplement(int)
stackimplement(int)

stack(int) s(10);

int error(const char *errmsg)
{

cerr << "ERROR TRAPPED: " << errmsg << " -- ABORTING\n";
cerr.flush();
abort();
return 0;

}

void main()
{

Objection_action *save_action;
save_action = stack(int)::overflow_error.appoint(error);
for(int i=0; i<100; i++) //push too many things onto stack

s.push(i);
stack(int)::overflow_error.appoint(save_action);

}

When this example executes, the following message prints out:

ERROR TRAPPED: Stack underflow -- ABORTING
%SYSTEM-F-OPCCUS, opcode reserved to customer fault at PC=00010BE5, PSL=03C00000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

0000012D 00010BE5
0000000E 00009346

OBJECTION_EXAMP error 5984 00000045 00003D29
CXXL_OBJECTION Objection::raise 779 00000026 00008F5A
OBJECTION_EXAMP main 5993 0000005B 00003D87

00000072 0002DB5E

Note

The message printed on your system differs somewhat from that shown
here.

Objection Package 7–5

8
Stopwatch Package

The Stopwatch package provides ways to measure intervals of program
execution time. The package consists of a single class, Stopwatch. Typically,
you use this class during the performance-tuning phase of program
development.

Stopwatch Package 8–1

Stopwatch class

Stopwatch class

Provides the means to measure intervals of time between specified program
events.

Header

#include <stopwatch.hxx>

Alternative Header
#include <Stopwatch.h>

Declaration

class Stopwatch
{
public:

Stopwatch();

void start();
void stop();
void reset();
int status() const;
double system() const;
double user() const;
double real() const;

static double resolution();
};

Description

Objects of this class measure program execution time and return the result in
floating-point seconds. The class includes the start, stop, and reset functions
familiar to users of a mechanical stopwatch.

You can time the entire program or select certain portions of the program
to time; for example, a specified loop or program module. You can create a
different Stopwatch object for each independent program activity, and name
each according to the activity you intend to measure.

8–2 Stopwatch Package

Stopwatch class

Constructor

Stopwatch()
Constructs a Stopwatch object with both time and running status initialized
to 0.

Member Functions

double real() const
Returns real time (clock time) in double-precision, floating-point seconds. You
can call this function while the stopwatch is running.

void reset()
Resets the current time measurement to 0 without affecting the value of
status(). If status() is initially nonzero, time measurement continues
uninterrupted after resetting.

double resolution()
Returns the (system dependent) resolution of measured time in double-
precision, floating-point seconds.

void start()
Begins measuring program execution time when status() is initially 0
(status() becomes nonzero as a consequence of the call). If status()is
initially nonzero, the call has no effect.

int status() const
Indicates whether the stopwatch is running (returns a value of 1) or not
running (returns a value of 0).

void stop()
Halts measurement of program execution time when status() is initially
nonzero (status() becomes 0 as a consequence of the call). If status()is
initially 0, the call has no effect.

double system() const
Returns the system CPU time in double-precision, floating-point seconds. You
can call this function while the stopwatch is running.

double user() const
Returns the user CPU time in double-precision, floating-point seconds. You can
call this function while the stopwatch is running.

Stopwatch Package 8–3

Stopwatch class

System Environment

On OpenVMS systems, user time returns the total accumulated CPU time, and
system time returns 0. Resolution is 1/100 second.

Example

Stopwatch w ;
w.start() ;
// . . .
// some computation you want to time goes here
// . . .
w.stop() ;
cout << "elapsed time was " << w.user() << "\n";

Displays the number of seconds the computation takes to run. The result is a
double-precision value.

8–4 Stopwatch Package

9
String Package

The String package consists of the single class String. This class provides
ways to assign, concatenate, and compare character strings. This class also
provides methods for substring creation and for vector access to a character
string.

String Package 9–1

String class

String class

Provides the capabilities for manipulating sequences of characters.

Header

#include <string.hxx>

Alternative Header
None.

Declaration

class String
{

friend ostream &operator<<(ostream &, const String &);
friend istream &operator>>(istream &, String &);
friend int operator==(const String &, const String &);
friend int operator==(const String &, const char *);
friend int operator==(const char *, const String &);
friend int operator!=(const String &, const String &);
friend int operator!=(const String &, const char *);
friend int operator!=(const char *, const String &);
friend int operator<(const String &, const String &);
friend int operator<(const String &, const char *);
friend int operator<(const char *, const String &);
friend int operator>(const String &, const String &);
friend int operator>(const String &, const char *);
friend int operator>(const char *, const String &);
friend int operator<=(const String &, const String &);
friend int operator<=(const String &, const char *);
friend int operator<=(const char *, const String &);
friend int operator>=(const String &, const String &);
friend int operator>=(const String &, const char *);
friend int operator>=(const char *, const String &);
friend String operator+(const String &, const String &);
friend String operator+(const String &, const char *);
friend String operator+(const char *, const String &);

public:
String();
String(const String &);
String(const char *);
String(const char &);
~String();

9–2 String Package

String class

String &operator=(const String &);
String &operator=(const char *);

operator char * () const;
operator const char * () const;

String &operator+=(const String &);
String &operator+=(const char *);
String operator()(int, int) const;
unsigned int length() const;
String upper() const;
String lower() const;
int match(const String &) const;
int index(const String &) const;
char operator[](int) const;
char &operator[](int);

};

Description

This class provides the means for manipulating sequences of characters, each
of which is of the type char. For some applications, the services provided are
like those provided by the traditional C string library (strcpy, strcmp, and so
forth), but are more efficient and convenient in the context of C++. Overloaded
operators provide ways to assign, concatenate, and compare strings. New
operators provide simple notations for substring creation and vector access into
the string.

All comparisons are lexicographic, with the ordering dependent on the
character set in which the string is encoded.

An index value of 0 indicates the first character in a string object.

Note

The char *() operator, which converts String to a pointer to char, is
not supported on OpenVMS I64 systems. The const char *() operator
can be used instead.

Constructors and Destructors

String()
Constructs a String object initialized to an empty string.

String(const char *s)
Constructs a String object and initializes it to the null-terminated sequence of
characters.

String Package 9–3

String class

String(const char &c)
Constructs a String object with a reference to a char datum to initialize the
string.

String(const String &x)
Constructs a String object with a reference to another String to initialize the
first String.

~String()
Deletes a String object; no user action is required.

Overloaded Operators

String operator + (const char *s, const String &x)
Concatenates a null-terminated sequence of characters to a String object.

String operator + (const String &x, const char *s)
Concatenates a String object with a null-terminated sequence of characters.

String operator + (const String &x, const String &y)
Concatenates a String object with another String object.

String &operator = (const char *s)
Assigns a String object to a null-terminated sequence of characters.

String &operator = (const String &x)
Assigns a String object to another String object.

int operator < (const char *s, const String &x)
Tests if a null-terminated sequence of characters is less than a String object; if
so, it returns 1. Otherwise, it returns 0.

int operator < (const String &x, const char *s)
Tests if a String object is less than a null-terminated sequence of characters; if
so, it returns 1. Otherwise, it returns 0.

int operator < (const String &x, const String &y)
Compares two String objects to determine if the first is less than the second; if
so, it returns 1. Otherwise, it returns 0.

int operator > (const char *s, const String &x)
Tests if a null-terminated sequence of characters is greater than a String
object; if so, it returns 1. Otherwise, it returns 0.

9–4 String Package

String class

int operator > (const String &x, const char *s)
Tests if a String object is greater than a null-terminated sequence of
characters; if so, it returns 1. Otherwise, it returns 0.

int operator > (const String &x, const String &y)
Compares two String objects to determine if the first is greater than the
second; if so, it returns 1. Otherwise, it returns 0.

String &operator += (const char *st2)
Concatenates a null-terminated sequence of characters to a String object.

String &operator += (const String &st2)
Concatenates a String object to another String object.

ostream &operator << (ostream &s, const String &x)
Inserts the sequence of characters represented by x into the stream s.

istream &operator >> (istream &s, String &x)
Extracts characters from s using the istream extraction operator, then stores
characters in x, replacing the current contents of x and dynamically allocating
x as necessary.

int operator = = (const char *s, const String &x)
Tests if a null-terminated sequence of characters is equal to a String object; if
so, it returns 1. Otherwise, it returns 0.

int operator = = (const String &x, const char *s)
Tests if a String object is equal to a null-terminated sequence of characters; if
so, it returns 1. Otherwise, it returns 0.

int operator = = (const String &x, const String &y)
Compares two String objects to determine equality. If one is equal to the
other, it returns 1; otherwise, it returns 0.

int operator != (const char *s, const String &x)
Tests if a null-terminated sequence of characters is not equal to a String
object; if so, it returns 1. Otherwise, it returns 0.

int operator != (const String &x, const char *s)
Tests if a String object is not equal to a null-terminated sequence of
characters; if so, it returns 1. Otherwise, it returns 0.

int operator != (const String &x, const String &y)
Compares two String objects to determine inequality. If they are not equal,
the function returns 1; otherwise, it returns 0.

String Package 9–5

String class

int operator <= (const char *s, const String &x)
Tests if a null-terminated sequence of characters is less than or equal to a
String object; if so, it returns 1. Otherwise, it returns 0.

int operator <= (const String &x, const char *s)
Tests if a String object is less than or equal to a null-terminated sequence of
characters; if so, it returns 1. Otherwise, it returns 0.

int operator <= (const String &x, const String &y)
Compares two String objects to determine if the first is less than or equal to
the second; if so, it returns 1. Otherwise, it returns 0.

int operator >= (const char *s, const String &x)
Tests if a null-terminated sequence of characters is equal to or greater than a
String object; if so, it returns 1. Otherwise, it returns 0.

int operator >= (const String &x, const char *s)
Tests if a String object is equal to or greater than a null-terminated sequence
of characters; if so, it returns 1. Otherwise, it returns 0.

int operator >= (const String &x, const String &y)
Compares two String objects to determine if the first is equal to or greater
than the second; if so, it returns 1. Otherwise, it returns 0.

String operator () (int index, int count) const
Creates a new String object defined as a substring of the current String, with
index as the starting character and count as the length of the substring.

char operator [] (int position) const
Returns the character at the requested position within the string. If the
position is past the end of the string, it returns 0. If the position is negative,
the results are undefined.

char &operator [] (int position)
Returns a reference to the character at the requested position within the
string. This reference is potentially invalid after any subsequent call to a
non-const member function for the object. If the position is past the end of the
string or if the position is negative, the results are undefined.

Other Member Functions

int index(const String &x) const
Returns the index value of the first position where an element of a String
object coincides with the value of x.

9–6 String Package

String class

unsigned int length() const
Returns the length (number of characters) in a String object.

String lower() const
Returns a new String object constructed from a String except that every
character is lowercase regardless of its original case.

int match(const String &x) const
Compares two strings and returns the first index position at which they differ;
it returns –1 if the strings match completely. The String argument can be a
character pointer.

String upper() const
Returns a new String constructed from a String except that every character
is uppercase regardless of its original case.

Examples

1. String x ("The Times of John Doe");
char *y = "Pink Triangles";

if (x != y) cout << "We have two different strings.\n";

x = y;

cout << x;

The first line of this example provides a character string to the constructor
for initialization. The overloaded operators (!=, <<, and =) accept either two
String objects or a String and a null-terminate sequence of characters.
The last line prints out the following character string:

Pink Triangles

2. String x ("The Times of John Doe");

String a (x(18,3)); // Substring is "Doe"
String b (x); // b contains all of x

In this example, the creation of object a provides a substring of object x to
the constructor for object a. The substring begins at position 18 and has a
length of 3 characters. The next line creates the object b and initializes it
to contain the same value as x.

String Package 9–7

String class

3. String x ("World");
String y;

y = "Hello";
y += ", " + x + ".\n";

cout << y;

This example shows string concatenation. The last line prints out the
following message:

Hello, World.

9–8 String Package

10
task Package

Note

The task package is supported on VAX and Alpha platforms. It is not
supported on the Linux Alpha platform or on OpenVMS I64 systems.
The recommended replacement is the set of pthreads routines from the
C++ standard library.

The task package provides coroutine support. A coroutine, or task, is a
subroutine that can suspend execution to allow other tasks to run. Static data
is shared among all tasks; automatic and register data is allocated separately
for each task. Only one task can execute at a time, even on a multiprocessor
system.

Programming with tasks can be particularly appropriate for simulations or
other applications that can be reasonably represented as sets of concurrent
activities.

This package includes the object and randint classes, the subclasses derived
from these classes, and the histogram class.

Figure 10–1 shows the inheritance structure of the task package.

Also note the following:

• The sched and task classes are intended for use only as base classes.

• The task package makes use of the threads library.

• The task package is not thread safe. You cannot create tasks
simultaneously from different threads.

task Package 10–1

Figure 10–1 Inheritance Diagram for the task Package

qhead qtail

timertask

user interrupt handler

ZK−3477A−GE

object

Interrupt_handler sched

user task

randint

erand urand

10–2 task Package

Global Declarations

Global Declarations

The typedef, enum, and extern declarations are used by one or more classes in
the task package but they are not members of any particular class.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

typedef int(*PFIO)(int, object*);
typedef void(*PFV)();

enum
{

VERBOSE = 1 << 0,
CHAIN = 1 << 1,
STACK = 1 << 2,

};

enum qmodetype
{

EMODE,
WMODE,
ZMODE

};

task Package 10–3

Global Declarations

enum
{

E_OLINK = 1,
E_ONEXT = 2,
E_GETEMPTY = 3,
E_PUTOBJ = 4,
E_PUTFULL = 5,
E_BACKOBJ = 6,
E_BACKFULL = 7,
E_SETCLOCK = 8,
E_CLOCKIDLE = 9,
E_RESTERM = 10,
E_RESRUN = 11,
E_NEGTIME = 12,
E_RESOBJ = 13,
E_HISTO = 14,
E_STACK = 15,
E_STORE = 16,
E_TASKMODE = 17,
E_TASKDEL = 18,
E_TASKPRE = 19,
E_TIMERDEL = 20,
E_SCHTIME = 21,
E_SCHOBJ = 22,
E_QDEL = 23,
E_RESULT = 24,
E_WAIT = 25,
E_FUNCS = 26,
E_FRAMES = 27,
E_REGMASK = 28,
E_FUDGE_SIZE = 29,
E_NO_HNDLR = 30,
E_BADSIG = 31,
E_LOSTHNDLR = 32,
E_TASKNAMEOVERRUN = 33

};

extern int _hwm;

10–4 task Package

Global Declarations

Types

enum Print Function Arguments
The verbosity argument to print member functions uses the following values:

Value Explanation

0 Requests a brief report
CHAIN Requests information about tasks on the object’s remember

chain, and about other objects on the object’s o_next chain
STACK Requests information about the run-time stack
VERBOSE Requests detailed information on the class object

To combine several requests, use the bitwise inclusive operator (|). For
example:

p->print(VERBOSE|CHAIN);

enum qmodetype
The following values are used by the qhead and qtail classes for managing
queues:

Value Explanation

EMODE Generates a run-time error if full on enqueue or empty on
dequeue

WMODE Suspends task execution if full on enqueue or empty on dequeue
ZMODE Returns NULL if full on enqueue or empty on dequeue

enum Exception Codes
Descriptions of the E_ codes are given in the Exception Handling sections of
the appropriate classes.

task Package 10–5

Global Declarations

PFIO
Is a pointer to a function returning int, which takes arguments of the types
int and object *.

PFV
Is a pointer to a function returning void, which takes no arguments.

Other Data

extern int _hwm
Can be set to a nonzero value before creation of the first task to keep track of
the maximum stack size (‘‘high water mark’’). The maximum stack size can be
printed by the task::print() function.

10–6 task Package

erand class

erand class

Objects of the erand class are generators of exponentially distributed random
numbers.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class erand: public randint
{
public:

int mean;

erand(int m);

int draw();
};

Member Data

int mean
Is the mean of the generated random numbers.

Constructor

erand(int m)
Constructs an erand object with m as the mean for the generated random
numbers.

Member Function

int draw()
Returns the next random integer generated by the object.

task Package 10–7

erand class

See Also

randint class

10–8 task Package

histogram class

histogram class

Objects of the histogram class are generators of histograms.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class histogram
{
public:

int l;
int r;
int binsize;
int nbin;
int *h;
long sum;
long sqsum;

histogram(int n_bins = 16, int left = 0, int right = 16);
~histogram();

void add(int sample);
void print();

};

Description

Objects of this class generate histograms. Each such object has nbin bins,
spanning a range from l to r.

Exception Handling

When a run-time error occurs, the following error code is passed to the
object::task_error() function:

task Package 10–9

histogram class

Value Error Description

E_HISTO Cannot construct a histogram with less than 1 bucket or
the left not less than the right

Member Data

int binsize
Is the size of the range covered by an individual bin.

int *h
Is a pointer to a vector of nbin integers. Each element of the vector is the
number of samples placed into that bin by the add() function.

int l
Is the lower (left) end of the range of samples.

int nbin
Is the total number of bins.

int r
Is the higher (right) end of the range of samples.

long sqsum
Is the sum of the squares of the integers added to a bin by the add() function.

long sum
Is the sum of the integers added to a bin by the add() function.

Constructors and Destructors

histogram(int n_bins = 16, int left = 0, int right = 16)
Constructs a histogram object. The arguments are all optional: n_bins
specifies the number of bins, left specifies the initial left end of the range and
right specifies the initial right end of the range. At instantiation, the member
data are initialized as follows:

The count in each bin is set to 0.
The value of l is left
the value of r is right
nbin is set to n_bins
The values of sqsum and sum are 0.

~histogram()
Deletes a histogram object.

10–10 task Package

histogram class

Member Functions

void add(int sample)
Adds one to the bin specified by sample. If sample is outside the range of
l to r, the range expands by either decreasing l or increasing r; however, nbin
remains constant. Thus, the range covered by one bin doubles if the total
histogram doubles.

void print()
Prints on cout the number of entries for each nonempty bin.

task Package 10–11

Interrupt_handler class

Interrupt_handler class

Interrupt handlers let tasks wait for external events (system signals), and
allow the declaration of handler functions for these events.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class Interrupt_handler: public object
{
public:

Interrupt_handler(int);
~Interrupt_handler();

virtual void print(int verbosity, int internal_use = 0);
virtual int pending();
virtual objtype o_type();

private:
virtual void interrupt();

};

Description

Interrupt handlers allow tasks to wait for signals. You can use classes derived
from the Interrupt_handler class to overload the interrupt() function.
When the signal is raised, the task package immediately calls the interrupt()
function. The task package then schedules its own internal interrupt alerter
task for execution. Control returns to the task (if any) that was running when
the signal was raised. When control returns to the scheduler, the interrupt
alerter runs and schedules for execution those tasks that were waiting for the
interrupt handler.

If the run chain (see the sched class) is empty, the scheduler does not cause
the program to exit if there are any interrupt handlers that have been created
but not yet destroyed.

If an interrupt() function is not needed, you can use the Interrupt_handler
class without deriving another class from it.

10–12 task Package

Interrupt_handler class

For more information on signals, see the C Run-Time Library Reference
Manual.

Exception Handling

When a run-time error occurs, the appropriate error code from the following
table is passed to the object::task_error() function:

Value Error Description

E_NO_HNDLR Cannot handle a signal for which there is no handler
E_BADSIG Cannot handle a signal with an invalid signal number
E_LOSTHNDLR Cannot delete an Interrupt_handler that is not on the

stack of them for the given signal

Constructors and Destructors

Interrupt_handler(int signal_to_catch)
Constructs a new Interrupt_handler object that waits for a specified signal.

~Interrupt_handler()
Deletes an Interrupt_handler object.

Member Functions

virtual void interrupt()
Does nothing but lets classes derived from the Interrupt_handler class
overload this function to specify actions. Because it is private, you cannot call
it directly.

virtual objtype o_type()
Returns object::INTHANDLER.

virtual int pending()
Returns 0 on the first call after the signal is raised; otherwise, it returns a
nonzero value.

virtual void print(int verbosity, int internal_use = 0)
Prints information about the interrupt handler. The verbosity argument
specifies the information to be printed. For more information, see the enum
Print Function Arguments section under Global Declarations for the task
package. Do not supply a value for the internal_use parameter.

task Package 10–13

Interrupt_handler class

System Environment

The thread system exception handling uses OpenVMS conditions and does not
interact directly with signals.

Example

extern "C" {
#include <stdlib.h>
}
#include <signal.h>
#include <task.hxx>
#include <iostream.hxx>

class floating_exception: public Interrupt_handler
{

virtual void interrupt();
public:

floating_exception(): Interrupt_handler(SIGFPE) {};
};

void floating_exception::interrupt()
{

cout << "In floating_exception::interrupt --
Floating exception caught!\n";
cout.flush();

}

int main()
{

floating_exception sigfpe_handler;
raise(SIGFPE);
return EXIT_SUCCESS;

}

This example prints out the following message:

In floating_exception::interrupt -- Floating exception caught!

10–14 task Package

object class

object class

Base class for other classes in the task package and for user-defined classes of
objects to be placed in queues (see the qhead and qtail classes).

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class object
{
public:

enum objtype
{

OBJECT, // class object
TIMER, // class timer
TASK, // class task
QHEAD, // class qhead
QTAIL, // class qtail
INTHANDLER // class Interrupt_handler

};

object *o_next;

static PFIO error_fct;

object();
~object();

void alert();
void forget(task *p_task_to_forget);
void remember(task *p_task);
int task_error(int error_code);

virtual objtype o_type();
virtual int pending();
virtual void print(int verbosity, int internal_use = 0);

static int task_error(int error_code, object *object_with_problem);
static task *this_task();

};

task Package 10–15

object class

Description

This class is a base class for many other classes within the task package. You
also can use it to derive user classes to be placed in the task package’s queues
and so forth. All objects derived from the object class can declare the virtual
function object::pending(), which the scheduler uses to determine if an
object is ready or not ready. You can provide each kind of object with its own
method of determining its state of readiness. Each pending object contains a
list (the remember chain) of the waiting task objects.

Exception Handling

When a run-time error occurs, the appropriate error code from the following
table is passed to the object::task_error() function:

Value Error Description

E_OLINK Cannot delete an object with a remembered task
E_ONEXT Cannot delete an object that is on a list
E_STORE Cannot allocate more memory

Member Data

PFIO error_fct
Points to a function to be called by the task_error function. For more
information, see the task_error function.

object *o_next
Points to the next object in the queue or run chain.

Constructors and Destructors

object()
Constructs an object object.

~object()
Deletes an object object.

Member Functions

void alert()
Changes the state of all task objects remembered by the object from IDLE to
RUNNING, puts the task objects on the scheduler’s run chain, and removes the
task objects from the remembering object’s remember chain. You must call the

10–16 task Package

object class

object::alert function for the object when the state of an object changes
from pending to ready.

void forget(task *p_task_to_forget)
Removes, from the remembering object object’s remember chain, all
occurrences of the task, denoted by the p_task_to_forget argument.

virtual objtype o_type()
Returns object::OBJECT.

virtual int pending()
Always returns a nonzero value.

In classes derived from object, pending() returns the ready status of an
object: 0 if an object object is ready and a nonzero value if the object object
is pending. Classes derived from the object class must define pending() if
waiting is instituted. By default, object::pending returns a nonzero value.

virtual void print(int verbosity, int internal_use = 0)
Prints an object on cout. The verbosity argument specifies the information to
be printed. For more information, see the enum Print Function Arguments
section under Global Declarations for the task package. Do not supply a value
for the internal_use parameter.

void remember(task *p_task)
Puts a task for a pending object on the remember chain and suspends
the task, when that task attempts an operation on the pending object.
Remembered task objects are alerted when an object of the object class
becomes ready.

int task_error(int error_code)
Is obsolete. Calling p->task_error(e) is equivalent to calling
object::task_error(e,p).

static int task_error(int error_code, object *object_with_problem)
Called when a run-time error occurs. The error_code argument represents the
error number and the object_with_problem argument represents a pointer to
the object that called task_error(). The object::task_error() function
examines the variable error_fct and calls this function if it is not NULL.
If the function returns 0, task_error() returns to its caller, which may
retry the operation. (An infinite loop may result if no appropriate recovery
is made.) If the function returns a nonzero value, task_error() calls
exit(error_code). Otherwise, task_error() gives the error number as
an argument to print_error(), which prints an error message on cout and
task_error() calls exit(error_code).

task Package 10–17

object class

The object_with_problem argument may be NULL if no particular object can be
associated with the error.

static task *this_task()
Returns a pointer to the task object currently running.

10–18 task Package

qhead class

qhead class

Abstraction for the head of a list of items arranged in a first-in, first-out singly
linked list.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class qhead: public object
{
public:

qhead(qmodetype modetype = WMODE, int size = 10000);
~qhead();

qhead *cut();
object *get();
int putback(object *new_queue_element);
int rdcount();
int rdmax();
qmodetype rdmode();
void setmode(qmodetype modetype);
void setmax(int size);
void splice(qtail *delete_tail);
qtail *tail();

int pending();
void print(int verbosity, int internal_use = 0);
objtype o_type();

};

Description

This class provides facilities for taking objects off a queue. A queue is a data
structure with an associated list of objects of the object class, or a class
derived from the object class in first-in, first-out order. All access to a queue
is through either the attached qhead or attached qtail object. You create a
queue by creating either a qhead or a qtail object. The other end of the queue
is created automatically. You can then obtain a pointer to the tail with the
qhead::tail function.

task Package 10–19

qhead class

Objects have definitions for when they are ready and pending (not ready). The
qhead objects are ready when the queue is not empty and pending when the
queue is empty.

Exception Handling

When a run-time error occurs, the appropriate error code from the following
table is passed to the object::task_error() function:

Value Error Description

E_BACKFULL Cannot putback an object into a full queue
E_BACKOBJ Cannot putback an object into a queue if the object is on

another queue
E_GETEMPTY Cannot get an object from an empty queue
E_QDEL Cannot delete a queue that has an object in the queue
E_STORE Cannot allocate more memory

Constructors and Destructors

qhead(qmodetype modetype = WMODE, int size = 10000)
Constructs a qhead object. The modetype argument determines what happens
when an object of the qhead class is pending. The choices are WMODE (wait
mode), EMODE (error mode), or ZMODE (0 mode); the default is WMODE (see the
get() function for more information). The size argument sets the maximum
length of the queue attached to a qhead object; the default is 10,000.

The maximum size of the queue does not affect the amount of memory occupied
by the queue when the queue is empty.

~qhead()
Deletes a qhead object.

10–20 task Package

qhead class

Member Functions

qhead *cut()
Splits a queue into two queues. One queue has a new qhead object, which the
return value points to, and the original qtail object; it contains the objects
from the original queue. The other queue has the original qhead object and
a new qtail object; this queue is empty. You can use this function to insert
a filter into an existing queue without changing the queue’s appearance to
functions that access the ends of the queue, and without halting the flow
through the queue of objects.

object *get()
Returns a pointer to the object at the head of the queue when the queue is not
empty. The object is removed from the queue. If the queue is empty, behavior
depends on the mode of the qhead object. In WMODE, a task that executes
qhead::get() on an empty queue suspends until that queue is not empty. In
EMODE, executing qhead::get() on an empty queue causes a run-time error. In
WMODE, executing qhead::get() on an empty queue returns the NULL pointer
instead of a pointer to an object.

virtual objtype o_type()
Returns object::QHEAD.

int pending()
Specifies that get operations on a queue must wait until an object is put in the
queue. It returns a nonzero value if the queue attached to a qhead object is
empty; otherwise, it returns 0.

void print (int verbosity, int internal_use = 0)
Prints a qhead object on cout. The verbosity argument specifies the information
to be printed. For more information, see the enum Print Function Arguments
section under Global Declarations for the task package. Do not supply a value
for the internal_use parameter.

int putback(object *new_queue_element)
Inserts at the head of the queue the object that the new_queue_element
argument points to, and returns a value of 1 on success. This lets the qhead
object operate as a stack (hence, the name putback). Space must be available
in the queue for it to succeed. Calling qhead::putback() for a full queue
causes a run-time error in both EMODE and WMODE and returns NULL in ZMODE.

int rdcount()
Returns the current number of objects in the queue attached to a qhead object.

task Package 10–21

qhead class

int rdmax()
Returns the maximum length of the queue.

qmodetype rdmode()
Returns the current mode of a qhead object, which can be EMODE, WMODE, or
ZMODE.

void setmode(qmodetype modetype)
Sets the mode of a qhead object to modetype, which can be EMODE, WMODE, or
ZMODE.

void setmax(int size)
Sets size as the maximum length of the queue attached to a qhead object. You
can set size to a number less than the current number of objects of the object
class, but that means you cannot put any more objects of the object class on
the queue until the length of the queue has been reduced below the limit you
set.

void splice(qtail *delete_tail)
Forms a single queue by appending a queue attached to a qhead object onto
the queue referenced in the argument. Typically, this reverses the action
of a previous qhead::cut() function. The extra qhead and qtail objects
are deleted. Waiting tasks resume execution if merging the two creates a
nonempty queue (if the task was trying to get) or an empty queue (if the task
was trying to put).

qtail *tail()
Creates a qtail object for the queue attached to a qhead object (if none exists)
and returns a pointer to the new qtail object.

10–22 task Package

qtail class

qtail class

Abstraction for the tail of a list of items in a first-in, first-out singly linked list.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class qtail: public object
{

friend class qhead;

public:
qtail(qmodetype modetype = WMODE, int size = 10000);
~qtail();

qtail *cut();
qhead *head();
int put(object *new_queue_element);
int rdspace();
int rdmax();
qmodetype rdmode();
void setmode(qmodetype modetype);
void setmax(int size);
void splice(qhead *delete_head);

int pending();
void print(int verbosity, int internal_use = 0);
objtype o_type();

};

Description

This class provides facilities for putting objects into a queue. A queue is a
data structure with an associated list of objects of the object class, or a class
derived from the object class in first-in, first-out order. All access to a queue
is through either the attached qhead or qtail object. You create a queue by
creating either a qhead or a qtail object. The other end of the queue is created
automatically. You can then obtain a pointer to the head with the qtail::head
function.

task Package 10–23

qtail class

Objects have definitions for when they are ready and pending (not ready).
The qtail objects are ready when the queue is not full and pending when the
queue is full.

Exception Handling

When a run-time error occurs, the appropriate error code from the following
table is passed to the object::task_error() function:

Value Error Description

E_PUTFULL Cannot put an object into a full queue
E_PUTOBJ Cannot put an object into queue if the object is on another

queue
E_QDEL Cannot delete a queue that has an object in the queue
E_STORE Cannot allocate more memory

Constructors and Destructors

qtail(qmodetype modetype = WMODE, int size = 10000)
Constructs a qtail object. The modetype argument specifies the mode (set by
the constructor) that controls what happens when an object of the qtail class
is pending. The choices are WMODE (wait mode), EMODE (error mode), or ZMODE
(0 mode); WMODE is the default. (See the put() function for more information.)
The size argument specifies the maximum length of the queue attached to a
qhead object; the default is 10,000.

The maximum size of the queue does not affect the amount of memory occupied
by the queue when the queue is empty.

~qtail()
Deletes a qtail object.

10–24 task Package

qtail class

Member Functions

qtail *cut()
Splits a queue into two queues. One queue has a new qtail object (to which
the return value points) and the original qhead object; it contains the objects
from the original queue. The other queue has the original qtail object and
a new qhead object; this queue is empty. You can use this function to insert
a filter into an existing queue, without changing the queue’s appearance to
functions that access the ends of the queue, and without halting the flow
through the queue of objects.

qhead *head()
Creates a qhead object for the queue attached to a qtail object (if none exists)
and returns a pointer to the new qhead object.

virtual objtype o_type()
Returns object::QTAIL.

int pending()
Specifies that get operations on a queue must wait until an object is put in
the queue. It returns a nonzero value if the queue is empty; otherwise, it
returns 0.

virtual void print(int verbosity, int internal_use = 0)
Prints a qtail object on cout. The verbosity argument specifies the information
to be printed. For more information, see the enum Print Function Arguments
section under Global Declarations for the task package. Do not supply a value
for the internal_use parameter.

int put(object *new_queue_element)
Adds the object denoted by the new_queue_element argument to the tail of the
queue attached to a qtail object; returns a value of 1 on success. If the queue
is full, the behavior depends on the mode of the qtail object. In WMODE, an
object of class task that executes qhead::put() on a full queue suspends until
that queue is not full. Calling qhead::put() for a full queue causes a run-time
error in EMODE and returns NULL in ZMODE.

int rdspace()
Returns the number of object objects that can be inserted into the queue
before it becomes full.

int rdmax()
Returns the maximum length of the queue.

task Package 10–25

qtail class

qmodetype rdmode()
Returns the current mode of a qtail object, which can be EMODE, WMODE, or
ZMODE.

void setmode(qmodetype modetype)
Sets the mode of a qtail object to modetype, which can be EMODE, WMODE, or
ZMODE.

void setmax(int size)
Sets size as the maximum length of the queue. You can set size to a number
less than the current number of objects of the object class, but that means you
cannot put any more objects of the object class on the queue until the length
of the queue has been reduced below the limit you set.

void splice(qhead *delete_head)
Forms a single queue by appending a queue attached to a qtail onto the queue
referenced in the argument. Typically, this reverses the action of a previous
qtail::cut(). The extra qhead and qtail objects are deleted. Waiting tasks
resume execution if merging the two queues creates a nonempty queue (if the
task was trying to get) or an empty queue (if the task was trying to put).

10–26 task Package

randint class

randint class

Objects of the randint class generate uniformly distributed random numbers.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class randint
{
public:

randint(long seed=0);
int draw();
float fdraw();
void seed(long seed);

};

Description

Objects of this class generate uniformly distributed random numbers. Each
random-number generator object produces a sequence that is independent of
other random-number generator objects.

Constructor

randint(long seed)
Constructs an object of the randint class. The seed argument is used as the
seed and is optional. Different seeds produce different sequences of generated
numbers; not all seeds produce useful sequences.

task Package 10–27

randint class

Member Functions

float fdraw()
Returns the next random number generated by the object. The number is a
floating-point value in the range 0 to 1.

int draw()
Returns the next random number generated by the object. The number is an
integer value in the range from 0 to RAND_MAX, which is defined in the ANSI C
header, stdlib.h.

void seed(long seed)
Reinitializes the object with the seed seed.

Example

extern "C" {
#include <stdlib.h>
}
#include <task.hxx>
#include <iostream.hxx>
main()
{

randint gen;
int i=0;
float sum;
for (i=0; i<1000; i++)

sum += gen.fdraw();
cout<<"Average is " << sum/1000. << "\n";
return EXIT_SUCCESS;

}

This example prints the average of 1000 floating-point random numbers.

10–28 task Package

sched class

sched class

Responsible for scheduling and for the functionality common to task and timer
objects.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class sched: public object
{
public:

enum statetype
{

IDLE = 1,
RUNNING = 2,
TERMINATED = 4

};

protected:
sched();

public:
static task *clock_task;
static PFV exit_fct;

void cancel(int result);
int dont_wait();
sched *get_priority_sched();
int keep_waiting();
statetype rdstate();
long rdtime();
int result();

int pending();
virtual void print(int verbosity, int internal_use = 0);
virtual void setwho(object *alerter);

static long get_clock();
static sched *get_run_chain();
static int get_exit_status();
static void set_exit_status(int);
static void setclock(long);

};

task Package 10–29

sched class

#ifdef CXXL_DEFINE_CLOCK
#define clock (sched::get_clock())
#endif
#define run_chain (sched::get_run_chain())

Description

This class provides facilities for checking on the state of a task, manipulating
the simulated clock, canceling a task, and checking on the result of a task.

You can create instances of classes derived from the sched class, but you
cannot create instances of the sched class itself.

Exception Handling

When a run-time error occurs, the appropriate error code from the following
table is passed to the object::task_error() function:

Value Error Description

E_CLOCKIDLE Cannot advance the clock when the clock_task is RUNNING
or TERMINATED

E_NEGTIME Cannot delay a negative amount of time
E_RESOBJ Cannot resume a task or timer if it is already on another

queue
E_RESRUN Cannot resume a RUNNING task
E_RESTERM Cannot resume a TERMINATED task
E_SCHOBJ Cannot use class sched other than as a base class
E_SCHTIME Cannot execute something at a time that has already

passed
E_SETCLOCK Cannot set the clock after it has advanced past 0

10–30 task Package

sched class

Member Data

static task *clock_task
Points to the task clock if one exists.

static PFV exit_fct
Points to the exit function if one exists.

Constructor

sched()
Constructs a sched object initialized to the IDLE state and delay 0.

Member Functions

void cancel(int result)
Puts an object into the TERMINATED state without suspending the caller (that is,
without invoking the scheduler); sets the result of the object to result.

int dont_wait()
Returns the number of calls to keep_waiting(), minus the number of calls
to the dont_wait() function, excluding the current call. The return value of
this function should equal the number of objects of the object class waiting for
external events before the current dont_wait() call.

long get_clock()
Returns the value of the clock in simulated time units.

int get_exit_status()
Returns the exit status of the task program. When a task program terminates
successfully (without calling task_error), the program calls exit(i) where i is
the value passed by the last caller of sched::set_exit_status().

sched *get_priority_sched()
Returns a pointer to a system task’s interrupt_alerter if the system gets an
awaited signal. If no interrupt occurs, this function returns 0.

sched *get_run_chain()
Returns a pointer to the run chain, the linked list of ready objects belonging to
classes derived from the sched class (task and timer objects).

int keep_waiting()
Keeps the scheduler from exiting when no tasks exist that can be run (an
external event could enable an IDLE task to be run). This function should
be called when the user program creates an object that waits for an external

task Package 10–31

sched class

event. Afterward, when such an object destructs, a call should go to the
dont_wait() function. The keep_waiting() function returns the number
of calls (not counting the current call) minus the number of calls to the
dont_wait() function.

int pending()
Returns 0 if the object is in the TERMINATED state; otherwise, it returns a
nonzero value.

virtual void print(int verbosity, int internal_use = 0)
Prints a sched object on cout. The verbosity argument specifies the information
to be printed. For more information, see the enum Print Function Arguments
section under Global Declarations for the task package. Do not supply a value
for the internal_use parameter.

statetype rdstate()
Returns the state of the object: RUNNING, IDLE, or TERMINATED.

long rdtime()
Returns the simulated clock time at which to run the object.

int result()
Returns the result of a sched object (as set by the task::resultis(),
task::cancel(), or sched::cancel() function). If the object is not yet
TERMINATED, the calling task suspends and waits for the object to terminate. A
task calling result() for itself causes a run-time error.

void setclock(long new_clock)
Initializes the simulated clock to a time specified by the new_clock argument.
You can use this function once before the simulated clock has advanced without
causing a run-time error. To advance the clock after the initial setting, call the
task::delay function.

void set_exit_status(int new_exit_status)
Sets the exit status of the task program. When a task program terminates
successfully (without calling task_error), the program calls exit(i), where i
is the value passed by the last caller of sched::set_exit_status().

virtual void setwho(object *alerter)
Records which object alerted the object. The alerter argument should represent
a pointer to the object that caused the task package to alert the sched.

10–32 task Package

sched class

Macros

The C++ Class Library supplies the following macros for compatibility with
older C++ class library implementations:

clock
Calls sched::get_clock(). For this macro to be defined, you must define
CXXL_DEFINE_CLOCK on the command line when invoking the compiler, or in
your source code before including the task package header.

run_chain
Calls sched::get_run_chain().

task Package 10–33

task class

task class

Serves as the basis for coroutines.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class task: public sched
{
public:

enum modetype
{

DEDICATED = 1,
SHARED = 2

};
protected:

task(char *name = (char *)NULL,
modetype mode = DEFAULT_MODE, int stacksize = 0);

public:
task *t_next;
char *t_name;

~task();

void cancel(int);
void delay(long);
long preempt();
void resultis(int);
void setwho(object *);
void sleep(object *object_waiting_for = (object *)NULL);
void wait(object *);
int waitlist(object * ...);
int waitvec(object **);
object *who_alerted_me();

virtual void print(int verbosity, int internal_use = 0);
virtual objtype o_type();

static task *get_task_chain();
};

10–34 task Package

task class

Description

This class is used only as a base class; all coroutine classes are derived from it.
All work for an object of a given coroutine type occurs within the constructor
for that type. The coroutine class must be exactly one level of derivation from
the task class. When the object is created, the constructor takes control and
runs until halted by one of the following functions: wait(), waitlist(),
waitvec(), sleep(), or resultis().

When a task executes a blocking function on an object that is ready, the
operation succeeds immediately and the task continues running; if the object is
pending, the task waits. Control then returns to the scheduler, which selects
the next task from the ready list or run chain. When a pending object becomes
ready, the system puts any task waiting for that object back on the run chain.

A task can be in one of the following states:

RUNNING Running or ready to run
IDLE Waiting for a pending object

TERMINATED Completed; not able to resume running (but you can retrieve
the result)

Exception Handling

When a run-time error occurs, the appropriate error code from the following
table is passed to the object::task_error() function:

Value Error Description

E_RESULT Cannot call result() on thistask

E_STACK Cannot extend stack
E_STORE Cannot allocate more memory
E_TASKDEL Cannot delete a task that is IDLE or RUNNING

E_TASKMODE Cannot create a task with a mode other than
DEDICATED or SHARED

E_TASKNAMEOVERRUN Internal error: data overrun when building default
task name

E_TASKPRE Cannot preempt a task that is IDLE or TERMINATED

E_WAIT Cannot call wait() on thistask

task Package 10–35

task class

Member Data

task *t_next
Points to the text task on the chain of all task objects; it is equal to NULL if
there are no more tasks.

char *t_name
Points to the null-terminated task name passed to the constructor. If no name
was passed to the constructor, then the constructor creates a unique name (and
t_name points to it). If the constructor created the name, then the destructor
deletes the name.

Constructors and Destructors

task(char *name = (char *)NULL, modetype mode = DEFAULT_MODE,
int stacksize = 0)
Constructs a task object. All three arguments are optional and have default
values. If you supply a character pointer, name is used as the task object’s
name. The argument mode must be DEDICATED or SHARED (or omitted) but
only DEDICATED is implemented; thus, the mode argument has no effect. The
argument stacksize specifies the minimum size of the task object’s stack. By
default, the stack size is the same as the default for the underlying thread
system.

Note

With DEDICATED stacks, the addresses of parameters to a constructor
derived from the task class change. This change occurs between the
time when the base class (task) constructor is called by the derived
class constructor and when the first statement in the derived class
constructor begins executing.

Constructors for the task class and the classes derived from the task
class cannot be inlined. These classes perform actions that start up a
child task (in a new thread) and then resume execution of the parent
task. On OpenVMS systems, the C++ compiler automatically prevents
inlining of constructors for classes derived from task; that is, functions
that (implicitly) call task::task (char * = 0, modetype = DEFAULTMODE,
int = SIZE).

~task()
Deletes an object of the task class. It deletes the task name if the constructor
created the name.

10–36 task Package

task class

Member Functions

void cancel(int result)
Puts a task object into the TERMINATED state without suspending the calling
task (that is, without invoking the scheduler); sets the result of the object to
result.

void delay(long delay)
Suspends a task object for the time specified by delay. A delayed task is in
the RUNNING state. The task object resumes at the current time on the system
clock, plus the time specified by delay. Only calling delay(), or waiting for a
timer, advances the clock.

task *get_task_chain()
Returns a pointer to the first task on the list of all task objects linked by
next_t pointers.

virtual objtype o_type()
Returns object::TASK.

long preempt()
Suspends a RUNNING object of the task class making it IDLE. Returns the
number of time units left in the task’s delay. Calling this function for an IDLE
or TERMINATED task causes a run-time error.

virtual void print(int verbosity, int internal_use = 0)
Prints a task object on cout. The verbosity argument specifies the information
to be printed. For more information, see the enum Print Function Arguments
section under Global Declarations for the task package. Do not supply a value
for the internal_use parameter.

void resultis(int result)
Sets the return value of a task object to be the value of result; it puts
the task object in the TERMINATED state. To examine the result, call the
sched::result() function. The constructor for a class derived from task must
not return by any of the following actions:

• Executing a return statement

• Throwing an exception

• Not catching an exception thrown by a subroutine

The end of a constructor for a class derived from the task class and the main
function must call the resultis() function. A task is pending until its stage
changes to TERMINATED. For more information, see sched::pending().

task Package 10–37

task class

void setwho(object *alerter)
Keeps track of which object alerted the object. The alerter argument should
represent a pointer to the object that caused the task package to alert the
task.

void sleep(object *object_waiting_for)
Suspends a task object unconditionally (that is, it puts the task object in the
IDLE state). The argument object_waiting_for is optional; if it is pointing to a
pending object, the object remembers the task. When the object is no longer
pending, the task is rescheduled. If you do not supply an argument, the event
that causes the task object to resume remains unspecified.

void wait(object *object_waiting_for)
Suspends a task object (it puts the task object in the IDLE state) until that
object is ready, if object_waiting_for points to an object that is pending.
If object_waiting_for points to an object that is ready (not pending), then
task::wait does not suspend the task object.

int waitlist(object *first_object_waiting_for ...)
Suspends a task object to wait for one of a list of objects to become ready.
The waitlist() function takes a list of object pointers linked by o_next and
terminated by a NULL argument. If any of the arguments point to a ready
object, then the task object is not suspended. When one of the objects pointed
to in the argument list is ready, waitlist() returns the position in the list of
the object that caused the return; position numbering starts at 0.

int waitvec(object **object_waiting_for_vector)
Differs from waitlist() only in that waitvec() takes as an argument the
address of a vector holding a list of pointers to objects and terminating NULL.
When one of the objects pointed to in the argument vector is ready, waitvec()
returns the position in a vector of the object that caused the return; position
numbering starts at 0.

object *who_alerted_me()
Returns a pointer to the object whose state change, from pending to ready,
caused a task to be put back on the run chain (put in the RUNNING state).

Example

long t = sched::get_clock;
delay(10000);

Delays a task so that it resumes executing at t+10,000.

10–38 task Package

timer class

timer class

A timer delays for a specified amount of simulated time.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class timer: public sched
{
public:

timer(long delay);
~timer();

void reset(long delay);
void setwho(object *alerter);

virtual void print(int verbosity, int internal_use = 0);
virtual objtype o_type();

};

Description

Objects of this class are timers. When a timer is created its state is RUNNING,
and it is scheduled to change its state to TERMINATED after a specified number
of time units. When the timer becomes TERMINATED, tasks waiting for it are
scheduled to resume execution.

Exception Handling

When a run-time error occurs, the following error code is passed to the
object::task_error() function:

Value Error Description

E_TIMERDEL Cannot delete a timer that is IDLE or RUNNING

task Package 10–39

timer class

Constructors and Destructors

timer(long delay)
Constructs an object of the timer class and schedules it for delay time units
after the current clock time.

~timer()
Deletes an object of the timer class; the timer’s state must be TERMINATED.

Member Functions

virtual objtype o_type()
Returns object::TIMER.

virtual void print(int verbosity, int internal_use = 0)
Prints a timer object on cout. The verbosity argument specifies the information
to be printed. For more information, see the enum Print Function Arguments
section under Global Declarations for the task package. Do not supply a value
for the internal_use parameter.

void reset(long delay)
Sets the state of the timer to RUNNING (even if it was TERMINATED) and
reschedules it to terminate after the specified delay from the current simulated
time.

void setwho(object *alerter)
Returns NULL.

Example

extern "C" {
#include <stdlib.h>
}
#include <task.hxx>
#include <iostream.hxx>

class DelayTask: public task
{
public:

DelayTask(char *, long);
};

10–40 task Package

timer class

// This task just does a delay, much like a timer.
DelayTask::DelayTask(char *task_name, long delay_length):

task(task_name)
{

cout << "at beginning of DelayTask, clock is "
<< sched::get_clock() << "\n";

delay(delay_length);
cout << "at end of DelayTask, clock is "

<< sched::get_clock() << "\n";
thistask->resultis(0);

}

int main()
{

cout << "at beginning of main\n";

cout << "creating task\n";
DelayTask delay_task1("delay_task1", 100);

cout << "creating timer\n";
timer *pt1 = new timer(10);
cout << "waiting for timer\n";
thistask->wait(pt1);
cout << "clock is " << sched::get_clock() << "\n";

cout << "resetting timer\n";
pt1->reset(1000);
cout << "waiting for timer\n";
thistask->wait(pt1);
cout << "clock is " << sched::get_clock() << "\n";

cout << "at end of main\n";
thistask->resultis(0);
return EXIT_SUCCESS;

}

This code generates the following output:

at beginning of main
creating task
at beginning of DelayTask, clock is 0
creating timer
waiting for timer
clock is 10
resetting timer
waiting for timer
at end of DelayTask, clock is 100
clock is 1010
at end of main

task Package 10–41

urand class

urand class

Objects of the urand class generate uniformly distributed random integers
within a given range from a low to a high value.

Header

#include <task.hxx>

Alternative Header
#include <task.h>

Declaration

class urand: public randint
{

public:
int low;
int high;

urand(int arg_low, int arg_high);

int draw();
};

Data Members

int low
Is the lower bound of the range of generated random numbers.

int high
Is the upper bound of the range of generated random numbers.

10–42 task Package

urand class

Constructor

urand(int arg_low, int arg_high)
Constructs an object of the urand class. Generated random numbers are
uniformly distributed from arg_low to arg_high.

Member Function

int draw()
Returns the next random integer generated by the object.

See Also

randint class

task Package 10–43

11
vector Package

The vector package provides ways to define vectors or stacks of objects of any
type by using the macro expansion capability of the C++ preprocessor.

To declare a generic vector:

1. Include the header <vector.hxx> in your program and declare the vector
class as follows:

declare(vector, TYPE)

TYPE may be any valid C++ type name. Make sure you define the declare
macro in every file that references this new vector data type.

2. Expand the implementation of all function bodies as follows:

implement(vector, TYPE)

This implement macro must appear once in a program.

3. Declare objects of type vector and TYPE and use the index operator to
reference these objects. The following is an example of declaration and
referencing:

class MyType {/* . . . */};
declare(vector,MyType)
implement(vector,MyType)
vector(MyType) vec1(100), vec2(5);
MyType x,y;
// . . .
if(vec2[4] == y) vec1[98] = x;

vector Package 11–1

The TYPE parameter must be an identifier. If it is not a class name, a
fundamental type, or a type name, create a name for the type using a typedef
declaration. For example:

typedef char *PCHAR;
declare(vector, PCHAR)
implement(vector, PCHAR)
implement(vector, PCHAR)

void f()
{

vector(PCHAR) ptrvec(10);
char *p = "Text";

ptrvec[0] = p;
// ...

}

Thread Safety
The generation of error messages within the vector package is not thread
safe; the package relies on static members to handle the current error
message and there is no synchonization between threads. If this creates a
problem for your application, HP recommends that you define a single Mutex
object to synchronize all use of the vector package. For more information on
synchronizing access to user-defined objects, see Chapter 6.

11–2 vector Package

stack(TYPE) class

stack(TYPE) class

Provides a generic (parameterized) data abstraction for a fixed-sized stack of
objects of some given type.

Header

#include <vector.hxx>

Alternative Header
#include <vector.h>

Compile-Time Parameter

TYPE—The type of the objects in the stack. It must be an identifier.

Declaration

class stack(TYPE): private vector(TYPE)
{
public:

stack(TYPE)(int); // objection size_error
stack(TYPE)(stack(TYPE) &);

void push(TYPE); // objection overflow_error
TYPE pop(); // objection underflow_error
TYPE &top(); // objection no_top_error
int full();
int empty();
int size();
int size_used();

static Objection overflow_error;
static Objection underflow_error;
static Objection no_top_error;

};

Description

This class provides a generic (parameterized) data abstraction for a fixed-sized
stack of objects of some given type.

Before a stack object can be declared or implemented, the base class, a vector
object with the same type parameter, must also be declared and implemented.
To declare a stack object you need to both declare and implement the base
vector class and the stack class.

vector Package 11–3

stack(TYPE) class

Exception Handling

Exceptions are implemented with the Objection package. The initial action
function for all objections prints an error message on cerr and calls abort().

Constructors

stack(TYPE)(int size)
Constructs a stack object with room for size elements in the stack. If size is
less than or equal to 0, the objection vector(TYPE)::size_error is raised.

stack(TYPE)(stack(TYPE) &src)
Constructs a stack object that takes the initial values of the elements from
another stack object of the same type and size.

Member Data

The following objections are raised for the stack errors described.

static Objection no_top_error
Attempted to reference the top of an empty stack.

static Objection overflow_error
Attempted to push too many elements onto the stack.

static Objection underflow_error
Attempted to pop an empty stack.

Member Functions

int empty()
Returns TRUE if the stack is empty; otherwise, it returns FALSE.

int full()
Returns TRUE if the stack is full; otherwise, it returns FALSE.

TYPE pop()
Pops an element off the top of the stack. If the stack underflows, the objection
stack(TYPE)::underflow_error is raised.

void push(TYPE new_elem)
Pushes an element onto the stack. If the stack overflows, the objection
stack(TYPE)::overflow_error is raised.

11–4 vector Package

stack(TYPE) class

int size()
Returns the maximum number of elements in the stack.

int size_used()
Returns the number of elements currently used in a generic stack.

TYPE &top()
Returns a reference to the element on the top of the stack. If the stack is
empty, the objection stack(TYPE)::no_top_error is raised.

Example

declare(vector, int)
implement(vector, int)
declare(stack, int)
implement(stack, int)

void f()
{

stack(int) st(20);
st.push(17);
// ...

}

This example shows the four steps required to declare and implement the base
vector class and to declare and implement the stack class.

See Also

Objection Package (see Chapter 7)
generic Package (see Chapter 3)
vector(TYPE) class

vector Package 11–5

vector(TYPE) class

vector(TYPE) class

Provides the (parameterized) data abstraction for a fixed-sized vector of objects
of some given type.

Header

#include <vector.hxx>

Alternative Header
#include <vector.h>

Compile-Time Parameter

TYPE—The type of the objects in the vector. It must be an identifier.

Declaration

class vector(TYPE)
{
public:

// objection size_error
vector(TYPE)(int);
vector(TYPE)(vector(TYPE) &);
~vector(TYPE)();
// objection copy_size_error

vector(TYPE) &operator=(vector(TYPE) &);
TYPE &elem(int);

// objection index_error
TYPE &operator[](int);
int size();
void set_size(int);

static Objection size_error;
static Objection copy_size_error;
static Objection index_error;

};

Description

This class provides the (parameterized) data abstraction for a fixed-sized vector
of objects of some given type.

11–6 vector Package

vector(TYPE) class

Exception Handling

Exceptions are implemented with the Objection package. The initial action
function for all objections prints an error message on cerr and calls abort().

Constructors and Destructors

vector(TYPE)(int new_size)
Constructs a vector object with the integer argument representing the number
of elements in the vector. If the number of elements is less than or equal to 0,
the objection vector(TYPE)::size_error is raised.

vector(TYPE)(vector(TYPE) &src)
Constructs a vector object that takes initial values of the elements from
another vector object of the same type and size.

~vector(TYPE)()
Deletes a vector object.

Member Data

The following objections are raised for the vector errors described.

static Objection copy_size_error
Attempted to assign a vector to another vector that has a different number of
elements.

static Objection index_error
Attempted to reference a vector element with a subscript out of range.

static Objection size_error
Attempted to create a vector with less than one element in it.

Overloaded Operators

vector(TYPE) &operator = (vector(TYPE) &src)
Assigns a vector to another vector. If the sizes of the vectors are different, the
objection vector(TYPE)::copy_size_error is raised.

TYPE &operator [] (int i)
Returns a reference to the ith element in the vector. The value of i has a
range from 0 to size()–1. If the subscript is out of bounds, the objection
vector(TYPE)::index_error is raised.

vector Package 11–7

vector(TYPE) class

Other Member Functions

TYPE &elem(int i)
Behaves like operator [] but without bounds checking.

void set_size(int new_size)
Changes the size of the vector.

int size()
Returns the number of elements in the vector.

See Also

Objection Package
generic Package

11–8 vector Package

Index

A
abs, 2–6
add, 10–11
adjustfield, 4–30
alert, 10–16
allocate, 4–75
appoint, 7–4
arg, 2–6
arg1, 2–6
attach

filebuf class, 4–12
fstream class, 4–16
ifstream class, 4–20
ofstream class, 4–52

B
bad, 4–31
base, 4–75
basefield, 4–30
binsize, 10–10
bitalloc, 4–31
blen, 4–75

C
callerror macro, 3–4
cancel

sched class, 10–31
task class, 10–37

cerr stream object, 4–1

cin stream object, 4–1
Class

complex, 2–3 to 2–8
c_exception, 2–9 to 2–11
erand, 10–7 to 10–8
filebuf, 4–11 to 4–14
fstream, 4–15 to 4–17
histogram, 10–9 to 10–11
IAPP(TYPE), 4–18
ifstream, 4–19 to 4–21
IMANIP(TYPE), 4–22 to 4–23
Interrupt_handler, 10–12 to 10–14
IOAPP(TYPE), 4–24
IOMANIP(TYPE), 4–25 to 4–26
ios, 4–27 to 4–36
iostream, 4–37
iostream_withassign, 4–38 to 4–39
istream, 4–40 to 4–45
istream_withassign, 4–46 to 4–47
istrstream, 4–48 to 4–49
Messages, 5–2 to 5–4
Mutex, 6–2 to 6–3
OAPP(TYPE), 4–50
object, 10–15 to 10–18
Objection, 7–3 to 7–5
ofstream, 4–51 to 4–53
OMANIP(TYPE), 4–54 to 4–55
ostream, 4–56 to 4–60
ostream_withassign, 4–61 to 4–62
ostrstream, 4–63 to 4–64
qhead, 10–19 to 10–22
qtail, 10–23 to 10–26
randint, 10–27 to 10–28
SAPP(TYPE), 4–65
sched, 10–29 to 10–33

Index–1

Class (cont’d)
SMANIP(TYPE), 4–66 to 4–67
stack(TYPE), 11–3 to 11–5
stdiobuf, 4–68 to 4–69
stdiostream, 4–70 to 4–71
Stopwatch, 8–2 to 8–4
streambuf, 4–72 to 4–80
String, 9–2 to 9–8
strstream, 4–81 to 4–82
strstreambuf, 4–83 to 4–85
task, 10–34 to 10–38
timer, 10–39 to 10–41
urand, 10–42 to 10–43
vector(TYPE), 11–6 to 11–8

clear, 4–32
clog stream object, 4–1
close

filebuf class, 4–13
fstream class, 4–16
ifstream class, 4–20
ofstream class, 4–52

complex class
exception handling, 2–4

complex class, 2–3 to 2–8
complex package, 2–1 to 2–11

global declarations, 2–2
complex_error, 2–10
conj, 2–6
Consumer classes, 4–74
copy_size_error, 11–7
Coroutine, definition of, 10–1
cos, 2–6
cosh, 2–6
cout stream object, 4–1
cut

qhead class, 10–21
qtail class, 10–25

c_exception class, 2–9 to 2–11

D
declare2 macro, 3–4
declare macro, 3–4

dec manipulator, 4–5
delay, 10–37
Deriving a user class from ios, 4–3
doallocate, 4–75
dont_wait, 10–31
draw

erand class, 10–7
randint class, 10–28
urand class, 10–43

E
eback, 4–75
ebuf, 4–75
egptr, 4–75
elem, 11–8
empty, 11–4
endl manipulator, 4–5
ends manipulator, 4–5
enum

Exception codes, 10–5
print function arguments, 10–5
qmodetype, 10–5

eof, 4–32
epptr, 4–75
erand class, 10–7 to 10–8
errorhandler macro, 3–4
error_fct, 10–16
Exception codes, 10–5
Exception handling

complex class, 2–4
exp, 2–6
Extraction manipulators, 4–5 to 4–10
Extraction operator

used with cin, 4–2

F
fail, 4–32
fd

filebuf class, 4–13
streambuf class, 4–75

fdraw, 10–28

Index–2

filebuf class, 4–11 to 4–14
fill, 4–32
flags, 4–32
floatfield, 4–30
flush, 4–59
flush manipulator, 4–5
forget, 10–17
fp, 4–76
freeze, 4–85
fstream class, 4–15 to 4–17
full, 11–4
Functions

pointers to, 10–5

G
gbump, 4–76
gcount, 4–43
Generic macros, 3–3 to 3–5

callerror, 3–4
declare, 3–4
declare2, 3–4
errorhandler, 3–4
implement, 3–4
implement2, 3–4
name2, 3–5
name3, 3–5
name4, 3–5
set_handler, 3–5

generic package, 3–1 to 3–7
global declarations, 3–3 to 3–7
macros, 3–3 to 3–5

get
istream class, 4–43
qhead class, 10–21

get area, 4–73
getline, 4–44
get_clock, 10–31
get_exit_status, 10–31
get_priority_sched, 10–31
get_run_chain, 10–31
get_task_chain, 10–37
Global declarations

complex package, 2–2
generic package, 3–3 to 3–7

Global declarations (cont’d)
iostream package, 4–4 to 4–10
Objection package, 7–2
task package, 10–3 to 10–6

good, 4–33
gptr, 4–76

H
h, 10–10
head, 10–25
hex manipulator, 4–5
high, 10–42
histogram class, 10–9 to 10–11
_hwm, 10–6

I
IAPP(TYPE) class, 4–18
Identifiers

beginning with cxxl_ or CXXL_, 1–1
ifstream class, 4–19 to 4–21
ignore

istream class, 4–44
Objection class, 7–4

imag, 2–7
IMANIP(TYPE) class, 4–22 to 4–23
implement2 macro, 3–4
implement macro, 3–4
index, 9–6
index_error, 11–7
init, 4–34
Insertion manipulators, 4–5 to 4–10
Insertion operator

used with cout, 4–1
interrupt, 10–13
Interrupt_handler class, 10–12 to 10–14
in_avail, 4–76
IOAPP(TYPE) class, 4–24
IOMANIP(TYPE) class, 4–25 to 4–26
IOMANIPdeclare macro, 4–26
ios class, 4–27 to 4–36

deriving user class from, 4–3
iostream class, 4–37

Index–3

iostream package, 4–1 to 4–85
global declarations, 4–4 to 4–10

iostream_withassign class, 4–38 to 4–39
io_state, 4–28
ipfx, 4–44
isfx, 4–44
istream class, 4–40 to 4–45
istream_withassign class, 4–46 to 4–47
istrstream class, 4–48 to 4–49
is_open, 4–13
iword, 4–34

K
keep_waiting, 10–31

L
l, 10–10
length, 9–7
lock, 6–3
log, 2–7
low, 10–42
lower, 9–7

M
Macros

callerror, 3–4
declare, 3–4
declare2, 3–4
errorhandler, 3–4
generic, 3–3 to 3–5
implement, 3–4
implement2, 3–4
name2, 3–5
name3, 3–5
name4, 3–5
set_handler, 3–5

Manipulator macros
IMANIP(TYPE), 4–22
IOMANIP(TYPE), 4–26
OMANIP(TYPE), 4–54
SMANIP(TYPE), 4–66

Manipulators
dec, 4–5
endl, 4–5
ends, 4–5
extraction, 4–5 to 4–10
flush, 4–5
hex, 4–5
insertion, 4–5 to 4–10
oct, 4–5
ws, 4–5

match, 9–7
mean, 10–7
Messages class, 5–2 to 5–4
Messages package, 5–1 to 5–4
Mutex class, 6–2 to 6–3
Mutex package, 6–1 to 6–3

N
name2 macro, 3–5
name3 macro, 3–5
name4 macro, 3–5
nbin, 10–10
norm, 2–7
no_top_error, 11–4

O
OAPP(TYPE) class, 4–50
object class, 10–15 to 10–18
Objection class, 7–3 to 7–5
Objection package, 7–1 to 7–5

global declarations, 7–2
Objection_action, 7–2
oct manipulator, 4–5
ofstream class, 4–51 to 4–53
OMANIP(TYPE) class, 4–54 to 4–55
open

filebuf class, 4–13
fstream class, 4–16
ifstream class, 4–20
ofstream class, 4–52

open_mode, 4–29

Index–4

operator -
complex class, 2–5

operator !=
complex class, 2–6
String class, 9–5

operator *
complex class, 2–5

operator *=
complex class, 2–5

operator +
complex class, 2–5
String class, 9–4

operator +=
complex class, 2–5
String class, 9–5

operator /
complex class, 2–5

operator /=
complex class, 2–5

operator ()
IMANIP(TYPE) class, 4–18
IOMANIP(TYPE) class, 4–24
OMANIP(TYPE) class, 4–50
SMANIP(TYPE) class, 4–65
String class, 9–6

operator ==
complex class, 2–6
String class, 9–5

operator []
vector(TYPE) class, 11–7

operator <
String class, 9–4

operator <<
complex class, 2–5
IOMANIP(TYPE) class, 4–26
OMANIP(TYPE) class, 4–55
ostream class, 4–58
SMANIP(TYPE) class, 4–67
String class, 9–5

operator <=
String class, 9–6

operator =
iostream_withassign class, 4–38
istream_withassign class, 4–46
ostream_withassign class, 4–61

operator = (cont’d)
String class, 9–4
vector(TYPE) class, 11–7

operator -=
complex class, 2–5

operator >
String class, 9–4

operator >=
String class, 9–6

operator >>
complex class, 2–5
IMANIP(TYPE) class, 4–23
IOMANIP(TYPE) class, 4–26
istream class, 4–42
SMANIP(TYPE) class, 4–67
String class, 9–5

opfx, 4–59
osfx, 4–59
ostream class, 4–56 to 4–60
ostream_withassign class, 4–61 to 4–62
ostrstream class, 4–63 to 4–64
out_waiting, 4–76
overflow

filebuf class, 4–13
stdiobuf class, 4–69
streambuf class, 4–76
strstreambuf class, 4–85

overflow_error, 11–4
o_next, 10–16
o_type

Interrupt_handler class, 10–13
object class, 10–17
qhead class, 10–21
qtail class, 10–25
task class, 10–37
timer class, 10–40

P
Package, definition of, 1–1
pbackfail, 4–76
pbase, 4–77
pbump, 4–77

Index–5

pcount, 4–64
peek, 4–44
pending

Interrupt_handler class, 10–13
object class, 10–17
qhead class, 10–21
qtail class, 10–25
sched class, 10–32

PFIO, 10–6
PFV, 10–6
Pointers to functions, 10–5
polar, 2–7
pop, 11–4
pow, 2–7
pptr, 4–77
precision, 4–34
Predefined stream objects

cerr, 4–1
cin, 4–1
clog, 4–1
cout, 4–1

preempt, 10–37
print

histogram class, 10–11
Interrupt_handler class, 10–13
object class, 10–17
qhead class, 10–21
qtail class, 10–25
sched class, 10–32
task class, 10–37
timer class, 10–40

Print function arguments, 10–5
Producer classes, 4–74
push, 11–4
put

ostream class, 4–59
qtail class, 10–25

put area, 4–73
putback

ostream class, 4–44
qhead class, 10–21

pword, 4–34

Q
qhead class, 10–19 to 10–22
qmodetype, 10–5
qtail class, 10–23 to 10–26

R
r, 10–10
raise, 7–4
randint class, 10–27 to 10–28
rdbuf

fstream class, 4–17
ifstream class, 4–21
ios class, 4–34
istrstreambuf class, 4–49
ofstream class, 4–53
ostrstream class, 4–64
stdiostream class, 4–71
strstream class, 4–82

rdcount, 10–21
rdmax

qhead class, 10–22
qtail class, 10–25

rdmode
qhead class, 10–22
qtail class, 10–26

rdspace, 10–25
rdstate

ios class, 4–34
sched class, 10–32

rdtime, 10–32
read, 4–45
real

complex class, 2–7
Stopwatch class, 8–3

remember, 10–17
reserve area, 4–73
reset

Stopwatch class, 8–3
timer class, 10–40

resetiosflags, 4–8

Index–6

resolution, 8–3
result, 10–32
resultis, 10–37
retval, 2–10

S
SAPP(TYPE) class, 4–65
sbumpc, 4–77
sched class, 10–29 to 10–33
seed, 10–28
seekg, 4–45
seekoff

filebuf class, 4–13
stdiobuf class, 4–69
streambuf class, 4–77

seekp, 4–59
seekpos

filebuf class, 4–14
streambuf class, 4–77

seek_dir, 4–30
setb, 4–78
setbuf

filebuf class, 4–14
fstream class, 4–17
ifstream class, 4–21
ofstream class, 4–53
streambuf class, 4–78
strstreambuf class, 4–85

setclock, 10–32
setf, 4–30, 4–34
setfill, 4–8
setg, 4–78
setiosflags, 4–8, 4–30
setmax

qhead class, 10–22
qtail class, 10–26

setmode
qhead class, 10–22
qtail class, 10–26

setp, 4–78
setprecision, 4–8
setstate, 4–35

setw, 4–9
setwho

sched class, 10–32
task class, 10–38
timer class, 10–40

set_complex_error, 2–2
set_exit_status, 10–32
set_handler macro, 3–5
set_size, 11–8
sgetc, 4–78
sgetn, 4–78
sin, 2–7
sinh, 2–7
sizestack(TYPE) class, 11–5
sizevector(TYPE) class, 11–8
size_error, 11–7
size_used, 11–5
skipwhite, 4–45
sleep, 10–38
SMANIP(TYPE) class, 4–66 to 4–67
snextc, 4–79
splice

qhead class, 10–22
qtail class, 10–26

sputbackc, 4–79
sputc, 4–79
sputn, 4–79
sqr, 2–7
sqrt, 2–7
sqsum, 10–10
stack(TYPE) class, 11–3 to 11–5
Standard Library

using RMS attributes with iostreams,
1–2

Standard Template Library
using RMS attributes with iostreams,

1–2
start, 8–3
status, 8–3
stdiobuf class, 4–68 to 4–69
stdiofile, 4–69
stdiostream class, 4–70 to 4–71
stop, 8–3

Index–7

Stopwatch class, 8–2 to 8–4
Stopwatch package, 8–1 to 8–4
stossc, 4–79
str

ostrstream class, 4–64
strstreambuf class, 4–85
strstream class, 4–82

streambuf class, 4–72 to 4–80
Stream objects, predefined

cerr, 4–1
cin, 4–1
clog, 4–1
cout, 4–1

Stream objects, sychronizing access
predefined, 4–5
user-defined, 4–9

String class, 9–2 to 9–8
String Library

iostreams
using RMS attributes with, 1–2

String package, 9–1 to 9–8
strstreambuf class, 4–83 to 4–85
strstream class, 4–81 to 4–82
sum, 10–10
sync

filebuf class, 4–14
istream class, 4–45
stdiobuf class, 4–69
streambuf class, 4–79

Synchronizing access
to predefined stream objects, 4–5
to user-defined stream objects, 4–9

sync_with_stdio, 4–35
system, 8–3

T
tail, 10–22
tan, 2–8
tanh, 2–8
Task, definition of, 10–1
task class, 10–34 to 10–38
task package, 10–1 to 10–43

task_error, 10–17
tellg, 4–45
tellp, 4–59
text, 5–2
this_task, 10–18
Thread safety, 1–1, 4–3, 11–2
tie, 4–35
timer class, 10–39 to 10–41
top, 11–5
trylock, 6–3

U
unbuffered, 4–79
underflow

filebuf class, 4–14
stdiobuf class, 4–69
streambuf class, 4–80
strstreambuf class, 4–85

underflow_error, 11–4
unlock, 6–3
unsetf, 4–35
upper, 9–7
urand class, 10–42 to 10–43
user, 8–3

V
Vector

how to declare generic, 11–1
vector(TYPE) class, 11–6 to 11–8
vector package, 11–1 to 11–8

W
wait, 10–38
waitlist, 10–38
waitvec, 10–38
who_alerted_me, 10–38
width, 4–35
write, 4–60
ws manipulator, 4–5

Index–8

X
xalloc, 4–36

Index–9

