POLYCENTER Software
Installation Utility Developer’s
Guide

Order Number: AA-Q28MD-TK

April 2001

This guide describes how to package software products using the
POLYCENTER Software Installation utility. It describes the product
description language, product description files, product text files, and
other relevant concepts.

Revision/Update Information: This guide supersedes the
POLYCENTER Software Installation
Utility Developer’s Guide, Version 7.2

Software Version: OpenVMS Version 7.3

Compaqg Computer Corporation
Houston, Texas

© 2001 Compag Computer Corporation

Compag, VAX, POLYCENTER, VMS, and the Compaqg logo Registered in U.S. Patent and
Trademark Office.

OpenVMS, Alpha, DDIF, DECdirect, DECnet, DIGITAL, and MicroVAX are trademarks of Compaq
Information Technologies Group, L.P. in the United States and other countries.

All other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compagq shall not be liable for technical or editorial errors or omissions contained herein.

The information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

The following are third-party trademarks:
Motif and UNIX are trademarks of The Open Group in the United States and other countries.

NFS is a registered trademark of Sun Microsystems, Inc. in the United States and other countries.

ZK5952
The Compag OpenVMS documentation set is available on CD-ROM.

Preface

1 Overview

11

1.2

1.3

13.1
1.3.2
1.3.3
134
1.35
1.3.6
1.3.7

Features for Software Providers. . .
Coexistence with VMSINSTAL. . ..
Creating an Installable Kit
Plan Ahead
Gather the Product Material . .

Contents

Create a Product Description File
Optionally, Create a Product Text File
Package the Software Components
Test and Debug the Installable Kit
Example PDF and PTF for a Software Kit.

2 Basic Concepts

21
211
2.2
2.3
231
2.3.2
2.3.3
234
235
2.3.6
2.3.7
2.3.8
2.4
2.5
2.6
26.1
2.6.2
2.6.3
264
2.6.5
2.7

The Product Database
Querying the Product Database
Software Product Kit Formats

Software Product Kit Naming Conventions

Sequential Format
Reference Format...........

What Do the Fields in the Name Mean?

More About the Version Field .

More About the Kit Type

Looking at Software Product Name Examples
Input and Output Versions of the PDFand PTF

User-Defined Logical Names
Utility Defined Logical Names
Managed Objects
Creating Managed Objects
Managed Object Conflict

Preventing Managed Object Conflict
Managed Object Replacementand Merging
Managed Object Scope and Lifetime

Creating a Platform (Product Suite)

il il
RWWWWNNNR R

NNN[\JI\JNNIl\)NI\JNNI\)NI\JN

PRRYR
PR R R |
NMNNPOOOWOOWMONNOOOORRABRAWWNNPER

3 Creating the Product Description File

3.1
3.2
3.3
3.4
34.1
3.4.2
3.4.3
3.4.4
3.5
3.5.1
3.5.2
353
3.54
3.55
3.5.6
3.5.7
3.5.71

General Guidelines
Defining Your Environment
PDF File Naming Conventions. 0.
Structure of a PDF
Overview of PDL Statements
PDL Statement Syntax
PDL Function Syntax and Expressions
PDL Data Typesand Values
KitTypesandUsage
The FUl Kit Type.
The Operating System Kit Type.
The Platform Kit Type
The Partial Kit Type
The Patch Kit Type
The Mandatory Update Kit Type
The Transition Kit Type

The PCSI$SREGISTER_PRODUCT.COM Command Procedure . ..

4 Creating the Product Text File

4.1
4.2
4.2.1
4.2.2
4.2.3
42.4

PTF File Naming Conventions
Structureof a PTF
Specifying the Product Name
PTF Modules and the Relationship with the PDF
PTF Modules Not Related with the PDF
Including Prompt and Help Text

5 Packaging the Kit

5.1
5.2
5.3
5.4
5.5
5.5.1
55.2
553
5.6

Description of the Product Material
Files Required to Package the Kit
Creating the Product Kit
Listing the Contents of the Product Kit
Extracting Files fromthe Kit........................
Extracting Filesby Name
Extracting the PDF, PTF, or Release Notes
Converting a Sequential Kit into Reference Format . ..
Displaying Information from the Product Database

6 Advanced Topics

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2

6.2.1
6.2.2
6.2.3
6.2.4

Using Command Procedures in PDL Statements.........
Non-Interactive and Interactive Mode
Packaging a Command Procedure
Logical Names for Subprocess Environments.
Execute Statement Summary.....................
Processing Execute Statements

Testing and Debugging Tips.
The /LOG Qualifier
The /TRACE Qualifier
The /IDEBUG=CONFLICT Qualifier................

Installing Your Product on Older Versions of OpenVMS

N
=

w
AN
ANNOONRARPFPOOONOIOIORF

oooooocrooooooo
NNNNE PR

(J1(.ﬂ(.ﬂLﬂLIJ'IU1(JT(J'lU'l
N~Nooo oo owWN

O)G)G)CPO‘)O)

7 Product Description Language Statements

7.1
7.2
7.3

Product Description Language (PDL) Evolves Over Time 7-1
PDL ConveNntionSt e 7-4
PDL Reference Section. 7-4
ACCOUNT. . . . 7-5
apply 10 . . -7
bootstrap block (VAX only) 7-9
AIrECTOrY . . o 7-11
BN . . 7-13
1T 0 7-14
execute abort 7-16
execute install..remove 7-19
execute 1ogin e 7-22
execute postinstall 7-23
execute preconfigure. 7-25
EXECULE release oo 7-28
execute start..StOp 7-31
EXECUTE TEST 7-33
EXECULE UPGradeot 7-35
fille . 7-37
hardware device 7-44
hardware ProcesSSOrttt e 7-46
e 7-48
INfer . o 7-51
information 7-53
NK . 7-56
loadable image 7-58
logical name 7-60
MOdUIE . . . 7-62
Network Object 7-65
OPLION . . o 7-68
= 7-71
patch image (VAX only) 7-73
pPatch teXt 7-75
Process parameter =77
process privilege 7-79
ProdUCT e 7-80
register module 7-83
FEIMOVE . . .ottt e e e 7-85
rights identifier e 7-87
LS00} 01 7-89
SOftWaANE . . . o 7-92
system parameter 7-100
UPGrade . ..o 7-102

A Migrating from VMSINSTAL to the POLYCENTER Software
Installation Utility

Al VMSINSTAL Options and Equivalents A-1
A.2 VMSINSTAL Callbacks and Equivalents A-2

Glossary

Index

Examples
1-1 PDF for Software Kit TNT e 1-4
1-2 PTF for Software Kit TNT 1-5
3-1 PDF for a Full Kit That References Another Full Kit 3-12
3-2 PDF fora FUull Kit 3-14
3-3 PDF for an Operating System Kit 3-15
3-4 PDF for a Platform Kit 3-17
3-5 PDF fora Partial Kit 3-19
3-6 PDF foraPatch Kit.......... 3-20
37 PDF for a Patch Kit That Modifies the Operating System 3-21
3-8 PDF for a Transition Kit 3-23

Figures
2-1 Package Operation 2-3
2-2 Integrated Platform Example. 2-12
6-1 Execute Statement Summary. 6—6
6-2 INSTALL Operation - Product Is Installed for the First Time 6-8
6-3 INSTALL Operation - Product IsUpgraded 6-9
64 RECONFIGURE Operation - Product Is Reconfigured 6-10
6-5 REMOVE Operation - Product Is Removed 6-11
7-1 Features by OpenVMS Version: Statements 7-2
7-2 Features by OpenVMS Version: Functions 7-3

Tables
2-1 Format of tmn-ue Version Identification. 2-5
2-2 PDF Kit Typesand Values i, 2-7
3-1 Base Data Typesand Values 3-9
3-2 String Data Type Constraints 3-9
6-1 Command Procedure Execution by Operation 6-3
6-2 Non-Interactive vs. Interactive Mode 6-4
7-1 Software Patch Kit Locations on the Internet 7-3
7-2 Directory Managed Object Scope and Lifetime................... 7-12
7-3 Resolving File Conflict with Generation Numbers 7-40
7-4 File Managed Object Scope and Lifetime 7-41
7-5 Link Managed Object Scope and Lifetime 7-56

vi

Library Types for Module Statement 7-62

Resolving Module Conflict with Generation Numbers 7-63
Library Types for Register Module Statement 7-83
Summary of software Statement and software Function

Differences 7-97
VMSINSTAL Options and Equivalents A-1
VMSINSTAL Callbacks and Equivalents A-2

Vii

Preface

Intended Audience

This guide is intended for individuals who are responsible for packaging software
products. You do not need to be a programmer to package kits for software
products, but you do need to understand POLYCENTER Software Installation
utility commands and concepts.

Document Structure
This guide is organized as follows:

= Chapter 1 provides an overview of the POLYCENTER Software Installation
utility.

= Chapter 2 defines some key terms and concepts.

= Chapter 3 describes writing the product description file. It also contains
sample product descriptions.

e Chapter 4 describes writing the product text file. It also contains sample
product text files.

= Chapter 5 describes how to package your product and manipulate the Kit.

= Chapter 6 presents advanced topics such as use of command procedures and
testing.

= Chapter 7 provides detailed reference material on product description
language statements and functions.

= Appendix A contains information about migrating from the VMSINSTAL
utility to the POLYCENTER Software Installation utility.

e The Glossary lists and defines POLYCENTER Software Installation utility
terminology.

Related Documents

The OpenVMS System Manager’'s Manual describes the tasks that system
managers perform using the POLYCENTER Software Installation utility. It
explains operations such as software installation and removal.

For additional information about Compag OpenVMS products and services, access
the Compaq website at the following location:

http://waw. openvis. conpag. com

Reader’'s Comments

Compag welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compag.com
Mail Compag Computer Corporation

OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698
How To Order Additional Documentation
Use the following World Wide Web address to order additional documentation:
http://ww. openvis. conpag. coml
If you need help deciding which documentation best meets your needs, call
800-282-6672.
Conventions

The following conventions are used in this manual:

A horizontal ellipsis in examples indicates one of the following
possibilities:

= Additional optional arguments in a statement have been
omitted.

= The preceding item or items can be repeated one or more
times.

= Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

) In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you specify more
than one.

[1] In command format descriptions, brackets indicate optional

choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{} In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

text style This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text

UPPERCASE TEXT

Monospace t ext

numbers

Italic text indicates important information, complete titles

of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type indicates code examples and interactive screen
displays.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Xi

1

Overview

The POLYCENTER Software Installation utility is a complete software
installation and management tool for OpenVMS Alpha or VAX systems. It
can package, install, remove, and manage software products on Alpha or VAX
systems. It can also save information about software products such as system
requirements and installation options.

The POLYCENTER Software Installation utility is intended for use both by
those who create (package) kits for software products and by system managers
who install and maintain these products. This guide describes how to package
software products using the POLYCENTER Software Installation utility. It
describes the product description language, product description files, product text
files, and other relevant concepts.

System managers should refer to the OpenVMS System Manager’s Manual for
general use information.

1.1 Features for Software Providers

For software providers, the POLYCENTER Software Installation utility simplifies
the task of packaging software because:

= Installations require less packaging effort than most conventional installation
methods. This results in performance gains and reduced development time
over conventional installations.

= You can include both brief and detailed installation text to guide users
through an installation, resulting in a higher installation success rate.

= Related products can easily be packaged as a product suite and installed in
one operation.

= The utility keeps track of which products (and versions) have been installed
and removed in the execution environment. Using this information, you
can design your installation procedure to check for and manage version
dependencies.

1.2 Coexistence with VMSINSTAL

The POLYCENTER Software Installation utility is integrated into OpenVMS
and coexists with the VMSINSTAL utility. Today, you use the POLYCENTER
Software Installation utility to install the OpenVMS Operating System and many
layered products on Alpha systems, and to install some layered products on

VAX systems. The POLYCENTER Software Installation utility is the preferred
installation mechanism for future layered product and OpenVMS releases.

The POLYCENTER Software Installation utility offers the following features:

= Typically faster installation and upgrade operations as compared to the
VMSINSTAL utility

Overview 1-1

Overview

1.2 Coexistence with VMSINSTAL

< Removal (deinstallation) of previously installed software products
< A database of information on installed products that has query capabilities
= Dependency checking of software products based on product version number

If you currently use VMSINSTAL to package your software product, see
Appendix A for information about migrating from VMSINSTAL to the
POLYCENTER Software Installation utility.

1.3 Creating an Installable Kit

As a software provider, you probably want to use the POLYCENTER Software
Installation utility to create an installable kit for your software product. This
kit might be a new software product or an update to an existing product; the

POLYCENTER Software Installation utility has features for each case.

Your OpenVMS user will then be able to use the POLYCENTER Software
Installation utility to install your product with a minimum of documentation and
effort.

Generally, the installable kit you create will be packaged in one “container”
file. This container file has the file extension .PCSI and is in the binary format
recognized by the POLYCENTER Software Installation utility. The person
installing your product will use the PRODUCT INSTALL command to install
your Kit on their OpenVMS system.

The sections that follow describe the main steps to create this installable .PCSI
file.

1.3.1 Plan Ahead

Determine the required characteristics of the execution environment for your
product or platform. For example, you must determine where files will be
placed, if DCL tables or help libraries need to be updated, if system or process
parameters need to be checked, and if you need to provide any command
procedures to perform product specific tasks.

1.3.2 Gather the Product Material

1-2 Overview

Locate all product related files that will be installed on the user’s system. Collect
any command procedures you may have written to perform product specific
tasks. These include command procedures that will remain on the user’s system
and those that will be executed from a temporary directory and then deleted.
Together, the product files and any associated command procedures are called the
product material.

Generally, you can organize the product material for input to the packaging
operation in any way that is meaningful and convenient for you. For example,
you can do the following:

= Keep the product material in the directory structure used by the software
engineering team.

= Organize the product material into one or more staging directories that mirror
the directory structure of the product on the user’s disk after installation.

= Place the product material in a single directory tree.

Overview
1.3 Creating an Installable Kit

Each approach has its merits and limitations. However, if you have special
Requirements, such as the need to install different files with the same name in
different directories, then your options for organizing the files prior to packaging
might be restricted.

1.3.3 Create a Product Description File

Create a product description file (PDF) with a text editor. This step is the
subject of Chapter 3. PDF files do the following:

= Identify all of the files and other objects (such as directories, accounts, library
modules, etc.) that the product provides

= Specify configuration choices the product offers, including default answers

= Specify product requirements (such as dependencies on other software
products, minimum hardware configurations, and system parameter values)

PDF files use Product Description Language (PDL) statements (described
in Chapter 7) to convey all of the information the POLYCENTER Software
Installation utility needs for installing either a software product or a set of
software products.

What does a PDF file look like? Example 1-1 shows a sample product description
file. Chapter 7 describes each PDL statement in detail.

1.3.4 Optionally, Create a Product Text File

Create a product text file (PTF) with a text editor. This optional step is
described in Chapter 4. The PTF provides information about the product in brief
and detailed formats. The information includes product identification, copyright
notice, configuration choice descriptions, and message text used primarily during
product installation and configuration operations.

What does a PTF file look like? The PTF file format is similar to that of modules
used with the Librarian utility (LIBRARY) to create, modify, or describe a help
library. Example 1-2 shows a product text file.

1.3.5 Package the Software Components

You package the software components to actually create the .PCSI file. This step
is described in Chapter 5. You use the PRODUCT PACKAGE command and

its various qualifiers to do this. This command determines if the PDF and PTF

are syntactically correct and verifies that all listed product material files can be

found.

1.3.6 Test and Debug the Installable Kit

Once a kit has been successfully produced, use the PRODUCT INSTALL,
PRODUCT SHOW, and PRODUCT REMOVE commands to verify the installation
and removal of the product. Check for correct file placement and protection,

test user input, review message text, modify configuration options, verify that
execution environment requirements are satisfied, and so forth.

You should test your installable kit to make sure that it properly handles any
software version dependencies.

Overview 1-3

Overview
1.3 Creating an Installable Kit

1.3.7 Example PDF and PTF for a Software Kit

Example 1-1 PDF for Software Kit TNT

product DEC VAXVMS TNT V3.0 full ;
if (not <software DEC VAXVMS VMS version mni mum V6. 2>)
error NOVMS ;
end if ;
execute install "@CSI $SOURCE: [SYSUPD] TNT$BACKUP. COM'
remove "" -- nothing special to do on renove
uses [SYSUPD] TNT$BACKUP. COM; -- will not |eave file on system
execute start "@CS| $DESTI NATI ON: [SYS$STARTUP] TNT$STARTUP. COM'
stop " @CS| $DESTI NATI ON: [SYS$STARTUP] TNT$SHUTDOM. COM' ;
execute test "@CSI $DESTI NATI ON: [SYSTEST] TNT$I VP. COM' ;
directory [SYSTEST. TNT] ;
directory [TNT] ;
file [SYSHLP] TNT030. RELEASE NOTES generation 50084697 rel ease notes ;
renove ;
file [SYSHLP] TNT010. RELEASE_NOTES ;

file [SYSHLP] TNTO15. RELEASE NOTES ;

file [SYSHLP] TNT020. RELEASE NOTES ;

file [SYSHLP] TNTO21. RELEASE NOTES ;

file [SYSEXE| TNTSPOPULATE. EXE ;

file [SYSEXE] TNT$I NI TJOURNAL. EXE ;

file [SYSEXE] TNTSDUMPACS. EXE ;

file [SYSEXE] TNTSDUMPJOURNAL. EXE ;
end renove ;
i nformation RELEASE NOTES phase after ;
i nformation POST_INSTALL phase after ;
file [SYSSSTARTUP] TNT$STARTUP. COM gener ati on 50084697 ;
file [SYS$STARTUP] TNT$SHUTDOMN. COM gener at i on 50084697 ;
file [SYSMGR] TNTSUTI LI TY. COM gener ati on 50084697 ;
file [SYSTEST] TNTS$I VP. COM generation 50084697 ;
file [SYSEXE] TNT$SERVER. EXE generation 50084697 ;
file [SYSEXE] TNT$HELPER EXE generation 50084697 ;
file [SYSEXE] TNTSUTI LI TY. EXE generation 50084697 ;
file [SYSEXE| TNTSEXCLUDED SYMBI ONTS. DAT gener at i on 50084697 ;
file [SYSTEST. TNT] TNT$SERVER | VP. EXE generation 50084697 ;
execute postinstall

" @CSI $DESTI NATI ON: [SYSMSR] TNT$UTI LI TY. COM UPDATE ALL" ;

end product ;

1-4 Overview

Overview
1.3 Creating an Installable Kit

Example 1-2 PTF for Software Kit TNT

=PRODUCT DEC VAXVMS TNT V3.0 Ful |

1 " LI CENSE

=pronpt This product uses the PAK: VAX-VMS

This product 1s contained within the Product Authorization Key for
OpenVNs VAX.

1 ' NOTI CE

=pronpt Copyright 2001 Conpaq Conputer Corporation. Al rights reserved.
Unpublished rights reserved under the copyright laws of the United States.

This software is proprietary to and enbodies the confidential technology of
Conpaq Conmputer Corporation. Possession, use, or copying of this software
and nedia 1s authorized only pursuant to a valid witten |icense from Conpaq
or an authorized sublicensor.

Restricted Rights: Use, duplication, or disclosure by the U.S.
Covernment is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of DFARS 252.227-7013, or in FAR 52.227-19 or in FAR 52.227-14 Alt. 111, as
appl i cabl e.

1 " PRODUCER

=pronpt Conpaq Conput er Corporation

This software product is sold by Conpaq Conputer Corporation.

1 ' PRODUCT

=pronpt CPQ OpenVM5 Managenent Station

The OpenVVS Management Station is a client-server application which
provi des CpenVMS system nanagement capabilities via a client application
on a Personal Conputer running Mcrosoft Wndows; the server application
runs on CpenVMS systens.

1 NOWNB

=pronpt M ni num CpenVMS software not found on system abort installation
This kit requires a mni mum QpenVVS version of V6. 2.

1 POST_I NSTALL

=pronpt See the installation guide for post installation information.
Postinstal lation tasks required for OpenVMS Management Station.

For more information, refer to the installation guide.

1 RELEASE_NOTES

=pronpt Rel ease notes for CpenVMS Managenent Station available

The rel ease notes for the QpenVMS Managenent Station are available in
the file SYS$HELP: TNT030. RELEASE NOTES.

Overview 1-5

2

Basic Concepts

This chapter defines some key terms and concepts. You should read this chapter
before starting to create your installable kit.

This chapter describes the following topics:

The product database

The format of software product kits

= Software product name conventions

= Version identification format

= Software product name examples

= Logical names

< Managed objects

If you are already familiar with the POLYCENTER Software Installation utility
terms and concepts, begin with Chapter 3.

2.1 The Product Database

The product database (PDB) is a set of binary files located in
SYS$SYSDEVICE:[VMS$COMMON] with a file extension of .PCSI$SDATABASE.
The POLYCENTER Software Installation utility automatically creates the PDB
the first time a product is installed or registered on the system, such as when
the OpenVMS operating system is installed. Once created, the utility simply
updates the database as operations are performed to install, reconfigure, register,
or remove products.

The PDB is the single source of information about operations performed on
products using the POLYCENTER Software Installation utility. Information
includes a history of operations performed, which products are installed,
which files and other managed objects are owned by each product, software
dependencies among products, and so forth.

The PDB consists of three permanent files:
e PCSI$FILE_SYSTEM.PCSI$DATABASE
e PCSI$PROCESSOR.PCSI$SDATABASE
e PCSI$ROOT.PCSI$SDATABASE

A product specific database file is created each time a product Kit is installed
or registered, and deleted when the product is removed. For example, the
layered product TNT V3.0 for OpenVMS VAX might have a database file named
DEC-VAXVMS-TNT-V0300.PCSI$SDATABASE.

Basic Concepts 2-1

Basic Concepts
2.1 The Product Database

Note

The format and content of the database files are controlled by the
POLYCENTER Software Installation utility. If an OpenVMS system
manager uses the POLYCENTER Software Installation utility to install
your product, the utility will expect the database files to exist from that
point on.

Caution your product’s users not to delete these files or the
POLYCENTER Software Installation utility will not be able to detect
and manage your product. The complete set of database files must be
intact for the utility to access the information in the database.

2.1.1 Querying the Product Database

As a software provider, you can use PDL statements to query the product
database to dynamically determine the version of an installed product. The
following example illustrates how installation choices are made based on the
installed version of OpenVMS on an Alpha system:

if (<software DEC AXPVMS VNS version ninimum V6. 2> AND
<sof tware DEC AXPVMS VMS version bel ow A6.3>) ;
file [SYSEXE] TNT$SSERVER EXE generation 5
source [000000] TNT$SERVER V62. EXE ;
file [SYSEXE] TNTSUTI LI TY. EXE generation 1
source [000000] TNT$UTI LI TY_V62. EXE ;
file [SYSTEST. TNT] TNT$SERVER_| VP. EXE generation 5
i source [000000] TNT$SERVER | VP_V62. EXE ;
end if;

if (<software DEC AXPVMS VMS version mininum V7. 0> AND
<sof tware DEC AXPVMS WMS version bel ow A7.1>) ;
file [SYSEXE] TNT$SERVER EXE generation 5
sour ce [000000] TNT$SERVER V70. EXE ;
file [SYSEXE] TNTSUTI LI TY. EXE generation 1
sour ce [000000] TNTSUTI LI TY_V70. EXE ;
file [SYSTEST. TNT] TNT$SERVER | VP. EXE generation 5
source [000000] TNT$SERVER | VP_V70. EXE ;
end if;

OpenVMS users can use the DCL command PRODUCT SHOW either to query
the product database to show what products are installed and the dependencies
between them, to list the files and other objects that make up each product, or to
show the history of installation and upgrade activity.

If your installation procedure or the OpenVMS user removes a product,
information about the files and objects associated with the product are removed
from the database. However, the history of the product’s activity from installation
to removal is retained in the database.

2.2 Software Product Kit Formats

The installable kit (also called a “software product kit”) you create can be in one
of two POLYCENTER Software Installation utility formats:

= Sequential format. In this form, the PDF, the PTF, and all files that make
up the product are packaged in a single container file with the file extension
.PCSI. You can ship this .PCSI file either on a random-access device, such as
a CD-ROM, or on a sequential access device, such as a magnetic tape. Most
layered products are distributed in sequential format.

2-2 Basic Concepts

Basic Concepts
2.2 Software Product Kit Formats

< Reference format. In this form, the PDF, the PTF, and all files that make
up the product are placed in a directory tree on a random-access device,
such as a CD—ROM. The directory tree mirrors the directory structure of
the product on the user’s disk after installation. The top-level directory
contains the PDF and PTF. OpenVMS is distributed in reference format on a
CD-ROM.

Figure 2—-1 shows how the package operation uses the PDF, PTF, and product
material to create a product kit in reference or sequential format.

Figure 2-1 Package Operation

Product

Product
Description
File (PDF)

Text Product

File (PTF)

Material

Package
Operation

Sequential
or
Reference

VM-0749A-Al

2.3 Software Product Kit Naming Conventions

The POLYCENTER Software Installation utility adheres to the following file
naming conventions when either creating a software product kit or processing
PDF and PTF files.

2.3.1 Sequential Format

A software product kit created in sequential format is a single file whose name is
in the following format:

producer - base- product - ver si on- ki t t ype. PCS|
For example:
DEC- AXPVNMS- DWMOTI F- V0102- 6- 1. PCSI

Note that the file name is constructed of components delimited by hyphens
(-). The version component is further divided into subfields and includes an
additional hyphen as explained in Section 2.3.4.

Basic Concepts 2-3

Basic Concepts
2.3 Software Product Kit Naming Conventions

2.3.2 Reference Format

A software product Kit created in reference format consists of a directory tree
populated with product files used during installation. The directory structure
mirrors the directory structure of the product on the user’s disk after installation.
The top-level directory contains the PDF and PTF. The presence of the PDF
identifies this as a kit in reference format. There is no .PCSI container file for a
kit in reference format. The PDF and PTF are named:

producer - base- product - ver si on- ki t t ype. PCSI $DESCRI PTI ON
producer - base- product - ver si on-ki t t ype. PCSI $TLB

For example:

DEC- AXPV\S- DAWVOTI F- V0102- 6- 1. PCSI $DESCRI PTI ON
DEC- AXPVVS- DWWOTI F- V0102- 6- 1. PCSI $TLB
2.3.3 What Do the Fields in the Name Mean?

The fields in a kit name are position dependent and provide useful information
about the kit. There are a few general naming rules:

= Each field in the file name is separated by a hyphen.

= The length of the file name string (including all required hyphens) cannot
exceed 39 characters.

= The producer-base-product portion of the string must uniquely identify the
software product.

The fields are defined as follows:

= producer is the legal owner of the software product. For Compaq software
products this part of the PDF or sequential kit file name might be CPQ.

« base denotes the hardware and operating system combination that the
product requires. For OpenVMS Alpha systems, use AXPVMS; for OpenVMS
VAX systems, use VAXVMS; for products that can be installed on either
OpenVMS Alpha or OpenVMS VAX, use VMS.

= product is the name of the software product. For example, DWMOTIF.

= version identifies the version of the software product expressed in tmn-ue
format. For example, V0102-6 denotes V1.2-6. See Table 2—1 for more
information.

= Kkittype identifies a kit type specified as a value from 1 through 7, as shown in
Table 2-2.

2.3.4 More About the Version Field

The POLYCENTER Software Installation utility uses the version field to
determine which kit is the most recent and therefore which kit supersedes
another kit for the same product. The version field is in the format tmn-ue. This
format is described in Table 2-1.

2-4 Basic Concepts

Basic Concepts
2.3 Software Product Kit Naming Conventions

Table 2-1 Format of tmn-ue Version ldentification

t The type of version (a single uppercase alphabetic character A through V, the
letters W, X, Y, and Z are reserved for use by Compaq). Evaluated by ascending
ASCII value. Usually pre-release versions of a product begin with the letters A
through U and V is used to indicate the formal release version.

m The major version number (decimal integer 01 through 99).
n The minor version number (decimal integer 00 through 99).

- The hyphen is required in all cases. When both update level (u) and
maintenance edit level (e) are omitted, the version string will end with a
hyphen and the file name will have a double hyphen (- -) preceding the kit type.

u The update level (decimal integer 1 through 999999999). Optional. If not
present, the utility evaluates this component as 0.

e The maintenance edit level (up to 16 alphanumeric characters beginning with
an alphabetic character). Optional. If not present, the utility evaluates this
component as a null string.

When the utility compares the file specifications of two Kkits for the same product
to determine the latest version of the product, it examines the version strings as
follows:

1. Compares the components of the version field in the following order:
a. major version number (m)
b. minor version number (n)
update level (u)
d. maintenance edit level (g)

e. version type (t)

It is important to note that version type (t) is the last component to be
evaluated. Because it indicates the delivery status (internal, external,
beta, and so on) of the product in the development cycle, it is considered
the least important component.

2. Stops when it finds two components that are not equal, or determines that all
five components are equal.

3. Evaluates alphabetic characters and numbers in ascending order.

Once you use an update level (u) or a maintenance edit level (e) in the product
version field, that component must be carried throughout the release cycle of the
product to ensure proper evaluation by the utility.

For example, if you release a test version of your product called E7.3-10
(expressed as E0703-10 in tmn-ue format) and then drop the update number

in the final version V7.3, the utility will not recognize V7.3 as the latest version.
This is what happens:

= The utility stops the comparison after it finds two components that are not
equal. In this case it stops at the update level.

= Because the update level is not present in V7.3, it is evaluated as 0. Ten (10),
the update level in E7.3-10, is greater than zero (0).

« Since version type is evaluated last, it is not a factor here.

Basic Concepts 2-5

Basic Concepts
2.3 Software Product Kit Naming Conventions

Once the update level is established, as in E7.3-10, do not omit it (causing it to
default to zero (0)) until you increase the major or minor version. Any of the
following examples of version numbers would supersede E7.3-10:

= D7.3-10A, because A is greater than the null string.
e V7.3-10, because V is greater than E.
e A7.3-11, because 11 is greater than 10.

2.3.5 What Version Information Will the OpenVMS User See?

The tmn-ue format used in file names is very similar to the format used to
display versions to OpenVMS users, or as entered by the OpenVMS user with the
/VERSION qualifier.

However, when the POLYCENTER Software Installation utility displays a version
to the OpenVMS user:

= Leading zeros are omitted in m and n.
< If neither u nor e is present, the hyphen (-) is omitted.

The following version information is contained in the OpenVMS System Manager’s
Manual. However, it is worth repeating the information here to make sure that
you know how the product version is interpreted:

< If a hyphen is present and the first character after the hyphen is a digit,
then the leading digits after the hyphen are the update level. If nondigit
characters are present, the maintenance edit level consists of the first
nondigit character and all following characters. If nondigit characters are not
present, the maintenance edit level is blank.

« If a hyphen is present and the first character after the hyphen is a nondigit
character, the update level is zero (0) and the maintenance edit level consists
of all of the characters after the hyphen.

= If no hyphen is present, the update level is zero and the maintenance edit
level is blank.

2.3.6 More About the Kit Type

The POLYCENTER Software Installation utility supports the seven Kit types
described in Table 2-2.

2-6 Basic Concepts

Basic Concepts
2.3 Software Product Kit Naming Conventions

Table 2-2 PDF Kit Types and Values

Value Type of Kit Description

1 Full Layered product (application) software.

2 Operating system Operating system software.

3 Partial An upgrade to currently installed software that

replaces or provides new files. Installation of this
kit changes the version of the product.

Patch A correction to currently installed software that
replaces or provides new files. Installation of this
kit does not change the version of the product.

Platform An integrated set of software products (also known
as a software product suite).

Transition Product information used to register (in the
POLYCENTER Software Installation database)
a product that was installed by VMSINSTAL or
other mechanism. This kit includes only a PDF
and (optionally) a PTF; it does not provide product
material.

Mandatory update A required correction to currently installed software
that replaces or provides new files. Installation of
this kit does not change the version of the product.
Functionally the same as a patch kit.

2.3.7 Looking at Software Product Name Examples

The following examples show how the format is used for a sequential format kit
and a reference format Kkit:

A sequential format kit for Compaq Softwindows for OpenVMS VAX that
requires a double hyphen has the following format:

DEC- VAXVMS- SOFTW N- V0101- - 1. PCSI

This format shows that the producer is DEC (Compaq), the base is VAXVMS
(OpenVMS VAX), the product is SOFTWIN, and the version is V1.1. The type
of version is V, the major and minor version numbers are each 1. There are
no update or maintenance edit levels. The kittype is 1 (full).

A product description file in a reference format kit for OpenVMS Alpha has
the following format:

DEC- AXPVMS- VVB- V0602- 1H2- 2. PCSI $DESCRI PTI ON

This format shows that the producer is DEC (Compaq), the base is AXPVMS
(OpenVMS Alpha), the product is VMS, and the version is V6.2-1H2. The
type of version is V, the major version number is 6, the minor version number
is 2, the update level is 1, and the maintenance edit level is H2. The Kittype
is 2 (operating system).

2.3.8 Input and Output Versions of the PDF and PTF

Although you provide the product description file (PDF) and the product text file
(PTF) as input to the package operation, they also exist in modified (output) form
in the kit you create. You need to be aware that two versions of these files do
exist and they perform specific tasks.

Basic Concepts 2-7

Basic Concepts
2.3 Software Product Kit Naming Conventions

You create the input version as input to the package operation, and the
POLYCENTER Software Installation utility creates the output version for its
own use.

The package operation changes the format of the output PTF file. For more
information, see Section 4.2.

The output PDF is in the same format as the input PDF, but the package
operation may modify statements in the output PDF. For example, the package
operation adds the size option to file statements in the output PDF.

2.4 User-Defined Logical Names

When installing your product, system managers must specify a location where the
software Kit resides and a location in which to install the software. Two methods
are available for identifying these locations:

= Defining logical names
« Specifying /SOURCE and /DESTINATION qualifiers on the command line

The system manager can also define logical names, and then override them by
using the /SOURCE and /DESTINATION qualifiers.

PCSI$SOURCE defines the location of the software Kits to install. By default, the
user’s default device and directory are used. PCSISDESTINATION defines the
location in which to install the software.

If the system manager does not define PCSISDESTINATION or use the
/DESTINATION qualifier, the utility installs the software product in
SYS$SYSDEVICE:[VMS$COMMON] and directories under it. If this is not
appropriate for your product, make sure that your installation instructions
describe how to specify the IDESTINATION qualifier, or how to define the
PCSI$DESTINATION logical name.

Note

When you package your product, the logical names PCSI$SOURCE and
PCSI$SDESTINATION are not used. You must use the /SOURCE and
/DESTINATION qualifiers on the PRODUCT PACKAGE command.

2.5 Utility Defined Logical Names

Several Product Description Language (PDL) statements execute

command procedures in the context of a subprocess. The POLYCENTER
Software Installation utility defines the logical names PCSI$SOURCE,
PCSI$SDESTINATION, and PCSI$SCRATCH for use by these command
procedures. Note that these logical names are accessible only within the
subprocess and do not interfere with similar names that the user may have
defined. Note also that the user’s definition of PCSI$SOURCE is not the same as
that defined by the utility for the command procedure. See the PDL statement
definitions for additional information.

2-8 Basic Concepts

Basic Concepts
2.6 Managed Objects

2.6 Managed Objects

Managed objects are the files, directories, accounts, network objects, and so
forth that support the proper functioning of your product. The POLYCENTER
Software Installation utility must directly create them.

As an example, if you use a PDF file statement to create a file, that file is
considered to be a managed object.

However, if your product creates directories, files, and so forth after the
installation is completed, the POLYCENTER Software Installation utility

has no way to know about those files or directories and cannot manage them.
For example, if your product dynamically creates an error log as a result of a
specific error condition, the POLYCENTER Software Installation utility will not
be able to manage (for example, remove) this log file. This means that if the
OpenVMS user uses the POLYCENTER Software Installation utility to remove
your software product, the user would have to delete the error log manually.

In addition, if your PDF includes command procedures in execute statements
that create files, directories, accounts, and so forth, the POLYCENTER Software
Installation utility has no way to know about these objects and cannot manage
them.

2.6.1 Creating Managed Objects

How do you create managed objects? Using PDL statements, you can specify the
names and properties of the managed objects that are necessary for your product.
At installation time, the POLYCENTER Software Installation utility uses your
product description file (PDF) to create the managed objects for your product and
records information about these objects in the product database.

For example, you use the directory, file, and module statements to specify
directory, file, and library module managed objects, as shown in the following
example:

directory [SYSTEST. FORTRAN ;

file [SYSTEST] FORTSI VP. COM ;

file [SYSHLP] TNT030. RELEASE_NOTES rel ease notes ;

file [SYSHLP] HELPLI B. HLB generation 40069227 rel ease merge ;
modul e [000000] CPQC. CLD type command nodul e CC ;

When the POLYCENTER Software Installation utility removes a software
product, it uses the data in the product database to delete managed objects from
the system.

Use the PRODUCT SHOW OBJECT command to display the names of objects
installed on a system. For example:

$ PRODUCT SHOW OBJECT *COPY*

OBJECT NAME OBJECT TYPE STATUS
[SYSEXE] COPY. EXE file (04
[SYSHLP. EXAMPLES. DECW UTI LS] COPYRI GHT. H file (04
COoPY modul e K

Basic Concepts 2-9

Basic Concepts
2.6 Managed Objects

2.6.2 Managed Object Conflict

Occasionally, your product will supply a managed object that conflicts with
another managed object. For example, if you supply a file called FOO.TXT

and a file by that name was also provided (in the same directory) by another
product, a conflict occurs. The existing file will be overwritten under the following
circumstances:

« If it was provided by an earlier instance of your product.

- If it was not created by the PRODUCT command. (It is not a managed object
in the product database.)

However, if the file is a managed object identified in the product database, and is
owned by some other product, it might not be appropriate to replace it.

The following two types of managed object conflict can occur:

< An inter-product conflict occurs when two or more products provide an
object with the same name in the same directory. (Files with the same name
can coexist in different directories.)

< An intra-product conflict occurs when two or more patch or partial Kits for a
product update the same object.

When the utility detects conflict, it displays an informational message. The
following statements detect managed object conflict and display informational
messages:

= account

= directory

- file

< link

- loadable image
= module

= network object
= register module
= rights identifier

2.6.3 Preventing Managed Object Conflict

In some cases, the POLYCENTER Software Installation utility allows you to
anticipate and resolve conflict before it occurs. The following statements provide
some level of conflict resolution:

- file
< module
« register module

Managed object conflict is resolved differently depending on what type of object
is involved. The description of these statements in Chapter 7 indicates how each
one resolves managed object conflict.

2-10 Basic Concepts

Basic Concepts
2.6 Managed Objects

For example, some statements provide a generation option that lets you assign
a generation number to an object. During installation, if the utility attempts to
create an object that already exists, it compares the generation numbers of the

objects, selecting the object with the highest generation number.

When two or more products provide the same file or module, the one with the
highest generation number must implement a superset of the capabilities found
in the objects having lower generation numbers. This is required so that all
products installed that use this object will continue to function properly.

When one of these products is removed, the POLYCENTER Software Installation
utility retains the object with the highest generation number and reassigns the
ownership of the object to the product remaining on the system.

Thus, when products update one or more objects in common (indirectly modify
each other), removal of one product might result in not restoring the other
product to its former state. This is because the objects with the highest
generation numbers are left on the system.

For example, the product description files for products TEST1 and TEST2 are as
follows:

product CPQ AXPVMS TEST1 V1.0 full;
file [SYSEXE] TEST. EXE generation 100;
end product;

product CPQ AXPVMS TEST2 V1.0 full;
file [SYSEXE] TEST. EXE generation 200;
end product;

If you first install product TEST1 and then install TEST2, file TEST.EXE with
generation number 200 will supersede the previously installed file TEST.EXE
with generation number 100. However, if you subsequently remove product
TEST2, the utility will retain generation 200 of file TEST.EXE and list product
TEST1 as its owner. It is assumed that the file having the higher generation
number is a functional superset of the file with the lower generation number and
thus product TEST1 will continue to work properly. To restore product TEST1 to
its original state, you will need to re-install it. This will remove all files installed
associated with the product and replace them with files from the kit.

2.6.4 Managed Object Replacement and Merging

As described in Section 2.6.2, managed objects occasionally have characteristics
that conflict with each other. The POLYCENTER Software Installation utility
handles this situation differently depending on the kit type:

< When upgrading a product using a full operating system or platform Kit,
the utility deletes the existing object and replaces it with the object and
characteristics provided by the new version of the product.

= When upgrading a product using a partial kit or modifying a product using
a patch or mandatory update kit, the utility preserves the characteristics of
existing objects. For example, the security environment you establish for your
product is preserved when you install a partial, patch, or mandatory update
kit.

If you want to provide new characteristics for a managed object in a partial,
patch, or mandatory update kit, use the remove statement to delete the existing
object and then respecify the object with the desired characteristics.

For more information about kit types, see Table 2-2.

Basic Concepts 2-11

Basic Concepts
2.6 Managed Objects

2.6.5 Managed Object Scope and Lifetime

The scope of a managed object defines the degree of sharing that the managed
object permits. For example, some objects are available only to certain processes,
and some can be shared by all processes. The utility usually ensures that
managed objects have the correct scope.

Occasionally, you might need to use the scope statement to give a managed object
a scope other than its default. For more information about specifying the scope of
a managed object, refer to the description of the scope statement in Chapter 7.

2.7 Creating a Platform (Product Suite)

In addition to packaging individual products, the POLYCENTER Software
Installation utility gives you the means to assemble integrated platforms.
An integrated platform is a combination of several products, such as a suite of
complementary management products that you might bundle together.

Functionally, a platform is the same as a full kit, except that it has the
designation “PLATFORM.” A platform is intended to reference other products,
but it can also supply files.

Figure 2-2 shows an example of an integrated platform.

Figure 2-2 Integrated Platform Example

>

/I Product A

[ProductB
[ProductC

&/

ZK-5242A-GE

To package a platform, you create a platform PDF and platform PTF. In
addition to other statements, the platform PDF contains software statements that
specify the products that make up the platform. The individual products have
their own PDFs and PTFs (independent of the platform PDF and PTF). For more
information about platform PDFs, see Section 3.5.3.

2-12 Basic Concepts

3

Creating the Product Description File

The product description file (PDF) is a required component of any software
product kit that you create using the POLYCENTER Software Installation utility.
The PDF does the following:

Specifies all files that make up the product.

Identifies configuration options that are presented to the user at installation
time.

Specifies any dependencies the product may have on other software products.

Defines various actions that must be performed during installation.

3.1 General Guidelines

The POLYCENTER Software Installation utility is intended to simplify the job of
system managers, making products quick and easy to install and manage. Use
the following guidelines when writing PDFs:

Minimize installation activity (such as linking images and building
databases). Instead, include all material required for product execution
on the reference.

Make your products adapt to the target environment at execution time rather
than installation time. This practice keeps products consistent across varying
configurations.

Avoid requiring system parameter settings on the target system that would
require rebooting the system.

Minimize configuration choices at installation time.

Ensure that the PDF expresses all the known requirements that your product
needs to execute. Use the checklist in Section 3.2 to define the requirements
for the target environment.

3.2 Defining Your Environment

To define the environment for your product, use the following checklist.
(Chapter 7 of this guide describes each PDL statement.)

[] Does your product depend on other software?

For example, your product may require a specific version of the operating
system or optional software products. To express these software requirements,
use the software function or statement.

Creating the Product Description File 3-1

Creating the Product Description File
3.2 Defining Your Environment

Note

Note the distinction between the software statement and the software
function. The statement and function serve different purposes and are
not interchangeable.

The software statement specifies a software product that should be
installed on the system to satisfy a software product dependency. It also
specifies a software product that is a part of a platform (product suite)
and should be included in the platform product installation.

The software function tests for the presence of a product. You can also
specify the version of the product that must be present. The software
function, unlike the software statement, does not create a permanent
software reference to another product and does not force the installation
of the other product.

Note that software you reference with a software statement must be
registered in the product database to be recognized by the POLYCENTER
Software Installation utility. If you install a product using a mechanism other
than the POLYCENTER Software Installation utility, the product database
will not contain information about the product unless you register it using a
full or transition PDF. For more information about creating transition product
descriptions, see Section 3.5.7.

[] If you are creating a platform, what software products make up the
platform?

If you are creating a platform, you must specify the software products that
make up the platform. To specify the products that make up your platform,
use the software statement with the component option.

[] Does your product require specific hardware devices?

For example, your product may require that the system have access to certain
peripheral devices, such as a compact disc drive or printer. To display a
message to users expressing these hardware requirements, use the hardware
device statement.

[] Does your product run only on specific computer models?

Some products run only on certain computer models. For example, recent
versions of the OpenVMS operating system are no longer supported on the
VAX-11/725 computer. If this is the case with your product, use the hardware
processor statement to display a message to users.

[] Does your product require specific images, files, or directories?

All the files, images, and directories that your product requires should be
expressed in file or directory statements.

3-2 Creating the Product Description File

Creating the Product Description File
3.2 Defining Your Environment

[] Does your product require a special account on the system?

Some products require a dedicated account on the system. Use the account
statement to supply the account.

[] Does your product require network objects?

Some products require network objects on the system. If your object is
designed for DECnet Phase 1V, use the network object statement to supply the
required network objects. For DECnet-Plus you might want to use a different
mechanism. For example, supply an NCL script with a PDL file statement.

[] Do you want to set up rights identifiers?
Use the rights identifier statement.

[] Does your product supply an image to the system loadable images
table?

Use the loadable image statement.

[] Does your product have several options that the user can choose?

Although it is a good practice to limit the number of user options, you may
need to present the user with options during installation. To present options
to the user, use the option statement.

[] Do you need to patch an executable image?
Use the patch image statement (VAX only).

[] Do you need to patch a text file?
Use the patch text statement.

[] Does your product have specific security requirements?

If the files and directories for your product require special protection or access
controls, you can express this in the product description. See the descriptions
of the directory statement and the file statement. You can also supply a rights
identifier using the rights identifier statement.

[] Does your product require certain values for system parameters?

Many software products require that system parameters have certain values
for the product to function properly. Use the system parameter statement to
display system parameter requirements to users.

[] Does your product require certain values for process parameters?
Use the process parameter statement to display these requirements to users.

Creating the Product Description File 3-3

Creating the Product Description File
3.2 Defining Your Environment

[] Does your product require certain values for process privileges?
Use the process privilege statement to display these requirements to users.

[] Do you want to include a functional test with your product?

You can include it in the product material to verify that your product installed
correctly. To execute the functional test for your product, use the execute test
statement.

[] Are there commands that your installation procedure needs to
execute that are outside the domain of the POLYCENTER Software
Installation utility?

Use the execute statement.

[] Does your product have specific pre- or postinstallation tasks?

You can use the POLYCENTER Software Installation utility to automate
these tasks; however, there may be some tasks you want users to perform
that are outside the capabilities of the utility. You can inform users of such
tasks using the information statement. You can also use several of the execute
statements to perform these tasks.

[] Does your product require command, help, macro, object, or text
library modules?

You should express the following types of modules in your PDF:

= DIGITAL Command Language (DCL) command definition modules
= DCL help modules

= Macro modules

« Object modules

= Text modules
You can express these types of modules using the module statement.

[] What happens to existing product files?

You should make sure that your product’s files are handled correctly during
an installation or upgrade. The POLYCENTER Software Installation utility
deletes obsolete files that are replaced when you install a full, operating
system, or platform Kit. In partial, patch, and mandatory update Kits,

the existing files are preserved. To remove obsolete files, use the remove
statement and file statement options.

[] Does your product require documentation?

You may want to include online documentation (such as release notes) with
your product. To express the documentation requirements for your product,
use the release notes option to the file statement.

3-4 Creating the Product Description File

Creating the Product Description File
3.3 PDF File Naming Conventions

3.3 PDF File Naming Conventions

You supply the PDF as input to the PRODUCT PACKAGE command. The PDF
can have any valid OpenVMS file name and file type. Compaq recommends that
you give the input PDF file the extension .PCSI$DESC. For example:

TEST. PCSI $DESC

When you execute the PRODUCT PACKAGE command, it creates an output PDF.
(See Section 2.3.8 for the distinction between input and output files.)

The output PDF file format is the same as the input PDF; that is, a sequential file
containing PDL statements. The contents of the output PDF, however, may differ
slightly from that of the input PDF. For example, the POLYCENTER Software
Installation utility adds the size option to every file statement and supplies the
actual size of the file in disk blocks.

The name of the output PDF consists of the product’s stylized file name and a file
type of .PCSI$DESCRIPTION:

producer - base- product - ver si on- ki t t ype. PCSI $DESCRI PTI ON.
For example, the output PDF for product BLACKJACK V2.1-17 might be named:
ABC_CO- AXPVMS- BLACKJACK- V0201- 17- 1. PCSI $DESCRI PTI ON

See Section 2.3 for a description of the product naming syntax.

3.4 Structure of a PDF

A PDF is a text file that contains a sequence of PDL statements. A PDF must
begin with a product statement and end with an end-product statement. The
product statement uniquely identifies the product and specifies the type of

kit to build (full, partial, patch, and so forth). Each file that is part of the
product material must be specified with a file statement. The following example
shows a complete PDF for a product that places one file named test.exe in
SYS$COMMON:[SYSEXE].

product DEC axpvns test v1.0 full ;
file [sysexe]test.exe ;
end product ;

3.4.1 Overview of PDL Statements

The product description language consists of statements that are defined in
Chapter 7 of this manual. As an overview, these statements are listed below in
classes according to their main function.

= Statement groups are defined by a pair of opening and closing statements; by
convention the closing statement is the keyword end followed by the keyword
of the opening statement. Statement groups operate on statements lexically
contained within their begin-end pair. Many statement groups can be nested
within other groups.

The following statement groups are used to conditionally process other
statements:

— if and end if (else and else if statements optionally can be used within
the statement group). Used to evaluate the Boolean value of a statement
function or expression as a condition to process enclosed statements or a
group of statements.

— option and end option.

Creating the Product Description File 3-5

Creating the Product Description File
3.4 Structure of a PDF

The following statement groups unconditionally process all statements at
their inner level:

— part and end part
— product and end product
— remove and end remove
— scope and end scope
= Statements that create or modify managed objects include:
— account
— directory
— file
— link (create an alias directory entry)
— loadable image
— module
— network object

— register module

rights identifier

= Statements that enforce software dependencies and hardware requirements
by testing the execution environment and taking appropriate action include:

— apply to

— hardware device

— hardware processor
— infer

— software

— upgrade

= Statements whose main purpose is to display a message to the user and in
some cases query the user for a response are as follows:

= error

information

process parameter
— process privilege
— system parameter

= Statements that cause producer-supplied command procedures to execute or
instruct the user to manually perform a task include:

execute abort

execute install...remove

execute login

execute postinstall

execute preconfigure

3-6 Creating the Product Description File

Creating the Product Description File
3.4 Structure of a PDF

— execute start...stop
— execute test
— execute upgrade

Statement functions that are used to provide a Boolean value when evaluated
in the expression part of an if statement:

— <hardware device>

— <hardware processor>
— <logical name>

— <option>

— <software>

— <upgrade>

Many software products require only the use of a small subset of these PDL
statements to create their PDF. Commonly used statements are as follows:

product and end product (required in every PDF)
file

module

software

option and end option

if and end if

execute install...remove

execute test

3.4.2 PDL Statement Syntax
A PDL statement consists of:

A keyword phrase that identifies the statement (required)
Zero or more parameter values (which may be expressions in certain contexts)
Zero or more options each specified as a keyword phrase and value pair

A semicolon (;) that terminates the statement (required)

Additional Syntax Rules

Statements can span multiple lines and whitespace can be used freely to
improve readability or show relationship through indentation levels.

Case is not significant, except within a quoted string.

A keyword phrase consists of one or more keywords as defined by the PDL
statement.

A comment is a sequence of two consecutive hyphens - - followed by characters
up to and including end-of-line.

When a string containing consecutive hyphens is passed as a parameter or
option value, enclose the string in quotes. For example, “a--b. dat ”. This
prevents the hyphens from being parsed as the start of a comment.

Creating the Product Description File 3-7

Creating the Product Description File
3.4 Structure of a PDF

« Lexical element separators are used to set off keywords, values, expressions,
and so on. They include end-of-line, comment, and the following characters:
space, horizontal tab, form feed, and vertical tab (except when they appear
within a quoted string).

= Delimiters are required syntax in many situations. They consist of the
following characters: semicolon (;), comma (,), left parenthesis ((), right
parenthesis ()), left angle bracket (<), and right angle bracket (>).

When a string contains a delimiter character that is passed as a parameter or
option value, enclose the string in quotes. For example, to pass the numeric
UIC string [1,1] as an option value, use the quoted string form of “[1,1]"
because it contains a comma character.

3.4.3 PDL Function Syntax and Expressions

Certain PDL statements have a function form that tests for a condition in the
execution environment and returns a Boolean value of true or false. A function
is syntactically similar to its corresponding statement except that a function is
enclosed in left and right angle brackets (<...>) instead of being terminated by a
semicolon (;).

The following statements have corresponding functions:

= hardware device

< hardware processor

= option

= software

e upgrade

The logical name function does not have a corresponding statement form.

Expressions are used in if statements to produce a Boolean value for the if-
condition test. An expression is delimited by opening and closing parentheses
((...)). It contains one or more functions and, optionally, one or more of the
keywords AND, OR, and NOT, which are used as logical operators.

An expression has one of the following forms, where each term is either another
expression or a function:

e (term)

e (term AND term)

e (term OR term)

e (NOT term)

The following example shows an if statement using a compound expression:

if ((not <hardware device MJAD:>) and
(<software ABC VAXVM5 TEST version below 2.0>)) ;

endif;

3-8 Creating the Product Description File

Creating the Product Description File
3.4 Structure of a PDF

3.4.4 PDL Data Types and Values

The PDL has several base data types that you must use when passing parameters
to the PDL statements listed in Chapter 7. Table 3-1 describes the PDL base
data types and their values. PDL statements may restrict the range of values
that can be used as parameters.

Table 3-1 Base Data Types and Values

Data Type

Values

Boolean

String

Signed
integer

Unsigned
integer
Version
identifier

Text module
name

The number 0 (false), the number 1 (true), the keywords false, true, no,
and yes.

A sequence of 0 to 255 ISO Latin-1 characters. In the context of PDF
language statements,
= abc is an unquoted string.

< ‘“abc” is a quoted string.

= ““double_quoted_string”” is a quoted string that maintains original
quotation marks.

You must use the quoted string form if the string contains any PDL
delimiters (open/close parenthesis, comma, open/close angle brackets, and
semicolons) or lexical element separators (double hyphen, space, horizontal
tab, form feed, or vertical tab). For example, “/privilege=(tmpmbx,
netmbx)”.

Table 3-2 lists the additional constraints on PDL strings.

Specifies a positive, negative, or zero integral value in the range of
-2147483648 to 2147483647.

Specifies a zero or positive integral value in the range of 0 through
4294967295.

See the description in Section 2.3.

Specifies a unique name for a text module using the printable 1SO Latin-1
characters, excluding horizontal tab, space, exclamation point, and comma.
The name can be from 1 to 31 characters.

Table 3-2 describes additional constraints on the string data type.

Table 3-2 String Data Type Constraints

String Type

Values Examples

Unconstrained

Access control
entry (ACE)

Command

None; any character
may appear in any
position.

Specifies an ACE for a “(IDENTIFIER=[KM],ACCESS=READ)"
directory or file.

Specifies an operating @PCSI$DESTINATION:[SYSTEST]
system command that PRODS$IVP.COM

you want to execute

during a specific

operation.

(continued on next page)

Creating the Product Description File 3-9

Creating the Product Description File
3.4 Structure of a PDF

Table 3-2 (Cont.) String Data Type Constraints

String Type Values Examples

Device hame Specifies the name of a DUBS6:
hardware device.

File name Specifies a file name STARTUP.DAT
(without a device or
directory specification).

Identifier name Specifies a rights DOC
identifier.

Module name Specifies the name of a FMSHELP
module in a library.

Processor model Specifies the model 7

name

Relative
directory
specification

Relative file
specification

Root directory
specification

identification of a
particular computer
system.

Specifies the directory
name and, if necessary,
the directory path,
relative to the root
directory specification.

Specifies the directory
path and file name,
relative to the root
directory path.

Specifies the directory
name and a trailing
period (.). If you specify
a directory name and
omit the period, it is
inserted. If necessary,
you can add the device
name.

[MY_PRODUCT]

[MY_PRODUCT]DRIVER.DAT

[TEST]
SYS$SYSDEVICE:[VMS$COMMON]

3.5 Kit Types and Usage

The POLYCENTER Software Installation utility supports seven kit types that
can be grouped into three broad categories:

< Primary kit — Used to install or upgrade a product. Primary Kits can require
prerequisite products to be installed before or concurrently. Kit types in this
category include:

— Full (layered product or application software)

— Operating system

— Platform (product suite)

= Secondary kit — Used to modify installed products. Kits types in this
category include:

— Partial (changes the product’s version)

— Patch (maintenance update)

— Mandatory update

3-10 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

= Transition kit — Used to register a product that has been installed using
VMSINSTAL or some method other than the DCL command PRODUCT
INSTALL. The kit type in this category is as follows:

— Transition

You use the PRODUCT PACKAGE command to package (or build) a product kit.
The output of the packaging process is an installable kit (in either sequential
copy format or reference format) that contains:

= Product material (usually present) — The files that make up the product.
Usually, the installation of a product kit copies files to the target disk.
However, there are exceptions:

— A transition kit never provides files.

— A platform kit references other products; it may or may not provide
common files for the product suite.

— Since product material is not a requirement for any type of kit, you may
create “skeleton” Kits for testing purposes that do not modify the target
disk.

= A product description file (required) that drives the installation process —
It defines the managed objects that are provided or created and contains
directives for the installation utility. In addition, it can include options for the
installer to select, declare software references to other prerequisite products,
and invoke command procedures you write to augment the installation
process.

= A product text file (optional) that provides text modules for use during the
installation process.

= Temporary files such as command procedures (optional) that are used during
the installation process but are not left on the user’s system.

The full product name (that is, the string producer-base-product) must be unique
among all products installed on a system. This implies, for example, that there
could be two FORTRAN compilers installed from different companies (such

as DEC-AXPVMS-FORTRAN and XYZCORP-AXPVMS-FORTRAN), but there
cannot be two patch kits with the same full name that are intended to apply to
different products (such as ABC-AXPVMS-ECO1 for ABC-AXPVMS-COBOL and
ABC-AXPVMS-ECOL1 for ABC-AXPVMS-C).

The following sections describe each type of kit and provide examples of their
product description files.

3.5.1 The Full Kit Type

A full kit provides layered product application software and is the most common
type of kit. The PDF for a full kit must contain a product statement with the
keyword full and an end product statement, as shown in the following example:

product CPQ AXPVMS TEST A V2.0 full ;

end product ;

Creating the Product Description File 3-11

Creating the Product Description File
3.5 Kit Types and Usage

The full kit has the following characteristics:

= It contains all of the material for the product. Therefore, it can be used to
install the product for the first time or it can upgrade a previously installed
version of the product.

< The product can be removed, configured, or reconfigured.
= Its PDF can contain option and software statements.

Example 3-1 shows a full kit that references another product.

Example 3—1 PDF for a Full Kit That References Another Full Kit

product DEC AXPVNS FORTRAN V7.1-1 full ; @
if (not <software DEC AXPVMS VMB version nininmumV7.1>) ;@
sof tware DEC AXPVMS FORRTL version minimmV7. 1 ;
end if ;
i nformation STARTUP_TASK phase after ;
i nformation RELEASE NOTES phase after ;@
file [SYSHLP] FORTRAN. RELEASE NOTES rel ease notes ; @
file [SYSHLP] FORTRAN RELEASE NOTES. PS ;
file [SYSHLP] FORTRAN RELEASE NOTES. DECW6BOXX ;
if (<software DEC AXPVMS FORTRAN9O>) ; @
error REMFORT90 ;
end if ;
option FORTRAN 90 ;: ®
file [SYSEXE] FOOSMAI N. EXE generation 2 ;
file [SYSMBG FI0$MSG EXE generation 2 ;
nodul e [000000] FOOCLD. CLD type command generation 2 modul e F90 ;
modul e [000000] FOOHELP. HLP type hel p generation 2 nodule F90 ; @
end option ;
option FORTRAN 77 ;
file [SYSEXE] FORTSMAI N. EXE generation 1 ;
file [SYSEXE| FORT$FSPLI T. EXE generation 1 ;
file [SYSVSG FORTSMSG. EXE generation 1 ;
file [SYSVSG FORTSMS®. EXE generation 1 ;
nodul e [000000] DEC FORTCLD. CLD type conmand
generation 1 nodul e FORTRAN ;
nodul e [000000] DEC FORHELP. HLP type hel p
generation 1 nodul e FORTRAN ;
end option ;
file [SYSLIB] FORSYSDEF. TLB generation 5 ;
file [SYS$STARTUP] FORT$SSTARTUP. COM generation 1 protection private ;©®
file [SYSTEST] FORTS$I VP. COM generation 1 protection private ;
execute test "@CSI $DESTI NATI ON: [SYSTEST] FORT$I VP. COM' ; ©
end product ;

© The product statement identifies this as a complete layered product kit for
installation of (or upgrade to) FORTRAN V7.1-1 on an OpenVMS Alpha
system.

® The if..end if group conditionally executes statements within the group
based on the evaluation of the if function. In this example, the software
statement is executed only if the system is running a version of OpenVMS
earlier than V7.1. This software statement creates a software reference to the
product FORRTL. If FORTRL V7.1 or later is already installed, the software
dependency is satisfied; otherwise, FORRTL is automatically installed
concurrently with FORTRAN.

3-12 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

This information statement causes a message to be displayed after the
product has been installed. Text is obtained from the module RELEASE_
NOTES in the PTF:

1 RELEASE_NOTES
=pronpt Type HELP FORTRAN Rel ease_notes for rel ease notes |ocation

This file statement copies file FORTRAN.RELEASE_NOTES to
SYS$SYSDEVICE:[VMS$COMMON.][SYSHLP] (the same as
SYS$COMMON:[SYSHLP]) unless the user specifies a different destination.
The keyword phrase release notes tags this file in the kit so that the
PRODUCT EXTRACT RELEASE_NOTES command can be used to extract
this file from the kit.

This if statement determines whether or not the product FORTRAN9O is
installed. If it is installed, text from the module REMFORT90 in the PTF is
displayed and the user is asked if he wants to terminate the operation:

1 REMFORT90

=pronpt PRODUCT REMOVE FORTRANSO before installing Conpaq Fortran

The obsol ete DEC Fortran 90 product must be removed before Compag Fortran
isinstalled. To do this, use the command:

PRODUCT REMOVE FORTRAN9O

Note that if the keyword abort had been used on the error statement, the
operation would terminate unconditionally. abort was not used because the
abort keyword was introduced in OpenVMS V7.1 and this Kit can be installed
on earlier versions of OpenVMS.

This option...end option group conditionally provides files and library modules
associated with the Fortran 90 compiler. The user is asked a question from
text module FORTRAN _90 in the PTF:

1 FORTRAN 90
=pronpt Compaq Fortran 90 conpiler
This option selects the Conpaq Fortran 90 conpiler.

By default, the option statement displays only text from the prompt line.
However, if the user specifies the /[HELP qualifier on the PRODUCT INSTALL
command, then both prompt and extended help text is displayed (two lines in
this case).

The module statement installs the help text module FO0 from the file
FOOHELP.HLP in the default help library [SYSHLP]JHELPLIB.HLB. The file
FOOHELP.HLP is not left on the system because a file statement is not used.

The keyword phrase protection private on this file statement sets the file
protection to (S:RWED, O:RWED, G, W), giving general users no access.

The execute test statement executes the functional test for the product (the
installation verification procedure) after the product has been installed. If the
test fails, the user is informed but the product is not removed. The user can
use the PRODUCT REMOVE command to delete the product.

Creating the Product Description File 3-13

Creating the Product Description File
3.5 Kit Types and Usage

Example 3-2 shows the full kit referenced by Example 3-1.

Example 3—2 PDF for a Full Kit

product DEC AXPVMB FORRTL V7.1-427 full ;@

end

if (<software DEC AXPVMS VNS version mininmmV7.0>) ;@
file [SYSLIB] FORSDECSFORRTL. EXE
sour ce [SYSLI B] FORSDECSFORRTL- V70. EXE ;
file [SYSLIB] FORBDEC3FORRTL. OBJ
I source [SYSLI B] FORSDECSFORRTL- V70. OBJ ;
el se ;
file [SYSLI B] FORSDECSFORRTL. EXE
source [SYSLI B] FORSDECSFORRTL- V61. EXE ;
file [SYSLI B] FORBDECSFORRTL. OBJ
source [SYSLI B] FORSDECSFORRTL- V61. OBJ ;
end if ;

if (<software DEC AXPVMS VNS version bel ow V7.1>) ;
file [SYSLIB] FORENXTAFTR. OBJ ;
end if ;
file [SYSUPD] FORSI NSTALL_FORRTL. COM ;
file [SYSTEST] FORSRTL_I VP. COM ;
file [SYSTEST] FORSRTL_I VP. CBJ ;
file [SYSHLP] FORRTL. RELEASE NOTES rel ease notes ;
i nformation RELEASE NOTES phase after ;
information POST I NSTALL phase after ;
execute install "@QCS|I $DESTI NATI ON: [SYSUPD] FOR$I NSTALL FORRTL | NSTALL"

renmove " @CSI $DESTI NATI ON: [SYSUPD] FOR$I NSTALL_FORRTL REMOVE"; ©
execute test "@CS| $DESTI NATI ON; [SYSTEST] FORSRTL_| VP" ;
product ;

The product statement identifies this as a complete layered product kit for
installation of (or upgrade to) FORRTL V7.1-427 on an OpenVMS Alpha
system.

The if...else...end if group conditionally executes statements within the group
based on the evaluation of the if function. In this example, two files named
[SYSLIB]JFORDECFORRTL.EXE and [SYSLIB]JFORDECFORRTL.OBJ
are always provided. However, the contents of these files vary depending on
the version of the VMS product that is installed. Notice the use of the source
clause on the file statements to select the desired file from the kit to copy to
the target disk.

The execute install...remove statement executes the command procedure
PCSI$SDESTINATION:[SYSUPD]FORS$INSTALL_FORRTL.COM during
installation or upgrade of the product, and also during removal of the product.
Instead of providing two command procedures, one is used and a parameter is
passed to it to indicate the operation.

3.5.2 The Operating System Kit Type

The operating system kit provides operating system software such as OpenVMS.
The PDF for an operating system kit must contain a product statement with
the keyword operating system and an end product statement as shown in the
following example:

product DEC AXPVMS VM5 V7.2 operating system;

end product ;

3-14 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

The operating system kit has the following characteristics:

It contains all of the material for the product. Therefore, it can be used to
install the product for the first time or it can upgrade a previously installed
version of the product.

The product cannot be removed unless the PRODUCT REMOVE command
contains the /REMOTE qualifier to remove the operating system on a disk
that is not the running system.

The product can be configured or reconfigured.
Its PDF can contain option and software statements.

There can be only one product of type operating system installed on a system
disk.

Except for the kit type designation, the structure of an operating system kit
is the same as a full kit; all PDL statements that are allowed in a full kit can
be used in an operating system Kit.

Example 3-3 shows an operating system Kit.

Example 3-3 PDF for an Operating System Kit

product DEC AXPVMB VMBS V7.1 operating system ;@

upgrade version mninmum V6.1 version bel ow A7.2; @

di rectory [SYSEXE] ; ©

directory [SYSFONT] ;
directory [SYSFONT. DECW ;

directory [SYSFONT. DECW 100DPI] ;

file [SYSEXE] COPY. EXE generation 40069227 ; O

file [SYSEXE| CREATE. EXE generation 40069227 ;
file [SYSEXE] CREATEFDL. EXE generation 40069227 ;

file [SYSEXE] DCL. EXE generation 40069227 ;

file [SYSMER] SYLOG N. TEMPLATE gener ati on 40069227 ;

file [SYSMGR] SYLOG N. COM gener ati on 40069227 @
source [SYSMGR] SYLOG N. TEMPLATE write ;

'option ACCOUNTI NG ;

file [SYSEXE] ACC. EXE generation 40069227 ;
end option ;
option UTILITIES ; @
option MAIL ;
file [SYSEXE] MA
file [SYSEXE] MA
file [SYSEXE| MA

. COM generation 40069227 ;

. EXE generation 40069227 ;

_OLD. EXE generation 40069227 ;
file [SYSEXE| MAI LEDI T. COM generati on 40069227 ;
file [SYSEXE] MAI L_SERVER EXE generation 40069227 ;
file [SYSHLP] MAI LHELP. HLB generation 40069227 ;

IL
IL
IL
IL
L

(continued on next page)

Creating the Product Description File 3-15

Creating the Product Description File
3.5 Kit Types and Usage

Example 3-3 (Cont.) PDF for an Operating System Kit

end

end option ;

option DUWP ;
file [SYSEXE] DUMP. EXE generation 40069227 ;
end option ;
option HELP LI BRARY ;
scope global ;
file [SYSHLP] HELPLI B. HLB generation 40069227 rel ease nerge ; @
end scope ;
end option ;
end option ;

"opti on REMOVE_OBSOLETE ;

renove | ©
file [SYSLIB]LIBOTS. OB ;
file [SYSLIB] EDTSHR TV. EXE ;
end remove ;
end option ;
product ;

The product statement identifies this as a complete operating system Kit for
installation of (or upgrade to) OpenVMS V7.1 on an Alpha system.

The upgrade statement specifies that if this kit is being used to upgrade the
VMS product then the previous version must be within the stated range of
versions. However, if this is an initial installation of the operating system,
the upgrade statement is ignored.

This directory statement creates the directory
[SYS0.SYSCOMMON.SYSEXE], i.e., SYS$COMMON:[SYSEXE].

These file statements copy files to the target system disk. The VMS product
places generation numbers on all objects that it provides to aid in object
conflict detection and resolution when other products (or patch and partial
kits to the operating system) that may replace these objects are installed.

This file statement provides [SYSMGR]SYLOGIN.COM from a template file.
The write option indicates that customers are allowed to edit this file. On
upgrade, if this file exists it will not be replaced.

This option...end option group demonstrates how options can be nested. The
MAIL option is presented to the user only if the UTILITIES option is selected.

The file statement that provides [SYSHLP]JHELPLIB.HLB is enclosed in a
scope global...end scope group to allow other products to freely make updates
to this library.

The keyword phrase release merge indicates that library modules propagate
during an upgrade. For example, if a layered product adds a module to
HELPLIB.HLB, this module is automatically inserted into the new library
file that is provided by the VMS product during an upgrade of the operating
system.

The remove...end remove group within an option...end option group deletes all
objects specified in the remove group if the user selects the option.

3-16 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

3.5.3 The Platform Kit Type

The platform kit installs a product suite, which is an integrated set of software
products. It may provide files that are common to all products in the suite, or it
may not provide any files. It does, however, contain software references to one
or more other products. These references can be either required, optional, or

a combination of required and optional. For example, the OPENVMS platform
kit always installs the OpenVMS operating system product and asks whether to
optionally install system integrated products such as Compaq DECwindows Motif
and Compaq TCP/IP Services for OpenVMS.

The PDF for a platform kit must contain a product statement with the keyword
platform and an end product statement, as shown in the following example:

product DEC AXPVMS OPENVMS V7.2 platform;

end product ;
The platform kit has the following characteristics:

« It contains all of the material that is common to the product suite. Therefore,
it can be used to install the product suite for the first time or it can upgrade
a previously installed version of the platform. As stated, product material is
optional for a platform kit. It should, however, contain one or more software
statements to reference other products.

= Products referenced do not have to be present when the platform kit is
packaged because referenced products are not bundled into the platform Kkit.
However, when you copy a platform, products that are referenced by software
statements with the component option must be present.

e The platform product can be removed, configured, or reconfigured.
= Its PDF can contain option and software statements.

= Except for the kit type designation, the structure of a platform kit is the same
as a full kit; all PDL statements that are allowed in a full kit can be used in
a platform kit.

Example 3-4 shows a platform Kit.

Example 3—4 PDF for a Platform Kit

product DEC AXPVNS OPENVMVS F7.1 platform; @
upgrade version mninmmA7.1 version below V7.2, @
software DEC AXPVMB VMBS version required F7.1 ; ©
option DIWOTIF KIT ; @
sof tware DEC AXPVMS DWMOTI F version minimum V1. 2-4 ;
end option ;
option DECNET _OSI KIT ;
sof tware DEC AXPVMS DECNET _OSI version mninumK7. 1 ;
end option ;
option UCX KIT ;
sof tware DEC AXPVMS UCX version minimum V4, 1-12 ;
end option ;
end product ;

Creating the Product Description File 3-17

Creating the Product Description File
3.5 Kit Types and Usage

@ The product statement identifies this as the OPENVMS F7.1 product suite

for installation or upgrade on an OpenVMS Alpha system. The version type
F indicates that this is a test version of the kit. The platform keyword
indicates that the primary purpose of this product is to install other products.

Note that VMS (the operating system product) is different from OPENVMS
(the product suite).

The upgrade statement specifies that if this kit is being used to upgrade the
OPENVMS product then the previous version must be within the stated range
of versions. However, if the OPENVMS product is not currently installed,
then the upgrade statement is ignored.

The software statement specifies that the operating system (OpenVMS F7.1)
is a required component of the product suite that will be implicitly installed.
Should the VMS F7.1 product kit not be accessible, an error message is
displayed and the installation terminated before any files from any products
are copied to the system.

The option...end option group conditionally executes statements within the
group based on the user’s response to a question. In this example, the option
statement displays text associated with the label DWMOTIF_KIT from the
PTF:

1 DAWWOTIF KIT

=pronpt DECw ndows Mbtif for CpenVMS Al pha
This option installs Conmpag DECw ndows Motif for OpenVMS Al pha, which
provi des the X Wndow system graphi cal user interface.

An affirmative response to the question causes the DWMOTIF V1.2-4 product
to be installed (or upgraded if a version is already installed); otherwise the
software statement is ignored. Should the DWMOTIF V1.2-4 product kit

not be accessible when the platform is installed, this option is marked as
unselectable and skipped over.

3.5.4 The Partial Kit Type

You use a partial kit to upgrade a currently installed product, including replacing
some of the product’s files, providing new files, or removing files. The PDF for

a partial kit must contain a product statement with the keyword partial, an
upgrade statement, and an end product statement as shown in the following
example:

product CPQ AXPVMS TEST A V2.1 partial ;

upgrade version required V2.0 ;

end product ;

A partial kit has the following characteristics:

It does not contain all of the material for the product. Therefore, it can be
used only to upgrade a previously installed version of the product.

It can upgrade a full, operating system, or platform product. More than one
partial kit can be applied to the same product.

The full product name (the producer-base-product string) must be the same as
the product it upgrades.

After installation, the version of the product is changed to the one specified in
the partial kit's PDF.

3-18 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

The product can be removed, in which case the managed objects provided by
the product’s full and partial Kits are deleted.

The product can be configured or reconfigured.

Its PDF can contain option and software statements.

Generally, a new version of a product is provided as a full kit instead of a partial
kit because a full kit can be used for either an initial installation or for an
upgrade of the product. A partial kit is limited to an upgrade path.

A partial kit, however, is usually much smaller in disk block size than its
corresponding full kit. For a very large product, this reduction in size may
significantly reduce the time it takes to distribute the kit over the network.

Example 3-5 shows a partial kit.

Example 3-5 PDF for a Partial Kit

product DEC AXPVMS FORTRAN V7.2 partial ;| @

end

upgrade version required V7.1-1 ; @

i nformati on RELEASE_NOTES phase after ;

i nformation STARTUP_TASK phase after ;

file [SYSHLP] FORTRAN. RELEASE_NOTES rel ease notes ;
file [SYSHLP] FORTRAN RELEASE NOTES. PS ;

file [SYSHLP] FORTRAN RELEASE NOTES. DECWSBOXK ;

file [SYSEXE] FORTSMAIN. EXE generation 4 ; ©
file [SYSMSG FORT$MSG. EXE generation 4 ;
file [SYSVBG FORTSMSR. EXE generation 4 ;
nodul e [000000] DEC_FORTCLD. CLD type conmand

generation 4 nodul e FORTRAN ; @
execute test "@CS|I $DESTI NATI ON: [SYSTEST] FORTS$I VP. COM' ; ©
product ;

The product statement identifies this as a partial kit for the FORTRAN
product that will upgrade FORTRAN to V7.2 on an OpenVMS Alpha system.

The upgrade statement (required for a partial kit) specifies that FORTRAN
V7.1-1 must be installed before installing this upgrade kit.

The keyword generation in this file statement is used to supply sequencing
information to aid file conflict detection and resolution should a patch kit for
this product or another product supply the same file name.

The module statement installs the command definition module FORTRAN
from the file DEC_FORTCLD.CLD in the default command library
[SYSLIB]DCLTABLES.EXE. The file DEC_FORTCLD.CLD is not left on the
system because a file statement is not used to place it there. (In Example 3—7
a CLD file is put into DCLTABLES and a copy of the file is left on the target
disk.)

Note that if this partial kit is installed after the patch kit in Example 3-6, the

module FORTRAN from this partial kit will supersede the module FORTRAN
from the patch kit because it has the higher generation number.

Conversely, if the patch kit is installed after this partial kit, the module will
not be updated. Conflict detection between patch kits and between patch
and partial kits for the same product is new for OpenVMS V7.2. Previously,
conflict detection only occurred between full, platform, and operating system
products.

Creating the Product Description File 3-19

Creating the Product Description File
3.5 Kit Types and Usage

O FORT$IVP.COM already exists on the system disk, provided earlier by the
full version of FORTRAN V7.1-1.

3.5.5 The Patch Kit Type

You use a patch kit to apply a correction to a currently installed product. It can
replace files, provide new files, or remove files. The PDF for a patch kit must
contain a product statement with the keyword patch, an apply to statement, and
an end product statement as shown in the following example:

product CPQ AXPVMS TEST A ECOL V1.0 patch ;
apply to CPQ AXPVM5 TEST_A version minimum A2.0 version maxi num V2.0 ;

end product ;
A patch kit has the following characteristics:

< It usually does not contain all of the material for the product. Therefore, it
can be used only to modify a previously installed version of the product.

< It can modify a full, operating system, or platform product. Also, it can
modify a product that has been upgraded by a partial kit. More than one
patch kit can be applied to the same product.

< Its full product name (the producer-base-product string) must be different
than the full product name of the product it updates. Further, its full product
name must be unique among all products and patches installed on the system.

= After installation, the version of the product that it modifies is not changed.
Use the PRODUCT SHOW PRODUCT /FULL command to display all patch
kits that have been installed on the system.

e Because it is not a product, you cannot remove a patch kit individually using
a PRODUCT REMOVE command. Patches to a product are automatically
removed when the product is removed or upgraded.

= The patch kit cannot be configured or reconfigured, but the product that it
modifies can be configured or reconfigured.

= Its PDF cannot contain option or software statements.

= Patch kits are intended for making small updates to a product. Since
the installation of a patch kit does not change the version number of the
product, you should distribute a new version of the product kit (full, operating
system, or platform) or a partial kit to make large updates or functional
enhancements.

Example 3-6 shows a patch kit.

Example 3—-6 PDF for a Patch Kit

product DEC AXPVMS FORTECO 03 V1.0 patch ; @

apply to DEC AXPVMS FORTRAN version required V7.1-1 ; @
modul e [000000] FORTCLD. CLD type command generation 3 nodul e FORTRAN ; ©
end product ;

@ The product statement identifies this as V1.0 of a patch kit named

FORTECO_03. The name of this kit must be unique among all products
and patches applied to the system.

3-20 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

® The apply to statement (required for a patch kit) specifies that this patch can
be applied only to the installed product FORTRAN V7.1-1.

© The module statement installs the FORTRAN CLD module in the default
command library [SYSLIB]DCLTABLES.EXE. The file FORTCLD.CLD is not
left on the system because a file statement is not used to place it there. (In
Example 3-7 a CLD file is put into DCLTABLES and a copy of the file is left
on the target disk.)

Example 3-7 shows a patch kit that modifies the operating system.

Example 3—7 PDF for a Patch Kit That Modifies the Operating System

product DEC AXPVNS VMS61TO71U2_PCSI B1.0 patch ; @
apply to DEC AXPVMS VNS version mininum V6.1 version below A7.2 ; @

This patch kit provides the entire POLYCENTER Software Installation®
facility built from QpenVMS V7.2 sources that can be installed on QpenVMS
V6.1 through V7.1-n systems. Installation of this patch extends the
capabilities of the DCL conmand PRODUCT, enhances the utility's user
interface, and corrects problems. In addition, the availability of this
patch enabl es product devel opers to use new product description |anguage
syntax introduced in QpenVM5 V7.1 and V7.2 in their product kits for

depl oynent on ol der OpenVMS systens that have this patch installed.

Although this kit could have been packaged as a layered product, it was
nore appropriate to package it as a patch to the operating system because
it replaces a facility that is bundled with CpenVMS. Finally, the use
of generation nunbers on files and library nodul es provides information
used during object conflict detection and resol ution shoul d other patches
for this facility be distributed in the future that update these objects.

file [SYSEXE] PCSI $MAI N. EXE generation 50000000 ;
file [SYSLIB] PCSI $SHR. EXE generation 50000000 ;
file [SYSUPD| PCSI. CLD generation 50000000 ; @
modul e [SYSUPD] PCSI . CLD type command generation 50000000 nodul e PRODUCT ;
nodul e [SYSUPD| PRODUCT. HLP type hel p generation 50000000 nodul e PRODUCT ;
file [SYSUPD| PCSI SCREATE_RI GHTS_I DENTI FI ER COM gener ati on 50000000 ;
file [SYSUPD| PCSI $DELETE_RI GHTS_| DENTI FI ER. COM gener ati on 50000000 ;
file [SYSUPD| PCSI $CREATE_ACCQOUNT. COM gener ati on 50000000 ;
file [SYSUPD| PCSI $DELETE_ACCOUNT. COM gener ati on 50000000 ;
file [SYSUPD| PCSI $CREATE_NETWORK_OBJECT. COM generation 50000000
file [SYSUPD| PCSI $DELETE_NETWORK_OBJECT. COM gener ati on 50000000 ;
file [SYSUPD| PCSI $REG STER PRODUCT. COM generation 50000000 ;
file [SYSUPD| PCSI $EXTRACT _TLB. COM generation 50000000 ;
renove ; @
file [SYSLIB] PCSI $MOTI FSHR. EXE ; -- obsolete file as of VMS V7.2
end renove ;
end product ;

© The product statement identifies this as B1.0 (a field test version) of a patch
kit named VMS61TO71U2_PCSI. The name of this kit must be unique among
all products and patches applied to the system.

® The apply to statement (required for a patch kit) specifies that this patch can
be applied only to versions V6.1 through V7.1-2 of the VMS product.

© The double hyphen (--) identifies a comment line.

Creating the Product Description File 3-21

Creating the Product Description File
3.5 Kit Types and Usage

O This file statement provides [SYSUPD]PCSI.CLD. The following module
statement installs the command definition module PRODUCT from this file in
the default command library [SYSLIB]DCLTABLES.EXE. A file statement is
not required to provide the file specified in the module statement unless you
want the file left on the system.

© This remove...end remove group deletes the obsolete file
[SYSLIB]PCSI$SMOTIFSHR.EXE.

3.5.6 The Mandatory Update Kit Type

You use a mandatory update kit to apply a correction to a currently installed
product. It can replace files, provide new files, or remove files. The PDF for

a mandatory update kit must contain a product statement with the keyword
mandatory update, an apply to statement, and an end product statement, as
shown in the following example:

product CPQ AXPVMS TEST_A ECOL V1.0 mandatory update ;
apply to CPQ AXPVNMS TEST_A version mininmum A2.0 version maxi mum V2.0 ;

end product ;

A mandatory update kit is functionally identical to a patch kit except for its kit
type designation. It is used for corrections that must be applied to the product.

The characteristics of a mandatory update kit are the same as for a patch Kit, as
described in Section 3.5.5.
3.5.7 The Transition Kit Type

You use a transition kit to register in the product database a product that was
not installed by the POLYCENTER Software Installation utility. For example,
you would use a transition kit to register products installed by the VMSINSTAL
utility. The PDF for a layered product transition kit must contain a product
statement with the keyword transition and an end product statement as shown
in the following example:

product DEC AXPVMS FM5S V2.4 transition ;

end product ;

To register an operating system product, the keyword operating system is added
to the keyword transition as shown in the following example:

product DEC VAXVMS VM5 V7.2 transition operating system;

end product ;

In contrast to OpenVMS Alpha, the OpenVMS VAX operating system is not
installed by the POLYCENTER Software Installation utility. The OpenVMS VAX
installation procedure uses the PRODUCT REGISTER PRODUCT VMS command
to register the operating system in the product database.

The transition kit has the following characteristics:

e |t cannot be installed with a PRODUCT INSTALL command; instead, it is
registered with a PRODUCT REGISTER PRODUCT command.

3-22 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

Optionally, it can reference managed objects such as files, directories,
modules, and so forth. However, none of these objects is created or modified
when the Kit is registered, nor does the installation utility verify that any of
these objects actually exist on the system.

Files specified in file statements do not need to be present when a transition
kit is packaged because product material is not included in this type of kit.

The registered product can be removed with the PRODUCT REMOVE
command. If the transition kit references any managed objects, these objects
will be removed as if the transition kit had been a full kit.

The registered product cannot be configured or reconfigured.

The infer statement can be used only in a PDF for a transition Kit.

There are several benefits of registering a product:

The product name is displayed with the PRODUCT SHOW PRODUCT and
PRODUCT SHOW HISTORY commands.

Other software products that require this product as a prerequisite can
specify it in a software statement and have this software dependency satisfied.

If all of the managed objects for the product are specified in the transition
kit, then the product can be completely removed with a PRODUCT REMOVE
command.

Example 3-8 shows a transition PDF for the FMS product.

Example 3-8 PDF for a Transition Kit

product DEC AXPVNB FMS V2.4 transition ; @

infer version from[SYSLIB] FDVSHR EXE ; @

file [SYSLIB] FDVSHARE. OPT ; ©

modul e [SYSUPD] FDV. OBJ type object nodule FDV ; @
modul e [SYSUPD] FDVMSG. OBJ type object nodul e FDVNSG ;
nodul e [SYSUPD| FDVDAT. OBJ type object nodul e FDVDAT ;
nodul e [SYSUPD| FDVERR OBJ type object nodul e FDVERR ;
nodul e [SYSUPD| FDVTI O. OBJ type object nodule FDVTIO ;
modul e [SYSUPD] FDVXFR. OBJ type object nodul e FDVXFR ;
nodul e [SYSUPD| HLL. OBJ type object nodule HLL ;

nodul e [SYSUPD| HLLDFN. OBJ type obj ect nodul e HLLDFN ;

end product ;

The following list describes the statements in this example:

1]

(2]

The transition keyword to the product statement indicates that this is a
transition PDF.

The infer version statement tests the execution environment to determine
whether the file FDVSHR.EXE is present. If it is, the utility infers the
version that is installed.

The file statement indicates that the [SYSLIB]JFDVSHARE.OPT file is part of
the FMS Kit.

The module statements describe object modules in the default object library
[SYSLIB]JSTARLET.OLB that are part of the FMS Kit.

Creating the Product Description File 3-23

Creating the Product Description File
3.5 Kit Types and Usage

3.5.7.1 The PCSI$REGISTER_PRODUCT.COM Command Procedure

An alternative way to register a product (without providing a transition kit for the
user to register with a PRODUCT REGISTER PRODUCT command) is to execute
the SYSSUPDATE:PCSI$SREGISTER_PRODUCT.COM command procedure. This
procedure prompts the user to enter product name, version, producer, and base
system information, as shown in the following example:

$ @YS$UPDATE: PCS| $REG STER_PRODUCT. COM
Product name: FMS

Version: V2.4

Producer [DEC :

Base System [AXPVMS] :

The fol I owi ng product has been registered:
DEC AXPVNMS FMB V2. 4 Transition (registration)

Registering a product using the command procedure allows another software
product to reference this product with a software statement. However, use of this
command procedure does not allow objects (such as files) to be registered along
with the product name in the product database.

3-24 Creating the Product Description File

A

Creating the Product Text File

The product text file (PTF) is an optional component of a software product Kit.
However, most kits created using the POLYCENTER Software Installation utility
include a PTF. You must supply a PTF to the kitting process if you want to

use PDF statements that display text to users during product installation. The
following PDF statements have corresponding text modules in the PTF:

e error

information

option

part

product

For each text module in the PTF you can provide a brief, one-line prompt and

a detailed (more than one line) help description. The brief, one-line prompt

from the text module is displayed by default (with the exception of the error
statement). (See Chapter 7 to see how help text is displayed for each statement.)
To display the detailed help text, the user includes the /HELP qualifier on

the PRODUCT INSTALL command line. If you choose to provide only a brief,
one-line prompt for a given text module and the user asks for detailed help text,
the brief prompt is displayed. By providing detailed help text, you should be able
to reduce or eliminate hardcopy installation documentation.

Note

You might want to force the detailed text to be displayed without the
user having to request it. To do this, use the information or option PDF
statement, as in the following example:

option EXAMPLE default YES with hel ptext;

4.1 PTF File Naming Conventions
The PTF you provide as input to the PRODUCT PACKAGE command must:
= Reside in the same directory as the PDF
= Have the same file name as the PDF and a file type of .PCSI$STEXT
The following are examples of valid input PDF and PTF names:

TEST. PDF
TEST. PCSI $TEXT

ABC_CO- AXPVMS- BLACKJACK- V0201- 17- 1. PCSI $DESC
ABC_CO- AXPVNB- BLACKJACK- V0201- 17- 1. PCS| $TEXT

Creating the Product Text File 4-1

Creating the Product Text File
4.1 PTF File Naming Conventions

The execution of the PRODUCT PACKAGE command transforms the input PTF
into an output PTF. The input PTF is a text file containing header lines and text
module lines. The output PTF is an OpenVMS text library file. Its name consists
of the product’s stylized file name and a file type of .PCSI$TLB:

producer - base- product - ver si on-ki t t ype. PCSI $TLB
For example:
ABC_CO AXPVIVS- BLACKJACK- V0201- 17- 1. PCSI $TLB

Note that you can convert the output PTF from an OpenVMS library file back
to a text file by executing the command procedure PCSISEXTRACT_TLB.COM,
which is located in SYS$COMMON:[SYSUPD]. You must supply the PTF library
file as a parameter to the procedure.

4.2 Structure of a PTF

A PTF is a text file that contains packaging directives, module header lines, and
module text. The PTF must begin with the =product directive line that uniquely
identifies the product and specifies the type of kit. The rest of the file contains
one or more text modules. Each text module entry consists of:

e A module header line that identifies the name of the text module
< An =prompt directive line that includes text for a brief display

= Zero or more lines of text that are combined with the brief text to form the
detailed display associated with the text module

The user chooses whether to receive brief or detailed explanations using the
/HELP qualifier on the PRODUCT INSTALL command.

Brief text format (the default) is restricted to one line of text, that is, the text in
the =prompt directive line. To avoid carrying the single-line text over to the next
line, try to keep your brief message to no more than 60 characters.

Detailed or help text can include any number of lines of text. The formatting of
the information is preserved on output, except that the POLYCENTER Software
Installation utility may indent the entire block of text displaying information
about configuration options or software requirements.

Comment lines are not permitted in a PTF.

4.2.1 Specifying the Product Name

You must use the =product directive to specify product information in the PTF.
The information that you specify with the =product directive must match the
information you specify with the product statement in the PDF.

The =product directive has the following format:
=product producer base product version kittype

See Section 2.3 for the naming conventions.

4-2 Creating the Product Text File

Creating the Product Text File
4.2 Structure of a PTF

4.2.2 PTF Modules and the Relationship with the PDF

PTF text modules are text blocks that you want to present to the user. The
POLYCENTER Software Installation utility does not process text blocks
sequentially, so the order of the text modules in the PTF does not matter.

Text modules are identified by a module header line in the following format:
1 module-name

The module header line consists of the number 1, followed by a space or tab and
the name of the module. The module-name must be from 1 to 31 ISO Latin-1
characters, excluding the horizontal tab, space, exclamation point (!), and comma
(,) characters. For example:

1 SAMPLE

The POLYCENTER Software Installation utility uses the name of the module to
associate the text module with a line from the PDF. For example, the SAMPLE
module could correspond to an option in the PDF:

option SAMPLE ;

4.2.3 PTF Modules Not Related with the PDF

The utility also allows you to specify text modules that are not associated with
statements in the PDF. These text modules are preceded by an apostrophe ().
Use the following module names to specify information about your product:

= The 'LICENSE module specifies licensing information.

= The 'NOTICE module specifies copyright, ownership, and similar legal
information.

e The 'PRODUCER module specifies a brief description of the producer of the
product.

= The 'PRODUCT module specifies a brief functional description of the product.
For example, a product might contain the following modules:

=product DEC VAXVM5 C V1.0 full

1 " PRODUCT

=pronpt DEC C++ for QOpenVMS

Conmpag C++ for OpenVMS VAX is a native conpiler that inplements the C++
progranming | anguage and incl udes:

0 A C++ conpiler that inplements C++ as defined by The Annotated Ct+
Reference Manual, Ellis & Stroustrup, reprinted with corrections,
May 1991. The conpiler inplenmentation includes tenplates but ex-
cl udes exception handling. Conpaq C++ generates optinized object code
without enploying an intermediate translation to C

0 The Conpaq C++ Class Library, which consists of the following class li-
brary packages: iostream conplex, generic, Objection, Stopwatch,
String, task, nessages, and vector.

1 " NOTI CE

=pronpt Copyright 2001 Conpaq Conputer Corporation. Al rights reserved.

Unpublished rights reserved under the copyright laws of the United States.

This software is proprietary to and enbodies the confidential technology of
Conpaq Conputer Corporation. Possession, use, or copying of this software
and nedia is authorized only pursuant to a valid witten license from Conpaq
or an authorized sublicensor.

Creating the Product Text File 4-3

Creating the Product Text File
4.2 Structure of a PTF

Restricted Rights: Use, duplication, or disclosure by the U S.
Governnent is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. |11,
as applicable.

1 " LI CENSE

=pronpt This product uses the PAKs: <xxx> and <xxx-RT>.

This software is furnished under the Iicensing provisions of Conpag
Computer Corporation’s Standard Ternms and Conditions. For nore in-
formation about Conpaq's licensing terns and policies, contact your
[ocal Conpaq office.

1 ' PRODUCER

=pronpt Conpaq Conput er Corporation

This software product is sold by Conpaq Conputer Corporation.

4.2.4 Including Prompt and Help Text

You can include prompt text in your PTF using the =prompt directive. Prompt
text cannot exceed one line of text. (The suggested line length is 60 characters.)
Help text is similar to prompt text, except that it can span multiple lines. The
help text follows the =prompt line. You can also include blank lines in help text.

The following example shows prompt text:
=pronpt This option provides files for programmng support.

The following example shows a sample product text file. Note the prompt and
help text:

=product DEC VAXVM5S UCX V2.0 full

1 ' PRODUCT

=pronpt Conpaq TCP/I P Services for OpenVMs

Compaq TCP/ 1P Services for QpenVMS I's an QpenVMS | ayered software product that
promotes interoperability and resource sharing between OpenVMS systens,

UNI X systems, and other systems that support the TCP/IP and NFS

protocol suites.

The product provides capabilities for file access, renote termnal
access, renmote command execution, remote printing, mail, and application
devel opnent, including three major functional conponents:

0 The Run-Time conponent, which is based on the Berkeley Standard
Distribution, brings TCP/IP comunications to CpenVMS conputer systens.
It also includes a suite of application devel opnent tools
(DECrpc, C socket programming Interface, and Q O programr ng
interface).

o0 The Applications conponent includes the popul ar user-oriented protocols
for file transfer, renote processing, renmote printing, and mail: File
Transfer Protocol (FTP), Telnet Protocol (Telnet), Berkeley R commands
(rsh, rlogin, rexec), remote printing, and Sinple Mil Transfer
Protocol (SMIP).

0 The Conpaq NFS conponent supports Network File System (NFS) V2.0 proto-
col specifications. NFS is an Application layer protocol that provides
clients with transparent access to remote file services.

1 ' NOTI CE

=pronpt Copyright 2001 Conpaq Conputer Corporation. All rights reserved.
Unpubl i shed rights reserved under the copyright |aws of

the United States.

This software is proprietary to and enmbodi es the confidential technology of
Conpaq Conput er Corporation. Possession, use, or copying of this software
and nedia is authorized only pursuant to a valid witten license from Conpaq
or an authorized sublicensor.

4-4 Creating the Product Text File

Creating the Product Text File
4.2 Structure of a PTF

Restricted Rights: Use, duplication, or disclosure by the US.
Governnent is subject to restrictions as set forth in subparagraph (c¢)(1)(ii)
of DFARS 252.227-7013, or in FAR 52.227-19 or in FAR 52.227-14 Alt. IlI, as
appl i cabl e.

1’ LI CENSE

=pronpt This product uses the PAKs: UCX and UCX-1P-RT.

This product currently has two Product Authorization Keys (PAKs):

Producer PAK Name Version Release Date

DEC UCX 2.0 6- JUL- 1992
DEC UCX-1P-RT 2.0 6- JUL- 1992
1 " PRODUCER

=pronpt Conpaq Conput er Corporation

This software product is sold by Conpaq Conputer Corporation.
1 EXAMPLES

=pronpt Exanple files

The exanmple files include client/server programm ng exanpl es.
1 NFS

=pronpt NFS files

The Conpag NFS conmponent supports Network File System (NFS) protocol
specifications. NFS is an Application layer protocol that provides
clients with transparent access to remte file services.

The Conpaq NFS server pronotes data sharing among clients by providing

a central data storage facility for OpenVMs and UNIX files. The Compaq NFS
server provides two types of file access for UNNX clients: 1) client

access to QpenVMs files, and 2) client access to files conmpatible with UNIX
syst ens.

1 APPLI| CATI ONS

=pronpt Applications

The Applications conponent includes the popular user-oriented protocols

for file transfer, rempte processing, remote printing, and mail: File
Transfer Protocol (FTP), Telnet Protocol (Telnet), Berkeley R commands

(rsh, rlogin, rexec), renote printing, and Sinple Ml Transfer

Protocol (SMIP).

1 PRE_I NSTALL

=pronpt Conplete preinstallation tasks for Conpaq TCP/IP Services first.
Before you install Conmpagq OpenVMS UCX, you nust conplete certain preinstallation
tasks. For more information, refer to the "Conpaq TCP/IP Services for QpenVMS
Installation and Configuration Guide."

1 POST I NSTALL

=pronpt Postinstallation tasks required for Conpaq TCP/IP Services.

For nore information, refer to these associated docunents:

- "Conpaq TCP/IP Services for QpenVMs Installation and Configuration Quide"
- "Conpaq TCP/IP Services for QpenVMs System Managenent "

Creating the Product Text File 4-5

5

Packaging the Kit

You use the PRODUCT PACKAGE command to create a software product kit.
This operation uses a product description file (PDF), an optional product text file
(PTF), and product material files as input to produce a software product Kit in
either sequential or reference format.

The syntax of the PRODUCT PACKAGE command is documented in the
OpenVMS System Management Utilities Reference Manual.

This chapter shows you how to create a product kit in sequential format from
product materials that are spread across several directories. A game application
named CHESS is used throughout this chapter to illustrate the steps required to
package the kit. You will also be introduced to the PRODUCT LIST, PRODUCT
EXTRACT, and PRODUCT COPY commands which are useful for manipulating
the product Kit.

Assume that the files needed to package the CHESS product have been organized
into a directory tree. The following is a listing of this directory tree containing
the product material, required kitting files, and other files produced by the
engineering team (such as listing and object files).

$ DI RECTORY / COLUMN=1 / NOTRAI LI NG DKA300: [TEST. *]
Directory DKA300: [TEST. COM

CHECK_SPACE. COM 1
CHESS_| VP. COM 1

Directory DKA300:[TEST.KIT]

CHESS. PCSI $DESC, 1
CHESS. PCSI $TEXT; 1
PACKAGE. COM 1

Directory DKA300: [TEST. LI S
CHESS. LI S; 1
Di rectory DKA300: [TEST. OBJ]

CHESS. EXE; 1
CHESS. 0BJ; 1

Directory DKA300: [TEST. SRC|

CHESS. C 1

CHESS. GAMES; 1
CHESS. OPENI NGS; 1
HEADER. H; 1

Packaging the Kit 5-1

Packaging the Kit
5.1 Description of the Product Material

5.1 Description of the Product Material

The product material for the CHESS application consists of the files that will be
installed on the user’s system along with any command procedures included in
the kit to perform product specific tasks during installation.

Assume that the product material is located in the directory tree [TEST...] as
follows:

< An executable image named CHESS.EXE is located in [TEST.OBJ]. It will be
placed in [SYSEXE] on the target disk when the product is installed.

< Two data files, CHESS.OPENINGS and CHESS.GAMES, reside in
[TEST.SRC]. The first file, an opening book, will always be copied to
[SYSEXE] on the user’s system. However, the second file, a large games
collection, is an optional component of the product. Users determine at install
time whether or not to install this file. If they choose not to install it, they
can later reconfigure the product to obtain this optional file.

e Two command procedures, CHESS IVP.COM and CHECK_SPACE.COM, are
placed in [TEST.COM]. CHESS_IVP.COM will be copied to [SYSTEST] on
the destination device and executed to verify the correct installation of the
product. CHECK_SPACE.COM will be executed early during the installation
but it will not be left on the user’s system. It checks for adequate space on
the destination device for large work files that will be used when the product
is used.

The contents of the two command procedures from [TEST.COM] are shown below
as they might appear early in the packaging process. Later in the development
cycle they will be replaced by command procedures that perform their intended
functions.

$ TYPE [TEST. COM*. *
DKA300: [TEST. COM CHECK_SPACE. COM 1

$! This command procedure is executed froman EXECUTE PRECONFI GURE st at enent
$! with the I NTERACTI VE keyword specified. Therefore, all output lines

$! generated will be displayed.

$!

$ wite sys$output "*** Qutput fromexecute preconfigure ***"

$exit 1

DKA300: [TEST. COM CHESS_| VP. COM 1

$! This command procedure is executed froman EXECUTE TEST statenent without
$! the I NTERACTI VE keyword specified. Therefore, only output |ines that
$! look like an QpenVM5 nessage (i.e., those starting with % will be
$! displayed. By default, all other output fromthis
$! procedure will be suppressed unless the /TRACE qualifier is used on the
$! PRODUCT INSTALL command. For testing purposes you can force a line
g! of text to be displayed by putting a percent sign in colum 1.
|
% write sys$output "9%886 Qutput fromexecute test %84
exit 1

5-2 Packaging the Kit

Packaging the Kit
5.2 Files Required to Package the Kit

5.2 Files Required to Package the Kit

In this CHESS kit example, the [TEST.KIT] directory contains the following files
to package the kit:

e CHESS.PCSI$DESC, the product description file
e CHESS.PCSI$TEXT, the product text file
 PACKAGE.COM, as a convenience

PACKAGE.COM has been created to simplify the task of entering the PRODUCT
PACKAGE command with the appropriate qualifiers.

The content of the packaging files for the CHESS product might be similar to the
following:

$ TYPE [TEST.KIT]*.*
DKA300; [TEST. KI T] CHESS. PCSI $DESC; 1

product ABC CO AXPVM5 CHESS V1.0 full ;
execute preconfigure "@csi $source: [000000] check_space. cont
uses [000000] check_space.cominteractive ;
file [sysexe]chess. exe ;
file [sysexe]chess. openings ;
option master_ganes ;
file [sysexe] chess. games ;
end option ;
file [systest]chess_ivp.com;
execute test "@csi $destination:[systest]chess_ivp.conl ;
end product ;

DKA300: [TEST. KI T] CHESS. PCSI $TEXT; 1

=product abc_co axpvms chess v1.0 full

1’ PRODUCT

=pronpt ABC Conpany’'s Chess for CpenVM5 Al pha

Chess V1.0 provides a chess playing engine with 50 selectable
user levels (rated playing strength from 1200 to 2450), a
graphical interface with 2D and 3D boards, an extensive

dat abase of openings plus thousands of conplete master games,
and three modes of operation: play, analyze, and tutorial.

1 MASTER GAMES

=pronpt Do you want the database of master games?

Answer YES to install a database containing 16000 conplete
ganes played by Gvs and | M (25000 blocks). Your choice does
not affect the quality or size of the opening database which
is always installed inits entirety.

DKA300: [TEST. KI T] PACKAGE. COM 1

Packaging the Kit 5-3

Packaging the Kit
5.2 Files Required to Package the Kit

$! This command file packages product CHESS into a sequential format kit.

$! Note that by default the package command searches for the input PDF and
$! input PTF in the source directory using file name and type of:

$! <producer - base- product - ver si on-edi t - t ype>. pcsi $desc (for PDF) [1]
$! <producer - base- product - ver si on-edi t -t ype>. pcsi $text (for PTF)
$! For exanple:
$! abc_co- axpvns- chess-v0100- - 1. pcsi $desc
%! abc_co- axpvms- chess-v0100- - 1. pcsi $t ext
|

$! You can override this default by specifying the file name of the PDF and
$! PTF (and optionally the file type of the PDF) in the /source qualifier

$! (e.g., /source=dev:[dir]chess.pdf). The file type of the PTF, however
$! nust be .pcsi$text. The approach used in this command procedure is

$! to specify the file name of the PDF and PTF in the /source qualifier and
$! let the file types be defaulted. For exanple, /source=dev:[dir]chess

$! causes the package command to search for input PDF and input PTF naned:

$! chess. pcsi $desc
%! chess. pcsi $t ext
|
$! [1] For OpenVMs V6.1-V7.1, the default input PDF file type was
$! .pcsi $description (the same as the output PDF), but beginning with
$! QpenVMB V7.1-2, the utility looks for .pcsi$desc; if not found it
$! then searches for .pcsi$description.
$!

$ product package chess -
| base=axpvns -
[producer =abc_co -
/' sour ce=dka300: [test. kit]chess - | where to find PDF and PTF
/destination=dka300: [test.kit] - ! where to put .PCSlI file

I material =dka300: [test.*] - I where to find product material
[format =sequenti al
$ exit

5.3 Creating the Product Kit

The sample output below shows the execution of the PRODUCT PACKAGE
command (via a command procedure listed in Section 5.2) to create the product
kit in sequential format. The full kit name for CHESS V1.0 produced by ABC_CO
to run on OpenVMS Alpha is ABC_CO-AXPVMS-CHESS-V0100-1.PCSI.

$ SET DEFAULT [TEST.KIT]
$ @PACKACGE. COM

The fol owi ng product has been sel ected:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

The followi ng product will be packaged:
ABC_CO AXPVMS CHESS V1.0

Portion done: 0%..100%
The fol owi ng product has been packaged:
ABC_CO AXPVMS CHESS V1.0 Layered Product
$ DI RECTORY / COLUMN=L / NOTRAI LI NG
Directory DKA300: [TEST. KIT]

ABC_CO- AXPVMS- CHESS- V0100- - 1. PCSI ; 1
CHESS. PCS| $DESC, 1

CHESS. PCSI $TEXT; 1

PACKAGE. COM 1

5-4 Packaging the Kit

Packaging the Kit
5.4 Listing the Contents of the Product Kit

5.4 Listing the Contents of the Product Kit

A product Kit in sequential format is a container file. You can list its contents
with the PRODUCT LIST command. In the following example, note:

= During the packaging operation, the input PTF has been converted to a text
library file with a file type of .PCSI$TLB.

= The input PDF with a file type of .PCSI$DESC has been packaged as an
output PDF with a file type of .PCSI$SDESCRIPTION.

= During the packaging operation, the output PDF has the same format as the
input PDF, but comments have been removed and additional information such
as file size has been added to the file.

$ PRODUCT LI ST CHESS

The fol I owing product has been sel ect ed:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]
Files in _KRYSYSSDKA300: [TEST. KI T] ABC_CO- AXPVMS- CHESS- V0100- - 1. PCSI

[000000] ABC_CO- AXPVIVB- CHESS- V0100- - 1. PCSI $TLB

[000000] CHECK_SPACE. COM

[SYSEXE] CHESS. EXE

[SYSEXE] CHESS. GAVES

[SYSEXE] CHESS. OPENI NGS

[SYSTEST] CHESS_| VP. COM

[000000] ABC_CO- AXPVMB- CHESS- V0100- - 1. PCSI $DESCRI PTI ON

Starting with OpenVMS Version 7.3, you can use the /FULL qualifier with the
PRODUCT LIST command. The expanded output lists the following:

e The size of most files.
Certain files, such as the PDF, PTF, temporary command procedures, and files
created at install time with an assemble uses clause, will not have a file size
listed.

« Additional information on certain files in a comments field.

Note

Prior to OpenVMS Version 7.3, the PRODUCT LIST command did not
list files in the kit that were associated with the uses or assemble uses
option.

5.5 Extracting Files from the Kit

You can extract one or more files from a product kit using the PRODUCT
EXTRACT and PRODUCT COPY commands. The PRODUCT EXTRACT
command is often used with the PRODUCT LIST command to identify a file or a
set of files to extract.

Packaging the Kit 5-5

Packaging the Kit
5.5 Extracting Files from the Kit

5.5.1 Extracting Files by Name

With the PRODUCT EXTRACT FILE command you can obtain a single file by
name or a set of files with a wildcard file specification from a product kit. For
example:

$ PRODUCT EXTRACT FILE CHESS / SELECT=*. EXE / LOG

The fol l owi ng product has been sel ected:
ABC CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

Portion done: 0%

UPCSI - | - CREFIL, created DI SK$WORK7: [TEST. KI T.][000000] CHESS. EXE; 1

Portion done: 100%

9%PCSI Ul - 1 - SUCEXTRFI L, EXTRACT FILE operation conpleted successfully
5.5.2 Extracting the PDF, PTF, or Release Notes

You can extract the PDF, PTF, or release notes file by name. If you do not know
their names, use the folowing EXTRACT commands:

= PRODUCT EXTRACT PDF
= PRODUCT EXTRACT PTF
= PRODUCT EXTRACT RELEASE_NOTES

Every product kit contains a PDF. A PTF and a file designated as the release
notes are optionally present in a kit.

The following illustrates how to obtain the PDF from a sequential kit:

$ SET DEFAULT [TEST.KIT]
$ PRODUCT EXTRACT PDF CHESS / DESTI NATI ON=[TEMP] /LOG

The fol lowing product has been sel ected:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

Portion done: 0%

9%PCS| -1 - CREFI L, created

DI SK$WORK?: [TEMP.] [000000] ABC_CO- AXPVB- CHESS- V0100- - 1. PCSI $DESCRI PTI ON; 1
Portion done: 100%

Product Description File has been extracted fromthe fol |l owi ng product:
ABC_CO AXPVMS CHESS V1.0 Layered Product
YPCSI Ul - | - SUCEXTRPDF, EXTRACT PDF operation conpl eted successful ly

When you extract the PTF, the following two files are produced:
= The output form of the PTF as a text library file
= A recreation of the input form of the PTF as a sequential text file

$ PRODUCT EXTRACT PTF CHESS /LOG

The following product has been sel ected:
ABC CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

5-6 Packaging the Kit

Packaging the Kit
5.5 Extracting Files from the Kit

Portion done: 0%

9%PCS| - | - CREFI L, created

DI SK$WORK7: [TEST. KI T.] [000000] ABC_CO- AXPVIMS- CHESS- V0100- - 1. PCSI $TLB; 1

9%PCS| - | - CREFI L, created

DI SK$WORK7: [TEST. KI T.] [000000] ABC_CO- AXPVMS- CHESS- V0100- - 1. PCSI $TEXT; 1

Portion done: 100%

Product Text File has been extracted fromthe fol | owing product:
ABC_CO AXPVMS CHESS V1.0 Layered Product

%PCSI Ul - | - SUCEXTRPTF, EXTRACT PTF operation conpl eted successfully

Use the PRODUCT EXTRACT RELEASE_NOTES command to examine any
release notes file that may be present in the kit. This command always places the
release notes (named DEFAULT.PCSISRELEASE_NOTES) in the user’s default
directory.

$ SET DEFAULT [TEMP]
$ PRODUCT EXTRACT RELEASE NOTES CHESS / SOURCE=[TEST. KI T]

The foll owing product has been sel ected:
ABC CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]
Portion done: 0%..100%

5.5.3 Converting a Sequential Kit into Reference Format

You can use the PRODUCT COPY command to extract files from a kit in
sequential format and place them in reference format. This differs in a number
of ways from extracting all files from a sequential kit into a specific directory
using the PRODUCT EXTRACT FILE command. When copying a kit into
reference format, the files are placed in a directory tree as they would appear
after installation on the user’s system. Unlike the installation of a sequential Kit,
however, temporary files from the kit are placed in the directory tree and files
pertaining to all options are extracted.

You can also use the PRODUCT COPY command to convert a reference kit into
sequential format, and for copying a kit while preserving its format.

5.6 Displaying Information from the Product Database

After the product Kit is installed, you can use the PRODUCT SHOW PRODUCT
command to list the products installed on the system. Use the /FULL qualifier
for additional information about software references and patches that may have
been applied to the products. Additional commands (not shown here) that are
useful for obtaining more information about installed products are the PRODUCT
SHOW HISTORY /FULL and PRODUCT SHOW OBJECT /FULL commands.

$ PRODUCT INSTALL CHESS ! /LOG and /TRACE are useful for debugging

$ PRODUCT SHOW PRODUCT

PRODUCT KIT TYPE STATE

ABC CO AXPVNS CHESS V1.0 Full LP Installed
DEC AXPVMS DECNET_PHASE 1V V7.1 Full LP Installed
DEC AXPVMS DWVOTI F V1. 2-4 Ful |l LP Installed
DEC AXPWNMS WS V7.1 Transition Installed

4 items found

Packaging the Kit 5-7

6

6.1 Using

Advanced Topics

This chapter contains information about the following advanced concepts:
= Using command procedures
= Testing and debugging

In addition, it presents flow diagrams depicting the execution of several
PRODUCT commands.

Command Procedures in PDL Statements

The Product Description Language provides statements that perform common
kit installation tasks such as creating directories, copying files to the target
disk, updating libraries, displaying informational messages, and so on. There
are times, however, when you might need to perform tasks that are unique to
your product. For example, a new version of a product might need to detect the
existence of a data file from a previous version and convert it to a new format.
Or, you might want to probe the operating environment or ask the user specific
questions before an installation may proceed.

To support this type of customization, the PDL provides several execute
statements. These statements let you include command procedures (or individual
DCL commands) that are run during certain phases of a product install, upgrade,
reconfigure, or remove operation. These statements are:

= execute abort
Runs error recovery commands just before the utility exits when an error
condition causes the operation to terminate. For example, the following will
activate the execute abort statement:

= An error or fatal error condition that results from running commands
from an execute statement (except execute test).

= The user terminates the operation by pressing CTRL+Y or CTRL+C.

= After an error is reported during material placement on the target disk,
the user answers YES to the question "Do you want to terminate?".

= execute install...remove
Runs commands during the execution phase when changes are made to the
target disk (such as creating directories and moving files).

— The "install" portion is performed during an installation, upgrade, or
reconfiguration of the product after product material has been moved
from the kit to the target disk.

— The "remove" portion is performed during removal of the product before
any files are deleted from the target disk.

Advanced Topics 6-1

Advanced Topics
6.1 Using Command Procedures in PDL Statements

« execute login
Does not run any commands. It only displays a predefined message telling
users to update their LOGIN.COM file with the specified commands.

= execute postinstall
Runs commands that perform additional tasks at the end of the execution
phase of an installation, upgrade, or reconfiguration of the product.

= execute preconfigure
Runs commands after the user has selected the product for installation,
upgrade, or reconfiguration, but before the utility begins the configuration
phase where the user is asked to select options for the product. If you need to
run a command procedure in preparation for installing your product, consider
using an execute preconfigure statement. This lets you embed preconfiguration
work in the kit and relieves users of performing this task themselves.

= execute start...stop
Runs commands during the execution phase.

— The "start" commands are executed during an installation or upgrade. In
addition, a predefined message is displayed telling the user to add these
commands to their SYSTARTUP_VMS.COM file.

— The "stop” commands are executed when the product is removed or
upgraded. In addition, a predefined message is displayed telling the user
to add these commands to their SYSHUTDWN.COM file whenever the
product is installed, upgraded, or reconfigured.

* execute test
Runs an installation verification procedure (or functional test of the product)
after the installation has completed. Prior to running the test, the product
database is updated and closed. The user can prevent the running of the
installation verification procedure by specifying the /INOTEST qualifier with
the PRODUCT INSTALL command.

= execute upgrade
Runs commands when the product is upgraded by another version of the
product. Commands are run before product material from the previously
installed version of the product is deleted.

= assemble execute option of a file statement
Runs commands that create the specified file in a scratch directory at
execution time, then copies the file to the target disk. This replaces the usual
process of extracting a packaged copy of the file from the kit. A typical use of
the assemble execute option is to dynamically link an image at installation
time.

The following table lists the PDL statements you can use to run command
procedures (or individual DCL commands) that you provide. The statements are
listed in the order of their execution during an installation, reconfiguration, or
remove operation. Note that the table distinguishes between a new installation
and an upgrade installation. The term upgrade denotes replacement of an
installed version of a product by a higher, lower, or the same version of the
product.

6—2 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Table 6-1 Command Procedure Execution by Operation

PDL Statements

Listed in the Order of PRODUCT INSTALL PRODUCT INSTALL PRODUCT PRODUCT
Execution 1st Time Upgrade RECONFIGURE REMOVE
execute preconfigure yes yes yes no
execute ...stop no yes? no yes
execute ...remove no no no yes
execute upgrade no yes! no no

file statement using yes yes yes? no
assemble execute

execute install... yes yes yes no
execute start... yes yes no no
execute postinstall yes yes yes no
execute test yes yes yes no
execute login no® no? no® no
execute start...stop no® no3 no® no
execute abort yes* yes* yes* no

10nly commands from the execute statement of the product being removed are run.

2The file is created only if the statement is part of a configuration option that the reconfiguration operation selects for the

first time.

3The only action performed at this time is to display a message to the user.

4Commands from the execute abort statement are run only when an error condition causes the operation to terminate.

6.1.1 Non-Interactive and Interactive Mode

The mode (non-interactive or interactive) in which an execute statement runs
determines the following:

= The type of subprocess used to run your command procedures (or individual
DCL commands)

= How a command procedure interacts with the user

By default an execute statement runs in non-interactive mode. You can specify
interactive mode with the interactive option. For example, the following
command sets up a command procedure to run in interactive mode when the
product is installed:

execute postinstall "@CS|I $DESTI NATI ON: [SYSUPD] CONFI GURE. COM' interactive ;

In both non-interactive and interactive modes, the utility checks the final exit
status of a command procedure (or individual DCL command) to determine
whether or not the execute statement completed successfully or failed. Although
error messages generated by a command procedure are displayed to the user, this
does not determine its success or failure. The utility bases this decision solely on
the final exit status. It is the kit developer’s responsibility to ensure that proper
status is conveyed to the utility upon termination of any command procedure
incorporated into the kit.

Advanced Topics 6-3

Advanced Topics

6.1 Using Command Procedures in PDL Statements

The following table compares non-interactive and interactive mode.

Table 6-2 Non-Interactive vs. Interactive Mode

Non-Interactive Mode (default)

Interactive Mode

Used when you do not specify the interactive
option

At the start of processing a PRODUCT command,
the utility creates a detached subprocess using
the $CREPRC system service. This subprocess

is re-used to run the commands from all of

the execute statements specified to run in non-
interactive mode.!

Interaction with the user is not possible. The
utility communicates with the subprocess
through mailboxes. It filters all output from

the subprocess, only displaying lines of output to
the user that resemble error messages (i.e., lines
beginning with a percent sign). All other lines of
output are discarded.

The utility obtains exit status from the value

of the $STATUS symbol received in response

to a SHOW SYMBOL $STATUS command it
sends to the subprocess. Status is queried in this
manner for each DCL command you specify in the
execute statement (e.g., "@a.com”, "show symbol
$status”, "@b.com”, "show symbol $status”, .. .).
If the command refers to a command procedure
(e.g. "@c.com"), status is checked only when the
command procedure exits.

Used when you specify the interactive option

The utility creates a new subprocess using the
LIB$SPAWN run-time library routine for each execute
statement whose commands are to run interactively.
All the commands specified for the same execute
statement are performed, then the subprocess is
terminated.

Communication with the subprocess is performed
through the user’s terminal connection. The utility
does not monitor input to or output from the
subprocess. This enables a command procedure to
enter into a dialog with the user (i.e., display text and
solicit responses from the user).

Exit status is obtained from the final status value
returned from the LIB$SPAWN routine (the value of
the $STATUS symbol from the last DCL command
executed). Since a new subprocess is created for the
execution of each command procedure (or individual
DCL commands) you specify, the same level of status
checking is performed for interactive mode as is done
for non-interactive mode, although the technique is
different.

1The utility may also perform other actions in the same subprocess, such as the updating of libraries using the

LIBRARIAN command.

6.1.2 Packaging a Command Procedure
You can package command procedure files that run from execute statements in

two ways:

< With a separate file statement
For most execute statements you can specify a command procedure in a file

statement. For example:

file [SYSUPD] EXEC_PREC. COM

execute install "@CS| $DESTI NATI ON: [SYSUPD] EXEC PREC. COM';

This causes the utility to copy the command procedure to the target disk and
execute it from there. The command procedure remains on the target disk.

The technique of using a file statement cannot be used for the execute
preconfigure statement because execute preconfigure is processed before files
are copied to the target disk.

< With the uses option

For most of the execute statements, you can specify a command procedure
with the uses option (instead of using a file statement). For example:

execute install "@QCSI $SOURCE: [000000] EXEC_PREC. COM'
uses [000000] EXEC PREC. COM

6—4 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

In this case, the utility extracts the command procedure from the Kit

and places it in a temporary directory (pointed to by the logical name
PCSI$SOURCE) where it is executed. Afterwards, the command procedure is
automatically deleted.

The uses option also lets you list additional files needed by the command
procedure. For example, if you link an image during the installation, you can
use the uses option to package required object files for the link operation.
They are also placed in the temporary directory and deleted after the
statement is processed.

Keep the following rules in mind:

= Do not use a file statement and the uses option to specify the same file.
Specifying both results in the file being packaged twice in the kit.

= The uses option is not available for execute statements that are run when
the product is removed (because the product kit is not referenced).

= Do not use the uses option when the customer may run the command
procedure at a later time (for example, a startup command procedure).

6.1.3 Logical Names for Subprocess Environments

In preparation for running command procedures (or individual commands)
specified in execute statements, the utility defines up to three logical names:

= PCSI$SOURCE
= PCSISDESTINATION
= PCSI$SCRATCH

Command procedures use these logical names in the context of the subprocess
in which they are run. The logical name environment differs depending on the
execute statement being used. For more information, see the descriptions for
individual execute statements in Chapter 7.

6.1.4 Execute Statement Summary

The following table lists the execute statements and summarizes information
about them.

Advanced Topics 6-5

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6-1 Execute Statement Summary

Multiple

. uses Option | Logical Names
PDL Statements Action Supported Modes Statemer_ﬂs Available Defined
Allowed in PDF
. . PCSI$SOURCE
execute abort run command(s) ggg-ilgttgrrg(c:ttil\\;g (default) yes yes PCSI$SCRATCH
PCSI$DESTINATION
K : PCSI$SOURCE
execute install run command(s) ggg iquggrrgg;[il\\;g (default) yes yes PCSI$SCRATCH
PCSI$DESTINATION
: display predefined
execute login megsa)\/g% n/a yes n/a n/a
. . PCSI$SOURCE
execute postinstall run command(s) nog-_mtteractt_lve (default) yes yes PCSI$SCRATCH
and interactive PCSI$DESTINATION
) -i i PCSI$SOURCE
execute preconfigure run command(s) 223 {ﬂ}g{gﬁ}{&g (defau) yes yes? pcsésoRATCH
execute...remove run command(s) non-interactive (default) yes no n/a
and interactive
execute start and iﬁg]p?;?/nd@) non-interactive (default) no no PCSISDESTINATION
predefined message | @nd interactive
run command(s) i :
execute...stop and display P teractive (defaul) no no PCSISDESTINATION
predefined message
non-interactive (default)
execute test run command(s) and interactive yes no PCSI$SDESTINATION
non-interactive (default)
execute upgrade run command(s) and interactive yes no PCSI$DESTINATION
) . PCSI$SOURCE
file statement using i ; 2 3
assemble execute run command(s) non-interactive only no yes PCSI$SCRATCH

PCSI$DESTINATION

1 You must use the uses option to identify files needed by the execute preconfigure statement.
2You can specify many file statements in a PDF, but only one assemble execute option per file statement.
3 The name of the option for the file statement is assemble uses.

6.1.5 Processing Execute Statements

This section provides flow diagrams for the PRODUCT INSTALL, PRODUCT
RECONFIGURE, and PRODUCT REMOVE commands. There is a separate
diagram for a first time installation of a product and for an upgrade of a product.

VM-0709A-Al

These diagrams illustrate the processing of execute statements in relation to
events that occur during the major phases of an operation. Shaded boxes show
typical output from these commands to help establish the timeline of events.

The installation and reconfiguration operations are performed in three phases:

Configuration

Execution

Post processing

In contrast, the remove operation has only an execution phase. Following are
brief descriptions of the major phases of an operation.

6—6 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Configuration Phase

During the configuration phase, the user selects any options the product

might provide and answers any questions that might be asked to complete

the configuration process. Informational messages from the kit may be displayed
at this time.

Execution Phase

During the execution phase, in a new installation, upgrade, or reconfiguration
operation, the utility analyzes managed objects supplied by the product for
conflicts. The utility uses generation information to resolve these conflicts. Any
conflicts that cannot be resolved cause the utility to terminate the operation. In
a remove operation, the utility does not perform any conflict detection or conflict
resolution.

For all operations, the next step in the execution phase is to place the objects
from all participating products in execution order. The utility merges the
requirements of all affected products to produce a sequenced list of actions to
perform. Note that the order in which the utility performs installation tasks
might not correspond to the order in which PDL statements appear in the PDF,
even when only one product is participating in an operation.

Finally, the utility modifies the target disk according to the execution order of
the objects. Directories are created as required. The utility moves files to their
destination directories as new or replacement files and merges library modules
into existing libraries. When all actions have been successfully completed, the
utility updates the SYS$SYSTEM:*.PCSI$DATABASE files that make up the
product database.

Post-Processing Phase

During the post-processing phase, actions such as running a functional test of
the product or displaying informational messages to the user are performed.
Since the post-processing phase occurs after the installation or reconfiguration
operation has completed and the product database has been updated on disk, any
errors that might occur during this phase (such as failure of the functional test)
do not affect the state of the product. Also, any error that occurs during the post
processing phase will not trigger an execute abort statement.

Advanced Topics 6-7

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6—2 INSTALL Operation - Product Is Installed for the First Time

-~
Configuration phase starting ...
You will be asked to choose options, if any, for each
sel ected product and for any products that may be installed
to satisfy software dependency requirenents.
CPQ AXPVVB GAME V1.0 Configuration
Phase
P EXECUTE PRECONFIGURE
All participating products are configured.
-
=
Execution phase starting ...
The follow ng product will be installed to destination:
CPQ AXPVMS GAME V1.0 DI SK$ALPHASYS: [VMS$COMVON. |
Managed objects supplied by the product, such as
EXECUTE ABORT ;iles orIIIibrary_mOQuIes, ac;re analyzeld fozjc_onﬂicts. ijec’;s
Initiated when rom all participating products are placed in execution order.
an error condition
occurs during the
timeframe denoted Portion done: 0%
by the bracket
FILE ... ASSEMBLE EXECUTE Execution
The target disk is modified according to the Phase
execution order of the objects.
EXECUTE INSTALL ...
EXECUTE START ...
EXECUTE POSTINSTALL
Product database files are updated on disk.
-
Portion done: 100%
The foll owi ng product has been installed:
CPQ AXPVMs GAME V1.0 Layered Product
-
EXECUTE TEST Post- '
EXECUTE LOGIN (messages only) Processing
EXECUTE START ... STOP (messages only) Phase
Legend:
Fixed text displayed to user Description of background processing
VM-0722A-Al

6-8 Advanced Topics

Advanced Topics

6.1 Using Command Procedures in PDL Statements

Figure 6-3 INSTALL Operation - Product Is Upgraded

EXECUTE ABORT
Initiated when

an error condition
occurs during the
timeframe denoted
by the bracket

Configuration phase starting ...

You will be asked to choose options, if any, for each
sel ected product and for any products that may be installed
to satisfy software dependency requirenents.

CPQ AXPVNMS GAME V1.0

EXECUTE PRECONFIGURE

All participating products are configured.
Execution phase starting ...
The follow ng product will be installed to destination:
CPQ AXPVMS GAME V1.0 DI SK$ALPHASYS: [VMS$COMVON. |
Managed objects supplied by the product, such as
files or library modules, are analyzed for conflicts. Objects
from all participating products are placed in execution order.
Portion done: 0%
EXECUTE ... STOP
EXECUTE UPGRADE
FILE ... ASSEMBLE EXECUTE
The target disk is modified according to the
execution order of the objects.
EXECUTE INSTALL ...
EXECUTE START ...
EXECUTE POSTINSTALL
Product database files are updated on disk.
—

Portion done: 100%

The fol |l owi ng product has been installed:

CPQ AXPVVB GAME V1.0

EXECUTE TEST

Layered Product

EXECUTE LOGIN (messages only)
EXECUTE START ... STOP (messages only)

Configuration
Phase

U

Execution
Phase

Post-
Processing
Phase

Legend:

Fixed text displayed to user

Description of background processing

VM-0723A-Al

Advanced Topics 6-9

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6-4 RECONFIGURE Operation - Product Is Reconfigured

-
Configuration phase starting ...
You will be asked to choose options, if any, for each
sel ected product and for any products that may be installed
to satisfy software dependency requirenents.
Configuration
CPQ AXPVMS GAME V1.0 Phase
~ EXECUTE PRECONFIGURE
All participating products are configured.
-/
N
Execution phase starting ...
The following product will be installed to destination:
CPQ AXPVMS GAME V1.0 DI SK$ALPHASYS: [VIVS$COMVON. |
Managed objects supplied by the product, such as
EXECUTE ABORT files or library modules, are analyzed for conflicts. Objects
Initiated when from all participating products are placed in execution order.
an error condition
occurs during the
timeframe denoted Portion done: 0%
by the bracket
FILE ... ASSEMBLE EXECUTE >Execution
(run only if part of newly selected option) Phase
The target disk is modified according to the
execution order of the objects.
EXECUTE INSTALL ...
EXECUTE POSTINSTALL
Product database files are updated on disk.
-
Portion done: 100%
The follow ng product has been reconfigured:
CPQ AXPVMS GAME V1.0 Layered Product
-/
EXECUTE TEST Post-
EXECUTE LOGIN (messages only) Processing
EXECUTE START ... STOP (messages only) Phase
Legend:
Fixed text displayed to user Description of background processing
VM-0724A-Al

6-10 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6-5 REMOVE Operation - Product Is Removed

The follow ng product will be renpved from destination:
CPQ AXPVMS GAME V1.0 DI SK$ALPHASYS: [VMS$COMVON. |

Objects from all participating products are placed in
execution order.

Portion done: 0%

EXECUTE ... STOP
EXECUTE ... REMOVE

>Execu’[ion
The target disk is modified according to the Phase
execution order of the objects.

Product database files are updated on disk.

Portion done: 100%

The follow ng product has been renoved:
CPQ AXPVMS GAME V1.0 Layered Product

Legend:

Fixed text displayed to user Description of background processing

VM-0725A-Al

6.2 Testing and Debugging Tips

The POLYCENTER Software Installation utility provides tools you can use to
monitor an operation to ensure it functions as expected. This section provides
information on the following tools:

e /LOG qualifier
e [/TRACE qualifer
< /DEBUG=CONFLICT qualifer

6.2.1 The /LOG Qualifier

When you want to verify that the contents of your product kit either have been
placed in the proper directories or correctly deleted, use the /LOG qualifier.

Using the /LOG qualifer with the PRODUCT INSTALL, PRODUCT
RECONFIGURE, and PRODUCT REMOVE commands displays an informational
message whenever a file is created, modified, or deleted on the target disk. The
information logged includes:

< Creation and deletion of directories

= Creation, deletion, and renaming of files

Advanced Topics 6-11

Advanced Topics
6.2 Testing and Debugging Tips

« Insertion and removal of modules from libraries

= File conflict detection and resolution when two or more products provide the
same file (or two or more patches for a product provide the same file)

= Module conflict detection and resolution when two or more products provide
the same module (or two or more patches for a product provide the same
module)

Use the /LOG qualifier with the PRODUCT PACKAGE, PRODUCT COPY, and
PRODUCT EXTRACT commands to list the files being processed.

6.2.2 The /TRACE Qualifier

The /ITRACE qualifier displays input sent to the subprocess and output returned
by the subprocess for command procedures (or individual DCL commands) that
are processed in non-interactive mode. It is a useful debugging aid because it
lets you see all output from commands executed in the subprocess as if you were
running the commands manually from your terminal. You can use SET VERIFY
to have commands echoed as they are executed and you can insert WRITE
SYS$OUTPUT commands to provide additional information for debugging.
Specifically, the /TRACE qualifier does the following:

= ldentifies input to the subprocess by prefacing lines with the message:
"%PCSI-1-PRCINPUT, input to subprocess follows ... "

e Lists each command sent to the subprocess, including the definition of logical
names for the subprocess environment such as PCSI$SCRATCH.

= Lists each command you specify in execute statements as it is sent to the
subprocess.

« ldentifies output from the subprocess by prefacing lines with the message:
"%PCSI-I-PRCOUTPUT, output from subprocess follows . .. "

= Displays all output from DCL commands as they are executed, including
status messages that are normally suppressed in non-interactive mode.

= Displays the output from the $SHOW SYMBOL $STATUS command that is
sent to the subprocess to obtain final exit status from a command procedure;
this value determines the success or failure of the execute statement.

The /TRACE qualifier does not provide any additional information for execute
statements that use the interactive option. If you specify the interactive
option, all output is automatically sent to the user’s terminal.

6.2.3 The /IDEBUG=CONFLICT Qualifier

If your product replaces files or library modules that are provided by another
product (or if you have created patch kits that update the same objects), you
can use the /IDEBUG=CONFLICT qualifier with the /LOG qualifier to obtain
detailed information on file and module conflict resolution. You can use the
/DEBUG=CONFLICT qualifier with the PRODUCT INSTALL and PRODUCT
RECONFIGURE commands. With this qualifier you can see:

= The generation numbers used in the comparison

= Whether the object is retained or replaced and the name of the product that
supplies the object

6-12 Advanced Topics

Advanced Topics
6.2 Testing and Debugging Tips

The majority of products do not replace files from another product. However, if
your product does this, it is your responsibility to work with the kit developer of
the other product to decide how you will use generation numbers to determine
which object takes precedence when there is a conflict.

Note

If neither product uses a generation number attribute and an inter-
product conflict occurs, the utility will not be able to resolve the conflict
and the installation will terminate.

For intra-product conflict, you need only coordinate the use of generation numbers
by your full, partial, and patch kits so that your customers can apply updates

to the product in any order. For example, if you do not use generation numbers
in your patch kits for objects, then the objects from the current patch kit will
supersede the others. To avoid having the order of patch kit installation affect the
final results, Compag recommends that you always assign generation numbers to
files and modules provided by patch Kits.

6.2.4 Installing Your Product on Older Versions of OpenVMS

The POLYCENTER Software Installation utility has evolved since it was first
released with OpenVMS V6.1. New PDL statements and options have been added
in subsequent releases and are summarized in Section 7.1. While backward
compatibility is a strong goal, occasionally software corrections and improvements
in internal algorithms have resulted in slight differences in behavior when a
product kit is installed on different version of OpenVMS (specifically different
versions of the POLYCENTER Software Installation utility).

For example, a change was made in the utility that ships with OpenVMS V7.3
that affects the file chosen in conflict detection when there is a tie in generation
numbers. Previously, the file already installed on the target disk was retained;
now the file from the kit replaces the file on the target disk. In both cases, the file
is considered to be the same (because the non-zero generation numbers declare
the files to be identical), but use of the /LOG qualifier would show procedural
differences in how the conflict is handled.

Therefore, if your product is supposed to install on a range of versions of
OpenVMS, Compagq strongly recommends that you verify the installation and
removal of your kit on each version that you support. In particular, perform these
operations with the /LOG and /TRACE qualifiers to ascertain that your files are
processed as you intended.

Advanced Topics 6-13

v

Product Description Language Statements

This chapter contains descriptions of the individual product description language
(PDL) statements and functions.

7.1 Product Description Language (PDL) Evolves Over Time

The POLYCENTER Software Installation utility is an integrated component
of OpenVMS Version 6.1 and later. After its introduction, subsequent releases
of the OpenVMS operating system have incorporated various enhancements
to PDL statements and functions. It is likely that Compaq will make further
enhancements over time.

Earlier versions of the OpenVMS operating system do not support the new
utility features provided in later versions of the operating system. This creates a
challenge for the developer who must devise a kit that will install as expected in
a variety of customer environments.

You can write a product description file based on the earliest version of OpenVMS
at your customer sites. If you choose this approach, you must have or acquire
knowledge about customer environments. It means you can use only the
statements and functions (and their parameters and options) available for the
earliest customer installed version of OpenVMS.

Figure 7-1 and Figure 7-2 let you quickly see when new utility features were
made available. Please note that bug fixes are not shown unless they impact the
behavior of the utility. For more information on a specific feature, please refer to
the appropriate section in this manual.

Product Description Language Statements 7-1

Product Description Language Statements
7.1 Product Description Language (PDL) Evolves Over Time

Figure 7-1 Features by OpenVMS Version: Statements

PDL Statements

OpenVMS V7.1

OpenVMS V7.1-2 (Alpha)
OpenVMS V7.2 (VAX)

OpenVMS V7.3

apply to New option: version above

bootstrap block Obsolete: not available
for layered products

error New option: abort New behavior: performs action

before the configuration dialog,
when possible

execute abort

New statement

execute install...remove

New option: interactive

execute postinstall

New option: interactive

New behavior: runs also on
reconfigure operation

execute preconfigure

New statement

execute release

New option: interactive

Obsolete: new kits should use
execute upgrade or other
execute statements

execute start...stop

New option: interactive

New logical name:
PCSI$SDESTINATION

execute test

New option: interactive

New logical name:
PCSI$SDESTINATION

execute upgrade

New statement

with helptext

file New behavior: supports New behavior: file from kit
intra-product conflict detection selected to resolve conflict
on non-zero generation
number tie
information New option:
with helptext
module New behavior: supports New behavior: module from
intra-product conflict detection kit selected to resolve conflict
on non-zero generation
number tie
option New option:

patch image

Obsolete: new kits should use
file statement to replace file

Obsolete: new kits should use

patch text ’
file statement or an execute
statement

software New option: version above

upgrade New option: version above

7—-2 Product Description Language Statements

VM-0700A-Al

Product Description Language Statements
7.1 Product Description Language (PDL) Evolves Over Time

Figure 7-2 Features by OpenVMS Version: Functions

PDL Functions OpenVMS V7.1

OpenVMS V7.1-2 (Alpha)

OpenVMS V7.2 (VAX) OpenVMS V7.3

logical name

New function

software

New behavior: detects whether
or not a patch or mandatory
update kit has been installed
New options:

installed before

installed after

kit accessible

version above

upgrade

New option: version above New behavior: version
range checking fully
supported

VM-0703A-Al

Another option you have is to require your customers to apply a software
patch kit, available from Compagq, that back ports utility functionality to
earlier versions of OpenVMS. With this strategy you can use the latest utility
enhancements in your product installation.

After a customer installs the patch kit, the utility will be functionally equivalent
to what is provided by OpenVMS Version 7.2 including all bug fixes through
Version 7.2-1 as well as bug fixes developed after the release of Version 7.2-1.

Table 7-1 shows where to find the software patch kit that applies to the stated
customer environment. Please note that software patch kits are provided

in compressed format (as indicated by the .PCSI-DCX file extension). The
documentation at these locations provides information on how to download
and decompress the kit as well as information on problems that have been
corrected.

Table 7-1 Software Patch Kit Locations on the Internet

If customer is running
OpenVMS Version Access this documentation to locate and install the patch kit

VAX 6.2 through VAX 7.1 http://ftpl.support.compaq.com/public/vms/vax/v6.2/

VAX 7.2

dec-vaxvms-vms62to71_pcsi- v0200--4.readme

http://ftpl.support.compaq.com/public/vms/vax/v7.2/
dec-vaxvms-vms72_pcsi- v0100--4.readme

Alpha 6.2 through Alpha 7.1-2 http://ftpl.support.compag.com/public/vms/axp/v6.2/

Alpha 7.2

Alpha 7.2-1

dec-axpvms-vms62to71u2_pcsi- v0200--4.readme

http://ftpl.support.compaq.com/public/ivms/axp/v7.2/
dec-axpvms-vms72_pcsi- v0100--4.readme

http://ftpl.support.compag.com/public/vms/axp/v7.2-1/
dec-axpvms-vms721_pcsi- v0100--4.readme

The patch kits are current as of the writing of this book. They may be superseded
by higher versions in the future. If a particular README file is not present,
start with the following web sites:

Product Description Language Statements 7-3

Product Description Language Statements
7.1 Product Description Language (PDL) Evolves Over Time

Alpha support page http://ftpl.support.compag.com/public/vms/axp/

VAX support page http://ftpl.support.compag.com/public/vms/vax/

7.2 PDL Conventions

The PDL conventions used are described in the Preface. However, the syntax
descriptions in this chapter make significant use of several conventions, and they
are worth repeating here:

Brackets ([]) indicate optional elements. You can choose one, none, or all of
the options.

Braces ({ }) indicate a required choice of options; you must choose one of the
options listed.

The vertical bar (]) separates optional elements. It functions as a logical OR
between two options, asin A| B,or A| B| C

Horizontal ellipsis points (.. .) in examples indicate that the preceding item
or items can be repeated one or more times, or that additional parameters,
values, or other information can be entered.

The semicolon (;) in syntax diagrams is required syntax.
Angle brackets (<>) in syntax diagrams are required syntax.
A double hyphen (--) indicates that the rest of the line is a comment.

Unless otherwise indicated, extra space and tab characters may be used freely
between syntax elements for the purposes of formatting and readability.

A statement may span more than one line.

Note

The space is required between the [no] qualifier and its option, for
example [no] access control. This differs from the standard DCL
syntax.

7.3 PDL Reference Section

The rest of this chapter describes each PDL statement in detail and provides
examples of its use. The PDL statements are presented in alphabetical order.
Certain statements can be used as functions in the evaluation of an if statement.
The functional form of a statement is documented along with the definition of the
statement.

7—-4 Product Description Language Statements

account

account

Syntax

Parameters

Description

The account statement uses a command procedure to create a system account.

account name with (parameters,...) ;

name
Indicates the user name of the account as a 1- to 12-character string. The user
name is passed to the command procedure as P1.

with (parameters,...)

Indicates the list of parameters that are passed to the command procedure that
creates the account. Each parameter must be a single unquoted or quoted string
that specifies P2 through P8, in order. Refer to the Description section for the
meaning of the parameters.

The account statement uses a command procedure
(SYSSUPDATE:PCSI$CREATE_ACCOUNT.COM) to create an account. The
parameters that you pass to the command procedure that creates the accounts
are:

< P1 specifies the user name of the account (using the name parameter).

= P2 specifies general AUTHORIZE qualifiers. If there are no qualifiers to pass,
specify a null string “ ".

= P3 specifies a comma-separated list of rights identifiers to grant to the user
name. These identifers must already exist, or be created with a separate
rights identifier statement.

= P4 through P8 specify other general AUTHORIZE qualifiers.

Certain AUTHORIZE qualifiers must be used with care. For example,
/IDIRECTORY=dir-name assigns a default directory name to be used by the
account. However, the POLYCENTER Software Installation utility does not
create this directory for you; you must make sure that it exists.

When you remove a product that created accounts, the utility uses a command
procedure (SYS$SUPDATE:PCSISDELETE_ACCOUNT.COM) to delete accounts
associated with your product. This happens regardless of whether the
SYSUAF.DAT file is shared by another system disk.

Note

In a future version, the utility may create and delete these managed
objects directly without the use of command procedures. If this is the
case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the
utility.

Product Description Language Statements 7-5

account

The account statement specifies an account managed object that has the following
characteristics:

= Its name is the value of the name parameter. The name must be unique
among all account names.

< It has operating lifetime.

= Managed object conflict is not recoverable.

See Also
rights identifier

Example
account TEST with ("/priv=(tnpnbx, netnbx)", @
"PCSI _TEST", ®

"/account =PCS| ", ©

"/ ast | me500/ bi ol mr200/ byt | m=96000",
"/ wsdef aul t =4000",

"/ flags=(nodi suser, genpwd) ",

"/ pwdmi ni munv8") ;

In this example, the account statement creates the TEST account.

@ Parameter P2 specifies the TMPMBX and NETMBX privileges to be assigned
to the TEST account.

® Parameter P3 is a rights identifier. This name must exist on the system prior
to executing the account statement. It can be created with a rights identifier
statement.

© Parameters P4 to P8 assign certain values to the TEST account.

7-6 Product Description Language Statements

apply to

apply to

Syntax

Parameters

Options

The apply to statement specifies a product or product version that you want to
update with a patch or mandatory update kit.

Note

You must include an apply to statement in a patch or mandatory update
PDF to identify the product that is being updated. This statement is not
valid in other types of PDFs.

apply to producer base name
[{ version above version |
version below version |
version maximum version |
version minimum version |
version required version |
version above version version below version |
version above version version maximum version |
version minimum version version below version |
version minimum version version maximum version } | ;

producer
Indicates the legal owner of the software product. This parameter must be a
single quoted or unquoted string.

base

Indicates the base hardware/software system on which the product is intended
to be installed. This parameter must be a single quoted or unquoted string. By
convention, the string AXPVMS denotes an OpenVMS Alpha product, VAXVMS
denotes an OpenVMS VAX product, and VMS denotes a product applicable for
either OpenVMS Alpha or VAX.

name
Indicates the name of the product. This parameter must be a single quoted or
unquoted string. The combination of producer, base, and name parameters
must be unique among products installed on the system.

version above version

Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than (but not equal to) the specified version. You cannot use this option
with either the version minimum or version required option. By default,
there is no lower version limit.

Product Description Language Statements 7-7

apply to

Description

See Also

Example

version below version

Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than (but not equal to) the specified version. You cannot use this option with
either the version maximum or (version required\bold) option. By default,
there is no upper version limit.

version maximum version

Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than or equal to the specified version. You cannot use this option with either
the version below or version required option. By default, there is no upper
version limit.

version minimum version

Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than or equal to the specified version. You cannot use this option with
either the version above or version required option. By default, there is no
lower version limit.

version required version

Establishes a required version. The version identifier must be a single quoted

or unquoted string. Use this option to specify that the product version must be
equal to the specified version. You cannot use this option with either the version
above, version below, version maximum, or version minimum option. By
default, there is no required version constraint.

The apply to statement specifies the name of an installed product that a patch or
mandatory update kit modifies. You can use options on this statement to limit
the application of the patch or mandatory update either to a specific version of
the product or to a range of versions. If you do not use version constraints, then
you can modify any version of the product by installing a patch or mandatory
update kit.

The apply to statement is a utility directive and does not specify a managed
object.

product
software
upgrade

product DEC VAXVMS CSCPAT57 V1.0 patch ;

apply to DEC VAXVM5 FORTRAN version required V2.0 ;

patch image [SYSEXE] FORTRAN. EXE with [000000] CSCPAT57. PAT ;
end product ;

This example shows part of the product description for a patch to Compagq
Fortran. As shown in the apply to statement, you must have Compaq Fortran
Version 2.0 installed to apply this patch.

7-8 Product Description Language Statements

bootstrap block (VAX only)

bootstrap block (VAX only)

Syntax

Parameters

Description

See Also

The bootstrap block statement updates the bootstrap block on the system disk to
reference the bootstrap file.

Note

Starting with OpenVMS V7.3, the bootstrap block statement is obsolete
and its use is reserved to Compag. This statement is to be used by an
operating system product, not by a layered product or other application.
Documentation of the bootstrap block statement may be discontinued in a
future release of this manual.

bootstrap block name image source ;

name
Indicates the bootstrap file specification. You must provide this file with a file
statement. You must also ensure that the file has bootstrap scope and product or
assembly lifetime (using the scope statement).

image source

Indicates the file specification of the file that contains the bootstrap block image.
You must provide this file with a file statement, and it must also have product
scope and product lifetime.

The bootstrap block statement specifies the file that the bootstrap block references
and updates the bootstrap block on the system disk.

The bootstrap block statement also specifies a bootstrap block managed object
that has the following characteristics:

« It is unnamed and unique within the bootstrap scope.
= It has operating lifetime and bootstrap scope.

= Managed object conflict is not recoverable.

file
scope

Product Description Language Statements 7-9

bootstrap block (VAX only)

Example

scope bootstrap;
file [sysexe]vnb. exe;
end scope;
file [sysexe] bootbl ock. exe;

boot strap block [sysexe]vnb. exe image [sysexe]boot bl ock. exe ;

This example uses the bootstrap block statement to point the bootstrap block to
the bootstrap file ([SYSEXE]VMB.EXE).

7-10 Product Description Language Statements

directory

directory

Syntax

Parameter

Options

Description

The directory statement creates the specified directory if it does not already exist.

directory name
[[no] access control (access-control-entry...) |
[owner name]
[protection { execute | private | public }]
[[no] version limit maximum] ;

name
Indicates the directory name.

[no] access control (access-control-entry...)

Indicates the minimum access control entries (ACEs) that the directory will have.
You must specify the ACEs as a quoted string. By default, directories have no
added ACEs.

owner name

Indicates the account name that owns the directory. By default, the directory is
owned by the SYSTEM account. If you specify a numeric value for name, you
must enclose the string in quotation marks, for example "[11, 7]".

protection execute
Sets the directory protection to (S:RWE, O:RWE, G:E, W:E) so that users have
execute access.

protection private
Sets the directory protection to (S:RWE, O:RWE, G, W) so that users have no
access.

protection public
Sets the directory protection to (S:RWE, O:RWE, G:RE, W:RE) so that users have
read and execute access. This is the default.

[no] version limit maximum
Indicates the maximum number of file versions in the directory as an unsigned
integer from 1 through 32767. The default is no version limit.

The directory statement creates the specified directory if it does not already exist.
You use the directory statement to create a directory and to specify characteristics
about the directory such as ownership and protection. However, use of the
directory statement is optional because the file statement will implicitly create a
directory, if it does not already exist, to contain the file it provides.

The directory statement specifies the name of a directory managed object. Check
the other statements in your PDF to make sure the name you specify is unique
among all directory, file, and link managed objects in all scopes.

Product Description Language Statements 7-11

directory

See Also

Examples

The scope and lifetime of the directory managed object depend on whether it is
lexically contained in a scope, end scope pair, as shown in Table 7-2. (See the
scope statement for additional information.)

Table 7-2 Directory Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope
Product Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

If you use the access control option, the directory statement specifies one access
control entry (ACE) managed object that references the directory managed object
for each entry specified with the access control option. The ACE managed
object has the following characteristics:

e It is unnamed.
= It has operating lifetime.

< It has the same scope as the directory.

file
scope

1. directory [SYSHLP. EXAVPLES. FMS. MESSAGE] protection private
access control ("(1DENTIFI ER=[FMS], ACCESS=READ)");

This example specifies the directory [SYSHLP.EXAMPLES.FMS.MESSAGE].
The protection private option specifies that no users have access to this
directory. The access control option grants the user FMS read access to the
directory.

2. directory [AL] owner PCSI$TEST version lint 3;
In this example the directory [AL] is owned by the account PCSI$TEST and
holds the maximum of three file versions.

3. directory [JIM owner "[11,7]";

This example specifies the directory [JIM] owned by the account whose UIC
is [11,7].

7-12 Product Description Language Statements

end

end
The end statement terminates a statement group.
Syntax
end
{if |
option |
part |
product |
remove |
scope } ;
Parameter
None
Options
None
Description
The end statement terminates a statement group. See the statement referenced
by the end statement for information about the statement group.
See Also
if
option
part
product
remove
scope
Example

product CPQ AXPVMS TEST V1.0 full ;

end br oduct ;

The end product statement identifies the end of the product group.

Product Description Language Statements 7-13

error

error

Syntax

Parameter

Option

Description

See Also

The error statement displays an error message during an installation or
reconfiguration operation. The text is from a PTF text module.

Note

The error statement must be contained within an if group.

error name [abort];

name

Indicates, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

abort
Forces an unconditional termination of the operation when the error statement is
executed. See Section 7.1 for usage constraints.

The error statement specifies a text module you want to display during an
installation or reconfiguration operation. The error statement must be contained
within an if group.

The utility processes error statements in lexical order. The utility displays both
prompt and help text during the validation phase. The validation phase occurs
before and after the configuration of a product.

During execution of an error statement that does not contain an abort option,
the utility prompts the user to continue or terminate the operation. If the abort
option is present, or the operation is executed in batch mode, the error statement
causes the operation to terminate unconditionally.

The error statement is a utility directive and does not specify a managed object.

You must supply text in the associated product text module. The module must
contain a =prompt directive line.

hardware device
hardware processor
if

logical name
software

upgrade

7-14 Product Description Language Statements

Examples

error

Suppose the PDF for a product contains the following lines:

if (<hardware processor nodel 7>) ;
error UNSPRCC abort ;
end if ;

The corresponding module in the PTF contains the following lines:

1 UNSPROC

=pronpt This product is not supported on a McroVAX | processor.
Pl ease read the installation guide that acconpanies the software
to deternine mnimum systemrequirenents for running this product.

If the user attempts to install the product on processor model 7, the
following message is displayed and the installation is terminated:

This product is not supported on a McroVAX | processor.

Pl ease read the installation guide that acconpanies the software
to determ ne mninumsystemrequirements for running this product.

UPCSI - E-S_OPFAIL, operation failed
9%PCSI Ul - E- ABORT, operation terninated due to an unrecoverable error
condi tion

The following PDF fragment illustrates how to check for prerequisite
software and issue an error message if the requirement is not met.

if (not <software DEC AXPVM5 TCPIP >) and
(not <software DEC AXPVMS UCX version mninumV4.0>)) ;
error TCPI P_NOT_I NSTALLED ;

end if;

The corresponding module in the PTF contains the following lines:

1 TCPI P_NOT_| NSTALLED

=pronpt TCPIP software is not installed on your system

Thi s product requires TCPIP networking software. Please terminate
this operation, install any version of TCPIP (or UCX version V4.0
or higher), then install this product.

On installation of the product containing the PDL statements above, if
neither the TCP/IP nor the UCX product is already installed (or will not
be installed at the completion of the current operation), the following
messages are displayed:

TCPI P software has not been installed on your system

This product requires TCPIP networking software. Please terninate
this operation, install any version of TCPIP (or UCX version V4.0
or higher), then install this product.

Ternminating is strongly recommended. Do you want to termnate? [YES
UYPCSI - E-S_OPCAN, operation cancell ed by request

9%PCSI Ul - E- ABORT, operation terninated due to an unrecoverable error
condi tion

Since the abort option is not used on the error statement, the user was
given the opportunity to continue installation of the product. Use of
the abort option would have caused unconditonal termination of the
installation as shown in the first example.

Product Description Language Statements 7-15

execute abort

execute abort

The execute abort statement specifies commands to execute when an error
condition causes an installation or reconfiguration operation to terminate.

Syntax
execute abort (command,...) [interactive] [uses (file,...)] ;
Parameter
(command,...)
Indicates the commands that the utility passes to the command interpreter
whenever the operation fails.
Option
interactive
Allows communication between the user and specified command or commands
executing in a subprocess.
uses (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. Use a separate file statement to specify required files
that are permanently placed in the user’s destination directory tree. Use the
uses option to specify required files that are placed in a temporary directory and
deleted after use. By default, this statement does not require files.
Description

The execute abort statement specifies commands to execute when an error
condition causes an installation or reconfiguration operation to terminate. For
example, the following conditions activate the execute abort statement:

< An error or fatal error condition returned as the final status from the
subprocess in which commands are run from an execute statement, excluding
the execute test statement.

= The user terminates the operation by pressing CTRL+Y or CTRL+C.

= The user answers YES to the question "Do you want to terminate?" Typically,
this question is asked after an error is reported during material placement on
the target disk.

You specify recovery actions to perform by including one or more DCL command
lines in the execute abort statement. These commands are passed for execution
to the DCL interpreter running in a subprocess. Enclose each action, whether
specified as a single DCL command or a command procedure, in double

qguotes (" "). If more than one action is given, use parentheses to enclose the list.

Enclosing the execute abort statement in a scope group (consisting of scope and
end scope statements) has no effect on the way execute abort commands are
processed.

7-16 Product Description Language Statements

See Also

execute abort

If you want your commands to prompt the user and accept the user’s input,
specify the execute abort statement with the interactive option. The interactive
option causes all output from DCL to be displayed, unless you prevent it. In
contrast, when the interactive option is not specified, output generated by DCL
commands is displayed only for lines that are interpreted as DCL messages; that
is, those beginning with a percent sign (%) in column one.

If you need files for the execute abort statement, specify them in the uses option.
Each file you specify with the uses option must be present in the product
material.

Note that the uses option will not cause the listed files to be placed permanently
in your file system. As soon as the installation operation completes, the files
listed with the uses option are deleted. For this reason, you must use the file
statement for this execute operation, and any other operation, in which you want
your execute command procedures placed permanently in your file system.

The execute abort statement causes the utility to define logical names for use by
the subprocess that executes the specified commands. The commands should use
these logical names to reference files, as follows:

= PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the uses option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product Kit.

= PCSI$SDESTINATION is a root directory specification that points to the root
directory where product material will be placed. The PCSI$SDESTINATION
logical is available except when the execute abort statement is called when the
execute preconfigure statement fails. The PCSISDESTINATION logical is not
available until the configuration phase.

= PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

The execute abort statement is a utility directive and does not specify a managed
object.

Section 6.1

execute install...remove
execute postinstall
execute preconfigure
execute start...stop
execute upgrade

file

Product Description Language Statements 7-17

execute abort

Example

execute install "@CS| $SOURCE: [SYSUPD] EXEC | NSTALL. COM'
remove "" uses [SYSUPD] EXEC | NSTALL. COM ;

execute abort " @CS|I $SOURCE: [SYSUPD] EXEC_ABORT. COM'
uses [SYSUPD] EXEC ABORT. COM ;

In this example, the execute abort statement sets up a command procedure to run
whenever the operation fails after the execute install command has been executed.
It is intended to clean the user environment in case the commands supplied by
execute install have left the user’s system modified. The uses option specifies the
file name of the command procedure that is deleted after use.

7-18 Product Description Language Statements

execute install...remove

execute install...remove

Syntax

Parameter

Option

Description

The execute install...remove statement is a compound statement that performs
two distinct actions:

= The "install" portion specifies commands to execute when the product is
installed or reconfigured.

= The "remove" portion specifies commands to execute when the product is
removed, but not when the product is upgraded.

Note

The remove part of the statement is required syntax even if there are no
commands you want to execute when the product is removed. To indicate

no command, use renove "".

execute install (command,...) remove (command,...) [interactive] [uses (file,...)] ;

(command,...)
Indicates the commands that the utility passes to the command interpreter in the
execution environment.

interactive
Allows communication between the user and specified command or commands
executing in a subprocess.

uses (file,...)

Indicates the files required to execute the commands you specified in the
command parameter. Use a separate file statement to specify required files
that are permanently placed in the user’s destination directory tree; use the
uses option to specify required files that are placed in a temporary directory and
deleted after use. By default, this statement does not require files.

The execute install...remove statement is a compound statement consisting of an
"install" portion and a "remove" portion.

The install portion specifies commands to execute when the product is installed or
reconfigured. These commands are run after all product material has been placed
on the target disk (that is, after all directory, file, and module statements have
been processed).

The remove portion specifies commands to execute when the product is removed.
These commands are run before any product material is deleted from the target
disk. The execute ...remove statement has no effect when the product is upgraded.
To execute commands when the product is upgraded by another version of the
product, use the execute upgrade statement.

Product Description Language Statements 7-19

execute install...remove

Note

Previous versions of this manual incorrectly stated that execute
install...remove commands are also run when the product is upgraded.

You specify the install and remove actions to perform by including one or

more DCL command lines in the execute install...remove statement. These
commands are passed for execution to the DCL interpreter running in a
subprocess. Enclose each action, whether specified as a single DCL command or a
command procedure, in double quotes ("). If more than one action is given, use
parentheses to enclose the list.

If you want your commands to prompt the user and accept the user’s input,
specify the execute install...remove statement with the interactive option. The
interactive option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the interactive option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the execute install statement, specify them in the uses option
or in separate file statements. However, if you need files for the execute remove
statement, you must provide them with file statements so that they are available
on the user’s system for use when the product is removed. Each file you specify
with the uses option must be present in the product material.

Note that the uses option will not cause the listed files to be placed permanently
in your file system. As soon as the installation operation completes, the files
listed with the uses option are deleted. For this reason, you must use the file
statement for this execute operation, and any other operation, in which you want
your execute command procedures placed permanently in your file system.

The execute install...remove statement causes the utility to define logical names
for use by the subprocess that executes the specified commands. The commands
should use these logical names to reference files, as follows:

= PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the uses option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product Kit.

Note

The PCSI$SOURCE logical name is available only for the execute install
operation. You cannot use it for an execute remove operation.

< PCSI$SDESTINATION is a root directory specification that points to the root
directory for the current scope where product material will be placed.

e PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

The execute install...remove statement is a utility directive and does not specify a
managed object.

7-20 Product Description Language Statements

See Also

Example

execute install...remove

Section 6.1
file

file [SYSUPD] UNLOAD LOADABLE | MAGE. COM ;

execute
install "@CSlI $SOURCE: [SYSUPD] LOAD LOADABLE | MAGE. COM!
renmove " @CSI $DESTI NATI ON: [SYSUPD] UNLOAD_LCADABLE_| MAGE. COM'
uses ([SYSUPD] LOAD LOADABLE_| MAGE. COM) ;

In this example, the execute install...remove statement sets up command
procedures to run when the product is installed and removed. The uses option
specifies the file name of the command procedure for use on installation of the
product. The file is deleted after use. The file statement specifies the file name
of the command procedure for use on removal of the product. This file is placed
in the user’s destination directory tree during installation and executed during
removal.

Product Description Language Statements 7-21

execute login

execute login

Syntax

Parameter

Description

See Also

Example

The execute login statement displays a message when the product is installed
or reconfigured, informing the installer that the specified commands need to be
added to the login command procedure of every user of this product.

execute login (command,...) ;

(command,...)
Indicates the commands that the utility displays in a message to the user.

The execute login statement displays a message when the product is installed

or reconfigured, advising the installer that the specified commands need to be
added to the login command procedure of every user of this product. The specified
commands are not run during the installation or reconfiguration operation. The
message is displayed after the operation has completed successfully.

The execute login statement is a utility directive and does not specify a managed
object.

Section 6.1

execute login "$ @SER START" ;

In this example, the execute login statement displays the following message to
users:

Users of this product require the following lines in their login procedure:
$ @SER_START

7—-22 Product Description Language Statements

execute postinstall

execute postinstall

Syntax

Parameter

Option

Description

The execute postinstall statement specifies commands to execute when the product
is installed or reconfigured. These commands are run after any commands from
execute install... and execute start... statements are run.

execute postinstall (command,...) [interactive] [uses (file,...)] ;

(command,...)
Indicates the command that the utility passes to the command interpreter in the
execution environment.

interactive
Allows communication between the user and specified command or command
procedure executing in a subprocess.

uses (file,...)

Indicates the files required to execute the commands you specified in the
command parameter. Use a separate file statement to specify required files
that are permanently placed in the user’s destination directory tree; use the
uses option to specify required files that are placed in a temporary directory and
deleted after use. By default, this statement does not require files.

The execute postinstall statement specifies commands to execute when the product
is installed or reconfigured. These commands are run after any commands from
execute install... and execute start... statements are run.

You specify actions to perform by including one or more DCL command lines

in the execute postinstall statement. These commands are passed for execution
to the DCL interpreter running in a subprocess. Enclose each action, whether
specified as a single DCL command or a command procedure, in double

quotes (" "). If more than one action is given, use parentheses to enclose the list.

If you want your commands to prompt the user and accept the user’s input,
specify the execute postinstall statement with the interactive option. The
interactive option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the interactive option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the execute postinstall statement, specify them in the uses
option or in separate file statements. Each file you specify with the uses option
must be present in the product material.

Note that the uses option will not cause the listed files to be placed permanently
in your file system. As soon as the installation operation completes, the files
listed with the uses option are deleted. For this reason, you must use the file

Product Description Language Statements 7-23

execute postinstall

statement for this execute operation, and any other operation, in which you want
your execute command procedures placed permanently in your file system.

The execute postinstall statement causes the POLYCENTER Software Installation
utility to define logical names for use by the subprocess that executes the specified
commands. The commands should use these logical names to reference files, as
follows:

= PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the uses option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product Kit.

< PCSI$SDESTINATION is a root directory specification that points to the root
directory for the current scope where product material will be placed.

e PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

The execute postinstall statement is a utility directive and does not specify a
managed object.

See Also
Section 6.1
file
Example
execute

postinstall "@csi $source:[sysupd] product _cl eanup. conf
uses [sysupd] product cl eanup. com ;

In this example, the execute postinstall statement sets up a command procedure
to run after the product is installed. The uses option specifies the file hame of
the command procedure that is deleted after use.

7—-24 Product Description Language Statements

execute preconfigure

execute preconfigure

Syntax

Parameter

Option

Description

The execute preconfigure statement specifies commands to execute after the user
has selected the product for installation or reconfiguration, but before the user is
asked to select options for the product.

execute preconfigure (command,...) [interactive] [uses (file,...)] ;

(command,...)
Indicates the commands that the utility passes to the command interpreter in the
preconfiguration environment.

interactive
Allows communication between the user and specified command or commands
executing in a subprocess.

uses (file,...)

Indicates the files required to execute the commands you specified in the
command parameter. Files for the execute preconfigure statement cannot be
supplied by a separate file statement because execute preconfigure is processed
before files are copied to the target disk.

The execute preconfigure statement specifies commands to execute after the user
has selected the product for installation or reconfiguration, but before the user is
asked to select options for the product. This statement is useful for automatically
running a command procedure in preparation for installing your product. This
command procedure is packaged in the kit and is run before the standard
configuration dialog with the user begins. The execute preconfigure statement
gives you the ability to do such things as probe the system environment, ask the
user questions, and define logical names for use later in the processing of logical
name functions. The ability to conditionally provide product material, or to
perform other actions based on decisions made at the very start of the operation,
is a powerful and flexible mechanism.

Note

If you want to use logical name functions, the logical names must be
either defined by the action of execute preconfigure statements, or by the
user before the installation or reconfiguration operation is initiated.

You specify actions to perform by including one or more DCL command lines in
the execute preconfigure statement. These commands are passed for execution
to the DCL interpreter running in a subprocess. Enclose each action, whether
specified as a single DCL command or a command procedure, in double

quotes (" "). If more than one action is given, use parentheses to enclose the list.

Product Description Language Statements 7-25

execute preconfigure

See Also

Enclosing the execute preconfigure statement in a scope group (consisting of
scope and end scope statements) has no effect on the way execute preconfigure
commands are processed.

If you want your commands to prompt the user and accept the user’s input,
specify the execute preconfigure statement with the interactive option. The
interactive option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the interactive option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the execute preconfigure statement, specify them in the uses
option. Each file you specify with the uses option must be present in the product
material.

Note that the uses option will not cause the listed files to be placed permanently
in your file system. As soon as the installation operation completes, the files
listed with the uses option are deleted.

The execute preconfigure statement causes the POLYCENTER Software
Installation utility to define logical names for use by the subprocess that executes
the specified commands. The commands should use these logical names to
reference files, as follows:

e PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the uses option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product Kit.

Note

The utility does not define the PCSI$SDESTINATION logical name for
use by the execute preconfigure commands because the destination is

not finalized when the execute preconfigure statement is processed. In
certain situations, such as installing a patch kit or re-installing the same
version of a product, the actual destination is determined later during the
configuration phase.

= PCSI$SCRATCH is a subdirectory under the user’s login directory that
commands can use for temporary working space. The utility automatically
deletes this directory and any files placed in it at the end of the operation.

The execute preconfigure statement is a utility directive and does not specify a
managed object.

Section 6.1
file

7—-26 Product Description Language Statements

Example

execute preconfigure

execut e preconfigure "@CSl $SOURCE: [SYSUPD] EXEC_PREC. COM'
uses [SYSUPD] EXEC PREC. COM ;

In this example, the execute preconfigure statement sets up a command procedure
to run before the product configuration begins. The uses option specifies the file
name of the command procedure that is deleted after use.

Product Description Language Statements 7-27

execute release

execute release

The execute release statement specifies commands to execute when the product
is installed or reconfigured. These commands are run after any commands from
execute install... statements are run.

Note

Starting with OpenVMS V7.3, the execute release statement is obsolete.
To support existing product kits that may have used this statment,

the POLYCENTER Software Installation utility continues to process
this statement in a backward compatible manner. However, Compaq
recommends that you do not use the execute release statement in new

or revised product Kits. Instead, use the execute upgrade, execute
install...remove, or the execute postinstall statements, as appropriate.
Documentation of the execute release statement may be discontinued in a
future release of this manual.

Syntax
execute release (command,...) [interactive] [uses (file,...)] ;
Parameter
(command,...)
Indicates the commands the utility passes to the command interpreter in the
execution environment.
Option
interactive
Allows communication between the user and specified command or command
procedure executing in a subprocess.
uses (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. Use a separate file statement to specify required files
that are permanently placed in the user’s destination directory tree; use the
uses option to specify required files that are placed in a temporary directory and
deleted after use. By default, this statement does not require files.
Description

The execute release statement specifies commands to execute when the product

is installed or reconfigured. These commands are run after any commands from
execute install... statements are run. The name of this statement could imply
that it only runs when a product is upgraded or removed; however, this is not
the case. The execute release statement is run under the same situations that the
execute install... statement is run. Because of its misleading name and duplicate
functionality, execute release is now obsolete.

7-28 Product Description Language Statements

See Also

execute release

Use the execute upgrade statement or the remove portion of the execute
install...remove statement to perform actions when your product is upgraded
or removed. To perform actions when your product is installed or reconfigured,
use either the execute install... or execute postinstall statement.

You specify actions to perform by including one or more DCL command lines in
the execute release statement. These commands are passed for execution to the
DCL interpreter running in a subprocess. Enclose each action, whether specified
as a single DCL command or a command procedure, in double quotes (" "). If
more than one action is given, use parentheses to enclose the list.

If you want your commands to prompt the user and accept the user’s input,
specify the execute release statement with the interactive option. The
interactive option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the interactive option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the execute release statement, specify them in the uses option
or in separate file statements. Each file you specify with the uses option must be
present in the product material.

Note that the uses option will not cause the listed files to be placed permanently
in your file system. As soon as the installation operation completes, the files
listed with the uses option are deleted. For this reason, you must use the file
statement for this execute operation and any other operation in which you want
your execute command procedures placed permanently in your file system.

The execute release statement causes the POLYCENTER Software Installation
utility to define logical names for use by the subprocess that executes the specified
commands. The commands should use these logical names to reference files, as
follows:

= PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the uses option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product Kit.

= PCSI$DESTINATION is a root directory specification that points to the root
directory for the current scope where product material will be placed.

= PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

The execute release statement is a utility directive and does not specify a managed
object.

Section 6.1

execute install.remove
execute postinstall
execute upgrade

file

Product Description Language Statements 7-29

execute release

Example

execute release "@csi $source: [sysupd] config.conl' uses [sysupd]config.com;

In this example, the execute release statement sets up a command procedure to
run when the product is installed or reconfigured. The uses option specifies the
file name of the command procedure that is deleted after use.

7-30 Product Description Language Statements

execute start...stop

execute start...stop

Syntax

Parameter

Option

Description

The execute start...stop statement is a compound statement that performs two
distinct actions:

= The "start" portion either specifies commands to execute when the product is
installed for the first time or upgrades a previously installed version of the
product.

= The "stop" portion specifies commands to execute when the product is either
removed or upgraded by another version of the product.

The execute start...stop statement also displays a message at the successful
conclusion of the operation, advising the user to add the specified commands to
the appropriate system-wide startup or shutdown command procedure.

Note

The stop part of the statement is required syntax even if there are no
commands you want to execute when the product is removed. To indicate

no command, use stop "".

execute start (command,...) stop (command,...) [interactive] ;

(command,...)
Indicates the commands that the utility displays in a message to the user and
also passes to the command interpreter in the execution environment.

interactive
Allows communication between the user and specified command or commands
executing in a subprocess.

The execute start...stop statement is a compound statement consisting of a "start"
portion and a "stop" portion.

The "start" portion either specifies commands to execute when the product is
installed for the first time or upgrades a previously installed version of the
product. These commands are run after any execute install... statements have
been processed, but before any execute postinstall statements. In addition, a
message is displayed at the end of the operation telling users to add these
commands to their SYSTARTUP_VMS.COM file.

The "stop" portion specifies commands to execute when the product is either
removed or upgraded by another version of the product. These commands are run
before any product material is deleted from the target disk and before any execute
...remove statements are processed. In addition, a message is displayed at the end
of the operation telling users to add these commands to their SYSHUTDWN.COM
file.

Product Description Language Statements 7-31

execute start...stop

See Also

Examples

If you need files for the execute start...stop statement, you must provide them with
file statements so that they are available on the user’s system for use after the
installation completes.

If you want your commands to prompt the user and accept the user’s input,
specify the execute start statement with the interactive option. The interactive
option causes all output from DCL to be displayed, unless you prevent it. In
contrast, when the interactive option is not specified, output generated by DCL
commands is displayed only for lines that are interpreted as DCL messages, that
is, those beginning with a percent sign (%) in column one.

The execute upgrade statement causes the POLYCENTER Software Installation
utility to define a logical name for use by the subprocess that executes the
specified commands. It defines PCSISDESTINATION as a root directory
specification that points to the root directory for the current scope where product
material will be placed.

The execute start...stop statement is a utility directive and does not specify a
managed object.

Section 6.1
file

1. file [SYS$STARTUP] PRODUCT_STARTUP. COM ;
file [SYS$STARTUP] PRODUCT _SHUTDOMN. COM ;
execut e
start "@ys$startup: product_startup. cont
stop "@ys$startup: product _shut down. cont' ;

In this example, the execute start...stop statement displays a message to users
about command procedures they should run to start and stop the product:

Insert the following lines in SYSSMANAGER: SYSTARTUP_VMS. COM
@YS$STARTUP: PRODUCT_STARTUP. COM

Insert the following lines in SYSSMANAGER: SHUTDOMN. COM
@YS$STARTUP: PRODUCT_SHUTDOWN. COM

The PRODUCT_STARTUP.COM command procedure is executed during
the installation. The PRODUCT_SHUTDOWN.COM command procedure is
executed during the REMOVE operation or during a product upgrade.

2. file [SYS$STARTUP] ABS_STARTUP. COM ;
execut e
start "@ys$startup: abs_startup. cont

stop "" ;

In this example, the execute start...stop statement displays a message to users
about command procedures they should run to start the product. Note that
there are no commands executed when the product is stopped. The command
procedure ABS_STARTUP.COM executes during the INSTALL operation,
then the following message is issued:

Insert the following lines in SYSSMANAGER: SYSTARTUP_VMS. COM
@BYS$STARTUP; ABS_STARTUP. COM

7-32 Product Description Language Statements

execute test

execute test

Syntax

Parameter

Option

Description

The execute test statement specifies an installation verification procedure to run
after the product has been successfully installed or reconfigured to perform a
functional test of the product.

execute test (command,...) [interactive] ;

(command,...)
Indicates the commands that the utility passes to the command interpreter in the
execution environment.

interactive
Allows communication between the user and specified command or command
procedure executing in a subprocess.

The execute test statement specifies an installation verification procedure to run
after the product has been successfully installed or reconfigured to perform a
functional test of the product. Prior to running this test, the product database
is updated and closed. The product remains installed or reconfigured even if the
functional test fails.

The user can prevent the running of the installation verification procedure by
specifying the /INOTEST qualifier on the PRODUCT INSTALL or PRODUCT
RECONFIGURE command.

You specify test actions to perform by including one or more DCL command lines
in the execute test statement. These commands are passed for execution to the
DCL interpreter running in a subprocess. Enclose each action, whether specified
as a single DCL command or a command procedure, in double quotes (" "). If
more than one action is given, use parentheses to enclose the list.

If you need files for the execute test statement, you must provide them with file
statements.

If you want your commands to prompt the user and accept the user’s input,
specify the execute test statement with the interactive option. The interactive
option causes all output from DCL to be displayed, unless you prevent it. In
contrast, when the interactive option is not specified, output generated by DCL
commands is displayed only for lines that are interpreted as DCL messages, that
is, those beginning with a percent sign (%) in column one.

The execute test statement causes the POLYCENTER Software Installation utility
to define a logical name for use by the subprocess that executes the specified
commands. It defines PCSISDESTINATION as a root directory specification that
points to the root directory for the current scope where product material will be
placed.

Product Description Language Statements 7-33

execute test

The execute test statement is a utility directive and does not specify a managed

object.
See Also

Section 6.1

file
Example

file [SYSTEST] PRODSI VP. COM ;
execute
test "@ys$test: prod$ivp. cont ;

In this example, the execute test statement runs a command procedure to perform
an installation verification test of the product.

7-34 Product Description Language Statements

execute upgrade

execute upgrade

Syntax

Parameter

Option

Description

See Also

The execute upgrade statement specifies the commands to execute when the
product is upgraded by another version of the product.

execute upgrade (command,...) [interactive];

(command,...)
Indicates the commands the utility passes to the command interpreter in the
execution environment.

interactive
Allows communication between the user and the specified command or command
procedure executing in a subprocess.

The execute upgrade statement specifies the commands to execute when the
product is upgraded by another version of the product. These commands are run
for the version of the product that is being replaced, not for the new version of the
product. To run commands when the product is removed (but not upgraded by
another version), use the remove portion of the execute install...remove statement
to specify the commands.

If you need files for the execute upgrade statement, you must provide them with
file statements so that they are available on the user’s system when the product
is upgraded.

The execute upgrade statement causes the POLYCENTER Software Installation
utility to define a logical name for use by the subprocess that executes the
specified commands. It defines PCSISDESTINATION as a root directory
specification that points to the root directory for the current scope where product
material will be placed.

The execute upgrade statement is a utility directive and does not specify a
managed object.

Section 6.1
file
software

Product Description Language Statements 7-35

execute upgrade

Example

file [sysupd] UPG TASKS. COM ;
execut e upgrade "@CSI $DESTI NATI ON: [SYSUPD] UPG_TASKS. COM' interactive ;

In this example, the file statement places the command procedure UPG_
TASKS.COM on the destination disk during the product installation. The
execute upgrade statement specifies that this command procedure is run only
when this product is upgraded by the installation of the same or different version
of the product. In the future, if an upgrade of the product is performed, this
command procedure is run before any product material is deleted from the
destination disk. Use of the interactive option on the execute upgrade statement
allows the command procedure to interact with the user via the SYS$INPUT and
SYS$OUTPUT 1/0O channels.

7-36 Product Description Language Statements

file

file

Syntax

Parameter

Options

The file statement creates a file on the target disk. If a file of the same name
already exists, the POLYCENTER Software Installation utility might replace the
file, depending on the options specified.

file name
[[no] access control (access-control-entry...) |
[[no] archive]
[assemble execute (command,...) [assemble uses (file,...)]]
[[no] generation generation]
[image library]
[owner owner]
[protection { execute | private | public }]
[release merge |
[release notes]
[size size]
[source source]
[[no] write] ;

name
Specifies the name of the file object to install on the user’s system. The name
consists of a relative file directory specification, file name, and file type. File
version is ignored because the utility determines the file version to use at
installation time.

[no] access control (access-control-entry...)
Indicates the minimum access control entries (ACESs) that the file will have. By
default, files have no added ACEs (no access control).

[no] archive

Allows you to preserve existing files during an upgrade. The POLYCENTER
Software Installation utility appends _OLD to the end of the file type. For
example, if you archived an existing file named STARTUP_TEMPLATE.SYS, the
utility would rename it STARTUP_TEMPLATE.SYS_OLD. Note that the utility
does not keep track of archived files as managed objects, or delete them when the
product is upgraded or removed.

If there are several versions of the existing file, the utility renames the latest
file type before deleting all of the remaining file versions. By default, the
POLYCENTER Software Installation utility does not preserve existing file
versions (no archive). You cannot use this option with the release merge or
write option.

assemble execute (command,...)
Establishes the contents of the file by executing the specified commands. Specify
the command lines as quoted or unquoted strings.

Product Description Language Statements 7-37

file

assemble uses (file,...)

Indicates a list of additional files required by the assemble execute option.
You must include the relative file specification. Files specified by this option are
placed in a temporary directory for use by the assemble execute command and
are automatically deleted after use. By default, the assemble execute option
does not require additional files.

[no] generation generation

Indicates that the file has an explicit generation number. Specify the number as
an unsigned integer in the range 0 through 4294967295. Refer to the Description
section for the meaning of this value. By default, the file does not have an explicit
generation number (no generation), which is equivalent to 0.

image library
Indicates that the file’s symbols are inserted into the system shareable image
symbol table library. The file must be a shareable image.

owner owner
Indicates the account name that owns the file. By default, the file is owned by
the SYSTEM account. If you specify a numeric value for name, you must enclose
the string in quotation marks, for example "[11, 7]".

protection execute
Sets the file protection to (S:RWED, O:RWED, G:E, W:E) giving general users
execute access.

protection private
Sets the file protection to (S:RWED, O:RWED, G, W), giving general users no
access.

protection public
Sets the file protection to (S:RWED, O:RWED, G:RE, W:RE), giving general users
read and execute access. This is the default.

release merge

Indicates that library modules propagate during a version upgrade. If modules
are present in the existing library but not in the new library, they are propagated
to the new library. The file you specify with the name parameter must be a
library. You cannot use this option with the archive, release replace, or write
option.

release notes

Indicates that the file is a release notes file. Users can extract the release notes
to a file using the DCL command PRODUCT EXTRACT RELEASE_NOTES. The
release notes are created in the file DEFAULT.PCSISRELEASE_NOTES in the
current directory, or in the file specified by the user with the /FILE qualifier.

size size

Do not specify this option in your PDF. When you package your product, the
utility calculates the size (in blocks) of the files you specify and provides this
option in the output PDF. If you specify this option in the input PDF to a
PRODUCT PACKAGE command, the option is ignored.

7-38 Product Description Language Statements

Description

file

source source
Specifies the name of the file to package that supplies the contents for the file
specified in the name parameter of the file statement. The source file name
consists of a relative directory specification, file name, and file type of a file in
the materials directory path. File version number is not used because the file
with the highest version is packaged. Use this option when the input file for
the package operation has a different relative file specification than the output
file your Kit installs on the user’s system. By default, the name of the input file
for the package operation is the same as the output file created in the execution
environment when the kit is installed.

[no] write

Indicates that you expect that users will modify the file during system operation.
If you specify this option, during a version upgrade if the file already exists, it
remains the active version. For example, the OpenVMS operating system PDF
uses this option for [SYSMGR]SYLOGIN.COM. The default is no write. You
cannot use this option with the archive or release merge option.

The file statement creates a file object on the target disk. You specify a file
managed object with either the name parameter or the source option. The file
must be supplied as product material, unless the assemble execute option is
used to dynamically create the file. The link and loadable image statements can
also specify references to a file managed object.

File Conflict
Two types of file conflict can occur:

< An inter-product file conflict occurs when two or more products provide a
file with the same name in the same directory. (Note, files with the same
name can co-exist in different directories.)

= An intra-product file conflict occurs when two or more patch or partial kits
for a product update the same file.

Example: OpenVMS provides the file DUDRIVER.EXE. If you install two
different remedial kits for a particular version of OpenVMS that both update
this file, an intra-product file conflict results.

Intra-product file conflict detection and resolution was introduced in the
version of the utility that shipped with OpenVMS Alpha V7.1-2 and OpenVMS
VAX V7.2. This enhancement allows patch and partial kits to be installed
"out-of-order" while providing the most up-to-date files. Prior to this change,
files from patch or partial kits always superseded the previously installed
files.

The utility resolves a file conflict by comparing the generation numbers of the
files involved.

Do not confuse generation numbers with file versions. A generation number is an
optional attribute you supply on a file statement using the generation option.

A generation number can be any integer in the range of 0 to 4294967295. For
example:

file [SYSEXE] ABC. EXE generation 100;

Product Description Language Statements 7-39

file

If you do not specify a generation number, its default value is 0. Table 7-3 shows
how the utility resolves a file coflict.

Table 7-3 Resolving File Conflict with Generation Numbers

If the generation numbers Then

Are different The file with the largest non-zero number is
selected.

Are the same and are not V6.1-V6.2: The file from the kit replaces the

zero previously installed file.
V7.0-V7.2: The previously installed file is
retained.

V7.3: The file from the kit replaces the
previously installed file.

Are zero Unresolvable file conflict, an error is reported to
the user. Note that in V7.1, file conflict is not
detected and the file from the kit is selected.
This behavior was corrected in OpenVMS Alpha
V7.1-2 and OpenVMS VAX V7.2.

Generation information is not used for intra-product conflict detection when

a product is upgraded. In this case, all files from the old version are deleted,
and new files from the kit are placed on the target disk. However, generation
information is used during an upgrade for inter-product conflict detection when
any files from the product conflict with files from another product.

Logical Names

The assemble execute option causes the utility to define logical names for use
by the subprocess that executes the specified commands. The commands should
use these logical names to reference files, as follows:

< PCSI$SOURCE is a root directory specification under the user’s login
directory. It is used for temporary placement of the files specified by the
assemble uses option. This logical name is defined for the subprocess in
which product-supplied commands execute. It is not the same PCSI$SOURCE
logical name that can be defined by a user, in the user’s process, pointing to
the location of a product Kit.

= PCSI$SDESTINATION is a root directory specification under the user’s login
directory used as a staging area. The commands specified in the assemble
execute option are responsible for creating a file in this directory tree
whose name matches the one specified in the file name parameter. After
the commands are executed, the utility moves the file to the product’s
destination directory for the current scope. This logical name is defined
for the subprocess in which product-supplied commands execute. It is not the
same PCSI$SDESTINATION logical name pointing to the target disk that can
be defined by a user in the user’s process.

e PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

7-40 Product Description Language Statements

See Also

file

Scope and Lifetime

The scope and lifetime of the file managed object depend on whether it is
contained within a scope, end scope pair as shown in Table 7-4.

Table 7-4 File Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope
Product? Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

L1f the file option is assemble execute, the file managed object has assembly lifetime and product
scope.

Access Control Managed Object

You can include an access control option in a file statement to control access
to a file managed object. Each access control entry (ACE) you specify creates an
ACE managed object with the following characteristics:

e It is unnamed.
= It has operating lifetime. It has the same scope as the file managed object.
= The system resolves managed object conflict by managed object collection.

Image Library Managed Object

For a file statement that provides a shareable image, you can specify the image
library option to direct the utility to insert the file’s symbols into the system
shareable image symbol table library. This action creates an image library
module object with the following characteristics:

= It must be unique within the global scope.
« It has assembly lifetime and global scope.

= Managed object conflict is not recoverable.

directory

execute abort
execute install...remove
execute postinstall
execute start...stop
execute test
execute upgrade
link

loadable image
module

scope

Product Description Language Statements 7-41

file

Examples

file [SYSMGR] PRODO1. DAT
access control ("(IDENTI FI ER=[TEST] , ACCESS=READ
" (I DENTI FI ER=[PROD USER] ACCESS=READ+VR! TE)",
(1 DENTI FI ER=, ACCESS=NONE) ") wri te:

The file statement in this example specifies that the file PROD01.DAT cannot
be accessed by any user account other than TEST, which is allowed to read it,
and PROD_USER, which is allowed to read and write the file.

file [SYSLIB] FDVSHR EXE i mage library ;

The file statement in this example specifies that the symbols for the shareable
image [SYSLIB]JFDVSHR.EXE are inserted into the system shareable image
symbol table library.

file [SYSMGR] DECWSSTARTUP. COM protection public ;

The file statement in this example creates the file
[SYSMGR]DECWS$STARTUP.COM, giving users read and execute access.

file [SYSMGR] DECWESYLOG N. COM protection public
source [SYSMaR] DECWSSYLOG N. TEMPLATE ;

The file statement in this example creates the file
[SYSMGR]DECWS$SYLOGIN.COM in the execution environment using the
contents of the file [SYSMGR]DECW$SYLOGIN.TEMPLATE from product
material packaged in the kit. You do not have to specify the source file
with a separate file statement. The PACKAGE command always requires a
IMATERIAL qualifier.

file [SYSMGR] DECWSYSTARTUP. COM generation 56 archive ;

The file statement in this example creates the file
[SYSMGR]DECWS$SYSTARTUPR.COM. If a version of the file

already exists in the directory, the existing file is renamed
[SYSMGR]DECWS$SYSTARTUPRP.COM_OLD, instead of being deleted. It

also assigns a generation number to the file for conflict resolution. For
example, if a version of the file already exists with a generation number of
60, the utility will preserve the copy with generation number 60 and will not
create a new one.

file [SYSEXE] CALI BRATE. EXE
assenbl e execute " @CS| $SOURCE: [TEMP] CALI BRATE LI NK. COM'
assenbl e uses ("[TEMP] CALI BRATE. OBJ",
" [TEMP] CALI BRATE_LI NK. COM') ;

The file statement in this example creates the file
[SYSEXE]CALIBRATE.EXE in the execution environment by executing

a command procedure to link the image. The link command procedure

and object file are obtained from product material packaged in the kit.

The link command in CALIBRATE_LINK.COM uses the link qualifier
[EXECUTABLE=PCSI$DESTINATION:[SYSEXE]CALIBRATE.EXE to create
the image file.

7-42 Product Description Language Statements

file

file "[EXAVPLES. C_CODE] ERROR: - 42-49. C' ;

The relative file specification in the file statement above is enclosed in quotes
because the file name contains consecutive hyphen characters. A double
hyphen usually indicates a comment delimiter in the PDF, unless it is part of
a quoted string.

if (<software DEC AXPVMS VNS version minimum V7.1 version bel ow A7.2>) ;
file [syslib]debugshr.exe source [syslib]debugshr_v71.exe ;
else if (<software DEC AXPVMS VNS version ninimum A7.2>) ;
file [syslib]debugshr.exe source [syslib]debugshr _v72.exe ;

The PDL statements above conditionally provide a file named
DEBUGSHR.EXE based on the version of the OpenVMS operating system
that is installed. Separate shareable images linked to run on OpenVMS
V7.1 and OpenVMS V7.2 (or later) are packaged in the kit. If the version of
OpenVMS is at least V7.1, the appropriate image is selected and installed as
DEBUGSHR.EXE.

Product Description Language Statements 7-43

hardware device

hardware device

The hardware device statement identifies a required hardware device that must
be present in the execution environment. If the device is not present, the utility
prompts the user either to continue or to terminate the operation.

The hardware device function tests whether a specified device is present. The
value is true if the device is present; otherwise, the value is false.

Statement Syntax

hardware device name ;

Function Syntax

Parameter

Description

See Also

Examples

< hardware device name >

name
Indicates the device name of the hardware device. You must include the colon (:)
at the end of the device name.

Statement

The hardware device statement specifies a required hardware device. If the
device is not present, the utility prompts the user to continue or to terminate the
operation.

If the operation executes in batch mode and requires user interaction, the
operation terminates.

Function

The hardware device function tests whether the specified device is present. The
value is true if the device is present; otherwise, the value is false.

1. hardware device LPAO: ;

The hardware device statement in this example specifies that if the device
named LPAO: is not present in the execution environment, the utility
displays a message prompting the user either to continue or to terminate the
operation.

7-44 Product Description Language Statements

hardware device

2. if (<hardware device GAAD:>) ;
file [SYSEXE] SMFDRI VER. EXE ;
end if ;

The hardware device function in this example provides the file
[SYSEXE]SMFDRIVER.EXE if the device GAAO: is present.

Product Description Language Statements 7-45

hardware processor

hardware processor

The hardware processor statement identifies a system processor model that must
be present in the execution environment. If the model is not present, the utility
prompts the user either to continue or to terminate the operation.

The hardware processor function tests whether the specified system processor
model is present. The value is true if the model is present; otherwise, the value
is false.

Statement Syntax

hardware processor model (model,...) ;

Function Syntax

Parameter

Description

See Also

Example

< hardware processor model (model,...) >

model (model,...)
Indicates processor model identifiers as integer values. You can obtain the
processor model number using the DCL lexical function F$GETSYI("CPU").

Statement

The hardware processor statement specifies a system processor model. If the
model is not present, the utility prompts the user to either continue or terminate
the operation.

If the operation executes in batch mode and requires user interaction, the
operation terminates.

Function

The hardware processor function tests whether the specified system processor
model is present. The value is true if the model is present; otherwise, the value
is false.

Suppose the PDF contains the following lines:

if (<hardware processor nodel 7>) ;
error UNSPRCC ;
end if ;

You would have an UNSPROC module in the PTF similar to the following:

7-46 Product Description Language Statements

hardware processor

1 UNSPRCC
=pronpt Not supported on McroVAX I.
This product is not supported on the McroVAX | processor.

If the processor model is 7, the system displays a message supplied by the text
module UNSPROC indicating that the product is not supported on the MicroVAX
I computer. The user is then prompted to continue or terminate the operation.

Product Description Language Statements 7-47

The if statement conditionally processes a group of statements based on the
evaluation of an expression. The if, else, else if, and end if statements are used
together to form an if group.

Syntax
if expression; PDL-statements
[[else if expression; PDL-statements | ...]
[else; PDL-statements]

end if ;

Parameter

expression

Indicates the condition you want to test. An expression is used to produce a
Boolean value based on the evaluation of the condition. It is delimited by opening
and closing parentheses (...). It contains one or more of the following PDL
functions:

e <hardware device>

= <hardware processor>
e <logical name>

= <option>

= <software>

e <upgrade>

and, optionally, one or more of the keywords AND, OR, and NOT, which are used
as logical operators. An expression has one of the following forms, where each
term is either another expression or a function:

(term)

(term AND term)

(term OR term)
(NOT term)

Option

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the product and end product statements.

Required Terminator

end if ;

7-48 Product Description Language Statements

Description

See Also

The if group conditionally processes a group of statements based on the
evaluation of an expression. The utility executes the statements contained in
the if group up to the first occurrence of an else if statement (if present), an else
statement (if present), or end if statement if the expression evaluates to true.
The utility skips these statements if the expression evaluates to false.

else if

The else if statement is valid only if it is immediately contained in an if group
and is not lexically preceded by an else statement.

The utility executes the statements lexically contained in the if group between
the else if statement and the next occurrence of an else, else if, or end if statement
if all of the following conditions exist:

= The result of evaluating the expression in the if statement is false.

= The result of evaluating the expression in all lexically preceding else if
statements in the same if group (if present) is false.

= The result of evaluating the else if expression is true.

If any of these conditions are not satisfied, the utility also does not execute
statements lexically contained in the if group between the else if statement and
the next occurrence of an else, else if, or end if statement.

else

The else statement is valid only if it is immediately contained in an if group and
is the only else statement in the if group. The utility executes the statements
following the else statement (in the same if group) if both of the following
conditions exist:

= The result of evaluating the expression in the if statement is false.

= The result of evaluating the expression in all lexically preceding else if
statements in the same if group (if present) is false.

If either of these conditions is not satisfied, the utility does not execute
statements lexically contained in the if group between the else statement and
the end if statement.

hardware device
hardware processor
logical name
option

software

upgrade

Product Description Language Statements 7-49

Examples

if (<software DEC VAXVMS DECW NDOWE>) ;
file [SYSEXE] PROSDW SUPPORT. EXE ;
else if (<software DEC VAXVNS MOTIF>) ;
file [SYSEXE] PROBMOTI F_SUPPORT. EXE ;
el se ;
file [SYSEXE] PROSCC_SUPPORT. EXE ;
end if ;

This example uses the if statement in conjunction with the software function
to determine which file to provide, as follows:

= If Compag DECwindows is present, the utility provides the file
[SYSEXE]PRO$DW_SUPPORT.EXE.

« If Compag DECwindows is not present and Compaq DECwindows
Motif is present, the utility provides the file [SYSEXE]JPRO$SMOTIF_
SUPPORT.EXE.

= If neither Compaq DECwindows nor Compag DECwindows Motif is
present, the utility provides the file [SYSEXE]PRO$CC_SUPPORT.EXE.

if ((NOT <hardware device MJAQO: >) AND
(<software ABC AXPVMS TEST version bel ow 2.0>));

end i f;

In this example, the group of statements enclosed within the if...end if
statements is executed if no MUAO: device is available on the target system
and the product TEST with a version below V2.0 is present. The expression

evaluates to false either if there is an MUAQO: device, the product TEST is
V2.0 or above, or no such product is installed.

7-50 Product Description Language Statements

infer

infer
The infer statement tests the target system to determine if a product or product
version is available.
Note
The infer statement is valid only in a transition PDF.
Syntax
infer
{ available from { install file | logical name logical_name } |
version from file } ;
Parameters
file
Indicates the relative file specification of the file you want to test.
logical_name
Indicates the logical name you want to test.
Description

The infer statement tests the target system to determine if a product or product
version is available. This statement is valid only in a transition PDF.

There are several types of infer statements:

= The infer available statement tests the target system to determine if the
product named in the product directive of the transition PDF is available.

— The infer available from install statement tests whether the product is
available only if the specified file is installed as a known image. The scope
statement controls execution of this statement; the test executes in the
specified scope.

— The infer available from logical name statement tests whether the product
is available only if the logical name you specify has a translation.

= The infer version statement tests the target system to determine the presence
and active version of the product named in the product directive of the
transition PDF. The product is inferred to be present if the specified file is
present on the system and absent otherwise. If the product is present, the
active version is inferred to be the internal version number of the specified
file. The scope statement controls execution of this statement; the test
executes in the specified scope.

Product Description Language Statements 7-51

infer

See Also

scope

Examples

1. infer available fromlogical name DOCSROCT ;

The infer available statement in this example determines if the product is
available by checking to see if there is a translation for the logical name
DOCS$ROOT. The name of the product that the statement is testing for is
contained in the product directive in the transition PDF.

2. infer version from [SYSEXE] FORTRAN. EXE

The infer version statement in this example determines the active version of
the product by checking to see if the file [SYSEXE]JFORTRAN.EXE is present.

7-52 Product Description Language Statements

information

information

Syntax

Parameter

Options

Description

The information statement displays a message from the specified text module in
the PTF either before or after the execution of an installation, configuration, or
reconfiguration operation.

information name
[[no] confirm]
[phase { after | before }]
[with helptext] ;

name
Indicates, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

[no] confirm

Displays the contents of the text module and prompts the user for a response.
The user can continue or terminate the operation. The confirm option does not
have any effect in batch mode. The default is no confirm.

phase after
Displays the contents of the text module after the execution phase of the
operation finishes. This option cannot be used with the phase before option.

phase before
Displays the contents of the text module during the configuration phase. This
option is the default and cannot be used with the phase after option.

with helptext
Forces the display of the full help text module during the installation or
configuration of the product. See Section 7.1 for usage constraints.

The information statement displays a message from the specified text module
in the PTF either before or after the execution of an installation, configuration,
or reconfiguration operation as directed by the phase option. The phase before
option causes the message to be displayed during the configuration phase of the
operation; the phase after option causes the message to be displayed after the
execution phase of the operation.

By default, the prompt text string is displayed without help text. However,
help text is displayed after the prompt text when the user specifies the /HELP
qualifier on the command line, or the information statement contains the with
helptext option.

You must supply prompt text for the information statement in the PTF using the
=prompt directive. Help text is optional. If provided, it must immediately follow
the prompt text line.

Product Description Language Statements 7-53

information

If you have information statements that specify the phase before option and
they are lexically contained in a group with configuration choices, they are
processed in lexical order and may be nested.

Information statements that specify the phase after option do not display text if
they are lexically contained in an option group that is not selected.

The confirm option to the information statement causes the utility to prompt the
user to continue or terminate the operation.

The information statement declares a name; it is not a variable.

See Also
part
process parameter
system parameter
Example

Suppose the product text file for Compaqg Rdb for OpenVMS software contains the
following lines:

1 RELEASE_NOTES

=pronpt Rel ease notes for Rdb/VMS avail abl e.

The rel ease notes for Rdb/ VM5 are available in the file

SYS$HELP: RDBVMSVA. RELEASE NOTES.

1 STOP_RDB VM5 _MONI TOR

=pronpt The Conpaq Rdb for OpenVMS nonitor nust be stopped before installation

The Conpagq Rdb for OpenVMS monitor nust be stopped before you install Conpag Rdb for OpenVNS.
Performthe fol | owing operation:
$ @YSSMANAGER: RMONSTOP

The product description file could contain the following information statements:

i nformation RELEASE NOTES phase after ;
information STOP_RDB VM5 _MONI TOR phase before with hel ptext confirm

If the user requests help, the first information statement displays the following
text after the operation finishes:

Rel ease notes for Conpaq Rdb for OpenVMS avail able.

The rel ease notes for Conpaq Rdb for QpenVMS are available in the file
SYS$HELP: RDBVMBVA. RELEASE NOTES.

If the user does not request help, the first information statement displays only
the prompt text after the operation finishes:

Rel ease notes for Conpaq Rdb for OpenVMS avail able.

Regardless of whether the user requests help or not, the second information
statement displays the following text for the user during the configuration phase:

7-54 Product Description Language Statements

information

The Conpaq Rdb for OpenVMs monitor nust be stopped before installation

The Conpaq Rdb for QpenVMS nonitor nmust be stopped before Conpaq Rdb for QpenVMS may be instal
Performthe fol | owing operation:

$ @YSSMANAGER: RMONSTOP

Do you want to continue [YES]?

Regardless of whether the help display option is set, the confirm option in the
second statement forces the user to respond to the prompt before continuing.

Product Description Language Statements 7-55

link

link
The link statement specifies a second directory entry for a file or directory.
Syntax
link name from source ;
Parameters
name
Indicates the file specification of the second directory entry.
from source
Indicates the file specification of an existing directory entry for the file or
directory. The parameter string must be a single quoted or unquoted string. The
referenced file or directory must be defined by a directory or file statement in the
same product description.
Description
The link statement specifies a second directory entry for a file or directory. The
managed object type of the file with the second directory entry is “link”.
The scope and lifetime of the link managed object depend on whether it is
contained in a scope group, as shown in Table 7-5.
Table 7-5 Link Managed Object Scope and Lifetime
Type of Scope Group Lifetime Scope
Product Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor
If the link statement is not contained in a scope, end scope pair or is contained in
a scope product group, the link managed object has product lifetime and product
scope.
Managed object conflict is unrecoverable.
See Also
directory
file
scope
Examples

1. file [SYSSEXE] FMS. EXE;
l'ink [SYSEXE] FMS. EXE from [SYSSEXE] FMS. EXE ;

The statement in this example specifies that the file [SYSEXE]JFMS.EXE is
linked to the file [SYS$SEXE]FMS.EXE. Both files, [SYS$EXE]FMS.EXE and
[SYSEXE]FMS.EXE, have the same file ID.

7-56 Product Description Language Statements

link

directory [ABC ;
directory [DEF] ;

i nk [DEF] ABC. DIR from [000000] ABC. DI R

This example illustrates how to create a second directory entry [DEF.ABC] for
a directory [ABC].

Product Description Language Statements 7-57

loadable image

loadable image

Syntax

Parameters

Options

The loadable image statement places an image into the system loadable images
table, SYSSLOADABLE IMAGES:VMS$SYSTEM_IMAGES.DATA, and also into
SYS$SUPDATE:VMSS$SYSTEM_IMAGES.IDX for compatibility with the System
Management utility (SYSMAN).

loadable image image product product
[step { init | sysinit }]
[message text]
[severity { fatal | success | warning }];

image

Indicates the file name of the system loadable image. The name you specify must
be defined in the same product description and must have bootstrap scope and
product or assembly lifetime.

product product

Indicates the product mnemonic (as a single quoted or unquoted string of 1 to 8
characters) that uniquely identifies the loadable image. For user-written images,
this should typically contain the string LOCAL _.

step init
Indicates that the system load the image during the INIT step of the booting
process.

step sysinit
Indicates that the system load the image during the SYSINIT step of the booting
process. This is the default.

message text

Indicates the message you want displayed using the severity option. The message
must be a single quoted or unquoted string. Case is significant. By default, the
severity option displays the message “system image load failed.”

severity fatal
Indicates that if an error occurs while the image is being loaded, the system
displays the message and bugchecks; if no error occurs, processing continues.

severity success
Indicates that the system continue processing and not display a message
regardless of whether an error occurs while the image is being loaded.

severity warning

Indicates that if an error occurs while the image is being loaded, the system
displays the message and continues; if no error occurs, the system continues and
does not display the message. This is the default.

7-58 Product Description Language Statements

Description

See Also

Example

loadable image

The loadable image statement places an image into the system loadable images
table, SYSSLOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA, and also into
SYSSUPDATE:VMS$SYSTEM_IMAGES.IDX for compatibility with the System
Management utility (SYSMAN).

The loadable image statement specifies a loadable image module managed object
that has the following characteristics:

= It must be unique within the global scope.
= It has assembly lifetime and global scope.
« It does not recover from managed object conflict.

The loadable image statement also refers to a file managed object specified using
the image parameter.

file

| oadabl e i mage DDl FSRMS_EXTENSI ON product _LOCAL_
message "DDI F Extension not |oaded"
severity warning ;

The statement in this example places the user-written image DDIFSRMS
EXTENSION in the system loadable images table. If an error occurs while
loading this image, the system displays the error message “DDIF Extension not
loaded” and continues.

Product Description Language Statements 7-59

logical name

logical name

The logical name function tests whether a specified logical name is defined in the
default logical name table LNM$SYSTEM_TABLE or in the table specified by the
function.

Function Syntax

Parameter

Option

Description

< logical name name [equals value] [table table_name] >

name
Indicates the logical name string.

equals value

Indicates the equivalence name string of the logical name. If you do not specify
the equivalence name, the presence of the logical name in the default or specified
logical name table is sufficient to make the function evaluate to TRUE.

table table_name

Indicates the name of the logical name table in which the logical name is to
be searched. If the name of the table is not specified, LNM$SYSTEM_TABLE
becomes the default table name.

The logical name function tests whether the specified logical name is defined.
The value of the function is true if the following conditions are met:

= No options are specified, and the logical name has been found in the
LNM$SYSTEM_TABLE logical name table. The equivalence name is not
probed in such an instance.

= An equivalence name is specified, no logical table name is listed, the logical
name has been found in the LNM$SYSTEM_TABLE logical name table, and
the equivalence string from the table matches the equivalence string specified
in the function.

= Both options are specified, the logical name has been found in the user
specified table, and the equivalence string from the table matches the
equivalence string specified in the function.

= The equivalence name is not specified and the logical table name is provided
by the user. If the logical name is found in the user-specified table, the
function evaluates as true and the equivalence name is not probed.

The function evaluates to false in any other case.

The utility evaluates the logical name function immediately after processing the
execute preconfigure statement. This gives you the opportunity to define a logical
name before the configuration phase. You can use this logical hame to affect
the processing of statements within an if group during the configuration or the
execution phase of an installation, configuration, or reconfiguration operation.

7-60 Product Description Language Statements

See Also

Example

logical name

execute preconfigure
if

execut e preconfigure "@CSl $SOURCE: [SYSUPD] EXEC PREC. COM'
uses [SYSUPD] EXEC PREC. COM i nteractive ;

if (<logical name YOUR ANSVER equals MENU_ITEM1 >) ;
file [SYSEXE] FI LEL. EXE ;

else if (<logical name YOUR ANSWER equals MENU ITEM 2 >) ;
file [SYSEXE] FI LE2. EXE ;

else if (<logical name YOUR ANSWER equals MENU ITEM 3 >) ;
file [SYSEXE] FI LE3. EXE ;

end if ;

The utility limits your configuration options to accept only true or false values.
This example illustrates how to program multiple choice questions.

The execute preconfigure statement runs commands from the EXEC_PREC.COM
file in an interactive mode. The user is prompted to select one of three menu
items. The answer is stored by the command procedure as an equivalence name
to a logical name YOUR_ANSWER. The logical name is evaluated immediately
after the execute preconfigure statement and the result is stored internally.
During the execution phase, the logical name function is evaluated and, based on
the result, the if group installs the appropriate file.

Product Description Language Statements 7-61

module

module

Syntax

Parameters

Options

The module statement adds or replaces one or more modules in a command, help,
macro, object, or text library file.

module file type type module (module_name],...])
[[no] generation generation]
[[no] globals]
[library library]
[[no] selective search] ;

file
Indicates the relative file specification of the file that contains the modules.

type type

The library type. Table 7-6 lists the keywords you can specify with this
parameter.

Table 7-6 Library Types for Module Statement

Keyword Library Type Default Library File
Command Command definition library [SYSLIB]DCLTABLES.EXE
Help Help library [SYSHLP]JHELPLIB.HLB
Macro Macro library [SYSLIB]JSTARLET.MLB
Object Object library [SYSLIB]STARLET.OLB
Text Text library [SYSLIB]STARLETSD.TLB

module module_name
The list of module names you are specifying.

[no] generation generation

Indicates that the file has an explicit generation number. Specify the number
as an unsigned integer in the range of 0 through 4294967295. Refer to the
Description section for the meaning of this value. By default, the file does not
have an explicit generation number (no generation), which is equivalent to zero.

[no] globals

Indicates whether the global symbol names of the modules you are inserting
into an object library are included in the global symbol table. You can use this
option with object libraries only. By default, the global symbols of the module are
inserted into the global symbol table.

library library
Indicates the relative file specification of the library. The file you specify must be
a library of the type you specified with the type parameter.

7-62 Product Description Language Statements

Description

module

[no] selective search

Indicates whether the input modules being inserted into the library are available
for selective searches by the linker (by default they are not). You cannot use
this option with the command and help libraries. For more information about
selective searches, see the OpenVMS Linker Utility Manual.

The module statement adds or replaces one or more modules in a command
library file, or a single module in a help, macro, object, or text library file. The
module statement adds the module name to the product database. You do not
need to use a register module statement in addition to a module statement to
register the module name.

Use the module parameter to specify the name of the module object. For a help,
macro, object, or text library, the name specified with the module parameter
should be the same as the name of the module itself.

The module object has assembly lifetime, and its scope is the same as the library.

A module inserted into a command, help, object, text, or macro library can conflict
with another module having the same name that is already resident in the
library. Two types of module conflict can occur:

< An inter-product module conflict occurs when two or more products provide
a module with the same name.

e An intra-product module conflict occurs when two or more patch or partial
kits for a product update the same module.

The utility resolves a module conflict by comparing the generation numbers of the
modules involved.

A generation number is an optional attribute you supply on either the module or
register module statement using the generation option. A generation number
can be any integer in the range of 0 to 4294967295. If you do not specify a
generation number, its default value is O.

Table 7-7 Resolving Module Conflict with Generation Numbers

If the generation numbers Then

Are different The module with the largest non-zero number is
selected.

Are the same and are not The module from the kit replaces the previously

Zero installed module.

Are zero Unresolvable file conflict, an error is reported

to the user. Note that for V6.1-V6.2 a module
with an explicit generation number of O might be
selected over a module with a default value of 0.

Generation information is not used for intra-product conflict detection when a
product is upgraded. In this case, all modules from the old version are deleted,
and new modules from the kit are placed on the target disk. However, generation
information is used during an upgrade for inter-product conflict detection when
any modules from the product conflict with modules from another product.

Product Description Language Statements 7-63

module

See Also

Examples

file

register module

modul e [SYSUPD] CDD. CLD type COMMAND nodul e CDD ;

The statement in this example creates the command module CDD in
the default command library [SYSLIB]DCLTABLES.EXE using the file
[SYSUPD]CDD.CLD.

modul e [SYSUPD] HELP. HLP type HELP nodul e HELP :

The statement in this example creates the help module in the default help
library [SYSHLP]JHELPLIB.HLB using the file [SYSUPD]JHELP.HLP.

nmodul e [SYSUPD] SPI $CONNECT. MAR type MACRO
l'ibrary [SYSLIB]LIB. M.B nodul e SPI $CONNECT ;

The statement in this example creates the macro module
SPISCONNECT in the macro library [SYSLIB]LIB.MLB using the file
[SYSUPD]SPI$CONNECT.MAR.

modul e [SYSUPD] COBRTL. OBJ type OBJECT nodul e COBRIL;

The statement in this example creates the object module COBRTL
in the default object library [SYSLIB]STARLET.OLB using the file
[SYSUPD]COBRTL.OBJ.

nodul e [SYSUPD] PROTOTYPE_BOOK. TXT type TEXT
l'ibrary [SYSLIB]LPSSFONT_METRI CS. TLB nodul e PROTOTYPE_BOCK;

The statement in this example creates the text module PROTOTYPE_
BOOK in the text library [SYSLIB]JLPS$FONT_METRICS.TLB using the file
[SYSUPD]PROTOTYPE_BOOK.TXT.

7-64 Product Description Language Statements

network object

network object

Syntax

Parameters

Description

The network object statement uses a command procedure to create a DECnet
network object.

network object name with (parameters,...) ;

name
Indicates the name of the network object. The network object name is passed to
the command procedure as P1.

with (parameters,...)

Indicates the list of parameters that are passed to the command procedure that
creates the network object. Each parameter must be a single quoted string that
specifies P2 through P5, in order. Refer to the Description section for the meaning
of the parameters.

The network object statement uses a command procedure
(SYS$UPDATE:PCSI$CREATE_NETWORK_OBJECT.COM) to create network
objects. The command procedure determines whether DECnet Phase IV or
DECnet—Plus is running on the system. If Phase IV is being used, the command
procedure runs the Network Control Program (NCP) utility to create the network
object. Otherwise, it runs the Network Control Language (NCL) utility.

In the case of DECnet—Plus, the network object created during the product
installation will exist only in memory. It is recommended that DECnet-Plus
objects be supplied in the form of an NCL script with a file statement and
activated with a product startup procedure.

The utility passes the following parameters to the command procedure:

= P1 specifies the name of the network object (using the name parameter).

= P2 specifies the object number (for DECnet Phase IV systems only).

= P3 specifies the user name associated with the object. If you specify a user

name, it must already exist.

Note

The password of the specified user account is changed when the network
object is created by PCSISCREATE_NETWORK_OBJECT.COM. The new
password is system generated, and can be viewed with the NCP> SHOWN
OBJECT... command.

= P4 specifies optional parameters to use with the NCP command DEFINE
OBJECT for DECnet Phase 1V objects.

= P5 specifies optional parameters to use with the NCL command
CREATE SESSION CONTROL APPLICATION for DECnet-Plus objects.

Product Description Language Statements 7-65

network object

When you remove a product that created network objects, the
POLYCENTER Software Installation utility uses a command procedure
(SYS$SUPDATE:PCSI$DELETE_NETWORK_OBJECT.COM) to delete network
objects associated with your product.

Note

In a future version, the utility may create and delete these managed
objects directly without the use of command procedures. If this is the
case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the
utility.

The network object statement specifies a network object managed object that has
the following characteristics:

= Its name is the value of the name parameter. The name must be unique with
respect to all network object names in the processor scope.

< It has operating lifetime and processor scope.

= Managed object conflict is not recoverable.

See Also

file
execute start...stop

Examples

1. network object k$test with ("number 107", "user KRYPTON') ;

In this example, the network object statement creates a network DECnet
Phase 1V object named k$test. Its object number is 107 and it will execute as
user [KRYPTON].

2. file [SYSMGR] NETOBJ_TEST. NCL;
file [SYS$STARTUP| PRODUCT STARTUP. COM ;

execut e
start "@ys$startup: product_startup. cont

stop "";

In this example, the first file statement supplies the DECnet-Plus NCL
script file. This script can contain NCL directives that create a DECnet—Plus
network object, that is, session control application. For example, the script
file might contain the following NCL commands:

del ete session control application k_test
create session control application k_test
set session control application k_test

where Kk _test is the network object name.

7-66 Product Description Language Statements

network object

The second file statement supplies a command procedure, which is executed
as a result of processing the execute start statement during the product
installation. The startup command procedure may contain the following DCL
command that forces the NCL script file to be executed:

$ MOR NCL DO NETOBJ_TEST. NCL

The startup command procedure can be placed later into the system startup
procedure to execute each time the user’s system is rebooted.

Product Description Language Statements 7-67

option

option

The option statement conditionally processes a group of statements based on the
user’s response to a question. The option and end option statements form an
option group.

Statement Syntax

option name [default value] [with helptext] ;
[PDL-statements]

end option ;

Function Syntax

Parameter

Options

< option name [default value] [with helptext] >

name
Indicates, as a quoted or unquoted string, the name of the associated PTF text

module. This text module contains the text of a question that will be displayed
to the user. The name you specify can be from 1 to 31 characters and must be

unique among all text modules in the PDF; that is, two PDL statements cannot
refer to the same text module.

default value
Indicates the default value for the option. The value must be either 1 (true), 0
(false), yes, no, true, or false; the default is 1 (true).

If you specify an option statement with the default value 0, and the option group
contains other option statements, any defaults for the enclosed option statements
apply only when the top-level option statement is selected.

with helptext
Forces the display of the full help text module during the installation or
configuration of the product. See Section 7.1 for usage constraints.

PDL-statements
Any product description language statement or a group of statements described in
this reference section can be used, except the product and end product statements.

Required Terminator

end option ;

7-68 Product Description Language Statements

Description

option

Statement

The option statement conditionally processes a group of statements based on the
user’s response to a question. The user is prompted to choose options during the
configuration phase of an operation. If the user accepts an option, the utility
executes the statements contained in the option group. If the user declines the
option, the utility skips these statements.

You can nest option groups. The user must process and select an option group
containing other option statements before any inner option statements are
processed. That is, if the user declines an option, any option groups contained
within it are also treated as being declined.

When an option is processed, the utility displays the prompt text line from the
specified module in the PTF and waits for a response. The response can be Yes,
No, or Return to accept the default answer.

Default answers come from one of three places:

e A product configuration file (PCF), if one is supplied with the
/ICONFIGURATION=INPUT=pcf-name qualifier on the command line
of a PRODUCT INSTALL, PRODUCT CONFIGURE, or PRODUCT
RECONFIGURE command.

= The product database (PDB) for an upgrade of a previously installed product
where the PDB contains the answers from the previous installation.

= The product description file (PDF) from the product kit.

If an input PCF is used and it contains an answer for an option, that answer
is the default. Depending on the entry in the PCF, the user may or may not be
allowed to change the default value.

If no input PCF is supplied, or if the input PCF does not contain an answer for
an option, the default answer is obtained from either the PDB or the PDF. If
the PDB does not contain information about the product (for example, this is a
new installation), or a product specific PDB entry exists but does not contain the
option (a new option), then the default comes from the PDF. Default answers that
come from either the PDB or PDF may be changed by the user.

In addition to the prompt text line, the utility displays help text (if present in the
PTF), when the user specifies the /[HELP qualifier on the command line, or the
option statement contains the with helptext option.

You must supply prompt text for the option statement in the PTF using the
=prompt directive. Help text is optional. If provided, it must immediately follow
the prompt text line.

You cannot use the option statement in a patch, mandatory update, partial, or
transition PDF. It is valid only in a full, platform, or operating system PDF.

Function

The user is prompted to choose options during the configuration phase of the
operation. If the user selects an option, the option function returns true. If the
user declines the option, the option function returns false.

Product Description Language Statements 7-69

option

See Also

if

part
Examples

1. option NET ;

file [SYSEXE] NETSERVER COM ;
file [SYSEXE] NETSERVER EXE ;
file [SYSHLP] NCPHELP. HLB ;
option NET A default O ;
file [SYSEXE] FAL. COM ;
file [SYSEXE] FAL. EXE ;

1

®
=3

=2
(=}
h=]
=4
=}
S

file [SYSMGR| RTTLOAD. COM ;
file [SYSSLDR] CTDRI VER EXE ;
file [SYS$LDR| RTTDRI VER. EXE ;
end option ;
end option ;

If the product description file contains the lines above, the product text file
contains the corresponding text:

1 NET

=pronpt network support

This option allows you to participate in a DECnet network.

1 NET_A

=pronpt inconing remote file access

This option allows file access fromother nodes in a DECnet network.
1 NET_B

=pronpt incoming remote terninal access

This option allows users on other nodes in a DECnet network to |og
in.

The user must select option NET before NET_A or NET_B are available for
selection. Therefore, NET is processed before NET_A or NET_B.

2. if (<option A>) ;
file [SYSEXE] A EXE ;
el se ;
file [SYSEXE]B. EXE ;
end if ;

The product text file contains the corresponding text:

1A

=pronpt the X capability

This feature provides the A capability, but you will not get the B
capability.

In this example, if the user selected the A option, the utility provides the file
[SYSEXE]JA.EXE. Otherwise, the utility provides the file [SYSEXE]B.EXE.

7—-70 Product Description Language Statements

part

part

Syntax

Parameter

Option

The part statement displays a message from the specified text module in the PTF
about a group of statements during the configuration phase of an installation,
configuration, or reconfiguration operation. The part and end part statements
form a part group.

part name ;
[PDL-statements]

end part ;

name

Indicates, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unigue among all names in the same product description.

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the product and end product statements.

Required Terminator

Description

end part ;

The part statement displays a message from the specified text module in the PTF
about a group of statements during the configuration phase of an installation,
configuration, or reconfiguration operation. You can nest part groups, which are
processed in lexical order.

Although the syntax of the part group and the option group is similar, their
purpose is quite different. The part group simply displays a message and does
not affect the processing of PDL statements contained within the group. In
contrast, the option group prompts the user to accept or decline the option,
causing the PDL statements that make up the option to be processed or ignored.

By default, the prompt text string is displayed without help text. However,
help text is displayed after the prompt text when the user specifies the /HELP
qualifier on the command line.

You must supply prompt text for the part statement in the PTF using the
=prompt directive. Help text is optional. If provided, it must immediately follow
the prompt text line.

Product Description Language Statements 7-71

part

See Also

Example

information
option

Suppose the product description file contains the following lines:

part CSWS ;
sof tware CPQ AXPVMB CSWS
version required V1.0 conponent ;
sof tware CPQ AXPVM5 MOD_JSERV
version required V1.0 conponent ;
sof tware CPQ AXPVMS MOD_PERL
version required V1.0 conponent ;
end part;

The product text file contains the corresponding text:

1 CSWs

=pronpt Conpaq Secure Wb Server

This platformprovides the follow ng products:

* Conpaq Secure Wb Server software (Based on Apache)
* MOD_JSERV software

* MOD_PERL software

This example shows how to use the part statement to display a message about
the required software products that this platform provides.

7—-72 Product Description Language Statements

patch image (VAX only)

patch image (VAX only)

Syntax

Parameters

Description

The patch image statement updates an executable image using PATCH
commands.

Note

Starting with OpenVMS V7.3, the patch image statement is obsolete.

To support existing product kits that may have used this statement,

the POLYCENTER Software Installation utility continues to process
this statement in a backward compatible manner. However, Compaq
recommends that you do not use the patch image statement in new

or revised product Kits. Instead of patching an image file, provide a
replacement image file with a file statement. Documentation of the patch
image statement may be discontinued in a future release of this manual.

patch image name with source ;

name
Indicates the relative file specification of the executable image you want to
update.

with source
Indicates the file specification of the file containing the update commands. The
file must contain OpenVMS VAX Image File Patch Utility (PATCH) commands.

The patch image statement updates an executable image using PATCH
commands. Use this statement when it is inconvenient to provide a new image.

You must supply the file containing the update commands as part of the product
material.

The patch image statement specifies a managed object that has the following
characteristics:

= |Its name is the same as the name parameter of the product group in which
the statement is lexically contained; it is a multicomponent name qualified
by the relative file specification of the file that is being updated. It must be
unique with respect to all managed objects in all scopes.

= It has assembly lifetime, and its scope is the same as that of the file being
updated.

= Managed object conflict is unrecoverable.

Product Description Language Statements 7-73

patch image (VAX only)

Example

patch i mage [SYSSLDR] SYS. EXE wi th [SYSUPD] VERSI ON_PATCH. PAT

This statement provides a file, [SYSUPD]VERSION_PATCH.PAT, to patch the
image [SYS$LDR]SYS.EXE.

7—-74 Product Description Language Statements

patch text

patch text

Syntax

Parameters

Description

The patch text statement updates a text file using SUMSLP commands.

Note

Starting with OpenVMS V7.3, the patch text statement is obsolete.

To support existing product Kits that may have used this statement,

the POLYCENTER Software Installation utility continues to process

this statement in a backward compatible manner. However, Compaq
recommends that you do not use the patch text statement in new or
revised product kits. If possible, provide a replacement file with a

file statement. If this is not practical, and you must edit an existing

file, consider using a file statement with the assemble execute and
assemble uses options to run a command procedure that places a copy of
the previously installed file in the PCSI$SDESTINATION scratch directory
and performs the editing function there. Documentation of the patch text
statement may be discontinued in a future release of this manual.

patch text name with source ;

name
Indicates the relative file specification of the text file you want to update.

with source

Indicates the file specification of the file containing the update commands (as a
single quoted or unquoted string). The file must contain SUMSLP commands for
use by the EDIT/SUM editor.

The patch text statement updates a text file using SUMSLP commands. Use this
statement when it is inconvenient to provide a new file.

You must supply the file containing the update commands as part of the product
material. You must also supply the file that you want to update, but this file

is not propagated to the product kit. The POLYCENTER Software Installation
utility uses it to calculate the input and output checksum values.

The patch text statement creates a temporary directory, identified by the logical
name PCSI$SCRATCH, to compute a checksum value. The PCSI$SCRATCH
directory is created as a subdirectory of SYS$SCRATCH.

The patch text statement specifies a managed object that has the following
characteristics:

« Its name is the same as the name parameter of the product group in which
the statement is lexically contained; it is a multicomponent name qualified
by the relative file specification of the file that is being updated. It must be
unique with respect to all managed objects in all scopes.

Product Description Language Statements 7-75

patch text

< It has assembly lifetime, and its scope is the same as that of the file being
updated.

= Managed object conflict is unrecoverable.

Example

patch text [SYSUPD] VMBI NSTAL. COM wi th [SYSUPD] VVBI NSTAL. SLP :

This statement provides a file, [SYSUPD]VMSINSTAL.SLP, to patch the text file
[SYSUPD]VMSINSTAL.COM.

7—-76 Product Description Language Statements

process parameter

process parameter

Syntax

Parameter

Options

Description

The process parameter statement displays a message to users about process
parameter requirements.

Note

The utility does not adjust process parameters.

process parameter name
{{ consume | require } value |
maximum value |
minimum value |
minimum value maximum value } ;

name
Indicates the process parameter name. The name you specify must be valid on
the system where the product executes.

consume value

Indicates that the process parameter must be increased by the specified value.
Use this option when the product consumes a resource that is controlled by the
process parameter. The value must be a single unquoted string that specifies an
unsigned integer value. You cannot use this option with either the maximum,
minimum, or require option.

maximum value

Indicates that the process parameter must have a value less than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value.

minimum value

Indicates that the process parameter must have a value greater than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value.

require value

Indicates that the process parameter must have the specified value. The value
must be a single string that specifies a value of the parameter’s type. This option
is valid for any parameter data type. You cannot use this option with either the
maximum, minimum, or consume option.

The process parameter statement displays a message to users after the
installation about process parameter requirements. Note that the utility does not
adjust process parameters.

Product Description Language Statements 7-77

process parameter

See Also

information
system parameter

Example

process paraneter ASTLM mini num 6;
process paranmeter BYTLM require 32768;
process paraneter PRCLM consune 2;
process paranmeter FlLLM maxi mum 40;

These statements display a message to users that a process that executes the
product must have the following process parameters:

ASTLM greater than or equal to 6
BYTLM set to 32768

PRCLM increased by 2

FILLM less than or equal to 40

7—-78 Product Description Language Statements

process privilege

process privilege

The process privilege statement displays a message to users about process
privilege requirements.

Note

The utility does not adjust process privileges.

Syntax
process privilege (nameJ,...]) ;

Parameter
name
Indicates the process privilege names as a list. The privileges you specify must
be valid on the system where the product executes.

Description
The process privilege statement displays a message to users after the installation
about process privilege requirements. Note that the utility does not adjust
process privileges.

Example

process privilege (group, oper, tnpnbx, sysnam ;

The statement in this example displays a message to the user that processes
using the product must have the GROUP, OPER, TMPMBX, and SYSNAM
privileges.

Product Description Language Statements 7-79

product

product
The product statement specifies product identification and other descriptive
information about the product. The product and end product statements form a
product group.

Syntax
product producer base name version Kittype ;
[PDL-statements]
end product ;

Parameters

producer
Indicates the legal owner of the software product. This parameter must be a
single quoted or unquoted string.

base

Indicates the base hardware and operating system combination on which the
product is intended to be installed. This parameter must be a single quoted

or unquoted string. By convention, the string AXPVMS denotes an OpenVMS
Alpha product, VAXVMS denotes an OpenVMS VAX product, and VMS denotes a
product applicable for either OpenVMS Alpha or VAX.

Although any base system name can be used when you package a product,
Compaq recommends that you use the names AXPVMS, VAXVMS, and VMS
when developing products for use on OpenVMS.

name

Indicates the name of the product. This parameter must be a single quoted or
unquoted string. The combination of producer, base, and name parameters
must be unique among products installed on the system.

version
Indicates the version of the product. This parameter must be a single quoted or
unquoted string.

kittype
Indicates the kit type of the product through use of one of the following keywords
or keyword phrases:

< full. A complete description of a layered product (application software) that
can be used to install or upgrade the product.

= operating system. A complete description of an operating system that can
be used to install or upgrade the product. Only one product of operating
system type can be installed on the system.

= partial. A partial (incomplete) description of a product that can be used only
to upgrade an existing version of the same product. Installation of a partial
kit changes the version number of the product and can upgrade a product
of type: full, operating system, or platform. A partial kit must contain an
upgrade statement and have the same producer-base-name identification
string as the product it upgrades.

7-80 Product Description Language Statements

Option

product

= patch. A partial (incomplete) description of a product that can be used only
to update an existing version of a product. Installation of a patch kit does
not change the version number of the product and can update a product of
type: full, operating system, or platform. A patch kit must contain an apply
to statement and have a different producer-base-name identification string
than the product it updates.

= platform. A complete description of a suite of products that can be used to
install or upgrade the entire set of products.

= transition. A complete or incomplete description of a product that was
installed on the system by another installation method such as VMSINSTAL.
A transition kit is used only to register a previously installed product; it
does not contain any product material. Registration using a transition kit
defines the name of a product and its managed objects in the POLYCENTER
Software Installation product database. After a product is registered, the
utility can use this information to satisfy software dependency requirements
that other products may have on the availability of this product.

The keyword transition used alone denotes a layered product; the keyword
phrase transition operating system denotes an operating system.

< mandatory update. This is functionally identical to a patch kit. Its type
implies that the patch must be applied to the product it updates.

See Section 3.5 for a more detailed description of kit types and example PDFs.

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the product and end product statements.

Required Terminator

Description

See Also

end product ;

The product statement specifies product identification and other descriptive
information about the product. The product and end product statements form
the product group. A product description file consists of a product group and any
other PDL statements that this group might enclose.

The product statement is a utility directive and does not specify a managed
object.

apply to
software
upgrade

Product Description Language Statements 7-81

product

Examples

1. product DEC VAXVMS FMS V2. 4

file
file
file
file

file

directory [systest.fns] ;

file
file

sysnsg] f dvshr. exe
sysnsg] f nensg. exe

sysexe] f msf ed. exe ;
sysexe] f nsf aa. exe ;

sysexe] f msfte. exe

full ;
image library ;

systest.fms]ivp. exe ;
systest.fms]sanp.flb ;
end product ;

The product statement in this example identifies the product as FMS version
2.4 that is intended to be installed on an OpenVMS VAX system.

2. product DEC AXPVMS | NTERNET_PRCDUCTS V1.1 platform;

end product ;

The product statement in this example identifies INTERNET_PRODUCTS
version 1.1 as a suite of products (that is, a platform) for installation on an
OpenVMS Alpha system.

7-82 Product Description Language Statements

register module

register module

Syntax

Parameters

Options

Description

The register module statement registers in the product database one or more
existing modules in a command, help, macro, object, or text library file.

register module type type module (module_name,...)
[[no] generation generation]
[library library] ;

type type
Indicates the library type. Table 7-8 lists the keywords you can use with this
parameter.

Table 7-8 Library Types for Register Module Statement

Keyword Library Type Default Library File
Command Command definition library [SYSLIB]DCLTABLES.EXE
Help Help library [SYSHLP]JHELPLIB.HLB
Macro Macro library [SYSLIB]STARLET.MLB
Object Object library [SYSLIB]STARLET.OLB
Text Text library [SYSLIB]STARLETSD.TLB

module module_name
Indicates the names of the modules contained within the library.

[no] generation generation

Indicates that the module has an explicit generation number. Enter the number
as an unsigned integer in the range of 0 through 4294967295. Refer to the
Description section of the module statement for the meaning of this value. By
default, the module does not have an explicit generation number (no generation),
which is equivalent to zero.

library library
The file specification of the library. The file you use must be a library of the type
you specified with the type parameter.

The register module statement registers in the product database one or more
existing modules in a command, help, macro, object, or text library file. Typically,
register module statements are used when a product provides a library file with a
file statement that is already populated with modules. Registering these modules
in the product database allows the utility to detect conflicts with other modules.

Product Description Language Statements 7-83

register module

Do not use register module statements to register information about modules
specified in a module statement. When a module statement is processed, module

info

rmation is automatically placed in the product database. Therefore, use of

register module statements in this context would be redundant.

See Also

module

Examples

regi ster nodul e type HELP
module (":=","="," @, ACCOUNTI NG, ALLOCATE, ANALYZE, APPEND, . ..) ;

In this example, the register module statement registers several help modules
in [SYSHLP]HELPLIB.HLB.

regi ster nodul e type OBJECT generation 1
nodul e (BAS$$CB, BASS$COPY_FD, BAS$$DI SPATCH T, ...) ;

In this example, the register module statement registers several object
modules. The generation option allows the utility to perform conflict
resolution with these object modules.

7-84 Product Description Language Statements

remove

remove

Syntax

Option

The remove statement deletes objects from the user’s system. The remove and
end remove statements form a remove group.

Note

You cannot use the remove statement in a transition PDF.

remove ;
[PDL-statements]

end remove ;

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the product and end product statements.

Required Terminator

Description

end remove ;

The remove group is used to delete objects from the user’s system. Statements
that normally provide managed objects (such as file and directory statements)
cause these objects to be deleted when the statements are enclosed in a remove
group.

By using the remove group in a partial, patch, or mandatory update Kit, you
can eliminate obsolete files from a previous version of your product. By using
the remove group in a full kit, you can eliminate objects provided by a previous
installation mechanism (for example, VMSINSTAL). You can also use a remove
group to delete objects that were created by a previous version of your product,
but which were not recorded in the product database as managed objects. These
include archived files (those saved as *.* OLD) and files created by command
procedures invoked through execute statements.

Statements that do not provide managed objects function normally within a
remove group.

You can nest remove, end remove within scope, end scope, if necessary.

Product Description Language Statements 7-85

remove

Examples

1. renove ;
directory [SYSHLP. EXAMPLES. FOO ;
file [SYSHLP. EXAMPLES. FOO SMLUS. COM ;
file [SYSHLP. EXAMPLES. FOO SMLUT. COM ;
file [SYSHLP. EXAMPLES. FOO SMLUU. COM ;
end remove ;

The statements in this example remove some files and a directory (if they
exist) from the product database and the running system.

2. scope bootstrap ;
renove ;
file [SYSEXE] PROD_PROC. EXE ;
end renove ;
file [SYSEXE] PROD_PROC V2. EXE ;
end scope ;

The statements in this example remove a file in the bootstrap scope and then
provide a new file.

7-86 Product Description Language Statements

rights identifier

rights identifier

Syntax

Parameters

Description

The rights identifier statement uses a command procedure to create a rights
identifier.

rights identifier name with (parameters,...) ;

name
Indicates the name of the rights identifier. The rights identifier name is passed
to the command procedure as P1.

with (parameters,...)

Indicates the list of parameters that are passed to the command procedure that

creates the rights identifier. Each parameter must be a single quoted string that
specifies P2 and P3, in order. Refer to the Description section for the meaning of
the parameters.

The rights identifier statement invokes a command procedure
(SYS$SUPDATE:PCSI$CREATE_RIGHTS_IDENTIFIER.COM) to create rights
identifiers. This command procedure runs the AUTHORIZE utility to perform the
function. The utility passes the following parameters to the command procedure:

= P1 specifies the name of the rights identifier (using the name parameter).

= P2 specifies the optional qualifiers to use with the AUTHORIZE command
ADD/IDENTIFIER.

= P3 specifies the /VALUE qualifier to use with the AUTHORIZE command
ADD/IDENTIFIER. You can specify this parameter only if the identifier does
not already exist on the system.

When you remove a product that created rights identifiers, the
POLYCENTER Software Installation utility uses a command procedure
(SYS$SUPDATE:PCSI$SDELETE_RIGHTS_IDENTIFIER.COM) to delete rights
identifiers associated with your product. This happens regardless of whether the
SYSUAF.DAT is shared by another system disk.

Note

In a future version, the utility may create and delete these managed
objects directly without the use of command procedures. If this is the
case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the
utility.

The rights identifier statement specifies a rights identifier managed object that
has the following characteristics:

= Its name is the value of the name parameter. The name must be unique with
respect to all rights identifier names in the operating scope.

Product Description Language Statements 7-87

rights identifier

= It has operating lifetime.

= It does not recover from managed object conflict.

See Also

account

Example

rights identifier PCSI_TEST
with ("/attributes=DYNAM C',
"/ val ue=I DENTI FI ER: 14600926") ;

In this example, the rights identifier statement creates a rights identifier named
PCSI_TEST with a value of 14600926.

7-88 Product Description Language Statements

scope

scope

Syntax

Option

The scope statement establishes the scope of one or more managed objects. The
scope and end scope statements form a scope group.

scope
{ bootstrap |
global |
processor |
product } ;

[PDL-statements]

end scope ;

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the product and end product statements.

Required Terminator

Description

end scope ;

The scope statement establishes the scope of one or more managed objects. The
scope of a managed object defines the degree of sharing that the managed object
permits. For example, some objects are available only to certain processes;
whereas others are shared by all processes.

The scope and end scope statements form a scope group. The type of scope
indicated in the scope statement pertains to all objects within the scope group.
You can nest scope groups.

Note

In almost all cases, the POLYCENTER Software Installation utility
defaults establish the correct scope for each type of managed object.
Because using scope statements unnecessarily or incorrectly can cause
problems, Compaqg recommends that you use explicit scope statements
only when you are sure product scope is not sufficient, as explained below
or stated in the description of certain PDL statements.

The different types of scope that a managed object can have are described below:

= Global scope is the largest scope in which a single POLYCENTER Software
Installation utility operation can have an effect. A single file that must be
shared by every process in the computing facility must exist in global scope.
Modules in system object libraries are examples of managed objects that must
be in global scope. Writable databases might be in global scope.

Product Description Language Statements 7-89

scope

When placing file or modules in global scope, please review Section 2.6
and the descriptions of the file and module statements regarding conflict
resolution and the generation option.

= Bootstrap scope managed objects function during system bootstrap when
operating system facilities are unable to locate and use larger scopes. Drivers
and loadable images that must be present before startup executes are
examples of files that should be in the bootstrap scope.

Use bootstrap scope for products that use device drivers, especially those
drivers that must be read by the primitive file system. Because files in
bootstrap scope are read by the primitive file system, they are read when not
synchronized with the file system on other cluster members that might access
the same disk. Therefore, those files must retain stable positions as long

as the disk is in use by any system and must not be manipulated by online
disk defragmentation operations, including those that use the MOVEFILE
primitive.

< Product scope managed objects are product specific. Most managed objects
for a product reside in product scope. Product scope is the default scope
for most objects; therefore, it is not necessary to specify product scope.
Product scope managed objects for different products can be stored together
or separately.

= Processor scope managed objects exist in all processes executing on a single
computer. For example, a logical name might exist in processor scope.

When you update your product with a partial, patch, or mandatory update Kkit,
you can either explicitly state the scope of the file managed objects you are
updating or let the utility determine the scope of the file managed objects:

= You can use the scope statement to ensure that the utility looks in a specific
scope for the file managed object you want to update.

< If you do not use the scope statement, the utility searches the execution
environment for a file managed object with the same name. If the utility finds
the object, it replaces the object; if the utility does not find the file managed
object, it provides a new file in product scope.

If you use the patch statement, the object you are updating must have been
provided by your product. If you use the module statement, the object you are
updating either must have been provided by your product or must be in global or
bootstrap scope.

See Also

directory
file

infer
link

7-90 Product Description Language Statements

scope

Example

scope hootstrap ;

file [SYSEXE] SYSBOOT. EXE ;

file [SYSEXE] VMB. EXE ;

boot strap bl ock [SYSEXE] VMB. EXE i mage [SYSEXE] BOOTBLOCK. EXE ;
end scope;

The statements in this example specify that the files VMB.EXE and
SYSBOOT.EXE must be placed on every bootstrap disk.

Product Description Language Statements 7-91

software

software

The software statement signals a software dependency on the specified product:
the specified product must be installed prior to (or concurrently with) the
installation of the product that contains the software statement. Upon successful
installation, the software statement causes a permanent software reference to be
recorded in the product database.

The software function tests for the presence of the specified product, including
any version constraints that you may impose.

In contrast to the software statement, the software function does not create a
permanent software reference to the specified product in the product database.
The software function also does not cause the referenced product to be implicitly
installed.

Note

Please take note of the distinction between the software statement

and the software function. The statement and function serve different
purposes and are not interchangeable. See the Description section for a
full discussion of the differences.

Statement Syntax

software producer base name
[[no] component]
[{ version above version |
version below version |
version maximum version |
version minimum version |
version required version |
version above version version below version |
version above version version maximum version |
version minimum version version below version |
version minimum version version maximum version }] ;

Function Syntax

< software producer base name
[{ version above version |
version below version |
version maximum version |
version minimum version |
version required version |
version above version version below version |
version above version version maximum version |
version minimum version version below version |
version minimum version version maximum version }]
[{installed before | installed after | kit accessible}] >

7-92 Product Description Language Statements

Parameters

Options

software

producer
Indicates the legal owner of the software product. This parameter must be a
single quoted or unquoted string.

base

Indicates the base hardware/software system on which the product is intended
to be installed. This parameter must be a single quoted or unquoted string. By
convention, the string AXPVMS denotes an OpenVMS Alpha product, VAXVMS
denotes an OpenVMS VAX product, and VMS denotes a product applicable for
either OpenVMS Alpha or VAX.

name
Indicates the name of the product. This parameter must be a single quoted or
unquoted string. The combination of producer, base, and name parameters
must be unique among products installed on the system.

[no] component

Indicates that if the product is copied (using the PRODUCT COPY command),
the component products will be copied along with the product. The default is no
component (the product does not need to be present during a copy operation).

installed after

Directs the utility to test whether the specified software product will be installed
on the system at the conclusion of the current operation. This option is available
only for the software function. You cannot use this option with either the
installed before or kit accessible option. This option is the default when
neither the installed before nor the Kit accessible option is used.

installed before

Directs the utility to test whether the specified software product was installed on
the system before the current operation began. This option is available only for
the software function. You cannot use this option with either the installed after
or Kit accessible option. Take special note of the fact that installed before is
not the default. When neither the installed before nor the installed before
option is used, the default is installed after. Therefore, if you want to determine
if a product is already installed, you must use the installed before option.

kit accessible

Directs the utility to test whether the specified software product kit, either in
sequential or reference format, is present in the source directory. This option is
available only for the software function. You cannot use this option with either
the installed after or installed before option. By default, availability of the kit
is not tested.

version above version

Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than (but not equal to) the specified version. You cannot use this option
with either the version minimum or version required option. By default,
there is no lower version limit.

Product Description Language Statements 7-93

software

Description

version below version

Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than (but not equal to) the specified version. You cannot use this option with
either the version maximum or version required option. By default, there is
no upper version limit.

version maximum version

Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than or equal to the specified version. You cannot use this option with either
the version below or version required option. By default, there is no upper
version limit.

version minimum version

Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than or equal to the specified version. You cannot use this option with
either the version above or version required option. By default, there is no
lower version limit.

version required version

Establishes a required version. The version identifier must be a single quoted

or unquoted string. Use this option to specify that the product version must be
equal to the specified version. You cannot use this option with either the version
above, version below, version maximum, or version minimum option. By
default, there is no required version constraint.

Software Statement

The software statement signals a software dependency on the specified product:
the specified product must be installed prior to (or concurrently with) the
installation of the product that contains the software statement. Upon successful
installation, the software statement causes a permanent software reference to be
recorded in the product database.

One of three situations may occur when a product with a software statement is
installed:

= If the referenced product is already installed, the software dependency is
satisfied, so no action is performed on the referenced product.

< If the referenced product is not installed, but a product kit for it is available
in the source directory, the referenced product is implicitly installed to satisfy
the software dependency.

= If the referenced product is not installed and the source directory does not
contain a product kit for it, then an error message is displayed advising the
user to terminate the installation process.

If a referenced product is not available, Compaq recommends that users
accept the default prompt and terminate the operation.

If you intend only to check whether a certain software product is installed on the
system and alert the user if it is not, use the software function.

7-94 Product Description Language Statements

software

You use the software statement for the following purposes:

= To specify a software product that should be installed on the system to satisfy
a software product dependency. For example, if Product A has a dependency
on Product B, install Product B before installing Product A.

= To specify that a software product that is a part of a platform (product suite)
is to be included in the platform product installation.

= To satisfy a special use of the module statement when the following conditions
are met:

— The product updates (with a module statement) a library that is supplied
by the referenced product

— Both products could be installed concurrently

Because it provides a library that another product updates, the referenced
product must be installed first. The software statement forces the referenced
product to be installed first when the products are installed together in one
operation. (If the products were to be installed separately, you could use
the software function to make sure that the referenced product was already
installed.)

For example, installing the OpenVMS platform product results in the
installation of the OpenVMS operating system and, optionally, selected
layered products such as DECwindows Motif. DECwindows Motif updates
HELPLIB.HLB, which is originally provided by OpenVMS. Therefore,
DECwindows Motif must use a statement such as

sof tware DEC AXPVMS VMG ;

in its product description file to explicitly reference the OpenVMS operating
system and guarantee that OpenVMS is installed before DECwindows Motif.

If two products reference each other (creating a circular reference list), the utility
issues an error message.

If you use the component option, the utility creates a copy of the referenced
product when you use the PRODUCT COPY command.

If the operation executes in batch mode and a referenced product is not available,
the operation terminates.

Software Function

The software function tests for the presence of a product. You can also specify the
version of the product that must be present.

You can use different options to determine whether the specified product:
« s currently installed

= Will be installed on successful completion of the operation

= Has a product kit in the source directory

The software function, unlike the software statement, does not create a permanent
software reference to another product and does not force the installation of the
other product.

By default, the software function tests the state the product will be in when the
operation finishes, not when the operation begins. The same effect is obtained
when you include the installed after option. To test the state of the referenced
product when the operation begins, you must specify the installed before option.

Product Description Language Statements 7-95

software

If you specify the kit accessible option, the function tests whether the referenced
product kit is present in the source directory.

Note

The default option, installed after, is reliably tested only after the
user configuration phase concludes and the utility is about to begin
the execution phase. Use caution when including this option with the
software function.

The function value is true if the following conditions exist; otherwise, the value is
false:

= The product specified by the producer, base, and name parameters is
available according to one of the following options: installed before,
installed after, or kit accessible.

= The version option is omitted, or the available version satisfies the specified
constraints.

The software function is more appropriate than the software statement if you
need only verify the existence of a certain product.

You use the software function with the if statement, as shown in the following
example:

if (not < software CPQ AXPVM5 PROD_A version minimmV4.0 >) ;
i nformation NO_ PROD A confirm;
file [SYSEXE] PROD_A_SUBSTI TUTE. EXE ;

end if ;

Using the software function with the if statement gives you much more flexibility
in forming expressions with other functions, and allows you to perform multiple
actions in the form of groups of statements.

If the software function reference is not satisfied, you can display an error
message with an error statement. This message allows a message of any size
and contents. (Note that an error message induced by an unsatisfied software
statement is rigid, short, and potentially less informative.)

You can use the abort option on an error statement to unconditionally terminate
the software function operation, while the failed software statement leaves the
user with an option to continue the product installation.

if (< software CPQ AXPVMS PROD B version below V7.0 >) ;
error NO PROD B abort ;
end if ;
Summary of Differences Between the Statement and Function

Table 7-9 summarizes the differences between the software statement and the
software function.

7-96 Product Description Language Statements

software

Table 7-9 Summary of software Statement and software Function Differences

Statement

Function

If the referenced product is not
installed and its kit is available to
the utility during the installation of
the referencing product, it will be
installed by the utility just prior to
the referencing product.

Causes the utility to create a
permanent software reference in
the database.

Creates a risk of software reference
conflicts.

Causes the utility to create a
software reference and user interface
related data structures in memory
for the duration of the operation,
thereby consuming additional system
memory.

Requires additional processing to
check for software reference conflicts
and for processing error messages.

If software reference cannot be
satisfied, a one-sentence message is
displayed to the user.

With the failure of a software
reference, continuation of the
operation is still possible.

Use only if you are willing to install
the referenced product.

If the referenced product is not installed,
the function will evaluate to the boolean
value FALSE (0). The referenced product
will not be installed even though the kit
may be available to the utility.

Does not create any reference from the
referencing to the referenced product.

Since no permanent software reference is
created, there is no risk of conflict.

Does not cause the utility to create
software reference or user interface
related data structures in memory.

Requires no additional processing other
than searching for the presence of the
referenced products.

Allows any processing based on the value
of the software function; error messages
can be tailored in any desired way and
size.

With the failure of a software reference,
processing may be unconditionally
aborted with an "error <message> abort"
statement.

Use whenever you want only to check for
the referenced product availability, but
do not intend to install the referenced
product.

Avoiding Common Mistakes

A common mistake is for a layered product’s PDF to include a software statement
reference to a VMS (OpenVMS operating system) product, or to an OPENVMS
platform (product suite that includes the OpenVMS operating system).

It is acceptable to reference the OpenVMS operating system from a software
statement if your product relies on the presence of the library files supplied by
the operating system. However, do not reference the OpenVMS platform from a

software statement.

If you need to verify the OpenVMS operating system version before the
installation of the layered product can proceed and complete successfully, use

the software function instead:

Product Description Language Statements 7-97

software

if (< software DEC AXPVMS VMBS version below V6.2 >) ;
error UNSUPP_VMS VER abort ;

el se ;
-- include your PDL statenents here

end if ;

If you do use the software statement, you should expect the following results:

< If the installed version of OpenVMS is different than the one specified by the
software statement, and the OpenVMS product Kit is not available, an error
message prompting the user to terminate the session is issued. This might
be the result you are trying to achieve, but the software function is still the
better choice.

< If the installed version of OpenVMS is different than the one specified by
the software statement, and an OpenVMS product kit satisfying the software
reference criteria is available, the utility may attempt an upgrade of the
operating system.

= If the installed version of OpenVMS is within constraints specified by the
software statement, the installation of the layered product may complete
successfully, but a permanent software reference is made in the database
from the layered product to the OpenVMS operating system. This can lead to
software reference conflicts if the OpenVMS operating system is upgraded in
the future.

Another drawback is that a significantly greater amount of memory is
consumed and additional processing is done to check for software reference
conflicts when processing the software statements, which leads to diminished

performance.
See Also
apply to
if
product
upgrade
Examples

1. software DEC VAXVMS FORTRAN
version mnimm V3.0 version maxi mum V5.0 ;

The software statement in this example specifies that this product requires
Compagq Fortran software. The version must be between 3.0 and 5.0.
2. software DEC VAXVMS FORTRAN version bel ow V5.0 ;

The software statement in this example specifies that this product requires
Compaq Fortran software. The version must be less than (but not equal to)
5.0.

7-98 Product Description Language Statements

software

if (< software CPQ AXPVMS COOL_PRODUCT
version mninmumV3.0 kit accessible >) ;
sof tware CPQ AXPVMS COOL_PRODUCT version minimmV3.0 ;
else if (< option NO COOL_REFERENCE default YES with helptext >) ;
file [SYSEXE] COOL_SUBSTI TUTE. EXE ;
el se ;
error M SSING COQL ;
end if ;

In this example, the software function is used to search the source directory
for the COOL_PRODUCT kit. If the POLYCENTER Software Installation
utility finds the software package with Version 3.0 or higher on the system,
the reference to it is created with a separate software statement.

If the COOL_PRODUCT V3.0 or higher is not found, an option to install its
substitute (fil e [SYSEXE] COOL_SUBSTI TUTE. EXE]) is offered to the user. If the
user declines to accept the substitute image, an error is issued and the user
is prompted to either terminate or continue the current session.

Product Description Language Statements 7-99

system parameter

system parameter

Syntax

Parameter

Options

Description

The system parameter statement allows you to display a message to users that
expresses system parameter requirements for your product.

Note

The utility does not change system parameters.

system parameter name
{{ consume | require } value |
maximum value |
minimum value |
minimum value maximum value } ;

name
Indicates the name of the system parameter. The parameter you specify must be
valid on the system where the product executes.

consume value

Indicates that the system parameter must be increased by the specified value.
Use this option when the product consumes a resource that is controlled by the
system parameter. The value must be a single unquoted string that specifies an
unsigned integer value. You cannot use this option with either the maximum,
minimum, or require options.

maximum value

Indicates that the system parameter must have a value less than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value.

minimum value

Indicates that the system parameter must have a value greater than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value.

require value

Indicates that the system parameter must have the specified value. The value
must be a single string that specifies a value of the parameter’s type. This option
is valid for any parameter data type. You cannot use this option with either the
maximum, minimum, or consume options.

The system parameter statement displays a message to users about system
parameter requirements for your product after the installation. Note that the
utility does not adjust system parameters.

7-100 Product Description Language Statements

See Also

Example

system parameter

information
process parameter

system paraneter vaxcluster require 1 ;
system paraneter tty classname require "TT" ;
system paraneter pagedyn consune 200 ;

The statements in this example display the following messages:

This product requires the follow ng system paraneters
VAXCLUSTER val ue 1

This product requires the follow ng system paraneters
TTY_CLASSNAME val ue TT

This product requires the follow ng system paraneters
PAGEDYN add 200

Product Description Language Statements 7-101

upgrade

upgrade

The upgrade statement specifies the versions of the product that can be upgraded
by the product kit being installed. If the product is currently installed but its
version does not meet the version selection criteria in the upgrade statement, the
installation is terminated. The upgrade statement has no effect when the product
is being installed for the first time.

The upgrade function tests whether a version of the product in the specified
range is being upgraded by the current operation. If a version of the product in
the specified range is currently installed, the function returns true; otherwise it
evaluates to false. If no version criteria are given, the function tests whether any
version of the product is currently installed.

Statement Syntax

upgrade
{ version above version |
version below version |
version maximum version |
version minimum version |
version required version |
version above version version below version |
version above version version maximum version |
version minimum version version below version |
version minimum version version maximum version } ;

Function Syntax

Options

< upgrade
[{ version above version |
version below version |
version maximum version |
version minimum version |
version required version |
version above version version below version |
version above version version maximum version |
version minimum version version below version |
version minimum version version maximum version } | >

version above version

Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than (but not equal to) the specified version. You cannot use this option
with either the version minimum or version required option. By default,
there is no lower version limit.

version below version

Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than (but not equal to) the specified version. You cannot use this option with

7-102 Product Description Language Statements

Description

upgrade

either the version maximum or version required option. By default, there is
no upper version limit.

version maximum version

Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than or equal to the specified version. You cannot use this option with either
the version below or version required option. By default, there is no upper
version limit.

version minimum version

Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than or equal to the specified version. You cannot use this option with
either the version above or version required option. By default, there is no
lower version limit.

version required version

Establishes a required version. The version identifier must be a single quoted

or unquoted string. Use this option to specify that the product version must be
equal to the specified version. You cannot use this option with either the version
above, version below, version maximum, or version minimum option. By
default, there is no required version constraint.

Statement

In a full, platform, or operating system PDF, the upgrade statement is optional.
When present, the upgrade statement specifies the versions of the product that
can be successfully upgraded by the product kit. If a version of the product is
currently installed but does not meet the version selection criteria in the upgrade
statement, the installation is terminated. The upgrade statement has no effect
when the product is being installed for the first time. If an upgrade statement is
not present in the PDF, the kit being installed is allowed to upgrade (or replace)
any version of the product that might be installed. This includes a lower version,
a higher version, or the same version of the product.

In a partial PDF, the upgrade statement is required. The statement specifies
which versions of the product must be installed for the partial kit to be applied
successfully.

You cannot use the upgrade statement for a patch, mandatory update, or
transition PDF.

Function

The upgrade function tests whether a version of the product in the specified
range is being upgraded by the current operation. If a version of the product in
the specified range is currently installed, the function returns true; otherwise it
evaluates to false. If no range is given, the function tests whether any version of
the product is currently installed.

The upgrade function is not meaningful for a patch, mandatory update, or
transition PDF. If included in these PDFs, the upgrade function always evaluates
to false.

Product Description Language Statements 7-103

upgrade

See Also
apply to
if
product
software
Examples

1. product CPQ AXPVMS ABC V4.0 full ;
upgrade version nininmmV2.0 ;

end product

The upgrade statement in this example does not allow product ABC V4.0
to upgrade versions of the product prior to V2.0. Product ABC, however,
can upgrade to V2.0 or later of the product. Or, if a previous version of the
product is not currently installed, it can perform a new installation.

2. product CPQ AXPVMS DEF V4.2 partial ;
upgrade version required V4.1 ;

end product ;

The upgrade statement in this PDF is required because this is a partial kit.
It specifies that product DEF V4.1 must already be installed in order to apply
this partial kit to upgrade the product to V4.2.

3. product CPQ VAXVMS JKL V2.5 full ;
if (<upgrade>) ;
i nformation UPG MSG ;
end if ;

end product

In this example, if any version of product JKL is currently installed, an
informational message will be displayed to the user.

4. product CPQ VAXVMS JKL V2.5 full ;
i f (<upgrade version mininum Al 0 version bel ow A2.0>) ;
file [sysupd]jkl _convert.com;
end if ;

end product

If version 1 of the product (from beta test through final release) is being
upgraded, the upgrade function in this PDF is used to conditionally provide a
file.

7-104 Product Description Language Statements

A

Migrating from VMSINSTAL to the
POLYCENTER Software Installation Utility

VMSINSTAL is an installation mechanism supplied by Compaq. This appendix
contains information about VMSINSTAL options and callbacks and their
POLYCENTER Software Installation utility equivalents.

A.1 VMSINSTAL Options and Equivalents

Table A-1 lists some tasks that you may need to perform, the corresponding
VMSINSTAL option, and the POLYCENTER Software Installation utility
equivalent. Note that some VMSINSTAL options do not have an equivalent. In
many cases, this is because the design of the POLYCENTER Software Installation
utility eliminates the need for an equivalent.

Table A-1 VMSINSTAL Options and Equivalents

VMSINSTAL POLYCENTER Software Installation Utility
Task Option Equivalent
Creating a file that specifies OPTIONS A Create a product configuration file (PCF). This is

answers to installation questions

Specifying a temporary work
directory

Starting the system

Tracing callbacks during
installation

Manipulating product kits

Suppressing VMSINSTAL
prompts

Debugging a kit

Providing a log of installation
operations

OPTIONS AWD

OPTIONS B!
OPTIONS C?

OPTIONS G

OPTIONS I?

OPTIONS K?

OPTIONS L

similar to an auto-answer file in VMSINSTAL.

Specify the /IWORK qualifier to the PRODUCT
command.

No equivalent.

Use the /LOG and /TRACE qualifiers to the
PRODUCT command. You can also use the
INOCOPY qualifier when debugging a product
description file (PDF) to prevent the product
material from being copied into the reference copy.

Use the COPY/FORMAT=REFERENCE and
COPY/FORMAT=SEQUENTIAL commands to
manipulate product Kits (see Chapter 5).

No equivalent.

Use the /LOG and /TRACE qualifiers to assist in
debugging a PDF.

Use the /LOG and /TRACE qualifiers. This
provides more information than OPTIONS L
with VMSINSTAL.

10penVMS startup use only
2Developer’s use only

(continued on next page)

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility A-1

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

A.1 VMSINSTAL Options and Equivalents

Table A-1 (Cont.) VMSINSTAL Options and Equivalents

VMSINSTAL POLYCENTER Software Installation Utility

Task Option Equivalent

Displaying or printing release OPTIONS N Use the release notes option to the file statement

notes and the PRODUCT EXTRACT RELEASE_NOTES
command. The release notes are created in the
file DEFAULT.PCSISRELEASE_NOTES in the
current directory.

Performing an installation in OPTIONS Q? No equivalent.

test mode

Installing a product in an OPTIONS R Use the /IDESTINATION qualifier.

alternate root

Pausing the installation at
various points

Compiling information about the

installation

OPTIONS RSP?

OPTIONS §?

No equivalent.

Use the /LOG and /TRACE qualifiers to the
PRODUCT command.

2Developer’s use only

A.2 VMSINSTAL Callbacks and Equivalents

To install a product using VMSINSTAL, you create a command procedure named
KITINSTAL.COM that makes callbacks to VMSINSTAL. If you are migrating
from VMSINSTAL to the POLYCENTER Software Installation utility, refer to
Table A-2, which lists the VMSINSTAL callbacks and their equivalents.

Table A—2 VMSINSTAL Callbacks and Equivalents

POLYCENTER Software
Installation Utility

Task VMSINSTAL Callback Option Equivalent

Adding an identifier to the ADD_IDENTIFIER Use the rights identifier

rights database statement.

Prompting the installer for ASK To confirm the completion

information of preinstallation tasks,
use the confirm option to
the information statement.
The product text file (PTF)
contains the prompt and
help text.

Not recording responses to A No equivalent.

installation questions

Forcing a Boolean answer B No equivalent.

Preceding a prompt with D No equivalent.

blank line

Disabling terminal echo E No equivalent.

Displaying help text before H The information statement.

the prompt

(continued on next page)

A-2 Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A-2 (Cont.) VMSINSTAL Callbacks and Equivalents

POLYCENTER Software
Installation Utility

Task VMSINSTAL Callback Option Equivalent
Requiring an integer as the | No equivalent.
answer

Returning input in lowercase L No equivalent.
Returning input in the same No equivalent.
case

Indicating a null response is N No equivalent.
acceptable

Ringing the terminal bell R No equivalent.
before the prompt

Indicating the response can S No equivalent.
be a string

Returning input in uppercase U No equivalent.
Indicating the response can A No equivalent.

be Ctrl/z

Determining whether a
license for the product is
installed on the system

Determining whether the
network is running

Determining whether there
is sufficient disk space on the
target device

Determining whether a
minimum version of software
is present in the execution
environment

Limiting an installation
to specified versions of the
OpenVMS operating system

Determining which is the
most recent version of an
image

Determining whether

the user has loaded the
license for the product being
installed on the system

CHECK_LICENSE

CHECK_NETWORK

CHECK_NET_
UTILIZATION

CHECK_PRODUCT _
VERSION

CHECK_VMS_
VERSION

COMPARE_IMAGE

CONFIRM_LICENSE

No equivalent. License
management is outside the
domain of the utility.

No equivalent. If you use a
statement that references
the DECnet network, the
utility ensures that the
network is available.

No equivalent. The utility
ensures that sufficient disk
space is available.

Use the version minimum
option to the software
function.

Use the version minimum
and version maximum
options to the software
function, specifying DEC
as the producer name,
VAXVMS or AXPVMS as
the base, and VMS as the
product name.

You can manage file
versions using the
generation option to the
file statement.

No equivalent. License
management is outside the
domain of the utility.

(continued on next page)

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility A-3

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A-2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task

VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Providing for orderly exit
from an installation

Creating an account on the
system

Deleting obsolete files from a
previous installation

Locating files

Generating structure
definition language (SDL)
definition files

Extracting the image file
identification string for a file

Obtaining a password for an
account

Placing requirements on
system parameters

Displaying messages to the
user

Patching an image as part of
the installation

Moving a shareable image’s
symbol table to the system

shareable image library when

the patch is complete

A—4 Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

CONTROL_Y

CREATE_ACCOUNT

DELETE_FILE

FIND_FILE

GENERATE_SDL

GET_IMAGE_ID

GET_PASSWORD

GET_SYSTEM_
PARAMETER

MESSAGE

PATCH_IMAGE

No equivalent necessary;
the utility provides this
automatically.

Use the account statement.

In full and operating system
kits, the utility deletes files
that are replaced during

an upgrade. However, in a
partial kit, you can remove
obsolete files using the
remove statement.

If you want to determine
whether an optional
software product is
available, use the software
function. You do not need
to determine whether a file
is present before performing
an operation that references
it; the utility does this
automatically.

No equivalent.

If you want to determine
the available version of a
software product, use the
software function.

No equivalent necessary;
the utility provides this
function.

Use the system parameter
statement.

Use the information
statement to display
information about pre- and
postinstallation tasks. You
do not need to provide error
messages and progress
information; the utility does
this automatically.

Use the patch image
statement.

No equivalent necessary.
The image library option to
the file statement controls
its replacement in the
image library.

(continued on next page)

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A-2 (Cont.) VMSINSTAL Callbacks and Equivalents

POLYCENTER Software
Installation Utility

Task VMSINSTAL Callback Option Equivalent

Creating a journal file of J No equivalent.

patches

Saving old versions of the K No equivalent necessary.

image file The utility deletes existing
versions.

Moving the file to the (0] No equivalent necessary.

SYS$SPECIFIC directory The placement of the file
statement that originally
described the image within
a scope group determines
its placement.

Reinstalling the image when R No equivalent necessary;

the patch is complete the utility does this
automatically.

Queuing a print job to PRINT_FILE No equivalent.

SYS$PRINT

Invoking a command PRODUCT No equivalent.

procedure of product-specific

callbacks

Adding a command to the PROVIDE_DCL _ Use the module statement

system DCL table COMMAND with the type command
parameter. You do not
need to reinstall the system
command table as a known
image; the utility does this
automatically.

Adding help to the DCL help PROVIDE_DCL_HELP Use the module statement

library with the type help
parameter.

Adding a new file to the PROVIDE_FILE Use the file statement.

system

Placing the file in more than C No equivalent necessary.

one location

Preserving old versions K No equivalent necessary.
The utility deletes existing
versions.

Adding the file to the (0] Enclose the file statement

SYSS$SPECIFIC directory in a scope processor group.

Specifying an input file that T No equivalent necessary.

contains a list of logical

names for the source files and

their respective destinations

Adding a new image to the
system

PROVIDE_IMAGE

Use one file statement for
each file.

Use the file statement.
The utility can distinguish
whether a file is a valid
executable image.

(continued on next page)

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility A-5

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

A.2 VMSINSTAL Callbacks and Equivalents

Table A-2 (Cont.) VMSINSTAL Callbacks and Equivalents

POLYCENTER Software
Installation Utility

Task VMSINSTAL Callback Option Equivalent

Placing the file in more than C No equivalent necessary.

one location

Dynamically patching ECOs E No equivalent necessary.

into the new image file You should package the
file with the correct ECO
numbers already set.

Moving a shareable image’s I Use the image library

symbol table to the system option to the file statement.

shareable image library

Preserving old versions K No equivalent necessary.
The utility deletes existing
versions.

Moving the file to the (@) Enclose the file statement

SYS$SPECIFIC directory in a scope processor group.

Specifying an input file that T No equivalent necessary.

contains a list of logical Use one file statement for

names for the source image each file.

files and their respective

destinations

Changing the file name and RENAME_FILE Use the archive option

file type of all versions of a of the file statement to

file preserve an existing version
of a file during an upgrade.

Restoring save sets of a RESTORE_SAVESET No equivalent necessary.

product that is divided among

several save sets

Running an image during RUN_IMAGE Use the execute statement

installation or the assemble execute
option to the file statement.

Specifying a UIC or SECURE_FILE Use the owner and

protection code for product protection options to

files the directory and file
statements.

Modifying the access control SET ACL Use the access control

list (ACL) of a device, option of the file and

directory, or file directory statements.

Determining the default case = SET ASK_CASE No equivalent.

(upper or lower) in which text

from the installer is returned

to the installation procedure

Running an installation SET IVP No equivalent necessary.

verification procedure (IVP)

A—6 Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

You can specify the execute
test statement and invoke
the functional test for a
product with the /TEST
qualifier to the PRODUCT
INSTALL command.

(continued on next page)

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A-2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task

VMSINSTAL Callback

Option

POLYCENTER Software
Installation Utility
Equivalent

Calling a product’s
installation procedure after

files have been moved to their

target directories

Purging files replaced by an
installation

Rebooting the system after
the installation

Ensuring a high level of
installation success

Rebooting the system after
the installation

Specifying a product-specific
startup command procedure

Editing text files

Identifying installation
peculiarities

Exiting the installation
procedure

Updating an existing user
account

Making a file available for
updating by copying it to a
working directory

Modifying an identifier in the
rights database

Updating a library

SET

SET

SET

SET

SET

SET

SUMSLP_TEXT

TELL_QA

UNWIND

UPDATE_ACCOUNT

UPDATE_FILE

UPDATE_IDENTIFIER

UPDATE_LIBRARY

POSTINSTALL

PURGE

REBOOT

SAFETY

SHUTDOWN

STARTUP

Depending on your
application, you can use
the execute postinstall
statement.

No equivalent necessary.
The utility deletes existing
versions.

No equivalent.

No equivalent necessary.
The utility provides the
necessary disk management
and reliability features.

No equivalent.

Use the execute start
statement.

Use the patch text
statement.

No equivalent necessary.

No equivalent necessary.
The utility controls the flow
of the installation.

Use the account statement
to modify existing user
accounts.

No equivalent necessary.

Use the rights identifier
statement to modify an
existing rights identifier.

Use the module statement
with the appropriate
parameter for the type

of library you are updating.
To update the shareable
image library, use the
image library option to
the file statement. No
equivalent exists to update
RSX libraries.

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility A-7

Glossary

This glossary lists and defines the terms used in this guide.

integrated platform

A combination of software products that is targeted toward a specific market,
type of application, or a set of applications that work together or share data. Also
called a product suite. A platform is packaged to allow all of its software products
to be installed or removed in a single operation.

managed object

An entity that exists to support the proper functioning of a product. Files,
directories, library modules, and accounts are all examples of types of managed
objects.

package operation

A POLYCENTER Software Installation utility operation that uses the PDF, PTF,
and product material to create a reference or sequential copy of a product Kit.
patch

A minor update to a software product that does not change the version level of
the product.

PCF

Product configuration file. A text file that specifies configuration choices for the
POLYCENTER Software Installation utility to use in subsequent operations. For
example, you can use a PCF to avoid specifying the same answers to installation
guestions when you have multiple installations to perform.

PDB

Product database. A repository in which the POLYCENTER Software Installation
utility records information about events such as product installation and removal.
Users can query the PDB to find out information about their environment.

PDF

Product description file. A text file that specifies the execution environment for
your product.

PDL

Product description language. A set of statements that you use to write a product
description file.

Glossary-1

Glossary—2

POLYCENTER Software Installation utility

The OpenVMS program that implements the DCL command PRODUCT. This
utility allows you to create software kits and manage software (for example,
installation, removal, configuration).

product configuration file
See PCF.

product database
See PDB.

product description file
See PDF.

product description language
See PDL.

product material

The files associated with the product, excluding the PDF and PTF. Product
material files are the output of the software engineering process.

product text file
See PTF.

PTF

Product text file. A text file that contains all the product-specific text that

the POLYCENTER Software Installation utility can display during product
manipulation (for example, description of options, informational text, copyright
notice, and so forth).

reference format

The format of a software product kit. In this format, the PDF, PTF, and all files
that make up the product are placed in a directory tree on a random-access
device. OpenVMS Alpha is distributed in reference format on CD—ROM.

removal

An operation opposite to installation that reverses the effect of an installation.
Product files are deleted and the PDB is updated.

sequential format

The format of a software product kit. In this format, the PDF, PTF, and all files
that make up the product are packaged in a single container file. This container
file can be placed either on a random-access device, such as a compact disc, or on
a sequential access device, such as a magnetic tape. Most layered products are
distributed in sequential format.

transition product description file

A type of PDF that allows you to reference products not converted to the
POLYCENTER Software Installation utility and to migrate products to the
POLYCENTER Software Installation utility.

upgrade

The installation of a product that replaces any previously installed version of
the same product. The new version may be higher, lower, or the same as the old
version of the product.

utility directive

A PDL statement that does not specify managed objects. Utility directives affect
the operation of the POLYCENTER Software Installation utility but do not affect
the execution environment.

Glossary-3

A

Account statement, 3-3, 7-5
Apply to statement, 7-1, 7-7

B

Base data types and values, 3-9
Boolean data type, 3-9
Bootstrap block statement, 7-1, 7-9

C

Command procedures, rules for using, 6-1
Configuration phase, 6-6 to 6-11, 7-60

and execute preconfigure statement, 7-25
Conflict detection, testing, 6-11
Conflict resolution

and the generation option, 2-10

testing, 6-12

D

Databases, of software products, 2-1
Data types, 3-9

DCL commands, rules for using, 6-1
Directory statement, 3-2, 3-3, 7-11

E

End statement, 7-13
Error statement, 7-1, 7-14
Execute abort statement, 6-1, 7-1, 7-16
Execute install.remove statement, 7-1
Execute install statement, 6-1, 7-19
Execute login statement, 6-1, 7-22
Execute postinstall statement, 6-2, 7-1, 7-23
Execute preconfigure statement, 6-2, 7-1, 7-25
Execute release statement, 7-1, 7-28
Execute remove statement, 6-1, 7-19
Execute start.stop statement, 7-1
Execute start statement, 6-2, 7-31
Execute statement, 3-4, 6-1

order of execution, 6-2
Execute stop statement, 6-2, 7-31

Index

Execute test statement, 3-4, 6-2, 7-1, 7-33

Execute upgrade statement, 6-2, 7-1, 7-35

Execution phase, 6-6 to 6-11, 7-60, 7-61

Exit status, determining for a command procedure,
6-3

F

File statement, 7-1, 7-37
and the assemble execute option, 6-2
uses, 3-2,3-3,34
Functions
hardware device, 7-44
hardware processor, 7-46
logical name, 7-60
option, 7-68
software, 7-92
upgrade, 7-102

G

Generation number, 2-10, 6-13, 7-42, 7-83
and file statement, 7-38
and intra-product conflict, 6-13
and module statement, 7-62
rules for specifying, 7-39, 7-63
Generation option, 2-10, 7-38, 7-39, 7-62, 7-63,
7-83

H

Hardware device function, 7-44
Hardware device statement, 3-2, 7-44
Hardware processor function, 7-46
Hardware processor statement, 3-2, 7-46
Help text, displaying for users, 4-4

If statement, 7-48

Infer statement, 7-51

Information statement, 3-4, 7-1, 7-53

Installable kit, creating, 1-2

Integrated platforms, 2-12
packaging, 2-12

Interactive mode, 6-3

Index-1

Inter-product conflict, 2-10, 6-13, 7-3
Intra-product conflict, 2-10, 6-13, 7-3

L

Link statement, 7-56
Loadable image statement, 3-3, 7-58
Logical name function, 7-3, 7-60
Logical names
PCSI$DESTINATION, 2-8, 6-5, 7-17, 7-20,
7-24, 7-26, 7-29, 7-32, 7-33, 7-35, 7-40
PCSI$SCRATCH, 2-8, 6-5, 7-17, 7-20, 7-24,
7-26, 7-29, 7-40
PCSI$SOURCE, 2-8, 6-5, 7-17, 7-20, 7-24,
7-26, 7-29, 7-40

M

Maintenance edit level, 2-4
Managed objects

definition, 2-9
Module statement, 3-4, 7-1, 7-62

N

Network object statement, 3-3, 7-65
Non-interactive mode, 6-3

O

Option function, 7-68
Option statement, 3-3, 7-1, 7-68

P

Part statement, 7-71
Patch image statement, 3-3, 7-1, 7-73
Patch text statement, 3-3, 7-1, 7-75
PCFs (product configuration files), 7-69, A-1
PCSI$SDESTINATION logical name, 2-8, 6-5,
7-17, 7-20, 7-24, 7-26, 7-29, 7-32, 7-33,
7-35, 7-40
PCSI$SCRATCH logical name, 2-8, 6-5, 7-17,
7-20, 7-24, 7-26, 7-29, 7-40
PCSI$SOURCE logical name, 2-8, 6-5, 7-17,
7-20, 7-24, 7-26, 7-29, 7-40
PDB (product database)
and execute test statement, 7-33
definition and location, 2-1
during execution phase, 6-6
updating, 6-6 to 6-11
PDFs (product description files)
creating, 3-1
definition, 1-3
file name format, 3-5
guidelines for creating, 3-1
platform, 2-12
product requirements checklist, 3-1

Index—2

PDFs (product description files) (cont'd)
transition, 3-23
Phases of product command
See Configuration phase
See Execution phase
See Post-processing phase
Platform PDF, 2-12
POLYCENTER Software Installation utility
benefits of using, 1-1
compared to VMSINSTAL, A-1
guidelines for using, 3-1
Post-processing phase, 6-7
Process parameter statement, 3-3, 3-4, 7-77
Process privilege statement, 7-79
Product configuration files
See PCFs
Product database
See PDB
Product description files
See PDFs, Platform PDF, and Transition PDF
=Product directive, syntax, 4-2
Product name, specifying in the PTF, 4-2
Product statement, 7-80
Product text files
See PTFs
=Prompt directive, 4-4
Prompt text, including in the PTF, 4-4
PTFs (product text files)
definition, 1-3
example, 4-4
file format, 4-2
file name format, 4-1
including prompt text, 4-4
sample file names, 4-1
specifying the product name, 4-2

R

Reference format, 2-2

Register module statement, 7-83
Remove statement, 3-4, 7-85

Rights identifier statement, 3-3, 7-87

S

Scope statement, 7-89

Sequential format, 2-2

Signed integer data type, 3-9

Software function, 7-3, 7-92

Software statement, 2-12, 3-2, 7-1, 7-92
String data type and constraints, 3-9
Subprocess environments, 6-4

System parameter statement, 3-3, 7-100

T

Text module name data type, 3-9
Transition PDF, example, 3-23

U

Unsigned integer data type, 3-9
Update level, 2-4

Upgrade, definition, 6-2
Upgrade function, 7-3, 7-102

Upgrade statement, 7-1, 7-102
Utility directives

definition, 2-9

example, 2-9

V

Version field, components and evaluation, 2-4

Version identifier data type, 3-9
Version type, 2-4
VMSINSTAL, migrating from, A-1

Index-3

	POLYCENTER Software Installation Utility Developer’s Guide
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How To Order Additional Documentation
	Conventions

	1 Overview
	1.1 Features for Software Providers
	1.2 Coexistence with VMSINSTAL
	1.3 Creating an Installable Kit
	1.3.1 Plan Ahead
	1.3.2 Gather the Product Material
	1.3.3 Create a Product Description File
	1.3.4 Optionally, Create a Product Text File
	1.3.5 Package the Software Components
	1.3.6 Test and Debug the Installable Kit
	1.3.7 Example PDF and PTF for a Software Kit

	2 Basic Concepts
	2.1 The Product Database
	2.1.1 Querying the Product Database

	2.2 Software Product Kit Formats
	2.3 Software Product Kit Naming Conventions
	2.3.1 Sequential Format
	2.3.2 Reference Format
	2.3.3 What Do the Fields in the Name Mean?
	2.3.4 More About the Version Field
	2.3.5 What Version Information Will the OpenVMS User See?
	2.3.6 More About the Kit Type
	2.3.7 Looking at Software Product Name Examples
	2.3.8 Input and Output Versions of the PDF and PTF

	2.4 User-Defined Logical Names
	2.5 Utility Defined Logical Names
	2.6 Managed Objects
	2.6.1 Creating Managed Objects
	2.6.2 Managed Object Conflict
	2.6.3 Preventing Managed Object Conflict
	2.6.4 Managed Object Replacement and Merging
	2.6.5 Managed Object Scope and Lifetime

	2.7 Creating a Platform (Product Suite)

	3 Creating the Product Description File
	3.1 General Guidelines
	3.2 Defining Your Environment
	3.3 PDF File Naming Conventions
	3.4 Structure of a PDF
	3.4.1 Overview of PDL Statements
	3.4.2 PDL Statement Syntax
	3.4.3 PDL Function Syntax and Expressions
	3.4.4 PDL Data Types and Values

	3.5 Kit Types and Usage
	3.5.1 The Full Kit Type
	3.5.2 The Operating System Kit Type
	3.5.3 The Platform Kit Type
	3.5.4 The Partial Kit Type
	3.5.5 The Patch Kit Type
	3.5.6 The Mandatory Update Kit Type
	3.5.7 The Transition Kit Type

	4 Creating the Product Text File
	4.1 PTF File Naming Conventions
	4.2 Structure of a PTF
	4.2.1 Specifying the Product Name
	4.2.2 PTF Modules and the Relationship with the PDF
	4.2.3 PTF Modules Not Related with the PDF
	This software product is sold by Compaq Computer Corporation. 4.2.4 Including Prompt and Help Text

	5 Packaging the Kit
	5.1 Description of the Product Material
	5.2 Files Required to Package the Kit
	5.3 Creating the Product Kit
	5.4 Listing the Contents of the Product Kit
	5.5 Extracting Files from the Kit
	5.5.1 Extracting Files by Name
	5.5.2 Extracting the PDF, PTF, or Release Notes
	5.5.3 Converting a Sequential Kit into Reference Format

	5.6 Displaying Information from the Product Database

	6 Advanced Topics
	6.1 Using Command Procedures in PDL Statements
	6.1.1 Non-Interactive and Interactive Mode
	6.1.2 Packaging a Command Procedure
	6.1.3 Logical Names for Subprocess Environments
	6.1.4 Execute Statement Summary
	6.1.5 Processing Execute Statements

	6.2 Testing and Debugging Tips
	6.2.1 The /LOG Qualifier
	6.2.2 The /TRACE Qualifier
	6.2.3 The /DEBUG=CONFLICT Qualifier
	6.2.4 Installing Your Product on Older Versions of OpenVMS

	7 Product Description Language Statements
	7.1 Product Description Language (PDL) Evolves Over Time
	7.2 PDL Conventions
	7.3 PDL Reference Section
	account
	apply to
	bootstrap block (VAX only)
	directory
	end
	error
	execute abort
	execute install...remove
	execute login
	execute postinstall
	execute preconfigure
	execute release
	execute start...stop
	execute test
	execute upgrade
	file
	hardware device
	hardware processor
	if
	infer
	information
	link
	loadable image
	logical name
	module
	network object
	option
	part
	patch image (VAX only)
	patch text
	process parameter
	process privilege
	product
	register module
	remove
	rights identifier
	scope
	software
	system parameter
	upgrade

	A Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
	A.1 VMSINSTAL Options and Equivalents
	A.2 VMSINSTAL Callbacks and Equivalents

	Glossary
	Index
	Examples
	Example 1–1 PDF for Software Kit TNT
	Example 3–1 PDF for a Full Kit That References Another Full Kit
	Example 3–2 PDF for a Full Kit
	Example 3–3 PDF for an Operating System Kit
	Example 3–4 PDF for a Platform Kit
	Example 3–5 PDF for a Partial Kit
	Example 3–6 PDF for a Patch Kit
	Example 3–7 PDF for a Patch Kit That Modifies the Operating System
	Example 3–8 PDF for a Transition Kit

	Figures
	Figure 2–1 Package Operation
	Figure 2–2 Integrated Platform Example
	Figure 6–1 Execute Statement Summary
	Figure 6–2 INSTALL Operation - Product Is Installed for the First Time
	Figure 6–3 INSTALL Operation - Product Is Upgraded
	Figure 6–4 RECONFIGURE Operation - Product Is Reconfigured
	Figure 6–5 REMOVE Operation - Product Is Removed
	Figure 7–1 Features by OpenVMS Version: Statements
	Figure 7–2 Features by OpenVMS Version: Functions

	Tables
	Table 2–1 Format of tmn-ue Version Identification
	Table 2–2 PDF Kit Types and Values
	Table 3–1 Base Data Types and Values
	Table 3–2 String Data Type Constraints
	Table 6–1 Command Procedure Execution by Operation
	Table 6–2 Non-Interactive vs. Interactive Mode
	Table 7–1 Software Patch Kit Locations on the Internet
	Table 7–2 Directory Managed Object Scope and Lifetime
	Table 7–3 Resolving File Conflict with Generation Numbers
	Table 7–4 File Managed Object Scope and Lifetime
	Table 7–5 Link Managed Object Scope and Lifetime
	Table 7–6 Library Types for Module Statement
	Table 7–7 Resolving Module Conflict with Generation Numbers
	Table 7–8 Library Types for Register Module Statement
	Table 7–9 Summary of software Statement and software Function Differences
	Table A–1 VMSINSTAL Options and Equivalents
	Table A–2 VMSINSTAL Callbacks and Equivalents

