
HP C++

User’s Guide for OpenVMS Systems
Order Number: AA–RPM8D–TE

June 2006

This manual contains information about developing HP C++ programs on
OpenVMS systems and describes related language features.

Revision/Update Information: This revised guide supersedes the
HP C++ User’s Guide for OpenVMS
Systems Order No. AA–RPM8C–TE,
Version 7.1.

Operating System and Version: OpenVMS I64 Version 8.2 or higher
OpenVMS Alpha Version 7.3-2 or higher

Software Version: HP C++ Version 7.2 for OpenVMS Systems

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group.

X/Open is a registered trademark of X/Open Company Ltd. in the UK and other countries.

Portions of the ANSI C++ Standard Library have been implemented using source licensed from
and copyrighted by Rogue Wave Software, Inc.

Information pertaining to the C++ Standard Library has been edited and reprinted with
permission of Rogue Wave Software, Inc. All rights reserved.

Portions copyright 1994-2002 Rogue Wave Software, Inc.

Printed in the US

This document is available on CD–ROM.

ZK6024

This document was prepared using DECdocument, Version 3.3-1n.

Contents

Preface . xiii

1 Building and Running C++ Programs

1.1 Using the DECTPU Text Editor . 1–3
1.2 Using the Compiler . 1–3
1.2.1 Compiler Command Qualifiers . 1–4
1.2.2 Compiler Error Messages . 1–4
1.3 Linking a Program (Alpha only) . 1–5
1.3.1 CXXLINK Interactions with OpenVMS Linker Qualifiers . . . 1–6
1.3.1.1 Command Parameters and Qualifier 1–6
1.3.2 Migrating from LINK to CXXLINK . 1–6
1.3.3 Linking to the C++ Standard Library 1–7
1.3.4 Linking to the C++ Class Library . 1–8
1.3.4.1 Linking Against the Class Library Object Library 1–8
1.3.4.2 Linking Against the Class Library Shareable Image 1–9
1.3.5 Linker Command Qualifiers . 1–9
1.3.6 Linker Error Messages . 1–9
1.4 Linking a Program (I64 only) . 1–10
1.4.1 Linking Against C++ Class and Standard Library Shareable

Images . 1–11
1.4.2 Linking Against the Object Library (Linking

/NOSYSSHARE) . 1–12
1.5 Running a C++ Program . 1–12
1.5.1 Run-Time Errors . 1–13
1.5.2 Passing Arguments to the main Function 1–13
1.6 Name Demangling . 1–15
1.6.1 Creating the Data File . 1–16
1.6.2 Using the CXXDEMANGLE Facility 1–16
1.6.2.1 Command Qualifier . 1–18
1.7 Performance Optimization Qualifiers . 1–18
1.8 Improving Build Performance . 1–19
1.9 Deploying Your Application . 1–19

iii

1.9.1 Redistribution of the DECC$CRTL.OLB Object Library 1–19
1.9.2 Redistribution of the LIBCXXSTD.OLB Object Library 1–20

2 HP C++ Implementation

2.1 Implementation-Specific Attributes . 2–1
2.1.1 #pragma Preprocessor Directive . 2–1
2.1.1.1 #pragma [no]builtins . 2–1
2.1.1.2 #pragma define_template Directive 2–2
2.1.1.3 #pragma environment Directive . 2–2
2.1.1.4 #pragma extern_model Directive 2–4
2.1.1.5 #pragma extern_prefix Directive 2–9
2.1.1.6 #pragma function Directive . 2–10
2.1.1.7 #pragma include_directory Directive 2–11
2.1.1.8 #pragma [no]inline Directive . 2–11
2.1.1.9 #pragma intrinsic Directive . 2–12
2.1.1.10 #pragma [no]member_alignment Directive 2–12
2.1.1.11 #pragma message Directive . 2–13
2.1.1.12 #pragma module Directive . 2–15
2.1.1.13 #pragma once Directive . 2–16
2.1.1.14 #pragma pack Directive . 2–16
2.1.1.15 #pragma [no]standard Directive . 2–18
2.1.2 Predefined Macros and Names . 2–18
2.1.3 Translation Limits . 2–23
2.1.4 Numerical Limits . 2–23
2.1.5 Argument-Passing and Return Mechanisms 2–24
2.2 Implementation Extensions and Features 2–24
2.2.1 Identifiers . 2–24
2.2.1.1 External Name Encoding . 2–25
2.2.1.2 Modifying Long Names . 2–26
2.2.2 Order of Static Object Initialization 2–27
2.2.3 Integral Conversions . 2–27
2.2.4 Floating-Point Conversions . 2–27
2.2.5 Explicit Type Conversion . 2–28
2.2.6 The sizeof Operator . 2–28
2.2.7 Explicit Type Conversion . 2–28
2.2.8 Multiplicative Operators . 2–28
2.2.9 Additive Operators (§r.5.7) . 2–29
2.2.10 Shift Operators (§r.5.8) . 2–29
2.2.11 Equality Operators . 2–29
2.2.12 Type Specifiers . 2–29
2.2.13 asm Declarations (Alpha only) . 2–29
2.2.14 Linkage Specifications . 2–30

iv

2.2.15 Class Layout . 2–30
2.2.15.1 Structure Alignment . 2–30
2.2.15.2 Bit-Fields . 2–30
2.2.15.3 Access Specifiers . 2–31
2.2.15.4 Class Subobject Offsets . 2–31
2.2.16 Virtual Function and Base Class Tables 2–32
2.2.17 Multiple Base Classes . 2–32
2.2.18 Temporary Objects . 2–33
2.2.18.1 Lifetime of Temporary Objects . 2–34
2.2.18.2 Nonconstant Reference Initialization with a Temporary

Object . 2–35
2.2.18.3 Static Member Functions Selected by Expressions

Creating Temporary Objects . 2–35
2.2.19 File Inclusion . 2–35
2.2.20 Nested Enums and Overloading . 2–40
2.2.21 Guiding Declarations . 2–41
2.3 Alternative Tokens . 2–42
2.4 Run-time Type Identification . 2–43
2.5 Message Control and Information Options 2–43

3 C++ Language Environment

3.1 cname Headers . 3–1
3.2 Using Existing C Header Files . 3–2
3.2.1 Providing C and C++ Linkage . 3–3
3.2.2 Resolving C++ Keyword Conflicts . 3–3
3.2.3 Handling Scoping Issues . 3–4
3.2.4 Support for <stdarg.h> and <varargs.h> Header Files 3–5
3.3 Using HP C++ with Other Languages . 3–5
3.4 Linkage to Non-C++ Code and Data . 3–6
3.5 How to Organize Your C++ Code . 3–6
3.5.1 Code That Does Not Use Templates . 3–6
3.5.2 Code That Uses Templates . 3–7
3.5.3 Summary . 3–11
3.5.4 Creating Libraries . 3–11
3.6 Sample Code for Creating OpenVMS Shareable Images 3–12
3.7 Hints for Designing Upwardly Compatible C++ Classes 3–13
3.7.1 Source Compatibility . 3–14
3.7.2 Link Compatibility . 3–14
3.7.3 Run Compatibility . 3–16
3.7.4 Additional Reading . 3–16

v

4 Porting to I64 Systems

4.1 Compiler Considerations . 4–2
4.1.1 Messages . 4–2
4.1.2 Quotas . 4–2
4.1.3 Dialect Changes . 4–2
4.1.4 ABI/Object Model changes . 4–3
4.1.5 Command-Line Qualifiers . 4–3
4.1.6 Floating Point . 4–7
4.1.7 Intrinsics and Builtins . 4–9
4.1.8 ELF . 4–10
4.1.9 Templates . 4–11
4.1.10 Exceptions and Condition Handlers . 4–12
4.1.10.1 Stack unwinding . 4–12
4.1.10.2 Exceptions Not Caught . 4–13
4.1.10.3 terminate() Incorrectly Called . 4–13
4.1.10.4 Problem in unexpected() Behavior 4–16
4.2 Library Changes . 4–18
4.2.1 Library Reorganization . 4–18
4.2.1.1 Standard Library and Language Run-Time Support

Library . 4–18
4.2.1.2 Class Library . 4–18
4.2.2 Language Run-Time Support Library 4–18
4.2.3 Class Library . 4–19
4.2.4 Standard Library . 4–19
4.2.4.1 Changes . 4–19
4.2.4.2 Library Headers . 4–19
4.2.4.3 Internal Library Headers and Macros 4–20
4.2.4.4 Known Issues and Restrictions . 4–20
4.2.4.5 Differences Between Alpha and I64 Systems 4–20
4.3 CXXLINK Changes . 4–27
4.4 Installation . 4–27

5 Using Templates

5.1 Template Instantiation Model . 5–2
5.2 Manual Template Instantiation . 5–3
5.2.1 Mixing Automatic and Manual Instantiation 5–4
5.2.2 Instantiation Directives . 5–4
5.2.2.1 #pragma define_template . 5–4
5.2.2.2 #pragma instantiate and #pragma do_not_instantiate . . . 5–8
5.2.3 Using Command Qualifiers for Manual Instantiation 5–9
5.3 Using Template Object Repositories (Alpha only) 5–10

vi

5.3.1 Specifying Alternate Repositories . 5–10
5.3.2 Reducing Compilation Time with the

/TEMPLATE_DEFINE=TIMESTAMP Qualifier 5–11
5.3.3 Compiling Programs with Automatic Instantiation 5–12
5.3.4 Linking Programs with Automatic Instantiation 5–13
5.3.5 Creating Libraries . 5–14
5.3.6 Multiple Repositories . 5–15
5.4 Using COMDATS (I64 only) . 5–15
5.5 Advanced Program Development and Templates 5–16
5.5.1 Implicit Inclusion . 5–16
5.5.2 Dependency Management . 5–18
5.5.3 Creating a Common Instantiation Library 5–18
5.6 Command-Line Qualifiers for Template Instantiation 5–21
5.6.1 Instantiation Model Qualifiers . 5–21
5.6.2 Other Instantiation Qualifiers . 5–23
5.6.3 Repository Qualifiers . 5–24

6 Handling C++ Exceptions

6.1 Compiling with Exceptions . 6–1
6.2 Linking with Exceptions (Alpha only) . 6–2
6.3 The terminate() and unexpected() Functions 6–2
6.4 C++ Exceptions and Other Conditions . 6–3
6.5 C++ Exceptions and Signals (Alpha only) . 6–4
6.6 C++ Exceptions with setjmp and longjmp 6–5
6.7 C++ Exceptions, lib$establish and vaxc$establish 6–6
6.8 Performance Considerations . 6–6
6.9 C++ Exceptions and Threads . 6–6
6.10 Debugging with C++ Exceptions (Alpha only) 6–8

7 The C++ Standard Library

7.1 Important Compatibility Information . 7–2
7.1.1 /[NO]USING_STD Compiler Compatibility Qualifier 7–3
7.1.2 Pre-ANSI/ANSI Iostreams Compatibility 7–3
7.1.3 Support for pre-ANSI and ANSI operator new() 7–6
7.1.4 Overriding operator new() (Alpha only) 7–7
7.1.5 Overriding operator new() (I64 only) . 7–9
7.1.6 Support for Global array new and delete Operators 7–10
7.1.7 IOStreams Expects Default Floating-Point Format 7–11
7.2 How to Build Programs Using the C++ Standard Library 7–11
7.3 Optional Switch to Control Buffering (Alpha only) 7–12
7.4 Enhanced Compile-time Performance of ANSI Iostreams 7–12

vii

7.5 Using RMS Attributes with iostreams . 7–13
7.6 Upgrading from the Class Library to the Standard Library 7–13
7.6.1 Upgrading from the Class Library Vector to the Standard

Library Vector . 7–13
7.6.2 Upgrading from the Class Library Stack to the Standard

Library Stack . 7–14
7.6.3 Upgrading from the Class Library String Package Code 7–15
7.6.4 Upgrading from the Class Library Complex to the ANSI

Complex Class . 7–17
7.6.5 Upgrading from the Pre-ANSI iostream library to the HP

C++ Standard Library . 7–20

8 Using the OpenVMS Debugger

8.1 Debugging C++ Programs . 8–1
8.1.1 Compiling and Linking in Preparation for Debugging 8–1
8.1.2 Debugger Support . 8–2
8.1.3 Starting and Ending a Debugging Session 8–3
8.1.4 Features Basic to Debugging C++ Programs 8–3
8.1.4.1 Determining Language Mode . 8–3
8.1.4.2 Built-In Operators . 8–4
8.1.4.3 Constructs in Language and Address Expressions 8–5
8.1.4.4 Data Types . 8–5
8.2 Using the OpenVMS Debugger with C++ Data 8–6
8.2.1 Nonstatic Data Members . 8–6
8.2.1.1 Noninherited Data Members . 8–7
8.2.1.2 Inherited Data Members . 8–7
8.2.2 Reference Objects and Reference Members 8–7
8.2.3 Pointers to Members . 8–8
8.2.4 Referencing Entities by Type . 8–10
8.3 Using the OpenVMS Debugger with C++ Functions 8–11
8.3.1 Referring to Overloaded Functions . 8–11
8.3.2 Referring to Destructors . 8–12
8.3.3 Referring to Conversions . 8–12
8.3.4 Referring to User-Defined Operators 8–13
8.3.5 Referring to Function Arguments . 8–13
8.3.6 Calling C++ Member Functions from the Debugger 8–13

viii

9 Using 64-bit Address Space

9.1 32-bit Versus 64-bit Development Environment 9–2
9.1.1 Model ANSI . 9–3
9.1.2 Memory Allocators . 9–3
9.1.3 64-bit Pointer Support in the C Run Time Library 9–4
9.2 Qualifiers and Pragmas . 9–4
9.2.1 The /MODEL=ANSI Qualifier . 9–5
9.2.2 The /POINTER_SIZE Qualifier . 9–5
9.2.3 The _ _INITIAL_POINTER_SIZE Macro 9–6
9.2.4 Pragmas . 9–6
9.3 Determining Pointer Size . 9–7
9.3.1 Special Cases . 9–8
9.3.2 Mixing Pointer Sizes . 9–9
9.4 Header File Considerations . 9–10
9.5 Prologue/Epilogue Files . 9–10
9.5.1 Rationale . 9–11
9.5.2 Using Prologue/Epilogue Files . 9–11
9.6 Avoiding Problems . 9–13
9.7 Reasons for Not Using Mixed Pointer Sizes 9–13

A Compiler Command Qualifiers

B Programming Tools

B.1 DEC Language-Sensitive Editor . B–1
B.1.1 Starting and Terminating an LSE Session B–1
B.1.2 LSE Placeholders and Tokens . B–2
B.1.3 Compiling and Reviewing Source Code from an LSE

Session . B–3
B.1.4 DEC Source Code Analyzer (SCA) . B–4

C Built-In Functions

C.1 Built-In Functions for Alpha Systems (Alpha only) C–2
C.1.1 Translation Macros . C–2
C.1.2 Intrinsic Functions . C–3
C.1.3 Privileged Architecture Library Code Instructions C–3
C.1.4 Other Builtins . C–24
C.2 Built-In Functions for I64 Systems (I64 only) C–46
C.2.1 Builtin Differences on I64 Systems . C–46
C.2.2 Built-in Functions Specific to I64 Systems C–48

ix

D Class Library Restrictions

D.1 Class Library Restrictions . D–1

E Compiler Compatibility

E.1 Compatibility with Other C++ Compilers E–1
E.2 Compatibility with Version 5.6 and Earlier E–3
E.2.1 Language Differences . E–3
E.2.2 Implementation Differences . E–5
E.2.3 Using Templates . E–6
E.2.3.1 Linking with Version 5.n Instantiations E–6
E.2.3.2 Linking Version 5.n Applications Against Version 6.n

Repositories . E–7
E.2.4 Library Differences . E–7
E.3 Using Classes . E–7
E.3.1 Friend Declarations . E–7
E.3.2 Member Access . E–8
E.3.3 Base Class Initializers . E–8
E.4 Undefined Global Symbols for Static Data Members E–8
E.5 Functions and Function Declaration Considerations E–9
E.6 Using Pointers . E–9
E.6.1 Pointer Conversions . E–9
E.6.2 Bound Pointers . E–9
E.6.3 Constants in Function Returns . E–9
E.6.4 Pointers to Constants . E–10
E.7 Using typedefs . E–10
E.8 Initializing References . E–10
E.9 Using the switch and goto Statements . E–11
E.10 Using Volatile Objects . E–11
E.11 Preprocessing . E–12
E.12 Managing Memory . E–12
E.13 Size-of-Array Argument to delete Operator E–12
E.14 Flushing the Output Buffer . E–13
E.15 Linking . E–13
E.16 Incrementing Enumerations . E–13
E.17 Guidelines for Writing Clean 64-Bit Code E–13

x

Index

Figures

1–1 Steps in Developing a C++ Program 1–2
2–1 Layout of an Object of D Class . 2–33
3–1 Placement of Template Declaration and Definition Files 3–10

Tables

1 Conventions Used in this Manual . xv
2–1 Program-Section Attributes . 2–7
2–2 Predefined Macros . 2–18
2–3 Names with a Defined Value of 1 . 2–19
2–4 Predefined Macros Specific to OpenVMS Alpha Systems 2–19
2–5 Predefined Macros Specific to OpenVMS I64 Systems 2–20
2–6 Version String and Version Number Macros 2–21
2–7 Macros Defined by Command-Line Qualifiers 2–22
3–1 Declaring and Defining Classes, Functions, and Data 3–11
3–2 Shareable Image Example Files . 3–12
5–1 Template Instantiation Models . 5–23
A–1 CXX Command Qualifiers . A–1

xi

Preface

This manual contains information about developing and debugging HP C++
programs on OpenVMS systems, and includes information on other OpenVMS
features and tools that work with the compiler.

Intended Audience
This manual is intended for experienced programmers who need to develop
HP C++ programs on OpenVMS systems. Users of this manual should have a
basic understanding of the C++ language and some familiarity with the Digital
Command Language (DCL).

Structure of this Document
This manual is organized as follows:

• Chapter 1 shows how to create, compile, link, and run HP C++ programs.

• Chapter 2 describes features and characteristics that are specific to the HP
C++ implementation.

• Chapter 3 describes guidelines and procedures for customizing your
language environment.

• Chapter 4 describes how to make code used with other C++
implementations acceptable to the HP C++ compiler.

• Chapter 5 describes how to use templates with HP C++.

• Chapter 6 explains how to use C++ exception handling.

• Chapter 7 describes the HP C++ implementation of the C++ Standard
Library.

• Chapter 8 explains how to use the OpenVMS Debugger with HP C++.

• Chapter 9 explains how to use 64-bit address space.

• Appendix A describes compiler command qualifiers.

xiii

• Appendix B provides information on using programming tools with
HP C++.

• Appendix C describes built-in functions.

• Appendix D describes Class Library restrictions.

Associated Documents
The following documents contain information associated with topics in this
manual:

• Stroustrup, Bjarne. The C++ Programming Language, 3rd Edition.
Reading, Massachusetts: Addison-Wesley, 1997.

This text combines a user guide and language reference manual to provide
an exhaustive introduction to the C++ programming language, including
sophisticated language features. Where appropriate, section numbers
shown in parentheses (for example, §r.2.3) refer to relevant portions of The
C++ Programming Language, 3rd Edition.

• HP C++ Class Library Reference Manual

This manual describes a library of HP C++ classes.

• HP C++ Installation Guide for OpenVMS Alpha

This document supplies the information necessary to install HP C++ on
OpenVMS Alpha systems.

• HP C++ Installation Guide for OpenVMS I64

This document supplies the information necessary to install HP C++ on
OpenVMS I64 systems.

• HP C Run-Time Library Reference Manual for OpenVMS Systems

This library manual provides information, useful to HP C++ users, on
the OpenVMS Run-Time Library (RTL) for C functions and macros,
which include the ANSI C standard library. This manual also contains
information about porting programs to and from other operating systems.

The C++ Programming Language, 3rd Edition and the STL Tutorial and
Reference Guide are available only in printed form. Online copies are not
available.

xiv

Related Documents
• Carroll, Martin D. and Margaret E. Ellis. Designing and Coding Reusable

C++. Reading, Massachusetts: Addison-Wesley, 1995.

This text provides practical information for designing and implementing
C++ programs.

• Myers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs
and Designs, 3rd edition. Reading, Massachusetts: Addison-Wesley, 1997.

• Myers, Scott. More Effective C++: 35 New Ways to Improve Your Programs
and Designs. Reading, Massachusetts: Addison-Wesley, 1995.

These texts provide practical information for designing and implementing
C++ programs.

• International Standard ISO/IEC 14882

Defines the C++ International Standard. The document is available for
downloading at the ANSI Electronic Store (start at http://www.ansi.org).

The printed version is also available for purchase from the same web site.
Choose ‘‘Catalogs/Standards Information’’, then ‘‘ANSI-ISO-IEC Online
Catalog’’, then search for ‘‘14882’’.

Conventions Used in this Manual
Table 1 lists the conventions used in this manual.

Table 1 Conventions Used in this Manual

Convention Meaning

class complex {
.
.
.

};

A vertical ellipsis indicates that some
intervening program code or output is not
shown. Only the more pertinent material is
shown in the example.

, . . . A horizontal ellipsis in a syntax description
indicates that you can enter additional
parameters, options, or values. A comma
preceding the ellipsis indicates that successive
items must be separated by commas.

(continued on next page)

xv

Table 1 (Cont.) Conventions Used in this Manual

Convention Meaning

The generic class . . .
The get() function . . .

Monospaced type denotes the names of HP
C++ language elements, and also the names
of classes, members, and nonmembers.
Monospaced type is also used in text to reference
code elements displayed in examples.

italic Italic type denotes the names of variables
that appear as parameters or in arguments
to functions, and also denotes book titles.

boldface Boldface type in text indicates the first instance
of terms defined in text.

Platform Labels
This guide contains information applicable to the HP OpenVMS operating
system on Alpha and Intel Itanium processors. The information in this guide
applies to both of these processors, except when specifically labeled as follows:

(Alpha only) Specific to the OpenVMS operating system running on an
Alpha processor.

(I64 only) Specific to the OpenVMS operating system running on an
Intel Itanium processor. On this platform, the product name
of the operating system is OpenVMS for Industry Standard
64 for Integrity servers (abbreviated in this manual as
OpenVMS I64 or I64).

New and Changed Features in C++ I64 Version 7.2
Some of the new or changed features supported by this version of the compiler
are:

• 64-bit pointer support is added for C++ I64.

This support is compatible with the 64-bit pointer support in the C++
and C compilers for OpenVMS Alpha. It supports the same /POINTER_
SIZE command-line qualifier, the _ _INITIAL_POINTER_SIZE predefined
macro, and the same pragmas (#pragma pointer_size and #pragma
required_pointer_size). Please see the V7.2 release notes for more
information on 64-bit pointer support for the I64 compiler.

• Variadic macros are now supported.

xvi

This feature allows macros to take a variable number of arguments. It
was added to HP C Version 6.4 and is supported by a number of other C
and C++ compilers. This feature is available only when the value of the
/STANDARD qualifier is RELAXED (the default), MS, or GNU.

• Support is added for generation of a new section type in the object file that
maps mangled names to their original unmangled form.

Future versions of the linker will take advantage of this feature by using
the demangled spelling of an identifier name for its error messages. In
addition, the linker will be able to generate a new section in the linker map
that shows mangled names and their corresponding unmangled orginal
name.

• Prologue and epilogue file header processing is now supported in HP C++.

• The _ _FUNCTION_ _ identifier is added.

_ _FUNCTION_ _ is a predefined pointer to char defined by the compiler,
which points to the name of the function as it appears in the source
program. _ _FUNCTION_ _ is same as _ _func_ _ of C99.

New and Changed Features in Version 7.1
HP C++ Version 7.1 runs on OpenVMS Alpha and OpenVMS Integrity
servers. The compiler behaves much the same on both systems, with some
differences, primarily in the support for built-in functions, default floating-
point representation, and predefined macros. These differences are noted in
the relevant sections of this manual.

Some of the new or changed features supported by this version of the compiler
on both Alpha and I64 systems are:

• cname header support is added (Section 3.1).

The C++ compiler implements section 17.4.1.2 - Headers [lib.headers] "C++
Headers for C Library Facilities" of the C++ Standard.

The implementation consists of 18 <cname> headers defined in the Standard
(Chapter 3). As required by the C++ standard, the <cname> headers define
C names in the std namespace.

The /[NO]PURE_CNAME qualifier is added to control insertion of the
names by <cname> headers into the std namespace only (/PURE_CNAME),
or into the std namespace and the global namespace (/NOPURE_CNAME).

• The /[NO]FIRST_INCLUDE=(file[, . . .]) qualifier is added (Appendix A).

This qualifier includes the specified files before any source files. It
corresponds to the Tru64 UNIX -FI switch.

xvii

• The #pragma include_directory preprocessor directive is added
(Section 2.1.1.7).

This pragma is intended to ease DCL command-line length limitations
when porting applications from POSIX-like environments built with
makefiles containing long lists of -I options that specify directories to
search for headers.

• Changes are made to the /WARNING qualifier and compiler messages
(Section 2.5).

Changes to the /WARNINGS qualifier include bug fixes and improved
compatibility with the C compiler. Some changes that might affect user
compilations are:

The /WARNINGS=ENABLE=ALL qualifier now enables all compiler
messages including informational-level messages.

The /WARNINGS=INFORMATIONALS qualifier contin-
ues to enable most informationals, but we recommend that
/WARNINGS=ENABLE=ALL be used instead

Using /WARNINGS=INFORMATIONALS=<tag> no longer enables all
other informational messages.

Also, some compiler diagnostics might be different on Alpha and I64
systems, and some conditions detected on one platform might not be
detected on the other.

• A new C++ front end is added to provide improved conformance to the C++
International Standard.

• Support for /STANDARD=CFRONT is retired.

Reader’s Comments
You may send comments or suggestions regarding this manual, or any HP C++
document, by electronic mail to the following Internet address:

c_docs@hp.com.

Product Support
Premium support is available on a per-incident basis

http://www.hp.com/hps/perevent/pv_software.html

and annual contracts

http://www.hp.com/hps/os/os_openvms.html

xviii

from HP Services in the US and some other countries. In the US and Canada,
call, toll-free, 1-800-354-9000. In other countries, support phone numbers are
available on the web at:

http://welcome.hp.com/country/us/en/wwcontact.html

Free support is limited to bug reports that can be sent to

compaq_cxx.bugs@hp.com

Send a complete but short example reproducing the problem, including the
following:

• Compiler and operating system versions

• All necessary sources (such as INCLUDE files and module sources)

• Data files

• Commands used to compile, link and run the program

• Expected results and incorrect results obtained

Please try to reduce the problem to as small a source as possible, because we
may be unable to diagnose large applications.

We answer most quickly those problem reports that include a small but
complete reproducible example, along with descriptions of the compile and link
options used and the exact text of any diagnostic messages or other incorrect
results. Reports that include only program fragments or involve very large
applications generally will not be accepted.

Please note that this is not a ‘‘programming consulting service’’ and that you
should have clear evidence of a product problem before contacting us. If you
need consulting services, please contact HP Services.

xix

1
Building and Running C++ Programs

C++ is an evolving language in which new features have recently replaced
outmoded constructs. The C++ Standard Library provided with this release
defines a complete specification of the C++ International Standard, with some
differences, as described in the online release notes in:

SYS$HELP:CXX_RELEASE_NOTES.PS

When switching from a Version 5.n compiler, you might need to modify your
source files, especially if you use the default language mode. In addition,
language changes can affect the run-time behavior of your programs. If you
want to compile existing source code with minimal source changes, compile
using the /STANDARD=ARM qualifier. See Chapter 2.

This chapter provides information about basic steps in developing a C++
program on an OpenVMS system. These steps are shown in Figure 1–1.

To create and modify a C++ program, you must invoke a text editor. The
OpenVMS system provides you with at least two text editors: VAX EDT (EDT)
and the DEC Text Processing Utility (DECTPU). Another editor that you can
use is the DEC Language-Sensitive Editor (LSE), which is sold separately (see
Appendix B for more information on LSE). Use .cxx as the file type to signify
that you are creating a C++ source program.

When you compile your program with the cxx command, you do not have to
specify the file type; by default, C++ first looks for files with the .cxx type.

If the compilation succeeds, the compiler creates an object file with the type
.obj. If the compiler detects errors, the system displays each error detected.
You then reinvoke a text editor to make corrections.

When your program compiles successfully, you use the CXXLINK facility
to create an executable image. Compiler and linker commands both take
qualifiers, as described in Sections 1.2 and 1.3.

Building and Running C++ Programs 1–1

Building and Running C++ Programs

Figure 1–1 Steps in Developing a C++ Program

COMMANDS

$ edit myprogram.cxx
Use the file type of
to indicate that the file

cxx

The command assumes
 run myprogram

run
that the file type of an image

exe

$

$ cxx myprogram
cxx

assumes that the file type
The

of an input file is cxx

/list
qualifier, the compiler
(If you use the

creates a listing file)

$ cxxlink myprogram
 cxxlinkThe command

assumes that the file type of
 objan input file is

(If you use the qualifier,/map
the linker creates a map file)

ACTION

executable
Run the

image

Link the
object module

Compile the
source program

Create a
source program

INPUT/OUTPUT FILES

myprogram.cxx

is

ZK−4979A−GE

contains a DEC C++ program

command

libraries

myprogram.obj
(myprogram.lis)

myprogram.exe
(myprogram.map)

When you have an executable image file, use the run command, or define a
foreign command, to run your program. See Section 1.5 for more information
on running image files.

1–2 Building and Running C++ Programs

Building and Running C++ Programs
1.1 Using the DECTPU Text Editor

1.1 Using the DECTPU Text Editor
With DECTPU, you have a choice of two editing interfaces, the Extensible
Versatile Editor (EVE) or the DECTPU EDT Keypad Emulator. You can also
create your own interfaces with DECTPU. At any time during your editing
session you have access to online help.

When you invoke DECTPU to create a file, the editor automatically creates a
journal file, which you can use to recover your keyboard entries if the system
fails during an editing session. To initiate recovery, use the following command
format:

edit/tpu/recover file-spec

The interactive editor interface, EVE, responds to all the common editing
functions, invoked using the editing keypad, and supports more advanced
functions that you type as commands on the EVE command line. For more
information on using EVE, see the Guide to VMS Text Processing.

1.2 Using the Compiler
The compiler detects source program errors and shows each error either in
a screen display or in the batch log file, depending on whether you run the
compiler interactively or in batch mode. If the compilation succeeds, the
compiler generates machine-language instructions from the source statements,
and groups these instructions into an object module for the linker.

The compiler command cxx has the following format:

cxx[/qualifier...][file-spec [/qualifier...]],...

You use qualifiers to instruct the compiler to perform some action. A qualifier
placed immediately after the CXX command affects all the files listed. A
qualifier placed immediately after a file specification affects only the preceding
file, unless you concatenate your files. A qualifier placed on an individual file
specification overrides a qualifier placed immediately after the CXX command.

If you include more than one file specification on the same line, use commas (,)
or plus signs (+) as separators. For example:

$ cxx/list prog_1, prog_2, prog_3

A comma instructs the compiler to keep source files separate and to create
an object file and a listing file for each source file. A plus sign instructs the
compiler to concatenate each of the specified source files, and to create one
object file and one listing file. Any qualifier specified for one file within a list of
concatenated files affects all these files.

Building and Running C++ Programs 1–3

Building and Running C++ Programs
1.2 Using the Compiler

Note

Comma lists are not supported on I64 systems. Their use causes a
fatal error.

1.2.1 Compiler Command Qualifiers
For a complete description of command line qualifiers, refer to Appendix A or
to the online HELP.

1.2.2 Compiler Error Messages
If the compiler detects errors in your source code, the compiler signals these
errors by displaying diagnostic messages in the following format:

%CXX-s-ident, message-text
at line number n in file name

s
Is the error severity, represented as follows:

F Fatal error. The compiler stops immediately without producing an object file.
You cannot link the program until you correct this error.

E Error. The compiler proceeds, and possibly generates other messages, but
does not produce an object file. You cannot link the program until you correct
this error.

W Warning. The compiler takes some corrective action and produces an
object file. However, to avoid unexpected results you must verify that the
compiler’s action is what you wanted.

I Information. The compiler informs you of specific actions taken. You need
not take any action yourself regarding this message.

S Success.

ident
Is a mnemonic (abbreviation) of the message text.

message-text
Is the full text of a compiler diagnostic message explaining what happened.

n
Is an integer that gives you the number of the line where the error occurs. The
number is relative to the beginning of the file or module in which the error
occurs. The number appears on your terminal but not in listing files.

1–4 Building and Running C++ Programs

Building and Running C++ Programs
1.2 Using the Compiler

name
Is the name of the file or module in which the error occurs. The name appears
on your terminal but not in listing files.

To be sure your program runs successfully, examine the diagnostic messages,
evaluate error severity, and make any necessary corrections.

You can suppress certain information and warning diagnostic messages using
the #pragma message preprocessor directive. For information about this
directive, see Section 2.1.1.11.

1.3 Linking a Program (Alpha only)

This section describes how to link a C++ program on OpenVMS Alpha systems.

After your program or module successfully compiles, you must use the
CXXLINK facility to combine your object modules into one executable image.

The CXXLINK facility is layered on the OpenVMS Linker utility and provides
the ability to link your C++ application. Besides linking your C++ application,
the CXXLINK facility completes the automatic template instantiation process;
see Chapter 5 for details. CXXLINK also ensures that the Standard Template
Library run-time support and the exception handling run-time support are
linked into your application as needed.

CXXLINK uses the same command line format that you would use to invoke
the OpenVMS Linker utility; thus, you can simply replace the LINK verb with
CXXLINK in your command procedures. The CXXLINK command has the
following format:

CXXLINK[/command-qualifier]... {file-spec[/file-qualifier...]},...

If you include more than one input file specification, use commas or plus signs
as separators. By default, the linker creates an output file with the same name
as the first input file and the file type .exe. If you want the output file to take
the name of your main program, be sure to specify your main program file first.
You can also use the /EXECUTABLE=name.exe qualifier on the CXXLINK
command line to specify a name for the executable image.

Do not use the linker cluster= option to reference OpenVMS object modules
that define global static objects. Using this option prevents the constructors
and destructors for global static objects from being run during image activation
and exit.

Building and Running C++ Programs 1–5

Building and Running C++ Programs
1.3 Linking a Program (Alpha only)

Caution

The OpenVMS Linker expects a function whose identifier is main. If a
C++ program lacking a definition of main is inadvertently linked, then
program execution begins at the first function seen by the linker.

1.3.1 CXXLINK Interactions with OpenVMS Linker Qualifiers
CXXLINK makes use of the OpenVMS Linker Utility’s LNK$LIBRARY logical
names to specific object libraries as input to the linker. If the CXXLINK
command includes the /USERLIBRARY qualifier in any form, an informational
message will be displayed and CXXLINK will list any required object libraries
in a linker options file.

1.3.1.1 Command Parameters and Qualifier
In addition to the following qualifiers, the CXXLINK command accepts
the same parameters and qualifiers as the OpenVMS Linker utility (see
Section 1.3.5 for some of the more useful OpenVMS Linker qualifiers).
CXXLINK-specific qualifiers are stripped off prior to calling the OpenVMS
Linker utility and therefore have no effect on default device or directory
specifications applied by the OpenVMS Linker facility.

Command Qualifiers Defaults

/[NO]LOG_FILE[=filename] /NOLOG_FILE
/PREINST /PREINST
/PRELINK=(option[,option2]) See HELP.
/REPOSITORY=(writeable-repository
[,readonly-repository,...]) See HELP.
/USE_LINK_INPUT[=filename] /NOUSE_LINK_INPUT
/VERSION None.

For more information about CXXLINK qualifiers and parameters, type HELP
CXXLINK.

1.3.2 Migrating from LINK to CXXLINK
Because a single CXXLINK command can invoke the OpenVMS Linker utility
multiple times, you must not specify user mode (DEFINE/USER_MODE)
logical names. If CXXLINK executes a second LINK command, the original
DEFINE/USER_MODE logical name is not retained for that second command.
Incorrect results can occur.

1–6 Building and Running C++ Programs

Building and Running C++ Programs
1.3 Linking a Program (Alpha only)

You should check command procedures that perform link operations of code
generated by the C++ compiler for any /USER_MODE logical names that are
intended to be in effect during a LINK operation. If you find any, you can
modify the procedures CXXLINK in one of the following ways:

• Define the logical name without /USER_MODE. This means that the
logical name should be deassigned, or its previous value reassigned, after
the CXXLINK operation is completed to ensure that prior state is restored.
Any ON ERROR cases that may be jumped to if the CXXLINK fails should
check for and deassign or reassign the logical name if needed.

• Move the definition(s) into a separate command procedure. CXXLINK
checks the logical name CXX$LINK_INIT, and if it is defined, executes
the command procedure in its subprocess prior to executing any LINK
command.

Consider the following procedure:

$ DEFINE/USER MYLIB MYAREA:MYLIB.OLB
$ LINK A,B,SYS$INPUT:/OPT
MYLIB/LIB
$

To have the procedure work with CXXLINK, modify it as follows:

$ CREATE CXX$LINK_INIT.COM
$ DEFINE MYLIB MYAREA:MYLIB.OLB
$EOD
$ DEFINE/USER CXX$LINK_INIT SYS$DISK:[]CXX$LINK_INIT.COM
$ LINK A,B,SYS$INPUT:/OPT
MYLIB/LIB
$!
$ DELETE CXX$LINK_INIT.COM;

Note that the CXX$LINK_INIT command procedure defines MYLIB without
the /USER_MODE qualifier. This is because the command procedure is
executed only once in the spawned process.

1.3.3 Linking to the C++ Standard Library
When you compile and link programs that use the C++ Standard Library,
no special qualifiers are required. The C++ driver automatically includes
the Standard Library run-time support on the link command, and automatic
template instantiation is the default mode.

For example, to build a program called prog.cxx that uses the Standard
Library, you enter the following command:

$ CXX prog.cxx

For detailed information about the Standard Library, refer to Chapter 7.

Building and Running C++ Programs 1–7

Building and Running C++ Programs
1.3 Linking a Program (Alpha only)

1.3.4 Linking to the C++ Class Library
Reusing code is a cornerstone of object-oriented programming. To minimize
the time it takes to develop new applications, a set of reusable classes is an
essential part of the HP C++ compiler environment. Class libraries offer a
variety of predefined classes that enable you to work more efficiently.

For a detailed explanation of the class library packages supplied with
the compiler, see the HP C++ Class Library Reference Manual, CXX_
CLASSLIB.PS, in the SYS$COMMON:[SYSHLP.CXX$HELP] directory.

The Class Library has always been provided in shareable image format.
Starting with OpenVMS Version 6.2, the Class Library is also provided in
object library format.

Using the Class Library as an object library provides a functional advantage
over using the shareable image. When your program redefines the global
new and delete operators and uses the Class Library object library, the new
and delete calls within the Class Library are directed to the new and delete
operators defined by your program. On the other hand, when your program
uses the Class Library shareable image, the new and delete calls within the
Class Library always call the standard new and delete operators. Linking
with the shareable image is the default method.

When you use the Class Library as a shareable image, the Class Library code
resides in an image file in SYS$SHARE and is shared by all C++ programs.
This process has the advantages of: reducing the size of a program’s executable
image, decreasing the amount of disk space taken up by the program’s image,
and letting your program swap in and out of memory faster because of
decreased size.

1.3.4.1 Linking Against the Class Library Object Library
To link against the Class Library object library on OpenVMS Version 6.2
or higher systems, you need to specify the /NOSYSSHR qualifier on your
CXXLINK command. For example:

$ CXXLINK/NOSYSSHR my_program.obj

If your program defines nonlocal static objects whose constructors or
destructors use any part of the Class Library, you need to ensure that the
Class Library is initialized before your objects’ constructors are invoked. (Note
that this is not an issue when you link against the Class Library shareable
image.) To guarantee this order of initialization, specify the Class Library
initialization object module CXXL_INIT as the first module in your CXXLINK
command. To do this, use a CXXLINK command similar to the following:

1–8 Building and Running C++ Programs

Building and Running C++ Programs
1.3 Linking a Program (Alpha only)

$ CXXLINK/NOSYSSHR/EXE=my_program SYS$SHARE:STARLET.OLB/INCLUDE=CXXL_INIT, -
_$ my_program.obj

If your program uses the task package, you must explicitly include the CMA
shared library when you link /NOSYSSHR, as in the following example:

$ CXXLINK/NOSYSSHR my_program.obj,SYS$INPUT:/OPT -
_$ SYS$SHARE:CMA$LIB_SHR/SHARE
^Z

1.3.4.2 Linking Against the Class Library Shareable Image
No special action is needed to link with the Class Library; simply specify
the object modules and object libraries that you want to link. The linker
automatically finds and resolves any references to objects in the Class
Library when it searches the system-supplied shareable image library,
SYS$LIBRARY:IMAGELIB.OLB.

1.3.5 Linker Command Qualifiers
You can use qualifiers to modify OpenVMS Linker output and to invoke
debugging and traceback facilities. The following list shows some of the most
useful LINK command qualifiers that you can specify on your CXXLINK
command. For a full discussion of the OpenVMS Linker, see the OpenVMS
Linker Utility Manual.

Command Qualifiers Defaults

/BRIEF None.
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG /NODEBUG
/[NO]EXECUTABLE[=file-spec] /EXECUTABLE=first-object-file-name.exe
/FULL None.
/[NO]MAP /NOMAP (interactive) /MAP (batch)
/[NO]SHAREABLE /NOSHAREABLE
/[no]TRACEBACK /TRACEBACK

1.3.6 Linker Error Messages
If the OpenVMS Linker detects errors while linking object modules, the
linker displays messages indicating the cause and severity of error. Because
CXXLINK uses the OpenVMS Linker to link your C++ program, CXXLINK
displays these linker messages. The linker does not produce an image file if
errors or fatal errors occur (conditions with severities of E or F).

Some problems that commonly occur during linking are as follows:

• You try to link a program without defining every function that the program
calls.

The linker responds by issuing warnings. For example:

Building and Running C++ Programs 1–9

Building and Running C++ Programs
1.3 Linking a Program (Alpha only)

%LINK-W-USEUNDEF symbol-name

A symbol name that you do not recognize could be a mangled name. Name
mangling is the mechanism that the compiler uses to encode exceptionally
long identifiers, including C++ function names. By default, CXXLINK
displays such symbols in their demangled form. To see a symbol in its
mangled form, use the /PRELINK=NODEMANGLE qualifier on your
CXXLINK command. (See Section 1.6 for more information about name
demangling.)

• You try to link a module that had warning or error messages during
compilation.

To avoid unexpected results, verify that the linker’s action is acceptable.

• You try to link a nonexistent module.

Check to see if the module exists (in the directory or library you expect it
to be in) and is spelled correctly.

• You redefine a C RTL function, or override the global operators new or
delete. For more information, see the /[NO]PREFIX_LIBRARY_ENTRIES
Qualifier in Section 1.2.1.

For an explanation of linker messages, invoke the HELP/MESSAGE utility.

1.4 Linking a Program (I64 only)

This section describes how to link a C++ program on OpenVMS I64 systems.

After your program or module successfully compiles, you must use either the
CXXLINK facility or OpenVMS Linker to combine your object modules into one
executable image.

The CXXLINK facility is layered on the OpenVMS Linker utility and provides
the ability to link your C++ application. On I64 systems, the CXXLINK
facility accepts the same command qualifiers as CXXLINK on Alpha systems,
including the full range of the Linker’s command qualifiers that the CXXLINK
facility passes to the Linker. For a description of Linker commands, see the
OpenVMS Linker Utility Manual.

On I64 systems, the only benefit of using CXXLINK instead of the Linker is
that CXXLINK reports non-mangled names of undefined and multiply-defined
symbols. It does this by intercepting Linker diagnostics and converting
mangled names reported by the Linker to their original names, using the
information in the demangler database.

1–10 Building and Running C++ Programs

Building and Running C++ Programs
1.4 Linking a Program (I64 only)

The demangler database is a file created by the compiler. By default, it is
created in a [.CXX_REPOSITORY] subdirectory of the current directory.
For both the C++ compiler and CXXLINK, the location of the repository is
controlled by the /REPOSITORY qualifier. For CXXLINK to correctly translate
mangled names to their original, non-mangled counterparts, it is important to
use the same repository for both compiling and linking.

Do not use the Linker CLUSTER= option to reference OpenVMS object
modules that define global static objects. Using this option prevents the
constructors and destructors for global static objects from being run during
image activation and exit.

Caution

The OpenVMS Linker expects a function whose identifier is main. If a
C++ program lacking a definition of main is inadvertently linked, then
program execution begins at the first function seen by the linker.

1.4.1 Linking Against C++ Class and Standard Library Shareable
Images

On I64 systems, the C++ Class and Standard Library, as well as the language
run-time support library, are delivered as system shareable images in
SYS$LIBRARY:

CXXL$011_SHR.EXE - class library image
CXXL$RWRTL.EXE - standard library image
CXXL$LANGRTL.EXE - language run-time support image

As system shareable images, these CXXL$ images are part of the system
library of shareable images, IMAGELIB.OLB, which is automatically searched
by the Linker. Consequently, no special actions are required to link C++
applications against the class or standard library shareable image.

For example, if PROG.CXX uses a class from the C++ class or standard library,
the following sequence of commands will compile, link, and run the program:

$ CXX PROG.CXX
$ CXXL PROG.OBJ ! (or LINK PROG.OBJ)
$ RUN PROG.EXE

Building and Running C++ Programs 1–11

Building and Running C++ Programs
1.4 Linking a Program (I64 only)

1.4.2 Linking Against the Object Library (Linking /NOSYSSHARE)
In addition to being delivered as system shareable images, the C++ class,
standard, and language run-time support libraries are also delivered in object
form in the system object library STARLET.OLB, thus making it possible to
link C++ applications /NOSYSSHARE.

The C++ libraries themselves do not impose any restrictions on linking
/NOSYSSHARE. However, because they are layered on top of the C Run-Time
Library, the rules for linking an application that references the C Run-Time
Library /NOSYSSHARE do apply.

For example, when linking /NOSYSSHARE, you must explicitly include
CMA$TIS routines in the link by either linking against the CMA$TIS_
SHR.EXE shareable image or forcing the CMA$TIS module from
STARLET.OLB in the link. See the HP C Run-Time Library Reference Manual
for more details.

Here are two examples of linking a C++ program /NOSYSSHARE:

$ CXXL/NOSYSSHARE PROG.OBJ, SYS$INPUT:/OPT
SYS$SHARE:CMA$TIS_SHR/SHARE
^Z

$ CXXL/NOSYSSHARE prog.obj, -
_$ SYS$SHARE:STARLET.OLB/INCLUDE=CMA$TIS

1.5 Running a C++ Program
When your program successfully links, use the DCL RUN command to execute
the image file. The RUN command has the following format:

RUN [/[NO]DEBUG] file-spec

/DEBUG
/NODEBUG
Determines whether you invoke the OpenVMS Debugger during run time. Use
the /DEBUG qualifier to invoke the debugger if your image was not linked
with the debugger. However, do not use the /DEBUG qualifier on images
linked with the /NOTRACEBACK qualifier. Use the /NODEBUG qualifier if
you linked your image with the /DEBUG qualifier and you do not want the
debugger to prompt you. The default is RUN/DEBUG if you linked your image
with the /DEBUG qualifier; otherwise, the default is RUN/NODEBUG.

For more information on debugging C++ programs, see Chapter 8.

1–12 Building and Running C++ Programs

Building and Running C++ Programs
1.5 Running a C++ Program

1.5.1 Run-Time Errors
When an error occurs during program execution, the OpenVMS condition
handler terminates execution and displays messages and traceback information
on the currently defined sys$error device. In the symbolic stack dump
traceback message, the condition handler lists the modules that were active
when the error occurred, indicating the sequence in which the modules were
called.

Traceback information is available at run time only for modules compiled
with /DEBUG=TRACEBACK and linked with the /TRACEBACK qualifier in
effect (the default for both compiler and linker commands). You should exclude
traceback information only from thoroughly debugged program modules.

The traceback information makes reference to numbered lines that are listing
lines in your program. If you include header files in the source file using
the #include directive, the line numbers do not correspond to the source-file
lines. To see the numbers that correspond to those referenced in the traceback
information, generate a listing file using the /LIST qualifier to the compiler
command.

1.5.2 Passing Arguments to the main Function
The main function in a C++ program can accept arguments from the command
line from which it was invoked. The syntax for a main function is as follows:

int main(int argc,
char *argv[],
char *envp[])

{
. . .

return status;
}

In this syntax, parameter argc is the count of arguments present in the
command line that invoked the program, and parameter argv is a character-
string array of the arguments. Parameter envp is the environment array,
which contains process information such as the user name and controlling
terminal. Parameter envp has no bearing on passing command-line arguments;
its primary use in C++ programs is during exec and getenv function calls.
For more information, see the HP C Run-Time Library Reference Manual for
OpenVMS Systems.

Building and Running C++ Programs 1–13

Building and Running C++ Programs
1.5 Running a C++ Program

In the main function definition, the parameters are optional. However, you can
access only the parameters that you define. You can define the main function in
any of the following ways:

int main()
int main(int argc)
int main(int argc, char *argv[])
int main(int argc, char *argv[], char *envp[])

To pass arguments to the main function, you can use a DCL foreign command
to point to the program, or you can define the logical name DCL$PATH to point
to an area containing the program.

To make use of DCL$PATH in the previous example, the resulting program
executable would have to be named "echo.exe".

You can then place echo.exe into a specific directory and point the logical name
DCL$PATH to it.

For example:

$ RENAME commarg.exe echo.exe
$ COPY echo.exe sys$login:
$ DEFINE DCL$PATH SYS$LOGIN:

The output would be identical to that shown in the previous exaple when a
foreign command was used. To pass arguments to the main function, you must
define the program as a DCL foreign command. When a program is defined
and run as a foreign command, the parameter argc is always greater than or
equal to 1, and argv[0] always contains the name of the image file.

The procedure for defining a foreign command involves using a DCL assign-
ment statement to assign the name of the image file to a symbol that is later
used to invoke the image. For example:

$ echo == "$ dsk$:commarg.exe" Return

The symbol echo is defined as a foreign command that invokes the image in
commarg.exe. The definition of echo must begin with a dollar sign ($) and
include a device name.

For more information about the procedure for defining a foreign command, see
the HP OpenVMS DCL Dictionary.

The following example shows a C++ program called commarg.cxx, which
displays the command-line arguments that were used to invoke it:

1–14 Building and Running C++ Programs

Building and Running C++ Programs
1.5 Running a C++ Program

// This program echoes the command-line arguments.

#include <iostream.h>

main(int argc, char *argv[])
{

int i;
for (i = 0; i < argc; ++i)

cout << i << " := >" << argv[i] << "<\n";
return 0;

}

A sample output for this example is as follows:

$ echo Long "Day’s" "Journey into Night" Return

0 := >db7:commarg.exe;1<
1 := >long<
2 := >Day’s<
3 := >Journey into Night<

DCL converts unquoted arguments on the command line to uppercase letters.
However, the C RTL internally parses the altered command line and puts all
unquoted arguments back in lowercase. This makes access to arguments in HP
C++ programs compatible with C++ programs developed on other systems.

All arguments in the command line are delimited by spaces or tabs. Arguments
with embedded spaces or tabs must be enclosed in quotation marks (" ").

1.6 Name Demangling
Because of the need to provide type-safe linking, HP C++ encodes type
information in external function names. This encoding is called name
mangling.

Mangled names can appear in diagnostic messages from commands such
as CXXLINK/NOEXPAND or from the OpenVMS Linker utility. To enable
users to decode (or demangle) these names, the compiler provides the
CXXDEMANGLE facility. The CXXDEMANGLE facility translates mangled
names into the names as they originally appeared in C++ source code.

To do the translation, CXXDEMANGLE uses a data file written by the compiler
during compilation. The data file contains a mapping of mangled names to
their demangled forms.

Building and Running C++ Programs 1–15

Building and Running C++ Programs
1.6 Name Demangling

1.6.1 Creating the Data File
Each time you compile a program, the compiler stores, in a data file, all the
program’s external symbols in their mangled and demangled forms. If the data
file does not exist, the compiler creates the data file. Otherwise, the compiler
appends information to the existing data file.

You can specify the name and location of the data file using the logical
name CXX$DEMANGLER_DB. For example, if you want your data file
to be named MYCXXDB.DAT in the DISK1:[MYDIR] directory, define the
CXX$DEMANGLER_DB logical name as follows:

$ DEFINE CXX$DEMANGLER_DB DISK1:[MYDIR]MYCXXDB.DAT

If the CXX$DEMANGLER_DB logical name is not defined, the compiler uses
the default file name CXX$DEMANGLER_DB in the writeable repository.
Refer to Chapter 5 for details on how to specify the writeable repository.

1.6.2 Using the CXXDEMANGLE Facility
To demangle a symbol name, CXXDEMANGLE must use the same data file as
the compiler used when it compiled the program containing the symbol.

Hence, if you defined the CXX$DEMANGLER_DB logical name when you
compiled the program, you should also define the logical name when you use
the CXXDEMANGLE facility.

Similarly, if you did not define the CXX$DEMANGLER_DB logical name but
specified the /REPOSITORY qualifier during compilation, specify the same
/REPOSITORY qualifier on your CXXDEMANGLE command.

If you did not specify the /REPOSITORY qualifier on your compile command,
the compiler uses the data file in the default writeable repository. To use
the CXXDEMANGLE facility in this case, either issue the CXXDEMANGLE
command from the same directory where the compile command was issued,
or specify the appropriate /REPOSITORY qualifier on your CXXDEMANGLE
command.

CXXDEMANGLE provides both a command-line interface and an interactive
interface, as follows:

• To use the command-line interface, enter the CXXDEMANGLE
command followed by a comma-separated list of mangled symbol names.
CXXDEMANGLE then displays the demangled form of each symbol and
exits. The command-line interface has the following syntax:

CXXDEMANGLE mangled-symbol-name [, . . .]

1–16 Building and Running C++ Programs

Building and Running C++ Programs
1.6 Name Demangling

The following example shows appropriate use of this syntax:

$ CXXDEMANGLE COPY__XPIPIPI
int * copy(int *, int *, int *)
$ CXXDEMANGLE COPY__XPPCPPCPPC, CXX$ADJCNTDFFRNCXPPP9MNS0IUE0NU
char ** copy(char **, char **, char **)
int * adjacent_difference(int *, int *, int *, minus<int >)
$

If you specify a mangled symbol name using the command-line interface
and the symbol contains lowercase letters, you must place the symbol
within quotes. For example:

$ CXXDEMANGLE "MyFunction__xic"

• To use the interactive interface, enter the CXXDEMANGLE command
without specifying a symbol name. CXXDEMANGLE then waits for you
to enter a symbol name in its mangled form. When you enter a symbol,
CXXDEMANGLE displays the demangled form of the symbol and waits for
you to enter another symbol, and so forth. To exit the interactive interface,
enter Ctrl/Z. The syntax for the interactive interface is as following:

CXXDEMANGLE
mangled-symbol-name
[. . .]
Ctrl/Z

The following example shows appropriate use of this syntax:

$ CXXDEMANGLE
COPY__XPIPIPI
int * copy(int *, int *, int *)
COPY__XPPCPPCPPC
char ** copy(char **, char **, char **)
CXX$ADJCNTDFFRNCXPPP9MNS0IUE0NU
int * adjacent_difference(int *, int *, int *, minus<int >)
Ctrl/Z
$

When you use the interactive interface, quotes are not necessary when
entering mangled symbol names that contain lowercase letters.

If CXXDEMANGLE is unable to translate a mangled symbol name, it echoes
the mangled symbol name.

Building and Running C++ Programs 1–17

Building and Running C++ Programs
1.6 Name Demangling

1.6.2.1 Command Qualifier
The CXXDEMANGLE command accepts a single qualifier, /REPOSITORY.

/REPOSITORY=(repository[, . . .])
Names the repository directories that contain the data files used by
CXXDEMANGLE. The /REPOSITORY qualifier is ignored if you define the
CXX$DEMANGLER_DB logical name. See the preceding text for details.

1.7 Performance Optimization Qualifiers
The following compiler qualifiers can be used to improve performance.
However, they can also change behavior for nonstandard-compliant programs:

• /[NO]ANSI_ALIAS—Specifies whether the compiler assumes the ANSI C
aliasing rules to generate better optimized code. The default is /ANSI_
ALIAS.

• /ASSUME=[NO]POINTERS_TO_GLOBALS—Controls whether the
compiler can safely assume that global variables have not had their
addresses taken in code that is not visible to the current compilation. The
default is /ASSUME=POINTERS_TO_GLOBALS.

• /ASSUME=[NO]TRUSTED_SHORT_ALIGNMENT—Allows the compiler
additional assumptions about the alignment of short types that, although
naturally aligned, may cross a quadword boundary. The default is
/ASSUME=NOTRUSTED_SHORT_ALIGNMENT.

• /ASSUME=[NO]WHOLE_PROGRAM—Tells the compiler that except for
‘‘well-behaved library routines’’, the whole program consists only of the
single object module being produced by this compilation. The optimizations
enabled by /ASSUME=WHOLE_PROGRAM include all those enabled by
/ASSUME=NOPOINTER_TO_GLOBALS and possibly other optimizations.
The default is /ASSUME=NOWHOLE_PROGRAM.

You can use the /OPTIMIZE qualifier to improve performance. This qualifier
will not change application behavior.

On I64 systems, the floating-point formats D_FLOAT, G_FLOAT, and F_FLOAT
are emulated using IEEE_FLOAT. Because this can hinder performance, using
the /FLOAT=IEEE_FLOAT default is recommended.

See Appendix A for detailed descriptions of these qualifiers.

1–18 Building and Running C++ Programs

Building and Running C++ Programs
1.8 Improving Build Performance

1.8 Improving Build Performance
Partitioning a large application into several shared libraries, which are then
linked into an executable, is a useful technique for reducing link times during
development. See Section 3.5 for more information.

1.9 Deploying Your Application
The HP C++ kit contains two Run-Time Library components that you might
need to redistribute with your applications:

• C++ Standard Library Object Library (LIBCXXSTD)

• C Run-Time Object Library (DECC$CRTL.OLB)

The next sections describe the method that developers must use to redistribute
Run-Time Library components to user systems. Redistribution of other
components on the HP C++ kit is prohibited. The redistribution rights set forth
in the Software Product Description do not apply to the DECC$CRTL.EXE or
DECC$CRTL.README files which are distributed with this kit.

1.9.1 Redistribution of the DECC$CRTL.OLB Object Library
Redistribution of this library is only required by those applications which
need to be linked during or after installation on an end user target system.
If you link your application and ship either a shareable or executable image
to your customers, then redistribution of the object library is not necessary.
The linking process of your application causes those library modules to be
incorporated into your resultant image.

There are two options that you can use to redistribute the DECC$CRTL.OLB
object library. The options are based on whether the library is needed after the
installation is completed.

The first option is for applications which link during installation, but have
no need for the object library once installation is completed. For that set of
developers, we recommend placing DECC$CRTL.OLB on your kit, but to link
using the copy in VMI$KWD and not issue a PROVIDE_FILE option which
would move this file onto the system. In other words, the object library resides
only on your kit, is used during installation to link your application, but is not
placed onto the end user system.

The second option is for applications which do need the object library after
installation is completed. For this class of applications, the object library
should be placed in a product specific location on the target system and not in
SYS$LIBRARY. The contents of this object library must not be inserted into
the SYS$LIBRARY:STARLET.OLB library.

Building and Running C++ Programs 1–19

Building and Running C++ Programs
1.9 Deploying Your Application

1.9.2 Redistribution of the LIBCXXSTD.OLB Object Library
Redistribution of this library is only required by those applications which
need to be linked during or after installation on an end user target system.
If you link your application and ship either a shareable or executable image
to your customers, then redistribution of the object library is not necessary.
The linking process of your application causes those library modules to be
incorporated into your resultant image.

There are two options that you can be used to redistribute the LIBCXXSTD.OLB
object library. The options are based on whether the library is needed after the
installation is completed.

The first option is for applications which link during installation, but have
no need for the object library once installation is completed. For that set of
developers, we recommend placing LIBCXXSTD.OLB on your kit, but to link
using the copy in VMI$KWD and not issue a PROVIDE_FILE option which
would move this file onto the system. In other words, the object library resides
only on your kit, is used during installation to link your application, but is not
placed onto the end user system.

The second option is for applications that do need the object library after
installation is completed. For this class of applications, the object library
should be placed in a product specific location on the target system and not in
SYS$LIBRARY. The contents of this object library must not be inserted into
the SYS$LIBRARY:STARLET.OLB library.

1–20 Building and Running C++ Programs

2
HP C++ Implementation

This chapter discusses the features and characteristics specific to the HP C++
implementation, including pragmas, predefined names, numerical limits, and
other implementation-dependent aspects of the language definition.

2.1 Implementation-Specific Attributes
This section describes pragmas, predefined names, and limits placed on the
number of characters and arguments used in C++ programs.

2.1.1 #pragma Preprocessor Directive
The #pragma preprocessor directive is a standard method for implementing
features that differ from one compiler to the next. This section describes
pragmas specifically implemented in the C++ compiler for OpenVMS systems.

The following #pragma directives are subject to macro expansion. A macro
reference can occur anywhere after the pragma keyword.

builtins inline linkage1 use_linkage1

dictionary noinline module extern_model

member_alignment message define_template extern_prefix

1Not supported; specific to C

This manual displays keywords used with #pragma in lowercase letters.
However, these keywords are not case sensitive.

2.1.1.1 #pragma [no]builtins
The #pragma builtins directive enables the C++ built-in functions that directly
access processor instructions. If the pragma does not appear in your program,
the default is #pragma nobuiltins.

C++ supports the #pragma builtins preprocessor directive for compatibility
with VAX C, but it is not required.

HP C++ Implementation 2–1

HP C++ Implementation
2.1 Implementation-Specific Attributes

2.1.1.2 #pragma define_template Directive
The #pragma define_template directive instructs the compiler to instantiate
a template with the arguments specified in the pragma. This pragma has the
following syntax:

#pragma define_template identifier

For example, the following statement instructs the compiler to instantiate the
template mytempl with the arguments arg1 and arg2:

#pragma define_template mytempl<arg1, arg2>

For more information on how to use templates with the #pragma
define_template directive, see Section 5.2.

2.1.1.3 #pragma environment Directive
The #pragma environment directive offers a way to single-handedly set, save, or
restore the states of context pragmas. This directive protects include files from
contexts set by encompassing programs and protects encompassing programs
from contexts that could be set in header files that the encompassing programs
include.

On OpenVMS systems, the #pragma environment directive affects the following
pragmas:

#pragma member_alignment
#pragma message
#pragma extern_model
#pragma extern_prefix

This pragma has the following syntax:

#pragma environment command_line
#pragma environment header_defaults
#pragma environment restore
#pragma environment save

command_line
Sets, as specified on the command line, the states of all the context pragmas.
You can use this pragma to protect header files from environment pragmas
that take effect before the header file is included.

header_defaults
Sets the states of all the context pragmas to their default values. This is
almost equivalent to the situation in which a program with no command line
options and no pragmas is compiled; except that this pragma sets the pragma
message state to #pragma nostandard, as is appropriate for header files.

2–2 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

save
Saves the current state of every pragma that has an associated context.

restore
Restores the current state of every pragma that has an associated context.

Without requiring further changes to the source code, you can use #pragma
environment to protect header files from things like language extensions and
enhancements that might introduce additional contexts.

A header file can selectively inherit the state of a pragma from the including
file and then use additional pragmas as needed to set the compilation to non-
default states. For example:

#ifdef __PRAGMA_ENVIRONMENT
#pragma __environment save 1
#pragma __environment header_defaults 2
#pragma member_alignment restore 3
#pragma member_alignment save 4
#endif
.
. /* contents of header file */
.
#ifdef __PRAGMA_ENVIRONMENT
#pragma __environment restore
#endif

In this example:

1 Saves the state of all context pragmas

2 Sets the default compilation environment

3 Pops the member alignment context from the #pragma member_alignment
stack that was pushed by #pragma _ _environment save (restoring the
member alignment context to its preexisting state)

4 Pushes the member alignment context back onto the stack so that the
#pragma _ _environment restore can pop the entry off

Thus, the header file is protected from all pragmas, except for the member
alignment context that the header file was meant to inherit.

HP C++ Implementation 2–3

HP C++ Implementation
2.1 Implementation-Specific Attributes

2.1.1.4 #pragma extern_model Directive
The #pragma extern_model directive controls the compiler’s interpretation of
data objects that have external linkage. You can use this pragma to select
the global symbol model to use for externs. The default is the relaxed refdef
model.

After you select a global symbol model with #pragma extern_model, the
compiler treats all subsequent declarations of objects of the extern storage
class accordingly, until it encounters another #pragma extern_model directive.

The global symbol models are as follows:

• Common block model

In this model, all declarations are definitions and the linker combines all
definitions with the same name into one definition. For Fortran program
units, such extern variables appear as named COMMON blocks. The
syntax is as follows:

#pragma extern_model common_block [(no)shr]

The shr and noshr keywords determine whether the psects created for
definitions are marked as shared or not shared. Fortran COMMON blocks
normally have the shared attribute. If neither keyword is specified, the
pragma acts as if noshr was specified.

Note

The C language permits objects declared with the const type qualifier
to be allocated in read-only memory, and when the C compiler allocates
a psect for a const object, it marks that section as read-only.

This is not compatible with the C++ conventions because the C++
language permits objects with static storage duration to be initialized
with values computed at run-time (before the main function gains
control). When the C++ compiler allocates a psect for such a
declaration, it marks the psect writable. Normally, only one compilation
(the one responsible for initialization) will allocate a psect for a const
object, and there is no problem.

But under the common_block extern model, the compilers will always
allocate a psect for such a declaration, leading to a "conflicting
attributes" warning from the linker if the same const-qualified
declaration is processed by both C and C++. It is best to avoid use
of the common_block extern model when const objects with external
linkage are shared between C and C++. If the common_block model
must be used, then the const type qualifier should be removed (for

2–4 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

example, by preprocessor conditionals) from the declaration processed
by the C compiler.

• Relaxed refdef model

This model is the default. Some declarations are references and some
are definitions. Multiple uninitialized definitions for the same object are
allowed and resolved into one by the linker. However, a reference requires
that at least one definition exists. The syntax is as follows:

#pragma extern_model relaxed_refdef [(no)shr]

The shr and noshr keywords determine whether the psects created for
definitions are marked as shared or not shared. If neither keyword is
specified, the pragma acts as if noshr was specified.

• Strict refdef model

In this model, some declarations are references and some are definitions. It
requires exactly one definition in the program for each symbol referenced.
The syntax is as follows:

#pragma extern_model strict_refdef ["name"] [(no)shr]

If specified, name in quotes is the name of the psect for any definition.

The shr and noshr keywords determine whether the psects created for
definitions are marked as shared or not shared. Neither keyword can
be specified unless a name for the psect is given. If neither keyword is
specified, the pragma acts as if noshr was specified.

• Globalvalue model

This model is like the strict refdef model except that these global objects
have no storage; instead, global objects are link-time constant values. The
syntax is as follows:

#pragma extern_model globalvalue

• Save

This pragma pushes the current extern model of the compiler onto a stack.
The stack records all the information associated with the extern model,
including the shr and noshr states and any quoted psect name.

The number of entries allowed in the extern_model stack is limited only by
the amount of memory available to the compiler. The syntax is as follows:

#pragma extern_model save

• Restore

HP C++ Implementation 2–5

HP C++ Implementation
2.1 Implementation-Specific Attributes

This pragma pops the extern model stack of the compiler. The compiler’s
extern model is set as the state just popped off the stack. The stack
records all the information associated with the extern model, including the
shr and noshr states and any quoted psect name.

A warning message is issued if the program tries to pop an empty stack.
Attempting to pop an empty stack does not change the compiler’s extern
state. The syntax is as follows:

#pragma extern_model restore

The #pragma extern_model directive has the following syntax:

#pragma extern_model model_spec [attr[,attr]...]

model_spec is one of the following:

common_block
relaxed_refdef
strict_refdef "name"
strict_refdef (No attr specifications allowed)
globalvalue (No attr specifications allowed)

[attr[,attr]...] are optional psect attribute specifications chosen from the
following (at most one from each line):

gbl lcl (Not allowed with relaxed_refdef)
shr noshr
wrt nowrt
pic nopic (Not meaningful for Alpha)
ovr con
rel abs
exe noexe
vec novec
For OpenVMS Alpha systems: 0 byte 1 word 2 long 3 quad 4 octa 5 6 7 8 9
10 11 12 13 14 15 16 page
For OpenVMS VAX systems: 2 long 3 quad 4 octa 9 page

The last line of attributes are numeric alignment values. When a numeric
alignment value is specified on a section, the section is given an alignment of
two raised to that power.

On OpenVMS Alpha systems, the strict_refdef "name" extern_model can
also take the following psect attribute specifications:

• noreorder — causes variables in the section to be allocated in the order
they are defined.

• natalgn — has no effect on OpenVMS systems.

2–6 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

It does, however, change the behavior on Tru64 UNIX systems: when
specified, natalgn causes the global variables defined within the section
to be allocated on their natural boundary. Currently, all global variables
on Tru64 UNIX systems are allocated on a quadword boundary. When the
natalgn attribute is specified, the compiler instead allocates the variable
on an alignment that is natural for its type (chars on byte boundaries, ints
on longword boundaries, and so on).

Specifying the natalgn attribute also enables the noreorder attribute.

Note

Use of the natalgn attribute can cause a program to violate the
Tru64 UNIX Calling Standard. The calling standard states that all
global variables must be aligned on a quadword boundary. Therefore,
variables declared in a natalgn section should only be referenced in the
module that defines them.

Table 2–1 lists the attributes that can be applied to program sections.

Table 2–1 Program-Section Attributes

Attribute Meaning

PIC or NOPIC The program section or the data these attributes refers to
does not depend on any specific virtual memory location (PIC),
or else the program section depends on one or more virtual
memory locations (NOPIC).

CON or OVR The program section is concatenated with other program
sections with the same name (CON) or overlaid on the same
memory locations (OVR).

REL or ABS The data in the program section can be relocated within virtual
memory (REL) or is not considered in the allocation of virtual
memory (ABS).

GBL or LCL The program section is part of one cluster, is referenced by the
same program section name in different clusters (GBL), or is
local to each cluster in which its name appears (LCL).

EXE or NOEXE The program section contains executable code (EXE) or does
not contain executable code (NOEXE).

(continued on next page)

HP C++ Implementation 2–7

HP C++ Implementation
2.1 Implementation-Specific Attributes

Table 2–1 (Cont.) Program-Section Attributes

Attribute Meaning

WRT or NOWRT The program section contains data that can be modified (WRT)
or data that cannot be modified (NOWRT).

RD or NORD These attributes are reserved for future use.

SHR or NOSHR The program section can be shared in memory (SHR) or cannot
be shared in memory (NOSHR).

USR or LIB These attributes are reserved for future use.

VEC or NOVEC The program section contains privileged change mode vectors
(VEC) or does not contain those vectors (NOVEC).

COM or NOCOM The program section is a conditionally defined psect associated
with a conditionally defined symbol. This is the type of psect
created when you declare an uninitialized definition with
extern_model relaxed_refdef.

See the OpenVMS Linker Utility Manual for more complete information on
each.

The default attributes are: noshr, rel, noexe, novec, nopic.

For strict_refdef, the default is con. For common_block and relaxed_refdef,
the default is ovr.

The default for wrt/nowrt is determined by the first variable placed in the
psect. If the variable has the const type qualifier (or the readonly modifier),
the psect is set to nowrt. Otherwise, it is set to wrt.

Restrictions on Setting Psect Attributes
Be aware of the following restriction on setting psect attributes.

The #pragma extern_model directive does not set psect attributes for variables
declared as tentative definitions in the relaxed_refdef model. A tentative
definition is one that does not contain an initializer. For example, consider the
following code:

#pragma extern_model relaxed_refdef long
int a;
int b = 6;
#pragma extern_model common_block long
int c;

2–8 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

Psect A is given octaword alignment (the default) because a is a tentative
definition. Psect B is correctly given longword alignment because it is
initialized and is, therefore, not a tentative definition. Psect C is also given
longword alignment because it is declared in an extern_model other than
relaxed_refdef.

Note

The psect attributes are normally used by system programmers who
need to perform declarations normally done in macro. Most of these
attributes are not needed in normal C programs. Also, notice that the
setting of attributes is supported only through the #pragma mechanism,
and not through the /EXTERN_MODEL command-line qualifier.

2.1.1.5 #pragma extern_prefix Directive
The #pragma extern_prefix directive controls the compiler’s synthesis of
external names, which the linker uses to resolve external name requests.
When you specify #pragma extern_prefix with a string argument, the compiler
prepends the string to all external names produced by the declarations that
follow the pragma specification.

This pragma is useful for creating libraries where the facility code can be
attached to the external names in the library.

The syntax is as follows:

#pragma extern_prefix
"string"
save
restore

"string"
Prepends the quoted string to external names in the declarations that follow
the pragma specification.

save
Saves the current pragma prefix string.

restore
Restores the saved pragma prefix string.

The default external prefix, when none has been specified by a pragma, is the
null string. The recommended use is as follows:

#pragma extern_prefix save
#pragma extern_prefix "prefix-to-prepend-to-external-names"

HP C++ Implementation 2–9

HP C++ Implementation
2.1 Implementation-Specific Attributes

. . . some declarations and definitions . . .
#pragma extern_prefix restore

When an extern_prefix is in effect and you are using #include to include
header files, but do not want the extern_prefix to apply to extern
declarations in the header files, use the following code sequence:

#pragma extern_prefix save
#pragma extern_prefix ""
#include . . .
#pragma extern_prefix restore

Otherwise, the external identifiers for definitions in the included files will be
prepended with the external prefix.

All external names prefixed with a nonnull string using #pragma extern_prefix
are converted to uppercase letters regardless of the setting of the /NAMES
qualifier.

The compiler treats #pragma extern_prefix independently of the /PREFIX_
LIBRARY_ENTRIES qualifier. The /PREFIX_LIBRARY_ENTRIES qualifier
affects only ANSI and C Run-Time Library (RTL) entries; the extern_prefix
pragma affects external identifiers for any externally visible name.

2.1.1.6 #pragma function Directive
The #pragma function directive specifies that calls to the specified functions
will occur in the source code. You normally use this directive in conjunction
with #pragma intrinsic, which affects specified functions that follow the
pragma directive. The effect of #pragma intrinsic on a given function
continues to the end of the source file or until a #pragma function directive
occurs, specifying that function.

The #pragma function directive has the following syntax:

#pragma function (function1[,function2, . . .])
#pragma function ()

You cannot specify this pragma with empty parentheses. To disable all intrinsic
functions, specify the /OPTIMIZE=NOINTRINSICS qualifier on the command
line.

2–10 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

2.1.1.7 #pragma include_directory Directive
The effect of each #pragma include_directory is as if its string argument
(including the quotes) were appended to the list of places to search that is
given its initial value by the /INCLUDE_DIRECTORY qualifier, except that an
empty string is not permitted in the pragma form.

The #pragma include_directory directive has the following syntax:

#pragma include_directory <string-literal>

This pragma is intended to ease DCL command-line length limitations when
porting applications from POSIX-like environments built with makefiles
containing long lists of -I options that specify directories to search for headers.
Just as long lists of macro definitions specified by the /DEFINE qualifier can
be converted to #define directives in a source file, long lists of places to search
specified by the /INCLUDE_DIRECTORY qualifier can be converted to #pragma
include_directory directives in a source file.

Note that the places to search, as described in the help text for the /INCLUDE_
DIRECTORY qualifier, include the use of POSIX-style pathnames, for example
"/usr/base". This form can be very useful when compiling code that contains
POSIX-style relative pathnames in #include directives. For example, #include
<subdir/foo.h> can be combined with a place to search such as "/usr/base"
to form "/usr/base/subdir/foo.h", which will be translated to the filespec
"USR:[BASE.SUBDIR]FOO.H"

This pragma can appear only in the main source file or in the first file specified
on the /FIRST_INCLUDE qualifier. Also, it must appear before any #include
directives.

2.1.1.8 #pragma [no]inline Directive
The #pragma inline directive expands function calls inline. The function call
is replaced with the function code itself.

The #pragma inline directive has the following syntax:

#pragma inline (id,...) #pragma noinline (id,...)

If a function is named in an inline directive, calls to that function will be
expanded as inline code, if possible.

If a function is named in a noinline directive, calls to that function will not be
expanded as inline code.

If a function is named in both an inline and a noinline directive, an error
message is issued.

HP C++ Implementation 2–11

HP C++ Implementation
2.1 Implementation-Specific Attributes

For calls to functions named in neither an inline nor a noinline directive, C++
expands the function as inline code whenever appropriate as determined by a
platform-specific algorithm.

2.1.1.9 #pragma intrinsic Directive
The #pragma intrinsic directive specifies that calls to the specified functions
are intrinsic. Intrinsic functions are functions in which the compiler generates
optimize code in certain situations, possibly avoiding a function call.

The #pragma intrinsic directive has the following syntax:

#pragma intrinsic (function1[,function2, . . .])

You can use this directive to make intrinsic the default form of functions that
have intrinsic forms. The following functions have intrinsic forms:

abs
fabs
labs
alloca

You can use the #pragma function directive to override the #pragma intrinsic
directive for specified functions.

The function must have a declaration visable at the time the compiler
encounters the #pragma intrinsic directive. The compiler takes no action
if the compiler does not recognize the specified function name as an intrinsic.

2.1.1.10 #pragma [no]member_alignment Directive
By default, the compiler for OpenVMS systems aligns structure members so
that members are stored on the next boundary appropriate to the type of the
member; that is, bytes are on the next byte boundary, words are on the next
word boundary, and so on.

You can use the #pragma member_alignment directive to specify structure
member alignment explicitly. For example, using #pragma member_alignment
aligns a long member variable on the next longword boundary, and it aligns a
short member variable on the next word boundary.

Using #pragma nomember_alignment causes the compiler to align structure
members on the next byte boundary regardless of the type of the member. The
only exception to this is for bit-field members.

If used, the nomember_alignment pragma remains in effect until the compiler
encounters the member_alignment pragma.

To save and restore the current setting of the member_alignment pragma, you
can use the member_alignment save and member_alignment restore pragmas.

2–12 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

To affect the member alignment of the entire module, use the /MEMBER_
ALIGNMENT qualifier. For information about this qualifier, see Section 2.1.1.10.

2.1.1.11 #pragma message Directive
The #pragma message directive controls the kinds of individual diagnostic
messages or groups of messages that the compiler issues. Use this pragma
to override any command-line options specified by the /WARNINGS qualifier,
which affects the types of messages the compiler issues.

Default severities used by the compiler can be changed only if they are
informationals, warnings, or discretionary errors. Attempts to change more
severe severities are ignored. If a message severity has not been altered by the
command line and is not currently being controlled by a pragma, the compiler
checks to see whether the message severity should be changed because of the
‘‘quiet’’ state. If not, the message is issued using the default severity.

Error message severities start out with command-line severities applied to
default compiler severities. Pragma message severities are then applied. In
general, pragma severities override command-line severities, which override
default severities. The single exception to this is that command-line options
can always be used to downgrade messages. However, command-line qualifiers
cannnot be used to raise the severity of messages currently controlled by
pragmas.

The #pragma message directive has the following syntax:

#pragma message disable (message-list)
#pragma message enable (message-list)
#pragma message error (message-list)
#pragma message fatal (message-list)
#pragma message informational (message-list)
#pragma message warning (message-list)
#pragma message restore
#pragma message save

disable
Suppresses the compiler-issued messages specified in the message-list
argument. The message-list argument can be any one of the following:

• A single message identifier

• The keyword ALL (all messages issued by the compiler)

• A single message identifier enclosed in parentheses

• A comma-separated list of message identifiers enclosed in parentheses

HP C++ Implementation 2–13

HP C++ Implementation
2.1 Implementation-Specific Attributes

A message identifier is the name immediately following the message severity
code letter. For example, consider the following message:

%CXX-W-MISSINGRETURN, Non-void function "name" does not contain a return
statement

The message identifier is MISSINGRETURN. To prevent the compiler from
issuing this message, use the following directive:

#pragma message disable MISSINGRETURN

The compiler lets you disable a discretionary message if its severity is warning
(W), informational (I), or error (E) at the time the message is issued. If
the message has severity of fatal (F), the compiler issues it regardless of
instructions not to issue messages.

enable
Enables the compiler to issue the messages specified in the message-list
argument.

errors
Sets the severity of each message in the message list to Error.

fatals
Sets the severity of each message in the message list to Fatal.

informationals
Sets the severity of each message in the message list to Informational.

warnings
Sets the severity of each message in the message list to Warning.

restore
Restores the saved state of enabling or disabling compiler messages.

save
Saves the current state of enabling or disabling compiler messages.

The save and restore options are useful primarily within header files. See
Section 2.1.1.5.

#pragma message performs macro expansion so that you map Version 5.6
message tags to Version 6.0 tags:

2–14 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

. . .
#if __DECCXX_VER > 60000000
#define uninit used_before_set
#endif

#pragma message disable uninit
int main()
{
int i,j;

i=j;
}
#pragma message enable uninit

2.1.1.12 #pragma module Directive
When you compile source files to create an object file, the compiler assigns the
first of the file names specified in the compilation unit to the name of the object
file. The compiler adds the .OBJ file extension to the object file. Internally, the
OpenVMS system (the debugger and the librarian) recognizes the object module
by the file name; the compiler also gives the module a version number of 1. For
example, given the object file EXAMPLE.OBJ, the debugger recognizes the
EXAMPLE object module.

To change the system-recognized module name and version number, use the
#pragma module directive.

You can find the module name and the module version number listed in the
compiler listing file and the linker load map.

The #pragma module directive is equivalent to the VAX C compatible #module
directive.

The #pragma module directive has the following syntax:

#pragma module identifier identifier

#pragma module identifier string

The first parameter must be a valid identifier, which specifies the name of the
module to be used by the linker. The second parameter specifies the optional
identification that appears on the listing and in the object file. The second
parameter must be a valid identifier of no more than 31 characters, or a
character-string constant of no more than 31 characters.

HP C++ Implementation 2–15

HP C++ Implementation
2.1 Implementation-Specific Attributes

2.1.1.13 #pragma once Directive
The #pragma once preprocessor directive specifies that the header file is
evaluated only once.

The #pragma once directive has the following format:

#pragma once

2.1.1.14 #pragma pack Directive
The #pragma pack directive specifies the byte boundary for packing member’s
structures.

The #pragma pack directive has the following format:

#pragma pack [(n)]
#pragma pack(push {, identifier} {, n})
#pragma pack(pop {, identifier} {, n})

n specifies the new alignment restriction in bytes as follows:

1 Align to byte

2 Align to word

4 Align to longword

8 Align to quadword

16 Align to octaword

A structure member is aligned to either the alignment specified by #pragma
pack or the alignment determined by the size of the structure member,
whichever is smaller. For example, a short variable in a structure gets byte-
aligned if #pragma pack (1) is specified. If #pragma pack (2), (4), or (8) is
specified, the short variable in the structure gets aligned to word.

If #pragma pack is not used, or if n is omitted, packing defaults to 1 for byte
alignment.

With the push/pop syntax of this pragma, you can save and restore packing
alignment values across program components. This allows you to combine
components into a single translation unit even if they specify different packing
alignments:

• Every occurrence of pragma pack with a push argument stores the current
packing alignment value on an internal compiler stack. If you provide a
value for n, that value becomes the new packing value. If you specify an
identifier, a name of your choosing, it is associated with the new packing
value.

2–16 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

• Every occurrence of a pragma pack with a pop argument retrieves the
value at the top of the stack and makes that value the new packing
alignment. If an empty stack is popped, the alignment value defaults to
the /[NO]MEMBER_ALIGNMENT command-line setting, and a warning
is issued. If you specify a value for n, that value becomes the new packing
value.

If you specify an identifier, all values stored on the stack are removed from
the stack until a matching identifier is found. The packing value associated
with the identifier is also removed from the stack, and the packing value
that was in effect just before the identifier was pushed becomes the new
packing value. If no matching identifier is found, the packing value reverts
to the command-line setting, and a warning is issued.

The push/pop syntax of pragma pack lets you write header files that ensure that
packing values are the same before and after the header file is encountered.
Consider the following example:

// File name: myinclude.h
//
#pragma pack(push, enter_myinclude)
// Your include-file code ...
#pragma pack(pop, enter_myinclude)
// End of myinclude.h

In this example, the current packing value is associated with the identifier
enter_myinclude and pushed on entry to the header file. Your include code
is processed. The #pragma pack at the end of the header file then removes all
intervening packing values that might have occurred in the header file, as well
as the packing value associated with enter_myinclude, thereby preserving the
same packing value after the header file as before it.

This syntax also lets you include header files that might set packing align-
ments different from the ones set in your code. Consider the following example:

#pragma pack(push, before_myinclude)
#include <myinclude.h>
#pragma pack(pop, before_myinclude)

In this example, your code is protected from any changes to the packing value
that might occur in <myinclude.h> by saving the current packing alignment
value, processing the include file (which may leave the packing alignment with
an unknown setting), and restoring the original packing value.

HP C++ Implementation 2–17

HP C++ Implementation
2.1 Implementation-Specific Attributes

2.1.1.15 #pragma [no]standard Directive
This directive performs operations similar to the save and restore options on
#pragma message directive:

• #pragma standard is the same as #pragma message restore.

• #pragma nostandard disables all optional messages after doing a #pragma
message save operation.

2.1.2 Predefined Macros and Names
The compiler defines the following predefined macros and predefined names.
For information on using predefined macros in header files in the common
language environment, see Section 3.2.

Table 2–2 Predefined Macros

Macro Description

_BOOL_EXISTS Indicates that bool is a type or keyword

__BOOL_IS_A_RESERVED_WORD Indicates that bool is a keyword

__DATE__1 A string literal containing the date of the
translation in the form Mmm dd yyyy, or
Mmm d yyyy if the value of the date is less
than 10

__FILE__1 A string literal containing the name of the
source file being compiled

__IEEE_FLOAT Identifies floating-point format for
compiling the program. The default value
is 1 for OpenVMS I64 systems, and 0 for
OpenVMS Alpha and VAX systems.

__LINE__1 A decimal constant containing the current
line number in the C++ source file

__PRAGMA_ENVIRONMENT Indicates that that the pragma environ-
ment directive is supported.

__TIME__1 A string literal containing the time of the
translation in the form of hh:mm:ss

_WCHAR_T Indicates that wchar_t is a keyword

1Cannot be redefined or undefined

Table 2–3 lists names with a defined value of 1.

2–18 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

Table 2–3 Names with a Defined Value of 1

Name Description

__cplusplus1 Language identification name.

__DECCXX Language identification name.

__VMS System identification

__vms System identification

1Cannot be redefined or undefined

The compiler predefines _ _VMS; the C compiler predefines VMS and _ _VMS.
Therefore, C++ programmers who plan to reuse code should check for _ _VMS.

On OpenVMS Alpha systems, the compiler supports the following predefined
macro names.

Table 2–4 Predefined Macros Specific to OpenVMS Alpha Systems

Name Description

__Alpha_AXP System identification name

__ALPHA System identification name

__alpha System identification name

__32BITS Defined when pointers and data of type long are 32 bits on
Alpha platforms

The compiler predefines _ _32BITS when pointers and data of type long are 32
bits on Alpha platforms.

On both UNIX and OpenVMS operating systems, programmers should use the
predefined macro _ _alpha for code that is intended to be portable from one
system to the other.

On OpenVMS I64 systems, the compiler supports the following predefined
macro names:

HP C++ Implementation 2–19

HP C++ Implementation
2.1 Implementation-Specific Attributes

Table 2–5 Predefined Macros Specific to OpenVMS I64 Systems

Name Description

__ia64 System identification name

__ia64__ System identification name

__32BITS Defined when pointers and data of type long are 32 bits.

Predefined macros (with the exception of vms_version, VMS_VERSION,
_ _vms_version, _ _VMS_VERSION, and _ _INITIAL_POINTER_SIZE) are defined
as 1 or 0, depending on the system (VAX or Alpha processor), the compiler
defaults, and the qualifiers used. For example, if you compiled using G_FLOAT
format, _ _D_FLOAT and _ _IEEE_FLOAT (Alpha processors only) are predefined
to be 0, and _ _G_FLOAT is predefined as if the following were included before
every compilation unit:

#define __G_FLOAT 1

These macros can assist in writing code that executes conditionally. They can
be used in #elif, #if, #ifdef, and #ifndef directives to separate portable
and nonportable code in a C++ program. The vms_version, VMS_VERSION,
_ _vms_version, and _ _VMS_VERSION macros are defined with the value of the
OpenVMS version on which you are running (for example, Version 6.0).

C++ automatically defines the following macros pertaining to the format of
floating-point variables. You can use them to identify the format with which
you are compiling your program.

_ _D_FLOAT
_ _G_FLOAT
_ _IEEE_FLOAT
_IEEE_FP
_ _X_FLOAT

The value of _ _X_FLOAT can be 0 or 1 depending on the floating point mode
in effect. You can use the /FLOAT qualifier to change the mode.

Table 2–6 lists predefined version string and version number macros.

2–20 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

Table 2–6 Version String and Version Number Macros

Name Description

__VMS_VERSION1 Version identification

__vms_version1 Version identification

__DECCXX_VER2 Version identification

__VMS_VER2 Version identification

1The value is a character string.
2The value is an unsigned long int that encodes the version number.

For example, the defined value of _ _VMS_VERSION on OpenVMS Version 6.1 is
character string V6.1.

You can use _ _DECCXX_VER to test that the current compiler version is newer
than a particular version and _ _VMS_VER to test that the current OpenVMS
Version is newer than a particular version. Newer versions of the compiler
and the OpenVMS operating system always have larger values for these
macros. If for any reason the version cannot be analyzed by the compiler,
then the corresponding predefined macro is defined but has the value of 0.
Releases of the compiler prior to Version 5.0 do not define these macros, so
you can distinguish earlier compiler versions by checking to determine if the
_ _DECCXX_VER macro is defined.

The following example tests for C++ 5.1 or higher:

#ifdef __DECCXX_VER
#if __DECCXX_VER >= 50100000

/ *Code */
#endif

#endif

The following tests for OpenVMS Version 6.2 or higher:

#ifdef __VMS_VER
#if __VMS_VER >= 60200000

/* code */
#endif

#endif

HP C++ Implementation 2–21

HP C++ Implementation
2.1 Implementation-Specific Attributes

Table 2–7 shows the macro names for the listed command-line options.

Table 2–7 Macros Defined by Command-Line Qualifiers

Command-line Option Macro Name

/ALTERNATIVE_TOKENS __ALTERNATIVE_TOKENS

/ASSUME=GLOBAL_ARRAY_NEW __GLOBAL_ARRAY_NEW

/ASSUME=STDNEW __STDNEW

/DEFINE=_ _FORCE_INSTANTATIONS
(Alpha only)

__FORCE_INSTANTIATIONS

/EXCEPTIONS __EXCEPTIONS

/IEEE_MODE _IEEE_FP

/IMPLICIT_INCLUDE __IMPLICIT_INCLUDE_ENABLED

/L_DOUBLE_SIZE __X_FLOAT

/MODEL=ANSI __MODEL_ANSI

/MODEL=ARM (Alpha only) __MODEL_ARM

/PURE_CNAME __PURE_CNAME, __HIDE_FORBIDDEN_NAMES1

/ROUNDING_MODE __BIASED_FLT_ROUNDS

/RTTI __RTTI

/STANDARD=RELAXED __STD_ANSI, __NOUSE_STD_IOSTREAM

/STANDARD=ANSI __STD_ANSI, __NOUSE_STD_IOSTREAM

/STANDARD=ARM __STD_ARM, __NOUSE_STD_IOSTREAM

/STANDARD=CFRONT As of C++ Version 7.1, the CFRONT option is no longer supported.

/STANDARD=GNU __STD_GNU, __NOUSE_STD_IOSTREAM

/STANDARD=MS __STD_MS, __NOUSE_STD_IOSTREAM

/STANDARD=STRICT_ANSI __STD_STRICT_ANSI, __USE_STD_IOSTREAM,
__PURE_CNAME, __HIDE_FORBIDDEN_NAMES

/STANDARD=STRICT_ANSI
/WARNINGS=ANSI_ERRORS

__STD_STRICT_ANSI_ERRORS, __PURE_CNAME,
__HIDE_FORBIDDEN_NAMES

1When you compile with HP C using any values of /STANDARD that set strict C standard conformance
(ANSI89, MIA, C99, and LATEST), versions of the standard header files are included that hide many
identifiers that do not follow the rules. The header file <stdio.h>, for example, hides the definition of the
macro TRUE. The compiler accomplishes this by predefining the macro _ _HIDE_FORBIDDEN_NAMES for
the above-mentioned /STANDARD values.

You can use the /UNDEFINE="_ _HIDE_FORBIDDEN_NAMES" command-line qualifier to prevent the
compiler from predefining this macro and, thereby, including macro definitions of the forbidden names.

(continued on next page)

2–22 HP C++ Implementation

HP C++ Implementation
2.1 Implementation-Specific Attributes

Table 2–7 (Cont.) Macros Defined by Command-Line Qualifiers

Command-line Option Macro Name

/USING=STD __IMPLICIT_USING_STD

/STANDARD=LATEST __STD_STRICT_ANSI, __USE_STD_IOSTREAM,
__PURE_CNAME, __HIDE_FORBIDDEN_NAMES

/STANDARD=LATEST
/WARNINGS=ANSI_ERRORS

__STD_STRICT_ANSI_ERRORS, __PURE_CNAME,
__HIDE_FORBIDDEN_NAMES

2.1.3 Translation Limits
The only translation limits imposed in the compiler are as follows:

Limit Meaning

32,767 Bytes in the representation of a string literal. This limit does not apply to
string literals formed by concatenation.

8192 Characters in an internal identifier or macro name.

8192 Characters in a logical name.

8192 Characters in a physical source line, on OpenVMS Alpha systems.

1012 Bytes in any one function argument.

512 Characters in a physical source line, on OpenVMS VAX systems.

255 Arguments in a function call.1

255 Parameters in a function definition.1

127 Characters in a qualified identifier in the debugger.

31 Significant characters in an external identifier with ‘‘C’’ linkage. A warning
is issued if such an identifier is truncated.

1The compiler may add one or two hidden arguments to a function, which reduces to 254 or 253
the number of arguments available to the user.

2.1.4 Numerical Limits
The numerical limits, as defined in the header files <limits.h> and <float.h>
are as follows:

• The number of bits in a character of the execution character set is eight.

• The representation and set of values for type char and for type signed
char are the same. You can change this equivalence from signed char to
unsigned char with a command-line option.

• The representation and set of values for the short type is 16 bits.

HP C++ Implementation 2–23

HP C++ Implementation
2.1 Implementation-Specific Attributes

• The representation and set of values for the types int, signed int, and
long are the same (32 bits).

• The representation and set of values for type unsigned int and for type
unsigned long are the same (32 bits).

• The representation and set of values for type double are 64 bits.

• The representation and set of values for type long double are 128 bits
unless the /L_DOUBLE_SIZE=64) qualifier is specified.

Specifying a different l_double_size than the default size for your
particular version of the operating system does not work correctly with the
standard library.

Numerical limits not described in this list are defined in The Annotated C++
Reference Manual.

2.1.5 Argument-Passing and Return Mechanisms
The compiler passes arrays, functions, and class objects with a constructor or
destructor by reference. All other objects are passed by value.

If a class has a constructor or a destructor, it is not passed by value. In this
case, the compiler calls a copy constructor to copy the object to a temporary
location, and passes the address of that location to the called function.

If the return value of a function is a class that has defined a constructor or
destructor or is greater than 64 bits, storage is allocated by the caller and the
address to this storage is passed in the first parameter to the called function.
The called function uses the storage provided to construct the return value.

2.2 Implementation Extensions and Features
This section describes the extensions and implementation-specific features of
the compiler on OpenVMS systems.

2.2.1 Identifiers
In the compiler, the dollar sign ($) is a valid character in an identifier.

For each external function with C++ linkage, the compiler decorates the
function name with a representation of the function’s type.

2–24 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

2.2.1.1 External Name Encoding
The compiler uses the external name encoding scheme described in §7.2.1c of
The Annotated C++ Reference Manual.

For the basic types, the external name encoding scheme is exactly the same as
that described in The Annotated C++ Reference Manual, as follows:

Type Encoding

void v

char c

short s

int i

long l

float f

double d

long double r

... e

bool jb

wchar_t jw

Class names are encoded as described in The Annotated C++ Reference Manual,
except that the DEC C++ compiler uses the lowercase q instead of uppercase Q,
and denotes the qualifier count as a decimal number followed by an underscore,
as follows:

Class Notation Encoding

simple Complex 7Complex

qualified X::YY q2_1x2yy

Type modifiers are encoded as follows:

Modifier Encoding

const k

signed g

volatile w

HP C++ Implementation 2–25

HP C++ Implementation
2.2 Implementation Extensions and Features

Modifier Encoding

unsigned u

__unaligned b

Type declarators are encoded as follows:

Type Notation Encoding

array [10] a10_

function () x

pointer * p

pointer to member S::* m1S

reference & n

unnamed enumeration type h

On OpenVMS Alpha systems, the compiler also supports the following data
types:

Type Encoding

__int16 ji4

__int32 ji5

__int64 ji6

__f_float jf

__g_float jg

__s_float js

__t_float jt

2.2.1.2 Modifying Long Names
On OpenVMS systems, if an identifier for a function name with C++ linkage
exceeds 31 characters, the name is modified as follows:

1. A unique value is generated by hashing the full decorated name. This
seven-character code is appended to the end of the name.

2. The name is preceded by the cxx$ facility prefix.

2–26 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

3. The name is truncated in three back-to-front passes, eliminating
underscores, then vowels, and then consonants (y is a consonant). A
vowel is never removed if the following conditions apply:

• It occurs as the first character in the fully decorated name.

• The character before the vowel is either another vowel or is non-
alphanumeric.

The hash code added at the end of the name is not truncated.

Truncation ceases when the truncated name, combined with the cxx$
facility prefix and the unique radix 32 value at the end, equals 31
characters.

For information on how to view the demangled form of these names, see
Section 1.6.

2.2.2 Order of Static Object Initialization
Nonlocal static objects are initialized in declaration order within a compilation
unit and in link order across compilation units. On OpenVMS systems, the
compiler uses the lib$initialize mechanism to initialize nonlocal static
objects.

2.2.3 Integral Conversions
When demoting an integer to a signed integer, if the value is too large to be
represented the result is truncated and the high-order bits are discarded.

Conversions between signed and unsigned integers of the same size involve no
representation change.

2.2.4 Floating-Point Conversions
When converting an integer to a floating-point number that cannot exactly
represent the original value, the compiler rounds off the result of the
conversion to the nearest value that can be represented exactly.

When the result of converting a floating-point number to an integer or other
floating-point number at compile time cannot be represented, the compiler
issues a diagnostic message.

When converting an integral number or a double floating-point number to a
floating-point number that cannot exactly represent the original value, rounds
off the result to the nearest value of type float.

When demoting a double value to float, if the converted value is within range
but cannot exactly represent the original value, the compiler rounds off the
result to the nearest representable float value.

HP C++ Implementation 2–27

HP C++ Implementation
2.2 Implementation Extensions and Features

the compiler performs similar rounding for demotions from long double to
double or float.

2.2.5 Explicit Type Conversion
In C++, the expression T() (where T is a simple type specifier) creates an
rvalue of the specified type, whose value is determined by default initialization.
According to the The C++ Programming Language, 3rd Edition, the behavior
is undefined if the type is not a class with a constructor, but the ANSI/ISO
International Standard removes this restriction. With this change you can now
write:

int i=int(); // i must be initialized to 0

2.2.6 The sizeof Operator
The type of the sizeof operator is size_t. In the header file, stddef.h, the
compiler defines this type as unsigned int, which is the type of the integer
that holds the maximum size of an array.

2.2.7 Explicit Type Conversion
A pointer takes up the same amount of memory storage as objects of type int
or long (or their unsigned equivalents). Therefore, a pointer can convert to any
of these types and back again without changing its value. No scaling occurs
and the representation of the value is unchanged.

Conversions to and from a shorter integer and a pointer are similar to
conversions to and from a shorter integer and unsigned long. If the shorter
integer type was signed, conversion fills the high-order bits of the pointer with
copies of the sign bit.

2.2.8 Multiplicative Operators
The semantics of the division (/) and remainder (%) operator are as follows:

• If either operand of the division operator is negative, the compiler truncates
the result toward 0 (that is, the smallest integer larger than the algebraic
quotient).

• If either operand of the remainder operator is negative, the result takes
the same sign as that of the first operand.

In the following cases of undefined behavior detected at compile time, the
compiler issues a warning:

Integer overflow
Division by 0
Remainder by 0

2–28 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

2.2.9 Additive Operators (§r.5.7)
You can subtract pointers to members of the same array. The result is the
number of elements between the two array members, and is of type ptrdiff_t.
In the header file stddef.h, the compiler defines this type as int.

2.2.10 Shift Operators (§r.5.8)
The expression E1 >> E2 shifts E1 to the right E2 positions. If E1 has a signed
type, the compiler fills the vacated high-order bits of the shifted value E1 with
a copy of E1’s sign bit (arithmetic shift).

2.2.11 Equality Operators
When comparing two pointers to members, the compiler guarantees equality if
either of the following conditions hold:

• Both pointers are NULL.

• The same address expression (&) created both pointers.

When comparing two pointers to members, the compiler guarantees inequality
if either of the following conditions hold:

• Only one pointer is NULL.

• Each pointer produces a different member if applied to the same object.

When created by different address expressions, two pointers to members may
compare either as equal or as unequal if they produce the same member when
applied to the same object.

2.2.12 Type Specifiers
For variables that are modifiable in ways unknown to the compiler, use the
volatile type specifier. Declaring an object to be volatile means that every
reference to the object in the source code results in a reference to memory in
the object code.

2.2.13 asm Declarations (Alpha only)

In the compiler, asm declarations produce a compile-time error. As an
alternative to asm, you can use built-in functions. See Appendix C for more
information.

HP C++ Implementation 2–29

HP C++ Implementation
2.2 Implementation Extensions and Features

2.2.14 Linkage Specifications
Specifying linkage other than ‘‘C++’’ or ‘‘C’’ generates a compile-time error.

In object files, the compiler decorates with type information the names
of functions with C++ linkage. This permits overloading and provides
rudimentary type checking across compilation units. The type-encoding
algorithm used is similar to that given in §7.2.1c of The Annotated C++
Reference Manual (see Section 2.2.1.1).

2.2.15 Class Layout
The alignment requirements and sizes of structure components affect the
structure’s alignment and size. A structure can begin on any byte boundary
and occupy any integral number of bytes.

2.2.15.1 Structure Alignment
Structure alignment is controlled by the /MEMBER_ALIGNMENT command-
line qualifier or by using the #pragma member_alignment preprocessor directive.
If /MEMBER_ALIGNMENT is specified, or implied by default, the maximum
alignment required by any member within the structure determines the
structure’s alignment. When the structure or union is a member of an array,
padding is added to ensure that the size of a record, in bytes, is a multiple of
its alignment.

Components of a structure are laid out in memory in the order in which they
are declared. The first component has the same address as the entire structure.
Padding is inserted between components to satisfy alignment requirements of
individual components.

If /NOMEMBER_ALIGNMENT is specified, each member of a structure
appears at the next byte boundary.

2.2.15.2 Bit-Fields
If /MEMBER_ALIGNMENT is specified, or implied by default, the presence of
bit-fields causes the alignment of the whole structure or union to be at least
the same as that of the bit-field’s base type.

For bit-fields (including zero-length bit-fields) not immediately declared
following other bit-fields, their base type imposes the alignment requirements
(less than that of type int). Within the alignment unit (of the same size as
the bit-field’s base type), bit-fields are allocated from low order to high order.
If a bit-field immediately follows another bit-field, the bits are packed into
adjacent space in the same unit, if sufficient space remains; otherwise, padding
is inserted at the end of the first bit-field and the second bit-field is put into
the next unit.

2–30 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

Bit-fields of base type char must be smaller than 8 bits. Bit-fields of base type
short must be smaller than 16 bits.

2.2.15.3 Access Specifiers
The layout of a class is unaffected by the presence of access specifiers.

2.2.15.4 Class Subobject Offsets
A class object that has one or more base classes contains instances of its base
classes as subobjects. The offsets of nonvirtual base class subobjects are less
than the offsets of any data members that are not part of base class subobjects.

The offsets of nonvirtual base classes increase in derivation order. The offset
of the first nonvirtual base class subobject of any class is 0. For single
inheritance, the address of a class object is always the same as the address
of its base class subobject.

If a class has virtual functions, an object of that class contains a pointer to a
virtual function table (VFPTR).

If a class has virtual base classes, an object of that class contains a pointer to a
virtual base class table (VBPTR).

For a class with no base classes, the offset of a VFPTR or VBPTR is greater
than the offset of any data members. Thus, the offset of the first data member
of a class with no base classes is 0, which facilitates interoperability with other
languages. If the leftmost base class of a subclass has a VFPTR, a VBPTR, or
both, and is not virtual, the class and its base class share the table or tables.

The offsets of virtual base class subobjects are greater than the offset of any
data member, and increase in the order of derivation of the virtual base classes.
In increasing order, a class object contains the following:

1. Nonvirtual base class subobjects

2. Data members

3. VFPTR (if required)

4. VBPTR (if required)

5. Virtual base class subobjects

Consider the following example:

HP C++ Implementation 2–31

HP C++ Implementation
2.2 Implementation Extensions and Features

class B1
{
int x[1];

};
class B2 : virtual B1
{
int y[2];
virtual int fl();
};
class B3 : virtual B2, virtual B1
{
int z[3];
virtual int f2();
};
class D : B3
{
int a[4];
virtual int f1(), f2(), f3();
};

Figure 2–1 shows the layout of an object of D class for this example.

2.2.16 Virtual Function and Base Class Tables
The compiler allocates storage for virtual function tables (VTBLs) and base
class tables (BTBLs) using the common block extern model. All references
to VTBLs and BTBLs share a single copy. (The compiler specifies the local
(LCL) PSECT attribute for these tables. Thus, one copy of each table exists
for each program image file.) This means that you need not be concerned with
the associations of these tables during compilation, and the compiler command
switch +e supplied in other implementations is not needed for HP C++ for
OpenVMS systems.

2.2.17 Multiple Base Classes
Within a class object, base class subobjects are allocated in derivation order;
that is, immediate base classes are allocated in the order in which they appear
in the class declaration.

2–32 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

Figure 2–1 Layout of an Object of D Class

�������
������	
�

�������

�������

�������

�������

��������

��������

�������

�������

�������

�������

�������

�������

�������

��������

��������

�������
������	
�

�������
������	
�

�

�

�

�

��

��

�

��

��

��

!�

!

 �

"�

"

�##$�

�##$�

�##$�

!

��

�����

�����

�%�	�&�'	�����##$�

(�� �����

2.2.18 Temporary Objects
Under the following conditions, the compiler creates temporary objects for class
objects with constructors:

• An object is returned from a function.

• An object is passed as an argument.

• An object is created using the constructor notation.

HP C++ Implementation 2–33

HP C++ Implementation
2.2 Implementation Extensions and Features

• A user-defined conversion is implicitly used.

Variations in the compiler generation of such temporary objects can adversely
affect their reliability in user programs. The compiler avoids introducing
a temporary object whenever it discovers that the temporary object is not
needed for accurate compilation. Therefore, you should modify or write your
programs so as not to depend on side effects in the constructors or destructors
of temporary objects.

2.2.18.1 Lifetime of Temporary Objects
Generally the compiler implements destruction of temporary objects at the end
of statements. In certain situations, however, temporary objects are destroyed
at the end of the expression; they do not persist to the end of the statement.
Temporary objects do not persist to the end of statements in expressions that
are:

• In operands of built-in conditional operators (|| and &&)

• In the second or third operand of the ternary operator (?:)

• Operands to the built-in comma operator (,)

Consider the following example:

struct A {
void print(int i);
A();
~A() { }

};

struct B {
A* find(int i);
B(int i);
B();
~B() { }

};

void f() {
B(8).find(6)->print(6);
(*(B(5).find(3))).print(3);
return;

}

In the first and second statements inside void f(), the compiler destroys the
temporary object created in evaluating the expressions B(8) and B(5) after the
call to A::print(int).

2–34 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

2.2.18.2 Nonconstant Reference Initialization with a Temporary Object
If your program tries to initialize a nonconstant reference with a temporary
object, the compiler generates a warning. For example:

struct A {
A(int);

};
void f(A& ar);

void g() {
f(5); // warning!!

}

2.2.18.3 Static Member Functions Selected by Expressions Creating Temporary
Objects
When a static member is accessed through a member access operator, the
expression on the left side of the dot (.) or right arrow (->) is not evaluated. In
such cases, the compiler creates code that calls the static member function to
handle the destruction of a class type temporary; the compiler does not create
temporary destructor code. For example:

struct A {
~A();
static void sf();

};

struct B {
A operator ()() const;

};

void f () {
B bobj;
bobj().sf(); // If ’bobj()’ is evaluated, a temporary of

// type ’A’ is created.
}

2.2.19 File Inclusion
The #include directive inserts external text into the macro stream delivered to
the compiler. Programmers often use this directive to include global definitions
for use with compiler functions and macros in the program stream.

On OpenVMS systems, the #include directive may be nested to a depth
determined by the FILLM process quota and by virtual memory restrictions.
The compiler imposes no inherent limitation on the nesting level of inclusion.

HP C++ Implementation 2–35

HP C++ Implementation
2.2 Implementation Extensions and Features

In C++ source programs, inclusion of both OpenVMS and most UNIX style file
specifications is valid. For example, the following is a valid UNIX style file
specification:

nodename!/device/directory/filename.dat.3

The exclamation point (!) separates the node name from the rest of the
specification; slash characters (/) separate devices and directories; periods (.)
separate file types and file versions. Because one character separates two
segments of the file specification, ambiguity can occur.

The /INCLUDE_DIRECTORY=(pathname,...) qualifier provides an additional
level of search for user-defined include files. Each pathname argument can be
either a logical name or a legal UNIX style directory in a quoted string. The
default is /NOINCLUDE_DIRECTORY.

The qualifier provides functionality similar to the -I option of the cxx
command on Tru64 UNIX systems. This qualifier allows you to specify
additional locations to search for files to include. Putting an empty string in
the specification prevents the compiler from searching any of the locations
it normally searches but directs it to search only in locations you identify
explicitly on the command line with the /INCLUDE_DIRECTORY and
/LIBRARY qualifiers (or by way of the specification of the primary source
file, depending on the /NESTED_INCLUDE_DIRECTORY qualifier).

The basic order for searching depends on the form of the header name (after
macro expansion), with additional aspects controlled by other command line
qualifiers as well as the presence or absence of logical name definitions. The
valid possibilities for names are as follows:

• Enclosed in quotes. For example: "stdio.h"

• Enclosed in angle brackets. For example: <stdio.h>

Unless otherwise defined, searching a location means that the compiler uses
the string specifying the location as the default file specification in a call
to an RMS system service (that is, a $SEARCH/$PARSE) with a primary
file specification consisting of the name in the #include (without enclosing
delimiters). The search terminates successfully as soon as a file can be opened
for reading.

Specifying a null string in the /INCLUDE qualifier causes the compiler to do a
non-standard search. This search path is as follows:

1. The current directory (quoted form only)

2. Any directories specified in the /INCLUDE qualifier

3. The directory of the primary input file

2–36 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

4. Text libraries specified on the command line using /LIBRARY

For standard searches, the search order is as follows:

1. Search the current directory (directory of the source being processed).
If angle-bracket form, search only if no directories are specified with
/INCLUDE_DIRECTORY.

2. Search the locations specified in the /INCLUDE_DIRECTORY qualifier (if
any).

3. If CXX$SYSTEM_INCLUDE is defined as a logical name, search
CXX$SYSTEM_INCLUDE:.HXX or just CXX$SYSTEM_INCLUDE:.,
depending on the qualifier /ASSUME=NOHEADER_TYPE_DEFAULT. If
nothing is found, go to step 6.

4. If CXX$LIBRARY_INCLUDE is defined as a logical name, CXX$LIBRARY_
INCLUDE:.HXX or CXX$LIBRARY_INCLUDE:., depending on the qualifier
/ASSUME=NOHEADER_TYPE_DEFAULT. If nothing is found, go to step
6.

5. If /ASSUME=HEADER_TYPE_DEFAULT is not specified, search the
default list of locations for plain-text copies of compiler header files as
follows:

SYS$COMMON:[CXX$LIB.INCLUDE.CXXL$ANSI_DEF]
SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF_HXX].HXX
SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF].H
SYS$COMMON:[CXX$LIB.INCLUDE.SYS$STARLET_C].H

If /ASSUME=HEADER_TYPE_DEFAULT is specified, search the default
list of locations for plain-text copies of compiler header files as follows:

SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF_HXX].HXX
SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF].H
SYS$COMMON:[CXX$LIB.INCLUDE.SYS$STARLET_C].H
SYS$COMMON:[CXX$LIB.INCLUDE.CXXL$ANSI_DEF]

6. Search the directory of the primary input file.

7. If quoted form, and CXX$USER_INCLUDE is defined as a logical
name, search CXX$USER_INCLUDE:.HXX or CXX$USER_INCLUDE:.,
depending on the /ASSUME=NOHEADER_TYPE_DEFAULT qualifier.

8. Search the text libraries. Extract the simple file name and file type from
the #include specification, and use them to determine a module name for
each text library. There are three forms of module names used by the
compiler:

1. type stripped:

HP C++ Implementation 2–37

HP C++ Implementation
2.2 Implementation Extensions and Features

The file type will be removed from the include file specification to form
a library module name. Examples:

#include "foo.h" Module name "FOO"

#include "foo" Module name "FOO"

#include "foo" Module name "FOO"

2. type required:

The file type must be a part of the file name. Examples:

#include "foo.h" Module name "FOO.H"

#include "foo" Module name "FOO."

#include "foo" Module name "FOO."

3. type optional:

First an attempt is made to find a module with the type included in
the module name. If this is unsuccessful, an attempt is made with the
type stripped from the module name. If this is unsuccessful, the search
moves on to the next library.

If /ASSUME=HEADER_TYPE_DEFAULT is specified, the following text
libraries are searched in this order:

Libraries specified on the command line with the /LIBRARY qualifier
(all files, type stripped)
CXX$TEXT_LIBRARY (all files, type stripped)
DECC$RTLDEF (H files and unspecified files, type stripped)
SYS$STARLET_C (all files, type stripped)
CXXL$ANSI_DEF (unspecified files, type stripped)

Otherwise, these text libraries are searched in this order:

Libraries specified on the command line with the /LIBRARY qualifier
(all files, type optional)
CXX$TEXT_LIBRARY (all files, type optional)
CXXL$ANSI_DEF (all files, type required)
DECC$RTLDEF (H files and unspecified files, type stripped)
SYS$STARLET_C (all files, type stripped)

Two text library search examples (stop when something is found):

2–38 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

Example 1
#include "foo"

1. For each library specified via the /LIBRARY qualifier:

- Look for "FOO."
- Look for "FOO"

2. Look for "FOO." in CXX$TEXT_LIBRARY

3. Look for "FOO" in CXX$TEXT_LIBRARY

4. Look for "FOO." in CXXL$ANSI_DEF (Do not look for "FOO" because
the type is required as part of the module name)

5. Look for "FOO" in DECC$RTLDEF (not "FOO." because the type must
not be part of the module name)

6. Look for "FOO" in SYS$STARLET_C (not "FOO." because the type
must not be part of the module name)

Example 2
#include "foo.h"

1. For each library specified via the /LIBRARY qualifier:

- Look for "FOO.H"
- Look for "FOO"

2. Look for "FOO.H" in CXX$TEXT_LIBRARY

3. Look for "FOO" in CXX$TEXT_LIBRARY

4. Look for "FOO.H" in CXXL$ANSI_DEF (Do not look for "FOO" because
the type is required as part of the module name)

5. Look for "FOO" in DECC$RTLDEF (not "FOO.H" because the type
must not be part of the module name)

6. Look for "FOO" in SYS$STARLET_C (not "FOO.H" because the type
must not be part of the module name)

7. If neither CXX$LIBRARY_INCLUDE nor CXX$SYSTEM_INCLUDE is
defined as a logical name, then search SYS$LIBRARY:.HXX.

HP C++ Implementation 2–39

HP C++ Implementation
2.2 Implementation Extensions and Features

2.2.20 Nested Enums and Overloading
The C++ language allows programmers to give distinct functions the same
name, and uses either overloading or class scope to differentiate the functions:

void f(int);
void f(int *);
class C {void f(int);};
class D {void f(int);};

Yet, linkers cannot interpret overloaded parameter types or classes, and they
issue error messages if they find more than one definition of any external
symbol. C++ compilers, including HP C++, solve this problem by assigning
a unique mangled name (also called type safe linkage name) to every
function. These unique mangled names allow the linker to tell the overloaded
functions apart.

The compiler forms a mangled name, in part, by appending an encoding of the
parameter types of the function to the function’s name, and if the function is
a member function, the function name is qualified by the names of the classes
within which it is nested.

For example, for the function declarations at the beginning of this section, the
compiler might generate the mangled names f_ _Xi, f_ _XPi, f_ _1CXi, and
f_ _1DXi respectively. In these names, i means a parameter type was int,
P means ‘‘pointer to’’, 1C means nested within class C, and 1D means nested
within class D.

There is a flaw in the name mangling scheme used by the compiler that can
cause problems in uncommon cases. The compiler fails to note in the encoding
of an enum type in a mangled name whether the enum type was nested within
a class. This can cause distinct overloaded functions to be assigned the same
mangled name:

struct C1 {enum E {red, blue};};
struct C2 {enum E {red, blue};};

extern "C" int printf(const char *, ...);
void f(C1::E x) {printf("f(C1::E)\n");}
void f(C2::E x) {printf("f(C2::E)\n");}

int main()
{

f(C1::red);
f(C2::red);
return 1;

}

2–40 HP C++ Implementation

HP C++ Implementation
2.2 Implementation Extensions and Features

In the previous example, the two overloaded functions named f differ only
in that one takes an argument of enum type C1::E and the other takes an
argument of enum type C2::E. Since the compiler fails to include the names
of the classes containing the enum type in the mangled name, both functions
have mangled names that indicate the argument type is just E. This causes
both functions to receive the same mangled name.

In some cases, the compiler detects this problem at compile-time and issues a
message that both functions have the same type-safe linkage. In other cases,
the compiler issues no message, but the linker complains about duplicate
symbol definitions.

If you encounter such problems, you can recompile using the
/DISTINGUISH_NESTED_ENUMS qualifier (Alpha only). This causes the
compiler, when forming a mangled name, to include the name of class or
classes within which an enum is nested, thereby preventing different functions
from receiving the same the same mangled name.

Because the /DISTINGUISH_NESTED_ENUMS qualifier changes
the external symbols the compiler produces, you can get undefined
symbol messages from the linker if some modules are compiled with
/DISTINGUISH_NESTED_ENUMS and some are compiled without it. Because
of this, /DISTINGUISH_NESTED_ENUMS might make it difficult to link
against old object files or libraries of code.

If you compile your code with
/DISTINGUISH_NESTED_ENUMS and try to link against a library that was
compiled without the /DISTINGUISH_NESTED_ENUMS qualifier, you receive
an undefined symbol message from the linker if you attempt to call a function
from the library that takes an argument of a nested enum type. The mangled
name of the function in the library will be different from the mangled name
your code is using to call the function.

Note that the /DISTINGUISH_NESTED_ENUMS qualifier has no meaning
on I64 systems because it modifies the behavior of programs compiled with
/MODEL=ARM, and that model is not supported on I64 systems.

2.2.21 Guiding Declarations
A guiding declaration is a function declaration that matches a function
template, does not introduce a function definition (implies an instantiation
of the template body and not a explicit specialization), and is subject to
different argument matching rules than those that apply to the template
itself—therefore affecting overload resolution. Consider the following example:

HP C++ Implementation 2–41

HP C++ Implementation
2.2 Implementation Extensions and Features

template <class T> void f(T) {
printf("In template f\n");

}

void f(int);

int main() {
f(0); // invokes non-template f
f<>(0.0); // invokes template f
return 0;

}

void f(int) {
printf("In non-template f\n");

}

Because there is no concept of guiding declaration in the current version of
the C++ International Standard, the function f in the example is not regarded
as an instance of function template f. Furthermore, there are two functions
named f that take an int parameter. A call of f(0) would invoke the former,
while a call of f<>(0) would be required to invoke the latter.

2.3 Alternative Tokens
The compiler supports use of alternative tokens:

/[no]alternative_tokens
Enable use of operator keywords and digraphs to generate tokens as follows:

Operator Keyword Token

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or | |

or_eq | =

xor ^

xor_eq ^=

2–42 HP C++ Implementation

HP C++ Implementation
2.3 Alternative Tokens

Digraph Token

:>]

<: [

%> }

<% {

%: #

2.4 Run-time Type Identification
The compiler emits type information for run-time type identification (RTTI)
in the object module with the virtual function table, for classes that have
virtual function tables.

You can specify the /[NO]RTTI qualifier to enable or disable support for RTTI
(runtime type identification) features: dynamic_cast and typeid. Disabling
runtime type identification can also save space in your object file because static
information to describe polymorphic C++ types is not generated. The default is
to enable runtime type information features and generate static information in
the object file.

Specifying /NORTTI does not disable exception handling.

The type information for the class may include references to the type
information for each base class and information on how to convert to each. The
typeinfo references are mangled in the form _ _T_ _<class>.

2.5 Message Control and Information Options
The compiler supports the following message control options. The options
apply only to warning and informational messages. The ident variable is
obtained from the error message.

Indicated messages can specify one or more message identifiers ident or the
message group name all.

The default qualifier, /WARNINGS, outputs all enabled informational and
warning messages. The /NOWARNINGS qualifier suppresses both the
informational and the warning messages.

Message options are processed and take effect in the following order:

HP C++ Implementation 2–43

HP C++ Implementation
2.5 Message Control and Information Options

/WARNINGS=NOWARNINGS
Disable all warnings.

/WARNINGS=INFORMATIONALS
Enable informationals.

Although /WARNINGS=INFORMATIONALS enables most informationals, we
recommend using /WARNINGS=ENABLE=ALL instead.

/WARNINGS=INFORMATIONALS=ALL or (ident,...)
Set the severity of the specified messages to Informational. You can specify
ALL, which applies only to discretionary messages. The ALL option also
enables informationals that are disabled by default.

With Version 7.1 of the C++ compiler, /WARNINGS=INFORMATIONALS=<tag>
no longer enables all other informational messages.

/WARNINGS=WARNINGS=ALL or (ident,...)
Set the severity of the specified messages to Warning. You can specify ALL,
which applies only to discretionary messages.

/WARNINGS=[NO]ANSI_ERRORS
Issue error messages for all ANSI violations when in STRICT_ANSI mode.
The default is /WARNINGS=NOANSI_ERRORS.

/WARNINGS=ERRORS=ALL or (ident,...)
Set the severity of the specified messages to Error. You can specify ALL, which
applies only to discretionary messages.

/WARNINGS=ENABLE=ALL or (ident,...)
Enable all compiler messages, including informational-level messages.
Enable specific messages that normally would not be issued when using
/QUIET. You can also use this option to enable messages disabled with
/WARNINGS=DISABLE.

/WARNINGS=DISABLE=ALL or (ident,...)
Disable message. This can be used for any nonerror message.

/QUIET
Be more like Version 5.n error reporting. Fewer messages are issued using this
option.

This is the default in arm mode (/STANDARD=ARM). All other modes default
to /NOQUIET.

2–44 HP C++ Implementation

HP C++ Implementation
2.5 Message Control and Information Options

You can use the /WARNINGS=ENABLE option with this option to enable
specific messages normally disabled using /QUIET.

The compiler supports the following message information option, which is
disabled by default.

/WARNINGS=[NO]TAGS
Display a descriptive tag with each message. "D" indicates that the message
is discretionary and that its severity can be changed from the command line
or with a pragma. The tag displayed can be used as the ident variable in the
/WARNINGS options.

Example:

$ cxx/warnings=tags t.cxx
f() {}
^
%CXX-W-NOSIMPINT, omission of explicit type is nonstandard ("int" assumed)

(D:nosimpint)
at line number 1 in file CXX$:[SMITH]STD.CXX;1

f() {}
.....^
%CXX-W-MISSINGRETURN, non-void function "f" (declared at line 1) should

return a value (D:missingreturn)
at line number 1 in file CXX$:[SMITH]STD.CXX;1

$ cxx /warnings=(notags,disable=nosimpint) t.cxx

f() {}
.....^
%CXX-W-MISSINGRETURN, non-void function "f" (declared at line 1) should

return a value
at line number 1 in file CXX$:[SMITH]STD.CXX;1

Also see the #pragma message preprocessor directive.

HP C++ Implementation 2–45

3
C++ Language Environment

This chapter describes the guidelines and procedures for customizing your
language environment. It includes sections on changing your C header files to
work with C++, organizing your C++ files, interfacing to other programming
languages, and designing upwardly compatible C++ classes.

3.1 cname Headers
The C++ compiler implements section 17.4.1.2 - Headers [lib.headers] "C++
Headers for C Library Facilities" of the C++ Standard. See also Stroustrup’s
The C++ Programming Language, 3rd Edition sections 9.2.2 and 16.1.2.

The implementation consists of eighteen <cname> headers defined in the C++
Standard:

<cassert> <cctype> <cerrno> <cfloat>
<ciso646> <climits> <clocale> <cmath>
<csetjmp> <csignal> <cstdarg> <cstddef>
<cstdio> <cstdlib> <cstring> <ctime>
<cwchar> <cwctype>

As required by the C++ Standard, the <cname> headers define C names in the
std namespace. In /NOPURE_CNAME mode, the names are also inserted into
the global namespace. See the description of the /[NO]PURE_CNAME compiler
qualifier.

The <cname> headers are located in the same TLB library that contains the
C++ standard library and class library headers: SYS$SHARE:CXXL$ANSI_
DEF.TLB.

C++ Language Environment 3–1

C++ Language Environment
3.1 cname Headers

Examples

1.
#include <cstdio>
void foo() {
getchar(); // OK in /NOPURE_CNAME mode

// %CXX-E-UNDECLARED in /PURE_CNAME mode
}

2.
#include <cstdio>
void foo() {
std::getchar(); // OK in both modes

}

3.
#include <stdio.h>
void foo() {
getchar(); // OK in both modes
std::getchar(); // OK in both modes

}

3.2 Using Existing C Header Files
C header files that already conform to ANSI C standards must be modified
slightly to be usable by HP C++ programs. In particular, be sure to address
the following issues:

• Enable the proper linkage for each language.

• Ensure that C++ keywords are not used as identifiers.

• Reconcile any namespace and scoping differences.

The compiler provides some C header files that have been modified to work
with C++, including standard ANSI C header files. These headers are in the
SYS$LIBRARY directory.

The following sections provide details on how to properly modify your headers.

3–2 C++ Language Environment

C++ Language Environment
3.2 Using Existing C Header Files

3.2.1 Providing C and C++ Linkage
To modify header files, use conditional compilation and the extern specifier.

When programming header files to be used for both C and C++ programs, use
the following convention for predefined macros. The system header files also
provide an example of correct usage of the predefined macros.

#if defined __cplusplus
/* If the functions in this header have C linkage, this
* will specify linkage for all C++ language compilers.
*/
extern "C" {

#endif

if defined __DECC || defined __DECCXX
/* If you are using pragmas that are defined only
* with DEC C and DEC C++, this line is necessary
* for both C and C++ compilers. A common error
* is to only have #ifdef __DECC, which causes
* the compiler to skip the conditionalized
* code.
*/

pragma __extern_model __save
pragma __extern_model __strict_refdef

extern const char some_definition [];
pragma __extern_model __restore
endif

/* ...some data and function definitions go here... */

#if defined __cplusplus
} /* matches the linkage specification at the beginning. */

#endif

See §r.7.4 of The C++ Programming Language, 3rd Edition for more
information on linkage specifications.

3.2.2 Resolving C++ Keyword Conflicts
If your program uses any of the following C++ language keywords as
identifiers, you must replace them with nonconflicting identifiers:

asm bool catch class
const_cast delete dynamic_cast explicit
export false friend inline
mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw
true try typeid typename

C++ Language Environment 3–3

C++ Language Environment
3.2 Using Existing C Header Files

virtual wchar_t

Alternative representation keywords are as follows:

and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, xor_eq

3.2.3 Handling Scoping Issues
Distinctions between ANSI C and C++ include slight differences in rules
concerning scope. Therefore, you may need to modify some ANSI C header files
to use them with C++.

The following sample code fragment generates an error regarding incompatible
types, but the root cause is the difference in scope rules between C and C++.
In ANSI C, the compiler promotes tag names defined in structure or union
declarations to the containing block or file scope. This does not happen in C++.

struct Screen {
struct _XDisplay *display;

};
typedef struct _XDisplay {
// . . .

} Display;

struct Screen s1;
Display *s2;

main()
{
s1.display = s2;

}

The offending line in this sample is s1.display = s2. The types of s1.display
and s2 are the same in C but different in C++. You can solve the problem
by adding the declaration struct _XDisplay; to the beginning of this code
fragment, as follows:

struct _XDisplay; // this is the added line
struct Screen {
struct _XDisplay *display;
};
typedef struct _XDisplay {
// . . .

} Display;
// . . .

3–4 C++ Language Environment

C++ Language Environment
3.2 Using Existing C Header Files

3.2.4 Support for <stdarg.h> and <varargs.h> Header Files
The C compiler special built-in macros defined in the header files <stdarg.h>
and <varargs.h>. These step through the argument list of a routine.

Programs that take the address of a parameter, and use pointer arithmetic
to step through the argument list to obtain the value of other parameters,
assume that all arguments reside on the stack and that arguments appear in
increasing order. These assumptions are not valid for HP C++. The macros
in <varargs.h> can be used only by C functions with old-style definitions that
are not legal in C++. To reference variable-length argument lists, use the
<stdarg.h> header file.

The OpenVMS calling standard mechanism for returning structures larger
than 8 bytes by value uses a hidden parameter. The parameter is a pointer to
storage in the caller’s frame. The va_count macro includes this parameter in
its count.

3.3 Using HP C++ with Other Languages
The following are suggestions regarding the use of HP C++ with other
languages:

• Passing entities, such as classes, by reference is safest.

• You cannot invoke class member functions from within any language other
than C++.

• Every C++ routine that will be called from the other language should be
declared in C++ with extern "C". For example:

extern "C"
int myroutine(int, float);

The extern "C" will cause the routine to have an unmangled name, so that
you can refer to it as myroutine from a language such as Cobol or Fortran.
Otherwise the routine’s link name will be mangled into something like
myrout_ _Xif.

• If the main routine is defined in the other language, you will probably need
to use the other language’s command-line interface to perform your link
step. To include the appropriate C++ libraries and startup file, you will
need to add some arguments to the command line. The most reliable way
to determine what is needed is to test with a small C++ program.

C++ Language Environment 3–5

C++ Language Environment
3.4 Linkage to Non-C++ Code and Data

3.4 Linkage to Non-C++ Code and Data
With linkage specifications, you can both import code and data written in
other languages into a HP C++ program and export HP C++ code and data for
use with other languages. See §4.4 of The C++ Programming Language, 3rd
Edition for details on the extern "C" declaration.

3.5 How to Organize Your C++ Code
This section explains the best way for compiler users to organize an application
into files; it assumes that you are using automatic instantiation to instantiate
any template classes and functions.

3.5.1 Code That Does Not Use Templates
The general rule is to place declarations in header files and place definitions in
library source files. The following items belong in header files:

• Class declarations

• Global function declarations

• Global data declarations

And the following items belong in library source files:

• Static member data definitions

• Out-of-line member function definitions

• Out-of-line global function definitions

• Global data definitions

Header files should be directly included by modules that need them. Because
several modules may include the same header file, a header file must not
contain definitions that would generate multiply defined symbols when all the
modules are linked together.

Library source files should be compiled individually and then linked into
your application. Because each library source file is compiled only once, the
definitions it contains will exist in only one object module and multiply defined
symbols are thus avoided.

For example, to create a class called ‘‘array’’ you would create the following two
files:

3–6 C++ Language Environment

C++ Language Environment
3.5 How to Organize Your C++ Code

Header file, arrayInt.hxx:

// arrayInt.hxx
#ifndef ARRAY_H
#define ARRAY_H

class arrayInt {
private:

int curr_size;
static int max_array_size;

public:
arrayInt() :curr_size(0) {;}
arrayInt(int);

};

#endif

Library source file, arrayInt.cxx:

// arrayInt.cxx
#include "arrayInt.hxx"

int array::max_array_size = 256;

arrayInt::arrayInt(int size) : curr_size(size) { ...; }

You would then compile the arrayInt.cxx library source file using the
following command:

cxx/include=[.include] arrayInt.cxx

The resulting object file could either be linked directly into your application or
placed in a library (see Section 3.5.4).

The header file uses header guards, which is a technique to prevent multiple
inclusion of the same header file.

3.5.2 Code That Uses Templates
With the widespread use of templates in C++, determining the proper place to
put declarations and definitions becomes more complicated.

The general rule is to place template declarations and definitions in header
files, and to place specializations in library source files.

Thus, the following items belong in template declaration files:

• Declarations of global function templates

• Declarations of class templates

• Declarations of global function template specializations

• Declarations of class template specializations

C++ Language Environment 3–7

C++ Language Environment
3.5 How to Organize Your C++ Code

The following items can be placed either in the header file with the
corresponding template declaration or in a separate header file that can
be implicitly included when needed. This file has the same basename as the
corresponding declaration header file, with a suffix that is found by implicit
inclusion. For example, if the declaration is in the header file inc1.h, these
corresponding definitions could be in file inc1.cxx.

• Definitions of out-of-line global function templates

• Definitions of static member data of class templates

• Definitions of out-of-line member functions of class templates

The following must be placed in library source files to prevent multiple
definition errors:

• Definitions of global function template specializations

• Definitions of static member data specializations of class templates

• Definitions of out-of-line class member function specializations

These guidelines also apply to nontemplate nested classes inside of template
classes.

Note

Do not place definitions of nontemplate class members, nontemplate
functions, or global data within template definition files; these must be
placed in library source files.

All these header files should use header guards, to ensure that they are not
included more that once either explicitly or by implicit inclusion.

For example, the array class from Section 3.5.1, modified to use templates,
would now look as follows:

Template declaration file, array.hxx:

// array.hxx
#ifndef ARRAY_HXX
#define ARRAY_HXX

3–8 C++ Language Environment

C++ Language Environment
3.5 How to Organize Your C++ Code

template <class T>
class array {
private:

int curr_size;
static int max_array_size;

public:
array() :curr_size(0) {;}
array(int size,const T& value = T());

};

#endif

Template definition file, array.cxx:

// array.cxx
template <class T>
int array<T>::max_array_size = 256;

template <class T>
array<T>::array(int size,const T& value) {... ; }

Then you would create a source file myprog.cxx that uses the array class as
follows:

// myprog.cxx

#include "array.hxx"

main() {
array<int> ai;

// . . .
}

Figure 3–1 shows the placement of these files.

C++ Language Environment 3–9

C++ Language Environment
3.5 How to Organize Your C++ Code

Figure 3–1 Placement of Template Declaration and Definition Files

You would then compile myprog.cxx in the mydir directory with the following
command:

cxx/incl=[.include] myprog.cxx

In this case, you do not need to create library source files because the
static member data and out-of-line members of the array template class
are instantiated at the time you compile myprog.cxx.

However, you would need to create library source files for the following cases:

• Your template declaration file declares nontemplate classes, global
functions, or global data that require definitions in a library source
file.

• A template class declares an out-of-line nontemplate friend function whose
definition must be placed in a library source file.

• Your template declaration file declares a specialization of a template class
whose static member data or out-of-line member function definitions must
be placed in a library source file.

• Your template declaration file declares an out-of-line specialization of a
template function, whose definition must be placed in a library source file.

3–10 C++ Language Environment

C++ Language Environment
3.5 How to Organize Your C++ Code

3.5.3 Summary
Table 3–1 describes where to place declarations and definitions, as discussed in
Section 3.5.1 and Section 3.5.2.

Table 3–1 Declaring and Defining Classes, Functions, and Data

Feature Declaration Out-of-Line Definition

Class Header file

Static member data Within class declaration Library source file

Member function Within class declaration Library source file

Global function Header file Library source file

Global data Header file Library source file

Template class Template declaration file

Static member data of
template class

Within template class
declaration

Template definition file

Member function of
template class

Within template class
declaration

Template definition file

Global template
function

Template declaration file Template definition file

Global, nontemplate
friend function of
template class

Within template class
declaration

Library source file

Specialization of
template class

Template declaration file

Specialization of
template function

Template declaration file Library source file

3.5.4 Creating Libraries
Libraries are useful for organizing the sources within your application as well
as for providing a set of routines for other applications to use. Libraries can
be either object libraries or shareable libraries. Use an object library when
you want the library code to be contained within an application’s image; use
shareable libraries when you want multiple applications to share the same
library code.

Creating a library from nontemplate code is straightforward: you simply
compile each library source file and place the resulting object file in your
library.

C++ Language Environment 3–11

C++ Language Environment
3.5 How to Organize Your C++ Code

Creating a library from template code requires that you explicitly request the
instantiations that you want to provide in your library. See Chapter 7 for
details.

If you make your library available to other users, you must also supply the
corresponding declarations and definitions that are needed at compile time.
For nontemplate interfaces, you must supply the header files that declare your
classes, functions, and global data. For template interfaces, you must provide
your template declaration files as well as your template definition files.

For more information on creating libraries, see the OpenVMS Command
Definition, Librarian, and Messages Utilities Manual and the OpenVMS Linker
Utility Manual.

3.6 Sample Code for Creating OpenVMS Shareable Images
The SW_SHR sample code consists of several source modules, a command
procedure and this description. Table 3–2 lists each of the constituent modules,
which are located in the directory SYS$COMMON:[SYSHLP.EXAMPLES.CXX]
on your system.

The code creates an OpenVMS shareable image called SW_SHR.EXE that
supplies a Stopwatch class identical to the C++ Class Library’s Stopwatch
class. For detailed information about the Stopwatch class, refer to the
HP C++ Class Library Reference Manual, CXX_CLASSLIB.PS, in the
SYS$COMMON:[SYSHLP.CXX$HELP] directory.

SW_SHR also provides an instance of a Stopwatch class named G_sw that
shows how to export a class instance from a shareable image. The exportation
occurs in the same way that cout, cin, cerr, and clog are exported from the
C++ Class Library shareable image.

Table 3–2 Shareable Image Example Files

Module Name Description

SW_SHARE.HXX General use macros to make exporting of global
data (class instances) from shareable images more
transparent to the users of class objects.

SW.HXX The definition of the Stopwatch class supplied by the
shareable image.

(continued on next page)

3–12 C++ Language Environment

C++ Language Environment
3.6 Sample Code for Creating OpenVMS Shareable Images

Table 3–2 (Cont.) Shareable Image Example Files

Module Name Description

SW.CXX Source associated with the public functions defined in
SW.HXX. It also contains the declaration of the global
Stopwatch (G_sw) class instance.

SW_TEST.CXX A test of each of the Stopwatch’s public access points and
also the G_sw class instance.

SW_BUILD.COM A DCL command procedure used to build both the
shareable image and the program.

SW_SHR_ALPHA.OPT An OpenVMS Linker options file, used on OpenVMS
Alpha systems, that contains the SYMBOL_VECTOR
entry points.

SW_SHR_IA64.OPT An OpenVMS Linker options file, used on OpenVMS I64
systems, that contains the SYMBOL_VECTOR entry
points.

In order to build the example, execute the SW_BUILD.COM procedure, then
run the SW_TEST.EXE image.

When you create shared images on OpenVMS systems, you must export guard
variables for template static data members or for static variables defined in
inline functions. These guard variables, which are prefixed by _ _SDG and
_ _LSG respectively, ensure that static data is initialized only once. You must
also export the static variables in inlined functions and template static data
members from the shared image so that they have only one definition.

3.7 Hints for Designing Upwardly Compatible C++ Classes
If you produce a library of C++ classes and expect to release future revisions
of your library, you should consider the upward compatibility of your library.
Having your library upwardly compatible makes upgrading to higher versions
of your library easier for users. And if you design your library properly from
the start, you can accomplish upward compatibility with minimal development
costs.

The levels of compatibility discussed in this section are as follows:

1. Source compatibility

2. Link compatibility

3. Run or binary compatibility

C++ Language Environment 3–13

C++ Language Environment
3.7 Hints for Designing Upwardly Compatible C++ Classes

The format in which your library ships determines the levels of compatibility
that apply:

Library Format Compatibility Level

Source format Source compatibility only

Object format Source and link compatibility

Shareable library format All three kinds of compatibility

If you break compatibility between releases, you should at least document the
incompatible changes and provide hints for upgrading between releases.

3.7.1 Source Compatibility
Achieving source compatibility means that users of your library will not have
to make any source code changes when they upgrade to your new library
release. Their applications will compile cleanly against your updated header
files and will have the same run-time behavior as with your previous release.

To maintain source compatibility, you must ensure that existing functions
continue to have the same semantics from the user’s standpoint. In general,
you can make the following changes to your library and still maintain source
compatibility:

• Add new data members and classes.

• Add new virtual and nonvirtual functions (as long as they do not change
overload resolution of existing calls).

• Loosen protection.

• Change inline functions to out-of-line, and out-of-line functions to inline.

• Change the implementation of functions.

• Add arguments with default values to existing member functions.

3.7.2 Link Compatibility
Achieving link compatibility means that users of your library can relink an
application against your new object or shareable library and not be required to
recompile their sources.

3–14 C++ Language Environment

C++ Language Environment
3.7 Hints for Designing Upwardly Compatible C++ Classes

What Can Change
To maintain link compatibility, the internal representation of class objects
and interfaces must remain constant. In general, you can make the following
changes to your library and still maintain link compatibility:

• Change anything that is invisible to the user.

• Change the implementation of an out-of-line function.

• Loosen protection.

• Add a new nonvirtual member function (as long as it does not change
overload resolution for existing calls).

What Cannot Change
Because the user may be linking object modules from your previous release
with object modules from your new release, the layout and size of class objects
must be consistent between releases. Any user-visible interfaces must also
remain unchanged; even the seemingly innocent change of adding const
to an existing function will change the mangled name and thus break link
compatibility.

The following are changes that you cannot make in your library:

• Add, move, or delete data members.

• Add, move, or delete virtual functions.

• Change the signature of virtual and nonvirtual functions.

• Remove nonvirtual functions.

• Change inline function definitions.

• Change functions from out-of-line to inline.

Designing Your C++ Classes for Link Compatibility
Although the changes you are allowed to make in your library are severely
restricted when you aim for link compatibility, you can take steps to prepare
for this and thereby reduce the restrictions. HP suggests using one of the
following design approaches:

• Set aside dummy (reserved-for-future-use) data fields and virtual functions
within your classes. This assumes you can forsee how much your classes
will grow and change in the future.

C++ Language Environment 3–15

C++ Language Environment
3.7 Hints for Designing Upwardly Compatible C++ Classes

• Add a level of indirection to hide your virtual functions and data fields
from the user. This lets you add and change data fields and virtual
functions without affecting the library user; however, there may be
some disadvantages such as in performance. This approach is detailed
in Effective C++, Section 34, by Scott Meyers.

3.7.3 Run Compatibility
Achieving run compatibility means that users of your library can run an
application against your new shareable library and not be required to recompile
or relink the application.

This requires that you follow the guidelines for link compatibility as well as
any operating system guidelines for shareable libraries. On OpenVMS systems,
you need to create an upwardly compatible shareable image using a transfer
vector on OpenVMS VAX and a symbol table on OpenVMS Alpha. Refer to
the OpenVMS Linker Utility Manual for information on creating a shareable
image.

3.7.4 Additional Reading
The C++ Programming Language, 3rd Edition offers some advice on
compatibility issues. Another good reference is Designing and Coding Reusable
C++, Chapter 7, by Martin D. Carroll and Margaret E. Ellis.

3–16 C++ Language Environment

4
Porting to I64 Systems

This chapter describes some of the differences and restrictions you might
encounter when porting the HP C++ compiler to an I64 system. For a
summary of new and changed features supported by this version of the
compiler on both OpenVMS Alpha and I64 systems, see the Preface of this
manual. For any known issues, see the C++ release notes.

HP C Version 7.1 for OpenVMS I64 uses a new technology base that differs
substantially from HP C++ for OpenVMS Alpha and HP C for OpenVMS I64.
Although a great deal of work has been done to make it highly compatible with
HP C++ for OpenVMS Alpha, there are a number of differences that you will
likely notice. Among them are:

• Resource requirements.

Programs will usually use more memory, both at compile time and at run
time. See Section 4.1.2.

• Floating-point behaviors.

The default on I64 systems is /FLOAT=IEEE/IEEE_MODE=DENORM_
RESULTS. Consistent use of qualifiers across compilations is required. See
Section 4.1.6.

• Simplified instantiation without repository. See Section 4.1.9.

• No inline assembly language. See Section 4.1.7.

• String literal type change.

For standards-compliance and link compatiblity between compiler dialects,
ordinary string literals now have the type "array of const char" in all
compiler dialects on I64 systems in all compiler modes and on Alpha
systems in /MODEL=ANSI mode.

In /MODEL=ARM mode on Alpha systems, string literals are of type "array
of char" in all compiler dialects.

Porting to I64 Systems 4–1

Porting to I64 Systems
4.1 Compiler Considerations

4.1 Compiler Considerations
This section describes porting considerations for the C++ compiler for
OpenVMS I64 systems. See Section 4.2 for considerations for the standard
library, language run-time support library, and class library.

4.1.1 Messages
The move from Alpha systems to I64 systems may cause some minor
differences in certain compiler diagnostics that are signaled from the code
generator. As a result, diagnostics for unreachable code and fetches of
uninitialized variables might be different on the two platforms. In addition to
a change in message text, some conditions detected on one platform might not
be detected on the other.

There have also been some changes in the /WARNINGS qualifier for both
platforms. These include bug fixes and improved compatibility with the C
compiler. For a summary of these changes, see the New and Changed Features
section of the Preface.

4.1.2 Quotas
The C++ compiler for I64 systems is built from a different code base than
the C++ compiler for Alpha systems, and that code base is larger than the
code base for Alpha. Also, I64 images tend to be somewhat larger than Alpha
images in general. Image size mostly affects working-set size and the amount
of pagefile quota needed to execute an image without exhausting virtual
memory. If you find that programs that compile and run successfully on Alpha
run out of memory on I64 systems (either during compilation or when run), you
probably need to increase your pagefile quota. There are no specific guidelines
at this time. You might start by doubling the quota that was sufficient on
Alpha, and then use a "binary-search" approach to arrive at a better quota
value for I64 systems (doubling again, or halving the increment, until your
biggest programs and compilations have just enough memory, and then adding
an appropriate safety margin).

4.1.3 Dialect Changes
Some of the compiler dialects (options to the /STANDARD qualifier) have been
updated to reflect the most recent behaviors of the compilers that the dialect is
attempting to match. Other changes involve the removal of less significant or
undesirable compatibility features.

4–2 Porting to I64 Systems

Porting to I64 Systems
4.1 Compiler Considerations

4.1.4 ABI/Object Model changes
The object model and the name mangling scheme used by the C++ compiler
on I64 systems are different from those used on Alpha systems (different from
both /MODEL=ARM and /MODEL=ANSI). The I64 compiler uses the interface
described by the I64 Application Binary Interface (ABI).

See http://www.codesourcery.com/cxx-abi/abi.html for a draft description of the
ABI specification.

The C++ compiler has some additional encoding rules that are applied to
symbol names after the ABI name mangling is determined. All symbols with
C++ linkage have CRC encodings added to the name, are uppercased and
shorten to 31 characters if necessary. Since the CRC is computed before
the name is uppercased, the symbol name is case-sensitive even though the
final name is in uppercase. /NAMES=AS_IS and /NAMES=UPPER are not
applicable to these symbols.

All symbols without C++ linkage will have CRC encodings added if they
are longer then 31 characters and /NAMES=SHORTEN is specified. Global
variables with C++ linkage are treated as if they have non-C++ linkage for
compatibility with C and older compilers.

4.1.5 Command-Line Qualifiers
This section describes C++ command-line qualifier differences to be aware of
on I64 systems.

Qualifiers/Features Not Supported on I64 Systems
The following command-line qualifiers and features are not supported on C++
for I64 systems, and are diagnosed by default because ignoring them is likely
to alter program behavior:

• Comma lists are not supported. Their use provokes a fatal error.

• /INSTRUCTION_SET=NOFLOATING_POINT is not available on
I64 systems. If it is specified, a warning message is issued, and
/INSTRUCTION_SET=FLOATING_POINT is used.

• /L_DOUBLE_SIZE=64 is not available on I64 systems. If it is specified, a
warning message is issued, and /L_DOUBLE_SIZE=128 is used.

Porting to I64 Systems 4–3

Porting to I64 Systems
4.1 Compiler Considerations

Changed/Ignored Qualifiers
A number of other qualifiers not supported on I64 systems are, by default,
silently ignored by the compiler. These qualifiers fall into two groups:

• Qualifiers that should not alter the behavior of a correct program and so, if
ignored, should have no visible effect. Qualifiers that enable optimizations
typically have this characteristic.

• Qualifiers that might affect program behavior but, if ignored, produce
no significant change in the vast majority of programs. Examples of
qualifiers in this category are /NORTTI (the runtime information is always
generated) and /MODEL=ARM (the ANSI model is functionally superior,
and binary compatibility with existing object code is not an issue for the
OpenVMS I64 platform).

Two optional compiler messages can be enabled to diagnose most of these cases:

• The QUALNA message diagnoses uses of the first group.

• The QUALCHANGE message diagnoses uses of the second group.

If you encounter porting problems, compile /WARN=ENABLE=QUALCHANGE
to determine if a qualifier change might be affecting your application.

If you wish to clean up your build scripts to remove extraneous qualifiers that
are not meaningful on I64 systems, you can enable the QUALNA message.

A list of these qualifiers follows:

• /ARCHITECTURE=option

An additional keyword has been added: ITANIUM2.

If an Alpha keyword (EV4, EV5, EV56, PCA56, EV6, EV68, EV7) is
specified for option, it is ignored.

• /ASSUME

The following /ASSUME options are ignored on I64 systems and should not
cause any behavior changes:

NORTTI_CTORVTBLS
NOPOINTERS_TO_GLOBALS
TRUSTED_SHORT_ALIGNMENT
WHOLE_PROGRAM

• /CHECK=UNINITIALIZED_VARIABLES

This qualifier has no effect in this version of the compiler.

• /DEBUG

4–4 Porting to I64 Systems

Porting to I64 Systems
4.1 Compiler Considerations

The following debug options are ignored:

/DEBUG=NOSYMBOLS
/DEBUG=NOTRACEBACK

• /DISTINGUISH_NESTED_ENUMS

This qualifier only modified the behavior of programs compiled with
/MODEL=ARM. Since that model is not supported on the I64 platform,
this qualifier is meaningless.

• /EXCEPTIONS=NOCLEANUP

The NOCLEANUP keyword for the /EXCEPTIONS qualifier is ignored.

• /EXCEPTIONS=IMPLICIT

The IMPLICIT keyword for the /EXCEPTIONS qualifier is ignored.

• /FLOAT

The default for /FLOAT on OpenVMS I64 systems is IEEE_FLOAT.

See Section 4.1.6 for more information about floating-point behavior on I64
systems.

• /IEEE_MODE

The default for /IEEE_MODE on I64 systems is DENORM_RESULTS,
which generates infinities, denorms, and NaNs without exceptions.

On OpenVMS Alpha systems, the default for /IEEE_MODE when
using /FLOAT=IEEE_FLOAT is FAST, which causes a FATAL error for
exceptional conditions such as divide-by-zero and overflow.

See Section 4.1.6 for more information.

• The /MODEL=ARM qualifier is treated the same as the default
/MODEL=ANSI (except for the optional QUALCHANGE diagnostic).

• /OPTIMIZE

There are several changes to the /OPTIMIZE qualifier:

On I64 systems, for /OPTIMIZE=INLINE, the keywords AUTOMATIC
and SPEED do the same thing.

Also, the ALL keyword does not necessarily result in every possible call
being inlined, as it does on Alpha systems.

The /OPTIMIZE=TUNE qualifier takes a new keyword: ITANIUM2,
which is the default at this time. If you specify an Alpha keyword, it is
ignored.

Porting to I64 Systems 4–5

Porting to I64 Systems
4.1 Compiler Considerations

The /OPTIMIZE=UNROLL=n qualifier is not very useful on I64
systems. Because of this, specifying an unroll value greater than 0
is simplified to mean that simple loop unrolling is enabled. On I64
systems, the user does not have the ability to control the number of
times a loop is unrolled.

/OPTIMIZE=LIMIT_INLINE is ignored.

• /TEMPLATE

See Section 4.1.9 for information on template instantiation.

• /SHOW=STATISTICS

The /SHOW=STATISTICS qualifier is ignored at this time.

• /STANDARD=CFRONT

The /STANDARD=CFRONT qualifier is no longer available. If it is
specified, the compiler issues a warning message and uses the default
dialect, /STANDARD=ANSI.

New Qualifiers
The following command-line qualifier is new for C++ Version 7.1:

• /[NO]PURE_CNAME

This qualifier affects insertion of the names into the global namespace by
<cname> headers.

In /PURE_CNAME mode, the <cname> headers insert the names into the
std namespace only, as defined by the C++ Standard, and the _ _PURE_
CNAME macro is predefined by the compiler.

In /NOPURE_CNAME mode, the <cname> headers insert the name into the
std namespace and also into the global namespace.

The default depends on the standard mode:

In /STANDARD=STRICT_ANSI mode, the default is /PURE_CNAME.

In all other standard modes, the default is /NOPURE_CNAME.

Inclusion of a <name.h> header instead of its <cname.h> counterpart (for
example, <stdio.h> instead of <cstdio>) results in inserting names defined
in the header into both the std namespace and the global namespace.
Effectively, this is the same as the inclusion of a <cname> header in the
/NOPURE_CNAME mode.

See Section 3.1 for more information.

4–6 Porting to I64 Systems

Porting to I64 Systems
4.1 Compiler Considerations

4.1.6 Floating Point
This section describes floating-point behavior on I64 systems.

IEEE Now the Default
On OpenVMS I64 systems, /FLOAT=IEEE_FLOAT is the default floating-
point representation. IEEE format data is assumed and IEEE floating-
point instructions are used. There is no hardware support for floating-point
representations other than IEEE, although you can specify the /FLOAT=D_
FLOAT or /FLOAT=G_FLOAT compiler option.

These VAX floating-point formats are supported in the I64 compiler by
generating run-time code that converts VAX floating-point formats to IEEE
format to perform arithmetic operations, and then converts the IEEE result
back to the appropriate VAX floating-point format. This imposes additional
run-time overhead and some loss of accuracy compared to performing the
operations in hardware on Alpha and VAX systems. The software support for
the VAX formats is provided to meet an important functional compatibility
requirement for certain applications that need to deal with on-disk binary
floating-point data.

On I64 systems, the default for /IEEE_MODE is DENORM_RESULTS, which
is a change from the default of /IEEE_MODE=FAST on Alpha systems. This
means that by default, floating-point operations may silently generate values
that print as Infinity or Nan (the industry-standard behavior), instead of
issuing a fatal run-time error as they would when using VAX floating-point
format or /IEEE_MODE=FAST. Also, the smallest-magnitude nonzero value in
this mode is much smaller because results are allowed to enter the denormal
range instead of being flushed to zero as soon as the value is too small to
represent with normalization.

The conversion between VAX floating-point formats and IEEE formats on the
Intel Itanium architecture is a transparent process that will not impact most
applications. All you need to do is recompile your application. Because IEEE
floating-point format is the default, unless your build explicitly specifies VAX
floating-point format options, a simple rebuild for I64 systems will use the
native IEEE formats directly. For the large class of programs that do not
directly depend on the VAX formats for correct operation, this is the most
desirable way to build for I64 systems.

When you compile an OpenVMS application that specifies an option to use
VAX floating-point on an I64 system, the compiler automatically generates code
for converting floating-point formats. Whenever the application performs a
sequence of arithmetic operations, this code does the following:

Porting to I64 Systems 4–7

Porting to I64 Systems
4.1 Compiler Considerations

1. Converts VAX floating-point formats to either IEEE single or IEEE double
floating-point formats.

2. Performs arithmetic operations in IEEE floating-point arithmetic.

3. Converts the resulting data from IEEE formats back to VAX formats.

Where no arithmetic operations are performed (VAX float fetches followed by
stores), no conversion will occur. The code handles such situations as moves.

VAX floating-point formats have the same number of bits and precision as their
equivalent IEEE floating-point formats. For most applications, the conversion
process will be transparent and, therefore, a non-issue.

In a few cases, arithmetic calculations might have different results because of
the following differences between VAX and IEEE formats:

• Values of numbers represented

• Rounding rules

• Exception behavior

These differences might cause problems for applications that do any of the
following:

• Depend on exception behavior

• Measure the limits of floating-point behaviors

• Implement algorithms at maximal processor-specific accuracy

• Perform low-level emulations of other floating-point processors

• Use direct equality comparisons between floating-point values, instead of
appropriately ranged comparisons (a practice that is extremely vulnerable
to changes in compiler version or compiler options, as well as architecture)

You can test an application’s behavior with IEEE floating-point values by
first compiling it on an OpenVMS Alpha system using /FLOAT=IEEE_
FLOAT/IEEE_MODE=DENORM.

If that produces acceptable results, then simply build the application on the
OpenVMS I64 system using the same qualifier.

If you determine that simply recompiling with an /IEEE_MODE qualifier is
not sufficient because your application depends on the binary representation of
floating-point values, then first try building for your I64 system by specifying
the VAX floating-point option that was in effect for your VAX or Alpha build.
This causes the representation seen by your code and on disk to remain
unchanged, with some additional runtime cost for the conversions generated

4–8 Porting to I64 Systems

Porting to I64 Systems
4.1 Compiler Considerations

by the compiler. If this is not an efficient approach for your application, you
can convert VAX floating-point binary data in disk files to IEEE floating-point
formats before moving the application to an I64 system.

/IEEE_MODE Notes
On Alpha systems, the /IEEE_MODE qualifier generally has its greatest effect
on the generated code of a compilation. When calls are made between functions
compiled with different /IEEE_MODE qualifiers, each function produces the
/IEEE_MODE behavior with which it was compiled.

On I64 systems, the /IEEE_MODE qualifier primarily affects only the setting
of a hardware register at program startup. In general, the /IEEE_MODE
behavior for a given function is controlled by the /IEEE_MODE option specified
on the compilation that produced the main program: the startup code for
the main program sets the hardware register according the command-line
qualifiers used to compile the main program.

When applied to a compilation that does not contain a main program, the
/IEEE_MODE qualifier does have some effect: it might affect the evaluation
of floating-point constant expressions, and it is used to set the EXCEPTION_
MODE used by the math library for calls from that compilation. But the
qualifier has no effect on the exceptional behavior of floating-point calculations
generated as inline code for that compilation. Therefore, if floating-point
exceptional behavior is important to an application, all of its compilations,
including the one containing the main program, should be compiled with the
same /IEEE_MODE setting.

Even on Alpha systems, the particular setting of /IEEE_MODE=UNDERFLOW_
TO_ZERO has the following characteristic: its primary effect requires the
setting of a runtime status register, and so it needs to be specified on the
compilation containing the main program in order to be effective in other
compilations.

More Information
For more information on I64 floating-point behavior, see the white paper
OpenVMS floating-point arithmetic on the Intel Itanium architecture at
http://www.hp.com/products1/evolution/alpha_retaintrust/download/i64-floating-
pt-wp.pdf .

4.1.7 Intrinsics and Builtins
The C++ built-in functions available on OpenVMS Alpha systems are also
available on I64 systems, with some differences. Section C.2 documents
these differences and describes the built-in functions that are specific to I64
systems.

Porting to I64 Systems 4–9

Porting to I64 Systems
4.1 Compiler Considerations

4.1.8 ELF
On OpenVMS Alpha systems, the C++ compiler uses a proprietary object
format specific to OpenVMS.

On OpenVMS I64 systems, the compiler generates ELF objects. ELF is an
industry standard object format used on many UNIX platforms, including
Linux. This change should be transparent to most users; it is primarily of
interest to compiler and tools developers. The greatest benefit of this change
is that it should make it easier to create development tools that work on
OpenVMS and other platforms.

Extensions to ELF have been used as needed to provide functionality unique
to OpenVMS. See the Porting Applications from HP OpenVMS Alpha to HP
OpenVMS Industry Standard 64 for Integrity Servers for more information on
ELF.

COMDATS/Group Sections
One feature that ELF provides that is new to OpenVMS is the COMDAT
section group—a group of sections in an object file that can be duplicated in
one or more other object files. The linker is expected to keep one group and
ignore all others. The benefit of this feature is that it permits compilers to
generate definitions for symbols for things used in multiple objects without
having to worry about creating a single definition in one place. The most
notable uses for this feature are templates and inline functions.

New ELF Type for Weak Symbols
A new Executable and Linkable Format (ELF) type was generated to
distinguish between the two types of weak symbol definitions.

For modules with ABI versions equal to 2 (the most common version used by
compilers):

• Type STB_WEAK represents the UNIX-style weak symbol (formerly, the
OpenVMS-style weak symbol definition for ABI Version 1 ELF format).

• Type STB_VMS_WEAK represents the OpenVMS-style of weak symbol
definition.

The Librarian supports both the ELF ABI versions 1 and 2 of the object and
image file formats within the same library.

4–10 Porting to I64 Systems

Porting to I64 Systems
4.1 Compiler Considerations

4.1.9 Templates
This section describes template instantiation for I64 systems.

Implemented using ELF COMDATS/Groups Sections
The Alpha C++ compiler had numerous models for instantiating templates.
Each attempted to solve the issue of how to generate one and only one copy
of each template. The use of ELF on OpenVMS I64 systems provided the
compiler with the additional option of using COMDAT section groups. Since
this technique is superior to all the models supported on Alpha, this is the only
model supported on I64 systems.

In this model, templates are instantiated in a COMDAT section group
inside every object module that uses them. This is very similar to the
/TEMPLATE=LOCAL on Alpha systems, except that when the objects are
linked together, the linker removes the duplicate copies. The primary advan-
tage of this technique over /TEMPLATE=LOCAL and /TEMPLATE=IMPLICIT_
LOCAL is the reduction in image size.

A secondary advantage is the elimination of distinct data for each template.
For example, if a template maintained a list of elements it created, each
module would have a separate copy of the list. This behavior does not
conform to the standard. If you are currently using /TEMPLATE=LOCAL
or /TEMPLATE=IMPLICIT_LOCAL, you will likely experience no difficulty
from this change.

Not in Repository
The most visible difference that results from this new instantiation
model occurs in models that instantiate templates into the repository
(/TEMPLATE=AUTOMATIC | ALL_REPOSITORY | USED_REPOSITORY).

With the new model, no repository is needed. Build procedures that use
CXXLINK will work transparently. Builds that attempt to manipulate objects
in the repository will fail and will need to be changed. In most cases, the
reason for manipulating the repository directly has been eliminated with the
new template instantiation model.

Also see Chapter 5.

Porting to I64 Systems 4–11

Porting to I64 Systems
4.1 Compiler Considerations

4.1.10 Exceptions and Condition Handlers
The command-line option /EXCEPTIONS=NOCLEANUP is not implemented.
As a result, you might see destructors being called during cleanup in code
previously compiled with this option.

Exception specifications are not implemented. Exception specifications on
routine declarations and definitions are accepted syntactically, but their
run-time behavior has not yet been implemented.

4.1.10.1 Stack unwinding
According to the C++ Standard, an implementation may or may not unwind
the stack before calling terminate when no matching handler is found for a
thrown exception. On I64 systems, the implementation unwinds the stack. On
Alpha systems, it does not.

Consider the following program:

#include <exception>
#include <cstdio>
#include <cstdlib>

class C {
public:
C() { std::printf("Created\n"); }
~C() { std::printf("Destroyed\n"); }

};

void announce1() {
std::printf("In terminate\n");
exit(0);

}

int main() {
C c;
std::set_terminate(announce1);
throw 5;

return 0;
}

For the above program, the output on OpenVMS Alpha and I64 systems is:

Alpha: I64:

Created Created
In terminate Destroyed

In terminate

4–12 Porting to I64 Systems

Porting to I64 Systems
4.1 Compiler Considerations

4.1.10.2 Exceptions Not Caught
The compiler assumes that the only two ways an exception can be propagated
into a function are:

• From a throw expression, or

• From a routine call that itself can throw an exception.

As a result of this assumption, some exceptions such as those thrown from a
signal handler will not be caught.

4.1.10.3 terminate() Incorrectly Called
The C++ I64 compiler incorrectly calls terminate() when, during unwinding,
the destruction of an object results in an exception, even if this exception is
caught within the destructor.

For example, consider the following program:

extern "C" int printf(const char *,...);

struct killit {
killit () {}
~killit () {
try {

throw 11;
} catch (int i) {
printf("caught %d\n", i);

}
}

};

int main () {
try {
killit local;

throw 33;
} catch (const int &i) {
printf("caught int: %d\n", i);

}

return 0;
}

The expected output for the above example is:

caught 11
caught int: 33

But the executable produced by the C++ I64 compiler calls terminate().

Porting to I64 Systems 4–13

Porting to I64 Systems
4.1 Compiler Considerations

In cases where the expression to be thrown has been evaluated, but before the
exception can be caught: if a called user function such as a copy constructor
exits through an uncaught exception, then the compiler incorrectly attempts to
match this latter exception object type to the handlers in enclosing try blocks
in succession, instead of calling terminate().

Further, the function uncaught_exception returns FALSE while in the called
user function described above.

For example, consider the following program:

extern "C" int printf(const char *,...);
extern "C" int exit(int);
#include <exception>

void announce () {
printf("Terminated!\n");
exit(0);

}

class Y {
public:
Y () { printf ("construct Y\n"); }
Y(Y &rhs) {
printf ("copy Y\n");
printf ("uncaught_exception = %s\n", std::uncaught_exception() ?

"TRUE" : "FALSE");
throw 20;

}
~Y () { printf ("destruct Y\n"); }

};

void cxx_func () {
Y OBJ2;

printf ("In cxx_func\n");
try {

throw OBJ2;
} catch (const Y &) {

printf("Caught Y &\n");
} catch (int i) {

printf("Caught %d\n", i);
}
printf ("leaving cxx_func\n");

}

main () {
std::set_terminate(announce);
cxx_func();
printf ("Leaving main\n");

}

4–14 Porting to I64 Systems

Porting to I64 Systems
4.1 Compiler Considerations

The expected output in the above example is:

construct Y
In cxx_func
copy Y
uncaught_exception = TRUE
Terminated!

But the executable produced by the C++ I64 compiler outputs:

construct Y
In cxx_func
copy Y
uncaught_exception = FALSE
Caught 20
leaving cxx_func
destruct Y
Leaving main

The C++ I64 compiler also incorrectly calls terminate() when a destructor
invoked during stack unwinding exits with an exception that violates its own
exception specification, instead of calling unexpected().

Consider the following program:

#include <exception>

extern "C" void exit(int);
extern "C" int printf(const char *,...);

void announce2 () {
printf("announce2: Unexpected!\n");
exit(0);

}

void announce1 () {
printf("announce1: Terminated!\n");
exit(0);

}

class C {
public:

C() { printf("C()\n"); }
~C() throw() { std::set_unexpected(announce2); printf("~C()\n"); throw 3; }

};

void foo() {
C c;
printf("throwing ...\n");
throw 5;

}

Porting to I64 Systems 4–15

Porting to I64 Systems
4.1 Compiler Considerations

main() {
std::set_terminate(announce1);
foo();

}

In the above example, the expected output is:

C()
throwing ...
~C()
announce2: Unexpected!

But the executable produced by the C++ I64 compiler outputs:

C()
throwing ...
~C()
announce1: Terminated!

4.1.10.4 Problem in unexpected() Behavior
When a user-defined unexpected() routine throws or rethrows an exception,
the compiler incorrectly checks the exception specification of the caller of the
routine instead of that of the routine itself, which did not allow the exception
in its exception specification.

Consider the following program:

#include <exception>
#include <cstdlib>

extern "C" int printf(const char *, ...);

void my_unex() {
printf("In my unex\n");
throw;

}

void my_term() {
printf("In my term\n");
std::exit(0);

}

void foo() throw() { // spec not checked with second rethrow
printf("In foo\n");
throw 7;

}

void bar() throw(int) { // this spec checked with second rethrow
printf("In bar\n");
foo();

}

4–16 Porting to I64 Systems

Porting to I64 Systems
4.1 Compiler Considerations

void foo2() throw(std::bad_exception) { // spec not checked with first rethrow
printf("In foo2\n");

throw 5;
}

int main() {
std::set_unexpected(my_unex);
std::set_terminate(my_term);
try {

foo2();
} catch (int i) {
printf("Caught %d\n", i);

} catch (std::bad_exception &) {
printf("Caught bad_exception\n");

}

try {
bar();

} catch (int i) {
printf("Caught %d\n", i);

} catch (...) {
printf("Caught ...\n");

}
return 0;

}

In the above example, expected output is:

In foo2
In my unex
Caught bad_exception
In bar
In foo
In my unex
In my term

But the compiler produces:

In foo2
In my unex
Caught 5
In bar
In foo
In my unex
Caught 7

Porting to I64 Systems 4–17

Porting to I64 Systems
4.2 Library Changes

4.2 Library Changes
For I64 systems, the C++ standard library has been upgraded and organized
as a shareable image. All applicable fixes and enhancements done in the C++
standard library for Alpha systems, have been applied to the C++ standard
library for I64 systems.

The C++ class library on I64 systems is based on the same code as the C++
class library on Alpha systems. The major change in the C++ class library for
I64 systems is the removal of the tasks and complex packages.

4.2.1 Library Reorganization
The standard library, language run-time support library, and class library have
been reorganized for I64 systems.

4.2.1.1 Standard Library and Language Run-Time Support Library
On Alpha systems, the C++ standard library and language run-time support
library is delivered in an object library, LIBCXXSTD.OLB, shipped with the
compiler kit.

On I64 systems, the C++ standard library and language run-time support
library are delivered as separate system shareable images shipped with the
base operating system. The names of the images are: CXXL$RWRTL.EXE and
CXXL$LANGRTL.EXE, respectively. The images reside in the SYS$LIBRARY
directory and are installed at system startup. The LIBCXXSTD.OLB object
library does not exist on I64 systems.

4.2.1.2 Class Library
On Alpha systems, there are three class library shareable images: CXXL$011_
SHR.EXE, CXXL$011_SHRTASK.EXE, and CXXL$011_TASK.EXE.

On I64 systems, the C++ class library continues to ship as a system shareable
image. Because the tasks and complex packages have been removed, there is
only one class library image: CXXL$011_SHR.EXE.

4.2.2 Language Run-Time Support Library
The language run-time support library no longer validates if a negative value
has been specified in a call to operator new. Instead, the value is treated as an
unsigned value, and an attempt is made to dynamically allocate the specified
memory.

4–18 Porting to I64 Systems

Porting to I64 Systems
4.2 Library Changes

4.2.3 Class Library
The following class library changes have been made:

• The tasks and complex packages have been removed. The recommended
replacements are the pthreads routines and complex template class,
respectively, from the C++ standard library.

• In the String class, the char*() operator, which converts String to a
pointer to char, has been removed. The String class has a const char*()
operator, which can be used instead of the removed one.

4.2.4 Standard Library
This section describes changes to the C++ standard library.

4.2.4.1 Changes
There are two major changes in the C++ standard library for I64 systems as
compared with the standard library for Alpha systems:

• The C++ standard library has been upgraded from Version 2.0 of the Rogue
Wave C++ Standard Library to Version 3.0.

• The C++ standard library is delivered with the operating system as the
installed system shareable image SYS$SHARE:CXXL$RWRTL.EXE, and
also in STARLET.OLB in the object form for linking /NOSYSSHARE. On
I64 systems, there is no LIBCXXSTD.OLB, which is the object library
where the C++ standard library for OpenVMS Alpha resides.

Additional standard library changes, known issues, and platform differences
are noted in the following sections.

4.2.4.2 Library Headers
While the change in the library distribution model should be transparent to
customers (except that application images are much smaller on I64 systems),
users on I64 systems may find that the new C++ Standard Library is much
less forgiving in terms of including all necessary library headers than the old
Standard Library.

For example, the following program compiles cleanly on OpenVMS Alpha
systems despite the fact that it does not include the <iostream> header
necessary for the std::cout object:

Porting to I64 Systems 4–19

Porting to I64 Systems
4.2 Library Changes

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <fstream>

using namespace std;

main() {
cout << "hello, world";

}

However, on OpenVMS I64 systems, compilation fails with the following error:

%CXX-E-UNDECLARED, identifier "cout" is undefined

It is nearly impossible to describe all combinations of library constructs and
header files that would compile cleanly on Alpha systems and yet fail to
compile on I64 systems because a library header required by the C++ standard
for a particular construct has not been included. If a program that used to
compile cleanly on an Alpha system fails to compile on an I64 system, it is
always a good idea to check that all necessary library headers are included.

4.2.4.3 Internal Library Headers and Macros
A program that includes internal RW stdlib V2.0 library headers, like
<stddefs> or <stdcomp>, or that uses internal library macros _RW_*, will
have to be modified because the new C++ standard library does not necessarily
have the same internal headers or use the same internal macros as the old
one.

4.2.4.4 Known Issues and Restrictions
The following are known issues with C++ for OpenVMS I64 systems:

• The C++ Standard Library IOStreams expect floating-point values in the
IEEE format, which is the default floating-point format on I64 systems.
Using the Standard Library IOStreams for processing floating-point values
in a format other than IEEE (for example, in a program compiled with the
/FLOAT=G_FLOAT or /FLOAT=D_FLOAT qualifier) is not supported. The
C++ class library does not have this restriction.

4.2.4.5 Differences Between Alpha and I64 Systems
The following are differences between the I64 and Alpha standard libraries:

• On OpenVMS Alpha systems, the following constructors for the C++
standard library classes strstream and ostrstream initialize ptr[count-1]
with a null byte:

4–20 Porting to I64 Systems

Porting to I64 Systems
4.2 Library Changes

strstream(char *ptr, streamsize count,
ios_base::openmode mode = ios_base::in | ios_base::out);

ostrstream(char *ptr, streamsize count,
ios_base::openmode mode = ios_base::out);

This initialization is not required by the C++ standard, and on I64 systems
the C++ standard library does not do it.

• On I64 systems, map and multimap containers require the standard-
conformant form of allocator class: allocator<pair<const Key, T> >.

For example, on Alpha systems, it is possible to declare an object of class
multimap as the following, with the second template argument of allocator
class omitted:

multimap<string, int, less<string>, allocator<string> > x;

But for I64 systems, this must be changed to:

multimap<string, int, less<string>, allocator<pair<const string, int> > > x;

• On I64 systems, the exception.what() function reports the module name,
and the message text might be different.

For example, an output on Alpha systems:

Got an exception: string index out of range in function:
basic_string:::replace(size_t,size_t,size_t,char) position: 100 is
greater than length: 0

An output on I64 systems:

Got an exception: CSRC:[STDIPF_INCLUDE]STRING.CC;:416:
basic_string::replace(size_type, size_type, size_type, value_type):
argument value 100 out of range [0, 0)

• On I64 systems, iostreams extraction operators truncate out-of-range
integer values to the maximum possible value for a given type, and set the
failbit for the stream.

For example, consider the following program:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif

#include <strstream>
#include <iostream>

using namespace std;

Porting to I64 Systems 4–21

Porting to I64 Systems
4.2 Library Changes

main() {
istrstream is("32768"); // SHRT_MAX is 32767
short s;
is >> s;
cout << is.fail() << endl;
cout << s << endl;

}

On Alpha systems, this program gives:

0
-32768

On I64 systems, it gives:

1
32767

Note that on I64 systems, the failbit for the stream is set.

According to the C++ Standard, Section 22.2.2.1 - Template class num_
get [lib.locale.num.get], an input that would have caused scanf to report
an input failure should result in setting ios_base::failbit to err. Since on
OpenVMS, scanf reports an input failure in this case (this is an undefined
behavior from the point of view of the C standard), the behavior of the C++
standard library on I64 systems is standard-compliant.

• On Alpha systems, the find template function is implemented using
operator!=. On I64 systems, this function is implemented using
operator= =, which according to the C++ standard is the operator the
find function should be using.

Consequently, if no conversion from *InputIterator to T exists, on
Alpha systems the following function can be instantiated only if
operator!=(*InputIterator,T) exists:

find(InputIterator first, InputIterator last, const T& value)

On I64 systems, however, the function can be instantiated only if
operator= =(*InputIterator,T) exists.

The following program illustrates the difference. If you comment out the
line bool operator!=(S, int);, the program does not compile on Alpha
systems. If you comment out the line bool operator= =(S, int);, the
program does not compile on I64 systems. The behavior on I64 systems is
the standard-conformant behavior.

4–22 Porting to I64 Systems

Porting to I64 Systems
4.2 Library Changes

include <algorithm>
#include <vector>

struct S {
int i;

};

bool operator!=(S, int);
bool operator==(S, int);

void foo() {
std::vector<S> v;
std::find(v.begin(), v.end(), 0);

}

• On I64 systems, an attempt to write into a stream opened for read (ios::in),
causes the stream badbit bit to be set.

On both Alpha and IPF systems, nothing is written into a stream opened
for read. However, on Alpha systems, the stream badbit bit is not set.

The C++ standard does not provide explicit guidance about what to do in
this case. However, the behavior on I64 systems is more reasonable—at
least there is an indication that something was wrong.

• On I64 systems, reverse_iterator cannot be instantiated on vec-
tor<bool>::iterator type.

For example, the following program, which compiles cleanly on Alpha
systems, does not compile on I64 systems:

#include <vector>

typedef std::reverse_iterator<std::vector<bool>::iterator> ri;

main()
{
ri::pointer (ri::*foo)() const = &ri::operator->;
}

A recently adopted resolution for the library issue 120 has made this
construct invalid. See http://std.dkuug.dk/JTC1/SC22/WG21/docs/lwg-
active.html#120 for more details.

• On I64 systems, for a random access iterator, operator-(const random_
access_iterator&) returning difference_type must be const.

For example, the following program compiles cleanly on Alpha systems.
However, on I64 systems it compiles only if // const is uncommented.

Porting to I64 Systems 4–23

Porting to I64 Systems
4.2 Library Changes

#include <algorithm>

template <class T> class randomaccessiterator {

public:

typedef T value_type;
typedef int difference_type;
typedef T* pointer;
typedef T& reference;
typedef std::random_access_iterator_tag iterator_category;

bool operator==(const randomaccessiterator&);
bool operator!=(const randomaccessiterator&);
T& operator*() const;
T* operator->();

randomaccessiterator& operator++();
const randomaccessiterator& operator++(difference_type);
randomaccessiterator& operator--();
const randomaccessiterator& operator--(difference_type);
randomaccessiterator& operator+=(difference_type);
randomaccessiterator& operator+(difference_type);
randomaccessiterator& operator-=(difference_type);
randomaccessiterator& operator-(difference_type);
difference_type operator-(const randomaccessiterator&); // const;

};

struct S {};
typedef randomaccessiterator<S> Iterator;
typedef bool (*Predicate)(Iterator::value_type);
template Iterator std::stable_partition<Iterator, Predicate>(Iterator,
Iterator, Predicate);

Table 76 in the C++ standard specifies the requirements for a random
access iterator. It says the expression b - a must be valid, where a and b
denote values of X, the random access iterator. It is not completely clear
from the standard whether values of X also imply const values of X, but if
the answer is yes, the behavior on I64 systems is correct.

• On I64 systems, an attempt to call the strstream.seekg(0) function for an
empty stream (the one whose ’next’ pointer is NULL) causes the stream
failbit to be set.

This is a standard-compliant behavior. Notice that after the failbit is set
for the stream, the strstream.str() function returns a NULL pointer.

• On I64 systems, after a call to string.resize(newsize), string.capacity() does
not necessarily returns newsize.

While on Alpha systems the string.capacity() function returns newsize, this
is not required by the C++ standard. A program relying on Alpha behavior
should be modified to call the string.size() function instead.

4–24 Porting to I64 Systems

Porting to I64 Systems
4.2 Library Changes

• On I64 systems, there is no overload of basic_string class for type bool.

Version v3.0 of the Rogue Wave C++ standard library does not have this
problematic nonstandard overload. For OpenVMS Alpha, it has been
recently removed from the library.

• On I64 systems, class std::fpos<std::mbstate_t> does not have the
nonstandard member function offset(). You can use fpos::operator
streamoff() instead. For example:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif

#include <sstream>

using namespace std;

void foo() {
istringstream in("hello, world");
streamoff offset;
offset = in.tellg().offset(); // Alpha only
offset = streamoff(in.tellg()); // either Alpha or IPF

}

• On OpenVMS Alpha systems, in the default built-in C locale, the monetary
facets use values typically found in the en_US locale (English in the United
States). For example, on Alpha the default national currency string is "$".
On I64 systems, in any locale, including the C locale, the monetary facets
use values defined by the locale.

Consider the following sample program:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif

#include <iostream>
#include <locale>
#include <stdexcept>
#include <stdlib.h>

#if defined(__osf__) || defined(__vms)
define UK_LOCALE "en_GB.ISO8859-1"
#elif defined(__linux)
define UK_LOCALE "en_GB"
#else
error unknown platform
#endif

using namespace std;

Porting to I64 Systems 4–25

Porting to I64 Systems
4.2 Library Changes

void outputSym(ostream& os) {
locale loc = os.getloc();
const moneypunct<char,false>& mpunct =

use_facet<moneypunct<char,false> >(loc);
os << "currency symbol is: " << mpunct.curr_symbol() << endl;

}

This program prints two lines: the national currency symbol in the C locale
and the national currency symbol in the en_GB locale (English in Great
Britain).

currency symbol is: $

currency symbol is: £

On I64 systems, the output is:

currency symbol is:

currency symbol is: £

• Consider a program using the C++ Standard Library IOStreams, like x.cxx
below, that writes to cout, but not to cerr or clog:

x.cxx

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <iostream>

main() {
std::cout << "hello, world" << std::endl;

}

On OpenVMS Alpha systems, if such a program is invoked with
SYS$OUTPUT redirected to a file and SYS$ERROR defined as
SYS$OUTPUT, a single version of the output file is created.

On I64 systems, by default, two versions of the file are created: one for
SYS$OUTPUT and another for SYS$ERROR. To get Alpha behavior on an
I64 system, define logical name DECC$COMMON_STDERR_STDOUT to
ENABLE. The following command file shows the definition:

x.com

$ if f$search("x.dat") .nes. "" then delete x.dat;*
$ define/user sys$output x.dat
$ define/user sys$error sys$output
$ if f$getsy("arch_name") .eqs. "IA64" then -

define/user decc$common_stderr_stdout enable
$ run x.exe

4–26 Porting to I64 Systems

Porting to I64 Systems
4.3 CXXLINK Changes

4.3 CXXLINK Changes
Because of changes in the architecture on I64 systems, CXXLINK plays a
much smaller role. Its only remaining purpose is to provide human readable
(demangled) names for mangled C++ names in diagnostics generated by the
linker.

Specific changes are:

• There is no LIBCXXSTD.OLB

On I64 systems, there is no LIBCXXSTD.OLB, which is the object
library where the C++ standard library for OpenVMS Alpha resides. See
Section 4.2.4 for more information.

• The library is reorganized

The C++ libraries have been reorganized and incorporated into the base
system. CXXLINK no longer needs to specify any C++ libraries when
invoking the system linker. See Section 4.2 for more information.

• There are no templates in a repository

With the new template instantiation model, objects are no longer placed
in a repository. Therefore, CXXLINK no longer needs to look at the
repositories for templates. See Section 4.1.9 for more information.

4.4 Installation
HP C++ is installed using PCSI for OpenVMS I64 systems.

To install HP C++ for OpenVMS I64 systems, set the default directory to a
writeable directory to allow the IVP to succeed. Then run the PRODUCT
INSTALL command, pointing to the kit location. For example:

$ SET DEFAULT SYS$MANAGER
$ PRODUCT INSTALL CXX/SOURCE=node::device:[kit_dir]

After installation, the C++ release notes will be available at:

SYS$HELP:CXX.RELEASE_NOTES

SYS$HELP:CXX_RELEASE_NOTES.PS

Here is a sample installation log:

Porting to I64 Systems 4–27

Porting to I64 Systems
4.4 Installation

$ PRODUCT INSTALL CXX/SOURCE=NODE1$::DEV1$:[I64_CPP_KIT]

The following product has been selected:
HP I64VMS CXX T7.0-9 Layered Product [Installed]

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

HP I64VMS CXX T7.0-9: HP C++ for OpenVMS Industry Standard

Copyright 2004 Hewlett-Packard Development Company, L.P.

This software product is sold by Hewlett-Packard Company

PAKs used: CXX or CXX-USER

Do you want the defaults for all options? [YES]

Copyright 2004 Hewlett-Packard Development Company, L.P.

HP, the HP logo, Alpha and OpenVMS are trademarks of
Hewlett-Packard Development Company, L.P. in the U.S. and/or
other countries.

Confidential computer software. Valid license from HP
required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor’s
standard commercial license.

Do you want to review the options? [NO]

Execution phase starting ...

The following product will be installed to destination:
HP I64VMS CXX T7.0-9 DISK$ICXXSYS:[VMS$COMMON.]

Portion done: 0%...90%...100%

The following product has been installed:
HP I64VMS CXX T7.0-9 Layered Product

%PCSI-I-IVPEXECUTE, executing test procedure for HP I64VMS CXX T7.0-9 ...
%PCSI-I-IVPSUCCESS, test procedure completed successfully

HP I64VMS CXX T7.0-9: HP C++ for OpenVMS Industry Standard

The compiler is now available from the command line of newly created processes.

To enable access to the compiler from the command line of a currently
running process (such as this one), execute:
SET COMMAND/TABLE=SYS$COMMON:[SYSLIB]DCLTABLES

4–28 Porting to I64 Systems

Porting to I64 Systems
4.4 Installation

The release notes are located in the file SYS$HELP:CXX.RELEASE_NOTES
for the text form and SYS$HELP:CXX_RELEASE_NOTES.PS for the postscript form.

$

Porting to I64 Systems 4–29

5
Using Templates

A C++ template is a framework for defining a set of classes or functions. The
process of instantiation creates a particular class or function of the set by
resolving the C++ template with a group of arguments that are themselves
types or values. For example:

template <class T> class Array {
T *data;
int size;

public:
T &operator[](int);
/* . . . */

};

The code in this example declares a C++ class template named Array that has
two data members named data and size and one subscript operator member
function. Array<int> instantiates Array with type int. This instantiation
generates the following class definition:

class Array {
int *data;
int size;

public:
int &operator[](int);
/* . . . */

};

The compiler supports instantiation of C++ class, function, and static data
member templates. The following sections describe using templates with
Version 6.0 compilers or later. To understand the differences between the
current compiler and Version 5.n and to migrate from Version 5.n to current
compilers, see the appendix on migrating from 5.n compilers.

Using Templates 5–1

Using Templates
5.1 Template Instantiation Model

5.1 Template Instantiation Model
For every template used in a C++ program, the compiler must create an
instantiation for that template. How the compiler does this is referred to as
the template instantiation model. The template instantiation models differ
on the why, what, when, where, and how a template is instantiated. The
following outline gives a framework to compare the different models.

1. Why

A template can be instantiated implicitly when it is used, manually by
specific request, or both.

2. What (part of the template is instantiated)

For a template class, each member of the template can be instantiated
separately, or if one member is instantiated then all members are
instantiated.

3. When

Instantiation can occur at compile time or link time. Version 6.0 or later
compilers support only compile-time instantiation.

4. Where

Templates can be instantiated in the object in which they are referenced or
in separate objects that are stored in a repository.

5. How

Templates can be instantiated with different linkages. They can be
local, global, or COMDAT (I64 only). A COMDAT is like a weak global
definition, but in addition to permitting duplicate definitions, the linker
attempts to eliminate all of the duplicates, saving space in the image.

The numbers in the preceding list are used in subsequent paragraphs to
indicate which aspect of the template instantiation model framework is being
referenced.

For complex systems, choosing a template instantiation model is a space,
time, and build-complexity issue that can be considered for optimizing build
speed and reducing program size. The default model, referred to as automatic
template instantiation, is standard-compliant and should work transparently
for most users. HP recommends this model.

Automatic template instantiation:

• Instantiates templates when they are used (1),

• Instantiates only the pieces of a class that are used (2), and

5–2 Using Templates

Using Templates
5.1 Template Instantiation Model

• Occurs at compile time (3).

Template instantiation on Alpha and I64 systems differ on the where and the
how:

• On Alpha systems, templates are instantiated in a repository (4) using
global linkage (5)

• On I64 systems, templates are instantiated in the objects that refer to
them (4) as COMDATs (5).

The compiler, CXXLINK, and linker all work together to assure that all
templates used in a program are instantiated and transparently linked into
the final image.

Even when using automatic template instantiation, manual instantiation
(1) is also permitted. When using the default model, manually instantiated
templates are placed in the object where the manual instantiation occurs
(4). On Alpha systems, they have global linkage; on I64 systems, they are
COMDATs (5).

See Table 5–1 for a summary of each template instantiation model’s What,
Where, and How for both implicit and manual instantiation (the "Why").

5.2 Manual Template Instantiation
The compiler provides the following methods to instantiate templates
manually:

• Using the #pragma preprocessor directives.

Using an instantiation pragma to direct the compiler to instantiate a
specific template, as described in Section 5.2.2.

• Using explicit template instantiation syntax.

The C++ language now defines specific syntax for specifying that a
template should be instantiated. See The C++ Programming Language,
3rd Edition.

HP strongly recommends using the explicit template instantiation syntax
when possible.

• Using the command-line qualifier method.

This method directs the compiler to instantiate templates at compile time
in the user’s object file. Several qualifiers are available to control linkage
and extent of template instantiation. For more information about these
qualifiers, see Section 5.2.3.

Using Templates 5–3

Using Templates
5.2 Manual Template Instantiation

5.2.1 Mixing Automatic and Manual Instantiation
Object files that have been compiled using manual instantiation can be linked
freely with objects that have been compiled using automatic instantiation.
To ensure that the template instantiations needed by the files compiled with
automatic instantiation are provided, the application must be linked using
automatic instantiation, and the appropriate repositories must be present.

When a template instantiation is present in an explicitly named object file
or object library it takes precedence over the same named instantiation in a
repository.

5.2.2 Instantiation Directives
The next sections describe the following instantiatation directives:

#pragma define_template
#pragma instantiate_template
#pragma do_not_instantiate_template

5.2.2.1 #pragma define_template
The compiler provides a mechanism for manual instantiation, using the
#pragma define_template directive. This directive lets you tell the compiler
what class or function template to instantiate in conjunction with the actual
arguments with which the template is to be instantiated. The #pragma
define_template directive has the following format:

#pragma define_template identifier <template_arguments>

Identifier is the name of the class or function template that the compiler is
directed to instantiate at compile time. For the instantiation to succeed, the
definition of the template must appear before the #pragma define_template
directive.

Template_arguments is a list of one or more actual types that correspond
to the template parameters for the particular class or function template
being instantiated. Whatever type is specified is used as the type for the
instantiation.

The following is an example of a valid template manual instantiation:

//main.cxx
#include <stdlib.h>
template <class T> void sort (T*);

int al[100];
float a2[100];

5–4 Using Templates

Using Templates
5.2 Manual Template Instantiation

int main()
{

sort(a1);
sort(a2);
return EXIT_SUCCESS;

}

//sort.cxx
template <class T> void sort (T *array)
{

/* body of sort */
}

#pragma define_template sort<int>
#pragma define_template sort<float>

To compile and link these sources, enter the following command:

CXXLINK main.cxx,sort.cxx /TEMPLATE_DEFINE=(NOAUTO)

When you use #pragma define_template or explicit instantiation, only the
specified template is instantiated; templates to which it refers because of
member types or base classes are not instantiated.

Sorting an array of template class elements requires the use of additional
pragmas for the module sort.cxx. For example:

template <class T> void sort (T* array)
{

/*body of sort*/
}

template <class T> class entity {
public:

T member;
int operator < (const entity<T> &) const;

}

template <class T>
int entity<T>::operator < (const entity<T> &operand) const
{

return member < operand.member;
}

int al[100];
float a2[100];
entity<int> a3[100];

#pragma define_template sort<int>
#pragma define_template sort<float>
#pragma define_template sort<entity<int> >

Using Templates 5–5

Using Templates
5.2 Manual Template Instantiation

void sort_all_arrays ()
{

sort(a1);
sort(a2);
sort(a3);

}

The define_template pragma is position sensitive. If a define_template
occurs lexically before a function, member function, or static data member
template definition, the compiler is unable to instantiate the corresponding
template because the body of that template is not present before the pragma
directive.

The compiler instantiates all instances of sort and of entity::operator <
needed for this compilation unit.

To organize a program to use the define_template pragma, you can place the
declarations of class and functions templates into header files, and instantiate
all instances of a particular template from a single compilation unit. The
following example shows how to do this:

// sort.h
#include <stdlib.h>
template <class T> void sort (T*);

// entity.h
template <class T> class entity {
public:

T member;
int operator < (const entity<T> &) const;

};

// main.cxx
#include "sort.h"
#include "entity.h"

int al[100];
float a2[100];
entity<int> a3[100];

int main()
{

sort(a1);
sort(a2);
sort(a3);
return EXIT_SUCCESS;

}

5–6 Using Templates

Using Templates
5.2 Manual Template Instantiation

// sort.cxx
#include "sort.h"
#include "entity.h"
template <class T> void sort (T* array)
{

/*body of sort*/
}
#pragma define_template sort<int>
#pragma define_template sort<float>
#pragma define_template sort<entity<int> >

Compiling the following file provides a definition of entity::operator < with
type int:

// entity.cxx
#include "entity.h"

template <class T>
int entity<T>::operator < (const entity<T> &operand) const
{

return member < operand.member;
}

#pragma define_template entity<int>

To compile this example, issue the following command:

cxxlink main.cxx,sort.cxx,entity.cxx

If the program uses other instantiations of entity in other compilation
units, you can provide definitions of operator < for those entities by adding
define_template pragmas to entity.cxx. For example, if other compilation
units use the following instantiations of entity, appending the following
pragmas to entity.cxx causes the compiler to generate instantiations of
operator < for those requests of entity:

entity<long> and entity< entity<int> >,
#pragma define_template entity<long>
#pragma define_template entity< entity<int> >

Like any other pragma, the #pragma define_template pragma must appear on
a single line. Pragmas may be continued on multiple lines by escaping the end
of line with a backslash (\) as with other preprocessor statements.

Using Templates 5–7

Using Templates
5.2 Manual Template Instantiation

5.2.2.2 #pragma instantiate and #pragma do_not_instantiate
The compiler also provides several pragmas that provide fine control over
the instantiation process. Instantiation pragmas, for example, can be used
to control the instantiation of specific template entities or sets of template
entities. There are two instantiation pragmas:

• The instantiate pragma causes a specified entity to be instantiated,
similar to the define_template pragma. It provides finer instantiation
control than define_template when instantiating function templates.

• The do_not_instantiate pragma suppresses the instantiation of a
specified entity. It is typically used to suppress the instantiation of an
entity for which a specific definition is supplied.

The argument to the instantiation pragma can be:

a template class name A<int>

a template class declaration class A<int>

a member function name A<int>::f

a static data member name A<int>::i

a static data declaration A<int>::i

a member function declaration void A<int>::f(int, char)

a template function declaration char* f(int, float)

A pragma in which the argument is a template class name (for example,
A<int> or class A<int> is equivalent to repeating the pragma for each member
function and static data member declared in the class. When instantiating an
entire class, a given member function or static data member may be excluded
using the do_not_instantiate pragma. For example:

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation
for an instantiation to occur. If an instantiation is explicitly requested by use
of the instantiate pragma and no template definition is available or a specific
definition is provided, an error is issued.

5–8 Using Templates

Using Templates
5.2 Manual Template Instantiation

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided
void f1(int) {} // Specific definition

#include <stdlib.h>
int main()
{
int i;
double d;
f1(i);
f1(d);
g1(i);
g1(d);

return EXIT_SUCCESS;
}
#pragma instantiate void f1(int) // error - specific definition
#pragma instantiate void g1(int) // error - no body provided

The functions f1(double) and g1(double) are not instantiated (because no
bodies were supplied) but no errors are produced during the compilation (if no
bodies are supplied at link time, a linker error is produced).

A member function name (for example, A<int>::f can be used as a pragma
argument only if it refers to a single user-defined member function (that is, not
an overloaded function). Compiler-generated functions are not considered, so
a name may refer to a user-defined constructor even if a compiler-generated
copy constructor of the same name exists. Overloaded member functions can
be instantiated by providing the complete member function declaration:

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma must not be a compiler-generated
function, an inline function, or a pure virtual function.

5.2.3 Using Command Qualifiers for Manual Instantiation
Alternatively, you could use the /TEMPLATE_DEFINE qualifier to instantiate
templates manually.

Considering the previous examples in this section, you can use this qualifier
to supply definitions of sort<int>, sort<float>, and sort<entity><int> by
compiling the following file using /TEMPLATE_DEFINE=ALL:

// sort.cxx
#include "sort.h"
#include "entity.h"

template <class T>
static sort (T* array)
{

/*body of sort*/
}

Using Templates 5–9

Using Templates
5.2 Manual Template Instantiation

static void function_never_used ()
{

int al[100];
float a2[100];
entity<int> a3[100];

sort(a1);
sort(a2);
sort(a3);

}

You can use the /TEMPLATE_DEFINE=USED and /TEMPLATE_
DEFINE=LOCAL qualifiers for manual template instantiation. The
/TEMPLATE_DEFINE=USED qualifier acts like /TEMPLATE_DEFINE=ALL,
except that only those template instantiations that are referenced in the
source file are actually instantiated. The /TEMPLATE_DEFINE=LOCAL
qualifier acts like /TEMPLATE_DEFINE=USED, except that the templates
are instantiated with internal linkage. This provides a simple way to build
applications but creates executables that are larger than necessary. It also
fails if the template classes being instantiated have static data members.

You can use the /TEMPLATE_DEFINE=ALL_REPOSITORY,
/TEMPLATE_DEFINE=USED_REPOSITORY, and /TEMPLATE_DEFINE=
IMPLICIT_LOCAL qualifiers to create preinstantiation libraries. See
Section 5.6.

5.3 Using Template Object Repositories (Alpha only)

In automatic template instantiation mode, the compiler attempts to instantiate
every referenced template at compile time. For automatic instantiation to
work, at least one compilation that references a template function must be able
to find the template definition. There is no restriction on where a template can
be declared or defined, as long as the definition is visible to the compilation
unit. You can use implicit inclusion to find it.

The compiler writes instantiation object files to a directory called the
repository; file names are based on the names of the entities being instantiated.
The default repository is [.cxx_repository].

5.3.1 Specifying Alternate Repositories
You can use the /REPOSITORY command-line qualifier to specify one or
more alternate repository directories. The first repository named is the read-
write repository into which the compiler writes instantiation objects when
processing. At link time, all repositories are read only. There is one object file
in the repository for each instantiated template function, for each instantiated
static data member, and for each virtual table required for virtual functions.

5–10 Using Templates

Using Templates
5.3 Using Template Object Repositories (Alpha only)

When the program is linked, the linker searches the repositories for needed
template instantiations.

5.3.2 Reducing Compilation Time with the
/TEMPLATE_DEFINE=TIMESTAMP Qualifier

To keep instantiations up to date, the compiler always instantiates templates
by default, even if the required template already exists in the respository.
However, in environments that share many templates among many sources,
this process can increase compilation time.

In these environments, users can specify the /TEMPLATE_DEFINE=
TIMESTAMP qualifier to override the default behavior and thereby reduce
compilation time. This qualifier causes the compiler to create a timestamp file
named TIMESTAMP. in the repository. Thereafter, instantiations are added or
regenerated only if needed; that is, if they do not alreay exist, or if existing
ones are older than the timestamp.

The /TEMPLATE_DEFINE=TIMESTAMP qualifier is immediately useful
when building a system from scratch, starting with an empty repository. It
avoids reinstantiating unchanged code and is totally safe, because all required
instantiations are generated and up to date.

Incremental application building is normally done without this qualifier, so
that new instantiations overwrite earlier ones as sources are recompiled.

Although the /TEMPLATE_DEFINE=TIMESTAMP qualifier is intended mainly
for initial builds, you can use it for ongoing development in a structured way.
Because the compiler creates a new timestamp file only if one does not
already exist, you must remove or modify any existing timestamp file before
making changes to your code base. This procedure ensures that all subsequent
compilations generate up-to-date instantiations.

In the following example, the file is removed before and immediately after the
compilation of a.cxx, b.cxx, and c.cxx.

$ DELETE [.cxx_repository]TIMESTAMP.;*
$ CXX /TEMPLATE_DEFINE=TIMESTAMP a.cxx
$ CXX /TEMPLATE_DEFINE=TIMESTAMP b.cxx
$ CXX /TEMPLATE_DEFINE=TIMESTAMP c.cxx
$ DELETE [.cxx_repository]TIMESTAMP.;*

All instantiations needed by a.cxx, b.cxx, and a.cxx are generated only once,
as opposed to the default scheme, in which they would be generated three
times if all three modules used the instantiations.

Using Templates 5–11

Using Templates
5.3 Using Template Object Repositories (Alpha only)

Specifying the /TEMPLATE_DEFINE=VERBOSE qualifier causes the compiler
to emit an informational message naming the instantiation and repository file
being skipped in this mode.

5.3.3 Compiling Programs with Automatic Instantiation
In general, the use of automatic template instantiation is transparent to the
user. Automatic template instantiation is enabled by default. The following
commands are equivalent:

CXX file.cxx

CXX/TEMPLATE_DEFINE=(AUTO,PRAGMA) file.cxx

CXX/REPOSITORY=[.CXX_REPOSITORY] file.cxx

These commands:

• Cause the compilation of the file file.cxx

• Create any instantiations that are required whose definitions are visible to
the compiler

• Create an executable, a.out, by linking together the generated object file
and any instantiations required from the repository

You can specify the repository explicitly with the /REPOSITORY qualifier. For
example:

CXX /REPOSITORY=C$:[PROJECT.REPOSITORY] file.cxx

This command compiles file.cxx, produces an object file in the cur-
rent directory, and puts instantiated template files in the directory
C$:[PROJECT.REPOSITORY].

You can specify multiple directories using the /REPOSITORY qualifier. The
first named repository is denoted as the read/write repository. The compiler
writes instantiation files to this repository. The other repositories are denoted
as read only repositories. They are searched by the link command as described
in Section 5.3.4.

The compiler attempts to instantiate templates at compile time; therefore,
any specialization used in the program must be declared in each file in which
the specialization is referenced, to prevent the instantiation of the overridden
template function.

If a template instantiation refers to a static function, that function is created
as an external entry point in the primary object file, and the instantiation
object file in the repository then refers to this _ _STF function.

5–12 Using Templates

Using Templates
5.3 Using Template Object Repositories (Alpha only)

If the template instantiation is linked into an application that does not
have the original primary object file, an unresolved reference to the _ _STF
function occurs. If this happens, recompile an object file that regenerates the
instantiation or use manual instantiation to reinstantiate the template.

5.3.4 Linking Programs with Automatic Instantiation
When compiling and linking an application, you must use the same repositories
in both the compilation and link steps.

If you name a repository explicitly in the compile step, you must also name it
in the link step. For example:

CXX /REPOSITORY=[.MY_REPOSITORY] a.cxx,b.cxx
CXXLINK /REPOSITORY=[.MY_REPOSITORY] a.obj b.obj

If you use different repositories the compilation of the sources, you must
specify all of them on the link step:

CXX /REPOSITORY=[.REPOSITORY1] a.cxx
CXX /REPOSITORY=[.REPOSITORY2] b.cxx
CXXLINK /REPOSITORY=([.REPOSITORY1],[.REPOSITORY2]) a.obj b.obj

At link time, the specified repositories are searched in the order given, to find
the required instantiations. If you use several repositories, and if one of them
is the default, you must specify all repositories on the link step:

CXX a.cxx
CXX /REPOSITORY=[.REPOSITORY2] b.cxx
CXX /REPOSITORY=([.CXX_REPOSITORY],[.REPOSITORY2]) a.obj b.obj

It is usually much easier and safer to use a single repository, because the same
instantiations could potentially be present in multiple repositories, and it is
possible to update some but not all repositories when changes are made to
templates.

The CXXLINK step processes object files so that all the external symbol
references are resolved. The objects are linked together in the following order:

1. The order in which object files and object libraries are specified on the
command line.

2. If /NOTEMPLATE_PRELINK is specified, stop.

3. For each unresolved external, search the repositories in the order specified
on the command line for an file that contains that external. If such a file is
found, add it at the top of the list of object files being searched.

4. Link again and repeat Step 3 until no more externals are found or until no
more object files are found in which to resolve the external.

Using Templates 5–13

Using Templates
5.3 Using Template Object Repositories (Alpha only)

Note the following:

• Instantiations that appear in explicitly linked object files or libraries hide
instantiations in the repositories.

• Only template instantiations that are actually referenced in sources that
can instantiate them appear in the repository. You must specify any
other instantiations manually or use the /TEMPLATE_DEFINE=ALL_
REPOSITORY qualifier.

• Instantiations are satisfied from the list of unsatisfied externals from the
linking of specified files, but are linked at the beginning of those files. This
means that they are linked in only if they are satisfied from no specified
file, given the linker’s file order behavior, and if they bring in any external
references they need from the first library that satisfies them.

5.3.5 Creating Libraries
Creating libraries with object files created with automatic instantiations is
relatively straightforward. You must decide where the instantiations that
were generated automatically are provided to the users of the library. For
applications that use the library to link successfully, all template instantiations
that are needed by the code in the library must be available at link time. This
can be done in two ways:

• Put the instantiations in the library. They hide the same named
instantiations in any repositories or any libraries following the library
on the command line.

• Provide a repository that contains the instantiations.

It is usually easiest to put the instantiations in the library. This is a good
choice if the instantiations are internal to the library and are not instantiated
directly by the user’s code. To put the instantiations in the library, add all of
the object files in the repositories required by the library into the library as
shown in the following example:

CXX /REPOSITORY=[.lib_repository] a.cxx,b.cxx,c.cxx
LIBRARY/CREATE/OBJECT mylib
LIBRARY/INSERT/OBJECT mylib a.obj,b.obj,c.obj
LIBRARY/INSERT/OBJECT mylib [.lib_repository]*.OBJ

If the template instantiations can be overridden by the user, the templates
should be provided in a repository that the user specifies after all the user’s
repositories. For the previous example, create the library as follows:

CXX /REPOSITORY=[.lib_repository] a.cxx,b.cxx,c.cxx
LIBRARY/CREATE/OBJECT mylib
LIBRARY/INSERT/OBJECT mylib a.obj,b.obj,c.obj

5–14 Using Templates

Using Templates
5.3 Using Template Object Repositories (Alpha only)

When linking the application, enter the CXXLINK command as follows:

CXXLINK user_code.obj,mylib/LIB

If some objects from [.lib_repository] are not contained in mylib.olb,
specify [.lib_repository] as the last read-only repository on the line follows:

CXXLINK /REPOSITORY=([.cxx_repository],[.lib_repository])
user_code.obj,mylib/LIB

You must explicitly name the repository when linking, even if it is the
default repository [.cxx_repository]; cxx first satisfies all unresolved
instantiations from [.cxx_repository], and uses [.lib_repository] to
resolve any remaining unresolved instantiations.

Only the instantiations that are required by the code in the library are
generated in the library repository lib_repository. If you must provide
other instantiations that you require but cannot instantiate, you must provide
these instantiations using manual template instantiation or by specifying the
qualifier /TEMPLATE_DEFINE=ALL_REPOSITORY.

5.3.6 Multiple Repositories
As shown in Section 5.5.3, multiple repositories can be specified to link an
application. The first repository named is the read-write repository, and when
compiling, the compiler writes instantiation object files into it. At link time, all
repositories are read only.

The repositories are searched in a linear order, iteratively, and satisfy only
the unresolved instantiations from each pass. That is, references from
instantiations that are added in one pass are not resolved until the next
pass. Consider the link line in the previous example:

mylib.olb

In this example, all references that could be resolved from lib_repository
would be resolved in the first pass. Any reference arising from an instantiation
in lib_repository in the first pass would be resolved by instantiations in
[.cxx_repository] in the second pass.

5.4 Using COMDATS (I64 only)

The primary purpose of a template repository is to guarantee that only one
copy of a template instantiation is included in a program. Another way to
achieve this is to use COMDATs. COMDATs are special symbols that are
globally visible; however, when the linker encounters a duplicate definition,
it is removed. This allows the compiler to define templates directly in every
object module that uses them.

Using Templates 5–15

Using Templates
5.4 Using COMDATS (I64 only)

The principal benefit of using COMDATS is build speed, but it also can simplify
the build procedure:

• Compilation speed is improved because writing template instantiations
into the current object is significantly faster then writing them into the
repository, because of object overhead in the latter case.

• Link speed is improved because determining which templates to include
from the template repository requires multiple passes of the linker.

• The build is simplified by eliminating the need to manage the template
repository and explicitly extract objects.

COMDATs are implemented on I64 systems using ELF group sections.
COMDATs are not implemented on Alpha systems because EOBJ does not
support them. If EOBJ supported COMDATs, then they also would have been
used on Alpha systems instead of the template object repository. Currently,
there are no plans to implement COMDATs on Alpha systems.

Because templates instantiated using COMDATs exist in the same object
where they are used, there are no special procedures for linking programs or
creating libraries, except that a template can only be exported from a single
shared library. If two shared libraries with the same exported template are
linked together, a MULDEF will occur. This restriction also exists on Alpha
systems.

5.5 Advanced Program Development and Templates
The following sections discuss templates in the context of advanced program
development.

5.5.1 Implicit Inclusion
When implicit inclusion is enabled, the compiler assumes that if it needs a
definition to instantiate a template entity declared in a .h or .hxx file, it can
implicitly include the corresponding implementation file to obtain the source
code for the definition.

If a template entity ABC::f is declared in file xyz.h, and an instantiation of
ABC::f is required in a compilation but no definition of ABC::f appears in the
source code, the compiler checks whether a file xyz.cxx exists. If it does, the
compiler processes it as if it were included at the end of the main source file.

When looking for a template definition, the compiler uses the following lookup
order:

5–16 Using Templates

Using Templates
5.5 Advanced Program Development and Templates

1. If the #include name for the header file containing the template
declaration is specified with an absolute path name, look only in the
directory specified by the path name.

2. If the #include for the header file containing the template declaration is
specified with a relative path name, take the following action:

• If the header file name is specified with double quotation marks (" ")
and the /NOCURRENT_INCLUDE qualifier was not specified, append
the relative path name to the directory containing the source file and
search for files with the appropriate suffixes.

• Otherwise, append the relative path name to all the -I directories
and look in those resulting directories for files with the appropriate
suffixes.

Note

A place containing a forward slash (/) character is considered to be a
UNIX-style name. If the name in the #include directive also contains
a "/" character that is not the first character and is not preceded by a
an exclamation mark character (!) (that is, it is not an absolute UNIX-
style pathname), the name in the #include directive is appended
to the named place, separated by a "/" character, before applying the
decc$to_vms pathname translation function.

For source files, the appropriate suffixes are, in order of preference: .CXX,
.C, .CC, and .CPP or as defined by the /TEMPLATE_DEFINE=DEFINITION_
FILE_TYPE qualifier.

The compiler ignores any file extension that does not begin with a dot (.).

The /TEMPLATE_DEFINE=DEFINITION_FILE_TYPE qualifier allows the
user to define explicitly the file extensions to be used with implicit inclusion.
For example:

CXX file.cxx /TEMPLATE_DEFINE=DEF=".CPP.CC"

This command searches for template definition files with the extensions .CPP
and .CC.

Using Templates 5–17

Using Templates
5.5 Advanced Program Development and Templates

5.5.2 Dependency Management
The compiler does no dependency management of its own. Because
template instantiations are compiled when source files that reference those
instantiations are compiled, those source files must be recompiled if the
template declaration or definition changes.

The /MMS output from the compiler lists the implicitly included files, so that
the MMS program can automatically recompile any source files that depend
upon template files. If MMS is not being used, it is the user’s responsibility
to ensure that instantiations that have changed are recompiled. The user
does so by recompiling at least one source file that references the changed
instantiations.

The compiler does not check command line dependencies of template
instantiations at link time. If you compile two different source files that
instantiate a specific template with two different sets of qualifiers, the
behavior is undefined. Use consistent qualifier settings for each build into
each repository. Examples of qualifier settings that could cause unexpected
results are as follows:

• /STANDARD=STRICT_ANSI. Use of guiding declarations is not allowed,
and some templates might not be instantiated as they would be in other
modes.

• /DEBUG. Debug information is gerenated for some instantiations and not
for others. Be sure that is what you want.

• /NOMEMBER_ALIGNMENT. Some instantiations with this setting
assume that classes have unaligned members; instantiations generated by
compiling files with the default setting do not.

5.5.3 Creating a Common Instantiation Library
Because the automatic instantiation model has changed to a compile time
model with Version 6.0, (see Sections 5.3.3 and 5.3.4), the procedure used to
create a common instantiation library has also changed. This section describes
the new procedure.

If you want to put all current instantiations into a common instantiation
library, follow these steps:

1. Compile with the /TEMPLATE=VERBOSE qualifier and save the results to
a file.

2. Edit that file and save the names that appear after the ‘‘automatically
instantiating ...’’ string. You can ignore any messages about instantiating
vtables. Put #pragma instantiate before each name.

5–18 Using Templates

Using Templates
5.5 Advanced Program Development and Templates

3. Put the result of that edit into a separate source file and include at the top
of the file any headers needed for template definitions.

4. Put matching #pragma do_not_instantiate (see Section 5.2.2.2) into the
headers that define each of these template classes or functions.

5. Place each #pragma do_not_instantiate directive between an #ifndef of
the form #ifndef SOME_MACRO_NAME and an #endif.

6. Compile the inst.cxx file with SOME_MACRO_NAME defined.

7. Link the source file with the resulting object file.

The following examples show how to create a common instantiation library for
all the instantiations currently being automatically instantiated for this file.

// foo.cxx
#include <stdlib.h>
#include <vector>
#include "C.h"

int main() {
vector<C> v;
v.resize(20);

return EXIT_SUCCESS:
}

// C.h
#ifndef __C_H

class C {};

#endif

Compiling with the /TEMPLATE=VERBOSE qualifier shows which
instantiations occur automatically:

void vector<T,Allocator>::resize (size_type new_size)
..........................^
%CXX-I-INSTENTITY, automatically instantiating void std::vector<C,

std::allocator<C > >::resize(unsigned int)
at line number 90 in module VECTOR.CC of text library SYS$COMMON:[SYSLIB]CXXL$ANSI_DEF.TLB;4
//

1. Place all these instantiations into a file called inst.cxx that is built
separately or into a library:

// inst.cxx
#include <vector>
#include "C.h"

Using Templates 5–19

Using Templates
5.5 Advanced Program Development and Templates

#pragma instantiate void std::vector<C, std::allocator<C >
>::resize(unsigned long)
#pragma instantiate void std::vector<C, std::allocator<C >
>::insert(C *, unsigned long, const C &)
#pragma instantiate void std::vector<C, std::allocator<C >
>::__insert(C *, unsigned long, const C &, __true_category)
#pragma instantiate C *std::copy_backward(C *, C *, C *)
#pragma instantiate void std::fill(C *, C *, const C &)
#pragma instantiate C *std::copy(C *, C *, C *)
#pragma instantiate const unsigned long std::basic_string<char,
std::char_traits<char >, std::allocator<void> >::npos

2. Add these instantiations into C.h and change ‘‘instantiate’’ to ‘‘do_not_
instantiate’’. Add an #ifndef, so that when building inst.cxx, the
compiler creates these instantiations in the inst object file:

#ifndef __C_H

class C {};

#ifndef __BUILDING_INSTANTIATIONS
#pragma do_not_instantiate void std::vector<C, std::allocator<C >
>::resize(unsigned long)
#pragma do_not_instantiate void std::vector<C, std::allocator<C >
>::insert(C *, unsigned long, const C &)
#pragma do_not_instantiate void std::vector<C, std::allocator<C >
>::__insert(C *, unsigned long, const C &, __true_category)
#pragma do_not_instantiate C *std::copy_backward(C *, C *, C *)
#pragma do_not_instantiate void std::fill(C *, C *, const C &)
#pragma do_not_instantiate C *std::copy(C *, C *, C *)
#pragma do_not_instantiate const unsigned long
std::basic_string<char, std::char_traits<char >,
std::allocator<void> >::npos
#endif
#endif

3. Build the inst object file:

CXX/DEFINE=BUILDING_INSTANTIATIONS inst.cxx

4. Link with the inst object file. It will use instantiations from that file
instead of creating them automatically:

cxx foo.cxx
cxxlink foo inst

To verify that your procedure worked correctly, you can remove all files
from the cxx_repository subdirectory before you compile foo.cxx. This
subdirectory should contain no instantiations after linking with the inst object
file.

5–20 Using Templates

Using Templates
5.5 Advanced Program Development and Templates

If you have an inst.cxx file that contains many instantiations and you
do not want all the symbols in the inst object file to be put into a user’s
executable even if only some symbols are used, (as happens with archive
libraries), you can either split the inst.cxx into many smaller source files, or
specify the /DEFINE_TEMPLATE=USED_REPOSITORY qualifier to create the
instantiations as separate object files in the repository (see Section 5.6). You
must then link all the required individual object files in the repository into
your library.

5.6 Command-Line Qualifiers for Template Instantiation
This section describes the C++ command-line qualifiers that specify the
template instantiation model, and additional template-related qualifers.

5.6.1 Instantiation Model Qualifiers
The following CXX command-line qualifiers specify the template instantiation
model to be used. Specify only one:

/TEMPLATE_DEFINE=ALL
Instantiate all template entities declared or referenced in the compilation unit,
including typedefs. For each fully instantiated template class, all its member
functions and static data members are instantiated even if they were not used.
Nonmember template functions are instantiated even if the only reference
was a declaration. Instantiations are created with external linkage. Overrides
/REPOSITORY at compile time. Instantiations are placed in the user’s object
file.

/TEMPLATE_DEFINE=ALL_REPOSITORY
Instantiate all templates declared or used in the source program and put the
object code generated as separate object files in the repository. Instantiations
caused by manual instantiation directives are also put in the repository. This
is similar to /TEMPLATE_DEFINE=ALL except that explicit instantiations are
also put in the repository, rather than than an external symbol being put in the
main object file. This qualifier is useful for creating a pre-instantiation library.

/TEMPLATE_DEFINE=[NO]AUTOMATIC
/TEMPLATE_DEFINE=AUTOMATIC directs the compiler to use the automatic
instantiation model of C++ templates.

/TEMPLATE_DEFINE=NOAUTOMATIC directs the compiler to not implicitly
instantiate templates.

/TEMPLATE_DEFINE=AUTOMATIC is the default.

Using Templates 5–21

Using Templates
5.6 Command-Line Qualifiers for Template Instantiation

/TEMPLATE_DEFINE=IMPLICIT_LOCAL
Same as template_define=-local, except manually instantiated templates are
place in the repository with external linkage. This is useful for build systems
that need to have explicit control of the template instantiation mechanism.
This mode can suffer the same limitations as template_define=-local. This
mode is the default when -std gnu is specified.

/TEMPLATE_DEFINE=LOCAL
Similar to /TEMPLATE_DEFINE=USED except that the functions are given
internal linkage. This qualifier provides a simple mechanism for getting
started with templates. The compiler instantiates as local functions the
functions used in each compilation unit, and the program links and runs
correctly (barring problems resulting from multiple copies of local static
variables). However, because many copies of the instantiated functions can be
generated, this qualifier might not be not suitable for production use.

The /TEMPLATE_DEFINE=LOCAL qualifier cannot be used in conjunction
with automatic template instantiation. If automatic instantiation is enabled by
default, it is disabled by the /TEMPLATE_DEFINE=LOCAL qualifier. Explicit
use of /TEMPLATE_DEFINE=LOCAL and /PT is an error.

/TEMPLATE_DEFINE=USED
Instantiate those template entities that were used in the compilation. This
includes all static data members for which there are template definitions.
Overrides /PT at compile time.

/TEMPLATE_DEFINE=USED_REPOSITORY
Like /TEMPLATE_DEFINE=ALL_REPOSITORY, but instantiates only
templates used by the compilation. The explicit instantiations are also put
into the repository as separate object files.

Table 5–1 summarizes each template instantiation model’s What, Where, and
How (as described in Section 5.1) for both implicit and manual instantiation.

5–22 Using Templates

Using Templates
5.6 Command-Line Qualifiers for Template Instantiation

Table 5–1 Template Instantiation Models

Why

Implicit Manual

Model
(/TEMPLATE=) What Where How What Where How

AUTO part repository
for Alpha,
object for
I64

global for Alpha,
COMDAT for I64

part object global for Alpha,
COMDAT for I64

NOAUTO N/A N/A N/A part object global for Alpha,
COMDAT for I64

IMPLICIT_
LOCAL

part object local for Alpha,
COMDAT for I64

part object global for Alpha,
COMDAT for I64

LOCAL part object local for Alpha,
COMDAT for I64

part object local for Alpha,
COMDAT for I64

USED part object global for Alpha,
COMDAT for I64

part object global for Alpha,
COMDAT for I64

USED_
REPO

part repository global for Alpha,
COMDAT for I64

part repository global for Alpha,
COMDAT for I64

ALL all object global for Alpha,
COMDAT for I64

all object global for Alpha,
COMDAT for I64

ALL_REPO all repository
for Alpha,
object for
I64

global for Alpha,
COMDAT for I64

all repository
for Alpha,
object for
I64

global for Alpha,
COMDAT for I64

5.6.2 Other Instantiation Qualifiers
The following qualifiers are independent of the model used and each other:

/TEMPLATE_DEFINE=DEFINITION_FILE_TYPE="file-type-list"
Specifies a string that contains a list of file types that are valid for template
definition files. Items in the list must be separated by commas and preceded by
a period. A type is not allowed to exceed the OpenVMS limit of 31 characters.
This qualifier is applicable only when automatic instantiation has been
specified. The default is /TEMPLATE_DEFINE=DEF=".CXX,.C,.CC,.CPP".

/TEMPLATE_DEFINE=PRAGMA
Determines whether the compiler ignores #pragma define_template directives
encountered during the compilation. This qualifier lets you quickly switch
to automatic instantiation without having to remove all the pragma

Using Templates 5–23

Using Templates
5.6 Command-Line Qualifiers for Template Instantiation

directives from your program’s code base.The default is /TEMPLATE_
DEFINE=PRAGMA, which enables #pragma define_template.

/TEMPLATE_DEFINE=VERBOSE
Turns on verbose or verify mode to display each phase of instantiation as
it occurs. During the compilation phase, informational level diagnostics are
generated to indicate which templates are automatically being instantiated.
This qualifier is useful as a debugging aid.

/PENDING_INSTANTIATIONS[=n]
Limit the depth of recursive instantiations so that infinite instantiation
loops can be detected before some resource is exhausted. The /PENDING_
INSTANTIATIONS qualifier requires a positive non-zero value n as argument
and issues an error when n instantiations are pending for the same class
template. The default value forn is 64.

5.6.3 Repository Qualifiers
The following qualifiers are only applicable if a repository is being used (Alpha

only):

/TEMPLATE_DEFINE=TIMESTAMP
Causes the compiler to create a timestamp file named TIMESTAMP. in the
repository. Thereafter, instantiations are added or regenerated only if needed;
that is, if they do not alreay exist, or if existing ones are older than the
timestamp.

/REPOSITORY

Specifies a repository that C++ uses to store requested template instantiations.
The default is /REPOSITORY=[.CXX_REPOSITORY]. If multiple repositories
are specified, only the first is considered writable, and the default repository is
ignored unless specified.

5–24 Using Templates

6
Handling C++ Exceptions

Exception handling is a C++ language mechanism for handling unusual
program events (not just errors). On OpenVMS systems, HP C++ implements
the exception handling model described in the C++ International Standard.

This includes support for throwing and catching exceptions, and calling the
terminate() and unexpected() functions. C++ exception-handling support
is implemented using functions and related OpenVMS systemservices that
comprise the OpenVMS condition-handling facility. Hence, C++ exception-
handling support is fully integrated with existing uses of the OpenVMS
condition handling facility.

6.1 Compiling with Exceptions
Because exceptions are enabled by default, you need not specify the
/EXCEPTIONS qualifier whenever you compile the program.

For more information about the /EXCEPTIONS qualifier see Appendix A.

Note

If you are programming in kernel mode or creating a protected
shareable image, C++ exception handling is not supported. To ensure
that your code does not contain constructs that trigger C++ exceptions
or to prevent errors from occurring during initialization of exception
handlers at runtime, specify the /NOEXCEPTIONS qualifier when
compiling.

Handling C++ Exceptions 6–1

Handling C++ Exceptions
6.2 Linking with Exceptions (Alpha only)

6.2 Linking with Exceptions (Alpha only)

If any files in your program contain throw expressions, try blocks, or catch
statements, or if any files in your program are compiled with the exceptions,
you must link your program using the cxxlink facility (see Section 1.3 for
more information on this facility). For example:

$ cxxlink my_prog.obj

Using the cxxlink facility ensures that the run-time support for exceptions
(sys$library:libcxxstd.olb) is linked into your program.

Linking with /NOSYSSHR (OpenVMS Version 6.2)
If you are running OpenVMS Version 6.2 or later, and you want to link using
the /NOSYSSHR qualifier, you must specify a linker options file on your
cxxlink command. Otherwise, your link might fail because of undefined
symbol references.

The linker options file should contain the following:

sys$share:librtl.exe/shar

For example, if cxx_exc.opt is your linker options file containing the above
line, then a possible link command would be:

$ cxxlink my_prog.obj, my_disk:[my_dir]cxx_exc.opt/opt

Because the necessary run-time libraries are not provided in object format on
OpenVMS Version 6.1 and earlier releases, linking with /NOSYSSHR on those
systems is not recommended.

For more information about linking with /NOSYSSHR and about OpenVMS
linker options files see the OpenVMS Linker Utility Manual

6.3 The terminate() and unexpected() Functions
The unexpected() and set_unexpected() functions are implemented as
defined in the ISO/IEC International Standard.

The terminate() and set_terminate() functions are implemented as defined
in the ISO/IEC International Standard. By default, the terminate() function
raises the OpenVMS condition cxxl$_terminate, and then calls the abort()
function.

On Alpha systems, no stack unwinding is done by the terminate() function.
Hence, no destructors are called for constructed objects when a thrown
exception results in a call of the terminate() function. Instead, the program
is terminated.

6–2 Handling C++ Exceptions

Handling C++ Exceptions
6.3 The terminate() and unexpected() Functions

On I64 systems, stack unwinding is done.

If a C++ function is called from a program in which the main function is not
C++, terminate() is not called. Instead, the call stack points to the point of
the throw.

6.4 C++ Exceptions and Other Conditions
Because C++ exceptions are implemented using the OpenVMS condition
handling facility, C++ modules will work properly when they are part of a
program that makes other uses of OpenVMS condition handling.

The raising and handling of an OpenVMS condition can result in the
destruction of C++ automatic objects. If the handling of an OpenVMS
condition results in an unwind through a C++ function’s stack frame, then
destructors will be called for automatic objects declared in that stack frame,
just as if a C++ exception had been caught by a handler in an outer stack
frame.

The C++ exception handling facility can also be used to catch OpenVMS
conditions that are raised independently of C++ throw expressions. Except
for those OpenVMS conditions that result in the delivery of signals, a C++
catch(. . .) handler will catch both C++ thrown exceptions and OpenVMS
conditions. (For more information about OpenVMS conditions that result in
the delivery of signals, see Section 6.5.)

You can use the data type struct chf$signal_array &, defined in the system
header file chfdef.h, to catch OpenVMS conditions and to obtain information
about the raised conditions. The C++ exceptions support transfers control
to catch(struct chf$signal_array &) handlers when it determines that an
OpenVMS condition was raised independently of a C++ throw statement.

If the catch (struct chf$signal_array &) handler specifies a class object,
then the C++ exceptions support sets the class object to be a reference to the
raised OpenVMS condition’s signal argument vector. In the following example,
obj.chf$l_sig_name will have the value 1022 when it is printed:

Handling C++ Exceptions 6–3

Handling C++ Exceptions
6.4 C++ Exceptions and Other Conditions

#include <chfdef.h>
#include <iostream.hxx>
#include <lib$routines.h>
main ()
{

try {
lib$signal (1022);

} catch (struct chf$signal_array &obj) {
cout << obj.chf$l_sig_name << endl;

}
}

A catch(struct chf$signal_array &) handler will also catch a thrown object
that is explicitly declared to be of type struct chf$signal_array &. In this
case, the value of the catch handler’s object is determined by the originally
thrown object, not the OpenVMS signal argument vector.

You can also use the data type struct chf$signal_array * to catch both
OpenVMS conditions and objects explicitly declared to be of type struct
chf$signal_array *. If a catch(struct chf$signal_array *) handler specifies
an object, then that object becomes a pointer to the thrown object.

For more information about OpenVMS conditions, see the OpenVMS Calling
Standard.

6.5 C++ Exceptions and Signals (Alpha only)

Certain OpenVMS conditions (as described in the HP C Run-Time Library
Reference Manual for OpenVMS Systems) normally result in the delivery of
signals. These signals can be processed using the signal handler mechanism
described in the HP C Run-Time Library Reference Manual for OpenVMS
Systems.

You can call the following run-time function in conjunction with the
/EXCEPTION=IMPLICIT qualifier to cause these OpenVMS conditions to
be treated as exceptions, instead of signals:

cxxl$set_condition(condition_behavior signal_or_exc)

This can be done by putting the following call in your program:

#include <cxx_exception.h>
. . .
cxxl$set_condition (cxx_exception);

Caution

You must specify /EXCEPTION=IMPLICIT; otherwise, the code that
would normally cause a signal and now causes an exception might be

6–4 Handling C++ Exceptions

Handling C++ Exceptions
6.5 C++ Exceptions and Signals (Alpha only)

moved out of the try block.

After your program calls the cxxl$set_condition (cxx_exception) function
you can then catch these exceptions using any of the following handlers:

catch(struct chf$signal_array &)
catch(struct chf$signal_array *)
catch(. . .)

To revert back to the default signal behavior, you can make the following call:

cxxl$set_condition (unix_signal);

Caution

Avoid doing a C++ throw from a C signal handler or VMS exception
handler because this action could terminate your program.

The following are defined in the header file cxx_exception.h:

The cxxl$set_condition() function
The condition_behavior {unix_signal=0, cxx_exception=1 }
enumeration type

The cxxl$set_condition function returns the previous setting. This function
affects all threads in a process.

6.6 C++ Exceptions with setjmp and longjmp
If a C++ function calls either the setjmp() or the longjmp() routine, C++
exceptions support is disabled for that function. This means the following:

• No exceptions can be caught by the function’s catch handlers.

• No destructors are called for the function’s automatic data if an exception
propagates through the function.

• The unexpected() function is not called for that function.

• If either setjmp() or longjmp() is called from main(), then terminate()
is not called for an unhandled exception.

Handling C++ Exceptions 6–5

Handling C++ Exceptions
6.7 C++ Exceptions, lib$establish and vaxc$establish

6.7 C++ Exceptions, lib$establish and vaxc$establish
If a C++ function calls either the lib$establish() or the vaxc$establish()
routine, then C++ exceptions support is disabled for that function. This means
the following:

• No exceptions can be caught by the function’s catch handlers.

• No destructors are called for the function’s automatic data if an exception
propagates through the function.

• The unexpected() function is not called for that function.

• If either lib$establish() or vaxc$establish() is called from main(),
then terminate() is not called for an unhandled exception.

6.8 Performance Considerations
The compiler optimizes the implementation of exception handling for normal
execution, as follows:

• Applications that do not use C++ exceptions and are compiled with the
/NOEXCEPTIONS qualifier incur no run-time or image size overhead.

• Applications compiled with exceptions enabled that have try blocks or
automatic objects with destructors incur an increase in image size.

• As much as possible, the run-time overhead for exceptions is incurred when
throwing and catching exceptions, not when entering and exiting try blocks
normally.

6.9 C++ Exceptions and Threads
C++ exceptions are thread safe. This means that multiple threads within a
process can throw and catch exceptions concurrently. However, exceptions
do not propagate from one thread to another, nor can one thread catch an
exception thrown by another thread.

The set_terminate() and set_unexpected() functions set the terminate()
and unexpected() handlers for the calling thread. Therefore, each thread in a
program has its own terminate() and unexpected() handlers.

If you want every thread in your program to use the same nondefault
terminate() or unexpected() handlers, then you must call the
set_terminate() and set_unexpected() functions separately from each
thread.

6–6 Handling C++ Exceptions

Handling C++ Exceptions
6.9 C++ Exceptions and Threads

By default, the C++ exception package allows the delivery of the CMA$_
EXIT_THREAD condition, but not the CMA$_ALERTED condition. This latter
condition is raised to a thread that is being cancelled. The following routine
(test_thread) allows an application to control the default behavior of these
two conditions:

int cxxl$catchable_condition (int condition, int on_or_off);

The condition is either CMA$_EXIT_THREAD or CMA$_ALERTED. A value of
zero means the program does not want the condition to result in a catch clause
receiving the exception. This is the default behavior for CMA$_ALERTED. A
value of nonzero means the program does want the condition to result in the
catch clause of the thread to receive control when the exception is raised. The
behavior is undefined for any other condition value passed.

The return value of the routine is the previous setting for the passed condition
value:

#include <pthread.h>
#include <cxx_exception.h>
#include <cma$def.h>
...

static void *test_thread (...) {
...
try {
...
} catch (chf$signal_array *p) {

switch (p->chf$l_sig_name)
{

case CMA$_ALERTED:
printf (" test_thread caught CMA$_ALERTED\n");
break;

default:
printf (" test_thread caught (%d)\n", p->chf$l_sig_name);
break;

}
}

}

int main () {
...

if (cxxl$catchable_condition(CMA$_ALERTED,1))
printf (" CMA$_ALERTED continues to be catchable\n");

else printf (" CMA$_ALERTED is now catchable\n");

Handling C++ Exceptions 6–7

Handling C++ Exceptions
6.9 C++ Exceptions and Threads

...
pthread_create (&thread, ...);

...
pthread_cancel (thread);

...
}

For more information about threads, see the Guide to DECthreads manual.

6.10 Debugging with C++ Exceptions (Alpha only)

You can use the OpenVMS Debugger set break/exception command to set a
breakpoint when an exception is thrown. You can use the show calls command
to determine the location where the exception was thrown.

6–8 Handling C++ Exceptions

7
The C++ Standard Library

The C++ Standard Library provided with this release defines a complete
specification of the C++ International Standard, with some differences, as
described in the online release notes in:

SYS$HELP:CXX_RELEASE_NOTES.PS

Note that portions of the C++ Standard Library have been implemented in
HP C++ using source licensed from and copyrighted by Rogue Wave Software,
Inc. Information pertaining to the C++ Standard Library has been edited
and incorporated into HP C++ documentation with permission of Rogue Wave
Software, Inc. All rights reserved.

Some of the components in the C++ Standard Library are designed to replace
nonstandard components that are currently distributed in the Class Library.
HP will continue to provide the Class Library in its nonstandard form.
However, you now have the option of using new standard components.

This chapter provides more information on the HP C++ implementation of
the Standard Library, including upward compatibility, compiling, linking, and
thread safety. Small example programs showing how to use the C++ standard
library are located in the directory SYS$COMMON:[SYSHLP.EXAMPLES.CXX].

The following are Standard Library qualifiers introduced with HP C++ Version
6.0:

/[NO]USING_STD
Controls whether standard library header files are processed as though the
compiled code were written as follows:

using namespace std;
#include <header>

These qualifiers are provided for compatibility for users who do not want to
qualify use of each standard library name with std:: or put using namespace
std; at the top of their sources.

The C++ Standard Library 7–1

The C++ Standard Library

/USING_STD turns implicit using namespace std on; this is the default when
compiling /STANDARD=ARM, /STANDARD=MS, or /STANDARD=RELAXED.

/NOUSING_STD turns implicit using namespace std off; this is the default
when compiling /STANDARD=STRICT_ANSI.

/ASSUME=[NO]STDNEW
Controls whether calls are generated to the ANSI or pre-ANSI implementation
of the operator new(). On memory allocation failure, the ANSI
implementation throws std::bad_alloc, while the pre-ANSI implementation
returns 0.

/ASSUME=STDNEW generates calls to the ANSI new() implementation;
this is the default when compiling with /STANDARD=RELAXED and
/STANDARD=STRICT_ANSI.

/ASSUME=NOSTDNEW generates calls to the pre-ANSI new()
implementation; this is the default when compiling with /STANDARD=ARM
and /STANDARD=MS.

/ASSUME=[NO]GLOBAL_ARRAY_NEW
Controls whether calls to global array new and delete are generated as
specified by ANSI. Pre-ANSI global array new generated calls to operator
new(). According to ANSI, use of global array new generate calls to operator
new()[].

/ASSUME=GLOBAL_ARRAY_NEW generates calls to operator new()[]
for global array new expressions such as new int[4]; this is the default
when compiling /STANDARD=RELAXED, /STANDARD=STRICT_ANSI, and
/STANDARD=MS.

/ASSUME=NOGLOBAL_ARRAY_NEW generates calls to operator new() for
global array new expressions such as new int[4] and preserves compatibility
with Version 5.n; this is the default when compiling /STANDARD=ARM. .)

7.1 Important Compatibility Information
On Alpha systems, because the standardization process for the C++ Standard
Library is not yet completed, HP cannot guarantee that this version of the
library is compatible with any past or future releases. We ship the run-time
portion of the library in object form, not in shareable form, to emphasize this
situation. (Alpha only)

On I64 systems, the standard library is distributed as a system shareable
image SYS$LIBRARY:CXXL$RWRTL.EXE, and also in object form in the
system object library STARLET.OLB. (I64 only)

7–2 The C++ Standard Library

The C++ Standard Library
7.1 Important Compatibility Information

The following sections describe specific compatibility issues.

7.1.1 /[NO]USING_STD Compiler Compatibility Qualifier
All standard library names in HP C++ are inside the namespace std. Typically
you would qualify each standard library name with std:: or put using
namespace std; at the top of your source file.

To make things easier for existing users, using namespace std; is included in a
file provided with every standard library header when you are in ARM, MS, or
RELAXED compiler modes. This is not the default in STRICT_ANSI mode.

The compiler supplied qualifiers /NOUSING_STD and /USING_STD can
be used to override the default. /NOUSING_STD turns the implicit using
namespace std off; /USING_STD turns it on.

7.1.2 Pre-ANSI/ANSI Iostreams Compatibility
The C++ Standard Library offers support for the standard iostream library
based on the C++ International Standard. As defined by the standard, iostream
classes are in the new header files <iostream>, <ostream>, <istream>, and so
on (no .h or .hxx extension).

For backward compatibility, the pre-ANSI iostream library is still provided.
The two libraries exhibit subtle differences and incompatibilities.

Users can choose which version (ANSI or pre-ANSI) of iostreams they want
to use; either version of iostreams can be integrated seamlessly with the new
Standard Library and string functionality.

To accomplish this goal, macros called _ _USE_STD_IOSTREAM and
_ _NO_USE_STD_IOSTREAM are provided. If you do not set these macros explicitly,
the default in ARM, MS, and RELAXED modes is to use the pre-ANSI
iostream library. In STRICT_ANSI mode, the default is to use the ANSI
iostream library.

Note that for the most part, support for pre-ANSI iostreams is con-
tained in headers with .h or .hxx extensions. This is not the case for
iostream.h/iostream.hxx, fstream.h/fstream.hxx, strstream.h
/strstream.hxx, and iomanip.h/iomanip.hxx. In these cases, the iostream
library provided is controlled solely by the /STANDARD compilation choice and
use of _ _USE_STD_IOSTREAM/_ _NO_USE_STD_IOSTREAM.

You override the default by defining _ _USE_STD_IOSTREAM or
_ _NO_USE_STD_IOSTREAM on either the command line or in your source code.

The C++ Standard Library 7–3

The C++ Standard Library
7.1 Important Compatibility Information

In ARM, MS, and RELAXED modes, specify use of the ANSI iostreams in one
of the following ways:

• Enter /DEFINE=(_ _USE_STD_IOSTREAM) on the command line.

• Put the following in your source file before any include files:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif

In STRICT_ANSI mode, specify use of the pre-ANSI iostreams in one of the
following ways:

• Enter /DEFINE=(_ _NO_ _USE_STD_IOSTREAM) on the command line.

• Put the following in your source file before any include files:

#ifndef __NO_USE_STD_IOSTREAM
#define __NO_USE_STD_IOSTREAM
#endif

You receive a #error warning if

• you compile in a mode indicating you want ANSI behavior; that is,
/STANDARD=STRICT_ANSI,

• you enter a header with a .h or .hxx (for example, #include <iostream.h>).

You can avoid the error by compiling with /DEFINE=(_ _NO_USE_STD_
IOSTREAM).

Many of the other headers, <string> for example, make use of the iostream
classes. The default version of iostreams that is automatically included when
you include one of these headers depends on the mode you compile in and the
setting of the macros _ _USE_STD_IOSTREAM and _ _NO_USE_STD_IOSTREAM as
described earlier.

Because the standard locale class and the standard iostream class are so
closely tied, you cannot use the standard locale class with the pre-ANSI
iostream classes. If you want to use locale, you must use the ANSI iostream
classes.

It is possible to use the pre-ANSI and the ANSI iostream library in the same
source file, because all the standard iostream names (that is, cout, cin, and
so on) are in namespace std, and all the pre-ANSI names are in the global
namespace. This is not recommended, though, because there is no guarantee
of stream objects being the same size or, for example, of ::cout being in sync
with std::cout.

7–4 The C++ Standard Library

The C++ Standard Library
7.1 Important Compatibility Information

Nevertheless, if you want to combine them, you must recognize that the
underlying ANSI iostream is called iostream_stdimpl.hxx and that the pre_
ANSI header is called iostream_impl.hxx. The following example shows how
to include a pre-ANSI header before and ANSI header:

#include <stdlib.h>
#undef __USE_STD_IOSTREAM
#include <iostream_impl.hxx>
#define __USE_STD_IOSTREAM
#include <iostream_stdimpl.hxx>

int main()
{
std::string s("abc");
::cout << "abc" << endl; // pre-standard iostreams
std::cout << "abc" << std::endl; // standard iostreams
return EXIT_SUCCESS;

}

If you include an ANSI iostreams header before a pre-ANSI iostreams header,
follow these steps:

1. Compile your source using /NOUSING_STD.

2. Use the _ _USE_STD_IOSTREAM macro as shown in the following example.
You must define _ _USE_STD_IOSTREAM at the end of your include file list so
that the template definition files (the .cc files) are included in the correct
mode.

// Compile this with /nousing_std
#include <stdlib.h>
#define __USE_STD_IOSTREAM
#include <iostream_stdimpl.hxx>
#undef __USE_STD_IOSTREAM
#include <iostream_impl.hxx>
#define __USE_STD_IOSTREAM // so the template definition files are ok

int main()
{
std::string s("abc");
::cout << "abc" << endl; // pre-standard iostreams
std::cout << "abc" << std::endl; // standard iostreams
return EXIT_SUCCESS;

}

The C++ Standard Library 7–5

The C++ Standard Library
7.1 Important Compatibility Information

7.1.3 Support for pre-ANSI and ANSI operator new()
The Standard C++ Library supports the ANSI implementation of the operator
new() as well as the pre-ANSI implementation of operator new(). The ANSI
implementation throws std::bad_alloc on memory allocation failures.

The pre-ANSI implementation of the operator new() returns 0 on
memory allocation failures. Because the ANSI behavior is incompatible
with pre-ANSI applications, a compile time qualifier has been added
(/ASSUME=[NO]STDNEW) to control whether calls to ANSI new() or pre-
ANSI new are generated.

The following examples show how ANSI versus pre-ANSI new() check for
memory allocation. First, here is an ANSI new() check for memory allocation
failure:

try {
myobjptr = new (myobjptr);

}
catch (std::bad_alloc e) {

cout << e.what() << endl;
};

The following example shows a pre-ANSI new() check for memory allocation
failure:

if ((myobjptr = new (myobjptr)) == 0)
call_failure_routine();

When upgrading pre-ANSI new() code to work with the C++ Standard Library
you also can use the nothrow version of ANSI new(). To do so in the pre-ANSI
example, you could recode it as follows:

if ((myobjptr = new (myobjptr, nothrow)) == 0)
call_failure_routine();

Two command line qualifiers are available in the compiler to control whether
calls are generated to the ANSI or pre-ANSI implementation of operator
new():

• Use the /ASSUME=STDNEW qualifier to generate calls to the ANSI new()
implementation.

• Use the /ASSUME=NOSTDNEW qualifier to generate calls to the pre-ANSI
new() implementation. You can override global new() by declaring your
own functions.

When compiling with /STANDARD=RELAXED or
/STANDARD=STRICT_ANSI, /ASSUME=STDNEW is the default.

7–6 The C++ Standard Library

The C++ Standard Library
7.1 Important Compatibility Information

When compiling with /STANDARD=ARM and /STANDARD=MS,
/ASSUME=NOSTDNEW is the default. The compiler defines the macro
_ _STDNEW when the /ASSUME=STDNEW qualifier is specified.

7.1.4 Overriding operator new() (Alpha only)

On Alpha systems, the ability to override the library version of global operator
new() and global operator delete() is available with OpenVMS Version 6.2
and later. If you want to define your own version of global operator new()
on OpenVMS systems, you must define your own version of global operator
delete() and vice versa. To define a global operator new() or a global
operator delete() to replace the version used by the C++ Standard Library
or the C++ Class Library, or both, follow these steps:

1. Define a module to contain two entry points for your version of global
operator new(). You must code the module so that it is always compiled
either with the /ASSUME=STDNEW or with the /ASSUME=NOSTDNEW
qualifier.

2. If you code your module to compile with /ASSUME=STDNEW, follow
instructions in the next subsection. If you code your module to compile with
/ASSUME=NOSTDNEW, follow instructions in the subsection Compiling
with /ASSUME=NOSTDNEW.

Compiling with /ASSUME=STDNEW

1. Verify that your module contains two entry points for your version of
global operator new(). One entry point, which has the name _ _nw_ _XUi
(/MODEL=ARM) or _ _7_ _nw_ _FUi (/MODEL=ANSI), is used to override
global operator new() in the Class Library. The other entry point, which
has the name new, is used to override global operator new() in the
Standard Library.

2. Define global operator new() in terms of the entry point new. Code
_ _nw_ _XUi (for /MODEL=ARM) or _ _7_ _nw_ _FUi (for /MODEL=ANSI) to
call operator new. Your module appears as follows:

#include <new>
...
using namespace std;

The C++ Standard Library 7–7

The C++ Standard Library
7.1 Important Compatibility Information

// Redefine global operator new(),
// entry point into C++ Standard Library based on
// compiling /assume=stdnew. This also overrides user
// calls to operator new().
void *operator new(size_t size) throw(std::bad_alloc) {
printf("in my global new\n");
...
void *p = malloc(size);
return(p);

}

// redefine global operator delete()
void operator delete(void *ptr) throw() {
free (ptr);

}

// entry point into C++ Class Library
#ifdef __MODEL_ANSI
extern "C" void *__7__nw__FUi(size_t size) {
#else // __MODEL_ARM
extern "C" void *__nw__XUi(size_t size) {
#endif
printf("in my new\n");
return ::operator new(size);

}

Compiling with /ASSUME=NOSTDNEW

1. Verify that your module contains two entry points for your version of global
operator new(). One entry point, which has the name cxxl$_ _stdnw_ _XUi
(for /MODEL=ARM) or cxxl$_ _7_ _stdnw_ _FUi (for /MODEL=ANSI), is
used to override global operator new() in the Standard Library. The other
entry point, which has the name new, is used to override global operator
new() in the Class Library.

2. Define global operator new() in terms of the entry point new. Code
cxxl$_ _stdnw_ _XUi (/MODEL=ARM) or cxxl$_ _stdnw_ _FUi (/MODEL=ANSI)
to call operator new. Your module appears as follows:

#include <new>
...
using namespace std;

// Redefine global <code_example>(operator new()),
// entry point into C++ Class Library based on
// compiling /assume=nostdnew
void *operator new(size_t size) {
printf("in my global new\n");
...
void *p = malloc(size);
return(p);

}

7–8 The C++ Standard Library

The C++ Standard Library
7.1 Important Compatibility Information

// redefine global operator delete()
void operator delete(void *ptr) {
free (ptr);
}

// entry point into C++ Standard Library
#ifdef __MODEL_ANSI
extern "C" void *cxxl$__7__stdnw__FUi(size_t size) {
#else // __MODEL_ARM
extern "C" void *cxxl$__stdnw__XUi(size_t size) {
return ::operator new(size);

}

3. Link your program using the /NOSYSSHR qualifier of the LINK command.
You must also link with a linker options file that includes the shareable
images your program requires. (This is because some components of
OpenVMS systems ship only in shareable form.) The file contains at
least the shareable images shown below. The options file cannot contain,
DECC$SHR, because it contains the definitions of new() and delete() that
you are attempting to override. So your LINK command will be similar to
the following:

$ CXXLINK TEST,SYS$LIBRARY:STARLET.OLB/INCLUDE=CXXL_INIT, -
SYS$DISK:[]AVMS_NOSYSSHR.OPT/OPT/NOSYSSHR

where AVMS_NOSYSSHR.OPT is:

SYS$SHARE:CMA$TIS_SHR/SHARE
SYS$SHARE:LIBRTL/SHARE

Linking /NOSYSSHR is the only way to override calls to new() and
delete() in the C++ Class Library and C++ Standard Library.

If the set_new_handler() function is referenced when overriding
operator new() and delete(), ‘‘multiply defined’’ linker warnings will
result. To remove these warnings, the set_new_handler() function
must also be overridden. Using set_new_handler() when the operator
new() and delete() functions are being overridden, requires that the
set_new_handler() function be defined in terms of the user provided
operator new() and delete() functions.

7.1.5 Overriding operator new() (I64 only)

Overriding operators new and delete has been simplified on I64 systems. If
user code overrides any of the new and delete operators, the compiler and
library picks up the overridden versions without any other changes to the
source code or the command line. Changes such as those described for Alpha
systems in Section 7.1.4 are unnecessary and will not work on I64 systems.

The C++ Standard Library 7–9

The C++ Standard Library
7.1 Important Compatibility Information

7.1.6 Support for Global array new and delete Operators
HP C++ Version 6.n and higher fully supports the array new and delete
operators as described in the ANSI standard. Previous versions did not.

You might therefore encounter a compatibility problem if you have overridden
the run-time library’s operator new() with your own version.

For example:

#include <stdlib.h>
#include <iostream.h>

inline void* operator new(size_t s) {
cout << "called my operator new" << endl;
return 0;
}

int main() {
new int; // ok, this still calls your own
new int[4]; // In V6.0 calls the C++ library’s operator new[]

return EXIT_SUCCESS;
}

In older versions, both new int and new int[4] would generate a call to
operator new() (they would just be asking for different sizes). With the current
compiler, new int still generates a call to operator new(). However, new
int[4] generates a call to operator new()[]. This means that if you still
want to override the library’s operator new you must do one of the following:

1. Provide your own definition of operator new()[].

2. Use the /ASSUME=NOGLOBAL_ARRAY_NEW qualifier.

The /ASSUME=NOGLOBAL_ARRAY_NEW qualifier converts all expressions
such as new int[4] to calls to the global operator new(), thus preserving
compatibility with older compiler versions.

Note that this qualifier has no effect on class-specific array operator new and
delete; it affects only the global operators.

When compiling with /STANDARD=RELAXED or /STANDARD=STRICT_
ANSI, and /STANDARD=MS modes, /ASSUME=GLOBAL_ARRAY_NEW is the
default.

When compiling with /STANDARD=ARM, /ASSUME=NOGLOBAL_ARRAY_
NEW is the default. A macro _ _GLOBAL_ARRAY_NEW is predefined by the
compiler when /ASSUME=GLOBAL_ARRAY_NEW is used.

7–10 The C++ Standard Library

The C++ Standard Library
7.1 Important Compatibility Information

7.1.7 IOStreams Expects Default Floating-Point Format
The C++ standard library IOStreams expects floating-point values in the
default floating-point format for each platform: G_FLOAT on Alpha systems
and IEEE on I64 systems. Using standard library IOStreams for processing
floating-point values in a different format (for example, in a program compiled
/FLOAT=IEEE on Alpha or /FLOAT=G_FLOAT on I64) is not supported. The
C++ class library does not have this restriction.

7.2 How to Build Programs Using the C++ Standard Library
Building programs that use the C++ Standard Library requires the following
changes in usage of the C++ compiler and linker commands:

• The CXX command line no longer needs to include the
/ASSUME=NOHEADER_TYPE_DEFAULT qualifier because this is now the default.

Similarly, the command line no longer needs to include the
/TEMPLATE=AUTO qualifier because the compiler performs automatic
template instantiation by default.

• On Alpha systems, to link a program that uses the C++ Standard
Library, you must use the CXXLINK command in place of the LINK
command. The CXXLINK command continues the automatic template
instantiation process, includes the Standard Library run-time support
(SYS$LIBRARY:LIBCXXSTD.OLB) at link time, and creates the final
image. See Section 1.3 for more details. (Alpha only)

On I64 systems, to link a program that uses the C++ Standard Library, you
must use either the CXXLINK facility or OpenVMS Linker. See Section 1.4
for more details. (I64 only)

For example, to build a program called prog.cxx that uses the Standard
Library, you can use the following commands:

$ CXX prog.cxx
$ CXXLINK prog.obj

Thread Safety
The Standard Library provided with this release is thread safe but not thread
reentrant. Thread safe means that all library internal and global data is
protected from simultaneous access by multiple threads. In this way, internal
buffers as well as global data like cin and cout are protected during each
individual library operation. Users, however, are responsible for protecting
their own objects.

The C++ Standard Library 7–11

The C++ Standard Library
7.2 How to Build Programs Using the C++ Standard Library

According to the C++ standard, results of recursive initialization are undefined.
To guarantee thread safety, the compiler inserts code to implement a spinlock if
another thread is initializing local static data. If recursive initialization occurs,
the code deadlocks even if threads are not used.

7.3 Optional Switch to Control Buffering (Alpha only)

The inplace_merge, stable_sort, and stable_partition algorithms require
the use of a temporary buffer. Two methods are available for allocating this
buffer:

• Preallocate 16K bytes of space on the stack.

• Allocate the required amount of storage dynamically.

By default, the current HP C++ Standard Library makes use of the
preallocated buffer, which avoids the overhead of run-time allocation. If
your application requires a buffer that exceeds 16K, it cannot take advantage
of this default.

If you are concerned with minimizing the use of stack space in your
program, or if your application requires a buffer that exceeds 16K, define
the _ _DEC_DYN_ALLOC macro to enable dynamic buffering. Do this by adding
the following to your compile command line:

/DEFINE=__DEC_DYN_ALLOC

7.4 Enhanced Compile-time Performance of ANSI Iostreams
To speed the compile-time performance of programs that use the standard
iostream and locale components, the Standard Library includes many
common template instantiations of these components

To force programs to create instantiations at compile-time (for example,
if you want to debug them and thus need them to be compiled with the
/DEBUG qualifier), define the macro _ _FORCE_INSTANTIATIONS (Alpha only) on
the command line by specifying /DEFINE=(_ _FORCE_INSTANTIATIONS).
This definition suppresses the #pragma do_not_instantiate directives in the
headers so that the compiler creates the instantiations in your repository
directory.

You must then specify the /REPOSITORY= qualifier to force the compiler to
link your instantiations instead of those in the Standard Library.

7–12 The C++ Standard Library

The C++ Standard Library
7.5 Using RMS Attributes with iostreams

7.5 Using RMS Attributes with iostreams
The standard library class fstream constructors amd open() member function
do not support different RMS attributes, for example, creating a stream-lf file.

To work around this restriction, use the C library creat() or open() call,
which returns a file descriptor, and then use the fstream constructor, which
accepts a file descriptor as its argument. For example:

#define __USE_STD_IOSTREAM
#include <fstream>

int main()
{
int fp;

// use either creat or open
//if (!(fp= creat("output_file.test", 0, "rfm=stmlf")))

if (!(fp= open("output_file.test", O_WRONLY | O_CREAT | O_TRUNC , 0,
"rfm=stmlf")))

perror("open");

ofstream output_file(fp); // use special constructor, which takes
// a file descriptor as argument

// ...
}

Note that this coding is not allowed if you compile with /STANDARD=STRICT_
ANSI, because the constructor in the example is an extension to the C++
standard interface.

7.6 Upgrading from the Class Library to the Standard Library
The following discussion guides you through upgrading the Class Library
code to use the Standard Library, specifically replacing the vector and stack
classes in the vector.hxx header file to the Standard Library vector and stack
classes.

7.6.1 Upgrading from the Class Library Vector to the Standard Library
Vector

To change your code from using the Class Library vector to the Standard
Library vector, consider the following actions:

• Change the name of your #include statement from <vector.h> or
<vector.hxx> to <vector>.

• Remove the vectordeclare and vectorimplement declarations from your
code.

The C++ Standard Library 7–13

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

• Change all vector(type) declarations to vector<type>. For example,
vector(int) vi should become vector<int> vi.

• The following member functions are replaced in the Standard Library:

Nonstandard Vector Function Standard Library Vector Function

elem(int index) operator[](size_t index)
(no bounds checking)

operator[](int index) at(size_t index)
(bounds checking)

setsize(int newsize) resize(size_t newsize)

• When copying vectors of unequal lengths, note that the Standard Library
vector has a different behavior as follows:

When using the Standard Library vector, if the target vector is smaller
than the source vector, the target vector automatically increases to
accommodate the additional elements.

The Class Library vector displays an error and aborts when this situation
occurs.

• Note that another difference in behavior occurs when you specify a negative
index for a vector.

The Class Library vector class detects the negative specification and issues
an error message. However, the Standard Library vector silently converts
the negative value to a large positive value, because indices are represented
as type size_t (unsigned int) rather than int.

• When an out-of-bounds error occurs, the Class Library vector prints an
error message and aborts, whereas the Standard Library vector throws an
out-of-range object.

7.6.2 Upgrading from the Class Library Stack to the Standard Library
Stack

To change your code from using the existing stack to the Standard Library
stack, consider the following actions:

• Change the name of your #include statement from <stack.h> or
<stack.hxx> to <stack>.

• Remove the stackdeclare and stackimplement declarations from your
code.

• Change all stack(type) declarations to stack<type, deque<type> >. For
example, stack(int) si should become stack<int, deque<int> > si.

7–14 The C++ Standard Library

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

• Do not specify an initial size for a Standard Library stack. The stack must
start out empty and grow dynamically (as you push and pop).

• The following member functions are not supported or have different
semantics:

Class Library Stack Standard Library Stack

size_used() Does not exist because the size() function
always is equal to the size_used() function.

full() Does not exist because the stack always is full.

pop() Does not return the popped element. To
simulate Class Library behavior, first obtain
the element as the return type from the top()
function and then call the pop() function.
For example, change int i=s.pop(); to the
following:

int i=s.top();
s.pop();

• The Standard Library stack differs from the Class Library stack in the way
errors are detected. Unlike the nonstandard stack, you cannot overflow a
Standard Library stack because space is allocated dynamically as you push
elements onto the stack.

7.6.3 Upgrading from the Class Library String Package Code
The Standard Library basic_string can replace the Class Library String
Package.

The following list guides you through upgrading nonstandard code to use the
Standard Library basic_string:

• Change #include <string.h> or #include <string.hxx> to #include
<string>.

• Change all declarations of String to string (uppercase S to lowercase s).

• On Alpha systems, when compiling with the _ _DEC_STRING_
COMPATIBILITY macro defined, the String Package allowed assignment
of a string directly to a char *; however, the basic_string library does not
allow this. You can assign the string’s const char* representation using
the c_str() or data() basic_string member functions. For example:

string s("abc");
char* cp = s; // not allowed
const char* cp = s.data(); // ok

The C++ Standard Library 7–15

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

The state of the string is undefined if the result of data() is cast to a
non-const char* and then the value of that char* is changed.

• The String Package member functions upper() and lower() are not in
the basic_string library. You can write these functions as nonmember
functions, as follows:

template <class charT, class traits, class Allocator>
inline
basic_string<charT, traits, Allocator>
upper(const basic_string<charT,traits, Allocator>& str) {

basic_string<charT, traits, Allocator> newstr(str);
for (size_t index = 0; index < str.length(); index++)

if (islower(str[index]))
newstr[index] = toupper(str[index]);

return newstr;
}

template <class charT, class traits, class Allocator>
inline
basic_string<charT, traits, Allocator>
lower(const basic_string<charT,traits, Allocator>& str) {

basic_string<charT, traits, Allocator> newstr(str);
for (size_t index = 0; index < str.length(); index++)

if (isupper(str[index]))
newstr[index] = tolower(str[index]);

return newstr;
}

Then instead of calling upper() and lower() as member functions of the
basic_string, pass the string as an argument. For example:

s2 = s1.upper(); // does not compile
s2 = upper(s1); // ok

• The String Package match() member function does not exist. Equivalent
functionality exists in the Standard Library algorithm mismatch(),
although using it is more complicated. For example:

string s1("abcdef");
string s2("abcdgf");
assert(s1.match(s2)==4); // does not compile
pair<string::iterator,string::iterator> p(0,0); // ok
p=mismatch(s1.begin(),s1.end(),s2.begin());
assert(p.first-s1.begin()==4);
string s3 = s1;
p=mismatch(s1.begin(),s1.end(),s3.begin());
assert(p.first == s1.end()); // everything matched

• The String Package index() member function does not exist. The
basic_string library equivalent is find().

7–16 The C++ Standard Library

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

• The String Package constructor that takes two positional parameters (a
start and end position) and constructs a new string does not exist. It is
replaced in the basic_string library with the member function substr().
For example:

string s1("abcde");
string s2 = s1(1,3); // does not compile
string s2 = s1.substr(1,3); // ok

• Many previously undetected run-time errors now throw standard
exceptions in the String library.

7.6.4 Upgrading from the Class Library Complex to the ANSI Complex
Class

Note

On I64 systems, the Class Library Complex package has been removed,
so upgrading to the Standard Library complex class is the only option
on this platform. (I64 only)

This section explains how to upgrade from the pre-ANSI complex library to the
current standard complex library.

In the pre-ANSI library, complex objects are not templatized. In the ANSI
library, complex objects are templatized on the type of the real and imaginary
parts. The pre-ANSI library assumes the type is double, whereas the ANSI
library provides specializations for float, double, and long double as well as
allowing users to specialize on their own floating point types.

Mathematical error checking is not supported in the ANSI library. Users who
rely on detection of underflow, overflow, and divide by zero should continue
using the pre-ANSI complex library.

The following is a detailed list of important changes:

• Change #include <complex.h> or #include <complex.hxx> to #include
<complex>.

• Change all declarations of complex to complex<double>, for example:

complex c;

Change to:

complex<double> c;

The C++ Standard Library 7–17

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

• The polar() function no longer supplies a default value of 0 for the second
argument. Users will have to explicitly add it to any calls that have only
one argument, for example:

complex c;
c = polar(c); // get polar

Change to:

complex<double> c;
c = polar(c,0.0);

• If you are calling a mathematical function or mathematical operator that
takes scalars as arguments (polar() for example), then you must adjust
the arguments you pass in to be the same type as the complex template
parameter type. For example, you would have to change:

complex c = polar(0,0);
complex c2 = c+1;

Change to:

complex<double> c = polar(0.0,0.0); // 0.0 is double
complex<double> c2= c + 1.0; // 1.0 is double

• The complex_zero variable is not declared in the complex header file. If you
want to use it, you will have to declare it yourself. For example, add the
following to the top of your source file:

static const complex<double> complex_zero(0.0,0.0);

• The sqr() and arg1() functions are gone. If you want to continue to
use them, you should define them in one of your own headers, using the
following definitions:

template <class T>
inline complex<T> sqr(const complex<T>& a)
{

T r_val(real(a));
T i_val(imag(a));
return complex<T>
(r_val * r_val -
i-val * i_val,
2 * r_val * -_val);

}
template <class T>
inline T arg1(const complex<T>& a)

{
T val = arg(a);

if(val > -M_PI && val <= M_PI)
return val;

7–18 The C++ Standard Library

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

if(val > M_PI)
return val - (2*M_PI);

// val <= -PI
return val + (2*M_PI);

}

• The pow(complex, int) function is no longer provided. You must use
pow(complex<double>, double). This means changing calls such as:

pow(c,1);

Change to:

pow(c,1.0);

This might yield different results. If the function previously was
underflowing or overflowing, it might not continue to happen.

• The complex output operator (<<) does not insert a space between the
comma and the imaginary part. If you want the space, you would need to
print the real and imaginary parts separately, adding your own comma and
space; that is:

complex<double> c;
cout << "(" << c.real() << ", " << c.imag() << ")"; // add extra space

• The complex input operator (>>) does not raise an Objection if bad input is
detected; it instead sets input stream’s state to ios::failbit.

• Floating point overflow, underflow, and divide by zero do not set errno
and will cause undefined behavior. Complex error checking and error
notification is planned for a subsequent release.

• You should no longer need to link your program explicitly with the complex
library. It is automatically linked in as part of the Standard Library.
However, you must still explicitly link in the C math library, as shown in
the following example:

#include <stdlib.h>
#include <complex>

int main() {
complex<double> c1(1,1), c2(3.14,3.14);
cout << "c2/c1: " << c2/c1 << endl;
return EXIT_SUCCESS;
% cxx example.cxx #error
% cxx example.cxx -1m #okay

}

The C++ Standard Library 7–19

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

7.6.5 Upgrading from the Pre-ANSI iostream library to the HP C++
Standard Library

This section explains how to upgrade from the pre-ANSI iostream library to the
ANSI iostream library. In this section, pre-ANSI iostreams refers to versions
of the iostream library found in the Class Library; ANSI iostreams refers to
versions found in the HP C++ Standard Library.

There are a number of differences between the pre-ANSI and ANSI iostream
library. One major difference between the pre-ANSI and ANSI iostream
library is that the ANSI library is templatized on the object input/output on
which operations are being performed. In the pre-ANSI library, iostreams has
no templates. The ANSI library also provides specializations for char and
wchar_t.

Important differences are as follows:

• With the current compiler, you access the pre-ANSI iostream library
by default in non strict_ansi compiler modes. You can control
the version of iostreams you use with the _ _USE_STD_IOSTREAM and
_ _NO_USE_STD_IOSTREAM macros. If you want to use the ANSI iostream
library, do either of the following:

Enter /DEFINE=(_ _USE_STD_IOSTREAM) on the command line.
Put the following in your source file before any include files:

#ifndef __USE_STD_IOSTREAM)
#define __USE_STD_IOSTREAM)
#endif

• Header names are different in the ANSI library, so to use ANSI iostreams,
change the iostreams headers you include as follows:

From To

#include <iostream.h>
#include <iostream.hxx>

#include <iostream>

#include <fstream.h>
#include <fstream.hxx>

#include <fstream>

#include <strstream.h>
#include <strstream.hxx>

#include <strstream>

#include <iomanip.h>
#include <iomanip.hxx>

#include <iomanip>

• All Standard Library names in the ANSI iostream library are in namespace
std. Typically you would qualify each Standard Library name with std::
or put using namespace std; at the top of your source file.

7–20 The C++ Standard Library

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

To facilitate upgrading in all but STRICT_ANSI mode, using namespace
std; is set by default. In STRICT_ANSI mode, after including an ANSI
iostream header, you must qualify each name inside namespace std
individually or do

using namespace std;

• In the pre-ANSI iostream library, including <iomanip.h> or <strstream.h>
gave you access to cout, cin, and cerr. To access the predefined streams
with the ANSI iostream library, make the following changes:

change
#include <iomanip.h>
to
#include <iomanip>
#include <iostream>
#include using namespace std;

change
#include <strstream.h>
to
#include <strstream>
#include <iostream>
using namespace std;

• The istream::ipfx, istream::isfx, ostream::opfx, ostream::osfx do not
exist in the ANSI iostreams. Their functionality is provided by the sentry
class found in basic_istream and basic_ostream, respectively.

Common prefix code is provided by the sentry’s constructor. Common
suffix code is provided by the sentry’s destructor. As a result, calls to
ipfx(), isfx(), opfx(), and osfx() have their functionality replaced
by construction and destruction of std::istream::sentry objects and
std::ostream::sentry object respectively. For example:

#include <iostream.hxx> | #include <iostream.hxx>
void func (istream &is) | void func (ostream &os)
{ | {

if (is.ipfx()) | if (os.opfx())
... | ...

is.isfx(); | os.osfx();
} | }

|
Would be coded as: | Would be coded as:

|
#include <iostream> | #include <literal>(<iostream>)
void func (istream &is) | void func (ostream &os)
{ | {

istream::sentry ipfx(is); | ostream::sentry opfx(os);
if (ipfx) | if (opfx)

... | ...
//is.isfx(); implicit in dtor | //os.osfx(); implicit in dtor

} | }

The C++ Standard Library 7–21

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

• The following macros from the pre-ANSI <iomanip.h> are no longer
available in <iomanip>:

SMANIP, IMANIP, OMANIP, IOMANIP,
SAPP, IAPP, OAPP, IOAPP,
SMANIPREF, IMANIPREF, OMANIPREF, IOMANIPREF,
SAPPREF, IAPPREF, OAPPREF, IOAPPREF

You can add them yourself, but their use will not be portable.

• The streambuf::stossc() function, which advances the get pointer
forward by one character in a stream buffer, is not available in the ANSI
iostream library. You can make use of the std::streambuf::sbumpc()
function to move the get pointer forward one place. This function
returns the character it moved past. These two functions are not exactly
equivalent—if the get pointer is already beyond the end, stossc() does
nothing, and sbumpc() returns EOF.

istream &extract(istream &is)
{

...
is.rdbuf()->stossc();

}

• ios::bitalloc() is no longer available in the ANSI iostream library.

• The filebuf constructors have changed in the ANSI iostream library. The
pre-ANSI filebuf class contained three constructors:

class filebuf : public streambuf
{

filebuf();
filebuf(int fd);
filebuf(int fd, char * p, int len);
...

}

In the ANSI iostream library, filebuf is a typedef for basic_filebuf<char>,
and the C++ Working Paper defines one filebuf constructor:

basic_filebuf();

To facilitate backward compatibility, the ANSI iostream library does
provide basic_filebuf(int fd) as an extension. However, the use of
extensions is not portable.

For example, consider the filebuf constructors in the following pre-ANSI
iostream library program:

7–22 The C++ Standard Library

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

#include <fstream.hxx>

int main () {
int fd = 1;
const int BUFLEN = 1024;
char buf [BUFLEN];
filebuf fb(fd,buf,BUFLEN);
filebuf fb1(fd);
return 0;

}

To be strictly ANSI conforming, you would need to recode as follows:

filebuf fb(fd,buf,BUFLEN); as filebuf fb(); and
filebuf fb1(fd); as filebuf fb1();

If you want to make use of the ANSI iostream filebuf(fd) extension, you
could recode:

filebuf fb(fd,buf,BUFLEN); as filebuf fb(fd); and
filebuf fb1(fd); as filebuf fb1(fd);

• The ANSI iostream library contains support for the filebuf::fd()
function, which returns the file descriptor for the filebuf object and EOF
if the filebuf object is closed as a nonportable extension. This function is
not supported under the /STANDARD=STRICT_ANSI compiler mode.

• The following functions are not defined in the ANSI iostream library. They
are provided in the ANSI iostream library for backward compatibility only.
Their use is not portable.

ifstream::ifstream(int fd);
ifstream::ifstream(int fd, char *p, int len)
ofstream::ofstream(int fd);
ofstream::ofstream(int fd, char *p, int len);
fstream::fstream(int fd);
fstream::fstream(int fd, char *p, int len);

• The following attach functions, which attach, respectively, a filebuf,
fstream, ofstream, and ifstream to a file are not available in the ANSI
iostream library:

filebuf::attach(int);
fstream::attach(int);
ifstream::attach(int);
ofstream::attach(int);

If you do not want to make use of ANSI iostream library extensions, you
must recode the use of attach as follows:

The C++ Standard Library 7–23

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

Change from:

#include <fstream.hxx>
#include <stdio.h>
#include <fcntl.h>
int main () {

int fd;
fd = open("t27.in",O_RDWR | O_CREAT, 0644);
ifstream ifs;
ifs.attach(fd);
fd = creat("t28.out",0644);
ofstream of;
of.attach(fd);
return 0;

}

To:

#include <fstream>
int main () {

ifstream ifs("t27.in", ios::in | ios::out);
ofstream ofs("t28.out");
return 0;

}

• The ios enumerators for controlling the opening of files, ios::nocreate and
ios::noreplace, are not available in the ANSI iostream library.

• The istream_withassign and ostream_withassign classes are not
available in the ANSI iostream library.

• In the ANSI iostream library ios_base::width() applies to all formatted
inserters including operator << (char). This means that the stream width
specified by either the manipulator setw() or the ios_base::width()
member function will apply padding to the next output item even if it is a
char.

This was not the case in the pre-ANSI iostream library, where width()
applied to all formatted inserters except the char inserter. The reasons for
the change (to allow ostream::operator<<(char) to do formatting) are:

1. It allows operator<< functions to do formatting consistently.

2. It allows operator<<(char) and put(char) (formatted and unformatted
operations on char) to have different functionality.

7–24 The C++ Standard Library

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

Consider the following example:

#ifdef __USE_STD_IOSTREAM
#include <iostream>
#include <iomanip>
#else
#include <iostream.hxx>
#include <iomanip.hxx>
#endif
int main () {

cout.width(10);
cout.fill(’^’);
cout << ’x’ << ’\n’;
cout << ’[’ << setw(10) << ’x’ << ’]’ << endl;
return 0;

}

In the ANSI iostream library the output is:

^^^^^^^^^x
[^^^^^^^^^x]

In the pre-ANSI iostream library the output is:

x
[x]^^^^^^^^^

• In the pre-ANSI iostream library, printing signed char * or a unsigned
char * printed the address of the string. In the ANSI iostream library the
string is printed. Consider the following example:

#ifdef __USE_STD_IOSTREAM
#include <iostream>
#else
#include <iostream.hxx>
#endif

int main () {
char * cs = (char *) "Hello";
signed char *ss = (signed char *) "world";
unsigned char *us = (unsigned char *) "again";

cout << cs << " " << ss << " " << us << endl;
return 0;

}

The output in the ANSI iostream library is:

Hello world again

The output in the pre-ANSI iostream library is:

Hello 0x120001748 0x120001740

The C++ Standard Library 7–25

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

To obtain output equivalent to the pre-ANSI iostreams, you might do the
following:

cout << hex << showbase << (long) ss << " "
<< (long) us << endl;

• In the pre-ANSI iostream library printing a signed char prints its integer
value. In the ANSI iostream library printing a signed char prints it as a
character. Consider the following example:

#ifdef __USE_STD_IOSTREAM
#include <iostream>
#else
#include <iostream.hxx>
#endif

int main () {
signed char c = (signed char) ’c’;
cout << c << endl;
return 0;

}

The output in the ANSI iostream library is:

c

The output in the pre-ANSI iostream library is:

99

To obtain output equivalent to the pre-ANSI iostreams, you must do the
following:

cout << (long) c << endl;

• In the ANSI iostream library, reading invalid floating point input (where
invalid input is caused by no digits following the letter e or E and an
optional sign) from a stream sets failbit to flag this error state. In the
pre-ANSI iostream library, these type of error conditions might not be
detected. Consider this program fragment:

double i;
cin >> i;
cout << cin.rdstate() << ’ ’ << i << endl;

On the input: 123123e

The output in the ANSI iostream library is:

4 2.65261e-314 // failbit set

7–26 The C++ Standard Library

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

The output in the pre-ANSI iostream library is:

0 123123 // goodbit set

• In the ANSI iostream library, reading integer input (which is truncated
as the result of a conversion operation) from a stream sets failbit to flag
this overflow condition. In the pre-ANSI iostream library, these types of
conditions might not be detected. Consider this program fragment:

int i;
cin >> i;
cout << cin.rdstate() << ’ ’ << i << endl;

On the input: 9999999999999999

The output in the ANSI iostream library is:

4 1874919423 // failbit set

The output in the pre-ANSI iostream library is:

0 1874919423 // failbit not set

In the ANSI iostream library, reading –0 from a stream into an unsigned
int outputs 0; this was not the case with the pre-ANSI iostream library.
Consider the following:

unsigned int ui;
cin >> ui;
cout << cin.rdstate() << ’ ’ << ui << endl;

On the input: –0

The output in the ANSI iostream library is:

0 0

• In the ANSI iostream library, the istream::getline() function extracts
characters and stores them into successive locations of an array whose first
element is designated by s. If fewer than n characters are input, failbit is
set. This was not the case in the pre-ANSI iostream library. Consider the
following:

#include <stdlib.h>
int main()
{

char buffer[10];
cin.getline (buffer,10);
cout << cin.rdstate() << ’ ’ << buffer << endl;
return EXIT_SUCCESS;

}

With input of: 1234567890

The C++ Standard Library 7–27

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

The output in the ANSI iostream library is:

4 123456789

The output in the pre-ANSI iostream library is:

0 123456789

• When printing addresses, the ANSI library does not print a leading ‘‘0x’’
to indicate a hexadecimal base. The pre-ANSI library did. Consider the
following:

#include <stdlib.h>
#include <iostream>
int main()
{
double d;
int i;

void *p = (void *) &d;
int *pi = &i;
cout << (void *) 0 << ’ ’ << p << ’ ’ pi << endl;
return EXIT_SUCCESS;

}

The output in the ANSI iostream library is:

0 11fffe7a0 11fffe798

The output in the pre-ANSI iostream library is:

0x0 0x11fffdc40 0x11fffdc38

• basic_filebuf::setbuf is a protected member function in the ANSI
iostream library. Therefore, the following longer compiles:

#include <stdlib.h>
int main() {

filebuf fb;
...
fb.setbuf(0,0);
return EXIT_SUCCESS;

}

• In the ANSI iostream library, the Standard C++ streams are synchronized
with the Standard C streams by default. Calling sync_with_stdio() with
false allows the Standard C++ streams to operate independently of the
Standard C streams. In the pre-ANSI iostream library the Standard C++
streams are not synchronized with the Standard C streams by default.

7–28 The C++ Standard Library

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

You notice the consequences of this change if you redirect the output of
a program using the Standard C++ streams to a log file by entering the
following commands at the DCL prompt:

$ define sys$output t.out
$ run program
$ deassign sys$output

For example, if you write something like this using ANSI iostreams:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <iostream>
void main () {

int s = 5;
cout << "i" << s;

}

and if you redirect the output to a log file using the commands shown in
the example, the log file contains two records:

i
5

If you write something like this using pre-ANSI iostreams:

#include <iostream.hxx>
void main () {

int s = 5;
cout << "i" << s;

}

and if you redirect the output to a log file using the commands shown in
the example, the log file contains one record: i5.

To obtain the Pre-ANSI iostreams behavior with ANSI iostreams, you can
use either of the following workarounds:

• Redirect your output to a file by entering the following commands:

$ define/user sys$output t.out
$ run program

The output of the log file, t.out, contains one record: i5.

• Recode your program so that the Standard C++ streams operate
independently of the Standard C streams. Do this by calling
sync_with_stdio() with a false argument as follows:

The C++ Standard Library 7–29

The C++ Standard Library
7.6 Upgrading from the Class Library to the Standard Library

#include <stdlib.h>
#ifndef __USE_STD_IOSTREAM
define __USE_STD_IOSTREAM
#endif
#include <iostream>
int main () {

ios_base::sync_with_stdio(false);
int s = 5;
cout << "i" << s;
return EXIT_SUCCESS

}

If you now redirect the output to a log file, the log file contains one
record: i5.

7–30 The C++ Standard Library

8
Using the OpenVMS Debugger

A debugger helps you find run-time errors by letting you observe and
interactively manipulate program execution step by step, until you discover
where the program functions incorrectly. The OpenVMS Debugger is symbolic,
meaning that you can refer to symbolic names for the memory addresses
allocated to variables, routines, labels, and so on. You need not use virtual
addresses.

The language of the source program you are currently debugging determines
the format you use to enter and display data. The language also determines
the format used for features, such as comment characters, operators, and
operator precedence, which have language-specific settings. However, if you
have modules written in another language, you can switch from one language
to another during your debugging session.

8.1 Debugging C++ Programs
The OpenVMS Debugger supports the language constructs of C++ and other
debugger-supported programming languages. This section describes features
specific to debugging C++ programs. For more information on the OpenVMS
Debugger, see the OpenVMS Debugger Manual.

8.1.1 Compiling and Linking in Preparation for Debugging
To use the debugger, compile and link your program with the /DEBUG qualifier
on both commands. On the compiler command, the /DEBUG qualifier writes
into the object module the debug symbol records declared in the program source
file. These records make the names of variables and other declared symbols
accessible to debugger commands. If your program has several compilation
units, make sure you use the /DEBUG qualifier to compile each unit you want
to debug.

On OpenVMS I64 systems, specifying /DEBUG gives you
/DEBUG=(TRACEBACK,SYMBOLS=BRIEF), which omits debug information
for unused labels and unused types, even when /NOOPTIMIZE is specified.
This feature results in much smaller object files. To include unused

Using the OpenVMS Debugger 8–1

Using the OpenVMS Debugger
8.1 Debugging C++ Programs

labels and types, specify the SYMBOLS=NOBRIEF keyword explicitly
(/DEBUG=(SYMBOLS=NOBRIEF)).

On OpenVMS Alpha systems, specifying /DEBUG gives you
/DEBUG=(TRACEBACK,SYMBOLS), which effectively gives you
/DEBUG=(TRACEBACK,SYMBOLS=NOBRIEF).

Additionally, use the /NOOPTIMIZE qualifier with the compiler command.
Optimized code can reduce program size and increase execution speed, but can
also create inconsistencies in memory content that adversely affects debugging.
Use the default /OPTIMIZE qualifier only with programs that have been
completely debugged.

8.1.2 Debugger Support
Additionally, compilation with normal (full) optimization will have the following
noticeable effects on OpenVMS Alpha systems:

• Stepping by line will generally seem to bounce forward and back, due to
the effects of code scheduling. The general drift will definitely be forward,
but initial experience indicates that the effect will be very close to stepping
by instruction.

• Variables that are ‘‘split’’ (so that they are allocated in more than one
location during different parts of their lifetimes) are not described at all.

Although not handled quite like normal split variables, formal parameters
that are passed in registers share many of the same problems as split
variables. Even with the /NOOPTIMIZE qualifier, such a parameter often
will be copied immediately to a ‘‘permanent home’’ (either on the stack or
in some other register) during the routine prolog. The debugger symbol
table description of such parameters encodes this permanent home location
and not the physical register in which the parameter is passed. The end-
of-prolog location is recorded in the debugger symbol tables and will be
used as the preferred breakpoint location when a breakpoint is set in the
context of an appropriately set module (so that symbol table information is
available to the debugger).

On the linker command, the /DEBUG qualifier incorporates into the executable
image all the symbol information contained in the object modules. Using the
/DEBUG qualifier on the linker command also starts the debugger at run
time.

8–2 Using the OpenVMS Debugger

Using the OpenVMS Debugger
8.1 Debugging C++ Programs

Debugger Command-Line Options
The compiler provides a set of debugger options that you can specify to the
/DEBUG qualifier on the compiler command line. These options determine the
kind of information that the compiler places in the object module for use by the
OpenVMS Debugger. These debugger options include using traceback records
and using the debugger symbol table. For more information, see the /DEBUG
qualifier in Appendix A.

8.1.3 Starting and Ending a Debugging Session
When you enter the DCL run command and specify your executable image
file, the OpenVMS Debugger takes control. The debugger displays a message
indicating its version, the programming language the source code is written
in, and the name of the image file. When the DBG> prompt appears, you can
enter debugger commands.

To execute the program, enter the debugger go command. Execution proceeds
until the debugger pauses or stops the program (for example, to prompt you for
user input, to signal an error, or to inform you that your program completed
successfully).

To interrupt the debugging session in progress, press Ctrl/C. The DBG>
prompt displays and you can again enter debugger commands.

To end a debugging session, enter the debugger exit command or press Ctrl/Z.

8.1.4 Features Basic to Debugging C++ Programs
This section describes features essential for debugging C++ programs.

8.1.4.1 Determining Language Mode
The OpenVMS Debugger is in C++ language mode when invoked against a
main program or routine written in C++. If you are debugging an application
with modules written in some language other than C++, you may switch back
to C++ language mode by using the command set language c_plus_plus.

You can use the show language command to determine the language mode set.
For example:

DBG> show language
language: C_PLUS_PLUS
DBG>

Using the OpenVMS Debugger 8–3

Using the OpenVMS Debugger
8.1 Debugging C++ Programs

8.1.4.2 Built-In Operators
This section describes the built-in operators that you can use in debugger
commands. The operators in C++ language expressions are as follows:

Symbol Function Kind

* Indirection Prefix

& Address of Prefix

sizeof size of Prefix

– Unary minus (negation) Prefix

+ Addition Infix

– Subtraction Infix

* Multiplication Infix

/ Division Infix

% Remainder Infix

<< Left shift Infix

>> Right shift Infix

= = Equal to Infix

!= Not equal to Infix

> Greater than Infix

>= Greater than or equal to Infix

< Less than Infix

<= Less than or equal to Infix

~ (tilde) Bit-wise NOT Prefix

& Bit-wise AND Infix

| Bit-wise OR Infix

^ Bit-wise exclusive OR Infix

! Logical NOT Prefix

&& Logical AND Infix

| | Logical OR Infix

Because the exclamation point (!) is an operator, it cannot be used in C++
programs as a comment delimiter. However, to permit debugger log files to be
used as debugger input, the debugger still recognizes the exclamation point
as a comment delimiter if it is the first nonspace character on a line. In C++
language mode, the debugger accepts a forward slash immediately followed by
an asterisk (/*) as the comment delimiter. The comment continues to the end

8–4 Using the OpenVMS Debugger

Using the OpenVMS Debugger
8.1 Debugging C++ Programs

of the current line. A matching asterisk immediately followed by a slash (*/) is
neither needed nor recognized.

The debugger accepts the asterisk (*) prefix as an indirection operator in
both C++ language expressions and debugger address expressions. In address
expressions, the asterisk prefix is synonymous to the period (.) prefix or the at
sign (@) prefix when the language is set to C++.

To prevent unintended modifications to the program being debugged, the
debugger does not support any of the assignment operators in C++ (or any
other language). Thus, such operators as =, +=, –=, ++, and �� are not
recognized. To alter the contents of a memory location, you must do so with an
explicit deposit command.

8.1.4.3 Constructs in Language and Address Expressions
The supported constructs in language and address expressions for C++ are as
follows:

Symbol Construct

[] Subscripting

. (period) Structure component selection

-> Pointer dereferencing

8.1.4.4 Data Types
Predefined data types supported in the debugger are as follows:

C++ Data Type OpenVMS Data Type Name

int, long Longword Integer

unsigned int, unsigned
long

Longword Unsigned

long long Quadword Integer

unsigned long long Quadword Unsigned

short int Word Integer

unsigned short int Word Unsigned

char Byte Integer

unsigned char Byte Unsigned

float F_Floating (Alpha default), S_Floating (I64 default)

Using the OpenVMS Debugger 8–5

Using the OpenVMS Debugger
8.1 Debugging C++ Programs

C++ Data Type OpenVMS Data Type Name

double G_Floating (Alpha default), T_Floating (I64 default),
D_Floating

enum None

struct None

union None

class None

Pointer type None

Array type None

Uppercase letters in parentheses represent standard data type mnemonics
in the OpenVMS common language environment. For more information, see
OpenVMS Programming Interfaces: Calling a System Routine.

Supported data types specific to OpenVMS systems are as follows:

C++ Data Type OpenVMS Data Type Name

__int16 Word Integer

unsigned __int16 Word Unsigned

__int32 Longword Integer

unsigned __int32 Longword Unsigned

__int64 Quadword Integer

unsigned __int64 Quadword Unsigned

8.2 Using the OpenVMS Debugger with C++ Data
This section describes how to use the OpenVMS Debugger with C++ data.

8.2.1 Nonstatic Data Members
This section describes how to refer to data members that are not declared
static.

8–6 Using the OpenVMS Debugger

Using the OpenVMS Debugger
8.2 Using the OpenVMS Debugger with C++ Data

8.2.1.1 Noninherited Data Members
To refer to a nonstatic data member that is defined directly in a C++ class (or
a struct or union), use its name just as with a C language struct or union
member. The following example shows the correct use of a nonstatic data
member reference:

DBG> examine x.m, p->m

8.2.1.2 Inherited Data Members
Currently, debugger support distinguishes nonstatic data members inherited
from various base classes by prefixing their names with a sequence of
significant base class names on the inheritance path to the member, and
then the class that the member is declared in. A base class on a path from an
object to a member is significant if the base class in question is derived from
using multiple inheritance. Thus, a base class is significant if it is mentioned
in a base list containing more than one base specifier.

This notation generates the minimum number of base class prefixes necessary
to describe the inheritance path to a base class, because it involves naming
only those base classes where one must choose where to proceed next when
traversing the path. When no multiple inheritance is involved, the reference
has the following syntax:

CLASS::member

Specify the sequence of significant base classes in the order from the object’s
most derived significant class, to the significant base class closest to the object.

8.2.2 Reference Objects and Reference Members
Because the debugger understands the concept of reference objects and
reference members to objects, you can examine a reference object or reference
member directly, without dereferencing it as you would for a pointer. To access
the values of objects declared with a reference, use the name of the object.

For example, consider the following code:

class C {
public:

int &ref_mem;
C(int &arg) : ref_mem(arg) {}

};

Using the OpenVMS Debugger 8–7

Using the OpenVMS Debugger
8.2 Using the OpenVMS Debugger with C++ Data

main()
{

auto int obj = 5;
auto int &ref_obj = obj;
auto C c(obj);
obj = 23;

}
. . .

The following sequence shows the correct way to use the debugger to examine
the members:

break at R8_2_3\main\%LINE 13
13: }

DBG> exam obj, ref_obj
R8_2_3\main\obj: 23
R8_2_3\main\ref_obj: 23
DBG> exam c
R8_2_3\main\c: class C

ref_mem: 23
DBG> exam c.ref_mem
R8_2_3\main\c.ref_mem: 23

8.2.3 Pointers to Members
For Alpha systems compiled with /MODEL=ANSI and for I64 systems, a
pointer to member is an offset into a structure.

Consider the following example:

struct A {
int mem0;

};

struct B {
int mem1;
int mem2;

};

struct C : public A, public B {
int mem3;
int mem4;

};

/* pointer to member initalized with pointer to member
* address of the same class.
*/
int C::*pmc = &C::mem2;

/* pointer to member initialized with pointer to member
* address of one of the * base classses. An implicit
* conversion occurs.
*/
int C::*pmbc = &B::mem2;

8–8 Using the OpenVMS Debugger

Using the OpenVMS Debugger
8.2 Using the OpenVMS Debugger with C++ Data

extern "C" printf (const char *,...);

main()
{
C *cinst = new C;
cinst->*pmc = 7;
printf("cinst pointer to member value is %d\n",cinst->mem2);
}

If you compile this program with the /NOOPTIMIZE/DEBUG qualifiers, from
the last line in the program, you can use the pointer to member to display the
following information:

DBG> set radix hex
DBG> exam *cinst
*EX8_2_4\main\cinst: struct C

inherit A
mem0: 00000000

inherit B
mem1: 00000000
mem2: 0000000A

mem3: 00000000
mem4: 00000000

DBG> set radix hex

DBG> exa pmc
EX8_2_4\pmc: 00000008

DBG> exam pmbc
EX8_2_4\pmbc: 00000008

DBG> exam cinst
EX8_2_4\main\cinst: 0000000080000090

DBG> exam 080000090+8
0000000080000098: 00000007

For the preceding sample program, the above debug sequence examines the
pointer to member (pmc or pmbc) to obtain an offset into the structure, and adds
this value to the address of the object (*cinst). In our example, this is *cinst
+ the value of pmc.

For Alpha systems compiled with the default object model (/MODEL=ARM),
a pointer to member involves executing a piece of function-like code, called a
thunk.

The argument to this function is the address of the base class containing the
member. This address is obtained by adding the offset of the start of the base
class to the address of the object. This offset adjustment is needed when the
pointer to member refers to a multiply inherited base class.

Using the OpenVMS Debugger 8–9

Using the OpenVMS Debugger
8.2 Using the OpenVMS Debugger with C++ Data

A sample debug sequence for the previous program example follows:

DBG> set radix hex
DBG> sho sym /full C
type C

struct (C, 2 components), size: 20 bytes
inherits: A, size: 4 bytes, offset: 0000000000000000 bytes

B, size: 8 bytes, offset: 0000000000000004 bytes
contains the following members:
mem3 : longword integer, size: 4 bytes, offset: 000000000000000C bytes
mem4 : longword integer, size: 4 bytes, offset: 0000000000000010 bytes

DBG> exam pmc
EX8_2_4\pmc: 000100D8

DBG> exam cinst
EX8_2_4\main\cinst: 006706F0

DBG> call 000100D8(006706F0+4)
value returned is 006706F8

DBG> exam 006706F8
00000000006706F8: 00000007

This debug sequence first obtains the offset to the start of the nested class
containing the member pointed to with show sym /full. In this case, the offset
is 4.

It then examines the pointer to member (pmc) and determines the address of
the object (cinst). In our case, pmc = 100D8 (thunk) and cinst = 6706F0.

Then it calls the thunk, passing the address of the object plus the offset: CALL
000100D8(006706F0+4). This call to the thunk returns the address of the
member.

Finally, it examines the member (006706F8).

8.2.4 Referencing Entities by Type
To examine and display the value of an object or member by type, use the
command examine/type. Similarly, you can modify the value of an expression
to be deposited to a type you specify by using the command deposit/type.
With the /type qualifier, the syntax for these commands is as follows:

deposit/type=(name)
examine/type=(name)

The type denoted by name must be the name of a variable or data type declared
in the program. The /type qualifier is particularly useful for referencing C++
objects that have been declared with more than one type.

8–10 Using the OpenVMS Debugger

Using the OpenVMS Debugger
8.3 Using the OpenVMS Debugger with C++ Functions

8.3 Using the OpenVMS Debugger with C++ Functions
This section describes how to reference the various kinds of functions and
function arguments.

8.3.1 Referring to Overloaded Functions
You can use the debug SHOW SYMBOL command to see all the overloaded
names for a given function. You can set breakpoints on an overloaded function
by specifying either the object name and function name followed by the
argument types, or by specifying the class name and function name followed by
the arguments.

For example, consider the following sample program:

extern "C" {int printf(const char *,...);}

class base{
public:

base(){};
base(int){};

~base(){};

void base_f1() {printf("called base_f1()\n");}

void base_f2() {printf("called base_f2()\n");}
void base_f2(int) {printf("called base_f2(int)\n");}
void base_f2(char c) {printf("call base_f2(char)\n");}

};

int main()
{

base b;
base b1(1);
b.base_f1();
b.base_f2(10);
b.base_f2();
b.base_f2(’c’);

}

The following debug sequence for the previous sample program shows how to
set breakpoints on overloaded symbols and how to list these functions:

Using the OpenVMS Debugger 8–11

Using the OpenVMS Debugger
8.3 Using the OpenVMS Debugger with C++ Functions

DBG> s
stepped to EX8_3_1\main\%LINE 20

20: base b1(1);
DBG> set break base::base_f1
DBG> set break base::base_f2
%DEBUG-I-NOTUNQOVR, symbol ’base::base_f2’ is overloaded
overloaded name base::base_f2

instance base::base_f2(char)
instance base::base_f2(int)
instance base::base_f2()

%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> set break base::base_f2(char)

8.3.2 Referring to Destructors

The C++ I64 debugger supports the following format for setting a break on a
destructor:

DBG> set break stack::~stack()
DBG> set break stack::~stack(int)

Older (Alpha) debuggers require use of the %name syntax:

DBG> set break stack::%name’~stack’

8.3.3 Referring to Conversions

The set of atomic types are drawn from the following set of names:

void char signed_char unsigned_char signed_short
unsigned_short int signed_int unsigned_int signed_long
unsigned_long float double long_double

Pointer types are named (type)*. Reference types are named (type)&.
The types struct, union, class, and enum are named by their tags, and the
qualifiers const and volatile precede their types with a space in between.
For example:

DBG> set break C::int, C::(const S)&

8–12 Using the OpenVMS Debugger

Using the OpenVMS Debugger
8.3 Using the OpenVMS Debugger with C++ Functions

8.3.4 Referring to User-Defined Operators
The following operators can be overloaded by user-defined functions:

+ - * / % ^
& | ~ ! = <
> += -= *= /= %=
^= &= |= << >> >>=
<<= == != <= >= &&
| ++ -- ->* , ->
[] () delete new

The following example shows the correct use of user-defined function
references:

DBG> set break stack::%name’operator++’()

8.3.5 Referring to Function Arguments
In OpenVMS Debugger referencing, you use this, *this, and this->m as
follows:

• All nonstatic member functions have a pointer parameter available named
this. For example:

DBG> examine this

• Use *this to examine the prefix object that a member function is invoked
against. For example:

DBG> examine *this

• Use the this parameter to refer to a data member m of the prefix argument
to a member function. For example:

DBG> examine this->m

8.3.6 Calling C++ Member Functions from the Debugger
When calling C++ member functions from the debugger, you cannot make
the call using the same syntax that you would use in a C++ source file. You
must call the class-qualified member function name with the object as the first
argument.

For example:

Using the OpenVMS Debugger 8–13

Using the OpenVMS Debugger
8.3 Using the OpenVMS Debugger with C++ Functions

extern "C" void printf(const char *,...);

class C12 {
int i;
int j;

public:
static int sum;

public:
C12() : i(1), j(2) {}
void method();
static int get_sum() {

printf("called static function get_sum()\n");
return sum;
}

};
void C12::method()

{
i = i + j;
printf("C12::method called: i=%d, j=%d\n",i,j);

}

int C12::sum = 0;

main()
{

C12 cinst;
cinst.method();
C12::get_sum();
printf("End of example.\n");

}

When you compile this example with /DEBUG/NOOPT, you can call the
member function with the following command:

DBG> call C12::method(cinst)

Be aware that when a nonstatic member function is called, the compiler passes
an implicit first parameter, the "this" pointer. But, when using the debugger’s
call instruction, you must explicitly pass this hidden first argument:

//Call the nonstatic member function:
DBG> call cinst.method(cinst)
C12::method called: i=3 j=2
value returned is 28
// notice that the following call confuses debug:
DBG> call cinst.method()
%DEBUG-E-MISOPEMIS, misplaced operator or missing operand at ’end of
expression’

8–14 Using the OpenVMS Debugger

Using the OpenVMS Debugger
8.3 Using the OpenVMS Debugger with C++ Functions

However, when calling a static member function, there is no implict this
pointer and there function may be called using the class name or the object
name:

// Call the static function:
DBG> call C12::get_sum
called static function get_sum()
value returned is 0
DBG> call cinst.get_sum
called static function get_sum()
value returned is 0

Using the OpenVMS Debugger 8–15

9
Using 64-bit Address Space

This chapter describes 64-bit address support for the HP C++ compiler on
OpenVMS Alpha and I64 systems.

The introduction of 64-bit address space in OpenVMS greatly increases the
amount of memory available to applications. HP C++ has been enhanced to
permit use of this memory. The compiler provides a great deal of flexibility
about how this memory can be used. Conceptually, this flexibility can be
viewed as four models for development:

• 32-bit development

• 64-bit development

• 32-bit development with long pointers

• 64-bit development with short pointers

In a 32-bit development environment, all pointers are 32-bits long and only
2 gigabytes of address space is available. This is the default and was the
only option that was available before this version of the compiler. In a 64-bit
development environment, all pointers are 64-bits long and the address space
is over a billion gigabytes.

Working in a homogeneous 32-bit or 64-bit environment is the prefered and
recommended way to do development. HP C++ for OpenVMS, combined with
the C Run-Time library, provide a seemless environment for development. It
should be possible for a well written, portable program developed using 32-bit
pointers to be recompiled and relinked to use 64-bit pointers.

Because it is not always possible or desirable to work in a homogeneous pointer
environment. HP C++ supports mixed pointer sizes, however, it requires
greater care by developers. Some contexts where heterogeneous pointer sizes
might be used are:

• Memory requirements of 32-bit application exceeds 2 gigabytes

• Access to a legacy 32-bit library is required from a 64-bit application

Using 64-bit Address Space 9–1

Using 64-bit Address Space

• The memory foot print of a 64-bit application needs to be reduced

When the memory requirements of a 32-bit application begins to exceed 2
gigabytes, the most straight forward solution is to convert the application
to be a 64-bit application. Since practical considerations, like the size of
the application or the lack of source code for all parts can prevent this, the
alternative approach of isolating the use of 64-bit pointers to a small portion
of the application may be preferable. In this situation, development would
continue in the 32-bit environment, using long pointers when necessary.

When doing 64-bit development, there are times when it becomes necessary or
desirable to use 32-bit pointers. The most common instance is interfacing with
a 32-bit library. Another is to save space, because 64-bit pointers consume
twice as much memory as 32-bit pointers. In this situtation, development
could be done in a 64-bit environment, using short pointers when necessary.

Limited empirical envidence suggests that using 32-bit pointers to save space
can reduce memory consumption by approximately 25% but at the cost of
greater complexity and the creation of potentially unneccessary constraints in
the application.

9.1 32-bit Versus 64-bit Development Environment
Besides pointer size, the following components of the development environment
determine whether it is a 32- or 64-bit environment:

• Memory allocators

• Libraries

Memory allocators control where in the address space memory is allocated.
Memory can be allocated in 32- or 64-bit space independent of the pointer size.
The default memory allocator is appropriate for the development environment
being used.

Libraries in a 32-bit environment expect pointers to be 32-bits and memory to
reside in the 32-bit address space, while libraries in the 64-bit environment
expect pointers to be 64-bits. HP C++ for OpenVMS ships with two libraries:
one for the 32-bit environment and one for the 64-bit environment. In addition
to supporting the 64-bit environment, the second library also supports the new
object model refered to as model ANSI.

Caution

When compiling /POINTER_SIZE=LONG, the STL template classes
(such as string, and set, map) can be used only when /MODEL=ANSI is

9–2 Using 64-bit Address Space

Using 64-bit Address Space
9.1 32-bit Versus 64-bit Development Environment

specified.

The C Runtime is a single library that supports both environments. See
the HP C Run-Time Library Reference Manual for OpenVMS Systems for
information about how support for both environments was achieved with a
single library. See Section 9.6 for a discussion of why it is difficult to produce a
single C++ library to support both environments.

9.1.1 Model ANSI
The new ANSI object model allows the compiler to better conform to the
ANSI/ISO C++ standard while providing the 64-bit development environment.
This object model is specified using the /MODEL=ANSI compiler and link
options. To build a 64-bit application using the ANSI object model, you enter
commands in the following format:

$ cxx /model=ansi filename.cxx
$ cxxlink/model=ansi filename

Caution

The new ANSI object model is not compatible with the old object model.
You must compile and link your entire application with one model or
the other.

9.1.2 Memory Allocators
In C++, the primary memory allocator is new. Use of the default allocators
causes memory to be allocated that is appropriate for the default pointer
size for the module (not the current pointer size). Specialized placement-new
allocators can be used to control where an object is allocated. The header
newext.hxx contains the following definitions:

enum addr32_t (addr_32 };
enum addr64_t {addr_64 };

#pragma pointer_size short
void *operator new(addr32_t, size_t s) { return _malloc32(s); }
void *operator new[](addr32_t, size_t s) { return _malloc32(s); }

#pragma pointer_size long
void *operator new(addr64_t, size_t s) { return _malloc64(s); }
void *operator new[](addr64_t, size_t s) { return _malloc64(s); }

Using 64-bit Address Space 9–3

Using 64-bit Address Space
9.1 32-bit Versus 64-bit Development Environment

Use of the allocators from the C Run Time is also possible. You can select a
specific C allocator by adding a prefix underbar and either 32 or 64 as a suffix.

Function 32-bit 64-bit

malloc _malloc32 _malloc64

calloc _calloc32 _calloc64

realloc _realloc32 _realloc64

strdup _strdup32 _strdup64

When attempting to mix pointer sizes in your program, distinguish between
the concepts of pointer size and memory allocators. The pointer size dictates
the maximum amount of address space a pointer can reference, while the
allocator controls the where the memory will be allocated.

A library implemented with 64-bit pointers that uses only a 32-bit allocator
can with care be used by an application that uses 32-bit pointers. If the
library uses a 64-bit allocator, the application cannot reference any pointers
returned. To a large extent, it is the memory allocator, not the pointer size,
that determines interoperability.

9.1.3 64-bit Pointer Support in the C Run Time Library
In addition to allocators, other functions in the C Run Time Library, such as
strcpy, are affected by pointer size. As with the alloators, the C++ compiler
calls a version of the routine is for the development environment. See the HP
C Run-Time Library Reference Manual for OpenVMS Systems for more details.

9.2 Qualifiers and Pragmas
The following qualifiers, pragmas, and predefined macros control pointer size:

• /MODEL=ANSI

• /[NO]POINTER_SIZE={LONG | SHORT | 64 | 32}

• #pragma pointer_size

• #pragma required_pointer_size

• #pragma environment cxx_header_defaults

• _ _INITIAL_POINTER_SIZE predefined macro

9–4 Using 64-bit Address Space

Using 64-bit Address Space
9.2 Qualifiers and Pragmas

9.2.1 The /MODEL=ANSI Qualifier
The /MODEL=ANSI qualifier enables the new ANSI object model. This model
implies /POINTER_SIZE=LONG in addition to supporting new C++ constructs
that could not be supported in the object object model designed to support
the ARM definition of the language. This option must be specified during
compilation and linking.

9.2.2 The /POINTER_SIZE Qualifier
The /POINTER_SIZE qualifier lets you specify a value of 64 or 32 (or LONG
or SHORT) as the default pointer size within the compilation unit. You can
compile one set of modules using 32-bit pointers and another set using 64-bit
pointers. Take care when these two separate groups of modules call each other.

The default is /NOPOINTER_SIZE, which has the following effects:

• Disables pointer-size features, such as the ability to use #pragma
pointer_size

• Directs the compiler to assume that all pointers are 32-bit pointers

This default represents no change from previous versions of HP C++.

Specifying /POINTER_SIZE with a keyword value (32, 64, SHORT, or LONG)
has the following effects:

• Enables processing of #pragma pointer_size.

• Sets the initial default pointer size to 32 or 64, as specified.

• Predefines the preprocessor macro _ _INITIAL_POINTER_SIZE to 32 or
64, as specified. If /POINTER_SIZE is omitted from the command
line, _ _INITIAL_POINTER_SIZE is 0, which allows you to use #ifdef
_ _INITIAL_POINTER_SIZE to test whether the compiler supports 64-bit
pointers.

• For /POINTER_SIZE=64, the HP C RTL name mapping table is changed
to select the 64-bit versions of malloc, calloc, and other RTL routines by
default.

Use of the /POINTER_SIZE qualifier also influences the processing of HP C
RTL header files:

• For those functions that have both 32-bit and 64-bit implementations,
specifying /POINTER_SIZE enables function prototypes to access both
functions, regardless of the actual value supplied to the qualifier. The
value specified to the qualifier determines the default implementation to
call during that compilation unit.

Using 64-bit Address Space 9–5

Using 64-bit Address Space
9.2 Qualifiers and Pragmas

• Functions that require a second interface to be used with 64-bit pointers
reside in the same object libraries and shareable images as their 32-bit
counterparts. Because no new object libraries or shareable images are
introduced, using 64-bit pointers does not require changes to your link
command or link options files.

See the HP C Run-Time Library Reference Manual for OpenVMS Systems for
more information on the impact of 64-bit pointer support on HP C++ RTL
functions.

9.2.3 The __INITIAL_POINTER_SIZE Macro
The _ _INITIAL_POINTER_SIZE preprocessor macro is useful for header-file
authors to determine:

• Whether the compiler supports 64-bit pointers.

• Whether the application expects to use 64-bit pointers.

Header-file code can then be conditionalized using the following preprocessor
directives:

#if defined (____INITIAL_POINTER_SIZE) /* Compiler supports 64-bit pointers */
#if ____INITIAL_POINTER_SIZE > 0 /* Application uses 64-bit pointers */
#if ____INITIAL_POINTER_SIZE == 32 /* Application uses some 64-bit pointers,

but default RTL routines are 32-bit.*/

#if ____INITIAL_POINTER_SIZE == 64 /* Application uses 64-bit pointers and
default RTL routines are 64-bit. */

9.2.4 Pragmas
The #pragma pointer_size and #pragma required_pointer_size preprocessor
directives can be used to change the pointer size currently in effect within a
compilation unit. You can default pointers to 32-bits and then declare specific
pointers within the module as 64-bits. In this case, you also need to specifically
call the appropriate allocator to obtain memory from the 64-bit memory area.

These pragmas have the following format:

#pragma pointer_size keyword

#pragma required_pointer_size keyword

9–6 Using 64-bit Address Space

Using 64-bit Address Space
9.2 Qualifiers and Pragmas

The keyword is one of the following:

{short| 32} 32-bit pointer

{long| 64} 64-bit pointer

save Saves the current pointer size

restore Restores the current pointer size to its last saved state

The #pragma pointer_size and #pragma required_pointer_size directives
work essentially the same way, except that #pragma required_pointer_size
always takes effect regardless of command-line qualifiers, while #pragma
pointer_size is in effect only when the /POINTER_SIZE command-line
qualifier is used.

By changing the command-line qualifier, #pragma pointer_size allows a
program to be built using 64-bit features as purely as a 32-bit program.

The #pragma required_pointer_size is intended for use in header files where
interfaces to system data structures must use a specific pointer size regardless
of how the program is compiled.

An alternative to controling the pointer size is #pragma environment. This
pragma controls all compiler states that include pointer size. This pragma is
fully documented in Section 2.1.1.3. The primary change for support of long
pointers is the addition of a new cxx_header_defaults keyword.

This new keyword is similar to the header_defaults keyword, but differs in
the effect on pointer_size. With header_defaults, pointer_size is made
short, while with cxx_header_defaults, the pointer_size depends on the
model being used. When developing in model ANSI, the pointer_size is 64
bits; in model ARM (the default), it is 32 bits.

9.3 Determining Pointer Size
The pointer-size qualifiers and pragmas affect only a limited number of
constructs in the C++ language itself. At places where the syntax creates a
pointer type, the pointer-size context determines the size of that type. Pointer-
size context is defined by the most recent pragma (or command-line qualifier)
affecting pointer size.

Here are examples of places in the syntax where a pointer type is created:

• The * in a declaration or cast:

int **p; // Declaration
ip = (int **)i; // Cast

Using 64-bit Address Space 9–7

Using 64-bit Address Space
9.3 Determining Pointer Size

• The outer (leftmost) brackets [] in a formal parameter imply a *:

void foo(int ia[10][20]) {}

// Means the following:

void foo(int (*ia)[20]) {}

• A function declarator as a formal parameter imply a *:

void foo (int func()):

// Means the following:

void foo (int (*)() func);

• Any formal parameter of array or function type implies a *, even when
bound in a typedef:

typedef int a_type[10];

void foo (a_type ia);

// Means the following:

void foo (int *ia);

9.3.1 Special Cases
The following special cases are not affected by pointer-size context:

• Formal parameters to main are always treated as if they were in a
#pragma pointer_size system_default context, which is 32-bit pointers for
OpenVMS systems.

For example, regardless of the #pragma pointer_size 64 directive, argv[0]
is a 32-bit pointer:

#pragma pointer_size 64

main(int argc, char **argv)
{ ASSERT(sizeof(argv[0]) == 4); }

• A string literal produces a pointer based on the current pointer size when
used as an rvalue:

#pragma pointer_size 64

ASSERT(sizeof("x" + 0) == 8);

#pragma pointer_size 32

ASSERT(sizeof("x" + 0) == 4);

9–8 Using 64-bit Address Space

Using 64-bit Address Space
9.3 Determining Pointer Size

• The & operator yields a pointer based on the current pointer size unless
it is applied to pointer dereference, in which case it is the size of the
dereferenced pointer type:

#pragma pointer_size 32
sizeof(&foo) == 32

#pragma pointer_size 64
sizeof(&foo) == 64

sizeof(&s ->next) == sizeof(s)

• The size of this pointer depends on the size in effect at the point of the
member’s signature definition, not on the use of the pointer.

class foo {
public:
void f();
void f2();

};

#pragma required_pointer_size short
void foo::f()
{ sizeof(this)==4 } // this is short

#pragma required_pointer_size long
void foo::f2()
#pragma required_pointer_size short
{ sizeof(this)==8; } // this is long

9.3.2 Mixing Pointer Sizes
An application can use both 32-bit and 64-bit addresses. The following
semantics apply when mixing pointers:

• Assignments (including arguments) silently promote a 32-bit pointer rvalue
to 64 bits if other type rules are met. Promotion means sign extension.

• A warning is issued for an assignment of a 64-bit rvalue to a 32-bit lvalue
(without an explicit cast).

• For purposes of type compatibility, a different size pointer is a different
type (for example, when matching a prototype to a definition, or other
contexts involving redeclaration), however, overloading is not permitted.

• The debugger knows the difference between pointers of different sizes.

Using 64-bit Address Space 9–9

Using 64-bit Address Space
9.4 Header File Considerations

9.4 Header File Considerations
Take note of the following general header-file considerations:

• Header files usually define interfaces with types that must match the
layout used in library modules.

• Header files often do not bind ‘‘top-level’’ pointer types. Consider, for
example:

fprintf(FILE *, const char *, ...);

A "FILE * fp;" in a declaration in a different area of source code might be a
different size.

• All pointer parameters occupy 64 bits in the calling sequence, so a top-level
mismatch of this kind is acceptable if the called function does not lose the
high bits internally.

• Routines dealing with pointers to pointers (or data structures containing
pointers) cannot be enabled to work simply by passing them both 32-bit
and 64-bit pointers. You need separate 32-bit and 64-bit variants of the
routine.

Be aware that pointer-size controls are not unique in the way they affect
header files; other features that affect data layout have similar impact. For
example, most header files should be compiled with 32-bit pointers regardless
of pointer-size context. Also, most system header files must be compiled with
member_alignment regardless of user pragmas or qualifiers.

To address this issue more generally, you can use the pragma environment
directive to save context and set header defaults at the beginning of each
header file, and then to restore context at the end. See Section 2.1.1.3 for a
description of pragma environment.

For header files that have not yet been upgraded to use #pragma environment,
the /POINTER_SIZE=64 qualifier can be difficult to use effectively. For
such header files, the compiler automatically applies user-defined prologue
and epilogue files before and after the text of the included header file. See
Section 9.5 for more information on prologue/epilogue files.

9.5 Prologue/Epilogue Files
HP C++ automatically processes user-supplied prologue and epilogue header
files. This feature is an aid to using header files that are not 64-bit aware
within an application that is built to exploit 64-bit addressing.

9–10 Using 64-bit Address Space

Using 64-bit Address Space
9.5 Prologue/Epilogue Files

9.5.1 Rationale
HP C++ header files typically contain a section at the top that:

1. Saves the current state of the member_alignment, extern_model,
extern_prefix, and message pragmas.

2. Sets these pragmas to the default values for the system.

A section at the end of the header file then restores these pragmas to their
previously-saved state.

Mixed pointer sizes introduce another kind of state that typically needs to be
saved, set, and restored in header files that define fixed 32-bit interfaces to
libraries and data structures.

The #pragma environment preprocessor directive allows headers to control all
compiler states (message suppression, extern_model, member_alignment, and
pointer_size) with one directive.

However, for header files that have not yet been upgraded to use #pragma
environment, the /POINTER_SIZE=64 qualifier can be difficult to use
effectively. In this case, the automatic mechanism to include prologue/epilogue
files allows you to protect all of the header files within a single directory (or
modules within a single text library). You do this by copying two short files
into each directory or library that needs it, without having to edit each header
file or library module separately.

In time, you should modify header files to either exploit 64-bit addressing
(like the HP C RTL), or to protect themselves with #pragma environment.
Prologue/epilogue processing can ease this transition.

9.5.2 Using Prologue/Epilogue Files
Prologue/epilogue file are processed in the following way:

1. When the compiler encounters an #include preprocessing directive, it
determines the location of the file or text library module to be included. It
then checks to see if one or both of the two following specially named files
or modules exist in the same location as the included file:

____DECC_INCLUDE_PROLOGUE.H
____DECC_INCLUDE_EPILOGUE.H

The location is the OpenVMS directory containing the included file or the
text library file containing the included module. (In the case of a text
library, the .h is stripped off.)

Using 64-bit Address Space 9–11

Using 64-bit Address Space
9.5 Prologue/Epilogue Files

The directory is the result of using the $PARSE/$SEARCH system services
with concealed device name logicals translated. Therefore, if an included
file is found through a concealed device logical that hides a search list, the
check for prologue/epilogue files is still specific to the individual directories
making up the search list.

2. If the prologue and epilogue files do exist in the same location as the
included file, then the content of each is read into memory.

3. The text of the prologue file is processed just before the text of the file
specified by the #include.

4. The text of the epilogue file is processed just after the text of the file
specified by the #include.

5. Subsequent #includes that refer to files from the same location use the
saved text from any prologue/epilogue file found there.

The prologue/epilogue files are otherwise treated as if they had been included
explicitly: #line directives are generated for them if /PREPROCESS_ONLY
output is produced, and they appear as dependencies if /MMS_DEPENDENCY
output is produced.

To take advantage of prologue/epilogue processing for included header
files, you need to create two files, _ _DECC_INCLUDE_PROLOGUE.H and
_ _DECC_INCLUDE_EPILOGUE.H, in the same directory as the included file.

Suggested content for a prologue file is:

____DECC_INCLUDE_PROLOGUE.H:

#ifdef ____PRAGMA_ENVIRONMENT
#pragma environment save
#pragma environment header_defaults
#else
#error "____DECC_INCLUDE_PROLOGUE.H: This compiler does not support
pragma environment"
#endif

Suggested content for an epilogue file is:

____DECC_INCLUDE_EPILOGUE.H:

#ifdef ____PRAGMA_ENVIRONMENT
#pragma ____environment restore
#else
#error "____DECC_INCLUDE_EPILOGUE.H: This compiler does not support
pragma environment"
#endif

9–12 Using 64-bit Address Space

Using 64-bit Address Space
9.6 Avoiding Problems

9.6 Avoiding Problems
Consider the following suggestions to avoid problems related to pointer size:

• Write code to work with either 32-bit or 64-bit pointers.

• Do bit manipulation on unsigned int and unsigned _ _int64, and carefully
cast pointers to and from them.

• Heed compile-time warnings, using casts only where you are sure that
pointers are not truncated.

9.7 Reasons for Not Using Mixed Pointer Sizes
Although HP C and C++ allow mixing pointer sizes, mixed pointers can cause
certain types of error when used incorrectly. Consider the following examples:

• Truncation

#pragma pointer_size long
int *y=_malloc64(); // Y is a 64-bit pointer
#pragma pointer_size short
int *x=y; // X is a 32-bit pointer, which results in truncation.

• Misread/miswrite

int i,j;
#pragma pointer_size short
int *ptr=&i;
int **pptr=&ptr;
#pragma pointer_size long
int **lptr=pptr;

*lptr = &j; // miswrite: 8 bytes write, but points to 4 byte ptr.
ptr = *lptr; // misread: 8 bytes read, but points to 4 byte ptr.

Furthermore, the following C++ features discourage the use of mixed pointers:

• Objects can allocate memory. Even if an object is in the 32-bit address
space, the data contained in that object might not be.

#pragma pointer_size long
class myObject {
char *myData;
public:

myObject() { myData = new char[1000]; }
~myObject() { delete[] myData; }
char *getData() { return myData; }

};

Using 64-bit Address Space 9–13

Using 64-bit Address Space
9.7 Reasons for Not Using Mixed Pointer Sizes

#pragma pointer_size short
myObject *ptr = new myObject(); //32-bit pointer to object in 32 bit space
char *data = ptr->getData(); //32-bit pointer truncated 64 bit pointer

to data in 64 bit space

• Virtual functions make it difficult to maintain backward compatibility.
Consider the following two implementations of an interface called API. One
is written in C, the other in C++. With the C implementation, you can add
the new entry with the new pointer size in an upwardly compatible way. In
C++, you cannot do so because the functions are virtual. Adding a virtual
function to a class breaks backward compatibility. Granted, the C++
interface provides polymorphism that is not available in the C interface,
but the availability of this feature is one of the reasons why applications
are designed using C++.

// C implementation of API
void API_f1(int);
#pragma pointer_size short
void API_f2(int *);
#pragma pointer_size long
void API_f2_64(int*);
void API_f3(int);

// C++ implementatin of API
class BASE {
public:
virtual void f1(int);

#pragma pointer_size short
virtual void f2(int *);

#pragma pointer_size long
virtual void f2_64(int*);

};
class API : public BASE {
public:
virtual void f3(int);

}

• Polymorphism semantics are difficult to define. It is easy to imagine
overloading while working with mixed 32/64 bit pointers when the
parameter is a simple pointer: the pointers are simply different types.
However, if the pointer is embedded in a structure, how are these
structures differentiated? Consider the following code fragment:

struct FILE {
char *buffer;

};

FILE *fopen(const char *,,,);
int fclose(FILE*);

9–14 Using 64-bit Address Space

Using 64-bit Address Space
9.7 Reasons for Not Using Mixed Pointer Sizes

It is easy to consider tagging the structure with a flag to indicate whether
it is long or short, but it is possible for a structure to have more than one
pointer definition. In that case, there could be 2^n different versions of
the struct. To avoid these issues, the C++ compiler treats 32 and 64 bit
pointers as the same type. If you want to treat pointers as different based
on size, use template classes:

x.cxx

#include <stdio.h>
#include <iostream>

#if !__INITIAL_POINTER_SIZE
#error this program should be compiled with /POINTER_SIZE qualifier
#endif

template <class T>
class short_pointer {
#pragma pointer_size save
#pragma pointer_size short

T* ptr;
public:

short_pointer(T* x) { ptr = x; }
operator T*() { return ptr; }
size_t get_ptr_size() { return sizeof(ptr); }

#pragma pointer_size restore
};

template <class T>
class long_pointer {
#pragma pointer_size save
#pragma pointer_size long

T* ptr;
public:

long_pointer(T* x) { ptr = x; }
operator T*() { return ptr; }
size_t get_ptr_size() { return sizeof(ptr); }

#pragma pointer_size restore
};

template<class T>
void func(short_pointer<T> x) { *x = 5; cout << x.get_ptr_size() << endl; }
template<class T>
void func(long_pointer<T> x) { *x = 5; cout << x.get_ptr_size() << endl; }

int main() {
#pragma pointer_size short
func(short_pointer<int>((int*)_malloc32(sizeof(int))));

#pragma pointer_size long
func(long_pointer<int>((int*)malloc(sizeof(int))));

}

Using 64-bit Address Space 9–15

Using 64-bit Address Space
9.7 Reasons for Not Using Mixed Pointer Sizes

$ pipe cxx/pointer=short x.cxx ; cxxl x.obj ; run x.exe
4
8
$ pipe cxx/pointer=long x.cxx ; cxxl x.obj ; run x.exe
4
8
$

9–16 Using 64-bit Address Space

A
Compiler Command Qualifiers

This appendix describes the qualifiers available to the CXX command.

Qualifiers indicate special actions to be performed by the compiler or special
input file properties. Compiler qualifiers can apply to either the CXX command
or to the specification of the file being compiled. When a qualifier follows the
CXX command, it applies to all the files listed. When a qualifier follows the
file specification, it applies only to the file immediately preceding it.

Table A–1 summarizes CXX qualifiers. Detailed descriptions follow the table.

Table A–1 CXX Command Qualifiers

Command Qualifiers Defaults

/[NO]ALTERNATIVE_TOKENS /See text.

/[NO]ANSI_ALIAS /ANSI_ALIAS

/ARCHITECTURE=option /ARCHITECTURE=GENERIC

/ASSUME=(option[,...]) See text.

/[NO]CHECK[=[NO]UNINITIALIZED_
VARIABLES] (Alpha only)

/NOCHECK

/[NO]COMMENTS=option /COMMENTS=SPACE

/[NO]DEBUG[=(option[,...])] /DEBUG=(TRACEBACK,NOSYMBOLS)

/[NO]DEFINE=(identifier[=definition][,...]) /NODEFINE

/[NO]DEFINE=_ _FORCE_INSTANTIATIONS
(Alpha only)

/NODEFINE=_ _FORCE_INSTANTIATIONS

/[NO]DEFINE=_ _[NO_]USE_STD_IOSTREAM /DEFINE=_ _NO_USE_STD_IOSTREAM

/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS

/[NO]DISTINGUISH_NESTED_ENUMS /NODISTINGUISH_NESTED_ENUMS

(continued on next page)

Compiler Command Qualifiers A–1

Compiler Command Qualifiers

Table A–1 (Cont.) CXX Command Qualifiers

Command Qualifiers Defaults

/ENDIAN=option /ENDIAN=LITTLE

/[NO]ERROR_LIMIT[=n] /ERROR_LIMIT=30

/EXCEPTIONS /See text.

/EXTERN_MODEL=option /EXTERN_MODEL=RELAXED_REFDEF

/[NO]FIRST_INCLUDE=(file[,...]) /NOFIRST_INCLUDE

/FLOAT=option /FLOAT=G_FLOAT (Alpha only)
/FLOAT=IEEE_FLOAT (I64 only)

/GRANULARITY=option /GRANULARITY=QUADWORD

/IEEE_MODE[=option] /IEEE_MODE=FAST (Alpha only)
/IEEE_MODE=DENORM_RESULTS (I64 only)

/[NO]IMPLICIT_INCLUDE /IMPLICIT_INCLUDE

/[NO]INCLUDE_DIRECTORY=(pathname[,...]) /NOINCLUDE_DIRECTORY

/L_DOUBLE_SIZE=option /L_DOUBLE_SIZE=128

/LIBRARY See text.

/[NO]LINE_DIRECTIVES /LINE_DIRECTIVES

/[NO]LIST[=file-spec] /NOLIST (interactive mode)
/LIST (batch mode)

/[NO]MACHINE_CODE /NOMACHINE_CODE

/[NO]MAIN=POSIX_EXIT /NOMAIN

/[NO]MEMBER_ALIGNMENT /MEMBER_ALIGNMENT

/[NO]MMS_DEPENDENCIES=[=(option[,option)]] /NOMMS_DEPENDENCIES

/MODEL={ANSI | ARM} (Alpha only) /MODEL=ARM

/NAMES=(option1,option2) /NAMES=(UPPERCASE,TRUNCATED)

/NESTED_INCLUDE_DIRECTORY[=option] /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE

/[NO]OBJECT[=file-spec] /OBJECT=.OBJ

/[NO]OPTIMIZE[=(option[,...])] /OPTIMIZE

/PENDING_INSTANTIATIONS[=n] /PENDING_INSTANTIATIONS=64

/[NO]POINTER_SIZE[=option] /NOPOINTER_SIZE

/[NO]PREFIX_LIBRARY_ENTRIES[=(option[,...])] See text.

/[NO]PREPROCESS_ONLY[=filename] /NOPREPROCESS_ONLY

(continued on next page)

A–2 Compiler Command Qualifiers

Compiler Command Qualifiers

Table A–1 (Cont.) CXX Command Qualifiers

Command Qualifiers Defaults

/PSECT_MODEL=[NO]MULTILANGUAGE /NOMULTILANGUAGE

/[NO]PURE_CNAME /PURE_CNAME (/STANDARD=STRICT_ANSI)
/NOPURE_CNAME (All other modes)

/[NO]QUIET /NOQUIET

/REENTRANCY=option /REENTRANCY=TOLERANT

/REPOSITORY=option /REPOSITORY=[.CXX_REPOSITORY]

/ROUNDING_MODE=option /ROUNDING_MODE=NEAREST

/[NO]RTTI /RTTI

/[NO]SHARE_GLOBALS /NOSHARE_GLOBALS

/SHOW[=(option[,...])] /SHOW=(HEADER,SOURCE

/STANDARD=(option,...) /STANDARD=RELAXED

/[NO]TEMPLATE_DEFINE[=(option,...)] See text.

/[NO]UNDEFINE=(identifier[,...]) /NOUNDEFINE

/[NO]UNSIGNED_CHAR /NOUNSIGNED_CHAR

/[NO]USING_STD /NOUSING_STD

/[NO]VERSION /NOVERSION

/[NO]WARNINGS[=(option[,...])] /WARNINGS

/[NO]XREF[=file-spec] (Alpha only) /NOXREF

/ALTERNATIVE_TOKENS
/NOALTERNATIVE_TOKENS
Enables use of the following operator keywords and digraphs to generate
tokens:

Operator Keyword Token

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

Compiler Command Qualifiers A–3

Compiler Command Qualifiers

Operator Keyword Token

not_eq !=

or | |

or_eq | =

xor ^

xor_eq ^=

Digraph Token

:>]

%: #

%> }

<% {

<: [

The default is /NOALTERNATIVE_TOKENS when compiling with the
/STANDARD=ARM, /STANDARD=MS, or /STANDARD=RELAXED
option. The default is /ALTERNATIVE_TOKENS when compiling with
the /STANDARD=STRICT_ANSI or /STANDARD=GNU option. Specifying
/ALTERNATIVE_TOKENS also defines the _ _ALTERNATIVE_TOKENS macro.

/ANSI_ALIAS
/ANSI_ALIAS (D)
/NOANSI_ALIAS
Directs the compiler to assume the ANSI/ISO C aliasing rules, which gives it
the freedom to generate better optimized code.

/NOANSI_ALIAS specifies that any pointer can point to any object, regardless
of type. /ANSI_ALIAS specifies that pointers to a type T can point to objects of
the same type, ignoring type qualifiers such as const, unaligned, or volatile, or
whether the object is signed or unsigned. Pointers to a type T can also point to
structures, unions, or array members whose type follows the rules above.

The aliasing rules are further explained in Section 3.3, paragraphs 20 and 25,
of the ANSI C89 Standard (Section 6.3 of the ISO version, same paragraphs).

/ARCHITECTURE=option

A–4 Compiler Command Qualifiers

Compiler Command Qualifiers

/ARCHITECTURE=GENERIC (D)

Determines the Alpha or Intel processor instruction set to be used by the
compiler. The /ARCHITECTURE qualifier uses the same keyword options
(keywords) as the /OPTIMIZE=TUNE qualifier.

Where the /OPTIMIZE=TUNE qualifier is primarily used by certain higher-
level optimizations for instruction scheduling purposes, the /ARCHITECTURE
qualifier determines the type of code instructions generated for the program
unit being compiled.

OpenVMS Version 7.1 and subsequent releases provide an operating system
kernel that includes an instruction emulator. This emulator allows new
instructions, not implemented on the host processor chip, to execute and
produce correct results. Applications using emulated instructions will run
correctly, but may incur significant software emulation overhead at runtime.

All Alpha processors implement a core set of instructions. Certain Alpha
processor versions include additional instruction extensions.

Select one of the /ARCHITECTURE qualifier options shown in the following
table.

Option Usage

GENERIC Generates code that is appropriate for all processor
generations. This is the default.

HOST Generates code for the processor generation in use on the
system being used for compilation.

Running programs compiled with this option on other
implementations of the Alpha architecture may encounter
instruction-emulation overhead.

ITANIUM2 (I64 only) Generates code for the Intel Itanium 2 processor family.
For use on I64 systems only.

EV4 (Alpha only) Generates code for the 21064, 21064A, 21066, and 21068
implementations of the Alpha architecture.

Programs compiled with the EV4 option run without
instruction-emulation overhead on all Alpha processors.

EV5 (Alpha only) Generates code for some 21164 chip implementations of
the Alpha architecture that use only the base set of Alpha
instructions (no extensions).

Programs compiled with the EV5 option will without
instruction-emulation overhead on all Alpha processors.

Compiler Command Qualifiers A–5

Compiler Command Qualifiers

Option Usage

EV56 (Alpha only) Generates code for some 21164 chip implementations that
use the byte and word-manipulation instruction extensions
of the Alpha architecture.

Running programs compiled with the EV56 option might
incur emulation overhead on EV4 and EV5 processors, but
will still run correctly on OpenVMS Version 7.1 (or higher)
systems.

PCA56 (Alpha only) Generates code for the 21164PC chip implementation
that uses the byte- and word-manipulation instruction
extensions and multimedia instruction extensions of the
Alpha architecture.

Programs compiled with the PCA56 option might incur
emulation overhead on EV4, EV5, and EV56 processors,
but still run correctly on OpenVMS Version 7.1 (or higher)
systems.

EV6 (Alpha only) Generates code for the 21264 implementation of the Alpha
architecture.

EV68 (Alpha only) Generates code for the 21264/EV68 implementation of the
Alpha architecture.

EV7 (Alpha only) Generates code for the EV7 implementation of the Alpha
architecture.

See also /OPTIMIZE=TUNE, which is a more typical option. Note that if
/ARCHITECTURE is explicitly specified and /OPTIMIZE=TUNE is not,
the tuning processor defaults to the architecture processor; for example,
/ARCHITECTURE=EV6 implies /OPTIMIZE=TUNE=EV6.

/ASSUME
/ASSUME=(option[,...])
Controls compiler assumptions. You may select the following options:

Option Usage

[NO]WRITABLE_STRING_LITERALS Stores string constants in a writable psect. Otherwise,
such constants are placed in a nonwriteable psect. The
default is NOWRITABLE_STRING_LITERALS.

A–6 Compiler Command Qualifiers

Compiler Command Qualifiers

Option Usage

[NO]ACCURACY_SENSITIVE Specifies whether certain code transformations that
affect floating-point operations are allowed. These
changes may or may not affect the accuracy of the
program’s results.

If you specify NOACCURACY_SENSITIVE, the
compiler is free to reorder floating-point operations
based on algebraic identities (inverses, associativity,
and distribution). This allows the compiler to move
divide operations outside of loops, which improves
performance.

The default, ACCURACY_SENSITIVE, directs
the compiler to use only certain scalar rules
for calculations. This setting can prevent some
optimization.

Compiler Command Qualifiers A–7

Compiler Command Qualifiers

Option Usage

[NO]ALIGNED_OBJECTS Controls an optimization for dereferencing pointers.

Dereferencing a pointer to a longword- or quadword-
aligned object is more efficient than dereferencing a
pointer to a byte- or word-aligned object. Therefore,
the compiler can generate more optimized code if it
makes the assumption that a pointer object of an
aligned pointer type does point to an aligned object.

Because the compiler determines the alignment of
the dereferenced object from the type of the pointer,
and the program is allowed to compute a pointer that
references an unaligned object (even though the pointer
type indicates that it references an aligned object), the
compiler must assume that the dereferenced object’s
alignment matches or exceeds the alignment indicated
by the pointer type.

The default, /ASSUME=ALIGNED_OBJECTS, allows
the compiler to make such an assumption. With this
assumption made, the compiler can generate more
efficient code for pointer dereferences of aligned pointer
types.

To prevent the compiler from assuming the pointer
type’s alignment for objects to which it points, use the
/ASSUME=NOALIGNED_OBJECTS qualifier. This
option causes the compiler to generate longer code
sequences to perform indirect load and store operations
to avoid hardware alignment faults for arbitrarily
aligned addresses. Although /ASSUME=NOALIGNED_
OBJECTS might generate less efficient code than the
default /ASSUME=ALIGNED_OBJECTS option, by
avoiding hardware alignment faults, it speeds the
execution of programs that reference unaligned data.

A–8 Compiler Command Qualifiers

Compiler Command Qualifiers

Option Usage

[NO]GLOBAL_ARRAY_NEW Controls whether calls to global array new and delete
are generated as specified by ANSI. Pre-ANSI global
array new generated calls to operator new(). According
to ANSI, use of global array new generates calls to
operator new()[]. The GLOBAL_ARRAY_NEW option
also defines the macro _ _GLOBAL_ARRAY_NEW.

GLOBAL_ARRAY_NEW generates calls to operator
new()[] for global array new expressions such
as new int[4]; this is the default when compiling
/STANDARD=RELAXED, /STANDARD=STRICT_
ANSI, /STANDARD=GNU, and /STANDARD=MS.

NOGLOBAL_ARRAY_NEW generates calls to operator
new() for global array new expressions such as new
int[4]; and preserves compatibility with Version 5.n;
this is the default when compiling /STANDARD=ARM.

[NO]HEADER_TYPE_DEFAULT Controls whether the compiler appends a file extension
to a file name. The default is /ASSUME=NOHEADER_
TYPE_DEFAULT. To prevent the compiler from
appending a file extension to files (such as STL
header files that must not have file extensions) use the
/ASSUME=NOHEADER_TYPE_DEFAULT qualifier.

[NO]MATH_ERRNO Controls whether intrinsic code is generated for math
functions that set the errno variable. The default
is /ASSUME=MATH_ERRNO, which does not allow
intrinsic code for such math functions to be generated,
even if /OPTIMIZE=INTRINSICS is in effect. Their
prototypes and call formats, however, are still checked.

Compiler Command Qualifiers A–9

Compiler Command Qualifiers

Option Usage

[NO]POINTERS_TO_GLOBALS Controls whether the compiler can safely assume that
global variables have not had their addresses taken in
code that is not visible to the current compilation.

The default is /ASSUME=POINTERS_TO_GLOBALS,
which directs the compiler to assume that global
variables have had their addresses taken in separately
compiled modules and that, in general, any pointer
dereference could be accessing the same memory as
any global variable. This is often a significant barrier
to optimization.

While the /ANSI_ALIAS option allows some resolution
based on data type, /ASSUME=POINTERS_TO_
GLOBALS provides significant additional resolution
and improved optimization in many cases.

The /ASSUME=NOPOINTERS_TO_GLOBALS option
tells the compiler that any global variable accessed
through a pointer in the compilation must have had its
address taken within that compilation. The compiler
can see any code that takes the address of an extern
variable. If it does not see the address of the variable
being taken, the compiler can assume that no pointer
points to the variable.

Note that /ASSUME=NOPOINTERS_TO_GLOBALS
does not tell the compiler that the compilation never
uses pointers to access global variables.

Also note that on I64 systems, the NOPOINTERS_TO_
GLOBALS option is ignored and should not cause any
behavior changes.

[NO]STDNEW Controls whether calls are generated to the ANSI or
pre-ANSI implementation of the operator new(). On
memory allocation failure, the ANSI implementation
throws std::bad_alloc, while the pre-ANSI
implementation returns 0.

/ASSUME=STDNEW generates calls to the ANSI
new() implementation; this is the default when compil-
ing with /STANDARD=RELAXED, /STANDARD=
STRICT_ANSI, and /STANDARD=GNU.

/ASSUME=NOSTDNEW generates calls to the pre-
ANSI new() implementation; this is the default
when compiling with /STANDARD=ARM and
/STANDARD=MS.

A–10 Compiler Command Qualifiers

Compiler Command Qualifiers

Option Usage

[NO]TRUSTED_SHORT_ALIGNMENT Allows the compiler additional assumptions about the
alignment of short types that, although thought to be
naturally aligned, might cross a quadword boundary.

The TRUSTED_SHORT_ALIGNMENT option indicates
that the compiler should assume any datatype accessed
through a pointer is naturally aligned. This generates
the fastest code, but can silently generate the wrong
results when an unaligned short object crosses a
quadword boundary.

Note that on I64 systems, the TRUSTED_SHORT_
ALIGNMENT option is ignored and should not cause
any behavior changes.

The NOTRUSTED_SHORT_ALIGNMENT tells the
compiler that short objects might not be naturally
aligned. The compiler generates slightly larger (and
slower) code that gives the correct result, regardless of
the actual alignment of the data. This is the default.

Note that the NOTRUSTED_SHORT_ALIGNMENT
option does not override the _ _unaligned type qualifier
or the /ASSUME=NOALIGNED_OBJECTS option.

[NO]WHOLE_PROGRAM Tells the compiler that except for well-behaved
library routines, the whole program consists only
of the single object module being produced by
this compilation. The optimizations enabled by
/ASSUME=WHOLE_PROGRAM include all those
enabled by /ASSUME=NOPOINTERS_TO_GLOBALS
and possibly other optimizations.

Note that on I64 systems, the WHOLE_PROGRAM
option is ignored and should not cause any behavior
changes.

The default is /ASSUME=NOWHOLE_PROGRAM.

/CHECK
/CHECK[=([NO]UNINITIALIZED_VARIABLES)] (Alpha only)

/NOCHECK (D)
Use this qualifier as a debugging aid.

Use /CHECK=UNINITIALIZED_VARIABLES to initialize all automatic
variables to the value 0x7ff580057ff58005. This value is a floating NaN and, if
used, causes a floating-point trap. If used as a pointer, this value is likely to
cause an ACCVIO.

Note that on I64 systems, /CHECK=UNINITIALIZED_VARIABLES emits a
warning and is ignored.

Compiler Command Qualifiers A–11

Compiler Command Qualifiers

/COMMENTS
/COMMENTS[=option]
/COMMENTS=SPACE (D)
/NOCOMMENTS
Specifies whether comments appear in preprocessor output files. If comments
do not appear, this qualifier specifies what replaces them. The options are:

Option Usage

AS_IS Specifies that the comment appear in the output file. This is the default if
you use the /COMMENTS qualifier without specifying an option.

SPACE Specifies that a single space replaces the comment in the output file. This
is the default if you do not specify the /COMMENTS qualifier at all.

Specifying /NOCOMMENTS tells the preprocessor that nothing replaces the
comment in the output file. This may result in inadvertent token pasting.

The preprocessor may replace a comment at the end of a line or replace a line
by itself with nothing, even if you specify /COMMENTS=SPACE. Specifying
/COMMENTS=SPACE cannot change the meaning of the program.

/DEBUG
/DEBUG[=(option[,...])]
/DEBUG=(TRACEBACK,NOSYMBOLS) (D)
/NODEBUG
Requests that information be included in the object module for use with the
OpenVMS Debugger. You can select the following options:

Option Usage

ALL Includes all possible debugging information. /DEBUG=ALL is
equivalent to /DEBUG=(TRACEBACK,SYMBOLS), which on
I64 systems is equivalent to /DEBUG=(TRACEBACK,
SYMBOLS=NOBRIEF).

NONE Excludes all debugging information. This option is equivalent
to specifying /NODEBUG, which is equivalent to
/DEBUG=(NOTRACEBACK,NOSYMBOLS).

NOSYMBOLS Turns off symbol generation

SYMBOLS Generates symbol-table records. On I64 systems, /DEBUG=
SYMBOLS is equivalent to /DEBUG=SYMBOLS=BRIEF. On
Alpha systems, /DEBUG=SYMBOLS is effectively equivalent to
/DEBUG=NOBRIEF.

A–12 Compiler Command Qualifiers

Compiler Command Qualifiers

Option Usage

SYMBOLS=BRIEF
(I64 only)

Generates debug information with unreferenced labels and
types pruned out to produce smaller object sizes. On Alpha
systems, BRIEF is ignored.

SYMBOLS=NOBRIEF
(I64 only)

Generates complete debug information. On Alpha systems, the
NOBRIEF keyword is ignored, but you still get complete debug
information.

NOTRACEBACK Excludes traceback records. This option is equivalent to
specifying /NODEBUG and is used to avoid generating
extraneous information from thoroughly debugged program
modules.

TRACEBACK Includes only traceback records. This option is the default if
you do not specify the /DEBUG qualifier on the command line.

On Alpha systems /DEBUG is equivalent to /DEBUG=(TRACEBACK,SYMBOLS).

On I64 systems /DEBUG is equivalent to /DEBUG=(TRACEBACK,SYMBOLS),
which is equivalent to /DEBUG=(TRACEBACK,SYMBOLS=BRIEF).

/DEFINE
/DEFINE=(identifier[=definition][,...])
/NODEFINE (D)
Performs the same function as the #define preprocessor directive. That is,
/DEFINE defines a token string or macro to be substituted for every occurrence
of a given identifier in the program.

DCL converts all input to uppercase unless it is enclosed in quotation marks.

The simplest form of a /DEFINE definition is as follows:

/DEFINE=true

This results in a definition like the one that would result from the following
definition:

#define TRUE 1

When more than one /DEFINE is present on the CXX command line or in a
single compilation unit, only the last /DEFINE is used.

When both /DEFINE and /UNDEFINE are present on a command line,
/DEFINE is evaluated before /UNDEFINE.

Compiler Command Qualifiers A–13

Compiler Command Qualifiers

/DEFINE=_ _FORCE_INSTANTIATIONS (Alpha only)

/NODEFINE=_ _FORCE_INSTANTIATIONS (D)
Forces the standard library template preinstantiations to be created in the
user’s repository. Normally these instantiations are suppressed because the
library already contains them.

On I64 systems, defining _ _FORCE_INSTANTIATIONS has no effect.

/DEFINE=_ _[NO_]USE_STD_IOSTREAM
/DEFINE=_ _NO_USE_STD_IOSTREAM (D)
Use or do not use the standard iostreams. Specifying /DEFINE=_ _USE_
STD_IOSTREAM forces the inclusion of the ANSI standard version of the
iostream header file. This is the default in STRICT_ANSI mode. Otherwise,
the pre-standard AT&T-compatible version of iostreams is used.

/DIAGNOSTICS
/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)
Creates a file containing compiler diagnostic messages. The default file
extension for a diagnostics file is .DIA. The diagnostics file is used with the
DEC Language-Sensitive Editor (LSE). To display a diagnostics file, enter the
command REVIEW/FILE=file-spec while in LSE.

/DISTINGUISH_NESTED_ENUMS
/NODISTINGUISH_NESTED_ENUMS (D)
Causes the compiler, when forming a mangled name, to include the name of
any enclosing classes within which an enum is nested, thereby preventing
different functions from receiving the same mangled name.

This qualifier has no meaning on I64 systems because it modifies the behavior
of programs compiled with /MODEL=ARM, and that model is not supported on
I64 systems.

/ENDIAN
/ENDIAN={BIG | LITTLE}
/ENDIAN=LITTLE (D)
Controls whether big or little endian ordering of bytes is carried out in
character constants.

/ERROR_LIMIT
/ERROR_LIMIT[=number]
/ERROR_LIMIT=30 (D)
/NOERROR_LIMIT
Limits the number of error-level diagnostic messages that are acceptable
during program compilation. Compilation terminates when the limit (number)

A–14 Compiler Command Qualifiers

Compiler Command Qualifiers

is exceeded. /NOERROR_LIMIT specifies that there is no limit on error
messages.

The default is /ERROR_LIMIT=30, which specifies that compilation terminates
after issuing 30 error messages.

/EXCEPTIONS
/EXCEPTIONS=CLEANUP (D)
/EXCEPTIONS=NOCLEANUP (Alpha only)

/EXCEPTIONS=EXPLICIT (D)
/EXCEPTIONS=IMPLICIT (Alpha only)

/NOEXCEPTIONS
Controls whether support for C++ exceptions is enabled or disabled. C++
exceptions are enabled by default (equivalent to /EXCEPTIONS=CLEANUP).
When C++ exceptions are enabled, the compiler generates code for throw
expressions, try blocks, and catch statements. The compiler also generates
special code for main programs so that the terminate() routine is called for
unhandled exceptions. You can select from the following options:

CLEANUP Generate cleanup code for automatic objects. When an exception
is handled at run-time and control passes from a throw-point to
a handler, call the destructors for all automatic objects that were
constructed because the try-block containing the handler was entered.

NOCLEANUP
(Alpha only)

Do not generate cleanup code. Using this option can reduce the size
of your executable when you want to throw and handle exceptions
and cleanup of automatic objects during exception processing is not
important for your application.

The NOCLEANUP option is ignored on I64 systems.

EXPLICIT Tells the compiler to assume the standard C++ rules about exceptions.
Catch clauses can catch only those exceptions resulting from the
evaluation of a throw expression within the body of the catch clause’s
try block or from within a procedure called from within the catch
clause’s try block.

Compiler Command Qualifiers A–15

Compiler Command Qualifiers

IMPLICIT
(Alpha only)

On Alpha systems, tells the compiler that an exception might be
thrown at any time the program is executing code within the body
of the try block. These exceptions might be the result of a throw
expression, hardware errors, or software errors (such as dereferencing
an invalid pointer).

Specifying /EXCEPTIONS=IMPLICIT seriously interferes with the
compiler’s ability to optimize code. When the compiler optimizes
a function, it must ensure that the values of all variables after an
exception is caught remain the same as they were at the point where
the exception was throw. The optimizer is therefore limited in its
ability to rearrange stores and expressions that might cause an
exception to be thrown.

With /EXCEPTIONS=EXPLICIT, this is not a serious restriction,
because the compiler cannot rearrange stores and expressions around
the code that explicitly raises an exception. In implicit exception
mode, however, almost any code has the potential to cause an
exception to be thrown, thereby dramatically reducing the optimizer’s
ability to rearrange code.

Also, if the compiler can determine that no throw expressions occur
within a try block, it can eliminate the exception handling overhead
the try block introduces, including all code within the catch clauses
associated with the try block. Because no exceptions can occur during
the execution of the code within the try block, no code within the
catch clauses can ever be executed. The compiler cannot do this with
/EXCEPTIONS=IMPLICIT.

Use /EXCEPTIONS=IMPLICIT if your program converts signals to
C++ exceptions by calling cxxl$set_condition(cxx_exception). Failure
to do so may result in your code not catching the exceptions produced
by signals.

For example, consider the following routine:

void f(int *p) {
try {

*p = 2;
} catch (...) {

...
}

}

Failure to compile the routine with /EXCEPTIONS=IMPLICIT may result in a
failure to catch the exception generated by the SIGBUS signal that occurs if p
is 0. This is because the compiler sees that there are no throws nor procedure
calls within f and therefore optimizes away the try block leaving:

void f(int *p) {
*p = 2;

}

A–16 Compiler Command Qualifiers

Compiler Command Qualifiers

Except for those OpenVMS conditions that result in the delivery of signals, if
you raise a condition explicitly using a mechanism such as LIB$SIGNAL, you
may use /EXCEPTIONS=EXPLICIT.

The /NOEXCEPTIONS qualifier disables C++ exceptions as follows:

1. The compiler issues errors for throw expressions, try blocks, and catch
statements, but might generate code for these constructs.

2. On Alpha systems, the compiler does not generate cleanup code for
automatic objects.

3. The compiler does not generate special code for main programs so that the
terminate() function is called for unhandled exceptions.

The /EXCEPTIONS qualifer defines the macro _ _EXCEPTIONS.

/EXTERN_MODEL
/EXTERN_MODEL=option
/EXTERN_MODEL=RELAXED_REFDEF (D)
In conjunction with the /SHARE_GLOBALS qualifier, controls the initial
extern model of the compiler. Conceptually, the compiler behaves as if the first
line of the program being compiled was a #pragma extern_model directive with
the model and psect name, if any, specified by the /EXTERN_MODEL qualifier
and with the SHR or NOSHR keyword specified by the /SHARE_GLOBALS
qualifier.

For example, assume the command line contains the following qualifier:

/EXTERN_MODEL=STRICT_REFDEF="MYDATA"/NOSHARE

The compiler acts as if the program began with the following line:

#pragma extern_model strict_refdef "MYDATA" noshr

For more information on the various models, see Section 2.1.1.4.

The /EXTERN_MODEL qualifier takes the following options, which have the
same meaning as for the #pragma extern_model directive:

COMMON_BLOCK
RELAXED_REFDEF
STRICT_REFDEF=["NAME"]
GLOBALVALUE

The default is RELAXED_REFDEF.

Compiler Command Qualifiers A–17

Compiler Command Qualifiers

/FIRST_INCLUDE
/FIRST_INCLUDE=(file[, . . .])
/NOFIRST_INCLUDE (D)
Includes the specified files before any source files. This qualifier corresponds to
the Tru64 UNIX -FI switch.

When /FIRST_INCLUDE=file is specified, file is included in the source as if the
line before the first line of the source were:

#include "file"

If more than one file is specified, the files are included in their order of
appearance on the command line.

This qualifier is useful if you have command lines to pass to the C compiler
that are exceeding the DCL command-line length limit. Using the /FIRST_
INCLUDE qualifier can help solve this problem by replacing lengthy /DEFINE
and /WARNINGS qualifiers with #define and #pragma message preprocessor
directives placed in a /FIRST_INCLUDE file.

The default is /NOFIRST_INCLUDE.

/FLOAT
/FLOAT=option
/FLOAT=G_FLOAT (Alpha only) (D)
/FLOAT=IEEE_FLOAT (I64 only) (D)
Controls the format of floating-point variables. The options are:

Option Usage

D_FLOAT double variables are represented in VAX D_floating
format. float variables are represented in VAX F_
floating format. The _ _D_FLOAT macro is predefined.

G_FLOAT double variables are represented in VAX G_floating
format. float variables are represented in VAX F_
floating format. The _ _G_FLOAT macro is predefined.

IEEE_FLOAT float and double variables are represented in IEEE
floating-point format (S_float and T_float, respectively).
The _ _IEEE_FLOAT macro is predefined. Use the /IEEE_
MODE qualifier for controlling the handling of IEEE
exceptional values.

On Alpha systems, the default is /FLOAT=G_FLOAT.

On I64 systems, the default is /FLOAT=IEEE_FLOAT.

See Section 4.1.6 for additional information on floating-point representation on
I64 and Alpha systems.

A–18 Compiler Command Qualifiers

Compiler Command Qualifiers

/GRANULARITY
/GRANULARITY=option
/GRANULARITY=QUADWORD (D)

Controls the size of shared data in memory that can be safely accessed from
different threads. The possible size values are BYTE, LONGWORD, and
QUADWORD.

Specifying BYTE allows single bytes to be accessed from different threads
sharing data in memory without corrupting surrounding bytes. This option
will slow runtime performance.

Specifying LONGWORD allows naturally aligned 4-byte longwords to be
accessed safely from different threads sharing data in memory. Accessing data
items of 3 bytes or less, or unaligned data, may result in data items written
from multiple threads being inconsistently updated.

Specifying QUADWORD allows naturally aligned 8-byte quadwords to be
accessed safely from different threads sharing data in memory. Accessing data
items of 7 bytes or less, or unaligned data, might result in data items written
from multiple threads being inconsistently updated. This is the default.

/IEEE_MODE
/IEEE_MODE=option
/IEEE_MODE=FAST (D) (Alpha only)

/IEEE_MODE=DENORM_RESULTS (D) (I64 only)

Selects the IEEE floating-point mode to be used if the /FLOAT=IEEE_FLOAT
qualifier is specified. The options are:

Option Usage

FAST During program execution, only finite values (no infinities,
NaNs, or denorms) are created. Underflows and denormal
values are flushed to zero. Exceptional conditions, such as
floating-point overflow, divide-by-zero, or use of an IEEE
exceptional operand are fatal.

UNDERFLOW_TO_
ZERO

Generate infinities and NaNs. Flush denormalized results
and underflow to zero without exceptions.

DENORM_RESULTS Same as the UNDERFLOW_TO_ZERO option, except that
denorms are generated.

Compiler Command Qualifiers A–19

Compiler Command Qualifiers

Option Usage

INEXACT Same as the DENORM_RESULTS option, except that
inexact values are trapped. This is the slowest mode,
and is not appropriate for any sort of general-purpose
computations.

On Alpha systems, the default is /IEEE_MODE=FAST.

On I64 systems, the default is /IEEE_MODE=DENORM_RESULTS.

The INFINITY and NAN macros defined in <math.h> are available to programs
compiled with /FLOAT=IEEE and /IEEE_MODE={anything other than FAST}.

On Alpha sytems, the /IEEE_MODE qualifier generally has its greatest
effect on the generated code of a compilation. When calls are made between
functions compiled with different /IEEE_MODE qualifiers, each function
produces the /IEEE_MODE behavior with which it was compiled.

On I64 systems, the /IEEE_MODE qualifier primarily affects only the setting
of a hardware register at program startup. In general, the /IEEE_MODE
behavior for a given function is controlled by the /IEEE_MODE option specified
on the compilation that produced the main program: the startup code for
the main program sets the hardware register according the command-line
qualifiers used to compile the main program.

When applied to a compilation that does not contain a main program, the
/IEEE_MODE qualifier does have some effect: it might affect the evaluation
of floating-point constant expressions, and it is used to set the EXCEPTION_
MODE used by the math library for calls from that compilation. But the
qualifier has no effect on the exceptional behavior of floating-point calculations
generated as inline code for that compilation. Therefore, if floating-point
exceptional behavior is important to an application, all of its compilations,
including the one containing the main program, should be compiled with the
same /IEEE_MODE setting.

Even on Alpha systems, the particular setting of /IEEE_
MODE=UNDERFLOW_TO_ZERO has this characteristic: its primary
effect requires the setting of a runtime status register, and so it needs to
be specified on the compilation containing the main program in order to be
effective in other compilations.

Also see the /FLOAT qualifier.

A–20 Compiler Command Qualifiers

Compiler Command Qualifiers

/IMPLICIT_INCLUDE
/IMPLICIT_INCLUDE (D)
/NOIMPLICIT_INCLUDE
/IMPLICIT_INCLUDE enables inclusion of source files as a method of finding
definitions of template entities. By default it is enabled for normal compilation,
and disabled for preprocessing only. The search rules for finding template
definition files is the same as for include files.

/NOIMPLICIT_INCLUDE disables inclusion of source files as a method of
finding definitions of template entities. You might want to use this option in
conjunction with the /STANDARD=MS command line option, to match more
closely the behavior on Microsoft C++.

/INCLUDE_DIRECTORY
/INCLUDE_DIRECTORY=(place[,...])
/NOINCLUDE_DIRECTORY (D)
Provides an additional level of search for user-defined include files. Each
pathname argument can be either a logical name or a legal UNIX style
directory in a quoted string. The default is /NOINCLUDE_DIRECTORY.

The /INCLUDE_DIRECTORY qualifier provides functionality similar to the
-I option of the cxx command on Tru64 UNIX systems. This qualifier allows
you to specify additional locations to search for files to include. Putting an
empty string in the specification prevents the compiler from searching any of
the locations it normally searches but directs it to search only in locations you
identify explicitly on the command line with the /INCLUDE_DIRECTORY And
/LIBRARY qualifiers (or by way of the specification of the primary source file,
depending on the /NESTED_INCLUDE_DIRECTORY qualifier).

The basic order for searching depends on the form of the header name (after
macro expansion), with additional aspects controlled by other command line
qualifiers as well as the presence or absence of logical name definitions. The
valid possibilities for names are as follows:

• Enclosed in quotes. For example: "stdio.h"

• Enclosed in angle brackets. For example: <stdio.h>

Unless otherwise defined, searching a location means that the compiler uses
the string specifying the location as the default file specification in a call
to an RMS system service (that is, a $SEARCH/$PARSE) with a primary
file specification consisting of the name in the #include (without enclosing
delimiters). The search terminates successfully as soon as a file can be opened
for reading.

Compiler Command Qualifiers A–21

Compiler Command Qualifiers

Specifying a null string in the /INCLUDE qualifier causes the compiler to do a
non-standard search. This search path is as follows:

1. The current directory (quoted form only)

2. Any directories specified in the /INCLUDE qualifier

3. The directory of the primary input file

4. Text libraries specified on the command line using /LIBRARY

For standard searches, the search order is as follows:

1. Search the current directory (directory of the source being processed).
If angle-bracket form, search only if no directories are specified with
/INCLUDE_DIRECTORY.

2. Search the locations specified in the /INCLUDE_DIRECTORY qualifier (if
any).

3. If CXX$SYSTEM_INCLUDE is defined as a logical name, search
CXX$SYSTEM_INCLUDE:.HXX or just CXX$SYSTEM_INCLUDE:.,
depending on the qualifier /ASSUME=NOHEADER_TYPE_DEFAULT. If
nothing is found, go to step 6.

4. If CXX$LIBRARY_INCLUDE is defined as a logical name, CXX$LIBRARY_
INCLUDE:.HXX or CXX$LIBRARY_INCLUDE:., depending on the
qualifier /ASSUME=NOHEADER_TYPE_DEFAULT. If nothing is found, go
to step 6.

5. If /ASSUME=HEADER_TYPE_DEFAULT is not specified, search the
default list of locations for plain-text copies of compiler header files as
follows:

SYS$COMMON:[CXX$LIB.INCLUDE.CXXL$ANSI_DEF]
SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF_HXX].HXX
SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF].H
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET_C].H

If /ASSUME=HEADER_TYPE_DEFAULT is specified, search the default
list of locations for plain-text copies of compiler header files as follows:

SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF_HXX].HXX
SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF].H
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET_C].H
SYS$COMMON:[CXX$LIB.INCLUDE.CXXL$ANSI_DEF]

6. Search the directory of the primary input file.

A–22 Compiler Command Qualifiers

Compiler Command Qualifiers

7. If quoted form, and CXX$USER_INCLUDE is defined as a logical
name, search CXX$USER_INCLUDE:.HXX or CXX$USER_INCLUDE:.,
depending on the /ASSUME=NOHEADER_TYPE_DEFAULT qualifier.

8. Search the text libraries. Extract the simple file name and file type from
the #include specification, and use them to determine a module name
for each text library. There are three forms of module names used by the
compiler:

1. type stripped:

The file type will be removed from the include file specification to form
a library module name. Examples:

#include "foo.h" Module name "FOO"

#include "foo" Module name "FOO"

#include "foo" Module name "FOO"

2. type required:

The file type must be a part of the file name. Examples:

#include "foo.h" Module name "FOO.H"

#include "foo" Module name "FOO."

#include "foo" Module name "FOO."

3. type optional:

First an attempt is made to find a module with the type included in
the module name. If this is unsuccessful, an attempt is made with the
type stripped from the module name. If this is unsuccessful, the search
moves on to the next library.

If /ASSUME=HEADER_TYPE_DEFAULT is specified, the following text
libraries are searched in this order:

Libraries specified on the command line with the /LIBRARY qualifier
(all files, type stripped)
CXX$TEXT_LIBRARY (all files, type stripped)
DECC$RTLDEF (H files and unspecified files, type stripped)
SYS$STARLET_C (all files, type stripped)
CXXL$ANSI_DEF (unspecified files, type stripped)

Otherwise, these text libraries are searched in this order:

Libraries specified on the command line with the /LIBRARY qualifier
(all files, type optional)
CXX$TEXT_LIBRARY (all files, type optional)
CXXL$ANSI_DEF (all files, type required)

Compiler Command Qualifiers A–23

Compiler Command Qualifiers

DECC$RTLDEF (H files and unspecified files, type stripped)
SYS$STARLET_C (all files, type stripped)

Two text library search examples (stop when something is found):

Example 1
#include "foo"

1. For each library specified via the /LIBRARY qualifier:

- Look for "FOO."
- Look for "FOO"

2. Look for "FOO." in CXX$TEXT_LIBRARY

3. Look for "FOO" in CXX$TEXT_LIBRARY

4. Look for "FOO." in CXXL$ANSI_DEF (Do not look for "FOO" because
the type is required as part of the module name)

5. Look for "FOO" in DECC$RTLDEF (not "FOO." because the type must
not be part of the module name)

6. Look for "FOO" in SYS$STARLET_C (not "FOO." because the type
must not be part of the module name)

Example 2
#include "foo.h"

1. For each library specified via the /LIBRARY qualifier:

- Look for "FOO.H"
- Look for "FOO"

2. Look for "FOO.H" in CXX$TEXT_LIBRARY

3. Look for "FOO" in CXX$TEXT_LIBRARY

4. Look for "FOO.H" in CXXL$ANSI_DEF (Do not look for "FOO" because
the type is required as part of the module name)

5. Look for "FOO" in DECC$RTLDEF (not "FOO.H" because the type
must not be part of the module name)

6. Look for "FOO" in SYS$STARLET_C (not "FOO.H" because the type
must not be part of the module name)

7. If neither CXX$LIBRARY_INCLUDE nor CXX$SYSTEM_INCLUDE is
defined as a logical name, then search SYS$LIBRARY:.HXX.

A–24 Compiler Command Qualifiers

Compiler Command Qualifiers

/L_DOUBLE_SIZE
/L_DOUBLE_SIZE=option
/L_DOUBLE_SIZE=128 (D)
Determines how the compiler interprets the long double type. The qualifier
options are 64 and 128.

Specifying /L_DOUBLE_SIZE=64 treats all long double references as G_
FLOAT, D_FLOAT, or T_FLOAT, depending on the value of the /FLOAT
qualifier. Specifying /L_DOUBLE_SIZE=64 also defines the macro _ _X_
FLOAT=0.

Note: The /L_DOUBLE_SIZE=64 option is not available on I64 systems. If
it is specified, the compiler issues a warning message and uses /L_DOUBLE_
SIZE=128.

Specifying /L_DOUBLE_SIZE=128 treats all long double references as X_
FLOAT. The /L_DOUBLE_SIZE=128 option also defines the macro _ _X_
FLOAT=1. This is the default.

/LIBRARY
Indicates that the associated input file is a text library containing source
text modules specified in #include directives. The compiler searches the
specified library for all #include module names that are not enclosed
in angle brackets or quotation marks. The name of the library must be
concatenated with the file specification using a plus sign. For example: CXX
DATAB/LIBRARY+APPLICATION

/LINE_DIRECTIVES
/LINE_DIRECTIVES (D)
/NOLINE_DIRECTIVES
Controls whether #line directives appear in preprocessed output files.

/LIST
/LIST[=file-spec] (Batch default)
/NOLIST (Interactive default)
Controls whether a listing file is produced. The default output file extension is
.LIS.

/MACHINE_CODE
/NOMACHINE_CODE (D)
Controls whether the listing produced by the compiler includes the machine-
language code generated during the compilation. If you use this qualifier you
also need to use the /LIST qualifier. On Alpha systems, machine-language code
is not added to the listing file when object-file generation is disabled (using the
/NOOBJECT qualifier).

Compiler Command Qualifiers A–25

Compiler Command Qualifiers

/MAIN=POSIX_EXIT
/MAIN=POSIX_EXIT
/NOMAIN (D)
Directs the compiler to call _ _posix_exit instead of exit when returning from
main.

/MEMBER_ALIGNMENT
/MEMBER_ALIGNMENT (D)
/NOMEMBER_ALIGNMENT
Directs the compiler to naturally align data structure members. This means
that data structure members are aligned on the next boundary appropriate
to the type of the member, rather than on the next byte. For instance, a long
variable member is aligned on the next longword boundary; a short variable
member is aligned on the next word boundary.

Any use of the #pragma member_alignment or #pragma nomember_alignment
directives within the source code overrides the setting established by this
qualifier. Specifying /NOMEMBER_ALIGNMENT causes data structure
members to be byte-aligned (with the exception of bit-field members).

/MMS_DEPENDENCIES
/MMS_DEPENDENCIES[=(option[,option)]]
/NOMMS_DEPENDENCIES (D)
Instructs the compiler to produce a dependency file. The format of the
dependency file is as follows:

object_file_name:<tab><source file name>
object_file_name:<tab><full path to first include file>
object_file_name:<tab><full path to second include file>

You can specify none, one, or both of the following qualifier options:

FILE[=filespec] Specifies where to save the dependency file. The
default file extension for a dependency file is .mms.
Other than using a different default extension, this
qualifier uses the same procedure that /OBJECT
and /LIST use for determining the name of the
output file.

SYSTEM_INCLUDE_FILES Specifies whether to include dependency infor-
mation about system include files (that is, those
included with #include <filename>). The default
is to include dependency information about system
include files.

A–26 Compiler Command Qualifiers

Compiler Command Qualifiers

/MODEL (Alpha only)

/MODEL={ANSI | ARM}
/MODEL=ARM (D)
On Alpha systems, determines the layout of C++ classes, name mangling, and
exception handling.

On I64 systems, the default (and only) object model & demangling scheme
used is the I64 Application Binary Interface (ABI). The compiler accepts the
/MODEL qualifier, but it has no effect.

On Alpha systems, /MODEL=ARM is the default and generates objects that
are link compatible with all releases prior to HP C++ version 6.3, and with
all objects compiled with the /MODEL=ARM qualifier in releases of HP C++
Version 6.3 or later. Specifying this option defines the macro _ _MODEL_ARM.

The /MODEL=ANSI qualifier supports the complete ISO/ANSI C++
specification, including distinct name mangling for templates. The ANSI model
also reduces the size of C++ non-POD class objects. Note that this option
generates objects that are not compatible with all prior and future releases of
HP C++, or with objects compiled using the /MODEL=ARM qualifier.

If you specify the /MODEL=ANSI qualifier, you must recompile and relink
(using CXXLINK/MODEL=ANSI) your entire application, including libraries.
Specifying this option defines the macro _ _MODEL_ANSI.

/NAMES
/NAMES=(option1,option2)
/NAMES=(UPPERCASE,TRUNCATED) (D)
Option1 converts all definitions and references of external symbols and psects
to the case specified. Option1 values are:

Option Usage

UPPERCASE Converts to uppercase.

AS_IS Leaves the case as specified in the source.

Option2 controls whether or not external names greater than 31 characters get
truncated or shortened. Option2 values are:

Option Usage

/NAMES=TRUNCATED (default) Truncates long external names to the first 31
characters.

Compiler Command Qualifiers A–27

Compiler Command Qualifiers

Option Usage

/NAMES=SHORTENED Shortens long external names.

A shortened name consists of the first 23 characters
of the name followed by a 7-character Cyclic
Redundancy Check (CRC) computed by looking
at the full name, and then a "$".

The default is /NAMES=(UPPERCASE,TRUNCATED).

Note

The I64 C++ compiler has some additional encoding rules that are
applied to symbol names after the ABI name mangling is determined.
All symbols with C++ linkage have CRC encodings added to the name,
are uppercased and shorten to 31 characters if necessary. Since
the CRC is computed before the name is uppercased, the symbol
name is case-sensitive even though the final name is in uppercase.
/NAMES=AS_IS and /NAMES=UPPER are not applicable to these
symbols.

All symbols without C++ linkage will have CRC encodings added if they
are longer then 31 characters and /NAMES=SHORTEN is specified.
Global variables with C++ linkage are treated as if they have non-C++
linkage for compatibility with C and older compilers.

/NESTED_INCLUDE_DIRECTORY
/NESTED_INCLUDE_DIRECTORY[=option]
/NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (D)
Controls the first step in the search algorithm the compiler uses when looking
for files included using the quoted form of the #include preprocessing directive:
#include "file-spec" The /NESTED_INCLUDE_DIRECTORY qualifier has the
following options:

Option Usage

PRIMARY_FILE Directs the compiler to search the default file type for headers
using the context of the primary source file. This means that
only the file type (".H" or ".") is used for the default file-spec but,
in addition, the chain of "related file-specs" used to maintain
the sticky defaults for processing the next top-level source file is
applied when searching for the include file.

A–28 Compiler Command Qualifiers

Compiler Command Qualifiers

Option Usage

INCLUDE_FILE Directs the compiler to search the directory containing the file
in which the #include directive itself occurred. The meaning of
"directory containing" is: the RMS "resultant string" obtained
when the file in which the #include occurred was opened,
except that the filename and subsequent components are
replaced by the default file type for headers (".H", or just "."
if /ASSUME=NOHEADER_TYPE_DEFAULT is in effect). The
"resultant string" will not have translated any concealed device
logical.

NONE Directs the compiler to skip the first step of processing #include
"file.h" directives. The compiler starts its search for the include
file in the /INCLUDE_DIRECTORY directories.

For more information on the search order for included files, see the /INCLUDE_
DIRECTORY qualifier.

/OBJECT
/OBJECT[=file-spec]
/OBJECT=.OBJ (D)
/NOOBJECT
Controls whether the compiler produces an output object module. The default
output file extension is .OBJ.

Note that the /OBJECT qualifier has no impact on the output file of the /MMS_
DEPENDENCIES qualifier.

/OPTIMIZE
/OPTIMIZE[=option]
/OPTIMIZE=(LEVEL=4,INLINE=AUTOMATIC,INTRINSICS,UNROLL=0,
NOOVERRIDE_LIMITS,TUNE=GENERIC) (D)
/NOOPTIMIZE
Controls the level of code optimization that the compiler performs. The options
are as follows:

Option Usage

LEVEL=n Selects the level of code optimization. Specify an integer from 0 (no
optimization) to 5 (full optimization).

Compiler Command Qualifiers A–29

Compiler Command Qualifiers

Option Usage

[NO]INLINE Provides inline expansion of functions that yield optimized code when
they are expanded. You can specify one of the following keywords to
control inlining:

NONE No inlining is done, even if requested by the language
syntax.

MANUAL Inlines only those function calls for which the
program explicitly requests inlining.

AUTOMATIC Inlines all of the function calls in the MANUAL
category, plus additional calls that the compiler
determines are appropriate on this platform. On
Alpha systems, the heuristics for AUTOMATIC are
similar to those for SIZE; on I64 systems, they are
more like those for SPEED. AUTOMATIC is the
default.

SIZE Inlines all of the function calls in the MANUAL
category plus any additional calls that the compiler
determines would improve run-time performance
without significantly increasing the size of the
program.

SPEED Performs more aggressive inlining for run-time
performance, even when it might significantly
increase the size of the program.

ALL Inlines every call that can be inlined while still
generating correct code. Recursive routines, however,
will not cause an infinite loop at compile time. On I64
systems, ALL is treated as if SIZE had been specified.

Note that /OPT=INLINE=ALL is not recommended
for general use, because it performs very aggressive
inlining and can cause the compiler to exhaust virtual
memory or take an unacceptably long time to compile.

A–30 Compiler Command Qualifiers

Compiler Command Qualifiers

Option Usage

[NO]OVERRIDE_
LIMITS (I64 only)

Controls whether or not the compiler uses certain built-in limits on
the size and complexity of a function to "throttle back" the amount
of optimization performed in order to reduce the likelihood that the
compiler will use excessive memory resources or CPU time attempting
to optimize the code.

The default is NOOVERRIDE_LIMITS, which means that when
compiling a function that has an unusually large number of
basic blocks, live variables, or other properties that tend to cause
the optimizer to use extra resources, the informational message
OPTLIMEXC might be issued to notify you that optimization has
been reduced to avoid excessive resource use.

You can choose to ignore this message or disable it (the message is not
issued on compilations with optimization disabled).

Or you can specify /OPTIMIZE=OVERRIDE_LIMITS, which instructs
the compiler to not check the limits and to attempt full optimization no
matter how large or complex the function, knowing that the compilation
might exhaust memory or seem to be in a loop.

If using /OPTIMIZE=OVERRIDE_LIMITS does result in excessive
resource use, you are sure that the compiler process has plenty of
memory quota available, you are convinced that the compilation does
not contain any unusually large or complex functions, and you can
provide complete source code, then you might want to contact your
support channel to see if there is a problem in the compiler causing it
to use more resources than it should for the particular compilation at
hand.

Compiler Command Qualifiers A–31

Compiler Command Qualifiers

Option Usage

TUNE Specifies the preferred processor for execution. This option makes some
decisions preferentially for the specified processor (for example, for code
scheduling). Note that code valid only for the specified processor can be
generated. However, parallel code can be generated for processors down
to the specified architecture level if necessary; that is, tuning specifies
the preferred target, while architecture level specifies a lower boundary
on available processor features.

For example, /ARCHITECTURE=EV56/OPTIMIZE=TUNE=EV6
specifies that the code does not need to run on a processor older than an
EV56, and that the code will probably run on an EV6. The generated
code will run on all EV56 and later systems without any emulation.
The code might have run-time selected conditional regions specifically
for EV6. Also, note that because emulation is provided, the code should
run, but potentially at very significantly reduced speed, on pre-EV56
processors.

The options for TUNE are the same as the options for /ARCH. You can
specify one of the following keywords:

GENERIC Selects instruction tuning that is appropriate
for all implementations of the operating system
architecture. This option is the default.

HOST Selects instruction tuning that is appropriate for
the machine on which the code is being compiled.

ITANIUM2 (I64 only) Selects instruction tuning for the Intel Itanium 2
processor.

EV4 (Alpha only) Selects instruction tuning for the 21064, 21064A,
21066, and 21068 implementations of the
operating system architecture.

EV5 (Alpha only) Selects instruction tuning for the 21164
implementation of the operating system
architecture.

EV56 (Alpha only) Selects instruction tuning for 21164 chip
implementations that use the byte- and word-
manipulation instruction extensions of the Alpha
architecture.

Running programs compiled with the EV56
keyword might incur emulation overhead on EV4
and EV5 processors, but will still run correctly
on OpenVMS Version 7.1 (or later) systems.

A–32 Compiler Command Qualifiers

Compiler Command Qualifiers

Option Usage

PCA56 (Alpha only) Selects instruction tuning for the 21164PC
chip implementation that uses the byte- and
word-manipulation instruction extensions and
multimedia instruction extensions of the Alpha
architecture.

Programs compiled with the PCA56 keyword
might incur emulation overhead on EV4, EV5,
and EV56 processors, but will still run correctly
on OpenVMS Version 7.1 (or later) systems.

EV6 (Alpha only) Selects instruction tuning for the first-generation
21264 implementation of the Alpha architecture.

EV67 (Alpha only) Selects instruction tuning for the second-
generation 21264 implementation of the Alpha
architecture.

[NO]INTRINSICS Controls whether certain functions are handled as intrinsic functions
without explicitly enabling each of them as an intrinsic through the
#pragma intrinsic preprocessor directive.

Functions that can be handled as intrinsics are:

Main Group - ANSI:

abs atanl atan2l ceill cosl floorf memcpy sinf
atan atan ceil cos fabs floorl memmove sinl sin
atanf atan2f ceilf cosf floor labs memset strcpy strlen

Main Group - Non-ANSI:

alloca atand2 bzero sind
atand bcopy cosd

Printf functions:

fprintf printf sprintf

Printf non-ANSI:

snprintf

Compiler Command Qualifiers A–33

Compiler Command Qualifiers

Option Usage

ANSI math functions that set errno, thereby requiring
/ASSUME=NOMATH_ERRNO:

acos asinf coshl log log10f powl sqrt tanf
acosf asinl exp logf log10l sinh sqrtf tanl
acosl cosh expf logl pow sinhf sqrtl tanh tanhl
asin coshf expl log10 powf sinhl tan tanhf

Non-ANSI math functions that set errno, thereby requiring
/ASSUME=NOMATH_ERRNO:

log2 tand

The /OPTIMZE=INTRINSICS qualifier works with /OPTIMIZE=LEVEL
=n and some other qualifiers to determine how intrinsics are handled:

• If the optimization level specified is less than 4, the intrinsic-
function prototypes and call formats are checked, but normal
run-time calls are still made.

• If the optimization level is 4 or higher, intrinsic code is generated.

• Intrinsic code is not generated for math functions that set the errno
variable unless /ASSUME=NOMATH_ERRNO is specified. Such
math functions, however, do have their prototypes and call formats
checked.

The default is /OPTIMIZE=INTRINSICS, which turns on this
handling.

To turn it off, use /NOOPTIMIZE or /OPTIMIZE=NOINTRINSICS.

UNROLL=n Controls loop unrolling done by the optimizer. Specify a positive integer
to indicate the number of times to unroll loop bodies. If you specify 0 or
do not supply a value, the optimizer determines its own unroll amount.
The default is UNROLL=0. Specifying UNROLL=1 effectively disables
loop unrolling.

On I64 systems, you do not have the ability to control the number of
times a loop is unrolled. You can either disable loop unrolling with
UNROLL=1, or accept the UNROLL=0 default, which lets the optimizer
determine the unroll amount.

The default is /OPTIMIZE, which is equivalent to /OPTIMIZE=LEVEL=4.

A–34 Compiler Command Qualifiers

Compiler Command Qualifiers

/PENDING_INSTANTIATIONS
/PENDING_INSTANTIATIONS[=n]
/PENDING_INSTANTIATIONS=64(D)
Limit the depth of recursive instantiations so that infinite instantiation
loops can be detected before some resource is exhausted. The /PENDING_
INSTANTIATIONS qualifier requires a positive non-zero value as argument
and issues an error when n instantiations are pending for the same class
template. The default value for n is 64.

/POINTER_SIZE
/POINTER_SIZE=option
/NOPOINTER_SIZE (D)
Controls whether pointer-size features are enabled, and whether pointers are
32 bits or 64 bits long.

On both Alpha and I64 systems, the default is /NOPOINTER_SIZE, which
disables pointer-size features, such as the ability to use #pragma pointer_size,
and directs the compiler to assume that all pointers are 32-bit pointers. This
default represents no change over previous versions of HP C++.

You can specify one of the following options:

SHORT The compiler assumes 32-bit pointers.

32 Same as SHORT.

LONG The compiler assumes 64-bit pointers.

64 Same as LONG.

Specifying /POINTER_SIZE=32 directs the compiler to assume that all
pointers are 32-bit pointers. But unlike the default of /NOPOINTER_SIZE,
/POINTER_SIZE=32 enables use of the #pragma pointer_size long and
#pragma pointer_size short preprocessor directives to control pointer size
throughout your program.

Specifying /POINTER_SIZE=64 directs the compiler to assume that all
pointers are 64-bit pointers, and also enables use of the #pragma pointer_size
directives.

/PREFIX_LIBRARY_ENTRIES
/PREFIX_LIBRARY_ENTRIES=(option,...)
/NOPREFIX_LIBRARY_ENTRIES
/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES (D)
Controls C Run-Time Library (RTL) name prefixing. For user programs
that do not include the ANSI header files but call the ANSI library, the
compiler automatically adds a DECC$ prefix to all C RTL library calls just
before the name for the external reference or global definition is put into

Compiler Command Qualifiers A–35

Compiler Command Qualifiers

the object file. The C RTL shareable image (DECC$SHR.EXE) resides in
IMAGELIB.OLB with a DECC$ prefix for its entry points. Every external
name in IMAGELIB.OLB has a DECC$ prefix, and, therefore, has an
OpenVMS-conformant name space (a requirement for inclusion in IMAGELIB).

The options are as follows:

Option Usage

EXCEPT=(name, . . .) The names specified are not prefixed.

ALL_ENTRIES All HP C++ names are prefixed.

Note: ALL_ENTRIES prefixes all functions defined by the
C99 standard, including those that may not be supported in
the current run-time library. So calling functions introduced
in C99 that are not yet implemented in the OpenVMS C RTL
will produce unresolved references to symbols prefixed by
DECC$ when the program is linked. In addition, the compiler
will issue a CC-W-NOTINCRTL message when it prefixes a
name that is not in the current C RTL.

ANSI_C89_ENTRIES Only ANSI/ISO C library names are prefixed.

RTL=name References to the C RTL, indicated by NAME, are generated.
NAME must be 1017 characters or fewer.

If you want no names prefixed, specify /NOPREFIX_LIBRARY_ENTRIES.

/PREPROCESS_ONLY
/PREPROCESS_ONLY[=filename]
/NOPREPROCESS_ONLY (D)
Causes the compiler to perform only the actions of the preprocessor phase
and write the resulting processed text out to a file. The default output file
extension is .IXX. Use of /PREPROCESS_ONLY prevents the generation of an
object or XREF file.

/PSECT_MODEL
/PSECT_MODEL=MULTILANGUAGE
/PSECT_MODEL=NOMULTILANGUAGE (D)
Controls whether the compiler allocates the size of overlaid psects to ensure
compatibility when the psect is shared by code created by other HP compilers.

This qualifier solves a problem that can occur when a psect generated by a
Fortran COMMON block is overlaid with a psect consisting of a C struct.
Because Fortran COMMON blocks are not padded, if the C struct is padded,
the inconsistent psect sizes can cause linker error messages.

A–36 Compiler Command Qualifiers

Compiler Command Qualifiers

Compiling with /PSECT_MODEL=MULTILANGUAGE ensures that the
compiler uses a consistent psect size allocation scheme. The corresponding
Fortran squalifier is /ALIGN=COMMON=[NO]MULTILANGUAGE.

The default is /PSECT=NOMULTILANGUAGE, which should be sufficient for
most applications.

/PURE_CNAME
/PURE_CNAME (D) (/STANDARD=STRICT_ANSI)
/NOPURE_CNAME (D) (All other modes)
Affects insertion of the names into the global namespace by <cname> headers.

In /PURE_CNAME mode, the <cname> headers insert the names into the std
namespace only, as defined by the C++ Standard. In this mode, the _ _PURE_
CNAME and _ _HIDE_FORBIDDEN_NAMES macros are predefined by the
compiler.

In /NOPURE_CNAME mode, the <cname> headers insert the name into the std
namespace and also into the global namespace. In this mode, the _ _PURE_
CNAME and _ _HIDE_FORBIDDEN_NAMES macros are not predefined by the
compiler.

The default depends on the standard mode:

• In /STANDARD=STRICT_ANSI mode, the default is /PURE_CNAME.

• In all other standard modes, the default is /NOPURE_CNAME.

Inclusion of a <name> header instead of its <cname> counterpart (for example,
<stdio.h> instead of <cstdio>) results in inserting names defined in the
header into both the std namespace and the global namespace. Effectively,
this is the same as the inclusion of a <cname> header in /NOPURE_CNAME
mode.

/QUIET
/QUIET
/NOQUIET (D)
Specifying /QUIET causes the compiler to report errors like the Version
5.n compiler (issue fewer messages). This is the default for ARM mode
(/STANDARD=ARM). All other modes default to /NOQUIET.

Use /WARNINGS=ENABLE to enable specific messages normally disabled with
/QUIET.

Compiler Command Qualifiers A–37

Compiler Command Qualifiers

/REENTRANCY
/REENTRANCY=option
/REENTRANCY=TOLERANT (D)
Controls the type of reentrancy that reentrant HP C RTL routines exhibit.
(See also the DECC$SET_REENTRANCY RTL routine.)

This qualifier is for use only with a module containing the main routine.

The reentrancy level is set at run time according to the /REENTRANCY
qualifier specified while compiling the module containing the main routine.
This option affects the behavior of the C RTL, but has no effect on the C++
libraries.

You can specify one of the following options:

Option Usage

AST Uses the __TESTBITSSI built-in function to perform simple locking
around critical sections of RTL code, and may additionally disable
asynchronous system traps (ASTs) in locked region of codes. This
type of locking should be used when AST code contains calls to DEC
C RTL I/O routines.

MULTITHREAD Designed to be used in conjunction with the DECthreads product. It
performs DECthreads locking and never disables ASTs.

NONE Gives optimal performance in the RTL, but does absolutely no
locking around critical sections of RTL code. It should be used only
in a single threaded environment when there is no chance that the
thread of execution will be interrupted by an AST that would call
the HP C RTL.

TOLERANT Uses the __TESTBITSSI built-in function to perform simple locking
around critical sections of RTL code, but ASTs are not disabled.
This type of locking should be used when ASTs are used and must
be delivered immediately. This is the default reentrancy type.

/REPOSITORY
/REPOSITORY=(PATHNAME [,...])
/REPOSITORY=[.CXX_REPOSITORY] (D)
Specifies a repository that C++ uses to store requested template instantiations.
The default is /REPOSITORY=[.CXX_REPOSITORY]. If multiple repositories
are specified, only the first is considered writable and the default repository is
ignored unless specified.

A–38 Compiler Command Qualifiers

Compiler Command Qualifiers

/ROUNDING_MODE
/ROUNDING_MODE=option
/ROUNDING_MODE=NEAREST (D)
Lets you select an IEEE rounding mode if /FLOAT=IEEE_FLOAT is specified.
The options are as follows:

Option Usage

CHOPPED Rounds toward 0.

DYNAMIC Sets the rounding mode for IEEE floating-point instructions
dynamically, as determined from the contents of the floating-point
control register.

MINUS_
INFINITY

Rounds toward minus infinity.

NEAREST Sets the normal rounding mode (unbiased round to nearest). This is
the default.

If you specify either /FLOAT=G_FLOAT or /FLOAT=D_FLOAT, then rounding
defaults to /ROUNDING_MODE=NEAREST, with no other choice of rounding
mode.

/RTTI
/RTTI (D)
/NORTTI (Alpha only)

Enables or disables support for RTTI (runtime type identification) features:
dynamic_cast and typeid. Disabling runtime type identification can also save
space in your object file because static information to describe polymorphic
C++ types is not generated. The default is to enable runtime type information
features and generate static information in the object file. The /RTTI qualifier
defines the macro _ _RTTI.

Note that specifying /NORTTI does not disable exception handling.

/SHARE_GLOBALS
/SHARE_GLOBALS
/NOSHARE_GLOBALS (D)
Controls whether the initial extern_model is shared or not shared (for those
extern_models where it is allowed). The initial extern_model of the compiler is
a fictitious pragma constructed from the settings of the /EXTERN_MODEL and
/SHARE_GLOBALS.

Compiler Command Qualifiers A–39

Compiler Command Qualifiers

The default value is /NOSHARE_GLOBALS, which has the following effects:

• When linking old object files or object libraries with newly produced object
files, you might get "conflicting attributes for psect" messages, which can
be safely ignored as long as you are not building shareable libraries.

• The /noshare_globals default makes building shareable libraries easier.

/SHOW
/SHOW=(option[,...])
/SHOW=(HEADER,SOURCE) (D)
Used with the /LIST qualifier to set or cancel specific listing options. You can
select the following options:

Option Usage

ALL Print all listing information.

[NO]HEADER Print/do not print header lines at the top of each page (D =
HEADER)

[NO]INCLUDE Print/do not print contents of #include files (D = NOINCLUDE)

NONE Print no listing information

[NO]SOURCE Print/do not print source file statements (D = SOURCE)

[NO]STATISTICS Print/do not print compiler performance statistics (D =
NOSTATISTICS). On I64 systems, the /SHOW=STATISTICS
option is ignored.

/STANDARD
/STANDARD=(option)
/STANDARD=RELAXED (D)
The compiler implements the International ANSI C++ Standard. The
/STANDARD qualifier directs the compiler to interpret source code according to
certain nonstandard syntax conventions followed by other implementations of
the C++ language. The options are:

A–40 Compiler Command Qualifiers

Compiler Command Qualifiers

Option Usage

RELAXED Allow language constructs required by the International ANSI C++
Standard. This mode also supports some non-ANSI extensions and
issues messages for some nonstandard usage that does not strictly
comply with the standard. This is the default compiler mode. This
option also defines the macro _ _STD_ANSI. Please note that ANSI is
accepted as a synonym for RELAXED to be compatible with previous
C++ versions.

ARM Minimize source changes when compiling programs developed using
Version 5.n. This option also defines the macro _ _STD_ARM. The
/STANDARD=ARM qualifier uses the pre-ansi AT&T version of the
iostream library and defines the macro _ _NO_USE_STD_IOSTREAM.

CFRONT As of HP C++ Version 7.1, support for /STANDARD=CFRONT is
retired.

GNU Use this option if you want to compile programs developed using
the GNU C++ compiler. This option also defines the _ _STD_GNU
macro. The /STANDARD=GNU qualifier uses the pre-ansi AT&T
version of the iostream library and defines the macro _ _NO_USE_
STD_IOSTREAM. The following changes in behavior are provided for
compatibility with the GNU C++ compiler:

• These options are enabled by default:

/ALTERNATIVE_TOKENS
/TEMPLATE_DEFINE=LOCAL
/NO_IMPLICIT_INCLUDE

• Access control is not enforced for types defined inside a class.

• Unrecognized character escape sequences in string literals
produce an informational instead of a warning message.

• The _ _INLINE keyword is enabled and is equivalent to inline.

• The severity of the error "incompatible parameter" (tag
incompatibleprm) is reduced to warning.

• When overloading, enum types are treated as integral types.

The following known incompatibility is not addressed in the
/STANDARD=GNU mode:

• The compiler strictly enforces the requirement to define functions
before they are used. This requirement also applies to built-in
functions such as strlen.

Compiler Command Qualifiers A–41

Compiler Command Qualifiers

Option Usage

MS Allow language constructs supported by the Visual C++ compiler.
This option also defines the macro _ _STD_MS. The /STANDARD=MS
qualifier uses the pre-ansi AT&T version of the iostream library and
defines the macro _ _NO_USE_STD_IOSTREAM.

STRICT_ANSI Enforce the ANSI standard strictly but permit some ANSI violations
that should be errors to be warnings. This option also defines the
macro _ _STD_STRICT_ANSI. To force ANSI violations to be issued
as errors instead of warnings, use /WARNINGS=ANSI_ERRORS in
addition to /STANDARD=STRICT_ANSI. This combination defines the
macro _ _STD_STRICT_ANSI_ERRORS. The /STANDARD=STRICT_
ANSI qualifier uses the ANSI/ISO standard version of the iostream
library and defines the macro _ _USE_STD_IOSTREAM.

LATEST Latest C++ standard dialect (Alpha, I64). /STANDARD=LATEST is
currently equivalent to /STANDARD=STRICT_ANSI, but is subject to
change when newer versions of the C++ standard are released.

For more information on the effect of the /STANDARD qualifier on HP C++
compile-time error checking, Section E.1.

/TEMPLATE_DEFINE=(option,...)
/NOTEMPLATE_DEFINE
Controls compiler behavior pertaining to the instantiation of C++ templates.
See Chapter 5 for details on how to instantiate templates using this qualifier.
Note that you must specify a value for this qualifier.

/UNDEFINE
/UNDEFINE=(identifier[,...])
/NOUNDEFINE (D)
Performs the same function as the #undefine preprocessor directive: it cancels
a macro definition.

The /UNDEFINE qualifier is useful for undefining the predefined C++
preprocessor constants. For example, if you use a preprocessor constant to
conditionally compile segments of code specific to C++ for OpenVMS systems,
you can undefine constants to see how the portable sections of your program
execute. For example:

/UNDEFINE="deccxx"

When both /DEFINE and /UNDEFINE are present on the CXX command line,
/DEFINE is evaluated before /UNDEFINE.

A–42 Compiler Command Qualifiers

Compiler Command Qualifiers

/UNSIGNED_CHAR
/UNSIGNED_CHAR
/NOUNSIGNED_CHAR (D)
The /UNSIGNED_CHAR qualifier changes the default for all char types from
signed to unsigned. The /NOUNSIGNED_CHAR qualifier causes all plain char
declarations to have the same representation and set of values as signed char
declarations.

/USING_STD
/USING_STD
/NOUSING_STD (D)
Controls whether standard library header files are processed as though the
compiled code were written as follows:

using namespace std;
#include <header>

These options are provided for compatibility for users who do not want to
qualify use of each standard library name with std:: or put using namespace
std; at the top of their sources.

/USING_STD turns implicit using namespace std on; this is the default
when compiling /STANDARD=ARM, /STANDARD=GNU, /STANDARD=MS,
or /STANDARD=RELAXED.

/NOUSING_STD turns implicit using namespace std off; this is the default
when compiling /STANDARD=STRICT_ANSI.

/VERSION
/VERSION
/NOVERSION (D)
Causes the compiler to identify (print out) its version and operating system.
The listing file also contains the compiler version. You cannot specify this
qualifier with any other qualifiers.

/WARNINGS
/WARNINGS[=(option[,...])]
/WARNINGS (D)
/NOWARNINGS
Controls the issuance of compiler diagnostic messages and lets you modify the
severity of messages.

The default qualifier, /WARNINGS, outputs all enabled warning and informa-
tional messages for the compiler mode you are using. The /NOWARNINGS
qualifier suppresses warning and informational messages.

Options apply only to warning and informational messages.

Compiler Command Qualifiers A–43

Compiler Command Qualifiers

The message-list in the following table of options can be any one of the
following:

• A single message identifier (within parentheses, or not). The message
identifier is the name following the message severity letter on the first line
of an issued message. For example, in the following message, the message
identifier is GLOBALEXT:

%CC-W-GLOBALEXT, a storage class of globaldef, globalref, or globalvalue
is a language extension.

• A comma-separated list of message identifiers, enclosed in parentheses.

• The keyword ALL.

The options are processed and take effect in the following order:

A–44 Compiler Command Qualifiers

Compiler Command Qualifiers

NOWARNINGS Suppresses warnings.

NOINFORMATIONALS Suppresses informational messages.

ENABLE=message-list Enables issuance of the specified messages.
Can be used to enable specific messages
that normally would not be issued when
using /QUIET or messages disabled with
/WARNINGS=DISABLE.

DISABLE=message-list Disables issuance of the specified messages.
Can be used for any nonerror message
specified by a message number or tag.
Specify ALL to suppress all informationals
and warnings.

INFORMATIONALS=message-list Sets the severity of all specified messages
to Informational. Fatal and Error messages
cannot be made less severe. Can also be used
to enable informationals that are disabled by
default.

Note: With C++ Version 7.1, using
/WARNINGS=INFORMATIONALS=<tag>
no longer enables all other informational
messages.

WARNINGS=message-list Sets the severity of the specified messages to
Warning. Fatal and Error messages cannot
be made less severe.

[NO]ANSI_ERRORS Issues error messages for all ANSI violations
when in STRICT_ANSI mode. The default is
/WARNINGS=NOANSI_ERRORS.

[NO]TAGS Displays a descriptive tag at the end of each
message. "D" indicates that the severity
of the message can be controlled from the
command line. The tag displayed can be used
as the message identifier in the /WARNINGS
qualifier options.

ERRORS=message-list Sets the severity of the specified messages to
Error.

Supplied Error and Fatal messages cannot be
made less severe. (Exception: A message can
be upgraded from Error to Fatal, then later
downgraded to Error again, but it can never
be downgraded from Error.)

Warnings and Informationals can be made
any severity.

FATALS=message-list Sets the severity of the specified messages to
Fatal.

Also see the #pragma message preprocessor directive.

Compiler Command Qualifiers A–45

Compiler Command Qualifiers

/XREF (Alpha only)

/XREF[=file-spec]
/NOXREF (D)
Controls whether the compiler generates a file of source code analysis
information. The default file name is the file name of the primary source
file; the default file type is .XREF. Use the SCA IMPORT command to convert
an .XREF file into an analysis data file that is ready for loading into an SCA
library.

A–46 Compiler Command Qualifiers

B
Programming Tools

This appendix provides information on tools that you can use to develop and
refine your C++ programs. Some ship with the OpenVMS operating system but
others require separate purchase.

B.1 DEC Language-Sensitive Editor
The DEC Language-Sensitive Editor (LSE) is a text editor intended specifically
for software development. LSE includes the following features:

• Formatted language constructs, or templates, for most DEC programming
languages. These templates include keywords and required punctuation,
and use placeholders to indicate where to insert optional or required code.

• Commands for compiling, reviewing, and correcting compilation errors from
within the editor.

• Integration with DEC Code Management System (CMS). You can enter
CMS commands from within the editor to coordinate the progress of
program development on OpenVMS systems. For more information on
CMS, see the Guide to DEC Code Management System.

B.1.1 Starting and Terminating an LSE Session
To invoke LSE and associate a buffer with C++, use the following syntax:

LSEDIT [/qualifier...]filename.cxx

To invoke LSE without associating the editing buffer with a programming
language, enter the following command at the DCL prompt:

$ lsedit file-spec

To end an LSE session, press Ctrl/Z to get the LSE> prompt. Then, enter the
exit command if you want to save the current file modification, or enter the
quit command if you want to discard the current file modification.

Programming Tools B–1

Programming Tools
B.1 DEC Language-Sensitive Editor

B.1.2 LSE Placeholders and Tokens
The language-sensitive features of LSE simplify the tasks of writing and
maintaining program code. Among these features are placeholders and tokens.

Placeholders are markers in the source code that indicate where a program
element is expected. Placeholders are worded to denote the appropriate syntax
in a given context. You do not need to type placeholders; LSE inserts them,
surrounded by brackets ([]) or braces ({}) and at signs (@). Braces indicate
where source code is required in the program’s context; brackets indicate
that you have the option of supplying additional constructs or erasing the
placeholder.

Tokens are LSE words that, when expanded, provide additional language
constructs. You can type tokens directly into the buffer. You use tokens in
situations such as modifying an existing program to add program elements
where no placeholders exist. For example, if you type while and then enter
the expand command, a template for a while construct appears in your buffer
in place of the characters you typed. You also can use tokens as a shortcut in
situations where expanding a placeholder would entail a complicated sequence
of actions.

LSE has commands for manipulating tokens and placeholders, as follows:

Command Default Key Binding Description

expand Ctrl/E Expands a placeholder

unexpand PF1-Ctrl/E Reverses the effect
of the most recent
placeholder expansion

goto placeholder/forward Ctrl/N Moves the cursor
forward to the next
placeholder

goto placeholder/reverse Ctrl/P Moves the cursor
backward to the
previous placeholder

erase placeholder/forward Ctrl/K Erases a placeholder

unerase placeholder PF1-Ctrl/K Restores the most
recently erased
placeholder

B–2 Programming Tools

Programming Tools
B.1 DEC Language-Sensitive Editor

Command Default Key Binding Description

� Down arrow Moves the selection
indicator downward
through a screen
menu

� up arrow Moves the selection
indicator upward
through a screen
menu

�
Enter
Return

� Enter

Return
Selects a menu option

To display a list of all the predefined tokens supplied with C++, enter the
following LSE command:

LSE> show token

To display a list of all the predefined placeholders supplied with C++, enter the
following LSE command:

LSE> show placeholder

For information about a particular token or placeholder, specify the name of
the token or placeholder after the show token or show placeholder command.

To create a list of either tokens or placeholders, first execute the appropriate
show command to put the list in the $show buffer. Then, enter the following
commands:

LSE> go buffer $show
LSE> write file-spec

When you exit LSE, you can use the DCL print command to print a copy of
the file you wrote.

B.1.3 Compiling and Reviewing Source Code from an LSE Session
To compile your source code and to review compilation errors without leaving
the editing session, use the LSE commands compile and review. The compile
command issues a DCL command in a subprocess to invoke the compiler. The
compiler then generates a file of compile-time diagnostic information that LSE
uses to review any compilation errors. The diagnostic information is generated
with the /DIAGNOSTICS qualifier that LSE appends to the compilation
command.

Programming Tools B–3

Programming Tools
B.1 DEC Language-Sensitive Editor

For example, if you enter the compile command while editing the buffer
user.cxx, LSE executes the following DCL command:

$ CXX user.cxx/DIAGNOSTICS=USER.DIA

LSE supports all the command qualifiers available with the compiler.

The /DIAGNOSTICS qualifier is ignored on I64 systems.

The review command displays any diagnostic messages that result from
a compilation. LSE displays the compilation errors in one window and
corresponding source code in a second window. This lets you view the error
messages while examining the associated code.

B.1.4 DEC Source Code Analyzer (SCA)
Although the compiler does not support the DEC Source Code Analyzer
(SCA) through the CXX /ANALYSIS_DATA command-line qualifier, users can
generate a .ana file that contains information on all the tokens within a C++
program. For example, users can do the following:

SCA> find some_variable_name

To use the SCA analyze command with C++ files so that in turn you can
execute find commands on your C++ code from LSE or SCA, do the following:

• At the command line, issue the SCA command:

$ SCA

• Set your SCA library with the set library command. For example:

SCA> set library projdisk:[user.any_existing_sca_lib]

• Issue the analyze command on your .cxx file:

SCA> analyze testprog.cxx

This command places the file testprog.ana in your current working
directory.

• Load the resulting .ana file:

SCA> load testprog.ana

B–4 Programming Tools

C
Built-In Functions

This appendix describes the built-in functions available when you compile on
OpenVMS systems. These functions allow you to access hardware and machine
instructions directly.

These functions allow you to directly access hardware and machine instructions
to perform operations that are cumbersome, slow, or impossible in other C++
compilers.

These functions are very efficient because they are built into the HP C++
compiler. This means that a call to one of these functions does not result in a
reference to a function in the HP C Run-Time Library or to a function in your
program. Instead, the compiler generates the machine instructions necessary
to carry out the function directly at the call site. Because most of these built-in
functions closely correspond to single Alpha or Itanium machine instructions,
the result is small, fast code.

Be sure to include the <builtins.h> header file in your source program to
access these built-in functions. Definitions for return types int64 and uint64
are contained in the header file <ints.h>.

Some of the built-in functions have optional arguments or allow a particular
argument to have one of many different types. To describe all valid
combinations of arguments, the following built-in function descriptions list
several different prototypes for the function. As long as a call to a built-in
function matches one of the prototypes listed, the call is valid. Furthermore,
any valid call to a built-in function behaves as if the corresponding prototype
were in scope of the call. The compiler, therefore, performs the argument
checking and conversions specified by that prototype.

The majority of the built-in functions are named after the processor instruction
that they generate. The built-in functions provide direct and unencumbered
access to those processor instructions. Any inherent limitations to those
instructions are limitations to the built-in functions as well. For instance,
the MOVC3 instruction and the _MOVC3 built-in function can move at most
65,535 characters.

Built-In Functions C–1

Built-In Functions

For more information on the Alpha built-in functions, see the corresponding
machine instructions in the Alpha Architecture Handbook or Alpha Architecture
Reference Manual.

For more information on the I64 built-in functions, see the corresponding
machine instructions in the Intel® Itanium® Architecture Software Developer’s
Manual.

C.1 Built-In Functions for Alpha Systems (Alpha only)

The following sections describe the HP C++ built-in functions available on
OpenVMS Alpha systems.

C.1.1 Translation Macros
HP C++ for OpenVMS Alpha systems does not support the built-in
functions available with HP C++ for OpenVMS VAX systems. However,
the <builtins.h> header file contains macro definitions that translate some
VAX C built-in functions to the equivalent HP C++ for OpenVMS Alpha built-in
functions. Consequently, the following VAX C built-in functions are effectively
supported:

_BBCCI(position, address)

_BBSSI(position, address)

_INSQHI(new_entry, head)

_INSQTI(new_entry, head)

_INSQUE(new_entry, predecessor)

_REMQHI(head, removed_entry)

_REMQTI(head, removed_entry)

_REMQUE(entry, removed_entry)

_PROBER(mode, length, address)

_PROBEW(mode, length, address)

For more detail on any of these functions, see <builtins.h> or the description
of the corresponding native Alpha function in this chapter. For example, for a
description of _INSQHI, see _ _PAL_INSQHIL.

C–2 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

C.1.2 Intrinsic Functions
HP C++ on Alpha systems supports in-line assembly code, commonly called
ASMs on UNIX platforms.

Like built-in functions, ASMs are implemented with a function-call syntax.
But unlike built-in functions, to use ASMs you must include the <c_asm.h>
header file containing prototypes for the three types of ASMs, and the #pragma
intrinsic preprocessor directive.

Syntax:

__int64 asm(const char *, ...); /* for integer operations,
like mulq */

float fasm(const char *, ...); /* for single precision float
instructions */

double dasm(const char *, ...); /* for double precision float
instructions */

#pragma intrinsic (asm)
#pragma intrinsic (fasm)
#pragma intrinsic (dasm)

The first argument to the asm, fasm, or dasm function contains the
instruction(s) to be generated inline and the metalanguage that describes
the interpretation of the arguments.

The remaining arguments (if any) are the source and destination arguments
for the instruction being generated.

C.1.3 Privileged Architecture Library Code Instructions
The following Privileged Architecture Library Code (PALcode) instructions are
available as built-in functions:

Built-In Functions C–3

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

__PAL_GENTRAP __PAL_INSQHIL __PAL_REMQHIL __PAL_MTPR_ASTEN __PAL_MFPR_ASTEN
__PAL_HALT __PAL_INSQTIL __PAL_REMQTIL __PAL_MTPR_ASTSR __PAL_MFPR_ASTSR
__PAL_PROBER __PAL_INSQUEL __PAL_REMQUEL __PAL_MTPR_DATFX __PAL_MFPR_ESP
__PAL_PROBEW __PAL_INSQHIQ __PAL_REMQHIQ __PAL_MTPR_ESP __PAL_MFPR_FEN
__PAL_CHME __PAL_INSQTIQ __PAL_REMQTIQ __PAL_MTPR_FEN __PAL_MFPR_IPL
__PAL_CHMK __PAL_INSQUEQ __PAL_REMQUEQ __PAL_MTPR_IPIR __PAL_MFPR_MCES
__PAL_CHMS __PAL_INSQUEL_D __PAL_REMQUEL_D __PAL_MTPR_IPL __PAL_MFPR_PCBB
__PAL_CHMU __PAL_INSQUEQ_D __PAL_REMQUEQ_D __PAL_MTPR_MCES __PAL_MFPR_PRBR
__PAL_LDQP __PAL_INSQHILR __PAL_REMQHILR __PAL_MTPR_PRBR __PAL_MFPR_PTBR
__PAL_STQP __PAL_INSQTILR __PAL_REMQTILR __PAL_MTPR_SCBB __PAL_MFPR_SCBB
__PAL_BPT __PAL_INSQHIQR __PAL_REMQHIQR __PAL_MTPR_SIRR __PAL_MFPR_SISR
__PAL_BUGCHK __PAL_INSQTIQR __PAL_REMQTIQR __PAL_MTPR_SSP __PAL_MFPR_SSP
__PAL_CFLUSH __PAL_MTPR_TBIA __PAL_MFPR_TBCHK
__PAL_DRAINA __PAL_MTPR_TBIAP __PAL_MFPR_USP
__PAL_RD_PS __PAL_MTPR_TBIS __PAL_MFPR_VPTB
__PAL_SWPCTX __PAL_MTPR_TBISD __PAL_MFPR_WHAMI
__PAL_SWASTEN __PAL_MTPR_TBISI
__PAL_WR_PS_SW __PAL_MTPR_USP
__PAL_IMB __PAL_MTPR_VPTB

The following sections describe these PALcodes.

_ _PAL_BPT
This function is provided for program debugging. It generates a Breakpoint
trap.

This function has the following format:

void _ _PAL_BPT (void);

_ _PAL_BUGCHK
This function is provided for error reporting. It generates a Bug-check trap.

This function has the following format:

void _ _PAL_BUGCHK (unsigned _ _int64 code);

_ _PAL_CFLUSH
This function flushes at least the entire physical page specified by the page
frame number value from any data caches associated with the current
processor. After a CFLUSH is done, the first subsequent load on the same
processor to an arbitrary address in the target page is fetched from physical
memory.

This function has the following format:

void _ _PAL_CFLUSH (int value);

C–4 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

value
A page frame number.

_ _PAL_CHME
This function allows a process to change its mode to Executive in a controlled
manner. The change in mode also results in a change of stack pointers: the old
pointer is saved and the new pointer is loaded. Registers R2 to R7, PS, and
PC are pushed onto the selected stack. The saved PC addresses the instruction
following the CHME instruction.

This function has the following format:

void _ _PAL_CHME (void);

_ _PAL_CHMK
This function allows a process to change its mode to kernel in a controlled
manner. The change in mode also results in a change of stack pointers: the old
pointer is saved and the new pointer is loaded. Registers R2 to R7, PS, and
PC are pushed onto the kernel stack. The saved PC addresses the instruction
following the CHMK instruction.

This function has the following format:

void _ _PAL_CHMK (void);

_ _PAL_CHMS
This function allows a process to change its mode to Supervisor in a controlled
manner. The change in mode also results in a change of stack pointers: the old
pointer is saved and the new pointer is loaded. Registers R2 to R7, PS, and
PC are pushed onto the selected stack. The saved PC addresses the instruction
following the CHMS instruction.

This function has the following format:

void _ _PAL_CHMS (void);

_ _PAL_CHMU
This function allows a process to call a routine using the change mode
mechanism. Registers R2 to R7, PS, and PC are pushed onto the current stack.
The saved PC addresses the instruction following the CHMU instruction.

This function has the following format:

void _ _PAL_CHMU (void);

Built-In Functions C–5

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

_ _PAL_DRAINA
This function stalls instruction issuing until all prior instructions are
guaranteed to complete without incurring aborts.

This function has the following format:

void _ _PAL_DRAINA (void);

_ _PAL_GENTRAP
This function is used for reporting run-time software conditions. It generates a
Software trap.

This function has the following format:

void _ _PAL_GENTRAP (uunsigned _ _int64 encoded_software_trap);

encoded_software_trap
The particular software condition that has occurred.

_ _PAL_HALT
This function halts the processor when executed by a process running in kernel
mode. This is a privileged function.

This function has the following format:

void _ _PAL_HALT (void);

_ _PAL_IMB
This function makes the instruction stream coherent with the data stream.
It must be executed after software or I/O devices write into the instruction
stream or modify the instruction stream virtual address mapping, and before
the new value is fetched as an instruction. Note that executing an IMB on one
processor in a multiprocessor environment does not affect instruction caches on
other processors.

This function has the following format:

void _ _PAL_IMB (void);

_ _PAL_INSQHIL
This function inserts an entry at the front of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to header and queue entries. The pointers to head and new_entry must not be
equal.

C–6 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

This function has the following format:

int _ _PAL_INSQHIL (void *head, void *new_entry);
/* At head, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
longword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

_ _PAL_INSQHILR
This function inserts an entry into the front of a longword queue in an
indivisible manner. This operation is interlocked against similar operations
by other preprocessors or devices in the system. This function must have write
access to the header and queue entries. The pointers to head and new_entry
must not be equal. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_INSQHILR (void *head, void *new_entry);
/* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

Built-In Functions C–7

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

_ _PAL_INSQHIQ
This function inserts an entry at the front of a quadword queue in an
indivisible manner. This operation is interlocked against similar operations
by other preprocessors or devices in the system. This function must have write
access to header and queue entries. The pointers to head and new_entry must
not be equal.

This function has the following format:

int _ _PAL_INSQHIQ (void *head, void *new_entry);
/* At head, interlocked */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

_ _PAL_INSQHIQR
This function inserts an entry into the front of a quadword queue in an
indivisible manner. This operation is interlocked against similar operations
by other preprocessors or devices in the system. This function must have write
access to the header and queue entries. The pointers to head and new_entry
must not be equal. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_INSQHIQR (void *head, void *new_entry);
/* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

C–8 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

_ _PAL_INSQTIL
This function inserts an entry at the end of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to header and queue entries. The pointers to head and new_entry must not be
equal.

This function has the following format:

int _ _PAL_INSQTIL (void *head, void *new_entry);
/* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

_ _PAL_INSQTILR
This function inserts an entry at the end of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to the header and queue entries. The pointers to head and new_entry must not
be equal. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_INSQTILR (void *head, void *new_entry);
/* At tail, interlocked resident */

Built-In Functions C–9

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

_ _PAL_INSQTIQ
This function inserts an entry at the end of a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to header and queue entries. The pointers to head and new_entry must not be
equal.

This function has the following format:

int _ _PAL_INSQTIQ (void *head, void *new_entry);
/* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

C–10 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

_ _PAL_INSQTIQR
This function inserts an entry at the end of a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to the header and queue entries. The pointers to head and new_entry must not
be equal. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_INSQTIQR (void *head, void *new_entry);
/* At tail, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

_ _PAL_INSQUEL
This function inserts a new entry after an existing entry into a longword
queue. This function must have write access to header and queue entries.

This function has the following format:

int _ _PAL_INSQUEL (void *predecessor, void *new_entry);

predecessor
A pointer to an existing entry in the queue.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

Built-In Functions C–11

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

_ _PAL_INSQUEL_D
This function inserts a new entry after an existing entry into a longword queue
deferred. This function must have write access to header and queue entries.

This function has the following format:

int _ _PAL_INSQUEL_D (void **predecessor, void *new_entry);
/* Deferred */

predecessor
A pointer to a pointer to the predecessor entry.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

_ _PAL_INSQUEQ
This function inserts a new entry after an existing entry into a quadword
queue. This function must have write access to header and queue entries.

This function has the following format:

int _ _PAL_INSQUEQ (void *predecessor, void *new_entry);

predecessor
A pointer to an existing entry in the queue.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

_ _PAL_INSQUEQ_D
This function inserts a new entry after an existing entry into a quadword
queue deferred. This function must have write access to header and queue
entries.

This function has the following format:

int _ _PAL_INSQUEQ_D (void **predecessor, void *new_entry);
/* Deferred */

C–12 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

predecessor
A pointer to a pointer to the predecessor entry.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

_ _PAL_LDQP
This function returns the quadword-aligned memory object specified by
address.

This function has the following format:

unsigned _ _int64 _ _PAL_LDQP (void *address);

address
A pointer to the quadword-aligned memory object to be returned.

If the object pointed to by address is not quadword-aligned, the result is
unpredictable.

_ _PAL_MFPR_XXXX
These privileged functions return the contents of a particular processor
register. The XXXX indicates the processor register to be read.

These functions have the following format:

/* AST Enable */
unsigned int _ _PAL_MFPR_ASTEN (void);
/* AST Summary Register */
unsigned int _ _PAL_MFPR_ASTSR (void);
/* Executive Stack Pointer */
void *_ _PAL_MFPR_ESP (void);
/* Floating-Point Enable */
int _ _PAL_MFPR_FEN (void);
/* Interrupt Priority Level */
int _ _PAL_MFPR_IPL (void);
/* Machine Check Error Summary */
int _ _PAL_MFPR_MCES (void);
/* Privileged Context Block Base */
void *_ _PAL_MFPR_PCBB (void);
/* Processor Base Register */
_ _int64 _ _PAL_MFPR_PRBR (void);

Built-In Functions C–13

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

/* Page Table Base Register */
int _ _PAL_MFPR_PTBR (void);
/* System Control Block Base */
void *_ _PAL_MFPR_SCBB (void);
/* Software Interrupt Summary Register */
unsigned int _ _PAL_MFPR_SISR (void);
/* Supervisor Stack Pointer */
void *_ _PAL_MFPR_SSP (void);
/* Translation Buffer Check */
_ _int64 _ _PAL_MFPR_TBCHK (void *address);
/* User Stack Pointer */
void *_ _PAL_MFPR_USP (void);
/* Virtual Page Table */
void *_ _PAL_MFPR_VPTB (void);
/* Who Am I */ _ _int64 _ _PAL_MFPR_WHAMI (void);

_ _PAL_MTPR_XXXX
These privileged functions load a value into one of the special processor
registers. The XXXX indicates the processor register to be loaded.

These functions have the following format:

/* AST Enable */
void _ _PAL_MTPR_ASTEN (unsigned int mask);
/* AST Summary Register */
void _ _PAL_MTPR_ASTSR (unsigned int mask);
/* Data Alignment Trap Fixup */
void _ _PAL_MTPR_DATFX (int value);
/* Executive Stack Pointer */
void _ _PAL_MTPR_ESP (void *address);
/* Floating-Point Enable */
void _ _PAL_MTPR_FEN (int value);
/* Interprocessor Interrupt Request */
void _ _PAL_MTPR_IPIR (_ _int64 number);
/* Interrupt Priority Level */
int _ _PAL_MTPR_IPL (int value);
/* Machine Check Error Summary */
void _ _PAL_MTPR_MCES (int value);
/* Processor Base Register */
void _ _PAL_MTPR_PRBR (_ _int64 value);
/* System Control Block Base */
void _ _PAL_MTPR_SCBB (void *address);
/* Software Interrupt Request Register */

C–14 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

void _ _PAL_MTPR_SIRR (int level);
/* Supervisor Stack Pointer */
void _ _PAL_MTPR_SSP (int *address);
/* Translation Buffer Invalidate All*/
void _ _PAL_MTPR_TBIA (void);
/* Translation Buffer Invalidate All Process */
void _ _PAL_MTPR_TBIAP (void);
/* Translation Buffer Invalidate Single */
void _ _PAL_MTPR_TBIS (void *address);
/* Translation Buffer Invalidate Single Data */
void _ _PAL_MTPR_TBISD (void *address);
/* Translation Buffer Invalidate Single Instruction */
void _ _PAL_MTPR_TBISI (void *address);
/* User Stack Pointer */
void _ _PAL_MTPR_USP (void *address);
/* Virtual Page Table */ void _ _PAL_MTPR_VPTB (void *address);

_ _PAL_PROBER
This function checks the write accessibility of the first and last byte of the
given address and length pair.

This function has the following format:

int _ _PAL_PROBER (const void *base_address, int length,
char mode);

base_address
The pointer to the memory segment to be tested for read access.

length
The length of the memory segment, in bytes.

mode
The processor mode used for checking access.

There are two possible return values:

• 0 if both bytes are not accessible

• 1 if both bytes are accessible

Built-In Functions C–15

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

_ _PAL_PROBEW
This function checks the write accessibility of the first and last byte of the
given address and length pair.

This function has the following format:

int _ _PAL_PROBEW (const void *base_address, int length,
char mode);

base_address
The pointer to the memory segment to be tested for write access.

length
The length of the memory segment, in bytes.

mode
The processor mode used for checking access.

There are two possible return values:

• 0 if both bytes are not accessible

• 1 if both bytes are accessible

_ _PAL_RD_PS
This function returns the Processor Status (PS).

This function has the following format:

unsigned _ _int64 _ _PAL_RD_PS (void);

_ _PAL_REMQHIL
This function removes the first entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to the header and queue entries.

This function has the following format:

int _ _PAL_REMQHIL (void *head, void **removed_entry);
/* At head, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

C–16 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

_ _PAL_REMQHILR
This function removes the first entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_REMQHILR (void *head, void **removed_entry);
/* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

_ _PAL_REMQHIQ
This function removes the first entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to the header and queue entries.

This function has the following format:

int _ _PAL_REMQHIQ (void *head, void **removed_entry);
/* At head, interlocked */

Built-In Functions C–17

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

_ _PAL_REMQHIQR
This function removes the first entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_REMQHIQR (void *head, void **removed_entry);
/* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

C–18 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

_ _PAL_REMQTIL
This function removes the last entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to the header and queue entries.

This function has the following format:

int _ _PAL_REMQTIL (void *head, void **removed_entry);
/* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

_ _PAL_REMQTILR
This function removes the last entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_REMQTILR (void *head, void **removed_entry);
/* At tail, interlocked resident */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

Built-In Functions C–19

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

_ _PAL_REMQTIQ
This function removes the last entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access
to the header and queue entries.

This function has the following format:

int _ _PAL_REMQTIQ (void *head, void **removed_entry);
/* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

_ _PAL_REMQTIQR
This function removes the last entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
preprocessors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int _ _PAL_REMQTIQR (void *head, void **removed_entry);
/* At tail, interlocked resident */

C–20 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

_ _PAL_REMQUEL
This function removes an entry from a longword queue. This function must
have write access to header and queue entries.

This function has the following format:

int _PAL_REMQUEL (void *entry, void **removed_entry);

entry
A pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

_ _PAL_REMQUEL_D
This function removes an entry from a longword queue deferred. This function
must have write access to header and queue entries.

This function has the following format:

int _ _PAL_REMQUEL_D (void **entry, void **removed_entry);
/* Deferred */

Built-In Functions C–21

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

entry
A pointer to a pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

_ _PAL_REMQUEQ
This function removes an entry from a quadword queue. This function must
have write access to header and queue entries.

This function has the following format:

int _ _PAL_REMQUEQ (void *entry, void **removed_entry);

entry
A pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

_ _PAL_REMQUEQ_D
This function removes an entry from a quadword queue deferred. This function
must have write access to header and queue entries.

This function has the following format:

int _ _PAL_REMQUEQ_D (void **entry, void **removed_entry);
/* Deferred */

C–22 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

entry
A pointer to a pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

_ _PAL_STQP
This function writes the quadword value to the memory location pointed to by
address.

This function has the following format:

void _ _PAL_STQP (void *address, unsigned _ _int64 value);

address
Memory location to be written to.

value
Quadword value to be stored.

If the location pointed to by address is not quadword-aligned, the result is
unpredictable.

_ _PAL_SWASTEN
This function swaps the previous state of the Asynchronous System Trap (AST)
enable bit for the new state. The new state is supplied in bit 0 of new_state_
mask. The previous state is returned, zero-extended.

A check is made to determine if an AST is pending. If the enabling conditions
are present for an AST at the completion of this instruction, the AST occurs
before the next instruction.

This function has the following format:

unsigned int _ _PAL_SWASTEN (int new_state_mask);

Built-In Functions C–23

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

new_state_mask
An integer whose 0 bit is the new state of the AST enable bit.

_ _PAL_SWPCTX
This function returns ownership of the data structure that contains the current
hardware privileged context (the HWPCB) to the operating system and passes
ownership of the new HWPCB to the processor.

This function has the following format:

void _ _PAL_SWPCTX (void *address);

address
A pointer to the new HWPCB.

_ _PAL_WR_PS_SW
This function writes the low-order three bits of mask into the Processor Status
software field (PS<SW>).

This function has the following format:

void _ _PAL_WR_PS_SW (int mask);

mask
An integer whose low-order three bits are written into PS<SW>.

C.1.4 Other Builtins
Absolute Value (_ _ABS)
The _ _ABS built-in is functionally equivalent to its counterpart, abs, in the
standard header file <stdlib.h>.

Its format is also the same:

#include <stdlib.h>
int _ _ABS (int x);

This built-in function does, however, offer performance improvements because
there is less call overhead associated with its use.

If you include <stdlib.h>, the built-in function is automatically used for all
occurrences of abs. To disable the built-in function, use #undef abs.

C–24 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Acquire and Release Longword Semaphore (_ _ACQUIRE_SEM_LONG,
_ _RELEASE_SEM_LONG)
The _ _ACQUIRE_SEM_LONG and _ _RELEASE_SEM_LONG functions
provide a counted semaphore capability where the positive value of a longword
is interpreted as the number of resources available.

The _ _ACQUIRE_SEM_LONG function loops until the longword has a positive
value and then decrements it within a load-locked/store-conditional sequence;
it then issues a memory barrier. This function returns 1 if the resource count
was successfully decremented within the specified number of retries, and 0
otherwise. With no explicit retry count, the function does not return until it
succeeds.

The _ _RELEASE_SEM_LONG function issues a memory barrier and then does
an _ _ATOMIC_INCREMENT_LONG on the longword.

The _ _ACQUIRE_SEM_LONG function has the following formats:

int _ _ACQUIRE_SEM_LONG (volatile void *address);
int _ _ACQUIRE_SEM_LONG_RETRY (volatile void *address, int retry);

The _ _RELEASE_SEM_LONG function has the following format:

int _ _RELEASE_SEM_LONG (volatile void *address);

address
The longword-aligned address of the resource count.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

Add Aligned Word Interlocked (_ _ADAWI)
The _ _ADAWI function adds its source operand to the destination. This
function is interlocked against similar operations by other processors or devices
in the system.

This function has the following format:

int _ _ADAWI (short src, short *dest);

Built-In Functions C–25

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

src
The value to be added to the destination.

dest
A pointer to the destination. The destination must be aligned on a word
boundary.

The _ _ADAWI function returns a simulated VAX processor status longword
(PSL).

Add Atomic Longword (_ _ADD_ATOMIC_LONG)
The _ _ADD_ATOMIC_LONG function adds the specified expression to
the longword data segment pointed to by the address parameter within a
load-locked/store-conditional code sequence.

This function has the following format:

int _ _ADD_ATOMIC_LONG int fnc(void *, int, ...);

address
The address of the data segment.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates
the number of times the operation is attempted. If the operation cannot
be performed successfully in the specified number of retries, a value of 0 is
returned.

A value of 1 is returned upon successful completion.

Add Atomic Quadword (_ _ADD_ATOMIC_QUAD)
The _ _ADD_ATOMIC_QUAD function adds the specified expression to the
quadword data segment pointed to by the address parameter within a load-
locked/store-conditional code sequence.

This function has the following format:

int _ _ADD_ATOMIC_QUAD (void *address, int expression, ...);

C–26 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

address
The address of the data segment.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates
the number of times the operation is attempted. If the operation cannot
be performed successfully in the specified number of retries, a value of 0 is
returned.

A value of 1 is returned upon successful completion.

AND Atomic Longword (_ _AND_ATOMIC_LONG)
The _ _AND_ATOMIC_LONG function performs a bit-wise or arithmetic AND
of the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int _ _AND_ATOMIC_LONG (void *address, int expression, ...);

address
The longword-aligned address of the data segment.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even if
the count argument is 0). If the operation cannot be performed successfully in
the specified number of retries, a value of 0 is returned.

A value of 1 is returned upon successful completion.

AND Atomic Quadword (_ _AND_ATOMIC_QUAD)
The _ _AND_ATOMIC_QUAD function performs a bit-wise or arithmetic AND
of the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int _ _AND_ATOMIC_QUAD (void *address, int expression, ...);

Built-In Functions C–27

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

address
The address of the aligned quadword.

expression
An integer expression.

. . .
An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even if
the count argument is 0). If the operation cannot be performed successfully in
the specified number of retries, a value of 0 is returned.

A value of 1 is returned upon successful completion.

Atomic Add Longword (_ _ATOMIC_ADD_LONG)
The _ _ATOMIC_ADD_LONG function adds the specified expression to
the aligned longword pointed to by the address parameter within a load-
locked/store-conditional code sequence and returns the value of the longword
before the addition was performed.

This function has one of the following formats:

int _ _ATOMIC_ADD_LONG (volatile void *address,
int expression);

int _ _ATOMIC_ADD_LONG_RETRY (volatile void *address,
int expression, int retry,
int *status);

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

C–28 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Atomic Add Quadword (_ _ATOMIC_ADD_QUAD)
The _ _ATOMIC_ADD_QUAD function adds the specified expression to
the aligned quadword pointed to by the address parameter within a load-
locked/store-conditional code sequence and returns the value of the quadword
before the addition was performed.

This function has one of the following formats:

int _ _ATOMIC_ADD_QUAD (volatile void *address,
int expression);

int _ _ATOMIC_ADD_QUAD_RETRY (volatile void *address,
int expression, int retry,
int *status);

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic AND Longword (_ _ATOMIC_AND_LONG)
The _ _ATOMIC_AND_LONG function performs a bit-wise or arithmetic AND
of the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the longword before the operation was performed.

This function has one of the following formats:

int _ _ATOMIC_AND_LONG (volatile void *address,
int expression);

int _ _ATOMIC_AND_LONG_RETRY (volatile void *address,
int expression, int retry,
int *status);

Built-In Functions C–29

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic AND Quadword (_ _ATOMIC_AND_QUAD)
The _ _ATOMIC_AND_QUAD function performs a bit-wise or arithmetic AND
of the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the quadword before the operation was performed.

This function has one of the following formats:

int _ _ATOMIC_AND_QUAD (volatile void *address,
int expression);

int _ _ATOMIC_AND_QUAD_RETRY (volatile void *address,
int expression, int retry,
int *status);

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

C–30 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic OR Longword (_ _ATOMIC_OR_LONG)
The _ _ATOMIC_OR_LONG function performs a bit-wise or arithmetic OR of
the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the longword before the operation was performed.

This function has one of the following formats:

int _ _ATOMIC_OR_LONG (volatile void *address, int expression);

int _ _ATOMIC_OR_LONG_RETRY (volatile void *address,
int expression, int retry, int *status);

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic OR Quadword (_ _ATOMIC_OR_QUAD)
The _ _ATOMIC_OR_QUAD function performs a bit-wise or arithmetic OR of
the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the quadword before the operation was performed.

This function has one of the following formats:

int _ _ATOMIC_OR_QUAD (volatile void *address, int expression);

int _ _ATOMIC_OR_QUAD_RETRY (volatile void *address,
int expression, int retry, int *status);

Built-In Functions C–31

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic Increment Longword (_ _ATOMIC_INCREMENT_LONG)
The _ _ATOMIC_INCREMENT_LONG function increments by 1 the aligned
longword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the longword before the
operation was performed.

This function has the following formats:

int _ _ATOMIC_INCREMENT_LONG (volatile void *address);

int _ _ATOMIC_INCREMENT_LONG_RETRY (volatile void *address, int retry, int *status);

address
The longword-aligned address of the data segment.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

C–32 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Atomic Increment Quadword (_ _ATOMIC_INCREMENT_QUAD)
The _ _ATOMIC_INCREMENT_QUAD function increments by 1 the aligned
quadword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the quadword before the
operation was performed.

This function has the following formats:

int _ _ATOMIC_INCREMENT_QUAD (volatile void *address);

_ _int64 _ _ATOMIC_INCREMENT_QUAD (volatile void *address, int retry, int *status);

address
The quadword-aligned address of the data segment.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic Decrement Longword (_ _ATOMIC_DECREMENT_LONG)
The _ _ATOMIC_DECREMENT_LONG function decrements by 1 the aligned
longword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the longword before the
operation was performed.

This function has the following formats:

int _ _ATOMIC_DECREMENT_LONG (volatile void *address);

int _ _ATOMIC_DECREMENT_LONG_RETRY (volatile void *address, int retry, int *status);

address
The longword-aligned address of the data segment.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

Built-In Functions C–33

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic Decrement Quadword (_ _ATOMIC_DECREMENT_QUAD)
The _ _ATOMIC_DECREMENT_QUAD function decrements by 1 the aligned
quadword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the quadword before the
operation was performed.

This function has the following formats:

int _ _ATOMIC_DECREMENT_QUAD (volatile void *address);

_ _int64 _ _ATOMIC_DECREMENT_QUAD_RETRY (volatile void *address, int retry, int *status);

address
The quadword-aligned address of the data segment.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic Exchange Longword (_ _ATOMIC_EXCH_LONG)
The _ _ATOMIC_EXCH_LONG function stores the value of the specified
expression into the aligned longword pointed to by the address parameter
within a load-locked/store-conditional code sequence and returns the value of
the longword before the operation was performed.

This function has one of the following formats:

int _ _ATOMIC_EXCH_LONG (volatile void *address,
int expression);

int _ _ATOMIC_EXCH_LONG_RETRY (volatile void *address,
int expression, int retry, int *status);

C–34 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic Exchange Quadword (_ _ATOMIC_EXCH_QUAD)
The _ _ATOMIC_EXCH_QUAD function stores the value of the specified
expression into the aligned quadword pointed to by the address parameter
within a load-locked/store-conditional code sequence and returns the value of
the quadword before the operation was performed.

This function has one of the following formats:

int _ _ATOMIC_EXCH_QUAD (volatile void *address,
int expression);

int _ _ATOMIC_EXCH_QUAD_RETRY (volatile void *address, int expression, int retry,
int *status);

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Built-In Functions C–35

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Allocate Bytes from Stack (_ _ALLOCA)
The _ _ALLOCA function allocates n bytes from the stack.

This function has the following format:

void *_ _ALLOCA (unsigned int n);

n
The number of bytes to be allocated.

A pointer to the allocated memory is returned.

Single-Precision, Floating-Point Arithmetic Built-in Functions
The following built-in functions provide single-precision, floating-point chopped
arithmetic:

__ADDF_C __ADDS_C __SUBF_C __SUBS_C

__MULF_C __MULS_C __DIVF_C __DIVS_C

They have the following format:

float _ _op{F,S}_C (float operand1, float operand2);

Where op is one of ADD, SUB, MUL, DIV, and {F,S} represents VAX or IEEE
floating-point arithmetic.

The result of the arithmetic operation is returned.

Double-Precision, Floating-Point Arithmetic Built-in Functions
The following built-in functions provide double-precision, floating-point chopped
arithmetic:

__ADDG_C __ADDT_C __SUBG_C __SUBT_C

__MULG_C __MULT_C __DIVG_C __DIVT_C

They have the following format:

double _ _op{G,T}_C (double operand1, double operand2);

Where op is one of ADD, SUB, MUL, DIV, and {G,T} represents VAX or IEEE
floating-point arithmetic.

The result of the arithmetic operation is returned.

C–36 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Copy Sign Built-in Functions
Built-in functions are provided to copy selected portions of single- and double-
precision, floating-point numbers.

These built-in functions have the following format:

float _ _CPYSF (float operand1, float operand2);
double _ _CPYS (double operand1, double operand2);

float _ _CPYSNF (float operand1, float operand2);
double _ _CPYSN (double operand1, double operand2);

float _ _CPYSEF (float operand1, float operand2);
double _ _CPYSE (double operand1, double operand2);

The copy sign built-in functions (_ _CPYSF and _ _CPYS) fetch the sign bit in
operand1, concatenate it with the exponent and fraction bits from operand2,
and return the result.

The copy sign negate built-in functions (_ _CPYSNF and _ _CPYSN) fetch the
sign bit in operand1, complement it, concatenate it with the exponent and
fraction bits from operand2, and return the result.

The copy sign exponent built-in functions (_ _CPYSEF and _ _CPYSE) fetch the
sign and exponent bits from operand1, concatenate them with the fraction bits
from operand2, and return the result.

Compare Store Longword (_ _CMP_STORE_LONG)
The _ _CMP_STORE_LONG function has the following format:

int _ _CMP_STORE_LONG (void *source, int old_value, int new_value, void *dest);

This function compares the value pointed to by source with the longword
old_value. If they are equal, the longword new_value is stored into the value
pointed to by dest. The comparison is within a load-locked/store-conditional
code sequence.

The function returns 0 if the two values are unequal, if source and dest are not
in the same 16-byte lock region, or if some other process accessed the 16-byte
lock region before new_value could be stored. The function returns 1 if the two
values are equal and new_value was stored atomically.

Built-In Functions C–37

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Compare Store Quadword (_ _CMP_STORE_QUAD)
The _ _CMP_STORE_QUAD function has the following format:

int _ _CMP_STORE_QUAD (void *source, _ _int64 old_value,
_ _int64 new_value, void *dest);

This function compares the value pointed to by source with the quadword
old_value. If they are equal, the quadword new_value is stored into the value
pointed to by dest. The comparison is within a load-locked/store-conditional
code sequence.

The function returns 0 if the two values are unequal, if source and dest are not
in the same 16-byte lock region, or if some other process accessed the 16-byte
lock region before new_value could be stored. The function returns 1 if the two
values are equal and new_value was stored atomically.

Cosine (_ _COS)
The _ _COS built-in function is functionally equivalent to its counterpart, cos,
in the standard header file <math.h>.

Its format is also the same:

#include <math.h>
double _ _COS (double x);

x
A radian value.

This built-in function does, however, offer performance improvements because
there is less call overhead associated with its use.

If you include <math.h>, the built-in function is automatically used for all
occurrences of cos. To disable the built-in function, use #undef cos.

Convert G_Floating to F_Floating Chopped (_ _CVTGF_C)
The _ _CVTGF_C function converts a double-precision, VAX G_floating-point
number to a single-precision, VAX F_floating-point number. This conversion
chops to single-precision; then the 8-bit exponent range is checked for overflow
or underflow.

This function has the following format:

float _ _CVTGF_C (double operand);

C–38 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

operand
A double-precision, VAX floating-point number.

Convert G-Floating to Quadword (_ _CVTGQ)
The _ _CVTGQ function rounds a double-precision, VAX floating-point number
to a 64-bit integer value and returns the result.

This function has the following format:

_ _int64 _ _CVTGQ (double operand);

operand
A double-precision, VAX floating-point number.

Convert IEEE T_Floating to IEEE S_Floating Chopped (_ _CVTTS_C)
The _ _CVTTS_C function converts a double-precision, IEEE T_floating-point
number to a single-precision, IEEE S_floating-point number. This conversion
chops to single-precision; then the 8-bit exponent range is checked for overflow
or underflow.

This function has the following format:

float _ _CVTTS_C (double operand);

operand
A double-precision, IEEE floating-point number.

Convert IEEE T-Floating to Quadword (_ _CVTTQ)
The _ _CVTTQ function rounds a double-precision, IEEE-floating-point number
to a 64-bit integer value and returns the result.

This function has the following format:

_ _int64 _ _CVTTQ (double operand);

operand
A double-precision, IEEE T-floating-point number.

Floating-Point Absolute Value (_ _FABS)
The _ _FABS built-in function is functionally equivalent to its counterpart,
fabs, in the standard header file <math.h>.

Its format is also the same:

#include <math.h>
double _ _FABS (double x);

Built-In Functions C–39

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

x
A floating-point number.

This built-in function does, however, offer performance improvements because
there is no call overhead associated with its use.

If you include <math.h>, the built-in function is automatically used for all
occurrences of fab. To disable the built-in function, use #undef fab.

Test for Bit Clear then Clear Bit Interlocked
(_ _INTERLOCKED_TESTBITCC_QUAD)
The _ _INTERLOCKED_TESTBITCC_QUAD function performs the following
functions in interlocked fashion:

1. Returns the complement of the specified bit before being cleared.

2. Clears the bit.

This function has the following formats:

int _ _INTERLOCKED_TESTBITCC_QUAD (volatile void *address, int bit_position);

int _ _INTERLOCKED_TESTBITCC_QUAD_RETRY (volatile void *address, int bit_position, int retry,
int *status);

address
The quadword-aligned base address of the bit field.

bit_position
The position within the field of the bit that you want cleared, in the range of 0
to 63.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

C–40 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Test for Bit Set Then Set Bit Interlocked
(_ _INTERLOCKED_TESTBITSS_QUAD)
The _ _INTERLOCKED_TESTBITSS_QUAD function performs the following
functions in interlocked fashion:

1. Returns the value of the specified bit before being set.

2. Sets the bit.

This function has the following formats:

int _ _INTERLOCKED_TESTBITSS_QUAD (volatile void *address, int bit_position);

int _ _INTERLOCKED_TESTBITSS_QUAD_RETRY (volatile void *address, int expression, int retry,
int *status);

address
The quadword-aligned base address of the bit field.

bit_position
The position within the field of the bit that you want cleared, in the range of 0
to 63.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

_leadz
The _leadz built-in function returns the number of leading zeroes (starting
at the most significant bit position) in its argument. For example, _leadz(1)
returns 63, and _leadz(0) returns 64.

This function has the following format:

_ _int64 _leadz (unsigned _ _int64);

Built-In Functions C–41

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Lock and Unlock Longword (_ _LOCK_LONG, _ _UNLOCK_LONG)
The _ _LOCK_LONG and _ _UNLOCK_LONG functions provide a binary
spinlock capability based on the low-order bit of a longword.

The _ _LOCK_LONG function executes in a loop waiting for the bit to be
cleared and then sets it within a load-locked/store-conditional sequence; it then
issues a memory barrier. The _ _UNLOCK_LONG function issues a memory
barrier and then zeroes the longword.

The _ _LOCK_LONG_RETRY function returns 1 if the lock was acquired in the
specified number of retries and 0 if the lock was not acquired.

The _ _LOCK_LONG function has the following formats:

int _ _LOCK_LONG (volatile void *address);

int _ _LOCK_LONG_RETRY (volatile void *address, int retry);

The _ _UNLOCK_LONG function has the following format:

int _ _UNLOCK_LONG (volatile void *address);

address
The quadword-aligned address of the longword used for the lock.

retry
A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

Longword Absolute Value (_ _LABS)
The _ _LABS built-in function is functionally equivalent to its counterpart,
labs, in the standard header file <stdlib.h>.

Its format is also the same:

#include <stdlib.h>
long int _ _LABS (long int x);

x
An integer.

This built-in function does, however, offer performance improvements because
there is less call overhead associated with its use.

If you include <stdlib.h>, the built-in function is automatically used for all
occurrences of labs. To disable the built-in function, use #undef labs.

C–42 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Memory Barrier (_ _MB)
The _ _MB function directs the compiler to generate a memory barrier
instruction.

This function has the following format:

void _ _MB (void);

Memory Copy and Set Functions (_ _MEMCPY, _ _MEMMOVE, _ _MEMSET)
The _ _MEMCPY, _ _MEMMOVE, and _ _MEMSET built-in functions are
functionally equivalent to their counterparts in the standard header file
<string.h>.

Their format is also the same:

#include <string.h>
void *_ _MEMCPY (void *s1, const void *s2, size_t size);
void *_ _MEMMOVE (void *s1, const void *s2, size_t size);
void *_ _MEMSET (void *s, int value, size_t size);

These built-in functions do, however, offer performance improvements because
there is less call overhead associated with their use.

If you include <string.h>, the built-in functions are automatically used for all
occurrences of memcpy, memmove, and memset. To disable the built-in functions,
use #undef memcpy, #undef memmove, and #undef memset.

_popcnt
The _popcnt built-in function returns the number of "1" bits (0 to 64) in its
argument. For example, _popcnt(12) returns 2.

This function has the following format:

_ _int64 _popcnt (unsigned _ _int64);

_poppar
The _poppar built-in function returns 1 if the number of "1" bits in its
argument is odd; otherwise it returns 0. For example, _poppar(12) returns
0.

This function has the following format:

_ _int64 _poppar (unsigned _ _int64);

Read Process Cycle Counter (_ _RPCC)
The _ _RPCC function reads the current process cycle counter.

This function has the following format:

_ _int64 _ _RPCC (void);

Built-In Functions C–43

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Sine (_ _SIN)
The _ _SIN built-in function is functionally equivalent to its counterpart in the
standard header file <math.h>.

Its format is also the same:

#include <math.h>
double _ _SIN (double x);

x
A radian value.

This built-in function does, however, offer performance improvements because
there is less call overhead associated with its use.

If you include <math.h>, the built-in function is used automatically for all
occurrences of sin. To disable the built-in function, use #undef sin.

Test for Bit Clear then Clear Bit Interlocked (_ _TESTBITCCI)
The _ _TESTBITCCI function performs the following operations in interlocked
fashion:

• Returns the complement of the specified bit before being cleared

• Clears the bit

This function has the following format:

int _ _TESTBITCCI (void *address, int position, ...);

address
The base address of the field.

position
The position within the field of the bit that you want cleared.

. . .
An optional retry count of type int. If specified, the retry count indicates
the number of times the operation is attempted. If the operation cannot
be performed successfully in the specified number of retries, a value of 0 is
returned.

C–44 Built-In Functions

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

Test for Bit Set then Set Bit Interlocked (_ _TESTBITSSI)
The _ _TESTBITSSI function performs the following operations in interlocked
fashion:

• Returns the value of the specified bit before being set

• Sets the bit

This function has the following format:

int _ _TESTBITSSI (void *address, int position, ...);

address
The base address of the field.

position
The position within the field of the bit that you want set.

. . .
An optional retry count of type int. If specified, the retry count indicates
the number of times the operation is attempted. If the operation cannot
be performed successfully in the specified number of retries, a value of 0 is
returned.

_trailz
The _trailz built-in function returns the number of trailing zeros (counting
after the least significant set bit to the least significant bit position) in its
argument. For example, _trailz(2) returns 1, and _trailz(0) returns 64.

This function has the following format:

_ _int64 _trailz (unsigned _ _int64);

Trap Barrier Instruction (_ _TRAPB)
The _ _TRAPB function allows software to guarantee that, in a pipeline
implementation, all previous arithmetic instructions will be completed without
incurring any arithmetic traps before any instructions after the TRAPB
instruction are issued.

This function has the following format:

void _ _TRAPB (void);

Unsigned Quadword Multiply High (_ _UMULH)
The _ _UMULH function performs a quadword multiply high instruction.

This function has the following format:

unsigned _ _int64 _ _UMULH (unsigned _ _int64 operand1, unsigned _ _int64 operand2);

Built-In Functions C–45

Built-In Functions
C.1 Built-In Functions for Alpha Systems (Alpha only)

operand1
A 64-bit unsigned integer.

operand2
A 64-bit unsigned integer.

The two operands are multiplied as unsigned integers to produce a 128-bit
result. The high order 64-bits are returned.

C.2 Built-In Functions for I64 Systems (I64 only)

The HP C++ built-in functions available on OpenVMS Alpha systems are also
available on I64 systems, with some differences, as described in this section.
This section also describes built-in functions that are specific to I64 systems.

C.2.1 Builtin Differences on I64 Systems
The <builtins.h> header file contains comments noting which built-in
functions are not available or are not the preferred form for I64 systems. The
compiler issues diagnostics where using a different built-in function for I64
systems would be preferable.

Note

The comments in <builtins.h> reflect only what is explicitly present
in that header file itself, and in the compiler implementation. You
should also consult the content and comments in <pal_builtins.h>
to determine more accurately what functionality is effectively
provided by including <builtins.h>. For example, if a program
explicitly declares one of the Alpha built-in functions and invokes
it without having included <builtins.h>, the compiler might issue
the BIFNOTAVAIL error message, regardless of whether or not the
function is available through a system service. If the compilation
does include <builtins.h>, and BIFNOTAVAIL is issued, then either
there is no support at all for the built-in function or a new version of
<pal_builtins.h> is needed.

Here is a summary of these differences on I64 systems:

• There is no support for the asm, fasm, and dasm intrinsics (declared in the
<c_asm.h> header file).

C–46 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

• The functionality provided by the special-case treatment of R26 in an
Alpha system asm, as in asm("MOV R26,R0"), is provided by a new built-in
function for I64 systems:

__int64 __RETURN_ADDRESS(void);

This built-in function produces the address to which the function containing
the built-in call will return (the value of R26 on entry to the function on
Alpha systems; the value of B0 on entry to the function on I64 systems).
This built-in function cannot be used within a function specified to use
nonstandard linkage.

• The only PAL function calls implemented as built-in functions within the
compiler are the 24 queue-manipulation builtins. The queue manipulation
builtins generate calls to new OpenVMS system services SYS$<name>,
where <name> is the name of the builtin with the leading underscores
removed.

Any other OpenVMS PAL calls are supported through macros defined in
the <pal_builtins.h> header file included in the <builtins.h> header
file. Typically, the macros in <pal_builtins.h> transform an invocation
of an Alpha system builtin into a call to a system service that performs
the equivalent function on an I64 system. Two notable exceptions are
_ _PAL_GENTRAP and _ _PAL_BUGCHK, which instead invoke the I64
specific compiler builtin _ _break2.

• There is no support for the various floating-point built-in functions used by
the OpenVMS math library (for example, operations with chopped rounding
and conversions).

• For most built-in functions that take a retry count, the compiler issues a
an error message. Such builtins must be replaced with the corresponding
builtin that does not have a retry count. This is necessary because the
retry behavior allowed by Alpha load-locked/store-conditional sequences
does not exist on I64 systems. There are two exceptions to this: _ _LOCK_
LONG_RETRY and _ _ACQUIRE_SEM_LONG_RETRY; in these cases,
the retry behavior involves comparisons of data values, not just load-
locked/store-conditional.

• The _ _CMP_STORE_LONG and _ _CMP_STORE_QUAD built-in functions
produce an error message, and must be replaced with the new _ _CMP_
SWAP_LONG and _ _CMP_SWAP_QUAD built-in functions.

Built-In Functions C–47

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

C.2.2 Built-in Functions Specific to I64 Systems
The <builtins.h> header file contains a section at the top conditionalized
to just _ _ia64 with the support for built-in functions specific to I64 systems.
This includes macro definitions for all of the registers that can be specified
to the _ _getReg, _ _setReg, _ _getIndReg, and _ _setIndReg built-in functions.
Parameters that are const-qualified require an argument that is a compile-
time constant.

The following sections describe the HP C++ built-in functions available on
OpenVMS I64 systems.

Get Hardware Register Value (_ _getReg)
The _ _getReg function gets the value from a hardware register based on
the register index specified. This function produces a corresponding mov = r
instruction.

This function has the following format:

unsigned _ _int64 _ _getReg (const int whichReg);

whichReg
The index of the hardware register from which the value is obtained. The
_ _getReg and _ _setReg functions can access the following registers:

Register Name whichReg
_IA64_REG_IP 1016
_IA64_REG_PSR 1019
_IA64_REG_PSR_L 1019

General Integer Registers:

Register Name whichReg
_IA64_REG_GP 1025
_IA64_REG_SP 1036
_IA64_REG_TP 1037

Application Registers:

C–48 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

Register Name whichReg
_IA64_REG_AR_KR0 3072
_IA64_REG_AR_KR1 3073
_IA64_REG_AR_KR2 3074
_IA64_REG_AR_KR3 3075
_IA64_REG_AR_KR4 3076
_IA64_REG_AR_KR5 3077
_IA64_REG_AR_KR6 3078
_IA64_REG_AR_KR7 3079
_IA64_REG_AR_RSC 3088
_IA64_REG_AR_BSP 3089
_IA64_REG_AR_BSPSTORE 3090
_IA64_REG_AR_RNAT 3091
_IA64_REG_AR_FCR 3093
_IA64_REG_AR_EFLAG 3096
_IA64_REG_AR_CSD 3097
_IA64_REG_AR_SSD 3098
_IA64_REG_AR_CFLAG 3099
_IA64_REG_AR_FSR 3100
_IA64_REG_AR_FIR 3101
_IA64_REG_AR_FDR 3102
_IA64_REG_AR_CCV 3104
_IA64_REG_AR_UNAT 3108
_IA64_REG_AR_FPSR 3112
_IA64_REG_AR_ITC 3116
_IA64_REG_AR_PFS 3136
_IA64_REG_AR_LC 3137
_IA64_REG_AR_EC 3138

Control Registers:

Built-In Functions C–49

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

Register Name whichReg
_IA64_REG_CR_DCR 4096
_IA64_REG_CR_ITM 4097
_IA64_REG_CR_IVA 4098
_IA64_REG_CR_PTA 4104
_IA64_REG_CR_IPSR 4112
_IA64_REG_CR_ISR 4113
_IA64_REG_CR_IIP 4115
_IA64_REG_CR_IFA 4116
_IA64_REG_CR_ITIR 4117
_IA64_REG_CR_IIPA 4118
_IA64_REG_CR_IFS 4119
_IA64_REG_CR_IIM 4120
_IA64_REG_CR_IHA 4121
_IA64_REG_CR_LID 4160
_IA64_REG_CR_IVR 4161 *
_IA64_REG_CR_TPR 4162
_IA64_REG_CR_EOI 4163
_IA64_REG_CR_IRR0 4164 *
_IA64_REG_CR_IRR1 4165 *
_IA64_REG_CR_IRR2 4166 *
_IA64_REG_CR_IRR3 4167 *
_IA64_REG_CR_ITV 4168
_IA64_REG_CR_PMV 4169
_IA64_REG_CR_CMCV 4170
_IA64_REG_CR_LRR0 4176
_IA64_REG_CR_LRR1 4177

* getReg only

Set Hardware Register Value (_ _setReg)
The _ _setReg function sets the value for a hardware register based on the
register index specified. This function produces a corresponding mov = r
instruction.

This function has the following format:

void _ _setReg (const int whichReg, unsigned _ _int64 value);

whichReg
The index of the hardware register whose value is being set. See the _ _getReg
functions for the list of registers that can be accessed.

value
The value to which the register is set.

C–50 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

Get Index Register Value (_ _getIndReg)
The _ _getIndReg function returns the value of an indexed register. The
function accesses a register (index) in a register file (whichIndReg) of 64-bit
registers.

This function has the following format:

unsigned _ _int64 _ _getIndReg (const int whichIndReg, _ _int64 index);

whichIndReg
The register file.

index
The index in the register file of the hardware register whose value is being
requested. See the _ _getReg functions for the list of registers that can be
accessed.

Indirect Registers for getIndReg and setIndReg:

Register Name whichReg

_IA64_REG_INDR_CPUID 9000 *
_IA64_REG_INDR_DBR 9001
_IA64_REG_INDR_IBR 9002
_IA64_REG_INDR_PKR 9003
_IA64_REG_INDR_PMC 9004
_IA64_REG_INDR_PMD 9005
_IA64_REG_INDR_RR 9006
_IA64_REG_INDR_RESERVED 9007

* getIndReg only

Set Index Register Value (_ _setIndReg)
The _ _setIndReg function copies a value into an indexed register. The function
accesses a register (index) in a register file (whichIndReg) of 64-bit registers.

This function has the following format:

void _ _setIndReg (const int whichIndReg, _ _int64 index, unsigned _ _int64 value);

whichIndReg
The register file.

index
The index in the register file of the hardware register to be set. See the
_ _getIndReg function for the list of registers that can be accessed.

value
The value to which the register is set.

Built-In Functions C–51

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

Generate Break Instruction (_ _break)
The _ _break function generates a break instruction with an immediate.

This function has the following format:

void _ _break (const int _ _break_arg);

_ _break_arg
An immediate value for the _ _break instruction to use.

Serialize Data (_ _dsrlz)
The _ _dsrlz function serializes data. Maps to the srlz.d instruction.

This function has the following format:

void _ _dsrlz (void);

Flush Cache Instruction (_ _fc)
The _ _fc function flushes a cache line associated with the address given by the
argument. Maps to the fcr instruction.

This function has the following format:

void _ _fc (_ _int64 _ _address);

_ _address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Flush Write Buffers (_ _fwb)
The _ _fwb function flushes the write buffers. Maps to the fwb instruction.

This function has the following format:

void _ _fwb (void);

Invalidate ALAT (_ _invalat)
The _ _invalat function invalidates ALAT. Maps to the invala instruction.

This function has the following format:

void _ _invalat (void);

Invalidate ALAT (_ _invala)
The _ _invala function is the same as the _ _invalat function.

C–52 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

Execute Serialize (_ _isrlz)
The _ _isrlz function executes the serialize instruction. Maps to the srlz.i
instruction.

This function has the following format:

void _ _isrlz (void);

Insert Data Address Translation Cache (_ _itcd)
The _ _itcd function inserts an entry into the data translation cache. Maps to
the itc.d instruction.

This function has the following format:

void _ _itcd (_ _int64 pa);

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Insert Instruction Address Translation Cache (_ _itci)
The _ _itci function inserts an entry into the instruction translation cache.
Maps to the itc.i instruction.

This function has the following format:

void _ _itci (_ _int64 pa);

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Insert Data Translation Register (_ _itrd)
The _ _itrd function maps to the itr.d instruction.

This function has the following format:

void _ _itrd (_ _int64 whichTransReg, _ _int64 pa);

whichTransReg
The data translation register to be used by the itr.d instruction.

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Built-In Functions C–53

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

Insert Instruction Translation Register (_ _itri)
The _ _itri function maps to the itr.i instruction.

This function has the following format:

void _ _itri (_ _int64 whichTransReg, _ _int64 pa);

whichTransReg
The data translation register to be used by the itr.i instruction.

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Purge Translation Cache Entry (_ _ptce)
The _ _ptce function maps to the ptc.e instruction.

This function has the following format:

void _ _ptce (_ _int64 va);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Purge Global Translation Cache (_ _ptcg)
The _ _ptcg function purges the global translation cache. Maps to the ptc.g r,r
instruction.

This function has the following format:

void _ _ptcg (_ _int64 va, _ _int64 pagesz);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

Purge Local Translation Cache (_ _ptcl)
The _ _ptcl function purges the local translation cache. Maps to the ptc.l r,r
instruction.

This function has the following format:

void _ _ptcl (_ _int64 va, _ _int64 pagesz);

C–54 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

Purge Global Translation Cache and ALAT (_ _ptcga)
The _ _ptcga function purges the global translation cache and ALAT. Maps to
the ptc.ga r,r instruction.

This function has the following format:

void _ _ptcga (_ _int64 va, _ _int64 pagesz);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

Purge Data Translation Register (_ _ptrd)
The _ _ptrd function purges the data translation register. Maps to the ptr.d r,r
instruction.

This function has the following format:

void _ _ptrd (_ _int64 va, _ _int64 pagesz);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

Purge Instruction Translation Register (_ _ptri)
The _ _ptri function purges the instruction translation register. Maps to the
ptr.i r,r instruction.

This function has the following format:

void _ _ptri (_ _int64 va, _ _int64 pagesz);

Built-In Functions C–55

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

Reset System Mask (_ _rsm)
The _ _rsm function resets the system mask bits of the PSR. Maps to the rsm
imm24 instruction.

This function has the following format:

void _ _rsm (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

Reset User Mask (_ _rum)
The _ _rum function resets the user mask.

This function has the following format:

void _ _rum (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

Set System Mask (_ _ssm)
The _ _ssm function sets the system mask.

This function has the following format:

void _ _ssm (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

Set User Mask (_ _sum)
The _ _sum function sets the user mask bits of the PSR. Maps to the sum
imm24 instruction.

This function has the following format:

void _ _sum (int mask);

C–56 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

mask
An integer value inserted into the instruction as a 24-bit immediate value.

Enable Memory Synchronization (_ _synci)
The _ _synci function enables memory synchronization. Maps to the sync.i
instruction.

This function has the following format:

void _ _synci (void);

Translation Hashed Entry Address (_ _thash)
The _ _thash function generates a translation hash entry address. Maps to the
thash r = r instruction.

This function has the following format:

void _ _thash(_ _int64 _ _address);

_ _address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Translation Hashed Entry Tag (_ _ttag)
The _ _ttag function generates a translation hash entry tag. Maps to the ttag
r=r instruction.

This function has the following format:

void _ _ttag(_ _int64 _ _address);

_ _address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Atomic Compare and Exchange (_InterlockedCompareExchange_acq)
The _InterlockedCompareExchange_acq function atomically compares and
exchanges the value specified by the first argument (a 64-bit pointer). This
function maps to the cmpxchg4.acq instruction with appropriate setup.

This function has the following format:

unsigned _ _int64 _InterlockedCompareExchange_acq (volatile unsigned int *Destination,
unsigned _ _int64 Newval, unsigned _ _int64 Comparand);

Built-In Functions C–57

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

The value at *Destination is compared with the value specified by Comparand.
If they are equal, Newval is written to *Destination, and Oldval is returned.
The exchange will have taken place if the value returned is equal to the
Comparand. The following algorithm is used:

ar.ccv = Comparand;
Oldval = *Destination; //Atomic
if (ar.ccv == *Destination) //Atomic

*Destination = Newval; //Atomic
return Oldval;

Those parts of the algorithm that are marked "Atomic" are performed
atomically by the cmpxchg4.acq instruction. This instruction has acquire
ordering semantics; that is, the memory read/write is made visible prior to
all subsequent data memory accesses of the Destination by other processors.

Destination
The value to be compared with Comparand and, if equal, replaced with the
value of Newval.

Newval
The new value to replace the value in Destination.

Comparand
The value with which to compare Destination.

Atomic Compare and Exchange (_InterlockedCompareExchange64_acq)
The _InterlockedCompareExchange64_acq function is the same as the _
InterlockedCompareExchange_acq function, except that those parts of the
algorithm that are marked "Atomic" are performed by the cmpxchg8.acq
instruction.

This function has the following format:

unsigned _ _int64 _InterlockedCompareExchange64_acq (volatile unsigned _ _int64 *Destination,
unsigned _ _int64 Newval, unsigned _ _int64 Comparand);

Atomic Compare and Exchange (_InterlockedCompareExchange_rel)
This function is the same as the _InterlockedCompareExchange_acq function
except that those parts of the algorithm that are marked "Atomic" are
performed by the cmpxchg4.rel instruction with release ordering semantics;
that is, the memory read/write is made visible after all previous memory
accesses of the Destination by other processors.

C–58 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

This function has the following format:

unsigned _ _int64 _InterlockedCompareExchange_rel (volatile unsigned int *Destination,
unsigned _ _int64 Newval, unsigned _ _int64 Comparand);

Atomic Compare and Exchange (_InterlockedCompareExchange64_rel)
This function is the same as the _InterlockedCompareExchange_rel function,
except that those parts of the algorithm that are marked "Atomic" are
performed by the cmpxchg8.rel instruction.

This function has the following format:

unsigned _ _int64 _InterlockedCompareExchange64_rel (volatile unsigned _ _int64 *Destination,
unsigned _ _int64 Newval, unsigned _ _int64 Comparand);

Conditional Atomic Compare and Exchange Longword
(_ _CMP_SWAP_LONG)
The _ _CMP_SWAP_LONG function performs a conditional atomic compare and
exchange operation on a longword. The longword pointed to by source is read
and compared with the longword old_value. If they are equal, the longword
new_value is written into the longword pointed to by source. The read and
write is performed atomically, with no intervening access to the same memory
region.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_LONG (volatile void *source, int old_value, int new_value);

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

Conditional Atomic Compare and Exchange Quadword
(_ _CMP_SWAP_QUAD)
The _ _CMP_SWAP_QUAD function performs a conditional atomic compare and
exchange operation on a quadword. The quadword pointed to by source is read
and compared with the quadword old_value. If they are equal, the quadword
new_value is written into the quadword pointed to by source. The read and
write is performed atomically, with no intervening access to the same memory
region.

Built-In Functions C–59

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_QUAD (volatile void *source, int old_value, int new_value);

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written to source if source and old_value are equal.

Conditional Atomic Compare and Exchange Longword with Acquire
Semantics (_ _CMP_SWAP_LONG_ACQ)
The _ _CMP_SWAP_LONG_ACQ function performs a conditional atomic
compare and exchange operation with acquire semantics on a longword. The
longword pointed to by source is read and compared with the longword old_
value. If they are equal, the longword new_value is written into the longword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

Acquire memory ordering guarantees that the memory read/write is made
visible before all subsequent data accesses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_LONG_ACQ (volatile void *source, int old_value, int new_value);

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

C–60 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

Conditional Atomic Compare and Exchange Quadword with Acquire
Semantics (_ _CMP_SWAP_QUAD_ACQ)
The _ _CMP_SWAP_QUAD_ACQ function performs a conditional atomic
compare and exchange operation with acquire semantics on a quadword.
The quadword pointed to by source is read and compared with the quadword
old_value. If they are equal, the quadword new_value is written into the
quadword pointed to by source. The read and write is performed atomically,
with no intervening access to the same memory region.

Acquire memory ordering guarantees that the memory read/write is made
visible before all subsequent memory data accesses to the same memory
location by other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_QUAD_ACQ (volatile void *source, int old_value, int new_value);

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written into source if source and old_value are equal.

Conditional Atomic Compare and Exchange Longword with Release
Semantics (_ _CMP_SWAP_LONG_REL)
The _ _CMP_SWAP_LONG_REL function performs a conditional atomic
compare and exchange operation with release semantics on a longword. The
longword pointed to by source is read and compared with the longword old_
value. If they are equal, the longword new_value is written into the longword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

Release memory ordering guarantees that the memory read/write is made
visible after all previous data memory acceses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_LONG_REL (volatile void *source, int old_value, int new_value);

Built-In Functions C–61

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

Conditional Atomic Compare and Exchange Quadword with Release
Semantics (_ _CMP_SWAP_QUAD_REL)
The _ _CMP_SWAP_QUAD_REL function performs a conditional atomic
compare and exchange operation with release semantics on a quadword. The
quadword pointed to by source is read and compared with the quadword old_
value. If they are equal, the quadword new_value is written into the quadword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

Release memory ordering guarantees that the memory read/write is made
visible after all previous data memory acceses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int _ _CMP_SWAP_QUAD_REL (volatile void *source, int old_value, int new_value);

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written into source if source and old_value are equal.

Return Address (_ _RETURN_ADDRESS)
The _ _RETURN_ADDRESS function produces the address to which the
function containing the built-in call will return as a 64-bit integer (on Alpha
systems, the value of R26 on entry to the function; on I64 systems, the value of
B0 on entry to the function).

This built-in function cannot be used within a function specified to use
nonstandard linkage.

C–62 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

This function has the following format:

_ _int64 _ _RETURN_ADDRESS (void);

Implement Alpha _ _PAL_GENTRAP and _ _PAL_BUGCHK Builtins (_ _break2)
The _ _break2 function is used to implement the Alpha _ _PAL_GENTRAP and
_ _PAL_BUGCHK built-in functions on OpenVMS I64 systems.

The _ _break2 function is equivalent to the _ _break function with the second
parameter passed in general register 17:

R17 = ____R17_value; ____break (____break_code);

This function has the following format:

void _ _break2 (_ _Integer_Constant _ _break_code, unsigned _ _int64 _ _r17_value);

_ _breakcode
The particular software condition that has occurred.

_ _r17_value
The value of R17, a volatile general register reserved by the OpenVMS Itanium
calling standard for use by compiled code to communicate with specialized
compiler support routines that require out-of-band information passing.

Flush Register Stack (_ _flushrs)
The _ _flushrs function flushes the register stack.

This function has the following format:

void _ _flushrs (void);

Load Register Stack (_ _loadrs)
The _ _loadrs function loads the register stack.

This function has the following format:

void _ _loadrs (void);

Probe Read-Access Permission (_ _prober)
The _ _prober function determines whether read access to the virtual address
specified by _ _address bits {60:0} and the region register indexed by _ _address
bits {63:61} is permitted at the privilege level given by _ _mode bits {1:0}. It
returns 1 if the access is permitted, and 0 otherwise.

This function can probe only with equal or lower privilege levels. If the
specified privilege level is higher (lower number), then the probe is performed
with the current privilege level.

This function is the same as the Intel _ _probe_r function.

Built-In Functions C–63

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

This function has the following format:

int _ _prober (_ _int64 _ _address, unsigned int _ _mode);

_ _address
Virtual address for which read-access permission is being checked.

_ _mode
Privilege level for which read-access permission is being checked.

Probe Write-Access Permission (_ _probew)
The _ _probew function determines whether write access to the virtual address
specified by _ _address bits {60:0} and the region register indexed by _ _address
bits {63:61}, is permitted at the privilege level given by _ _mode bits {1:0}. It
returns 1 if the access is permitted, and 0 otherwise.

This function can probe only with equal or lower privilege levels. If the
specified privilege level is higher (lower number), then the probe is performed
with the current privilege level.

This function is the same as the Intel _ _probe_w function.

This function has the following format:

int _ _probew (_ _int64 _ _address, unsigned int _ _mode);

_ _address
Virtual address for which write-access permission is being checked.

_ _mode
Privilege level for which write-access permission is being checked.

Translation Access Key (_ _tak)
The _ _tak function returns the translation access key.

This function has the following format:

unsigned int _ _tak (_ _int64 _ _address);

_ _address
Virtual address for translation key is being returned.

Translate to Physical Address (_ _tpa)
The _ _tpa function translates a virtual address to a physical address.

This function has the following format:

_ _int64 _ _tpa(_ _int64 _ _address);

C–64 Built-In Functions

Built-In Functions
C.2 Built-In Functions for I64 Systems (I64 only)

_ _address
Virtual address to be translated.

Built-In Functions C–65

D
Class Library Restrictions

This appendix describes known problems and restrictions for the Class Library.
Please note that String Package, which is part of the Class Library, is
entirely different from the String class that is part of the newly-implemented
C++ Standard Library and known as the String Library. Do not confuse
these two contrasting implementations.

D.1 Class Library Restrictions
The following are restrictions in the C++ Class Library:

• No Class Library support for 128-bit long doubles

The Class Library does not include support for 128-bit long doubles.

• Conflict with redefinition of clear()

If your program includes both <curses.h> and <iostream.hxx>, HP C++
might fail to compile your program because clear() is defined by both
header files. In <curses.h>, clear() is defined as a macro whereas in
<iostream.hxx> clear() is defined as a member function.

Workarounds:

If your program does not use either clear() or uses the <curses.h>
clear(), include the <iostream.hxx> header first, followed by <curses.h>.

If your program uses the ios::clear() function, undefine the clear()
macro directly after the #include <curses.h> statement.

• On OpenVMS Alpha systems, class library IOStreams do not support
denormalized IEEE numbers. The workaround is to use C Run-Time
Library functions like printf and scanf instead.

Class Library Restrictions D–1

E
Compiler Compatibility

This appendix describes HP C++ compatibility with other C++ compilers, and
documents compatibility concerns between the Version 5.n and Version 6.n
compilers.

For porting and compatibility between Alpha and I64 systems, see Chapter 4.

HP C++ implements the C++ International Standard, with some differences, as
described in the online release notes in:

SYS$HELP:CXX_RELEASE_NOTES.PS

This language differs significantly from The Annotated C++ Reference Manual,
implemented by the Version 5.n compilers. When switching from a Version 5.n
compiler, you might need to modify your source files, especially if you use the
default language mode. In addition, language changes can affect the run-time
behavior of your programs. If you want to compile existing source code with
minimal source changes, compile using the /STANDARD=ARM qualifier option.
See Chapter 7 for information on and changes to the Standard Library.

This chapter describes ways to avoid having the compiler reject program code
that previously worked with other C++ implementations that adhere less
strictly to the C++ language definition. References to applicable portions of
The C++ Programming Language, 3rd Edition indicate where you can find
additional help.

E.1 Compatibility with Other C++ Compilers
In default mode (/STANDARD=RELAXED), the compiler implements most
features of the C++ International Standard, including:

• Run-time type identification (RTTI), with dynamic_cast and the typeid
operator (see Section 2.4)

• New-style casts (static_cast, reinterpret_cast, and const_cast

• Array new and delete

Compiler Compatibility E–1

Compiler Compatibility
E.1 Compatibility with Other C++ Compilers

For compatibility with previous versions, the compiler provides the following
language mode options:

/STANDARD=RELAXED
Specify this option if you want an ANSI C++ compiler that supports some
commonly used extensions and is somewhat less strict than the standard. This
is the default compiler mode. Please note that /STANDARD=ANSI is accepted
as a synonym for /STANDARD=RELAXED to be compatible with previous
compiler versions.

If you want to use RELAXED mode but find that the compiler generates
too many diagnostics in that mode, you can use the /QUIET option with the
/STANDARD=RELAXED option. The /QUIET option relaxes error checking
and suppresses or reduces the severity of many diagnostics. It also suppresses
many warnings that are generated in RELAXED mode but were not issued
by Version 5.n compilers. For information on message control options, see
Section 2.5.

/STANDARD=ARM
Specify this option if you want to compile programs developed using Version
5.n and want to minimize source changes.

HP C++ Version 6.n and higher also provides support for other C++ dialects
and language modes. You can specify the following options:

/STANDARD=MS
Specify this option if you want the compiler to accept additional Microsoft
Visual C++ extensions.

/STANDARD=STRICT_ANSI
Enforce the ANSI standard strictly but permit some ANSI violations that
should be errors to be warnings. To force ANSI violations to be issued with
Error instead of Warning severity, use /WARNINGS=ANSI_ERRORS in
addition to /STANDARD=STRICT_ANSI.

/STANDARD=LATEST
Use the latest C standard dialect. /STANDARD=LATEST is currently
equivalent to /STANDARD=C99, but is subject to change when newer versions
of the C standard are released.

With /STANDARD=MS you may also want to specify /QUIET to reduce the
number of diagnostic messages generated.

E–2 Compiler Compatibility

Compiler Compatibility
E.2 Compatibility with Version 5.6 and Earlier

E.2 Compatibility with Version 5.6 and Earlier
This section provides details about differences between the Version 6.n and
later compilers, and the Version 5.6 and earlier compilers:

• Language differences

• Implementation differences

• Library differences

E.2.1 Language Differences
Users should be aware of the following language differences between Version
6.n and higher (denoted simply as Version 6.n in the following list), and
previous versions of the compiler.

• The most important language differences result from the current
implementation of the C++ International Standard in the Version 6.n
compilers. If you want to compile existing source code with minimal source
changes, compile using the /STANDARD=ARM option.

• Because the Version 6.n compilers perform more error checking than
previous versions, they generate significantly more diagnostic messages.
However, you can use the /QUIET option to relax error checking and
reduce the severity of many diagnostics. Message Control and Information
Options.

• The following keywords, introduced with the C++ International Standard,
are always reserved keywords in all compiler modes:

bool, const_cast, explicit, export, false, mutable, dynamic_cast,
reinterpret_cast, static_cast, true, typeid, typename, wchar_t

Alternative representation keywords are as follows:

and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, xor_eq

• Taking the address of a bit field is not allowed in the current version.

• Creation of temporaries and their lifetimes vary among compiler modes.

• Macro expansion in pragmas can give different results in the current and
previous versions.

• The following are distinct types in the Version 6.n compilers; they were the
same type in previous versions:

Compiler Compatibility E–3

Compiler Compatibility
E.2 Compatibility with Version 5.6 and Earlier

typedef void (*PF)(); // Pointer to an extern "C++" function
extern "C" typedef void (*PCF)(); // Pointer to an extern "C" function
void f(PF);
void f(PCF);

• Version 6.n does not allow converting a pointer to member from a derived
class to a virtual base class.

• Calling a nonstatic member function through a null pointer is undefined
behavior. Certain cases that used to run without errors in previous
versions no longer run in the current version. For example:

#include <iostream.h>

struct A {
int a;

};

struct D : public virtual A
{

A* toA(){ return (A*) this; }
};

main ()
{

D* d = NULL;
A* ad = d->toA(); // will ACCVIO
if (ad==NULL) cout << "ok";

}

• In Version 6.n compilers, bool is a built-in type. In previous versions, it is
user-defined, typically as int in system header files. Mangling differs in
this respect only for functions that have arguments of type bool.

In Version 6.n compilers, the size of bool is 1. In previous versions, bool is
user defined, typically as int with a size of 4.

In Version 6.n compilers, the size of a boolean expression (sizeof(a && b))
is 1. In previous versions, the size is 4, independent of the size of bool.

• Version 6.n compilers do not cause pragmas to become effective within
function bodies when scanning template definitions.

• Version 6.n compilers do not allow the ‘‘virtual’’ storage class modifier to be
used with member function definitions outside a class.

• Version 6.n compilers do not allow declaration of pointers to members of
type void. For example, the following is not allowed:

typedef void Z::* any_ptom;

E–4 Compiler Compatibility

Compiler Compatibility
E.2 Compatibility with Version 5.6 and Earlier

E.2.2 Implementation Differences
Users should be aware of the following implementation differences between
Version 6.n compilers, and previous versions of the compiler:

• The automatic template instantiation model is different for Version 6.n,
and previous compiler versions. See Section E.2.3 for details.

It is different yet again for I64 systems. See Chapter 5 for details.

• Version 6.n and higher drops qualifiers on parameters when determining
the function type, as dictated by the C++ International Standard. For
instance, in the following example, the function declarations are the same
function.

f(const int p1);
f(int p1);

For compatibility with previous versions, if qualifiers are included in
function declarations, they are also included in the mangled name. (Note:
this is not true for model ANSI or for I64 systems.)

• Version 6.n differs from previous versions in interpreting undefined
behavior, as when incrementing takes effect in this example:

f(i++, i++);

• Version 6.n cannot handle a #pragma define_template that spans multiple
lines without the backslash (\) delimiter. Version 5.6 can handle this
without problems.

• Version 6.n displays #line number in /PREPROCESS_ONLY output. The
previous version displays #number.

• After encountering an illegal multibyte character sequence, Version 6.n
issues a warning diagnostic and continues processing. The previous version
issues an error and stops processing.

• Version 6.n does not support VAX C module include syntax (for example,
#include acms$submitter without <> or " " delimiters). The compiler
searches text libraries for modules included using the normal include
syntax (specifying the " " or <> delimiters) and correctly (according to the
C++ standard) rejects #include directives that do not follow this syntax.

Compiler Compatibility E–5

Compiler Compatibility
E.2 Compatibility with Version 5.6 and Earlier

E.2.3 Using Templates
The template instantiation model was completely redesigned for C++ Version
6.0. The changes include:

• Automatic template instantiation now occurs at compile time. Necessary
templates are instantiated automatically by the compilation of the source
file that needs them and has access to the template definitions.

• During automatic template instantiation, instantiations are written into
the repository as object files. Compilation of instantiations in no longer
done at link time.

• For automatic instantiation, the compiler no longer requires that template
declarations and definitions appear in header files.

• Template.map files are no longer supported as a way to match template
declarations and definitions.

• Several new manual template instantiation pragmas have been added.

The automatic template instantiation model new with Version 6.0 is not
directly compatible with previous template instantiation mechanisms. When
linking applications using Version 6.0 and later, instantiations might not be
resolved from existing Version 5.n repositories. Where possible, it is safest to
start fresh with an empty repository and create the required instantiations by
compiling all source files. If this is not possible, there are some strategies that
can be used to link mixed generation instantiations.

If you used both Version 6.n and Version 5.n to build applications, HP strongly
recommends that you use different repositories to contain automatic template
instantiations for Version 6.n and Version 5.n compilations. The default
repository name is the same for Version 6.n as for prior versions. Thus, if you
use Version 6.n with older pre-6.n versions, you should do compilations in a
different directory for each compiler or explicitly specify a different repository
for each using the /REPOSITORY qualifier.

E.2.3.1 Linking with Version 5.n Instantiations
When linking applications using Version 6.n against instantiations created
with Version 5.n, it is necessary to complete the Version 5.n instantiation
process, to create instantiation object files. If old_repository is a Version 5.n
repository then you would create the Version 5.n instantiation object files by
using the Version 5.n cxxlink:

CXXLINK/NOEXE /REPOSITORY=[.old_repository]
<Version 5.n object files>

E–6 Compiler Compatibility

Compiler Compatibility
E.2 Compatibility with Version 5.6 and Earlier

<Version 5.n object files> are the object files that were created using the
Version 5.n compiler; old_repository now contains the instantiation object
files. Create a library of these object files as follows:

LIBRARY/CREATE/OBJECT lib_old_repository/LOG
LIBRARY/INSERT/OBJECT lib_old_repository/LOG

[old_repository]*.obj

When linking using Version 6.n, specify lib_old_repository.olb after all of
the Version 5.n object files that are being linked.

E.2.3.2 Linking Version 5.n Applications Against Version 6.n Repositories
In a similar way, you can create a library of Version 6.n instantiation object
files to link into a Version 5.n application being linked using C++ Version
5.n. If new_repository is the Version 6.n repository, then a library of the
instantiations would be created by:

LIBRARY/CREATE/OBJECT lib_new_repository/LOG
LIBRARY/INSERT/OBJECT lib_new_repository/LOG [new_repository]*.obj

When linking using Version 5.n, specify lib_new_repository.olb after all of
the Version 6.n object files that are being linked.

E.2.4 Library Differences
Aspects of memory allocation and deallocation have changed from the V5.n
and earlier compilers to the Version 6.n compilers. See the description of
/[NO]STDNEW and /[NO]GLOBAL_ARRAY_NEW in The C++ Standard
Library.

E.3 Using Classes
This section discusses porting issues pertaining to C++ classes.

E.3.1 Friend Declarations
When making friend declarations, use the elaborated form of type specifier.
The following code fragment implements the legal and comments out the illegal
friend declaration:

class Y;
class Z;
class X;

//friend Y; ** not legal
friend class Z; // legal

};

Compiler Compatibility E–7

Compiler Compatibility
E.3 Using Classes

E.3.2 Member Access
Unlike some older C++ implementations, HP C++ strictly enforces accessibility
rules for public, protected, and private members of a base class. For more
information, see The C++ Programming Language, 3rd Edition.

E.3.3 Base Class Initializers
Unlike some older C++ implementations, HP C++ requires you to use the base
class name in the initializer for a derived class. The following code fragment
implements a legal initializer and comments out an illegal initializer:

class Base {
// . . .

public:
Base (int);

};
class Derived : public Base {

// . . .
public:

// Derived(int i) : (i) {/* . . . */} ** not legal
Derived(int i) : Base(i) {/* . . . */} // ** legal, supplies class name

};

For more information, see The C++ Programming Language, 3rd Edition.

E.4 Undefined Global Symbols for Static Data Members
When a static data member is declared, the compiler issues a reference to the
external identifier in the object code, which must be resolved by a definition.
The compiler does not support the declaration anachronism shown in The C++
Programming Language, 3rd Edition.

For example, consider the following code fragment:

class C {
static int i;
};

//missing definition
//int C::i = 5;
int main ()
{

int x;
x=C::i;
return 0;

}

The compiler does not issue any messages during compilation; however, when
you attempt to link a program containing this code, the linker issues an
unresolved symbol error message for the variable C::i.

E–8 Compiler Compatibility

Compiler Compatibility
E.5 Functions and Function Declaration Considerations

E.5 Functions and Function Declaration Considerations
HP C++ requires the use of function definitions as described in The C++
Programming Language, 3rd Edition. For examples of outdated syntax not
allowed in HP C++, see The C++ Programming Language, 3rd Edition.

Because all linkage specifications for a name must agree, function prototypes
are not permitted if the function is later declared as an inline function. The
following code is an example of such a conflicting function declaration:

int f();
inline int f() { return l; }

In this example, f is declared with both internal and external linkage, which
causes a compiler error.

E.6 Using Pointers
This section demonstrates how to use pointers effectively in HP C++.

E.6.1 Pointer Conversions
In HP C++, you cannot implicitly convert a const pointer to a nonconstant
pointer. For example, char * and const char * are not equivalent; explicitly
performing such a cast can lead to unexpected results.

For more information, see The C++ Programming Language, 3rd Edition.

E.6.2 Bound Pointers
Binding a pointer to a member function with a particular object as an
argument to the function is not allowed in HP C++. For more information on
the illegality of casting bound pointers, see The C++ Programming Language,
3rd Edition.

E.6.3 Constants in Function Returns
Because the return value cannot be an lvalue, the const keyword in a function
return has no effect on the semantics of the return. However, using the const
keyword in a function return does affect the type signature. For example:

static int f1(int a, int b) {;}
const int (* const (f2[])) (int a, int b) = {f1};

In this example, the referenced type of the pointer value f1 in the initializer
for f2[] is function (signed int, signed int), which returns signed int. This
is incompatible with function (signed int, signed int), which returns const
signed int.

Compiler Compatibility E–9

Compiler Compatibility
E.6 Using Pointers

You can omit the const of int because it affects only the constant return
signature.

E.6.4 Pointers to Constants
The following example shows a type mismatch between a pointer to a char and
a pointer to a const char that some other compilers might not find:

void foo (const char* argv[]) {}
int main()
{

static char* args[2] = {"foo","bar"};

/* In this statement, the referenced type of the pointer value
"args" is "pointer to char" which is not compatible with
"pointer to const char"’*/

foo (args);
return 0;
}

You can correct this example by changing static char to static const char.
Use an explicit type cast to get an argument match only if no other option is
available; such a cast may break on some C++ implementations.

E.7 Using typedefs
Using a synonym after a class, struct, or union prefix is illegal. Using
a synonym in the names for constructors and destructors within the class
declaration itself is also illegal.

In the following example, the illegal typedef specifier is commented out:

typedef struct { /* . . . */ } foo;
// typedef struct foo foobar; ** not legal

For more information, see The C++ Programming Language, 3rd Edition.

E.8 Initializing References
HP C++ warns against initializing nonconstant references to refer to temporary
objects. The following example demonstrates the problems that can result:

static void f()
{

int i = 5;
i++; // OK
int &ri = 23;
ri++; // In the initializer for ri, the initialization of a

// non-const reference requires a temporary for "23".
}

E–10 Compiler Compatibility

Compiler Compatibility
E.8 Initializing References

The issue of reference initialization arises most often in assignment operators
and in copy constructors. Wherever possible, declare all reference arguments
as const.

For more information, see The C++ Programming Language, 3rd Edition.

E.9 Using the switch and goto Statements
Branching around a declaration with an explicit or implicit initializer is not
legal, unless the declaration is in an inner block that is completely bypassed.
To satisfy this constraint, enclose the declaration in a block. For example:

int i;

switch (i) {
case 1:

int l = 0; //not initialized at this case label
myint m = 0; //not initialized at this case label
{
int j = 0; // legal within the braces
myint m = 0; // legal within the braces
}

case 2:
break;

// . . .
}

For more information on using the switch statement, see The C++
Programming Language, 3rd Edition.

E.10 Using Volatile Objects
You must supply the meaning of copy constructing and assigning from volatile
objects, because the compiler generates no copy constructors or assignment
operators that copy or assign from volatile objects. The following example
contains examples of such errors, as noted in the comments:

class A {
public:
A() { }
// A(volatile A&) { }
// operator=(volatile A&) { return 0; }

};

void foo()
{
volatile A va;
A a;

A cca(va); // error - cannot copy construct from volatile object
a = va; // error - cannot assign from volatile object

Compiler Compatibility E–11

Compiler Compatibility
E.10 Using Volatile Objects

return;
}

For more information, see The C++ Programming Language, 3rd Edition.

E.11 Preprocessing
HP C++ allows identifiers, but not expressions, on the #ifdef preprocessor
directive. For example:

// this is not legal
// #ifdef KERNEL && !defined(__POSIX_SOURCE)

The following is the legal alternative:

// use this instead
#if defined(KERNEL) && !defined(__POSIX_SOURCE)

For more information, see The C++ Programming Language, 3rd Edition.

E.12 Managing Memory
The proper way to manage memory for a class is to overload the new and
delete operators. This is in contrast to some older C++ implementations,
which let you manage memory through assignment to the this pointer.

For more information, see The C++ Programming Language, 3rd Edition.

Program developers must take care that any user-defined new operators always
return pointers to quadword-aligned memory.

E.13 Size-of-Array Argument to delete Operator
If a size-of-array argument accompanies a delete operator, HP C++ ignores
the argument and issues a warning. The following example includes an
anachronistic use of the delete operator:

int main()
{

int *a = new int [20];
int *b = new int [20];
delete[20] a; //old-style; argument ignored, warning issued
delete[] b;

return 0;
}

E–12 Compiler Compatibility

Compiler Compatibility
E.14 Flushing the Output Buffer

E.14 Flushing the Output Buffer
Do not depend on the newline character (\n) to flush your terminal output
buffer. A previous stream implementation might have done so, but this
behavior is not in conformance with Version 2.0 of the AT&T iostream library.
If you want to flush the output buffer, use the endl manipulator or the flush
member function.

E.15 Linking
When linking applications, use CXXLINK instead of LINK. See Section 1.3
(Alpha only) and Section 1.4 (I64 only).

E.16 Incrementing Enumerations
Some other C++ implementations let you perform integer arithmetic, including
++, on enumerated types; HP C++ does not allow this.

E.17 Guidelines for Writing Clean 64-Bit Code
Paying careful attention to data types can ensure that your code works on both
32-bit and 64-bit systems. Use the following guidelines to write clean 64-bit
code:

• Variables that should be 32 bits in size on both 32-bit systems and 64-bit
OpenVMS Alpha systems should be declared as int (not long).

• If you want 32-bit variables on a 32-bit system and an OpenVMS system,
declare them as int.

• A 64-bit number on OpenVMS must be declared as _ _int64 or long long.

• Remember that register variables and unsigned variables default to int
(32 bits).

• Constants are 32-bit quantities by default. Performing shift operations or
bit operations on constants will give 32-bit results. You must add L to the
constant to get a 64-bit result. For example:

long foo, bar;
foo = 1L << bar;

• Assigning to a char is not atomic on OpenVMS Alpha systems. You will get
a load of 32 or 64 bits, followed by byte operations to extract, mask, and
shift the byte, followed by a store of 32 or 64 bits.

• Bit-fields declared as int on OpenVMS Alpha systems generate load/store
32 bits. Bit-fields declared as long on OpenVMS Alpha systems generate
load/store 64 bits.

Compiler Compatibility E–13

Compiler Compatibility
E.17 Guidelines for Writing Clean 64-Bit Code

• If you do not explicitly declare the formal parameters to functions, their
sizes may not match the caller sizes. The default is int, which truncates
64-bit addresses.

• The %d and %x format specifiers print 32 bits of data. Use %Ld or %Lx with
printf to print 64 bits of data. You can use %p on both 32- and 64-bit
systems to print the value of pointers.

E–14 Compiler Compatibility

Index

A
_ _ABS built-in function, C–24
Access

member, E–8
Access specifiers, 2–31
_ _ACQUIRE_SEM_LONG built-in function,

C–25
_ _ADAWI built-in function, C–25
_ _ADDF_C built-in function, C–36
_ _ADDG_C built-in function, C–36
Additive operators, 2–29
Address expressions

supported constructs in, 8–5
_ _ADDS_C built-in function, C–36
_ _ADDT_C built-in function, C–36
_ _ADD_ATOMIC_LONG built-in function,

C–26
_ _ADD_ATOMIC_QUAD built-in function,

C–26
_ _ALLOCA built-in function, C–36
alpha macro, 2–19
ALPHA macro, 2–19
ALPHA_AXP macro, 2–19
ALTERNATIVE_TOKENS macro, 2–22
/ALTERNATIVE_TOKENS qualifier, A–3
_ _AND_ATOMIC_LONG built-in function,

C–27
_ _AND_ATOMIC_QUAD built-in function,

C–27
ANSI mode, E–1
/ANSI_ALIAS qualifier, A–4

/ARCHITECTURE qualifier, A–4
argc

main function argument, 1–13
Arguments

command-line, 1–13
DCL command-line, 1–13
mechanisms for passing, 2–24

argv
main function argument, 1–13

ARM mode, E–2
asm declarations, 2–29
asm intrinsic function, C–3
Assignment

to the this pointer, E–12
/ASSUME qualifier, A–6
_ _ATOMIC_ADD_LONG built-in function,

C–28
_ _ATOMIC_ADD_QUAD built-in function,

C–29
_ _ATOMIC_AND_LONG built-in function,

C–29
_ _ATOMIC_AND_QUAD built-in function,

C–30
_ _ATOMIC_DECREMENT_LONG built-in

function, C–33
_ _ATOMIC_DECREMENT_QUAD built-in

function, C–34
_ _ATOMIC_EXCH_LONG built-in function,

C–34
_ _ATOMIC_EXCH_QUAD built-in function,

C–35

Index–1

_ _ATOMIC_INCREMENT_LONG built-in
function, C–32

_ _ATOMIC_INCREMENT_QUAD built-in
function, C–33

_ _ATOMIC_OR_LONG built-in function,
C–31

_ _ATOMIC_OR_QUAD built-in function,
C–31

B
Base class initializers, E–8
BIASED_FLT_ROUNDS macro, 2–22
64-bit coding guidelines, E–13
64-bit development environment, 9–1

avoiding problems, 9–13
determining pointer size, 9–7
header file, 9–10
memory allocators, 9–3
mixing pointer sizes, 9–4
/model=ansi qualifer, 9–5
model ANSI, 9–3
pointer size, 9–1

mixing, 9–9
special cases, 9–8

/pointer_size qualifer, 9–5
qualifiers and pragmas, 9–4

/model=ansi, 9–5
/pointer_size, 9–5

support in C RTL, 9–4
Bit-fields, 2–30
32BITS macro, 2–19
BOOL_EXISTS macro, 2–18
BOOL_IS_A_RESERVED_WORD macro,

2–18
_ _break built-in function, C–52
_ _break2 built-in function, C–63
Buffer, output

flushing, E–13
Built-in functions, C–1

_ _ABS, C–24
_ _ACQUIRE_SEM_LONG, C–25
_ _ADAWI, C–25
_ _ADDF_C, C–36
_ _ADDG_C, C–36

Built-in functions (cont’d)
_ _ADDS_C, C–36
_ _ADDT_C, C–36
_ _ADD_ATOMIC_LONG, C–26
_ _ADD_ATOMIC_QUAD, C–26
_ _ALLOCA, C–36
_ _AND_ATOMIC_LONG, C–27
_ _AND_ATOMIC_QUAD, C–27
_ _ATOMIC_ADD_LONG, C–28
_ _ATOMIC_ADD_QUAD, C–29
_ _ATOMIC_AND_LONG, C–29
_ _ATOMIC_AND_QUAD, C–30
_ _ATOMIC_DECREMENT_LONG, C–33
_ _ATOMIC_DECREMENT_QUAD, C–34
_ _ATOMIC_EXCH_LONG, C–34
_ _ATOMIC_EXCH_QUAD, C–35
_ _ATOMIC_INCREMENT_LONG, C–32
_ _ATOMIC_INCREMENT_QUAD, C–33
_ _ATOMIC_OR_LONG, C–31
_ _ATOMIC_OR_QUAD, C–31
_ _break, C–52
_ _break2, C–63
_ _CMP_STORE_LONG, C–37
_ _CMP_STORE_QUAD, C–38
_ _CMP_SWAP_LONG, C–59
_ _CMP_SWAP_LONG_ACQ, C–60
_ _CMP_SWAP_LONG_REL, C–61
_ _CMP_SWAP_QUAD, C–59
_ _CMP_SWAP_QUAD_ACQ, C–61
_ _CMP_SWAP_QUAD_REL, C–62
Copy sign functions, C–37
_ _COS, C–38
_ _CPYS, C–37
_ _CPYSE, C–37
_ _CPYSEF, C–37
_ _CPYSF, C–37
_ _CPYSN, C–37
_ _CPYSNF, C–37
_ _CVTGF_C, C–38
_ _CVTGQ, C–39
_ _CVTTQ, C–39
_ _CVTTS_C, C–39
_ _DIVF_C, C–36
_ _DIVG_C, C–36
_ _DIVS_C, C–36

Index–2

Built-in functions (cont’d)
_ _DIVT_C, C–36
Double-precision, floating-point

arithmetic, C–36
_ _dsrlz, C–52
_ _FABS, C–39
_ _fc, C–52
_ _flushrs, C–63
_ _fwb, C–52
_ _getIndReg, C–51
_ _getReg, C–48
_InterlockedCompareExchange64_acq,

C–58
_InterlockedCompareExchange64_rel,

C–59
_InterlockedCompareExchange_acq, C–57
_InterlockedCompareExchange_rel, C–58
_ _INTERLOCKED_TESTBITCC_QUAD,

C–40
_ _INTERLOCKED_TESTBITSS_QUAD,

C–41
_ _invala, C–52
_ _invalat, C–52
_ _isrlz, C–53
_ _itcd, C–53
_ _itci, C–53
_ _itrd, C–53
_ _itri, C–54
_ _LABS, C–42
_leadz, C–41
_ _loadrs, C–63
_ _LOCK_LONG, C–42
_ _MB, C–43
_ _MEMCPY, C–43
_ _MEMMOVE, C–43
_ _MEMSET, C–43
_ _MULF_C, C–36
_ _MULG_C, C–36
_ _MULS_C, C–36
_ _MULT_C, C–36
PALcodes, C–3
_ _PAL_BPT, C–4
_ _PAL_BUGCHK, C–4
_ _PAL_CFLUSH, C–4
_ _PAL_CHME, C–5

Built-in functions (cont’d)
_ _PAL_CHMK, C–5
_ _PAL_CHMS, C–5
_ _PAL_CHMU, C–5
_ _PAL_DRAINA, C–6
_ _PAL_GENTRAP, C–6
_ _PAL_HALT, C–6
_ _PAL_INSQHIL, C–6
_ _PAL_INSQHILR, C–7
_ _PAL_INSQHIQ, C–8
_ _PAL_INSQHIQR, C–8
_ _PAL_INSQTIL, C–9
_ _PAL_INSQTILR, C–9
_ _PAL_INSQTIQ, C–10
_ _PAL_INSQTIQR, C–11
_ _PAL_INSQUEL, C–11
_ _PAL_INSQUEL_D, C–12
_ _PAL_INSQUEQ, C–12
_ _PAL_INSQUEQ_D, C–12
_ _PAL_LDQP, C–13
_ _PAL_MFPR_XXXX, C–13
_ _PAL_MTPR_XXXX, C–14
_ _PAL_PROBER, C–15
_ _PAL_PROBEW, C–16
_ _PAL_RD_PS, C–16
_ _PAL_REMQHIL, C–16
_ _PAL_REMQHILR, C–17
_ _PAL_REMQHIQ, C–17
_ _PAL_REMQHIQR, C–18
_ _PAL_REMQTIL, C–19
_ _PAL_REMQTILR, C–19
_ _PAL_REMQTIQ, C–20
_ _PAL_REMQTIQR, C–20
_ _PAL_REMQUEL, C–21
_ _PAL_REMQUEL_D, C–21
_ _PAL_REMQUEQ, C–22
_ _PAL_REMQUEQ_D, C–22
_ _PAL_STQP, C–23
_ _PAL_SWASTEN, C–23
_ _PAL_SWPCTX, C–24
_ _PAL_WR_PS_SW, C–24
_popcnt, C–43
_poppar, C–43
_ _prober, C–63
_ _probew, C–64

Index–3

Built-in functions (cont’d)
_ _ptce, C–54
_ _ptcg, C–54
_ _ptcga, C–55
_ _ptcl, C–54
_ _ptrd, C–55
_ _ptri, C–55
_ _RELEASE_SEM_LONG, C–25
_ _RETURN_ADDRESS, C–62
_ _RPCC, C–43
_ _rsm, C–56
_ _rum, C–56
_ _setIndReg, C–51
_ _setReg, C–50
_ _SIN, C–44
Single-precision, floating-point arithmetic,

C–36
_ _ssm, C–56
_ _SUBF_C, C–36
_ _SUBG_C, C–36
_ _SUBS_C, C–36
_ _SUBT_C, C–36
_ _sum, C–56
_ _synci, C–57
_ _tak, C–64
_ _TESTBITCCI, C–44
_ _TESTBITSSI, C–45
_ _thash, C–57
_ _tpa, C–64
_trailz, C–45
translation macros, C–2
_ _TRAPB, C–45
_ _ttag, C–57
_ _UMULH, C–45
_ _UNLOCK_LONG, C–42

Built-in operators, 8–4 to 8–5

C
Class

friend declarations, E–7
function definitions, E–9
implementation details, E–7 to E–8
initializer, E–8
layout, 2–30, 2–32
member access, E–8

Class (cont’d)
pointer conversions, E–9
structure alignment, 2–30

bit-field requirements, 2–30
subobject allocation, 2–32
subobject offsets, 2–31

Class library
linking to, 1–8

_ _CMP_STORE_LONG built-in function,
C–37

_ _CMP_STORE_QUAD built-in function,
C–38

_ _CMP_SWAP_LONG built-in function,
C–59

_ _CMP_SWAP_LONG_ACQ built-in
function, C–60

_ _CMP_SWAP_LONG_REL built-in function,
C–61

_ _CMP_SWAP_QUAD built-in function,
C–59

_ _CMP_SWAP_QUAD_ACQ built-in
function, C–61

_ _CMP_SWAP_QUAD_REL built-in function,
C–62

cname headers, 3–1
COMDATS, 5–15
Command-line arguments, 1–13

conversion of, 1–15
DCL, 1–13

Command-line qualifiers
compiler, A–1
debugger options, 8–3
linker, 1–9

/COMMENTS qualifier
compiler, A–11

Common instantiation library
creating, 5–18

Compatibility, 3–13
Compatibility with Other C++ Compilers,

E–2, E–3
Compiler

command format, 1–3
command-line qualifiers, A–1
cxx command format, 1–3
error messages, 1–4 to 1–5

Index–4

Compiler (cont’d)
template

advanced program development,
5–16

automatic instantiation, 5–10
compatibility with earlier versions,

E–6
creating common instantiation

library, 5–18
creating libraries, 5–14
dependency management, 5–18
implicit inclusion, 5–16
linking Version 5.n applications

against Version 6.n repositories,
E–7

linking with Version 5.n
instantiations, E–6

mixing automatic and manual
instantiation, 5–4

overview, 5–1
repositories, 5–15

template instantiation qualifiers, 5–9,
5–21

using, 1–3
Constant

in function returns, E–9
pointer to, E–10

Constructs, debugger supported
in address expressions, 8–5
in language expressions, 8–5

Conversion
explicit type, 2–28
floating-point number, 2–27
integer, 2–27
pointer, E–9

Conversion operators
debugger referencing, 8–12

Copy sign built-in functions, C–37
_ _COS built-in function, C–38
cplusplus macro, 2–18
_ _CPYS built-in function, C–37
_ _CPYSE built-in function, C–37
_ _CPYSEF built-in function, C–37

_ _CPYSF built-in function, C–37
_ _CPYSN built-in function, C–37
_ _CPYSNF built-in function, C–37
_ _CVTGF_C built-in function, C–38
_ _CVTGQ built-in function, C–39
_ _CVTTQ built-in function, C–39
_ _CVTTS_C built-in function, C–39
cxx command

format, 1–3
CXX command

qualifiers for, A–1
CXXLINK command, 1–5, 1–10
CXXLINK facility, 1–5, 1–10

interaction with OpenVMS Linker
qualifiers, 1–6

[cxx_repository] directory, 5–10
[cxx_repository] instantiation file, 5–10

D
dasm intrinsic function, C–3
Data members

nonstatic, 8–6 to 8–7
Data types

predefined for debugger support, 8–5
DATE_ macro, 2–18
Debugger, 8–1 to 8–15

command-line options, 8–3
Debugger commands

deposit/type, 8–10
examine/type, 8–10
set language c_plus_plus, 8–3
show language, 8–3

Debugger referencing
by type, 8–10
conversion operators, 8–12
destructors, 8–12
function arguments

this, *this, and this->, 8–13
nonstatic data members, 8–7
pointer and reference types, 8–12
reference members, 8–7
reference objects, 8–7

Index–5

Debugging
preparation for, 8–1

/DEBUG qualifier, 8–2, 8–3
with RUN command, 1–12

DECCXX macro, 2–18
DECCXX_VER macro, 2–20
_ _DECC_INCLUDE_EPILOGUE.H file,

9–10
_ _DECC_INCLUDE_PROLOGUE.H file,

9–10
DEC Language-Sensitive Editor (LSE), 1–1,

B–1 to B–4
Declaration

asm, 2–29
Declarations

friend, E–7
DEC Source Code Analyzer (SCA), B–4
DEC Text Processing Utility (DECTPU)

See DECTPU
DECTPU, 1–1

using, 1–3
/DEFINE=_ _FORCE_INSTANTIATIONS

qualifier, A–13
/DEFINE=_ _[NO_]USE_STD_IOSTREAM

qualifier, A–14
/DEFINE qualifier, A–13
delete operator

overriding global, 1–8
size-of-array argument to, E–12

Demangler
CXXDEMANGLE command format, 1–16

deposit/type debugger command, 8–10
Destructors

debugger referencing, 8–12
/DIAGNOSTICS qualifier, A–14
/DISTINGUISH_NESTED_ENUMS qualifier,

A–14
_ _DIVF_C built-in function, C–36
_ _DIVG_C built-in function, C–36
Division operator, 2–28
_ _DIVS_C built-in function, C–36
_ _DIVT_C built-in function, C–36

Double-precision, floating-point arithmetic
built-in functions, C–36

_ _dsrlz built-in function, C–52
D_FLOAT macro, 2–20

E
echo DCL command, 1–14
Editor

DEC Language-Sensitive Editor (LSE),
1–1, B–1 to B–4

DECTPU, 1–1, 1–3
EVE interface, 1–3

/ENDIAN qualifier, A–14
Enumerated types

incrementing, E–13
envp

main function argument, 1–13
Epilogue/prologue files, 9–10
Equality operators, 2–29
Error messages

compiler, 1–4 to 1–5
linker, 1–9 to 1–10

Errors
run-time, 1–13

/ERROR_LIMIT qualifier, A–14
EVE interface

to DECTPU, 1–3
examine/type debugger command, 8–10
EXCEPTIONS macro, 2–22, A–17
/EXCEPTIONS qualifier, A–15
Explicit type conversion, 2–28
Explicit type conversion, language extension,

2–28
External name encoding, 2–25, 2–26
extern specifier, 3–3
/EXTERN_MODEL qualifier, A–17

F
_ _FABS built-in function, C–39
fasm intrinsic function, C–3
_ _fc built-in function, C–52

Index–6

File inclusion directive, #include, 2–35,
2–39

FILE_ macro, 2–18
/FIRST_INCLUDE qualifier, A–17
Floating-point arithmetic built-in functions,

C–36
Floating-point number

converting to and from an integer, 2–27
/FLOAT qualifier, A–18
_ _flushrs built-in function, C–63
FORCE_INSTANTIATIONS macro, 2–22
Foreign command

for passing command-line arguments,
1–14

Friend declarations, E–7
Function

constant in returns, E–9
definitions, E–9

Function arguments, this, *this, and
this->

debugger referencing, 8–13
Function returns

constants in, E–9
Functions, E–9

debugger referencing, 8–11 to 8–13
_ _fwb built-in function, C–52

G
_ _getIndReg built-in function, C–51
_ _getReg built-in function, C–48
GLOBAL_ARRAY_NEW macro, 2–22, A–8
goto statement, E–11
/GRANULARITY qualifier, A–18
Guiding declarations, 2–41
G_FLOAT macro, 2–20

H
Header file

implicit inclusion, 3–8
implicit inclusion in, 3–8
<stdarg.h>, 3–5
<varargs.h>, 3–5

Header files
modifying, 3–2, 3–5

HIDE_FORBIDDEN_NAMES macro, 2–22
_ _HIDE_FORBIDDEN_NAMES macro,

A–37

I
ia64 macros, 2–19
Identifier, 2–24
IEEE_FLOAT macro, 2–18, 2–20
IEEE_FP macro, 2–20, 2–22
/IEEE_MODE qualifier, A–19
#ifdef preprocessor directive, E–12
Implementation extensions and features,

2–24, 2–27
Implicit inclusion, 3–8

template, 5–16
automatic instantiation, 5–10
defining file extensions, 5–17

/IMPLICIT_INCLUDE qualifier, A–20
IMPLICIT_INCLUDE_ENABLED macro,

2–22
IMPLICIT_USING_STD Macro

defined by command line qualifier
_ _IMPLICIT_USING_STD, 2–22

#include directive, 2–35, 2–39
/INCLUDE_DIRECTORY qualifier, 2–35,

2–39, A–21
Initializers

using base class name with, E–8
Initializing references, E–10
INITIAL_POINTER_SIZE macro, 9–6
Instantiation

automatic
linking with, 5–13

directives, 5–4
#pragma define_template, 5–4
#pragma do_not_instantiate, 5–8
#pragma instantiate, 5–8

manual, 5–3
mixed automatic and manual, 5–4
template, 5–1 to 5–24

Index–7

Instantiation file, 5–10 to 5–13
Integer

converting to and from a floating-point
number, 2–27

_InterlockedCompareExchange64_acq
built-in function, C–58

_InterlockedCompareExchange64_rel built-in
function, C–59

_InterlockedCompareExchange_acq built-in
function, C–57

_InterlockedCompareExchange_rel built-in
function, C–58

_ _INTERLOCKED_TESTBITCC_QUAD
built-in function, C–40

_ _INTERLOCKED_TESTBITSS_QUAD
built-in function, C–41

Intrinsic functions
asm, C–3
dasm, C–3
fasm, C–3

_ _invala built-in function, C–52
_ _invalat built-in function, C–52
_ _isrlz built-in function, C–53
_ _itcd built-in function, C–53
_ _itci built-in function, C–53
_ _itrd built-in function, C–53
_ _itri built-in function, C–54

K
Keywords

conflict resolution, 3–3

L
_ _LABS built-in function, C–42
Language expressions

supported constructs in, 8–5
Language mode

determining for debugger, 8–3
LATEST mode, E–2
Layout

class, 2–30, 2–32
of class object, 2–32

Leading Zeros built-in function, C–41
_leadz built-in function, C–41
/LIBRARY qualifier, A–25
Limits

numerical, 2–23
translation, 2–23

LINE_ _ macro, 2–18
/LINE_DIRECTIVES Qualifier, A–25
Linkage

between C and C++, 3–3
specification, 2–30, 3–6

Linkage specifications, 3–6
Link compatibility, 3–14
Linker

command-line qualifiers, 1–9
error messages, 1–9 to 1–10

Linker (Alpha only), 1–5
Linker (I64 only), 1–10
/LIST qualifier, A–25
_ _loadrs built-in function, C–63
_ _LOCK_LONG built-in function, C–42
Long names

modification by compiler, 2–26
LSE

See DEC Language-Sensitive Editor
/L_DOUBLE_SIZE qualifier, A–24

M
/MACHINE_CODE qualifier, A–25
Macro

Alpha system
_ _alpha, 2–19
_ _ALPHA, 2–19
_ _ALPHA_AXP, 2–19
_ _32BITS, 2–19

_BOOL_EXISTS, 2–18
BOOL_IS_A_RESERVED_WORD, 2–18
_ _DATE_, 2–18
defined by command line qualifier

_ _ALTERNATIVE_TOKENS, 2–22
_ _BIASED_FLT_ROUNTS, 2–22
_ _EXCEPTIONS, 2–22, A–17
_ _FORCE_INSTANTIATIONS, 2–22

Index–8

Macro
defined by command line qualifier (cont’d)

_ _GLOBAL_ARRAY_NEW, 2–22,
A–8

_ _HIDE_FORBIDDEN_NAMES,
A–37

_IEEE_FP, 2–22
_ _IMPLICIT_INCLUDE_ENABLED,

2–22
_ _MODEL_ANSI, 2–22, A–27
_ _MODEL_ARM, 2–22, A–27
_ _NOUSE_STD_IOSTREAM, 2–22,

A–41, A–42
_ _PURE_CNAME, A–37
_ _RTTI, 2–22, A–39
_ _STD_ANSI, 2–22, A–41
_ _STD_ARM, 2–22, A–41
_ _STD_GNU, 2–22, A–41
_ _STD_MS, 2–22, A–42
_ _STD_NEW, 2–22
_ _STD_STRICT_ANSI, 2–22, A–42
_ _STD_STRICT_ANSI_ERRORS,

2–22, A–42
_ _USE_STD_IOSTREAM, 2–22,

A–42
_ _USING_STD, 2–22
_ _X_FLOAT, 2–22, A–25

_ _FILE_, 2–18
floating point

_ _D_FLOAT, 2–20
_ _G_FLOAT, 2–20
_ _IEEE_FLOAT, 2–20
_IEEE_FP, 2–20
_ _X_FLOAT, 2–20

header file
<stdarg.h>, 3–5
<varargs.h>, 3–5

I64 system
_ _32BITS, 2–19
_ _ia64, 2–19
_ _ia64_ _, 2–19

_ _IEEE_FLOAT, 2–18
_ _INITIAL_POINTER_SIZE, 9–6
_ _LINE_ _, 2–18
_ _PRAGMA_ENVIRONMENT, 2–18

Macro (cont’d)
_ _TIME_ _, 2–18
version

_ _DECCXX_VER, 2–20
_ _VMS_VER, 2–20
_ _vms_version, 2–20
_ _VMS_VERSION, 2–20

_ _WHCAR_T, 2–18
with defined value of 1

_ _cplusplus, 2–18
_ _DECCXX, 2–18
_ _vms, 2–18
_ _VMS, 2–18

Macros
VAX C built-in translation, C–2

/MAIN=POSIX_EXIT qualifier, A–25
Main function

passing parameters to, 1–13
syntax of, 1–13

_ _MB built-in function, C–43
Member access, E–8
/MEMBER_ALIGNMENT qualifier, A–26
_ _MEMCPY built-in function, C–43
_ _MEMMOVE built-in function, C–43
memory allocators

64-bit development environment, 9–3
Memory management, E–12
_ _MEMSET built-in function, C–43
Messages

compiler, 1–4
/MMS_DEPENDENCIES qualifier, A–26
/MODEL=ANSI qualifier, 9–5
/MODEL qualifier, A–26
MODEL_ANSI macro, 2–22, A–27
MODEL_ARM macro, 2–22, A–27
MS mode, E–2
_ _MULF_C built-in function, C–36
_ _MULG_C built-in function, C–36
_ _MULS_C built-in function, C–36
Multiple base classes, 2–32
Multiplicative operators, 2–28
_ _MULT_C built-in function, C–36

Index–9

N
Name demangling, 1–15
Names

predefined, 2–18
/NAMES qualifier, A–27
Nested enums, 2–40
/NESTED_INCLUDE_DIRECTORY qualifier,

A–28
new operator

overriding global, 1–8
Non-C++ code, access to, 3–6
Nonstatic data members, 8–6 to 8–7
NOUSE_STD_IOSTREAM macro, 2–22,

A–41, A–42
/[NO]ALTERNATIVE_TOKENS qualifier,

A–3
/[NO]ANSI_ALIAS qualifier, A–4
/[NO]CHECK qualifier

compiler, A–11
/[NO]COMMENTS qualifier

compiler, A–11
/[NO]DEBUG qualifier, 8–1, 8–2

with RUN command, 1–12
/[NO]DEFINE qualifier, A–13
/[NO]DIAGNOSTICS qualifier, A–14
/[NO]DISTINGUISH_NESTED_ENUMS

qualifier, A–14
/[NO]EXCEPTIONS qualifier, A–15
/[NO]EXTERN_MODEL qualifier, A–17
/[NO]IMPLICIT_INCLUDE qualifier, A–20
/[NO]INCLUDE_DIRECTORY qualifier,

2–35, 2–39, A–21
/[NO]LINE_DIRECTIVES qualifier, A–25
/[NO]LIST qualifier, A–25
/[NO]MACHINE_CODE qualifier, A–25
/[NO]MAIN=POSIX_EXIT qualifier, A–25
/[NO]MEMBER_ALIGNMENT qualifier,

2–30, A–26
/[NO]MMS_DEPENDENCIES qualifier,

A–26
/[NO]OBJECT qualifier, A–29

/[NO]OPTIMIZE qualifier, 8–2, A–29
/[NO]PREPROCESS_ONLY qualifier, A–36
/[NO]PURE_CNAME qualifier, A–37
/[NO]RTTI qualifier, A–39
/[NO]SHARE_GLOBALS qualifier, A–39
/[NO]TEMPLATE_DEFINE qualifier, A–42
/[NO]UNDEFINE qualifier, A–42
/[NO]UNSIGNED_CHAR qualifier, A–42
/[NO]USING_STD qualifier, A–43
/[NO]VERSION qualifier, A–43
/[NO]WARNINGS qualifier, A–43
/[NO]XREF qualifier, A–45
Numerical limits, 2–23

O
Object

temporary, 2–33, 2–35
volatile, E–11

/OBJECT qualifier, A–29
Operators

additive, 2–29
built-in, 8–4 to 8–5
delete, E–12
division, 2–28
equality, 2–29
multiplicative, 2–28
remainder, 2–28
shift, 2–29
sizeof, 2–28
user-defined, 8–13

/OPTIMIZE qualifier, A–29
Output buffer

flushing, E–13

P
PALcode built-in functions, C–3
PALcode instructions

_ _PAL_BPT built-in function, C–4
_ _PAL_BUGCHK built-in function, C–4
_ _PAL_CFLUSH built-in function, C–4
_ _PAL_CHME built-in function, C–5
_ _PAL_CHMK built-in function, C–5
_ _PAL_CHMS built-in function, C–5

Index–10

PALcode instructions (cont’d)
_ _PAL_CHMU built-in function, C–5
_ _PAL_DRAINA built-in function, C–6
_ _PAL_GENTRAP built-in function, C–6
_ _PAL_HALT built-in function, C–6
_ _PAL_IMB built-in function, C–6
_ _PAL_INSQHIL built-in function, C–6
_ _PAL_INSQHILR built-in function, C–7
_ _PAL_INSQHIQ built-in function, C–8
_ _PAL_INSQHIQR built-in function, C–8
_ _PAL_INSQTIL built-in function, C–9
_ _PAL_INSQTILR built-in function, C–9
_ _PAL_INSQTIQ built-in function, C–10
_ _PAL_INSQTIQR built-in function,

C–11
_ _PAL_INSQUEL built-in function, C–11
_ _PAL_INSQUEL_D built-in function,

C–12
_ _PAL_INSQUEQ built-in function, C–12
_ _PAL_INSQUEQ_D built-in function,

C–12
_ _PAL_LDQP built-in function, C–13
_ _PAL_MFPR_XXXX built-in function,

C–13
_ _PAL_MTPR_XXXX built-in function,

C–14
_ _PAL_PROBER built-in function, C–15
_ _PAL_PROBEW built-in function, C–16
_ _PAL_RD_PS built-in function, C–16
_ _PAL_REMQHIL built-in function,

C–16
_ _PAL_REMQHILR built-in function,

C–17
_ _PAL_REMQHIQ built-in function,

C–17
_ _PAL_REMQHIQR built-in function,

C–18
_ _PAL_REMQTIL built-in function, C–19
_ _PAL_REMQTILR built-in function,

C–19
_ _PAL_REMQTIQ built-in function,

C–20
_ _PAL_REMQTIQR built-in function,

C–20
_ _PAL_REMQUEL built-in function,

C–21

PALcode instructions (cont’d)
_ _PAL_REMQUEL_D built-in function,

C–21
_ _PAL_REMQUEQ built-in function,

C–22
_ _PAL_REMQUEQ_D built-in function,

C–22
_ _PAL_STQP built-in function, C–23
_ _PAL_SWASTEN built-in function,

C–23
_ _PAL_SWPCTX built-in function, C–24
_ _PAL_WR_PS_SW built-in function,

C–24
Parameters

main function, 1–13
main function, 1–14

/PENDING_INSTANTIATIONS qualifier,
A–34

Pointer, E–9
bound to member function, E–9
conversions, E–9
to constants, E–10

Pointers to members
debugger representation, 8–8

pointer_size pragma, 9–6
/POINTER_SIZE qualifier, A–35
/POINTER_SIZE Qualifier, 9–5
_popcnt built-in function, C–43
_poppar built-in function, C–43
Portability concerns

conversion of command-line arguments,
1–15

#pragma pointer_size preprocessor
directive, 9–6

#pragma required_pointer_size
preprocessor directive, 9–6

Pragmas
See also Preprocessor directive
pointer_size, 9–6
#pragma builtins, 2–1
#pragma define_template, 2–2
#pragma environment, 2–2
#pragma extern_model, 2–4
#pragma extern_prefix, 2–9
#pragma function, 2–10

Index–11

Pragmas (cont’d)
#pragma include_directory, 2–11
#pragma intrinsic, 2–12
#pragma message, 2–13
#pragma module, 2–15
#pragma once, 2–16
#pragma pack, 2–16
#pragma [no]inline, 2–11
#pragma [no]member_alignment, 2–12
#pragma [no]standard, 2–18
required_pointer_size, 9–6

PRAGMA_ENVIRONMENT macro, 2–18
Predefined data types, debugger supported,

8–5
Predefined names, 2–18
/PREFIX_LIBRARIES_ENTRIES qualifier,

A–35
Preprocessor directives

#ifdef, E–12
#pragma, 2–1
#pragma builtins, 2–1
#pragma define_template, 2–2
#pragma environment, 2–2
#pragma extern_model, 2–4
#pragma extern_prefix, 2–9
#pragma function, 2–10
#pragma include_directory, 2–11
#pragma intrinsic, 2–12
#pragma message, 2–13
#pragma module, 2–15
#pragma once, 2–16
#pragma pack, 2–16
#pragma pointer_size, 9–6
#pragma required_pointer_size, 9–6
#pragma [no]inline, 2–11
#pragma [no]member_alignment, 2–12
#pragma [no]standard, 2–18

/PREPROCESS_ONLY qualifier, A–36
_ _prober built-in function, C–63
_ _probew built-in function, C–64
Product support, xviii
Programming tools

DEC Language-Sensitive Editor (LSE),
B–1 to B–4

Programs
linking (Alpha only), 1–5
linking (I64 only), 1–10
linking to class library, 1–8
running, 1–12
steps in developing, 1–1

Prologue/epilogue files, 9–10
/PSECT_MODEL qualifier, A–36
_ _ptce built-in function, C–54
_ _ptcg built-in function, C–54
_ _ptcga built-in function, C–55
_ _ptcl built-in function, C–54
_ _ptrd built-in function, C–55
_ _ptri built-in function, C–55
PURE_CNAME macro, 2–22
_ _PURE_CNAME macro, A–37
/PURE_CNAME qualifier, A–37

Q
Qualifiers, compiler

/ARCHITECTURE, A–4
/ASSUME, A–6
/DEFINE=_ _FORCE_INSTANTIATIONS,

A–13
/DEFINE=_ _[NO_]USE_STD_

IOSTREAM, A–14
/ENDIAN, A–14
/ERROR_LIMIT, A–14
/EXCEPTIONS, A–15
/EXTERN_MODEL, A–17
/FIRST_INCLUDE, A–17
/FLOAT, A–18
/GRANULARITY, A–18
/IEEE_MODE, A–19
/LIBRARY, A–25
/L_DOUBLE_SIZE, A–24
/MODEL, A–26
/NAMES, A–27
/NESTED_INCLUDE_DIRECTORY,

A–28
/[NO]ALTERNATIVE_TOKENS, A–3
/[NO]ANSI_ALIAS, A–4
/[NO]CHECK, A–11
/[NO]COMMENTS, A–11

Index–12

Qualifiers, compiler (cont’d)
/[NO]DEBUG, 8–1, 8–2
/[NO]DEFINE, A–13
/[NO]DIAGNOSTICS, A–14
/[NO]DISTINGUISH_NESTED_ENUMS,

A–14
/[NO]IMPLICIT_INCLUDE, A–20
/[NO]INCLUDE_DIRECTORY, 2–35,

2–39, A–21
/[NO]LINE_DIRECTIVES, A–25
/[NO]LIST, A–25
/[NO]MACHINE_CODE, A–25
/[NO]MAIN=POSIX_EXIT, A–25
/[NO]MEMBER_ALIGNMENT, 2–30,

A–26
/[NO]MMS_DEPENDENCIES, A–26
/[NO]OBJECT, A–29
/[NO]OPTIMIZE, 8–2, A–29
/[NO]PREPROCESS_ONLY, A–36
/[NO]TEMPLATE_DEFINE, A–42
/[NO]UNDEFINE, A–42
/[NO]UNSIGNED_CHAR, A–42
/[NO]USING_STD, A–43
/[NO]VERSION, A–43
/[NO]WARNINGS, A–43
/PENDING_INSTANTIATIONS, A–34
/POINTER_SIZE, A–35
/PREFIX_LIBRARY_ENTRIES, A–35
/PSECT_MODEL, A–36
/QUIET, A–37
/REENTRANCY, A–37
/REPOSITORY, A–38
/ROUNDING_MODE, A–38
/RTTI, A–39
/SHARE_GLOBALS, A–39
/SHOW, A–40
/STANDARD, A–40
/XREF, A–45

Qualifiers, CXXDEMANGLE facility
/REPOSITORY, 1–18

/QUIET qualifier, A–37

R
Reader’s comments, sending, xviii
/REENTRANCY qualifier, A–37
Reference members

debugger access to, 8–7
Reference objects

debugger access to, 8–7
References

initializing, E–10
RELAXED mode, E–1
_ _RELEASE_SEM_LONG built-in function,

C–25
Remainder operator, 2–28
/REPOSITORY qualifier, 1–18, A–38
required_pointer_size pragma, 9–6
_ _RETURN_ADDRESS built-in function,

C–62
/ROUNDING_MODE qualifier, A–38
_ _RPCC built-in function, C–43
_ _rsm built-in function, C–56
RTTI macro, 2–22, A–39
/RTTI qualifier, A–39
_ _rum built-in function, C–56
run command, 1–12
Run compatibility, 3–16
Running programs, 1–12
Run-time errors, 1–13

S
Scope rules

differences between ANSI C and C++,
3–4

_ _setIndReg built-in function, C–51
set language c_plus_plus debugger

command, 8–3
_ _setReg built-in function, C–50
Shareable images, creating, 3–12, 3–13
/SHARE_GLOBALS qualifier, A–39
Shift operators, 2–29
show language debugger command, 8–3

Index–13

/SHOW qualifier, A–40
_ _SIN built-in function, C–44
Single-precision, floating-point arithmetic

built-in functions, C–36
Size-of-array argument

to delete operator, E–12
sizeof operator, 2–28
Source compatibility, 3–14
Specifiers

access, 2–31
extern, 3–3
type, 2–29
typedef, E–10

_ _ssm built-in function, C–56
/STANDARD=ANSI mode, E–1
/STANDARD=RELAXED mode, E–1
Standard Library, 1–1

building programs with, 7–11
compatibility issues, 7–2 to 7–11

global array new and delete, 7–10
IOSTREAMS, 7–11
/[NO]USING_STD compatibility

qualifier, 7–3
overriding operator(new), 7–7, 7–9
pre-ANSI/ANSI iostreams

compatibility, 7–3
pre-ANSI and ANSI operator(new),

7–6
using RMS attributes with iostreams,

7–13
/STANDARD qualifier

compiler, A–40
Standard Template Library

building programs with, 7–11
using RMS attributes with iostreams,

7–13
Statement

goto, E–11
switch, E–11

Static object initialization
order of, 2–27

<stdarg.h> header file, 3–5
STD_ANDI macro, 2–22, A–41

STD_ARM macro, 2–22, A–41
STD_GNU macro, 2–22, A–41
STD_MS macro, 2–22, A–42
STD_NEW macro, 2–22
STD_STRICT_ANSI macro, 2–22, A–42
STD_STRICT_ANSI_ERRORS macro, 2–22,

A–42
STRICT_ANSI mode, E–2
String Library

building programs with, 7–11
iostreams

using RMS attributes with, 7–13
Structure alignment

of class, 2–30
_ _SUBF_C built-in function, C–36
_ _SUBG_C built-in function, C–36
Subobject allocation

class, 2–32
Subobject offsets

class, 2–31
_ _SUBS_C built-in function, C–36
_ _SUBT_C built-in function, C–36
_ _sum built-in function, C–56
switch statement, E–11
_ _synci built-in function, C–57
Syntax

main function, 1–13

T
_ _tak built-in function, C–64
Template

compatibility with earlier versions, E–6
Template instantiation, 5–1 to 5–24
/TEMPLATE_DEFINE qualifier, A–42
Temporary objects, 2–33, 2–35

handling destruction after static member
function call, 2–35

_ _TESTBITCCI built-in function, C–44
_ _TESTBITSSI built-in function, C–45
_ _thash built-in function, C–57
this function argument

debugger referencing, 8–13

Index–14

this pointer
assignment to, E–12

Thread safety, 7–11
TIME_ _ macro, 2–18
_ _tpa built-in function, C–64
Traceback information, 1–13
Trailing Zeros built-in function, C–45
_trailz built-in function, C–45
Translation limits, 2–23
Translation macros, C–2
_ _TRAPB built-in function, C–45
_ _ttag built-in function, C–57
Type conversion

explicit, 2–28
typedef specifier, E–10
Type specifier

volatile, 2–29

U
_ _UMLH built-in function, C–45
/UNDEFINE qualifier, A–42
_ _UNLOCK_LONG built-in function, C–42
/UNSIGNED_CHAR qualifier, A–42
User-defined operators, 8–13
USE_STD_IOSTREAM macro, 2–22, A–42

USING_STD macro, 2–22
/USING_STD qualifier, A–43

V
<varargs.h> header file, 3–5
Variable-length argument list, 3–5
/VERSION qualifier, A–43
vms macro, 2–18
VMS macro, 2–18
VMS_VER macro, 2–20
vms_version macro, 2–20
VMS_VERSION macro, 2–20
Volatile object, E–11
volatile type specifier, 2–29

W
/WARNINGS qualifier, A–43
WCHAR_T_ _ macro, 2–18

X
/XREF qualifier, A–45
X_FLOAT macro, 2–20, 2–22, A–25

Index–15

