
HP C++ Version 7.4-004 Release
Notes for OpenVMS Integrity servers

January 22, 2010

This document contains information about new and changed features in HP
C++ V7.4-004 for OpenVMS Integrity servers Version 8.2-1 and higher.

Revision/Update Information: This is an updated manual

Software Version: HP C++ Version 7.4-004 for OpenVMS
Integrity servers Version 8.2-1 and higher.

Hewlett-Packard Company
Palo Alto, California



© Copyright 2010 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group.

Portions of the ANSI C++ Standard Library have been implemented using source licensed from
and copyrighted by Rogue Wave Software, Inc. All rights reserved.

Information pertaining to the C++ Standard Library has been edited and reprinted with
permission of Rogue Wave Software, Inc. All rights reserved.

Portions copyright 1994-2010 Rogue Wave Software, Inc.

This document was prepared using DECdocument, Version 3.3-1n.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Enhancements, Changes, and Problems Corrected in the Version

7.4-004 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Release Notes for the V7.3 C++ Compiler . . . . . . . . . . . . . . . . . . 3
4 Known Problems in V7.3-009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Enhancements, Changes, and Problems Corrected in the

V7.3-009 C++ Standard Library . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Release Notes for the V7.2 C++ Compiler . . . . . . . . . . . . . . . . . . 18
6.1 New Name Mangling/Prefixing Requires Recompile from

Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 64-bit Runtime Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 64-bit Pointer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3.1 Pointer_Size Control Differences . . . . . . . . . . . . . . . . . . . 22
6.3.2 Mixed Pointer-Size Allocators . . . . . . . . . . . . . . . . . . . . . 28
6.4 Other Enhancements, Changes, and Problems Corrected . . . 30
6.5 Known Problems and Restrictions . . . . . . . . . . . . . . . . . . . . . 33
7 Release Notes for the V7.2 C++ Standard Library . . . . . . . . . . . . 35
8 Release Notes for the V7.1 C++ Compiler . . . . . . . . . . . . . . . . . . 37
8.1 Problems Fixed in V7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2 New Features in V7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.1 cname Header Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.2 _ _HIDE_FORBIDDEN_NAMES Predefined in Strict

ANSI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2.3 /[NO]FIRST_INCLUDE Qualifier Added . . . . . . . . . . . . . 39
8.2.4 #pragma include_directory Added . . . . . . . . . . . . . . . . . . 39
8.2.5 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2.6 New Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3 Integrity servers Differences . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.3.1 Quotas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.3.2 Dialect Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.3.3 ABI/Object Model changes . . . . . . . . . . . . . . . . . . . . . . . . 41
8.3.4 Command-Line Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3.5 Floating Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



8.3.6 Intrinsics and Builtins . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3.7 memcpy C Run-Time Library Function . . . . . . . . . . . . . . 53
8.3.8 ELF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3.9 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3.10 Exceptions and Condition Handlers . . . . . . . . . . . . . . . . . 55
8.3.11 Overriding new and delete . . . . . . . . . . . . . . . . . . . . . . . . 56
8.4 Integrity servers Known Issues . . . . . . . . . . . . . . . . . . . . . . . 56
9 Release Notes for the V7.1 C++ Libraries . . . . . . . . . . . . . . . . . . 62
9.1 Library Reorganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.1.1 Standard Library and Language Run-Time Support

Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.1.2 Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2 Language Run-Time Support Library . . . . . . . . . . . . . . . . . . 63
9.3 Class Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.4 Standard Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.4.1 Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.4.2 Library Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.4.3 Internal Library Headers and Macros . . . . . . . . . . . . . . . 65
9.4.4 Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.4.5 Differences Between Alpha and Integrity server

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.4.6 Restrictions in Version 7.1 . . . . . . . . . . . . . . . . . . . . . . . . 72
9.4.6.1 Using the C++ Standard Library in Microsoft

Standard Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10 CXXLINK Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.1 Multiple Version Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
12 Reporting Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

iv



1 Introduction
This document contains the release notes for HP C++ Version 7.4-004 for
OpenVMS Integrity servers. The HP C++ product requires OpenVMS Integrity
servers Version 8.2-1 or higher.

The release notes for previous HP C++ versions are also included:

• See Section 3 for the HP C++ V7.3 compiler release notes.

• See Sections 6 and 7 for the HP C++ V7.2 compiler and library release
notes, respectively.

• See Section 8 for the HP C++ V7.1 compiler release notes, which describe
the new features, differences, and restrictions of the C++ V7.1 compiler for
Integrity server systems over the C++ V6.5 compiler for Alpha systems.

• See Section 9 for the HP C++ V7.1 release notes for the standard library,
language run-time support library, and class library.

2 Enhancements, Changes, and Problems Corrected in the
Version 7.4-004 Compiler

This section describes enhancements, changes, and problems corrected since
C++ Version 7.4-004 compiler for Integrity server systems.

• When there are several compilations happening simultaneously with
/EXPORT_SYMBOLS qualifier specified in a multicore machine, longer
compilation time was observed. This has been corrected.

• Under certain circumstances involving code with throw statement, the
compiler failed to emit CODEUNREACHABLE information message for
the unreachable statements. This has been fixed.

• In certain cases when /EXPORT_SYMBOLS qualifier fails because of the
process exhausting its subprocess quota, the compiler would exit without
any message. This has been corrected and the compiler emits a fatal
message.

• Accessing certain class arrays using a negative constant index value could
cause incorrect code to be generated. This has been fixed.

• In certain cases the /EXPORT_SYMBOLS qualifier would not emit symbols
for virtual thunks to the options file if they were created using a template
marked with the _ _declspec(dllexport) attribute. This has been
corrected.

1



• In certain cases the /EXPORT_SYMBOLS qualifier would not emit symbols
for subobject constructors and destructors to the options file if they were
created using a template marked with the _ _declspec(dllexport)
attribute. This has been corrected.

• The _ _PAL_REMQ does not work properly. This has been corrected.

• Type information placed in the repository was wrong when the type was a
qualified typedef type and the typedef was a pointer type. This has been
corrected.

• In certain cases the compiler could generate bad code when a function’s
eighth parameter slot was a floating point number. This has been
corrected.

• The options file created when /EXPORT_SYMBOLS=(NOTEMPLATES)
was specified would incorrectly output SYMBOL_VECTOR commands for
some constructor vtable entries. This has been corrected.

• The options file created when /EXPORT_SYMBOLS was specified would
create an options file that contained lines too long for the linker. This has
been corrected.

• In some cases compiling with /DEBUG=ALL could cause the compiler to
crash. This has been corrected.

• In some cases compiling with /DEBUG/OPT could cause the compiler to
crash. This has been corrected.

• The compiler could generate bad code when a file-scope static variable and
an function with external linkage had names that differ only by case. For
example:

static const int SERVICE_ELMT_ATTR = 39; // pr_alg_stat.h line 74
and

int service_elmt_attr(long serv_elmt_id) // pr_alg_service_element.h

This has been corrected.

• In some cases, particularly when a block with a local declaration of an
object with a non-trivial destructor could be determined at compile-time
never to execute. If there was control-flow from that block to a block
that throws an exception, then the destructor for the local object would
sometimes be invoked, even though the object was never constructed.
The exact circumstances under which the destructor would be invoked
erroneously were not consistent, and were sensitive to the layout of the
stack frame. This problem has been corrected.

2



• When compiling /OPT=LEVEL=2 (or higher), large line numbers preceded
by a "#" could be seen in the line number column of an OpenVMS
traceback or in OpenVMS debug. This problem has been corrected. Note
that optimized debugging is not supported in this release.

• The built-in functions _ _MEMSET, _ _MEMCPY, _ _MEMMOVE, and
_ _STRCPY are sometimes compiled into calls to ordinary C RTL library
functions (For example, when compiling /NOOPT). The C RTL contains
separate implementations of these routines for 32-bit versus 64-bit
compilations, but the compiler was always generating calls to the 32-
bit versions, even under /POINTER_SIZE=64. This problem has been
corrected.

3 Release Notes for the V7.3 C++ Compiler
This section describes enhancements, changes, and problems corrected in the
C++ Version 7.3 compiler for Integrity server systems.

HP C++ V7.3-009 is largely a bug-fix release of the compiler, although it does
contain some significant new features including multiple version support, new
exception processing mode pure_unix, new command line qualifier /EXPORT_
SYMBOLS, and an unsupported/experimental mechanism for generating a
customized machine_code listing. The following describes these features along
with problems fixed and restrictions in this version.

• Multiple Version Support

Version 7.3 adds optional support for having multiple versions of the HP
C++ compiler on your system. It works by appending an ident name to a
previously installed compiler and saving it alongside the new compiler from
this kit. Users on your system can then execute the sys$system:cxx$set_
version.com and sys$system:cxx$show_versions.com command procedures
to select the desired compiler for a given process and to view the list of
available compiler versions.

To set this up, have your system administrator run the installation
procedure, answering NO to the question about default options:

Do you want the defaults for all options? [YES] NO <RET>

Then answer YES to the question about making alternate compilers
available:

Would you like to set up your system for running alternate versions of C? [NO] YES <RET>

3



Users can then execute the cxx$set_version.com command procedure with
an argument:

$ @sys$system:cxx$set_version V7.2-018

Or without an argument:

$ @sys$system:cxx$set_version.com

The following HP C++ compiler(s) are available in SYS$SYSTEM

Filename Version Defaults
-------------------------------------------------------
CXX$COMPILER.EXE T7.3-018 System Default
CXX$COMPILER_T07_03-018.EXE T7.3-018
CXX$COMPILER_V07_01-011.EXE V7.1-011
CXX$COMPILER_V07_02-018.EXE V7.2-018

Enter Version number or SYSTEM: V7.1-011

Notice that when cxx$show_versions.com is executed without an argument,
it displays a list of possible compilers and prompts you for a version
number. Also notice that you can revert to the installed compiler by
selecting SYSTEM as the version number.

The cxx$set_version.com command procedure sets up the logicals
CXX$COMPILER and CXX$COMPILER_MSG to point to the location
of the target compiler and its message file. In addition, it issues a SET
command to select the appropriate CDL file to select the correct set
of qualifiers for the specified compiler version. Please remember that
SET commands are not inherited by subprocesses. Make sure that
all subprocesses reissue the necessary cxx$set_version.com command
procedure.

For a sample installation with multi-version support, please see the
installation section.

• A startup procedure, CXX$STARTUP.COM has been added to the PCSI
product install kit. It contains commands that can be executed after the
product install procedure has been run and at startup to allow for the best
compilation performance. You may want to invoke this command file from
your system’s site-specific startup file. This command file does not have to
be invoked for correct operation of HP C++.

• A new process-wide exception processing mode, pure_unix, has been
introduced. In this mode, non-C++ exceptions, also known as OpenVMS
conditions, cannot be caught in a C++ catch-all handler. This mode can
be requested by calling cxxl$set_condition(condition_behavior) with a
pure_unix argument:

4



cxxl$set_condition(pure_unix);

The condition_behavior enum declared in the <cxx_exception.h> header
has been extended to include the pure_unix member.

To demonstrate how pure_unix mode works, consider the following
program. As written, it crashes with an ACCVIO. If the call to cxxl$set_
condition( ) is commented out, the program outputs "caught" and exits.

#include <stdio.h>
#include <cxx_exception.h>

void generateACCVIO() { *((int*)0) = 0; }

int main() {
cxxl$set_condition(pure_unix);

try {
generateACCVIO();

}
catch(...) {

puts("caught");
}

}

• The alignment option of the #pragma extern_model directive will now be
correctly processed. Earlier releases of the compiler would silently accept
and ignore any alignment option.

• Optimizing the code generated for the _ _ATOMIC_INCREMENT_LONG
builtin function sometimes produced incorrect code. E.g. the register
holding the address of the location to increment would not be set up
correctly, or register r0 would be used, resulting in an access violation at
run-time. This problem, and its equivalent in the _QUAD version, and
both the LONG and QUAD versions of _ _ATOMIC_DECREMENT_* have
been fixed.

• In some cases, when a for loop used an unsigned int variable as the index,
and compared that index in an ordered comparison against a constant
of type unsigned int for the termination condition, the loop would never
terminate.

• In some cases, functions containing unreachable code could cause the
compiler to crash when optimized.

• In some cases, functions containing switch statements within a try block
could be incorrectly optimized. This problem has been fixed.

• A workaround was added for debugging of symbols in top level unnamed
namespaces. In the debugger they will appear to be global symbols so that
they can be examined.

5



• Creating OpenVMS shareable images that contain C++ code has long been
a problem for users. When building a shareable image, you must specify a
list of exported global symbols. For C++ code, determining this list is very
difficult for the following reasons:

Required C++ name mangling makes it difficult to know the name of
the external symbol created for a C++ name.

OpenVMS CRC encoding (to 31 characters) further complicates
mapping source names to object names.

Certain C++ constructs require compiler-generated names to be created
and exported.

To help solve the problem, this release of the compiler provides a new
compiler qualifier /EXPORT_SYMBOLS and new declaration modifier
_ _declspec(dllexport). The format for /EXPORT_SYMBOLS:

/EXPORT_SYMBOLS=(OPTIONS_FILE=<name>
[,EXCLUDE=<list of images>]
[,export_option]
[,NOTEMPLATES])

The default file extension for <name> is .OPT

If the file exists, the compiler appends to it. If the file does not exist, the
compiler creates it.

The output for the compilation is:

!
! Entries added for <module>
!
<symbol vector>
<symbol vector>
.
.
.

The output file is suitable input to a linker options file that can be used to
build a shareable image containing the compiled object.

The format of each <symbol vector> is:

SYMBOL_VECTOR=(<global name>={DATA | PROCEDURE}) ! <comment field>

The <comment field> format is:

<unmangled name> [<promoted static flag>] [<class information>]

The <promoted static flag> is one of the following:

*PSDM* - for promoted static data members

6



*PTSDM* - for promoted template static data members

The <promoted static flag> is output whenever the symbol is a promoted
local static or a promoted template static data member. This is important
because these variables, while declared static, actually become global
symbols when compiled.

The <class information> field is present if the symbol is a member of a
class. It contains the name of the class.

Notes

When /EXPORT_SYMBOLS is specified, an object file must also
be generated. So /EXPORT_SYMBOLS cannot be used with
/NOOBJ, /PREPROCESS_ONLY, or any other qualifier that
prevents the creation of an object file.

When the options file already exists, the compiler reads all the
symbols that are listed there. If the current compilation also
defines one of those symbols, that symbol will not be added to
the options file. This is necessary to prevent SYMVALRDEF
warnings from the linker.

When the compiler reads the existing file, it treats SYMBOL_
VECTOR directives that are in comments (of the form
!SYMBOL_VECTOR...) as if they were not commented. In
this way, if a user does not want to export a symbol, placing it
in comments will prevent the compiler from emitting a directive
for that symbol when it compiles other sources that might also
define the symbol.

The symbols placed in the options file are a subset of the
symbols defined in the output object file. The export_option
value controls exactly which symbols are placed there. There
are three choices:

o ALL - Place all symbols suitable for placement in a sharable
image into the options file. The compiler knows that certain
symbols are not suited for placement in a shareable image
and excludes them from the options file. Some examples are
certain compiler-generated constructor/destructor jackets
and symbols in the unnamed namespace.

o EXPLICIT - Place only those symbols marked with the
_ _declspec(dllexport) declaration modifier into the
options file.

7



o AUTOMATIC (D) - If the compiler processes a
_ _declspec(dllexport), then act as if EXPLICIT
was specified. If the compiler does not process a
_ _declspec(dllexport), then act as if ALL was specified.

The EXCLUDE option of the /EXPORT_SYMBOLS qualifier
can be used to specify a list of shareable images. The compiler
searches these images for any symbols that it might want to
place in the output options file. If it finds the symbol in the
image, then that symbol will not be put into the options file.

The NOTEMPLATES option of the /EXPORT_SYMBOLS
qualifier can be used to control the emission of symbols
associated with template instantiations. Specifying this
option causes the compiler to suppress symbols created by
template instantiation. This includes instantiations of class
templates, its data members and member functions, and
instantiations of function templates. This option could be
used to avoid multiple definition diagnostics from the linker
if multiple sharable images might be instantiating (and
exporting) the same template symbols. Symbols marked with
_ _declspec(dllexport) still get exported. This option has
no effect on symbols from template specializations. Note that
while this option might make the sharable images smaller by
not exporting the template symbols, the executable image that
links with these sharable images might be larger because it will
contain the instantiated template symbols.

Expected Usage:
Because shareable images almost always contain a number of objects, the
commands for creating the options file the first time might be:

$ DELETE options_file.OPT;*
$ CXX SOURCE1/EXPORT_SYMBOLS=OPTIONS_FILE=options_file
$ CXX SOURCE2/EXPORT_SYMBOLS=OPTIONS_FILE=options_file
$ CXX SOURCE3/EXPORT_SYMBOLS=OPTIONS_FILE=options_file

.

.

.
$ CXX SOURCEn/EXPORT_SYMBOLS=OPTIONS_FILE=options_file

Where SOURCE1 - SOURCEn are the sources for the shareable. After
the compilations, the options_file.OPT will contain correct symbol vector
information for the shareable.

8



The first time this options file is created, it can be considered a candidate
options file. It contains all the symbol vector entries for all the C++ globals
that make sense to export from the C++ language point of view. A user can
then edit this file to exclude (by commenting out) entries that should not be
exported, based on the design of the library.

Once an options file is created, it should be maintained for input to
subsequent compilations. In this way, any new symbols caused by a change
in the source will be added to the end of the compilation. Any existing
symbols will not be added, as described in the NOTES section above. This
technique ensures that the order of symbols remains unchanged, and that
future shared libraries are compatible with existing ones.

• A new option to the /POINTER_SIZE=LONG qualifier is available. When
/POINTER_SIZE=LONG=ARGV is specified, the argv argument to main
will be comprised of long pointers instead of the short pointers. This can
make using long pointers easier as the pointer size of argv will match the
default pointer size for the compilation.

• Calls to the CRTL function tempnam( ) were recognized as intrinsic, and
could be optimized not to set up the argument information register (R25).
This could cause the function to behave erratically at run-time, because
the CRTL implementation of tempnam( ) supports a non-standard optional
3rd parameter to control the style of the filename it produces, and thus it
uses the value in R25 to determine how it should behave. The compiler no
longer performs this erroneous optimization.

• Calls to the CRTL function time( ) were recognized as intrinsic, and could
be optimized not to set up the argument information register (R25). This
could cause the function to behave erratically at run-time, because of an
undocumented CRTL feature that allows a call to the time( ) function
without an argument to be treated the same as a call with a NULL pointer
argument. So if the R25 register happened to contain a zero at the point of
call, the function would only return the time value, and fail to store it into
the memory pointed-to by the argument to the call. The compiler no longer
performs this erroneous optimization.

• In some unusual situations where an object was constructed within
an inner block that "could" be exited via an exception (but wasn’t),
the destructor for the object could be invoked a second time, after the
destructor invoked at the end of the object’s scope. This problem has been
fixed.

• Several problems involving bad sign extensions when using /POINTER=64
have been corrected.

9



• A bug causing the compiler to crash when performing pointer arithmetic on
function pointers has been fixed.

• The compiler no longer emits incorrect MAYLOSEDATA diagnostics for
some simple expressions such as when the address of a local variable is
assigned to a short pointer.

• When compiling with the /STANDARD=ARM qualifier, user-defined
conversion functions are not called when casting to a reference. This
matches the behavior of the Alpha compiler in the /STANDARD=ARM
mode.

• The diagnostic UNINIT issued when more than one member of a union is
initialized, now has a severity of ERROR. Previously, it had a severity of
WARNING.

• The diagnostic VIRSTAT issued when a static member function is declared
with the virtual keyword, now has a severity of ERROR. Previously, it had
a severity of WARNING.

• The text for the diagnostic BADINITYP issued when a pointer to a bound
function is used in expressions other than to call it, has been modified to
make the diagnostic clearer.

• A bug in the compiler which caused some sign extensions to be missing
when right-shifting signed values, has been fixed.

• A problem was fixed with numbering of group sections when more than
65K sections were needed.

• Beginning with this release the compiler will generate the source
correlation records used by debug and the traceback facility to map a
source file and line number onto the familiar listing line numbers used
by VMS. This resolves various problems with source correlation when
using templates and when a include files are included more than once in
the same compilation unit. When using C++ you will now see listing line
numbers from traceback and from the debugger. You will no longer see
unix-like source file line numbers.

• A bug making it impossible for the program to catch C++ exceptions after
a kill( ) signal was received and caught by the signal handler has been
fixed but requires the runtime components kit VMS83I_ICXXL-V0100,
VMS821I_ICXXL-V0200 or higher.

• Improvements have been made in the demangling information for thunks.
Thunks are now clearly marked as such in the repository and in the object
for the debugger. Also, a bug was fixed where the unmangled name for a
thunk that was not defined in the current module was incorrect.

10



Previous versions of the compiler generated an incorrect demangled name
for the thunk CXX$ZTHN4N6PARENT5PRINTV019MIAE when compiling
the test case below. The unmangled name in the cxx_reprository now
appears as: "non-virtual THUNK for unsigned int parent::print( )".

// classes.h
//
struct base
{

virtual char * name()
{

return "Unknown";
}

};

struct base2
{

virtual unsigned int print() = 0;
};

// switching order of base and base2
// makes thunk error go away
struct parent : base, base2
{

unsigned int print();
};

struct child : parent
{

child() {}
};

// thunk.cxx
#include "classes.h"
int main()
{

child c;
return 0;

}

Note: A thunk is a segment of code associated with a target function,
that is called instead of the target function for the purpose of modifying
parameters (for example, the this pointer) or other parts of the
environment before transferring control to the target function, and possibly
making further modifications after its return.

• The Integrity servers ABI requires that "wrapper" routines be provided
around constructors and destructors. The compiler now generates
an unmangled name prefix of "$complete$" for the C1/D1 wrappers,
"$subbject$" for C2/D2 wrappers, and "$deleting$" for D0 wrappers. Initial

11



versions of the V7.2 compiler placed the prefix in a different part of the
unmangled name when generating repository names than when generating
debugger unmangled names. The compiler is now more consistent.

• Certain cases using #pragma message(<string literal>) could cause the
compiler to crash. This problem has been fixed.

• Certain code constructs would cause an assertion in the compiler in the
routine do_all_namespace_member_promotion. This problem has been
fixed.

• The HP C++ V7.2 release changed the severity of certain NEVERDEF
diagnostics from -W- to -E-. This update kit changes the severity back to
-W-.

• In cases where the second operand of the conditional (?:) operator was
a string literal, the compiler could generate bad code if the /POINTER_
SIZE=LONG qualifier was specified. This has been corrected.

• The compiler no longer accepts the _ _inline and _ _inline_ _ language
extensions when /STANDARD=STRICT or LATEST is specified.

• When /STAND=GNU is specifed, the HP C++ V7.2 compiler would
sometimes emit an incorrect OPNDNOTCLS diagnostic. This has been
corrected.

• The V7.2-018 compiler would crash if static data members were declared
in the common_block extern_model. As some C++ header file contain
such declarations, including those headers in a non-default extern_model
could cause a compiler crash. For example, the following would crash the
compiler:

#pragma extern_model common_block
#include <string>

This update corrects the compiler crash.

Take great care when using the non-default extern_model. The main
purpose of extern_model is to allow C++ to share global data with code
written in other languages. Declarations that cause data to be allocated
according to the C++ object model, that is, declarations for other than POD
(Plain Old Data) objects, cannot generally be shared reliably with other
languages, and should only appear in regions of source that are subject to
the default extern_model of relaxed_refdef.

12



Within regions of source subject to an extern_model other than
relaxed_refdef, declarations that allocate data with names visible to the
linker should be limited exclusively to POD types. In particular, declaring
a C++ class containing a static data member within such a region might
produce unintended behavior.

• The use of the += operator where the left operand was a 64-bit pointer
could produce incorrect results. This has been corrected.

• Certain parameter information placed in the demangler database would
sometimes contain too many levels of indirection. This has been corrected.

• Certain programs that were compiled /DEBUG/POINTER_SIZE=32 and
also contained #pragma pointer_size 64 directives could crash the compiler
with an access violation in TAG_Emit_Subprogram. This problem has been
corrected.

• Using the operator new in a mixed pointer-size compilation could
sometimes cause the compiler to crash with with an assert in
CAREA:[SRC.IPF.EDGCPFE]EXPR.C;1. This has been corrected.

• If a user program tried to define an overloaded function called mktemp, the
compiler would not create the mangled names correctly. This could lead to
only one function being created. This problem has been corrected.

• While creating the unmangled routine name information for the demangler
database, the compiler would access an internal representation of the
parameter types that sometimes could be NULL. Instead of then accessing
another internal representation which provides the same information, the
compiler was incorrectly raising an assertion about the NULL value. This
has been fixed.

• In the C++ language run-time support library, the implementation was
incorrectly assuming that the elements in an internal linked list would
get reused, and were not being deallocated. These elements were not
being reused and therefore resulted in a memory leak. The library now
deallocates the elements in the linked list as soon as they are not needed.

• The C++ language run-time support library, was not initially coded with
the ability to be loaded into the 64-bit address space. As a result, when
applications were linked with /SEGMENT_ATTRIBUTE=CODE=P2, or
when the library was installed resident, the library would sometimes
produce an accvio. This has been fixed.

13



• Restriction: The link command qualifier /SEGMENT_ATTRIBUTE=CODE=P2
causes the executable code for an image to be loaded into P2 space when
the image is activated. The code generated by the C++ compiler for 32-
bit pointer applications (that is, compilations that do not specify the
/POINTER_SIZE qualifier, or that specify /POINTER_SIZE=32), is not
generally compatible with this link qualifier. While some 32-bit C++
compilations may run correctly when linked this way, the code is likely
to encounter an access violation at run-time; and 32-bit code compiled
with optimization disabled is more likely to fail than code compiled with
optimization enabled.

The link command qualifier /SEGMENT_ATTRIBUTE=CODE=P2 should
only be used when all C++ compilations in the program are compiled with
/POINTER_SIZE=64, and when the C++ libraries supplied with this kit (or
newer) are used. The previous libraries had a problem that could cause
a run-time accvio in 64-bit C++ code that used exceptions and was linked
with /SEGMENT_ATTRIBUTE=CODE=P2.

• Unsupported machine_code listing mechanism.

An experimental/unsupported feature has been added to the compiler
which causes it to invoke a user-controllable sub-process to produce the
disassembly style of machine code listing (i.e. the listing that is produced
under /LIST/MACHINE_CODE/OBJECT). This experimental behavior is
triggered and controlled by logical names at compile time.

Of particular note is that if the "gawk" stream editing program is
available on the system, then if logical name DECCXX$GAWK_EXE
is defined to point to the executable image for gawk, and logical name
DECCXX$MACH_LIST_SCRIPT is defined as NL: then the compiler
will attempt to generate and invoke a DCL script that runs both
ANALYZE/OBJECT/DISASSEMBLE and ANALYZE/OBJECT/SECTION=DEBUG=LINE
on the object module produced by the compiler. The generated DCL script
then runs a gawk script that produces the machine code listing by editing
the ANALYZE/OBJECT/DISASSEMBLE output to:

o output a table of source files read by the compiler, with each file
numbered for reference;

o append a //-style comment with the listing line number, source
file number, and line number within source file, to each machine
code instruction for which the source information differs from the
information for the preceding instruction;

14



o append a //-style comment with the demangled name (from the
demangler database in the repository) to each line that contains
the label symbol that begins a function definition. This behavior
is suppressed if a logical name or DCL symbol definition for
DECCXX$MACH_LIST_NODEMANGLE exists, the purpose being
to prevent the gawk script from reading the entire demangler database
file into memory.

Note that gawk can be obtained from the OpenVMS FreeWare CD, e.g. by
downloading it from
http://openvms.compaq.com/freeware/freeware80/.

Instead of defining logical DECCXX$MACH_LIST_SCRIPT to NL:, the
user may also define it to point to an existing DCL script. If the name
resolves to an existing readable file with non-zero length, the compiler will
attempt to invoke it as a DCL script, passing it two arguments: the filespec
for the object module it generated, and the filespec for the repository
(appending "CXX$DEMANGLER_DB." to the second argument produces
the name of the demangler database). That script might or might not
use DECCXX$GAWK_EXE - the compiler itself does not do anything with
that logical name, the use of it is only within the DCL script that the
compiler generates if DECCXX$MACH_LIST_SCRIPT is defined but does
not resolve to a readable file with non-zero length.

In the case when the compiler generates the DCL script that it
invokes, the script is created with the name "SYS$SCRATCH:CXXLIS_
’’F$UNIQUE( )’.COM", and the compiler deletes the script after it has been
invoked. But if DCL symbol MACH_LIST_SCRIPT$DEBUG is defined
with a value of 1, then the compiler does not delete the script it generated.
Additionally, the generated script itself tests if DCL symbol MACH_LIST_
SCRIPT$DEBUG is defined with a non-zero value, and if so it:

o turns on DCL verification;

o enables debugging output in the gawk script it generates and runs;

o does not delete the three temporary files it creates, in files "SYS$SCRATCH:ZZCODE-
’’F$UNIQUE( )’.ANL-DIS", "SYS$SCRATCH:ZZCODE-’’F$UNIQUE( )’.ANL-
LINES", and "SYS$SCRATCH:ZZCODE-’’F$UNIQUE( )’.GAWK".

It cannot be overemphasized that this is an experimental feature. Problems
encountered by the scripts may not be handled gracefully, and may well
exhaust resources. Improperly-defined logical names will typically cause
the listing to revert to its normal form as if the logicals were not defined,
although certainly other less desirable behaviors could occur. The feature
has been only minimally tested on relatively small compilations, but in
those cases the output produced was accurate and very useful, and that is

15



why it is being made available for experimental use. There is no assurance
that this mechanism, or the form of output it produces, will be continued in
future releases of the compiler.

4 Known Problems in V7.3-009
The following are known problems in this release of the compiler:

• The #pragma extern_model directive does not support the alignment
options PAGE and 16.

• The compiler might emit an erroneous BADANSIALIASn message.

In some situations the compiler’s loop unrolling optimization can generate
memory accesses in the code stream that never actually execute at run-
time, but that would violate the ANSI Aliasing rules if they did occur. In
such a situation, the compiler might emit an erroneous BADANSIALIASn
message, where n is a number or is omitted.

If the violations take place only in machine instructions that will not
execute at run-time, these messages can be safely ignored.

To determine whether or not particular instances of a BADANSIALIASn
message are erroneous, recompile the module with the /OPT=UNROLL=1
qualifier. Any BADANSIALIASn messages that disapper under that
qualifier can be safely ignored, so you may want to add appropriate
#pragma message directives to the source, localized to the specific source
lines known to be safe. This is preferable to disabling the message for
the whole compilation, since in all other cases the message indicates a
real potential for code generation that will not work as intended. And
this is generally preferable to disabling the ANSI_ALIAS or loop unrolling
optimizations, since that would likely degrade performance, although
the amount of degradation is not predictable, and in unusual cases it
might even improve performance. As always when making changes to
performance-critical code, it is best to measure the impact.

16



5 Enhancements, Changes, and Problems Corrected in the
V7.3-009 C++ Standard Library

The following problems are fixed in this version of the C++ Library:

• As described in code_example(<http://issues.apache.org/jira/browse/STDCXX-
397>), _ _introsort_loop( ) function in code_example(<algorithm.cc>)
header has a bug which, for some input sequences, can adversely affect
performance of std::sort. See the Apache tracker for the issue STDCXX-397
at URL above for more details.

The bug has been fixed. However, for some input sequences, the fix can
change the behaviour of std::sort with regard to the relative order in
which elements that have equivalent ordering are placed into the sorted
sequence. While this change in behaviour is permissible because, unlike
std::stable_sort, std::sort does not guarantee any particular relative order
of elements having equivalent ordering, to avoid breaking applications
that rely on existing behaviour of std::sort, the fix is conditionalized with
_ _RW_FIX_APACHE_STDCXX_397 macro and is in effect only when the
program is compiled with this macro defined. [L2028]

• When compiled in standard GNU mode, the library now defines the
_RWSTD_NO_IMPLICIT_INCLUSION macro which causes library headers
to #include their respective template definition files. This is necessary
because in standard GNU mode, implicit inclusion is disabled.

Before this change, the program below would link with undefined symbol
when compiled in standard GNU mode:

#include <vector>

int main() {
std::vector<int> v;
v.push_back(0);

}

• According to section 27.6.1.3 [lib.istream.unformatted] of the C++ Standard,
the following get member functions of the std::basic_istream class should
call setstate(failbit) if no characters have been stored, as is the case for an
empty line. While on Integrity server systems the functions set failbit, on
Alpha systems they do not:

istream_type& get(char_type *s, streamsize n, char_type delim);
istream_type& get(char_type *s, streamsize n);

See Section 9.4.5 for more information.

17



6 Release Notes for the V7.2 C++ Compiler
This section describes enhancements, changes, and problems corrected in the
C++ Version 7.2 compiler for Integrity server systems.

6.1 New Name Mangling/Prefixing Requires Recompile from Source

Note

The V7.2 compiler generates different mangled names from V7.1 for
user code. For 32-bit (default) compilations, V7.2 prefixes mangled
names with "CX3$", where V7.1 used "CXX$". C++ library names
remain unchanged, using the "CXXL$" prefix for 32-bit code.
Applications built with the V7.1 compiler must be fully-recompiled
from source when moving to V7.2. An application containing both
"CXX$" and "CX3$" prefixed names will not work correctly.

The introduction of 64-bit pointer support, described later, uncovered some
errors in the names generated by the V7.1 compiler that could introduce
incorrect run-time behaviors in standard-conforming programs without any
diagnostic. These behaviors could range anywhere from harmless, to subtle,
to access violations - and they are very difficult to diagnose. Basically, the
names generated for certain globals such as initialization guard variables,
vtables, and RTTI information used to identify exceptions embed the names
of types. Type names must always be treated as case-sensitive in either C or
C++. The V7.1 compiler erroneously treated these names, if they happened to
be less than 32-characters long, as being subject to the /NAMES= command-line
qualifier, which by default uppercases them. In addition, some of these names
were not being given the facility prefix of "CXX$", even though they were
compiler-generated and not explicitly present in the source code.

Because the Integrity servers implementation uses object module "group
sections" (sometimes called comdats) to enforce the C++ "one definition" rule, a
mismatch in generated names usually results in more than one definition for
the same source entity without any diagnostic; whereas on OpenVMS Alpha
or in languages other than C++, a mismatch usually results in a link-time
diagnostic for an unresolved reference.

V7.1 was the initial release of the Integrity servers compiler, and the effects of
mismatches caused by the V7.1 naming bugs can be very subtle and difficult
to diagnose. And it was important to make the mangled names produced
by V7.2 for 64-bit compilations not only correct but identical to the names it

18



produces for 32-bit compilations (except for the prefix that distinguishes the
pointer-size model). Therefore it was decided to change the default prefix for
32-bit compilations in order to distinguish object code that could contain the
naming bugs (prefixed by "CXX$") from object code that does not contain the
naming bugs (prefixed by "CX3$").

Applications that are linked from object modules against the C++ library
shareables should not be affected when fully recompiled from source using the
new compiler and relinked.

Shareable images built from 32-bit C++ object modules would not generally
have universal symbols prefixed by the compiler’s default prefix, but rather
they would normally use #pragma extern_prefix to give their universals
their own namespace (or export only C-linkage names, which are unchanged
in V7.2). Users of such libraries would be unaffected unless one or more
universals they use actually were affected by a naming bug. From experience
with the C++ libraries this is thought to be relatively uncommon. And in that
case, the build of the shareable image would fail when first built from object
modules compiled by the new compiler, because correcting the naming bug
would change the name of such a symbol. The library provider would then
need to change the symbol vector to provide the new name as a universal,
and alias the old name to it, which would again leave users of the library
unaffected regardless of whether they compiled with the old or new compiler.

For shareable images built from object modules compiled by V7.1 that did not
use #pragma extern_prefix, but instead directly exported symbols prefixed
by "CXX$" (or exported erroneously unprefixed mangled names, which can
be recognized as those beginning with "_Z"), the link would also fail when
built from objects produced by V7.2. But in this case all of the symbol vector
entries would fail because the prefixes would be different. A solution would be
a global edit to the options file to change all of the "CXX$" prefixes to "CX3$",
and prepend "CX3$" to all symbols beginning with "_Z", and relink. Failures
in the relink would identify symbols that were affected by the naming bugs,
and those would need to be corrected as in the preceding paragraph. Finally,
aliases would need to be added from the original names to the new names to
make the shareable usable to code produced by either V7.1 or V7.2 compilers.

For code that must link against object modules or shareable images that cannot
be recompiled from source, and which contain names affected by the naming
bugs (note this does *not* include the C++ libraries), the simplest soulution is
to use the V7.1 compiler if any such code needs to be recompiled. If that is not
feasible, unsupported switches may be available from your support contact to
ease this situation.

19



The need to avoid mixing V7.1 32-bit object modules with V7.2 32-bit object
modules cannot be over-emphasized - compiling one module with V7.2 requires
full recompilation from source of all object modules. The primary purpose of
changing the default prefix is to make mixing easy to detect by examining
the link map: if the map contains both "CXX$" names and "CX3$" names, the
modules containing "CXX$" names need to be recompiled by the new compiler.

6.2 64-bit Runtime Libraries
The runtime libraries for HP C++ ship with the OpenVMS operating system.
This compiler kit adds support for 64-bit pointers, which requires the 64-
bit runtime libraries be available. Those new libraries will ship with a
future release of the OpenVMS operating system. A patch kit for the ICXXL
component of the operating system is available which provides the new
libraries for older versions of the operating system.

6.3 64-bit Pointer Support
This version of the compiler adds support for 64-bit pointers. This support is
compatible with the 64-bit pointer support in the OpenVMS Alpha C++ and C
compilers. It supports the same /POINTER_SIZE command-line qualifier, the
_ _INITIAL_POINTER_SIZE predefined macro, and the same pragmas (#pragma
pointer_size and #pragma required_pointer_size). However, the basic
model for how and where pointers with a size different from the default size
(the size specified by the command-line qualifier) can be declared and used in
the language is considerably more limited than it is in the other compilers.

Note

Limitations on the use of non-default-sized pointers are not generally
diagnosed or enforced by the compiler. Programs that do not follow the
model of mixed-size pointer usage outlined below are likely to fail at
run-time without any compile-time diagnostic.

The best-supported model of 64-bit pointer usage is when the command
line uses the /POINTER_SIZE=64 qualifier, called a 64-bit compilation. In
that case the entire C++ program is considered to use 64-bit addressing,
with a few exceptions made to permit the use of data structures containing
32-bit pointers that are needed to communicate with OpenVMS services
and other non-C++ libraries. Such data structures naturally contain only
pointers to POD types, and the functions that operate on those types naturally
have extern "C" linkage. The declarations of those data structures and
functions reside in header files, and those header files are coded to use the
_ _INITIAL_POINTER_SIZE macro and the pointer_size pragmas to ensure that

20



they use appropriately-sized pointers regardless of the compilation mode.
Except for those declarations, all addresses, pointers, and references in a C++
program compiled with /POINTER_SIZE=64, are considered to be 64-bit types,
and all C++ "new" operators allocate data from a 64-bit heap.

If the command line specifies the /POINTER_SIZE=32 qualifier, then it is a
32-bit compilation, and the only use of 64-bit pointers can be pointers to POD
types provided by calls to _malloc64( ), or obtained from other non-C++ code.

While it is possible to use #pragma pointer_size 32 to declare 32-bit pointers
explicitly within a 64-bit compilation, the region of source code covered by
such pragmas should be made as small as possible, and preferably confined
just to typedefs for pointer types that must be 32-bit pointers. In general, the
source region should not contain class definitions for non-POD types, template
declarations, declarations of functions that have C++ linkage, or executable
code. This differs significantly from C++ for OpenVMS Alpha, which permits
C++ classes to be defined with 32-bit pointers in a 64-bit compilation.

Another significant difference is that the Alpha compiler attempts to determine
the "best" pointer size to use when determining the type of an "address-of"
expression. It uses the fact that on OpenVMS, C++ declared objects (either
stack-based or static-extent) always have addresses that fit in 32-bits; and for
expressions that involve pointer-dereferencing it uses the width of the pointer
that was dereferenced as the width of the pointer type given to the expression.
This usually allows address-of expressions to be assigned to pointers without
casting. In 64-bit mode, the Integrity servers compiler assumes that an
address-of expression will yield a 64-bit pointer unless its operand is a
dereference of a 32-bit pointer, and so it may issue spurious NARROWPTR
warnings for assignments of address-of expressions to 32-bit pointers; an
explicit cast to the correct 32-bit pointer type is needed to silence the warning.
As a special case, 64-bit pointer-to-function values may be assigned to 32-bit
pointer-to-function objects without complaint (the value of a function pointer
always fits in 32-bits on OpenVMS).

Neither Alpha nor Integrity server system compilers include the pointer size
when forming mangled names, so naturally it is not possible to overload
functions based only on differences in pointer size: the Alpha compiler reports
this explicitly at compile time when possible, but on Integrity servers it will
just produce conflicting multiple definitions. In general, if a 32-bit pointer type
needs to appear in a function prototype in a 64-bit compilation, it is a good
practice to define a struct type just to hold the pointer, and pass the struct
instead of the pointer type.

21



Except for names declared with extern "C" linkage, the Integrity server system
compiler produces completely disjoint external symbols in the object modules
for 64-bit compilations and 32-bit compilations. For 64-bit compilations, user-
declared names are prefixed by "CX6$" (instead of "CX3$"), and library names
are prefixed by "CX6L$" (instead of "CXXL$"). Following the prefix, names
are mangled identically in the two modes, so a given source declaration will
produce the same name in the object module differing only by the prefix if
compiled in different modes. So while it is possible to include both 32-bit and
64-bit compilations in the same program, they will not interact with each other
except through extern "C" linkage names.

6.3.1 Pointer_Size Control Differences
Although the syntax and use of pointer_size controls are the same for Alpha
and Integrity servers, and most programs that work correctly on Alpha should
also work on Integrity servers without change, the differences in the compiler’s
model of how the pointer_size controls work on the two platforms can affect
behavior, particularly in programs that create pointers to C++ objects (non-
POD types) having a size that differs from the setting of the /POINTER_SIZE
command-line qualifier, or that apply the sizeof operator to expressions that
have a pointer type:

• On Alpha systems, the compiler uses an object model that generally
supports the declaration and use of both 64-bit and 32-bit pointers, and
the #pragma pointer_size directives can be placed at most any point in
the source code. The pointer_size in effect at any given point in the source
generally influences both the size of pointers created for explicit pointer
declarations, and also the size of pointers generated by the compiler
to implement various language constructs. There are some restrictions
such as no overloading of functions based on pointer size, but generally
speaking the size of individual pointer types and the current setting of
the pointer_size from the #pragmas is taken into account at fairly low
levels, and pointers to C++ objects (non-POD types) can be of either size.
Modules compiled with one setting of /POINTER_SIZE can in some cases
interoperate with code compiled with a different setting, although this is
not a good practice. And in general, the result of the address-of operator
( & ) has a pointer type whose size reflects the current pointer size.

• On Integrity server systems, the /POINTER_SIZE command-line qualifier
plays a much larger role than on Alpha systems. This qualifier chooses
between two different, incompatible, binary models for C++ code
generation. Functions with C++ linkage produced under /POINTER_
SIZE=64 cannot be called from functions with C++ linkage produced under
/POINTER_SIZE=32 (the default with no /POINTER_SIZE qualifier), and
vice-versa.

22



And 64-bit compilations use a completely separate implementation of the
C++ libraries from 32-bit compilations.

Furthermore, the /POINTER_SIZE qualifier on Integrity server system
controls much more completely the compiler’s determination of pointer
size throughout the compilation. Basically, the only pointer types that
are given a size different from the size specified on the command line
are pointer types explicitly declared with the "*" declarator syntax in the
context of a #pragma pointer_size. And the only pointer types that should
be given a pointer_size different from that specified by the command line
are pointers to POD types. Pointers to non-POD types, as well as all
implicitly-generated pointer type are assumed to have the size specified by
the command line. Of special note, the address-of operator (&) generally
produces a pointer whose size is based on the size specified by the command
line. This is a difference from Alpha. The one exception is when the
operator is applied to a pointer dereference, in which case the result is
the size of the dereferenced pointer. This exception matches the Alpha
behavior.

The compiler does not diagnose the use of pointers having a size different
from the command-line size that point to non-POD types; in some
situations such pointers may produce intended results, but in general
their use may cause unexpected behaviors or access violations at run-time.

The following example program illustrates some of these differences:

#include <stdio.h>
#if __INITIAL_POINTER_SIZE == 64
#define CMD "/POINT=64"
#else
#define CMD "/POINT=32"
#endif
#if __ALPHA
#define MACH "Alpha"
#else
#define MACH "I64 "
#endif

void main(void) {
printf(MACH CMD ":\n");
{
#pragma __required_pointer_size 64
#define SZ " #pragma 64: "
int i;
printf(SZ "sizeof(&i) = %d.\n", sizeof(&i));
printf(SZ "value of &i = 0x%016llx.\n", (long long)&i);
printf(SZ "sizeof(&\"str\"[1]) = %d.\n", sizeof(&"str"[1]));
printf(SZ "value of &\"str\"[1] = 0x%016llx.\n", (long long)&"str"[1]);

23



const char array[] = "str";
printf(SZ "sizeof(&array[1]) = %d.\n", sizeof(&array[1]));
printf(SZ "value of &array[1] = 0x%016llx.\n", (long long)&array[1]);

printf(SZ "sizeof(new int) = %d.\n", sizeof(new int));
printf(SZ "value of (new int) = 0x%016llx.\n", (long long)new int);
char *newcp = new char[2];
printf(SZ "sizeof(newcp) = %d.\n", sizeof(newcp));
printf(SZ "value of newcp = 0x%016llx.\n", (long long)newcp);
printf(SZ "sizeof(&newcp[1]) = %d.\n", sizeof(&newcp[1]));
printf(SZ "value of &newcp[1] = 0x%016llx.\n", (long long)&newcp[1]);
}
printf("\n" MACH CMD ":\n");
{
#pragma __required_pointer_size 32
#undef SZ
#define SZ " #pragma 32: "
int i;
printf(SZ "sizeof(&i) = %d.\n", sizeof(&i));
printf(SZ "value of &i = 0x%016llx.\n", (long long)&i);
printf(SZ "sizeof(&\"str\"[1]) = %d.\n", sizeof(&"str"[1]));
printf(SZ "value of &\"str\"[1] = 0x%016llx.\n", (long long)&"str"[1]);

const char array[] = "str";
printf(SZ "sizeof(&array[1]) = %d.\n", sizeof(&array[1]));
printf(SZ "value of &array[1] = 0x%016llx.\n", (long long)&array[1]);

printf(SZ "sizeof(new int) = %d.\n", sizeof(new int));
printf(SZ "value of (new int) = 0x%016llx.\n", (long long)new int);
char *newcp = new char[2];
printf(SZ "sizeof(newcp) = %d.\n", sizeof(newcp));
printf(SZ "value of newcp = 0x%016llx.\n", (long long)newcp);
printf(SZ "sizeof(&newcp[1]) = %d.\n", sizeof(&newcp[1]));
printf(SZ "value of &newcp[1] = 0x%016llx.\n", (long long)&newcp[1]);
}

}

Output on Integrity server system with /POINTER=32
Note that all of the pointer sizes, except for the explicitly declared 64-bit
pointer variable, and the address of an array element access made through
that pointer variable, reflect the command-line setting:

24



$ pipe cxx/point=32 pointers ; cxxlink pointers ; run pointers
I64 /POINT=32:

#pragma 64: sizeof(&i) = 4.
#pragma 64: value of &i = 0x000000007acffb28.
#pragma 64: sizeof(&"str"[1]) = 4.
#pragma 64: value of &"str"[1] = 0x0000000000040001.
#pragma 64: sizeof(&array[1]) = 4.
#pragma 64: value of &array[1] = 0x000000007acffb11.
#pragma 64: sizeof(new int) = 4.
#pragma 64: value of (new int) = 0x00000000001e0b70.
#pragma 64: sizeof(newcp) = 8.
#pragma 64: value of newcp = 0x00000000001e0b50.
#pragma 64: sizeof(&newcp[1]) = 8.
#pragma 64: value of &newcp[1] = 0x00000000001e0b51.

I64 /POINT=32:
#pragma 32: sizeof(&i) = 4.
#pragma 32: value of &i = 0x000000007acffb30.
#pragma 32: sizeof(&"str"[1]) = 4.
#pragma 32: value of &"str"[1] = 0x0000000000040001.
#pragma 32: sizeof(&array[1]) = 4.
#pragma 32: value of &array[1] = 0x000000007acffb21.
#pragma 32: sizeof(new int) = 4.
#pragma 32: value of (new int) = 0x00000000001e3690.
#pragma 32: sizeof(newcp) = 4.
#pragma 32: value of newcp = 0x00000000001e3670.
#pragma 32: sizeof(&newcp[1]) = 4.
#pragma 32: value of &newcp[1] = 0x00000000001e3671.

Output on Alpha with /POINTER=32
Note that all of the pointer sizes, except for the result type of the "new"
operator, reflect the pragma setting:

$ pipe cxx/point=32 pointers ; cxxlink pointers ; run pointers
Alpha/POINT=32:

#pragma 64: sizeof(&i) = 8.
#pragma 64: value of &i = 0x000000007ad8f9e0.
#pragma 64: sizeof(&"str"[1]) = 8.
#pragma 64: value of &"str"[1] = 0x00000000000145e1.
#pragma 64: sizeof(&array[1]) = 8.
#pragma 64: value of &array[1] = 0x000000007ad8f9d9.
#pragma 64: sizeof(new int) = 4.
#pragma 64: value of (new int) = 0x000000000007f310.
#pragma 64: sizeof(newcp) = 8.
#pragma 64: value of newcp = 0x0000000000083350.
#pragma 64: sizeof(&newcp[1]) = 8.
#pragma 64: value of &newcp[1] = 0x0000000000083351.

25



Alpha/POINT=32:
#pragma 32: sizeof(&i) = 4.
#pragma 32: value of &i = 0x000000007ad8f9d0.
#pragma 32: sizeof(&"str"[1]) = 4.
#pragma 32: value of &"str"[1] = 0x00000000000145e1.
#pragma 32: sizeof(&array[1]) = 4.
#pragma 32: value of &array[1] = 0x000000007ad8f9c9.
#pragma 32: sizeof(new int) = 4.
#pragma 32: value of (new int) = 0x0000000000083cb0.
#pragma 32: sizeof(newcp) = 4.
#pragma 32: value of newcp = 0x0000000000083cc0.
#pragma 32: sizeof(&newcp[1]) = 4.
#pragma 32: value of &newcp[1] = 0x0000000000083cc1.

Output on Integrity server system with /POINTER=64
Note that all of the pointer sizes, except the explicitly declared 32-bit pointer
variable, and the address of an array element access made through that pointer
variable, reflect the command-line setting. The warning message identifies a
real problem where the 64-bit pointer produced by "new" does not fit into the
32-bit pointer variable newcp, and the value of newcp reflects this by being
sign-extended:

$ pipe cxx/point=64 pointers ; cxxlink pointers ; run pointers

char *newcp = new char[2];
.................^
%CXX-W-MAYLOSEDATA, cast from long pointer to short pointer will lose data.
at line number 54 in file DISK$:[DIR]POINTERS.CXX;1
%ILINK-W-COMPWARN, compilation warnings

module: POINTERS
file: DISK$:[DIR]POINTERS.OBJ;1

I64 /POINT=64:
#pragma 64: sizeof(&i) = 8.
#pragma 64: value of &i = 0x000000007acffb28.
#pragma 64: sizeof(&"str"[1]) = 8.
#pragma 64: value of &"str"[1] = 0x0000000000040001.
#pragma 64: sizeof(&array[1]) = 8.
#pragma 64: value of &array[1] = 0x000000007acffb11.
#pragma 64: sizeof(new int) = 8.
#pragma 64: value of (new int) = 0x000000008009c010.
#pragma 64: sizeof(newcp) = 8.
#pragma 64: value of newcp = 0x000000008009c030.
#pragma 64: sizeof(&newcp[1]) = 8.
#pragma 64: value of &newcp[1] = 0x000000008009c031.

26



I64 /POINT=64:
#pragma 32: sizeof(&i) = 8.
#pragma 32: value of &i = 0x000000007acffb30.
#pragma 32: sizeof(&"str"[1]) = 8.
#pragma 32: value of &"str"[1] = 0x0000000000040001.
#pragma 32: sizeof(&array[1]) = 8.
#pragma 32: value of &array[1] = 0x000000007acffb21.
#pragma 32: sizeof(new int) = 8.
#pragma 32: value of (new int) = 0x000000008009c050.
#pragma 32: sizeof(newcp) = 4.
#pragma 32: value of newcp = 0xffffffff8009c070.
#pragma 32: sizeof(&newcp[1]) = 4.
#pragma 32: value of &newcp[1] = 0xffffffff8009c071.

Output on Alpha with /POINTER=64
Note that all of the pointer sizes reflect the pragma setting, except for the
result type of the "new" operator. The warning message identifies the same
problem identified on Integrity servers, and the value of newcp similarly
reflects this by being sign-extended:

$ pipe cxx/point=64 pointers ; cxxlink pointers ; run pointers

char *newcp = new char[2];
.................^
%CXX-W-MAYLOSEDATA, cast from long pointer to short pointer will lose data.
at line number 54 in file DISK$:[DIR]POINTERS.CXX;1
%LINK-W-WRNERS, compilation warnings

in module POINTERS file DISK$:[DIR]POINTERS.OBJ;1
Alpha/POINT=64:

#pragma 64: sizeof(&i) = 8.
#pragma 64: value of &i = 0x000000007ad8f9e0.
#pragma 64: sizeof(&"str"[1]) = 8.
#pragma 64: value of &"str"[1] = 0x00000000000145e1.
#pragma 64: sizeof(&array[1]) = 8.
#pragma 64: value of &array[1] = 0x000000007ad8f9d9.
#pragma 64: sizeof(new int) = 8.
#pragma 64: value of (new int) = 0x0000000080000010.
#pragma 64: sizeof(newcp) = 8.
#pragma 64: value of newcp = 0x0000000080000030.
#pragma 64: sizeof(&newcp[1]) = 8.
#pragma 64: value of &newcp[1] = 0x0000000080000031.

27



Alpha/POINT=64:
#pragma 32: sizeof(&i) = 4.
#pragma 32: value of &i = 0x000000007ad8f9d0.
#pragma 32: sizeof(&"str"[1]) = 4.
#pragma 32: value of &"str"[1] = 0x00000000000145e1.
#pragma 32: sizeof(&array[1]) = 4.
#pragma 32: value of &array[1] = 0x000000007ad8f9c9.
#pragma 32: sizeof(new int) = 8.
#pragma 32: value of (new int) = 0x0000000080000050.
#pragma 32: sizeof(newcp) = 4.
#pragma 32: value of newcp = 0xffffffff80000070.
#pragma 32: sizeof(&newcp[1]) = 4.
#pragma 32: value of &newcp[1] = 0xffffffff80000071.

6.3.2 Mixed Pointer-Size Allocators
Mixed pointer-size allocators are placement-new allocators accepting
addr_32 and addr_64 parameters. They are documented in Chapter 9.1.2
Memory Allocators in the HP C++ User’s Guide for OpenVMS Systems. On
both OpenVMS Alpha and Integrity server systems, these allocators are
implemented in the <newext.hxx> header file.

Note the following differences between mixed pointer-size allocators on
OpenVMS Alpha and Integrity server systems:

• On Alpha systems, addr_32_space and addr_64_space enums are in the
global namespace.

On Integrity server systems, they are in the namespace _ _deccxx. The
<newext.hxx> header has the ’using namespace _ _deccxx;’ directive; so,
in general, there is no need to specify a fully qualified name, and the
code from an Alpha system can be compiled on an Integrity server system
without any changes.

However, if an ambiguity arises, a fully qualified name can be specified
on an Integrity server system: new(_ _deccxx::addr_32_space) or
new(_ _deccxx::addr_64_space).

• On Integrity server systems, the new(addr_64_space) allocator can be
used only in compilations with /POINTER=LONG, where it returns a long
pointer to memory allocated in 64-bit space.

On Integrity server systems in compilations with /POINTER=SHORT,
this allocator returns a NULL pointer, and the compiler issues the
ADDR64NOT diagnostics. See the example below. Also, on Integrity
server systems in compilations with /POINTER=SHORT, the size of the
pointer (having a zero value) returned by this allocator is 4.

28



On Alpha systems, the new(addr_64_space) allocator returns a long
pointer to memory allocated in 64-bit space in compilations with both
/POINTER=SHORT and /POINTER=LONG.

On Integrity server systems, the new(addr_64_space) allocator is retained
only to allow code compiled on Alpha systems with /POINTER=LONG to be
compiled on Integrity servers with /POINTER=LONG without any changes.

x.cxx below demonstrates the difference in behavior of the new(addr_64_space)
allocator on Integrity servers and Alpha systems. Note that the behavior of the
new(addr_32_space) allocator is the same on both platforms.

x.cxx
-----
#include <newext.hxx>
#include <stdio.h>

main() {
__char_ptr32 x;
__char_ptr64 y;
x = new (addr_32) char;
y = new (addr_64) char;
printf("x = %llx, y = %llx\n", x, y);
printf("sizeof(new(addr_32)) = %d, sizeof(new(addr_64)) = %d\n",

sizeof(new(addr_32) char), sizeof(new(addr_64) char));
}

The output on Alpha system:
---------------------------
$ pipe cxx/pointer=short x.cxx ; cxxlink x.obj ; run x.exe
x = 78690 y = 80000010
sizeof(new(addr_32)) = 4 sizeof(new(addr_64)) = 8
$ pipe cxx/pointer=long x.cxx ; cxxlink x.obj ; run x.exe
x = 78690 y = 80000010
sizeof(new(addr_32)) = 4 sizeof(new(addr_64)) = 8
$

The output on Integrity server system:
--------------------------
$ pipe cxx/pointer=long x.cxx ; cxxlink x.obj ; run x.exe
x = 1f48e0 y = 8009c010
sizeof(new(addr_32)) = 4 sizeof(new(addr_64)) = 8
$ pipe cxx/pointer=short x.cxx ; cxxlink x.obj ; run x.exe

y = new (addr_64) char;
...........^
%CXX-W-ADDR64NOT, Use of std::addr_64 in placement new requires

/POINTER_SIZE=LONG on this platform.

29



sizeof(new (addr_32) char), sizeof(new (addr_64) char));
.................................................^
%CXX-W-ADDR64NOT, Use of std::addr_64 in placement new requires

/POINTER_SIZE=LONG on this platform.
x = 1f88d0 y = 0
sizeof(new(addr_32)) = 4 sizeof(new(addr_64)) = 4
$

6.4 Other Enhancements, Changes, and Problems Corrected

• Variadic macros are now supported. This feature allows macros to take a
variable number of arguments. It was added to Version 6.4 of the HP C
Compiler and is supported by a number other C and C++ compilers. This
feature is available only when the value of the /STANDARD qualifier is
RELAXED (the default), MS, or GNU.

• This version of the C++ compiler contains support for generation of a new
section type in the object file that maps mangled names to their original
unmangled form. Future versions of the linker will take advantage of this
feature by using the demangled spelling of an identifier name for its error
messages. In addition, the linker will be able to generate a new section
in the linker map that shows mangled names and their corresponding
unmangled orginal name.

• Prologue and epilogue file header processing is now supported in HP C++.

• The _ _FUNCTION_ _ identifier is added. _ _FUNCTION_ _ is a predefined
pointer to char defined by the compiler, which points to the name of the
function as it appears in the source program. _ _FUNCTION_ _ is same as
_ _func_ _ of C99.

• Previously, the propagation of a C++ exception out of a thread’s start
routine did not result in cxxl$terminate( ) being called. A solution for
the problem is available on OpenVMS Integrity servers Version V8.2-1
and higher. For V8.2-1, it requires pthreads library patch VMS821I_
PTHREAD-V0300. For V8.3, it requires pthreads library patch VMS83I_
PTHREAD-V0100.

• A problem has been corrected in the implicit include processing. The
implicit inclusion will no longer select files such as ".C" or ".CXX" (where
these files have no file name portion).

• In the /STANDARD=STRICT mode of compilation, the compiler used to
issue a diagnostic with the severity of error for NULL reference expression
within a sizeof expression. The severity of the diagnostic is now an
informational.

• The /TEMPLATE_DEFINE qualifier now requires an option.

30



• #pragma module module-name [module-ident | "module-ident"]

If the module-name is too long:

• A warning is generated if /NAMES=TRUNCATED is specified.

• There is no warning if /NAMES=SHORTEN is specified.

A shortened external name incorporates all the characters in the
original name. If two external names differ by as little as one character,
their shortened external names will be different.

If the optional module-ident or "module-ident" is too long, a warning is
generated.

The default module-name is the filename of the first source file. The
default module-ident is "V1.0" They are treated as if they were specified by
a #pragma module directive.

If the module-name is longer than 31 characters:

• and /NAMES=TRUNCATE is specified, truncate to 31 characters, or
less if the 31st character is within a Universal Character Name.

• and /NAMES=SHORTENED is specified, shorten the module-name
to 31 characters using the same special encoding as other external
names.

Lowercase characters in the module-name are converted to upper case only
if /NAMES=UPPERCASE is specified.

A module-ident that is longer than 31 characters is treated as if
/NAMES=(TRUNCATED,AS_IS) were applied, truncating it to 31
characters, or less if the 31st character is within a Universal Character
Name.

The default module-name comes from the source file name which always
appears in the listing header. The module-name (and ident) appear in the
listing header only if they come from a #pragma module directive or differ
from the default.

• To use the LIB$INITIALIZE feature explicitly in either C or C++, a
compilation should contain a reference to a parameterless void function
named LIB$INITIALIZE, and provide a statically-initialized list of 32-bit
pointers to the functions to be called in a psect named LIB$INITIALIZE
with appropriate attributes. The following sample source code shows how
this can be done. For simplicity in using both languages, this example
gives the initialization functions extern "C" linkage.

31



/* Example to set up LIB$INITIALIZE usage by creating a reference
** to the LIB$INITIALIZE function, and an initialized list of
** functions to be called in the LIB$INITIALIZE psect.
*/

#ifdef __cplusplus
extern "C" {
#endif

/* Declarations for initialization functions. */
extern void some_init_function(void);
extern void some_other_init_function(void);
/* etc, e.g. other declarations might come from header files */

/* Use 32-bit pointers */
#if __INITIAL_POINTER_SIZE
#pragma pointer_size save
#pragma pointer_size 32
#endif

/* Create a reference to the LIB$INITIALIZE function. */
extern void LIB$INITIALIZE(void);
extern void (*unused_global_variable_1)(void) = LIB$INITIALIZE;

/* Create an array of pointers to the init functions in the special
** LIB$INITIALIZE section.
*/
#pragma extern_model save
#pragma extern_model strict_refdef "LIB$INITIALIZE" gbl,noexe,nowrt,noshr,long
extern void (* const unused_global_variable_2[])() =
{

some_init_function
, some_other_init_function
/* etc, other functions to be called by LIB$INITIALIZE() */

};
#pragma extern_model restore

#if __INITIAL_POINTER_SIZE
#pragma pointer_size restore
#endif

#ifdef __cplusplus
}
#endif
/* End of example to set up LIB$INITIALIZE */

32



/* Begin executable test of LIB$INITIALIZE setup. */
#ifdef __cplusplus
extern "C" {
#endif
extern int printf(const char *, ...);
extern void some_init_function(void) {

printf("In some_init_function.\n");
}
extern void some_other_init_function(void) {

printf("In some_other_init_function.\n");
}
#ifdef __cplusplus
}
#endif

void main(void) {
printf("In main.\n");

}

/* Compile with either C or C++ on Alpha or I64, link and run.
** The output is:
** In some_init_function.
** In some_other_init_function.
** In main.
*/

6.5 Known Problems and Restrictions

• On Integrity server systems, the #pragma inline or #pragma noinline
directives are not supported.

• On Integrity server systems, the #pragma function and #pragma intrinsic
directives are ignored.

• On Integrity server systems, the intrinsic bit-counting functions
_leadz( ), _trailz( ), _popcnt( ), and _poppar( ) declared at the end
of <builtins.h> are treated as intrinsic whether or not the header is
included. Since these function names begin with an underscore followed by
a lowercase letter, under the language standards they are reserved to the
implementation for use as identifiers with external linkage. So programs
that declare their own functions with any of these names are not standard-
conforming. However, the Alpha C++ compiler and the C compiler for both
Alpha and Integrity servers support user-written functions with these
names as long as <builtins.h> is not included; or if it is included and
followed by #pragma function directives for these names. The Integrity
servers C++ compiler will accept user-defined functions with these names,
but calls to them will generally be treated as having the intrinsic behavior,
which may produce unpredictable results if the user declaration does not
match the intrinsic declaration.

33



• ANAL/OBJ on OpenVMS 8.2-1 and earlier will issue an error message
about an unknown section type that is now generated by this version of the
compiler:

%ANALYZE-E-ELF_UNKNWNSEC, Unrecognized Elf Section Type 60000007

Please ignore this message. This section is ignored by current versions of
the linker and ANAL/IMAGE and causes no harm.

• Debugging with optimized code is not supported.

• Compilation warnings and errors with auto_ptr

Using auto_ptr in non strict_ansi mode generates warnings about
initializing a non-const ref with an lvalue. These warnings are due to
the lack of enforcement of the rule in the C++ standard that binding a
reference to a non const to a class rvalue is illegal. To make auto_ptr
work correctly, you must compile the module(s) that use auto_ptrs in ansi
or strict_ansi language mode.

In strict_ansi mode, you may still encounter compilation errors when
converting an auto_ptr<Derived> to an auto_ptr<Base>. For example, this
does not work:

struct Base {};
struct Derived : Base {};

auto_ptr<Derived> source2() {return auto_ptr<Derived>(new Derived);}

int main() {
auto_ptr<Derived> d;
auto_ptr<Base> b(d); // compiles
auto_ptr<Base> p3(source2()); // doesn’t compile
return 0;

}

This is a known deficiency of the auto_ptr class, see language issue 84 at:

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/core-issues.htm

for a discussion of the problem. You must either use casts or avoid
temporaries under these conditions.

Remember that you should not use auto_ptrs as elements of an STL
container, because they do not meet the CopyConstructible and
Assignable requirements for Standard Library container elements.
Compilation warnings occur if, for example, you try to insert an auto_ptr
into a container. See

http://www.gotw.ca/gotw/025.htm

34



and

http://www.awl.com/cseng/titles/0-201-63371-X/auto_ptr.html

for discussions of the history and current restrictions of the auto_ptr class.

7 Release Notes for the V7.2 C++ Standard Library
This section describes enhancements, changes, restrictions and problems
corrected for the V7.2 C++ Standard Library.

• While applications using the C++ library iostreams can be compiled with
the _LARGEFILE macro defined, the C++ library iostreams do not support
seeking to 64-bit file offsets. For more information on _LARGEFILE macro
see the HP C Run-Time Library Reference Manual for OpenVMS Systems.

• The C++ Standard Library headers have been modified to allow include-
once compiler optimization. This reduces compilation time and the size of
the listing file.

• The std::numeric_limits.round_error( ) function has been corrected to
return a value corresponding to the dynamic rounding mode in effect for
the program. In particular, to determine the current dynamic rounding
mode, the std::numeric_limits.round_error( ) function now calls C Run-Time
Library function read_rnd( ).

• To comply with 21.2 - String classes [lib.string.classes] in the C++ standard,
declarations of the std::getline( ) function operating on basic_istream have
been moved from <istream> to <string>. Accordingly, the definition of the
std::getline( ) function operating on basic_istream and accepting the delim
parameter has been moved from <istream.cc> to <string.cc>. This change
is visible only when using the standard iostreams.

• A problem has been corrected with the assignment operator of the tree
container not storing the comparison object of the container being copied
into the target container.

The tree container is the underlying container for the map and set
STL containers. Because of this problem, after assigning one STL
container object to another, the target container would continue to use the
comparison object it was using before the assignment. It violates section
23.1.2 - Associative containers [lib.associative.reqmts] of the C++ standard
which states:

35



"When an associative container is constructed by passing a comparison
object the container shall not store a pointer or reference to the passed
object, even if that object is passed by reference. When an associative
container is copied, either through a copy constructor or an assignment
operator, the target container shall then use the comparison object from
the container being copied, as if that comparison object had been passed to
the target container in its constructor."

• The C++ Standard Library header <vector> was modified to expose
std::vector<bool> overloads of relational operators only when compiling
with the _ _DECFIXCXXL1941 macro defined. These overloads make
it impossible to use relational operators on vector<bool>::iterator types;
see the code example below. That the current C++ standard lists these
overloads (section 23.2.5 - Class vector<bool> [lib.vector.bool]) is considered
to be a defect in the standard. Some other implementations of STL do not
provide these overloads.

With std::vector<bool> overloads of all the relational operators removed,
the following program compiles. Before the change, it would not compile.

#include <iterator>
#include <vector>

class D : public std::reverse_iterator<std::vector<bool>::iterator> {
};

int main(void)
{

D x, y;
if ( std::operator== <std::vector<bool>::iterator>(x,y) )

return 0;
if ( std::operator!= <std::vector<bool>::iterator>(x,y) )

return 0;
if ( std::operator< <std::vector<bool>::iterator>(x,y) )

return 0;
if ( std::operator<= <std::vector<bool>::iterator>(x,y) )

return 0;
if ( std::operator> <std::vector<bool>::iterator>(x,y) )

return 0;
if ( std::operator>= <std::vector<bool>::iterator>(x,y) )

return 0;
return 1;

}

• Specifying a C++ headers library and a C headers library using "+" and
the /LIB qualifier on the cxx command line, as in the following example,
can cause the compiler to fetch a C header file from the C headers library
instead of a template definition file from the C++ headers library:

36



cxx x.cxx+SYS$LIBRARY:CXXL$ANSI_DEF.TLB/LIB+SYS$LIBRARY:DECC$RTLDEF.TLB/LIB

This can happen if a C header file has the same filename as the C++
template definition file; for example, the string.h header file in the C
headers library and string.cc template definition file in the C++ headers
library.

8 Release Notes for the V7.1 C++ Compiler
This section describes the new features, differences, and restrictions of the
C++ V7.1 compiler for Integrity server systems over the C++ V6.5 compiler for
Alpha systems. See Section 9 for the release notes for the standard library,
language run-time support library, and class library.

This release of the compiler uses a new technology base that differs
substantially from both HP C++ for OpenVMS Alpha and HP C for OpenVMS
Integrity servers. Although a great deal of work has been done to make it
highly compatible with HP C++ for OpenVMS Alpha, there are a number of
differences that you will likely notice. Some of these differences are temporary,
some are changes that will be reflected in the next version of the compiler for
Alpha systems, and some are permanent. Among the permanent differences
are:

• Resource requirements

Programs will usually use more memory both at compile time and at run
time. See Section 8.3.1.

• Floating-point behaviors

The default is /FLOAT=IEEE/IEEE_MODE=DENORM_RESULTS.
Consistent use of qualifiers across compilations is required. See
Section 8.3.5.

• Simplified instantiation without repository. See Section 8.3.9.

• No inline assembly language. See Section 8.3.6.

• Removal of the CFRONT dialect (which will also be removed in the next
release of the C++ Alpha compiler).

• String literal type change.

For standards-compliance and link compatiblity between compiler dialects,
ordinary string literals now have the type "array of const char" in all
compiler dialects on Integrity server systems and on Alpha systems when
compiling in /MODEL=ANSI mode.

37



When compiling in /MODEL=ARM mode on Alpha systems, string literals
are of type "array of char" in all compiler dialects.

8.1 Problems Fixed in V7.1
A problem has been corrected when using the common_block extern_model. A
temporary global symbol is no longer emitted when generating the data.

8.2 New Features in V7.1
The following new features and changes have been made since C++ Version 6.5
for OpenVMS Alpha systems.

8.2.1 cname Header Support
The C++ compiler implements section 17.4.1.2 - Headers [lib.headers] "C++
Headers for C Library Facilities" of the C++ Standard. See also Stroustrup’s
The C++ Programming Language, 3rd Edition sections 9.2.2 and 16.1.2.

The implementation consists of 18 <cname> headers defined in the C++
Standard:

<cassert> <cctype> <cerrno> <cfloat>
<ciso646> <climits> <clocale> <cmath>
<csetjmp> <csignal> <cstdarg> <cstddef>
<cstdio> <cstdlib> <cstring> <ctime>
<cwchar> <cwctype>

As required by the C++ standard, the <cname> headers define C names in the
std namespace. In /NOPURE_CNAME mode, the names are also inserted into
the global namespace. See the description of the /[NO]PURE_CNAME compiler
qualifier.

The <cname> headers are located in the same TLB library that contains the
C++ standard and class library headers: SYS$SHARE:CXXL$ANSI_DEF.TLB.

8.2.2 _ _HIDE_FORBIDDEN_NAMES Predefined in Strict ANSI Mode
When compiling in /STANDARD=STRICT_ANSI mode, the compiler predefines
the _ _HIDE_FORBIDDEN_NAMES macro, causing the C headers to expose
only those symbols that are defined by the ANSI C Standard 89. While this is
a change in behavior between C++ V6.5 for OpenVMS Alpha systems and C++
for Integrity server systems, the new behavior is consistent with the behavior
of the C compiler in /STANDARD=ANSI89 mode.

As a result of this change, the following program would not compile on an
Integrity server system in /STANDARD=STRICT_ANSI mode (note that fdopen
is not part of the ANSI C Standard 89).

38



#include <stdio.h>
void foo() {

fdopen(0,0);
}

8.2.3 /[NO]FIRST_INCLUDE Qualifier Added
The /[NO]FIRST_INCLUDE qualifier is added. It has the following format:

/[NO]FIRST_INCLUDE=(file[, . . . ])
This qualifier includes the specified files before any source files. It corresponds
to the Tru64 UNIX -FI switch.

When /FIRST_INCLUDE=file is specified, file is included in the source as if the
line before the first line of the source was:

#include "file"

If more than one file is specified, the files are included in their order of
appearance on the command line.

This qualifier is useful if you have command lines to pass to the C compiler
that are exceeding the DCL command-line length limit. Using the /FIRST_
INCLUDE qualifier can help solve this problem by replacing lengthy /DEFINE
and /WARNINGS qualifiers with #define and #pragma message preprocessor
directives placed in a /FIRST_INCLUDE file.

The default is /NOFIRST_INCLUDE.

8.2.4 #pragma include_directory Added
The effect of each #pragma include_directory is as if its string argument
(including the quotes) were appended to the list of places to search that is
given its initial value by the /INCLUDE_DIRECTORY qualifier, except that an
empty string is not permitted in the pragma form.

The #pragma include_directory directive has the following format:

#pragma include_directory <string-literal>

This pragma is intended to ease DCL command-line length limitations when
porting applications from POSIX-like environments built with makefiles
containing long lists of -I options that specify directories to search for headers.
Just as long lists of macro definitions specified by the /DEFINE qualifier can
be converted to #define directives in a source file, long lists of places to search
specified by the /INCLUDE_DIRECTORY qualifier can be converted to #pragma
include_directory directives in a source file.

39



Note that the places to search, as described in the help text for the /INCLUDE_
DIRECTORY qualifier, include the use of POSIX-style pathnames, for example
"/usr/base". This form can be very useful when compiling code that contains
POSIX-style relative pathnames in #include directives. For example, #include
<subdir/foo.h> can be combined with a place to search such as "/usr/base"
to form "/usr/base/subdir/foo.h", which will be translated to the filespec
"USR:[BASE.SUBDIR]FOO.H"

This pragma can appear only in the main source file or in the first file specified
on the /FIRST_INCLUDE qualifier. Also, it must appear before any #include
directives.

8.2.5 Messages
There have been some changes in the /WARNINGS qualifier. These include
bug fixes and improved compatibility with the C compiler. Some changes that
might affect user compilations are:

• The /WARNINGS=ENABLE=ALL qualifier now enables all compiler
messages including informational-level messages.

• The /WARNINGS=INFORMATIONALS qualifier continues to enable most
informationals, but we recommend that /WARNINGS=ENABLE=ALL be
used instead

• Using /WARNINGS=INFORMATIONALS=<tag> no longer enables all other
informational messages.

The move from Alpha systems to Integrity server systems will cause some
minor differences in certain compiler diagnostics that are signaled from the
code generator. As a result, diagnostics for unreachable code and fetches of
uninitialized variables might be different on the two platforms. In addition to
a change in message text, some conditions detected on one platform might not
be detected on the other.

8.2.6 New Front End
A new C++ front end provides improved conformance to the C++ International
Standard.

40



8.3 Integrity servers Differences
This section describes differences between the C++ compiler on Integrity server
systems and Alpha systems.

8.3.1 Quotas
The C++ compiler for Integrity server systems is built from a different code
base than the C++ compiler for Alpha systems, and that code base is larger
than the code base for Alpha. Also, Integrity server system images tend to
be somewhat larger than Alpha images in general. Image size mostly affects
working-set size and the amount of pagefile quota needed to execute an image
without exhausting virtual memory. If you find that programs that compile
and run successfully on Alpha run out of memory on Integrity server systems
(either during compilation or when run), you probably need to increase your
pagefile quota. There are no specific guidelines at this time. You might start
by doubling the quota that was sufficient on Alpha, and then use a "binary-
search" approach to arrive at a better quota value for Integrity server systems
(doubling again, or halving the increment, until your biggest programs and
compilations have just enough memory, and then adding an appropriate safety
margin).

8.3.2 Dialect Changes
The following dialect changes have been made:

• Support for /STANDARD=CFRONT has been retired.

• Some of the compiler dialects (options to the /STANDARD qualifier) have
been updated to reflect the most recent behaviors of the compilers that the
dialect is attempting to match. Other changes involve the removal of less
significant or undesirable compatibility features. If a dialect has changed
in a way that impacts you significantly, report it as described in Section 12.

8.3.3 ABI/Object Model changes
The object model and the name mangling scheme used by the C++ compiler
on Integrity server systems are different from those used on Alpha systems
(different from both /MODEL=ARM and /MODEL=ANSI). The Integrity
server system compiler uses the interface described by the Integrity servers
Application Binary Interface (ABI).

See http://www.codesourcery.com/cxx-abi/abi.html for a draft description of the
ABI specification.

41



The compiler has some additional encoding rules that are applied to symbol
names after the ABI name mangling is determined. All symbols with C++
linkage have CRC encodings added to the name, are uppercased, and shorten
to 31 characters if necessary. Since the CRC is computed before the name is
uppercased, the symbol name is case sensitive even though the final name
is uppercase. /names=as_is and /names=upper are not applicable to these
symbols.

All symbols without C++ linkage will have CRC encodings added if they are
longer then 31 characters and /names=shorten is specified. Global variables
with C++ linkage are treated as if they have non-C++ linkage for compatibility
with C and older compilers.

8.3.4 Command-Line Qualifiers
This section describes qualifier differences for HP C++ on Integrity server
systems.

Qualifiers/Features Not Supported on Integrity server Systems
The following command-line qualifiers and features are not supported on C++
for Integrity server systems, and are diagnosed by default because ignoring
them is likely to alter program behavior:

• Comma lists are not supported. Their use provokes a fatal error.

• The /INSTRUCTION_SET=[NO]FLOATING_POINT qualifier is not
available on Integrity server systems.

• /L_DOUBLE_SIZE=64 is not available on Integrity server systems. If it
is specified, a warning message is issued, and /L_DOUBLE_SIZE=128 is
used.

• /POINTER_SIZE=(LONG,64) is ignored.

Changed/Ignored Qualifiers
A number of other qualifiers not supported on Integrity server systems are, by
default, silently ignored by the compiler. These qualifiers fall into two groups:

• Qualifiers that should not alter the behavior of a correct program so, if
ignored, should have no visible effect. Qualifiers that enable optimizations
typically have this characteristic.

• Qualifiers that might affect program behavior but, if ignored, produce
no significant change in the vast majority of programs. Examples of
qualifiers in this category are /NORTTI (the run-time information is always
generated) and /MODEL=ARM (the ANSI model is functionally superior,
and binary compatibility with existing object code is not an issue for the
OpenVMS Integrity servers platform).

42



Two optional compiler messages can be enabled to diagnose most of these cases:

• The QUALNA message diagnoses uses of the first group.

• The QUALCHANGE message diagnoses uses of the second group.

If you encounter porting problems, compile /WARN=ENABLE=QUALCHANGE
to determine if a qualifier change might be affecting your application.

If you wish to clean up your build scripts to remove extraneous qualifiers that
are not meaningful on Integrity server systems, you can enable the QUALNA
message.

A list of these qualifiers follows:

• /ARCHITECTURE=option

An additional keyword has been added: ITANIUM2.

If an Alpha keyword (EV4, EV5, EV56, PCA56, EV6, EV68, EV7) is
specified for option, it is ignored.

• /ASSUME

The following /ASSUME options are ignored on Integrity server systems
and should not cause any behavior changes:

NORTTI_CTORVTBLS
NOPOINTERS_TO_GLOBALS
TRUSTED_SHORT_ALIGNMENT
WHOLE_PROGRAM

• /CHECK=UNINITIALIZED_VARIABLES

This qualifier has no effect in this version of the compiler.

• /DISTINGUISH_NESTED_ENUMS

This qualifier only modified the behavior of programs compiled with
/MODEL=ARM. Since that model is not supported on the Integrity servers
platform, this qualifier is meaningless.

• /EXCEPTIONS=NOCLEANUP

The NOCLEANUP keyword for the /EXCEPTIONS qualifier is ignored.

• /EXCEPTIONS=IMPLICIT

The IMPLICIT keyword for the /EXCEPTIONS qualifier is ignored.

• /FLOAT

The default for /FLOAT on OpenVMS Integrity server systems is IEEE_
FLOAT.

43



See Section 8.3.5 for more information about floating-point behavior on
Integrity server systems.

• /IEEE_MODE

The default for /IEEE_MODE on Integrity server systems is DENORM_
RESULTS, which generates infinities, denorms, and NaNs without
exceptions.

On OpenVMS Alpha systems, the default for /IEEE_MODE when
using /FLOAT=IEEE_FLOAT is FAST, which causes a FATAL error for
exceptional conditions such as divide-by-zero and overflow.

See Section 8.3.5 for more information.

• /MACHINE_CODE

The /MACHINE_CODE qualifier output will appear in an .S file in the
same directory as your listing file.

• The /MODEL=ARM qualifier is treated the same as the default
/MODEL=ANSI (except for the optional QUALCHANGE diagnostic).

• /OPTIMIZE

There are several changes to the /OPTIMIZE qualifier:

On Integrity server systems, for /OPTIMIZE=INLINE, the keywords
AUTOMATIC and SPEED do the same thing.

Also, the ALL keyword does not necessarily result in every possible call
being inlined, as it does on Alpha systems.

The /OPTIMIZE=TUNE qualifier takes a new keyword: ITANIUM2,
which is the default at this time. If you specify an Alpha keyword, it is
ignored.

The /OPTIMIZE=UNROLL=n qualifier on Integrity server systems does
not have the ability to control the specific number of times a loop is
unrolled. The only accepted values are /OPTIMIZE=UNROLL=1 which
disables loop unrolling, and /OPTIMIZE=UNROLL=0 which allows the
compiler’s optimizer to decide how the loop should be unrolled. The
default is /OPTIMIZE=UNROLL=0.

/OPTIMIZE=LIMIT_INLINE is ignored.

• /PREFIX_LIBRARY_ENTRIES

44



Note that /PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES prefixes all
functions defined by the C99 standard including those that may not be
supported in the current run-time library. So calling functions introduced
in C99 that are not yet implemented in the OpenVMS C RTL will produce
unresolved references to symbols prefixed by DECC$ when the program is
linked. The compiler now issues a CC-W-NOTINCRTL message when it
prefixes a name that is not in the current C RTL.

• /TEMPLATE

See Section 8.3.9 for information on template instantiation.

• /POINTER_SIZE=(SHORT,32) is ignored. Mixed pointer types are not
supported at this time.

• /SHOW=STATISTICS

The /SHOW=STATISTICS qualifier is ignored at this time.

• /STANDARD=CFRONT

The /STANDARD=CFRONT qualifier is no longer available. If it is
specified, the compiler issues a warning message and uses the default
dialect, /STANDARD=ANSI.

New Qualifiers
The following command-line qualifier is new for C++ V7.1 for Integrity server
systems:

• /[NO]PURE_CNAME

Affects insertion of the names into the global namespace by <cname>
headers.

In /PURE_CNAME mode, the <cname> headers insert the names into the
std namespace only, as defined by the C++ Standard, and the _ _PURE_
CNAME macro is predefined by the compiler.

In /NOPURE_CNAME mode, the <cname> headers insert the name into the
std namespace and also into the global namespace.

The default depends on the standard mode:

In /STANDARD=STRICT_ANSI mode, the default is /PURE_CNAME.

In all other standard modes, the default is /NOPURE_CNAME.

Inclusion of a <name.h> header instead of its <cname.h> counterpart (for
example, <stdio.h> instead of <cstdio>) results in inserting names defined
in the header into both the std namespace and the global namespace.
Effectively, this is the same as the inclusion of a <cname> header in the
/NOPURE_CNAME mode.

45



See Section 8.2.1 for more information.

8.3.5 Floating Point
This section describes floating-point behavior on Integrity server systems.

IEEE Now the Default
On OpenVMS Integrity server systems, /FLOAT=IEEE_FLOAT is the default
floating-point representation. IEEE format data is assumed and IEEE floating-
point instructions are used. There is no hardware support for floating-point
representations other than IEEE, although you can specify the /FLOAT=D_
FLOAT or /FLOAT=G_FLOAT compiler option.

These VAX floating-point formats are supported in the Integrity servers
compiler by generating run-time code that converts VAX floating-point
formats to IEEE format to perform arithmetic operations, and then converts
the IEEE result back to the appropriate VAX floating-point format. This
imposes additional run-time overhead and some loss of accuracy compared
to performing the operations in hardware on Alpha and VAX systems. The
software support for the VAX formats is provided to meet an important
functional compatibility requirement for certain applications that need to
deal with on-disk binary floating-point data.

On Integrity server systems, the default for /IEEE_MODE is DENORM_
RESULTS, which is a change from the default of /IEEE_MODE=FAST on
Alpha systems. This means that by default, floating-point operations may
silently generate values that print as Infinity or Nan (the industry-standard
behavior), instead of issuing a fatal run-time error as they would when
using VAX floating-point format or /IEEE_MODE=FAST. Also, the smallest-
magnitude nonzero value in this mode is much smaller because results are
allowed to enter the denormal range instead of being flushed to zero as soon as
the value is too small to represent with normalization.

The conversion between VAX floating-point formats and IEEE formats on the
Intel Itanium architecture is a transparent process that will not impact most
applications. All you need to do is recompile your application. Because IEEE
floating-point format is the default, unless your build explicitly specifies VAX
floating-point format options, a simple rebuild for Integrity server systems will
use the native IEEE formats directly. For the large class of programs that do
not directly depend on the VAX formats for correct operation, this is the most
desirable way to build for Integrity server systems.

When you compile an OpenVMS application that specifies an option to use
VAX floating-point on an Integrity server system, the compiler automatically
generates code for converting floating-point formats. Whenever the application
performs a sequence of arithmetic operations, this code does the following:

46



1. Converts VAX floating-point formats to either IEEE single or IEEE double
floating-point formats.

2. Performs arithmetic operations in IEEE floating-point arithmetic.

3. Converts the resulting data from IEEE formats back to VAX formats.

Where no arithmetic operations are performed (VAX float fetches followed by
stores), no conversion will occur. The code handles such situations as moves.

VAX floating-point formats have the same number of bits and precision as their
equivalent IEEE floating-point formats. For most applications, the conversion
process will be transparent and, therefore, a non-issue.

In a few cases, arithmetic calculations might have different results because of
the following differences between VAX and IEEE formats:

• Values of numbers represented

• Rounding rules

• Exception behavior

These differences might cause problems for applications that do any of the
following:

• Depend on exception behavior

• Measure the limits of floating-point behaviors

• Implement algorithms at maximal processor-specific accuracy

• Perform low-level emulations of other floating-point processors

• Use direct equality comparisons between floating-point values, instead of
appropriately ranged comparisons (a practice that is extremely vulnerable
to changes in compiler version or compiler options, as well as architecture)

You can test an application’s behavior with IEEE floating-point values by
first compiling it on an OpenVMS Alpha system using /FLOAT=IEEE_
FLOAT/IEEE_MODE=DENORM.

If that produces acceptable results, then simply build the application on the
OpenVMS Integrity server system using the same qualifier.

If you determine that simply recompiling with an /IEEE_MODE qualifier is
not sufficient because your application depends on the binary representation
of floating-point values, then first try building for your Integrity server system
by specifying the VAX floating-point option that was in effect for your VAX or
Alpha build. This causes the representation seen by your code and on disk to
remain unchanged, with some additional runtime cost for the conversions

47



generated by the compiler. If this is not an efficient approach for your
application, you can convert VAX floating-point binary data in disk files to
IEEE floating-point formats before moving the application to an Integrity
server system.

/IEEE_MODE Notes
On Alpha systems, the /IEEE_MODE qualifier generally has its greatest effect
on the generated code of a compilation. When calls are made between functions
compiled with different /IEEE_MODE qualifiers, each function produces the
/IEEE_MODE behavior with which it was compiled.

On Integrity server systems, the /IEEE_MODE qualifier primarily affects only
the setting of a hardware register at program startup. In general, the /IEEE_
MODE behavior for a given function is controlled by the /IEEE_MODE option
specified on the compilation that produced the main program: the startup code
for the main program sets the hardware register according the command-line
qualifiers used to compile the main program.

When applied to a compilation that does not contain a main program, the
/IEEE_MODE qualifier does have some effect: it might affect the evaluation
of floating-point constant expressions, and it is used to set the EXCEPTION_
MODE used by the math library for calls from that compilation. But the
qualifier has no effect on the exceptional behavior of floating-point calculations
generated as inline code for that compilation. Therefore, if floating-point
exceptional behavior is important to an application, all of its compilations,
including the one containing the main program, should be compiled with the
same /IEEE_MODE setting.

Even on Alpha systems, the particular setting of /IEEE_MODE=UNDERFLOW_
TO_ZERO has the following characteristic: its primary effect requires the
setting of a runtime status register, and so it needs to be specified on the
compilation containing the main program in order to be effective in other
compilations.

Differences in Undefined Behavior
Programs containing undefined floating-point behavior, such as assigning
a negative floating-point number to an unsigned integer variable, could
generate different results when compiled and run on Integrity server systems.
The compiler diagnostics and runtime results can both differ. One runtime
difference is the case where one system generates an exception, while the other
silently produces a result.

48



More Information
For more information on Integrity servers floating-point behavior, see the white
paper OpenVMS floating-point arithmetic on the Intel Itanium architecture at
http://www.hp.com/products1/evolution/alpha_retaintrust/download/i64-floating-
pt-wp.pdf .

8.3.6 Intrinsics and Builtins
The C++ built-in functions available on OpenVMS Alpha systems are also
available on Integrity server systems, with some differences, as described in
this section. This section also describes built-in functions that are specific to
Integrity server systems.

Builtin Differences on Integrity server Systems
The <builtins.h> header file contains comments noting which built-in
functions are not available or are not the preferred form for Integrity server
systems. The compiler issues diagnostics where using a different built-in
function for Integrity server systems would be preferable.

Note

The comments in <builtins.h> reflect only what is explicitly present
in that header file itself, and in the compiler implementation. You
should also consult the content and comments in <pal_builtins.h>
to determine more accurately what functionality is effectively
provided by including <builtins.h>. For example, if a program
explicitly declares one of the Alpha built-in functions and invokes
it without having included <builtins.h>, the compiler might issue
the BIFNOTAVAIL error message, regardless of whether or not the
function is available through a system service. If the compilation
does include <builtins.h>, and BIFNOTAVAIL is issued, then either
there is no support at all for the built-in function or a new version of
<pal_builtins.h> is needed.

Here is a summary of these differences on Integrity server systems:

• There is no support for the asm, fasm, and dasm intrinsics (declared in the
<c_asm.h> header file).

• The functionality provided by the special-case treatment of R26 in an Alpha
system asm, as in asm("MOV R26,R0"), is provided by a new built-in function
for Integrity server systems:

__int64 __RETURN_ADDRESS(void);

49



This built-in function produces the address to which the function containing
the built-in call will return (the value of R26 on entry to the function on
Alpha systems; the value of B0 on entry to the function on Integrity server
systems). This built-in function cannot be used within a function specified
to use nonstandard linkage.

• The only PAL function calls implemented as built-in functions within the
compiler are the 24 queue-manipulation builtins. The queue manipulation
builtins generate calls to new OpenVMS system services SYS$<name>,
where <name> is the name of the builtin with the leading underscores
removed.

Any other OpenVMS PAL calls are supported through macros defined in
the <pal_builtins.h> header file included in the <builtins.h> header
file. Typically, the macros in <pal_builtins.h> transform an invocation of
an Alpha system builtin into a call to a system service that performs the
equivalent function on an Integrity server system. Two notable exceptions
are _ _PAL_GENTRAP and _ _PAL_BUGCHK, which instead invoke the
Integrity server specific compiler builtin _ _break2.

• There is no support for the various floating-point built-in functions used by
the OpenVMS math library (for example, operations with chopped rounding
and conversions).

• Most built-in functions that take a retry count are not supported. This is
necessary because the retry behavior allowed by Alpha load-locked/store-
conditional sequences does not exist on Integrity server systems. There are
two exceptions to this: _ _LOCK_LONG_RETRY and _ _ACQUIRE_SEM_
LONG_RETRY; in these cases, the retry behavior involves comparisons of
data values, not just load-locked/store-conditional.

• The _ _CMP_STORE_LONG and _ _CMP_STORE_QUAD built-in functions
are not supported. Use the new _ _CMP_SWAP form instead.

Built-in Functions Specific to Integrity server Systems
The <builtins.h> header file contains a section at the top conditionalized to
just _ _ia64 with the support for built-in functions specific to Integrity server
systems. This includes macro definitions for all of the registers that can be
specified to the _ _getReg, _ _setReg, _ _getIndReg, and _ _setIndReg built-in
functions. Parameters that are const-qualified require an argument that is a
compile-time constant.

The following lists the C++ built-in functions available on OpenVMS Integrity
server systems.

50



/* Intel compatible */

unsigned __int64 __getReg(const int __whichReg);

void __setReg(const int __whichReg, unsigned __int64 __value);

unsigned __int64 __getIndReg(const int __whichIndReg,
__int64 __index);

void __setIndReg(const int __whichIndReg, __int64 __index,
unsigned __int64 __value);

void __break(const int __break_arg); /* Native I64 arg */
void __dsrlz(void);
void __fc(__int64 __address);
void __fwb(void);
void __invalat(void);
void __invala(void); /* alternate spelling of __invalat */
void __isrlz(void);
void __itcd(__int64 __address);
void __itci(__int64 __address);
void __itrd(__int64 __whichTransReg, __int64 __address);
void __itri(__int64 __whichTransReg, __int64 __address);
void __ptce(__int64 __address);
void __ptcl(__int64 __address, __int64 __pagesz);
void __ptcg(__int64 __address, __int64 __pagesz);
void __ptcga(__int64 __address, __int64 __pagesz);
void __ptri(__int64 __address, __int64 __pagesz);
void __ptrd(__int64 __address, __int64 __pagesz);
void __rsm(const int __mask);
void __rum(const int __mask);
void __ssm(const int __mask);
void __sum(const int __mask);
void __synci(void);
__int64 /*address*/ __thash(__int64 __address);
__int64 /*address*/ __ttag(__int64 __address);

/* Intel _Interlocked intrinsics */

unsigned __int64 _InterlockedCompareExchange_acq(
unsigned int *__Destination,
unsigned __int64 __Newval,
unsigned __int64 __Comparand);

unsigned __int64 _InterlockedCompareExchange64_acq(
unsigned __int64 *__Destination,
unsigned __int64 __Newval,
unsigned __int64 __Comparand);

unsigned __int64 _InterlockedCompareExchange_rel(
unsigned int *__Destination,
unsigned __int64 __Newval,
unsigned __int64 __Comparand);

51



unsigned __int64 _InterlockedCompareExchange64_rel(
unsigned __int64 *__Destination,
unsigned __int64 __Newval,
unsigned __int64 __Comparand);

/* GEM-added builtins */

void __break2(__Integer_Constant __break_code,
unsigned __int64 __r17_value);

void __flushrs(void);
void __loadrs(void);
int __prober(__int64 __address, unsigned int __mode);
int __probew(__int64 __address, unsigned int __mode);
unsigned int __tak(__int64 __address);
__int64 __tpa(__int64 __address);

/* _Interlocked* builtins return the old value and have the
** newval and comparand arguments in a different order than
** __CMP_SWAP* builtins that return the status (1 or 0).
** Forms without trailing _ACQ or _REL are equivalent to
** the _ACQ form. On Alpha, _ACQ generates MB after the swap,
** _REL generates MB before the swap.
*/

int __CMP_SWAP_LONG(volatile void *__addr,
int __comparand,
int __newval);

int __CMP_SWAP_QUAD(volatile void *__addr,
__int64 __comparand,
__int64 __newval);

int __CMP_SWAP_LONG_ACQ(volatile void *__addr,
int __comparand,
int __newval);

int __CMP_SWAP_QUAD_ACQ(volatile void *__addr,
__int64 __comparand,
__int64 __newval);

int __CMP_SWAP_LONG_REL(volatile void *__addr,
int __comparand,
int __newval);

int __CMP_SWAP_QUAD_REL(volatile void *__addr,
__int64 __comparand,
__int64 __newval);

/*
** Produce the value of R26 (Alpha) or B0 (I64) on entry to the
** function containing a call to this builtin. Cannot be invoked
** from a function with nonstandard linkage.
*/
__int64 __RETURN_ADDRESS(void);

52



8.3.7 memcpy C Run-Time Library Function
Programs must not use memcpy with overlapping arguments.

HP C++ for OpenVMS Integrity servers optimizes the use of standard C library
functions memcpy and memmove somewhat differently than HP C for OpenVMS
Integrity servers and the HP C and C++ compilers for OpenVMS Alpha.
Because of this, the use of memcpy with arguments that overlap in memory can
produce results that differ from the other compilers.

Note that the behavior of memcpy is formally undefined if its arguments overlap;
only memmove should be used in this case. However, the other compilers
generally treat memcpy in a way that handles overlapping arguments in the
same way as memmove, while HP C++ for OpenVMS Integrity servers does not.
So when using memcpy, take care that the arguments do not refer to memory
that might overlap; if overlap is a possibility, you must use memmove instead of
memcpy.

8.3.8 ELF
ELF Used on Integrity server systems.
On OpenVMS Alpha systems, the C++ compiler uses a proprietary object
format specific to OpenVMS.

On OpenVMS Integrity server systems, the compiler generates ELF objects.
ELF is an industry standard object format used on many UNIX platforms,
including Linux. This change should be transparent to most users; it is
primarily of interest to compiler and tools developers. The greatest benefit
of this change is that it should make it easier to create development tools that
work on OpenVMS and other platforms.

Extensions to ELF have been used as needed to provide functionality unique
to OpenVMS. See the Porting Applications from HP OpenVMS Alpha to HP
OpenVMS Industry Standard 64 for Integrity Servers for more information on
ELF.

COMDATS/Group Sections
One feature that ELF provides that is new to OpenVMS is the COMDAT
section group—a group of sections in an object file that can be duplicated in
one or more other object files. The linker is expected to keep one group and
ignore all others. The benefit of this feature is that it permits compilers to
generate definitions for symbols for things used in multiple objects without
having to worry about creating a single definition in one place. The most
notable uses for this feature are templates and inline functions.

53



New ELF Type for Weak Symbols
A new Executable and Linkable Format (ELF) type was generated to
distinguish between the two types of weak symbol definitions.

For modules with ABI versions equal to 2 (the most common version used by
compilers):

• Type STB_WEAK represents the UNIX-style weak symbol (formerly, the
OpenVMS-style weak symbol definition for ABI Version 1 ELF format).

• Type STB_VMS_WEAK represents the OpenVMS-style of weak symbol
definition.

The Librarian supports both the ELF ABI versions 1 and 2 of the object and
image file formats within the same library.

8.3.9 Templates
This section describes template instantiation for Integrity server systems.

Implemented using ELF COMDATS/Groups Sections
The Alpha C++ compiler had numerous models for instantiating templates.
Each attempted to solve the issue of how to generate one and only one copy of
each template. The use of ELF on OpenVMS Integrity server systems provided
the compiler with the additional option of using COMDAT section groups.
Since this technique is superior to all the models supported on Alpha, this is
the only model supported on Integrity server systems.

In this model, templates are instantiated in a COMDAT section group
inside every object module that uses them. This is very similar to the
/TEMPLATE=LOCAL on Alpha systems, except that when the objects are
linked together, the linker removes the duplicate copies. The primary advan-
tage of this technique over /TEMPLATE=LOCAL and /TEMPLATE=IMPLICIT_
LOCAL is the reduction in image size.

A secondary advantage is the elimination of distinct data for each template.
For example, if a template maintained a list of elements it created, each
module would have a separate copy of the list. This behavior does not
conform to the standard. If you are currently using /TEMPLATE=LOCAL
or /TEMPLATE=IMPLICIT_LOCAL, you will likely experience no difficulty
from this change.

54



Not in Repository
The most visible difference that results from this new instantiation
model occurs in models that instantiate templates into the repository
(/TEMPLATE=AUTOMATIC | ALL_REPOSITORY | USED_REPOSITORY).

With the new model, no repository is needed. Build procedures that use
CXXLINK will work transparently. Builds that attempt to manipulate objects
in the repository will fail and will need to be changed. In most cases, the
reason for manipulating the repository directly has been eliminated with the
new template instantiation model.

Restriction
For OpenVMS Integrity servers and Alpha systems, the /TEMPLATE_
DEFINE=ALL qualifier is not guaranteed to work with the Standard Library.
Use automatic instantiation or specify /TEMPLATE_DEFINE=USED instead.

8.3.10 Exceptions and Condition Handlers
The command-line option /EXCEPTIONS=NOCLEANUP is not implemented.
As a result, you might see destructors being called during cleanup in code
previously compiled with this option.

Exception specifications are not implemented. Exception specifications on
routine declarations and definitions are accepted syntactically, but their run-
time behavior has not yet been implemented.

Stack unwinding
According to the C++ Standard, an implementation may or may not unwind
the stack before calling terminate when no matching handler is found for a
thrown exception. On Integrity server systems, the implementation unwinds
the stack. On Alpha systems, it does not.

Consider the following program:

#include <exception>
#include <cstdio>
#include <cstdlib>

class C {
public:

C() { std::printf("Created\n"); }
~C() { std::printf("Destroyed\n"); }

};

void announce1() {
std::printf("In terminate\n");
exit(0);

}

55



int main() {
C c;
std::set_terminate(announce1);
throw 5;

return 0;
}

For the above program, the output on OpenVMS Alpha and Integrity server
systems is:

Alpha: Integrity servers:

Created Created
In terminate Destroyed

In terminate

Exceptions Not Caught
The compiler assumes that the only two ways an exception can be propagated
into a function are:

• From a throw expression, or

• From a routine call that itself can throw an exception.

As a result of this assumption, some exceptions such as those thrown from a
signal handler will not be caught.

8.3.11 Overriding new and delete
Full support for allowing a user to override operators new and delete is not
yet completed. As a result, when you override new and delete, you might see
multiply-defined symbols when linking. This will be fixed in a future release.

8.4 Integrity servers Known Issues
Version 7.1 of the C++ compiler has the following known issues:

Qualifiers
By default the compiler’s optimizer will not unroll loops. If you wish to turn
the optimization on, you must compile /OPTIMIZE=UNROLL=N

Destruction of Initialized Aggregate Members
If an aggregate class/struct (such as struct B in the example below) contains
a member with a destructor, and an object of that class is initialized with a
brace-enclosed initializer list, and initialization of some member terminates by
throwing an exception (thereby interrupting the initialization of the B object),
members already completely initialized at that point will not be destructed.
However, if the B object is completely initialized, each of its members will be
destructed correctly.

56



// Aggregate initialization, cleanup on throw
extern "C" int printf(const char *, ...);
int count;
int stopon;
struct A {

int n;
A(int i) : n(i) {

if (n == stopon) {
printf("throwing...\n");
throw "help";

}
printf("A::A(%d)\n", n);
count++;

}
~A() {

printf("A::~A(%d)\n", n);
count--;

}
};
struct B {

A a;
const A &r;
const A &r2;
A aa;
~B() { printf("B::~B()\n"); }

};
main () {

for (stopon = 1; stopon <= 5; stopon++) {
try {

B b = {1, A(2), A(3), 4};
throw 5;

} catch (...) {
printf("catch\n");
printf("----------\n");

}
}
return !(count == 0);

}

Debugger

• Optimized debugging is not supported in HP C++ V7.1 for OpenVMS
Integrity server systems.

• Examining floating point values when compiling /FLOAT=(D_FLOAT,G_
FLOAT)

On OpenVMS Integrity server systems, the default floating point type
is IEEE. If you compile your program with any of these qualifiers: /G_
FLOAT, /FLOAT=(D_FLOAT) or /FLOAT=(G_FLOAT) your floating point
numbers will be represented internally as integers. Therefore to examine

57



them as floating point values, you must specify the appropriate data type
(EXAMINE/D_FLOAT, EXAMINE/G_FLOAT or EXAMINE/F_FLOAT)
when using the EXAMINE command in the OpenVMS Integrity servers
debugger.

• Inherited Data Members

You cannot specify multiple base names. For example, in the program
below, to examine member f_member, we can say: "examine j_object.f_
member" or "examine j_object.I::f_member" but we cannot say "j_
object.I::G::f_member".

struct A { int a_member; };
struct B : A { int b_member; };

struct C { int c_member; };
struct D : B, C { int d_member; };

struct E : D { int e_member; };

struct F { int f_member; };
struct G : F { int g_member; };

struct H : E, G { int h_member; };

struct I : H { int i_member; };
struct J : I { int j_member; };

static J j_object;

main(){
j_object.j_member = 1;

}

DBG> exam j_object.B::A::a_member
%DEBUG-W-NOFIELD, ’B::A::a_member’ is not a field in this record

DBG> deposit j_object.I::a_member = 13

• Breakpoints on opening and closing braces of a function

The OpenVMS Integrity servers debugger may give unexpected results
when examining values at the final brace ( } ) of a routine.

On OpenVMS Integrity server systems, a workaround to set a break on
the last source line of a routine. This is because destructors for the routine
may run after the final source line and before the final ( } ).

• Overloaded Functions

If you attempt to set a break on an overloaded function without providing
the argument list, debug may display the %DEBUG-E-NOSYMBOL
message instead of displaying the overload list. To see the list of overloaded
functions use the sho symbol command.

58



Currently there is a problem with setting breakpoints on an operator. By
using the %name feature of debug, it should be possible to set a breakpoint
on an a user defined operator, just as one can set a breakpoint on a user
defined destructor. However, this feature is not working at the present
time. Please workaround this problem by setting a breakpoint on the
appropriate line number.

// using %name you can set a break on a destructor
DBG> set break stack::%name’~stack’
// however setting a break on an operator is not working yet
DBG> set break stack::%name’operator++’()
%DEBUG-I-NOTUNQOVR, symbol ’stack::operator++’ is overloaded

overloaded name stack::operator++
instance stack::operator++(int)
instance stack::operator++()

%DEBUG-E-REENTER, reenter the command using a more precise pathname

• Pointer to member

On OpenVMS Integrity server systems, the compiler is not yet emitting full
debug information for pointers to members.

• Limited support for namespaces

On OpenVMS Integrity server systems, the compiler is not yet emitting full
debug information for namespaces.

• Unused type and unused labels

On OpenVMS Integrity server systems, the /DEBUG qualifier means
/DEBUG=(TRACEBACK,BRIEF), which causes the compiler to omit debug
information for unused labels and unused types, even when /NOOPTIMIZE
is specified. This feature results in much smaller object files. If unused
labels and unused types are desired, please specify the SYMBOLS keyword
explicitly (/DEBUG=(SYMBOLS).

• Source line numbers and listing line numbers

on OpenVMS Alpha systems, the debugger will display listing line
numbers. However, the HP C++ V7.1 compiler on OpenVMS Integrity
server systems does not yet support debugging with listing line numbers.
Instead you will see source line numbers when in the debugger.

For Example: in the following program which contains two include files,
on OpenVMS Alpha the debugger displays the same listing line numbers
as in the listing file. However on OpenVMS Integrity servers, the generic
DWARF 3 filename and line number system is used in the debugger, while
a listing file will contain standard VMS style listing line numbers.

59



#include <stdio.h>

void t2();
int main() {

/* comment lines within executable code visible*/
printf("in main\n");
t2();
} /* last line in routine main */

/* This comment will not be visible */

#include "t2.c"

Notice that when we are in the debugger, we see source line numbers, and
the location information on a show calls displays module name, source line
number.

DBG> go
break at routine GEM_BUGS10682\main

4: int main() {
%DEBUG-I-DYNLNGSET, setting language C++
DBG> type 1:20
module GEM_BUGS10682

1: #include <stdio.h>
2:
3: void t2();
4: int main() {
5: /* comment lines within executable code visible*/
6: printf("in main\n");
7: t2();
8: } /* last line in routine main */
9: extern "C" {int printf(const char *,...);}

10: void t2() {
11: printf("in t2\n");
12: } /* last line in routine t2 */

DBG> sho calls
module name routine name line rel PC abs PC

*GEM_BUGS10682 main 4 0000000000000000 0000000000010000
*GEM_BUGS10682 MAIN 00000000000000F0 0000000000010170

FFFFFFFF80B1CC20 FFFFFFFF80B1CC20
DBG> set break t2
DBG> go
in main
break at routine GEM_BUGS10682\t2

10: void t2() {
DBG> sho calls
module name routine name line rel PC abs PC

*GEM_BUGS10682 t2 10 0000000000000000 00000000000101C0
*GEM_BUGS10682 main 7 0000000000000050 0000000000010050
*GEM_BUGS10682 MAIN 00000000000000F0 0000000000010170

60



Below you see the listing file and all of the source lines from the main
source file are shown. (The contents of the include would be visible too if
/LIS/SHOW=INCLUDE were specified.)

1 #include <stdio.h>
1552
1553 void t2();
1554 int main() {
1555 /* comment lines within executable code visible*/
1556 printf("in main\n");
1557 t2();
1558 } /* last line in routine main */
1559 /* This comment will not be visible */
1560
1561 #include "t2.c"
1568
1569

• Breakpoints on for loops

On OpenVMS Alpha systems, if you set a breakpoint on a for loop that
resides on a single source line, the debugger triggers only once; the for
loop is considered a single statement.

On OpenVMS Integrity server systems, the same situation causes the
debugger to trigger on each iteration of the for loop.

Consider the following for statements:

for (i=0; i<10; i++) y_v10_int[i] = x_v10_int[i];

for (i=0; i<10; i++) {y_v10_int[i] = x_v10_int[i];}

for (i=0; i<10; i++) {
y_v10_int[i] = x_v10_int[i];

}

On OpenVMS Alpha systems, the debugger treats the first two example
loops above as single statements, even with delimiting braces. But if
the loop is spread over several source lines, as in the third example, the
OpenVMS Alpha debugger treats it as a loop.

On OpenVMS Integrity server systems, all three of the above for
statements are treated as loops.

61



9 Release Notes for the V7.1 C++ Libraries
For Integrity server systems, the C++ standard library has been upgraded and
organized as a shareable image. All applicable fixes and enhancements done
in the C++ standard library for Alpha systems, have been applied to the C++
standard library for Integrity server systems.

For Integrity server systems, the C++ class library is based on the same code
as the C++ class library on Alpha systems. The major change in the C++ class
library for Integrity server systems is the removal of the tasks and complex
packages.

9.1 Library Reorganization
The standard library, language run-time support library, and class library have
been reorganized for Integrity server systems.

9.1.1 Standard Library and Language Run-Time Support Library
On Alpha systems, the C++ standard library and language run-time support
library is delivered in an object library, LIBCXXSTD.OLB, shipped with the
compiler kit.

On Integrity server systems, the C++ standard library and language run-
time support library are delivered as separate system shareable images
shipped with the base operating system. The names of the images are:
CXXL$RWRTL.EXE and CXXL$LANGRTL.EXE, respectively. The images
reside in the SYS$LIBRARY directory and are installed at system startup. The
LIBCXXSTD.OLB object library does not exist on Integrity server systems.

On Alpha systems, the default C++ standard library LIBCXXSTD[_MA].OLB
is a preinstantiation library. It contains instantiations of commonly used
templates on commonly uses types like std::basic_string<char>, std::basic_
iostream<char>, and so on. When you compile with /NOIMPLICIT_INCLUDE,
standard library symbols defined in template definition files can be resolved
from the preinstantiation library.

On Integrity server systems, there is no preinstantiation library. As a result,
compiling with /NOIMPLICIT_INCLUDE can result in undefined symbols for
standard library symbols that could have been resolved on Alpha systems from
the preinstantiation library.

62



9.1.2 Class Library
On Alpha systems, there are three class library shareable images: CXXL$011_
SHR.EXE, CXXL$011_SHRTASK.EXE, and CXXL$011_TASK.EXE.

On Integrity server systems, the C++ class library continues to ship as a
system shareable image. Because the tasks and complex packages have been
removed, there is only one class library image: CXXL$011_SHR.EXE.

9.2 Language Run-Time Support Library
The following language run-time support library change has been made:

• The language run-time support library no longer validates if a negative
value has been specified in a call to operator new. Instead, the value is
treated as an unsigned value, and an attempt is made to dynamically
allocate the specified memory.

9.3 Class Library
The following class library changes have been made:

• The tasks and complex packages have been removed. The recommended
replacements are the pthreads routines and complex template class,
respectively, from the C++ standard library.

• In the String class, the char*( ) operator, which converts String to a
pointer to char, has been removed. The String class has a const char*( )
operator, which can be used instead of the removed one.

9.4 Standard Library
This section describes changes to the C++ standard library.

9.4.1 Changes
There are two major changes in the C++ standard library for Integrity server
systems as compared with the standard library for Alpha systems:

• The C++ standard library has been upgraded from Version 2.0 of the Rogue
Wave C++ Standard Library to Version 3.0.

• The C++ standard library is delivered with the operating system as the
installed system shareable image SYS$SHARE:CXXL$RWRTL.EXE, and
also in STARLET.OLB in the object form for linking /NOSYSSHARE. On
Integrity server systems, there is no LIBCXXSTD.OLB, which is the object
library where the C++ standard library for OpenVMS Alpha resides.

Additional standard library changes, known issues, and platform differences
are noted in the following sections.

63



9.4.2 Library Headers
While from the customers’ perspective the change in the library distribution
model is supposed to be transparent (except that application images will be
much smaller on Integrity server systems), users on Integrity server systems
may find that the new C++ Standard Library is much less forgiving in terms of
including all necessary library headers than the old Standard Library.

For example, the following program compiles cleanly on OpenVMS Alpha
systems despite the fact that it does not include the <iostream> header
necessary for the std::cout object:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <fstream>

using namespace std;

main() {
cout << "hello, world";

}

However, on OpenVMS Integrity server systems, compilation fails with the
following error:

%CXX-E-UNDECLARED, identifier "cout" is undefined

It is nearly impossible to describe all combinations of library constructs and
header files that would compile cleanly on Alpha systems and yet fail to
compile on Integrity server systems because a library header required by the
C++ standard for a particular construct has not been included. If a program
that used to compile cleanly on an Alpha system fails to compile on an Integrity
server system, it is always a good idea to check that all necessary library
headers are included.

64



9.4.3 Internal Library Headers and Macros
A program that includes internal RW stdlib V2.0 library headers, like
<stddefs> or <stdcomp>, or that uses internal library macros _RW_*, will
have to be modified because the new C++ standard library does not necessarily
have the same internal headers or use the same internal macros as the old
one.

9.4.4 Known Issues
9.4.5 Differences Between Alpha and Integrity server Systems

The following are differences between the Integrity server systems and Alpha
standard libraries:

• According to section 27.6.1.3 [lib.istream.unformatted] of the C++ Standard,
the following get member functions of the std::basic_istream class should
call setstate(failbit) if no characters have been stored, as is the case for an
empty line. While on Integrity server systems the functions set failbit, on
Alpha systems they do not:

istream_type& get(char_type *s, streamsize n, char_type delim);
istream_type& get(char_type *s, streamsize n);

For example, on an Alpha system, the following program invoked to read
its own source (like pipe run x.exe < x.cxx), reads the whole file and
outputs: "21 lines were read".

On an Integrity server system, the program exits the for loop after
encountering an empty line and outputs: "6 lines were read".

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <iostream>
#include <cassert>
using namespace std;

int main() {
char buffer[1024], c;
int lines;
for (lines = 0; cin.good(); ++lines) {

cin.get(buffer, sizeof(buffer));
if ( !cin.eof() ) {

// consume delimeter
assert( (cin.get(c), c) == ’\n’ );

}
}
cout << lines << " lines were read\n";

}

65



• On OpenVMS Integrity server systems, a program mixing objects of
std::complex class instantiated on different integral types or on an integral
type and a floating type in the same expression, needs to be compiled
with the _RWSTD_NO_MEMBER_TEMPLATES macro defined. Note that
according to Section 26.2 - Complex numbers [lib.complex.numbers] of the
C++ standard, the template std::complex can be instantiated only on a
floating type. From the standard: "The effect of instantiating the template
complex for any type other than float, double or long double is unspecified".

For example, the following program compiles on Alpha systems without
any special macro defined. On Integrity server systems, it compiles only
with the _RWSTD_NO_MEMBER_TEMPLATES macro defined:

#include <complex>
int main() {

std::complex<int> ci(1, 2);
std::complex<long> cl(3, 4);
ci += cl;

}

• On OpenVMS Alpha systems, the following constructors for the C++
standard library classes strstream and ostrstream initialize ptr[count-1]
with a null byte:

strstream(char *ptr, streamsize count,
ios_base::openmode mode = ios_base::in | ios_base::out);

ostrstream(char *ptr, streamsize count,
ios_base::openmode mode = ios_base::out);

This initialization is not required by the C++ standard, and on Integrity
server systems the C++ standard library does not do it.

• On Integrity server systems, map and multimap containers require the
standard-conformant form of allocator class: allocator<pair<const Key, T>
>.

For example, on Alpha systems, it is possible to declare an object of class
multimap as the following, with the second template argument of allocator
class omitted:

multimap<string, int, less<string>, allocator<string> > x;

But for Integrity server systems, this must be changed to:

multimap<string, int, less<string>, allocator<pair<const string, int> > > x;

• On Integrity server systems, the exception.what( ) function reports the
module name, and the message text might be different.

66



For example, an output on Alpha systems:

Got an exception: string index out of range in function:
basic_string:::replace(size_t,size_t,size_t,char) position: 100 is
greater than length: 0

An output on Integrity server systems:

Got an exception: CSRC:[STDIPF_INCLUDE]STRING.CC;:416:
basic_string::replace(size_type, size_type, size_type, value_type):
argument value 100 out of range [0, 0)

• On Integrity server systems, iostreams extraction operators truncate out-
of-range integer values to the maximum possible value for a given type,
and set the failbit for the stream.

For example, consider the following program:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif

#include <strstream>
#include <iostream>

using namespace std;

main() {
istrstream is("32768"); // SHRT_MAX is 32767
short s;
is >> s;
cout << is.fail() << endl;
cout << s << endl;

}

On Alpha systems, this program gives:

0
-32768

On Integrity server systems, it gives:

1
32767

Note that on Integrity server systems, the failbit for the stream is set.

According to the C++ Standard, Section 22.2.2.1 - Template class num_
get [lib.locale.num.get], an input that would have caused scanf to report
an input failure should result in setting ios_base::failbit to err. Since on
OpenVMS, scanf reports an input failure in this case (this is an undefined
behavior from the point of view of the C standard), the behavior of the C++
standard library on Integrity server systems is standard-compliant.

67



• On Alpha systems, the find template function is implemented using
operator!=. On Integrity server systems, this function is implemented
using operator= =, which according to the C++ standard is the operator the
find function should be using.

Consequently, if no conversion from *InputIterator to T exists, on
Alpha systems the following function can be instantiated only if
operator!=(*InputIterator,T) exists:

find(InputIterator first, InputIterator last, const T& value)

On Integrity server systems, however, the function can be instantiated only
if operator= =(*InputIterator,T) exists.

The following program illustrates the difference. If you comment out the
line bool operator!=(S, int);, the program does not compile on Alpha
systems. If you comment out the line bool operator= =(S, int);, the
program does not compile on Integrity server systems. The behavior on
Integrity server systems is the standard-conformant behavior.

include <algorithm>
#include <vector>

struct S {
int i;

};

bool operator!=(S, int);
bool operator==(S, int);

void foo() {
std::vector<S> v;
std::find(v.begin(), v.end(), 0);

}

• On Integrity server systems, an attempt to write into a stream opened for
read (ios::in), causes the stream badbit bit to be set.

On both Alpha and Integrity server systems, nothing is written into a
stream opened for read. However, on Alpha systems, the stream badbit bit
is not set.

The C++ standard does not provide explicit guidance about what to do
in this case. However, the behavior on Integrity server systems is more
reasonable—at least there is an indication that something was wrong.

• On Integrity server systems, reverse_iterator cannot be instantiated on
vector<bool>::iterator type.

68



For example, the following program, which compiles cleanly on Alpha
systems, does not compile on Integrity server systems:

#include <vector>

typedef std::reverse_iterator<std::vector<bool>::iterator> ri;

main()
{
ri::pointer (ri::*foo)() const = &ri::operator->;
}

A recently adopted resolution for the library issue 120 has made this
construct invalid. See http://std.dkuug.dk/JTC1/SC22/WG21/docs/lwg-
active.html#120 for more details.

• On Integrity server systems, for a random access iterator, operator-(const
random_access_iterator&) returning difference_type must be const.

For example, the following program compiles cleanly on Alpha systems.
However, on Integrity server systems it compiles only if // const is
uncommented.

#include <algorithm>

template <class T> class randomaccessiterator {

public:

typedef T value_type;
typedef int difference_type;
typedef T* pointer;
typedef T& reference;
typedef std::random_access_iterator_tag iterator_category;

bool operator==(const randomaccessiterator&);
bool operator!=(const randomaccessiterator&);
T& operator*() const;
T* operator->();

randomaccessiterator& operator++();
const randomaccessiterator& operator++(difference_type);
randomaccessiterator& operator--();
const randomaccessiterator& operator--(difference_type);
randomaccessiterator& operator+=(difference_type);
randomaccessiterator& operator+(difference_type);
randomaccessiterator& operator-=(difference_type);
randomaccessiterator& operator-(difference_type);
difference_type operator-(const randomaccessiterator&); // const;

};

69



struct S {};
typedef randomaccessiterator<S> Iterator;
typedef bool (*Predicate)(Iterator::value_type);
template Iterator std::stable_partition<Iterator, Predicate>(Iterator,
Iterator, Predicate);

Table 76 in the C++ standard specifies the requirements for a random
access iterator. It says the expression b - a must be valid, where a and b
denote values of X, the random access iterator. It is not completely clear
from the standard whether values of X also imply const values of X, but if
the answer is yes, the behavior on Integrity server systems is correct.

• On Integrity server systems, an attempt to call the strstream.seekg(0)
function for an empty stream (the one whose ’next’ pointer is NULL) causes
the stream failbit to be set.

This is a standard-compliant behavior. Notice that after the failbit is set
for the stream, the strstream.str( ) function returns a NULL pointer.

• On Integrity server systems, after a call to string.resize(newsize),
string.capacity( ) does not necessarily returns newsize.

While on Alpha systems the string.capacity( ) function returns newsize, this
is not required by the C++ standard. A program relying on Alpha behavior
should be modified to call the string.size( ) function instead.

• On Integrity server systems, there is no overload of basic_string class for
type bool.

Version v3.0 of the Rogue Wave C++ standard library does not have this
problematic nonstandard overload. For OpenVMS Alpha, it has been
recently removed from the library.

• On Integrity server systems, class std::fpos<std::mbstate_t> does not have
the nonstandard member function offset( ). You can use fpos::operator
streamoff( ) instead. For example:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif

#include <sstream>

using namespace std;

void foo() {
istringstream in("hello, world");
streamoff offset;
offset = in.tellg().offset(); // Alpha only
offset = streamoff(in.tellg()); // either Alpha or Integrity server

}

70



• On OpenVMS Alpha systems, operator< used by the non-predicate forms
of the sorting algorithms like push_heap( ) may or may not be declared
constant.

On Integrity server systems, this operator must be a constant operator.
For example, on OpenVMS Alpha systems, the following program would
compile without ’bool operator<(const S&)’ qualified as const. On Integrity
server systems, the const is necessary.

#include <vector>
#include <algorithm>

struct S {
bool operator<(const S&) const;

};

void foo() {
std::vector<S> v;
std::push_heap(v.begin(),v.end());

}

The C++ standard does not specify whether or not this program compiles.
Since operator< must induce a strict-weak ordering on its arguments,
which prevents it from modifying their values, there should be no reason
not to declare it const.

• On OpenVMS Alpha systems, for an unsigned type, the C++ standard
library iostreams ignores std::showpos manipulator.

On Integrity server systems, the plus sign is displayed. This behavior is
standard-compliant.

Consider the following example:

x.cxx
-----
#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <iostream>

main() {
std::cout << std::showpos << (unsigned)1 << std::endl;

}

On OpenVMS Alpha systems, x.cxx outputs:

1

On Integrity server systems, x.cxx outputs:

+1

71



9.4.6 Restrictions in Version 7.1
This section describes problems you might encounter when using the current
release of the C++ Standard Library with the HP C++ compiler. Where
appropriate, workarounds are suggested.

9.4.6.1 Using the C++ Standard Library in Microsoft Standard Mode
Compiling /STANDARD=MS has the following restrictions:

• Header <typeinfo> does not compile.

• Header <new> does not declare operator delete[ ](void*, void*).

• Header <new> does not declare type new_handler.

• You cannot use std::reverse_iterator directly. For example, the
following program does not compile in Microsoft mode:

#include <iterator>
std::reverse_iterator<int> x;

• You cannot use types defined in std::iterator_traits. For example, the
following program does not compile in Microsoft mode:

#include <iterator>

template <class T>
typename std::iterator_traits<T>::value_type
foo(void);

void bar() {
foo<int*>();

}

• The std::count and std::count_if algorithms are not available in
Microsoft mode.

• You cannot use the std::sort and std::stable_sort algorithms on
containers of pointers. For example, the following program does not
compile in Microsoft mode:

#include <vector>
#include <algorithm>

void foo()
{

std::vector<int*> v;
std::stable_sort(v.begin(),v.end());
std::sort(v.begin(),v.end());

}

72



• You cannot take the address of a bitmask member of std::ios_base class.
For example, the following program does not compile in Microsoft mode:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <ios>
const std::ios_base::fmtflags *x = &std::ios_base::boolalpha;

10 CXXLINK Changes
Because of changes in the architecture on Integrity server systems, CXXLINK
plays a much smaller role. Its only remaining purpose is to provide human
readable (demangled) names for mangled C++ names in diagnostics generated
by the linker.

Specific changes are:

• There is no LIBCXXSTD.OLB

On Integrity server systems, there is no LIBCXXSTD.OLB, which is the
object library where the C++ standard library for OpenVMS Alpha resides.
See Section 9.4 for more information.

• The library is reorganized

The C++ libraries have been reorganized and incorporated into the base
system. CXXLINK no longer needs to specify any C++ libraries when
invoking the system linker. See Section 9 for more information.

• There are no templates in a repository

With the new template instantiation model, objects are no longer placed
in a repository. Therefore, CXXLINK no longer needs to look at the
repositories for templates. See Section 8.3.9 for more information.

11 Installation
To install HP C++ for OpenVMS Integrity server systems, set the default
directory to a writeable directory to allow the IVP to succeed. Then run the
PRODUCT INSTALL command, pointing to the kit location. For example:

$ SET DEFAULT SYS$MANAGER
$ PRODUCT INSTALL CXX/SOURCE=node::device:[kit_dir]

After installation, these C++ release notes will be available at:

SYS$HELP:CXX.RELEASE_NOTES

SYS$HELP:CXX_RELEASE_NOTES.PS

73



Here is a sample installation log:

$ PRODUCT INSTALL CXX/SOURCE=NODE1$::DEV1$:[I64_CPP_KIT]

The following product has been selected:
HP I64VMS CXX V7.2-052 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

HP I64VMS CXX V7.2-052: HP C++ for OpenVMS Industry Standard

Copyright 2006 Hewlett-Packard Development Company, L.P.

This software product is sold by Hewlett-Packard Company

PAKs used: CXX-V

Do you want the defaults for all options? [YES]

Copyright 2006 Hewlett-Packard Development Company, L.P.

HP, the HP logo, Alpha and OpenVMS are trademarks of
Hewlett-Packard Development Company, L.P. in the U.S. and/or
other countries.

Confidential computer software. Valid license from HP
required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor’s
standard commercial license.

Do you want to review the options? [NO]

Execution phase starting ...

The following product will be installed to destination:
HP I64VMS CXX V7.2-052 DISK$ICXXSYS:[VMS$COMMON.]

The following product will be removed from destination:
HP I64VMS CXX V7.1-152 DISK$ICXXSYS:[VMS$COMMON.]

Portion done: 0%...60%...70%...80%...90%...100%

The following product has been installed:
HP I64VMS CXX V7.2-052 Layered Product

The following product has been removed:
HP I64VMS CXX V7.1-155 Layered Product

%PCSI-I-IVPEXECUTE, executing test procedure for HP I64VMS CXX V7.2-052 ...
%PCSI-I-IVPSUCCESS, test procedure completed successfully

HP I64VMS CXX V7.2-052: HP C++ for OpenVMS Industry Standard

74



The release notes are located in the file SYS$HELP:CXX.RELEASE_NOTES
for the text form and SYS$HELP:CXX_RELEASE_NOTES.PS for the postscript form.

11.1 Multiple Version Support
Version 7.3 adds optional support for having multiple versions of the C
compiler on your system. It works by appending an ident name to a previously
installed compiler and saving it alongside the new compiler from this kit.
Users on your system can then execute the sys$system:cxx$set_version.com
and sys$system:cxx$show_versions.com command procedures to select the
desired compiler for a given process and to view the list of available compiler
versions.

To set this up, have your system administrator run the installation procedure,
answering NO to the question about default options:

Do you want the defaults for all options? [YES] NO <RET>

Then answer YES to the question about making alternate compilers available:

Would you like to set up your system for running alternate versions of C? [NO] YES <RET>

Users can then execute the cxx$set_version.com command procedure with an
argument to set up process default logicals that point to alternate compiler
versions. For more information on using cxx$set_version.com and cxx$show_
version.com see section: "Enhancements, Changes, and Problems Corrected in
V7.3".

Sample installation for multiple-version Support:

$ product install CXX /source=disk$:[dir]

The following product has been selected:
HP I64VMS CXX T7.3-18 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

HP I64VMS CXX T7.3-18: HP C++ for OpenVMS Industry Standard

Copyright 2003-2007 Hewlett-Packard Development Company, L.P.

This software product is sold by Hewlett-Packard Company

PAKs used: CXX-V or CXX-V-USER

Do you want the defaults for all options? [YES] no

HP I64VMS VMS V8.3 [Installed]

75



* Configuration options for this referenced product cannot
* be changed now because the product is already installed.
* (You can use PRODUCT RECONFIGURE later to change options.)

Copyright 2003-2007 Hewlett-Packard Development Company, L.P.

HP, the HP logo, Alpha and OpenVMS are trademarks of
Hewlett-Packard Development Company, L.P. in the U.S. and/or
other countries.

Confidential computer software. Valid license from HP
required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor’s
standard commercial license.

Multi_Version Support:
If you would like to set up your system to be able to run different
versions of the compiler then answer yes. The installation procedure will
then copy the previously installed C++ compiler and associated files along
side the new compiler in this kit with a suffix appended to the name that
corresponds to the version number. Users may then execute
CXX$SET_VERSION.COM to run an alternate version of the compiler
and CXX$SHOW_VERSIONS.COM to show available versions at anytime
after this installation.

Would you like to set up your system for running alternate versions of C++? [NO] yes

Do you want to review the options? [NO]

Execution phase starting ...

The following product will be installed to destination:
HP I64VMS CXX T7.3-18 DISK$ICXXSYS:[VMS$COMMON.]

Portion done: 0%...60%...70%...80%...90%...100%

The following product has been installed:
HP I64VMS CXX T7.3-18 Layered Product

%PCSI-I-IVPEXECUTE, executing test procedure for HP I64VMS CXX T7.3-18 ...
%PCSI-I-IVPSUCCESS, test procedure completed successfully

HP I64VMS CXX T7.3-18: HP C++ for OpenVMS Industry Standard

Text form of the release notes are located in the file SYS$HELP:CXX.RELEASE_NOTES

SYS$HELP:CXX_RELEASE_NOTES.PS contains the postscript form.

A startup file SYS$STARTUP:CXX$STARTUP.COM has been provided.

It contains commands which can be executed after the product install
procedure has been run and at startup to allow for the best compilation
performance. You may want to invoke this command file from your
system’s site-specific start up file. This command file does not
have to be invoked for correct operation of HP C++.

76



12 Reporting Problems
Please report problems or offer feedback using the mechanisms specified in the
HP C++ User’s Guide preface.

77




