DECdtm XA Profile

OpenVMS DECdtm

XA Interface User’s Guide

17th October 2001

This document describes the OpenVMS implementation of the X/Open Distributed Transaction Processing XA interface. This interface allows the OpenVMS DECdtm transaction manager to coordinate XA compliant resource managers, and XA compliant transaction processing systems to coordinate DECdtm compliant resource managers.

	Revision/Update Information
	This is a new manual.

	Software Version:
	DECdtm Version 2.0

Compaq Computer Corporation
Houston, Texas

Copyright © 2001 Compaq Computer Corporation. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publisher.

Compaq Computer Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Neither Compaq Computer Corporation nor its employees are responsible for any errors that may appear in this publication. The information in this publication is subject to change without notice.
Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Compaq or an authorized sublicensor.

The following are trademarks of Compaq Computer Corporation: ACMS, Compaq, DIGITAL, OpenVMS and OpenVMS Cluster.

The following are third-party trademarks:

Oracle and Oracle Rdb are registered trademarks of Oracle Corporation.

BEA and TUXEDO are registered trademarks of BEA Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Revision History
	Date
	Author
	Action

	9-Apr-01
	RB
	Document derived from November 1993 XA Profile. Removed standard information. Added static linking. Several small changes to match the standard more closely.

	20-May-01
	RB
	Restructure document. Fix static binding example. Add separate xa_info string for close. Add transaction demarcation section. Revise error returns. Add support for TX interface. Add error log. Add RM instances. Update issues list.

	28-May-01
	RB
	Change TX module to DDTM$TX.OBJ. Require XA to use TX. Explain locking between processes.

	7-Jun-01
	RB
	Add XA Gateway. Add restriction on use of $SET_DEFAULT_TRANS.

	26-Jul-01
	RB
	Add XA Gateway error log.

	23-Aug-01
	RB
	Replace node name by gateway name. Describe XGCP commands.

	27-Aug-01
	RB
	Warn against deleting Gateway logs. Clarify the use of ax_lock and ax_unlock. Revise the use of ax_bind_decdtm_2. Describe the use of an XA recovery process. Add installation instructions.

	26-Sep-01
	RB
	Indicate functions that cannot be called at AST level. Clarify need for a recovery process. Add Oracle configuration hint.

	17-Oct-01
	RB
	Fix incorrect references to LMCP.

Contents

ivContents

viPreface

11
Introduction

21.1
Installation

42
Using the XA Veneer

42.1
Transaction Demarcation

52.2
Locking Between Processes

52.3
Binding to the XA Interface

82.4
Implementation Characteristics

112.5
Recovery Processes

132.6
Error Logging

132.7
Tracing

153
Non-standard XA Functions

16ax_bind_decdtm_2

18ax_close_decdtm

19ax_lock_decdtm

20ax_open_decdtm

21ax_unbind_decdtm

22ax_unlock_decdtm

234
Using the XA Gateway

234.1
Gateway Configuration

244.2
XA RM Configuration

254.3
Implementation Characteristics

274.4
Error Logging

274.5
Tracing

295
XA Gateway Control Program (XGCP) Utility

295.1
XGCP Description

295.2
XGCP Usage Summary

295.3
XGCP Commands

295.4
CREATE_LOG

305.5
EXIT

305.6
START_SERVER

305.7
STOP_SERVER

Preface

Intended Audience

Read this document if you are programming or managing a system that uses XA compliant resource managers in transactions with DECdtm compliant resource managers.

Before you read this document, you should be familiar with:

· Transaction processing.

· The software components in a distributed transaction processing environment.

· Database terminology.

· The X/Open XA and TX standards.
Related Documents

See the following documents for more information:

· Distributed Transaction Processing: The XA Specification. Published by the X/Open Company Ltd., Reading, U.K.

· Distributed Transaction Processing: The TX (Transaction Demarcation) Specification. Published by the X/Open Company Ltd., Reading, U.K.

· OpenVMS DECdtm Services Reference Manual.

1 Introduction

The DECdtm XA Interface allows a transaction manager (TM) to coordinate transactions performed by a resource manager (RM). For an overview and documentation of the XA interface, see the X/Open CAE Specification document Distributed Transaction Processing: The XA Specification.

The DECdtm XA Interface provides two levels of support for the XA interface:

· The DECdtm XA Veneer allows an XA compliant RM (such as Oracle) to participate in a global transaction coordinated by DECdtm. Typically you would use this to combine the XA compliant RM in a transaction with DECdtm compliant RMs such as ACMS, Oracle Rdb and RMS Journaling.

The XA Veneer is a per-process set of functions that call DECdtm system services on behalf of the RM, and map DECdtm events to XA function calls.

· The DECdtm XA Gateway allows a DECdtm compliant RM (such as Oracle Rdb or RMS Journaling) to be coordinated by an XA compliant transaction processing system such as BEA TUXEDO.

The XA Gateway is an XA RM that DECdtm to participate in an XA transaction as a subordinate TM. DECdtm passes transaction events to the DECdtm compliant RMs.

[image: image1.wmf]ACMS

EXC

ACMS

Task Shell

DECdtm

Oracle

RMS

Journaling

Application

Code

X

A

XA

Veneer

Figure 1: XA Veneer Example

[image: image2.wmf]TUXEDO

Monitor

TUXEDO

TM

Oracle

RMS

Journaling

Application

Code

X

A

XA

Gateway

DECdtm

X

A

Figure 2: XA Gateway Example

For the convenience of application writers, the DECdtm XA Interface also provides an implementation of the X/Open TX (Transaction Demarcation) Interface. This is a simple set of function wrappers for DECdtm system services.

[image: image3.wmf]DECdtm

Oracle

RMS

Journaling

Application

Program

X

A

XA

Veneer

TX

Figure 3: TX Wrapper Example

1.1 Installation

DECdtm XA support will be included in a future release of OpenVMS. It may be installed on OpenVMS versions 7.2 and later using the PCSI kit COMPAQ-AXPVMS-DECDTMXA-A0100--1.PCSI.

To install DECdtm XA support using the PCSI kit:

· Use an account with the following privileges enabled: CMEXEC, CMKRNL, IMPERSONATE, NETMBX, PRMGBL, SYSGBL, SYSLCK, SYSNAM, SYSPRV, TMPMBX, WORLD.

· $ PRODUCT INSTALL DECDTMXA.

· Add the command file SYS$STARTUP:DDTM$XA_STARTUP.COM to the startup database or to SYS$MANAGER:SYSTARTUP_VMS.COM.
· Add the command file SYS$STARTUP:DDTM$XA_SHUTDOWN.COM to SYS$MANAGER:SYSHUTDWN.COM.
To verify installation of the XA Gateway:

· Use the XGCP utility to create a Gateway log with the same name as the local OpenVMS node. See the Chapter 4 section Gateway Configuration and Chapter 5 for details.

· Run SYS$TEST:DECDTM_XG_IVP.EXE.

· Use the XGCP utility to stop and restart the Gateway server. This step is essential if you choose to configure the Gateway with a different name to that of the local OpenVMS node.

2 Using the XA Veneer

This chapter describes how to write an application program that uses an XA compliant RM in transactions coordinated by DECdtm.

2.1 Transaction Demarcation

Application programs may use the $START_TRANS, $END_TRANS and $ABORT_TRANS system services to control transactions.

XA RMs can participate only in the default transaction, because the XA interface model does not allow for explicit transaction IDs passed to RMs by APs.

DECdtm does not support DECthreads or POSIX threads. That is, you may use threading within an application, but the default transaction is managed per-process, not per-thread.

The XA Veneer does not support the use of $SET_DEFAULT_TRANS to change the current default transaction. That is, an application program may attempt to change the current default transaction, but XA RMs will continue to perform operations in the context of the original default transaction.

The Veneer reports RM xa_start() errors on $START_TRANS by an SS$_ABORT exception. Any RM error will also cause the transaction to be aborted and a reason code to be returned from $END_TRANS.

RM return codes are translated to reason codes as follows:

	XA return code
	DECdtm reason code

	XA_RBCOMMFAIL
	DDTM$_COMM_FAIL

	XA_RBDEADLOCK
	DDTM$_PART_SERIAL

	XA_RBINTEGRITY
	DDTM$_INTEGRITY

	XA_RBTIMEOUT
	DDTM$_PART_TIMEOUT

	Other XA_RB*
	DDTM$_VETOED

	XAER_DUPID
	Veneer fails

	XAER_INVAL
	Veneer fails

	XAER_NOTA
	DDTM$_UNKNOWN

	XAER_PROTO
	Veneer fails

	XAER_RMFAIL
	DDTM$_SEG_FAIL

	All others
	DDTM$_UNKNOWN

The XA Veneer implements the functions ax_open_decdtm() and ax_close_decdtm(). They are identical to the X/Open TX functions tx_open() and tx_close. If ax_open_decdtm() is not called, XA RMs will be automatically opened at the start of the first transaction.

Application programs may use the X/Open TX functions instead of DECdtm system services. The TX functions are available in an object module that may be used with the XA Veneer. tx_begin() includes an exception handler that maps XA Veneer exceptions to tx_begin() return codes. Note that while the TX wrapper module requires the XA Veneer, the TX functions apply equally to XA and DECdtm RMs.

2.2 Locking Between Processes

A transaction may access an RM from more than one process. The XA Veneer creates a separate branch of the transaction for each process. This requests the RM to treat each process as a “loosely-coupled thread” as defined by the XA Specification. The RM will take locks to isolate access to a resource in one process from access in another process. Consequently the processes may deadlock against each other if they attempt to access the same resource within a single transaction.

2.3 Binding to the XA Interface

Before a resource manager can take part in transaction processing, it must be bound to the XA interface. The XA interface requires:

· The address of the XA Switch data structure for the resource manager. See the resource manager documentation for the symbolic name of this switch.

· xa_info text strings for xa_open() and xa_close(). See the resource manager documentation for the specification of these strings.

· An optional name for the resource manager instance. See Resource Manager Instances below. The maximum length of the name is 24 characters, excluding the null terminator.

DECdtm supports two methods of binding:

· Static binding is the method implied by the XA standard. The address of the XA Switch and the xa_info text strings are determined at link time.

· Dynamic binding requires a run-time call to a non-standard function. This method gives the application control over the time at which binding and recovery is performed.

Definitions of the data structures and constants required to use the XA interface can be found in SYS$LIBRARY:XA.H. This is the “xa.h“ as listed in the XA Specification. Additional non-standard functions and flags are defined in SYS$LIBRARY:DDTM_XA.H.

To use an XA compliant RM, the application must be linked with:

· The RM’s shareable image or object files.

· SYS$LIBRARY:DDTM$XA_RM.OBJ. This object module contains a table of well-known resource managers and initialization code to load the XA Veneer.

· SYS$LIBRARY:DDTM$XA.EXE. This shareable image implements the XA Veneer.

An application may also be linked against SYS$LIBRARY:DDTM$TX.OBJ to use the TX transaction demarcation interface instead of DECdtm system service calls.

The privileged shareable image SYS$LIBRARY:DDTM$XA_SS.EXE must be installed. It provides system services for internal use by the XA interface.

2.3.1 Static Binding

Resource managers are bound by creating and linking a small object module. The object module places references to the XA Switch and xa_info string in the predefined PSECT DDTM$AX_RM. The following Compaq C sample shows how:

 /* TODO: define or reference your RM switch */
 extern struct xa_switch_t
SampleSwitch;

 /* TODO: define the info strings for xa_open() and xa_close() */
 static char RmInfoOpen[] = "SampleInfoOpen";
 static char RmInfoClose[] = "SampleInfoClose";

 /* TODO: define the RM instance name */
 static char RmName[] = "SampleName";

 /* put the switch and info addresses in the DDTM$AX_RM psect */
 #pragma extern_model strict_refdef "DDTM$AX_RM" pic, shr

 void* RmDefSample[] = {&RmSwitchSample,
 RmInfoOpen, RmInfoClose, RmName};

Make the following changes to the above file:

· Change “SampleSwitch” to the symbolic name of the XA switch structure as given in the documentation for your RM.

· Change “SampleInfoOpen” and “SampleInfoClose” to xa_info strings as given in the documentation for your RM. Typically the xa_open string will specify a database name and access information, and the xa_close string may be null.

· Change “SampleName” to a resource manager instance name that you choose, as described in the section Resource Manager Instances, below.

If you prefer to code the RM definition in another language, such as VAX MACRO, note that the full attributes of the PSECT are:

 .PSECT DDTM$AX_RM,CON,GBL,SHR,NOEXE,WRT,NOCOM,4

To make the xa_info strings configurable, the XA Veneer attempts to translate the strings in the SYS$DECDTM_XA_RM logical name table. If the strings cannot be translated, they are passed unchanged to the resource manager.

When static binding is used, the XA Veneer calls xa_recover() either when tx_open() is called, or at the start of the first transaction in the image lifetime.

ax_close_decdtm() may be called to close statically bound resource managers.
2.3.2 Dynamic Binding

An application program can bind additional RMs to the XA Veneer by calling ax_bind_decdtm_2(). Dynamic binding requests the VA Veneer to call xa_recover(), and therefore allows recovery to be initiated earlier than with static binding.

Note that ax_open_decdtm() and ax_close_decdtm() have no effect on dynamically bound resource managers.

2.3.3 Resource Manager Instances

The resource manager instance name must be specified if the resource manager implements multiple instances (or databases) that may be recovered independently. A resource manager cannot be bound into a single process multiple times, unless each binding is for a different named instance.

A resource manager instance name must also be specified if the resource manager instance name in the XA Switch structure is longer than 24 characters. Otherwise, if the resource manager does not support multiple instances, the instance name may be set null, and DECdtm uses the resource manager name in the XA Switch structure as the instance name.

The definition of resource manager instances controls two features of the XA Veneer:

· When DECdtm calls xa_recover() it expects that the resource manager instance returns the complete list of prepared transaction branches for the instance. DECdtm will forget any transactions for the instance that are not returned by xa_recover().

· If a process or VMS Cluster node using the XA Veneer fails, DECdtm initiates recovery in any one of the surviving processes in the VMS Cluster that are bound to the resource manager instance.

The instance name is chosen by the application programmer but must be set identically in all processes. It has a maximum size of 24 characters (excluding the null terminator). Compaq recommends that the first part of the name is the same as the resource manager name in the XA Switch structure, provided that this is possible within the overall limit of 24 characters.

There is a limit of 1024 on the number of resource manager instances that may be bound in a process.

Note that in this document the term “Resource Manager Instance” is used in the same sense as “Oracle Instance” in the Oracle documentation. The OpenVMS DECdtm Services Reference Manual uses the same term in a different context and with a different meaning.

2.3.4 Hints

· Check any OpenVMS-specific documentation for your resource manager as well as the generic documentation. For example, the generic documentation for Oracle suggests that you may need to specify an explicit shared library for the Oracle XA RM. However on OpenVMS no specific action is needed; a reference to the Oracle XA switch structure is sufficient.
· Note that to use XA transactions with Oracle 8i on OpenVMS, the Oracle DDBOPT product (Distributed Database Option) must be installed, and the Distributed Database Option must be enabled in the configuration options for the Oracle RDBMS product.
2.4 Implementation Characteristics

This section provides information for developers of XA compliant RMs that are to be used with the DECdtm XA Veneer.

This manual reveals that the DECdtm XA Veneer does not use some features of the XA interface that must normally be provided by resource managers. This information is provided for the convenience of RM developers, to help them decide if an existing implementation is likely to work with DECdtm. Future implementations of DECdtm XA may make use of these features.

This manual also describes possible deviations from the XA standard or common interpretations of the standard. These deviations may be corrected in a later version of the XA Veneer.

2.4.1 Threads

DECdtm does not support DECthreads or POSIX p-threads. That is, the default transaction is managed per-process, not per-thread. When reading the XA specification, a thread should be regarded as equivalent to a process.

The Veneer assumes there is a single default transaction per process and does not attempt to suspend or migrate the association of a transaction branch with a thread or process. Thus it never sets the TMSUSPEND or TMMIGRATE flags on a call to xa_end(), and never sets TMRESUME on a call to xa_start().

The Veneer never sets the TMJOIN flag on a call to xa_start().

2.4.2 Heuristic Decision

DECdtm does not support heuristic decisions. If the RM reports a heuristic decision on xa_commit() or xa_rollback(), the Veneer records the decision in a log file. xa_forget() is called immediately and the transaction is treated as if it committed or aborted normally.

2.4.3 Resource Manager Synchronization

The XA Veneer always calls XA functions at non-AST level in user mode. The Veneer never interrupts an XA call with another XA call.

The Veneer may interrupt application processing to call:

· xa_recover().

· xa_commit() or xa_rollback() for a transaction listed by xa_recover().

However such calls will not be made while the process has an active transaction. I.e. between xa_start() and xa_end(). Therefore they cannot interrupt the RM while it is executing a call from the application.

TP frameworks, implemented using the earliest version of the DECdtm interface, may run application code in concurrent DECdtm unsynchronized branches. This is not recommended (see OpenVMS DECdtm Services Reference Manual), partly because the Veneer cannot determine when branch processing ends, and may therefore make a xa_end() and xa_rollback() calls asynchronously while an XA RM is processing an call from the application. This occurs only when a transaction is aborted by another DECdtm branch.

Note that this problem does not occur with ACMS, because ACMS executes branches serially, not concurrently.
If the version of the TP framework in use does not make a clear statement that synchronized branches are used, and transactions have multiple branches, applications are recommended to protect XA RM calls against asynchronous events using the non-standard functions ax_lock_decdtm() and ax_unlock_decdtm(). The Veneer may be locked at the start of branch processing and unlocked at the end, or individual RM calls may be protected by paired lock/unlock calls.

2.4.4 Asynchronous operation

This implementation does not use asynchronous operations.

The RM Switch flag TMUSEASYNC is ignored. The TMASYNC flag is never set on calls to the resource manager. The xa_complete() function is never called.

2.4.5 RM Switch

An RM can ensure that a future version of the Veneer preserves restrictions and possible non-standard behavior by setting the non-standard flag TM_DDTM_V1 in the flags field of the XA Switch data structure.

2.4.6 Image Termination and Recovery

No XA functions are called directly when an image or process terminates.

The RM is dissociated from any active transaction, and the transaction is aborted.

After an image terminates, a process terminates, or a VMS Cluster node fails, DECdtm calls xa_recover() on any one of the surviving processes in the VMS Cluster that is bound to the same resource manager instance.

2.4.7 Transaction Branch Identification

In this implementation formatID is set to 223585243, gtrid_length is 16 and bqual_length is 36. However RMs should not make assumptions about the values of these fields.

2.4.8 Error Handling

In most cases, the return values XAER_INVAL and XAER_PROTO are treated as failures of the XA Veneer. An SS$_BUGCHECK exception is reported. See xa_close() and xa_open() below for exceptions.

In most cases XAER_RMERR and XAER_RMFAIL have a common interpretation by the Veneer. The current transaction is aborted but the RM continues to participate in new transactions. The error return values differ only in that they cause different DECdtm reason codes to be returned to the application. See xa_commit() below for an exception.

XA Functions

2.4.9 XA Functions

ax_reg()

A return value of TMER_INVAL indicates that either arguments are invalid, or the TMREGISTER flag in the resource manager's xa_switch_t data structure was not set.

A successful call that returns an NULLXID blocks the AP from starting a new default transaction. Other RMs that register through the same thread also receive a success status with a NULLXID.

A call to ax_reg(), made while registered, fails with XAER_PROTO. TM_JOIN is never returned.

A return value of TMER_PROTO may also indicates that xa_reg() was called while there was a current transaction, but too late to join it.

ax_unreg()

There is no additional information for this function.

xa_close()

This function is called:

· For all statically bound resource manager, when ax_close_decdtm().

· For a dynamically bound resource manager, when ax_unbind_decdtm() is called.

· In unusual error cases, typically after an unexpected status is returned by the RM.

Note that this function is not called on image exit or process exit.

The return value XAER_INVAL is assumed to be an invalid rm_info string, not a Veneer failure.

xa_commit()

DECdtm does not use the TMNOWAIT flag.

The return value XAER_RMERR is treated as catastrophic failure of the resource manager. The error is logged and the Veneer fails with an SS$_BUGCHECK exception to prevent further processing.

The return value XAER_RMFAIL is treated as a less severe error. The error is logged. It is assumed that the resource manager will continue to fail all new transactions with XAER_RMFAIL, but that it may eventually be possible to commit the transaction on recovery.

The Veneer attempts to retry xa_commit() when XAER_RETRY is returned. It retries the operation at 10 second intervals for up to 2 minutes.

xa_complete()

This function is never called by the Veneer.

xa_end()

DECdtm does not use the TMSUSPEND or TMMIGRATE flags.

xa_forget()

DECdtm does not support heuristic decisions. It calls xa_forget() immediately after an RM reports a heuristic decision.

Error return values are recorded in the Veneer error log, but are otherwise ignored.

xa_open()

Any error return value leaves the RM unregistered. The error is recorded in the Veneer error log.

The return value XAER_INVAL is assumed to be an invalid rm_info string, not a Veneer failure.

xa_prepare()

There is no additional information for this function.

xa_recover()

DECdtm calls xa_recover():

· When it receives an ax_bind_decdtm_2() call with the DDTM_M_RECOVER flag set.

· At the start of the first transaction in the image lifetime, if the resource manager is statically bound to DECdtm.

· When an image that has performed a transaction using XA Veneer terminates, and there are other processes still using the XA Veneer.

· When the resource manager returns from a xa_recover() call with a value equal to count.

DECdtm never sets TMENDRSCAN. Thus it always performs full scans for prepared transaction branches.

DECdtm expects that the RM returns the complete list of prepared transactions started on the current node of the OpenVMS Cluster for RM instance. Any other transactions that the RM has forgotten will be forgotten by DECdtm. The RM may also return prepared transactions started on other nodes, and these will be resolved.

xa_rollback()

There is no additional information for this function.

xa_start()

DECdtm does not use the TMNOWAIT flag.

DECdtm does not use the TMJOIN or TMRESUME flags.

The return value XAER_DUPID is not expected, since DECdtm calls each resource manager once only for each transaction. It causes the Veneer to report an SS$_BUGCHECK exception.

The current DECdtm implementation is unable to return an error from $START_TRANS when the RM returns an error. Instead, the Veneer raises an SS$_ABORT exception which may be dismissed by the application. The application should call $END_TRANS or $ABORT_TRANS. The transaction will be aborted in either case. $END_TRANS returns.

2.5 Recovery Processes

By default the XA Veneer will call xa_recover in any process that has bound an RM instance. This is undesirable if the process called to perform recovery runs at low priority or executes an application that may be blocked for long periods with an active transaction. It is especially undesirable if the process uses a resource manager, such as Oracle, that waits during an active transaction if it finds data that needs recovery.

It is therefore preferable to create one or more processes that are available to perform recovery but which do not execute transactions. To do this:

· Define the logical name SYS$DECDTM_XA_RECOVER as “FALSE” or “F” for all processes that may execute transactions. This will prevent xa_recover from being called in those processes. The logical name may be defined group or system wide.

· Create a recovery process that binds all XA RMs and has the logical name SYS$DECDTM_XA_RECOVER defined as “TRUE” or “T”. This will prevent the process from joining active XA transactions. The code for the process is shown below.

· Ensure that one or more instances of the recovery process are started before starting any application processes.

The executable code of the process is provided by the module SYS$LIBRARY:DDTM$XA_RECOVERY.OBJ. Alternatively a custom process may be created using the following code as a starting point.

 #define DESC_INIT_S(p1, p2, p3) \
 (p1).dsc$w_length = p2, \
 (p1).dsc$b_dtype = DSC$K_DTYPE_T, \
 (p1).dsc$b_class = DSC$K_CLASS_S, \
 (p1).dsc$a_pointer = (char *) (p3)

 main() {

 int

status;
 struct dsc$descriptor dscName;
 struct dsc$descriptor dscValue;

 /* enable recovery in this process */
 DESC_INIT_S(dscName, strlen("SYS$DECDTM_XA_RECOVER"),
 "SYS$DECDTM_XA_RECOVER");
 DESC_INIT_S(dscValue, 1, "T");
 status = lib$set_logical(&dscName, &dscValue);
 if ((status & 1) != 1) {
 printf("Failed to define logical name, status %d\n", status);
 exit(EXIT_FAILURE);
 }

 /* open XA RMs */
 status = ax_open_decdtm();
 if (status != TX_OK) {

 printf("Error %d on ax_open_decdtm\n", status);
 exit(EXIT_FAILURE);
 }

 /* wait for recovery requests */
 while (1)
 sys$hiber();
 }

To link the process, include the following object modules and libraries:

· SYS$LIBRARY:DDTM$XA_RECOVERY.OBJ, or the code above.

· An object module binding each RM to the XA Veneer, as described in the section Static Binding above.

· Shareable images or object files for each XA RM.

· SYS$LIBRARY:DDTM$XA_RM.OBJ.

· SYS$LIBRARY:DDTM$XA.EXE / SHARABLE.

To restore the default behaviour (process joins active transactions and may perform recovery) when SYS$DECDTM_XA_RECOVER has been defined as a group or system wide logical, define SYS$DECDTM_XA_RECOVER as “0” for the process.

2.6 Error Logging

The DECdtm XA log file records heuristic decisions and other serious errors that may impact transaction consistency. Typically these occur on xa_commit() or xa_rollback(), or during recovery. Less serious errors, such as on xa_prepare are not logged.

To enable logging, define the logical name SYS$DECDTM_XA_LOG to specify a log file. The logical name may be defined process, group or system wide. The log file will be created automatically and may be shared between processes.

Each record on the log file has the following format:

 tid, bid, time, error_name, rm_name, [reserved], additional_information

Error names are fixed length 8 character strings with space padding:

	Error name
	Meaning

	GETDTI
	DECdtm was unable to resolve the transaction state.

	HEURCOM
	The transaction branch has been heuristically committed.

	HEURHAZ
	The transaction branch may have been heuristically completed.

	HEURMIX
	The transaction branch has been heuristically committed and rolled back.

	HEURRB
	The transaction branch has been heristically rolled back.

	INVAL
	Invalid arguments were specified to xa_open. Probably the rm_info string is incorrect.

	RMERR
	Catastrophic RM failure on xa_commit().

	RMFAIL
	An error occurred that makes the resource manager unavailable.

	UNKNOWN
	Unexpected return code from the RM.

2.7 Tracing

The XA Veneer includes a trace facility to help investigate problems of interaction between DECdtm and XA resource managers. The trace file shows the sequence of operations. It also shows more detailed error information than that revealed by XA return values.

To enable tracing, define the logical name SYS$DECDTM_XA_TRACE to specify a trace file. The logical name may be defined process, group or system wide. The trace file will be created automatically and may be shared between processes.

The trace file records:

· All ax_ calls from the application and the resource managers.

· All xa_ calls to the resource managers.

· XA and OpenVMS error status results returned by the above functions. If no status return is included in the trace, success can be assumed.

· DECdtm events and their corresponding acknowledgements.

Trace records have the following formats:

	Record type
	Format

	Operation
	time csid pid operation [rmid]

	Status
	time csid pid xa_status ["VMS" vms_status] [extra_info]

3 Non-standard XA Functions
This chapter describes the DECdtm Veneer extensions to the standard XA interface. Use of these functions is optional. The functions are:

	Function
	Description

	ax_bind_decdtm_2()
	Connects an XA resource manager to DECdtm services.

	ax_close_decdtm()
	Close all statically bound resource managers.

	ax_lock_decdtm()
	Prevents the XA Veneer from making asynchronous calls to RMs.

	ax_open_decdtm()
	Open all statically bound resource managers.

	ax_unbind_decdtm()
	Disconnects a resource manager from DECdtm services.

	ax_unlock_decdtm()
	Allows the XA Veneer to call RMs again.

ax_bind_decdtm_2

Makes a connection to DECdtm, or starts recovery processing.

Synopsis

#include <xa.h>

int ax_bind_decdtm_2 (xa_switch_t *rmswitch, long flags, int*rmid_out,
 char *xa_info_open, char *xa_info_close,
 char *instance_name)
Parameters

	Input
	

	Rmswitch
	The address of the XA Switch data structure.

	Flags
	Control whether ax_bind_decdtm_2() makes a connection to DECdtm, starts recovery processing, or both.

Flag

Meaning

DDTM_M_DECLARE

Makes a connection between the resource manager and DECdtm.

DDTM_M_RECOVER

Allows xa_recover() to be called in the current process.

	xa_info_open
	A null-terminated character string containing contextual information for the resource manager.

The maximum length of the string is 256 bytes, including the null terminator.

DECdtm does not use the information in xa_info. The Veneer passes this parameter to the resource manager with an xa_open() call.

	xa_info_close
	As xa_info_open, except that the Veneer passes this parameter to the resource manager with an xa_close() call.

	instance_name
	Resource manager instance name. The maximum size of the name is 24 characters, excluding the null terminator.

	Output
	

	rmid_out
	The identifier of the resource manager. This value is unique within the process.

Description

An application calls ax_bind_decdtm_2() to bind a resource manager into the local process:

· Call xa_open() to open the resource manager.

· Make a connection to DECdtm.

Setting the DDTM_M_DECLARE flag allows XA calls for current transactions to be issued in the local process.

· Allow XA recovery to be performed in the current process.

Setting the DDTM_M_RECOVER flag enables the local process to call xa_recover() when necessary. Note that at least one process must enabled to perform recovery. If multiple processes are enabled, the XA Veneer will choose one.

· Start recovery.

Before returning from ax_bind_decdtm_2(), DECdtm calls xa_recover() in one of the processes enabled to perform recovery.

The parameter rmid_out may be specified as NULL if the corresponding value is not required.

Return Values

	XA_OK
	Normal execution.

	XAER_INVAL
	One of the following errors occurred:

· The arguments are invalid.

· The xa_info_open or xa_info_close string is longer than 256 characters.

· Both the instance name and the RM name in rmswitch are null.

· The instance name or the RM name is longer than 32 characters.

· The xa_info_open string is invalid.

	XAER_RMERR
	A resource manager error occurred when opening the resource.

	XAER_RMFAIL
	A DECdtm error occurred.

See Also

ax_unbind_decdtm()

ax_close_decdtm

Close all statically bound resource managers.

Synopsis

int ax_close_decdtm (void)

Description

This function is provided to allow an implementation of the X/Open TX specification to implement tx_close().

The function has a non-standard name to allow a non-DECdtm TX implementation to be linked without name conflicts.

Note that this function must not be called from an AST, or with ASTs disabled.

Return Values

	TX_OK
	Normal execution.

	TX_ERROR
	One or more of the resource managers encountered a transient error. All resource managers that could be closed are closed.

	TX_FAIL
	One or more of the resource managers encountered a fatal error.

See Also

ax_open_decdtm()

ax_lock_decdtm

Prevents the XA Veneer from making asynchronous calls to resource managers.

Synopsis

#include <xa.h>

int ax_lock_decdtm (void)

Description

A application program or resource manager may call ax_lock_decdtm() to prevent the XA Veneer from issuing XA calls to resource managers. This ensures that the Veneer cannot make a call to an RM to end and rollback a transaction while the RM is concurrently processing a call from the application.

An application program that calls an XA-compliant RM and that may be run under a TP framework that uses unsynchronized DECdtm branches, should protect all RM calls. This may be done either by locking the Veneer at the start of the transaction, and unlocking it at the end, or by locking the Veneer for each individual RM call.

This function is provided as temporary measure. Applications do not need to use it if either:

· Application processing is performed in single branch.

· The application is run under a TP framework that executes branches serially, not concurrently. This is true for ACMS.

· The application is run under a TP framework known to use synchronized branches.

The XA Veneer keeps a count of the number of ax_lock_decdtm() calls. The matching number of ax_unlock_decdtm() calls must be made to remove the lock.

Return Values

	TM_OK
	Normal execution.

See Also

ax_unlock_decdtm()

ax_open_decdtm

Open all statically bound resource managers.

Synopsis

int ax_open_decdtm (void)

Description

This function is provided to allow an implementation of the X/Open TX specification to implement tx_open().

The function has a non-standard name to allow a non-DECdtm TX implementation to be linked without name conflicts.

Return Values

	TX_OK
	Normal execution.

	TX_ERROR
	One or more of the resource managers encountered a transient error. No resource managers are open.

	TX_FAIL
	One or more of the resource managers encountered a fatal error.

See Also

ax_close_decdtm()

ax_unbind_decdtm

Disconnects a resource manager from DECdtm.

Synopsis

#include <xa.h>

int ax_unbind_decdtm (int rmid, long flags)

Parameters

	Input
	

	rmid
	The identifier of the resource manager. This must be the same as the rmid_out value returned by DECdtm in the bind_decdtm() call.

	flags
	Must be set to TMNOFLAGS.

Description

A dynamically bound resource manager calls ax_unbind_decdtm() to disconnect itself from DECdtm. On receiving the ax_unbind_decdtm() call, DECdtm calls xa_close().

Note that this function must not be called from an AST, or with ASTs disabled.

Return Values

	XA_OK
	Normal execution.

	XAER_INVAL
	Either the arguments are invalid or the rm_info_close string is invalid.

	XAER_RMERR
	An error occurred when closing the resource.

	XAER_RMFAIL
	A DECdtm error occurred.

Related Information

ax_bind_decdtm_2()

ax_unlock_decdtm

Allows the XA Veneer to make asynchronous calls to resource managers again.

Synopsis

#include <xa.h>

int ax_unlock_decdtm (void)

Description

This function removes the lock requested by calling ax_lock_decdtm().

Return Values

	TM_OK
	Normal execution.

	TMERR_INVAL
	The resource manager has called ax_ unlock_decdtm() more often than it has called ax_lock_decdtm().

See Also

ax_lock_decdtm()

4 Using the XA Gateway

This chapter describes how use a DECdtm compliant resource manager, such as RMS Journaling or Oracle Rdb, with an XA compliant transaction processing system.

The XA Gateway is configured into each TP process as an XA compliant resource manager. It handles XA calls from the XA TM and maps these into calls DECdtm system services. This causes DECdtm to send the appropriate events to any DECdtm compliant Resource Manager (RM) used in a TP process.

The operation of the Gateway is transparent to the RM; DECdtm RMs do not need any modification to be used with the Gateway.

4.1 Gateway Configuration

The XA Gateway uses a log file to record the mapping between XA transactions and DECdtm transactions. The log file is managed by the Gateway server process DDTM$XG_SERVER.

The Gateway log is created using the XGCP utility (described in the next chapter of this guide). The size of the log file depends on the number concurrently active transactions. Up to 600 bytes are required for each active transaction, depending in the size of the transaction ID used by the XA TM. However the log is expanded automatically when required.

The log file is created in the directory specified by the logical name SYS$JOURNAL and has a name of the form SYSTEM$name.DDTM$XG_JOURNAL. For optimum performance, move each Gateway log and each DECdtm log to a separate physical device, and define SYS$JOURNAL as a search list for the set of physical devices.

The XA Gateway requires an association on each OpenVMS Cluster node between an XA transaction manager and the XA Gateway log. This association is managed by specifying a Gateway name as follows:

· A Gateway log with the Gateway name is created using the XGCP utility.

· The gateway name is specified in the xa_open information string when the Gateway RM is configured into applications run under the control of an XA TM. (XA RM configuration is described in the next section of this guide.)

· The first XA application run by the XA TM binds the Gateway name to the local node of the OpenVMS Cluster. It remains bound to that node until the Gateway server is stopped.

All XA applications run on the local node must be configured with the same Gateway name. XA applications using the same name cannot run on other OpenVMS Cluster nodes. Therefore you should normally define one Gateway name, and create one log, for each node of an OpenVMS Cluster.

However use of a Gateway name may be moved to a different node, provided that the Gateway log can be accessed from that node. To move use of the name to another node:

· Stop any XA applications on the original node.

· Stop the Gateway server on the original node, using the XGCP utility,

· Stop any XA applications on the target node.

· Stop the Gateway server on the target node, and restart it.

· Run the original XA applications on the target node.

Note that care must be taken to protect against the loss of a Gateway log, perhaps by shadowing the device that holds it. If a new log has to be created, or an out of date log is used, transactions that were originally recorded as committed may be incorrectly rolled back. This can cause databases to become inconsistent with each other, or inconsistent with reports given to other systems or users.

In general, Gateway logs are not large and it is better never to delete them. Before deleting an unwanted Gateway log, use the DECdtm LMCP utility to check that the Gateway is not still a participant in any prepared transactions. The Gateway participant name is DDTM$XG/name.

The Gateway server has the following parameters:

· Number of concurrent requests processed by the server, in the range 100 to 100,000. This determines the size of the global section DDTM$XG used for communication with the server, and the quotas required by the server. The parameter is specified by defining the logical name SYS$DECDTM_XG_REQS. Changes to the parameter do not take effect until after the server and all client processes have been stopped.

Note that if this parameter is exceeded in operation, client requests are simply blocked instead of being processed in parallel.

· Estimated number of concurrent XA transactions, in the range 1000 to 1,000,000. This determines the size of indexing tables used internally in the server. The parameter is specified by defining the logical name SYS$DECDTM_XA_TRANS. Changes to this parameter do not take effect until after the server has been stopped.

Note that if this parameter is exceeded in operation, server CPU use will increase. However the effect is unlikely to be noticeable until the parameter is exceeded by a factor of 10 or more.

4.2 XA RM Configuration

Each XA compliant transaction manager (TM) defines its own method for including resource managers (RMs). Typically a configuration file is edited, and used as input to build application programs that run under the control of the TM. It may also be necessary to configure and build a separate TM worker process that performs transaction prepare and commit operations.

See the documentation for your XA TM for specific instructions. You will need the following information about the XA Gateway RM. This is published following the XA Specification (Section 7.2).

	xa_switch_t structure name:
	DDTM$XG_RM_SWITCH

	RM name, within the RM switch:
	DDTM$XG

	Information string for xa_open:
	“SYSTEM$gateway” where gateway is the name of the gateway for the local node of an OpenVMS Cluster.

	Information string for xa_close:
	Ignored. May be null.

	Shareable image library:
	SYS$LIBRARY:DDTM$XG.EXE

	Transaction semantics:
	See Locking Between Processes, below.

	Protocol optimizations:
	See Read-only Optimization, below.

	Association migration:
	Not allowed.

	Dynamic registration:
	Not used.

	Asynchrony:
	Not supported.

	Heuristics:
	Not used.

The Gateway is implemented by the shareable image SYS$LIBRARY:DDTM$XG.EXE.

The privileged shareable image SYS$LIBRARY:DDTM$XG_SS.EXE must be installed. It provides system services for internal use by the Gateway and the XGCP utility.

4.2.1 Hints

· The XA switch name is upper case. Some transaction managers specify exact case compilation when generating references to RM, so you should specify the switch name in upper case.

· Check any OpenVMS-specific documentation for your transaction manager as well as the generic documentation. For example, the generic documentation for Tuxedo uses a “:” symbol to separate the resource manager name and XA info strings in a configuration table. However on OpenVMS the separator has been changed to a “,”.
4.3 Implementation Characteristics

4.3.1 Default Transaction

The Gateway sets the DECdtm default transaction for each XA transaction.

Most DECdtm RMs join the default transaction if an explicit TID is not specified on a call to the RM. If an RM does require an explicit TID, the application may use the $GET_DEFAULT_TRANS system service to read the current default TID.

4.3.2 Locking Between Processes

DECdtm does not distinguish between loosely-coupled and tightly-coupled threads, as defined by the XA Specification. Instead each RM makes its own decision whether to allow transaction branches in different processes to share data.

The Gateway allocates a separate DECdtm TID for each branch of an XA global transaction. This allows a branch to be prepared while other branches continue to perform work, as required by Section 2.2.6 of the XA Specification.

Consequently DECdtm RMs will enforce isolation between the branches of an XA global transaction. This behaviour is consistent with the XA Specification, but not required by it.

When multiple processes perform work on a single branch within a single node of an OpenVMS Cluster, the gateway allocates a single DECdtm TID for the branch. In principle this allows the RMs to recognize that work in multiple processes is part of a single transaction, and to use tightly-coupled threads. However it depends on the RM whether this is implemented.

The Gateway does not use the same TID for a single branch of a transaction seen on multiple nodes of an OpenVMS Cluster. However it is unlikely that any XA TM will use the same branch on different nodes, or that any DECdtm RM is capable of implementing tightly-coupled threads between nodes.

4.3.3 Read-only Optimization

DECdtm RMs may choose to implement a read-only optimization when a transaction is prepared (see Section 2.3.2 of the XA Specification). If all DECdtm RMs use the optimization for a given transaction, the Gateway uses the same optimization on the xa_prepare call for the transaction.

4.3.4 Blocking Conditions

The gateway is unable to determine if a blocking condition exists or not. Consequently it always returns XA_RETRY when the TMNOWAIT flag is set.

4.3.5 XA Return Values

The Gateway translates DECdtm reason codes to XA return codes as follows:

	DECdtm reason code
	XA return code

	DDTM$_ABORTED
	XA_RBROLLBACK

	DDTM$_COMM_FAIL
	XA_RBCOMMFAIL

	DDTM$_INTEGRITY
	XA_RBINTEGRITY

	DDTM$_PART_SERIAL
	XA_RBDEADLOCK

	DDTM$_PART_TIMEOUT
	XA_RBTIMEOUT

	DDTM$_SERIALIZATION
	XA_RBDEADLOCK

	DDTM$_TIMEOUT
	XA_RBTIMEOUT

	DDTM$_VETOED
	XA_RBROLLBACK

	All others
	XA_RBOTHER

The Gateway uses XAER_RMFAIL to indicate a failure to access data on disk, while XAER_RMERR indicates an internal failure. It translates DECdtm error codes to XA return codes as follows:

	DECdtm error code
	XA return code

	SS$_ALRCURTID
	XAER_PROTO

	SS$_BRANCHSTARTED
	XAER_PROTO

	SS$_NOLOG
	XAER_RMFAIL

	SS$_TPDISABLED
	XAER_RMFAIL

	SS$_WRONGSTATE
	XAER_RBROLLBACK

	All others
	XAER_RMERR

An exception is xa_commit. This function returns XAER_RMFAIL instead of XA_RMERR, because the XA Specification states that XA_RMERR indicated a catastrophic failure for this function.

4.4 Error Logging

The Gateway error log file records errors that prevent it from passing transaction information to DECdtm-compliant resource managers, The log file shows more detailed error information than that revealed by XA return values.

To enable error logging, define the logical name SYS$DECDTM_XG_ERROR to specify an error file. The logical name may be defined process, group or system wide. However, it should be defined both for TP processes and the Gateway server process. The error file will be created automatically and may be shared between processes.

Error records have the following formats:

	Record type
	Format

	General
	time csid pid "VMS" vms_status "on" operation

	Transaction
	time csid pid "VMS" vms_status "on" operation ", DECdtm TID" tid

	TP process
	time csid pid "XA" xa_status "VMS" vms_status "on" operation ", DECdtm TID" tid

4.5 Tracing

The Gateway includes a trace facility to help investigate problems of interaction between an XA TM and DECdtm-compliant resource managers. The trace file shows the sequence of operations. It also shows more detailed error information than that revealed by XA return values.

To enable tracing, define the logical name SYS$DECDTM_XG_TRACE to specify a trace file. The logical name may be defined process, group or system wide. However, it should be defined both for TP processes and the Gateway server process. The trace file will be created automatically and may be shared between processes.

The trace file records:

· All xa_ calls to the Gateway.

· XA and OpenVMS error status results returned by the above functions.

· Transaction events reported to DECdtm by the Gateway.

Trace records have the following formats:

	Record type
	Format

	Operation
	time csid pid operation [flags]

	Status
	time csid pid xa_status ["VMS" vms_status] [extra_info]

5 XA Gateway Control Program (XGCP) Utility

5.1 XGCP Description

The XA Gateway Control Program (XGCP) utility creates the transaction logs used by the DECdtm XA Gateway. It may also be used to stop and restart the XA Gateway server.

The Gateway allows a DECdtm-compliant resource manager, such as RMS Journaling or Oracle Rdb, to be used with an XA-compliant transaction manager.

5.2 XGCP Usage Summary

XGCP provides the management interface to the DECdtm XA Gateway.

Format

RUN SYS$SYSTEM:XGCP

Parameters

None

Description

To invoke XGCP, enter RUN SYS$SYSTEM:XGCP at the DCL command prompt. At the XGCP> prompt, you can enter any of the XGCP commands described in the following section.

To exit from XGCP, enter the EXIT command at the XGCP> prompt, or press Ctrl/Z.

5.3 XGCP Commands

The following table summarizes the XGCP commands.

	Command
	Description

	CREATE_LOG
	Creates a new XA Gateway log

	EXIT
	Exits XGCP

	START_SERVER
	Starts the XA Gateway server

	STOP_SERVER
	Stops the XA Gateway server

5.4 CREATE_LOG

Creates a new XG Gateway log.

Requires SYSPRV privilege or read/write access to the SYS$JOURNAL directory.

Format

CREATE_LOG

Qualifier

/GATEWAY_NAME=name

Specifies a gateway name of up to 15 characters. This qualifier is required.

/SIZE=size

Specifies the initial size of the log, in blocks. If you omit this qualifier, the log is created with an initial size of 242 blocks.

Description

A gateway log is created with the name SYS$JOURNAL:SYSTEM$name.DDTM$XG_JOURNAL.

You should create a separate log for each node of an OpenVMS Cluster.

The log file is automatically expanded in size when necessary.

5.5 EXIT

Exits XGCP.

Format

EXIT

5.6 START_SERVER

Starts the XA Gateway server.

Requires the IMPERSONATE privilege.

Format

START_SERVER

Description

This command executes the DCL command file SYS$STARTUP:DDTM$XG_STARTUP.COM. The server process is called DDTM$XG_SERVER.

5.7 STOP_SERVER

Stops the XA Gateway server.

Requires OPER privilege.

Format

STOP_SERVER

Draft
iv

Draft
v

