
Creating an OpenVMS AXP Step 2
Device Driver from a Step 1 Device
Driver
Order Number: AA–Q28TA–TE

March 1994

This manual describes how to convert an OpenVMS AXP Step 1 device
driver, written in VAX MACRO, to an OpenVMS AXP Step 2 driver, also
written in VAX MACRO.

Revision/Update Information: This is a new manual.

Software Version: OpenVMS AXP Version 6.1

Digital Equipment Corporation
Maynard, Massachusetts

March 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994. All rights reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: AXP, DEC, DECnet, DECwindows,
Digital, HSC, OpenVMS, Q–bus, TURBOchannel, VAX, VAXcluster, VAX DOCUMENT,
VAX MACRO, VMScluster, the AXP logo, and the DIGITAL logo.

The following is a third-party trademark:

Internet is a registered trademark of Internet, Inc.

This document is available on CD–ROM.

ZK6321

This document was prepared using VAX DOCUMENT Version 2.1.

Send Us Your Comments
We welcome your comments on this or any other OpenVMS manual. If you have suggestions for
improving a particular section or find any errors, please indicate the title, order number, chapter,
section, and page number (if available). We also welcome more general comments. Your input is
valuable in improving future releases of our documentation.

You can send comments to us in the following ways:

• Internet electronic mail: OPENVMSDOC@ZKO.MTS.DEC.COM

• Fax: 603-881-0120 Attn: OpenVMS Documentation, ZKO3-4/U08

• A completed Reader’s Comments form (postage paid, if mailed in the United States), or a
letter, via the postal service. Two Reader’s Comments forms are located at the back of each
printed OpenVMS manual. Please send letters and forms to:

Digital Equipment Corporation
Information Design and Consulting
OpenVMS Documentation
110 Spit Brook Road, ZKO3-4/U08
Nashua, NH 03062-2698
USA

You may also use an online questionnaire to give us feedback. Print or edit the online file
SYS$HELP:OPENVMSDOC_SURVEY.TXT. Send the completed online file by electronic mail to our
Internet address, or send the completed hardcopy survey by fax or through the postal service.

Thank you.

Contents

Preface . vii

1 Introduction

1.1 Overview of Step 2 Driver Changes . 1–1
1.2 Overview of Step 1 and Step 2 Driver Similarities 1–2
1.3 Step 2 Driver Naming Conventions . 1–2
1.4 Converting Drivers Written in BLISS . 1–3
1.5 Writing Step 2 Drivers in C . 1–3

2 Conversion Guidelines

2.1 DPTAB Changes . 2–1
2.2 DDTAB Changes . 2–1
2.3 Driver Entry Point Routine Changes . 2–1
2.4 FUNCTAB Macro Changes . 2–2
2.5 FDT Routine Changes . 2–5
2.5.1 Upper-Level Routine Entry Point Changes . 2–6
2.5.2 FDT Exit Routine Changes . 2–6
2.5.3 OpenVMS-Supplied FDT Support Routine Changes 2–7
2.5.4 Driver-Supplied FDT Support Routine Changes 2–8
2.5.5 Returning from Upper-Level Routines . 2–9
2.6 Start I/O to REQCOM Changes . 2–9
2.6.1 Simple Fork Mechanism—JSB-Based Fork Routines 2–9
2.6.2 Kernel Process Mechanism . 2–10
2.7 Common OpenVMS-Supplied EXEC Routines . 2–11
2.8 Compiling, Linking, and Loading Step 2 Drivers . 2–14

3 Handling More Complex Situations

3.1 Composite FDT Routines . 3–1
3.2 Error Routine Callback Changes . 3–3
3.3 Converting Driver-Supplied FDT Support Routines to Call Interfaces 3–3
3.4 Converting the Start I/O Code Path to Call Interfaces 3–4
3.4.1 Start I/O Call Interface Conversion Procedure 3–4
3.4.2 Simple Fork Macro Differences . 3–6
3.4.2.1 Fork Routine End Instruction . 3–6
3.4.2.2 Scratch Registers . 3–7
3.4.2.3 Fork Routine Entry Point . 3–8
3.5 Device Interrupt Timeouts . 3–8
3.6 Obsolete Data Structure Cells . 3–9
3.7 Optimizing Step 2 Drivers . 3–10
3.7.1 Using JSB-Replacement Macros . 3–10
3.7.2 Avoid Fetching Unused Parameters . 3–10

v

3.7.3 Minimizing Register Preserve Lists . 3–10

Index

Tables

2–1 Step 2 Upper-Level FDT Action Routines . 2–4
2–2 FDT Completion Routines and Macros . 2–7
2–3 System-Supplied FDT Support Routines . 2–8
2–4 Replacement Macros for JSB System Routines 2–11
3–1 Fork Routine End Instruction . 3–6
3–2 Registers Scratched in Caller’s Fork Thread . 3–7
3–3 Fork Routine Entry Points . 3–8
3–4 Obsolete Data Structure Cells . 3–9

vi

Preface

This manual describes how to convert an OpenVMS AXP Step 1 driver to an
OpenVMS AXP Step 2 driver. It explains how you must change Step 1 driver
code to prepare the driver to be compiled, linked, loaded, and run as a Step 2
driver. This manual highlights specific changes that you must make to driver
routines and tables.

Intended Audience
Creating an OpenVMS AXP Step 2 Device Driver from a Step 1 Device Driver is

intended for software engineers who must prepare a Step 2 device driver to run
on the OpenVMS AXP operating system, Version 6.1.

This manual assumes that its reader is well acquainted with the components
of OpenVMS VAX device drivers and Step 1 OpenVMS AXP device drivers. It
also relies on a familiarity with the software interfaces within the OpenVMS
operating system that support device drivers.

Document Structure
This manual contains the following sections:

• Chapter 1 presents an overview of the new Step 2 device driver interfaces.

• Chapter 2 contains guidelines for converting a Step 1 device driver to a Step
2 device driver.

• Chapter 3 provides tips for converting complex or unusual drivers.

Associated Documents
Creating an OpenVMS AXP Step 2 Device Driver from a Step 1 Device Driver

focuses only on those changes that must be made to a Step 1 OpenVMS AXP
device driver to produce an equivalent Step 2 OpenVMS AXP device driver. For
more detailed information about the macros and routines mentioned in this
manual, see OpenVMS AXP Device Support: Reference. For basic information
about the components of OpenVMS device drivers and OpenVMS requirements
for them, refer to the following manuals:

• OpenVMS AXP Device Support: Developer’s Guide

• OpenVMS AXP Device Support: Reference

Because this manual only addresses the porting to OpenVMS AXP of
VAX MACRO coding practices that are typically found in device drivers,
readers who need additional information on porting MACRO code, or a detailed
description of the MACRO-32 compiler for OpenVMS AXP, should see Migrating
to an OpenVMS AXP System: Porting VAX MACRO Code.

vii

Several manuals are available that describe the internals of the OpenVMS AXP
operating system and the processes for investigating the types of system failures
caused by device drivers. These manuals include:

• OpenVMS AXP System Dump Analyzer Utility Manual

• OpenVMS Delta/XDelta Debugger Manual

• OpenVMS for Alpha Platforms: Internals and Data Structures

Conventions
In this manual, every use of OpenVMS VAX means the OpenVMS VAX operating
system, every use of OpenVMS AXP means the OpenVMS AXP operating system,
and every use of OpenVMS means both the OpenVMS VAX operating system and
the OpenVMS AXP operating system.

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1, then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

[] In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an OpenVMS file specification, or in the syntax of a substring
specification in an assignment statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in online versions
of the manual.

viii

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, /PRODUCER=name), and command parameters
in text.

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, the name of a file protection code, or the
abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

ix

1
Introduction

OpenVMS AXP Version 6.1 introduces formal support for user-written device
drivers and a new device driver interface known as the Step 2 driver interface.
The Step 2 driver interface replaces the temporary Step 1 driver interface that
was provided in OpenVMS AXP Versions 1.0 and 1.5. As a result, if you are
supplying a driver to run under OpenVMS AXP Version 6.1, it must comply with
the Step 2 driver interfaces described in this manual.

Although the Step 2 driver interfaces allow you to write OpenVMS AXP device
drivers in high-level languages, a Step 2 device driver can also be written in
VAX MACRO. The guidelines in this manual describe how to convert a Step 1
driver written in VAX MACRO to a Step 2 driver written in VAX MACRO.

1.1 Overview of Step 2 Driver Changes
The key difference between the Step 1 and Step 2 interfaces is the use of standard
call interfaces, which replace the JSB interfaces used throughout Step 1 drivers.
Standard call interfaces are now required for the following driver-supplied
routines:

• Cancel I/O routine

• Cancel selective routine

• Channel assign routine

• Cloned UCB routine

• Controller initialization routine

• Function decision table (FDT) routines

• Mount verification routine

• Register dumping routine

• Unit delivery routine

• Unit initialization routine

Standard call interfaces are optional for the following driver-supplied routines:

• Alternate start I/O routine

• Start I/O routine

• Driver fork routines

Additional Step 2 changes include the following:

• Function decision table processing does not rely on the RET under JSB
mechanism.

Introduction 1–1

Introduction
1.1 Overview of Step 2 Driver Changes

• The layout of the function decision table is significantly different.

• Standard call interfaces are available for most OpenVMS support routines.

• A small number of OpenVMS support routines with JSB interfaces are no
longer available.

For detailed information about these changes, see Chapter 2.

Note

Converting to a Step 2 device driver does not require changes to private
driver-level interfaces. Examples of this are the private interfaces
between a port and a class driver.

1.2 Overview of Step 1 and Step 2 Driver Similarities
Step 2 drivers are similar to Step 1 drivers in the following ways:

• The overall structure of a device driver is unchanged.

• Interfaces for internal driver routines are not dictated.

• Interfaces between port and class drivers are not dictated.

• JSB interfaces continue to be available for most OpenVMS support routines
used by drivers.

• The use of the kernel process mechanism is essentially unchanged.

• The Start I/O to REQCOM code path can use JSB interfaces.

1.3 Step 2 Driver Naming Conventions
The following naming conventions apply to the new call-based system routines:

• The call-based system routine has a different name than its JSB-based
counterpart. If x$y is the name of the JSB-based system routine, its call-
based counterpart is named x_STD$y. For example, EXE_STD$FINISHIO is
the call-based routine that replaces the JSB-based EXE$FINISHIO.

• If a JSB-replacement macro exists for x$y, it is named CALL_Y.

For example, you can replace a JSB to EXE$FINISHIO with the CALL_
FINISHIO macro. CALL_FINISHIO issues a standard call to EXE_
STD$FINISHIO after loading the standard call argument registers from
the general registers used in the traditional JSB to EXE$FINISHIO.

• When using the call-based system routine directly, note that its interface may
differ from the traditional JSB-based routine.

Input parameters are usually listed first, specified in the order that
corresponds to the register order of the JSB interface input parameters.

Output parameters are usually listed last, specified in the order that
corresponds to the register order of the JSB interface output parameters.

If a register parameter is both an input and an output parameter to the
JSB interface, then it contributes both an input parameter and an output
parameter to the new call-based interface.

1–2 Introduction

Introduction
1.3 Step 2 Driver Naming Conventions

These conventions serve only as guidelines. In some cases, parameters are
dropped or the register order rule is waived if an alternate parameter ordering is
more natural. All such interface changes are described in OpenVMS AXP Device
Support: Reference.

1.4 Converting Drivers Written in BLISS
This manual focuses on converting existing Step 1 device drivers, written in
VAX MACRO, to Step 2 device drivers. However, the call interfaces described are
equally available to Step 1 drivers written in BLISS. To convert a Step 1 BLISS
driver, remove the JSB linkages from routine declarations and verify the specified
parameter order for any given routine against that listed in the system routines
section of OpenVMS AXP Device Support: Reference.

Existing BLISS drivers are likely to have an associated VAX MACRO module that
contains the DPTAB, DDTAB, and FUNCTAB declarations, and some routines
that were written in VAX MACRO. You must convert these VAX MACRO modules
as described in this manual. Alternatively, you can now use new BLISS macros
that allow you to code the DPT, DDT, and FDT declarations in BLISS. For more
information about these macros, see OpenVMS AXP Device Support: Reference.

1.5 Writing Step 2 Drivers in C
OpenVMS AXP Version 6.1 provides the support necessary to write a device
driver in the C programming language. For information about writing OpenVMS
AXP device drivers in the C programming language or another high-level
language, see the OpenVMS AXP Device Support: Developer’s Guide.

Introduction 1–3

2
Conversion Guidelines

This chapter describes the tasks required to convert a Step 1 device driver to a
Step 2 device driver. For more details about the macros, system routines, and
entry points listed in this chapter, see OpenVMS AXP Device Support: Reference.

2.1 DPTAB Changes
The driver prologue table (DPT) must declare that the driver is a Step 2 driver.
In the driver’s DPTAB macro invocation, replace step= 1 with step=2. For
example:

Step 1 Step 2

DPTAB - DPTAB -
STEP = 1,- STEP = 2,-

If you do not make this change, compilation errors will result. See OpenVMS
AXP Device Support: Reference for more information about the DPT and the
DPTAB macro.

2.2 DDTAB Changes
The routines pointed to by the driver dispatch table (DDT) must conform to
Step 2 requirements. You may need to change entry point declarations for
driver-specific routines, but the names may remain unchanged. Any OpenVMS
routine names referenced should be changed as follows in the driver’s DDTAB
macro invocation:

1. Replace cancel=IOC$CANCELIO with cancel=IOC_STD$CANCELIO.

2. Replace mntver=IOC$MNTVER with mntver=IOC_STD$MNTVER.

3. Replace start=EXE$KP_STARTIO with start=EXE_STD$KP_STARTIO.

See OpenVMS AXP Device Support: Reference for more information about the
driver dispatch table (DDT) and the DDTAB macro.

For complex Start I/O to REQCOM code paths that use extensive branching
between .JSB_ENTRY routines, you can use the traditional Step 1 JSB interface
for the start I/O and the alternate start I/O routines. For more information, see
Section 2.6.1.

2.3 Driver Entry Point Routine Changes
To replace the JSB interfaces used throughout Step 1 drivers with the call
interfaces required for Step 2 driver-supplied routines, perform the following
tasks:

Conversion Guidelines 2–1

Conversion Guidelines
2.3 Driver Entry Point Routine Changes

1. Replace the .JSB_ENTRY MACRO-32 compiler directive at the beginning of
each driver entry point with the corresponding macro. Step 2 driver entry
point macros include the following:

• $DRIVER_CANCEL_ENTRY

• $DRIVER_CANCEL_SELECTIVE_ENTRY

• $DRIVER_CHANNEL_ASSIGN_ENTRY

• $DRIVER_CLONEDUCB_ENTRY

• $DRIVER_CTRLINIT_ENTRY

• $DRIVER_ERRRTN_ENTRY

• $DRIVER_FDT_ENTRY

• $DRIVER_MNTVER_ENTRY

• $DRIVER_REGDUMP_ENTRY

• $DRIVER_DELIVER_ENTRY

• $DRIVER_UNITINIT_ENTRY

2. Use the default FETCH=YES parameter value.

This value causes the standard interface parameters to be fetched and copied
to their traditional JSB interface registers, for example:

$DRIVER_UNITINIT_ENTRY FETCH=YES

results in

MOVL #SS$_NORMAL,R0
MOVL UNITARG$_IDB(AP),R4
MOVL UNITARG$_UCB(AP),R5

3. Use the default PRESERVE parameter value.

The default is the set of registers that was allowed to be scratched by the
Step 1 JSB interface routine, for example:

$DRIVER_UNITINIT_ENTRY

results in

PRESERVE=<R2>

This set of registers is augmented by the MACRO-32 compiler register
autopreservation feature. Use the .SET_REGISTERS WRITTEN=<Rn>
directive to augment this set of registers manually.

4. Make sure that each Step 2 driver routine returns control to the operating
system with a RET instruction, instead of an RSB instruction.

See OpenVMS AXP Device Support: Reference for more information about the
Step 2 driver entry point macros.

2.4 FUNCTAB Macro Changes
A Step 1 driver contains three or more FUNCTAB macro invocations. For Step 2
drivers, the function decision table (FDT) format is significantly different. Step 2
driver changes include the following:

• The FUNCTAB macro is obsolete.

2–2 Conversion Guidelines

Conversion Guidelines
2.4 FUNCTAB Macro Changes

• The FDT structure consists of a 64-bit mask specifying the buffered functions
and a 64-entry vector pointing to the upper-level FDT action routine that
corresponds to each of the I/O function codes. There is no bit mask of legal
functions.

• Three new macros are used to build the FDT:

FDT_INI initializes an FDT structure
FDT_BUF declares the buffered I/O functions
FDT_ACT declares an upper-level FDT action routine for a set of I/O
functions

You must make the following changes:

1. Delete the first FUNCTAB macro, the one that identifies valid I/O function
codes, and the FDT label. In their place, insert an FDT_INI macro. The
single argument to FDT_INI is the label for the FDT. The label should match
the name supplied to the functb argument of the DDTAB macro.

2. Replace the second FUNCTAB macro, the one that identifies buffered I/O
functions, with an FDT_BUF macro. Replace the word ‘‘FUNCTAB’’ with the
word ‘‘FDT_BUF’’ and remove the first null argument.

3. Replace each subsequent FUNCTAB macro with an FDT_ACT macro.

For example:

Step 1 FDT Declaration

MY_FUNCTBL:

FUNCTAB ,- ;legal func
<SENSEMODE,SENSECHAR,-
WRITELBLK,WRITEPBLK>

FUNCTAB ,- ;buffered func
<SENSEMODE,SENSECHAR>

FUNCTAB EXE$SENSE_MODE,-
<SENSEMODE,SENSECHAR>

FUNCTAB MY_FDT_WRITE,-
<WRITELBLK,WRITEPBLK>

Step 2 FDT Declaration

FDT_INI MY_FUNCTBL

FDT_BUF <SENSEMODE,SENSECHAR>

FDT_ACT EXE_STD$SENSE_MODE,-
<SENSEMODE,SENSECHAR>

FDT_ACT MY_FDT_WRITE,-
<WRITELBLK,WRITEPBLK>

Because Step 2 driver support replaces all system-supplied upper-level FDT
action routines with new, callable routines, you must also ensure that each
FDT_ACT invocation specifies the correct routine name. Generally, the string

Conversion Guidelines 2–3

Conversion Guidelines
2.4 FUNCTAB Macro Changes

‘‘_STD’’ follows the facility ID and precedes the dollar sign ($) in the routine
name. For example, replace the following code:

FUNCTAB EXE$SETMODE, -
<SETCHAR,-
SETMODE>

with:

FDT_ACT EXE_STD$SETMODE, -
<SETCHAR,-
SETMODE>

Table 2–1 identifies the new Step 2 system-supplied upper-level FDT action
routines and the Step 1 routines they replace.

Table 2–1 Step 2 Upper-Level FDT Action Routines

Obsolete Step 1 Routine Step 2 FDT Action Routine

ACP$ACCESS ACP_STD$ACCESS

ACP$ACCESSNET ACP_STD$ACCESSNET

ACP$DEACCESS ACP_STD$DEACCESS

ACP$MODIFY ACP_STD$MODIFY

ACP$MOUNT ACP_STD$MOUNT

ACP$READBLK ACP_STD$READBLK

ACP$WRITEBLK ACP_STD$WRITEBLK

New for Step 2 EXE$ILLIOFUNC

EXE$LCLDSKVALID EXE_STD$LCLDSKVALID

EXE$MODIFY EXE_STD$MODIFY

EXE$ONEPARM EXE_STD$ONEPARM

EXE$READ EXE_STD$READ

EXE$SENSEMODE EXE_STD$SENSEMODE

EXE$SETCHAR EXE_STD$SETCHAR

EXE$SETMODE EXE_STD$SETMODE

EXE$WRITE EXE_STD$WRITE

EXE$ZEROPARM EXE_STD$ZEROPARM

MT$CHECK_ACCESS1 MT_STD$CHECK_ACCESS

1For information about changes in routine behavior, see OpenVMS AXP Device Support: Reference.

For more information about the FDT_INI, FDT_BUF, and FDT_ACT macros and
the upper-level FDT action, see OpenVMS AXP Device Support: Reference.

Warning

Step 2 device drivers support only a single upper-level FDT action routine
per I/O function code. For those functions that require processing by
more than one upper-level FDT action routine, you should provide a new
composite FDT function, which sequentially calls each of the required
FDT routines as long as the returned status is successful. For more
information about composite routines, see Chapter 3.

2–4 Conversion Guidelines

Conversion Guidelines
2.5 FDT Routine Changes

2.5 FDT Routine Changes
The Step 2 FDT routine changes you need to make depend on the type of FDT
routine your driver includes. This section names and describes types of FDT
routines, summarizes the differences between Step 1 and Step 2 FDT processing,
and specifies the required Step 2 FDT routine changes.

An upper-level FDT action routine is a routine listed in a driver’s function
decision table (FDT) as a result of the driver’s invocation of the FDT_ACT macro.
FDT dispatching code in the $QIO system service calls an upper-level FDT action
routine, passing to it the addresses of the I/O request packet (IRP), process
control block (PCB), unit control block (UCB), and channel control block (CCB).
An upper-level FDT action routine must return SS$_FDT_COMPL status to the
$QIO system service. (See OpenVMS AXP Device Support: Reference for a full
description of the formal interface to an upper-level FDT action routine.)

OpenVMS provides a set of upper-level FDT action routines, but drivers can
also define their own driver-specific upper-level FDT action routines. EXE_
STD$READ is an example of a Step 2 upper-level FDT action routine.

An FDT exit routine is a routine used by a Step 1 driver to terminate
FDT processing and exit from the $QIO system service. For example,
EXE$QIODRVPKT is an FDT exit routine. FDT exit routines use the RET-
under-JSB mechanism to exit from the $QIO system service. The RET under
JSB mechanism is the technique of using a RET instruction to return from a
JSB interface routine. This RET instruction causes control to return from the
most recent CALL interface routine on the current call tree. This technique
unwinds any intervening JSB interface routines without returning to their callers
and without restoring any register values that were saved by the unwound
JSB routines. In a Step 2 driver, FDT exit routines have been replaced by FDT
completion routines.

FDT completion routines are the Step 2 replacements for Step 1 FDT exit
routines. Like FDT exit routines, completion routines complete FDT processing
by queuing the I/O request to the appropriate next stage of processing. Unlike
FDT exit routines, FDT completion routines return back to their callers and
do not rely on the RET-under-JSB mechanism. EXE_STD$QIODRKPT is an
example of a Step 2 FDT exit routine.

FDT support routines are routines that are called during FDT processing, but
they are not upper-level FDT action routines. They have code paths that call
FDT completion routines, but they do not complete FDT processing themselves.
Step 1 FDT support routines must use a JSB interface. OpenVMS provides a set
of FDT support routines, but drivers can also include their own support routines.
EXE_STD$READCHK is an example of a Step 2 FDT support routine.

For Step 1 drivers:

• Upper-level FDT action routines are invoked via a JSB interface.

• A return from an upper-level FDT action routine via an RSB instruction
returns control back to the FDT dispatch loop.

• FDT support routines are all invoked via a JSB interface.

• Exit from Step 1 FDT processing and the QIO system service is via a
RET under JSB in an FDT exit routine, for example, EXE$ABORTIO,
EXE$QIODRVPKT, and so on.

Conversion Guidelines 2–5

Conversion Guidelines
2.5 FDT Routine Changes

In contrast, for Step 2 drivers:

• Upper-level FDT action routines are invoked via a new standard call
interface.

• Control is returned from an upper-level FDT action routine via a RET
instruction, which exits the FDT dispatcher and returns to the $QIO system
service.

• Driver-specific FDT support routines may continue to use JSB interfaces,
however OpenVMS-provided FDT support routines should be invoked using
the new CALL_x macros.

• FDT completion routines are used instead of FDT exit routines. FDT
completion routines return back to their callers with the SS$_FDT_COMPL
status. All upper-level FDT action routines must return this status back to
the $QIO system service.

2.5.1 Upper-Level Routine Entry Point Changes
If the Step 1 driver you are converting to Step 2 includes a device-specific
upper-level FDT action routine, perform the following tasks:

1. Replace the .JSB_ENTRY MACRO-32 compiler directive used to define
the FDT routine entry point with a $DRIVER_FDT_ENTRY macro. (See
OpenVMS AXP Device Support: Reference.) This macro declares the routine’s
call entry point and ensures, by default, that all nonscratch registers defined
by the OpenVMS Calling Standard are preserved. This macro also invokes
the $FDTARGDEF macro, thus allowing the FDT routine to access its
arguments at their standard locations with respect to the AP.

2. Ensure that the routine does not read R7 to obtain the low-order 6 bits of the
$QIO function code parameter, or R8 to obtain the FDT table entry address.
It can instead obtain the function code from the IRP and the start of the Step
2 FDT structure from DDT$PS_FDT_2. Note that the Step 2 FDT format
differs from the Step 1 format.

3. Use the default register PRESERVE list on $DRIVER_FDT_ENTRY macro.

2.5.2 FDT Exit Routine Changes
Replace the JMP or JSB instructions to Step 1 FDT exit routines with the Step 2
macros (listed in Table 2–2) that call FDT completion routines. Use the default
value for the do_ret=YES parameter.

2–6 Conversion Guidelines

Conversion Guidelines
2.5 FDT Routine Changes

For example, replace either:

JMP G^EXE$ABORTIO

or:

JSB G^EXE$ABORTIO
RSB

with:

CALL_ABORTIO

Table 2–2 FDT Completion Routines and Macros

Obsolete Step 1 FDT Exit
Routine Macro FDT Completion Routine

EXE$ABORTIO CALL_ABORTIO EXE_STD$ABORTIO

EXE$ALTQUEPKT CALL_ALTQUEPKT1 EXE_STD$ALTQUEPKT

EXE$FINISHIO CALL_FINISHIO EXE_STD$FINISHIO

EXE$FINISHIOC CALL_FINISHIOC EXE_STD$FINISHIO

New for Step 2 CALL_FINISHIO_NOIOST EXE_STD$FINISHIO

EXE$IORSNWAIT CALL_IORSNWAIT EXE_STD$IORSNWAIT

EXE$QIOACPPKT CALL_QIOACPPKT EXE_STD$QIOACPPKT

EXE$QIODRVPKT CALL_QIODRVPKT EXE_STD$QIODRVPKT

EXE$QIORETURN none none2

1The CALL_ALTQUEPKT macro does not provide the do_ret argument. An FDT routine that invokes CALL_
ALTQUEPKT must typically manage the dispatching of I/O requests to the driver’s alternate start-I/O entry point.
2If your driver issues a JSB or JMP instruction to EXE$QIORETURN, you must replace the JSB or JMP with code that:

a. Releases the device lock if held. EXE$QIORETURN contained code that unconditionally released the device lock.
b. Places SS$_FDT_COMPL status in R0 before returning to its caller. Because the final system service status in the

FDT_CONTEXT structure is SS$_NORMAL by default, your driver need do nothing special to deliver a success status
to the $QIO caller.

If you call an FDT completion routine directly (that is, not using a macro), you
should note that FDT completion routines:

• Always return to their caller and not to the system service dispatcher.

• Always return the warning status SS$_FDT_COMPL.

• Place the $QIO system service status in a new structure called the FDT_
CONTEXT structure.

See OpenVMS AXP Device Support: Reference for more information about FDT
completion routines and a detailed description of the macros.

2.5.3 OpenVMS-Supplied FDT Support Routine Changes
For Step 2 drivers, replace any JSB instruction to an OpenVMS supplied FDT
support routine with the appropriate JSB-replacement macro. (See Table 2–3.)
The macros do the following:

• Use the input registers for the corresponding Step 1 FDT support routine as
implicit inputs.

• Call the new Step 2 support routine passing the register values in the correct
Step 2 parameter order.

Conversion Guidelines 2–7

Conversion Guidelines
2.5 FDT Routine Changes

• Restore the output values into the output registers for the corresponding
Step 1 routine.

• Generate code that checks the returned status and invokes a RET instruction
on an error. (Some Step 1 FDT support routines never returned to their
callers in the event of an error.)

Table 2–3 System-Supplied FDT Support Routines

Obsolete Step 1 FDT Support
Routine Macro FDT Support Routine

EXE$MODIFYLOCK CALL_MODIFYLOCK EXE_STD$MODIFYLOCK

EXE$MODIFYLOCK_ERR CALL_MODIFYLOCK_ERR EXE_STD$MODIFYLOCK

EXE$READCHK CALL_READCHK EXE_STD$READCHK

EXE$READCHKR CALL_READCHKR EXE_STD$READCHK

EXE$READLOCK CALL_READLOCK EXE_STD$READLOCK

EXE$READLOCK_ERR CALL_READLOCK_ERR EXE_STD$READLOCK

COM$SETATTNAST CALL_SETATTNAST COM_STD$SETATTNAST

COM$SETCTRLAST CALL_SETCTRLAST COM_STD$SETCTRLAST

EXE$WRITECHK CALL_WRITECHK EXE_STD$WRITECHK

EXE$WRITECHKR CALL_WRITECHKR EXE_STD$WRITECHK

EXE$WRITELOCK CALL_WRITELOCK EXE_STD$WRITELOCK

EXE$WRITELOCK_ERR CALL_WRITELOCK_ERR EXE_STD$WRITELOCK

See OpenVMS AXP Device Support: Reference for further discussion of system-
supplied FDT support routines and details about the macros.

2.5.4 Driver-Supplied FDT Support Routine Changes
It is easiest to use your current JSB interfaces for all driver-supplied FDT
support routines. In fact, the correct operation of the CALL_x macros depends on
keeping the JSB interfaces for your support routines.

To convert a Step 1 driver that contains driver-supplied FDT support routines to
the Step 2 interface, do the following:

1. Use the $DRIVER_FDT_ENTRY macro for upper-level routines with the
default preserve list, regardless of the registers that are actually modified by
the upper-level FDT routine.

2. Use the FDT completion macros with DO_ RET=YES (the default) and the
FDT support routines in Table 2–3.

3. Keep the JSB interface for all driver-supplied FDT support routines.

If you want to convert driver-supplied FDT support routines to CALL interfaces,
see Chapter 3.

2–8 Conversion Guidelines

Conversion Guidelines
2.5 FDT Routine Changes

2.5.5 Returning from Upper-Level Routines
In most cases, upper-level FDT action routines end with a call to an FDT
completion macro that includes a RET instruction. However, if after following
the steps outlined in Section 2.5.1 through Section 2.5.4, you still have an RSB
instruction in your upper-level FDT action routine, you should change it to the
following:

MOVL #SS$_NORMAL,R0
RET

Encountering an RSB instruction in your upper-level FDT action routine indicates
that the upper-level FDT action routine, which you are converting, is one of
several upper-level routines called for a single I/O function. Because Step 2
drivers can have only one upper-level FDT action routine for each I/O function,
you must also make this FDT routine a composite FDT routine. For information
about composite FDT routines, see Section 3.1.

2.6 Start I/O to REQCOM Changes
In drivers that use the simple fork mechanism, standard call interfaces or JSB
interfaces can be used for the code path for start I/O through request complete.

• If your start I/O code path is simple, you can convert it to the new standard
call interface as described in Chapter 3. You may be able to convert some fork
routines independently to call interfaces, for example, for routines queued
from a unit initialization routine.

• If your start I/O code path is more complicated, you might want to use the
JSB interfaces described in Section 2.6.1.

The Step 1 kernel process mechanism uses a standard call interface. For a Step 2
device driver that uses the kernel process mechanism, the path from start I/O to
request complete remains essentially unchanged. Section 2.6.2 describes the two
changes necessary for Step 2 drivers.

2.6.1 Simple Fork Mechanism—JSB-Based Fork Routines
The code path from start I/O through request complete in some existing drivers
written in MACRO-32 may be difficult and error prone to convert to the standard
call interfaces. This can apply to complex drivers that make extensive use of
branches between routines within the same module. Such drivers can choose to
continue to use the traditional JSB interfaces for their start I/O through request
complete code path. These drivers will need to use the DDTAB JSB_START
parameter to specify their start I/O entry point:

DDTAB -
STEP = 2,-
JSB_START = driver_startio_routine

instead of:

DDTAB -
STEP = 1,-
START = driver_startio_routine

By doing so, the IOC$START_C2J CALL-to-JSB jacket routine is actually used as
the start I/O entry. The IOC$START_C2J routine invokes the routine specified by
the JSB_START parameter. A similar approach can also be used for the alternate

Conversion Guidelines 2–9

Conversion Guidelines
2.6 Start I/O to REQCOM Changes

start I/O entry point. The DDTAB JSB_ALTSTART parameter is used to specify
the alternate start I/O entry:

DDTAB -
STEP = 2,-
JSB_ALTSTART = driver_altstart_routine

instead of:

DDTAB -
STEP = 1,-
ALTSTART = driver_altstart_routine

The performance cost of this approach is one additional level of routine call to
dispatch an IRP to the driver’s start I/O routine or alternate start I/O routine.

If you continue using JSB-based fork routines, the driver macros FORK,
FORK_ROUTINE, FORK_WAIT, IOFORK, RELCHAN, REQCOM, REQCHAN,
REQPCHAN, WFIKPCH, and WFIRLCH can continue to be used in the same
manner as in a Step 1 driver. By default these macros will assume a JSB fork
environment. Note, however, that these routines may expand to calls to new
routines (for example, WFIKPCH will call IOC_STD$PRIMITIVE_WFIKPCH) but
all the implicit inputs and outputs are preserved.

2.6.2 Kernel Process Mechanism
Device drivers that use the kernel process mechanism require two minor changes
to the driver code paths from start I/O through request complete.

1. Because of the new start I/O interface, these drivers need to specify:

DDTAB -
STEP = 2,-
START = EXE_STD$KP_STARTIO,-
KP_STARTIO = driver_startio_routine

instead of:

DDTAB -
STEP = 1,-
START = EXE$KP_STARTIO,-
KP_STARTIO = driver_startio_routine

2. A device interrupt service routine can use one of two methods to resume
a kernel process thread that has been suspended by IOC$KP_WFIKPCH
or IOC$KP_WFIRLCH. The first and preferred method is to call EXE$KP_
RESTART. This method is unchanged for Step 2 drivers.

The second method is to load R3 and R4 from the UCB fork block and then
invoke the routine whose procedure value is in UCB$L_FPC(R5).

In a Step 2 driver, this is done using a standard call interface, as follows:

PUSHL R5 ;P3 = UCB address
PUSHL UCB$Q_FR4(R5) ;P2 = FR4 value
PUSHL UCB$Q_FR3(R5) ;P1 = FR3 value
CALLS #3,@UCB$L_FPC(R5)

instead of the following:

MOVL UCB$Q_FR3(R5),R3
MOVL UCB$Q_FR4(R5),R4
JSB @UCB$L_FPC(R5)

2–10 Conversion Guidelines

Conversion Guidelines
2.7 Common OpenVMS-Supplied EXEC Routines

2.7 Common OpenVMS-Supplied EXEC Routines
Replace any JSB to the routines listed in Table 2–4 with the appropriate macro.
If the interface provided by the JSB-replacement macro differs from the original
JSB interface, the macro generates a compile-time warning. The compile-time
warning identifies the register output that is not provided by the replacement
macro. After you have made sure that your code does not depend on this
output you can disable the warning by using the INTERFACE_WARNING=NO
parameter on the macro.

Certain macros ensure compatibility with the original JSB interface by saving
R0, R1, or both. These macros provide an argument that allows you to specify
that these registers not be saved. See OpenVMS AXP Device Support: Reference
for a detailed description of the macros.

Most of the JSB-based routines listed in Table 2–4 continue to be available to
Step 2 drivers. However, in many cases, the new call-based interface routine
provides better performance than the JSB-based interfaces. If you intend to call
a call-based system routine directly (without using a macro), check the ‘‘Notes
for Converting Step 1 Drivers’’ section of the routine’s description in OpenVMS
AXP Device Support: Reference to verify the routine interface. You can optimize
performance of the macro by following the recommendations listed in Chapter 3.

Table 2–4 Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

ACP$ACCESS1 CALL_ACCESS No No

ACP$ACCESSNET1 CALL_ACCESSNET No No

ACP$DEACCESS1 CALL_DEACCESS No No

ACP$MODIFY1 CALL_ACP_MODIFY No No

ACP$MOUNT1 CALL_MOUNT No No

ACP$READBLK1 CALL_READBLK No No

ACP$WRITEBLK1 CALL_WRITEBLK No No

COM$DELATTNAST CALL_DELATTNAST No No

COM$DELATTNASTP CALL_DELATTNASTP No No

COM$DELCTRLAST CALL_DELCTRLAST No No

COM$DELCTRLASTP CALL_DELCTRLASTP No No

COM$DRVDEALMEM CALL_DRVDEALMEM No No

COM$FLUSHATTNS CALL_FLUSHATTNS No No

COM$FLUSHCTRLS CALL_FLUSHCTRLS No No

COM$POST CALL_POST No No

COM$POST_NOCNT CALL_POST_NOCNT No No

COM$SETATTNAST1 CALL_SETATTNAST No No

COM$SETCTRLAST1 CALL_SETCTRLAST No No

ERL$ALLOCEMB CALL_ALLOCEMB No No

1The JSB-based Step 1 routine is not supported by the OpenVMS AXP operating system Version 6.1.

(continued on next page)

Conversion Guidelines 2–11

Conversion Guidelines
2.7 Common OpenVMS-Supplied EXEC Routines

Table 2–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

ERL$DEVICEATTN CALL_DEVICEATTN No No

ERL$DEVICERR CALL_DEVICERR No No

ERL$DEVICTMO CALL_DEVICTMO No No

ERL$RELEASEMB CALL_RELEASEMB No No

EXE$ABORTIO1 CALL_ABORTIO No No

EXE$ALLOCBUF CALL_ALLOCBUF No No

EXE$ALLOCIRP CALL_ALLOCIRP No No

EXE$ALTQUEPKT CALL_ALTQUEPKT No No

EXE$CARRIAGE CALL_CARRIAGE No No

EXE$CHKCREACCES CALL_CHKCREACCES No R1

EXE$CHKDELACCES CALL_CHKDELACCES No R1

EXE$CHKEXEACCES CALL_CHKEXEACCES No R1

EXE$CHKLOGACCES CALL_CHKLOGACCES No R1

EXE$CHKPHYACCES CALL_CHKPHYACCES No R1

EXE$CHKRDACCES CALL_CHKRDACCES No R1

EXE$CHKWRTACCES CALL_CHKWRTACCES No R1

EXE$FINISHIO1 CALL_FINISHIO No No

EXE$FINISHIOC1 CALL_FINISHIOC No No

EXE$INSERT_IRP CALL_INSERT_IRP No No

EXE$INSIOQ CALL_INSIOQ No No

EXE$INSIOQC CALL_INSIOQC No No

EXE$IORSNWAIT1 CALL_IORSNWAIT No No

EXE$LCLDSKVALID1 CALL_LCLDSKVALID No No

EXE$MNTVERSIO CALL_MNTVERSIO No No

EXE$MODIFY1 CALL_EXE_MODIFY No No

EXE$MODIFYLOCK1 CALL_MODIFYLOCK No No

EXE$MODIFYLOCK_ERR1 CALL_MODIFYLOCK_
ERR

Yes No

EXE$MOUNT_VER CALL_MOUNT_VER No R0 and R1

EXE$ONEPARM1 CALL_ONEPARM No No

EXE$PRIMITIVE_FORK FORK2 No No

EXE$PRIMITIVE_FORK_WAIT FORK_WAIT2 No No

EXE$QIOACPPKT1 CALL_QIOACPPKT No No

EXE$QIODRVPKT1 CALL_QIODRVPKT No No

EXE$QXQPPKT1 CALL_QXQPPKT No No

EXE$READCHK 1 CALL_READCHK No No

1The JSB-based Step 1 routine is not supported by the OpenVMS AXP operating system Version 6.1.
2The standard call interface version of the routine is used by the macro if the ENVIRONMENT=CALL parameter is
specified.

(continued on next page)

2–12 Conversion Guidelines

Conversion Guidelines
2.7 Common OpenVMS-Supplied EXEC Routines

Table 2–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

EXE$READCHKR1 CALL_READCHKR No No

EXE$READLOCK1 CALL_READLOCK No No

EXE$READLOCK_ERR1 CALL_READLOCK_
ERR

Yes No

EXE$SENSEMODE1 CALL_SENSEMODE No No

EXE$SETCHAR1 CALL_SETCHAR No No

EXE$SETMODE1 CALL_SETMODE No No

EXE$SNDEVMSG CALL_SNDEVMSG No No

EXE$WRITE1 CALL_WRITE No No

EXE$WRITECHK1 CALL_WRITECHK No No

EXE$WRITECHKR1 CALL_WRITECHKR No No

EXE$WRITELOCK1 CALL_WRITELOCK No No

EXE$WRITELOCK_ERR1 CALL_WRITELOCK_
ERR

Yes No

EXE$WRTMAILBOX CALL_WRTMAILBOX No No

EXE$ZEROPARM1 CALL_ZEROPARM No No

IOC$ALTREQCOM CALL_ALTREQCOM No No

IOC$BROADCAST CALL_BROADCAST No R1

IOC$CANCELIO CALL_CANCELIO No R0 and R1

IOC$CLONE_UCB1 CALL_CLONE_UCB Yes No

IOC$COPY_UCB CALL_COPY_UCB No No

IOC$CREDIT_UCB CALL_CREDIT_UCB No No

IOC$CVTLOGPHY CALL_CVTLOGPHY No No

IOC$CVT_DEVNAM CALL_CVT_DEVNAM No No

IOC$DELETE_UCB CALL_DELETE_UCB No No

IOC$DIAGBUFILL CALL_DIAGBUFILL No No

IOC$FILSPT CALL_FILSPT No No

IOC$GETBYTE CALL_GETBYTE No No

IOC$INITBUFWIND CALL_INITBUFWIND No No

IOC$INITIATE CALL_INITIATE No No

IOC$LINK_UCB1 CALL_LINK_UCB Yes No

IOC$MAPVBLK CALL_MAPVBLK No No

IOC$MNTVER CALL_MNTVER No No

IOC$MOVFRUSER CALL_MOVFRUSER No No

IOC$MOVFRUSER2 CALL_MOVFRUSER2 No No

IOC$MOVTOUSER CALL_MOVTOUSER No No

IOC$MOVTOUSER2 CALL_MOVTOUSER2 No No

1The JSB-based Step 1 routine is not supported by the OpenVMS AXP operating system Version 6.1.

(continued on next page)

Conversion Guidelines 2–13

Conversion Guidelines
2.7 Common OpenVMS-Supplied EXEC Routines

Table 2–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

IOC$PARSDEVNAM CALL_PARSDEVNAM No No

IOC$POST_IRP CALL_POST_IRP No No

IOC$PRIMITIVE_REQCHANH1 REQCHAN No No

IOC$PRIMITIVE_REQCHANL1 REQCHAN No No

IOC$PRIMITIVE_WFIKPCH WFIKPCH No No

IOC$PRIMITIVE_WFIRLCH WFIRLCH No No

IOC$PTETOPFN CALL_PTETOPFN No R0 and R1

IOC$QNXTSEG1 CALL_QNXTSEG1 No No

IOC$RELCHAN RELCHAN No No

IOC$REQCOM REQCOM No No

IOC$SEARCHDEV CALL_SEARCHDEV No No

IOC$SEARCHINT CALL_SEARCHINT No No

IOC$SEVER_UCB CALL_SEVER_UCB No No

IOC$SIMREQCOM CALL_SIMREQCOM No No

IOC$THREADCRB CALL_THREADCRB No R0

MMG$IOLOCK CALL_IOLOCK No No

MMG$UNLOCK CALL_UNLOCK No No

MT$CHECK_ACCESS1 CALL_CHECK_
ACCESS

Yes No

SCH$IOLOCKR CALL_IOLOCKR No R1

SCH$IOLOCKW CALL_IOLOCKW No No

SCH$IOUNLOCK CALL_IOUNLOCK No No

1The JSB-based Step 1 routine is not supported by the OpenVMS AXP operating system Version 6.1.

2.8 Compiling, Linking, and Loading Step 2 Drivers
After you convert a Step 1 driver to a Step 2 driver, you must compile, link,
and load it. For more information about compiling, linking, and loading Step 2
drivers, see the OpenVMS AXP Device Support: Developer’s Guide.

2–14 Conversion Guidelines

3
Handling More Complex Situations

This chapter describes the Step 2 conversion situations that might be too unusual
or too complex for the guidelines in Chapter 2.

3.1 Composite FDT Routines
A composite FDT routine is required when a single I/O function code must be
processed by more than one upper-level FDT routine. Step 2 FDT dispatching
only provides for a single upper-level routine for each I/O function code. When
this is not sufficient, the general solution is to write a new upper-level FDT
routine that sequentially calls each of the required upper-level FDT routines
(checking status on return from each call). Another possible solution is to call
the required second upper-level FDT routine at the appropriate point in the first
upper-level FDT routine. The need for a composite FDT routine is automatically
detected at compile time.

The following example shows a Step 1 FDT declaration.

FUNCTAB MY_FDT_ACPCONTROL,-
<ACPCONTROL>

FUNCTAB ACP$MODIFY,-
<ACPCONTROL,MODIFY>

Using the guidelines in Section 2.5, you can obtain the following Step 2
declaration:

FDT_ACT MY_FDT_ACPCONTROL,-
<ACPCONTROL>

FDT_ACT ACP_STD$MODIFY,-
<ACPCONTROL,MODIFY>

However, you will receive the following error message when you attempt to
compile the driver:

%AMAC-E-GENERROR, generated ERROR: 0 Multiple actions defined for function IO$_ACPCONTROL

To correct the source of the error, you must do the following:

1. Write a new upper-level FDT routine. This routine is a composite FDT
routine that should call all the upper-level FDT routines listed by the FDT_
ACT macros for the function that has multiple actions. For example, you
would write a routine like the following:

Handling More Complex Situations 3–1

Handling More Complex Situations
3.1 Composite FDT Routines

MY_FDT_ACPCONTROL_COMP:
$DRIVER_FDT_ENTRY

; First FDT routine for IO$_ACPCONTROL
PUSHL R6 ; P4 = CCB
PUSHL R5 ; P3 = UCB
PUSHL R4 ; P2 = PCB
PUSHL R3 ; P1 = IRP
CALLS #4,MY_FDT_ACPCONTROL
BLBC R0,900$; Quit if done

; Second FDT routine for IO$_ACPCONTROL
CALL_ACP_MODIFY

900$: RET ; Return status

2. Examine any of your driver-supplied upper-level FDT routines that you call
from a composite FDT routine. With the exception of the last routine called
in the composite routine, all the others will have at least one RSB exit path
in their Step 1 version. (See Section 2.5.5.) You must convert this RSB as
follows:

MOVL #SS$_NORMAL,R0
RET

In a Step 1 driver, the RSB would have returned control to the FDT
dispatching loop, so that the next upper-level FDT routine could be invoked.
In a Step 2 driver, you must return a successful status, so that your composite
FDT routine continues. Remember that the SS$_FDT_COMPL warning
status will be returned by an upper-level FDT routine if FDT processing has
completed and should not be continued.

3. Remove the function with multiple actions from all FDT_ACT macros. Then
add a new FDT_ACT macro that invokes the new composite FDT routine for
the function. In this example, you would write:

FDT_ACT MY_FDT_ACPCONTROL_COMP, <ACPCONTROL>

FDT_ACT ACP_STD$MODIFY, <MODIFY>

In many cases, a simpler solution is also possible. If you have a function that
has multiple actions defined by FDT_ACT macros and the first FDT_ACT macro
that references that function does not also include other functions, then you could
convert your existing upper-level FDT routine into a composite FDT routine. You
can do this by inserting the calls for the remaining upper-level FDT routines at
the point where the first upper-level FDT routine would have returned to the
Step 1 FDT dispatcher via an RSB instruction. This is the case in the previous
example. Thus, if the Step 1 version of MY_FDT_ACPCONTROL looks like the
following:

MY_FDT_ACPCONTROL:
.JSB_ENTRY
... ;driver-specific processing
RSB ;return to FDT dispatcher

Then the Step 2 composite version would look like the following:

MY_FDT_ACPCONTROL:
$DRIVER_FDT_ENTRY
... ;driver-specific processing
CALL_ACP_MODIFY
RET

3–2 Handling More Complex Situations

Handling More Complex Situations
3.2 Error Routine Callback Changes

3.2 Error Routine Callback Changes
If driver FDT processing involves specifying an error callback routine as
input to one of the Step 1 FDT support routines, EXE$READLOCK_ERR,
EXE$MODIFYLOCK_ERR, or EXE$WRITELOCK_ERR, do the following:

1. Convert the error callback routine to a standard callable routine by using the
following entry-point macro:

$DRIVER_ERRRTN_ENTRY [preserve=<>] [,fetch=YES]

If the error callback routine alters any nonscratch register as defined by
the calling standard, you must add it to the preserve list. You can do this
by using the .SET_REGISTERS directive or the preserve parameter on
the $DRIVER_ERRRTN_ENTRY macro. For example, many error routines
call EXE$DEANONPAGED or EXE$DEANONPGDSIZ, which destroy the
contents of R2. You should specify .SET_REGISTERS WRITTEN=<R2>.

2. Replace the RSB used by the error callback routine to return to its caller with
a RET instruction.

3. Replace the JSB to EXE$READLOCK_ERR, EXE$MODIFYLOCK_ERR,
or EXE$WRITELOCK_ERR with the corresponding JSB-replacement
macros: CALL_READLOCK_ERR, CALL_MODIFYLOCK_ERR, or CALL_
WRITELOCK_ERR.

For more information, see OpenVMS AXP Device Support: Reference.

3.3 Converting Driver-Supplied FDT Support Routines to Call
Interfaces

To convert driver-supplied FDT support routines to call interfaces, follow the
procedure described in this section. Note that although this method is more
efficient than the one described in Chapter 2, it requires that you make more
changes to your source code.

1. Decide what the calling convention is for each of your FDT support routines.

2. Replace .JSB_ENTRY with .CALL_ENTRY at support routine entry points.

3. Within your converted support routines, you must refer to the routine
parameters using the appropriate AP offsets. One way to do this is to copy
the standard parameters into the registers used by the JSB interface.

4. Make sure that all driver-supplied FDT routines return status in R0.

5. All places that invoke your support routines via a JSB instruction must be
changed to invoke the modified support routine via a CALLS instruction after
having pushed the actual parameter values.

6. After each of these calls, you must also check the return status. For non-
success status values (particularly SS$_FDT_COMPL), you must return to
your caller.

Using .JSB_ENTRY and the FDT completion macros, it is possible to write an
FDT support routine that does not return to its caller in the event of an error.
Once you convert to standard call interfaces, however, the flow of control
always returns to the caller of the support routine.

Handling More Complex Situations 3–3

Handling More Complex Situations
3.3 Converting Driver-Supplied FDT Support Routines to Call Interfaces

Note

If any informational messages like the following are displayed, you have
probably missed a .JSB_ENTRY FDT support routine or a branch between
some other .JSB_ENTRY routine and an FDT support routine.

%AMAC-I-RETINJSB, RET in JSB_ENTRY

Once you have converted all your FDT support routines to standard call
interfaces, you can eliminate many of the registers saves and restores that are
generated by the default register preserve list on the $DRIVER_FDT_ENTRY
macro. The default preserve list on the $DRIVER_FDT_ENTRY macro saves
every nonscratch register to protect against a potential RET-under-JSB inside
a .JSB_ENTRY FDT support routine. At the very least, you should be able to
reduce the preserve list to PRESERVE=<R2,R9,R10,R11> to cover the registers
that were allowed to be scratched by Step 1 upper-level FDT routines. You can
reduce this list further, if you know that your FDT routine is not altering these
registers, or if you rely on the .SET_REGISTERS directive and the register
autopreserve feature of the MACRO-32 compiler,

3.4 Converting the Start I/O Code Path to Call Interfaces
Fork, special kernel AST, system timer expiration, and device interrupt timeout
routines that are called by the OpenVMS exec can use either a standard call or
the traditional JSB interface described in Chapter 2.

To convert the Start I/O Code Path to call standard interfaces in drivers written
in MACRO-32, follow the procedure in Section 3.4.1. For a quick summary of the
differences between using ENVIRONMENT=CALL and ENVIRONMENT=JSB,
see Section 3.4.2. A detailed description of the Start I/O to REQCOM conversion
implications for Step 1 drivers is available in OpenVMS AXP Device Support:
Reference.

3.4.1 Start I/O Call Interface Conversion Procedure
To convert the Start I/O Code Path to call standard interfaces in drivers written
in MACRO-32, follow these steps:

1. Use the $DRIVER_START_ENTRY and $DRIVER_ALTSTART_ENTRY
macros to define the driver’s start I/O and appropriate alternate start I/O
routines.

2. Use the DDTAB macro keywords

altstart instead of jsb_altstart
start instead of jsb_start

3. Use the ENVIRONMENT=CALL keyword parameter on the FORK, FORK_
ROUTINE, FORK_WAIT, IOFORK, REQCOM, REQCHAN, REQPCHAN,
WFIKPCH, and WFIRLCH macros.

4. Use the FORK_ROUTINE macro (with ENVIRONMENT=CALL), the .CALL_
ENTRY directive, or the .ENTRY directive instead of .JSB_ENTRY to define
the entry points for driver fork, channel grant, resume from interrupt, and
interrupt timeout routines.

5. Use the RET instruction instead of the RSB instruction to return from all of
the previous standard call interface routines.

3–4 Handling More Complex Situations

Handling More Complex Situations
3.4 Converting the Start I/O Code Path to Call Interfaces

6. Use the scratch registers as defined by the calling standard. Some of the old
JSB interface routines were allowed to scratch registers R2 through R5, which
are not in the scratch register set as defined by the calling standard. Also,
the calling standard allows R0 and R1 to be scratched by a called routine,
while some of the JSB interface routines preserve R0 or R1.

7. Use the following code sequence to invoke the driver interrupt resume routine
from the driver interrupt service routine:

PUSHL R5 ;P3 = UCB from R5
PUSHL UCB$Q_FR4(R5) ;P2 = FR4 (32-bits)
PUSHL UCB$Q_FR3(R5) ;P1 = FR3 (32-bits)
CALLS #3,@UCB$L_FPC(R5) ;call driver routine

as a replacement for:

MOVL UCB$Q_FR3(R5),R3 ;R3 = FR3 (32-bits)
MOVL UCB$Q_FR4(R5),R4 ;R4 = FR4 (32-bits)
JSB @UCB$L_FPC(R5) ;call driver routine

If your driver needs to preserve the full 64-bits of its FR3 or FR4 parameters,
then it can use the following code sequence. Note that although the following
code appears more complex, it results in code that is just as efficient as that
produced by the preceding example.

MOVX UCB$Q_FR3(R5),R16 ;R16 = FR3 (64-bits)
MOVX UCB$Q_FR4(R5),R17 ;R17 = FR4 (64-bits)
PUSHL R5 ;P3 = UCB from R5
PUSHL R17 ;P2 = 64-bits of R17
PUSHL R16 ;P1 = 64-bits of R16
CALLS #3,@UCB$L_FPC(R5) ;call driver routine

For more details about this code sequence, see the description of the FORK
ROUTINE interface in OpenVMS AXP Device Support: Reference.

The called routine can obtain 64-bit parameter values by declaring its entry
point using the FORK_ROUTINE macro or the WFIKPCH macro.

8. Examine the interroutine branches between the previous routines and other
routines in the same modules and change these routines to standard call
interfaces.

9. If you encounter any of the following MACRO-32 compiler diagnostic
messages, examine the relevant source:

%AMAC-E-ILLRSBCAL, illegal RSB in CALL_ENTRY routine

%AMAC-I-BRINTOCAL, branch into CALL_ENTRY routine from
JSB_ENTRY

%AMAC-I-JSBHOME, arglist use in JSB entry requires homed
arglist in caller

%AMAC-I-RETINJSB, RET in JSB_ENTRY, with non-scratch
registers

These messages are likely to result from a .JSB_ENTRY routine that needs to
be converted to a standard call entry. Note, however, that in some cases
you can receive the last three diagnostic messages under acceptable
circumstances. If this happens, you should document the reasons and
consider disabling the diagnostic message by bracketing the smallest possible
section of relevant code as follows:

Handling More Complex Situations 3–5

Handling More Complex Situations
3.4 Converting the Start I/O Code Path to Call Interfaces

.DSABL FLAGGING

.

.

.ENABL FLAGGING

In particular, the use of a RET from a JSB entry routine may be allowable
in a Step 2 driver in the context of complex FDT routines. (For more
information, see Section 2.5.4.) However, if you change the source code to
avoid the need for a RET in a JSB routine, you can improve the performance
of the code path. (For more information, see Section 3.3.)

3.4.2 Simple Fork Macro Differences
This section summarizes the differences between using the
ENVIRONMENT=CALL and ENVIRONMENT=JSB parameters on the following
simple fork macros:

FORK
FORK_ROUTINE
FORK_WAIT
IOFORK
REQCHAN
REQPCHAN
REQCOM
WFIKPCH
WFIRLCH

For more information about the parameters on these macros, see OpenVMS AXP
Device Support: Reference.

3.4.2.1 Fork Routine End Instruction
Some simple fork macros generate an instruction that ends the current routine
and returns control to the routine’s caller. In a .JSB_ENTRY routine the
appropriate end instruction is an RSB. However, a .CALL_ENTRY routine
requires a RET instruction. Table 3–1 lists the simple fork macros whose fork
routine end instruction is determined by the ENVIRONMENT parameter.

Table 3–1 Fork Routine End Instruction

Macros ENVIRONMENT=CALL ENVIRONMENT=JSB

FORK1 RET RSB

FORK_WAIT1 RET RSB

IOFORK1 RET RSB

REQCHAN RET RSB

REQPCHAN RET RSB

REQCOM RET RSB

WFIKPCH RET RSB

WFIRLCH RET RSB

1If you use the CONTINUE parameter, this macro does not generate a fork routine end instruction.

3–6 Handling More Complex Situations

Handling More Complex Situations
3.4 Converting the Start I/O Code Path to Call Interfaces

3.4.2.2 Scratch Registers
Using the ENVIRONMENT=CALL parameter affects the list of scratch registers
on some simple fork macros. Table 3–2 summarizes the differences in scratch
register usage that are visible to the caller’s fork thread. All other implicit
register inputs and outputs on the simple fork macros are the same.

Table 3–2 Registers Scratched in Caller’s Fork Thread

Macros ENVIRONMENT=CALL ENVIRONMENT=JSB

FORK R0,R1 scratched R0,R1 preserved

R3,R4 preserved R3,R4 sratched

FORK_WAIT R0,R1 scratched R0,R1 preserved

IOFORK R0,R1 scratched R0,R1 preserved

R3,R4 preserved R3,R4 scratched

The following example, which is a Step 1 unit initialization routine, illustrates
how dependence on scratch register usage can be hidden in existing code:

MY_UNIT_INIT:
.JSB_ENTRY INPUT=<R0,R4,R5>,OUTPUT=<R0>
... ;code that doesn’t alter R0
FORK ROUTINE=MY_UNIT_INIT_FORK

This routine does some work and then queues the routine MY_UNIT_INIT_FORK
as a fork routine. A unit initialization routine must return a successful status
back to its caller. The preceding sample routine does this as follows:

• R0 is set to SS$_NORMAL before entry into the Step 1 unit initialization
routine.

• The FORK macro with the default ENVIRONMENT=JSB setting does not
alter R0.

• The FORK macro generates an RSB instruction.

The Step 2 equivalent of this unit initialization routine uses a standard call
interface and must use the ENVIRONMENT=CALL parameter on the FORK
macro. However, in doing so, the SS$_NORMAL value held in R0 is destroyed.
The following example shows how to avoid this problem:

MY_UNIT_INIT:
$DRIVER_UNITINIT_ENTRY
...
FORK ROUTINE=MY_UNIT_INIT_FORK,-

ENVIRONMENT=CALL,-
CONTINUE=10$

10$: MOVZWL #SS$_NORMAL,R0
RET

Handling More Complex Situations 3–7

Handling More Complex Situations
3.4 Converting the Start I/O Code Path to Call Interfaces

3.4.2.3 Fork Routine Entry Point
Some simple fork macros generate a fork routine entry point. The type of entry
point generated depends on which ENVIRONMENT parameter you use. The
parameters to a traditional JSB interface fork routine are contained in registers
R3, R4, and R5. In contrast, the parameters to a standard call fork routine are
passed using the standard argument passing mechanism and are referenced
using AP offsets. The following macros generate code that copies the standard
arguments into registers R3, R4, and R5; thereby, facilitating the conversion of
existing JSB interface fork routines to the standard call interface:

FORK
FORK_ROUTINE
FORK_WAIT
IOFORK
REQCHAN
REQPCHAN
WFIKPCH
WFIRLCH

Table 3–3 summarizes the differences in the fork routine entry points generated
by the FORK, FORK_ROUTINE, FORK_WAIT, IO_FORK, REQCHAN,
REQPCHAN, WFIKPCH, and WFIRLCH macros as determined by the
ENVIRONMENT parameter. Note that the FORK, FORK_WAIT, and IOFORK
macros do not generate a fork routine entry point if you use the ROUTINE
parameter.

Table 3–3 Fork Routine Entry Points

Entry Point Attributes ENVIRONMENT=CALL ENVIRONMENT=JSB

Entry directive .CALL_ENTRY .JSB_ENTRY

Parameters Accessed using AP offsets1 R3,R4,R5

Parameter fetch Parameters copied to R3,R4,R52 None

Allowable scratch registers R0,R1 R0-R4

1The symbolic names for the AP offsets are FORKARG$_FR3, FORKARG$_FR4, and FORKARG$_
FKB.
2The parameter copy can be disabled on the FORK_ROUTINE macro if the FETCH=NO parameter is
specified.

3.5 Device Interrupt Timeouts
Device interrupt timeouts are handled differently for Step 2 drivers. For
Step 1 drivers the UCB$L_FPC cell in the device unit control block (UCB)
contained the procedure value of the routine that served as both the resume from
interrupt routine and the interrupt timeout routine. These two routines are now
separate. The new UCB cell UCB$PS_TOUTROUT is used for the procedure
value of the interrupt timeout routine.

These changes are transparent to code that uses the WFIKPCH or WFIRLCH
macros, or calls the IOC$PRIMITIVE_WFIKPCH or IOC$PRIMITIVE_WFIRLCH
routines. However, code that manually sets the UCB$V_TIM bit in UCB$L_
STS now needs to place the timeout routine procedure value into UCB$PS_

3–8 Handling More Complex Situations

Handling More Complex Situations
3.5 Device Interrupt Timeouts

TOUTROUT, instead of in UCB$L_FPC. For more information, see the specific
routine descriptions in OpenVMS AXP Device Support: Reference.

3.6 Obsolete Data Structure Cells
Some DDT and DPT data structure fields that supported Step 1 device drivers
have been removed. Table 3–4 lists the obsolete Step 1 fields and the Step 2 fields
that have similar functions.

Note that the Step 2 cells use different names because they point to routines
whose interfaces are different or they point to data structures whose layout is
significantly altered. For this reason, do not replace each reference to an obsolete
Step 1 field with its corresponding Step 2 field without considering the routine
interface and data structure changes.

Table 3–4 Obsolete Data Structure Cells

Obsolete Step 1 Field Similar Step 2 Field

DDT$L_ALTSTART DDT$PS_ALTSTART_2 or DDT$PS_
ALTSTART_JSB

DDT$PS_ALTSTART DDT$PS_ALTSTART_2 or DDT$PS_
ALTSTART_JSB

DDT$L_CANCEL DDT$PS_CANCEL_2

DDT$PS_CANCEL DDT$PS_CANCEL_2

DDT$L_CANCEL_SELECTIVE DDT$PS_CANCEL_SELECTIVE_2

DDT$PS_CANCEL_SELECTIVE DDT$PS_CANCEL_SELECTIVE_2

DDT$L_CHANNEL_ASSIGN DDT$PS_CHANNEL_ASSIGN_2

DDT$PS_CHANNEL_ASSIGN DDT$PS_CHANNEL_ASSIGN_2

DDT$L_CLONEDUCB DDT$PS_CLONEDUCB_2

DDT$PS_CLONEDUCB DDT$PS_CLONEDUCB_2

DDT$L_CTRLINIT DDT$PS_CTRLINIT_2

DDT$PS_CTRLINIT DDT$PS_CTRLINIT_2

DDT$L_FDT DDT$PS_FDT_2

DDT$PS_FDT DDT$PS_FDT_2

DDT$L_MNTVER DDT$PS_MNTVER_2

DDT$PS_MNTVER DDT$PS_MNTVER_2

DDT$L_REGDUMP DDT$PS_REGDUMP_2

DDT$PS_REGDUMP DDT$PS_REGDUMP_2

DDT$L_START DDT$PS_START_2 or DDT$PS_
START_JSB

DDT$PS_START DDT$PS_START_2 or DDT$PS_
START_JSB

DDT$L_UNITINIT DDT$PS_UNITINIT_2

DDT$PS_UNITINIT DDT$PS_UNITINIT_2

DPT$PS_DELIVER DPT$PS_DELIVER_2

Handling More Complex Situations 3–9

Handling More Complex Situations
3.7 Optimizing Step 2 Drivers

3.7 Optimizing Step 2 Drivers
When you have successfully converted a Step 1 device driver to a Step 2 device
driver, you can optimize the driver’s performance by performing the tasks covered
in Section 3.7.1 through Section 3.7.3.

3.7.1 Using JSB-Replacement Macros
You can replace a JSB to a system routine in a Step 1 driver with a macro. The
JSB-replacement macro uses the same input registers and modifies the same
output registers as the corresponding Step 1 JSB-based routine. In some cases,
you can specify that R0, R1, or both R0 and R1 not be saved if the driver does
not need them preserved. (These macros have an argument named save_r0,
save_r1, or, save_r0r1.) Eliminating unneeded 64-bit saves of these registers is
a performance gain.

As mentioned in Chapter 2, you should use the JSB-replacement macros in
Table 2–4 instead of an explicit JSB to the listed JSB-interface system routines.
A JSB-replacement macro is provided if the JSB-interface routine is no longer
available or if the JSB-interface routine is less efficient than the new standard
call version of the routine. The JSB-replacement macros use the register inputs
and outputs that your existing Step 1 code expects. However, these macros
directly invoke the new Step 2 standard call interface routines.

3.7.2 Avoid Fetching Unused Parameters
You can adapt a driver’s use of the driver entry point macros, so that it more
closely resembles the behavior of driver routines.

Each driver entry point macro, by default, initializes the general-purpose
registers a Step 1 driver routine expects as input. At the very least, this practice
requires a series of register-to-register loads, plus, by virtue of the default
behavior of the MACRO-32 compiler (which automatically preserves any register
an entry point modifies), a set of 64-bit register save and restore operations. If
the execution code path initiated at a driver entry point does not use one or more
of the registers defined as Step 1 input registers, you might consider specifying
fetch=NO and explicitly loading the registers it does use.

3.7.3 Minimizing Register Preserve Lists
Each driver-entry-point macro, by default, preserves a set of registers across a
call. The MACRO-32 compiler, by default, preserves those registers the routine
explicitly modifies (but not those implicitly modified by a system routine or
driver-specific routine it calls). Here, too, if the execution path initiated at a
driver entry point does not use one or more of the registers defined as Step 1
scratch registers, you might consider removing them from the preserve mask.
Before doing so, carefully examine the chain of execution that proceeds from the
entry point to ensure that some inconspicuous code path does not alter a register
you would like to remove from the mask.

For instance, the $DRIVER_FDT_ENTRY macro specifies, by default, that
registers R2 through R15 be preserved. For certain FDT entry points, you can
specify a much smaller set of registers — preserve=<R2,R9,R10,R11> is usually
sufficient. (These registers are allowed to be scratched by Step 1 FDT routines.)

You can follow this recommendation only if the FDT processing initiated by
the upper-level FDT action routine avoids the situation in which a subroutine
call initiated by a JSB instruction is concluded by a RET instruction instead
of an RSB. A "RET under JSB" can occur in FDT processing if the upper-level

3–10 Handling More Complex Situations

Handling More Complex Situations
3.7 Optimizing Step 2 Drivers

FDT routine issues a JSB to an FDT support routine that invokes an FDT
completion macro (see Table 2–2) without specifying do_ret=NO. The additional
RET instruction generated by a default invocation of the macro would return
control back to FDT dispatching code in the $QIO system service, and risks the
destruction of register context required by that code.

In some cases you may be able to remove all registers from the preserve list.
Note that you can select an empty register preserve list for the driver entry
point macros only by specifying PRESERVE=NULL. In contrast, if you specify
PRESERVE=<>, you will get the default value for the register preserve list and
not an empty preserve list.

Handling More Complex Situations 3–11

Index

A
ACP$ACCESSNET routine, 2–4, 2–11
ACP$ACCESS routine, 2–4, 2–11
ACP$DEACCESS routine, 2–4, 2–11
ACP$MODIFY routine, 2–4, 2–11
ACP$MOUNT routine, 2–4, 2–11
ACP$READBLK routine, 2–4, 2–11
ACP$WRITEBLK routine, 2–4, 2–11
ACP_STD$ACCESSNET routine, 2–4
ACP_STD$ACCESS routine, 2–4
ACP_STD$DEACCESS routine, 2–4
ACP_STD$MODIFY routine, 2–4
ACP_STD$MOUNT routine, 2–4
ACP_STD$READBLK routine, 2–4
ACP_STD$WRITEBLK routine, 2–4

B
BLISS drivers

converting to Step 2, 1–3

C
Call-based system routine

interface, 1–2
naming, 1–2

CALL_ABORTIO macro, 2–7, 2–12
CALL_ACCESS macro, 2–11
CALL_ACCESSNET macro, 2–11
CALL_ACP_MODIFY macro, 2–11
CALL_ALLOCBUF macro, 2–12
CALL_ALLOCEMB macro, 2–11
CALL_ALLOCIRP macro, 2–12
CALL_ALTQUEPKT macro, 2–7, 2–12
CALL_ALTREQCOM macro, 2–13
CALL_BROADCAST macro, 2–13
CALL_CANCELIO macro, 2–13
CALL_CARRIAGE macro, 2–12
CALL_CHECK_ACCESS macro, 2–14
CALL_CHKCREACCES macro, 2–12
CALL_CHKDELACCES macro, 2–12
CALL_CHKEXEACCES macro, 2–12
CALL_CHKLOGACCES macro, 2–12
CALL_CHKPHYACCES macro, 2–12

CALL_CHKRDACCES macro, 2–12
CALL_CHKWRTACCES macro, 2–12
CALL_CLONE_UCB macro, 2–13
CALL_COPY_UCB macro, 2–13
CALL_CREDIT_UCB macro, 2–13
CALL_CVTLOGPHY macro, 2–13
CALL_CVT_DEVNAM macro, 2–13
CALL_DEACCESS macro, 2–11
CALL_DELATTNAST macro, 2–11
CALL_DELATTNASTP macro, 2–11
CALL_DELCTRLAST macro, 2–11
CALL_DELCTRLASTP macro, 2–11
CALL_DELETE_UCB macro, 2–13
CALL_DEVICEATTN macro, 2–12
CALL_DEVICERR macro, 2–12
CALL_DEVICTMO macro, 2–12
CALL_DIAGBUFILL macro, 2–13
CALL_DRVDEALMEM macro, 2–11
CALL_EXE_MODIFY macro, 2–12
CALL_FILSPT macro, 2–13
CALL_FINISHIOC macro, 2–7, 2–12
CALL_FINISHIO macro, 2–7, 2–12
CALL_FINISHIO_NOIOST macro, 2–7
CALL_FLUSHATTNS macro, 2–11
CALL_FLUSHCTRLS macro, 2–11
CALL_GETBYTE macro, 2–13
CALL_INITBUFWIND macro, 2–13
CALL_INITIATE macro, 2–13
CALL_INSERT_IRP macro, 2–12
CALL_INSIOQC macro, 2–12
CALL_INSIOQ macro, 2–12
CALL_IOLOCK macro, 2–14
CALL_IOLOCKR macro, 2–14
CALL_IOLOCKW macro, 2–14
CALL_IORSNWAIT macro, 2–7, 2–12
CALL_LCLDSKVALID macro, 2–12
CALL_LINK_UCB macro, 2–13
CALL_MAPVBLK macro, 2–13
CALL_MNTVER macro, 2–13
CALL_MNTVERSIO macro, 2–12
CALL_MODIFYLOCK macro, 2–8, 2–12
CALL_MODIFYLOCK_ERR macro, 2–8, 2–12
CALL_MOUNT macro, 2–11
CALL_MOUNT_VER macro, 2–12
CALL_MOVFRUSER2 macro, 2–13

Index–1

CALL_MOVFRUSER macro, 2–13
CALL_MOVTOUSER2 macro, 2–13
CALL_MOVTOUSER macro, 2–13
CALL_ONEPARM macro, 2–12
CALL_PARSDEVNAM macro, 2–14
CALL_POST macro, 2–11
CALL_POST_IRP macro, 2–14
CALL_POST_NOCNT macro, 2–11
CALL_PTETOPFN macro, 2–14
CALL_QIOACPPKT macro, 2–7, 2–12
CALL_QIODRVPKT macro, 2–7, 2–12
CALL_QNXTSEG1 macro, 2–14
CALL_QXQPPKT macro, 2–12
CALL_READBLK macro, 2–11
CALL_READCHK macro, 2–8, 2–12
CALL_READCHKR macro, 2–8, 2–13
CALL_READLOCK macro, 2–8, 2–13
CALL_READLOCK_ERR macro, 2–8, 2–13
CALL_RELEASEMB macro, 2–12
CALL_SEARCHDEV macro, 2–14
CALL_SEARCHINT macro, 2–14
CALL_SENSEMODE macro, 2–13
CALL_SETATTNAST macro, 2–8
CALL_SETCHAR macro, 2–13
CALL_SETCTRLAST macro, 2–8, 2–11
CALL_SETMODE macro, 2–13
CALL_SEVER_UCB macro, 2–14
CALL_SIMREQCOM macro, 2–14
CALL_SNDEVMSG macro, 2–13
CALL_SSETATTNAST macro, 2–11
CALL_THREADCRB macro, 2–14
CALL_UNLOCK macro, 2–14
CALL_WRITEBLK macro, 2–11
CALL_WRITECHK macro, 2–8, 2–13
CALL_WRITECHKR macro, 2–8, 2–13
CALL_WRITELOCK macro, 2–8, 2–13
CALL_WRITELOCK_ERR macro, 2–8, 2–13
CALL_WRITE macro, 2–13
CALL_WRTMAILBOX macro, 2–13
CALL_ZEROPARM macro, 2–13
C drivers

writing Step 2, 1–3
COM$DELATTNASTP routine, 2–11
COM$DELATTNAST routine, 2–11
COM$DELCTRLASTP routine, 2–11
COM$DELCTRLAST routine, 2–11
COM$DRVDEALMEM routine, 2–11
COM$FLUSHATTNS routine, 2–11
COM$FLUSHCTRLS routine, 2–11
COM$POST routine, 2–11
COM$POST_NOCNT routine, 2–11
COM$SETATTNAST routine, 2–8, 2–11
COM$SETCTRLAST routine, 2–8, 2–11
Compiling Step 2 drivers, 2–14
COM_STD$SETATTNAST routine, 2–8
COM_STD$SETCTRLAST routine, 2–8

D
DDTAB macro, 2–1
Device drivers

guidelines for converting Step 1 drivers, 2–1 to
2–14

Step 1, 1–1
Step 2, 1–1

Documentation comments, sending to Digital, iii
DPTAB macro, 2–1
$DRIVER_ALTSTART_ENTRY macro, 2–2
$DRIVER_CANCEL_ENTRY macro, 2–2
$DRIVER_CANCEL_SELECTIVE_ENTRY macro,

2–2
$DRIVER_CHANNEL_ASSIGN_ENTRY macro,

2–2
$DRIVER_CLONEDUCB_ENTRY macro, 2–2
$DRIVER_CTRLINIT_ENTRY macro, 2–2
$DRIVER_DELIVER_ENTRY macro, 2–2
$DRIVER_ERRRTN_ENTRY macro, 2–2, 3–3
$DRIVER_FDT_ENTRY macro, 2–2, 2–6, 3–10
$DRIVER_MNTVER_ENTRY macro, 2–2
$DRIVER_REGDUMP_ENTRY macro, 2–2
$DRIVER_START_ENTRY macro, 2–2
$DRIVER_UNITINIT_ENTRY macro, 2–2

E
Entry points

defining, 2–2
returning from, 2–2

ERL$ALLOCEMB routine, 2–11
ERL$DEVICEATTN routine, 2–12
ERL$DEVICERR routine, 2–12
ERL$DEVICTMO routine, 2–12
ERL$RELEASEMB routine, 2–12
Error routine callback, 3–3
EXE$ABORTIO routine, 2–7, 2–12
EXE$ALLOCBUF routine, 2–12
EXE$ALLOCIRP routine, 2–12
EXE$ALTQUEPKT routine, 2–7, 2–12
EXE$CARRIAGE routine, 2–12
EXE$CHKCREACCES routine, 2–12
EXE$CHKDELACCES routine, 2–12
EXE$CHKEXEACCES routine, 2–12
EXE$CHKLOGACCES routine, 2–12
EXE$CHKPHYACCES routine, 2–12
EXE$CHKRDACCES routine, 2–12
EXE$CHKWRTACCES routine, 2–12
EXE$FINISHIOC routine, 2–7, 2–12
EXE$FINISHIO routine, 2–7, 2–12
EXE$ILLIOFUNC routine, 2–4
EXE$INSERT_IRP routine, 2–12
EXE$INSIOQC routine, 2–12
EXE$INSIOQ routine, 2–12

Index–2

EXE$IORSNWAIT routine, 2–7, 2–12
EXE$KP_STARTIO routine, 2–1
EXE$LCLDSKVALID routine, 2–4, 2–12
EXE$MNTVERSIO routine, 2–12
EXE$MODIFYLOCK routine, 2–8
EXE$MODIFYLOCK_ERR, 2–8
EXE$MODIFYLOCK_ERR routine, 2–12
EXE$MODIFY routine, 2–4, 2–12
EXE$MOUNT_VER routine, 2–12
EXE$ONEPARM routine, 2–4, 2–12
EXE$PRIMITIVE_FORK routine, 2–12
EXE$PRIMITIVE_FORK_WAIT routine, 2–12
EXE$QIOACPPKT routine, 2–7, 2–12
EXE$QIODRVPKT routine, 2–7, 2–12
EXE$QXQPPKT routine, 2–12
EXE$READCHK routine, 2–8, 2–12
EXE$READCHKR routine, 2–8, 2–13
EXE$READLOCK routine, 2–8, 2–13
EXE$READLOCK_ERR routine, 2–8, 2–13
EXE$READ routine, 2–4
EXE$SENSEMODE routine, 2–4, 2–13
EXE$SETCHAR routine, 2–4, 2–13
EXE$SETMODE routine, 2–4, 2–13
EXE$SNDEVMSG routine, 2–13
EXE$WRITECHK routine, 2–8, 2–13
EXE$WRITECHKR routine, 2–8, 2–13
EXE$WRITELOCK routine, 2–8, 2–13
EXE$WRITELOCK_ERR routine, 2–8, 2–13
EXE$WRITE routine, 2–4, 2–13
EXE$WRTMAILBOX routine, 2–13
EXE$ZEROPARM routine, 2–4, 2–13
EXE_STD$ABORTIO routine, 2–7
EXE_STD$ALTQUEPKT routine, 2–7
EXE_STD$FINISHIO routine, 2–7
EXE_STD$IORSNWAIT routine, 2–7
EXE_STD$LCLDSKVALID routine, 2–4
EXE_STD$MODIFYLOCK routine, 2–8
EXE_STD$MODIFY routine, 2–4
EXE_STD$ONEPARM routine, 2–4
EXE_STD$QIOACPPKT routine, 2–7
EXE_STD$QIODRVPKT routine, 2–7
EXE_STD$READCHK routine, 2–8
EXE_STD$READLOCK routine, 2–8
EXE_STD$READ routine, 2–4
EXE_STD$SENSEMODE routine, 2–4
EXE_STD$SETCHAR routine, 2–4
EXE_STD$SETMODE routine, 2–4
EXE_STD$STARTIO routine, 2–1
EXE_STD$WRITECHK routine, 2–8
EXE_STD$WRITELOCK routine, 2–8
EXE_STD$WRITE routine, 2–4
EXE_STD$ZEROPARM routine, 2–4

F
FDT (function decision table)

defining, 2–3
$FDTARGDEF macro, 2–6
FDT routines

composite, 3–1
exit, 2–6
support, 2–7, 3–3
upper-level action, 2–3, 2–5

FDT_ACT macro, 2–3
FDT_BUF macro, 2–3
FDT_CONTEXT structure, 2–7
FDT_INI macro, 2–3
Feedback on documentation, sending to Digital, iii
FUNCTAB macro, 2–3

I
I/O function

legal, 2–3
IOC$ALTREQCOM routine, 2–13
IOC$BROADCAST routine, 2–13
IOC$CANCELIO routine, 2–1, 2–13
IOC$CLONE_UCB routine, 2–13
IOC$COPY_UCB routine, 2–13
IOC$CREDIT_UCB routine, 2–13
IOC$CVTLOGPHY routine, 2–13
IOC$CVT_DEVNAM routine, 2–13
IOC$DELETE_UCB routine, 2–13
IOC$DIAGBUFILL routine, 2–13
IOC$FILSPT routine, 2–13
IOC$GETBYTE routine, 2–13
IOC$INITBUFWIND routine, 2–13
IOC$INITIATE routine, 2–13
IOC$LINK_UCB routine, 2–13
IOC$MAPVBLK routine, 2–13
IOC$MNTVER routine, 2–1, 2–13
IOC$MOVFRUSER2 routine, 2–13
IOC$MOVFRUSER routine, 2–13
IOC$MOVTOUSER2 routine, 2–13
IOC$MOVTOUSER routine, 2–13
IOC$PARSDEVNAM routine, 2–14
IOC$POST_IRP, 2–14
IOC$PRIMITIVE_REQCHANH routine, 2–14
IOC$PRIMITIVE_REQCHANL routine, 2–14
IOC$PRIMITIVE_WFIKPCH routine, 2–14
IOC$PRIMITIVE_WFIRLCH routine, 2–14
IOC$PTETOPFN routine, 2–14
IOC$QNXTSEG1 routine, 2–14
IOC$RELCHAN routine, 2–14
IOC$REQCOM routine, 2–14
IOC$SEARCHDEV routine, 2–14
IOC$SEARCHINT routine, 2–14
IOC$SEVER_UCB routine, 2–14

Index–3

IOC$SIMREQCOM routine, 2–14
IOC$THREADCRB routine, 2–14
IOC_STD$CANCELIO routine, 2–1
IOC_STD$MNTVER routine, 2–1
$IOUNLOCK macro, 2–14

J
JSB-based system routine

naming, 1–2

L
Legal I/O function, 2–3
Linking Step 2 drivers, 2–14
Loading Step 2 drivers, 2–14

M
MMG$IOLOCK routine, 2–14
MMG$UNLOCK routine, 2–14

MT$CHECK_ACCESS routine, 2–4, 2–14
MT_STD$CHECK_ACCESS routine, 2–4

P
Performance of Step 2 drivers, 3–10 to 3–11

S
SCH$IOLOCKR routine, 2–14
SCH$IOLOCKW routine, 2–14
SCH$IOUNLOCK routine, 2–14
SS$_FDT_COMPL status, 2–7
Step 1 device driver, 1–1
Step 2 device driver, 1–1

optimizing, 3–10 to 3–11

U
Upper-level FDT action routines, 2–5

defining, 2–3

Index–4

