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Preface

This manual describes how to convert an OpenVMS VAX device driver to an
OpenVMS AXP Step 2 device driver. It explains how you must change OpenVMS
VAX driver code to prepare the driver to be compiled, linked, loaded, and run as
a Step 2 driver. This manual highlights specific changes that you must make to
driver routines and tables, and indicates how OpenVMS VAX data structures,
macros, and executive routines upon which drivers rely have been modified for
the OpenVMS AXP operating system.

Intended Audience
Creating an OpenVMS AXP Step 2 Device Driver from an OpenVMS VAX Device
Driver is intended for software engineers who must prepare an OpenVMS VAX
device driver to run on the OpenVMS AXP operating system, Version 6.1.

This manual assumes that its reader is familiar with the components of
OpenVMS VAX device drivers. It also relies on a familiarity with the software
interfaces within the OpenVMS operating system that support device drivers.

Document Structure
This manual contains the following sections:

• Chapter 1 presents an overview of the new OpenVMS AXP device drivers
interfaces.

• Chapter 2 describes how to access device interface registers using hardware
I/O mailboxes by means of the controller register access mailbox (CRAM)
structure defined by the OpenVMS AXP operating system.

• Chapter 3 discusses the suspension mechanisms OpenVMS AXP device
drivers can use, including simple fork semantics and the OpenVMS kernel
process services.

• Chapter 4 describes how you request and allocate a counted resource, such as
a set of map registers.

• Chapter 5 focuses on the special synchronization needs of OpenVMS AXP
device drivers.

• Chapter 6 contains basic guidelines for converting an OpenVMS VAX device
driver to an OpenVMS AXP Step 2 device driver.

• Chapter 7 provides tips for converting complex or unusual drivers.
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Associated Documents
Creating an OpenVMS AXP Step 2 Device Driver from an OpenVMS VAX Device
Driver focuses only on those changes that must be made to an OpenVMS VAX
device driver to produce an equivalent Step 2 OpenVMS AXP device driver. For
more detailed information about the macros and routines mentioned in this
manual, see OpenVMS AXP Device Support: Reference. For basic information
about the components of OpenVMS device drivers and OpenVMS requirements
for them, refer to the following manuals:

• OpenVMS AXP Device Support: Developer’s Guide

• OpenVMS AXP Device Support: Reference

Because this manual only addresses the porting to OpenVMS AXP of
VAX MACRO coding practices that are typically found in device drivers,
readers who need additional information on porting MACRO code, or a detailed
description of the MACRO-32 compiler for OpenVMS AXP, should see Migrating
to an OpenVMS AXP System: Porting VAX MACRO Code.

Several manuals are available that describe the internals of the OpenVMS AXP
operating system and the processes for investigating the types of system failures
caused by device drivers. These manuals include:

• OpenVMS AXP System Dump Analyzer Utility Manual

• OpenVMS Delta/XDelta Debugger Manual

• OpenVMS for Alpha Platforms: Internals and Data Structures

Conventions
In this manual, every use of OpenVMS VAX means the OpenVMS VAX operating
system, every use of OpenVMS AXP means the OpenVMS AXP operating system,
and every use of OpenVMS means both the OpenVMS VAX operating system and
the OpenVMS AXP operating system.

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1, then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

x



.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

( ) In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

[ ] In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an OpenVMS file specification, or in the syntax of a substring
specification in an assignment statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in online versions
of the manual.

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number), command lines
(for example, /PRODUCER=name), and command parameters
in text.

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, the name of a file protection code, or the
abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.
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1
Introduction

OpenVMS AXP Version 6.1 introduces formal support for user-written device
drivers and a new device driver interface known as the Step 2 driver interface.
If you are supplying a driver to run under OpenVMS AXP Version 6.1, it must
comply with the OpenVMS AXP Step 2 driver interfaces described in this manual.

Although the Step 2 driver interfaces allow you to write OpenVMS AXP device
drivers in high-level languages, an OpenVMS AXP device driver can also be
written in VAX MACRO. The guidelines in this manual describe how to convert
an OpenVMS VAX driver written in VAX MACRO to an OpenVMS AXP driver
written in VAX MACRO.

1.1 Overview of OpenVMS AXP Driver Changes
OpenVMS AXP device drivers differ from OpenVMS VAX device drivers in the
following ways:

• You must identify OpenVMS AXP device drivers as Step 2 drivers. See
Chapter 6.

• You must explicitly identify driver code and data by using new macros. See
Section 6.1.

• An OpenVMS AXP device driver must use multiprocessing synchronization
mechanisms, regardless of whether it will operate in an OpenVMS AXP
multiprocessing environment. See Section 5.1.

• An OpenVMS AXP device driver should access device control and status
registers (CSRs) using the operating system routines described in Chapter 2.

• You must examine existing driver suspension mechanisms (such as fork or
fork and wait) to determine whether you need to replace them with the new
kernel process services or with the new simple fork mechanism. This decision
is made based on whether a driver routine relies on context from a previously
called routine on the stack. See Chapter 3.

• The OpenVMS AXP operating system, unlike the OpenVMS VAX operating
system, does not manage map registers within fields of the Adapter Control
Block (ADP). Rather, it manages map register allocation in the more generic
manner described in Chapter 4.

• To produce the object file for an OpenVMS AXP device driver, you must
compile the source module or modules with the MACRO-32 compiler for
OpenVMS AXP. The compiler relies on the placement of entry point directives
for JSB entry points. It also identifies, where possible, coding practices that
are illegal on OpenVMS AXP systems (such as coroutine calls and return to
caller’s caller). See Chapter 6.

• You must declare the entry points of the controller and unit initialization
routines using arguments to the DPTAB macro. See Section 6.3.2.
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• You must declare the entry point of any interrupt service routine using the
new DPT_STORE_ISR macro. See Section 6.4.

• In some cases, changes to driver macros and system routines may require
changes to driver code. See OpenVMS AXP Device Support: Reference for
more information.

• Data structures have been greatly overhauled. Fields have been deleted,
expanded, and added. Many field aliases have been removed. Use OpenVMS
AXP Device Support: Reference while compiling your driver to correct obsolete
symbolic offsets. If your driver uses fields that have been removed from the
unit control block (UCB) for OpenVMS AXP, Digital recommends using the
$DEFINI, $DEF, $DEFEND, and associated macros to create the needed
fields in a UCB extension.

• Step 2 drivers are loadable executive images and loaded by the executive
loader, which affects how drivers are linked and loaded.

• The driver-loading procedure requires driver controller and unit initialization
routines to return a status value in R0. See Section 6.8.

For more information about linking and loading OpenVMS AXP device
drivers, see the OpenVMS AXP Device Support: Developer’s Guide.

• FDT routines cannot access the $QIO function-dependent parameters by
using AP offsets. Instead, you must use the new IRP$L_QIO_Pn cells.

• Drivers must not use floating-point instructions. See Section 6.19 for a full
explanation.

• OpenVMS AXP drivers require standard call interfaces for the following
driver-supplied routines:

Cancel I/O routine

Cancel selective routine

Channel assign routine

Cloned UCB routine

Controller initialization routine

Function decision table (FDT) routines

Interrupt service routine

Mount verification routine

Register dumping routine

Unit delivery routine

Unit initialization routine

• Standard call interfaces are optional for the following driver-supplied
routines:

Alternate start I/O routine

Start I/O routine

Driver fork routines
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• Additional OpenVMS AXP driver changes include the following:

Function decision table (FDT) processing does not rely on the RET under
JSB mechanism.

The layout of the FDT is significantly different.

Standard call interfaces are available for most OpenVMS support
routines.

A small number of OpenVMS support routines with JSB interfaces are no
longer available.

For detailed information about these changes, see Chapter 6.

Special guidelines apply to terminal port drivers (see Section 6.17) and drivers for
devices with programmable interrupt vectors (see Section 6.18).

1.2 Overview of OpenVMS VAX and OpenVMS AXP Driver
Similarities

OpenVMS AXP drivers are similar to OpenVMS VAX drivers in the following
ways:

• The overall structure of a device driver is unchanged.

• JSB interfaces continue to be available for most OpenVMS support routines
used by drivers.

• Although call interfaces are required for many routines, you can continue
to use JSB interfaces for the start I/O to REQCOM code path, OpenVMS
support routines, and internal driver routines.

1.3 OpenVMS AXP Driver Routine Naming Conventions
Some OpenVMS AXP driver routine names are different from the OpenVMS VAX
routine names. If a routine interface changed because of the AXP architecture,
the routine name changed. OpenVMS AXP also includes new call-based system
routines. The following naming conventions apply to the new OpenVMS AXP
call-based system routines:

• The call-based system routine has a different name than its JSB-based
counterpart. If x$y is the name of the JSB-based system routine, its call-
based counterpart is named x_STD$y. For example, EXE_STD$FINISHIO is
the call-based routine that replaces the JSB-based EXE$FINISHIO.

• If a JSB-replacement macro exists for x$y, it is named CALL_Y.

For example, you can replace a JSB to EXE$FINISHIO with the CALL_
FINISHIO macro. CALL_FINISHIO issues a standard call to EXE_
STD$FINISHIO after loading the standard call argument registers from
the general registers used in the traditional JSB to EXE$FINISHIO.

• When using the call-based system routine directly, note that its interface may
differ from the traditional JSB-based routine.

Input parameters are usually listed first, specified in the order that
corresponds to the register order of the JSB interface input parameters.

Output parameters are usually listed last, specified in the order that
corresponds to the register order of the JSB interface output parameters.
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If a register parameter is both an input and an output parameter to the
JSB interface, then it contributes both an input parameter and an output
parameter to the new call-based interface.

These conventions serve only as guidelines. In some cases, parameters are
dropped or the register order rule is waived if an alternate parameter ordering is
more natural. All such interface changes are described in OpenVMS AXP Device
Support: Reference.

1.4 Converting OpenVMS VAX Drivers Written in BLISS
This manual focuses on converting existing OpenVMS VAX device drivers,
written in VAX MACRO, to OpenVMS AXP device drivers. However, the call
interfaces described are equally available to OpenVMS VAX drivers written in
BLISS. To convert an OpenVMS VAX BLISS driver, remove the JSB linkages
from routine declarations and verify the specified parameter order for any given
routine against that listed in the system routines section of OpenVMS AXP Device
Support: Reference.

Existing BLISS drivers are likely to have an associated VAX MACRO module that
contains the DPTAB, DDTAB, and FUNCTAB declarations, and some routines
that were written in VAX MACRO. You must convert these VAX MACRO modules
as described in this manual. Alternatively, you can now use new BLISS macros
that allow you to code the DPT, DDT, and FDT declarations in BLISS. For more
information about these macros, see OpenVMS AXP Device Support: Reference.

1.5 Writing OpenVMS AXP Drivers in C
OpenVMS AXP Version 6.1 provides the support necessary to write a device
driver in the C programming language. For information about writing OpenVMS
AXP device drivers in C or another high-level language, see the OpenVMS AXP
Device Support: Developer’s Guide.

1.6 Using Common Source Code for OpenVMS VAX and OpenVMS
AXP Drivers

The OpenVMS AXP Step 2 driver interface has increased the differences between
OpenVMS AXP and OpenVMS VAX device drivers. A key difference is that while
OpenVMS AXP drivers can be written in the C programming language, there is
no formal support for writing OpenVMS VAX device drivers in C. For example,
OpenVMS VAX does not provide .h files for internal OpenVMS data structures.

Device driver source files written in MACRO-32 or BLISS can be kept common
between OpenVMS AXP and OpenVMS VAX through the use of conditional
compilation and user-written macros. The advisability of this approach depends
greatly on the nature of the individual driver. It is likely that in future versions
of OpenVMS AXP, the I/O subsystem will continue to evolve in directions that will
have an impact on device drivers. This could increase the differences between
OpenVMS AXP and OpenVMS VAX device drivers and add more complexity
to common driver sources. For this reason, a fully common driver source file
approach might not be advisable for the long term. However, depending on the
individual driver, it may be advisable to divide the driver into a common module
and an architecture-specific one. For example, if you were writing a device driver
that does disk compression, then the compression algorithm could be isolated
into an architecture independent module. You could also avoid operating-system-
specific data structures in such common modules with the intent of having

1–4



Introduction
1.6 Using Common Source Code for OpenVMS VAX and OpenVMS AXP Drivers

some common modules across various types of operating systems; for example,
OpenVMS, Windows NT, and OSF.

For more information about writing OpenVMS AXP device drivers in C, see the
OpenVMS AXP Device Support: Developer’s Guide.
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Accessing Device Interface Registers

A hardware interface register is the place where software interfaces with a
hardware component. Every hardware component on an OpenVMS AXP system,
including CPU and memory, has a set of interface registers.

The portion of a processor’s physical address space through which it accesses
hardware interface registers is known as its I/O space.

In the VAX architecture, a hardware implementation usually defines a physical
address boundary between memory space and I/O space. I/O space physical
addresses are mapped into the processors’ virtual address space and are accessed
using VAX load and store instructions (for example, MOV, BIS, and others).

For AXP systems, there are no rules governing how hardware implementations
allow access to I/O space. Some AXP platforms allow VAX-style I/O space access.
Other platforms provide access to I/O space through hardware I/O mailboxes.
Some platforms implement both styles of I/O register access.

The challenge presented by the AXP architecture is to create software
abstractions that hide the hardware mechanisms for I/O space access from the
programmer. These software abstractions contribute to driver portability. The
AXP architecture also defines no byte or word length load and store instructions.
Because some I/O buses and adapters require byte or word register access
granularity for correct adapter operation, AXP system hardware designers
invented the following mechanisms that provide byte and word access granularity
for I/O adapter register access:

• Sparse space addressing, which means the device address space is
expanded by a factor of two to allow for inclusion of a byte mask in the write
data.

• Swizzle space addressing, which means where upper order bits in the
processor physical address map to an I/O bus address, while lower order
bits are used to implement I/O bus byte enable signals. This causes a large
amount of processor physical address space to represent the I/O bus address
space.

• Hardware I/O mailboxes, which are 64-byte, naturally-aligned, physically-
contiguous data structures (defined by the AXP architecture) built in system
memory and accessed by special I/O subsystem hardware. Drivers can use
hardware I/O mailboxes to deliver commands and write data to the interface
registers of a device residing on an I/O bus.

A significant part of I/O bus support in the OpenVMS AXP operating system is
to provide standard ways to access I/O device registers. OpenVMS AXP provides
a set of data structures and routines that can be used for register access on any
system, regardless of the underlying I/O hardware. Bus support provides two
ways. One way is the CRAM data structure. The other way is the platform
independent access routines IOC$READ_IO and IOC$WRITE_IO.
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Note

In register access discussions, the term control and status register
(CSR) is sometimes used instead of the generic term interface register.
In this manual, the terms are equivalent.

2.1 Mapping I/O Device Registers
Unlike OpenVMS VAX systems (where the operating system maps registers)
before you access device registers on OpenVMS AXP systems, you must map the
registers into the processor’s virtual address space. OpenVMS AXP provides the
IOC$MAP_IO routine, which allows a caller to request mapping based on device
characteristics without regard to the platform hardware implementation of I/O
space access.

Note

Register mapping is not required on XMI devices on Laser, and
IOC$READ_IO and IOC$WRITE_IO are not supported. If you are
porting an OpenVMS VAX XMI device driver to an OpenVMS AXP
system, you must use CRAMs.

Once your device is mapped, you can access it using a CRAM data structure and
associated routines, or the IOC$READ_IO and IOC$WRITE_IO routines.

2.2 Platform Independent I/O Bus Mapping
The platform independent I/O bus mapping routine is called IOC$MAP_IO. This
routine maps I/O bus physical address space into an address region accessible
by the processor. The caller of this routine can express the mapping request in
terms of the bus address space without regard to address swizzling, dense space,
sparse space, and so on.

IOC$MAP_IO is supported on PCI, EISA, Turbochannel, and Futurebus+. It is
not supported on XMI.

The following new platform independent mapping and access routines exist:

• IOC$MAP_IO

• IOC$READ_IO

• IOC$WRITE_IO

• IOC$UNMAP_IO

The IOC$MAP_IO routine maps I/O bus physical address space into an address
region accessible by the processor. The IOC$UNMAP_IO routine is provided to
unmap a previously mapped space, returning the IOHANDLE and the PTEs to
the system. IOC$READ_IO and IOC$WRITE_IO are platform independent I/O
access routines that provide a platform independent way to read and write I/O
space without the overhead of CRAM allocation and initialization. These routines
require that the I/O space that is to be accessed have been previously mapped by
a call to IOC$MAP_IO. For more information about these routines, see OpenVMS
AXP Device Support: Reference.
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2.2.1 Using the IOC$MAP_IO Routine
Drivers that need to use the IOC$MAP_IO routine must call that routine under
specific spinlock restrictions. The driver cannot be holding any spinlocks that
prohibit IOC$MAP_IO from taking out the MMG spinlock.

Most drivers want to call IOC$MAP_IO immediately after they are loaded.
Traditionally, the correct place for a driver to call IOC$MAP_IO would be its
controller or unit initialization routine. However, because the controller and unit
initialization routines are called at IPL$_POWER, IOC$MAP_IO cannot take out
the MMG spinlock in this environment.

The new driver support feature for calling IOC$MAP_IO has two elements. First,
the driver may request preallocated space for any number of I/O Handles (the
output of IOC$MAP_IO). Second, the driver may name a routine that will be
called in an environment suitable for calls to IOC$MAP_IO.

Drivers can specify the number of I/O Handles they need to store using the
IOHANDLES parameter on the DPTAB macro. The default parameter value is
zero. The maximum permitted value is 65,535.

When the IOHANDLES parameter is zero or one, the driver loader does NOT
allocate any additional space for I/O Handles. For these two values, the driver is
expected to store the I/O Handle it needs directly in the IDB$Q_CSR field.

When the IOHANDLES parameter is greater than one, an MCJ data structure
is allocated. The base address of the MCJ is stored in the low-order longword
of IDB$Q_CSR and the IDB$V_MCJ flag is set in IDB$L_FLAGS. MCJ$Q_
ENTRIES is the base address in the MCJ of an array of quadword I/O Handle
slots. The number of slots in the array is exactly the number specified by the
IOHANDLES DPTAB parameter.

Drivers specify a CSR Mapping routine using the CSR_MAPPING parameter
on the DDTAB macro. The driver loading procedure calls the CSR_MAPPING
routine holding the IOLOCK8 spinlock before it calls the controller or unit
initialization routines. In this context, the driver can make all its needed calls to
IOC$MAP_IO and other bus support routines with similar calling requirements.

Note

The CSR mapping routine is not called on power fail recovery.

2.2.2 Platform Independent I/O Access Routines
The platform independent I/O access routines are ioc$read_io and ioc$write_io.
These provide a platform independent way to read and write I/O space without
the overhead of CRAM allocation and initialization. These routines require that
the I/O space that is to be accessed has been previously mapped by a call to
ioc$map_io.

With the new mapping and access routines, we have the following basic model of
I/O bus access:

• Map the device into the processor address space: Do the mapping yourself
based on knowledge of a specific platform and bus OR use the new routine
IOC$MAP_IO.

• Access the device: Do it yourself based on platform details, use CRAMS, or
using the new platform independent access routines.
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IOC$READ_IO and IOC$WRITE_IO are supported on PCI, EISA, Turbochannel,
and Futurebus+. These routines are not supported on XMI.

2.3 Accessing Registers Directly
Registers that are mapped into the processors’ virtual address space and accessed
with load and store instructions are said to be accessed directly. This is similar to
VAX-style I/O register access. On an AXP system, registers that are implemented
on hardware directly connected to the processor-memory interconnect are usually
accessed in this manner. Sparse space and swizzle space register access are
examples of direct I/O device register access.

2.4 Accessing Registers Using CRAMS
Hardware I/O mailboxes exist only on DEC4000 Series and DEC7000/DEC10000
Series computers. The CRAM data structure and associated routines and
IOC$READIO and IOC$WRITE_IO hide the underlying hardware mechanism
(swizzle space, sparse space, or hardware I/O mailbox) from the programmer.

In addition to the CRAM data structure, OpenVMS AXP provides a set of system
routines and corresponding macros that, on behalf of a device driver, allocate
and initialize CRAMs. Table 2–1 lists these routines and macros. For more
information about each system routine and macro, see OpenVMS AXP Device
Support: Reference. Subsequent sections of this chapter describe driver mailbox
operations in more detail.

Table 2–1 OpenVMS Macros and System Routines That Manage I/O Mailbox Operations

Routine Macro Description

IOC$ALLOCATE_
CRAM

DPTAB idb_crams,
ucb_crams
CRAM_ALLOC

Allocates and initializes a CRAM

IOC$CRAM_CMD CRAM_CMD Generates values for the command, mask, and
remote I/O interconnect address (RBADR) fields of a
CRAM

IOC$CRAM_IO CRAM_IO Issues the I/O space transaction defined by the
CRAM.

IOC$DEALLOCATE_
CRAM

CRAM_DEALLOC Deallocates a CRAM

2.5 Allocating CRAMs
A driver can use the following basic CRAM allocation strategies:

• Allocate a CRAM for every register the driver ever needs to access.

• Allocate a CRAM and reuse it.

• A driver can preallocate CRAMs at driver loading, or in a driver controller or
unit initialization routine, linking them to a list connected to a UCB, IDB, or
some driver-specific structure. This strategy is optimal for drivers that use
CRAMs in performance-sensitive code.
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• A driver can reuse and rebuild CRAMs as needed. Although fewer CRAMs
suffice for the purposes of such a driver, this strategy is best suited for access
to registers that are not in a performance sensitive code path. drivers that
are less performance-sensitive.

Even though a driver can reuse CRAMs, a driver should not reuse a CRAM until
it has checked the return status from IOC$CRAM_IO.

2.5.1 Preallocating CRAMs to a Device Unit or Device Controller
An OpenVMS AXP device driver can preallocate CRAMs and store them in
a linked list associated with some data structure. It accomplishes this by
repeatedly calling IOC$ALLOCATE_CRAM and inserting the address of
the CRAM returned by this routine in the CRAM list. Or, CRAMS can be
automatically preloaded by driver loading as described here.

Drivers often preallocate CRAMs to perform I/O operations on device unit
registers or device controller registers. To facilitate the allocation of CRAMs for
these purposes, the OpenVMS AXP driver loading procedure examines two fields
in the DPT, DPT$W_IDB_CRAMS and DPT$W_UCB_CRAMS, for an indication
of how many CRAMs the driver plans on using. Although the default value of
both fields is zero, you can insert the number of CRAMs a driver requires to
address device unit registers and device controller registers by specifying the
idb_crams and ucb_crams arguments in the driver’s DPTAB macro invocation.
IDB CRAMs are available for use by a controller or unit initialization routine;
UCB CRAMs are available for use by a unit initialization routine.

The driver loading procedure calls IOC$ALLOCATE_CRAM for each requested
CRAM and inserts it in either of two singly linked lists: UCB$PS_CRAM as the
header of a list of device unit CRAMs, and IDB$PS_CRAM as the header of a list
of device controller CRAMs.

2.5.2 Calling IOC$ALLOCATE_CRAM to Obtain a CRAM
To allocate a single CRAM, a driver makes a standard call to IOC$ALLOCATE_
CRAM, specifying a location to receive the address of the allocated CRAM and,
optionally, the addresses of the IDB, UCB, or ADP.

IOC$ALLOCATE_CRAM allocates the CRAM and initializes it as follows:

CRAM$W_SIZE Size of CRAM structure in bytes

CRAM$B_TYPE Structure type (DYN$C_MISC)

CRAM$B_SUBTYPE Structure type (DYN$C_CRAM)

CRAM$Q_RBADR Address of remote I/O interconnect location (from IDB$Q_
CSR)

CRAM$B_HOSE Remote I/O interconnect number (from ADP$B_HOSE_
NUM)

CRAM$L_IDB IDB address

CRAM$L_UCB UCB address

Normally, an OpenVMS AXP device driver can use the DPTAB macro to allocate
CRAMs and associate them with a UCB or IDB; drivers that need to associate
CRAMs with other structures may elect to allocate them from within a suitable
fork thread.
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IOC$ALLOCATE_CRAM cannot be called from above IPL$_SYNCH. Therefore,
controller and unit initialization routines (which are called by the driver-loading
procedure at IPL$_POWER) cannot allocate CRAMs. For CRAMS needed in or
managed by controller or unit initialization routines, Digital recommends the
DPTAB parameters as the means for CRAM allocation.

2.6 Constructing a Mailbox Command Within a CRAM
Once it has allocated CRAMs for its operations on device registers, an OpenVMS
AXP device driver initializes each CRAM, so that it can use the CRAM in a
transaction to a device interface register.

A driver initializes a CRAM by issuing a standard call to IOC$CRAM_CMD,
specifying the cmd_index, byte_offset, and adp_ptr, and cram_ptr iohandle
arguments. IOC$CRAM_CMD uses the input parameters supplied in the call to
generate values for the command, mask, and I/O bus address fields of the CRAM
that are specific to the bus that is the target of the mailbox operation.

Use the cmd_index argument to indicate the size and type of the register
operation the mailbox describes. Although the $CRAMDEF macro (in
SYS$LIBRARY:LIB.MLB) defines the command indices listed in Table 2–2,
the actual commands supported under a given processor–I/O subsystem
configuration vary from configuration to configuration. (Your specification of
the adp argument allows IOC$CRAM_CMD to find the location of the command
table that corresponds to a given I/O interconnect.) If you specify a command
index that does not correspond to a supported command on the current system,
IOC$CRAM_CMD returns SS$_BADPARAM status.

Table 2–2 Mailbox Command Indices Defined by $CRAMDEF

Command Index Description

CRAMCMD$K_RDQUAD32 Quadword read in 32-bit space

CRAMCMD$K_RDLONG32 Longword read in 32-bit space

CRAMCMD$K_RDWORD32 Word read in 32-bit space

CRAMCMD$K_RDBYTE32 Byte read in 32-bit space

CRAMCMD$K_WTQUAD32 Quadword write in 32-bit space

CRAMCMD$K_WTLONG32 Longword write in 32-bit space

CRAMCMD$K_WTWORD32 Word write in 32-bit space

CRAMCMD$K_WTBYTE32 Byte write in 32-bit space

CRAMCMD$K_RDQUAD64 Quadword read in 64 bit space

CRAMCMD$K_RDLONG64 Longword read in 64 bit space

CRAMCMD$K_RDWORD64 Word read in 64 bit space

CRAMCMD$K_RDBYTE64 Byte read in 64 bit space

CRAMCMD$K_WTQUAD64 Quadword write in 64 bit space

CRAMCMD$K_WTLONG64 Longword write in 64 bit space

CRAMCMD$K_WTWORD64 Word write in 64 bit space

CRAMCMD$K_WTBYTE64 Byte write in 64 bit space

Use the byte_offset argument to specify the location of the device register that
is the object of the mailbox command. Include the cram argument to identify
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the CRAM that contains the hardware I/O mailbox fields IOC$CRAM_CMD is to
initialize.

Before using the hardware I/O mailbox in a write transaction to a device interface
register, the driver must insert the data to be written to the register into
CRAM$Q_WDATA.

2.6.1 Register Data Byte Lane Alignment
The CRAM routines supplied by OpenVMS AXP enforce a longword oriented
view of I/O adapter register space, which means that adapter register space is
viewed as if register bytes occupy a 32 bit data path, as follows:

Adapter Register space

31 24 23 16 15 8 7 0 offset

byte 3 byte 2 byte 1 byte 0 0
byte 7 byte 6 byte 5 byte 4 4

etc

Write example: To write a byte to register byte 2, specify IOC$CRAM_CMD
parameters as follows:

command_index = cramcmd$k_wtbyte32

byte_offset = 2
adp_address = adp address
cram_address = cram address

The data to be written must be positioned in bits 23:16 of the write data field
(CRAM$Q_WDATA).

Read example: To read a byte from register byte 2, specify IOC$CRAM_CMD
parameters as above except use cramcmd$k_rdbyte32 as the command_index.

The data from register byte 2 will be returned in bits 23:16 of the CRAM read
data field (CRAM$Q_RDATA).

The programmer must perform the proper byte lane alignment of data for register
writes. On register reads, the data is returned in its natural byte lane without
any shifting. Note that this way of looking at adapter register space maps
directly to the semantics of most I/O buses, but is distinctly diferent from VAX
behavior.

2.7 Initiating a Mailbox Transaction
An OpenVMS AXP device driver initiates to a device register by issuing a
standard call to IOC$CRAM_IO.

2.8 I/O Device Register Access Summary
This chapter explains the difference between direct register access and mailbox
register access, and described the OpenVMS AXP routines and data structures
that support register access. It should be noted again that the CRAM data
structures and routines exist for all platforms and buses, regardless of whether
or not the I/O subsystem hardware actually supports hardware mailboxes.
The CRAM should be viewed simply as a data structure that describes an
I/O register reference. The use of CRAM data structures and routines for I/O
register accesses contributes to driver portability, as most platform and bus
implementation differences can be hidden from the driver writer.
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An OpenVMS VAX device driver can explicitly or indirectly cause itself to be
suspended by invoking a VAX MACRO macro or by calling one of the OpenVMS
system routines listed in Table 3–1. An OpenVMS driver fork process typically is
suspended to accomplish one of the following tasks:

• To wait to obtain a system resource, such as a controller channel

• To wait for a device interrupt or timeout

• To resume its execution at a lower interrupt priority level (IPL), that is, to
fork

Table 3–1 OpenVMS VAX Macros and System Routines That Suspend Driver Execution

Routine Macro Description

IOC$REQPCHANH,
IOC$REQPCHANL

REQPCHAN Requests a controller’s primary data channel

IOC$WFIKPCH,
IOC$WFIRLCH

WFIKPCH, WFIRLCH Suspends a driver fork thread and folds its context
into a fork block in anticipation of a device interrupt
or timeout

EXE$FORK,
EXE$IOFORK

FORK, IOFORK Creates a fork process

EXE$FORK_WAIT FORK_WAIT Inserts a fork block on the fork-and-wait queue

An OpenVMS VAX system routine accomplishes the suspension by removing
the fork routine address from 4(SP) and placing it (with the current contents of
R3 and R4) into the fork block. The system routine then returns to its caller’s
caller at the address provided at 8(SP). In compliance with the OpenVMS calling
standard, the MACRO-32 compiler for OpenVMS AXP, like other AXP compilers,
cannot allow such absolute control over the stack. A typical routine written in
VAX MACRO, and compiled for execution on an OpenVMS AXP system, begins
with compiler-generated register saves and ends with register restores. To ensure
that saved registers and the state of the stack are restored, a routine must
execute this return code. Explicit control of the stack and the caller’s caller form
of return are not possible on OpenVMS AXP systems.

Consequently, in creating an OpenVMS AXP device driver, you must inspect the
occasions in which the driver uses the VAX MACRO macros and routines listed in
Table 3–1 to determine to which of the following categories they belong:

• Simple fork process

The driver and its fork thread share only the context currently preserved
across the suspension by the OpenVMS VAX routine or macro; namely, the
fork routine address and the contents of R3 and R4.

• Kernel process
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The driver and its fork thread save and restore stack regions that might
contain routine return addresses. Typically such a driver executes subroutine
calls (by means of a JSB instruction), saves the return address in a data
structure, and calls an OpenVMS suspension routine. Drivers based on the
class/port structure generally must use the OpenVMS kernel process services.

The kernel process mechanism enables a system context thread of execution
to run on its own private stack. While a kernel process is stalled, it can
leave its execution state on the stack, such as nested stack frames and saved
registers. This ability to save execution state across a stall is the primary
motivation for kernel processes. It simplifies driver algorithms that are
naturally expressed as nested subroutine calls and that would otherwise
require complex state descriptions. See Section 3.2 for a discussion of the
OpenVMS kernel process mechanism.

3.1 Using the Simple Fork Process Mechanism
An OpenVMS AXP driver uses the OpenVMS simple fork process mechanism
when it and its fork thread share only the context currently preserved across
the suspension by the OpenVMS VAX routine or macro; namely, the fork routine
address and the contents of R3 and R4. The caller of the OpenVMS suspension
routine and the fork routine must not share stack regions or store routine return
addresses in data structures.

To employ the simple fork process mechanism, an OpenVMS AXP driver uses
the macros listed in Table 3–2. New parameters have been added to the FORK,
IOFORK, FORK_WAIT, WFIKPCH, and WFIRLCH macros to minimize the need
to make explicit calls to the AXP system-specific suspension routines.

OpenVMS AXP supports JSB-based fork routines as well as standard call-based
fork routines. The new ENVIRONMENT parameter specifies if the macro is
being invoked from within a JSB or CALL interface routine. The default value
of the environment parameter is JSB because this supports usage that is most
similar to OpenVMS VAX use of these macros. The remainder of Section 3.1
focuses on the differences between the OpenVMS simple fork mechanism and the
OpenVMS AXP simple fork mechanism for the JSB environment. See Section 7.4
for a discussion of the additional differences that apply when the simple fork
mechanism is used in a CALL environment.

Table 3–2 Macros That Suspend OpenVMS AXP Driver Execution

OpenVMS VAX Macro OpenVMS AXP Macro Function

FORK FORK [routine] [,continue]
[,environment=JSB]

Calls EXE$PRIMITIVE_FORK or
EXE_STD$PRIMITIVE_FORK to
create a simple fork process on the
current processor

FORK_WAIT FORK_WAIT [routine] [,continue]
[,environment=JSB]

Calls EXE$PRIMITIVE_FORK_
WAIT or EXE_STD$PRIMITIVE_
FORK_WAIT to insert a fork block
on the system fork-and-wait queue

(continued on next page)
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Table 3–2 (Cont.) Macros That Suspend OpenVMS AXP Driver Execution

OpenVMS VAX Macro OpenVMS AXP Macro Function

IOFORK IOFORK [routine] [,continue]
[,environment=JSB]

Disables timeouts from the
associated device and calls
EXE$PRIMITIVE_FORK or EXE_
STD$PRIMITIVE_FORK to create
a fork process

REQPCHAN [pri=LOW] REQCHAN [pri=LOW]
[,environment=JSB]

Calls IOC_STD$PRIMITIVE_
REQCHANH or IOC_
STD$PRIMITIVE_REQCHANL
to obtain a controller’s data channel

WFIKPCH excpt [,time=65536]
WFIRLCH excpt [,time=65536]

WFIKPCH excpt [,time=65536]
[,newipl][,environment=JSB]
WFIRLCH excpt [,time=65536]
[,newipl][,environment=JSB]

Calls IOC_STD$PRIMITIVE_
WFIKPCH or IOC_
STD$PRIMITIVE_WFIRLCH to
suspend a driver fork thread and
folds its context into a fork block in
anticipation of a device interrupt or
timeout

Table 3–3 lists the system routines that an OpenVMS AXP driver uses to suspend
execution.

Table 3–3 System Routines That Suspend OpenVMS AXP Driver Execution

OpenVMS VAX Routine OpenVMS AXP Routine Function

EXE$FORK EXE$PRIMITIVE_FORK and
EXE_STD$PRIMITIVE_FORK

Creates a simple fork
process on the current
processor

EXE$FORK_WAIT EXE$PRIMITIVE_FORK_WAIT
and EXE_STD$PRIMITIVE_
FORK_WAIT

Inserts a fork block on the
system fork-and-wait queue

EXE$IOFORK EXE$PRIMITIVE_FORK and
EXE_STD$PRIMITIVE_FORK

Creates a simple fork
process on the local
processor

IOC$REQPCHANH
IOC$REQPCHANL

IOC_STD$PRIMITIVE_
REQCHANH
IOC_STD$PRIMITIVE_
REQCHANL

Obtains a controller’s data
channel

IOC$WFIKPCH
IOC$WFIRLCH

IOC_STD$PRIMITIVE_
WFIKPCH
IOC_STD$PRIMITIVE_
WFIRLCH

Suspends a driver fork
thread and folds its
context into a fork block
in anticipation of a device
interrupt or timeout

3.1.1 EXE_STD$PRIMITIVE_FORK, EXE_STD$PRIMITIVE_FORK_WAIT, and
Associated Macros

EXE$PRIMITIVE_FORK and EXE_STD$PRIMITIVE_FORK are the OpenVMS
AXP counterpart to the OpenVMS VAX system routines EXE$FORK and
EXE$IOFORK. EXE_STD$PRIMITIVE_FORK_WAIT is the OpenVMS AXP
counterpart to the OpenVMS VAX EXE$FORK_WAIT routine.
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Use of the simple fork process mechanism in an OpenVMS AXP device
driver requires that you alter each instance of EXE$FORK, EXE$IOFORK,
or EXE$FORK_WAIT in driver code by:

• Replacing each explicit JSB to EXE$FORK with either an invocation
of the FORK macro or a JSB to EXE$PRIMITIVE_FORK. (Note that
EXE$PRIMITIVE_FORK requires different inputs than EXE$FORK.)

• Replacing each explicit JSB to EXE$IOFORK with either an invocation of the
IOFORK macro or with an instruction that clears UCB$V_TIM in UCB$L_
STS followed by a JSB to EXE$PRIMITIVE_FORK.

• Replacing each explicit JSB to EXE$FORK_WAIT with either an invocation
of the FORK_WAIT macro or a JSB to EXE$PRIMITIVE_FORK_WAIT.
(Note that EXE$PRIMITIVE_FORK_WAIT requires different inputs than
EXE$FORK_WAIT.)

For information about the calling conventions for EXE$PRIMITIVE_FORK and
EXE$PRIMITIVE_FORK_WAIT see OpenVMS AXP Device Support: Reference.

The OpenVMS AXP versions of the FORK, IOFORK, and FORK_WAIT macros
have been designed to conceal many of the differences between the behavior of
the OpenVMS VAX and the OpenVMS AXP routines for most device drivers. The
following sections provide some examples of how an OpenVMS AXP device driver
may use these macros. OpenVMS AXP Device Support: Reference provides more
information about the use and operation of the FORK and IOFORK macros.

3.1.1.1 Common Usage of the FORK and IOFORK Macros
Drivers most commonly use the FORK and IOFORK macros in situations where
execution is to be resumed at the caller’s caller when the fork block is queued,
and where the fork routine’s entry point immediately follows the invocation of
the macro. A FORK or IOFORK macro invocation of this type needs no change to
work properly in an OpenVMS AXP device driver.

Consider the following OpenVMS driver source:

r: code_a
iofork
code_b
rsb

It has the following expansion on an OpenVMS VAX system:1

r: code_a
JSB G^EXE$IOFORK
code_b
rsb

The effect is that the first instruction of code_b is queued as a fork routine and
that EXE$IOFORK returns directly to the caller of routine r.

It has the following expansion on an OpenVMS AXP system:

1 Original source is shown in lowercase and the results of macro expansion are shown in
uppercase.
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r: code_a
BICL #UCB$M_TIM,UCB$L_STS(R5)
MOVAB F,FKB$L_FPC(R5)
JSB G^EXE$PRIMITIVE_FORK
RSB

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
code_b
rsb

The effect is the same as the OpenVMS VAX expansion. The fork routine is
defined to begin with the first instruction of code_b; F is the generated label for
the fork routine. Control is returned to the caller of r by means of the explicit
RSB that is generated after the JSB to EXE$PRIMITIVE_FORK.

Note

On OpenVMS AXP systems, any branch between code_a and code_b
must obey the restrictions of cross-routine branches, as described in
Chapter 6. Meeting these restrictions may require source changes. For
more information, see Migrating to an OpenVMS AXP System: Porting
VAX MACRO Code.

3.1.1.2 Forks with Nonstandard Returns and Nonstandard Fork Routine Addresses
Some direct calls to EXE$FORK or EXE$IOFORK require either a nonstandard
continue label, nonstandard fork routine address, or both.

The OpenVMS AXP versions of the FORK and IOFORK macros provide two
optional arguments that allow drivers to specify these items and avoid a direct
call to EXE$PRIMITIVE_FORK:

• The continue argument specifies the label where execution continues after
the fork block has been inserted on the fork queue. If you omit this argument,
control returns to the caller of the routine that invoked the FORK or IOFORK
macro.

• The routine argument specifies the name of the routine to be executed in
fork context. If you omit this argument, the macro assumes that the fork
routine immediately follows the FORK or IOFORK macro invocation.

Example of Nonstandard Return from Fork Operation
In the following example, the OpenVMS VAX driver that is calling EXE$IOFORK
wants to queue the fork thread and return control back to itself (that is, to label l
in routine r) and not the caller’s caller:

r: code_a1
l: code_a2

pushab l
jsb g^exe$iofork
code_b
rsb

In an OpenVMS AXP device driver, this code would be rendered as:

r: code_a1
l: code_a2

iofork continue=l
code_b
rsb
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The expansion of this IOFORK macro invocation on an OpenVMS AXP system
would be as follows:

r: code_a1
l: code_a2

BICL #UCB$M_TIM,UCB$L_STS(R5)
MOVAB F,FKB$L_FPC(R5)
JSB G^EXE$PRIMITIVE_FORK
BRW l

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
code_b
rsb

Example of Nonstandard Fork Routine Address
The following code excerpt from an OpenVMS VAX device driver illustrates the
case where the fork routine (that is, fr) is not located in the source immediately
after the call to EXE$IOFORK:

r: code_a1
pushab fr
jmp g^exe$iofork
.
.
.

fr: code_b
rsb

In an OpenVMS AXP device driver, this code would be as follows:

r: code_a1
iofork routine=fr
.
.
.

fr: fork_routine
code_b
rsb

Note that, because the IOFORK macro cannot automatically add the entry point
directive at the start of a fork routine that may be located anywhere, you must
manually add the new FORK_ROUTINE macro to the source.

The expansion of the FORK_ROUTINE macro would be as follows:

.JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>

The expansion of the IOFORK macro invocation on an OpenVMS AXP system
would be as follows:

r: code_a1
BICL #UCB$M_TIM,UCB$L_STS(R5)
MOVAB fr,FKB$L_FPC(R5)
JSB G^EXE$PRIMITIVE_FORK
RSB
.
.
.

fr: fork_routine
code_b
rsb
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3.1.2 IOC_STD$PRIMITIVE_REQCHANH, IOC_STD$PRIMITIVE_REQCHANL,
and the REQCHAN Macro

IOC_STD$PRIMITIVE_REQCHANH and IOC_STD$PRIMITIVE_REQCHANL
are the OpenVMS AXP counterparts to the OpenVMS VAX system routines
IOC$REQPCHANH and IOC$REQPCHANL.

Use of the simple fork process mechanism in an OpenVMS AXP device
driver requires that you replace each explicit JSB to IOC$REQPCHANH or
IOC$REQPCHANL with an invocation of the REQPCHAN2 or REQCHAN macro.

Note

IOC$REQSCHANH and IOC$REQSCHANL are not supported in
OpenVMS AXP systems because the concept of primary and secondary
controller channels is not meaningful in the I/O subsystem.

For more information about the calling conventions for IOC_STD$PRIMITIVE_
REQCHANH and IOC_STD$PRIMITIVE_REQCHANL, see OpenVMS AXP
Device Support: Reference.

The OpenVMS AXP versions of the REQPCHAN and REQCHAN macros have
been designed to conceal many of the differences between the behavior of the
OpenVMS VAX and the OpenVMS AXP routines for most device drivers.

Consider the following OpenVMS driver source:

r: code_a
reqpchan
code_b
rsb

This code example expands in the following way on an OpenVMS AXP system:

r: code_a
MOVAB F,FKB$L_FPC(R5)
SUBL #4,SP
PUSHAB (SP)
PUSHL R5
PUSHL R3
CALLS #3,G^IOC_STD$PRIMITIVE_REQCHANL
POPL R4
BLBS R0,L
RSB

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
L: code_b

rsb

The effect of the resulting code is the same as the OpenVMS VAX expansion.
The fork routine is defined to begin with the first instruction of code_b; F is the
generated label for the fork routine. If the channel is immediately assigned to
the driver, execution continues at the generated label L at the first instruction of
code_b. Otherwise, control is returned to the caller of r by means of the explicit
RSB that is generated after the CALL to IOC_STD$PRIMITIVE_REQCHANL.
When the channel is eventually assigned to the driver, IOC_STD$RELCHAN
calls fork routine F.

2 The REQPCHAN macro is provided for compatibility with OpenVMS VAX; use of the
REQCHAN macro is preferred with OpenVMS AXP.
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Note

Any branches between code_a and code_b must obey the restrictions
of crossroutine branches, as described in Chapter 6. Meeting these
restrictions may require source changes. Also, the macro contains a
branch between code_a and code_b.

See OpenVMS AXP Device Support: Reference for additional information on the
use and operation of the REQCHAN macro.

3.1.3 IOC_STD$PRIMITIVE_WFIKPCH, IOC_STD$$PRIMITIVE_WFIRLCH, and
Associated Macros

IOC_STD$PRIMITIVE_WFIKPCH and IOC_STD$PRIMITIVE_WFIRLCH
are the OpenVMS AXP counterparts to the OpenVMS VAX system routines
IOC$WFIKPCH and IOC$WFIRLCH. For more information about the calling
conventions for IOC_STD$PRIMITIVE_WFIKPCH and IOC_STD$PRIMITIVE_
WFIRLCH, see OpenVMS AXP Device Support: Reference.

The OpenVMS AXP versions of the WFIKPCH and WFIRLCH macros have
been designed to conceal many of the differences between the behavior of the
OpenVMS VAX and the OpenVMS AXP routines for most device drivers.

• The excpt argument specifies the label of the timeout handling code
within the driver. On an OpenVMS VAX system, EXE$TIMEOUT calls a
driver’s timeout handling routine directly by means of a VAX MACRO JSB
instruction. On an OpenVMS AXP system, EXE$TIMEOUT calls the driver
time out routine (at UCB$PS_TOUTROUT) with UCB$V_TIMOUT set. If the
TOUTROUT parameter is blank, then the WFIKPCH and WFIRLCH macros
use the fork routine for the timeout routine as well.

These macros automatically insert an instruction at the beginning of the fork
routine that tests UCB$V_TIMOUT in UCB$L_STS and branches to the label
of the timeout code if it is set.

• The WFIKPCH and WFIRLCH macros automatically place the procedure
value of the fork routine (at the instruction following the macro invocation) in
UCB$L_FPC.

• The time argument expresses the timeout interval in seconds as on OpenVMS
VAX systems.

• The newipl argument specifies the IPL to which the wait-for-interrupt
routine should lower before the wait-for-interrupt macro returns to its caller.
Typically this is the fork IPL associated with device processing that was
pushed on the stack by a prior invocation of the DEVICELOCK macro. If you
omit this argument, the macro considers the value on the top of the stack as
the return IPL. This default allows an OpenVMS AXP driver to use the macro
in the same way as an OpenVMS VAX driver does.

• The toutrout argument specifies a timeout routine address.
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Example of WFIKPCH with Default newipl Argument
The following code example illustrates how a standard invocation of the
WFIKPCH macro in an existing OpenVMS driver needs no change to work
properly in an OpenVMS AXP device driver.

r: code_a1
devicelock -

lockaddr=ucb$l_dlck(r5),-
savipl=-(sp)

code_a2
wfikpch tmo_label,#tmo
code_b
rsb

On an OpenVMS AXP system, this code example expands as follows:

r: code_a1
devicelock -

lockaddr=ucb$l_dlck(r5),-
savipl=-(sp)

code_a2
MOVL #tmo,R1
MOVL (SP)+,R2
MOVAB F,UCB$L_FPC(R5)
MOVAB F,UCB$PS_TOUTROUT(R5)
PUSHL R2
PUSHL R1
PUSHL R5
PUSHL R4
PUSHL R3
CALLS #5,IOC_STD$PRIMITIVE_WFIKPCH
RSB

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
BITL #UCB$M_TIMOUT,UCB$L_STS(R5)
BNEQ tmo_label
code_b
rsb

Example of WFIKPCH Specifying newipl Argument
The following code example has the same effect as the first. It accomplishes this
by saving the original IPL directly into R2 using the DEVICELOCK macro, and
later specifying R2 as the newipl argument to WFIKPCH.

r: code_a1
devicelock -

lockaddr=ucb$l_dlck(r5),-
savipl=r2

code_a2
wfikpch tmo_label,#tmo,newipl=r2
code_b
rsb

On an OpenVMS AXP system, this code has the following expansion:
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r: code_a1
devicelock -

lockaddr=ucb$l_dlck(r5),-
savipl=r2

code_a2
MOVL #tmo,R1
MOVAB F,UCB$L_FPC(R5)
MOVAB F,UCB$PS_TOUTROUT(R5)
PUSHL R2
PUSHL R1
PUSHL R5
PUSHL R4
PUSHL R3
CALLS #5,IOC_STD$PRIMITIVE_WFIKPCH
RSB

F: .JSB_ENTRY INPUT=<R3,R4,R5>,SCRATCH=<R0,R1,R2,R3,R4>
BITL #UCB$M_TIMOUT,UCB$L_STS(R5)
BNEQ tmo_label
code_b
rsb

See OpenVMS AXP Device Support: Reference for further details on the use and
operation of the WFIKPCH and WFIRLCH macros.

3.2 Using the OpenVMS Kernel Process Services
The OpenVMS kernel process services enable a system context thread of
execution to run on its own private stack. This thread of execution is known as
a kernel process. Prior to suspending itself (to fork or to wait for an interrupt
or controller channel), a kernel process stores its execution state (such as register
contents) on its private stack (which may include the nested stack frames of
previous procedure calls within the kernel process). When it is resumed, a kernel
process has access to the data that has previously been stored on its private
stack.

The ability to save some execution state on a stack across a stall is the primary
motivation for kernel processes. It simplifies driver algorithms that are naturally
expressed as nested subroutine calls and that would otherwise require complex
state descriptions. Also, this ability is a prerequisite to supporting device drivers
written in a high level language.

Two data structures describe a kernel process. Typically, an OpenVMS AXP
device driver calls a system routine to create these data structures when it
initiates a kernel process and calls another routine to delete them when the
kernel process has completed.

• A kernel process block (KPB) that describes the context and state of a
kernel process

• A stack that records the current state of execution of the kernel process

The KPB consists of the following areas:

• Base area

The base area includes the standard OpenVMS data structure header fields,
describes the kernel process private stack, contains masks that describe the
KPB itself and its register saveset, stores the context of a suspended KPB,
and provides pointers to the other KPB areas. The KPB base area ends with
offset KPB$IS_PRM_LENGTH.

• Scheduling area
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The scheduling area contains the procedure values of the routines that
execute to suspend a kernel process and to resume its execution. The
scheduling area can contain either a fork block or a timer queue entry. The
scheduling area ends with offset KPB$Q_FR4.

• OpenVMS special parameters area

The OpenVMS special parameters area stores information required by
OpenVMS device drivers, such as pointers to I/O database structures, data
facilitating the selection and operation of driver macros, and driver-specific
data. The OpenVMS special parameters area ends with offset KPB$PS_
DLCK.

• Spin lock area

The spin lock area is unused at present and reserved to Digital. It ends with
offset KPB$PS_SPL_RESTRT_RTN.

• Debugging area

The debugging area stores information used in the debugging of a kernel
process. The KPB debugging area follows either the scheduling or spin lock
area.

• Parameter area

The parameter area is a variably-sized area that is specified by the kernel
process creator in the call to EXE$KP_ALLOCATE_KPB. The kernel process
creator and the kernel process use this area to exchange data.

The KPB can be used in one of two general types: the OpenVMS executive
software type (VEST) and the fully general type (FGT). OpenVMS software
always uses the VEST form of the KPB.

In a VEST KPB, the base, scheduling, OpenVMS special parameters, and spin
lock areas have a fixed position relative to the starting address of the KPB. This
allows you to access all fields in these areas as offsets from a single register that
points to the KPB’s starting address.

Entry into and exit from a kernel process always involves a stack switch. During
execution as a kernel process, a system context thread of execution, such as a
process fork, calls a set of OpenVMS provided routines that preserve register
context and switch stacks:

• At initiation, a switch from the current kernel stack to that of the kernel
process

• At a stall, a switch from the kernel process private stack to the one current
when the kernel process was entered

• At restart, a switch from the current kernel stack to that of the kernel process

• At termination, a switch from the kernel process private stack to the one
current when the kernel process was most recently entered

As shown in Figure 3–1 KPB$IS_STACK_SIZE, KPB$PS_STACK_BASE, and
KPB$PS_STACK_SP describe the kernel process stack. KPB$PS_SAVED_SP
contains the stack pointer on the stack current when the kernel process was
initiated or restarted. That pointer is restored when the kernel process stalls or
terminates.
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A kernel process private stack occupies one or more pages of system space
allocated for that purpose when the kernel process is created. The stack has a
no-access guard page at each end so that stack underflow and overflow can be
detected immediately.

Figure 3–1 shows the stack and the fields in the KPB related to it.

Figure 3–1 Kernel Process Private Stack
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3.2.1 Kernel Process Routines
The routines (and associated macros) listed in Table 3–4 create a kernel process
and its associated structures, and maintain the kernel process environment. A
driver that specifies in its DDT EXE_STD$KP_STARTIO as its start-I/O routine
creates a kernel process in which its own start-I/O routine runs. (Alternatively,
the driver can make successive calls to EXE$KP_ALLOCATE_KPB and EXE$KP_
START to accomplish the same result.)

Once executing as a kernel process, in order to stall, the thread must call a
routine that can switch stacks and then save the thread’s state in such a way
that it can restart when the stall ends. The kernel process can call any of the
supplied scheduling stall routines (EXE$KP_STALL_GENERAL, EXE$KP_FORK,
EXE$KP_FORK_WAIT, IOC$KP_REQCHAN, IOC$KP_WFIKPCH, and IOC$KP_
WFIRLCH), or invoke any of the corresponding macros, to safely suspend its
execution. When the condition implied in the stall request is met (for instance, a
device interrupt or the grant of a controller channel), OpenVMS calls EXE$KP_
RESTART to resume execution of the kernel process.

If a driver kernel process was created by EXE_STD$KP_STARTIO, it requests
its own termination as part of request completion, by invoking the KP_REQCOM
macro.
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Table 3–4 System Routines and Macros That Create and Manage Kernel Processes

System Routine Driver Macro Function

EXE_STD$KP_STARTIO DDTAB (start=EXE_STD$KP_
STARTIO, kp_startio=driver-
start-IO-routine)

Allocates and sets up a KPB and
a kernel process private stack, and
starts up the execution of a kernel
process used by a device driver

EXE$KP_ALLOCATE_KPB KP_ALLOCATE_KPB
DDTAB (start=EXE_STD$KP_
STARTIO, kp_startio=driver-
start-IO-routine)

Allocates a KPB and its kernel
process private stack

EXE$KP_START KP_START
DDTAB (start=EXE_STD$KP_
STARTIO, kp_startio=driver-
start-IO-routine)

Starts the execution of a kernel
process

EXE$KP_STALL_GENERAL KP_STALL_GENERAL
KP_STALL_FORK
KP_STALL_FORK_WAIT
KP_STALL_IOFORK
KP_STALL_REQCHAN
KP_STALL_WFIKPCH
KP_STALL_WFIRLCH

Stalls the execution of a kernel
process

EXE$KP_FORK KP_STALL_FORK
KP_STALL_IOFORK

Stalls a kernel process in such a
manner that it can be resumed by
the OpenVMS fork dispatcher

EXE$KP_FORK_WAIT KP_STALL_FORK_WAIT Stalls a kernel process in such a
manner that it can be resumed
by the software timer interrupt
service routine’s examination of the
fork-and-wait queue

IOC$KP_REQCHAN KP_STALL_REQCHAN Stalls a kernel process in such a
manner that it can be resumed by
the granting of a device controller
channel

IOC$KP_WFIKPCH
IOC$KP_WFIRLCH

KP_STALL_WFIKPCH
KP_STALL_WFIRLCH

Stalls a kernel process in such a
manner that it can be resumed by
device interrupt processing

EXE$KP_RESTART KP_RESTART Resumes the execution of a kernel
process

EXE$KP_END KP_END Terminates the execution of a
kernel process

EXE$KP_DEALLOCATE_KPB KP_DEALLOCATE_KPB Deallocates a KPB and its kernel
process private stack

Because the kernel process routines (and macros) operate on subroutine call
semantics, all return status in R0. For the routines (and macros) that manipulate
kernel process structures, such as EXE$KP_ALLOCATE_KPB and EXE$KP_
START, a driver should inspect the status value and take appropriate action.

The sections that follow describe the operations required to set up and use a
driver kernel process. For further information on a specific kernel process macro
or routine, see OpenVMS AXP Device Support: Reference.
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3.2.2 Creating a Driver Kernel Process
A driver typically creates a kernel process by specifying EXE_STD$KP_STARTIO
in the start argument to the DDTAB macro. EXE_STD$KP_STARTIO allocates
and initializes a VEST KPB and allocates a kernel process private stack, and
then places the driver kernel process into execution, at the address indicated by
the kp_startio argument to the DDTAB macro.

EXE_STD$KP_STARTIO customizes the kernel process environment specifically
for driver kernel processes, facilitating the conversion of OpenVMS VAX drivers
that use the simple fork process mechanism to OpenVMS AXP drivers. To this
end, EXE_STD$KP_STARTIO performs the following tasks:

• Specifies to EXE$KP_ALLOCATE_KPB the size of the kernel process private
stack in bytes. EXE_STD$KP_STARTIO supplies the minimum value of
DDT$IS_STACK_BCNT or KPB$K_MIN_IO_STACK (currently 8KB). A
driver contributes a value to DDT$IS_STACK_BCNT by specifying the kp_
stack_size argument to the DDTAB macro.

• Specifies IRP$PS_KPB to EXE$KP_ALLOCATE_KPB as the target location of
the KPB address.

• Specifies to EXE$KP_ALLOCATE_KPB a VEST-type KPB with scheduling
and spin lock sections and indicates that the KPB should be deleted when the
kernel process is terminated.

• Issues a standard call to EXE$KP_ALLOCATE_KPB.

• Inserts the address of the IRP in KPB$PS_IRP and the address of the UCB in
KPB$PS_UCB.

• Specifies to EXE$KP_START a mask indicating which registers must be
preserved across context switches between the private kernel process private
stack and the kernel stack. This mask allows any registers that the kernel
process uses, other than those calling standard defines as ‘‘scratch’’ to be
saved across its suspension and resumption.

This mask is the logical-OR of the value of DDT$IS_REG_MASK and the
value of KPREG$K_MIN_IO_REG_MASK (which specifies R2 through R5,
R12 through R15, and R26, R27, and R29). A driver contributes a value
to DDT$IS_REG_MASK by specifying the kp_reg_mask argument to the
DDTAB macro. EXE_STD$KP_STARTIO excludes any registers that are
illegal in a kernel process register save mask: R0, R1, R16 through R25, R27,
R28, R30, and R31 (KPREG$K_ERR_REG_MASK).

• Specifies to EXE$KP_START the value of DDT$PS_KP_STARTIO as the
procedure value of the routine to be placed into execution in the driver kernel
process. A driver contributes a value to DDT$PS_KP_STARTIO by specifying
the kp_startio argument to the DDTAB macro.

For drivers ported from OpenVMS VAX, the following invocation of the DDTAB
macro is sufficient to create a kernel process for most drivers and start execution
of the driver’s start-I/O routine as a kernel process thread:

DDTAB -
START=EXE_STD$KP_STARTIO,-
KP_STARTIO=xx_STARTIO,-
.
.
.
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The driver’s start I/O routine, xx_STARTIO in the preceding example, gains
control as a result of the call from EXE$KP_START and receives one parameter,
the address of the KPB. It obtains the addresses of the UCB and IRP from
KPB$PS_UCB and KPB$PS_IRP, respectively:

xx_STARTIO:
.CALL_ENTRY <R2,R3,R4,R5>
MOVL 4(AP),R0 ; Get KPB address
MOVL KPB$PS_UCB(R0),R5 ; Get UCB address
MOVL KPB$PS_IRP(R0),R3 ; Get IRP address

Note that the preceding code example essentially discards the KPB address, by
placing it in a scratch register, R0. EXE_STD$KP_STARTIO stores the KPB
address in IRP$PS_KPB so that the KPB address can always be found there at
anytime at any depth of subroutine call.

Note

The VEST KPB created by EXE$KP_ALLOCATE_KPB in response to
the call from EXE_STD$KP_STARTIO may not be sufficient for a driver
kernel process that must exchange a lot of data with its creator. VEST
KPBs do not include the debugging or parameter areas. If a driver
requires either of these areas in a VEST KPB, it should not specify
EXE_STD$KP_STARTIO in the start argument of the DDTAB macro.
Rather it must make explicit calls to EXE$KP_ALLOCATE_KPB and
EXE$KP_START, as well as initialize the kernel process environment in a
manner similar to that used by EXE_STD$KP_STARTIO.

See Section 3.2.5 for additional information on using the KPB parameter
area.

3.2.3 Suspending a Kernel Process
Once a kernel process thread has been initiated, all functions that cause
suspension of that thread of driver execution must use kernel process stalling
semantics. For existing OpenVMS device drivers, written in VAX MACRO, that
employ simple fork process semantics, this generally means adding the phrase
‘‘KP_STALL_’’ to the beginning of a standard driver stall macro (for instance,
WFIKPCH becomes KP_STALL_WFIKPCH).

Table 3–5 contrasts the simple fork process and the kernel process suspension
macros:

Table 3–5 Comparison of Simple Fork Process and Kernel Process Suspension Macros

Simple Fork Process
Suspension Macro

Kernel Process Suspension
Macro When called

FORK KP_STALL_FORK When creating a fork thread

FORK_WAIT KP_STALL_FORK_WAIT When creating a short fork wait thread

IOFORK KP_STALL_IOFORK When creating a I/O fork thread

(continued on next page)
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Table 3–5 (Cont.) Comparison of Simple Fork Process and Kernel Process Suspension Macros

Simple Fork Process
Suspension Macro

Kernel Process Suspension
Macro When called

REQCHAN1 KP_STALL_REQCHAN When requesting an I/O device channel

WFIKPCH KP_STALL_WFIKPCH When waiting for an interrupt or timeout

WFIRLCH KP_STALL_WFIRLCH When waiting for an interrupt or timeout

REQCOM2 KP_REQCOM When completing an I/O request

1The KP_STALL_ macros provide no replacement for the REQPCHAN macro. When a driver uses kernel processes,
REQPCHAN should be replaced with KP_STALL_REQCHAN.
2Replacing REQCOM with KP_REQCOM has no bearing on how a driver thread is stalled. It does provide for correct
termination and cleanup of a driver kernel process thread upon completion of an I/O request. See Section 3.2.4.

The kernel process suspension macros all require as input the address of a KPB.
For macros that replace traditional suspension macros in existing OpenVMS
drivers, the R0 status is typically SS$_NORMAL, and thus not very interesting.
However, newly written drivers should be coded to check return status values.

For further information on a specific kernel process suspension macro, see
OpenVMS AXP Device Support: Reference.

3.2.4 Terminating a Kernel Process Thread
A driver kernel process initiated by EXE_STD$KP_STARTIO (in which the start-
I/O routine is the top-level thread) is terminated properly by the KP_REQCOM
macro (which includes a VAX MACRO RET instruction).

To ensure that the terminated KPB is released for future reuse, the flag KPB$V_
DEALLOC_AT_END must be set in the KPB$IS_FLAGS field. If you are
allocating a KPB via some mechanism other than EXE_STD$KP_STARTIO,
you should ensure that this flag is set. EXE_STD$KP_STARTIO sets KPB$V_
DEALLOC_AT_END.

3.2.5 Exchanging Data Between a Kernel Process and Its Creator
In the unlikely event that a driver kernel process requires more data than it can
obtain from the KPB address (its sole input parameter), its creator can establish
a parameter area in the KPB.

A driver creates a KPB with a parameter area by specifying the param argument
to a KP_ALLOCATE_KPB macro invocation (or the param_size parameter to a
call to EXE$KP_ALLOCATE_KPB).

The following example shows a simple exchange of data residing in the KPB
parameter area between a kernel process and its creator:

KP_ALLOCATE_KPB kpb=R2, param=#32 ;32-byte parameter area
MOVL KPB$PS_PRM_PTR(R2),R1 ;Obtain pointer to parameter area
MOVL R3,(R1) ;Save R3
MOVL R4,4(R1) ;Save R4
KP_SWITCH_TO_KP_STACK ;Switch to KP stack
MOVL KPB$PS_PRM_PTR(R6),R1 ;Obtain pointer to parameter area
MOVL (R1),R3 ;Obtain saved R3
MOVL 4(R1),R4 ;Obtain saved R4
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3.2.6 Synchronizing the Actions of a Kernel Process and Its Initiator
Neither the initiator of the kernel process (that is, the caller of EXE$KP_START
or EXE$KP_RESTART) nor the kernel process itself can assume that there is any
relationship between them unless they mutually establish one. The initiator and
the kernel process must establish explicit synchronization between themselves for
operations that require it.

The kernel process cannot assume that its initiator is not running in parallel.
Neither can it depend on inheriting the synchronization capabilities of its caller
(for instance, its spin locks and IPL). The initiator of the kernel process thread
cannot assume that the kernel process has already executed when EXE$KP_
START returns control.

3.2.7 Example of Driver Kernel Process
Example 3–2 shows an OpenVMS VAX simple driver start I/O routine of
Example 3–1, modified to use the OpenVMS kernel process services.

Example 3–1 Simple Start I/O Routine

STARTIO:
.
.

; Initiate device activity by informing controller
; of required action

.

.

.
WFIKPCH DEVTMO,#6 ;Wait for interrupt or timeout
. ;Execution resumes here upon
. ; interrupt
.
IOFORK ;Request to defer further
. ; processing to a lower IPL
.
.
REQCOM ;Initiate I/O request completion

; processing

To use the kernel process mechanism, a VAX MACRO device driver must adopt
the following conventions. The numbers in the following list represent the
contents of Example 3–2.

1 The DDTAB macro invocation must identify EXE_STD$KP_STARTIO as the
start argument and the start-I/O routine within the driver as the kp_startio
argument.

2 The start-I/O routine within the driver must be a standard-conforming
procedure. Here, the start-I/O routine specifies the .CALL_ENTRY MACRO
compiler directive with a typical driver register preserve mask (R2 through
R5).

3 The start I/O procedure must retrieve the addresses of the IRP and UCB from
the kernel process block (KPB) associated with the kernel process.
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Example 3–2 Simple Start I/O Routine That Uses the Kernel Process
Mechanism

.

.

.
DDTAB -

START=EXE_STD$KP_STARTIO,- 1
KP_STARTIO=STARTIO,- ;Miscellaneous other required

; changes ignored
.
.
.

STARTIO: .CALL_ENTRY <R2,R3,R4,R5> 2
MOVL 4(AP),R0 ;Get KPB address
MOVL KPB$PS_UCB(R0),R5 ;Get UCB address 3
MOVL KPB$PS_IRP(R0),R3 ;Get IRP address
.
.
.
KP_STALL_WFIKPCH DEVTMO,#6 ;Wait for interrupt 4
. ; or timeout
.
.
KP_STALL_IOFORK ;Wait until IPL drops
. ; to fork IPL
.
.
KP_REQCOM ;Complete request

4 The start I/O procedure must use the KP_STALL_xxx or KP_xxx macros
instead of the equivalent OpenVMS VAX macros.

The following is a brief description of the control flow of an I/O operation
through the start-I/O routine shown in Example 3–2. Although the details of
interaction between the start-I/O routine and the OpenVMS operating system are
different from that which transpires between a driver simple fork process and the
OpenVMS operating system, the overall structure of a driver that uses the kernel
process mechanism is much the same as one that uses the simple fork process
mechanism.

In Figures 3–2, 3–3, and 3–4, two barred lines appear in the rightmost column.
Each represents the current stack of execution: either the kernel process private
stack or a kernel stack.

3.2.7.1 Driver Kernel Process Startup
Figure 3–2 illustrates the flow of an I/O operation involving a driver kernel
process from the creation of the kernel process to execute the start-I/O routine to
the suspension of the kernel process to wait for a device interrupt. At the start
of the process shown in the illustration, IOC$INITIATE has located the driver’s
start I/O routine and invokes it; in this example, it has issued a CALL to EXE_
STD$KP_STARTIO, the routine identified by the DDTAB macro start argument.

Note that the numbers in Figure 3–2 refer to the numbers in the following
description.
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Figure 3–2 Driver Kernel Process Startup
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Call

EXE_STD$KP_STARTIO performs the following steps to create a kernel process
thread of execution running the driver’s start-I/O routine (STARTIO):3

1. It computes the kernel process required stack size as the larger of
KPB$K_MIN_IO_STACK and DDT$IS_STACK_BCNT and calls EXE$KP_
ALLOCATE_KPB to allocate a KPB and that much stack.

2. When EXE$KP_ALLOCATE_KPB returns a success status, it places the IRP
and UCB addresses in KPB$PS_IRP and KPB$PS_UCB, respectively.

3 This description focuses on those actions relevant to the control flow of a driver kernel
process. Further details on the actions of EXE_STD$KP_STARTIO appear in OpenVMS
AXP Device Support: Reference.
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3. It performs a logical-OR of the value of DDT$IS_REG_MASK and the value
of KPREG$K_MIN_IO_REG_MASK (which specifies R2 through R5, R12
through R15, and R26, R27, and R29), and excludes any registers that are
illegal in a kernel process register save mask: R0, R1, R16 through R25, R27,
R28, R30, and R31 (KPREG$K_ERR_REG_MASK). The result is a mask that
includes only those registers that the kernel process support routines must
save.

4. It calls EXE$KP_START. EXE$KP_START starts a driver kernel process
thread of execution by taking the steps summarized in the following list:

a. It saves the registers specified in the kernel process register save mask on
the current stack.

b. It saves the current stack pointer in KPB$PS_SAVED_SP.

c. It switches to the kernel process private stack by loading SP from
KPB$PS_STACK_BASE.

d. It calls STARTIO, the procedure whose procedure value is in DDT$PS_
KP_STARTIO, with the KPB address as the single argument.

5. STARTIO loads R3 and R5 from the IRP and UCB addresses in the KPB. It
then acquires the device lock and initiates device activity.

6. After initiating device activity, STARTIO invokes the macro KP_STALL_
WFIKPCH, which, for the given example, expands as shown in Example 3–3.

Example 3–3 Expansion of the KP_STALL_WFIKPCH Macro

;Expansion of KP_STALL_WFIKPCH DEVTMO,#6

;Assume top of stack contains IPL to
; be restored after wait has been
; set up

PUSHL #6 ;Timeout value
PUSHL KPB ;KPB address
CALLS #3,IOC$KP_WFIKPCH ;
BLBC R0,DEVTMO ;If operation timed out,

; enter timeout routine

7. IOC$KP_WFIKPCH validates its arguments and copies them to the KPB. It
records the procedure value of STALL_WFIXXCH in KPB$PS_SCH_STALL_
RTN and calls EXE$KP_STALL_GENERAL to stall the kernel process.

EXE$KP_STALL_GENERAL performs the following steps:4:

a. It saves the kernel process context on the kernel process private stack.

b. It restores the stack and register context that were current when the
kernel process was entered.

c. It calls STALL_WFIXXCH (the routine whose procedure value is in
KPB$PS_SCH_STALL_RTN).

4 This description focuses on those actions relevant to the control flow of a driver kernel
process. Further details on the actions of EXE$KP_STALL_GENERAL appear in
OpenVMS AXP Device Support: Reference.
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STALL_WFIXXCH invokes the WFIKPCH macro, specifying the
ENVIRONMENT=CALL parameter. The WFIKPCH macro invocation
generates a standard call entry point in STALL_WFIXXCH and stores its
procedure value in UCB$L_FPC. It then invokes IOC_STD$PRIMITIVE_
WFIKPCH, which records the fork context of the driver kernel process,
releases the device lock (restoring the IPL specified in the KP_STALL_
WFIKPCH macro invocation), and returns to STALL_WFIXXCH. STALL_
WFIXXCH returns to EXE$KP_STALL_GENERAL.

d. EXE$KP_STALL_GENERAL loads the success status SS$_NORMAL in
R0 and returns to the routine whose return address was saved on the
kernel stack, which, for this example, is EXE_STD$KP_STARTIO.

8. When control returns from EXE$KP_STALL_GENERAL, EXE_STD$KP_
STARTIO tests the status in R0. If R0 contains a success status, EXE_
STD$KP_STARTIO returns to its invoker, which, in this example, is
IOC$INITIATE. If R0 contains an error, EXE$KP_START was unable to start
the kernel process for some reason and EXE_STD$KP_STARTIO generates
the fatal bugcheck INCONSTATE.

The control flow from IOC$INITIATE back to the $QIO requestor is the same as
that for a driver that uses the simple fork process mechanism.

3.2.7.2 Resumption of a Driver Kernel Process by a Device Interrupt
Figure 3–3 illustrates the control flow from the time when the device activity
completion interrupt resumes the driver kernel process to the time the driver
completes servicing the interrupt.

Note that the numbers in Figure 3–3 refer to the numbers in the following
description. Most of the details are left out of the steps here because they are
detailed in OpenVMS AXP Device Support: Reference.

1. When the device interrupts, Alpha AXP Initiate Exception or Interrupt (IEI)
Privileged Architecture Library code (PALcode) invokes IO_INTERRUPT.

2. IO_INTERRUPT calls the device’s interrupt service routine (ISR).

3. At step 7c in Section 3.2.7.1, STALL_WFIXXCH invoked the WFIKPCH
macro. The WFIKPCH macro invocation generated an entry point in STALL_
WFIXXCH, and stored its procedure value in UCB$L_FPC. The device’s
interrupt service routine obtains the device lock and resumes STALL_
WFIXXCH at this entry point by the following:

PUSHL R5 ;Param3 = UCB address
PUSHL UCB$Q_FR4(R5) ;Param2 = FR4 value
PUSHL UCB$Q_FR3(R5) ;Param1 = FR3 value
CALLS #3,@UCB$L_FPC(R5)

4. STALL_WFIXXCH calls EXE$KP_RESTART.

Note

A device driver can bypass this step and the overhead of an extra
procedure call in its interrupt service routine if it can obtain the KPB
address and call EXE$KP_RESTART directly as described in the previous
step (Step 3).

3–21



Suspending Driver Execution
3.2 Using the OpenVMS Kernel Process Services

Figure 3–3 Device Interrupt Resumes Driver Kernel Process
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5. EXE$KP_RESTART saves the register context of its caller, switches to the
kernel process private stack, and restores the kernel process registers. The
most recent call frame on the kernel process private stack was left there
when the driver kernel process earlier called IOC$KP_WFIKPCH. EXE$KP_
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RESTART returns to the STARTIO procedure from its call to IOC$KP_
WFIKPCH.

6. The STARTIO procedure performs device-specific status checks of the I/O
operation that just completed. It performs only the steps that must be
performed at device IPL, before invoking the KP_STALL_IOFORK macro to
resume the kernel process at the lower fork IPL. The KP_STALL_IOFORK
macro expands as follows:

PUSHL IRP$PS_KPB(R3)
CALLS #1,EXE$KP_IOFORK

7. EXE$KP_IOFORK clears UCB$V_TIM in UCB$L_STS to indicate that the
device is no longer being timed for I/O and calls EXE$KP_FORK.

8. EXE$KP_FORK saves the kernel process fork context in the UCB fork block.
It places the procedure value of STALL_FORK into KPB$PS_SCH_STALL_
RTN and calls EXE$KP_STALL_GENERAL.

9. EXE$KP_STALL_GENERAL saves the kernel process register context in the
KPB, switches to the original kernel stack and restores the registers that
were saved in step 5, when the kernel process was resumed. It then calls
STALL_FORK, the procedure whose procedure value is in KPB$PS_SCH_
STALL_RTN.

10. STALL_FORK stores the procedure value of COMMON_FORK_RTN in
KPB$PS_FPC, and invokes EXE_STD$PRIMITIVE_FORK.

11. EXE_STD$PRIMITIVE_FORK saves the fork parameters (which contain
values previously in registers R3 and R4) in the UCB fork block, inserts the
UCB fork block into the appropriate fork queue, requests a fork IPL interrupt
if appropriate, and returns to STALL_FORK.

12. STALL_FORK returns to its caller, EXE$KP_STALL_GENERAL.

13. At this point, the most recent call frame on the original kernel stack is the
one left there by STALL_WFIXXCH when it called EXE$KP_RESTART.
EXE$KP_STALL_GENERAL returns to STALL_WFIXXCH.

14. STALL_WFIXXCH returns to the driver’s interrupt service routine.

15. The interrupt service routine releases the device lock and returns to IO_
INTERRUPT.

16. IO_INTERRUPT restores the registers it saved and dismisses the interrupt
with a CALL_PAL REI instruction.

3.2.7.3 Resumption of a Driver Kernel Process by a Fork Interrupt
Figure 3–4 shows the control flow when the fork IPL software interrupt resumes
the driver kernel process.

Note that the numbers in Figure 3–4 refer to the numbers in the following
description. Most of the details are left out of the steps here because they are
detailed in OpenVMS AXP Device Support: Reference.

1. When processor IPL drops below the fork IPL, the fork IPL software interrupt
is granted. The fork dispatcher interrupt service routine, EXE$FRKIPLxDSP
[where x is 6, 8, 9, 10, or 11, one of the fork IPLs] is entered. This example
assumes a fork IPL of 8.
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Figure 3–4 Fork Interrupt Resumes Driver Kernel Process
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2. EXE$FRKIPL8DSP obtains the offset to the IPL 8 fork queue listhead and
enters EXE$FORKDSPTH.

3. EXE$FORKDSPTH is a common entry point used by all fork IPL interrupt
service routines. It resumes pending fork processes by performing the
following steps:

a. It removes a fork block from the fork queue. If no fork block was removed,
it dismisses the fork IPL interrupt using the CALL_PAL REI instruction.
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b. It acquires the fork lock whose index is in FKB$B_FLCK.

c. It resumes the fork process.

4. The fork process invokes COMMON_FORK_RTN.

5. COMMON_FORK_RTN calls EXE$KP_RESTART.

6. EXE$KP_RESTART saves the fork process register context on the current
stack. R4 contains the KPB address of the kernel process that must be
resumed. EXE$KP_RESTART switches to the kernel process private stack,
restores the kernel process registers, and resumes the kernel process by
executing the VAX MACRO instruction RET.

The most recent call frame on the kernel process private stack is one left by
EXE$KP_FORK when it earlier called EXE$KP_STALL_GENERAL. Thus the
RET instruction resumes EXE$KP_FORK.

7. EXE$KP_FORK returns to its caller, EXE$KP_IOFORK.

8. EXE$KP_IOFORK returns to its caller, the STARTIO procedure.

9. The STARTIO procedure completes device-specific I/O postprocessing and
invokes the KP_REQCOM macro. The KP_REQCOM macro expands to the
following VAX MACRO instructions:

PUSHL R5
PUSHL R1
PUSHL R6
CALLS #3, IOC_STD$REQCOM

10. After IOC_STD$REQCOM performs the actions detailed in OpenVMS AXP
Device Support: Reference, it returns to the STARTIO procedure.

11. At this point, the most recent call frame on the kernel process private stack
is the one left there by EXE$KP_START when it earlier started up the
driver kernel process and called the STARTIO procedure (see step 6d in
Section 3.2.7.1. STARTIO returns to EXE$KP_START. EXE$KP_START calls
EXE$KP_END to end the kernel process. If KPB$V_DEALLOC_AT_END is
set in KPB$IS_FLAGS, EXE$KP_END calls EXE$KP_DEALLOCATE_KPB.
EXE$KP_DEALLOCATE_KPB returns to EXE$KP_END.

12. At this point, the most recent call frame on the original kernel stack is the
one left there by COMMON_FORK_RTN when it earlier called EXE$KP_
RESTART. EXE$KP_END switches to the original kernel stack, restores
registers that were saved by EXE$KP_RESTART, and returns to COMMON_
FORK_RTN.

13. COMMON_FORK_RTN returns to EXE$FORKDSPTH, which releases the
fork lock and proceeds to step 3a.

3.3 Mixing Fork and Kernel Processes
Ordinarily, a driver should use either the simple fork process or kernel process
suspension mechanism exclusively. Doing so greatly simplifies comprehension of
driver flow and maintenance of driver code.

It is possible for a driver to use the simple fork process mechanism for one
execution thread and the kernel process mechanism for a different execution
thread. Or, a single execution thread can use the simple fork process mechanism
for certain tasks and later use the kernel process mechanism for others.
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However, once a given driver thread has initiated a kernel process, the thread
cannot use the simple fork mechanism until the kernel process has been
terminated.

Warning

Attempting to perform a simple fork operation on a kernel process private
stack will produce unpredictable if not disastrous results.
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4
Allocating Map Registers and Other Counted

Resources

Because AXP systems do not support the UNIBUS, Q22–bus, and MASSBUS
adapters, the OpenVMS AXP operating system does not provide the following
adapter-specific routines and macros that allocate and manage adapter map
registers:

• IOC$ALOALTMAP, IOC$ALOALTMAPN, and IOC$ALOALTMAPSP

• IOC$ALOUBAMAP and IOC$ALOUBAMAPN

• IOC$LOADALTMAP (LOADALT macro)

• IOC$LOADMBAMAP (LOADMBA macro)

• IOC$LOADUBAMAP and IOC$LOADUBAMAPA (LOADUBA macro)

• IOC$RELALTMAP (RELALT macro)

• IOC$RELMAPREG (RELMPR macro)

• IOC$REQALTMAP (REQALT macro)

• IOC$REQMAPREG (REQMPR macro)

Instead, for AXP I/O subsystems that provide map registers, such as the
TURBOchannel I/O processor for DEC 3000 AXP Model 500 systems, OpenVMS
AXP provides a set of a routines that can manage the allocation of any resource
that shares the following attributes of a set of map registers:

• The resource consists of an ordered set of items.

• The allocator can request one or more items. When requesting multiple
items, the requester expects to receive a contiguous set of items. Thus,
allocated items can be described by a starting number and a count.

• Allocation and deallocation of the resource are common operations and, thus,
must be efficient and quick.

• A single deallocation may allow zero or more stalled allocation requests to
proceed.

OpenVMS VAX systems record information relating to the availability and use of
map registers in a set of arrays and fields within the adapter control block (ADP).
OpenVMS AXP employs two new data structures for this purpose:

• A counted resource allocation block (CRAB), created by the OpenVMS
adapter initialization routine, that describes a specific counted resource. The
routine stores the address of the CRAB associated with a given adapter in
ADP$L_CRAB.

4–1



Allocating Map Registers and Other Counted Resources

Note

Code that needs to manage items of a private counted resource can use
the system routines IOC$ALLOC_CRAB and IOC$DEALLOC_CRAB,
described in OpenVMS AXP Device Support: Reference, to create a CRAB
for that resource.

The number of resource items managed by a given CRAB is included in one
of its fields. Resource items must be allocated in a numerically ordered, or
contiguous series. A CRAB contains an array of quadword descriptors that
record the location and length of a set of contiguous resource items that are
free. Another CRAB field contains a value that is applied as a rounding
factor to requests for resources to compute the actual number of items to be
granted. For a detailed description of the CRAB, see OpenVMS AXP Device
Support: Reference.

• A counted resource context block (CRCTX) that describes a specific
request for a counted resource. The driver and the counted resource allocation
routine exchange information in the CRCTX. A driver allocates a CRCTX
before calling the counted resource allocation routine to obtain a certain
number of items of the resource. For a detailed description of the CRCTX, see
OpenVMS AXP Device Support: Reference.

Despite the new structures and new routines, an OpenVMS AXP device driver
performs most of the same tasks as an OpenVMS VAX device driver when setting
up and completing a direct memory access (DMA) transfer. An OpenVMS AXP
device driver:

1. Calls IOC$ALLOC_CRCTX to obtain a CRCTX that describes a request for
map registers

2. Loads the request count into the CRCTX$L_ITEM_CNT field

3. Calls IOC$ALLOC_CNT_RES to request the map registers

4. Calls IOC$LOAD_MAP to load the map registers granted in the allocation
request

5. Prepares device registers for the transfer and activates the device

6. Calls IOC$DEALLOC_CNT_RES to free the registers for use by other
requesters

7. Calls IOC$DEALLOC_CRCTX to deallocate the CRCTX

The following sections describe these steps.

4.1 Allocating a Counted Resource Context Block
A driver calls IOC$ALLOC_CRCTX to allocate and initialize a counted resource
context block (CRCTX). The CRCTX describes a specific request for a given
counted resource, such as a set of map registers. The driver subsequently uses
the CRCTX as input to IOC$ALLOC_CNT_RES to allocate a set of the items
managed as a counted resource.

IOC$ALLOC_CRCTX requires as input the address of the CRAB that describes
the counted resource. For adapters that provide a counted resource, such as a set
of map registers, ADP$L_CRAB contains this address.

4–2



Allocating Map Registers and Other Counted Resources
4.1 Allocating a Counted Resource Context Block

The following example illustrates a call to IOC$ALLOC_CRCTX that returns the
address of the allocated CRCTX to UCB$L_CRCTX, a field in an extended UCB:

70$: PUSHAL UCB$L_CRCTX(R5) ; Pass cell to receive CRCTX address
PUSHL ADP$L_CRAB(R1) ; Pass CRAB as argument
CALLS #2,IOC$ALLOC_CRCTX ; Initialize the CRCTX
BLBC R0,200$ ; Branch if failure status returned

To avoid the overhead of allocating (and deallocating) a CRCTX for each DMA
transfer, drivers often obtain multiple CRCTXs in their controller or unit
initialization routines, linking them from a data structure such as the UCB so
that they will be available for later use.

See OpenVMS AXP Device Support: Reference for a detailed description of
IOC$ALLOC_CRCTX.

4.2 Allocating Counted Resource Items
A driver calls IOC$ALLOC_CNT_RES to allocate a requested number of items
from a counted resource. IOC$ALLOC_CNT_RES requires the addresses of
both the CRAB and the CRCTX as input parameters. The resource request is
described in the CRCTX structure; the counted resource itself is described in the
CRAB.

A driver typically initializes the following fields of the CRCTX before calling
IOC$ALLOC_CNT_RES.

Field Description

CRCTX$L_ITEM_CNT Number of items to be allocated. When requesting map
registers, this value in this field should include two extra
map registers to be allocated and loaded as a guard page
to prevent runaway transfers. There may be additional
bus-specific requirements. See OpenVMS AXP Device
Support: Developer’s Guide.

CRCTX$L_CALLBACK Procedure value of the callback routine to be called when
the deallocation of resource items allows a stalled resource
request to be granted.

A value of 0 in this field indicates that, on an allocation
failure, control should return to the caller immediately
without queuing the CRCTX to the CRAM’s wait queue.

A caller can also specify the upper and lower bounds of the search for allocatable
resource items by supplying values for CRCTX$L_LOW_BOUND and CRCTX$L_
UP_BOUND.

IOC$ALLOC_CNT_RES always returns to its caller immediately, whether the
allocation request is granted immediately, is stalled, or is unsuccessful. If the
request is granted immediately, or when a stalled request is eventually granted,
IOC$ALLOC_CNT_RES returns the number of the first item granted to the
caller in CRCTX$L_ITEM_NUM and sets CRCTX$V_ITEM_VALID in CRCTX$L_
FLAGS.

If there are waiters for the counted resource, or if there are insufficient resource
items to satisfy the request, IOC$ALLOC_CNT_RES saves the current values of
R3, R4, and R5 in the CRCTX fork block. IOC$ALLOC_CNT_RES writes a –1
to CRCTX$L_ITEM_NUM, and inserts the CRCTX in the resource-wait queue
(headed by CRAB$L_WQFL). It then returns SS$_INSFMAPREG status to its
caller.
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Note

If a counted resource request does not specify a callback routine
(CRCTX$L_CALLBACK), IOC$ALLOC_CNT_RES does not insert
its CRCTX in the resource-wait queue. Rather, it returns SS$_
INSFMAPREG status to its caller.

A driver must not deallocate the CRCTX while the resource request it describes
is stalled by IOC$ALLOC_CNT_RES. (If the driver must cancel the allocation
request, it should call IOC$CANCEL_CNT_RES.)

When a counted resource deallocation occurs, the first CRCTX is removed from
the resource-wait queue and the allocation is attempted again. If IOC$ALLOC_
CNT_RES is now able to grant the requested number of resource items, it issues
a JSB to the callback routine (CRCTX$L_CALLBACK), passing it the following
values:

Location Contents

R0 SS$_NORMAL

R1 Address of CRAB

R2 Address of CRCTX

R3 Contents of R3 at the time of the original allocation
request (CRCTX$Q_FR3)

R4 Contents of R4 at the time of the original allocation
request (CRCTX$Q_FR4)

R5 Contents of R5 at the time of the original allocation
request (CRCTX$Q_FR5)

Other registers Destroyed

The callback routine checks R0 to determine whether it has been called with
SS$_NORMAL or SS$_CANCEL status (from IOC$CANCEL_CNT_RES). If the
former, the routine typically proceeds to loads the map registers that have been
allocated. The callback routine must preserve all registers it uses other than R0
through R5 and exit with an RSB instruction.

The following example illustrates a call to IOC$ALLOC_CNT_RES:
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40$: MOVL SCDRP$L_BOFF(R5),R0 ; Get byte offset
ADDL SCDRP$L_BCNT(R5),R0 ; Add in byte count
ADDL G^MMG$GL_BWP_MASK,R0 ; Round up to number of pages
ADDL G^MMG$GL_PAGE_SIZE,R0 ; Add extra "no access" page
ASHL G^MMG$GL_VA_TO_VPN,R0,- ; Get number of pages involved

CRCTX$L_ITEM_CNT(R2) ; Pass as number of contiguous
; registers to allocate

MOVAB G^SCS$MAP_RETRY,- ; SCS$MAP_RETRY is callback routine
CRCTX$L_CALLBACK(R2)

PUSHL R2 ; Push CRCTX as argument
PUSHL ADP$L_CRAB(R4) ; Push CRAB as argument
CALLS #2,IOC$ALLOC_CNT_RES ; Allocate the map registers
BLBC R0,110$ ; If allocation is not successful,

; branch; otherwise proceed
; to load map registers

.

.

.
110$: CMPL #SS$_INSFMAPREG,R0 ; INSFMAPREG means request queued

BNEQ 120$ ; Other status means error; branch
MOVL #_C_MAP_ALLOC_WAIT_STATE,- ; Record wait state in

CDRP$L_WAIT_STATE(R5) ; CDRP
MOVL #SS$_INSFMAP,R0 ; Return status to caller of this

; driver routine
RSB

120$: ; Process returned errors (other than SS$_INSFMAPREG)

The OpenVMS AXP operating system allows you to indicate that a counted
resource request should take precedence over any waiting request by setting
the CRCTX$V_HIGH_PRIO bit in CRCTX$L_FLAGS. A driver employs a high-
priority counted resource request to preempt normal I/O activity and service
some exception condition from the device. (For instance, during a multivolume
backup, a tape driver might make a high-priority request, when it encounters
the end-of-tape (EOT) marker, to get a subsequent tape loaded before normal I/O
activity to the tape can resume. A disk driver might issue a high-priority request
to service a disk offline condition.)

IOC$ALLOC_CNT_RES never stalls a high-priority counted resource request
or places its CRCTX in a resource-wait queue. Rather, it attempts to allocate
the requested number of resource items immediately. If IOC$ALLOC_CNT_RES
cannot grant the requested number of items, it returns SS$_INSFMAPREG
status to its caller.

See OpenVMS AXP Device Support: Reference for a detailed description of
IOC$ALLOC_CNT_RES.

4.3 Loading Map Registers
A driver calls IOC$LOAD_MAP to load a set of adapter-specific map registers.
The driver must have previously allocated the map registers (including an extra
two to serve as a guard page) in calls to IOC$ALLOC_CRCTX and IOC$ALLOC_
CNT_RES.

IOC$LOAD_MAP requires the following as input:

• the address of the ADP of the adapter that provides the map registers

• the address of the CRCTX that describes the map register allocation

• the system virtual address of the page table entry (PTE) for the first page to
be used in the DMA transfer
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• the Byte offset into the first page of the transfer

IOC$LOAD_MAP returns a specified location a port-specific address of a DMA
buffer.

The following example illustrates a call to IOC$LOAD_MAP:

100$: PUSHAL UCB$L_ARG(R4) ; Cell for returned DMA address
MOVZWL BD$W_PAGE_OFFSET(R3),-(SP) ; Pass starting buffer offset
PUSHL BD$L_SVAPTE(R3) ; Pass SVAPTE as argument
PUSHL R2 ; Pass CRCTX as argument
PUSHL PDT$L_ADP(R4) ; Pass ADP as argument
CALLS #5,IOC$LOAD_MAP ; Load the allocated map registers

See OpenVMS AXP Device Support: Reference for a detailed description of
IOC$LOAD_MAP.

Having loaded the map registers for a DMA transfer, a driver typically performs
some of the following steps to initiate the transfer:

• Loads the port-specific DMA address into a device DMA address register.
Some manipulation of the address value might be needed, depending upon
the hardware. (For instance, a DEC 3000 AXP Model 500 driver must clear
the two low bits before writing to the register.)

• Computes the transfer length and loads a device transfer count register.
Typically a driver derives the transfer length from a field such as UCB$L_
BCNT.

• Sets to GO byte in the device CSR (possibly indicating the direction of the
transfer as well) by writing a mask to the CSR.

4.4 Deallocating a Number of Counted Resources
A driver calls IOC$DEALLOC_CNT_RES to deallocate a requested number
of items of a counted resource. IOC$DEALLOC_CNT_RES requires the
addresses of both the CRAB and CRCTX as input. After deallocating the items,
IOC$DEALLOC_CNT_RES attempts to restart any waiters for the resource.

The following example illustrates a call to IOC$DEALLOC_CNT_RES:

PUSHL R2 ; Push CRCTX as argument
PUSHL ADP$L_CRAB(R4) ; Push CRAB as argument
CALLS #2,IOC$DEALLOC_CNT_RES ; Deallocate the map registers

See OpenVMS AXP Device Support: Reference for a detailed description of
IOC$DEALLOC_CNT_RES.

4.5 Deallocating a Counted Resource Context Block
A driver calls IOC$DEALLOC_CRCTX to deallocate a CRCTX. IOC$DEALLOC_
CRCTX requires only the address of the CRCTX as input.

A driver must not deallocate a CRCTX that describes a request that has been
stalled waiting for sufficient resource items to be made available (that is, a
CRCTX that is in a given CRAB wait queue). Prior to deallocating such a
CRCTX, a driver should call IOC$CANCEL_CNT_RES to cancel the resource
request.
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The following example illustrates a call to IOC$DEALLOC_CRCTX:

PUSHL R2 ; Pass CRCTX as argument
CALLS #1,IOC$DEALLOC_CRCTX ; Deallocate the CRCTX

See OpenVMS AXP Device Support: Reference for a detailed description of
IOC$DEALLOC_CRCTX.
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5
Synchronization Requirements for OpenVMS

AXP Device Drivers

This chapter discusses special synchronization requirements for OpenVMS AXP
device drivers beyond the basic synchronization requirements for OpenVMS AXP
device drivers discussed in the OpenVMS AXP Device Support: Developer’s Guide.
It focuses on the following areas:

• Section 5.1 describes why and how you must use OpenVMS driver
multiprocessing synchronization semantics when creating an OpenVMS AXP
device driver.

• Section 5.2 discusses why it is important to identify driver operations that
depend on the exact ordering of reads and writes to memory and shows how
to enforce this ordering.

• Section 5.3 explains how VAX systems and AXP systems differ in their ability
to access, without interruption, byte-, word-, and longword-sized data items,
and suggests ways of overcoming these differences to synchronize access to
such items.

• Section 5.4 describes how to synchronize different instruction streams on an
OpenVMS AXP system.

5.1 Producing a Multiprocessing-Ready Driver
All OpenVMS AXP device drivers must adhere to the rules for OpenVMS
multiprocessing device drivers as listed in the multiprocessing requirements
appendix of the OpenVMS AXP Device Support: Developer’s Guide.

The following is a general summary of those rules for OpenVMS AXP device
drivers:

• Specify smp=YES in the DPTAB macro invocation.

• Use the following spin lock synchronization macros instead of macros that
simply raise and lower IPL:

FORKLOCK/FORKUNLOCK

DEVICELOCK/DEVICEUNLOCK

LOCK/UNLOCK

Note that the lockipl argument of these macros is ignored on OpenVMS AXP
systems. The operating system automatically obtains the lock’s IPL from the
spin lock or fork lock data structure, or from the spin lock IPL vector.

• Initialize field FKB$B_FLCK of each fork block with the index of the fork
lock that synchronizes access to the structure in which the fork block resides.
Typically, drivers initialize the UCB fork block by issuing a DPT_STORE
macro within a DPTAB macro invocation.
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Note that you can no longer store a fork IPL in this field; the field’s alias,
UCB$B_FIPL, has been deleted.

5.2 Enforcing the Order of Reads and Writes
VAX multiprocessing systems have traditionally been designed so that if one
processor in the multiprocessing system writes multiple pieces of data, these
pieces become visible to all other processors in the same order in which they were
written. For example, if CPU A writes a data buffer and then writes a flag, CPU
B can determine that the data buffer has changed by examining the value of the
flag.

OpenVMS AXP systems may reorder read and write operations to memory
to benefit overall memory subsystem performance. Processes that execute on
a single processor can rely on write operations from that processor becoming
readable in the order in which they are issued. However, multiprocessor
applications cannot rely on the order in which writes to memory become visible
throughout the system. In other words, write operations performed by CPU A
may become visible to CPU B in an order different from that in which they were
written.

Device driver threads that share data in multiprocessing environments or with
DMA I/O devices must be careful to insert an Alpha AXP Memory Barrier (MB)
instruction as appropriate, before and after data references. The MB instruction
guarantees that all subsequent loads or stores will not access memory until
after all previous loads and stores have accessed memory, as observed by other
processors.

For traditional, common device driver operations, you can rely on OpenVMS
system routines that initiate DMA device operations to memory or that acquire
spin locks that protect specific system databases in a multiprocessing system to
insert the required memory barriers. The following are some examples of how
OpenVMS AXP provides memory barriers transparently when needed to properly
order memory operations involving device drivers:

• When a driver is writing a buffer to a disk (involving a device that performs
a DMA read operation to memory), an MB instruction must be issued before
the driver initiates the write transaction and the device must issue an MB
instruction after receiving the start signal but before starting the DMA read.
A driver normally calls the system routine IOC$CRAM_IO (or IOC$CRAM_
QUEUE and IOC$CRAM_WAIT) to deliver data and the start command to
the DMA device’s registers. Because these routines issue the appropriate MB
instructions on behalf of the driver, the driver need not include an explicit
memory barrier.

• When a DMA I/O device has written data to memory (for instance, paging
in a page from disk), the DMA device must issue an MB instruction before
posting a completion interrupt, and the OpenVMS I/O interrupt dispatcher
(IO_INTERRUPT) issues an MB instruction to guarantee that the data is
visible to the interrupted processor before invoking the driver’s interrupt
service routine.

• All routines and macros that acquire spin locks, fork locks, and device locks
to synchronize access to a specific database in a multiprocessing system issue
an MB instruction prior to obtaining the lock.
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Note

The uniprocessing versions of the spin lock routines and macros do not
provide memory barriers.

There are two ways to generate an MB instruction from VAX MACRO code:

• The MACRO-32 compiler for OpenVMS AXP generates an implicit memory
barrier when processing any of the VAX interlocked instructions (such as
BBSSI, BBCCI, and ADAWI) and interlocked queue instructions.

• The MACRO-32 compiler provides the EVAX_MB built-in to generate an
explicit memory barrier.

There are certain instances when a driver must include an explicit memory
barrier. For instance, if a driver and a device controller exchange data and
effect transactions by means of some in-memory structure, such as a command
buffer and a doorbell register, a driver ordinarily does not use IOC$CRAM_IO
or IOC$CRAM_QUEUE after setting up device registers with the appropriate
memory addresses. In such a case, a driver must take care to explicitly order the
writes to the command buffer and the write to the doorbell register to enforce
the order of reads and writes involving the buffer. The MACRO-32 compiler for
OpenVMS AXP provides an EVAX_MB built-in to allow you to insert a memory
barrier prior to the latter write, as in the following example:

; Set up the SCSI base register with command ring’s physical address
;-

MOVL SPDT$PS_CMD_RING(R4),R2 ; Get the SVA of command ring
BSBW GET_PHY_ADDR ; Convert it to physical address
DEVICELOCK - ; Get device lock and raise IPL

LOCKADDR=SPDT$L_DLCK(R4),-
LOCKIPL=SPDT$B_DIPL(R4),-
SAVIPL=-(SP),-
PRESERVE=NO

MOVL SPDT$PS_SCSI_BASE(R4),R0 ; Get address of SCSI base register
EVAX_STQ R1,(R0) ; Write cmd ring addr. to SCSI base register
EVAX_MB ; Do memory barrier for correct instr. sequence
MOVL SPDT$PS_SCSI_DB(R4),R0 ; Get address of SCSI doorbell register
EVAX_STQ R1,(R0) ; Ring the SCSI doorbell register

5.3 Ensuring Synchronized Access of Byte-, Word-, and
Longword-Sized Data Items

The VAX architecture supports instructions that can read or write byte- and word-
sized data in a single noninterruptible operation. The Alpha AXP architecture
supports instructions that read or write longword- and quadword-sized data
uninterruptedly. Because the AXP instruction sequence simplythat accomplishes
byte- and word-sized reads is interruptible, operations on byte and word data
that are automatic on VAX systems, are no longer atomic on AXP systems.

In addition, this difference in the granularity of memory access can also affect the
definition of which data is shared. On VAX systems, a byte- or word-sized item
that is shared can be manipulated without regard to neighboring data. On AXP
systems, the entire longword or quadword that contains the byte- or word-sized
item must be manipulated. If a word-sized (or longword-sized) item crosses a
longword- or quadword-address boundary, two longwords or quadwords may be
manipulated. Thus, because of its proximity to an explicitly shared data item,
neighboring data may become unintentionally shared.
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A device driver must take steps beyond those required in traditional interrupt
priority level (IPL) and spin lock synchronization to ensure that bytes, words, and
longwords are accessed without interference. Although interlocked instructions
(BBSSI, BBCCI, and ADAWI) generate memory barriers and interlocked
OpenVMS AXP code sequences, they assume a byte granularity environment.
Where the data segment on which these and other instructions operate may be
concurrently written by different threads, you may need to impose additional
synchronization as follows:

• Align data structures on natural address boundaries in memory. That is,
align all fields on a natural boundary: bytes at any byte address, words
at any address that is a multiple of 2, longwords at any address that is a
multiple of 4, and quadwords at any address that is a multiple of 8.

• Inspect shared fields and fields around them for intralongword or
intraquadword granularity problems. For instance, identify word and
byte fields that are shared between threads running at different IPLs—for
instance, a UCB bitmask where bits are accessed at device IPL and fork IPL
or a UCB quadword that consists of a longword accessed at IPL$_ASTDEL
and a word accessed at fork IPL.

Resolve intralongword and intraquadword granularity problems by padding
the bytes, words, or longwords involved, or promoting them to longword
or quadword fields. A bit that is changed by BBSSI or BBCCI, or a word
modified by ADAWI, should reside in a longword where the other portions of
the longword are not modified by an independent and concurrent instruction
thread. A longword bitmask should contain bits accessed only at fork IPL or
at device IPL, not at both.

• Identify base structure alignment to the MACRO-32 compiler, so that the
MACRO compiler can generate the most optimal and safest instruction
sequence to access its fields. For instance, if you know that the base
alignment of a structure is at a longword boundary, use the following:

.SYMBOL_ALIGNMENT LONG

.SYMBOL_ALIGNMENT QUAD

Whenever the MACRO-32 compiler encounters a reference in which a symbol
that is defined in the context of one of these directives is used as an offset
from a register, it generates Alpha AXP instructions reflecting the specified
symbol alignment and its own register alignment assumptions. Note that,
when you use one of these directives, you must insert the following directive
in the data declarations when the specified symbol alignment is no longer in
effect:

.SYMBOL_ALIGNMENT NONE

Note

The .SYMBOL_ALIGNMENT directive does not work in the context of the
$DEFINI, $DEF, _VIELD, and $DEFEND macros.

See Migrating to an OpenVMS AXP System: Porting VAX MACRO Code for
additional information on MACRO-32 compiler alignment assumptions and
instructions for using the .SYMBOL_ALIGNMENT directive.
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5.4 Using Instruction Memory Barriers
Code that modifies the instruction stream must be changed to properly
synchronize the old and new instructions streams. Use of an RET instruction to
accomplish this will not work on OpenVMS AXP systems.

If a driver code sequence changes the expected instruction stream, it must issue
an Instruction Memory Barrier (IMB) instruction after changing the instruction
stream and before the time the change is executed. For example, if a driver
stores an instruction sequence in an extension to the unit control block (UCB)
and then transfers control there, it must issue an IMB instruction after storing
the data in the UCB but before transferring control to the UCB data.

The MACRO-32 compiler for OpenVMS AXP provides the EVAX_IMB built-in to
explicitly insert an IMB instruction in the instruction stream.
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6
Conversion Guidelines

This chapter describes the tasks required to convert an OpenVMS VAX device
driver to an OpenVMS AXP Step 2 device driver. For more details about the
macros, system routines, and entry points listed in this chapter, see OpenVMS
AXP Device Support: Reference. For more details about porting VAX MACRO
code to OpenVMS AXP, see Migrating to an OpenVMS AXP System: Porting
VAX MACRO Code.

6.1 OpenVMS AXP Device Driver Program Sections
An OpenVMS AXP device driver consists of three distinct program sections, or
psects:

• $$$105_PROLOGUE, which contains the DPT and is defined automatically by
the DPTAB macro.

• $$$110_DATA, which contains driver data such as the driver dispatch table
(DDT) and the function decision table (FDT)

• $$$115_DRIVER, which contains driver code

Because OpenVMS AXP compiler technology does not allow code and data to
reside together in the same psect, you must keep code and data in the proper
psects of an OpenVMS AXP driver. Moreover, because OpenVMS AXP drivers are
loadable executive images, you must ensure that the psect attributes are correctly
and consistently defined so as to allow the image to be linked properly.

The following are guidelines for psect declaration:

• Add an invocation of the DRIVER_CODE macro prior to the first line of
executable code in the driver. By default, the DRIVER_CODE macro declares
the psect $$$115_DRIVER. However, you can specify any alternative psect
name consistent with the naming and linking conventions of the OpenVMS
VAX driver you are porting to OpenVMS AXP.

Unlike its behavior in OpenVMS VAX device drivers, the DDTAB macro
does not define the $$$115_DRIVER psect for OpenVMS AXP device drivers.
Rather it defines the data psect ($110_DATA) in which the DDT resides.

• OpenVMS macros that construct data, such as DDTAB and FUNCTAB,
automatically invoke the DRIVER_DATA macro prior to creating the data. By
default, the DRIVER_DATA macro declares the psect $$$110_DATA.

• You must move all driver-specific data structures currently defined within
the body of the code (in psect $$$115_DRIVER) to a data psect. Although the
DRIVER_DATA macro declares the psect $$$110_DATA by default, you can
specify any alternative psect name consistent with the naming and linking
conventions of the OpenVMS VAX driver you are porting to OpenVMS AXP.
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• If the driver consists of multiple source modules, you should replace each
explicit setting of the $$$115_DRIVER psect with an invocation of the
DRIVER_CODE macro to ensure that the correct standard psect for driver
code sections is always used.

6.2 DPTAB Changes
The driver prologue table (DPT) must declare that the driver is a Step 2 driver.
To identify an OpenVMS AXP Step 2 driver, specify step=2 when invoking the
DPTAB macro. The macro creates the constant DPT$K_STEP_2 and inserts it
into the DPT$IW_STEP field of the driver prologue table (DPT). The macro also
inserts the value DPT$K_STEP2_V2 in the DPT$IW_STEPVER field.

If you do not make this change, compilation errors will result. OpenVMS
AXP uses the value in DPT$IW_STEP to detect driver sources that have not
been modified to conform to the currently supported OpenVMS AXP driver
implementation. OpenVMS AXP uses the value in DPT$IW_STEPVER to enforce
the most recent driver loading procedure requirements.

In an OpenVMS VAX driver, the DPT must be at the very beginning of the driver
image. In an OpenVMS AXP driver, the DPT can be in any read/write image
section of the driver.

See OpenVMS AXP Device Support: Reference for more information about the
DPT and the DPTAB macro.

6.3 DDTAB Changes
The following sections summarize DDTAB macro changes you must make when
converting an OpenVMS VAX driver to an OpenVMS AXP driver.

6.3.1 DDTAB Routine Name Changes
The routines pointed to by the driver dispatch table (DDT) must conform to
Step 2 requirements. You must add entry point declarations for driver-specific
routines, but the names may remain unchanged. Change any OpenVMS routine
name referenced in the driver’s DDTAB macro invocation as follows:

1. Replace cancel=IOC$CANCELIO with cancel=IOC_STD$CANCELIO.

2. Replace mntver=IOC$MNTVER with mntver=IOC_STD$MNTVER.

See OpenVMS AXP Device Support: Reference for more information about the
driver dispatch table (DDT) and the DDTAB macro.

6.3.2 Specifying Controller and Unit Initialization Routines
An OpenVMS VAX device driver specifies the location of its controller
initialization routine by issuing a DPT_STORE macro of the following form:

DPT_STORE CRB, CRB$L_INTD+VEC$L_INITIAL, D, XX_CTRL_INIT

Similarly, an OpenVMS VAX driver may specify the location of its unit
initialization routine using the following:

DPT_STORE CRB, CRB$L_INTD+VEC$L_UNITINIT, D, XX_UNIT_INIT
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An OpenVMS AXP device driver must use the ctrlinit and unitinit arguments
to the DDTAB macro to specify the controller initialization routine address:

DDTAB -
ctrlinit=XX_CTRL_INIT,-
unitinit=XX_UNIT_INIT,-
.
.
.

See OpenVMS AXP Device Support: Reference for a description of the DDTAB
macro.

6.3.3 Simple Fork Mechanism—JSB-Based Fork Routines
Chapter 3 describes alternatives available to OpenVMS AXP device drivers for
suspension of execution. If you want to continue using the simple fork mechanism
with JSB-based fork routines for the code path from start I/O through request
complete, you must use the DDTAB JSB_START parameter to identify your start
I/O routine:

DDTAB -
JSB_START = driver_startio_routine

instead of:

DDTAB -
START = driver_startio_routine

By doing so, the IOC$START_C2J CALL-to-JSB jacket routine is actually used as
the start I/O entry. The IOC$START_C2J routine invokes the routine specified by
the JSB_START parameter. A similar approach can also be used for the alternate
start I/O entry point. The DDTAB JSB_ALTSTART parameter is used to specify
the alternate start I/O entry:

DDTAB -
JSB_ALTSTART = driver_altstart_routine

instead of:

DDTAB -
ALTSTART = driver_altstart_routine

The performance cost of this approach is one additional level of routine call to
dispatch an IRP to the driver’s start I/O routine or alternate start I/O routine.

6.3.4 Kernel Process Mechanism
If you want to use the kernel process mechanism, you must use the DDTAB
KP_STARTIO parameter to identify your start I/O routine as follows:

DDTAB -
START = EXE_STD$KP_STARTIO,-
KP_STARTIO = driver_startio_routine

6.4 Specifying an Interrupt Service Routine
An OpenVMS VAX device driver specifies the location of an interrupt service
routine by issuing a DPT_STORE macro of the following form:

DPT_STORE CRB, CRB$L_INTD+VEC$L_ISR, D, XX_ISR
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An OpenVMS AXP device driver specifies the location of an interrupt service
routine by issuing the new DPT_STORE_ISR macro, as follows:

DPT_STORE_ISR CRB$L_INTD, XX_ISR

See OpenVMS AXP Device Support: Reference for a description of the DPT_
STORE_ISR macro.

6.5 Interrupt Service Routine Entry Points
The interrupt service routine in an OpenVMS AXP device driver is a standard
call interface routine. The interrupt service routine is invoked by the system
service dispatcher with two parameters: the address of the IDB and the SCB
vector offset.

The .CALL_ENTRY or .ENTRY directives must be used to identify the entry
point of an OpenVMS AXP Step 2 device driver. The interrupt service routine
should save and restore any non-scratch register that it uses and it must transfer
control back to the interrupt dispatcher via a RET instruction. For example:

MY_ISR: .CALL_ENTRY PRESERVE=<R2,R3,R4,R5>
MOVL 4(AP),R4 ; retrieve IDB address
.
.
.
RET ; return back to interrupt dispatch

In contrast, an OpenVMS VAX interrupt service routine is not a standard call
procedure. It exits and dismisses the interrupt via an REI instruction.

6.6 Start I/O and Alternate Start I/O Entry Points
Section 3.2 describes the use of the kernel process services for the code path from
start I/O through request complete. The entry point of a kernel process start I/O
routine should be identified using either the .CALL_ENTRY or .ENTRY directives
as follows:

MY_STARTIO:
.CALL_ENTRY

Section 3.2.2 describes the complete requirements for a kernel process start I/O
routine.

If you choose to continue to use the simple fork mechanism, you must choose
between using a JSB-based fork routine environment that is very similar to the
OpenVMS VAX fork environment and a standard call based fork environment.
Section 3.1 describes the differences between the OpenVMS VAX and OpenVMS
AXP fork mechanisms.

The code path from start I/O through request complete in some existing drivers
written in MACRO-32 may be difficult and error prone to convert to the standard
call fork interfaces. This can apply to complex drivers that make extensive use
of branches between routines within the same module. If you choose to continue
to use the JSB-based environment, you should place the following entry point
directives at the beginning of your start I/O and alternate start I/O routines:

MY_STARTIO:
.JSB_ENTRY INPUT=<R3,R5>,SCRATCH=<R0,R1,R2,R3,R4>
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If you choose to convert your start I/O code path to the new standard call
interface, you should use the $DRIVER_START_ENTRY and $DRIVER_
ALTSTART_ENTRY macros to identify the entry points of your start I/O and
alternate start I/O routines:

MY_STARTIO:
$DRIVER_START_ENTRY

For information about additional requirements and guidelines for using the
standard call environment for fork routines, see Section 7.4.

6.7 Using the Driver Entry Point Routine Call Interfaces
To use the call interfaces required for Step 2 driver-supplied routines, perform
the following tasks:

1. Use the appropriate macro to identify entry points in your driver. Step 2
driver entry point macros include the following:

• $DRIVER_CANCEL_ENTRY

• $DRIVER_CANCEL_SELECTIVE_ENTRY

• $DRIVER_CHANNEL_ASSIGN_ENTRY

• $DRIVER_CLONEDUCB_ENTRY

• $DRIVER_CTRLINIT_ENTRY

• $DRIVER_ERRRTN_ENTRY

• $DRIVER_FDT_ENTRY

• $DRIVER_MNTVER_ENTRY

• $DRIVER_REGDUMP_ENTRY

• $DRIVER_DELIVER_ENTRY

• $DRIVER_UNITINIT_ENTRY

2. Use the default F ETCH=YES parameter value.

This value causes the standard interface parameters to be fetched and copied
to their OpenVMS VAX JSB interface registers, for example:

$DRIVER_UNITINIT_ENTRY FETCH=YES

results in

MOVL #SS$_NORMAL,R0
MOVL UNITARG$_IDB(AP),R4
MOVL UNITARG$_UCB(AP),R5

3. Use the default PRESERVE parameter value.

The default is the set of registers that was allowed to be scratched by the
OpenVMS VAX JSB interface routine, for example:

$DRIVER_UNITINIT_ENTRY

results in

PRESERVE=<R2>

This set of registers is augmented by the MACRO-32 compiler register
autopreservation feature. Use the .SET_REGISTERS WRITTEN=<Rn>
directive to augment this set of registers manually.
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4. Make sure that each Step 2 driver routine returns control to the operating
system with a RET instruction, instead of an RSB instruction.

See OpenVMS AXP Device Support: Reference for more information about the
Step 2 driver entry point macros.

6.8 Returning Status from Controller and Unit Initialization
Routines

An OpenVMS AXP device driver’s controller initialization routine and unit
initialization routine must return status in R0. If the status returned is not
successful, the initialization of your driver is terminated.

6.9 FUNCTAB Macro Changes
An OpenVMS VAX driver contains three or more FUNCTAB macro invocations.
For Step 2 drivers, the function decision table (FDT) format is significantly
different. Step 2 driver changes include the following:

• The FUNCTAB macro is obsolete.

• The FDT structure consists of a 64-bit mask specifying the buffered functions
and a 64-entry vector pointing to the upper-level FDT action routine that
corresponds to each of the I/O function codes. There is no bit mask of legal
functions.

• Three new macros are used to build the FDT:

FDT_INI initializes an FDT structure
FDT_BUF declares the buffered I/O functions
FDT_ACT declares an upper-level FDT action routine for a set of I/O
functions

You must make the following changes:

1. Delete the first FUNCTAB macro, the one that identifies valid I/O function
codes, and the FDT label. In their place, insert an FDT_INI macro. The
single argument to FDT_INI is the label for the FDT. The label should match
the name supplied to the functb argument of the DDTAB macro.

2. Replace the second FUNCTAB macro, the one that identifies buffered I/O
functions, with an FDT_BUF macro. Replace the word ‘‘FUNCTAB’’ with the
word ‘‘FDT_BUF’’ and remove the first null argument.

3. Replace each subsequent FUNCTAB macro with an FDT_ACT macro.

For example:

OpenVMS VAX FDT Declaration

MY_FUNCTBL:

FUNCTAB ,- ;legal func
<SENSEMODE,SENSECHAR,-
WRITELBLK,WRITEPBLK>

FUNCTAB ,- ;buffered func
<SENSEMODE,SENSECHAR>

FUNCTAB EXE$SENSE_MODE,-
<SENSEMODE,SENSECHAR>

FUNCTAB MY_FDT_WRITE,-
<WRITELBLK,WRITEPBLK>
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Step 2 FDT Declaration

FDT_INI MY_FUNCTBL

FDT_BUF <SENSEMODE,SENSECHAR>

FDT_ACT EXE_STD$SENSE_MODE,-
<SENSEMODE,SENSECHAR>

FDT_ACT MY_FDT_WRITE,-
<WRITELBLK,WRITEPBLK>

Because Step 2 driver support replaces all system-supplied upper-level FDT
action routines with new, callable routines, you must also ensure that each
FDT_ACT invocation specifies the correct routine name. Generally, the string
‘‘_STD’’ follows the facility ID and precedes the dollar sign ($) in the routine
name. For example, replace the following code:

FUNCTAB EXE$SETMODE, -
<SETCHAR,-
SETMODE>

with:

FDT_ACT EXE_STD$SETMODE, -
<SETCHAR,-
SETMODE>

Table 6–1 identifies the new OpenVMS AXP system-supplied upper-level FDT
action routines and the OpenVMS VAX routines they replace.

Table 6–1 OpenVMS AXP Upper-Level FDT Action Routines

Obsolete OpenVMS VAX
Routine OpenVMS AXP FDT Action Routine

ACP$ACCESS ACP_STD$ACCESS

ACP$ACCESSNET ACP_STD$ACCESSNET

ACP$DEACCESS ACP_STD$DEACCESS

ACP$MODIFY ACP_STD$MODIFY

ACP$MOUNT ACP_STD$MOUNT

ACP$READBLK ACP_STD$READBLK

ACP$WRITEBLK ACP_STD$WRITEBLK

New for Step 2 EXE$ILLIOFUNC

EXE$LCLDSKVALID EXE_STD$LCLDSKVALID

EXE$MODIFY EXE_STD$MODIFY

EXE$ONEPARM EXE_STD$ONEPARM

EXE$READ EXE_STD$READ

EXE$SENSEMODE EXE_STD$SENSEMODE

EXE$SETCHAR EXE_STD$SETCHAR

EXE$SETMODE EXE_STD$SETMODE

EXE$WRITE EXE_STD$WRITE

EXE$ZEROPARM EXE_STD$ZEROPARM

(continued on next page)
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Table 6–1 (Cont.) OpenVMS AXP Upper-Level FDT Action Routines

Obsolete OpenVMS VAX
Routine OpenVMS AXP FDT Action Routine

MT$CHECK_ACCESS1 MT_STD$CHECK_ACCESS

1For information about changes in routine behavior, see OpenVMS AXP Device Support: Reference.

For more information about the FDT_INI, FDT_BUF, and FDT_ACT macros and
the upper-level FDT action, see OpenVMS AXP Device Support: Reference.

Warning

Step 2 device drivers support only a single upper-level FDT action routine
per I/O function code. For those functions that require processing by
more than one upper-level FDT action routine, you should provide a new
composite FDT function, which sequentially calls each of the required
FDT routines as long as the returned status is successful. For more
information about composite routines, see Chapter 7.

6.10 FDT Routine Changes
The Step 2 FDT routine changes you need to make depend on the type of FDT
routine your driver includes. This section names and describes types of FDT
routines, summarizes the differences between OpenVMS VAX and OpenVMS AXP
FDT processing, and specifies the required Step 2 FDT routine changes.

An upper-level FDT action routine is a routine listed in a driver’s function
decision table (FDT) as a result of the driver’s invocation of the FDT_ACT macro.
FDT dispatching code in the $QIO system service calls an upper-level FDT action
routine, passing to it the addresses of the I/O request packet (IRP), process
control block (PCB), unit control block (UCB), and channel control block (CCB).
An upper-level FDT action routine must return SS$_FDT_COMPL status to the
$QIO system service. (See OpenVMS AXP Device Support: Reference for a full
description of the formal interface to an upper-level FDT action routine.)

OpenVMS provides a set of upper-level FDT action routines, but drivers can
also define their own driver-specific upper-level FDT action routines. EXE_
STD$READ is an example of a Step 2 upper-level FDT action routine.

An FDT exit routine is a routine used by an OpenVMS VAX driver to
terminate FDT processing and exit from the $QIO system service. For example,
EXE$QIODRVPKT is an FDT exit routine. FDT exit routines use the RET-
under-JSB mechanism to exit from the $QIO system service. The RET under
JSB mechanism is the technique of using a RET instruction to return from a
JSB interface routine. This RET instruction causes control to return from the
most recent CALL interface routine on the current call tree. This technique
unwinds any intervening JSB interface routines without returning to their callers
and without restoring any register values that were saved by the unwound
JSB routines. In a Step 2 driver, FDT exit routines have been replaced by FDT
completion routines.
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FDT completion routines are the Step 2 replacements for OpenVMS VAX
FDT exit routines. Like FDT exit routines, completion routines complete FDT
processing by queuing the I/O request to the appropriate next stage of processing.
Unlike FDT exit routines, FDT completion routines return back to their callers
and do not rely on the RET-under-JSB mechanism. EXE_STD$QIODRKPT is an
example of a Step 2 FDT exit routine.

FDT support routines are routines that are called during FDT processing, but
they are not upper-level FDT action routines. They have code paths that call
FDT completion routines, but they do not complete FDT processing themselves.
OpenVMS VAX FDT support routines must use a JSB interface. OpenVMS
provides a set of FDT support routines, but drivers can also include their own
support routines. EXE_STD$READCHK is an example of a Step 2 FDT support
routine.

For OpenVMS VAX drivers:

• Upper-level FDT action routines are invoked via a JSB interface.

• A return from an upper-level FDT action routine via an RSB instruction
returns control back to the FDT dispatch loop.

• FDT support routines are all invoked via a JSB interface.

• Exit from OpenVMS VAX FDT processing, and the $QIO system service is
via a RET-under-JSB in an FDT exit routine; for example, EXE$ABORTIO,
EXE$QIODRVPKT, and so on.

• The $QIO function-dependent parameters are accessible using AP offsets from
within any FDT routine. The AP register points directly to the caller’s $QIO
parameter P1 value.

In contrast, for Step 2 drivers:

• Upper-level FDT action routines are invoked via a new standard call
interface.

• Control is returned from an upper-level FDT action routine via a RET
instruction, which exits the FDT dispatcher and returns to the $QIO system
service.

• Driver-specific FDT support routines may continue to use JSB interfaces,
however OpenVMS-provided FDT support routines should be invoked using
the new CALL_x macros.

• FDT completion routines are used instead of FDT exit routines. FDT
completion routines return back to their callers with the SS$_FDT_COMPL
status. All upper-level FDT action routines must return this status back to
the $QIO system service.

• The $QIO function-dependent parameters are accessible only from the IRP
(offsets IRP$L_QIO_P1, and so on). The $QIO parameters cannot be accessed
using AP register offsets in any Step 2 FDT routines.

6–9



Conversion Guidelines
6.10 FDT Routine Changes

6.10.1 Upper-Level Routine Entry Point Changes
If the OpenVMS VAX driver you are converting to Step 2 includes a device-specific
upper-level FDT action routine, perform the following tasks:

1. Insert the $DRIVER_FDT_ENTRY macro at the entry points of all the
upper-level FDT routines that you define in your driver. (See OpenVMS
AXP Device Support: Reference.) This macro declares the routine’s call entry
point and ensures, by default, that all nonscratch registers defined by the
OpenVMS Calling Standard are preserved. This macro also invokes the
$FDTARGDEF macro, thus allowing the FDT routine to access its arguments
at their standard locations with respect to the AP.

2. Ensure that the routine does not read R7 to obtain the low-order 6 bits of the
$QIO function code parameter, or R8 to obtain the FDT table entry address.
It can instead obtain the function code from the IRP and the start of the Step
2 FDT structure from DDT$PS_FDT_2. Note that the Step 2 FDT format
differs from the OpenVMS VAX format.

3. Use the default register PRESERVE list on $DRIVER_FDT_ENTRY macro.

4. Remove any definitions of the P1 through P6 offsets that OpenVMS VAX
drivers use to access the $QIO function-dependent parameters. For example,
remove the following local symbol definitions:

P1 = 0
P2 = 4
P3 = 8
P4 = 12
P5 = 16
P6 = 20

This will help you to find places where you must use the IRP$L_QIO_Pn
offsets instead.

5. Access the $QIO function-dependent parameters using the IRP$L_QIO_Pn
offsets instead of AP offsets. For example, you must use:

MOVL IRP$L_QIO_P1(R3),R0 ;Get caller’s buffer address (P1)

instead of:

MOVL P1(AP),R0

6.10.2 FDT Exit Routine Changes
Replace the JMP or JSB instructions to OpenVMS VAX FDT exit routines with
the Step 2 macros (listed in Table 6–2) that call FDT completion routines. Use
the default value for the do_ret=YES parameter.
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For example, replace:

JMP G^EXE$ABORTIO

with:

CALL_ABORTIO

Table 6–2 FDT Completion Routines and Macros

Obsolete OpenVMS VAX FDT
Exit Routine Macro FDT Completion Routine

EXE$ABORTIO CALL_ABORTIO EXE_STD$ABORTIO

EXE$ALTQUEPKT CALL_ALTQUEPKT1 EXE_STD$ALTQUEPKT

EXE$FINISHIO CALL_FINISHIO EXE_STD$FINISHIO

EXE$FINISHIOC CALL_FINISHIOC EXE_STD$FINISHIO

New for Step 2 CALL_FINISHIO_NOIOST EXE_STD$FINISHIO

EXE$IORSNWAIT CALL_IORSNWAIT EXE_STD$IORSNWAIT

EXE$QIOACPPKT CALL_QIOACPPKT EXE_STD$QIOACPPKT

EXE$QIODRVPKT CALL_QIODRVPKT EXE_STD$QIODRVPKT

EXE$QIORETURN none none2

1The CALL_ALTQUEPKT macro does not provide the do_ret argument. An FDT routine that invokes CALL_
ALTQUEPKT must typically manage the dispatching of I/O requests to the driver’s alternate start-I/O entry point.
2If your driver issues a JSB or JMP instruction to EXE$QIORETURN, you must replace the JSB or JMP with code that:

a. Releases the device lock if held. EXE$QIORETURN contained code that unconditionally released the device lock.
b. Places SS$_FDT_COMPL status in R0 before returning to its caller. Because the final system service status in the

FDT_CONTEXT structure is SS$_NORMAL by default, your driver need do nothing special to deliver a success status
to the $QIO caller.

If you call an FDT completion routine directly (that is, not using a macro), you
should note that FDT completion routines:

• Always return to their caller and not to the system service dispatcher.

• Always return the warning status SS$_FDT_COMPL.

• Place the $QIO system service status in a new structure called the FDT_
CONTEXT structure.

See OpenVMS AXP Device Support: Reference for more information about FDT
completion routines and a detailed description of the macros.

6.10.3 OpenVMS-Supplied FDT Support Routine Changes
For Step 2 drivers, replace any JSB instruction to an OpenVMS supplied FDT
support routine with the appropriate JSB-replacement macro. (See Table 6–3.)
The macros do the following:

• Use the input registers for the corresponding OpenVMS VAX FDT support
routine as implicit inputs.

• Call the new Step 2 support routine passing the register values in the correct
Step 2 parameter order.

• Restore the output values into the output registers for the corresponding
OpenVMS VAX routine.
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• Generate code that checks the returned status and invokes a RET instruction
on an error. (Some OpenVMS VAX FDT support routines never returned to
their callers in the event of an error.)

Table 6–3 System-Supplied FDT Support Routines

Obsolete OpenVMS VAX FDT
Support Routine Macro FDT Support Routine

EXE$MODIFYLOCK CALL_MODIFYLOCK EXE_STD$MODIFYLOCK

EXE$MODIFYLOCK_ERR CALL_MODIFYLOCK_ERR EXE_STD$MODIFYLOCK

EXE$READCHK CALL_READCHK EXE_STD$READCHK

EXE$READCHKR CALL_READCHKR EXE_STD$READCHK

EXE$READLOCK CALL_READLOCK EXE_STD$READLOCK

EXE$READLOCK_ERR CALL_READLOCK_ERR EXE_STD$READLOCK

COM$SETATTNAST CALL_SETATTNAST COM_STD$SETATTNAST

COM$SETCTRLAST CALL_SETCTRLAST COM_STD$SETCTRLAST

EXE$WRITECHK CALL_WRITECHK EXE_STD$WRITECHK

EXE$WRITECHKR CALL_WRITECHKR EXE_STD$WRITECHK

EXE$WRITELOCK CALL_WRITELOCK EXE_STD$WRITELOCK

EXE$WRITELOCK_ERR CALL_WRITELOCK_ERR EXE_STD$WRITELOCK

See OpenVMS AXP Device Support: Reference for further discussion of system-
supplied FDT support routines and details about the macros.

6.10.4 Driver-Supplied FDT Support Routine Changes
It is easiest to use your current JSB interfaces for all driver-supplied FDT
support routines. In fact, the correct operation of the CALL_x macros depends on
keeping the JSB interfaces for your support routines.

To convert an OpenVMS VAX driver that contains driver-supplied FDT support
routines to the Step 2 interface, do the following:

1. Use the $DRIVER_FDT_ENTRY macro for upper-level routines with the
default preserve list, regardless of the registers that are actually modified by
the upper-level FDT routine.

2. Use the FDT completion macros with DO_ RET=YES (the default) and the
FDT support routines in Table 6–3.

3. Keep the JSB interface for all driver-supplied FDT support routines.

This means that you must insert the .JSB_ENTRY directive at the entry
points of all the FDT support routines that you define. You must also identify
the appropriate register lists for the INPUT, OUTPUT, and SCRATCH
parameters on each of your .JSB_ENTRY directives. The correct register lists
are determined by the input and output registers that your routine provides.
It is crucial that you list the correct OUTPUT registers.

If you want to convert driver-supplied FDT support routines to CALL
interfaces, see Chapter 7. For additional information about the .JSB_ENTRY
directive, see Migrating to an OpenVMS AXP System: Porting VAX MACRO
Code
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4. Access the $QIO function-dependent parameters using the IRP$L_QIO_Pn
offsets instead of AP offsets. For example, you must use:

MOVL IRP$L_QIO_P2(R3),R1 ;Get caller’s P2 parameter

instead of:

MOVL P2(AP),R0

6.10.5 Returning from Upper-Level Routines
In most cases, upper-level FDT action routines end with a call to an FDT
completion macro that includes a RET instruction. However, if after following
the steps outlined in Section 6.10.1 through Section 6.10.4, you still have an RSB
instruction in your upper-level FDT action routine, you should change it to the
following:

MOVL #SS$_NORMAL,R0
RET

Encountering an RSB instruction in your upper-level FDT action routine indicates
that the upper-level FDT action routine, which you are converting, is one of
several upper-level routines called for a single I/O function. Because Step 2
drivers can have only one upper-level FDT action routine for each I/O function,
you must also make this FDT routine a composite FDT routine. For information
about composite FDT routines, see Section 7.1.

6.11 Adding .JSB_ENTRY Directives
Previous sections of this chapter describe the following topics:

• Guidelines for converting some JSB interface routines to call interfaces

• The required use of the new $DRIVER_xxx_ENTRY entry point macros

• The use of the .JSB_ENTRY directive to identify the entry points of some
routines that either can or must retain a JSB interface

After you follow these guidelines, you must identify the entry points of any
remaining JSB interface routines in your driver by using the .JSB_ENTRY
directive. You must also identify the appropriate register lists for the INPUT,
OUTPUT, and SCRATCH parameters on each of your .JSB_ENTRY directives.
The correct register lists are determined by the input and output registers that
your routine provides. It is crucial that you list the correct OUTPUT registers.
For more information about the .JSB_ENTRY directive, see Migrating to an
OpenVMS AXP System: Porting VAX MACRO Code.

Note

The FORK_ROUTINE macro is a convenient way to declare the entry
point of any fork routines that you define.
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6.12 Common OpenVMS-Supplied EXEC Routines
Replace any JSB to the routines listed in Table 6–4 with the appropriate macro.
If the interface provided by the JSB-replacement macro differs from the original
JSB interface, the macro generates a compile-time warning. The compile-time
warning identifies the register output that is not provided by the replacement
macro. After you have made sure that your code does not depend on this
output you can disable the warning by using the INTERFACE_WARNING=NO
parameter on the macro.

Certain macros ensure compatibility with the original JSB interface by saving
R0, R1, or both. These macros provide an argument that allows you to specify
that these registers not be saved. See OpenVMS AXP Device Support: Reference
for a detailed description of the macros.

Most of the JSB-based routines listed in Table 6–4 continue to be available to
Step 2 drivers. However, in many cases, the new call-based interface routine
provides better performance than the JSB-based interfaces. If you intend to call
a call-based system routine directly (without using a macro), check the ‘‘Notes
for Converting Step 1 Drivers’’ section of the routine’s description in OpenVMS
AXP Device Support: Reference to verify the routine interface. You can optimize
performance of the macro by following the recommendations listed in Chapter 7.

Table 6–4 Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

ACP$ACCESS1 CALL_ACCESS No No

ACP$ACCESSNET1 CALL_ACCESSNET No No

ACP$DEACCESS1 CALL_DEACCESS No No

ACP$MODIFY1 CALL_ACP_MODIFY No No

ACP$MOUNT1 CALL_MOUNT No No

ACP$READBLK1 CALL_READBLK No No

ACP$WRITEBLK1 CALL_WRITEBLK No No

COM$DELATTNAST CALL_DELATTNAST No No

COM$DELATTNASTP CALL_DELATTNASTP No No

COM$DELCTRLAST CALL_DELCTRLAST No No

COM$DELCTRLASTP CALL_DELCTRLASTP No No

COM$DRVDEALMEM CALL_DRVDEALMEM No No

COM$FLUSHATTNS CALL_FLUSHATTNS No No

COM$FLUSHCTRLS CALL_FLUSHCTRLS No No

COM$POST CALL_POST No No

COM$POST_NOCNT CALL_POST_NOCNT No No

COM$SETATTNAST1 CALL_SETATTNAST No No

COM$SETCTRLAST1 CALL_SETCTRLAST No No

ERL$ALLOCEMB CALL_ALLOCEMB No No

1The JSB-based OpenVMS VAX routine is not supported by the OpenVMS AXP operating system Version 6.1.

(continued on next page)
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Table 6–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

ERL$DEVICEATTN CALL_DEVICEATTN No No

ERL$DEVICERR CALL_DEVICERR No No

ERL$DEVICTMO CALL_DEVICTMO No No

ERL$RELEASEMB CALL_RELEASEMB No No

EXE$ABORTIO1 CALL_ABORTIO No No

EXE$ALLOCBUF CALL_ALLOCBUF No No

EXE$ALLOCIRP CALL_ALLOCIRP No No

EXE$ALTQUEPKT CALL_ALTQUEPKT No No

EXE$CARRIAGE CALL_CARRIAGE No No

EXE$CHKCREACCES CALL_CHKCREACCES No R1

EXE$CHKDELACCES CALL_CHKDELACCES No R1

EXE$CHKEXEACCES CALL_CHKEXEACCES No R1

EXE$CHKLOGACCES CALL_CHKLOGACCES No R1

EXE$CHKPHYACCES CALL_CHKPHYACCES No R1

EXE$CHKRDACCES CALL_CHKRDACCES No R1

EXE$CHKWRTACCES CALL_CHKWRTACCES No R1

EXE$FINISHIO1 CALL_FINISHIO No No

EXE$FINISHIOC1 CALL_FINISHIOC No No

EXE$INSERT_IRP CALL_INSERT_IRP No No

EXE$INSIOQ CALL_INSIOQ No No

EXE$INSIOQC CALL_INSIOQC No No

EXE$IORSNWAIT1 CALL_IORSNWAIT No No

EXE$LCLDSKVALID1 CALL_LCLDSKVALID No No

EXE$MNTVERSIO CALL_MNTVERSIO No No

EXE$MODIFY1 CALL_EXE_MODIFY No No

EXE$MODIFYLOCK1 CALL_MODIFYLOCK No No

EXE$MODIFYLOCK_ERR1 CALL_MODIFYLOCK_
ERR

Yes No

EXE$MOUNT_VER CALL_MOUNT_VER No R0 and R1

EXE$ONEPARM1 CALL_ONEPARM No No

EXE$PRIMITIVE_FORK FORK2 No No

EXE$PRIMITIVE_FORK_WAIT FORK_WAIT2 No No

EXE$QIOACPPKT1 CALL_QIOACPPKT No No

EXE$QIODRVPKT1 CALL_QIODRVPKT No No

EXE$QXQPPKT1 CALL_QXQPPKT No No

EXE$READCHK 1 CALL_READCHK No No

1The JSB-based OpenVMS VAX routine is not supported by the OpenVMS AXP operating system Version 6.1.
2The standard call interface version of the routine is used by the macro if the ENVIRONMENT=CALL parameter is
specified.

(continued on next page)
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Table 6–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

EXE$READCHKR1 CALL_READCHKR No No

EXE$READLOCK1 CALL_READLOCK No No

EXE$READLOCK_ERR1 CALL_READLOCK_
ERR

Yes No

EXE$SENSEMODE1 CALL_SENSEMODE No No

EXE$SETCHAR1 CALL_SETCHAR No No

EXE$SETMODE1 CALL_SETMODE No No

EXE$SNDEVMSG CALL_SNDEVMSG No No

EXE$WRITE1 CALL_WRITE No No

EXE$WRITECHK1 CALL_WRITECHK No No

EXE$WRITECHKR1 CALL_WRITECHKR No No

EXE$WRITELOCK1 CALL_WRITELOCK No No

EXE$WRITELOCK_ERR1 CALL_WRITELOCK_
ERR

Yes No

EXE$WRTMAILBOX CALL_WRTMAILBOX No No

EXE$ZEROPARM1 CALL_ZEROPARM No No

IOC$ALTREQCOM CALL_ALTREQCOM No No

IOC$BROADCAST CALL_BROADCAST No R1

IOC$CANCELIO CALL_CANCELIO No R0 and R1

IOC$CLONE_UCB1 CALL_CLONE_UCB Yes No

IOC$COPY_UCB CALL_COPY_UCB No No

IOC$CREDIT_UCB CALL_CREDIT_UCB No No

IOC$CVTLOGPHY CALL_CVTLOGPHY No No

IOC$CVT_DEVNAM CALL_CVT_DEVNAM No No

IOC$DELETE_UCB CALL_DELETE_UCB No No

IOC$DIAGBUFILL CALL_DIAGBUFILL No No

IOC$FILSPT CALL_FILSPT No No

IOC$GETBYTE CALL_GETBYTE No No

IOC$INITBUFWIND CALL_INITBUFWIND No No

IOC$INITIATE CALL_INITIATE No No

IOC$LINK_UCB1 CALL_LINK_UCB Yes No

IOC$MAPVBLK CALL_MAPVBLK No No

IOC$MNTVER CALL_MNTVER No No

IOC$MOVFRUSER CALL_MOVFRUSER No No

IOC$MOVFRUSER2 CALL_MOVFRUSER2 No No

IOC$MOVTOUSER CALL_MOVTOUSER No No

IOC$MOVTOUSER2 CALL_MOVTOUSER2 No No

1The JSB-based OpenVMS VAX routine is not supported by the OpenVMS AXP operating system Version 6.1.

(continued on next page)
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Table 6–4 (Cont.) Replacement Macros for JSB System Routines

JSB Routine Replacement Macro
Interface
Warning Save R0/R1

IOC$PARSDEVNAM CALL_PARSDEVNAM No No

IOC$POST_IRP CALL_POST_IRP No No

IOC$PRIMITIVE_REQCHANH1 REQCHAN No No

IOC$PRIMITIVE_REQCHANL1 REQCHAN No No

IOC$PRIMITIVE_WFIKPCH WFIKPCH No No

IOC$PRIMITIVE_WFIRLCH WFIRLCH No No

IOC$PTETOPFN CALL_PTETOPFN No R0 and R1

IOC$QNXTSEG1 CALL_QNXTSEG1 No No

IOC$RELCHAN RELCHAN No No

IOC$REQCOM REQCOM No No

IOC$SEARCHDEV CALL_SEARCHDEV No No

IOC$SEARCHINT CALL_SEARCHINT No No

IOC$SEVER_UCB CALL_SEVER_UCB No No

IOC$SIMREQCOM CALL_SIMREQCOM No No

IOC$THREADCRB CALL_THREADCRB No R0

MMG$IOLOCK CALL_IOLOCK No No

MMG$UNLOCK CALL_UNLOCK No No

MT$CHECK_ACCESS1 CALL_CHECK_
ACCESS

Yes No

SCH$IOLOCKR CALL_IOLOCKR No R1

SCH$IOLOCKW CALL_IOLOCKW No No

SCH$IOUNLOCK CALL_IOUNLOCK No No

1The JSB-based OpenVMS VAX routine is not supported by the OpenVMS AXP operating system Version 6.1.

6.13 New, Changed, and Unsupported OpenVMS Driver Macros
Table 6–5 contains a partial list of the OpenVMS driver macros that have
changed for OpenVMS AXP. For a complete list of OpenVMS AXP driver macros
and more details about them, see OpenVMS AXP Device Support: Reference.

Table 6–5 New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

ADPDISP Causes a branch to a specified address given the
existence of a selected adapter characteristic

Not supported

CLASS_UNIT_INIT Generates the common code that must be
executed by the unit initialization routine of
all terminal port drivers

Changed

(continued on next page)
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Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

CPUDISP Causes a branch to a specified address according
to the CPU type of the AXP processor executing
the code generated by the macro expansion

Changed

CALL_ABORTIO Invokes FDT completion routine to abort an I/O
request. Replacement for JMP EXE$ABORTIO

New

CALL_ALTQUEPKT Invokes FDT completion routine to queue an I/O
request to the driver’s alternate start I/O routine.
Replacement for JSB EXE$ALTQUEPKT

New

CALL_FINISHIO Invokes FDT completion routine to finish an I/O
request. Replacement for JMP EXE$FINISHIO

New

CALL_FINISHIOC Invokes FDT completion routine to finish an I/O
request. Replacement for JMP EXE$FINISHIOC

New

CALL_IORNSWAIT Invokes FDT completion routine to wait for a
resource that is required for this I/O request.
Replacement for JMP EXE$IORSNWAIT

New

CALL_MODIFYLOCK_
ERR

Check buffer for modify access and lock into
memory. An error routine is called on any
failure before the I/O request is aborted.
Replacement for JSB EXE$MODIFYLOCKR.
See also $DRIVER_ERRRTN_ENTRY

New

CALL_QIOACPPKT Invokes FDT completion routine to queue an I/O
request to the XQP or an ACP. Replacement for
JMP EXE$QIOACPPKT

New

CALL_QIODRVPKT Invokes FDT completion routine to queue an
I/O request to the driver’s start I/O routine.
Replacement for JMP EXE$QIODRVPKT

New

CALL_READLOCK_ERR Check buffer for read access and lock into
memory. An error routine is called on any failure
before the I/O request is aborted. Replacement
for JSB EXE$READLOCKR. See also $DRIVER_
ERRRTN_ENTRY

New

CALL_WRITELOCK_ERR Check buffer for read access and lock into
memory. An error routine is called on any
failure before the I/O request is aborted.
Replacement for JSB EXE$WRITELOCKR.
See also $DRIVER_ERRRTN_ENTRY

New

CRAM_ALLOC Allocates a controller register access mailbox New

CRAM_CMD Calculates the COMMAND, MASK, and RBADR
fields for a hardware I/O mailbox according to the
requirements of a specific I/O interconnect

New

CRAM_DEALLOC Deallocates a controller register access mailbox New

CRAM_IO Queues the hardware I/O mailbox defined within
a controller register access mailbox (CRAM) to
the mailbox pointer register (MBPR) and awaits
the completion of the mailbox transaction

New

CRAM_QUEUE Queues the hardware I/O mailbox defined within
a controller register access mailbox (CRAM) to
the mailbox pointer register (MBPR)

New

(continued on next page)
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Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

CRAM_WAIT Awaits the completion of a hardware I/O mailbox
transaction to a tightly coupled I/O interconnect

New

DDTAB Generates a driver dispatch table (DDT) labeled
devnam$DDT

Changed

DEVICELOCK Achieves synchronized access to a device’s
database as appropriate to the processing
environment

Changed

DPTAB Generates a driver prologue table (DPT) in a
program section called $$$105_PROLOGUE

Changed

DPT_STORE In the context of a DPTAB macro invocation,
generates driver structure initialization and
reinitialization routines which the driver loading
and reloading procedures call to store values in a
table or data structure

Changed

DPT_STORE_ISR In the context of a DPTAB macro invocation,
generates the addresses of the code entry point
and procedure descriptor of an interrupt service
routine and stores them in the interrupt transfer
vector block (VEC)

New

DRIVER_CODE Declares the program section (psect) that
contains driver code

New

DRIVER_DATA Declares the program section (psect) that
contains driver data

New

$DRIVER_ALTSTART_
ENTRY

Defines the driver alternate start I/O routine
entry point for drivers that use the simple fork
mechanism and the CALL-based fork routine
environment

New

$DRIVER_CANCEL_
ENTRY

Defines the driver cancel routine entry point New

$DRIVER_CANCEL_
SELECTIVE_ENTRY

Defines the driver selective cancel routine entry
point

New

$DRIVER_CHANNEL_
ASSIGN_ENTRY

Defines the driver channel assign routine entry
point

New

$DRIVER_CLONEDUCB_
ENTRY

Defines the driver cloned UCB routine entry
point

New

$DRIVER_CTRLINIT_
ENTRY

Defines the driver controller initialization routine
entry point

New

$DRIVER_DELIVER_
ENTRY

Defines the driver unit delivery routine entry
point

New

$DRIVER_ERRRTN_
ENTRY

Defines a driver error routine entry point. Error
routines are used in conjunction with the CALL_
MODIFYLOCK_ERR, CALL_READLOCK_ERR,
and CALL_WRITELOCK_ERR macros

New

$DRIVER_CLONEDUCB_
ENTRY

Defines the driver cloned UCB routine entry
point

New

$DRIVER_FDT_ENTRY Defines a driver upper-level FDT routine entry
point

New

(continued on next page)
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Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

$DRIVER_MNTVER_
ENTRY

Defines the driver mount verification routine
entry point

New

$DRIVER_START_
ENTRY

Defines the driver start I/O routine entry point
for drivers that use the simple fork mechanism
and the CALL-based fork routine environment

New

$DRIVER_UNITINIT_
ENTRY

Defines the driver unit initialization routine
entry point

New

FDT_ACT Specifies an FDT action routine for set of I/O
function codes

New

FDT_BUF Specifies the buffered functions for a function
decision table

New

FDT_INI Initializes the function decision table New

FORK Creates a simple fork process on the local
processor

Changed

FORK_ROUTINE Defines a fork routine entry point New

FORK_WAIT Inserts a fork block on the fork-and-wait queue Changed

FORKLOCK Achieves synchronized access to a device driver’s
fork database as appropriate to the processing
environment

Changed

FUNCTAB Builds a function decision table entry in an
OpenVMS VAX driver

Replaced by FDT_INI,
FDT_BUF, FDT_ACT

INVALIDATE_TB Allows a single page-table entry (PTE) to be
modified while any translation buffer entry that
maps it is invalidated, or invalidates the entire
translation buffer

Replaced by TBI_ALL,
TBI_DATA_64, TBI_
SINGLE, and TBI_
SINGLE_64 macros in
OpenVMS AXP systems

IOFORK Creates a fork process on the local processor
for a device driver, disabling timeouts from the
associated device

Changed

IFNORD, IFNOWRT,
IFRD, IFWRT

Determines the read or write accessibility of a
range of memory locations

Changed

KP_ALLOCATE_KPB Creates a KPB and a kernel process stack, as
required by the kernel process services

New

KP_DEALLOCATE_KPB Deallocates a KPB and its associated kernel
process stack

New

KP_END Terminates the execution of a kernel process New

KP_RESTART Resumes the execution of a kernel process New

KP_REQCOM Invokes device-independent I/O postprocessing
from a kernel process

New

KP_STALL_FORK, KP_
STALL_IOFORK

Stall a kernel process in such a manner that it
can be resumed by the fork dispatcher

New

KP_STALL_FORK_WAIT Stalls a kernel process in such a manner that it
can be resumed by the software timer interrupt
service routine’s examination of the fork-and-wait
queue

New

KP_STALL_GENERAL Stalls the execution of a kernel process New

(continued on next page)
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Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

KP_STALL_REQCHAN Stalls a kernel process in such a manner that
it can be resumed by the granting of a device
controller channel

New

KP_STALL_WFIKPCH,
KP_STALL_WFIRLCH

Stalls a kernel process in such a manner that it
can be resumed by device interrupt processing

New

KP_START Starts the execution of a kernel process New

KP_SWITCH_TO_KP_
STACK

Switches to kernel process context New

LOADALT Loads a set of Q22–bus alternate map registers Not supported

LOADMBA Loads MASSBUS map registers Not supported

LOADUBA Loads a set of UNIBUS map registers or a set of
the first 496 Q22–bus map registers

Not supported

LOCK Achieves synchronized access to a system
resource as appropriate to the processing
environment

Changed

RELALT Releases a set of Q22–bus alternate map registers
allocated to the driver

Not supported

RELDPR Releases a UNIBUS adapter data path register
allocated to the driver

Not supported

RELMPR Releases a set of UNIBUS map registers or a set
of the first 496 Q22–bus map registers allocated
to the driver

Not supported

RELSCHAN Releases all secondary channels allocated to the
driver

Not supported

REQALT Obtains a set of Q22–bus alternate map registers Not supported

REQCOM Invokes device-independent I/O postprocessing to
complete an I/O request

Changed

REQCHAN Obtains a controller’s data channel Not supported

REQDPR Requests a UNIBUS adapter buffered data path Not supported

REQMPR Obtains a set of UNIBUS map registers or a set
of the first 496 Q22–bus map registers

Not supported

REQPCHAN Obtains a controller’s data channel Not supported

REQSCHAN Obtains a secondary MASSBUS data channel Not supported

SYSDISP Causes a branch to a specified address according
to the type of AXP system executing the code in
the macro expansion

New

TBI_ALL Invalidates the data and instruction translation
buffers in their entirety

New

TBI_DATA_64 Invalidates a single 64-bit virtual address in the
data translation buffer

New

TBI_SINGLE Flushes the cached contents of a single page-
table entry (PTE) from the data and instruction
translation buffers

New

TBI_SINGLE_64 Invalidates a single 64-bit virtual address in both
the data and instruction translation buffers

New

(continued on next page)
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Table 6–5 (Cont.) New, Changed, and Unsupported OpenVMS Driver Macros

Macro Description Notes

TIMEWAIT Waits for a specified bit to be cleared or set
within a specified length of time

Not supported

TIMEDWAIT Waits a specified interval of time for an event or
condition to occur, optionally executing a series
of specified instructions that test for various exit
conditions

Changed

WFIKPCH, WFIRLCH Suspends a driver fork thread and folds its
context into a fork block in anticipation of a
device interrupt or timeout

Changed

6.14 New, Changed, and Unsupported OpenVMS System Routines
Table 6–6 contains a partial list of the OpenVMS system routines that have
changed for OpenVMS AXP. For a complete list of OpenVMS AXP system
routines and more details about them, see OpenVMS AXP Device Support:
Reference.

Table 6–6 New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

EXE$BUS_DELAY Allows a system-specific bus delay within
a timed wait

New

EXE$DELAY Provides a short-term simple delay New

ERL$DEVICERR,
ERL$DEVICTMO,
ERL$DEVICEATTN

Allocate an error message buffer and
record in it information concerning the
error

Changed

EXE$FORK Creates a fork process on the current
processor

Replaced by
EXE$PRIMITIVE_
FORK and EXE_
STD$PRIMITIVE_FORK

EXE$FORK_WAIT Inserts a fork block on the fork-and-wait
queue

Replaced by
EXE$PRIMITIVE_
FORK_WAIT and EXE_
STD$PRIMITIVE_FORK_
WAIT

EXE$INSERT_IRP Inserts an IRP into the specified queue of
IRPs according to the base priority of the
process that issued the I/O request

New

EXE$INSERTIRP Inserts an IRP into the specified queue of
IRPs according to the base priority of the
process that issued the I/O request

Replaced by
EXE$INSERT_IRP

EXE$IOFORK Creates a fork process on the current
processor for a device driver, disabling
timeouts from the associated device

Replaced by
EXE$PRIMITIVE_
FORK and EXE_
STD$PRIMITIVE_FORK

EXE$KP_ALLOCATE_KPB Creates a KPB and a kernel process
stack, as required by the kernel process
services

New

(continued on next page)
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Table 6–6 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

EXE$KP_DEALLOCATE_KPB Deallocates a KPB and its associated
kernel process stack

New

EXE$KP_END Terminates the execution of a kernel
process

New

EXE$KP_FORK Stalls a kernel process in such a manner
that it can be resumed by the fork
dispatcher

New

EXE$KP_FORK_WAIT Stalls a kernel process in such a
manner that it can be resumed by the
software timer interrupt service routine’s
examination of the fork-and-wait queue

New

EXE$KP_RESTART Resumes the execution of a kernel
process

New

EXE$KP_STALL_GENERAL Stalls the execution of a kernel process New

EXE$KP_START Starts the execution of a kernel process New

EXE_STD$KP_STARTIO Sets up and starts a kernel process to be
used by a device driver

New

EXE$MODIFYLOCK Validate and prepare a user buffer for a
direct-I/O, DMA read/write operation.

Replaced by EXE_
STD$MODIFYLOCK and
CALL_MODIFYLOCK
macro

EXE$MODIFYLOCKR Validates and prepares a user buffer for
a direct-I/O, DMA modify operation.

Replaced by EXE_
STD$MODIFYLOCK and
CALL_MODIFYLOCK_
ERR macro

EXE$PRIMITIVE_FORK, EXE_
STD$PRIMITIVE_FORK

Creates a simple fork process on the
current processor

New

EXE$PRIMITIVE_FORK_WAIT,
EXE_STD$PRIMITIVE_FORK_
WAIT

Inserts a fork block on the fork-and-wait
queue

New

EXE$READLOCK Validate and prepare a user buffer for a
direct-I/O, DMA read operation.

Replaced by EXE_
STD$READLOCK and
CALL_READLOCK macro

EXE$READLOCKR Validates and prepares a user buffer for
a direct-I/O, DMA read operation

Replaced by EXE_
STD$READLOCK and
CALL_READLOCK_ERR
macro

EXE$TIMEDWAIT_COMPLETE Determines whether the time interval of
a timed wait has conclude

New

EXE$TIMEDWAIT_SETUP,
EXE$TIMEDWAIT_SETUP_
10US

Calculate and return the end-value
used by EXE$TIMEDWAIT_COMPLETE
to determine when a timed wait has
completed

New

EXE$WRITELOCK Validate and prepare a user buffer for a
direct-I/O, DMA write operation.

Replaced by EXE_
STD$WRITELOCK and
CALL_WRITELOCK macro

(continued on next page)
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Table 6–6 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

EXE$WRITELOCKR Validates and prepares a user buffer for
a direct-I/O, DMA write operation

Replaced by EXE_
STD$WRITELOCK and
CALL_WRITELOCK_ERR
macro

IOC$ALOALTMAP,
IOC$ALOALTMAPN,
IOC$ALOALTMAPSP

Allocate a set of Q22–bus alternate map
registers

Not supported. See
the description of
IOC$ALLOC_CNT_RES.

IOC$ALOUBAMAP,
IOC$ALOUBAMAPN

Allocate a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported. See
the description of
IOC$ALLOC_CNT_RES.

IOC$ALLOC_CNT_RES Allocates the requested number of items
of a counted resource

New

IOC$ALLOC_CRAB Allocates and initializes a counted
resource allocation block (CRAB)

New

IOC$ALLOC_CRCTX Allocates and initializes a counted
resource context block (CRCTX)

New

IOC$ALLOCATE_CRAM Allocates a controller register access
mailbox

New

IOC$CANCEL_CNT_RES Cancels a thread that has been stalled
waiting for a counted resource

New

IOC$CRAM_CMD Generates values for the command,
mask, and remote I/O interconnect
address fields of the hardware I/O
mailbox that are specific to the
interconnect that is the target of the
mailbox operation, inserting these values
into the indicated mailbox, buffer, or both

New

IOC$CRAM_IO Queues the hardware I/O mailbox
defined within a controller register
access mailbox (CRAM) to the mailbox
pointer register (MBPR) and awaits the
completion of the mailbox transaction

New

IOC$CRAM_QUEUE Queues the hardware I/O mailbox
defined within a controller register
access mailbox (CRAM) to the mailbox
pointer register (MBPR)

New

IOC$CRAM_WAIT Awaits the completion of a hardware I/O
mailbox transaction to a tightly coupled
I/O interconnect

New

IOC$DEALLOC_CNT_RES Deallocates the requested number of
items of a counted resource

New

IOC$DEALLOC_CRAB Deallocates a counted resource allocation
block (CRAB)

New

IOC$DEALLOC_CRCTX Deallocates a counted resource context
block (CRCTX)

New

IOC$DEALLOCATE_CRAM Deallocates a controller register access
mailbox

New

(continued on next page)
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Table 6–6 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

IOC$DIAGBUFILL Fills a diagnostic buffer if the original
$QIO request specified such a buffer

Changed

IOC$KP_REQCHAN Stalls a kernel process in such a manner
that it can be resumed by the granting of
a device controller channel

New

IOC$KP_WFIKPCH, IOC$KP_
WFIRLCH

Stall a kernel process in such a manner
that it can be resumed by device
interrupt processing

New

IOC$LOAD_MAP Loads a set of adapter-specific map
registers

New

IOC$LOADALTMAP Loads a set of alternate Q22–bus map
registers

Not supported; see
IOC$LOAD_MAP

IOC$LOADMBAMAP Loads MASSBUS map registers Not supported; see
IOC$LOAD_MAP

IOC$LOADUBAMAP,
IOC$LOADUBAMAPA

Load a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported; see
IOC$LOAD_MAP

IOC$MAP_IO Maps I/O bus physical address space
into an address region accessible by the
processor

New

IOC$NODE_FUNCTION Performs node-specific functions on
behalf of a driver, such as enabling or
disabling interrupts from a bus slot

New

IOC_STD$PRIMITIVE_
REQCHANH, IOC_
STD$PRIMITIVE_REQCHANL

Request a controller’s data channel and,
if unavailable, place process in channel
wait queue

New

IOC_STD$PRIMITIVE_
WFIKPCH, IOC_
STD$PRIMITIVE_WFIRLCH

Suspend a driver fork thread and fold its
context into a fork block in anticipation
of a device interrupt or timeout

New

IOC$READ_IO Reads a value from a previously mapped
location in I/O address space

New

IOC$RELALTMAP Releases a set of Q22–bus alternate map
registers

Not supported; see
IOC$DEALLOC_CNT_
RES

IOC$RELDATAP Releases a UNIBUS adapter’s buffered
data path.

Not supported

IOC$RELMAPREG Releases a set of UNIBUS map registers
or a set of the first 496 Q22–bus map
registers

Not supported; see
IOC$DEALLOC_CNT_
RES

IOC$REQALTMAP Allocates sufficient Q22–bus alternate
map registers to accommodate a DMA
transfer

Not supported; see
IOC$ALLOC_CNT_RES

IOC$REQDATAP,
IOC$REQDATAPNW

Request a UNIBUS adapter’s buffered
data path and, optionally, if no path is
available, place process in a data-path
wait queue

Not supported

(continued on next page)
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Table 6–6 (Cont.) New, Changed, and Unsupported OpenVMS System Routines

System Routine Description Notes

IOC$REQMAPREG Allocates sufficient UNIBUS map
registers or a sufficient number of the
first 496 Q22–bus map registers to
accommodate a DMA transfer

Not supported; see
IOC$ALLOC_CNT_RES

IOC$REQPCHANH,
IOC$REQPCHANL,
IOC$REQSCHANH,
IOC$REQSCHANL

Request a controller’s primary or
secondary data channel and, if
unavailable, place process in channel
wait queue

Not supported

IOC$WFIKPCH,
IOC$WFIRLCH

Suspend a driver fork thread and fold its
context into a fork block in anticipation
of a device interrupt or timeout

Replaced by IOC_
STD$PRIMITIVE_
WFIKPCH and IOC_
STD$PRIMITIVE_
WFIRLCH

IOC$WRITE_IO Writes a value to a previously mapped
location in I/O address space

New

IOC$UNMAP_IO Unmaps a previously mapped I/O
address space

New

6.15 Data Structure Field Changes
Various I/O data structure fields that were byte- and word-size on OpenVMS VAX
have been changed to a longword in size on OpenVMS AXP. This change was
made because an aligned longword or quadword in memory can be much more
efficiently read and written on the AXP architecture than a byte or a word.

If your driver image has undefined data structure offsets (usually discovered
at link-time), check the data structure for the same field with a different data
type tag. For example, if your OpenVMS VAX driver contained the following
references:

MOVZWL IRP$W_BOFF(R3),R0
MOVW R2,UCB$W_BCNT(R5)

you would need to change this to the following:

MOVL IRP$L_BOFF(R3),R0
MOVL R2,UCB$L_BCNT(R5)

It is insufficient to change the name of the data field offset. You must also change
the type of instruction used to match the width of the new field. In this example,
MOVZWL was changed to MOVL and MOVW was changed to MOVL.

If you cannot find a similarly named field in the same data structure, see
Section 7.6 for a list of obsolete data structure cells.

6.16 Incorporating Timed Waits and Delays
Drivers are significant consumers of the TIMEWAIT and TIMEDWAIT macros.
Additionally, some drivers implement shorter delays using instruction sequences
such as PUSHR, POPR, PUSHR, and POPR. The TIMEDWAIT macro, as
described in OpenVMS AXP Device Support: Reference, provides a delta time
expressed in 10 microsecond units. (The TIMEWAIT macro is not available on
OpenVMS AXP systems.)
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An OpenVMS driver that requires a delay of less than 10 microseconds, using a
special VAX instruction sequence to accomplish it, must use the nsec argument
of the TIMEDWAIT macro to achieve this delay on OpenVMS AXP.

A driver that must wait a fixed period of time without executing any special
instructions during the wait can use the EXE$DELAY system routine. (See
OpenVMS AXP Device Support: Reference for additional information.)

6.17 Porting Terminal Port Drivers
There are some special requirements for producing a Step 2 OpenVMS AXP
terminal port driver, as follows:

• Because an OpenVMS AXP terminal port driver cannot share a single DDT
with the OpenVMS AXP terminal class driver, the CLASS_UNIT_INIT macro
does not write the address of the class driver’s DDT into UCB$L_DDT.

• The terminal port driver must invoke the DDTAB macro specifying the
ctrlinit and unitinit arguments, thus creating its own DDT with entries
for its controller initialization routine (DDT$PS_CTRLINIT) and unit
initialization routine (DDT$L_UNITINIT). CLASS_UNIT_INIT further
initializes the port driver’s DDT (the address of which it obtains from UCB$L_
DDT) by copying to it from the class driver’s DDT the procedure values of the
class driver’s start-I/O routine, function-decision table, cancel-I/O routine, and
alternate start-I/O routine.

• OpenVMS VAX terminal port drivers have depended on the the last
instruction in routines such as CLASS_GETNXT to load UCB$B_TT_
OUTYPE. Therefore ports could successfully use instruction sequences such
as the following

JSB @CLASS_GETNXT(Rx)
BEQL no_output
BLSS string_output
.
.
.

Step 2 OpenVMS AXP terminal port drivers must explicitly check the
contents of UCB$B_TT_OUTYPE before a conditional branch, as follows:

TSTB UCB$B_TT_OUTYPE(R5)
BEQL no_output
BLSS string_output

• If CLASS_GETNXT returns a –1 to UCB$B_TT_OUTYPE, a Step 2 OpenVMS
AXP port driver should obtain the address and size of the output string from
UCB$L_TT_OUTADR and UCB$W_TT_OUTLEN respectively. Doing so,
rather than relying on this information being passed in registers, enhances
portability.

6.18 Initializing Devices with Programmable Interrupt Vectors
The driver loading mechanism, as directed by the System Management utility
(SYSMAN) command IO CONNECT connects a hardware device to one or
more interrupt vectors. Although most devices connected to VAX systems utilize
preassigned vector locations, many devices on AXP systems employ programmable
interrupt vectors. It is the driver’s responsibility to initialize such a device to use
the vector or vectors to which it has been connected.
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The driver loading mechanism passes this information to drivers in one of two
ways:

• For devices with a single interrupt vector, the cell IDB$L_VECTOR contains
the vector offset (into the SCB or the ADP vector table).

• For devices with multiple interrupt vectors, the cell IDB$L_VECTOR contains
a pointer to a vector data structure, called a vector list extension (VLE),
which contains a list of vectors for the device.

6.19 Floating-Point Instructions Forbidden in Drivers
On OpenVMS AXP systems, usage of the floating-point registers is a per-process
attribute and recorded in the data structures that describe process context.

An OpenVMS AXP device driver that executes in interrupt mode on the per-
process kernel stack of some random process cannot rely on floating-point usage
having been enabled in that process. A floating-point instruction issued in
interrupt context would have unpredictable and baleful results.

In addition, a driver FDT routine should not issue floating-point instructions
inasmuch as it would alter the current process’s context in an unanticipated
and adverse manner. A context switch for a process for which floating-point
usage is enabled is more expensive than one for a process that does not employ
the floating-point registers. If the driver enables floating-point usage within a
process, it will appear to be enabled randomly and the process will see random
performance.

6.20 Replacing Unsupported Coding Practices
This section describes some of the general VAX MACRO coding constructs that
you must change when porting VAX MACRO code to OpenVMS AXP.

6.20.1 Stack Usage
The OpenVMS calling standard defines a stack frame format substantially
different from that defined by the VAX calling standard. Therefore, some changes
to your code are required.

6.20.1.1 References Outside the Current Stack Frame
By monitoring stack depth throughout a VAX MACRO module, the compiler
detects references in a routine to data pushed on the stack by its caller and flags
them as errors.

Recommended Change
You must eliminate references in a routine to data pushed on the stack by its
caller. Use the OpenVMS kernel process services discussed in Section 3.2.

6.20.1.2 Nonaligned Stack References
At routine calls, the compiler octaword-aligns the stack, if the stack is not already
octaword-aligned. Some code, when building structures on the stack, makes
unaligned stack references or causes the stack pointer to become unaligned. The
compiler flags both of these with information-level messages.

Recommended Change
Provide sufficient padding in data elements or structures pushed onto the stack,
or change data structure sizes. Because unaligned stack references also have
an impact on VAX performance, you should apply these fixes to code designed to
execute on both OpenVMS VAX systems and OpenVMS AXP systems.
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6.20.2 Branches from JSB Routines into CALL Routines
The compiler flags, with an information-level message, a call from a JSB routine
into a CALL routine, if the .JSB_ENTRY saves registers. The reason such a call
is flagged is because the procedure’s epilogue code to restore the saved registers
will not be executed. If the registers do not have to be restored, no change is
necessary.

Recommended Change
The .JSB_ENTRY entry routine is probably trying to execute a RET on behalf of
its caller. Change the common code in the .CALL_ENTRY to a .JSB_ENTRY that
can be invoked from both routines.

For example, consider the following code:

ROUT1: .CALL_ENTRY
.
.
.

X:
.
.
.
RET

ROUT2: .JSB_ENTRY INPUT=<R1,R2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
.
BRW X
.
.
.
RSB

To port such code to OpenVMS AXP, break the .CALL_ENTRY routine into two
routines, as follows:

ROUT1: .CALL_ENTRY
.
.
.
JSB X
RET

X: .JSB_ENTRY INPUT=<R1,R2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
.
RSB

ROUT2: .JSB_ENTRY INPUT=<R1,R2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
.
JSB X
RET
.
.
.
RSB
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6.20.3 Modifying the Return Address
There are several frequently used variations of modifying the return address on
the stack, from within a JSB routine, to change the flow of control. All must be
recoded.

6.20.3.1 Pushing an Address onto the Stack
The compiler detects any attempt to push an address onto the stack (for instance,
PUSHAB label) to cause a subsequent RSB to resume execution at that location
and flags this practice as an error. (The next RSB would return to the routine’s
caller.)

Recommended Change
Remove the PUSH of the address, and add an explicit JSB to the target label
before the current routine’s RSB. This will result in the same control flow.
Declare the target label as a .JSB_ENTRY point.

For example, the compiler flags the following code as requiring a source change:

ROUT: .JSB_ENTRY
.
.
.
PUSHAB continue_label
.
.
.
RSB

By adding an explicit JSB instruction, you could change the code as follows. Note
that you would place the JSB just before the RSB. In the previous version of the
code, it is the RSB instruction that transfers control to continue_label, regardless
of where the PUSHAB occurs. The PUSHAB is removed in the new version,
which follows:

ROUT: .JSB_ENTRY
.
.
.
JSB continue_label
RSB

6.20.3.2 Removing the Return Address from the Stack
The compiler detects the removal of a return address from the stack (for instance,
TSTL (SP)+) and flags this practice as an error. The removal of a return address
in VAX code allows a routine to return to its caller’s caller.

Recommended Change
Rewrite the routine such that it returns a status value to its caller that indicates
that the caller should return to its caller. Alternatively, the initial caller could
pass the address of a ‘‘continuation routine,’’ to which the lowest level routine can
return by means of a JSB instruction. When the continuation routine uses an
RSB instruction to transfer control back to the lowest level routine, the lowest
level routine must also RSB.

For example, the compiler would flag the following code as requiring a source
change:
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ROUT1: .JSB_ENTRY
.
.
.
JSB ROUT2
.
.
.
RSB

ROUT2: .JSB_ENTRY
.
.
.
JSB ROUT3 ; May return directly to rout1
.
.
.
RSB

ROUT3: .JSB_ENTRY
.
.
.
TSTL (SP)+ ; Discard return address
RSB ; Return to caller’s caller

You could rewrite the code to return a status value, as follows:

ROUT2: .JSB_ENTRY
.
.
.
JSB ROUT3
BLBS R0,NO_RET ; Check ROUT3 status return
RSB ; Return immediately if 0

NO_RET:
.
.
.
RSB

ROUT3: .JSB_ENTRY
.
.
.
CLR R0 ; Specify immediate return from caller
RSB ; Return to caller’s caller

6.20.3.3 Modifying the Return Address
The compiler detects any attempt to modify the return address on the stack and
flags it as an error.

Recommended Change
Rewrite the code that modifies the return address on the stack to return a status
value to its caller instead. The status value causes the caller to either branch
to a given location or contains the address of a special .JSB_ENTRY routine the
caller should invoke. In the latter case, the caller should RSB immediately after
the issuing the JSB to special .JSB_ENTRY routine.

For example, the compiler would flag the following code as requiring a source
change:
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ROUT1: .JSB_ENTRY
.
.
.
JSB ROUT2 ; Might not return
.
.
.
RSB

ROUT2: .JSB_ENTRY
.
.
.
MOVAB continue_label, (SP) ; Change return address
.
.
.
RSB

You could rewrite the code to incorporate a return value as follows:

ROUT1: .JSB_ENTRY
.
.
.
JSB ROUT2
TSTL R0 ; Check for alternate return
BEQL NO_RET ; Continue normally if 0
JSB (R0) ; Call specified routine
RSB ; and return

NO_RET:
.
.
.
RSB

ROUT2: .JSB_ENTRY
CLRL R0
.
.
.
MOVAB continue_label, R0 ; Specify alternate return
RSB

6.20.3.4 Coroutines
Coroutine calls between two routines are generally implemented as a set of JSB
instructions within each routine. Each JSB transfers control to a return address
on the stack, removing the return address in the process (for instance, by issuing
the instruction (JSB @(SP)+). The compiler detects coroutine calls and flags
them as errors.

Recommended Change
You must rewrite the routine that initiates the coroutine linkage to pass an
explicit callback routine address to the other routine. The coroutine initiator
should then invoke the other routine with a JSB instruction.

For example, consider the following coroutine linkage:
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ROUT1: .JSB_ENTRY
.
.
.
JSB ROUT2 ; ROUT2 will call back as a coroutine
.
.
.
JSB @(SP)+ ; Coroutine back to ROUT2
.
.
.
RSB

ROUT2: .JSB_ENTRY
.
.
.
JSB @(SP)+ ; Coroutine back to ROUT1
.
.
.
RSB

You could change the routines participating in such a coroutine linkage to
exchange explicit callback routine addresses (here, in R6 and R7) as follows:

ROUT1: .JSB_ENTRY
.
.
.
MOVAB ROUT1_CALLBACK, R6
JSB ROUT2
RSB

ROUT1_CALLBACK:
.JSB_ENTRY
.
.
.
JSB (R7) ; Callback to ROUT2
.
.
.
RSB

ROUT2: .JSB_ENTRY
.
.
.
MOVAB ROUT2_CALLBACK, R7
JSB (R6) ; Callback to ROUT1
RSB

ROUT2_CALLBACK:
.JSB_ENTRY
.
.
.
RSB

To avoid consuming registers, the callback routine addresses could be pushed onto
the stack at routine entry. Then, "JSB @(SP)+" instructions could still be used
to perform direct JSBs to the callback routines. In the following example, the
callback routine addresses are passed in R0, but pushed immediately at routine
entry:
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ROUT1: .JSB_ENTRY
.
.
.
MOVAB ROUT1_CALLBACK, R0
JSB ROUT2
RSB

ROUT1_CALLBACK:
.JSB_ENTRY
PUSHL R0 ; Push callback address received in R0
.
.
.
JSB @(SP)+ ; Callback to ROUT2
.
.
.
RSB

ROUT2: .JSB_ENTRY
PUSHL R0 ; Push callback address received in R0
.
.
.
MOVAB ROUT2_CALLBACK, R0
JSB @(SP)+ ; Callback to ROUT1
RSB

ROUT2_CALLBACK:
.JSB_ENTRY
.
.
.
RSB

6.21 Compiling an OpenVMS AXP Driver
The following is an example of a command procedure used to compile driver
MYDRIVER.MAR on an OpenVMS AXP system:

$ MACRO/MIGRATION/DEBUG MYDRIVER+ALPHA$LIBRARY:LIB.MLB/LIB

6.21.1 Using the /OPTIMIZE=NOREFERENCES Option
By default, the MACRO-32 compiler performs certain optimizations on generated
OpenVMS AXP code. These optimizations are fully described in Migrating to an
OpenVMS AXP System: Porting VAX MACRO Code.

One such optimization (REFERENCES) allows the compiler to recognize that the
same data is referenced multiple times and, in certain situations, reduces these
references to a single reference. For instance:

MOVL 4(R5),R6
MOVL 4(R5),R7

generates:

LDL R20,4(R5)
MOV R20,R6
MOV R20,R7

instead of:

LDL R6,4(R5)
LDL R7,4(R5)
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Driver code that reads directly from or writes directly to device registers in local
I/O space (or does not use the hardware I/O mechanism described in Chapter 2)
may be sensitive to this type of optimization. For such code, Digital recommends
that you use the switch /OPTIMIZE=NOREFERENCES during compilation.
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7
Handling Complex Conversions Situations

This chapter describes the Step 2 conversion situations that might be too unusual
or too complex for the conversion guidelines in Chapter 6.

7.1 Composite FDT Routines
A composite FDT routine is required when a single I/O function code must be
processed by more than one upper-level FDT routine. Step 2 FDT dispatching
only provides for a single upper-level routine for each I/O function code. When
this is not sufficient, the general solution is to write a new upper-level FDT
routine that sequentially calls each of the required upper-level FDT routines
(checking status on return from each call). Another possible solution is to call
the required second upper-level FDT routine at the appropriate point in the first
upper-level FDT routine. The need for a composite FDT routine is automatically
detected at compile time.

The following example shows an OpenVMS VAX FDT declaration.

FUNCTAB MY_FDT_ACPCONTROL,-
<ACPCONTROL>

FUNCTAB ACP$MODIFY,-
<ACPCONTROL,MODIFY>

Using the guidelines in Section 6.10, you can obtain the following Step 2
declaration:

FDT_ACT MY_FDT_ACPCONTROL,-
<ACPCONTROL>

FDT_ACT ACP_STD$MODIFY,-
<ACPCONTROL,MODIFY>

However, you will receive the following error message when you attempt to
compile the driver:

%AMAC-E-GENERROR, generated ERROR: 0 Multiple actions defined for function IO$_ACPCONTROL

To correct the source of the error, you must do the following:

1. Write a new upper-level FDT routine. This routine is a composite FDT
routine that should call all the upper-level FDT routines listed by the FDT_
ACT macros for the function that has multiple actions. For example, you
would write a routine like the following:
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MY_FDT_ACPCONTROL_COMP:
$DRIVER_FDT_ENTRY

; First FDT routine for IO$_ACPCONTROL
PUSHL R6 ; P4 = CCB
PUSHL R5 ; P3 = UCB
PUSHL R4 ; P2 = PCB
PUSHL R3 ; P1 = IRP
CALLS #4,MY_FDT_ACPCONTROL
BLBC R0,900$ ; Quit if done

; Second FDT routine for IO$_ACPCONTROL
CALL_ACP_MODIFY

900$: RET ; Return status

2. Examine any of your driver-supplied upper-level FDT routines that you call
from a composite FDT routine. With the exception of the last routine called
in the composite routine, all the others will have at least one RSB exit path
in their OpenVMS VAX version. (See Section 6.10.5.) You must convert this
RSB as follows:

MOVL #SS$_NORMAL,R0
RET

In an OpenVMS VAX driver, the RSB would have returned control to the
FDT dispatching loop, so that the next upper-level FDT routine could be
invoked. In a Step 2 driver, you must return a successful status, so that your
composite FDT routine continues. Remember that the SS$_FDT_COMPL
warning status will be returned by an upper-level FDT routine if FDT
processing has completed and should not be continued.

3. Remove the function with multiple actions from all FDT_ACT macros. Then
add a new FDT_ACT macro that invokes the new composite FDT routine for
the function. In this example, you would write:

FDT_ACT MY_FDT_ACPCONTROL_COMP, <ACPCONTROL>

FDT_ACT ACP_STD$MODIFY, <MODIFY>

In many cases, a simpler solution is also possible. If you have a function that
has multiple actions defined by FDT_ACT macros and the first FDT_ACT macro
that references that function does not also include other functions, then you could
convert your existing upper-level FDT routine into a composite FDT routine. You
can do this by inserting the calls for the remaining upper-level FDT routines
at the point where the first upper-level FDT routine would have returned to
the OpenVMS VAX FDT dispatcher via an RSB instruction. This is the case
in the previous example. Thus, if the OpenVMS VAX version of MY_FDT_
ACPCONTROL looks like the following:

MY_FDT_ACPCONTROL:
.JSB_ENTRY
... ;driver-specific processing
RSB ;return to FDT dispatcher

Then the Step 2 composite version would look like the following:

MY_FDT_ACPCONTROL:
$DRIVER_FDT_ENTRY
... ;driver-specific processing
CALL_ACP_MODIFY
RET

7–2



Handling Complex Conversions Situations
7.2 Error Routine Callback Changes

7.2 Error Routine Callback Changes
If driver FDT processing involves specifying an error callback routine as input
to one of the OpenVMS VAX FDT support routines, EXE$READLOCK_ERR,
EXE$MODIFYLOCK_ERR, or EXE$WRITELOCK_ERR, do the following:

1. Convert the error callback routine to a standard callable routine by using the
following entry-point macro:

$DRIVER_ERRRTN_ENTRY [preserve=<>] [,fetch=YES]

If the error callback routine alters any nonscratch register as defined by
the calling standard, you must add it to the preserve list. You can do this
by using the .SET_REGISTERS directive or the preserve parameter on
the $DRIVER_ERRRTN_ENTRY macro. For example, many error routines
call EXE$DEANONPAGED or EXE$DEANONPGDSIZ, which destroy the
contents of R2. You should specify .SET_REGISTERS WRITTEN=<R2>.

2. Replace the RSB used by the error callback routine to return to its caller with
a RET instruction.

3. Replace the JSB to EXE$READLOCK_ERR, EXE$MODIFYLOCK_ERR,
or EXE$WRITELOCK_ERR with the corresponding JSB-replacement
macros: CALL_READLOCK_ERR, CALL_MODIFYLOCK_ERR, or CALL_
WRITELOCK_ERR.

For more information, see OpenVMS AXP Device Support: Reference.

7.3 Converting Driver-Supplied FDT Support Routines to Call
Interfaces

To convert driver-supplied FDT support routines to call interfaces, follow the
procedure described in this section. Note that although this method is more
efficient than the one described in Chapter 6, it requires that you make more
changes to your source code.

1. Decide what the calling convention is for each of your FDT support routines.

2. Replace .JSB_ENTRY with .CALL_ENTRY at support routine entry points.

3. Within your converted support routines, you must refer to the routine
parameters using the appropriate AP offsets. One way to do this is to copy
the standard parameters into the registers used by the JSB interface.

4. Make sure that all driver-supplied FDT routines return status in R0.

5. All places that invoke your support routines via a JSB instruction must be
changed to invoke the modified support routine via a CALLS instruction after
having pushed the actual parameter values.

6. After each of these calls, you must also check the return status. For non-
success status values (particularly SS$_FDT_COMPL), you must return to
your caller.

Using .JSB_ENTRY and the FDT completion macros, it is possible to write an
FDT support routine that does not return to its caller in the event of an error.
Once you convert to standard call interfaces, however, the flow of control
always returns to the caller of the support routine.
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Note

If any informational messages like the following are displayed, you have
probably missed a .JSB_ENTRY FDT support routine or a branch between
some other .JSB_ENTRY routine and an FDT support routine.

%AMAC-I-RETINJSB, RET in JSB_ENTRY

Once you have converted all your FDT support routines to standard call
interfaces, you can eliminate many of the registers saves and restores that are
generated by the default register preserve list on the $DRIVER_FDT_ENTRY
macro. The default preserve list on the $DRIVER_FDT_ENTRY macro saves
every nonscratch register to protect against a potential RET-under-JSB inside
a .JSB_ENTRY FDT support routine. At the very least, you should be able to
reduce the preserve list to PRESERVE=<R2,R9,R10,R11> to cover the registers
that were allowed to be scratched by OpenVMS VAX upper-level FDT routines.
You can reduce this list further, if you know that your FDT routine is not altering
these registers, or if you rely on the .SET_REGISTERS directive and the register
autopreserve feature of the MACRO-32 compiler,

7.4 Converting the Start I/O Code Path to Call Interfaces
Fork, special kernel AST, system timer expiration, and device interrupt timeout
routines that are called by the OpenVMS exec can use either a standard call or
the traditional JSB interface described in Chapter 6.

To convert the Start I/O Code Path to call standard interfaces in drivers written
in MACRO-32, follow the procedure in Section 7.4.1. For a quick summary of the
differences between using ENVIRONMENT=CALL and ENVIRONMENT=JSB,
see Section 7.4.2. A detailed description of the Start I/O to REQCOM conversion
implications for OpenVMS VAX drivers is available in OpenVMS AXP Device
Support: Reference.

7.4.1 Start I/O Call Interface Conversion Procedure
To convert the Start I/O Code Path to call standard interfaces in drivers written
in MACRO-32, follow these steps:

1. Use the $DRIVER_START_ENTRY and $DRIVER_ALTSTART_ENTRY
macros to define the driver’s start I/O and appropriate alternate start I/O
routines.

2. Use the DDTAB macro keywords

altstart instead of jsb_altstart
start instead of jsb_start

3. Use the ENVIRONMENT=CALL keyword parameter on the FORK, FORK_
ROUTINE, FORK_WAIT, IOFORK, REQCOM, REQCHAN, REQPCHAN,
WFIKPCH, and WFIRLCH macros.

4. Use the FORK_ROUTINE macro (with ENVIRONMENT=CALL), the .CALL_
ENTRY directive, or the .ENTRY directive instead of .JSB_ENTRY to define
the entry points for driver fork, channel grant, resume from interrupt, and
interrupt timeout routines.

5. Use the RET instruction instead of the RSB instruction to return from all of
the previous standard call interface routines.
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6. Use the scratch registers as defined by the calling standard. Some of the old
JSB interface routines were allowed to scratch registers R2 through R5, which
are not in the scratch register set as defined by the calling standard. Also,
the calling standard allows R0 and R1 to be scratched by a called routine,
while some of the JSB interface routines preserve R0 or R1.

7. Use the following code sequence to invoke the driver interrupt resume routine
from the driver interrupt service routine:

PUSHL R5 ;P3 = UCB from R5
PUSHL UCB$Q_FR4(R5) ;P2 = FR4 (32-bits)
PUSHL UCB$Q_FR3(R5) ;P1 = FR3 (32-bits)
CALLS #3,@UCB$L_FPC(R5) ;call driver routine

as a replacement for:

MOVL UCB$Q_FR3(R5),R3 ;R3 = FR3 (32-bits)
MOVL UCB$Q_FR4(R5),R4 ;R4 = FR4 (32-bits)
JSB @UCB$L_FPC(R5) ;call driver routine

If your driver needs to preserve the full 64-bits of its FR3 or FR4 parameters,
then it can use the following code sequence. Note that although the following
code appears more complex, it results in code that is just as efficient as that
produced by the preceding example.

MOVX UCB$Q_FR3(R5),R16 ;R16 = FR3 (64-bits)
MOVX UCB$Q_FR4(R5),R17 ;R17 = FR4 (64-bits)
PUSHL R5 ;P3 = UCB from R5
PUSHL R17 ;P2 = 64-bits of R17
PUSHL R16 ;P1 = 64-bits of R16
CALLS #3,@UCB$L_FPC(R5) ;call driver routine

For more details about this code sequence, see the description of the FORK
ROUTINE interface in OpenVMS AXP Device Support: Reference.

The called routine can obtain 64-bit parameter values by declaring its entry
point using the FORK_ROUTINE macro or the WFIKPCH macro.

8. Examine the interroutine branches between the previous routines and other
routines in the same modules and change these routines to standard call
interfaces.

9. If you encounter any of the following MACRO-32 compiler diagnostic
messages, examine the relevant source:

%AMAC-E-ILLRSBCAL, illegal RSB in CALL_ENTRY routine

%AMAC-I-BRINTOCAL, branch into CALL_ENTRY routine from
JSB_ENTRY

%AMAC-I-JSBHOME, arglist use in JSB entry requires homed
arglist in caller

%AMAC-I-RETINJSB, RET in JSB_ENTRY, with non-scratch
registers

These messages are likely to result from a .JSB_ENTRY routine that needs to
be converted to a standard call entry. Note, however, that in some cases
you can receive the last three diagnostic messages under acceptable
circumstances. If this happens, you should document the reasons and
consider disabling the diagnostic message by bracketing the smallest possible
section of relevant code as follows:
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.DSABL FLAGGING

.

.

.ENABL FLAGGING

In particular, the use of a RET from a JSB entry routine may be allowable
in a Step 2 driver in the context of complex FDT routines. (For more
information, see Section 6.10.4.) However, if you change the source code to
avoid the need for a RET in a JSB routine, you can improve the performance
of the code path. (For more information, see Section 7.3.)

7.4.2 Simple Fork Macro Differences
This section summarizes the differences between using the
ENVIRONMENT=CALL and ENVIRONMENT=JSB parameters on the following
simple fork macros:

FORK
FORK_ROUTINE
FORK_WAIT
IOFORK
REQCHAN
REQPCHAN
REQCOM
WFIKPCH
WFIRLCH

For more information about the parameters on these macros, see OpenVMS AXP
Device Support: Reference.

7.4.2.1 Fork Routine End Instruction
Some simple fork macros generate an instruction that ends the current routine
and returns control to the routine’s caller. In a .JSB_ENTRY routine the
appropriate end instruction is an RSB. However, a .CALL_ENTRY routine
requires a RET instruction. Table 7–1 lists the simple fork macros whose fork
routine end instruction is determined by the ENVIRONMENT parameter.

Table 7–1 Fork Routine End Instruction

Macros ENVIRONMENT=CALL ENVIRONMENT=JSB

FORK1 RET RSB

FORK_WAIT1 RET RSB

IOFORK1 RET RSB

REQCHAN RET RSB

REQPCHAN RET RSB

REQCOM RET RSB

WFIKPCH RET RSB

WFIRLCH RET RSB

1If you use the CONTINUE parameter, this macro does not generate a fork routine end instruction.
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7.4.2.2 Scratch Registers
Using the ENVIRONMENT=CALL parameter affects the list of scratch registers
on some simple fork macros. Table 7–2 summarizes the differences in scratch
register usage that are visible to the caller’s fork thread. All other implicit
register inputs and outputs on the simple fork macros are the same.

Table 7–2 Registers Scratched in Caller’s Fork Thread

Macros ENVIRONMENT=CALL ENVIRONMENT=JSB

FORK R0,R1 scratched R0,R1 preserved

R3,R4 preserved R3,R4 sratched

FORK_WAIT R0,R1 scratched R0,R1 preserved

IOFORK R0,R1 scratched R0,R1 preserved

R3,R4 preserved R3,R4 scratched

The following example illustrates how dependence on scratch register usage can
be hidden in existing code:

MY_UNIT_INIT:
.JSB_ENTRY INPUT=<R0,R4,R5>,OUTPUT=<R0>
... ;code that doesn’t alter R0
FORK ROUTINE=MY_UNIT_INIT_FORK

This routine does some work and then queues the routine MY_UNIT_INIT_FORK
as a fork routine. A unit initialization routine must return a successful status
back to its caller. The preceding sample routine does this as follows:

• R0 is set to SS$_NORMAL before entry into the OpenVMS VAX unit
initialization routine.

• The FORK macro with the default ENVIRONMENT=JSB setting does not
alter R0.

• The FORK macro generates an RSB instruction.

The Step 2 equivalent of this unit initialization routine uses a standard call
interface and must use the ENVIRONMENT=CALL parameter on the FORK
macro. However, in doing so, the SS$_NORMAL value held in R0 is destroyed.
The following example shows how to avoid this problem:

MY_UNIT_INIT:
$DRIVER_UNITINIT_ENTRY
...
FORK ROUTINE=MY_UNIT_INIT_FORK,-

ENVIRONMENT=CALL,-
CONTINUE=10$

10$: MOVZWL #SS$_NORMAL,R0
RET
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7.4.2.3 Fork Routine Entry Point
Some simple fork macros generate a fork routine entry point. The type of entry
point generated depends on which ENVIRONMENT parameter you use. The
parameters to a traditional JSB interface fork routine are contained in registers
R3, R4, and R5. In contrast, the parameters to a standard call fork routine are
passed using the standard argument passing mechanism and are referenced
using AP offsets. The following macros generate code that copies the standard
arguments into registers R3, R4, and R5; thereby, facilitating the conversion of
existing JSB interface fork routines to the standard call interface:

FORK
FORK_ROUTINE
FORK_WAIT
IOFORK
REQCHAN
REQPCHAN
WFIKPCH
WFIRLCH

Table 7–3 summarizes the differences in the fork routine entry points generated
by the FORK, FORK_ROUTINE, FORK_WAIT, IO_FORK, REQCHAN,
REQPCHAN, WFIKPCH, and WFIRLCH macros as determined by the
ENVIRONMENT parameter. Note that the FORK, FORK_WAIT, and IOFORK
macros do not generate a fork routine entry point if you use the ROUTINE
parameter.

Table 7–3 Fork Routine Entry Points

Entry Point Attributes ENVIRONMENT=CALL ENVIRONMENT=JSB

Entry directive .CALL_ENTRY .JSB_ENTRY

Parameters Accessed using AP offsets1 R3,R4,R5

Parameter fetch Parameters copied to R3,R4,R52 None

Allowable scratch registers R0,R1 R0-R4

1The symbolic names for the AP offsets are FORKARG$_FR3, FORKARG$_FR4, and FORKARG$_
FKB.
2The parameter copy can be disabled on the FORK_ROUTINE macro if the FETCH=NO parameter is
specified.

7.5 Device Interrupt Timeouts
Device interrupt timeouts are handled differently for Step 2 drivers. For
OpenVMS VAX drivers the UCB$L_FPC cell in the device unit control block
(UCB) contained the procedure value of the routine that served as both the
resume from interrupt routine and the interrupt timeout routine. These two
routines are now separate. The new UCB cell UCB$PS_TOUTROUT is used for
the procedure value of the interrupt timeout routine.

These changes are transparent to code that uses the WFIKPCH or WFIRLCH
macros, or calls the IOC$PRIMITIVE_WFIKPCH or IOC$PRIMITIVE_WFIRLCH
routines. However, code that manually sets the UCB$V_TIM bit in UCB$L_
STS now needs to place the timeout routine procedure value into UCB$PS_
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TOUTROUT, instead of in UCB$L_FPC. For more information, see the specific
routine descriptions in OpenVMS AXP Device Support: Reference.

7.6 Obsolete Data Structure Cells
Some DDT and DPT data structure fields that supported OpenVMS VAX device
drivers have been removed. Table 7–4 lists the obsolete OpenVMS VAX fields and
the OpenVMS AXP fields that have similar functions.

Note that the OpenVMS AXP cells use different names because they point to
routines whose interfaces are different or they point to data structures whose
layout is significantly altered. For this reason, do not replace each reference
to an obsolete OpenVMS VAX field with its corresponding Step 2 field without
considering the routine interface and data structure changes.

Table 7–4 Obsolete Data Structure Cells

Obsolete OpenVMS VAX Field Similar OpenVMS AXP Field

DDT$L_ALTSTART DDT$PS_ALTSTART_2 or DDT$PS_
ALTSTART_JSB

DDT$PS_ALTSTART DDT$PS_ALTSTART_2 or DDT$PS_
ALTSTART_JSB

DDT$L_CANCEL DDT$PS_CANCEL_2

DDT$PS_CANCEL DDT$PS_CANCEL_2

DDT$L_CANCEL_SELECTIVE DDT$PS_CANCEL_SELECTIVE_2

DDT$PS_CANCEL_SELECTIVE DDT$PS_CANCEL_SELECTIVE_2

DDT$L_CHANNEL_ASSIGN DDT$PS_CHANNEL_ASSIGN_2

DDT$PS_CHANNEL_ASSIGN DDT$PS_CHANNEL_ASSIGN_2

DDT$L_CLONEDUCB DDT$PS_CLONEDUCB_2

DDT$PS_CLONEDUCB DDT$PS_CLONEDUCB_2

DDT$L_CTRLINIT DDT$PS_CTRLINIT_2

DDT$PS_CTRLINIT DDT$PS_CTRLINIT_2

DDT$L_FDT DDT$PS_FDT_2

DDT$PS_FDT DDT$PS_FDT_2

DDT$L_MNTVER DDT$PS_MNTVER_2

DDT$PS_MNTVER DDT$PS_MNTVER_2

DDT$L_REGDUMP DDT$PS_REGDUMP_2

DDT$PS_REGDUMP DDT$PS_REGDUMP_2

DDT$L_START DDT$PS_START_2 or DDT$PS_
START_JSB

DDT$PS_START DDT$PS_START_2 or DDT$PS_
START_JSB

DDT$L_UNITINIT DDT$PS_UNITINIT_2

DDT$PS_UNITINIT DDT$PS_UNITINIT_2

DPT$PS_DELIVER DPT$PS_DELIVER_2
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7.7 Optimizing Step 2 Drivers
When you have successfully converted an OpenVMS VAX device driver to a Step
2 device driver, you can optimize the driver’s performance by performing the
tasks covered in Section 7.7.1 through Section 7.7.4.

7.7.1 Using JSB-Replacement Macros
You can replace a JSB to a system routine in an OpenVMS VAX driver with a
macro. The JSB-replacement macro uses the same input registers and modifies
the same output registers as the corresponding JSB-based routine. In some cases,
you can specify that R0, R1, or both R0 and R1 not be saved if the driver does
not need them preserved. (These macros have an argument named save_r0,
save_r1, or, save_r0r1.) Eliminating unneeded 64-bit saves of these registers is
a performance gain.

As mentioned in Chapter 6, you should use the JSB-replacement macros in
Table 6–4 instead of an explicit JSB to the listed JSB-interface system routines.
A JSB-replacement macro is provided if the JSB-interface routine is no longer
available or if the JSB-interface routine is less efficient than the new standard
call version of the routine. The JSB-replacement macros use the register inputs
and outputs that your existing OpenVMS VAX code expects. However, these
macros directly invoke the new Step 2 standard call interface routines.

7.7.2 Avoid Fetching Unused Parameters
You can adapt a driver’s use of the driver entry point macros, so that it more
closely resembles the behavior of driver routines.

Each driver entry point macro, by default, initializes the general-purpose
registers an OpenVMS VAX driver routine expects as input. At the very least,
this practice requires a series of register-to-register loads, plus, by virtue of
the default behavior of the MACRO-32 compiler (which automatically preserves
any register an entry point modifies), a set of 64-bit register save and restore
operations. If the execution code path initiated at a driver entry point does not
use one or more of the registers defined as OpenVMS VAX input registers, you
might consider specifying fetch=NO and explicitly loading the registers it does
use.

7.7.3 Minimizing Register Preserve Lists
Each driver-entry-point macro, by default, preserves a set of registers across a
call. The MACRO-32 compiler, by default, preserves those registers the routine
explicitly modifies (but not those implicitly modified by a system routine or
driver-specific routine it calls). Here, too, if the execution path initiated at a
driver entry point does not use one or more of the registers defined as OpenVMS
VAX scratch registers, you might consider removing them from the preserve
mask. Before doing so, carefully examine the chain of execution that proceeds
from the entry point to ensure that some inconspicuous code path does not alter a
register you would like to remove from the mask.

For instance, the $DRIVER_FDT_ENTRY macro specifies, by default, that
registers R2 through R15 be preserved. For certain FDT entry points, you can
specify a much smaller set of registers — preserve=<R2,R9,R10,R11> is usually
sufficient. (These registers are allowed to be scratched by OpenVMS VAX FDT
routines.)
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You can follow this recommendation only if the FDT processing initiated by
the upper-level FDT action routine avoids the situation in which a subroutine
call initiated by a JSB instruction is concluded by a RET instruction instead
of an RSB. A RET under JSB can occur in FDT processing if the upper-level
FDT routine issues a JSB to an FDT support routine that invokes an FDT
completion macro (see Table 6–2) without specifying do_ret=NO. The additional
RET instruction generated by a default invocation of the macro would return
control back to FDT dispatching code in the $QIO system service, and risks the
destruction of register context required by that code.

In some cases you may be able to remove all registers from the preserve list.
Note that you can select an empty register preserve list for the driver entry
point macros only by specifying PRESERVE=NULL. In contrast, if you specify
PRESERVE=<>, you will get the default value for the register preserve list and
not an empty preserve list.

7.7.4 Branching Between Local Routines
The compiler allows a branch from the body of one routine into the body of
another routine in the same module. However, because this results in additional
overhead in both routines, the compiler reports an information-level message.

If a CALL routine branches into a code path that executes an RSB, an error
message is reported. Such a CALL routine, if not corrected, will fail at run time.

If routines that share a code path have different register declarations, the register
restores will be done conditionally. That is, the registers written on the stack
at routine entry will be the same for both routines, but whether the register is
restored depends on which entry point was invoked.

For example:

ROUT1: .JSB_ENTRY OUTPUT=R3
MOVL R1, R3 ; R3 is output, not preserved
BLSS LAB1
RSB

ROUT2: .JSB_ENTRY ; R3 is not output, and
MOVL #4, R3 ; will be auto-preserved
JSB ROUT3 ; no registers destroyed

LAB1: CLRL R0
RSB

Note

For both routines, R3 is included in the registers saved on the stack at
entry. However, at exit, a mask (also in the stack frame) is tested before
restoring R3.

Declaring registers that are destroyed in two routines that share code as scratch
in one but not the other is more expensive than letting the registers be saved and
restored. In this case, you should declare the register R3 as scratch in ROUT2
because it was scratched in the OpenVMS VAX version of your driver.
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EXE$MODIFY routine, 6–7, 6–15
EXE$MOUNT_VER routine, 6–15
EXE$ONEPARM routine, 6–7, 6–15
EXE$PRIMITIVE_FORK, 3–2, 3–3, 3–6
EXE$PRIMITIVE_FORK routine, 6–15
EXE$PRIMITIVE_FORK_WAIT, 3–2, 3–3, 3–6
EXE$PRIMITIVE_FORK_WAIT routine, 6–15
EXE$QIOACPPKT routine, 6–11, 6–15
EXE$QIODRVPKT routine, 6–11, 6–15
EXE$QXQPPKT routine, 6–15
EXE$READCHK routine, 6–12, 6–15
EXE$READCHKR routine, 6–12, 6–16
EXE$READLOCK routine, 6–12, 6–16
EXE$READLOCK_ERR routine, 6–12, 6–16
EXE$READ routine, 6–7
EXE$SENSEMODE routine, 6–7, 6–16
EXE$SETCHAR routine, 6–7, 6–16
EXE$SETMODE routine, 6–7, 6–16
EXE$SNDEVMSG routine, 6–16
EXE$WRITECHK routine, 6–12, 6–16
EXE$WRITECHKR routine, 6–12, 6–16
EXE$WRITELOCK routine, 6–12, 6–16
EXE$WRITELOCK_ERR routine, 6–12, 6–16
EXE$WRITE routine, 6–7, 6–16
EXE$WRTMAILBOX routine, 6–16
EXE$ZEROPARM routine, 6–7, 6–16
EXE_STD$ABORTIO routine, 6–11
EXE_STD$ALTQUEPKT routine, 6–11
EXE_STD$FINISHIO routine, 6–11
EXE_STD$IORSNWAIT routine, 6–11
EXE_STD$KP_STARTIO, 3–12, 3–13, 3–14 to

3–15, 3–16
EXE_STD$LCLDSKVALID routine, 6–7
EXE_STD$MODIFYLOCK routine, 6–12
EXE_STD$MODIFY routine, 6–7
EXE_STD$ONEPARM routine, 6–7
EXE_STD$PRIMITIVE_FORK, 3–2, 3–3
EXE_STD$PRIMITIVE_FORK_WAIT, 3–2, 3–3
EXE_STD$QIOACPPKT routine, 6–11
EXE_STD$QIODRVPKT routine, 6–11
EXE_STD$READCHK routine, 6–12
EXE_STD$READLOCK routine, 6–12
EXE_STD$READ routine, 6–7
EXE_STD$SENSEMODE routine, 6–7
EXE_STD$SETCHAR routine, 6–7
EXE_STD$SETMODE routine, 6–7
EXE_STD$WRITECHK routine, 6–12
EXE_STD$WRITELOCK routine, 6–12
EXE_STD$WRITE routine, 6–7
EXE_STD$ZEROPARM routine, 6–7
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F
FDT (function decision table)

defining, 6–6
$FDTARGDEF macro, 6–10
FDT routines

composite, 7–1
exit, 6–10
support, 6–11, 7–3
upper-level action, 6–7, 6–8

FDT_ACT macro, 6–6
FDT_BUF macro, 6–6
FDT_CONTEXT structure, 6–11
FDT_INI macro, 6–6
Feedback on documentation, sending to Digital, iii
Forking, 3–1 to 3–10
Fork IPL, 5–1
Fork lock, 5–1
FORKLOCK macro, 5–1
FORK macro, 3–2, 3–3 to 3–6
Fork process

See Simple fork process
FORKUNLOCK macro, 5–1
FORK_WAIT macro, 3–2, 3–3 to 3–6
FUNCTAB macro, 6–6

G
Granularity of memory access, 5–3 to 5–4

H
Hardware I/O mailboxes

commands, 2–6
defined, 2–1
using, 2–7

Hardware interface registers
defined, 2–1

I
I/O function

legal, 6–7
Instruction memory barriers, 5–5
Interface registers

defined, 2–1
Interlocked instructions

and data access granularity, 5–4
and memory barriers, 5–3

Interrupt dispatcher
use of memory barriers, 5–2

Interrupts
waiting for, 3–8 to 3–10

Interrupt vectors
programmable, 6–27

IOC$ALLOCATE_CRAM, 2–4, 2–5 to 2–6
IOC$ALLOC_CNT_RES, 4–3 to 4–5
IOC$ALLOC_CRCTX, 4–2
IOC$ALTREQCOM routine, 6–16
IOC$BROADCAST routine, 6–16
IOC$CANCELIO routine, 6–2, 6–16
IOC$CANCEL_CNT_RES, 4–4
IOC$CLONE_UCB routine, 6–16
IOC$COPY_UCB routine, 6–16
IOC$CRAM_CMD, 2–4, 2–6 to 2–7
IOC$CRAM_IO, 2–4, 2–7

use of memory barriers, 5–2
IOC$CRAM_QUEUE

use of memory barriers, 5–2
IOC$CRAM_WAIT

use of memory barriers, 5–2
IOC$CREDIT_UCB routine, 6–16
IOC$CVTLOGPHY routine, 6–16
IOC$CVT_DEVNAM routine, 6–16
IOC$DEALLOCATE_CRAM, 2–4
IOC$DEALLOC_CNT_RES, 4–6
IOC$DEALLOC_CRCTX, 4–6
IOC$DELETE_UCB routine, 6–16
IOC$DIAGBUFILL routine, 6–16
IOC$FILSPT routine, 6–16
IOC$GETBYTE routine, 6–16
IOC$INITBUFWIND routine, 6–16
IOC$INITIATE routine, 6–16
IOC$KP_REQCHAN, 3–13
IOC$KP_WFIKPCH, 3–13
IOC$KP_WFIRLCH, 3–13
IOC$LINK_UCB routine, 6–16
IOC$LOAD_MAP, 4–5
IOC$MAPVBLK routine, 6–16
IOC$MNTVER routine, 6–2, 6–16
IOC$MOVFRUSER2 routine, 6–16
IOC$MOVFRUSER routine, 6–16
IOC$MOVTOUSER2 routine, 6–16
IOC$MOVTOUSER routine, 6–16
IOC$PARSDEVNAM routine, 6–17
IOC$POST_IRP, 6–17
IOC$PRIMITIVE_REQCHANH routine, 6–17
IOC$PRIMITIVE_REQCHANL routine, 6–17
IOC$PRIMITIVE_WFIKPCH routine, 6–17
IOC$PRIMITIVE_WFIRLCH, 3–3, 3–8 to 3–10
IOC$PRIMITIVE_WFIRLCH routine, 6–17
IOC$PTETOPFN routine, 6–17
IOC$QNXTSEG1 routine, 6–17
IOC$RELCHAN routine, 6–17
IOC$REQCOM routine, 6–17
IOC$REQPCHANH, 3–3
IOC$REQPCHANL, 3–3
IOC$SEARCHDEV routine, 6–17
IOC$SEARCHINT routine, 6–17
IOC$SEVER_UCB routine, 6–17
IOC$SIMREQCOM routine, 6–17
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IOC$THREADCRB routine, 6–17
IOC$WFIKPCH, 3–3
IOC$WFIRLCH, 3–3
IOC_ _STD$PRIMITIVE_REQCHANL, 3–3
IOC_STD$CANCELIO routine, 6–2
IOC_STD$MNTVER routine, 6–2
IOC_STD$PRIMITIVE_REQCHANH, 3–3, 3–7 to

3–8
IOC_STD$PRIMITIVE_REQCHANL, 3–3, 3–7 to

3–8
IOC_STD$PRIMITIVE_WFIKPCH, 3–3, 3–8 to

3–10
IOC_STD$PRIMITIVE_WFIRLCH, 3–3
IOFORK macro, 3–2, 3–3 to 3–6
$IOUNLOCK macro, 6–17

J
JSB-based system routine

naming, 1–3

K
Kernel process, 3–10 to 3–26

creating, 3–14 to 3–15
defined, 3–1
exchanging data with its creator, 3–16
flow example, 3–17 to 3–25
mixing with simple fork process, 3–25
suspending, 3–15 to 3–16
synchronizing with its initiator, 3–17
terminating, 3–16

Kernel process private stack, 3–10, 3–12
KPB (kernel process block), 3–10 to 3–11
KP_ALLOCATE_KPB macro, 3–13
KP_DEALLOCATE_KPB macro, 3–13
KP_END macro, 3–13
KP_REQCOM macro, 3–12, 3–16
KP_RESTART macro, 3–13
KP_STALL_FORK macro, 3–13, 3–15
KP_STALL_FORK_WAIT macro, 3–13, 3–15
KP_STALL_GENERAL macro, 3–13
KP_STALL_IOFORK macro, 3–13, 3–15
KP_STALL_REQCHAN macro, 3–13, 3–15
KP_STALL_WFIKPCH macro, 3–13, 3–16
KP_STALL_WFIRLCH macro, 3–13, 3–16
KP_START macro, 3–13
KP_SWITCH_TO_KP_STACK macro, 3–16

L
Legal I/O function, 6–7
LOCK macro, 5–1
Longword data

accessing, 5–3 to 5–4

M
Macro-32 compiler

EVAX_IMB built-in, 5–5
MACRO-32 compiler, 6–1 to 6–35

EVAX_MB built-in, 5–3
.SYMBOL_ALIGNMENT directive, 5–4

Mailboxes
See Hardware I/O mailboxes

Map registers
allocating, 4–1 to 4–7
loading, 4–5

Memory barriers, 5–2
See also Instruction memory barriers
inserting, 5–3, 5–5
instruction, 5–5

MMG$IOLOCK routine, 6–17
MMG$UNLOCK routine, 6–17
MT$CHECK_ACCESS routine, 6–8, 6–17
MT_STD$CHECK_ACCESS routine, 6–8
Multiprocessing synchronization requirement, 5–1

O
OpenVMS AXP device driver

program sections, 6–1 to 6–2
OpenVMS AXP Step 2 device drivers

definition, 1–1 to 1–3
identifying, 6–2
optimizing, 7–10 to 7–11

P
Performance of Step 2 drivers, 7–10 to 7–11
Port drivers

terminal, 6–27
Program sections

$$$110_DATA, 6–1
$$$115_DRIVER, 6–1
of OpenVMS AXP device driver, 6–1 to 6–2
$$$105_PROLOGUE, 6–1

$$$105_PROLOGUE psect, 6–1
Psects

See Program sections

Q
Quadword data

accessing, 5–3 to 5–4

R
Read operation

ordering with other I/O operations, 5–2 to 5–3
Read/write ordering

enforcing, 5–2 to 5–3
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Registers
See Device registers

REQCHAN macro, 3–3, 3–7 to 3–8
REQPCHAN macro, 3–3
Return addresses

modifying, 6–31
pushing onto stack, 6–30
removing from stack, 6–30

S
SCH$IOLOCKR routine, 6–17
SCH$IOLOCKW routine, 6–17
SCH$IOUNLOCK routine, 6–17
Shared data

accessing, 5–3 to 5–4
Simple fork process, 3–1 to 3–10

defined, 3–1
mixing with kernel process, 3–25

SMP (symmetric multiprocessing) synchronization
requirement, 5–1

Spin locks, 5–1
use of memory barriers, 5–2

SS$_FDT_COMPL status, 6–11
Stack

pushing return address onto, 6–30
references to data on, 6–28
removing return address from, 6–30
unaligned references to, 6–28

Stalling a driver, 3–1 to 3–26
Suspending a driver, 3–1 to 3–26
.SYMBOL_ALIGNMENT directive, 5–4

Synchronization issues, 5–1 to 5–5

T
Terminal port drivers, 6–27
Timed delays

implementing, 6–26 to 6–27
TIMEDWAIT macro, 6–26 to 6–27
Timed waits

implementing, 6–26 to 6–27
TIMEWAIT macro, 6–26 to 6–27

U
Unit initialization routines

returning status from, 6–6
specifying, 6–2 to 6–3

UNLOCK macro, 5–1
Upper-level FDT action routines, 6–8

defining, 6–7

W
Waits

See Timed waits
WFIKPCH macro, 3–3, 3–8 to 3–10
WFIRLCH macro, 3–3, 3–8 to 3–10
Word data

accessing, 5–3 to 5–4
Write operation

ordering with other I/O operations, 5–2 to 5–3
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