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Preface

Intended Audience

This manual is intended for all programmers writing VAX MACRO programs. You
should be familiar with assembly language programming, the VAX instruction
set, and the OpenVMS operating system before reading this manual.

Document Structure

This manual is divided into two parts, each of which is subdivided into several
chapters.

Part I describes the VAX MACRO language.

Chapter 1 introduces the features of the VAX MACRO language.
Chapter 2 describes the format used in VAX MACRO source statements.

Chapter 3 describes the following components of VAX MACRO source
statements:

— Character set

— Numbers

— Symbols

— Local labels

— Terms and expressions

— Unary and binary operators

— Direct assignment statements

— Current location counter

Chapter 4 describes the arguments and string operators used with macros.

Chapter 5 summarizes and gives examples of using the VAX MACRO
addressing modes.

Chapter 6 describes the VAX MACRO general assembler directives and the
directives used in defining and expanding macros.

Part Il describes the VAX data types, the instruction and addressing mode
formats, and the instruction set.

Chapter 7 summarizes the terminology and conventions used in the
descriptions in Part I1.

Chapter 8 describes the basic VAX architecture, including the following:
— Address space

— Data types

XV



— Processor status longword
— Permanent exception enables
— Instruction and addressing mode formats

Chapter 9 describes the native-mode instruction set. The instructions are
divided into groups according to their function and are listed alphabetically
within each group.

Chapter 10 describes the extension to the VAX architecture for integrated
vector processing.

This manual also contains the following five appendixes:

Appendix A lists the ASCII character set used in VAX MACRO programs.
Appendix B gives rules for hexadecimal/decimal conversion.

Appendix C summarizes the general assembler and macro directives (in
alphabetical order), special characters, unary operators, binary operators,
macro string operators, and addressing modes.

Appendix D lists the permanent symbols (instruction set) defined for use with
VAX MACRO.

Appendix E describes the exceptions (traps and faults) that may occur during
instruction execution.

Related Documents

The

For

following documents are relevant to VAX MACRO programming:
VAX Architecture Reference Manual

OpenVMS DCL Dictionary

The descriptions of the VMS Linker and Symbolic Debugger in:
— OpenVMS Linker Utility Manual

— OpenVMS Debugger Manual

OpenVMS Programming Concepts Manual

additional information about OpenVMS products and services, access the

following World Wide Web address:

http://ww. openvns. conpag. coml

Reader’'s Comments

Compag welcomes your comments on this manual. Please send comments to

XVi

either of the following addresses:
Internet openvmsdoc@compag.com
Mail Compag Computer Corporation

OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698



How to Order Additional Documentation

Use the following World Wide Web address to order additional documentation:

http:// waw. openvis. conpag. com

If you need help deciding which documentation best meets your needs, call

800-282-6672.

Conventions

The following conventions are used in this manual:

Ctrl/x

PF1 x

0

[1

{}

bold text

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

A horizontal ellipsis in examples indicates one of the following
possibilities:

= Additional optional arguments in a statement have been
omitted.

= The preceding item or items can be repeated one or more
times.

= Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.
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italic text

UPPERCASE TEXT

Monospace t ext

numbers

Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device

type).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names

of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.



VAX MACRO Language

Part | provides an overview of the features of the VAX MACRO language. It
includes an introduction to the structure and components of VAX MACRO source
statements. Part | also contains a detailed discussion of the VAX MACRO
addressing modes, general assembler directives, and macro directives.
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Introduction

VAX MACRO is an assembly language for programming VAX computers using
the OpenVMS operating system. Source programs written in VAX MACRO are
translated into object (or binary) code by the VAX MACRO assembler, which
produces an object module and, optionally, a listing file. The features of the
language are introduced in this chapter.

VAX MACRO source programs consist of a sequence of source statements. These
source statements may be any of the following:

= VAX native-mode instructions
= Direct assignment statements
e Assembler directives

Instructions manipulate data. They perform such functions as addition, data
conversion, and transfer of control. Instructions are usually followed in the source
statement by operands, which can be any kind of data needed for the operation
of the instruction. The VAX instruction set is summarized in Appendix D of this
volume and is described in detail in Chapter 9. Direct assignment statements
equate symbols to values. Assembler directives guide the assembly process
and provide tools for using the instructions. There are two classes of assembler
directives: general assembler directives and macro directives.

General assembler directives can be used to perform the following operations:
= Store data or reserve memory for data storage
= Control the alignment of parts of the program in memory

= Specify the methods of accessing the sections of memory in which the
program will be stored

= Specify the entry point of the program or a part of the program
= Specify the way in which symbols will be referenced

= Specify that a part of the program is to be assembled only under certain
conditions

= Control the format and content of the listing file

« Display informational messages

= Control the assembler options that are used to interpret the source program
= Define new opcodes

Macro directives are used to define macros and repeat blocks. They allow you to
perform the following operations:

= Repeat identical or similar sequences of source statements throughout a
program without rewriting those sequences

Introduction 1-1



Introduction

= Use string operators to manipulate and test the contents of source statements

Use of macros and repeat blocks helps minimize programmer errors and speeds
the debugging process.

1-2 Introduction
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VAX MACRO Source Statement Format

A source program consists of a sequence of source statements that the assembler
interprets and processes, one at a time, generating object code or performing a
specific assembly-time process. A source statement can occupy one source line or
can extend onto several source lines. Each source line can be up to 132 characters
long; however, to ensure that the source line fits (with its binary expansion) on
one line in the listing file, no line should exceed 80 characters.

VAX MACRO statements can consist of up to four fields, as follows:
« Label field—symbolically defines a location in a program.

= Operator field—specifies the action to be performed by the statement; can be
an instruction, an assembler directive, or a macro call.

= Operand field—contains the instruction operands, the assembler directive
arguments, or the macro arguments.

e Comment field—contains a comment that explains the meaning of the
statement; does not affect program execution.

The label field and the comment field are optional. The label field ends with a
colon (:) and the comment field begins with a semicolon (;). The operand field
must conform to the format of the instruction, directive, or macro specified in the
operator field.

Although statement fields can be separated by either a space or a tab (see
Table 3-2), formatting statements with the tab character is recommended for
consistency and clarity and is a Compag convention.

Field Begins in Column Tab Characters to Reach Column
Label 1 0
Operator 9 1
Operand 17 2
Comment 41 5

For example:

.TITLE ROUT1
. ENTRY  START, "Mc> Begi nning of routine
CLRL RO Cl ear register

LABT: SUBL3  #10, 4(AP), R2 Subtract 10
LAB2: BRB CONT : Branch to another routine

Continue a single statement on several lines by using a hyphen (-) as the last
nonblank character before the comment field, or at the end of a line (when there
is no comment). For example:
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LABL:  MWAL  WBOGHAL_VECTOR, - ; Save boot driver
RPB$L_| OVEC( R7)

VAX MACRO treats the preceding statement as equivalent to the following
statement:

LABL: MOVAL WBOOSAL_VECTOR, RPBSL_| OVEC(R7) ; Save boot driver

A statement can be continued at any point. Do not continue permanent and
user-defined symbol names on two lines. If a symbol name is continued and
the first character on the second line is a tab or a blank, the symbol name is
terminated at that character. Section 3.3 describes symbols in detail.

Note that when a statement occurs in a macro definition (see Chapter 4 and
Chapter 6), the statement cannot contain more than 1000 characters.

Blank lines are legal, but they have no significance in the source program except
that they terminate a continued line.

The following sections describe each of the statement fields in detail.

2.1 Label Field

A label is a user-defined symbol that identifies a location in the program. The
symbol is assigned a value equal to the location counter where the label occurs.
The user-defined symbol name can be up to 31 characters long and can contain
any alphanumeric character and the underscore (_), dollar sign ($), and period
(.) characters. See Section 3.3.2 for a description of the rules for forming
user-defined symbol names in more detail.

If a statement contains a label, the label must be in the first field on the line.

A label is terminated by a colon (:) or a double colon (::). A single colon indicates
that the label is defined only for the current module (an internal symbol). A
double colon indicates that the label is globally defined; that is, the label can be
referenced by other object modules.

Once a label is defined, it cannot be redefined during the source program. If a
label is defined more than once, VAX MACRO displays an error message when
the label is defined and again when it is referenced.

If a label extends past column 7, place it on a line by itself so that the following
operator field can start in column 9 of the next line.

The following example illustrates some of the ways you can define labels:

EXP; .BLKL 50 ; Table stores expected val ues
DATA:: .BLKW 25 ; Data table accessed by store
;routine in another nodul e
EVAL: CLRL RO ; Routine eval uates expressions
ERROR | N_ARG ; The arg-list contains an error
I NCL RO ;increnent error count
TEST:: MWO  EXP,RL ; This tests routine
; referenced externally

TEST1: BRW EXIT ;. Gotoexit routine

The label field is also used for the symbol in a direct assignment statement (see
Section 3.8).
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2.2 Operator Field

2.2 Operator Field

The operator field specifies the action to be performed by the statement. This
field can contain an instruction, an assembler directive, or a macro call.

When the operator is an instruction, VAX MACRO generates the binary code for
that instruction in the object module. The binary codes are listed in Appendix D;
the instruction set is described in Chapter 9. When the operator is a directive,
VAX MACRO performs certain control actions or processing operations during
source program assembly. The assembler directives are described in Chapter 6.
When the operator is a macro call, VAX MACRO expands the macro. Macro calls
are described in Chapter 4 and in Chapter 6 ((MACRO directive).

Use either a space or a tab character to terminate the operator field; however, the
tab is the recommended termination character.

2.3 Operand Field

The operand field can contain operands for instructions or arguments for either
assembler directives or macro calls.

Operands for instructions identify the memory locations or the registers that
are used by the machine operation. These operands specify the addressing mode
for the instruction, as described in Chapter 5. The operand field for a specific
instruction must contain the number of operands required by that instruction.
See Chapter 9 for descriptions of the instructions and their operands.

Arguments for a directive must meet the format requirements of that directive.
Chapter 6 describes the directives and the format of their arguments.

Operands for a macro must meet the requirements specified in the macro
definition. See the description of the .MACRO directive in Chapter 6.

If two or more operands are specified, they must be separated by commas (,).
VAX MACRO also allows a space or tab to be used as a separator for arguments to
any directive that does not accept expressions (see Section 3.5 for a discussion of
expressions). However, a comma is required to separate operands for instructions
and for directives that accept expressions as arguments.

The semicolon that starts the comment field terminates the operand field. If a
line does not have a comment field, the operand field is terminated by the end of
the line.

2.4 Comment Field

The comment field contains text that explains the function of the statement.
Every line of code should have a comment. Comments do not affect assembly
processing or program execution. You can cause user-written messages to be
displayed during assembly by the .ERROR, .PRINT, and .WARN directives (see
descriptions in Chapter 6).

The comment field must be preceded by a semicolon; it is terminated by the end
of the line. The comment field can contain any printable ASCII character (see
Appendix A).

To continue a lengthy comment to the next line, write the comment on the next
line and precede it with another semicolon. If a comment does not fit on one
line, it can be continued on the next, but the continuation must be preceded by
another semicolon. A comment can appear on a line by itself.
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2.4 Comment Field

Write the text of a comment to convey the meaning rather than the action of the
statement. The instruction MOVAL BUF_PTR_1,R7, for example, should have a
comment such as “Get pointer to first buffer,” not “Move address of BUF_PTR_1

to R7.”

For example:

MWAL  STRING DES 1,R0 ; Get address of string
;  descriptor

MOVZW.  (RO), Rl ; Get length of string

MOVL 4(R0), RO ; Get address of string
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Components of MACRO Source Statements

This chapter describes the following components of VAX MACRO source
statements:

Character set

Numbers

Symbols

Local labels

Terms and expressions

Unary and binary operators
Direct assignment statements

Current location counter

3.1 Character Set

The following characters can be used in VAX MACRO source statements:

The letters of the alphabet, A to Z, uppercase and lowercase. Note that the
assembler considers lowercase letters equivalent to uppercase letters except
when they appear in ASCII strings.

The digits O to 9.

The special characters listed in Table 3-1.

Table 3-1 Special Characters Used in VAX MACRO Statements

Character Character Name Function
_ Underscore Character in symbol names
$ Dollar sign Character in symbol names
Period Character in symbol names, current location
counter, and decimal point
Colon Label terminator
= Equal sign Direct assignment operator and macro
keyword argument terminator
Tab Field terminator
Space Field terminator
# Number sign Immediate addressing mode indicator

(continued on next page)
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3.1 Character Set

Table 3-1 (Cont.) Special Characters Used in VAX MACRO Statements

Character

Character Name

Function

@

[]
O

<>

%

At sign

Comma
Semicolon
Plus sign

Minus sign or
hyphen

Asterisk

Slash

Ampersand
Exclamation point
Backslash

Circumflex
Square brackets

Parentheses
Angle brackets
Question mark

Apostrophe
Percent sign

Deferred addressing mode indicator and
arithmetic shift operator

Field, operand, and item separator
Comment field indicator

Autoincrement addressing mode indicator,
unary plus operator, and arithmetic addition
operator

Autodecrement addressing mode indicator,
unary minus operator, arithmetic subtraction
operator, and line continuation indicator

Arithmetic multiplication operator
Arithmetic division operator
Logical AND operator

Logical inclusive OR operator point

Logical exclusive OR and numeric conversion
indicator in macro arguments

Unary operators and macro argument
delimiter

Index addressing mode and repeat count
indicators

Register deferred addressing mode indicators
Argument or expression grouping delimiters

Created local label indicator in macro
arguments

Macro argument concatenation indicator
Macro string operators

Table 3-2 defines the separating characters used in VAX MACRO.

Table 3-2 Separating Characters in VAX MACRO Statements

Character

Character Name

Usage

(space)
(tab)

Space or tab

Comma

Separator between statement fields. Spaces
within expressions are ignored.

Separator between symbolic arguments within
the operand field. Multiple expressions in the
operand field must be separated by commas.

3.2 Numbers

Numbers can be integers, floating-point numbers, or packed deci