
Compaq Pascal
User Manual for Tru64 UNIX
Order Number: AA-PV37B-TE

June 1999

This manual contains information about selected programming tasks using
the Compaq Pascal programming language. It supersedes DEC Pascal User
Manual for DIGITAL UNIX Systems, order number AA-PV37A-TE.

Revision/Update Information: This is an updated manual.

Software Version: Compaq Pascal Version 5.7

Compa q Compute r Corporation
Houston , Texas

June 1999

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital Equipment Corporation or an authorized
sublicensor.

© Digital Equipment Corporation 1999. All Rights Reserved.

Compaq, the Compaq logo, and the DIGITAL logo are Registered in the U.S. Patent and
Trademark Office.

Alpha, AlphaServer, AlphaStation, Bookreader, DEC, DEC Pascal, DIGITAL, OpenVMS,
Tru64 UNIX, ULTRIX, VAX and VMS are trademarks of Digital Equipment Corporation.

The following are third-party trademarks:

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers Inc.

Oracle Rdb, Oracle CODASYL DBMS, Oracle CDD/Repository, Oracle CDD/Administrator, Oracle
RALLY, Oracle TRACE, Oracle Expert, Oracle InstantSQL, Oracle Graphical Schema Editor,
Oracle RMU, Oracle RMUwin, Oracle TRACE Collector, Oracle SQL/Services, Oracle DBA
Workcenter, and Oracle Module Language are trademarks of Oracle Corporation.

OSF/1 is a registered trademark of The Open Group.

PostScript is a registered trademark of Adobe Systems, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through The Open Group.

X/Open is a registered trademark of The Open Group.

All other trademarks and registered trademarks are the property of their respective holders.

Compaq conducts its business in a manner that conserves the environment and protects the
safety and health of its employees, customers, and the community.

ZK6084

This manual is available on CD–ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . ix

1 Getting Started

1.1 The Compaq Pascal Programming Environment 1–1
1.2 Commands to Create and Run an Executable Program 1–3
1.3 Creating and Running a Program Using a Separate Function . . . 1–4
1.3.1 Creating the Executable Program . 1–5
1.3.2 Running the Sample Program . 1–6
1.4 The pc Command and Related Software Components 1–6
1.4.1 The Driver Program . 1–6
1.4.2 Compaq Pascal Compiler . 1–7
1.4.3 Other Compilers . 1–7
1.4.4 Linker (ld) . 1–8
1.5 Program Development Stages and Tools 1–8

2 Compiling and Linking Compaq Pascal Programs

2.1 The pc Command . 2–1
2.1.1 pc Command Examples . 2–2
2.2 pc Command Options . 2–4
2.2.1 pc Command Option Categories . 2–5
2.2.2 pc Command Options Descriptions . 2–6
2.3 Linking . 2–26
2.3.1 Run-Time Libraries . 2–26
2.3.2 Specifying Shared Object Libraries . 2–27
2.4 Creating Shared Libraries . 2–27
2.4.1 Creating a Shared Library Using the pc Command 2–28
2.4.2 Creating a Shared Library Using pc and ld Command 2–28
2.4.3 Choosing How to Create a Shared Library 2–29
2.5 Temporary Files . 2–29
2.6 Using Multiple Input Files: Effect on Output Files 2–30
2.7 Interactions of File Name Suffix and Options 2–30

iii

2.8 Using Listing Files . 2–31

3 Separate Compilation

3.1 The ENVIRONMENT, HIDDEN, and INHERIT Attributes 3–2
3.1.1 Environment File Dependency Checking 3–5
3.2 Interfaces and Implementations . 3–6
3.3 Data Models . 3–10
3.4 Separate Compilation Examples . 3–13

4 Optimizing Performance

4.1 Compiler Optimizations . 4–1
4.1.1 Compile-Time Evaluation of Constants 4–3
4.1.2 Elimination of Common Subexpressions 4–4
4.1.3 Elimination of Unreachable Code . 4–5
4.1.4 Code Hoisting from Structured Statements 4–5
4.1.5 Inline Code Expansion for Predeclared Functions 4–7
4.1.6 Inline Code Expansion for User-Declared Routines 4–7
4.1.7 Partial Evaluation of Logical Expressions 4–7
4.1.8 Value Propagation . 4–8
4.1.9 Error Reduction Through Optimization 4–9
4.1.10 Strength Reduction . 4–9
4.1.11 Split Lifetime Analysis . 4–9
4.1.12 Code Scheduling . 4–10
4.1.13 Loop Unrolling . 4–10
4.1.14 Software Pipelining . 4–11
4.2 Programming Considerations . 4–12
4.3 Optimization Considerations . 4–13
4.3.1 Compiling for Optimal Performance . 4–13
4.3.2 Subexpression Evaluation . 4–13
4.3.3 MAXINT and MAXINT64 Predeclared Constants 4–14
4.3.4 Pointer References . 4–15
4.3.5 Variant Records . 4–16
4.3.6 Effects of Optimization on Debugging 4–16
4.4 Analyze Program Performance . 4–17
4.4.1 Use the time Command to Measure Performance 4–18
4.5 Profiling a Program . 4–19
4.5.1 Program Counter Sampling (prof) . 4–20
4.5.2 Call Graph Sampling (gprof) . 4–21
4.5.3 Basic Block Counting (pixie and prof) 4–22
4.5.4 Source Line CPU Cycle Use (prof and pixie) 4–23
4.5.5 Creating and Using Feedback Files and Optionally cord 4–23

iv

4.6 Controlling the Size of Global Pointer Data 4–25

5 Programming Tools

5.1 The C Language Preprocessor . 5–1
5.1.1 Including Headers and Other Files . 5–2
5.1.2 Conditional Compilation . 5–3
5.1.3 String Substitution . 5–3
5.1.4 C-Style Comments . 5–4
5.2 Coding for the Debugger . 5–4
5.2.1 Debugging Optimized Programs . 5–4
5.2.2 Debugging Preprocessed Programs . 5–5
5.3 Running the dbx Debugger . 5–5
5.3.1 Debugger Data Types . 5–5
5.3.2 Compaq Pascal Data Names . 5–6
5.3.3 Activation Levels . 5–7
5.4 Debugging Tips . 5–7

6 Calling Conventions

6.1 Tru64 UNIX Calling Standard . 6–1
6.1.1 Parameter Lists . 6–1
6.1.2 Function Return Values . 6–2
6.1.3 Contents of Call Stack . 6–3
6.1.4 Unbound Routines . 6–3
6.2 Parameter-Passing Semantics . 6–4
6.3 Parameter-Passing Mechanisms . 6–4
6.3.1 By Immediate Value Passing Mechanism 6–5
6.3.2 By Reference Passing Mechanism . 6–6
6.3.3 By Descriptor Passing Mechanism . 6–6
6.4 Passing Parameters Between Compaq Pascal and Other

Languages . 6–7
6.4.1 Parameter Mechanisms Versus Parameter Semantics 6–7
6.4.2 Passing Non-Routine Parameters Between Compaq Pascal

and Other Languages . 6–8
6.4.3 Passing Routine Parameters Between Compaq Pascal and

Other Languages . 6–10
6.5 Calling C Routines from Compaq Pascal 6–11

v

7 Error Processing and Condition Handling

7.1 Condition Handling Terms . 7–1
7.2 Overview of Condition Handling . 7–2
7.2.1 Condition Signals . 7–3
7.2.2 Handler Responses . 7–3
7.3 Writing Condition Handlers . 7–4
7.3.1 Establishing and Removing Handlers 7–4
7.3.2 Declaring Parameters for Condition Handlers 7–5
7.3.3 Handler Function Return Values . 7–6
7.4 Example of a Condition Handler . 7–6

8 Migrating from OpenVMS to Tru64 UNIX Systems

8.1 Sharing Environment Files Across Platforms 8–1
8.2 Default Size for Enumerated Types and Booleans 8–1
8.3 Default Data Layout for Unpacked Arrays and Records 8–1
8.4 IADDRESS and VOLATILE . 8–2
8.5 Overflow Checking . 8–2
8.6 Bound Procedure Values . 8–3
8.7 Argument List Functions . 8–3
8.8 %DICTIONARY Directive . 8–3
8.9 VAX Floating Datatypes . 8–4
8.10 Relative and Indexed Files . 8–4
8.11 Data Layout and Conversion . 8–5
8.11.1 Natural Alignment, VAX Alignment, and Enumeration

Sizes . 8–5
8.11.2 Compaq Pascal Features Affecting Data Alignment and

Size . 8–6
8.11.3 Optimal Record Layout . 8–7
8.11.4 Optimal Data Size . 8–9
8.11.5 Converting Existing Records . 8–9
8.11.6 Applications with No External Data Dependencies 8–9
8.11.7 Applications with External Data Dependencies 8–11

9 Migrating from Pascal for RISC to Compaq Pascal

9.1 Pascal for RISC and Compaq Pascal Compile-Time
Differences . 9–1

9.2 Pascal for RISC and Compaq Pascal Run-Time Differences 9–3

vi

A Errors Returned by STATUS and STATUSV Functions

B Entry Points to Compaq Pascal Run-Time Library

C Diagnostic Messages

C.1 Compiler Diagnostics . C–1
C.2 Diagnostic Messages . C–2
C.3 Run-Time Diagnostics . C–65

Index

Examples

1–1 Sample Main Program . 1–3
1–2 Sample Main Program That Uses a Separate Function 1–4
1–3 Sample Separate Function Declaration 1–5
3–1 An Interface Module for Graphics Objects and Routines 3–14
3–2 An Implementation Module for Graphics Objects and

Routines . 3–14
3–3 A Graphics Main Program . 3–16

Figures

2–1 pc Command Processing by File Suffix 2–31
3–1 Cascading Inheritance of Environment Files 3–4
3–2 Inheritance Path of an Interface, an Implementation, and a

Program . 3–6
3–3 Cascading Using the Interface and Implementation

Design . 3–8

vii

Tables

1 Conventions Used in This Manual . xi
1–1 Main Tools for Program Development and Testing 1–8
2–1 Categories of pc Command Options . 2–5
2–2 -align Option Keywords . 2–7
2–3 -arch Option Keywords . 2–7
2–4 -C Option Keywords . 2–10
2–5 -enumeration_size Option Keywords 2–13
2–6 -granularity Option Keywords . 2–15
2–7 -inline Option Keywords . 2–16
2–8 Library Search Path . 2–17
2–9 -platforms Option Keywords . 2–21
2–10 -show Option Keywords . 2–22
2–11 -std Option Keywords . 2–23
2–12 -tune Option Keywords . 2–24
2–13 -usage Option Keywords . 2–24
5–1 The dbx Equivalents of Compaq Pascal Data Types 5–6
6–1 Parameter-Passing Mechanisms Systems 6–4
6–2 Parameter-Passing Methods . 6–5
8–1 Unpacked Sizes of Fields and Components 8–6
9–1 Pascal for RISC and Compaq Pascal Compile-Time

Differences . 9–1
9–2 Pascal for RISC and Compaq Pascal Run-Time

Differences . 9–3
A–1 STATUS and STATUSV Return Values A–1

viii

Preface

This manual describes selected programming tasks using the Compaq Pascal
programming language. It contains information on using some Compaq Pascal
language elements in combination, and it provides examples of how to improve
programming efficiency.

You can use the information in this manual to write programs or modules for
the Tru64 UNIX operating system, formerly known as DEC OSF/1. If you
need to write portable Compaq Pascal programs or language modules, see
the Compaq Pascal Language Reference Manual for a checklist of language
extensions not included in the Pascal standard. The Compaq Pascal Language
Reference Manual also provides information on the Pascal standard.

Intended Audience
This manual is intended for experienced applications programmers with a basic
understanding of the Pascal language. Some familiarity with the operating
system is helpful. This is not a tutorial manual for new Pascal users.

Document Structure
This manual consists of the following chapters and appendixes:

• Chapter 1 provides an overview of the major software components
associated with Compaq Pascal.

• Chapter 2 provides information on compiling programs, linking programs,
running programs, and using text and object-module libraries.

• Chapter 3 describes how to create compilation units that you can compile
separately.

• Chapter 4 describes programming techniques that improve the efficiency of
compilation and execution.

• Chapter 5 provides information on tools for program development.

ix

• Chapter 6 describes how Compaq Pascal passes parameters and calls
routines.

• Chapter 7 provides information on error processing and writing condition
handlers.

• Chapter 8 provides information on migrating from OpenVMS to Tru64
UNIX systems.

• Chapter 9 provides information on migrating from Pascal for RISC to
Compaq Pascal on Tru64 UNIX systems.

• Appendix A provides a list of possible error values returned by the STATUS
and STATUSV functions.

• Appendix B describes the entry points to utilities in the Tru64 UNIX
run-time library.

• Appendix C provides descriptions of diagnostic messages that can be
generated by a Compaq Pascal program at compile time and run time.

Related Documents
The following manuals may also be useful when programming in
Compaq Pascal:

• Compaq Pascal Language Reference Manual—Provides information on the
syntax and semantics of the Compaq Pascal programming language. In
addition, this manual provides information about the alignment, allocation,
and internal representation of data types supported by Compaq Pascal and
descriptions of the error messages.

• Compaq Pascal Installation Guide for Tru64 UNIX Systems—Provides
information on how to install Compaq Pascal on your operating system.

• Manuals for your operating system provide full information about your
operating system.

x

Conventions
Table 1 presents the conventions used in this manual.

Table 1 Conventions Used in This Manual

Convention Meaning

% The default user prompt is your system name
followed by a right angle bracket. This manual
uses a percent sign (%) to represent this prompt.

% pwd
/usr/usrc/jones

This manual displays system prompts and responses
using a monospaced font. Typed user input is
displayed in a bold monospaced font.

monospaced This typeface indicates the name of a command, flag,
pathname, file name, directory path, or partition.
This typeface is also used in examples of program
code, interactive examples, and other screen displays.

cat(1) A shell command name followed by the number 1
in parentheses refers to a command reference page.
Similarly, a routine name followed by the number 2
or 3 in parentheses refers to a system call or library
routine reference page. (The number in parentheses
indicates the section containing the reference
page.) To read online reference pages, use the man
command. Your operating system documentation also
includes reference page descriptions.

.

.

.

A vertical ellipsis in a figure or example means that
not all of the statements are shown.

. . . A horizontal ellipsis means that the item preceding
the ellipsis can be repeated. For example:

s[,s] . . .

UPPERCASE
lowercase

The operating system shell differentiates between
lowercase and uppercase characters. Literal strings
that appear in text, examples, syntax descriptions,
and function definitions must be typed exactly as
shown.

(continued on next page)

xi

Table 1 (Cont.) Conventions Used in This Manual

Convention Meaning

Temp : INTEGER;
PRED(n)

Lowercase letters represent user-defined identifiers
or elements that you must replace according to the
description in the text.

newterm Boldface text represents the introduction of a new
term.

variable Italic type indicates important information, a
complete title of a manual, or variable information,
such as user-supplied information in command flag
syntax.� 	 Large braces enclose list from which you must choose
one item. For example:(

STATUS
DISPOSE
DISP

)

[] Square brackets enclose items that are optional. For
example:

BLOCK DATA [nam]

In this manual, complex examples have been divided into several lines to make
them easy to read. Compaq Pascal does not require that you format your
programs in any particular way.

Reader’s Comments
Compaq welcomes your comments. If you would like to comment on a
Compaq Pascal manual, please send the manual title, order number, and your
comments by one of the following methods:

• FAX: 603–884–0120
Attn: Languages Documentation, ZK02–3/K35

• A letter sent to the following address:

Compaq Computer Corporation
Languages Documentation, ZK02–3/K35
110 Spit Brook Road
Nashua, NH 03062–2698
USA

xii

1
Getting Started

This chapter includes the following:

• A summary of aspects of the Pascal language related to the Compaq Pascal
program development environment on Tru64 UNIX systems (Section 1.1)

• The commands used to create, compile, link, and run a small program
(Section 1.2)

• The commands used to create, compile, link, and run a sample main
program that has separate files for a function declaration (Section 1.3)

• An overview of the major software components associated with Compaq
Pascal (Section 1.4)

• A summary of the important program development stages and tools
(Section 1.5)

1.1 The Compaq Pascal Programming Environment
The following aspects are relevant to the compilation environment and should
be considered before extensive coding begins:

• To install Compaq Pascal on your system, obtain the media Tru64 UNIX
layered products Compact Disc (CD), and perform the installation as
described in Compaq Pascal Installation Guide for Tru64 UNIX Systems.

• Once Compaq Pascal is installed, you can:

Use the pc command to compile and link programs.

Use the online pc(1) reference page and this manual to provide
information about the pc command.

• Make sure you have adequate stack size, especially if your programs use
large arrays as data. Users may be able to overcome this problem by
increasing the per-process data limit, using the limit command (C shell)
or ulimit command (Korn and Bourne shell) (see csh(1), ksh(1), or sh(1)).

Getting Started 1–1

Determine whether the maximum per-process data size is already
allocated by checking the value of the maxdsiz parameter in the system
configuration file. If necessary, increase its value. Changes to the
configuration file do not take effect until the operating system kernel has
been rebuilt and the system has been rebooted.

For example, the following C shell commands check the current limits and
then increase the size to a larger value for cases where this limit can be
increased from your process:

% limit stacksize
stacksize 4096 kbytes
% limit stacksize 32676

• Make sure you have an adequate process file descriptor limit, especially if
your programs use a large number of included files.

During compilation, your application may attempt to use more included
files than your descriptor limit allows.

Users can view and usually increase the per-process limit on the number of
open files by using the limit command (C shell) or ulimit command (Korn
and Bourne shell) (see csh(1), ksh(1), or sh(1)).

Determine whether the maximum per-process limit is already allocated
by checking the value of the appropriate descriptor parameter in the
system configuration file. If necessary, increase its value. Changes to the
configuration file do not take effect until the operating system kernel has
been rebuilt and the system has been rebooted.

For example, the following C shell commands check the current limits and
then increase the size to a larger value for cases where this limit can be
increased from your process.

% limit descriptor
descriptors 100 files
% limit descriptor 4096

• Compaq Pascal supports the use of the environment variable TMPDIR to
specify a working directory (instead of the current directiry) to contain
temporary files created during compilation. Several other environment
variables can similarly be used during program execution.

If you need to set environment variables frequently, consider setting
these in your .login file or appropriate shell initialization file (.cshrc or
.profile).

• The pc command recognizes certain file suffixes as files containing Pascal
source code.

1–2 Getting Started

Compaq Pascal provides extensions to the ANSI PASCAL standard. When
creating new programs that need to be standard-conforming for portability
reasons, you should avoid or minimize the use of extensions to the PASCAL
standard. Extensions to the PASCAL standard are identified visually in the
language reference manual, which defines the Compaq Pascal language.

1.2 Commands to Create and Run an Executable Program
Example 1–1 shows a short Pascal main program.

Example 1–1 Sample Main Program

! File hello.pas
PROGRAM HELLO(output);
BEGIN

writeln (’hello world’)
END.

To create and revise your source files, use a text editor, such as vi or emacs.
For instance, to use vi to edit the file hello.pas, type:

% vi hello.pas

The following pc command compiles the program named hello.pas and
automatically uses ld to link the main program into an executable program file
named a.out:

% pc hello.pas

The pc command automatically passes a standard default list of Tru64 UNIX
and Compaq Pascal libraries to the ld linker. In this example, because all
external routines used by this program reside in these standard libraries,
additional libraries or object files are not specified on the pc command line.

If your path definition includes the directory containing a.out, you can run the
program by simply typing its name:

% a.out

If the executable image is not in your current directory path, specify the
directory path in addition to the file name.

When compiling the program, you can use a pc command-line flag to specify a
name other than a.out for the executable program.

Getting Started 1–3

1.3 Creating and Running a Program Using a Separate
Function

Example 1–2 shows a sample Pascal main program that uses an external
function.

The function CALC_AVERAGE, as shown in Example 1–3, is contained in a
separately created file.

Example 1–2 Sample Main Program That Uses a Separate Function

! Main_average.pas
PROGRAM Main_Average(Input, Output);

TYPE
Arr_Type = ARRAY [1..5] OF Real;

VAR
Arr : Arr_Type;
I : Integer;

[EXTERNAL] FUNCTION Calc_Average (Arr : Arr_Type) : Real; External;

BEGIN
Write(’ Enter 5 numbers: ’);
FOR I : = 1 to 5 DO

Read(Arr[I]);
Writeln(’ The average is ’, Calc_Average(Arr) :1)

END.

1–4 Getting Started

Example 1–3 Sample Separate Function Declaration

! Calc_average.pas
MODULE Calc_Average;

TYPE
Arr_Type = ARRAY [1..5] OF Real;

VAR
I : Integer;
Sum : Real;

[GLOBAL] function calc_average (arr:arr_type):Real;

BEGIN
Sum := 0.0;
FOR I : = 1 to 5 DO

Sum := Sum + Arr[I];
Average := Sum / 5.0;

END;

END.

1.3.1 Creating the Executable Program
Edit each source file with a text editor, such as vi or emacs.

During the early stages of program development, the two sample program files
might be compiled separately and then linked together, using the following
commands:

% pc -c calc_aver.pas
% pc -c main_average.pas
% pc -o calc main_average.o calc_aver.o

In this sequence of pc commands:

• The -c flag (used in the first two commands) prevents linking and retains
the .o files.

• The first command creates the file calc_aver.o.

• The second command creates the file main_average.o.

• The last command links all object files into the executable program named
calc. To link files, use the pc command instead of the ld command.

The two source files can be compiled and linked together with a single pc
command:

% pc -o calc calc_aver.pas main_average.pas

Getting Started 1–5

This pc command:

• Compiles the file calc_aver.pas, which contains the external function
CALC_AVERAGE.

• Uses ld to link the main program and all object files into an executable
program file named calc.

1.3.2 Running the Sample Program
If your path definition includes the directory containing calc, you can run the
program by simply typing its name:

Enter 5 numbers: 1 2 3 4 5
The average is 3.0E+00

1.4 The pc Command and Related Software Components
It provides the standard features of a compiler and linker. Compaq Pascal also
supports the use of preprocessors and other compilers.

Compiling and linking are usually done by a single pc command. The pc
command allows you to use:

• The cpp preprocessors (if needed)

• The Compaq Pascal compiler

• The cc compiler (if needed)

• The ld linker

1.4.1 The Driver Program
The pc command invokes a driver program that is the actual user interface
to the Compaq Pascal compiler. It accepts a list of command flags and file
names and causes one or more programs (preprocessor, compiler, assembler, or
linker) to process each file.

After the Compaq Pascal compiler processes the appropriate files to create
one or more object files, the driver program passes a list of files, certain flags,
and other information to the cc compiler. The cc compiler processes relevant
non-Pascal files and information (including running cpp on C language files)
and passes certain information (such as .o object files) to the ld linker.

The pc command executes each related program (preprocessor, compiler,
assembler, or linker) in a sequential manner. If the cpp preprocessor is used,
the preprocessor is executed once for each file.

1–6 Getting Started

If any processor does not return a normal status, further processing is
discontinued and the pc command displays a message identifying the program
(and its returned status, in hexadecimal) before terminating its own execution.

1.4.2 Compaq Pascal Compiler
The Compaq Pascal compiler provides the following primary functions:

• Verifying the correctness of Compaq Pascal source statements and
displaying any warnings or error messages.

• Generating machine-level object language instructions from the source
statements.

• Grouping the instructions to generate an object file that can be processed
by the linker.

The object file created by the compiler contains information used by the linker,
including the following:

• A list of global symbols declared in the object file

The linker uses this information when it binds two or more program units
together and must resolve references to the same names in the program
units. Such global symbols include entry points and common block names.

• A symbol table (if specifically requested by the -g, -g2, or -g3 flags on the
pc command line)

A symbol table lists the names of all external and internal variables within
an object file, with definitions of their locations. The table is of primary use
in program debugging.

The file name of the Compaq Pascal compiler is decpascal, which may appear
in certain messages.

1.4.3 Other Compilers
You can compile and link multilanguage programs using a single pc command.

The pc command recognizes C or Assembler program files by their file suffix
characters and passes them to the cc driver and compiler for compilation.
Before compilation, cc applies the cpp preprocessor to files that it recognizes,
such as any file with a .c suffix, and passes appropriate files to other compilers
or the assembler.

Certain flags passed to cc are passed by cc to the ld linker.

Getting Started 1–7

1.4.4 Linker (ld)
When you enter a pc command, the ld linker is invoked automatically unless
a compilation error occurs or you specify the -c flag on the command line. The
linker produces an executable program image with a default name of a.out.

The ld linker provides such primary functions as:

• Adding information for virtual memory allocation in the executable
program

• Resolving symbol references among object files

• Assigning values to relocatable global symbols

• Performing relocation

The ld linker on Tru64 UNIX systems performs other functions related to
shared object libraries.

1.5 Program Development Stages and Tools
This manual primarily addresses the program development activities
associated with implementation and testing phases. For information
about topics usually considered during application design, specification,
and maintenance, see your operating system documentation, appropriate
reference pages, or appropriate commercially published documentation.

Table 1–1 lists and describes some of the software tools you can use when
developing and testing a program:

Table 1–1 Main Tools for Program Development and Testing

Task or Activity Tool and Description

Manage source files Use rcs or sccs to manage source files. For more
information, see the Tru64 UNIX Using Programming
Support Tools or the appropriate reference page.

Create and modify
source files

Use a text editor, such as vi or emacs. For more
information, see your operating system documentation.

Analyze source code Use searching commands such as grep and diff. For more
information, see the Tru64 UNIX Using Programming
Support Tools and the appropriate reference page.

(continued on next page)

1–8 Getting Started

Table 1–1 (Cont.) Main Tools for Program Development and Testing

Task or Activity Tool and Description

Build program (compile
and link)

You can use the pc command to create small programs,
perhaps using shell scripts, or use the make command to
build your application in an automated fashion using a
makefile.

Debug and Test program Use dbx to debug your program or run it for general testing.

Analyze performance To perform profiling of code, use the prof and pixie
programs. The pc command flag needed to use prof is -p
(same as -p1).

To perform call graph profiling, use the gprof tool. The pc
command flag needed to use gprof is -pg.

Related profiling tools include cord and the use of feedback
files.

Install program Use setld and related commands such as tar. For more
information, see the Tru64 UNIX Using Programming
Support Tools.

To view information about an object file or an object library, use the following
shell commands:

• The file command shows the type of a file (such as which programming
language, whether it is an object library, ASCII file, and so forth).

• The strings command shows whether the object (.o) file was compiled by
Compaq Pascal and if it was, the version number used.

• The nm command shows symbol table information, including the
identification field of each object file.

• The odump command shows the contents of a file and other information.

• The size command shows the size of the code and data sections.

For more information on these commands, see the appropriate reference page
or the Tru64 UNIX Programmer’s Guide.

Getting Started 1–9

To perform other program development functions at various stages of program
development:

• Use the ar command to:

Create an archive object library.

Maintain the object modules in the library.

List the object modules in the library.

Perform other functions.

Use ranlib to add a table of contents to the object library for linking
purposes. For more information, see ar(1) or the Tru64 UNIX
Programmer’s Guide.

• Use pc or ld, not the ar command, to create shared libraries on Tru64
UNIX systems. For more information, see the Tru64 UNIX Programmer’s
Guide.

• Use the strip command to remove symbolic and other debugging
information to minimize image size. For more information, see strip(1).

1–10 Getting Started

2
Compiling and Linking Compaq Pascal

Programs

This chapter provides information on the following topics:

• The pc command (Section 2.1)

• Compiler options (Section 2.2.2)

• Linking Pascal programs (Section 2.3)

• The format of the pc command, the file name suffix characters that identify
the type of file, and pc command options related to input and output files
(Section 2.1)

• Detailed information on pc command options, including option categories,
a description of each option, handling run-time exceptions, and using
libraries (Section 2.2)

2.1 The pc Command
In most instances, use the pc command to invoke both the Compaq Pascal
compiler and the ld linker. To link one or more object files created by the
Compaq Pascal compiler, you should use the pc command instead of the ld
command, because the pc command automatically references the appropriate
Compaq Pascal Run-Time Libraries when it invokes ld.

When you create your source files using a text editor, use file name suffix
conventions expected by the pc command.

Compaq Pascal programs usually have a file name suffix of .p,.P, .pas, or
.PAS, and will be automatically passed to the C language preprocessor cpp
before compilation.

The pc command has the following form:

pc [–options [args]]... filename [filename] ... [–options [[args]]...

Compiling and Linking Compaq Pascal Programs 2–1

–options [args]
Indicates either special actions to be performed by the compiler or linker, or
special properties of input or output files. For details about command line
options, see Section 2.2. If you specify the -lstring option (which indicates
libraries to be searched by the linker) or an object library file name, place it
after the file names and after other options.

filename
Specifies the source files containing the program units to be compiled, where
the file name has a suffix that indicates the type of file used.

If you omit the suffix or it is not one of the preceding types recognized by the
pc command, the file is assumed to be an object file and is passed directly to
the linker.

An example pc command line follows:

% pc -v test.p calc_loop.o -ldxml

This command specifies the following:

• The -v option displays the compilation and link passes with their
arguments and files, including the libraries passed to ld.

• The file test.p is preprocess by cpp and then passed to the Compaq Pascal
compiler for compilation. The resulting object file is passed to the linker.

• The object file calc_loop.o is passed to the linker. The linker links both
object files into an executable program.

2.1.1 pc Command Examples
The following examples show the use of the pc command.

Compiling and Linking Multiple Files
The following pc command compiles the Compaq Pascal source files (aaa.p,
bbb.p, ccc.p) into three temporary object files:

% pc -V aaa.p bbb.p ccc.p

Next, the ld linker is invoked and passes the three temporary object files,
which it uses to produce the executable file a.out. The Compaq Pascal
compiler (-V option) creates the listing file of each source file.

The following pc command compiles all Compaq Pascal source files with file
names that end with .p into individual object files:

% pc *.p

The ld linker produces the a.out file from these object files.

2–2 Compiling and Linking Compaq Pascal Programs

Retaining an Object File and Preventing Linking
The following pc command compiles, but does not link, the source file
typedefs_1.pas:

% pc -c typedefs_1.pas

Specifying the -c option retains the object file named typedefs_1.o and
prevents linking.

Compiling Pascal and C Source Files and Linking an Object File
The following pc command compiles the Compaq Pascal main program
(myprog.pas). The main program calls a function written in C and uses the
object file created in the previous example. The C routine named utilityx_ is
declared in a file named utilityx.c. All sources files are compiled and the
object files are passed to the linker:

% pc myprog.pas typedefs_1.o utilityx.c

This command does the following:

• Compiles myprog.pas with the Compaq Pascal compiler.

• The C compiler compiles utilityx.c.

• The ld linker links all three object files together into the executable
program named a.out.

Renaming the Output File
The following pc command compiles multiple source files and produces an
executable program named circle.out.

% pc -o circle.out circle-calc.pas sub.pas

Requesting Additional Optimizations
The following pc command compiles the Compaq Pascal source files circle-
calc.pas and sub.pas together using software pipelining optimizations
(-O5):

% pc -O5 -unroll 3 circle-calc.pas sub.pas

The loops within the program are unrolled 3 times (-unroll 3). Loop unrolling
occurs at optimization level -O3 or above.

Loop Unrolling Optimization Control
The Compaq Pascal compiler automatically unrolls loops for better
performance. Loop unrolling involves making multiple copies of loop bodies
to allow the instruction scheduler to schedule more instructions between
branches. By default, loop unrolling makes four copies of an unrolled loop. You

Compiling and Linking Compaq Pascal Programs 2–3

can change the number of copies from 1 to 16 by using the following on the pc
command line:

-unroll "number"

Numbers larger than 4 may improve performance at a cost of additional
code size. However, larger numbers may decrease performance due to cache
requirements, register conflicts.

Software Pipelining Optimization
Software pipelining and additional software dependency analysis are enabled
using the -O5 command line option, which in certain cases improves run-time
performance. -O5 is not the default; -O4 remains the default.

As compared to regular loop unrolling (enabled at optimization level 3 or
above), software pipelining uses instruction scheduling to eliminate instruction
stalls within loops, rearranging instructions between different unrolled loop
iterations to improve performance.

For instance, if software dependency anaylsis of data flow reveals that certain
calculations can be done before or after that iteration of the unrolled loop,
software pipelining reschedules those instructions ahead or behind that loop
iteration at places where their execution can prevent instruction stalls or
otherwise improve performance.

Loops chosen for software pipleling for Compaq Pascal :

• Are always innermost loops, those executed the most

• Do not contain branches of procedure calls

2.2 pc Command Options
Options to the pc command affect how the compiler processes a file in
conjunction with the file name suffix information.

You can override some options specified on the command line by using
attributes in your Pascal source program.

If you compile parts of your program by using multiple pc commands, options
that affect the execution of the program should be used consistently for all
compilations, especially if data will be shared or passed between procedures.
For example, the same data alignment needs to be used for data passed or
shared by included files (such as record structures). Use the same version of
the -align option for all compilations.

2–4 Compiling and Linking Compaq Pascal Programs

Some options consist of two words separated by a space. For options that
consist of two words separated by a space, the second word can be abbreviated.
For example, you can abbreviate -C bounds to -C b (usually 4 characters or
more). Table 2–1 lists the various options, their applicable categories, and the
section in which they are described in detail.

2.2.1 pc Command Option Categories
Table 2–1 categorizes the available options to the pc command. For
information on the individual options, see section Section 2.2.2.

Table 2–1 Categories of pc Command Options

Category Option Name

Compiler files and passes -c
-o file
-v
-env

Data size defaults and
alignments

-align keyword
-enumeration_size keyword

Debugging and symbol table use
-g, -g0, -g1, -g2, -g3

Floating-point exceptions, and
accuracy -assume accuracy_sensitive,

-C keyword,
-math_library keyword,
-synchronous_exceptions

Language compatibility
-std keyword
-platforms keyword

Linker and library searching -non_shared
-lstring
-L
-Ldir
-v

Listing file and contents -show keyword
-V

(continued on next page)

Compiling and Linking Compaq Pascal Programs 2–5

Table 2–1 (Cont.) Categories of pc Command Options

Category Option Name

Performance and optimizations -align keyword
-arch keyword
-inline keyword, -noinline
-O, -O1, -O2, -O3, -O4, -O5
-synchronous_exceptions
-unroll nn
-instruction_set floating_point
-nozero_heap
-tune keyword
-usage performance
-om

Preprocessor and source file
searching

-constant name=value
-cpp
-Dname, -Dname=def
-E
-I
-Idir
-nocpp

Profiling, feedback files, and
cord

-cord, -feedback file,
-p0, -p1 or -p, -pg, -gen_feedback

Run-time checking and messages -C keyword
-synchronous_exceptions

Shared data use -granularity keyword

Variable usage information -usage keyword

Warning messages at compile
time

-error_limit keyword
-nowarn

2.2.2 pc Command Options Descriptions
The following sections list the Compaq Pascal options supported by the pc
command.

-align keyword
Controls the default alignment rules. Specifying the ALIGN attribute overrides
any value that was previously specified for the -align option.

Table 2–2 lists the values for keyword.

2–6 Compiling and Linking Compaq Pascal Programs

Table 2–2 -align Option Keywords

Keyword Action Default Information

alpha_axp Uses natural alignment when positioning
record fields or array components.
Natural alignment is when a record
field or an array component is positioned
on a boundary based on its size. For
example, 32-bit integers are aligned on
the nearest 32-bit boundary.

Default—if -align is
not specified.

vax Uses byte alignment when positioning
record fields or array components.
Record fields or array components larger
than 32 bits are positioned on the nearest
byte boundary.

-arch keyword
Specifies the lowest version of the Alpha architecture where this code will run
and directs the compiler to generate the most efficient code, with the tradeoff
that code may not run on older systems (unlike the -tune option).

All Alpha processors implement a core set of instructions and, in some cases,
the following extensions: BWX (byte- and word- manipulation instructions) and
MAX (multimedia instructions). (The Alpha Architecture Reference Manual
describes the extensions in detail.)

The option specified by the -arch flag determines the instructions the compiler
can generate and the coding rules it must follow, as shown in Table 2–3.

Table 2–3 -arch Option Keywords

Keyword Action
Default
Information

generic Generate instructions that are appropriate for all
Alpha processors.

Default;
equivalent
to -arch ev4.

host Generate instructions for the processor on which
the compiler is running (for example, EV56
instructions on an EV56 processor, and EV4
instructions on an EV4 processor).

(continued on next page)

Compiling and Linking Compaq Pascal Programs 2–7

Table 2–3 (Cont.) -arch Option Keywords

Keyword Action
Default
Information

ev4 Generate instructions for the EV4 processor
(21064, 20164A, 21066, and 21068 chips).

ev5 Generate instructions for the EV5 processor
(some 21164 chips). (Note that the EV5 and EV56
processors both have the same chip number:
21164.)

ev56 Generate instructions for EV56 processors (some
21164 chips). This option permits the compiler to
generate any EV4 instruction.

Applications compiled with this option may incur
emulation overhead on EV4 and EV5 processors.

pca56 Generate instructions for PCA56 processors
(21164PC chips). This option permits the
compiler to generate any EV4 instruction, plus
any instructions contained in the BWX or MAX
extensions. However, Compaq Pascal does not
generate any of the instructions in the MAX
(multimedia) extension to the Alpha architecture.

Applications compiled with this option may incur
emulation overhead on EV4 and EV5 processors.

ev6 Generate instructions for EV6 processors (21264
chips). This option permits the compiler to
generate any EV4 instruction, any instruction
contained in the BWX and MAX extensions, plus
any instructions added for the EV6 chip. These
new instructions include a floating-point square
root instruction (SQRT), integer/floating-point
register transfer instructions, and additional
instructions to identify extensions and processor
groups.

Applications compiled with this option may incur
emulation overhead on EV4, EV5, EV56, and
PCA56 processors.

A program compiled with any of the above options runs on any Alpha processor
with a superset of capabilities compared to the specified target processor. In
many cases, code will also move to older processors, although potentially with
significant overhead due to emulation, provided the processor is running a
(recent) version of the operating system that provides emulation. In particular,
Digital UNIX V4.0 emulates the BWX instruction set group on older processors,
so -arch ev56 code will run on ev4 and ev5 systems (except for -ieee code).

2–8 Compiling and Linking Compaq Pascal Programs

Compaq very strongly discourages compiling code with -arch that is above
any projected target system for an application. You should compile for the
lowest-level architecture on which your application will run. The -tune option
should be used for performance tuning.

The -arch and -tune options can be used together to describe the lower bound
and the common case for compiling code. For example, -arch ev5 -tune ev6
specifies that the code will never run on a processor older than an EV5 system,
but should be tuned to run on ev6 systems preferentially.

Note that -tune may cause the compiler to generate instructions not present
in the lowest-specified architecture level, but if it does, it will generate code
such that the new instructions will be guarded against execution on older
processors.

Note also that -tune defaults to the value of -arch, if that value isn’t specified.

The psrinfo -v command can be used to determine which type of processor is
installed on any given Alpha system.

-assume accuracy_sensitive
Specifies whether certain code transformations that affect floating-point
operations are allowed. These changes can affect the accuracy of the program
results.

If you specify noaccuracy_sensitive, the compiler is free to reorder floating-
point operations based on algebraic identities (inverses, associativity, and
distribution). This allows the compiler to move additional floating-point
operations outside of loops, or reduce or remove floating-point operations
totally, thereby improving performance.

The default, -assume accuracy_sensitive, directs the compiler to avoid certain
floating-point trasformations that might slightly affect the program accuracy.

-B
Strip C++ style comments during preprocessing.

See manpage pc(1).

-C keyword
Performs run-time checks.

The arguments to the -C option, listed in Table 2–4, control which aspects of
the compilation unit the compiler will produce checking code for. No checking
is the default action of the compiler.

Compiling and Linking Compaq Pascal Programs 2–9

Table 2–4 -C Option Keywords

Keyword Action

all Turns on all checking options.

bounds Verifies that an index expression is within the bounds of an
array’s index type, that character-string sizes are compatible
with the operations being performed, and that schemata are
compatible.

case_selectors Verifies that the value of a case selector is contained in the
corresponding case-label list.

declarations Verifies that schema definitions yield valid types and that
uses of GOTO from one block to an enclosing block are
correct.

overflow Verifies that the result of an integer computation does not
exceed the machine representation.

pointers Verifies that the value of a pointer variable is not NIL.

subrange Verifies that the values assigned to variables of subrange
types are within the subrange; verifies that a set expression
is assignment compatiable with a set variable; verifies that
MOD operates on positive numbers.

-c
Retains the object file and prevents linking.

The following pc command compiles, but does not link, the source file
typedefs_1.pas, retaining the object file typedefs_1.o:

% pc -c typedefs_1.pas

-call_shared
The -call_shared option specifies that the linker searches .so files before .a
files. References to symbols found in a .so library are dynamically loaded into
memory at run time. References to symbols found in .a libraries are loaded
into the executable image file link time.

For More Information:

• About creating a shared library using either the pc command or the ld
command (Section 2.4)

• On maintaining shared libraries, see your operating system documentation

• On shared library processing, see -shared and -non_shared sections

2–10 Compiling and Linking Compaq Pascal Programs

-constant name=value
Allows a limited set of Pascal constants to be defined from the command line.
This feature can be used with the conditional-compilation facility, and can also
be used in any situation where defining constants from the command line is
useful.

name is the name of a Pascal constant to create. You cannot redefine any
predeclared Pascal name on the command line.

value can be one of the following:

• integer-literal

• –integer-literal

• TRUE

• FALSE

• "string-literal"

• ’string-literal’

For example:

-constant debug=true -constant maxsize=10 -constant ident="V1.0"

Non-base-10 integer literals are not supported.

-cord
Runs the cord procedure-rearranger on the resulting file after linking. The
rearrangement reduces the cache conflicts of the program’s text. The output of
cord is left in the file specified by the -o option or a.out, by default. At least
one -feedback file must be specified.

-ccp
Runs the cpp preprocessor on Pascal source files before compiling. This is the
default.

-Dname=def, -Dname

Defines preprocessor symbol with the specified value, if given.
The -E, -P, and -nocpp options also affect the preprocessing phase.

Typical Compaq Pascal compilations first submit a Pascal source file to the
cpp C language preprocessor, which enables you to define symbols and specify
conditional compilation. The preprocessor does string substitutions and adds
or deletes source file lines.

Compiling and Linking Compaq Pascal Programs 2–11

In a typical use of the preprocessor, a header file defines (or fails to define) a
certain symbol. Many Pascal source files include this header file. By changing
a preprocessor declaration in this single header file, you can change many
different compilations. For example, an application might contain lines such as
these in many locations in many source files:

#ifdef debug
WRITELN(ErrorLogFile, ’Error occurred at ’, TimeOfDay, ErrorType);
#endif

If the preprocessor symbol debug is defined for compilation, then the WRITELN
commands are compiled.

The -D option defines a preprocessor symbol and allows you to set its value.
Using the command-line option may be easier than editing header files to
produce customized source files.

Do not type a space after -D, but follow it directly with the symbol to define.
Rememeber that, as in the C language, preprocessor symbols are case sensitive.
For example ABC and abc are different symbols.

If you then follow ABC or abc by an equal sign (=) and a value, the preprocessor
symbol is set to that value. If you do not specify a value in this way, the symbol
takes the value one (1). The value of a preprocessor symbol is sometimes
irrelevant; a source file that uses #ifdef tests only whether the symbol is
defined.

In the previous example, the WRITELN statement was conditional, based on
whether the preprocessor symbol debug was defined. To compile a module and
include such WRITELN statements, you can invoke pc by using one of these
equivalent forms:

% pc -Ddebug sourcefile.p

or,

% pc -Ddebug=1 sourcefile.p

You can accomplish much of the same functionality with the conditional
compilation syntax that is built into the compiler (with %IF), and the -
constant option.

For More Information:

• On cpp (Section 5.1)

-E
Preprocesses only; send result to standard output.

2–12 Compiling and Linking Compaq Pascal Programs

-enumeration_size keyword
Controls the allocation of unpacked enumerated data types and Boolean data
types, which are considered to be an enumerated type containing two elements
for allocation purposes.

Table 2–5 lists the available values for keyword.

Table 2–5 -enumeration_size Option Keywords

Value Action
Default
Information

byte Allocates unpacked enumerated data types with
up to 255 elements in a single byte. Otherwise,
enumerated data types are allocated in a 16-bit
word.

long Allocates all unpacked enumerated data types in
a 32-bit longword.

Default

-error_limit count
Stops compilation after count errors.

Terminates compilation after the occurrence of a specified number of error
messages, excluding warning-level and information-level errors. The default is
to stop the compilation after 30 errors.

-env file
Produces a file containing precompressed symbol table information for
subsequent Compaq Pascal with the inherit attribute.

Produces an environment file in which declarations and definitions made at the
outermost level of a compilation unit are saved.

The -env option on the command line overrides the ENVIRONMENT attribute
in the source program or module. By default, the attributes of the source
program or module determine whether an environment file is created; however,
if the -env option is specified at compile time, an environment file will always
be created.

-feedback file
Specifies the feedback file for the -cord option.

The prof command produces the feedback file with its -feedback option from
an execution of the program produced by pixie.

Compiling and Linking Compaq Pascal Programs 2–13

For More Information:

• On profiling (Section 4.5)

-Gnum
Specify maximum size of data for global pointer area.

For More Information:

• On global pointer area (Section 4.6)

-g[n]
Specifies the amount of symbol table information to be produced for debugging.

Source-level debugging relates the run-time operation of your program to the
source files. For this kind of debugging, your executable program must contain
information that relates the run-time actions to elements from the source file,
such as variable identifiers. The -g option on the pc command inserts this
information into the executable program to assist in source-level debugging.

glevel Action

-g0 The default. Do not produce symbol table information for symbolic
debugging.

-g1 Produce additional symbol table information for accurate, but
limited, symbolic debugging of partially optimized code.

-g or -g2 Produce additional symbol table information for full symbolic
debugging and disable optimizations that limit full symbolic
debugging. This option also sets the -o0 option to disable
optimization unless an explicit -o option is specified.

-g3 Produce additional symbol table information for full symbolic
debugging for fully optimized code. This option produces additional
debugging information describing the effects of optimizations, but
debugging inaccuracices may occur as a result of the optimizations
that have been performed.

If you do not use the -g option, you can still use any of the following dbx
commands:

• conti

• continue

• stepi

• stop in procedure

• tracei

2–14 Compiling and Linking Compaq Pascal Programs

• address/count mode

-granularity keyword
Directs the compiler to generate additional code to preserve the indicated
granularity. Granularity refers to the amount of storage that can be modified
when updating a variable. You can specify the following values for keyword:

Table 2–6 -granularity Option Keywords

Value Action
Default
Information

byte Generate additional code to provide byte
granularity for data access. This option can
impose a large run-time performance penalty.

long Generate additional code to provide longword
granularity for data accesses. This option only
imposes a slight run-time performance penalty.

quadword Generate code that assumes quadword
granularity. This option yields the best code
quality.

Default

To update a variable that is smaller than a longword, Compaq Pascal may
issue multiple instructions to fetch the surrounding longword or quadword,
update the memory inside to longword or quadword, and then write the
longword or quadword back into memory. If multiple processes are writing into
memory that is contained in the same longword or quadword, you might incur
inaccurate results, unless -granularity byte or some other synchronization
mechanism is used. For additional information, refer to the -arch option to
enable instructions to access byte and word data.

-I
Omit /usr/include from include file search path for #include directives.

A Pascal source file may include the text of other source files by using the
Compaq Pascal #include directive, which is processed by cpp, or the Compaq
Pascal %INCLUDE directive. The -I option also affects the Compaq Pascal
%INCLUDE directive and the [INHERIT] attribute.

If you use the #include directive, the cpp preprocessor copies the text of the
named file to the point where the directive appears. For more information
about the #include directive, see cpp(1). The directive can take two forms:

#include <filespec>

#include "filespec"

Compiling and Linking Compaq Pascal Programs 2–15

The preprocessor uses different search paths depending on whether you use
angle brackets or double quotes for delimiters. You can change these search
paths with the -I option on the pc command.

If the file name begins with a slash, the preprocessor looks for the file only in
the directory specified. The -I option does not affect such files.

-Idir
Adds a directory to include a search path for cpp #include directives, Pascal
%INCLUDE directives, and [INHERIT] attributes.

If the specified file is not found in the current directory, the compiler searches
as follows:

1. The current directory with a default extension of .pas for %INCLUDE
directives and .pen for [INHERIT] attributes

2. Any directories specified with -I (in the order specified) with the
appropriate default extension

3. /usr/include with the appropriate default extension

-inline keyword
Controls the algorithm that the optimizer chooses for inlining routines. The
default is to choose routines to inline that will maximize performance.

The choices for keyword are:

Table 2–7 -inline Option Keywords

Keyword Action

none No inlining is done

manual Only routines with the [OPTIMIZE(INLINE)] attribute are inlined

size Perform manual inlining and inline other calls that are likely to
improve performance without significantly increasing code size

speed Perform manual inlining and inline any other calls that are likely to
improve performance (default)

all Inline every call that can be inlined

-instruction_set nofloating_point
Controls whether the compiler can use any floating point instructions.

-K
Does not remove temporary files created during compilation and linking.

2–16 Compiling and Linking Compaq Pascal Programs

-L
Determines library search path.

To find libraries, the linker searches the following directories in the order listed
in Table 2–8.

Table 2–8 Library Search Path

Order Directory

1st /lib

2nd /usr/lib/cmplrs/pc

3rd /usr/lib

4th /usr/local/lib

-Lstring
Searches string libraries for ld. This option should be placed at the end of the
command line.

-M
Tells cpp to generate dependency lists for #include files for make.

-math_library keyword
Determines whether the compiler uses alternate math library routines that
boost performance, but sacrifice accuracy. You can specify the following values
for keyword:

• accurate (default)

• fast

-nocpp
Inhibits preprocessing by cpp.

Normally, the cpp preprocessor automatically applies to every source file
(Pascal, C, or assembler) that you specify in the pc command. You can disable
the preprocessor by specifying the -nocpp option on the pc command. This
speeds the compilation unless you use cpp commands such as #define and
#include, which are nonstandard features that would produce compilation
errors.

-non_shared
The -non_shared option specifies that the linker searches only .a files. The
object module created contains static references to external routines. The
references are loaded into the executable image to link time not at run

Compiling and Linking Compaq Pascal Programs 2–17

time. The following example requests that .a files be searched instead of
the corresponding .so files:

% pc -non_shared main.p rest.o

For More Information:

• On shared library processing, see -call-shared and -shared sections

-nowarn
Suppresses all warning messages.

-nozero_heap
Specifies that heap memory should not be zeroed after allocation. By default,
the Pascal RTL will return zero-filled memory for each call to the NEW builtin.
Using the -nozero_heap option can increase runtime performance.

-O[n]
Enables or disables optimizations and sets the optimization level.

At optimization level zero, the compiler may produce additional instructions
intended to result in code that is easier to debug and that provides more
predictable program behavior when run-time exceptions occur. Compilers
normally translate source statements to machine instructions, regardless of
the context. However, optimization produces smaller and faster programs by
merging nearby statements and using the results of previous statements.

The pc command can optimize at five levels, selectable through the -O option:

• -O0 disables all optimizations by the compiler. Specify -O0 when you want
to use the dbx interactive debugger.

• -O1 enables local optimizations and recognition of common subexpressions.
The call graph determines the order of compilation for procedures. This
level is the default when you compile without the -O option.

• -O2 enables all -O1 optimizations and additional global optimizations,
including code motion, strength reduction and test replacement, split
lifetime analysis, and code scheduling.

• -O3 enables all -O2 optimizations and performs global optimization across
the entire body of compiled code, including optimizations that improve
speed at the cost of extra code size, for example, integer multiplication and
division expansion (using shifts), loop unrolling, and code replication to
eliminate branches.

• -O or -O4 enables all -O3 optimizations and also enables inline expansion of
procedure and functions. -O4 is the default.

2–18 Compiling and Linking Compaq Pascal Programs

• -O5 enables software pipelining and additional software dependency
analysis, which in certain cases improves run-time performance.

Any optimization increases compilation time, so you may not want to specify
it during development. However, when the application is complete, specifying
optimization (despite the slower compilation) saves space and execution time
when you run the application.

Optimization never affects program operation yet it is not advisable for all
stages of program development.

Optimization reduces the file size and increases the execution speed of your
program. However, you should not specify it when using the dbx interactive
debugger. If you do, the resulting rearragement of coding will create incorrect
debugger output.

For More Information:

• On program optimization and efficiency (Chapter 4)

• On the dbx debugger (Chapter 5)

• On how Compaq Pascal optimizes programs (Chapter 5)

-o file-name
Names the output file as file-name.

pc produces an executable file called, by default, a.out. You can use the -o
option to specify a name for the output of the pc command. Follow -o with
a space and then the desired file name. You can specify a pathname to place
the output file someplace other than the current working directory. By default,
Compaq Pascal searches for input files from, and writes any output files to, the
current working directory.

You can use the options to request an intermediate Pascal object file or an
output module. The object files take the same name as the respective input
file, but the suffix of the input source file is replaced with .o. The -o option
sets the output file name for the files generated by the -c and the -o options.

-om
Performs code optimization after linking, including nop (No Operation)
removal, .lita removal, and reallocation of common symbols. This option
also positions the global pointer register so the maximum addresses fall in
the global pointer-accessible window. The -om option is supported only for
programs compiled with the -non_shared option.

Compiling and Linking Compaq Pascal Programs 2–19

The following options can be passed directly to -om by using the -WL compiler
option:

• -WL,-om_compress_lita

Removes unused .lita entries after optimization, and then compresses the
.lita section.

• -WL,-om_dead_code

Removes dead code (unreachable instructions) generated after applying
optimizations. The .lita section is not compressed by this option.

• -WL,-om_no_inst_sched

Turns off instruction scheduling.

• -WL,-om_no_align_labels

Turns off alignment of labels. Normally, the -om option will quadword align
the targets of all branches to improve loop performance.

• -WL,-om_Gcommon,num

Sets size threshold of "common" symbols. Every "common" symbol whose
size is less than or equal to num will be allocated close to each other.
This option can be used to improve the probability that the symbol can be
accessed directory from the global pointer register. Normally, the om tries
to collect all "common" symbols together.

-P
Preprocesses only; put the result in a .i file.

When debugging a Pascal program, you sometimes need to see the preprocessor
output. For example, with conditional compilation, you may want to see which
lines of code the preprocessor passed through to the compiler. The -E option
runs the preprocessor on the specified source files, sends the output to the
standard output, and exits without compiling anything.

The -P option also performs the preprocessing phase only, but writes the output
to a file instead of to standard output. The name of the output file is the name
of the source file with the suffix replaced by .i.

You can also invoke the preprocessing phase directly with the cpp command,
but you must explicity define the symbol LANGUAGE_PASCAL (done
automatically by the pc command). For example, the following commands
are equivalent:

% pc -E module4.p > module4.i
% pc -P module4.p
% cpp -DLANGUAGE_PASCAL module4.p > module4.i

2–20 Compiling and Linking Compaq Pascal Programs

-p [n]
Disables or sets the levels of program-counter sampling for profiling.

For More Information:

• On program counter sampling (Section 4.5.1)

-platforms keyword
Displays informational messages about non-portable language features for the
specified platform. Table 2–9 lists the supported platforms.

Table 2–9 -platforms Option Keywords

Keyword Action

common Displays informational messages for all platforms.

OpenVMS_AXP Displays informational messages for the OpenVMS Alpha
platform.

OpenVMS_VAX Displays informational messages for the OpenVMS VAX
platform.

OSF1_AXP Displays informational messages for the Tru64 UNIX
platform.

-pg
Sets up profiling for gprof(1).

For More Information:

• On profiling (Section 4.5)

-shared
Creates position independent code (PIC) in the object module for inclusion in
a shared library. If you specify the -c option to inhibit linking, pc creates a
shareable object module .o file that can subsequently be processed by ld to
create a shared library. If you omit the -c option, pc creates a shared library
.so file. In either case, use the -o option to name the resulting object file or
shared library with the correct file name and suffix.

External references found in an archive library result in that routine being
included in the resulting executable program file at link time.

External references found in a shared object library result in a special link to
that library being included in the resulting executable program file, and not
the actual routine itself. When you run the program, this link gets resolved by
either using the shared library in memory (if it already exists) or by loading it
into memory from disk.

Compiling and Linking Compaq Pascal Programs 2–21

For More Information:

• About creating a shared library using either the pc command or the ld
command (Section 2.4)

• On maintaining shared libraries, see your operating system documentation

• On shared library processing, see -call_shared and -non_shared sections

-show keyword
Specifies an item to be included in the listing file. A single identifier is
expected.

Table 2–10 lists the available keywords, their corresponding actions, and their
negations.

Table 2–10 -show Option Keywords

Keyword Action Negation

all Enables listing of all options none

header Enables page headers noheader

include Enables listing of %INCLUDE
files

noinclude

machine_code Enables listing of machine code nomachine_code

source Enables listing of your program
source code

nosource

statistics Enables listing of compilation
statistics

nonstatistics

structure_layout Enables listing of the sizes,
record, field offsets, and
comments about non-optimal
performance for variables and
types in your program

nostructure_layout

xref Enables listing of cross reference noxref

The compiler ignores the -show option if you do not also specify the -V option
on the same command line.

If the -show is not specified on the command line the listing will contain source,
statistics and include file listings.

-std keyword
Issues warnings for violations of rules of the named standard.

2–22 Compiling and Linking Compaq Pascal Programs

Compaq Pascal extends standard Pascal in many areas. For example, Compaq
Pascal provices schema types, separate compilation, and typesetting. The
Compaq Pascal Language Reference Manual lists and describes Compaq Pascal
extensions to standard Pascal.

The -std option makes the compiler print an informational message whenever
you use a feature that is not in standard Pascal. Programs written for
compatibility with ANSI-standard Pascal compilers should be compiled with
-std. You can then correct the causes of any resulting informational messages.
By confining nonstandard features to a single machine-specific source file, you
simplify the job of adapting your program for other Pascal compilers.

Table 2–11 lists the possible values for -std option.

Table 2–11 -std Option Keywords

Keyword Action

ansi ANSI/IEEE703X3.97-1989

ansi_validate Issue error level messages instead of default informational
level messages.

iso ISO 7185-1989

iso_validate Issue error level messages instead of default informational
level messages.

extended ISO 10206-1989

extended_validate Issue error level messages instead of default informational
level messages.

-synchronous_exceptions
Specifies that the compiler should generate code to insure that exceptions are
reported as near as possible to the instruction that generated the exception.
This can avoid confusion in tracing the source of an exception, however, there
is a performance penalty for using this option.

-tune keyword
Selects processor-specific instruction tuning for a specific implementation of
the Alpha architecture. Tuning for a specific implementation can provide
improvements in run-time performance.

It is important to note that regardless of the setting of the -tune flag,
the generated code will run correctly on all implementations of the Alpha
architecture, but performance may differ. For example, code that is optimally
tuned for a specific target may run more slowly on another target (slower than

Compiling and Linking Compaq Pascal Programs 2–23

generically-tuned code that is run on that target). Values for the processor type
keyword are shown in Table 2–12.

Table 2–12 -tune Option Keywords

Keyword Action

generic Selects instruction tuning that is appropriate for all
implementations of the Alpha architecture. This option
is the default.

host Selects instruction tuning that is appropriate for the
machine on which the code is being compiled.

ev4 Selects instruction tuning for the 21064, 21064A, 21066,
and 21068 implementations of the Alpha architecture.

ev5, ev56 Selects instruction tuning for the 21164 implementation of
the Alpha architecture.

ev6 Selects instruction tuning for the 21264 implementation of
the Alpha architecture.

-unroll n
Controls number of times loops are unrolled. The default is 4. -unroll 0
disables loop unrolling. Loop unrolling is only enabled above optimzation level
3.

See Section 2.1.1 for examples of using -unroll.

-usage keyword
Allows you to request information messages about unused or uninitialized
variables, components of structures that result in unaligned accesses,
incompatible alignment, and unsupported features on other platforms.

Table 2–13 lists available keywords for the -usage option.

Table 2–13 -usage Option Keywords

Keyword Action Negation

all Enables the display of all usage
information.

noall

empty_records Detects usage of empty records that may
not yield expected results.

noempty_records

(continued on next page)

2–24 Compiling and Linking Compaq Pascal Programs

Table 2–13 (Cont.) -usage Option Keywords

Keyword Action Negation

nongrnacc Specifies whether the compiler should
issue warning messages for code
sequences when it cannot guarantee
to match your granularity request from
the -granularity option.

When the compiler cannot guarantee
that the generated code matches the
granularity setting, it will issue a
warning message. You should examine
your program to make sure that the
variable being accessed is quadword-
aligned and is a multiple of quadwords
in size. In that case, the resulting code
will be correct even if the compiler could
not determine that at compile time. Such
cases involve pointer dereferences or
VAR parameters.

These messages are enabled by default
by the compiler.

nonongrnacc

packed_actuals Detects passing of fields of packed
records or arrays to VAR parameters.

nopacked_actuals

performance Detects variables, array components, and
record fields that will generate less than
optimal performance due to alignment or
size considerations.

noperformance

uncallable Specifies whether the compiler should
issue informational messages for routines
that are declared but never called.

These messages are disabled by default.

uncertain Issues informational messages for
components of structures that result in
unaligned data accesses. Such accesses
may cause poor run-time performance.

nouncertain

uninitialized Detects variables that are uninitialized. nouninitialized

unused Detects variables that are unused. nounused

volatile Detects accesses to volatile data that
cannot be protected as atomic operations.

novolatile

-V
Produces a source listing file with a file type of .l. See the -show option for
more information on controlling the contents of the source listing file.

Compiling and Linking Compaq Pascal Programs 2–25

-v
Print the passes of the driver program during compilation and final resource
usage.

The -v option displays the command for each pc phase. It also displays a
resource usage message for each phase for calling time.

You might use the -v option when pc fails to produce expected output files.
The messages from -v verify whether you correctly specified the compilation
phases and object libraries.

2.3 Linking
The pc command automatically calls the ld linker unless you specify a partial
operation, for example, with the -c option. The linker combines object modules
to produce an executable program. The modules include:

• Object modules previously produced during the operation of pc

• Object modules in .o files that you name on the pc command line

• The Pascal run-time library

• Object modules from specified libraries

A pc command that has only object files as parameters does only a link. For
example, such a command might appear in a make file that specifies a build
procedure. This file separates the compile operations from the link so that
make omits operations on unedited source files.

You should use the pc command instead of ld to link Compaq Pascal object
files. The pc command automatically selects the correct run-time libraries and
version of ld. However, if you need to specify options to ld, you must invoke ld
directly. For more information, see ld(1) reference page.

2.3.1 Run-Time Libraries
The Compaq Pascal run-time library is libpas.a. The linker refers to this
library whenever you invoke it through the pc command. If you are compiling
(with the cc command) a C language file and wish to link with Pascal object
files, the linker must use the Pascal run-time library. To specify this, use the
-lpas option with the cc command.

To specify other libraries, use the -l option when you invoke the linker. For
example, if your Compaq Pascal program calls routines from the library
libc.a, specify:

% pc -lc ...

2–26 Compiling and Linking Compaq Pascal Programs

The administrator or installer determines the actual locations of run-time
libraries.

The -L option to the linker, when followed by a directory name, adds that
directory to the search path for run-time libraries. You must not type any
separators between -L and the directory name, but you can use this option
several times. The linker searches the directories in the order specified on
the command line before it searches the standard directories listed previously.
The search path definition must precede the specification of libraries on the
command line (using the -L option.)

2.3.2 Specifying Shared Object Libraries
When you link your program with a shared library, all symbols must be
referenced before ld searches the shared library. You must specify libraries at
the end of the pc command line after all file names. On Tru64 UNIX systems,
unless you specify the -non_shared option, shared libraries will be searched
before the corresponding archive libraries.

For example, the following command generates an error if the file rest.o
references routines in the library libX:

% pc -call_shared test.p -lX rest.o

The correct order is shown in this example:

% pc -call_shared test.p rest.o -lX

Link errors can occur with doubly defined symbols, for example, when both an
archive and shared object are specified on the same command line. In general,
specify archive libraries after the last file name, and specify shared libraries at
the end of the command line.

Before you reference a shared library at run time, it must be installed.

2.4 Creating Shared Libraries
To create a shared library from a Pascal source file, process the files using the
pc command and the following options:

• You must specify the -shared option to generate position-independent code.

• You must specify the -o option to name the output file.

• If you omit the -c option, you will create a shared library (.so file)
directly from the pc command line in a single step. You must specify
certain additional options required for shared libraries, including -o to
ensure the output file has a .so file name suffix, and possibly other options
associated witih shared library creation.

Compiling and Linking Compaq Pascal Programs 2–27

• If you specify the -c option, you will create an object module (.o file)
that you can name using the -o option. To create a shared library, process
the .o file using ld, specifying certain options associated with shared
library creation.

You can specify multiple source and object files when creating a shared library
with the pc command.

2.4.1 Creating a Shared Library Using the pc Command
You can create a shared libary (.so) file using a single pc command. For
example:

% pc -shared -o octagon.so octagon.p

A description of each pc option follows:

• The -shared option creates a shared library. It generates postiion-
independent code and recognizes certain options that are specified to
ld if you omit the -c option.

• The -o option names the shared library octagon.so (instead of a.out).

• The name of the source module is octagon.p. You can specify multiple
source files.

2.4.2 Creating a Shared Library Using pc and ld Command
You first must create a .o file that contains position-independent code, such
as octagon.o in the following example:

% pc -shared -O3 -c -o octagon.o octagon.p

The file octagon.o is then used as input to the ld command to create the
shared library, named octagon.so, with a package named subs:

% ld -shared -no_archive -lFutil -o octagon.so \
octagon.o -lpas -lots -lm -lc

A description of each ld option follows:

• The -shared option creates a shared library.

• The -no_archive option indicates that ld should not search archive
libraries to resolve external names (only shared libraries).

• The -o option names the shared library octagon.so (instead of a.out).

• The name of the object module is octagon.o. You can specify multiple .o
files.

2–28 Compiling and Linking Compaq Pascal Programs

• The -lpas and subsequent options are the standard list of libraries that
the pc command would have otherwise passed to ld. When creating shared
libraries, note that all symbols must be resolved when you use the ld
command to create that shared library. For more information about the
standard list of libraries used by Compaq Pascal, see Table 2–8.

Certain other ld command options may be useful. For example, to optimize
shared library startup, use the -update_registry and -check_registry
options, which preassign a starting address in virtual memory to a shared
library using the file /usr/shlib/so_locations. For additional information on
the relevant ld options, see your operating system documentation or the ld(1)
reference page.

2.4.3 Choosing How to Create a Shared Library
Consider the following when deciding whether to create a shared library with
a single pc command (-c ommited) or with both the pc (-c present) and ld
commands:

• Certain ld options may not be available from the pc command line. If
you need to use those options, use the two-command method (specify pc
-c and subsequently use ld). Such options include -check_registry and
-update_registry, which preassign a starting address in virtual memory
to a shared library using the file /usr/shlib/so_locations.

• If you use a single pc command with -shared and omit -c, you do not need
to specify the standard list of pc libraries using the -lstring option.

For additional information on ld options, see your operating system
documentation of the ld(1) reference page.

For More Information:

• On the standard list of libraries used by Compaq Pascal (Table 2–8)

2.5 Temporary Files
Temporary files created by the compiler or a preprocessor reside in the current
directory and are usually deleted, unless the -K option was specified. You
can set the environment variable TMPDIR to specify a directory to contain
temporary files if your local directory is not acceptable. For performance
reasons, use a local disk (rather than using a NFS mounted disk) to contain
the temporary files.

To view the file name and directory where each temporary file is created, use
the -v option.

Compiling and Linking Compaq Pascal Programs 2–29

If your program creates scratch files during program execution, you can set
the TMPDIR environment variable to specify which directory will contain the
scratch (temporary) files.

2.6 Using Multiple Input Files: Effect on Output Files
When you specify multiple source files, the following options control the
production of output files:

• The -c option prevents linking. This preserves the temporary object files,
which the linker usually deletes.

• The -K option keeps temporary files.

A description of the interaction of these options follows:

• If you omit both the -c and the -K options (default), the specified Pascal
file are each compiled into separate object files and then linked together.
The object files are then deleted.

• If you specify the -c option or if you specify the -K option, each source file
is compiled into an object file, creating one object file for each input source
file specified.

• If you specify the -c option, you must link the object file(s) later by using
a separate pc command, perhaps by means of a makefile processed by the
make command, such as for incremental compilation of a large application.

2.7 Interactions of File Name Suffix and Options
You can select from a variety of processing options and specify files other than
Compaq Pascal source files. The combination of the processing options and the
suffix of each file determines how the pc command handles the processing.

For example, you may want to call a utility routine written in C from a
Compaq Pascal program. The Compaq Pascal program is contained in a file
named myprog.pas. The C routine named utilityx is contained in a file named
utilityx.c. Consider the following pc command:

% pc -o myprog myprog.pas utilityx.c

This command does the following:

1. Compiles myprog.pas with the Compaq Pascal compiler

2. Compiles utilityx.c with the C compiler

3. Links both object files together into the executable program named myprog

2–30 Compiling and Linking Compaq Pascal Programs

To insert the compiled programs into an object library instead of linking them
directly into an executable program, use the -c option to keep the object (.o)
file or files.

Figure 2–1 shows how the pc command processes the various types of file
suffixes that it recognizes (assuming that a specified option does not negate
some part of the processing).

Figure 2–1 pc Command Processing by File Suffix

ZK−7918A−GE

x.p, x.pas, x.PAS
x.c
x.o, x.a, x.so

[cpp] [cc]
[decpascal] x.o

x.o
[ld]
[ld]
[ld]

a.out
a.out
a.out

®

® ®

® ®

®

®

®

®

®
® ®

[cpp] ® x.i
® x.i

2.8 Using Listing Files
If you expect your program to have compilation errors, you should request a
separate listing file (-V option).

For example, the following command compiles a Compaq Pascal source files
and ld creates an executable file named a.out:

% pc -V aaa.p

The listing file assumes the name of the file. If the file was named aaa.p, the
listing file is named aaa.l.

Using a listing file provides such information as the column pointer (1) that
indicates the exact part of the line that caused the error. Especially for large
files, consider obtaining a printed copy of the listing file you can reference
while editing the source file.

Compiling and Linking Compaq Pascal Programs 2–31

3
Separate Compilation

Pascal allows you to divide your application into subprograms by creating
procedures and functions. Compaq Pascal allows you further modularity by
allowing you to create compilation units, called programs and modules, that
can be compiled separately. This chapter discusses the following topics about
separate compilation:

• Sharing data with the ENVIRONMENT and INHERIT attributes
(Section 3.1)

• Isolating data with the HIDDEN attribute (Section 3.1)

• Interfaces and implementations (Section 3.2)

• Data models (Section 3.3)

• Examples (Section 3.4)

For More Information:

• On the ENVIRONMENT, HIDDEN, and INHERIT attributes
(Compaq Pascal Language Reference Manual)

• On compiling and executing programs and modules (Chapter 2)

Separate Compilation 3–1

3.1 The ENVIRONMENT, HIDDEN, and INHERIT Attributes
To divide your program into a program and a series of modules, you need to
decide, according to the needs of your application, which data types, constants,
variables, and routines need to be shared either by other modules or by the
program.

To share data, create an environment file by using the ENVIRONMENT
attribute in a module. Consider the following example:

{
Source File: share_data.pas
This program initializes data to be shared with another compilation
unit.
}
[ENVIRONMENT(’share_data’)]
Module Share_Data;
CONST

Rate_For_Q1 = 0.1211;
Rate_For_Q2 = 0.1156;
Rate_For_Q3 = 0.1097;
Rate_For_Q4 = 0.11243;

TYPE
Initialized_Type = ARRAY[1..10] OF INTEGER VALUE

[1..5: 67; 6,9: 105; OTHERWISE 33];
END.

If you do not specify a file name with the [ENVIRONMENT] attribute, the
file name of the source file is used with a ".pen" extension for the name of the
environment file. For example,

{
Module share_data.pas

}
[ENVIRONMENT]
Module Share_Data;
CONST

Rate_For_Q1 = 0.1211;
Rate_For_Q2 = 0.1156;

END.

The preceding module, when compiled, creates an environment file named
"share_data.pen".

If a file name is specified with the [ENVIRONMENT] attribute, that file name
is used (unchanged) in creating the environment file.

3–2 Separate Compilation

The [INHERIT] attribute causes the compiler to attempt to open a file with the
exact file name that is specified. If this fails, an extension of .pen will be added
to the file name and the compiler will try to open the file again. For example,

{
Program inherit_example.pas

}
[INHERIT (’share_data’)]

Program inherit_example(output);
CONST

My_Rate = Rate_For_Q1*2.0;
BEGIN

Writeln(My_Rate)
END.

When the preceding program is compiled, the compiler attempts to open the
file share_data as an environment file. If share_data is not found, the compiler
attempts to open share_data.pen as an environment file. If share_data.pen is
not found, an error message is issued and the compilation is stopped.

To build and run the application made up of the code in the previous examples,
use the following commands:

% pc -c share_data.pas
% pc -c program.pas
% pc share_data.o program.o -o program
% program
33

If a module contains variable declarations, routine declarations, schema
types, or module initialization or finalization sections, you must link the
program with the module that created the environment file to resolve external
references. To prevent errors, you may wish to link programs with modules of
inherited environment files as standard programming practice. For example, if
SHARE_DATA contained a variable declaration, you must enter the following
to resolve the external reference:

% pc share_data.pas program.pas -o program
% program

33

For many applications, it is a good idea to place all globally accessible data
into one module, create a single environment file, and inherit that module in
other compilation units that need to make use of that data. Using environment
files in this way reduces the difficulties in maintaining the data (it is easier to
maintain one file) and it eliminates problems that can occur when you cascade
environment files. If compilation unit A inherits an environment file from
compilation unit B, and if unit B inherits a file from unit C, then inheritance is

Separate Compilation 3–3

cascading. Figure 3–1 shows a cascading inheritance path and a noncascading
inheritance path.

Figure 3–1 Cascading Inheritance of Environment Files

ZK−1469A−GE

Problematic: Efficient:

Key:

Inherited by

C.U.1

C.U.4

C.U.2 C.U.3

C.U.1 C.U.3

C.U.4

C.U.2

Cascading is not always undesirable; it depends on your application and on the
nature of the environment files. For example, if cascading occurs for a series
of constant and type definitions that are not likely to change, cascading may
require very little recompiling and relinking. However, if the constant and type
definitions change often or if environment files contain routines and variables,
you may find it easier to redesign the inheritance paths of environment files
due to the recompiling and relinking involved.

Also, the inheritance path labeled Efficient in Figure 3–1 is not immune to
misuse. That inheritance path, although it avoids the problems of cascading,
may still involve multiply declared identifiers (identical identifiers contained
in several of the compilation units whose environment files are inherited by
compilation unit 4).

In many instances, Compaq Pascal does not allow multiply declared identifiers
in one application. For example, a compilation unit cannot inherit two
environment files that declare the same identifier; also, a compilation unit
usually cannot inherit an environment file that contains an identifier that is
identical to an identifier in the outermost level of the unit (one exception, for
example, is the redeclaration of a redefinable reserved word or of an identifier
predeclared by Compaq Pascal). Also, Compaq Pascal allows the following
exceptions to the rules concerning multiply declared identifiers:

• A variable identifier can be multiply declared if all declarations of the
variable have the same type and attributes, and if all but one declaration
at most are external.

3–4 Separate Compilation

• A procedure identifier can be multiply declared if all declarations of the
procedure have congruent parameter lists and if all but one declaration at
most are external.

• A function identifier can be multiply declared if all declarations of the
function have congruent parameter lists and identical result types, and if
all but one declaration at most are external.

If a compilation unit creates an environment file and if it contains data
that you do not want to share with other compilation units, you can use the
HIDDEN attribute. Consider the following example:

[ENVIRONMENT]
MODULE Example;
TYPE

Array_Template(Upper : INTEGER) =
[HIDDEN] ARRAY[1..Upper] OF INTEGER;

Global_Type : Array_Template(10);
VAR

i : [HIDDEN] INTEGER; {Used for local incrementing}

PROCEDURE x;
BEGIN

i := i + 1;
END;

PROCEDURE y;
BEGIN

FOR i := i + 1;
END;

END.

The code in the previous example hides the schema type, preventing the
schema type from being used in inheriting modules. (Whether to hide the type
depends on the requirements of a given application.) Also, Compaq Pascal
does not include the variable i in the environment file; this allows inheriting
modules to declare the identifier variable i as an incrementing variable without
being concerned about generating errors for a multiply defined identifier.

3.1.1 Environment File Dependency Checking
Compaq Pascal performs compile-time checks to ensure that all compilations
that inherit environment files actually used the same environment file
definition.

Separate Compilation 3–5

3.2 Interfaces and Implementations
If your application requires, you can use a method of creating and inheriting
environment files that minimizes the number of times you have to recompile
compilation units. This method involves the division of module declarations
into two separate modules: an interface module and an implementation
module. The interface module contains data that is not likely to change:
constant definitions, variable declarations, and external routine declarations.
The implementation module contains data that may change: bodies of
the routines declared in the interface module, and private types, variables,
routines, and so forth.

The interface module creates the environment file that is inherited by both the
implementation module and by the program. Figure 3–2 shows the inheritance
process.

Figure 3–2 Inheritance Path of an Interface, an Implementation, and a
Program

Interface
Module

Program Implementation
Module

ZK−1491A−GE

means "is inherited by"

3–6 Separate Compilation

Consider this code fragment from the interface module in Example 3–1 (see
Section 3.4):

[ENVIRONMENT(’interface’)]
MODULE Graphics_Interface(OUTPUT);

{Globally accessible type}

{Provide routines that manipulate the shapes:}
PROCEDURE Draw(s : Shape); EXTERNAL;
PROCEDURE Rotate(s : Shape); EXTERNAL;
PROCEDURE Scale(s : Shape); EXTERNAL;
PROCEDURE Delete(s : Shape); EXTERNAL;

{Module initialization section}

END.

The code contained in the interface is not likely to change often. The
implementation code can change without requiring recompilation of the
other modules in the application. Consider this code fragment from the
implementation module in Example 3–2 (see Section 3.4):

[INHERIT(’interface’)] {Predeclared graphics types and routines}
MODULE Graphics_Implementation(OUTPUT);

[GLOBAL] PROCEDURE Rotate(s : Shape);
BEGIN
WRITELN(’Rotating the shape :’, s.t);
END;

To compile, link, and run the code in Examples 3–1, 3–2, and 3–3 (the main
program), use the following commands:

% pc -c graphics_interface.pas
% pc -c graphics_implementation.pas
% pc -c graphics_main_program.pas
% pc graphics_interface.o graphics_implementation.o \
graphics_main_program.o -o graphics_main_program
% graphics_main_program

If you need to change the code contained in any of the routine bodies declared
in the implementation module, you do not have to recompile the program
to reflect the changes. For example, if you have to edit the implementation
module, you can regenerate the application with the following commands:

% vi graphics_implementation.pas
% pc -c graphics_implementation.pas
% pc graphics_interface.o graphics_implementation.o \
graphics_main_program.o -o graphics_main_program
% graphics_main_program

Separate Compilation 3–7

In this manner, interfaces and implementations can save you maintenance
time and effort. In addition, the interface and implementation design allows
you to better predict when cascading inheritance may provide maintenance
problems. Figure 3–3 shows two forms of cascading.

Figure 3–3 Cascading Using the Interface and Implementation Design

ZK−1492A−GE

Interface
and

Implementation

Interface
and

Implementation

Interface
and

Implementation

Interface

Interface

Interface

A B

If the compilation units creating environment files are designed to contain both
interface and implementation declarations, the cascading in column A may lead
to more recompiling, more relinking, and more multiply declared identifiers.
The design shown in column B does not always provide easy maintenance,
but it is more likely to do so. For example, if each interface provided a
different kind of constant or type (as determined by your application) and if the
constants and types are not derived from one another, the inheritance path in
column B may be quite efficient and orderly, and may require little recompiling
and relinking.

3–8 Separate Compilation

Do not place the following in an implementation module:

• Nonstatic types and variables at the module level

• A module initialization section (TO BEGIN DO)

• A module finalization section (TO END DO)

These restrictions are necessary because Compaq Pascal cannot determine the
order of activation of initialization and finalization sections that do not directly
follow an environment-file inheritance path. Since implementation modules do
not create environment files, the initialization and finalization sections in those
modules are effectively outside of any inheritance path. Also, if you use the
previously listed objects in implementation modules, there may be attempts to
access data that has not yet been declared. Consider the following example:

{In one file:}
[ENVIRONMENT(’interface’)]
MODULE Interface;
PROCEDURE x; EXTERNAL;
END.

{In another file:}
[INHERIT(’interface’)]
MODULE Implementation(OUTPUT);
VAR

My_String : STRING(10);

[GLOBAL] PROCEDURE x;
BEGIN
WRITELN(My_String);
END;

TO BEGIN DO
My_String := ’Okay’;

END.

In the previous example, it is possible for you to call procedure x
(in some other module that also inherits interface) before the creation
and initialization of the variable My_String. You can circumvent this problem
by using a routine call to initialize the variable and by moving the code to the
interface module, as shown in the next example:

{In one file:}
[ENVIRONMENT(’interface’)]
MODULE Interface;
VAR

My_String : STRING(10);

PROCEDURE x; EXTERNAL;
PROCEDURE Initialize; EXTERNAL;

Separate Compilation 3–9

TO BEGIN DO
Initialize;

END.

{In another file:}
[INHERIT(’interface’)]
MODULE Implementation(OUTPUT);

[GLOBAL] PROCEDURE x;
BEGIN
WRITELN(My_String);
END;

[GLOBAL] PROCEDURE Initialize;
BEGIN
My_String := ’Okay’;
END;

END.

3.3 Data Models
Using separate compilation and a few other features of Compaq Pascal
(including initial states, constructors, the HIDDEN attribute, and TO BEGIN
DO and TO END DO sections), you can construct models for creating,
distributing, isolating, and restricting data in an application.

Of course, the design of the data model depends on the needs of a particular
application. However, to show some of the power of Compaq Pascal features
used in conjunction, Examples 3–1, 3–2, and 3–3 in Section 3.4 create a generic
graphics application. Consider the following code fragment from Example 3–1:

TYPE
Shape_Types = (Rectangle, Circle); {Types of graphics objects}

Shape(t : Shape_Types) = RECORD
{Starting coordinate points}

Coordinate_X, Coordinate_Y : REAL VALUE 50.0;
CASE t OF {Shape-specific values}

Rectangle : (Height, Width : REAL VALUE 10.0);
Circle : (Radius : REAL VALUE 5.0);

END;

{Provide routines that manipulate the shapes:}
PROCEDURE Draw(s : Shape); EXTERNAL;
PROCEDURE Rotate(s : Shape); EXTERNAL;
PROCEDURE Scale(s : Shape); EXTERNAL;
PROCEDURE Delete(s : Shape); EXTERNAL;

3–10 Separate Compilation

The interface module provides an interface to the rest of the application.
This module contains types and external procedure declarations that the data
model chooses to make available to other compilation units in the application;
other units can access these types and routines by inheriting the generated
environment file.

The type Shape_Types defines two legal graphical objects for this application:
a circle and a rectangle. The type Shape can be used by other units to create
circles and rectangles of specified dimensions. This code uses a variant record
to specify the different kinds of data needed for a circle (a radius value) and a
rectangle (height and width values).

Since the type has initial-state values, any variable declared to be of this type
receives these values upon declaration. Providing initial states for types that
are included in environment files can prevent errors when other compilation
units try to access uninitialized data.

The initial states in this code are specified for the individual record values. You
can also provide an initial state for this type using a constructor, as follows:

Shape(t : Shape_Types) = RECORD
Coordinate_X, Coordinate_Y : REAL;
CASE t OF

Square : (Height, Width : REAL);
Circle : (Radius : REAL);

END VALUE [Coordinate_X : 50.0; Coordinate_Y : 50.0;
CASE Circle OF [Radius : 5.0]];

If you use constructors for variant records, you can only specify an initial state
for one of the variant values. If you need to specify initial states for all variant
values, you must specify the initial states on the individual variants, as shown
in Example 3–1.

The interface module also declares routines that can draw, rotate, scale, and
delete an object of type Shape. The bodies of these routines are located in the
implementation module. The interface module also contains a TO BEGIN DO
section, as shown in the following code fragment:

[HIDDEN] PROCEDURE Draw_Logo; EXTERNAL;

{
Before program execution, display a logo to which the main
program has no access.
}
TO BEGIN DO

Draw_Logo;

Separate Compilation 3–11

As with the other routines, the body of Draw_Logo is located in the
implementation module. The HIDDEN attribute prevents compilation
units that inherit the interface environment file from calling the Draw_Logo
routine. This ensures that the application only calls Draw_Logo once at the
beginning of the application.

Using this design, the interface module can provide graphical data and
tools to be used by other compilation units without the other units having
to worry about implementation details. The actual details are contained in
one implementation module. For example, the routine bodies are contained
in the implementation module. Consider the following code fragment from
Example 3–2:

{Declare routine bodies for declarations in the interface}
[GLOBAL] PROCEDURE Draw(s : Shape);

BEGIN
CASE s.t OF

Circle : WRITELN(’Code that draws a circle’);
Rectangle : WRITELN(’Code that draws a rectangle’);
END;

END; {Procedure Draw}

The routine bodies of the external routines declared in the interface module
are located in the implementation module. The code in each of the routines
uses the actual discriminant of parameter s to determine if the shape is a circle
or a rectangle and draws the shape. If this code needs to change, it does not
require that you recompile the code in Examples 3–1 or 3–3 in Section 3.4.

Example 3–2 also contains code that is isolated and hidden from other
compilation units that inherit the interface environment file. Consider the
following code fragment from the interface module:

[GLOBAL] PROCEDURE Draw_Logo;
VAR

Initial_Shape : Shape(Circle) {Declare object}
VALUE [Coordinate_X : 50.0;

Coordinate_Y : 50.0;
CASE Circle OF
[Radius : 15.75;]];

BEGIN
WRITELN(’Drawing a company logo’);
Draw(Initial_Shape);
{Code pauses for 30 seconds as the user looks at the logo.}
Delete(Initial_Shape);
WRITELN;
{Ready for the rest of the graphics program to begin.}
END;

3–12 Separate Compilation

In the graphical data model, you may wish to define a company logo, and you
may wish to display that logo on the screen before any other graphical data
is drawn or displayed. This code declares the variable Initial_Shape. Since
this variable is declared locally to Draw_Logo and since Draw_Logo is contained
in a module that does not produce an environment file, other modules that
may have access to the interface environment file do not have access to this
variable. In this application, you may not wish to give other compilation units
the power to alter the company logo.

The code in the interface’s TO BEGIN DO section, which executes before any
program code, displays the company logo and deletes it to begin the application.
Consider again the compilation process for interfaces, implementations, and
programs:

% pc -c graphics_interface.pas
% pc -c graphics_implementation.pas
% pc -c graphics_main_program.pas
% pc graphics_interface.o graphics_implementation.o \
graphics_main_program.o -o graphics_main program
% graphics_main_program

Compaq Pascal executes the TO BEGIN DO section according to the
inheritance order of environment files. Remember that Compaq Pascal
cannot determine the order of execution for TO BEGIN DO sections contained
in implementation modules, so do not use them there.

Using this design, you can allow different sites that run the graphics
application to access global data through the interface module. One location
can maintain and control the contents of the implementation module, shipping
the implementation’s object module for use at other sites. You can use this
method for other types of sensitive data or data that needs to be maintained
locally.

3.4 Separate Compilation Examples
Example 3–1 shows an interface module that creates the environment file
interface. This environment file is inherited in Examples 3–2 and
in 3–3.

Separate Compilation 3–13

Example 3–1 An Interface Module for Graphics Objects and Routines

{
Source File: graphics_interface.pas
This module creates an interface to graphical data and routines.
}
[ENVIRONMENT(’interface’)]
MODULE Graphics_Interface;
TYPE

Shape_Types = (Rectangle, Circle); {Types of graphics objects}

Shape(t : Shape_Types) = RECORD
{Starting coordinate points:}

Coordinate_X, Coordinate_Y : REAL VALUE 50.0;
CASE t OF {Shape-specific values}

Rectangle : (Height, Width : REAL VALUE 10.0);
Circle : (Radius : REAL VALUE 5.0);

END;

{Provide routines that manipulate the shapes:}
PROCEDURE Draw(s : Shape); EXTERNAL;
PROCEDURE Rotate(s : Shape); EXTERNAL;
PROCEDURE Scale(s : Shape); EXTERNAL;
PROCEDURE Delete(s : Shape); EXTERNAL;
[HIDDEN] PROCEDURE Draw_Logo; EXTERNAL;

{
Before program execution, display a logo to which the main
program has no access.
}
TO BEGIN DO

Draw_Logo;
END.

Example 3–2 shows the implementation of the routines declared in
Example 3–1.

Example 3–2 An Implementation Module for Graphics Objects and Routines

{
Source File: graphics_implementation.pas
This module implements the graphics routines and data declarations
made global by the interface module.
}
[INHERIT(’interface’)] {Predeclared graphics types and routines}
MODULE Graphics_Implementation(OUTPUT);

(continued on next page)

3–14 Separate Compilation

Example 3–2 (Cont.) An Implementation Module for Graphics Objects and
Routines

{Declare routine bodies for declarations in the interface:}
[GLOBAL] PROCEDURE Draw(s : Shape);

BEGIN
CASE s.t OF

Circle : WRITELN(’Code that draws a circle’);
Rectangle : WRITELN(’Code that draws a rectangle’);
END;

END; {Procedure Draw}

[GLOBAL] PROCEDURE Rotate(s : Shape);
BEGIN
WRITELN(’Rotating the shape :’, s.t);
END;

[GLOBAL] PROCEDURE Scale(s : Shape);
BEGIN
WRITELN(’Scaling the shape :’, s.t);
END;

[GLOBAL] PROCEDURE Delete(s : Shape);
BEGIN
WRITELN(’Deleting the shape :’, s.t);
END;

[GLOBAL] PROCEDURE Draw_Logo;
VAR

Initial_Shape : Shape(Circle) {Declare object}
VALUE [Coordinate_X : 50.0;

Coordinate_Y : 50.0;
CASE Circle OF
[Radius : 15.75;]];

BEGIN
WRITELN(’Drawing a company logo’);
Draw(Initial_Shape);
{Code pauses for 30 seconds as the user looks at the logo.}
Delete(Initial_Shape);
WRITELN;
{Ready for the rest of the graphics program to begin.}
END;

END.

Separate Compilation 3–15

Example 3–3 shows a main program and its use of the types and routines
provided by the interface module.

Example 3–3 A Graphics Main Program

{
Source File: graphics_main_program.pas
This program inherits the interface environment file, which gives it
access to the implementation’s declarations.
}
[INHERIT(’interface’)] {Types and routines in interface module}
PROGRAM Graphics_Main_Program(OUTPUT);

VAR
My_Shape : Shape(Rectangle)

VALUE [Coordinate_X : 25.0;
Coordinate_Y : 25.0;
CASE Rectangle OF
[Height : 12.50; Width : 25.63]];

BEGIN
{
You cannot access the variable Initial_Shape, because it is in the
implementation module, and that module does not create an environment
file.

You can work with My_Shape. If you did not provide initial values in
this declaration section, the module Graphics_Interface provided
initial values for the schema type Shape.
}
Draw(My_Shape);
Scale(My_Shape);
Rotate(My_Shape);
Delete(My_Shape);
END.

To compile, link, and run the code in Examples 3–1, 3–2, and 3–3, enter the
following:

% pc -c graphics_interface.pas
% pc -c graphics_implementation.pas
% pc -c graphics_main_program.pas
% pc graphics_interface.o graphics_implementation.o \
graphics_main_program.o -o graphics_main_program
Drawing a company logo
Code that draws a circle
Deleting the shape : CIRCLE

Code that draws a rectangle
Scaling the shape : RECTANGLE
Rotating the shape : RECTANGLE
Deleting the shape : RECTANGLE

3–16 Separate Compilation

4
Optimizing Performance

The objective of optimization is to produce source and object programs that
achieve the greatest amount of processing with the least amount of time and
memory. Realizing this objective requires programs that are carefully designed
and written, and compilation techniques, such as those used by
Compaq Pascal, that take advantage of the operating system and machine
architecture environment. (The benefits of portable code and program
efficiency depend on the requirements of your application.)

This chapter discusses the following topics:

• Compiler optimizations (Section 4.1)

• Programming considerations (Section 4.2)

• Optimization considerations (Section 4.3)

• Profiling a program (Section 4.5)

• Controlling the size of global pointer data (Section 4.6)

4.1 Compiler Optimizations
By default, programs compiled with the Compaq Pascal compiler undergo
optimization. An optimizing compiler automatically attempts to remove
repetitious instructions and redundant computations by making assumptions
about the values of certain variables. This, in turn, reduces the size of the
object code, allowing a program written in a high-level language to execute
at a speed comparable to that of a well-written assembly language program.
Optimization can increase the amount of time required to compile a program,
but the result is a program that may execute faster and more efficiently than a
nonoptimized program.

The language elements you use in the source program directly affect the
compiler’s ability to optimize the object program. Therefore, you should be
aware of the ways in which you can assist compiler optimization.

Optimizing Performance 4–1

In addition, this awareness often makes it easier for you to track down the
source of a problem when your program exhibits unexpected behavior.

The compiler performs the following optimizations:

• Compile-time evaluation of constant expressions

• Elimination of some common subexpressions

• Partial elimination of unreachable code

• Code hoisting from structured statements, including the removal of
invariant computations from loops

• Inline code expansion for many predeclared functions

• Inline code expansion for user-declared routines

• Rearrangement of unary minus and NOT operations to eliminate unary
negation and complement operations

• Partial evaluation of logical expressions

• Propagation of compile-time known values

• Partial unrolling of FOR, WHILE, and REPEAT loops

• Strength reduction

• Split lifetime analysis

• Code scheduling

• Loop unrolling

• Software pipelining

These optimizations are described in the following sections. In addition, the
compiler performs the following optimizations, which can be detected only by a
careful examination of the machine code produced by the compiler:

• Global assignment of variables to registers

If possible, reduce the number of memory references needed by assigning
frequently referenced variables to registers.

• Reordering the evaluation of expressions

This minimizes the number of temporary values required.

• Peephole optimization of instruction sequences

The compiler examines code a few instructions at a time to find operations
that can be replaced by shorter and faster equivalent operations.

4–2 Optimizing Performance

For More Information:

• On Compaq Pascal language elements (Compaq Pascal Language Reference
Manual)

4.1.1 Compile-Time Evaluation of Constants
The compiler performs the following computations on constant expressions at
compile time:

• Negation of constants

The value of a constant preceded by unary minus signs is negated at
compile time. For example:

x := -10.0;

• Type conversion of constants

The value of a lower-ranked constant is converted to its equivalent in the
data type of the higher-ranked operand at compile time. For example:

x := 10 * y;

If x and y are both real numbers, then this operation is compiled as follows:

x := 10.0 * y;

• Arithmetic on integer and real constants

An expression that involves +, –, *, or / operators is evaluated at compile
time. For example:

CONST
nn = 27;

{In the executable section:}
i := 2 * nn + j;

This is compiled as follows:

i := 54 + j;

• Array address calculations involving constant indexes

These are simplified at compile time whenever possible. For example:

VAR
i : ARRAY[1..10, 1..10] OF INTEGER;

{In the executable section:}
i[1,2] := i[4,5];

• Evaluation of constant functions and operators

Optimizing Performance 4–3

Arithmetic, ordinal, transfer, unsigned, allocation size, CARD, EXPO, and
ODD functions involving constants, concatenation of string constants, and
logical and relational operations on constants, are evaluated at compile
time.

For More Information:

• On the complete list of compile-time operations and routines (Compaq
Pascal Language Reference Manual)

4.1.2 Elimination of Common Subexpressions
The same subexpression often appears in more than one computation within a
program. For example:

a := b * c + e * f;

h := a + g - b * c;

IF ((b * c) - h) <> 0 THEN ...

In this code sequence, the subexpression b * c appears three times. If the
values of the operands b and c do not change between computations, the
value b * c can be computed once and the result can be used in place of the
subexpression. The previous sequence is compiled as follows:

t := b * c;

a := t + e * f;

h := a + g - t;

IF ((t) - h) <> 0 THEN ...

Two computations of b * c have been eliminated. In this case, you could have
modified the source program itself for greater program optimization.

The following example shows a more significant application of this kind of
compiler optimization, in which you could not reasonably modify the source
code to achieve the same effect:

VAR
a, b : ARRAY[1..25, 1..25] OF REAL;

{In the executable section:}
a[i,j] := b[i,j];

Without optimization, this source program would be compiled as follows:

t1 := (j - 1) * 25 + i;
t2 := (j - 1) * 25 + i;
a[t1] := b[t2];

4–4 Optimizing Performance

Variables t1 and t2 represent equivalent expressions. The compiler eliminates
this redundancy by producing the following optimization:

t = (j - 1) * 25 + i;
a[t] := b[t];

4.1.3 Elimination of Unreachable Code
The compiler can determine which lines of code, if any, are never executed
and eliminates that code from the object module being produced. For example,
consider the following lines from a program:

CONST
Debug_Switch = FALSE;

{In the executable section:}
IF Debug_Switch THEN WRITELN(’Error found here’);

The IF statement is designed to write an error message if the value of the
symbolic constant Debug_Switch is TRUE. Suppose that the error has been
removed, and you change the definition of Debug_Switch to give it the value
FALSE. When the program is recompiled, the compiler can determine that
the THEN clause will never be executed because the IF condition is always
FALSE; no machine code is generated for this clause. You need not remove the
IF statement from the source program.

Code that is otherwise unreachable, but contains one or more labels, is not
eliminated unless the GOTO statement and the label itself are located in the
same block.

4.1.4 Code Hoisting from Structured Statements
The compiler can improve the execution speed and size of programs by
removing invariant computations from structured statements. For example:

FOR j := 1 TO i + 23 DO
BEGIN
IF Selector THEN a[i + 23, j - 14] := 0
ELSE b[i + 23, j - 14] := 1;
END;

If the compiler detected this IF statement, it would recognize that, regardless
of the Boolean value of Selector, a value is stored in the array component
denoted by [i + 23, j—14]. The compiler would change the sequence to the
following:

Optimizing Performance 4–5

t := i + 23;
FOR j := 1 TO t DO

BEGIN
u := j - 14;
IF Selector THEN a[t,u] := 0
ELSE b[t,u] := 1;
END;

This removes the calculation of j�14 from the IF statement, and the calculation
of i+ 23 from both the IF statement and the loop.

4–6 Optimizing Performance

4.1.5 Inline Code Expansion for Predeclared Functions
The compiler can often replace calls to predeclared routines with the actual
algorithm for performing the calculation. For example:

Square := SQR(a);

The compiler replaces this function call with the following, and generates
machine code based on the expanded call:

Square := a * a;

The program executes faster because the algorithm for the SQR function has
already been included in the machine code.

4.1.6 Inline Code Expansion for User-Declared Routines
Inline code expansion for user-declared routines performs in the same manner
as inline code expansion for predeclared functions: the compiler can often
replace calls to user-declared routines with an inline expansion of the routine’s
executable code. Inline code expansion is useful on routines that are called
only a few times. The overhead of an actual procedure call is avoided, which
increases program execution. The size of the program, however, may increase
due to the expansion of the routine.

To determine whether or not it is desirable to inline expand a routine,
compilers use a complex algorithm.

4.1.7 Partial Evaluation of Logical Expressions
The Pascal language does not specify the order in which the components of an
expression must be evaluated. If the value of an expression can be determined
by partial evaluation, then some subexpressions may not be evaluated at all.
This situation occurs most frequently in the evaluation of logical expressions.
For example:

WHILE (i < 10) AND (a[i] <> 0) DO
BEGIN
a[i] := a[i] + 1;
i := i + 1;
END;

In this WHILE statement, the order in which the two subexpressions
(i < 10) and (a[i] <> 0) are evaluated is not specified; in fact, the compiler
may evaluate them simultaneously. Regardless of which subexpression is
evaluated first, if its value is FALSE the condition being tested in the WHILE
statement is also FALSE. The other subexpression need not be evaluated at
all. In this case, the body of the loop is never executed.

Optimizing Performance 4–7

To force the compiler to evaluate expressions in left-to-right order with short
circuiting, you can use the AND_THEN operator, as shown in the following
example:

WHILE (i < 10) AND_THEN (a[i] <> 0) DO
BEGIN
a[i] := a[i] + 1;
i := i + 1;
END;

4.1.8 Value Propagation
The compiler keeps track of the values assigned to variables and traces the
values to most of the places that they are used. If it is more efficient to use the
value rather than a reference to the variable, the compiler makes this change.
This optimization is called value propagation. Value propagation causes the
object code to be smaller, and may also improve run-time speed.

Value propagation performs the following actions:

• It allows run-time operations to be replaced with compile-time operations.
For example:

Pi := 3.14;
Pi_Over_2 := Pi/2;

In a program that includes these assignments, the compiler recognizes the
fact that the value of Pi did not change between the time Pi was assigned
and used. The compiler will use the value Pi instead of a reference to
Pi and perform the division at compile time. The compiler treats the
assignments as if they were as follows:

Pi := 3.14;
Pi_Over_2 := 1.57;

This process is repeated, allowing for further constant propagation to occur.

• It allows comparisons and branches to be avoided at run time. For
example:

x := 3;
IF x <> 3 THEN y := 30
ELSE y := 20;

In a program that includes these operations, the compiler recognizes that
the value of x is 3 and the THEN statement cannot be reached. The
compiler will generate code as if the statements were written as follows:

x := 3;
y := 20;

4–8 Optimizing Performance

4.1.9 Error Reduction Through Optimization
An optimized program produces results and run-time diagnostic messages
identical to those produced by an equivalent unoptimized program. An
optimized program may produce fewer run-time diagnostics, however, and
the diagnostics may occur at different statements in the source program. For
example:

Unoptimized Code Optimized Code

a := x/y; t := x/y;

b := x/y; a := t;

FOR i := 1 TO 10 DO b := t;

c[i] := c[i] * x/y; FOR i := 1 TO 10 DO
c[i] := c[i] * t;

If the value of y is 0.0, the unoptimized program would produce 12 divide-
by-zero errors at run time; the optimized program produces only one. (The
variable t is a temporary variable created by the compiler.) Eliminating
redundant calculations and removing invariant calculations from loops can
affect the detection of such arithmetic errors. You should keep this in mind
when you include error-detection routines in your program.

4.1.10 Strength Reduction
Strength reduction speeds computations by replacing a multiply operation
with a more efficient add instruction when your program is computing array
addresses on each iteration of a loop.

4.1.11 Split Lifetime Analysis
Split lifetime analysis improves register usage by determining if the lifetime of
a variable can be broken into multiple independent sections. If so, the variable
may be stored in different registers for each section. The registers can then
be reused for other purposes between sections. In this situation, there may be
times when the value of the variable does not exist anywhere in the registers.
For example:

Optimizing Performance 4–9

v:= 3.0 *q;
.
.
.

x:= SIN(y)*v:
.
.
.

v:= PI*x:
.
.
.

y:= COS(y)*v;

This example shows that the variable v has two disjoint usage sections. The
value of v in the first section does not affect the value of v in the second
section. The compiler may use different registers for each section.

4.1.12 Code Scheduling
Code scheduling is a technique for reordering machine instructions to maximize
the amount of overlap of the multiple execution units inside the CPU. The
exact scheduling algorithms depend on the implementation of the target
architecture.

4.1.13 Loop Unrolling
Loop unrolling is a technique for increasing the amount of code between
branch instructions and labels by replicating the body of a loop. Increasing
the code optimizes instruction scheduling. The following code shows such a
transformation:

Original Code
FOR i:= 1 to 12 DO

a[i]:= b[i] + c[i]

Unrolled Loop Code
i:= 1
WHILE i < 12 DO

BEGIN
a[i]:= b[i] + c[i];
a[i+1]:= b[i+1] + c[i+1];
a[i+2]:= b[i+2] + c[i+2];
a[i+3]:= b[i+3] + c[i+3];
i:= i+4;
END;

In this example, the loop body was replicated four times, allowing the
instruction scheduler to overlap the fetching of array elements with the
addition of other array elements.

4–10 Optimizing Performance

By default, loop unrolling makes 4 copies of an unrolled loop. You can change
the number of copies from 1 to 16. This is controlled by:

-unrollnumber

Numbers larger than 4 may improve performance at a cost of additional
code size. However, larger numbers may decrease performance due to cache
requirements, register conflicts, and other factors.

4.1.14 Software Pipelining
Software pipelining and additional software dependency analysis are enabled
using the -O5 command flag, which in certain cases improves run-time
performance. Note that -O5 is the default.

Compared to regular loop unrolling (enabled at optimization level 3 or above),
software pipelining uses instruction scheduling to eliminate instruction
stalls within loops, rearranging instructions between different unrolled loop
iterations to improve performance.

For instance, if the software dependency analysis of data flow reveals that
certain calculations can be done before or after the iteration of the unrolled
loop, software pipelining reschedules the instructions ahead or behind that
loop iteration at places where their execution can prevent instruction stalls
and therefor, improve performance.

Loops chosen for software pipelining have the following characteristics:

• Always the innermost loops (those executed the most)

• Do not contain branches or procedure calls

By modifying the unrolled loop and inserting instructions (as needed) before
and after the unrolled loop, software pipelining generally improves run-time
performance. The exception is cases where the loops contain a large number
of instructions with many existing overlapped operations. In this situation,
software pipelining may not have enough registers available to effectively
improve execution performance, and using optimization level 5 instead of
optimization level 4 may not improve run-time performance.

To determine whether using optimization level 5 benefits your particular
program, you should time program execution for the same program compiled at
level 4 and 5. For programs that contain loops that exhaust available registers,
longer execution times may result with optimization level 5.

In cases where performance does not improve, you should consider compiling
using -O5 -unroll 1 to (possibly) improve the effects of software pipelining.

Optimizing Performance 4–11

4.2 Programming Considerations
The language elements that you use in a source program directly affect the
compiler’s ability to optimize the resulting object program. Therefore, you
should be aware of the following ways in which you can assist compiler
optimization and obtain a more efficient program:

• Define constant identifiers to represent values that do not change during
your program. The use of constant identifiers generally makes a program
easier to read, understand, and later modify. In addition, the resulting
object code is more efficient because symbolic constants are evaluated only
once, at compile time, while variables must be reevaluated whenever they
are assigned new values.

• Whenever possible, use the structured control statements CASE, FOR,
IF-THEN-ELSE, REPEAT, WHILE, and WITH rather than the GOTO
statement. You can use the GOTO statement to exit from a loop, but
careless use of it interferes with both optimization and the straightforward
analysis of program flow.

• Enclose in parentheses any subexpression that occurs frequently in your
program. The compiler checks whether any assignments have affected
the subexpression’s value since its last occurrence. If the value has
not changed, the compiler recognizes that a subexpression enclosed
in parentheses has already been evaluated and does not repeat the
evaluation. For example:

x := SIN(u + (b - c));
y := COS(v + (b - c));

The compiler evaluates the subexpression (b � c) as a result of performing
the SIN function. When it is encountered again, the compiler checks to
see whether new values have been assigned to either b or c since they
were last used. If their values have not changed, the compiler does not
reevaluate (b� c).

• When a variable is accessed by a program block other than the one
in which it was declared, the variable should have static rather than
automatic allocation. An automatically allocated variable has a varying
location in memory; accessing it in another block is time-consuming and
less efficient than accessing a static variable.

• Avoid using the same temporary variable many times in the course of a
program. Instead, use a new variable every time your program needs a
temporary variable. Because variables stored in registers are the easiest to
access, your program is most efficient when as many variables as possible
can be allocated in registers. If you use several different temporary

4–12 Optimizing Performance

variables, the lifetime of each one is greatly reduced; thus, there is a
greater chance that storage for them can be allocated in registers rather
than at memory locations.

• When creating schema records (or records with nonstatic fields), place the
fields with run-time size at the end of the record. The generated code has
to compute the offset of all record fields after a field with run-time size,
and this change minimizes the overhead.

For More Information:

• On Compaq Pascal language elements and on attributes (Compaq Pascal
Language Reference Manual)

• On compilation switches (Chapter 2)

4.3 Optimization Considerations
Because the compiler must make certain assumptions in order to optimize a
program, unexpected results may occur if you do not utilize the optimizations
discussed in the following sections. If your program does not execute correctly
because of undesired optimizations, you can use the NOOPTIMIZE attribute or
the appropriate compilation switch to prevent optimizations from occurring.

For More Information:

• On attributes, static and automatic variables (Compaq Pascal Language
Reference Manual)

• On compilation switches (Chapter 2)

4.3.1 Compiling for Optimal Performance
The following command line will result in producing the fastest code from the
compiler.

% pc -nozero_heap -math_library fast -05

You can use the performance optionger (-usage performance), to identify
datatypes that could be modified for additional performance.

4.3.2 Subexpression Evaluation
The compiler can evaluate subexpressions in any order and may even choose
not to evaluate some of them. Consider the following subexpressions that
involve a function with side effects:

IF f(a) AND f(b) THEN ...

Optimizing Performance 4–13

This IF statement contains two designators for function f with the same
parameter a. If f has side effects, the compiler does not guarantee the order in
which the side effects will be produced. In fact, if one call to f returns FALSE,
the other call to f might never be executed, and the side effects that result
from that call would never be produced. For example:

q := f(a) + f(a);

The Pascal standard allows a compiler to optimize the code as follows:

Q := 2 * f(a)

If the compiler does so, and function f has side effects, the side effects would
occur only once because the compiler has generated code that evaluates
f(a) only once.

If you wish to ensure left-to-right evaluation with short circuiting, use the
AND_THEN and OR_ELSE Boolean operators.

For More Information:

• On the order of expression evaluation, see the description of the
NOOPTIMIZE attribute (Compaq Pascal Language Reference Manual)

4.3.3 MAXINT and MAXINT64 Predeclared Constants
The smallest possible value of the INTEGER type is represented by the
predeclared constant �MAXINT. However, the operating system architecture
supports an additional integer value, which is (�MAXINT �1). If your program
contains a subexpression with this value, the program’s evaluation might result
in an integer overflow trap. Therefore, a computation involving the value
(�MAXINT �1) might not produce the expected result. To evaluate expressions
that include (�MAXINT �1), you should disable either optimization or integer
overflow checking.

The smallest possible value of the INTEGER64 type is presented by the
expression -MAXINT64. However, the operating system architecture supports
an additional integer value, -MAXINT64-1. To evaluate expressions that
include the -MAXINT64-1 integer value, you should disable either optimization
or integer overflow checking.

4–14 Optimizing Performance

4.3.4 Pointer References
The compiler assumes that the value of a pointer variable is either the
constant identifier NIL or a reference to a variable allocated in heap storage
by the NEW procedure. A variable allocated in heap storage is not declared in
a VAR section and has no identifier of its own; you can refer to it only by the
name of a pointer variable followed by a circumflex (^). Consider the following
example:

VAR
x : INTEGER;
p : ^INTEGER;

{In the executable section:}
NEW(p);
p^ := 0;
x := 0;
IF p^ = x THEN p^ := p^ + 1;

If a pointer variable in your program must refer to a variable with an explicit
name, that variable must be declared VOLATILE or READONLY. The compiler
makes no assumptions about the value of volatile variables and therefore
performs no optimizations on them.

Use of the ADDRESS function, which creates a pointer to a variable, can result
in a warning message because of optimization characteristics. By passing a
nonread-only or nonvolatile static or automatic variable as the parameter to
the ADDRESS function, you indicate to the compiler that the variable was
not allocated by NEW but was declared with its own identifier. Because the
compiler’s assumptions are incorrect, a warning message occurs. You can also
use IADDRESS, which functions similarly to the ADDRESS function except
that IADDRESS returns an INTEGER_ADDRESS value and does not generate
any warning messages. Use caution when using IADDRESS.

Similarly, when the parameter to ADDRESS is a formal VAR parameter
or a component of a formal VAR parameter, the compiler issues a warning
message that not all dynamic variables allocated by NEW may be passed to the
function.

For More Information:

• On attributes and on predeclared routines (Compaq Pascal Language
Reference Manual)

Optimizing Performance 4–15

4.3.5 Variant Records
Because all the variants of a record variable are stored in the same memory
location, a program can use several different field identifiers to refer to the
same storage space. However, only one variant is valid at a given time; all
other variants are undefined. You must store a value in a field of a particular
variant before you attempt to use it. For example:

VAR
x : INTEGER;
a : RECORD

CASE t : BOOLEAN OF
TRUE : (b : INTEGER);
FALSE : (c : REAL);

END;
{In the executable section:}
x := a.b + 5;
a.c := 3.0;
x := a.b + 5;

Record a has two variants, b and c, which are located at the same storage
address. When the assignment a.c := 3.0 is executed, the value of a.b
becomes undefined because TRUE is no longer the currently valid variant.
When the statement x := a.b + 5 is executed for the second time, the value
of a.b is unknown. The compiler may choose not to evaluate a.b a second
time because it has retained the field’s previous value. To eliminate any
misinterpretations caused by this assumption, variable a should be associated
with the VOLATILE attribute. The compiler makes no assumptions about the
value of VOLATILE objects.

For More Information:

• On variant records or on the VOLATILE attribute (Compaq Pascal
Language Reference Manual)

4.3.6 Effects of Optimization on Debugging
Some of the effects of optimized programs on debugging are as follows:

• Use of registers

When the compiler determines that the value of an expression does
not change between two given occurrences, it may save the value in a
register. In such a case, it does not recompute the value for the next
occurrence, but assumes that the value saved in the register is valid. If,
while debugging the program, you attempt to change the value of the
variable in the expression, then the value of that variable is changed,
but the corresponding value stored in the register is not. When execution

4–16 Optimizing Performance

continues, the value in the register may be used instead of the changed
value in the expression, causing unexpected results.

When the value of a variable is being held in a register, its value in
memory is generally invalid; therefore, a spurious value may be displayed
if you try to examine a variable under these circumstances.

• Coding order

Some of the compiler optimizations cause code to be generated in a
order different from the way it appears in the source. Sometimes code is
eliminated altogether. This causes unexpected behavior when you try to
step by line, use source display features, or examine or deposit variables.

• Inline code expansion on user-declared routines

There is no stack frame for an inline user-declared routine and no
debugger symbol table information for the expanded routine. Debugging
the execution of an inline user-declared routine is difficult and is not
recommended.

To prevent conflicts between optimization and debugging, you should always
compile your program with a compilation switch that deactivates optimization
until it is thoroughly debugged. Then you can recompile the program (which
by default is optimized) to produce efficient code.

For More Information:

• On debugging tools (Chapter 5)

• On compilation switches (Chapter 2)

4.4 Analyze Program Performance
This section describes how you can:

• Analyze program performance using shell commands like time
(Section 4.4.1)

• Analyze program performance using profiling tools prof, gprof, and pixie
(Section 4.5)

• Use feedback files and optionally cord to provide feedback for a subsequent
compilation (Section 4.5.5)

Before you analyze program performance, make sure any errors you might
have encountered during the early stages of program development have been
corrected.

Optimizing Performance 4–17

4.4.1 Use the time Command to Measure Performance
Use the time command to provide information about program performance.

Run program timings when other users are not active. Your timing results can
be affected by one or more CPU-intensive processes also running while doing
your timings.

Try to run the program under the same conditions each time to provide the
most accurate results, especially when comparing execution times of a previous
version of the same program. Use the same CPU system (model, amount of
memory, version of the operating system, and so on) if possible.

If you do need to change systems, you should measure the time using the same
version of the program on both systems, so you know each system’s effect on
your timings.

For programs that run for less than a few seconds, run several timings to
ensure that the results are not misleading. Overhead functions like loading
shared libraries might influence short timings considerably.

Using the form of the time command that specifies the name of the executable
program provides the following:

• The elapsed or ‘‘wall clock’’ time, which will be greater than the total
charged actual CPU time.

• Charged actual CPU time, shown for both system and user execution. The
total actual CPU time is the sum of the actual user CPU time and actual
system CPU time.

Using the Bourne shell, the following program timing reports that the program
uses 1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time
for user program use and 0.58 seconds of actual CPU time for system use) and
2.46 seconds of elapsed time:

$ time a.out
Average of all the numbers is: 4368488960.000000
real 0m2.46s
user 0m0.61s
sys 0m0.58s

The sample program being timed displays the following line:

Average of all the numbers is: 4368488960.000000

4–18 Optimizing Performance

Using the C shell, the following program timing reports 1.19 seconds of total
actual CPU time (0.61 seconds in actual CPU time for user program use and
0.58 seconds of actual CPU time for system use), about 4 seconds (0:04) of
elapsed time, the use of 28% of available CPU time, and other information:

% time a.out
Average of all the numbers is: 4368488960.000000
0.61u 0.58s 0:04 28% 78+424k 9+5io 0pf+0w

Timings that show a large amount of system time may indicate a lot of time
spent doing I/O, which might be worth investigating.

If your program displays a lot of text, you can redirect the output from the
program on the time command line. Redirecting output from the program will
change the times reported because of reduced screen I/O.

In addition to the time command, you might consider modifying the program
to call routines within the program to measure execution time. For example:

• Compaq Pascal intrinsic procedures, such as SYSTEM_CLOCK, DATE_
AND_TIME, and TIME

• Library routines, such as itime or time or intro(3f).

4.5 Profiling a Program
To generate profiling information, use the Compaq Pascal compiler and the
prof, gprof, and pixie tools.

Profiling identifies areas of code where significant program execution time is
spent. Along with the pccommand, use the prof and pixie tools to generate
the following profile information:

• The CPU time spent in the different routines of the program, or program
counter sampling. This type of profiling uses prof.

• The manner in which routines are called by other routines, or call graph
information. This type of profiling uses gprof.

• The execution of basic blocks, called basic block counting. A basic
block is a sequence of instructions entered only at the beginning and
exited only at the end (no branches). This provides statistics on individual
lines of code and is influenced by such optimizations as loop unrolling. This
type of profiling uses prof and pixie.

• The estimated number of CPU cycles spent for each source line in one or
more procedures, or source line CPU cycle use. This type of profiling
uses prof and pixie.

Optimizing Performance 4–19

Once you have determined those sections of code where most of the program
execution time is spent, examine these sections for coding efficiency.

4.5.1 Program Counter Sampling (prof)
To obtain program counter sampling data, perform the following steps:

1. Use the pc command option -p to compile and link the program:

% pc -p -O3 -o profsample profsample.p

If you specify the -c option to prevent linking, you must specify the -p
option when you link the program:

% pc -c -O3 profsample.p
% pc -p -O3 -o profsample profsample.o

Consider specifying optimization level -O3 or -inline manual to minimize
the inlining of procedures. Once inlined, procedures are not listed as
separate routines but as part of the routine into which they have been
inlined. Allowing full inlining would result in program counter sampling
for a small number of (usually) large routines, which might not help you
locate areas of the program where significant program execution time is
spent.

2. Execute the profiled program:

% profsample

During program execution, profiling data is written to a profile data file,
whose default name is mon.out. You can execute the program multiple
times to generate multiple profile data files, which can be averaged. Use
the PROFDIR environment variable to request a different profile data file
name.

3. Run the prof command, which formats the profiling data and displays it in
a readable format:

% prof profsample mon.out

You can limit the report created by prof by using prof command options, such
as -only, -exclude, or -quit.

For example, if you only want reports on procedures calc_max and calc_min,
you could use the following command line to read the profile data file named
mon.out:

% prof -only calc_max -only calc_min profsample

4–20 Optimizing Performance

The time spent in particular areas of code is reported by prof in the form of a
percentage of the total CPU time spent by the program. To reduce the size of
the report, you can either:

• Request that only certain procedures be included (by using the -only
option).

• Exclude certain procedures (by using the -exclude option).

When you use the -only or -exclude options, the percentages are still based
on all procedures of the application. To obtain percentages calculated by prof
that are based on only those procedures included in the report, use the -Only
and -Exclude options (use an uppercase initial letter in the option name).

You can use the -quit option to reduce the amount of information reported.
For example, the following command prints information on only the five most
time-consuming procedures:

% prof -quit 5 profsample

The following command limits information only to those procedures using 10%
or more of the total execution time:

% prof -quit 10% profsample

4.5.2 Call Graph Sampling (gprof)
To obtain call graph information, use the gprof tool. Perform the following
steps:

1. Use the pc command option -pg when you compile and link the program:

% pc -pg -O3 -o profsample profsample.p

If you specify the -c option to prevent linking, you must specify the -pg
option when you link the program:

% pc -c -O3 profsample.p
% pc -pg -O3 -o profsample profsample.p

The first pc command specifies the -c option to prevent linking.

2. Execute the profiled program:

% profsample

During execution, profiling data is saved to the file gmon.out, unless the
environment variable PROFDIR is set.

3. Run the formatting program gprof:

% gprof profsample gmon.out

Optimizing Performance 4–21

The output produced by gprof includes:

• Call graph profile

• Timing profile (similar to that produced by prof)

• Index

4.5.3 Basic Block Counting (pixie and prof)
To obtain basic block counting information, perform the following steps:

1. Compile and link the program without the -p option:

% pc -O3 -o profsample profsample.p

Consider specifying optimization level -O3 or -inline manual to minimize
the inlining of procedures (once inlined, procedures are not listed as
separate routines but as part of the routine into which they are inlined).

2. Run the profiling command pixie:

% pixie profsample

The pixie command creates:

• A program named profsample.pixie that is equivalent to profsample
but contains additional code for counting the execution of each basic
block.

• A file named profsample.Addrs, which contains the address of each
basic block.

3. Execute the profiled program profsample.pixie generated by pixie:

% profsample.pixie

This program creates the file profsample.Counts, which contains the basic
block counts.

4. Run prof with the -pixie option, to extract and display information from
the profsample.Addrs and profsample.Counts files:

% prof -pixie profsample

When you specify the -pixie option, the prof command searches for files
with a suffix of .Addrs and .Counts (in this case profsample.Addrs and
profsample.Counts).

You can reduce the amount of information in the report created by prof by
using the -only, -exclude, -quit, and related options.

To create multiple profile data files, run the program multiple times.

4–22 Optimizing Performance

4.5.4 Source Line CPU Cycle Use (prof and pixie)
You use the same files created by the pixie command (see Section 4.5.3) for
basic block counting to estimate the number of CPU cycles used to execute
each source file line.

To view a report of the number of CPU cycles estimated for each source file
line, use the following options with the prof command:

• The -pixie option is required to obtain source line information.

• The -heavy option prints an entry for each source code line, including the
number of CPU cycles used by that line. Entries are sorted in descending
order of CPU cycles and should be limited by using the prof command
options that limit the report size, such as -quit, -only, or -exclude.

• The -lines option requests source line information, but in the order in
which the lines occur in the program (not sorted in descending order of
CPU cycles).

Depending on the level of optimization chosen, certain source lines might be
optimized away.

The CPU cycle use estimates are based primarily on the instruction type
and its operands and do not include memory effects such as cache misses or
translation buffer fills.

For example, the following command sequence uses:

• The pc and pixie commands to create the necessary files.

• The prof command to request source line CPU cycle use information for
the procedure named calc_max (-only option), sorted in descending order
of CPU cycles (-heavy option):

% pc -o profsample profsample.p
% pixie profsample
% profsample.pixie
% prof -pixie -heavy -only calc_max profsample

4.5.5 Creating and Using Feedback Files and Optionally cord
You can create a feedback file by using the pc command with the -
gen_feedback option and the pixie command. Once created, specify a feedback
file in a subsequent compilation with the pc command option -feedback. You
can also request that cord use the feedback file to rearrange procedures, by
specifying the -cord option on the pc command line.

Optimizing Performance 4–23

To create the feedback file, create an executable program and use pixie to
generate the additional code needed for profiling information:

1. Compile and link the program. Omit the -p option, but specify the
-gen_feedback option:

% pc -o profsample -gen_feedback -O3 profsample.p

This command can be used with any optimization level up to -O3 (to avoid
inlining procedures). If you omit a -On option, the -gen_feedback option
changes the default optimization level to -O0.

To include libraries in the profiling output, specify -non_shared.

2. Execute the profiling command pixie:

% pixie profsample

The pixie command creates:

• A program named profsample.pixie that is equivalent to profsample
but contains additional code for counting the execution of each basic
block.

• A file named profsample.Addrs, which contains the address of each
basic block.

3. Execute the profiled program profsample.pixie generated by pixie:

% profsample.pixie

This program creates the file profsample.Counts, which contains the basic
block counts.

4. Run prof with the -pixie and -feedback options:

% prof -pixie -feedback profsample.feedback
profsample

This prof command creates the feedback file profsample.feedback.

You can use the feedback file as input to the pc compiler:

% pc -feedback profsample.feedback -o profsample -O3
profssample.pc

The feedback file provides the compiler with actual execution information,
which the compiler can use to perform such optimizations as inlining function
calls.

Specify the same optimization level (-On option) for the pc command with the
-gen_feedback option and the pc command with the -feedback name option (in
this example -O3).

4–24 Optimizing Performance

You can use the feedback file as input to the pc compiler and cord, as follows:

% pc -cord -feedback profsample.feedback -o profsample
-O3 profsample.p

The -cord option invokes cord, which reorders the procedures in an executable
program to improve program execution, using the information in the specified
feedback file. Use the same level of optimization with the -cord option as used
to generate the feedback file.

4.6 Controlling the Size of Global Pointer Data
The compiler places constants and variables in the .lit8 , .lit4, .sdata and
.sbss sections of the data and bss segments of the global data area. These
sections of the global data area are referred to as the global pointer area.

The .rdata, .data, .lit8 , .lit4, and .sdata sections contain initialized data.
The .sbss and .bss sections reserve space for uninitialized data that is created
before execution by the kernel loader for the program and is filled with zeros.

The compiler produces code that uses a register as a global pointer, called $gp,
to access address constants. The linker (ld) can, in some cases, optimize data
accesses to use $gp directly rather than using an address constant.

To maximize the number of individual variables and constants that a program
can access in the global pointer area, the compiler first places in it those
variables and constants that take the fewest bytes of memory. By default,
variables and constants occupying eight or fewer bytes are placed in the global
pointer area, and those occupying more than eight bytes are placed in the
.data and .bss sections.

You can control the maximum size of items that are placed in the global
pointer area by using the -G option to the pc command. The -G option must be
followed immediately by a number which specifies the maximum size (in bytes)
of data items to be placed in the global pointer area. If not specified, a defualt
of -G8 is assumed.

Optimizing Performance 4–25

5
Programming Tools

This chapter describes some Pascal-specific assistance provided in the
set of Compaq CASE tools. For general information on each tool, see the
documentation for the tool.

This chapter provides information on:

• The C Language Preprocessor (Section 5.1)

• Coding for the debugger (Section 5.2)

• Running the dbx Debugger (Section 5.3)

• Debugging tips (Section 5.4)

For More Information

• On the debugger (Tru64 UNIX Programmer’s Guide and dbx(1))

• On the C preprocessor (Tru64 UNIX Programmer’s Guide and cpp(1))

5.1 The C Language Preprocessor
The pc command submits Pascal source files to the cpp C language
preprocessor. The cpp preprocessor reads directives from the source file to
substitute strings, eliminate text, or include text from other files. The Compaq
Pascal compiler operates on the resulting text.

You can use cpp to do the following:

• Eliminate repetition from source files

• Locate information in a central location for reference by other files in an
application

• Declare global procedures and variables when you write an application
consisting of many files

• Write source files with multiple uses, using symbolic names to enable or
disable compilation of specified code

Programming Tools 5–1

Capitalization rules for the preprocessor are different from those for the Pascal
language itself, although the preprocessor is still case-sensitive. For example,
you must type keywords such as #define by using lowercase only.

5.1.1 Including Headers and Other Files
A Compaq Pascal source file may include the text of other source files by
using the #include directive, which is processed by cpp. (You can also use
the Compaq Pascal %INCLUDE directive, which is processed by the Compaq
Pascal compiler) and cannot contain cpp directives. The #include directive can
take two forms:

#include "filename"

#include <filename>

The two forms specify a different search path for the specified file. (You can
override this search path with the -I option.) cpp searches for the files in this
way:

• If the file name begins with a slash, the preprocessor looks for the file only
in the specified directory. The -I option does not affect these file names.

• If you use quotes (" ") for delimiters, the preprocessor looks for the file in
the current working directory, then the files specified with the -I option,
and lastly in /usr/include.

• If you use angle brackets (< >) for delimiters, the preprocessor does not
search in the current working directory but starts in the directories
specified with the -I option and lastly in /usr/include.

• If you specify the -I option without a search path, cpp does not search in
/usr/include.

In place of filename, type the name of the file. The preprocessor passes the
compiler the text of the named file in place of the #include line.

5–2 Programming Tools

5.1.2 Conditional Compilation
The #if, #ifdef, #else, and #endif directives conditionally disable compilation
of a range of lines from the source file based on a specific condition.

The #if directive can contain an expression that specifies some integer or
Boolean computations. To do so, it uses C language syntax, instead of Pascal
expression syntax. The expression cannot refer to constants and other data
items declared in the Pascal program.

The preprocessor regards the symbol LANGUAGE_PASCAL as a defined
symbol. However, the symbol LANGUAGE_C, LANGUAGE_FORTRAN, and
LANGUAGE_ASSEMBLY are defined only when the preprocessor is used by
the respective language product. You can use this fact to write a source file
that can be submitted to several different language processors, with correct
results on each.

Here is an example of conditional compilation:

#ifdef LANGUAGE_PASCAL
TYPE Pair = RECORD

HIGH, Low: INTEGER;
END {RECORD};

#endif
#ifdef LANGUAGE_C

typedef struct {
int high, low;
} pair;

#endif

This source file section is valid input to both Compaq Pascal and the C
Language.

Compaq Pascal also provides a form of conditional compilation built into
the compiler. See the Compaq Pascal Language Reference Manual for more
information on the %IF directive.

5.1.3 String Substitution
The cpp preprocessor enables you to define macros to replace one string with
another wherever it occurs in the source file. The #define directive specifies a
macro, which can have parameters.

In Compaq Pascal, compile-time expressions in declarations can include any
expression for which the values of all operands is known at compile time. This
is an alternative to some uses of the #define directive.

Programming Tools 5–3

5.1.4 C-Style Comments
The Compaq Pascal Language Reference Manual describes the Pascal-style
{ }, (* *), and ! rest of line comment delimiters. You can also use the C-
style /* and */ delimiters in Compaq Pascal programs. When the symbol
LANGUAGE_PASCAL is defined (that is, during Compaq Pascal compilations),
cpp removes C-style comments. If you compile without cpp, the Compaq
Pascal compiler disregards Pascal-style comments and reports syntax errors
for C-style comments.

5.2 Coding for the Debugger
The compiler (pc command) detects syntax errors that prevent creation of
an executable program. Debugging through dbx detects only errors of logic
in your program. Compaq Pascal programs support source-level debugging;
information from dbx relates directly to the source files rather than to machine
registers, so you can access variables by their declared names rather than their
memory addresses.

The step command of dbx enables you to execute specific source lines. To use
it efficiently, follow these guidelines:

• Write each Pascal statement on a separate source line. This format enables
dbx to execute each statement separately, so that you can check the effect
of individual statements.

• Write each IF statement and the expression that it tests on a different
line from the word THEN and the executable statement that follows.
This format lets you use dbx to determine whether an error occurs in the
evaluation of the expression or in executing the resulting statement.

5.2.1 Debugging Optimized Programs
You should use the optimizing phases described in Chapter 1 only after
debugging the program. The -g option, which produces a program that can be
debugged, overrides some optimizations. For example, the optimizer may move
portions of code to gain efficiency or to share some sections. Such changes
interfere with source-level debugging because the optimized sequence of actions
no longer corresponds to the original source code.

The -g option is the same as specifying the -g2 debugging level. If you do not
use the -g option, Compaq Pascal uses the -g0 debugging level. If you must
debug optimized code, for example, if your program fails only when you enable
optimization, you may need to use two other debugging levels invoked through
the -g1 and the -g3 options:

5–4 Programming Tools

• Level 1 -g1 permits accurate, but limited, source-level debugging. If you
have invoked the optimization phases, they continue to do most of their
normal optimizations.

• Level 3 -g3 directs the optimization phases to do all the normal
optimizations, even if they rearrange code in a way that may produce
confusing output from the debugger.

5.2.2 Debugging Preprocessed Programs
The cpp preprocessor is run at the start of every Compaq Pascal compilation
(unless you use the -nocpp option). The cpp preprocessor substitutes strings
as directed by your program. Preprocessing may add or remove text from the
version of your source file seen by the compiler.

The debugger ignores any rearrangement of source lines from preprocessing.
For example, when dbx traces machine code based on the statement on line
100 it shows and identifies line 100 despite possibilities such as the following:

• You used an #include preprocessor directive at line 1 of your file to include
another 1000 lines of Pascal code by reference.

• You commented out or conditionalized out line 50 through 80.

The dbx debugger never refers to or displays statements inserted into a
program by the #include preprocessor directive. All such statements appear
in the trace as a single, indivisible statement. If you trace execution, you will
see only the #include directive that refers to the file where these statements
reside.

5.3 Running the dbx Debugger
You can invoke the debugger by entering the dbx command and any options
to the shell, followed by the name of the executable file. The dbx debugger
assumes a a.out or the name of a file containing a core dump.

You can exit the debugger by entering the quit command.

5.3.1 Debugger Data Types
Table 5–1 shows the dbx data types that correspond to the built-in data types
of Compaq Pascal.

Programming Tools 5–5

Table 5–1 The dbx Equivalents of Compaq Pascal Data Types

Compaq Pascal dbx

BOOLEAN $boolean

UNSIGNED or CARDINAL $unsigned

CHAR $char or $uchar

DOUBLE $double or $real

INTEGER $integer

POINTER $address

REAL $float (not $real)

For variables of other data types, use dbx type-coercion to view them as a dbx
type, such as $short, a 16-bit integer.

5.3.2 Compaq Pascal Data Names
Pascal is not case sensitive; it defines all identifiers in lowercase. The dbx
program is also not case sensitive.

Your program can have several variables with the same name. Each use of that
name in a variable declaration has a specific scope. The particular variable
you get when you use the name depends on the location of the reference. The
Compaq Pascal Language Reference Manual discusses the rules for scope in
Compaq Pascal.

When you are debugging, you may want to examine or modify a variable even
if you are not currently in its scope. You can specify any declared program
variable if you indicate its location. You do so by specifying a source file, then
a procedure, then a variable name, using the period character as a separator.
For example:

myfile.main.i

This example refers to a variable i in the routine main of the file myfile (or
myfile.p).

The debugger uses this same notation when its output refers to a variable
having an ambiguous name.

5–6 Programming Tools

5.3.3 Activation Levels
You can examine activation levels or stack frames using the where command of
dbx. You can move around on the stack with the up, down, and func commands.

In a Compaq Pascal executable program, each routine is an activation level.
For example, the highest level on the activation stack is in the main program.
The next highest level reflects the first active function or procedure call (called
from the main program), which has not yet returned. At lower levels, you see
other routines that were called. Level 0 reflects the most recent function or
procedure call and shows the name of the current routine.

5.4 Debugging Tips
After using the debugger, you can edit the source file to correct the error or
just note the error and continue tracing the program. However, you should
always correct immediately any errors that cause additional errors during
the debugging run. For example, if a program error assigns the wrong value
to a variable, assign the correct value from dbx, note the error, and continue
debugging.

Recompile all relevant source files and link-edit to produce a new executable
file whenever you edit source files. If you correct a source file and continue
debugging, dbx may produce confusing results because it may display lines
from corrected source files that do not correspond to the program behavior.

If you stop dbx by typing Ctrl/Z, do not resume it to debug a corrected program.
Instead, kill the process and reinvoke dbx so that it uses the new executable
file.

Programming Tools 5–7

6
Calling Conventions

This chapter describes how Compaq Pascal passes parameters and calls
routines. It discusses the following topics:

• Tru64 UNIX Calling Standard (Section 6.1)

• Parameter-passing semantics (Section 6.2)

• Parameter-passing mechanisms (Section 6.3)

6.1 Tru64 UNIX Calling Standard
Programs compiled by the Compaq Pascal compiler conform to the Tru64
UNIX Calling Standard. This standard describes how parameters are passed,
how function values are returned, and how routines receive and return control.
Because Compaq Pascal conforms to the calling standard, you can call and
pass parameters to routines written in other Compaq languages from Compaq
Pascal programs.

For More Information:

• On the Tru64 UNIX Calling Standard (Tru64 UNIX Calling Standard and
the Assembly Language Programmer’s Guide)

6.1.1 Parameter Lists
Each time a routine is called, the Compaq Pascal compiler constructs a
parameter list.

On Tru64 UNIX systems, the parameters are a sequence of quadword (8-
byte) entries. The first 6 integer parameters are located in integer registers
designated as R16 to R21; the first 6 floating-point parameters are located in
floating-point registers designated as F16 to F21.

Calling Conventions 6–1

6.1.2 Function Return Values
In Compaq Pascal, a function returns to the calling block the value that was
assigned to its identifier during execution. Compaq Pascal chooses one of three
methods for returning this value. The method chosen depends on the amount
of storage required for values of the type returned, as follows:

On Tru64 UNIX Systems:

• An nonfloating-point scalar type, a schematic subrange, an array, a record,
or set with size less than 64 bits, is returned in the first integer register,
designated as R0. If the value is less than 64 bits, R0 is sign-extended or
zero-extended depending on the tape.

• A floating-point value that can be represented in 64 bits of storage is
returned in the first floating-point register, designated as F0.

• If the value is too large to be represented in 64 bits, if its type is a string
type (PACKED ARRAY OF CHAR, VARYING OF CHAR, or STRING), or if
the type is nonstatic, the calling routine allocates the required storage. An
extra parameter (a pointer to the location where the function result will be
stored) is added to the beginning of the calling routine’s actual parameter
list.

• If the value can be represented in 32 bits of storage, it is returned in
register R0. If the value is less than 32 bits, the upper bits of R0 are
undefined.

• If the value requires from 33 to 64 bits, the low-order bits of the result are
returned in register R0 and the high-order bits are returned in register R1.

• If the value is too large to be represented in 64 bits, if its type is a string
type (PACKED ARRAY OF CHAR, VARYING OF CHAR, or STRING), or if
the type is nonstatic, the calling routine allocates the required storage. An
extra parameter (a pointer to the location where the function result will be
stored) is added to the beginning of the calling routine’s actual parameter
list.

Note that functions that require the use of an extra parameter can have no
more than 254 parameters; functions that store their results in registers can
have 255 parameters.

6–2 Calling Conventions

6.1.3 Contents of Call Stack
The Tru64 UNIX system conventions define three types of procedures. The
calling process does not need to know what type it is calling; the compiler
chooses which type to generate based on the requirements of the procedure.
The types of procedures are:

• Stack frame procedures, in which the calling context is placed on the stack

• Register frame procedures, in which the calling context is in registers

• No frame procedures, for which the compiler does not establish a context
and which, therefore, execute in the context of the caller

If a stack frame is required, it consists of a fixed part (that is known at compile
time) and an optional variable part.

The compiler determines the exact contents of the stack frame but all stack
frames have common characteristics:

• Fixed temporary locations: an optional section that contains language-
specific locations required by the procedure context of some languages

• Register save area: a set of consecutive quadwords for storing registers
saved and restored by the current procedure

• Argument home area: if allocated, a region of memory used by the called
process to assemble the arguments passed in registers adjacent to the
arguments passed in memory. This allows all arguments to be addressed
as a contiguous array. The argument home area is also used to store
arguments passed in registers if an address for such an argument is
required.

• Arguments passed in memory

6.1.4 Unbound Routines
The frame pointer of calling routines is stored in an implementation-defined
register. If, however, you declare a routine with the UNBOUND attribute, the
system does not assume that the frame pointer of the calling routine is stored
in a register and there is no link between the calling and the called routines.
As a result, an unbound routine has the following restrictions:

• It cannot access automatic variables declared in enclosing blocks.

• It cannot call bound routines declared in enclosing blocks.

• It cannot use a GOTO statement to transfer control to enclosing blocks
other than the main program block.

Calling Conventions 6–3

By default, routines declared at program or module level and all other routines
declared with the INITIALIZE, GLOBAL, or EXTERNAL attributes have the
characteristics of unbound routines. Routines passed by the immediate value
mechanism must be UNBOUND.

For More Information:

• On attributes (Compaq Pascal Language Reference Manual)

• On the immediate value mechanism (Section 6.3.1)

6.2 Parameter-Passing Semantics
Parameter-passing semantics describe how parameters behave when passed
between the calling and called routine. Compaq Pascal passes parameter
values by the following methods:

• Value passing semantics (Standard)

• Variable passing semantics (Standard)

• Foreign passing semantics (Compaq Pascal extension)

By default, Compaq Pascal passes arguments using value semantics.

For More Information:

• On value, variable, and foreign semantics (Compaq Pascal Language
Reference Manual)

6.3 Parameter-Passing Mechanisms
The way in which an argument specifies how the actual data to be passed
by the called routine is defined by the parameter-passing mechanism. In
compliance with the Tru64 UNIX Calling Standard, Compaq Pascal supports
the basic parameter-passing mechanisms, shown in Table 6–1.

Table 6–1 Parameter-Passing Mechanisms Systems

Mechanism Description

By immediate value The argument contains the value of the data item.

By reference The argument contains the address of the data to be used
by the routine.

(continued on next page)

6–4 Calling Conventions

Table 6–1 (Cont.) Parameter-Passing Mechanisms Systems

Mechanism Description

By descriptor The argument contains the address of a descriptor, which
describes type of the data and its location.

By default, Compaq Pascal uses the by reference mechanism to pass all
actual parameters except those that correspond to conformant parameters
and undiscriminated schema parameters, in which case the by descriptor
mechanism is used. Table 6–2 describes the method you use in Compaq Pascal
to obtain the desired parameter-passing mechanism.

Table 6–2 Parameter-Passing Methods

Mechanism Methods Used by Compaq Pascal

By immediate value %IMMED or [IMMEDIATE]

By reference Default for nonconformant and nonschema parameters or
%REF

By descriptor Default for conformant and schema parameters or %DESCR,
%STDESCR, [CLASS_S], or [CLASS_NCA]

A mechanism specifier usually appears before the name of a formal parameter,
or if a passing attribute is used it appears in the attribute list of the formal
parameter. However, in Compaq Pascal, a mechanism specifier can also appear
before the name of an actual parameter. In the latter case, the specifier
overrides the type, passing semantics, passing mechanism, and the number of
formal parameters specified in the formal parameter declaration.

For More Information:

• On passing mechanisms and passing semantics (Section 6.3)

6.3.1 By Immediate Value Passing Mechanism
The by immediate value passing mechanism passes a copy of a value instead
of the address. Compaq Pascal provides the %IMMED foreign passing
mechanism and the IMMEDIATE attribute in order to pass a parameter
by immediate value. You cannot use variable semantics with the by immediate
value passing mechanism.

On Tru64 UNIX systems, scalars, floating points, records, and sets that are
less than or equal to 64 bits can be passed by immediate value.

Calling Conventions 6–5

6.3.2 By Reference Passing Mechanism
The by reference passing mechanism passes the address of the parameter
to the called routine. This is default parameter-passing mechanism for
non-conformant and non-schematic parameters.

When using the by reference mechanism, the type of passing semantics used
depends on the use of the VAR keyword. If the formal parameter name is
preceded by the reserved word VAR, variable semantics is used; otherwise,
value semantics is used.

In addition to using the defaults, the Compaq Pascal compiler provides the
%REF foreign passing mechanism and the REFERENCE attribute, which
has more than one interpretation for the passing semantics depending on
the data item represented by the actual parameter. This allows you to have
the called routine use either variable semantics or true foreign semantics.
The mechanism specifier appears before the name of a formal parameter.
The parameter passing attribute appears in the attribute list of the formal
parameter.

6.3.3 By Descriptor Passing Mechanism
The by descriptor passing mechanism passes the address of a data structure
called a descriptor. Descriptors are used to describe parameters that could not
be passed with just an address. Descriptors hold additional information such
as lower and upper bounds, sizes of intermediate dimensions, etc. Compaq
Pascal uses the by descriptor mechanism for conformant and schematic
parameters.

Compaq Pascal provides the [CLASS_S] and [CLASS_NCA] attribute for the
by descriptor mechanism. With this attribute, the type of passing semantics
used for the by descriptor argument depends on the use of the VAR keyword.
If the formal parameter name is preceded by the reserved word VAR, variable
semantics is used; otherwise, value semantics is used. The [CLASS_S] or
[CLASS_NCA] attribute appears in the attribute list of the formal parameters.

Sometimes you may want to choose either variable semantics or true foreign
semantics. In these cases, the Compaq Pascal compiler provides the two
foreign passing mechanism specifiers, %DESCR and %STDESCR. These
specifiers have more than one interpretation for the passing semantics
depending on the data type of the actual parameter. The mechanism specifier
appears before the name of a formal parameter.

6–6 Calling Conventions

For conformant array parameters without the [CLASS_S] attribute, the
descriptor looks like:

struct {
long pointer-to-data
long total-data-size
long element-size
long pointer-to-virtual-base (aka, A[0] pointer)
long dim-1-lower-bound
long dim-1-upper-bound
long dim-1-stride

with the last 3 long fields repeated for any additional dimensions

For conformant array parameters with a [CLASS_S] attribute, the descriptor
looks like:

struct {
long pointer-to-data
long data-size
}

For conformant variable parameters, the descriptor looks like:

struct {
long pointer-to-varying-data
long maximum-length
}

The descriptors used for schematic parameters are Pascal-specific and
undocumented.

6.4 Passing Parameters Between Compaq Pascal and Other
Languages

Passing parameters between Compaq Pascal and other languages on Tru64
UNIX systems requires some additional knowledge about the semantics and
mechanisms used by the Compaq Pascal and the other compilers involved.

6.4.1 Parameter Mechanisms Versus Parameter Semantics
The Pascal language provides three parameter semantics, "VAR parameters",
"value parameters", and "routine parameters". These models define what
happens to the parameters, not how the compiler actually implements them.
"VAR parameters" are parameters that represent the actual variable passed
to the routine. Changes made to the VAR parameter are reflected back to the
actual variable passed in to the routine. "Value parameters" are parameters
that are local copies of the expression passed into the routine. Changes made
to the value parameter are not reflected back to any actual parameter passed

Calling Conventions 6–7

in to the routine. "Routine parameters" are parameters that represent entire
routines that may be called from inside the called routine.

The Compaq Pascal compiler provides three parameter mechanisms, "by
immediate value", "by reference", and "by descriptor". These forms represent
the actual implementation used by the compiler for the parameter. These
forms are denoted by the [IMMEDIATE], [CLASS_S], and [CLASS_NCA]
attributes (note, the [REFERENCE] attribute doesn’t just specify a parameter
mechanism, but also specifies a parameter semantic model).

Compaq Pascal also provides a fourth parameter model called "foreign
parameters". These parameters become either VAR or value parameters
depending on the actual parameter. If the actual parameter is a variable,
then the parameter is treated as a VAR parameter. If the actual parameter
is an expression, then the parameter is treated as a value parameter. These
parameters are denoted by the %REF, %DESCR, and %STDESCR foreign
mechanism specifiers and the [REFERENCE] attribute (identical in behavior
to the %REF foreign parameter specifier).

Be careful not to confuse the term "value parameter" with the "by immediate
value" mechanism. The "value" in "value parameter" describes the semantics of
the parameter where changes made to the parameter inside the called routine
are not reflected back to the actual parameter. It is a common misconception
that Compaq Pascal uses the "by immediate value" mechanism for "value
parameters."

6.4.2 Passing Non-Routine Parameters Between Compaq Pascal and
Other Languages

By default, Compaq Pascal will use the "by reference" mechanism for the
following VAR and value parameter types: Ordinal (integer, unsigned, char,
Boolean, pointers, subranges, and enumerated types), Real (real, double,
quadruple), Record, Array, Set, Varying, and File.

If you want to pass a parameter with the "by immediate value" mechanism,
you can place the [IMMEDIATE] attribute on the definition of the formal
parameter’s definition or use the %IMMED foreign mechanism specifier
on the actual parameter to override the default mechanism of the formal
parameter. Only ordinal and real types may be passed with the "by immediate
value" mechanism. Only value parameters may use the "by immediate value"
mechanism.

If you want to accept a value parameter with the "by immediate value", you can
place the [IMMEDIATE] attribute on the definition of the formal parameter.
Only ordinal and real types may be accepted with the "by immediate value"
mechanism.

6–8 Calling Conventions

For example, to pass an integer with the "by immediate value" mechanisn to
another routine,

[external] procedure rtn(p : [immediate] integer); external;

begin
rtn(3);
rtn(some-integer-expression);
end;

If you want to pass a parameter with the "by descriptor" mechanism, you can
place the [CLASS_S], or [CLASS_NCA] attributes on the formal parameter’s
definition. You can also use the %DESCR and %STDESCR foreign mechanism
specifiers, but be aware that these also imply parameter semantics as well as
the parameter-passing mechanism.

When passing values to a subrange parameter in a Pascal routine, the
argument must be large enough to hold a value of the subrange’s base-type
even if the formal parameter contained a size attribute.

When passing Boolean or enumerated-type values to a VAR parameter in a
Pascal routine, the calling routine must ensure that the sizes of the Boolean
or enumerated-type matches the setting of the -enumeration_size option
qualifier or [ENUMERATION_SIZE] attribute used in the Pascal routine. For
value parameters, you can pass the address of a longword as that will work for
either setting.

When passing arrays or records to a Pascal routine, the calling routine must
ensure that the array and record has the same layout (including any alignment
holes) as chosen by the Compaq Pascal compiler. You may want to use the -
show structure_layout listing section to help you determine the layout chosen
by the Compaq Pascal compiler.

By default, Compaq Pascal will use the "by descriptor" mechanism for VAR and
value conformant parameters.

For More Information

• On by descriptor mechanism (Section 6.3.3)

Using a conformant-varying parameter or STRING schema parameter with
a routine not written in Pascal is not very common since the called routine
does not know how to deal with these strings. If you just are passing a string
expression to the non-Pascal routine, using a conformant PACKED ARRAY OF
CHAR is the right solution.

Since Compaq Pascal will use either a descriptor for the conformant PACKED
ARRAY OF CHAR, but other languages will expect either the string "by
reference", you will need to use the %REF foreign mechanism specifier.

Calling Conventions 6–9

To pass a string expression to C (which expects a "by-reference" parameter and
a null-terminated string),

[external] procedure crtn(
%ref p : packed array [l..u:integer] of char); external;

begin
crtn(’string’(0));
crtn(some-string-expression+’0’);
end;

Compaq Pascal on Tru64 UNIX systems has additional support to deal with
null-terminated strings.

For More Information

• Compaq Pascal Language Reference Manual

When passing strings to a Compaq Pascal routine from another language,
you must use a descriptor if the Pascal formal parameter is a conformant
parameter. Compaq Pascal cannot accept a conformant parameter with the "by
reference" mechanism.

If you wish to use the "by reference" mechanism to pass strings into a Pascal
routine, you must define a Pascal datatype that represents a fixed-length string
(or varying-string with a maximum size) and use that datatype in the formal
parameter definition.

The Compaq Pascal schema type STRING is passed by descriptor. Other
Compaq Pascal schema types use private data structures when passed between
routines and cannot be accessed from routines written in other languages.

6.4.3 Passing Routine Parameters Between Compaq Pascal and Other
Languages

By default, Compaq Pascal on Tru64 UNIX passes the address of a procedure
descriptor for PROCEDURE or FUNCTION parameters. The presence of the
[UNBOUND] attribute or the %IMMED foreign mechanism specifier has no
effect over the generated code since the procedure descriptors in the Tru64
UNIX Calling Standard allow any combination of bound and unbound routines
to be passed around and invoked.

On Tru64 UNIX, Compaq Pascal expects the address of a procedure descriptor
for routine parameters. In all Alpha languages, asking for the address of a
routine, yields the address of its procedure descriptor since the actual address
of the instructions is not useful by itself.

6–10 Calling Conventions

6.5 Calling C Routines from Compaq Pascal
One method you can use to pass strings from Pascal to C routines is the null-
terminated string support routine described in Section 6.4.2. Another method
is the existing Pascal mechanisms and decode the Pascal-specific descriptor
passed to the C routines. A summary of the calling sequences used by Pascal
for various parameters is shown in the following list. Note that for parameters
passed with value semantics, the compiler assumes that any data pointed to by
the argument list or descriptors is not modified by the called routine.

• For non-conformant parameters (both VAR and value semantics), a pointer
to the variable (or expression) is passed. Compaq Pascal does not pass any
arguments by "immediate value" by default. If you want this behavior, you
can place the [IMMEDIATE] attribute on the formal parameter definition
or use the %IMMED foreign mechanism specifier on the actual parameter.

• For conformant array parameters without a CLASS_S attribute (both VAR
and value semantics), a pointer to a Pascal-specific descriptor is passed.
The descriptor can be constructed as follows:

struct {
long pointer-to-data
long total-data-size
long element-size
long pointer-to-virtual-base (aka, A[0] pointer)
long dim-1-lower-bound
long dim-1-upper-bound
long dim-1-stride
}

The last three longs can be repeated for any additional dimensions.

• For conformant array parameters with a CLASS_S attribute (both VAR
and value semantics), a pointer to a Pascal-specific descriptor is passed.
The descriptor can be constructed as follows:

struct {
long pointer-to-data
long data-size
}

Calling Conventions 6–11

• For conformant varying parameters (both VAR and value semantics), a
pointer to a Pascal-specific descriptor is passed. The descriptor can be
constructed as follows:

struct {
long pointer-to-varying-data
long maximum-length
}

6–12 Calling Conventions

7
Error Processing and Condition Handling

An exception condition is an event, usually an error, that occurs during
program execution and is detected by system hardware or software or the logic
in a user application program. A condition handler is a routine that is used
to resolve exception conditions.

This chapter discusses the following topics:

• Condition handling terms (Section 7.1)

• Overview of condition handling (Section 7.2)

• Writing condition handlers (Section 7.3)

• Examples of condition handlers (Section 7.4)

7.1 Condition Handling Terms
The following terms are used in the discussion of condition handling:

• Condition value—An integer value that identifies a specific condition.

• Stack frame—A standard data structure built on the stack during a routine
call, starting from the location addressed by the frame pointer (FP) and
proceeding to both higher and lower addresses; it is popped off the stack
during the return from a routine.

Error Processing and Condition Handling 7–1

• Routine activation—The environment in which a routine executes. This
environment includes a unique stack frame on the run-time stack; the
stack frame contains the address of a condition handler for the routine
activation. A new routine activation is created every time a routine is
called and is deleted when control passes from the routine.

• Establish—The process of placing the address of a condition handler
in the stack frame of the current routine activation. A condition handler
established for a routine activation is automatically called when a condition
occurs. In Compaq Pascal, condition handlers are established by means
of the predeclared procedure ESTABLISH. A routine that establishes a
condition handler is known as an establisher.

• Signal—The means by which the occurrence of an exception condition is
made known. Signals are generated by the operating system in response to
I/O events and hardware errors, by the system-supplied library routines,
and by user routines. All signals are initiated by a call to the signaling
facility, for which there are two entry points:

• Resignal—The means by which a condition handler indicates that the
signaling facility is to continue searching for a condition handler to process
a previously signaled error. To resignal, a condition handler returns the
value ExceptionContinueSearch defined in /usr/include/excpt.pas.

• Unwind—The return of control to a particular routine activation, bypassing
any intermediate routine activations. For example, if X calls Y, and Y calls
Z, and Z detects an error, then a condition handler associated with X or Y
can unwind to X, bypassing Y. Control returns to X immediately following
the point at which X called Y.

7.2 Overview of Condition Handling
To support the ESTABLISH and REVERT builtins, non-local GOTOs, and
to signal and print run-time error messages, the Compaq Pascal run-time
library (libpas) uses the stack-based exception handling mechanism. See man
exception_intro for more information.

At the beginning of any program that uses the Pascal run-time library, the
library does the following:

1. Registers the EXC_Raise_Signal_Exception routine as a signal handler for
the SIGTRAP and SIGFPE signals using sigaction().

2. Registers a private last-chance handler with EXC_Set_Last_Chance_
Handler().

7–2 Error Processing and Condition Handling

If your program registers its own signal handlers for SIGTRAP or SIGFPE,
or registers a different last-chance handler, then errors signaled at run time
might not produce the expected run-time messages, and language handlers
might not be called to handle the error. Other language features, such as
non-local GOTOs, should continue to work as expected. In addition, the special
last-chance handler is used only when the main program is not written in
Pascal.

7.2.1 Condition Signals
A condition signal consists of a call to exc_raise_exception. This entry point
and data structure can be included from /usr/include/excpt.pas.

If a condition occurs in a routine that is not prepared to handle it, a signal
is issued to notify other active routines. If the nature of the condition does
not allow the current routine to continue, you should set the EXCEPTION_
NONCONTINUABLE flag in the exception record.

7.2.2 Handler Responses
A condition handler responds to an exception condition by taking action in
three major areas:

• Condition correction

• Condition reporting

• Execution control

The handler first determines whether the condition can be corrected. If so, it
takes the appropriate action and execution continues. If the handler cannot
correct the condition, the condition may be resignaled; that is, the handler
requests that another condition handler be sought to process the condition.

A handler’s condition reporting can involve one or more of the following actions:

• Maintaining a count of exceptions encountered during program execution

• Resignaling the same condition to send the appropriate message to the
output file

Error Processing and Condition Handling 7–3

• Signaling a different condition, for example, the production of a message
designed for a specific application

A handler can control execution in several ways:

• By doing a nonlocal GOTO operation (see Section 7.4, Example 5).

• By unwinding to the establisher at the point of the call that resulted in the
exception. The handler can then determine the function value returned by
the called routine.

• By unwinding to the establisher’s caller (the routine that called the routine
which established the handler). The handler can then determine the
function value returned by the called routine.

7.3 Writing Condition Handlers
The following sections describe how to write and establish condition handlers
and provide some simple examples.

7.3.1 Establishing and Removing Handlers
To use a condition handler, you must first declare the handler as a routine in
the declaration section of your program; then, within the executable section,
you must call the predeclared procedure ESTABLISH. The ESTABLISH
procedure sets up a Compaq Pascal language-specific condition handler that in
turn allows your handler to be called. User-written condition handlers set up
by ESTABLISH must have the ASYNCHRONOUS attribute and two integer
array formal parameters. Such routines can access only local, read-only, and
volatile variables, and local, predeclared, and asynchronous routines.

Because condition handlers are asynchronous, any attempt to access a non-
read-only or nonvolatile variable declared in an enclosing block will result
in a warning message. The predeclared file variables INPUT and OUTPUT
are such nonvolatile variables; therefore, simultaneous access to these files
from both an ordinary program and from an asynchronous condition handler’s
activation may have undefined results. The following steps outline the
recommended method for performing I/O operations from a condition handler:

1. Declare a file with the VOLATILE attribute at program level.

2. Open this file to refer to INPUT, OUTPUT, or another appropriate file.

3. Use this file in the condition handler.

External routines (including system services) that are called by a condition
handler require the ASYNCHRONOUS attribute in their declaration.

7–4 Error Processing and Condition Handling

The following example shows how to establish a condition handler using the
Compaq Pascal procedure ESTABLISH:

[EXTERNAL,ASYNCHRONOUS] FUNCTION Handler
(VAR ERecord : System_Exrec_Type;

EFrame : INTEGER_ADDRESS;
VAR EContext : Sigcontext;
VAR DContest : Dispatcher_Context);

INTEGER64;
EXTERN;
.
.
.

ESTABLISH (Handler);

To establish the handler, call the ESTABLISH procedure, as follows:

ESTABLISH(Handler);

To remove an established handler, call the predeclared procedure REVERT, as
follows:

REVERT;

As a result of this call, the condition handler established in the current stack
frame is removed. When control passes from a routine, any condition handler
established during the routine’s activation is automatically removed.

7.3.2 Declaring Parameters for Condition Handlers
A Compaq Pascal condition handler on Tru64 UNIX systems is a function
returning an INTEGER64 value and has 4 parameters. The four parameters
are:

• ExceptionRecord - the address of the primary exception record. (see /usr
/include/excpt.h)

• EstablisherFrame - the virtual frame pointer of the establisher

• ContextRecord - the address of an invocation context block containing the
saved original context at the point where the exception occurred. During
an unwind, this is the address of the invocation context block for the
establisher. (see /usr/include/signal.h)

• DispatcherContext - the address of a control record for the exception
dispatcher. (see /usr/include/excpt.h)

For your convenience, an include file containing Pascal-equivalent portions of
excpt.h, signal.h and psdc.h has been provided in /usr/include/excpt.pas. You
can use this include file when writing condition handlers in Compaq Pascal on
Tru64 UNIX Systems.

Error Processing and Condition Handling 7–5

7.3.3 Handler Function Return Values
Condition handlers are functions that return values to control subsequent
execution. These values and their effects are listed as follows:

Value Effect

ExceptionContinueExecution Continues execution from the signal. If the signal
has the EXCEPTION_NOCONTINUABLE flag set,
the program does not continue, but exits.

ExceptionContinueSearch Resignals to continue the search for a condition
handler to process the condition.

In addition, a condition handler can request a stack unwind by calling the
EXC_VIRTUAL_UNWIND or EXC_UNWIND system service routines. For
example:

7.4 Example of a Condition Handler
The following is an example of a condition handler on a Tru64 UNIX system.

program foo(input,output);
label 1;

var i : integer;
s : interger;

CONST
%include ’pasdef.pas’

%include ’excpt.pas’
[asynchronous]
function user_handler(

VAR ExceptionRecord : System_Exrec_Type;
EstablisherFrame : INTEGER_ADDRESS;

VAR ContextRecord : Sigcontext;
VAR DispatcherContext : Dispatcher_Context) : interger64;
var f : text;

CtxRecord :Sigcontext;
Callers_PC : integer64;

begin
if UAND(ExceptionRecord.ExceptionFlags,EXCEPTION_UNWINDING) <> 0
then

{ unwind in progress. Do cleanup (if any) and continue search }
return ExceptionContinueSearch;

open(f,’OUTPUT’,history :=new);
rewrite(f);
writeln(f,’In HANDLER with ’,ExceptionRecord.ExceptionCodeNumber:1);
case ExceptionRecord.ExceptionCodeNumber of

7–6 Error Processing and Condition Handling

pas$_invsynint: { Invalid syntax for integer, continue }
user_handler := ExceptionContinueExecution;

pas$_invsynint: {Invalid syntax for integer, continue }
user_handler := ExceptionContinueExecution;

pas$subasgval: { Subrange assignment out of range, do a non-local GOTO }
goto 1;

otherwise
user_handler :=ExceptionContinueSearch;
end;
end;

procedure process_data;
var i : integer;
begin
establish(user_handler);
readln(i);
writeln(i);
end;

begin
writeln(’Calling process_data’);
process_data;
1:
writeln(’Return from process data’);
end.

Error Processing and Condition Handling 7–7

8
Migrating from OpenVMS to Tru64 UNIX

Systems

The following sections describe issues that affect Compaq Pascal programs
being moved from OpenVMS systems to Tru64 UNIX systems.

8.1 Sharing Environment Files Across Platforms
The compiler can only inherit environment files created from a compiler for
the same target platform. For example, you cannot inherit environment files
generated on an OpenVMS VAX system with the Compaq Pascal for Tru64
UNIX compiler.

8.2 Default Size for Enumerated Types and Booleans
On both Tru64 UNIX and OpenVMS Alpha systems, the default size for
enumerations and Booleans in unpacked structures is longword. On OpenVMS
VAX systems, the default is a byte for Booleans and small enumerations or
word for larger enumerations.

If you need the OpenVMS VAX behavior on Tru64 UNIX systems, you can:

• Use the -enumeration_size byte command qualifier

• Use the [ENUMERATION_SIZE(BYTE)] attribute

• Place individual [BYTE] or [WORD] attributes on the affected fields or
components.

8.3 Default Data Layout for Unpacked Arrays and Records
On both Tru64 UNIX and OpenVMS Alpha, the default data layout is natural
alignment. This means that record fields and array components are aligned
on boundaries based on their size. For example, INTEGER on longword
boundaries, and INTEGER64 on quadword boundaries.

Migrating from OpenVMS to Tru64 UNIX Systems 8–1

On OpenVMS VAX systems, the default alignment rule is to allocate such fields
on the next byte boundary. If you need the OpenVMS VAX behavior on Tru64
UNIX systems, you can use one of the following:

• -align vax command option

• [ALIGN(VAX)] attribute

8.4 IADDRESS and VOLATILE
The IADDRESS built-in assumes that its parameter is one of the following:

• VOLATILE variable

• VOLATILE parameter

• Routine entry point

Unlike the ADDRESS built-in, the IADDRESS built-in does not issue a
warning if the parameter does not have the VOLATILE attribute.

On both Tru64 UNIX and OpenVMS Alpha, the Compaq Pascal compiler often
allocates variables so that they exist for the entire routine in which they were
declared. In these situations, use the IADDRESS built-in to obtain the address
of the variable. The address is passed to a system service through an item list
or something similar.

On Tru64 UNIX systems, the Compaq Pascal compiler is more aggressive
with optimizing data layout on the stack. In the absence of a VOLATILE
attribute, the compiler allocates variables for the smallest possible duration. If
the address is taken with IADDRESS, by the time the address is written into
by a library routine, the variable may no longer exist and the memory store
would corrupt another variable.

If the IADDRESS built-in is used on automatic variables or parameters, then
the VOLATILE attribute must be used to ensure proper behavior.

8.5 Overflow Checking
When overflow checking is enabled on Tru64 UNIX, the INT built-in signals a
run-time error if its actual parameter cannot be represented as an INTEGER32
value.

If you have a large unsigned value that you wish to convert to a negative
integer, you must use a typecast to perform the operation.

8–2 Migrating from OpenVMS to Tru64 UNIX Systems

8.6 Bound Procedure Values
On OpenVMS VAX systems, a Bound Procedure Value is a 2-longword data
structure holding the address of the entry point and a frame-pointer to define
the nested environment. Compaq Pascal expects one of these 2-longword
structures for PROCEDURE or FUNCTION parameters.

A routine not written in Pascal needs different code depending on whether it
will receive a Bound Procedure Value versus a simple routine address. When
passing routines to %IMMED formal routine parameters, Compaq Pascal
passes the address of the entry point; otherwise, it passes the address of a
Bound Procedure Value.

On both Tru64 UNIX and OpenVMS Alpha systems, a Bound Procedure
Value is a special type of procedure descriptor that invokes a hidden jacket
routine that initializes the frame-pointer and calls the real routine. Given this
structure, a routine that is calling another routine indirectly does not need to
do anything special for Bound Procedure Values.

When passing routines to %IMMED formal routine parameters, (or asking for
the IADDRESS of a routine) Compaq Pascal passes the address of a procedure
descriptor as if the %IMMED was not present. There is no direct way in
Compaq Pascal to obtain the actual code address of a routine since, it is not
generally useful without the associated procedure descriptor.

8.7 Argument List Functions
The Tru64 UNIX calling standard does not have an architected method
for determining an argument count. The following built-in routines are not
supported on Tru64 UNIX systems:

• ARGUMENT

• ARGUMENT_LIST_LENGTH

• PRESENT

The [TRUNCATE] attribute is not supported, and the [LIST] attribute can only
be used on external routine definitions.

8.8 %DICTIONARY Directive
The %DICTIONARY directive is not supported on Tru64 UNIX systems.

Migrating from OpenVMS to Tru64 UNIX Systems 8–3

8.9 VAX Floating Datatypes
The following VAX floating datatypes are not supported on Tru64 UNIX
systems:

• F_FLOAT

• G_FLOAT

• D_FLOAT

• H_FLOAT

The IEEE_FLOAT option to the [FLOAT()] attribute is supported.

8.10 Relative and Indexed Files
The following keywords on the OPEN and CLOSE statement are not supported
on Tru64 UNIX systems:

• DEFAULT

• DISPOSITION := PRINT

• PRINT_DELETE

• SUBMIT

• SUBMIT_DELETE

• SHARING

• USER_ACTION

• RECORD_TYPE := STREAM or STEAM_CR

The following built-in routines are not supported:

• DELETE

• FIND

• FINDK

• LOCATE

• RESETK

• UPDATE

• UNLOCK

8–4 Migrating from OpenVMS to Tru64 UNIX Systems

8.11 Data Layout and Conversion
On Alpha systems (and to a lesser extent VAX systems), the layout of data can
severely impact performance. The Alpha architecture and the current Alpha
systems have strong preferences about data alignment and size.

The Compaq Pascal compiler has several features to enable you to write Pascal
code that will get the best performance on the target system.

The remainder of this section describes the different types of record layouts,
Compaq Pascal features that support them, how to get the best performance
with your data structures, and how to convert existing code for better
performance.

This section focuses on records, but arrays also have similar properties. In
almost all cases, where record fields are discussed, you can substitute array
components.

If you are converting from OpenVMS Alpha to Tru64 UNIX, you may have
already dealt with most of the alignment and datatype issues.

8.11.1 Natural Alignment, VAX Alignment, and Enumeration Sizes
The compiler has the ability to lay out records in two ways:

• OpenVMS VAX alignment

Fields and components less than or equal to 32 bits are allocated on the
next available bit; otherwise they are allocated on the next available byte.

• Natural alignment where an object is aligned based on its size

Essentially fields and components are allocated on the next naturally
aligned address for their data type. For example:

8-bit character strings should start on byte boundaries

16-bit integers should start at addresses that are a multiple of 2 bytes
(word alignment)

32-bit integers and single-precision real numbers should start at addresses
that are a multiple of 4 bytes (longword alignment)

64-bit integers and double-precision real numbers should start at addresses
that are a multiple of 8 bytes (quadword alignment)

For aggregates such as arrays and records, the data type to be considered for
purposes of alignment is not the aggregate itself, but rather the elements of
which the aggregate is composed. Varying 8-bit character strings must, for
example, start at addresses that are a multiple of 2 bytes (word alignment)
because of the 16-bit count at the beginning of the string. For records, the size

Migrating from OpenVMS to Tru64 UNIX Systems 8–5

is rounded up to a multiple of their natural alignment (a record with natural
alignment of longword has a size that is a multiple of longwords, for example).

The OpenVMS VAX and naturally aligned record formats are fully documented
in the OpenVMS Calling Standard. The Tru64 UNIX Calling Standard also
documents the naturally aligned record format.

The size as well as the alignment of record fields and array components can
affect performance. For example, accessing a byte or word on an Alpha system
requires more instructions than accessing a naturally aligned longword. On
Alpha systems, Compaq Pascal uses larger allocation for unpacked Booleans
and enumeration types to help performance, as shown in Table 8–1

Table 8–1 Unpacked Sizes of Fields and Components

Datatype Unpacked Size on VAX Unpacked Size on Alpha

Boolean 1 byte 4 bytes

Enumerated types 1 or 2 bytes 4 bytes

For compatibility reasons, the size of all data types in PACKED records and
arrays are the same for both VAX and natural alignment formats.

8.11.2 Compaq Pascal Features Affecting Data Alignment and Size
The Compaq Pascal for Tru64 UNIX compiler has the following command line
options:

• -align keyword, where keyword is either alpha_axp or vax

• -enumeration_size keyword, where keyword is either byte or long

The -align option controls the default record format used by the compiler. The
-enumeration_size option controls whether the compiler allocates Boolean and
enumeration types as longwords or as 1 or 2 bytes.

On VAX systems, the default alignment format is "VAX" and the default
enumeration size is "BYTE". On Alpha systems, the default alignment format
is "ALPHA_AXP" and the default enumeration size is "LONG".

A corresponding pair of attributes can be used at the PROGRAM/MODULE
level and on VAR and TYPE sections to specify the desired alignment format
and enumeration size:

• ALIGN(keyword), where keyword is either ALPHA_AXP or VAX

• ENUMERATION_SIZE(keyword), where keyword is either BYTE or LONG

8–6 Migrating from OpenVMS to Tru64 UNIX Systems

By using these attributes at the MODULE level, you can extract the records
into a separate module and create an environment file with the desired
alignment format. By using these attributes on VAR or TYPE sections, you can
isolate the records in the same source file.

8.11.3 Optimal Record Layout
The optimal record layout is one where all the record’s fields are naturally
sized on naturally aligned boundaries and the overall record is as small as
possible (for example, the fewest number of padding bytes required for proper
alignment).

On Alpha systems, the compiler automatically places all fields of unpacked
records on naturally aligned boundaries. On VAX systems, you have to
explicitly ask for natural alignment by using either a DCL qualifier or the
corresponding attribute.

To allow the compiler to do this placement, you should refrain from using
explicit positioning and alignment attributes on record fields unless required
by your application. The keyword PACKED should be avoided in all cases
except:

• PACKED ARRAY OF CHARs require the PACKED keyword to be
manipulated as strings. Since chars are each 1 byte, using the PACKED
keyword does not hurt their performance in any way.

• PACKED SETs may perform better than unpacked SETs. For PACKED
SETs, the compiler can sometimes allocate fewer bits for the set field
or variable. These smaller sets can often be manipulated directly with
longword or quadword instructions, instead of using a generic run-time
library routine for larger sets.

Inside unpacked records, PACKED SET fields are no slower than unpacked
SET fields. The same holds true for variables of PACKED SETs. PACKED
SETs of size 32 or 64 bits are the best performing set types; otherwise a
multiple of 8 bits improves performance to a lesser degree.

You may still need to use PACKED if you rely on the record for compatability
with binary data files or when assuming that types like PACKED ARRAY OF
BOOLEAN are implemented as bit strings.

While the compiler can position record fields at natural boundaries, it cannot
minimize the alignment bytes that are required between fields. The calling
standard requires the compiler to allocate record fields in the same lexical
order that they appear in the source file. For example:

Migrating from OpenVMS to Tru64 UNIX Systems 8–7

type t1 = record
f1 : char;
f2 : integer;
f3 : char;
f4 : integer;
end;

The size of this record is 16 bytes:

• F1 is a byte field, followed by 3 padding bytes to position F2 at a longword
boundary

• F2 is 4 bytes

• F3 is a single byte, followed by 3 more padding bytes to position F4 at a
longword boundary

• F4 is 4 bytes

The optimal layout would be:

type t2 = record
f1,f2 : integer;
f3,f4 : char;
end;

The size of this record is only 12 bytes:

• F1 and F2 are placed on adjacent longword boundaries

• F3 and F4 can immediately follow, since they can appear on any byte
boundary, they in turn are followed by 2 padding bytes to round the size of
the record up to a multiple of its natural alignment of longword.

To achieve the fewest alignment bytes, you should place larger fields at the
beginning of the record and smaller fields at the end. If you have record fields
of schema types that have run-time size, you should place those at the very
end of the record, since their offset requires run-time computation.

You can get the optimal record layout by:

• Avoiding the PACKED keyword except for PACKED ARRAY OF CHARs
and possibly PACKED SETs

• Avoiding explicit POS or ALIGNED attributes

• Placing larger fields before smaller fields

• Placing fixed-size fields before run-time sized fields

8–8 Migrating from OpenVMS to Tru64 UNIX Systems

8.11.4 Optimal Data Size
Data items that are smaller than 32-bits may impose a performance penalty,
due to the additional instructions required to access them. The compiler will
attempt to reorder loads and stores that manip adjacent items smaller than
32-bits to minimize the number of memory references required.

For performance reasons, the compiler on Alpha systems will allocate Boolean
and enumerated types as longwords in unpacked records or arrays. On VAX
systems, you have to explicitly request this with a DCL qualifier or the
corresponding attribute.

You should avoid any explicit size attributes on subrange types. While it is
true that [BYTE] 0..255 is smaller than 0..255 (which would allocate 4 bytes,
since it is a subrange of INTEGER), the additional overhead of accessing the
byte-sized subrange might be than the extra 3 bytes of storage. Using the BIT
attribute on subranges is even less effective in terms of the extra instructions
required to manipulate a 13-bit integer subrange inside a record. Use these
attributes only where needed.

8.11.5 Converting Existing Records
When moving code from an OpenVMS VAX system to an Alpha system, you
probably want to make sure that you are getting the best performance from
your Alpha system. To do that, you must use natural alignment on your record
types.

8.11.6 Applications with No External Data Dependencies
If your application has no external data dependencies (such as no stored
binary data files, no binary data transmitted to some external device), then the
conversion is as simple as:

• Using the default natural alignment.

• Using the default enumeration size.

• Removing any uses of PACKED that are not needed.

• Removing any explicit positioning or size attributes that are not needed.

• Optionally reordering fields to place larger fields before smaller fields. This
does not make the record faster, but does make it smaller.

Depending on your datatypes, the removal of any PACKED keywords or
attributes may make little improvement in performance. For example,
a PACKED ARRAY OF REAL is identical in size and performance to an
unpacked ARRAY OF REAL.

Migrating from OpenVMS to Tru64 UNIX Systems 8–9

The Compaq Pascal compiler has two features to help you identify poorly
aligned records and how often they are used:

• The -usage performance command line option

This option causes the compiler to generate messages for declarations and
uses of record fields that are poorly aligned or poorly sized. For example:

program a;

type r = packed record
f1 : boolean;
f2 : integer;
end;

begin
end.

In this program the compiler can highlight the following:

unix> pc -usage performance test.pas
pascal: Info: test.pas, line 4: Component is not optimally size

f1 : boolean;
.........^
pascal: Info: test.pas, line 5: Component is not optimally aligned

f2 : integer;
.........^
pascal: Success: pascal completed with 2 diagnostics

In this example, the size of the Boolean field in the PACKED ARRAY
is only 1 bit. Single bit fields require additional instructions to process.
The integer field is not aligned on a well-aligned boundary for the target
system. The -usage performance option gives performance information
customized to the target system. For example, on an OpenVMS VAX
system, INTEGERs need only be aligned on a byte boundary for "good"
performance; on an Alpha system, INTEGERs should be on a longword
boundary.

• The -show structure_layout command line option.

This option causes the compiler to generate a structure layout summary in
the listing file.

This summary gives size and offset information about variables, types,
and fields. It also flags the same information as the -usage performance
command line option.

For example, compiling the above program with the following command
produces the following in the listing file:

8–10 Migrating from OpenVMS to Tru64 UNIX Systems

$ pc -V -show structure_layout test.pas

Comments Offset Size
----------- ----------- -----------

5 Bytes R {In PROGRAM A} = PACKED RECORD
Size 0 Bytes 1 Bit F1 : BOOLEAN
Align 1 Bit 4 Bytes F2 : INTEGER

END

This output shows the size of the record "R" as well as the sizes and offsets
of the records fields. It also highlights any components that were poorly
sized or poorly aligned.

8.11.7 Applications with External Data Dependencies
If your application has external data dependencies, the process is more
involved, since you have to isolate and understand the dependencies.

Possible steps when porting the code include:

• Using the -align vax option

• Using the -enumeration_size byte qualifier

• Leaving the code exactly as is

This should produce the same behavior on the Alpha system as you had on
your OpenVMS VAX system, unless the external data contains floating point
data.

You then have to identify which records in your program have external data
dependencies. These include binary files (for example, FILE OF xxx), shared
memory sections with other programs, and binary information passed to a
library routine.

If the external data contains floating point data, you will have to explicity
convert the data using the cvt-ftof library routine found for the math library.

You can immediately begin to convert records without external data
dependencies into optimal format (for example, remove any unneeded PACKED
keywords and attributes as described earlier).

You need to classify records with external dependencies further into:

• Records that cannot be naturally aligned due to a hard dependency that
cannot be changed (like a record that maps onto an external piece of
hardware, or a record that is passed to some software you cannot change).

• Records that can be changed after conversion of binary data or cooperating
software.

Migrating from OpenVMS to Tru64 UNIX Systems 8–11

Isolate records that you cannot change into their own environment file by
using -align vax, -enumeration_size byte. You can also attach the ALIGN
and ENUMERATION_SIZE attributes to the TYPE or VAR sections that define
these records.

You do not need to isolate the record if it uses the PACKED keyword, since
PACKED records are identical regardless of the -align or -enumeration_size
options. Nevertheless, isolating the records with dependencies might useful in
the future if you eventually intend to change the format.

For records that you might change, you need to decide whether it is worthwhile
to convert the record and any external binary data. If the record is of low-
use and you have a large quantity of external data, the cost of conversion is
probably too high. If a record is of high-use but is mostly aligned, then the
conversion also may not be worthwhile. However, a high-use record that is
poorly aligned suggests conversion of external data regardless of the amount of
effort required.

There are two types of poorly aligned records:

• Records that use the PACKED keyword

PACKED records lay out the same with either setting of the -align or
-enumeration_size options. To get natural alignment, you must remove
the PACKED keyword. However, the keyword PACKED by itself does not
guarantee poor alignment. For example:

type t = packed record
f1,f2 : integer;
end;

This record is well aligned with or without the PACKED keyword. It is
also well aligned with -align alpha_axp and -align vax. You can remove
the PACKED keyword for completeness, but nothing else needs to be done.

• Unpacked records that lay out differently with -align alpha_axp and
-align vax

These records automatically are well-aligned by the compiler when
recompiled with -align alpha_axp. However, there are some unpacked
records are already well-aligned with both alignment formats. For
example:

type t = record
f1,f2 : integer;
end;

This unpacked record is well aligned with -align alpha_axp and -align
vax. Nothing else needs to be done to this record.

8–12 Migrating from OpenVMS to Tru64 UNIX Systems

The -usage performance and -show structure_layout options can be helpful
for identifying poorly aligned records.

For PACKED keywords, you can compile with and without the PACKED
keyword to see if the fields are positioned at the same offsets or not.

You have classified the records with external data dependencies into:

• Records that are well aligned with both alignment/enumeration formats

• Records that are poorly aligned, where conversion is not worthwhile

• Records that are poorly aligned, where conversion is worthwhile

For the well-aligned records, no additional work is needed now, but be aware
that you still have an external data dependency that might cause problems if
you add fields to the record in the future.

Isolate records that are not being converted into the same environment file or
into the TYPE or VAR sections where you placed the records that you could not
convert.

For records that are worth converting, you need to plan how to convert the
external binary data or cooperating software. For cooperating software, you
need to ensure that it gets modified so it views the record with the "natural"
layout. You can determine the layout by using the -show structure_layout
command line option described above. For binary data, you need to write a
conversion program.

Converting existing binary data involves writing a program that reads the
existing data into a poorly-aligned record, copies the data into a well aligned
record, and then writes out the new record.

A simple conversion program would look like:

program convert_it(oldfile,newfile);

[align(vax),enumeration_size(byte)]
type oldtype = packed record

{ Existing record fields }
end;

type newtype = record
{ Record fields reorganized for optimal alignment }
end;

Migrating from OpenVMS to Tru64 UNIX Systems 8–13

var oldfile = file of oldtype;
newfile = file of newtype;
oldvar : oldtype;

newvar : newtype;
begin
reset(oldfile);
rewrite(newfile);
while not eof(oldfile) do

begin
read(oldfile,oldvar);

{ For each field, sub-field, etc. move the data }
newvar.field1 := oldvar.field1;
newvar.field2 := oldvar.field2;

write(newfile,newtype);
end;

close(oldfile);
close(newfile);
end.

Notice the "type" keyword before the definition of the "newtype" type. Without
this keyword, "newtype" would be in the same type definition part as "oldtype"
and would be processed with the same ALIGN and ENUMERATION_SIZE
settings.

8–14 Migrating from OpenVMS to Tru64 UNIX Systems

9
Migrating from Pascal for RISC to Compaq

Pascal

If you are migrating software that was developed specifically for Pascal for
RISC on RISC/ULTRIX DECstations, there are differences in features on
Compaq Pascal that must be considered. These differences include run-time
sized types and variables, a true separate compilation mechanism, variable
length strings, compiler attributes (also known as pragmas), and more. You
should refer to the pertinent sections in the Compaq Pascal documentation set
for information about specific issues, but significant differences are discussed
in this chapter.

9.1 Pascal for RISC and Compaq Pascal Compile-Time
Differences

Table 9–1 lists differences you can see when you take a Pascal program that
was written for Pascal for RISC and compile it with Compaq Pascal for Tru64
UNIX.

Table 9–1 Pascal for RISC and Compaq Pascal Compile-Time Differences

Pascal for RISC Compaq Pascal

Independent compilation Independent compilation through
environment files1.

NULL statement Not supported

Syntax for modifying the default
alignment rules for record fields

Use POS and ALIGNED attributes1.

-apc to change default integer size to 16
bits

Default integer size cannot be changed.

1See Compaq Pascal Language Reference Manual for more information.

(continued on next page)

Migrating from Pascal for RISC to Compaq Pascal 9–1

Table 9–1 (Cont.) Pascal for RISC and Compaq Pascal Compile-Time
Differences

Pascal for RISC Compaq Pascal

Type conversion:
ALFA, BOOLEAN, CHAR, CARDINAL,
DOUBLE, INTEGER, INTEGER16,
INTEGER32, and REAL

Not supported

Max length of identifiers = 32 bits Max length of identifiers = 31 bits

Negative numbers allowed in SETs Positive numbers only allowed in SETs

<= 512 elements in an INTEGER or
CARDINAL set

<=255 elements in an INTEGER or
CARDINAL set.

Value of enumerated types written in
lower case.

Value of enumerated types written in upper
case.

Type CHAR is subrange 0..127 when
used as base-type.

Type CHAR is subrange 0..255 when used
as base-type.

-w
-stdansi
-stdiso

-nowarn
-std ansi
-std iso

-casesense Not supported. Mixed-case names are
provided on routine and variable names.

-j, -EB, -EL, -H_c, -#, -W_c,
-t, -B(string), -h(path),
-ko (output), -k, -S,
-Olimit(num)

Not supported

Further differences are listed as follows:

• Pascal for RISC has different default field widths than Compaq Pascal.

• Pascal for RISC and Compaq Pascal may flag different variables and
routines as uninitialized and unused because different algorithms are used
by the two compilers to ascertain this information.

• The Pascal for RISC definition and syntax for type-casting is different
from the Compaq Pascal definition for type-casting. See the Compaq
Pascal Language Reference Manual for more information in type-casting in
Compaq Pascal.

9–2 Migrating from Pascal for RISC to Compaq Pascal

9.2 Pascal for RISC and Compaq Pascal Run-Time
Differences

There are behavioral and implementation differences between Pascal for RISC
and Compaq Pascal. Table 9–2 lists the differences you can see at run time
when running code compiled by Compaq Pascal.

Table 9–2 Pascal for RISC and Compaq Pascal Run-Time Differences

Pascal for RISC Compaq Pascal

AND and OR are short-circuited AND_THEN and OR_ELSE are short-
circuited.

Determination of REAL / DOUBLE
precision constants are based on their
use.

By default, all floating-point constants are
of type REAL. Mechanism is provided for
specifying constants that are DOUBLE
precision.1

"Non-zero" value for the ordinal value of
TRUE

Stores a 1 in boolean variables for TRUE.
Non-Pascal code passing boolean arguments
to Compaq Pascal could find behavior
differences if even numbers (2,4,6...) were
placed in boolean variables to signify
TRUE. Even values are treated as FALSE
because the low order bit is not set.

STLIMIT STLIMIT is recognized, but will not count
executed statements or generate a run-time
error when STLIMIT is called.

Trims trailing blanks from strings when
printed with a field width of 0.

Follows the Pascal standard, which dictates
that strings printed with a field width of 0
print no characters.

Output is left-justified when negative
field widths are used.

Negative field widths are treated as
runtime errors.

1See Compaq Pascal Language Reference Manual for more information.

Migrating from Pascal for RISC to Compaq Pascal 9–3

A
Errors Returned by STATUS and STATUSV

Functions

Table A–1 lists the error conditions detected by the STATUS and STATUSV
functions, their symbolic names, and the corresponding values. The symbolic
names and their values are defined in the file /usr/include/passtatus.pas,
which you can include with a %INCLUDE directive in a CONST section of
your program. To test for a specific condition, you compare the STATUS or
STATUSV return values against the value of a symbolic name.

Note that the symbolic names correspond to some of the run-time errors listed
in Appendix C; however, not all run-time errors can be detected by STATUS.

Table A–1 STATUS and STATUSV Return Values

Name Value Meaning

PAS$K_ACCMETINC 5 Specified access method is not compatible with
this file.

PAS$K_AMBVALENU 30 ‘‘String’’ is an ambiguous value for the
enumerated type ‘‘type’’.

PAS$K_CURCOMUND 73 DELETE or UPDATE was attempted while the
current component was undefined.

PAS$K_DELNOTALL 100 DELETE is not allowed for a file with sequential
organization.

PAS$K_EOF –1 File is at end-of-file.

PAS$K_ERRDURCLO 16 Error occurred while the file was being closed.

PAS$K_ERRDURDEL 101 Error occurred during execution of DELETE.

PAS$K_ERRDUREXT 127 Error occurred during execution of EXTEND.

(continued on next page)

Errors Returned by STATUS and STATUSV Functions A–1

Table A–1 (Cont.) STATUS and STATUSV Return Values

Name Value Meaning

PAS$K_ERRDURFIN 102 Error occurred during execution of FIND or
FINDK.

PAS$K_ERRDURGET 103 Error occurred during execution of GET.

PAS$K_ERRDUROPE 2 Error occurred during execution of OPEN.

PAS$K_ERRDURPRO 36 Error occurred during prompting.

PAS$K_ERRDURPUT 104 Error occurred during execution of PUT.

PAS$K_ERRDURRES 105 Error occurred during execution of RESET or
RESETK.

PAS$K_ERRDURREW 106 Error occurred during execution of REWRITE.

PAS$K_ERRDURTRU 107 Error occurred during execution of TRUNCATE.

PAS$K_ERRDURUNL 108 Error occurred during execution of UNLOCK.

PAS$K_ERRDURUPD 109 Error occurred during execution of UPDATE.

PAS$K_ERRDURWRI 50 Error occurred during execution of WRITELN.

PAS$K_EXTNOTALL 128 EXTEND is not allowed for a shared file.

PAS$K_FAIGETLOC 74 GET failed to retrieve a locked component.

PAS$K_FILALRCLO 15 File is already closed.

PAS$K_FILALROPE 1 File is already open.

PAS$K_FILNAMREQ 14 File name must be specified in order to save,
print, or submit an internal file.

PAS$K_FILNOTDIR 110 File is not open for direct access.

PAS$K_FILNOTFOU 3 File was not found.

PAS$K_FILNOTGEN 111 File is not in generation mode.

PAS$K_FILNOTINS 112 File is not in inspection mode.

PAS$K_FILNOTKEY 113 File is not open for keyed access.

PAS$K_FILNOTOPE 114 File is not open.

PAS$K_FILNOTSEQ 115 File does not have sequential organization.

PAS$K_FILNOTTEX 116 File is not a text file.

PAS$K_GENNOTALL 117 Generation mode is not allowed for a read-only
file.

(continued on next page)

A–2 Errors Returned by STATUS and STATUSV Functions

Table A–1 (Cont.) STATUS and STATUSV Return Values

Name Value Meaning

PAS$K_GETAFTEOF 118 GET attempted after end-of-file has been
reached.

PAS$K_INSNOTALL 119 Inspection mode is not allowed for a write-only
file.

PAS$K_INSVIRMEM 120 Insufficient virtual memory.

PAS$K_INVARGPAS 121 Invalid argument passed to a Compaq Pascal
Run-Time Library procedure.

PAS$K_INVFILSYN 4 Invalid syntax for file name.

PAS$K_INVKEYDEF 9 Key definition is invalid.

PAS$K_INVRECLEN 12 Record length nnn is invalid.

PAS$K_INVSYNBIN 37 ‘‘String’’ is invalid syntax for a binary value.

PAS$K_INVSYNENU 31 ‘‘String’’ is invalid syntax for a value of an
enumerated type.

PAS$K_INVSYNHEX 38 ‘‘String’’ is invalid syntax for a hexadecimal
value.

PAS$K_INVSYNINT 32 ‘‘String’’ is invalid syntax for an integer.

PAS$K_INVSYNOCT 39 ‘‘String’’ is invalid syntax for an octal value.

PAS$K_INVSYNREA 33 ‘‘String’’ is invalid syntax for a real number.

PAS$K_INVSYNUNS 34 ‘‘String’’ is invalid syntax for an unsigned integer.

PAS$K_KEYCHANOT 72 Changing the key field is not allowed.

PAS$K_KEYDEFINC 10 KEY(nnn) definition is inconsistent with this file.

PAS$K_KEYDUPNOT 71 Duplication of key field is not allowed.

PAS$K_KEYNOTDEF 11 KEY(nnn) is not defined in this file.

PAS$K_KEYVALINC 70 Key value is incompatible with file’s key nnn.

PAS$K_LINTOOLON 52 Line is too long; exceeds record length by nnn
characters.

PAS$K_LINVALEXC 122 LINELIMIT value exceeded.

PAS$K_NEGWIDDIG 53 Negative value in width or digits (of a field width
specification) is invalid.

PAS$K_NOTVALTYP 35 ‘‘String’’ is not a value of type ‘‘type’’.

(continued on next page)

Errors Returned by STATUS and STATUSV Functions A–3

Table A–1 (Cont.) STATUS and STATUSV Return Values

Name Value Meaning

PAS$K_ORGSPEINC 8 Specified organization is inconsistent with this
file.

PAS$K_RECLENINC 6 Specified record length is inconsistent with this
file.

PAS$K_RECTYPINC 7 Specified record type is inconsistent with this
file.

PAS$K_RESNOTALL 124 RESET is not allowed for an internal file that
has not been opened.

PAS$K_REWNOTALL 123 REWRITE is not allowed for a file opened for
sharing.

PAS$K_SUCCESS 0 Last file operation completed successfully.

PAS$K_TEXREQSEQ 13 Text files must have sequential organization and
sequential access.

PAS$K_TRUNOTALL 125 TRUNCATE is not allowed for a file opened for
sharing.

PAS$K_UPDNOTALL 126 UPDATE is not allowed for a file that has
sequential organization.

PAS$K_WRIINVENU 54 WRITE operation attempted on an invalid
enumerated value

A–4 Errors Returned by STATUS and STATUSV Functions

B
Entry Points to Compaq Pascal Run-Time

Library

This appendix describes the entry point to utility routines in the Tru64 UNIX
Run-Time Library that can be called as external routines by a Compaq Pascal
program. These utilities allow you to access Compaq Pascal Run-Time Library
features that are not directly provided by the language.

The following routine has been added to libpas.a/libpas.so to enable a program
to determine the C file variable that is used to implement a Pascal file
variable. The routine is:

function
pas$c_file_variable(var f : text) : pointer; external;

This routine will return the address of the C file variable used to implement
the specified Pascal file variable. The file must already be opened before the
routine can be called.

Entry Points to Compaq Pascal Run-Time Library B–1

C
Diagnostic Messages

This appendix summarizes the error messages that can be generated by a
Compaq Pascal program at compile time and at run time.

C.1 Compiler Diagnostics
The Compaq Pascal compiler reports compile-time diagnostics in the source
listing (if one is being generated) and summarizes them on the terminal
(in interactive mode) or in the batch log file (in batch mode). Compile-time
diagnostics have the following format:

pascal: Error: err.pas, line n: error-text

Where:

• Error indicates the category of the diagnostic message. There are four
categories of compile-time diagnostic messages:

Information

Indicates an informational message that flags extensions to the Pascal
standard, identifies unused or possibly uninitialized variables, or provides
additional information about a more severe error.

Warning

Indicates a warning that flags an error or construct that may cause
unexpected results, but that does not prevent the program from linking
and executing.

Error

Indicates an error that prevents generation of machine code; instead, the
compiler produces an empty object module indicating that E-level messages
were detected in the source program.

Severe (same as Fatal) Indicates a fatal error.

• err.pas indicates the filename that is being compiled.

• line n indicates the line number that the error occured on.

Diagnostic Messages C–1

• error-text contains the text of the compiler diagnostic.

If the source program contains either E- or F-level messages, the errors must
be corrected before the program can be linked and executed.

All diagnostic messages contain a brief explanation of the event that caused
the error.

C.2 Diagnostic Messages
This section lists compile-time diagnostic messages in alphabetical order,
including their severity codes and explanatory message text. Where the
message text is not self-explanatory, additional explanation follows. Portions
of the message text enclosed in quotation marks are items that the compiler
substitutes with the name of a data object when it generates the message.

64BITBASTYP, 64-bit pointer base types cannot contain file variables or
schema types
ERROR: File types and schema types may not be allocated in 64-bit S2
address space, because their implementation currently assumes 32-bit
pointers in internal data structures.

64BITNOTALL, 64-bit pointers are not allowed in this context
ERROR: File types and schema types may not be allocated in 64-bit S2
address space, because their implementation currently assumes 32-bit
pointers in internal data structures.

ABSALIGNCON, Absolute address / alignment conflict
Error: The address specified by the AT attribute does not have the number
of low-order bits implied by the specified alignment attribute.

ACCMETHCON, Specified ACCESS_METHOD conflicts with file’s record
organization
Warning: You cannot specify ACCESS_METHOD:=DIRECT for a file that
has indexed organization or sequential organization and variable-length
records. You cannot specify ACCESS_METHOD:=KEYED for a file with
sequential or relative organization.

ACTHASNOFRML, Actual parameter has no corresponding formal
parameter
Error: The number of actual parameters specified in a routine call exceeds
the number of formal parameters in the routine’s declaration, and the last
formal parameter does not have the LIST attribute.

C–2 Diagnostic Messages

ACTMULTPL, Actual parameter specified more than once
Error: Each formal parameter (except one with the LIST attribute) can
have only one corresponding actual parameter.

ACTPASCNVTMP, Conversion: actual passed is resulting temporary
ACTPASRDTMP, Formal requires read access: actual parameter is resulting

temporary
ACTPASSIZTMP, Size mismatch: actual passed is resulting temporary
ACTPASWRTMP, Formal requires write access: actual parameter is resulting

temporary
Warning: A temporary variable is created if an actual parameter does
not have the size, type, and accessibility properties required by the
corresponding foreign formal parameter.

ACTPRMORD, Actual parameter must be ordinal
Error: The actual parameter that specifies the starting index of an array
for the PACK or UNPACK procedure must have an ordinal type.

ADDIWRDALIGN, ADD_INTERLOCKED requires variable with at least word
alignment

ADDIWRDSIZE, ADD_INTERLOCKED requires 16-bit variable
Error: These restrictions are imposed by the instruction sequence that is
used on the target architecture.

ADDRESSVAR, ‘‘parameter name’’ is a VAR parameter, ADDRESS is illegal
Warning: You should not use the ADDRESS function on a nonvolatile
variable or component or on a formal VAR parameter.

ADISCABSENT, Formal discriminant ‘‘discriminant name’’ has no correspond-
ing actual discriminant
Error: An actual discriminant must be specified for every formal
discriminant in a schema type definition.

ADISCHASNOFRML, Actual discriminant has no corresponding formal
discriminant
Error: The number of actual discriminants specified is greater than the
number of formal discriminants defined in the schema type definition.

AGGNOTALL, Aggregate variable access of this type not allowed, must be
indexed

Error.

Diagnostic Messages C–3

ALIATRTYPCON, Alignment attribute / type conflict

ALIGNAUTO, Alignment greater than n conflicts with automatic allocation
Error: The value n has the value 3 on OpenVMS Alpha systems or 2 on
OpenVMS VAX systems; OpenVMS Alpha hardware aligns the stack on a
quadword boundary and OpenVMS VAX hardware aligns it on a longword
boundary. You cannot specify a greater alignment for automatically
allocated variables.

ALIDOWN, Alignment down-graded from default of ALIGNED(n)
Info: The value of n is based on the size of the object that is being
downgraded.

ALIGNFNCRES, Alignment greater than n not allowed on function result
Error: The value n has the value 3 on OpenVMS Alpha systems or 2 on
OpenVMS VAX systems. The use of an attribute on a routine conflicts with
the requirements of the object’s type.

ALIGNINT, ALIGNED expression must be integer value in range 0..n;
defaulting to m
Error: The value n has the value of the largest argument to the ALIGNED
attribute allowed on the platform.

ALIGNVALPRM, Alignment greater than n not allowed on value parameter
Error: The value n has the value 3 on OpenVMS Alpha systems or 2 on
OpenVMS VAX systems. The use of an attribute on a parameter conflicts
with the requirements of the object’s type.

ALLPRMSAM, All parameters to ’MIN’ or ’MAX’ must have the same type

Error.

APARMACTDEF, Anonymous parameter ‘‘parameter number’’ has neither
actual nor default
Error: If the declaration of a routine failed to specify a name for a formal
parameter, a call to the routine will result in this error message. The
routine declaration will also cause an error to be reported.

ARITHOPNDREQ, Arithmetic operand(s) required

Error.

C–4 Diagnostic Messages

ARRCNTPCK, Array cannot be PACKED
Error: At least one parameter to the PACK or UNPACK procedure must
be unpacked.

ARRHAVSIZ, ‘‘routine name’’ requires that ARRAY component have compile-
time known size
Error: You cannot use the PACK and UNPACK procedures to pack
or unpack one multidimensional conformant array into another. The
component type of the dimension being copied must have a compile-time
known size; that is, it must have some type other than a conformant
schema.

ARRMSTPCK, Array must be PACKED
Error: At least one parameter to the PACK or UNPACK procedure must
be of type PACKED.

ARRNOTSTR, Array type is not a string type
Error: You cannot write a value to a text file (using WRITE or
WRITELN) or to a VARYING string (using WRITEV) if there is no
textual representation for the type. Similarly, you cannot read a value from
a text file (using READ or READLN) or from a VARYING string (using
READV) if there is no textual representation for the type. The only legal
array, therefore, is PACKED ARRAY [1..n] OF CHAR.

ASYREQASY, ASYNCHRONOUS ‘‘calling routine’’ requires that ‘‘called
routine’’ also be ASYNCHRONOUS

Warning.

ASYREQVOL, ASYNCHRONOUS ‘‘routine name’’ requires that ‘‘variable
name’’ be VOLATILE
Warning: A variable referred to in a nested asynchronous routine must
have the VOLATILE attribute.

ATINTUNS, AT address must be an integer value

Error.

ATREXTERN, ‘‘attribute name’’ attribute allowed only on external routines
Error: The LIST and CLASS_S attributes can be specified only with the
declarations of external routines.

Diagnostic Messages C–5

ATTRCONCMDLNE, Attribute contradicts command line qualifier
Error: The double-precision attribute specified contradicts the /FLOAT,
/G_FLOATING, or /NOG_FLOATING qualifier specified on the compile
command line.

ATTRCONFLICT, Attribute conflict: ‘‘attribute name’’
Information: This message can appear as additional information on other
error messages.

ATTRONTYP, Descriptor class attribute not allowed on this type
Error: The use of the descriptor class attribute on the variable, parameter,
or routine conflicts with the requirements of the object’s type.

AUTOGTRMAXINT, Allocation of ‘‘variable name’’ causes automatic storage to
exceed MAXINT bits
Error: The Compaq Pascal implementation restricts automatic storage to
a size of 2,147,483,647 bits.

AUTOMAX, Unable to quadword align automatic variables, using long
alignment

Info.

BADANAORG, Analysis data file ‘‘file name’’ is not on a random access device

Fatal.

BADENVORG, Environment file ‘‘file name’’ is not on a random access device

Fatal.

BADSETCMP, < and > not permitted in set comparisons

Error.

BINOCTHEX, Expecting BIN, OCT, or HEX
Error: You must supply BIN, OCT, or HEX as a variable modifier when
reading the variable on a nondecimal basis.

BLKNOTFND, ‘‘routine’’ block ‘‘routine name’’ declared FORWARD in ‘‘block
name’’ is missing

Error.

BLKTOODEEP, Routine blocks nested too deeply
Error: You cannot nest more than 31 routine blocks.

C–6 Diagnostic Messages

BNDACTDIFF, Actual’s array bounds differ from those of other parameters in
same section
Error: All actual parameters passed to a formal parameter section
whose type is a conformant schema must have identical bounds and be
structurally compatible.

BNDCNFRUN, Bounds of conformant ARRAY ‘‘array name’’ not known until
run-time
Error: You cannot use the UPPER and LOWER functions on a dynamic
array parameter in a compile-time constant expression.

BNDSUBORD, Bound expressions in a subrange type must be ordinal
Error: The expressions that designate the upper and lower limits of a
subrange must be of an ordinal type.

BOOLOPREQ, BOOLEAN operand(s) required
Error: The operation being performed requires operands of type
BOOLEAN. Such operations include the AND, OR, and NOT operators and
the SET_INTERLOCKED and CLEAR_INTERLOCKED functions.

BOOSETREQ, BOOLEAN or SET operand(s) required

Error.

BYTEALIGN, Type larger than 32 bits can be positioned only on a byte
boundary
Error: See the Compaq Pascal Language Reference Manual for
information on the types that are allocated more than 32 bits.

CALLFUNC, Function ‘‘function name’’ called as procedure, function value
discarded

Warning.

CARCONMNGLS, CARRIAGE_CONTROL parameter is meaningless given
file’s type
Warning: The carriage-control parameter is usually meaningful only for
files of type TEXT and VARYING OF CHAR.

CASLABEXPR, Case label and case selector expressions are not compatible
Error: All case labels in a CASE statement must be compatible with the
expression specified as the case selector.

Diagnostic Messages C–7

CASORDRELPTR, Compile-time cast allowed only between ordinal, real, and
pointer types

CASSELORD, Case selector expression must be an ordinal type

Error.

CASSRCSIZ, Source type of a cast must have a size known at compile-time
CASTARSIZ, Target type of a cast must have a size known at compile-time

Error: A variable being cast by the type cast operator cannot be a
conformant array or a conformant VARYING parameter. An expression
being cast cannot be a conformant array parameter, a conformant
VARYING parameter, or a VARYING OF CHAR expression. The target
type of the cast cannot be VARYING OF CHAR.

CDDABORT, %DICTIONARY processing of CDD record definition aborted
Error: The Compaq Pascal compiler is unable to process the CDD record
description. See the accompanying CDD messages for more information.

CDDBADDIR, %DICTIONARY directive not allowed in deepest %INCLUDE,
ignored
Error: A program cannot use the %DICTIONARY directive in the fifth
nested %INCLUDE level. The compiler ignores all %DICTIONARY
directives in the fifth nested %INCLUDE level.

CDDBADPTR, invalid pointer was specified in CDD record description
Warning: The CDD pointer data type refers to a CDD path name that
cannot be extracted, and is replaced by ^INTEGER.

CDDBIT, Ignoring bit field in CDD record description
Information: The Compaq Pascal compiler cannot translate a CDD bit
data type that is not aligned on a byte boundary and whose size is greater
than 32 bits.

CDDBLNKZERO, Ignoring blank when zero attribute specified in CDD record
description
Information: The Compaq Pascal compiler does not support the CDD
BLANK WHEN ZERO clause.

CDDCOLMAJOR, CDD description specifies a column-major array
Error: The Compaq Pascal compiler supports only row-major arrays.
Change the CDD description to specify a row-major array.

C–8 Diagnostic Messages

CDDDEPITEM, Ignoring depends item attribute specified in CDD record
description
Information: The Compaq Pascal compiler does not support the CDD
DEPENDING ON ITEM attribute.

CDDDFLOAT, D_floating CDD datatype was specified when compiling with
G_FLOATING
Warning: The CDD record description contains a D_floating data type
while compiling with G_floating enabled. It is replaced with [BYTE(8)]
RECORD END.

CDDFLDVAR, CDD record description contains field(s) after CDD variant
clause
Error: The CDD record description contains fields after the CDD variant
clause. Because Compaq Pascal translates a CDD variant clause into a
Pascal variant clause, and a Pascal variant clause must be the last field
in a record type definition, the fields following the CDD variant clause are
illegal.

CDDGFLOAT, G_floating CDD datatype was specified when compiling with
NOG_FLOATING
Warning: The CDD record description contains a G_floating data type
while compiling with D_floating enabled. It is replaced with [BYTE(8)]
RECORD END.

CDDILLARR, Aligned array elements can not be represented, replacing with
[BIT(n)] RECORD END
Information: The Compaq Pascal compiler does not support CDD record
descriptions that specify an array whose array elements are aligned on a
boundary greater than the size needed to represent the data type. It is
replaced with [BIT(n)] RECORD END, where n is the appropriate length in
bits.

CDDINITVAL, Ignoring specified initial value specified in CDD record
description
Information: The Compaq Pascal compiler does not support the CDD
INITIAL VALUE clause.

CDDMINOCC, Ignoring minimum occurs attribute specified in CDD record
description
Information: The Compaq Pascal compiler does not support the CDD
MINIMUM OCCURS attribute.

Diagnostic Messages C–9

CDDONLYTYP, %DICTIONARY may only appear in a TYPE definition part
Error: The %DICTIONARY directive is allowed only in the TYPE section
of a program.

CDDRGHTJUST, Ignoring right justified attribute specified in CDD record
description
Information: The Compaq Pascal compiler does not support the CDD
JUSTIFIED RIGHT clause.

CDDSCALE, Ignoring scaled attribute specified in CDD record description
Information: The Compaq Pascal compiler does not support the CDD
scaled data types.

CDDSRCTYPE, Ignoring source type attribute specified in CDD record
description
Information: The Compaq Pascal compiler does not support the CDD
source type attribute.

CDDTAGDEEP, CDD description nested variants too deep
Error: A CDD record description may not include more than 15 levels of
CDD variants. The compiler ignores variants beyond the fifteenth level.

CDDTAGVAR, Ignoring tag variable and any tag values specified in CDD
record description
Information: The Compaq Pascal compiler does not fully support the
CDD VARIANTS OF field description statement. The specified tag variable
and any tag values are ignored.

CDDTOODEEP, CDD description nested too deep
Error: Attributes for the CDD record description exceed the
implementation’s limit for record complexity. Modify the CDD description
to reduce the level of nesting in the record description.

CDDTRUNCREF, Reference string which exceeds 255 characters has been
truncated
Information: The Compaq Pascal compiler does not support reference
strings greater than 255 characters.

C–10 Diagnostic Messages

CDDUNSTYP, Unsupported CDD datatype ‘‘standard data type name’’
Information: The CDD record description for an item has attempted to
use a data type that is not supported by Compaq Pascal. The Compaq
Pascal compiler makes the data type accessible by declaring it as [BYTE(n)]
RECORD END where n is the appropriate length in bytes. Change the
data type to one that is supported by Compaq Pascal or manipulate
the contents of the field by passing it to external routines as variables
or by using the Compaq Pascal type casting capabilities to perform an
assignment.

CLSCNFVAL, CLASS_S is only valid with conformant strings
Error: When the CLASS_S attribute is used in the declaration of an
internal routine, it can be used only on a conformant PACKED ARRAY OF
CHAR. The conformant variable must also be passed by value semantics.

CLSNOTALLW, ‘‘descriptor class name’’ not allowed on a parameter of this
type
Error: Descriptor class attributes are not allowed on formal parameters
defined with either an immediate or a reference passing mechanism.

CMTBEFEOF, Comment not terminated before end of input

Error.

CNFCANTCNF, Component of PACKED conformant parameter cannot be
conformant

Error.

CNFREQNCA, Conformants of this parameter type require CLASS_NCA
Error: The conformant parameter cannot be described with the default
CLASS_A descriptor. Add the CLASS_NCA attribute to the parameter
declaration.

CNSTRNOTALL, Nonstandard constructors are not allowed on nonstatic types
Error: You can write constructors for nonstatic types using the standard
style of constructor.

CNSTRONZERO, Record constructors only allow OTHERWISE ZERO

Error.

Diagnostic Messages C–11

CNTBEARRCMP, Not allowed on an array component
CNTBEARRIDX, Not allowed on an array index
CNTBECAST, Not allowed on a cast
CNTBECNFCMP, Not allowed on a conformant array component
CNTBECNFIDX, Not allowed on a conformant array index
CNTBECNFVRY, Not allowed on a conformant varying component
CNTBECOMP, Not allowed on a compilation unit
CNTBECONST, Not allowed on a CONST definition part

CNTBEDEFDECL, Not allowed on any definition or declaration part
CNTBEDESPARM, Not allowed on a %DESCR foreign mechanism

parameter
CNTBEEXESEC, Not allowed on an executable section
CNTBEFILCMP, Not allowed on a file component
CNTBEFORMAL, Not allowed on a formal discriminant
CNTBEFUNC, Not allowed on a function result
CNTBEIMMPARM, Not allowed on a parameter passed by an immediate

passing mechanism
CNTBELABEL, Not allowed on a LABEL declaration part
CNTBEPCKCNF, Not allowed on a PACKED conformant array component

CNTBEPTRBAS, Not allowed on a pointer base
CNTBERECFLD, Not allowed on a record field
CNTBEREFPARM, Not allowed on a parameter passed by a reference passing

mechanism
CNTBERTNDECL, Not allowed on a routine declaration
CNTBERTNPARM, Not allowed on a routine parameter
CNTBESCHEMA, Not allowed on a nonstatic type
CNTBESETRNG, Not allowed on a set range
CNTBESTDPARM, Not allowed on a %STDESCR foreign mechanism

parameter
CNTBETAGFLD, Not allowed on a variant tag field

CNTBETAGTYP, Not allowed on a variant tag type
CNTBETO, Not allowed on TO BEGIN/END DO
CNTBETYPDEF, Not allowed on a type definition
CNTBETYPE, Not allowed on a TYPE definition part
CNTBEVALPARM, Not allowed on a value parameter
CNTBEVALUE, Not allowed on a VALUE initialization part
CNTBEVALVAR, Not allowed on a VALUE variable
CNTBEVAR, Not allowed on a VAR declaration part
CNTBEVARBLE, Not allowed on a variable

C–12 Diagnostic Messages

CNTBEVARPARM, Not allowed on a VAR parameter
CNTBEVRYCMP, Not allowed on a varying component

Information: These messages can appear as additional information on
other error messages.

COMCONFLICT, COMMON ‘‘block name’’ conflicts with another COMMON or
PSECT of same name
Error: You can allocate only one variable in a particular common block,
and the name of the common block cannot be the same as the names of
other common blocks or program sections used by your program.

COMNOTALN, Component is not optimally aligned

Info.

COMNOTSIZ, Component is not optimally sized

Info.

COMNOTALNSIZ, Component is not optimally aligned and sized

Info.

COMNOTPOS, Fixed size field positioned after a run-time sized field is not
optimal

Info.

CONTXTIGN, Text following constant definition ignored
Warning: When defining constants with the /CONSTANT DCL qualifier,
any text appearing after a valid constant definition is ignored.

CPPFILERR, Preprocessor record: error oprning specified file

Error.

CRETIMMOD, Creation time for module ‘‘module name’’ in environment ‘‘envi-
ronment file name’’ differs from creation time in previous environments
Warning: Two or more PEN files referred to a module, but the PEN files
did not agree on the creation date/time for the module. This can occur if
you recompile a module but do not recompile all the modules that inherited
its PEN file.

Diagnostic Messages C–13

CSTRBADTYP, Constructor: only ARRAY, RECORD, or SET type
CSTRCOMISS, Constructor: component(s) missing
CSTRNOVRNT, Constructor: no matching variant
CSTRREFAARR, Repetition factor allowed only in ARRAY constructors
CSTRREFAINT, Repetition factor must be integer
CSTRREFALRG, Repetition factor too large
CSTRREFANEG, Repetition factor cannot be negative
CSTRTOOMANY, Constructor: too many components

Error: You can write constructors only for data items of an ARRAY
type. You must specify one and only one value in the constructor for each
component of the type. In an array constructor, you cannot use a negative
integer value as a repetition factor to specify values for consecutive
components.

CSTRREFAINT, Repetition factor must be an integer

Error.

CTESTRSIZ, Compile-time strings must be less than 8192 characters

Error.

CTGARRDESC, Contiguous array descriptor cannot describe size/alignment
properties
Information: Conformant array parameters, dynamic array parameters,
and %DESCR array parameters all use the contiguous array descriptor
mechanism in the Tru64 UNIX Calling Standard. Size and alignment
attributes are prohibited on such arrays, as these attributes can create
noncontiguous allocation. This message can appear as additional
information in other error messages.

DEBUGOPT, /-o0 is recommended with /-g
Information: Unexpected results may be seen when debugging an
optimized program. To prevent conflicts between optimization and
debugging, you should compile your program with /-o0 until it is thoroughly
debugged. Then you can recompile the program with optimization enabled
to produce more efficient code.

DECLORDER, Declarations are out of order
Error: The TO BEGIN DO and TO END DO declarations in a module
must appear at the end of the module and may not be reordered.

C–14 Diagnostic Messages

DEFRTNPARM, Default parameter syntax not allowed on routine
parameters

DEFVARPARM, Default parameter syntax not allowed on VAR parameters

Error.

DESCOMABORT, Further processing of /DESIGN=COMMENTS has been
aborted
Error: An error has occurred that prohibits further comment processing.

DESCOMERR, An error has occurred while processing design information

Error.

DESCOMSEVERR, An internal error has occurred while processing
/DESIGN=COMMENTS - please submit a problem report
Error: A fatal error has occurred during comment processing. Please
submit a problem report including sufficient information to reproduce the
program, including the version numbers of the DEC Language-Sensitive
Editor/Source Code Analyzer and the Compaq Pascal compiler.

DESCTYPCON, Descriptor class / type conflict
Error: The descriptor class for parameter passing conflicts with the
parameter’s type. Refer to Section 6.3.3 of the Compaq Pascal User
Manual for OpenVMS Systems for legal descriptor class/type combinations.

DESIGNTOOOLD, The comment processing routines are too old for the
compiler
Error: The support routines for the /DESIGN=COMMENT qualifier are
obsolete. Contact your system manager.

DIRCONVISIB, Directive contradicts visibility attribute
Error: The EXTERN, EXTERNAL, and FORTRAN directives conflict
directly with the LOCAL and GLOBAL attributes.

DIREXPECT, No matching directive for the %IF directive
Error:: A %IF directive must contain a %THEN clause and be terminated
by %ENDIF.

DIRUNEXP
Error:: Conditional compilation directives other than %IF are only valid
after the parts of a %IF directive.

Diagnostic Messages C–15

DISCLIMIT, Limit of 255 discriminants exceeded

Error.

DISNOTORD, Discriminant type must be an ordinal type
Error: The formal discriminant in a schema type definition must be an
ordinal type.

DONTPACKVAR, ‘‘routine name’’ is illegal, variable can never appear in a
packed context
Error: You cannot call the BITSIZE and BITNEXT functions for
conformant parameters.

DUPLALIGN, Alignment already specified
DUPLALLOC, Allocation already specified
DUPLATTR, Attribute already specified
DUPLCLASS, Descriptor class already specified
DUPLDOUBLE, Double precision already specified

Error: Only one member of a particular attribute class can appear in the
same attribute list.

DUPLFIN, TO END DO already specified
DUPLINIT, TO BEGIN DO already specified

Error: Only one TO BEGIN DO and one TO END DO section can appear
in the same module.

DUPLGBLNAM, Duplicated global name
Warning: The GLOBAL attribute cannot appear on more than one
variable or routine with the same name.

DUPLMECH, Passing mechanism already specified
DUPLOPT, Optimization already specified
DUPLSIZE, Size already specified
DUPLVISIB, Visibility already specified

Error: Only one member of a particular attribute class can appear in the
same attribute list.

C–16 Diagnostic Messages

DUPTYPALI, Alignment already specified by type identifier ‘‘type name’’
DUPTYPALL, Allocation already specified by type identifier ‘‘type name’’
DUPTYPATR, Attribute already specified by type identifier ‘‘type name’’
DUPTYPDES, Descriptor class already specified by type identifier ‘‘type name’’
DUPTYPSIZ, Size already specified by type identifier ‘‘type name’’
DUPTYPVIS, Visibility already specified by the type identifier ‘‘type name’’

Error: An attribute specified for an object was already specified in the
definition of the object’s type.

ELEOUTRNG, Element out of range
Error: A value specified in a set constructor used as a compile-time
constant expression does not fall within the subrange defined as the set’s
base type.

EMPTYCASE, Empty case body
Error: You failed to specify any case labels and corresponding statements
in the body of a CASE statement.

ENVERROR, Environment resulted from a compilation with Errors
Error: When a program inherits an environment file that compiled with
errors, unexpected results may occur during the program’s compilation.
The environment file inherited by the program compiled with errors.
Unexpected results may occur in the program now being compiled.

ENVFATAL, Environment resulted from a compilation with Fatal Errors
Error: The environment file inherited by the program compiled with fatal
errors. Unexpected results may occur in the program now being compiled.

ENVOLDVER, Environment was created by a Compaq Pascal compiler, please
recompile
Warning:

ENVWARN, Environment resulted from a compilation with Warnings
Warning: The environment file inherited by the program compiled with
warnings. Unexpected results may occur in the program now being
compiled.

ENVWRGCMP, Environment identifier was compiled by a Compaq Pascal for
platform compiler

Fatal.

Diagnostic Messages C–17

ERREALCNST, Error in real constant: digit expected

Error.

ERRNONPOS, ERROR parameter can be specified only with nonpositional
syntax

Error.

ERROR, %ERROR
Error: This message is generated by the %ERROR directive.

ERRORLIMIT, Error Limit = ‘‘current error limit’’, source analysis
terminated
Fatal: The error limit specified for the program’s compilation was
exceeded; the compiler was unable to continue processing the program. By
default, the error limit is set at 30, but you can use the error limit switch
at compile time to change it.

ESTBASYNCH, ESTABLISH requires that ‘‘routine name’’ be
ASYNCHRONOUS

Warning.

EXPLCONVREQ, Explicit conversion to lower type required
Error: An expression of a higher-ranked type cannot be assigned to a
variable of a lower-ranked type; you must first convert the higher-ranked
expression by using DBLE, SNGL, TRUNC, ROUND, UTRUNC, or
UROUND, as appropriate.

EXPNOTRES, Expression does not contribute to result
Information: The optimizer has determined that part of the expression
does not affect the result of the expression and it will not evaluate that
part of the expression.

EXPR2ONVAL, Expression is allowed only on real, integer, or unsigned values
Error: The second expression (and preceding colon) are allowed only if the
value being written is of a real, integer, or unsigned type.

EXPRARITH, Expression must be arithmetic
Error: An expression whose type is not arithmetic cannot be assigned to a
variable of a real type.

C–18 Diagnostic Messages

EXPRARRIDX, Expression is incompatible with unpacked array’s index type
Error: The index type of the unpacked array is not compatible with the
index type of either the PACK or UNPACK procedure it was passed to.

EXPRCOMTAG, Expression is not compatible with tag type
Error: A case label specified for a NEW, DISPOSE, or SIZE routine must
be assignment compatible with the tag type of the variant.

EXPRINFUNC, Expression allowed only in FUNCTION

Error.

EXPRNOTSET, Expression is not a SET type
Error: The compiler encountered an expression of some type other than
SET in a call to the CARD function.

EXTRNALLOC, Allocation attribute conflicts with EXTERNAL visibility
Error: The storage for an external variable or routine is not allocated
by the current compilation; therefore, the specification of an allocation
attribute is meaningless.

EXTRNAMDIFF, External names are different
Information: This message can appear as additional information on other
error messages.

EXTRNCFLCT, ‘‘PSECT or FORWARD’’ conflicts with EXTERNAL visibility
Error: The storage for an external variable or routine is not allocated
by the current compilation; therefore, the specification of an allocation
attribute is meaningless.

FILEVALASS, FILE evaluation / assignment is not allowed
Error: You cannot attempt to evaluate a file variable or assign values to
it.

FILHASSCH, FILE component may not contain nonstatic types or discriminant
identifiers
Error: Compaq Pascal restricts components of files to those with compile-
time size.

FILOPNDREQ, FILE operand required
Error: The EOF, EOLN, and UFB functions require parameters of file
types.

Diagnostic Messages C–19

FILVARFIL, FILE_VARIABLE parameter must be of a FILE type
Error: The file variable parameter to the OPEN and CLOSE procedures
must denote a file variable.

FLDIVPOS, Field ‘‘field name’’ is illegally positioned
Error: A POS attribute attempted to position a record field before the end
of the previous field in the declaration.

FLDNOTKNOWN, Unknown record field

Error.

FLDONLYTXT, Field width allowed only when writing to a TEXT file

Error.

FLDRADINT, Field width or radix expression must be of type INTEGER

Error: The field-width or radix expression in a WRITE, WRITELN, or
WRITEV routine must be of type INTEGER.

FORACTORD, FOR loop control variable must be of an ordinal type
FORACTVAR, FOR loop control must be a true variable

Error: The control variable of a FOR statement must be a simple variable
of an ordinal type and must be declared in a VAR section. For example, it
cannot be a field in a record that was specified by a WITH statement, or a
function identifier.

FLDWDTHINT, Field-width expression must be of type integer

Error.

FORCTLVAR, ‘‘variable name’’ is a FOR control variable
Warning: The control variable of a FOR statement cannot be assigned a
value; used as a parameter to the ADDRESS function; passed as a writable
VAR, %REF, %DESCR, or %STDESCR parameter; used as the control
variable of a nested FOR statement; or written into by a READ, READLN,
or READV procedure.

FORINEXPR, Expression is incompatible with FOR loop control variable
Error: The type of the initial or final value specified in a FOR statement
is variable.

C–20 Diagnostic Messages

FRMLPRMDESC, Formal parameters use different descriptor formats
FRMLPRMINCMP, Formal routine parameters are not compatible
FRMLPRMNAM, Formal parameters have different names
FRMLPRMSIZ, Formal parameters have different size attributes
FRMLPRMTYP, Formal parameters have different types

Information: These messages can appear as additional information on
other error messages.

FRSTPRMSTR, READV requires first parameter to be a string expression
Error: You must specify at least two parameters for the READV
procedure—a character-string expression and a variable into which
new values will be read.

FRSTPRMVARY, WRITEV requires first parameter to be a variable of type
VARYING

Error.

FTRNOTHER, Feature not supported io this context

Error.

FTRNOTPOR, Feature not supported on platform(s)

Info.

FTRNOTSUP, Feature not supported on this platform

Error.

FUNCTRESTYP, Routine must be declared as FUNCTION to specify a result
type
Error: You cannot specify a result type on a PROCEDURE declaration.

FUNRESTYP, Function result types are different
Information: This message can appear as additional information on other
error messages.

Diagnostic Messages C–21

FWDREPATRLST, Declared FORWARD; repetition of attribute list not allowed
FWDREPPRMLST, Declared FORWARD; repetition of formal parameter list

not allowed
FWDREPRESTYP, Declared FORWARD; repetition of result type not allowed

Error: If the heading of a routine has the FORWARD directive, the
declaration of the routine body cannot repeat the formal parameter list, the
result type (applies only if the routine is a function), or any attribute lists
that appeared in the heading.

FWDWASFUNC, FORWARD declaration was FUNCTION
FWDWASPROC, FORWARD declaration was PROCEDURE

Error.

GOTONOTALL, GOTO not allowed to jump into a structured statement

Warning.

GOTSZOVFL, GOT table overflow for module "name"
Error: The GOT (Global Offset Table) for the module is too large. Break
up the module into multiple modules.

GTR32BITS, ‘‘routine name’’ cannot accept parameters larger than 32 bits
Error: DEC and UDEC cannot translate objects larger than 32 bits into
their textual equivalent.

HIDATOUTER, HIDDEN legal only on definitions and declarations at
outermost level
Error: When an environment file is being generated, it is possible to
prevent information concerning a declaration from being included in the
environment file by using the HIDDEN attribute. However, because
an environment file consists only of declarations and definitions at the
outermost level of a compilation unit, the HIDDEN attribute is legal only
on these definitions and declarations.

IDENTGTR31, Identifier longer than 31 characters exceeds capacity of
compiler

Warning.

IDESTRMOD, IDENT string for module identifier in environment identifier
differs from IDENT string in previous environments

Warning.

C–22 Diagnostic Messages

IDNOTLAB, Identifier ‘‘symbol name’’ not declared as a label

Error.

IDXNOTCOMPAT, Index type is not compatible with declaration
Error: The type of an index expression is not assignment compatible with
the index type specified in the array’s type definition.

IDXREQDKEY, Creating INDEXED organization requires dense keys
Warning: When you specify ORGANIZATION:=INDEXED when opening a
file with HISTORY := NEW or UNKNOWN, the file’s alternate keys must
be dense; that is, you may not omit any key numbers in the range from 0
through the highest key number specified for the file’s component type.

IDXREQKEY0, Creating INDEXED organization requires FILE OF RECORD
with at least KEY(0)
Warning: When you specify ORGANIZATION:=INDEXED when opening a
file with HISTORY := NEW or UNKNOWN, the file’s component type must
be a record for which a primary key, designated by the [KEY(0)] attribute,
is defined.

ILLINISCH, Illegal initialization of variable of nonstatic type
Error: Nonstatic variables, such as those created from schema types,
cannot be initialized in the VALUE declaration part. To initialize these
variables, you must use the initial state feature.

IMMEDBNDROU, Immediate passing mechanism may not be used on bound
routine ‘‘routine name’’
Warning: You cannot prefix a formal or an actual routine parameter with
the immediate passing mechanism unless the routine was declared with
the UNBOUND attribute.

IMMEDUNBND, Routines passed by immediate passing mechanism must be
UNBOUND
Warning: A formal routine parameter that has the immediate passing
mechanism must also have the UNBOUND attribute.

IMMGTR32, Immediate passing mechanism not allowed on values larger than
32 bits
Error: See the Compaq Pascal Language Reference Manual for more
information on the types that are allocated more than 32 bits.

Diagnostic Messages C–23

IMMHAVSIZ, Type passed by immediate passing mechanism must have
compile-time known size
Error: You cannot specify an immediate passing mechanism for a
conformant parameter or a formal parameter of type VARYING OF CHAR.

INCMPBASE, Incompatible with SET base type
Error: If no type identifier denotes the base type of a set constructor, the
first element of the constructor determines the base type. The type of all
subsequent elements specified in the constructor must be compatible with
the type of the first.

INCMPFLDS, Record fields are not the same type

Error.

INCMPOPND, Incompatible operand(s)
Error: The types of one or more operands in an expression are not
compatible with the operation being performed.

INCMPPARM, Incompatible ‘‘routine’’ parameter
Error: An actual routine parameter is incompatible with the
corresponding formal parameter.

INCMPTAGTYP, Incompatible variant tag types
Error: This message can appear as additional information on other error
messages.

INCTOODEEP, %INCLUDE directives nested too deeply, ignored
Error: A program cannot include more than five levels of files with the
%INCLUDE directive. The compiler ignores %INCLUDE files beyond the
fifth level.

INDNOTORD, Index type must be an ordinal type
Error: The index type of an array must be an ordinal type.

INFO, %INFO
Information: This message is generated by the %INFO directive.

INITNOEXT, INITIALIZE routine may not be EXTERNAL
INITNOFRML, INITIALIZE routine must have no formal parameter list

Error.

C–24 Diagnostic Messages

INITSYNVAR, Illegal initialization syntax—Use VALUE

Error.

INPNOTDECL, INPUT not declared in heading
Error: A call to EOF, EOLN, READLN, or WRITELN did not specify a file
variable, and the default INPUT or OUTPUT was not listed in the program
heading.

INSTNEWLSE, Please install a new version of LSE
Error: The version of the DEC Language-Sensitive Editor/Source Code
Analyzer on your system is too old for the compiler. Contact your system
manager.

INVCASERNG, Invalid range in case label list

Error.

INVEVAL, Array or Record evaluation not allowed

Error.

INVQUAVAL, Value for optimizer switch is out of range. Default value will be
used.

Warning.

IVATTOPT, Unrecognized option for attribute
Explanation: Explanation: You attempted to specify an invalid option for
one of the following attributes:

• CHECK (Warning)

• FLOAT (Warning)

• KEY (Error)

• OPTIMIZE (Warning)

IVATTR, Unrecognized attribute

Error.

IVAUTOMOD, AUTOMATIC variable is illegal at the outermost level of a
MODULE
Error: You cannot specify the AUTOMATIC attribute for a variable
declared at module level.

Diagnostic Messages C–25

IVCHKOPT, Unrecognized CHECK option

Warning.

IVCOMBFLOAT, Illegal combination of D_floating and G_floating
Error: You cannot combine D_floating and G_floating numbers in a binary
operation.

IVDIRECTIVE, Unrecognized directive
Error: The directive following a procedure or function heading is not one
of those recognized by the Compaq Pascal compiler.

IVENVIRON, Environment ‘‘environment name’’ has illegal format, source
analysis terminated
Fatal: The environment file inherited by the program has an illegal
format; compilation is immediately aborted. However, a listing will still be
produced if one was being generated.

IVFUNC, Invalid use of function ‘‘function name’’
IVFUNCALL, Invalid use of function call
IVFUNCID, Invalid use of function identifier

Error: These messages result from illegal attempts to assign values or
otherwise refer to the components of the function result (if its type is
structured), use the type cast operator on a function identifier or its result,
or deallocate the storage reserved for the function result (if its type is a
pointer).

IVKEYOPT, Unrecognized KEY option

Error.

IVKEYVAL, FINDK KEY_VALUE cannot be an array (other than PACKED
ARRAY [1..n] OF CHAR)

Error.

IVKEYWORD, Missing or unrecognized keyword
Error: The compiler failed to find an identifier where it expected one in a
call to the OPEN or CLOSE procedure, or it found an identifier that was
not legal in this position in the parameter list.

IVMATCHTYP, Invalid MATCH_TYPE parameter to FINDK

Error.

C–26 Diagnostic Messages

IVOPTMOPT, Unrecognized OPTIMIZE option
Warning:

IVOTHVRNT, Illegal use of OTHERWISE within CASE variant
Error: The Compaq Pascal extension of using OTHERWISE in a record
constructor is only defined at the outer level of a record.

IVQUALFILE, Illegal switch ‘‘switch name’’ on file specification
Warning: Only the /LIST and /NOLIST qualifiers are allowed on the file
specification of a %INCLUDE directive.

IVQUOCHAR, Illegal nonprinting character (ASCII ‘‘nnn’’) within quotes
Warning: The only nonprinting characters allowed in a quoted string
are the space and tab; the use of other nonprinting characters in a string
causes this warning. To include nonprinting characters in a string, you
should use the extended string syntax described in the Compaq Pascal
Language Reference Manual.

IVRADIX, Invalid radix was specified in the extended number

Error.

IVRADIXDGIT, Illegal digit in binary, octal, or hexadecimal constant

Error.

IVREDECL, Illegal redeclaration gives ‘‘symbol name’’ multiple meanings in
‘‘scope name’’

IVREDECLREC, Illegal redeclaration gives ‘‘symbol name’’ multiple meanings
in this record

IVREDEF, Illegal redefinition gives ‘‘symbol name’’ multiple meanings in ‘‘scope
name’’
Warning: When an identifier is used in any given block, it must have the
same meaning wherever it appears in the block.

IVUSEALIGN, Invalid use of alignment attribute
IVUSEALLOC, Invalid use of allocation attribute

Error.

IVUSEATTR, Invalid use of ‘‘attribute name’’ attribute
Error: The use of an attribute on a variable, parameter, or routine
conflicts with the requirements of the object’s type.

Diagnostic Messages C–27

IVUSEATTRLST, Invalid use of an attribute list

Error.

IVUSEBNDID, Illegal use of bound identifier ‘‘identifier name’’
Error: An identifier that represents one bound of a conformant schema
was used where a variable was expected, such as in an assignment
statement or in a formal VAR parameter section. The restrictions on the
use of a bound identifier are identical to those on a constant identifier.

IVUSEDES, Invalid use of descriptor class attribute
Error: The use of an attribute on a variable, parameter, or routine
conflicts with the requirements of the object’s type.

IVUSEFNID, Illegal use of function identifier ‘‘identifier name’’
Error: Two examples of illegal uses are the assignment of values to the
components of the function result (if its type is structured) and the passing
of the function identifier as a VAR parameter.

IVUSEPOI, Illegal use of type POINTER or UNIV_PTR
Error: Values of type POINTER and UNIV_PTR can not be dereferenced
with the ^ operator or used with the built-in routines NEW and DISPOSE.

IVUSESIZ, Invalid use of size attribute
Error: The use of an attribute on a variable, parameter, or routine
conflicts with the requirements of the object’s type.

IVUSEVISIB, invalid use of visibility attribute
Error: The use of a visibility attribute conflicts with the requirements of
the object’s type.

KEYINTRNG, KEY number must be an integer value in range 0..254
Error: The key number specified by a KEY attribute must fall in the
integer subrange 0..254.

KEYNOTALIGN, KEY ‘‘key number’’ field ‘‘field name’’ at bit position ‘‘bit
position’’ is unaligned

KEYORDSTR, KEY allowed only on ordinal and fixed-length string fields
KEYPCKREC, KEY field in PACKED RECORD must have an alignment

attribute
KEYREDECL, Key number ‘‘key number’’ is multiply defined
KEYSIZ1_2_4, Size of an ordinal key must be 1, 2 or 4 bytes
KEYSIZ2_4, Size of a signed integer key must be 2 or 4 bytes

C–28 Diagnostic Messages

KEYSIZSTR, Size of a string key cannot exceed 255 bytes
KEYUNALIGN, KEY field cannot be UNALIGNED

Error.

LABDECIMAL, Label number must be expressed in decimal radix

Error.

LABINCTAG, Variant case label’s type is incompatible with tag type
Error: The type of a constant specified as a case label of a variant record
is not assignment compatible with the type of the tag field.

LABNOTFND, No definition of label ‘‘label name’’ in statement part of ‘‘block
name’’
Error: A label that you declared in a LABEL section does not prefix a
statement in the executable section.

LABREDECL, Redefinition of label ‘‘label name’’ in ‘‘block name’’
Error: A label cannot prefix more than one statement in the same block.

LABRNGTAG, Variant case label does not fall within range of tag type
Error: A constant specified as a case label of a variant record is not within
the range defined for the type of the tag field.

LABTOOBIG, Label ‘‘label number’’ is greater than MAXINT

Error.

LABUNDECL, Undeclared label ‘‘label name’’
Error: Compaq Pascal requires that you declare all labels in a LABEL
declaration section before you use them in the executable section.

LABUNSATDECL, Unsatisfied declaration of label ‘‘label name’’ is not local to
‘‘block name’’
Error: A label that prefixes a statement in a nested block was declared in
an enclosing block.

Diagnostic Messages C–29

LIBESTAB, LIB$ESTABLISH is incompatible with Compaq Pascal; use
predeclared procedure ESTABLISH
Warning: Compaq Pascal establishes its own condition handler for
processing Pascal-specific run-time signals. Calling LIB$ESTABLISH
directly replaces the handler supplied by the compiler with a user-written
handler; the probable result is improper handling of run-time signals.
You should use Pascal’s predeclared ESTABLISH procedure to establish
user-written condition handlers.

LISTONEND, LIST attribute allowed only on final formal parameter

Error.

LISTUSEARG, Formal parameter has LIST attribute, use predeclared function
ARGUMENT
Error: A formal parameter with the LIST attribute cannot be directly
referenced. You should use the predeclared function ARGUMENT to
reference the actual parameters corresponding to the formal parameter.

LNETOOLNG, Line too long, is truncated to 255 characters
Error: A source line cannot exceed 255 characters. If it does, the compiler
disregards the remainder of the line.

LOWGTRHIGH, Low-bound exceeds high-bound
Error: The definition of the flagged subrange type is illegal because the
value specified for the lower limit exceeds that for the upper limit.

MAXLENINT, Max-length must be a value of type integer
Error: The maximum length specified for type VARYING OF CHAR must
be an integer in the range 1..65535; that is, the type definition must denote
a legal character string.

MAXLENRNG, Max-length must be in range 1..65535
Error: The maximum length specified for type VARYING OF CHAR must
be an integer in the range 1..65535; that is, the type definition must denote
a legal character string.

MAXNUMENV, Maximum number of environments exceeded
Fatal: More than 512 environment files were used in the
compilation.

C–30 Diagnostic Messages

MECHEXTERN, Foreign mechanism specifier allowed only on external
routines

Error.

MISSINGEND, No matching END, expected near line ‘‘line number’’
Information: The compiler expected an END statement at a location
where none was found. Compilation proceeds as though the END
statement were correctly located.

MODINIT26, Module name limited to 26 characters when initialization
required
Error: When a module contains schema types, discriminated schema
types, variables of discriminated schema types, or a TO BEGIN DO
statement clause, the module name is limited to 26 characters.

MODOFNEGNUM, MOD of a negative modulus has no mathematical
definition
Error: In the MOD operation A MOD B, the operand B must have
a positive integer value. This message is issued only when the MOD
operation occurs in a compile-time constant expression.

MSTBEARRAY, Type must be ARRAY

Error.

MSTBEARRVRY, Type must be ARRAY or VARYING
Error: You cannot use the syntax [index] to refer to an object that is not of
type ARRAY or VARYING OF CHAR.

MSTBEBOOL, Control expression must be of type BOOLEAN
Error: The IF, REPEAT, and WHILE statements require a Boolean control
expression.

MSTBEDEREF, Must be dereferenced

Information.

MSTBEDISCR, Schema type must be discriminated
Error: An undiscriminated schema type is not allowed everywhere that a
regular type name is allowed.

MSTBEORDSETARR, Type must be ordinal, SET, or ARRAY

Error.

Diagnostic Messages C–31

MSTBEREC, Type must be RECORD

Error.

MSTBERECVRY, Type must be RECORD or VARYING
Error: You cannot use the syntax ‘‘Variable.Identifier’’ to refer to an object
that is not of type RECORD or VARYING OF CHAR.

MSTBESTAT, Cannot initialize non-STATIC variables
Error: You cannot initialize variables declared without the STATIC
attribute in nested blocks, nor can you initialize program-level variables
whose attributes give them some allocation other than static.

MSTBETEXT, ‘‘I/O routine’’ requires FILE_VARIABLE of type TEXT
Error: The READLN and WRITELN procedures operate only on text files.

MULTDECL, ‘‘symbol name’’ has multiple conflicting declarations, reason(s):

Error.

NCATOA, Cannot reformat content of actual’s CLASS_NCA descriptor as
CLASS_A
Error: This message can appear as additional information on other error
messages.

NEWQUADAGN, ‘‘type name’’’s base type is ALIGNED(‘‘nnn’’); NEW handles
at most ALIGNED(3)
Error: You cannot call the NEW procedure to allocate pointer variables
whose base types specify alignment greater than a quadword. To allocate
such variables, you must use external routines.

NOACTCOM, No actuals are compatible with schema formal parameter
Information: Undiscriminated schema formal parameters denoting
subranges or sets cannot be used as value parameters. In these cases, no
actual parameter can ever be compatible with the formal parameter.

NOASSTOFNC, Block does not contain an assignment to function result
‘‘function name’’
Warning: The block of a function must include a statement that assigns a
return value to the function identifier.

NOCONVAL, A constant value was not specified for field ‘‘field name’’

Error.

C–32 Diagnostic Messages

NODECLVAR, ‘‘symbol name’’ is not declared in a VAR section of ‘‘block name’’
Error: You cannot initialize a variable using the VALUE section if the
variable was not declared in the same block in which the VALUE section
appears.

NODSCREC, No descriptor class for RECORD type
Error: The Tru64 UNIX Calling Standard does not define a descriptor
format for records; therefore, you cannot specify %DESCR for a parameter
of type RECORD.

NODSCRSCH, No descriptor class for schematic types

Error.

NOFLDREC, No field ‘‘field name’’ in RECORD type ‘‘type name’’
Error: The field specified does not exist in the specified record.

NOFRMINDECL, Declaration of ‘‘routine’’ parameter ‘‘routine name’’ supplied
no formal parameter list
Information: You specified actual parameters in a call on a formal routine
parameter that was declared with no formal parameters. Although such a
call was legal in VAX Pascal Version 1.0, it does not follow the rules of the
Pascal standard. You should edit your program to reflect this change.

NOINITEXT, Initialization not allowed on EXTERNAL variables
NOINITINH, Initialization not allowed on inherited variables

Error: You can initialize only those variables whose storage is allocated in
this compilation.

NOINITVAR, Cannot initialize ‘‘symbol name’’—it is not declared as a variable
Error: Variables are the only data items that can be initialized, and they
can be initialized only once.

NOLISTATTR, Parameter to this predeclared function must have LIST
attribute
Error: ARGUMENT and ARGUMENT_LIST_LENGTH require their first
parameter to be a formal parameter with the LIST attribute.

NONATOMIC, Unable to generate code for atomic access
Warning: Due to poor alignment, the code generator is unable to generate
an atomic code sequence to read or write the volatile object.

Diagnostic Messages C–33

NONGRNACC, Unable to generate code for requested granularity
Warning: Due to poor alignment, the code generator is unable to generate
a code sequence for the granularity requested.

NOREPRE, No textual representation for values of this type
Error: You cannot write a value to a text file (using WRITE or
WRITELN) or to a VARYING string (using WRITEV) if there is no
textual representation for the type. Similarly, you cannot read a value from
a text file (using READ or READLN) or from a VARYING string (using
READV) if there is no textual representation for the type. Such types are
RECORD, ARRAY (other than PACKED ARRAY [1..n] OF CHAR), SET,
and pointer.

NOTAFUNC, ‘‘symbol name’’ is not declared as a ‘‘routine.’’
Error: An identifier followed by a left parenthesis, a semicolon, or one of
the reserved words END, UNTIL, and ELSE is interpreted as a call to a
routine with no parameters. This message is issued if the identifier was
not declared as a procedure or function identifier. Note that in the current
version, functions can be called with the procedure call statement.

NOTASYNCH, ‘‘routine name’’ is not ASYNCHRONOUS
Information: This message can appear as additional information on other
error messages.

NOTATAG, ‘‘identifier’’ is not a tag-identifier
Error: The identifier used with the CASE OF construct in a record
constructor must be a tag identifier.

NOTATYPE, ‘‘symbol name’’ is not a type identifier
Error: An identifier that does not represent a type was used in a context
where the compiler expected a type identifier.

NOTAVAR, ‘‘symbol name’’ is not declared as a variable
Error: You cannot assign a value to any object other than a variable.

NOTAVARFNID, ‘‘symbol name’’ is not declared as a variable or a function
identifier
Error: You cannot assign a value to any object other than a variable or a
function identifier.

NOTAVARPARM, ‘‘symbol name’’ is not declared as a variable or parameter

Error.

C–34 Diagnostic Messages

NOTBEADDR, May not be parameter to ADDRESS
NOTBEARGV, May not be used as a parameter to ARGV
NOTBEASSIGN, May not be assigned
NOTBECALL, May not be called as a FUNCTION
NOTBECAST, May not be type cast
NOTBEDEREF, May not be dereferenced
NOTBEDES, May not be passed by untyped %DESCR
NOTBEEVAL, May not be evaluated
NOTBEFILOP, May not be used in a file operation

NOTBEFLD, May not be field selected
NOTBEFNCPRM, May not be passed as a FUNCTION parameter
NOTBEFORCTL, May not be used as FOR loop variable
NOTBEFORDES, May not be passed as a descriptor foreign parameter
NOTBEFOREF, May not be passed as a reference foreign parameter
NOTBEIADDR, May not be parameter to IADDRESS
NOTBEIDX, May not be indexed
NOTBEIMMED, May not be passed by untyped immediate passing mechanism

NOTBENEW, May not be written into be NEW
NOTBENSTCTL, May not be control variable for an inner FOR loop
NOTBEREAD, May not be written into be READ
NOTBEREF, May not be passed by untyped reference passing mechanism
NOTBERODES, May not be passed as a READONLY descriptor foreign

parameter
NOTBEROFOR, May not be passed as a READONLY reference foreign

parameter
NOTBEROVAR, May not be passed as a READONLY VAR parameter
NOTBETOUCH, May not be read/modified/written

NOTBEVAR, May not be passed as a VAR parameter
NOTBEWODES, May not be passed as a WRITEONLY descriptor foreign

parameter
NOTBEWOFOR, May not be passed as a WRITEONLY reference foreign

parameter
NOTBEWOVAR, May not be passed as a WRITEONLY VAR parameter
NOTBEWRTV, May not be parameter to WRITEV

Information: These messages can appear as additional information on
other error messages.

NOTBYTOFF, Field ‘‘field name’’ is not aligned on a byte boundary

Error.

Diagnostic Messages C–35

NOTDECLROU, ‘‘symbol name’’ is not declared as a ‘‘routine.’’
NOTINITIAL, ‘‘routine name’’ is not INITIALIZE

Information: These messages can appear as additional information on
other error messages.

NOTINRNG, Value does not fall within range of the tag type
Error: The value specified as the case label of a variant record is not a
legal value of the tag field’s type. This message is also issued if a case label
in a call to NEW, DISPOSE, or SIZE falls outside the range of the tag type.

NOTLOOP, Loop control statement is not inside a loop

Error.

NOTNEWTYP, Schema must define a new type
Error: The type-denoter of a schema definition must define a new type; for
example, a subrange, an array, or a record.

NOTXTLIB, No text library was specified at compile time
Error: The specified %INCLUDE module could not be accessed
because a text library was not specified on the command line or in the
PASCAL$LIBRARY logical name.

NOTSAMTYP, Not the same type
NOTUNBOUND, ‘‘routine name’’ is not UNBOUND

Information: These messages can appear as additional information on
other error messages.

NOTSCHEMA, ‘‘symbol name’’ is not a schema type

Error.

NOTVARNAM, Parameter to this predeclared function must be simple variable
name
Error: The parameter cannot be indexed, be dereferenced, have a field
selected, or be an expression. It must be the name of the entire variable.

NOTVOLATILE, ‘‘variable name’’ is non-VOLATILE
Warning: You should not use the ADDRESS function on a nonvolatile
variable or component or on a formal VAR parameter.

C–36 Diagnostic Messages

NOUNSATDECL, No unsatisfied declaration of label ‘‘label name’’ in ‘‘block
name’’

Error.

NUMFRMLPARM, Different numbers of formal parameters
Information: This message can appear as additional information on other
error messages.

NXTACTDIFF, NEXT of actual’s component differs from that of other
parameters in same section
Error: All actual parameters passed to a formal parameter section
whose type is a conformant schema must have identical bounds and be
structurally compatible. This message refers to the allocation size and
alignment of the array’s inner dimensions.

OLDDECLSYN, Obsolete ‘‘routine’’ parameter declaration syntax
Information: The declaration of a formal routine parameter uses the
obsolete VAX Pascal Version 1.0 syntax. You should edit your program to
incorporate the current version syntax, which is mandated by the Pascal
standard.

OPNDASSCOM, Operands are not assignment compatible
OPNOTINT, Operand(s) must be of type integer

Error.

OPNDNAMCOM, Operands are not name compatible

Error.

ORDOPNDREQ, Ordinal operand(s) required
Error or Warning: This message is at warning level if you try to use INT,
ORD, or UINT on a pointer expression. It is at error level if you use PRED
or SUCC on an expression whose type is not ordinal.

OUTNOTDECL, OUTPUT not declared in heading
Error: A call to EOF, EOLN, READLN, or WRITELN did not specify a file
variable, and the default INPUT or OUTPUT was not listed in the program
heading.

OVRDIVZERO, Overflow or division by zero in compile-time expression

Error.

Diagnostic Messages C–37

PACKSTRUCT, ‘‘component name’’ of a PACKED structured type
Error or Warning: You cannot use the data items listed in a call to
the ADDRESS function, nor can you pass them as writable VAR, %REF,
%DESCR, or %STDESCR parameters. This message is at warning level
if the variable or component has the UNALIGNED attribute, and at error
level if the variable or component is actually unaligned.

PARMACTDEF, Formal parameter ‘‘parameter name’’ has neither actual nor
default
Error: If a formal parameter is not declared with a default, you must pass
an actual parameter to it when calling its routine.

PARMCLAMAT, Parameter section classes do not match
Information: This message can appear as additional information on other
error messages.

PARMLIMIT, Compaq Pascal architectural limit of 255 parameters exceeded
Error: You cannot declare a procedure with more than 255 formal
parameters. A function whose result type requires that the result be stored
in more than 64 bits or whose result type is a character string cannot have
more than 254 formal parameters. In a call to a routine declared with
the LIST attribute, you also cannot pass more than 255 (or 254) actual
parameters.

PARMSECTMAT, Division into parameter sections does not match
Information: This message can appear as additional information on other
error messages.

PARSEFAIL, error parsing command line; use PASCAL command
Fatal: The Compaq Pascal compiler was invoked without using the
PASCAL DCL command.

PARSEFAIL, error parsing command line; using an invalid CLD table
Fatal: The Compaq Pascal compiler was invoked with an incorrect or
obsolete command-line definition in SYS$LIBRARY:DCLTABLES. Contact
your system manager to reinstall SYS$LIBRARY: DCLTABLES.

C–38 Diagnostic Messages

PASPREILL, Passing predeclared ‘‘routine name’’ is illegal
Error: You cannot use the IADDRESS function on a predeclared routine
for which there is no corresponding routine in the run-time library (such
as the interlocked functions). In addition, you cannot pass a predeclared
routine as a parameter if there is no way to write the predeclared routine’s
formal parameter list in Compaq Pascal. Examples of the latter case are
the PRED and SUCC functions and many of the I/O routines.

PASSEXTERN, Passing mechanism allowed only on external routines

Error.

PASSNOTLEG, Passing mechanism not legal for this type

Error.

PCKARRBOO, PACKED ARRAY OF BOOLEAN parameter expected

Error.

PCKUNPCKCON, Packed/unpacked conflict
Information: This message can appear as additional information on other
error messages.

PLACEBEFEOLN, Placeholder not terminated before end of line

Error.

PLACEIVCHAR, Illegal nonprinting character (ASCII ‘‘decimal representation
of character’’) within placeholder

Warning.

PLACENODOT, Repetition of pseudocode placeholders not allowed

Error.

PLACESEEN, Placeholder encountered

Error.

PLACEUNMAT, Unmatched placeholder delimiter

Error.

POSAFTNONPOS, Positional parameter cannot follow a nonpositional
parameter

Error.

Diagnostic Messages C–39

POSALIGNCON, Position / alignment conflict
Error: The bit position specified by the POS attribute does not have the
number of low-order bits implied by the specified alignment attribute.

POSINT, POS expression must be a positive integer value

Error.

PRENAMRED, Predeclared name cannot be redefined
Error: A predeclared name may not be redefined when defining constants
with the /CONSTANT DCL qualifier.

PREREQPRMLST, Passing predeclared ‘‘routine name’’ requires formal to
include parameter list
Error: To pass one of the predeclared routines EXPO, ROUND, TRUNC,
UNDEFINED, UTRUNC, UROUND, DBLE, SNGL, QUAD, INT, ORD,
and UINT as an actual parameter to a routine, you must specify a formal
parameter list in the corresponding formal routine parameter.

PRMKWNSIZ, Parameter must have a size known at compile-time
Error: The BIN, HEX, OCT, DEC, and UDEC functions cannot be used on
conformant parameters. The SIZE and NEXT functions cannot be used on
conformant parameters in compile-time constant expressions.

PROCESSFILE, Compiling file ‘‘file name’’

Information.

PROCESSRTN, Generating code for routine ‘‘routine name’’

Information.

PROGSCHENV, PROGRAM with schema may not create environment
Error: A program that declares a schema type cannot have the
[ENVIRONMENT] attribute. Schema declarations should be placed in
a separate module and inherited by the program.

C–40 Diagnostic Messages

PROPRMEXT, Declaration of ‘‘program parameter name’’ is EXTERNAL—
program parameter files must be locally allocated

PROPRMFIL, A program parameter must be a variable of type FILE
PROPRMINH, Declaration of ‘‘program parameter name’’ is inherited—

program parameter files must be locally allocated
PROPRMLEV, Program parameter ‘‘program parameter name’’ is not declared

as a variable at the outermost level
Error: Any external file variable (other than INPUT and OUTPUT) that
is listed in the program heading must also be declared as a file variable in
a VAR section in the program block.

PSECTMAXINT, Allocation of ‘‘symbol name’’ causes PSECT ‘‘PSECT name’’ to
exceed MAXINT bits
Error: The Compaq Pascal implementation restricts the size of a program
section to 2,147,483,647 bits.

PTRCMPEQL, Pointer values may only be compared for equality
Error: The equality (=) and inequality (<>) operators are the only
operators allowed for values of a pointer type; all other operators are
illegal.

PTREXPRCOM, Pointer expressions are not compatible
Error: The base types of two pointer expressions being compared for
equality (=) or inequality (<>) are not structurally compatible.

QUOBEFEOL, Quoted string not terminated before end of line

Error.

QUOSTRING, Quoted string expected
Error: The compiler expects the %DICTIONARY and %INCLUDE
directives, and the radix notations for binary (%B), hexadecimal (%X), and
octal constants (%O), to be followed by a quoted string of characters.

RADIXTEXT, Radix input requires FILE_VARIABLE of type TEXT
Error: The input radix specifiers (BIN, OCT, and HEX) operate only on
text files.

READONLY, ‘‘variable name’’ is READONLY
Warning: You cannot use a read-only variable in any context that would
store a new value in the variable. For example, a read-only variable cannot
be used in a file operation.

Diagnostic Messages C–41

REALCNSTRNG, Real constant out of range
Error: See the Compaq Pascal Language Reference Manual for details on
the range of real numbers.

REALOPNDREQ, Real (SINGLE, DOUBLE or QUADRUPLE) operand(s)
required

Error.

RECHASFILE, Record contains one or more FILE components, POS is illegal

Error.

RECHASTMSTMP, Record contains one or more TIMESTAMP components,
POS is illegal

Error.

RECLENINT, RECORD_LENGTH expression must be of type integer
Error: The value of the record length parameter to the OPEN procedure
must be an integer.

RECLENMNGLS, RECORD_LENGTH parameter is meaningless given file’s
type
Warning: The record length parameter is usually relevant only for files of
type TEXT and VARYING OF CHAR.

RECMATCHTYP, MATCH_TYPE identifier ‘‘NXT or NXTEQL’’ is recommended
instead of ‘‘GTR or GEQ’’

Information.

REDECL, A declaration of ‘‘symbol name’’ already exists in ‘‘block name’’
Error: You cannot redeclare an identifier or a label in the same block
in which it was declared. Inheriting an environment is equivalent to
including all of its declarations at program or module level.

REDECLATTR, ‘‘attribute name’’ already specified
Error: Only one member of a particular attribute class can appear in the
same attribute list.

REDECLFLD, Record already contains a field ‘‘field name’’
Error: The names of the fields in a record must be unique; they cannot be
duplicated between variants.

C–42 Diagnostic Messages

REINITVAR, ‘‘variable name’’ has already been initialized
Error: Variables are the only data items that can be initialized, and they
can be initialized only once.

REPCASLAB, Value has already appeared as a label in this CASE statement
Error: You cannot specify the same value more than once as a case label
in a CASE statement.

REPFACZERO, Repetition factor cannot be the function ZERO
REQCLAORNCA, Arrays and conformants of this parameter type require

either CLASS_A or CLASS_NCA
REQCLS, Scalars and strings of this parameter type require CLASS_S

Error.

REQNATAGN, Operand must be naturally aligned

Error.bold

REQNOCH, Primary key requires NOCHANGES option

Error.

REQPKDARR, The combination of CLASS_S and %STDESCR requires a
PACKED ARRAY OF CHAR structure

Error.

REQREADVAR, READ or READV requires at least one variable to read into
Error: The READ and READV procedures require that you specify at least
one variable to be read from a file.

REQWRITELEM, WRITE requires at least one write-list-element
Error: The WRITE procedure requires that you specify at least one item
to be written to a file.

RESPTRTYP, Result must be a pointer type

Information.

REVRNTLAB, Value has already appeared as a label in this variant part
Error: You cannot specify the same value more than once as a case label
in a variant part of a record.

Diagnostic Messages C–43

RTNSTDESCR, Routines cannot be passed using %STDESCR

Error.

SCHCONST, Nonstatic constants are not allowed
Error: Constants cannot be made for nonstatic types since that would
yield constants without compile-time size and value.

SCHFLDALN, Field in nonstatic type may not have greater than byte
alignment

Error.

SCHOVERLAID, Use of schema types conflicts with OVERLAID attribute
Error: The OVERLAID attribute cannot be used on programs or modules
that discriminate schema at the outermost level.

SENDSPR, Internal Compiler Error
Fatal: An error has occurred in the execution of the Compaq Pascal
compiler. Along with this message, you will receive information that
helps you find the location in the source program and the name of the
compilation phase at which the error occurred. You may be able to rewrite
the section of your program that caused the error and thus successfully
compile the program. However, even if you are able to remedy the problem,
please submit a problem report to Compaq and provide a machine-readable
copy of the program.

SEQ11FORT, PDP–11 specific directive SEQ11 treated as equivalent to
FORTRAN directive

Information.

SETBASCOM, SET base types are not compatible
Error: The base type of two sets used in a set operation are not
compatible.

SETELEORD, SET element expression must be of an ordinal type
Error: The expressions used to denote the elements of a set constructor or
the bounds of a set type definition must have an ordinal type.

SETNOTRNG, SET element is not in range 0..255
Error: In a set whose base type is a subrange of integers or unsigned
integers, all set elements in the set’s type definition or in a constructor for
the set must be in the range 0..255.

C–44 Diagnostic Messages

SIZACTDIFF, SIZE of actual differs from that of other parameters in same
section
Error: All actual parameters passed to a formal parameter section
whose type is a conformant schema must have identical bounds and be
structurally compatible. This message refers to the allocation size of the
array’s outermost dimension.

SIZARRNCA, Explicit size on ARRAY dimension makes CLASS_NCA
mandatory

Error.

SIZATRTYPCON, Size attribute / type conflict
Error: For an ordinal type, the size specified must be at least as large as
the packed size but no larger than 32 bits. Pointer types and type SINGLE
must be allocated exactly 32 bits, type DOUBLE exactly 64 bits, and type
QUADRUPLE exactly 128 bits. For types ARRAY, RECORD, SET, and
VARYING OF CHAR, the size specified must be at least as large as their
packed sizes. For the details of allocation sizes in Compaq Pascal, see the
Compaq Pascal Language Reference Manual.

SIZCASTYP, Variable’s size conflicts with cast’s target type
Error: In a type cast operation, the size of the variable and the size of the
type to which it is cast must be identical.

SIZEDIFF, Sizes are different
Information: This message can appear as additional information on other
error messages.

SIZEINT, Size expression must be a positive integer value

Error.

SIZGTRMAX, Size exceeds MAXINT bits
Error: The size of a record or an array type or the size specified by a size
attribute exceeds 2,147,483,647 bits. The Compaq Pascal implementation
imposes this size restriction.

SIZMULTBYT, Size of component of array passed by descriptor is not a
multiple of bytes
Error: When an array or a conformant parameter is passed using the
%DESCR mechanism specifier, the descriptor built by the compiler must
follow the Tru64 UNIX Calling Standard. Such a descriptor can describe
only an array whose components fall on byte boundaries.

Diagnostic Messages C–45

SPEOVRDECL, Foreign mechanism specifier required to override parameter
declaration
Error: When you specify a default value for a formal VAR or routine
parameter, you must also use a mechanism specifier to override the
characteristics of the parameter section.

SPURIOUS, ‘‘error message’’ at ‘‘line number’’—‘‘column number’’
Information: The compiler did not correctly note the location of this error
in your program and later could not position and print the correct error
message. You may be able to correct the section of your program that
caused the error and thus avoid this error. Please submit a problem report
and provide a machine-readable copy of the program if you receive this
error.

SRCERRORS, Source errors inhibit continued compilation—correct and
recompile
Fatal: A serious error previously detected in the source program has
corrupted the compiler’s symbol tables and inhibits further compilation.
Correct the serious error and recompile the program.

SRCTXTIGNRD, Source text following end of compilation unit ignored
Warning: The compiler ignores any text following the END statement
that terminates a compilation unit. This error probably resulted from an
unmatched END statement in your program.

STDACTINCMP, Nonstandard: actual is not name compatible with other
parameters in same section
Information: According to the Pascal standard, all actual parameters
passed to a parameter section must have the same type identifier or the
same type definition. This message is issued only if you have specified the
standard switch on the compile command line.

STDATTRLST, Nonstandard: attribute list
STDBIGLABEL, Nonstandard: label number greater than 9999
STDBLANKPAD, Nonstandard: blank-padding used during string operation
STDBNDRMUSE, Nonstandard: usage of formal parameter for routine

‘‘routine name’’
STDCALLFUNC, Nonstandard: function ‘‘function name’’ called as a procedure
STDCASLBLRNG, Nonstandard: label range in case selector

C–46 Diagnostic Messages

STDCAST, Nonstandard: type cast operator
STDCMPCOMPAT, Nonstandard: cannot ‘‘PACK or UNPACK’’, array

component types are incompatible
STDCMPDIR, Nonstandard: compiler directive
STDCOMFUNACC, Nonstandard: component function access
STDCNFARR, Nonstandard: conformant array syntax

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDCNSTR, Nonstandard: array or record constructor
Information: A VAX Pascal Version 1.0 style constructor was used. You
should convert this constructor to the new constructor syntax provided in
the current version of Compaq Pascal to be compatible with the Extended
Pascal standard.

STDCONCAT, Nonstandard: concatenation operator
Information: This message refers to extensions to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDCONST, Nonstandard: ‘‘type name’’ constant
Information: Binary, hexadecimal, and octal constants and constants
of type DOUBLE, QUADRUPLE, UNSIGNED, INTEGER64, and
UNSIGNED64 are extensions to Pascal. This message is issued only
if you have specified the standard switch on the compile command line.

STDCONSTACC, Nonstandard: structured constant access
Information: This message is issued if you have specified a standard
option other than extended on the compile command line.

STDCTLDECL, Nonstandard: control variable ‘‘variable name’’ not declared in
VAR section of ‘‘block name’’
Information: The Pascal standard requires that the control variable of a
FOR statement be declared in the same block in which the FOR statement
appears.

Diagnostic Messages C–47

STDDECLSEC, Nonstandard: declaration sections either out of order or
duplicated in ‘‘block name’’
Information: In the Pascal standard, the declaration sections must
appear in the order LABEL, CONST, TYPE, VAR, PROCEDURE, and
FUNCTION. The ability to specify the sections in any order is an
extension. This message occurs only if you have specified the standard
switch on the compile command line.

STDDEFPARM, Nonstandard: default parameter declaration
Information: This message refers to extensions to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDDIRECT, Nonstandard: ‘‘directive name’’ directive
Information: The EXTERN, EXTERNAL, FORTRAN, and SEQ11
directives are extensions to Pascal. (FORWARD is the only directive
specified by the Pascal standard.) This message is issued only if you have
specified the standard switch on the compile command line.

STDDISCREF, Nonstandard: schema discriminant reference
STDDISCSCHEMA, Nonstandard: discriminated schema

Information: These messages are issued if you have specified a standard
argument other than extended on the compile command line.

STDEMPCASLST, Nonstandard: empty case-list element
Information: This message is issued if you do not specify any case labels
and executable statements between two semicolons or between OF and
a semicolon in the CASE statement. You must also have specified the
standard switch on the compile command line.

STDEMPPARM, Nonstandard: empty actual parameter position
Information: This message refers to extensions to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDEMPREC, Nonstandard: empty record section
Information: The Pascal standard does not allow record type definitions
of the form RECORD END. This message appears only if you have specified
the standard switch on the compile command line.

C–48 Diagnostic Messages

STDEMPSTR, Nonstandard: empty string
Information: This message refers to extensions to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDEMPVRNT, Nonstandard: empty variant
Information: This message occurs if you do not specify a variant between
two semicolons or between OF and a semicolon. You must also have
specified the standard switch on the compile command line.

STDEOLCOM, Nonstandard: end of line comment

Information: The message is issued if you use the exclamation point
character to treat the remainder of the line as a comment. You must also
have specified the standard switch on the compile command line.

STDERRPARM, Nonstandard: error-recovery parameter
STDEXPON, Nonstandard: exponentiation operator
STDEXTSTR, Nonstandard: extended string syntax

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDFLDHIDPTR, Nonstandard: record field identifier ‘‘field identifier name’’
hides type identifier ‘‘field identifier name’’

Information.

STDFORIN, Nonstandard: SET-iteration in FOR statement
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDFORMECH, Nonstandard: foreign mechanism specifier
Information: This message refers to an extension to Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDFORWARD, Nonstandard: PROCEDURE/FUNCTION block ‘‘routine
name’’ and its FORWARD heading are not in the same section
Information: The Extended Pascal standard requires that FORWARD
declared routines must specify their corresponding blocks without
intervening LABEL, CONST, TYPE, or VAR sections. This message is
issued only if you have specified the extended argument to the standard
switch on the compile command line.

Diagnostic Messages C–49

STDFUNIDEVAR, Nonstandard: function identified variable
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDFUNCTRES, Nonstandard: FUNCTION returning a value of a ‘‘type
name’’ type
Information: The ability of functions to have structured result types is an
extension to Pascal. This message is issued only if you have specified the
standard switch on the compile command line.

STDINCLUDE, Nonstandard: %INCLUDE directive
STDINITVAR, Nonstandard: initialization syntax in VAR section

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDKEYWRD, Nonstandard: ‘‘keyword name’’
Information: This message is issued if you have specified a standard
option other than extended on the compile command line.

STDMATCHVRNT, Nonstandard: no matching variant label
Information: This message is issued if you call the NEW or DISPOSE
procedure, and one of the case labels specified in the call does not
correspond to a case label in the record variable. You must also have
specified the standard switch on the compile command line.

STDMODCTL, Nonstandard: potential uplevel modification of ‘‘variable name’’
prohibits use as control variable
Information: You cannot use as the control variable of a FOR statement
any variable that might be modified in a nested block. This message
is issued only if you have specified the standard switch on the compile
command line.

STDMODULE, Nonstandard: MODULE declaration
Information: The item listed in this message is an extension to Pascal.
This message is issued only if you have specified the standard switch on
the compile command line.

C–50 Diagnostic Messages

STDNILCON, Nonstandard: use of reserved word NIL as a constant
Information: Only simple constants and quoted strings are allowed by
the Pascal standard to appear as constants. Simple constants are integers,
character strings, real constants, symbolic constants, and constants of
BOOLEAN and enumerated types. This message is issued only if you have
specified the standard switch on the compile command line.

STDNOFRML, Nonstandard: FUNCTION or PROCEDURE parameter
declaration lacks formal parameter list
Information: This message is issued if you try to pass actual parameters
to a formal routine parameter for which you declared no formal parameter
list. You must also have specified the standard switch on the compile
command line.

STDNONPOS, Nonstandard: nonpositional parameter syntax
STDOTHER, Nonstandard: OTHERWISE clause
STDPASSPRE, Nonstandard: passing predeclared ‘‘routine name’’

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDNOTIN, Nonstandard: NOT IN operator
Information: This message refers to an extension in Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STDPCKSET, Nonstandard: combination of packed and unpacked sets
Information: The Pascal standard does not allow packed and unpacked
sets to be combined in set operations. This message is issued only if you
have specified the standard switch on the compile command line.

STDPRECONST, Nonstandard: predeclared constant ‘‘constant name’’
Information: The constants MAXCHAR, MAXINT64, MAXUNSIGNED,
MAXUNSIGNED64, MAXREAL, MINREAL, EPSREAL, MAXDOUBLE,
MINDOUBLE, EPSDOUBLE, MAXQUADRUPLE, MINQUADRUPLE,
and EPSQUADRUPLE are extensions to Pascal. MAXCHAR, MAXREAL,
MINREAL, and EPSREAL are contained in Extended Pascal. This
message is issued only if you have specified the standard switch on the
compile command line.

Diagnostic Messages C–51

STDPREDECL, Nonstandard: predeclared ‘‘routine’’
Information: Many predeclared procedures and functions are extensions
to Pascal. The use of these routines causes this message to be issued if you
have specified the standard switch on the compile command line.

STDPRESCH, Nonstandard: predefined schema ‘‘type name’’
Information: This message is issued if you have specified a standard
switch other than extended on the compile command line.

STDPRETYP, Nonstandard: predefined type ‘‘type name’’
Information: The types SINGLE, DOUBLE, INTEGER64, QUADRUPLE,
UNSIGNED, UNSIGNED64, and VARYING OF CHAR are extensions to
Pascal. This message is issued only if you have specified the standard
switch on the compile command line.

STDQUOSTR, Nonstandard: quotes enclosing radix constant
Information: This message is issued if you have specified the extended
option on the compile command line.

STDRADFORMAT, Nonstandard: use format ‘‘radix’’#nnn for radix constant
Information: This message refers to the use of an extension to Pascal.
This message is issued only if you have specified the extended argument to
the standard switch on the compile command line.

STDRADIX, Nonstandard: radix constant
Information: This message refers to the use of an extension to Pascal.
This message is issued only if you have specified a standard switch other
than extended on the compile command line.

STDRDBIN, Nonstandard: binary input from a TEXT file
STDRDENUM, Nonstandard: enumerated type input from a TEXT file
STDRDHEX, Nonstandard: hexadecimal input from a TEXT file
STDRDOCT, Nonstandard: octal input from a TEXT file
STDRDSTR, Nonstandard: string input from a TEXT file

Information: The Pascal standard allows only INTEGER, CHAR, and
REAL values to be read from a text file. The ability to read values of other
types is an extension to Pascal. These messages are issued only if you have
specified the standard switch on the compile command line.

C–52 Diagnostic Messages

STDREDECLNIL, Nonstandard: redeclaration of reserved word NIL
Information: The Pascal standard considers NIL a reserved word, while
Compaq Pascal considers it to be a predeclared identifier. Thus, if you have
specified the standard switch on the compile command line, this message
will be issued if you attempt to redefine NIL.

STDREM, Nonstandard: REM operator
Information: The item listed in this message is an extension to Pascal.
This message is issued only if you have specified the standard switch on
the compile command line.

STDSCHEMA, Nonstandard: schema type definition
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDSCHEMAUSE, Nonstandard: use of schema type
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDSIMCON, Nonstandard: only simple constant (optional sign) or quoted
string
Information: Only simple constants and quoted strings are allowed by
the Pascal standard to appear as constants. Simple constants are integers,
character strings, real constants, symbolic constants, constants of type
BOOLEAN, and enumerated types. This message is issued only if you have
specified the standard switch on the compile command line.

STDSPECHAR, Nonstandard: ‘‘$’’ or ‘‘_’’ in identifier
STDSTRCOMPAT, Nonstandard: string compatibility

Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDSTRUCT, Nonstandard: types do not have same name
Information: Because the Pascal standard does not recognize structural
compatibility, two types must have the same type identifier or type
definition to be compatible. This message is issued only if you have
specified the standard switch on the compile command line.

STDSUBSTRING, Nonstandard: substring notation

Error.

Diagnostic Messages C–53

STDSYMLABEL, Nonstandard: symbolic label
Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDTAGFLD, Nonstandard: invalid use of tag field
Information: The tag field of a variant record cannot be a parameter to
the ADDRESS function, nor can you pass it as a writable VAR, %REF,
%DESCR, or %STDESCR formal parameter. This message is issued only if
you have specified the standard switch on the compile command line.

STDTODECL, Nonstandard: TO BEGIN/END DO declaration
Information: This message is issued if you have specified a standard
argument other than extended on the compile command line.

STDUNSAFE, Nonstandard: UNSAFE compatibility
Information: If you have used the UNSAFE attribute on an object that is
later tested for compatibility, you will receive this message. You must also
have specified the standard switch on the compile command line.

STDUSEDCNF, Nonstandard: conformant array used as a string
STDUSEDPCK, Nonstandard: PACKED ARRAY [1..1] OF CHAR used as a

string
Information: These messages refer to extensions to Pascal and are issued
only if you have specified the standard switch on the compile command
line.

STDVALCNFPRM, Nonstandard: conformant array may not be passed to value
conformant parameter

Information.

STDVALUE, Nonstandard: VALUE initialization section
STDVAXCDD, Nonstandard: %DICTIONARY directive

Information: These messages refere to extensions to Pascal and are
issued only if you have specified the standard switch on the compile
command line.

STDVRNTCNSTR, Nonstandard: variant field outside constructor variant part
Information: This message refers to the use of an extension to Pascal.
This message is issued only if you have specified the extended argument to
the standard switch the compile command line.

C–54 Diagnostic Messages

STDVRNTPART, Nonstandard: empty variant part
Information: According to the Pascal standard, a variant part that
declares no case labels and field lists between the words OF and END is
illegal. This message occurs only if you have specified the standard switch
on the compile command line.

STDVRNTRNG, Nonstandard: variant labels do not cover the range of the tag
type
Information: According to the Pascal standard, you must specify one
case label for each value in the tag type of a variant record. This message
is issued only if you have specified the standard switch on the compile
command line.

STDWRTBIN, Nonstandard: binary output to a TEXT file
STDWRTENUM, Nonstandard: user defined enumerated type output to a

TEXT file
STDWRTHEX, Nonstandard: hexadecimal output to a TEXT file
STDWRTOCT, Nonstandard: octal output to a TEXT file

Information: The Pascal standard allows only INTEGER, BOOLEAN,
CHAR, REAL, and PACKED ARRAY [1..n] OF CHAR values to be written
to a text file. The ability to write values of other types is an extension to
Pascal. These messages are issued only if you have specified the standard
switch on the compile command line.

STDZERO, Nonstandard: ZERO function used in constructor
Information: This message refers to an extension in Pascal and is issued
only if you have specified the standard switch on the compile command
line.

STOREQEXC, Allocates to Psect "name" exceded growth bounds
Error: Too much data is allocated to the Psect. Either place variables into
different Psects or break up the program into multiple modules

STREQLLEN, String values must be of equal length
Error: You cannot perform string comparisons on character strings that
have different lengths.

Diagnostic Messages C–55

STROPNDREQ, String (CHAR, PACKED ARRAY [1..n] OF CHAR, or
VARYING) operand required

STRPARMREQ, String (CHAR, PACKED ARRAY [1..n] OF CHAR, or
VARYING) parameter required

STRTYPREQ, String (CHAR, PACKED ARRAY [1..n] OF CHAR, or VARYING)
type required
Error: The file-name parameter to the OPEN procedure and the
parameter to the LENGTH function must be character strings of the
types listed.

SYNASCII, Illegal ASCII character
SYNASSERP, Syntax: ‘‘:=’’, ‘‘;’’ or ‘‘)’’ expected
SYNASSIGN, Syntax: ‘‘:=’’ expected
SYNASSIN, Syntax: ‘‘:=’’ or IN expected
SYNASSSEMI, Syntax: ‘‘:=’’ or ‘‘;’’ expected
SYNATRCAST, Syntax: attribute list not allowed on a type cast
SYNATTTYPE, Syntax: attribute-list or type specification
SYNBEGDECL, Syntax: BEGIN or declaration expected

SYNBEGEND, Syntax: BEGIN or END expected
SYNBEGIN, Syntax: BEGIN expected
SYNCOASSERP, Syntax: ‘‘,’’, ‘‘:=’’, ‘‘;’’ or ‘‘)’’ expected
SYNCOELRB, Syntax: ‘‘,’’, ‘‘..’’ or ‘‘]’’ expected
SYNCOLCOMRP, Syntax: ‘‘:’’, ‘‘,’’ or ‘‘)’’ expected
SYNCOLON, Syntax: ‘‘:’’ expected
SYNCOMCOL, Syntax: ‘‘,’’ or ‘‘:’’ expected
SYNCOMDO, Syntax: ‘‘,’’ or DO expected
SYNCOMEQL, Syntax: ‘‘,’’ or ‘‘=’’ expected

SYNCOMMA, Syntax: ‘‘,’’ expected
SYNCOMRB, Syntax: ‘‘,’’ or ‘‘]’’ expected
SYNCOMRP, Syntax: ‘‘,’’ or ‘‘)’’ expected
SYNCOMSEM, Syntax: ‘‘,’’ or ‘‘;’’ expected
SYNCONTMESS, Syntax: CONTINUE or MESSAGE expected
SYNCOSERP, Syntax: ‘‘,’’, ‘‘;’’ or ‘‘)’’ expected
SYNDIRBLK, Syntax: directive or block expected

Error: The compiler either failed to find an important lexical or syntactical
element where one was expected, or it detected an error in such an element
that does exist in your program.

C–56 Diagnostic Messages

SYNDIRMIS, Syntax: directive missing, EXTERNAL assumed
Error: In the absence of a directive where one is expected, the compiler
assumes that EXTERNAL is the intended directive and proceeds with
compilation based on that assumption.

SYNDO, Syntax: DO expected
SYNELIPSIS, Syntax: ‘‘..’’ expected
SYNELSESTMT, Syntax: ELSE or start of new statement expected
SYNEND, Syntax: END expected
SYNEQL, Syntax: ‘‘=’’ expected
SYNEQLLP, Syntax: ‘‘=’’ or ‘‘(’’ expected
SYNERRCTE, Error in compile-time expression
SYNEXPR, Syntax: expression expected
SYNEXSEOTEN, Syntax: expression, ‘‘;’’, OTHERWISE or END expected

SYNFUNPRO, Syntax: FUNCTION or PROCEDURE expected
SYNHEADTYP, Syntax: routine heading or type identifier expected
SYNIDCAEND, Syntax: identifier, CASE or END expected
SYNIDCARP, Syntax: identifier, CASE or ‘‘)’’ expected
SYNIDCASE, Syntax: identifier or CASE expected
SYNIDENT, Syntax: identifier expected
SYNILLEXPR, Syntax: ill-formed expression
SYNINT, Syntax: integer expected
SYNINTBOO, Syntax: integer, boolean, or string literal expected

SYNINVSEP, Syntax: invalid token separator
SYNIVATRLST, Syntax: illegal attribute list
SYNIVPARM, Syntax: illegal actual parameter
SYNIVPRMLST, Syntax: illegal actual parameter list
SYNIVSYM, Syntax: illegal symbol
SYNIVVAR, Syntax: illegal variable
SYNLABEL, Syntax: label expected
SYNLBRAC, Syntax: ‘‘[’’ expected

SYNLPAREN, Syntax: ‘‘(’’ expected
SYNLPASEM, Syntax: ‘‘(’’ or ‘‘;’’ expected
SYNLPCORB, Syntax: ‘‘(’’, ‘‘,’’ or ‘‘]’’ expected
SYNLPSECO, Syntax: ‘‘(’’, ‘‘;’’ or ‘‘:’’ expected
SYNMECHEXPR, Syntax: mechanism specifier or expression expected
SYNNEWSTMT, Syntax: start of new statement expected
SYNOF, Syntax: OF expected
SYNPARMLST, Syntax: actual parameter list

Diagnostic Messages C–57

SYNPARMSEC, Syntax: parameter section expected
SYNPERIOD Syntax: ‘‘.’’ expected.
SYNPROMOD, Syntax: PROGRAM or MODULE expected
SYNQUOSTR, Syntax: quoted string expected
SYNRBRAC, Syntax: ‘‘]’’ expected
SYNRESWRD, Syntax: reserved word cannot be redefined
SYNRPAREN, Syntax: ‘‘)’’ expected
SYNRPASEM, Syntax: ‘‘;’’ or ‘‘)’’ expected
SYNRTNTYPCNF, Syntax: routine heading, type identifier or conformant

parameter expected

SYNSEMI, Syntax: ‘‘;’’ expected
SYNSEMIEND, Syntax: ‘‘;’’ or END expected
SYNSEMMODI, Syntax: ‘‘;’’, ‘‘::’’, ‘‘^’’, or ‘‘[’’ expected
SYNSEMRB, Syntax: ‘‘;’’ or ‘‘]’’ expected
SYNSEOTEN, Syntax: ‘‘;’’, OTHERWISE or END expected
SYNTHEN, Syntax: THEN expected
SYNTODOWN, Syntax: TO or DOWNTO expected
SYNSEOTRP, Syntax: ‘‘;’’, OTHERWISE, or ‘‘)’’ expected
SYNTYPCNF, Syntax: type identifier or conformant parameter expected

SYNTYPID, Syntax: type identifier expected

Error: The compiler either failed to find an important lexical or syntactical
element where one was expected, or it detected an error in such an element
that does exist in your program.

SYNTYPPACK, Only ARRAY, FILE, RECORD or SET types can be PACKED
Warning: You cannot pack any type other than the structured types listed
in the message.

SYNTYPSPEC, Syntax: type specification expected
SYNUNEXDECL, Syntax: declaration encountered in executable section
SYNUNTIL, Syntax: UNTIL expected
SYNXTRASEMI, Syntax: ‘‘; ELSE’’ is not valid Pascal, ELSE matched with IF

on line ‘‘line number’’
Error: The compiler either detected an error in a lexical or syntactical
element in your program, or it failed to find such an element where one
was expected.

TAGNOTORD, Tag type must be an ordinal type
Error: The type of a variant record’s tag field must be one of the ordinal
types.

C–58 Diagnostic Messages

TOOIDXEXPR, Too many index expressions; type has only ‘‘number of
dimensions’’ dimensions
Error: A call to the UPPER or LOWER function specified an index value
that exceeds the number of dimensions in the dynamic array.

TOOMANYIFS, Conditional compilation nesting level exceeds implementation
limit
Error: %IF directives may only be nested 32 deep.

TOPROGRAM, TO BEGIN/END DO not allowed in PROGRAM
Error: TO BEGIN DO and TO END DO declarations are only allowed in
modules.

TYPCNTDISCR, Type can not be discriminated in this context

Error.

TYPFILSIZ, Type contains one or more FILE components, size attribute is
illegal
Error: The allocation size of a FILE type cannot be controlled by a size
attribute; therefore, you cannot use a size attribute on any type that has a
file component.

TYPHASFILE, Type contains one or more FILE components
Error: Many operations are illegal on objects of type FILE and objects of
structured types with file components; for example, you cannot initialize
them, use them as value parameters, or read them with input procedures.

TYPHASNOVRNT, Type contains no variant part
Error: You can only use the formats of the NEW, DISPOSE, and SIZE
routines that allow case labels to be specified when their parameters have
variants.

TYPPTRFIL, Type must be pointer or FILE
Error: You cannot use the syntax ‘‘Variable^’’ to refer to an object whose
type is not pointer or FILE.

TYPREF, %REF not allowed for this type
Error: The %REF foreign mechanism specifier cannot be used with
schematic variables.

Diagnostic Messages C–59

TYPSTDESCR, %STDESCR not allowed for this type
Error: The %STDESCR mechanism specifier is allowed only on objects of
type CHAR, PACKED ARRAY [1..n] OF CHAR, VARYING OF CHAR, and
arrays of these types.

TYPVARYCHR, Component type of VARYING must be CHAR

Error.

UNALIGNED, ‘‘variable name’’ is UNALIGNED
Error or Warning: You cannot use the data items listed in a call to
the ADDRESS function, nor can you pass them as writable VAR, %REF,
%DESCR, or %STDESCR parameters. This message is at warning level
if the variable or component has the UNALIGNED attribute, and at error
level if the variable or component is actually unaligned.

UNAVOLACC, Volatile access appears unaligned, but must be aligned at
run-time to ensure atomicity and byte granularity
Warning: The code generator was unable to determine if a volatile access
was aligned or not. It generated two sequences; one sequence will perform
the atomic access if it was aligned properly; the second sequence accesses
the object, but may contain a timing window where incorrect results may
occur.

UNBPNTRET, ‘‘routine name’’ is not UNBOUND—frame-pointer not returned
Warning: The IADDRESS function returns only the address of the
procedure value (on OpenVMS VAX systems, the entry mask of the routine
is called). This address may be sufficient information to successfully
invoke an unbound routine, but not a bound routine. (Bound routines are
represented as a pair of addresses: one pointing to the procedure value
and the other to the frame pointer to the routine in which the routine was
declared.)

UNCALLABLE, Routine "name" can never be called

Information.

UNCERTAIN, ‘‘Variable name’’ has not been initialized

Information.

C–60 Diagnostic Messages

UNDECLFRML, Undeclared formal parameter ‘‘symbol name’’
Error: A formal parameter name listed in a nonpositional call to a routine
does not match any of the formal parameters declared in the routine
heading.

UNDECLID, Undeclared identifier ‘‘symbol name’’
Error: In Pascal, an identifier must be declared before it is used. There
are no default or implied declarations.

UNINIT, Variable "name" is fetched, not initialized
Explanation:

Information.

UNDSCHILL, Undiscriminated schema type is illegal
Error: An undiscriminated schema type does not have any actual
discriminants. Without discriminants, the type size, any nested ARRAY
bounds, and the offset of any nested RECORD fields are unknown.

UNINIT, ‘‘Variable name’’ is fetched, not initialized

Info.

UNPREDRES, Calling FUNCTION ‘‘function name’’ declared FORWARD may
yield unpredictable results
Warning: By using FORWARD declared functions in actual discriminant
expressions, you can cause infinite loops at run time or access violations.

UNREAD, Variable, ‘‘variable name’’ is assigned into, but never read

Information.

UNSCNFVRY, UNSAFE attribute not allowed on conformant VARYING
parameter

Error.

UNSEXCRNG, UNSIGNED constant exceeds range
Error: The largest value allowed for an UNSIGNED integer is
4,294,967,295.

UNUSED, Variable, ‘‘variable name’’ is never referenced

Information.

Diagnostic Messages C–61

UNWRITTEN, Variable ‘‘variable name’’ is read, but never assigned into

Warning.

UPLEVELACC, Unbound ‘‘routine name’’ precludes uplevel access to ‘‘variable
name’’
Error: A routine that was declared with the UNBOUND attribute cannot
refer to automatic variables, routines, or labels declared in outer blocks.

UPLEVELGOTO, Unbound ‘‘routine name’’ precludes uplevel GOTO to ‘‘label
name’’
Error: A routine that was declared with the UNBOUND attribute cannot
refer to automatic variables, routines, or labels declared in outer blocks.

USEDBFDECL, ‘‘symbol name’’ was used before being declared

Warning.

USEINISTA, Use initial-state (VALUE clause) on TYPE or VAR declaration
Information: Nonstatic variables, such as those created from schema
types, cannot be initialized in the VALUE declaration part. To initialize
these variables, you must use the initial state feature.

V1DYNARR, Decommitted Version 1 dynamic array type
Error: The type syntax used to define a dynamic array parameter has
been decommitted for the current version of Compaq Pascal. You should
edit your program to make the type definition conform to the current
version conformant array syntax.

V1DYNARRASN, Decommitted Version 1 dynamic array assignment
Error: In VAX Pascal Version 1.0, dynamic arrays used in assignments
could not be checked for compatibility until run time. This warning
indicates that your program depends on an obsolete feature, which
you should consider changing to reflect the current version syntax for
conformant array parameters.

V1MISSPARM, Decommitted missing parameter syntax: correct by adding
‘‘number of commas’’ comma(s)
Error: An OPEN procedure called with the decommitted VAX Pascal
Version 1.0 syntax fails to mark omitted parameters with commas. Your
program depends on this obsolete feature, and you should insert the correct
number of commas as listed in the message.

C–62 Diagnostic Messages

V1PARMSYN, Use of unsupported V1 omitted parameter syntax with new V2
feature(s)
Error: In a parameter list for the OPEN procedure, you cannot use both
the Version 1.0 syntax for OPEN and the parameters that are new to
subsequent versions of Compaq Pascal.

V1RADIX, Decommitted Version 1 radix output specification
Error: In VAX Pascal Version 1.0, octal and hexadecimal values could
be written by placing the keywords OCT or HEX after a field width
expression. Your program uses this obsolete feature; you should consider
changing it to use the current versions OCT or HEX predeclared functions.

VALOUTBND, Value to be assigned is out of bounds
Error: A value specified in an array or record constructor exceeds the
subrange defined as the type of the corresponding component.

VALUEINIT, VALUE variables must be initialized
Error: Variables with both the VALUE and GLOBAL attributes must be
given an initial value in either the VAR section or in the VALUE section.

VALUETOOBIG, VALUE attribute not allowed on objects larger than 32 bits
Error: Variables with the VALUE attribute cannot be larger than 32 bits
because they are expressed to the linker as global symbol references.

VALUETYP, VALUE allowed only on ordinal or real types

Error.

VALUEVISIB, GLOBAL or EXTERNAL visibility is required with the VALUE
attribute
Error: Variables with the VALUE attribute must be given either external
or global visibility. (If the variable is given global visibility, then it must
also be given an initial value.)

VARCOMFRML, Variable is not compatible with formal parameter ‘‘formal
parameter name’’
Error: A variable being passed as an actual parameter is not compatible
with the corresponding formal parameter indicated. Variable parameters
must be structurally compatible. The reason for the incompatibility is
provided in an informational message that the compiler prints along with
this error message.

Diagnostic Messages C–63

VARNOTEXT, Variable must be of type TEXT
Error: The EOLN function requires that its parameter be a file of type
TEXT.

VARPRMRTN, Formal VAR parameter may not be a routine
Error: The reserved word VAR cannot precede the word PROCEDURE or
FUNCTION in a formal parameter declaration.

VARPTRTYP, Variable must be of a pointer type
Error: The NEW and DISPOSE procedures operate only on pointer
variables.

VARYFLDS, LENGTH and BODY are the only fields in a VARYING type
Error: You cannot use the syntax ‘‘Variable.Identifier’’ to specify any fields
of a VARYING OF CHAR variable other than LENGTH and BODY.

VISAUTOCON, Visibility / AUTOMATIC allocation conflict
Error: The GLOBAL, EXTERNAL, WEAK_GLOBAL, and WEAK_
EXTERNAL attributes require static allocation and therefore conflict with
the AUTOMATIC attribute.

VISGLOBEXT, Visibilities are not GLOBAL/EXTERNAL or EXTERNAL
/EXTERNAL
Information: In repeated declarations of a variable or routine, only
one declaration at most can be global; all others must be external. This
message can appear as additional information for other error messages.

VRNTRNG, Variant labels do not cover the range of the tag type
Error: According to the Pascal standard, you must specify one case
label for each value in the tag type of a variant record or include an
OTHERWISE clause.

WDTHONREAL, Second field width is allowed only when value is of a real
type
Error: The fraction value in a field-width specification is allowed only for
real-number values.

WRITEONLY, ‘‘variable name’’ is WRITEONLY
Warning: You cannot use a write-only variable in any context that
requires the variable to be evaluated. For example, a write-only variable
cannot be used as the control variable of a FOR statement.

C–64 Diagnostic Messages

XTRAERRORS, Additional diagnostics occurred on this line
Information: The number of errors occurring on this line exceeds the
implementation’s limit for outputting errors. You should correct the errors
given and recompile your program.

ZERNOTALL, ZERO is not allowed for type or types containing ‘‘type name’’
Error: ZERO may not be used to initialize objects of type FILE, TEXT, or
TIMESTAMP or objects containing these types.

C.3 Run-Time Diagnostics
During execution, an image can generate a fatal error called an exception
condition. When the Compaq Pascal run-time system detects such a condition,
the system displays an error message and aborts program execution.

Compaq Pascal run-time system diagnostics are preceded by the following:

pascal: Fatal error-text

The severity level of a run-time error is F, fatal error.

Some conditions, particularly I/O errors, may cause several messages to be
generated. The first message is a diagnostic that specifies the file that was
being accessed (if any) when the error occurred and the nature of the error.

All diagnostic messages contain a brief explanation of the event that caused
the error. This section lists run-time diagnostic messages in alphabetical
order, including explanatory message text. Where the message text is not
self-explanatory, additional explanation follows. Portions of the message text
enclosed in quotation marks are items that the compiler substitutes with the
name of a data object when it generates the message.

ACCMETINC, ACCESS_METHOD specified is incompatible with this file
Explanation: The value of the ACCESS_METHOD parameter for a call
to the OPEN procedure is not compatible with the file’s organization or
record type. You can use DIRECT access only with files that have relative
organization or sequential organization and fixed-length records. You can
use KEYED access only with indexed files.
User Action: Make sure that you are accessing the correct file.

Diagnostic Messages C–65

AMBVALENU, ‘‘string’’ is an ambiguous value for enumerated type ‘‘type’’
Explanation: While a value of an enumerated type was being read from
a text file, not enough characters of the identifier were found to specify an
unambiguous value.
User Action: Specify enough characters of the identifier so that it is not
ambiguous.

ARRINDVAL, array index value is out of range
Explanation: You enabled bounds checking for a compilation unit and
attempted to specify an index that is outside the array’s index bounds.
User Action: Correct the program or data so that all references to array
indexes are within the declared bounds.

ARRNOTCOM, conformant array is not compatible
Explanation: You attempted to assign one dynamic array to another that
did not have the same index bounds. This error occurs only when the
arrays use the decommitted VAX Pascal Version 1.0 syntax for dynamic
array parameters.
User Action: Correct the program so that the two dynamic arrays have
the same index bounds. You could also change the arrays to conform to the
current syntax for conformant arrays; most incompatibilities could then be
detected at compile time rather than at run time. See the Compaq Pascal
Language Reference Manual for more information on current conformant
arrays.

ARRNOTSTR, conformant array is not a string
Explanation: In a string operation, you used a conformant PACKED
ARRAY OF CHAR value whose index had a lower bound not equal to 1 or
an upper bound greater than 65535.
User Action: Correct the array’s index so that the array is a character
string.

ASSERTION, Pascal assertion failure
Explanation: The expression used in the Pascal ASSERT builtin routine
evaluated to false.
User Action: Correct the problem that was being checked with the
ASSERT builtin in the source program.

C–66 Diagnostic Messages

BUGCHECK, internal consistency failure ‘‘nnn’’ in Pascal Run-Time Library
Explanation: The run-time library has detected an internal error or
inconsistency. This problem may be caused by an out-of-bounds array
reference or a similar error in your program.
User Action: Rerun your program with all CHECK options enabled. If
you are unable to find an error in your program, please submit a problem
report, including a machine-readable copy of your program, data, and a
sample execution illustrating the problem.

CANCNTERR, handler cannot continue from a nonfile error
Explanation: A user condition handler attempted to return
SS$_CONTINUE for an error not involving file input/output. To recover
from such an error, you must use either an uplevel GOTO statement or the
SYS$UNWIND system service.
User Action: Modify the user handler to use one of the allowed recovery
actions for nonfile errors, or to resignal the error if no recovery action is
possible.

CASSELVAL, CASE selector value is out of range
Explanation: The value of the case selector in a CASE statement does
not equal any of the specified case labels, and the statement has no
OTHERWISE clause.
User Action: Either add an OTHERWISE clause to the CASE statement
or change the value of the case selector so that it equals one of the case
labels. See the Compaq Pascal Language Reference Manual for more
information.

CONCATLEN, string concatenation has more than 65535 characters
Explanation: The result of a string concatenation operation would result
in a string longer than 65,535 characters, which is the maximum length of
a string.
User Action: Correct the program so that all concatenations result in
strings no longer than 65,535 characters.

CSTRCOMISS, invalid constructor: component(s) missing
Explanation: The constructor did not specify sufficient component values
to initialize a variable of the type.
User Action: Specify more components in the constructor, use the
OTHERWISE clause in the constructor, or modify the type definition to
specify fewer components.

Diagnostic Messages C–67

CURCOMUND, current component is undefined for DELETE or UPDATE
Explanation: You attempted a DELETE or UPDATE procedure when
no current component was defined. A current component is defined
by a successful GET, FIND, FINDK, RESET, or RESETK that locks
the component. Files opened with HISTORY:=READONLY never lock
components.
User Action: Correct the program so that a current component is defined
before executing DELETE or UPDATE.

DELNOTALL, DELETE is not allowed for a sequential organization file
Explanation: You attempted a DELETE procedure for a file with
sequential organization, which is not allowed. DELETE is valid only on
files with relative or indexed organization.
User Action: Make sure that the program is referencing the correct file.

ERRDURDIS, error during DISPOSE
Explanation: An error occurred during execution of a DISPOSE
procedure. An additional message that further describes the error
may also be displayed.
User Action: Make sure that the heap storage being freed was allocated
by a successful call to the NEW procedure, and that it has not been already
freed.

ERRDURNEW, error during NEW
Explanation: An error occurred during execution of the NEW procedure.
An additional message is displayed that further describes the error.

ERRDUROPE, error during OPEN
Explanation: An unexpected error occurred during execution of the OPEN
procedure, or during an implicit open caused by a RESET or REWRITE
procedure. An additional message is displayed that further describes the
error.

EXTNOTALL, EXTEND is not allowed for a shared file
Explanation: Your program attempted an EXTEND procedure for a file
for which the program did not have exclusive access. EXTEND requires
that no other users be allowed to access the file. Note that this message
may also be issued if you do not have permission to extend to the file.
User Action: Correct the program so that the file is opened with
SHARING:=NONE, which is the default, before performing an EXTEND
procedure.

C–68 Diagnostic Messages

FAIGETLOC, failed to GET locked component
Explanation: Your program attempted to access a component of a file that
was locked by another user. You can usually expect this condition to occur
when more than one user is accessing the same relative or indexed file.
User Action: Determine whether this condition should be allowed to
occur. If so, modify your program so that it detects the condition and
retries the operation later.

FILALRACT, file ‘‘file name’’ is already active
Explanation: Your program attempted a file operation on a file for which
another operation was still in progress. This error can occur if a file is used
in AST or condition-handling routines.
User Action: Modify your program so that it does not try to use files that
may currently be in use.

FILALRCLO, file is already closed
Explanation: Your program attempted to close a file that was already
closed.
User Action: Modify your program so that it does not try to close files
that are not open.

FILALROPE, file is already open
Explanation: Your program attempted to open a file that was already
open.
User Action: Modify your program so that it does not try to open files
that are already open.

FILNAMREQ, FILE_NAME required for this HISTORY or DISPOSITION
Explanation: Your program attempted to open a nonexternal file without
specifying a file-name parameter to the OPEN procedure, but the HISTORY
or DISPOSITION parameter specified requires a file name.
User Action: Add a file-name parameter to the OPEN procedure call,
specifying an appropriate file name.

FILNOTDIR, file is not opened for direct access
Explanation: Your program attempted to execute a DELETE, FIND,
LOCATE, or UPDATE procedure on a file that was not opened for direct
access.
User Action: Modify the program to specify the ACCESS_
METHOD:=DIRECT parameter to the OPEN procedure when opening
the file.

Diagnostic Messages C–69

FILNOTFOU, file not found
Explanation: Your program attempted to open a file that does not
exist. An additional RMS message is displayed that further describes the
problem.
User Action: Make sure that you are specifying the correct file.

FILNOTGEN, file is not in Generation mode
Explanation: Your program attempted a file operation that required the
file to be in generation mode (ready for writing).
User Action: Modify the program to use a REWRITE, TRUNCATE, or
LOCATE procedure to place the file in generation mode as appropriate.

FILNOTINS, file is not in Inspection mode
Explanation: Your program attempted a file operation that required the
file to be in inspection mode (ready for reading).
User Action: Modify the program to use a RESET, RESETK, FIND, or
FINDK procedure to place the file in inspection mode as appropriate.

FILNOTKEY, file is not opened for keyed access
Explanation: Your program attempted to execute a FINDK, RESETK,
DELETE, or UPDATE procedure on a file that was not opened for keyed
access.
User Action: Modify the program to specify the ACCESS_
METHOD:=KEYED parameter to the OPEN procedure when opening
the file.

FILNOTOPE, file is not open
Explanation: Your program attempted to execute a file manipulation
procedure on a file that was not open.
User Action: Correct the program to open the file using a RESET,
REWRITE, or OPEN procedure as appropriate.

FILNOTSEQ, file is not sequential organization
Explanation: Your program attempted to execute the TRUNCATE
procedure on a file that does not have sequential organization. TRUNCATE
is valid only on sequential files.
User Action: Make sure that your program is accessing the correct file.
Correct the program so that all TRUNCATE operations are performed on
sequential files.

C–70 Diagnostic Messages

FILNOTTEX, file is not a textfile
Explanation: Your program performed a file operation that required a
file of type TEXT on a nontext file. Note that the type FILE OF CHAR is
not equivalent to TEXT unless you have compiled the program with the
/OLD_VERSION qualifier.
User Action: Make sure that your program is accessing the correct file.
Correct the program so that a text file is always used when required.

GENNOTALL, Generation mode is not allowed for a READONLY file
Explanation: Your program attempted to place a file declared with
the READONLY attribute into generation mode, which is not allowed.
Note that the READONLY file attribute is not equivalent to the
HISTORY:=READONLY parameter to the OPEN procedure.
User Action: Correct the program so that the file either does not have the
READONLY attribute or is not placed into generation mode.

GETAFTEOF, GET attempted after end-of-file
Explanation: Your program attempted a GET operation on a file while
EOF(f) was TRUE. This situation occurs when a previous GET operation
(possibly implicitly performed by a RESET, RESETK, or READ procedure)
reads to the end of the file and causes the EOF(f) function to return TRUE.
If another GET is then performed, this error is given.
User Action: Correct the program so that it either tests whether EOF(f)
is TRUE, before attempting a GET operation, or repositions the file before
the end-of-file marker.

GOTOFAILED, non-local GOTO failed
Explanation: An error occurred while a nonlocal GOTO statement was
being executed. This error might occur because of an error in the user
program, such as an out-of-bounds array reference.
User Action: Rerun your program, enabling all CHECK options. If you
cannot locate an error in your program and the problem persists, please
submit a problem report to Compaq, and include a machine-readable copy
of your program, data, and results of a sample execution showing the
problem.

HALT, HALT procedure called
Explanation: The program terminated its execution by executing the
HALT procedure. This message is solely informational.
User Action: None.

Diagnostic Messages C–71

ILLGOTO, illegal uplevel GOTO during routine activation
Explanation: An uplevel GOTO was made into the body of a routine
before the declaration part of the routine was completely processed.
User Action: Correct the program to avoid the uplevel GOTO until the
declaration part has been completely processed.

INSNOTALL, Inspection mode is not allowed for a WRITEONLY file
Explanation: Your program attempted to place a file declared with the
WRITEONLY attribute into inspection mode, which is not allowed.
User Action: Correct the program so that the file variable either does not
have the WRITEONLY attribute or is not placed into inspection mode.

INSVIRMEM, insufficient virtual memory
Explanation: The run-time library was unable to allocate enough heap
storage to open the file.
User Action: Examine your program to see whether it is making excessive
use of heap storage, which might be allocated using the NEW procedure or
the run-time library procedure LIB$GET_VM. Modify your program to free
any heap storage it does not need.

INVARGPAS, invalid argument to Pascal Run-Time Library
Explanation: An invalid argument or inconsistent data structure was
passed to the run-time library by the compiled code, or a system service
returned an unrecognized value to the run-time library.
User Action: Rerun your program with all CHECK options enabled.
Make sure that the version of the current operating system is compatible
with the version of the compiler. If you cannot locate an error in your
program and the problem persists, please submit a problem report to
Compaq, and include a machine-readable copy of your program, data, and
results of a sample execution showing the problem.

INVFILSYN, invalid file name syntax
Explanation: Your program attempted to open a file with an invalid file
name. The file name used can be derived from the file variable name, the
value of the file-name parameter to the OPEN procedure, or the logical
name translations (if any) of the file variable name and portions of the
file-name parameter and your default device and directory. The displayed
text may include the erroneous file name. This error can also occur if the

C–72 Diagnostic Messages

value of the file-name parameter is longer than 255 characters. Additional
RMS messages may be displayed that further describe the error.
User Action: Use the information provided in the displayed messages to
determine which component of the file name is invalid. Verify that any
logical names used are defined correctly. See the Compaq Pascal Language
Reference Manual for information on file names.

INVFILVAR, invalid file variable at location ‘‘nnn’’
Explanation: The file variable passed to a run-time library procedure was
invalid or corrupted. This problem might be caused by an error in the user
program, such as an out-of-bounds array access. It can also occur if a file
variable is passed from a routine compiled with a version of VAX Pascal
earlier than Version 2.0 to a routine compiled with a later version of the
compiler, or if the new key options are used on OpenVMS systems earlier
than Version 4.6.
User Action: Rerun your program with all CHECK options enabled, and
recompile all modules using the same compiler. If the problem persists,
please submit a problem report, and include a machine-readable copy
of your program, data, and results of a sample execution showing the
problem.

INVKEYDEF, invalid key definition
Explanation: Your program attempted to open a file of type RECORD
whose component type contained a field with an invalid KEY attribute.
One of the following errors occurred:

• A new file was being created and the key numbers were not dense.

• A key field was defined at an offset of more than 65,535 bytes from the
beginning of the record.

User Action: If a new file is being created, make sure that the key fields
are numbered consecutively, starting with 0 for the required primary
key. If you are opening an existing file, you must explicitly specify
HISTORY:=OLD or HISTORY:=READONLY as a parameter to the OPEN
procedure. Make sure that the length of the record is within the maximum
permitted for the file organization being used.

INVRADIX, specified radix must be in the range 2-36
Explanation: The specified radix for writing an ordinal value must be in
the range of 2 through 36.
User Action: Modify the program to specify a radix in the proper range

Diagnostic Messages C–73

INVRECLEN, invalid record length of ‘‘nnn’’
Explanation: A file was being opened, and one of the following errors
occurred:

• The length of the file components was greater than that allowed for
the file organization and record format (for most operations, the largest
length allowed is 32,765 bytes).

• The value of the RECORD_LENGTH parameter to the OPEN procedure
was greater than that allowed for the file organization and record
format (for most operations, the largest value allowed is 32,765 bytes).

User Action: Correct the program so that the record length used is within
the permitted limits for the type of file being used.

INVSYNBIN, ‘‘string’’ is invalid syntax for a binary value
Explanation: While a READ or READV procedure was reading a binary
value from a text file, the characters read did not conform to the syntax for
a binary value. The displayed message includes the text actually read and
the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the Compaq Pascal Language Reference Manual for
more information.

INVSYNHEX, ‘‘string’’ is invalid syntax for a hexadecimal value
Explanation: While a READ or READV procedure was reading a
hexadecimal value from a text file, the characters read did not conform to
the syntax for an hexadecimal value. The displayed message includes the
text actually read and the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the Compaq Pascal Language Reference Manual for
more information.

INVSYNENU, ‘‘string’’ is invalid syntax for an enumerated value
Explanation: While a READ or READV procedure was reading an
identifier of an enumerated type from a text file, the characters read did
not conform to the syntax for an enumerated value. The displayed message
includes the text actually read and the record number in which this text
occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the Compaq Pascal Language Reference Manual for
more information.

C–74 Diagnostic Messages

INVSYNINT, ‘‘string’’ is invalid syntax for an integer value
Explanation: While a READ or READV procedure was reading a value for
an integer identifier from a text file, the characters read did not conform to
the syntax for an integer value. The displayed message includes the text
actually read and the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the Compaq Pascal Language Reference Manual for
more information.

INVSYNOCT, ‘‘string’’ is invalid syntax for an octal value
Explanation: While a READ or READV procedure was reading an octal
value from a text file, the characters read did not conform to the syntax for
an octal value. The displayed message includes the text actually read and
the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the Compaq Pascal Language Reference Manual for
more information.

INVSYNREA, ‘‘string’’ is invalid syntax for a real value
Explanation: While a READ or READV procedure was reading a value
for a real identifier from a text file, the characters read did not conform
to the syntax for a real value. The displayed message includes the text
actually read and the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the Compaq Pascal Language Reference Manual for
more information.

INVSYNUNS, ‘‘string’’ is invalid syntax for an unsigned value
Explanation: While a READ or READV procedure was reading a value for
an unsigned identifier from a text file, the characters read did not conform
to the syntax for an unsigned value. The displayed message includes the
text actually read and the record number in which this text occurred.
User Action: Correct the program or the input data so that the correct
syntax is used. See the Compaq Pascal Language Reference Manual for
more information.

Diagnostic Messages C–75

KEYCHANOT, key field change is not allowed
Explanation: Your program attempted an UPDATE procedure for a record
of an indexed file that would have changed the value of a key field, and
this situation was disallowed when the file was created.
User Action: If the program needs to detect this situation when it occurs,
specify the ERROR:=CONTINUE parameter for the UPDATE procedure,
and use the STATUS function to determine which error, if any, occurred.
If necessary, modify the program so that it does not improperly change a
key field, or recreate the file specifying that the key field is permitted to
change.

KEYDEFINC, KEY ‘‘nnn’’ definition is inconsistent with this file
Explanation: An indexed file of type RECORD was opened, and the
component type contained fields whose KEY attributes did not match those
of the existing file. The number of the key in error is displayed in the
message.
User Action: Correct the RECORD definition so that it describes the
correct KEY fields, or recreate the file so that it matches the declared keys.

KEYDUPNOT, key field duplication is not allowed
Explanation: Your program attempted an UPDATE or PUT procedure
for a record of an indexed file that would have duplicated a key field value
of an existing record, and this situation was disallowed when the file was
created.
User Action: If the program needs to detect this situation when it occurs,
specify the ERROR:=CONTINUE parameter for the PUT or UPDATE
procedure, and use the STATUS function to determine which error, if any,
occurred. If necessary, modify the program so that it does not improperly
duplicate a key field, or recreate the file specifying that the key field is
permitted to be duplicated.

KEYNOTDEF, KEY ‘‘nnn’’ is not defined for this file
Explanation: Your program attempted a FINDK or RESETK procedure
on an indexed file, and the key number specified does not exist in the file.
User Action: Correct the program so that the correct key numbers are
used when accessing the file.

C–76 Diagnostic Messages

KEYVALINC, key value is incompatible with the file’s key ‘‘nnn’’
Explanation: The key value specified for the FINDK procedure was
incompatible in type or size with the key field of the file, or your program
attempted an OPEN on an existing file and the key check failed.
User Action: Make sure that the correct key value is being specified for
FINDK and OPEN. Correct the program so that the type of the key value
is compatible with the key of the file.

LINTOOLON, line is too long, exceeded record length by ‘‘nnn’’ character(s)
Explanation: Your program attempted a WRITE, PUT, WRITEV, or other
output procedure on a text file that would have placed more characters in
the current line than the record length of the file would allow. The number
of characters that did not fit is displayed in the message.
User Action: Correct the program so that it does not place too many
characters in the current line. If appropriate, use the WRITELN procedure,
or specify an increased record length parameter when opening the file with
the OPEN procedure.

LINVALEXC, LINELIMIT value exceeded
Explanation: The number of lines written to the file exceeded the
maximum specified as the line limit. The line limit value is determined by
the translation of the logical name PAS$LINELIMIT, if any, or the value
specified in a call to the LINELIMIT procedure for the file.
User Action: As appropriate, correct the program so that it does not write
as many lines, or increase the line limit for the file. Note that if a line
limit is specified for a nontext file, each PUT procedure called for the file
is considered to be one line. See the Compaq Pascal Language Reference
Manual for more information.

LOWGTRHIGH, low-bound exceeds high-bound
Explanation: The lower bound of a subrange definition is larger than the
higher bound.
User Action: Modify the declaration so the lower bound is less than or
equal to the higher bound.

MAXLENRNG, maximum length must be in range 1..65535
Explanation: The maximum length for a string type is 65,535.
User Action: Modify the declaration to specify a smaller amount.

Diagnostic Messages C–77

MODNEGNUM, MOD of a negative modulus has no mathematical definition
Explanation: In the MOD operation A MOD B, the operand B must have
a positive integer value.
User Action: Correct the program so that the operand B has a positive
integer value.

NEGDIGARG, negative Digits argument to BIN, HEX or OCT is not allowed
Explanation: Your program attempted to specify a negative value for the
Digits argument in a call to the BIN, HEX, or OCT procedure, which is not
permitted.
User Action: Correct the program so that only nonnegative Digits
arguments are used for calls to BIN, HEX, and OCT.

NEGWIDDIG, negative Width or Digits specification is not allowed
Explanation: A WRITE or WRITEV procedure on a text file contained
a field width specification that included a negative Width or Digits value,
which is not permitted.
User Action: Correct the program so that only nonnegative Width and
Digits parameters are used.

NOTVALTYP, ‘‘string’’ is not a value of type ‘‘type’’
Explanation: Your program attempted a READ or READV procedure on
a text file, but the value read could not be expressed in the specified type.
For example, this error results if a real value read is outside the range of
the identifier’s type, or if an enumerated value is read that does not match
any of the valid constant identifiers in its type.
User Action: Correct the program or the input data so that the values
read are compatible with the types of the identifiers receiving the data.

OPNDASSCOM, operands are not assignment compatible
Explanation: The operands do not have the same type.
User Action: Examine the declarations of the operands and make sure
they have compatible types.

ORDVALOUT, ordinal value is out of range
Explanation: A value of an ordinal type is outside the range of values
specified by the type. For example, this error results if you try to use the
SUCC function on the last value in the type or the PRED function on the
first value.
User Action: Correct the program so that all ordinal values are within
the range of values specified by the ordinal type.

C–78 Diagnostic Messages

ORGSPEINC, ORGANIZATION specified is inconsistent with this file
Explanation: The value of the ORGANIZATION parameter for the OPEN
procedure that opened an existing file was inconsistent with the actual
organization of the file.
User Action: Correct the program so that the correct organization is
specified.

PADLENERR, PAD length error
Explanation: The length of the character string to be padded by the PAD
function is greater than the length specified as the finished size, or the
finished size specified is greater than 65,535.
User Action: Correct the call to PAD so that the finished size specified
describes a character string of the correct length. See the Compaq Pascal
Language Reference Manual for the rules governing the PAD function.

PASSNOTLEG, Passing mechanism not legal for this type

Error.

PTRREFNIL, pointer reference to NIL
Explanation: Your program attempted to evaluate a pointer value while
its value was NIL.
User Action: Make sure that the pointer has a value before you try to
evaluate it. See the Compaq Pascal Language Reference Manual for more
information on pointer values.

RECLENINC, RECORD_LENGTH specified is inconsistent with this file
Explanation: The record length obtained from the file component’s length
or from the value of the record length parameter specified for the OPEN
procedure was inconsistent with the actual record length of an existing file.
User Action: Correct the program so that the record length specified, if
any, is consistent with the file.

RECTYPINC, RECORD_TYPE specified is inconsistent with this file
Explanation: The value of the RECORD_LENGTH parameter specified
for the OPEN procedure was inconsistent with the actual record type of an
existing file.
User Action: Correct the program so that the record type specified, if any,
is consistent with the file.

Diagnostic Messages C–79

REFINAVAR, read or write of inactive variant
Explanation: A field of an inactive variant was read or written.
User Action: Correct the program so the variant is active or remove the
reference to the inactive field.

REQNATAGN, Operand must be naturally aligned

Error.

RESNOTALL, RESET is not allowed on an unopened internal file
Explanation: Your program attempted a RESET procedure for a
nonexternal file that was not open. This operation is not permitted because
RESET must operate on an existing file, and there is no information
associated with a nonexternal file that allows RESET to open it.
User Action: Correct the program so that nonexternal files are opened
before using RESET. Either OPEN or REWRITE may be used to open a
nonexternal file. See the Compaq Pascal Language Reference Manual for
more information.

REWNOTALL, REWRITE is not allowed for a shared file
Explanation: Your program attempted a REWRITE procedure for a file
for which the program did not have exclusive access. REWRITE requires
that no other users be allowed to access the file while the file’s data is
deleted. Note that this message may also be issued if you do not have
permission to write to the file.
User Action: Correct the program so that the file is opened with
SHARING := NONE, which is the default, before performing a REWRITE
procedure.

SETASGVAL, set assignment value has element out of range
Explanation: Your program attempted to assign to a set variable a value
that is outside the range specified by the variable’s component type.
User Action: Correct the assignment statement so that the value being
assigned falls within the component type of the set variable. See the
Compaq Pascal Language Reference Manual for more information on sets.

C–80 Diagnostic Messages

SETCONVAL, set constructor value out of range
Explanation: Your program attempted to include in a set constructor a
value that is outside the range specified by the set’s component type, or a
value that is greater than 255 or less than 0.
User Action: Correct the constructor so that it includes only those values
within the range of the set’s component type. See the Compaq Pascal
Language Reference Manual for more information on sets.

SETNOTRNG, set element is not in range 0..255
Explanation: Sets of INTEGER or UNSIGNED must be in the range of
0..255.
User Action: Modify the declaration to specify a smaller range.

STDEOLCOM, Nonstandard: End of line comment

Info.

STDSUBSTRING, Nonstandard: Substring notation

Info.

STOREQEXC, Allocations to Psect name exceeded growth bounds

Error.

STRASGLEN, string assignment length error
Explanation: Your program attempted to assign to a string variable a
character string that is longer than the declared maximum length of the
variable (if the variable’s type is VARYING) or that is not of the same
length as the variable (if the variable’s type is PACKED ARRAY OF
CHAR).
User Action: Correct the program so that the string is of a correct length
for the variable to which it is being assigned.

STRCOMLEN, string comparison length error
Explanation: Your program attempted to compare two character strings
that do not have the same current length.
User Action: Correct the program so that the two strings have the same
length at the time of the comparison.

Diagnostic Messages C–81

SUBASGVAL, subrange assignment value out of range
Explanation: Your program attempted to assign to a subrange variable a
value that is not contained in the subrange type.
User Action: Correct the program so that all values assigned to a
subrange variable fall within the variable’s type.

SUBSTRSEL, SUBSTR selection error
Explanation: A SUBSTR function attempted to extract a substring that
was not entirely contained in the original string.
User Action: Correct the call to SUBSTR so that it specifies a substring
that can be extracted from the original string. See the Compaq Pascal
Language Reference Manual for complete information on the SUBSTR
function.

TEXREQSEQ, textfiles require sequential organization and access
Explanation: Your program attempted to open a file of type TEXT that
either did not have sequential organization, or had an ACCESS_METHOD
other than SEQUENTIAL (the default) when opened by the OPEN
procedure.
User Action: Make sure that the program refers to the correct file.
Correct the program so that only sequential organization and access are
used for text files.

TRUNOTALL, TRUNCATE is not allowed for a shared file
Explanation: Your program attempted to call the TRUNCATE procedure
for a file that was opened for shared access. You cannot truncate files that
might be shared by other users. This message may also be issued if you do
not have permission to write to the file.
User Action: Correct the program so that it does not try to truncate
shared files. If the file is opened with the OPEN procedure, do not specify
a value other than NONE (the default) for the SHARING parameter.

UNINIT, Variable name is fetched, not initalized

Info.

C–82 Diagnostic Messages

UPDNOTALL, UPDATE not allowed for a sequential organization file
Explanation: Your program attempted to call the UPDATE procedure for
a sequential file. UPDATE is valid only on relative and indexed files.
User Action: Correct the program so that it does not try to use
UPDATE for sequential files, or recreate the file with relative or indexed
organization. If you are using direct access on a sequential file, individual
records can be updated with the LOCATE and PUT procedures.

VARINDVAL, VARYING index value exceeds current length
Explanation: The index value specified for a VARYING OF CHAR string
is greater than the string’s current length.
User Action: Correct the index value so that it specifies a legal character
in the string.

WIDTOOLRG, totalwidth too large
Explanation: The requested total-width for the floating point write
operation overflowed an internal buffer.
User Action: Examine the source program to see if the specified total-
width parameter is correct. If it is correct, please submit a problem report
including a machine-readable copy of your program, data, and a sample
execution illustrating the problem.

WRIINVENU, WRITE of an invalid enumerated value
Explanation: Your program attempted to write an enumerated value
using a WRITE or WRITEV procedure, but the internal representation of
that value was outside the possible range for the enumerated type.
User Action: Verify that your program is not improperly using PRED,
SUCC, or type casting to assign an invalid value to a variable of
enumerated type.

Diagnostic Messages C–83

Index

-c option
and object libraries, 2–31
example, 2–2, 2–31

-cord option, 4–23
with -feedback option, 4–23

-feedback option, 4–23
-std option, 2–22
-usage option, 2–24
-V option

example, 2–31

A
a.out file, 1–3, 1–8
ADDRESS function

effect on optimization, 4–15
ar command, 1–10
Archive library

creating and maintaining, 1–10
obtaining information about, 1–9

ASYNCHRONOUS attribute
in condition handler, 7–4

Attribute
CHECK, C–25
ENVIRONMENT, 3–2
FLOAT, C–25
HIDDEN, 3–5
KEY, C–25
OPTIMIZE, C–25

B
Basic blocks, 4–19
Bound procedure values, 8–3
Bounds-checking, 2–12
Bourne shell (sh)

process limits, 1–1

C
C language, 5–1
C shell (csh)

process limits, 1–1
Call graph, 4–19
Call stack

contents of, 6–3
Calling block

function return value to, 6–2
Calling standard, 6–1
CASE statement

effect on efficiency, 4–12
cc command

using pc command instead of, 1–7
Character string

as function results, 6–2
CHECK attribute, C–25
Code scheduling, 4–10
comments

processing by cpp, 5–4
Compaq Pascal

version number
obtaining from object file, 1–9

Index–1

Compilation
conditional, 5–3

Compilation unit, 3–1
Compiler

and linker, 1–7, 2–1
diagnostics, C–1
driver program, 1–6
functions, 1–7
process file descriptor limit, 1–2
process stack size, 1–1
progress messages, 2–26
specifying directory for temporary files,

2–29
usage, 2–6

Compiler options, 2–6
-assume accuracy_sensitive, 2–9
-C, 2–10
-constant, 2–11
-D, 2–11
-E, 2–12
-g, 2–14
-G, 2–14
-I, 2–15
-L, 2–17
-nocpp, 2–17
-nowarn, 2–18
-o, 2–19
-O, 2–18
-O0, 2–18
-O1, 2–18
-O2, 2–18
-O3, 2–18
-O5, 2–18
-om, 2–19
-p, 2–21
-P, 2–20
-std, 2–22
-V, 2–25

Compiling C language programs
examples, 2–3
use with pc, 1–7

Condition handler
controlling execution, 7–4
declaring parameters for, 7–5
definition of, 7–1

Condition handler (cont’d)
establishing, 7–4
overview of, 7–2
performing I/O to and from, 7–4
removing, 7–5
reporting conditions, 7–3
return value of, 7–6
system-defined, 7–2
writing of, 7–4

Condition signal, 7–3
Condition value

definition of, 7–1
Constants

compile-time evaluation of, 4–3
effect on efficiency, 4–12

Constructor
for schema variant record (example),

3–11
using OTHERWISE (example), 3–2

Conversion
of constants, 4–3

cord, 1–9
related commands and pc options, 4–23

cpp preprocessor
file name suffix, 2–31

D
Data

conversion, 8–5
layout, 8–5

Data type
initial-state specifier for, 3–11

Data types
and debugger, 5–5

dbx
coding for, 5–4

dbx debugger
running, 5–5

Debugging
effects of optimization, 4–16

DEC FUSE
profiler facility, 4–20

Declaration section
multiply declared identifiers, 3–4

Index–2

Driver program
definition of, 1–6
relationship to software components, 1–6

E
Entry points, B–1
Enumerated type

used in graphical data model (example),
3–10

Environment file
cascading inheritance of (figure), 3–4
cascading interfaces (figure), 3–8
creation of, 3–2
dependency checking, 3–5

Environment variables
directory for temporary compiler files,

2–29
PROFDIR, 4–20
setting in .login or shell files, 1–2
TMPDIR, 2–29

Error conditions
detected by STATUS and STATUSV, A–1

to A–4
Error messages

compiler, C–1 to C–65
run-time, C–83

ESTABLISH procedure, 7–4
Establisher routine

definition of, 7–2
Examples

of an implementation module, 3–14
of an interface module, 3–14
of separate compilation, 3–13

Exception condition, 7–1
ExceptionContinueExecution return value

returned by condition handler, 7–6
ExceptionContinueSearch return value

returned by condition handler, 7–6
exc_raise_exception

signaling condition with, 7–3
EXC_UNWIND function

called by condition handler, 7–6

EXC_VIRTUAL_UNWIND function
called by condition handler, 7–6

Executable programs
creating using pc command, 1–3
installing using Tru64 UNIX tools, 1–9

EXTERNAL attribute
effect on routine call, 6–4

F
Feedback files

use with pc command, 4–23
Field

initial-state specifier for, 3–10
file command, 1–9
File dependency checking

environment, 3–5
File descriptor limit

increasing number per process, 1–2
Files

changing output file names (pc), 2–3
compiling multiple input files pc, 2–2,

2–30
effect of options on output files pc, 2–30
input to pc, 2–30
temporary pc, 2–29

FLOAT attribute, C–25
FOR statement

effect on efficiency, 4–12
Frame pointer

of unbound routine, 6–3
Function

example use, 1–4
methods of returning result, 6–2
optimization of, 4–7

G
GLOBAL attribute

effect on routine call, 6–4
Global pointer data

controlling the size, 4–25
GOTO statement

effect on efficiency, 4–12

Index–3

gprof command
for call graph information, 4–21
use with pc, 4–21 to 4–22

H
HIDDEN attribute, 3–5

I
IADDRESS function

effect on optimization, 4–15
Identifier

multiply declared, 3–4
IF-THEN-ELSE statement

effect on efficiency, 4–12
%IMMED mechanism specifier, 6–5
Implementation module, 3–6

See also Separate compilation
example of, 3–14

Infinite loop
See Loop

Initial-state specifier
for array variable (example), 3–2
on a data type, 3–11
on variant record fields (example), 3–10
variant record constructor (example),

3–11
INITIALIZE attribute

effect on routine call, 6–4
Integer overflow

run-time checking of, 4–12
Interface module, 3–6

See also Separate compilation
example of, 3–14

Intrinsic procedures
for timing program execution, 4–19

K
KEY attribute, C–25
Korn shell (ksh)

process limits, 1–1

L
.l file suffix, 2–2
Language expression

optimization of, 4–7, 4–13
order of evaluation, 4–7
reordering of, 4–2

Language-Sensitive Editor/Source Code
Analyzer

See LSE, LSE/SCA, 4–2
ld linker

functions performed, 1–8
relationship to pc command, 1–8
sample use with pc command, 1–3, 1–5

ld linker
relationship to pc command, 2–1
sample use with pc command, 2–3

Library
list passed by pc command to ld, 1–3
obtaining information about, 1–9

Library routines
for timing program execution, 4–19

LINK command, 3–3
relinking implementation modules, 3–7
TO BEGIN DO execution order, 3–13

Linking, 2–26
inhibiting of, 2–10

Logical expression
optimization of, 4–7

Loop
See Infinite Loop

Loop unrolling, 4–10
Loops

relationship to basic block size, 4–19

M
make command, 1–9
man command

pc(1), 1–1
MAXINT predeclared constant, 4–14
MAXINT64 predeclared constant, 4–14

Index–4

Messages
compiler, C–1 to C–65
run-time, C–83

Migrate
bound procedure values, 8–3
default data layout, 8–1
IADDRESS, 8–2
INT, 8–2
VOLATILE, 8–2

Module, 3–1
finalization section, 3–13
implementations and interfaces, 3–6

restrictions, 3–9
initialization and finalization sections

restrictions, 3–9
initialization section, 3–13
interface inheritance path (figure), 3–6
multiply declared identifiers, 3–4
relinking implementation modules, 3–7
requirements for linking modules, 3–3
TO BEGIN DO section, 3–10

N
nm command, 1–9
Nonstandard features

information on, 2–22
Nonstatic type

restriction in modules, 3–9
NOOPTIMIZE attribute

effect on optimization, 4–13

O
Object file

contents, 1–7
directory used, 2–29
linking, 2–1
naming, 2–3
obtaining information about, 1–9
passing directly to ld (example), 2–2
retaining, 2–3

odump command, 1–9

Optimization, 2–18, 4–1
code scheduling, 4–10
compiling for optimal performance, 4–13
considerations, 4–13
definition of, 4–1
disabling for debugging, 4–13
effect on debugging, 4–16
kinds of, 4–2
levels of, 2–18
loop unrolling, 4–10
reducing errors through, 4–9
specifying the amount, 2–18
split lifetime analysis, 4–9
strength reduction, 4–9
when to avoid, 2–19

OPTIMIZE attribute, C–25
Options

file selection, 2–15
of compiler, 2–6
of preprocessor, 2–11

OPTIONS statement, 2–4
OTHERWISE reserved word

initializing an array (example), 3–2
Output files

changing output file names (pc), 2–3
Overflow checking

effect on efficiency, 4–12
Overview of record layout, 8–5

P
PACKED ARRAY OF CHAR type

as function result type, 6–2
Parameter

for condition handler, 7–5
Parameter list, 6–1
Parameter-passing semantics, 6–4
Parentheses

effect on efficiency, 4–12
Pascal

sample main and subprogram, 1–3, 1–4
PASCAL command, 3–3
Passing mechanisms, 6–4

by descriptor, 6–6
by immediate value, 6–5

Index–5

Passing mechanisms (cont’d)
by reference, 6–6

pc command
examples, 1–5

cord, 4–24
profiling (gprof), 4–21
profiling (prof), 4–20
renaming output file, 2–3

sample use, 1–3
pc command

and other software components, 1–6
consistent use of options for multiple

compilations, 2–4
driver program, 1–6
effect of options on output files, 2–30
examples

compiling multiple files, 2–31
linking object file, 2–3
multiple source files, 2–2
preserving object file, 2–3
requesting listing file, 2–31
requesting software pipelining, 2–3
using .c file, 2–3, 2–10, 2–30
using different suffix characters, 2–2

format, 2–1, 2–31
functions provided by options, 2–5
groups of options, 2–5
interpretation of suffix characters, 2–31
introduction, 2–1
linking, 2–1
list of options, 2–4
name of compiler, 1–7
processes used by, 1–6
sample use, 1–4
specifying

directory for temporary files, 2–29
input files, 2–2, 2–30

suffix characters and interaction with
options, 2–31

temporary files, 2–30
pc command examples, 2–2
Performance

checking process limits, 1–1
compilation, 1–1
cord and feedback files, 4–23

Performance (cont’d)
measuring using shell commands, 4–18
profiling code, 4–19 to 4–25

basic block sampling, 4–22
call graph information, 4–21
PC sampling, 4–20
source line sampling, 4–23

Pipelining
software, 4–11

pixie command, 1–9
for basic block sampling, 4–22
for source line sampling, 4–23
use with Compaq Pascal, 4–19
use with feedback files, 4–23
use with pc, 4–25

Predeclared function
optimization of, 4–7

Preprocessor
cpp, 2–31
defining symbols, 2–12
inhibiting of, 2–17
options affecting it, 2–11

Procedure calling standard, 6–1
Procedures

analyzing performance, 4–19
Process limits

checking
file descriptor limit, 1–2
stack size, 1–1

increasing stack size, 1–1
prof command, 1–9

for basic block sampling, 4–22
for PC sampling, 4–20
for source line sampling, 4–23
options to limit report contents, 4–20
use with Compaq Pascal, 4–19
use with feedback files, 4–23
use with pc, 4–25

PROFDIR
environment variable, 4–20

Profiling code
basic block sampling, 4–22
call graph information, 4–21
PC sampling, 4–20
source line sampling, 4–23

Index–6

Profiling code (cont’d)
Tru64 UNIX tools, 1–9

use with pc, 4–25
with Compaq Pascal, 4–19

Program
See also Separate compilation
compiling, 1–1, 1–3, 1–5
exit status

definition of, 7–2
modularity of, 3–1 to 3–16
size

process stack size, 1–1
PROGRAM statement, 1–3
Propagation

value, 4–8

R
ranlib command, 1–10
READONLY attribute

on pointer variables, 4–15
Record

efficient use of nonstatic fields, 4–13
variant (example), 3–10

Record layout
overview, 8–5

Register
assignment of variables to, 4–2
effects of optimization, 4–16

REPEAT statement
effect on efficiency, 4–12

Resignal
definition of, 7–2

Return value
function, 6–2

REVERT procedure, 7–5
RISC

migrating programs, 9–1
Routine

requirements for linking modules, 3–3
Routine activation

definition of, 7–1
RUN command, 3–3

Run-time
range checking, 2–9

Run-time error
detected by STATUS or STATUSV, A–1
messages, C–83

Run-time library
location of, 2–26
search path, 2–26
standard directories, 2–17

S
Schema type

efficient use of nonstatic fields, 4–13
of variant record (example), 3–10

Semantics
of parameter passing, 6–4

Separate compilation, 3–1 to 3–16
cascading inheritance (figure), 3–4
cascading interfaces (figure), 3–8
examples, 3–13
interface inheritance path (figure), 3–6
multiply declared identifiers, 3–4
relinking implementation modules, 3–7
TO BEGIN DO section, 3–10

Shared library, 2–10
choosing how to create, 2–29
creating, 2–27

using the pc and ld, 2–28
using the pc Command, 2–28

obtaining information about, 1–9
specifying shared object, 2–27

Signal
definition of, 7–2

Signal array
in condition handlers, 7–5

size command, 1–9
Software

pipelining, 4–11
Source files

analyzing source code using Tru64 UNIX
tools, 1–8

building using Tru64 UNIX tools, 1–9
creating and revising, 1–3
managing using Tru64 UNIX tools, 1–8

Index–7

Split lifetime analysis, 4–9
Stack

increasing size per process, 1–1
Stack frame

definition of, 7–1
STATUS function

conditions detected by, A–1 to A–4
STATUSV function

conditions detected by, A–1 to A–4
Strength reduction, 4–9
STRING type

as function result type, 6–2
Strings

substitution by cpp, 5–3
strings command, 1–9
strip command, 1–10
Structured statement

effect on efficiency, 4–12
optimization of, 4–5

Subexpression
optimization of, 4–4

Subprogram
external

example, 1–4
Subrange-checking, 2–12
Symbol table

created by compiler, 1–7

T
Temporary files

created by pc, 2–29
directory used by pc, 2–29
TMPDIR environment variable used by

pc, 2–29
Temporary variable

effect on efficiency, 4–12
TMPDIR environment variable

use during compilation, 2–29
TO BEGIN DO section, 3–10, 3–13
Type conversion

of constants, 4–3

U
UNBOUND attribute

effect on routine call, 6–3
Unwind

definition of, 7–2
Utilities

entry points, B–1

V
Variable

effect on efficiency, 4–12
initialization of, 3–11
multiply declared identifiers, 3–4
pointer, 4–15
requirements for linking modules, 3–3

Variant record
initial-state specifiers for (example), 3–10
optimization considerations, 4–16

VARYING OF CHAR type
as function result type, 6–2

VOLATILE attribute
on pointer variables, 4–15

W
WHILE statement

effect on efficiency, 4–12
WITH statement

effect on efficiency, 4–12

Index–8

	Compaq Pascal User Manual for Tru64 UNIX
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Conventions
	Reader’s Comments

	 1 Getting Started
	1.1 The Compaq Pascal Programming Environment
	1.2 Commands to Create and Run an Executable Program
	1.3 Creating and Running a Program Using a Separate Function
	1.3.1 Creating the Executable Program
	1.3.2 Running the Sample Program

	1.4 The pc Command and Related Software Components
	1.4.1 The Driver Program
	1.4.2 Compaq Pascal Compiler
	1.4.3 Other Compilers
	1.4.4 Linker (ld)

	1.5 Program Development Stages and Tools

	 2 Compiling and Linking Compaq Pascal Programs
	2.1 The pc Command
	2.1.1 pc Command Examples

	2.2 pc Command Options
	2.2.1 pc Command Option Categories
	2.2.2 pc Command Options Descriptions

	2.3 Linking
	2.3.1 Run-Time Libraries
	2.3.2 Specifying Shared Object Libraries

	2.4 Creating Shared Libraries
	2.4.1 Creating a Shared Library Using the pc Command
	2.4.2 Creating a Shared Library Using pc and ld Command
	2.4.3 Choosing How to Create a Shared Library

	2.5 Temporary Files
	2.6 Using Multiple Input Files: Effect on Output Files
	2.7 Interactions of File Name Suffix and Options
	2.8 Using Listing Files

	 3 Separate Compilation
	3.1 The ENVIRONMENT, HIDDEN, and INHERIT Attributes
	3.1.1 Environment File Dependency Checking

	3.2 Interfaces and Implementations
	3.3 Data Models
	3.4 Separate Compilation Examples

	 4 Optimizing Performance
	4.1 Compiler Optimizations
	4.1.1 Compile-Time Evaluation of Constants
	4.1.2 Elimination of Common Subexpressions
	4.1.3 Elimination of Unreachable Code
	4.1.4 Code Hoisting from Structured Statements
	4.1.5 Inline Code Expansion for Predeclared Functions
	4.1.6 Inline Code Expansion for User-Declared Routines
	4.1.7 Partial Evaluation of Logical Expressions
	4.1.8 Value Propagation
	4.1.9 Error Reduction Through Optimization
	4.1.10 Strength Reduction
	4.1.11 Split Lifetime Analysis
	4.1.12 Code Scheduling
	4.1.13 Loop Unrolling
	4.1.14 Software Pipelining

	4.2 Programming Considerations
	4.3 Optimization Considerations
	4.3.1 Compiling for Optimal Performance
	4.3.2 Subexpression Evaluation
	4.3.3 MAXINT and MAXINT64 Predeclared Constants
	4.3.4 Pointer References
	4.3.5 Variant Records
	4.3.6 Effects of Optimization on Debugging

	4.4 Analyze Program Performance
	4.4.1 Use the time Command to Measure Performance

	4.5 Profiling a Program
	4.5.1 Program Counter Sampling (prof)
	4.5.2 Call Graph Sampling (gprof)
	4.5.3 Basic Block Counting (pixie and prof)
	4.5.4 Source Line CPU Cycle Use (prof and pixie)
	4.5.5 Creating and Using Feedback Files and Optionally cord

	4.6 Controlling the Size of Global Pointer Data

	 5 Programming Tools
	5.1 The C Language Preprocessor
	5.1.1 Including Headers and Other Files
	5.1.2 Conditional Compilation
	5.1.3 String Substitution
	5.1.4 C-Style Comments

	5.2 Coding for the Debugger
	5.2.1 Debugging Optimized Programs
	5.2.2 Debugging Preprocessed Programs

	5.3 Running the dbx Debugger
	5.3.1 Debugger Data Types
	5.3.2 Compaq Pascal Data Names
	5.3.3 Activation Levels

	5.4 Debugging Tips

	 6 Calling Conventions
	6.1 Tru64 UNIX Calling Standard
	6.1.1 Parameter Lists
	6.1.2 Function Return Values
	6.1.3 Contents of Call Stack
	6.1.4 Unbound Routines

	6.2 Parameter-Passing Semantics
	6.3 Parameter-Passing Mechanisms
	6.3.1 By Immediate Value Passing Mechanism
	6.3.2 By Reference Passing Mechanism
	6.3.3 By Descriptor Passing Mechanism

	6.4 Passing Parameters Between Compaq Pascal and Other Languages
	6.4.1 Parameter Mechanisms Versus Parameter Semantics
	6.4.2 Passing Non-Routine Parameters Between Compaq Pascal and Other Languages
	6.4.3 Passing Routine Parameters Between Compaq Pascal and Other Languages

	6.5 Calling C Routines from Compaq Pascal

	 7 Error Processing and Condition Handling
	7.1 Condition Handling Terms
	7.2 Overview of Condition Handling
	7.2.1 Condition Signals
	7.2.2 Handler Responses

	7.3 Writing Condition Handlers
	7.3.1 Establishing and Removing Handlers
	7.3.2 Declaring Parameters for Condition Handlers
	7.3.3 Handler Function Return Values

	7.4 Example of a Condition Handler

	 8 Migrating from OpenVMS to Tru64 UNIX Systems
	8.1 Sharing Environment Files Across Platforms
	8.2 Default Size for Enumerated Types and Booleans
	8.3 Default Data Layout for Unpacked Arrays and Records
	8.4 IADDRESS and VOLATILE
	8.5 Overflow Checking
	8.6 Bound Procedure Values
	8.7 Argument List Functions
	8.8 %DICTIONARY Directive
	8.9 VAX Floating Datatypes
	8.10 Relative and Indexed Files
	8.11 Data Layout and Conversion
	8.11.1 Natural Alignment, VAX Alignment, and Enumeration Sizes
	8.11.2 Compaq Pascal Features Affecting Data Alignment and Size
	8.11.3 Optimal Record Layout
	8.11.4 Optimal Data Size
	8.11.5 Converting Existing Records
	8.11.6 Applications with No External Data Dependencies
	8.11.7 Applications with External Data Dependencies

	 9 Migrating from Pascal for RISC to Compaq Pascal
	9.1 Pascal for RISC and Compaq Pascal Compile-Time Differences
	9.2 Pascal for RISC and Compaq Pascal Run-Time Differences

	 A Errors Returned by STATUS and STATUSV Functions
	 B Entry Points to Compaq Pascal Run-Time Library
	 C Diagnostic Messages
	C.1 Compiler Diagnostics
	C.2 Diagnostic Messages
	C.3 Run-Time Diagnostics

