OpenVMS VAX RTL Mathematics (MTH\$) Manual

Order Number: AA-PVXJD-TE

April 2001
This manual documents the mathematics routines contained in the MTH\$ facility of the OpenVMS Run-Time Library.

Revision/Update Information:	This manual supersedes the OpenVMS VAX RTL Mathematics (MTH\$) Manual, Version 7.1.
Software Version:	OpenVMS VAX Version 7.3

Compaq Computer Corporation

Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.
Compaq Ada and OpenVMS are trademarks of Compaq Information Technologies Group, L.P. in the United States and other countries.

The following are third-party trademarks:
BASIC is a registered trademark of the Trustees of Dartmouth College, D.B.A. Dartmouth College.
All other product names mentioned herein may be the trademarks or registered trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein.
The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited waranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty.

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface vii
Part I MTH\$ Tutorial Section
1 OpenVMS Run-Time Library Mathematics (MTH\$) Facility
1.1 Entry Point Names 1-1
1.2 Calling Conventions 1-2
1.3 Algorithms 1-3
1.4 Condition Handling 1-3
1.5 Complex Numbers 1-4
1.6 Mathematics Routines Not Documented in the MTH\$ Reference Section 1-4
1.7 Examples of Calls to Run-Time Library Mathematics Routines 1-8
1.7.1 BASIC Example 1-8
1.7.2 COBOL Example 1-9
1.7.3 Fortran Examples 1-9
1.7.4 MACRO Examples 1-10
1.7.5 Pascal Examples 1-13
1.7.6 PL/I Examples 1-14
1.7.7 Ada Example 1-15
2 Vector Routines in MTH\$
2.1 BLAS - Basic Linear Algebra Subroutines Level 1 2-1
2.1.1 Using BLAS Level 1 2-5
2.1.1.1 Memory Overlap 2-5
2.1.1.2 Round-Off Effects 2-5
2.1.1.3 Underflow and Overflow 2-5
2.1.1.4 Notational Definitions 2-5
2.2 FOLR - First Order Linear Recurrence Routines 2-6
2.2.1 FOLR Routine Name Format 2-6
2.2.2 Calling a FOLR Routine 2-7
2.3 Vector Versions of Existing Scalar Routines 2-7
2.3.1 Exceptions 2-7
2.3.2 Underflow Detection 2-8
2.3.3 Vector Routine Name Format 2-8
2.3.4 Calling a Vector Math Routine 2-9
2.4 Fast-Vector Math Routines 2-11
2.4.1 Exception Handling 2-13
2.4.2 Special Restrictions On Input Arguments 2-13
2.4.3 Accuracy 2-13
2.4.4 Performance 2-13

Part II Scalar MTH\$ Reference Section

MTH\$XACOS	scalar_MTH-3
MTH\$×ACOSD	. . .scalar_MTH-6
MTH\$XASIN	scalar_MTH-8
MTH\$xASIND	. scalar_MTH-10
MTH\$XATAN	scalar_MTH-12
MTH\$xATAND	scalar_MTH-14
MTH\$xATAN2	scalar_MTH-16
MTH\$xATAND2	scalar_MTH-18
MTH\$xATANH	scalar_MTH-20
MTH\$CxABS	scalar_MTH-22
MTH\$CCOS	scalar_MTH-25
MTH\$C×COS	. scalar_MTH-27
MTH\$CEXP	scalar_MTH-29
MTH\$CXEXP	. scalar_MTH-31
MTH\$CLOG	scalar_MTH-33
MTH\$CxLOG	. scalar_MTH-34
MTH\$CMPLX	.scalar_MTH-36
MTH\$xCMPLX	. scalar_MTH-38
MTH \$CONJ G	scalar_MTH-40
MTH ${ }^{\text {a }}$ (${ }^{\text {CONJ G }}$. scalar_MTH-41
MTH \$xCOS	scalar_MTH-43
MTH\$xCOSD	scalar_MTH-45
MTH\$xCOSH	. scalar_MTH-47
MTH\$CSIN	. scalar_MTH-49
MTH\$CxSIN	. scalar_MTH-50
MTH\$CSQRT	. scalar_MTH-52
MTH\$CxSQRT	. scalar_MTH-54
MTH\$CVT_x_x.	scalar_MTH-56
MTH\$CVT_xA_xA	scalar_MTH-58
MTH\$xEXP	.scalar_MTH-60
MTH \$ HACOS	. scalar_MTH-63
MTH\$HACOSD	. scalar_MTH-65
MTH\$HASIN	. .scalar_MTH-67
MTH\$HASIND	. .scalar_MTH-69
MTH\$HATAN	. . scalar_MTH-71
MTH\$HATAND	. . scalar_MTH-73
MTH\$HATAN2	. scalar_MTH-75
MTH\$HATAND2	. .scalar_MTH-77
MTH\$HATANH	. . scalar_MTH-79
MTH\$HCOS	. .scalar_MTH-81
MTH\$HCOSD	. scalar_MTH-82
MTH\$HCOSH	. scalar_MTH-83
MTH\$HEXP	. scalar_MTH-85
MTH\$HLOG	. .scalar_MTH-87
MTH\$HLOG2	scalar_MTH-89

MTH\$HLOG10 scalar_MTH-91
MTH\$HSIN scalar_MTH-93
MTH\$HSIND scalar_MTH-94
MTH\$HSINH . scalar_MTH-95
MTH\$HSQRT scalar_MTH-97
MTH\$HTAN scalar_MTH-99
MTH\$HTAND scalar_MTH-101
MTH\$HTANH . scalar_MTH-103
MTH \$xIMAG scalar_MTH-105
MTH\$xLOG scalar_MTH-107
MTH\$xLOG2 scalar_MTH-109
MTH\$xLOG10 . scalar_MTH-111
MTH\$RANDOM . scalar_MTH-113
MTH\$xREAL scalar_MTH-115
MTH\$xSIN scalar_MTH-117
MTH \$xSINCOS . scalar_MTH-119
MTH\$xSINCOSD . scalar_MTH-122
MTH\$xSIND scalar_MTH-125
MTH\$xSINH scalar_MTH-127
MTH\$xSQRT . scalar_MTH-130
MTH\$xTAN scalar_MTH-133
MTH\$xTAND scalar_MTH-135
MTH\$xTANH scalar_MTH-137
MTH\$UMAX scalar_MTH-139
MTH\$UMIN . scalar_MTH-140
Part III Vector MTH\$ Reference Section
BLAS1\$VIxAMAX vector_MTH-143
BLAS1\$VxASUM . vector_MTH-146
BLAS1\$VxAXPY . vector_MTH-149
BLAS1\$VxCOPY vector_MTH-154
BLAS1\$VxDOTx vector_MTH-159
BLAS1\$VxNRM2 . vector_MTH-164
BLAS1\$VxROT . vector_MTH-167
BLAS1\$VxROTG vector_MTH-173
BLAS1\$VxSCAL . vector_MTH-177
BLAS1\$VxSWAP vector MTH-181
MTH\$VxFOLRy_MA_V15 . vector_MTH-185
MTH\$VxFOLRy_z_V8 vector_MTH-189
MTH\$VxFOLRLy_MA_V5 vector_MTH-193
MTH\$VxFOLRLy_z_V2 . vector_MTH-197

A Additional MTH\$ Routines

B Vector MTH\$ Routine Entry Points

Index

Tables

1-1 Additional Mathematics Routines 1-4
2-1 Functions of BLAS Level 1................... 2 2-3
2-2 Determining the FOLR Routine You Need . 2-7
2-3 Vector Routine Format — Underflow Signaling Enabled 2-8
2-4 Vector Routine Format — Underflow Signaling Disabled 2-8
2-5 Fast-Vector Math Routines................ 2 2-12
2-6 Input Argument Restrictions . 2-13
A-1 Additional MTH\$ Routines .. A-1
B-1 Vector MTH\$ Routines . B-1

Preface

This manual provides users of the Compaq OpenVMS operating system with detailed usage and reference information on mathematics routines supplied in the MTH\$ facility of the Run-Time Library.

Run-Time Library routines can be used only in programs written in languages that produce native code for the VAX hardware. At present, these languages include VAX MACRO and the following compiled high-level languages:

Compaq Ada
Compaq BASIC for OpenVMS VAX Systems
Compaq C for OpenVMS VAX
Compaq COBOL for OpenVMS VAX
Compaq Pascal for OpenVMS VAX Systems
Compaq F ortran for OpenVMS VAX Systems
VAX BLISS-32
VAX CORAL
VAX DIBOL
VAX PL/I
VAX RPG
VAX SCAN
Interpreted Ianguages that can also access Run-Time Library routines include VAX DSM and Compaq Datatrieve.

Intended Audience

This manual is intended for system and application programmers who write programs that call MTH\$ Run-Time Library routines.

Document Structure

This manual contains two tutorial chapters, two reference sections, and two appendixes:

- Chapter 1 is an introductory chapter that provides guidelines on using the MTH \$ scalar routines.
- Chapter 2 provides guidelines on using the MTH\$ vector routines.
- The Scalar MTH\$ Reference Section provides detailed reference information on each scalar mathematics routine contained in the MTH\$ facility of the Run-Time Library.
- The Vector MTH \$ Reference Section provides detailed reference information on the BLAS Level 1 (Basic Linear Algebra Subroutines) and FOLR (First Order Linear Recurrence) routines.

Reference information is presented using the documentation format described in the OpenVMS Programming Concepts Manual. Routine descriptions are in al phabetical order by routine name.

- Appendix A lists supported MTH\$ routines not included with the routines in the Scalar MTH\$ Reference Section, because they are rarely used.
- Appendix B contains a table of the vector MTH \$ routines that you can call from VAX MACRO.

Related Documents

The Run-Time Library routines are documented in a series of reference manuals. A description of how the Run-Time Library routines are accessed and of how OpenVMS features and functionality are available through calls to the MTH\$ Run-Time Library appears in OpenVMS Programming Concepts Manual. Descriptions of the other RTL facilities and their corresponding routines are presented in the following books:

- Compaq Portable Mathematics Library
- OpenVMS RTL DECtalk (DTK\$) Manual ${ }^{1}$
- OpenVMS RTL Library (LIB\$) Manual
- OpenVMS RTL General Purpose (OTS\$) Manual
- OpenVMS RTL Paralle Processing (PPL\$) Manual ${ }^{1}$
- OpenVMS RTL Screen Management (SMG\$) Manual
- OpenVMS RTL String Manipulation (STR\$) Manual

Application programmers using any language can refer to the Guide to Creating OpenVMS Modular Procedures for writing modular and reentrant code.
High-level language programmers will find additional information on calling Run-Time Library routines in their language reference manuals. Additional information may also be found in the language user's guide provided with your OpenVMS language software.
For a complete list and description of the manuals in the OpenVMS documentation set, see the OpenVMS Version 7.3 New Features and Documentation Overview.

For additional information about Compaq OpenVMS products and services, access the Compaq website at the following location:
http://www.openvms.compaq.com/

[^0]
Reader's Comments

Compaq welcomes your comments on this manual. Please send comments to either of the following addresses:

Internet openvmsdoc@compaq.com
Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U 08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation

Use the following World Wide Web address to order additional documentation:

```
http://www.openvms.compaq.com/
```

If you need help deciding which documentation best meets your needs, call 800-282-6672.

Conventions

The following conventions are used in this manual:

| Ctrl/x | A sequence such as Ctrl/x indicates that you must hold down
 the key labeled Ctrl while you press another key or a pointing
 device button. |
| :--- | :--- | :--- |
| PF1x | A sequence such as PF1 x indicates that you must first press
 and release the key labeled PF1 and then press and release
 another key or a pointing device button.
 In examples, a key name enclosed in a box indicates that
 you press a key on the keyboard. (In text, a key name is not
 encl osed in a box.)
 In the HTML version of this document, this convention appears
 as brackets, rather than a box. |
| Return | A horizontal ellipsis in examples indicates one of the following
 possibilities: |
| - Additional optional arguments in a statement have been | |
| omitted. | |

[]	In command format descriptions, brackets indicate optional choices. You can choose one or more items or no items. Do not type the brackets on the command line. However, you must include the brackets in the syntax for OpenVMS directory specifications and for a substring specification in an assignment statement.
In command format descriptions, braces indicate required	
choices; you must choose at least one of the items listed. Do	
not type the braces on the command line.	

Part I

MTH\$ Tutorial Section

This part of the OpenVMS VAX RTL Mathematics (MTH\$) Manual contains tutorial information about the OpenVMS RTL MTH\$ facility, and is structured as follows:

- Chapter 1 is an introductory chapter that provides guidelines on using the MTH\$ scalar routines.
- Chapter 2 provides guidelines on using the MTH\$ vector routines.

OpenVMS Run-Time Library Mathematics (MTH\$) Facility

The OpenVMS Run-Time Library Mathematics (MTH\$) facility contains routines to perform a wide variety of computations including the following:

- Floating-point trigonometric function evaluation
- Exponentiation
- Complex function evaluation
- Complex exponentiation
- Miscellaneous function evaluation
- Vector operations (VAX only)

The OTS\$ facility provides additional language-independent arithmetic support routines (see the OpenVMS RTL General Purpose (OTS\$) Manual).
This chapter contains an introduction to the MTH\$ facility and includes examples of how to call mathematics routines from BASIC, COBOL, Fortran, MACRO, Pascal, PL/l, and Ada.

Chapter 2 contains an overview of the vector routines available on VAX processors.
The Scalar MTH\$ Reference Section describes the MTH\$ scalar routines.
The Vector MTH\$ Reference Section describes the MTH\$ vector routines.

1.1 Entry Point Names

The names of the mathematics routines are formed by adding the MTH\$ prefix to the function names.

When function arguments and returned values are of the same data type, the first letter of the name indicates this data type. When function arguments and returned values are of different data types, the first letter indicates the data type of the returned value, and the second letter indicates the data type of the arguments.

The letters used as data type prefixes are listed below.

Letter	Data Type
I	Word
J	Longword
D	D_floating
G	G_floating
H	H_floating
C	F_floating complex
CD	D_floating complex
CG	G_floating complex

Generally, F-floating data types have no letter designation. For example, MTH $\$$ SIN returns an F -floating value of the sine of an F -floating argument and MTH $\$$ DSIN returns a D-floating value of the sine of a D-floating argument. However, in some of the miscellaneous functions, F-floating data types are referenced by the letter designation A.

1.2 Calling Conventions

For calling conventions specific to the MTH\$ vector routines, refer to Chapter 2.
All calls to mathematics routines, as described in the Format section of each routine, accept arguments passed by reference. J SB entry points accept arguments passed by value.
All mathematics routines return values in R0 or R0/R1 except those routines for which the values cannot fit in 64 bits. D-floating complex, G-floating complex, and H -floating values are data structures which are larger than 64 bits. Routines returning values that cannot fit in registers RO/R1 return their function values into the first argument in the argument list.

The notation J SB MTH\$NAME_Rn, where n is the highest register number referenced, indicates that an equivalent J SB entry point is available. Registers RO:Rn are not preserved.
Routines with J SB entry points accept a single argument in R0:Rm, where m, which is defined in the following table, is dependent on the data type.

Data Type	\mathbf{m}
F_floating	0
D_floating	1
G_floating	1
H_floating	3

A routine returning one value returns it to registers R0:Rm.
When a routine returns two values (for example, MTH \$SINCOS), the first value is returned in $R 0: R m$ and the second value is returned in ($R<m+1>: R<2^{*} m+1>$).
Note that for routines returning a single value, $n>=m$. For routines returning two values, $\mathrm{n}>=2^{*} \mathrm{~m}+1$.

In general, CALL entry points for mathematics routines do the following:

- Disable floating-point underflow
- Enable integer overflow
- Cause no floating-point overflow or other arithmetic traps or faults
- Preserve all other enabled operations across the CALL

J SB entry points execute in the context of the caller with the enable operations as set by the caller. Since the routines do not cause arithmetic traps or faults, their operation is not affected by the setting of the arithmetic trap enables, except as noted.

For more detailed information on CALL and J SB entry points, refer to the OpenVMS Programming Concepts Manual.

1.3 Algorithms

For those mathematics routines having corresponding algorithms, the complete algorithm can be found in the Description section of the routine description appearing in the Scalar MTH\$ Reference Section of this manual.

1.4 Condition Handling

Error conditions are indicated by using the VAX signaling mechanism. The VAX signaling mechanism signals all conditions in mathematics routines as SEVERE by calling LIB $\$$ SIGNAL. When a SEVERE error is signaled, the default handler causes the image to exit after printing an error message. A user-established condition handler can be written to cause execution to continue at the point of the error by returning SS\$_CONTINUE. A mathematics routine returns to its caller after the contents of R0/R1 have been restored from the mechanism argument vector CHF\$L_MCH_SAVRO/R1. Thus, the user-established handler should correct CHF\$L_MCH_SAVRO/R1 to the desired function value to be returned to the caller of the mathematics routine.
D-floating complex, G-floating complex, and H-floating values cannot be corrected with a user-established condition handler, because R2/R3 is not available in the mechanism argument vector.
Note that it is more reliable to correct R0 and R1 to resemble R0 and R1 of a double-precision floating-point value. A double-precision floating-point value correction works for both single- and double-precision values.

If the correction is not performed, the floating-point reserved operand -0.0 is returned. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Accessing the floating-point reserved operand will cause a reserved operand fault. See the OpenVMS RTL Library (LIB\$) Manual for a complete description of how to write user condition handlers for SEVERE errors.
A few mathematics routines signal floating underflow if the calling program (J SB or CALL) has enabled floating underflow faults or traps.
All mathematics routines access input arguments and the real and imaginary parts of complex numbers using floating-point instructions. Therefore, a reserved operand fault can occur in any mathematics routine.

1.5 Complex Numbers

A complex number y is defined as an ordered pair of real numbers r and i, where r is the real part and i is the imaginary part of the complex number.
$y=(r, i)$
OpenVMS supports three floating-point complex types: F-floating complex, D-floating complex, and G-floating complex. There is no H -floating complex data type.
Run-Time Library mathematics routines that use complex arguments require a pointer to a structure containing two x-floating values to be passed by reference for each argument. The first x-floating value contains r, the real part of the complex number. The second x-floating value contains i, the imaginary part of the complex number. Similarly, Run-Time Library mathematics routines that return complex function values return two x-floating values. Some Language Independent Support (OTS\$) routines also calculate complex functions.
Note that complex functions have no J SB entry points.

1.6 Mathematics Routines Not Documented in the MTH\$ Reference Section

The mathematics routines in Table 1-1 are not found in the reference section of this manual. Instead, their entry points and argument information are listed in Appendix A of this manual.
A reserved operand fault can occur for any floating-point input argument in any mathematics routine. Other condition values signaled by each mathematics routine are indicated in the footnotes.

Table 1-1 Additional Mathematics Routines

Entry Point	Function
	Absolute Value Routines
MTH \$ABS	F-floating absolute value
MTH \$DABS	D-floating absolute value
MTH \$GABS	G-floating absolute value
MTH \$HABS	H-floating absolute value
MTH\$IIABS	Word absolute value
MTH\$ IABS	Longword absolute value ${ }^{2}$

	Bitwise AND Operator Routines
MTH\$IIAND	Bitwise AND of two word parameters
MTH\$J IAND	Bitwise AND of two longword parameters

${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
${ }^{2}$ Integer overflow exceptions can occur.

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point	Function
	F-Floating Conversion Routines
MTH\$DBLE	Convert F-floating to D-floating (exact)
MTH\$GDBLE	Convert F-floating to G-floating (exact)
MTH\$IFIX	Convert F-floating to word (truncated)
MTH\$JFIX	Convert F-floating to longword (truncated) 2

	Floating-Point Positive Difference Routines
MTH\$DIM	Positive difference of two F-floating parameters 3
MTH\$DDIM	Positive difference of two D-floating parameters 3
MTH\$GDIM	Positive difference of two G-floating parameters ${ }^{3}$
MTH\$HDIM	Positive difference of two H-floating parameters ${ }^{1,3}$
MTH\$IDIM	Positive difference of two word parameters ${ }^{2}$
MTH\$IDIM	Positive difference of two longword parameters 2

	Bitwise Exclusive OR Operator Routines
MTH\$IIEOR	Bitwise exclusive OR of two word parameters
MTH\$JIEOR	Bitwise exclusive OR of two longword parameters

	Integer to Floating-Point Conversion Routines
MTH\$FLOATI	Convert word to F-floating (exact)
MTH\$DFLOTI	Convert word to D-floating (exact)
MTH\$GFLOTI	Convert word to G-floating (exact)
MTH\$FLOATJ	Convert longword to F-floating (rounded)
MTH\$DFLOTJ	Convert longword to D-floating (exact)
MTH\$GFLOTJ	Convert longword to G-floating (exact)

	Conversion to Greatest Floating-Point Integer Routines
MTH\$FLOOR	Convert F-floating to greatest F-floating integer
MTH\$DFLOOR	Convert D-floating to greatest D-floating integer
MTH\$GFLOOR	Convert G-floating to greatest G-floating integer
MTH\$HFLOOR	Convert H-floating to greatest H-floating integer ${ }^{1}$

	Floating-Point Truncation Routines
MTH \$AINT	Convert F-floating to truncated F-floating
MTH $\$$ IINT	Convert F-floating to truncated word ${ }^{2}$

[^1]Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point	Function
	Floating-Point Truncation Routines
MTH\$J INT	Convert F-floating to truncated longword ${ }^{2}$
MTH\$DINT	Convert D-floating to truncated D-floating
MTH\$IIDINT	Convert D-floating to truncated word ${ }^{2}$
MTH\$ IDINT	Convert D-floating to truncated longword ${ }^{2}$
MTH\$GINT	Convert G-floating to truncated G-floating
MTH\$IIGINT	Convert G-floating to truncated word ${ }^{2}$
MTH\$ IGINT	Convert G-floating to truncated longword ${ }^{2}$
MTH\$HINT	Convert H-floating to truncated H-floating ${ }^{1}$
CTH\$IIHINT	Convert H-floating to truncated word ${ }^{2}$
Convert H-floating to truncated longword ${ }^{2}$	

	Bitwise Inclusive OR Operator Routines
MTH \$IIOR	Bitwise inclusive OR of two word parameters
MTH \$J IOR	Bitwise indusive OR of two longword parameters

	Maximum Value Routines
MTH\$AIMAX0	F-floating maximum of n word parameters
MTH\$AJ MAX0	F-floating maximum of n longword parameters
MTH\$IMAX0	Word maximum of n word parameters
MTH\$J MAX0	Longword maximum of n longword parameters
MTH\$AMAX1	F-floating maximum of n F-floating parameters
MTH\$DMAX1	D-floating maximum of n D-floating parameters
MTH\$GMAX1	G-floating maximum of n G-floating parameters
MTH\$HMAX1	H-floating maximum of n H-floating parameters ${ }^{1}$
MTH\$IMAX1	Word maximum of n F-floating parameters ${ }^{2}$
MTH\$J MAX1	Longword maximum of n F-floating parameters ${ }^{2}$

	Minimum Value Routines
MTH \$AIMIN0	F-floating minimum of n word parameters
MTH \$AJ MIN0	F-floating minimum of n longword parameters
MTH\$IMIN0	Word minimum of n word parameters
MTH\$J MIN0	Longword minimum of n longword parameters
MTH\$AMIN1	F-floating minimum of n F-floating parameters
MTH\$DMIN1	D-floating minimum of n D-floating parameters
MTH\$GMIN1	G-floating minimum of n G-floating parameters

[^2]
Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point	Function
Minimum Value Routines	
MTH \$HMIN1	H-floating minimum of n H-floating parameters ${ }^{1}$
MTH\$IMIN1	Word minimum of n F-floating parameters ${ }^{2}$
MTH\$J MIN1	Longword minimum of n F-floating parameters ${ }^{2}$

Remainder Routines	
MTH\$AMOD	Remainder of two F-floating parameters, arg1/arg2 ${ }^{3,5}$
MTH\$DMOD	Remainder of two D-floating parameters, arg1/arg2 ${ }^{3,5}$
MTH\$GMOD	Remainder of two G-floating parameters, arg1/arg2 ${ }^{3}$
MTH\$HMOD	Remainder of two H -floating parameters, arg1/arg2 ${ }^{1,3}$
MTH\$IMOD	Remainder of two word parameters, arg1/arg2 ${ }^{4}$
MTH\$J MOD	Remainder of two longword parameters, arg1/arg2 ${ }^{4}$

	Floating-Point Conversion to Nearest Value Routines
MTH \$ANINT	Convert F-floating to nearest F-floating integer
MTH \$ININT	Convert F-floating to nearest word integer ${ }^{2}$
MTH\$J NINT	Convert F-floating to nearest longword integer ${ }^{2}$
MTH\$DNINT	Convert D-floating to nearest D-floating integer
MTH\$IIDNNT	Convert D-floating to nearest word integer ${ }^{2}$

	Floating-Point Multiplication Routines
MTH\$DPROD	D-floating product of two F-floating parameters ${ }^{3}$
MTH\$GPROD	G-floating product of two F-floating parameters

[^3]Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point	Function
Bitwise Shift Operator Routines	
MTH\$IISHFT	Bitwise shift of word
MTH\$JSHFT	Bitwise shift of longword

	Floating-Point Sign Function Routines
MTH $\$$ SGN	F- or D-floating sign function
MTH $\$$ SIGN	F-floating transfer of sign of y to sign of x
MTH\$DSIGN	D-floating transfer of sign of y to sign of x
MTH $\$$ GSIGN	G-floating transfer of sign of y to sign of x
MTH $\$$ HSIGN	H-floating transfer of sign of y to sign of x^{1}
MTH\$IISIGN	Word transfer of sign of y to sign of x
MTH\$ISIGN	Longword transfer of sign of y to sign of x

	Conversion of Double to Single Floating-Point Routines
MTH $\$$ SNGL	Convert D-floating to F-floating (rounded)
MTH $\$$ SNGLG	Convert G-floating to F-floating (rounded) ${ }^{3,6}$

${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
${ }^{3}$ Floating-point overflow exceptions can occur.
${ }^{6}$ Floating-point underflow exceptions can occur.

1.7 Examples of Calls to Run-Time Library Mathematics Routines

1.7.1 BASIC Example

The following BASIC program uses the H -floating data type. BASIC also supports the D-floating, F -floating, and G-floating data types, but does not support the complex data types.

1. 10
```
!+
! Sample program to demonstrate a call to MTH$HEXP from BASIC.
!-
EXTERNAL SUB MTH$HEXP ( HFLOAT, HFLOAT )
DECLARE HFLOAT X,Y ! X and Y are H-floating
DIGITS$ = '###.#################################'
X = '1.2345678901234567891234567892'H
CALL MTH$HEXP (Y,X)
A$ = 'MTH$HEXP of ' + DIGITS$ + ' is ' + DIGITS$
PRINT USING A$, X, Y
END
```

The output from this program is as follows:
MTH\$HEXP of 1.234567890123456789123456789200000
is 3.436893084346008004973301321342110

OpenVMS Run-Time Library Mathematics (MTH\$) Facility 1.7 Examples of Calls to Run-Time Library Mathematics Routines

1.7.2 COBOL Example

The following COBOL program uses the F-floating and D-floating data types. COBOL does not support the G-floating and H -floating data types or the complex data types.

This COBOL program calls MTH\$EXP and MTH\$DEXP.

1. IDENTIFICATION DIVISION.

PROGRAM-ID. FLOATING_POINT.
*

* Calls MTH\$EXP using a Floating Point data type.
* Calls MTH\$DEXP using a Double Floating Point data type.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT_PT COMP-1.
01 ANSWER_F COMP-1.
01 DOUBLE_PT COMP-2.
01 ANSWER_D COMP-2.
PROCEDURE DIVISION.
P0.
MOVE 12.34 TO FLOAT_PT.
MOVE 3.456 TO DOUBLE_PT.
CALL "MTH\$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F.
DISPLAY " MTH\$EXP of ", FLOAT_PT CONVERSION, " is ", ANSWER_F CONVERSION.
CALL "MTH\$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
DISPLAY " MTH\$DEXP of ", DOUBLE_PT CONVERSION, " is ", ANSWER_D CONVERSION.
STOP RUN.

The output from this example program is as follows:

```
MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+00 is
3.168996280537917E+01
```


1.7.3 Fortran Examples

The first F ortran program below uses the G-floating data type. The second Fortran program below uses the H -floating data type. The third Fortran program below uses the F-floating complex data type. Fortran supports the four floating data types and the three complex data types.

1. $\mathrm{C}+$
```
C This Fortran program computes the log base 2 of x, log2(x) in
    C G-floating double precision by using the RTL routine MTH$GLOG2.
    C
    C Declare X and Y and MTH$GLOG2 as double precision values.
    C
    C MTH$GLOG2 will return a double precision value to variable Y.
    C-
        REAL*8 X, Y, MTH$GLOG2
        X = 16.0
        Y = MTH$GLOG2 (X)
        WRITE (6,1) X, Y
    1 FORMAT (' MTH$GLOG2(',F4.1,') is ',F4.1)
    END
```

The output generated by the preceding program is as follows:

```
MTH$GLOG2(16.0) is 4.0
C This Fortran program computes the log base 2 of x, log2(x) in
C H-floating precision by using the RTL routine MTH$HLOG2.
C
C Declare X and Y and MTH$GLOG2 as REAL*16 values.
C
C MTH$HLOG2 will return a REAL*16 value to variable Y.
C-
    REAL*16 X, Y
    X = 16.12345678901234567890123456789
    CALL MTH$HLOG2(Y, X)
    WRITE (6,1) X, Y
1 FORMAT (' MTH$HLOG2(',F30.27,') is ',F30.28)
    END
```

2. $\mathrm{C}+$

The output generated by the preceding program is as follows:

```
MTH$HLOG2(16.123456789012345678901234568) is 4.0110891785623860194931388310
```

3. $\mathrm{C}+$

C This Fortran example raises a complex base to
C a NONNEGATIVE integer power using OTS\$POWCJ.
C
C Declare Z1, Z2, Z3, and OTS\$POWCJ as complex values.
C Then OTS\$POWCJ returns the complex result of
C $\quad \mathrm{Z} 1 * * \mathrm{Z} 2: \quad \mathrm{Z} 3=$ OTS\$POWCJ $(\mathrm{Z} 1, \mathrm{Z} 2)$,
C where Z1 and Z2 are passed by value.
C-
COMPLEX Z1, Z3,OTS\$POWCJ
INTEGER Z2
C+
C Generate a complex base.
C-
$Z 1=(2.0,3.0)$
C+
C Generate an integer power.
C-
$Z 2=2$
C+
C Compute the complex value of $\mathrm{Z} 1 * * \mathrm{Z} 2$.
C-
Z3 $=$ OTS\$POWCJ ($\%$ VAL (REAL (Z1)) , $\%$ VAL (AIMAG (Z1)) , $\%$ VAL (Z2)) TYPE 1, Z1, Z2, Z3
FORMAT (' The value of (',F10.8,',',F11.8,')**',I1,' is
$\left.+\left(', F 11.8, ',{ }^{\prime}, F 12.8, '\right){ }^{\prime}\right)$
END
The output generated by the preceding Fortran program is as follows:

```
The value of (2.00000000, 3.00000000)**2 is
(-5.00000000, 12.00000000).
```


1.7.4 MACRO Examples

MACRO and BLISS support J SB entry points as well as CALLS and CALLG entry points. Both MACRO and BLISS support the four floating data types and the three complex data types.

The following MACRO programs show the use of the CALLS and CALLG instructions, as well as J SB entry points.

OpenVMS Run-Time Library Mathematics (MTH\$) Facility 1.7 Examples of Calls to Run-Time Library Mathematics Routines

1.
```
    .TITLE EXAMPLE_JSB
;+
; This example calls MTH$DEXP by using a MACRO JSB command.
; The JSB command expects R0/R1 to contain the quadword input value X.
; The result of the JSB will be located in R0/R1.
;-
    .EXTRN MTH$DEXP_R6 ;MTH$DEXP is an external routine.
    .PSECT DATA, PI\overline{C}, EXE, NOWRT
X: .DOUBLE 2.0 ; X is 2.0
    .ENTRY EXAMPLE_JSB, ^M<>
    MOVQ X, R0 ; X is in registers R0 and R1
    JSB G^MTH$DEXP_R6 ; The result is returned in R0/R1.
    RET
    .END EXAMPLE_JSB
```

This MACRO program generates the following output:

```
R0 <-- 732541EC
R1 <-- ED6EC6A6
```

That is, MTH\$DEXP (2) is 7.3890560989306502
2. .TITLE EXAMPLE_CALLG
;
; This example calls MTH\$HEXP by using a MACRO CALLG command.
; The CALLG command expects that the address of the return value
; Y, the address of the input value X, and the argument count 2 be
; stored in memory; this program stores this information in ARGUMENTS.
; The result of the CALLG will be located in R0/R1.
;-
.EXTRN MTH\$HEXP \quad; MTH\$HEXP is an external routine.
ARGUMENTS:
.LONG 2 ; The CALLG will use two arguments.
.ADDRESS Y, X ; The first argument must be the address
; receiving the computed value, while
; the second argument is used to
; compute $\exp (\mathrm{X})$.
X: .H_FLOATING 2 ; X = 2.0
Y: .H_FLOATING $0 \quad$; Y is the result, initially set to 0 .
.ENTRY EXAMPLE_G, ^M<>
CALLG ARGUMENTS, G^MTH\$HEXP ; CALLG returns the value to Y.
RET
.END EXAMPLE_G

The output generated by this MACRO program is as follows:

```
address of Y <-- D8E64003
    <-- 4DDA4B8D
    <-- 3A3BDCC3
    <-- B68BA206
```

That is, MTH\$HEXP of 2.0 returns
7.38905609893065022723042746057501

OpenVMS Run-Time Library Mathematics (MTH\$) Facility

 1.7 Examples of Calls to Run-Time Library Mathematics Routines3.

.TITLE EXAMPLE_CALLS

```
;+
; This example calls MTH$HEXP by using the MACRO CALLS command.
; The CALLS command expects the SP to contain the H-floating address of
; the return value, the address of the input argument }X\mathrm{ , and the argument
; count 2. The result of the CALLS will be located in registers R0-R3.
;-
    .EXTRN MTH$HEXP ; MTH$HEXP is an external routine.
    .PSECT DATA, PIC, EXE, WRT
    .H_FLOATING 0 ; Y is the result, initially set to 0.
    .H_FLOATING 2 ; X = 2
    .ENTRY EXAMPLE_S, ^M<>
    MOVAL X, -(SP) ; The address of X is in the SP.
    MOVAL Y, -(SP) ; The address of Y is in the SP
    CALLS Y, G^MTH$HEXP ; The value is returned to the address of Y.
    RET
    .END EXAMPLE_S
```

The output generated by this program is as follows:

```
address of Y <-- D8E64003
    <-- 4DDA4B8D
    <-- 3A3BDCC3
    <-- B68BA206
```

That is, MTH\$HEXP of 2.0 returns
7.38905609893065022723042746057501
4.
.TITLE COMPLEX_EX1
;
This example calls MTH\$CLOG by using a MACRO CALLG command.
To compute the complex natural logarithm of $Z=(2.0,1.0)$ register
R0 is loaded with 2.0, the real part of Z, and register R1 is loaded with 1.0 , the imaginary part of Z . The CALLG to MTH\$CLOG returns the value of the natural logarithm of Z in registers R0 and R1. R0 gets the real part of Z and R1 gets the imaginary part.
;-
.EXTRN MTHSCLOG
.PSECT DATA, PIC, EXE, NOWRT
ARGS: .LONG 1 ; The CALLG will use one argument.
.ADDRESS REAL ; The one argument that the CALLG
; uses is the address of the argument
; of MTH\$CLOG.
REAL: .FLOAT 2 ; real part of Z is 2.0
IMAG: .FLOAT 1 ; imaginary part Z is 1.0
.ENTRY COMPLEX_EX1, ^Mく>
CALLG ARGS, G^MTH\$CLOG; MTH\$CLOG returns the real part of the
; complex natural logarithm in RO and
; the imaginary part in R1.
RET
.END COMPLEX_EX1
This program generates the following output:

```
R0 <--- 0210404E
R1 <--- 63383FED
That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)
```


OpenVMS Run-Time Library Mathematics (MTH\$) Facility 1.7 Examples of Calls to Run-Time Library Mathematics Routines

5.

This MACRO example program generates the following output:

```
R0 <--- 0210404E
R1 <--- 63383FED
That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)
```


1.7.5 Pascal Examples

The following Pascal programs use the D-floating and H-floating data types. Pascal also supports the F-floating and G-floating data types. Pascal does not support the complex data types.

1. $\{+\}$
\{ Sample program to demonstrate a call to MTH\$DEXP from PASCAL.
\{-\}
PROGRAM CALL_MTH\$DEXP (OUTPUT);
\{+\}
\{ Declare variables used by this program.
\{-\}
VAR
X : DOUBLE := 3.456; \{X,Y are D-floating unless overridden \}
Y : DOUBLE; \{ with /DOUBLE qualifier on compilation \}
$\{+\}$
\{ Declare the RTL routine used by this program.
\{-\}
[EXTERNAL, ASYNCHRONOUS]
FUNCTION MTH\$DEXP (VAR value : DOUBLE) : DOUBLE; EXTERN; BEGIN

Y := MTH\$DEXP (x);
WRITELN ('MTH\$DEXP of ', X:5:3, ' is ', Y:20:16);
END.
The output generated by this Pascal program is as follows:

```
MTH$DEXP of 3.456 is 31.6899656462382318
```

2. $\{+\}$
\{ Sample program to demonstrate a call to MTH\$HEXP from PASCAL.
\{-\}
PROGRAM CALL_MTH\$HEXP (OUTPUT);
\{+\}
\{ Declare variables used by this program.
$\{-\}$
VAR
X : QUADRUPLE := 1.2345678901234567891234567892; \{ X is H-floating \}
Y : QUADRUPLE; \{ Y is H-floating \}
\{+\}
\{ Declare the RTL routine used by this program.
\{-\}
[EXTERNAL,ASYNCHRONOUS] PROCEDURE MTH\$HEXP (VAR h_exp : QUADRUPLE;
value : QUADRUPLE); EXTERN;
BEGIN
MTH\$HEXP (Y, X);
WRITELN ('MTH\$HEXP of ', X:30:28, ' is ', Y:35:33);
END.
This Pascal program generates the following output:
```
MTH$DEXP of 3.456 is 31.6899656462382318
```


1.7.6 PL/I Examples

The following PL// programs use the D-floating and H -floating data types to test entry points. PL/I also supports the F-floating and G-floating data types. PL/I does not support the complex data types.

1. /*

*
* This program tests a MTH\$D entry point

TEST: PROC OPTIONS (MAIN) ;
DCL (MTH\$DEXP)
ENTRY (FLOAT (53)) RETURNS (FLOAT (53));
DCL OPERAND FLOAT (53);
DCL RESULT FLOAT (53);
/*** Begin test ***/
OPERAND $=3.456$;
RESULT = MTH\$DEXP (OPERAND) ;
PUT EDIT ('MTH\$DEXP of ', OPERAND, ' is ', RESULT) (A (12) , F $(5,3), A(4), F(20,15))$;
END TEST;
The output generated by this PL/l program is as follows:

```
MTH$DEXP of 3.456 is 31.689962805379165
```


OpenVMS Run-Time Library Mathematics (MTH\$) Facility 1.7 Examples of Calls to Run-Time Library Mathematics Routines

2.
```
/*
* This program tests a MTH$H entry point.
* Note that in the PL/I statement below, the /G-float switch *
* is needed to compile both G- and H-floating point MTH$ routines.
TEST: PROC OPTIONS (MAIN) ;
    DCL (MTH$HEXP)
            ENTRY (FLOAT (113), FLOAT (113)) ;
    DCL OPERAND FLOAT (113);
    DCL RESULT FLOAT (113);
/*** Begin test ***/
    OPERAND = 1.234578901234567891234567892;
    CALL MTH$HEXP (RESULT,OPERAND);
    PUT EDIT ('MTH$HEXP of ', OPERAND, ' is ',
        RESULT) (A(12),F(29,27),A(4),F(29,27));
    END TEST;
```

To run this program, use the following DCL commands:

```
$ PLI/G_FLOAT EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE
```

This program generates the following output:

```
MTH$HEXP of 1.234578901234567891234567892 is
3.436930928565989790506225633
```


1.7.7 Ada Example

The following Ada program demonstrates the use of MTH\$ routines in a manner that an actual program might use. The program performs the following steps:

1. Reads a floating-point number from the terminal
2. Calls MTH\$SQRT to obtain the square root of the value read
3. Calls MTH\$J NINT to find the nearest integer of the square root
4. Displays the result

This example runs on Compaq Ada for OpenVMS VAX.

1. -- This Ada program calls the MTH\$SQRT and MTH\$JNINT routines. -with FLOAT_MATH_LIB;
-- Package FLOAT_MATH_LIB is an instantiation of the generic package
-- MATH_LIB for the FLOAT datatype. This package provides the most
-- common mathematical functions (SQRT, SIN, COS, etc.) in an easy
-- to use fashion. An added benefit is that the Compaq Ada compiler
-- will use the faster JSB interface for these routines.
with MTH;
-- Package MTH defines all the MTH\$ routines. It should be used when
-- package MATH_LIB is not sufficient. All functions are defined here
-- as "valued procedures" for consistency.
with FLOAT_TEXT_IO, INTEGER_TEXT_IO, TEXT_IO;
procedure ADA_EXAMPLE is
FLOAT_VAL: FLOAT;
INT_VAL: INTEGER; begin
-- Prompt for initial value.
TEXT_IO.PUT ("Enter value: ");
FLOAT_TEXT_IO.GET (FLOAT_VAL);
TEXT_IO.NEW_LINE;

OpenVMS Run-Time Library Mathematics (MTH\$) Facility 1.7 Examples of Calls to Run-Time Library Mathematics Routines

```
    -- Take the square root by using the SQRT routine from package
    -- FLOAT_MATH_LIB. The compiler will use the JSB interface
    -- to MTH$SQRT.
    FLOAT_VAL := FLOAT_MATH_LIB.SQRT (FLOAT_VAL);
    -- Find the nearest integer using MTH$JNINT. Argument names are
    -- the same as those listed for MTH$JNINT in the reference
    -- section of this manual.
    MTH.JNINT (F_FLOATING => FLOAT_VAL, RESULT => INT_VAL);
    -- Write the result.
    TEXT_IO.PUT ("Result is: ");
    INTEGER_TEXT_IO.PUT (INT_VAL);
    TEXT_IO.NEW_LINE;
end ADA_EXAMPLE;
```

To run this example program, use the following DCL commands:

```
$ CREATE/DIR [.ADALIB]
$ ACS CREATE LIB [.ADALIB]
$ ACS SET LIB [.ADALIB]
$ ADA ADA_EXAMPLE
$ ACS LINK ADA_EXAMPLE
$ RUN ADA_EXAMPLE
```

The preceding Ada example generates the following output:

```
Enter value: 42.0
```

Result is:
6

2

Vector Routines in MTH\$

This chapter discusses four sets of routines provided by the RTL MTH\$ facility that support vector processing. These routines are as follows:

- Basic Linear Algebra Subroutines (BLAS) Level 1
- First Order Linear Recurrence (FOLR) routines
- Vector versions of existing scalar routines
- Fast-Vector math routines

2.1 BLAS - Basic Linear Algebra Subroutines Level 1

BLAS Level 1 routines perform vector operations, such as copying one vector to another, swapping vectors, and so on. These routines help you take advantage of vector processing speed. BLAS Level 1 routines form an integral part of many mathematical libraries, such as LINPACK and EISPACK. ${ }^{1}$ Because these routines usually occur in the innermost loops of user code, the Run-Time Library provides versions of the BLAS Level 1 that are tuned to take best advantage of the VAX vector processors.

Two versions of BLAS Level 1 are provided. To use either of these libraries, link in the appropriate shareable image. The libraries are:

- Scalar BLAS - contained in the shareable image BLAS1RTL
- Vector BLAS (routines that take advantage of vectorization) - contained in the shareable image VBLAS1RTL

Abstract

To call the scalar BLAS from a program that runs on scalar hardware, specify the routine name preceded by BLAS1\$ (for example, BLAS1\$xCOPY). To call the vector BLAS from a program that runs on vector hardware, specify the routine name preceded by BLAS1\$V (for example, BLAS1\$VxCOPY).

This manual describes both the scalar and vector versions of BLAS Level 1, but for simplicity the vector prefix (BLAS1\$V) is used exclusively. Remember to remove the letter V from the routine prefix when you want to call the scalar version.

[^4]If you are a Compaq Fortran programmer, do not specify BLAS vector routines explicitly. Specify the Fortran intrinsic function name only. The Compaq Fortran 77 for OpenVMS VAX Systems compiler determines whether the vector or scalar version of a BLAS routine should be used. The Fortran /BLAS $=[[\mathrm{NO}]$ IINLINE,[NO]MAPPED) qualifier controls how the compiler processes calls to BLAS Level 1. If /NOBLAS is specified, then all BLAS calls are treated as ordinary external routines. The default of INLINE means that calls to BLAS Level 1 routines will be treated as known language constructs, and VAX object code will be generated to compute the corresponding operations at the call site, rather than call a user-supplied routine. If the Fortran qualifier NECTOR or /PARALLEL=AUTO is in effect, the generated code for the loops may use vector instructions or be decomposed to run on multiple processors. If MAPPED is specified, these calls will be treated as calls to the optimized implementations of these routines in the BLAS1\$ and BLAS1\$V portions of the MTH\$ facility. For more information on the Fortran /BLAS qualifier, refer to the DEC Fortran Performance Guide for OpenVMS VAX Systems.

Ten families of routines form BLAS Level 1. (BLAS1\$VxCOPY is one family of routines, for example.) These routines operate at the vector-vector operation level. This means that BLAS Level 1 performs operations on one or two vectors. The level of complexity of the computations (in other words, the number of operations being performed in a BLAS Level 1 routine) is of the order n (the length of the vector).
Each family of routines in BLAS Level 1 contains routines coded in single precision, double precision (D and G formats), single precision complex, and double precision complex (D and G formats). BLAS Level 1 can be broadly classified into three groups:

- BLAS1\$VxCOPY, BLAS1\$VxSWAP, BLAS1\$VxSCAL and BLAS1\$VxAXPY: These routines return vector outputs for vector inputs. The results of all these routines are independent of the order in which the elements of the vector are processed. The scalar and vector versions of these routines return the same results.
- BLAS1\$VxDOT, BLAS1\$VIxAMAX, BLAS1\$VxASUM, and BLAS1\$VxNRM2: These routines are all reduction operations that return a scalar value. The results of these routines (except BLAS1\$VIXAMAX) are dependent upon the order in which the elements of the vector are processed. The scalar and vector versions of BLAS1\$VxDOT, BLAS1\$VxASUM, and BLAS1\$VxNRM2 can return different results. The scalar and vector versions of BLAS1\$VIxAMAX return the same results.
- BLAS1\$VxROTG and BLAS1\$VxROT: These routines are used for a particular application (plane rotations), unlike the routines in the previous two categories. The results of BLAS1\$VxROTG and BLAS1\$VxROT are independent of the order in which the elements of the vector are processed. The scalar and vector versions of these routines return the same results.
Table 2-1 lists the functions and corresponding routines of BLAS Level 1.

Vector Routines in MTH\$ 2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Table 2-1 Functions of BLAS Level 1

Function	Routine	Data Type
Copy a vector to another vector	BLAS1\$VSCOPY	Single
	BLAS1\$VDCOPY	Double (D-floating or G-floating)
	BLAS1\$VCCOPY	Single complex
	BLAS1\$VZCOPY	Double complex (D-floating or G-floating)
Swap the elements of two vectors	BLAS1\$VSSWAP	Single
	BLAS1\$VDSWAP	Double (D-floating or G-floating)
	BLAS1\$VCSWAP	Single complex
	BLAS1\$VZSWAP	Double complex (D-floating or G-floating)
Scale the elements of a vector	BLAS1\$VSSCAL	Single
	BLAS1\$VDSCAL	Double (D-floating)
	BLAS1\$VGSCAL	Double (G-floating)
	BLAS1\$VCSCAL	Single complex with complex scale
	BLAS1\$VCSSCAL	Single complex with real scale
	BLAS1\$VZSCAL	Double complex with complex scale (D-floating)
	BLAS1\$VWSCAL	Double complex with complex scale (G-floating)
	BLAS1\$VZDSCAL	Double complex with real scale (D-floating)
	BLAS1\$VWGSCAL	Double complex with real scale (G-floating)
Multiply a vector by a scalar and add a vector	BLAS1\$VSAXPY	Single
	BLAS1\$VDAXPY	Double (D-floating)
	BLAS1\$VGAXPY	Double (G-floating)
	BLAS1\$VCAXPY	Single complex
	BLAS1\$VZAXPY	Double complex (D-floating)
	BLAS1\$VWAXPY	Double complex (G-floating)
Obtain the index of the first element of a vector having the largest absolute value	BLAS1\$VISAMAX	Single
	BLAS1\$VIDAMAX	Double (D-floating)
	BLAS1\$VIGAMAX	Double (G-floating)
	BLAS1\$VICAMAX	Single complex
	BLAS1\$VIZAMAX	Double complex (D-floating)
	BLAS1\$VIWAMAX	Double complex (G-floating) (continued on next page)

Table 2-1 (Cont.) Functions of BLAS Level 1

Function	Routine	Data Type
Obtain the sum of the absolute values of the elements of a vector	BLAS1\$VSASUM	Single
	BLAS1\$VDASUM	Double (D-floating)
	BLAS1\$VGASUM	Double (G-floating)
	BLAS1\$VSCASUM	Single complex
	BLAS1\$VDZASUM	Double complex (D-floating)
	BLAS1\$VGWASUM	Double complex (G-floating)
Obtain the inner product of two vectors	BLAS1\$VSDOT	Single
	BLAS1\$VDDOT	Double (D-floating)
	BLAS1\$VGDOT	Double (G-floating)
	BLAS1\$VCDOTU	Single complex unconjugated
	BLAS1\$VCDOTC	Single complex conjugated
	BLAS1\$VZDOTU	Double complex unconjugated (D-floating)
	BLAS1\$VWDOTU	Double complex unconjugated (G-floating)
	BLAS1\$VZDOTC	Double complex conjugated (Dfloating)
	BLAS1\$VWDOTC	Double complex conjugated (Gfloating)
Obtain the Euclidean norm of the vector	BLAS1\$VSNRM2	Single
	BLAS1\$VDNRM2	Double (D-floating)
	BLAS1\$VGNRM2	Double (G-floating)
	BLAS1\$VSCNRM2	Single complex
	BLAS1\$VDZNRM2	Double complex (D-floating)
	BLAS1\$VGWNRM2	Double complex (G-floating)
Generate the elements for a Givens plane rotation	BLAS1\$VSROTG	Single
	BLAS1\$VDROTG	Double (D-floating)
	BLAS1\$VGROTG	Double (G-floating)
	BLAS1\$VCROTG	Single complex
	BLAS1\$VZROTG	Double complex (D-floating)
	BLAS1\$VWROTG	Double complex (G-floating)

Table 2-1 (Cont.) Functions of BLAS Level 1

Function	Routine	Data Type
Apply a Givens plane	BLAS1\$VSROT	Single
rotation	BLAS1\$VDROT	Double (D-floating)
	BLAS1\$VGROT	Double (G-floating)
	BLAS1\$VCSROT	Single complex
	BLAS1\$VZDROT	Double complex (D-floating)
	BLAS1\$VWGROT	Double complex (G-floating)

For a detailed description of these routines, refer to the Vector MTH\$ Reference Section of this manual.

2.1.1 Using BLAS Level 1

The following sections provide some guidelines for using BLAS Level 1.

2.1.1.1 Memory Overlap

The vector BLAS produces unpredictable results when any element of the input argument shares a memory location with an element of the output argument. (An exception is a special case found in the BLAS1\$VxCOPY routines.)

The vector BLAS and the scalar BLAS can yield different results when the input argument overlaps the output array.

2.1.1.2 Round-Off Effects

For some of the routines in BLAS Level 1, the final result is independent of the order in which the operations are performed. However, in other cases (for example, some of the reduction operations), efficiency dictates that the order of operations on a vector machine be different from the natural order of operations. Because round-off errors are dependent upon the order in which the operations are performed, some of the routines will not return results that are bit-for-bit identical to the results obtained by performing the operations in natural order.
Where performance can be increased by the use of a backup data type, this has been done. This is the case for BLAS1\$VSNRM2, BLAS1\$VSCNRM2, BLAS1\$VSROTG, and BLAS1\$VCROTG. The use of a backup data type can also yield a gain in accuracy over the scalar BLAS.

2.1.1.3 Underflow and Overflow

In accordance with LINPACK convention, underflow, when it occurs, is replaced by a zero. A system message informs you of overflow. Because the order of operations for some routines is different from the natural order, overflow might not occur at the same array element in both the scalar and vector versions of the routines.

2.1.1.4 Notational Definitions

The vector BLAS (except the BLAS1\$VxROTG routines) perform operations on vectors. These vectors are defined in terms of three quantities:

- A vector length, specified as \mathbf{n}
- An array or a starting element in an array, specified as \mathbf{x}
- An increment or spacing parameter to indicate the distance in number of array elements to skip between successive vector elements, specified as incx

Vector Routines in MTH\$

2.1 BLAS - Basic Linear Algebra Subroutines Level 1

Suppose \mathbf{x} is a real array of dimension ndim, \mathbf{n} is its vector length, and incx is the increment used to access the elements of a vector X. The elements of vector $X, X_{i}, i=1, \ldots, n$, are stored in \mathbf{x}. If incx is greater than or equal to 0 , then X_{i} is stored in the following location:
$\mathrm{x}(1+(i-1) * i n c x)$
However, if incx is less than 0 , then X_{i} is stored in the following location:
$\mathrm{x}(1+(n-i) *|i n c x|)$
It therefore follows that the following condition must be satisfied:
$n \operatorname{dim} \geq 1+(n-1) *|i n c x|$
A positive value for incx is referred to as forward indexing, and a negative value is referred to as backward indexing. A value of zero implies that all of the elements of the vector are at the same location, x_{1}.

Suppose ndim = 20 and $\mathbf{n}=5$. In this case, $\mathbf{i n c x}=2$ implies that X_{1}, X_{2}, X_{3}, X_{4}, and X_{5} are located in array elements $\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{5}, \mathrm{x}_{7}$, and x_{9}.
If, however, incx is negative, then $X_{1}, X_{2}, X_{3}, X_{4}$, and X_{5} are located in array elements $\mathrm{x}_{9}, \mathrm{x}_{7}, \mathrm{x}_{5}, \mathrm{x}_{3}$, and x_{1}. In other words, when incx is negative, the subscript of \mathbf{x} decreases as i increases.
For some of the routines in BLAS Level 1, incx $=0$ is not permitted. In the cases where a zero value for incx is permitted, it means that x_{1} is broadcast into each element of the vector X of length \mathbf{n}.

You can operate on vectors that are embedded in other vectors or matrices by choosing a suitable starting point of the vector. For example, if A is an $\mathbf{n 1}$ by $\mathbf{n 2}$ matrix, column j is referenced with a length of n1, starting point $A(1, j)$, and increment 1. Similarly, row i is referenced with a length of n2, starting point A(i,1), and increment n1.

2.2 FOLR - First Order Linear Recurrence Routines

The MTH\$ F OLR routines provide a vectorized algorithm for the linear recurrence relation. A linear recurrence uses the result of a previous pass through a loop as an operand for subsequent passes through the loop and prevents the vectorization of a loop.

The only error checking performed by the FOLR routines is for a reserved operand.

There are four families of FOLR routines in the MTH\$ facility. Each family accepts each of four data types (longword integer, F-floating, D-floating, and G-floating). However, all of the arrays you specify in a single FOLR call must be of the same data type.
For a detailed description of these routines, see Part III.

2.2.1 FOLR Routine Name Format

The four families of FOLR routines are as follows:

- MTH\$VxFOLRy_MA_V15
- MTH\$VxFOLRy_z_V8
- MTH\$VxFOLRLy_MA_V5
- MTH\$VxFOLRLy_z_V2

Vector Routines in MTH\$ 2.2 FOLR - First Order Linear Recurrence Routines

where:
$\mathrm{x}=\mathrm{J}$ for longword integer, F for F -floating, D for D -floating, or G for G -floating
$\mathrm{y}=\mathrm{P}$ for a positive recursion element, or N for a negative recursion element
$\mathrm{z}=\mathrm{M}$ for multiplication, or A for addition

The FOLR entry points end with _Vn, where n is an integer between 0 and 15 that denotes the vector registers that the F OLR routine uses. For example, MTH $\$ V \times$ FFOLRy_z_V8 uses vector registers V0 through V8.
To determine which group of routines you should use, match the task in the left column in Table 2-2 that you need the routine to perform with the method of storage that you need the routine to employ. The point where these two tasks meet shows the FOLR routine you should call.

Table 2-2 Determining the FOLR Routine You Need

Tasks	Save each iteration in an array	Save only last result in a variable
Multiplication AND addition	MTH $\$ V \times F O L R y _M A _V 15$	MTH $\$ V \times F O L R L y _M A _V 5$
Multiplication OR addition	MTH $\$ V x F O L R y _$__V8	MTH $\$ V x F O L R L y _$_V2

2.2.2 Calling a FOLR Routine

Save the contents of V0 through Vn before calling a FOLR routine if you need it after the call. The variable n can be $2,5,8$, or 15 , depending on the FOLR routine entry point. (The OpenVMS Calling Standard specifies that a called procedure may modify all of the vector registers. The FOLR routines modify only the vector registers V0 through Vn.)

The MTH\$ FOLR routines assume that all of the arrays are of the same data type.

2.3 Vector Versions of Existing Scalar Routines

Vector forms of many MTH\$ routines are provided to support vectorized compiled applications. Vector versions of key F-floating, D-floating, and G-floating scalar routines employ vector hardware, while maintaining identical results with their scalar counterparts. Many of the scalar algorithms have been redesigned to ensure identical results and good performance for both the vector and scalar versions of each routine. All vectorized routines return bit-for-bit identical results as the scalar versions.

You can call the vector MTH\$ routines directly if your program is written in VAX MACRO. If you are a Fortran programmer, specify the Fortran intrinsic function name only. The Fortran compiler will then determine whether the vector or scalar version of a routine should be used.

2.3.1 Exceptions

You should not attempt to recover from an MTH\$ vector exception. After an MTH\$ vector exception, the vector routines cannot continue execution, and nonexceptional values might not have been computed.

Vector Routines in MTH\$

2.3 Vector Versions of Existing Scalar Routines

2.3.2 Underflow Detection

In general, if a vector instruction results in the detection of both a floating overflow and a floating underflow, only the overflow will be signaled.
Some scalar routines check to see if a user has enabled underflow detection. For each of those scalar routines, there are two corresponding vector routines: one that always enables underflow checking and one that never enables underflow checking. (In the latter case, underflows produce a result of zero.) The Fortran compiler always chooses the vector version that does not signal underflows, unless the user specifies the /CHECK =UNDERFLOW qualifier. This ensures that the check is performed but does not impair vector performance for those not interested in underflow detection.

2.3.3 Vector Routine Name Format

Use one of the formats in Table 2-3 to call (from VAX MACRO) a vector math routine that enables underflow signaling. (The E in the routine name means enabled underflow signaling.)

Table 2-3 Vector Routine Format - Underflow Signaling Enabled

Format	Type of Routine
MTH\$VxSAMPLE_E_Ry_Vz	Real valued math routine
MTH\$VCxSAMPLE_E_Ry_Vz	Complex valued math routine
OTS\$SAMPLEqE_Ry_Vz	Power routine or complex multiply and divide

Use one of the formats in Table 2-4 to call (from VAX MACRO) a vector math routine that does not enable underflow signaling.

Table 2-4 Vector Routine Format - Underflow Signaling Disabled

Format	Type of Routine
MTH\$VxSAMPLE_Ry_Vz	Real valued math routine
MTH\$VCxSAMPLE_Ry_Vz	Complex valued math routine
OTS\$SAMPLEq_Ry_Vz	Power routine or complex multiply and divide

In the preceding formats, the following conventions are used:
x The letter A (or blank) for F-floating, D for D-floating, G for G-floating.
y A number between 0 and 11 (inclusive). Ry means that the scalar registers R0 through Ry will be used by the routine SAMPLE. You must save these registers.
z A number between 0 and 15 (inclusive). Vz means that the vector registers V0 through Vz will be used by the routine SAMPLE. You must save these registers.
Two letters denoting the base and power data type, as follows:

RR	F-floating base raised to an F-floating power
RJ	F-floating base raised to a longword power
DD	D-floating base raised to a D-floating power
DJ	D-floating base raised to a longword power
GG	G-floating base raised to a G-floating power
GJ	G-floating base raised to a longword power
JJ	Longword base raised to a longword power

2.3.4 Calling a Vector Math Routine

You can call the vector MTH\$ routines directly if your program is written in VAX MACRO.

If you are a Compaq Fortran programmer, do not specify the MTH \$ vector routines explicitly. Specify the F ortran intrinsic function name only. The Fortran compiler determines whether the vector or scalar version of a routine should be used.

In the following examples, keep in mind that vector real arguments are passed in V0, V1, and so on, and vector real results are returned in V0. On the other hand, vector complex arguments are passed in V0 and V1, V2, and V3, and so on. Vector complex results are returned in V0 and V1.

Argument	Argument Passed Register	Results Returned Register
Vector real arguments	V0, V1,...	V0
Vector complex arguments	V0 and V1, V2 and V3,...	V0 and V1

Example 1

The following example shows how to call the vector version of MTH\$EXP. Assume that you do not want underflows to be signaled, and you need to use the current contents of all vector and scalar registers after the invocation. Before you can call the vector routine from VAX MACRO, perform the following steps.

1. Find EXP in the column of scalar names in Appendix B to determine:

- The full vector routine name: MTH\$VEXP_R3_V6
- How the routine is invoked (CALL or J SB): J SB
- The scalar registers that must be saved: R0 through R3 (as specified by R3 in MTH\$VEXP_R3_V6)
- The vector registers that must be saved: V0 through V6 (as specified by V6 in MTH\$VEXP_R3_V6)
- The vector registers used to hold the input arguments: V0
- The vector registers used to hold the output arguments: V0
- If there is a vector version that signals underflow (not needed in this example)

2. Save the scalar registers R0, R1, R2, and R3.
3. Save the vector registers V0, V1, V2, V3, V4, V5, and V6.
4. Save the vector mask register VMR.
5. Save the vector count register VCR.
6. Load the vector length register VLR.
7. Load the vector register V0 with the argument for MTH\$EXP.
8. J SB to MTH\$VEXP_R3_V6.
9. Store result in memory.
10. Restore all scalar and vector registers except for V 0 . (The results of the call to MTH\$VEXP_R3_V6 are stored in V0.)
The following MACRO program fragment shows this example. Assume that:

- V0 through V6 and R0 through R3 have been saved.
- R4 points to a vector of 60 input values.
- R6 points to the location where the results of MTH\$VEXP_R3_V6 will be stored.
- R5 contains the stride in bytes.

Note that MTH\$VEXP_R3_V6 denotes an F-floating data type because there is no letter between V and E in the routine name. (For further explanation, refer to Section 2.3.3.) The stride (the number of array elements that are skipped) must be a multiple of 4 because each F -floating value requires 4 bytes.

| MTVLR | $\# 60$ | $;$ Load VLR |
| :--- | :--- | :--- | :--- |
| MOVL | $\# 4$, R5 | ; Stride |
| VLDL | (R4), R5, V0 | ; Load V0 with the actual arguments |
| JSB | G$^{\wedge}$ MTHSVEXP_R3_V6 | ; JSB to MTH\$VEXP |
| VSTL | V0, (R6), R5 | ; Store the results |

Example 2

The following example demonstrates how to call the vector version of OTS\$POWDD with a vector base raised to a scalar power. Before you can call the vector routine from VAX MACRO, perform the following steps.

1. Find POWDD $\left(V^{S}\right)$ in the column of scalar names in Appendix B to determine:

- The full vector routine name: OTS\$VPOWDD_R1_V8
- How the routine is invoked (CALL or JSB): CALL
- The scalar registers that must be saved: R0 through R1 (as specified by R1 in OTS\$VPOWDD_R1_V8)
- The vector registers that must be saved: V0 through V8 (as specified by V8 in OTS\$VPOWDD_R1_V8)
- The vector registers used to hold the input arguments: V0, R0
- The vector registers used to hold the output arguments: Vo
- If there is a vector version that signals underflow (not needed in this example)

2. Save the scalar registers R0 and R1.

Vector Routines in MTH\$ 2.3 Vector Versions of Existing Scalar Routines

3. Save the vector registers $\mathrm{V} 0, \mathrm{~V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{~V} 5, \mathrm{~V} 6, \mathrm{~V} 7$, and V 8 .
4. Save the vector mask register VMR.
5. Save the vector count register VCR.
6. Load the vector length register VLR.
7. Load the vector register V0 and the scalar register R 0 with the arguments for OTS\$POWDD.
8. Call OTS\$VPOWDD_R1_V8.
9. Store result in memory.
10. Restore all scalar and vector registers except for V0. (The results of the call to OTS\$VPOWDD_R1_V8 are stored in V0.)

The following MACRO program fragment shows how to call OTS\$VPOWDD_R1_ V8 to compute the result of raising 60 values to the power P. Assume that:

- V0 through V8 and R0 and R1 have been saved.
- R4 points to the vector of 60 input base values.
- R0 and R1 contain the D-floating value P.
- R6 points to the location where the results will be stored.
- R5 contains the stride.

Note that OTS\$VPOWDD_R1_V8 raises a D-floating base to a D-floating power, which you determine from the DD in the routine name. (F or further explanation, refer to Section 2.3.3.) The stride (the number of array elements that are skipped) must be a multiple of 8 because each D-floating value requires 8 bytes.

		; R0/R1 already contains the power
MTVLR	$\# 60$	$;$ Load VLR
MOVL	$\# 8$, R5	; Stride
VLDQ	(R4), R5, V0	; Load V0 with the actual arguments
CALLS	$\# 0$, G $^{\wedge} 0 T S \$ V P O W D D _R 1 _V 8 ~$; CALL OTS\$VPOWDD
VSTQ	V0, (R6), R5	; Store the results

2.4 Fast-Vector Math Routines

This section describes the fast-vector math routines that offer significantly higher performance at the cost of slightly reduced accuracy when compared with corresponding standard vector math routines. Also note that some fast-vector math routines have restricted argument domains.

When you specify the compile command qualifiers NECTOR and /MATH LIBRARY FAST, the Compaq F ortran compiler selects the appropriate fast-vector math routine, if one exists. The default is /MATH_LIBRARY=ACCURATE. You must specify the /G_FLOATING compile qualifier in conjunction with the /MATH_ LIBRARY FAST and NECTOR qualifiers to access the G_floating routines.
You can call these routines from VAX MACRO using the standard calling method. The math function names, together with corresponding entry points of the fast-vector math routines, are listed in Table 2-5.

Table 2-5 Fast-Vector Math Routines

Function Name	Data Type	Call or JSB	Vector Input Registers	Vector Output Registers	Vector Name (Underflows Not Signaled)
ATAN	F_floating	J SB	vo	vo	MTH\$VYATAN_RO_V3
DATAN	D_floating	J SB	vo	vo	MTH\$VYDATAN_RO_V5
GATAN	G_floating	J SB	vo	vo	MTH\$VYGATAN_RO_V5
ATAN2	F_floating	J SB	V0, V1	vo	MTH\$VVYATAN2_RO_V5
DATAN2	D_floating	J SB	V0, V1	vo	MTH\$VVYDATAN2_RO_V5
GATAN2	G_floating	J SB	V0, V1	vo	MTH\$VVYGATAN2_RO_V5
COS	F_floating	J SB	vo	vo	MTH\$VYCOS_RO_V3
DCOS	D_floating	JSB	vo	vo	MTH\$VYDCOS_Ro_V3
GCOS	G_floating	J SB	vo	vo	MTH\$VYGCOS_RO_V3
EXP	F_floating	J SB	vo	vo	MTH\$VYEXP_RO_V4
DEXP	D_floating	J SB	vo	vo	MTH\$VYDEXP_RO_V6
GEXP	G_floating	J SB	vo	vo	MTH\$VYGEXP_RO_V6
LOG	F_floating	J SB	vo	vo	MTH\$VYALOG_RO_V5
DLOG	D_floating	J SB	vo	vo	MTH\$VYDLOG_RO_V5
GLOG	G_floating	J SB	vo	vo	MTH\$VYGLOG_RO_V5
LOG10	F_floating	J SB	vo	vo	MTH\$VYALOG10_RO_V5
DLOG10	D_floating	J SB	vo	vo	MTH\$VYDLOG10_Ro_V5
GLOG10	G_floating	J SB	vo	vo	MTH\$VYGLOG10_RO_V5
SIN	F_floating	J SB	vo	vo	MTH\$VYSIN_RO_V3
DSIN	D_floating	J SB	vo	vo	MTH\$VYDSIN_RO_V3
GSIN	G_floating	J SB	vo	vo	MTH\$VYGSIN_RO_V3
SQRT	F_floating	J SB	vo	vo	MTH\$VYSQRT_RO_V4
DSQRT	D_floating	J SB	vo	vo	MTH\$VYDSQRT_RO_V4
GSQRT	G_floating	J SB	vo	vo	MTH\$VYGSQRT_RO_V4
TAN	F_floating	J SB	vo	vo	MTH\$VYTAN_RO_V3
DTAN	D_floating	J SB	vo	vo	MTH\$VYDTAN_RO_V3
GTAN	G_floating	J SB	vo	vo	MTH\$VYGTAN_RO_V3
POWRR(X*Y)	F_floating	CALL	V0, R0	vo	OTS\$VYPOWRR_R1_V4
POWDD(X**Y)	D_floating	CALL	V0, RO	vo	OTS\$VYPOWDD_R1_V8
POWGG(X**Y)	G_floating	CALL	V0, RO	vo	OTS\$VYPOWGG_R1_V9

Vector Routines in MTH\$ 2.4 Fast-Vector Math Routines

2.4. Exception Handling

The fast-vector math routines signal all errors except floating underflow. No intermediate calculations result in exceptions. To optimize performance, the following message signals all errors:
\%SYSTEM-F-VARITH, vector arithmetic fault

2.4.2 Special Restrictions On Input Arguments

The special restrictions listed in Table 2-6 apply only to fast-vector routines SIN, COS, and TAN. The standard vector routines handle the full range of VAX floating-point numbers.

Table 2-6 Input Argument Restrictions

Function Name	Input Argument Domain (in Radians)
SIN	$\dashv(-6746518783.0,6746518783.0)$
COS	$\ddots(-6746518783.0,6746518783.0)$
TAN	$\ddots(-3373259391.5,3373259391.5)$

If the application program uses arguments outside of the listed domain, the routine returns the following error message:
\%SYSTEM-F-VARITH, vector arithmetic fault
If the application requires argument values beyond the listed limits, use the corresponding standard vector math routine.

2.4.3 Accuracy

The fast-vector math routines do not guarantee the same results as those obtained with the corresponding standard vector math routines. Calls to the fast-vector routines generally yield results that are different from the scalar and original vector MTH\$ library routines. The typical maximum error is a 2-LSB (Least Significant Bit) error for the F_floating routines and a 4-LSB error for the D floating and G_floating routines. This generally corresponds to a difference in the 6th significant decimal digit for the $F_{\text {floating routines, the 15th digit for }}$ D_floating, and the 14th digit for G_floating.

2.4.4 Performance

The fast-vector math routines generally provide performance improvements over the standard vector routines ranging from 15 to 300 percent, depending on the routines called and input arguments to the routines. The overall performance improvement using fast-vector math routines in a typical user application will increase, but not at the same level as the routines themselves. You should do performance and correctness testing of your application using both the fast-vector and the standard vector math routines before deciding which to use for your application.

Scalar MTH\$ Reference Section

The Scalar MTH\$ Reference Section provides detailed descriptions of the scalar routines provided by the OpenVMS RTL Mathematics (MTH\$) facility.

MTH\$xACOS—Arc Cosine of Angle Expressed in Radians

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians routine returns that angle (in radians).

Format

MTH\$ACOS cosine
MTH\$DACOS cosine
MTH\$GACOS cosine
Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$ACOS_R4
MTH\$DACOS_R7
MTH\$GACOS_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

Angle in radians. The angle returned will have a value in the range:

$$
0 \leq a n_{q} l e \leq \pi
$$

MTH $\$$ ACOS returns an F-floating number. MTH\$DACOS returns a D-floating number. MTH\$GACOS returns a G-floating number.

Argument

cosine

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The cosine of the angle whose value (in radians) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1 . For MTH\$ACOS, cosine specifies an F-floating number. For MTH\$DACOS, cosine specifies a D-floating number. For MTH\$GACOS, cosine specifies a G-floating number.

Description

The angle in radians whose cosine is X is computed as:

Value of Cosine	Value Returned
0	$\pi / 2$
1	0
-1	π
$0<X<1$	$z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAN and zSQRT are the
	Math Library arc tangent and square root routines, respectively, of the appropriate data type
$-1<X<0$	$z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)+\pi$
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

See MTH $\$$ HACOS for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND Reserved operand. The MTH\$xACOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
MTH\$_INVARGMAT
Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

Examples

```
1. 100 !+
            ! This BASIC program demonstrates the use of
            ! MTH$ACOS.
            !-
            EXTERNAL REAL FUNCTION MTH$ACOS
            DECLARE REAL COS_VALUE, ANGLE
            300 INPUT "Cosine value between -1 and +1 "; COS_VALUE
            400 IF (COS_VALUE < -1) OR (COS_VALUE > 1)
                THEN PRINT "Invalid cosine value"
                    GOTO 300
500 ANGLE = MTH$ACOS( COS_VALUE )
PRINT "The angle with that cosine is "; ANGLE; "radians"
32767 END
```


MTH\$xACOS

This BASIC program prompts for a cosine value and determines the angle that has that cosine. The output generated by this program is as follows:

```
$ RUN ACOS
Cosine value between -1 and +1 ? .5
The angle with that cosine is 1.0472 radians
```

2. PROGRAM GETANGLE (INPUT,OUTPUT);
```
{+}
{ This Pascal program uses MTH$ACOS to determine
{ the angle which has the cosine given as input.
{-}
VAR
    COS : REAL;
FUNCTION MTH$ACOS (COS : REAL) : REAL;
    EXTERN;
BEGIN
    WRITE('Cosine value between -1 and +1: ');
    READ (COS);
    WRITELN('The angle with that cosine is ', MTH$ACOS(COS),
    ' radians');
END.
```

This Pascal program prompts for a cosine value and determines the angle that has that cosine. The output generated by this program is as follows:

```
$ RUN ACOS
Cosine value between -1 and +1: . 5
The angle with that cosine is 1.04720E+00 radians
```


MTH\$xACOSD—Arc Cosine of Angle Expressed in Degrees

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees routine returns that angle (in degrees).

Format

MTH\$ACOSD cosine
MTH\$DACOSD cosine
MTH\$GACOSD cosine
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points

MTH\$ACOSD_R4
MTH\$DACOSD_R7
MTH\$GACOSD_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
Angle in degrees. The angle returned will have a value in the range:

$$
0 \leq a n_{q} l e \leq 180
$$

MTH \$ACOSD returns an F-floating number. MTH\$DACOSD returns a D-floating number. MTH \$GACOSD returns a G-floating number.

Argument

cosine

OpenVMS usage: floating_point
type: \quad F_floating, G_floating, D_floating
access: read only
mechanism: by reference
Cosine of the angle whose value (in degrees) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1 . For MTH\$ACOSD, cosine specifies an F -floating number. For MTH\$DACOSD, cosine specifies a D-floating number. For MTH\$GACOSD, cosine specifies a G-floating number.

Description

The angle in degrees whose cosine is X is computed as:

Value of Cosine	Angle Returned
0	90
1	0
-1	180
$0<X<1$	$z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAND and zSQRT
	are the Math Library arctangent and square root routines,
	respectively, of the appropriate data type
$-1<X<0$	$z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)+180$
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

See MTH\$HACOSD for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH\$XACOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
MTH\$_INVARGMAT	Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF $\$ \mathrm{~L}$ _MCH_SAVRO/R1.

Example

```
PROGRAM ACOSD(INPUT,OUTPUT);
{+}
{ This Pascal program demonstrates the use of MTH$ACOSD.
{-}
FUNCTION MTH$ACOSD(COS : REAL): REAL; EXTERN;
VAR
    COSINE : REAL;
    RET_STATUS : REAL;
BEGIN
    COSINE := 0.5;
    RET_STATUS := MTH$ACOSD (COSINE);
    WRITELN('The angle, in degrees, is: ', RET_STATUS);
END.
```

The output generated by this Pascal example program is as follows:

```
The angle, expressed in degrees, is: 6.00000E+01
```


MTH\$xASIN—Arc Sine in Radians

Given the sine of an angle, the Arc Sine in Radians routine returns that angle (in radians).

Format

MTH\$ASIN sine
MTH\$DASIN sine
MTH\$GASIN sine
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points

MTH\$ASIN_R4
MTH\$DASIN_R7
MTH\$GASIN_R7
Each of the above JSB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
Angle in radians. The angle returned will have a value in the range:

$$
-\pi / 2 \leq a n_{q} l e \leq \pi / 2
$$

MTH \$ASIN returns an F-floating number. MTH\$DASIN returns a D-floating number. MTH $\$$ GASIN returns a G-floating number.

Argument

> sine $\begin{array}{ll}\text { OpenVMS usage: } & \text { floating_point } \\ \text { type: } & \text { F_floating, D_floating, G_floating } \\ \text { access: } & \text { read only } \\ \text { mechanism: } & \text { by reference }\end{array}$ $\begin{aligned} & \text { The sine of the angle whose value (in radians) is to be returned. The sine } \\ & \text { argument is the address of a floating-point number that is this sine. The absolute } \\ & \text { value of sine must be less than or equal to 1. For MTH } \$ A S I N, ~ s i n e ~ s p e c i f i e s ~ a n ~ \\ & \text { F-floating number. For MTH\$DASIN, sine specifies a D-floating number. For } \\ & \text { MTH } \$ \text { GASIN, sine specifies a G-floating number. }\end{aligned}$.

Description

The angle in radians whose sine is X is computed as:

Value of Sine	Angle Returned
0	0
1	$\pi / 2$
-1	$-\pi / 2$
$0<\|X\|<1$	$z A T A N\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

See MTH\$HASIN for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH $\$ \times A$ SIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$xASIND—Arc Sine in Degrees

Given the sine of an angle, the Arc Sine in Degrees routine returns that angle (in degrees).

Format

MTH\$ASIND sine
MTH\$DASIND sine
MTH\$GASIND sine
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points

MTH\$ASIND_R4
MTH\$DASIND_R7
MTH\$GASIND_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
Angle in degrees. The angle returned will have a value in the range:

$$
-90 \leq a n_{q} l e \leq 90
$$

MTH \$ASIND returns an F-floating number. MTH\$DASI ND returns a D-floating number. MTH \$GASIND returns a G-floating number.

Argument

```
sine
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1 . For MTH\$ASIND, sine specifies an F-floating number. For MTH\$DASIND, sine specifies a D-floating number. For MTH\$GASIND, sine specifies a G-floating number.
```


Description

The angle in degrees whose sine is X is computed as:

Value of Sine	Value Returned
0	0
1	90
-1	-90
$0<\|X\|<1$	$z A T A N D\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAND and zSQRT
are the Math Library arc tangent and square root routines,	
	respectively, of the appropriate data type
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

See MTH\$HASIND for the description of the H -floating version of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xASIND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF \$L_MCH_SAVRO/R1.

MTH\$xATAN—Arc Tangent in Radians

Given the tangent of an angle, the Arc Tangent in Radians routine returns that angle (in radians).

Format

MTH\$ATAN tangent
MTH\$DATAN tangent
MTH\$GATAN tangent
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points

MTH\$ATAN_R4
MTH\$DATAN_R7
MTH\$GATAN_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
Angle in radians. The angle returned will have a value in the range:

$$
-\pi / 2 \leq \text { angle } \leq \pi / 2
$$

VM-0712A-AI
MTH \$ATAN returns an F-floating number. MTH\$DATAN returns a D-floating number. MTH $\$ G A T A N$ returns a G -floating number.

Argument

tangent
OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$ATAN, tangent specifies an F-floating number. For MTH\$DATAN, tangent specifies a D-floating number. For MTH\$GATAN, tangent specifies a G-floating number.

Description

In radians, the computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots \\
& \arctan (X)=X+X * Q\left(X^{2}\right), \\
& \quad \text { where } Q(Y)=-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=X * P\left(X^{2}\right) \\
& \quad \text { where } P(Y)=1-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=\pi / 2-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X)) \\
& \quad \text { for any real } A
\end{aligned}
$$

The angle in radians whose tangent is X is computed as:

Value of \boldsymbol{X}	Angle Returned
$0 \leq X \leq 3 / 32$	$X+X * Q\left(X^{2}\right)$
$3 / 32<X \leq 11$	ATAN $(A)+V *\left(P\left(V^{2}\right)\right)$, where A and ATAN (A) are chosen by table lookup and $V=(X-A) /(1+A * X)$ $11<X$
$X<0$	$\pi / 2-W *\left(P\left(W^{2}\right)\right)$ where $W=1 / X$
	$-z A T A N(X \mid)$

See MTH $\$$ HATAN for the description of the H -floating point version of this routine.

Condition Value Signaled

SS\$_ROPRAND
Reserved operand. The MTH\$xATAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xATAND—Arc Tangent in Degrees

Given the tangent of an angle, the Arc Tangent in Degrees routine returns that angle (in degrees).

Format

MTH\$ATAND tangent
MTH\$DATAND tangent
MTH\$GATAND tangent
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points

MTH\$ATAND_R4
MTH\$DATAND_R7
MTH\$GATAND_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
Angle in degrees. The angle returned will have a value in the range:

$$
-90 \leq \text { angle } \leq 90
$$

MTH \$ATAND returns an F-floating number. MTH\$DATAND returns a D-floating number. MTH $\$$ GATAND returns a G-floating number.

Argument

```
tangent
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference
```

The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$ATAND, tangent specifies an F-floating number. For MTH\$DATAND, tangent specifies a D-floating number. F or MTH\$GATAND, tangent specifies a G-floating number.

Description

The computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=(180 / \pi) *\left(X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots\right) \\
& \arctan \left(X^{X}\right)=64 * X+X * Q\left(X^{2}\right), \\
& \text { where } Q(Y)=180 / \pi *\left[\left(1^{1}-64 * \pi / 180\right)\right]-Y / 3+Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \text { where } P(Y)=180 / \pi *\left[1-Y / 3+Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \ldots\right] \\
& \arctan \left(X_{)}\right)=90-\arctan (1 / X) \\
& \arctan \left(X^{\prime}\right)=\arctan \left(A^{2}\right)+\arctan \left((X-A) /\left(1+A * X^{\prime}\right)\right)
\end{aligned}
$$

The angle in degrees whose tangent is X is computed as:

Tangent	Angle Returned
$X \leq 3 / 32$	$64 * X+X * Q\left(X^{2}\right)$
$3 / 32<X \leq 11$	$A T A N D(A)+V * P\left(V^{2}\right.$, , where A and ATAND(A) are
chosen by table lookup and $V=(X-A) /(1+A * X)$	
$11<X$	$90-W *\left(P\left(W^{2}\right)\right)$, where $W=1 / X$
$X<0$	-zATAND $(\|X\|)$

See MTH \$HATAND for the description of the H -floating point version of this routine.

Condition Value Signaled

SS\$_ROPRAND
Reserved operand. The MTH \$xATAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xATAN2—Arc Tangent in Radians with Two Arguments

Given sine and cosine, the Arc Tangent in Radians with Two Arguments routine returns the angle (in radians) whose tangent is given by the quotient of sine and cosine (sine/cosine).

Format

MTH\$ATAN2 sine, cosine
MTH\$DATAN2 sine ,cosine
MTH\$GATAN2 sine ,cosine
Each of the above formats accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
Angle in radians. MTH \$ATAN2 returns an F-floating number. MTH\$DATAN2 returns a D-floating number. MTH\$GATAN2 returns a G-floating number.

Arguments

sine
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$ATAN2, sine specifies an F -floating number. For MTH\$DATAN2, sine specifies a D-floating number. For MTH\$GATAN2, sine specifies a G-floating number.
cosine
OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$ATAN2, cosine specifies an F-floating number. For MTH\$DATAN2, cosine specifies a D-floating number. For MTH\$GATAN2, cosine specifies a G-floating number.

Description

The angle in radians whose tangent is Y / X is computed as follows, where f is defined in the description of MTH $\$$ ZCOSH.

Value of Input Arguments	Angle Returned
$X=0$ or $Y / X>2^{(f+1)}$	$\pi / 2 *\left(s i{ }^{f} n Y\right)$
$X>0$ and $Y / X \leq 2^{(f+1)}$	$z A T A N(Y / X)$
$X<0$ and $Y / X \leq 2^{(f+1)}$	$\pi *\left(s i{ }_{g} n Y\right)+z A T A N(Y / X)$

See MTH\$HATAN2 for the description of the H-floating point version of this routine.

Condition Values Signaled
SS\$_ROPRAND Reserved operand. The MTH\$xATAN2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
MTH\$_INVARGMAT Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$xATAND2—Arc Tangent in Degrees with Two Arguments

Given sine and cosine, the Arc Tangent in Degrees with Two Arguments routine returns the angle (in degrees) whose tangent is given by the quotient of sine and cosine (sine/cosine).

Format

MTH\$ATAND2 sine ,cosine
MTH\$DATAND2 sine, cosine
MTH\$GATAND2 sine,cosine
Each of the above formats accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
Angle in degrees. MTH\$ATAND2 returns an F-floating number. MTH\$DATAND2 returns a D-floating number. MTH\$GATAND2 returns a G-floating number.

Arguments

sine
OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$ATAND2, sine specifies an F-floating number. For MTH\$DATAND2, sine specifies a D-floating number. For MTH\$GATAND2, sine specifies a G-floating number.
cosine
OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$ATAND2, cosine specifies an F-floating number. For MTH\$DATAND2, cosine specifies a D-floating number. For MTH\$GATAND2, cosine specifies a G-floating number.

Description

The angle in degrees whose tangent is Y / X is computed below and where f is defined in the description of MTH $\$ 2 C O S H$.

Value of Input Arguments	Angle Returned
$X=0$ or $Y / X>2^{\left(f^{+1)}\right.}$	$90 *\left(s i_{g} n Y\right)$
$X>0$ and $Y / X \leq 2^{\left(f^{+1)}\right.}$	$z A T A N D(Y / X)$
$X<0$ and $Y / X \leq 2^{(f+1)}$	$180 *\left(s i_{g} n Y\right)+z A T A N D(Y / X)$

See MTH\$HATAND2 for the description of the H -floating point version of this routine.

Condition Values Signaled
SS\$_ROPRAND Reserved operand. The MTH \$xATAND2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
MTH\$_INVARGMAT
Invalid argument. Both cosine and sine are zero. LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$xATANH—Hyperbolic Arc Tangent

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent routine returns the hyperbolic arc tangent of that angle.

Format

MTH\$ATANH hyperbolic-tangent
MTH\$DATANH hyperbolic-tangent
MTH\$GATANH hyperbolic-tangent
Each of the above formats accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_{-}floating, G_floating
access:	write only
mechanism:	by value

The hyperbolic arc tangent of hyperbolic-tangent. MTH\$ATANH returns an F-floating number. MTH\$DATANH returns a D-floating number. MTH\$GATANH returns a G-floating number.

Argument

hyperbolic-tangent

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point number that is this hyperbolic tangent. For MTH \$ATANH, hyperbolic-tangent specifies an F-floating number. For MTH\$DATANH, hyperbolic-tangent specifies a D-floating number. For MTH \$GATANH, hyperbolic-tangent specifies a G-floating number.

Description

The hyperbolic arc tangent function is computed as follows:

Value of \mathbf{x}	Value Returned
$\|X\|<1$	$z A T A N H(X)=z L O G((1+X) /(1-X)) / 2$
$\|X\| \geq 1$	An invalid argument is signaled

See MTH\$HATANH for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH\$xATANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
MTH\$_INVARGMAT	Invalid argument: $\|X\| \geq 1$. LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector $\mathrm{CHF} \$ \mathrm{~L}_{-} \mathrm{MCH}_{-}$ SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change $\mathrm{CHF} \$ \mathrm{~L} _\mathrm{MCH}_{-}$ SAVRO/R1.

MTH\$CxABS—Complex Absolute Value

The Complex Absolute Value routine returns the absolute value of a complex number (r, i).

Format

MTH\$CABS complex-number
MTH\$CDABS complex-number
MTH\$CGABS complex-number
Each of the above formats accepts one of the floating-point complex types as input.

Returns

```
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value
```

The absolute value of a complex number. MTH\$CABS returns an F-floating number. MTH \$CDABS returns a D-floating number. MTH\$CGABS returns a G-floating number.

Argument

complex-number
OpenVMS usage:
access
access:
mechanism:
complex_number
F_floating complex, D_floating complex, G_floating complex read only by reference
A complex number (r, i), where r and i are both floating-point complex values. The complex-number argument is the address of this complex number. For MTH $\$ C A B S$, complex-number specifies an F-floating complex number. For MTH $\$ C D A B S$, complex-number specifies a D-floating complex number. For MTH \$CGABS, complex-number specifies a G-floating complex number.

Description

The complex absolute value is computed as follows, where MAX is the larger of $|r|$ and $|i|$, and MIN is the smaller of $|r|$ and $|i|:$

$$
\text { result }=M A X * S Q R T\left((M I N / M A X)^{2}+1\right)
$$

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH \$CxABS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Floating- point reserved operands are reserved for future
use by Compaq.	

Examples

1. $\mathrm{C}+$

C This Fortran example forms the absolute value of an
C F-floating complex number using MTH\$CABS and the
C Fortran random number generator RAN.
C
C Declare Z as a complex value and MTH\$CABS as a REAL*4 value.
C MTH\$CABS will return the absolute value of Z : Z_NEW = MTH\$CABS (Z).
C-
COMPLEX Z
COMPLEX CMPLX
REAL*4 Z_NEW,MTH\$CABS
INTEGER M
$M=1234567$
C+
C Generate a random complex number with the Fortran generic CMPLX.
C-
Z = CMPLX(RAN (M), RAN (M))
C+
C $\quad Z$ is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
TYPE *, ' The complex number z is',z
TYPE *, ' It has real part',REAL(Z),' and imaginary part',AIMAG(Z)
TYPE *, ' '
C+
C Compute the complex absolute value of Z.
C-
Z_NEW = MTH\$CABS (Z)
TYPE *, ' The complex absolute value of',z,' is',Z_NEW END

This example uses an F -floating complex number for complex-number. The output of this Fortran example is as follows:

```
The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex absolute value of (0.8535407,0.2043402) is 0.8776597
```

2. $\mathrm{C}+$

C This Fortran example forms the absolute
C value of a G-floating complex number using
C MTH\$CGABS and the Fortran random number
C generator RAN.
C
C Declare Z as a complex value and MTH\$CGABS as a
C REAL*8 value. MTH\$CGABS will return the absolute
C value of Z: Z_NEW = MTH\$CGABS (Z).
C-
COMPLEX*16 Z
REAL*8 Z_NEW, MTH\$CGABS
C+
C Generate a random complex number with the Fortran
C generic CMPLX.
C-
$Z=(12.34567890123,45.536376385345)$
TYPE *, ' The complex number z is',z TYPE *, , ,

C+
C Compute the complex absolute value of Z.
C-
Z_NEW = MTH\$CGABS (Z)
TYPE *, ' The complex absolute value of', z^{\prime} ' is', z_NEW END

This F ortran example uses a G-floating complex number for complexnumber. Because this example uses a G-floating number, it must be compiled as follows:

```
$ Fortran/G MTHEX.FOR
```

Notice the difference in the precision of the output generated:

```
The complex number z is (12.3456789012300,45.5363763853450)
The complex absolute value of (12.3456789012300,45.5363763853450) is
    47.1802645376230
```


MTH\$CCOS—Cosine of a Complex Number (F-Floating Value)

The Cosine of a Complex Number (F-Floating Value) routine returns the cosine of a complex number as an F -floating value.

Format

MTH\$CCOS complex-number
Returns

OpenVMS usage:	complex_number
type:	F_floating complex
access:	write only
mechanism:	by value

The complex cosine of the complex input number. MTH\$CCOS returns an F -floating complex number.

Argument

complex-number

OpenVMS usage: complex_number
type: \quad F_floating complex
access: read only
mechanism: by reference
A complex number (r, i) where r and i are floating-point numbers. The complexnumber argument is the address of this complex number. For MTH $\$ C C O S$, complex-number specifies an F -floating complex number.

Description

The complex cosine is calculated as follows:

$$
\text { result }=\left(\operatorname{COS}\left(r^{r}\right) * \operatorname{COSH}\left(\mathrm{i}^{2}\right),-\operatorname{SIN}\left(r^{r}\right) * \operatorname{SINH}\left({ }^{i}\right)\right)
$$

See MTH $\$$ CxCOS for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library: the absolute value of \mathbf{i} is greater than about 88.029 for F -floating values.

MTH\$CCOS

Example

```
C+
C cosine of an F-floating complex number using
C MTH$CCOS and the Fortran random number
C generator RAN.
C
C Declare Z and MTH$CCOS as complex values.
C MTH$CCOS will return the cosine value of
C Z: Z_NEW = MTH$CCOS (Z)
C-
    COMPLEX Z,Z_NEW,MTH$CCOS
        COMPLEX CMPLX
        INTEGER M
    M = 1234567
C+
C Generate a random complex number with the
C Fortran generic CMPLX.
C-
    Z = CMPLX(RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *,' It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
    TYPE *, ' '
C+
C Compute the complex cosine value of Z.
C-
    Z_NEW = MTH$CCOS (Z)
    TYPE *, ' The complex cosine value of',z,' is',Z_NEW
    END
```

This Fortran example demonstrates the use of MTH\$CCOS, using the MTH $\$ C C O S$ entry point. The output of this program is as follows:

```
The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex cosine value of (0.8535407,0.2043402) is (0.6710899,-0.1550672)
```


MTH\$CxCOS—Cosine of a Complex Number

The Cosine of a Complex Number routine returns the cosine of a complex number.

Format

MTH\$CDCOS complex-cosine ,complex-number
MTH\$CGCOS complex-cosine ,complex-number
Each of the above formats accepts one of the floating-point complex types as input.

Returns

None.

Arguments

complex-cosine

OpenVMS usage:
complex_number
type: \quad D_floating complex, G_floating complex
access:
mechanism:
write only
by reference
Complex cosine of the complex-number. The complex cosine routines that have D-floating and G-floating complex input values write the address of the complex cosine into the complex-cosine argument. For MTH\$CDCOS, the complexcosine argument specifies a D-floating complex number. F or MTH\$CGCOS, the complex-cosine argument specifies a G-floating complex number.

complex-number

OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex access: read only
mechanism: by reference
A complex number (r, i) where r and i are floating-point numbers. The complexnumber argument is the address of this complex number. For MTH\$CDCOS, complex-number specifies a D-floating complex number. For MTH\$CGCOS, complex-number specifies a G-floating complex number.

Description

The complex cosine is calculated as follows:

$$
\text { result }=\left(\operatorname{COS}\left({ }^{r}\right) * \operatorname{COSH}\left({ }^{(}\right),-\operatorname{SIN}\left({ }^{r}\right) * \operatorname{SINH}\left({ }^{(}\right)\right)
$$

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH \$CxCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Floating- point reserved operands are reserved for future
use by Compaq.	

Example

```
C+ This Fortran example forms the complex
C cosine of a D-floating complex number using
C MTH$CDCOS and the Fortran random number
C generator RAN.
C
C Declare Z and MTH$CDCOS as complex values.
C MTH$CDCOS will return the cosine value of
C Z: Z_NEW = MTH$CDCOS (Z)
C-
    COMPLEX*16 Z,Z_NEW,MTH$CDCOS
    COMPLEX*16 DCMPLX
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the
C Fortran generic DCMPLX.
C-
    Z = DCMPLX(RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, ' '
C+
C Compute the complex cosine value of Z.
C-
    Z_NEW = MTH$CDCOS (Z)
    TYPE *,' The complex cosine value of',z,' is',z_NEW
    END
```

This Fortran example program demonstrates the use of MTH\$CxCOS, using the MTH \$CDCOS entry point. Notice the high precision of the output generated:

The complex number z is ($0.8535407185554504,0.2043401598930359$)
The complex cosine value of ($0.8535407185554504,0.2043401598930359$) is
($0.6710899028500762,-0.1550672019621661$)

MTH\$CEXP—Complex Exponential (F-Floating Value)

The Complex Exponential (F-Floating Value) routine returns the complex exponential of a complex number as an F -floating value.

Format

MTH\$CEXP complex-number
Returns

OpenVMS usage:	complex_number
type:	F_floating complex
access:	write only
mechanism:	by value

Complex exponential of the complex input number. MTH\$CEXP returns an F -floating complex number.

Argument

complex-number

OpenVMS usage:
type: \quad F_floating complex
access: read only
mechanism: by reference
Complex number whose complex exponential is to be returned. This complex number has the form (r, i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CEXP, complex-number specifies an F -floating number.

Description

The complex exponential is computed as follows:

$$
\operatorname{com}_{p} \text { lex }-e x_{p} o n e n t=\left(E X P\left(r^{r}\right) * \operatorname{COS}\left({ }^{(}\right), E X P\left({ }^{(}\right) * S I N(i)\right)
$$

See MTH\$CXEXP for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH \$CEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library: the absolute value of \mathbf{r} is greater than about 88.029 for F -floating values.

MTH\$CEXP

Example

```
C+
C of an F-floating complex number using MTH$CEXP
C and the Fortran random number generator RAN.
C
C Declare Z and MTH$CEXP as complex values. MTH$CEXP
C will return the exponential value of Z: Z_NEW = MTH$CEXP(Z)
C-
    COMPLEX Z,Z_NEW,MTH$CEXP
        COMPLEX CMPLX
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C Fortran generic CMPLX.
C-
    Z = CMPLX (RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r"
C and imaginary part "i".
C-
        TYPE *, ' The complex number z is',z
        TYPE *,' It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
        TYPE *, ' '
C+
C Compute the complex exponential value of z.
C-
    Z_NEW = MTH$CEXP(Z)
    TYPE *,' The complex exponential value of',z,' is',z_NEW
    END
```

This Fortran program demonstrates the use of MTH \$CEXP as a function call. The output generated by this example is as follows:

```
The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex exponential value of (0.8535407,0.2043402) is
    (2.299097,0.4764476)
```


MTH\$CxEXP—Complex Exponential

The Complex Exponential routine returns the complex exponential of a complex number.

Format

MTH\$CDEXP complex-exponent ,complex-number
MTH\$CGEXP complex-exponent, complex-number
Each of the above formats accepts one of the floating-point complex types as input.

Returns

None.

Arguments

complex-exponent

OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex exponential of complex-number. The complex exponential routines that have D-floating complex and G-floating complex input values write the complex-exponent into this argument. For MTH\$CDEXP, complex-exponent argument specifies a D-floating complex number. For MTH\$CGEXP, complexexponent specifies a G -floating complex number.
complex-number
OpenVMS usage:
type: \quad D_floating complex, G_floating complex
access: read only
mechanism: by reference
Complex number whose complex exponential is to be returned. This complex number has the form (r, i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CDEXP, complex-number specifies a D-floating number. For MTH\$CGEXP, complex-number specifies a G-floating number.

Description

The complex exponential is computed as follows:

$$
\text { com }_{p} \text { lex }- \text { exponent }=\left(E X P\left(r^{r}\right) * \operatorname{COS}(\dot{i}), E X P(r) * S I N(\dot{i})\right)
$$

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH\$CXEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Floating- point reserved operands are reserved for future
use by Compaq.	

Example

```
C+ This Fortran example forms the complex exponential
C of a G-floating complex number using MTH$CGEXP
C and the Fortran random number generator RAN.
C
C Declare Z and MTH$CGEXP as complex values.
C MTH$CGEXP will return the exponential value
C of Z: CALL MTH$CGEXP (Z_NEW,Z)
    COMPLEX*16 Z,Z_NEW
    COMPLEX*16 MTH$GCMPLX
    REAL*8 R,I
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the Fortran
C- generic CMPLX.
C-
    R = RAN (M)
    I = RAN (M)
    Z = MTH$GCMPLX(R,I)
    TYPE *,' The complex number z is',z
    TYPE *, ' '
C+
C Compute the complex exponential value of }Z\mathrm{ .
C-
CALL MTH\$CGEXP (Z_NEW, Z)
    TYPE *, ' The complex exponential value of',z,' is',z_NEW
    END
```

This Fortran example demonstrates how to access MTH \$CGEXP as a procedure call. Because G -floating numbers are used, this program must be compiled using the command "F ortran/G filename".

Notice the high precision of the output generated:

```
The complex number z is (0.853540718555450,0.204340159893036)
The complex exponential value of (0.853540718555450,0.204340159893036) is
(2.29909677719458,0.476447678044977)
```


MTH\$CLOG—Complex Natural Logarithm (F-Floating Value)

The Complex Natural Logarithm (F-Floating Value) routine returns the complex natural logarithm of a complex number as an F -floating value.

Format

MTH\$CLOG complex-number
Returns

$$
\begin{array}{ll}
\text { OpenVMS usage: } & \text { complex_number } \\
\text { type: } & \text { F_floating complex } \\
\text { access: } & \text { write only } \\
\text { mechanism: } & \text { by value }
\end{array}
$$

The complex natural logarithm of a complex number. MTH\$CLOG returns an F -floating complex number.

Argument

complex-number	
OpenVMS usage:	complex_number
type:	F_floating complex
access:	read only
mechanism:	by reference

Complex number whose complex natural logarithm is to be returned. This complex number has the form (r, i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CLOG, complex-number specifies an F -floating number.

Description

The complex natural logarithm is computed as follows:

$$
C L O G\left({ }^{x}\right)=\left(\operatorname{LOG}_{(}\left(\operatorname{CABS}\left(x^{x}\right)\right), \operatorname{ATAN2}\left({ }^{i}, r\right)\right)
$$

See MTH $\$$ CxLOG for the D- and G-floating point versions of this routine.

Condition Value Signaled

SS\$_ROPRAND
Reserved operand. The MTH \$CLOG routine encountered a floating-point reserved operand (a floating-point datum with a sign bit of 1 and a biased exponent of 0) due to incorrect user input. Floating-point reserved operands are reserved for use by Compaq.

Example

See Section 1.7.4 for examples of using MTH\$CLOG from VAX MACRO.

MTH\$CxLOG—Complex Natural Logarithm

The Complex Natural Logarithm routine returns the complex natural logarithm of a complex number.

Format

MTH\$CDLOG complex-natural-log ,complex-number
MTH\$CGLOG complex-natural-log ,complex-number
Each of the above formats accepts one of the floating-point complex types as input.

Returns

None.

Arguments

complex-natural-log
OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: write only
mechanism: by reference
Natural logarithm of the complex number specified by complex-number. The complex natural logarithm routines that have D-floating complex and G-floating complex input values write the address of the complex natural logarithm into complex-natural-log. For MTH\$CDLOG, the complex-natural-log argument specifies a D-floating complex number. For MTH\$CGLOG, the complex-naturallog argument specifies a G-floating complex number.
complex-number
OpenVMS usage:
type: \quad D_floating complex, G_floating complex
access: read only
mechanism: by reference
Complex number whose complex natural logarithm is to be returned. This complex number has the form (r, i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CDLOG, complex-number specifies a D-floating number. For MTH\$CGLOG, complex-number specifies a G-floating number.

Description

The complex natural logarithm is computed as follows:

$$
\operatorname{CLOG}\left({ }_{(}^{x}\right)=\left(\operatorname{LOG}_{(}\left(\operatorname{CABS}\left({ }^{x}\right)\right), \operatorname{ATAN2}\left({ }^{i}, r\right)\right)
$$

MTH\$CxLOG

Condition Value Signaled

SS\$_FLTOVF_F	Floating point overflow can occur. This condition value is signaled from MTH\$\$XABS when MTH\$CxABS overflows.
SS\$_ROPRAND	Reserved operand. The MTH encountered a floating-point reserved operand due to incorrect user input. A floating-point
	reserved operand is a floating-point datum with a
sign bit of 1 and a biased exponent of 0. Floating-	
point reserved operands are reserved for future	
use by Compaq.	

Example

```
C+ This Fortran example forms the complex logarithm of a D-floating complex
C number by using MTH$CDLOG and the Fortran random number generator RAN.
C
C Declare Z and MTH$CDLOG as complex values. Then MTH$CDLOG
c returns the logarithm of Z: CALL MTH$CDLOG(Z_NEW,Z).
C
    Declare Z, Z_LOG, MTH$DCMPLX as complex values, and R, I as real values.
    MTH$DCMPLX takes two real arguments and returns one complex number.
C
C Given complex number Z, MTH$CDLOG(Z) returns the complex natural
C logarithm of Z.
C-
    COMPLEX*16 Z,Z_NEW,MTH$DCMPLX
    REAL*8 R,I
    R = 3.1425637846746565
    I = 7.43678469887
    Z = MTH$DCMPLX(R,I)
C+
C Z is a complex number (r,i) with real part "r" and imaginary part "i".
    TYPE *, ' The complex number z is',z
    TYPE *, ' '
    CALL MTH$CDLOG (Z_NEW, Z)
    TYPE *,' The complex logarithm of',z,' is',Z_NEW
    END
```

This Fortran example program uses MTH\$CDLOG by calling it as a procedure. The output generated by this program is as follows:

[^5]
MTH\$CMPLX—Complex Number Made from F-Floating Point

The Complex Number Made from F-Floating Point routine returns a complex number from two floating-point input values.

Format

MTH\$CMPLX real-part ,imaginary-part
Returns

OpenVMS usage:	complex_number
type:	F_floating complex
access:	write only
mechanism:	by value

A complex number. MTH \$CMPLX returns an F-floating complex number.

Arguments

real-part
OpenVMS usage: floating_point
type: \quad F_floating
access: read only
mechanism: by reference
Real part of a complex number. The real-part argument is the address of a floating-point number that contains this real part, r, of (r, i). For MTH\$CMPLX, real-part specifies an F -floating number.
imaginary-part
OpenVMS usage: floating_point
type: \quad F_floating
access: read only
mechanism: by reference
Imaginary part of a complex number. The imaginary-part argument is the address of a floating-point number that contains this imaginary part, i , of (r, i).
For MTH \$CMPLX, imaginary-part specifies an F -floating number.

Description

The MTH $\$$ CMPLX routine returns a complex number from two F -floating input values. See MTH $\$ \times C M P L X$ for the D- and G-floating point versions of this routine.

Condition Value Signaled

SS\$_ROPRAND	Reserved operand. The MTH\$CMPLX routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Floating- point reserved operands are reserved for future use by Compaq.

Example

```
C+
C point complex numbers using MTH$CMPLX
C and the Fortran random number generator RAN.
C
C Declare Z and MTH$CMPLX as complex values, and R
C and I as real values. MTH$CMPLX takes two real
C F-floating point values and returns one COMPLEX*8 number.
C
C Note, since CMPLX is a generic name in Fortran, it would be
C sufficient to use CMPLX.
C CMPLX must be declared to be of type COMPLEX*8.
C
C Z = CMPLX(R,I)
C-
    COMPLEX Z,MTH$CMPLX, CMPLX
    REAL*4 R,I
    INTEGER M
    M = 1234567
    R = RAN (M)
    I = RAN (M)
    Z = MTH$CMPLX(R,I)
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The two input values are:',R,I
    TYPE *, ' The complex number z is',z
    z = CMPLX(RAN (M),RAN (M) )
    TYPE *, ' '
    TYPE *, ' Using the Fortran generic CMPLX with random R and I:'
    TYPE *, ' The complex number z is',z
    END
```

This Fortran example program demonstrates the use of MTH\$CMPLX. The output generated by this program is as follows:

```
The two input values are: 0.8535407 0.2043402
```

The complex number z is $(0.8535407,0.2043402)$
Using the Fortran generic CMPLX with random R and I:
The complex number z is $(0.5722565,0.1857677)$

MTH\$xCMPLX—Complex Number Made from D- or G-Floating Point

The Complex Number Made from D- or G-Floating Point routines return a complex number from two D - or G -floating input values.

Format

MTH\$DCMPLX complx, real-part ,imaginary-part
MTH\$GCMPLX complx, real-part ,imaginary-part
Each of the above formats accepts one of floating-point complex types as input.

Returns

None.

Arguments

complx
OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: write only
mechanism: by reference
The floating-point complex value of a complex number. The complex exponential functions that have D-floating complex and G-floating complex input values write the address of this floating-point complex value into complx. For MTH\$DCMPLX, complx specifies a D-floating complex number. For MTH\$GCMPLX, complx specifies a G-floating complex number. For MTH\$CMPLX, complx is not used.
real-part
OpenVMS usage: floating_point
type: \quad D_floating, G_floating
access: read only
mechanism: by reference
Real part of a complex number. The real-part argument is the address of a floating-point number that contains this real part, r, of (r, i). For MTH\$DCMPLX, real-part specifies a D-floating number. For MTH\$GCMPLX, real-part specifies a G -floating number.
imaginary-part
OpenVMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference
Imaginary part of a complex number. The imaginary-part argument is the address of a floating-point number that contains this imaginary part, i , of (r,i). F or MTH\$DCMPLX, imaginary-part specifies a D-floating number. For MTH $\$ G C M P L X$, imaginary-part specifies a G-floating number.

Condition Value Signaled

SS\$_ROPRAND	Reserved operand. The MTH encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Floating- point reserved operands are reserved for future
	use by Compaq.

Example

```
C+ This Fortran example forms two D-floating
C point complex numbers using MTH$CMPLX
C and the Fortran random number generator RAN.
C
C Declare Z and MTH$DCMPLX as complex values, and R
C and I as real values. MTH$DCMPLX takes two real
C D-floating point values and returns one
C COMPLEX*16 number.
C
C-
        COMPLEX*16 Z
        REAL*8 R,I
        INTEGER M
        M = 1234567
        R = RAN (M)
        I = RAN (M)
            CALL MTH$DCMPLX(Z,R,I)
C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
    TYPE *, ' The two input values are:',R,I
    TYPE *, ' The complex number z is',z
    END
```

This Fortran example demonstrates how to make a procedure call to MTH $\$ D C M P L X$. Notice the difference in the precision of the output generated.

```
The two input values are: 0.8535407185554504 0.2043401598930359
The complex number z is (0.8535407185554504,0.2043401598930359)
```


MTH\$CONJG—Conjugate of a Complex Number (F-Floating Value)

The Conjugate of a Complex Number (F-Floating Value) routine returns the complex conjugate ($\mathrm{r},-\mathrm{i}$) of a complex number (r, i) as an F -floating value.

Format

MTH\$CONJG complex-number
Returns

$$
\begin{array}{ll}
\text { OpenVMS usage: } & \text { complex_number } \\
\text { type: } & \text { F_floating complex } \\
\text { access: } & \text { write only } \\
\text { mechanism: } & \text { by value }
\end{array}
$$

Complex conjugate of a complex number. MTH\$CONJ G returns an F-floating complex number.

Argument

complex-number
OpenVMS usage: complex_number
type: \quad F_floating complex
access: read only
mechanism: by reference
A complex number (r, i), where r and i are floating-point numbers. The complexnumber argument is the address of this floating-point complex number. For MTH \$CONJ G, complex-number specifies an F -floating number.

Description

The MTH\$CONJ G routine returns the complex conjugate ($r,-i$) of a complex number (r, i) as an F -floating value.
See MTH \$xCONJ G for the descriptions of the D- and G-floating point versions of this routine.

Condition Value Signaled

SS\$_ROPRAND

Reserved operand. The MTH \$CONJ G routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xCONJG—Conjugate of a Complex Number

The Conjugate of a Complex Number routine returns the complex conjugate (r,-i) of a complex number (r,i).

Format

MTH\$DCONJG complex-conjugate ,complex-number
MTH\$GCONJG complex-conjugate ,complex-number
Each of the above formats accepts one of the floating-point complex types as input.

Returns

None.

Arguments

complex-conjugate

OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: write only
mechanism: by reference
The complex conjugate ($r,-i$) of the complex number specified by complexnumber. MTH\$DCONJ G and MTH\$GCONJ G write the address of this complex conjugate into complex-conjugate. For MTH\$DCONJ G, the complexconjugate argument specifies the address of a D-floating complex number. For MTH $\$ G C O N J$ G, the complex-conjugate argument specifies the address of a G-floating complex number.

complex-number

OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number (r, i), where r and i are floating-point numbers. The complexnumber argument is the address of this floating-point complex number.
For MTH\$DCONJ G, complex-number specifies a D-floating number. For MTH\$GCONJ G, complex-number specifies a G-floating number.

Description

The MTH $\$ x$ CONJ G routines return the complex conjugate $(r,-i$) of a complex number (r, i).

MTH\$xCONJG

Condition Value Signaled

SS\$_ROPRAND	Reserved operand. The MTH \$xCONJ G routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Floating- point reserved operands are reserved for future use by Compaq.

Example

```
C+ This Fortran example forms the complex conjugate
C of a G-floating complex number using MTH$GCONJG
C and the Fortran random number generator RAN.
C
C Declare Z, Z_NEW, and MTH$GCONJG as a complex values.
C MTH$GCONJG will return the complex conjugate
C value of Z: Z_NEW = MTH$GCONJG(Z).
C-
    COMPLEX*16 Z,Z_NEW,MTH$GCONJG
    COMPLEX*16 MTH$GCMPLX
    REAL*8 R,I,MTH$GREAL,MTH$GIMAG
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the Fortran generic CMPLX.
C-
    R = RAN (M)
    I = RAN (M)
    Z = MTH$GCMPLX(R,I)
    TYPE *, ' The complex number z is',z
    TYPE 1,MTH$GREAL(Z),MTH$GIMAG(Z)
    1 FORMAT(' with real part ',F20.16,' and imaginary part',F20.16)
    TYPE *, ' '
C+
C Compute the complex absolute value of Z.
C-
    Z_NEW = MTH$GCONJG(Z)
    TYPE *, ' The complex conjugate value of',z,' is',Z_NEW
    TYPE 1,MTH$GREAL (Z_NEW),MTH$GIMAG (Z_NEW)
    END
```

This Fortran example demonstrates how to make a function call to MTH $\$$ GCONJ G. Because G-floating numbers are used, the examples must be compiled with the statement "Fortran/G filename".
The output generated by this program is as follows:

```
The complex number z is (0.853540718555450,0.204340159893036)
    with real part 0.8535407185554504
    and imaginary part 0.2043401598930359
The complex conjugate value of
    (0.853540718555450,0.204340159893036) is
    (0.853540718555450,-0.204340159893036)
    with real part 0.8535407185554504
    and imaginary part -0.2043401598930359
```


MTH\$xCOS—Cosine of Angle Expressed in Radians

The Cosine of Angle Expressed in Radians routine returns the cosine of a given angle (in radians).

Format

MTH\$COS angle-in-radians
MTH\$DCOS angle-in-radians
MTH\$GCOS angle-in-radians
Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$COS_R4
MTH\$DCOS_R7
MTH\$GCOS_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

Cosine of the angle. MTH\$COS returns an F-floating number. MTH\$DCOS returns a D-floating number. MTH $\$ \mathrm{GCOS}$ returns a G-floating number.

Argument

angle-in-radians

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access:
read only
mechanism: by reference
The angle in radians. The angle-in-radians argument is the address of a floating-point number. For MTH $\$ C O S$, angle-in-radians is an F -floating number. For MTH\$DCOS, angle-in-radians specifies a D-floating number. For MTH $\$ G C O S$, angle-in-radians specifies a G-floating number.

Description

See MTH\$xSINCOS for the algorithm used to compute the cosine.
See MTH\$HCOS for the description of the H -floating point version of this routine.

MTH\$xCOS

Condition Value Signaled

SS\$_ROPRAND
Reserved operand. The MTH $\$ x C O S$ routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xCOSD—Cosine of Angle Expressed in Degrees

The Cosine of Angle Expressed in Degrees routine returns the cosine of a given angle (in degrees).

Format

> MTH\$COSD angle-in-degrees

MTH\$DCOSD angle-in-degrees
MTH\$GCOSD angle-in-degrees
Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$COSD_R4
MTH\$DCOSD_R7
MTH\$GCOSD_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

Cosine of the angle. MTH\$COSD returns an F-floating number. MTH\$DCOSD returns a D-floating number. MTH\$GCOSD returns a G-floating number.

Argument

angle-in-degrees

OpenVMS usage: type: access:
floating_point
F_floating, D_floating, G_floating
read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a floatingpoint number. For MTH $\$$ COSD, angle-in-degrees specifies an F -floating number. For MTH\$DCOSD, angle-in-degrees specifies a D-floating number. For MTH $\$$ GCOSD, angle-in-degrees specifies a G-floating number.

Description

See MTH $\$ \times$ SINCOS for the algorithm used to compute the cosine.
See MTH\$HCOSD for the description of the H -floating point version of this routine.

Condition Value Signaled

SS\$_ROPRAND
Reserved operand. The MTH $\$ \times$ COSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xCOSH—Hyperbolic Cosine

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value.

Format

MTH\$COSH floating-point-input-value
MTH\$DCOSH floating-point-input-value
MTH\$GCOSH floating-point-input-value
Each of the above formats accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The hyperbolic cosine of the input value floating-point-input-value. MTH $\$$ COSH returns an F-floating number. MTH\$DCOSH returns a D-floating number. MTH $\$ \mathrm{GCOSH}$ returns a G-floating number.

Argument

floating-point-input-value

OpenVMS usage:	floating_point
type:	F_floating, D_{-}floating, G_floating
access:	read only
mechanism:	by reference

The input value. The floating-point-input-value argument is the address of this input value. For MTH\$COSH, floating-point-input-value specifies an F-floating number. For MTH\$DCOSH, floating-point-input-value specifies a D-floating number. For MTH\$GCOSH, floating-point-input-value specifies a G-floating number.

Description

Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of the function is partitioned using four data-typedependent constants: $a(z), b(z)$, and $c(z)$. The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).

The values of e and f are:

\mathbf{z}	\mathbf{e}	\mathbf{f}
F	8	24
D	8	56
G	11	53

The values of the constants in terms of e and f are:

Variable	Value
$\mathrm{a}(\mathrm{z})$	$2^{(-f / 2)}$
$\mathrm{b}(\mathrm{z})$	CEILING $[(f+1) / 2 * \ln (2)]$
$\mathrm{c}(\mathrm{z})$	$\left(2^{\epsilon-1}\right) * \ln (2)$

Based on the above definitions, $\mathrm{zCOSH}(\mathrm{X})$ is computed as follows:

Value of \mathbf{X}	Value Returned
$\|\mathrm{X}\|<\mathrm{a}(\mathrm{z})$	1
$\mathrm{a}(\mathrm{z}) \leq\|\mathrm{X}\|<.25$	Computed using a power series expansion in $\|X\|^{2}$
$.25 \leq\|\mathrm{X}\|<\mathrm{b}(\mathrm{z})$	$(z E X P(\|X\|)+1 / z E X P(\|X\|)) / 2$
$\mathrm{~b}(\mathrm{z}) \leq\|\mathrm{X}\|<\mathrm{c}(\mathrm{z})$	$z E X P(\|X\|) / 2$
$\mathrm{c}(\mathrm{z}) \leq\|\mathrm{x}\|$	Overflow occurs

See MTH $\$ \mathrm{HCOSH}$ for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$xCOSH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than about yyy; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand - 0.0 unless a condition handler changes the signal mechanism vector.
The values of yyy are:
MTH $\$$ COSH-88.722
MTH $\$ \mathrm{DCOSH}-88.722$
MTH \$GCOSH - 709.782

MTH\$CSIN—Sine of a Complex Number (F-Floating Value)

The Sine of a Complex Number (F-Floating Value) routine returns the sine of a complex number (r, i) as an F -floating value.

Format

MTH\$CSIN complex-number
Returns
OpenVMS usage: complex_number
type: F_floating complex
access: write only
mechanism: by value
Complex sine of the complex number. MTH\$CSIN returns an F-floating complex number.

Argument

complex-number
OpenVMS usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference
A complex number (r, i), where r and i are floating-point numbers. The complexnumber argument is the address of this complex number. For MTH\$CSIN, complex-number specifies an F -floating complex number.

Description

The complex sine is computed as follows:

$$
\operatorname{com}_{p} l e x-\operatorname{sine}=\left(S I N(r) * \operatorname{COSH}\left({ }_{(}{ }^{(}\right), \operatorname{COS}(r) * S I N H\left({ }_{(}{ }^{i}\right)\right)
$$

See MTH\$CxSIN for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CSIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library: the absolute value of \mathbf{i} is greater than about 88.029 for F -floating values.

MTH\$CxSIN—Sine of a Complex Number

The Sine of a Complex Number routine returns the sine of a complex number (r, i).

Format

MTH\$CDSIN complex-sine ,complex-number
MTH\$CGSIN complex-sine ,complex-number
Each of the above formats accepts one of the floating-point complex types as input.

Returns

None.

Arguments

complex-sine

OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex sine of the complex number. The complex sine routines with D-floating complex and G-floating complex input values write the complex sine into this complex-sine argument. For MTH $\$$ CDSIN, complex-sine specifies a D-floating complex number. For MTH\$CGSIN, complex-sine specifies a G-floating complex number.
complex-number
OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number (r, i), where r and i are floating-point numbers. The complexnumber argument is the address of this complex number. For MTH\$CDSIN, complex-number specifies a D-floating complex number. For MTH\$CGSIN, complex-number specifies a G-floating complex number.

Description

The complex sine is computed as follows:

$$
\operatorname{com}_{p} l e x-\operatorname{sine}=\left(S I N\left(r^{r}\right) * \operatorname{COSH}(i), \operatorname{COS}\left(r^{\prime}\right) * \operatorname{SINH}(\dot{(})\right)
$$

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH \$CxSIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Floating- point reserved operands are reserved for future
use by Compaq.	

Example

```
C This Fortran example forms the complex sine of a G-floating
C complex number using MTH$CGSIN and the Fortran random number
C generator RAN.
C
C Declare Z and MTH$CGSIN as complex values. MTH$CGSIN returns
C the sine value of Z: CALL MTH$CGSIN(Z_NEW,Z)
C-
        COMPLEX*16 Z,Z_NEW
        COMPLEX*16 DCMPLX
        REAL*8 R,I
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C Fortran generic DCMPLX.
C-
    R = RAN (M)
    I = RAN (M)
    Z = DCMPLX(R,I)
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
        TYPE *, ' The complex number z is',z
    TYPE *, ' '
C+
C Compute the complex sine value of Z.
    CALL MTH$CGSIN(Z_NEW,Z)
    TYPE *,' The complex sine value of',z,' is',z_NEW
    END
```

This Fortran example demonstrates a procedure call to MTH\$CGSIN. Because this program uses G -floating numbers, it must be compiled with the statement "F ortran/G filename".

The output generated by this program is as follows:

```
The complex number z is (0.853540718555450,0.204340159893036)
The complex sine value of (0.853540718555450,0.204340159893036) is
    (0.769400835484975,0.135253340912255)
```


MTH\$CSQRT—Complex Square Root (F-Floating Value)

The Complex Square R oot (F-Floating Value) routine returns the complex square root of a complex number (r,i).

Format

MTH\$CSQRT complex-number
Returns

$$
\begin{array}{ll}
\text { OpenVMS usage: } & \text { complex_number } \\
\text { type: } & \text { F_floating complex } \\
\text { access: } & \text { write only } \\
\text { mechanism: } & \text { by value }
\end{array}
$$

The complex square root of the complex-number argument. MTH\$CSQRT returns an F -floating number.

Argument

$$
\begin{array}{ll}
\text { complex-number } & \\
\text { OpenVMS usage: } & \text { complex_number } \\
\text { type: } & \text { F_floating complex } \\
\text { access: } & \text { read only } \\
\text { mechanism: } & \text { by reference }
\end{array}
$$

Complex number (r, i). The complex-number argument contains the address of this complex number. For MTH\$CSQRT, complex-number specifies an F -floating number.

Description

The complex square root is computed as follows.
First, calculate ROOT and \mathbf{Q} using the following equations:

$$
R O O T=S Q R T\left(\left(\left(^{A B S}\left(r^{r}\right)+C A B S(r, i)\right) / 2\right)^{Q=i /(2 * R O O T}\right)
$$

Then, the complex result is given as follows:

\mathbf{r}	\mathbf{i}	CSQRT(r,i))
≥ 0	Any	(ROOT,Q)
<0	≥ 0	(Q,ROOT)
<0	<0	(-Q,-ROOT)

See MTH \$CxSQRT for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled

$$
\begin{array}{ll}
\text { SS\$_FLTOVF_F } & \text { Floating point overflow can occur. } \\
\text { SS\$_ROPRAND } & \text { Reserved operand. The MTH\$CSQRT routine } \\
\text { encountered a floating-point reserved operand } \\
\text { due to incorrect user input. A floating-point } \\
\text { reserved operand is a floating-point datum with a } \\
& \begin{array}{l}
\text { sign bit of } 1 \text { and a biased exponent of 0. Floating- } \\
\text { point reserved operands are reserved for future } \\
\text { use by Compaq. }
\end{array}
\end{array}
$$

MTH\$CxSQRT—Complex Square Root

The Complex Square Root routine returns the complex square root of a complex number (r, i).

Format

MTH\$CDSQRT complex-square-root ,complex-number
MTH\$CGSQRT complex-square-root ,complex-number
Each of the above formats accepts one of the floating-point complex types as input.

Returns

None.

Arguments

complex-square-root

OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex square root of the complex number specified by complex-number.
The complex square root routines that have D-floating complex and G-floating complex input values write the complex square root into complex-squareroot. For MTH $\$ C D S Q R T$, complex-square-root specifies a D-floating complex number. For MTH\$CGSQRT, complex-square-root specifies a G-floating complex number.
complex-number
OpenVMS usage: complex_number
type: \quad D_floating complex, G_floating complex
access: read only
mechanism: by reference
Complex number (r, i). The complex-number argument contains the address of this complex number. For MTH\$CDSQRT, complex-number specifies a Dfloating number. For MTH\$CGSQRT, complex-number specifies a G-floating number.

Description

The complex square root is computed as follows.
First, calculate ROOT and \mathbf{Q} using the following equations:

$$
\left.R O O T=S Q R T\left(\left({ }^{A B S}\left(r^{r}\right)+C A B S(r, i)\right) / 2\right)^{Q=i /(2 * R O O T}\right)
$$

Then, the complex result is given as follows:

\mathbf{r}	\mathbf{i}	$\operatorname{CSQRT}(\mathbf{r}, \mathbf{i}))$
≥ 0	any	(ROOT,Q)
<0	≥ 0	$(\mathrm{Q}, \mathrm{ROOT})$
<0	<0	$(-\mathrm{Q},-\mathrm{ROOT})$

Condition Values Signaled

SS\$_FLTOVF_F
SS\$_ROPRAND

Floating point overflow can occur.
Reserved operand. The MTH\$CxSQRT routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

Example

```
C+ This Fortran example forms the complex square root of a D-floating
C complex number using MTH$CDSQRT and the Fortran random number
C generator RAN.
C Declare Z and Z_NEW as complex values. MTH$CDSQRT returns the
C complex square root of Z: CALL MTH$CDSQRT (Z_NEW, Z).
C-
    COMPLEX*16 Z,Z_NEW
        COMPLEX*16 DCMPLX
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C Fortran generic CMPLX.
C-
    Z = DCMPLX(RAN (M),RAN (M))
C+ C
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, ' '
C+
C Compute the complex complex square root of Z.
C-
    CALL MTH$CDSQRT (Z_NEW,Z)
    TYPE *, ' The complex square root of',z,' is',Z_NEW
    END
```

This Fortran example program demonstrates a procedure call to MTH\$CDSQRT. The output generated by this program is as follows:

```
The complex number z is (0.8535407185554504,0.2043401598930359)
The complex square root of (0.8535407185554504,0.2043401598930359) is
(0.9303763973040062,0.1098158554350485)
```


MTH\$CVT_x_x—Convert One Double-Precision Value

The Convert One Double-Precision Value routines convert one double-precision value to the destination data type and return the result as a function value. MTH\$CVT_D_G converts a D-floating value to G-floating and MTH\$CVT_G_D converts a $\overline{\mathrm{G}}$-floating value to a D -floating value.

Format

$$
\begin{array}{ll}
\text { MTH\$CVT_D_G floating-point-input-val } \\
\text { MTH\$CVT_G_D } & \text { floating-point-input-val }
\end{array}
$$

Returns

OpenVMS usage: floating_point
type: G_floating, D_floating
access: write only
mechanism: by value
The converted value. MTH\$CVT_D_G returns a G-floating value. MTH\$CVT_G_ D returns a D-floating value.

Argument

floating-point-input-val

OpenVMS usage: floating_point
type: \quad D_floating, G_floating
access: read only
mechanism: by reference
The input value to be converted. The floating-point-input-val argument is the address of this input value. For MTH\$CVT_D_G, the floating-point-input-val argument specifies a D-floating number. For MTH\$CVT_G_D, the floating-point-input-val argument specifies a G-floating number.

Description

These routines are designed to function as hardware conversion instructions.
They fault on reserved operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is detected and floating-point underflow is enabled, an error is signaled.

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH\$CVT_x_x routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Floating- point reserved operands are reserved for future use by Compaq.
MTH\$_FLOOVEMAT	Floating-point overflow in Math Library.
MTH\$_FLOUNDMAT	Floating-point underflow in Math Library.

MTH\$CVT_xA_xA—Convert an Array of Double-Precision Values

The Convert an Array of Double-Precision Values routines convert a contiguous array of doubleprecision values to the destination data type and return the results as an array. MTH\$CVT_DA_GA converts D-floating values to G-floating and MTH\$CVT_GA_DA converts G-floating values to D-floating.

Format

MTH\$CVT_DA_GA floating-point-input-array ,floating-point-dest-array [,array-size]
MTH\$CVT_GA_DA floating-point-input-array ,floating-point-dest-array [,array-size]

Returns

MTH\$CVT_DA_GA and MTH\$CVT_GA_DA return the address of the output array to the floating-point-dest-array argument.

Arguments

floating-point-input-array

OpenVMS usage: floating_point
type: \quad D_floating, G_floating
access: read only
mechanism: by reference, array reference
Input array of values to be converted. The floating-point-input-array argument is the address of an array of floating-point numbers. For MTH\$CVT_DA_GA, floating-point-input-array specifies an array of D-floating numbers. For MTH\$CVT_GA_DA, floating-point-input-array specifies an array of G-floating numbers.
floating-point-dest-array
OpenVMS usage: floating_point
type: \quad G_floating, D_floating
access: write only
mechanism: by reference, array reference
Output array of converted values. The floating-point-dest-array argument is the address of an array of floating-point numbers. For MTH\$CVT_DA GA, floating-point-dest-array specifies an array of G-floating numbers. For MTH\$CVT_GA_DA, floating-point-dest-array specifies an array of D-floating numbers.
array-size
OpenVMS usage: longword_signed
type: \quad longword ${ }^{\text {(signed) }}$
access: read only
mechanism: by reference
Number of array elements to be converted. The default value is 1. The arraysize argument is the address of a longword containing this number of elements.

Description

These routines are designed to function as hardware conversion instructions. They fault on reserved operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is detected and floating-point underflow is enabled, an error is signaled.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT
MTH\$_FLOUNDMAT

Reserved operand. The MTH\$CVT_xA_xA routine encountered a floating-point reserved operand due to incorrect user input. A floatingpoint reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floating-point reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library.
Floating-point underflow in Math Library.

MTH\$xEXP—Exponential

The Exponential routine returns the exponential of the input value.

Format

MTH\$EXP floating-point-input-value
MTH\$DEXP floating-point-input-value
MTH\$GEXP floating-point-input-value
Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$EXP_R4
MTH\$DEXP_R6
MTH\$GEXP_R6
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The exponential of floating-point-input-value. MTH\$EXP returns an F-floating number. MTH\$DEXP returns a D-floating number. MTH\$GEXP returns a G-floating number.

Argument

floating-point-input-value
OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access:
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$EXP, floating-point-input-value specifies an F -floating number. F or MTH\$DEXP, floating-point-input-value specifies a D-floating number. For MTH\$GEXP, floating-point-input-value specifies a G-floating number.

Description

The exponential of x is computed as:

Value of x	Value Returned
$X>c(z)$	Overflow occurs
$X \leq-c(z)$	0
$\|X\|<2^{-\left(f_{f}+1\right)}$	1
Otherwise	$2^{Y} * 2^{U} * 2^{W}$

where: $Y=\operatorname{INTEGER}(x * \ln 2(E)) V=F R A C(x * \ln 2(E)) * 16$ $U=I N T E G E R(V) / 16 W=\operatorname{FRAC}(V) / 162^{W}=$ polynomial approximation of degree 4, 8 , or 8 for $z=F, D$, or G.

See also MTH $\$ \times C O S H$ for definitions of f and $c(z)$.
See MTH\$HEXP for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$xEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library:
floating-point-input-value is greater than yyy; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand - 0.0 unless a condition handler changes the signal mechanism vector.
The values of yyy are approximately:

$$
\begin{aligned}
& \text { MTH\$EXP-88.029 } \\
& \text { MTH\$DEXP-88.029 } \\
& \text { MTH\$GEXP-709.089 }
\end{aligned}
$$

Floating-point underflow in Math Library: floating-point-input-value is less than or equal to yyy and the caller (CALL or J SB) has set hardware floating-point underflow enable. The result is set to 0.0. If the caller has not enabled floating-point underflow (the default), a result of 0.0 is returned but no error is signaled. The values of yyy are approximately:

MTH\$EXP- - 88.722
MTH\$DEXP--88.722
MTH\$GEXP - - 709.774

MTH\$xEXP

Example

```
IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING_POINT.
*
* Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
O1 FLOAT_PT COMP-1.
01 ANSWER_F COMP-1.
01 DOUBLE_PT COMP-2.
01 ANSWER_D COMP-2.
PROCEDURE DIVISION.
PO.
MOVE 12.34 TO FLOAT_PT.
MOVE 3.456 TO DOUBLE_PT.
    CALL "MTH$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F.
    DISPLAY " MTH$EXP of ", FLOAT_PT CONVERSION, " is ",
                                    ANSWER_F CONVERSION.
    CALL "MTH$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
    DISPLAY " MTH$DEXP of ", DOUBLE_PT CONVERSION, " is ",
        ANSWER_D CONVERSION .
    STOP RUN.
```

This sample program demonstrates calls to MTH \$E XP and MTH \$DEXP from COBOL.

The output generated by this program is as follows:

```
MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+00 is
3.168996280537917E+01
```


MTH\$HACOS—Arc Cosine of Angle Expressed in Radians (H-Floating Value)

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians (H -Floating Value) routine returns that angle (in radians) in H -floating-point precision.

Format

MTH\$HACOS h-radians ,cosine

Corresponding JSB Entry Point

MTH\$HACOS_R8

Returns

None.

Arguments

h-radians
OpenVMS usage: floating_point type:
access:
mechanism: by reference
Angle (in radians) whose cosine is specified by cosine. The h-radians argument is the address of an H-floating number that is this angle. MTH $\$$ HACOS writes the address of the angle into \mathbf{h}-radians.
cosine
OpenVMS usage: floating_point
type:
access:
H_floating
read only
mechanism: by reference
The cosine of the angle whose value (in radians) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1 . For MTH $\$$ HACOS, cosine specifies an H -floating number.

MTH\$HACOS

Description

The angle in radians whose cosine is X is computed as:

Value of Cosine	Value Returned
0	$\pi / 2$
1	0
-1	π
$0<X<1$	$z A T A N ~\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$-1<X<0$	$z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)+\pi$
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$HACOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HACOSD—Arc Cosine of Angle Expressed in Degrees (H-Floating Value)

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees (H -Floating Value) routine returns that angle (in degrees) as an H -floating value.

Format

MTH\$HACOSD h-degrees, cosine
Corresponding JSB Entry Point
MTH\$HACOSD_R8

Returns

None.

Arguments

h-degrees

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: write only
mechanism: by reference
Angle (in degrees) whose cosine is specified by cosine. The \mathbf{h}-degrees argument is the address of an H -floating number that is this angle. MTH\$HACOSD writes the address of the angle into \mathbf{h}-degrees.

cosine

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access:
read only
mechanism: by reference
Cosine of the angle whose value (in degrees) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1 . For MTH\$HACOSD, cosine specifies an H -floating number.

MTH\$HACOSD

Description

The angle in degrees whose cosine is X is computed as:

Value of Cosine	Angle Returned
0	90
1	0
-1	180
$0<X<1$	$z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAND and zSQRT
	are the Math Library arc tangent and square root routines,
	respectively, of the appropriate data type
$-1<X<0$	$z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)+180$
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$HACOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HASIN—Arc Sine in Radians (H-Floating Value)

Given the sine of an angle, the Arc Sine in Radians (H-Floating Value) routine returns that angle (in radians) as an H -floating value.

Format

MTH\$HASIN h-radians, sine

Corresponding JSB Entry Point
MTH\$HASIN_R8
Returns
None.

Arguments

h-radians

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: write only
mechanism: by reference
Angle (in radians) whose sine is specified by sine. The \mathbf{h}-radians argument is the address of an H -floating number that is this angle. MTH\$HASIN writes the address of the angle into \mathbf{h}-radians.

sine

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
The sine of the angle whose value (in radians) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1 . For MTH\$HASIN, sine specifies an H -floating number.

Description

The angle in radians whose sine is X is computed as:

Value of Sine	Angle Returned
0	0
1	$\pi / 2$
-1	$-\pi / 2$
$0<\|X\|<1$	$z A T A N\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

MTH\$HASIN

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$HASIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HASIND—Arc Sine in Degrees (H-Floating Value)

Given the sine of an angle, the Arc Sine in Degrees (H-Floating Value) routine returns that angle (in degrees) as an H -floating value.

Format

> MTH\$HASIND h-degrees, sine

Corresponding JSB Entry Point
MTH\$HASIND_R8
Returns
None.

Arguments

h-degrees

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: write only
mechanism: by reference
Angle (in degrees) whose sine is specified by sine. The \mathbf{h}-degrees argument is the address of an H -floating number that is this angle. MTH\$HASIND writes the address of the angle into \mathbf{h}-degrees.

sine

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1 . For MTH $\$$ HASIND, sine specifies an H -floating number.

Description

The angle in degrees whose sine is X is computed as:

Value of Sine	Value Returned
0	0
1	90
-1	-90
$0<\|X\|<1$	$z A T A N D\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAND and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$HASIND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HATAN—Arc Tangent in Radians (H-Floating Value)

Given the tangent of an angle, the Arc Tangent in Radians (H-Floating Value) routine returns that angle (in radians) as an H -floating value.

Format

MTH\$HATAN h-radians,tangent

Corresponding JSB Entry Point
MTH\$HATAN_R8
Returns
None.

Arguments

h-radians

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: write only
mechanism: by reference
Angle (in radians) whose tangent is specified by tangent. The h-radians argument is the address of an H -floating number that is this angle.
MTH \$HATAN writes the address of the angle into \mathbf{h}-radians.
tangent
OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$HATAN, tangent specifies an H -floating number.

Description

In radians, the computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan \left(X_{)}\right)=X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots \\
& \arctan (X)=X+X * Q\left(X^{2}\right), \\
& \quad \text { where } Q(Y)=-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \quad \text { where } P(Y)=1-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan \left(X_{)}\right)=\pi / 2-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X)) \\
& \quad \text { for any real } A
\end{aligned}
$$

MTH\$HATAN

The angle in radians whose tangent is X is computed as:

Value of \boldsymbol{X}	Angle Returned
$0 \leq X \leq 3 / 32$	$X+X * Q\left(X^{2}\right)$
$3 / 32<X \leq 11$	$A T A N(A)+V *\left(P\left(V^{2}\right)\right)$, where A and ATAN (A) are chosen by table lookup and $V=(X-A) /(1+A * X)$ $11<X$ $X / 2-W *\left(P\left(W^{2}\right)\right)$ where $W=1 / X$
	$-z A T A N(\|X\|)$

Condition Value Signaled

SS\$_ROPRAND

Reserved operand. The MTH\$HATAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$HATAND—Arc Tangent in Degrees (H-Floating Value)

Given the tangent of an angle, the Arc Tangent in Degrees (H-Floating Value) routine returns that angle (in degrees) as an H -floating value.

Format

MTH\$HATAND h-degrees, tangent

Corresponding JSB Entry Point
MTH\$HATAND_R8
Returns
None.

Arguments

h-degrees

OpenVMS usage: floating_point
type: \quad H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose tangent is specified by tangent. The \mathbf{h}-degrees argument is the address of an H -floating number that is this angle. MTH $\$$ HATAND writes the address of the angle into \mathbf{h}-degrees.

tangent

OpenVMS usage: floating_point
type: \quad H_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$HATAND, tangent specifies an H -floating number.

Description

The computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=180 / \pi *\left(X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots\right) \\
& \arctan (X)=64 * X+X * Q\left(X^{2}\right), \\
& \text { where } Q(Y)=180 / \pi *[(1-64 * \pi / 180)-Y / 3+ \\
& \left.Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \ldots\right] \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \text { where } P(Y)=180 / \pi *\left[1-Y / 3+Y^{2} / 5-Y^{3} / 7+\right. \\
& \left.Y^{4} / 9 \ldots\right] \\
& \arctan (X)=90-\arctan (1 / X) \\
& \arctan \left(X^{X}\right)=\arctan (A)+\arctan ((X-A) /(1+A * X))
\end{aligned}
$$

The angle in degrees whose tangent is X is computed as:
$\left.\begin{array}{ll}\hline \text { Tangent } & \text { Angle Returned } \\ \hline X \leq 3 / 32 & 64 * X+X * Q\left(X^{2}\right) \\ 3 / 32<X \leq 11 & \begin{array}{l}A T A N D(A)+V * P\left(V^{2}\right), \text { where A and ATAND(A) are } \\ \text { chosen by table lookup and } V=(X-A) /(1+A * X) \\ 11<X\end{array} \\ X<0 & 90-W *\left(P\left(W^{2}\right), \text { where } W=1 / X\right.\end{array}\right]$

Condition Value Signaled

SS\$_ROPRAND

Reserved operand. The MTH\$HATAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$HATAN2—Arc Tangent in Radians (H-Floating Value) with Two Arguments

Given sine and cosine, the Arc Tangent in Radians (H-Floating Value) with Two Arguments routine returns the angle (in radians) as an H -floating value whose tangent is given by the quotient of sine and cosine (sine/cosine).

Format

MTH\$HATAN2 h-radians ,sine ,cosine
Returns
None.

Arguments

h-radians
 OpenVMS usage: floating_point
 type: H_floating
 access: write only
 mechanism: by reference

Angle (in radians) whose tangent is specified by (sine/cosine). The \mathbf{h} radians argument is the address of an H -floating number that is this angle. MTH \$HATAN 2 writes the address of the angle into \mathbf{h}-radians.

```
sine
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
```

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$HATAN2, sine specifies an H-floating number.

```
cosine
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
```

Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$HATAN2, cosine specifies an H -floating number.

Description

The angle in radians whose tangent is Y / X is computed as follows, where f is defined in the description of MTH $\$ z C O S H$:

Value of Input Arguments	Angle Returned
$X=0$ or $Y / X>2^{\left(f^{+1)}\right.}$	$\pi / 2 *\left(s i i_{g} n Y\right)$
$X>0$ and $Y / X \leq 2^{\left(f^{+1)}\right.}$	$z A T A N(Y / X)$
$X<0$ and $Y / X \leq 2^{\left(f^{+1)}\right.}$	$\pi *\left(s i_{g} n Y\right)+z A T A N(Y / X)$

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH \$HATAN2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HATAND2—Arc Tangent in Degrees (H-Floating Value) with Two Arguments

Given sine and cosine, the Arc Tangent in Degrees (H-Floating Value) with Two Arguments routine returns the angle (in degrees) whose tangent is given by the quotient of sine and cosine (sine/cosine).

Format

MTH\$HATAND2 h-degrees ,sine ,cosine

Returns

None.

Arguments

h-degrees

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose tangent is specified by (sine/cosine). The hdegrees argument is the address of an H -floating number that is this angle. MTH\$HATAND2 writes the address of the angle into \mathbf{h}-degrees.

```
sine
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
```

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$HATAND2, sine specifies an H-floating number.

cosine

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access:
read only
mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$HATAND2, cosine specifies an H-floating number.

MTH\$HATAND2

Description

The angle in degrees whose tangent is Y / X is computed below. The value of f is defined in the description of MTH $\$ z C O S H$.

Value of Input Arguments	Angle Returned
$X=0$ or $Y / X>2^{(f+1)}$	$90 *\left(s i_{g} n Y\right)$
$X>0$ and $Y / X \leq 2^{\left(f^{+1)}\right.}$	$z A T A N D(Y / X)$
$X<0$ and $Y / X \leq 2^{(f+1)}$	$180 *\left(s i_{g} n Y\right)+z A T A N D(Y / X)$

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$HATAND2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HATANH—Hyperbolic Arc Tangent (H-Floating Value)

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent (H-Floating Value) routine returns the hyperbolic arc tangent (as an H -floating value) of that angle.

Format
MTH\$HATANH h-atanh ,hyperbolic-tangent
Returns
None.

Arguments

h-atanh

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic arc tangent of the hyperbolic tangent specified by hyperbolictangent. The \mathbf{h}-atanh argument is the address of an H -floating number that is this hyperbolic arc tangent. MTH\$HATANH writes the address of the hyperbolic arc tangent into \mathbf{h}-atanh.
hyperbolic-tangent
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point number that is this hyperbolic tangent. For MTH \$HATANH, hyperbolic-tangent specifies an H -floating number.

Description

The hyperbolic arc tangent function is computed as follows:

Value of x	Value Returned
$\|X\|<1$	$z A T A N H(X)=z L O G((X+1) /(X-1)) / 2$
$\|X\| \geq 1$	An invalid argument is signaled

Condition Values Signaled

SS\$_ROPRAND

MTH\$_INVARGMAT
Reserved operand. The MTH\$HATANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Invalid argument: $|X| \geq 1$. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector $\mathrm{CHF} \$ \mathrm{~L}$ _ MCH_{-} SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_ SAVRO/R1.

MTH\$HCOS—Cosine of Angle Expressed in Radians (H-Floating Value)

The Cosine of Angle Expressed in Radians (H-Floating Value) routine returns the cosine of a given angle (in radians) as an H -floating value.

Format

MTH\$HCOS h-cosine, angle-in-radians
Corresponding JSB Entry Point
MTH\$HCOS_R5
Returns
None.

Arguments

h-cosine
OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-radians. The \mathbf{h}-cosine argument is the address of an H -floating number that is this cosine. MTH\$HCOS writes the address of the cosine into \mathbf{h}-cosine.
angle-in-radians
OpenVMS usage: floating_point
type: H_floating
access:
read only
mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of a floatingpoint number. For MTH\$HCOS, angle-in-radians specifies an H-floating number.

Description

See MTH $\$ x$ SINCOS for the algorithm used to compute the cosine.
Condition Value Signaled

SS\$_ROPRAND

Reserved operand. The MTH \$HCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$HCOSD—Cosine of Angle Expressed in Degrees (H-Floating Value)

The Cosine of Angle Expressed in Degrees (H-Floating Value) routine returns the cosine of a given angle (in degrees) as an H -floating value.

Format

MTH\$HCOSD h-cosine ,angle-in-degrees

Corresponding JSB Entry Point

MTH\$HCOSD_R5

Returns

None.

Arguments

h-cosine
OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-degrees. The \mathbf{h}-cosine argument is the address of an H -floating number that is this cosine. MTH\$HCOSD writes this cosine into \mathbf{h}-cosine.
angle-in-degrees
OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access:
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a floatingpoint number. For MTH $\$$ HCOSD, angle-in-degrees specifies an H -floating number.

Description

See the MTH $\$$ SINCOSD routine for the algorithm used to compute the cosine.
Condition Value Signaled
SS\$_ROPRAND
Reserved operand. The MTH\$HCOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$HCOSH—Hyperbolic Cosine (H-Floating Value)

The Hyperbolic Cosine (H-Floating Value) routine returns the hyperbolic cosine of the input value as an H -floating value.

Format

MTH\$HCOSH h-cosh ,floating-point-input-value
Returns
None.

Arguments

h-cosh

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic cosine of the input value specified by floating-point-input-value.
The \mathbf{h}-cosh argument is the address of an H-floating number that is this hyperbolic cosine. MTH $\$ \mathrm{HCOSH}$ writes the address of the hyperbolic cosine into h-cosh.

floating-point-input-value

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of this input value. For MTH\$HCOSH, floating-point-input-value specifies an H -floating number.

Description

Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of the function is partitioned using four data-typedependent constants: $a(z), b(z)$, and $c(z)$. The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).

The values of e and f are as follows:

$$
e=15 f=113
$$

The values of the constants in terms of e and f are:

Variable	Value
$\mathrm{a}(\mathrm{z})$	$2^{-f / 2}$
$\mathrm{~b}(\mathrm{z})$	$(f+1) / 2 * \ln (2)$

Variable	Value
$C(z)$	$2^{\epsilon-1} * \ln (2)$

Based on the above definitions, $\mathrm{zCOSH}(\mathrm{X})$ is computed as follows:

Value of X	Value Returned
$\|X\|<a(z)$	1
$a(z) \leq\|X\|<.25$	Computed using a power series expansion in $\|X\|^{2}$
$.25 \leq\|X\|<b(z)$	$(z E X P(\|X\|)+1 / z E X P(\|X\|)) / 2$
${ }^{2}(z) \leq\|X\|<c(z)$	$z E X P(\|X\|) / 2$
$c(z) \leq\|X\|$	Overflow occurs

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH $\$$ HCOSH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than about yyy; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand - 0.0 unless a condition handler changes the signal mechanism vector. The value of yyy is 11356.523 .

MTH\$HEXP—Exponential (H-Floating Value)

The Exponential (H-Floating Value) routine returns the exponential of the input value as an H -floating value.

Format

MTH\$HEXP h-exp ,floating-point-input-value
Corresponding JSB Entry Point
MTH\$HEXP_R6
Returns
None.

Arguments

h-exp

OpenVMS usage: floating_point
type: $\quad H_{2}$ floating
access: write only
mechanism: by reference
Exponential of the input value specified by floating-point-input-value. The \mathbf{h}-exp argument is the address of an H -floating number that is this exponential. MTH $\$$ HEXP writes the address of the exponential into \mathbf{h}-exp.

floating-point-input-value

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$HEXP, floating-point-input-value specifies an H -floating number.

Description

The exponential of x is computed as:

Value of x	Value Returned
$x>c(z)$	Overflow occurs
$x \leq-c(z)$	0
$\|x\|<2^{-(}\left(f^{+1)}\right.$	1
Otherwise	$2^{Y} * 2^{U} * 2^{W}$
where: $Y=I N T E G E R(x * \ln 2(E)) V=F R A C(x * \ln 2(E)) * 16$	
$U=I N T E G E R(V) / 16 W=F R A C(V) / 162^{W}=$ polynomial approximation of	
degree 14 for $\mathrm{z}=\mathrm{H}$.	

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH \$HEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
MTH\$_FLOOVEMAT	Floating-point overflow in Math Library: floating-point-input-value is greater than yyy; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector. The value of yyy is approximately 11355.830 for MTH\$HEXP.
MTH\$_FLOUNDMAT	Floating-point underflow in Math Library: floating-point-input-value is less than or equal to yyy and the caller (CALL or J SB) has set hardware floating-point underflow enable. The result is set to 0.0 . If the caller has not enabled floating-point underflow (the default), a result of 0.0 is returned but no error is signaled. The value of yyy is approximately -11356.523 for MTH\$HEXP.

MTH\$HLOG—Natural Logarithm (H-Floating Value)

The Natural Logarithm (H-Floating Value) routine returns the natural (base e) logarithm of the input argument as an H -floating value.

Format

MTH\$HLOG h-natlog,floating-point-input-value

Corresponding JSB Entry Point
MTH\$HLOG_R8
Returns
None.

Arguments

h-natlog

OpenVMS usage: floating_point
type: $\quad H_{2}$ floating
access: write only
mechanism: by reference
Natural logarithm of floating-point-input-value. The h-natlog argument is the address of an H -floating number that is this natural logarithm. MTH\$HLOG writes the address of this natural logarithm into h-natlog.

floating-point-input-value

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. F or MTH\$HLOG, floating-point-inputvalue specifies an H -floating number.

Description

Computation of the natural logarithm routine is based on the following:

1. $\ln (X * Y)=\ln (X)+\ln (Y)$
2. $\left.\ln \binom{1+X}{$ for $\mid}=X \right\rvert\,<1-X^{2} / 2+X^{3} / 3-X^{4} / 4 \ldots$
3. $\ln (X)=\ln (A)+2 *\left(V+V^{3} / 3+V^{5} / 5+V^{7} / 7 \ldots\right)$ where $V=(X-A) /(X+A), A>0$, and $\left.{ }_{p(y)}=2 *\left(1+y / 3+y^{2}\right) / 5 \ldots\right)$
For $x=2^{n} * f$, where n is an integer and f is in the interval of 0.5 to 1 , define the following quantities:

$$
\begin{gathered}
\text { If } n \geq 1, \text { then } N=n-1 \text { and } F=2 f \\
\text { If } n \leq 0, \text { then } N=n \text { and } F=f
\end{gathered}
$$

From (1) it follows that:
4. $\ln \left(X_{)}=N * \ln \left({ }^{2}\right)+\ln \left({ }^{F}\right)\right.$

Based on the previous relationships, zLOG is computed as follows:

1. If $|F-1|<2^{-5}$, $z L O G\left(X_{W}\right)=N * z L O G\left({ }^{2}\right)+W+W * p\left({ }^{W}\right)$, where $\mathrm{W}=\mathrm{F}-1$.
2. Otherwise,
$z L O G(X)=N * z L O G(2)+z L O G(A)+V * p\left(V^{2}\right)$,
where $V=(F-A)(F+A)$ and A and zLOG(A) are obtained by table lookup.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$HLOG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF $\$ \mathrm{~L}, \mathrm{MCH}$ _SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HLOG2—Base 2 Logarithm (H-Floating Value)

The Base 2 Logarithm (H-Floating Value) routine returns the base 2 logarithm of the input value specified by floating-point-input-value as an H -floating value.

Format

MTH\$HLOG2 h-log2 ,floating-point-input-value
Returns
None.
Arguments

h-log2

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Base 2 logarithm of floating-point-input-value. The h-log2 argument is the address of an H -floating number that is this base 2 logarithm. MTH $\$ \mathrm{HLOG} 2$ writes the address of this logarithm into \mathbf{h}-log2.

floating-point-input-value

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this input value. For MTH\$HLOG2, floating-point-input-value specifies an H -floating number.

Description

The base 2 logarithm function is computed as follows:

$$
z \operatorname{LOG} 2(X)=z \operatorname{LOG} 2(E) * z \operatorname{LOG}(X)
$$

Condition Values Signaled

Reserved operand. The MTH\$HLOG2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HLOG10—Common Logarithm (H-Floating Value)

The Common Logarithm (H-Floating Value) routine returns the common (base 10) logarithm of the input argument as an H -floating value.

Format

MTH\$HLOG10 h-log10,floating-point-input-value

Corresponding JSB Entry Point
MTH\$HLOG10_R8
Returns
None.

Arguments

$h-\log 10$

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: write only
mechanism: by reference
Common logarithm of the input value specified by floating-point-input-value.
The \mathbf{h}-log10 argument is the address of an H -floating number that is this common logarithm. MTH $\$$ LOG10 writes the address of the common logarithm into \mathbf{h}-log10.

floating-point-input-value

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$HLOG10, floating-point-input-value specifies an H -floating number.

Description

The common logarithm function is computed as follows:

$$
z \operatorname{LOG} 10\left(X_{)}=z \operatorname{LOG10}\left({ }^{E}\right) * z \operatorname{LOG}\left(X_{)}\right)\right.
$$

Condition Values Signaled

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$HLOG10 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HSIN—Sine of Angle Expressed in Radians (H-Floating Value)

The Sine of Angle Expressed in Radians (H-Floating Value) routine returns the sine of a given angle (in radians) as an H -floating value.

Format

MTH\$HSIN h-sine, angle-in-radians

Corresponding JSB Entry Point
MTH\$HSIN_R5
Returns
None.

Arguments

h-sine
OpenVMS usage: floating_point
type: $\quad H_{2}$ floating
access: write only
mechanism: by reference
The sine of the angle specified by angle-in-radians. The \mathbf{h}-sine argument is the address of an H -floating number that is this sine. MTH $\$ \mathrm{HSIN}$ writes the address of the sine into \mathbf{h}-sine.
angle-in-radians
OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of a floatingpoint number that is this angle. For MTH\$HSIN, angle-in-radians specifies an H -floating number.

Description

See MTH\$xSINCOS for the algorithm used to compute this sine.
Condition Value Signaled
SS\$_ROPRAND
Reserved operand. The MTH $\$ \mathrm{HSIN}$ routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$HSIND—Sine of Angle Expressed in Degrees (H-Floating Value)

The Sine of Angle Expressed in Degrees (H-Floating Value) routine returns the sine of a given angle (in degrees) as an H -floating value.

Format

MTH\$HSIND h-sine, angle-in-degrees
Corresponding JSB Entry Point
MTH\$HSIND_R5

Returns

None.

Arguments

h-sine

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Sine of the angle specified by angle-in-degrees. MTH\$HSIND writes into h -sine the address of an H -floating number that is this sine.
angle-in-degrees
OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of an H -floating number that is this angle.

Description

See MTH\$xSINCOSD for the algorithm used to compute the sine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$HSIND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point underflow in Math Library. The absolute value of the input angle is less than $180 / \pi * 2^{-m}$ (where $\mathrm{m}=16,384$ for H -floating).

MTH\$HSINH—Hyperbolic Sine (H-Floating Value)

The Hyperbolic Sine (H-Floating Value) routine returns the hyperbolic sine of the input value specified by floating-point-input-value as an H -floating value.

Format

MTH\$HSINH h-sinh ,floating-point-input-value
Returns
None.
Arguments
h-sinh

OpenVMS usage:	floating_point
type:	H_floating
access:	write only
mechanism:	by reference

Hyperbolic sine of the input value specified by floating-point-input-value. The \mathbf{h}-sinh argument is the address of an H -floating number that is this hyperbolic sine. MTH\$HSINH writes the address of the hyperbolic sine into \mathbf{h}-sinh.

floating-point-input-value

OpenVMS usage: floating_point
type: \quad H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$HSINH, floating-point-input-value specifies an H -floating number.

Description

Computation of the hyperbolic sine function depends on the magnitude of the input argument. The range of the function is partitioned using three data type dependent constants: $\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})$, and $\mathrm{c}(\mathrm{z})$. The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).
The values of e and f are as follows:

$$
\begin{gathered}
e=15 \\
f=113
\end{gathered}
$$

The values of the constants in terms of e and f are:

Variable	Value
$a(z)$	$2^{(-f / 2)}$
$b(z)$	$(f+1) / 2 * \ln (2)$
$c(z)$	$2^{\epsilon-1} * \ln (2)$

Based on the above definitions, $\mathrm{zSINH}(\mathrm{X})$ is computed as follows:

Value of \mathbf{X}	Value Returned
$\|X\|<a(z)$	X
$a(z) \leq\|X\|<1.0$	zSINH (X) is computed using a power series expansion in
	$\|X\|^{2}$
$1.0 \leq\|X\|<b(z)$	$(z E X P(X)-z E X P(-X)) / 2$
$b(z) \leq\|X\|<c(z)$	SIGN $(X) * z E X P(\|X\|) / 2$
$c^{c}(z) \leq\|X\|$	Overflow occurs

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$HSINH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than yyy. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1. The value of yyy is approximately 11356.523 .

MTH\$HSQRT—Square Root (H-Floating Value)

The Square Root (H-Floating Value) routine returns the square root of the input value floating-point-input-value as an H -floating value.

Format

MTH\$HSQRT h-sqrt, floating-point-input-value

Corresponding JSB Entry Point
MTH\$HSQRT_R8
Returns
None.

Arguments

h-sqrt

OpenVMS usage: floating_point
type: $\quad H_{2}$ floating
access: write only
mechanism: by reference
Square root of the input value specified by floating-point-input-value. The h-sqrt argument is the address of an H -floating number that is this square root. MTH $\$$ HSQRT writes the address of the square root into \mathbf{h}-sqrt.

floating-point-input-value

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
Input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$HSQRT, floating-point-input-value specifies an H -floating number.

Description

The square root of X is computed as follows:
If $X<0$, an error is signaled.
Let $X=2^{K} * F$
where:
K is the exponential part of the floating-point data
F is the fractional part of the floating-point data
If K is even:
$X=2^{(2 * P)} * F$,
$z S Q R T\left(X_{)}=2^{P} * z S Q R T(F)\right.$,
$1 / 2 \leq F<1$, where $\mathrm{P}=\mathrm{K} / 2$

MTH\$HSQRT

If K is odd:

$$
\begin{aligned}
& X=2^{(2 * P+1) * F=2^{(2 * P+2)} *(F / 2)} \begin{array}{l}
z S Q R T(X)=2^{(P+1)} * z S Q R T \\
1 / 4 \leq F / 2<1 / 2, \text { where }=(\mathrm{K}-1) / 2
\end{array},
\end{aligned}
$$

Let $F^{\prime}=A * F+B$, when K is even:
A = 0.95F 6198 (hex)
B $=0.6 \mathrm{BA} 5918$ (hex)
Let $F^{\prime}=A *(F / 2)+B$, when K is odd:
A = 0.D413CCC (hex)
$B=0.4 C 1 E 248$ (hex)
Let $K^{\prime}=P$, when K is even
Let $K^{\prime}=P+1$, when K is odd
Let $Y[0]=2^{K^{\prime}} * F^{\prime}$ be a straight line approximation within the given interval using coefficients A and B , which minimize the absolute error at the midpoint and endpoint.
Starting with $\mathrm{Y}[0]$, n Newton-Raphson iterations are performed:

$$
Y[n+1]=1 / 2 *(Y[n]+X / Y[n])
$$

where $\mathrm{n}=5$ for H -floating.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_SQUROONEG

Reserved operand. The MTH \$HSQRT routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Square root of negative number. Argument floating-point-input-value is less than 0.0 . LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$HTAN—Tangent of Angle Expressed in Radians (H-Floating Value)

The Tangent of Angle Expressed in Radians (H-Floating Value) routine returns the tangent of a given angle (in radians) as an H -floating value.

Format

MTH\$HTAN h-tan ,angle-in-radians
Corresponding JSB Entry Point
MTH\$HTAN_R5

Returns

None.

Arguments

h-tan

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: write only
mechanism: by reference
Tangent of the angle specified by angle-in-radians. The \mathbf{h}-tan argument is the address of an H -floating number that is this tangent. MTH\$HTAN writes the address of the tangent into \mathbf{h}-tan.

angle-in-radians

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access:
read only
mechanism: by reference
The input angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$HTAN, angle-in-radians specifies an H -floating number.

Description

When the input argument is expressed in radians, the tangent function is computed as follows:

1. If $|X|<2^{(-f / 2)}$, then $z \operatorname{TAN}(X)=X$ (see the section on $\mathrm{MTH} \$ z C O S H$ for the definition of f)
2. Otherwise, call MTH $\$ z \operatorname{SINCOS}$ to obtain $\mathrm{zSIN}(\mathrm{X})$ and $\mathrm{zCOS}(\mathrm{X})$; then
a. If $z \operatorname{COS}(X)=0$, signal overflow
b. Otherwise, $z \operatorname{TAN}\left(X_{)}=z \operatorname{SIN}(X) / z \operatorname{COS}\left(X^{X}\right)\right.$

MTH\$HTAN

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$HTAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library.

MTH\$HTAND—Tangent of Angle Expressed in Degrees (H-Floating Value)

The Tangent of Angle Expressed in Degrees (H-Floating Value) routine returns the tangent of a given angle (in degrees) as an H -floating value.

Format

MTH\$HTAND h-tan, angle-in-degrees

Corresponding JSB Entry Point

MTH\$HTAND_R5

Returns

None.

Arguments

h-tan
OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Tangent of the angle specified by angle-in-degrees. The \mathbf{h}-tan argument is the address of an H -floating number that is this tangent. MTH\$HTAND writes the address of the tangent into \mathbf{h}-tan.
angle-in-degrees
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input angle (in degrees). The angle-in-degrees argument is the address of a floating-point number that is this angle. For MTH\$HTAND, angle-in-degrees specifies an H -floating number.

Description

When the input argument is expressed in degrees, the tangent function is computed as follows:

1. If $|X|<(180 / \pi) * 2^{(-2 /(\epsilon-1))}$ and underflow signaling is enabled, underflow is signaled (see the section on MTH $\$ 2 C O S H$ for the definition of e).
2. Otherwise, if $|X|<(180 / \pi) * 2^{(-f / 2)}$, then $z \operatorname{TaND}(X)=(\pi / 180) * X$. See the description of MTH $\$ z C O S H$ for the definition of f.
3. Otherwise, call MTH\$zSINCOSD to obtain zSIND(X) and zCOSD(X).
a. Then, if $z \operatorname{COSD}(X)=0$, signal overflow
b. Else, $z \operatorname{TAND}(X)=z \operatorname{SIND}(X) / z \operatorname{COSD}(X)$

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$HTAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library.

MTH\$HTANH—Compute the Hyperbolic Tangent (H-Floating Value)

The Compute the Hyperbolic Tangent (H-Floating Value) routine returns the hyperbolic tangent of the input value as an H -floating value.

Format

MTH\$HTANH h-tanh ,floating-point-input-value
Returns
None.
Arguments

h-tanh

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic tangent of the value specified by floating-point-input-value. The
\mathbf{h}-tanh argument is the address of an H -floating number that is this hyperbolic tangent. MTH $\$$ HTANH writes the address of the hyperbolic tangent into \mathbf{h}-tanh.

floating-point-input-value

OpenVMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of an H -floating number that contains this input value.

Description

For MTH\$HTANH, the hyperbolic tangent of X is computed using a value of 56 for g and a value of 40 for h. The hyperbolic tangent of X is computed as follows:

Value of x	Hyperbolic Tangent Returned
$\|X\| \leq 2^{-g}$	X
$2^{-g}<\|X\| \leq 0.25$	$z \operatorname{SINH}(X) / z \operatorname{COSH}(X)$
$0.25<\|X\|<h$	$(z E X P(2 * X)-1) /(z E X P(2 * X)+1)$
$h \leq\|X\|$	$s i_{q^{n}}(X) * 1$

Condition Value Signaled

SS\$_ROPRAND
Reserved operand. The MTH\$HTANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xIMAG—Imaginary Part of a Complex Number

The Imaginary Part of a Complex Number routine returns the imaginary part of a complex number.

Format

MTH\$AIMAG complex-number	
MTH\$DIMAG complex-number	
MTH\$GIMAG	complex-number

Each of the above formats corresponds to one of the floating-point complex types.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_{-}floating, G_floating
access:	write only
mechanism:	by value

Imaginary part of the input complex-number. MTH \$AIMAG returns an Ffloating number. MTH\$DIMAG returns a D-floating number. MTH\$GIMAG returns a G-floating number.

Argument

complex-number

OpenVMS usage: complex_number
type: \quad F_floating complex, D_floating complex, G_floating complex access: read only mechanism: by reference

The input complex number. The complex-number argument is the address of this floating-point complex number. For MTH\$AIMAG, complex-number specifies an F -floating number. For MTH\$DIMAG, complex-number specifies a D-floating number. F or MTH\$GIMAG, complex-number specifies a G-floating number.

Description

The MTH\$xIMAG routines return the imaginary part of a complex number.
Condition Value Signaled

SS\$_ROPRAND

Reserved operand. The MTH\$xIMAG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xIMAG

Example

```
C+
C This Fortran example forms the imaginary part of
C a G-floating complex number using MTH$GIMAG
C and the Fortran random number generator
C RAN.
C
C Declare Z as a complex value and MTH$GIMAG as
C a REAL*8 value. MTH$GIMAG will return the imaginary
C part of Z: Z_NEW = MTH$GIMAG(Z).
C-
        COMPLEX*16 Z
        COMPLEX*16 DCMPLX
        REAL*8 R,I,MTH$GIMAG
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C Fortran generic CMPLX.
C-
        R = RAN (M)
        I = RAN (M)
        Z = DCMPLX (R,I)
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, ' It has imaginary part',MTH$GIMAG(Z)
    END
```

This Fortran example demonstrates a procedure call to MTH\$GIMAG. Because this example uses G -floating numbers, it must be compiled with the statement "FORTRAN/G filename".
The output generated by this program is as follows:
The complex number z is ($0.8535407185554504,0.2043401598930359$)
It has imaginary part 0.2043401598930359

MTH\$xLOG—Natural Logarithm

The Natural Logarithm routine returns the natural (base e) logarithm of the input argument.

Format

MTH\$ALOG	floating-point-input-value
MTH\$DLOG	floating-point-input-value
MTH\$GLOG	floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$ALOG_R5
MTH\$DLOG_R8
MTH\$GLOG_R8
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The natural logarithm of floating-point-input-value. MTH\$ALOG returns an F -floating number. MTH $\$$ DLOG returns a D-floating number. MTH\$GLOG returns a G-floating number.

Argument

floating-point-input-value

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$ALOG, floating-point-inputvalue specifies an F -floating number. For MTH\$DLOG, floating-point-inputvalue specifies a D-floating number. For MTH\$GLOG, floating-point-inputvalue specifies a G -floating number.

Description

Computation of the natural logarithm routine is based on the following:

1. $\ln (X * Y)=\ln (X)+\ln (Y)$
2. $\ln (1+X)=X-X^{2} / 2+X^{3} / 3-X^{4} / 4 \ldots$
for $|X|<1$
3. $\ln (X)=\ln (A)+2 *\left(V+V^{3} / 3+V^{5} / 5+V^{7} / 7 \ldots\right)$
$=\ln (A)+V *_{p}\left(V^{2}\right)$, where $V=(X-A) /(X+A)$,
A >0, and
A >0, and $p(y)=2 *\left(1+y / 3+y^{2} / 5 \ldots\right)$
For $x=2^{n} * f$, where n is an integer and f is in the interval of 0.5 to 1 , define the following quantities:

$$
\begin{gathered}
\text { If } n \geq 1, \text { then } N=n-1 \text { and } F=2 f \\
\text { If } n \leq 0, \text { then } N=n \text { and } F=f
\end{gathered}
$$

From (1) above it follows that:
4. $\ln (X)=N * \ln \left({ }^{2}\right)+\ln \left({ }^{F}\right)$

Based on the above relationships, zLOG is computed as follows:

1. If $|F-1|<2^{-5}, z \operatorname{LOG}(X)=N * z \operatorname{LOG}\left({ }^{2}\right)+W+W * p\left({ }^{W}\right)$, where $\mathrm{W}=\mathrm{F}-1$.
2. Otherwise, $z \operatorname{LOG}(X)=N * z L O G(2)+z L O G(A)+V *{ }_{p}\left(V^{2}\right)$, where $V=(F-A) /(F+A)$ and A and zLOG(A) are obtained by table lookup.
See MTH\$HLOG for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$xLOG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$xLOG2—Base 2 Logarithm

The Base 2 Logarithm routine returns the base 2 logarithm of the input value specified by floating-point-input-value.

Format

MTH\$ALOG2 floating-point-input-value
MTH\$DLOG2 floating-point-input-value
MTH\$GLOG2 floating-point-input-value
Each of the above formats accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The base 2 logarithm of floating-point-input-value. MTH\$ALOG2 returns an F-floating number. MTH\$DLOG2 returns a D-floating number. MTH\$GLOG2 returns a G-floating number.

Argument

floating-point-input-value

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this input value. For MTH\$ALOG2, floating-point-input-value specifies an F-floating number. F or MTH\$DLOG2, floating-point-input-value specifies a D-floating number. For MTH\$GLOG2, floating-point-input-value specifies a G-floating number.

Description

The base 2 logarithm function is computed as follows:

$$
z L O G 2(X)=z L O G 2(E) * z L O G(X)
$$

See MTH\$HLOG2 for the description of the H-floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH\$XLOG2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. F loating- point reserved operands are reserved for future use by Compaq.
Logarithm of zero or negative value. Argument	
floating-point-input-value is less than or equal	
to 0.0. LIB\$SIGNAL copies the floating-point	
reserved operand to the mechanism argument	
vector CHF\$L_MCH_SAVRO/R1. The result	
is the floating-point reserved operand unless	
	you have written a condition handler to change
CHF\$L_MCH_SAVRO/R1.	

MTH\$xLOG10—Common Logarithm

The Common Logarithm routine returns the common (base 10) logarithm of the input argument.

Format

MTH\$ALOG10 floating-point-input-value
MTH\$DLOG10 floating-point-input-value
MTH\$GLOG10 floating-point-input-value
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH\$ALOG10_R5
MTH\$DLOG10_R8
MTH\$GLOG10_R8
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The common logarithm of floating-point-input-value. MTH\$ALOG10 returns an F-floating number. MTH\$DLOG10 returns a D-floating number. MTH $\$$ GLOG10 returns a G-floating number.

Argument

floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access:
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH $\$$ ALOG10, floating-point-input-value specifies an F-floating number. For MTH\$DLOG10, floating-point-input-value specifies a D-floating number. For MTH\$GLOG10, floating-point-input-value specifies a G-floating number.

Description

The common logarithm function is computed as follows:

$$
z \operatorname{LOG} 10\left(X_{)}=z \operatorname{LOG} 10(E) * z \operatorname{LOG}\left(X^{\prime}\right)\right.
$$

See MTH\$HLOG10 for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH $\$ x$ LOG10 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
MTH\$_LOGZERNEG	Logarithm of zero or negative value. Argument floating-point-input-value is less than or equa to 0.0 . LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF $\$ \mathrm{~L} _$MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$RANDOM—Random Number Generator, Uniformly Distributed

The Random Number Generator, Uniformly Distributed routine is a general random number generator.

Format

MTH\$RANDOM seed
Returns

$$
\begin{array}{ll}
\text { OpenVMS usage: } & \text { floating_point } \\
\text { type: } & \text { F_floating } \\
\text { access: } & \text { write only } \\
\text { mechanism: } & \text { by value }
\end{array}
$$

MTH $\$$ RANDOM returns an F -floating random number.

Argument

seed	
OpenVMS usage:	longword_unsigned
type:	longword (unsigned)
access:	modify
mechanism:	by reference

The integer seed, a 32 -bit number whose high-order 24 bits are converted by MTH $\$$ RANDOM to an F -floating random number. The seed argument is the address of an unsigned longword that contains this integer seed. The seed is modified by each call to MTH\$RANDOM.

Description

This routine must be called again to obtain the next pseudorandom number. The seed is updated automatically.
The result is a floating-point number that is uniformly distributed between 0.0 inclusively and 1.0 exclusively.

There are no restrictions on the seed, although it should be initialized to different values on separate runs in order to obtain different random sequences. MTH\$RANDOM uses the following method to update the seed passed as the argument:

$$
S E E D=(69069 * S E E D+1)\left(\text { modulo } 2^{32}\right)
$$

Condition Value Signaled

Reserved operand. The MTH\$RANDOM routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$RANDOM

Example

```
RAND: PROCEDURE OPTIONS (MAIN);
DECLARE FOR$SECNDS ENTRY (FLOAT BINARY (24))
            RETURNS (FLOAT BINARY (24));
DECLARE MTH$RANDOM ENTRY (FIXED BINARY (31))
                RETURNS (FLOAT BINARY (24));
DECLARE TIME FLOAT BINARY (24);
DECLARE SEED FIXED BINARY (31);
DECLARE I FIXED BINARY (7);
DECLARE RESULT FIXED DECIMAL (2);
    /* Get floating random time value */
TIME = FOR$SECNDS (OEO);
    /* Convert to fixed */
SEED = TIME;
        /* Generate 100 random numbers between 1 and 10 */
DO I = 1 TO 100;
        RESULT = 1 + FIXED ( (10EO * MTH$RANDOM (SEED) ), 31 );
        PUT LIST (RESULT);
        END;
END RAND;
```

This PL//l program demonstrates the use of MTH\$RANDOM. The value returned by FOR $\$$ SECNDS is used as the seed for the random-number generator to ensure a different sequence each time the program is run. The random value returned is scaled so as to represent values between 1 and 10 .
Because this program generates random numbers, the output generated will be different each time the program is executed. One example of the outut generated by this program is as follows:

7	4	6	5	9	10	5	5	3	8	8	1	3	1	3	2
4	4	2	4	4	8	3	8	9	1	7	1	8	6	9	10
1	10	10	6	7	3	2	2	1	2	6	6	3	9	5	8
6	2	3	6	10	8	5	5	4	2	8	5	9	6	4	2
8	5	4	9	8	7	6	6	8	10	9	5	9	4	5	7
1	2	2	3	6	5	2	3	4	4	8	9	2	8	5	5

MTH\$xREAL—Real Part of a Complex Number

The Real Part of a Complex Number routine returns the real part of a complex number.

Format

MTH\$REAL complex-number
MTH\$DREAL complex-number
MTH\$GREAL complex-number
Each of the above formats accepts one of the floating-point complex types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_{-}floating, G_floating
access:	write only
mechanism:	by value

Real part of the complex number. MTH\$REAL returns an F-floating number. MTH \$DREAL returns a D-floating number. MTH\$GREAL returns a G-floating number.

Argument

complex-number

OpenVMS usage: type: access:
complex_number
mechanism:
F_floating complex, D_floating complex, G_floating complex read only

The complex number whose real part is returned by MTH\$xREAL. The complex-number argument is the address of this floating-point complex number. For MTH $\$$ REAL, complex-number is an F -floating complex number. For MTH\$DREAL, complex-number is a D-floating complex number. For MTH \$GREAL, complex-number is a G-floating complex number.

Description

The MTH\$xREAL routines return the real part of a complex number.

Condition Value Signaled

SS\$_ROPRAND

Reserved operand. The MTH\$xREAL routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xREAL

Example

```
C+
C This Fortran example forms the real
C part of an F-floating complex number using
C MTH$REAL and the Fortran random number
C generator RAN.
C
C Declare Z as a complex value and MTH$REAL as a
C REAL*4 value. MTH$REAL will return the real
C part of Z: Z_NEW = MTH$REAL(Z).
C-
    COMPLEX Z
    COMPLEX CMPLX
    REAL*4 MTH$REAL
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the Fortran
C generic CMPLX.
C-
    Z = CMPLX(RAN (M),RAN (M))
C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, ' It has real part',MTH$REAL(Z)
    END
```

This Fortran example demonstrates the use of MTH\$REAL. The output of this program is as follows:

The complex number z is $(0.8535407,0.2043402)$
It has real part 0.8535407

MTH\$xSIN—Sine of Angle Expressed in Radians

The Sine of Angle Expressed in Radians routine returns the sine of a given angle (in radians).

Format

MTH\$SIN angle-in-radians
MTH\$DSIN angle-in-radians
MTH\$GSIN angle-in-radians
Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$SIN_R4
MTH\$DSIN_R7
MTH\$GSIN_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

Sine of the angle specified by angle-in-radians. MTH\$SIN returns an Ffloating number. MTH\$DSIN returns a D-floating number. MTH\$GSIN returns a G-floating number.

Argument

angle-in-radians

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access:
mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of a floatingpoint number that is this angle. For MTH\$SIN, angle-in-radians specifies an F-floating number. For MTH\$DSIN, angle-in-radians specifies a D-floating number. For MTH\$GSIN, angle-in-radians specifies a G-floating number.

Description

See MTH $\$ x$ SINCOS for the algorithm used to compute this sine.
See MTH $\$ \mathrm{HSIN}$ for the description of the H -floating point version of this routine.

MTH\$xSIN

Condition Value Signaled

SS\$_ROPRAND

Reserved operand. The MTH\$xSIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xSINCOS—Sine and Cosine of Angle Expressed in Radians

The Sine and Cosine of Angle Expressed in Radians routine returns the sine and cosine of a given angle (in radians).

Format

MTH\$SINCOS angle-in-radians ,sine ,cosine
MTH\$DSINCOS angle-in-radians ,sine ,cosine
MTH\$GSINCOS angle-in-radians,sine ,cosine
MTH\$HSINCOS angle-in-radians, sine ,cosine
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points

MTH\$SINCOS_R5
MTH\$DSINCOS_R7
MTH\$GSINCOS_R7
MTH\$HSINCOS_R7
Each of the above JSB entry points accepts one of the floating-point types as input.

Returns

MTH \$SINCOS, MTH\$DSINCOS, MTH\$GSINCOS, and MTH \$HSINCOS return the sine and cosine of the input angle by reference in the sine and cosine arguments.

Arguments

angle-in-radians

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_floating
access:
read only
mechanism: by reference
Angle (in radians) whose sine and cosine are to be returned. The angle-inradians argument is the address of a floating-point number that is this angle. For MTH\$SINCOS, angle-in-radians is an F-floating number. For MTH\$DSINCOS, angle-in-radians is a D-floating number. For MTH \$GSINCOS, angle-in-radians is a G-floating number. For MTH\$HSINCOS, angle-inradians is an H -floating number.

sine

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_floating
access:
mechanism:
write only
by reference

Sine of the angle specified by angle-in-radians. The sine argument is the address of a floating-point number. MTH\$SINCOS writes an F-floating number into sine. MTH\$DSINCOS writes a D-floating number into sine. MTH $\$$ GSINCOS writes a G-floating number into sine. MTH $\$$ HSINCOS writes an H -floating number into sine.

cosine

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_{-}floating
access:
write only
mechanism: by reference
Cosine of the angle specified by angle-in-radians. The cosine argument is the address of a floating-point number. MTH\$SINCOS writes an F-floating number into cosine. MTH\$DSINCOS writes a D-floating number into cosine. MTH $\$$ GSINCOS writes a G-floating number into cosine. MTH\$HSINCOS writes an H -floating number into cosine.

Description

All routines with J SB entry points accept a single argument in R0:Rm, where m, which is defined below, is dependent on the data type.

Data Type	\mathbf{m}
F_floating	0
D_floating	1
G_floating	1
H_floating	3

In general, Run-Time Library routines with J SB entry points return one value in R0:Rm. The MTHxSINCOS routine returns two values, however. The sine of angle-in-radians is returned in RO:Rm and the cosine of angle-in-radians is returned in ($R<m+1>$: $\ll 2^{*} m+1>$).
In radians, the computation of $\mathrm{zSIN}(\mathrm{X})$ and $\mathrm{zCOS}(\mathrm{X})$ is based on the following polynomial expansions:

$$
\begin{aligned}
& \sin \left(\begin{array}{l}
X \\
=
\end{array}=X-X^{3} /\left({ }^{3!}{ }^{2}\right)+X^{5} /(5!)-X^{7} /\left({ }^{7!}\right) \cdots\right. \\
& =X+X * P\left(X^{2}\right) \text {, where } \\
& P(y)=y /(3!)+y^{2} /(5!)+y^{3} /(7!) \cdots \\
& \cos \left(\begin{array}{l}
X \\
= \\
)
\end{array}=1-X^{2} /(2!)+x^{2} /(4!)-X^{6} /(6!) \cdots\right. \\
& =Q\left(X^{2}\right) \text {, where } \\
& Q_{(y)}=\left(1-y /(2!)+y^{2} /(4!)+y^{3} /\left({ }^{6!}\right) \cdots\right) \\
& \text { 1. If }|X|<2^{(-f / 2)} \text {, } \\
& \text { then } z \operatorname{SIN}(X)=X \text { and } z \operatorname{COS}(X)=1 \\
& \text { (see the section on MTH\$zCOSH for } \\
& \text { the definition of } \mathrm{f} \text {) }
\end{aligned}
$$

2. If $2^{-f / 2} \leq|X|<\pi / 4$,
then $z S I N(X)=X+P\left(X^{2}\right)$
and $\mathrm{zCOS}(\mathrm{X})=Q\left(X^{2}\right)$
3. If $\pi / 4 \leq|X|$ and $X>0$,
a. Let $J=I N T(X /(\pi / 4))$ and $I=J$ modulo 8
b. If J is even, let $Y=X-J *(\pi / 4)$
otherwise, let $Y=(J+1) *(\pi / 4)-X$
With the above definitions, the following table relates $\mathrm{ZSIN}(X)$ and $z \operatorname{COS}(X)$ to $z S I N(Y)$ and $z C O S(Y)$:

Value of I	$\mathbf{z S I N}(\mathrm{X})$	$\mathrm{zCOS}(\mathrm{X})$
0	zSIN(Y)	zCOS(Y)
1	$z \operatorname{Cos}(Y)$	zSIN(Y)
2	zCOS(Y)	-zSIN(Y)
3	zSIN(Y)	-zCOS(Y)
4	-zSIN(Y)	-zCOS(Y)
5	-zCOS(Y)	-zSIN(Y)
6	-zCOS(Y)	zSIN(Y)
7	-zSIN(Y)	zCOS(Y)

c. $\quad \mathrm{zSIN}(\mathrm{Y})$ and $\mathrm{zCOS}(\mathrm{Y})$ are computed as follows:

$$
\begin{aligned}
& z S I N(Y)=Y+P\left(Y^{2}{ }_{2}^{2},\right. \\
& \text { and } z C O S(Y)=Q\left(Y^{2}\right)
\end{aligned}
$$

4. If $\pi / 4 \leq|X|$ and $X<0$,
then $z \operatorname{SIN}(X)=-z \operatorname{SIN}(|X|)$
and $z \operatorname{COS}(X)=z \operatorname{COS}(|X|)$

Condition Value Returned

SS\$_ROPRAND
Reserved operand. The MTH $\$ x$ SINCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$xSINCOSD—Sine and Cosine of Angle Expressed in Degrees

The Sine and Cosine of Angle Expressed in Degrees routine returns the sine and cosine of a given angle (in degrees).

Format

MTH\$SINCOSD angle-in-degrees ,sine ,cosine
MTH\$DSINCOSD angle-in-degrees ,sine ,cosine
MTH\$GSINCOSD angle-in-degrees ,sine ,cosine
MTH\$HSINCOSD angle-in-degrees, sine, cosine
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points

MTH\$SINCOSD_R5
MTH\$DSINCOSD_R7
MTH\$GSINCOSD_R7
MTH\$HSINCOSD_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

MTH\$SINCOSD, MTH\$DSINCOSD, MTH\$GSINCOSD, and MTH\$HSINCOSD return the sine and cosine of the input angle by reference in the sine and cosine arguments.

Arguments

angle-in-degrees

OpenVMS usage:
type: \quad F_floating, D_floating, G_floating, H_floating
access:
mechanism: by reference
Angle (in degrees) whose sine and cosine are returned by MTH\$xSINCOSD. The angle-in-degrees argument is the address of a floating-point number that is this angle. For MTH\$SINCOSD, angle-in-degrees is an F-floating number. For MTH\$DSINCOSD, angle-in-degrees is a D-floating number. For MTH\$GSINCOSD, angle-in-degrees is a G-floating number. For MTH $\$ \mathrm{HSINCOSD}$, angle-in-degrees is an H -floating number.

sine

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference
Sine of the angle specified by angle-in-degrees. The sine argument is the address of a floating-point number. MTH $\$$ SINCOSD writes an F -floating number into sine. MTH\$DSINCOSD writes a D-floating number into sine.

MTH\$GSINCOSD writes a G-floating number into sine. MTH\$HSINCOSD writes an H -floating number into sine.

cosine

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_floating
access:
mechanism: by reference
Cosine of the angle specified by angle-in-degrees. The cosine argument is the address of a floating-point number. MTH\$SINCOSD writes an F-floating number into cosine. MTH\$DSINCOSD writes a D-floating number into cosine. MTH\$GSINCOSD writes a G-floating number into cosine. MTH\$HSINCOSD writes an H -floating number into cosine.

Description

All routines with J SB entry points accept a single argument in R0:Rm, where m, which is defined below, is dependent on the data type.

Data Type	\mathbf{m}
F_floating	0
D_floating	1
G_floating	1
H_floating	3

In general, Run-Time Library routines with J SB entry points return one value in RO:Rm. The MTH\$xSINCOSD routine returns two values, however. The sine of angle-in-degrees is returned in R0:Rm and the cosine of angle-in-degrees is returned in ($R<m+1>$: $<2 * m+1>$).

In degrees, the computation of $\mathrm{zSIND}(\mathrm{X})$ and $\mathrm{zCOSD}(\mathrm{X})$ is based on the following polynomial expansions:

$$
\begin{aligned}
& \operatorname{SIND}(X)=(C * X)-(C * X)^{3} /(3!)^{+} \\
& (C * X X / 5!)^{5}-(C * X)^{7} /(7!) \cdots \\
& =X / 2^{6}+X * P\left(X^{2}\right), \text { where } \\
& P(y)=-y /\left({ }^{2}!\right)^{+}+y^{2} /(5!)^{3}-y^{3} /(7!) \cdots \\
& \operatorname{COSD}(X)=1-(C * X)^{2} /(2!)+ \\
& \quad(C * X)^{4} /(4!)-(C * X)^{8} /(6!) \cdots \\
& =Q\left(X^{2}\right), \text { where } \\
& Q(y)=1-y /(2!)+y^{2} /(4!)-y^{3} /(6!) \cdots \\
& \text { and } C=\pi / 180
\end{aligned}
$$

1. If $|X|<(180 / \pi) * 2^{-2^{e-1}}$ and underflow signaling is enabled, underflow is signaled for $\mathrm{zSIND}(\mathrm{X})$ and $\mathrm{zSINCOSD}(\mathrm{X})$.
(See MTH\$zCOSH for the definition of e.)
otherwise:
2. If $|X|<(180 / \pi) * 2^{(-f / 2)}$,
then $z \operatorname{SIND}(X)=(\pi / 180) * X$ and $z \operatorname{COSD}(X)=1$.
(See MTH \$zCOSH for the definition of f.)
3. If $(180 / \pi) * 2^{(-f / 2)} \leq|X|<45$

$$
\text { then } z S I N D(X)=X / 2^{6}+P\left(X^{2}\right)
$$

$$
\text { and } z \operatorname{COSD}(X)=Q\left(X^{2}\right)
$$

4. If $45 \leq|X|$ and $X>0$,
a. Let $J=I N T(X /(45))^{\text {and }}$
$I=J$ modulo 8
b. If J is even, let $Y=X-J * 45$;
otherwise, let $Y=(J+1) * 45-X$.
With the above definitions, the following table relates $\mathrm{zSIND}(\mathrm{X})$ and $\mathrm{zCOSD}(\mathrm{X})$ to $\mathrm{zSIND}(\mathrm{Y})$ and $\mathrm{zCOSD}(\mathrm{Y})$:

Value of I	zSIND(X)	zCOSD(X)
0	zSIND(Y)	zCOSD(Y)
1	zCOSD(Y)	zSIND(Y)
2	zCOSD(Y)	-zSIND(Y)
3	zSIND(Y)	-zCOSD(Y)
4	-zSIND(Y)	-zCOSD(Y)
5	-zCOSD(Y)	-zSIND(Y)
6	-zCOSD(Y)	zSIND(Y)
7	-zSIND(Y)	zCOSD(Y)

c. $\mathrm{ZSIND}(\mathrm{Y})$ and $\mathrm{zCOSD}(\mathrm{Y})$ are computed as follows:

$$
\begin{aligned}
& z \operatorname{SIND}(Y)=Y / 2^{6}+P\left(Y^{2}\right) \\
& z \operatorname{COSD}\left(Y^{2}\right)=Q\left(Y^{2}\right)
\end{aligned}
$$

d. If $45 \leq|X|$ and $X<0$, then $z \operatorname{SIND}(X)=-z \operatorname{SIND}(|X|)$
and $z \operatorname{COSD}(X)=z \operatorname{COSD}(|X|)$

Condition Values Signaled

SS\$_ROPRAND Reserved operand. The MTH\$xSI NCOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
MTH\$_FLOUNDMAT
Floating-point underflow in Math Library. The absolute value of the input angle is less than $180 / \pi * 2^{-m}$ (where $\mathrm{m}=128$ for F -floating and D-floating, 1,024 for G-floating, and 16,384 for H -floating).

MTH\$xSIND—Sine of Angle Expressed in Degrees

The Sine of Angle Expressed in Degrees routine returns the sine of a given angle (in degrees).

Format

MTH\$SIND angle-in-degrees
MTH\$DSIND angle-in-degrees
MTH\$GSIND angle-in-degrees
Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$SIND_R4
MTH\$DSIND_R7
MTH\$GSIND_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The sine of the angle. MTH\$SIND returns an F-floating number. MTH\$DSIND returns a D-floating number. MTH\$GSIND returns a G-floating number.

Argument

angle-in-degrees

OpenVMS usage:
type: F_floating, D_floating, G_floating
access:
read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a floatingpoint number that is this angle. For MTH $\$$ SIND, angle-in-degrees specifies an F-floating number. For MTH\$DSIND, angle-in-degrees specifies a D-floating number. For MTH\$GSIND, angle-in-degrees specifies a G-floating number.

Description

See MTH\$xSINCOSD for the algorithm that is used to compute the sine.
See MTH\$HSIND for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND	Reserved operand. The MTH $\$ \times$ SIND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with sign bit of 1 and a biased exponent of 0 . Floating point reserved operands are reserved for future use by Compaq.
MTH\$_FLOUNDMAT	Floating-point underflow in Math Library. The absolute value of the input angle is less than $180 / \pi * 2^{-m}$ (where $\mathrm{m}=128$ for F -floating and D-floating, and 1,024 for G-floating).

MTH\$xSINH—Hyperbolic Sine

The Hyperbolic Sine routine returns the hyperbolic sine of the input value specified by floating-point-input-value.

Format

MTH\$SINH floating-point-input-value
MTH\$DSINH floating-point-input-value
MTH\$GSINH floating-point-input-value
Each of the above formats accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The hyperbolic sine of floating-point-input-value. MTH\$SINH returns an F-floating number. MTH\$DSINH returns a D-floating number. MTH\$GSINH returns a G-floating number.

Argument

floating-point-input-value

OpenVMS usage:	floating_point
type:	F_floating, D_{-}floating, G_floating
access:	read only
mechanism:	by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$SINH, floating-point-inputvalue specifies an F-floating number. For MTH\$DSINH, floating-point-inputvalue specifies a D-floating number. For MTH\$GSINH, floating-point-inputvalue specifies a G -floating number.

Description

Computation of the hyperbolic sine function depends on the magnitude of the input argument. The range of the function is partitioned using four data type dependent constants: $a(z), b(z)$, and $c(z)$. The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).

The values of e and f are:

\mathbf{z}	\mathbf{e}	\mathbf{f}
F	8	24
D	8	56
G	11	53

The values of the constants in terms of e and f are:

Variable	Value
$\mathrm{a}(z)$	$2^{(-f / 2)}$
$\mathrm{b}(z)$	CEILING[(f+1)/2*ln$(2)]$
$\mathrm{c}(\mathrm{z})$	$\left(2^{(\epsilon-1)} * \ln (2)\right)$

Based on the above definitions, $\mathrm{zSINH}(\mathrm{X})$ is computed as follows:

Value of X	Value Returned
$\|\mathrm{X}\|<\mathrm{a}(\mathrm{z})$	X
$\mathrm{a}(\mathrm{z}) \leq\|\mathrm{X}\|<1.0$	$\mathrm{zSINH}(\mathrm{X})$ is computed using a
$1.0 \leq\|\mathrm{P}\|<\mathrm{b}(\mathrm{z})$	$\left(z E X P\left(X_{1}-z E X P(-X)\right) / 2\right.$
$\mathrm{b}(\mathrm{z}) \leq\|\mathrm{X}\|<\mathrm{c}(\mathrm{z})$	$\operatorname{SIGN}(X) * z E X P(\|X\|) / 2$
$\mathrm{c}(\mathrm{z}) \leq\|\mathrm{X}\|$	Overflow occurs

See MTH\$HSINH for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND

Reserved operand. The MTH\$HTANH routine encountered a floating-point reserved operand (a floating-point datum with a sign bit of 1 and a biased exponent of 0) due to incorrect user input. Floating-point reserved operands are reserved for use by Compaq.

Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than yyy. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF $\$ \mathrm{~L} _$MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.
The values of yyy are approximately:
MTH\$SINH—88.722
MTH\$DSINH-88.722
MTH\$GSINH—709.782

MTH\$xSQRT—Square Root

The Square Root routine returns the square root of the input value floating-point-input-value.

Format

MTH\$SQRT floating-point-input-value
MTH\$DSQRT floating-point-input-value
MTH\$GSQRT floating-point-input-value
Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points

MTH\$SQRT_R3
MTH\$DSQRT_R5
MTH\$GSQRT_R5
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The square root of floating-point-input-value. MTH\$SQRT returns an Ffloating number. MTH\$DSQRT returns a D-floating number. MTH\$GSQRT returns a G-floating number.

Argument

floating-point-input-value
OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$SQRT, floating-point-input-value specifies an F-floating number. For MTH \$DSQRT, floating-point-input-value specifies a D-floating number. For MTH\$GSQRT, floating-point-input-value specifies a G-floating number.

Description

The square root of X is computed as follows:
If $X<0$, an error is signaled.
Let $X=2^{K} * F$
where:
K is the exponential part of the floating-point data
F is the fractional part of the floating-point data
If K is even:

$$
\begin{aligned}
& X=2^{(2 * P)} * F, \\
& z S Q R T(X)=2^{P} * z S Q R T(F), \\
& 1 / 2 \leq F<1, \text { where } \mathrm{P}=\mathrm{K} / 2
\end{aligned}
$$

If K is odd:

$$
\begin{aligned}
& X=2^{(2 * P+1)} * F=2^{(2 * P+2)} *(F / 2), \\
& z S Q R T(X)=2^{(P+1)} * z S Q R T(F / 2), \\
& 1 / 4 \leq F / 2<1 / 2, \text { wherep }=(\mathrm{K}-1) / 2
\end{aligned}
$$

Let $F^{\prime}=A * F+B$, when K is even:
A = 0.95F 6198 (hex)
B $=0.6 \mathrm{BA} 5918$ (hex)
Let $F^{\prime}=A *(F / 2)+B$, when K is odd:
A = 0.D413CCC (hex)
B = 0.4C1E 248 (hex)
Let $K^{\prime}=P$, when K is even
Let $K^{\prime}=P+1$, when K is odd
Let $Y[0]=2^{K^{\prime}} * F^{\prime}$ be a straight line approximation within the given interval using coefficients A and B which minimize the absolute error at the midpoint and endpoint.
Starting with $\mathrm{Y}[0]$, n Newton-Raphson iterations are performed:

$$
Y[n+1]=1 / 2 *(Y[n]+X / Y[n])
$$

where $\mathrm{n}=2$, 3 , or 3 for $\mathrm{z}=\mathrm{F}$-floating, D -floating, or G -floating, respectively. See MTH\$HSQRT for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND
Reserved operand. The MTH\$xSQRT routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

Square root of negative number. Argument floating-point-input-value is less than 0.0 .
LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point ${ }^{\text {reseserved operand unless you have }}$ written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$xTAN—Tangent of Angle Expressed in Radians

The Tangent of Angle Expressed in Radians routine returns the tangent of a given angle (in radians).

Format

MTH\$TAN angle-in-radians
MTH\$DTAN angle-in-radians
MTH\$GTAN angle-in-radians
Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$TAN_R4
MTH\$DTAN_R7
MTH\$GTAN_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_{-}floating, G_floating
access:	write only
mechanism:	by value

The tangent of the angle specified by angle-in-radians. MTH\$TAN returns an F-floating number. MTH\$DTAN returns a D-floating number. MTH\$GTAN returns a G-floating number.

Argument

angle-in-radians

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access:
mechanism: by reference
The input angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$TAN, angle-in-radians specifies an F -floating number. For MTH\$DTAN, angle-in-radians specifies a D-floating number. For MTH\$GTAN, angle-in-radians specifies a G-floating number.

MTH\$xTAN

Description

When the input argument is expressed in radians, the tangent function is computed as follows:

1. If $|X|<2^{(-f / 2)}$, then $z \operatorname{TAN}(X)=X$ (see the section on MTH $\$ z C O S H$ for the definition of f)
2. Otherwise, call MTH \$zSINCOS to obtain $\mathrm{zSIN}(\mathrm{X})$ and $\mathrm{zCOS}(\mathrm{X})$; then
a. If $z \operatorname{COS}\left(X_{)}=0\right.$, signal overflow
b. Otherwise, $z \operatorname{TAN}(X)=z \operatorname{SIN}(X) / z \operatorname{COS}\left(X^{X}\right)$

See MTH\$HTAN for the description of the H -floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$xTAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library.

MTH\$xTAND—Tangent of Angle Expressed in Degrees

The Tangent of Angle Expressed in Degrees routine returns the tangent of a given angle (in degrees).

Format

MTH\$TAND angle-in-degrees
MTH\$DTAND angle-in-degrees
MTH\$GTAND angle-in-degrees
Each of the above formats accepts one of the floating-point types as input.
Corresponding JSB Entry Points
MTH\$TAND_R4
MTH\$DTAND_R7
MTH\$GTAND_R7
Each of the above J SB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: write only mechanism: by value
Tangent of the angle specified by angle-in-degrees. MTH\$TAND returns an F-floating number. MTH\$DTAND returns a D-floating number. MTH\$GTAND returns a G-floating number.

Argument

angle-in-degrees

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access:
mechanism: by reference
The input angle (in degrees). The angle-in-degrees argument is the address of a floating-point number which is this angle. For MTH\$TAND, angle-in-degrees specifies an F -floating number. For MTH\$DTAND, angle-in-degrees specifies a D-floating number. For MTH\$GTAND, angle-in-degrees specifies a G-floating number.

Description

When the input argument is expressed in degrees, the tangent function is computed as follows:

1. If $|X|<(180 / \pi) * 2^{(-2 /(\epsilon-1))}$ and underflow signaling is enabled, underflow is signaled. (See the section on MTH $\$ \mathrm{zCOSH}$ for the definition of e)
2. Otherwise, if $|X|<(180 / \pi) * 2^{(-f / 2)}$, then $z \operatorname{TAND}(X)=(\pi / 180) * X$. (See the description of MTH $\$ Z C O S H$ for the definition of f.)
3. Otherwise, call MTH $\$ z$ SINCOSD to obtain $\mathrm{zSIND}(\mathrm{X})$ and $\mathrm{zCOSD}(\mathrm{X})$.
a. Then, if $z \operatorname{COSD}(X)=0$, signal overflow
b. Else, $z \operatorname{TAND}\left(X_{)}=z \operatorname{SIND}(X) / z \operatorname{COSD}\left(X_{)}\right)\right.$

See MTH\$HTAND for the description of the H-floating point version of this routine.

Condition Values Signaled

SS\$_ROPRAND

MTH\$_FLOOVEMAT
MTH\$_FLOUNDMAT

Reserved operand. The MTH\$xTAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.
Floating-point overflow in Math Library.
Floating-point underflow in Math Library.

MTH\$xTANH—Compute the Hyperbolic Tangent

The Compute the Hyperbolic Tangent routine returns the hyperbolic tangent of the input value.

Format

MTH\$TANH floating-point-input-value
MTH\$DTANH floating-point-input-value
MTH\$GTANH floating-point-input-value
Each of the above formats accepts one of the floating-point types as input.

Returns

OpenVMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The hyperbolic tangent of floating-point-input-value. MTH\$TANH returns an F-floating number. MTH\$DTANH returns a D-floating number. MTH\$GTANH returns a G-floating number.

Argument

floating-point-input-value

OpenVMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$TANH, floating-point-input-value specifies an F-floating number. For MTH\$DTANH, floating-point-input-value specifies a D-floating number. For MTH\$GTANH, floating-point-input-value specifies a G-floating number.

Description

In calculating the hyperbolic tangent of x, the values of g and h are:

\mathbf{z}	\mathbf{g}	\mathbf{h}
F	12	10
D	28	21
G	26	20

For MTH\$TANH, MTH\$DTANH, and MTH\$GTANH the hyperbolic tangent of x is then computed as follows:

Value of \mathbf{x}	Hyperbolic Tangent Returned
$\|x\| \leq 2^{-g}$	X
$2^{-g}<\|X\|<0.5$	$x T A N H$ function of $X X^{2}$.
$0.5 \leq\|X\|<1.0$	$x T A N H(X)=x T A N H(x H I)+x T A N H(x L O) * C / B$
	where $C=1-x T A N H(x H I) * x T A N H(x H I)$,
	$B=1+x T A N H(x H I) * x T A N H(x L O)$,
	$x H I=1 / 2+N / 16+1 / 32$ for $\mathrm{N}=0,1, \ldots, 7$,
	and $x L O=X-x H I$.

See MTH\$HTANH for the description of the H -floating point version of this routine.

Condition Value Signaled

SS\$_ROPRAND

Reserved operand. The MTH\$xTANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0 . Floatingpoint reserved operands are reserved for future use by Compaq.

MTH\$UMAX—Compute Unsigned Maximum

The Compute Unsigned Maximum routine computes the unsigned longword maximum of n unsigned longword arguments, where n is greater than or equal to 1.

Format

MTH\$UMAX argument [argument,...]
Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned) access: write only
mechanism: by value
Maximum value returned by MTH\$UMAX.

Arguments

argument

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Argument whose maximum MTH\$UMAX computes. Each argument argument is an unsigned longword that contains one of these values.

argument

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Additional arguments whose maximum MTH \$UMAX computes. Each argument argument is an unsigned longword that contains one of these values.

Description

MTH\$UMAX is the unsigned version of MTH\$J MAXO, and computes the unsigned longword maximum of n unsigned longword arguments, where n is greater than or equal to 1.

Condition Values Returned

None.

MTH\$UMIN—Compute Unsigned Minimum

The Compute Unsigned Minimum routine computes the unsigned longword minimum of n unsigned longword arguments, where n is greater than or equal to 1.

Format

MTH\$UMIN argument [argument,...]
Returns
OpenVMS usage: longword_unsigned type: longword (unsigned) access: write only
mechanism: by value
Minimum value returned by MTH\$UMIN.

Arguments

argument	
OpenVMS usage:	longword_unsigned
type:	longword (unsigned)
access:	read only
mechanism:	by reference

Argument whose minimum MTH \$UMIN computes. Each argument argument is an unsigned longword that contains one of these values.
argument
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Additional arguments whose minimum MTH\$UMIN computes. Each argument argument is an unsigned longword that contains one of these values.

Description

MTH\$UMIN is the unsigned version of MTH\$J MINO, and computes the unsigned longword minimum of n unsigned longword arguments, where n is greater than or equal to 1 .

Condition Values Returned

None.

Part III

Vector MTH\$ Reference Section

The Vector MTH\$ Reference Section provides detailed descriptions of two sets of vector routines provided by the OpenVMS RTL Mathematics (MTH\$) Facility, BLAS Level 1 and FOLR. The BLAS Level 1 are the Basic Linear Algebraic Subroutines designed by Lawson, Hanson, Kincaid, and Krogh (1978). The FOLR (First Order Linear Recurrence) routines provide a vectorized algorithm for the linear recurrence relation.

BLAS1\$VIxAMAX—Obtain the Index of the First Element of a Vector Having the Largest Absolute Value

The Obtain the Index of the First Element of a Vector Having the Largest Absolute Value routine finds the index of the first occurrence of a vector element having the maximum absolute value.

Format

BLAS1\$VISAMAX	n, x, incx
BLAS1\$VIDAMAX	n, x, incx
BLAS1\$VIGAMAX	n, x, incx
BLAS1\$VICAMAX	n, x, incx
BLAS1\$VIZAMAX	n, x, incx
BLAS1\$VIWAMAX	n, x, incx

Use BLAS1\$VISAMAX for single-precision real operations.
Use BLAS1\$VIDAMAX for double-precision real (D-floating) operations.
Use BLAS1\$VIGAMAX for double-precision real (G-floating) operations.
Use BLAS1\$VICAMAX for single-precision complex operations.
Use BLAS1\$VIZAMAX for double-precision complex (D-floating) operations.
Use BLAS1\$VIWAMAX for double-precision complex (G-floating) operations.

Returns

OpenVMS usage:	longword_signed
type:	longword integer (signed)
access:	write only
mechanism:	by value

For the real versions of this routine, the function value is the index of the first occurrence of a vector element having the maximum absolute value, as follows:

$$
\left|x_{i}\right|=\max \left\{\left|x_{j}\right| \text { for } j=1,2, \ldots, n\right\}
$$

For the complex versions of this routine, the function value is the index of the first occurrence of a vector element having the largest sum of the absolute values of the real and imaginary parts of the vector elements, as follows:

$$
\left|\operatorname{Re}\left(x_{i}\right)\right|+\left|\operatorname{Im}\left(x_{i}\right)\right|=\max \left\{\left|\operatorname{Re}\left(x_{j}\right)\right|+\left|\operatorname{Im}\left(x_{j}\right)\right| \text { for } j=1,2, \ldots, n\right\}
$$

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements. If you specify a negative value or 0 for $\mathbf{n}, 0$ is returned.
x
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex read only
access:
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1 . The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=\quad$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
Specify the data type as follows:

Routine	Data Type for \mathbf{x}
BLAS1\$VISAMAX	F-floating real
BLAS1\$VIDAMAX	D-floating real
BLAS1\$VIGAMAX	G-floating real
BLAS1\$VICAMAX	F-floating complex
BLAS1\$VIZAMAX	D-floating complex
BLAS1\$VIWAMAX	G-floating complex

If \mathbf{n} is less than or equal to 0 , then imax is 0 .
incx
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced as:
$x(1+(i-1) * i n c x)$
where:
$x=$ array specified in \mathbf{x}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx
If you specify a negative value for incx, it is interpreted as the absolute value of incx.

BLAS1\$VIxAMAX

Description

BLAS1\$VISAMAX, BLAS1\$VIDAMAX, and BLAS1\$VIGAMAX find the index, i, of the first occurrence of a vector element having the maximum absolute value. BLAS1\$VICAMAX, BLAS1\$VIZAMAX, and BLAS1\$VIWAMAX find the index, i , of the first occurrence of a vector element having the largest sum of the absolute values of the real and imaginary parts of the vector elements.
Vector x contains \mathbf{n} elements that are accessed from array \mathbf{x} by stepping incx elements at a time. The vector x is a real or complex singleprecision or doubleprecision (D and G) n-element vector. The vector can be a row or a column of a matrix. Both forward and backward indexing are permitted.

BLAS1\$VISAMAX, BLAS1\$VIDAMAX, and BLAS1\$VIGAMAX determine the smallest integer i of the n-element vector x such that:
$\left|x_{i}\right|=\max \left\{\left|x_{j}\right|\right.$ for $\left.j=1,2, \ldots, n\right\}$
BLAS1\$VICAMAX, BLAS1\$VIZAMAX, and BLAS1\$VIWAMAX determine the smallest integer i of the n -element vector x such that:
$\left|\operatorname{Re}\left(x_{i}\right)\right|+\left|\operatorname{Im}\left(x_{i}\right)\right|=\max \left\{\left|\operatorname{Re}\left(x_{j}\right)\right|+\left|\operatorname{Im}\left(x_{j}\right)\right|\right.$ for $\left.j=1,2, \ldots, n\right\}$
You can use the BLAS1\$VIxAMAX routines to obtain the pivots in Gaussian elimination.
The public-domain BLAS Level 1 IXAMAX routines require a positive value for incx. The Run-Time Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx $=0$. Therefore, specifying 0 for incx has the effect of setting imax equal to 1 using vector operations.

Example

```
C
C To obtain the index of the element with the maximum
C absolute value.
C
    INTEGER IMAX,N,INCX
        REAL X(40)
        INCX = 2
        N = 20
        IMAX = BLAS1$VISAMAX (N,X,INCX)
```


BLAS1\$VxASUM—Obtain the Sum of the Absolute Values of the Elements of a Vector

The Obtain the Sum of the Absolute Values of the Elements of a Vector routine determines the sum of the absolute values of the elements of the n-element vector x.

Format

```
BLAS1$VSASUM n ,x ,incx
BLAS1$VDASUM n ,x ,incx
BLAS1$VGASUM n,x,incx
BLAS1$VSCASUM n ,x ,incx
BLAS1$VDZASUM n,x ,incx
BLAS1$VGWASUM n ,x ,incx
```

Use BLAS1\$VSASUM for single-precision real operations.
Use BLAS1\$VDASUM for double-precision real (D-floating) operations.
Use BLAS1\$VGASUM for double-precision real (G-floating) operations.
Use BLAS1\$VSCASUM for single-precision complex operations.
Use BLAS1\$VDZASUM for double-precision complex (D-floating) operations.
Use BLAS1\$VGWASUM for double-precision complex (G-floating) operations.

Returns

```
OpenVMS usage: floating_point
type: F_floating, D_floating, or G_floating real
access: write only
mechanism: by value
```

The function value, called sum, is the sum of the absolute values of the elements of the vector x. The data type of the function value is a real number; for the BLAS1\$VSCASUM, BLAS1\$VDZASUM, and BLAS1\$VGWASUM routines, the data type of the function value is the real data type corresponding to the complex argument data type.

Arguments
n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x to be added. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements.
x
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_{-}^{-}floating, G_{-}^{-}floating complex
access: read only
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1 . The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
Specify the data type as follows:

Routine	Data Type for \mathbf{x}
BLAS1\$VSASUM	F-floating real
BLAS1\$VDASUM	D-floating real
BLAS1\$VGASUM	G-floating real
BLAS1\$VSCASUM	F-floating complex
BLAS1\$VDZASUM	D-floating complex
BLAS1\$VGWASUM	G-floating complex

If \mathbf{n} is less than or equal to 0 , then sum is 0.0 .
incx

OpenVMS usage:	longword_signed
type:	longword integer (signed)
access:	read only
mechanism:	by reference

Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced in:
${ }^{x}(1+(i-1) * i n c x)$
where:
$x \quad=$ array specified in \mathbf{x}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx
If you specify a negative value for incx, it is interpreted as the absolute value of incx.

Description

BLAS1\$VSASUM, BLAS1\$VDASUM, and BLAS1\$VGASUM obtain the sum of the absolute values of the elements of the n-element vector x. BLAS1\$VSCASUM, BLAS1\$VDZASUM, and BLAS1\$VGWASUM obtain the sum of the absolute values of the real and imaginary parts of the elements of the n -element vector x.
Vector x contains \mathbf{n} elements that are accessed from array \mathbf{x} by stepping incx elements at a time. The vector x is a real or complex single-precision or doubleprecision (D and G) n-element vector. The vector can be a row or a column of a matrix. Both forward and backward indexing are permitted.

BLAS1\$VSASUM, BLAS1\$VDASUM, and BLAS1\$VGASUM compute the sum of the absolute values of the elements of x, which is expressed as follows:
$\sum_{i=1}^{n}\left|x_{i}\right|=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$
VM-0145A-AI
BLAS1\$VSCASUM, BLAS1\$VDZASUM, and BLAS1\$VGWASUM compute the sum of the absolute values of the real and imaginary parts of the elements of x, which is expressed as follows:

$$
\sum_{i=1}^{n}\left(\left|a_{i}\right|+\left|b_{i}\right|\right)=\left(\left|a_{1}\right|+\left|b_{2}\right|\right)+\ldots+\left(\left|a_{n}\right|+\left|b_{n}\right|\right)
$$

where $\left|x_{i}\right|=\left(a_{i}, b_{i}\right)$
and $\left|a_{i}\right|+\left|b_{i}\right|=\mid$ real $|+|$ imaginary \mid
VM-0146A-AI
The public-domain BLAS Level 1 xASUM routines require a positive value for incx. The Run-Time Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.
The algorithm does not provide a special case for incx $=0$. Therefore, specifying 0 for incx has the effect of computing $n *\left|x_{1}\right|$ using vector operations.
Rounding in the summation occurs in a different order than in a sequential evaluation of the sum, so the final result may differ from the result of a sequential evaluation.

Example

```
C
C To obtain the sum of the absolute values of the
C elements of vector x:
C
    INTEGER N,INCX
    REAL X (20),SUM
    INCX = 1
    N = 20
    SUM = BLAS1$VSASUM (N, X,INCX)
```


BLAS1\$VxAXPY—Multiply a Vector by a Scalar and Add a Vector

The Multiply a Vector by a Scalar and Add a Vector routine computes $a x+y$, where \mathbf{a} is a scalar number and x and y are n -element vectors.

Format

Use BLAS1\$VSAXPY for single-precision real operations.
Use BLAS1\$VDAXPY for double-precision real (D-floating) operations. Use BLAS1\$VGAXPY for double-precision real (G-floating) operations.
Use BLAS1\$VCAXPY for single-precision complex operations.
Use BLAS1\$VZAXPY for double-precision complex (D-floating) operations.
Use BLAS1\$VWAXPY for double-precision complex (G-floating) operations.

Returns

None.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vectors x and y. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements. If \mathbf{n} is less than or equal to 0 , then \mathbf{y} is unchanged.
a
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Scalar multiplier for the array \mathbf{x}. The a argument is the address of a floatingpoint or floating-point complex number that is this multiplier. If a equals 0 , then \mathbf{y} is unchanged. If a shares a memory location with any element of the vector ${ }_{y}$, results are unpredictable. Specify the same data type for arguments \mathbf{a}, \mathbf{x}, and \mathbf{y}.
x
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex read only
access:
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1 . The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. The length of this array is at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
Specify the data type as follows:

Routine	Data Type for \mathbf{x}
BLAS1\$VSAXPY	F-floating real
BLAS1\$VDAXPY	D-floating real
BLAS1\$VGAXPY	G-floating real
BLAS1\$VCAXPY	F-floating complex
BLAS1\$VZAXPY	D-floating complex
BLAS1\$VWAXPY	G-floating complex

If any element of x shares a memory location with an element of ${ }_{y}$, the results are unpredictable.

incx

OpenVMS usage: longword_signed
type: \quad longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced in:
$x(1+(i-1) * i n c x)$
where:
$x=$ array specified in \mathbf{x}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx

If incx is less than 0 , then x is referenced backward in array \mathbf{x}; that is, x_{i} is referenced in:

$$
x(1+(n-i) *|i n c x|)
$$

where:

```
x = array specified in }\mathbf{x
n = number of vector elements specified in n
i = element of the vector }
incx = increment argument for the array }\mathbf{x}\mathrm{ specified in incx
```


y

OpenVMS usage: floating_point or complex_number
type: \quad F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
On entry, array containing the elements to be accessed. All elements of array \mathbf{y} are accessed only if the increment argument of \mathbf{y}, called incy, is 1 . The \mathbf{y} argument is the address of a floating-point or floating-point complex number that is this array. The length of this array is at least:
$1+(n-1) *|i n c y|$
where:
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n}
incy $=$ increment argument for the array \mathbf{y} specified in incy
Specify the data type as follows:

Routine	Data Type for \mathbf{y}
BLAS1\$VSAXPY	F-floating real
BLAS1\$VDAXPY	D-floating real
BLAS1\$VGAXPY	G-floating real
BLAS1\$VCAXPY	F-floating complex
BLAS1\$VZAXPY	D-floating complex
BLAS1\$VWAXPY	G-floating complex

If \mathbf{n} is less than or equal to 0 , then \mathbf{y} is unchanged. If any element of x shares a memory location with an element of y, the results are unpredictable.
On exit, \mathbf{y} contains an array of length at least:
$1+\left({ }^{n-1}\right) *\left|i n c_{y}\right|$
where:
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n}
incy $=$ increment argument for the array \mathbf{y} specified in incy
After the call to BLAS1\$V×AXPY, $\underset{y}{ }$ is set equal to:
$y i+a * x_{i}$
where:

```
\(\mathrm{y}=\) the vector \(_{y}\)
i \(=\) element of the vector \(x\) or \(y\)
a \(=\) scalar multiplier for the vector \(x\) specified in a
\(x=\) the vector \(x\)
```

incy
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \mathbf{y}. The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then ${ }_{y}$ is referenced forward in array \mathbf{y}; that is, ${ }_{y j}$ is referenced in:
$y(1+(i-1) * i n c y)$
where:
$y=\quad$ array specified in \mathbf{y}
i $=$ element of the vector y
incy $=$ increment argument for the array y specified in incy
If incy is less than 0 , then ${ }_{y}$ is referenced backward in array \mathbf{y}; that is, y_{i} is is referenced in:
$y\left(1+(n-i) *\left|i n c_{y}\right|\right)$
where:
$y=$ array specified in \mathbf{y}
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n}
i $=$ element of the vector y
incy $=$ increment argument for the array \mathbf{y} specified in incy

Description

BLAS1\$VxAXPY multiplies a vector x by a scalar, adds to a vector ${ }_{y}$, and stores the result in the vector ${ }_{y}$. This is expressed as follows:
$y^{\leftarrow}-a x+y$
where a is a scalar number and x and y are real or complex single-precision or double-precision (D and G) n-element vectors. The vectors can be rows or columns of a matrix. Both forward and backward indexing are permitted. Vectors x and y contain \mathbf{n} elements that are accessed from arrays \mathbf{x} and \mathbf{y} by stepping incx and incy elements at a time.
The routine name determines the data type you should specify for arguments a, \mathbf{x}, and \mathbf{y}. Specify the same data type for each of these arguments.

The algorithm does not provide a special case for incx $=0$. Therefore, specifying 0 for incx has the effect of adding the constant $a * x_{1}$ to all elements of the vector y using vector operations.

Example

```
C To compute y=y+2.0*x using SAXPY:
C
    INTEGER N,INCX,INCY
    REAL X(20), Y(20),A
    INCX = 1
    INCY = 1
    A = 2.0
    N = 20
    CALL BLAS1$VSAXPY (N,A,X,INCX,Y,INCY)
```


BLAS1\$VxCOPY-Copy a Vector

The Copy a Vector routine copies n elements of the vector x to the vector y.

Format

$$
\begin{aligned}
& \text { BLAS1\$VSCOPY } n, x, \text { incx }, y \text {, incy } \\
& \text { BLAS1\$VDCOPY } n, x, \text { incx }, y \text {,incy } \\
& \text { BLAS1\$VCCOPY } n, x, \text { incx }, y \text {,incy } \\
& \text { BLAS1\$VZCOPY } n, x, \text { incx }, y \text {,incy }
\end{aligned}
$$

Use BLAS1\$VSCOPY for single-precision real operations.
Use BLAS1\$VDCOPY for double-precision real (D or G) operations.
Use BLAS1\$VCCOPY for single-precision complex operations.
Use BLAS1\$VZCOPY for doubleprecision complex (D or G) operations.

Returns

None.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x to be copied. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements in vector x. If \mathbf{n} is less than or equal to 0 , then ${ }_{y}$ is unchanged.
x
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1 . The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx

Specify the data type as follows:

Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced in:

$$
x(1+(i-1) * i n c x)
$$

where:

```
x = array specified in }\mathbf{x
i = element of the vector }
incx = increment argument for the array }\mathbf{x}\mathrm{ specified in incx
```

If incx is less than 0 , then x is referenced backward in array \mathbf{x}; that is, x_{i} is referenced in:
$x(1+(n-i) *|i n c x|)$
where:
$x \quad=\quad$ array specified in \mathbf{x}
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx
y
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_{-}^{-}floating complex
access: write only
mechanism: by reference, array reference
Array that receives the copied elements. All elements of array \mathbf{y} receive the copied elements only if the increment argument of \mathbf{y}, called incy, is 1 . The \mathbf{y} argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least:

$$
1+(n-1) *\left|i n c_{y}\right|
$$

where:
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n} incy $=$ increment argument for the array \mathbf{y} specified in incy
Specify the data type as follows:

Routine	Data Type for \mathbf{y}
BLAS1\$VSCOPY	F-floating real
BLAS1\$VDCOPY	D-floating or G-floating real
BLAS1\$VCCOPY	F-floating complex
BLAS1\$VZCOPY	D-floating or G-floating complex

If \mathbf{n} is less than or equal to 0 , then \mathbf{y} is unchanged. If incx is equal to 0 , then each y_{i} is set to x_{1}. If incy is equal to 0 , then $y_{i j}$ is set to the last referenced element of x. If any element of x shares a memory location with an element of y, the results are unpredictable. (See the Description section for a special case that does not cause unpredictable results when the same memory location is shared by input and output.)
incy
OpenVMS usage: longword_signed
type: \quad longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \mathbf{y}. The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then ${ }_{y}$ is referenced forward in array \mathbf{y}; that is, $y i$ is referenced in:
$y(1+(i-1) * i n c y)$
where:
$y=$ array specified in \mathbf{y}
i $=$ element of the vector y
If incy is less than 0 , then ${ }_{y}$ is referenced backward in array \mathbf{y}; that is, $y i$ is referenced in:

$$
y\left(1+(n-i) *\left|i n c c_{y}\right|\right)
$$

where:
$y=$ array specified in \mathbf{y}
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
i $=$ element of the vector y
incy $=$ increment argument for the array \mathbf{y} specified in incy

Description

BLAS1\$VSCOPY, BLAS1\$VDCOPY, BLAS1\$VCCOPY, and BLAS1\$VZCOPY copy n elements of the vector x to the vector y. Vector x contains \mathbf{n} elements that are accessed from array \mathbf{x} by stepping incx elements at a time. Both x and y are real or complex single-precision or double-precision (D and G) n-element vectors. The vectors can be rows or columns of a matrix. Both forward and backward indexing are permitted.
If you specify 0 for incx, BLAS1\$VxCOPY initializes all elements of ${ }_{y}$ to a constant.

If you specify -incx for incy, the vector x is stored in reverse order in y. In this case, the call format is as follows:

CALL BLAS1\$VxCOPY (N, X, INCX, Y,-INCX)
It is possible to move the contents of a vector up or down within itself and not cause unpredictable results even though the same memory location is shared between input and output. To do this when i is greater than j , call the routine BLAS1\$VxCOPY with incx $=$ inc $y_{y}>0$ as follows:

CALL BLAS1\$VxCOPY (N,X(I),INCX,X(J),INCX)
The preceding call to BLAS1\$VxCOPY moves:
$x(i), x(i+1 * i n c x), \ldots x(i+(n-1) * i n c x)$
to
${ }^{x}(j), x(j+1 * i n c x), \ldots x(j+(n-1) * i n c x)$
If i is less than j , specify a negative value for incx and incy in the call to BLAS1\$VxCOPY, as follows. The parts that do not overlap are unchanged.

CALL BLAS1\$VxCOPY (N,X(I),-INCX,X(J),-INCX)
\qquad
BLAS1\$VxCOPY does not perform floating operations on the input data. Therefore, floating reserved operands are not detected by BLAS1\$VxCOPY.

BLAS1\$VxCOPY

Example

```
C
C To copy a vector x to a vector y using BLAS1$VSCOPY:
C
        INTEGER N,INCX,INCY
        REAL X(20),Y(20)
        INCX = 1
        INCY = 1
        N = 20
        CALL BLAS1$VSCOPY (N,X,INCX,Y,INCY)
C
C To move the contents of X(1),X(3),X(5),...,X(2N-1)
C to }X(3),X(5),\ldots,X(2N+1) and leave x unchanged
C
    CALL BLAS1$VSCOPY (N,X,-2,X(3),-2))
C
C To move the contents of X(2),X(3),...,X(100) to
C X(1),X(2),\ldots,X(99) and leave x(100) unchanged:
C
    CALL BLAS1$VSCOPY(99,X(2),1,X,1))
C
C To move the contents of X(1),X(2),X(3),...,X(N) to
C Y(N),Y(N-1),..., Y
C
    CALL BLAS1$VSCOPY(N,X,1,Y,-1))
```


BLAS1\$VxDOTx—Obtain the Inner Product of Two Vectors

The Obtain the Inner Product of Two Vectors routine returns the dot product of two n -element vectors, x and y.

Format

Use BLAS1\$VSDOT to obtain the inner product of two single-precision real vectors.
Use BLAS1\$VDDOT to obtain the inner product of two double-precision (Dfloating) real vectors. Use BLAS1\$VGDOT to obtain the inner product of two double-precision (G-floating) real vectors.
Use BLAS1\$VCDOTU to obtain the inner product of two single-precision complex vectors (unconjugated).
Use BLAS1\$VCDOTC to obtain the inner product of two single-precision complex vectors (conjugated).
Use BLAS1\$VZDOTU to obtain the inner product of two doubleprecision (Dfloating) complex vectors (unconjugated). Use BLAS1\$VWDOTU to obtain the inner product of two double-precision (G-floating) complex vectors (unconjugated).
Use BLAS1\$VZDOTC to obtain the inner product of two doubleprecision (Dfloating) complex vectors (conjugated). Use BLAS1\$VWDOTC to obtain the inner product of two double-precision (G-floating) complex vectors (conjugated).

Returns

OpenVMS usage:	floating_point or complex_number
type:	F_floating, D_floating, G_floating real or F_floating,
	D_floating, G_floating complex $^{\text {access: }}$
write only	
mechanism:	by value

The function value, called dotpr, is the dot product of two n-element vectors, x and ${ }_{y}$. Specify the same data type for dotpr and the argument \mathbf{x}.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements. If you specify a value for \mathbf{n} that is less than or equal to 0 , then the value of dotpr is 0.0 .
x
OpenVMS usage: floating_point or complex_number type:
access
F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
read only
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1 . The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
Specify the data type as follows:

Routine	Data Type for x
BLAS1\$VSDOT	F-floating real
BLAS1\$VDDOT	D-floating real
BLAS1\$VGDOT	G-floating real
BLAS1\$VCDOTU and BLAS1\$VCDOTC	F-floating complex
BLAS1\$VZDOTU and BLAS1\$VZDOTC	D-floating complex
BLAS1\$VWDOTU and BLAS1\$VWDOTC	G-floating complex
incx	
OpenVMS usage: longword_signed type: longword integer (signed) access: read only mechanism: by reference	
Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced in:	

where:

```
x = array specified in }\mathbf{x
i = element of the vector }
incx = increment argument for the array }\mathbf{x}\mathrm{ specified in incx
```

If incx is less than 0 , then x is referenced backward in array \mathbf{x}; that is, x_{i} is referenced in:

```
x (1+(n-i)* *incx )
where:
x = array specified in }\mathbf{x
n = number of vector elements specified in n
i = element of the vector }
incx = increment argument for the array }\mathbf{x}\mathrm{ specified in incx
```

```
y
OpenVMS usage: floating_point or complex_number
type:
access: read only
mechanism: by reference, array reference
```

Array containing the elements to be accessed. All elements of array \mathbf{y} are accessed only if the increment argument of \mathbf{y}, called incy, is 1. The \mathbf{y} argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least:
$1+(n-1) *\left|i n c_{y}\right|$
where:
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
incy $=$ increment argument for the array y specified in incy
Specify the data type as follows:

Routine	Data Type for \mathbf{y}
BLAS1\$VSDOT	F-floating real
BLAS1\$VDDOT	D-floating real
BLAS1\$VGDOT	G-floating real
BLAS1\$VCDOTU and BLAS1\$VCDOTC	F-floating complex
BLAS1\$VZDOTU and BLAS1\$VZDOTC	D-floating complex
BLAS1\$VWDOTU and BLAS1\$VWDOTC	G-floating complex

incy

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \mathbf{y}. The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then ${ }_{y}$ is referenced forward in array \mathbf{y}; that is, ${ }_{y i}$ is referenced in:
$y(1+(i-1) * i n c u)$
where:
$y=$ array specified in \mathbf{y}
i $=$ element of the vector y
incy $=$ increment argument for the array \mathbf{y} specified in incy
If incy is less than 0 , then ${ }_{y}$ is referenced backward in array \mathbf{y}; that is, y_{i} is referenced in:
$y\left(1+(n-i) *\left|i n c_{y}\right|\right)$
where:
$y \quad=\quad$ array specified in \mathbf{y}
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n}
i $=$ element of the vector y
incy $=$ increment argument for the array \mathbf{y} specified in incy

Description

The unconjugated versions of this routine, BLAS1\$VSDOT, BLAS1\$VDDOT, BLAS1\$VGDOT, BLAS1\$VCDOTU, BLAS1\$VZDOTU, and BLAS1\$VWDOTU return the dot product of two n-element vectors, x and y, expressed as follows:
$x \cdot y=x_{1 y 1}+x_{2 y 2}+\ldots+x_{n y n}$
The conjugated versions of this routine, BLAS1\$VCDOTC, BLAS1\$VZDOTC, and BLAS1\$VWDOTC return the dot product of the conjugate of the first n-element vector with a second n -element vector, as follows:
$\bar{x} \cdot y=\bar{x}_{1 y 1}+\bar{x}_{2 y 2}+\ldots+\bar{x}_{n y n}$
Vectors x and ${ }_{y}$ contain \mathbf{n} elements that are accessed from arrays \mathbf{x} and \mathbf{y} by stepping incx and incy elements at a time. The vectors x and y_{y} can be rows or columns of a matrix. Both forward and backward indexing are permitted.
The routine name determines the data type you should specify for arguments \mathbf{x} and \mathbf{y}. Specify the same data type for these arguments.
Rounding in BLAS1\$VxDOTx occurs in a different order than in a sequential evaluation of the dot product. The final result may differ from the result of a sequential evaluation.

Example

```
C
C To compute the dot product of two vectors, x and y,
C and return the result in DOTPR:
C
INTEGER INCX,INCY
    REAL X(20),Y(20),DOTPR
    INCX = 1
    INCY = 1
    N = 20
    DOTPR = BLAS1$VSDOT (N,X,INCX,Y,INCY)
```


BLAS1\$VxNRM2—Obtain the Euclidean Norm of a Vector

The Obtain the Euclidean Norm of a Vector routine obtains the Euclidean norm of an n -element vector x, expressed as follows:

$$
\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}
$$

Format

$$
\begin{aligned}
& \text { BLAS1\$VSNRM2 } n, x, \text { incx } \\
& \text { BLAS1\$VDNRM2 } n, x, \text { incx } \\
& \text { BLAS1\$VGNRM2 } n, x, \text { incx } \\
& \text { BLAS1\$VSCNRM2 } n, x, \text { incx } \\
& \text { BLAS1\$VDZNRM2 } n, x, \text { incx } \\
& \text { BLAS1\$VGWNRM2 } n, x, i n c x
\end{aligned}
$$

Use BLAS1\$VSNRM2 for single-precision real operations. Use BLAS1\$VDNRM2 for double-precision real (D-floating) operations. Use BLAS1\$VGNRM2 for double-precision real (G-floating) operations.
Use BLAS1\$VSCNRM2 for single-precision complex operations. Use BLAS1\$VDZNRM2 for double-precision complex (D-floating) operations. Use BLAS1\$VGWNRM2 for double-precision complex (G-floating) operations.

Returns

```
OpenVMS usage: floating_point
type: F_floating, D_floating, or G_floating real
access: write only
mechanism: by value
```

The function value, called e_norm, is the Euclidean norm of the vector x. The data type of the function value is a real number; for the BLAS1\$VSCNRM2, BLAS1\$VDZNRM2, and BLAS1\$VGWNRM2 routines, the data type of the function value is the real data type corresponding to the complex argument data type.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only mechanism: by reference

Number of elements in vector x to be processed. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements.
\mathbf{x}
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating,
D_floating, G_floating complex

```
access: read only
mechanism: by reference, array reference
```

Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1 . The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. This argument is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
Specify the data type as follows:

Routine	Data Type for \mathbf{x}
BLAS1\$VSNRM2	F-floating real
BLAS1\$VDNRM2	D-floating real
BLAS1\$VGNRM2	G-floating real
BLAS1\$VSCNRM2	F-floating complex
BLAS1\$VDZNRM2	D-floating complex
BLAS1\$VGWNRM2	G-floating complex

If \mathbf{n} is less than or equal to 0 , then \mathbf{e} _norm is 0.0 .
incx
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced in:
$x(1+(i-1) * i n c x)$
where:
$x \quad=$ array specified in \mathbf{x}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx
If you specify a negative value for incx, it is interpreted as the absolute value of incx.

Description

BLAS1\$VxNRM2 obtains the Euclidean norm of an n-element vector x, expressed as follows:
$\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$
VM-0715A-AI
Vector x contains \mathbf{n} elements that are accessed from array \mathbf{x} by stepping incx elements at a time. The vector x is a real or complex single-precision or doubleprecision (D and G) n-element vector. The vector can be a row or a column of a matrix. Both forward and backward indexing are permitted.

The public-domain BLAS Level $1 \times N R M 2$ routines require a positive value for incx. The Run-Time Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx $=0$. Therefore, specifying 0 for incx has the effect of using vector operations to set e_norm as follows:
e_norm $=n^{0.5} *\left|x_{1}\right|$
For BLAS1\$VDNRM2, BLAS1\$VGNRM2, BLAS1\$VDZNRM2, and BLAS1\$VGWNRM2 (the double-precision routines), the elements of the vector x are scaled to avoid intermediate overflow or underflow. BLAS1\$VSNRM2 and BLAS1\$VSCNRM2 (the single-precision routines) use a backup data type to avoid intermediate overflow or underflow.

Rounding in BLAS1\$VxNRM2 occurs in a different order than in a sequential evaluation of the Euclidean norm. The final result may differ from the result of a sequential evaluation.

Example

```
C To obtain the Euclidean norm of the vector x:
    INTEGER INCX,N
    REAL X(20),E_NORM
    INCX = 1
    N = 20
    E_NORM = BLAS1$VSNRM2 (N,X,INCX)
```


BLAS1\$VxROT—Apply a Givens Plane Rotation

The Apply a Givens Plane Rotation routine applies a Givens plane rotation to a pair of n -element vectors x and y.

Format

BLAS1\$VSROT	c, s
BLAS1\$VDROT	n, x, incx , y ,incy , c, s
BLAS1\$VGROT	n, x, incx , y , incy , c, s
BLAS1\$VCSROT	n, x, incx , y , incy , c, s
BLAS1\$VZDROT	n, x, incx , y , incy , c, s
LAS1\$VWGRO	n

Use BLAS1\$VSROT for single-precision real operations.
Use BLAS1\$VDROT for double-precision real (D-floating) operations. Use BLAS1\$VGROT for double-precision real (G-floating) operations.

Use BLAS1\$VCSROT for single-precision complex operations.
Use BLAS1\$VZDROT for double-precision complex (D-floating) operations. Use BLAS1\$VWGROT for double-precision complex (G-floating) operations. BLAS1\$VCSROT, BLAS1\$VZDROT, and BLAS1\$VWGROT are real rotations applied to a complex vector.

Returns

None.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vectors x and y to be rotated. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements to be rotated. If \mathbf{n} is less than or equal to 0 , then \mathbf{x} and \mathbf{y} are unchanged.

[^6]where:
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n} incx $=$ increment argument for the array \mathbf{x} specified in incx

Specify the data type as follows:

Routine	Data Type for \mathbf{x}
BLAS1\$VSROT	F-floating real
BLAS1\$VDROT	D-floating real
BLAS1\$VGROT	G-floating real
BLAS1\$VCSROT	F-floating complex
BLAS1\$VZDROT	D-floating complex
BLAS1\$VWGROT	G-floating complex

If \mathbf{n} is less than or equal to 0 , then \mathbf{x} and \mathbf{y} are unchanged. If \mathbf{c} equals 1.0 and \mathbf{s} equals 0 , then \mathbf{x} and \mathbf{y} are unchanged. If any element of x shares a memory location with an element of ${ }_{y}$, then the results are unpredictable.

On exit, \mathbf{x} contains the rotated vector x, as follows:
$x_{i} \leftarrow c * x_{i}+s * \psi_{i}$
where:
$\mathbf{x}=\operatorname{array} \mathbf{x}$ specified in \mathbf{x}
$y=\operatorname{array} \mathbf{y}$ specified in \mathbf{y}
$i=i=1,2, \ldots, n$
c $=$ rotation element generated by the BLAS1\$VxROTG routines
$s=$ rotation element generated by the BLAS1\$VxROTG routines
incx
OpenVMS usage: longword_signed
type: longword integer (signed)
access:
read only
mechanism: by reference
Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced in:
$x(1+(i-1) * i n c x)$
where:
$x=$ array specified in \mathbf{x}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx
If incx is less than 0 , then x is referenced backward in array \mathbf{x}; that is, x_{i} is referenced in:
$x(1+(n-i) *|i n c x|)$
where:

```
x = array specified in x
n = number of vector elements specified in n
i = element of the vector }
incx = increment argument for the array }\mathbf{x}\mathrm{ specified in incx
```

```
y
```

y
OpenVMS usage: floating_point or complex_number
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating,
type: F_floating, D_floating, G_floating real or F_floating,
D_floating, G_floating complex
D_floating, G_floating complex
modify
modify
mechanism: by reference, array reference

```
mechanism: by reference, array reference
```

Array containing the elements to be accessed. All elements of array \mathbf{y} are accessed only if the increment argument of \mathbf{y}, called incy, is 1. The \mathbf{y} argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
Specify the data type as follows:

Routine	Data Type for \mathbf{y}
BLAS1\$VSROT	F-floating real
BLAS1\$VDROT	D-floating real
BLAS1\$VGROT	G-floating real
BLAS1\$VCSROT	F-floating complex
BLAS1\$VZDROT	D-floating complex
BLAS1\$VWGROT	G-floating complex

If \mathbf{n} is less than or equal to 0 , then \mathbf{x} and \mathbf{y} are unchanged. If \mathbf{c} equals 1.0 and \mathbf{s} equals 0 , then \mathbf{x} and \mathbf{y} are unchanged. If any element of x shares a memory location with an element of y_{y}, then the results are unpredictable.
On exit, \mathbf{y} contains the rotated vector ${ }_{y}$, as follows:
$y i \leftarrow-s * x_{i}+c * y i$
where:
$\mathbf{x}=\operatorname{array} \mathbf{x}$ specified in \mathbf{x}
$y=\operatorname{array} \mathbf{y}$ specified in \mathbf{y}
$\mathrm{i}=\mathrm{i}=1,2, \ldots, \mathrm{n}$
$\mathrm{c}=$ real rotation element (can be generated by the BLAS1\$VxROTG routines)
$\mathrm{s}=$ complex rotation element (can be generated by the BLAS1\$VxROTG routines)

```
incy
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
```

Increment argument for the array \mathbf{y}. The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then ${ }_{y}$ is referenced forward in array \mathbf{y}; that is, $y i$ is referenced in:
$y(1+(i-1) * i n c u)$
where:

```
y = array specified in y
i = element of the vector }
incy = increment argument for the array y specified in incy
```

If incy is less than 0 , then ${ }_{y}$ is referenced backward in array \mathbf{y}; that is, y_{i} is referenced in:
$y\left({ }^{1}+\left({ }^{n-i}\right) *|i n c \underset{y}{c}|\right)$
where:
$y=$ array specified in \mathbf{y}
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
i $=$ element of the vector ${ }_{y}$
incy $=$ increment argument for the array \mathbf{y} specified in incy
c
OpenVMS usage: floating_point
type: \quad F_floating, D_floating, or G_floating real
access: read only
mechanism: by reference
First rotation element, which can be interpreted as the cosine of the angle of rotation. The c argument is the address of a floating-point or floating-point complex number that is this vector element. The \mathbf{c} argument is the first rotation element generated by the BLAS1\$VxROTG routines.
Specify the data type (which is always real) as follows:

Routine	Data Type for c
BLAS1\$VSROT and	F-floating real
BLAS1\$VCSROT	
BLAS1\$VDROT and BLAS1\$VZDROT	D-floating real
BLAS1\$VGROT and BLAS1\$VWGROT	G-floating real

\mathbf{s}
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference
Second rotation element, which can be interpreted as the sine of the angle of rotation. The s argument is the address of a floating-point or floating-point complex number that is this vector element. The s argument is the second rotation element generated by the BLAS1\$VxROTG routines.

Specify the data type (which can be either real or complex) as follows:

Routine	Data Type for s
BLAS1\$VSROT and	F-floating real or F-floating complex
BLAS1\$VCSROT	
BLAS1\$VDROT and BLAS1\$VZDROT	D-floating real or D-floating complex
BLAS1\$VGROT and	G-floating real or G-floating complex
BLAS1\$VWGROT	

Description

BLAS1\$VSROT, BLAS1\$VDROT, and BLAS1\$VGROT apply a real Givens plane rotation to a pair of real vectors. BLAS1\$VCSROT, BLAS1\$VZDROT, and BLAS1\$VWGROT apply a real Givens plane rotation to a pair of complex vectors. The vectors x and y are real or complex single-precision or double-precision (D and G) vectors. The vectors can be rows or columns of a matrix. Both forward and backward indexing are permitted. The routine name determines the data type you should specify for arguments \mathbf{x} and \mathbf{y}. Specify the same data type for each of these arguments.

The Givens plane rotation is applied to \mathbf{n} elements, where the elements to be rotated are contained in vectors x and ${ }_{y}$ (i equals $1,2, \ldots, n$). These elements are accessed from arrays \mathbf{x} and \mathbf{y} by stepping incx and incy elements at a time. The cosine and sine of the angle of rotation are \mathbf{c} and \mathbf{s}, respectively. The arguments \mathbf{c} and \mathbf{s} are usually generated by the BLAS Level 1 routine BLAS1\$VxROTG, using $a=x$ and $b={ }_{y}$:
$\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right] \leftarrow\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$
The BLAS1\$VxROT routines can be used to introduce zeros selectively into a matrix.

BLAS1\$VxROT

Example

```
C
C To rotate the first two rows of a matrix and zero
C out the element in the first column of the second row:
C
        INTEGER INCX,N
        REAL X(20,20),A,B,C,S
        INCX = 20
        N = 20
        A = X (1,1)
        B = X (2,1)
        CALL BLAS1$VSROTG (A,B,C,S)
        CALL BLAS1$VSROT (N,X,INCX,X (2,1),INCX,C,S)
```


BLAS1\$VxROTG-Generate the Elements for a Givens Plane Rotation

The Generate the Elements for a Givens Plane Rotation routine constructs a Givens plane rotation that eliminates the second element of a two-element vector.

Format

BLAS1\$VSROTG a ,b ,c ,s
BLAS1\$VDROTG a ,b,c ,s
BLAS1\$VGROTG a, b, c, s
BLAS1\$VCROTG a ,b,c,s
BLAS1\$VZROTG a,b,c ,s
BLAS1\$VWROTG a,b,c,s
Use BLAS1\$VSROTG for single-precision real operations.
Use BLAS1\$VDROTG for double-precision real (D-floating) operations.
Use BLAS1\$VGROTG for double-precision real (G-floating) operations.
Use BLASI\$VCROTG for single-precision complex operations.
Use BLAS1\$VZROTG for double-precision complex (D-floating) operations.
Use BLAS1\$VWROTG for double-precision complex (G-floating) operations.

Returns

None.

Arguments

a
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex modify
access:
mechanism: by reference
On entry, first element of the input vector. On exit, rotated element r. The a argument is the address of a floating-point or floating-point complex number that is this vector element.

Specify the data type as follows:

Routine	Data Type for a
BLAS1\$VSROTG	F-floating real
BLAS1\$VDROTG	D-floating real
BLAS1\$VGROTG	G-floating real
BLAS1\$VCROTG	F-floating complex
BLAS1\$VZROTG	D-floating complex
BLAS1\$VWROTG	G-floating complex

b
OpenVMS usage: floating_point or complex_number
type:
access:
F_floating, D_floating, G_floating real or F_floating,
D_floating, G_floating complex
mechanism: by reference
On entry, second element of the input vector. On exit from BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG, reconstruction element z. (See the Description section for more information about z.) The \mathbf{b} argument is the address of a floating-point or floating-point complex number that is this vector element.
Specify the data type as follows:

Routine	Data Type for b
BLAS1\$VSROTG	F-floating real
BLAS1\$VDROTG	D-floating real
BLAS1\$VGROTG	G-floating real
BLAS1\$VCROTG	F-floating complex
BLAS1\$VZROTG	D-floating complex
BLAS1\$VWROTG	G-floating complex

c
OpenVMS usage: floating_point
type: \quad F_floating, D_floating, or G_floating real
access: write only mechanism: by reference

First rotation element, which can be interpreted as the cosine of the angle of rotation. The c argument is the address of a floating-point or floating-point complex number that is this vector element.
Specify the data type (which is always real) as follows:

Routine	Data Type for c
BLAS1\$VSROTG and	F-floating real
BLAS1\$VCROTG	
BLAS1\$VDROTG and BLAS1\$VZROTG	D-floating real
BLAS1\$VGROTG and BLAS1\$VWROTG	G-floating real

s
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating,
D_floating, G_floating complex
access:
mechanism: by reference

Second rotation element, which can be interpreted as the sine of the angle of rotation. The \mathbf{s} argument is the address of a floating-point or floating-point complex number that is this vector element.

Specify the data type as follows:

Routine	Data Type for s
BLAS1\$VSROTG	F-floating real
BLAS1\$VDROTG	D-floating real
BLAS1\$VGROTG	G-floating real
BLAS1\$VCROTG	F-floating complex
BLAS1\$VZROTG	D-floating complex
BLAS1\$VWROTG	G-floating complex

Description

BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG construct a real Givens plane rotation. BLAS1\$VCROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG construct a complex Givens plane rotation. The Givens plane rotation eliminates the second element of a two-element vector. The elements of the vector are real or complex single-precision or double-precision (D and G) numbers. The routine name determines the data type you should specify for arguments \mathbf{a}, \mathbf{b}, and \mathbf{s}. Specify the same data type for each of these arguments.
BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG can use the reconstruction element z to store the rotation elements for future use. There is no counterpart to the term z for BLAS1\$VCROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG.

The BLAS1\$VxROTG routines can be used to introduce zeros selectively into a matrix.

For BLAS1\$VDROTG, BLAS1\$VGROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG (the double-precision routines), the elements of the vector are scaled to avoid intermediate overflow or underflow. BLAS1\$VSROTG and BLAS1\$VCROTG (the singleprecision routines) use a backup data type to avoid intermediate underflow or overflow, which may cause the final result to differ from the original Fortran routine.

BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG - Real Givens Plane Rotation

Given the elements a and b of an input vector, BLAS1\$VSROTG, and BLAS1\$VDROTG, BLAS1\$VGROTG calculate the elements c and s of an orthogonal matrix such that:

$$
\left[\begin{array}{ll}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
$$

A real Givens plane rotation is constructed for values a and b by computing values for r, c, s, and z, as follows:

$$
r=p \sqrt{a^{2}+b^{2}}
$$

where:

$$
\begin{aligned}
& p=\operatorname{SIGN}(a) \text { if }|a|>|b| \\
& p=\operatorname{SIGN}(b) \text { if }|a| \leq|b| \\
& c=\frac{a}{r} \text { if } r \neq 0 \\
& c=1 \text { if } r=0 \\
& s=\frac{b}{r} \text { if } r \neq 0 \\
& s=0 \text { if } r=0 \\
& z=\operatorname{sif}|a|>|b| \\
& z=\frac{1}{c} \text { if }|a| \leq|b| \text { and } c \neq 0 \text { and } r \neq 0 \\
& z=1 \text { if }|a| \leq|b| \text { and } c=0 \text { and } r \neq 0 \\
& z=0 \text { if } r=0
\end{aligned}
$$

BLAS1\$VSROTG, BLAS1\$VDROTG, and BLAS1\$VGROTG can use the reconstruction element z to store the rotation elements for future use. The quantities c and s are reconstructed from z as follows:

For $|z|=1, c=0$ and $s=1.0$
For $|z|<1, c=\sqrt{1-z^{2}}$ and $s=z$
For $|z|>1, c=\frac{1}{z}$ and $s=\sqrt{1-c^{2}}$
vm-0717A-AI
The arguments \mathbf{c} and \mathbf{s} can be passed to the BLAS1\$VxROT routines.

BLAS1\$VCROTG, BLAS1\$VZROTG, and BLAS1\$VWROTG - Complex Givens Plane Rotation

Given the elements a and b of an input vector, BLAS1\$VCROTG,
BLAS1\$VZROTG, and BLAS1\$VWROTG calculate the elements c and s of an orthogonal matrix such that:
$\left[\begin{array}{cc}c & -s_{1}+i * s_{2} \\ -s_{1}+i * s_{2} & c\end{array}\right]\left[\begin{array}{l}a_{1}+i * a_{2} \\ b_{1}+i * b_{2}\end{array}\right]=\left[\begin{array}{c}r_{1}+i * r_{2} \\ 0\end{array}\right]$
VM-0149A-AI
There are no BLAS Level 1 routines with which you can use complex cand s arguments.

Example

```
C
C To generate the rotation elements for a vector of
C elements a and b:
C
    REAL A,B,C,S
    CALL SROTG (A,B,C,S)
```


BLAS1\$VxSCAL—Scale the Elements of a Vector

The Scale the Elements of a Vector routine computes $a * x$ where \mathbf{a} is a scalar number and x is an n -element vector.

Format

> BLAS1\$VSSCAL n,a,x,incx

BLAS1\$VDSCAL n,a,x,incx
BLAS1\$VGSCAL n, a, x,incx
BLAS1\$VCSCAL n, a, x,incx
BLAS1\$VCSSCAL n, a, x,incx
BLAS1\$VZSCAL n, a, x,incx
BLAS1\$VWSCAL n, a, x,incx
BLAS1\$VZDSCAL n, a, x,incx
BLAS1\$VWGSCAL n,a,x,incx
Use BLAS1\$VSSCAL to scale a real single-precision vector by a real singleprecision scalar.
Use BLAS1\$VDSCAL to scale a real double-precision (D-floating) vector by a real double-precision (D-floating) scalar.
Use BLAS1\$VGSCAL to scale a real double-precision (G-floating) vector by a real doubleprecision (G-floating) scalar.
Use BLAS1\$VCSCAL to scale a complex single-precision vector by a complex single-precision scalar.
Use BLAS1\$VCSSCAL to scale a complex single-precision vector by a real singleprecision scalar.

Use BLAS1\$VZSCAL to scale a complex double-precision (D-floating) vector by a complex double-precision (D-floating) scalar.
Use BLAS1\$VWSCAL to scale a complex double-precision (G-floating) vector by a complex double-precision (G-floating) scalar.
Use BLAS1\$VZDSCAL to scale a complex double-precision (D-floating) vector by a real double-precision (D-floating) scalar.
Use BLAS1\$VWGSCAL to scale a complex double-precision (G-floating) vector by a real double-precision (G-floating) scalar.

Returns

None.

Arguments

n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector \mathbf{x} to be scaled. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements to be scaled. If you specify a value for \mathbf{n} that is less than or equal to 0 , then \mathbf{x} is unchanged.
a
OpenVMS usage: floating_point or complex_number
type: \quad F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access:
mechanism: by reference
Scalar multiplier for the elements of vector x. The a argument is the address of a floating-point or floating-point complex number that is this multiplier.
Specify the data type as follows:

Routine	Data Type for a
BLAS1\$VSSCAL and	F-floating real
BLAS1\$VCSSCAL	
BLAS1\$VDSCAL and BLAS1\$VZDSCAL	D-floating real
BLAS1\$VGSCAL and BLAS1\$VWGSCAL	G-floating real
BLAS1\$VCSCAL	F-floating complex
BLAS1\$VZSCAL	D-floating complex
BLAS1\$VWSCAL	G-floating complex

If you specify 1.0 for \mathbf{a}, then \mathbf{x} is unchanged.

x

OpenVMS usage: floating_point or complex_number
type: \quad F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1 . The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
Specify the data type as follows:

Routine	Data Type for \mathbf{x}
BLAS1\$VSSCAL	F-floating real
BLAS1\$VDSCAL	D-floating real
BLAS1\$VGSCAL	G-floating real
BLAS1\$VCSCAL and	F-floating complex
BLAS1\$VCSSCAL	

Routine	Data Type for \mathbf{x}
BLAS1\$VZSCAL and	D-floating complex
BLAS1\$VZDSCAL	
BLAS1\$VWSCAL and	G-floating complex
BLAS1\$VWGSCAL	

On exit, \mathbf{x} is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
After the call to BLAS1 $\$ \mathrm{~V} \times S C A L, x_{i}$ is replaced by $a * x_{i}$ If a shares a memory location with any element of the vector x, results are unpredictable.
incx
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced in:
$x(1+(i-1) * i n c x)$
where:
$x=$ array specified in \mathbf{x}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx
If you specify a negative value for incx, it is interpreted as the absolute value of incx. If incx equals 0 , the results are unpredictable.

Description

BLAS1\$VxSCAL computes $a * x$ where a is a scalar number and x is an n-element vector. The computation is expressed as follows:
$\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]-a\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$
VM-0150A-AI
Vector x contains \mathbf{n} elements that are accessed from array \mathbf{x} by stepping incx elements at a time. The vector x can be a row or a column of a matrix. Both forward and backward indexing are permitted.

The public-domain BLAS Level 1 xSCAL routines require a positive value for incx. The Run-Time Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

BLAS1\$VxSCAL

The algorithm does not provide a special case for $\mathbf{a}=0$. Therefore, specifying 0 for a has the effect of setting to zero all elements of the vector x using vector operations.

Example

```
C
C To scale a vector x by 2.0 using SSCAL:
    INTEGER INCX,N
    REAL X (20),A
    INCX = 1
    A = 2
    N = 20
    CALL BLAS1$VSSCAL (N, A, X, INCX)
```


BLAS1\$VxSWAP—Swap the Elements of Two Vectors

The Swap the Elements of Two Vectors routine swaps n elements of the vector x with the vector ${ }_{y}$.

Format

BLAS1\$VSSWAP	n, x, incx,y, incy
BLAS1\$VDSWAP	n, x, incx,y, incy
BLAS1\$VCSWAP	n, x, incx x, y, incy
BLAS1\$VZSWAP	n, x, incx,y, incy

Use BLAS1\$VSSWAP for single-precision real operations.
Use BLAS1\$VDSWAP for double-precision real (D or G) operations.
Use BLAS1\$VCSWAP for single-precision complex operations.
Use BLAS1\$VZSWAP for double-precision complex (D or G) operations.

Returns

> None.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Number of elements in vector x to be swapped. The \mathbf{n} argument is the address of a signed longword integer containing the number of elements to be swapped.
x
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1 . The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=\quad$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx

Specify the data type as follows:

Routine	Data Type for \mathbf{x}
BLAS1\$VSSWAP	F-floating real
BLAS1\$VDSWAP	D-floating or G-floating real
BLAS1\$VCSWAP	F-floating complex
BLAS1\$VZSWAP	D-floating or G-floating complex

If \mathbf{n} is less than or equal to 0 , then \mathbf{x} and \mathbf{y} are unchanged. If any element of x shares a memory location with an element of y, the results are unpredictable.
On exit, \mathbf{x} is an array of length at least:
$1+(n-1) *|i n c x|$
where:
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
incx $=$ increment argument for the array \mathbf{x} specified in incx
After the call to BLAS1\$VxSWAP, \mathbf{n} elements of the array specified by \mathbf{x} are interchanged with \mathbf{n} elements of the array specified by \mathbf{y}.

```
incx
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
```

Increment argument for the array \mathbf{x}. The incx argument is the address of a signed longword integer containing the increment argument. If incx is greater than or equal to 0 , then x is referenced forward in array \mathbf{x}; that is, x_{i} is referenced in:
$x(1+(i-1) * i n c x)$
where:
$x \quad=\quad$ array specified in \mathbf{x}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx
If incx is less than 0 , then x is referenced backward in array \mathbf{x}; that is, x_{i} is referenced in:
$x(1+(n-i) *|i n c x|)$
where:
$x \quad=$ array specified in \mathbf{x}
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
i $=$ element of the vector x
incx $=$ increment argument for the array \mathbf{x} specified in incx

y

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_floating complex modify
access:
mechanism: by reference, array reference
Array containing the elements to be accessed. All elements of array \mathbf{y} are accessed only if the increment argument of \mathbf{y}, called incy, is 1. The \mathbf{y} argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least:
$1+(n-1) *|i n c y|$
where:
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n}
incy $=$ increment argument for the array \mathbf{y} specified in incy
Specify the data type as follows:

Routine	Data Type for \mathbf{y}
BLAS1\$VSSWAP	F-floating real
BLAS1\$VDSWAP	D-floating or G-floating real
BLAS1\$VCSWAP	F-floating complex
BLAS1\$VZSWAP	D-floating or G-floating complex

If \mathbf{n} is less than or equal to 0 , then \mathbf{x} and \mathbf{y} are unchanged. If any element of x shares a memory location with an element of y, the results are unpredictable.
On exit, \mathbf{y} is an array of length at least:
$1+(n-1) *|i n c y|$
where:
$\mathrm{n} \quad=$ number of vector elements specified in \mathbf{n}
incy $=$ increment argument for the array \mathbf{y} specified in incy
After the call to BLAS1\$VxSWAP, \mathbf{n} elements of the array specified by \mathbf{x} are interchanged with \mathbf{n} elements of the array specified by \mathbf{y}.
incy

OpenVMS usage:	longword_signed
type:	longword integer (signed)
access:	read only
mechanism:	by reference

Increment argument for the array \mathbf{y}. The incy argument is the address of a signed longword integer containing the increment argument. If incy is greater than or equal to 0 , then y is referenced forward in array \mathbf{y}; that is, $\underset{y}{ }$ is referenced in:
$y(1+(i-1) * i n c u)$
where:

```
y = array specified in y
i = element of the vector }
incy = increment argument for the array y specified in incy
```

If incy is less than 0 , then ${ }_{y}$ is referenced backward in array \mathbf{y}; that is, ${ }_{y j}$ is referenced in:
$u\left(1+(n-i) *\left|i n c_{y}\right|\right)$
where:
$y \quad=\quad$ array specified in \mathbf{y}
$\mathrm{n}=$ number of vector elements specified in \mathbf{n}
i $=$ element of the vector y
incy $=$ increment argument for the array \mathbf{y} specified in incy

Description

BLAS1\$VSSWAP, BLAS1\$VDSWAP, BLAS1\$VCSWAP, and BLAS1\$VZSWAP swap n elements of the vector x with the vector ${ }_{y}$. Vectors x and ${ }_{y}$ contain \mathbf{n} elements that are accessed from arrays \mathbf{x} and \mathbf{y} by stepping incx and incy elements at a time. Both x and y are real or complex single-precision or doubleprecision (D and G) n-element vectors. The vectors can be rows or columns of a matrix. Both forward and backward indexing are permitted.

You can use the routine BLAS1\$VxSWAP to invert the storage of elements of a vector within itself. If incx is greater than 0 , then x_{i} can be moved from location
$x(1+(i-1) * i n c x)$ to $x(1+(n-i) * i n c x)$
The following code fragment inverts the storage of elements of a vector within itself:

```
NN = N/2
LHALF = 1+(N-NN)*INCX
CALL BLAS1$VxSWAP (NN,X,INCX,X(LHALF),-INCX)
```

BLAS1\$VxSWAP does not check for a reserved operand.

Example

```
C
C To swap the contents of vectors x and y:
C
        INTEGER INCX, INCY,N
        REAL X(20),Y(20)
        INCX = 1
        INCY = 1
        N = 20
        CALL BLAS1$VSSWAP (N,X,INCX,Y,INCY)
C
C To invert the order of storage of the elements of x within
C itself; that is, to move x(1),...,x(100) to x(100),\ldots.,x(1):
C
    INCX = 1
    INCY = -1
    N = 50
    CALL BLAS1$VSSWAP (N,X,INCX,X (51),INCY)
```


MTH\$VxFOLRy_MA_V15—First Order Linear Recurrence Multiplication and Addition

The First Order Linear Recurrence - Multiplication and Addition routine provides a vectorized algorithm for the linear recurrence relation that includes both multiplication and addition operations.

Format

FOLRP_MA_V15	
MTH\$VFFOLRP_MA_V15	n,a,inca,b,incb,c,incc
MTH\$VDFOLRP_MA_V15	n,a,inca,b,incb,
MTH\$VGFOLRP_MA_V15	n,
MTH\$VJFOLRN_MA_V15	n,a,inca,b,incb,c,incc
MTH\$VFFOLRN_MA_V15	$\mathrm{n}, \mathrm{a}, \mathrm{inca}, \mathrm{b}, \mathrm{incb}, \mathrm{c}, \mathrm{incc}$
MTH\$VDFOLRN_MA_V15	n,a,inca,b,incb,
MTH\$VGFOLRN_MA_V15	n,a,inca,b,incb,c,incc

To obtain one of the preceding formats, substitute the following for x and y in MTH\$VxFOLRy_MA_V15:
$x=\mathrm{J}$ for longword integer, F for F-floating, D for D-floating, G for G -floating
$y=P$ for a positive recursion element, N for a negative recursion element

Returns

None.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The \mathbf{n} argument is the address of a signed longword integer containing the length.

a

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: read only
mechanism: by reference, array reference
Array of length at least:
$1+(n-1) * i n c a$
where:
$\mathrm{n}=$ length of the linear recurrence specified in \mathbf{n}
inca $=$ increment argument for the array a specified in inca
The a argument is the address of a longword integer or floating-point that is this array.
inca
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only mechanism: by reference
Increment argument for the array a. The inca argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for inca.
b
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: read only mechanism: by reference, array reference
Array of length at least:
$1+(n-1) * i n c b$
where:
$\mathrm{n} \quad=$ length of the linear recurrence specified in \mathbf{n}
incb $=$ increment argument for the array \mathbf{b} specified in incb
The \mathbf{b} argument is the address of a longword integer or floating-point number that is this array.

```
incb
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
```

Increment argument for the array \mathbf{b}. The incb argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for incb.
c
OpenVMS usage: longword_signed or floating_point type: longword integer (signed), F_floating, D_floating, or G_floating access: modify mechanism: by reference, array reference
Array of length at least:
$1+n *$ incc
where:
$\mathrm{n}=$ length of the linear recurrence specified in \mathbf{n}
incc $=$ increment argument for the array \mathbf{c} specified in incc
The \mathbf{c} argument is the address of a longword integer or floating-point number that is this array.

incc

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array c. The incc argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for incc. Do not specify 0 for incc.

Description

MTH $\$ V \times F$ OLRy_MA_V15 is a group of routines that provides a vectorized algorithm for computing the following linear recurrence relation:
$C(I+1)=+/-C(I) * A(I)+B(I)$

Note

Save the contents of vector registers V0 through V15 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from Compaq F ortran is as follows:
$\mathrm{K} 1=\ldots$.
$\mathrm{K} 2=\ldots$.
K3 $=\ldots$
CALL MTH\$VxFOLRy_MA_V15 (N, A (K1), INCA, B (K2), INCB, C (K3) , INCC)
The preceding Fortran call replaces the following loop:

```
K1 = ....
K2 = ....
K3 = ....
DO I = 1, N
C(K3+I*INCC) = {+/-}C(K3+(I-1)*INCC) * A(K1+(I-1)*INCA)
    + B(K2+(I-1)*INCB)
ENDDO
```

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user callable. The MTH\$ FOLR routines assume that all of the arrays are of the same data type.
This group of routines, MTH\$VxFOLRy_MA_V15 (and also MTH\$VxFOLRy_ z_V8) save the result of each iteration of the linear recurrence relation in an array. This is different from the behavior of MTH\$VxFOLRLy_MA_V5 and MTH\$VxFOLRLy_z_V2, which return only the result of the last iteration of the linear recurrence relation.

For the output array (c), the increment argument (incc) cannot be 0 . However, you can specify 0 for the input increment arguments (inca and incb). In that case, the input will be treated as a scalar value and broadcast to a vector input with all vector elements equal to the scalar value.

MTH\$VxFOLRy_MA_V15

In MTH\$VxFOLRy_MA_V15, array can overlap array a and array b, or both, as long as the address of array element c_{x} is not also the address of an element of \mathbf{a} or \mathbf{b} that will be referenced at a future time in the recurrence relation. For example, in the following code fragment you must ensure that the address of ${ }^{c}(1+i * i n c c)$ does not equal the address of either $a(j * i n c a)$ or $b(k * i n c b)$ for:
$1 \leq i \leq n$ and ${ }_{j} \geq i+1$.
DO $\mathrm{I}=1$, N
$\mathrm{C}(1+\mathrm{I} *$ INCC $)=\mathrm{C}(1+(\mathrm{I}-1) * \mathrm{INCC}) * \mathrm{~A}(1+(\mathrm{I}-1) * \mathrm{INCA})+\mathrm{B}(1+(\mathrm{I}-1) *$ INCB $)$
ENDDO

Examples

1. C

C The following Fortran loop computes a linear recurrence.
C
INTEGER I
DIMENSION A 200) , $\mathrm{B}(50), \mathrm{C}(50)$
EQUIVALENCE (B,C)
:
$C(4)=\ldots$.
DO $I=5,50$
$C(I)=C((I-1)) * A(I * 3)+B(I)$
ENDDO
C
C This call from Fortran to a FOLR routine replaces the preceding loop.
C
DIMENSION A 200) , $\mathrm{B}(50), \mathrm{C}(50)$
EQUIVALENCE (B,C)
:
$C(4)=\ldots$.
CALL MTH\$VFFOLRP_MA_V15(46, A(15), 3, B(5), 1, C(4), 1)
2. C

C The following Fortran loop computes a linear recurrence.
C

```
INTEGER K,N,INCA,INCB,INCC,I
```

DIMENSION A(30), B(6), C(50)
$K=44$
$\mathrm{N}=6$
INCA $=5$
INCB $=1$
INCC $=1$
DO I = 1, N
$\mathrm{C}(\mathrm{K}+\mathrm{I} * \mathrm{INCC})=-\mathrm{C}(\mathrm{K}+(\mathrm{I}-1) * \mathrm{INCC}) * \mathrm{~A}(\mathrm{I} *$ INCA $)+\mathrm{B}(\mathrm{I} *$ INCB $)$
ENDDO
C
This call from Fortran to a FOLR routine replaces the preceding loop.
INTEGER K, N, INCA, INCB, INCC
DIMENSION A $(30), \mathrm{B}(6), \mathrm{C}(50)$
$K=44$
$\mathrm{N}=6$
INCA $=5$
INCB $=1$
INCC $=1$
CALL MTH\$VFFOLRN_MA_V15 (N, A(INCA), INCA, B(INCB), INCB, C(K), INCC)

MTH\$VxFOLRy_z_V8—First Order Linear Recurrence Multiplication or Addition

The First Order Linear Recurrence - Multiplication or Addition routine provides a vectorized algorithm for the linear recurrence relation that includes either a multiplication or an addition operation, but not both.

Format

$$
\begin{aligned}
& \text { MTH\$VJFOLRP_M_V8 n,a,inca,b,incb } \\
& \text { MTH\$VFFOLRP_M_V8 n,a,inca,b,incb } \\
& \text { MTH\$VDFOLRP_M_V8 n,a,inca,b,incb } \\
& \text { MTH\$VGFOLRP_M_V8 n,a,inca,b,incb } \\
& \text { MTH\$VJFOLRN_M_V8 n,a,inca,b,incb } \\
& \text { MTH\$VFFOLRN_M_V8 n,a,inca,b,incb } \\
& \text { MTH\$VDFOLRN_M_V8 n,a,inca,b,incb } \\
& \text { MTH\$VGFOLRN_M_V8 n,a,inca,b,incb } \\
& \text { MTH\$VJFOLRP_A_V8 n,a,inca,b,incb } \\
& \text { MTH\$VFFOLRP_A_V8 n,a,inca,b,incb } \\
& \text { MTH\$VDFOLRP_A_V8 n,a,inca,b,incb } \\
& \text { MTH\$VGFOLRP_A_V8 n,a,inca,b,incb } \\
& \text { MTH\$VJFOLRN_A_V8 n,a,inca,b,incb } \\
& \text { MTH\$VFFOLRN_A_V8 n,a,inca,b,incb } \\
& \text { MTH\$VDFOLRN_A_V8 n,a,inca,b,incb } \\
& \text { MTH\$VGFOLRN_A_V8 n,a,inca,b,incb }
\end{aligned}
$$

To obtain one of the preceding formats, substitute the following for x, y, and z in MTH\$VxFOLRy_z_V8:
$x=\mathrm{J}$ for longword integer, F for F-floating, D for D-floating, G for G-floating
$y=P$ for a positive recursion element, N for a negative recursion element
$z=\mathrm{M}$ for multiplication, A for addition

Returns

None.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The \mathbf{n} argument is the address of a signed longword integer containing the length.
a
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: read only
mechanism: by reference, array reference
Array of length at least:
$1+(n-1) * i n c a$
where:
$\mathrm{n} \quad=$ length of the linear recurrence specified in \mathbf{n}
inca $=$ increment argument for the array a specified in inca
The a argument is the address of a longword integer or floating-point that is this array.
inca
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array \mathbf{a}. The inca argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for inca.
b
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: modify
mechanism: by reference, array reference
Array of length at least:
$1+(n-1) * i n c b$
where:
$\mathrm{n} \quad=$ length of the linear recurrence specified in \mathbf{n}
incb $=$ increment argument for the array \mathbf{b} specified in incb
The \mathbf{b} argument is the address of a longword integer or floating-point number that is this array.
incb
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array b. The incb argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for incb.

Description

MTH\$VxFOLRy_z_V8 is a group of routines that provide a vectorized algorithm for computing one of the following linear recurrence relations:
$B(I)=+/-B(I-1) * A(I)$
or
$B\left({ }^{I}\right)=+/-B(I-1)+A\left({ }^{I}\right)$
For the first relation, specify M for z in the routine name to denote multiplication; for the second relation, specify A for z in the routine name to denote addition.

Note

Save the contents of vector registers V0 through V8 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from Compaq F ortran is as follows:

```
CALL MTH$VxFOLRy_z_V8(N,A (K1),INCA,B (K2) ,INCB)
```

The preceding Fortran call replaces the following loop:

```
K1 = ....
K2 = ....
DO I = 1, N
B(K2+I*INCB) = {+/-}B(K2+(I-1)*INCB) {+/*} A(K1+(I-1)*INCA)
ENDDO
```

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user callable. The MTH\$ FOLR routines assume that all of the arrays are of the same data type.
This group of routines, MTH\$VxFOLRy_z_V8 (and also MTH\$VxFOLRy_MA_ V 15) save the result of each iteration of the linear recurrence relation in an array. This is different from the behavior of MTH\$VxFOLRLy_MA_V5 and MTH $\$ V \times$ FOLRLy_z_V2, which return only the result of the last iteration of the linear recurrence relation.

For the output array (b), the increment argument (incb) cannot be 0 . However, you can specify 0 for the input increment argument (inca). In that case, the input will be treated as a scalar and broadcast to a vector input with all vector elements equal to the scalar value.

MTH\$VxFOLRy_z_V8

Examples

1. C

C The following Fortran loop computes
C a linear recurrence.
C
C D_FLOAT
INTEGER N, INCA, INCB, I
DIMENSION A(30), B(13)
N = 6
INCA $=5$
INCB $=2$
DO $\mathrm{I}=1, \mathrm{~N}$
$B(1+I * I N C B)=-B(1+(I-1) * I N C B) * A(I * I N C A)$
ENDDO
C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C D_FLOAT
INTEGER N, INCA, INCB
REAL*8 A (30), B(13)
$\mathrm{N}=6$
INCA $=5$
INCB $=2$
CALL MTH\$VDFOLRN_M_V8(N, A(INCA), INCA, B(1), INCB)
2. C

C The following Fortran loop computes
C a linear recurrence.
C
C G_FLOAT
INTEGER N, INCA, INCB
DIMENSION A (30), B(13)
$\mathrm{N}=5$
INCA $=5$
INCB $=2$
DO I = 2, N
$B(1+I * I N C B)=B((I-1) * I N C B)+A(I * I N C A)$
ENDDO
C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C G_FLOAT
INTEGER N, INCA, INCB
REAL*8 A (30), B(13)
$\mathrm{N}=5$
INCA $=5$
INCB $=2$
CALL MTH\$VGFOLRP_A_V8(N, A(INCA), INCA, B(INCB), INCB)

MTH\$VxFOLRLy_MA_V5—First Order Linear Recurrence Multiplication and Addition - Last Value

The First Order Linear Recurrence - Multiplication and Addition - Last Value routine provides a vectorized algorithm for the linear recurrence relation that includes both multiplication and addition operations. Only the last value computed is stored.

Format

$$
\begin{array}{lll}
\text { MTH\$VJFOLRLP_MA_V5 } & \mathrm{n}, \mathrm{a}, \text { inca,b,incb,t } \\
\text { MTH\$VFFOLRLP_MA_V5 } & \mathrm{n}, \mathrm{a}, \text { inca,b,incb,t } \\
\text { MTH\$VDFOLRLP_MA_V5 } & \mathrm{n}, \mathrm{a}, \text { inca,b,incb,t } \\
\text { MTH\$VGFOLRLP_MA_V5 } & \mathrm{n}, \mathrm{a}, \text { inca,b,incb,t } \\
\text { MTH\$VJFOLRLN_MA_V5 } & \mathrm{n}, \mathrm{a}, \text { inca,b,incb,t } \\
\text { MTH\$VFFOLRLN_MA_V5 } & \mathrm{n}, \mathrm{a}, \text { inca,b,incb,t } \\
\text { MTH\$VDFOLRLN_MA_V5 } & \mathrm{n}, \mathrm{a}, \text { inca,b,incb,t } \\
\text { MTH\$VGFOLRLN_MA_V5 } & \mathrm{n}, \mathrm{a}, \text { inca,b,incb,t }
\end{array}
$$

To obtain one of the preceding formats, substitute the following for x and y in MTH\$VxFOLRLy_MA_V5:
$x=\mathrm{J}$ for longword integer, F for F-floating, D for D-floating, G for G-floating
$y=P$ for a positive recursion element, N for a negative recursion element

Returns

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating or G_floating access: write only
mechanism: by value
The function value is the result of the last iteration of the linear recurrence relation. The function value is returned in R0 or R0 and R1.

Arguments

n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Length of the linear recurrence. The \mathbf{n} argument is the address of a signed longword integer containing the length.
a
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: read only
mechanism: by reference, array reference

Array of length at least:
$1+(n-1) * i n c a$
where:
$\mathrm{n}=$ length of the linear recurrence specified in \mathbf{n}
inca $=$ increment argument for the array a specified in inca
The a argument is the address of a longword integer or floating-point that is this array.

```
inca
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
```

Increment argument for the array a. The inca argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for inca.
b
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: read only mechanism: by reference, array reference
Array of length at least:
$1+(n-1) * i n c b$
where:
$\mathrm{n} \quad=$ length of the linear recurrence specified in \mathbf{n}
incb $=$ increment argument for the array \mathbf{b} specified in incb
The \mathbf{b} argument is the address of a longword integer or floating-point number that is this array.

```
incb
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
```

Increment argument for the array \mathbf{b}. The incb argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for incb.

t

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: modify
mechanism: by reference
Variable containing the starting value for the recurrence; overwritten with the value computed by the last iteration of the linear recurrence relation. The \mathbf{t} argument is the address of a longword integer or floating-point number that is this value.

Description

MTH\$VxFOLRLy_MA_V5 is a group of routines that provide a vectorized algorithm for computing the following linear recurrence relation. (The T on the right side of the equation is the result of the previous iteration of the loop.)

$$
T=+/-T * A(I)+B(I)
$$

Note

Save the contents of vector registers V0 through V5 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from Compaq F ortran is as follows:
CALL MTH\$VxFOLRy_MA_V5 (N,A (K1) , INCA, B (K2) , INCB, T)
The preceding F ortran call replaces the following loop:

```
K1 = ...
K2 = ...
DO I = 1, N
T = {+/-}T * A(K1+(I-1)*INCA) + B(K1+(I-1)*INCB)
ENDDO
```

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user callable. The MTH\$ FOLR routines assume that all of the arrays are of the same data type.

This group of routines, MTH\$VxFOLRLy_MA_V5 (and also MTH\$VxFOLRLy_ z_V2) returns only the result of the last iteration of the linear recurrence relation. This is different from the behavior of MTH\$VxF OLRy_MA_V15 (and also MTH\$VxFOLRy_z_V8), which save the result of each iteration of the linear recurrence relation in an array.
If you specify 0 for the input increment arguments (inca and incb), the input will be treated as a scalar and broadcast to a vector input with all vector elements equal to the scalar value.

Examples

1. C

C The following Fortran loop computes
C a linear recurrence.
C

G_FLOAT

INTEGER N, INCA, INCB, I
REAL*8 A (30), B(6), T
$\mathrm{N}=6$
INCA $=5$
INCB $=1$
$T=78.9847562$
DO $\mathrm{I}=1, \mathrm{~N}$
$T=-T * A(I * I N C A)+B(I * I N C B)$
ENDDO

```
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C G_FLOAT
    INTEGER N,INCA,INCB
    DIMENSION A(30), B(6), T
    N = 6
    INCA = 5
    INCB = 1
    T = 78.9847562
    T = MTH$VGFOLRLN_MA_V5(N, A(INCA), INCA, B(INCB), INCB, T)
```

2. C
C The following Fortran loop computes
C a linear recurrence.
C
C G_FLOAT
INTEGER N, INCA, INCB, I
REAL*8 A (30), B(6), T
$\mathrm{N}=6$
INCA $=5$
INCB $=1$
$\mathrm{T}=78.9847562$
DO $\mathrm{I}=1$, N
$T=T * A(I * I N C A)+B(I * I N C B)$
ENDDO
C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C G_FLOAT
INTEGER N, INCA, INCB
DIMENSION A (30), B(6), T
$\mathrm{N}=6$
INCA $=5$
INCB $=1$
$\mathrm{T}=78.9847562$
T = MTH\$VGFOLRLP_MA_V5 (N, A(INCA), INCA, B(INCB), INCB, T)

MTH\$VxFOLRLy_z_V2—First Order Linear Recurrence Multiplication or Addition - Last Value

The First Order Linear Recurrence - Multiplication or Addition - Last Value routine provides a vectorized algorithm for the linear recurrence relation that includes either a multiplication or an addition operation. Only the last value computed is stored.

Format

```
MTH$VJFOLRLP_M_V2 n,a,inca,t
MTH$VFFOLRLP_M_V2 n,a,inca,t
MTH$VDFOLRLP_M_V2 n,a,inca,t
MTH$VGFOLRLP_M_V2 n,a,inca,t
MTH$VJFOLRLN_M_V2 n,a,inca,t
MTH$VFFOLRLN_M_V2 n,a,inca,t
MTH$VDFOLRLN_M_V2 n,a,inca,t
MTH$VGFOLRLN_M_V2 n,a,inca,t
MTH$VJFOLRLP_A_V2 n,a,inca,t
MTH$VFFOLRLP_A_V2 n,a,inca,t
MTH$VDFOLRLP_A_V2 n,a,inca,t
MTH$VGFOLRLP_A_V2 n,a,inca,t
MTH$VJFOLRLN_A_V2 n,a,inca,t
MTH$VFFOLRLN_A_V2 n,a,inca,t
MTH$VDFOLRLN_A_V2 n,a,inca,t
MTH$VGFOLRLN_A_V2 n,a,inca,t
```

To obtain one of the preceding formats, substitute the following for x, y, and z in
MTH\$VxFOLRLy_z_V2:
$x=J$ for longword integer, F for F-floating, D for D-floating, G for G-floating
$y=P$ for a positive recursion element, N for a negative recursion element
$z=\mathrm{M}$ for multiplication, A for addition

Returns

OpenVMS usage:	longword_signed or floating_point
type:	longword integer (signed), F_floating, D_floating or G_floating
access:	write only
mechanism:	by value

The function value is the result of the last iteration of the linear recurrence relation. The function value is returned in R0 or R0 and R1.

MTH\$VxFOLRLy_z_V2

Arguments

```
n
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
```

Length of the linear recurrence. The \mathbf{n} argument is the address of a signed longword integer containing the length.
a
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: read only mechanism: by reference, array reference
Array of length at least:
$n * i n c a$
where:
$\mathrm{n} \quad=$ length of the linear recurrence specified in \mathbf{n}
inca $=$ increment argument for the array a specified in inca
The a argument is the address of a longword integer or floating-point that is this array.
inca
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference
Increment argument for the array a. The inca argument is the address of a signed longword integer containing the increment argument. For contiguous elements, specify 1 for inca.
t
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating, or G_floating access: modify mechanism: by reference
Variable containing the starting value for the recurrence; overwritten with the value computed by the last iteration of the linear recurrence relation. The \mathbf{t} argument is the address of a longword integer or floating-point number that is this value.

Description

MTH $\$ \mathrm{VxFOLRLy} z$ _V2 is a group of routines that provide a vectorized algorithm for computing one of the following linear recurrence relations. (The T on the right side of the following equations is the result of the previous iteration of the loop.)
$T=+/-T * A(I)$
or
$T=+/-T+A_{(}\left(I_{)}\right.$
For the first relation, specify M for z in the routine name to denote multiplication; for the second relation, specify A for z in the routine name to denote addition.
\qquad routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from Compaq F ortran is as follows:

```
CALL MTH$VxFOLRLy_z_V2 (N,A(K1),INCA,T)
```

The preceding F ortran call replaces the following loop:

```
K1 = ....
DO I = 1, N
T = {+/-}T {+/** A(K1+(I-1)*INCA)
ENDDO
```

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user callable. The MTH\$ FOLR routines assume that all of the arrays are of the same data type.

This group of routines, MTH\$VxFOLRLy_z_V2 (and also MTH\$VxFOLRLy_ MA_V5) return only the result of the last iteration of the linear recurrence relation. This is different from the behavior of MTH\$VxF OLRy_MA_V15 (and also MTH\$VxFOLRy_z_V8), which save the result of each iteration of the linear recurrence relation in an array.
If you specify 0 for the input increment argument (inca), the input will be treated as a scalar and broadcast to a vector input with all vector elements equal to the scalar value.

MTH\$VxFOLRLy_z_V2

Examples

1. C

C The following Fortran loop computes
C a linear recurrence.
C
C D_FLOAT
INTEGER I,N
REAL*8 A (200), T
$\mathrm{T}=78.9847562$
$\mathrm{N}=20$
DO $\mathrm{I}=4, \mathrm{~N}$
$T=-T * A(I * 10)$
ENDDO
C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C D_FLOAT
INTEGER N
REAL*8 A (200), T
$T=78.9847562$
$\mathrm{N}=20$
$T=$ MTH\$VDFOLRLN_M_V2 (N-3, A (40), 10, T)
2. C

C The following Fortran loop computes
C a linear recurrence.
C
C D_FLOAT
INTEGER I,N
REAL*8 A (200), T
$\mathrm{T}=78.9847562$
$\mathrm{N}=20$
DO $\mathrm{I}=4, \mathrm{~N}$
$T=T+A(I * 10)$
ENDDO
C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C D_FLOAT
INTEGER N
REAL*8 A (200), T
$\mathrm{T}=78.9847562$
$\mathrm{N}=20$
$T=$ MTH\$VDFOLRLP_A_V2 (N-3, A (40), 10, T)

A

Additional MTH\$ Routines

The following supported MTH\$ routines are not included with the routines in the Scalar MTH\$ Reference Section because they are rarely used. The majority of these routines serve to satisfy external references when intrinsic functions in Fortran and other languages are passed as parameters. Otherwise, the functions are performed by inline code.

Table A-1 lists all of the entry point and argument information for the MTH\$ routines not documented in the Scalar MTH\$ Reference Section of this manual.

Table A-1 Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$ABS		F-floating Absolute Value R outine
	Format:	MTH\$ABS f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DABS		D-floating Absolute Value Routine
	F ormat:	MTH\$DABS d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GABS		G-floating Absolute Value Routine
	F ormat:	MTH\$GABS g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HABS		H-floating Absol ute Value Routine
	Format:	MTH\$HABS h-abs-val, h-floating
	Returns:	None
	h-abs-val:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, $H_{\text {_floating, read only, by }}$ reference
		(continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIABS		Word Absolute Value Routine
	Format:	MTH\$IIABS word
	Returns:	word_signed, word (signed), write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$JIABS		Longword Absolute Value Routine
	Format:	MTH\$J IABS longword
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$IIAND		Bitwise AND of Two Word Parameters Routine
	Format:	MTH\$IIAND word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference
MTH\$JIAND		Bitwise AND of Two Longword Parameters Routine
	Format:	MTH\$J IAND Iongword1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by réference
MTH\$DBLE		Convert F-floating to D-floating (Exact) Routine
	Format:	MTH\$DBLE f-floating
	Returns:	floating_point, D_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$GDBLE		Convert F-floating to G-floating (Exact) Routine
	F ormat:	MTH\$GDBLE f-floating
	Returns:	floating_point, G_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference

(continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$DIM		Positive Difference of Two F-floating Parameters Routine
	F ormat:	MTH\$DIM f-floating1, f-floating2
	Returns:	floating_point, F_floating, write only, by value
	f-floatingl:	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference
MTH\$DDIM		Positive Difference of Two D-floating Parameters Routine
	F ormat:	MTH\$DDIM d-floating1, d-floating2
	Returns:	floating_point, D_floating, write only, by value
	d-floating1:	floating_point, D_floating, read only, by reference
	d-floating2:	floating_point, D_floating, read only, by reference
MTH\$GDIM		Positive Difference of Two G-floating Parameters Routine
	Format:	MTH\$GDIM g-floating1, g-floating2
	Returns:	floating_point, G_floating, write only, by value
	g-floatingl:	floating_point, G_floating, read only, by reference
	g-floating2:	floating_point, G_floating, read only, by reference
MTH\$HDIM		Positive Difference of Two H-floating Parameters Routine
	Format:	MTH\$HDIM h-floating, h-floating1, h-floating2
	Returns:	None
	h-floating:	floating_point, H_floating, write only, by reference
	h-floatingl:	floating_point, H_floating, read only, by reference
	h-floating2:	floating_point, H_floating, read only, by reference
MTH\$IIDIM		Positive Difference of Two Word Parameters Routine
	Format:	MTH\$IIDIM word1, word2
	Returns:	word_signed, word (signed), write only, by value
	word1:	word_signed, word (signed), read only, by reference
	word2:	word_signed, word (signed), read only, by reference

(continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$JIDIM		Positive Difference of Two Longword Parameters Routine
	Format:	MTH\$J IDIM longword1, longword2
	Returns:	longword_signed, longword (signed), write only, by value
	longword1:	longword_signed, longword (signed), read only, by reference
	longword2:	longword_signed, longword (signed), read only, by reference
MTH\$IIEOR		Bitwise Exclusive OR of Two Word Parameters Routine
	F ormat:	MTH\$IIEOR word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference
MTH\$JIEOR		Bitwise Exclusive OR of Two Longword Parameters Routine
	Format:	MTH\$J IEOR Iongword1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by rēference
MTH\$IIFIX		Convert F-floating to Word (Truncated) Routine
	Format:	MTH\$IIFIX f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JIFIX		Convert F-floating to Longword (Truncated) Routine
	Format:	MTH\$J IFIX f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$FLOATI		Convert Word to F-floating (Exact) Routine
	F ormat:	MTH\$FLOATI word
	Returns:	floating_point, F_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$DFLOTI		Convert Word to D-floating (Exact) Routine
	Format:	MTH\$DFLOTI word
	Returns:	floating_point, D_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$GFLOTI		Convert Word to G-floating (Exact) Routine
	Format:	MTH\$GFLOTI word
	Returns:	floating_point, G_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$FLOATJ		Convert Longword to F -floating (Rounded) Routine
	Format:	MTH\$FLOATJ longword
	Returns:	floating_point, F_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$DFLOTJ		Convert Longword to D-floating (Exact) Routine
	Format:	MTH\$DFLOTJ longword
	Returns:	floating_point, D_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$GFLOTJ		Convert Longword to G-floating (Exact) Routine
	Format:	MTH\$GFLOTJ longword
	Returns:	floating_point, G_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
		(continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$FLOOR		Convert F-floating to Greatest F-floating Integer Routine
	J SB:	MTH\$FLOOR f-floating
	Returns:	MTH\$FLOOR_R 1 f-floating
	floating_point, F_floating, write only, by value	
		floating_point, F_floating, read only, by reference

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$DINT		Convert D-floating to Truncated D-floating Routine
	Format:	MTH\$DINT d-floating
	J SB:	MTH\$DINT_R4 d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$IIDINT		Convert D-floating to Word (Truncated) Routine
	Format:	MTH\$IIDINT d-floating
	Returns:	word_signed, word (signed), write only, by value
		floating_point, D_floating, read only, by reference
MTH\$JIDINT		Convert D-floating to Longword (Truncated) Routine
	Format:	MTH\$J IDINT d-floating
	Returns:	longword_signed, longword (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GINT		Convert G-floating to Truncated G-floating Routine
	Format:	MTH\$GINT g-floating
	J SB:	MTH\$GINT_R4 g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$IIGINT		Convert G-floating to Word (Truncated) Routine
	F ormat:	MTH\$IIGINT g-floating
	Returns:	word_signed, word (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$JIGINT		Convert G-floating to Longword (Truncated) Routine
	F ormat:	MTH\$J IGINT g-floating
	Returns:	longword_signed, longword (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference (continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$HINT		Convert H -floating to Truncated H -floating Routine
	Format:	MTH\$HINT trunc-h-flt, h-floating
	J SB:	MTH\$HINT_R8 h-floating
	Returns:	None
	trunc-h-flt:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IIHINT		Convert H-floating to Word (Truncated) Routine
	Format:	MTH\$IIHINT h-floating
	Returns:	word_signed, word (signed), write only, by value
	h-floating:	floating_point, $\mathrm{H}_{\text {_ floating, read only, by }}$ reference
MTH\$JIHINT		Convert H-floating to Longword (Truncated) Routine
	Format:	MTH\$J IHINT h-floating
	Returns:	longword_signed, longword (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IINT		Convert F-floating to Word (Truncated) Routine
	Format:	MTH\$INT f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$J INT		Convert F-floating to Longword (Truncated) Routine
	Format:	MTH\$J INT f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference (continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIOR		Bitwise Inclusive OR of Two Word Parameters Routine
	F ormat:	MTH\$IIOR word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference
MTH\$JIOR		Bitwise Inclusive OR of Two Longword Parameters Routine
	F ormat:	MTH\$J IOR Iongword1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by reference
MTH\$AIMAXO		F-floating Maximum of N Word Parameters Routine
	F ormat:	MTH\$AIMAX0 word,
	Returns: word:	floating_point, F_floating, write only, by value word_signed, word (signed), read only, by reference
MTH\$AJ MAXO		F-floating Maximum of N Longword Parameters Routine
	Format:	MTH\$AJ MAXO longword,
	Returns:	floating_point, F_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by refereñce
MTH\$IMAXO		Word Maximum of N Word Parameters Routine
	Format:	MTH\$IMAXO word,
	Returns: word:	word_signed, word (signed), write only, by value word_signed, word (signed), read only, by reference

(continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$J MAX0		Longword Maximum of N Longword Parameters Routine
	Format:	MTH\$J MAXO longword,
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$AMAX1		F-floating Maximum of N F-floating Parameters Routine
	Format:	MTH\$AMAX1 f-floating,
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DMAX1		D-floating Maximum of N D-floating Parameters Routine
	Format:	MTH\$DMAX1 d-floating,
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GMAX1		G-floating Maximum of N G-floating Parameters Routine
	Format:	MTH\$GMAX1 g-floating,
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HMAX1		H -floating Maximum of N H -floating Parameters Routine
	F ormat:	MTH\$HMAX1 h-float-max, h-floating,
	Returns:	None
	h-float-max:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IMAX1		Word Maximum of N F-floating Parameters Routine
	Format:	MTH\$IMAX1 f-floating, . .
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH \$J MAX1		Longword Maximum of N F-floating Parameters Routine
	F ormat:	MTH\$J MAX1 f-floating,
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$AIMINO		F-floating Minimum of N Word Parameters Routine
	Format:	MTH\$AIMINO word,
	Returns: word:	floating_point, F_floating, write only, by value word_signed, word (signed), read only, by reference
MTH\$AJ MINO		F-floating Minimum of N Longword Parameters Routine
	Format:	MTH\$AJ MINO longword,
	Returns:	floating_point, F_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$IMINO		Word Minimum of N Word Parameters Routine
	Format:	MTH\$IMINO word,
	Returns: word:	word_signed, word (signed), write only, by value word_signed, word (signed), read only, by reference
MTH\$J MINO		Longword Minimum of N Longword Parameters Routine
	Format:	MTH\$J MINO longword,
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$AMIN 1		F-floating Minimum of N F-floating Parameters Routine
	F ormat:	MTH\$AMIN1 f-floating,
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference (continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$DMIN 1		D-floating Minimum of N D-floating Parameters Routine
	Format: Returns: d-floating:	MTH\$DMIN1 d-floating, . . . floating_point, D_floating, write only, by value floating_point, D_floating, read only, by reference
MTH\$GMIN 1		G-floating Minimum of N G-floating Parameters Routine
	Format: Returns: g-floating:	MTH\$GMIN1 g-floating, . . . floating_point, G_floating, write only, by value floating_point, G_floating, read only, by reference
MTH\$HMIN1		H -floating Minimum of NH -floating Parameters Routine
	F ormat:	MTH\$HMIN1 h-float-max, h-floating,
	Returns:	None
	h-float-max:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IMIN1		Word Minimum of N F-floating Parameters Routine
	F ormat:	MTH\$IMIN1 f-floating,
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$J MIN 1		Longword Minimum of N F-floating Parameters Routine
	Format:	MTH\$J MIN1 f-floating,
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$AMOD		Remainder from Division of Two F-floating Parameters Routine
	Format: Returns: dividend: divisor:	MTH\$AMOD dividend, divisor floating_point, F_floating, write only, by value floating_point, F_floating, read only, by reference floating_point, F_floating, read only, by reference

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$DMOD		Remainder from Division of Two D-floating Parameters Routine
	Format: Returns: dividend: divisor:	MTH\$DMOD dividend, divisor floating_point, D_floating, write only, by value floating_point, D_floating, read only, by reference floating_point, D_floating, read only, by reference
MTH\$GMOD		Remainder from Division of Two G-floating Parameters Routine
	F ormat: Returns: dividend: divisor:	MTH\$GMOD dividend, divisor floating_point, G_floating, write only, by value floating_point, G_floating, read only, by reference floating_point, G_floating, read only, by reference
MTH\$HMOD		Remainder from Division of Two H -floating Parameters Routine
	F ormat:	MTH\$HMOD h-mod, dividend, divisor
	Returns:	None
	h-mod:	floating_point, H_floating, write only, by reference
	dividend:	floating_point, H_floating, read only, by reference
	divisor:	floating_point, H_floating, read only, by reference
MTH\$IMOD		Remainder from Division of Two Word Parameters Routine
	Format:	MTH\$IMOD dividend, divisor
	Returns: dividend:	word_signed, word (signed), write only, by value word_signed, word (signed), read only, by reference
	divisor:	word_signed, word (signed), read only, by reference
MTH \$J MOD		Remainder of Two Longword Parameters Routine
	Format:	MTH\$J MOD dividend, divisor
	Returns:	longword_signed, longword (signed), write only, by value
	dividend:	longword_signed, longword (signed), read only, by reference
	divisor:	longword_signed, longword (signed), read only, by reference

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$ANINT		Convert F-floating to Nearest F-floating Integer Routine
	F ormat:	MTH\$ANINT f-floating
		floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DNINT		Convert D-floating to Nearest D-floating Integer Routine
	F ormat:	MTH\$DNINT d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$IIDNNT		Convert D-floating to Nearest Word Integer Routine
	Format:	MTH\$IIDNNT d-floating
	Returns:	word_signed, word (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$JIDNNT		Convert D-floating to Nearest Longword Integer Routine
	F ormat:	MTH\$J IDNNT d-floating
	Returns:	longword_signed, longword (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GNINT		Convert G-floating to Nearest G-floating Integer Routine
	F ormat:	MTH\$GNINT g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$IIGNNT		Convert G-floating to Nearest Word Integer Routine
	F ormat:	MTH\$IIGNNT g-floating
	Returns:	word_signed, word (signed), write only, by value
		floating_point, G_floating, read only, by reference (continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$JIGNNT		Convert G-floating to Nearest Longword Integer Routine
	F ormat:	MTH\$J IGNNT g-floating
	Returns:	longword_signed, longword (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HNINT		Convert H-floating to Nearest H-floating Integer Routine
	Format:	MTH\$HNINT nearst-h-flt, h-floating
	Returns:	None
	nearst-h-flt:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IIHNNT		Convert H-floating to Nearest Word Integer Routine
	F ormat:	MTH\$IIHNNT h-floating
	Returns:	word_signed, word (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$JIHNNT		Convert H-floating to Nearest Longword Integer Routine
	F ormat:	MTH\$J IHNNT h-floating
	Returns:	longword_signed, longword (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$ININT		Convert F-floating to Nearest Word Integer Routine
	F ormat:	MTH\$ININT f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH \$ N INT		Convert F-floating to Nearest Longword Integer Routine
	F ormat:	MTH\$J NINT f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference (continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$INOT		Bitwise Complement of Word Parameter Routine
	Format:	MTH\$INOT word
	Returns:	word_unsigned, word (unsigned), write only, by value
	word:	word_unsigned, word (unsigned), read only, by reference
MTH \$J NOT		Bitwise Complement of Longword Parameter Routine
	Format:	MTH\$J NOT longword
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword:	longword_unsigned, longword (unsigned), read only, by reference
MTH\$DPROD		D-floating Product of Two F-floating Parameters Routine
	F ormat:	MTH\$DPROD f-floating1, f-floating2
	Returns:	floating_point, D_floating, write only, by value
	f-floatingl:	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference
MTH\$GPROD		G-floating Product of Two F-floating Parameters Routine
	Format:	MTH\$GPROD f-floating1, f-floating2
	Returns:	floating_point, G_floating, write only, by value
	f-floatingl:	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference
MTH \$SGN		F-floating Sign Function
	F ormat:	MTH\$SGN f-floating
	Returns:	longword_signed, longword (signed), write only, by reference
	f-floating:	floating_point, F_floating, read only, by reference
MTH \$SGN		D-floating Sign Function
	F ormat:	MTH\$SGN d-floating
	Returns:	longword_signed, longword (signed), write only, by reference
	d-floating:	floating_point, D_floating, read only, by reference (continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IISHFT		Bitwise Shift of Word Routine
	F ormat:	MTH\$IISHFT word, shift-cnt
	Returns:	word_unsigned, word (unsigned), write only, by value
	word:	word_unsigned, word (unsigned), read only, by reference
	shift-cnt:	word_signed, word (signed), read only, by reference
MTH\$JISHFT		Bitwise Shift of Longword Routine
	Format:	MTH\$J ISHFT longword, shift-cnt
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword:	longword_unsigned, longword (unsigned), read only, by reference
	shift-cnt:	longword_signed, longword (signed), read only, by reference
MTH\$SIGN		F-floating Transfer of Sign of Y to Sign of X Routine
	F ormat:	MTH\$SIGN f-float-x, f-float-y
	Returns:	floating_point, F_floating, write only, by value
	f-float-x:	floating_point, F_floating, read only, by reference
	f-float-y:	floating_point, F_floating, read only, by reference
MTH\$DSIGN		D-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$DSIGN d-float-x, d-float-y
	Returns:	floating_point, D_floating, write only, by value
	d-float-x:	floating_point, D_floating, read only, by reference
	d-float-y:	floating_point, D_floating, read only, by reference
MTH\$GSIGN		G-floating Transfer of Sign of Y to Sign of X Routine
	F ormat:	MTH\$GSIGN g-float-x, g-float-y
	Returns:	floating_point, G_floating, write only, by value
	g-float-x:	floating_point, G_floating, read only, by reference
	g-float-y:	floating_point, G_floating, read only, by reference (continued on next page)

Table A-1 (Cont.) Additional MTH\$ Routines

Routine Name		Entry Point Information
MTH\$HSIGN		H-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$HSIGN h-result, h-float-x, h-float-y
	Returns:	None
	h-result:	floating_point, H_floating, write only, by reference
	h-float-x:	floating_point, $\mathrm{H}_{\text {_ }}$ floating, read only, by reference
	h-float-y:	floating_point, H_floating, read only, by reference
MTH \$IISIGN		Word Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$IISIGN word-x, word-y
	Returns:	word_signed, word (signed), write only, by value
	word-x:	word_signed, word (signed), read only, by reference
	word-y:	word_signed, word (signed), read only, by reference
MTH\$JISIGN		Longword Transfer of Sign of Y to Sign of X Routine
	F ormat:	MTH\$J ISIGN longwrd-x, longwrd-y
	Returns:	longword_signed, longword (signed), write only, by reference
	longwrd-x:	longword_signed, longword (signed), read only, by reference
	longwrd-y:	longword_signed, longword (signed), read only, by reference
MTH\$SNGL		Convert D-floating to F-floating (Rounded) Routine
	Format:	MTH\$SNGL d-floating
	Returns:	floating_point, F_floating, write only, by value floating point, D floating, read only, by reference
		floating_point, D_floating, read only, by reference
MTH\$SNGLG		Convert G-floating to F-floating (Rounded) Routine
	Format:	MTH\$SNGLG g-floating
	Returns:	floating_point, F_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference

Vector MTH\$ Routine Entry Points

Table B-1 contains all of the vector MTH\$ routines that you can call from VAX MACRO. Be sure to read Section 2.3.3 and Section 2.3.4 before using the information in this table.

Table B-1 Vector MTH\$ Routines

Scalar Name	$\begin{aligned} & \text { Call } \\ & \text { or } \\ & \text { JSB } \end{aligned}$	Vector Input Registers	Vector Output Registers	Vector Name (Underflows Not Signaled)	Vector Name (Underflows Signaled)
AINT	J SB	Vo	Vo	MTH\$VAINT_RO_V1	
DINT	J SB	vo	vo	MTH\$VDINT_R3_V3	
GINT	J SB	vo	vo	MTH\$VGINT_R3_V3	
DPROD	Call	V0,V1	vo	MTH\$VVDPROD_R1_V1	
GPROD	Call	V0,V1	vo	MTH\$VVGPROD_R1_V1	
ACOS	J SB	vo	vo	MTH\$VACOS_R6_V7	
DACOS	J SB	vo	Vo	MTH\$VDACOS_R2_V7	
GACOS	J SB	vo	vo	MTH\$VGACOS_R2_V7	
ACOSD	J SB	vo	Vo	MTH\$VACOSD_R6_V7	
DACOSD	J SB	vo	vo	MTH\$VDACOSD_R2_V7	
GACOSD	J SB	vo	vo	MTH\$VGACOS_R2_V7	
ASIN	J SB	vo	vo	MTH\$VASIN_R2_V6	
DASIN	J SB	vo	vo	MTH\$VDASIN_R2_V6	
GASIN	J SB	vo	vo	MTH\$VGASIN_R2_V6	
ASIND	J SB	vo	vo	MTH\$VASIND_R2_V6	
DASIND	J SB	vo	vo	MTH\$VDASIND_R2_V6	
GASIND	J SB	vo	vo	MTH\$VGASIND_R2_V6	
ATAN	J SB	vo	vo	MTH\$VATAN_RO_V4	
DATAN	J SB	vo	vo	MTH\$VDATAN_RO_V6	
GATAN	J SB	vo	vo	MTH\$VGATAN_RO_V6	
ATAND	J SB	vo	vo	MTH\$VATAND_RO_V4	
DATAND	J SB	vo	vo	MTH\$VDATAND_Ro_V6	
GATAND	J SB	vo	vo	MTH\$VGATAND_RO_V6	
ATAN2	J SB	V0,V1	vo	MTH\$VVATAN2_R4_V7	
DATAN2	J SB	V0,V1	vo	MTH\$VVDATAN2_R4_V9	
GATAN2	J SB	V0,V1	vo	MTH\$VVGATAN2_R4_V9	

(continued on next page)

Table B-1 (Cont.) Vector MTH\$ Routines

Scalar Name	$\begin{aligned} & \text { Call } \\ & \text { or } \\ & \text { JSB } \end{aligned}$	Vector Input Registers	Vector Output Registers	Vector Name (Underflows Not Signaled)	Vector Name (Underflows Signaled)
ATAND2	J SB	V0,V1	vo	MTH\$VVATAND2_R4_V7	
DATAND2	J SB	vo,v1	vo	MTH\$VVDATAND2_R4_V9	
GATAND2	J SB	V0,V1	Vo	MTH\$VVGATAND2_R4_V9	
CABS	Call	V0,V1	Vo	MTH\$VCABS_R1_V5	
CDABS	Call	V0,V1	Vo	MTH\$VCDABS_R1_V6	
CGABS	Call	V0,V1	Vo	MTH\$VCGABS_R1_V6	
CCOS	Call	V0,V1	V0,V1	MTH\$VCCOS_R1_V11	
CDCOS	Call	V0,V1	V0,V1	MTH\$VCDCOS_R1_V11	
cGCOS	Call	V0,V1	V0,V1	MTH\$VCGCOS_R1_V11	
cos	J SB	Vo	vo	MTH\$VCOS_R4_V7	
DCOS	J SB	Vo	vo	MTH\$VDCOS_R4_V8	
GCOS	J SB	Vo	vo	MTH\$VGCOS_R4_V8	
COSD	J SB	Vo	vo	MTH\$VCOSD_R4_V6	
DCOSD	J SB	Vo	Vo	MTH\$VDCOSD_R4_V6	
GCOSD	J SB	Vo	Vo	MTH\$VGCOSD_R4_V6	
CEXP	Call	V0,V1	V0,V1	MTH\$VCEXP_R1_V8	
CDEXP	Call	V0,V1	V0,V1	MTH\$VCDEXP_R1_V10	
CGEXP	Call	V0,V1	V0,V1	MTH\$VCGEXP_R1_V10	
CLOG	Call	V0,V1	V0,V1	MTH\$VCLOG_R1_V8	
CDLOG	Call	V0,V1	V0,V1	MTH\$VCDLOG_R1_V10	
CGLOG	Call	V0,V1	V0,V1	MTH\$VCGLOG_R1_V10	
AMOD	J SB	VO,RO	Vo	MTH\$VAMOD_R4_V5	MTH\$VAMOD_E_R4_V5
DMOD	J SB	VO,RO	Vo	MTH\$VDMOD_R7_V6	MTH\$VDMOD_E_R7_V6
GMOD	J SB	VO,R0	Vo	MTH\$VGMOD_R7_V6	MTH\$VGMOD_E_R7_V6
CSIN	Call	V0,V1	V0,V1	MTH\$VCSIN_R1_V11	
CDSIN	Call	vo,v1	V0, V1	MTH\$VCDSIN_R1_V11	
CGSIN	Call	V0,V1	V0,V1	MTH\$VCGSIN_R1_V11	
CSQRT	Call	V0,V1	V0,V1	MTH\$VCSQRT_R1_V7	
CDSQRT	Call	V0,V1	V0,V1	MTH\$VCDSQRT_R1_V8	
CGSQRT	Call	V0,V1	V0,V1	MTH\$VCGSQRT_R1_V8	
COSH	J SB	V0	V0	MTH\$VCOSH_R5_V8	
DCOSH	J SB	V0	Vo	MTH\$VDCOSH_R5_V8	
GCOSH	J SB	V0	Vo	MTH\$VGCOSH_R5_V8	
EXP	J SB	V0	Vo	MTH\$VEXP_R3_V6	MTH\$VEXP_E_R3_V6
DEXP	J SB	V0	V0	MTH\$VDEXP_R3_V6	MTH\$VDEXP_E_R3_V6
GEXP	J SB	V0	Vo	MTH\$VGEXP_R3_V6	MTH\$VGEXP_E_R3_V6
ALOG	J SB	vo	vo	MTH\$VALOG_R3_V5	(continued on next page)

Table B-1 (Cont.) Vector MTH\$ Routines

Scalar Name	$\begin{aligned} & \text { Call } \\ & \text { or } \\ & \text { JSB } \end{aligned}$	Vector Input Registers	Vector Output Registers	Vector Name (Underflows Not Signaled)	Vector Name (Underflows Signaled)
DLOG	J SB	Vo	Vo	MTH\$VDLOG_R3_V7	
GLOG	J SB	vo	vo	MTH\$VGLOG_R3_V7	
ALOG10	J SB	vo	vo	MTH\$VALOG10_R3_V5	
DLOG10	J SB	vo	vo	MTH\$VDLOG10_R3_V7	
GLOG10	J SB	Vo	vo	MTH\$VGLOG10_R3_V7	
ALOG2	J SB	Vo	vo	MTH\$VALOG2_R3_V5	
DLOG2	J SB	Vo	vo	MTH\$VDLOG2_R3_V7	
GLOG2	J SB	vo	vo	MTH\$VGLOG2_R3_V7	
RANDOM	J SB	vo	vo	MTH\$VRANDOM_R2_V0	
SIN	J SB	vo	vo	MTH\$VSIN_R4_V6	
DSIN	J SB	vo	vo	MTH\$VDSIN_R4_V8	
GSIN	J SB	vo	vo	MTH\$VGSIN_R4_V8	
SIND	J SB	vo	vo	MTH\$VSIND_R4_V6	MTH\$VSIND_E_R6_V6
DSIND	J SB	vo	vo	MTH\$VDSIND_R4_V6	MTH\$VDSIND_E_R6_V6
GSIND	J SB	vo	vo	MTH\$VGSIND_R4_V6	MTH\$VGSIND_E_R6_V6
SINCOS	J SB	vo	V0,V1	MTH\$VSINCOS_R4_V7	
DSINCOS	J SB	vo	V0,V1	MTH\$VDSINCOS_R4_V8	
GSINCOS	J SB	vo	V0,V1	MTH\$VGSINCOS_R4_V8	
SINCOSD	J SB	vo	V0, V1	MTH\$VSINCOSD_R4_V6	MTH\$VSINCOSD_E_R6_V6
DSINCOSD	J SB	vo	V0,V1	MTH\$VDSINCOSD_R4_V7	MTH\$VDSINCOSD_E_R6_V7
GSINCOSD	J SB	vo	V0,V1	MTH\$VGSINCOSD_R4_V7	MTH\$VGSINCOSD_E_R6_V7
SINH	J SB	vo	vo	MTH\$VSINH_R5_V9	
DSINH	J SB	vo	vo	MTH\$VDSINH_R5_V9	
GSINH	J SB	vo	vo	MTH\$VGSINH_R5_V9	
SQRT	J SB	vo	vo	MTH\$VSQRT_R2_V4	
DSQRT	J SB	vo	vo	MTH\$VDSQRT_R2_V5	
GSQRT	J SB	vo	vo	MTH\$VGSQRT_R2_V5	
TAN	J SB	vo	vo	MTH\$VTAN_R4_V5	
DTAN	J SB	vo	vo	MTH\$VDTAN_R4_V5	
GTAN	J SB	vo	vo	MTH\$VGTAN_R4_V5	
TAND	J SB	vo	vo	MTH\$VTAND_R4_V5	MTH\$VTAND_E_R4_V5
DTAND	J SB	vo	vo	MTH\$VDTAND_R4_V5	MTH\$VDTAND_E_R4_V5
GTAND	J SB	vo	vo	MTH\$VGTAND_R4_V5	MTH\$VGTAND_E_R4_V5
TANH	J SB	vo	vo	MTH\$VTANH_R3_V10	
DTANH	J SB	vo	vo	MTH\$VDTANH_R3_V10	
GTANH	J SB	vo	vo	MTH\$VGTANH_R3_V10	
DIVC	Call	V0,V1,V2,V3	V0,V1	OTS\$VVDIVC_R1_V6	

(continued on next page)

Vector MTH\$ Routine Entry Points

Table B-1 (Cont.) Vector MTH\$ Routines

Scalar Name	Call or JSB	Vector Input Registers	Vector Output Registers	Vector Name (Underflows Not Signaled)	Vector Name (Underflows Signaled)
DIVCD	Call	V0,V1, V2, V3	v0,V1	OTS\$VVDIVCD_R1_V7	
DIVCG	Call	V0,V1, V2, V3	vo,v1	OTS\$VVDIVCG_R1_V7	
MULC	Call	V0,V1,V2,V3	V0, V1	OTS\$VVMULC_R1_V4	
MULCD	Call	V0,V1,V2,V3	V0,V1	OTS\$VVMULCD_R1_V4	
MULCG	Call	V0,V1,V2,V3	V0,V1	OTS\$VVMULCG_R1_V4	
POWJJ	Call	V0,Ro	vo	OTS\$VPOWJJ_R1_V1	
POWRJ	Call	V0,Ro	Vo	OTS\$VPOWRJ_R1_V2	OTS\$VPOWRJ_E_R1_V2
POWD	Call	V0,Ro	Vo	OTS\$VPOWDJ_R1_V2	OTS\$VPOWDJ_E_R1_V2
POWGJ	Call	V0,Ro	vo	OTS\$VPOWGJ_R1_V2	OTS\$VPOWGJ_E_R1_V2
POWRR	Call	V0,Ro	vo	OTS\$VPOWRR_R1_V4	OTS\$VPOWRR_E_R1_V4
POWDD	Call	V0,Ro	vo	OTS\$VPOWDD_R1_V8	OTS\$VPOWDD_E_R1_V8
POWGG	Call	V0,R0	vo	OTS\$VPOWGG_R1_V9	OTS\$VPOWGG_E_R1_V9

Index

A

Absolute value of complex number, scalar_MTH-22
Additional routines, list of, 1-4 to 1-8
Algorithms, 1-3
Arc cosine
in degrees, scalar_MTH-6, scalar_MTH-65
in radians, scalar_MTH-3, scalar_MTH-63
Arc sine
in degrees, scalar_MTH-10, scalar_MTH-69
in radians, scalar_MTH-8, scalar_MTH-67
Arc tangent
hyperbolic, scalar_MTH-20, scalar_MTH-79
in degrees, scalar_MTH-14, scalar_MTH-18, scalar_MTH-73, scalar_MTH-77
in radians, scalar_MTH-1 $\overline{2}$, scalar_MTH-16, scalar_MTH-71, scalar_MTH-75
Arrays, conversion of, scalar_MTH-58

B

Backward indexing, 2-6
BLAS, definition, 2-1
BLAS1\$VIxAMAX routine, vector_MTH-143
BLAS1\$VxASUM routine, vector_MTH-146
BLAS1\$VXAXPY routine, vector_MTH-149
BLAS1\$VxCOPY routine, vector_MTH-154
BLAS1\$VxDOT routine, vector_MTH-159
BLAS1\$VxNRM2 routine, vector_MTH-164
BLAS1\$VxROTG routine, vector_MTH-173
BLAS1\$VxROT routine, vector_MTH-167
BLAS1\$VxSCAL routine, vector_MTH-177
BLAS1\$VxSWAP routine, vector_MTH-181

C

Calling convention, 1-2
Compaq Fortran
/BLAS qualifier, 2-2
compiler, 2-2, 2-9
Complex numbers, 1-4, scalar_MTH-52, scalar_MTH-54, scalar_MTH-105, scalar_MTH-115
absolute value of, scalar_MTH-22
complex exponential of, scalar_MTH-29, scalar_MTH-31

Complex numbers (cont'd)
conjugate of, scalar_MTH-40, scalar_MTH-41
cosine of, scalar_MTH-25, scalar_MTH-27
made from floating-point, scalar_MTH-36, scalar_MTH-38
natural logarithm of, scalar_MTH-33, scalar_MTH-34
sine of, scalar_MTH-49, scalar_MTH-50
Condition handling, 1-3
Conjugate of complex number, scalar_MTH-40, scalar_MTH-41
Cosine
hyperbolic, scalar_MTH-47, scalar_MTH-83
in degrees, scalar_MTH-45, scalar_MTH-82, scalar MTH-122
in radians, scalar_MTH-43, scalar_MTH-81, scalar_MTH-119
of complex number, scalar_MTH-25, scalar_MTH-27

D

Double-precision value
converting an array of, scalar_MTH-58 converting one, scalar_MTH-5 6

E

Entry point name, 1-1
Error checking, in FOLR routines, 2-6
Euclidean norm of a vector, vector_MTH-164
Exceptions, recovering from, 2-7
Exponential, scalar_MTH-60, scalar_MTH-85
of complex numbèr, scalar_MTH-29,
scalar_MTH-31

F

First Order Linear Recurrence See FOLR
Floating-point
conversion to nearest value, 1-7
multiplication, 1-7
positive difference, 1-4
sign function, 1-7
FOLR (First Order Linear Recurrence)
definition, 2-6

FOLR (First Order Linear Recurrence) (cont'd)
routines, vector_MTH-185, vector_MTH-189, vector_MTH-193, vector_MTH-197 error checking, 2-6 naming conventions, 2-6
Fortran
/BLAS qualifier, 2-2
compiler, 2-2, 2-9
Forward indexing, 2-6

G

Givens plane rotation
applying to a vector, vector_MTH-167
generating the elements for, vector_MTH-173

H

Hyperbolic arc tangent, scalar_MTH-20, scalar_MTH-79
Hyperbolic cosine, scalar_MTH-47, scalar_MTH-83
Hyperbolic sine, scalar_MTH-95, scalar_MTH-127
Hyperbolic tangent, scalar_MTH-103, scalar_MTH-137

I

Indexing
backward, 2-6
forward, 2-6

J

J SB entry points, 1-2

L

Linear recurrence, definition, 2-6
Logarithm
base 2, scalar_MTH-89, scalar_MTH-109
common, scalär_MTH-91, scalār_MTH-111
natural, scalar_MTH-87, scalar_MTH-107
natural complex, scalar_MTH-3̄3, scalar_MTH-34

M

Mathematics routines, additional routines, A-1 to A-18
MTH $\$$ ACOSD routine, scalar_MTH-6
MTH $\$$ ACOS routine, scalar_MTH-3
MTH\$AIMAG routine, scalar_MTH-105
MTH $\$$ ALOG10 routine, scalar_MTH-111
MTH $\$$ ALOG2 routine, scalar_MTH-109
MTH $\$$ ALOG routine, scalar_MTH-107

MTH\$ASIND routine, scalar_MTH-10
MTH $\$$ ASIN routine, scalar_MTH-8
MTH $\$$ ATAN 2 routine, scalär_MTH-16
MTH\$ATAND2 routine, scalar_MTH-18
MTH\$ATAND routine, scalar_MTH-14
MTH $\$$ ATANH routine, scalar_MTH-20
MTH\$ATAN routine, scalar_MTH-12
MTH \$CABS routine, scalar_MTH-22
MTH \$CCOS routine, scalar_MTH-25
MTH $\$$ CDABS routine, scalar_MTH-22
MTH $\$$ CDCOS routine, scalar_MTH-27
MTH\$CDEXP routine, scalar_MTH-31
MTH $\$$ CDLOG routine, scalar_MTH-34
MTH \$CDSIN routine, scalar_MTH-50
MTH\$CDSQRT routine, scalar_MTH-54
MTH\$CEXP routine, scalar M $\overline{\mathrm{T}} \mathrm{H}-29$
MTH \$CGABS routine, scalar_MTH-22
MTH $\$$ CGCOS routine, scalar_MTH-27
MTH\$CGEXP routine, scalar_MTH-31
MTH\$CGLOG routine, scalar-MTH-34
MTH \$CGSIN routine, scalar_MTH-50
MTH\$CGSQRT routine, scalā MTH-54
MTH\$CLOG routine, scalar_MTH-33
MTH $\$$ CMPLX routine, scalar_MTH-36
MTH $\$$ CONJ G routine, scalar_MTH-40
MTH \$COSD routine, scalar_MTH-45
MTH \$COSH routine, scalar ${ }^{-}$MTH-47
MTH\$COS routine, scalar_MTH-43
MTH \$CSIN routine, scalar_MTH-49
MTH\$CSQRT routine, scalar_MTH-52 MTH \$CVT_DA_GA routine, scalar_MTH-58
MTH\$CVT_D_G routine, scalar_MTH-56 MTH \$CVT_GA _DA routine, scalar_MTH-58
MTH\$CVT_G_D routine, scalar_MTH-56
MTH \$DACŌ- ${ }^{\text {D }}$ routine, scalar_MTH-6
MTH\$DACOS routine, scalar_MTH-3
MTH\$DASIND routine, scalar_MTH-10
MTH\$DASIN routine, scalar_M TH-8
MTH \$DATAN 2 routine, scalar_MTH-16 MTH\$DATAND2 routine, scalar_MTH-18 MTH \$DATAND routine, scalar_MTH-14 MTH\$DATANH routine, scalar_MTH-20 MTH\$DATAN routine, scalar_MTH-12 MTH \$DCMPLX routine, scalā_MTH-38 MTH \$DCONJ G routine, scalar_MTH-41
MTH \$DCOSD routine, scalar_MTH-45 MTH\$DCOSH routine, scalar ${ }^{-}$MTH-47 MTH\$DCOS routine, scalar_MTH-43 MTH\$DEXP routine, scalar_MTH-60 MTH\$DIMAG routine, scalar_MTH-105 MTH\$DLOG10 routine, scalar_MTH-111 MTH \$DLOG2 routine, scalar_MTH-109 MTH\$DLOG routine, scalar_MTH-107 MTH\$DREAL routine, scalar_MTH-115 MTH \$DSINCOSD routine, scalar_MTH-122 MTH\$DSINCOS routine, scalar_MTH-119

MTH\$DSIND routine, scalar_MTH-125 MTH \$DSINH routine, scalar MTH-127 MTH\$DSIN routine, scalar_MTH-117 MTH\$DSQRT routine, scalar_MTH-130 MTH\$DTAND routine, scalar_MTH-135 MTH\$DTANH routine, scalar_MTH-137 MTH\$DTAN routine, scalar MTH-133 MTH $\$$ EXP routine, scalar_MTH-60 MTH\$GACOSD routine, scalar_MTH-6 MTH $\$$ GACOS routine, scalar_MTH-3 MTH\$GASIND routine, scalar_MTH-10 MTH\$GASIN routine, scalar_MTH-8 MTH \$GATAN 2 routine, scalar_MTH-16 MTH\$GATAND2 routine, scalar_MTH-18 MTH\$GATAND routine, scalar_MTH-14 MTH\$GATANH routine, scalar_MTH-20 MTH \$GATAN routine, scalar_MTH-12 MTH $\$$ GCMPLX routine, scalar_MTH-38 MTH \$GCONJ G routine, scalar_MTH-41 MTH \$GCOSD routine, scalar_MTH-45 MTH \$GCOSH routine, scalar_MTH-47 MTH \$GCOS routine, scalar_MTH-43 MTH\$GEXP routine, scalar_MTH-60 MTH $\$$ GIMAG routine, scalar_MTH-105 MTH\$GLOG10 routine, scalar_MTH-111 MTH\$GLOG2 routine, scalar_MTH-109 MTH\$GLOG routine, scalar_MTH-107 MTH\$GREAL routine, scalar_MTH-115 MTH\$GSINCOSD routine, scalar_MTH-122 MTH\$GSINCOS routine, scalar_M TH-119 MTH\$GSIND routine, scalar_MTH-125 MTH\$GSINH routine, scalar_MTH-127 MTH\$GSIN routine, scalar_MTH-117 MTH\$GSQRT routine, scalar_MTH-130 MTH \$GTAND routine, scalar_MTH-135 MTH\$GTANH routine, scalar_MTH-137 MTH\$GTAN routine, scalar_MTH-133 MTH\$HACOSD routine, scalar_MTH-65 MTH $\$$ HACOS routine, scalar_MTH-63 MTH $\$$ HASIND routine, scalar_MTH-69 MTH $\$$ HASIN routine, scalar_MTH-67 MTH \$HATAN 2 routine, scalar_MTH-75 MTH\$HATAND2 routine, scalar_MTH-77 MTH $\$$ HATAND routine, scalar_MTH-73 MTH $\$$ HATANH routine, scalar_MTH-79 MTH \$HATAN routine, scalar_MTH-71 MTH $\$$ HCOSD routine, scalar_MTH-82 MTH $\$ \mathrm{HCOSH}$ routine, scalar_MTH-83 MTH $\$$ HCOS routine, scalar_MTH-81 MTH $\$$ HEXP routine, scalar_MTH-85 MTH $\$$ HLOG10 routine, scalar_MTH-91 MTH $\$$ HLOG 2 routine, scalar_MTH-89 MTH $\$$ HLOG routine, scalar_MTH-87 MTH\$HSINCOSD routine, scalar_MTH-122 MTH \$HSINCOS routine, scalar_MTH-119 MTH $\$$ HSIND routine, scalar_MTH-94

MTH\$HSINH routine, scalar_MTH-95
MTH $\$$ HSIN routine, scalar MTH-93
MTH\$HSQRT routine, scalar_MTH-97
MTH \$HTAND routine, scalar_MTH-101
MTH \$HTANH routine, scalar_MTH-103
MTH \$HTAN routine, scalar_MTH-99
MTH\$RANDOM routine, scälar_MTH-113
MTH $\$$ REAL routine, scalar_MTH-115
MTH $\$$ SINCOSD routine, scalar_MTH-122
MTH $\$$ SINCOS routine, scalar_MTH-119
MTH\$SIND routine, scalar_MTH-125
MTH\$SINH routine, scalar_MTH-127
MTH\$SIN routine, scalar_MTH-117
MTH\$SQRT routine, scalar_MTH-130
MTH\$TAND routine, scalar_MTH-135
MTH\$TANH routine, scalar_MTH-137
MTH \$TAN routine, scalar_MTH-133
MTH\$UMAX routine, scalar_MTH-139
MTH\$UMIN routine, scalar_MTH-140
MTH\$VxFOLRLy_MA_V5 routine,
vector_MTH-193
MTH $\$ \mathrm{~V} \times \mathrm{FO}$ OLRLy_z_V2 routine, vector_MTH-197
MTH $\$ V x F O L R y _\bar{M} A-V 15$ routine,
vector_MTH-185
MTH \$VxFOLRy_z_V8 routine, vector_MTH-189
Multiplying, vector, vector_MTH-149

0

Overflow detection, 2-8

R

Random number generator, scalar_MTH-113

S

Sine
hyperbolic, scalar_MTH-95, scalar_MTH-127
in degrees, scalar_MTH-94, scalar_MTH-122, scalar_MTH-125
in radians, scalar_MTH-93, scalar_MTH-117, scalar_MTH-119
of complex number, scalar_MTH-49, scalar_MTH-50
Square root, - scalar_MTH-97, scalar_MTH-130

T
 Tangent, scalar_MTH-99, scalar_MTH-101, scalar_MTH-133, scalar_MTH-135
 hyperbōlic, scalar_MTH-103, scalar_MTH-137

U
Underflow detection, 2-8

Vectorization of a loop
preventing, vector_MTH-185,
vector_MTH-_89, vector_MTH-193,
vector_MTH-197

Vectorizing Fortran compiler, 2-7
Vector routines
naming conventions, 2-8
table of entry points, B-1 to B-4

Vectors
copying, vector_MTH-154
Euclidean norm, obtaining, vector_MTH-164
Givens plane rotation applying, vector_MTH-167 generating the elements for, vector_MTH-173
index, obtaining, vector_MTH-143
inner product, obtaining, vector_MTH-159
multiplying, vector_MTH-149
scaling, vector_MTH-177
sum of absolutè values, obtaining, vector_MTH-146
swapping, vector_MTH-181

[^0]: 1 This manual has been archived but is available on the OpenVMS documentation CD-ROM.

[^1]: ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
 ${ }^{2}$ Integer overflow exceptions can occur.
 ${ }^{3}$ Floating-point overflow exceptions can occur.

[^2]: ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
 ${ }^{2}$ Integer overflow exceptions can occur.

[^3]: ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
 ${ }^{2}$ Integer overflow exceptions can occur.
 ${ }^{3}$ Floating-point overflow exceptions can occur.
 ${ }^{4}$ Divideby-zero exceptions can occur.
 ${ }^{5}$ Floating-point underflow exceptions are signaled.

[^4]: 1 For more information, see Basic Linear Algebra Subprograms for FORTRAN Usage in ACM Transactions on Mathematical Software, Vol. 5, No. 3, September 1979.

[^5]: The complex number z is (3.142563784674657,7.436784698870000)
 The complex logarithm of ($3.142563784674657,7.436784698870000$) is
 (2.088587642177504,1.170985519274141)

[^6]: x
 OpenVMS usage: floating_point or complex_number
 type: F_floating, D_floating, G_floating real or F_floating, D_floating, G_{-}^{-}floating complex
 access: modify
 mechanism: by reference, array reference
 Array containing the elements to be accessed. All elements of array \mathbf{x} are accessed only if the increment argument of \mathbf{x}, called incx, is 1. The \mathbf{x} argument is the address of a floating-point or floating-point complex number that is this array. On entry, this argument is an array of length at least:
 $1+(n-1) *|i n c x|$

